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Résumé

Les réseaux sans fil de la prochaine génération devraient prendre en charge plusieurs techniques de détection et de lo-

calisation précises. Les systèmes de transport intelligents, où les véhicules détectent en permanence les changements

environnementaux et échangent des informations et des données de détection avec des véhicules déjà détectés, des

stations de base ou des serveurs centraux, en sont des exemples importants. Une approche courante mais naïve pour

aborder la détection et la communication consiste à séparer les deux tâches en systèmes indépendants et à répartir les

ressources disponibles, telles que la largeur de bande et la puissance, entre les deux systèmes. Cependant, les coûts

élevés du spectre et du matériel encouragent l’intégration des tâches de détection et de communication via une seule

forme d’onde et une seule plate-forme matérielle. Ces systèmes intégrés sont plus compliqués à concevoir, notam-

ment en raison du compromis inhérent qu’ils présentent entre les performances de détection et de communication.

Cette thèse s’appuie sur [1], qui a introduit le premier modèle informationnel théorique pour la détection et

la communication intégrées (ISAC) et a caractérisé les limites fondamentales des performances de détection et de

communication dans ce modèle. Le modèle de [1] considère un canal sans mémoire dépendant de l’état (SDMC) avec

des signaux de rétroaction généralisée observés au niveau de l’émetteur (Tx), il mesure également les performances

de communication en termes de taux de données fiables et les performances de détection en termes de distorsion

moyenne. On remarque que la rétroaction généralisée est bien adaptée à la modélisation des systèmes ISAC, car

elle peut décrire le comportement du canal et donc de l’environnement, elle capture la nature passive des signaux

d’écho observés au Tx, et elle dépend également de la forme d’onde de transmission. Les résultats présentés dans

[1], montrent que pour une configuration point à point (P2P) à émetteur unique (Tx) et récepteur unique (Rx), le

compromis optimal entre les performances de communication et de détection est atteint par des constructions de

code aléatoire standard telles qu’utilisées pour la communication de données traditionnelle, où les statistiques des

entrées du canal, cependant, doivent être adaptées pour obtenir la performance de détection souhaitée.

Cette thèse se concentre sur la théorie de l’information ISAC sur les réseaux multi-Tx ou multi-Rx. Plus précisé-

ment, notre première contribution est de caractériser le compromis fondamental entre les taux de communication et
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la distorsion de détection des canaux de diffusion (BC) mono-Tx et bi-Rx dépendants de l’état qui sont physique-

ment dégradés. Nous fournissons également des limites intérieures et extérieures sur les compromis taux-distorsion

réalisables pour les canaux de diffusion généraux. Nos résultats montrent des compromis intéressants entre les per-

formances de détection et de communication réalisables simultanément, ce qui implique que pour améliorer le taux

de communication, il faut sacrifier les performances de détection et vice versa. Ce compromis est illustré à l’aide

de divers exemples. De plus, nous décrivons une classe de réseaux de base où les performances de communication

et de détection n’ont pas de compromis, et où les deux tâches peuvent être satisfaites simultanément avec leurs

performances optimales.

Les canaux P2P et les BC sont tous deux des réseaux à émission unique, pour lesquels on peut montrer que la

stratégie de détection optimale de l’émetteur est un simple estimateur symbole par symbole de l’état caché étant

donné les entrées et sorties du canal au niveau de la borne de détection. L’optimalité de cet estimateur découle du

fait que les canaux de rétroaction généralisés et la séquence d’état se comportent tous deux sans mémoire pour une

séquence d’entrée fixe. Ce n’est pas nécessairement le cas dans les configurations où le terminal de détection n’est

pas le seul à fournir des entrées aux canaux sans mémoire, par exemple dans les réseaux multi-Tx ou dans les réseaux

où la détection est effectuée à la Rx. Dans ce cas, la perturbation effective pour la détection n’est pas nécessairement

sans mémoire puisque les entrées des autres terminaux créent également des perturbations et peuvent avoir une

mémoire. Dans la deuxième partie de cette thèse, où l’accent est mis sur les réseaux à deux Tx, des stratégies

de détection plus complexes sont donc nécessaires. Plus précisément, nous nous concentrons sur les scénarios de

communication par canal multi-accès (MAC) à deux Tx et par dispositif interactif à dispositif (D2D), c’est-à-dire le

canal bidirectionnel à deux Tx. Pour ces réseaux, nous introduisons la théorie de l’information collaborative sensing,

un concept qui a déjà reçu une attention significative dans les communautés de communication et de traitement du

signal. Dans nos schémas de détection collaborative, les émetteurs compriment les informations sur leurs signaux

de retour et transmettent ces informations aux autres émetteurs dans le but de les aider dans leurs performances de

détection.

Plus précisément, pour le MAC, nous étendons naturellement le schéma de codage de Willem pour transmettre

les informations d’état d’une Tx à l’autre sur le chemin de communication construit sur la liaison de rétroaction

généralisée. Le schéma proposé peut être considéré comme un schéma de codage source-canal distinct dans le

sens où chaque Tx compresse d’abord les sorties et les entrées obtenues pour extraire les informations d’état, puis

transmet l’indice de compression à l’aide d’un code de canal pur à l’autre Tx. Les schémas ISAC collaboratifs que

nous proposons permettent d’obtenir un meilleur rendement de détection qu’un schéma ISAC antérieur [2] où les

Tx ne s’entraident pas pour améliorer le rendement de détection. Ainsi, nous obtenons généralement un meilleur
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compromis taux-distorsion que le schéma précédent.

Pour le scénario D2D, nous décrivons deux schémas ISAC collaboratifs. Le premier schéma est similaire dans

son esprit au schéma MAC et est basé sur la séparation source-canal et le schéma de canal bidirectionnel de Han. Le

second schéma repose sur une stratégie améliorée basée sur le codage conjoint source-canal (JSCC), plus précisé-

ment le codage hybride. Nous montrons des performances améliorées des deux schémas de détection collaborative

D2D. Dans le scénario MAC et D2D, nos schémas ISAC sont strictement concaves dans les paires taux-distorsion et

améliorent donc également les stratégies classiques de partage du temps ou des ressources.
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Abstract

Next-generation wireless networks are expected to support several accurate sensing and localization techniques.

Important examples are intelligent transport systems, where vehicles continuously sense environmental changes and

exchange sensing information and data with already detected vehicles, base stations, or central servers. A common

but naive approach to address sensing and communication is to separate the two tasks into independent systems

and split the available resources, such as bandwidth and power, between the two systems. The high spectrum and

hardware costs, however, encourage integrating the sensing and communications tasks via a single waveform and a

single hardware platform. Such integrated systems are more complicated to design, in particular also because of the

inherent tradeoff they bear between sensing and communication performances.

This thesis builds on [1], which introduced the first information-theoretic model for integrated sensing and com-

munication (ISAC) and characterized the fundamental limits of sensing and communication performances in this

model. The model in [1] considers on a state-dependent memoryless channel (SDMC) with generalized feedback

signals observed at the transmitter (Tx), also, it measures communication performance in reliable data rates and

sensing performance in terms of average distortion. Notice that generalized feedback is well-suited to model ISAC

systems, because it can describe the behaviour of the channel and thus the environment, it captures the passive nature

of the echo signals observed at the Tx, and it also depends on the transmit waveform. The results in [1], show that

for a single-Tx single-Receiver (Rx) point-to-point (P2P) setup, the optimal tradeoff between communication and

sensing performances is achieved by standard random code constructions as used for traditional data communication,

where the statistics of the channel inputs, however, must be adapted to obtain the desired sensing performance.

This thesis focuses on information-theoretic ISAC over multi-Tx or multi-Rx networks. More specifically, our

first contribution is to characterize the fundamental tradeoff between communication rates and sensing distortion

of state-dependent single-Tx two-Rx broadcast channels (BC) that are physically degraded. We also provide inner

and outer bounds on the achievable rate-distortion tradeoffs for general BCs. Our results show interesting tradeoffs

between the simultaneously achievable sensing and communication performances, implying that to improve com-
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munication rate, one has to sacrifice sensing performance and vice versa. This tradeoff is illustrated at the hand of

various examples. Moreover, a class of BCs is described where communication and sensing performances experience

no tradeoff, and both tasks can be satisfied with their optimal performances simultaneously.

P2P channels and BCs are both single-Tx networks, for which it can be shown that the Tx’s optimal sensing

strategy is a simple symbol-by-symbol estimator of the hidden state given the channel inputs and outputs at the

sensing terminal. The optimality of this estimator stems from the fact that the generalized feedback channels and the

state-sequence both behave in a memoryless manner for a fixed input sequence. This is not necessarily the case in

setups where the sensing terminal is not the only terminal feeding inputs to the memoryless channels, for example,

in multi-Tx networks or in networks where sensing is performed at the Rx. In this case, the effective disturbance

for the sensing is not necessarily memoryless since the inputs from the other terminals also create disturbances and

can have memory. In the second part of this thesis, where the focus is on two-Tx networks, more complicated

sensing strategies are thus required. Specifically, we focus the two-Tx single-Rx multiaccess channel (MAC) and

interactive device-to-device (D2D) communication scenarios, i.e., the two-Tx two-way channel. For these networks,

we introduce information-theoretic collaborative sensing, a concept that has already received significant attention

in the communication and signal processing communities. In our collaborative sensing schemes, Txs compress

information about their feedback signals and convey this information to other Txs with the goal of helping them in

their sensing performances.

Specifically, for the MAC, we naturally extend Willem’s coding scheme to convey state-information from one

Tx to the other over the communication path built over the generalized feedback link. The proposed scheme can

be considered a separate source-channel coding scheme in the sense that each Tx first compresses the obtained

outputs and inputs to extract state information, then transmits the compression index using a pure channel code to

the other Tx. Our proposed collaborative ISAC schemes achieve a better sensing performance than a previous ISAC

scheme [2] where Txs do not help each other to improve sensing performance. Thus, we generally achieve a better

rate-distortion tradeoff than the previous scheme.

For D2D scenario, we describe two collaborative ISAC schemes. The first scheme is similar in spirit to the

MAC scheme and is based on source-channel separation and Han’s two-way channel scheme. The second scheme is

based on an improved strategy based on joint source-channel coding (JSCC), specifically hybrid coding. We show

enhanced performances of both D2D collaborative sensing schemes. In both the MAC and the D2D scenario, our

ISAC schemes are strictly concave in the rate-distortion pairs and thus also improve over classical time- or resource-

sharing strategies.
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Chapter 1

Introduction

1.1 Background and Motivation

Next-generation wireless networks are expected to support several autonomous and intelligent applications that

rely heavily on accurate sensing and localization techniques, as this is one of the critical features of 6G wireless

networks [4]. One example are intelligent transport systems, where vehicles are equipped to sense environmental

changes and exchange information with other vehicles for various purposes.

The standard assumption of such a cooperative sensing and communication system is that a transmitter (Tx)

wishes to convey a message to an already detected while a radio detection or radar receiver (Rx) that is co-located

with this Tx wishes to estimate parameters of the environment.

A common but naive approach to address sensing and communication is to separate the two tasks in independent

systems and to split the available resources such as bandwidth and power between the two. In the information-

theoretic models that we present in the following chapters, such a system corresponds to resource-sharing between

communication and sensing (see Figure 1.1a). The high costs of spectrum and hardware however encourages in-

(a) Resource-splitting (b) Synergic wave-form

Figure 1.1: Resource-splitting vs. synergic wave-form.
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2 1.1. BACKGROUND AND MOTIVATION

tegrating the sensing and communication tasks via a single waveform and a single hardware platform [5, 6] (see

Figure 1.1b). First attempts towards such integrated systems use a standard communication system and exploit the

backscattered signal from this waveform for sensing purposes. The employed transmit waveform is either optimized

for sensing or communication. The literature has widely studied such integrated sensing and communication (ISAC)

schemes (see, e.g., [7, 8] and references therein).

In particular, several ISAC schemes have been proposed to optimize performance metrics capturing the tension

between sensing and communication performances [9–14]. While these works provide system guidelines or propose

waveforms suitable to specific scenarios, this thesis addresses the problem from a more theoretical angle. We aim to

characterize the fundamental performance limits of ISAC systems under a given model for the parameters that need

to be estimated and for the channel over which communication and sensing take place.

The present thesis is thus related to the fields of information theory and estimation and their interplay. The

literature of related works in these fields is vast, and we shall mainly focus on the most related ones. We, however,

would also like to mention the seminal work in [15], which connects the input-output mutual information and the

minimum mean-square error (MMSE) achievable by optimal estimation of the input given the output.

The fundamental performance limits of ISAC systems were first considered in [1]. Specifically, [1] introduced

an information-theoretic model for ISAC based on a memoryless state-dependent channel and generalized-feedback.

The state-sequence is meant to model the evolution of the environment and thus captures the sensing parameter

that the Tx wishes to estimate. The generalized feedback captures two underlying assumptions used in radar signal

processing: generalized feedback captures the inherently passive nature of the backscattered signal observed at the

Tx, which cannot be controlled but is determined by its surrounding environment, and it models the fact that the

backscattered signal depends on the waveform employed by the Tx. It was proposed to use the classical average

per-letter block-distortion to measure the Tx’s sensing performance on the i.i.d. state-sequence.

The authors of [1], see also [16], characterized the exact capacity-distortion tradeoff of arbitrary single-Tx and

single-Rx discrete memoryless channels (DMCs) with generalized feedback. The capacity-distortion tradeoff mea-

sures the inherent tradeoff between increasing data rate and reducing sensing distortion in such integrated systems.

Interestingly, the results show that the optimal tradeoff is achieved by standard random code constructions as used

for traditional data communication, where the statistics of the channel inputs (and thus of the codewords) however

has to be adapted to meet the desired sensing performance. This observation is consistent with the signal-processing

literature on the search for adequate channel input waveforms which allow to meet the desired sensing performance

while still achieving high communication rates.

As mentioned, to achieve the optimal capacity-distortion tradeoff for single-Tx single-Rx DMCs, standard codes

2



CHAPTER 1. INTRODUCTION 3

(a) Point to point channel
Feedback

Feedback

W1

W2

(b) Broadcast channel

Feedback

(c) Multiple access channel

Figure 1.2: Different sensing and communication constellations

can be used for communication that ignore entirely the generalized feedback, i.e. the backscattered signals used for

sensing. The reason is that any kind of feedback does not increase the standard capacity (i.e., the highest rate of

communication) of memoryless single-Tx and single-Rx channels. The situation changes however significantly for

multi-Tx or multi-Rx networks, where feedback can increase capacity even for memoryless channels. For example,

feedback increases the capacity of memoryless single-Tx multi-Rx broadcast channels (BC) [17–19] because it

enables the Tx to send common information that is useful to both Rxs at the same time (see e.g., [20, Section 17]). In

a dual manner, in multi-Tx single-Rx multi-access channels (MAC), feedback allows the distributed Txs to cooperate

in their transmissions by sending useful common or correlated information to the single Rx. In network ISAC setups,

the generalized feedback thus improves both sensing and communication performances. As we already mentioned,

the sensing and communication performances in single-Tx single-Rx point-to-point (P2P) setups depend on each

other only through the common choice of the waveform. We show in this thesis that a similar observation also

holds for memoryless BCs, i.e., the sensing performance is independent of the employed BC-feedback-code and

only depends on the chosen waveform but not on other details of the code construction. It allows to base integrated

coding and sensing systems on known BC-feedback code constructions such as [17–19] where one only has to

adapt the statistics of the channel inputs to achieve the desired sensing performance. Based on the scheme in [17],

we provide a general inner bound on the capacity-distortion region for general memoryless BCs with generalized

feedback. We also provide a general outer bound on the capacity-distortion region of memoryless BCs by extending

a known converse technique that reveals the outputs at one of the Rxs to the other Rx. Inner and outer bounds

coincide in special cases.

Completely characterizing the capacity-distortion tradeoff region for a general memoryless state-dependent BC

seems extremely challenging since even the capacity region (without sensing) is unknown both in the case without

and with feedback (see e.g., [17–19, 21]). Instead, we characterize the capacity-distortion region for the particular

case of physically degraded BCs. Analogously to the single-user case, feedback does not enlarge the capacity of
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4 1.1. BACKGROUND AND MOTIVATION

physically degraded BCs and is useful only for sensing but not for communication. We illustrate the merit of optimal

ISAC schemes over time- or resource-sharing schemes through various numerical examples.

The sensing situation becomes more interesting and challenging when the sensing terminal is not the only ter-

minal feeding the input to the channel. In this case, the effective disturbance for the sensing is not necessarily

memoryless since the inputs from the other terminals also create disturbances and can have memory. That being so,

a strategy that first attempts to guess the other Txs’ codewords followed by a symbol-wise estimator based on the

observations and the guessed codewords can lead to a smaller (and thus better) distortion. A similar phenomenon

has also been observed in [22], where communication is over a DMC, and state estimation is performed at the Rx’s

side. In this case, the optimal sensing strategy is first to decode the Tx’s codeword and then to apply an optimal

symbol-by-symbol estimator and the observed channel outputs to this codeword.

A similar strategy was applied in the two-Tx single-Rx multi-access channel (MAC) ISAC scenario of [2] in

which, through the generalized feedback, each Tx first decodes part of the data sent by the other Tx and then applies

a symbol-by-symbol estimator to the decoded codeword as well as its own channel inputs and outputs. The ISAC

scheme of [2] is based on Willems’ scheme for the MAC with generalized feedback, where each Tx encodes its

data into two super-positioned codewords, of which the other Tx decodes the lower data-layer. This data is then

repeated by both Txs in the next block as part of a third lowest-layer codeword, allowing the two Txs to transmit

data cooperatively.

Somewhat naturally, [2] suggests using this decoded lower layer also for sensing purposes in the sense that each

Tx applies the symbol-by-symbol estimator not only to its inputs and outputs but also to this decoded codeword.

In this thesis, we suggest using this decoded codeword not only to exchange data but also to exchange sensing

information. The concept of exchanging sensing information for ISAC has been studied in the signal processing

literature under the paradigm of collaborative sensing. In this sense, we also introduce the concept of collaborative

sensing for ISAC to the information-theoretic literature, where we focus on the MAC and the related device-to-device

(D2D) communication, i.e., the two-way channel.

On a more technical level, we extend Willem’s coding scheme so as to convey also state-information from one

Tx to the other over the communication path built over the generalized feedback link. The proposed scheme can

be considered as a separate source-channel coding scheme in the sense that each Tx first compresses the obtained

outputs and inputs so as to extract state information, and then transmits the compression index using a pure channel

code (here Willems’ coding scheme) to the other Tx. As a result, the proposed scheme obtains a better sensing

performance than the previous ISAC scheme [2] without collaborative sensing, and thus a better distortion-capacity

tradeoff. A related idea was previously used in [23, 24] for the state-dependent MAC, where the Txs compress and

4



CHAPTER 1. INTRODUCTION 5

transmit their state information to the Rx. In their setup, the transmission of the state is beneficial over pure data

transmission because it helps the Rx to decode the data.

We further present a collaborative sensing ISAC scheme for the two-way channel, which models device-to-

device communication (D2D), based on source-channel separation and use Han’s two-way channel scheme. We

also propose an improved scheme that is based on joint source-channel coding (JSCC), more specifically on hybrid

coding [25], and show enhanced performances of both collaborative sensing schemes. In both the MAC and the D2D

scenario, performances of the proposed ISAC schemes improve over classical time- or resource-sharing strategies.

Various other information-theoretic works have recently-analyzed the fundamental limits of ISAC systems [26–

29]. For example, [29] analyzed systems with secrecy constraints, while [26–28] studied channels that depend on a

single fixed parameter and Txs or sensor nodes wish to estimate this parameter based on backscattered signals. Their

model is thus suited for scenarios where the estimation parameters change at a much slower time scale compared

to the channel symbol period, while in [27] sensing (parameter estimation) is performed at the Tx, in [26] it is

performed at a sensor that is close but not collocated with the Tx. The study in [28] analyzes the detection-error

exponents of open-loop and close-loop coding strategies.

Related are also the information-theoretic the capacity-distortion tradeoff studies in which differ from our ISAC

setup in that a state is estimated at the Rx and not at the Tx. [22,30–33], but where the Rx estimates the state and not

the Tx as in our ISAC setup.

1.2 Contribution and Organization of the Thesis

This thesis contains the following technical contributions:

1. Chapter 2 provides an introduction to sensing and communication as well as to the first approaches to inte-

grating sensing and communication schemes. It also describes non-overlapped resource-sharing strategies for

comparison purposes in the following chapters.

2. Chapter 3 review over related work. Specifically:

• It presents the exact capacity-distortion-cost tradeoff for memoryless single-Tx single-Rx systems where

the Tx wishes to estimate the state. It also proves the optimality of a symbol-by-symbol estimator for

this setup. Moreover, we review results on slowly-varying channels.

• It reviews the results of ISAC where the Rx estimates the state.

3. Chapter 4 presents the following results on single-Tx two-Rx broadcast channel (BC) systems::
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• It presents inner and outer bounds on the capacity-distortion region for general BC channels. The inner

bound is based on [17] and can be achieved using a block-Markov strategy that combines Marton coding

with a lossy version of Gray-Wyner coding with side-information.

• We also characterize the capacity-distortion tradeoff region of physically degraded state-dependent mem-

oryless BCs.

• The proposed inner and outer bounds match for physically degraded BCs, thus characterizing the exact

capacity-distortion tradeoff region.

4. Chapter 5 introduces collaborative sensing for ISAC over the two-Tx single-Rx multiaccess channel (MAC)

systems. It presents an improved inner bound on the fundamental rate-distortions tradeoff over two-Tx MACs

based on a scheme where each Tx codes over the generalized feedback to improve the state estimation at

the other Tx. We also show that it is of general nature and in particular can model scenarios with partial or

perfect channel state information at the Rx as well as scenarios where the Txs wish to reconstruct functions or

distorted versions of the actual state that is governing the channel.

5. Chapter 6 proposes two collaborative-sensing ISAC D2D schemes. The first is based on a separate source-

channel coding approach and and the second on an improved JSCC approach using hybrid coding. In both

schemes, the transmitted codeword carries not only data but also compression information that the other ter-

minal can exploit for sensing. While the separation-based scheme employs Wyner-Ziv compression to account

for the side-information at the other Tx, the JSCC based scheme uses implicitly binning as in standard hybrid

coding.

1.3 Notation

We use calligraphic letters to denote sets, e.g., X . The sets of real and nonnegative real numbers, however, are de-

noted by R and R+
0 . Random variables are denoted by uppercase letters, e.g., X , and their realizations by lowercase

letters, e.g., x. For vectors, we use boldface notation, i.e., lower case boldface letters such as xxx for deterministic

vectors. We use [1 : X] to denote the set {1, · · · , X}. We use Xn for the tuple of random variables (X1, · · · , Xn).

We abbreviate independent and identically distributed as i.i.d. and probability mass function as pmf. Logarithms are

taken with respect to base 2.

We use the shorthand notations “Rx" for “Receiver" and “Tx" for “Transmitter". The set of all integers is denoted

by Z, the set of positive integers by Z+ and the set of real numbers by R. For other sets we use calligraphic letters,
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CHAPTER 1. INTRODUCTION 7

e.g., X . Random variables are denoted by uppercase letters, e.g., X , and their realizations by lowercase letters, e.g.,

x. For vectors we use boldface notation, i.e., upper case boldface letters such as X for random vectors and lower case

boldface letters such as x for deterministic vectors.) Matrices are depicted with sans serif font, e.g., H. We write Xn

for the tuple of random variables (X1, . . . , Xn) and Xn for the tuple of random vectors (X1, . . . ,Xn). We denote

the entropy function by H(·), and the mutual information function by I(·). We use ⊥ to indicate independence

between random variables. Moreover, 1{·} denotes the indicator function. For vectors we use boldface notation,

i.e., lower case boldface letters such as xxx for deterministic vectors. For positive integers n, we use [1 : n] to denote

the set {1, · · · , n}. We define a ∗ b , ab̄+ āb.
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Chapter 2

Prelude: Sensing and Communication

The first part of this chapter commences with an introduction to radar systems, wireless communication and revisits

some early studies related to the co-existence of radar and communication systems. It also describes co-existence

solutions that we later use for comparison.

2.1 The Radar System

Radar is a system that utilizes radio waves to learn about positions, motions, or the mere presence of target objects

in an environment through the analysis of backscattered signals. In fact, a radar terminal radiates a waveform that

propagates through space until it reaches a target, where it is reflected in a way that depends on the properties of

the target. The radar terminal collects and analyzes the backscattered signals so as to gain information about these

properties. In this sense, the target almost acts like a passive transmitter and the radar terminal as a receiver. In

the radar system, if the presence and position of a target are already known, the transmitter steers all the energy of

transmit waveform towards the target, so as to obtain more information through the backscattered waveform. Thus

the radar uses Line of Sight (LoS) techniques. Traditional radar systems mainly operate on the 24-79GHz band.

Sensing tasks can be roughly classified into three categories, detection, estimation, and recognition, which are all

based on collecting signals/data concerning the sensed objects. Detection refers to making decisions on an object’s

state given some observations, such as the presence/absence of the target or other events related to the target. We

can model the detection problem as a binary or multi-hypothesis testing problem. In the binary hypothesis testing

problem as an example, we select from two hypotheses; the alternative hypothesis H1 and the null hypothesis H0.

Detection metrics are the probability that H1 holds but the detector chooses H0 (miss-detection probability), and the

probability that H0 holds but the detector chooses H1 (false-alarm probability).

8
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Estimation performance can for example be measured by mean squared error (MSE). When the expectation of

estimation isE[Ŝ] = S we call the estimator unbiased. In this case, MSE is equal to variance of S. The Cramér–Rao

bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic (fixed, but unknown)

parameter, the variance of any such estimator is at least as high as the inverse of the Fisher information.

Proposition 1. Suppose S is an unknown deterministic r.v. which we want to estimate from m independent obser-

vations on Y ; each from a distribution according to a given pdf f(y, s). The variance of any unbiased estimator Ŝ,

defined as the inverse of the Fisher Information (FI), is lower bounded by

var(Ŝ) ≥ 1

I(S)
, (2.1)

where the Fisher information I(S) is defined by

I(S) := mEs[
(∂ log(f(y, s))

∂s

)2
]. (2.2)

This is the case when the estimated parameter is an scalar unbiased [34].

FI is the expectation of the curvature (negative second derivative) of the likelihood function concerning the valid

parameter, which measures the "sharpness" or the estimator’s accuracy. Estimation refers to extracting valuable

parameters of the sensed object from observations. For example, distance/velocity/angle/quantity/size of targets are

some possible parameters that a sensor desires to estimate.

One practical example in the wireless channel is the Gaussian channel, as we shall see in 3.30. However, MMSE

is used to indicate the error of sensing in this Gaussian example in real-world models, and there are some difficulties

in computing the closed form of it, which leads us to depend on bounds.

2.2 Wireless Communication System

Wireless communication systems mainly operate on the 2.4 GHz band. A transmitter wishes to transfer either data

bits or source samples (for example, samples of an audio or video file) to a distant receiver. The data or source

information is coded onto a transmitted waveform and the receiver collects and analyzes the propagated waveform

to produce a guess of the transmitted information. The following performance metrics are usually considered for a

communication system:

• Energy or spectral efficiency measure how many bits of information are communicated using a given energy

9



10 2.3. FIRST IDEAS OF ISAC SYSTEMS

budget or a given bandwidth.

• For data transmission, bit-error rate (BER), symbol-error rate (SER), or frame-error rate (FER) are used to

measure the robustness of the communication. In fact, due to the disturbances in the communication channel,

the data bits guessed at the receiver can be faulty.

• For source communication, robustness is either measured in bit-error rate or more often in distortion such as

the average mean-squared error.

To outline the main differences between radar and communication systems, glance at Table 2.1.

Communication Sensing

2.4 GHz 24-79 GHz

Data/Source Transmission Estimation/Detection

Bit/Signal/Frame Rate MMSE-CRB

Distortion Detection/False Aarm prob.

All propagation paths LoS

Table 2.1: Communication vs Sensing.

2.3 First Ideas of ISAC Systems

In this section, we introduce some basic ISAC ideas. The early work [35] modulates the communication bits on the

missile range radar pulse interval. Interference rejection and robustness in multipath fading environments, inherent

properties of spread spectrum systems, also make chirp (signals used in radar application) signaling very active

for the expanding wireless communications market. Another approach in [36] as early as 1962 is based on chirp

signals proposed for both analog and digital communication [37] but are also commonly used in radar applications.

These works can be categorized as the first steps towards Integrated Sensing and Communication (ISAC). In the

survey [6], there is a fair string of evolution to pre-ISAC systems where a category of solutions is revisited. Some

straightforward solutions are called Non-Overlapped Resource Allocation. In our information-theoretic model used

throughout this thesis, such a system corresponds to time- or resource-sharing between communication and sensing;

we shall call this Basic time-sharing (TS), and with a minor modification, we will introduce Improved time-sharing.

10
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2.4 Non-Overlapped Resource Allocation

A common but naive approach to address sensing and communication is to separate the two tasks into independent

systems and split the available resources, such as bandwidth and power, between them so that they do not interfere.

Time-division ISAC can be conveniently implemented into the existing commercial systems by splitting the trans-

mission duration into radar and radio cycles, for example [38]. For radar sensing, frequency-modulated continuous

waveform (FMCW) with up-and-down- chirp modulations were used, while various different modulation schemes

(e.g., BPSK, PPM) can be used for communication.

In an OFDM system, frequency-division ISAC can implemented by allocating different communication and

sensing tasks to different subcarriers as a function of the channel conditions and power budget of the Tx [39]. ISAC

with non-overlapped resources can also be implemented over orthogonal spatial resources e.g., different antenna

groups [40]. Thus, non-overlapping resource allocation can be performed in time, frequency, or spatial domains, as

illustrated also in Figure 2.1.

(a) Time-sharing (b) Frequency-sharing (c) Spatial-sharing

Figure 2.1: The red cubes demonstrate the communication waveform, and the blue cubes demonstrate the sensing
waveform.

This thesis considers two baseline schemes: the Basic TS scheme and the Improved TS scheme. The Basic TS

scheme corresponds to the non-overlapped resource allocation approach, and splits its resources (time, bandwidth or

spatial dimensions) between the following two modes:

• Sensing mode

The system aims to design a suitable waveform to attain the minimum possible distortion. In our model, the

waveform is translated into an input distribution; thus, the input pmf PX is chosen to minimize the distortion,

and hence the minimum distortion is achieved. Communication rate is zero.

• Communication mode

11



12 2.4. NON-OVERLAPPED RESOURCE ALLOCATION

The system is designed to transfer as much reliable data as possible. Therefore, the input distribution is chosen

to maximize the rate and communicates rate equals channel capacity. The estimator is set to a constant value

regardless of the feedback and the input signals. The mode thus suffers from a large distortion.

The improved time-sharing Improved TS scheme still performs a sort of non-overlapped resource allocation, but

resources are not exclusively dedicated to only sensing or only communication. It is simply that one of these tasks

is prioritized. The second baseline scheme is called Improved TS scheme and can simultaneously perform the com-

munication and sensing tasks. This scheme time-shares between the following modes.

• Sensing mode with communication

The input pmf PX is chosen to achieve minimum distortion. At the same time, the transmitter is also equipped

with a communication encoder. It uses this input pmf to simultaneously transmit data at the rate given by the

input-output mutual information of the system.

• Communication mode with sensing

The input distribution is chosen to maximize the communication rate. i.e. achieve the capacity of the channel.

The transmitter is however also equipped with a radar estimation device that optimally guesses the state-

sequence based on the transmitted and backscattered signals.

We will see in the next chapter that all non-extreme operating points of the Basic and Improved TS schemes are

typically suboptimal compared to an optimal ISAC scheme.

12





Chapter 3

An Information-Theoretic Model and Results

In this chapter, we review the single-Tx single-Rx as a P2P channel [1]. Notice that the model in [1] was the first

information-theoretic model of an ISAC system. However, we slightly generalize the model and results in [1] by

relaxing the assumption that the channel states are necessarily revealed to the Rx. As we shall explain, our model

allows for any kind of channel state information (CSI) at the Rx. The model also includes as special cases scenarios

where the Tx is interested in sensing a state that is related but not necessarily equal to the channel state.

The capacity-distortion-cost tradeoff is characterized, which allows us to quantify the merit of an optimal ISAC

scheme over the baseline schemes introduced in the previous chapter. The results show that without loss in optimality,

the communication scheme can ignore the generalized feedback signals, which are only used for state sensing.

Communication and sensing performances depend on each other through the choice of the common waveform. The

results further show a tradeoff between the simultaneously achievable sensing and communication performances

arises in most situations except for “matched" situations where the same waveform simultaneously achieves capacity

and minimum distortion. A Blahut-Arimoto type algorithm is used to evaluate the capacity-distortion-cost tradeoff

numerically.

3.1 System Model

We describe a slight generalization of the first information-theoretic ISAC model of [1]. Consider the P2P commu-

nication scenario depicted in Fig. 3.1, where a Tx wishes to communicate a message to a Rx over a memoryless

state-dependent channel and simultaneously estimate the state from generalized feedback.

The channel output at the Rx Yi and the feedback signal Zi at a given time i are generated according to its

stationary channel law PY Z|XS(·, ·|xi, si) given the time-i channel input Xi = xi and state realization Si = si,

13
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Enc.

Tx

W PY Z|SX Rx Ŵ
Xi

Yi

PS

Si

Zi−1

Est.Ŝn

Xi

Figure 3.1: Joint sensing and communication model.

irrespective of the past inputs, outputs and state signals. Except for some Gaussian examples, assume that the channel

states Si, inputs Xi, outputs Yi, and feedback signals Zi take value in finite sets S, X , Y , and Z , respectively. The

state sequence {Si}i≥1 is assumed i.i.d. according to a given state distribution PS(·).

A (2nR, n) code for the state-dependent memoryless channel (SDMC) consists of

1. a discrete message setW of size |W| ≥ 2nR;

2. a sequence of encoding functions φi : W ×Zi−1 → X , for i = 1, 2, . . . , n;

3. a decoding function g : Yn →W;

4. a state estimator h : X n ×Zn → Ŝn, where Ŝ denotes a given finite reconstruction alphabet.

For a given code, the random message W is uniformly distributed over the message set W and the inputs are

obtained asXi = φi(W,Z
i−1), for i = 1, . . . , n. The corresponding channel outputs Yi and Zi at time i are obtained

from the state Si and the input Xi according to the SDMC transition law PY Z|SX . Let Ŝn := (Ŝ1, · · · , Ŝn) =

h(Xn, Zn) denote the state estimate at the Tx and Ŵ = g(Y n) the decoded message at the receiver.

The quality of the state estimates is measured by the expected average per-block distortion

∆(n) := E[d(Sn, Ŝn)] =
1

n

n∑

i=1

E[d(Si, Ŝi)], (3.1)

where d : S × Ŝ 7→ R+
0 is a given bounded distortion function:

max
(s,ŝ)∈S×Ŝ

d(s, ŝ) <∞. (3.2)

14



CHAPTER 3. AN INFORMATION-THEORETIC MODEL AND RESULTS 15

In practical communication systems, we typically impose an expected cost constraint on the channel inputs such as

an average or peak power constraint. These cost constraints can often be expressed as

E[b(Xn)] =
1

n

n∑

i=1

E[b(Xi)], (3.3)

for some given cost functions b : X 7→ R+
0 .

Remark 1 (Equivalent Model). Consider the related model with a triple of sequences (S̃n, S̃nT , S̃
n
R) that are i.i.d.

according to a joint pmf PS̃,S̃T ,S̃R
and where the Tx estimates S̃nT , the Rx observes S̃nR, and the two terminals

observe the generalized feedback signals and channel outputs produced by the SDMC PỸ Z|XS̃ . See Figure 3.2.This

seemingly more general model is equivalent to our model if we set Y = (Ỹ , S̃R), S = S̃T and

PY Z|XS((ỹ, s̃R), z | x, s) =
∑

s̃∈S

PỸ Z|XS̃(ỹ, z|x, s̃)
PS̃S̃T S̃R

(s̃, s̃T , s̃R)
(3.4)

Enc.

Tx

W PỸ Z|S̃X Rx Ŵ
X

Ỹ

PS̃S̃R|S̃T

PS̃T

S̃

Z

Est.Ŝn
T

X

S̃R

Figure 3.2: An equivalent model to the model in [1]

3.2 Capacity-Distortion-Cost Tradeoff

We start by defining the desired performance for communication and distortion, followed by the definition and

properties of the capacity-distortion-cost function, and the main theorem of [1].

Definition 1. A rate-distortion-cost tuple (R,D,B) is said achievable if there exists a sequence (in n) of (2nR, n)

15



16 3.2. CAPACITY-DISTORTION-COST TRADEOFF

codes that simultaneously satisfy

lim
n→∞

P (n)
e = 0, (3.5a)

lim
n→∞

∆(n) ≤ D, (3.5b)

lim
n→∞

1

n

n∑

i=1

E[b(Xi)] ≤ B, (3.5c)

for P (n)
e := Pr

(
Ŵ 6= W

)
.

The capacity-distortion-cost tradeoff C(D,B) is the largest rate R such that the rate-distortion-cost tuple

(R,D,B) is achievable.

In order to characterize useful properties of the capacity-distortion-cost function, we define the following sets:

PB =

{
PX

∣∣∣∣
∑

x∈X
PX(x)b(x) ≤ B

}
, (3.6a)

PD =

{
PX

∣∣∣∣
∑

x∈X
PX(x)c(x) ≤ D

}
. (3.6b)

The minimum distortion for a given cost B is given by

Dmin(B) := min
PX∈PB

∑

x∈X
PX(x)c(x). (3.7)

Definition 2. Define the information-theoretic tradeoff function Cinf : [Dmin(B),∞)× [0,∞)→ R+
0 as

Cinf(D,B) := max
PX∈PD∩PB

I(X;Y ), (3.8)

where (X,S, Y, Z) ∼ PXPSPY Z|SX and the maximum is over all PX satisfying both the distortion and cost con-

straints (3.6b) and (3.6a).

Lemma 1. Given a SDMC PY Z|SX with state-distribution PS , the capacity-distortion-cost tradeoff function

Cinf(D,B) has the following properties.

i) Cinf(D,B) is non-decreasing and concave in D ≥ Dmin(B) and B ≥ 0.

ii) Cinf(D,B) saturates at channel capacity:

Cinf(D,B) = CNoEst(B), ∀D ≥ Dmax(B), (3.9)

16
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where CNoEst(B) := maxPX∈PB
I(X;Y |S) denotes the classical channel capacity of the SDMC for a given

cost B, and Dmax(B) denotes the corresponding distortion

Dmax(B) :=
∑

x∈X
PXmax(x)c(x), (3.10)

for PXmax := argmaxPX∈PB
I(X;Y ).

Proof: The proof is a straightforward extension of [33, Corollary 1] to the case of two cost functions and the

state dependent channel. The nondecreasing property follows immediately from the definition in (3.8) because we

have PD1 ⊆ PD2 and PB1 ⊆ PB2 for any D1 ≤ D2 and B1 ≤ B2.

In order to verify the concavity of Cinf(D,B) with respect to (D,B), we consider time-sharing between two

input distributions, denoted by P (1)
X and P (2)

X , that achieve Cinf(D1,B1) and Cinf(D2,B2), respectively. To make the

dependency of the mutual information with respect to the input distribution more explicit, we adapt the following

notation: for any pmf PX over the input alphabet X , let I(PX , PY |XS) := I(X;Y ) for (S,X, Y ) ∼ PSPXPY |XS .

For any θ ∈ (0, 1), we have:

θCinf(D1,B1) + (1− θ)Cinf(D2,B2)
(a)
= θI

(
P

(1)
X , PY |XS

)
+ (1− θ)I

(
P

(2)
X , PY |XS

)

(b)

≤ I
(
θP

(1)
X + (1− θ)P (2)

X , PY |XS
)

(c)
= Cinf (θD1 + (1− θ)D2, θB1 + (1− θ)B2) . (3.11)

where (a) follows by definition, (b) follows from the concavity of the mutual information functional with respect to

the input distribution, (c) follows by the linearity of the constraints and because for any k = 1, 2 the pmf P (k)
X has

expected cost no larger than Bk and expected distortion no larger than Dk.

This establishes the concavity of Cinf(D,B).

3.3 Main Results

The main result of this chapter is an exact characterization of C(D,B). We begin by describing the optimal estimator

h, which is independent of the choice of encoding and decoding functions, and operates on a symbol-by-symbol

basis, i.e., it computes estimate Ŝi only in function of Xi and Zi but not of the other inputs and feedback signals.

