Keywords: 2, 4 Some classical numerical schemes, 2, 4, 1 Discontinuous Galerkin methods, distribution framework

Hyperbolic systems of equations are often encountered in problems modelling natural phenomenon, and are known to admit solutions developing several types of discontinuities. The design of suitable numerical schemes is therefore delicate, as they should to be able to handle the emergence of discontinuities in the solution, represent them at the discrete level, and grasp their time-evolving spatial location while ensuring to the approximate solution a physical meaning. On the top of those already delicate considerations, another difficulty emerges when considering the particular subclass of hyperbolic problems that are further conservative, that is whose time-space dynamic preserves physical quantities depending on the state variables. The numerical scheme has therefore to ensure the associated conservation principles at the discrete level, which appears to be often contradictory with the retrieval of the discontinuity locations. Hence, although those concerns have been wisely investigated, even recent numerical solvers are lacking precision, favouring the scheme stability over the spatial accuracy and physical relevance of the solution.

With the aim to draw a step further in the resolution of those issues, we improved in this thesis existing high order schemes by designing correction procedures that either ensure the physical relevance of the solution or recover the discrete conservation principles. We particularly focused on two distinct aspects of the problem, that are the entropy stability of Flux Reconstruction schemes and the spatial resolution of interfaces in two-phase flows that preserve the discrete mass conservation principle, both in the two-dimensional case. Hence considering exclusively schemes that are based on unstructured grids, we further endeavoured to widen the range of usable meshes to hybrid polygonal ones, thus resolving conformity issues in the meshing of complicated domains and paving the way towards mesh adaptation techniques.

More precisely, we first investigate in this thesis the entropy stability of Flux Reconstruction schemes, for which even though an extensive literature investigating the accuracy, robustness and linear stability exists, considerations with respect to their entropy conservation are still lacking.
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In order to ease the discussions of the two following chapters, let us present the fundamental notions involved in the description of hyperbolic problems and their approximation strategies. Thereby, we derive in Section 2.1 their general form and state their common properties, before presenting in Section 2.2 algebraic notions that are required for their approximation. Lastly, we summarise in Section 2.3 the basic principles of numerical analysis, and overview the Residual Distribution framework that is underlying in Chapter 4, and for which we developed specific theoretical grounds in Chapter 3.

As this missing stone appears to be a crucial feature for ensuring the physical relevance of a discrete weak approximate solution to an hyperbolic problem, we explore in this direction by developing a Flux Reconstruction scheme that is entropy conservative and that can be constructed on any hybrid polygonal mesh. To this aim, we reformulate an existing Flux Reconstruction scheme into the Residual Distribution framework so as to apply there known entropy results. A set of conditions on the correction function that are sufficient for the original Flux Reconstruction scheme to be entropy conservative is then naturally derived, yielding to an entropy conservative Flux Reconstruction that is and geometrically flexible provided the existence of correction functions satisfying the obtained constraints for the considered cell geometry.

Hence, we develop in a second part of the thesis a theoretical framework in which the correction function can be defined and characterised upon the previously obtained constraints. In practice, we bridge the geometrical flexibility of the Virtual Elements framework with the boundary variational structure of the Raviart -Thomas spaces, yielding a wide class of H(div)-conforming discretisations that can be defined on any polytope, and whose face-wise discretisation setting is independent of both the cell geometry and inner discretisation. Extending the already more general H(div)-conforming VEM setting, their definitions are in addition easily amenable to the properties the approximated quantities are wished to fulfil, thus being in particular suitable for discretising the previously investigated correction functions.

In the last part of this thesis, we direct our investigations towards the motion of interfaces in incompressible two-phase flows, whose approximation raises tremendous interesting numerical issues. Indeed, while the total volume of each phase remains constant in time, the interface may develop heavy geometrical distortions and change topology across time, so that a small error in the interface location will have dreadful repercussions on the approximate state dynamic. The numerical schemes tacking two-phase flows problems should therefore provide an accurate description of the interface and its motion while still ensuring the discrete conservation principle, thus allowing to select the proper phase properties on each subdomain and provide a conservative discretisation of the system dynamic.

However, at the discrete level, the conservation property often contradicts with the determination of the interface spatial location. Hence, hybrid corrective method such as the THINC-LS have been developed, initially determining the interface location by advecting a level set before correcting it in each cell upon conservation constraints. While this approach indeed retrieves both a discrete conservation principle and an approximate location for the interface, this achievement is reached to the price of the interface global continuity. We there improved the correction procedure by introducing a new definition of a correction function, allowing to enforce the conservation constraint in any control volume, possibly non-convex, while preserving the continuity of each connected component of the interface.
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The approximation of solutions to mathematical problems plays a significant role in the visualisation of their features while providing insights to the very nature of the problem itself. In turn, a numerical method that has been designed for taking into account specific features of a given dynamics can then be applied to a large range of other problems where similar behaviours are encountered, thereby providing a general approximation framework. A typical class of problems whose formulation and solutions share common features is the class of problems modelling conservative physical behaviours, the involved principles yielding dynamical systems that have a comparable structure, as pointed out by Poincaré back in 1890 [START_REF] Poincaré | Sur les équations aux dérivées partielles de la physique mathématique[END_REF].

Problem of interest and general difficulties

The specific structure that we are interested in in this thesis is the class of time-dependent problems governed by a set of conservative equations, whose system is of hyperbolic nature and dynamics preserves the total quantity of each variable in time. Those problems usually deriving directly from physical principles, their numerical approximation find natural applications in a wide spectrum of areas, ranging from engineering and environmental modelling, as e.g. for alloy development [2], weather prediction [3], to finding the origin of a river pollution [4] or even to determine a best wild-fire-fighting strategy [START_REF] Wiitala | A dynamic programming approach to determining optimal forest wildfire initial attack responses[END_REF]. Those applications requiring accurate and reliable approximate solutions to the considered problems, there is a strong demand for accurate solvers. However, the intrinsic nature of the problems makes their development tremendously complicated.

Indeed, any approximation relies on a discretisation of the problem, where the solution is made available only at specific points in the time-space. The dynamic has therefore to be represented accurately from a finite set of so-called degrees of freedom values while satisfying a discrete analogue of the involved physical principles and guaranteeing the relevance of the solution. In par-1. INTRODUCTION ticular, the designed numerical scheme should ensure that the conservation principle holds at the discrete level for each conserved variable. Otherwise, the quality of the solution would deteriorate over time, and any convergence to the solution of the continuous problem would ultimately be lost. For the solution to be reliable in the long run, the scheme must also be stable, that is, robust to perturbations that may result form the initial data or from computational errors. However, ensuring stability in the context of hyperbolic equations is extremely delicate as discontinuities may appear in the solution, even for smooth initial conditions. The treatment of these discontinuities is equally of major importance. Indeed, as they are moving at a finite speed in the spatial domain, their location impact significantly the dynamics, making their accurate determination crucial for the numerical solution to be representative of the comprehensive dynamics behaviour. However, defining an accurate representation is very delicate as those discontinuities are possibly of different natures, being either preserved or weakened in time. Furthermore, as a consequence of the presence of discontinuities, the global regularity of the sought solution has to be weakened, leading to a lack of uniqueness. Hence, at the discrete level the numerical scheme must ensure that the approximate solutions converge to a physically meaningful one. We therefore consider here an entropy-based selection criterion by asking the numerical scheme to be entropy stable.

Lastly, it should also be mentioned that in practical applications, the study domain can have a complex geometry. It is therefore in the interest of numerical schemes to be geometrically flexible, so as to approximate the solution with the same accuracy all over the computational domain. Moreover, with the recent growth in the size and complexity of the investigated problems, there is a strong demand to converge quickly to the solution, i.e. to obtain a reliable solution without much spatial discretisation effort. However, the current numerical methods that are dedicated to the approximation of solutions to conservative hyperbolic problems either severely lack precision in determining the physically relevant spatial location of the discontinuities, or fail to ensure the conservation and stability principles, both features being crucial to render a physically relevant approximated solution.

Scope of the presented work

In this thesis, we focus on designing high order schemes that provide a local conservation principle to the retrieved solution while ensuring its homogeneous accuracy across the spatial domain and its physical relevance.

Background choices

To achieve conservation down to the discrete level, we focus on developing gridded numerical methods. Indeed, there, the computational domain is covered with a finite number of cells, small tiles defining control volumes on which the solution's variables can be quantified, preserved, and where a local conservation can be directly enforced. Furthermore, as we aim the developed schemes to be robust with respect to the computational domain geometry and to be flexible with respect to its discretisation, we consider the particular subclass of hybrid unstructured meshes where the cells can be of various shapes and their layout organised in an irregular pattern.

In this regard, the use of non-convex polygonal meshes appears to particularly relevant, as they allow more flexibility in the geometry description, more robustness towards distortions, and facilitate the development of geometry dependent techniques such as mesh adaptation techniques by automatically including hanging nodes and facilitating local mesh coarsening.

Although this class of schemes has been widely investigated in the context of elliptic problems [START_REF] Lipnikov | Mimetic finite difference method[END_REF][START_REF] Da Veiga | Basic principles of virtual element methods[END_REF][START_REF] Bonaldi | A hybrid highorder method for Kirchhoff-Love plate bending problems[END_REF][START_REF] Aghili | An hp-hybrid high-order method for variable diffusion on general meshes[END_REF][START_REF] Da Veiga | Mixed virtual element methods for general second order elliptic problems on polygonal meshes[END_REF], their use in the context of hyperbolic systems is relatively recent [START_REF] Talischi | Polygonal finite elements for incompressible fluid flow[END_REF][START_REF] Botti | A hybrid high-order method for the incompressible Navier-Stokes equations based on Temam's device[END_REF][START_REF] Loubère | ReALE: a Reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical geometry[END_REF]. Indeed, as for any unstructured mesh, there is a trade off between the order of the there constructed scheme, indicating by how much the accuracy of the discrete solution improves when the mesh size is decreased, and the ability of retrieving its possible discontinuities while guaranteeing stability of the approximation [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF]. In particular, the presence of discontinuities yields high order schemes to require specific treatments as filtering or limiting techniques to ensure stability [START_REF] Harten | Uniformly high order accurate essentially non-oscillatory schemes, III[END_REF][START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF][START_REF] Jiang | Efficient implementation of weighted ENO schemes[END_REF], and even to ensure that the obtained discrete solution has a physical meaning [START_REF] Chen | Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF][START_REF] Huynh | A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[END_REF]. While those treatments have been widely investigated in simplicial and quads meshes, the range of existing techniques for cells having a higher number of faces is still limited, their design being much more involved both geometrically and variationally.

Considered scope of this thesis

We therefore aim here at improving the quality and robustness of the approximated solution to conservative hyperbolic problems by developing schemes that are both stable and entropy stable even across discontinuities, without sacrificing the conservation. Those discontinuities arising either in the field of a single variable or in the interaction of physical variables, there creating a so-called interface, our developments have taken place on two distinct levels. 

Thesis contribution

Considering first the case where a discontinuity arises in the field of a single variable, we focused on the scheme stability and physical relevance of the retrieved solution, developing a Flux Reconstruction scheme that can be used on any arbitrary hybrid unstructured mesh whose cells are not necessarily convex and an associated theoretical framework to ascertain its well-definition.

We then focused on discontinuities arising in the interaction of physical variables by improving a correction procedure for mass-conservative in twophase flows. More precisely, we were able to locate continuously the mixture's interface in two-phase flows while preserving the local mass quantities.

Development of an entropy stable Flux Reconstruction scheme

In the first part of the project, we achieved entropy stability by recasting a Flux Reconstruction scheme into the Residual Distribution framework. To this aim, we there used the conservation and stability results of the Residual Distributions schemes to develop an entropy stable Flux Reconstruction scheme in its Residual Distribution formulation, before deriving a determination system on the correction function allowing to convert back the expression of the obtained entropy stable scheme in its original Flux Reconstruction framework.

In order to ascertain the existence of such a correction function, we were led to develop a theoretical framework within which there exists at least one function solving the previously developed determination system. Namely, we constructed a class of H(div)-conforming elements that can be set up on any non-convex polytopal cell and that benefit from the properties of the Raviart -Thomas elements on the boundary, using the Virtual Elements framework as a core. We thence obtained a very flexible class of elements that can be used in any dimension, on any possibly non-convex polytope, and whose variational setting can be easily adapted to a large variety of specific needs.

Improvement of an interface capturing scheme

In the second part of the project, we restricted ourselves to the two-dimensional case and considered incompressible two-phase flow problems. We particularly focused on retrieving the time-space dependent location of the mixture's interface so that both the conservation of the partial masses and the global continuity of the interface are obtained. To this aim, we focused on the class of level set based schemes and developed a continuous and conservative interface correction procedure by improving the already conservative THINC-LS technique [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF].

The THINC-LS being based on the characterisation of a corrective constant, we changed its definition to a space-dependent correction function that preserves or enforces the continuity of the corrected interface location. Paying a particular attention to geometrical issues, we could design a correction function that can be set up on any non-convex polygonal cell and whose support stays local to the control volume the interface location is corrected on. Hence, the improved correction procedure now allows to correct the initial interface location that has been achieved through any gridded scheme, enforcing the conservation of the local masses and preserving the global continuity of the interface. In addition, in case of an initially discontinuous interface, the global continuity can also be enforced up to a straightforward extension of the procedure.

Related publications
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All in all, we focus on developing stable, entropy stable, conservative, high order and geometrically flexible schemes for conservative hyperbolic systems. We start in Chapter 2 by introducing the principal features of hyperbolic problems before detailing a construction of an entropy stable Flux Reconstruction scheme. We then present in Chapter 3 the theoretical foundations required by the previously presented numerical scheme, and end in Chapter 4 by detailing the improvement of the THINC-LS correction procedure ensuring the space-time dependent resolution of a continuous and conservative interface location in two-phase flows.

Considered type of problems

The type of problems investigated in this thesis generally describe a physical phenomenon whose mathematical model consists in a set of so-called conservation laws. In this scope, the solution is sought on a given domain Ω ⊂ R d , d ∈ N as a time-space dependent state vector Y : R + × Ω → R q , q ∈ N whose dynamic is ruled by the following system.

       ∂Y ∂t + ∇ • F(Y ) = 0 (2.1a) Y | ∂Ω = g (2.1b) Y (0, •) ∈ D ⊂ R q , given (2. 

1c)

Each state variable contained in the vector Y describes an aspect of the solution whose expression typically involves physical quantities, as for example the height, density, pressure, or direction-wise velocities. Modelled by (2.1a), the dynamic of the state variables is interdependent, formulated through a flux vector F = (F 1 , • • • , F d ) T that contains d functions F i : D → R q , i ∈ 1, d whose definition domain D corresponds to the subset of R q where the value of the state variable have a physical meaning. Each of the flux functions belongs to C 1 (Ω) and contributes to the global dynamic through its variations with respect to the state along the i th spatial direction. This general model is completed by boundary conditions specifying the impact of the domain's boundary on the dynamic, here exemplified as Dirichlet with for second member a function g : ∂R + × Ω → R q , and possibly closure equations. Driven by such a dynamic, each scalar state variable sees its total amount conserved in time, up to possible inflows or outflows through the domain's boundary. The variable Y is hence referred to as the vector of conservative variables, and the system (2.1a) is said to be written in a conservative form. The classification of (2.1a) as a system of conservation laws is therefore natural, each scalar flux function F i being in general derived from physical principles where the controlled variable is subject to a conservation principle.

Conservation principle

As the name suggests, a conservation principle rules the time evolution of a variable representing a physical state that participates to the description of a physical phenomenon by preserving in time a measurable quantity that depends on it. Hence at the equilibrium, this measurable quantity may well take into account any interaction between several of the other state variables and involve source terms (see an illustration in Figure 2.2). We derive here a general expression of the conservation principle in the continuous setting, highlighting the essence of the system (2.1a)'s form. The obtained formulation will also allow us to derive naturally discrete analogues in the later Sections 2.5 and 4.3, in accordance with their corresponding discretisation framework. There, the preservation of the discrete conservation principle by the designed numerical scheme is of crucial importance for the retrieved solution to be reliable, and will therefore partly drive the approximation choices.

Investigated quantity q ∈ R Quantity transfered outside the subdomain ω or used in the system's transformation.

Preserved but displaced quantity

Quantity incoming from source terms or intercation across the subdomain's boundary t + ∆t The conservation principle being by nature closely linked to the notion of motion, we first derive the Reynolds transport theorem, from which any conservation principle follows when contextualised in the physical phenomenon of interest. The general form of the system (2.1a) is then naturally retrieved.

A representation of motion

Key point in the derivation of the Reynolds transport theorem, let us introduce the notion of motion by investigating how a given quantity q is moved through time in the domain Ω, that is, how its trajectory can be described.

Trajectory representation

Assuming first that the scalar quantity q is initially supported on a single point x 0 ∈ Ω and is passive, one can see its displacement as its transport through an underlying a time-space dependent velocity field v : R

+ × Ω -→ R d (t, x) -→ v(t, x). ( 2 

.2)

Its time-dependent position can then be naturally retrieved through the advection of its initial location x 0 . Thus, assuming further that v ∈ C 1 (R + × Ω), and considering without loss of generality that the initial time associated to the initial location x 0 reads t 0 = 0, the time-dependent support of the quantity q is always reduced to a single point, and one can retrieve its trajectory t → ξ(t, x 0 ) as the solution to the Cauchy problem

   dξ dt = v(t, ξ) ξ(0, x 0 ) = x 0 , (2.3) 
The trajectory of the quantity q in the time-space therefore corresponds to the characteristic of the system (2.3) that is issued from the foot x 0 . 

Subdomains distortion

Considering any infinite dimensional collection of initial points {x 0 } forming a smooth compact subdomain ω 0 ⊂ Ω of non-null measure, one can define the time-dependent distorted subdomain that is associated to the dynamic (2.3) by

ω(t) = {x ∈ R d , ∃ x 0 ∈ ω 0 , x = ξ(t, x 0 )},
defining the image of ω 0 through the flow v at the time t. One can therefore define the applications ξ t : ω 0 → ω(t)

x → ξ(t, x), (2.4)

representing the displacement of any scalar quantity q from its initial location x 0 ∈ ω 0 to its position at the time t ∈ R + in the subspace ω(t).

Bijectivity of the time-dependent position mapping

The trajectory being so parametrised, one can particularly notice that any application (2.4) is bijective for any t at least in a neighbourhood of t 0 , the velocity field being here assumed smooth.

Proposition 2.1.1 Local bijectivity of the position mapping

There exists a time t max ∈ R + ∪ {+∞} such that for any time t ∈ [0, t max ), the application ξ t : ω 0 → ω(t)

x → ξ(t, x),

is a bijective mapping.

Proof. Let us define the Jacobian of the application (2.4) as J ξ : t → |∇J ξt |, where | • | denotes there the determinant. One can then investigate the bijectivity of (2.4) by checking for increasing times t grows whether the matrix J ξ (t) is invertible or not.

There, providing directly an existence statement, we can observe that at the initial time t 0 = 0, the relation ξ(0, x 0 ) = x 0 holds by definition of (2.4).

Hence ensuring that the matrix J ξ (0) is the identity, the invertibility of the application x → ξ(0, x) follows. Thus, as in parallel the vector field v transfers its assumed smoothness to t → J ξ (t) through (2.4), there exists necessarily a neighbourhood [0, t max ), t max ∈ R + of t 0 = 0 where for any 0 ≤ t < t max , the Jacobian J ξt is invertible, concluding the proof by ensuring there the bijectivity of the application (2.4).

Conferring as a by-product a C 1 (ω 0 )-regularity to the application (2.4) in the local interval [0, t max ) by the inverse mapping theorem, Proposition 2.1.1 allows us to derive a relation on the operator J ξ linking directly the time derivative of the trajectory's Jacobian with the underlying velocity field. Indeed, defining the operator J ξ : [0, t max ) -→ C 1 (ω 0 )

t -→ J ξ (t) := |∇J ξt |, one can express its time derivative

dJ ξ dt = d dt |∇J ξt | (2.5)
by plugging the definition of the trajectory (2.4). Simply yielding

dJ ξ dt = ∇ • (v(t, ξ(t, x))) J ξ , (2.6) 
this relation will become the cornerstone of the Reynolds transport theorem, allowing us to map the Eulerian and Lagrangian coordinate systems.

Reynolds transport theorem

Now that we could describe the motion of a scalar quantity q taking values in a subset I ⊂ R and supported on a single point whose location is changing in time, let us describe the general motion of the total amount of pointwise quantities that are being transported in a time t ∈ R + from an initial subspace ω 0 to the time-dependent subspace ω(t). In other words, we investigate the time-evolution of the quantity

Q = ω(t)
q(t, x) dx by reformulating ∂Q ∂t in terms of the underlying velocity field v ∈ C 1 (R + ×Ω) and of the infinitesimal time evolution of the pointwise quantity q : (t, x) → q(t, x) by using the Reynolds transport theorem.

Theorem 2.1.1 Reynolds transport theorem

Let us consider a time interval [t 0 , t max ) ⊂ R + , a smooth initial subdomain ω 0 ⊂ Ω, and a scalar quantity q : R + × Ω → I taking values in I ⊂ R that is transported in time across the domain Ω by an underlying velocity field v ∈ C 1 (R + × Ω). Denoting then by ω(t) the image of ω 0 through the flow v at the time t and describing the trajectory of q from its foot x ∈ ω 0 by the application (t, x) → ξ(t, x) that matches a characteristic of the system (2.3), one can derive the relation d dt ω(t) q(t, x) dx = ω(t) ∂q ∂t (t, x) dx + ∂ω(t) q(t, x) v(t, x) • n dγ (2.7)

for any t ∈ [t 0 , t max ), t max being the maximum time for which the characteristics (2.4) are bijective, and where γ represents the surface measure. 

Proof of Theorem 2.1.1

The relation (2.7) is a natural consequence of the expansion of the term d dt ω(t) q(t, x) dx by means of the relation (2.6). Indeed, as we know by assumption that the initial subdomain ω 0 is smooth and that the velocity field v belongs to C 1 (Ω), it comes from the above developments that the subdomain ω(t) is equally smooth for any t ∈ [t 0 , t max ). We can therefore express the term d dt ω(t) q(t, x) dx in the coordinate system of the initial subdomain ω 0 by writing d dt

ω(t) q(t, x) dx = d dt ω 0 q(t, ξ) J ξ (t, ξ) dξ , (2.8) 
where we dropped the dependency of ξ on t and x for the sake of legibility.

Considering here only the times t 0 ≤ t < t max , the quantity (t, x) → q(t, x) is smooth enough and one can further apply the Leibnitz rule. Reading Using the bijectivity of ξ t in [t 0 , t max ) to transfer the expression back in the original coordinate system, we then obtain

d dt ω(t) q(t, x) dx = ω 0 d dt q(t, ξ) J ξ (t, ξ) dξ, (2.9 
d dt ω(t) q(t, x) dx = ω(t)
Dq Dt (t, x) + q(t, x) ∇ • v(t, x) dx, (2.12)

where q → D q Dt represents here the Lagrangian derivative of q with respect to the time variable. Recalling then that D q Dt = ∂q ∂t + v ∇ • q, the above term further reduces to the relation

d dt ω(t) q(t, x) dx = ω(t) ∂q ∂t (t, x) dx + ∂ω(t)
q(t, x) v(t, x) • n dγ, (2.13) by applying the divergence theorem, concluding the proof.

Investigating then the evolution of the total quantity Q over time, the application of this theorem in the context of an investigated physical phenomenon directly yields to the expression of a conservation principle.

Conservation principle

As mentioned at the beginning of Section 2.1.1, any conservation principle rules the time evolution of a quantity representing a physical state that participates to the description of a physical phenomenon by preserving in time a measurable quantity that depends on it. In practice, this quantity measure is supported on an arbitrary compact subset ω ⊂ Ω called control volume, and takes into account the possible source terms and possible physical interactions at the control volume's boundaries.

Hence woven in the considered physical context, asking its value to be preserved in time contributes to defining the local dynamic of the state variables. Furthermore, given a discretisation framework, the value of its discrete analogue contributes to the assessment of the approximate solution reliability. We therefore derive here a general definition, driving the later numerical approximation choices and highlighting the essence of the system (2.1a)'s form.

Continuous conservation principle

In order to derive a general expression of a continuous conservation principle, we first investigate the rate of change in the amount of a quantity q : [0, t max ) × Ω → R q, q ≥ 1, over a given compact control volume ω ⊂ Ω through time until t max ∈ R + \ {0}. To this aim, we start by observing that in the context of Section 2.1, the quantity q can be expressed in terms of the state variables (Y 1 , . . . , Y q ) ∈ D and is therefore necessarily integrable under the assumptions of Sections 2.1.1.1 and 2.1.1.2. Hence, its total amount over ω can be quantified, and its evolution over time investigated through the variations of the application

Q : [0, t max ) -→ R q t -→ ω q dx.
In particular, when considering the dynamics of the investigated physical phenomenon on ω as an isolated system, the total quantity Q ∈ R q of q over ω is preserved in time if and only if

dQ dt = 0, (2.14) 
regardless the possible changes in the spatial distribution of q over ω. Going beyond the isolated system and considering ω as part of the whole domain Ω and seeing the local dynamic ruling the change in the spatial distribution of the quantity q over ω as a consequence of the global dynamic modelled on Ω, one has further to take into account the impact of neighbouring behaviours across ∂ω and possible source terms supported on ω. Hence, contextualising the local preservation of the total quantity amount (2.14) in the physical dynamic investigated globally over Ω yields the quantity's amount over ω to fulfil the local relation

dQ dt = -S I -S B , (2.15) 
where S I represents the total contribution of a given source term S ∈ C 1 ([0, t max )× ω, R q), i.e. S I = ω S(t, x) dx, and the term S B represents the total contribution of neighbouring interactions. There, as here we consider physical systems of equations that model physical behaviours, those interactions comes from principles that are invariant by translation and rotation. The boundary term S B can be therefore be expressed as

S B = ∂ω Θ(t, x, Y ) • n dγ
where γ represents the boundary measure and for a term Θ ∈ (C ∞ ([0, t max ) × ∂ω × D, R q)) d describing the time-space dependent quantity transfer through the boundary. All in all, the local relation (2.15) therefore reads

d dt ω q(t, x) dx = - ω S(t, x) dx - ∂ω Θ(t, x, Y ) • n dγ, (2.16) 
from which we can apply the Reynolds transport theorem on the left-hand side, the control volume ω being arbitrary. Namely, it comes

d dt ω q(t, x) dx = ω ∂q ∂t (t, x) dx + ∂ω q(t, x) v(t, x) • n dγ.
Hence, up to assuming ω to be of a regular shape and q v ∈ C ∞ (R + × Ω), on can then the Gauss theorem to obtain the formulation d dt

ω q(t, x) dx = ω ∂q ∂t (t, x) dx + ω ∇ • (q ⊗ v) dx, (2.17) 
where as v belongs to R d , and where ⊗ denotes the tensor product that reduces to q ⊗ v : (q, v) → q v when q : [0, t max ) × Ω → R and to the projection operator q ⊗ v • n = (b • n) a when q : [0, t max ) × Ω → R d . Hence, combining the relation (2.16) with the reformulation (2.17), we retrieve

ω ∂q ∂t (t, x) dx + ω ∇ • (q ⊗ v) dx = - ω S(t, x) dx - ∂ω Θ(t, x, Y ) • n dγ.
Lastly reformulating the boundary term as Let us consider the time-space behaviour of a scalar quantity q ∈ C 1 ([0, t max ) × Ω, R q) whose time-dependent spatial distribution is ruled by its initial state and a velocity vector v ∈ C 1 (R + × Ω). There, if the quantity q fulfils at any time t ∈ [0, t max ) the relation

ω ∂q ∂t dx + ω ∇ • (v ⊗ q + Θ) dx = - ω S(t, x) dx, (2.18) 
for given functions Θ ∈ (C 1 ([0, t max ) × D)) d and S ∈ C 1 ([0, t max ) × ω, R q), and for any control volume ω ⊂ Ω, then the quantity q is said to be conserved.

In addition, if q ∈ Y , Y being the state vector describing the dynamic of interest, the quantity q is said to be a conservative variable, and the term ∇ • Θ represents the pointwise contribution of the modelled physics to the investigated quantity.

While we derived in Definition 2.20 a rather general expression of the conservation principle, the source term S will appear to be identically vanishing in all the applications considered in this thesis. When referring to the conservation principle, we will then understand it in its restricted form

ω ∂q ∂t (t, x) dx + ω ∇ • (q ⊗ v + Θ) dx = 0, (2.19) 
from which continuity equation immediately follow.

Continuity equation

The control volume ω being arbitrary, the relation (2. [START_REF] Huynh | A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[END_REF]) is equivalent to asking the quantity q to verify the Eulerian formulation

∂q ∂t + ∇ • (v ⊗ q + Θ) = 0. ( 2 

.20)

of the conservation principle. Consequently, the conservation relation (2. [START_REF] Huynh | A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[END_REF]) can be directly enforced by driving the dynamic of q through the differential form (2.20), in which the functional term v ⊗ q + Θ is referred to as the flux.

Systems of conservation laws

When a physical phenomenon is modelled by a collection of state variables that are each governed by an equation of the type (2.20), the comprehensive model can be written as a dynamical system of the form (2.1a). Hence, the time-space behaviour of each variable is entirely ruled by the its interaction with the other conservative variables, whose nature is driven from physical principle and amount is determined in accordance with the coexisting conservation constraints.

The general system structure being so predetermined, common behaviours can be observed in solutions, particularly relating to the regularity of the conservative variables. Let us provide an overview of those main features by considering the fundamental example of the Euler equations of gas dynamics.

A founding example

A fundamental example of problems having for structure (2.1) is given by the system of Euler equations of gas dynamics, whose study highlights the typical properties and behaviours that are encountered in their solutions. By definition, the set of Euler equations governs the state of a fluid modelled by its density ρ, pressure p and velocity v accordingly to the three physical conservation principles of mass, momentum and total energy E, neglecting in particular heat transfer phenomenon. We start here by deriving the system of Euler equations, applying in Section 2.1.2.1 the results of Section 2.1.1.3 to those three physical laws. We then present its classical formulation in Section 2.1.2.2 and derive its main features in Section 2.1.2.3, motivating the more general later Sections 2.1.3 to 2.1.6.

Derivation of three fundamental conservation laws

Let us here restrict ourselves to the scope of the Euler equations of gas dynamic and derive the expressions of the three conservation law of mass, momentum and energy when applied to a mixture consisting of fluids or gases. More precisely, we represent a given mixture by the time-space dependent values of ρ, ρ v, and ρ E, related to its density ρ, velocity v, energy E, and pressure p. Considered as state variables, those three quantities are defined over a domain Ω ⊂ R d , d ∈ N and have a physical meaning whenever their values are contained in R + , R d and R, respectively.

Mass conservation

Let us first derive the expression of the mass conservation principle, whose literal formulation reads as follows.

Any system that is closed to any transfer of matter or energy sees its quantity of mass remaining constant over time.

Up to assuming that the investigated mixture dynamic can be represented by a closed system, translating into the absence of mass source term strictly within the domain Ω, one can directly translate this physical rule in a continuity equation of the form (2.20). Indeed, knowing that the total mass of the investigated quantity can be represented through the distribution of its density over the domain Ω by the time-dependent expression M := Ω ρ dx, the total variation of mass can then be investigated by applying the Reynolds transport theorem, yielding

dM dt = ω ∂ρ ∂t dx + ∂ω (ρ v) • n dx. ( 2 

.21)

for any ω ⊂ Ω compact control volume. Applying there the divergence theorem, we retrieve that

∂ω (ρ v) • n dγ = Ω ∇ • (ρ v) dx,
for γ the surface measure, and as the quantity's mass being conserved through time if and only if dM dt = 0, one can retrieve the mass conservation principle

ω ∂ρ ∂t dx + ω ∇ • (ρ v) dx = 0. ( 2 

.22)

As discussed in Section 2.1.1.3, one can then derive the Eulerian formulation

∂ρ ∂t + ∇ • (ρ v) = 0, (2.23) 
providing a first continuity equation contributing to the description of the considered mixture's dynamic.

Note Considering ω = Ω makes the term ∂Ω (ρ v) • n dx emerge, highlighting the contribution of the net mass income from the boundary to the dynamic and vanishing whenever periodic or wall boundary conditions are considered.

Conservation of momentum

The expression of the momentum conservation principle is also known as the Newton's second law of motion and can be literal expressed as follows.

The rate of change of a system momentum equals the net sum of all forces acting on it.

Therefore, up to assuming that there exists only pressure forces acting on the mixtures, one can derive the momentum conservation principle in the form of (2.20) similarly as for the mass conservation principle. Indeed, the momentum of the system being defined over any compact control volume ω ⊂ Ω by ω ρ v dx, the total contribution of the pressure forces to its local dynamic on ω can bee expressed as a boundary term. Namely, remembering that the velocity vector v belongs to R d , the conservation principle translates to

d dt ω ρ v dx = - ∂ω p n dγ,
guaranteeing an equilibrium relation to the momentum. One can then apply again the Reynolds transport theorem to retrieve the relation

ω ∂ ∂t (ρ v) dx + ∂ω ρ v (v • n) dγ + ∂ω p n dγ = 0, (2.24) 
that after having applied the divergence theorem reduces to

ω ∂ ∂t (ρ v) dx + ω ∇ • (ρ v ⊗ v + p) dx = 0. ( 2 

.25)

The control volume ω being arbitrary and the velocity v being a vector of dimension d, this last equation is then equivalent to the Eulerian formulation

∂ ∂t (ρ v) + ∇ • ρ v ⊗ v + p Id = 0, (2.26) 
where the term Id : R d → R d denotes the identity. Hence, (2.26) defines a second continuous equation contributing to the description of the considered mixture's dynamic.

Conservation of energy A third physical principle involved in the considered description of the mixture dynamic relates to the preservation in time of the total amount of energy that the system has to self-maintain and evolve.

The total energy of any closed system remains constant.

In the considered setting, only two types of energies are involved; the internal energy e of the system, used for self-maintenance, and the energy used by the system to set the mixture in motion, called kinetic and given by κ = M 2 v 2 where M represents the total system's mass. Hence, the total energy E of the system simply writes

E = e + κ = e + M 2 v 2 2 ,
which, when considered over any compact control volume ω ⊂ Ω, can be expressed in terms of the mixture's density, i.e. Considering then the energy contribution through the control volume boundary, the conservation relation then reads

d dt ω ρ E dx = - ∂ω p v • n dγ, (2.27) 
and by using once again the Reynolds transport theorem we then retrieve

ω ∂(ρ E) ∂t dx + ∂ω (ρ E) v • n dγ = - ∂ω p v • n dγ. ( 2 
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As this relation holds for any compact control volume ω ⊂ Ω, we can derive similarly as in Section 2.1.1.3 the Eulerian formulation

∂(ρ E) ∂t + ∇ • (ρ E + p) v = 0, (2.29) 
providing the last continuity equation defining the system of Euler equations.

The system of Euler equations

Having derived in Section 2.1.2.1 the fundamental continuity equations resulting from the three conservation law of mass, momentum and energy, let us now combine their dynamics to present the system of Euler equations.

System dynamics

Recalling that the mixture is here modelled by its density ρ ∈ R + , pressure p ∈ R, velocity v := (v 1 , • • • , v d ) T ∈ R d , total energy E ∈ R, and evolves in time accordingly to the three continuum equations (2.23), (2.26) and (2.29), its comprehensive dynamics then reduces to

                       ∂ ∂t (ρ) + d i=1 ∂ ∂x i (ρ v i ) = 0 ∂ ∂t (ρ u i ) + d i=1 ∂ ∂x i (ρ v i v j + p δ ij ) = 0 ∂ ∂t (ρ E) + d i=1 ∂ ∂x i (ρ E + p v i ) = 0 (2.30)
referred to as the Euler equations. Following [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF], those equations can be reformulated in the form (2.1a) by defining the state vector of conservative variables as Y = (ρ, ρ v, ρ E), where v ∈ R d and where

F = (F 1 (Y ), • • • F d (Y )) T
is the flux vector containing the d flux functions

F i : D -→ R q Y -→    ρ v i u i v + p e i ρ v i (E + p)    , i ∈ 1, d , (2.31) 
with q = d + 2, and where e i , i ∈ 1, d represents the i th vector of the canonical basis of R d , the term v i v + p e i alone taking values in R d . Furthermore, please note that as the domain D ⊂ R q corresponds to the subspace of R q where the value of the state variable have a physical meaning, reducing here to D = R + × R d × R, the pressure to stay positive and the velocity finite.

System closure

The system (2.30) is however not self-sufficient to describe completely the mixture behaviour, and has thus to be closed by linking the pressure p with the energy through an Equation of State that takes into account the fluid properties. This relationship can be modelled e.g. by one of the three assumptions on the fluid nature reported in the below table, where e denotes the specific internal energy of the fluid given by E = ρ e + 1 2 ρ v 2 2 , γ its specific heat ratio, p ∞ its stiffness parameter, and ρ 0 its reference density.

Ideal gas

Stiff gas Mie-Gr ünesien ρ e = p γ-1

ρ e = p+γ p∞ γ-1 p = p ∞ (ρ) + γ(ρ e -ρ 0 (ρ))

Properties of the system

This system of Euler Equations is particularly representative of the problems of type (2.1) as it contains all the major properties common to such systems. Let us explore some of them in the following paragraph, particularly emphasising on its symmetrical and hyperbolic nature, and consequently on the developments of pathological behaviours in the solutions.

A hidden conservation law: the system's entropy The structure of the system hides another intrinsic conservation law, ensuring that the energy used by the system to evolve the solution matches exactly the one that is available, i.e. not gaining extra energy nor consuming its internal energy. Let us derive its actual expression by denoting ι := ρ e the internal energy and deriving the relation

E = ρ e + 1 2 ρ v 2 2 with respect to the time, i.e. ∂ι ∂t = v 2 2 ∂ρ ∂t -v • ∂ ∂t ρ v + ∂E ∂t .
We can here observe that the relation decomposes on the vector Y := (ρ, v, E) T . Thus, up to a straightforward change of variables in (2.31), we can multiply the set of equations by the vector U = v 2 2 , -v, 1 and obtain the relation

v 2 2 2 , -v, 1 ∂ Y ∂t + d i=1 v 2 2 2 , -v, 1 F i ( Y ) = 0, (2.32) 
reducing after algebraic manipulations to

∂ι ∂t + v • ∇ι + (p + ι)∇ • v = ∂e ∂t + v • ∇e + p ∇ • v = 0,
where we have used that ι = ρ e. Introducing then the Gibbs relation

T ∂s ∂t = ∂e ∂t - p ρ 2 ∂ρ ∂t
where s is the specific entropy depending only on the variable t and T is the absolute temperature, we finally obtain

T ∂s ∂t + v • ∇s = ∂e ∂t + v • ∇e - p ρ ∂ρ ∂t + v • ∇ρ = - p ρ ρ ∇ • v + ∂ρ ∂t + v • ∇ρ = 0.
Thus, knowing from thermodynamic considerations that T ∈ R + and defining the function

S : D -→ R Y -→ -ρ s(v), it comes the relation ∂S ∂t + ∇ • S v = 0. (2.

33)

The function S being a convex function of u, it can be seen as an entropy flux. Hence, the relation (2.33) defines an entropy conservation law. Furthermore, we can now go back to the relation (2.32) and derive the equivalence

U ∂ Y ∂t + d i=1 U ∂F i ∂x i ( Y ) ⇐⇒ ∂S ∂t + d i=1 ∂ ∂x i (v i S) = 0. (2.34)
Furthermore, as the Euler equations are invariant by rotation we can define an entropy flux by the vector valued function G : Y → S u and observe that

U = (∇ Y S) T and ∇ Y G i = U ∇ Y F i ∀i ∈ 1, d , (2.35) 
relation defining the couple (S, G) as an entropy function and flux pair. Furthermore, besides providing an characterisation of the system's energy, this last relation also allows us to observe the symmetry of the system (2.30).

