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ellular communications have become an integral part of everyday life. Since the rise 

of smartphones in 2007, demand for higher data-rates and increased network 

capacity has exponentially grown which has fuelled the research and development 

of new communication standards. As of 2018, the groundwork has been laid out for 

the next step in mobile communication, the 5G standard. However, each new 

technology brings new challenges. This first chapter outlines the context of 5G development 

and the requirements it imposes from a circuit design point of view. These criteria are used to 

define the current needs and subsequently the objectives of the following thesis. 
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1 Evolution of Mobile Communication Standards 

Cellular communications have come a long way since the deployment of the first-generation 

standards (1G) in 1984. Back then, wireless communication was achieved through analog 

frequency modulation known as Frequency Division Multiple Access (FDMA). Each user 

would be allocated a frequency band of 30KHz on a carrier frequency around 500MHz. 

Moreover, the different existing standards were incompatible [1]. 

The rise of the number of users quickly led to a saturation of the radio-frequency (RF) spectrum 

which served as the motivation for creating the second generation of communication standards 

(2G). This effort was initially led by the Conference of European Post and Telecommunication 

Administrations (CEPT) which founded the coordinating group Groupe Spécial Mobile (GSM) 

to oversee European cellular radio development. However, as time went on, GSM’s aspirations 

became much more far-reaching and its acronym now stood for Global System for Mobile 

Communications. This new standard was the world’s first digital cellular system, opening up 

the possibilities for improvement upon the 1G system. Thanks to its use of digital signals, which 

can be clearly defined in time, Time Division Multiple Access (TDMA) was made possible. As 

a result, several channels can be multiplexed onto a single carrier with a bandwidth of 200KHz 

with the two main frequency bands being 900MHz and 1800MHz [2]. 

The advent of the 2000s saw the arrival of the third generation (3G) of communication standards 

which focused on providing internet services such as video streaming and email exchange. This 

was done through the Universal Mobile Telecommunications System (UMTS) based on Code 

Division Multiple Access (CDMA) which further improved spectral efficiency. While UMTS 

was not the standard to bring internet connectivity (that distinction goes to the EDGE standard 

which can be considered as an evolution of the 2G GSM standard; a 2.5G), it did greatly 

improve data-rates from 384Kbit/s to 1.92Mbit/s. Furthermore, additional bands were allocated 

for 3G use in the 900-2600MHz range with channel bandwidths of 3.84MHz [3]. 

The introduction and rise in popularity of smartphones in the 2010s fuelled the demand for 

increased data-rates which could accommodate Voice-over Internet Protocol (VoIP) 

applications such as video-calls and live streaming. The International Telecommunications 

Union (ITU) therefore set the technical specifications of the next mobile standard evolution, 

the fourth generation (4G), one of which were data-rates of 100Mbit/s and 1Gbit/s for moving 

and stationary users respectively as well as channel bandwidths between 5 and 20MHz. Two 

main standards are considered 4G-compliant: The first is the Worldwide Interoperability for 

Microwave Access (WiMAX), and the second more popular one is the Long-Term Evolution 

Advanced (LTE-A). It should be noted that while the precursor to LTE-A, the LTE was 

commercialized as a 4G service, it did not in fact fulfil the data-rate requirement and as a result 

cannot be considered a 4G standard. Both WiMAX and LTE-A were based on Orthogonal 

Frequency Division Multiple Access (OFDMA) air interface which improves on the FDMA by 

using multiple narrowband sub-carriers which are mutually orthogonal, thereby preventing 

interference between them [4], [5]. 

Finally, the fifth generation (5G) evolution of mobile standards has three main objectives: The 

first is enhanced Mobile Broadband (eMBB) which serves as an extension to 4G services, 

allowing for higher data-rates (up to 10Gbit/s) and better coverage in urban settings through the 

use of massive Multiple Input Multiple Output (mMIMO) protocols. The second objective is 

ultra-Reliable and Low Latency Communication (uRLLC) which allows for the evolution of 
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certain services such as autonomous self-driving cars and remote surgery where high speed 

communication is essential. The last objective is massive Machine Type Communication 

(mMTC) which will provide connectivity between smart objects and sensors; namely the 

Internet of Things (IoT) [6], [7]. 

As this work primarily deals with 5G applications, the next section will focus on 5G system 

specifications. 

2 5G System Specifications 

The 5G New Radio (5G NR) standard was first introduced in 2018 with the publication of 

Release 15 by the Third Generation Partnership Project (3GPP). The launch of this new 

standard would be done in two phases: Phase 1 refers to the deployment of the 5G Non-

Standalone (5G NSA) mode which relies on existing LTE infrastructure and is mainly 

concerned with eMBB applications. As a result, this deployment mode, which began in 2020 

uses much of the same frequency bands as LTE referred to as Frequency Range 1 (FR1) which 

are spread between 450MHz and 6GHz. 

Phase 2 will see the deployment of the 5G Standalone (5G SA) mode which cater to eMBB as 

well as uRLLC and mMTC applications. This second mode will require an update of current 

cellular infrastructure and extend into millimetre-wave (mmW) frequencies between 24GHz 

and 52GHz also referred to as FR2 [8]. 

The different 5G NR frequency bands can therefore be grouped in four main categories as 

shown in Table 1.1 below. 

Table 1.1 – Classification of the different 5G NR frequency bands and their main target application. 

5G Band Group Carrier Frequencies Current standards Best suited 5G application 

Low Bands <1GHz 2G/3G/4G/IoT mMTC, eMBB 

Middle Bands 1 – 2.7GHz 2G/3G/4G eMBB 

High Bands 3 – 6GHz LTE-A eMBB, uRLLC 

Ultra-High Bands 24.25 – 52GHz - eMBB, localised uRLLC 

The 5G air interface is based on OFDMA variants such as CP-OFDMA and DFT-s-OFDM. 

This allows the system to allocate time and frequency slots dynamically depending on the needs 

of each user. To this end, 5G can operate at different channel bandwidth depending on the 

frequency band in use. Low, middle, and high bands can have a channel bandwidth between 

3.84MHz and 100MHz, while the very high bands can go up to 400MHz. Moreover, different 

modulation schemes can be used to code binary digital data onto the carrier frequency signals; 

these include phase modulation schemes such as QPSK and π/2-BPSK as well as amplitude and 

phase modulation schemes such as 16, 64, and 256-QAM. 

The flexibility provided by the new 5G NR standard comes at the cost of signal complexity. 

One of the ways of assessing this complexity is by examining the signal’s Peak to Average 

Power Ratio (PAPR) which can be calculated using the equation from (1.1). 

𝑃𝐴𝑃𝑅 = 10. log10 (
𝑃𝑝𝑒𝑎𝑘⁡ |ℙ=0.01%

𝑃𝑎𝑣𝑔
) (1.1) 
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The PAPR is commonly expressed in decibels (dB) and represents the ratio of the peak power, 

defined as the power level with a probability of 0.01%, and the average signal power. These 

two power levels are shown in Figure 1.1. 

 
Figure 1.1 – Power envelope snippet in the time domain showing the peak and average power levels. 

A more thorough approach for calculating the PAPR is possible when looking at the signals 

from a statistical perspective. 

  

(a) (b) 

Figure 1.2 – (a) Simulated PDF of different mobile communication standards. (b) CCDF of different carrier waveforms plotted 

against PAPR [9]. 

Figure 1.2(a) shows the Probability Density Function (PDF) of different signals with respect to 

the power back-off level (BO). In other words, it gives the probability of a waveform to have a 

power value that is x dB lower than the peak power of the signal. As can be seen, the BO level 

with the highest concentration decreases with every new standard, meaning that the signal will 

have a lower mean power but require a larger dynamic range in order to reach its peak. The 

PDF function can be used in order to calculate the Complementary Cumulative Distribution 

Function (CCDF) as shown in (1.2). 

𝐶𝐶𝐷𝐹(𝑃𝐴𝑃𝑅) = 1 − ∫ 𝑃𝐷𝐹(𝑥)⁡𝑑𝑥
𝑃𝐴𝑃𝑅+𝑃𝑎𝑣𝑔

𝑃𝑚𝑖𝑛

 (1.2) 

In this form, it is possible to determine the probability of the signal achieving a given PAPR 

level. The PAPR of the signal is defined as the value for which the CCDF is 0.01%. Figure 

1.2(b) plots the CCDF functions of different waveforms and shows once again that the PAPR 

increases when going from 4G to 5G signals. 
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3 RF Front-End Architectures 

In a typical cellular communication scenario between two mobile terminals, each referred to as 

User Equipment (UE), are connected via one or more intermediaries known as the Base Stations 

(BS). Ever since the introduction of 2G, the connection between UE and BS has been dictated 

by two sub-protocols of the communication standard in use. 

The first protocol, Uplink (UL), refers to a communication form the UE to the BS. In 5G NR, 

this protocol typically uses Cyclic Prefix OFDM (CP-OFDM) and Discrete Fourier Transform 

spread OFDM (DFT-s-OFDM) air interfaces as well as Single-Carrier FDMA (SC-FDMA) 

[10]–[12]. The maximum power transmitted by a UE is typically capped at 23dBm. 

In the case of BS to UE communication, i.e. Downlink (DL), the CP-OFDMA is used. 

Depending on the application (rural/urban) different types of coverage cells are used with 

maximum power levels up to 50dBm. 

In both BS and UE terminals, commination is achieved through the RF transceiver which allows 

for the wireless transmission and reception of modulated signals. Figure 1.3 shows the basic 

structure of the RF Front-End Module (FEM). In a UL scenario, the MoDem, short for 

Modulator/Demodulator, encodes binary data into a baseband signal which is then upconverted 

to RF and fed into the transmitter (TX) chain of the Front-End Module. There, the signal is 

amplified by the Power Amplifier (PA) before being sent through a filter in order to remove 

unwanted out-of-band emissions before finally being sent to the antenna. When in DL, the 

signal is captured by the antenna and filtered before being amplified by the Low Noise 

Amplifier (LNA) in the receiver (RX) and then downconverted before decoding in the MoDem. 

 
Figure 1.3 – Simplified RF FEM block diagram. 

Depending on the operating frequency of the transmitted or received signal, different filters are 

selected by the switches. Meanwhile the multiplexers act as filters between the different 

antennas and TX/RX branches. 

Over the years, the FEM architecture has become more and more complex in an effort to 

accommodate different frequency bands and communication standards so as to offer seamless 

and backwards compatible operation to worldwide users. Today, smartphone FEMs are 

expected to address 2G, 3G, 4G and 5G standards as well as other standards such as Bluetooth, 

WiFi, and GPS. An example of a modern FEM architecture taken from [13] is provided in 

Figure 1.4. 
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Figure 1.4 – 4G/5G RF front-end for smartphones [13]. 

Within the different FEM components, the PA can be singled out as the most critical. That is 

because a PA’s power consumption represents more than half of the total FEM consumption. 

As a result, the efficiency of the PA is directly linked to battery consumption and thermal 

dissipation in a smartphone. Moreover, the performance of the PA can greatly affect the quality 

of communication as transmitted signals can become distorted when amplified thus making 

them unreadable at reception. 
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4 Thesis Objectives 

PA efficiency plays a crucial role since improving it would lead to an increase in battery life 

and decrease in heat dissipation. Component integration is another vital characteristic. That is 

because today’s phone must be compliant with many different standards and frequency bands, 

which leads to an increase in the number of required components within the FEM. Integration 

therefore becomes essential in keeping mobile form factors from becoming too cumbersome. 

Finally, PAPR is increasing with every new standard, meaning that the next generation of PAs 

must be able to operate efficiently at high back-off level. 

The different components of the FEM are typically implemented using different technologies. 

While switches are typically made using RF-SOI, most LNA and PA blocs are built using SiGe 

and GaAs respectively. However, recent years have seen an increase in the use of RF-SOI for 

LNA and PA implementation. RF-SOI has the potential to address high output power levels (in 

the range of 30 to 36dBm), while providing high efficiency operation. This technology is 

therefore chosen for the implementation of the proposed PA architecture thereby opening the 

door to full FEM integration in the future. 

This work will focus on finding an innovative design of high efficiency power amplifiers for 

5G applications using combiner analysis and then validate it through circuit implementation 

and measurement. However, given the wide scope of such a topic, the study will focus on two 

load modulation PA architectures: Doherty and Outphasing. The PAs are to be used in mobile 

applications and as a result will be implemented using a 130nm RF-SOI process with a supply 

voltage of 3.4V. The target operation band is the 5G Mid Band, with a primary focus on bands 

n40 and n41 of the 5G NR FR1. As a result, the PAs must be designed to operate between 

2.3GHz and 2.7GHz. Finally, the PA must be capable of delivering a peak output power of 

33dBm and operate at an average efficiency higher than 40% at -35dBc of E-UTRA ACLR. 

This PhD work is the result of a joint collaboration between the LAIR and LTCI laboratories 

of CEA-Leti and Télécom Paris respectively. The following manuscript is organized into five 

chapters as outlined below: 

Chapter 1 presented the context and motivations of the thesis work by recounting evolution of 

modern mobile communication standards. The new challenges of the 5G standard were 

explored and their impact on the mobile RF front-end architecture were assessed. 

Chapter 2 introduces the basics of PA operation and performance metrics. Classic operation 

modes are explored before moving on to high efficiency architectures such as load modulation 

which includes Doherty and Outphasing. 

Chapter 3 focuses on load modulated power combiner design. Outphasing combiners are 

examined first and a new unified analysis and design methodology is presented. Next, an 

analysis method for Doherty combiners is proposed. The novel analysis provides a way to 

determine the maximum back-off power level at which Doherty operation can be achieved. 

Moreover, it gives the current evolution profiles required at the combiner inputs for ideal 

Doherty operation. 

Chapter 4 focuses on the design and implementation of a two-stage Doherty PA. The designed 

PA is simulated and optimized using load-pull analysis. The different packaging technologies 

are then showcased before moving on to circuit implementation. Finally, realized DPA circuit 
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is measured and shown to be capable of similar performance to the current state-of-the-art PAs, 

thus validating the combiner analysis and design method from the previous chapter. 

Chapter 5 explores the Outphasing PA architecture and proposes a design for a class-E OPA. 

The dual input OEPA is then analysed from a system perspective in an effort to integrate the 

digital predistortion bloc (DPD) directly into the OPA. A model-based DPD architecture is then 

formalized. Efforts were also made to create a PA behavioural model to be used in the DPD 

architecture. 

 





 

11 

Chapter 2. Power Amplifier Basics 

 

 

 

 

 

 

 

 

 

1 RF Power Amplifiers ................................................................................................. 13 

1.1 Output Power .................................................................................................... 13 

1.2 Efficiency .......................................................................................................... 14 

1.3 Gain  ................................................................................................................. 14 

1.4 Linearity ............................................................................................................ 15 

1.5 Bandwidth ......................................................................................................... 17 

2 PA Operation .............................................................................................................. 18 

2.1 Linear Class PAs ............................................................................................... 20 

2.2 Class-E PA ........................................................................................................ 24 

2.3 Back-Off Operation .......................................................................................... 27 

3 Load Modulated PA Architectures ............................................................................. 30 

3.1 Outphasing PA Architecture ............................................................................. 32 

3.2 Doherty PA Architecture .................................................................................. 35 

4 Conclusion .................................................................................................................. 39 

  



 

12 

 

 

 

 

 

 

 

 

 

 

 

 

ower amplifiers (PA) have the most impact on the mobile front-end module (FEM) 

since they dissipate the most power and as a result are responsible for most of the 

heating issues. In order to better understand the challenges and compromises required 

for PA design, this chapter introduces the main evaluation criteria used to benchmark 

and compare PA performance. 

The basics of PA operation are then explained starting with transistor characterization and 

sizing. Next, traditional linear classes are analysed, followed by the switch-mode class-E. 

Finally, load modulation architectures are introduced as a solution to enhance the PA efficiency 

at back-off power levels. Outphasing and Doherty PA architectures are briefly discussed and 

shown to be good candidates for LTE and 5G applications. 
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1 RF Power Amplifiers 

When it comes to RF power amplifiers (PA), there are five main performance indicators: 

• Output power 

• Efficiency 

• Gain 

• Linearity 

• Bandwidth 

The schematic in Figure 2.1 shows a generic, simplified power amplifier circuit. 

 
Figure 2.1 – Generic power amplifier schematic with power and impedance representation. 

The power provided by the generator is referred to as the available source power 𝑃𝑎𝑣𝑠. 
Maximum power transfer refers to the case where all of the available power is delivered to the 

PA, i.e. 𝑃𝑖𝑛 = 𝑃𝑎𝑣𝑠. This occurs when the impedances 𝒁𝑺 and 𝒁𝒊𝒏 are conjugately matched 

(𝒁𝑺 = 𝒁𝒊𝒏
∗ ). DC power (𝑃𝐷𝐶) is pulled from the supply voltage source (𝑉𝑠𝑢𝑝) and converted into 

RF output power (𝑃𝑜𝑢𝑡). A portion of the pulled DC power, is lost through heat dissipation 

within the PA (𝑃𝑑𝑖𝑠𝑠). 

1.1 Output Power 

Maximum power transfer from the PA output to the load is achieved when 𝒁𝑳 = 𝒁𝒐𝒖𝒕
∗  leading 

to 𝑃𝑜𝑢𝑡 = 𝑃𝐿. The load power 𝑃𝐿 can be calculated through: 

𝑃𝐿 =
1

2
∙ |𝑽𝑳|

2. ℜ [
1

𝒁𝑳
] (2.1) 

Using the power conservation principle, the output power can be expressed as: 

𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 + 𝑃𝐷𝐶 − 𝑃𝑑𝑖𝑠𝑠 (2.2) 
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1.2 Efficiency 

The efficiency of PA can be assessed using different metrics. The first is the drain efficiency 

defined as the DC-to-RF conversion ratio between the output power and the DC power. It can 

be calculated using (2.3). 

𝐷𝐸 = 𝜂 =
𝑃𝑜𝑢𝑡
𝑃𝐷𝐶

 (2.3) 

The second efficiency indicator is the power added efficiency (PAE), expressed in (2.4) below. 

𝑃𝐴𝐸 =
𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛
𝑃𝐷𝐶

 (2.4) 

1.3 Gain 

PA gain can be calculated in two different ways. The power gain 𝐺𝑝 is the ratio between the 

output and input powers as shown in (2.5). 

𝐺𝑝 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

 (2.5) 

Meanwhile, the transducer gain is defined as the ratio between the output power and the 

available source power: 

𝐺𝑡 =
𝑃𝑜𝑢𝑡
𝑃𝑎𝑣𝑠

 (2.6) 

In practical applications, a PA cannot maintain a constant gain (𝐺𝑝 or 𝐺𝑡) across the overall 

power range due to many different limiting factors. As a result, the PA gain decreases when 

approaching the saturation output power 𝑃𝑠𝑎𝑡. The 𝑃1𝑑𝐵 power level is used to indicated the 

output power value for which the gain drops by 1dB as can be seen in Figure 2.2. This gain 

compression, leads to the distortion of the input signal at high power levels thereby affecting 

the linearity of the PA which is defined and discussed as follows. 

 
Figure 2.2 – Gain compression showing the 1dB power level and the saturation power. 
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1.4 Linearity 

Linearity allows to quantify the amount of distortion of the amplified output signal with respect 

to the original input signal. There are many ways to assess to the linearity of a PA, the most 

practical of which are detailed below. 

When a PA approaches saturation, its gain value starts to compress leading to a distortion of 

the output signal. The signal distortion can be characterized in terms of amplitude distortion 

(AMAM), which is caused by the nonlinearity of the transistor’s transconductance 𝑔𝑚, as well 

as phase distortion (AMPM), which is mainly due to the nonlinearity of the transistor’s parasitic 

capacitors. These effects are shown in the PA simulation results of Figure 2.3. The AMAM 

distortion represents the gain compression of the PA whereas the AMPM is indicative of the 

phase deviation at output. These distortions are most impactful at peak power, where the PA is 

in compression and have very little effect at low power levels. 

  

(a) (b) 

Figure 2.3 – Example of a simulated PA’s (a) AMAM and (b) AMPM response with respect to output power. 

Distortion can also be assessed using the dual tone test where a two-tone input signal composed 

of two carrier frequencies 𝑓1 and 𝑓2 is injected into the PA input. In addition to the original two-

tone frequencies, the output signal contains their respective harmonics and intermodulation 

products as can be seen in Figure 2.4. While all of the aforementioned elements contribute to 

the effective distortion of the signal, the most significant impact comes from the third and fifth 

order intermodulation products (IMD3, IMD5) which are very close to the fundamental tones. 

Higher order odd intermodulation products can also be considered but are generally too low to 

have a significant effect. 
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Figure 2.4 – Two-tone PA test showing power spectrum of the input signal and output signal with the fundamental, harmonics, 

third order (IMD3) and second order (IMD2) intermodulation components. 

In the case of complex modulated signals, two metrics are generally used. The first is the 

adjacent channel leakage or power ratio (ACLR or ACPR) commonly expressed in 𝑑𝐵𝑐. ACLR 

is an out-of-band type of distortion, as it represents the amount of power that is leaked from the 

main channel into the upper and lower adjacent channels as seen in Figure 2.5(a). 

 

 

(a) (b) 

Figure 2.5 – (a) PA output spectrum showing Main channel and high, low adjacent channels, (b) IQ plot showing original and 

emitted symbols with error vector. 

The second metric is the error vector magnitude (EVM) which represents the in-band distortion. 

It measures the magnitude between the original symbol 𝑋𝑛 and the transmitted symbol 𝑌𝑛. 

EVM can be calculated using (2.7). 

𝐸𝑉𝑀 =
∑ |𝑌𝑛 − 𝑋𝑛|

2𝑀
𝑛=1

∑ |𝑋𝑛|
2𝑀

𝑛=1

 (2.7) 
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1.5 Bandwidth 

Finally, a PA is designed to provide optimal performance around a centre frequency 𝑓0. The 

bandwidth of a PA represents the frequency range [𝑓𝑚𝑖𝑛; 𝑓𝑚𝑎𝑥], for which the above-mentioned 

performance indicators can be maintained below a given variation threshold. The bandwidth is 

generally expressed in terms of the fractional bandwidth (FBW) using (2.8). 

𝐹𝐵𝑊 =
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑓0
 (2.8) 

An example is provided in Figure 2.6 which shows the measured PAE and Psat achieved in 

[14] over a range of frequencies. In their paper, the authors note that the saturated power, peak 

PAE and back-off PAE remain higher than 32dBm, 50%, and 40% respectively between 

1.9GHz and 2.7GHz, thereby resulting in a fractional bandwidth of 34.7%. 

 
Figure 2.6 – Measured PAE and Psat over frequency [14]. 
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2 PA Operation 

Depending on their mode of operation, power amplifiers can be grouped into two main 

categories. The first is the traditional linear PAs which includes class-A, B, AB, and C where 

the output power is directly linked to the input power. The second category is the switch-mode 

PAs (Class-D, E) where the output power is dictated by the supply voltage and duty cycle of 

the input signal. In most cases, a PA circuit can be broken down into the generic diagram of 

Figure 2.7 where the PA consists of a transistor connected to matching and harmonic control 

networks that perform impedance transformation and waveform shaping. 

 
Figure 2.7 – Generic power amplifier schematic. 

The choice of a transistor technology sets the maximum allowed gate (𝑉𝐺𝑆𝑚𝑎𝑥) and drain 

(𝑉𝐷𝑆𝑚𝑎𝑥) voltages. In order to correctly use the transistor, it must first be characterized and its 

different parameters extracted. First, a transistor is defined by its DC IV characteristics which 

can be extracted by sweeping the DC bias and supply voltages as shown in Figure 2.8(a). 

 

  

(a) (b) (c) 

Figure 2.8 – (a) DC sweep transistor schematic. (b) Normalized Id-Vg characteristic representing drain current vs gate voltage. 

(c) Normalized Id-Vd characteristic representing drain current vs drain voltage for different gate voltages with 

knee region. 

The Id-Vg characteristic is obtained by plotting the drain current value 𝐼𝐷𝑆 against the gate 

voltage 𝑉𝐺𝑆. Figure 2.8(b) shows a simplified linear approximation of the Id-Vg characteristic 

of an ideal transistor which will be used instead of the conventional quadratic form. Drain 

current is generated when the gate bias voltage exceeds a certain threshold voltage 𝑉𝑇. 

Maximum drain current 𝐼𝑚𝑎𝑥 is achieved when the gate voltage is maximum (𝑉𝐺=𝑉𝐺𝑆𝑚𝑎𝑥). The 

slope of the line between these two values determines the ideal transconductance 𝑔𝑚. 

When designing a PA, the maximum drain current 𝐼𝑚𝑎𝑥 is set by the class of operation and the 

targeted output power. The transistor gate width can then be estimated using (2.9), where 
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𝐽𝑠𝑎𝑡|𝑑𝑒𝑣 refers to the current density of the PA device (maximum current for 1mm of transistor 

gate width). 

𝑤𝑡 =
𝐼𝑚𝑎𝑥
𝐽𝑠𝑎𝑡|𝑑𝑒𝑣

 (2.9) 

The Id-Vd characteristic plots the drain current 𝐼𝐷𝑆 against the drain voltage 𝑉𝐷𝑆 for different 

gate voltage 𝑉𝐺𝑆. The curves show two regions of operation: an ohmic region where the drain 

current increases with respect to the drain voltage, and a saturation region where the transistor 

delivers a constant current regardless of the drain voltage. The transition between these two 

regions is delimited by the knee voltage denoted 𝑉𝐾 and indicated by the dashed line in Figure 

2.8(c). 

An ideal MOS transistor can be represented by a voltage-controlled current source as shown in 

Figure 2.9(a). The behaviour of real transistors is much more complex but it can be generally 

approximated using the equivalent model given in Figure 2.9(b) [15]. The different parameters 

of this model can be extracted using Appendix A. 

 

 

(a) (b) 

Figure 2.9 – (a) Ideal large-signal transistor model (b) Large-signal transistor model with linear parasitic elements. 
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2.1 Linear Class PAs 

The aim of this section is to provide a general description of the linear operating classes (Class-

A/AB/B/C) that have been covered extensively in numerous previous works such as [16]. 

Figure 2.10(a) shows the generic schematic of a linear class PA. Coupling capacitors are used 

at the input and output of the transistor in order to prevent DC signals flowing to the ground. 

At the output, an LC tank tuned at 𝑓0 shorts out all of the harmonic components leaving only a 

pure sinewave at the load 𝑅𝐿. The transistor supply is fixed at 𝑉𝐷𝐷 and the PA class of operation 

is determined by the bias voltage 𝑉𝐺𝑆|0 as illustrated in Figure 2.10(b). 

 

  

(a) (b) 

Figure 2.10 – (a) Linear-class PA schematic. (b) Transistor characteristic with the bias voltage point for different classes. 

Figure 2.11 shows how the IV characteristics can be used to determine linear PA operation in 

the case of class-A (red curves) and class-B (blue curves). 

 
Figure 2.11 – Examples of Class-A (red) and Class-B (blue). 𝑉𝑇 = 0 for simplicity. 

In class-A, the PA is biased at:  

𝑉𝐺𝑆|𝐴0 =
𝑉𝐺𝑆𝑚𝑎𝑥 − 𝑉𝑇

2
 (2.10) 

The gate voltage is a combination of the DC component and the amplitude of the fundamental 

frequency of the RF voltage input 𝑉𝐺𝑆|𝐴1. 
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𝑣𝐺𝑆|𝐴(𝑡) = 𝑉𝐺𝑆|𝐴1. sin(𝜔0𝑡) + 𝑉𝐺𝑆|𝐴0 (2.11) 

𝑉𝐺𝑆|𝐴1 =
𝑉𝐺𝑆𝑚𝑎𝑥 − 𝑉𝑇

2
 (2.12) 

The gate voltage excursion is entirely within the conduction range of the transistor 

characteristic, and as a result, the drain current waveform is a sinewave with a DC component 

as shown in (2.13). 

𝑖𝐷𝑆|𝐴(𝑡) = −
𝐼𝑚𝑎𝑥
2

∙ sin(𝜔0𝑡) +
𝐼𝑚𝑎𝑥
2

 (2.13) 

𝐼𝐷𝑆|𝐴0 =
𝐼𝑚𝑎𝑥
2

 (2.14) 

Class-A has a conduction angle 𝜓 = 2𝜋 (i.e. a full period) since the drain current sinewave is 

not truncated. 

Moving to the Id-Vd characteristic two operating points can be defined, the first is the maximum 

operating point (𝑉𝐾; 𝐼𝑚𝑎𝑥). As the DC supply voltage is set to 𝑉𝐷𝐷, the second operating point 

is (𝑉𝐷𝐷; 𝐼𝐷𝑆|𝐴0). These two points define the load line (shown in dashed red in Figure 2.11) 

whose slope can be used to calculate the optimal resistance value 𝑅𝑜𝑝𝑡|𝐴, such that 

𝑅𝑜𝑝𝑡|𝐴 = −
Δ𝑉𝐷𝑆
Δ𝐼𝐷𝑆

=
𝑉𝑚𝑎𝑥
𝐼𝑚𝑎𝑥

 (2.15) 

𝑉𝑚𝑎𝑥 = 2. (𝑉𝐷𝐷 − 𝑉𝐾) (2.16) 

The drain voltage is obtained by projecting the drain current curve onto the load line and results 

in the equation in (2.17). 