17



18 3.3. MAIN RESULTS

Lemma 2. Define the function

ŝ∗(x, z) := arg min
s′∈Ŝ

∑

s∈S
PS|XZ(s|x, z)d(s, s′), (3.12)

where ties can be broken arbitrarily and

PS|XZ(s|x, z) =
PS(s)PZ|SX(z|s, x)∑
s̃∈S PS(s̃)PZ|SX(z|s̃, x)

. (3.13)

Irrespective of the choice of encoding and decoding functions, distortion ∆(n) in (3.5b) is minimized by the estimator

h∗(xn, zn) := (ŝ∗(x1, z1), ŝ∗(x2, z2), . . . , ŝ∗(xn, zn)). (3.14)

Notice that the function ŝ(·, ·) only depends on the SDMC channel law PY Z|SX and the state distribution PS .

Proof: See Appendix A.1.1.

Lemma 2 implies that one can focus without loss in optimality on a symbol-by-symbol deterministic estimator.

Based on (3.12), we define the estimation cost c(x) of the optimal estimator

c(x) := E[d(S, ŝ∗(X,Z))|X = x] . (3.15)

We now are prepared to state the main theorem.

Theorem 1. The capacity-distortion-cost tradeoff of a SDMC PY Z|SX with state-distribution PS is:

C(D,B) = Cinf(D,B), D ≥ Dmin(B), B ≥ 0. (3.16)

Proof: The proof of Theorem 1 is similar to the proof of the classic capacity-cost function [41], except that

one also has to account for the sensing performance. Both in the converse proof and the achievability proof, this

can be accomplished by evaluating the performance of the optimal (per-symbol) estimator ŝ∗(·, ·) in Lemma 2. In

particular, a standard random coding argument can be used to prove achievability of Theorem 1.

Capacity of a memoryless channel is known to be achieved with i.i.d. inputs. Also because of the memoryless

nature of the optimal estimator h(·, ·) in Lemma 2, this observation extends to the joint sensing and communication

setup.

Combining Lemma 1 and Theorem 1, one can conclude that the rate-distortion tradeoff function C(D,B) is non-

18
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decreasing and concave in D ≥ Dmin(B) and B ≥ 0, and for any B ≥ 0 it saturates at the channel capacity CNoEst(B).

For many channels, given B ≥ 0, the tradeoff C(D,B) is strictly increasing in D until it reaches CNoEst(B). However,

for SDMBCs and costs B ≥ 0 where the capacity-achieving input distribution PXmax := argmaxPX∈PB
I(X;Y | S)

also achieves minimum distortion Dmin(B) in (3.7), the capacity-distortion tradeoff is constant C(D,B) = CNoEst(B),

irrespective of the allowed distortion D.

Remark 2. As mentioned in Remark 1, our model includes the scenario with imperfect CSI at Rx as a special case.

Theorem 1 is easily adapted to this special case where the Rx observes sequence SnR for (Sn, SnR) i.i.d. according to

an arbitrary distribution PSSR
, as

Cimp(D,B) = max
PX∈PD∩PB

I(X;Y SR) = max
PX∈PD∩PB

I(X;Y | SR), D ≥ Dmin(B), B ≥ 0, (3.17)

where (X,SR, Y, Z) ∼∑S PXPSSR
PY Z|SSRX and the definitions of the sets PB and PD are kept as in (3.6a) and

(3.6b), same as the definition of the function c(x) in (3.15).

Notice that the symbolwise estimator in (3.14) remains optimal also in this related setup.

Before going through the examples, it is beneficial to see some naive solutions, with the help of which we can

arrive at the conclusion that the ISAC scheme performs better than them.

3.4 Baseline Schemes

We review the previously introduced TS schemes with more technical details. Recall that the Basic TS scheme

time-shares between the following modes:

• Sensing mode without communication (achieves rate-distortion pair (0,Dmin(B)))

The input pmf PX is chosen to minimize the distortion:

PXmin := argmin
PX∈PB

∑

x

PX(x)c(x), (3.18)

and thus the minimum distortion Dmin(B) defined in (3.7) is achieved. Communication rate is zero.

• Communication mode without sensing (achieves (CNoEst(B),Dtrivial(B)))

19



20 3.4. BASELINE SCHEMES

The input pmf PX is chosen to maximize the rate:

PXmax = argmax
PX∈PB

I(X;Y ), (3.19)

and this mode thus communicates at a rate equal to the channel capacity CNoEst(B). The estimator is set to a

constant value regardless of the feedback and the input signals. The mode thus achieves distortion

Dtrivial(B) := min
s′∈Ŝ

∑

s∈S
PS(s)d(s, s′). (3.20)

The Improved TS scheme time-shares between the following two modes.

• Sensing mode with communication (achieves (Rmin(B),Dmin(B)))

The input pmf PX is choosen according to (3.18) to achieve the minimum distortion. The chosen pmf PXmin

can achieve the following communication rate:

Rmin := I(Xmin;Y ), for Xmin ∼ PXmin . (3.21)

• Communication mode with sensing (achieves (CNoEst(B),Dmax(B)))

The input pmf PXmax is chosen as in (3.19) to maximize the communication rate. The mode thus commu-

nicates at the capacity CNoEst(B) of the channel. Sensing is performed by means of the optimal estimator in

(3.12). The mode thus achieves distortion

Dmax :=
∑

x∈X
PXmax(x)c(x), for Xmax ∼ PXmax . (3.22)

It is worth noticing that for any cost B ≥ 0, the two operating points of the two modes in the Improved

TS scheme, (Rmin(B),Dmin(B)) and (CNoEst(B),Dmax(B)), also lie on the capacity-distortion-cost tradeoff curve

C(D,B) presented in Theorem 1. These two points are extreme operating points of optimal ISAC schemes. As

we will see at hand of the following examples, all other operating points of the Improved TS scheme are typically

suboptimal compared to an optimal ISAC scheme.
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3.5 Examples

To evaluate Theorem 1 without unnecessary complication, we assume perfect CSI at Rx. The capacity-cost-distortion

tradeoff thus is given by (3.17) for SR = S.

3.5.1 Binary Channel with Multiplicative Bernoulli State

Consider a channel Y = SX with binary alphabets X = S = Y = {0, 1} and where the state S is Bernoulli-q, for

q ∈ (0, 1). The feedback to to the Tx is perfect Y = Z and Hamming distortion measure d(s, ŝ) = s⊕ ŝ is used for

sensing. No cost constraint is imposed.

The following corollary specializes Theorem 1 to this example.

Corollary 1. The capacity-distortion tradeoff of a binary channel with multiplicative Bernoulli state is given by

C(D) = qHb

(
D

min{q, 1− q}

)
, (3.23)

where Hb(p) denotes the binary entropy function. In other words, the curve C(D) is parameterized as

{(C = qHb(p), D = pmin{q, 1− q}) : p ∈ [0, 1/2]}. (3.24)

Proof: Since Y is deterministic given (S,X), and it equals 0 whenever S = 0, so following equalities are

valid:

I(X;Y, S) = I(X;Y | S) = PS(0)H(Y | S = 0) + PS(1)H(Y | S = 1) = PS(1)H(X). (3.25)

Setting p := PX(0), following is obtained

I(X;Y | S) = qHb(p). (3.26)

To calculate the distortion, notice the optimal estimator ŝ∗(·, ·) in Lemma 2 sets

ŝ∗(x, z) =





z, if x = 1

argmaxs∈{0,1} PS(s), if x = 0.

(3.27)

In fact, whenever x = 1 the Tx acquires full state knowledge because z = y = s. In this case c(x = 1) = 0. For
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x = 0, the Tx does not receive any useful information about the state and hence uses the best constant estimator,

irrespective of the feedback z. In this case,

c(x = 0) = E

[
d
(
S, argmax

s∈{0,1}
PS(s)

)∣∣∣X = 0

]
= min

s∈{0,1}
PS(s) = min{q, 1− q}, (3.28)

where the independence of S and X is used. The expected distortion of the optimal estimator thus evaluates to:

D =
∑

x

PX(x)c(x) = PX(0)c(0) = pmin{q, 1− q}. (3.29)

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

D1

R
1

C(D) of Corollary 1
Improved TS scheme
Basic TS scheme

Figure 3.3: Capacity-distortion tradeoff of the binary channel with multiplicative Bernoulli state of parameter q =
0.4.

The capacity-distortion tradeoff of Corollary 1 is illustrated in Fig. 3.3 for state parameter q = 0.4. The figure

also presents the performances of the two baseline TS schemes, which perform significantly worse than the optimal

ISAC scheme. In the following, we derive the performance of the TS schemes. This example with a derivation of

the parameters of the TS schemes is concluded.

The capacity-achieving input distribution for this channel is easily found as PXmax(0) = PXmax(1) = 1/2, and

by (3.26) and (3.29) one can find CNoEst = q and Dmax = min{q, 1 − q}/2. Minimum distortion Dmin = 0 is

achieved by always sending X = 1, i.e., PXmin(1) = 1 and PXmin(0) = 0, in which case Dmin = 0 and Rmin = 0,

see also (3.26) and (3.29). The Improved TS scheme thus achieves all pairs on the line connecting the two points

(0, 0) with (q,min{q, 1− q}/2). To determine the performance of the basic TS scheme, recall that the best constant

estimator (that does not consider the feedback) which is ŝconst = argmaxs∈{0,1} PS(s) , which allows to conclude
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that Dtrivial = min{q, 1− q}. The basic TS scheme thus achieves all rate-distortion pairs on the line connecting the

points (0, 0) and (q,min{q, 1− q}).

3.5.2 Real Gaussian Channel with Rayleigh Fading

In this example, the real Gaussian channel with Rayleigh fading is considered:

Yi = SiXi +Ni, (3.30)

where Xi is the channel input satisfying limn→∞ 1
n

∑
i E
[
|Xi|2

]
≤ B = 10dB, and both sequences {Ni} and {Si}

are independent of each other and i.i.d. Gaussian with zero mean and unit variance. The Tx observes the noisy

feedback

Zi = Yi +Nfb,i, (3.31)

where {Nfb,i} are i.i.d. zero-mean Gaussian of variance σ2
fb ≥ 0. Consider the quadratic distortion measure d(s, ŝ) =

(s− ŝ)2.

First, the two operating points achieved by the Improved TS baseline scheme are characterized. The capacity of

this channel is achieved with a Gaussian input Xmax ∼ N (0,B), and thus the communication mode with sensing

achieves the rate-distortion pair

CNoEst(B) =
1

2
E
[
log(1 + |S|2B)

]
= 1.213, (3.32)

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
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ISAC scheme

Figure 3.4: Capacity-distortion tradeoff of fading AWGN channel B = 10 dB and σ2
fb = 1.
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Dmax(B) = E
[

(1 + σ2
fb)

1 + |Xmax|2 + σ2
fb

]
= 0.367, (3.33)

where they have set σ2
fb = 1 and P = 10dB to obtain the numerical values. Minimum distortion Dmin is achieved by

2-ary pulse amplitude modulation (PAM), and thus the sensing mode with communication achieves rate-distortion

pair

Rmin(B) = 0.733, Dmin(B) =
1 + σ2

fb

1 + P + σ2
fb

= 0.166, (3.34)

where the numerical value again corresponds to σfb = 1 and B = 10dB. Next, they characterize the performance of

the basic TS baseline scheme. The best constant estimator for this channel is ŝ = 0, and the communication mode

without sensing achieves rate-distortion pair (CNoEst(B),Dtrivial(B) = 1). The sensing mode without communication

achieves rate-distortion pair (0,Dmin(B)).

In Fig. 3.4, the rate-distortion tradeoff achieved by these two TS baseline schemes is compared with a numerical

approximation of the capacity-distortion-cost tradeoff C(D,B) of this channel. As previously explained, C(D,B)

also passes through the two end points (Rmin(B),Dmin(B)) and (CNoEst(B),Dmax(B)) of the Improved TS scheme.

To obtain a numerical approximation of the points on C(D,B) in between these two operating points they use the

Blahut-Arimoto type [1]. Specifically, the input alphabet is quantized to a M = 16-ary PAM constellation

Xq := {(2m− 1−M)κ,m = 1, · · · ,M}, (3.35)

where κ :=
√

3P/(M2 − 1). The Gaussian noiseN is quantized with a centered equally-spaced 50-points alphabet,

and the state S is quantized by applying an equally-spaced 8000-points quantizer on the Chi-square distributed

random variable S2. Denoting the quantized input, noise, and state by Xq, Nq, and Sq, they keep the multiplicative-

state, additive-noise channel model to generate the channel outputs used to run Algorithm 1 to obtain the numerical

approximations:

Yq = SqXq +Nq. (3.36)

3.6 Related Information-Theoretic Works on P2P ISAC Systems

In this section, we first review related information-theoretic works. We start in Subsection 3.6.1 with a model that is

similar to the one in Section 3.1, but where the state does not consist of a sequence but only of a single parameter.

In the following Subsection 3.6.2, we again consider i.i.d. state-sequences, but state estimation is performed at the

Rx while the Tx may have access to some side-information.
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3.6.1 Slowly-Varying State

Reconsider the model introduced in Section3.1, where now the state varies slower than the blocklength of commu-

nication [26–28] and is thus modeled as a single parameter

S1 = S, (3.37)

S2 = · · · = Sn = S1, (3.38)

where S is distributed according to PS . In this model, the Tx produces a single estimate of the state as

Ŝ = h(Xn, Zn). (3.39)

The model is depicted in Figure 3.5, where notice the switch from the Estimator to the Encoder, which indicates

whether this latter can produce its channel input Xi also as a function of the past feedback outputs Z1, . . . , Zi−1.

Both scenarios, with closed and open switch, have been considered in the literature. Closed-switch systems are

sometimes referred to as adaptive or closed-loop coding and mono-static radar, and open-switch systems as non-

adapative or open-loop coding or bi-stating radar. In our previous model in Section 3.1 the switch was closed.

Enc.W PY Z|SX Rx Ŵ
Xi

Yi

PS

S

Est.
Zi−1

Ŝ

key
Xi

Zi−1

Figure 3.5: The slow-varying state channel.

The performance of the system is measured in terms of the asymptotic rate of reliable communication and

asymptotic detection-error exponent which we discuss shortly.
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Definition 3 (Definition 2, [28]). For any s ∈ S, define the state-dependent error probabilities as

Pc,s , max
w

Pr[g(Y n) 6= w |W = w, S = s], (3.40)

Pd,s ,
1

|W|
∑

W
Pr[h(Zn, Xn) 6= s |W = w, S = s], (3.41)

A rate-detection-error exponent (R,D) is achievable if for any ε > 0, there exists a sufficiently large n and 2nR code

so that for any s ∈ S:

Pnc,s ≤ ε, (3.42)

End,s ≥ D− ε, (3.43)

where the state-dependent error exponent is defined as End,s , − 1
n logPnd,s.

Theorem 2 (Theorem 5, [28]). If the switch in Figure 3.5 is closed, then the set of all rate-detection-error exponent

pairs contains all pairs (R,D) satisfying

R ≤ I(X;Y ), (3.44)

D ≤ ψs(px), (3.45)

for some PX , and where

ψs(PX) = min
s′ 6=s

max
l∈[0,1]

−
∑

x

PX(x) log
(∑

z

PZ|XS(z|x, s)lPZ|XS(z|x, s′)1−l). (3.46)

Theorem 3 (Theorem 3, [28]). If the switch in Figure 3.5 is open, then the set of all rate-detection-error exponent

pairs is given by

R ≤ min
s∈S

I(X;Y ), (3.47)

D ≤ φ(px), (3.48)

where

φ(PX) = min
s∈S

min
s′ 6=s

max
l∈[0,1]

−
∑

x

PX(x) log
(∑

z

PZ|XS(z|x, s)(z)lPZ|XS(z|x, s′)1−l). (3.49)
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The open loop system with a binary state |S| = 2 was independently also solved in [26,27], but for setups where

only the feedback channel depends on the state but not the forward channel, i.e., where

PY Z|XS = PY |XPZ|XS . (3.50)

The work in [26] also considered the openloop system with Gaussian channels.

Reference [28] also discusses the benefits of adaptive over non-adaptive coding, i.e., they prove that the set of

(R,D) pairs described in Theorem 2 is strictly larger than the set in Theorem 3. Notice that this property depends

on the assumption of the constant state sequence S1 = . . . = Sn. In fact, as we had discussed previously, under our

i.i.d. state-assumption adaptive and non-adaptive coding schemes perform equally well.

3.6.2 Sensing at the Rx

Consider a model similar to Section 3.1 where a Tx wishes to communicate over a P2P SDMC to a Rx, which now

also wishes to estimate the channel state as we illustrate in Figure 3.6. The encoder might have a side-information

on the state-sequence Sn which is now again assumed i.i.d. according to a given PS . Depending on what side-

information is available at encoder, we define an (2nR, n) code to consist of

PY |XSEncoderW
Xi Integrated Decoder

& Estimator
Ŵ
Ŝ

Si−1/Sn

key

Si

Figure 3.6: Joint communication and Rx channel estimation.

1. a discrete message setW of size |W| ≥ 2nR;

2. sequence of encoding functions {φi} that

• in case of no CSI [33, 42] is of the form

φi : W → X , for i = 1, 2, . . . , n, (3.51)
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• in case of state communication [22] is of the form

φi : Si−1 → X , for i = 1, 2, . . . , n, (3.52)

• in the case of strictly causal state communication [22] is of the form

φi : W ×Si−1 → X , for i = 1, 2, . . . , n, (3.53)

• in the case of causal state and message communication [22], is of the form

φi : W ×Si → X , for i = 1, 2, . . . , n, (3.54)

• in the case of noncausal CSI and message communication [43] is of the form

φi : W ×Sn → X , for i = 1, 2, . . . , n (3.55)

3. a decoding function g : Yn →W;

4. a state estimator h : Yn → Ŝn, where Ŝ denotes a given finite reconstruction alphabet.

For a given code and for i = 1, . . . , n, the random message W is assumed uniform over the message set W

and the inputs are obtained as Xi = φi(W,Z) where Z denotes the encoder side-information (CSI), i.e., Z = ∅,

Z = Si−1, Z = Si or Z = Sn.

In [22,33,42–44], the quality of the state estimation is measured by the expected average per-block distortion as

in (3.1) which we recall here

∆(n) := E[d(Sn, Ŝn)] =
1

n

n∑

i=1

E[d(Si, Ŝi)]. (3.56)

An achievable pair (R,D) is defined similar to Definition 1 but where the cost constraint (3.5c) is only present in the

Gaussian case. We shall later explain a different sensing performance introduced in [30], which is measured in terms

of the probability of a list decoding error and modify the achievability-definition accordingly, see Definition 4.

The Expected Average per-Block Distortion

The models introduced in [22, 33, 42–44] are mainly differ with respect to the side-information available at the

encoder, see (3.51)-(3.55).
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We first commence with the model introduced in [33, 42] where there is no state-information at the Tx and

the encoding function is as in (3.51). This model is the dual to the model introduced in Section 3.1 and the main

theorem of [42] is similar to Theorem 1. The optimal estimator at the Rx is symbol-by-symbol based on the observed

sequence of outputs and the decoded codeword.

Theorem 4 (Theorem 1, [33, 42]). When the Tx has no CSI, the capacity-distortion function is given by

CNo-CSI := max
PX∈PD

I(X;Y ), (3.57)

where

PD =

{
PX

∣∣∣∣
∑

x∈X
PX(x)E[d(S, ŝ(X,Y ))] ≤ D

}
, (3.58)

s∗(·, ·) is the optimal estimator introduced in (3.12), with Z replaced by Y .

As an example in [33], they looked at the Gaussian channel where the distortion is measured in MSE.

Corollary 2. The tradeoff region for a SDGC (state-dependent Gaussian channel) with no CSI at Tx is the union of

all pairs (RGaus.
No-CSI,D

Gaus.
No-CSI) satisfying

RGaus.
No-CSI = log

(
1 +

P

N +Q

)
, (3.59)

DGaus.
No-CSI ≥

QN

Q+N
. (3.60)

Also, similar results are provided for the MAC in [42].

Consider next the problem with strictly causal and causal CSI at the Tx, i.e., where the encoding function is

presented in (3.53). These setups were considered in [22].

We denote its capacity-distortion functions by CStr−Caus.

Theorem 5 (Theorem 2, [22]). The capacity–distortion function for strictly causal state communication is

CStr-caus. = max
PXPU|XS

(
I(U,X;Y )− I(U,X;S)

)
, (3.61)

where the estimator is reconstruction functions ŝ(u, x, y) such that E[d(S, ŝ(u, x, y))] ≤ D.

Moreover, by choosing V = X and U = ∅ the result also reproduces the case in [33]. As a special case,

Theorem 5 is simplified to following theorem where there is no message to transmit.
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Theorem 6 (Theorem 3, [22]). The capacity–distortion function for causal state communication is

CCaus.(D) = max
(
I(U, V ;Y )− I(U, V ;S)

)
(3.62)

where the maximum is over all conditional pmfs PV PU |V,S and functions x(v, s) and reconstruction functions

ŝ(u, v, y) such that E[d(S, ŝ(u, v, y))] ≤ D.

Note that by setting V = X in this theorem, the capacity–distortion function for strictly causal communication

in 3.61 is recovered. It has been proved that rate splitting between information transmission and state communication

at Tx achieves optimal tradeoff.

The following theorem gives upper and lower bounds on the capacity–distortion function when the encoder has

access to noncausal state at Tx as in (3.55).

Theorem 7 (Theorems 1 and 2, [43]). The capacity–distortion function for non-causal CSI is bounded by

max
pu|spx|u,s

(
I(U ;Y )− I(U ;S)

)
≤ CNon-caus. ≤ max

pu|spx|u,s

(
I(X,S;Y )− I(U, Y ;S)

)
, (3.63)

where the maximum is over all conditional pmfs PU |SPX|U,S and reconstruction functions ŝ(u, y) such that

E[d(S, ŝ(u, y))] ≤ D.

The work [44] considers the special case of a Gaussian channel Y = X + S + Z where the state S and the

noise Z are independent zero-mean Gaussian sequences of variances Q and N , respectively, and MSE is used as a

distortion metric.

Theorem 8 (Theorem 2, [44]). The tradeoff region for a SDGC Y n = Xn(W,Sn)+Sn+Zn with state information

noncausally at Tx is given by the closure of the convex hull of all (RGaus.,DGaus.) pairs satisfying

RGaus. ≤ 1

2
log

(
1 +

rP

N

)
, (3.64)

DGaus. ≥ Q rP +N

(
√
Q+

√
(1− r)P )2 + rP +N

. (3.65)

The Tx shares the input power using parameter r and sends X =
√

(1−r)P
Q S.

List Decoding Estimation

Both the causal and non-causal CSI cases were considered in [30], under a sensing measure given by the probability

of list decoding error P (n)
e,s instead of expected average per-block distortion. The Rx thus not only produces a
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message guess but also a list Ln(Y n) of possible state-sequences. If we denote by Pne,s the probability that Sn is not

in Ln(Y n),

Pne,s , Pr[Sn /∈ Ln(Y n)], (3.66)

[30] requires that this probability of error vanishes as n→∞. The list size is bounded as

|Ln| ≤ 2nRD , (3.67)

for a given rate RD.

Definition 4 ( [30]). A pair (R,RD) is said to be achievable under the list-error-probability criterion if there exists

a sequence of (2nR, 2nRD , n)− codes with P (n)
e → 0 and P (n)

e,s → 0 as n→∞.

In the following theorem, the Tx has access to the state sequence causally.

Theorem 9 (Theorem 2, [30]). The tradeoff region for a SDMC with state information causally known at the Tx is

the union of all (RCaus.,RCaus.
D ) pairs satisfying

RCaus. = max I(U ;Y ), (3.68)

RCaus.
D ≤ H(S), (3.69)

RCaus. + RCaus.
D ≤ I(X,S;Y ), (3.70)

for some PSPUPX|USPY |XS .

Theorem 10 (Theorem 1, [30]). The tradeoff region for a SDC with state information non-causally available at Tx

is the union of all pairs (RNon-caus.,RNon-caus.
D ) satisfying

RNon-caus. ≤ I(U ;Y )− I(U ;S), (3.71)

RNon-caus.
D ≤ H(S), (3.72)

RNon-caus. + RNon-caus.
D ≤ I(X,S;Y ), (3.73)

for some PSPUX|SPY |XS .

Remark 3. The set of achievable pairs with causal CSI in Theorem 9 is generally smaller than the set of achievable

pairs with noncausal CSI in Theorem 10. This can be seen by noting that in Theorem 9 the random variable U

cannot depend on S.
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3.7 Conclusion

We revisited the first information-theoretic model and results on ISAC by Kobayashi et al. [1] in which a full charac-

terization of the capacity-distortion tradeoff for memoryless state-dependent P2P channels was provided. Through

several illustrative examples, we reviewed that the optimal ISAC scheme offers non-negligible gain compared to

the basic time-sharing scheme that performs either sensing or communication, as well as compared to the improved

time-sharing scheme that integrates both tasks into a single system but chooses the common waveform to prioritize

one of the tasks. The results also showed that optimal sensing depends only on the employed waveform but not on

the underlying coding scheme for the single-Tx systems studied in this chapter.

We also reviewed related works where either the state is constant over the entire blocklength and sensing perfor-

mance is thus measured either in discrimination error probability or estimation error. Completely new sensing tools

are required in this case, and interestingly, closed-loop strategies can now outperform open-loop strategies, unlike

in the i.i.d. case studied in [1]. We also reviewed a different line of related works that assumes that sensing is per-

formed at the receiver. Most of these works again assume i.i.d. states and use average distortion to measure sensing

performance as in [1].

In this thesis, we formulate the tradeoff between communication and sensing in terms of the capacity-distortion

tradeoff, as suggested by [33] and already previously used in related works. Though possibly inaccurate, it allows

for an information-theoretic treatment of the problem. The signal-processing and communications works typically

employ a dual formulation for this tradeoff allowing them to use tools from their communities.
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Chapter 4

The Broadcast Channel

In this chapter, we consider ISAC over a single-Tx two-Rx broadcast channels (BC) by building on a simple single-

Tx two-Rx communication model with a discrete memoryless channel and i.i.d. state sequences. The Tx observes

strictly causal generalized feedback signals, used for state sensing. For the P2P channel studied in the previous

chapter, feedback was only useful for state sensing but not to increase capacity of the communication channel. As

we will see, this is not the case in memoryless Broadcast Channels.

As in the main model of the previous chapters, the Tx observes generalized feedback signals, which now in the

BC setup is known to increase [17–19]. In fact, it enables the Tx to transmit some common information that is useful

to both Rxs at the same time (see, e.g., [20, Section 17]).

ln our ISAC over BC setup, the generalized feedback thus improves both sensing and communication performances.

Nevertheless, like in the P2P setup, the two performances only depend on each other through the common choice of

the waveform. In other words, we show that the optimal state-sensing is independent of the employed BC-feedback-

code and only depends on the chosen waveform but not on other details of the code construction. This allows to base

joint coding and sensing systems on known BC-feedback code constructions such as [17–19].

4.1 System Model

Consider the two-Rx BC scenario depicted in Fig. 4.1. The model comprises a two-dimensional memoryless state

sequence {(S1,i, S2,i)}i≥1 whose samples at any given time i are distributed according to a given joint law PS1S2

over the state alphabets S1×S2. The Tx communicates with both Rxs over a state-dependent memoryless broadcast

channel (SDMBC), where given time-i input Xi = x and state realizations S1,i = s1 and S2,i = s2, the time-i

outputs Y1,i and Y2,i observed at the Rxs and the Tx’s feedback signal Zi are distributed according to the stationary
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Enc.

Tx

W0,W1,W2 PY Z|SX

Rx 1

Rx 2

Ŵ0,1, Ŵ1

Ŵ0,2, Ŵ2

Xi

Yi,1

Yi,2

PS

Si

Zi−1

Est.Ŝ

Xi

Figure 4.1: State-dependent broadcast channel with generalized feedback and state-estimator at the Tx.

channel transition law PY1Y2Z|S1S2X(·, ·, ·|s1, s2, x). We again assume that all alphabets X ,Y1,Y2,Z,S1,S2 are

finite.

The goal of the Tx is to convey a common message W0 to both Rxs and individual messages W1 and W2 to

Rxs 1 and 2, respectively, while estimating the states sequences {S1,i} and {S2,i} within some target distortions. For

simplicity, the input cost constraint is omitted.

A (2nR0 , 2nR1 , 2nR2 , n) code for an SDMBC thus consists of

1. three message setsW0 = [1 : 2nR0 ],W1 = [1 : 2nR1 ], andW2 = [1 : 2nR2 ];

2. a sequence of encoding functions φi : W0 ×W1 ×W2 ×Z i−1 → X , for i = 1, 2, . . . , n;

3. for each k = 1, 2 a decoding function gk : Ynk →W0 ×Wk;

4. for each k = 1, 2 a state estimator hk : X n ×Zn → Ŝnk , where Ŝ1 and Ŝ2 are given reconstruction alphabets.

For a given code, we let the random messages W0, W1, and W2 be uniform over the message setsW0,W1, and

W2 and the inputs Xi = φi(W0,W1,W2, Z
i−1), for i = 1, . . . , n. The corresponding outputs Y1,iY2,i, Zi at time i

are obtained from the states S1,i and S2,i and the input Xi according to the SDMBC transition law PY1Y2Z|S1S2X .

Further, for k = 1, 2 let Ŝnk := (Ŝk,1, · · · , Ŝk,n) = hk(X
n, Zn) be the Tx’s estimates for state Snk and (Ŵ0,k, Ŵk) =

gk(Y
n
k ) the messages decoded by Rx k. The quality of the state estimates Ŝnk is again measured by bounded per-

symbol distortion functions dk : Sk × Ŝk 7→ [0,∞), i.e., we assume

max
sk∈Sk,ŝk∈Ŝk

dk(sk, ŝk) <∞, k = 1, 2. (4.1)
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Our interest is in the two expected average per-block distortions

∆
(n)
k :=

1

n

n∑

i=1

E[dk(Sk,i, Ŝk,i)], k = 1, 2, (4.2)

and the joint probability of error

P (n)
e := Pr

(
(Ŵ0,k, Ŵ1) 6= (W0,W1) or (Ŵ0,k, Ŵ2) 6= (W0,W2)

)
. (4.3)

Definition 5. A rate-distortion tuple (R0,R1,R2,D1,D2) is achievable if there exists a sequence (in n) of

(2nR0 , 2nR1 , 2nR2 , n) codes that simultaneously satisfy

lim
n→∞

P (n)
e = 0 (4.4a)

lim
n→∞

∆
(n)
k ≤ Dk, for k = 1, 2. (4.4b)

Definition 6. The capacity-distortion region CD is given by the closure of the union of all achievable rate-distortion

tuples (R0,R1,R2,D1,D2).

4.2 Main Results

In this section, we present bounds on the capacity-distortion region CD. As in the single-Rx case, one can easily

determine the optimal estimator functions h1 and h2, which are independent of the encoding and decoding functions

and operate on a symbol-by-symbol basis.

Lemma 3. For each k = 1, 2, define the function

ŝ∗k(x, z) := arg min
s′∈Ŝk

∑

sk∈Sk
PSk|XZ(sk|x, z)d(sk, s

′), (4.5)

where ties can be broken arbitrarily.

Irrespective of the choice of encoding and decoding functions, distortions ∆
(n)
1 and ∆

(n)
2 are minimized by the

estimators for k = 1, 2

h∗k(x
n, zn) = (ŝ∗k(x1, z1), ŝ∗k(x2, z2), . . . , ŝ∗k(xn, zn)). (4.6)

Proof: Analogously to proof in A.2.4.
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Analogously to the definition in Equation (3.15) we can then define the optimal estimation cost for each input

symbol x ∈ X :

ck(x) := E[dk(Sk, ŝ
∗
k(X,Z))|X = x] , k = 1, 2. (4.7)

Characterizing the capacity-distortion region is very challenging in general, because even the capacity regions of

the SDMBC with and without feedback are unknown to date. We first present the exact capacity-distortion region for

the class of physically degraded SDMBCs and then provide bounds for general SDMBCs. We shall also compare our

results on the capacity-distortion regions to the performances achieved by simple TS baseline schemes, in analogy

to the single-Rx setup.

4.2.1 Physically Degraded SDMBC: The Capacity-Distortion Region

This subsection characterizes the capacity-distortion region for physically degraded SDMBCs and evaluates it for

two binary examples.

Definition 7. An SDMBC PY1Y2Z|S1S2X with state pmf PS1S2 is called physically degraded if there are conditional

laws PY1|XS1
and PS2Y2|S1Y1

such that

PY1Y2|S1S2XPS1S2 = PS1PY1|S1XPS2Y2|S1Y1
. (4.8)

That means for any arbitrary input PX , the tuple (X,S1, S2, Y1, Y2) ∼ PXPS1S2PY1Y2|S1S2X satisfies the Markov

chain

X(−−(S1, Y1)(−−(S2, Y2). (4.9)

Theorem 11. The capacity-distortion region CD of a physically degraded SDMBC is given by the closure of the set

of all tuples (R0,R1,R2,D1,D2) for which there exists a joint law PUX so that the tuple (U,X, S1, S2, Y1, Y2, Z) ∼

PUXPS1S2PY1Y2Z|S1S2X satisfies the two rate constraints

R1 ≤ I(X;Y1 | U) (4.10)

R0 + R2 ≤ I(U ;Y2), (4.11)

and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z))] ≤ Dk, k = 1, 2. (4.12)
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Proof: The achievability can be proved by standard superposition coding and using the optimal estimators in

Lemma 3. The converse also follows from standard steps and the details are provided in Appendix A.2.1.

As mentioned in the proof, data communication is performed by simple superposition coding that ignores the

feedback. Thus, also for physically degraded BCs feedback only facilitates state sensing but is useless for commu-

nications.

Remark 4. Similarly to the single-Rx case, an input cost-constraint as in (3.5c) can be added to our model. Theo-

rem 11 remains valid in this case, if the choice of the input distribution PX is limited to satisfy the cost constraint

∑

x∈X
PX(x)b(x) ≤ B. (4.13)

The analogous remark also applies to the non-physically degraded BC ahead and the presented inner and outer

bounds.

Remark 5. Similarly to what we described in Remark 2, the result in Theorem 11 can be extended to the case with

imperfect Rx state-informations SnR,1 and SnR,2. For (Sn, SnR,1, S
n
R,2) i.i.d. ∼ PSSR,1,SR,2

it suffices to replace in

the rate-constraints (4.10) and (4.11) of Theorem 11 the state S1 by SR,1 and the state S2 by SR,2. The analogous

remark also applies to the non-physically degraded BC ahead and the presented inner and outer bounds.

Before evaluating Theorem 11 for two examples, we present details for the basic and the improves TS scheme

for this BC setup.

4.2.2 Baseline Schemes

We again have a basic TS scheme that performs either sensing or communication at a time, and an improved TS

baseline scheme that is able to perform both functions simultaneously via a common waveform by prioritizing

either sensing or communication. Analogously to the single-Rx setup, each of the two baseline schemes time-shares

between a sensing mode and a communication mode. However, since we now have two distortions and three rates,

the choice of the “optimal" pmf PX for each mode is not necessarily unique, but rather a continuum, depending on

which function of the two distortions or the three rates one wishes to optimize. For fixed input pmf, the difference

between the communication mode without sensing (employed by the basic TS scheme) and the communication mode

with sensing (employed by the improved TS scheme) lies in the choice of the estimators. In the former mode, the Tx

applies the best constant estimators for the two state-sequences, irrespective of its inputs and feedback outputs. In

the latter mode, it applies the optimal estimators in Lemma 3, which depend on the input and the feedback output.
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Similarly, the difference between the communication modes without and with sensing is that in the former all rates

are zero and in the latter the chosen input pmf PX can be used for communication at positive rates.

Example 3: Binary BC with Multiplicative Bernoulli States

Consider the physically degraded SDMBC with binary input and output alphabets X = Y1 = Y2 = {0, 1} and

binary state alphabets S1 = S2 = {0, 1}. The channel input-output relation is described by

Yk = SkX, k = 1, 2, (4.14)

with the joint state pmf

PS1S2(s1, s2) =





1− q, if (s1, s2) = (0, 0)

0, if (s1, s2) = (0, 1)

qγ, if (s1, s2) = (1, 1)

q(1− γ) if (s1, s2) = (1, 0),

(4.15)

for γ, q ∈ [0, 1]. Notice that S2 is a degraded version of S1, which together with the transition law (4.14) ensures

the Markov chain X(−−(S1, Y1)(−−(S2, Y2) and the physically degradedness of the SDMBC. We consider output

feedback

Z = (Y1, Y2), (4.16)

and set the common rate R0 = 0 for simplicity. We first introduce TS schemes, then we present the ISAC in

Corollary 3 for the same example.

In this SDMBC, zero distortions D1 = D2 = 0 can be achieved by deterministically choosing X = 1 exactly as

for the single-Rx case. This choice however cannot achieve any positive communication rates, i.e., R1 = R2 = 0. In

the sensing mode with and without communication, we thus have:

(R1,R2,D1,D2) = (0, 0, 0, 0). (4.17)

The optimal input distribution for communication is Xmax ∼ B(1/2), in which case all rate-pairs (R1,R2)

satisfying

Rk ≤ PSk
(1), k = 1, 2, (4.18)
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are achievable. The input Xmax ∼ B(1/2) simultaneously maximizes both communication rates R1,R2.

In the communication mode without sensing, the Tx applies the optimal constant estimator for each state, namely

ŝconst,k := argmax
ŝ∈{0,1}

PSk
(ŝ), k = 1, 2, (4.19)

and thus achieves all tuples

(R1,R2,D1,D2) = (qr, γq(1− r),D1,max,D2,max) (4.20)

where D1,max := min{q, 1− q} and D2,max := min{γq, 1− γq}, and r ∈ [0, 1] denotes the time-sharing parameter

between the two communication rates.

In the communication mode with sensing, the same input Xmax is used. The Tx however applies the optimal

estimator for k = 1, 2:

ŝ∗k(x, y1, y2) =





yk, if x = 1

ŝconst,k, if x = 0,

(4.21)

and achieves the tuple

(R1,R2,D1,D2) =

(
qr, γq(1− r), D1,max

2
,
D2,max

2

)
, (4.22)

where r again denotes the time-sharing parameter between the two communication rates.

The basic and improved TS baseline schemes achieve the time-sharing lines between points (4.17) and (4.20)

and points (4.17) and (4.22), respectively. The following corollary evaluates Theorem 11 to obtain the performance

of the optimal co-design scheme.

Corollary 3. The capacity-distortions region CD of the binary physically degraded SDMBC in (4.14)–(4.16) is the

set of all tuples (R0,R1,R2,D1,D2) satisfying

R0 + R1 ≤ qHb(p)r, (4.23a)

R0 + R2 ≤ γqHb(p)(1− r), (4.23b)

D1 ≥ pmin{q, 1− q}, (4.23c)

D2 ≥ pmin{γq, 1− γq}, (4.23d)

for some choice of the parameters r, p ∈ [0, 1].
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Figure 4.2: Boundary of the capacity-distortion region CD for Example 3 in Subsection 11.

Proof: We start by noticing that for this example I(X;Y1 | U, S1) = qH(X|U) and I(U ;Y2 | S2) =

qγ(H(X) −H(X | U)). Setting p := PX(0) and r := H(X|U)
H(X) , directly leads to the desired rate constraints. The

distortion constraints are obtained from the optimal estimators in (4.21). Following the same steps as in the single-Rx

case, i.e. (3.28) and (3.29), we obtain

Dk ≥ pmin{PSk
(0), PSk

(1)}, (4.24)

which concludes the proof.

Notice that above Corollary 3 reduces to Corollary 1 in the special case of R0 = R2 = 0 and D2 = ∞, i.e.,

when we ignore Rx 2. Fig. 4.2 shows in red color the boundary of the projection of the tradeoff region CD of this

example onto the 3-dimensional plane (R1,R2,D1), for parameters γ = 0.5 and q = 0.6. The tradeoff with D2 is

omitted for simplicity and because D2 is a scaled version of D1. The figure also shows the boundaries of the basic

and improved TS baseline schemes. We again notice a significant gain for an optimal co-design scheme compared

to the TS baseline schemes.

So far, there was no tradeoff between the two distortion constraints D1 and D2. This is different in the next

example, which otherwise is very similar.

Example 4: Binary BC with Multiplicative Bernoulli States and Flipping Inputs

Reconsider the same state pmf PS1S2 as in the previous example, but now an SDMBC with a transition law that flips

the input for Rx 2:

Y1 = S1X, Y2 = S2(1−X). (4.25)
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As in the previous example we consider output feedback Z = (Y1, Y2).

Corollary 4. The capacity-distortion region CD of the binary SDMBC with flipping inputs in (4.25) and output

feedback is the set of all tuples (R0,R1,R2,D1,D2) satisfying

R1 ≤ qHb(p)r, (4.26a)

R0 + R2 ≤ γqHb(p)(1− r), (4.26b)

D1 ≥ pmin{q(1− γ), (1− q)}, (4.26c)

D2 ≥ (1− p)qmin{γ, 1− γ}, (4.26d)

for some choice of the parameters r, p ∈ [0, 1].