System symmetry Let us observe the symmetry of the system (2.30). We there start by remembering that the functions S and F are assumed to be smooth, and that the vector U is a smooth bijective function of the vector variable Y . Thus, assuming for now that the solution Y is smooth, we can apply the chain rule and obtain from (2.35)

         U ∂ Y ∂t = ∂ ∂t U Y - ∂U ∂t Y = ∂S ∂t U ∂F ∂t = ∂ ∂t U F - ∂V ∂t F = ∂G ∂t .
(2.36)

Hence, there exists ϑ : D → R function of Y , and a vector

Υ = (Υ 1 , • • • , Υ d ) of d functions Υ i : D → R q such that S = U Y -ϑ and G = U F -Υ. Plugging then their expression in (2.35), it comes        U T = ∂S ∂U T = U T + ∂U ∂U Y - ∂ϑ ∂U T ∂G ∂U T = U ∂F ∂U T = U ∂F ∂U T + F - ∂Υ ∂V .
(2.37)

Knowing that ∂U ∂U Y = Y , it thus comes by identification that Y = ∂ϑ ∂U T and F = ∂Υ ∂U T .
The functions ϑ and Υ are therefore potentials of the solution and the system flux, respectively. Furthermore, considering the Jacobian of the flux with respect to the vector variable, we observe

∂F ∂U T = ∂ 2 Υ ∂U 2 T , (2.38) 
showing the symmetrical structure. There is then only left to show that this symmetry transfers to the system.

To this aim, we start by denoting A 0 the Hessian of the entropy function S with respect to the state vector Y, and observe that since U T = ∇ Y S, A 0 = ∂U ∂ Y . Using again the chain rule and transposing (2.38), we there obtain

∂F ∂U = ∂F ∂ Y ∂ Y ∂U = ∂F ∂ Y A -1 0 = ∂ 2 Υ ∂U 2 . Defining then a set A = (A 1 , . . . , A d ) of d matrices A i ∈ M q×q (R), i ∈ 1, d ,
we can consider any α = (α 1 , . . . , α d ) T vector of R d and construct the matrix

∂F α := d i=1 α i ∂F ∂ Y = d i=1 α i A 0 ∂ 2 Υ i ∂U 2 T = A 0 d i=1 α i ∂ 2 Υ i ∂U 2 T . ( 2 

.39)

This last matrix being symmetric for any α ∈ R d , the system (2.1a) itself is, yielding immediately its hyperbolicity.

System hyperbolicity A straightforward consequence of the symmetric nature of the system of Euler equations is its hyperbolicity. To observe it, one can simply use the relation (2.39) combined with the fact that A 0 > to derive

A 1/2 0 ∂F α A -1/2 0 = A 1/2 0 d i=1 α i ∂ 2 Υ i ∂U 2 T A 1/2 0 := ∂Υ α , (2.40) 
from where it follows that the matrix ∂F α is diagonalisable in R as a consequence of the following lemma.

Lemma 2.1.1 Orthogonality of the eigenvectors

For any α given vector of R d , the set of eigenvectors {r 1 , . . . , r d } associated to the matrix ∂F α is orthogonal for the operator

•, • A 0 : R d × R d -→ R ( η, η) -→ η T A 0 η
Proof. The result is immediate by combining the relations (2.39) and (2.40). Indeed, since the matrix ∂Υ α is symmetric, it admits a set of orthonormal eigenvectors for the standard Euclidean scalar product, that we will denote {η 1 , . . . , η n }. Denoting then {λ j } j∈ 1, d the set of eigenvalues of the matrix ∂Υ α , one can write the relation ∂Υ α η j = λ j η j up to a possible permutation of the eigenvalues indices. It then comes by (2.40) that

A 1/2 0 d i=1 α i ∂ 2 Υ i ∂U 2 T A 1/2 0 η j = λ j η j = A -1/2 0 ∂F α A 1/2 0 η j , yielding finally ∂F α A 1/2 0 η j = λ j A
1/2 0 η j , and concluding the proof.

As a consequence, the set of eigenvectors

{r i } i∈ 1, d of (∂F α ) is of the form {A 1/2 0 η i } i∈ 1, d where {η j } j∈ 1, d is an orthogonal set of eigenvectors of ∂Υ α . Thus, η T i η j = (A -1/2 0 r j ) T (A -1/2 0 r i ) = r T j A -1 0 r i = r j , r i A -1 0 = δ j i
, ensuring that the matrix ∂F α is diagonalisable for any α ∈ R d and defining the hyperbolic nature of the system of Euler equations.

While the problem based on the system of Euler equations investigated in Section 2.1.2 remains an example among the class of problems that can be formulated as (2.1), its hyperbolic nature is a crucial feature that is common to all the problems considered in this thesis. We therefore now explore on a more general level the implications that the hyperbolic nature of a general system has on its solutions.

Hyperbolicity and discontinuity propagation

As seen in the above Section 2.1.2, the hyperbolicity of the system (2.1a) usually comes from its symmetry, being itself a consequence of the physical principles considered for modelling the dynamics of the investigated phenomenon. Stating in essence that the Jacobian of the system is diagonalisable, a possible definition reads as follows.

Definition 2.1.2 Hyperbolicity of a conservative system

Let A i (Y ) ∈ R q×q be the Jacobian matrix associated to the flux function

F i : R q → R q , i ∈ 1, d evaluated on a given state Y ∈ R q . Then, if for any α = (α 1 , • • • , α d ) ∈ R d and any state Y ∈ R q the matrix d i=1 α i A i (Y )
has real eigenvalues whose associated eigenvectors span R q , the system (2.1a) is said to be hyperbolic.

While the hyperbolicity of the system (2.1a) is a necessary condition for the problem (2.1a) to be well posed in the sense of Hadamard, it is in general far to be a sufficient condition [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF][START_REF] Bressan | An ill posed Cauchy problem for a hyperbolic system in two space dimensions[END_REF][START_REF] Bianchini | Vanishing viscosity solutions of nonlinear hyperbolic systems[END_REF][START_REF] Ambrosio | Well-Posedness for a Class of Hyperbolic Systems of Conservation Laws in Several Space Dimensions[END_REF]. Furthermore, any physically relevant problem formulated in the form (2.1a) will necessarily have solutions developing a finite set of discontinuities, even for smooth initial data [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF][START_REF] Conway | Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables[END_REF].

Example

Let us observe the development of a discontinuity in the one-dimensional case by investigating the behaviour of the solution

Y : R + × R → R to the problem    ∂Y ∂t + ∂F ∂x Y = 0 (2.41) Y (0, •) ∈ C 1 (Ω) given,
where F : R → R represents a scalar flux. The initial condition being smooth, we can denote by A = dF dx the flux's Jacobian and start by deriving the non-conservative form of the equation (2.41), that is, ∂Y ∂t + A(Y ) ∂Y ∂x = 0. One can then look for a solution by considering the associated characteristic curves {t → x ξ (t)} ξ∈R , solutions to the ordinary differential equations

   dx ξ dt = A(Y (x ξ (t), t)) = 0 x ξ (0) = ξ ∈ R.
Each solution being constant along the characteristic, we can write

dY (x ξ (t), t) dt = ∂Y ∂t (x ξ (t), t) + A(Y (x ξ (t), t)) ∂Y ∂x (x ξ (t), t) = 0,
providing the time-dependent solution for each initial point in R by tracing back the relation x ξ (t) = ξ + t A(Y (0, ξ)). Assuming further that ξ → A(Y (0, ξ)) is decreasing on some interval I ⊂ R, there exists two characteristic foots r, s ∈ R for which A(Y (0, ξ r (t))) < A(Y (0, ξ s (t))) from a time t < ∞ on. The characteristics would then intersect, breaking the hitherto smoothness and defining two different states for a same point in the time-space whenever Y (0, ξ r ) = Y (0, ξ s ).

A(Y (0, ξ s (t))) > A(Y (0, ξ r (t))) x r s t ξ
As each discontinuity will be either preserved or smoothened in time from their appearance on, the problem (2.1) would not admit classical solutions at any time, being sought under strong regularity conditions. We therefore need a more general concept of solutions, that is, weak solutions.

Weak solutions

The concept of weak solutions relies on reducing the regularity requirement on the sought solutions while still providing a meaning for the partial differential equations that rule them. Especially, in the context of hyperbolic systems of conservation laws, it is known a-priori that the locations in Ω where the solution Y is discontinuous form a subspace of null measure. One can thus safely look for solutions living in Y ∈ (L ∞ loc (R + × Ω)) q , q ∈ N that solve (2.1a) in the sense of distributions.

Definition 2.1.3 Weak solutions

Let us consider the problem (2.1a) for a given initial condition

Y (0, •) ∈ L ∞ loc (Ω, R q ). There, any function Y ∈ L ∞ loc (R + × Ω, R q ) satisfying R + Ω Y ∂ϕ ∂t + F(Y ) • ∇ϕ dx dt + Ω ϕ(0, x) Y (0, x) dx = 0 (2.42)
for any ϕ ∈ C ∞ 0 (R + × Ω, R) provides a weak solution to the problem (2.1a).

The functions ϕ are called test functions, whose compact support guarantees the convergence of the integral and makes the interpretation of the system (2.1a) in the sense of distributions possible. Please also note that even though the test functions are here simply presented as scalar functions, alternative vectorial formulations can equally be derived (see e.g. Section 3.1.3).

With such a definition, the solution's derivative are not defined at specific points in Ω that either vanish later in time or are transported as such along given characteristics. Hence, more than considering the system (2.1a) in the sense of distributions, all the relations (2.19), (2.20) and (2.41) are also holding only almost everywhere, and the held discussions have hence to be understood in the distribution sense as well. Lastly, requiring regularity assumptions, the intuitive developments of Sections 2.1.2.1 and 2.1.2.3 only hold on smooth parts of the solution, and hold globally in a weaker sense, see e.g. [START_REF] Lellis | Notes on hyperbolic systems of conservation laws and transport equations[END_REF] for extensive details.

Even though the existence of weak solutions has been proven [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF][START_REF] Conway | Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables[END_REF], uniqueness can in general not be guaranteed, and the exact shape of any solution is generally unknown. However, the impact of the created discontinuity on the later solution's development can be inferred by analysing the eigenstructure of the flux Jacobian upon the emergence of discontinuities.

Solution profiles

Now that we saw that there exists pathological behaviours and that a new concept of solutions could have been defined, let us describe the main solution profiles that can be encountered. We start in the one-dimensional case where extensive results are available, before opening on the multi-dimensional case and its subtleties. In any case, note that as a consequence of the regularity weakening introduced in Section 2.1.4, the upcoming equations (2.43)-(2.45) and (2.52) have to be understood in the distribution sense.

Solution profile in one spatial dimension

Let us first investigate the possible types of developments for a discontinuity present in the solution to a one spatial dimensional problem. To this aim, we consider again the one-dimensional problem (2.41) in its non-conservative formulation and investigate the behaviour of the solution from the time at which the discontinuity is created. Assuming without loss of generality that the discontinuity appears at t = 0 and is located at x = 0, we can resolve the behaviour of the solution around the discontinuity by studying the solution to the well-known Riemann problem

         ∂Y ∂t + ∂F ∂x (Y ) = 0 Y (0, x) = Y L if x < 0 Y R otherwise (2.43) on R + × R, where Y L , Y R ∈ R q
are the values of the discontinuity coming from the left and right sides, respectively. More precisely, the impact of the initial discontinuity on the solution to the problem (2.1a) can be inferred by defining an immediate vicinity I ⊂ R, 0 ∈ I and analysing there the behaviour of the solution to (2.43), the vicinity interval possibly widening in time according to the discontinuity's development.

Example

In the previous example, the discontinuity would appear at t b and be lo- The widening of the interval of interest depends on the development of the discontinuity, whose nature and properties are intricate with the eigenstructure of the Jacobian matrix A = ∂F ∂x ∈ R q×q , composed from λ k , k ∈ 1, q non-zero eigenvalues and {r k } k∈ 1, q } linearly independent eigenvectors. In particular, it is well known (see e.g. [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Nishida | Global solution for an initial boundary value problem of a quasilinear hyperbolic system[END_REF][START_REF] Liu | The Riemann problem for general systems of conservation laws[END_REF]) that the initial discontinuity splits into q-1 simply connected intermediate states that are separated from each others by so-called waves (see Figure 2.7). Being possibly of different natures, those waves are travelling at the speed of λ k (Y ). They define further characteristic fields, the nature of which being qualified either as linearly degenerated or genuinely non linear, depending on whether the term ∇λ k ( Y (ξ)) • r k ( Y (ξ)) vanishes or not, respectively. The field Y being discontinuous at (x, t) = (0, 0), the k th wave is here asked to travel simultaneously at possibly different speeds λ k (Y ), yielding either compressive or expansive scenarios, as depicted in Figure 2.7. Furthermore, even though the waves propagation pattern is known, neither the intermediate state values nor the specific wave's profile are. Thus, solving (2.43) reduces to finding simultaneously a set of intermediate states Y k , k ∈ 1, q -1 , and a function Y : R → R q that verifies (2.43) and whose expression specifies the nature of each wave connecting the left and right intermediate states.

x 0 t 0 Y L Y R Y 1 Y 2 Y 3 (a) Discontinuity decomposition 0 x Solution profile Y L Y R Y 1 Y 2 Y 3 (b)
The problem being therefore global, let us first investigate the possible waves natures before defining admissible global solutions.

General nature of some solutions In order to characterise the possible types of waves that would provide a local solution to (2.43) and describe the change from one intermediate state to another, let us consider a generic k th wave, k ∈ 1, q , and consider the problem

         ∂Y ∂t + ∂F ∂x (Y ) = 0 Y (0, x) = Y k-1 if x < t λ k (Y k-1 ) Y k if x > t λ k (Y k ) (2.44)
where Y 0 := Y L and Y q := Y R represent the left and right original states. We can here first observe that the system (2.44) is quasi-linear, and therefore look for self-similar solutions that can be either non-constant but regular or discontinuous piecewise constant.

Continuity recovery and rarefaction waves

Let us first investigate if there exists non-constant self-similar regular solutions by plugging their general expression directly in (2.44). Namely, we define a function Y : R → R q that verifies Y (x, t) = Y x t at any point x ∈ R and for any time t ∈ R + and set ξ := x t . The function Y being thus self-similar solution to (2.44) can then be given by solving

     d Y dξ (ξ) = r k ( Y (ξ)) λ k ( Y (ξ)) = ξ, (2.45) 
for some k th eigenvalue λ k and its associated eigenvector r k of A = ∂F ∂x ∈ R q×q , both depending on the state Y. Deriving the last equation with respect to ξ, one can first observe that the relation ∇λ k ( Y (ξ)) • r k ( Y (ξ)) ≡ 1 is a necessary condition for a solution to exist, requiring in particular the k th characteristic field to be genuinely non-linear. When this condition is fulfilled, the regularity of F ensures the existence and uniqueness of a solution Y : R → R q to (2.44) for any values of the intermediate states Y k-1 and Y k . The k th wave then takes the form

Y (x, t) =        Y k-1 if ξ ≤ λ k (Y k-1 ), Y ( x t ) if λ k (Y k-1 ) ≤ ξ ≤ λ k (Y k ) Y k if ξ ≥ λ k (Y k ),
recovering the continuity of the solution to (2.43) for any time t > 0 by connecting smoothly the two intermediate states. Such solutions are referred to as rarefaction waves, an illustration of which has been provided in Figure 2.7b while exemplifying the solution behaviour in the first and third transition layer.

Discontinuity propagation

Let us now ask ourselves if the discontinuity can be preserved through time, and look for discontinuous piecewise constants self-similar solutions that connect two intermediate states Y k-1 and Y k . There, defining functions of the type

Y (t, x) = Y k-1 if x < c k t, Y k if x > c k t, (2.46) 
for a coefficient c k ∈ R representing the wave's propagation speed to be determined, we notice that any such function is automatically a solution to (2.44).

Hence, there exists an infinite amount of solutions propagating the discontinuity without altering it.

A multitude of solutions As we investigated the admissible wave types, we observed that there is no guarantee of their uniqueness even for given intermediate states. Hence, the uniqueness of the solution cannot be guaranteed for the problem (2.43), and selection criteria are therefore required to select the physically relevant ones among their possibly infinite admissible set. Let us first derive specific criterion for selecting locally the relevant discontinuous wave, before deriving a global criterion allowing to select the relevant intermediate states. for a given finite time T >> 1 and any compact support ω ⊂ R containing the discontinuity, it reduces after straightforward computations to

Relevant solutions in one spatial dimension

-c k (Y k -Y k-1 ) + (F(Y k ) -F(Y k-1 )) = 0, (2.47) 
the expression (2.47) being known as the Rankine-Hugoniot relations. Seen in a different light, those relations can also be referred to as the jump conditions, relating the two states of each scalar variable to a same discontinuity's propagation speed. 

Contact discontinuities

(Y ) • r k (Y ) = 0 necessarily reduces to c k = λ k (Y k-1 ) ≡ λ k (Y k ),
defining a wave that propagates through the solution at the same velocity as the two characteristics emanating from the left and right intermediate states.

The discontinuity may therefore not appear in all the conservative variables of the problem (2.1a), especially when they directly relate to the internal velocity of the investigated quantity. Hence providing an additional relation between the intermediate states, this type of wave is referred to as a contact discontinuity and is the only one encountered when the flux F is linear.

Shock discontinuities

In the case of genuinely non-linear characteristic however, the Rankine-Hugoniot relations do not suffice anymore to ensure uniqueness as the non linearity prevents a straightforward relationship between the waves and characteristic velocities. The discontinuity is then referred to as a shock, and one requires a further selection criterion. We therefore ask the solution to be physically realistic, namely that existing quantities should rather merge into the shock than being spontaneously created along it (see Figure 2.8 for a characteristic's perspective). Referred to as the Lax shock conditions, this principle intuitively writes

λ k (Y k ) < c < λ k+1 (Y k ) λ k+1 (Y k-1 ) < c < λ k (Y k-1 ) (2.48)
for convex fluxes, and has been generalised by Oleinik [START_REF] Oleinik | Discontinuous solutions of non-linear differential equations[END_REF] to

F(Y k ) -F(Y k+1 ) < c k (Y k -Y k+1 ) c k (Y k -Y k-1 ) < F(Y k ) -F(Y k-1 ). ( 2 

.49)

This selection criterion so defined, the problem (2.44) coupled with the two Rankine-Hugoniot (2.47) and Oleinik (2.49) relations admits a unique discontinuous solution [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF][START_REF] Keyfitz | Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws[END_REF], whose discontinuity is fully preserved through time and travels at a shock speed c k .

Uniqueness of the global solution

So far, analysing the structure of the characteristic fields allowed us to derive the possible natures of each wave, and asking for the physical relevance of the transition profile between two given intermediate states made the selection a single wave possible in case of contacts and shocks. As a consequence, a unique solution to (2.1a) can already be defined in the linear case, the global solution being a piecewise constant function where the states are separated by contact waves whose velocities are the solutions to a system of Rankine-Hugoniot relations. However, in the non-linear case those two conditions alone do not necessarily guarantee the physical relevance of the global solutions nor a uniqueness property. Indeed, the values of the intermediate states could not be uniquely determined but only interrelated at contacts, and there is still an indetermination of the wave type itself for genuinely non-linear characteristic fields (see Figure 2.9 for an illustration). If the existence of a physical concept ensuring uniqueness is still an active debate, it is nonetheless possible to ask for a last condition that ensures the globally solutions to (2.1a) to be physically admissible. Typical criterion relates to the notions of viscosity [START_REF] Liu | On nonlinear stability of general undercompressive viscous shock waves[END_REF][START_REF] Goodman | Nonlinear asymptotic stability of viscous shock profiles for conservation laws[END_REF], entropy [START_REF] Oleinik | Discontinuous solutions of non-linear differential equations[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF], and entropy rate [START_REF] Dafermos | The entropy rate admissibility criterion for solutions of hyperbolic conservation laws[END_REF]38]. We choose here to focus on preventing unrealistic behaviour by including considerations about the energy dissipation, and thus consider in the following entropy solutions, whose definition will be specified in Section 2.1.6. 

Note

In the scalar one-dimensional case, the Rankine-Hugoniot and Oleinik conditions are enough to single out the physically relevant solution. Indeed, as there is no intermediate state the global admissibility of the solution is immediate given the admissibility of the only wave itself. And since q = 1, the Oleinik relations reduces to simply choosing a shock wave when Y L > Y R (the state is compressed) and a rarefaction otherwise (the state is continuously relaxed).

In case of a shock, the Rankine-Hugoniot then naturally determines its speed given the left and right states, while the in relaxation case, the C 1 -regularity of F grants uniqueness to the problem (2.44).

Example

Let us consider the Riemann Problem for the one-dimensional space Euler equations that has been previously detailed in Section 2.1.2.2, where we consider Y L > Y R . There, it is well-known that the three eigenvalues of the flux Jacobian read λ 1 = v -c, λ 2 = v -c, and λ 3 = v + c, where c = γ p ρ . Moreover, there exists a unique solution that is further entropic, for which the characteristic fields associated to λ 1 , λ 2 , λ 3 are respectively a relaxation wave, a contact wave, and a shock wave. 

Solutions to higher dimensional problems

The above qualitative observations transfer to the higher spatial dimensional case, in which the lack of uniqueness for the solutions to the problem (2.1) is even more blatant. However, if the development of discontinuities still occurs and their classification as shocks, contacts or relaxations is still relevant, it is in general not possible to investigate a-priori the nature of the characteristic fields. Indeed, the divergence operator combines the effects of the directionwise fluxes to the solution, making the interplay hard to analyse from the eigenvalues of the individual matrices of the non-conservative form. If some approaches tried to determine a suitable analytical framework by considering directional behaviours [START_REF] Lax | Hyperbolic systems of conservation laws in several space variables[END_REF][START_REF] Wang | Completely linear degeneracy for quasilinear hyperbolic systems[END_REF], there is still no consensual theory. However, some admissibility criterion to retrieve physically relevant waves could have been generalised. In particular, when considering a k th characteristic field for which the associated wave is discontinuous, the Rankine-Hugoniot relations become

c k [Y ] = d i=1 n i [F i (Y )], (2.50) 
where n = (n 1 , • • • , n d ) ∈ R d represents the unit normal to the discontinuity's characteristic and [•] denotes the jump across it. Complementarily, the extension of the Lax shock condition to higher spatial dimensions directly leads to the more general notion of entropy solutions.

Entropy solutions

As seen in the above sections, there is generally no uniqueness of the solutions to the problem (2.1a), and additional criterion are required to extract the subset of physically relevant ones. If the conservation principle is obtained by asking the Rankine-Hugoniot relations to hold across any discontinuity, those relations are not enough for preventing the selected solutions to show unphysical behaviours (see the last paragraph of Section 2.1.3).

A general notion of entropy A popular way to exclude physically unrealistic behaviours from the set of conservative solutions is to pay attention to the amount of internal energy that is available to the system for performing motions or transformations, quantity defined as the system's entropy. There,

Internal energy used for selfmaintenance

Internal energy available to the system for its transformation

Total amount of internal energy of the system

For a solution to be entropic, the energy should not be used up during for transforming the system through time considering physically relevant behaviours reduces to asking the system to consume no more energy during its evolution than its entropy state allows. The system's behaviour being dependent on the solution state, this last requirement finally reduces to ensuring that the internal energy of the solution itself is never decreasing, providing a selection criteria at the solution level. However, the representation of the available internal energy for a system to evolve is not necessarily unique, and neither necessarily existing. When it does, which is the case for most systems that are derived from physical principles, it relates to so-called entropy fluxes that describe the use of the energy during the system's transformation.

Definition 2.1.4 Entropy relations

A convex function S : Ω → R is an entropy function associated to the problem (2.1a) if there exists d functions G j : Ω → Ω functions, called entropy fluxes verifying ∇ Y G i (Y ) = ∇ Y S(Y ) T A i (Y ), ∀i ∈ 1, d ,
where the term A i denotes the Jacobian of the flux function

F i , i ∈ 1, d .

Note

As it is easier to deal with convex functions, the mathematical entropy is defined in Definition 2.1.4 as the opposite of the physical entropy, without changing its fundamental meaning. Thus, being convex, the Lax and Oleinik conditions derived in the previous Section 2.1.5.2 can be seen as resulting from a particular choice of entropy functions.

Entropy solutions and discontinuities

So defined, one can observe that there exists as many entropy conservation laws as admissible entropy pair (S, G). Indeed, for any entropy pair (S, G) given by Definition 2.1.4, multiplying the system (2.1a) by the entropy functions' state-gradient ∇ Y S(Y ) yields

∇ Y S(Y ) ∂Y ∂t + d i=1 ∇ Y S(Y ) T A i (Y ) ∂Y ∂x i = 0 ⇔ ∂S(Y ) ∂t + d i=1 ∇ Y G(Y ) ∂Y ∂x i = 0 ⇔ ∂S(Y ) ∂t + d i=1 ∂G i ∂x i (Y ) = 0, (2.51) 
holding wherever the solution is smooth. Any smooth solution to (2.1a) is therefore naturally entropic and physically relevant. On non-smooth parts of the solution however, that is in case of contacts or shocks, the relation (2.51) cannot be derived as such, the chain rule not applying. Then, one can show that across a contact the relation also holds in a distribution sense, provided that the Rankine-Hugoniot relations (2.50) are satisfied. It is however not the case across shocks, where the second law of thermodynamics tells us that even if the internal energy of the system available for it to evolve the solution should still not decrease, it may be dissipative. The entropy constraint associated to a given entropy pair (S, G) is therefore relaxed to asking

∂S(Y ) ∂t + d i=1 ∂G i ∂x i (Y ) ≤ 0. (2.52)
to hold in a distribution sense. The selection of a physically relevant solution is then solely driven by the relation (2.52), being only active across shocks. 

Weak entropy solutions

R + Ω S ∂ϕ ∂t + G(Y ) • ∇ϕ dx dt + Ω ϕ(0, x) S(0, x) dx ≤ 0. ( 2 

.53)

In general, not any weak solution given by Definition 2.1.4 fulfils the relation (2.53) for all entropies of the system (2.1a). However, it is well-known that any weak solution that can be written as a vanishing viscosity limit associated to the strong form of the problem (2.1a) is entropic.

Theorem 2.1.

Vanishing viscosity limit

Let us define the sequence of smooth functions {Y ∈ C ∞ (R + × Ω)} >0 that satisfy the parabolic problem

∂Y ∂t + ∇ • F(Y ) = ∆ Y.
(2.54)

If

• the sequence {Y } >0 admits a limit as → 0,

• there exists a constant

C ∈ R such that sup >0 Y L ∞ (R + ×Ω, R q ) < C, then the function Y = lim →0 Y belongs to L ∞ loc (R + × Ω)
, is a weak solution to the problem (2.42), and satisfies the relations

∂S(Y ) ∂t + d i=1 ∂G ∂x i (Y ) ≤ 0 (2.55)
in the sense of distributions for any entropy pair (S, G) associated to (2.1a).

Proof. The inequality comes by the convexity of the entropy function, obtained when multiplying (2.54) by the gradient of S. The existence to viscosity solution is only due to the parabolic nature of (2.54) and can be found in e.g. [START_REF] Bianchini | Vanishing viscosity solutions of nonlinear hyperbolic systems[END_REF]. Classical, the convergence proof can be found in e.g. [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF].

However, even though this relationship provides a powerful selection criterion, it does not apply to any problem of the form (2.1a). Indeed, in the nonlinear case, due to possible oscillations the norm sup >0 Y L ∞ (R + ×Ω, R q ) may not be bounded even if all the terms Y L ∞ (R + ×Ω, R q ) are. Hence, there is no guarantee here that the viscous solutions converge to an entropy solution.

A note about uniqueness of entropy solutions While asking a weak solution to be entropic in the sense of Definition 2.1.5 ensure its physical relevance with respect to the associated entropy pairs (S, G), an entropy solution is still far from being unique [START_REF] Lellis | On admissibility criteria for weak solutions of the Euler equations[END_REF]. Furthermore, if the conservative (2.50) and entropy (2.51) relations allow to select physically relevant solutions, they do not enforce smooth solutions nor smooth the discontinuous ones out. Indeed, the discontinuities are intrinsic features of the solutions and not artefacts.

A brief algebraic toolbox

Having defined the essential properties that are common to the investigated problems, let us now introduce some algebraic notions that are of importance in their approximation. We start in Section 2.2.1 by detailing the properties of multivariate polynomial spaces, before presenting the concept of degrees of freedom in Section 2.2.2. We then describe their relationship with the notion of basis functions in Section 2.2.3, which we address some delicate geometrical concern in Section 2.2.4.

Multivariate polynomial spaces

Finding a discrete approximation of the solution to the problem (2.1a) involves in particular the definition of finite dimensional spaces where the approximate solution can be represented. Hence, the development of suitable approximation spaces is usually based on polynomial ones, whose dimension are known and whose definitions are easy to handle. In particular, the representation of a solution living on a multi-dimensional domain K ⊂ R d , d ∈ N involves an interplay between the components of the position variables x = (x 1 , • • • , x d ), making necessary the use of multivariate spaces.

Finite dimensional multivariate polynomial spaces By nature, any finite dimensional multivariate polynomial space is necessarily defined as a restriction of the more general space P(K) of all d-variate polynomials having the polytope K for definition domain. The selection of a finite dimensional subspace of discretisation V is therefore usually based on the polynomial degree, further providing a simple indicator on the discretisation fineness. The definition of the degree not being unique, there exists several classical definitions of finite dimensional polynomial spaces.

Note

As any polynomial p ∈ V can be written as a finite sum of monomial terms p l , l ∈ 1, m , m ∈ N, whose degree is then always defined by deg(p) = max ({deg(p l )} l∈ 1, m ), we only discuss here the degree on monomials, the definition immediately transferring to the polynomial case.

Polynomial degrees and finite dimensional subspaces Let us derive three common classes of finite dimensional polynomial subspaces by analysing the natural definitions for the degree of the multivariate monomial

p : x → d i=1 x α i i ∈ P(K).
There, a first natural choice of consists in considering the monomial as a single entity and interpreting the degree as a mixed growing rate. The degree then reads deg 1 (p) = d i=1 α i , leading to the space P k (K) = {q ∈ P(K), deg 1 (q) ≤ k} .

Another natural choice would rather be to consider the degree as representing the maximal unidirectional growth rate of the monomial, regardless the variable it applies to. Its definition would then read deg 2 (p) = max {α i } i∈ 1, d , yielding to defining the finite dimensional subspace

Q k (K) = {q ∈ P(K), deg 2 (q) ≤ k} .
There, keeping the same definition of the degree, one can be more distinctive by prescribing the polynomial behaviour coordinate-wise, that is, imposing a maximal growth rate for each variable. The associated finite dimensional polynomial space thus directly writes

P k 1 , ••• , k d (K) = q ∈ P(K), q = m l=1 β l d i=1 x α il i , s.t. ∀ l∈ 1, m , β l ∈R ∀ i∈ 1, d , max l∈ 1, m {α il }≤k i .
where m ∈ N represents the number of monomials composing the polynomial q ∈ P k (K). While this definition might be delicate to manipulate in practice, requiring an a-priori knowledge of the suitable discretisation structure to prescribe the differentiated behaviours appropriately, the obtained space is very powerful for discretising an anisotropic problem, or when the quality of the discretisation projections is wished to be detailed variable-wise.

Finite dimensional subspaces dimensions and embeddings

The main classical definitions of finite dimensional polynomial subspaces being set, let us now express their dimension with respect to the value of the selected polynomial degree, property that will be of crucial importance in the developments of Chapter 3. Using algebraic results [START_REF] Kondratieva | Differential and Difference Dimension Polynomials[END_REF] it directly comes

dim P k (K) = (k + d)! k!d! , dim Q k (K) = (k + 1) d , and dim P k 1 , ••• , k d = d l=1 (k l + 1).
Furthermore, observing the structure and dimensions of those spaces, one can naturally obtain the embedding relations

P k 1 , ••• , k d (K) ⊂ Q max{k i , i∈ 1, d } (K) and P k, ••• , k = Q k (K),
of importance when deriving projectors on polynomial discretisation spaces.

Choices of polynomial discretisation spaces

As a last note, let us point out that while the discretization objective guides the choice of polynomial space structure, the geometry also plays a role. Indeed, the geometry determines the support of the polynomial functions, whose characterisation nature is also possibly related to it. The dimension of the space must therefore often be in accordance with the geometry of K, typically yielding to choosing e.g. spaces based on P k (K) when K is a simplicial form and on Q k (K) when K is a polytope with a higher number of faces.

Polynomial representation and degrees of freedom

Once a functional is discretised in a finite dimensional space, it is necessary to define a way it will be represented, and thus controlled by the numerical scheme. This representation can be either implicit through the definition of quantifiers, or explicit by using a set of basis functions. Either way, the discrete quantity will be controlled by the numerical scheme from a finite set of degrees of freedom values.

Discrete representation and degrees of freedom

Let us consider some finite dimensional space V. Seeing it as a discretisation space, we can approximate any quantity of interest by projecting it onto V and decompose it on a set of basis functions. There, one can see the coefficients of the decomposition as freedom in the definition of the function lying in the space V, freedom being expressed in terms of the behaviours described by each of the basis functions.

Example

Let us consider the finite dimensional space P 2 (R). There, any projected quantity is a polynomial of degree at maximum two and can be decomposed on any basis of P 2 (R). For example, the polynomial q : x → 2x 2 +3x+2 can be decomposed on the canonical basis {x 2 , x, 1} and represented by its corresponding values 2, 3 and 2. Each of the monomials x 2 , x and 1 then represents a type of behaviour that one can encounter in any function living in V , their pondered completely describing any discrete function in V . Therefore, not being unique the choice of the basis function emphasises a set of typical behaviours that are present in any function of V and whose weighted combination is enough to entirely describe any of them.

Another way to represent the quantity of interest is to fix those freedom not by projecting on the basis functions, but by specifying values of some quantifiers that are characterising the functions living in the discretisation space. The definition of a quantifier is then called a degree of freedom.

Definition 2.2.1 Degrees of freedom

A degree of freedom σ : V → R is a linear form supported on K and acting on V whole value characterises some common feature to any function of V.

Provided that they define linear forms and that their definition is supported on K, the shape of the degrees of freedom is up to one's taste, its value then settling the function's freedom along the obtained property. Thus, to entirely determine any function of the discretisation space, one needs as many degrees of freedom as the dimension of the space, each of them emphasising a type of behaviour that can be found in any function of V and being independent from the others. This set of degrees of freedom thus lives in the space that is dual to V, and the collection of their values entirely determines any function of V.

Example

(Continued) Knowing that the polynomial q : x → 2x 2 + 3x + 2 belongs to P 2 (R), it can be entirely determined by either of the following relations.

(a)

     q(0) = 2 q(1) = 7 q(-1) = 1 (b)          q(0) = 2 q(1) = 7 1 0 x q dx = 3 (c)                  1 0 q dx = 25 6 1 0
x q dx = 5 2 1 0

x 2 q dx = 115 60 There, the relations (a) are characterising the polynomial through point values, while the configuration (c) involves only moments. One can also mix the characterisation types and retrieve a mixed configuration as shown in the configuration (b). The degrees of freedom are then the linear forms that to q associate the left hand side of those relations.

To see this how this characterisation acts on the discretisation space V, we can derive the linear system corresponding to a generic function of P 2 (R) that is quantified by any set of degrees of freedom (a), (b) or (c). There, given any basis B = {ϕ 1 , ϕ 2 , ϕ 3 } of P 2 (R), each of the relations (a), (b) or (c) provides the values of the three weights coefficients associated to the basis B. For example, we can look for a function q of P 2 (R) under the form q : x → a x 2 + b x + c, using the canonical basis for B and real coefficients a, b and c. Seeing the configuration (b) as a set of degrees of freedom , we can derive the following determination system.

       a × 0 2 + b × 0 + c = 2 a × 1 2 + b × 1 + c = 7 1 0 x (a x 2 + b x + c) dx = 3
By linearity of the integral, it reduces to   

0 0 1 1 1 1 1 3 1 2 1       a b c    =    2 7 3    ,
from which the coefficients a = 2, b = 3 and c = 2 follow. Note also that at this point there is no particular relation between the chosen basis B and the used linear forms.

Lastly, one can observe that the rows of the above matrix, expressing the shape of the degrees of freedom applied to each basis function, are linearly independent. Thus, as the quantifiers act on V and as we have as many rows as its dimension, the matrix is fully ranked, and invertible. The set of relations (b) then characterises uniquely a function of P 2 (R) for any right-hand-side values.

The property that among a set of degrees of freedom each of them characterises a unique type of behaviour present in any function living in V translates into the linear independence of the equations obtained when the degrees of freedom are applied to any function of V. Thus, when there are as many relations as the dimension of the space V, the given set of degrees of freedom is unisolvent in V.

Theorem 2.2.1 Unisolvence of a set of degrees of freedom When a set of degrees of freedom {σ i } i∈ 1, dim V completely determines any element living in V, i.e. when for any given basis B := {ϕ j } j∈ 1, dim V the matrix (σ i (ϕ j )) i, j is invertible, the set of degrees of freedom is said to be unisolvent for the space V.

The definition of the degrees of freedom emphasises some properties or behaviours of functions one may wish to analyse. In particular, for any set of degrees of freedom there exists a basis of V that is dual to its own, i.e. writing {σ i } i∈ 1, V a generic set of degrees of freedom, there exists a couple

({σ i } i , {ϕ j } j ), (i, j) ∈ 1, dim V 2 such that ∀ (i, j) ∈ 1, V 2 , σ i (ϕ j ) = δ ij . (2.56) 
where {ϕ j } i∈ 1, V is the dual basis representing all the behaviours the functions of V are decomposed on, while the degrees of freedom {σ i } i∈ 1, V give a direct access the corresponding quantified properties.

Example

The following degrees of freedom are dual to the canonical basis of P 2 (R).

           σ 1 : q → q(0)
σ 2 : q → q(2) -q(-1) 3 σ 3 : q → q(1) -q(0) -q(2) -q(-1) 3 Indeed, denoting the functions of the canonical basis by ϕ 1 := x → 1, ϕ 2 := x → x, and ϕ 2 := x → x 2 , it comes

{σ i } i∈ 1, V =    1 0 0 1-1 3 2-(-1) 3 1-1 3 1 2 -1 2 -1 2 -1 2 3 1 -0 -1 2 -(-1) 2 3 1 -0 -1 2 -(-1) 2 3    =   1 0 0 0 1 0 0 0 1  
One can further notice that computing the value of the degrees of freedom for a specific function provides the coefficients of its projection onto the dual basis. Note however that counter-intuitively, sets of moment based degrees of freedom (as e.g. the configuration (c) of the previous example) are not necessarily dual to their projection basis.

Let us also point out that even though this dual basis exists, its knowledge is not necessary to express the discretised quantities. Indeed, as shown above the degrees of freedom values are enough to characterise any function living in V on their own. Thus, the knowledge of the values taken by each of the linear form defining a unisolvent set of degrees of freedom in V is enough to represent uniquely a function of V. Furthermore, the same way it is possible to define several basis for the space V, it is possible to design several sets of set of degrees of freedom, and therefore to have several representations of the same quantity. As those two sets will be dual to two different basis of V, we can link them through a transfer matrix (see Section 2.2.3 for details).

In practice, the two common types of degrees of freedom are so-called pointwise values and moments. The formers consist in evaluating the discretised quantities at a precise point in K, while the latter is averaging the quantity tested against some function characterising a target behaviour on a subset of K. In particular, when using moment based degrees of freedom one can test functions living in V against some subspace contained in V . However, testing against a full subspace is computationally unrealistic. Therefore, practically one only computes the degrees of freedom from a basis of the subspace.

Basis tuning on degrees of freedom

Two different sets of basis functions that generate a same vector space do not necessarily share the same properties. However, it is possible to find an bijective mapping between each of the sets. As a consequence, one can design a specific basis from any generic basis and define the set of degrees of freedom that express some wished properties through a duality relationship.

While aiming for a customised characterisation of functions living in V , one should pay attention so that the desired properties are compatible with the considered space. Typically, they should not contradict each other nor be equivalent, and for each property there should exist functions that belong to the vector space fulfilling it. Furthermore, the set of relations defining the properties should be of duality type, and the set of the corresponding quantification functions should have the dimension of the vector space. We assume in this paragraph that all the above requirements hold, and detail the mapping. Considering the vector space V endowed with a basis {φ j } j∈ 1, dim V and a set of real valued linear applications {σ i } i∈ 1, dim V acting on V , let us derive a mapping that constructs the basis {ϕ j } j∈ 1, dim V as the one that is dual to {σ i } i . First of all, as {φ j } j and {ϕ j } j span the same vector space, we can write

σ i (ϕ j ) = δ ij
ϕ j = dim V m=1 α jm φ m (2.57)
for some coefficients {α jm } (j, m)∈ 1, dim V 2 that have to be found. Using then the degrees of freedom and the definitions of their related basis ϕ, the duality relations (2.56) expand to

σ i dim V m=1 α jm φ m = δ ij
for any i, j ∈ 1, dim V . Then, by the linearity of the degrees of freedom we obtain

dim V m=1 α jm σ i (φ m ) = δ ij
for any i, j ∈ 1, dim V , relations that when rewritten in a matrix form read

Λ A T = I N (2.58) 
for (Λ) ij = σ i (φ j ) and (A) jm = α jm . Assuming further that the set {σ i } i is unisolvent for V , the matrix Λ is then invertible and the coefficients α im are simply obtained by computing A = (Λ -1 ) T . The basis functions {ϕ j } j then simply read through the relations (2.57). Furthermore, the partial derivatives being linear operator one can retrieve analogously the relations

       D x φ ij = σ i (∂ x ϕ j ) (D x ϕ) ij = (σ i (∂ x ϕ j )) ij D x φ A T = D x φ Λ -1 = D x , ϕ
for any i, j ∈ 1, dim V and where ϕ = (ϕ 1 , • • • , ϕ dim V ) T . A comprehensive bijective mapping that turns any basis of V to the one corresponding to set of degrees of freedom unisolvent for V thus reads as follows.