𝑣𝐷𝑆|𝐴(𝑡) = −𝑉𝐷𝑆|𝐴1. sin(𝜔0𝑡) + 𝑉𝐷𝐷 (2.17) 

𝑉𝐷𝑆|𝐴1 = 𝑉𝐷𝐷 − 𝑉𝐾 (2.18) 

Finally, the load voltage is a pure sinewave without a DC component since DC is blocked by 

the coupling capacitor. 

𝑣𝐿|𝐴(𝑡) = −𝑉𝐷𝑆|𝐴1. sin(𝜔0𝑡) (2.19) 



PA Operation 

22 

Class-AB, B, and C modes are slightly different as they have lower conduction angles. Below 

an example is given using class-B, starting with the gate voltage: 

𝑣𝐺𝑆|𝐵(𝑡) = 𝑉𝐺𝑆|𝐵1. sin(𝜔0𝑡) + 𝑉𝑇 (2.20) 

𝑉𝐺𝑆|𝐵1 = 2. 𝑉𝐺𝑆|𝐴1 (2.21) 

As the transistor is biased at the threshold voltage 𝑉𝑇, only half of the sinewave is amplified 

and the drain current (seen in blue in Figure 2.11) is a truncated half-sine. Class-B has a 

conduction angle 𝜓 = 𝜋. Projecting the drain current onto the load line results in the same drain 

voltage as class-A operation. 

𝑣𝐷𝑆|𝐵(𝑡) = 𝑣𝐷𝑆|𝐴(𝑡) (2.22) 

Output power 𝑃𝑜𝑢𝑡 is defined as the real (active) RF power delivered to the load. At the 

fundamental frequency, the load 𝑅𝐿 is purely resistive, and the drain voltage swing is 𝑉𝐷𝑆|𝐴1. 

Therefore, 𝑃𝑜𝑢𝑡 can be expressed as: 

𝑃𝑜𝑢𝑡 =
1

2
∙ (𝑉𝐷𝐷 − 𝑉𝐾). 𝐼𝐷𝑆|1 (2.23) 

Since the drain current isn’t always a pure sinewave, its fundamental component amplitude 

𝐼𝐷𝑆|1 must be extracted using the Fourier series. This is done by expressing the drain current as: 

𝑖𝐷𝑆(𝑡) = 𝐼𝐷𝑆|0 +∑𝐼𝐷𝑆|𝑛. cos(𝑛. 𝜃)

∞

𝑛=1

 (2.24) 

The first five harmonic amplitudes along with the DC component are shown for different 

conduction angles in Figure 2.12(a).[16] 

  

(a) (b) 

Figure 2.12 – Drain current (a) harmonics amplitude and (b) harmonic ratio for different conduction angle values. 
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For a given 𝐼𝑚𝑎𝑥, the fundamental current amplitude is the same for both class-A and class-B 

meaning that they have the same maximum output power 𝑃𝑜𝑢𝑡. 𝐼𝐷𝑆|1 reaches its maximum when 

in class-AB, and goes to zero in deep class-C. 

Class-A is said to be the most linear, as its output current (and voltage) contain no harmonic 

components. Meanwhile, class-C is seen as the least linear due to the high number of current 

harmonics. This result is represented in Figure 2.12(b) through the harmonic ratio defined as 

the ratio of fundamental current amplitude to the sum of all harmonics as shown below. 

𝐻𝑅 =
𝐼𝐷𝑆|1

∑ 𝐼𝐷𝑆|𝑛
∞
𝑛=2

 (2.25) 

The drain efficiency of the PA is the ratio of 𝑃𝑜𝑢𝑡 to the DC power 𝑃𝐷𝐶 calculated using: 

𝑃𝐷𝐶 = 𝑉𝐷𝐷 . 𝐼𝐷𝑆|0 (2.26) 

The drain current expression is therefore: 

𝐷𝐸 =
1

2
∙
(𝑉𝐷𝐷 − 𝑉𝐾)

𝑉𝐷𝐷
∙
𝐼𝐷𝑆|1

𝐼𝐷𝑆|0
 (2.27) 

In an ideal case where 𝑉𝐾 = 0, the drain efficiency is determined solely by the ratio of the 

fundamental current to the DC current, both of which can be extracted from Figure 2.12(a). The 

efficiency goes from a theoretical 100% in deep class-C to 50% in class-A as shown in Figure 

2.13(a). 

In (2.21), it was shown that the input voltage amplitude in class-B is twice that of class-A for 

the same drain voltage (2.22). Therefore, the class-B power gain 𝐺𝑝 is four times less than that 

of class-A (i.e. −6𝑑𝐵). This is proven in the simulation results shown in Figure 2.13(b) where 

power gain drops rapidly when going from class-A to class-C. 

  

(a) (b) 

Figure 2.13 – (a)PA drain efficiency and (b) power gain for different conduction angles. 

In conclusion, linear class PAs showcase one of the fundamental challenges of PA design. There 

is always a trade-off between efficiency, linearity, and output power or gain. 100% efficiency 

can theoretically be obtained when operating in deep class-C, but the resulting PA would have 

no gain and therefore be unable to provide any power to the load. In order to tackle this issue, 
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other PA modes of operation were developed, among which Class-E operation considered in 

our work and will therefore be explained next. 

2.2 Class-E PA 

The class-E PA first proposed by the Sokals in 1975 [17] is illustrated in Figure 2.14(a). 

  

(a) (b) 

Figure 2.14 – (a) Ideal class-E PA with shunt capacitance. (b) Square-wave input voltage Vin. 

Switch-mode operation consists in driving the transistor with a pulsed signal creating two 

possible states; i.e. ON and OFF. Output waveform shaping is then achieved at the drain plane 

using a matching network composed of 𝐿1, 𝐶1 and 𝑋 in order to ensure high efficiency. Finally, 

a series LC resonator (𝐿0 and 𝐶0) is used to filter the output signal and obtain a sinusoidal output 

voltage at the load. 

Class-E operation is of itself a very complex subject. Extensive work on class-E PA design 

exists in the current literature such as [18]. In this section, only the basics of class-E operation 

are presented and will be used as a basis for the power cell design in later chapters. 

The driving voltage 𝑉𝑖𝑛, shown in Figure 2.14(b), is a pulsed wave defined by its period 𝑇0, 

phase delay 𝜙, voltage amplitude 𝑉𝑚 and duty cycle 𝑑 which is calculated through (2.28) 

𝑑 =
𝑇𝑂𝑁
𝑇0

 (2.28) 

For optimal class-E operation, the following conditions need to be respected: 

• Zero Voltage Switching condition (ZVS): the drain voltage value is zero at the turn-on 

and turn-off switching times. 

• Zero Slope Switching condition (ZSS): the slope of the drain voltage is zero at the turn-

on switching time. 

These conditions ensure that the drain voltage and current waveforms are orthogonal for the 

different harmonics as illustrated in Figure 2.15(a). As a result, there is no overlap between the 

two waveforms in the time-domain as shown in Figure 2.15(b). Therefore, no power is 

dissipated, meaning that optimal class-E operation can theoretically achieve 100% of drain 

efficiency. 
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(a) (b) 

Figure 2.15 – (a) Drain Voltage-Current phase difference at different harmonics (b) Drain voltage and current time domain 

waveforms. 

Throughout the years, there have been numerous works detailing the design of class-E PAs 

while taking into account different non-ideal factors such as on-state resistance and finite supply 

inductance [19]–[22]. The most practical Class-E PA design method is introduced in [23]. It 

uses a set of four parameters referred to as the K-set parameters. For a duty cycle of 50%, the 

K-set parameters can be approximated using polynomial equations depending on the harmonic 

factor 𝑞 defined as: 

𝑞 =
1

𝜔0. √𝐿1. 𝐶1
 (2.29) 

Where 𝜔0 represents the angular frequency relating to the design frequency 𝑓0. Depending on 

the desired 𝑞 value, the four K-set parameters can be computed using the equations given in 

Table 2.1 below. 

Table 2.1 - K-set design equations for 0.6≤q≤1.65. 

K-set 

Parameter 
0.6 ≤ 𝑞 ≤ 1 1 < 𝑞 ≤ 1.65 

𝐾𝐿 44.93𝑞2 − 94.32𝑞 + 52.46 8.085𝑞2 − 24.53𝑞 + 19.23 

𝐾𝐶 0.426𝑞2 − 0.379𝑞 + 0.3 −6.97𝑞3 + 25.93𝑞2 − 31.071𝑞 + 12.48 

𝐾𝑃 0.74𝑞2 − 0.6𝑞 + 0.76 −11.9𝑞3 + 42.753𝑞2 − 49.63𝑞 + 19.7 

𝐾𝑋 −0.73𝑞2 − 0.411𝑞 + 1.03 −2.9𝑞3 + 8.8𝑞2 − 10.2𝑞 + 5.02 

These parameters can then be used to calculate the output network components for a targeted 

output power 𝑃𝑂𝑈𝑇, supply voltage 𝑉𝐷𝐷, and frequency 𝑓0 as shown in the following equations. 

𝑅𝐿 = 𝐾𝑃 ∙
𝑉𝐷𝐷
2

𝑃𝑂𝑈𝑇
 (2.30) 

𝐿1 = 𝐾𝐿 ∙
𝑅𝐿
𝜔0

 (2.31) 
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𝐶1 = 𝐾𝐶 ∙
1

𝑅𝐿 . 𝜔0
 (2.32) 

𝑋 = 𝐾𝑋. 𝑅𝐿 (2.33) 

Finally, the series resonator elements are designed using the loaded quality factor 𝑄𝐿. 

𝐿0 = 𝑄𝐿 ∙
𝑅𝐿
𝜔0

 (2.34) 

𝐶0 =
1

𝐿0. 𝜔0
2 (2.35) 

For 𝑞 lower than 0.6, the equations introduced in [24] f or class-E PA with ideal choke 

inductance can be used. Finally, higher values of 𝑞 (>1.65) are not covered as they lead to 

physically impractical component values. 𝑞 can therefore be seen as a design variable in the 

class-E design space and can be chosen depending on the circuit implementation requirements 

(such as the value of 𝐿1) or as a means of performance optimization for a given application. 

The previous design equations result in optimal class-E performance at 𝑑 = 0.5, which 

corresponds to maximum output power and efficiency. By sweeping the duty cycle, the 

efficiency and output power profiles can be extracted as shown on Figure 2.16(a). It can be 

concluded that optimal performance is not strictly limited to 𝑑 = 0.5, as the PA seems to hold 

high power and efficiency for the range 𝑑 ∈ [0.4; 0.55]. Beyond this level, the PA is able to 

provide more power, though at a lower efficiency. This result can be mathematically predicted 

by using the analysis in [25], which looks at the effects of circuit variations on the ideal Class-

E operation. 

One of the challenges of ideal class-E operation is generating square-wave inputs with 

sufficiently small rise and fall times, as well as low duty cycle signals. Moreover, a square-

wave signal requires a high order of harmonics and can lead to spectral spreading issues when 

attempting to linearize the PA using predistortion techniques. Luckily, pseudo-class-E 

operation is possible using a sinewave input. In [18], the authors show how a class-E PA can 

be driven using a single tone sinewave signal without resulting in significant performance 

degradation. This is showcased in Figure 2.16(b) where an ideal class-E PA circuit simulated 

with a sinewave input signal (and an equivalent duty cycle of 0.5) results in near ideal drain 

efficiency value at peak power. 
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(a) (b) 

Figure 2.16 – (a) Class-E PA drain efficiency and output power as a function of duty cycle (b) Single-tone sinewave driven 

Class-E PA drain efficiency and output power as a function of input voltage amplitude. 

Class-E can therefore provide a theoretical peak efficiency of 100% when operated with 

adequate input drive signal. However, peak efficiency is only achieved at peak output power as 

can be seen in Figure 2.16. Given that a PA operates over a range of output power values, it is 

important to consider its performance not only at peak power but also at back-off. 

2.3 Back-Off Operation 

So far, all of the analysis was conducted at peak output power. However, a PA seldom operates 

at peak power and instead operates most of the time in power back-off (BO) as can be seen in 

the PDF functions of Figure 2.17(a). In Figure 2.17(b), an example is given using the class-A 

loadline. 

  

(a) (b) 

Figure 2.17 – (a)Probability distribution functions of different communication standards versus back-off power level. (b)Class-

A PA load-line for different RF power levels showing drain voltage and current waveforms. 

For different output power levels 𝑃𝑅𝐹, the drain voltage and current waveforms sweep a 

different interval of the loadline. It is important to note however that the DC drain voltage and 

current, 𝑉𝐷𝐷 and 𝐼𝐷𝑆|0 respectively, remain constant for all values of 𝑃𝑅𝐹. This means that DC 

power 𝑃𝐷𝐶 is constant thus leading to a drop in drain efficiency (DE) at back-off. Figure 2.18(a) 

shows the evolution of DE with respect to the normalized output power referred to as output 

power back-off (OBO) and calculated using (2.36). 



PA Operation 

28 

𝑂𝐵𝑂 = 𝑃𝑜𝑢𝑡|𝑑𝐵𝑚 −max(𝑃𝑜𝑢𝑡|𝑑𝐵𝑚) (2.36) 

The simulation results show an exponential decrease in efficiency for all linear classes. 

Consequently, the linear PA classes present a low average efficiency when amplifying 

modulated signals such as LTE or 5G whose PDF shows a concentration at 𝑂𝐵𝑂 = −7𝑑𝐵. 

Figure 2.18(b) shows the normalized power gain values for different PA linear classes. In the 

case of class-AB operation, the power gain is the same as that of class-A in low power, but 

decreases in high power. The reason for this gain drop is the class-AB bias point: Class-A and 

class-B are biased to conduct 100% and 50% of the input signal respectively regardless of the 

signal amplitude. On the other hand, the conduction angle of class-AB is defined for maximum 

input voltage. That is because in class-AB, signals whose amplitudes are less than 𝑉𝐺𝑆|0 are not 

truncated and therefore resemble class-A. However, input signals whose amplitude exceeds 

𝑉𝐺𝑆|0 are progressively truncated leading to a behaviour that’s closer to class-B. As a result, 

class-AB starts off at the same gain as class-A before decreasing at higher power and 

approaching the gain of class-B. Meanwhile, class-C exhibits the opposite behaviour as its gain 

increases relatively to the effective conduction angle at the given OBO. 

  

(a) (b) 

Figure 2.18 – (a) PA drain efficiency and (b) power gain versus normalized output power for class-A, class-AB, and class-B 

PA simulations. 

In Class-E, much like the previously discussed linear class PAs, efficiency decreases at back-

off as seen in Figure 2.19(a). Similarly, the gain value, plotted in Figure 2.19(b), also shows 

degradation when the PA is operated at back-off. 
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(a) (b) 

Figure 2.19 – Class-E PA simulation results showing (a) drain efficiency and (b) normalized power gain versus normalized 

output power. 

In conclusion, both linear classes and Class-E PAs present the same efficiency degradation in 

back-off. Throughout the years, different PA architectures have been developed to improve 

efficiency in back-off. Most of these architectures can be grouped into two main categories. 

The first category relates to supply modulation PA architectures such as envelope tracking (ET) 

[26] and envelope elimination and restoration (EER) [27]. The idea is to adapt the DC supply 

voltage 𝑉𝐷𝐷 to the required output power thereby reducing DC power dissipation at lower 

output power levels as shown in Figure 2.20. The downside of this method is that it requires an 

additional device (supply modulator) to dynamically change the supply voltage accordingly. 

This can be especially difficult to achieve for wideband modulated signals as it requires 

complex analog control circuitry with additional power consumption. 

 
Figure 2.20 – Supply modulation on a class-A PA. 

The second category relates to load modulation PA architectures that will be discussed in the 

next section. 
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3 Load Modulated PA Architectures 

Active load modulation is achieved when two or more amplifiers inject a current into the same 

load which leads to a variation of the impedance perceived at each branch [28]. Figure 2.21 

shows how load modulation can be used to increase efficiency as changing the slope of the 

transistor loadline results in a decrease of the DC drain current 𝐼𝐷𝑆|0 which also leads to a 

decrease in DC power at lower output power levels. 

 
Figure 2.21 – Load modulation on class-A PA loadlines and drain I-V curves. 

Throughout the years, different load modulation architectures have been proposed, with 

Doherty and Outphasing as the most common ones. In this section, the principle of operation 

of both architectures will be exposed. 

Load modulation can increase a PA’s efficiency at BO by changing the load impedance seen at 

the drain of the transistor in order to keep the PA operating at peak efficiency. First, the optimal 

load impedance needs to be determined as a function of output power. 

In the case of linear class PAs, the optimal load 𝑅𝑜𝑝𝑡 is inversely proportional to the output 

power 𝑃𝑜𝑢𝑡 as given by (2.37). 

𝑅𝑜𝑝𝑡 =
𝑉𝑚𝑎𝑥
𝐼𝑚𝑎𝑥

=
(𝑉𝐷𝐷 − 𝑉𝐾)

2

𝑃𝑜𝑢𝑡
 (2.37) 

Class-E on the other hand, requires more effort. Unlike linear classes, class-E operation requires 

a complex optimal load impedance in order to achieve optimum performance. The value of the 

load impedance 𝑍𝐿|𝐶𝑆 at the internal current plane of the transistor can be calculated using the 

equations from [29] presented below in the case of 𝑑 = 0.5 and 𝑞 → 0. 

𝑍𝐿|𝐶𝑆(𝑛. 𝜔) = {

(1.52 + 𝑗. 1.11). 𝑅 𝑛 = 1

−𝑗 ∙
5.45

𝑛
∙ 𝑅 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑛 > 1

 (2.38) 

𝑅 = 0.58 ∙
𝑉𝐷𝐷
2

𝑃𝑂𝑈𝑇
 (2.39) 

This expression, while useful in some cases, remains rather restrictive as it only applies to a 

specific value of 𝑑 and 𝑞. Moreover, this equation provides the complex load impedance at the 
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internal current plane of the transistor without any indication for the output matching network 

elements. It is therefore more practical to design the class-E PA at peak power, and then perform 

a load-pull simulation by varying the complex load impedance 𝑍𝐿 as shown in Figure 2.22. 

 
Figure 2.22 – Class-E PA with varying load 𝑍𝐿 for load-pull simulation. 

While this simulation can be run for any value of 𝑞 and 𝑑, only the case of 𝑞 = 1 and 𝑑 = 0.5 

will be presented as an example. 

  

(a) (b) 

  

(c) (d) 

Figure 2.23 – Smith Charts normalized to R with optimal performance load line in black showing: (a) Output power contours 

(b) Drain efficiency contours. For impedance values located on the optimal performance load line: (c) Drain 

efficiency versus output power, (d) Drain voltage and current amplitudes. 

The load-pull contours in Figure 2.23(a) and Figure 2.23(b), show the effect of load variation 

on the output power and efficiency respectively. It can be seen that maximum efficiency can be 

achieved for a range of load impedances located on the black dashed line, going through the 

centre of the smith chart. That same line goes through the different power contours, meaning 

that a Class-E PA can address different power levels while maintaining maximum efficiency. 

Figure 2.23(c) illustrates this finding, by plotting the efficiency against the output power for 
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load impedances located on the optimal performance load line (black dashed line seen on the 

smith charts). It is important though to keep in mind that this load-pull simulation is based on 

an ideal switch class-E PA. In reality, the achievable power range will be much more limited 

as the performance shown above would require extremely high DC voltage and current as 

shown in Figure 2.23(d). 

Having determined the optimal load impedance as a function of output power, the next sections 

will present two of the main load modulation PA architectures which are capable of providing 

dynamic load modulation in order to increase efficiency at back off. 

3.1 Outphasing PA Architecture 

The Outphasing PA (OPA) was first proposed by Henry Chireix in his paper in 1935 [30]. In 

an ideal OPA architecture, such as the one in Figure 2.24(a), the input signal 𝑆𝑖𝑛(𝑡) is split by 

a Signal Component Seperator (SCS) into two signals with constant amplitude, 𝑆1
′(𝑡) and 𝑆2

′(𝑡) 

with a phase shift of +𝜃 and −𝜃 respectively. 

 
 

(a) (b) 

Figure 2.24 – (a) Outphasing PA block diagram, (b) Complex-plane, input signal decomposition 

Given an input signal 𝑆𝑖𝑛(𝑡), with an amplitude modulation 𝐸(𝑡) and a phase modulation 𝜙(𝑡) 
expressed in phasor form: 

𝑆𝑖𝑛(𝑡) = 𝐸(𝑡). 𝑒
𝑗𝜙(𝑡) (2.40) 

The input signal 𝑆𝑖𝑛(𝑡) is split into two constant envelope signals 𝑆1
′(𝑡) and 𝑆2

′(𝑡) as shown in 

Figure 2.24(b). 

𝑆𝑖𝑛(𝑡) = 𝑆1
′(𝑡) + 𝑆2

′(𝑡) (2.41) 

𝑆1,2
′ (𝑡) =

max[𝐸(𝑡)]

2
∙ 𝑒𝑗[𝜙(𝑡)±𝜃(𝑡)] (2.42) 

Where 𝜃(𝑡) represents the Outphasing angle and is calculated using: 

𝜃(𝑡) = cos−1 (
𝐸(𝑡)

max[𝐸(𝑡)]
) (2.43) 
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The signals 𝑆1
′(𝑡) and 𝑆2

′(𝑡) have constant envelopes and can therefore be used to operate the 

two PA branches at saturation, ensuring that amplification is achieved at peak efficiency. 

Finally, the output signal 𝑆𝑜𝑢𝑡(𝑡) can be obtained by adding the amplified signals. 

𝑆𝑜𝑢𝑡(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡) 
= 𝐺. 𝑆𝑖𝑛(𝑡) 

(2.44) 

Depending on the type of combiner, different OPA efficiency profiles can be achieved. In the 

case of an isolating structure, such as the Wilkinson combiner of Figure 2.25(a), the main focus 

is on the linearity which comes at the cost of the efficiency at back-off. This is because the 

output power is controlled by dissipating the excess power in the isolating resistor, which results 

in high loss at low power levels [31]–[33] and therefore low efficiency as seen in Figure 2.25(b). 

This method is usually referred to as LInear amplification using Non-linear Components 

(LINC) as coined by Cox [34] and does not involve load modulation due to the isolating 

combiner. On the other hand, non-isolating combiners, such as the classic Chireix combiner 

shown in Figure 2.25(c), allow for active load modulation and subsequently high efficiency at 

back-off as illustrated in Figure 2.25(d). These types of combiners will be the focus of this 

thesis since efficiency is highly critical in mobile applications. 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 2.25 – (a) Isolating Wilkinson combiner based OPA and (b) its associated efficiency profile with respect to back-off 

output power level. (c) Classic Chireix non-isolating combiner based OPA with (d) possible efficiency profiles 

that can be achieved depending on the combiner design values. 

Outphasing load modulated combiners, such as the classic Chireix combiner of Figure 2.25©, 

lead to load impedance variation in both paths. Each amplifier sees a complex load which can 
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be represented by its conductance (real part of the admittance) and susceptance (imaginary part 

of the admittance) as shown in Figure 2.26(a) and (b) respectively. 

  

(a) (b) 

Figure 2.26 – OPA Chireix combiner simulation showing normalized PA load (a) conductance and (b) susceptance versus 

output power. 

The efficiency peaks occur when the load is purely real. The peak efficiency at back-off can 

therefore be controlled through the combiner design. 

This PhD work focuses on integrated sub-6 GHz power amplifiers. Therefore, OPA realizations 

respecting these criteria are selected and compiled in Table 2.2. 

Table 2.2 – State of the art sub-6 GHz Outphasing PAs. 

  [35] [36] [37] [38] 

 Power Cell Class D E E E 

 CMOS Technology 

(nm) 
28 65 45 130 

 Supply (V) 3.6 1.25 2.4 2.8 

C
W

 

Freq. (GHz) 1.7 1.8 2.4 1.85 

Psat (dBm) 29.7 20.1 29.5 20.7 

PAE @ Psat (%) 34.7* 60.7 46.7* 36.9 

OBO (dB) - 12 6 6 

PAE @ OBO (%) - 21 21.16* 20 

M
o
d
u
la

te
d

 L
T

E
 

Modulation 64QAM 64QAM 64QAM - 

BW (MHz) 20 20 10 10 

ACLR (dBc) -37.6 -22 -50.4 -31.6 

Pout (dBm) 23.1 13.1 22.3 24.7 

PAE (%) 15.3* 33.6 21* 20.8 

DPD Linearization No Yes Yes Yes 

*DE value used instead of PAE 
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In practice, it would seem that the high efficiency OPA operation is not easily achieved as 

evidenced by the efficiency measurements presented in the state of the art. All of the OPAs use 

high efficiency power cells in either class-E or class-D, but somehow fail to provide high 

efficiency values both in continuous wave (CW) and modulated LTE signal measurements. 

Moreover, none of the OPAs are capable of delivering an output power higher than 30dBm. 

This work will therefore explore the OPA architecture in an attempt to design a high efficiency 

integrated OPA capable of delivering 33dBm of output power. 

3.2 Doherty PA Architecture 

The Doherty Power Amplifier (DPA) was first proposed by William H. Doherty in 1936 as a 

way to increase the efficiency of the first broadcasting transmitters [39]. A Doherty PA is 

usually implemented by a combination of a Main or Carrier amplifier, and an Auxiliary or 

Peaking amplifier. The idea is to modulate the load seen by the Main amplifier by injecting a 

current from an Auxiliary amplifier, in order to provide optimal efficiency at a given back-off 

[40]. 

Figure 2.27 shows the classic configuration of a DPA, which consists of a Main and Auxiliary 

amplifier combined via an impedance inverter with a characteristic impedance 𝑍𝑇 at the output 

of the Main amplifier, and connected to a common load 𝑅𝐿. 

 
Figure 2.27 – Classic DPA power stage and output combiner schematic. 

The DPA behaviour can be broken into two operating regions: 

• In the low power region, only the Main amplifier is active and delivers power to the 

load. This mode of operation extends until the main amplifier reaches saturation. The 

output power level corresponding to the main saturation point is referred to as output 

back-off (OBO). 

• Beyond this point, the Auxiliary amplifier starts contributing by injecting current into 

the common load 𝑅𝐿. This region is known as the Doherty region and is characterized 

by a decrease of the load impedance seen by the Main amplifier due to load modulation 

[41]. 

This behaviour can be seen in Figure 2.28(a) where the Auxiliary current is null in the low 

power region and starts to rise after the dashed line indicating the beginning of the Doherty 

region. Meanwhile, the Main PA provides current in both regions but reaches voltage saturation 

at the start of the Doherty region and remains saturated as shown in Figure 2.28(b). 
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(a) (b) 

  

(c) (d) 

Figure 2.28 – Normalized Main and Auxiliary (a) current (b) voltage (c) parallel load resistance versus linear output power. 

(d) Normalized DPA efficiency versus normalized output back-off in dB. The dashed line marks the BO critical 

operation point separating low power and Doherty regions. 

The effect of load modulation can be observed in Figure 2.28(c) where the load seen by each 

branch is represented by the normalized parallel resistance. In the low power region, the Main 

branch load resistance is constant at 4. 𝑅𝐿. When the Auxiliary starts conducting current, both 

the Main and Auxiliary branch load resistances are dynamically changed and become 2. 𝑅𝐿 at 

peak power. 

Finally, the DPA efficiency profile is presented in Figure 2.28(d) and shows two peaks. The 

first, at −6𝑑𝐵, occurs when the Main amplifier is operating alone and reaches saturation. The 

second peak is seen at peak power where both Main and Auxiliary PA operate at saturation. As 

with OPA operation, different BO values can be addressed with Doherty operation depending 

on the design of the combiner and drive profile. 

Table 2.3 summarizes the main performance achieved in published DPA works within the sub-

6 GHz range for mobile applications using both CW and modulated LTE signals. These DPAs 

all use a lumped pi-network version (LCL) of the classic quarter-wave transmission line 

combiner with the exception of [42] which uses a more compact LC combiner as shown in 

Figure 2.29(a) and (b) respectively. The combiner from [42] is of particular interest to this study 

as its compact structure makes it more suitable for integration. However, the authors of this 

paper were only able to achieve 3dB back-off when using the LC combiner. 
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(a) (b) 

Figure 2.29 – Examples of published DPA designs using (a) LCL combiner [43] and (b) LC combiner [42]. 

Moreover, the PAs from Table 2.3  use linear class power cells, with the Main and Auxiliary 

biased in class-AB and class-C respectively. As a result, the peak PAE is between 45% and 

59%, while the PAE at 6dB of back-off is between 30% and 40%. It would therefore be 

interesting to explore the possibility of increasing PA efficiency, both at peak and back-off 

through the use of class-E power cells along with a compact combiner capable of higher back-

off operation. 

Table 2.3 – State of the art sub-6 GHz Doherty PAs. 