The capacity-distortion region expression above captures the tradeoffs between the two rates through the param-

eter r, between the rates and the distortions through the parameter p, and between the two distortions through the

parameter p.

Comparing above Corollary 4 to the previous Corollary 3, we remark the identical rate constraints and the

relaxed distortion constraints for both D1 and D2 in Corollary 4. The reason is that the flipping input allows the Tx

to perfectly estimate S1 from (X,Y1, Y2) not only when X = 1 but also when X = 0 and Y2 = 1 because they

imply that S2 = 1 and by (4.15) also S1 = 1.

Proof: The proof is similar to the proof of Corollary 3, except for the description of the optimal estimators.

To determine these optimal estimators, we remark that only four input-output relations are possible: (x, y1, y2) ∈

{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)}. Moreover, when X = 1, then Y1 = S1, and when X = 0, then Y2 = S2. In

particular, when X = 0 and Y2 = 1, then S2 = 1 and also S1 = 1, see (4.15). The optimal estimator for state S1

thus is:

ŝ∗1(x, y1, y2) =





y1, if x = 1

1, if (x, y2) = (0, 1)

arg min
s

PS1|S2
(s|0), else,

(4.27)

and ŝ∗1(X,Y1, Y2) = S1 unless X = 0, Y2 = 0, and S1 6= arg mins PS1|S2
(s|0), which is equivalent to (X =

0, S2 = 0) and S1 6= arg mins PS1|S2
(s|0). This yields c1(1) = 0 and because S2 is independent of X:

c1(0) = PS2(0) min
s
PS1|S2

(s|0). (4.28)
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Recalling p = PX(0), we readily obtain the distortion for state S1:

D1 = pmin
s
PS1,S2(s, 0) = pmin{q(1− γ), 1− q}. (4.29)

The optimal estimator and the corresponding distortion for state S2 can be obtained in a similar way.

4.2.3 General SDMBC: Bounds on the Capacity-Distortion Region

In the remainder of this section, we reconsider general SDMBCs, for which we present bounds on CD. We start with

a simple outer bound.

Theorem 12 (Outer Bound on CD). If (R0,R1,R2,D1,D2) lies in CD for a given SDMBC PY1Y2Z|S1S2X with

state pmf PS1S2 , then there exist pmfs PX , PU1|X , PU2|X such that the random tuple (Uk, X, S1, S2, Y1, Y2, Z) ∼

PUk|XPXPS1S2PY1Y2Z|S1S2X satisfies the rate constraints

R0 + Rk ≤ I(Uk;Yk), k = 1, 2, (4.30a)

R0 + R1 + R2 ≤ I(X;Y1, Y2), (4.30b)

and the average distortion constraint

E[dk(Sk, ŝ
∗
k(X,Z))] ≤ Dk, k = 1, 2, (4.31)

where the function ŝ∗k(·, ·) is defined in (4.5).

Proof: See Appendix A.2.2.

Achievability results are easily obtained by combining existing achievability results for SDMBCs with general-

ized feedback with the optimal estimator in Lemma 3. We consider the block-Markov coding scheme in [17], which

combined with the optimal estimator in Lemma 3 yields the following proposition.

Proposition 2 (Inner Bound on CD). Consider an SDMBC PY1Y2Z|S1S2X with state pmf PS1S2 . The

capacity-distortion region CD includes all tuples (R0,R1,R2,D1,D2) that satisfy inequalities (4.32) on top

of this page and the distortion constraints (4.31). where (U0, U1, U2, X, S1, S2, Y1, Y2, Z, V0, V1, V2) ∼

PU0U1U2XPS1S2PY1Y2Z|S1S2XPV0V1V2|U0U1U2Z , for some choice of (conditional) pmfs PU0U1U2X and

PV0V1V2|U0U1U2Z .
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R0 + R1 ≤ I(U0, U1;Y1, V1)− I(U0, U1, U2, Z;V0, V1 | Y1) (4.32a)

R0 + R2 ≤ I(U0, U2;Y2, V2)− I(U0, U1, U2, Z;V0, V2 | Y2) (4.32b)

R0 + R1 + R2 ≤ I(U1;Y1, V1|U0) + I(U2;Y2, V2 | U0) + min
k∈{1,2}

I(U0;Yk, Vk)− I(U1;U2 | U0)

−I(U0, U1, U2, Z;V1 | V0, Y1)− I(U0, U1, U2, Z;V2|V0, Y2)

− max
k∈{1,2}

I(U0, U1, U2, Z;V0 | Yk) (4.32c)

2R0 + R1 + R2 ≤ I(U0, U1;Y1, V1) + I(U0, U2;Y2, V2)− I(U1;U2 | U0)

−I(U0, U1, U2, Z;V0, V1 | Y1)− I(U0, U1, U2, Z;V0, V2 | Y2) (4.32d)

Proof: See [17] for the proof. Here, we bring the coding scheme for the BC with generalized feedback in [17]

The scheme in [17] combines Marton’s no-feedback scheme with LGW-SI (Lossy Gray-Wyner scheme with Side-

information) scheme using a block-Markov framework. Transmission takes place over consecutive blocks, where

the first B blocks are of length n and the last block is of length γn for γ > 1. We denote the input, output, feedback

sequences in Block b ∈ {1, · · ·B} by X(b), Y1,(b), Y2,(b), Z(b) respectively, and the input, output sequences in Block

B + 1 by X ′(B+1), Y
′

1,(B+1), Y2,(B+1)′ . The messages to be sent are in a product form Wk = (Wk,(1), · · · ,Wk,(B)),

for k ∈ {0, 1, 2}, where each message of each block is uniformly distributed over a message set. At the end of

block b , after observing the feedback Z(b) and with its block-information b U0,(b), U1,(b), U2,(b). the Tx applies

lossy Gray-Wyner coding [45] according to the conditional law PV0V1V2|U0U1U2Z to generates the update information

V0,(b), V1,(b), V2,(b) . In the following block b+1, the Tx then uses Marton’s no-feedback scheme to send the Messages

W0,(b+1),W1,(b+1),W2,(b+1) together with update information V0,(b), V1,(b), V2,(b) (see also Fig 4.3). Decoding is

performed backward, starts from the last block. Each Rx k first tries to decode update information of the last block

V̄(B+1) , (V0,(B+1), Vk,(B+1)) (because there is no new information in the last block) from Yk,(B+1). Then, Rx k

attempts to decode the new information in block B by using the decoded update information of block B + 1, and

this procedure in a backward manner.

Ū(b+1).

V̄(b)
· · · · · ·

-

V̄(B+1)

Ū(b)

V̄(b−1)

Ū(1)

-

b B + 1b+ 1Block: 1

Figure 4.3: Backward decoding for block Markov coding used in Proposition 2

In the following subsections, we evaluate the proposed inner and outer bounds on CD for two examples and

identify setups where the provided bounds allow us to conclude that no tradeoff between the achievable rates and
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distortions occurs.

4.2.4 No Rate-Distortion Tradeoff

Notice that for some SDMBCs there is no tradeoff between the achievable distortions and communication rates. In

this case, for the BC, the capacity-distortion region is given by the Cartesian product between the SDMBC’s capacity

region:

C := {(R0,R1,R2) : D1 ≥ 0, D2 ≥ 0 s.t. (R0,R1,R2,D1,D2) ∈ CD}, (4.33)

and its distortion region:

D := {(D1,D2) : R0 ≥ 0, R1 ≥ 0, R2 ≥ 0 s.t. (R0,R1,R2,D1,D2) ∈ CD}. (4.34)

Proposition 3 (No Rate-Distortion Tradeoff). Consider an SDMBC PY1Y2Z|S1S2X with state pmf PS1S2 for which

there exist functions ψ1 and ψ2 with domain X × Z so that irrespective of the input distribution PX the relations

(Sk, ψk(Z,X)) ⊥ X, (4.35)

Sk(−−ψk(Z,X)(−−(Z,X), k = 1, 2, (4.36)

hold for (S1, S2, X2,Z) ∼ PS1PS2PXPZ|XS1,X2
. The capacity-distortion region of this SDMBC is the product of

the capacity region and the distortion region:

CD = C × D. (4.37)

Proof: The proof is provided in Appendix A.2.5.

Example 5: Erasure BC with Noisy Feedback

Our first example satisfies Conditions (4.35) and (4.36) in Proposition 3 for an appropriate choice of ψ1 and ψ2, and

its capacity-distortion region is thus given by the product of the capacity region and the distortion region.
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Let (E1, S1, E2, S2) ∼ PE1S1E2S2 over {0, 1}4 be given but arbitrary. Consider the state-dependent erasure BC

Yk =





X if Sk = 0,

? if Sk = 1,

, k = 1, 2, (4.38)

where the feedback signal Z = (Z1, Z2) is given by

Zk =





Yk if Ek = 0,

? if Ek = 1,

, k = 1, 2. (4.39)

Further consider Hamming distortion measures dk(s, ŝ) = s⊕ ŝ, for k = 1, 2. For the choice

ψk(Zk) =





1, if Zk =?,

0, else,
(4.40)

the described SDMBC satisfies the conditions in Proposition 3, thus yielding the following corollary.

Corollary 5. The capacity-distortion region of the state-dependent erasure BC with noisy feedback in (4.38)–(4.39)

is the Cartesian product between the capacity region of the SDMBC and its distortion region:

CD = C × D. (4.41)

When PE1S1E2S2 = PE1S1PE2S2 , then the distortion region is given by:

D = {(D1,D2) : Dk ≥ PEkSk
(1, 0)}. (4.42)

Proof. The state can perfectly be estimated (Sk = 0) with zero distortion if (Sk, Ek) = (0, 0). Otherwise, the

feedback is Zk =? and provides no information. The optimal estimator is then given by the best constant estimator,

which in this example is:

ŝconst,k = 1{PSk
(1) ≥ PSkEk

(0, 1)}. (4.43)

This immediately yields the distortion constraint in (4.42).

Notice that the capacity region C of the SDMBC (4.38) is unknown even with perfect feedback. In [46, 47], the
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capacity region of this SDMBC with perfect feedback was characterized when each Rx is informed about the state

realizations at both Rxs.

4.2.5 Example 6: State-Dependent Dueck’s BC with Multiplicative Bernoulli States

We consider a state-dependent version of Dueck’s example in [48], which first served to show that feedback can

increase capacity of a memoryless BC. Interestingly, despite its simplicity, the state-dependent extension of this

example allows observing various kinds of tradeoffs between communication and sensing performances and also

between performances at the various Rxs. For example, for specific choices of parameters, the problems of sensing

and communication decompose (Corollary 6), and it is possible to simultaneously achieve the optimal sensing and

communication performances. For other parameters a tradeoff arises. The present example also shows nicely that

our presented co-design scheme can significantly outperform the two TS methods.

Tx
W1

W2

N

N

×

S1

×

S2

Rx1

Rx2

Ŵ1

Ŵ2

X1

X0

X2

Y ′
1

Y0

Y0

Y ′
2

S1S2

Figure 4.4: State-dependent Dueck Broadcast Channel.

Consider the state-dependent BC in Figure 4.4 with input X = (X0, X1, X2) ∈ {0, 1}3, i.i.d. Bernoulli states

S1, S2 ∼ B(q), for q ∈ [0, 1], and outputs

Yk = (X0, Y
′
k, S1, S2), k = 1, 2, (4.44)

where

Y ′k = Sk(Xk ⊕N), k = 1, 2, (4.45a)

and the noise N ∼ B(1/2) is independent of the inputs and the states. The feedback signal is

Z = (Y ′1 , Y
′

2), (4.46)
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and for simplicity we again ignore the common rate R0.

We notice that only X1 and X2 are corrupted by the state and the noise. Since X0 is received without any state

or noise, it is thus completely useless for sensing. In fact, the optimal estimator of Lemma 3 for k = 1, 2 is (see

Appendix A.2.3)

ŝ∗k(x1, x2, y
′
1, y
′
2) =





1{q ≥ (1− q)}, y′k = 0y′
k̄

= 1, x1 6= x2

0, y′k = 0, y′
k̄

= 1, x1 = x2

1, y′k = 1

0, y1 = y2 = 0, x1 6= x2

1{q ≥ (1− q)(2− q)}, y′1 = y′2 = 0, x1 = x2,

(4.47)

where we slightly abuse notation by omitting the argument x0 for the estimator ŝ∗k because this latter does not depend

on x0.

For a given input pmf with probability t := Pr[X1 6= X2], the expected distortion achieved by the optimal

estimators in (4.47) is (see Appendix A.2.3):

E
[
dk(Sk, ŝ

∗
k(X1, X2, Y

′
1 , Y

′
2))
]

=
1

2
tq (min{q, 1− q}+ (1− q))

+
1

2
(1− t) min{q, (1− q)(2− q)} (4.48)

We observe different cases: i) for q ∈ [0, 1/2], both minima are achieved by q; ii) for q ∈
(
1/2, 2 −

√
2
]
, the first

and second minima are achieved by 1− q and q, respectively; iii) for q ∈
(
2−
√

2, 1
]
, the first and second minimum

are achieved by (1− q) and (1− q)(2− q), respectively. The distortion constraint (4.31) thus evaluates to:

Dk ≥





q/2, q ∈ [0, 1/2]

q(1− t(2q − 1))/2, q ∈
(
1/2, 2−

√
2
]

(1− q)(2− q + t(3q − 2))/2, q ∈
(
2−
√

2, 1
]
.

(4.49)

We notice that for q ∈ [0, 1/2], the distortion constraint is independent of t and thus of PX , and the minimum

expected distortions are Dmin,1 = Dmin,2 = 1
2q. For q ∈

(
1/2, 2 −

√
2
]
, the minimum expected distortions are

achieved for t = 1 and the same holds also for q ∈
(
2 −
√

2, 2/3
]
. For q ∈ [2/3, 1], the distortions are minimized
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for t = 0. We thus have Dmin,1 = Dmin,2 = Dmin, where

Dmin :=





q/2, q ∈ [0, 1/2]

q(1− q), q ∈ [1/2, 2/3]

(1− q)(2− q)/2, q ∈ [2/3, 1].

(4.50)

We obtain a characterization of the distortion region:

D = {(D1,D2) : D1 ≥ Dmin, D2 ≥ Dmin}. (4.51)

The private-messages capacity region is:

C = {(R1,R2) : R1 ≤ 1, R2 ≤ 1, and R1 + R2 ≤ 1 + q2}. (4.52)

The converse and achievability proofs are provided in Appendices A.2.3 and A.2.3, respectively.

Reconsider now the case where q ∈ [0, 1/2]. As previously explained, the distortion is independent of the input

distribution, and the capacity-distortion region CD degenerates to the product of the capacity and distortion regions:

Corollary 6 (No Rate-Distortion Tradeoff). For above state-dependent Dueck example with q ∈ [0, 1/2]:

CD = C × D. (4.53)

For the general case, we only have bounds on the capacity-distortion region CD. We first present our outer

bound, which is based on Theorem 12 and proved in Appendix A.2.3.

Corollary 7 (Outer Bound). The capacity-distortion region CD (without common message) of Dueck’s state-

dependent BC is included in the set of tuples (R1,R2,D1,D2) that for some choice of the parameters t ∈ [0, 1]

satisfy the rate-constraints

Rk ≤ 1, k = 1, 2, (4.54)

R1 + R2 ≤ 1 + q2Hb(t) (4.55)

and the distortion constraints in (4.49).

The inner bound is based on Proposition 2, see Appendix A.2.3. Together with the outer bound in Corollary 7 it
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Figure 4.5: Sum-rate R1 + R2 vs. symmetric distortion D1 = D2 for the state-dependent Dueck BC with q = 3/4.

characterizes both the distortion region D and the capacity region C in (4.51) and (4.52).

Corollary 8 (Inner bound). The capacity-distortion region CD of the state-dependent Dueck BC includes all rate-

distortion tuples (R1,R2,D1,D2) that for some choice of t ∈ [0, 1] satisfy (4.49) and

Rk ≤ 1, k = 1, 2, (4.56)

R1 + R2 ≤ 1 + qHb(t)− q(1− q), (4.57)

as well as the convex hull of all these tuples.

Fig. 4.5 shows our outer and inner bounds in Corollaries 7 and 8 for q = 3/4, where in the inner bound we

consider the convex hull operation through convex combinations between values of t > 0 and t = 0. The figure also

shows the performances of the basic and improved TS baseline schemes, whose modes we explain next. (Recall that

the basic TS scheme time-shares the sensing mode without communication and the communication mode without

sensing, and the improved TS scheme time-shares the sensing mode with communication and the communication

mode with sensing.)

Sensing mode with and without communication:

In the sensing mode with communication, one can choose an arbitrary pmf for X0, e.g., X0 Bernoulli-1/2 because

this input does not affect the sensing. From (4.50), the minimum distortions of Dmin,1 = Dmin,2 = 5/32 are

achieved by setting X1 = X2 with probability 1. For X1 = X2 the sum-rate cannot exceed R1 + R2 ≤ 1, because

I(X0, X1, X2;Y1, Y2) = I(X0, X2;Y1, Y2) ≤ H(X0) + I(X2;Y ′1 , Y
′

2 |X0) ≤ 1 as Y ′1 and Y ′2 are corrupted by the
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Bernoulli-1/2 noise N . On the other hand, any rate pair (R1,R2) of sum-rate R1 + R2 = 1 is trivially achievable by

communicating only with the noiseless X0-input.

We conclude that the sensing mode with communication achieves the rate-distortion tuple (R1,R1,D1,D2) sat-

isfying

R1 + R2 ≤ 1 and Dk ≥ 5/32, k = 1, 2. (4.58)

If the Tx cannot perform communication and sensing tasks simultaneously, the same minimum distortions are

achieved but the rates are trivially zero.

R1 + R2 = 0 and Dk ≥ 5/32, k = 1, 2. (4.59)

Communication mode with and without sensing:

The optimal pmf PX achieving the capacity region in (4.52) corresponds to i.i.d. Bernoulli-1/2 distributed

X0, X1, X2 ( Appendix A.2.3). The corresponding sum rate is R1 + R2 = 1 + q2 = 25/16. The minimum achiev-

able distortions are thus obtained from (4.49) by setting t = Pr[X1 6= X2] = 1/2, i.e., Dmax,1 = Dmax,2 = 11/64.

The best constant estimator is Ŝ1 = Ŝ2 = 1 because 3/4 = PSk
(1) > PSk

(0) = 1/4, which achieves distortions

Dtrivial,1 = Dtrivial,2 = 1/4. We can conclude that the communication mode with sensing achieves all rate-distortion

tuples (R1,R1,D1,D2) satisfying

R1 + R2 ≤ 25/16,

Rk ≤ 1 and Dk ≥ 11/64 k = 1, 2 (4.60)

and the communication mode without sensing achieves all rate-distortion tuples (R1,R1,D1,D2) satisfying

R1 + R2 ≤ 25/16

Rk ≤ 1 and Dk ≥ 1/4, k = 1, 2. (4.61)
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4.3 Related Information-Theoretic Works on Multi-Hop ISAC Systems

In this section, we review related works to ISAC over Single-Tx Two-Rx networks. The first work is similar to our

model, where the Tx estimates the state(s), but one of the Rxs is treated as an eavesdropper. The other work describes

the model in which the Rx estimates the state(s) over a state-dependent multi-hop channel.

4.3.1 Secure ISAC

In [29], secrecy aspects of ISAC systems are considered. The model consists of i.i.d states, perfect output feedback

to the Tx, and each Rx knows its corresponding state, where part of the message is kept from the eavesdropper. The

characterization of the secrecy-distortion region is exact for the physically-degraded BC when the legitimate Rx is

stronger. The Tx sends two encoded messages W1,W2 over a channel to a legitimate Rx who observes Y n
1 (and

knows Sn1 ). At the same time, the eavesdropper who observes Y n
2 and knows Sn2 should learn only a vanishing

amount of information about W2, which is captured by the additional secrecy condition I(W2;Y n
2 | Sn2 ) ≤ δ

achievability is defined as:

Definition 8 (Definition 1, [29]). A secrecy-distortion tuple (R1, R2, D1, D2) is achievable if it is possible to find a

sequence (in the blocklength n) of encoding and decoding functions satisfying for any δ > 0:

1

n
log |Wk| ≥ Rk − δ (4.62)

Pr[W 6= Ŵ ] ≤ δ (4.63)

I(W2;Y n
2 | Sn2 ) ≤ δ (4.64)

E[d(Sk, Ŝk)] ≤ Dk + δ (4.65)

for k ∈ {1, 2}.

Theorem 13 (Theorem 1, [29]). For a physically-degraded BC and with the partial secrecy requirement (4.64), the

set of achievable quadruples (R1, R2, D1, D2) is given by the convex hull of all quadruples satisfying

R1 ≤ I(V ;Y1 | S1) (4.66)

R2 ≤ min{H(Y1, S1 | Y2, S2)−H(S1 | Y2, S2, V ),

I(V ;Y1 | S1)−R1} (4.67)

Dk ≥ E[d(Sk, Ŝk))], for k ∈ {1, 2}, (4.68)
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for some PV XY1Y2S1S2 = PXPV |XPS1S2PY1|S1XPY2|S2Y1
, and it suffices to use the deterministic per-letter estimator

in Lemma (3) with replacing the feedback Z1 by the perfect output feedback Y1, Y2.

They also characterized secrecy-distortion characterization for reversely physically degraded BC which is

slightly modified compared to Theorem 13. Output statistics of random binning (OSRB) is used in the achiev-

ability proofs based on [49]. Also, they presented inner and outer bounds for the general model where there is no

degradedness condition on BC.

4.3.2 Sensing at Rx

The model in [50] is an extension of the P2P ISAC system that had been introduced in [22, 33]. In [50], a multihop

channel is considered where the CSIs are unavailable to neither the Tx nor the Rx. Similar to [22, 33], the Rx

estimates CSIs while a reliable information transmission is happening.

Consider a memoryless two-hop channel where the states are estimated at the destination. A (2nR, n)−code consists

of:

• Encoding functions: a source encoding function f1n :W → X n1 , and a sequence of relay encoding functions

f2,i : Y1,i → X2,i, i = 1, · · · , n,

• Decoding functions: a message decoding function gn : Yn2 → W , and two state estimation functions h1n :

Yn2 → Sn1 and h2n : Yn2 → Sn2 .

The average probability of decoding error is as in (4.3) in which W0 = ∅ and the quality of channel states estimation

is measured by bounded per-symbol distortion functions.

Definition 9 ( [50]). If there exists a sequence of (2nR, n) codes satisfying (4.4), the rate-distortion tuple (R,D1, D2)

is achievable and supremum of it is defined as capacity-distortion C(D1, D2).

Theorem 14 (Theorem 1, [50]). The capacity-distortion function for a two-hop channel with independent states is

C(D1, D2) = max
px1px2

min{I(X1;Y1), I(X2;Y2)− min
pŝ1|x1y1

I(Y1; Ŝ1 | X1)}, (4.69)

such that following distortion constraints are satisfied

EX1Y1,S1,Ŝ1
[d1(S1, Ŝ1)] ≤ D1, (4.70)

EX2Y2 [d2(S2, Ŝ2)] ≤ D2, (4.71)
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where S1(−−(X1, Y1)(−−Ŝ1 form a Markov chain and Ŝ2 is the optimal one-shot estimator based on (X2, Y2), that

is, for each x2 ∈ X2, the estimator h : X2 × Y2 → S2 is chosen to minimize E[d2(S2, h2(X2, Y2)) | X2 = x2].

The result shows that a decode-(indirectly)-compress-and-forward strategy achieves the capacity-distortion func-

tion.

4.4 Conclusion

We fully characterized the capacity-distortion tradeoff for physically-degraded BCs. We presented inner and outer

bounds on the capacity-distortion region for general BCs. Through several illustrative examples, we demonstrated

that the optimal ISAC scheme offers non-negligible gain compared to the time-sharing schemes. Interestingly, there

were ideal situations where the capacity was achieved without compromising the sensing performance. Our results

also revealed that the optimal sensing depends only on the employed waveform but not on the underlying coding

scheme for the single-Tx two-Rx systems.

According to Chapters 3 and 4, we conclude that whenever we have a single Tx, we can accommodate the

communication schemes to serve ISAC merely by being cautious about the restrictions on the input distribution to

allow for the desired sensing performance. However, this is not the case with more Txs, when Txs can collaborate,

both for communication and sensing through generalized feedback signals.
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Chapter 5

The Multiple Access Channel

This chapter considers information-theoretic models for ISAC over multi-access channels (MAC) and device-to-

device (D2D) communication. The models are general and include as special cases scenarios with and without

perfect or imperfect state-information at the MAC Rx as well as causal state-information at the D2D terminals. For

both setups, we propose collaborative sensing ISAC schemes where terminals not only convey data to the other

terminals but also state-information that they extract from their previous observations. This state-information can be

exploited at the other terminals to improve their sensing performances. Indeed, as we show through examples, our

schemes improve over previous non-collaborative schemes in terms of their achievable rate-distortion tradeoffs. For

D2D we propose two schemes, one where compression of state information is separated from channel coding and

one where it is integrated via a hybrid coding approach.

5.1 System Model

Consider the two-Tx single-Rx MAC scenario in Fig. 5.1. The model consists of a two-dimensional memoryless

state sequence {(S1,i, S2,i)}i≥1 whose samples at any given time i are distributed according to a given joint law

PS1S2 over the state alphabets S1 × S2. Given that at time-i Tx 1 sends input X1,i = x1 and Tx 2 input X2,i = x2

and given state realizations S1,i = s1 and S2,i = s2, the Rx’s time-i output Yi and the Txs’ feedback signals Z1,i and

Z2,i are distributed according to the stationary channel transition law PY Z1Z2|S1S2X1X2
(·, ·, ·|s1, s2, x1, x2). Input

and output alphabets X1,X2,Y,Z1,Z2,S1,S2 are assumed finite. A (2nR1 , 2nR2 , n) code consists of

1. two message setsW1 = [1 : 2nR1 ] andW2 = [1 : 2nR2 ];

2. a sequence of encoding functions Ωk,i : Wk ×Z i−1
k → Xk, for i = 1, 2, . . . , n and k = 1, 2;
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Encoder 1W1

Estimator 1Ŝ1

Encoder 2W2

Estimator 2Ŝ2

PY Z1Z2|X1X2S1S2 Receiver

Ŵ1

Ŵ2

Z1,i−1

Z2,i−1

PS1S2

X1,i

X2,i

Yi

Figure 5.1: State-dependent discrete memoryless multiaccess channel with sensing at the transmitters.

3. a decoding function g : Yn →W1 ×W2;

4. for each k = 1, 2 a state estimator φk : X nk ×Znk → Ŝnk , where Ŝ1 and Ŝ2 are given reconstruction alphabets.

For a given code, let the random message Wk, for k = 1, 2, be uniform over the message set Wk and the inputs

Xk,i = φk,i(Wk, Z
i−1
k ), for i = 1, . . . , n. The Txs’ state estimates are obtained as Ŝnk := (Ŝk,1, · · · , Ŝk,n) =

φk(X
n
k , Z

n
k ) and the Rx’s guess of the messages as (Ŵ1, Ŵ2) = g(Y n). We shall measure the quality of the state

estimates Ŝnk by bounded per-symbol distortion functions dk : Sk × Ŝk 7→ [0,∞), and consider expected average

block distortions

∆
(n)
k :=

1

n

n∑

i=1

E[dk(Sk,i, Ŝk,i)], k = 1, 2. (5.1)

The probability of decoding error is defined as:

P (n)
e := Pr

(
Ŵ1 6= W1 or Ŵ2 6= W2

)
. (5.2)

Definition 10. A rate-distortion tuple (R1,R2,D1,D2) is achievable if there exists a sequence (in n) of

(2nR1 , 2nR2 , n) codes that simultaneously satisfy

lim
n→∞

P (n)
e = 0 (5.3a)

lim
n→∞

∆
(n)
k ≤ Dk, for k = 1, 2. (5.3b)

Definition 11. The capacity-distortion region CD is the closure of the set of all achievable tuples (R1,R2,D1,D2).

Remark 6 (On the States). Notice that the general law PS1S2 governing the states Sn1 and Sn2 allows to model
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various types of situations including scenarios where the state sequences are highly correlated (even identical) or

scenarios where the state-sequences are independent.

Our model also includes a scenario where the channel is governed by an internal i.i.d. state sequence Sn of

pmf PS and the states Sn1 , S
n
2 are related to Sn over an independent memoryless channel PS1S2|S . For example, the

states Sn1 and Sn2 can be imperfect or noisy versions of the actual state sequence Sn. To see that this scenario can be

included in our model, notice that since no terminal observes Sn nor attempts to reconstruct Sn, both the distortions

and the error probabilities only depend on the conditional law

PY Z1Z2|X1X2S1S2
(y, z1, z2|x1, x2, s1, s2) =

∑

s

PY Z1Z2|X1X2S(y, z1, z2|x1, x2, s)
PS(s)PS1S2|S(s1, s2|s)

PS1S2(s1, s2)
, (5.4)

where PS1S2(s1, s2) =
∑

s PS(s)PS1S2|S(s1, s2|s) denotes the joint pmf of the two states. Computing the channel

law in (5.4) and plugging it into our results in the next section, thus immediately also provides results for the

described setup where the actual state is Sn and the states Sn1 and Sn2 are noisy versions thereof.

Remark 7 (State-Information). Our model also includes scenarios with perfect or imperfect state-information at

the Rx. In fact, considering our model with an output

Y = (T, Y ′) (5.5)

where Y ′ denotes the actual MAC output and T the Rx’s imperfect channel state-information about the states Sn1

and Sn2 . Notice that in our model, the Rx observes the state-information Tn only in a causal manner. Causality is

however irrelevant here since the Rx only has to decode the messages at the end of the entire transmission. Therefore,

plugging the choice (5.5) into our results for T the Rx state-information and Y ′ the actual MAC output, our results

in the following section directly lead to results for this related setup with Rx state-information.

5.2 A Collaborative ISAC Scheme

Before describing our collaborative ISAC scheme for the MAC, we review literature on the MAC and in particular

Willem’s scheme for the MAC with generalized feedback, which acts as a building block on our scheme.

While the capacity region of the MAC without feedback was determined in [51], a computable single-letter

expression for the capacity region is only known in special cases such as the two-user Gaussian MAC with perfect

feedback [52] or a class of semi-deterministic MACs [53] with one-sided perfect feedback. Kramer had obtained a
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multi-letter characterization of the capacity region of the MAC with feedback in [54]. For most channels it seems

however impossible to evaluate and compute Kramer’s region. Various computable inner and outer bounds have

been obtained on the MAC with feedback, the one most relevant to our work is Willems’s inner bound [55]. Like

previous inner bounds, it is based on the idea that each Tx decodes part of the data sent by the other Tx, which allows

the two Txs to cooperatively resend these data parts in the next block using a more efficient coding scheme.

5.2.1 Willems’ Coding Scheme with Generalized Feedback and the ISAC extension
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Figure 5.2: Operations at Tx 1 in Willems’ scheme during the first three blocks. After each block b Tx 1 decodes
message W2,c,(b) based on its generalized feedback output ZN1,(b). The decoded message is then retransmitted in
block b+ 1 jointly with W1,c,(b).

Willems’ scheme splits the blocklength n into B + 1 blocks of length N = n/(B + 1) each. Accordingly,

throughout, we let XN
1,(b), X

N
2,(b), S

N
1,(b), S

N
2,(b), Z

N
1,(b), Z

N
2,(b), Y

N
(b) denote the block-b inputs, states and outputs, e.g.,

SN1,(b) := (S1(b−1)N+1, . . . , S1,bN ). We also represent the two messages W1 and W2 in a one-to-one way as the

2B-length tuples

Wk = (Wk,c,(1), . . . ,Wk,c,(B),Wk,p,(1), . . . ,Wk,p,(B)), k ∈ {1, 2}, (5.6)

where all pairs (Wk,c,(b),Wk,p,(b)) are independent and uniformly distributed over
[
2NR̄k,c

]
×
[
2NR̄k,p

]
for R̄k,c ,

B+1
B Rk,c and R̄k,p , B+1

B Rk,p and Rk,c +Rk,p = Rk.

An independent superposition code is constructed for each block b (see also Figure 5.2):

• A lowest-level code C0,(b) consisting of 2NR̄1,c ·2NR̄2,c codewords u0,(b)(w1,c, w2,c) is constructed by drawing

all entries i.i.d. according to a auxiliary pmf PU0 .

• On each lowest-level codeword u0,(b)(w1,c, w2,c) we superposition two codebooks {uNk,(b)(w′k,c | w1,c, w2,c)},
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58 5.2. A COLLABORATIVE ISAC SCHEME

for k ∈ {1, 2} and w′k,c ∈ [2NRk,c ], by drawing the i-th entry of each codeword according to PUk|U0
(· | u0)

where u0 denotes the i-th entry of uN0 (w1,c, w2,c).

• On each second-layer codeword uNk,(b)(w
′
k,c|w1,c, w2,c), we superposition a codebook

{xNk,(b)(w′k,p|w′k,c, w1,c, w2,c)}, for k ∈ {1, 2} and w′k,p ∈ [2NRk,p ], by drawing the i-th entry of each

codeword according to PXk|U0Uk
(· | u0, uk) where uk denotes the i-th entry of uNk,(b)(w

′
k,c | w1,c, w2,c).

As depicted in Figure 5.2, in Willems’ scheme, Tx 1 sends the following block-b channel inputs

xN1,(b) = xN1,(b)

(
W1,p,(b)

∣∣∣W1,c,(b),W1,c,(b−1), Ŵ2,c,(b−1)

)
, b ∈ {1, . . . , B + 1}, (5.7)

where Ŵ2,c,(b−1) denotes the message part that Tx 1 decodes after reception of the block-(b−1) generalized feedback

signal ZN1,(b−1), e.g., through a joint typicality decoding rule. Also, we set throughout Wk,c,(0) = Ŵk,c,(0) =

Wk,p,(B+1) = 1, for k ∈ {1, 2}.

Decoding at the Rx is performed backwards, starting with the last blockB+1 based on which the Rx decodes the

pair of common messages (W1,c,(B),W2,c,(B)) using for example a joint-typicality decoder. It then uses knowledge

of these common messages and the outputs in block B to decode the block-B private messages (W1,p,(B),W2,p,(B))

and the block (B − 1) common messages (W1,c,(B−1),W2,c,(B−1)), etc. The backward decoding procedure is also

depicted in Figure 5.3.
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ŵ1,c,(B), ŵ2,c,(B)
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ŵ1,p,(B)
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Figure 5.3: Backward decoding procedure at the Rx in Willems’ scheme. The pair of common messages
(W1,c,(b−1),W2,c,(b−1)) and private messages (W1,p,(b),W2,p,(b)) are jointly decoded based on the block-b outputs
Y N

(b) and using the previously decoded (Ŵ1,c,(b), Ŵ2,c,(b)).

As Willems showed, his scheme can achieve the following rate-region.
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Theorem 15 (Willems’ Achievable Region [55]). Any nonnegative rate-pair (R1, R2) is achievable over the MAC

with generalized feedback if it satisfies the following inequalities

Rk ≤ I(Xk;Y | Xk̄UkU0) + I(Uk;Zk̄ | Xk̄U0), k ∈ {1, 2}, (5.8)

R1 +R2 ≤ I(X1X2;Y ), (5.9)

R1 +R2 ≤ I(X1X2;Y | U0U1U2) + I(U1;Z2 | X2U0) + I(U2;Z1 | X1U0), (5.10)

for some choice of pmfs PU0 , PU1|U0
, PU2|U0

, PX1|U0U1
, PX2|U0U2

, and where above mutual informations are calcu-

lated according to the pmf PU0PU1|U0
PU2|U0

PX1|U0U1
PX2|U0U2

PS1S2 PY Z1Z2|S1S2X1X2
.

Kobayashi et al. [2] extended Willems’ scheme to a ISAC scenario by adding a state estimator at the two Txs.

Specifically, for any block b each Tx k applies the symbol-per-symbol estimation

ŝNk,(b) = φ̃∗⊗Nk

(
xNk,(b), z

N
k,(b), u

N
k̄,(b)

(
Wk̄,c,(b)|Wk,c,(b−1), Ŵk̄,c,(b−1)

))
, b ∈ {1, . . . , B}, (5.11)

where φ̃∗k denotes the optimal estimator of Sk based on the tuple (Xk, Zk, Uk̄):

φ̃∗k(xk, zk, uk̄) := arg min
s′k∈Ŝk

∑

sk∈Sk
PSk|XkZkUk̄

(sk|xk, zk, uk̄) dk(sk, s′k). (5.12)

Thus, any of the two Txs bases its state-estimation not only on its inputs and outputs of a given block but also on the

codeword that it decoded from the other Tx.

For the last blockB+1, Tx k can produce any trivial estimate, e.g., ŝNk,(B+1) because its influence on the average

distortion vanishes as the number of blocks grows, B →∞.

Combining the described state-estimation with Willems’ scheme, the following rate-distortion region can be

shown to be achievable.

Theorem 16. [Kobayashi et al.’s ISAC region [2]] A rate-distortion tuple (R1, R2, D1, D2) is achievable if it satisfies

Rk ≤ I(Xk;Y | Xk̄UkU0) + I(Uk;Zk̄ | Xk̄U0), k ∈ {1, 2}, (5.13)

R1 +R2 ≤ I(X1X2;Y ), (5.14)

R1 +R2 ≤ I(X1X2;Y | U0U1U2) + I(U1;Z2 | X2U0) + I(U2;Z1 | X1U0), (5.15)
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)
un
0,(3)

(
w1,c,(2), ŵ2,c,(2)
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ûN
2,(1)

(
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Figure 5.4: Our proposed scheme at Tx 1 during the firts three blocks

and

E
[
dk(Sk, φ̃

∗
k(Xk, Zk, Uk̄, const))

]
≤ Dk, k = 1, 2, (5.16)

for some choice of pmfs PU0 , PU1|U0
, PU2|U0

, PX1|U1U0
, PX2|U2U0

.

5.2.2 Our Proposed Collaborative ISAC Scheme

We present our collaborative ISAC scheme. It extends the scheme in [2] in that the second-layer codeword of

Willems’ code construction is not only used to transmit data but also compression information useful for state

sensing. The compression information is generated at one of the Txs and mainly intended for the other Tx to improve

its sensing performance. In our scheme, the Rx however also decodes this information and uses it to improve its

decoding performance.

Code construction

Choose pmfs PU0 , PU1|U0
PU2|U0

, PX1|U1U0
, PX2|U2U0

, and define the pmf

PU0U1U2X1X2S1S2Y Z1Z2V1V2 = PU0PU1|U0
PU2|U0

PX1|U1U0
PX2|U2U0

PS1S2PY Z1Z2|X1X2S1S2

PV1|X1Z1U2U0
PV1|X1Z1U2U0

. (5.17)

Employ Willems’ three-level superposition code construction for the given choice of pmfs, except that each

second-layer codeword is indexed by a pair of indices. We thus denote the second-layer codewords by
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(
uN0,(b−1)

(
W1,c,(b−2), Ŵ

(1)
2,c,(b−2)

)
, uN1,(b−1)

(
W1,c,(b−1), J

∗
1,(b−2)

∣∣∣W1,c,(b−2), Ŵ
(1)
2,c,(b−2)

)

uN2,(b−1)

(
ŵ2, ĵ2

∣∣∣W1,c,(b−2), Ŵ
(1)
2,c,(b−2)

)
,

xN1,(b−1)

(
W1,p,(b−1)

∣∣∣W1,c,(b−1), J
∗
1,(b−2),W1,c,(b−2), Ŵ

(1)
2,c,(b−2)

)
,

vN1,(b−1)

(
j∗1
∣∣∣ J∗1,(b−2),W1,c,(b−1), ŵ2, ĵ2,W1,c,(b−2), Ŵ

(1)
2,c,(b−2)

)
, ZN1,(b−1)

)
∈ T Nε (PU0U1U2X1V1Z1) (5.19)

uNk,(b)(w
′
1,c, j1 | w1,c, w2,c) and uN2,(b)(w

′
2,c, j2 | w1,c, w2,c) and accordingly the corresponding third-layer code-

words by xN1,(b)(w
′
1,p|w′1,c, j1, w1,c, w2,c) and xN1,(b)(w

′
2,p|w′2,c, j2, w1,c, w2,c), where the indices j1 and j2 take value

in the sets [2nR
′
1 ] and [2nR

′
2 ] for some positive auxiliary rates R1,v and R2,v.