Theorem 2.2.2 Tuning of basis functions

Let V be vector space endowed with a basis {φ j } j∈ 1, dim V and define a set of degrees of freedom {σ i } i∈ 1, dim V that is unisolvent for V . The basis {ϕ j } j that is dual to {σ i } i can then be constructed from the relations

ϕ j (x) = N m=1 α jm φ m (x) and ∂ x ϕ j (x) = N m=1 α jm ∂ x φ m (x), (2.59) 
where the coefficients are given by (α jm ) jm = ((σ i (φ j )) ij ) -T .

To conclude this section, let us mention that the choice of the degrees of freedom {σ i } i matches the choice of the properties one wants to instil to the basis functions. Indeed, applying them to the set of their dual basis functions {φ j } j will impose by duality the relations (2.56), defining properties for the basis functions. Therefore, the relations (2.59) will automatically tune the basis functions towards all the desired (dim V ) 2 properties.

Example

• A moment based degree of freedom by the application σ : q → 1 |K| K q dx quantifies q by its mean value on the cell K, and gives dim V properties to the set of dual basis functions. Indeed, for some basis function ϕ i , i ∈ 1, dim V , it then holds 1 |K| K ϕ i dx = 1, and for any j ∈ 1, dim V , j = i, it reduces to 1 |K| K ϕ i dx = 0.

• The same observation also holds for pointwise degrees of freedom. There, assuming that one would like to prescribe the midpoint value to be zero for one specific basis function and one for all the others, one can simply set σ : q → 1 -q( 1 2 ) as a quantification function.

Basis functions adjustment to geometry distortion

When designing a mesh-based numerical scheme, it is often useful to build a local discretisation setting (K, V, {σ} i∈ 1, dim V ) on a reference geometry K and map it onto the mesh cells K. However, by simply choosing any bijective geometrical mapping that would automatically describe the distortion between the two geometries and modify accordingly the definition of the space of discretisation V through an admissible change of variables, the nature of the chosen characterisation {σ} i∈ 1, dim V may be substantially modified.

Typically, a function of V ( K) and its mapping in V (K) may be characterised by different values of their respective degrees of freedom whenever the mapping consists in the simple a change of variable. Indeed, the quantities estimated from the function by the degrees of freedom may not be preserved through the change of variables, especially when they are defined as moments or when they involve the function's normal components. In the former case, the definition of the degree of freedom would be sensitive to the change in the function shape and to the distortion of their support, while in the latter there would be sensitivity to the orientation of the cell. As a consequence, the characterisation nature defined through the degrees of freedom and thus the properties instilled to their dual basis functions would become cell-dependent. One has then to define a transformation between the elements of V ( K) and V (K) of which the chosen set of degrees of freedom are invariants.

As in our case we will focus on developing H(div)-conforming elements, we are specifically interested in preserving the conformity, that is preserving the continuity of normal components q → q • n and the values of the boundary flux integrals q → f q•n dγ(x), where γ is the path skimming a face f of an polytope K, and n the normal to the face f . A mapping that obtains those properties is e.g. the Piola transform, that is constructed out of any orientation-preserving bijective geometrical mapping.

General definition of the Piola transform

Let us consider any reference shape K ⊂ R d and a given cell K ⊂ R d . Let us also define a bijective geometrical mapping F : K → K that maps the geometry K on K, denote its Jacobian by J F and the absolute value of its determinant by 

|J F | = | det(J F )|. Then, provided that V ⊂ L 2 (K),
V ( K) ⊂ L 2 ( K), V (K) ⊂ L 2 (K)
, and a bijective mapping F : K → K, the Piola transform

P : V ( K) -→ V (K) φ -→ φ := 1 |J F | J F φ. (2.60) 
is bijective, H(div)-conforming, orientation, and regularity preserving.

So defined, the same map also transfers to the gradient, where it particularly holds

∇ x φ = 1 |J F | J F (∇ x φ)J -1 F and ∇ x • φ = 1 |J F | ∇ x • φ,
where x represents the coordinate system of the cell K and x the one of the reference shape K. In addition, denoting by γ and γ the respective boundary measures, we have [START_REF] Thomas | Méthode des éléments finis hybrides duaux pour les problèmes elliptiques du second ordre[END_REF] for any function φ ∈ H(div, K) and any v ∈

H 1 (K) that                              K φ i • φ j dx = K 1 |J F | J F φ i • J F φ j dx ∂K φ • n v dγ = ∂ K φ • n v d γ, K φ • ∇ x v dx = K φ • ∇ x v dx K ∇ x • φ v dx = K ∇ x • φ v dx,
where v = v • F -1 and where the relation dx = |J F |dx has been used. As a consequence, the degrees of freedom and basis functions can be naturally defined through the reference element K on any distorted element K.

Orientation preserving map for simplicial and quadrilateral elements

Let us now show how the Piola transformation is defined in practice by building an orientation-preserving transformation F in the two simple case of the two-dimensional simplicial and quadrilateral geometries. In the case of simplicial geometries, such a transformation can be simply obtained by writing

F : K -→ K x 1 x 2 -→ x 1 x 2 = x 1,1 + (x 1,2 -x 1,1 )x 1 + (x 1,3 -x 1,1 )x 2 x 2,1 + (x 2,2 -x 2,1 )x 1 + (x 2,3 -x 2,1 )x 2 ,
where the term x i, j represents the i th coordinate of the j th vertex of the cell K, and i ∈ 1, 2 , j ∈ 1, n . Its Jacobian matrix then reads

J F = ∂Fx 1 ∂x 1 ∂Fx 1 ∂x 2 ∂Fx 2 ∂x 1 ∂Fx 2 ∂x 2 = x 1,2 -x 1,1 x 1,3 -x 1,1 x 2,2 -x 2,1 x 2,3 -x 2,1 ,
and the definition of the Piola transform follows from (2.60). For quadrilateral shapes, the mapping further involves the term x 1 x 2 , reading

F : x 1 x 2 -→ x 2 x 1 = a 1 + b 1 x 1 + c 1 x 2 + d 1 x 1 x 2 a 2 + b 2 x 1 + c 2 x 2 + d 2 x 1 x 2 ,
where the coefficients {a i , b 1 , c 1 , d i } i=1, 2 are determined by the relations

A      a 1 b 1 c 1 d 1      =      0 1 1 0      and A      a 2 b 2 c 2 d 2      =      0 0 1 1      , A =      1 x 1 y 1 x 1 y 1 1 x 2 y 2 x 2 y 2 1 x 3 y 3 x 3 y 3 1 x 4 y 4 x 4 y 4      .
Deriving then straightforwardly the Jacobian ends the definition of the Piola transform for quadrilateral elements.

(0, 0) polytopal elements is however much more delicate. Indeed, in addition to finding a mapping that is valid for any number of faces, one has to determine whether the normals orientation should be preserved or flipped, as depicted in Figure 2.14. This choice is highly dependent on the position of the element K with respect to the axes and on the local convexities of the reference geometry K. One thus needs to redefine the concept of orientation for a non-convex element, and determine a transformation that depends on the cell shape, at least locally. Being a research topic in itself, we rather simply consider here mappings made of subtesselations of the polytope into simplicial shapes.

(0, 1) (1, 1) (1, 0) K x2 x1 x2 x1 K (x1,1, x2,1) (x1 

A brief numerical analysis toolbox

The investigated problem being described and the algebraical notions used in approximation theory being defined, we can now present the core principles of numerical analysis that allow the approximation of partial differential equations under a controlled error. We start in Section 2.3.1 by describing the general idea of a discretisation, and detail in Section 2.3.2 the fundamental features that a numerical scheme should have for the approximate solution to be trustworthy. In the last Section 2.4, we present an example of a scheme satisfying all the fundamental features, detailing in the process the Residual Distribution and Flux Reconstruction frameworks that define the scope of our subsequent work.

Basic concepts of discretisation

The numerical approximation of solutions to hyperbolic problems of the form (2.1a) relies on discretising the associated partial differential operator that is acting on the two levels that are the time evolution and the state-dependent system dynamics. The state usually not being constant over the domain Ω, any approximation depends on a discretisation of the entire time space R + × Ω.

Furthermore, these two discretisations should be exploited by the approximation scheme in a way that ensures the resulting solution to be physically relevant in the sense of Definition 2.1.5, that is, being conservative and accurately representing the types and time-dependent locations of discontinuities. Strategies to handle the spatio-temporal interplay Constructing those numerical schemes reduces to building a discrete partial differential operator that approximates both the time derivative and the spatial divergence.

Discretisation approaches

To this aim, a first approach treats simultaneously the two discretisation aspects by considering the time as an extra variable to be included in the divergence operator. Entering the class of time-space methods, any discretisation is then built on an augmented flux and is therefore performed on a d + 1 dimensional space. If this type of approximation is comprehensive and suggests a global robustness of the solution, it leads however to the solving of large algebraic systems. Furthermore, the time discretisation being enclosed in a global setting that has been entirely prescribed, the set of points in the time-space on which the solution is available is pre-determined. Hence, there cannot be any time step adaptation with respect to possibly rapid changes in the solution, behaviour that is commonly encountered in the scope of hyperbolic problems due to the development of discontinuities and presence of heavy distortions. Despite promising tentatives [START_REF] Miller | A spacetime discontinuous Galerkin method for hyperbolic heat conduction[END_REF][START_REF] Dörfler | Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems[END_REF], this approach therefore seems unsuitable to our case.

A second approach, considered here, uses independent discretisations for the time and for the dynamic of the system. The solution there lives in a variational space that is built on an approximation of the domain Ω and is represented through a set of time-dependent degrees of freedom values that are updated every time step. The coupling between the temporal and spatial behaviour being then only active a specific points of the time space, this formulation already represents a first approximation of the problem (2.1a). Hence, such formulations are referred to as semi-discrete, and read

dY h dt + D h F (Y h ) = 0, (2.61) 
where D h F : W → R q is a given discrete operator that approximates the flux's divergence and encompasses the boundary conditions. Considering this type of formulations, it is then possible to define the expression of D h F independently from the approximation of the plain temporal derivative, their conjoint use providing anyhow a comprehensive numerical scheme.

Strategies for approximating the differential operator Like in the approximation of the time-dependent problem, the discretisation of the differential operator D h F can also be investigated from different perspectives. The two main approaches define the classes of collocation and grid-based methods.

Collocation methods [START_REF] Hardy | Multiquadric equations of topography and other irregular surfaces[END_REF][START_REF] Kansa | Multiquadrics -A scattered data approximation scheme with applications to computational fluid-dynamics -II solutions to parabolic, hyperbolic and elliptic partial differential equations[END_REF] structure the solution from the definition of basis function themselves and are particularly popular for their ability to handle multivariate interpolation over discontinuous fields. Further benefiting from a remarkable accuracy, they however require an extreme carefulness in the long run due to the high conditioning of their associated system.

More robust and achieving more easily accurate behaviours in long term simulations, gridded methods rely on a predefined spatial structure of the discrete solution. The connectivity between discrete points playing then a key role in the approximation of the flux's divergence, the use of Cartesian grids has been shown to be very efficient [START_REF] Levy | Central WENO schemes for hyperbolic systems of conservation laws[END_REF][START_REF] Beam | An implicit finite-difference algorithm for hyperbolic systems in conservation-law form[END_REF]. However, they fail in practical applications where complex geometries are involved, as they are usually not boundary conforming and therefore loose accuracy if no local and specialized adaptation is made. We therefore choose here to focus on methods based on unstructured grids, conferring more flexibility towards the computational domain's geometry and allowing to define customisable spaces of discretisation.

Unstructured spatial discretisation

Defining a numerical scheme that approximates the system dynamics on an unstructured grid relies on three discretisations, one geometrical structuring the spatial computational domain, one variational representing the discrete solution, and one approximating the differential operator itself.

Geometrical discretisation

Discretising the problem geometry by means of an unstructured grid comes down to defining a covering of the domain Ω by a finite number of cells K ⊂ Ω whose shape can be curvilinear or polytopal. The collection of all the cells, denoted by τ h = {K} K , then forms a mesh whose frame determines the connectivity between the vertices of all the cells. Belonging to this frame, each generic face f of a cell's boundary ∂K defines either an interface with a neighbouring cell K -or approximates locally the domain's boundary ∂Ω. We then denote by ∂τ h the set of faces that approximates the domain boundary, and by Γ a generic boundary face belonging to ∂τ h . All in all, the space covered by the mesh τ h defines the computational domain and will be denoted Ω.

K - K - K - K - K - K - K - K - K - K - K - K - K τ h = ∪{K, K ⊂ Ω} ∂τ h = ∪{Γ, Γ ⊂ Ω} Γ ∈ ∂ τ h f ∈ ∂ K Ω Figure 2.16.
Example of a boundary-conforming hybrid polygonal mesh providing an approximation of Ω and a structure on which to define local variational spaces.

If any covering defines a mesh, one should still pay attention to its quality, that is, the ability of the mesh to support the discretised solution so that the approximation error due to the tessellation is homogeneous throughout the computational domain Ω. This mesh quality depends on the overall layout of the cells vertices, particularly impacting the homogeneity of the cells' size and aspect ratio. Given a quality mesh, one can then define the mesh size h as the maximum radius of each of the cells' circumscribed sphere. Lastly, let us point out that a mesh containing hanging nodes, that is, containing cells for which there exists a vertex that intersects with a face of another cell, are called nonconformal and are usually mishandled by numerical schemes. Therefore, it may be interesting to consider hybrid meshes, composed of cells that do not necessarily share the same topology. showing hanging nodes and heavy distortions. Note that the exact same mesh seen as polygonal one would not have any hanging nodes, being then absorbed in the cell geometries. Namely, the pictured polygonal mesh would containing simplicial, quadrilateral, and pentagonal cell shapes (the two vertically oriented cells).

In this thesis, we are particularly interested in using non-convex polytopal hybrid meshes, allowing flexibility in both the geometry approximation and in the scheme design. Indeed, compared to the widely used simplicial or quadrilateral meshes, polytopal meshes allow an automatic inclusion of hanging nodes and are very efficient in mesh refinement. Allowing further non-convexity then alleviates coarsening issues and confers a robustness to distortions, making them suitable for developing mesh-adaptation techniques. However, the definition of variational spaces that can represent the discrete solution over any polytopal shape with a same representation quality is extremily delicate, as it will be observed in Chapter 3.

Variational discretisation

After defining the mesh, one can specify on each cell K a finite dimensional variational space W (K) containing the local approximate solution Y K . The approximation nature is then defined in W (K) through the choice of a set of degrees of freedom

Σ W (K) := {σ} σ∈ 1, |W (K)| whose values Y K = {Y K σ } σ∈Σ W (K)
characterises uniquely the discrete solution on the cell K, and from which the approximate solution Y K can be reconstructed. Indeed, the triplet (K, W (K), Σ W (K) ) thus forming an element, one can retrieve the basis functions of W (K) that are dual to the set Σ W (K) and provide a direct local representation Y K : K → R q of the approximate solution given the values Y K . This local representation can then be used in turn to define the global approximate solution reconstruction

Y h : Ω -→ R q x -→ Y K (x), K s.t. x ∈ K, (2.62) 
living in W h = {W (K), K ∈ τ h }, but also to design the discrete differential operator, typically allowing flux evaluations at quadrature points that are not necessarily matching the pointwise degrees of freedom, if even any.

A classical choice is to consider W (K) as a finite dimensional polynomial space and to endow it with a nodal basis. Intuitive discretisation setting, the characterisation of the solution there consists in point-values, while its representation is simply given by a polynomial interpolation driven by the shape of the nodal basis functions.

Approximation of the system dynamics

To finalise the discretisation of the system dynamics, it remains to define the discrete operator D h F so that it provides a relevant approximation of the continuous differential operator. Especially, in light of the discussion of Section 2.1, one should derive a discrete expression starting from a conservative formulation. Here again, two main perspectives are possible. One may indeed consider either the strong formulation

∇ • F(Y h ) = 0 Y h | ∂Ω = g (2.63)
and approximate the flux's divergence by evaluating the flux itself across the cells, or consider the steady analogue of the weak formulation (2.42) split over the mesh τ h , i.e.

K∈τ h K ϕ ∇ • F(Y h ) dx + Γ∈∂τ h Γ ϕ g dx = 0, ∀ϕ ∈ C ∞ 0 (K), ∀K ∈ τ h , (2.64) 
approximating then each surface and volume integrals. There, it may also be suitable to emphasise the impact of the flux behaviour on the boundary by reformulating the inflow boundary conditions, yielding

K∈τ h K ϕ ∇ • F(Y h ) dx + Γ∈∂τ h Γ ϕ F(Y h ) • n -F b (Y h , g) dx = 0 (2.65)
for any K ∈ τ h , any ϕ ∈ C ∞ 0 (K), and where F b is a flux consistent with the relation dF dY • n < 0. The discrete operator defined, one can then investigate its properties and the quality of the approximation it provides given a mesh size.

Note

In this thesis, we are considering a semi-discrete discretisation and only focus on defining the operator D h F . We therefore drop in below developments the time considerations whenever they are not impacting the spatial dynamic. When they do, the related statements have to be understood in light of the temporal approximation, chosen here as the already developed Deferred Correction framework [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF].

Essential properties of a numerical scheme

Let us now present the essential features that a numerical scheme should possess for the approximate solution to be reliable. We start by stating the properties allowing trust in the discrete solution, before deriving estimates on the scheme performance. properties of the numerical scheme that is defined by the expression of the discrete differential operator D h F and whose application to any boundary data g gives the values of Y K on each element (K, W (K), {σ}), K ∈ τ h , consequently providing the approximate solution reconstruction Y h .

Reliability of the approximate solution We first consider the essential

A first natural property to ask when aiming for the relevance of the approximate solution is the convergence, expressing that the approximate solution tends to the exact one as the mesh is refined.

Definition 2.3.1 Convergence

A numerical scheme is said to be convergent when the error

lim h→0 Y -Y h → 0
for a given • that is suited to estimate the deviation of the quantities expressed in W h from a possibly discontinuous reference one.

A second property that is necessary for the solution to be reliable is called consistency and assesses the ability of the scheme expression to approximate the continuous differential operator.

Definition 2.3.2 Consistency

Given the steady analogue of the continuous problem (2.1a) and its solution by Y , a numerical scheme is said to be consistent if the discrete differential operator D h F converges towards the continuous operator ∇ • F when h → 0 in the norm the discretisation space of the operator is endowed with. Finally, the numerical scheme must also be robust, that is, not amplifying perturbations to a greater extent than the continuous problem would.

Initial data

Stable behaviour Unstable behaviour 

Definition 2.3.3 Stability

A numerical scheme is said to be stable if and only if there exists a unique solution Y h to the problem D h F (Y h ) = 0, and that this solution depends continuously on the changes in the given data, here the boundary conditions. Whenever a numerical scheme fulfils those three properties, the approximate solution is a-priori trustworthy. Therefore, seen in the context of hyperbolic systems, any convergent, consist and stable operator D h F would provide a reliable representation of the sate dynamics to the temporal scheme tackling the plain temporal derivative in (2.61). Furthermore, when the comprehensive time-space scheme (2.61) tackling the problem (2.1a) is also consistent and convergent, it has been shown [START_REF] Lax | Systems of conservation laws[END_REF] that the approximate solution converges to a weak solution of the system (2.1a) as the mesh size tend to zero, statement known as the Lax-Wendroff theorem.

Theorem 2.3.1 Lax-Wendroff convergence theorem

Let Y (0, •) ∈ L ∞ (Ω) be any bounded initial condition, Y h : R + × Ω → R q be an approximate solution to the problem (2.1a) obtained through a consistent and conservative scheme, and Y ∈ L 2 (R + × Ω) be a square integrable function. Then, whenever • Y h is uniformly bounded for any reasonable mesh size, i.e.

∃ h max ∈ R * + s.t. ∀ h ∈ (0, h max ), Y h L ∞ (R + ×Ω) ≤ C ∈ R,
• the solution converges almost everywhere to the exact solution, i.e.

lim h→0 Y -Y h L 2 loc (R + ×Ω) = 0, the function Y is a weak solution of the problem (2.

1a).

However, while the theorem ensures the obtained solution to be a weak solution of the problem (2.1), it does not guarantee its physical relevance.

Physical relevance of the approximate solution

As seen in Section 2.1, the lack of uniqueness of weak solutions to the problem (2.1a) can be compensated by singling out the physically relevant solutions. This criterion transfers to the discrete level, where we ask the numerical scheme to fulfil the discrete analogue on the entropy relation (2.53) for a given entropy functions and flux pair. Definition 2.3.4 Entropy stable and conservative schemes A numerical scheme is said to be entropy stable with respect to the entropy pair (S, G) if for the discrete approximate solution Y h and its reconstruction

Y h : R + × Ω → R q it holds d dt S(Y h ) + D h Gn Y h ≤ 0, (2.66) 
where G n is a numerical entropy flux consistent with G and D h Gn is the discrete flux divergence operator D h F defined on the numerical entropy flux G n . The scheme is further said to be entropy conservative when the equality holds.

Once a scheme is stable, consistent, conservative and entropy conservative, we are ensured that the approximate solution converges to a weak solution of the system (2.1a) that is physically relevant in the sense of the considered entropy pair. One can however wonder about the performance of a scheme, that is, how much effort should one put in the geometrical meshing to obtain a meaningful solution.

Performance of a numerical scheme The performance of a scheme can be assessed by estimating the overall error of the approximate solution given the size of the mesh it has been computed from. The estimate retrieved from the scheme's definition indeed not only indicates how fast the solution will converge to a weak solution of the system (2.1a), but also provides the expected quality of the approximate solution for a given mesh size.

Definition 2.3.5 Convergence order and method accuracy

Provided a smooth initial condition Y (0, •), the scheme's order of accuracy is given by the highest value of p such that

Y -Y h ≤ C h p , C ∈ R, (2.67) 
for a given norm • that is suited to estimate the deviation of the quantities expressed in W h from a possibly discontinuous reference one. The constant C is here independent of the mesh size and of the approximate solution, but may depend on the initial and boundary conditions, and even on the exact solution itself. The relation (2.67) is therefore an a-priori estimate.

Some classical numerical schemes

With those theoretical principles in mind, let us now practically construct a numerical scheme that tackles two-dimensional problems of the type (2.1a) while being entropy stable, conservative, and applicable to on any polygonal mesh. In this perspective, we consider the formulation (2.61) in which the plain temporal derivative is approximated by a Deferred Correction approach [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF], and focus only on deriving a discrete expression for the flux divergence operator D h F . We there choose to employ the entropy conservative Flux Reconstruction scheme developed in [START_REF] Abgrall | On the Connection between Residual Distribution Schemes and Flux Reconstruction[END_REF], repeating here its construction to highlight its range of application and deriving conditions under which the scheme can be applied on any unstructured polygonal mesh. This scheme being built by exploiting the existing links between the Flux Reconstruction schemes, the Discontinuous Galerkin schemes, and the Residual Distribution framework, we start by describing those three concepts in their respective Sections 2.4.1, 2.4.2, and 2.4.3, before deriving the entropy conservative Flux Reconstruction scheme in Section 2.5.

Discontinuous Galerkin methods

Introduced by Reed and Hill in [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF] and later developed by Cockburn and Shu [START_REF] Cockburn | The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws[END_REF], the Discontinuous Galerkin method is very popular in applications involving fluid dynamics or wave propagation phenomenon, as e.g. meteorology, oceanography, and seismology. This popularity is mainly due to the flexibility conferred to the design of both the flux discretisation and the solution representation, in particular by not requiring their overall continuity.

Discretisation setting Freed from the global continuity requirement, the approximate solution is then considered with a global L 2 (Ω) regularity, living in the finite dimensional trial subspace

W h = w ∈ L 2 (Ω, R q ) s.t. ∀K ∈ τ h , w |K ∈ W (K) := (P k (K)) q .
The system dynamics is then approximated starting from the conservative variational formulation (2.65), where the test space is approximated by

V h = v ∈ L 2 (Ω) s.t. ∀K ∈ τ h , v |K ∈ V (K) := P k (K) ,
within which all test functions have a compact support and are locally regular. Hence, one can define local sets of degrees of freedom Σ V (K) := {Σ V (K) , K ∈ τ h } that characterise the functions living in a local space V (K), and approximate the system dynamics (2.65) on each element (K, V (K), Σ V (K) ).

Formulation of the approximated dynamic

Given the above discretisation choices, the approximation of the formulation (2.65) reduces to asking

K∈τ h K ϕ ∇ • F(Y K ) dx + Γ∈∂τ h Γ ϕ F(Y K ) • n -F b (Y K , g) dx = 0
only for any function ϕ belonging to V h . Integrating then by parts, it comes

- K∈τ h K ∇ϕ • F(Y K ) dx + ∂K ϕ F(Y K ) • n dx + Γ∈τ h Γ ϕ F(Y Γ ) • n -F b (Y Γ , g) dx = 0,
making the approximation of the differential operator D h F entirely local to one cell, the dynamic being entirely represented by the sole flux's expression. Thus, to complete the approximation one has just left to define a discrete numerical flux F n that is consistent with the continuous one and that considers the impact of the neighbouring behaviour to the local dynamic through the element boundary. The final formulation thus reads

- K∈τ h K ∇ϕ • F(Y K ) dx + ∂K ϕ F n (Y K , Y K -) dx + Γ∈τ h Γ ϕ (F(Y Γ ) • n -F b (Y Γ , g)) dx = 0 (2.68) 
for any ϕ ∈ V h and any K ∈ τ h , the actual definition of the scheme being then given by the choice of the two numerical fluxes' expressions. Furthermore, while the boundary flux F b has to be consistent with dF dY • n < 0, the expression of F n shall be consistent with F while ensuring the scheme's conservation. One therefore asks

F n (Y K , Y K ) = F(Y K ) • n F n (Y K , Y K -) = -F -n (Y K -, Y K ),
under which condition a typical choice is given by

F n (a, b) = 1 2 (F(a) • n + F(b) • n) -∆(F, a, b, n), (2.69) 
where ∆ represent a numerical dissipation operator, see e.g. [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] for possible choices. The scheme so defined, one can obtain its practical expression by decomposing any function ϕ on the basis {ϕ σ } σ∈ 1, |V (K)| of the space V (K) that is dual to the set of degrees of freedom Σ V (K) . A direct representation of the approximate solution can equally be obtained by endowing the space W (K) with a set of degrees of freedom Σ W (K) := {σ} σ∈ 1, |W (K)| that are compactly supported in K. The above formulations are then made entirely explicit, and the discrete solution is entirely characterised in each cell K by its local degrees of freedom values. Endowing further each local space W (K) with the basis that is there dual to Σ V (K) then provides a global reconstruction of the solution as a piecewise polynomial that is possibly discontinuous across the cells faces.

Flux reconstruction schemes

Introduced in particular by Huynh [START_REF] Huynh | A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[END_REF] and extended by Jameson [START_REF] Jameson | A proof of the stability of the spectral difference method for all orders of accuracy[END_REF], the Flux Reconstruction approach mainly differs from the Galerkin methods by relying entirely on the estimation of pointwise quantities rather than on the approximation of local integrals. It also enforces the continuity of the discrete flux across the element boundaries with a correction function, making its definition very flexible. Furthermore entirely discrete and naturally conservative, those methods require however specific treatments to be stable.

Discretisation framework

Easing the technique presentation, we focus on the two spatial dimensional case (d = 2) in which the geometrical discretisation provides a conformal mesh τ h of the domain Ω ⊂ R 2 . There constructed, any Flux Reconstruction technique relies on the mesh to structure the discrete solution and to define a consistent approximation of the dynamics based on the strong conservative formulation (2.63), requiring in particular a direct representation of both the solution and the flux.

Solution discretisation

The solution is simply represented in each cell K ∈ τ h by the multivariate polynomial Y K : K → R q of degree k ∈ N that interpolates given point-values accordingly to the associated nodal basis of P k (K). The characterisation of the approximate solution is therefore immediately defined by the dual set of

N Y := 1 2 (k + 1)(k + 2) degrees of freedom Σ Y = S : q → q(x m ), x m ∈ κ Y }, where κ Y = {x m ∈ K} m∈ 1, N Y represents a set of disjoint evaluation points whose associated degrees of freedom values Y K := {Y K S } S∈Σ Y determine the discrete solution in (P k (K)) q .
Hence, denoting by {l S : K → R} S∈Σ Y the set of Lagrangian functions that is built from the points κ Y , the local approximation of the solution naturally reads

Y K (x) = S∈Σ Y Y K S l S (x). ( 2 

.70)

Each local representation being compactly supported on K, the approximate solution is naturally defined over Ω as the piecewise polynomial given straightforwardly through (2.62). However, as the interpolation nature generally prevents the reconstruction to be continuous on the entire computational domain regardless the spatial distribution of the points κ Y in each element K, the approximate solution only benefits from a global L 2 (Ω) regularity, hence living in the space

W h = {w ∈ L 2 (Ω, R q ) s.t. ∀K ∈ τ h , w |K ∈ W (K) := (P k (K)) q }.

Flux discretisation

The flux F = (F 1 , F 2 ) T is discretised similarly, each approximate flux function living in the finite dimensional variational space

V h = v ∈ L 2 (Ω) s.t. ∀K ∈ τ h , v |K ∈ V (K)
that is built on given local discretisation spaces V (K). The global approximation of the flux is therefore given by

F h : Ω -→ R q x -→ F K (x), K s.t. x ∈ K,
where the term F K : K → R q × R q denotes a local flux reconstruction that is compactly supported on K. Defined in a corrective approach, this reconstruction simply writes

F K := F K, D + F K, C = F K, D 1 F K, D 2 + F K, C 1 F K, C 2 , (2.71) 
where

F K, D = (F K, D 1 , F K, D 2 
) T denotes a direct approximation of the local flux functions and

F K, C = (F K, C 1 , F K, C

2

) T its correction terms whose expressions complete the definition of the numerical scheme. Hence, each local discretisation space can be written as

V (K) = V D (K) + V C (K)
for V D (K) and V C (K) two finite dimensional variational spaces in which any initial flux approximation and correction can be expressed, respectively. While this correction procedure appears to be a natural approach, those two spaces are however not necessarily in direct sum, making the design of the correction function's characterisation subject to careful considerations.

Initial flux approximation.

In classical Flux Reconstruction approaches, which the approach [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF] that we follow here is part of, the initial approximation of each flux function F K, D i , i ∈ 1, d , is typically sought as for the solution, i.e. considered in the space

V D (K) = (P k (K)) d
and defined as the interpolation of given point-values by means of the associated nodal basis of P k (K). Namely, denoting by N F the dimension of P k (K) and considering a same set of disjoint points κ F = {x j ∈ K} j∈ 1, N F where all the discrete flux functions are given by their respective values

F K, D i := {F K, D i, σ } σ in (P k (K)) q ,
one considers the set of pointwise degrees of freedom Σ F := σ : q → q(x j ), x j ∈ κ F } whose vectorial values characterise the approximate flux functions

F K i , i ∈ 1, 2 . The initial flux representation then writes F K, D i (x) = σ∈Σ F F K i, σ l σ (x), i ∈ 1, 2 , (2.72) 
for {l σ : K → R} σ∈Σ F the set of Lagrangian functions built from the points κ F . Straightforward, this representation is however not continuous across the cells, leading to the first approximation F K, D to be called discontinuous flux.

Correction of the initially approximate flux. The correction term F K, C is then defined so as to enforce the cross-cell continuity, and is hence usually thought as being characterised on the boundary through quantifiers that are directly supported on a given face alone, thus easily and locally connecting the neighbouring cells. The overall boundary characterisation, supported in practice by a discrete stencil that we will denote κ C , may however not be enough to characterise the correction function entirely on K. Indeed, its expression may benefit from an extra freedom to be tuned so that the obtained function shape propagates the correction amount within the cell under given inner constraints.

Hence intricate, the design of a suitable general shape for the correction function and the choice of relevant determination constraints are crucial to the well-definition of the comprehensive numerical scheme. However, even though the determination constraints can be designed directly upon the properties one wants to instil to the numerical scheme, as shown in the second next paragraph of this section, the design of the general shape of the correction function requires to construct a suitable discretisation space V C (K) and to define a characterisation method through the choice of a set of degrees of freedom Σ C . Requiring careful considerations and not straightforward, those last two aspects will be the object of the entire Section 2.5, in turn motivating the entire Chapter 3.

Validity of the flux discretisation.

While the representation of the comprehensive corrected flux approximation (2.71) may seem intuitive, its characterisation method has to be carefully considered. Indeed, as the spaces V D (K) and V C (K) are not necessarily in direct sum, there may be an interplay between the two characterisation methods when considering the comprehensive determination of any corrected approximate flux functions in V (K). In other words, the set of degrees of freedom Σ F + Σ C may not coincide with the set of degrees of freedom Σ V (K) characterising the comprehensive corrected approximate flux functions (2.71) in V (K).

As a consequence, one has to take care that the chosen characterisation Σ C determining the correction function in V C (K) combined with the characterisation Σ F of V D (K) ensure that the associated comprehensive characterisation Σ V (K) of the corrected approximate flux functions (2.71) is unisolvent for V (K). If it may a-priori be delicate, it is however enough to ensure that there exists subsets

Σ C ∩ ⊂ Σ C and Σ F ∩ ⊂ Σ F that both characterise the sub- set V C (K) ∩ V D (K)
, possibly in a different way, as shown in the following proposition.

Proposition 2.4.1 Sufficient conditions for unisolvence

If there exists subsets

Σ C ∩ ⊂ Σ C and Σ F ∩ ⊂ Σ F that both characterise the subset V C (K) ∩ V D (K), even in a different way, then • the comprehensive characterisation Σ V (K) that is associated to the in- dependent characterisations Σ F and Σ C of V D, K and V C, K , respectively, is unisolvent in V (K).
• the corrected approximate function F K given by (2.71) is uniquely determined in V (K)

Proof. Let us denote by {l σ } σ∈ 1, N F the set of basis functions that is dual to

Σ F in V D (K) and by {ψ j } j∈ 1, N C the set of basis functions that is dual to Σ C in V C (K).
Then, one can write any function F K ∈ V (K) in the form

F K = σ∈Σ F F K σ l σ + j∈ 1, N C α j ψ j .
Expressing then explicitly the parts of the function that belong to V C (K) ∩ V D (K), one retrieves

F K = σ∈Σ F , σ ∈Σ F ∩ F K σ l σ + σ∈Σ F ∩ F K σ l σ + j∈ 1, N C , σ j ∈Σ C ∩ α j ψ j + j∈ 1, N C , σ j ∈Σ C ∩ α j ψ j .
There, one can then consider Λ the matrix that transfers the set of basis functions that are dual to

Σ C ∩ in V C (K)∩V D (K) to the set of basis functions that are dual to Σ F ∩ in V C (K)∩V D (K).
Denoting then (Λα) σ the value of the correction function that is associated to the function l σ in its decomposition on the new basis representation, one can write

F K = σ∈Σ F , σ ∈Σ F ∩ F K σ l σ + σ∈Σ F ∩ (F K σ + (Λ α) σ ) l σ + j∈ 1, N C , σ j ∈Σ C ∩ α j ψ j = σ∈Σ V (K) β σ Ψ σ ,
for the basis of Ψ = {Ψ σ } σ∈Σ V (K) of V (K) and associated coefficients {β σ } σ∈Σ V (K) obtained through a straightforward identification between the two expressions. Hence, as by construction the basis functions of the set {l σ } σ∈F ∪ {ψ j } j∈ 1, N C , σ j ∈Σ C ∩ are linearly independent and of dimension dim V (K), the function F K is uniquely defined in V (K), and the characterisation of the correction function viable in the more general context of the comprehensive discretisation.

Note however that the overall characterisation is not necessarily nodal, and that the identified basis Ψ σ does not necessarily correspond to the dual basis of the comprehensive characterisation Σ V (K) of V (K). Indeed, even though the value of α is still to be considered at point values, its transfer through Λ takes away its spatial connection, the initial point-value (x j , F K σ ) being simply modulated from non-point-value information.

Dynamic evolution

To update the state variables, the Flux Reconstruction technique uses the strong formulation (2.63) in which the solution approximation and the flux functions are directly employed. Hence, the discrete solution Y K to the problem (2.1) sees its state values {Y K S } S∈Σ Y updated independently at their corresponding point in κ Y by a straightforward evaluation of the approximated pointwise dynamic expressed in (2.72) and (2.70). Any updated value Y K S , S ∈ Σ Y is therefore practically obtained through the relation

dY K S dt = -∇ • F K (x m ) = -∇ • F K, D (x m ) -∇ • F K, C (x m ) = - σ∈Σ F F K 1, σ ∂l σ ∂x 1 (x m ) + σ∈Σ F F K 2, σ ∂l σ ∂x 2 (x m ) -(∇ • F K, C )(x m ), (2.73)
where the specific point x m ∈ κ Y is the one supporting the definition of the degree of freedom S in its pointwise expression, and where the term

(∇ • F K, C )(x m
) represents the divergence of the correction function evaluated at the point x m ∈ κ Y , to be further discretised accordingly to the definition of the correction function. The choice of the correction function shape along with the selection of the flux and discrete solution points κ Y therefore jointly define the flux reconstruction scheme.
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As those discretisation choices are not bound a-priori to any constraint other than requiring the existence of a pointwise reconstruction and ensuring the cross-cell continuity of the flux, the design of flux reconstruction schemes is extremely flexible and encompasses most of the classical schemes as for example Discontinuous Galerkin [START_REF] Gassner | A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods[END_REF] and Spectral Element Methods [START_REF] Gassner | A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods[END_REF] in their fully discretised formulations. However, the schemes properties only rely on the articulation of the discrete flux and solution points with the definition of the correction function.

Each approximation design is therefore extremely delicate, in particular when tackling hyperbolic problems of the form (2.1). Indeed, there, although the conservation properties can be readily obtained by imposing the continuity of the flux, the scheme long-term stability and the convergence of the approximate solution towards a physically relevant one remain to be ensured from the definition of the correction function alone. Focusing on the former aspect, a flux reconstruction scheme guaranteeing linear stability has already been proposed in [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF], and non-linearity aspects have been investigated in [START_REF] Witherden | An analysis of solution point coordinates for flux reconstruction schemes on triangular elements[END_REF]. We choose to focus here on the latter aspect and detail a choice of correction function and discretisation points κ F that preserves the consistency, enforces the conservation, and guarantees entropy stability regardless the chosen points κ Y where to define the discrete solution.

A possible definition of a correction function

For the sake of the example and in view of later use, let us now derive step by step the class of flux reconstruction schemes introduced in [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF]. To this aim, we place the general flux reconstruction framework presented in the above paragraph in perspective with the considerations of Section 2.3.2, and determine conditions on the layout of the discrete point sets κ Y , κ F , κ C and on the expression of the correction function for the resulting numerical scheme to be consistent and conservative.

Choice of the discretisation points

Let us start by choosing sets of discretisation points κ Y , κ F , and κ C whose spatial distributions are respectively appropriate for representing the approximate solution in accordance with its multivariate polynomial nature, for allowing an accurate evaluation of the initial flux approximation, and for providing a control of the correction that is coherent with the overall procedure and enforces extra properties to the numerical scheme. Primarily focusing on the accuracy of the initially approximate flux evaluation, we can first obtain a desirable relationship between the flux and the solution discretisation points. Indeed, as any flux reconstruction technique entirely relies on pointwise values and polynomial reconstructions, the sole flux evaluation at one of its discretisation points is generally subject to an approximation error whenever the point location does not coincide with any of the solution points, the solution value being then approximated by its reconstruction process. It is therefore suitable to represent the discrete flux with a degree less or equal than for the solution, and set κ F ⊂ κ Y .

The actual distribution of the flux nodes, and therefore of part of the solution nodes, is a-priori free in each cell K. Typically, considering them on the boundary yields purely interfacial approaches as [START_REF] Abe | Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms[END_REF], while considering them within the cell makes the flux reconstruction scheme closer to classical Discontinuous Galerkin approaches [START_REF] Ranocha | Summation-by-parts operators for correction procedure via reconstruction[END_REF]. Adopting here the latter perspective, we consider sets κ F and κ Y where all the points lie strictly within the cell K, enhancing in particular the robustness of the solution within the cell and the flexibility of the corrected flux discretisation at the boundary.