  [42] [44] [43] [45] 

 Class (Main/Aux) AB/C AB/C AB/C AB/C 

 Combiner Type LC CLC CLC CLC 

 Technology InGaP SOI SOI SOI 

 Supply (V) 3.4 3.4 3.4 3.4 

C
W

 

Freq. (GHz) 2.5 2.5 1.95 2.3 

Psat (dBm) 30 32.7 30.5 32.8 

PAE @ Psat (%) 45 57 52 59 

OBO (dB) 4 6 5 6 

PAE @ OBO (%) 40 40 47 40 

M
o
d
u
la

te
d
 

Modulation QPSK QPSK - QPSK 

BW (MHz)/RB 10/50 10/12 20/- 10/50 

Band (GHz) 

ACLR (dBc) 
- 

1.9-2.7 

-35 

1.55-2.3 

-30 

1.9-2.7 

-35 

Pout min/max (dBm) 28 
- 

28 

PAE min.max (%) 35/45 35/44 

DPD Linearization Yes No Yes No 
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In conclusion, load-modulated PA architectures are capable of high efficiency operation at 

back-off. The peak back-off efficiency is mainly determined by the combiner design. As a 

result, optimizing the combiner is of utmost importance, and will therefore be the subject of the 

following chapter. 
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4 Conclusion 

In this chapter, the different metrics used to evaluate PA performance are introduced. By 

evaluating output power, efficiency, gain, linearity and bandwidth, the PA can be compared to 

other PAs. 

Next, the fundamentals of PA operation were laid out starting with transistor characteristics 

which can be used to determine the required device size as well as the parasitic effects to be 

taken into account. The linear class mode of operation was then detailed, showing the inherent 

compromise between efficiency, gain and linearity when moving from class-A to class-C. 

While a PA in deep class-C can theoretically achieve 100% efficiency, it has no gain and as 

result it cannot be used in practice. This issue can be solved with the use of switch-mode PAs, 

and more specifically class-E. This class of operation is theoretically capable of achieving 100% 

efficiency. This however, comes at the cost of linearity. Looking at back-off operation, both the 

linear classes and class-E suffer from an exponential drop in efficiency when the PA operates 

below its peak value. Given that modern communication standards require 7 to 10 dB OBO 

operation, more complex PA architectures are needed. 

Load modulated PAs allow for high efficiency operation in back-off by dynamically changing 

the load impedance seen by the amplifier. Optimal impedance required to ensure peak 

efficiency operation at different OBO are determined for linear classes as well as class-E. The 

two main load modulation PA architectures are then presented. Outphasing and Doherty 

operation are briefly exposed and shown to be good candidates for LTE and 5G applications. 
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igh efficiency load modulated PA architectures rely on a dedicated output combiner 

to achieve peak efficiency at back-off. This chapter provides an in-depth theoretical 

analysis of different combiner designs for Outphasing (OPA) and Doherty (DPA) 

PA architectures.  

First, this work attempts to structure the various possible Outphasing combiners and driving 

modes into a homogenous unified design approach, showing that all of the combiners in the 

literature can be traced back to the same circuit originally proposed by Henry Chireix. To the 

author’s best knowledge, this is the first instance of a unified, comparative Outphasing analysis 

and design methodology that takes into account all the different combiner architectures and 

driving modes. 

Next, combiners for Doherty PA are explored. Existing DPA combiner synthesis and analysis 

methods present a limitation where the ideal DPA current/voltage conditions are only respected 

at the start and end of the Doherty operation range but not throughout. This issue is addressed 

and resolved with the introduction of a new generic combiner analysis method that can provide 

optimized DPA operation for a variety of input conditions. 

 

 

H 
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1 Outphasing PA Combiners 

Throughout the years many different Outphasing implementations have been put forward. The 

main difference between the proposed architectures tends to be the combiner design. All 

existing Outphasing PA architectures can be viewed as variations and sometimes 

generalisations of the original combiner design and can be classified into different categories, 

which will be detailed in the sections below. 

In his original paper, Henry Chireix defines the Outphasing circuit as: 

“Dividing the amplifier […] into two parts, each including one or several tubes according to 

the power required and each part having its own output circuit while the load circuit is 

differentially coupled to both.” 

Using this definition, Chireix’s Outphasing system can be represented as seen in Figure 3.1, by 

two voltage sources, 𝑉1 and 𝑉2, with a constant amplitude 𝑉𝑚𝑎𝑥 and conjugate phases ±𝜃 as 

described in (3.1), connected to a series resistor 𝑅. 

 
Figure 3.1 – Differential Outphasing voltage combiner. 

𝑉1,2 = 𝑉𝑚𝑎𝑥. 𝑒
𝑗±𝜃 (3.1) 

The load voltage 𝑉𝐿 is then calculated using mesh analysis as shown in (3.2). 

𝑉𝐿 = 𝑉1 − 𝑉2 

= 2. 𝑉𝑚𝑎𝑥. 𝑠𝑖𝑛(𝜃) . 𝑒
𝑗∙
𝜋
2  

(3.2) 

The amplitude of 𝑉𝐿 is therefore controlled through the Outphasing angle 𝜃, which is contained 

within the [0°; 90°] interval. 

The admittances 𝑌1 and 𝑌2 seen by each source respectively can be calculated through: 

𝑌1,2 = ±
𝐼𝐿
𝑉1,2

 

=
1

𝑅
∙ [2. 𝑠𝑖𝑛2(𝜃) ± 𝑗. 𝑠𝑖𝑛(2. 𝜃)] 

(3.3) 

Using the result from the equation above, we can determine that the load admittances are 

complex conjugates of each other. This is of course due to the symmetry of the design with the 

initial voltage sources also being complex conjugates of one another. 

The load admittance can be expressed in terms of conductance 𝐺0 and susceptance 𝐵0 as shown 

below. Plotting these values yields Figure 3.2(a) and Figure 3.2(b) respectively. 
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𝑌1 = 𝑌2
∗ = 𝐺0 + 𝑗. 𝐵0 (3.4) 

𝐺0 = ℜ[𝑌1] =
2

𝑅
∙ 𝑠𝑖𝑛2(𝜃) (3.5) 

𝐵0 = ℑ[𝑌1] =
1

𝑅
∙ 𝑠𝑖𝑛(2. 𝜃) (3.6) 

  

(a) (b) 

Figure 3.2 – (a) Normalized load conductance, (b) Normalized load susceptance. 

The RF output power delivered to the load can therefore be calculated through: 

𝑃𝑜𝑢𝑡(𝜃) = 𝑉𝑚𝑎𝑥
2 . 𝐺0(𝜃) (3.7) 

Finally, assuming that the ideal power cells are operating in a linear mode such as Class-B, the 

efficiency of the Outphasing system can be calculated using (3.8) [46]. 

𝜂 = 𝜂𝑚𝑎𝑥 ∙
𝐺0

|𝑌1,2|
 (3.8) 

Where 𝜂𝑚𝑎𝑥 is the maximum theoretical efficiency for a given operating class. Figure 3.3(a) 

plots the normalized efficiency versus the Outphasing angle 𝜃. Plotting the efficiency with 

respect to the output power shows that the efficiency decreases exponentially with the power 

level. The reason behind this drop is the increase in load susceptance 𝐵0 seen by each branch 

as seen in Figure 3.3(b). 
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(a) (b) 

Figure 3.3 – (a) Normalized efficiency, (b) OPA efficiency and load susceptance with respect to normalized output power 

(OBO). 

In order to achieve higher efficiency at power back-off, the imaginary part of the admittances 

𝑌1,2 must be compensated (cancelled) for a given power level (and therefore for a given 

Outphasing angle). Reactive compensation and delay-line compensation are the two methods 

that can be used and are detailed in the following sections. 

1.1 Reactive Compensation 

Reactive compensation, as proposed by Chireix, consists of adding a shunt susceptance 𝐵𝑐 to 

each branch of the circuit as seen in Figure 3.4(a). 

 

 

(a) (b) 

Figure 3.4 – (a) Differential voltage combiner with reactive compensation, (b) Load susceptance versus Outphasing angle for 

different compensation angle values. 

The susceptance value is calculated using (3.9) where 𝜃𝑐 is the compensation angle at which 

the reactive part of the load is cancelled (Figure 3.4(b)). 

𝐵𝑐 =
1

𝑅
∙ 𝑠𝑖𝑛(2. 𝜃𝑐) (3.9) 

The admittances seen by each branch, 𝑌1,2
′  are then expressed as: 
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𝑌1,2
′ = 𝐺0 ± 𝑗. (𝐵0 − 𝐵𝑐) (3.10) 

Given that 𝐵0 is symmetrical with respect to 𝜃 = 45°, the compensation angle can take any 

value within the range [0°; 45°]. The susceptance is cancelled for two root values of 𝜃 as shown 

in (3.11). 

𝐵0 − 𝐵𝑐 = 0⁡𝑓𝑜𝑟⁡𝜃 ∈ {𝜃𝑐; 90° − 𝜃𝑐} (3.11) 

Using (3.8) with the admittance value from (3.10), yields the plot in Figure 3.5(a). 

 

(a) (b) 

Figure 3.5 – (a) Efficiency with respect to Outphasing angle, (b) Efficiency with respect to output power back-off (OBO). 

With the exception of 𝜃𝑐 = {0°; 45°}, the efficiency profile shows two peaks as seen in Figure 

3.5(a). The position of the peaks with respect to the output power back-off (OBO), can be 

determined using (3.12). This effect can be observed by plotting the efficiency against the 

output power as in Figure 3.5(b). 

𝑂𝐵𝑂𝑑𝐵|𝑃𝑒𝑎𝑘⁡𝜂 = {
−20. 𝑙𝑜𝑔[𝑠𝑖𝑛(𝜃𝑐)]

−20. 𝑙𝑜𝑔[𝑐𝑜𝑠(𝜃𝑐)]
 (3.12) 

However, given that the first 𝑂𝐵𝑂𝑑𝐵 value is relatively close to the peak power, only the second 

expression is considered when referencing the back-off. 

In most practical cases, the output of the combiner is connected to a grounded load. Therefore, 

a single ended version of the combiner is needed. By applying the differential to single-ended 

transformation highlighted in Appendix B section B.1.5, the circuit in Figure 3.4(a) becomes 

that of Figure 3.6(a). 

  

(a) (b) 

Figure 3.6 – Single-ended (a) voltage combiner, (b) current combiner with reactive compensation. 
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Moreover, a dual structure of the original differential combiner can be obtained by applying the 

circuit duality transformation detailed in Appendix B section 0B.2 which results in the circuit 

of Figure 3.6(b) where 𝑋𝑐 = 𝐵𝑐. Due to the duality transformation, the voltage sources become 

current sources, and therefore the combiner of Figure 3.6(b) is considered as a current combiner. 

1.2 Delay-Line Compensation 

The second type of compensation is the phase compensation which uses delay lines to achieve 

the same result as the classic Chireix reactive compensation. This method is preferred in high 

frequency and high power circuits where transmission lines can be easily implemented [47]–

[49]. Figure 3.7(a) shows the differential voltage combiner circuit with the asymmetric 

transmission lines as compensation elements. Its single-ended equivalent, obtained through the 

differential to single ended transformation of Appendix B section B.1.5, is shown in Figure 

3.7(b). 

  

(a) (b) 

Figure 3.7 – (a) Differential voltage combiner, (b) Single-ended voltage combiner with delay-line compensation. 

Once again, the dual circuit of Figure 3.7(a) can be obtained through the duality transform and 

results in the current combiners in Figure 3.8(a). The circuit in Figure 3.8(a) can be further 

simplified by replacing the transmission lines with their respective 𝜋-network lumped element 

models (Appendix B section B.1.4) and then resonating out the shunt reactive elements at the 

output node resulting in the combiner of Figure 3.8(b). 

  

(a) (b) 

Figure 3.8 – (a) Single-ended (a) current combiner with delay-line compensation, (b) current combiner with simplified lumped 

equivalent of delay-line compensation. 

In this section, the relation between the different Outphasing combiners has been explored, 

starting with the classical Chireix differential voltage combiner with reactive compensation. As 

previously discussed, single-ended combiners are generally preferred as the PA is usually 

connected to a grounded load. 

Moreover, the single-ended architectures present a 180° phase shift (negative sign) of the 

second voltage/current source. This can be compensated by switching the compensations 

elements on the left and right of the load resistance. The resulting forms are shown in Figure 

3.9 below. 
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(a) (b) 

  

(c) (d) 

Figure 3.9 – (a) Voltage combiner and (b) Current combiner with reactive compensation, (c) Voltage combiner and (d) Current 

combiner with delay-line compensation. Without negative signs at sources. 

These four OPA combiners represent the main architectures for both current and voltage 

combiners. In early OPA implementations, the classic single-ended Chireix voltage combiner 

of Figure 3.9(a), which can be classified as Reactive Compensation Voltage combiner (RCV) 

was the architecture of choice. 

The emergence of higher frequency PAs led to the popularization of the Delay-line 

Compensation Voltage combiner (DCV) seen in Figure 3.9(c) as it doesn’t require the use of 

discrete elements for reactive compensation which is directly achieved by changing the length 

of the transmission lines. Meanwhile, the Reactive Compensation Current combiner (RCC) 

shown in Figure 3.9(b) was favoured in applications requiring high integration as it is the most 

compact of the OPA combiner architectures. 

Finally, the Delay-line Compensation Current combiner (DCC) of Figure 3.9(d) was to the 

author’s best knowledge not showcased in any published works. This combiner architecture 

offers no clear advantage over the other three combiners as its lumped form is not as compact 

as the RCC combiner, and its transmission line form requires longer lines than the DCV 

combiner which might in part explain its absence from the literature. Its form was derived in 

this section through the duality transformation to complete the set. With the four main combiner 

architectures clearly defined, the driving mode must be considered next. 

1.3 Driving Mode 

The different combiner circuit variations presented so far include both voltage and current 

combiners obtained through the duality transformation. This shows that the Outphasing can be 

applied to either voltage sources (voltage-mode Outphasing) or current sources (current-mode 

Outphasing) and it can therefore be assumed that these two modes of operation can be used 

with any Outphasing combiner structure. 

In voltage-mode, the phase control is applied to the input voltages as was described in (3.1). 

Similarly, in current-mode, the phase control is applied to the input currents as in (3.13) [50]. 

𝐼1,2 = 𝐼𝑚. 𝑒
𝑗±𝜃 (3.13) 
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The voltage and current sources used at the combiner inputs thus far represent the transistors of 

the OPA power cells. In order to maximise the PA’s efficiency, the transistors must be saturated, 

and as a result, the amplitude of the input voltages 𝑉1,2 is fixed at 𝑉𝑚𝑎𝑥. While this condition is 

achieved directly in voltage-mode using an ideal voltage source, a specific current drive is 

needed in current-mode as expressed through (3.14), where 𝐼𝑚 is the current amplitude and 

𝒁𝑪𝑴(𝜃) is the input impedance of the combiner. 

𝐼𝑚 =
𝑉𝑚𝑎𝑥

|𝒁𝑪𝑴(𝜃)|
 (3.14) 

Since the input impedance of the combiner depends on the selected architecture, a novel 

Outphasing combiner analysis method is proposed in the following section. 

1.4 Outphasing Combiner Analysis 

In this section, a novel generalized Outphasing combiner analysis is described. The first step 

consists in calculating the input admittances of the combiner circuit. This can be easily achieved 

by representing the combiner as a cascade of two-port networks and calculating the equivalent 

ABCD matrix of the circuit. An example is provided in Figure 3.10 using the RCC combiner. 

 
Figure 3.10 – Cascaded two-port representation of the RCC combiner and its equivalent simplified form to be used for analysis. 

Using the equivalent generic combiner matrix, the following equation can be defined: 

(
𝑽𝟏
𝑰𝟏
) = (

𝑨 𝑩
𝑪 𝑫

) × (
𝑽𝟐
−𝑰𝟐

) (3.15) 

The input admittance expression is therefore: 

𝒀𝟏 = (𝑪 −
𝑨.𝑫

𝑩
) ∙
𝑽𝟐
𝑽𝟏
+
𝑫

𝑩
 (3.16) 

The input voltages are complex conjugates as stated in (3.1), and the network is composed of 

passive elements and therefore reciprocal so 𝑨𝑫 − 𝑩𝑪 = 1. Therefore, the input admittance 

can be simplified and rewritten as in (3.17) below. 

𝒀𝟏 =
𝟏

𝑩
∙ (𝑫 − 𝑒−𝑗.2.𝜃) (3.17) 

The input admittance 𝑌2 is the complex conjugate of 𝑌1 and can be found using (3.18). 
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𝒀𝟐 =
𝟏

𝑩
∙ (𝑨 − 𝑒𝑗.2.𝜃) (3.18) 

Finally, the conjugate input impedances 𝑍1 and 𝑍2, can be calculated using the equations below. 

𝒁𝟏 =
𝟏

𝑪
∙ (𝑨 + 𝑒−𝑗.2.𝜃) (3.19) 

𝒁𝟐 =
𝟏

𝑪
∙ (𝑫 + 𝑒𝑗.2.𝜃) (3.20) 

The RCC is the most compact of the proposed combiner architectures, and is therefore well 

suited for the integration requirements of our work. As a result, this combiner architecture will 

be used in the following sections to better illustrate the merits of the proposed analysis and 

design method which can be applied to any different combiner architecture. 

The ABCD matrix of the RCC combiner can be expressed as in (3.21). 

𝐴𝐵𝐶𝐷 =
1

𝑅𝐿
∙ (
𝑅𝐿 + 𝑗. 𝑋𝑐 𝑋𝑐

2

1 𝑅𝐿 − 𝑗. 𝑋𝑐
) (3.21) 

The series reactive elements of the combiner must cancel out the imaginary part of the complex 

impedance seen at the inputs of the combiner for a given compensation angle 𝜃𝑐. This can be 

achieved by calculating the reactive components using (3.22). 

𝑋𝑐 = 𝑅𝐿 . 𝑠𝑖𝑛(2. 𝜃𝑐) (3.22) 

In voltage-mode operation, the input admittance calculated through (3.17) can be expressed as: 

𝒀𝟏|𝑽𝑴 =
1

𝑅𝐿 . 𝑠𝑖𝑛
2(2. 𝜃𝑐)

∙ [2. 𝑠𝑖𝑛2(𝜃) + 𝑗. (𝑠𝑖𝑛(2. 𝜃) − 𝑠𝑖𝑛(2. 𝜃𝑐))] (3.23) 

Figure 3.11(a) and Figure 3.11(b) show the evolution of the quadrature components of the input 

admittance 𝒀𝟏|𝑽𝑴 as a function of the Outphasing angle for different compensation angles while 

Figure 3.11(c) shows the evolution of the input admittances normalized with respect to the load 

𝑅𝐿. Unlike the classic Chireix combiner, the conductance value 𝐺 is dependent on the 

compensation angle 𝜃𝑐. Consequently, different values of 𝜃𝑐 result in different output power 

levels (calculated using (3.7)). This is showcased in Figure 3.11(d) where the efficiency 𝜂, 

calculated using (3.8) and (3.23), is plotted against the output power. This effect can complicate 

the combiner design process, as the output power must be adapted to each compensation value. 
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(a) (b) 

  

(c) (d) 

Figure 3.11 – (a) Normalized Conductance and (b) Susceptance. (c) Normalized load admittance trajectories. (d) Efficiency 

with respect to output power for different values of 𝜃𝑐 

However, a solution is provided in the proposed design method that will be discussed in section 

1.4.1. Finally, the load voltage is obtained by the expression in (3.24). 

𝑉𝐿|𝑉𝑀 =
2. 𝑉𝑚𝑎𝑥
𝑠𝑖𝑛(2. 𝜃𝑐)

∙ 𝑠𝑖𝑛(𝜃) (3.24) 

As pointed out in section 1.3, in the case of current-mode operation, the impedance is better 

suited than the admittance. It can be calculated using (3.25). 

𝒁𝟏|𝑪𝑴 = 𝑅𝐿 . [2. 𝑐𝑜𝑠
2(𝜃) − 𝑗. (𝑠𝑖𝑛(2. 𝜃) − 𝑠𝑖𝑛(2. 𝜃𝑐))] (3.25) 

The input current amplitude 𝐼𝑚 is then determined through (3.25) and (3.14) and results in the 

plot of Figure 3.12(a). The load modulation trajectories of the input impedances, normalized 

with respect to the load resistance value 𝑅𝐿, can be seen in Figure 3.12(b). The output power, 

as defined in (3.7) can be calculated using the load conductance which can be found using (3.26) 

and is plotted in Figure 3.12(c). Once again, the maximum value of the conductance, and 

consequently the output power, is seen to be dependent on the compensation angle 𝜃𝑐. 

Furthermore, the maximum conductance (or power) no longer occurs at 𝜃 = 90° but instead is 

also dependent on 𝜃𝑐. 
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𝐺 = ℜ [
1

𝒁𝑪𝑴
] (3.26) 

  

(a) (b) 

  

(c) (d) 

Figure 3.12 – (a) Input current amplitude evolution with respect to 𝜃 for different values of 𝜃𝑐, (b) Normalized input 

impedances, (c) Normalized load conductance, (d) Efficiency with respect to output power. 

The efficiency can be calculated using (3.8) which can be transformed into (3.27) and used to 

plot the profiles of Figure 3.12(d). 

𝜂 = 𝜂𝑚𝑎𝑥 ∙
ℜ[𝒁𝑪𝑴]

|𝒁𝑪𝑴|
 (3.27) 

The efficiency profiles here differ from those in voltage-mode operation and seem to be phase-

shifted. This is because of the variation of the input current amplitude 𝐼𝑚 and can be solved by 

changing the Outphasing angle variation interval from [0°; 90°] to [90°; 𝜃𝑠𝑡𝑜𝑝] where 𝜃𝑠𝑡𝑜𝑝 is 

the Outphasing angle that corresponds to the maximum conductance (or power) and can be 

calculated using (3.28). 

𝜃𝑠𝑡𝑜𝑝 = −𝑗. 𝑙𝑛 (
√1⁡ +⁡𝑒𝑗.8.𝜃𝑐 − ⁡18. 𝑒𝑗.4.𝜃𝑐

4. 𝑒𝑗.2.𝜃𝑐 +⁡𝑒𝑗.4.𝜃𝑐 − ⁡1
) (3.28) 

Figure 3.13(a) plots the evolution of 𝜃𝑠𝑡𝑜𝑝 with respect to 𝜃𝑐. Plotting the efficiency using the 

new Outphasing angle interval, results in Figure 3.13(b) which shows the same evolutions as 

the voltage-mode operation of Figure 3.11(d). 
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(a) (b) 

Figure 3.13 – (a) Maximum Outphasing angle 𝜃𝑠𝑡𝑜𝑝 with respect to compensation angle variation. (b) Efficiency with respect 

to output power. 

Finally, the current-mode expression of the load voltage is determined by: 

𝑽𝑳|𝑪𝑴 = −2. 𝐼0. 𝑅𝐿 ∙ 𝑐𝑜𝑠(𝜃) (3.29) 

It can be noticed that in current-mode, the phase variation interval is greater than the one 

required for voltage-mode operation. Moreover, the OPA becomes extremely sensitive to phase 

variation at higher power (as can be concluded by examining the slopes of the different curves 

in Figure 3.12 (c)). Due to these challenges, voltage-mode operation is generally privileged as 

it provides the same efficiency characteristics but without sensitivity issues. 

The reactive compensation current combiner has the particularity of being the most compact of 

the studied structures. As a result, it is an attractive option for integrated circuits where occupied 

area must be minimized [51], [52]. However, this architecture presents a peak power that is 

dependent on the compensation angle both in voltage and current-mode. This can be 

troublesome when designing a combiner, as the peak power is usually taken as a starting point 

for the PA design process. The next paragraph shows how this issue can be circumvented by 

presenting a unified design method. 
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1.4.1 Unified Outphasing Combiner Design Methodology 

In this section, a novel Outphasing combiner design method is discussed. The main interest of 

the presented method lies in the formalization of the different design approaches existing in the 

literature. It provides a unified framework which covers all four combiners seen so far and 

presented again in Figure 3.14 below. 

  

(a) (b) 

  

(c) (d) 

Figure 3.14 – (a) Reactive compensation voltage combiner (RCV) (b) Reactive compensation current combiner (RCC) (c) 

Delay-line compensation voltage combiner (DCV) (d) Delay-line compensation current combiner (DCC). 

Important parameters in PA design are the saturated power 𝑃𝑚𝑎𝑥 (PA total output power), the 

maximum output voltage swing 𝑉0, and the output power back-off level 𝑂𝐵𝑂 (expressed in 

dB). First, the optimal load resistance 𝑅𝑜𝑝𝑡 and compensation angle 𝜃𝑐 are calculated using 

𝑅𝑜𝑝𝑡 =
2. 𝑉0

2

𝑃𝑚𝑎𝑥
 (3.30) 

𝜃𝑐 = 𝑠𝑖𝑛
−1 (10−

𝑂𝐵𝑂
20 ) (3.31) 

One of the main problems revealed by the RCC combiner analysis in the previous section was 

the dependence of the maximum output power on the compensation angle. This issue is 

expressed in (3.32) which states that for any compensation angle value 𝜃𝑐, the maximum 

conductance (and therefore power) must be equal to a constant 𝑘. In order to simplify the 

subsequent design process, the value of 𝑘 is set as the maximum conductance for 𝜃𝑐 =
𝜋

4
.  

Moreover, the input susceptance must be equal to zero when 𝜃 = 𝜃𝑐 as expressed in (3.33). 

𝑚𝑎𝑥 [ℜ [𝒀 (𝜃, 𝜃𝑐 =
𝜋

4
)]] = 𝑘 (3.32) 

ℑ[𝒀(𝜃 = 𝜃𝑐)] = 0 (3.33) 

Solving the system for the conditions above leads to the design equations in Table 3.1. The first 

condition gives the appropriate load impedance expression for the different combiner 
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architectures depending on the targeted compensation angle or back-off efficiency. Meanwhile, 

the second condition results in the expressions for the reactive compensation elements. 

Table 3.1 – Combiner design expressions. 

 Reactive 

Compensation 

Voltage 

Combiner 

Delay-Line 

Compensation 

Voltage 

Combiner 

Reactive 

Compensation 

Current 

Combiner 

Delay-Line 

Compensation 

Current 

Combiner 

𝑹𝑳 
𝑅𝑜𝑝𝑡
2

 
𝑅𝑜𝑝𝑡

4. cos2(𝜃𝑐)
 

𝑅𝑜𝑝𝑡
sin2(2. 𝜃𝑐)

 
𝑅𝑜𝑝𝑡

4. sin2(𝜃𝑐)
 

𝒁𝑻 𝑅𝐿 . √2 2. 𝑅𝐿 − 2. 𝑅𝐿 

𝑿𝒄 − − 𝑅𝐿 . sin(2. 𝜃𝑐) 2. 𝑅𝐿 . sin(𝜃𝑐) 

𝑩𝒄 
sin(2. 𝜃𝑐)

2. 𝑅𝐿
 − − 

1 − cos(𝜃𝑐)

2. 𝑅𝐿 . sin(𝜃𝑐)
 

The delay-line mismatch 𝛿 of Figure 3.14(c) (and the transmission-line form of Figure 3.14(d)), 

can be calculated using (3.34) which shows that when 𝑍𝑇 is set to the value given in Table 3.1, 

𝛿 becomes equal to 𝜃𝑐. 

𝛿 =
1

2
∙ 𝑠𝑖𝑛−1 (

2. 𝑅𝐿
𝑍𝑇

∙ 𝑠𝑖𝑛(2. 𝜃𝑐)) 

= 𝜃𝑐 
(3.34) 

In voltage-mode operation, the voltage combiners have the same admittance expression shown 

in (3.35), as do the current combiners whose admittance is calculated in (3.36). 

𝒀𝟏|𝑽𝑴|𝑽𝑪 =
1

𝑅𝑜𝑝𝑡
∙ [2. 𝑐𝑜𝑠2(𝜃) − 𝑗. (𝑠𝑖𝑛(2. 𝜃) − 𝑠𝑖𝑛(2. 𝜃𝑐))] (3.35) 

𝒀𝟏|𝑽𝑴|𝑪𝑪 =
1

𝑅𝑜𝑝𝑡
∙ [2. 𝑠𝑖𝑛2(𝜃) + 𝑗. (𝑠𝑖𝑛(2. 𝜃) − 𝑠𝑖𝑛(2. 𝜃𝑐))] (3.36) 

The admittance equations show that the conductance of both the voltage combiners and current 

combiners is no longer dependent on the compensation angle 𝜃𝑐. 

To better illustrate this, an RCC combiner is designed to provide a peak output power of 33dBm 

(𝑃𝑚𝑎𝑥 = 2⁡𝑊) for different values of output back-off. The simulation results in Figure 3.15 

show that the conductance is not affected by the choice of OBO. 



Outphasing PA Combiners 

56 

  

(a) (b) 

Figure 3.15 – (a) Normalized load conductance and (b) Efficiency with respect to output power for different targeted OBO in 

voltage-mode operation. 

The proposed design method is also applicable to current-mode operation. The input 

impedances can be derived and simplified to (3.37) and (3.38) for voltage and current combiners 

respectively. 