We further construct a compression codebook for each block and each of the two Txs, For each b ∈ {1, . . . , B}

and each sixtuple (w1,c, w2,c, w
′
1,c, j1w

′
2,c, j2) ∈ [2NR1,c ] × [2NR2,c ] × [2NR1,c ] × [2NR1,v ] × [2NR2,c ] × [2NR2,v ]

we generate a sequence vN1,(b)(j
′
1 | w′1,c, j1, w′2,c, j2, w1,c, w2,c) for each j′1 ∈ [2NR1,v ] and a sequence vN2,(b)(j

′
2 |

w′1,c, j1, w
′
2,c, j2, w1,c, w2,c) for each j′2 ∈ [2NR2,v ]. The sequences vN1,(b)(j

′
1 | w′1,c, j1, w′2,c, j2, w1,c, w2,c) and

vN2,(b)(j
′
2 | w′1,c, j1, w′2,c, j2, w1,c, w2,c) are obtained by drawing their i-th entries according to PV1|U0U1U2

(· |

u0, u1, u2) and PV2|U0U1U2
(· | u0, u1, u2), respectively, for u0, u1, u2 denoting the i-th entries of the sequences

uN0,(b)(w1,c, w2,c), uN1,(b)(w
′
1,c, j1 | w1,c, w2,c), and uN2,(b)(w

′
2,c, j2 | w1,c, w2,c).

Operations at the Txs

In each block b, Tx k sends the block-b sequence

XN
k,(b) = xNk,(b)

(
Wk,p,(b)|Wk,c,(b), J

∗
k,(b−1),Wk,c,(b−1), Ŵ

(k)

k̄,c,(b−1)

)
, (5.18)

where Tx k generates the indices J∗k,(b−1) and Ŵk̄,c,(b−1) during a joint decoding and compression step at the end of

block b− 1 as follows. (For convenience we again set Wk,p,(B+1) = Wk,c,(0) = Ŵ k
k̄,c,(0)

= J k̄k,(B+1) = 1.)

After receiving the generalized feedback signal ZNk,(b−1), Tx k looks for a triple of indices j∗k , ŵk̄, and ĵk̄ satisfy-

ing the joint typicality check (5.19), and if b > 2 also the typicality check (5.20), which are displayed on top of the

page. It randomly picks one of these triples and sets

J∗1,(b−1) = j∗1 , Ŵ
(1)
2,(b−1) = ŵ2, Ĵ

(1)
2,(b−2) = ĵ2. (5.21)
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(
uN0,(b−2)

(
W1,c,(b−3), Ŵ

(1)
2,c,(b−3)

)
, uN1,(b−2)

(
W1,c,(b−2), J

∗
1,(b−2)

∣∣∣W1,c,(b−3), Ŵ
(1)
2,c,(b−3)

)
,

uN2,(b−2)

(
Ŵ

(1)
2,c,(b−2), Ĵ

(1)
2,(b−3)

∣∣∣W1,c,(b−3), Ŵ
(1)
2,c,(b−3)

)
,

xN1,(b−2)

(
W1,p,(b−2)

∣∣∣W1,c,(b−2), J
∗
1,(b−3),W1,c,(b−3), Ŵ

(1)
2,c,(b−3)

)
,

vN2,(b−2)

(
ĵ2

∣∣∣W1,c,(b−2), J
∗
1,(b−3), Ŵ

(1)
2,c,(b−2), Ĵ

(1)
2,(b−3),W1,c,(b−3), Ŵ

(1)
2,c,(b−3)

)
,

ZN1,(b−2)

)
∈ T Nε (PU0U1U2X1V2Z1). (5.20)

Tx k also produces the block-b state estimate

ŝnk,(b) = φ∗⊗Nk

(
xNk,(b)

(
Wk,p,(b)|Wk,c,(b), Jk,(b−1),Wk,c,(b−1), Ŵ

(k)

k̄,c,(b−1)

)
,

zNk,(b), u
N
k̄,(b)

(
Wk,c,(b) | Jk,(b−1),Wk,c,(b−1), Ŵ

(k)

k̄,c,(b−1)

)
,

vNk̄,(b)

(
Jk,(b) |Wk,c,(b), Jk,(b−1),Wk,c,(b−1), Ŵ

(k)

k̄,c,(b−1)

))
(5.22)

where

φ∗k(xk, zk, uk̄, vk̄) := arg min
s′k∈Ŝk

∑

sk∈Sk
PSk|XkZkUk̄Vk̄

(sk|xk, zk, uk̄, vk̄) dk(sk, s′k). (5.23)

Without loss in performance as B →∞, the estimate in the last block B+ 1 can again be set to a dummy sequence.

Decoding at the Rx

Decoding at the Rx is similar to Willems’ scheme and uses backward decoding. The difference is that the Rx

in block b not only decodes the message tuple (W1,p,(b),W2,p,(b),W1,c,(b−1),W2,c,(b−1)) but also the compression

indices J∗1,(b−1) and J∗2,(b−2). Specifically, in a generic block b ∈ {2, . . . , B}, the Rx looks for a unique sixtuple

(w1,p, w2,p, w1,c, w2,c, j1, j2) ∈ [2NR1,p ]× [2NR2,p ]× [2NR1,c ]× [2NR2,c ]× [2NR1,v ]× [2NR2,v ] satisfying

(
uN0,b(w1,c, w2,c), u

N
1,(b)

(
Ŵ1,c,(b), j1

∣∣∣ w1,c, w2,c

)
, uN2,(b)

(
Ŵ2,c,(b), j2

∣∣∣ w1,c, w2,c

)
,

xN1,(b)

(
w1,p

∣∣∣ Ŵ1,c,(b), j1, w1,c, w2,c

)
, xN2,(b)

(
w2,p

∣∣∣ Ŵ2,c,(b), j2, w1,c, w2,c

)
,

vN1,(b)

(
Ĵ1,(b)

∣∣∣ Ŵ1,c,(b), j1, Ŵ2,c,(b), j2, w1,c, w2,c

)
,

vN2,(b)

(
Ĵ2,(b)

∣∣∣ Ŵ1,c,(b), j1, Ŵ2,c,(b), j2, w1,c, w2,c

)
, Y N

(b)

)
∈ T2ε(PU0U1U2X1X2Y ). (5.24)
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If such a unique sixtuple exists, it sets Ŵ1,c,(b−1) = w1,c, Ŵ1,p,(b) = w1,p, Ŵ2,c,(b−1) = w2,c, Ŵ2,p,(b) = w2,p,

Ĵ1,(b−1) = j1, and Ĵ2,(b−1) = j2. Otherwise it declares an error.

The Rx finally declares the messages Ŵ1 and Ŵ2 that correspond to the produced guesses {(Ŵk,p,(b), Ŵk,c,(b))}.

In Appendix A.3.1 we show that asN →∞ andB →∞, the described scheme achieves vanishing probabilities

of error, the compressions are successful with probability 1, and the asymptotic expected distortions are bounded by

D1 and D2 whenever B is sufficiently large and

Rk,v > I(Vk;XkZk | U) (5.25a)

Rk̄,v+Rk,c < I(UkVk̄;Xk̄Zk̄ | U0Uk̄) (5.25b)

R1,v+R2,v +Rk,c < I(UkVk̄;Xk̄Zk̄ | U0Uk̄) + I(Vk;Xk̄Zk̄ | U) (5.25c)

Rk,p < I(Xk;Y V1V2 | UXk̄) (5.25d)

Rk,v +Rk,p < I(Xk;Y | U0Xk̄) + I(V2;X1X2Y V1 | U) + I(V1;X1X2Y | U) (5.25e)

Rk,v +Rk,p +Rk̄,p < I(X1X2;Y | U0Uk̄) + I(V2;X1X2Y V1 | U)

+I(V1;X1X2Y | U) (5.25f)

R1,p +R2,p < I(X1X2;Y V1V2 | U) (5.25g)

R1,v +R1,p +R2,v +R2,p < I(X1X2;Y | U0) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U) (5.25h)

R1,v +R1 +R2,v +R2 < I(X1X2;Y ) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U), (5.25i)

where U , (U0, U1, U2) and

E[dk(Sk, φ
∗
k(Xk, Zk, Uk̄, Vk̄)] ≤ Dk, k = 1, 2, (5.25j)

for φ∗k defined in (5.23).

Using the Fourier-Motzkin Elimination (FME) algorithm it can be shown, see Appendix A.3.2, that such a choice

of rates is possible under the rate-constraints (5.26).

Theorem 17. The capacity-distortion region CD includes any rate-distortion tuple (R1, R2, D1, D2) that for some

choice of pmfs PU0 , PU1|U0
, PU2|U0

, PX1|U0U1
, PX2|U0U2

, PV1|U0U2X1Z1
, PV2|U0U1X2Z2

satisfies Inequalities (5.26) on

top of the previous page (where U := (U0, U1, U2)) as well as the distortion constraints (5.25j).

Proof. See Appendix A.3.1.
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Rk ≤ I(Uk;Xk̄Zk̄ | U0Uk̄) + I(Vk;Xk̄Zk̄ | U)− I(Vk;XkZk | U) + min{
I(Xk;Y | U0Xk̄) + I(Vk;X1X2Y | U) + I(Vk̄;X1X2Y Vk | U)

−I(Vk;XkZk | U),

I(X1X2;Y | U0Uk) + I(Vk;X1X2Y | U) + I(Vk̄;X1X2Y Vk | U)

−I(Vk̄;Xk̄Zk̄ | U),

I(X1X2;Y | U0) + I(Vk;X1X2Y | U) + I(Vk̄;X1X2Y Vk | U)

−I(Vk;XkZk | U)− I(Vk̄;Xk̄Zk̄ | U), I(Xk;Y V1V2 | UXk̄)}, k = 1, 2, (5.26a)

R1 +R2 ≤ I(U2;X1Z1 | U0U1) + I(V2;X1Z1 | U)− I(V2;X2Z2 | U)

+I(U1;X2Z2 | U0U2) + I(V1;X2Z2 | U)− I(V1;X1Z1 | U) + min{
I(X1X2;Y | U0U2) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U)− I(V1;X1Z1 | U),

I(X1X2;Y | U0U1) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U)− I(V2;X2Z2 | U),

I(X1X2;Y | U0) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U)

−I(V1;X1Z1 | U)− I(V2;X2Z2 | U),

I(X1X2;Y V1V2 | U)} (5.26b)

R1 +R2 ≤ I(X1X2;Y ) + I(V1;X1X2Y | U)− I(V1;X1Z1 | U)

+I(V2;X1X2Y V1 | U)− I(V2;X2Z2 | U)

(5.26c)

and for k = 1, 2

I(Uk;Xk̄Zk̄ | U0Uk̄) + I(Vk;Xk̄Zk̄ | U) ≥ I(Vk;XkZk | U), (5.26d)

I(X1X2;Y | U0) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U) ≥ I(V1;X1Z1 | U)

+I(V2;X2Z2 | U) (5.26e)

I(Xk;Y | U0Xk̄) + I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U) ≥ I(Vk;XkZk | U). (5.26f)

Notice that Theorem 17 recovers the previous achievable region in Theorem 16 through the choice V1 =

V2 =constants, which removes the collaborative sensing between the two Txs.

Remark 8 (Wyner-Ziv Coding). In our scheme, no binning as in Wyner-Ziv coding is used for the compression of

the V1- and V2-codewords. Instead, decoder side-information is taken into account through the additional typicality

check (5.20) and by including the V1- and V2-codewords in the typicality check (5.24). These strategies are known

as implicit binning and allow multiple decoders to exploit different levels of side-information, see [56].

5.2.3 Examples

The following two examples show the improvement of Theorem 17 over Theorem 16.

Example 1. Consider a MAC with binary input, output, and state alphabets X1 = X2 = Y = S2 = {0, 1}. State
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S2 ∼ Ber(ps), while S1 = 0 is a constant. The channel input-output relation is described by

Y = S2X2, (Z1, Z2) = (S2, X1). (5.27)

For this channel, the following tuple

(R1,R2,D1,D2) = (0, 0, 0, 0), (5.28)

lies in the achievable region of Theorem 17 through the choice V1 = Z1 = S2 and (Ŝ2 = V1, Ŝ1 = 0). Distortion

D2 = 0 is however not achievable in Theorem 16 because S2 is independent of (U1, U2, U0, X1, X2) and thus

of (X2, U1, Z2), and the optimal estimator is the trivial estimator Ŝ2 = ψ∗2(X2, Z2, U1) = 1{ps > 1/2) which

achieves distortion D2 = min{1− ps, ps}.

Example 2. Consider binary noise, states and channel inputs B0, Bk, Sk, Xk ∈ {0, 1}. The noise to the Rx B0

is Bernoulli-t0, and Bk, the noise on the feedback to Tx k, is Bernoulli-tk. All noises are independent and also

independent of the states S1, S2, which are i.i.d. Bernoulli-ps. We can then des are described the channel as

Y ′ = S1X1 + S2X2 +B0, Y = (Y ′, S1, S2), (5.29)

Z1 = S1X1 + S2X2 +B1, Z2 = S1X1 + S2X2 +B2. (5.30)

In this example the Rx thus has perfect channel state-information, see also Remark 7. Hamming distance is consid-

ered as a distortion measure: d(s, ŝ) = s⊕ ŝ.

We compare Theorems 16 and 17 on the following choices of random variables. Let

Xk = U0 ⊕ Σ︸ ︷︷ ︸
,U1

⊕θk, for k ∈ {1, 2} (5.31)

where U0,Σ1,Σ2, θ1, θ2 are all independent Bernoulli random variables of parameters p, q1, q2, r1, r2. For the

evaluation of Theorem 17 we further choose the compression random variables

Vk =





1{Zk = 1}+ 2 · 1{Zk = 2} if Ek = 0

“?” if Ek = 1

∀k = {1, 2} (5.32)

for a binary Ek independent of (S1, S2, B0, B1, B2, U0, U1, U2,Σ1,Σ2, θ1, θ2). For this choice, Tx k conveys infor-

mation about Zk to Tx k̄, which helps this latter to better estimate its state Sk̄. For instance, when E1 = 0, Tx-2
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receives another noisy observation of the output which helps it to better estimate its state, because

Y ′ =





0 if Z2 ∈ {0, 1}, V1 = 0

1 if V1 = 1

2 if Z2 ∈ {2, 3}, V1 = 0

. (5.33)
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Figure 5.5: Sum-rate distortion tradeoff achieved by Theorems 16 and 17 in Example 2 for given channel parameters
ps = 0.9, t0 = 0.3, t1 = 0.1 and t2 = 0.1.

Proof. First, we discuss the computation of distortion.

Calculation of Distortion

We evaluate the expected distortion of the estimators in (5.23), for a given input pmf PX1X2 . We consider the

distortion on state S2 where we notice different cases in the calculation:

• When Tx 2 sends X2 = 0, the distortion calculation is the same as calculation in Corollary 16. When Tx 2

sends X2 = 0, it vanishes the effect of S2, and thus the distortion is a minima over two states

• When Tx 2 sends X2 = 1, the distortion depends on different feedback observations as follows:

– If Tx 2 observes Z2 = 0, then it knows S1 = S2 = 0, thus, the distortion is zero. This observation also

provides information about the noise B2 = 0.

– If Tx 2 observes Z2 = 3, then Tx 2 knows S1 = S2 = 1, thus, the distortion is zero. Moreover it

provides information regarding the noise B2 = 1.
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– The advantage of using the proposed auxiliary r.v V1 in our scheme compared to Corollary 16 arises

when Tx 2 observes Z2 = 1 or 2 categorized as follows:

* If Tx 2 observes Z2 = 1, and

· decodes V1 = 0, which means Z1 = {0, 3}. The zero-distortion estimation provides S2 = 0 or,

· decodes V1 = 1 which means Z1 = 1. The estimation stands with a non-zero distortion or,

· decodes V1 = 2, which means Z1 = 2. The estimation stands with a non-zero distortion.

* If Tx 2 observes Z2 = 2 and

· decodes V1 = 0 , it knows Z1 = 3, which means S2 = 0 and thus the distortion is zero or,

· decodes V1 = 1, which means Z1 = 1. In this case the distortion is non-zero but less than in

Corollary 16 because Z1 is available at Tx 2 as side-information.

· decodes V1 = 2 which means Z1 = 2. Analogous to previous case, the distortion is non-zero.

We obtain the following final expression for the distortion at Tx 2:

D(5.32)
2 = PX2(0) min{ps, p̄s}

+ PU1X2(0, 1) ·min
{
p̄s · psr1t̄1t̄2 + (1− psr1)t1t2, ps · (1− psr1)t̄1t̄2

}

(5.34)

+ PU1X2(1, 1) ·min
{
p̄s · psr̄1t̄1t̄2 + (1− psr̄1)t1t2, ps · (1− psr̄1)t̄1t̄2

}
(5.35)

While in Corollary 16, the constraint (5.16) evaluates to

D
Corollary16
2 = PX2(0) min{ps, p̄s}+ PU1X2(0, 1)

[
min{p̄s(psr1t̄+ t(1− psr1)), t̄(1− psr1)ps} (5.36)

+ min{ps(psr1t̄+ t(1− psr1))}
]

+ PU1X2(1, 1)

[
min{p̄s(psr̄1t̄+ t(1− psr̄1)), t̄(1− psr̄1)ps} (5.37)

+ min{ps(psr̄1t̄+ t(1− psr̄1))}
]

The details of calculation is given in Appendix A.4.1 and the evaluation of the rate region is given in Appendix A.4.2.

To achieve Figure5.5, we optimize the final expressions over all p, qk, rk, pek ∈ [0, 1] for specific channel param-
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eters ps = 0.9, t0 = 0.3, t1 = 0.1 and t2 = 0.1. Figure 5.5 shows the maximum sum-rate R1 + R2 in function of

distortion D2 achieved by Theorems 16 and 17, where recall that for the region in Theorem 16 we set V1 = V2 = 0.

Notice that both curves are strictly concave and thus improve over classic time- and resource sharing strategies. The

minimum distortions achieved by Theorems 16 and 16 are D2,min = 0.035 and D2,min = 0.04.

5.3 Conclusion

We considered integrated sensing and communication (ISAC) over multi-access channels (MAC) where different ter-

minals help each other to improve sensing. We reviewed related communication schemes and proposed adaptations

that fully integrate the collaborative sensing into information-theoretic data communication schemes. Through ex-

amples, we demonstrated the advantages of our collaborative sensing ISAC schemes compared to non-collaborative

ISAC schemes with respect to the achieved rate-distortion regions.
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Chapter 6

The Device-to-Device Channel

In this chapter, we consider the ISAC two-way channel, where two terminals exchange data over a common channel

and based on their inputs and outputs also wish to estimate the state-sequences that govern the two-way channel.

6.1 System Model

Consider the two-terminal two-way communication scenario in Fig. 6.1. The model consists of a two-dimensional

memoryless state sequence {(S1,i, S2,i)}i≥1 whose samples at any given time i are distributed according to a given

joint law PS1S2 over the state alphabets S1 × S2. Given that at time-i Tx 1 sends input X1,i = x1 and Tx 2 input

X2,i = x2 and given state realizations S1,i = s1 and S2,i = s2, the Txs’ time-i feedback signals Z1,i and Z2,i are

distributed according to the stationary channel transition law PZ1Z2|S1S2X1X2
(·, ·|s1, s2, x1, x2). Input and output

alphabets X1,X2,Y,Z1,Z2,S1,S2 are assumed finite.

PS1S2
<latexit sha1_base64="s5j7saEdjsL2/YpwRrCXt+kpD8o=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahp7JbBT0WvHis1H5guyzZNNuGZpMlyQpl6b/w4kERr/4bb/4b03YP2vpg4PHeDDPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244uZ373SeqNJPiwUwT6sd4JFjECDZWemwGWSvwWkF9FpQrbs1dAK0TLycVyNEMyl+DoSRpTIUhHGvd99zE+BlWhhFOZ6VBqmmCyQSPaN9SgWOq/Wxx8QxdWGWIIqlsCYMW6u+JDMdaT+PQdsbYjPWqNxf/8/qpiW78jIkkNVSQ5aIo5chINH8fDZmixPCpJZgoZm9FZIwVJsaGVLIheKsvr5NOveZd1ur3V5VGNY+jCGdwDlXw4BoacAdNaAMBAc/wCm+Odl6cd+dj2Vpw8plT+APn8we40pA2</latexit>

Ŝn
1 Estimator

Z1,i�1

Transmitter 1

En/Decoder

W1
<latexit sha1_base64="a7UIRNSXvsy9Oj16yoU+yTl6fzE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpoTPwBuWKW3MXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8MbPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbTrNe+yVr+/qjSqeRxFOINzqIIH19CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDS141p</latexit>

X1,i
<latexit sha1_base64="ecrRus/8E9HhZIsB09qPz35sqes=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahBylJFfRY8OKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOt1B5l3y2aBccWvuAmSdeDmpQI7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE976GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5N2veZd1eoP15VGNY+jCGdwDlXw4AYacA9NaAGDCTzDK7w5ifPivDsfy9aCk8+cwh84nz/IBo8f</latexit>

Estimator Ŝn
2

En/Decoder

Transmitter 2

Z2,i�1

W2
<latexit sha1_base64="HchjoKjimI8rwdy1b0FXZf83IRI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD51BfVCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXa95lrX5/VWlU8ziKcAbnUAUPrqEBd9CEFjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHUW41q</latexit>

X2,i
<latexit sha1_base64="2UYP+yUu1pFgFpCut+6LDG6kXOM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahBylJFfRY8OKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5aKYJ+hEdSR5yRo2VOt1BVr/ks0G54tbcBcg68XJSgRzNQfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni3Bm5sMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfx3MuQKmRFTSyhT3N5K2JgqyoxNqGRD8FZfXiftes27qtUfriuNah5HEc7gHKrgwQ004B6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8AyY2PIA==</latexit>

PZ1Z2|X1X2S1S2
<latexit sha1_base64="E2MfWMrUgn/Zg3/DwOhpgm0M4zE=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL0FVJoqDLghuXldo2tA3DZDpph04ezEyEErPxV9y4UMStn+HOv3HaZqGtBy4czrmXe+/xE86ksqxvo7S2vrG5Vd6u7Ozu7R+Yh0cdGaeC0DaJeSxcH0vKWUTbiilO3URQHPqcdv3JzczvPlAhWRzdq2lCvRCPIhYwgpWWkHnSRFkP2T3kPLrIdpHTQnYLOTkyq1bdmgOuErsgVVCgicyvwTAmaUgjRTiWsm9bifIyLBQjnOaVQSppgskEj2hf0wiHVHrZ/IEcnmtlCINY6IoUnKu/JzIcSjkNfd0ZYjWWy95M/M/rpyq49jIWJamiEVksClIOVQxnacAhE5QoPtUEE8H0rZCMscBE6cwqOgR7+eVV0nHq9kXdubusNmpFHGVwCs5ADdjgCjTALWiCNiAgB8/gFbwZT8aL8W58LFpLRjFzDP7A+PwBnC2VCw==</latexit>

Ŵ1
<latexit sha1_base64="4SMNQQ7OpfPwOM9WW/NIUO+9jZI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvQU0mqoMeCF48V7Ie0oWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WNza3tneJuaW//4PCofHzSNnGqKWvRWMS6GxLDBFeshRwF6yaaERkK1gknt3O/88S04bF6wGnCAklGikecErTSY39MMOvMBv6gXPFq3gLuOvFzUoEczUH5qz+MaSqZQiqIMT3fSzDIiEZOBZuV+qlhCaETMmI9SxWRzATZ4uCZe2GVoRvF2pZCd6H+nsiINGYqQ9spCY7NqjcX//N6KUY3QcZVkiJTdLkoSoWLsTv/3h1yzSiKqSWEam5vdemYaELRZlSyIfirL6+Tdr3mX9bq91eVRjWPowhncA5V8OEaGnAHTWgBBQnP8ApvjnZenHfnY9lacPKZU/gD5/MHofOQNg==</latexit>

Ŵ2
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Figure 6.1: State-dependent discrete memoryless two-way channel with sensing at the terminals.

A (2nR1 , 2nR2 , n) code consists of

1. two message setsW1 = [1 : 2nR1 ] andW2 = [1 : 2nR2 ];
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2. sequences of encoding functions Ωk,i : Wk ×Z i−1
k → Xk, for i = 1, 2, . . . , n and k = 1, 2;

3. decoding functions gk : Zn →Wk, for k = 1, 2;

4. state estimators φk : X nk ×Znk → Ŝnk , for k = 1, 2, where Ŝ1 and Ŝ2 are given reconstruction alphabets.

For a given code, let the random message Wk, for k = 1, 2, be uniform over the message set Wk and

consider the inputs Xk,i = φk,i(Wk, Z
i−1
k ), for i = 1, . . . , n. Tx k ∈ {1, 2} obtains its state estimate as

Ŝnk := (Ŝk,1, · · · , Ŝk,n) = φk(X
n
k , Z

n
k ) and its message guess as Ŵ3−k = gk(Z

n
k ,Wk).

We shall measure the quality of the state estimates Ŝnk by bounded per-symbol distortion functions dk : Sk×Ŝk 7→

[0,∞), and consider expected average block distortions

∆
(n)
k :=

1

n

n∑

i=1

E
[
dk

(
Sk,i, Ŝk,i

)]
, k = 1, 2. (6.1)

The probability of decoding error is defined as:

P (n)
e := Pr

(
Ŵ1 6= W1 or Ŵ2 6= W2

)
. (6.2)

Definition 12. A rate-distortion tuple (R1,R2,D1,D2) is achievable if there exists a sequence (in n) of

(2nR1 , 2nR2 , n) codes that simultaneously satisfy

lim
n→∞

P (n)
e = 0 (6.3a)

lim
n→∞

∆
(n)
k ≤ Dk, for k = 1, 2. (6.3b)

Definition 13. The capacity-distortion region CD is the closure of the set of all achievable tuples (R1,R2,D1,D2).

Remark 9 (State-Information at the Terminals). Considering a two-way channel where

Zk = (Sk̄, Z
′
k), k ∈ {1, 2}, (6.4)

for some output Z ′k. This models a situation where each terminal obtains strictly causal state-information about the

other terminal’s state. Inner bounds for this setup with strictly causal state-information can immediately be obtained

from our results presented in the next section by plugging in the choice in (6.4). The same remark applies also to
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imperfect strictly-causal state-information in which case the output should be modeled as

Zk = (Tk, Z
′
k), k ∈ {1, 2}, (6.5)

where Z ′k again models the actual channel output and Tk models the strictly causal imperfect state-information

at Terminal k. Alternatively, Tk could even be related to the desired channel state Sk and not only to the other

terminal’s state Sk̄. Plugging the choice (6.5) into our results for an appropriate choice of Tk leads to results for

this related setup with imperfect or generalized state-information at the terminals.

In contrast, our model does not include causal or non-causal state-information. These are interesting extensions

of our work, but left for future research. They would certainly require new tools such as dirty-paper coding [57].

6.2 A Collaborative ISAC Scheme

We first review Han’s scheme for pure data communication over the two-way channel and then include the collab-

orative sensing idea in Han’s scheme. Finally we integrate collaborative sensing and communication through joint

source-channel coding (JSCC).

6.2.1 Han’s Two-Way Coding Scheme
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<latexit sha1_base64="8Q8XRm8Whrg2yd0G0BnlBoDzl7M=">AAACB3icbVDLSgMxFL3js9bXqEtBgkVoQcpMFXThouDGlVSwD2jHIZOmbWjmQZIRytCdG3/FjQtF3PoL7vwbM+0I2nogcO4593JzjxdxJpVlfRkLi0vLK6u5tfz6xubWtrmz25BhLAitk5CHouVhSTkLaF0xxWkrEhT7HqdNb3iZ+s17KiQLg1s1iqjj437AeoxgpSXXPIjdxD4ueqXx3XXHY/1i86dOq5JrFqyyNQGaJ3ZGCpCh5pqfnW5IYp8GinAsZdu2IuUkWChGOB3nO7GkESZD3KdtTQPsU+kkkzvG6EgrXdQLhX6BQhP190SCfSlHvqc7fawGctZLxf+8dqx6507CgihWNCDTRb2YIxWiNBTUZYISxUeaYCKY/isiAywwUTq6vA7Bnj15njQqZfukXLk5LVQvsjhysA+HUAQbzqAKV1CDOhB4gCd4gVfj0Xg23oz3aeuCkc3swR8YH98ct5eI</latexit>

uN
2,(b)

�
W2,(b)

�
<latexit sha1_base64="EZeOhRvsWwyKjloRW8o/KdPGUZs=">AAACB3icbVDLSsNAFL3xWesr6lKQYBFakJJUQRcuCm5cSQX7gDaGyXTaDp1MwsxEKKE7N/6KGxeKuPUX3Pk3TtoI2npg4Nxz7uXOPX7EqFS2/WUsLC4tr6zm1vLrG5tb2+bObkOGscCkjkMWipaPJGGUk7qiipFWJAgKfEaa/vAy9Zv3REga8ls1iogboD6nPYqR0pJnHsReUjku+qXx3XXHp/1i86dOq5JnFuyyPYE1T5yMFCBDzTM/O90QxwHhCjMkZduxI+UmSCiKGRnnO7EkEcJD1CdtTTkKiHSTyR1j60grXasXCv24sibq74kEBVKOAl93BkgN5KyXiv957Vj1zt2E8ihWhOPpol7MLBVaaShWlwqCFRtpgrCg+q8WHiCBsNLR5XUIzuzJ86RRKTsn5crNaaF6kcWRg304hCI4cAZVuIIa1AHDAzzBC7waj8az8Wa8T1sXjGxmD/7A+PgGH+OXig==</latexit>

Figure 6.2: Han’s coding scheme in a given block b. Encoders transform the discrete-memoryless two-way channel
into a channel with memory so as to be able to correlate the inputs of the two terminals. Encoding is then performed
through the independent codewords uN1,(b) and uN2,(b). Decoding of block-(b− 1) messages is performed based on the
inputs/outputs in the two consecutive blocks b− 1 and b.

The capacity of the two-way channel, and thus the optimal coding scheme is still open for general channels.

The best known general scheme was proposed by Han [58]. The idea is to correlate the inputs of the two terminals
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in a stationary way so as to still allow for single-letter rate-expressions. An improved, more general scheme was

proposed by Kramer [59]; it however leads to multi-letter expressions involving directed information terms and

their evaluation thus seems unfeasible for most channels. We therefore base our scheme on Han’s two-way coding

scheme, which is depicted in Figure 6.2 and described in the following.

For convenience of notation, define

PZ1Z2|X1X2
(z1, z2|x1, x2) =

∑

s1∈S1,s2∈S2

PS1S2(s1, s2)PZ1Z2|X1X2S1S2
(z1, z2|x1, x2, s1, s2). (6.6)

Han’s scheme splits the blocklength n into B + 1 blocks of length N = n/(B + 1) each. Accordingly,

throughout, we let XN
1,(b), X

N
2,(b), S

N
1,(b), S

N
2,(b), Z

N
1,(b), Z

N
2,(b) denote the block-b inputs, states and outputs, e.g.,

SN1,(b) := (S1(b−1)N+1, . . . , S1,bN ). We also represent the two messages W1 and W2 in a one-to-one way as the

B-length tuples

Wk = (Wk,(1), . . . ,Wk,(B)), k ∈ {1, 2}, (6.7)

where each Wk,(b) is independent and uniformly distributed over
[
2NR̄k

]
for R̄k , B+1

B Rk.

Construct an independent code Ck,(b) =
{
uNk,(b)(1), . . . , uNk,(b)

(
2nR̄k

)}
for each of the two terminals by picking

entries i.i.d. according to some pmf PUk
. As shown in Figure 6.2, Terminal k encodes Message Wk,(b) by means of

the codeword uNk,(b)(Wk,(b)) and sends the sequence

XN
k,(b) = f⊗Nk

(
uNk,(b)(Wk,(b)), u

N
k,(b−1)(Wk,(b−1)), x

N
k,(b−1), z

N
k,(b−1)

)
(6.8)

over the channel during block b. Notice that by applying the function fk to the block-b codeword symbols as well as

to the symbols of the block-(b − 1) codeword uNk,(b−1)(Wk,(b−1)) and the block-(b − 1) channel inputs and outputs

xNk,(b−1) and zNk,(b−1), the terminals introduce memory to the channel. An interesting point of view is to consider the

transition of the codewords uN1,(b) and uN2,(b) to the channel outputs zN1,(b) and zN2,(b) as a virtual two-way channel with

block-memory over which one can code and decode. Naturally, decoding of each message part Wk,(b) is not based

only on the signals in block (b) because other blocks depend on this message as well. In Han’s scheme, decoding

is over two consecutive blocks. Specifically, Terminal k decodes the block-b message Wk̄,(b) using a joint-typicality

decoder based on the block-b inputs, outputs, and own transmitted codewords xNk,(b), z
N
k,(b) and uNk,(b), as well as on

the block-(b+ 1) inputs and outputs xNk,(b+1) and zNk,(b+1).

Notice that without any special care, the rate-region that is achievable with above scheme has to be described

with a multi-letter expression because the joint pmf of the tuple xN1,(b+1), z
N
1,(b+1), u

N
1,(b), x

N
1,(b), z

N
1,(b) that Terminal 1
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uses to decode codeword uN2,(b)(Wk,(b)) varies with the block b. However, if one chooses a joint pmf PU1U2X1X2Z1Z2

satisfying the stationarity condition

PU1U2X1X2Z1Z2(u1, u2, x1, x2, z1, z2)

=
∑

ũ1,ũ2,x̃1,x̃2,z̃1,z̃2

PZ1Z2|X1X2
(z1, z2|x1, x2)1{x1 = f1(u1, ũ1, x̃1, z̃1)}

1{x2 = f2(u2, ũ2, x̃2, z̃2)} · PU1(u1)PU2(u2)PU1U2X1X2Z1Z2(ũ1, ũ2, x̃1, x̃2, z̃1, z̃2), (6.9)

where PU1 and PU2 are the marginals of PU1U2X1X2Z1Z2 , then the pmf of the tuple of sequences

xN1,(b+1), x2,(b+1), z
N
1,(b+1), z

N
2,(b+1), u

N
1,(b), u

N
2,(b), x

N
1,(b), x

N
2,(b), z

N
1,(b), z

N
2,(b) is independent of the block index b. This

allows to characterize the rate region achieved by the described coding scheme using a single-letter expression. All

rate-pairs (R1, R2) are achievable that satisfy

R1 ≤ I(U1;X2, Z2, Ũ2, X̃2, Z̃2) (6.10a)

R2 ≤ I(U2;X1, Z1, Ũ1, X̃1, Z̃1), (6.10b)

where (U1, U2, X1, X2, Z1, Z2, Ũ1, Ũ2, X̃1, X̃2, Z̃1, Z̃2) are distributed according to the pmf

PU1U2X1X2Z1Z2Ũ1Ũ2X̃1X̃2Z̃1Z̃2
(u1, u2, x1, x2, z1, z2, ũ1, ũ2, x̃1, x̃2, z̃1, z̃2)

= PZ1Z2|X1X2
(z1, z2|x1, x2)1{x1 = f1(u1, ũ1, x̃1, z̃1)}1{x2 = f2(u2, ũ2, x̃2, z̃2)}

·PU1(u1)PU2(u2)PU1U2X1X2Z1Z2(ũ1, ũ2, x̃1, x̃2, z̃1, z̃2). (6.11)

This recovers Han’s theorem:

Theorem 18 (Han’s Achievable Region for Two-Way Channels [58]). Any nonnegative rate-pair (R1, R2) is achiev-

able over the two-way channel if it satisfies Inequalities (6.10) for some choice of pmf PU1U2X1X2Z1Z2 and functions

f1 and f2 satisfying the stationarity condition (6.9).

For certain cases above theorem can be simplified, and for certain channels the simplified region even coincides

with capacity. The simplification is obtained by choosing the two functions f1 and f2 to simply produce the code-

words uN1,(b−1) and uN2,(b−1) from the previous block1 and ignore the other arguments. In this case, the set of rates

that can be achieved coincides with the following inner bound that was first proposed by Shannon [60].
1The delay of a block introduced in this scheme is not crucial, it simply comes from the fact that Han’s scheme decodes the block-(b− 1)

codewords based on the block-b outputs. In this special case without adaptation, Han’s scheme could be simplified by transmitting and
decoding the codewords uN

1,(b−1) and uN
2,(b−1) directly in block b− 1 without further delay.
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Theorem 19 (Shannon’s Inner Bound, [60]). A pair of nonnegative pairs (R1, R2) is achievable if it satisfies

R1 ≤ I(X1;Z2|X2) (6.12a)

R2 ≤ I(X2;Z1|X2), (6.12b)

for some input pmfs PX1 and PX2 and where (X1, X2, Z1, Z2) ∼ PX1PX2PZ1Z2|X1X2
.

6.2.2 Collaborative Sensing and Communication based on Han’s Two-Way Coding Scheme

We extend Han’s coding scheme to include also collaborative sensing, that means each terminal compresses its block-

b inputs and outputs so as to capture information about the other terminal’s state and sends this state-information

in the next-following block. In this first collaborative sensing and communication scheme that we present here, the

sensing (compression) does not affect the communication (except possibly for the choice of the pmfPU1U2X1X2Z1Z2).