The flexibility of the correction process is guaranteed along with its relevance by choosing a compactly supported correction function whose behaviour is in particular characterised from boundary constraints. Indeed, as evoked before, the cross-cell continuity of the corrected approximate flux can be easily obtained by coupling the behaviour of the two adjacent cells at the boundary and by propagating the information towards the nodes of the initial flux approximation. The definition of the correction function is then very flexible, its shape being in particular constrained by continuity and consistency relations at given points on the boundary. Thus, choosing to constrain the boundary behaviour of the correction function from a stencil κ C = {x j ∈ ∂K} j by comparing the shape of the initial flux approximation with the continuous one will naturally enforce the cross-cell continuity of the corrected flux, at least in the sense of the designed quantifiers. Furthermore, as then κ C = κ F , the correction function would be meaningful, not reducing to an ad-hoc zero interpolant. The stencil characterising the boundary behaviour of the correction function being selected, let us now precise the boundary characterisation type, points number, and points distribution while deriving a possible correction function shape. Possible inner characterisations will be described later in Section 2.5.

Choice of the nature of the correction function

Let us first select a nature of the correction function that is compatible with the original discretisation performed on each cell K. We thus consider the discrete expression (2.73) and recall that both the initially approximate flux F K, D and the local approximate solution Y K are polynomial of degree k, and observe that it appears suitable to ask the divergence of the correction function F K, C to belong to P k (K). It is however not necessary, the correction being propagated within the cell only to the specific flux points and the shape of the correction function not impacting the solution representation.

A-contrario, we do require the correction function to have a normal component belonging to P k (f ) on each of the cell faces f ∈ ∂K for the correction procedure to act on the same discretisation space as the one in which the initially approximate flux is discretised in. It thus reduces to look for a correction function fulfilling

(F K, C • n) |∂K ∈ w ∈ L 2 (∂K), ∀f ∈ ∂K, w |f ∈ P k (f ) , (2.74) 
and optionally

∇ • F K, C ∈ P k (K). ( 2 

.75)

The normal component of the correction function thus being a polynomial on the boundary, the point based approach of the flux reconstruction technique can be preserved by designing a characterisation based exclusively on disconnected point values, not on moments employing the stencil κ C in a quadrature scheme. The stencil κ C is then used to define point-values degrees of freedomentirely characterising the correction function on the boundary. According to the property (2.74) of the correction function, we then distribute k+1 points discretisation points per face, yielding

N C := |κ C | = n (k + 1)
. The type of characterisation being now defined, let us select the constraints expressions.

Obtention of the approximate flux continuity

The point-values constraints are then defined so as to erase the gaps between the initially approximate flux F K, D and the continuous flux at the associated boundary points by evaluating their difference, that is, by prescribing for any

x j ∈ κ C F K, C (x j ) = F(Y h j ) • n -F K, D (Y h j ) .
However, if the reconstruction of F K, D grants a simply defined flux value at any point x j ∈ ∂K, this is not the case for the continuous flux evaluation, the solution at the boundary being itself possibly discontinuous. One is therefore led to define a numerical flux that is consistent with the continuous one and couples the normal flux information coming from either side of the boundary.

In practice, the two different values obtained for Y h (x j ) for any x j ∈ κ C during its reconstruction, i.e. Y K j := Y K (x j ) for the value of Y h computed in the current element and Y K - j := Y K -(x j ) for the value computed using the information from the neighbouring element, are considered simultaneously to define a consistent numerical flux. Generically reading

F I : D × D -→ R q (Y K , Y K -) -→ F n (Y K , Y K -),
it can typically be defined analogously as in Discontinuous Galerkin approach (see the equation (2.69)) by the expression

F n (Y K , Y K -) := 1 2 F(Y K ) • n + F(Y K -) • n -∆(F, n, Y K , Y K -),
where ∆ represents a numerical dissipation operator (see e.g. [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] for more details). The discontinuities of the flux are then compensated at each point of κ C by applying the approximated point value constraint

F K, C (Y K j ) = F I (Y K j , Y K - j ) • n -F K, D (Y h j ) ∀x j ∈ κ C , (2.76) 
completely determining as a by-product the polynomial shape of the correction function on each face f ∈ ∂K.

Propagation of the boundary correction within the cell

Once characterised from pointwise constraints, the correction amount is propagated towards the interior of the cell via space-dependent lifting functions that are defined everywhere on K, thus reaching out the points where the the solution and initial flux approximation are discretised. Following here the approach of [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF], the correction function is therefore expressed over the entire cell K as

F K,C = j∈ 1, N C F I (Y K j , Y K - j ) • n -F K, D (Y h j ) • n h j (x) (2.77)
where each term h j represents the lifting function that is associated with the amount corrected at the point x j ∈ κ C and whose shape will be progressively derived. To this aim, we first notice that the term

α j := F I (Y K j , Y K - j ) • n -F K, D (Y K j )
• n is a constant, making the expression of the correction function entirely dependent on the shape of the lifting functions h j . Hence, as the definition (2.77) is constructed as a linear combination of all the functions h j , j ∈ 1, N C , each of them has in particular to fulfil the property (2.74). Their expression being further directly involved in the update process (2.73) under the divergence operator, we then define all the lifting function as being vectorial, i.e.

h j : K -→ R d x -→ h j (x), ∀ j ∈ 1, N C
The same information α j is therefore propagated by (2.77) similarly in all spatial directions accordingly to the variations of the constrained function h j , making the actual expression of the lifting functions h j , j ∈ 1, N C play an extensive role both in the validity of the correction process and in the way the correction amount echoes within the cell and on the boundary between the control points. In particular, while the vectorial expression of each lifting function is a-priori free, its boundary characterisation should preserve the continuity constraints and ensure the scheme conservativeness. Its inner characterisation can then be used later to enhance stability properties.

Preservation of the cross-cell continuity and consistency properties

Let us provide a first characterisation of any single lifting function h j , j ∈ 1, N C by guaranteeing the preservation of the cross-cell continuity obtained in (2.76). We there simply notice that given the definition (2.77), a simple way to ensure it is to prevent any interplay between the the individual lifting functions at the discrete correction points κ F . We therefore require the normal component of the lifting function h j to vanish at every other point of κ C than x j itself. In other words, we ask each lifting function to fulfil

h j (x l ) • n |∂K = δ jl ∀x k ∈ κ C , ∀l ∈ 1, N C . ( 2 

.78)

One can here notice that as the normal component of each lifting function restricted to the boundary is by (2.74) a polynomial of order less or equal than k, and as the set κ C distributes k + 1 nodes on each face f of the boundary ∂K, the normal component of any h j is already entirely determined by the condition (2.78) alone. Furthermore, the consistency of the reconstructed flux at the correction points is naturally ensured, the expression (2.77) guaranteeing by definition that

F K (Y K j ) • n = F I (Y K j , Y K - j ) • n.

Obtaining local conservation

Let us now derive a further condition on the lifting functions so that the conservation of the scheme is ensured at the discrete level. To this aim, we investigate the conditions under which the relation (2.20) holds at the discrete level for any control volume K ∈ τ h . Reducing here to asking

K ∇ • F K, D (Y K ) + j∈ 1, N C α j h j dγ = 0, (2.79) 
we start by applying the Gauss divergence theorem to retrieve

∂K F K, D (Y K ) • n + j∈ 1, N C α j h j • n dγ = 0. (2.

80)

Making then the term α j explicit, we can derive

∂K F K, D • n + j∈ 1, N C F I (Y K j , Y K - j ) • n -F K, D (Y K j ) • n h j • n dγ = 0, (2.81) 
whose satisfaction for any cell K ∈ τ h yields a natural assumption on the shape of the lifting functions. Indeed, for the discrete conservation principle (2.81) to hold without having to impose global constraints, it requires the corrected flux on a given face to be independent from its behaviour on any other one. We therefore ask each function h j , j ∈ 1, N C to have a boundary support restricted to the face on which its associated point

x j ∈ κ C lies, i.e. ∀j ∈ 1, N C , ∀f ∈ ∂K, s.t. x j ∈ f, (h j • n) |f ≡ 0. (2.82) 
Note Such a condition means in watermark that each lifting function propagates the correction amount obtained from a given face towards the interior of the cell without impacting any other face. Compatible with the relation (2.78), it is hence a very natural assumption.

The boundary behaviour of each lifting function being compactly supported on its associated face, the condition (2.81) then reduces to asking

f F K, D • n + j∈ 1, N C , x j ∈κ C ∩f F I (Y K j , Y K - j ) • n -F K, D (Y K j ) • n h j • n dγ = 0. (2.83)
for any face f ∈ ∂K of any cell K ∈ τ h . The interplay between the weighted lifting functions makes the expression (2.83) too involved to derive a general shape of the functions h j that would enforce the conservation property on top of the other conditions. However, as that we are here focusing only on the discrete level, the relation (2.83) has in practice to hold only at given quadrature points κ G . It is therefore enough to ask

g∈ 1, |κ G | ω g F K, D • n + j∈ 1, N C , x j ∈κ C ∩f F I (Y K j , Y K - j ) • n -F K, D (Y K j ) • n h j • n = 0 (2.84)
for any quadrature rule made of the points κ G and their associated weights {ω g } g∈ 1, |κ G | , holding in particular when asking the the relation

F K, D (Y K g ) • n + j∈ 1, N C , x j ∈κ C ∩f F I (Y K j , Y K - j ) -F K, D (Y K j ) • n h j (x g ) • n = F I (Y K g , Y K - g ).
to be fulfilled for any g ∈ 1, |κ G | . Generally strong, this assumption naturally holds when simply choosing the quadrature points as the correction nodes, i.e.

κ G := κ C . (2.85)
Indeed, one can then apply the relations (2.84) to the nodes κ C , that reduces by virtue of (2.78) to

F K, D (Y K j ) • n + F I (Y K j , Y K - j ) -F K, D (Y K j ) • n = F I (Y K j , Y K - j ),
holding by for any j ∈ 1, N C . The discrete conservation is therefore achieved in the sense of all quadrature rules having for stencil (2.85).

Summary of the requirements on the correction function design

So far, we could set a general structure of the correction function F K, C and derive conditions over the lifting functions h j , j ∈ 1, N C so that the resulting numerical is consistent and conservative. However, no proper shape for the lifting function could yet be derived. To this aim, let us summarise the admissibility conditions applying on the lifting functions h j , j ∈ 1, N C .

Admissibility conditions 2.4.1 Admissibility criterion on lifting functions

Let h j , j ∈ 1, N C be a lifting function associated to the discretisation point

x j ∈ κ C . Its definition can contribute to the expression (2.77) of the correc- tion function F K, C whenever (h K, C j • n) |∂K ∈ w ∈ L 2 (∂K), ∀f ∈ ∂K, w |f ∈ P k (f ) , (2.74 
)

h j (x l ) • n |∂K = δ jl , ∀ j ∈ 1, N C , ∀ x l ∈ κ C , (2.78) 
(h j • n) |f ≡ 0, ∀ j ∈ 1, N C , ∀f ∈ ∂K, s.t. x j ∈ f. (2.

82)

We can here observe that no constraint has been yet formulated within the cell, allowing us to define freely the lifting functions as members of a finite dimensional variational space in which the properties (2.74), (2.78), and (2.82) are either obtained naturally or can be enforced. all have a simplicial shape, each lifting function can be taken in the (N C -1) th order Raviart -Thomas space, that is as

A framework for admissible correction functions

RT k (K) := (P k (K)) d + x P k (K) for k := N C -1 (see Section 3.2.
1 for a more detailed description). Indeed, there, the condition (2.74) is obtained by construction, and the nature of the Raviart -Thomas space allows to consider this sole polynomial characterisation as being part of the global characterisation of any function living in the (N C -1) th order Raviart -Thomas space. Thus, given a basis function of Raviart -Thomas, one can initially define the set of functions h j as the subset of basis functions that characterise the boundary behaviour of the normal components, requiring it to form the nodal basis of RT k (K) |∂K that is associated to the discretisation points κ C . Namely, for all j ∈ 1, N C the lifting functions thus read

h j : K -→ R d x -→ (x + n f ) l f, j (x), f ∈ ∂K s.t. x j ∈ f, (2.86) 
where l f, j denotes here the Lagrangian function that corresponds to the node x j among the set that is associated to the points {x j ∈ κ C , x j ∈ f }, and for which the detail of the construction can be found in e.g. [START_REF] Ervin | Computational bases for RTk and BDMk on triangles[END_REF] or [START_REF] Abgrall | A class of finite dimensional spaces and H-(div) conformal elements on general polytopes[END_REF]. Indeed providing a basis of RT k (K) |∂K , this choice however does not correspond to any subset of the classical Raviart -Thomas elements basis, being entirely modal.

If the discretisation space is chosen as being the Raviart -Thomas one, the considered element are thus differ from the original setting.

This choice yields to define correction functions (2.77) that also lives in the (N C -1) th order Raviart -Thomas space by linearity of the their construction with respect to the lifting functions. Hence, the finite dimensional space that is associated to the discrete correction functions reads

V C (K) := (P k (K)) d + x P [k] (K),
from which the comprehensive flux discretisation framework can be inferred. Considering conjointly the two variational spaces V D (K) and V C (K) in which parts of the corrected approximate flux function can be expressed, one can observe that the comprehensive flux discretisation takes place in the finite dimensional polynomial space

V (K) = V D (K) + V C (K) = (P k (K)) d ⊕ x P [k] (K), where ζ = {ζ i , i ∈ 1, d } is the set of all permutations of (1, • • • , d), see Section 3.2.
1.1 of Chapter 3 for more details, and that the overall characterisation is unisolvent in V (K). 

Σ V (K) is unisolvent in V (K).
Proof. As in this specific case we can derive the relation V D (K) ⊂ V C (K) = V (K), the above statement follows immediately from Proposition 2.4.1. Indeed, the space V (K) being here a polynomial, any subset

Σ C ∩ of Σ C that contains (k)(k+1) 2
degrees of freedom would characterise any polynomial of degree k defined on K. As the dimension of Σ C is by construction bigger or equal to (k)(k+1) 2 , the hypothesis of Proposition 2.4.1 apply and the unisolvence of the comprehensive flux discretisation associated to the Flux Reconstruction scheme (2.88) follows.

Once the boundary setting is defined, it is then possible whenever N C > 1 to refine the definition of each lifting function. Indeed, in this case, the dimension of the Raviart -Thomas space is greater than the dimension of its restriction on the boundary. The description of the Raviart -Thomas space is then completed by other basis function, whose normal component vanish on all boundaries, the polynomial representation of the any function's normal component being already complete by using the set of nodal basis functions of RT N C -1 (K)|∂K. One can therefore modify each of the predefined correction functions h j , j ∈ 1, N C by adding a linear combination of those complementary basis functions without destroying the properties required for fulfilling the Admissibility conditions 2.4.1. The characterisation of this linear combination can therefore be done upon constraints ensuring stability and physical relevance of the solution, as we will see in Section 2.5. Minimum freedom amount to fulfil the inner constraint

h j (x l ) • n = δ jl
As many nodes per face as correction points -1 However, up to the author knowledge the definition of the Raviart -Thomas space is limited to simplicial cells, and can be straightforwardly extended only to quadrilateral cells. A new setting is therefore required for allowing the use of general polygonal shapes, and will be the object of the entire Chapter 3.

Solution update given the reconstructed flux

Given the definition (2.77) of the correction function built on functions fulfilling the Admissibility conditions 2.4.1, the flux reconstruction scheme as presented in [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF] is now conservative and consistent. We can therefore derive the proper expression of the update procedure initiated in (2.73), by providing a precise definition of the operator D h . It comes

dY K S dt = -∇ • F K, D (x m ) -∇ • F K, C (x m ) (2.87) = -∇ • (F K, D )(x m ) - j∈ 1, N C (α j ∇ • h j (x m )) (2.88)
that in practice reduces to (2.73)

dY K S dt = - σ∈Σ F 1 F K 1, σ ∂l σ ∂x 1 (x m ) + σ∈Σ F 2 F K 2, σ ∂l σ ∂x 2 (x m ) -(∇ • F K, C )(x m ) = - σ∈Σ F 1 F K 1, σ ∂l σ ∂x 1 (x m ) + σ∈Σ F 2 F K 2, σ ∂l σ ∂x 2 (x m ) - j∈ 1, N C α j ∇ • h j (x m ),
ending the definition of the numerical scheme and allowing us to design further constraints on the lifting functions to enforce stability properties.

K 1 2 3 4 K K -

Solution reconstruction

Point-values Interpolation

Flux reconstruction

Point-values Initial flux approximation Correction function Approximate flux

Procedure (for each discrete point) Let us now derive a possible definition of constraints to apply on the lifting functions for the resulting Flux Reconstruction scheme to be entropy conservative and to provide a physically relevant solution. To this aim, we follow the construction of [START_REF] Abgrall | On the Connection between Residual Distribution Schemes and Flux Reconstruction[END_REF] and rely on a parallel between the Flux Reconstruction and Residual Distribution frameworks, deriving an entropy conservative scheme in the Residual Distribution framework by introducing a correction term. This term is finally exploited to provide conditions over the lifting functions for the Flux Reconstruction scheme to be entropy conservative.

Residual distribution framework

Very general, the Residual Distribution approach tackles the problem (2.1) by constructing a discrete dual formulation. Namely, instead of expressing the solution from a finite dimensional set of basis functions and update it by approximating the dynamics locally on control volumes that match with the mesh cells, Residual Distribution schemes exploit the definition of the degrees of freedom and act on the mesh variational dual.

General concept

The definition of a Residual Distribution scheme classically starts by selecting a finite dimensional variational space V h in which the operator D h F will be discretised, a trial space W h where to express the discretised solution, and a set of degrees of freedom Σ h having for dimension |W h | and whose values characterise any function of the trial space.

The structure of those spaces are chosen piecewise, that is, there exists a conformal mesh τ h and finite dimensional variational spaces V and W so that

V h := {V (K), K ∈ τ h }, W h := {W (K), K ∈ τ h }. Hence, one can de- fine local sets of degrees of freedom Σ V (K) describing the local dynamic in the element (K, V (K), Σ V (K) )
, and obtain a local description of the solution for each cell K by extracting the set of local degrees of freedom Σ W (K) out of Σ h that characterise locally the solution in the element (K, W (K), Σ W (K) ). Furthermore, the treatment of the boundary conditions may require specific treatments impacting the value of the solution degrees of freedom that are entirely supported on the boundary. We therefore denote for the sake of later use

Σ W (Γ) := {S ∈ Σ W (K) |Γ , K s.t. Γ ∈ K, K ∈ τ h }
the set of degrees of freedom whose support are contained on the boundary face Γ ∈ ∂τ h . Note Whenever the setting W h provides a continuous solution over Ω, Σ W (K) ∩ Σ W (K -) = ∅. However, any discontinuous setting would never share some degrees of freedom between elements, as even though their expressions may be identical, the restriction to the boundary of the space they are affiliated with would be different, and so might be their associated values.

The description of the solution and dynamics so defined, the total impact of the local fluxes on the approximate dynamics is then evaluated for each primal element, contributing to the values of the degrees of freedom characterising the functions living in W (K) accordingly to a given weighting (see an illustration in Figure 2.24). Both the choice of the weighting proportions and of the initial dynamics approximation therefore define the numerical scheme.

Framework definition

Let us now derive the general expression of a Residual Distribution scheme by considering the formulation (2.63) and a conformal mesh τ h that approximates the domain Ω. There, the first step of the approximation procedure is to consider the impact of the relation (2.63) over the entire computational domain, that is, to ask the total contribution of the dynamic to the state evolution to preserve all the conservation principles acting on Ω, namely

τ h ∇ • F(Y h ) dx - ∂τ h g dx = 0.
(2.89)

Using then the piecewise structure of the approximate solution Y h and foreseeing a local piecewise dynamics approximation, we can split the relation over each cell and write

K∈τ h K ∇ • F(Y h ) dx - Γ∈∂τ h f F(Y h ) • n -F b (Y h , g) dx = 0, (2.90) 
where we reformulated the boundary conditions in the same manner as when deriving the relation (2.65). Thereon, given that each local solution has a compact support on W (K), we can consider the total contribution of the local fluxes to the global dynamic by defining the total residuals, the set of fluctuation terms

       Φ K (Y h ) = K ∇ • F(Y h ) dx (2.91a) Φ Γ (Y h ) = - Γ F(Y h ) • n + F b (Y h , g) dx, (2.91b 
)

associated to the element (K, W (K), Σ W (K) ), K ∈ τ h . The relation (2.

90) then reduces to

K∈τ h Φ K (Y h ) + Γ∈∂τ h Φ Γ (Y h ) = 0, (2.92) 
expression from which a dual formulation of the problem (2.89) can be derived by having fractions of these residuals contribute to the values of the degrees of freedom supported on the cell. To this aim, we define for any cell

K ∈ τ h a set of coefficients β K S , S ∈ Σ W (K) and β Γ S , S ∈ Σ W (K) |Γ , K s.t. Γ∈K so that S∈Σ W (K) β K S = 1 and S∈Σ W (Γ) β Γ S = 1 (2.93)
and construct the associated partial residuals

Φ K S (Y h ) = β K S Φ K (Y h ) ∀ S ∈ Σ W (K) (2.94a) Φ Γ S (Y h ) = β Γ S Φ Γ (Y h ) ∀ S ∈ Σ W (Γ) , (2.94b) 
Since then by the (2.93) we obtain the conservation property

S∈Σ W (K) β K S Φ K (Y h ) = Φ K (Y h ) and S∈Σ W (Γ) β Γ S Φ Γ (Y h ) = Φ Γ (Y h ), (2.95) the relation (2.92) becomes K∈τ h S∈Σ W (K) Φ K S (Y h ) + Γ∈∂τ h S∈Σ W (Γ) Φ Γ S (Y h ) = 0. (2.

96)

Lastly, focusing on the degrees of freedom rather than on each element, one can rearrange the order of terms so that the above relation turns into

S∈Σ h K∈τ h , S∈Σ W (K) Φ K S (Y h ) + Γ∈∂τ h , S∈Σ W (Γ) Φ Γ S (Y h ) = 0. (2.

97)

The partial residuals being independent from each other, it reduces to asking

K∈τ h , S∈Σ W (K) Φ K S (Y h ) + Γ∈∂τ h , S∈Σ W (Γ) Φ Γ S (Y h ) = 0, ∀S ∈ Σ h , (2.98) 
allowing in turn to approximate the dynamics (2.61) as simply as

dY K S dt = - K∈τ h , S∈Σ W (K) Φ K S (Y h ) + Γ∈∂τ h , S∈Σ W (Γ) Φ Γ S (Y h ) , ∀S ∈ Σ h . (2.

99)

The values

Y h S , S ∈ Σ h of the discrete solution Y h in (τ h , W h , Σ h
) can therefore be updated without having to know explicitly the basis functions that are associated to the set of degrees of freedom Σ W (K) in each space W (K). Any Residual Distribution scheme therefore considers a dual perspective, using implicitly control volumes C S that encompass the support of their associated degree of freedom S ∈ Σ h , whose volume correspond to the sum of the β K S |K| area portions of each primal cell K contributing to the local dynamic (see Figure 2.25). Hence, in the following, the term dual mesh is to be understood in the variational sense that is associated to W h , not geometrically. 
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Practical definition of a Residual Distribution scheme

Given the nature of the update procedure (2.99), defining a Residual Distribution scheme reduces in practice to approximating the total residuals (2.91) and determining a distribution scheme (2.94) guaranteeing (2.93). If those two choices can be done independently, a single comprehensive discretisation can be performed by designing directly the expression of the partial residuals under the more general condition

S∈Σ W (K) Φ K S (Y h ) = Φ K (Y h ) and S∈Σ W (Γ) Φ Γ S (Y h ) = Φ Γ (Y h ), (2.100) 
replacing (2.93). Indeed, the residual distribution (2.97) only involves the partial residuals, and the constraint (2.92) would be ensured by (2.100), making the scheme naturally conservative regardless the construction process.

Additional properties can then be enforced by applying further constraints on the distribution coefficients, or by choosing wisely the approximate dynamics. Limiting and stabilising techniques can also be employed [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF], either modifying the distribution weights or adding extra stabilisation terms that preserve the conservation constraints. The Residual Distribution framework is therefore extremely flexible and allows us to recast a wide variety of numerical schemes. We there exemplify this feature by reformulating a subclass of the Discontinuous Galerkin schemes described in the above Section 2.4.1, that will be of use when deriving an entropy conservative Flux Reconstruction scheme in the later Section 2.5.

Recasting a Discontinuous Galerkin scheme

Let us consider again the Discontinuous Galerkin framework presented in Section 2.4.1 and show that any scheme can be reformulated in the Residual Distribution framework whenever the characterisation of the test and trial spaces are chosen identical. To begin with, we start by recalling that the general formulation of a Discontinuous Galerkin method writes

- K∈τ h K ∇ϕ • F(Y K ) dx + ∂K ϕ F n (Y K , Y K -) dx + Γ∈τ h Γ ϕ (F(Y Γ ) • n -F b (Y Γ , g)) dx = 0, ∀ ϕ ∈ V h , (2.68)
where F n and F b are numerical fluxes consistent with F, and where the approximate solution Y h is looked for in the trial space

W h = {w ∈ L 2 (Ω, R q ) s.t. ∀K ∈ τ h , w |K ∈ W (K) := (P k (K)) d }.
Choosing then the test space V h as

V h = {v ∈ L 2 (Ω, R q ) s.t. ∀K ∈ τ h , v |K ∈ V (K) := P k (K)},
one can select a same characterisation for the test function and for each component of the solution, all being polynomials of degree k ∈ N. Thus, defining a set of degrees of freedom P k (K) whose values entirely determine functions in P k (K) and denoting by {ϕ σ } σ∈ P k (K) its associated dual basis in P k (K), one can decompose the expression of each term as

Y K = σ∈ P k (K) Y K σ ϕ σ and ϕ = σ∈ P k (K) α σ ϕ σ , (2.101) 
where Y K σ ∈ R q stands for the discrete solution values and α σ ∈ R for the decomposition coefficients of the test function ϕ on the associated basis of P k (K). Thus, as the expression (2.68) is linear in ϕ, finding a solution Y h reduces to finding the discrete values

{Y K σ , σ ∈ Σ P k (K) , K ∈ τ h } whose associated recon- struction Y h fulfils - K∈τ h K ∇ϕ σ • F(Y K ) dx + ∂K ϕ σ F n (Y K , Y K -) dx (2.102) + Γ∈τ h Γ ϕ σ (F(Y Γ ) • n -F b (Y Γ , g)) dx = 0, ∀ σ ∈ Σ P k (K) .
Comparing then the relations (2.102) with the expression (2.96) of the Residual Distribution framework and using the fact that the degrees of freedom are identical for each component of the solution in W h and for any test function of V h , we can observe that considering partial residuals of the form

       Φ DG, K σ (Y h ) = K ∇ϕ σ • F(Y h ) dx + ∂K ϕ σ F n (Y K , Y K -) dx (2.103) Φ DG, Γ σ (Y h ) = Γ ϕ σ F(Y Γ ) • n -F b (Y Γ , g) dx (2.104)
define a Discontinuous Galerkin scheme in the Residual Distribution framework whenever the basis {ϕ σ } σ∈Σ P k (K) is nodal. Indeed, so defined, the functions {ϕ σ } σ∈Σ P k (K) would form a Lagrangian basis of P k (K), ensuring through the relation σ∈Σ P k (K) ϕ σ = 1 that the total residuals

           Φ DG, K (Y h ) = σ∈Σ P k (K) K ∇ϕ σ • F(Y h ) dx + ∂K ϕ F n (Y h , Y h, n ) dx (2.105) Φ DG, Γ (Y h ) = σ∈Σ P k (Γ) Γ ϕ σ F(Y h ) • n -F b (Y h , g) dx, (2.106) 
fulfil the conservation relations (2.100). Furthermore, the degrees of freedom being then of pointwise nature, the evolution of the discrete solution is immediately intelligible through the update relations (2.99), and the dual mesh is corresponds exactly to the illustration provided in Figure 2.25. The practical definition of the scheme then only relies on the definition of the numerical fluxes F b and F n and of the quadrature rules.

Residual Distribution scheme properties

Having described the general framework of Residual Distribution schemes and observed the flexibility of its definition by reformulating a subclass of Discontinuous Galerkin scheme, let us state conditions on the residuals so that the designed Residual Distribution scheme provides reliable and accurate approximate solutions. For interested readers, proofs of the presented results can be found in [START_REF] Abgrall | High order fluctuation schemes on triangular meshes[END_REF][START_REF] Abgrall | Some remarks about conservation and entropy stability for residual distribution schemes[END_REF][START_REF]Some remarks about conservation for residual distribution schemes[END_REF] and [START_REF]A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes[END_REF].

First of all, let us recall that the conservation property of a Residual Distribution scheme can be ensured directly at the level of the partial residuals, as already observed in the above developments, requiring the relation (2.100).

Proposition 2.4.1 Conservative Residual Distribution schemes

Any Residual Distribution scheme defined by (2.98) is conservative whenever its associated partial residuals fulfil the relations

σ∈Σ W (K) Φ K σ (Y h ) = Φ K (Y h ) and σ∈Σ W (Γ) Φ Γ σ (Y h ) = Φ Γ (Y h ) (2.100) for consistent approximations        Φ K (Y h ) K ∇ • F(Y h ) dx Φ Γ (Y h ) - Γ F(Y h ) • n + F b (Y h , g) dx (2.107)
of the total residuals.

Once a conservative Residual Distribution scheme has been defined, one can guarantee the convergence of the approximate solution towards a weak solution of the steady analogue of the problem (2.1) by reformulating of the classical Lax-Wendroff theorem in the Residual Distribution framework, whose application only requires the satisfaction of an a-posteriori estimate on the partial residuals. The well-definition of any Residual Distribution scheme is therefore ensured by the following theorem.

Theorem 2.4.1 Lax-Wendroff theorem for Residual Distribution

Let us consider a sequence of shape-regular meshes (τ h ) h→0 on which is defined a Residual Distribution scheme (2.98). Assuming that for any mesh τ h and any cell K ∈ τ h • the partial residuals satisfy the conservation relations (2.100),

• the resulting approximate total residuals are consistent with (2.91),

• there exists a constant M ∈ R + so that the a-posteriori error estimate • there exists a function Y ∈ L 2 (Ω, R q ) such that up to a subsequence, • the partial residuals

Φ K S (Y K ) ≤ c S, S ∈Σ W (K) Y K S -Y K S ( 2 
Y h -Y L 2 (Ω) → 0, then the limit Y = lim h→0 Y h exists
{Φ K S } S∈Σ W (K) and {Φ Γ S } S∈Σ W (Γ) further satisfy            S∈Σ W (K) U S , Φ K S ≥ ∂K G n (U K , U K-) dγ, ∀ K ∈ τ h , (2.109a) σ∈Σ W (Γ) U S , Φ Γ S ≥ Γ G n (U Γ , U b ) -G(U Γ ) • n dγ, ∀ Γ ∈ ∂τ h , (2.109b)
for any shape-regular mesh τ h and a given quadrature rule denoted , the limit weak solution Y = lim h→0 Y h is entropy stable, i.e. for any ϕ ∈ C 1 (Ω) such that ϕ > 0, it holds

- τ h ∇ϕ • G(Y ) dx + ∂τ h ϕ G(g) • n dγ ≤ 0,
where denotes the scheme's quadrature rule. Moreover, when the equality holds, the scheme and limit weak solution are further entropy conservative.

Having defined the Residual Distribution framework and observed the flexibility it confers to the scheme design, we can now derive residuals expressions that fulfil all the assumptions of Proposition 2.4.1, Proposition 2.4.2, and Theorem 2.4.1, ensuring the resulting scheme to be at least entropy conservative.

Methods strengths and drawbacks

To conclude this chapter, let us put in perspective the example of numerical methods and frameworks described in the above three sections with their practical usability and relevance with respect to the nature of the problem that we wish to tackle, described in Section 2.1.

Discontinuous Galerkin

The first approach presented in Section 2.4.1 consists of designing Discontinuous Galerkin methods that consider a finite element perspective. Their design is thus extremely compact and benefits from an extensive flexibility as both approximations of the flux functions and the solution are considered as cross-cell discontinuous. However, as a side-effect, the practical use of any Discontinuous Galerkin scheme requires a large number of degrees of freedom, further rapidly growing along with any mesh refinement. Moreover, the method is non-conforming, the space V h not being contained in C ∞ 0 (Ω), and is known to be unstable by itself [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF][START_REF] Hu | An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems[END_REF]. It thus requires the use of further stabilisation terms [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF], and even limiting techniques [START_REF] Krivodonova | Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws[END_REF] across the discontinuities that may develop and propagate in the approximate solution.

Flux Reconstruction As flexible as the Discontinuous Galerkin framework though being entirely discrete, the Flux Reconstruction approach reduces the impact that may have the discontinuity of the flux to the dynamic approximation by introducing a correction term. This correction being determined on a boundary stencil, the continuity of the comprehensive flux approximation is then retrieved compactly and only requires a very small computational effort. However, the solution and initial flux points being located within the cell, the update procedure remains sensitive to the shape of the lifting functions that propagates the correction amount from the boundary to the solution points. As a consequence, ensuring the stability of the scheme may be delicate and requires to consider the comprehensive discretisation.

Residual Distribution framework Very general and encompassing particularly both the Flux Reconstruction and Discontinuous Galerkin frameworks under some weak assumptions, Residual Distribution methods act on the mesh variational dual and can consider either a direct or a variationalbased formulation. Both the discrete solution and dynamics are then described through the values of degrees of freedom rather than from coefficients associated to given basis functions. Hence, one does not require the explicit knowledge of the basis functions that are dual to the selected degrees of freedom characterisation for updating the solution, and the framework is not bound to any specific geometry. Especially, any hybrid mesh containing possibly non-convex polygonal cells can be considered, preventing the need of designing conformal meshes. However, as in the Flux Reconstruction and Discontinuous Galerkin framework, additional stabilisation terms may be required and are thus subject to constraints supported on control volumes that are made of several primal cells. In addition, the convergence towards a physically relevant solution is still not ensured by definition of the framework itself, requiring close investigations and requires for example the addition of further entropy stabilisation terms.

We now propose to go in this direction and to derive an entropy conservative scheme that can be expressed either in the Residual Distribution or in the Flux Reconstruction framework.

An entropy conservative scheme

Making use of the Residual Distribution framework flexibility and results on entropy stability and conservation, we first develop a simple criterion that is sufficient for the reformulated scheme to be at least entropy stable. We then go further and propose a construction of a Residual Distribution scheme yielding through a reciprocal recast an entropy conservative Flux Reconstruction scheme that can be used on any polygonal mesh, thus extending the results of [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF][START_REF] Huynh | High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids[END_REF][START_REF] Mengaldo | Dealiasing techniques for high-order spectral element methods on regular and irregular grids[END_REF][START_REF] Vincent | A new class of highorder energy stable flux reconstruction schemes[END_REF][START_REF] Vincent | An extended range of stable-symmetric-conservative Flux Reconstruction correction functions[END_REF] that could be applied only to simplicial meshes or only granting linear stability.

We thus start by reformulating the Flux Reconstruction scheme derived in Section 2.4.2 for its expression to fit the Residual Distribution framework, and ask the inequality relations (2.109) to hold for the resulting residuals. Those relations already providing a criterion for the scheme to be entropy stable, we then focus on deriving a specific residuals expression that ensures the equality case, and thus the entropy conservativeness of the resulting scheme. Lastly, by remembering that the only freedom left in the design of the initial Flux Reconstruction scheme lies in the expression of the correction functions and having in perspective the obtained entropy conservative residuals, we derive a system whose solutions provide correction functions ensuring that the resulting Flux Reconstruction schemes is entropy conservative directly in its original formulation.

Reformulation of a Flux Reconstruction scheme

To begin with, let us recast the Flux Reconstruction scheme derived in the two last paragraphs of Section 2.4.2 into the Residual Distribution framework. We use here the initial formulation (2.88) from which the discrete operator D h F can be expressed at the solution points κ Y of any element K ∈ τ h as

D h F (x m ) := -∇ • (F K, D )(x m ) - j∈ 1, N C (α j ∇ • h j (x m )), ∀x m ∈ Σ Y , (2.110)
any Flux Reconstruction scheme having an entirely pointwise definition. Furthermore, let us recall that by choosing identical flux and solution points, i.e. by defining κ F = κ Y , and up to assuming

h j (x l ) • n = 1 ∀j ∈ 1, N C , ∀x l ∈ κ C , (2.78) 
the scheme (2.88) is conservative at any discrete level that quantifies the cellwise local conservations through quadrature rules whose associated points coincide with the flux points within the cell and with correction points on the boundary. In other words, defining the quadrature points κ G = κ F for an inner quadrature and κ G = κ C for a boundary quadrature, it comes 

g∈ 1, |κ G | ω g ∇ • (F K, D g ) + j∈ 1, N C (α j ∇ • h j (x g )) = 0, ∀K ∈ τ h , ( 2 
ϕ = {ϕ σ } σ∈ 1, |P k (K)| of P k (R)
that is associated to the discrete solution points κ Y . We then obtain for any cell K ∈ τ h the relation

σ∈Σ P k (K) g∈ 1, |κ G | ω g -ϕ σ ∇ • (F K, D g ) + ϕ σ j∈ 1, N C (α j ∇ • h j (x g )) = 0. (2.111)
Thus, choosing for the Residual Distribution scheme a quadrature rule that is expressly based on the points κ G for each cell K, we can then define the residuals

Φ K,F R σ (Y h ) := K ϕ σ ∇ • F K, D (Y K ) + ϕ σ j∈ 1, N C (α j ∇ • h j ) dx. (2.112) 
An analogous reasoning can be performed on the boundary, yielding to defining the boundary residuals as

Φ Γ,F R σ (Y h ) = Γ ϕ σ F I (Y h , g) -F h (Y h ) • n dγ, (2.113) 
where γ represents the path skimming the faces. Hence, a Residual Distribution formulation of the Flux Reconstruction scheme (2.88) reads

K⊂τ h , σ∈K Φ K,F R σ (Y h ) + Γ⊂∂τ h , σ∈Γ Φ Γ,F R σ (Y h ) = 0, (2.114) 
and is entirely determined by the definition of the lifting functions {h j } j∈ 1, N C . However, even though this last formulation indeed expresses a valid reformulation of the Flux Reconstruction scheme, the discrete conservation principle obtained in (2.84) does not necessarily transfer to the discrete setting considered in (2.100).

Note

The below development are only focused on adjusting the inner residuals for the scheme to fulfil the inequality (2.109a), and are enough to retrieve an entropy stable Flux Reconstruction scheme. Nevertheless, one should keep in mind that the definition of boundary residuals has a strong impact on the scheme relevance and properties. For interested readers, the detailed analysis [START_REF]Some remarks about conservation for residual distribution schemes[END_REF] can therefore only be recommended.

Discrete conservation of the recast scheme

The derivation of a Flux Reconstruction scheme that is also conservative in its Residual Distribution formulation can be performed by designing a correction function whose expression naturally enforces the conservation of (2.112)-(2.114) in the sense of (2.100). To ease its selection, we propose here a selection criterion based on the residuals expressions. To this aim, we start by noticing that the formulation (2.112) shares an extensive similarity with the Discontinuous Galerkin scheme after having been reformulated as (2.102) in Section 2.4.3. Indeed, applying a Gauss formula on the last term of (2.112), it comes

Φ K,F R σ (Y h ) := - K ∇ϕ σ • F K, D (Y K ) dx - K ∇ϕ σ • j∈ 1, N C α j h j dx + ∂K ϕ σ j∈ 1, N C α j h j • n + F K, D (Y K ) • n dγ, (2.115) 
Recalling then that

α j = F I (Y K j , Y K - j ) • n -F K, D (Y K j )
• n , that the quadrature points of the boundary integral are taken as κ C , and that the assumption h j (x l )•n = δ jl holds for any j ∈ 1, N C and any x l ∈ κ C , it can be observed that

j∈ 1, N C α j h j (x g ) = 1 at each boundary quadrature point x g ∈ κ G , reducing the expression (2.115) to Φ K,F R σ (Y h ) := - K ∇ϕ σ • F K, D (Y K ) dx - K ∇ϕ σ • j∈ 1, N C α j h j dx + ∂K ϕ σ F I (Y K , Y K -) dγ, (2.116) 
expression sharing similarities with the formulation (2.103). Therefore, up to choosing a quadrature rule for the Discontinuous Galerkin scheme that is identical to the one selected for defining the expression (2.112) of the Flux Reconstruction scheme (2.88), one can identify the correction term

r σ := - K ∇ϕ σ • j∈ 1, N C α j h j dx (2.117)
and derive the relation

Φ K,F R σ (Y h ) = Φ K,DG σ (Y h ) + r σ . (2.