𝒁𝟏|𝑪𝑴|𝑽𝑪 =
𝑅𝑜𝑝𝑡

𝑠𝑖𝑛2(2. 𝜃𝑐)
∙ [2. 𝑠𝑖𝑛2(𝜃) + 𝑗. (𝑠𝑖𝑛(2. 𝜃) − 𝑠𝑖𝑛(2. 𝜃𝑐))] (3.37) 

𝒁𝟏|𝑪𝑴|𝑪𝑪 =
𝑅𝑜𝑝𝑡

𝑠𝑖𝑛2(2. 𝜃𝑐)
∙ [2. 𝑐𝑜𝑠2(𝜃) − 𝑗. (𝑠𝑖𝑛(2. 𝜃) − 𝑠𝑖𝑛(2. 𝜃𝑐))] (3.38) 

The designed RCC combiner is now simulated in current-mode using the correct Outphasing 

angle interval for each OBO value. The normalized input current amplitude is shown in Figure 

3.16(a). The load conductance, plotted in Figure 3.16(b) reveals that the maximum conductance 

𝐺 is the same for all plots. Finally, current-mode operation results in the same efficiency curves 

as Figure 3.15(b). 

  

(a) (b) 

Figure 3.16 – (a) Normalized current amplitude and (b) load conductance for different values of OBO in current-mode 

operation. 

The proposed design methodology results in an OPA design that delivers the targeted output 

power, regardless of the compensation angle and mode of operation for all four combiners. The 

choice of combiner architecture then depends on the targeted application, the different 

architectures providing the same load modulation for a given mode of operation. 
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2 Doherty PA Combiners 

The Doherty PA (DPA) is the most prevalent load modulation architecture in the literature. 

Indeed, since its inception in 1936 and re-emergence in the late 80s, the DPA architecture has 

evolved significantly while keeping its core principle: Amplification is achieved by using two 

amplifiers. In the low power region, the main amplifier operates alone until its saturation at the 

back-off (BO) point. Beyond that point, the auxiliary amplifier starts injecting current into the 

same load thus increasing the overall output power until it reaches the peak point. This second 

phase is referred to as the Doherty region. Of the aforementioned DPA evolutions, the power 

combiner was originally designed using an impedance inverter transmission line on the main 

amplifier branch connected to the auxiliary branch and load impedance as shown in Figure 3.17. 

 
Figure 3.17 – Simplified current-mode representation of the DPA architecture. 

Today, using the work done by Özen in [53], a DPA power combiner architecture can be 

synthesized using a set of initial boundary conditions on the two critical operating points that 

define Doherty operation (i.e. Peak and BO). In this approach, the drain current and voltage of 

the two branches are set at peak power and back-off, and then used to determine the required 

two-port Z-matrix (Figure 3.18(a)) satisfying these conditions by solving the equation in (3.39). 

(
𝑉1|𝑃𝑒𝑎𝑘 𝑉1|𝐵𝑂
𝑉2|𝑃𝑒𝑎𝑘 𝑉2|𝐵𝑂

) = (𝑍) × (
𝐼1|𝑃𝑒𝑎𝑘 𝐼1|𝐵𝑂
𝐼2|𝑃𝑒𝑎𝑘 𝐼2|𝐵𝑂

) (3.39) 

Once determined, the Z-matrix is used to synthesize the combiner after transformation into a 

lossless 3-port network connected to a resistive load 𝑅𝐿 as shown in Figure 3.18(b). 

  

(a) (b) 

Figure 3.18 – (a) Lossy two-port representation of the black-box method, (b) Lossless three-port representation of the black-

box method. 

This solution was complemented by other works [54], [55] which propose a load modulation 

continuum theory that positions Doherty and Outphasing as part of a larger set of solutions, 

defined by their boundary conditions on the Peak and BO operation points. 

The work presented in [56] takes this a step further by proposing a generalized Doherty-

Outphasing continuum where DPA and OPA operation are but singular cases of a larger design 

space, defined by their boundary conditions. This allows additional degrees of freedom, as more 

variables are introduced into the design space, leading to the Hybrid Chireix Doherty (HCD) 

operation. 
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This approach, while advantageous in many aspects, does however present a setback. As the 

synthesis of the combiner is determined solely by the two aforementioned operation points, 

there is no guarantee that the main branch will maintain constant voltage in-between these 

states. Consequently, the overall output power and efficiency can drop in some cases while 

respecting the Doherty conditions at the peak and BO points. 

This problem extends to the analysis approach for combiner design as well. In [57], the authors 

analyse a compact combiner architecture and determine that it can be used for DPA operation 

at 3dB back-off. The analysis is conducted only on the two critical points and as a result, the 

main branch voltage decreases between the BO and peak points (Doherty-like operation instead 

of Doherty).  

In the following section, a new combiner analysis method for DPA design, capable of respecting 

the current and voltage requirements throughout the entire Doherty region, is presented. The 

current and voltage conditions between the Peak and BO powers are taken into account and the 

optimal current driving profiles are derived. This method is then used on the compact L-C 

combiner to demonstrate that with an optimized drive profile, this combiner can operate up to 

7.2dB back-off unlike in [57] where Doherty operation is achieved over 3dB back-off. 

2.1 DPA Combiner Analysis 

Using the classic impedance inverter-based DPA as a reference, a set of four conditions can be 

defined for ideal DPA operation. 

i. In low power region, the Auxiliary PA does not contribute to the overall output power. 

ii. The main PA is saturated all over the Doherty region 

iii. The auxiliary amplifier reaches its saturation when the peak overall output power is 

achieved. 

iv. In the Doherty region, the power combination of the two paths is additive. In addition, 

the power per branch is required to be strictly incremental. 

 

As in [53], the critical operation points are defined as the peak output power (𝑃𝑂|𝑃) and the 

back-off output power (𝑃𝑂|𝐵). The ratio between the two power levels is the peak to back-off 

power ratio and is denoted using 𝜁. 

𝜁 =
𝑃𝑂|𝑃
𝑃𝑂|𝐵

 (3.40) 

These conditions are then tested against a given combiner architecture in order to verify its 

compatibility with Doherty operation and derive optimized current profiles.  

The DPA combiner can be represented a cascade of two-port networks and represented using 

its equivalent ABCD matrix. 

 
Figure 3.19 – Cascaded two-port network representation of the reactive compensation current combiner for DPA operation. 
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Using the schematic of Figure 3.19, the current and voltage relations can be expressed as 

follows: 

(
𝑽𝑴
𝑰𝑴
) = (

𝑨 𝑩
𝑪 𝑫

) × (
𝑽𝑨
−𝑰𝑨

) (3.41) 

The complex auxiliary to main current ratio is represented using amplitude 𝛾𝐼 and phase 𝜙. 

𝑰𝑨
𝑰𝑴

= |
𝑰𝑨
𝑰𝑴
| . 𝑒𝑗𝜙 = 𝛾𝐼 . 𝑒

𝑗𝜙 (3.42) 

The main and auxiliary input impedances can therefore be derived: 

𝒁𝑴 =
𝟏

𝑪
∙ (𝑨 + 𝛾𝐼 . 𝑒

𝑗𝜙) (3.43) 

𝒁𝑨 =
1

𝑪
∙ (𝑫 +

1

𝛾𝐼
∙ 𝑒−𝑗𝜙) (3.44) 

As stated in condition (i), the auxiliary provides no current at 𝑃𝑂|𝐵 (i.e., 𝐼𝐴|𝐵 = 0) and therefore, 

only the main branch contributes to the overall output power.  

𝑃𝑂|𝐵 =
1

2
∙ ℜ[𝒁𝑴|𝑩]. 𝐼𝑀|𝐵

2 (3.45) 

Where 𝒁𝑴|𝑩 is the main input impedance at 𝑃𝑂|𝐵 defined by: 

𝒁𝑴|𝑩 =
𝑨

𝑪
 (3.46) 

The main current amplitude at back-off 𝐼𝑀|𝐵 can therefore be calculated as follows: 

𝐼𝑀|𝐵 = √
2. 𝑃𝑂|𝑃

𝜁. ℜ[𝒁𝑴|𝑩]
 (3.47) 

At peak output power, both branches contribute to the overall output power. This can be 

expressed using (3.48). 

𝑃𝑂|𝑃 =
1

2
∙ (ℜ[𝒁𝑴|𝑷]. 𝐼𝑀|𝑃

2 +ℜ[𝒁𝑨|𝑷]. 𝐼𝐴|𝑃
2) (3.48) 

Condition (ii) states that the main voltage amplitude must remain constant throughout the 

Doherty region. In other works, this condition is only considered at the peak and back-off points 

which can result in unwanted behaviour within the Doherty region. The key difference between 

the proposed method and the standard approach [55], [56], is the verification of this voltage 

condition throughout the Doherty region using the expressions below: 
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𝑓𝑜𝑟⁡𝑃 ∈ [𝑃𝑂|𝐵; 𝑃𝑂|𝑃],⁡⁡⁡|𝑽𝑴| = |𝒁𝑴. 𝑰𝑴| = |𝒁𝑴|𝑩|. 𝐼𝑀|𝐵 (3.49) 

 = |𝒁𝑴|𝑷|. 𝐼𝑀|𝑃 (3.50) 

Starting with (3.48), 𝑃𝑂|𝑃 is replaced with its equivalent expression derived from (3.47). The 

same is done for 𝐼𝑀|𝐵 using (3.49) and (3.50) which results in the equation below. 

ℜ[𝒁𝑴|𝑩]

|𝒁𝑴|𝑩|
2 ∙ 𝜁. |𝒁𝑴|𝑷|

2
−ℜ[𝒁𝑴|𝑷] − ℜ[𝒁𝑨|𝑷]. 𝛾𝐼|𝑃

2 = 0 (3.51) 

As can be seen in (3.43) and (3.44), both 𝒁𝑴|𝑷 and 𝒁𝑨|𝑷 are functions of 𝛾𝐼|𝑃, meaning that 

(3.51) can be rewritten as a quadratic function of 𝛾𝐼|𝑃 with real coefficients: 

𝑎(𝜁, 𝜙). 𝛾𝐼|𝑃
2 + 𝑏(𝜁, 𝜙). 𝛾𝐼|𝑃 + 𝑐(𝜁, 𝜙) = 0 (3.52) 

𝛾𝐼|𝑃 is the ratio of two amplitudes, and as a result its value must be both positive and real. For 

a given value of 𝜙, the discriminant of (3.52), Δ𝛾, is positive for a range of 𝜁 values, the highest 

of which, 𝜁𝑚𝑎𝑥, represents the maximum theoretical back-off achievable in DPA operation 

using the chosen combiner architecture and current phase difference 𝜙. 

𝛾𝐼|𝑃 =
−𝑏(𝜁, 𝜙) ± √Δ𝛾

𝑎(𝜁, 𝜙)
 (3.53) 

Once 𝜁 is set, the root values of 𝛾𝐼|𝑃 can be calculated and subsequently used to determine 𝐼𝐴|𝑃 

using (3.49) and (3.50): 

𝐼𝐴|𝑃 =
|𝒁𝑴|𝑩|

|𝒁𝑴|𝑷|
∙ 𝐼𝑀|𝐵. 𝛾𝐼|𝑃 (3.54) 

The main current amplitude at peak is calculated using 

𝐼𝑀|𝑃 =
𝐼𝐴|𝑃

𝛾𝐼|𝑃
 (3.55) 

With the current values calculated at both peak and back-off power levels, the trajectory 

between these points must be determined. The auxiliary current is null in the low power region 

and starts to increase in the Doherty region. Assuming a linear evolution of the current 

amplitude, its drive profile can be defined as: 

𝑰𝑨 = {

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡0 ≤ 𝛼 ≤ 𝛼𝑏

𝐼𝐴|𝑃 ∙
(𝛼 − 𝛼𝑏)

1 − 𝛼𝑏
∙ 𝑒𝑗𝜙 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡𝛼𝑏 ≤ 𝛼 ≤ 1

 (3.56) 

Where 𝛼 and 𝛼𝑏 are normalized power values defined as: 
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𝛼 = √
𝑃𝑂
𝑃𝑂|𝑃

 (3.57) 

𝛼𝑏 = √
1

𝜁
 (3.58) 

In the low power region, the main current can be assumed to follow a linear increase as well, 

however, throughout the Doherty region, the voltage condition must be kept, and as a result, 

the evolution of the main current must be derived from (3.49) by rewriting it as a function of 

|𝑰𝑨| and |𝑰𝑴| and solving for |𝑰𝑴|.The main input drive profile can therefore be written as: 

𝑰𝑴 = {
𝐼𝑀|𝐵 ∙

𝛼

𝛼𝑏
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡0 ≤ 𝛼 ≤ 𝛼𝑏

𝑓(|𝑰𝑨|) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡𝛼𝑏 ≤ 𝛼 ≤ 1
 (3.59) 

Using the voltage condition, it is possible to extract the drive profile for the main current 

amplitude in the Doherty region. To the authors’ best knowledge, this type of approach has not 

yet been attempted in the literature, as the drive profile is usually assumed to keep its linear 

evolution. 

Ideal Doherty operation is achieved when all of the previously listed conditions are met. 

Conditions (i) and (ii) are used to derive the current profiles and as a result are considered 

validated. Meanwhile, condition (iii) is satisfied when: 

|𝑽𝑨|𝑷| = 𝐦𝐚𝐱[|𝑽𝑨|] (3.60) 

Finally, condition (iv) which requires the power combination to be additive is verified if the 

total output power 𝑃𝑂 is always increasing with respect to input power. 

This new analysis method is now used to evaluate the reactive compensation current combiner, 

which was selected for OPA operation for its compact size. 

2.1.1 Reactive Compensation Current Combiner for DPA Operation 

 
Figure 3.20 – Cascaded two-port network representation of the reactive compensation current combiner for DPA operation. 

The compact combiner architecture used in [42], [57] is a special case of the reactive 

compensation current combiner (RCC) used for Outphasing operation with a compensation 

angle 𝜃𝑐 = 45°. The reactive component values can therefore be calculated using (3.22) 

resulting in: 

𝑋𝑐 = 𝑅𝐿 (3.61) 
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Going back to the equivalent ABCD matrix given in (3.21), the input impedances can be found 

using (3.43) and (3.44) as shown below. 

𝒁𝑴 = 𝑅𝐿 + 𝑗. 𝑅𝐿 + 𝑅𝐿 . 𝛾𝐼 . 𝑒
𝑗𝜙 (3.62) 

𝒁𝑨 = 𝑅𝐿 − 𝑗. 𝑅𝐿 +
𝑅𝐿
𝛾𝐼
∙ 𝑒−𝑗𝜙 (3.63) 

The main branch current amplitude at back-off, whose expression is given in (3.47), becomes: 

𝐼𝑀|𝐵 = √
2. 𝑃𝑂|𝑃

𝜁. 𝑅𝐿
 (3.64) 

The second order polynomial coefficients of (3.52) are calculated below: 

𝑎(𝜁, 𝜙) =
𝜁

2
− 1 (3.65) 

𝑏(𝜁, 𝜙) = 𝜁. 𝑠𝑖𝑛 𝜙 + (𝜁 − 2). 𝑐𝑜𝑠 𝜙 (3.66) 

𝑐(𝜁, 𝜙) = 𝜁 − 1 (3.67) 

Using the discriminant condition shown in (3.68), the maximum theoretical back-off 𝜁𝑚𝑎𝑥 can 

be determined for different values of 𝜙 through (3.69). 

𝛥𝛾 = 𝜁
2. (𝑠𝑖𝑛(2. 𝜙) − 1) − 2. 𝜁. (2. 𝑐𝑜𝑠2 𝜙 + 𝑠𝑖𝑛(2. 𝜙) − 3) − 4. 𝑠𝑖𝑛2 𝜙 ≥ 0 (3.68) 

𝜁𝑚𝑎𝑥 =
√2. 𝑠𝑖𝑛 (2. 𝜙 +

𝜋
4
) − 2 − √3 − 2. √2. 𝑠𝑖𝑛 (2. 𝜙 +

𝜋
4
)

𝑠𝑖𝑛(2. 𝜙) − 1
 

(3.69) 

For a given value of 𝜙, the achievable back-off levels are bounded by 𝜁𝑚𝑎𝑥. However, this does 

not guarantee that all the back-off levels 𝜁 < 𝜁𝑚𝑎𝑥 are achievable, as there are other conditions 

that must be satisfied as well. 

The γ
I|P

 roots extracted from (3.52) can be calculated using (3.70) 

𝛾𝐼|𝑃 =
−𝜁. 𝑠𝑖𝑛 𝜙 − (𝜁 − 2). 𝑐𝑜𝑠 𝜙 ± √𝛥𝛾

𝜁 − 2
 (3.70) 
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As γ
I|P

 is the ratio of two amplitudes, only real, positive roots are retained. This restricts the 

possible values of 𝜙 to the range of [−90°; 0°]. 

 
Figure 3.21 – Maximum theoretical back-off value 𝜁𝑚𝑎𝑥 with respect to 𝜙. 

Figure 3.21 plots the values of 𝜁𝑚𝑎𝑥 with respect to 𝜙. The compact RCC combiner is shown 

to be capable of a maximum back-off value 𝜁𝑚𝑎𝑥 = 7.12𝑑𝐵 when 𝜙 = {−90°; 0°}. The peak 

auxiliary current amplitude can now be calculated using (3.54) which results in (3.71). 

𝐼𝐴|𝑃 = 𝐼𝑀|𝐵. 𝛾𝐼|𝑃 ∙ √
2

𝛾𝐼|𝑃
2 + 2. 𝛾𝐼|𝑃. (𝑠𝑖𝑛 𝜙 + 𝑐𝑜𝑠 𝜙) + 2

 (3.71) 

Finally, as previously stated, the main current amplitude in the Doherty region can be expressed 

by solving (3.49) which results in the expression below. 

|𝑰𝑴| =

−|𝑰𝑨|. (𝑠𝑖𝑛 𝜙 + 𝑐𝑜𝑠 𝜙) ± √|𝑰𝑨|
2. (𝑠𝑖𝑛(2. 𝜙) − 1) + 4. 𝐼𝑀|𝐵

2

2
 

(3.72) 

Each of the two roots found in (3.72) corresponds to one of the two roots of 𝛾𝐼𝑃 that were 

previously calculated. Only the |𝑰𝑴| expression (and corresponding I P
  root) that results in real 

positive value for any 𝛼 ∈ [𝛼𝑏; 1] is retained. 

Using this method, it can be shown that the compact combiner can operate under Doherty 

conditions for different back-off levels as well as phase difference values. The plots of Figure 

3.22(a) show the main and auxiliary input current profiles required to achieve a back-off of 𝜁 =

5𝑑𝐵 for different values of phase offset 𝜙. The main voltage amplitude is seen to remain 

constant throughout the Doherty region in Figure 3.22(b). Lastly, the load modulation seen by 

each branch can be visualized in Figure 3.22(c) and Figure 3.22(d). 
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(a) (b) 

  

(c) (d) 

Figure 3.22 – Main and auxiliary normalized (a) current amplitude, (b) voltage amplitude, (c) parallel load resistance, and 

(d) impedance for different values of 𝜙 at 𝜁 = 5𝑑𝐵. 

Finally, the efficiency of the DPA combiner must be analysed. The ideal efficiency of the DPA 

circuit using the selected combiner can be calculated through: 

𝜂 = 𝜂𝑀. 𝜂𝐴 ∙
𝑃𝑀 + 𝑃𝐴

𝑃𝑀. 𝜂𝐴 + 𝑃𝐴. 𝜂𝑀
 (3.73) 

Where 𝑃𝑀 and 𝑃𝐴 represent the output power contribution of the main and auxiliary branches 

respectively, and are calculated using(3.74), while 𝜂𝑀 and 𝜂𝐴 represent the power efficiency of 

each branch and can be found using (3.75). 

𝑃𝑘 =
1

2
∙ ℜ[𝒁𝒌]. |𝑰𝒌|

2 (3.74) 

𝜂𝑘 = 𝜂𝑚𝑎𝑥|𝑘 ∙
|𝑽𝒌|

max[|𝑽𝒌|]
 (3.75) 

𝜂𝑚𝑎𝑥|𝑘 is the maximum theoretical efficiency value for the class of operation of each power 

cell. The DPA efficiency is plotted against the normalized output power expressed in dB in 

Figure 3.23(a) for the different values of 𝜙 used above. It can be seen that all three plots respect 

the 5dB back-off and present two efficiency peaks. Moreover, the efficiency curve obtained 

when 𝜙 = −90° results in the highest average efficiency and should therefore be favoured. 
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Using this value of 𝜙, the combiner can be operated at different levels of back-off going up to 

7dB as shown in Figure 3.23(b). 

  

(a) (b) 

Figure 3.23 – DPA combiner efficiency versus normalized output power for (a)different values of 𝜙 at 𝜁 = 5𝑑𝐵 and (b) 

different levels of 𝜁 at 𝜙 = −90°. 

Through this study, it can be determined that the compact combiner is capable of ideal Doherty 

operation with back-off levels up to 7dB. Furthermore, its compactness makes it the ideal choice 

for an integrated DPA design. 
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3 Conclusion 

In this chapter, the main load modulation PA architectures for back-off efficiency enhancement 

were discussed and analysed. The Outphasing PA architecture is first explored through the 

classic Chireix combiner. It is shown that most of the Outphasing combiners used today can be 

obtained by applying circuit transformations to the original Chireix combiner. Through these 

transformations, a new combiner is proposed, completing the set of dual voltage and current 

combiners. Both voltage and current-mode Outphasing are explained and shown to be 

compatible with all of the analysed voltage and current combiners. With the exception of the 

classic Chireix combiner, all the other combiners have a peak output power that is dependent 

on the targeted output back-off level. A new design method is proposed which unifies the 

combiner design for both voltage and current mode operation and ensures a given peak power 

regardless of the targeted back-off level. 

Next a set of Doherty PA operation conditions were proposed and used as the basis of a new 

combiner analysis method. Current combiner synthesis and analysis methods focus solely on 

the two bordering points of the Doherty region (Peak and BO) which in consequence puts no 

conditions on the operation points in-between these two and can result in unwanted behaviour. 

The proposed method takes into account the entirety of the Doherty region and ensures that the 

current and voltage conditions are respected at all points of operation. Using this approach, the 

compact combiner used in [57] is proven to be capable of Doherty operation with up to 7dB of 

back-off (up to 4dB from the initial analysis of the authors). 

The compact reactive compensation current combiner architecture is found to be the ideal 

choice for PA integration, given its limited number of components and compatibility with both 

OPA and DPA operation. 
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oad modulated PA architectures have two major features: the combiner which was 

discussed at length in the previous chapter and the power stage. For high efficiency 

PA operation in back-off, an optimal load impedance must be presented to the PA 

devices as a function of the output power. Moreover, the transistors must be correctly 

biased and driven so as to maintain stable, high efficiency operation. 

In order to validate the newly proposed DPA combiner analysis technique, a SOI-CMOS class-

E Doherty power amplifier is designed, fabricated and measured.  

First, the design process begins with the DPA power stage design considering the compact LC 

combiner. The power stage is then integrated into a two-stage DPA design which is tuned until 

the desired performance is achieved.  

Next, the different integration technologies considered in this work are exposed. The SOI-

CMOS, package and circuit board technologies are presented along with their main 

characteristics. 

Finally, the proposed circuit is implemented and fabricated before being tested with both 

continuous wave (CW) and modulated LTE signals. 

 

L 



Chapter 4. SOI-CMOS Class-E Doherty PA 

69 

1 Doherty PA Design 

This section details the design process of the proposed two-stage class-E Doherty PA used to 

validate the proposed combiner design analysis. 

The PA targets mobile applications, and as a result, the supply voltage is limited to 3.4𝑉. The 

design frequency is set to 2.5GHz to target the mid-band. The target DPA circuit performance 

is summed up in Table 4.1 below. 

Table 4.1 – DPA target performance 

CW Peak Power 33 dBm 

Gain 24 dB 

Peak PAE >50% 

PAE at 6dB BO >42% 

Modulated Signal Standard LTE 

Signal Bandwidth 10 MHz 

Modulation QPSK LTE 

Average PAE >40% 

ACLR <-35 dBc 

A typical two-stage DPA architecture is shown in Figure 4.1. It consists in two active blocks, 

namely the power stage (PWR) and the driver stage (DRV), along with three matching networks 

at the output (OMN), input (IMN), and inter-stage (ISMN). Since a Doherty architecture is 

considered, a power divider (integrated in the ISMN) and a power combiner (CMB) are also 

considered. 

 
Figure 4.1 – Two-stage DPA block diagram. 

The first stage (driver) of the PA is followed by a power divider, which offers the best 

compromise between efficiency and linearity as demonstrated in [58]. 

The DPA design process is split into two steps. First, a single-stage dual-input Doherty PA 

consisting of the PWR, CMB, and OMN stages is designed. Once the power stage is optimized 

in terms of efficiency and output power, the driver stage and ISMN are added and the overall 

two-stage DPA is tuned to provide optimized performance. 
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1.1 Power Stage Design 

The compact reactive compensation current combiner architecture studied in Chapter 3 section 

2.1.1, is selected and designed to provide an overall output power of 33dBm. The values of the 

combiner elements are shown in Figure 4.2(a). Next, the class-E power cells are designed. An 

electrical LDMOS transistor model is used and the class-E PA is designed using the K-set 

method presented in Chapter 2 section 2.3. Due to the ON-resistance of the transistor, the PA 

cell must be oversized by a factor of two. The class-E PA is designed at 𝑓0 = 2.5𝐺𝐻𝑧, with a 

supply voltage of 𝑉𝐷𝐷 = 3.4𝑉, and a target peak power 𝑃𝑠𝑎𝑡 = 33𝑑𝐵𝑚 considering the 𝑞 factor 

as a free design variable. 

 

 

(a) (b) 

Figure 4.2 – (a) Reactive compensation current combiner, (b) Class-E power cell schematic. 

As shown in Figure 4.2(b), a single-tone input signal is chosen instead of the typical square-

wave and a parallel LC tank tuned to 𝑓0 is used as a biasing circuit at the gate of the transistor. 

The value of the bias voltage is different for each of the two power cells, so as to achieve 

Main/Auxiliary Doherty behaviour. The quality factors of the capacitors and inductors are 𝑄𝐶 =

90 and 𝑄𝐿 = 40 respectively. 

The source impedance 𝑍𝑠 is first conjugately matched to the input impedance of the transistor, 

and then tuned in order to optimize efficiency and output power. 

The choice of 𝑞 is determined through load pull simulations: The main and auxiliary class-E 

PA power cells are biased to 𝑉𝐵|1 = 0.8𝑉 and 𝑉𝐵|2 = 0.25𝑉 respectively. Each PA cell is then 

simulated in a load pull bench by varying the load 𝑍𝐿, and the power and efficiency contours 

are extracted at the desired peak and back-off operation points. Using the proposed combiner 

analysis technique, the load impedance seen by the main and auxiliary cells can be calculated 

and overlaid on the smith chart contours in order to compute the DPA performance at peak and 

back-off power. This procedure is repeated until an optimal 𝑞 value (in terms of peak and back-

off efficiency ) is found. 

In the case of the proposed DPA, 𝑞 = 1 and results in the schematic of Figure 4.3 where the 

reactive elements of the combiner are merged with the class-E series LC resonators, leading to 

a more compact circuit. At the inputs, both a power and phase difference, Δ𝑃 and Δ𝜃 

respectively, are introduced. These two design variables are used to further optimize the DPA 

performance. 
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Figure 4.3 – Schematic of the class-E DPA power stage with combiner. 

Figure 4.4(a) and (b) show the load pull contours of the main class-E power cell with the load 

modulation trajectory seen by the main branch at peak and back-off powers respectively. The 

same is done for the auxiliary branch in Figure 4.4(c) at the peak operation point (since the 

auxiliary is off at back-off). Drain efficiency of the DPA stage is around 71.6% at 32.3dBm 

output power (calculated using (3.73) and the values from Figure 4.4(a) and (c)) and 60% at 

26.5dBm output power (Figure 4.4(b)). These results are validated in Figure 4.4(d) which shows 

the efficiency and gain profiles of the simulated DPA stage from Figure 4.3. 

  

(a) (b) 

 
 

(c) (d) 

Figure 4.4 – 1dB step power contours and 5% step efficiency contours with load modulation trajectory seen at (a) main branch 

at peak, (b) main branch at back-off, (c) auxiliary branch at peak. (d) DPA stage efficiency and gain versus 

output power. 

The DPA stage is optimized in terms of efficiency, but the gain profile shows a 3dB drop at 

high power which negatively impacts the linearity. In order to achieve more linear 
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characteristics, the auxiliary bias voltage is increased, and the DPA stage is operated using the 

design parameters listed in Table 4.2. 

Table 4.2 – Linear DPA drive profile. 

𝑉𝐵|1 𝑉𝐵|2 𝑍𝑠|1 𝑍𝑠|2 Δ𝑃 Δ𝜃 

0.82𝑉 0.45𝑉 1.95 + 𝑗. 025⁡Ω 0.7 + 𝑗. 2.8⁡Ω 2.5𝑑𝐵 25° 

 

Figure 4.5(a) shows the simulated gain compression characteristic improvement between the 

previous (efficient mode) and the new settings (linear mode). However, this improvement in 

terms of linearity comes at the expense of efficiency in back-off throughout the Doherty region. 

As can be seen in Figure 4.5(b), the peak efficiency remains around 72% and 63% of DE and 

PAE respectively for 32𝑑𝐵𝑚 of output power. At 27𝑑𝐵𝑚 of output power, there is a noticeable 

difference since the efficiency drops to 52% and 47% of DE and PAE respectively. Nonetheless, 

the simulation results of the linear mode DPA are promising. 