In fact, we again use Han’s encodings and decodings as described in the previous subsection, except that the block-b

f⌦N
1

�
uN

1,(b), u
N
1,(b�1), x

N
1,(b�1), z

N
1,(b�1)

�
<latexit sha1_base64="t+UBMl/N3Dfs1HV0kZbc7+TqTAA="></latexit>

PZ1Z2|X1X2S1S2
<latexit sha1_base64="4FD+8zuWHlgSWPT5P5fN4BRQhw0=">AAACAHicbVA9T8MwEHXKVylfAQYGlogKialKAhKMFSyMRaVt1DayHNdprTpOZDtIVcjCX2FhACFWfgYb/wa3zQAtTzrp6b073d0LEkalsu1vo7Syura+Ud6sbG3v7O6Z+wdtGacCkxaOWSy8AEnCKCctRRUjXiIIigJGOsH4Zup3HoiQNOb3apIQP0JDTkOKkdISNI8aMOtCpwvdRw86HnSb0GlCN4dm1a7ZM1jLxClIFRRoQPOrP4hxGhGuMENS9hw7UX6GhKKYkbzSTyVJEB6jIelpylFEpJ/NHsitU60MrDAWuriyZurviQxFUk6iQHdGSI3kojcV//N6qQqv/IzyJFWE4/miMGWWiq1pGtaACoIVm2iCsKD6VguPkEBY6cwqOgRn8eVl0nZrznnNvbuo1q+LOMrgGJyAM+CAS1AHt6ABWgCDHDyDV/BmPBkvxrvxMW8tGcXMIfgD4/MHo/+VJQ==</latexit>

PS1S2
<latexit sha1_base64="S92HQafP+2oPxwjRNKMGTkkNkT0=">AAAB8XicbVA9SwNBEJ2NXzF+RS1tFoNgFe6ioIVFwMYyEvOByXHsbfaSJXt7x+6eEI78CxsLRWz9N3b+GzfJFZr4YODx3gwz84JEcG0c5xsV1tY3NreK26Wd3b39g/LhUVvHqaKsRWMRq25ANBNcspbhRrBuohiJAsE6wfh25neemNI8lg9mkjAvIkPJQ06JsdJjw8+avtv0a1O/XHGqzhx4lbg5qUCOhl/+6g9imkZMGiqI1j3XSYyXEWU4FWxa6qeaJYSOyZD1LJUkYtrL5hdP8ZlVBjiMlS1p8Fz9PZGRSOtJFNjOiJiRXvZm4n9eLzXhtZdxmaSGSbpYFKYCmxjP3scDrhg1YmIJoYrbWzEdEUWosSGVbAju8surpF2ruhfV2v1lpX6Tx1GEEziFc3DhCupwBw1oAQUJz/AKb0ijF/SOPhatBZTPHMMfoM8fvtaQSg==</latexit>

xN
1,(b)

<latexit sha1_base64="ZsM19vuFw4cB+72OJt/1M723f9s=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNmtgh48FLx4kgr2A7a1ZNNsG5pNlmRWLEt/hhcPinj113jz35i2e9DWBwOP92aYmRfEghtw3W9naXlldW09t5Hf3Nre2S3s7TeMSjRldaqE0q2AGCa4ZHXgIFgr1oxEgWDNYHg98ZuPTBuu5D2MYtaJSF/ykFMCVvKfuql3WgpOxg+33ULRLbtT4EXiZaSIMtS6ha92T9EkYhKoIMb4nhtDJyUaOBVsnG8nhsWEDkmf+ZZKEjHTSacnj/GxVXo4VNqWBDxVf0+kJDJmFAW2MyIwMPPeRPzP8xMILzspl3ECTNLZojARGBSe/I97XDMKYmQJoZrbWzEdEE0o2JTyNgRv/uVF0qiUvbNy5e68WL3K4sihQ3SESshDF6iKblAN1RFFCj2jV/TmgPPivDsfs9YlJ5s5QH/gfP4AEpGQcQ==</latexit>

xN
2,(b)

<latexit sha1_base64="CB5gQJ5Jy2yHsCeZU6rgG1yIcl4=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJUkLJbBT14KHjxJBXsB2xryabZNjSbLElWLEt/hhcPinj113jz35i2e9DWBwOP92aYmRfEnGnjut/O0vLK6tp6biO/ubW9s1vY229omShC60RyqVoB1pQzQeuGGU5bsaI4CjhtBsPrid98pEozKe7NKKadCPcFCxnBxkr+UzetnJaCk/HDbbdQdMvuFGiReBkpQoZat/DV7kmSRFQYwrHWvufGppNiZRjhdJxvJ5rGmAxxn/qWChxR3UmnJ4/RsVV6KJTKljBoqv6eSHGk9SgKbGeEzUDPexPxP89PTHjZSZmIE0MFmS0KE46MRJP/UY8pSgwfWYKJYvZWRAZYYWJsSnkbgjf/8iJpVMreWblyd16sXmVx5OAQjqAEHlxAFW6gBnUgIOEZXuHNMc6L8+58zFqXnGzmAP7A+fwBFByQcg==</latexit>

zN
1,(b)

<latexit sha1_base64="AHGEJod7IFztUs9kiw4JXfadyRk=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNmtgh48FLx4kgr2A7a1ZNNsG5pNlmRWqEt/hhcPinj113jz35i2e9DWBwOP92aYmRfEghtw3W9naXlldW09t5Hf3Nre2S3s7TeMSjRldaqE0q2AGCa4ZHXgIFgr1oxEgWDNYHg98ZuPTBuu5D2MYtaJSF/ykFMCVvKfuql3WgpOxg+33ULRLbtT4EXiZaSIMtS6ha92T9EkYhKoIMb4nhtDJyUaOBVsnG8nhsWEDkmf+ZZKEjHTSacnj/GxVXo4VNqWBDxVf0+kJDJmFAW2MyIwMPPeRPzP8xMILzspl3ECTNLZojARGBSe/I97XDMKYmQJoZrbWzEdEE0o2JTyNgRv/uVF0qiUvbNy5e68WL3K4sihQ3SESshDF6iKblAN1RFFCj2jV/TmgPPivDsfs9YlJ5s5QH/gfP4AFa2Qcw==</latexit>

zN
2,(b)

<latexit sha1_base64="+Lke5EeT5+HRvyXe+/PT6Asz7yk=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJUkLJbBT14KHjxJBXsB2xryabZNjSbLElWqEt/hhcPinj113jz35i2e9DWBwOP92aYmRfEnGnjut/O0vLK6tp6biO/ubW9s1vY229omShC60RyqVoB1pQzQeuGGU5bsaI4CjhtBsPrid98pEozKe7NKKadCPcFCxnBxkr+UzetnJaCk/HDbbdQdMvuFGiReBkpQoZat/DV7kmSRFQYwrHWvufGppNiZRjhdJxvJ5rGmAxxn/qWChxR3UmnJ4/RsVV6KJTKljBoqv6eSHGk9SgKbGeEzUDPexPxP89PTHjZSZmIE0MFmS0KE46MRJP/UY8pSgwfWYKJYvZWRAZYYWJsSnkbgjf/8iJpVMreWblyd16sXmVx5OAQjqAEHlxAFW6gBnUgIOEZXuHNMc6L8+58zFqXnGzmAP7A+fwBFziQdA==</latexit>

uN
1,(b)

�
W1,(b), J

⇤
1,(b�1)

�
<latexit sha1_base64="+CpHVRtFLJ1OJYJIdHhoBhaJER4=">AAACFXicbZDLSgMxFIYz9VbrbdSlm2ARWqllpgq6cFFwIy6kgr1AOw6ZNG1DM5khyQhl6Eu48VXcuFDEreDOtzHTjqCtBwJf/v8ckvN7IaNSWdaXkVlYXFpeya7m1tY3NrfM7Z2GDCKBSR0HLBAtD0nCKCd1RRUjrVAQ5HuMNL3hReI374mQNOC3ahQSx0d9TnsUI6Ul1yxFbmyXCl5xfHfd8Wi/0Py5l66mdGRr7zDxiq6Zt8rWpOA82CnkQVo11/zsdAMc+YQrzJCUbdsKlRMjoShmZJzrRJKECA9Rn7Q1cuQT6cSTrcbwQCtd2AuEPlzBifp7Ika+lCPf050+UgM56yXif147Ur0zJ6Y8jBThePpQL2JQBTCJCHapIFixkQaEBdV/hXiABMJKB5nTIdizK89Do1K2j8uVm5N89TyNIwv2wD4oABucgiq4BDVQBxg8gCfwAl6NR+PZeDPep60ZI53ZBX/K+PgGdeqb1w==</latexit>

Enc 1
<latexit sha1_base64="buVY+/jwA+5ZWg8WD4lGs7Ga/4c=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96MFDQQSPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XbW1jc2t7ZLO+Xdvf2Dw8rRcUsnmWLos0QkqhNSjYJL9A03AjupQhqHAtvh+Hbmt59QaZ7IRzNJMYjpUPKIM2qs5N9JRrx+perW3DnIKvEKUoUCzX7lqzdIWBajNExQrbuem5ogp8pwJnBa7mUaU8rGdIhdSyWNUQf5/NgpObfKgESJsiUNmau/J3Iaaz2JQ9sZUzPSy95M/M/rZia6DnIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadsQ/CWX14lrXrNu6zVH+rVxk0RRwlO4QwuwIMraMA9NMEHBhye4RXeHOm8OO/Ox6J1zSlmTuAPnM8f5lOODw==</latexit>

W1,(b)
<latexit sha1_base64="Lfbz8BxpeE4CU8XV0n9tqeJIYSw=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpTdVtCDh4IXjxXsh7RLyabZNjTJLklWKEt/hRcPinj153jz35i2e9DWBwOP92aYmRfEnGnjut9Obm19Y3Mrv13Y2d3bPygeHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsa3M7/9RJVmkXwwk5j6Ag8lCxnBxkqP7X7qXZSD82m/WHIr7hxolXgZKUGGRr/41RtEJBFUGsKx1l3PjY2fYmUY4XRa6CWaxpiM8ZB2LZVYUO2n84On6MwqAxRGypY0aK7+nkix0HoiAtspsBnpZW8m/ud1ExNe+ymTcWKoJItFYcKRidDsezRgihLDJ5Zgopi9FZERVpgYm1HBhuAtv7xKWtWKV6tU7y9L9ZssjjycwCmUwYMrqMMdNKAJBAQ8wyu8Ocp5cd6dj0VrzslmjuEPnM8firGPkA==</latexit>

J⇤
1,(b)

<latexit sha1_base64="2x6CT0vKULExjdC0p8TjczydQKI=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoMQRcJuFPTgIeBFPEUwD9isYXYymwyZnVlmeoWw5DO8eFDEq1/jzb9x8jhotKChqOqmuytMBDfgul9Obml5ZXUtv17Y2Nza3inu7jWNSjVlDaqE0u2QGCa4ZA3gIFg70YzEoWCtcHg98VuPTBuu5D2MEhbEpC95xCkBK/m33cw7LYfH44eTbrHkVtwp8F/izUkJzVHvFj87PUXTmEmgghjje24CQUY0cCrYuNBJDUsIHZI+8y2VJGYmyKYnj/GRVXo4UtqWBDxVf05kJDZmFIe2MyYwMIveRPzP81OILoOMyyQFJulsUZQKDApP/sc9rhkFMbKEUM3trZgOiCYUbEoFG4K3+PJf0qxWvLNK9e68VLuax5FHB+gQlZGHLlAN3aA6aiCKFHpCL+jVAefZeXPeZ605Zz6zj37B+fgGlG6QHw==</latexit>

D<latexit sha1_base64="0Z9RTzpD0Btya252f8AuU4HPn4E=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEnUwhISQRK4kL1lDlb29i67eybkwi+wsdAYW3+Snf/GBa5Q8CWTvLw3k5l5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAjGNzP/4QmV5rG8N5ME/YgOJQ85o8ZKzdt+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7VrVu6jWmrVK/TqPowgncArn4MEl1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/mBeMyg==</latexit>

J⇤
1,(b�1)

<latexit sha1_base64="0JCld0HW9Y43kNNg1RY0PfwfOpM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahipakCnrwUPAinirYD2hj2Ww37dLNJu5uCiX0d3jxoIhXf4w3/43bNgdtfTDweG+GmXlexJnStv1tZZaWV1bXsuu5jc2t7Z387l5dhbEktEZCHsqmhxXlTNCaZprTZiQpDjxOG97gZuI3hlQqFooHPYqoG+CeYD4jWBvJveskzmnRO3OOx48nnXzBLtlToEXipKQAKaqd/Fe7G5I4oEITjpVqOXak3QRLzQin41w7VjTCZIB7tGWowAFVbjI9eoyOjNJFfihNCY2m6u+JBAdKjQLPdAZY99W8NxH/81qx9q/chIko1lSQ2SI/5kiHaJIA6jJJieYjQzCRzNyKSB9LTLTJKWdCcOZfXiT1csk5L5XvLwqV6zSOLBzAIRTBgUuowC1UoQYEnuAZXuHNGlov1rv1MWvNWOnMPvyB9fkDcqKQkQ==</latexit>
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<latexit sha1_base64="hOdGJ79gkEzEsTkbxDEVQEaE1qI=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahgpakCnrwUPDisYL9gDaEzXbTLt1swu5EKTE/xYsHRbz6S7z5b9y2OWjrg4HHezPMzPNjzhTY9rdRWFldW98obpa2tnd298zyfltFiSS0RSIeya6PFeVM0BYw4LQbS4pDn9OOP76Z+p0HKhWLxD1MYuqGeChYwAgGLXlmuT/CkHYyL62fVv0z5yTzzIpds2ewlomTkwrK0fTMr/4gIklIBRCOleo5dgxuiiUwwmlW6ieKxpiM8ZD2NBU4pMpNZ6dn1rFWBlYQSV0CrJn6eyLFoVKT0NedIYaRWvSm4n9eL4Hgyk2ZiBOggswXBQm3ILKmOVgDJikBPtEEE8n0rRYZYYkJ6LRKOgRn8eVl0q7XnPNa/e6i0rjO4yiiQ3SEqshBl6iBblETtRBBj+gZvaI348l4Md6Nj3lrwchnDtAfGJ8/xb2TAQ==</latexit>
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<latexit sha1_base64="4iPlJrHiaATORHopomvbVpain+I=">AAAB9HicbVA9SwNBEN2LXzF+RS1tFoNgFe5ioYVFQAvLCOYDkiPs7c0lS/Z2z929SDjyO2wsFLH1x9j5b9wkV2jig4HHezPMzAsSzrRx3W+nsLa+sblV3C7t7O7tH5QPj1papopCk0ouVScgGjgT0DTMcOgkCkgccGgHo5uZ3x6D0kyKBzNJwI/JQLCIUWKs5N8ClSETA/zEzLBfrrhVdw68SrycVFCORr/81QslTWMQhnKidddzE+NnRBlGOUxLvVRDQuiIDKBrqSAxaD+bHz3FZ1YJcSSVLWHwXP09kZFY60kc2M6YmKFe9mbif143NdGVnzGRpAYEXSyKUo6NxLMEcMgUUMMnlhCqmL0V0yFRhBqbU8mG4C2/vEpatap3Ua3d1yr16zyOIjpBp+gceegS1dEdaqAmougRPaNX9OaMnRfn3flYtBacfOYY/YHz+QORZZHx</latexit>
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WZ-Compression
<latexit sha1_base64="vds6QGyJW0lsvAIN57DYVUGZiaY=">AAAB9XicbVC7SgNBFL3rM8ZX1NJmMQg2ht1YaGERSGMZwTwwWcPsZDYZMo9lZlYJS/7DxkIRW//Fzr9xNtlCEw8MHM45l3vnhDGj2njet7Oyura+sVnYKm7v7O7tlw4OW1omCpMmlkyqTog0YVSQpqGGkU6sCOIhI+1wXM/89iNRmkpxZyYxCTgaChpRjIyVHtr353XJ7YTOEv1S2at4M7jLxM9JGXI0+qWv3kDihBNhMENad30vNkGKlKGYkWmxl2gSIzxGQ9K1VCBOdJDOrp66p1YZuJFU9gnjztTfEyniWk94aJMcmZFe9DLxP6+bmOgqSKmIE0MEni+KEuYa6WYVuAOqCDZsYgnCitpbXTxCCmFjiyraEvzFLy+TVrXiX1Sqt9Vy7TqvowDHcAJn4MMl1OAGGtAEDAqe4RXenCfnxXl3PubRFSefOYI/cD5/AG5ZknI=</latexit>
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<latexit sha1_base64="kLWtXsEwcr+0BtqaKxD+hKRyt84=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahgpYkCrpwUXAjrirYB7QhTKbTdujkwcxEKTGf4saFIm79Enf+jdM2C60euHA4517uvcePOZPKsr6MwtLyyupacb20sbm1vWOWd1sySgShTRLxSHR8LClnIW0qpjjtxILiwOe07Y+vpn77ngrJovBOTWLqBngYsgEjWGnJM8u9EVbpTealznHVP3GOMs+sWDVrBvSX2DmpQI6GZ372+hFJAhoqwrGUXduKlZtioRjhNCv1EkljTMZ4SLuahjig0k1np2foUCt9NIiErlChmfpzIsWBlJPA150BViO56E3F/7xuogYXbsrCOFE0JPNFg4QjFaFpDqjPBCWKTzTBRDB9KyIjLDBROq2SDsFefPkvaTk1+7Tm3J5V6pd5HEXYhwOogg3nUIdraEATCDzAE7zAq/FoPBtvxvu8tWDkM3vwC8bHN7MAkvU=</latexit>

Figure 6.3: A first collaborative-sensing version of Han’s coding scheme. The figure illustrates the encoding and
decoding operations in a given block b at Terminal 1; Terminal 2 behaves analogously. To facilitate sensing at
Terminal 2, Terminal 1 compresses its block-b channel inputs and outputs, together with its inputs, outputs, and
codeword from the previous block (b − 1) (which are all resent in block b) using Wyner-Ziv compression [3] to
account for the side-information at Terminal 2.

codeword not only encodes message Wk,(b) but also a compression index J∗k,(b−1) that carries information about the

block-(b−1) state Sk̄,(b−1). This compression index is then decoded at Terminal k̄ after block (b+1) simultaneously

with message Wk,(b). See Figure 6.3.

The analysis of the communication-part of our ISAC scheme is similar as in Han’s scheme. Since the compres-

sion indices take parts of the place reserved for ordinary messages in Han’s scheme, their ratesRWZ,1 andRWZ,2 have
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to be subtracted from Han’s communication rates. We thus have the following constraints for reliable communication

and reliable decoding of the compression indices:

R1 +RWZ,1 ≤ I(U1;X2, Z2, Ũ2, X̃2, Z̃2) (6.13a)

R2 +RWZ,2 ≤ I(U2;X1, Z1, Ũ1, X̃1, Z̃1). (6.13b)

It remains to explain the compression and state estimation in more details. In our scheme,

the index J∗k,(b−1) is obtained by means of a Wyner-Ziv compression [3] that lossily com-

presses the tuple (xNk,(b−1), z
N
k,(b−1), u

N
k,(b−2), x

N
k,(b−2), z

N
k,(b−2)) for a decoder that has side-information

(xN
k̄,(b−1)

, zN
k̄,(b−1)

, uN
k̄,(b−2)

, xN
k̄,(b−2)

, zN
k̄,(b−2)

). In order for the decoder to be able to correctly reconstruct the

compression codeword, the Wyner-Ziv codes need to be of rates at least [3]

RWZ,k > I(Vk;Xk, Zk, Ũk, X̃k, Z̃k|Xk̄, Zk̄, Ũk̄, X̃k̄, Z̃k̄), k ∈ {1, 2}, (6.14)

where the tuple (U1, U2, X1, X2, Z1, Z2, Ũ1, Ũ2, X̃1, X̃2, Z̃1, Z̃2) refers to the auxiliary random variables chosen by

Han’s scheme of joint pmf as in (6.11) and V1 and V2 can be any random variables satisfying the Markov chains:

Vk − (Xk, Zk, Ũk, X̃k, Z̃k)→ (Xk̄, Zk̄, Ũk̄, X̃k̄, Z̃k̄, Sk, Sk̄). (6.15)

In Wyner-Ziv coding, the encoder produces a codeword that is then reconstructed also at the Rx. We shall denote

these codewords by vNk,(b−1)(J
∗
k,(b−1), `k,(b−1)), for k ∈ {1, 2}, where `k,(b−1) denotes a binning-index that does

not have to be conveyed to the Terminal k̄ because this latter can recover it from its side-information. Thus, after

block (b + 1) and after decoding index J∗k,(b−1), with high probability Terminal k̄ can reconstruct the codeword

vNk,(b−1)(J
∗
k,(b−1), `k,(b−1)) chosen at Terminal k.

Terminal k can wait arbitrarily long to produce an estimate of the state-sequence SNk . We propose that it waits

after the block-(b + 1) decoding to reconstruct the block-b state SNk,(b) by applying an optimal symbol-by-symbol

estimator to the related sequences of inputs, outputs, and channel codewords of blocks b− 1 and b, as well as on the

compression codeword vN
k̄,(b)

:

ŜNk,(b) = φ̃∗⊗N2,k

(
vNk̄,(b), x

N
k,(b), z

N
k,(b), ûk̄,(b), u

N
k,(b−1), x

N
k,(b−1), z

N
k,(b−1), ûk̄,(b−1)

)
, (6.16)
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where

φ̃∗2,k(vk̄, xk, zk, uk̄, ũk, x̃k, z̃k, ũk̄) := arg min
s′k∈Ŝk

∑

sk∈Sk
PSk|XkZkUk̄

(sk|xk, zk, uk̄) dk(sk, s′k). (6.17)

By (6.13) and (6.14) and standard typicality arguments, one obtains the following theorem.

Theorem 20 (Inner Bound via Separate Source-Channel Coding). Any nonnegative rate-distortion quadruple

(R1, R2, D1, D2) is achievable if it satisfies the following two rate-constraints

R1 ≤ I(U1;X2, Z2, Ũ2, X̃2, Z̃2)− I(V1;X1, Z1, Ũ1, X̃1, Z̃1|X2, Z2, Ũ2, X̃2, Z̃2) (6.18a)

R2 ≤ I(U2;X1, Z1, Ũ1, X̃1, Z̃1)− I(V2;X2, Z2, Ũ2, X̃2, Z̃2|X1, Z1, Ũ1, X̃1, Z̃1), (6.18b)

and the two distortion constraints

E
[
d1

(
S1, φ̃

∗
2,1(V2, X1, Z1, U2, Ũ1, X̃1, Z̃1, Ũ2)

)]
≤ D1 (6.18c)

E
[
d2

(
S2, φ̃

∗
2,2(V1, X2, Z2, U1, Ũ2, X̃2, Z̃2, Ũ2)

)]
≤ D2 (6.18d)

for some choice of pmf PU1U2X1X2Z1Z2 and functions f1 and f2 satisfying the stationarity condition (6.9) and V1, V2

satisfying the Markov chains (6.15).

Similarly to Shannon’s inner bound, we can obtain the following corollary by setting Xk = Ũk.

Corollary 9 (Inner Bound via Non-Adaptive Coding). Any nonnegative rate-distortion quadruple (R1, R2, D1, D2)

is achievable if it satisfies the following two rate-constraints

R1 ≤ I(X1;X2, Z2)− I(V1;X1, Z1|X2, Z2) (6.19a)

R2 ≤ I(X2;X1, Z1)− I(V2;X2, Z2|X1, Z1), (6.19b)

and the two distortion constraints

E
[
d1

(
S1, φ̃

∗
2,1(V2, X1, X2, Z1)

)]
≤ D1 (6.19c)

E
[
d2

(
S2, φ̃

∗
2,2(V1, X1, X2, Z2)

)]
≤ D2 (6.19d)

for some choice of pmfs PX1 , PX2 , PV1|X1,Z1
, and PV2|X2,Z2

.
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As the following example shows, above corollary achieves the fundamental rate-distortion tradeoff for some

channels.

Example 3. Consider the following state-dependent two-way channel

Z1 = X1 ⊕X2 ⊕ S2 and Z2 = X1 ⊕X2 ⊕ S1, (6.20a)

where inputs, outputs, and states are binary and S1 and S2 are independent Bernoulli-p1 and p2 random variables,

for p1, p2 ∈ [0, 1/2]. Notice that Terminal 1’s outputs depend on the state desired at Terminal 2 and Terminal 2’s

outputs on the state desired at Terminal 1, which calls for collaborative sensing.

Whenever Dk̄ < pk̄, we choose

Vk = Zk ⊕Xk ⊕Bk = Xk̄ ⊕ Sk̄ ⊕Bk (6.21)

where Bk is an independent Bernoulli-Dk random variable. If Dk ≥ pk, choose Vk a constant. Inputs X1 and X2

are chosen independent Bernoulli-1/2, i.e., capacity-achieving on channels with Bernoulli-noses. When Dk̄ < pk̄,

the optimal symbol-by-symbol state-estimator is

φ̃∗2,k̄(vk, x1, x2, zk̄) = vk ⊕ xk̄ (6.22)

and otherwise it is the constant estimator φ̃∗
2,k̄

(vk, x1, x2, zk̄) = 0.

For the described choice of random variables, Corollary 9 evaluates to the set of rate-distortion tuples

(R1, R2, D1, D2) satisfying

Rk ≤ 1−Hb(pk)−max{0, Hb(pk̄)−Hb(Dk̄)}, k ∈ {1, 2}, (6.23)

and achieves the fundamental rate-distortion region. The region in (6.23) is concave (because the rate-distortion

function max{0, Hb(pk̄)−Hb(Dk̄)} is convex), and thus improves over classic time- and resource-sharing schemes.

It also improves over a similar ISAC scheme without collaborative sensing where the compression codewords V1

and V2 are set to constants. In this latter case, only rate-distortion tuples are possible that satisfy Dk ≥ pk, for

k ∈ {1, 2}.
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6.2.3 Collaborative Sensing and JSCC Scheme

In this scheme, we fully integrate the compression into the communication scheme, in a similar way that hybrid

coding [25] uses a single codeword for compression and channel coding in source-channel coding applications.
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<latexit sha1_base64="Lfbz8BxpeE4CU8XV0n9tqeJIYSw=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpTdVtCDh4IXjxXsh7RLyabZNjTJLklWKEt/hRcPinj153jz35i2e9DWBwOP92aYmRfEnGnjut9Obm19Y3Mrv13Y2d3bPygeHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsa3M7/9RJVmkXwwk5j6Ag8lCxnBxkqP7X7qXZSD82m/WHIr7hxolXgZKUGGRr/41RtEJBFUGsKx1l3PjY2fYmUY4XRa6CWaxpiM8ZB2LZVYUO2n84On6MwqAxRGypY0aK7+nkix0HoiAtspsBnpZW8m/ud1ExNe+ymTcWKoJItFYcKRidDsezRgihLDJ5Zgopi9FZERVpgYm1HBhuAtv7xKWtWKV6tU7y9L9ZssjjycwCmUwYMrqMMdNKAJBAQ8wyu8Ocp5cd6dj0VrzslmjuEPnM8firGPkA==</latexit>

D<latexit sha1_base64="0Z9RTzpD0Btya252f8AuU4HPn4E=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEnUwhISQRK4kL1lDlb29i67eybkwi+wsdAYW3+Snf/GBa5Q8CWTvLw3k5l5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAjGNzP/4QmV5rG8N5ME/YgOJQ85o8ZKzdt+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7VrVu6jWmrVK/TqPowgncArn4MEl1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/mBeMyg==</latexit>
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<latexit sha1_base64="rBvNqyrrwLuR4/D9K9W1/D+vl5k=">AAACA3icbVC7SgNBFL0bXzG+Vu20GQxCBAm7UdDCImBjJRHNA7LrMjuZJENmH8zMCmEJ2PgrNhaK2PoTdv6Nk2QLTTwwcO4593LnHj/mTCrL+jZyC4tLyyv51cLa+sbmlrm905BRIgitk4hHouVjSTkLaV0xxWkrFhQHPqdNf3A59psPVEgWhXdqGFM3wL2QdRnBSkueuXfrpfZxyT8a3V87yEG6rGSlZxatsjUBmid2RoqQoeaZX04nIklAQ0U4lrJtW7FyUywUI5yOCk4iaYzJAPdoW9MQB1S66eSGETrUSgd1I6FfqNBE/T2R4kDKYeDrzgCrvpz1xuJ/XjtR3XM3ZWGcKBqS6aJuwpGK0DgQ1GGCEsWHmmAimP4rIn0sMFE6toIOwZ49eZ40KmX7pFy5OS1WL7I48rAPB1ACG86gCldQgzoQeIRneIU348l4Md6Nj2lrzshmduEPjM8fbjqVcg==</latexit>

Ŵ2,(b�1)
<latexit sha1_base64="hOdGJ79gkEzEsTkbxDEVQEaE1qI=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahgpakCnrwUPDisYL9gDaEzXbTLt1swu5EKTE/xYsHRbz6S7z5b9y2OWjrg4HHezPMzPNjzhTY9rdRWFldW98obpa2tnd298zyfltFiSS0RSIeya6PFeVM0BYw4LQbS4pDn9OOP76Z+p0HKhWLxD1MYuqGeChYwAgGLXlmuT/CkHYyL62fVv0z5yTzzIpds2ewlomTkwrK0fTMr/4gIklIBRCOleo5dgxuiiUwwmlW6ieKxpiM8ZD2NBU4pMpNZ6dn1rFWBlYQSV0CrJn6eyLFoVKT0NedIYaRWvSm4n9eL4Hgyk2ZiBOggswXBQm3ILKmOVgDJikBPtEEE8n0rRYZYYkJ6LRKOgRn8eVl0q7XnPNa/e6i0rjO4yiiQ3SEqshBl6iBblETtRBBj+gZvaI348l4Md6Nj3lrwchnDtAfGJ8/xb2TAQ==</latexit>
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<latexit sha1_base64="4iPlJrHiaATORHopomvbVpain+I=">AAAB9HicbVA9SwNBEN2LXzF+RS1tFoNgFe5ioYVFQAvLCOYDkiPs7c0lS/Z2z929SDjyO2wsFLH1x9j5b9wkV2jig4HHezPMzAsSzrRx3W+nsLa+sblV3C7t7O7tH5QPj1papopCk0ouVScgGjgT0DTMcOgkCkgccGgHo5uZ3x6D0kyKBzNJwI/JQLCIUWKs5N8ClSETA/zEzLBfrrhVdw68SrycVFCORr/81QslTWMQhnKidddzE+NnRBlGOUxLvVRDQuiIDKBrqSAxaD+bHz3FZ1YJcSSVLWHwXP09kZFY60kc2M6YmKFe9mbif143NdGVnzGRpAYEXSyKUo6NxLMEcMgUUMMnlhCqmL0V0yFRhBqbU8mG4C2/vEpatap3Ua3d1yr16zyOIjpBp+gceegS1dEdaqAmougRPaNX9OaMnRfn3flYtBacfOYY/YHz+QORZZHx</latexit>

Hybrid Coding with
<latexit sha1_base64="UaKj/SMHuw32p8OSaRGB5Fs13NA=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0XwVJJ60IOHQi89VrAf0Iay2WzbpZvdsLtRQqh/xYsHRbz6Q7z5b0zaHLT1wcDjvRlm5vkRZ9o4zre1sbm1vbNb2ivvHxweHdsnp10tY0Voh0guVd/HmnImaMcww2k/UhSHPqc9f9bM/d4DVZpJcW+SiHohngg2ZgSbTBrZlVbiKxagpgyYmKBHZqblkV11as4CaJ24BalCgfbI/hoGksQhFYZwrPXAdSLjpVgZRjidl4exphEmMzyhg4wKHFLtpYvj5+giUwI0liorYdBC/T2R4lDrJPSzzhCbqV71cvE/bxCb8Y2XMhHFhgqyXDSOOTIS5UmggClKDE8ygoli2a2ITLHCxGR55SG4qy+vk2695l7V6nf1auO2iKMEZ3AOl+DCNTSgBW3oAIEEnuEV3qwn68V6tz6WrRtWMVOBP7A+fwC1BpQh</latexit>
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<latexit sha1_base64="cLzwBsG3O7vnz+2Qz7LE/JcZs9c=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpakCnrwUPDiSSrYD2hj2Ww37dLNJu5uCjX0d3jxoIhXf4w3/43bNgdtfTDweG+GmXlexJnStv1tZZaWV1bXsuu5jc2t7Z387l5dhbEktEZCHsqmhxXlTNCaZprTZiQpDjxOG97geuI3hlQqFop7PYqoG+CeYD4jWBvJfeokzknRO3WOxw+3nXzBLtlToEXipKQAKaqd/Fe7G5I4oEITjpVqOXak3QRLzQin41w7VjTCZIB7tGWowAFVbjI9eoyOjNJFfihNCY2m6u+JBAdKjQLPdAZY99W8NxH/81qx9i/dhIko1lSQ2SI/5kiHaJIA6jJJieYjQzCRzNyKSB9LTLTJKWdCcOZfXiT1csk5K5XvzguVqzSOLBzAIRTBgQuowA1UoQYEHuEZXuHNGlov1rv1MWvNWOnMPvyB9fkD9DKQ5Q==</latexit>
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<latexit sha1_base64="PrTCbZEByTExS1PEPIlj0d8kNas=">AAACP3icbVC7SgNBFJ2NrxhfUUubwSBEiGE3ClpYBGysJIJ5QHYNs5PZZMjs7DIzK0mW/JmNv2Bna2OhiK2dk2SLPDwwcO4593LnHjdkVCrTfDNSK6tr6xvpzczW9s7uXnb/oCaDSGBSxQELRMNFkjDKSVVRxUgjFAT5LiN1t3cz9utPREga8Ac1CInjow6nHsVIaamVrfVbsVXIu6ejx7sCHM4U0ZSfWVPLtqEddhFXgR+zHvJG/Xl/OFe2sjmzaE4Al4mVkBxIUGllX+12gCOfcIUZkrJpmaFyYiQUxYyMMnYkSYhwD3VIU1OOfCKdeHL/CJ5opQ29QOjHFZyosxMx8qUc+K7u9JHqykVvLP7nNSPlXTkx5WGkCMfTRV7EoArgOEzYpoJgxQaaICyo/ivEXSQQVjryjA7BWjx5mdRKReu8WLq/yJWvkzjS4AgcgzywwCUog1tQAVWAwTN4B5/gy3gxPoxv42famjKSmUMwB+P3DyuNqtQ=</latexit>

Ĵ2,(b�2)
<latexit sha1_base64="kLWtXsEwcr+0BtqaKxD+hKRyt84=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahgpYkCrpwUXAjrirYB7QhTKbTdujkwcxEKTGf4saFIm79Enf+jdM2C60euHA4517uvcePOZPKsr6MwtLyyupacb20sbm1vWOWd1sySgShTRLxSHR8LClnIW0qpjjtxILiwOe07Y+vpn77ngrJovBOTWLqBngYsgEjWGnJM8u9EVbpTealznHVP3GOMs+sWDVrBvSX2DmpQI6GZ372+hFJAhoqwrGUXduKlZtioRjhNCv1EkljTMZ4SLuahjig0k1np2foUCt9NIiErlChmfpzIsWBlJPA150BViO56E3F/7xuogYXbsrCOFE0JPNFg4QjFaFpDqjPBCWKTzTBRDB9KyIjLDBROq2SDsFefPkvaTk1+7Tm3J5V6pd5HEXYhwOogg3nUIdraEATCDzAE7zAq/FoPBtvxvu8tWDkM3vwC8bHN7MAkvU=</latexit>

Figure 6.4: A ISAC scheme integrating collaborative sensing for D2D into Han’s two-way coding scheme by means
of hybrid coding. A single codeword is used both for compression and for channel coding.

Encoding and decoding in block b of the new scheme are depicted in Figure 6.4. The main difference compared

to the scheme in the previous subsection is that here the block-b codeword uN1,(b) is correlated with the inputs and

outputs in the previous block (b−1).2 This correlation introduces additional dependence between blocks, which was

previously missing because of the independence of the compression codewords and the codewords used for channel

coding in the next block. To still obtain a stationary distribution on the codewords and channel inputs/outputs,

which then allows for a single-letter characterization of the performance of the scheme, one has to choose a joint

pmf PU ′1U ′2Z1Z2X1X2U1U2
, conditional pmfs PU ′1|X1Z1Ũ1X̃1Z̃1

and PU ′2|X2Z2Ũ2X̃2Z̃2
as well as functions f1 and f2 on

appropriate domains satisfying the new stationarity condition

PU ′1U ′2Z1Z2X1X2U1U2
(u′1, u

′
2, z1, z2, x1, x2)

=
∑

ũ1,ũ2,x̃1,x̃2,z̃1,z̃2

PU ′1|X1Z1Ũ1X̃1Z̃1
(u′1|u1, x1, z1, ũ1, x̃1, z̃1)PU ′2|X2Z2Ũ2X̃2Z̃2

(u′2|x2, z2, u2, ũ2, x̃2, z̃2)

·PZ1Z2|X1X2
(z1, z2|x1, x2)1{x1 = f1(u1, ũ1, x̃1, z̃1)}1{x2 = f2(u2, ũ2, x̃2, z̃2)}

·PU ′1U ′2Z1Z2X1X2U1U2
(u1, u2, z̃1, z̃2, x̃1, x̃2, ũ1, ũ2), (6.24)

In the following, all mentioned conditional and marginal pmfs are with respect to the joint pmf

2In the previous scheme, the compression codeword vN1,(b) was correlated with the block-(b − 1) signals but not the channel coding
codeword u1,(b). Now the codeword uN

1,(b) acts both as a compression codeword and as a channel coding codeword.
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PU ′1U ′2Z1Z2X1X2U1U2Ũ1Ũ2W̃1W̃2Ṽ1Ṽ2
indicated by the summand in (6.24).

We next explain the code construction, encodings and decodings. For each k ∈ {1, 2}, for each block b ∈

{1, . . . , B+ 1}, and each message mk ∈ [2NR̄k ], choose a subcodebook {uNk,(b)(mk, j) : j ∈ [2NR
′
k ]} by picking all

entries i.i.d. PU ′k . Terminal k then picks the codeword uNk,(b)(Wk,(b), j) so that the following joint-typicality check is

satisfied for some fixed ε > 0:

(
uNk,(b)(Wk,(b), j), x

N
k,(b−1), z

N
k,(b−1), u

n
k,(b−2), x

N
k,(b−2), z

N
k,(b−2)

)
∈ T (N)

ε

(
PU ′kXkZkŨkX̃kZ̃k

)
, (6.25)

and sets J∗k,(b−1) = j. By standard arguments, such an index j exists with probability tending to 1 as N →∞ if

R′k ≥ I(U ′k;Xk, Zk, Ũk, X̃k, Z̃k), k ∈ {1, 2}. (6.26)

Terminal k then sends the block-b input sequence

XN
k,(b) = f⊗Nk

(
uNk,(b)

(
Wk,(b)J

∗
k,(b−1)

)
, uNk,(b−1), x

n
k,(b−1), z

N
k,(b−1)

)
. (6.27)

Decoding is again performed using a joint-typicality decoder. At the end of block b, Terminal k looks for indices

ŵk̄ and ĵk̄ satisfying the two typicality checks

(
uNk̄,(b−1)(ŵk̄, ĵk̄), x

N
k,(b), z

N
k,(b), u

N
k,(b−1) x

N
k,(b−1), z

N
k,(b−1)

)
∈ T (N)

ε

(
PŨk̄XkZkŨkX̃kZ̃k

)
(6.28)

and

(
uNk̄,(b−1)(ŵk̄, ĵk̄), x

N
k,(b−2), z

N
k,(b−2), u

n
k,(b−3), x

N
k,(b−3), z

N
k,(b−3)

)
∈ T (N)

ε

(
PUk̄XkZkŨkX̃kZ̃k

)
. (6.29)

If a unique pair of such element exists, set Ŵk̄,(b−1) = wk̄ and ûN
k̄,(b−1)

, uN
k̄,(b−1)

(ŵk̄, ĵk̄). Decoding is successful

with probability tending to 0 as N →∞ if

R̄k̄ +R′k̄ ≤ I(Ũk̄;Xk, Zk, Ũk, X̃k, Z̃k) + I(Uk̄;Xk, Zk, Ũk, X̃k, Z̃k), k ∈ {1, 2}. (6.30)

State-estimation is similar to (6.16), but where Terminal k replaces the compression codeword vNk,(b) by the joint

source-channel codeword uNk,(b+1) and similarly to hybrid coding also uses the inputs/outputs corresponding to the

block where the codeword uN1,(b+1) is sent, i.e., inputs and outputs in block b + 1. Thus, Terminal k computes its
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estimate of the block-b state as:

ŝNk,(b) = φ∗⊗N2,k

(
ûNk̄,(b+1), x

N
k,(b+1), z

N
k,(b+1), û

N
k̄,(b), x

N
k,(b), z

N
k,(b), u

N
k,(b−1), x

N
k,(b−1), z

N
k,(b−1), û

N
k̄,(b−1)

)
, (6.31)

where

φ∗2,k(u
′
k̄, x
′
k, z
′
k, uk̄, xk, zk, ũk, x̃k, z̃k, ũk̄) := arg min

s′k∈Ŝk

∑

sk∈Sk
PSk|XkZkUk̄

(sk|xk, zk, uk̄) dk(sk, s′k).

(6.32)

By standard arguments and because of the stationarity condition in (6.24) the probability of violating the distortion

constraints tends to 0 as N →∞ if

E
[
dk
(
Sk, φ

∗
2,k(U

′
k̄, X

′
k, Z

′
k, Uk̄, Xk, Zk, Ũk, X̃k, Z̃k, Ũk̄)

)]
≤ Dk, k ∈ {1, 2}, (6.33a)

where X ′1 = f1(U ′1, U1, X1, Z1) and X ′2 = f2(U ′2, U2, X2, Z2) and the outputs Z ′1 and Z ′2 are obtained from X ′1 and

X ′2 via the channel transition law PZ1Z2|X1X2
.

From above considerations and by eliminating the dummy rates R′1 and R′2, we obtain the following theorem.

Theorem 21 (Inner Bound via Joint Source-Channel Coding). Any nonnegative rate-distortion quadruple

(R1, R2, D1, D2) is achievable if it satisfies the following two rate-constraints

Rk ≤ I(Ũk;Xk̄, Zk̄, Ũk̄, X̃k̄, Z̃k̄)− I(Uk;Xk, Zk, Ũk, X̃k, Z̃k|Xk̄, Zk, Ũk̄, X̃k̄, Z̃k̄), k ∈ {1, 2} (6.34)

and the two distortion constraints in (6.33) for some choice of pmf PU ′1U ′2Z1Z2X1X2U1U2
and functions f1 and f2

satisfying the stationarity condition (6.9).

Remark 10. We notice that the described compression technique does not use binning as in Wyner-Ziv coding [3].

Instead, decoder side-information is taken into account via the joint typicality check in (6.29).

Remark 11. For the choice U ′k = (U ′′k , Vk) with U ′′k ∼ PUk
independent of all other random variables and V1

and V2 satisfying the Markov chains in (6.15), the inner bound in Theorem 21 achieved by our joint source-channel

coding scheme specializes to the inner bound Theorem 20 achieved by separate source-channel coding. For above

choice of auxiliary random variables, the reconstruction functions g1 and g2 can restrict their first arguments only

to the V1- and V2-components without loss in performance.
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6.3 Conclusion

For D2D communication, we also proposed a joint source-channel coding (JSCC) scheme to integrate compression

and coding into a single codeword as in hybrid coding. We extended Han’s coding scheme to include also col-

laborative sensing. Each terminal compressed its block-b inputs and outputs to capture information about the other

terminal’s state and sensed this state-information in the next-following block. In this first collaborative sensing ISAC

scheme that we presented, the sensing did not affect the communication. In the second scheme, we fully integrated

the compression into the communication scheme, in a similar way that hybrid coding.
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Chapter 7

Summary and Possible Research Directions

7.1 Summary

This thesis focused on the fundamental limits of information-theoretic ISAC over multi-Tx or multi-Rx networks.

More precisely:

• In Chapter 2, we glanced at the sensing problem and communication separately. Then we reviewed the naive

practical solutions to integrate the two tasks.

• In Chapter 3, we reviewed the first model of ISAC over state-dependent P2P channels. This work charac-

terized capacity-distortion-cost tradeoff of SDMC by random coding construction and introduced the optimal

estimator (a deterministic symbol-by-symbol estimator).

• Furthermore, in Chapter 3, we had a summary of related works. A line of the work similarly modeled ISAC

where the Tx estimated the state in which the state was assumed slow-varying, which changed the estimation

problem introduced in Section 3.1 to a hypothesis testing. Another line of works modeled ISAC where the

Rx estimates the state in which the state was i.i.d. Thus, the tools and results had been dual to the model

introduced in Section 3.1.