118)

Straightforward and not particularly useful in practice, this last formulation however provides a selection criterion over the correction function (2.77) for the Flux Reconstruction scheme to be discretely conservative in the Residual Distribution sense. Indeed, the reformulated Discontinuous Galerkin scheme (2.103) already being conservative, the relation (2.100) combined with the linearity of the integral operator implies that the total contribution of the correction terms to a single degrees of freedom should vanish, forcing the terms r σ to only modify the distribution of the total residuals locally in their associated primal element. In other words, we require 

σ∈Σ P k (K) r σ = - σ∈Σ P k (K) K ∇ϕ σ • j∈ 1, N C (α j h j ) dx = 0. ( 2 

Entropy conservation of the recast scheme

As introduced in Section 2.1.5 and considered in Section 2.4.3 while stating the properties of a Residual Distribution scheme, ensuring that the weak solution towards which the approximated ones converge as h → 0 is physically relevant can be done by asking the entropy conditions (2.109a) to be fulfilled for any h ∈ R + and a given entropy pair (S, G). Those conditions reading here under the assumption that the boundary quadrature points verify κ G = κ C , any approximate solution Y h should therefore fulfil

S∈Σ W (K) U S , Φ K S ≥ ∂K G n (U K , U K-) dγ ∀K ∈ τ h (2.

120)

for U = ∇ Y S(Y ) the entropy variable that is associated to the entropy pair (S, G) and where G n is a given numerical entropy flux consistent with G • n.

Correcting the Flux Reconstruction scheme In practice, enforcing the relation (2.120) reduces to modifying the residuals Φ K,F R σ defined in (2.115) so that the assumptions of the Proposition 2.4.1, Proposition 2.4.2, and Theorem 2.4.1 are fulfilled. There, a simple approach is to enforce the property by construction, considering a modification of the residuals that is similar to the one already performed in (2.118) for turning a Discontinuous Galerkin scheme into an Flux Reconstruction one. Namely, we add a correction terms τ σ to each of the partial Flux Reconstruction residuals Φ K,F R σ , modifying their local distribution so as to enforce the entropy constraint (2.120) while preserving the conservation relation (2.100). Hence, as it reduces in the end to constructing an entropy stable Flux Reconstruction scheme out of an initial Discontinuous Galerkin formulation by modifying its residuals through two correction terms, we express the entropy stable residuals Φ CS σ as

Φ CS σ := Φ K,F R σ + τ σ = Φ K,DG σ + r σ + τ σ , (2.121) 
where the correction terms r σ and τ σ modulates the initial Discontinuous Galerkin approximation of the flux dynamics. In particular, the term r σ retrieves the cross-cell flux continuity, is of the form (2.117) and is already constrained by (2.119). A-contrario, the expression of τ σ is responsible for the entropy stability of the comprehensive numerical scheme and can be designed freely, provided that its representation in V C (K) makes the comprehensive characterisation Σ V (K) unisolvent for V (K), that the entropy condition (2.120) is enforced, and that the conservation relations (2.100) are preserved. Yet, as we are not interested here in either of the properties separately, those two correction terms will be considered as a whole in below developments, easing the presentation of the construction.

Achieving entropy stability

Let us first present a condition on the correction term r σ + τ σ ensuring that the resulting scheme is entropy stable. To this aim, we observe that enforcing the entropy stability condition (2.120) can be done by modifying the Discontinuous Galerkin residuals from terms that depend on the local entropy error. Indeed, as here the proposed construction of the numerical scheme (2.121) relies on a corrective approach, the entropy stability can be obtained a-posteriori. It is therefore enough to compute the total entropy error produced on each primal element of the Discontinuous Galerkin scheme and to compensate it locally by correcting accordingly the value of the partial residuals involved in the approximation of the local dynamics.

Even though a wide range of possibilities exist for distributing relevant correction amounts to the partial residuals, one should keep in mind that the comprehensive definition of the corrected residuals should preserve the Flux Reconstruction nature of the resulting numerical scheme. Hence, as a first consequence, the entropy error should be evaluated on each primal element through the quadrature rule of the initial Flux Reconstruction scheme, i.e. by defining

E := ∂K G n (U K , U K-) dγ - σ∈K U K σ , Φ K,DG σ (2.122)
for G n a given numerical entropy flux consistent on each boundary with G • n.

Equally crucial to the well-definition of the scheme, a second consequence relates to the conservation relations. Indeed, while the correction terms should preserve the conservation relations (2.100), we already know that the Flux Reconstruction nature of the numerical scheme asks the term r σ to fulfil (2.119). An analogous condition has therefore to hold as well for τ σ alone, i.e.

σ∈Σ P k (K)
r σ = 0 and

σ∈Σ P k (K) τ σ = 0. (2.

123)

Assuming then that the correction term τ σ admits a formulation that makes the set of degrees of freedom Σ V (K) characterising the comprehensive flux ap-proximation unisolvent for the space V (K), one can use the fact that the mapping Y → U (Y ) is bijective to create correction terms that are constructed from the value of the non-corrected solution itself. One can then particularly ask the correction terms to fulfil the relation

σ∈Σ P k (K) U σ , r σ + τ σ ≥ E, (2.124) 
ensuring the entropy stability of the resulting Flux Reconstruction scheme. Indeed, given the definition (2.122) it then comes

σ∈Σ P k (K) U σ , Φ K,CS σ - ∂K G n (U K , U K-) dγ = σ∈Σ P k (K) U σ , r σ + τ σ -E ≥ 0.
The equation (2.120) is then fulfilled and we naturally get entropy conservation for our Flux Reconstruction scheme (2.121).

Let us now put the constraints that are inherent to the Flux Reconstruction structure aside and focus momentarily on the Residual Distribution framework alone. We there derive in the next paragraph an expression of the correction term r σ + τ σ for which the equality holds, enforcing the entropy conservation of the resulting Residual Distribution scheme. We will then be able to fall back on the Flux Reconstruction framework in the second next paragraph by adding one further assumption on the shape of the correction term τ σ , and thus provide a definition of an entropy stable Flux Reconstruction scheme both in its classical expression (2.88) and in its Residual Distribution expression (2.121).

Achieving entropy conservation at the residuals level In light of the developments of the previous paragraphs, asking a recast Flux Reconstruction scheme to be entropy conservative requires to find an expression of the correction terms r σ and τ σ that fulfil

           σ∈Σ W (K) (Φ K,CG σ + r σ + τ σ ) = ∂K F n (Y K , Y K-) dγ. (2.125a) σ∈Σ W (K) U σ , Φ K,CG σ + r σ + τ σ = ∂K G n (U K , U K-) dγ.
(

2.125b)

There, using the bijective mapping U : Y → ∇ Y S(Y ), considering the term r σ in the shape (2.117), and recalling our above developments, it reduces to asking 

         σ∈Σ W (K) r σ = 0 and σ∈Σ W (K) τ σ = 0, (2.126) σ∈Σ W (K) U σ , r σ + τ σ = E (2.
r σ + τ σ = β(U σ -U ), (2.128) 
for any σ ∈ Σ W (K) , where 

β = E σ∈Σ W (K) (U σ -U ) 2 and U = 1 |Σ W (K) | σ∈Σ W (K) U σ , ( 2 
τ σ = σ∈Σ W (K) r σ + σ∈Σ W (K) τ σ = σ∈Σ W (K) (r σ + τ σ ) = σ∈Σ W (K) β (U σ -U ) = σ∈Σ W (K) β U σ - σ∈Σ W (K) β U σ = 0.
The entropy conservation relation also follows from a simple computation. Indeed, writing

σ∈Σ W (K) U σ , r σ + τ = σ∈Σ W (K) U σ , β (U σ -U ) = σ∈Σ W (K) α U σ , U σ -U σ , U σ = σ∈Σ W (K) β U σ , U σ -2 U σ , U σ + U σ , U σ = β σ∈Σ W (K) U σ -U 2 = E,
the relation (2.127) is automatically obtained.

So defined, the corrected scheme (2.121) can also be classified as a Residual Distribution one, and is both conservative and entropy conservative in the discrete sense. Furthermore, the entropy error is controlled by an estimate that only depends on the spatial dimension, initial Flux Reconstruction discretisa-tion order, and the quadrature scheme (see [START_REF] Abgrall | On the Connection between Residual Distribution Schemes and Flux Reconstruction[END_REF] for a complete derivation of the estimate). Namely,

E = - σ∈K U σ , Φ σ + ∂K G n (U h , U h,-) dγ = O(h d+k+1 ). (2.130)
However, it is not clear yet that the correction terms preserves the Flux Reconstruction structure of the recast scheme. To ascertain it, let us draw a further assumption on the shape of the correction term τ σ and build a system having for unknown the correction function (2.77), whose any solution necessarily yields entropy conservation for any Flux Reconstruction scheme of the form (2.88) and can be characterised from a set of degrees of freedom Σ C that ensures the characterisation Σ V (K) of comprehensive flux approximation to be unisolvent for V (K).

Flux Reconstruction nature of the resulting entropy stable Residual Distribution scheme

Now that we could identify in Section 2.5.3 an expression of the correction terms so that the resulting Residual Distribution scheme is entropy conservative, let us ascertain the Flux Reconstruction nature of the resulting scheme.

Concluding the definition of the presented entropy conservative Flux Reconstruction scheme, a system having for unknown the correction function is in particular derived in the process, whose solvability motivates the entire Chapter 3 and whose solutions provide admissible correction functions that guarantee entropy conservation of the Flux Reconstruction scheme (2.121) in its classical definition (2.88).

Flux Reconstruction nature of the residuals A natural strategy to ensure that the scheme (2.121) enters the scope of the Flux Reconstruction framework is to prove the existence of a correction terms reformulation that guarantees to the comprehensive residuals a Flux Reconstruction structure. Following this approach and recalling all the assumptions that we already ask on the Discontinuous Galerkin partial residuals Ψ K, CG σ , a sufficient way to ensure the existence of such a reformulation is to construct a set of functions ψ j contained in V C (K) so that the correction terms r σ + τ σ can read K ϕ σ j∈ 1, N C ψ j dx for a the original number and locations of the initial correction points κ C . Indeed, so defined, the parallel with the formulation (2.116) is clearly apparent, and the expression of the unifying correction function can be expressed as simply as

ψ := σ∈ 1, N C α j ψ j .
(2.131)

Proposition 2.5.2 Existence of correction functions

There exists a set of correction functions

{ψ j } j∈ 1, N C ∈ V C (K) so that r σ + τ σ = K ∇ϕ σ j∈ 1, N C α j ψ j dx, (2.132) 
Proof. Let us first assume that the entropy correction term can be expressed similarly as the correction term defining non-corrected Flux Reconstruction scheme (2.116), that is, reads

τ σ = K ∇ϕ σ • j∈ 1, N C α j ϑ j dx (2.133)
for given lifting functions ϑ j , j ∈ 1, N C that live in the Raviart -Thomas space RT k (K). The total correction term then writing

r σ + τ σ = K ∇ϕ σ j∈ 1, N C α j (h j + ϑ j ) dx, (2.134) 
one can define the comprehensive correction function ψ j = h j + ϑ j . Recalling now the constraints (2.128) that are associated to the term τ σ to ensure the entropy conservation, and the Admissibility conditions 2.4.1 applying on both the lifting functions h j and ϑ j to preserve the consistency of the scheme, we therefore require the expression (2.131), representing the comprehensive correction function, to satisfy the Neumann problem

               K ∇ϕ σ j∈ 1, N C α j (ψ j ) dx = β (U σ -U ) (2.135) ψ j (x l ) • n |∂K = δ jl , ∀ j ∈ 1, N C , ∀ x l ∈ κ C , (2.78) 
(ψ j • n) |f ≡ 0, ∀ j ∈ 1, N C , ∀f ∈ ∂K, s.t. x j ∈ f. (2.82)
where we further ask In the case where the cell K is either a simplex or has a quadrilateral shape, a solution is guaranteed by considering each lifting function ψ j in the Raviart -Thomas space of order k ≥ min{N C -1, 1}. Indeed, there, the conditions (2.78) and (2.82) are already fulfilled by constructing the function ψ j as the nodal normal basis function associated to the correction point x j ∈ κ C , and the constraint (2.135) can be enforced by making use of the internal basis functions of the Raviart -Thomas space.

(ψ K, C j • n) |∂K ∈ w ∈ L 2 (∂K), ∀f ∈ ∂K, w |f ∈ P k (f )
In the case where the cell K is a general polytope, one however requires the existence of a specific discretisation space where the condition conditions (2.78) and (2.82) can be obtained by construction and where it remains enough freedom to adapt the lifting functions to the condition (2.135). A class of admissible discretisation space exists, whose construction will be detailed in the entire Chapter 3 and applied to any polytope, not necessarily convex. We can by example consider the particular space (3.37), in which the lifting functions can be expressed from the set of basis functions that share a similar behaviour on the boundary with the ones of the Raviart -Thomas discretisation.

Hence, for any polytopal cell K, the problem (2.78)-(2.82)-(2.135) admits a solution and a reformulation of the residual as a Flux Reconstruction correction term is possible. Highlighted in the above proof, the definition of the correction space V C (K) is therefore crucial to ensure that a given Flux Reconstruction scheme can be corrected to become entropy conservative. In particular, as the definition of the comprehensive flux discretisation framework (K, V (K), Σ V (K) ) is directly impacted by the correction space and characterisation method used to determine the correction function, one should make sure that the overall discretisation Σ V (K) is unisovlent in V (K), i.e. that the combination of the degrees of freedom characterising the features of the solutions that are described from the possibly non-empty subspace V C (K) ∩ V D (K) are not linearly dependent nor contradictory. In other words, even if so far the proposed scheme has a Flux Reconstruction structure, it belongs to the Flux Reconstruction framework only if the chosen characterisation Σ C of the correction function makes the overall characterisation Σ V (K) unisolvent in V (K). If this is granted in the simplicial and quadrilateral for any characterisation of correction functions living in the Raviart -Thomas space, verifying Proposition 2.4.1, one has however to keep it in mind when selecting the characterisation of the space H k (K) for cells having higher number of faces. 

Construction of the correction function

ψ = j∈ 1, N C α j ψ j , (2.136) 
and to define an entropy conservative Flux Reconstruction scheme in its classical expression (2.88), the consistency of the original Flux Reconstruction scheme being naturally preserved by the definition given to the terms α j .

Summary of the construction

To conclude the development of an entropy stable Flux Reconstruction scheme, let us overview its construction and highlight the necessary assumptions for its practical definition.

Theorem 2.5.1 Entropy stable Flux Reconstruction scheme

We consider here the approximation of the operator D h F associated to the semi-discrete formulation (2.61) of the problem (2.1) by the particular the Flux Reconstruction scheme given by the formulation

D h F (x m ) = -∇ • (F K, D )(x m ) -∇ • (F K, C )(x m ), x m ∈ κ Y ,
where the flux points κ F coincide with the solution points κ Y and are located within the cell K, and where the correction points κ C are distributed on the cell's boundary. The initial flux approximation F K, D is then given by (2.72), and the correction function F K, C is then chosen upon constraints ensuring to the Flux Reconstruction scheme both a Residual Distribution formulation and entropy conservation.

In particular, assuming that the correction function takes the form

F K, C := ψ = j∈ 1, N C (α j ∇ • h j ), (2.77) 
then the correction procedure preserves the consistency of the initial Flux Reconstruction scheme by defining the constant α j as

α j = (F I (Y K j , Y K - j ) • n -F K, D (Y K j )
) and requiring the lifting functions h j , j ∈ 1,

N C to fulfil        (ψ K, C j • n) |∂K ∈ w ∈ L 2 (∂K), ∀f ∈ ∂K, w |f ∈ P k (f )
(2.74)

ψ j (x l ) • n |∂K = δ jl , ∀ j ∈ 1, N C , ∀ x l ∈ κ C , (2.78) 
(ψ j • n) |f ≡ 0, ∀ j ∈ 1, N C , ∀f ∈ ∂K, s.t. x j ∈ f. (2.82)
In addition, if the lifting functions are chosen so that the correction term

ψ σ = K ∇ϕ σ • ψ dx satisfies the relation - σ∈Σ P k (K) ψ σ = 0, (2.119) 
for a given quadrature rule , any σ ∈ Σ W (K) degree of freedom, and where ϕ σ the corresponding dual basis function which are contributing to the definition of the element (K, 

W (K), Σ W (K) ) that

Conclusion and perspectives

Initially designed in the Residual Distribution framework, the entropy stable Flux Reconstruction scheme developed here is built in a corrective approach by constructing an entropy stabilisation term ensuring physically relevant and conservative solutions. Benefiting further from the shape flexibility of the Residual Distribution, the developed scheme can be used on any hybrid non-convex polygonal mesh, either in its residual expression (2.121) or in its direct formulation (2.88). Thus extending the results of [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF][START_REF] Huynh | High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids[END_REF][START_REF] Mengaldo | Dealiasing techniques for high-order spectral element methods on regular and irregular grids[END_REF][START_REF] Vincent | A new class of highorder energy stable flux reconstruction schemes[END_REF] to general polygonal grids, it is however subject to the existence of solution to the problem (2.78)-(2.82)-(2.135) for any polytope.

This problem requires in particular the existence of a finite dimensional variational space that can be partially characterised by n sets of pointwise degrees of freedom that are supported on the face f j ∈ ∂K, j ∈ 1, n , and whose leftover freedom is enough for the correction function to be tuned against the inner entropy conservation constraint (2.128). In addition, as we allow the use of hybrid meshes, one should ensure that the nature of the boundary discretisation does not depend on the number of faces of the element. Hence, the classical Raviart -Thomas space used previously in [START_REF] Castonguay | A new class of highorder energy stable flux reconstruction schemes for triangular elements[END_REF], cannot be considered as such for elements having more than 4 d faces or when considering the lowest flux discretisation order.

We therefore developed a new discretisation framework whose construction is detailed step by step in Chapter 3, and of which a more complete investigation can be found in [START_REF] Abgrall | A class of finite dimensional spaces and H-(div) conformal elements on general polytopes[END_REF]. There, the boundary characterisation is independent from the inner characterisation, providing the possibility to tune more finely and face-independently the coordinate-wise correction functions. It further ensures that the property (2.78) can be achieved for any number of discretisation points while letting the inner behaviour adapting towards (2.135). Lastly, the normal component of any function belonging to any developed space being a polynomial whose order is independent of the cell's number of faces, a nodal characterisation ensuring Proposition 2.4.1 to hold and the plain Flux Reconstruction formulation of the presented scheme (2.88) to be valid on polygonal shape can naturally be defined.

Motivated by developing conservative and stable numerical schemes in the scope of the Residual Distribution framework, we aim here to establish the theoretical foundations ensuring the existence and expressibility of correction functions fulfilling the relations (2.74), (2.78), and (2.82).

In that respect, the pursued strategy is to express the correction functions directly from their gradients and to discretise them in a finite dimensional vector space whose properties enforce the desired boundary behaviour. Spaces that are here suitable typically provide a low order discretisation of the H(div) Sobolev space, ensuring in particular a robust representation of the discretised functions' normal component. When coupled with a given characterisation of the discretised functions, their definitions give rise to a range of so-called H(div)-conforming elements that are classically used e.g. in the context of mixed and hybrid Finite Elements methods. Also providing a simple representation framework, they therefore appear as a relevant scope for our correction functions. However, those spaces are generally defined for specific geometries and have a rigid variational structure, while the entropy and stable schemes introduced in Section 2.5 are to be set up on any hybrid mesh containing different cell types, requiring the correction function to exist and be rigorously expressible independently from the local geometry. We therefore developed a class of H(div)-conforming spaces and elements that are geometrically flexible, obtaining as a by-product an improved variational flexibility that preserves the classical boundary properties of the discretised functions' normal component.

After briefly describing the H(div)-conforming notions in Section 3.1, we describe in Section 3.2 two classical elements from which stem our investigations. We then introduce the developed geometrically and variationally flexible construction in Section 3.3 providing in particular a rigorous framework for Flux Reconstruction schemes on arbitrary polytopes. 

Chapter contents

Conforming discretisation strategies

Enforcing known-properties of the dynamics or a-priori known features of the solution directly in the discretisation setting strengthens the robustness of the approximation and is therefore particularly popular in modelling physical behaviour as e.g. optics, electrostatic and fluid dynamics. Interested here in solving hyperbolic problems with particular applications in fluid dynamics, we first present some classical ways that could use the H(div)-conforming elements introduced in this chapter to enforce particular properties. We therefore go slightly beyond our immediate goal of laying a theoretical framework for the correction function (2.88), aiming to provide a quick overview of the classical scope of the presented work. To that end, we consider our initial value problem

   ∂Y ∂t + ∇ • F(Y ) = 0 Y |∂Ω = g, (3.1) 
over a domain Ω ⊂ R d and where Y ∈ R q , q ∈ N, is the time-space dependent state vector known only at the initial time. Behaviourally speaking, the flux F : D → R q describes the system dynamics over a domain D representing the subset of R q for which the state values Y have a physical meaning. Complementary, the function g : R + × ∂Ω → R prescribes the boundary conditions, exemplified here as being of Dirichlet type.

As seen in the preliminary Section 2.3.1, a typical approximation of this problem is obtained by deriving a weak formulation, whose expression is later split on small cells K forming a mesh τ h that approximates the domain Ω and defines the computational domain as Ω = ∪ K∈τ h {K}. The weak formulation is then discretised by choosing local finite dimensional trial U and test V spaces within which the solution and the local test functions are respectively represented. Choosing further a unisolvent set of degrees of freedom {σ} that characterises the discretised solution in the trial space U , the set (K, U, {σ}) defines a so called element, and a finite element formulation can be derived. Writing in a semi-discrete formulation as

d dt K Y dx + K ∇ϕ • F(Y h ) dx + ∂K g ϕ dx = 0, ∀K ∈ τ h , ∀ϕ ∈ V,
any consistent flux approximation would then define a numerical scheme.

Hence, in such discretisations the definition of the trial space predetermines the type of features that can be represented at the discrete level, while the chosen degrees of freedom prescribe the actual representation of the discrete solution and can therefore enforce the known features directly in its structure.

Discrete features and conformity

Features that are enforced at the discrete level typically relates to the global regularity of the discrete solution, that is, the regularity of

Y : Ω -→ R q x -→ Y K (x), K s.t. x ∈ K
given the local reconstructions Y K : K → R q , K ∈ τ h . The ability of a compactly and locally defined element to transfer its properties to the global level is subsumed by the notion of conformity.

Definition 3.1.1 Conforming elements

Let Ω be a computational domain belonging to R d , d ∈ N that is tessellated by a mesh τ h = {K}, and define

• W (Ω) a variational Sobolev vector space whose functions are defined on Ω and take values in R q , q ∈ N,

• V a finite dimensional subspace contained in W (Ω),

• E K := (K, V, {σ}) an element defined on the cell K.

Let also E K be the space of discrete functions p : K → R q that are contained in V and represented by the values of {σ}, and consider the global approximation

V h = {v : Ω → R q s.t. ∀K ∈ τ h , v |K ∈ E K }. Then, if V h ⊂ W (Ω),
the element (K, V, {σ}) is said to be W -conforming.

In essence, the conforming property only states that when the definition of V confers a certain regularity to the local solution reconstructions Y K , the set of selected degrees of freedom {σ} ensures that the global reconstruction Y benefits from the same regularity on the full computational domain Ω. When locally seen, the property therefore translates to the local boundary treatments being compatible with the asked regularity on a global scale.

The chosen regularity thus give rise to different classes of conforming elements. In particular, asking continuity over the entire domain for each variable typically yields Continuous Galerkin approaches, and asking for higher regularity may yield to using H 1 -conforming techniques. More elaborated definitions of regularities can also be asked and are typically related to physical principles, possibly involving interactions between variables. The H(curl) and H(div) conforming elements enter naturally in this scope, as their definition ensure that no jump will occur in the curl or in the divergence of the discretised quantity across the element faces, respectively. Let us now focus on the particular scope of the presented work, defining the H(div) space and exemplifying possible H(div)-conforming discretisations and practical use.

The variational space H(div) and its specificities

Before going to its application, let us specify the definition of the variational space H(div) and point out a geometrical particularity of H(div)-conforming elements that one has to be aware of in view of designing numerical schemes.

The variational space H(div) In order to meet the expectations of the previous paragraph, one requires H(div) to be a variational space that provides regularity to its function's normal components and from which finite dimensional subspaces and conforming finite elements can be defined. A natural idea is thus to choose a Sobolev vectorial space and ask for a L 2 -regularity.

Definition 3.1.2 H(div) space Let K be a general simplicial reference shape contained in R d , where d ∈ N. It is set H(div, K) = v ∈ L 2 (K) d , ∇ • v ∈ L 2 (K) .
As H(div) is also an Hilbert space, we can endow it with the following norm.

∀v ∈ H(div, K), v 2 ∇, K = v 2 L 2 (K) + ∇ • v 2 L 2 (K)
. So defined, the space H(div, K) imposes regularity of the functions' normal component within the cell K and on its faces f ∈ ∂K. However, given any finite dimensional subspace of H(div), the continuity of the discrete functions' normal component across the faces is not guaranteed by the sole definition of the space, but requires a proper definition of degrees of freedom for their representation to be identical on the faces regardless the element the functions have been discretised in. This is particularly delicate when dealing with cells having various number of faces, and will be the topic of the entire Section 3.3.

Geometrical specificity of H(div)-conforming elements

Let us now assume that for any polytopal shape K ⊂ R d , d ∈ N, the triplet (K, V, {σ}) defines a H(div)-conforming element, that is, V is a finite dimensional subspace of H(div, K) and the set {σ} enforces the L 2 -regularity of the normal components across the faces. Let us also assume that for the sake of computational handiness, each polytopal element can be identified to a reference one.

Then, the definition of the geometrical transformation from a polytope K to its reference shape is not straightforward. Indeed, usual transformations would prevent the flux of vector fields through the faces to be conserved, thus modifying the local degrees of freedom supported on the boundary and breaking the H(div, K)-conformity. Specific mappings have therefore to be employed, as e.g. the Piola transformation for simplicial and quadrilateral shapes (see Section 2.2.4). However, such transformations are extremely delicate to define in a general setting, especially in the non-convex case where the element orientation itself is questioned.

Application of H(div)-conforming discretisations

Having defined the variational H(div) space and explained the role of conforming settings, let us now present two classical uses of H(div)-conforming elements, one for discretising the local solution, the other the flux itself.

Mixed finite elements method Initially though for elliptic problems, the mixed finite elements method [START_REF] Babuška | The finite element method with Lagrangian multipliers[END_REF][START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[END_REF][START_REF] Pehlivanov | Least-squares mixed finite elements for second-order elliptic problems[END_REF] has been generalised to applications where divergence free properties are encountered or when extra divergence regularity is required. Hence popular for solving problems involving the Hermolz, magnetohydrodynamics or Stokes equations [START_REF] Monk | Hybridizing Raviart-Thomas elements for the Helmholtz equation[END_REF][START_REF] Buffa | Error estimates for the ultra weak variational formulation of the Helmholtz equation[END_REF][START_REF] Hasler | Mixed finite element approximation of incompressible MHD problems based on weighted regularization[END_REF][START_REF] Verf | Error estimates for a mixed finite element approximation of the Stokes equations[END_REF][START_REF] Boffi | Finite elements for the Stokes problem[END_REF], it is more generally considered for approximating solutions to physical models involving incompressibility conditions or direct divergence constraints.

Monitoring and enforcing the gradient behaviour directly in the discretisation of the variables that are impacted by the divergence conditions, the mixed elements method approximates simultaneously scalar and vector variables. More precisely, the vector variables are defined as subsets of the state variables that are ruled by divergence-based relations, as e.g. the velocity vector. The scalar variables can be either simply defined as those that are not ruled by their divergence in the dynamics, or as extra variables resulting from a system augmentation. In both cases, they define Lagrange multipliers and are considered as dual variables. A H(div)-conforming discretisation is then applied to the vector variables, while a standard discretisation defined over a finite dimensional subspace of L 2 (K) is used for the scalar variables.

Example

For the sake of clarity, let us present an example of the mixed finite elements method applied to the incompressible Euler equations as presented in [START_REF] Guzm Án | H (div) conforming and DG methods for incompressible Euler's equations[END_REF]. There, the derivation of the mixed formulation is based on the velocity-pressure formulation

         ∂u ∂t + u • ∇u + ∇p = 0 ∇ • u = 0 u • n |∂Ω = 0, (3.2) 
where u ∈ R 2 and p ∈ R are respectively the velocity vector and pressure variables, sought with regularity u ∈ H(div, Ω) and p ∈ L 2 (Ω). Denoting ⊗ the dyadic product and recalling that for any vector

v 1 and v 2 in R 2 , ∇ • (v 1 ⊗ v 2 ) = v 2 • ∇v 1 + ∇ • (v 2 ) v 1 , the relations (3.2) then also reads          ∂u ∂t + ∇ • (u ⊗ u) + ∇p = 0 ∇ • u = 0 u • n |∂Ω = 0. (3.3) 
Meshing then the domain Ω with a covering of τ h = {K} of cells K, and choosing two finite dimensional test spaces V ⊂ H(div, K) and W ⊂ L 2 (K) on each cell, one can then derive the cell-wise discrete weak formulation

       K ∂u ∂t • v - K (u ⊗ u) ∇v - K p ∇ • v + ∂K F (u, p) n • v = 0, ∀v ∈ V, (3.4a) K w ∇ • u = 0, ∀w ∈ W, (3.4b)
where the variable p can be seen as the Lagrange multiplayer associated to the incompressibility constraint, where the flux F is chosen consistently with F (u, p) = u ⊗ u + pI, and where ∇ represents the broken gradient.

One can then straightforwardly discretise by choosing the trial space of u to be a finite dimensional subset of H(div, Ω). The relation (3.4b) can then be expressed directly at the discretisation level whenever definition of the degrees of freedom yields a conforming element and allows a direct control of the velocity vector flux at the element boundaries. Strictly speaking, (3.4b) is exactly retrieved whenever a H(div)-conforming element is used.

Lastly, let us point out that among other techniques yielding a mixed finite element technique, the flux-vector reformulation [START_REF] Sterck | Numerical conservation properties of H (div)-conforming least-squares finite element methods for the Burgers equation[END_REF][START_REF] Wang | Finite element methods for the Navier-Stokes equations by H(div) elements[END_REF] seems promising and allows entropy considerations alongside with a conforming flux discretisation.

Flux discretisation Another application of the H(div)-conforming theory lies in flux discretisation techniques and is thus particularly suitable for the approximation of solutions to hyperbolic systems. Indeed, there, not only the solution should be discretised, but one should also provide a consistent and physically relevant discretisation of the flux across the cell boundaries, as readily visible when applying the Stokes theorem on (3.2) to obtain

d dt K Y dx + ∂K F (Y ) • n dx + ∂K ϕ, g dx = 0 ∀K ∈ {τ h }.
In particular, by discretising the flux in a finite dimensional subspace V of H(div, K) and selecting a set of degrees of freedom {σ} that makes the triplet (K, V, {σ}) conforming, a global regularity of the flux's normal component can be achieved and the pointwise Rankine-Hugoniot conditions directly enforced. More generally, it is possible to control the shape and characterisation of any discretised function's normal component by adjusting the definition of the degrees of freedom, and thus to enforce specific physical or numerical properties to the discrete flux. Our immediate goal presented in Section 2.5.6 therefore typically enters this scope, as we aim the discrete flux function to ensure the specific properties of the numerical scheme presented earlier in Section 2.3.2.

Classical polytopal and H(div)-conforming elements

Solving a problem by using the techniques succinctly mentioned in Section 3.1.3 requires to define a H(div, K)-conforming element for each geometry that exists in the spatial discretisation τ h . In particular, when using polytopal hybrid meshes one should be able to define a local H(div, K) element that provides a same discretisation nature and quality regardless the element geometry. Very delicate to obtain in practice, especially when allowing the use of non-convex cells, we aim here to highlight the design challenges by overviewing the main existing strategies, observing that classical constructions of H(div)-conforming elements are specific to given geometries while geometrically flexible elements are usually non-conforming.

Geometry flexible elements

Although less common than simplicial and quadrilateral elements, polytopal ones have grown interest and are now employed in a wide range of numerical schemes, from Mimetic Finite Differences [START_REF] Brezzi | Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[END_REF] to polygonal Finite Elements [START_REF] Gillette | Construction of scalar and vector finite element families on polygonal and polyhedral meshes[END_REF][START_REF] Sukumar | Recent advances in the construction of polygonal finite element interpolants[END_REF][START_REF] Antonietti | Fast numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods[END_REF] and Hybrid High order methods [START_REF] Di Pietro | W s, p-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems[END_REF]. However, geometry flexible definitions usually make use of generalized barycentric coordinates or relies on projectors that echoes the investigated problem. They are therefore delicate to handle in distorted non-convex elements and lack variational flexibility. A more recent approach introduced in [START_REF] Da Veiga | Basic principles of virtual element methods[END_REF] under the name of Virtual Elements Method rather defines the approximation spaces through solutions to Poisson problems, improving both the variational and geometrical flexibility. Not relying on barycentric coordinates and allowing customisable projectors, the proposed elements are however scalar and not H(div)-conforming.

H(div)-conforming elements Mostly initiated by Raviart and Thomas [START_REF] Raviart | A mixed finite element method for 2-nd order elliptic problems[END_REF], the definition of H(div)-conforming elements usually relies on the particular structure of polynomial spaces and are hence difficult to define beyond simplicial and quadrilateral shapes, where the dimension of polynomial spaces connects with the number of faces. Their variational definitions can however be extended, as shown by the works of Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] and Brezzi, Douglas and Marini [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF] in the context of Mixed Finite Elements method. More recently, a mixed Petrov-Galerkin scheme using Raviart -Thomas elements has also been investigated [START_REF] Dubois | Raviart-Thomas finite elements of Petrov-Galerkin type[END_REF], though, up to the authors knowledge, the proposed elements are still limited to simplicial and quadrangular shapes.

Geometry flexible and conforming elements

The difficulty in defining H(div)-conforming elements on general polytopes lies both in the dimension of the discretisation space, that should be adaptive to the number of faces, and in the control of the discretised quantities' divergence, as the degrees of free-dom should be defined so that the global regularity of the discrete divergence and normal component is ensured.

To overcome the latter issue, a first polygonal H(div)-conforming element has been proposed in [START_REF] Pietro | An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow[END_REF] using gradient reconstruction and pyramidal submeshes tessellation. However, its construction requires some shape regularity within the mesh. Not requiring any sub-mesh tessellation or further geometrical constraint, the approach proposed in [START_REF] Chen | Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes[END_REF] then allowed to build minimal degree conforming elements through Whitney forms, though being limited to convex geometries. An enhanced flexibility on the element shape has been obtained in [START_REF] Di Pietro | Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes[END_REF], but its variational definition remains rigid and requires stabilisation techniques. A first promising H(div)-conforming discretisation that can be defined on any polytopal shape has been recently proposed in [START_REF] Da Veiga | H(div) and H (curl)-conforming virtual element methods[END_REF] as an extension of the Virtual Elements method. There, the conformity is enforced directly on the normal components, not leaving any coordinate-wise freedom to the discretised function on the boundary. Therefore, the boundary setting may appear quite restrictive, especially in applications for which a direct component-wise characterisation or tangential information is suitable.

Scope of the presented method

In this chapter, we propose to construct a H(div, K)-conforming element that can be set up on any non-degenerated polytopal shape K ⊂ R d , d ∈ N, even non-convex, providing the same discretisation nature and quality regardless the element geometry.

Background choices and starting point

Primarily aiming to provide a theoretical framework for the correction functions (2.77), we focused on discretisation techniques that would ensure the properties (2.78), (2.82), and (2.135) to any discretised quantity. Hence, the H(div)-conforming approaches appears natural, being able to control the discrete vector fields across the cells' faces. Within this scope, the lowest order Raviart -Thomas elements are of particular interest, as the degrees of freedom that are supported on the boundary ensure a constant normal component of discretised quantities on the boundary, making the realisation of the constraint (2.135) straightforward. However, while the variational setting of the Raviart -Thomas elements suits our constrained problem, its lack of flexibility towards the geometry makes it not directly applicable in the general scope of Residual Distribution schemes.

Indeed, while providing theoretical foundations to building entropy stable and conservative schemes, we also aim to preserve the geometrical flexibility conferred by the Residual Distribution framework. The use of finite dimensional polynomial spaces of discretisation is therefore excluded, their dimen-sions not being adaptive to the number of the cell's faces. In this respect, and as we do not require the explicit knowledge of the correction functions within the element, the Virtual Elements framework seems relevant. However, its conforming version do not benefit from a flexible variational framework, and the lowest order elements do not guarantee a constant value of the normal components of discretised quantities. We therefore focus on creating H(div)conforming finite elements enhancing a boundary characterisation, built on a space whose construction combines the outer structure of the Raviart -Thomas space with the definition of the scalar Virtual Element space.

Objectives and achievements

We propose here a construction that inherits from the interface properties of the Raviart -Thomas elements and benefits from the shape flexibility of the Virtual Elements discretisation. In particular, the developed elements can be built on any polytopal shape, even non convex, and are available in any dimension. Equally offering a flexible variational representation of the discretised quantity, they provide more than a theoretical framework on which the correction functions (2.77) can be decomposed by defining a new element class that can be used as such in the construction of further numerical schemes. Furthermore, used in this latter context one would only need the knowledge of the degrees of freedom, making the proposed construction also close in the spirit to the Virtual Elements framework.

Outline In order to ease the presentation of the proposed construction and observe more in details the intricate specificities encountered in designing finite dimensional spaces of discretisation and elements, we start in Section 3.2 by describing the two fundamental works from which is based our construction. We then briefly outline our developments in Section 3.3.1, before introducing our new class of discretisation spaces in Sections 3.3.2 and 3.3.3. In a third time, we detail possible definitions of H(div)-conforming elements in Sections 3.3.6 and 3.3.5, and compare them to an existing H(div)-conforming framework in Section 3.3.7. Finally, we test the presented elements through the behaviour of their corresponding basis functions in the numerical results Section 3.3.8. For interested readers, more details on the construction and projectors test can be found in the extended technical report [START_REF] Abgrall | A class of finite dimensional spaces and H-(div) conformal elements on general polytopes[END_REF].

Description of two conforming elements

As the proposed discretisation framework combines the definitions of both the Raviart -Thomas and Virtual elements, we first describe their respective constructions and detail their fundamental properties. Starting with the simplicial Raviart -Thomas elements in Section 3.2.1 to emphasise the challenges involved in defining discretisation spaces, we present its extension to the quadrilateral elements in Section 3.2.2. We then make a step towards flexible geometries in Section 3.2.3 with the Virtual Element approach.

Simplicial Raviart -Thomas elements

One of the pioneering works investigating H(div)-conforming elements has been conducted by Raviart and Thomas [START_REF] Raviart | A mixed finite element method for 2-nd order elliptic problems[END_REF] and led to the definition of simplicial and quadrilateral elements. Defining the finite dimensional space of discretisation as a vectorial polynomial subspace of H(div) by exploiting directly the structure of scalar polynomial spaces, the conformity is enforced by a specific polynomial projection of the derivatives. We describe here the construction of the d-dimensional simplicial elements, built from the scalar space P k (R d ) of k th -order polynomials. Presenting them from their origins to their nowadays' expression, we aim to highlight the fundamental notions to consider and difficulties to face when designing tailored discretisation spaces. We then describe the chosen set of degrees of freedom, concluding the definition of the Raviart -Thomas elements.

Historical framework of N éd élec

Initially introduced by Raviart and Thomas in 1977, the Raviart -Thomas space and elements have been popularised by Nédélec's 1980 work [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] where the origins of the construction have been shown and a practical formulation derived. After constructing the Raviart -Thomas space along those lines for observing its essence, we outline its modern formulation and present recent proofs of its crucial properties by following [START_REF] Gopalakrishnan | Nédélec spaces in affine coordinates[END_REF]. For a deeper view of technicalities and detailed examples, we refer the interested reader to [START_REF] Abgrall | A class of finite dimensional spaces and H() conformal elements on general polytopes[END_REF].