  

(a) (b) 

Figure 4.5 – Comparison of DPA (a) gain and (b) efficiency versus output power in the case of linear and efficient operation 

modes. 

Having determined the baseline performance with optimal input and load impedances, the next 

step is to match the circuit to 50Ω using matching networks. 

1.1.1 Impedance Matching 

The impedance transformation ratios are first calculated and used to determine the optimal order 

of the required matching networks through the equation below [59]: 

𝑛𝑜𝑝𝑡 → ln ⌈√
|𝑍1|

|𝑍2|
− 1⌉ (4.1) 

Using the equation from (4.1), it is determined that a two-stage matching network is optimal at 

both inputs and at the output. 
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(a) (b) 

  

(c) (d) 

Figure 4.6 – (a) Low Pass-High Pass (LPHP) matching network, (b) High Pass-Low Pass (HPLP) matching network, (c) Low 

Pass-Low Pass (LPLP) matching network, (d) High Pass-High Pass (HPHP) matching network. 

Four possible matching network configurations were evaluated, observing from right to left: 

• Low Pass-High Pass (LPHP) in Figure 4.6(a) 

• High Pass-Low Pass (HPLP) in Figure 4.6(b) 

• Low Pass-Low Pass (LPLP) in Figure 4.6(c) 

• High Pass-High Pass (HPHP) in Figure 4.6(d) 

The same type of network is used for both inputs so as to minimize loss and phase mismatch 

between the two branches. Each of the four networks is then simulated with optimized input 

drive parameters Δ𝑃 and Δ𝜃 and the simulation results are plotted in Figure 4.7. 

  

(a) (b) 

Figure 4.7 – (a) PAE and (b) Power gain performance versus output power for different IMN architectures. 

As the four architectures are relatively equivalent in terms of overall PA performance, other 

criteria are taken into account: 

The HPHP architecture is excluded since it has no series capacitor which would require the 

addition of an additional decoupling capacitor at the input in order to block the DC voltage. 

The LPHP architecture is the best suited since its series inductance at the gate input would 

provide easier layout integration by allowing routing the capacitors away from the gate without 

having to add parasitic inductance. The output matching network is also implemented as a 

LPHP architecture for the same reasons. 
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The selected IMNs are designed to transform the 50Ω reference impedance to the optimal 

source impedance 𝑍𝑠𝑜𝑝𝑡 at the design frequency 𝑓0. The impedance seen at the harmonics 

depends on the choice of the architecture and can affect PA stability and performance. 

1.1.2 PA Stability 

A first stability check is realized by simulating the input (S11, S22) and output (S33) reflection 

coefficients of the dual-input DPA as defined in Figure 4.8(a). 

 

(a) 

 
 

(b) (c) 

Figure 4.8 – (a) Dual-input DPA reflection coefficients, (b) Input and output impedance extraction. 

Figure 4.8(b) shows that the reflection coefficients are negative for all frequencies indicating 

no signs of potential instability both in and out of the operation frequency band. This first test 

however, is only relative to small-signal behaviour and gives no information about the PA 

stability when operating at high power. Driving point admittance is therefore used to test large-

signal stability at the gate and drain of the transistors [60]. This test looks at the input and output 

impedances 𝑍𝑖𝑛 and 𝑍𝑜𝑢𝑡 respectively using the WS_Probe in ADS design environment, as 

shown in Figure 4.8(c). A PA is considered unconditionally stable, when the real parts of 𝑍𝑖𝑛 

and 𝑍𝑜𝑢𝑡 are positive for any power level. The input and output resistances of each PA branch 

are plotted against the overall output power in Figure 4.9. 
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(a) (b) 

Figure 4.9 – Real part of the input and output impedances of (a) Main and (b) Auxiliary branch PAs. 

All the resistances are positive with the exception of the output resistance of the auxiliary 

branch when operating in the Doherty region. The negative value is an indication of a possible 

instability, and should therefore be eliminated by tuning the value of impedance 𝑍𝑠|2. 

  

(a) (b) 

Figure 4.10 – (a) Real part of the input and output impedances of the auxiliary branch PA after tuning. (b) Simulated DPA 

efficiency and gain versus output power achieved after tuning. 

For an input impedance 𝑍𝑠|2 = 2.15 + 𝑗. 2.02⁡Ω (and optimized drive conditions) the output 

impedance 𝑍𝑜𝑢𝑡|2 becomes positive for all power levels at 𝑓0 as shown in Figure 4.10(a). The 

modified DPA drive profile is indicated in Table 4.3 and results in the efficiency characteristics 

shown in Figure 4.10(b). The DPA delivers up to 33dBm of output power with a peak PAE of 

62%. At 27dBm, the PAE value drops to 40%. The power gain profile is mostly flat around 

13dB. 

Table 4.3 – Modified DPA drive profile. 

𝑉𝐵|1 𝑉𝐵|2 𝑍𝑠|1 𝑍𝑠|2 Δ𝑃 Δ𝜃 

0.82𝑉 0.45𝑉 1.95 + 𝑗. 025⁡Ω 2.15 + 𝑗. 2.02⁡Ω 2.5𝑑𝐵 25° 

 

The final dual-input DPA stage schematic is given in Figure 4.11 below. In order to boost the 

gain, a driver stage is then considered as detailed in the next section. 
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Figure 4.11 – Single-stage dual-input DPA schematic with input and output matching networks. 

1.2 Driver Stage Design 

A driver is typically used to increase the overall gain of the PA. Its transistor and class of 

operation can be different from the power stage, but must nonetheless be compatible. Class-E 

stages are usually preceded by class-D stages capable of supplying the required square-wave 

voltage. However, in the proposed power stage design, class-E power cells driven by a sine 

wave are considered, and it is then possible to operate the driver stage in linear class-AB. As a 

result, the overall PA linearity can be maintained without degrading the overall efficiency [18]. 

A cascode topology is selected for the driver cells in order to handle high voltage swings while 

providing high gain. An LDMOS transistor is used in common gate configuration (CG) in series 

with a body-contacted NMOS transistor in common source configuration (CS) as shown in 

Figure 4.12(a). As for the power stage, an electromagnetic (EM) extraction is performed and 

results in the transistor model of Figure 4.12(b). 

 
 

(a) (b) 

Figure 4.12 – (a) Cascode topology schematic and (b) Driver stage equivalent model. 
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The required driver stage output power and efficiency can be estimated by calculating the power 

budget of the overall two-stage PA line-up. For an output power of 33⁡𝑑𝐵𝑚, the driver stage 

must provide 26⁡𝑑𝐵𝑚 of output power (in order to account for loss). The overall PA efficiency 

can be expressed in terms of efficiency and gain of the driver and power stages as well as 

insertion loss of the inter-stage network using (4.2). 

1

𝑃𝐴𝐸𝑇𝑜𝑡
= (

1

𝜂𝑃𝑊𝑅
+

1

𝜂𝐷𝑅𝑉 . 𝐼𝐿𝐼𝑆. 𝐺𝑃|𝑃𝑊𝑅
) ∙ (1 −

1

𝐺𝑃|𝐷𝑅𝑉 . 𝐺𝑃|𝑃𝑊𝑅. 𝐼𝐿𝐼𝑆
) (4.2) 

Based on the power stage performance, the required driver efficiency and power gain can be 

calculated for a given overall PAE. However, the driver performance is subject to change once 

placed into the two-stage PA because the load modulation at the drains of the power stage leads 

to load modulation of the driver through the gate-drain capacitors 𝐶𝑔𝑑 of the power stage and 

the inter-stage network. The driver stage must then be tuned from the initial design step, in 

order to take into account the impact of this effect. 

1.3 Inter-Stage Matching Network Design 

The inter-stage matching network plays a crucial role. It must provide adequate source 

impedances 𝑍𝑠|1,2 to the power stage, ensure correct phase difference and provide correct load 

impedance 𝑍𝐿|𝐷𝑅𝑉 to the driver stage. 

In Figure 4.13, the different ISMN components are shown. The matching networks MN1 and 

MN2 are designed to provide the required source impedances. By using a high-pass architecture 

for MN1 and a low-pass architecture for MN2, a 90° phase shift is introduced. However, as 

seen in section 1.1, the dual-input DPA requires a phase difference Δ𝜃 ≠ 90°. The correct phase 

shift is therefore achieved by adding a high-pass circuit MN3. 

 
Figure 4.13 – ISMN sub-circuit components. 

The power divider is implemented using a Wilkinson divider. The conventional lumped-

element Wilkinson [61] is shown in Figure 4.14(a). This architecture includes two series 

inductors and thus is prone to high insertion loss since inductors generally present a limited 

quality factor. In [62], the authors propose a modified version of the lumped-element power 

divider, shown in Figure 4.14(b). An AC coupling capacitor 𝐶𝐶𝑃 is added at the input of the 

divider in order to block the DC voltage from the driver stage supply. 
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(a) (b) 

Figure 4.14 – (a) Conventional lumped-element Wilkinson divider, (b) Modified Wilkinson lumped-element divider 

The divider exhibits vertical symmetry, therefore the component values can be calculated using 

even/odd mode analysis [63]. 

The methods described in this section give a starting point for the ISMN design. However, the 

component values must be tuned once all the blocks are placed in the two-stage PA line-up in 

order to take into account the impedance changes brought on by the load modulation. 

1.4 Two-Stage DPA Line-Up and Simulation 

The different two-stage PA sub-blocks are put together, and the full two-stage DPA circuit is 

simulated and tuned in order to get optimal results. The schematic of Figure 4.15 shows the 

different component values after tuning. 

 
Figure 4.15 – Tuned single-input two-stage DPA schematic. 

A second order LPHP architecture is used for both the IMN and OMN stages. A series LC shunt 

resonator is added to the IMN network in order to provide low input impedance at the second 

harmonic for improved linearity. The reactive compensation current combiner is merged with 

the class-E power cell matching networks, and the ISMN provides the optimal source 

impedance to the power stage. As with the dual-input DPA, the stability and bandwidth of the 

circuit is checked using S-parameter simulations as shown in Figure 4.16. 
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(a) (b) 

Figure 4.16 – (a) Reflection coefficients, (b) Transmission coefficient. 

Good input and output are achieved as shown by 𝑆11 and 𝑆22 respectively. The input reflection 

coefficient remains below −10𝑑𝐵 between 2.1 and 2.9GHz. Meanwhile, the output reflection 

coefficient goes down to −34𝑑𝐵 between 2 and 2.9GHz and goes up to −10𝑑𝐵 within this 

band. The transmission coefficient 𝑆21 shows that the small-signal gain is 25dB and remains 

close to this value between 2 and 2.8GHz. 

Next, CW simulations are performed on the two-stage DPA, and the performance of the driver 

and power stages is analysed. 

  

(a) (b) 

Figure 4.17 – (a) Driver stage performance, (b) Main and auxiliary branch performance. 

Figure 4.17(a) shows the PAE and gain of the driver stage. The output power is 26dBm with a 

peak PAE of 58% at its drain. The performance of the main and auxiliary branches of the power 

stage are plotted in Figure 4.17(b) and show Doherty-like behaviour, with the auxiliary branch 

providing the necessary load modulation to push the main into higher power levels while 

keeping its high efficiency. The load modulation can be seen clearly in Figure 4.18(a) where 

the parallel resistances of the two power stage branches are plotted. As mentioned before, this 

modulation impacts the driver stage as well. The parallel load resistance and equivalent 

inductance of the driver change around 21dBm of output power. 
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(a) (b) 

Figure 4.18 – (a) Real power stage load modulation, (b) driver stage load modulation. 

The performance of the power stage with the two combined branches is shown in Figure 

4.19(a). A peak PAE of 77% at 33dBm of output power is achieved with a small-signal gain of 

15dB which drops to 13dB in the Doherty region. The phase difference at the input of the two 

branches is plotted in Figure 4.19(b) and shows the same evolution as that of the single-stage 

DPA from section 1.1. 

  

(a) (b) 

Figure 4.19 – (a) Simulated power stage PAE and gain versus output power. (b) power stage AMAM and AMPM distortions. 

The gain compression shown in Figure 4.19(a) translates to AMAM distortion which affects 

the overall linearity. However, with proper tuning, the driver stage can be used to linearize the 

overall AMAM. This can be done by compensating the power stage AMAM with that of the 

DRV stage as illustrated in Figure 4.20(a). As a result, an overall flat AMAM can be achieved 

as shown in Figure 4.20(b). The overall AMPM distortion is also plotted and remains below 2° 

of variation before the PA saturates which is a satisfactory result. 

  

(a) (b) 

Figure 4.20 – (a) Power and driver stage AMAM distortion, (b) Two-stage DPA AMAM and AMPM distortion. 
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Finally, the two-stage DPA performance is plotted in Figure 4.21(a). The DPA achieves 57% 

of PAE at 32dBm of output power with a flat gain of 26.5dB. At 27dBm of output power (5dB 

back-off), the PA operates with an efficiency of 40%. The final delivered power is slightly 

lower than the targeted output of 33dBm. The insertion loss of the three matching networks are 

plotted in Figure 4.21(b) and show that the loss is mainly dominated by the ISMN stage. 

  

(a) (b) 

Figure 4.21 – (a) Two-stage DPA line-up performance, (b) Insertion loss of the matching stages. 

Finally, the two-stage DPA is tested at different frequencies with the gate biases adjusted each 

time for optimal performance. Figure 4.22(a) shows that peak output power is higher than 

30dBm with a peak PAE higher than 45%. The gain shown in Figure 4.22(b) is higher than 

26.5dB except at 2.7GHz, as predicted by the 𝑆21 in Figure 4.16(b). 

  

(a) (b) 

Figure 4.22 – Simulated (a) PAE and (b) gain profiles at different frequencies. 

The peak and 6dB back-off PAE are extracted and plotted in Figure 4.23(a). The FBW is taken 

as the bandwidth corresponding to a ≤ 10% change in peak PAE. Using this definition, the 

FBW is 16%. 
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(a) (b) 

Figure 4.23 – Simulated (a) Peak and 6dB Back-Off PAE and (b) Output power and gain with respect to operating frequency. 

Finally, the two-stage DPA provides more than 30.5dBm of output power and 25dB of gain 

within the 2.1-2.7 GHz frequency band. 

This first section detailed the design methodology of the proposed two-stage class-E DPA. A 

dual-input DPA, used as the power stage, was first designed, matched to 50Ω, evaluated for 

stability, and tuned to provide optimal performance. The gain of this single-stage DPA was then 

boosted with the addition of a driver stage. A cascode topology was chosen for the driver cell 

and its performance in terms of output power, efficiency and gain was determined. The driver 

and power stages were connected through the inter-stage network which provides the required 

impedance levels to both the driver and the power stage. Finally, the two-stage DPA line-up 

was optimized through tuning. Carefully controlling the AMAM and AMPM distortion of the 

driver allows for compensating the power stage distortion, resulting in a linear two-stage Class-

E PA. 

After the design of the two-stage class-E DPA, the following step is the implementation. This 

requires a knowledge of the characteristics of the different implementation and packaging 

technologies. The next section will expose the main features of these technologies. 
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2 Integration Technology 

The implementation of the final two-stage DPA design from the previous section (Figure 4.15), 

is performed using SOI-CMOS technology. The integrated circuit (IC), is then flip-chipped 

onto the packaging substrate technology using copper pillars (CuP) as can be seen in Figure 

4.24. This solution offers an advantage over the classic solder bumps in terms of both minimum 

spacing (and therefore compactness) as well as thermal conductivity. The dimensions of the 

CuP are chosen after careful consideration of the thermal conductivity, electro-migration, and 

grounding constraints. 

 
Figure 4.24 – Assembly technology stack-up. 

The choice of the packaging technology is determined by the diameter and minimum spacing 

between the copper pillars. As detailed in [64], a laminate solution is chosen to accommodate 

large CuP capable of handling high currents. The IC and package must be co-designed 

simultaneously so as to take into account the different constraints and parasitic effects and 

therefore increase the circuit performance. The following sections detail characteristics of the 

selected technologies and the circuit implementation. 

2.1 SOI-CMOS Technology 

A 130nm RF-SOI technology from ST Microelectronics was selected for the implementation 

of the integrated circuit. This technology offers different back end of line (BEOL) options. In 

this design the M4TCTA option was chosen as it provides higher quality factor and current 

rating for the integrated inductors. Figure 4.25 shows a simplified stack-up of the selected 

technology. The different metal layers are listed on the left, while the vias are indicated on the 

right. The dielectrics in between the metals are represented in grey, and the die passivation in 

yellow. 

 
Figure 4.25 – RF-SOI technology M4TCTA stack showing metals on the left and vias on the right. 
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2.1.1 Inductors 

The design kit (DK) of the chosen technology includes high current and high quality factor 

inductors. However, two types of compact custom inductors were used in order to optimize 

overall chip size. Figure 4.26(a) shows a first type of custom inductors designed for high-Q 

values. This is achieved by stacking different metal layers, which increases the cross-sectional 

area and therefore the conductivity of the structure. On the other hand, the inductor with high 

inductance value shown in Figure 4.26(b) is achieved by using multiple turns on different 

metallization levels [65]. 

  

(a) (b) 

Figure 4.26 – Custom inductor with (a) High quality factor, (b) High compacity. 

Two examples of integrated inductors used in the circuit layout are presented below. The first 

inductor, the ISMN auxiliary series inductor 𝐿𝑠|𝐴𝑢𝑥, illustrated in Figure 4.27(a), uses alucapT 

and metal4u layers in order to get a single loop with access lines for connection to the other 

components. 

  

(a) (b) 

Figure 4.27 – Custom inductor with (a) High quality factor, (b) High inductance in a compact size. 

The EM simulation results provided in Figure 4.28, show that the inductor has a value of 413pH 

with a quality factor of 17. Figure 4.27(b) shows the compact LC tank bias inductor. This 

inductor achieves a high inductance value of 2nH by effectively having 5 turns on different 

metal layers: 4 turns are made using the top two metal layers (alucapT and metal4u) which are 

thick and therefore provide adequate conductance. The final turn must therefore be made on the 

thinner metal3 layer, which would result in significant degradation of the quality factor. This is 

solved by stacking metal layers 1 to 3 as suggested above in order to increase effective 

conductivity. 

This results in a compact integrated inductor with high inductance and a quality factor of 9.5 as 

shown in Figure 4.28. The self-resonance frequency (SRF) is 18GHz and is due to the parasitic 

capacitance between the different turns. 
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(a) (b) 

Figure 4.28 – EM simulation results of the series auxiliary inductor 𝐿𝑠|𝐴𝑢𝑥 and the LC tank bias inductor 𝐿𝐵𝑖𝑎𝑠 showing (a) 

inductance value and (b) quality factor with respect to frequency. 

All the inductors of the two-stage DPA circuit in Figure 4.15 are integrated in the IC with the 

exception of those in the OMN and the three supply inductors since the supply and OMN 

inductors must handle high currents. 

2.1.2 Capacitors 

The DK offers two types of capacitors, Metal-Oxyde-Metal (MOM) and Metal-Insulator-Metal 

(MIM). The MOM capacitor, represented in Figure 4.29(a) uses an interdigital capacitor 

structure on metals 3, 2, and 1 (with metal1 having twice as many fingers and half the finger 

width and spacing). The different layers are connected together using vias on the sides which 

make up the two access ports. The MIM capacitor is shown in Figure 4.29(b) and requires two 

additional layers to the standard BEOL stack (the metal and insulator layers seen on the left). 

The ports of the capacitor are located on the metal4u layer and connected through V3u vias. 

The choice of capacitor architecture depends on the component’s place in the circuit as they 

each offer their own advantages and drawbacks. 

 

 

(a) (b) 

Figure 4.29 – 3D representation of (a) 3 metal layers MOM capacitor, (b) MIM capacitor. 

The comparison in Table 4.4 shows that MIM capacitors have a higher integration density (4.4 

times more compact), whereas MOMs can handle higher voltages and as such are more suited 

to power stages. 

Table 4.4 – MOM and MIM specs comparison. 

 MOM MIM 

Density 0.45⁡ 𝑝𝐹 𝑚𝑚2⁄  2⁡ 𝑝𝐹 𝑚𝑚2⁄  

Qualification Voltage 25⁡𝑉 5.5⁡𝑉 
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The Q-factor and SRF of the capacitor are two other key metrics to consider. Both depend on 

the form factor of the capacitor: the number of fingers for a MOM, and the width for a MIM. 

Figure 4.30 shows the evolution of the Q-factor at 2.5GHz and the SRF for 1pF of a capacitance 

when the design parameters of the MOM and MIM capacitors are swept. 

  

(a) (b) 

Figure 4.30 – Quality factor at 2.5GHz and self-resonance frequency simulated for 1pF using DK (a) MOM capacitor model, 

(b) MIM capacitor model. 

MOM capacitors have a much higher quality factor than MIMs. However, given that both 

architectures present intrinsic Q-factors exceeding 150, the distinction is not very significant. 

During implementation, the SRF must be evaluated once the access structures are added as it 

could affect the capacitance value at the centre frequency.  

The models provided by the DK have two main limitations: they are less accurate for high 

capacitance value, and they do not take into account the access structures needed to connect the 

capacitors to other components of the circuit. 

The first limitation is overcome by placing multiple small capacitors in a parallel configuration, 

connected together using an access structure, in order to get the desired capacitance value. 

The impact of the access structures can be taken into account by EM simulation and creating a 

capacitor model which contains the DK model in addition to the EM model of the access 

structure. This method is applicable to both MIM and MOM structures and is illustrated using 

the example of the IMN shunt capacitor (Figure 4.15). Given its position in the IMN, the 

capacitor is not subject to high voltage swings, and as a result can be implemented using a MIM. 

The capacitor has a relatively large capacitance of 10pF and is therefore be implemented by 

dividing it into 4 elementary capacitors of 2.5pF each. Figure 4.31(a) shows a 2D layout view 

of the elementary capacitor cell with Top and Bottom pins on the metal4u layer. The capacitors 

are connected together using an access structure on the metal4u and alucapT layers as shown 

in Figure 4.31(b). 
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(a) (b) 

Figure 4.31 – (a) 2D layout view of the elementary MIM capacitor cell with top and bottom pins on the metal4u layer, (b) 3D 

view of the access structure with the external top and bottom pins marked in purple, and the internal connection 

pins to the unitary capacitor cells marked in orange. 

The EM results of Figure 4.32 illustrate the effects of the additional access. When simulating 

the four capacitor DK models in parallel, the capacitance and Q-factor at 2.5GHz are 10pF and 

153 respectively. The addition of the access structure has a significant effect on the SRF, 

lowering it from 32 to 15.5GHz. A second, but smaller resonance, can also be observed at 

26GHz which is due to a parasitic capacitance between the metal plates. The Q-factor also 

decreases to 105 when considering the access. The value of the elementary capacitor is changed 

from 2.5pF to 2.44pF in order to fine tune the equivalent capacitance at 2.5GHz. 

  

(a) (b) 

Figure 4.32 – (a) Capacitance and (b) Q-factor of the equivalent capacitor using 4 parallel capacitors with the DK model only 

(red) and EM model of the access+capacitor DK model (blue). 

2.1.3 Power Device 

The power device is the core of the PA circuit and special care must be taken during 

implementation. The elementary cell uses a LDMOS transistor with a gate length of 0.3µm. CC 

extraction and EM simulations are used to determine the parasitic elements of the electrical 

model. The main and auxiliary transistors of the power stage have a gate width of 8mm. They 

are made up of 8 transistors of 1mm, each consisting of two 0.5mm elementary cells as shown 

in Figure 4.33(a). The Drain and Source access are made using comb structures on the top 

alucapT and metal4u layers. The gate access is made using a tapered architecture of stacked 

metal1 and metal2 to ensure uniform distribution of the input signal to the different branches. 
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(a) (b) 

Figure 4.33 – (a)2D layout view of the 8mm LDMOS PA cell, (b) 3D layout of the power stage with copper pillars. 

As mentioned before, copper pillars (CuP) are used to connect the PA to the package substrate 

as shown in Figure 4.33(b). The choice of pillar diameter and length are mainly dictated by the 

maximum drain current and source inductance of the PA cell. In the proposed two-stage DPA, 

three copper pillars with 70µm of diameter and height are required for the drain and source 

connections. 

2.2 Package Substrate Technology 

Due to the copper pillar dimensions and spacing, a laminate package technology must be used. 

The selected laminate is a four-metal layer micro Printed Circuit Board (µPCB) as shown in 

Figure 4.34. 

 
Figure 4.34 – µPCB laminate stack showing metals on the left and vias on the right. 

The top and bottom sides of the stack are covered with an isolating solder resist film and 

negative layers (OpenFS and OpenBS) are used to get access to metals 1 and 4. Vias are used 

to connect the different metal layers. The metal layers are made of copper and have a thickness 

of 15µm which results in an increased current density when compared to the metals layers of 

the IC technology (the thickest SOI metal layer is 4µm). 

Inductors can be made using metal traces much like those on SOI technology. The key 

difference is the achievable quality factor as shown in Figure 4.35 with the example of a supply 
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inductor. This inductor, uses layers Cu1 and Cu2 and has an inductance value of 1nH and a 

quality factor of 54 at the design frequency 𝑓0. 

  

(a) (b) 

Figure 4.35 – (a) 3D view of the supply inductor layout, (b) Inductance and Q-factor of the EM model. 

The inductors of the µPCB must then be simulated together with the inductors of the IC in order 

to take into account the coupling effects. The inductors are then tuned until the desired values 

are achieved. 

Capacitors can be placed on the laminate substrate using surface mounted devices (SMD). 

SMDs can also be used for large inductors which would take up a larger space if implemented 

directly on the µPCB. Another advantage of the SMDs is their high quality factor and the ability 

to perform tuning during the measurement phase by swapping them for other values. 

Finally, transmission lines can be used for routing purposes, ensuring 50Ω impedance if needed. 

They are implemented using coplanar waveguides (CPWG) designed using the LineCalc tool 

from ADS. An example is shown in Figure 4.36(a) where the transmission line is made using a 

Cu1 trace with a ground plane on Cu2 and the surrounding Cu1 connected through vias. The 

extracted EM model is simulated with 50Ω terminations and the results are illustrated in Figure 

4.36(b). The transmission line shows excellent matching at 2.5𝐺𝐻𝑧 with 𝑆11 = −35𝑑𝐵 and 

very limited loss (𝑆21 = −0.02𝑑𝐵). 

 
 

(a) (b) 

Figure 4.36 – (a) 3D view of the CPWG line implemented on Cu1 layer with a ground plane on Cu2, (b) S-parameters of the 

EM model. 
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2.3 PCB Technology 

 
Figure 4.37 – PCB technology stack showing metals on the left and vias on the right. 

A printed circuit board (PCB) is used to characterize the module by adding RF and DC 

connectors which allow direct connections to the lab equipment. The module is soldered on the 

PCB using a solder paste and the module ports are then connected to the I/O interface. RF ports 

are routed to the SMA connectors using 50Ω transmission lines. DC ports with high current are 

routed using wide metal traces in order to minimize resistive losses. 

SMD components such as decoupling capacitors are placed on the PCB. Moreover, a radiator 

is added on the back-side of the PCB in order to provide a heat sink and improve thermal 

dissipation during PA measurements. 

Finally, the ground reference of the module is provided by the PCu4 layer of the PCB shown 

in Figure 4.37. It is therefore important to include the PCB layers when performing EM 

simulations so as to take into account the parasitic ground inductance and get more precise 

results between simulation and measurement. 

 



Chapter 4. SOI-CMOS Class-E Doherty PA 

91 

3 Circuit Implementation and Measurement 

With the two-stage class-E DPA circuit design finalized, and the different implementation 

technologies presented, the final steps are circuit implementation, validation, and measurement.  

3.1 Layout 

Having detailed the characteristics of the different implementation technologies, a floor-plan 

must be elaborated in order to determine on which technology the different components will be 

implemented. While full integration is desirable, the limited inductor quality factors offered by 

the IC technology complicate this task. This is especially true for series components such as the 

class-E matching network inductors whose losses greatly impact the PA efficiency. As a result, 

the output network is implemented on the package as shown in Figure 4.38. The circuit ground 

reference is set on the bottom layer of the PCB (PCu4), and 50Ω access lines are added at the 

input and output of the DPA. 

 
Figure 4.38 – Tuned single-input two-stage DPA schematic. 

The IC level is implemented first. Inductors are first drawn and simulated individually using 

EM simulation before being simulated all together in order to account for electromagnetic 

coupling as illustrated in Figure 4.39. The inductors are then tuned so as to provide the required 

value. 

 

 

Figure 4.39 – RFpro 3D view of the integrated IC inductors 
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Capacitors are implemented using the MIM and MOM structures discussed earlier and 

reconfigurable capacitors (marked with a red arrow in Figure 4.38) are used in order to provide 

an additional degree of freedom during measurements. Digital and analog blocks are added to 

the IC chip in order to control the switched capacitors using a computer interface. 

Figure 4.40(a) shows the 2D layout of the IC chip where the main, auxiliary and driver cells are 

connected to the network networks. The digital control part can be seen in the lower left corner 

of the chip. The µPCB package design is shown in Figure 4.40(b). 

  

(a) (b) 

Figure 4.40 – (a) 2D layout view of the IC chip with black boxes outlining the main, auxiliary, and driver cells. (b) 2D layout 

view of the µPCB package. 