• Chapter 4 considered single-Tx two-Rx Bcs. we proposed the inner and outer bounds for the capacity-

distortion tradeoff region of SDMBC. Specially, we characterized the capacity-distortion tradeoff region of

physically degraded SDMBC. We evaluated the proposed schemes through various examples and verified

that ISAC schemes improved the region over naive solutions built on resource-sharing. We also found the

conditions that showed, in some cases, no tradeoff between communication and sensing arises.
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• In Chapter 5, we introduced information-theoretic collaborative sensing schemes in which Txs could cooperate

in communication and sensing where terminals convey data to not only the other terminals but also state-

information that they extract from their previous observations. This state information can be exploited at

the other terminals to improve their sensing performances. Furthermore, as we showed through examples,

our schemes improve over the previous non-collaborative scheme regarding their achievable rate-distortion

tradeoffs.

• In Chapter 6, we proposed two information-theoretic collaborative sensing ISAC schemes, one where com-

pression of state information was separated from channel coding and one where it was integrated via a hybrid

coding approach.

7.2 Possible Research Directions

Various interesting future research directions arise as follows:

• Our results are built on the assumption of i.i.d. states. In practice, it seems that the states at different time

slots can be correlated. Similar to [26, 61], we can extend our results of ISAC over BCs and MAC with a

slow-varying state. Also, it is worth looking at the correlated state during the communication time slots rather

than the fixed or i.i.d state.

• As far as our knowledge, there has not been any study on ISAC when the Rx estimates the slow-varying or

correlated states. So, there is an exciting line of research to look at the model introduced in [22, 30, 33, 42]

with slow-varying/correlated states instead of i.i.d state.

• Another outgrowth of our work is the finite-blocklength derivation of achievability and converse bounds. In

practice, assessing the backoff from capacity required to sustain the desired error probability at a given fixed

finite block length is vital. Readers are encouraged to refer to [62]

• The JSCC scheme proposed for ISAC D2D communication could be integrated into our ISAC MAC scheme.

• Another exciting research direction for the MAC scheme is to include state estimation at the Rx. In this re-

spect, it would be interesting to include an additional superposition compression layer to generate compression

information that is only decoded by the Rx but not the other Tx.

• For D2D communication, an interesting extension would be to consider specific channel models and replace

Han’s result with two-way communication schemes tailored to these particular channels.
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• There is still lots to know in the secure ISAC whether the estimation happens at Rx, Tx, or both.
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Appendix A

Proofs

A.1 Proofs of Chapter 3

A.1.1 Proof of Lemma 2

Recall that Ŝn = h(Xn, Zn), and write for each i = 1, · · · , n:

E
[
d(Si, Ŝi)

]
= EXn,Zn

[
E[d(Si, Ŝi)|Xn, Zn]

]

(a)
=
∑

xn,zn

PXnZn(xn, zn)
∑

ŝ∈S
PŜi|XnZn(ŝ|xn, zn)

∑

s

PSi|XiZi
(s|xi, zi)d(s, ŝ)

≥
∑

xn,zn

PXnZn(xn, zn) min
ŝ∈S

∑

s

PSi|XiZi
(s|xi, zi)d(s, ŝ)

= E[d(Si, ŝ
∗(Xi, Zi))], (A.1)

where (a) holds by the Markov chain

(
Xi−1, Xn

i+1, Z
i−1, Zni+1, Ŝi

)
(−−(Xi, Zi)(−−Si. (A.2)

Summing over all i = 1, . . . , n, we thus obtain:

∆(n) =
1

n

n∑

i=1

E
[
d(Si, Ŝi)

]
(A.3)

≥ 1

n

n∑

i=1

E[d(Si, ŝ
∗(Xi, Zi))], (A.4)

which yields the desired conclusion.
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A.1.2 Proof of Theorem 1

Converse

Fix a sequence (in n) of (2nR, n) codes such that Limits (3.5) hold. By Fano’s inequality there exists a sequence

εn → 0 as n→∞ so that:

nR ≤ I(W ;Y n, Sn) + nεn

= I(W ;Y n | Sn) + nεn

=

n∑

i=1

H(Yi | Y i−1, Sn)−H(Yi |W,Y i−1, Sn) + nεn

(a)

≤
n∑

i=1

H(Yi | Si)−H(Yi | Xi, Y
i−1,W, Sn) + nεn

(b)
=

n∑

i=1

H(Yi | Si)−H(Yi | Xi, Si) + nεn

=
n∑

i=1

I(Xi;Yi | Si) + nεn (A.5)

where (a) holds because conditioning can only reduce entropy; and (b) holds because (W,Y i−1, Si−1, Sni+1) −

(Si, Xi)− Yi form a Markov chain. We continue as:

R ≤ 1

n

n∑

i=1

I(Xi;Yi | Si) + εn

(c)

≤ 1

n

n∑

i=1

Cinf

(∑

x

PXi(x)c(x),
∑

x

PXi(x)b(x)

)
+ εn

(d)

≤ Cinf

(
1

n

n∑

i=1

∑

x

PXi(x)c(x),
1

n

n∑

i=1

∑

x

PXi(x)b(x)

)
+ εn

(e)

≤ Cinf(D,B) (A.6)

where (c) holds by the definition of Cinf(D,B), and (d) and (e) hold by Lemma 1.

Achievability

Fix PX(·) and functions ĥ(x, z) that achieve C(D/(1 + ε),B), where D is the desired distortion and B is the target

cost, for a small positive number ε > 0. We define the joint pmf PSXY := PSPXPY |SX .
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Codebook generation Generate 2nR sequences {xn(w)}2nR

w=1 by randomly and independently drawing each entry

according to PX . This defines the codebook C = {xn(w)}2nR

w=1, which is revealed to the encoder and the decoder.

Encoding To send a message w ∈ W , the encoder transmits xn(w).

Decoding Upon observing outputs Y n = yn and state sequence Sn = sn, the decoder looks for an index ŵ such

that

(sn, xn(ŵ), yn) ∈ T (n)
ε (PSXY ). (A.7)

If exactly one such index exists, it declares Ŵ = ŵ. Otherwise, it declares an error.

Estimation Assuming that it sent the input sequence Xn = xn and observed the feedback signal Zn = zn, the

encoder computes the reconstruction sequence as:

Ŝn = (ŝ∗(x1, z1), ŝ∗(x2, z2), . . . , ŝ∗(xn, zn)). (A.8)

Analysis We start by analyzing the probability of error and the distortion averaged over the random code construc-

tion. Given the symmetry of the code construction, we can condition on the event W = 1.

We then notice that the decoder makes an error, i.e., declares nothing or Ŵ 6= 1 if, and only if, one or both of

the following events occur:

E1 =
{

(Sn, Xn(1), Y n) /∈ T (n)
ε (PSXY )

}
(A.9)

E2 =
{

(Sn, Xn(w′), Y n) ∈ T (n)
ε (PSXY ) for some w′ 6= 1

}
. (A.10)

where we defined PSXY := PSPXPY |SX . Thus, by the union bound:

P (n)
e = P (E1 ∪ E2) ≤ P (E1) + P (E2). (A.11)

The first term goes to zero as n → ∞ by the weak law of large numbers. The second term also tends to zero

as n → ∞ if R < I(X;Y |S) by the independence of the codewords and the packing lemma [20, Lemma 3.1].

Therefore, P (n)
e tends to zero as n→∞ whenever R < I(X;Y |S).
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The expected distortion (averaged over the random codebook, state and channel noise) can be upper bounded as

∆(n) =
1

n

n∑

i=1

E
[
d(Si, Ŝi)

]
(A.12)

=
1

n

n∑

i=1

E
[
d(Si, Ŝi)

∣∣Ŵ 6= 1
]

Pr(Ŵ 6= 1)

+
1

n

n∑

i=1

E
[
d(Si, Ŝi)

∣∣Ŵ = 1
]

Pr(Ŵ = 1) (A.13)

≤ DmaxPe +
1

n

n∑

i=1

E
[
d(Si, Ŝi)

∣∣Ŵ = 1
]
· (1− Pe). (A.14)

In the event of correct decoding, i.e., Ŵ = 1,

(Sn, Xn(1), Y n) ∈ T (n)
ε (PSPXPY |SX), (A.15)

and since Ŝi = ŝ∗(Xi, Zi), also

(Sn, Xn(1), Ŝn) ∈ T (n)
ε

(
PSXŜ

)
, (A.16)

where PSXŜ denotes the joint marginal pmf of PSXZŜ(s, x, z, ŝ) := PS(s)PX(x)PZ|SX(z|s, x)1{ŝ = ŝ∗(x, z)}.

Then,

lim
n→∞

1

n

n∑

i=1

E
[
d(Si, Ŝi)|Ŵ = 1

]
≤ (1 + ε)E

[
d(S, Ŝ)

]
, (A.17)

for (S, Ŝ) following the marginal of the pmf PSXZŜ defined above. Assuming that R < I(X;Y |S), and thus Pe → 0

as n→∞, we obtain from (A.14) and (A.17):

lim
n→∞

∆(n) = (1 + ε)E
[
d(S, Ŝ)

]
. (A.18)

Taking finally ε ↓ 0, we can conclude that the error probability and distortion constraint (3.5a), (3.5b) hold (averaged

over the random code constructions, the random states, and the noise in the channel) whenever

R < I(X;Y | S), (A.19)

E
[
d(S, Ŝ)

]
< D. (A.20)

Notice that the cost constraint (3.5c) is fulfilled by construction. By standard arguments it can then be shown that

there must exist at least one sequence of deterministic code books Cn so that constraints (3.5) hold.
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A.1.3 Proof of Remark 2

Converse

Fix a sequence (in n) of (2nR, n) codes such that Limits (3.5) hold. By Fano’s inequality there exists a sequence

εn → 0 as n→∞ so that:

nR ≤ I(W ;Y n, SnR) + nεn

= I(W ;Y n | SnR) + nεn

=

n∑

i=1

H(Yi | Y i−1, SnR)−H(Yi |W,Y i−1, SnR) + nεn

(a)

≤
n∑

i=1

H(Yi | SR,i)−H(Yi | Xi, Y
i−1,W, SnR) + nεn

(b)
=

n∑

i=1

H(Yi | SR,i)−H(Yi | Xi, SR,i) + nεn

=

n∑

i=1

I(Xi;Yi | SR,i) + nεn (A.21)

where (a) holds because conditioning can only reduce entropy; and (b) holds because (W,Y i−1, Si−1
R , SnR,i+1) −

(SR,i, Xi)− Yi form a Markov chain.

Define

Cimp
inf (D,B) := max

PX∈PD∩PB

I(X;Y | SR). (A.22)

Then, we have

R ≤ 1

n

n∑

i=1

I(Xi;Yi | SR,i) + εn

(c)

≤ 1

n

n∑

i=1

CImp
inf

(∑

x

PXi(x)c(x),
∑

x

PXi(x)b(x)

)
+ εn

(d)

≤ CImp
inf

(
1

n

n∑

i=1

∑

x

PXi(x)c(x),
1

n

n∑

i=1

∑

x

PXi(x)b(x)

)
+ εn

(e)

≤ CImp
inf (D,B) (A.23)

where (c) holds by the definition of CImp
inf (D,B) in (A.22), and (d) and (e) hold by similar monotonicity and concavity

properties as stated in Lemma 1.
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Achievability

Fix PX(·) and a function ĥ(x, z) that achieve C(D/(1 + ε),B), where D is the desired distortion and B is the

target cost, for a small positive number ε > 0. We define the joint pmf PSSRXY := PSSR
PXPY |SSRX . Codebook

generation, encoding, and estimation are as described in the proof of Theorem 1; the only difference is in the

decoding at the Rx, where the state Sn has to be replaced by SR. In more details:

Decoding Upon observing outputs Y n = yn and state sequence SnR = snR, the decoder looks for an index ŵ such

that

(snR, x
n(ŵ), yn) ∈ T (n)

ε (PSRXY ) (A.24)

where PSRXY =
∑
S PSSRXY . If exactly one such index exists, it declares Ŵ = ŵ. Otherwise, it declares an error.

Analysis We start by analyzing the probability of error and the distortion averaged over the random code construc-

tion. Given the symmetry of the code construction, we can condition on the event W = 1. We then notice that the

decoder makes an error, i.e., declares nothing or Ŵ 6= 1 if, and only if, one or both of the following events occur:

E1 =
{

(SnR, X
n(1), Y n) /∈ T (n)

ε (PXSRY )
}

(A.25)

or

E2 =
{

(SnR, X
n(w′), Y n) ∈ T (n)

ε (PXSRY ) for some w′ 6= 1
}
. (A.26)

Thus, by the union bound:

P (n)
e = P (E1 ∪ E2) ≤ P (E1) + P (E2), (A.27)

where we consider the average probability of error not only over the random channel noise and states but also over

the random codeconstruction. The first term goes to zero as n → ∞ by the weak law of large numbers. By the

independence of the codewords and the packing lemma [20, Lemma 3.1], the second term also tends to zero as

n→∞

R < I(X;Y |SR). (A.28)

Following similar steps as in the analysis in Appendix A.1.2, and using the fact that by the weak law of large

numbers with probability tending to 1 as n→∞:

(Sn, SnR, X
n(1), Y n) ∈ T (n)

ε (PXPSPSR
PY |SSRX), (A.29)
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it can be shown that

lim
n→∞

∆(n) = (1 + ε)E[d(S, ŝ∗(X,Z))] . (A.30)

Thus when ε ↓ 0, the distortion constraint (3.5b) holds (averaged over the random code constructions, the random

states, and the noise in the channel) whenever

E[d(S, ŝ∗(X,Z))] < D. (A.31)

Notice that the cost constraint (3.5c) is fulfilled by construction.

By standard arguments it can then be shown that there must exist at least one sequence of deterministic code

books Cn so that constraints (3.5) are satisfied under conditions (A.28) and (A.31).

A.2 Proof of Chapter 4

A.2.1 Converse Proof of Theorem 11

Fix a sequence (in n) of (2nR0 , 2nR1 , 2nR2 , n) codes satisfying (6.3). Fix a blocklength n and start with Fano’s

inequality:

R0 + R2 =
1

n
H(W0,W2)

≤ 1

n

n∑

i=1

I(W0,W2;Y2i | Y i−1
2 , ) + εn

≤ 1

n

n∑

i=1

I(W0,W2, Y
i−1

2 ;Y2,i) + εn

= I(W0,W2, Y
T−1

2 ;Y2,T | T ) + εn

≤ I(W0,W2, Y
T−1

2 , T ;Y2,T ) + εn

(a)
= I(U ;Y2) + εn, (A.32)

where T is chosen uniformly over {1, · · · , n} and independent of Xn, Y n
1 , Y

n
2 ,W0,W1,W2, S

n
1 , S

n
2 ; εn is a se-

quence that tends to 0 as n→∞; and U := (W0,W2, Y
T−1

2 , ST−1
2 , T ), Y2 := Y2,T and S2 := S2,T . Here (a) holds

because S2 ∼ PS2 independent of (U,X), where we define X := XT .

Following similar steps, we obtain:

R1 =
1

n
H(W1 |W0,W2)
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≤ 1

n
I(W1;Y n

1 |W0,W2) + εn

≤ 1

n
I(W1;Y n

1 , Y
n

2 |W0,W2) + εn

=
1

n

n∑

i=1

I(W1;Y1,i, Y2,i | Y i−1
1 , Y i−1

2 ,W0,W2) + εn

≤ 1

n

n∑

i=1

I(Xi,W1, Y
i−1

1 , ;Y1,i, Y2,i | Y i−1
2 ,W0,W2) + εn

(b)
=

1

n

n∑

i=1

I(Xi;Y1,i | Y i−1
2 ,W0,W2) + εn (A.33)

= I(XT ;Y1T | Y T−1
2 ,W0,W2, T ) + εn

(c)
= I(X;Y1 | U) + εn, (A.34)

where we defined Y1 := Y1,T ; and where (b) holds by the physically degradedness of the SDMBC which implies

the Markov chain (W0,W2,W1, Y
i−1

1 , Y i−1
2 )→ Xi → (Y1,i)→ (Y2,i), and (c) holds.

Recall that we assume the optimal estimators (4.5) in Lemma 3. Using the definitions of T , X , Sk above and

defining Z := ZT , we can write the average expected distortions as:

1

n

n∑

i=1

E[dk(Sk,i, ŝ
∗
k(Xi, Zi)] = E[dk(Sk, ŝ

∗
k(X,Z)]. (A.35)

Combining (A.32), (A.34), and (A.35) and letting n→∞, we obtain that there exists a limiting pmf PUX such

that the tuple (U,X, S1, S2, Y1, Y2, Z) ∼ PUXPS1S2PY1Y2Z|S1S2X satisfies the rate-constraints

R0 + R2 ≤ I(U ;Y2) (A.36)

R1 ≤ I(X;Y1 | U) (A.37)

and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)] ≤ Dk, k = 1, 2, (A.38)

This completes the proof.

A.2.2 Proof of Theorem 12

Fix a sequence (in n) of (2nR0 , 2nR1 , 2nR2 , n) codes satisfying (6.3). Fix then a blocklength n and consider an

enhanced SDMBC where Rx 1 observes the pair of states S̃1 = (S1, S2) and the pair of outputs Ỹ1 = (Y1, Y2). The
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enhanced SDMBC is clearly physically degraded because for any input pmf PX the Markov chain

X(−−(S̃1, Ỹ1)(−−(S2, Y2) (A.39)

holds.

Following the steps in the previous Appendix A.2.1, we can conclude that

R0 + R2 ≤ I(U2;Y2 | S2) + εn (A.40)

R0 + R1 + R2 ≤ I(X;Y1, Y2 | S1, S2) + εn (A.41)

and for k = 1, 2

1

n

n∑

i=1

E[dk(Sk,i, ŝ
∗
k(Xi, Zi)] = E[dk(Sk, ŝ

∗
k(X,Z)]. (A.42)

Consider next a reversely enhanced SDMBC where Rx 1 observes only (Y1, S1) but Rx 2 observes both state se-

quences S̃2 := (S1, S2) and both outputs Ỹ2 := (Y1, Y2). Following again the steps in the previous Appendix A.2.1,

but now with exchanged indices 1 and 2, we obtain:

R0 + R1 ≤ I(U1;Y1 | S1) + εn (A.43)

R0 + R1 + R2 ≤ I(X;Y1, Y2 | S1, S2) + εn. (A.44)

Combining all these inequalities and letting first n→∞ and then εn ↓ 0, establishes the desired converse result.

A.2.3 Proofs for Dueck’s State-Dependent BC

Optimal Estimator of Lemma 3

We first derive the optimal estimator ŝ∗k(x1, x2, y
′
1, y
′
2) of Lemma 3 for this example.

Case y′1 = y′2 = 1: In this case, S1 = S2 = 1 deterministically, and thus

ŝ∗k(x1, x2, 1, 1) = 1, ∀(x1, x2), k = 1, 2. (A.45)
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Case y1 = 1′ and y′2 = 0: In this case, S1 = 1 deterministically and

ŝ∗1(x1, x2, 1, 0) = 1, ∀(x1, x2). (A.46)

To derive the optimal estimator for state S2, we notice that y′1 = 1 implies x1 ⊕ N = 1, i.e., N = x1 ⊕ 1. As a

consequence,

y′2 = (x2 ⊕ x1 ⊕ 1)S2. (A.47)

So, for x2 = x1 we have y′2 = S2 = 0 and the optimal estimator sets

ŝ∗2(x1, x2, 1, 0) = 0, x1 = x2. (A.48)

Instead for x2 6= x1, the feedback output y′2 = 0, irrespective of the state S2. The optimal estimator then is the

constant estimator

ŝ∗2(x1, x2, 1, 0) = argmax
ŝ∈{0,1}

PS(ŝ), x1 6= x2. (A.49)

Case y′1 = 1, y′2 = 0: Symmetric to the previous case y′1 = 0, y′2 = 1. The optimal estimators are as in (A.48)

and (A.49), but with exchanged indices 1 and 2.

Case y′1 = y′2 = 0: To find the optimal estimators, we calculate the conditional probabilities

PSk|X1X2Y ′1Y
′
2
(·|x1, x2, y

′
1, y
′
2) for y′1 = y′2 = 0.

We again distinguish the two cases x1 = x2 and x1 6= x2 and start by considering x1 = x2. In this case,

x1 ⊕ N = x2 ⊕ N , and so if Sk = 1 then y′1 = y′2 = 0 only if x1 ⊕ N = x2 ⊕ N = 0, which happens with

probability 1/2 because N is Bernoulli-1/2. By the independence of the states and the inputs for x1 = x2 and

k = 1, 2:

PSk|X1X2Y ′1Y
′
2
(1|x1, x2, 0, 0) =

PSk
(1)PY ′1Y ′2 |X1X2Sk

(0, 0|x1, x2, 1)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(1)1/2

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (A.50a)

Let k̄ := 3− k for k = 1, 2. If Sk = 0, then y′1 = y′2 = 0 happens when either x1 ⊕N = x2 ⊕N = 0 or when

Sk̄ = 0 and x1 ⊕N = x2 ⊕N = 1. Since these are exclusive events and have total probability of 1/2 + PS(0)1/2,
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we obtain for x1 = x2 and k ∈ {1, 2}:

PSk|X1X2Y ′1Y
′
2
(0|x1, x2, 0, 0) =

PSk
(0)PY ′1Y ′2 |X1X2Sk

(0, 0|x1, x2, 0)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(0)(1/2 + PS(0)1/2)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (A.50b)

We conclude from (A.50) that for y′1 = y′2 = 0 and x = x1 = x2, the optimal estimators are

ŝ∗k(x, x, 0, 0) = 1 {PS(0)(1 + PS(0)) < PS(1)} , k = 1, 2. (A.51)

We turn to the case x1 6= x2, where x1 ⊕ N = 1 ⊕ (x2 ⊕ N). As before, if Sk = 1, then Y ′k = 0 only if

x1 ⊕N = 0, which happens with probability 1/2. Now this implies x2 ⊕N = 1, and thus Y ′
k̄

= 0 only if Sk̄ = 0,

which happens with probability PS(0). We thus obtain for x1 6= x2 and k = 1, 2:

PSk|X1X2Y ′1Y
′
2
(1|x1, x2, 0, 0) =

PSk
(1)PY ′1Y ′2 |X1X2Sk

(0, 0|x1, x2, 1)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(1)PS(0)1/2

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (A.52a)

If Sk = 0, then Y ′1 = Y ′2 = 0 happens when xk̄⊕N = 0 or when xk̄⊕N = 1 and Sk̄ = 0. Since these are exclusive

events with total probability 1/2 + PS(0)1/2, we obtain for x1 6= x2 and k = 1, 2:

PSk|X1X2Y ′1Y
′
2
(0|x1, x2, 0, 0) =

PSk
(0)PY ′1Y ′2 |X1X2Sk

(0, 0|x1, x2, 0)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(0)(1/2 + PS(0)1/2)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (A.52b)

Since PS(1) < 1 + PS(0), we conclude that for y′1 = 0, y′2 = 0 and x1 6= x2, the optimal estimator is

ŝ∗k(x1, x2, 0, 0) = 0, x1 6= x2, k = 1, 2. (A.53)

Minimum distortion

We evaluate the expected distortion of the optimal estimators in (4.47), for a given input pmf PX0X1X2 . Let t :=

Pr[X1 6= X2]. We first consider the distortion on state S2:

E[d(S2, ŝ
∗
2(X1, X2, Y

′
1 , Y

′
2))]
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=
∑

(x1,x2,y′1,y
′
2)∈{0,1}4

PX1X2Y ′1Y
′
2
(x1, x2, y

′
1, y
′
2) · Pr

[
S2 6= ŝ∗2(x1, x2, y

′
1, y
′
2) | X1 = x1, X2 = X2,

Y ′1 = y1, Y
′

2 = y2

]

(A.54)

(a)
=

∑

(x1,x2,y′1,y
′
2)∈{0,1}4

PX1X2Y ′1Y
′
2
(x1, x2, y

′
1, y
′
2) · min

ŝ∈{0,1}
PS2|X1X2Y ′1Y

′
2
(ŝ|x1, x2, y

′
1, y
′
2),

(A.55)

where (a) follows by the definition of the function ŝ∗2.

In the previous Subsection A.2.3, we argued that for y′2 = 1 or for (y′2 = 0, y′1 = 1, x1 = x2), the state S2 is de-

terministic (S2 = 1 in the former case and S2 = 0 in the latter) and thus minŝ∈{0,1} PS2|X1X2Y ′1Y
′
2
(ŝ|x1, x2, y

′
1, y
′
2) =

0. We further argued that for (y′1 = 1, y′2 = 0, x1 6= x2) the transmitter learns nothing about state S2, which is thus

still distributed according to PS . Based on these observations, we continue from (A.55) as:

E[d(S2, ŝ
∗
2(X1, X2, Y

′
1 , Y

′
2)]

= Pr
[
X1 6= X2, Y

′
1 = 1, Y ′2 = 0

]
min{PS(0), PS(1)}

+
∑

(x1,x2)∈{0,1}2
PX1X2Y ′1Y

′
2
(x1, x2, 0, 0)

min{PS1|X1X2Y ′1Y
′
2
(0|x1, x2, 0, 0), PS1|X1X2Y ′1Y

′
2
(1|x1, x2, 0, 0)}

(b)
= Pr[X1 6= X2, N = X1 ⊕ 1, S1 = 1] min{PS(0), PS(1)}

+ Pr[X1 = X2]
1

2
min{PS(1), PS(0)(1 + PS(0))}+ Pr[X1 6= X2]

1

2
PS(0)PS(1) (A.56)

=
1

2
tq
(

min{q, (1− q)}+ (1− q)
)

+
1

2
(1− t)qmin{q, (1− q)(2− q)}. (A.57)

where in (b) we used (A.50)–(A.53) and the fact that when X1 6= X2, then event {Y ′1 = 1, Y ′2 = 0} is equivalent to

event {N = X1 ⊕ 1, S1 = 1}.

Proof of the Outer Bound

The outer bound is based on Theorem 12, as detailed out in the following. The single-rate constraints (4.30a)

specialize to

Rk ≤ I(Uk;Y
′
k, X0 | S1, S2) (A.58)

(c)
= I(Uk;X0) (A.59)
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≤ 1, (A.60)

where the equality holds by the chain rule, because (U1, X0) and (S1, S2) are independent, and because I(U1;Y ′1 |

X0, S1, S2) = 0 due to the Bernoulli-1/2 noise N .

Defining t := Pr[X1 6= X2], Bound (4.30b) specializes to:

R1 + R2 ≤ I(X0, X1, X2;Y ′1 , Y
′

2 , X0 | S1, S2) (A.61)

(d)
= H(X0) + I(X1, X2;Y ′2 | S1, S2, Y

′
1 , X0) (A.62)

(e)
= H(X0) + I(X1, X2;Y ′2 | S1 = 1, S2 = 1, Y ′1 , X0) (A.63)

= H(X0) + I(X1, X2;Y ′2 ⊕ Y ′1 | S1 = 1, S2 = 1, X0) (A.64)
(f)

≤ H(X0) + PS1S2(1, 1)H(X1 ⊕X2) (A.65)

≤ 1 + q2Hb(t). (A.66)

where (d) holds by the chain rule and because I(X1, X2;Y ′1 | X0, S1, S2) = 0 due to the Bernoulli-1/2 noiseN ; (e)

holds because for (s1, s2) 6= (1, 1) the mutual information term I(X1, X2;Y ′2 | S1 = s1, S2 = s2, Y
′

1 , X0) = 0 due

to the Bernoulli-1/2 noise N ; and (f) holds because for S1 = S2 = 1 we have Y ′2 ⊕Y ′1 = (X2⊕N)⊕ (X1⊕N) =

X2 ⊕X1 and because conditioning can only reduce entropy.

The sum-rate constraint (A.66) is maximized for t = 1/2, which combined with (A.60) establishes the converse

to the capacity region in (4.52).

Proof of Achievability Results

We evaluate Proposition 2 for different choices of the involved random variables. Since we ignore the common rate

R0, bound (4.32d) is not active and can be ignored.

• First choice

– X0, X1, X2 Bernoulli-1/2 with X0 independent of (X1, X2) and X1 = X2 = x with probability 1−t
2 for

all x ∈ {0, 1};

– Uk = Xk, for k = 0, 1, 2;

– V1 = (X0, X1), V2 = (X0, X2), V0 = X1 ⊕ Y ′1 .
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We plug this choice into Proposition 2. Constraint (4.32a) evaluates to:

R1 ≤ I(U0, U1;Y1, V1 | S1)− I(U0, U1, U2, Z;V0, V1 | S1, Y1) (A.67)

= I(X0, X1;X0, Y
′

1 , S1, S2, X1 | S1)

−I(X0, X1, X2, Y
′

1 , Y
′

2 ;X1 ⊕ Y ′1 , X0, X1 | S1, S2, X0, Y
′

1) (A.68)

(e)
= H(X0) +H(X1)−H(X1 | Y ′1) (A.69)

= H(X0) = 1 (A.70)

where (e) holds because Y ′1 is independent of X1 due to the Bernoulli-1/2 noise N .

Constraint (4.32b) evaluates to:

R2 ≤ I(U0, U2;Y2, V2 | S2)− I(U0, U1, U2, Z;V0, V2|S2, Y2) (A.71)

= I(X0, X2;X0, Y
′

2 , S1, S2, X2 | S1)

−I(X0, X1, X2, Y
′

1 , Y
′

2 ;X1 ⊕ Y ′1 , X0, X2 | S1, S2, X0, Y
′

2) (A.72)

(f)
= H(X0) +H(X2)−H(X2)−H(X1 ⊕ Y ′1 | S1, S2, X0, Y

′
2 , X2) (A.73)

(g)
= 1− (1− q)(Hb(t) + q), (A.74)

where (f) holds because of the chain rule and the independence of X2 and Y ′2 ; and (g) holds because for

S1 = 0 the XOR X1⊕ Y ′1 = X1 and thus H(X1⊕ Y ′1 | S1, S2, X0, Y
′

2 , X2) = H(X1 | X2), for S1 = S2 = 1

the XOR X1 ⊕ Y ′1 = X2 ⊕ Y ′2 , and finally for S1 = 1 and S2 = 0 the XOR X1 ⊕ Y ′1 = N independent of

(Y ′2 = 0, X2).

Constraint (4.32b) evaluates to:

R1 + R2

≤ I(U1;Y1, V1 | U0, S1) + I(U2;Y2, V2 | U0, S2) + min
k∈{1,2}

I(U0;Yk, Vk | Sk)− I(U1;U2|U0)

−I(U0, U1, U2, Z;V1 | V0, S1, Y1)− I(U0, U1, U2, Z;V2 | V0, S2, Y2)

− max
k∈{1,2}

I(U0, U1, U2, Z;V0 | Sk, Yk) (A.75)

= I(X1;X0, Y
′

1 , S1, S2, X1 | X0, S1)︸ ︷︷ ︸
=H(X1)

+ I(X2;X0, Y
′

2 , S1, S2, X2 | X0, S2)︸ ︷︷ ︸
=H(X2)
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+ min
k∈{1,2}

I(X0;X0, Y
′
k, S1, S2, Xk | Sk)︸ ︷︷ ︸
=H(X0)

− I(X1;X2)︸ ︷︷ ︸
=H(X1)−H(X1|X2)

− I(X,Y ′1 , Y
′

2 ;X0, X1 | X1 ⊕ Y ′1 , X0, S, Y
′

1)︸ ︷︷ ︸
=0

− I(X,Y ′1 , Y
′

2 ;X0, X2 | X1 ⊕ Y ′1 , X0, S, Y
′

2)︸ ︷︷ ︸
=H(X2|X1⊕Y ′1 ,S1,S2,Y ′2)

− max
k∈{1,2}

I(X,Y ′1 , Y
′

2 ;X1 ⊕ Y ′1 | S,X0, Y
′
k)︸ ︷︷ ︸

=H(X1⊕Y ′1 |S1,S2,Y ′k)

(A.76)

(h)
= 2 +Hb(t)−H(X2 | X1 ⊕ Y ′1 , S1, S2, Y

′
2)−H(X1 ⊕ Y ′1) (A.77)

(i)
= 1 +Hb(t)− (1− q)Hb(t)− q(1− q), (A.78)

where we used the abbreviations X = (X0, X1, X2) and S = (S1, S2) and (h) holds because X1 ⊕ Y1 is

independent of (S1, S2, Y
′
k), for k = 1, 2; and (i) holds because for S1 = S2 = 1 we haveX2 = Y ′2⊕Y ′1⊕X1

and thus H(X2 | X1 ⊕ Y ′1 , S1 = 1, S2 = 1, Y ′2) = 0, for S1 = 0 the XOR X1 ⊕ Y ′1 = X1 and thus

H(X2 | X1 ⊕ Y ′1 , S1 = 1, S2, Y
′

2) = H(X2|X1) = Hb(t), and finally for S1 = 1 and S2 = 0, we have

X1 ⊕ Y ′1 = N and Y ′2 = 0 and thus H(X2 | X1 ⊕ Y ′1 , S1 = 1, S2 = 0, Y ′2) = H(X2) = 1.

The presented choice of parameters can thus achieve all rate-distortion tuples (R0,R1,R2,D1,D2) satisfying

the distortion constraints in (4.49) (which only depends on the probability t := Pr[X1 6= X2]) and

R1 ≤ 1 (A.79a)

R2 ≤ 1− (1− q)(Hb(t) + q) (A.79b)

R1 + R2 ≤ 1 + qHb(t)− q(1− q). (A.79c)

• Second choice

Same as the first choice except that V0 = X2 ⊕ Y ′2 . Following symmetric arguments as above, we conclude

that for this choice the constraints in (4.32) evaluate to:

R1 ≤ 1− (1− q)(Hb(t) + q) (A.80a)

R2 ≤ 1 (A.80b)

R1 + R2 ≤ 1 + qHb(t)− q(1− q). (A.80c)

• Combining the Choices and Time-Sharing

From the two previous subsections, we conclude that for any t ∈ [0, 1] the set of rate-distortion tuples
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(R0,R1,R2,D1,D2) is achievable if it satisfies (4.49) and

R0 + R1 ≤ 1 (A.81a)

R0 + R2 ≤ 1 (A.81b)

R0 + R1 + R2 ≤ 1 + qHb(t)− q(1− q). (A.81c)

As previously discussed, for q ≤ 1/2, the distortion constraints (4.49) do not depend on t, and thus without

loss in optimality in (A.81) one can set t = 1/2, which results in a sum-rate constraint

R0 + R1 + R2 ≤ 1 + q2. (A.82)

Combined with (A.81a) and (A.81b), this sum-rate bound establishes the achievability of the capacity region

in (4.52).

For q > 1/2 the distortion constraints (4.49) are either increasing or decreasing in t. The set of achievable rate-

distortion tuples is then obtained by varying t either over [0, 1/2] or over [1/2, 1]. Numerical results indicate

that the so obtained set is not convex and the convex hull is obtained by considering convex combinations

between different values of t > 0 and t = 0 for q ∈ [2/3, 1] and t = 1 for q ∈ [1/2, 2/3].

A.2.4 Proof of Lemma 3

Recall that Ŝnk is a function of Xn, Zn and write for each i = 1, · · · , n:

E
[
dk(Sk,i, Ŝk,i)

]
= EXn,Zn

[
E[dk(Sk,i, Ŝk,i)|Xn, Zn]

]
(A.83)

(a)
=
∑

xn,zn

PXnZn(xn, zn)
∑

ŝk∈Sk
PŜk,i|XnZn(ŝk|xn, zn)

∑

sk

PSk,i|XiZi
(sk|xi, zi)d(sk, ŝk) (A.84)

≥
∑

xn,zn

PXnZn(xn, zn) · min
ŝk∈Sk

∑

sk

PSk,i|XiZi
(sk|xi, zi)d(sk, ŝk)

= E[d(Sk,i, ŝ
∗
k,i(Xi, Zi))], (A.85)

where (a) holds by the Markov chain

(
Xi−1, Xn

i+1, Z
i−1, Zni+1, Ŝk,i

)
(−−(Xi, Zi)(−−Sk,i.
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Summing over all i = 1, . . . , n, we thus obtain:

∆
(n)
k =

1

n

n∑

i=1

E
[
d(Sk,i, Ŝk,i)

]
≥ 1

n

n∑

i=1

E[d(Sk,i, ŝ
∗
k(Xi, Zi))], (A.86)

which yields the desired conclusion.

A.2.5 Proof of Proposition 3

It suffices to show that under the described conditions, the distortion constraint (4.31) does not depend on PX . To

this end, we define Tk = ψk(X,Z) for k = 1, 2 and rewrite the expected distortion as:

E[d(Sk, Ŝk)] =
∑

(x,z)∈X×Z
PXZ(x, z)

∑

s∈Sk
PSk|XZ(s | x, z) · d(s, ŝ∗k(x, z)) (A.87)

(a)
=

∑

(x,z)∈X×Z
PXZ(x, z) · min

s′∈Ŝk

∑

(s,t)∈Sk×Tk
PSkTk|XZ(s, t | x, z)d(s, s′k) (A.88)

(b)
=

∑

(x,z,t)∈X×Z×Tk
PXZ(x, z)1{t = ψ(x, z)} · min

s′∈Ŝk

∑

s∈Sk
PSk|Tk(s | t)d(s, s′) (A.89)

=
∑

t∈Tk
PTk(t) min

s′∈Ŝk

∑

s∈Sk
PSk|Tk(s | t)d(s, s′) (A.90)

where (a) holds by the definition of ŝ∗k(x, z) and the law of total probability; and (b) by the Markov chain

Sk(−−Tk(−−(X,Z), see (4.35), and because Tk is a function of X,Z. The independence of the pair (Tk, Sk)

with X from (4.36), together with the above expression implies that the expected distortion does not depend on the

choice of the input distribution PX . Hence, we can conclude that for any given B ≥ 0, the rate-distortion tradeoff

function C(D,B) is constant over all D ≥ Dmin and coincides with the capacity of the SDMC CNoEst(B).

A.3 Proof of Chapter 5

A.3.1 Proof of Theorem 17

To derive an upper bound on the average error probability (averaged over the random code construction and the state

and channel realizations), we enlarge the error event to the event that for some k = 1, 2 and b = 1, . . . , B:

Ŵk,c,(b) 6= Wk,c,(b) or Ŵk,p,(b) 6= Wk,p,(b) or Ŵ
(k̄)
k,c,(b) 6= Wk,c,(b) (A.91)
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or

J∗k,(b) = −1 or Ĵk,(b) 6= J∗k,(b) or Ĵ
(k̄)
k,(b) 6= J∗k,(b). (A.92)

For ease of notation, we define the block-b Tx-error events for k = 1, 2 and b = 1, . . . , B:

ETx,k,(b) :=
{
Ŵ

(k)

k̄,c,(b)
6= Wk̄,c,(b) or Ĵ (k)

k̄,(b−1)
6= J∗k̄,(b−1) or J∗k,b = −1

}
, (A.93)

and

ETx,k,(B+1) :=
{
Ĵ

(k)

k̄,(B)
6= J∗k̄,(B)

}
, k ∈ {1, 2}. (A.94)

Define also the Rx-error events for k = 1, 2 and block b = 1, . . . , B + 1:

ERx,(b) :=
{
Ŵk,c,(b−1) 6= Wk,c,(b−1) or Ŵk,p,(b) 6= Wk,p,(b) or Ĵk,(b−1) 6= J∗k,(b−1) : k = 1, 2

}
. (A.95)

By the union bound and basic probability, we find:

Pr
(
Ŵ1 6= W1 or Ŵ2 6= W2

)
≤

B+1∑

b=1

Pr

(
ERx,(b)

∣∣∣∣∣
B+1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

+

B+1∑

b=1

Pr

(
ETx,1,(b)

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

+

B+1∑

b=1

Pr

(
ETx,2,(b)

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)
. (A.96)

We analyze the three sums separately. The first sum is related to Tx 1’s error event, the second sum to Tx 2’s

error event, and the third sum to the Rx’s error event.