Discretisation structure Let us consider a simplex K ⊂ R d where to build a H(div, K)-conforming discretisation. The main idea of the Raviart -Thomas framework is to build a finite dimensional subspace V contained in H(div) in which the functions belong to L 2 (K) and see any linear combination of their k th order derivatives vanish for a given k ∈ N. In practice, the discretisation space is defined as the kernel of a symmetrised linear differential operator of order k applied to a vectorial polynomial space, the order driving the overall approximation quality offered by the discretisation space.

Symmetrised differential operator

Aiming to specify the differential operator used in the Nédélec's definition [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] of the Raviart -Thomas space, let us introduce a vector valued function u : R d → R d ∈ L 2 (K) whose components write u = (u 1 , • • • , u d ) T . There, one can obtain the disappearance of any linear combination of each component's k th order derivative by asking the k th order directional derivative of u to vanish along any set of (k + 1) directional vectors

χ = (χ 1 , • • • , χ k+1 ) ∈ × k+1 l=1 R d .
In view of specifying the associated operator, let us denote the projection of the vectorial function u on any directional vector

χ 1 = (χ 1 1 , • • • , χ d 1 ) T ∈ R d by u • χ 1 = u 1 χ 1 1 + • • • + u d χ d 1 ∈
R and define its k th order directional derivative along the given directional vectors through the (k + 1)-differential form

D k u(χ 1 , • • • , χ k+1 ) : K -→ R x -→      u(x) • χ 1 if k = 0 k+1 j=2 ∇(u(x) • χ 1 ) • χ j else, (3.5) 
where k+1 j=2 denotes the composition operator

k+1 j=2 : L 2 (K) -→ R u -→ ∇(∇(• • • (∇(u • χ 1 ) • χ 2 ) • • • ) • χ k ) • χ k+1 .
The differential operator D k is then symmetrised in R d for considering the behaviour of each partial derivative along all the given directions. More specifically, writing ζ k+1 the set of all permutations of (1, • • • , k + 1), the symmetrised differential operator as initially considered by Nédélec writes

ε k : R d × • • • × R d -→ R (χ 1 , • • • , χ k+1 ) -→ 1 (k + 1)! ζ∈ζ k+1 D k u(χ ζ(1) , • • • , χ ζ(k+1) ). (3.6) 
Going further in the analysis by remembering that the function u lies in L 2 (K), one can reduce the above expression by using the commutativity of the partial differential operators. Introducing then the vector of the d Fréchet derivatives

d k u(χ 2 , • • • , χ k+1 ) = d × l=1 k+1 j=2 ∂ ∂x u l • χ j , (3.7) 
one can reduce the expression (3.6) to the following definition [START_REF] Gopalakrishnan | Nédélec spaces in affine coordinates[END_REF].

Definition 3.2.1 Symmetrised differential operator

ε k : R d × • • • × R d -→ R (χ 1 , • • • , χ k+1 ) -→ 1 k + 1 k+1 j=1 χ j • d k u(χ 1 , • • • , χ j-1 , χ j+1 , • • • , χ k+1 )

Definition of the simplicial Raviart -Thomas space

Having specified the symmetrised differential operator ε k in Definition 3.2.1, we can now define an approximation space by selecting an application domain and expressing the corresponding kernel.

Abstract definition of the space The application domain coinciding with the space where the discretised functions lie, we consider the finite dimensional polynomial space (P k (K)) d . There, to further enforce H(div) -conformity in the discretisation, we restrict the space (P k (K)) d to a subspace V ⊂ H(div, K) where the k th order derivative of the functions vanish, ensuring that ∇ • u ∈ L 2 (K). With respect to the above developments, we then get the definition of the simplicial Raviart -Thomas space. Definition 3.2.2 Simplicial Raviart -Thomas space

RT (K) = {u ∈ (P k (K)) d , ε k u = 0}
This early definition immediately shows the implications V ⊂ (P k (K)) d and P k-1 (K) ⊂ V , but is not convenient in practice. We therefore explicit the kernel of ε k and present the classical definition of the Raviart -Thomas space, relying on the kernel's parametrisation.

Space characterisation

Applied to the polynomial space (P k (K)) d , the differential operator ε k has a kernel that can be expressed by the polynomial's derivatives, yielding the following parametrisation.

Proposition 3.2.1 Kernel of the symmetrised differential operator

Ker(ε k ) = (P k-1 (K)) d ⊕ u ∈ P [k] (K) d s.t. d i=1 x i u i ≡ 0
In order to prove this kernel parametrisation, we look for a characterisation of the functions u k+1) . To this aim, we start by noticing that the space (P k (K)) d can be written as the direct sum

∈ (P k (K)) d satisfying ε k u(χ 1 , • • • , χ k+1 ) = 0 for any set of directions (χ 1 , • • • , χ k+1 ) ∈ R d×(
(P k-1 (K)) d ⊕ P [k] (K) d ,
where

P [k] (K)
is the space of polynomials having for degree exactly k. Therefore, the kernel of the operator ε k acting on functions belonging to (P k (K)) d can be seen as the union of the kernels of the operator ε k acting either on functions of (P k-1 (K)) d or on functions of P [k] (K) d . Thus, for proving Proposition 3.2.1 it is enough to show that

     (P k-1 (K)) d ⊂ Ker(ε k ) (3.8a) ∀ u ∈ P [k] (K) d , d i=1 x i u i ≡ 0 ⇔ ε k u ≡ 0. (3.8b) Lemma 3.2.1 First kernel's subspace determination ∀u ∈ (P k-1 (K)) d , ε k (u) = 0
Proof.

Let us first point out that finding the functions u 

∈ (P k-1 (K)) d verifying ε k u(χ 1 , • • • , χ k+1 ) = 0 for any set of directions (χ 1 , • • • , χ k+1 ) ∈ R d×(k+1) re- duces to find the set of u ∈ (P k-1 (K)) d so that ε k u(b p(1) , • • • , b p(k+1) ) =
∂ k u pm(j) ∂x α m 1 1 • • • ∂x α m d d = 0 ∀p m ∈ p : 1, k + 1 → d × i=1 1, j -1 ∪ j + 1, d ) ,
where 

α m = (α m 1 , • • • , α m d ) is a multi-index such that |α m | = k and α m i rep- resents the number of occurrences of i in {p m (l), l ∈ 1, j -1 ∪ j + 1, d }.
u ∈ P [k] (K) d , d i=1 x i u i ≡ 0 ⇔ u ∈ P [k] (K) d s.t. ε k u ≡ 0 Proof.
Let us first show that for any u ∈ P

[k] (K) d and x ∈ R d , ε k u ≡ 0 ⇒ x • u = 0.
By assumption, we have for any χ = (χ 1 , • • • , χ k+1 ) ∈ R d×(k+1) and for any

x ∈ R d that ε k u(x)(χ) = 0. Thus, taking in particular χ = × k+1 i=1 x, it comes ε k u(x, • • • , x) = 0,
which by definition of the differential operator reads

1 k + 1 k+1 j=1 x • d k u(x, • • • , x k times ) = x • d k u(x, • • • , x k times ) = 0.
In addition, since u is homogeneous we obtain by the Euler's identity that

d k u(x, • • • , x k times ) = k! u.
Plugging it in the expression of ε k , we then get

ε k u(x, • • • , x k+1 times ) = 0 ⇒ d k (x, • • • , x k times ) • x = 0 for any x ∈ R d , finally yielding k! x • u = 0. Thus, for any u ∈ P [k] (K) d and any x ∈ R d , ε k u ≡ 0 ⇒ d i=1 x i u i = 0.
Conversely, let us show that for any u ∈ P

[k] (K) d s.t. x • u ≡ 0, ε k u = 0.
By assumption, we have that for any x ∈ R d , x • u = 0. Hence, deriving ε k u in the particular direction χ = (x, • • • , x) yields

ε k u(x, • • • , x k+1 times = 1 k + 1 k+1 j=1 x • d k u(x, • • • , x k times ) = x • d k u(x, • • • , x),
which as u is a polynomial of order exactly k reduces to ε k u(

k+1 times x, • • • , x) = 0. Expressing then x on the canonical basis B = {b i } d i=1 of R d , we can write x • u as x • u = d i=1 x i b i u i .
Being is an homogeneous polynomial for which the term ε k u is identically vanishing, we can extend the above equality to any direction χ, concluding the proof.

Modern definition of the simplicial Raviart -Thomas space

Using the kernel parametrisation given in Proposition 3.2.1, one can now derive the classical expression of the Raviart -Thomas space.

Proposition 3.2.1 Simplicial Raviart -Thomas space

The kernel characterisation Proposition 3.2.1 can also be expressed as

RT k = (P k (K)) d ⊕ x P [k] (K),
defining the Raviart -Thomas space in its classical formulation.

Proof.

As described in Proposition 3.2.1, the Raviart -Thomas space of discretisation reads

RT (K) = (P k-1 (K)) d ⊕ u ∈ P [k] (K) d , x • u ≡ 0 .
Thus, as the latter subspace only contains polynomials of degree k whose gradient components are homogeneous polynomials of degree k -1, we obtain by Euler's identity that

u ∈ P [k] (K) d and x • u ≡ 0 ⇒ u = (k + 1) x ∇u.
Thus, as ∇p ∈ P [k-1] (K), one can identify the latter subspace with x P [k-1] and derive immediately the classical expression of the Raviart -Thomas space of discretisation by shifting the order index by one.

The Raviart -Thomas space so defined, any element p ∈ RT k (K) writes under the form

p =      p 1 + x 1 q p 2 + x 2 q . . . p d + x d q      := d × i=1 (p i + x i q) = d × i=1 p i + d × i=1 x i q (3.9)
for some p i ∈ P k (K), i ∈ 1, d and q ∈ P [k] (K).

Raviart -Thomas space properties

For the space RT k (K) to be suitable for designing H(div, K)-conforming elements, it should allow the definition of a discretisation subspace on each face f of the simplex's boundary ∂K where degrees of freedom enforcing conformity can be specifically designed. We thus present a dimension split and conforming properties guaranteeing it.

Proposition 3.2.2 Simplicial Raviart -Thomas space's dimension

dim RT k (K) = dim(P k-1 (K) d ) + (d + 1) dim P k (f )
Proof. Combining the known results about the dimension of polynomial spaces with the classical expression of RT k (K) yield directly

dim RT k (K) = dim(P k (K) d ) + dim P [k] (K) = 1 k!d! (d(k + d)! + d(k + d -1)!).
Reorganising then the terms, it comes

dim RT k (K) = d dk!(d -1)! k(k + d -1) + 1 k!(d -1)! (1 + d)(k + d -1)! = d k -1 + d k -1 + (d + 1) k + d -1 k ,
concluding the proof by definition of the P k (K) and P k (f ) spaces.

In light of this dimension split, the boundary subspace is simply set as

R k (∂K) = {p ∈ L 2 (K), p |f i ∈ P k (f i ) for every face f i ∈ ∂K}.
Let us now derive the divergence properties yielding RT k (K) ⊂ H(div, K).

Theorem 3.2.2 Divergence properties

For any dimension d ∈ N, d ≥ 2 and any simplex K ⊂ R d , it holds

∀ q ∈ RT k (K), div q ∈ P k (K) q • n |∂K ∈ R k (∂K)
Moreover, the divergence is onto from RT k (K) onto P k (K).

Proof.

• Any q ∈ RT k (K) can be written q = q 0 + xp k with some q 0 ∈ (P k (K)) d and p k ∈ P [k] (K). Thus, by Euler's identity we have that div q = div q 0 + div(x p k ) is a polynomial of degree k, and div q ∈ P k (K).

• Let f ∈ ∂K be a face of K and n its normal. By definition of the normal vector, we know that there exists a constant c ∈ R so that ∀x ∈ f, x • n ≡ c, and thus q

• n = q 0 • n + p k (x • n). Recalling that q 0 ∈ P k (K), p k ∈ P [k] (K)
and that the definition of R k (∂K) does not require continuity across the faces, we obtain that q • n |∂K ∈ R k (∂K).

• A proof of the surjectivity of the divergence operator from RT k (K) onto P k (K) can be found in [103] and will not be repeated.

Definition of simplicial Raviart -Thomas elements

The simplicial Raviart -Thomas space being a subset of H(div, K), a conforming element can be completely defined simply by designing a unisolvent set {σ i } i of degrees of freedom, linear forms on K that map RT k (K) to R and uniquely determines any discretised function (see Section 2.2.

2).

Degrees of freedom To be unisolvent, the set of degrees of freedom must have the same dimension as RT k (K) and be linearly independent. Moreover, in our scope its definition should ensure the H(div, K) -conformity of the discretisation setting. Hence, one can take advantage of the dimension split obtained in Proposition 3.2.2 and notice that any face

f ∈ ∂K is contained in R d-1 . Thus, (1 + d) dim P k (f ) = dim R k (∂K)
, and we can split the degrees of freedom into a normal and internal classification characterising functions living in P k-1 (K) d and R k (∂K), respectively. There, the discretised functions are represented disjointly by moment-based degrees of freedom enforcing H(div)conformity on the simplex boundaries and preserving it in the interior.

Theorem 3.2.3 Degrees of Freedom in the simplicial case

For any q ∈ RT k (K), we set as degrees of freedom:

q -→ f q • n p k dγ(x), ∀f ∈ ∂K, ∀p k ∈ P k (f ) (3.10a) q -→ K q • p k-1 dx, ∀p k-1 ∈ (P k-1 (K)) d (3.10b)
where γ represents the paths skimming the faces is unisolvent for RT k (K) and (K, RT k (K), {σ}) completely defines an element on K.

The unisolvence is immediate as the degrees of freedom are linear forms, dim({σ}) = dim RT k (K) and Ker ({σ}) = {0}. The kernel determination can be found e.g. in [103], not be repeated here for the sake of concision.

With such a clear separation of the degrees of freedom and the nature of the normal set, the H(div)-conformity of the elements immediately follows.

Theorem 3.2.4 Proposition

The element

(K, RT k (K), {σ}) is H(div)-conforming.
By definition of the degrees of freedom and R k (∂K), the discretised function is entirely determined on a given face f ∈ ∂K by the subset of (3.10a) containing moments supported on f alone. Thus, any discretised quantity's normal component is determined identically on f from any element K sharing the face f . Since q • n ∈ P k (f ), the H(div)-conformity follows.

Endowed with the set of degrees of freedom (3.10), the RT k (K) space is the smallest polynomial space within which the divergence maps RT k (K) to P k (K).

A word on the associated basis functions Even though the set of basis functions associated to the simplicial Raviart -Thomas elements have not been explicitly shown here for the sake of concision [START_REF] Abgrall | A class of finite dimensional spaces and H() conformal elements on general polytopes[END_REF], let us point out that they are the dual forms of {σ} over the element (K, RT k (K), {σ}). In particular, the normal component of basis functions associated to the internal degrees of freedom will vanish on the boundary, not containing any discretisation information there. Not vanishing inside the simplex, the normal component of the normal basis function will generate the space P k (f ) on each face. In practice, a set of basis functions can be built by considering any basis of H k (K) and tune it via the transfer matrix (2.58) built from their values through the set of degrees of freedom defining the Raviart -Thomas elements. It is indeed enough to transform the representation of H k (K) by to fit the degrees of freedom representation (3.10a) and (3.10b) given a choice of basis {p k } generating R k (∂K) and {p k-1 } generating (P k-1 (K)) d , respectively. More convenient, a direct construction is equally possible when using a reference element through the use of Whitney forms (see e.g. [START_REF] Abgrall | A class of finite dimensional spaces and H() conformal elements on general polytopes[END_REF] for more details). 

Strengths and drawbacks

The simplicial Raviart -Thomas framework make use of a finite dimensional vectorial polynomial space whose dimension can be split into expressions that match the dimension of polynomial subspaces in d and d -1 dimensions. The elements are thus built through the definition of two sets of degrees of freedom, characterising independently the boundary and inner parts of any discretised object, the H(div)-conformity being enforced by definition of the normal degrees of freedom. Defining a robust setting, one can either directly work with the set of degrees of freedom when defining numerical schemes, or design associated basis functions.

However, the design of the discretisation space is extremely rigid, dedicated to simplicial shapes only and preventing any direct adaptation to other geometries. Furthermore, when focusing on the discretisation quality, it can be seen that by construction the lowest order does not have internal moment, which can be troublesome in some applications. Retrieving the basis functions from a reference element may also be delicate, as a conforming mapping such as the Piola transform is required to preserve the element properties.

Quadrilateral Raviart -Thomas elements

The key property of the previously presented simplicial Raviart -Thomas elements is the adequacy between their dimension and the number of faces, allowing a dimension split yielding a possible construction of normal degrees of freedom on each face. If the space can be set up on any shape, such an element can only be built on simplices. A change of the discretisation space is therefore needed, done directly at the level of the scalar polynomial spaces.

Raviart -Thomas spaces for quadrilateral geometries

Considering the d-dimensional case and quadrilateral shapes, having n = 2d faces. The Raviart -Thomas space is set up so that a dimension split similar to Proposition 3.2.2 can be established. A simple change allowing it is to consider the polynomial space Q k instead of P k when defining the scalar polynomial spaces, yielding to define RT k (K) ⊂ H(div, K) as Definition 3.2.3 Quadrilateral Raviart -Thomas space Assuming x ∈ R d and defining {ζ i } i is the set of the d cyclic permutations of {k + 1, k, . . . , k

d-1 times }, RT k (K) = {u ∈ (Q k (K)) d , ε k u = 0} = (Q k (K)) d + x Q [k] (K), (3.11a) 
= d × i=1 P ζ i (k+1, ..., k, k) (3.11b)
Indeed, it can be shown [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] that the kernel of ε k is parametrised by (3.11a), yielding the classical Raviart -Thomas space definition. However, as this definition is no longer in direct sum, one can reformulate it to (3.11b) for practical uses. So defined, the dimension of the space reads as follows.

Proposition 3.2.2 Dimension of RT k (K) on quadrilateral shapes

dim RT k (K) = 2d dim Q k (f ) + dim d × i=1 P ζ i ({k-1, ••• , k, k})
We can then define as in the simplicial case the boundary space as

T k (∂K) = {p ∈ L 2 (K), p |f i ∈ Q k (f i )
for every face f i ∈ ∂K} and derive the following divergence properties Theorem 3.2.1 Divergence properties For any q belonging to RT k (K), it holds:

div q ∈ Q k q • n |∂K ∈ T (∂K)
Having then RT k (K)⊂H(div, K), conforming elements can be designed.

Degrees of freedom

To build the Raviart -Thomas elements on a quadrilateral of reference, we start by defining degrees of freedom ensuring the H(div, K) -conformity. In particular, by the above dimension split as as

2d dim Q k (f ) = dim T k (∂K), we can write dim RT k (K) = dim d × i=1 P ζ i ({k-1, ••• , k, k}) + dim T k (∂K).
Therefore similarly as in the simplicial case, we can set up degrees of freedom respectively constructed from T k (∂K) and × d i=1 P ζ i ({k-1, k, ••• , k}) , ensuring that the generated set is linearly independent. The shape of the degrees of freedom built from T k (∂K) are then selected so as to enforce H(div) -conformity, yielding a similar result as in the simplicial case.

Proposition 3.2.3 Degrees of freedom for quadrilateral elements

Representing by γ the paths skimming the faces and considering any function q ∈ RT k (K), the set of degrees of freedom

q → ∂K q • n p k dγ(x), ∀p k ∈ T k (∂K) (3.12a) q → K q • p k dx, ∀p k ∈ d × i=1 P ζ i ({k-1, k, ••• , k d-1 times }) (3.12b) 
define (K, RT k (K), {σ}) as a finite element that is H(div)-conforming.

As in the simplicial case, the applications Limitations of the Raviart -Thomas elements As in the simplicial case, both the element geometry and discretisation design are extremely rigid. In particular, the quadrilateral Raviart -Thomas elements are specific to quadrilateral geometry without showing any possibility for geometrical extensions without having to change the definition of the discretisation space itself. Let us therefore present a more recent approach, which, if not directly H(div)conforming, benefits from a great geometrical flexibility.

The classical Virtual Elements

Ab-initio developed in the context of two-dimensional elliptic problems, the Virtual Elements method has been introduced by Beir ão da Veiga, Brezzi, Cangiani, Manzini, Russo and Marini in the recent work [START_REF] Da Veiga | Basic principles of virtual element methods[END_REF]. Further analysed and extended to higher dimensions and in [START_REF] Ahmad | Equivalent projectors for virtual element methods[END_REF][START_REF] Beir | Virtual element method for general second-order elliptic problems on polygonal meshes[END_REF], the approach is in essence a generalization of the Finite Element method that borrows the point of view of modern Mimetic Finite Differences [START_REF] Brezzi | A family of mimetic finite difference methods on polygonal and polyhedral meshes[END_REF][START_REF] Brezzi | Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[END_REF]. Let us detail detail it here in the two-dimensional case only for the sake of clarity.

Virtual element spaces Although using classically scalar discretisation spaces of finite dimension to approximate solutions to weak formulations of elliptic problems, the original virtual elements method does not rely on polynomial discretisation subspace of Q k (R d ), but rather on subsets of solutions to Poisson problems whose second member are polynomials. So defined, the Virtual Element spaces of discretisation are naturally suitable to any geometry, the element shape being implicit in the definition of the Poisson problems.

More specifically, let us consider any polytope shape K ⊂ R 2 , possibly nonconvex, on which to define a virtual element of order k ∈ N \ {0}. A geometrically flexible finite-dimensional discretisation space is then defined as follows.

Definition 3.2.4 Virtual element space

For any K ⊂ R 2 , it is set

V k (K) = {v ∈ H 1 (K), ∆v ∈ P k-2 (K), v |∂K ∈ V k (∂K)}, where V k (∂K) = {v ∈ C 0 (∂K), ∀f ∈ ∂K, v ∈ P k (f )}
Let us first observe that the considered boundary space V k (∂K) is non-empty, as containing all the continuous functions defined on ∂K that are piecewise polynomial of degree k on each face. In addition, as functions are uniquely determined by their values taken at the vertices and at k -1 distinct points within each face, it naturally comes dim V k (∂K) = n k = 0. Consequently, the Poisson problems are well-defined for any polytope having a reasonable aspect ratio, and the discretisation space V k (K) has a valid definition.

Definition 3.2.5 Dimension of the virtual element space

For any polytope K ⊂ R 2 and any k ∈ N \ {0},

dim V k (K) = n k + k(k -1) 2 = n + n (k -1) + dim P k-2 (K).
The space structure therefore allows, as in the Raviart -Thomas framework, to define degrees of freedom that are specifically designed for characterising either the inner or the boundary part of discretised quantities.

Moreover, the characterisation of the discretised functions on the boundary is local to each face, conferring a global continuity of any function discretised on the full computational domain Ω. Polynomial discretisation spaces can also be embedded in the virtual element space, providing natural projectors and estimates [START_REF] Ahmad | Equivalent projectors for virtual element methods[END_REF]. In other words, it holds the following properties [START_REF] Da Veiga | Basic principles of virtual element methods[END_REF].

Property 3.2.1 Properties of the Virtual Elements discretisation

For any k ∈ N \ {0}, it holds

P k ⊂ V k .
Furthermore, for any two polytopes K and K -belonging to R 2 and such that

K ∩ K -= f ⊂ R, any two characterised functions v 1 ∈ V k (K) and v 2 ∈ V k (K -) satisfy v 1|f = v 2|f .
The discretisation space so defined, let us now introduce the virtual elements.

Degrees of freedom

The virtual elements are classically defined through the set of degrees of freedom (3.13), providing here a mixed characterisation.

Proposition 3.2.4 Degrees of freedom defining the virtual elements

Let K ⊂ R 2 be a polytope and k ∈ N\{0}. Then, the set of degrees of freedom

q → q(v) ∀v vertex of K (3.13a) q → q(x i ) ∀{x i } k-1 i=1 distinct points on the face f, ∀f ∈ ∂K (3.13b) q → K q p k ∀p k ∈ P k-2 (K) (3.13c)
is unisolvent in V k (K) and defines the Virtual element of order k.

More than separating the boundary characterisation (3.13a)-(3.13b) from the inner characterisation (3.13c), this choice also allows to work from a weak formulation of an elliptic problem without having to know the expression of the basis or even an explicit expressions for the discretised functions.

Method strengths and drawbacks

Very promising, the recent Virtual Elements method is geometrically flexible and allows the particular use of general polytopal meshes. Its remarkable flexibility also extends to the variational level, as one can e.g. design arbitrary high order discretisations that are globally continuous. More involved settings can also be developed, as by example the serpendicity [START_REF] Da Veiga | Serendipity virtual elements for general elliptic equations in three dimensions[END_REF], divergence free [START_REF] Da Veiga | Divergence free virtual elements for the Stokes problem on polygonal meshes[END_REF], and H(div)-conforming ones. However, as any Finite Element-type method, this variational flexibility is somewhat restricted by the nature of the discretisation space V k (K), not allowing a lot of liberty in the type of degrees of freedom that one can use for defining an element by guaranteeing the set's unisolvence.

The H(div)-conforming virtual element space

More in line with our objective, the virtual elements are also available in a H(div)-conforming version, that has been originally developed for solving diffusion problems in mixed spaces [START_REF] Beirao Da Veiga | H (div) and H (curl)-conforming VEM[END_REF][START_REF] Veiga | H (div) H (div) and H (curl) H (curl)-conforming virtual element methods[END_REF]. There, the discretisation space is specifically designed to enforce the regularity properties within the element, the definition of the degrees of freedom enforcing the cross-cell continuity of the normal component as in the Raviart -Thomas framework.

Definition 3.2.6 H(div)-conforming virtual element space

For any K ⊂ R 2 , it is set

V f ace 2, k (K) = {v ∈ H(div, K) ∩ H(curl, K) s.t. ∀f ∈ ∂K, v • n| f ∈ P k (f ), ∇ (∇ • v) ∈ ∇P k-1 (K), and ∇ × v ∈ P k-1 (K)}.
Note that in this definition, and contrarily to the classical virtual element space, the discretised quantities are not necessarily continuous at the polytope's vertices. Furthermore, the space is generated by the set of solutions to problems

     ∇ • v = p 1 on K ∇ × v = p 2 on K v • n = p b , on ∂K, (3.14) 
defined for any p 1 , p 2 ∈ P k (K) and any p b face-wise polynomial of order k. The problem admitting a unique a solution for any polytope K having a reasonable aspect ratio only if K p 1 dx = ∂K p b dγ(x), the space dimension reduces to the following expression.

Property 3.2.2 Dimension of the H(div)-conforming virtual space

For any polytope K ⊂ R 2 and any k ∈ N \ {0},

dim V f ace 2, k (K) = n dim P k (f ) + 2 dim P k-1 (K) -1
The space P k-1 (K)\R being isomorphic to ∇P k-2 through the gradient operator, a choice of degrees of freedom is thus naturally given by the Proposition 3.2.5.

Proposition 3.2.5 Degrees of freedom for conforming elements

Let K ⊂ R 2 be a polytope and k ∈ N \ {0}. Then, defining the sets

G k = ∇P k and G ⊥ k its orthogonal in P k (K) × P k (K), the set of degrees of freedom q -→ f q • np k ∀p k ∈ P k (f ) (3.15) q -→ K div(q) p k-1 ∀p k-1 ∈ G k-2 (K) (3.16) q -→ K div(q) p k ∀p k ∈ G ⊥ k-2 (K) (3.17)
is unisolvent in V f ace 2, k (K) and defines a H(div)-conforming virtual element.

A graphical representation of the obtained conforming elements is provided in Figure 3.3. Lastly, let us mention that the well-definition of the space and the unisolvence of the elements defined in Proposition 3.2.5, derived in [START_REF] Beirao Da Veiga | H (div) and H (curl)-conforming VEM[END_REF], allows in particular to define a natural projection operator onto the space P k (K) × P k (K) and provide a rigorous finite element framework. 

Method strengths and drawbacks

Comparably to the classical framework detailed in Section 3.2.3, the H(div)-conforming version of the virtual elements seems promising. However, even though the geometrical flexibility of the classical setting completely transfers to the conforming case, the variational setting appears more restrictive and less customisable to further specific properties or applications. Especially, the divergence properties of the discretised functions at the boundary are enforced by controlling the regularity and shape of their normal component directly in the definition of the discretisation space. The uniqueness of the problem (3.14) thus prevents the possibility of expressing a coordinate-wise behaviour, feature required for grasping the subtleties of the discrete quantities' behaviour on the boundary. On a less critical note, one can also observe that the considered spaces are built in link with P k (K) polynomial spaces, providing less boundary freedom than the classical quadrilateral Raviart -Thomas elements.

As 

A framework for arbitrary polytopes

We would like to extend the previously described Raviart -Thomas elements by drawing a general framework that allows the use of H(div)-conforming elements any non-convex polytopes. In other words, for a given polytope K ⊂ R d that is reasonably squeezed, we would like to define a finite dimensional discretisation space of order k, H k (K), that satisfies the following property. 

div p ∈ L 2 (K) p • n |∂K ∈ H k (∂K)
for some space

H k (∂K) = {u |∂K ∈ L 2 (∂K), u| f ∈ P b,k (f ), ∀f ∈ ∂K} where P b,k (f ) represents any polynomial subspace of Q(R d-1
) providing a discretisation of order k on the face f .

Once one could design a discretisation space that fulfils the Property 3.3.1, it is enough for constructing a H(div)-conforming element to define a set of degrees of freedoms whose expressions guarantee the continuity of the normal component of any discretised quantity across faces. In this setting, they can simply be defined face-wise accordingly to the expression of P b, k (f ), the dimension of H k (∂K) being given by dim H k (∂K) = n dim(P b, k (f )) and dependent on the number of faces n.

In the following, we start by outlining the general idea in Section 3.3.1 deriving in Section 3.3.2 admissibility conditions for the discretisation space to be used in a H(div)-conforming framework. We then develop a class of admissible discretisation spaces in Section 3.3.3, deriving simultaneously their associated boundary space P b, k (f ). Possible sets of degrees of freedom yielding H(div)-conforming elements are then proposed in Section 3.3.4, and examples of practical constructions are proposed in Section 3.3.6, on which numerical tests are performed in Section 3.3.8.

The general idea in a nutshell

As we aim to provide a general setting, we develop a flexible class of discretisation spaces whose dimension is adaptive to the number of faces rather than considering spaces whose nature change with the geometry. Furthermore, we describe the quality of the developed discretisations by a meaningful order, whose definition is linked to a preselected refinement pattern in the definitions of the space and degrees of freedoms. Hence, as the choice of this refinement pattern reduces to defining a series of discretisation spaces, we use the flexibility of the proposed elements to allow the definition of different frameworks fulfilling specific properties, as e.g. whether the lowest order space contains internal degrees of freedomor not.

To practically obtain those properties, one can however not directly extend the Raviart -Thomas elements to polytopes, the dimension of RT k (K) only depending on the desired order k and not being adaptive to the number of the element faces. The Virtual elements framework is not directly suitable either, as if it allows the use of any general polytopal shapes, the variational definition of the elements appear to be rigid and restrictive, especially in their H(div)-conforming version.

We therefore develop geometrically and variationally flexible elements by combining the two approaches. More precisely, we construct the discretisation spaces by applying the vectorial structure of Raviart -Thomas to the geometrically flexible Virtual elements' scalar space. The elements are then built through the definition of internal and normal degrees of freedoms, the latter enforcing the H(div)-conformity by imposing the normal component to be cross-face continuous. Lastly, series of spaces are defined by linking together the indices generating the second members of the Poisson problems defining the scalar Virtual element spaces.

Necessary conditions over spaces and elements

To begin with, let us derive step by step the admissibility conditions to build discretisation spaces that can endow H(div)-conforming elements. Recalling first that we aim to construct an unifying discretisation framework, we require the discretisation space H k (K) to fulfil Admissibility conditions 3.3.1.

Admissibility conditions 3.3.1 Requirements on the discretisation space

The space H k (K) is a finite dimensional vectorial subspace of H(div, K) whose dimension adapts to both the number of the polygon's faces and the discretisation order.

In addition, to be able to endow H(div, K)-conforming elements E k (K) by defining a set of degrees of freedom , we have to keep in mind that the confor-mity is only enforced by the definition of the normal degrees of freedom. We therefore further ask Admissibility conditions 3.3.2.

Admissibility conditions 3.3.2 Requirements on the elements

1. For any space H k (K), there exists a unisolvent set of degrees of freedom {σ} that can be split into internal and normal subsets so that both the number of internal degrees of freedom and of the normal degrees of freedom per face do not depend on the shape of K.

2. The number of internal and normal degrees of freedom both increase strictly monotonically with the discretisation order.

Lastly, to ensure the existence of a split into internal and normal subsets of degrees of freedom that match the normal and internal classification at the level of the dual basis functions, the feasibility of Admissibility conditions 3.3.3 in H k (K) is also required.

Admissibility conditions 3.3.3 Requirement on the basis functions

For any polytope K, the normal component of internal basis functions vanish on every face of the element, and the normal component of normal basis function belong to H k (∂K).

Optionally, as it may be useful for some applications to work with an exclusively normal characterisation, we aim to provide the possibility of designing a discretisation framework within which the lowest order element is analogous to RT 0 (K) for any number of faces, not having any internal moment.

Admissibility conditions 3.3.4 Optional requirement on the basis functions

The lowest order element has no internal degrees of freedom.

Given those requirements, let us first design a class of admissible discretisation spaces before deriving possible definitions of degrees of freedom.

A class of admissible approximation spaces

Let us now progressively derive the discretisation spaces fulfilling the conditions 3.3.1-3.3.4, before deriving their properties and extracting the subset of them where H(div)-conforming elements can be defined.

Construction of the H k (K) discretisation spaces

In order to design a subspace of H(div, K) that satisfies Admissibility conditions 3.3.1, we are led to define a space H k (K) with the same architecture as the classical Raviart -Thomas space. We therefore look for spaces in the form

H k (K) = (A k ) d + x B k for two given functional sets A k and B k .
There, we start by observing that the use of polynomial spaces is excluded by the Admissibility conditions 3.3.3, being required for any number of faces. Therefore, we consider the spaces A k and B k based on solutions to Poisson's problems as in the context of the Virtual elements method [START_REF] Da Veiga | Basic principles of virtual element methods[END_REF]. There, a way to allow the existence in H k (K) of smooth internal basis functions is to use the set of solutions to the boundary problems u |∂K = 0, ∆u = p k for any p k belonging to Q m (K), m ∈ N ∪ {-1}. In addition, as the H(div, K)-conformity will be enforced by normal quantities that are tested only on the boundaries, we also consider for given values of l ∈ N ∪ {-1} the sets of Poisson's problems ∆u = 0

u |∂K = p k 1 f ∀f ∈ ∂K, ∀p k ∈ Q l (f ), (3.18) 
Thus, seeing the boundary ∂K face-wise, we define the set

H k (∂K) = {u |∂K ∈ L 2 (∂K), u| f ∈ Q k (f ), ∀f ∈ ∂K} (3.19)
and build the space H k (K) as follows, for integers l 1 , l 2 , m 1 and m 2 whose values depend on k and that will be determined in Section 3.3.3.3.

Definition 3.3.1 Definition of H k (K) spaces H k (K) ={u ∈ H 1 (K), u |∂K ∈ H l 1 (∂K), ∆u ∈ Q m 1 (K)} d + x {u ∈ H 1 (K), u |∂K ∈ H l 2 (∂K), ∆u ∈ Q [m 2 ] (K)}

Properties of the H k (K) discretisation spaces

Having constructed the shape of the discretisation space so that the conditions 3.3.1 are fulfilled, let us now justify that H(div)-conforming elements can indeed be built by investigating its properties.

Existence of any discretisation space

First of all, let us point out that as the boundary functions are in L 2 (∂K), we get existence and uniqueness of the solution to any Poisson problems (3.18) for any polygon K that is reasonably squeezed (see e.g. Theorem 3.5 in [START_REF] Chabrowski | The Dirichlet problem with L2-boundary data for elliptic linear equations[END_REF]). The scalar spaces encountered in Definition 3.3.1 are therefore never empty for any (l 1 , l 2 , m 1 , m 2 ) ∈ (N∪{-1}) 4 , and any space H k (K) is properly defined.

Admissibility Any space H k (K) is constructed from four independent blocks whose definitions are driven by the independent coefficients l 1 , l 2 and m 1 , m 2 . There, the couple (m 1 , m 2 ) drives the discretisation quality exclusively within the cell, while (l 1 , l 2 ) takes care only of the boundary. The internal and normal subspace classification is thus natural, and the Admissibility conditions 3.3.3 is fulfilled by construction. Furthermore, the Property 3.3.1 holds, emphasising that the H(div, K)-conformity is ensured by the definition of H k (∂K), while the inner smoothness is provided through the Laplacian.

Property 3.3.1 Divergence properties

For any function q belonging to any space H k (K), it holds

q • n |∂K ∈ H max{l 1 , l 2 } (∂K) ∇ • q ∈ L 2 (K).
Proof.

• We start by deriving the first statement. By construction, any q ∈ H k (K) can be decomposed into q = q 0 + x q 1 for some q 0 ∈ (A k ) d and q 1 ∈ B k . Therefore, on the boundary of K one has q

• n |∂K = q 0 • n |∂K + (x q 1 • n) |∂K .
As the functions q 1 is scalar, this quantity can also read

q • n |∂K = q 0 • n |∂K + q 1 (x • n) |∂K
by linearity and commutativity of the dot product. Thus, Since for every face f of K the term x • n |f is constant, it reduces to q • n |f = q 0 • n |f + c f q 1 |f on each face f for a constant c f ∈ R depending only on the face layout and position with respect to the axes and origin. Therefore, since

q 0 |f ∈ (Q l 1 (f )) d and q 1 |f ∈ Q l 2 (f ), it comes q • n |f ∈ Q max{l 1 , l 2 } (f ).
And since it is valid for any face f ∈ ∂K, we finally get that q • n |∂K ∈ H max{l 1 , l 2 } (∂K)

• Let us now derive the divergence property within the cell. Any u ∈ H k (K) can be written under the form u = q + x q for some functions q ∈ H 1 (K) and q = ( q1

, • • • , qd ) T ∈ (H 1 (K)) d such that ∆q ∈ Q [m 2 ] (K) q |∂K ∈ Q l 2 (∂K) and ∆ qi ∈ Q m 1 (K) qi |∂K ∈ Q l 1 (∂K), ∀ i ∈ 1, d . (3.20) 
We have

div(u) = d i=1 ∂ x i (x i q) + d i=1 ∂ x i qi = d i=1 (q + x i ∂ x i q) + d i=1 ∂ x i qi = d q ∈L 2 (K) + d i=1 x i ∂ x i q ∈L 2 (K) + d i=1 ∂ x i qi . ∈L 2 (K)
Since by (3.20) we have ∇ • q ∈ L 2 (K), it comes that for any i ∈ 1, d ;

x i ∂ x i q ∈ L 2 loc (K).
As K is compact and bounded, we have L 2 loc (K) = L 2 (K) and div q ∈ L 2 (K). As a by-product, note that we can derive ∇

• (x∇q) = ∇ • q + x∆q, where ∆q ∈ Q max [m 1 , m 2 +1] and x∆q ∈ C ∞ (K).
As for the Raviart -Thomas space, the above properties yield the following inclusion, allowing to design H(div)-conforming elements. The practical design of conforming element is then eased by a dimension split.

Corollary 3.3.1 Subspace of H(div)

For any couples (l 1 , l 2 ) and (m 1 , m 2 ), H k (K) ⊂ H(div, K). Dimension As in the Raviart -Thomas setting, the proposed construction benefits from a dimension split that will allow the classification of degrees of freedom into the internal and normal subcategories.

Property 3.3.2 Dimension of the space H k (K)

Whenever l 1 ≤ 0, the space H k (K) has the following dimension.

dim H k (K) = n d(l 1 + 1) d-1 + (l 2 + 1) d-1 + d(m 1 + 1) d + (m 2 + 1) d -m d 2

Proof.

As for any l 1 ≤ 0, the two natural subspaces are in direct sum, recalling the block construction of H k (K) allows the dimension of the space H k (K) to be easily derived. We can simply add the dimension of the two main subspaces (A k ) d and x B k to retrieve the dimension of H k (K).