The capacitors as well as the parallel inductor of the OMN are implemented using SMD 

components. Supply inductors are realized using a combination of Cu1 and Cu2 layers. The 

ground plane beneath the IC is filled with vias in order to provide a direct short path to the PCB 

ground reference. This is done so as to minimize resistive losses in the source connections of 

the transistors as well as to avoid return loops between two ground paths. A final EM simulation 

is performed with the overall stack-up as shown in Figure 4.41. Once validated, the circuit can 

be sent to fabrication. 

 
Figure 4.41 – 3D RFpro view of the full-stack for EM simulation. 

Figure 4.42 shows the fabricated IC and laminate package. Due to the µPCB fabrication 

process, over-etching was observed when examining the laminate. The inductor lines are 20% 
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thinner than the initial design which causes a shift in inductance and an increase in loss. In order 

to take into account the effects of this variation, the EM layout view of the package was 

modified. A new EM model is then extracted for subsequent comparisons between 

measurement and simulations. 

 
Figure 4.42 – IC die and laminate package photograph. 

The IC and package are mounted onto the PCB shown in Figure 4.43(a). The board contains 

the RF input and output 50Ω access lines, as well as the DC supply lines and the digital circuit 

interface. 

  

(a) (b) 

Figure 4.43 – (a) Fabricated PCB with mounted IC and package (b) PCB access lines test structure. 

The 50Ω transmission lines are first validated using the test structure shown in Figure 4.43(b). 

Both the RFin and RFout lines are mirrored and connected to each other in the middle. Using a 

vector network analyzer (VNA), the S-parameters can be measured at the two ends of each line. 

The reflection (S11) and transmission (S21) coefficients are extracted and used to create a more 

realistic transmission line model so that the EM simulation better fits with the measurements. 

The plots in Figure 4.44 show the measurement results along with the developed line model. 
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(a) (b) 

  

(c) (d) 

Figure 4.44 – Measurement and model comparison of (a) S11 magnitude, (b) S11 phase, (c) S21 magnitude, (d) S21 phase. 

Thanks to these preliminary tests, a new more accurate retro-simulation EM model can be used 

to validate the performance of the fabricated circuit as will be shown below. 

3.2 Validation 

The circuit is placed in the measurement setup shown in Figure 4.45. 

 
Figure 4.45 – PA measurement setup. 

The signal generator is connected to the RF input while the spectrum analyzer is connected to 

the RF output. DC supplies are used to bias the PA as well as supply the digital interface. A 
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user interface (UI) control system is set up using LabVIEW in order to control the different 

equipment and extract measurement results. 

First, the transistor is biased without an RF signal and the DC supply currents are plotted for 

both the driver and power stages. Gate bias voltages are tuned until the current consumption 

matches the PA model. Next, the input power is swept and the DC current evolution profiles 

are plotted and compared to the PA model as shown in Figure 4.46. 

  

(a) (b) 

Figure 4.46 – (a) Driver and (b)Power stage DC drain current comparison between measurements and EM model. 

Both driver and power measured DC currents show the same evolution as the PA model. The 

efficiency and gain profiles are examined next as shown in Figure 4.47(a) and (b) respectively. 

  

(a) (b) 

Figure 4.47 – (a) PAE, DE and (b) power gain comparison between measurements and simulation. 

Once again, measurement results are very similar to the PA model. At 2.5GHz, the measured 

two-stage class-E DPA achieves a peak PAE of 50% at 31dBm of output power and 35% at 

6dB of back-off. Meanwhile, the small-signal power gain is 22.5dB. 
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(a) (b) 

Figure 4.48 – (a) Reflection and (b) transmission coefficient comparison between measurements and simulation. 

A final validation is done using the S-parameters. The plots in Figure 4.48 show the comparison 

between the simulated and measured S-parameters. 

3.3 CW and LTE Performance 

The two-stage class-E DPA is then measured from 2.1GHz to 2.5GHz using a CW input signal. 

For each frequency, the interstage capacitors are reconfigured so as to obtain a flat gain with a 

good back-off efficiency as shown in Figure 4.49(a). 

  

(a) (b) 

Figure 4.49 – (a) PAE and gain profiles at different operating frequencies. (b) Extracted power, efficiency and gain at different 

operating frequencies in CW mode. 

The PA maintains higher than 31dBm of saturated output power (𝑃𝑠𝑎𝑡), and a peak PAE higher 

than 48% with relatively constant power gain over 17% of a fractional bandwidth around 

2.3GHz as can be seen in Figure 4.49(b). Moreover, at 6dB BO, the measured PAE is higher 

than 36% at 2.3GHz. 

Next, the PA is measured using a 10MHz LTE QPSK 50RB uplink signal (6.2dB of PAPR) on 

a 2.3GHz carrier while applying an instrument-based 7th order polynomial memory-less DPD. 

As shown in Figure 4.50(a), the PA achieves an E-UTRA ACLR of -35dBc for 28dBm of 

average output power with 43% of average PAE. This result is further illustrated Figure 4.50(b) 

which shows the output spectrum. 
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(a) (b) 

Figure 4.50 – (a) PAE and E-UTRA ACLR versus 𝑃𝑜𝑢𝑡 measured at 2.3GHz using 10MHz LTE QPSK 50RB uplink signal with 

memoryless DPD and (b) Output Spectrum. 

The flatness of the measured AMAM and AMPM characteristics of Figure 4.51(a) show that 

the DPA is linear and exhibits low memory effect. The in-band distortion is assessed using the 

EVM results of Figure 4.51(b). The QPSK constellation is clearly visible and the PA achieves 

a satisfying EVM level of 1.43%. 

 

(a) 

 

(b) 

Figure 4.51 – (a) AMAM and AMPM and (b) output constellation measured at 2.3GHz using 10MHz LTE QPSK 50RB uplink 

signal. 

Finally, the DPA performance with modulated signal is measured at different carrier 

frequencies ranging between 2.1 and 2.5GHz. Figure 4.52(a) shows that using the correct bias 

and capacitor states, a flat gain profile can be achieved for the different operating frequencies. 

The PAE curves are tightly grouped within a 10% variation interval. 
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In Figure 4.52(b) the PAE and output power are extracted at 𝐴𝐶𝐿𝑅 = −35𝑑𝐵 for the different 

carrier frequencies. The PAE is centred around 2.3GHz with a 17% fractional bandwidth while 

the output power decreases at higher frequency. 

  

(a) (b) 

Figure 4.52 – (a) Measured PAE and 𝐺𝑝 versus 𝑃𝑜𝑢𝑡 and (b) PAE and 𝑃𝑜𝑢𝑡 extracted for ACLR=-35dBc at different frequencies 

using 10MHz LTE QPSK 50RB uplink signal. 

The measurement results are compared to published LTE Doherty PAs in Table 4.5. 

Comparison to another LC combiner-based DPA architecture [42] shows that the proposed 

Class-E DPA circuit achieves higher efficiency operation both at peak and 6dB back-off. 

Furthermore, this work is capable of similar performance as other inverter-based, CLC 

combiner DPAs [43]–[45]. 

Table 4.5 – Comparison with the state-of-the-art LTE Doherty PAs. 

  This Work [42] [44] [43] [45] 

 Class (Main/Aux) E/E AB/C AB/C AB/C AB/C 

 Combiner Type LC LC CLC CLC CLC 

 Technology SOI InGaP SOI SOI SOI 

 Supply (V) 3.4 3.4 3.4 3.4 3.4 

C
W

 

Freq. (GHz) 2.3 2.5 2.5 1.95 2.3 

Psat (dBm) 32 30 32.7 30.5 32.8 

PAE @ Psat (%) 51 45 57 52 59 

PAE @ 6dB (%) 36 33 40 37 40 

M
o
d
u
la

te
d
 

Modulation QPSK QPSK QPSK - QPSK 

BW (MHz)/RB 10/50 10/50 10/12 20/- 10/50 

Band (GHz) 

ACLR (dBc) 

2.1-2.5 

-35 
- 

1.9-2.7 

-35 

1.55-2.3 

-30 

1.9-2.7 

-35 

Pout min/max (dBm) 26.9/28.9 28 
- 

28 

PAE min.max (%) 39.1/42.8 35/45 35/44 

DPD Linearization Yes Yes No Yes No 
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4 Conclusion 

In this chapter, a two-stage class-E Doherty PA was designed, fabricated, and measured in order 

to validate the Doherty combiner analysis method presented in Chapter 3. 

The DPA power stage was designed first using the compact LC combiner. Class-E load pull 

power and efficiency contours were used to determine the ideal Class-E matching network q-

factor. This was done by superposing the DPA load modulation trajectory with the Class-E PA 

load pull results obtained for different q values at peak and back-off operation points for the 

main and auxiliary amplifiers. Optimal performance was found for 𝑞 = 1. The power stage was 

then matched to 50Ω terminations and checked for stability issues using the S-Parameters and 

the driving point admittance method. Next, a driver stage was added to the power stage and 

both blocks were connected through the inter-stage matching network. The final two-stage 

circuit design was tuned so as to present optimal performance. 

The different levels of implementation technology were detailed. 130nm RFSOI was chosen 

for the IC which was to be mounted onto the package using copper pillars. Given the required 

CuP dimensions, a four-layer laminate µPCB was selected as the packaging technology. 

The designed elements of the DPA circuit are implemented onto the different technologies. The 

implemented circuit is then simulated using electromagnetic (EM) simulations in order to 

obtain more accurate results. The fabricated circuit is measured and validated by comparing its 

measured DC, SP, and CW results with those of the EM simulation model. Due to a fabrication 

process issue, the centre frequency is shifted downwards from 2.5GHz to 2.3GHz, and 

additional loss is introduced to the OMN stage. At 2.3GHz, the DPA saturation power is 32dBm 

and the peak PAE is 51%. At 6dB of back-off, the PA maintains a high efficiency of 36%. 

Modulated signals measurements were done using a 10 MHz LTE signal with DPD. At 2.3GHz, 

the DPA delivers an output power of 28dBm with 43% of PAE for an ACLR level of -35dBc. 

Comparison with other published works shows that the DPA performance is in line with the 

state of the art, further validating the approach. 
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he Outphasing architecture can be regarded as the runner-up in terms of high 

efficiency load modulation PAs. While not nearly as popular as Doherty, this 

architecture is nonetheless a mainstay in all major PA publications. This is in part due 

to Outphasing’s potential to become a major player in the age of digitalized FEMs. 

This chapter offers a look into the design and system analysis aspects of an 

Outphasing-based transmitter (OTX) integrating digital pre-distortion (DPD) directly into the 

SCS architecture. 

In the following, the basics of OPA design will be discussed. Driving signal constraints and 

optimal operating conditions will be detailed in the case of both class-B and class-E OPAs. 

Next, a general look into integrated DPD solutions is presented. This is done through a focus 

on the OTX system formalization required for advanced DPD analysis leading to a DPD 

architecture proposition referred to as In-SCS DPD. 

Finally, some notes are given on the PA modelling efforts conducted within the time constraints 

of this work. 

 

 

T 
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1 Outphasing PA Design 

 
Figure 5.1 – Generic OPA block schematic showing its three main components. 

A basic OPA system, such as the one seen in Figure 5.1, consists of three major components: 

The signal component separator (SCS), the power stage (PWR) comprising of the two PA 

cells/branches, and finally the combiner (CMB). Chapter 3 offered an in-depth analysis of OPA 

combiners, highlighting the required conditions to be respected for optimal Outphasing 

behaviour, and subsequently, high efficiency performance. In this section, the power stage 

design and operation are examined. Although there are many works detailing the design of RF 

and mmW Outphasing PAs, few actually give information about the driving signals required 

for their operation. A first study is conducted on a classic class-B OPA in order to understand 

some of the driving signal constraints. This is then followed up by a more complex modified 

class-E OPA design capable of providing superior performance. 

1.1 Class-B OPA 

When it comes to class-B OPA (OBPA), the required driving signals are not straightforwardly 

obtained. The architecture calls for the transistors to be treated as voltage sources, meaning that 

they must be at saturation point. However, due to load modulation, the driving voltage required 

to keep the transistors in saturation mode changes with every new load impedance value. The 

expression of the driving voltage can be obtained by first studying the OBPA behaviour. 

 
 

(a) (b) 

Figure 5.2 – (a) Ideal transistor model (b) Simplified OBPA with reactive compensation voltage combiner. 

An ideal large-signal transistor model with linear transconductance 𝑔𝑚, Figure 5.2(a), is 

considered. In order to simplify the analysis, the following basic drain current equation will be 

used with 𝑉𝐺𝑆𝑚𝑎𝑥 as the maximum allowed gate voltage: 

𝐼𝐷𝑆(𝑡) = {
0 ⁡𝑉𝐺𝑆(𝑡) < 0

𝑔𝑚. 𝑉𝐺𝑆(𝑡) 0 ≤ 𝑉𝐺𝑆(𝑡) ≤ 𝑉𝐺𝑆𝑚𝑎𝑥
 (5.1) 
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As shown in [66], the driving voltage must be modulated in order to follow the variations of 

the perceived load and keep the transistor at saturation point. As a result, the gate voltage can 

be expressed as follows: 

𝑉𝐺𝑆|1,2(𝑡) = 𝒀𝟏,𝟐. 𝑅𝐿 . 𝑉𝐺𝑆𝑚𝑎𝑥. 𝑒
±𝑗.𝜃(𝑡) (5.2) 

In the equation above, 𝑌1,2 refers to the voltage-mode admittance of the corresponding combiner 

circuit as shown in Figure 5.2(b). The normalized values of the gate and drain votlages are 

represented in the complex plane in Figure 5.3(a). Here it can be seen that while the gate inputs 

vary in both amplitude and phase, the voltages on the drain are of constant amplitude and only 

vary in phase by a factor of ±𝜃, thus fulfilling the Outphasing conditions at the inputs of the 

combiner. 

  

(a) (b) 

Figure 5.3 – (a) Complex plane representation of normalized drain and gate voltages (b) Normalized admittance magnitude 

for different compensation angle values. 

When looking at the normalized amplitude of the input gate voltage in Figure 5.3(b), it can be 

seen that for low values of 𝜃, it exceeds the maximum gate voltage 𝑉𝐺𝑆𝑚𝑎𝑥. Therefore, the 

Outphasing angle cannot be swept from 0°, but instead from a starting threshold angle 𝜃𝑠. This 

threshold angle, which varies depending on the compensation angle 𝜃𝑐, is normally found using 

an empirical approach and was never defined analytically. The following section shows the 

analytical boundary condition that was calculated for improved OBPA design and resulted in a 

published work [67]. 

1.1.1 Outphasing Angle Boundary Condition  

In order to keep the gate voltage from exceeding the 𝑉𝐺𝑆𝑚𝑎𝑥 value, the condition in (5.3) must 

be satisfied. 

𝒀𝟏,𝟐(𝜃𝑠). 𝑅𝐿 = 1 (5.3) 

In the case of a reactive compensation voltage combiner, the threshold angle is defined as: 
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𝜃𝑠(𝑟𝑎𝑑) =
1

2
∙ 𝑎𝑟𝑔

(

 
2.𝐵𝑐̅̅ ̅√2 − 𝐵𝑐̅̅ ̅

2
+ 𝑗. (2. 𝐵𝑐̅̅ ̅

2
− 1)

2. 𝐵𝑐̅̅ ̅ − 𝑗

)

  (5.4) 

𝐵𝑐̅̅ ̅ =
𝑠𝑖𝑛(2. 𝜃𝑐)

2
 (5.5) 

By introducing this new boundary condition, the maximum allowed gate voltage is respected. 

However, this leads to a decrease in the maximum power delivered per branch since: 

𝑃𝑂𝑈𝑇 =
𝑉𝑚𝑎𝑥
2

2. 𝑅𝐿
∙ 𝑐𝑜𝑠2(𝜃) (5.6) 

Under normal operation conditions, the maximum power is achieved for 𝜃 = 0 and the PA is 

designed for this output value. When considering the threshold angle, the maximum deliverable 

power by the OBPA becomes: 

𝑃𝑚𝑎𝑥 =
𝑉𝑚𝑎𝑥
2

2. 𝑅𝐿
∙ 𝑐𝑜𝑠2(𝜃𝑠) (5.7) 

Each branch is supposed to supply half of the total output power, therefore, in order to correctly 

size the power cells, a new maximum power per branch value is used. 

𝑃𝑏𝑟𝑎𝑛𝑐ℎ𝑚𝑎𝑥 =
𝑃𝑚𝑎𝑥
2

∙
1

𝑐𝑜𝑠2(𝜃𝑠)
 (5.8) 

The optimal resistance value 𝑅𝑚𝑎𝑥 can then be calculated using (5.9). 

𝑅𝑚𝑎𝑥 =
𝑉𝑚𝑎𝑥
2

2. 𝑃𝑏𝑟𝑎𝑛𝑐ℎ𝑚𝑎𝑥
 (5.9) 

Using this technique allows the design of an OBPA capable of supplying the required amount 

of power at 𝜃𝑠 without the risk of damaging the transistors by overdriving the gates. Figure 

5.4(a) shows the case of an OBPA designed to deliver 2W output power. In the ideal voltage-

mode, the maximum delivered power, corresponding to 𝜃𝑠 is slightly lower than the desired 

2W, whereas the proposed design delivers this maximum power value at 𝜃 = 𝜃𝑠. 
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(a) (b) 

Figure 5.4 – (a) Output power and (b) efficiency evolution for ideal voltage-mode (dashed black) and the proposed OBPA 

design (red). 

Finally, a consequence of this design method is the slight shift of the expected efficiency peaks 

with respect to output back-off level, as they are no longer defined as in (3.12), and are now 

calculated using (5.10) and can be observed in Figure 5.4(b). 

𝑂𝐵𝑂𝑑𝐵 =

{
 

 −20. 𝑙𝑜𝑔 (
𝑠𝑖𝑛 𝜃𝑐
𝑐𝑜𝑠 𝜃𝑠

)

−20. 𝑙𝑜𝑔 (
𝑐𝑜𝑠 𝜃𝑐
𝑐𝑜𝑠 𝜃𝑠

)

 (5.10) 

Linear class power cells were heavily used during the early days of OPA design, but have since 

fallen in popularity and given way to switch-mode and continuous classes of operation. Class-

E in particular has shown lots of promise when it comes to load modulated PA design, and will 

be explored next. 

1.2 Class-E OPA 

Using class-E power cells for OPA design comes with its own set of challenges. As seen in 

Chapter 2 section 2.2, class-E PAs require complex load impedances in order to keep optimal 

operation conditions at back-off. This however, is incompatible with the OPA combiner 

analysis conducted in Chapter 3 section 1 where it is shown that the load impedances are purely 

resistive at the peak and back-off operation points. 
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(a) (b) 

Figure 5.5 – Ideal switch-based q=1 class-E PA load-pull contours showing (a) output power and (b) efficiency contours with 

classic Outphasing load modulation schemes overlaid in black. 

There are however, ways to overcome this apparent incompatibility, two of which will be 

discussed in the following subsections. 

1.2.1 Offset Transmission Lines 

 
Figure 5.6 – Two-port representation of the Outphasing combiner with offset transmission lines. 

The first method of adapting OPA load modulation to Class-E operation was proposed by Raab 

in [68] and [69] and involves adding offset transmission lines at the inputs of the Outphasing 

combiner as shown in Figure 5.6. In a typical Outphasing load modulation, the impedance 

trajectories intersect at two points on the real axis as shown in Figure 5.5. For the designed 

OPA to present two efficiency peaks, the two load trajectories must intersect on the optimal 

performance axis as in Figure 5.7. 

  

(a) (b) 

Figure 5.7 – Ideal switch-based q=1 class-E PA load-pull contours showing (a) output power and (b) efficiency contours with 

rotated OTL Outphasing load modulation schemes overlaid in black. 

Such a result was achieved by Beltran and Raab who proposed the use of offset transmission 

lines at the inputs of a delay line compensation voltage combiner [68] as well as a transformer-

based variation of the reactive compensation voltage combiner [69]. While their works show 

the possibility of producing such load modulation schemes, they give no indication on the 

driving signals or the drain voltage/current that would be required. An analysis was therefore 

conducted in order to determine the required driving conditions for any generic OPA-

compatible combiner. The details of this study are provided in Appendix C which shows how 

to design an OPA combiner for any target peak and back-off impedance values. 

The main drawback of this method is its reliance on transmission line structures which are 

impractical from a circuit integration point of view, especially when dealing with sub-6 GHz 

frequencies. Moreover, the addition of these extra components will inevitably lead to more loss 
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in the output stage since integrated components have low quality factors as demonstrated in 

Chapter 4 section 2.1.1. 

1.2.2 Load-Pull Contours Rotation 

Another possible solution to the class-E load modulation problem is to rotate the load-pull 

contours themselves instead of rotating the load modulation trajectories. This technique was 

first proposed by Ghahremani in [70], and relies on tuning the duty cycle 𝑑 and resonance factor 

𝑞 of the class-E PA in order to optimize its efficiency over the required range of output power. 

In [36], the authors show that class-E PA load-pull contours can be rotated clockwise by 

increasing the value of the resonance factor 𝑞. The duty cycle 𝑑 was shown to have the opposite 

effect, and therefore a number of different combinations of these two design factors could result 

in the same rotation of the contours. This property could be used to the designer’s advantage in 

order to rotate the optimal performance load line and place it in on the real axis. In doing so, 

there would be no need to modify the Outphasing combiners to intersect at complex values as 

the optimal performance would require real impedance at both peak and back-off output power 

levels. 

  

(a) (b) 

Figure 5.8 – Ideal switch-based q=1.3 class-E PA load-pull contours showing (a) output power and (b) efficiency contours 

with classic Outphasing load modulation schemes overlaid in black. 

The contours in Figure 5.8(a) and (b) show the power and efficiency contour rotations when 𝑞 

is increased to 1.3 with 𝑑 = 0.36. The load modulation intersections now lie on the high 

efficiency contours while having different output power values which results in the target OPA 

performance. 

The load-pull contours rotation method for class-E load modulation is more desirable from an 

integration point of view, as it requires less elements making it a more compact solution that is 

less likely to experience power loss. However, real transistor operation is much more 

complicated, as there are switching losses, switching delays, and capacitive and inductive 

parasitic components to be taken into account. 

To better illustrate these issues, a dual input class-E OPA (OEPA) is designed and simulated, 

using non-ideal transistor models capable of giving more accurate results. The OEPA is 

designed with the following input variables: 

• Transistor type 130nm RF-SOI LDMOS 

• Centre frequency 𝑓0 = 2.5𝐺𝐻𝑧 
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• Supply voltage 𝑉𝐷𝐷 = 3.4𝑉 

• Maximum output Power 𝑃𝑚𝑎𝑥 = 33𝑑𝐵𝑚 

 

 

(a) (b) 

Figure 5.9 – (a) Reactive compensation combiner schematic, (b) Class-E power cell schematic with red arrow marking complex 

load modulation plane. 

The RCC combiner circuit shown in Figure 5.9(a) is chosen once again, this time with a 

compensation angle value of 𝜃𝑐 = 22.5° in order to achieve high back-off OPA operation. As 

per the load-pull contours rotation technique, the class-E power cells are designed with a 

resonance factor 𝑞 = 1.3. The resulting class-E PA schematic from Figure 5.9(b) is placed in a 

load pull simulation where the complex value of the load presented after the red arrow is swept 

and the PA’s output power and PAE contours are plotted. In the ideal class-E switch 

simulations, only the complex load 𝑍𝐿 was swept and the input driving signal was kept constant. 

Here however, as a single-tone input class-E is used, the power 𝑃𝑎𝑣𝑠|dBm is also swept, and as 

a result, each set of contours corresponds to a single input power value. Therefore, if we are to 

estimate the performance of the class-E power cell in an Outphasing configuration, the load 

pull contours must be checked at both maximum output power as well as the OBO. Figure 5.10 

shows the output power and PAE contours for 𝑃𝑎𝑣𝑠|dBm = 23.5dBm. The ideal Outphasing 

load modulation trajectories corresponding to the combiner of Figure 5.9(a) are overlaid in 

black. The first efficiency peak, which occurs near the maximum power value is indicated by 

the green cross and shows that each branch can provide an output power of 30dBm with 𝑃𝐴𝐸 ≈

68%. 

  

(a) (b) 

Figure 5.10 – Load-pull contours at 𝑃𝑎𝑣𝑠|𝑑𝐵𝑚 = 23.5𝑑𝐵𝑚 (a) Power contours, (b) PAE contours. 
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For an input power 𝑃𝑎𝑣𝑠|dBm = 13dBm, the OPA is assumed to be at its second efficiency peak. 

The corresponding power cell load pull contours are plotted Figure 5.11 and once again overlaid 

with the same load modulation trajectories. This time, the green cross indicates the location of 

the second efficiency peak, and shows that each power cell provides 21dBm of output power 

with 𝑃𝐴𝐸 ≈ 41%. 

  

(a) (b) 

Figure 5.11 – Load-pull contours at 𝑃𝑎𝑣𝑠|𝑑𝐵𝑚 = 13𝑑𝐵𝑚 (a) Power contours, (b) PAE contours. 

Given these encouraging load-pull results, the OEPA circuit can therefore be designed using 

the previously selected combiner and power cell. The inductor and capacitor of the combiner 

can be merged with the series elements of the class-E power cells giving the dual input circuit 

of Figure 5.12. 

 
Figure 5.12 – Dual input OEPA schematic. 

The above circuit is simulated by sweeping the input power and phase difference between the 

two branches resulting in the scatter plots of Figure 5.13. Each dot represents a (𝑃𝑎𝑣𝑠|𝑑𝐵𝑚; 𝜃) 

couple value. Stable operation points are coloured red while potentially unstable points are 

shown in grey. 
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(a) (b) 

Figure 5.13 – Possible (a) PAE and (b) power gain performance versus output power for different values of 𝜃 in OPA operation 

for 𝑞 = 1.3. Potentially unstable points are shown in grey. 

Looking at the envelope of the PAE points, for an output power level of 33dBm (corresponding 

to two 30dBm power cells) the efficiency value is 65%. At 24dBm, this value becomes 48% 

which is aligned with the load pull simulation estimations. The associated gain profile can be 

obtained by extracting the operating points corresponding to the maximum efficiency envelope 

from the power gain scatter plot as shown in Figure 5.13(b). Looking back at these scatter plots, 

it can be seen that the high efficiency profile is only one of many possible configurations, as 

different points of operation can be chosen in order to better suit the desired application. More 

importantly, the choice of operation points could be used as a way to ensure linear PA operation 

and as a result fulfil the same function of a predistortion circuit block. This will be further 

explored in section 2.1. 

With that in mind, the next section will take a look at the OPA from a systems perspective and 

provide the formalism for integrating digital predistortion (DPD) directly into the Outphasing 

transmitter system (OTX). 
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2 DPD System Level Analysis 

In order to propose a DPD model as relevant as possible for the OPA, it is necessary to study 

in detail its architecture from a signal point of view in order to propose an adequate PA model. 

Figure 5.14 shows the conventional block diagram of an OPA from a signal processing 

perspective. 

 
Figure 5.14 – Conventional (signal) diagram of an OPA. 

It exhibits the sampled complex baseband signal 𝑥[𝑛] (obtained from the original IQ signals 

modulation), its conversion into polar coordinates (𝑎[𝑛] and 𝜑[𝑛]) and the conversion of the 

amplitude into an Outphasing angle 𝜃[𝑛]. The combination of the baseband phase 𝜑[𝑛] and the 

Outphasing angle 𝜃[𝑛] is a baseband representation of the signal. Addition of the carrier phase 

𝜔𝑡 and the cosine modulation represent a frequency transposition to RF domain. The RF signals 

𝑦1
RF(𝑡) and 𝑦2

RF(𝑡) are constant amplitude and modulate the transistors in Outphasing manner. 

The OPA power and combiner stages are represented by the multiple input single output 

(MISO) system. Their behaviour can be described by the function 𝑓𝑃𝐴
𝑅𝐹(𝑦1

𝑅𝐹 , 𝑦2
𝑅𝐹) which 

performs the amplification and reconstruction of the modulated RF signals resulting in the final 

amplified output signal 𝑧𝑅𝐹(𝑡). 

The block that converts the baseband complex signal to the two outphased constant amplitude 

signals is usually called the signal component separator (SCS). The material implementation 

of an SCS bloc is out of the scope of this work. The SCS description is therefore limited to a 

signal processing perspective. The main reasons behind this decision are the fact that SCS blocs 

are designed for a specific PA implementation and thus limiting reusability. Furthermore, the 

SCS function itself is composed of very non-linear signal processing elements which makes its 

implementation challenging [71], [72]. 

With the OPA system clearly defined, linearization methods can be more easily discussed and 

formalized, starting with the look-up table (LUT) approach. 

2.1 Look-Up Table Approach 

This first approach is based on an exhaustive characterization of the operating configurations 

in CW mode. Using the designed dual input OPA schematic from Figure 5.12, one can sweep 

the Outphasing and power values of the sinusoids and extract from these CW simulations the 

PAE and gain performance of the system as was done in Figure 5.13. 