Analysis of Tx 1’s error event

To simplify notations, we define for each block b ∈ {2, . . . , B + 1} and each triple of indices (j∗1 , ŵ2, ĵ2) the event

FTx1,(b)(j
∗
1 , ŵ2, ĵ2) that the following two conditions (A.97) and (A.98) (only Condition (A.97) for b = 1) hold:

(
uN0,(b)

(
W1,c,(b−1), Ŵ

(1)
2,c,(b−1)

)
, uN1,(b)

(
W1,c,(b), J

∗
1,(b−1)

∣∣∣W1,c,(b−1),W2,c,(b−1)

)

uN2,(b)

(
ŵ2, ĵ2

∣∣∣W1,c,(b−1),W2,c,(b−1)

)
, xN1,(b)

(
W1,p,(b)

∣∣∣W1,c,(b), J
∗
1,(b−1),W1,c,(b−1),W2,c,(b−1)

)
,
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vN1,(b)

(
j∗1
∣∣∣ J∗1,(b−1),W1,c,(b), ŵ2, ĵ2,W1,c,(b−1),W2,c,(b−1)

)
, ZN1,(b)

)

∈ T Nε (PU0U1U2X1V1Z1) (A.97)

and if b > 1

(
uN0,(b−1)

(
W1,c,(b−2),W2,c,(b−2)

)
,

uN1,(b−1)

(
W1,c,(b−1), J

∗
1,(b−1)

∣∣∣W1,c,(b−2),W2,c,(b−2)

)

uN2,(b−1)

(
W2,c,(b−1), J2,(b−2)

∣∣∣W1,c,(b−2),W2,c,(b−2)

)
,

xN1,(b−1)

(
W1,p,(b−1)

∣∣∣W1,c,(b−1), J
∗
1,(b−2),W1,c,(b−2),W2,c,(b−2)

)
,

vN2,(b−1)

(
ĵ2

∣∣∣W1,c,(b−1), J
∗
1,(b−2),W2,c,(b−1), J

∗
2,(b−2),W1,c,(b−2),W2,c,(b−2)

)
,

ZN1,(b−1)

)
∈ T Nε (PU0U1U2X1V2Z1). (A.98)

Notice that compared to (5.19) and (5.20), here we replaced the triple (Ŵ
(1)
2,c,(b−2), Ŵ

(1)
2,c,(b−1), Ĵ

(1)
2,(b−2)) by their cor-

rect valuesW2,c,(b−2),W2,c,(b−1), J
∗
2,(b−2)). Similarly, define the event FTx1,(B+1)(ĵ2) as the event that the following

two conditions are satisfied:

(
uN0,(B+1)

(
W1,c,(B),W2,c,(B)

)
,

uN1,(B+1)

(
1, J∗1,(B)

∣∣∣W1,c,(B),W2,c,(B)

)
, uN2,(B+1)

(
1, ĵ2

∣∣∣W1,c,(B),W2,c,(B)

)
,

xN1,(B+1)

(
1
∣∣∣W1,c,(B+1), J

∗
1,(B),W1,c,(B),W2,c,(B)

)
, ZN1,(B+1)

)
∈ T Nε (PU0U1U2X1Z1) (A.99)

and

(
uN0,(B)

(
W1,c,(B−1),W2,c,(B−1)

)
,

uN1,(B)

(
W1,c,(B), J

∗
1,(B)

∣∣∣W1,c,(B−1),W2,c,(B−1)

)
,

uN2,(B)

(
W

(1)
2,c,(B), J

(1)
2,(B−1)

∣∣∣W1,c,(B−1), Ŵ
(1)
2,c,(B−1)

)
,

xN1,(B)

(
W1,p,(B)

∣∣∣W1,c,(B), J
∗
1,(B−1),W1,c,(B−1), Ŵ

(1)
2,c,(B−1)

)
,

vN2,(B)

(
ĵ2

∣∣∣W1,c,(B), J
∗
1,(B−1), Ŵ

(1)
2,c,(B), J

(1)
2,(B−1),W1,c,(B−1),W2,c,(B−1)

)
,

ZN1,(B)

)
∈ T Nε (PU0U1U2X1V2Z1) (A.100)
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We continue by noticing that event
⋃b−1
b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
implies that for all b′ = 1, . . . , b− 1, k = 1, 2:

Ŵ
(k)

k̄,c,(b′)
= Wk̄,c,(b′) (A.101)

J∗k,(b′) 6= −1 (A.102)

Ĵ
(k̄)
k,(b′−1) = J∗k,(b′−1). (A.103)

Moreover, for any block b = 1, . . . , B + 1, event ĒTx,1,(b) is implied by the event that FTx1,(b)(j
∗
1 , ŵ2, ĵ2) is not

satisfied for any tuple (j∗1 , ŵ2, ĵ2) with (ŵ2, ĵ2) = (W2,c,(b), J
∗
2,(b−1)) or it is satisfied for some triple (j∗1 , ŵ2, ĵ2)

with (ŵ2, ĵ2) 6= (W2,c,(b), J
∗
2,(b−1)). Thus, the sequence of inequalities on top of the next page holds, where the

inequalities hold by the union bound. By the Covering Lemma [63], the way we construct the codebooks and the

weak law of large numbers, and because we condition on event ĒTx,2,(b−1) implying J∗2,b−1 6= −1, the first summand

in (A.104c) tends to 0 as N →∞ if

R1,v > I(V1;X1Z1 | U0U1U2). (A.105)

By the way we constructed the codebooks, and standard information-theoretic arguments [63], the sum in the second

line of (A.104c) tends to 0 as N →∞, if

R1,v+R2,v +R2,c < I(U2V1;Z1X1 | U0U1) + I(V2;Z1X1 | U0U1U2), (A.106)

the sum in the third line of (A.104c) tends to 0 as N →∞ if

R1,v+R2,v < I(U2V1;Z1X1 | U0U1) + I(V2;Z1X1 | U0U1U2), (A.107)

and the sum in the fourth line of (A.104c) tends to 0 as N →∞ if

R1,v+R2,c < I(Z1X1;U2V1 | U0U1). (A.108)

Since Condition (A.107) is obsolete in view of (A.106), we conclude that for any finite B the sum of the probability

of errors
∑B+1

b=1 Pr
(
ETx,1,(b)

∣∣⋃b−1
b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

})
tends to 0 as N → ∞ if Conditions (A.105), (A.106),

and (A.108) are satisfied.
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Pr

(
ETx,1,(b)

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

= Pr

(( ⋂

j∗1∈[2nRv,1 ]

F̄Tx1,(b)(j
∗
1 ,W2,c,(b), J

∗
2,(b−1))

)

∪
( ⋃

(j∗1 ,ŵ2,ĵ2) :

(ŵ2,ĵ2)6=(W2,c,(b),J
∗
2,(b−1)

)

FTx1,(b)(j
∗
1 , ŵ2, ĵ2)

) ∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

(A.104a)

≤ Pr




⋂

j∗1∈[2nRv,1 ]

F̄Tx1,(b)(j
∗
1 ,W2,c,(b), J

∗
2,(b−1))

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}



+ Pr

( ⋃

(j∗1 ,ŵ2,ĵ2) :

(ŵ2,ĵ2) 6=(W2,c,(b),J
∗
2,(b−1)

)

FTx1,(b)(j
∗
1 , ŵ2, ĵ2)

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

(A.104b)

≤ Pr




⋂

j∗1∈[2nRv,1 ]

F̄Tx1,(b)(j
∗
1 ,W2,c,(b), J

∗
2,(b−1))

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}



+
∑

(j∗1 ,ŵ2,ĵ2) :
ŵ2 6=W2,c,(b),

ĵ2 6=J∗2,(b−1)

Pr

(
FTx1,(b)(j

∗
1 , ŵ2, ĵ2)

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

+
∑

(j∗1 ,ĵ2) :

ĵ2 6=J∗2,(b−1)

Pr

(
FTx1,(b)(j

∗
1 ,W2,c,(b), ĵ2)

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

+
∑

(j∗1 ,ŵ2) :
ŵ2 6=W2,c,(b)

Pr

(
FTx1,(b)(j

∗
1 , ŵ2, J

∗
2,(b−1))

∣∣∣∣∣
b−1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)
, (A.104c)

105



106 A.3. PROOF OF CHAPTER 5

Analysis of Tx 2’s error event

By similar arguments, one can also prove that for finite B the sum of the probability of errors
∑B+1

b=1 Pr
(
ETx,2,(b)

∣∣⋃b−1
b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

})
tends to 0 as N →∞ if Conditions (5.25a), (5.25b), and (5.25c),

are satisfied for k = 2.

Analysis of Rx’s error event

For each block b = 2, . . . , B and each tuple (w1,c, w2,c, w1,p, w2,p, j1, j2) defineFRx,(b)(w1,c, w2,c, w1,p, w2,p, j1, j2)

as the event

(
uN0,(b)(w1,c, w2,c), u

N
1,(b)

(
W1,c,(b), j1

∣∣∣ w1,c, w2,c

)
, uN2,(b)

(
W2,c,(b), j2

∣∣∣ w1,c, w2,c

)
,

xN1,(b)

(
w1,p

∣∣∣W1,c,(b), j1, w1,c, w2,c

)
, xN2,(b)

(
w2,p

∣∣∣W2,c,(b), j2, w1,c, w2,c

)

vN1,(b)

(
J1,(b)

∣∣∣W1,c,(b),W2,c,(b), w1,c, j1, w2,c, j2

)
, vN2,(b)(J2,(b) |W1,c,(b),W2,c,(b), w1,c, j1, w2,c, j2),

Y N
(b)

)
∈ T2ε(PU0U1U2X1X2Y ). (A.109)

We continue by noticing that for b = 2, . . . , B event ĒRx,(b) is equivalent to the event that

FRx,(b)(w1,c, w2,c, w1,p, w2,p, j1, j2) is not satisfied for the tuple (w1,c, w2,c, w1,p, w2,p, j1, j2) =

(W1,c,(b−1),W2,c,(b−1), W1,p,(b),W2,p,(b), J
∗
1,(b−1), J

∗
2,(b−1)) or it is satisfied for some tuple

(w1,c, w2,c, w1,p, w2,p, j1, j2) 6= (W1,c,(b−1),W2,c,(b−1), W1,p,(b),W2,p,(b), J
∗
1,(b−1), J

∗
2,(b−1)). Similarly for

events ĒRx,(1) and ĒRx,(B+1). Thus, for b ∈ {2, . . . , B}, the sequence of (in)equalities (A.110) holds,

Pr

(
ERx,(b)

∣∣∣∣∣
B+1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

= Pr

(( ⋃

(w1,c,w2,c,w1,p,w2,p,j1,j2) 6=
(W1,c,(b−1),W2,c,(b−1),W1,p,(b),W2,p,(b),J

∗
1,b−1,J

∗
2,(b−1)

)

FRx,(b)(w1,c, w2,c, w1,p, w2,p, j1, j2)

)

∪ FRx,(b)

(
W1,c,(b−1),W2,c,(b−1),W1,p,(b),W2,p,(b), J

∗
1,b−1, J

∗
2,(b−1)

)

∣∣∣∣∣
B+1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

(A.110a)

≤
∑

(w1,c,w2,c,w1,p,w2,p,j1,j2)6=
(W1,c,(b−1),W2,c,(b−1),W1,p,(b),

W2,p,(b),J
∗
1,b−1,J

∗
2,(b−1)

)

Pr

(
FRx,(b)(w1,c, w2,c, w1,p, w2,p, j1, j2)

) ∣∣∣∣∣
B+1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)
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+ Pr

(
FRx,(b)

(
W1,c,(b−1),W2,c,(b−1),W1,p,(b),W2,p,(b), J

∗
1,b−1, J

∗
2,(b−1)

) ∣∣∣∣∣
B+1⋃

b′=1

{
ĒTx,1,(b′), ĒTx,2,(b′)

}
)

(A.110b)

where the inequalities hold by the union bound.

By the event in the conditioning and the way we construct the codebooks, and by the weak law of large numbers

and the Covering Lemma, both summands tend to 0 as N →∞ if (5.25) hold.

The scheme satisfies the distortion constraints (6.3b) because of (5.25j) and by the weak law of large numbers.

A.3.2 Fourier-Motzkin Elimination

We apply the Fourier-Motzkin Elimination Algorithm to show that Constraints (5.25) are equivalent to the constraints

in Theorem 17. For ease of notation, define

I0 := I(V1;X1X2Y | U) + I(V2;X1X2Y V1 | U) (A.111a)

I1 := I(V1;X1Z1 | U) (A.111b)

I2 := I(V2;X2Z2 | U) (A.111c)

I3 := I(U1;X2Z2 | U0U2) (A.111d)

I4 := I(U2;X1Z1 | U0U1) (A.111e)

I5 := I(V1;X2Z2 | U) (A.111f)

I6 := I(V2;X1Z1 | U) (A.111g)

I7 := I(X1X2;Y V1V2 | U) (A.111h)

I8 := I(X1;Y V1V2 | UX2) (A.111i)

I9 := I(X2;Y V1V2 | UX1) (A.111j)

I10 := I(X1;Y | U0X2) (A.111k)

I11 := I(X2;Y | U0X1) (A.111l)

I12 := I(X1X2;Y | U0U2) (A.111m)

I13 := I(X1X2;Y | U0U1) (A.111n)

I14 := I(X1X2;Y | U0) (A.111o)

I15 := I(X1X2;Y ). (A.111p)
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Setting Rk,c = Rk −Rk,p, with above definitions we can rewrite Constraints (5.25) as:

R1,v > I1 (A.112a)

R2,v > I2 (A.112b)

R2,v+R1 −R1,p < I2 + I3 (A.112c)

R1,v+R2 −R2,p < I1 + I4 (A.112d)

R1,v +R2,v+R1 −R1,p < I2 + I3 + I5 (A.112e)

R1,v+R2,v +R2 −R2,p < I1 + I4 + I6 (A.112f)

R1,p +R2,p < I7 (A.112g)

R1,p < I8 (A.112h)

R2,p < I9 (A.112i)

R1,v +R1,p < I10 + I0 (A.112j)

R2,v +R2,p < I11 + I0 (A.112k)

R1,v +R1,p +R2,p < I12 + I0 (A.112l)

R2,v +R1,p +R2,p < I13 + I0 (A.112m)

R1,v +R1,p +R2,v +R2,p < I14 + I0 (A.112n)

R1,v +R1 +R2,v +R2 < I15 + I0. (A.112o)

In a next step we eliminate the variables R1,v and R2,v to obtain:

R1 −R1,p < I3 (A.113a)

R2 −R2,p < I4 (A.113b)

R1 −R1,p < I3 + I5 − I1 (A.113c)

R2 −R2,p < I4 + I6 − I2 (A.113d)

R1,p < min{I8, I10 + I0 − I1} (A.113e)

R2,p < min{I9, I11 + I0 − I2} (A.113f)

R1,p +R2,p < min{I7, I12 + I0 − I1,

I13 + I0 − I2, I14 + I0 − I1 − I2} (A.113g)
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R1 +R2 < I15 + I0 − I1 − I2 (A.113h)

Notice that I1 ≥ I5 and I2 ≥ I6 because V1 − (Z1X1U) − (X2Z2) form a Markov chain, and thus Constraints

(A.113a) and (A.113b) are inactive in view of Constraints (A.113c) and (A.113d). We thus neglect (A.113a) and

(A.113b) in the following. Eliminating next variable R1,p, where we take into account the nonnegativity of R1,p and

R1 −R1,p, we obtain:

R1 < I3 + I5 − I1 + min{I8, I10 + I0 − I1} (A.114a)

R1 +R2,p < I3 + I5 − I1 + min{I7, I12 + I0 − I1,

I13 + I0 − I2, I14 + I0 − I1 − I2} (A.114b)

R2 −R2,p < I4 + I6 − I2 (A.114c)

R2,p < min{I9, I11 + I0 − I2} (A.114d)

R2,p < min{I7, I12 + I0 − I1,

I13 + I0 − I2, I14 + I0 − I1 − I2} (A.114e)

R1 +R2 < I15 + I0 − I1 − I2 (A.114f)

and

I3 + I5 > I1 (A.114g)

I10 + I0 > I1. (A.114h)

Notice that I7 > I9 and I13 > I11 and therefore the two Constraints (A.114d) and (A.114e) combine to

R2,p < min{I9, I11 + I0 − I2,

I12 + I0 − I1, I14 + I0 − I1 − I2}. (A.115)

Eliminating finally R2,p (while taking into account the nonnegativity of R2,p and R2 −R2,p) results in:

R1 < I3 + I5 − I1 + min{I8, I10 + I0 − I1} (A.116a)

R1 < I3 + I5 − I1 + min{I7, I12 + I0 − I1,

I13 + I0 − I2, I14 + I0 − I1 − I2} (A.116b)
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R2 < I4 + I6 − I2 + min{I9, I11 + I0 − I2

I12 + I0 − I1, I14 + I0 − I1 − I2} (A.116c)

R1 +R2 < I4 + I6 − I2 + I3 + I5 − I1

+ min{I7, I12 + I0 − I1,

I13 + I0 − I2, I14 + I0 − I1 − I2} (A.116d)

R1 +R2 < I15 + I0 − I1 − I2 (A.116e)

and

I3 + I5 > I1 (A.116f)

I4 + I6 > I2 (A.116g)

I14 + I0 > I1 + I2 (A.116h)

I10 + I0 > I1 (A.116i)

I11 + I0 > I2 (A.116j)

I12 + I0 > I1. (A.116k)

Notice that I12 > I10 and thus (4.42) is obsolete in view of (A.116i). Moreover, since also I7 > I8, Constraints

(A.116a) and (A.116b) combine to

R1 < I3 + I5 − I1 + min{I8, I10 + I0 − I1,

I13 + I0 − I2, I14 + I0 − I1 − I2}. (A.117)

The final expression is thus given by constraints:

R1 < I3 + I5 − I1 + min{I8, I10 + I0 − I1

I13 + I0 − I2, I14 + I0 − I1 − I2} (A.118a)

R2 < I4 + I6 − I2 + min{I9, I11 + I0 − I2

I12 + I0 − I1, I14 + I0 − I1 − I2} (A.118b)

R1 +R2 < I4 + I6 − I2 + I3 + I5 − I1

+ min{I7, I12 + I0 − I1,
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I13 + I0 − I2, I14 + I0 − I1 − I2} (A.118c)

R1 +R2 < I15 + I0 − I1 − I2 (A.118d)

and

I3 + I5 > I1 (A.118e)

I4 + I6 > I2 (A.118f)

I14 + I0 > I1 + I2 (A.118g)

I10 + I0 > I1 (A.118h)

I11 + I0 > I2. (A.118i)

A.4 Proof for Example 2

In this part, we explicitly evaluate Theorem 17 and Corollary 16 for Example 2. To omit the unnecessary complexity,

we assume Rx observes the output and states, so we replace Y by Y = (Y ′, S1, S2).

A.4.1 Distortion 2 in Example 2

We compute the distortion directly by choosing the state which makes minimum distortion at each case mentioned

in the proof of Example 2. The detailed steps of the distortion computation is as follows:

D(5.32)
2 =

∑

S2,U1,X2,Z2,V1

PS2,U1X2Z2V1(s2, u1, x2, z2, v1)d(ŝ2, s2)

= Pr[X2 = 0] min{ps, p̄s}

+ min
{

Pr[S2 = 0, U1 = 0, X2 = 1, Z2 = 1, V1 = 1︸ ︷︷ ︸
Y ′=1,B=0

],Pr[S2 = 1, U1 = 0, X2 = 1, Z2 = 1, V1 = 1]
}

+ min
{

Pr[S2 = 0, U1 = 1, X2 = 1, Z2 = 1, V1 = 1],Pr[S2 = 1, U1 = 1, X2 = 1, Z2 = 1, V1 = 1]
}

+ min
{

Pr[S2 = 0, U1 = 0, X2 = 1, Z2 = 2, V1 = 1],Pr[S2 = 1, U1 = 0, X2 = 1, Z2 = 2, V1 = 1]
}

+ min
{

Pr[S2 = 0, U1 = 1, X2 = 1, Z2 = 2, V1 = 1],Pr[S2 = 1, U1 = 1, X2 = 1, Z2 = 2, V1 = 1]
}

= Pr[X2 = 0] min{ps, p̄s}
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+ min
{
PS2(0)PU1,X2(0, 1)PY ′|S2U1X2

(1 | 0, 0, 1)
︸ ︷︷ ︸

PS1
(1)PX1|U1

(1|0)

PZ2|Y ′(1 | 1)
︸ ︷︷ ︸

PB(0)

,

PS2(1)PU1,X2(0, 1)PY ′|S2U1X2
(1 | 1, 0, 1)

︸ ︷︷ ︸
1−PS1

(1)PX1|U1
(1|0)

PZ2|Y ′(1 | 1)
︸ ︷︷ ︸

PB(0)

}

+ min
{
PS2(0)PU1,X2(1, 1)PY ′|S2U1X2

(1 | 0, 1, 1)
︸ ︷︷ ︸

PS1
(1)PX1|U1

(1|1)

PZ2|Y ′(1 | 1)
︸ ︷︷ ︸

PB(0)

PS2(1)PU1,X2(1, 1)PY ′|S2U1X2
(1 | 1, 1, 1)

︸ ︷︷ ︸
1−PS1

(1)PX1|U1
(1|1)

PZ2|Y ′(1 | 1)
︸ ︷︷ ︸

PB(0)

}

+ min
{
PS2(0)PU1,X2(0, 1)PY ′|S2U1X2

(1 | 0, 0, 1)
︸ ︷︷ ︸

PS1
(1)PX1|U1

(1|0)

PZ2|Y ′(2 | 1)
︸ ︷︷ ︸

PB(1)

,

PS2(1)PU1,X2(0, 1)PY ′|S2U1X2
(1 | 1, 0, 1)

︸ ︷︷ ︸
1−PS1

(1)PX1|U1
(1|0)

PZ2|Y ′(2 | 1)
︸ ︷︷ ︸

PB(1)

}

+ min
{
PS2(0)PU1,X2(1, 1)PY ′|S2U1X2

(1 | 0, 1, 1)
︸ ︷︷ ︸

PS1
(1)PX1|U1

(1|1)

PZ2|Y ′(2 | 1)
︸ ︷︷ ︸

PB(1)

,

PS2(1)PU1,X2(1, 1)PY ′|S2U1X2
(1 | 1, 1, 1)

︸ ︷︷ ︸
1−PS1

(1)PX1|U1
(1|1)

PZ2|Y ′(2 | 1)
︸ ︷︷ ︸

PB(1)

}
(A.119)

which simplifies to (5.34)

D(5.32)
2 = PX2(0) min{ps, p̄s}

+ PU1X2(0, 1) ·min
{
p̄s · psr1t̄1t̄2 + (1− psr1)t1t2, ps · (1− psr1)t̄1t̄2

}

(A.120)

+ PU1X2(1, 1) ·min
{
p̄s · psr̄1t̄1t̄2 + (1− psr̄1)t1t2, ps · (1− psr̄1)t̄1t̄2

}
(A.121)

We compute the distortion directly according to the scheme introduced in Corollary (16) without using r.v V1:

D
Corollary16
2 =

∑

S2,U1,X2,Z2

PS2,U1X2Z2(s2, u1, x2, z2)d(ŝ2, s2)

= PX2(0) min{PS2(1), PS2(0)}

+ min{Pr[S2 = 0, X2 = 1, U1 = 0, Z2 = 1],Pr[S2 = 1, X2 = 1, U1 = 0, Z2 = 1]}

+ min{Pr[S2 = 0, X2 = 1, U1 = 1, Z2 = 1],Pr[S2 = 1, X2 = 1, U1 = 1, Z2 = 1]}

+ min{Pr[S2 = 0, X2 = 1, U1 = 0, Z2 = 2],Pr[S2 = 1, X2 = 1, U1 = 0, Z2 = 2]}
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+ min{Pr[S2 = 0, X2 = 1, U1 = 1, Z2 = 2],Pr[S2 = 1, X2 = 1, U1 = 1, Z2 = 2]}

= PU1X2(0, 1) min{p̄s(psr1t̄+ t(1− psr1)), t̄(1− psr1)ps}

+ PU1X2(1, 1) min{p̄s(psr̄1t̄+ t(1− psr̄1)), t̄(1− psr̄1)ps}

+ PU1X2(0, 1) min{ps(psr1t̄+ t(1− psr1))}

+ PU1X2(1, 1) min{ps(psr̄1t̄+ t(1− psr̄1))}

= PU1X2(0, 1)

{
min{p̄s(psr1t̄+ t(1− psr1)), t̄(1− psr1)ps} (A.122)

+ min{ps(psr1t̄+ t(1− psr1))}
}

+ PU1X2(1, 1)

{
min{p̄s(psr̄1t̄+ t(1− psr̄1)), t̄(1− psr̄1)ps} (A.123)

+ min{ps(psr̄1t̄+ t(1− psr̄1))}
}

A.4.2 Computing Rate Constraints for Example 2

As we mentioned after (5.32), we need to introduce Ek with probability pek and thus, replace Vk by Ek, Vk in terms

(A.111a)-(A.111j). By using Ek, we regulate how much we sacrifice the rate of Txk to reduce Txk̄’s distortion,

otherwise we just achieve the minimum distortion.

To compute I0

The evaluation of the mutual information term (A.111a) is detailed out as follows:

I0 := I(V1E1;X1X2Y | U) + I(V2E2;X1X2Y V1E1 | U)

= p̄e1

[
H(V1 | U1U2)−H(V1 | X1X2Y

′S1S2)︸ ︷︷ ︸
H(B1|B0)

]
+ p̄e2

[
H(V2 | U1U2)−H(V2 | X1X2Y

′S1S2)︸ ︷︷ ︸
H(B2|B0)

]

= p̄e1

[
PU1U2(0, 0)f0(r1, r2, t1) + PU1U2(1, 0)f0(r̄1, r2, t1) + PU1U2(0, 1)f0(r1, r̄2, t1)

+PU1U2(1, 1)f0(r̄1, r̄2, t1)−H(t1, t̄1)

]

p̄e2

[
PU1U2(0, 0)f0(r2, r1, t2) + PU1U2(1, 0)f0(r̄2, r1, t2) + PU1U2(0, 1)f0(r2, r̄1, t2)

+PU1U2(1, 1)f0(r̄2, r̄1, t2)−H(t2, t̄2)

]
(A.124)
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where

f0(r1, r2, t) , H

(
(1− psr1)(1− psr2)t̄+ psr1psr2t,

psr1(1− psr2)t̄+ (1− psr1)psr2t̄+ (1− psr1)(1− psr2)t,

psr1psr2t̄+ psr1(1− psr2)t+ (1− psr1)psr2t

)
, (A.125)

in which for each pair of (U1, U2), we find the conditional probability of PV1|U1U2
(v1 | u1, u2):

PV1|U1U2
(0 | 0, 0) = PZ1|U1U2

(0 | 0, 0)
︸ ︷︷ ︸

Pr[S1X1=0 & S2X2=0 & B1=0|U1=U2=0]

+ PZ1|U1U2
(3 | 0, 0)

︸ ︷︷ ︸
Pr[S1X1=1 & S2X2=1 & B1=1|U1=U2=0]

=
(
1− Pr[S1X1 = 1 | U1 = 0]

)(
1− Pr[S2X2 = 1 | U2 = 0]

)
PB1(0)

+ Pr[S1X1 = 1 | U1 = 0] Pr[S2X2 = 1 | U2 = 0]PB1(1)

= (1− psr1)(1− psr2)t̄1 + psr1psr2t1, (A.126a)

PV1|U1U2
(1 | 0, 0) = Pr

[
S1X1 + S2X2 +B1 = 1 | U1 = U2 = 0

]

= Pr[S1X1 = 1 | U1 = 0]
(
1− Pr[S2X2 = 1 | U2 = 0])PB1(0)

+
(
1− Pr[S1X1 = 1 | U2 = 0]

)
Pr[S2X2 = 1 | U1 = 0]PB1(0)

+
(
1− Pr[S1X1 = 1 | U1 = 0]

)(
1− Pr[S2X2 = 1 | U2 = 0]

)
PB1(1)

= psr1(1− psr2)t̄1 + (1− psr1)psr2t̄1 + (1− psr1)(1− psr2)t1, (A.126b)

PV1|U1U2
(2 | 0, 0) = Pr

[
S1X1 + S2X2 +B1 = 2 | U1 = U2 = 0

]

= Pr[S1X1 = 1 | U1 = 0] Pr[S2X2 = 1 | U2 = 0]PB1(0)

+ Pr[S1X1 = 1 | U1 = 0](1− Pr[S2X2 = 1 | U2 = 0])PB1(1)

+ (1− Pr[S1X1 = 1 | U1 = 0]) Pr[S2X2 = 1 | U2 = 0]PB1(1)

= psr1psr2t̄1 + psr1(1− psr2)t1 + (1− psr1)psr2t1. (A.126c)

To compute I1

The mutual information term in (A.111b) is evaluated in following steps:

I1 := I(E1V1;X1Z1 | U)
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= p̄e1

[
H(V1 | U2X1)−H(V1 | U2X1Z1)︸ ︷︷ ︸

0

]

= p̄e1

[
PU2X1(0, 0)f1(r2, t1) + PU2X1(1, 0)f1(r̄2, t1)

+PU2X1(0, 1)G1(r2, t1) + PU2X1(1, 1)G1(r̄2, t1)

]
(A.127)

where

f1(r2, t1) , H

(
(1− psr2)t̄1, psr2t̄1 + (1− psr2)t1, psr2t1

)
(A.128)

and

G1(r2, t1) , H

(
p̄s(1− psr2)t̄1 + pspsr2t1, ps(1− psr2)t̄1 + p̄spsr2t̄1 + p̄s(1− psr2)t1,

p2
sr2t̄1 + ps(1− psr2)t1 + p̄spsr2t1

)
(A.129)

The function f1(r2, t1) , H(V1 | u2, x1 = 0) is obtainable by calculating the conditional probability PV1|U2X1

as follows:

PV1|U2X1
(0 | 0, 0) = Pr[S2X2 +B1 = 0 | U2 = 0, X1 = 0]︸ ︷︷ ︸

Pr[S2X2=0 & B1=0|U2=0,X1=0]

+ Pr[S2X2 +B1 = 3 | U2 = 0, X1 = 0]︸ ︷︷ ︸
0

= (1− psr2)t̄1 (A.130a)

PV1|U2X1
(1 | 0, 0) = Pr[S2X2 +B1 = 1 | U2 = 0, X1 = 0] = psr2t̄1 + (1− psr2)t1 (A.130b)

PV1|U2X1
(2 | 0, 0) = Pr[S2X2 +B1 = 2 | U2 = 0, X1 = 0] = psr2t1 (A.130c)

and G1(r2, t1) , H(V1 | U2 = 0, X1 = 1) is the conditional entropy function computable by following conditional

probabilities:

PV1|U2X1
(0 | 0, 1) = Pr[S1 + S2X2 +B1 = 0 | U2 = 0, X1 = 1]︸ ︷︷ ︸

Pr[S1=0 & S2X2=0 & B1=0|U2=0,X1=1]

+ Pr[S1 + S2X2 +B1 = 3 | U2 = 0, X1 = 1]︸ ︷︷ ︸
Pr[S1=1 & S2X2=1 & B1=1|U2=0,X1=1]

= p̄s(1− psr2)t̄1 + pspsr2t1 (A.131a)
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PV1|U2X1
(1 | 0, 1) = Pr[S1 + S2X2 +B1 = 1 | U2 = 0, X1 = 1]

= Pr[S1 = 1, S2X2 = 0, B1 = 0 | U2 = 0, X1 = 1]

+ Pr[S1 = 0, S2X2 = 1, B1 = 0 | U2 = 0, X1 = 1]

+ Pr[S1 = 0, S2X2 = 0, B1 = 1 | U2 = 0, X1 = 1]

= ps(1− psr2)t̄1 + p̄spsr2t̄1 + p̄s(1− psr2)t1 (A.131b)

PV1|U2X1
(2 | 0, 1) = Pr[S1 + S2X2 +B1 = 2 | U2 = 0, X1 = 1]

= Pr[S1 = 1, S2X2 = 1, B1 = 0 | U2 = 0, X1 = 1]

+ Pr[S1 = 1, S2X2 = 0, B1 = 1 | U2 = 0, X1 = 1]

+ Pr[S1 = 0, S2X2 = 1, B1 = 1 | U2 = 0, X1 = 1]

= p2
sr2t̄1 + ps(1− psr2)t1 + p̄spsr2t1 (A.131c)

To compute I2

The mutual information term (A.111c) specializes to:

I2 = p̄e2

[
PU1X2(0, 0)f1(r1, t2) + PU1X2(1, 0)f1(r̄1, t2)

+PU1X2(0, 1)G1(r1, t2) + PU1X2(1, 1)G1(r̄2, t2)

]
(A.132)

To Compute I3

The rate constraint (A.111d) specialize to as detailed out in the following:

I3 = PU0X2(0, 0)f3(k1) + PU0X2(1, 0)f3(k̄1) + PU0X2(0, 1)G3(k1) + PU0X2(1, 1)G3(k̄1)

−PU1X2(0, 0)f3(r̄1)− PU1X2(1, 0)f3(r1)− PU1X2(0, 1)G3(r̄1)− PU1X2(1, 1)G3(r1) (A.133a)

where

f3(k1) , H

(
(1− psk̄1)t̄2, (1− psk̄1)t2 + psk̄1t̄2, psk̄1t2

)
(A.133b)
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G3(k) , H

(
(1− psk̄)pst̄2, psk̄p̄st̄2 + (1− psk̄)[pst̄2 + p̄st̄2],

(1− psk̄)pst2 + psk̄p̄st2 + psk̄pst̄2, psk̄pst2

)
(A.133c)

in which we have computed the following conditional entropies:

• To compute H(Z2 | U0X2), we need the related conditional probabilities

– First, we start by fixing (U0 = 0, X2 = 0)

Pr
[
Z2 = 0 | U0 = 0, X2 = 0

]
= Pr

[
S1X1 +B2 = 0 | U0 = 0, X2 = 0

]

=

(
1− ps(1)PX1|U0

(1 | 0)

)
PB2(0)

= (1− psk̄1)t̄2 (A.134a)

Pr
[
Z2 = 1 | U0 = 0, X2 = 0

]
= (1− psk̄1)t2 + psk̄1t̄2 (A.134b)

Pr
[
Z2 = 2 | U0 = 0, X2 = 0

]
= psk̄1t2 (A.134c)

– Second, we fix X2 = 1 and calculate the conditional probabilities similarly:

Pr
[
Z2 = 0 | U0 = 0, X2 = 1

]
= Pr

[
S1X1 + S2 +B2 = 0 | U0 = 0

]

=

(
1− PS1(1)PX1|U0

(1 | 0)

)
PS2(0)PB2(0)

= (1− psk̄1)pst̄2 (A.135)

Pr
[
S1X1 + S2 +B2 = 1 | U0 = 0, X1 = 1

]
=
(
PS1(1)PX1|U0

(1 | 0)
)
PS2(0)PB2(0)

+

(
1− PS1(1)PX1|U0

(1 | 0)

)
PS2(1)PB2(0)

+

(
1− PS1(1)PX1|U0

(1 | 0)

)
PS2(0)PB2(1)

= psk̄1p̄st̄2 + (1− psk̄1)[pst̄2 + p̄st̄2] (A.136)

Pr
[
S1X1 + S2 +B = 2 | U0 = 0, X1 = 1

]
=

(
1− PS1(1)PX1|U0

(1 | 0)

)
PS2(1)PB2(1)

+
(
PS1(1)PX1|U0

(1 | 0)
)
PS2(0)PB2(1)

+
(
PS1(1)PX1|U0

(1 | 0)
)
PS2(1)PB2(0)

= (1− psk̄1)pst2 + psk̄1p̄st2 + psk̄1pst̄2 (A.137)

Pr
[
S1X1 + S2 +B = 3 | U0 = 0, X2 = 1

]
= PS1(1)PX1|U0

(1 | 0)PS2(1)PB2(1)

= psk̄1pst2 (A.138)
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– In an analogous way, we have following conditional probabilities for H(Z1 | U1X2):

Pr
[
Z2 = 0 | U1 = 0, X2 = 0

]
= Pr

[
S1X1 +B2 = 0 | U1 = 0, X2 = 0

]

=

(
1− PS1(1)PX1|U1

(1 | u1)

)
PB2(0)

= (1− psr1)t̄2 (A.139)

(A.140)

Pr
[
Z2 = 1 | U1 = 0, X2 = 0

]
= Pr

[
S1X1 +B2 = 1 | U1 = 0

]

= (1− psr1)t2 + psr1t̄2 (A.141)

Pr
[
Z2 = 2 | U1 = 0, X2 = 0

]
= Pr

[
S1X1 +B2 = 2 | U1 = 0, X2 = 0

]
= psr1t1 (A.142)

To compute I4

In an analogous way to (A.111d), the mutual information term (A.111e) specializes to:

I4 = PU0X1(0, 0)f4(k1) + PU0X1(1, 0)f4(k̄1) + PU0X1(0, 1)G4(k1) + PU0X1(1, 1)G4(k̄1)

−PU2X1(0, 0)f4(r̄1)− PU2X1(1, 0)f4(r1)− PU2X1(0, 1)G4(r̄1)− PU2X1(1, 1)G4(r1), (A.143)

where

f4(k) , H

(
(1− psk̄)t̄2, (1− psk̄)t2 + psk̄t̄2, psk̄t2

)
(A.144)

G4(r) , H

(
(1− psr̄)pst̄2, psr̄p̄st̄2 + (1− psr̄)[pst̄2 + p̄st̄2],

(1− psr̄)pst2 + psr̄p̄st2 + psr̄pst̄2, psr̄pst2

)
(A.145)

To compute I5

The final expression of the mutual information term (A.111f) specializes to:

I5 := H(V1 | U1U2)− PX2Z2(0, 0)H(t1, t̄1)− PX2Z2(1, 3)H(t1, t̄1)− PX2Z2(0, 2)H(t1, t̄1)

−PU1X2Z2(0, 0, 1)G5(r1, t1, t2)− PU1X2Z2(1, 0, 1)G5(r̄1, t1, t2)

−PU1X2Z2(0, 1, 1)Q5(r1)− PU1X2Z2(1, 1, 1)Q5(r̄1)

−PU1X2Z2(0, 1, 2)f5(r1)− PU1X2Z2(1, 1, 2)f5(r̄1) (A.146)
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where

G5(r1, t1, t2) , H(V1 | u1 = 0, x2 = 0, z2 = 1)

=
( (1− psr1)t̄1t2

(psr1)t̄2 + (1− psr1)t2
, ,
psr1t̄1t̄2 + (1− psr1)t1t2
(psr1)t̄2 + (1− psr1)t2

,
psr1t1t̄2

(psr1)t̄2 + (1− psr1)t2

)
(A.147)

and we define three following functions:

Q5(r1, t1, t2) , H(V1 | u1 = 0, x2 = 1, z2 = 1) = (
(1− psr1)p̄st̄1t2

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2
,

(1− psr1)p̄st1t2 + (psr1p̄s + (1− pSr1)ps)t̄1t̄2
psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2

,

(
psr1p̄s + (1− psr1)ps

)
t1t̄2

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2

)
(A.148)

and

f5(r1, t1, t2) , H(V1 | u1 = 0, x2 = 1, z2 = 2) =

(
psr1t1t̄2

(psr1p̄s + (1− psr1)ps)t2 + p2
sr1bart2(

psr1p̄s + (1− psr1)ps

)
t̄1t2

(psr1p̄s + (1− psr1)ps)t2 + p2
sr1t̄2

,
p2
sr1t̄1t̄2 +

(
psr1p̄s + (1− psr1)ps

)
t1t2

(
psr1p̄s + (1− psr1)ps

)
t2 + p2

sr1t̄2

)
(A.149)

Th detailed steps are as follows:

I5 := I(V1;X2Z2 | U) = H(V1 | U1U2)−H(V1 | U1X2Z2) = H(V1 | U1U2)

−PU1X2Z2(0, 0, 0)H(V1 | u1 = 0, x2 = 0, z2 = 0)− PU1X2Z2(1, 0, 0)H(V1 | u1 = 1, x2 = 0, z2 = 0)

−PU1X2Z2(0, 0, 3)H(V1 | u1 = 0, x2 = 0, z2 = 3)− PU1X2Z2(1, 0, 3)H(V1 | u1 = 1, x2 = 0, z2 = 3)︸ ︷︷ ︸
0

−PU1X2Z2(0, 1, 3)H(V1 | u1 = 0, x2 = 1, z2 = 3)− PU1X2Z2(1, 1, 3)H(V1 | u1 = 1, x2 = 1, z2 = 3)

−PU1X2Z2(0, 0, 1)H(V1 | u1 = 0, x2 = 0, z2 = 1)− PU1X2Z2(1, 0, 1)H(V1 | u1 = 1, x2 = 0, z2 = 1)

−PU1X2Z2(0, 1, 1)H(V1 | u1 = 0, x2 = 1, z2 = 1)− PU1X2Z2(1, 1, 1)H(V1 | u1 = 1, x2 = 1, z2 = 1)

−PU1X2Z2(0, 1, 2)H(V1 | u1 = 0, x2 = 1, z2 = 2)− PU1X2Z2(1, 1, 2)H(V1 | u1 = 1, x2 = 1, z2 = 2)

(A.150)
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We have already calculated H(V1 | U1U2)in (A.126a). To compute functions G5(r1), Q5(r1), f5(r1) based on each

observation of (U1, X2, Z2), we have the steps as follows:

• For case (U1, X2, Z2) = (0, 0, 0), the conditional entropy is given by

H(V1 | u1 = 0, x2 = 0, z2 = 0) = H
(
t̄1, t1

)
(A.151)

where one can compute it as follows:

– Pr[V1 = 0 | U1 = 0, X2 = 0, Z2 = 0] = Pr[Z1 = 0 | Z2 = 0] = Pr[B1 = 0 | B2 = 0] = t̄1,

– Pr[V1 = 1 | U1 = 0, X2 = 0, Z2 = 0] = Pr[Z1 = 1 | Z2 = 0] = Pr[B1 = 1 | B2 = 0] = t1,

– Pr[V1 = 2 | U1 = 0, X2 = 0, Z2 = 0] = 0,

The last step is concluded by assuming that the feedback noises are independent.