First, we compute the dimension of A k . In the way presented in [START_REF] Da Veiga | Basic principles of virtual element methods[END_REF], one can get it by using the superposition theorem. Indeed, for any second member belonging to Q m 1 and any boundary function p k 1 f ∈ L 2 (K), there exists a unique solution to the Poisson's problems defining A k , see e.g. [START_REF] Chabrowski | The Dirichlet problem with L2-boundary data for elliptic linear equations[END_REF]. Thus, reading out the structure of the set A k implies the following relation.

dim A k = dim H l 1 (∂K) + dim Q m 1 (K) = n (l 1 + 1) d-1 + (m 1 + 1) d Therefore, as (A k ) d is a simple Cartesian product of d copies of A k , we have immediately dim A k = d(dim A k ) = d(n (l 1 +1) d-1 +(m 1 +1) d ).
We then retrieve in the exact same way the dimension of B k , reading

dim B k = dim H l 2 (∂K) + dim Q [m 2 ] (K) = n (l 2 + 1) d-1 + (m 2 + 1) d -m d 2 .
Lastly, we recall that the space x B k simply corresponds to an identical d -duplication of the space B k where each coordinate has been multiplied by the corresponding spatial variable. Thus, there is no liberty adjunction during its construction, and the dimension of x B k equals the one of B k . By combining this, we finally get

dim H k (K) = d dim A k + dim B k = d(n (l 1 + 1) d-1 + (m 1 + 1) d ) + n (l 2 + 1) d-1 + (m 2 + 1) d -m d 2 .
One can observe in Property 3.3.2 that the term (d(l 1 + 1) d-1 + (l 2 + 1) d-1 relates to the dimension of polynomial spaces in d -

1 dimensions while d(m 1 + 1) d +(m 2 +1) d -m d
2 is linked to the dimension of polynomial spaces in d dimensions. The structure of the space is therefore a-priori suitable for designing unisolvent sets of internal and normal degrees of freedom. Let us now make a step further and restrict range of l 1 , l 2 , m 1 and m 2 so that the generated discretisation spaces can endow H(div, K)-conforming elements.

Admissible discretisation spaces

In order to define H(div, K)-conforming elements from the definition of degrees of freedom in the spirit of Raviart -Thomas, we need to set (d(l 1 +1) d-1 + (l 2 + 1) d-1 ) normal degrees of freedom per face and d(m 1 + 1) d + (m 2 + 1) d -m d 2 internal degrees of freedom. While this requirement has no impact on the admissibility of the coefficients (m 1 , m 2 ), it does reduce the range of admissible values that one can use for the coefficients (l 1 , l 2 ).

Structure of admissible spaces

Any space H k (K) is constructed from four independent blocks providing two distinct discretisations; on the boundary and within the element. Thus, when testing a function of H k (K) through normal degrees of freedom, one can only retrieve the polynomial obtained from the two boundary conditions defining the sets A k and B k . Especially, on each face, this polynomial is of the form p = p k, A + p k, B , where the function

p k, A ∈ (A k ) d |f reads p k, A = d × j=1 |α i |≤l 1 a ij x α i (3.21)
for a given set of multi-index {α i } i and coefficients {a i, j } i, j that depend on the coordinates x j . The function p k, B ∈ x B k | f reads however

p k, B = d × j=1 x j |β i |≤l 2 b i x β i (3.22)
for a given set of multi-indices {β i } i and coefficients {b i } i independent of the coordinates x j . Therefore, denoting by {ξ j } j∈ 1, d the coordinates permutation that allows to shift the lowest orders terms of

x B k | f to (A k ) d | f , p ∈ H k (K)| f can be written as follows. If l 2 ≥ l 1 , p = d × j=1 |α i |≤l 1 a ij x α i + d × j=1 x j |β i |≤l 2 b i x β i = d × j=1 |α i |≤l 1 |α i | =0 (a ij + b ξ j (i) )x α i + x j l 1 ≤|β i |≤l 2 b i x β i + d × j=1 a 0j x 0 j . (3.23) If l 1 ≥ l 2 + 1, p = d × j=1 |α i |≤l 1 |α i =0| (a ij + b ξ j (i) )x α i + a 0j x 0 j . ( 3 

.24)

The structure of those relations implies that the terms a ij and b ξ j (i) are combined into a single coefficient and cannot be specified individually from further normal degrees of freedom. Indeed, the remaining freedom can only be seen inside the polytope, as a consequence of the boundary conditions on the 

dim H k (K) |f =        (l 2 + 1) d-1 if l 1 = -1, d(l 1 + 1) d-1 + (l 2 + 1) d-1 -l d-1 1 if l 2 ≥ l 1 , d(l 1 + 1) d-1
otherwise.

(3.25)

We thus restrict the admissible couples (l 1 , l 2 ) to those verifying the Admissibility conditions 3.3.5, preventing any over-determination.

Admissibility conditions 3.3.5 Spaces allowing the use of conforming elements

Denoting dim N the wished number of normal moments per face, and considering dim H k (K) |f the number of coefficients that can be tuned from the face f , there should be

dim N ≤ dim H k (K) |f .
In the case l 2 ≥ l 1 , it reduces to

d(l 1 + 1) d-1 + (l 2 + 1) d-1 ≤ d(l 1 + 1) d-1 + (l 2 + 1) d-1 -l d-1 1 (⇔ l d-1 1 ≤ 0),
while otherwise it comes

d(l 1 + 1) d-1 + (l 2 + 1) d-1 ≤ d(l 1 + 1) d-1 (⇔ l 2 = -1).
The Admissibility conditions 3.3.5 themselves are enough to ensure that the given H k (K) space can endow a H(div)-conforming element. Indeed, by definition of H k (K), the two subspaces A k and x B k do not intersect within the polytope, making any pair of coefficients (m 1 , m 2 ) suitable for providing the inner characterisation.

Definition of series of spaces While fulfilling the above conditions, one can set a specific discretisation framework within which the spaces share a predefined structure. By example, defining the four coefficients l 1 , l 2 , m 1 and m 2 through affine relations of the type l = ak + b for some index k ∈ N, the range of discretisation qualities achievable within the framework is predetermined by a refinement sequence in each block, and the order of each space can be simply defined as the index k generating each of the four coefficients. A typical example is obtained by letting m 1 = m 2 = k -1, l 1 = 0 and l 2 = k, leading to a series of discretisation spaces of order k that always provide both internal and normal characterisations. Another natural definition would be to restrict the boundary characterisation to l 1 = -1, l 2 = k, yielding any normal component to be discretised as in the Raviart -Thomas setting. Fundamental, their complete descriptions are given in Sections 3.3.6.1 and 3.3.6.2, respectively.

Definition of H(div)-conforming elements

Under the Admissibility conditions 3.3.5, any space H k (K) allows the construction of H(div)-conforming elements through the definition of normal and internal degrees of freedom, respectively enforcing and preserving conformity. We propose here a possible construction of such sets.

Selection of Normal degrees of freedom

The role of the normal degrees of freedom is to define the characterisation of vectorial polynomials on the boundaries so that the H(div)-conformity of the element is enforced. We propose here a collection of suitable degrees of freedom any given coefficients l 1 and l 2 , and derive admissibility conditions on extracted subsets that guarantee their unisolvence in H k (K).

Suitable definitions Focusing on moment-based degrees of freedom whose support are restricted to a single face, we consider in particular definitions that are based on the projection of the tested quantity's normal component on polynomials living in H k (K) |f . Namely, we consider the following expressions, applying to any discretised function q ∈ H k (K).

1. The face integral of coordinate-wise components that are tested against polynomials

q → f q i n i p dγ(x), ∀ p ∈ Q max{l 1 , l 2 } (f ), (3.26a) 
2. The face integral of a function in H k (K) projected onto the face normal, and tested against polynomials

q → f q • n p dγ(x), ∀ p ∈ Q max{l 1 , l 2 } (f ), (3.26b) 
q → f q • n p dγ(x), ∀ p ∈ {x i p i , p i ∈ Q ζ i ([l 2 ], l 2 , ••• , l 2 ) (f )} i∈ 1, d-1 (3.26c)
3. The pointwise values of the discretised quantity tested against the face's normal q → q(x im ) • n i , for sampling points {x im } m on the face f i .

(3.26d)

Defining the normal degrees of freedom then reduces to choosing d(l 1 + 1) d-1 + (l 2 + 1) d-1 of them among the possibilities (3.26) so that their set is unisolvent for H k (K)| f . All the extracted degrees of freedom applied to any discretised function q ∈ H k (K) will then provide the conformal representation associated to the generated element definition.

Admissible sets of normal degrees of freedom

Extracting as many degrees of freedom as the dimension of H k (K) |f on each face among the above presented degrees of freedom yields automatically the unisolvence of the selected set in H k (K) |∂K whenever no underdetermination is encountered. Selecting an unisolvent set of degrees of freedom among the above expressions thus reduces to avoiding the selection of linearly dependent projectors while paying attention to determining both global and coordinate-wise behaviours of any vector polynomial q ∈ H k (K) |f .

In practice, it thus reduces to choosing the polynomials p on which the discretised functions q ∈ H k (K) will be tested coordinate-wise. The other polynomials p are test functions for the global normal component q • n. The unisolvence of the set is therefore ensured by the following admissibility conditions. Admissibility conditions 3.3.6 Selection of degrees of freedom 1. The projection polynomials p, and all the polynomials σ : q → σ(q(x im ))

that define the point values must be linearly independent.

2. When using a coordinate-wise degree of freedom of the type (3.26a), polygonal shapes K containing a face parallel to any axis are not allowed. One of the terms {n i } i∈ 1, d would indeed vanish for some i ∈ 1, n , thus not describing any function of H k (K) |f .

Note that here, the second point of the Admissibility conditions 3.3.6 may seem unreasonable as it may prevent the use of some geometrical shapes in specific orientations. However, it is always possible to modify the incriminated moments either easily by a local change in the definition of the projection vector, or more globally by redefining the moment so that it makes the element robust to rotations while staying H(div)-conforming. In the former case, as the incriminated moment is always of the coordinate-wise type, one can simply selecting another projection vector v = n. Indeed, given that the dimension of the full set (3.26b) is always strictly smaller than the one of H k (K) |f , there will necessarily exist in the selected set of degrees of freedom a global moment that involves a projection against the normal vector n, selected either from (3.26a), (3.26b) or even (3.26d). Each moment being supported on a single face, changing the projection direction in coordinate-wise moment has therefore no impact on the H(div)-conformity. We refer the interested reader to [START_REF] Abgrall | A class of finite dimensional spaces and H-(div) conformal elements on general polytopes[END_REF] for a detailed explanation.

Impact of the normal degrees of freedom's selection

Due to the dual relationship between the degrees of freedom and the basis function, the selection of a particular set of degrees of freedom fulfilling the Admissibility conditions 3.3.6 rules the shape of the dual basis functions. One would then expect as many normal basis function as normal degrees of freedom, and respectively for the internal case. However, it is not necessary the case in the proposed setting, since a reclassification of some normal basis functions and associated degrees of freedom as internal ones is possibly encountered. Indeed, as the face-wise normal component of any function q in H k (K) |f is only of degree max{l 1 , l 2 }, the term q•n |f requires only (max{l 1 , l 2 }+1) d-1 basis functions to be decomposed on. Therefore, up to d (l 1 +1) d-1 basis functions may see their global normal component vanishing on every face. Their coordinate-wise components will however not vanish, as they take care of the coordinate-wise behaviours that cannot be determined solely through the expression of q • n |f . Typically, the more global degrees of freedom are designed, the more the representation of p • n is completed globally. As a consequence, more basis functions have a vanishing normal component as they are forced to take care only of coordinate-wise behaviours, forcing them to be reclassified into internal basis function. A reverse scenario may equally be considered.

Example

Let us consider the two-dimensional case where l 1 = l 2 = 0. There, any discretised function p ∈ H k (K) |f reads

q = A B + C x y
for some constants A, B and C belonging to R. The characterisation of q on a face f can be then done by selecting two component-wise moments involving A n 1 or B n 2 tested against the constant polynomial p = 1, and one global moment that tests q • n = C (n 1 + n 2 ) + A n 1 + B n 2 against the polynomial p = x. The representation of the function's normal component being completed component-wise, this choice would yield one basis function that vanishes on the boundary, and two basis functions having a constant normal component. Reversely, one could also choose to select two global and one coordinate-wise moments, yielding the normal component of two basis functions to vanish on the boundary, the third one being constant. Note however that all basis functions whose normal component vanishes on the face f have a first order polynomial behaviour component-wise.

Hence, one can select the degrees of freedom given the properties wished for the associated basis functions. Furthermore, should one like to avoid any reclassification, allowing to draw a parallel with the Raviart -Thomas framework from the lowest order space on, one can meet the Admissibility conditions 3.3.4 by choosing wisely the value of l 2 , as discussed in Section 3.3.6.2.

A first example of the normal degrees of freedom' selection

In order to support the above statements and in view of later use, let us detail a possible selection of normal degrees of freedom for any face f ∈ ∂K in the case l 2 ≥ l 1 , where every function in H k (K) |f takes the form (3.23).

We here choose to extract a subset of moment-based degrees of freedom from (3.26) so that the functions discretised in H k (K) |f are determined as much as possible from their normal component, the remaining freedom being characterised by few coordinate-wise moments. We thus select for each face

σ : q → f q i n i x l 1 +1 i dγ, ∀i ∈ 1, d , (3.27a) 
σ : q → f q • n p k dγ, ∀p k ∈ Q l 2 (f ) \ Q l 1 (f ), (3.27b) 
σ : q → f q • n x j x l 2 j x dγ, ∀j ∈ 1, d , ∀x ∈ Q l 2 (∂ j K), (3.27c) 
where

x ∈ Q l 2 (R d-2
) is not involving the variable x j so that the moment (3.27c) has for integrands the second terms of the right hand side of (3.23) when

|β i | = l 2 . Note that the set (3.27) is of dimension d(l 1 + 1) d-1 + (l 2 + 1) d-1 -(l 1 + 1) d-1 + (d -1)(l 2 + 1) d-2 , while we require d(l 1 + 1) d-1 + (l 2 + 1) d-1 moments.
This configuration can therefore only be used when l 1 and l 2 satisfy

(l 1 + 1) d-1 ≤ (d -1)(l 2 + 1) d-2 , (3.28) 
criterion that is a simple reduction of the Admissibility conditions 3. Any choice of (l 1 + 1) d-1 moments among (3.27c) is denoted as the "configuration Ia".

So defined, the configuration Ia yield the non-degenerating normal basis function to match the ones of the Raviart -Thomas setting, though up to a different scaling. To also obtain a similar scaling, one should rather scale the above degrees of freedom with respect to each face's area and orientation, or consider in place of the moments (3.27c) the pointwise values

q → q(x im ) • n, ∀i ∈ 1, d , m ∈ 1, (1 + l 1 ) d-1 , (3.29) 
x im being any sampling point on the face f i , allowing to control directly both the scaling and offset of the basis function's normal components. A second example of the normal degrees of freedom' selection In order to corroborate the observation made on the impact of the degrees of freedom's choice, let us provide a second example where the focus is made on a coordinate-wise characterisation of the normal component, the remaining freedom being characterised by few global moments. Still considering l 2 ≥ l 1 , a selection along those lines arises naturally from the equation (3.23), providing for each face f ∈ ∂K the following degrees of freedom.

σ : q → f q i n i dγ, ∀i ∈ 1, d (3.30a) σ : q → f q • v x α l dγ, ∀|α l | = l 1 + 1, given v ∈ R d , v = n (3.30b) σ : q → f q • n x i x α l dγ, ∀i ∈ 1, d -1 , ∀l 1 < |α l | ≤ l 2 , (3.30c)
There, the moment (3.30b) has been slightly modified from (3.30c) for the Admissibility conditions 3.3.6.2 to be satisfied, without impacting the H(div)conformity. So defined, the total number of degrees of freedom available in the layout

(3.30) is dim((3.30)) = d(l 1 + 1) d-1 + (d -1)(l 2 + 1) d-1 -(d -1)l d-1 1 , larger than the required d(l 1 + 1) d-1 + (l 2 + 1) d-1 .
We therefore need a further extraction, strengthening in the process the Admissibility conditions 3.3.5 to

(d -1)l d-1 1 ≤ (d -2)(l 2 + 1) (d-1) . ( 3 

.31)

As l 1 ≤ 0, this inequality always holds. In particular, in two dimensions the bound (3.31) reduces to an equality, and the set (3.30) has to be considered fully. In higher dimensions, not achieving the bound provides a choice in the projection space, as any extraction of (l 2 + 1) d-1 moments is admissible. A natural choice is to follow the relation (3.31) and select the sets (3.30a) and (3.30b) entirely, while extracting any (l 2 + 1) d-1 elements from (3.30c).

Definition 3.3.4 Moment based normal degrees of freedom set

Any extraction of (l 2 + 1) d-1 moments among (3.30) is referred to as the "configuration IIa".

As in the previous example, one can consider a definition using point values instead of the moments (3.30a), using in place the expressions

σ : q → q i (x m ) n i .∀i ∈ 1, d , x m middle or barycentric point in f. ( 3 

.32)

More than directly scaling the dual basis functions and their offset, the above expressions provide a direct control of their shape. One can thus e.g. weight or offset the above expression to enforce positivity of the basis functions. 

Selection of internal degrees of freedom

Let us now derive a characterisation of any function living in H k (K) within the element through the definition of admissible internal degrees of freedom. Their design is here flexible, but delicate to determine. Indeed, we have to make sure that the corresponding internal basis functions fulfil the Admissibility conditions 3.3.3 for any number of faces n. We therefore stick to the idea of Raviart -Thomas and define moment based degrees of freedom that read for any q ∈ H k (K)

σ(q) → K q • p k dx, for all p k ∈ P(K) (3.33)
for some function space P(K) of dimension (m 1 + 1) d + (m 2 + 1) d . So defined, the internal degrees of freedom are moments supported strictly within the element. Thus, given the definition of H k (K) strictly within the polytope K, being in particular independent of the number of face, the dual basis functions will necessarily vanish at the boundaries.

In practice, considered as a test space, the space P(K) may simply gather polynomial functions used in the definition of the Poisson's problems generating H k (K). The discretised quantities would then be determined through their polynomial projections. Another possible choice is to test the functions living in H k (K) against a set of Poisson's solutions to the problems ∆p k ∈ P(K)

p k |∂K = 0
Using one or the other possibility for defining the projector space, the unisolvence of the internal degrees of freedom set in H k (K) | K is ensured by the following admissibility conditions (see Proof of Proposition 3.3.1, third part).

Admissibility conditions 3.3.7 Selection of internal degrees of freedom

1. The polynomials {p k } k generating P(K) are linearly independent.

2. No polynomial belonging to the set {p k } k generating P(K) has a degree larger than max{m 1 , m 2 + 1}.

Having stated admissibility conditions for designing admissible sets of normal and internal degrees of freedom, let us define H(div)-conforming elements over the discretisation space H k (K). To conclude the construction, unisolvence proofs will be given, both for the four presented examples and for general sets of degrees of freedom satisfying the derived admissibility conditions.

Proof of the element unisolvence stated in the Example 3.3.1

All along this proof, we refer to the functions p k by the term "kernel", while using the term "integrand" to represent the term q • p k . Immediate transfer of this designation apply to the normal moment based degrees of freedom.

Let us first sketch the proof. To begin with, let us point out that the key lies in the Admissibility conditions 3.3.6 ensuring the linear independence of the set of pointwise values and moment's integrands. The linearity of the integral operators transfers then this independence to the moments themselves, characterising any function of H k (K) independently on the boundary and within the cell. We proceed in three steps.

1. First, we show that the internal characterisation of the function does not impact the normal one, allowing the determination to be done distinctively within the element and on the boundary.

2. Then, we show that selecting the appropriate number of degrees of freedom in any of the sets Ia or Ib ensures a unique characterisation on the boundary. We use the fact that the kernels are scalar polynomials while the functions of H k (K) are vector polynomials.

3. Lastly, we consider the interior of the element where the characterisation is done through projections over linearly independent sets. Those projections of functions in H k (K) are indeed neither identically null nor identically identical (i.e. they differ at least on a subset of nonzero measure).

Step 1. Let us first recall that the space H k (K) is built from blocks of independent functions. In particular, the boundary behaviour of functions living in H k (K) is independent of their behaviour within the inner cell. Therefore, by the structure of H k (K) and making use of the superposition theorem, any function q ∈ H k (K) reads q = h1 ∂K + g1 K (3.34)

for two functions h and g belonging to H k (K). As a consequence, characterising a function q ∈ H k (K) comes down to characterising the independent functions f and g on the distinct supports ∂K and K, respectively. Note also that necessarily,

h |f ∈ × d i=1 Q max{l 1 , l 2 +1} (R d-1
) for any face f ∈ ∂K. We show that any admissible extraction in the sense of the Admissibility conditions 3.3.6 from either of the two sets of degrees of freedom (Ia, internal), (Ib, internal) fully characterises the functions h and g, independently. In all the following, the notation Ia or Ib refers to the corresponding set of normal degrees of freedom while internal refers to the set (3.33) and is identical to any of the two configurations under consideration.

We first show that any above defined set of degrees of freedom preserve the independence of the boundary and inner characterisations. To this aim, we combine the relation (3.34) with the all possible definitions of the degrees of freedom. It comes that all global normal moments lead to an expression of the form

σ(q) = f q • n p k = f (h1 f + g1 K ) • n p k = f h • n p k
for some polynomial function p k living on ∂K. On the other side, as x m ∈ f , the global degrees of freedom that are built from pointwise values read

σ(q) = q(x m ) • n = h(x m ) • n 1 f (x m ) + g(x m ) • n 1 K (x m ) = h(x m ) • n.
Similar relations for coordinate-wise degrees of freedom can be derived, i.e.

σ(q) = f q i n i p k = f (h i 1 f + g i 1 K )n i p k = f h i n i p k and σ(q) = q i (x m )n i = h i (x m )n i 1 f (x m ) + g i (x m )n i 1 K (x m ) = h i (x m )n i ,
where here the terms q i simply represent the i th component of the function q. Therefore, in any of the configurations Ia and Ib no contribution of the function g representing the inner part of the cell is involved in the normal degrees of freedom. The mirror case is obtained with the internal moments, leading via (3.34) to

σ(q) = K q • p k = K (h 1 ∂K + g 1 K ) • p k = K g • p k ,
where p k stands for any Poisson's function living in H k (K) or any polynomial function defining the second member of a Poisson's problem involved in the definition of H k (K). There, the function h representing the boundary part of the function q is not involved, that for any definition of the space P k generating the internal moments. Thus, by linearity we can decompose the degrees of freedom {q → σ i (q)} i in the following matrix.

σ 1 . . . σ N N σ N N +1
. . .

σ N I                           Normal moments applied to h Internal moments applied to g             h g         = 0 0

Normal Dofs values

Internal Dofs values

Clearly, there is no interconnection between the function's characterisation on the boundaries and the one performed within the element. Thus, showing Proposition 3.3.2 reduces to prove independently that either (Ia) = 0, (Ib) = 0, (IIa) = 0 or (IIb) = 0 implies h |∂K = 0, and that K g • p k x = 0 for all p k ∈ P k implies g | K = 0.

Step 2. Let us now consider the boundary characterisation. There, by definition of the spaces H l 1 and H l 2 , the function q |∂K is discontinuous at the polytope's vertices and can be decomposed into n vectorial polynomial functions {h j } j with distinct supports, each of them matching one particular face of the polytope. Thus, we can write

q |∂K = n j=1 r j 1 f with r j ∈ × d i=1 Q max{l 1 , l 2 +1}
(f ) and its support f any face belonging to ∂K. With a similar argument than in the previous point, the characterisation of q |∂K can therefore be done face-wise, and the determination matrix becomes block -diagonal. We discuss here the characterisation on one particular face f by showing the invertibility of the corresponding matrix block, the arguments naturally transposing to the other ones. In this perspective, we show that for any To begin with, let us recall that on the face f the function r j is a multivalued polynomial of the form

r j ∈ × d i=1 Q max{l 1 , l 2 +1} (f ), it holds {(Ia) |f = 0 or (Ib) |f = 0 or (IIa) |f = 0 or (IIb) |f = 0} ⇒ r j = 0,
r j |f =    a 0, 1 . . . a 0, d    + dim(H l 1 ∩H l 2 ) i=dim(H 0 )    b ξ 1 (i) + a i, 1 . . . b ξ d (i) + a i, d    m α i (x) + dim(H l 2 ) i=dim(H l 1 ∩H l 2 )    x 1 b i . . . x d b i    m α i (x) ,
where m α i represents a monomial of Q max{l 1 , l 2 } of multi-index degree α i such that the set {m α i } dim(Hm)

i=dim(H l ) forms a base of H m \ H l . Note that the coefficients {a ij } i, j are defined coordinate-wise while the coefficients {b i } i are identical for all the components. The function r j is therefore determined by

dim({{a i, m } i∈ 0, dim(H l 1 \H 0 ) m∈ 1, d , {b i } i∈ dim(H l 1 \H 0 ), dim(H l 2 ) })
coefficients. Going further by exploiting the fact that in all configurations, the function r j is determined only through its normal components, we can specify the above equation. Denoting n = (n 1 , • • • , n d ) the normal vector to the j th face f , it comes

r j • n |f = d m=1 a 0, m n m + dim(H l 1 ∩H l 2 ) i=dim(H 0 ) d m=1 (b ξ m (i) + a i, m )n m m α i (x) + dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) c j b i m α i (x),
where c j = x • n is a constant term on the face f . Reordering the terms, we end up with the formulation

r j • n |f = d m=1     a 0, m + dim(H l 1 ∩H l 2 ) i=dim(H 0 ) a i, m m α i (x)   n m   + d m=1 n m dim(H l 1 ∩H l 2 ) i=1 b ξm(i) m α i (x) + c j   dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) b i m α i (x)   . (3.35)
The structure of the retrieved form makes clearly emerge the coefficients that should be used depending on the coordinate-wise behaviour of the polygon. In addition, as all the coefficients determining r j appear in this expression, using degrees of freedom defined only from the normal components of tested functions is admissible. Thus, the two configurations fitting this framework, we only have to make sure that the set of extracted degrees of freedom are uniquely characterising each of the involved coefficients. To this aim, we explicit all the possible degrees of freedom when applied to the function r j . For the sake of clarity, we denote by {σ M i,l } il the moments designed coordinate-wise, being of the form

σ M i,l : q → q i (x jl ) n jx i or σ M i,l : q → f q i n jx i p l
for some scalar polynomial p l , and by {σ T l } l the ones acting globally, reading

σ T l : q → q(x l ) • n or σ T l : q → f q • n p l
for some scalar polynomial p l . Further, for convenience we denote by {σ V l } l the global degrees of freedom that comes into play to determining the coordinate-wise coefficients, whose expressions are done in the same way as {σ T l } l . We now express those degrees of freedom depending on the coefficients {b i, m } im and {a i } i . Using the linearity of the degrees of freedom, plugging the expression (3.35) in place of q and setting the permutation operator directly on the multi -indices α i instead of the coefficients a i , we can rewrite the moments as follows.

σ M m,l : ({a i, m }, {b i }) -→ b 0, m f n m p l + dim(H l 1 ∩H l 2 ) i=H 0 a i, m f m α i n m p l + dim(H l 1 ∩H l 2 ) i=H 0 b i f n m m ξm(α i ) p l + dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) b i f (x m n m m α i ) p l σ T l : ({a i, m }, {b i }) -→ d m=1 a 0, m f n m p l + d m=1 dim(H l 1 ∩H l 2 ) i=dim(H 0 ) a i, m f m α i n m p l + dim(H l 1 ∩H l 2 ) i=H 0 b i d m=1 f n m m ξm(α i ) p l + dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) b i f c mα i p l
Thus, defining the component-wise parts of the global moments σ T l by σ T m,l (q) = f n m q p l such that σ T l = d m=1 σ T m,l , one can express any degrees of freedom of the two considered sets as

σ M m,l : q -→ a 0, m σ M m,l (1) + dim(H l 1 ∩H l 2 ) i=H 0 a i, m σ M m,l (m α i ) + dim(H l 1 ∩H l 2 ) i=H 0 b i σ M m,l (m ξm(α i ) ) + dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) b i σ M m,l (x m m α i ) and σ T l : q -→ dim(H l 1 ∩H l 2 ) i=H 0 b i d m=1 σ T m,l (m ξm(α i ) ) + dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) a i c j σ T l (m α i ) + dim(H l 1 ∩H l 2 ) i=H 0 d m=1 a i, m σ T m,l (m α i ) + d m=1 a 0, m σ T m,l (1).
Note that in view of deriving the determination matrix, the last term can also be decomposed as follows.

dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) b i c j σ T l (m α i ) = dim(H l 2 ) i=dim(H l 1 ∩H l 2 ) b i d m=1 σ T l,m (x m m α i ).
Similar relations for σ V can ve derived from the expression of σ T . Thus, we can rewrite the degrees of freedom as a dot product and derive the characterisation matrix

Σ (σ M 1,1 , • • • , σ M d,l , σ V 1 , • • • , σ V l , σ T 1 , • • • , σ T l , ) T = Σ({a i, m } im , {b i } i ) T
which shape is given in the figure 3.4. We now investigate its structure. First of all, as the number of extracted degrees of freedom from the two sets Ia and Ib matches the number of coefficients determining r j , the matrix Σ is a square matrix.

σ M1,1 (1) 0 0 σ M1,1 (m αm ) 0 0 σ M1,1 (m ξ1(αm) ) σ M1,1 (x 1 m αm ) 0 0 0 0 0 0 σ M d,1 (1) 0 0 σ M d,1 (m αm ) σ M d,1 (m ξ d (αm) ) σ M d,1 (x d m αm ) σ M1,2 (1) 0 0 σ M1,2 (m αm ) 0 0 σ M1,2 (m ξ1(αm) ) σ M1,2 (x 1 m αm ) 0 0 0 0 0 0 σ M d,2 (1) 0 0 σ M d,2 (m αm ) σ M d,2 (m ξ d (αm) ) σ M d,2 (x d m αm ) σ V1,m (1) σ V d,m (1) σ V1,m (m αm ) σ V d,m (m αm ) d i=1 σ V i,l (m ξi(αm) ) d i=1 σ V i,l (x i m αm ) σ T1,1 (1) σ T d,1 (1) σ T1,1 (m αm ) σ T d,1 (m αm ) d i=1 σ Ti,1 (m ξi(αm) ) d i=1 σ Ti,1 (x i m αm ) σ T 1,M (1) σ T d,M (1) σ T 1,M (m αm ) σ T d,M (m αm ) d i=1      

Coordinate -wise moments, as many blocks as|{σ

M i, j } j∈ 1, dim C | * Exclusively global moments of Raviart -Thomas type Corresponds to {b0, 1, ••• , b 0, d } Single block of coordinate -wise constants Corresponds to {bm, 1, ••• , b m, d } m∈ 1, dim(H l 1 \H 0 )
as many blocks as dim(H l 1 \H0) Corresponds to ai involved in the set H l 2 H l 1 , columns repeats so that m∈ dim(H l 1 \H0)+1, dim(H l 1 ) Corresponds to ai only involved in the set H l 2 \H l 1 , columns repeats so that m∈ dim(H l 1 , dim(H l 2 ) C : Group of coordinatewise moments associated to a same quantification process (same testing monomial in moments or evaluation at a same same point-value). (*) Tuning globally coefficients that have repercussion on the coordinate-wise coefficients ai(misc moments).

As many rows as moments σ Vm , with m∈ dim(H l 1 \H0)+1, dim(H l 1 ) Let us focus on the top two-by-two left blocks, surrounded in blue. They correspond to the coefficients that should be determined coordinate-wise. Thus, by construction, there are dim({a im } im ) = d(l 1 + 1) d-1 columns. And by the definition of the configurations II and I, we have dim({σ

M i, j } ij ) = d + d((l 1 + 1) d-1 -1) = d(l 1 + 1) d-1 .
Therefore, this submatrix is a square matrix. Furthermore, each subblock corresponds to one member of the decomposition of q tested through coordinate-wise degrees of freedom whose kernels are built on the same monomial. Therefore, as the degrees of freedom {σ M i, j } consider one normal component only, the coefficients {a im } im for m = j are not involved, and the subblocks are diagonal. Thus, those submatrices are invertible and in particular their columns and rows are linearly independent.

On the other side of the matrix, the last bottom block surrounded in deep red matches the Raviart -Thomas moments tuning members of H k (K) |∂K living exclusively in xB k|f . It is then a submatrix of the classical Raviart -Thomas ' one, and is thus invertible. In particular, its rows and columns are linearly independent. The extended bottom right submatrix highlighted in dashed red corresponds to the previously described high-order submatrix of the Raviart -Thomas 's setting, enriched by the moments {σ V } tuning the behaviour of members of H k (K) |f falling in the intersection H l 1 ∩ H l 2 (f ). This extended submatrix is thus equivalent to the full Raviart -Thomas setting, and therefore invertible. Indeed, even if the moments {σ V } have to be slightly modified from the Raviart -Thomas setting in the configuration II, this modification leaves the projection order unchanged, and the integrand still belongs to

H k (K)| f .
There is thus only left to show that there is no linear dependence between rows of different row blocks. And there, as the degrees of freedom are linear forms, it is enough to show that the integrand of moments (or polynomials constructing the pointwise values) that involve the same monomial are linearly independent. Indeed, being linear forms whose kernels are polynomials, the degrees of freedom can combine each other only if their integrand (q tested against the kernel) involve -up to constants -the same monomials. We then have to show that in both configurations, the rows involving terms whose projection onto the kernel can be expressed from a same monomial are linearly independent.

In the configuration I, this property comes automatically. Indeed, the only interaction between degrees of freedom having integrands sharing the same monomial order (and then possibly being based on the same monomial) is possible between (3.27a) and (3.27b) when |p k | = l 1 + 1. Indeed, by definition of H k (K), the polynomial p k • n in (3.27a) is only of order l 1 .

However, no combination of (3.27b) can form the moments (3.27a). Indeed, for any real coefficients c i it holds

c i q i n i x l 1 +1 i ≡ q • n p k for any monomial p k such that |p k | = l 1 + 1.
Note that in the left hand side, all the c i should be non-null to reconstruct the term p • n. However, doing so no factorisation by a single monomial such that

d i=1 c i q i n i x l 1 +1 i = d i=1 c i q i n i p k
is possible. Thus, the designed moments are linearly independent, and no row combination can occur for any tested polynomial belonging to H k (K) |∂K .

In the configuration II, the integrands involving the same monomials are found in the definitions (3.32) and (3.30c) when l 1 = 0 (resp. (3.30a) and (3.30c)). As the problem arises on constants, linear combinations would be possible in a classical Raviart -Thomas setting as the terms p i n i and p i n i can be combined to form p • n. However, the use of the vector v not collinear to n in place of n for the lowest order moment in the equation (3.30c) makes the setting fulfil the Assumption 3.3.6. Therefore, those degrees of freedom are not linearly dependent. All in all, for both configurations all the rows are linearly independent. As by construction we have as many relations as unknowns, the matrix is invertible. Thus, we get a null kernel, meaningly, (Ia) = 0 or (Ib) = 0 or (IIa = 0) or (IIb = 0) implies h| ∂ K = 0.

The proposed boundary characterisations are therefore comprehensive.

Step 3. Let us now consider the internal characterisation of functions living in H k (K), and from the first step, it is enough to study the characterisation of g within the inner cell. By definition of H k (K), any function g ∈ H k (K) | K can be decomposed over a set of Poisson's solutions as follows.

g = d i=1 dim A k i=1 a i, j e j u i + dim B k i=1 b j x ũi
Here, the vector e j stands for e j = (0, • • • , 1, 0, • • • , 0) T where the 1 is in the j th position. The functions u i and ũi represents the Poisson's solutions of the problems

∆u i = p i , p i ∈ Q m 1 (K) u i|∂K = 0 and ∆ ũi = pi , pi ∈ Q [m 2 ] (K) ũi|∂K = 0 (3.36)
where {p i } i and { pi } i form respectively a basis of

Q m 1 (K) and Q [m 2 ] (K).
In any presented definition of the degrees of freedom, the internal characterisation is done through moment-based degrees of freedom of the form

σ I k : q → K q • p k dx
where the kernels p k ∈ P k consist of linearly independent polynomials belonging to Q max{m 1 , m 2 +1} (K), or of the solution of their corresponding problems of the form (3.36). Therefore, we can derive a characterisation matrix in the same spirit as in the case of the normal characterisation.

σ I1 σ IP         e i u 1 • p 1, i e i u A • p 1, i x ũ1 • p 1 x ũB • p 1 e i u 1 • p P, i e i u A • p P, i x ũ1 • p P x ũB • p P                  
Block repeats as many time as coordinates; Let us consider the case where P k forms a polynomial projection space. There, none of the p k ∈ P k is the zero function. In the same time, the functions {{u i } i , {x ũi } i } are linearly independent, and being solutions to some Poisson's problem with non-zero second member, they are by construction not identically vanishing on K. Indeed, even when m 2 < m 1 where second members of the problems (3.36) lives both in Q m 1 and Q [m 2 ] , it holds ∆(x ũi ) = 2∇ • ũi + ∆( ũi ). Thus, it is impossible to combine linearly the function x ũi with functions of the set {u i } i . Furthermore, the degrees of the polynomials belonging to the space P k are lower or equal than the highest degree of the second members of the Poisson's problem defining the space H k (K). Thus, every projection of function of H k (K) onto the space P k is not null. And as the internal moments are linear forms, any linear combination of those moments at fixed p k could have its integrand factorised by the kernel p k for any p k ∈ P k , transferring the linear independency of the set

i∈ 1, d Single block a i, 1 a i, A b 1 b P                          
{{u i } i , {x ũi } i } to the terms { u i • p k } i for any fixed p k ∈ P k .
Lastly, as the space P k contains only linearly independent functions the previous argument can be repeated for each row of the matrix shown in Figure 3.5. And as by construction the number of internal degrees of freedom matches the dimension of the space H k (K) | K , the linear independence of functions of P k combined with the linear independence of the tested functions transfer automatically to the moments tested against a basis of H k (K) | K . Thus, the internal submatrix is invertible. The same reasoning can be applied when P k is built from the Poisson's solutions themselves, as the projections of functions would decompose the functions directly.

Wrap-up.

Merging the above points together, we get that Ia = 0 or Ib = 0 or IIa = 0 or IIb = 0 implies h |∂K = 0 and K g • p k dx = 0 for all p k ∈ P k implies g | K = 0. Thus, from the first step we get that for q ∈ H k (K) Ia = 0 or Ib = 0 or IIa = 0 or IIb = 0 and K q • p k dx = 0 for all p k ∈ P k implies q = 0, concluding the proof.

Having obtained the unisolvence of the given for example, let us generalise the arguments to any configuration satisfying the Admissibility conditions 3.3.6 and Admissibility conditions 3.3.7.

Proof of Proposition 3.3.2 and Proposition 3.3.1

The proof of Proposition 3.3.2 is a straightforward generalisation of the one presented in the context of the four examples Ia, Ib, IIa and IIb in Proof of Proposition 3.3.1. The only change lies in the extraction of the degrees of freedom, which impacts the matrix only on the top left two by two blocks describing the coordinate-wise behaviours. As the extraction fulfils the Admissibility conditions 3.3.6, the rows involving terms whose projection onto the kernel can be expressed from a same monomial are linearly independent. Thus, the same arguments as above can be applied.

In particular, by this admissibility criterion there cannot be more than d + 1 polynomials reducing to the same moments' kernel or to an equivalent point-value quantifier. Thus, as we have d + 1 coordinate-wise moments to tune per decomposed monomial, there is no over-determination at a fixed polynomial degree. The constraint on the extraction of degrees of freedom ensures the non over-determination overall. Furthermore, the linear independence of the sub-matrix's columns is ensured as those polynomials cannot be linearly dependent. Thus, by linearity of the degrees of freedom, the independence of the kernels transfers to the moments and there is no row dependency. The submatrix block corresponding to any specific order is therefore invertible, and the same conclusion as in the Proof of Proposition 3.3.1 follows.

The proposition 3.3.1 therefore holds by the number of selected degrees of freedom, matching the dimension of the space H k (K). Furthermore, one can observe that the admissible normal degrees of freedom are face-wise supported, and that the space H k (K) |f is of polynomial nature. The constructed elements are therefore H(div)-conforming, concluding the proof and the construction of the elements.

Considering the definition of H k (K) as a discretisation space, any admissible definition of degrees of freedom thus yields a H(div, K)-conforming element.

Summary of the construction

Before going to practical case studies and comparison with existing H(div)conforming settings, let us summarise the construction of the H k (K) space and recapitulate the example definitions of normal degrees of freedom.