By defining a selection criterion based on the PAE, the gain and/or 𝑃𝑜𝑢𝑡, it is therefore possible 

to define a trajectory in these point clouds, where each point is defined by a very precise couple 

{𝑃𝑎𝑣𝑠, 𝜃}. For example, Figure 5.15(a) results from the selection of points which maximize the 
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PAE for a given value of 𝑃𝑜𝑢𝑡. The associated gain profile resulting from this selection is plotted 

in blue and shows a 3dB dip at high power. Similarly, the selection criterion can be instead 

based on the gain profile in an attempt to keep it at a constant value and thereby decreasing 

AMAM distortion. This results in the performance profiles of Figure 5.15(b), where it can be 

seen that the gain value is kept at 12dB until the eventual gain collapse at the saturation power 

level. 

  

(a) (b) 

Figure 5.15 – PAE and gain profiles versus output power extracted from the OEPA simulation using (a) maximum PAE 

criterion, and (b) constant gain value 𝐺𝑝 = 12𝑑𝐵 criterion. 

It can therefore be deduced that by defining a list of values of couples {𝑃𝑎𝑣𝑠, 𝜃} a predistortion 

LUT can be formed as shown in Figure 5.16. 

 
Figure 5.16 – Signal representation of LUT approach for dual input OPA. 

This mode of operation can be assimilated into the original OPA block diagram of Figure 5.14 

as described in the diagram of Figure 5.17 below. 

 
Figure 5.17 – LUT-based DPD integrated in OTX system. 

The most notable change from the conventional SCS architecture is the inclusion of amplitude 

modulation at the two inputs of the power stage which is done through the addition of a variable 

gain amplifier (VGA) to each branch. This can be justified by the fact that the power cells 

experience load modulation and as a result, their inputs must also be modulated in order to 

maintain the transistors at saturation as was shown in section 1.1. 
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Finally, it is important to note that while not discussed here, phase characterization of the OPA 

is also important and can be used as a criterion for selecting {𝑃𝑎𝑣𝑠, 𝜃} couples that minimize 

both AMAM and AMPM distortions while providing high efficiency operation. 

This LUT-based approach, while practical for assessing the potential linearity of an OTX 

system is, at least in this simplified form, not very suitable for modern modulations containing 

heavy amplitude and phase modulation. A more consistent approach is the so called behavioral 

models which are showcased in the next section. 

2.2 Modelling-Based Approaches 

Digital predistortion and PA modeling are two closely related research areas. Indeed, to 

linearize an amplifier, it is essential to understand its nonlinear behavior. We therefore use 

behavioral models in the field of DPD. We will explain the classical strategy of PA behavioral 

modeling for DPD and then, we will present the methodology that we have implemented and 

the results obtained. 

Looking back at the block diagram of Figure 5.14, the MISO system representing the dual input 

OPA can be described by a function 𝑓𝑃𝐴
𝑅𝐹 which uses the two input signals 𝑦𝑖

RF(𝑡) to model the 

output signal 𝑧RF(𝑡). It can be assumed that this non-linear function is, a priori, with real 

coefficients because 𝑦𝑖
RF and 𝑧RF are real-valued signals. However, instead of determining 𝑓𝑃𝐴

𝑅𝐹 

directly, the conventional approach is to instead determine the baseband model denoted 𝑓𝑃𝐴. 

Introductory elements of baseband modelling are further developed in section 3 of this chapter. 

The interest of baseband modeling is that the sampling frequency to represent the signal (and 

the system) is much lower than in the case where the carrier must also be sampled. This has the 

consequence that baseband simulations are extremely faster than RF simulations, where the 

carrier signal must be taken into account. Of course, this modeling comes at the price of a loss 

of information (the harmonics); but this loss of information will in practice be negligible. The 

PA and DPD models used in this work are therefore baseband and complex-valued. 

The block diagram of Figure 5.14 requires an adjustment to be compatible with a baseband 

modelling of the PA and the resulting baseband block diagram is shown in Figure 5.18. 

 
Figure 5.18 – Equivalent baseband signal diagram of the conventional OPA. 

The validity of this representation is proven by the equation below. 

𝑦𝑖
RF(𝑡) = ℜ𝔢 {𝑦𝑖(𝑡) e

 𝑗𝜔𝑡} (5.11) 

The inputs and outputs of the function 𝑓𝑃𝐴 are complex-valued, leading to the assumption that 

it has complex-valued coefficients too. 
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The simplest approach to DPD system modelling, is to ignore the PA circuit structure. Only the 

baseband signal 𝑥[𝑛] at the input of the SCS and the sampled output of the PA 𝑧[𝑛] are 

considered, as shown in Figure 5.19. 

In this modelling case, all the classic DPD techniques apply straightforwardly since a classic 

DPD structure can be recognized as shown in Figure 5.20; the system is therefore expressed 

using only single input single output (SISO) functions. Instrument-based DPD using a signal 

generator with a feedback loop can therefore be used. 

 
Figure 5.19 – SISO basedband OPA model representation. 

 
Figure 5.20 – SISO basedband DPD model representation. 

This approach, while being the easiest to implement has the drawback of giving little to no 

information on how to optimize the OTX. Given that it is SISO-based, it is impossible to tell if 

the system distortion is a result of the combination mismatch, the amplification stage, or even 

the signal decomposition. 

The DPD of OPAs is a research topic with very strong potential from a modeling and signal 

processing point of view. This is because the architecture can be modeled at different levels of 

abstraction; each level of abstraction offering multiple research options. One of the most 

difficult parts of this work was to understand how to integrate the DPD block into the SCS 

block and to formulate the identification problem in the usual DPD formalism. This 

understanding has resulted in the definition of a promising DPD architecture for OPAs. 

2.2.1 In-SCS DPD Architecture 

The operation of the proposed architecture is based on that of indirect learning DPD architecture 

(ILA) [73]. The subject of DPD based on ILA being very vast, only one essential point of this 

technique will be retained: when the input and output signals of the system to linearize are 

known, and the system is modeled by a linear-in-parameters model, the calculation of the DPD 

comes down to a simple matrix inversion. 

The main theory of indirect learning relies on the fact that, for a given nonlinear system, its 

post-inverse works quite well as a pre-inverse. Figure 5.21 illustrates the two possible 

configurations in the case of a MIMO modeling of the OPA. However, it should be noted that 
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this modeling could be difficult to implement from the hardware point of view. Indeed, to 

calculate the post-inverse, it is necessary to know the signals 𝑧1 and 𝑧2 at the output of each PA 

and the sampling of these signals could greatly disturb the load modulations and the 

recombination of the signals. A more interesting solution would be to integrate the DPD directly 

into the SCS block, thereby leveraging the inherent digital friendliness of the OTX. 

 
Figure 5.21 – OTX diagram showing how the post-inverse can be used as a pre-inverse. 

This can be achieved by decomposing the SCS block into two main parts as shown in Figure 

5.22: a ℂ2Pol block which separates the complex baseband signal into its two components 

(modulus and angle) and a Polar Outphasing (phase) modulator (POM) which calculates the 

modulation angles and generates the associated baseband signals. The pre-inverse block can 

now be inserted inside the SCS between the ℂ2Pol block and the POM block. 

  
Figure 5.22 – Pre-inverse configuration of the In-SCS DPD architecture. 

Although this structuring of the DPD is very natural, there remains an important element to 

specify: the positioning of the associated post-inverse, required for the calculation of the pre-

inverse. Figure 5.23 shows how the post-inverse can be extracted, by taking the complex output 

𝑧[𝑛] of the PA and generating the required amplitude and phase 𝑎̂[𝑛] and 𝜑̂[𝑛] respectively 

which are considered equal to 𝑎[𝑛] and 𝜑[𝑛] in the context of ILA DPD; in this case, the inverse 

function is MIMO. 

 
Figure 5.23 – Associated post-inverse configuration of the proposed In-SCS DPD architecture. 

Through this formal presentation of the DPD problem, the integration and identification of the 

DPD in the SCS block of the OPA becomes feasible. With the DPD system architecture 

determined, the final piece required for full OTX system simulations is the actual PA model. 
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3 PA Modelling 

Modeling amplifiers requires understanding what behavior amplifiers exhibit and the cause of 

that behavior. We summarize briefly the main points here but encourage the reader to refer to 

Ghannouchi’s book [74] for an in-depth presentation and analysis. 

The objective of the behavioral modeling of the amplifier is to find the equation which links 

the input signal 𝑅𝐹𝐼𝑁 and the output signal 𝑅𝐹𝑂𝑈𝑇. Amplifier characterization analysis have 

highlighted three main categories of distortion: 

• static non-linearities (mainly due to the DC characteristics of the transistor) 

• short-term memory effects (attributed to frequency responses of matching networks and 

parasitic elements of the transistor) 

• long-term memory effects (attributed for example to effects in the semiconductor (trapping 

effects) and to transistor temperature variations) 

To obtain good quality linearization, it is necessary to compensate for these different effects. 

The main challenge of behavioral modeling is to find models that are precise but of low 

computational complexity in order to guarantee “easy” use. 

One of the essential points of the behavioral modeling of amplifiers is to assume that the signal 

is band-limited. The case of interest consists in neglecting the harmonics of the RF signal and 

considering only the signal around the fundamental of the carrier. And more precisely, the 

original idea is that a real narrow-band RF signal centered around a frequency 𝐹𝑐 can be 

completely represented by an equivalent (complex-valued) signal centered at DC. If we denote 

𝑢𝑅𝐹(𝑡) the narrowband RF (“bandpass”) signal, we obtain its complex equivalent in baseband 

(lowpass) 𝑢𝐵𝐵(𝑡) by the following equations: 

𝑢𝑅𝐹(𝑡) = 𝐴(𝑡)𝑐𝑜𝑠(𝜔𝑐𝑡 + 𝜑(𝑡))

= ℜ𝔢{𝐴(𝑡)𝑒𝑗(𝜔𝑐𝑡+𝜑(𝑡))}

= ℜ𝔢{𝑢𝐵𝐵(𝑡)𝑒
𝑗𝜔𝑐𝑡}

 (5.12) 

Where 

𝑢𝐵𝐵(𝑡) = 𝐴(𝑡)𝑒
 𝑗𝜑(𝑡), (5.13) 

and 𝐴(𝑡) and 𝜑(𝑡) represent the amplitude and phase modulation signals; 𝜔𝑐 is the angular 

frequency of the RF carrier. 

The conventional approach to extract a baseband PA model consists in characterizing it with a 

modulated signal. The measurement of the (baseband) input and output waveforms are then 

used to build a so-called “black box” model (a mathematical expression) whose sole purpose is 

to predict the value of the output samples. The model is usually constructed using a chosen type 

of model structure such as memory polynomials (MP), generalized memory polynomials 

(GMP), or dynamic deviation reduction (DDR) to name a few. The ability to model the output 

is evaluated by exhaustively testing different values of memory depth and orders of non-
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linearity which can be referred to as the model dimension. The algorithm flow chart in Figure 

5.24 from [75] details this methodology. 

 
Figure 5.24 – PA behavioural modelling flow chart. 

Within the framework of this work, for reasons of simplicity and time constraint, the model 

which is planned to be used is the memory polynomial (MP) whose expression is: 

𝑦[𝑛] =∑∑𝑎𝑘𝑚. 𝑥[𝑛 − 𝑚]. |𝑥[𝑛 − 𝑚]|
2𝑘

𝑚𝑘

 
(5.14) 

The choice of this model is motivated by the following practical and scientific considerations: 

• we already have a robust and fast implementation of the model on Matlab, 

• the notoriety of the model makes it a mandatory model, 

• we will use a more advanced model when we have demonstrated the MP model limitations 

in our specific case 

As noted earlier, PA modelling requires extensive measurement data. Unfortunately, due to 

time restrictions and supply chain disruptions, an OPA based IC could not be made available 

on time. 

One of the possible fallback options, was to use the ADS design model and simulate the OPA 

with the different required input signals. However, this solution proved to be harder to 

implement than initially thought. The reason behind this lies in the fact that PA modelling 

requires modulated signals which must then be mathematically transformed as they would be 

by the SCS block. Attempting to accomplish this in the ADS environment would require 

considerable time and resources. Nonetheless a potential solution which utilizes Matlab and 

ADS was proposed but is pending experimental validation. 
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4 Conclusion 

In this chapter, the Outphasing load modulation PA architecture was explored. A first study 

was conducted using an ideal transistor model in a class-B OPA architecture with a reactive 

compensation voltage combiner (LC combiner). This was then followed by a class-E OEPA 

implementation that introduced two different forms of optimization: The first, built on the work 

done by Beltran and Raab, uses offset transmission lines in order to provide the PA with the 

required complex load at OBO. The second, put forth by Ghahermani, uses the design 

parameters of the class-E power to rotate the power and efficiency load-pull contours and 

therefore make the optimal back-off impedance real. 

Next, a dual-input load modulated class-E OPA was designed using an LDMOS electrical 

model to provide 33dBm of output power at 𝑓0 = 2.5𝐺𝐻𝑧. The OEPA was simulated with 

different input power levels as well as branch phase mismatch ±𝜃. This extra degree of freedom 

was then leveraged to better control the operation of the OPA, providing a rudimentary method 

for increasing linearity through predistortion. 

In order to better understand and analyse the system requirements of an Outphasing-based 

transmitter (OTX), a system level analysis was conducted. The SCS, OPA, and DPD blocks 

were represented and studied from a signal processing perspective, leading to two DPD 

architecture propositions. The first is the look-up table (LUT) based approach: it uses extensive 

CW characterization of the RF OPA circuit in order to build an LUT of input power and phase 

values which satisfy a predetermined performance criterion such as high efficiency operation, 

or high linearity. The second architecture is more advanced and relies on the PA’s behavioural 

model. This method, referred to as In-SCS DPD is based on the indirect learning DPD 

architecture and determines a post-inverse block of the OPA MISO system in order to use it as 

a pre-inverse and thus linearize the OTX system. 

Finally, the PA modelling process is briefly exposed and a memory polynomial (MP) type 

model is chosen as the starting point. Building the PA model requires extensive measurements 

using modulated signals. Unfortunately, an OPA IC couldn’t be realized within the time 

constraints of this work. This section therefore serves as the foundation for future work on OTX 

systems. 

Although very theoretical, the work carried out and presented in this chapter constitutes an 

essential foundation for the integration of the DPD in the OPA architecture. We have formalized 

the problem of the DPD in-SCS which makes it possible to easily calculate the inverse using a 

matrix inversion; these theoretical developments are, to the author’s best knowledge, not 

present in any of the current literature on the subject. 
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Conclusion & Future Work 

This work presented the context and evolution of cellular communication standards which, in 

their fifth generation, require more complex PA architecture in order to operate efficiently. 

The first chapter serves as an introduction to the context and challenges of modern mobile 

communication technology. 5G requirements are explored and their impact on the RF front end 

architectures is revealed. Among the FEM elements, the PA is identified as a key component 

for efficiency optimization. 

The second chapter introduced the basics of PA operation and assessment tools such as output 

power, efficiency, gain, linearity and bandwidth. The fundamental performance trade-off 

between efficiency, linearity and gain was shown through the use of classic PA operation modes 

such as Class-A, AB, B, and C PAs as well as the switch-mode class-E. These architectures 

also suffered from a sharp decrease in efficiency when the PA is operated at back-off; a 

requirement in 5G applications. Load modulation-based PA architectures, namely Doherty and 

Outphasing, are chosen as viable solutions for the efficiency problem. 

In the third chapter, the focus was put on the combiner stage of both OPA and DPA 

architectures. Starting with the OPA combiner analysis, it was shown that most of the 

Outphasing combiners used today can be obtained by applying circuit transformations to the 

original Chireix combiner. Their modes of operation are analysed and then grouped in one 

unified OPA combiner design methodology which ensures a constant peak power regardless of 

the back-off level. Next, the DPA operation conditions were extracted and used to define a new 

DPA combiner analysis method. Unlike existing approaches, the proposed method ensures that 

the main transistor remains in saturation throughout the Doherty region. Using this approach, 

the compact L-C combiner is proven to be capable of ideal Doherty operation with up to 7dB 

of peak efficiency back-off. The L-C combiner is therefore shown to be compatible with both 

OPA and DPA applications. 

Chapter 4 details the design of a two-stage class-E DPA using the compact L-C combiner. The 

power stage is designed and optimized for DPA operation through the use of load pull analysis. 

It is then used to simulate a two-stage DPA with high efficiency at back-off. The finalized 

circuit is implemented using RF-SOI technology and flip-chipped onto a µPCB laminate. Multi-

technology EM simulations are then used to validate the implemented design. In CW mode, the 

measured DPA circuit achieves a saturation power of 32dBm with a peak PAE of 51% when 

operated at 2.3GHz. At 6dB of back-off, the PA maintains a high efficiency of 36%. Modulated 

signal measurements with 10MHz LTE signal and a 2.3GHz carrier show an average power of 

28dBm with 43% PAE at -35dBc of ACLR. These results are in line with other published works 

and serve to validate the combiner design method that was proposed in Chapter 3. 

Finally, Chapter 5 explored the OPA architecture, starting with the classic class-B 

implementation. This was followed by a class-E OPA design that used the contour rotation 

method in order to optimize back-off efficiency. This design was then studied from a system 

perspective in order to find an improved method of linearization. Two approaches were studied 

starting with the LUT-based method which provided rudimentary linearization through 

amplitude and phase control within the SCS. Next a more complex behavioural model-based 

approach was considered. This led to the formalization of a new In-SCS DPD architecture. 
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However, given the various constraints, an OPA circuit could not be fabricated in time, which 

led to the use of a fallback involving an MP PA model. Validation of the model is still ongoing. 

The main contributions of this work can be summed up as follows: 

• Unified Outphasing combiner design and analysis methodology that is compatible with 

both voltage and current-mode Outphasing operation. 

• Doherty combiner analysis methodology that can be used to determine the maximum 

achievable BO efficiency level and provide required current profile for maintaining 

ideal DPA operation. 

• Validation of the proposed DPA combiner analysis method through the design and 

implementation of a two-stage class-E DPA circuit in RF-SOI technology published in 

[76]. 

• Analytical boundary condition on Outphasing angle for OPA operation published in 

[67]. 

• OPA combiner design method capable of providing set target complex impedances at 

peak and BO, allowing for more flexible power cell designs. 

• In-SCS DPD architecture proposal for linear OPA operation. 

The findings of this thesis also serve to directly set up possible future research directions. The 

analytical study done on both Outphasing and Doherty-type power combiners can be extended 

to include other types of load modulation-based architectures as well as hybrid operation modes 

within the Doherty-Outphasing continuum. 

Moreover, this work merely scratched the surface of the increasingly popular class-E PA. 

Further understanding of the subtleties of the class-E design space and operation have the 

potential to greatly improve the performance of the architectures that use it. 

Additionally, different design approaches such as asymmetrical PA designs and hybrid 

operation modes that utilize both load and supply modulation can provide a way of achieving 

higher average efficiency for 5G NR signals. 

Finally, the work done on DPD system analysis sets the foundation for the integration of DPD 

within the digital friendly OPA architecture. Future works must focus on the validation of the 

basic MP PA model before assessing the need for more complex behavioural models. Once the 

model is ready, it can be used within the proposed In-SCS DPD architecture and optimized to 

provide the best trade-off between efficiency and linearity. This would lead to a more in-depth 

analysis of SCS/OPA co-design which is missing from the literature. 
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Appendix A. Active Device Modelling 

The intrinsic capacitive and resistive elements of a transistor are assumed to be linear. The 

large-signal transistor model of Figure A.1(a) is considered, with ideal capacitors and 

resistances. 

  

(a) (b) 

Figure A.1 – Two-port network representation 

In order to extract the values of the model parasitic components, the device is placed in a 

common source configuration like the one in Figure A.1(b) and its small-signal S-Parameters 

are extracted. The values of the capacitors are calculated using the equations below [15]. 

𝐶𝑔𝑑 = −
ℑ[𝒀𝟐𝟏]

𝜔
 (A.15) 

𝐶𝑔𝑠 = −
ℑ[𝒀𝟏𝟏]

𝜔
− 𝐶𝑔𝑑 (A.16) 

𝐶𝑑𝑠 = −
ℑ[𝒀𝟐𝟐]

𝜔
− 𝐶𝑔𝑑  (A.17) 

The gate resistance 𝑅𝑔 is extracted using the equation in (A.18) for 𝑉𝐺𝑆 = 0. [77] 

𝑅𝑔 = (
ℜ[𝒀𝟏𝟏]

(ℑ[𝒀𝟏𝟏])
2
)|
𝑉𝐺𝑆=0

 (A.18) 

The remaining parameters can be calculated using the equations below: 

𝑅𝑔𝑖 =
1

𝐶𝑔𝑠. 𝜔
∙ (
ℜ[𝒀𝟏𝟏] + ℜ[𝒀𝟏𝟐]

ℑ[𝒀𝟏𝟏] + ℑ[𝒀𝟏𝟐]
) (A.19) 

𝑔𝑑𝑠 = (ℜ[𝒀𝟐𝟐])|𝜔→0 (A.20) 

𝑅𝑑 = (ℜ[𝒁𝟐𝟐 − 𝒁𝟏𝟐] −
1

2. 𝐾. (𝑉𝐺𝑆 − 𝑉𝑇𝐻)
)|
𝑉𝐷𝑆→0;𝑉𝐺𝑆=𝑉𝐺𝑆𝑚𝑎𝑥

 (A.21) 
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Finally, the value of the transconductance 𝑔𝑚 can be verified through (A.22). 

𝑔𝑚 = (ℜ[𝒀𝟐𝟏])|𝜔=0 (A.22) 
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Appendix B. Two-Port Networks 

 
Figure B.1 – Two-port network representation 

A two-port network [78], shown in Figure B.1, is a representation of a sub-circuit with two 

pairs of terminals and can be defined by different types of matrices such as: 

• Impedance parameter matrix Z 

• Admittance parameter matrix Y 

• Transmission or Chain or ABCD parameter matrix 

The ABCD parameter matrix is constructed using the expressions in (B.1). 

𝐴𝐵𝐶𝐷 =

(

 
 

𝑽𝟏
𝑽𝟐
|
𝐼2=0

𝑽𝟏
𝑰𝟐
|
𝑉2=0

𝑰𝟏
𝑽𝟐
|
𝐼2=0

𝑰𝟏
𝑰𝟐
|
𝑉2=0)

 
 

 (B.1) 

An important property of ABCD parameters is the ability to calculate the equivalent ABCD 

matrix of a cascade of multiple two-port networks by multiplying their individual ABCD 

matrices. 

𝐴𝐵𝐶𝐷𝐸𝑞 =∏𝐴𝐵𝐶𝐷𝑖
𝑖

 
(B.2) 

A list of ABCD matrices for common elementary components is provided in Table B.1. 

Table B.1 – Common component ABCD matrices 

Network Type Symbol ABCD Matrix 

Series Element 

 

𝐴𝐵𝐶𝐷𝑍 = (
1 𝒁
0 1

) 

Shunt Element 

 

𝐴𝐵𝐶𝐷𝑌 = (
1 0
𝒀 1

) 

Transmission Line 

 

𝐴𝐵𝐶𝐷𝑇𝐿 = (
cos(𝜃) 𝑗. 𝑍. sin(𝜃)

𝑗 ∙ 𝑍−1 ∙ sin(𝜃) cos(𝜃)
) 

Transformer 

 

𝐴𝐵𝐶𝐷𝑇𝐹 = (
𝑁 0
0 𝑁−1) 
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B.1. Transmission Lines 

  

(a) (b) 

Figure B.2 – (a)Transmission Line representation as a two-port network, (b) Transmission line terminated in a load 𝑍𝐿 

A lossless transmission line is defined by its characteristic impedance 𝑍 and its electrical length 

𝜃 for a given frequency 𝑓0. When terminated with a load 𝒁𝑳 its input impedance 𝑍𝑖𝑛 is calculated 

through [79]: 

𝑍𝑖𝑛 = 𝑍 ∙
𝒁𝑳 + 𝑗. 𝑍. 𝑡𝑎𝑛(𝜃)

𝑍 + 𝑗. 𝒁𝑳. 𝑡𝑎𝑛(𝜃)
 (B.3) 

Using (B.3) it can be shown that if the characteristic impedance 𝑍 of the transmission line is of 

the same value as the load, then the input impedance 𝑍𝑖𝑛 becomes equal to the load impedance 

𝒁𝑳. 

B.1.1. Quarter-Wave Transmission Line 

For 𝜃 = 90°, the transmission line is referred to as a quarter-wave line and its ABCD matrix is 

simplified to  

𝑨𝑩𝑪𝑫𝝀
𝟒

= (
0 𝑗. 𝑍

𝑗. 𝑍−1 0
) (B.4) 

Moreover, its input impedance becomes: 

𝒁𝒊𝒏 =
𝑍2

𝒁𝑳
 (B.5) 

In the equation above, it can be seen that the input impedance 𝑍𝑖𝑛 is inversely proportional to 

the load impedance 𝑍𝐿. As a result, the quarter-wave transmission line is considered as an 

impedance inverter. 

Finally, its corresponding impedance matrix is shown in (B.6) and leads to the expression in 

(B.7) 

𝒁𝝀
𝟒

= (
0 −𝑗. 𝑍

−𝑗. 𝑍 0
) (B.6) 

(
𝑽𝟏
𝑽𝟐
) = (

𝑗. 𝑍. 𝑰𝟐
−𝑗. 𝑍. 𝑰𝟏

) (B.7) 
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B.1.2. Half-Wave Transmission Line 

When the electrical length 𝜃 is equal to 180°, the transmission line is referred to as a half-wave 

line. Its ABCD matrix becomes:  

𝑨𝑩𝑪𝑫𝝀
𝟐

= (
−1 0
0 −1

) = −𝕀𝟐 (B.8) 

The ABCD matrix of the half-wave line is the opposite of the 2x2 identity matrix 𝕀𝟐. As a result, 

it can be moved freely within a cascaded system without affecting its overall behaviour. 

Furthermore, it can be removed entirely from the system, by replacing its with a negative sign 

on any of the input or output voltages or currents. This property is better illustrated in Figure 

B.3 where all four topologies result in the same equivalent circuit. 

  

(a) (b) 

  

(c) (d) 

Figure B.3 – Transmission Line representation as a two-port network 

B.1.3. Cascading Transmission Lines 

Cascaded transmission lines having the same characteristic impedance 𝑍 and different electrical 

lengths 𝜃𝑖 can be represented by a single transmission line of characteristic impedance 𝑍 and 

an electrical length equal to the sum of the lengths of the individual lines. This can be proven 

by multiplying the ABCD matrices of the individual lines 

𝑨𝑩𝑪𝑫(𝑍; 𝜃) =∏𝑨𝑩𝑪𝑫(𝑍; 𝜃𝑖)

𝑖

= 𝑨𝑩𝑪𝑫(𝑍;∑𝜃𝑖
𝑖

) (B.9) 

As a result, in a cascaded topology, two half-wave transmission lines anywhere in the circuit 

can be summed up together to produce a full-wave line, whose ABCD matrix is the identity 

matrix 𝕀𝟐, and removed from the system. 

𝑨𝑩𝑪𝑫𝝀 = 𝑨𝑩𝑪𝑫𝝀
𝟐

∙ 𝑨𝑩𝑪𝑫𝝀
𝟐

= 𝕀𝟐 
(B.10) 



Appendix B. Two-Port Networks 

137 

B.1.4. Lumped Element Equivalent Model 

A lossless transmission line of characteristic impedance 𝑍 and electrical length 𝜃 can be 

modelled at a given frequency 𝑓0 using a 𝜋-network like the one shown in Figure B.4(a). 

   

   (a)       (b)        (c) 

Figure B.4 – (a) Differential power combining topology, (b) Equivalent common-mode power combiner 

Depending on the value of 𝜃, two possible cases ensue: 

• For 𝜃 ∈ [0°; 180°], the equivalent model is that of Figure B.4(b). 

• For 𝜃 ∈ [0°; −180°], the equivalent model is that of Figure B.4(c). 

In either case, the values of the series reactance 𝑋 and the shunt susceptance 𝐵 can be obtained 

by equating the ABCD matrices of the transmission line and the 𝜋-network. The result is shown 

below in (B.11) and (B.12) 

𝑋 = 𝑍. |𝑠𝑖𝑛(𝜃)| (B.11) 

𝐵 =
1 − 𝑐𝑜𝑠(𝜃)

𝑋
 (B.12) 

B.1.5. Differential to Single-Ended Transformation 

 

             (a) (b) 

Figure B.5 – (a) Differential power combining topology, (b) Equivalent single-ended power combiner 

A differential power combiner topology, as seen in Figure B.5.(a) can be transformed into an 

equivalent single-ended topology, Figure B.5(b), using transmission lines. The value of the 

resulting parallel resistance 𝑅𝑝 can be obtained by comparing the ABCD-parameter matrices of 

the two topologies: 
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𝑨𝑩𝑪𝑫𝑫𝒊𝒇 = (
1 𝑅𝑠
0 1

) (B.13) 

𝑨𝑩𝑪𝑫𝑺𝑬 = 𝑨𝑩𝑪𝑫𝝀
𝟐

∙ 𝑨𝑩𝑪𝑫𝝀
𝟒

∙ 𝑨𝑩𝑪𝑫𝑹𝒑 ∙ 𝑨𝑩𝑪𝑫𝝀
𝟒

= (
1

𝑍2

𝑅𝑝
0 1

) (B.14) 

𝑅𝑝 =
𝑍2

𝑅𝑠
 (B.15) 

B.2. Dual Networks 

In electronic network analysis, two networks 𝑁 and 𝑁′ are said to be dual if the Z-matrix of the 

first, 𝑍 and the Y-matrix of the second, 𝑌′ respect the following conditions [80]: 

{
𝑧𝑖𝑖 = 𝑦𝑗𝑗

′ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑧𝑖𝑗 = −𝑦𝑖𝑗
′ (𝑖 ≠ 𝑗)

 (B.16) 

In the case of two-port networks, the duality condition can be expressed in terms of ABCD 

parameters by comparing the ABCD parameters of the dual networks 𝑁 and 𝑁′. 