• For case (U1, X2, Z2) = (1, 0, 0), the steps are similar to previous case

H(V1 | u1 = 1, x2 = 0, z2 = 0) = H
(
t̄1, t1

)
(A.152)

• For case (U1, X2, Z2) = (0, 1, 3), we have

– Pr[V1 = 0 | U1 = 0, X2 = 1, Z2 = 3] = Pr[Z1 = 0 | U1 = 0, X2 = 1, Z2 = 3]︸ ︷︷ ︸
0

+ Pr[Z1 = 3 | U1 =

0, X2 = 1, Z2 = 3] = t1

– Pr[V1 = 1 | U1 = 0, X2 = 1, Z2 = 3] = 0, because Z2 = 3 means that S1X1 +S2X2 = 2 which means

Z1 ≥ 2

– Pr[V1 = 2 | U1 = 0, X2 = 1, Z2 = 3] = t̄1

• For case (U1, X2, Z2) = (1, 1, 3), we go through similar step as if we have U1 = 0.

• For case (U1, X2, Z2) = (0, 0, 1), we have the following steps:

Pr
[
V1 = 0 | U1 = 0, X2 = 0, Z2 = 1

]
=

Pr
[
Z1 = 0 | U1 = 0, X2 = 0, Z2 = 1

]
+ Pr

[
Z1 = 3 | U1 = 0, X2 = 0, Z2 = 1

]

︸ ︷︷ ︸
0, because Z2 = 1, Z2 can not be 3
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= Pr[S1X1 +B1 = 0 | U1 = 0, X2, Z2 = S1X1 +B2 = 1]

=
Pr[S1X1 +B1 = 0 & S1X1 +B2 = 1 | U1 = 0]

Pr[S1X1 +B2 = 1 | U1 = 0]

=
(1− psr1)PB1B2(0, 1)

(psr1)PB2(0) + (1− psr1)PB2(1)

=
(1− psr1)t̄1t2

(psr1)t̄2 + (1− psr1)t2
, (A.153)

Pr
[
V1 = 1 | U1 = 0, X2 = 0, Z2 = 1

]

= Pr
[
S1X1 +B1 = 1 | U1 = 0, X2 = 0, S1X1 +B2 = 1

]

=
Pr[S1X1 +B1 = 1 & S1X1 +B2 = 1 | U1 = 0]

Pr[S1X1 +B1 = 1 | U1 = 0]

=
psPX1|U1

(1 | 0)PB1B2(0, 0) + (1− psPX1|U1
(1 | 0))PB1B2(1, 1)

(psr1)PB2(0) + (1− psr1)PB2(1)

=
psr1t̄1t̄2 + (1− psr1)t1t2
(psr1)t̄2 + (1− psr1)t2

(A.154)

and

Pr
[
V1 = 2 | U1 = 0, X2 = 0, Z2 = 1

]

= Pr
[
S1X1 +B1 = 2 | U1 = 0, X2 = 0, S1X1 +B2 = 1

]

=
Pr
[
S1X1 +B1 = 2 & S1X1 +B2 = 1 | U1 = 0

]

Pr
[
S1X1 +B1 = 2 | U1 = 0

]

=
psPX1|U1

(1 | 0)PB1B2(1, 0)

(psPX1|U1
(1 | 0))PB2(0) + (1− psPX1|U1

(1 | 0))PB2(1)

=
psr1t1t̄2

(psr1)t̄2 + (1− psr1)t2
(A.155)

• The computation for (U1, X2, Z2) = (1, 0, 1) is similar to the case in which U1 = 0 and it is obtainable by

replacing r1 into r̄1 and vice versa.(= G5(r̄1))

• For case (U1, X2, Z2) = (0, 1, 1), we have

H

(
(1− psr1)p̄st̄1t2

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2
,
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(1− psr1)p̄sPB1B2(1, 1) + (psr1p̄s + (1− pSr1)ps)PB1B2(0, 0)

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2
,

(
psr1p̄s + (1− psr1)ps

)
t1t̄2

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2

)
(A.156)

where we compute the following conditional probabilities:

Pr[V1 = 0 | U1 = 0, X2 = 1, Z2 = 1]

= Pr[Z1 = 0 | U1 = 0, X2 = 1, Z2 = 1]+ = Pr[Z1 = 3 | U1 = 0, X2 = 1, Z2 = 1]︸ ︷︷ ︸
0

= Pr[S1X1 + S2 +B1 = 0 | U1 = 0, X2 = 1, S1X1 + S2 +B2 = 1]

=
Pr[S1X1 + S2 +B1 = 0 & S1X1 + S2 +B2 = 1 | U1 = 0]

Pr[S1X1 + S2 +B2 = 1 | U1 = 0]

=
(1− psr1)p̄sPB1B2(0, 1)

psr1p̄sPB2(0) + (1− psr1)psPB2(0) + (1− psr1)p̄sPB2(1)

=
(1− psr1)p̄st̄1t2

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2
(A.157)

Pr[V1 = 1 | U1 = 0, X2 = 1, Z2 = 1]

= Pr[S1X1 + S2 +B1 = 1 | U1 = 0, X2 = 1, S1X1 + S2 +B2 = 1]

=
(1− psr1)p̄sPB1B2(1, 1) + (psr1p̄s + (1− pSr1)ps)PB1B2(0, 0)

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2
(A.158)

Pr[V1 = 2 | U1 = 0, X2 = 1, Z2 = 1]

=

(
psr1p̄s + (1− psr1)ps

)
PB1B2(1,0)

psr1p̄sPB2(0) + (1− psr1)psPB2(0) + (1− psr1)p̄sPB2(1)

=

(
psr1p̄s + (1− psr1)ps

)
t1t̄2

psr1p̄st̄2 + (1− psr1)pst̄2 + (1− psr1)p̄st2
(A.159)

• The case (U1, X2, Z2) = (1, 1, 1) is analogous to the previous case when U1 = 0 . Thus we replace r1, r̄1 by

r̄1, r1 respectively.

• For case (U1, X2, Z2) = (0, 0, 2), we simply have H(t̄1, t1) on account of the following computations:

Pr[V1 = 0 | U1 = 0, X2 = 1, Z2 = 1] = PB1|B2
(0 | 1) = 0 (A.160)
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Pr[V1 = 1 | U1 = 0, X2 = 1, Z2 = 1] = PB1|B2
(0 | 1) = t̄1 (A.161)

Pr[V1 = 2 | U1 = 0, X2 = 1, Z2 = 1] = PB1|B2
(1 | 1) = t1 (A.162)

• For (U1, X2, Z2) = (1, 0, 2), the calculation and final result is similar as previous case.

• For case (U1, X2, Z2) = (0, 1, 2), we obtain the following entropy:

H

(
p2
sr1t1t̄2

(psr1p̄s + (1− psr1)ps)t2 + p2
sr1t̄2

,

(
psr1p̄s + (1− psr1)ps

)
t̄1t2

(psr1p̄s + (1− psr1)ps)t2 + p2
sr1t̄2

,

p2
sr1t̄1t̄2 +

(
psr1p̄s + (1− psr1)ps

)
t1t2

(
psr1p̄s + (1− psr1)ps

)
t2 + p2

sr1t̄2

)
(A.163)

where each conditional probability is comuted as follows:

Pr[V1 = 0 | U1 = 0, X2 = 1, Z2 = 2]

= Pr[Z1 = 0 | U1 = 0, X2 = 1, Z2 = 2]︸ ︷︷ ︸
=0

+ Pr[Z1 = 3 | U1 = 0, X2 = 1, Z2 = 2] (A.164)

=
Pr[Z1 = 3, U1 = 0, X2 = 1, Z2 = 2]

Pr[U1 = 0, X2 = 1, Z2 = 2]

=
Pr[S1X1 + S2X2 +B1 = 3, S1X1 + S2X2 +B2 = 2 | U1 = 0, X2 = 1]

Pr[Z2 = 2 | U1 = 0, X2 = 1]

=
Pr[S1X1 + S2 +B1 = 3, S1X1 + S2 +B2 = 2 | U1 = 0]

Pr[S1X1 + S2 +B2 = 2 | U1 = 0]

=
Pr[S1X1 + S2 = 2 | U1 = 0]PB1B2(1, 0)

(psr1p̄s + (1− psr1)ps)PB2(1) + p2
sr1PB2(0)

=
p2
sr1t1t̄2

(psr1p̄s + (1− psr1)ps)t2 + p2
sr1t̄2

(A.165)

Pr[V1 = 1 | U1 = 0, X2 = 1, Z2 = 2] =

(
psr1p̄s + (1− psr1)ps

)
PB1B2(0, 1)

(psr1p̄s + (1− psr1)ps)PB2(1) + p2
sr1PB2(0)

=

(
psr1p̄s + (1− psr1)ps

)
t̄1t2

(psr1p̄s + (1− psr1)ps)t2 + p2
sr1t̄2

(A.166)
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Pr[V1 = 2 | U1 = 0, X2 = 1, Z2 = 2] =
p2
sr1PB1B2(0, 0) +

(
psr1p̄s + (1− psr1)ps

)
PB1B2(1, 1)

(
psr1p̄s + (1− psr1)ps

)
PB2(1) + p2

sr1PB2(0)

=
p2
sr1t̄1t̄2 +

(
psr1p̄s + (1− psr1)ps

)
t1t2

(
psr1p̄s + (1− psr1)ps

)
t2 + p2

sr1t̄2
, (A.167)

To compute I6

We replace (r1, t1, t2) by (r2, t2, t1) in functions f5(·), Q5(·), G5(·), respectively in A.149, A.147, A.148 to compute

mutual information term (A.111g):

I6 = H(V2 | U1U2)− PX1Z1(0, 0)H(t2, t̄2)− PX1Z1(1, 3)H(t2, t̄2)− PX1Z1(0, 2)H(t2, t̄2)

−PU2X1Z1(0, 0, 1)G5(r2, t2, t1)− PU2X1Z1(1, 0, 1)G6(r̄2, t2, t1)

−PU2X1Z1(0, 1, 1)Q6(r2, t2, t1)− PU2X1Z1(1, 1, 1)Q6(r̄2, t2, t1)

−PU2X1Z1(0, 1, 2)f6(r2, t2, t1)− PU2X1Z1(1, 1, 2)f6(r̄2, t2, t1) (A.168)

To compute I7

The mutual information term (A.111h) specializes to:

I7 = pe1pe2f7,1 + p̄e1pe2f7,2 + pe1 p̄e2f7,3 + p̄e1 p̄e2f7,4 (A.169)

In I7, we have to be careful because it is the only term that contains (Y ′, V1, V2, E1, E2) in which (Y ′, V1, V2) are

not independent because Y ′, Z1 and Z2 are not necessarily independent. We go through the following steps:

I7 := I(X1X2;Y ′S1S2V1V2E1E2 | U)

= H(Y ′S1S2V1V2 | E1E2U)−H(Y ′S1S2V1V2 | E1E2X1X2)

= PE1E2(1, 1)

[
H(Y ′ | US1S2)−H(Y ′ | X1X2S1S2)︸ ︷︷ ︸

H(t0,t̄0)

]

+ PE1E2(0, 1)

[
H(Y ′V1 | US1S2)−H(Y ′V1 | X1X2S1S2)︸ ︷︷ ︸

H(t0,t̄0)+H(t1,t̄1)

]

+ PE1E2(1, 0)

[
H(Y ′V2 | US1S2)−H(Y ′V2 | X1X2S1S2)︸ ︷︷ ︸

H(t0,t̄0)+H(t2,t̄2)

]
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+ PE1E2(0, 0)

[
H(Y ′V1V2 | US1S2)−H(Y ′V1V2 | X1X2S1S2)︸ ︷︷ ︸

H(t0,t̄0)+H(t1,t̄1)+H(t2,t̄2)

]
(A.170)

= pe1pe2f7,1 + p̄e1pe2f7,2 + pe1 p̄e2f7,3 + p̄e1 p̄e2f7,4 (A.171)

Here, we compute f7,1, f7,2, f7,3, f7,4 as some individual terms as detailed out in the following steps:

f7,1 , p̄2
sH(t0, t̄0)−H(t0, t̄0)

+psp̄s PU1(0)︸ ︷︷ ︸
p∗q̄1

H(X1 +B0 | U1 = 0) + psp̄s PU1(0)︸ ︷︷ ︸
p∗q1

H(X1 +B0 | U1 = 1)

+p̄sps PU2(0)︸ ︷︷ ︸
p∗q̄2

H(X2 +B0 | U2 = 0) + +p̄sps PU2(1)︸ ︷︷ ︸
p∗q2

H(X2 +B0 | U2 = 1)

+ p2
s PU1U2(0, 0)︸ ︷︷ ︸
pq1q2+p̄q̄1q̄2

H(X1 +X2 +B0 | U1 = 1, U2 = 0) (A.172)

+p2
s PU1U2(0, 1)︸ ︷︷ ︸
pq1q̄2+p̄q̄1q2

H(X1 +X2 +B0 | U1 = 0, U2 = 1) (A.173)

+p2
s PU1U2(1, 0)︸ ︷︷ ︸
pq̄1q2+p̄q1q̄2

H(X1 +X2 +B0 | U1 = U2 = 0) (A.174)

+p2
s PU1U2(1, 1)︸ ︷︷ ︸
pq̄1q̄2+p̄q1q2

H(X1 +X2 +B0 | U1 = U2 = 1) (A.175)

=
(
p̄2
s − 1

)
H(t0, t̄0) + psp̄s

(
(p ∗ q̄1)H(r̄1t̄0, r1 ∗ t0, r1t0) + (p ∗ q1)H(r1t̄0, r̄1 ∗ t0, r̄1t0)

)

+p̄sps

[
(p ∗ q̄2)H(r̄2t̄0, r2 ∗ t0, r2t0) + (p ∗ q2)H(r2t̄0, r̄2 ∗ t0, r̄2t0)

]

+p2
s

[
(pq1q2 + p̄q̄1q̄2)H

(
r̄1r̄2t̄0, (r1 ∗ r2)t̄0 + r̄1r̄2t0, r1r2t̄0 + (r1 ∗ r2)t0, r1r2t0

)

+(pq1q̄2 + p̄q̄1q2)H
(
r̄1r2t̄0, (r1 ∗ r̄2)t̄0 + r̄1r2t0, r1r̄2t̄0 + (r1 ∗ r̄2)t0, r1r̄2t0

)

+(pq̄1q2 + p̄q1q̄2)H
(
r1r̄2t̄0, (r̄1 ∗ r2)t̄0 + r1r̄2t0, r̄1r2t̄0 + (r̄1 ∗ r2)t0, r̄1r2t0

)

+(pq̄1q̄2 + p̄q1q2)H
(
r1r2t̄0, (r̄1 ∗ r̄2)t̄0 + r1r2t0, r̄1r̄2t̄0 + (r̄1 ∗ r̄2)t0, r̄1r̄2t0

)]
(A.176)

f7,2 ,

[
p̄2
s

(
H(t0, t̄0) +H(t1, t̄1)

)
−H(t0, t̄0)−H(t1, t̄1)

+psp̄sH(X1 +B0, X1 +B1 | U1) + p̄spsH(X2 +B0, X2 +B1 | U2)

+p2
sH(X1 +X2 +B0, X1 +X2 +B1 | U1U2)

]
(A.177)

= (p̄2
s − 1)

(
H(t0, t̄0) +H(t1, t̄1)

)
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+psp̄s

[
PU1(0)H

(
r̄1t̄0t̄1, r̄1t̄0t1, r̄1t0t̄1, r1t̄0t̄1 + r̄1t0t1, r1t̄0t1, r1t0t̄1, r1t0t1

)

︸ ︷︷ ︸
,G7,2(r1)

+PU1(1)G7,2(r̄1)

]

+p̄sps

[
PU2(0)G7,2(r2) + PU2(1)G7,2(r̄2)

]

+p2
s

[
PU1U2(0, 0)H7,2(r1, r2) + PU1U2(0, 1)H7,2(r1, r̄2)

+PU1U2(1, 0)H7,2(r̄1, r2) + PU1U2(1, 1)H7,2(r̄1, r̄2)

]
(A.178)

where

H7,2 , H

(
r̄1r̄2t̄0t̄1, r̄1r̄2t̄0t1, r̄1r̄2t0t̄1, (r1 ∗ r2)t̄0t̄1 + r̄1r̄2t0t1, (r1 ∗ r2)t̄0t1, (r1 ∗ r2)t0t̄1,

r1r2t̄0t̄1 + (r1 ∗ r2)t0t1, r1r2t̄0t1, r1r2t0t̄1, r1r2t0t1

)
(A.179)

The calculation of f7,3 is similar to f7,2 by replacing r1 → r2 and t1 → t2.

f7,3 ,

[
p̄2
s

(
H(t0, t̄0) +H(t2, t̄2)

)
−H(t0, t̄0)−H(t2, t̄2)

+psp̄sH(X1 +B0, X1 +B2 | U1) + p̄spsH(X2 +B0, X2 +B2 | U2)

+p2
sH
(
X1 +X2 +B0, X1 +X2 +B2 | U1U2

)]
(A.180)

f7,4 ,

[
p̄2
s

(
H(t0, t̄0) +H(t1, t̄1) +H(t2, t̄2)

)
−H(t0, t̄0)−H(t1, t̄1)−H(t2, t̄2)

+psp̄sH(X1 +B0, X1 +B1, X1 +B2 | U1) + p̄spsH(X2 +B0, X2 +B1, X2 +B2 | U2)

+p2
sH
(
X1 +X2 +B0, X1 +X2 +B1 X1 +X2 +B2 | U1U2

)]
(A.181)

=
(
p̄2
s − 1

)(
H(t0, t̄0) +H(t1, t̄1) +H(t2, t̄2)

)

+ psp̄sG7,4(r1) + p̄spsG7,4(r2)

+p2
s

[
PU1U2(0, 0)G7,4(r1, r2) + PU1U2(0, 1)G7,4(r1, r̄2)

+PU1U2(1, 0)G7,4(r̄1, r2) + PU1U2(1, 1)G7,4(r̄1, r̄2)

]
(A.182)
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where

G7,4(r) , H
(
r̄t̄0t̄1t̄2, r̄t̄0t̄1t2, r̄t̄0t1t̄2, r̄t̄0t1t2, r̄t0t̄1t̄2, r̄t0t̄1t2, r̄t0t1t̄2,

rt̄0t̄1t̄2 + r̄t0t1t2, rt̄0t̄1t2, rt̄0t1t̄2, rt̄0t1t2, rt0t̄1t̄2, rt0t̄1t2, rt0t1t̄2, rt0t1t2

)
(A.183)

and

G7,5(a, b) , H

(
āb̄t̄0t̄1t̄2, āb̄t̄0t̄1t2, , āb̄t̄0t1t̄2, , āb̄t̄0t1t2, , āb̄t0t̄1t̄2, āb̄t0t̄1t2, , āb̄t0t1t̄2,

(a ∗ b)t̄0t̄1t̄2 + āb̄t0t1t2, , (a ∗ b)t̄0t̄1t2, (a ∗ b)t̄0t1t̄2, , (a ∗ b)t̄0t1t2, , (a ∗ b)t0t̄1t̄2,

, (a ∗ b)t0t̄1t2, (a ∗ b)t0t1t̄2 , abt0t1t2 + (a ∗ b)t0t1t2 , abt̄0t̄1t2,

abt̄0t1t̄2, abt̄0t1t2, , abt0t̄1t̄2, abt0t̄1t2, abt0t1t̄2, abt0t1t2

)
. (A.184)

To compute I8, I9

The final expression of mutual information term (A.111i) is given by:

I8 = pe1pe2

[
ps
[
(p ∗ q̄1)H(r̄1t̄0, r1 ∗ t0, r1t0) + (p ∗ q1)H(r1t̄0, r̄1 ∗ t0, r̄1t0)]

]

+ p̄e1pe2

[
p̄s
[
H(t0, t̄0) +H(t1, t̄1)

]
+ psH

(
r̄1(t̄0t̄1 + t0 ∗ t1), r1t̄0t̄1 + r̄1t0t1, r1(t0 ∗ t1), r1t0t1

)

−H(t0, t̄0)−H(t1, t̄1)

]

+ pe1 p̄e2

[
p̄s
(
H(t0, t̄0) +H(t2, t̄2)]

)
−H(t0, t̄0)−H(t2, t̄2)

+psH

(
r̄1(t̄0t̄2 + t0 ∗ t2), r1t̄0t̄2 + r̄1t0t2, r1(t0 ∗ t2), r1t0t2

)]

+ p̄e1 p̄e2

[
p̄s
(
H(t0, t̄0) +H(t1, t̄1) +H(t2, t̄2)

)
−H(t0, t̄0)−H(t1, t̄1)−H(t2, t̄2)

+ ps
(
(p ∗ q̄1)f8(r1) + (p ∗ q1f8(r̄1)

)]
(A.185)

One can see the detailed steps as follows:

I8 := I(X1;Y V1V2E1E2 | UX2)

= PE1E2(1, 1)

[
I(X1 : Y ′V1 = V2 = ∅ | U1X2S1S2)

]
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+ PE1E2(0, 1)

[
I(X1 : Y ′ V1︸︷︷︸

=1{Z1=1}+2·1{Z1=2}

| U1X2S1S2)

]

+ PE1E2(1, 0)

[
I(X1 : Y ′ V2︸︷︷︸

=1{Z2=1}+2·1{Z2=2}

| U1X2S1S2)

]

+ PE1E2(0, 0)

[
I(X1 : Y ′ V1︸︷︷︸

=1{Z1=1}+2·1{Z1=2}

, V2︸︷︷︸
=1{Z2=1}+2·1{Z2=2}

| U1X2S1S2)

]
(A.186)

= PE1E2(1, 1)

[
H(Y ′ | U1X2S1S2)︸ ︷︷ ︸

PS1
(0)H(B0)+PS1

(1)H(X1+B0|U1)

−H(t0, t̄0)

]

+ PE1E2(0, 1)

[
H(Y ′, V1 | U1S1S2X2)︸ ︷︷ ︸

PS1
(0)(H(B0,B1))+PS1

(1)H(X1+B0,X1+B1|U1)

− H(B0, B1)︸ ︷︷ ︸
H(t0,t̄0)+H(t1,t̄1)

+ PE1E2(1, 0)

[
H(Y ′, V2 | U1S1S2X2)︸ ︷︷ ︸

PS1
(0)(H(B0,B2))+PS1

(1)H(X1+B0,X1+B1|U1)

− H(B0, B2)︸ ︷︷ ︸
H(t0,t̄0)+H(t2,t̄2)

]

+ PE1E2(0, 0)

[
H(Y ′, V1, V2 | U1S1S2X2)︸ ︷︷ ︸

PS1
(0)H(B0,B1,B2)+PS1

(1)H(X1+B0,X1+B1,X1+B2|U1)

−H(B0, B1, B2)

]
(A.187)

= PE1E2(1, 1)

[
ps
[
(p ∗ q̄1)H(r̄1t̄0, r1 ∗ t0, r1t0) + (p ∗ q1)H(r1t̄0, r̄1 ∗ t0, r̄1t0)]

]

+ PE1E2(1, 0)

[
p̄s
[
H(t0, t̄0) +H(t1, t̄1)

]
+ psH

(
r̄1(t̄0t̄1 + t0 ∗ t1), r1t̄0t̄1 + r̄1t0t1, r1(t0 ∗ t1), r1t0t1

)

−H(t0, t̄0)−H(t1, t̄1)

]

+ PE1E2(1, 0)

[
p̄s
(
H(t0, t̄0) +H(t2, t̄2)]

)
−H(t0, t̄0)−H(t2, t̄2)

+psH

(
r̄1(t̄0t̄2 + t0 ∗ t2), r1t̄0t̄2 + r̄1t0t2, r1(t0 ∗ t2), r1t0t2

)]

+ PE1E2(0, 0)

[
p̄s
(
H(t0, t̄0) +H(t1, t̄1) +H(t2, t̄2)

)
−H(t0, t̄0)−H(t1, t̄1)−H(t2, t̄2)

+ ps
(
(p ∗ q̄1)f8(r1) + (p ∗ q1f8(r̄1)

)]
(A.188)

where

f8(r1) , H

(
r̄1t̄0t̄1t̄2, r̄1t̄0t̄1t2 + r̄1t̄0t1t̄2 + r̄1t0t̄1t̄2 + r1t̄0t̄1t̄2,

r̄1t̄0t1t2 + r̄1t0t̄1t2 + r̄1t0t1t̄2+, r1t̄0t̄1t2 + r1t̄0t1t̄2 + r1t0t̄1t̄2,

r1t̄0t1t2 + r1t0t̄1t2 + r1t0t1t̄2, r̄1t0t1t2 + r1t̄0t̄1t̄2, r1t0t1t2

)
(A.189)
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Due to symmetry of the Txs, we have similar steps for I9 with parameters q2, r2, t2 corresponding to Z2, X2:

I9 = pe1pe2

[
ps
[
(p ∗ q̄2)H(r̄2t̄0, r2 ∗ t0, r2t0) + (p ∗ q2)H(r2t̄0, r̄2 ∗ t0, r̄2t0)]

]

+ pe1 p̄e2

[
p̄s
[
H(t0, t̄0) +H(t2, t̄2)

]
+ psH

(
r̄2(t̄0t̄2 + t0 ∗ t2), r2t̄0t̄2 + r̄2t0t2, r2(t0 ∗ t2), r2t0t2

)

−H(t0, t̄0)−H(t1, t̄1)

]

+ p̄e1pe2

[
p̄s
(
H(t0, t̄0) +H(t1, t̄1)]

)
−H(t0, t̄0)−H(t1, t̄1)

+psH

(
r̄2(t̄0t̄1 + t0 ∗ t1), r2t̄0t̄1 + r̄2t0t1, r2(t0 ∗ t1), r2t0t1

)]

+ p̄e1 p̄e2

[
p̄s
(
H(t0, t̄0) +H(t1, t̄1) +H(t2, t̄2)

)
−H(t0, t̄0)−H(t1, t̄1)−H(t2, t̄2)

+ ps
(
(p ∗ q̄2)f8(r2) + (p ∗ q2f8(r̄2)

)]
(A.190)

To compute I10

The mutual information term (A.111k) is given by:

I10 := I(X1;Y | U0X2) = H(Y ′ | S1S2U0X2)−H(Y ′ | S1S2U0X2X1)

= PS1(0)H(t0, t̄0) + PS1(1)H(X1 +B0 | U0, X2)−H(t0, t̄0)

= ps

[
p̄H

(
(q ∗ r̄1)t̄0, (q ∗ r̄1)t0 + (q ∗ r1)t̄0, (q ∗ r1)t0

)

+pH

(
(q ∗ r1)t̄0, (q ∗ r1)t0 + (q ∗ r̄1)t̄0, (q ∗ r̄1)t0

)]
− psH(t0, t̄0) (A.191)

To compute I11

The mutual information term (A.111l) is calculated as follows:

I11 := I(X2;Y | U0X1) = H(Y ′ | U0X1S1S2)−H(Y ′ | U0X1X2S1S2)︸ ︷︷ ︸
H(t0,t̄0)

= PS2(0)H(t0, t̄0) + PS2(1)H(X2 +B0 | U0, X1)−H(t0, t̄0)

= ps

[
p̄H

(
(q ∗ r̄2)t̄0, (q ∗ r̄2)t0 + (q ∗ r2)t̄0, (q ∗ r2)t0

)
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+pH

(
(q ∗ r2)t̄0, (q ∗ r2)t0 + (q ∗ r̄2)t̄0, (q ∗ r̄2)t0

)]
− psH(t0, t̄0) (A.192)

To compute I13, I12

The rate constraint (A.111m) specialize as detailed out in the following where we use f13(·) defined later by different

inputs to reduce the complexity of the calculations :

I12 := I(X1X2;Y | U0U2) = H(Y ′ | U0U2S1S2)−H(Y ′ | U0U2S1S2X1X2)︸ ︷︷ ︸
H(t0,t̄0)

= p2
s

[
PU0U2(0, 0)f13(r2, k1, t0) + PU0U2(0, 1)f13(r̄2, k1, t0)

+PU0U2(1, 0)f13(r2, k̄1, t0) + PU0U2(1, 1)f13(r̄2, k̄1, t0)

]

+ psp̄s

[
PU2(0)H(r̄2t̄0, r̄2t0 + r2t̄0, r2t0) + PU2(1)H(r2t̄0, r2t0 + r̄2t0, r̄2t0)

]

+ p̄sps

[
PU2(0)H(k1t̄0, k1t0 + k̄1t0, k̄1t0) + PU2(1)H(k̄1t̄0, k̄1t0 + k1t̄0, k1t0)

]

+ (p̄2
s − 1)H(t0, t̄0) (A.193)

The final expression of (A.111n) is as follows:

I13 = p2
s

[
PU0U1(0, 0)f13(r1, k2, t0) + PU0U1(0, 1)f13(r̄1, k2, t0)

+ PU0U1(1, 0)f13(r1, k̄2, t0) + PU0U1(1, 1)f13(r̄1, k̄2, t0)

]

+ psp̄s

[
PU1(0)G13(r1) + PU1(1)G13(r̄1)

]
+ p̄sps

[
PU1(0)G13(k̄2) + PU1(1)G13(k2)

]

+ (p̄2
s − 1)H(t0, t̄0) (A.194)

The term (A.111n) specialize s as detailed out in the following:

I13 := I(X1X2;Y | U0U1) = H(Y ′ | U0U1S1S2)−H(Y ′ | U0U1S1S2X1X2)︸ ︷︷ ︸
H(t0,t̄0)

= PS1S2(1, 1)

[
PU0U1(0, 0)f13(r1, k2, t0) + PU0U1(0, 1)f13(r̄1, k2, t0)

+ PU0U1(1, 0)f13(r1, k̄2, t0) + PU0U1(1, 1)f13(r̄1, k̄2, t0)

]

+ PS1S2(1, 0)

[
PU1(0)G13(r1) + PU1(1)G13(r̄1)

]
+ PS1S2(0, 1)

[
PU1(0)G13(k̄2) + PU1(1)G13(k2)

]

+ (PS1S2(0, 0)− 1)H(t0, t̄0)
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(A.195)

= p2
s

[
PU0U1(0, 0)f13(r1, k2, t0) + PU0U1(0, 1)f13(r̄1, k2, t0)

+ PU0U1(1, 0)f13(r1, k̄2, t0) + PU0U1(1, 1)f13(r̄1, k̄2, t0)

]

+ psp̄s

[
PU1(0)G13(r1) + PU1(1)G13(r̄1)

]
+ p̄sps

[
PU1(0)G13(k̄2) + PU1(1)G13(k2)

]

+ (p̄2
s − 1)H(t0, t̄0) (A.196)

where

f13(r, k, t) , H

(
r̄kt̄, rkt̄+ r̄k̄t̄+ r̄kt, rk̄t̄+ rkt+ r̄k̄t, rk̄t0

)
, (A.197)

and

G13(r1) = H(r̄1t̄0, r̄1t0 + r1t̄0, r1t0). (A.198)

To compute I14

The mutual information term (A.111o) specializes as detailed out in the following:

I14 = I(X1X2;Y ′S1S2 | U0) = H(Y ′ | S1S2U0)−H(Y ′ | X1X2S1S2U0)︸ ︷︷ ︸
H(t0,t̄0)

= p2
s

[
PU0(0)f14(k1, k2) + PU0(1)f14(k̄1, k̄2)

]
+ (p̄2

s − 1)H(t0, t̄0)

+ p̄sps

[
PU0(0)H

(
k2t̄0, k2t0 + k̄2t̄0, k̄2t0

)
+ PU0(1)H

(
k̄2t̄0, k̄2t0 + k2t̄0, k2t0

)]

+ psp̄s

[
PU0(0)H

(
k1t̄0, k1t0 + k̄1t̄0, k̄1t0

)
+ PU0(1)H

(
k̄1t̄0, k̄1t0 + k1t̄0, k1t0

)]
(A.199)

where

f14(k1, k2) , H

(
k1k2t̄0, k1k2t0 + (k1k̄2 + k̄1k2)t̄0, k̄1k̄2t̄0 + (k1k̄2 + k̄1k2)t0, k̄1k̄2t0

)
. (A.200)
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To compute I15

The mutual information term (A.111p) is calculated as follows:

I15 = p2
sH

(
(pk1k2 + p̄k̄1k̄2)t̄0, p̄

[
(k1k̄2 + k̄1k2)t̄0 + k̄1k̄2t0

]
+ p
[
(k1k̄2 + k̄1k2)t̄0 + k1k2t0

]
,

p̄
[
(k1k̄2 + k̄1k2)t0 + k1k2t̄0

]
+ p
[
(k1k̄2 + k̄1k2)t0 + k̄1k̄2t̄0

]
, (p̄k1k2 + pk̄1k̄2)t0

)

+ p̄spsH

([
(p ∗ q̄1)r̄1 + (p ∗ q1)r1

]
t̄0,
[
(p ∗ q̄1)r1 + (p ∗ q1)r̄1

]
t0

,
[
(p ∗ q̄1)r̄1 + (p ∗ q1)r1

]
t0 +

[
(p ∗ q̄1)r1 + (p ∗ q1)r̄1

]
t̄0

)

+ psp̄sH

(
[(p ∗ q̄2)r̄2 + (p ∗ q2)r2

]
t̄0, ,

[
(p ∗ q̄2)r2 + (p ∗ q2)r̄2

]
t0

,
[
(p ∗ q̄2)r̄2 + (p ∗ q2)r2

]
t0 +

[
(p ∗ q̄2)r2 + (p ∗ q1)r̄2

]
t̄0

)

+(p̄2
s − 1)H(t0, t̄0) (A.201)

The mutual information term (A.111p) specializes to

I15 := I(X1X2;Y ′S1S2) = H(Y ′ | S1S2)−H(Y ′ | S1S2X1X2)︸ ︷︷ ︸
H(t0,t̄0)

= H(S1X1 + S2X2 +B0 | S1S2)−H(t0, t̄0)

= PS1S2(1, 1)H

(
Pr[X1 +X2 +B0 = 0]︸ ︷︷ ︸

PX1X2
(0,0)t̄0

, Pr[X1 +X2 +B0 = 1],︸ ︷︷ ︸
PX1X2

(0,0)t0+PX1X2
(X1 6=X2)t̄0

Pr[X1 +X2 +B0 = 2],︸ ︷︷ ︸
PX1X2

(X1 6=X2)t0+PX1X2
(1,1)t̄0

Pr[X1 +X2 +B0 = 3]︸ ︷︷ ︸
PX1X2

(1,1)t0

)

+ PS1S2(0, 1)H

[
PX2(0)t̄0, PX2(0)t0 + PX2(1)t̄0, PX2(1)t0

]

+ PS1S2(1, 0)H

[
PX1(0)t̄0, PX1(0)t0 + PX1(1)t̄0, PX1(1)t0

]

+ PS1S2(0, 0)H(t0, t̄0)−H(t0, t̄0)

= p2
s ·H

(
(pk1k2 + p̄k̄1k̄2)t̄0, (A.202)

(
p̄
[
(k1k̄2 + k̄1k2)t̄0 + k̄1k̄2t0

]
+ p
[
(k1k̄2 + k̄1k2)t̄0 + k1k2t0

])
,

p̄
[
(k1k̄2 + k̄1k2)t0 + k1k2t̄0

]
+ p
[
(k1k̄2 + k̄1k2)t0 + k̄1k̄2t̄0

]
, (p̄k1k2 + pk̄1k̄2)t0

)
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+p̄spsH

([
(p ∗ q̄1)r̄1 + (p ∗ q1)r1

]
t̄0,
[
(p ∗ q̄1)r1 + (p ∗ q1)r̄1

]
t0,

[
(p ∗ q̄1)r̄1 + (p ∗ q1)r1

]
t0 +

[
(p ∗ q̄1)r1 + (p ∗ q1)r̄1

]
t̄0

)

+psp̄s ·H
(

[(p ∗ q̄2)r̄2 + (p ∗ q2)r2

]
t̄0,
[
(p ∗ q̄2)r2 + (p ∗ q2)r̄2

]
t0,

[
(p ∗ q̄2)r̄2 + (p ∗ q2)r2

]
t0 +

[
(p ∗ q̄2)r2 + (p ∗ q1)r̄2

]
t̄0

)

+(p̄2
s − 1)H(t0, t̄0). (A.203)

Now, we have all terms to apply rate region inequalities in (A.116a)-(A.116e) with constraints (A.116f)-(A.116k). It

suffices to do optimization over all parameter values.
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Titre: Une approche basée sur la théorie de l’information pour l’estimation et la communication intégrées
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Résumé: Les réseaux sans fil de la prochaine généra-
tion devraient prendre en charge les techniques de détec-
tion. Des exemples importants sont les systèmes de trans-
port intelligents, où les véhicules détectent en permanence
les changements environnementaux et échangent des infor-
mations avec les véhicules ou les serveurs centraux. Il ex-
iste des solutions naïves pour réaliser ces deux tâches, qui
proposent de partager les ressources entre les deux. Cepen-
dant, les coûts élevés de spectre et de matériel de ces ap-
proches encouragent l’intégration des tâches de détection
et de communication (ISAC) via une seule forme d’onde
et une seule plateforme matérielle. Cette thèse se con-
centre sur l’ISAC théorique de l’information. Nous ex-
aminons le premier modèle informationnel théorique pour
ISAC dans [1] où un canal sans mémoire dépendant de
l’état (SDMC) avec des signaux de rétroaction général-
isés est observé au niveau de l’émetteur (Tx). Notre pre-
mière contribution est de caractériser le compromis fon-
damental entre les taux de communication et la distorsion
de détection des canaux de diffusion (BC) dépendants de
l’état, mono-Tx et bi-Rx, qui sont physiquement dégradés.

Nous fournissons également des limites intérieures et ex-
térieures sur les compromis taux-distorsion réalisables pour
les canaux de diffusion généraux. La stratégie optimale de
détection des Tx uniques est un simple estimateur symbole
par symbole et l’optimalité de cet estimateur découle du
fait que les canaux de rétroaction généralisés et la séquence
d’état sont tous deux sans mémoire. Ce n’est pas néces-
sairement le cas dans les configurations avec plus d’une Tx.
Plus précisément, pour le MAC, nous proposons une détec-
tion collaborative où chaque Tx compresse d’abord les sor-
ties et les entrées obtenues pour extraire les informations
d’état, puis transmet l’indice de compression à l’aide d’un
code de canal pur aux autres Tx. Nous décrivons égale-
ment deux schémas ISAC collaboratifs pour D2D, basés
sur la séparation source-canal/le schéma de canal bidirec-
tionnel de Han et basés sur le codage conjoint source-canal
(JSCC). Dans le scénario MAC et D2D, nos schémas ISAC
sont strictement concaves dans les paires taux-distorsion
et améliorent donc également les stratégies classiques de
partage du temps ou des ressources.

Title: An Information Theory-Based Approach to Integrated Sensing and Communication

Keywords: ISAC, JSC, Communication, Sensing, Information theory, multi-terminal network

Abstract: Next-generation wireless networks are ex-
pected to support sensing techniques. Important examples
are intelligent transport systems, where vehicles contin-
uously sense environmental changes and exchange infor-
mation with vehicles or central servers. There are some
naive solutions to do both tasks which propose to share
the resources between the two. But, the high spectrum and
hardware costs of these approaches encourage to integrate
the sensing and communication (ISAC) tasks via a single
waveform and a single hardware platform. This thesis fo-
cuses on information-theoretic ISAC. We review the first
information-theoretic model for ISAC in [1] where a state-
dependent memoryless channel (SDMC) with generalized
feedback signals observed at the transmitter (Tx). Our first
contribution is to characterize the fundamental tradeoff be-
tween communication rates and sensing distortion of state-
dependent single-Tx two-Rx broadcast channels (BC) that
are physically degraded. We also provide inner and outer

bounds on the achievable rate-distortion tradeoffs for gen-
eral BCs. The single-Txs’ optimal sensing strategy is a sim-
ple symbol-by-symbol estimator and the optimality of this
estimator stems from the fact that the generalized feedback
channels and the state-sequence both are memoryless. This
is not necessarily the case in setups with more than one Tx.
Specifically, for the MAC, we propose collaborative sens-
ing where each Tx first compresses the obtained outputs
and inputs to extract state information, then transmits the
compression index using a pure channel code to the other
Tx. Also, we describe two collaborative ISAC schemes for
D2D, based on source-channel separation/Han’s two-way
channel scheme and based on joint source-channel coding
(JSCC). In both the MAC and the D2D scenario, our ISAC
schemes are strictly concave in the rate-distortion pairs and
thus also improve over classical time- or resource-sharing
strategies.
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