𝓓(
𝑨 𝑩
𝑪 𝑫

) = (
𝑫 𝑪
𝑩 𝑨

) (B.17) 

Applying this duality transformation to the elementary components of Table B.1, results in the 

dual networks presented in Table B.2. 

Table B.2 – Dual networks of elementary components 

Original Network Dual Network Parameters 

  

𝒁 = 𝒀 

  

𝑍′ =
1

𝑍
 

  

𝑁′ =
1

𝑁
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B.2.1. Note on the direction of active sources in dual networks 

 

(a) 

   

(b) 

Figure B.6 – Examples of dual circuits with (a) Voltage sources and (b) Current sources 

In order to determine the dual of a given circuit, a single direction is applied to each of its 

meshes. Then, every mesh 𝑀𝑖 is replaced by a node 𝑁𝑖, and a ground node 𝑁0 is added. The 

circuit elements are then transformed individually: An element contained in a single mesh 𝑀𝑖, 

is replaced by its dual form between nodes 𝑁𝑖 and 𝑁0, whereas an element contained between 

two meshes 𝑀𝑖 and 𝑀𝑗 is replaced by its dual form between nodes 𝑁𝑖 and 𝑁𝑗. In the case of an 

active source with an arrow pointing in the same direction as the mesh 𝑀𝑖, its dual source will 

point towards the node 𝑁𝑖 as shown in Figure B.6. 
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Appendix C. Complex Load OPA Combiner Design 

One of the main setbacks of classic outphasing combiners, is the fact that the two intersections 

of the load modulation trajectories seen by each branch only occur at purely real impedances 

(purely resistive). This is an issue for some PAs such as class-E, which require a real impedance 

at peak power and a complex one at back-off. In [68] and [69] the authors propose a solution to 

this problem by introducing offset transmission lines to the combiner inputs. These works 

however do not give the voltage or current profiles required to achieve ideal outphasing 

behaviour when using the OTLs. The following sections provide a detailed analytical study of 

the OTL method for class-E OPA behaviour as well as a generalized variant capable of 

providing complex impedances both at peak and back-off. 

C.1. OTL-Based OEPA Design 

A typical load modulation-based OPA combiner is represented as a two-port network (CMB) 

and is cascaded between two identical offset transmission lines as represented in Figure C.1. 

 
Figure C.1 – Generic Outphasing load modulation combiner with offset transmission lines 

Assuming ideal Outphasing operation at ports 1 and 2 (𝑉1,2 defined as in (3.1)) of the core 

combiner, the input voltages 𝑉3,4 can be calculated by solving the system in (C.1). 

(
𝑽𝟑,𝟒
𝑰𝟑,𝟒

) = (

𝑐𝑜𝑠(𝜙) 𝑗. 𝑍𝑂𝑇𝐿. 𝑠𝑖𝑛(𝜙)

𝑗 ∙
1

𝑍𝑂𝑇𝐿
∙ 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

) × (
𝑽𝟏,𝟐
𝑰𝟏,𝟐

) (C.1) 

In voltage-mode operation, the input signal must therefore be: 

𝑽𝟑,𝟒 = (𝑐𝑜𝑠(𝜙) + 𝑗. 𝑍𝑂𝑇𝐿. 𝑠𝑖𝑛(𝜙) . 𝒀𝑽𝑴|𝟏,𝟐). 𝑽𝟏,𝟐 (C.2) 

Where 𝒀𝑽𝑴|𝟏,𝟐 represents the core combiner voltage-mode admittance. The current-mode 

operation inputs 𝑰𝟏,𝟐, defined in (3.13), can also be calculated and result in the equations of 

(C.3) where 𝒁𝑪𝑴|𝟏,𝟐 is the core combiner input impedance in current-mode operation. 

𝑰𝟑,𝟒 = (𝑐𝑜𝑠(𝜙) + 𝑗 ∙
1

𝑍𝑂𝑇𝐿
∙ 𝑠𝑖𝑛(𝜙) . 𝒁𝑪𝑴|𝟏,𝟐) . 𝑰𝟏,𝟐 (C.3) 

With the voltage and current expressions clearly defined at the inputs of the new OTL-based 

combiner, a design method is required to control the size and position of the impedance 

trajectories. In the following paragraph, a new method is outlined for the design of an OTL-

based OEPA using two impedance values. 



Appendix C. Complex Load OPA Combiner Design 

141 

  

(a) (b) 

Figure C.2 – Ideal switch-based q=1 class-E PA load-pull contours showing (a) output power and (b) efficiency contours with 

rotated OTL Outphasing load modulation schemes overlaid in black. 

A class-E PA delivers the required output power when the load 𝑍𝐿 = 𝑅. This resistance value 

will be referred to as the peak resistance 𝑅𝑜𝑝𝑡 and used to normalize the Smith chart. The load 

trajectories in Figure C.2 must intersect at the centre of the Smith chart, therefore the 

characteristic impedance of the offset transmission lines is set as: 

𝑍𝑂𝑇𝐿 = 𝑅𝑜𝑝𝑡 = 𝑅 (C.4) 

The first intersection of the load trajectories is therefore at the value 𝑅𝑚𝑎𝑥. This condition is 

expressed in equation form in (C.5) for both voltage combiners or current combiners. 

{
ℜ[⁡𝒀𝑽𝑴|𝑽𝑪]|𝜃=𝜃𝑐

⁡⁡⁡⁡⁡⁡⁡= 𝑅𝑜𝑝𝑡

ℜ[⁡𝒀𝑽𝑴|𝑪𝑪]|𝜃=90°−𝜃𝑐
= 𝑅𝑜𝑝𝑡

 (C.5) 

Solving the equations above leads to the expression for the load resistance 𝑅𝐿 to be used in the 

core combiner design. Recalling the combiner design methodology presented in Chapter 3 

section 1.4.1, the value of the elements of the core combiner stage can be determined for the 

different combiner types using the updated Table C.. This ensures that for all acceptable values 

of 𝜃𝑐 and 𝜙, the value of the first intersection impedance (and therefore the associated power 

level) is always the same. 
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Table C.1 – Combiner Component Design Values for OTL-based combiners 

 Reactive 

Compensation 

Voltage 

Combiner 

Delay-Line 

Compensation 

Voltage 

Combiner 

Reactive 

Compensation 

Current 

Combiner 

Delay-Line 

Compensation 

Current Combiner 

𝑹𝑳 𝑅𝑜𝑝𝑡 . cos
2(𝜃𝑐) 

𝑅𝑜𝑝𝑡
2

 
𝑅𝑜𝑝𝑡

2. sin2(𝜃𝑐)
 

𝑅𝑜𝑝𝑡
2. tan2(𝜃𝑐)

 

𝒁𝑻 𝑅𝐿 . √2 2. 𝑅𝐿 − − 

𝑿𝒄 − − 𝑅𝐿 . sin(2. 𝜃𝑐) 2. 𝑅𝐿 . sin(𝜃𝑐) 

𝑩𝒄 sin(2. 𝜃𝑐)

2. 𝑅𝐿
 

− − 1 − cos(𝜃𝑐)

2. 𝑅𝐿 . sin(𝜃𝑐)
 

The next step is to determine the desired location for the second load trajectory intersection. A 

complex impedance 𝒁𝑩𝑶 is chosen as the back-off impedance value either through calculation, 

or by using the load-pull contours to determine the desired power back-off and efficiency. The 

back-off reflection coefficient 𝜞𝑩𝑶 is then defined as: 

𝜞𝑩𝑶 =
𝒁𝑩𝑶 − 𝑅𝑜𝑝𝑡
𝒁𝑩𝑶 + 𝑅𝑜𝑝𝑡

 (C.6) 

  

(a) (b) 

Figure C.3 – (a) Effect of 𝜙 on the direction of the load modulation trajectories (b) Effect of 𝜃𝑐 on the opening of the load 

modulation trajectories and the distance between the intersections 

The OTL electrical length 𝜙 is responsible for the rotation of the load trajectories, as seen in 

Figure C.3(a) where the range of the Outphasing angle 𝜃 is kept restrained to [𝜃𝑐; 90° − 𝜃𝑐] for 

clarity. The value of 𝜙 can be calculated for a given 𝛤𝐵𝑂 using (C.7). 

𝜙 = 180° −
𝑎𝑟𝑔[𝛤𝐵𝑂]

2
 (C.7) 

The second intersection, is also determined by the magnitude of the reflection coefficient, which 

depending on the type of the combiner leads to one of the equations in (C.8). The compensation 

angle 𝜃𝑐 is the remaining degree of freedom and its value would therefore directly set the 

distance between the two points of intersection on the Smith chart as seen in Figure C.3(b). 
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{
ℜ[⁡𝒀𝑽𝑴|𝑽𝑪]|𝜃=90°−𝜃𝑐

= |𝛤𝐵𝑂|

ℜ[⁡𝒀𝑽𝑴|𝑪𝑪]|𝜃=𝜃𝑐
⁡⁡⁡⁡⁡⁡⁡= |𝛤𝐵𝑂|

 (C.8) 

Solving either of the equations in the system above leads to the value of the compensation angle 

𝜃𝑐 which is expressed in (C.9). 

𝜃𝑐 = 𝑐𝑜𝑠
−1 (√

|𝜞𝑩𝑶| + 1

2
) (C.9) 

The described technique results in a OPA combiner suitable for class-E operation, with the 

impedance at 𝒁𝑳 being 𝑅 for peak power, and 𝒁𝑩𝑶 for back-off. 

To better illustrate this method, an ideal OTL-based OEPA circuit is designed with the 

following input parameters: 

• Design frequency 𝑓0 = 2.5⁡𝐺𝐻𝑧 

• Supply voltage 𝑉𝐷𝐷 = 3.4⁡𝑉 

• Peak power 𝑃𝑚𝑎𝑥 = 33𝑑𝐵𝑚 

• Back-off level impedance 𝒁𝑩𝑶 = 7 + 𝑗. 20 

• Loaded quality factor of the class-E series resonator 𝑄𝐿 = 5 

A reactive compensation current combiner is chosen as the core OPA combiner. Using the 

previously detailed design methods results in the OEPA circuit shown in Figure C.4 below. 

 
Figure C.4 – Ideal OTL-based OEPA schematic 

The transistors are considered to be ideal switches with a saturation resistance of 1𝑚Ω added 

for convergence. The driving signals are square-wave pulses with a duty cycle 𝑑 and phase 

delay ±𝜃. The ideal drive profiles are very non-linear and would require different duty cycle 

and phase difference values for each branch as pointed out in [69]. 



Appendix C. Complex Load OPA Combiner Design 

144 

  

(a) (b) 

Figure C.5 – (a) OEPA load modulation trajectories (b) Efficiency versus output power of the OEPA 

A simpler drive profile was considered by applying the same duty cycle 𝑑 = 0.54 and a phase 

shift ±𝜃 to the two OEPA branches. This mode of operation results in the load modulation 

trajectories shown in Figure C.5(a) where the intersections occur at the normalized centre of 

the smith chart (magenta dot, 𝑅𝑜𝑝𝑡 = 10.4⁡Ω) and at the chosen back-off impedance 𝑍𝐵𝑂 (blue 

dot). The efficiency of the OEPA is plotted against its power output in Figure C.5(b), and shows 

that the intersections seen on the Smith chart correspond to maximum efficiency points (𝐷𝐸 =

100%) corresponding to 33𝑑𝐵𝑚 and 27𝑑𝐵𝑚 of output power. 

This method can be generalized for any type of PA operation requiring complex impedances at 

both peak and back-off operation (i.e. Class-J). 

C.2. Generalized Solution 

It is possible to generalize the OTL-based combiner method, mainly adapted for Class-E 

operation, to any operation mode requiring complex impedances both at peak and back-off. 

This can be done by adding a reactive element 𝑋 to the combiner stage as shown in Figure C.. 

 
Figure C.6 – Output power evolution for ideal voltage-mode (dashed black) and the proposed OBPA design (red) 

The modified combiner stage can be expressed as an ABCD matrix system which is then used 

to derive the required input voltages as in (C.10). The input currents equation are themselves 

unchanged and the results from (C.3) can be used here. 

𝑽𝟑,𝟒 = (𝑐𝑜𝑠(𝜙) −
𝑋

𝑅𝑜𝑝𝑡
𝑠𝑖𝑛(𝜙) + 𝑗. (𝑅𝑜𝑝𝑡 . 𝑠𝑖𝑛(𝜙) + 𝑋. 𝑐𝑜𝑠(𝜙)). 𝒀𝑽𝑴|𝟏,𝟐) . 𝑽𝟏,𝟐 (C.10) 

These inputs voltages relate to the drain of the transistors as shown in Figure C.7. For correct 

Outphasing operation; the gate voltages 𝑉𝐺𝑆|3,4 must be tuned in order to ensure the correct 

waveforms at the drains of the transistors. 
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Figure C.7 – Simplified schematic of the generalized combiner design circuit 

The amplifier is assumed to operate under optimal conditions when the drain impedance is 

defined as follows: 

𝒁𝟑,𝟒 = {
𝒁𝜶⁡⁡⁡𝑎𝑡⁡𝑃𝑚𝑎𝑥
𝒁𝜷⁡⁡⁡𝑎𝑡⁡𝑂𝐵𝑂

 (C.11) 

The method described in the previous section can still be used to calculate the values of 𝑅𝐿, 𝜃𝑐, 

𝑍𝑂𝑇𝐿, and 𝜙. The input variables 𝑅𝑜𝑝𝑡, 𝒁𝑩𝑶, and 𝑋 are set using the following equations. 

𝑋 = ℑ[𝒁𝜶] (C.12) 

𝑅𝑜𝑝𝑡 = ℜ[𝒁𝜶] (C.13) 

𝒁𝑩𝑶 = ℜ[𝒁𝜷] + 𝑗. (ℑ[𝒁𝜷] − 𝑋) (C.14) 

Finally, the designed combiner, when driven correctly, leads to the trajectories in Figure C.8(a), 

which intersect at 𝒁𝜶 and 𝒁𝜷. The representation of the trajectories can be improved by 

normalizing the Smith chart to 𝒁𝜶
∗ , as was done in Figure C.8(b). 

  

(a) (b) 

Figure C.8 – (a) Complex load modulation trajectories referenced at 50𝛺 (b) Complex load modulation trajectories referenced 

at 𝒁𝜶
∗  
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Résumé de la Thèse 

Les normes de communication mobile sont en constante évolution. Chaque nouvelle génération 

apporte davantage de fonctionnalités et d'améliorations des performances. Cela se fait toutefois 

au prix d'exigences plus strictes en termes de largeur de bande du signal, de linéarité et de 

nombre de bandes prises en charge, pour n'en citer que quelques-unes. Par conséquent, les 

architectures frontales de radiofréquence sont devenues plus complexes. L'amplificateur de 

puissance joue un rôle essentiel dans la chaîne d'émission, car il est responsable de la plus 

grande consommation d'énergie du module frontal. De plus, sa linéarité affecte directement la 

qualité du signal transmis. Ce travail aborde donc la conception et l'intégration d'un 

amplificateur de puissance à haut rendement pour les applications 5G. 

L’une des particularités des nouveaux signaux 5G, est leur rapport élevé entre la puissance de 

crête et la puissance moyenne (entre 7 et 10dB). Cela signifie que l'amplificateur de puissance 

doit fonctionner la plupart du temps en retrait de puissance (back-off). Cela crée un problème 

pour les amplificateurs de puissance typiques tels que les classes A, AB, B et C et la classe E, 

car ils ont tous une faible efficacité au back-off. Cependant, les architectures d'amplificateur de 

puissance à modulation de charge, telles que Doherty et Outphasing, présentent une efficacité 

élevée à la fois à la puissance de crête et aux niveaux de back-off, ce qui les rends parfait pour 

les applications 5G. 

En mode Outphasing, un signal modulé est divisé en deux signaux à enveloppe constante avec 

un déphasage relatif de 2. 𝜃. Chaque signal est ensuite amplifié séparément avant d'être 

recombiné et injecté dans la même charge de sortie. En conséquence, l'impédance de charge 

vue par chaque branche est modulée, et devient purement réelle à la puissance de crête et de 

back-off. Cela conduit à son tour à deux pics de rendement aux niveaux de puissance 

susmentionnés. 

Par ailleurs, un amplificateur de puissance Doherty typique est composé d'un amplificateur 

principal dit Main et d'un amplificateur auxiliaire dit Auxiliary, tous deux connectés à une seule 

charge par le biais du circuit combinateur. Pour les faibles niveaux de puissance, seul 

l'amplificateur Main est actif. Lorsque l'amplificateur Main atteint la saturation, l'amplificateur 

Auxiliary entre en jeu, injectant du courant dans la charge commune, modulant ainsi 

l'impédance de charge vue par l'amplificateur Main. Par conséquent, l'amplificateur de 

puissance Doherty présente deux pics d'efficacité : le premier se produit lorsque l'amplificateur 

Main sature au moment du back-off, et le second se produit au moment du pic de puissance, 

lorsque l'amplificateur Main et l'amplificateur Auxiliary atteignent tous deux la saturation. 

Dans les architectures Doherty et Outphasing, l'étage de combinaison joue un rôle crucial dans 

la performance globale de l'amplificateur de puissance. Par conséquent, ce travail se concentre 

sur l'analyse et la compréhension du fonctionnement des combineurs afin de proposer des 

méthodologies de conception optimisées. Tous les combinateurs Outphasing existants sont 

dérivés de la même architecture initialement proposée par Chireix et sont regroupés en deux 

catégories : les combineurs à compensation réactive et les combinateurs à compensation par 

ligne à retard. En outre, les deux modes de commande Outphasing sont expliqués et il est 

démontré qu'ils sont compatibles avec les deux catégories de combineurs. Enfin, une nouvelle 

méthodologie unifiée de conception des combineurs Outphasing est proposée. 

De même, une nouvelle méthode d'analyse est proposée pour les combineurs Doherty. Les 

méthodes existantes se contentent de vérifier les conditions Doherty aux niveaux de crête et de 

back-off, sans tenir compte de ce qui peut se passer entre ces deux points. La méthode proposée 

résout ce problème et garantit que les conditions idéales Doherty sont respectées dans toute la 



Résumé de la Thèse 

148 

région de Doherty. En outre, cette technique donne le back-off maximal réalisable pour une 

architecture de combineur donnée ainsi que les profils de courant d'entrée nécessaires pour 

l'atteindre. À titre d'exemple, le combineur LC compact de [57] est analysé et montre qu'il est 

capable de fonctionner avec un back-off de 7dB alors que les auteurs de l'article original 

n'étaient capables d'atteindre que 3dB de back-off. 

La méthodologie d'analyse du combineur DPA proposée est ensuite validée par la conception, 

la mise en œuvre et la mesure d'un DPA de classe E utilisant le combineur LC compact. L'étage 

de puissance du DPA a été conçu en premier. Des simulations de type load-pull de la classe E 

sont utilisées pour générer les contours de puissance et d'efficacité des deux cellules de 

puissance. Les paramètres optimaux du réseau d'adaptation de classe E sont ensuite déterminés 

en superposant les trajectoires de modulation de la charge du combineur LC aux contours de 

load-pull. L'étage de puissance est ensuite adapté à des terminaisons 50Ω et vérifié pour les 

problèmes de stabilité à l'aide des paramètres S et de la méthode d'admittance du point de drive. 

Ensuite, un étage driver est ajouté à l'étage de puissance et les deux blocs sont connectés à 

travers le réseau d'adaptation inter-étages. La conception finale du circuit à deux étages est 

réglée de manière à présenter des performances optimales. La technologie RFSOI 130 nm est 

choisie pour le circuit intégré qui devait être monté sur le boîtier à l'aide de piliers en cuivre. 

Compte tenu des dimensions requises du CuP, un µPCB laminé à quatre couches est choisi 

comme technologie de packaging. 

Les éléments conçus du circuit DPA sont implémentés sur les différentes technologies. Le 

circuit implémenté est ensuite simulé à l'aide de simulations électromagnétiques (EM) afin 

d'obtenir des résultats plus précis. Le circuit fabriqué est mesuré et validé en comparant ses 

résultats mesurés en DC, SP et CW avec ceux du modèle de simulation EM. En raison d'un 

problème de processus de fabrication, la fréquence centrale est décalée vers le bas de 2,5 GHz 

à 2,3 GHz, et des pertes supplémentaires sont introduites dans l'étage OMN. A 2,3GHz, la 

puissance de saturation du DPA est de 32dBm et le PAE de pointe est de 51%. A 6dB de back-

off, le PA maintient une efficacité élevée de 36%. 

Les mesures des signaux modulés sont effectuées en utilisant un signal LTE de 10 MHz avec 

DPD. A 2.3GHz, le DPA délivre une puissance de sortie de 28dBm avec 43% de PAE pour un 

niveau d'ACLR de -35dBc. La comparaison avec d'autres travaux publiés montre que les 

performances du DPA sont conformes à l'état de l'art, ce qui valide davantage l'approche. 

L'architecture du PA à modulation de charge outphasing est explorée. Une première étude est 

menée en utilisant un modèle de transistor idéal dans une architecture OPA de classe B avec un 

combineur de tension de compensation réactive (LC combiner). Elle est ensuite suivie d'une 

mise en œuvre d'un OPA de classe E qui introduit deux formes différentes d'optimisation : La 

première, basée sur le travail effectué par Beltran et Raab, utilise des lignes de transmission 

décalées afin de fournir au PA la charge complexe requise à OBO. La seconde, proposée par 

Ghahermani, utilise les paramètres de conception de la puissance de classe E pour faire pivoter 

les contours de la puissance et de l'efficacité du load-pull et ainsi rendre réelle l'impédance de 

back-off optimale. Un OPA de classe E à modulation de charge à deux entrées est ensuite conçu 

à l'aide d'un modèle électrique LDMOS pour fournir une puissance de sortie de 33 dBm à 𝑓0 =

2.5𝐺𝐻𝑧. L'OEPA est simulé avec différents niveaux de puissance d'entrée ainsi qu'un 

déphasage de branche ±𝜃. 

Afin de mieux comprendre et d'analyser les exigences du système d'un émetteur outphasing 

(OTX), une analyse au niveau du système a été réalisée. Les blocs SCS, OPA et DPD ont été 

représentés et étudiés du point de vue du traitement du signal, ce qui a conduit à deux 

propositions d'architecture DPD. La première est l'approche basée sur une DPD tabulée (LUT): 
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elle utilise une caractérisation CW extensive du circuit OPA RF afin de construire une LUT de 

valeurs de puissance et de phase d'entrée qui satisfont un critère de performance prédéterminé 

tel qu'un fonctionnement à haut rendement ou une linéarité élevée. La deuxième architecture 

est plus avancée et s'appuie sur le modèle comportemental du PA. Cette méthode, appelée DPD 

In-SCS, est basée sur l'architecture DPD à apprentissage indirect et détermine un bloc post-

inverse du système OPA MISO afin de l'utiliser comme pré-inverse et ainsi linéariser le système 

OTX. 

Enfin, le processus de modélisation du PA est brièvement exposé et un modèle de type 

polynôme à mémoire (MP) est choisi comme point de départ. La construction du modèle PA 

nécessite de nombreuses mesures à l'aide de signaux modulés. Malheureusement, un circuit 

intégré OPA n'a pas pu être réalisé dans les contraintes de temps de ce travail. Cette section 

finale sert donc de base aux travaux futurs sur les systèmes OTX. 
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Résumé : La complexité croissante des 

schémas de modulation due à l'évolution des 

normes de communication mobile a conduit 

à des signaux à fort rapport puissance de 

crête/puissance moyenne (PAPR). En 

conséquence, les architectures 

traditionnelles d'amplificateurs de 

puissance (PA) linéaires ne sont plus 

adaptées car elles présentent un faible 

rendement moyen lorsqu'elles fonctionnent 

avec de tels signaux. Une des solutions 

possibles à ce problème est l'utilisation 

d'architectures basées sur la modulation de 

charge qui sont capables de fournir un 

rendement moyen plus élevé. Ce travail se 

concentre sur l'analyse, la conception et la 

mise en œuvre des deux principales 

architectures à modulation de charge : 

Outphasing (OPA) et Doherty (DPA). 

L'architecture Outphasing est étudiée sous 

ses différentes formes et une nouvelle 

méthode de conception unifiée est proposée 

pour les combineurs OPA. Une seconde 

analyse est menée sur les combineurs DPA, 

aboutissant à une nouvelle méthode 

d'analyse capable de déterminer le back-off 

maximal réalisable par une architecture de 

combineur donnée en mode Doherty. 

Contrairement aux travaux existants, la 

méthode proposée détermine également les 

courants d'attaque requis aux entrées du 

combineur pour maintenir des conditions 

idéales de Doherty dans toute la région de 

Doherty. Afin de valider cette technique, un 

DPA en classe E à deux étages avec un  

combineur LC compact est conçu et 

implémenté en utilisant la technologie RF-

SOI en 130nm. Les performances mesurées 

sont en ligne avec l'état de l'art puisque le 

PA atteint un PAE maximum de 51% à une 

puissance de sortie de 32dBm sous une 

tension d'alimentation de 3,4V à 2,3GHz en 

mode CW. De 2,1 GHz à 2,5 GHz, le PA 

présente une puissance de sortie moyenne et 

un PAE supérieur à 26,9 dBm et 39% 

respectivement à -35 dBc E-UTRA ACLR 

lors de l'utilisation d'un signal de liaison 

montante LTE 10MHz-50RB QPSK avec 

prédistortion digitale (DPD) sans mémoire. 

À 2,3GHz, le PA atteint un Pout linéaire et 

un PAE de 28,85 dBm et 42,8% 

respectivement. Ensuite, une analyse de 

système est effectuée sur le système 

émetteur Outphasing (OTX) qui contient à 

la fois l'OPA RF ainsi que l'interface de 

traitement du signal et l'interface analogique 

connue sous le nom de séparateur de 

composantes signal (SCS). La conception et 

le fonctionnement de l'OPA en classe B et 

en classe E sont étudiés, ce qui aboutit à la 

conception d'un OPA de classe E à double 

entrée. Différentes architectures de DPD 

sont étudiées, notamment la DPD tabulée 

(look-up table) et les architectures basées 

sur la modélisation comportementale. Enfin, 

une architecture DPD IN-SCS est proposée 

comme une nouvelle solution potentielle 

permettant l'intégration du bloc DPD dans le 

SCS, fournissant une base pour de futures 

recherches. 
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Abstract: The increasing complexity of 

modulation schemes brought on by the 

evolution of mobile communication 

standards has led to high peak to average 

power ratio (PAPR) signals. As a result, 

traditional linear power amplifier (PA) 

architectures are no longer suitable as they 

exhibit low average efficiency when 

operating with such signals. One of the 

possible solutions to this issue is load 

modulation-based architectures which are 

capable of providing higher average 

efficiency. This work focuses on the 

analysis, design, and implementation of the 

two main load modulation architectures: 

Outphasing (OPA) and Doherty (DPA). The 

Outphasing architecture is studied under its 

different forms and a new unified design 

method is proposed for OPA combiners. A 

second analysis is conducted on DPA 

combiners, resulting in a new analysis 

method capable of determining the 

maximum back-off achievable by a given 

combiner architecture in Doherty mode. 

Unlike existing works, the proposed method 

also determines the required driving 

currents at the inputs of the combiner to 

maintain ideal Doherty conditions 

throughout the Doherty region. 

In order to validate this technique, a two-

stage class-E DPA with compact LC 

combiner is designed and implemented 

using 130nm RF-SOI. Measured 

performance is in-line with the state of the 

art as the PA achieves a peak PAE of 51% 

at 32dBm output power under 3.4V supply 

voltage at 2.3GHz in CW mode. From 

2.1GHz to 2.5GHz, the PA shows an 

average output power and PAE higher than 

26.9dBm and 39% respectively at -35dBc 

E-UTRA ACLR when using a 10MHz-

50RB QPSK LTE uplink signal with 

memoryless digital predistortion (DPD). At 

2.3GHz, the PA achieves a linear Pout and 

PAE of 28.85dBm and 42.8% respectively. 

Next, a system analysis is performed on the 

Outphasing transmitter system (OTX) 

which contains both the RF OPA as well as 

the signal processing interface and analog 

interface known as the signal component 

separator (SCS). The design and operation 

of OPA in both class-B and class-E is 

studied resulting in a dual-input class-E 

OPA design. Different DPD architectures 

are studied including the look-up table DPD 

and the behavioural modelling-based 

architectures. Finally, an IN-SCS DPD 

architecture is put forward as a potential 

novel solution allowing the integration of 

the DPD block into the SCS providing a 

basis for future research. 
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