Discretisation space

The proposed class of discretisation spaces reads

H k (K) ={u ∈ H 1 (K), u |∂K ∈ H l 1 (∂K), ∆u ∈ Q m 1 (K)} d ⊕ x {u ∈ H 1 (K), u |∂K ∈ H l 2 (∂K), ∆u ∈ Q [m 2 ] (K)},
with the convention that Q -1 = {0} and where the integers

l 1 , l 2 , m 1 and m 2 verify m 1 , m 2 , l 2 ≥ -1 and -1 ≤ l 1 ≤ 0.
So defined, it holds

• dim H k (K) = n (d(l 1 + 1) d-1 + (l 2 + 1) d-1 ) + ((m 1 + 1) d + (m 2 + 1) d -m 2 2 ) • ∀q ∈ H k (K), q • n |∂K ∈ H max{l 1 , l 2 } (∂K) and H k (K) ⊂ H(div, K).
Thus, conforming elements can be defined through normal degrees of freedom enforcing the H(div)-conformity and internal ones preserving it, provided that the polytope K satisfies the two conditions • The polytope K has a reasonable aspect ratio, so that the Poisson problems defining the underlying Virtual elements spaces are well-posed.

• No face is parallel to any axis, ensuring the unisolvence of the presented sets of degrees of freedom when using component-wise expressions.

The above condition on the orientation of the face with respect to the axis raises stability issues when dealing with element whose faces are almost parallel to the axis and using component-wise degrees of freedom. However, this issue is easily avoidable by selecting at least a global degree of freedom involving the term p • n in the moment's integrand and changing the testing vector in the coordinate-wise degrees of freedom to any vector v = n.

Internal degrees of freedom

The internal characterisation of functions q ∈ H k (K) relied entirely on moment-based degrees of freedom taking the form

σ : q → K q • p k dx, ∀p k ∈ P, where P is a (m 1 +1) d +(m 2 +1) d -m d
2 dimensional space that can be defined either as a polynomial space or as a set of solutions to Poisson problems having a polynomial second member. Either case, its definition should be such that • The polynomials {p k } k generating P(K) are linearly independent.

• Any polynomial p ∈ {p k } k satisfies deg(p) ≤ max{m 1 , m 2 + 1}.

Normal degrees of freedom

The boundary characterisation of functions q ∈ H k (K) relies on global and coordinate-wise degrees of freedom that can be either moment-based or point values. If typical choices are directly reported in Table 3.1, the general selection rule reads as follows.

In order to ensure the unisolvence of the normal degrees of freedom in H k (K) |•K and the H(div)-conformity of the elements, their expressions are considered face-wise. Exactly d(l 1 + 1) d-1 + (l 2 + 1) d of them are thus selected among the set (3.26) for each face f ∈ ∂K.

Configuration Ia Ib IIa IIb Available when (d -2)(l 2 + 1) d-1 ≥ l d-1 1 (d -1) (d -1)(l 2 + 1) d-2 ≥ (l 1 + 1) d-1
Free choice Select (l 2 +1) d-1 moments per face from the bold ones Select (l 1 +1) d-1 moments per face from the bold ones

Low order representation

f q i n i ∀i ∈ 1, d ∀f ∈ ∂K q j (x im ) n jx i ∀i ∈ 1, d , ∀i ∈ 1, n , x m midpoint

Inherited from the highest order representation

Inherited from the highest order representation

Representation of elements in

A k ∩ B k|∂K f q i n i x β j f q • v x α j ∀i ∈ 1, d ∀f ∈ ∂K ∀1 ≤ |β j | ≤ l 1 , |α j | = l 1 + 1, v = n i f q i n i x β j f q • v x α j ∀i ∈ 1, d , ∀f ∈ ∂K ∀1 ≤ |β j | ≤ l 1 , |α j | = l 1 + 1, v = n i ∂K q i n i p k f q i x l 1 +1 i n i ∀i ∈ 1, d , ∀ f ∈ ∂K, p k ∈ H l 1 (∂K) \ H 0 (∂K) ∂K q i p k n i f q i x l 1 +1 i n i ∀i ∈ 1, d , ∀f ∈ ∂K, p k ∈ H l 1 (∂K) \ H 0

Higher orders representation

f q • n x j x α j ∀f ∈ ∂K ∀l 1 < |α j | ≤ l 2 , ∀j ∈ 1, d -1 f q • n x j x α j ∀f ∈ ∂K l 1 < |α j | ≤ l 2 , ∀j ∈ 1, d -1 ∂K q • n p k f q • n x j x l 2 j x ∀p k ∈ H l 2 (∂K) \ H l 1 (∂K) ∀f ∈ ∂K ∀x ∈ Q l 2 (∂ j K) ∂K q • n p k q(x jm ) • n ∀p k ∈ H l 2 (∂K) \ H l 1 (∂K) ∀j ∈ 1, n , {x jm } m sampling points Table 3.1.
Summary of the used degrees of freedom for the four considered configurations. There, the integrals sum up along the boundary path γ.

In two dimensions, the proposed setting reported above is fixed and all the mentioned degrees of freedom have to be considered. In higher dimensions however, the selection of degrees of freedom among the bold ones is a matter of taste, possibly directed by properties of the discretised quantities that are a priori known and that one wants represented down to the discrete level. Lastly, note also that in practice one could project on any other polynomial basis rather than using projections over the canonical one, substantially improving the conditioning of the characterisation matrix.

Two examples in two dimensions

Let us now detail examples of a discretisation framework that is contained in the previously presented setting. We start with a general framework for which a parallel with the Raviart -Thomas elements can be drawn from the order k = 1 on, and present in a second time an example of a reduced setting where a parallel with the Raviart -Thomas is achieved at any order. We then end the two-dimensional section on a generalising note.

An example of a general setting

We consider a series of discretisation spaces by indexing the coefficients as l 1 = 0, l 2 = k, m 1 = k -1 and m 2 = k -1 for any k ∈ N, seen here as the space order. The space H k (K) is then defined as

H k (K) ={u ∈ H 1 (K), u |∂K ∈ H 0 (∂K), ∆u ∈ Q k-1 (K)} 2 ⊕ x {u ∈ H 1 (K), u |∂K ∈ H k (∂K), ∆u ∈ Q [k-1] (K)}. (3.37)
By a straightforward application of the previous section, it comes

dim H k (K) = n (k + 3) + 2k(k + 1) -1 k>0 . (3.38)

Two-dimensional H(div)-conforming element

The examples of selected normal degrees of freedom defining the elements E k = (K, H k (K), {σ}) presented in Section 3.3.4 reduce here to the expressions given in Table 3.2, here detailed only in their configuration "a" for the sake of concision.

Representation of low order

of The internal degrees of freedom are simply set as

(A k ∩ B k ) |∂K of higher orders Moments Ia f q•n ∀f ∈ ∂K f q i n i x i ∀i∈ 1, 2 , ∀f ∈∂K f q • n p k ∀f ∈∂K, ∀p k ∈Q k (f ) \Q 0 (f ) Moments IIa f q i n i ∀f ∈∂K, ∀i∈ 1, 2 f q • v p k ∀f ∈∂K, ∀p k ∈Q [1] (f ) given v =n f q •nγ(x) p k ∀f ∈∂K, ∀p k ∈Q k (f ) \Q 0 (f )
σ(q) → K q • p k dx, for all p k ∈ P, (3.39) 
where P is chosen as the vectorial polynomial space

P = P k, k-1 × P k-1, k \ P [k], [k-1] × P [k-1], [k] ∪ (x, y) T → x k y k-1 x k-1 y k .
Though the internal projection space is less refined than the one set on the edges, this is not bothersome as the impact of the divergence within the cell is less dramatic for the quality of the discretisation. Note also that in practice, the projections (3.39) can be performed on any basis of P.

The designed element is thence H(div)-conforming by definition, and confers a similar discretisation framework for any cell shape, its expression being adaptive towards the cell geometry without changing the nature of the variational discretisation, as depicted in Figure 3.6. 

An example of a reduced setting

As quickly addressed in Section 3.3.4.1 and as it will be shown in the numerical results, a classical construction of the space H k (K) implies the degeneration of some normal basis functions into internal ones. This is a consequence of the coordinate-wise freedom provided on the boundary from the definition of the set A k . Therefore, to allow a parallel with the Raviart -Thomas elements from the lowest order on and to fulfil the optional Admissibility conditions 3.3.4, one can consider replacing the boundary conditions u |∂K ∈ H l 1 (∂K) in A k to obtain the following reduced space. Definition 3.3.6 Reduced discretisation space

H k (K) ={u ∈ H 1 (K), u |∂K ≡ 1, ∆u ∈ Q m 1 (K)} d ⊕ x {u ∈ H 1 (K), u |∂K ∈ H l 2 (∂K), ∆u ∈ Q [m 2 ] (K)}
There, the coordinate-wise freedom on the boundary is reduced and the normal degrees of freedom can be set as in the classical Raviart -Thomas setting. Furthermore, contrarily to the general case, any definition of l 2 , m 1 and m 2 leads to an H(div)-conformity ready space.

An example of a reduced H(div)-conforming element

To emphasise the parallel with the Raviart -Thomas setting on the boundary, let us derive a two-dimensional example in the context of the reduced discretisation framework, similar in the spirit with the two examples presented in Section 3.3.6.1 for a general framework. Choosing in particular the coefficients generating the Virtual elements spaces accordingly to the sequence l 2 = 1,

m 1 = m 2 = k -1,
where k ∈ N is seen as the space order, it comes

H k (K) = u ∈ H 1 (K), u |∂K ≡ 1, ∆u ∈ Q k-1 (K) 2 ⊕ x u ∈ H 1 (K), u |∂K ∈ H k (∂K), ∆u ∈ Q [k-1] (K) whose dimension naturally reads dim H k (K) = n (k + 1) + 2 k (k -1) -1 k>0 .
Therefore, exactly k + 1 normal functions per edge can be designed, fitting the framework of Raviart -Thomas. As this matches the dimension of Q k (f ), all the freedom is required to entirely determine the global normal component. Thus, as a straightforward reduction of the general case, the H(div, K)conforming element presented in Section 3.3.6 simplifies to the one defined through the normal degrees of freedom given in Table 3.3 and the internal degrees of freedom (3.39), where the projections can be considered against any basis of P, not necessarily the canonical one.

Core normal Moments Misc moment

Core internal moment Misc internal moment

f p k q•n, ∀f ∈∂K ∀p k ∈Q k (f )\Q 0 (f ) f q•n ∀f ∈∂K K q•   x l 1 x m 2 0   and K q•   0 x m 1 x l 2   ∀l∈ 0, k , m∈ 0, k-1 s.t. (l, m) =(k, k-1) K q•   x k 1 x k-1 2 x k-1 1 x k 2   Table 3.3.
degrees of freedom of the element Ia defined within the reduced setting.

Many more elements

As examples, we only detailed here two declinations of two possible configuration of degrees of freedom. Needless to say, there exists many more possibilities, and their choice impact the properties of the elements, from its robustness to the properties of the associated basis functions.

In particular, we saw that it is possible to focus on a coordinate-wise boundary characterisation of the quantities living in a general space H k (K) rather than focusing exclusively on their normal component in itself. Though not explicitly stated here, it is equally possible to shape the basis functions of H k (K) without impacting the regularity, conformity, and order of the discretisation, simply by choosing a specific basis for the projectors p involved in the normal degrees of freedom. On the same vein, one can also consider shifting the basis functions by modulating the offset directly from the definition of the degrees of freedom to enforce their positivity. More generally, plenty of discretisation focuses and degrees of freedom choices are possible, providing a great flexibility in the element design. However, the choices of the degrees of freedom and projector shapes have a very strong impact on the conditioning number of the linear systems characterising any discretised quantity. The examples presented here are the one offering the best compromise between the quality of the discretisation and the obtained conditioning. They are also the ones that are the closest to the classical Raviart -Thomas framework.

For interested readers, further details and extensive examples for both the general and the reduced space are available in [START_REF] Abgrall | A class of finite dimensional spaces and H-(div) conformal elements on general polytopes[END_REF], along with further investigations on various configurations and projector spaces.

Link to other discretisation spaces

As pointed out in the introduction, the developed spaces can be linked to the H(div)-conforming virtual discretisation setting presented in [START_REF] Da Veiga | H(div) and H (curl)-conforming virtual element methods[END_REF] and outlined in Section 3.2.4, where the considered space reads

V f ace 2, k (K) = {v ∈H(div, K) ∩ H(curl, K) s.t. v • n| f ∈ P k (f )∀f ∈ ∂K, ∇ (∇ • v) ∈ ∇ P k-1 (K), and ∇ × v ∈ P k-1 (K)}.
Indeed, restricting the setting on the boundary to polynomial functions, that is, introducing

Ṽ2, k (K) = {v ∈ H(div, K) ∩ H(curl, K) s.t. v • n| f ∈ P k (f ) and v| f ∈ × d i=1 Q ζ i (k+1, k, ••• , k) (f ) ∀f ∈ ∂K, ∇ (∇ • v) ∈ ∇P k-1 (K), and ∇ × v ∈ P k-1 (K)}.
it can in particular be shown the following inclusion.

Proposition 3.3.1 Relation between H k (K) and Ṽ2, k (K) Let us consider the k th order space H k (K), k ∈ N \ {0}, constructed from the refinement pattern (l 1 , l 2 ) = (0, k) and (m 1 , m 2 ) = (k, -1), that is, define H k (K) ={u ∈ H 1 (K), u |∂K ∈ H 0 (∂K), ∆u ∈ Q k (K)} d + x {u ∈ H 1 (K), u |∂K ∈ H k (∂K), ∆u ∈ Q [-1] (K)}. Then, v ∈ Ṽ2, k ⇒ v ∈ H k (K),

Proof.

Let us show that for any k ∈ N \ {0}, any element of Ṽ2, k (K) can be recast as an element of H k (K) constructed from the coefficients (l 1 , l 2 ) = (0, k) and (m 1 , m 2 ) = (k -1, -1). We start by showing that H k (K) is more general in terms of regularity, before deriving the inclusion relations by using from the block structure of the investigated spaces.

• (Regularity) Any element v ∈ Ṽ2, k (K) belongs to H 1 (K). Indeed, v ∈ H(div, K) ∩ H(rot, K) ⊂ (H 1 (K)) d . Furthermore, as any element w of H k (K) writes w = u 1 + x u 2 with u 1 , u 2 both having for regularity H 1 (K), w ∈ H 1 loc (K).
And since K is compact and bounded, H 1 loc (K) = H 1 (K). Thus, the regularity asked for any element v to be in Ṽ2, k (K) is stricter than the one asked for any element w to be in H k (K).

• (Inclusion on the boundary) Any v ∈ Ṽ2, k (K) is a polynomial and satisfies v • n| f ∈ P f (K) on every face K of the polygon K. But v • n| f is nothing else than the linear combination d i=1 v i n i of the coordinate-wise functions v i with the normal's coefficients n i . Thus, each polynomial v i has no choice but to live in the space

P k, ••• , k, k+1, k,••• , k (K), where the k + 1 is in the i th position. The space × d i=1 P k, ••• , k, k+1, k,••• , k (K)
is indeed the smallest space that is polynomial (required by the linear combination) and that contains all the functions v such that v • n| f ∈ P f (K). Note that allowing a higher degree in the i th variable is required as on each face f ∈ ∂K, x • n ≡ c for some constant c. And

× d i=1 P k, ••• , k, k+1, k,••• , k (K) ⊂ P 0 (K) + x P k (K)
, which is exactly the structure of the H k (K) space on the boundary.

• (Inclusion within the element) For any v ∈ Ṽ2, k (K), it holds

∇(∇ • v) ∈ ∇(P k-1 (K)) ∇ × v ∈ P k-1 (K)
Thus, it comes ∇(∇ • v)

∈∇(P k-1 (K)) -∇ × (∇ × v) ∈∇(P k-2 (K)) ∈ ∇(P k-1 (K)), which implies ∇ 2 v ∈ ∇(P k-1 (K))
and

∇ 2 v =     d i=1 ∂ 2 v 1 ∂x 2 i . . . d i=1 ∂ 2 v d ∂x 2 i     ∈    P k-2, k-1, ••• , k-1 (K) . . . P k-1, k-1, ••• , k-2 (K)   
Thus, we have naturally

∇ 2 v ∈ u,    ∆u 1 . . . ∆u d    , ∆u i ∈ Q k-1 (K) . • (Wrap-up) Let v ∈ V 2, k (K). Then v can be decomposed as v = (v 1 + v2 ) | K + ( v1 + v2 ) |∂K ,
where v1 ∈ (P 0 (∂K)) d represents the constant part of v on the boundary v2 ∈ (P k (∂K) \ P 0 (∂K)) d represents the higher parts of v on the boundary

and v1 = v | K -p [1], ••• , [1] v2 = p [1], ••• , [1]
for any p [START_REF] Poincaré | Sur les équations aux dérivées partielles de la physique mathématique[END_REF], ••• , [START_REF] Poincaré | Sur les équations aux dérivées partielles de la physique mathématique[END_REF] belonging to xP 0 . Doing so, we get

v1|∂K ∈ (P 0 (∂K)) d v1 | K = v | K -p [1], ••• , [1]
for the lower boundary characterisation, while for the higher one it comes

v2|∂K (P k (∂K) \ P 0 (∂K)) d v2 | K = p [1], ••• , [1]
There, we get straightforwardly from the previous paragraphs that

               v 1 ∈ H 1 (K) v 1 • n |∂K ∈ P 0 (∂K) ⊂ Q 0 (∂K) ∆v 1 | K = v | K ∈∇(P k-1 (K)) ⊂P k-1 (K) -∆(p) =0 ∈ P k-1 (K) ⊂ Q k-1 (K),
and

       v 2 ∈ H 1 (K) v 2 • n |∂K = v |∂K • n -v 1 • n |∂K ∈ P k (∂K) ⊂ Q k (∂K) ∆v 2 | K = ∆(x c) = x∆(c) = 0 ∈ P [-1] (K) ⊂ Q [-1] (K)
for some constant c ∈ P 0 (K). Writing v 2 as v 2 = xw on the boundary with

w ∈ x P k, ••• , k (∂K) ⊂ × d i=1 P k, ••• , k, k+1, k,••• , k (∂K) \ P 0 (∂K), it comes further        w ∈ H 1 (K) w • n |∂K ∈ P k (∂K) ⊂ Q k (∂K) ∆w | K = 0 ∈ P -1 (K) ⊂ Q [-1] (K)
Taking without loss of generality c = 1, considering v = v 1 + x w and setting (l 1 , l 2 ) = (0, k), (m 1 , m 2 ) = (k -1, -1), we get:

v 1 ∈ A k , v 2 = x w ∈ x B k ,
and therefore,

v = v 1 + v 2 ∈ H k (K),
concluding the proof.

Even though this inclusion holds for any k ∈ N \ {0} and defines Ṽk as a discretisation subspace of H k (K), the selected degrees of freedom in the framework of [START_REF] Da Veiga | H(div) and H (curl)-conforming virtual element methods[END_REF] are different from those we considered in Section 3.3.4.1, providing a less refined and less flexible element. Indeed, the Virtual element setting [START_REF] Da Veiga | H(div) and H (curl)-conforming virtual element methods[END_REF] allows less freedom in the inner characterisation than the proposed framework. Furthermore, contrarily to the more general setting presented in this section, the normal component on the boundary belongs at least to P 1 (K) for any admissible space. A lowest order element guaranteeing a constant value for the discretised functions' normal component on the boundaries thus cannot be natively defined in the conforming Virtual elements framework [START_REF] Da Veiga | H(div) and H (curl)-conforming virtual element methods[END_REF], but is subject to a slight modification (see e.g. [START_REF] Beir Ão Da Veiga | Mixed virtual element methods for general second order elliptic problems on polygonal meshes[END_REF]).

Numerical results

Let us now confirm the properties obtained along the theoretical developments by exploring the basis functions associated to the main element Ia and its variant Ib presented in the previous sections, for both the general and reduced frameworks. We particularly focus on the normal component ϕ • n |∂K of representative basis functions ϕ on the boundary of the element K. Note here that in practice, those basis functions have been constructed by tuning a natural basis of the space H k (K) towards selected sets of degrees of freedom through a transfer matrix.

As an example, we consider the non-convex nine-edges polygon presented in Figure 3.7, on which the elements are built. In all the results, the polynomial projectors used in the definition of the degrees of freedom were chosen as Hermite polynomials, as we have observed experimentally that this improves the conditioning of the linear system. 

Elements constructed in a general setting

Let us start by considering the space and elements as described in the Section 3.3.6.1. There, we start by investigating the behaviour of the internal basis functions, before discussing the results obtained on the boundary for the normal ones. In order to study the behaviour of the normal basis functions on the boundaries, we then have considered the case k = 2, where we expect five basis function to have a quadratic normal component. We have plotted in the leftmost side of Figure 3.8 the normal component of one of the normal basis functions associated to the element Ib, and can first observe that its support is contained on one single edge. We then have plotted all the basis functions associated to the fifth edge on Figure 3.8, for both the configurations Ib (middle) and Ia (right). There, one can first notice that their normal components, given in the middle graph of Figure 3.8, are polynomial of degree k ≤ 2, that together generate P 2 (R). Observing further, it appears that the normal component of two basis are vanishing, that is ϕ•n = ϕ 1 •n 5, x +ϕ 2 •n 5, y = 0. This generates this straight line equal to zero in the graph. Indeed, those two basis functions characterise the coordinate-wise freedom ϕ 1 • n 5, x = 0 and ϕ 2 • n 5, y = 0. This additional freedom is not reflected through the global term ϕ • n as addressed when discussing the impact of the degrees of freedom's choice in Section 3.3.4.1. This comes from the fact that only three basis functions are required to generate P 2 (R), where the global component ϕ • n lives. The two components ϕ 1 n 5, x and ϕ 2 n 5, y of the vector ϕ • n are compensating themselves. Those functions are nevertheless regular within the polygon K and not identically vanishing on K, as shown in Figure 3.9, where the left graph represents the value of the normal component ϕ • n on the boundary and where the right graph represents the components ϕ 1 and ϕ 2 on the element K. They can therefore be reclassified as internal basis functions. Note that this can be suppressed when using the reduced setting, as one can observe below in Section 3.3.8.2. Finally, one can consider the scaling of the basis functions by plotting the normal basis functions corresponding to the configurations Ia and Ib in the lowest order case, i.e. for k = 0 (see Figure 3.10). There, only the configuration Ib-using a pointwise value-scales to one. The fully moment-based configuration Ia scales to another constant that depends on the edge's length and orientation with respect to the axes. This example emphasises that the configuration Ib leads to basis functions which share similar properties like the Raviart -Thomas elements.

Investigating the first configuration of degrees of freedom

Investigating the second configuration of degrees of freedom For the sake of completeness, let us represent the shape of the normal component of the normal basis functions obtained with the configurations IIa and IIb in Figure 3.11. There, contrarily to the configuration I, only one function is degenerating as an internal one (in IIb, two quadratic functions have an identical normal component, making them not distinct in the second picture). Indeed, the focus is made on the coordinate-wise determination of the normal component. As we are in two dimensions, two functions are required to determine the coordinate-wise constants. The similarity with the configuration I lies in the scaling. Indeed, only the type b using pointwise value forces the scaling of the dual basis functions to one in the lowest order case. 

Elements constructed in a reduced setting

As a last example, let us derive some results obtained for the reduced element Ib, offering a complete parallel with the Raviart -Thomas elements on the boundary by suppressing the further coordinate-wise liberty granted by the general setting. The internal basis functions being unchanged from the general setting, they are not represented. In this context, one can observe on the bottom of Figure 3.12 that there is no more degenerating normal basis functions. Therefore, all normal basis functions are acting globally to characterise the polynomial behaviour of functions of the reduced H k (K) space on the boundary. Furthermore, one can observe that the scaling of the basis functions corresponding to lowest order element, as well as the amplitude of the basis functions describing the higher order ones, make the discretisation framework reliable.

Critical assessment of the proposed approach

Motivated by defining a Flux Reconstruction scheme on general polytopes [START_REF] Abgrall | On the Connection between Residual Distribution Schemes and Flux Reconstruction[END_REF], we have developed a new H(div)-conforming discretisation framework that can be set up on any polytope, not necessarily convex. As a final note, let us shortly wrap up the properties and observations applicable to the constructed elements, before going through perspectives of the presented work.

Limitations First of all, let us mention that as for any H(div)-conforming element, the use of the developed elements from its basis functions through a reference shape can be delicate. Indeed, preserving the properties of the normal components through geometrical transformations require conforming mappings, that can be extremely delicate, especially in the particular case of non-convex polytopal geometries. As a consequence, the use of the elements as formulated by their degrees of freedom should be favoured, not requiring to express any basis function nor to use a reference element.

More specific to the configuration IIof the developed elements, it can also be observed a that the conditioning of the determination matrix is numerically sensitive towards the orientation of the element, impacting the overall robustness. Even though this drawback is easily avoidable by small local modifications of the projectors, a more comprehensive solution would be desirable.

Strengths On a positive note, let us point out that merging the geometrical flexibility of the Virtual elements setting with the boundary properties of the Raviart -Thomas elements, the introduced framework is vectorial and allows a lot of flexibility in the definition of the degrees of freedom. In particular, the choices of discretisation quality and degrees of freedom on the boundary are independent from the ones made within the element. The discretised quantities benefit from an extensive coordinate-wise freedom. Hence, upon the choice made while selecting the degrees of freedom, some dual normal basis functions may be reclassified into internal ones. As a consequence, allowing a complete parallel with the Raviart -Thomas setting on the boundary from the lowest order on requires to construct straightforwardly a reduced space, along with reduced elements.

Detailing a particular example of a discretisation framework through a series of spaces and the definition of particular elements, it could be observed that in both general and reduced frameworks the type of used degrees of freedom (pointwise values or moments) impacts the shape and scaling of the dual basis functions. Such behaviour could in particular be observed in the lowest order case of the given examples, where only the dual basis functions of the configuration of type "b" scale to one. This implicit access to the shape of the basis functions from the degrees of freedom's expressions therefore al-lows us to instil the desired properties of basis functions directly at the discretisation level. The degrees of freedom expressions not being as rigid as in the Raviart -Thomas framework, one can then develop one's own H(div)conforming element depending on further features of interest, typically imposing non-negative basis functions or a specific scaling.

Perspectives To conclude, let us point out that the results presented here are already of theoretical interest, guaranteeing the considerations about Flux Reconstruction schemes on general polytopes hold, and that the conjecture about the correction functions made in [START_REF] Abgrall | On the Connection between Residual Distribution Schemes and Flux Reconstruction[END_REF] is correct.

One could now consider to explore the existence and definition of projectors from the introduced spaces onto polynomial ones, hence completing the analysis of the developed elements and widening their application range. There, a possibility is to follow the line drawn by the Virtual Elements methods, where projectors have been constructed in [START_REF] Da Veiga | H(div) and H (curl)-conforming virtual element methods[END_REF] and seems to be generalisable to the presented developments. Then, the projectors defined, estimates could be derived and the introduced discretisation spaces and elements used in a more practical context, as by example in a finite element framework.

A conservative and continuity preserving correction procedure for Level Set methods in evolving interfaces

4

Another facet of conservation problems lies in the scope of two-phase flow modelling, field investigating the motions of two fluids that coexist in a same domain. There, when the dynamic of each fluid is driven by a set of conservative hyperbolic equations, the mass quantity of each phase is preserved through time. Nevertheless, the spatial distribution of each phase is possibly going through heavy distortions and topological changes.

An accurate approximation of the solution to those problems is therefore delicate, as it requires a time-dependent spatial representation of the interface that does not prevent the comprehensive numerical scheme to be mass conservative. In particular, at the discrete level, the local conservation of the partial masses usually contradicts with a sharp resolution of the interface. As a consequence, the few numerical methods achieving both usually have to waive interface continuity, yielding another major issue.

Focusing on numerical schemes based on unstructured meshes, we present here a corrective numerical approach that enforces the mass conservation at the discrete level while preserving the cross-cell continuity of the interface. After specifying the considered problem in Section 4.1, we present in Section 4.2 the three fundamental works from which stem our investigations; two classical approaches and a first conservative method combining the strengths of each classical approach together. We then improve this first bridge by deriving a novel conservative and interface-continuous approach in Section 4.3. 

Chapter contents

Problem statement, modelling, and numerical approximation strategy

Two-phase flow modelling investigates the time-space behaviour of two different entities coexisting in a same domain Ω, called phases. Considered in their largest definition, those phases are characterised by the entities' nature, that is, the combination of its chemical composition (e.g. oil, water) and physical state (liquid, gaseous, solid). By example, with this definition, aqueous vapour-water, oil-water and ice-oil interaction are all considered as two-phase problems. Each of the phases is further described by a set of variables Y representing its dynamical state, usually related to density, pressure and velocity. The set Y is evolved accordingly to a dynamic that may be specific to each phase and that can be impacted by external conditions imposed on the domain as e.g. imposed velocity, pressure or heat flux. Moreover, the two phases may interact themselves through their interface Λ, a time-dependent hypersurface of the domain Ω ⊂ R d , d ∈ N, where both phases are spatially in contact. As the two phases split the domain Ω, one usually considers only one reference phase lying on a subset Ω 0 ⊂ Ω, inferring the spatial description of the second phase by the complementary relation Approximating the time-space behaviour of the two phases simply reduces to retrieving both the dynamical state and the location of the interface, the latter dictating by itself the spatial distribution of the two phases. However, as the interface location is a direct consequence of the fluid motion, its shape can become tremendously complicated and even change topology across time as soon as the velocity is not spatially constant. In some applications, it is possible to know a-priori if those features will develop depending on the domain shape and the intrinsic properties of each phase. Typically, the Reynolds number will indicate if the fluid is prone to turbulence, and the interplay between the gas mass flow and the interfacial liquid velocity can foresee the flow regime and therefore the interface's topology type. A typical classification for horizontal pipes is given as an example in Figure 4.2. Depending on its spatial distribution, each phase is either called dispersed or continuous. The type of spatial cohabitation of the two phases within the considered domain give rise to different modelling strategies.

Ω 1 = Ω \ Ω 0 .

Modelling strategy

Ideally, the physical model should describe accurately the phases properties and dynamic, grasp the topologically changing location of the subdomains and interface, and consider quantity exchange between phases as heat and mass transfer, if and when relevant. In practice, considering all of those properties at once requires a thorough physical model that is delicate to discretise, when even possible. Therefore, it is natural to select directly a modelling approach that is tailored to the simulation's finality and the foreseen flow regime. Indeed, if for example simulating the behaviour of breaking waves or annular dynamics requires an accurate spatial description of the interface, the motion prediction of a dispersed pollution cloud does not require an accurate boundary representation of each small pollution particle. At the discrete level, the representation of continuous phases is classically done in the Eulerian framework by fixing a reference frame and observing the phases passing through so-called control volumes, small portions C of the domain Ω where the state quantities are discretised, monitored and updated. Disperse phases may also be immersed in this framework when the spatial distribution of the interface or its properties are important to the dynamic (see Figure 4.3a). In contrast, when the individual particles dynamic prevails and that the surface effects and interface deformations are negligible it may be suitable to use a Lagrangian framework [START_REF] Vonneumann | A method for the numerical calculation of hydrodynamic shocks[END_REF][START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF], where the dispersed entities are reduced to points to follow in time (see Figure 4.3b). An intermediate perspective called interface tracking [START_REF] Zheng | Lattice Boltzmann interface capturing method for incompressible flows[END_REF][START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Tryggvason | A front-tracking method for the computations of multiphase flow[END_REF], mainly suited for cases where the interface distortions are limited, consists in discretising both phases in an Eulerian framework while explicitly keeping track of the interface by following its Lagrangian markers (see Figure 4.3c).

Model and assumptions

As we aim here to spatially describe a highly distorting interface that separates two phases whose connected components are of non-negligible size, we consider a fully Eulerian framework.

Within this scope, and to ease the presentation of the corrective technique, we assume that the two phases can be described identically in both subdomains by a time-space dependent state vector Y : R + × Ω → R q , q ∈ N, usually related to the pressure p, velocity v, and internal energy e. We further assume that the phases dynamic is driven by the same set of hyperbolic equations (4.1), referred to as the system dynamics.

   ∂Y ∂t + ∇ • F(Y ) = 0 Y | ∂Ω = g, Y (0, •) ∈ D, given . (4.1) 
There, the flux F : D → R q describes the considered physical model, as e.g. the Euler or the shallow water equations. The boundary conditions, here simply exemplified as Dirichlet with for second member g : R + × ∂Ω → R q , specify the impact of the domain's boundary on the dynamic. This set of hyperbolic equations is then closed by the equation of state (4.2), describing the relationship between the state variables accordingly to phase-wise properties.

EoS(Y, ψ) = 0 (4.2) 
Those phase-wise properties are selected through the time-dependent value of ψ, the interface representation defined by the Lagrangian marker (4.3) that provides a fluid selector. This representation is initiated by a function ψ 0 : Ω → R associated to the initial subdomains and evolved either by (4.4a) or (4.4b) accordingly to the fluid motion, driven by the underlying velocity field v.

ψ : R + × Ω -→ R (4.3)    ∂ψ ∂t + v • ∇ψ = 0 ψ(0, •) = ψ 0 (4.4a)    ∂ψ ∂t + ∇ (v ψ) = 0 ψ(0, •) = ψ 0 (4.4b)
The two-phase state and spatial dynamics is thus completely described in the Eulerian-Eulerian framework by the comprehensive set of equations (4.1-4.4), defining a so-named one-fluid model in the literature. Yet, the initial value problem (4.4a) does not consider the nature of the phases nor their properties. On the same line, the system dynamics (4.1) does not consider any interfacial effect, as no ψ-dependent source term representing a possible heat exchange or phase interaction is involved. The interface is thus considered as passive, simply transported as a free surface by the underlying velocity field and making in particular the phase selection of importance only in the equation (4.2).

Dynamics of the discretised model When considered continuously, all the above-mentioned dynamics are interlinked and evolve simultaneously. At the discrete level however, each of the equations is discretised in both space and time, making the interplay effective only at specific points in the time space. A partially sequential approximation of the dynamic has therefore to be introduced, as depicted in Figure 4 At each time step, the space dependent phase properties are inferred from the interface representation accordingly to the value of the fluid selector. The equation (4.2) thence closes the system (4.1), and the state is evolved to the next time step. Simultaneously, the interface location is updated from the fluid selector values accordingly to the motion of the interface representation (4.4a), motion induced by the velocity field that is directly obtained from the initial state vector. Due to this step-wise information exchange, a reliable numerical solution can only be obtained by designing a numerical scheme that guarantees the discrete state conservation principles while providing an interface location that is in agreement with the mass quantity of each phase.

Discretisation issues

Driven by conservation laws where the total mixture's mass is preserved despite a possibly reckless velocity field acting on the phases (see Section 4.1.2), the solutions to the problem (4.1-4.4a) may experience heavy distortions and topological changes of their subdomains and interfaces repeatedly in time (see Figure 4.5 for an illustration).

Simply connected

Diconnected Nested subdomains The discrete spatial representation of the interface has therefore to be topologically flexible, robust, and accurate while preserving the continuity across control volumes. Indeed, as the interface location has a direct impact on the state equation and thus on the upcoming fluid motion, failing in either of those properties will notably yield topological concerns, spurious deformations, and more dramatically front speeds and phase locations inaccuracies fuelling conservation issues.

Conservation principle

In order to develop a correction procedure that turns any comprehensive numerical scheme into a mass-conservative one that is free from the above numerical issues, let us first derive the discrete mass-conservation principle. More than specifying the scheme property we aim to enforce, it will also allow us to identify the reason of extra numerical difficulties and trade-offs.

Continuous two-phase mass conservation principle

The time dynamic of a flow is in particular ruled by the mass conservation principle acting on the full domain Ω and directly expressed in the definition of Y and F whenever a system of conservation laws is investigated. We saw in the preliminary Section 2.1.2.1 that this conservation principle reads in its integral form

Ω ∂ρ ∂t dx + Ω ∇ • (ρ v) dx = 0, (4.5) 
where ρ represents the quantity responsible for the mixture's mass (e.g. the fluid's density or height) and the term Ω ∇ • (ρ v) dx expresses the mass transfer, here reducing to a possibly net mass income from the boundary.

In the particular case of immiscible two-phase flows, where no mixing nor chemical transformation occur, this principle also holds for each of the phases themselves. Each of the phase-wise total masses

M i : R + -→ R t -→ Ω i (t) ρ dx = Ω ρ 1 Ω i (t) dx, i ∈ 0, 1 , (4.6) 
is there constant through time and satisfies the relation

dM i dt = Ω ∂(ρ 1 Ω i (t) ) ∂t dx + Ω ∇ • (ρ v 1 Ω i (t) ) dx. (4.7) 
At the continuous level, those phase-wise relations are directly enforced by (4.5) due to the gradient linearity and the disjoint union relation Ω = Ω 0 • ∪ Ω 1 , as illustrated in Figure 4.6. Indeed, the covering of Ω by the two phases yield

Ω ρ dx = Ω ρ 1 Ω 0 (t) dx + Ω ρ 1 Ω 1 (t) dx for any t ∈ R + , splitting (4.5) accordingly. t + ∆t      dM dt = 0 dMi dt = 0
, The total masses of the phases lying on the subdomains Ω0 and Ω1 are constant up to boundary inflow, as well as the total mass of the mixture over the domain Ω. However, in the case of incompressible flows, the total volume may differ. Spatially discrete two-phase mass conservation principle At the spatially discrete level, the same mass conservation principle applies directly on any time-independent control volume C ⊂ Ω, where Ω represents the computational domain approximating Ω. There, the change in the partial mixture's mass m : t → C ρ dx is simply given by

dm dt = C ∂ρ ∂t dx + C ∇ • (ρ v) dx, (4.8) 
and the term C ∇ • (ρ v) dx represents the quantity of mass received from and sent to neighbouring control volumes (see Figure 4.6). This transfer can be seen more easily by applying the Stokes theorem to the relation (4.8), yielding

dm dt = C ∂ρ ∂t dx + ∂C ρ v • n dx, (4.9) 
expression emphasising each transfer across the control volume's boundary.

In addition, as in the continuous case when considering immiscible phases, each of the phase-wise partial masses defined over any control volume, i.e.

m i, C : R + -→ R t -→ ρ C∩Ω i (t) x d = ρ 1 Ω i (t) C x d, i ∈ 0, 1 , (4.10) 
is conserved through time and follows the spatially discrete principle

dm i, C dt = C ∂(ρ 1 Ω i (t) ) ∂t dx + C ∇ • (ρ v 1 Ω i (t) ) dx, i ∈ 0, 1 . (4.11) 
Considering then a set of control volumes T h = {C} that covers Ω, the sum of all the control volume-wise conservation relations

C∈T h dm i, C dt = C∈T h C ∂ρ1 Ω i (t) dt dx + C∈T h ∂C∩Ω i (t) ρ v • n dx (4.12) 
reduces to (4.7), and the reconstructed phase-wise masses M i , i ∈ 0, 1 are preserved (see Figure 4.7 for an illustration). However, this reconstruction is only possible provided an exact representation of the interface in the control volumes, whose resolving is extremely delicate numerically. location within the cell, furthermore continuously in time. Hence, the approximated interface location does not necessarily preserve the distribution of both phases within the control volume accordingly to the mass conservation principle, neither in the phases' proportions nor in their spatial layout. It is thus very challenging to retrieve a numerical solution for which (4.12) reduces to (4.7), as the definition of the dedicated numerical schemes outlined in Section 4.1.3.1 shows.

t + ∆t t + ∆t      dm dt = 0 dm i dt = 0 C - C v ρv
Fully discrete two-phase mass conservation principle Discretising further in time, the conservation statement (4.11) has to be understood with respect to a step-wise time evolution of the solution. We therefore consider the cumulative mass change, dictated in any control volume C over each complete time step ∆t = t n+1 -t n by the time-space discrete conservation relations

C ρ 1 Ω i (t) t n+1 t n dx + t n+1 t n C ρ 1 Ω i (t) v • n dx dt = 0 ∀ C ⊂ Ω, ∀i ∈ 0, 1 . (4.13) 
When applied to a numerical solution, the left hand side value is representative of the scheme's conservativeness as it quantifies the cumulative mass loss, indicating the scheme defects even when the errors due to the interface location are compensating within the considered time step. However, the numerical monitoring of (4.13) is itself subject to the approximation of both time and space integrals. Thus, on top of the numerical difficulties encountered when designing the numerical scheme, quadrature defects will impact the mass loss quantification and thus the validation of the scheme. In particular, the point distribution of the space quadrature may not suit the fluid profile, as illustrated in Figure 4.9. Furthermore, the accuracy of the time quadrature is bound to the number of possibly subtimesteps and their distribution in the time interval. Thus, the choice of the discretisation space in which the fluid selector is expressed also impacts how well the scheme's performance can be assessed, making its design even harder.

Note When considering incompressible flows, not only the mass but also the phases' volumes are preserved. Thus, instead of monitoring (4.6), one can simply consider the values of |Ω 0 | and |Ω 1 |, and instead of monitoring (4.13) one can simply check that

t n+1 t n ∂C∩Ω i (t) v • n dx dt = 0.

Dedicated approaches and numerical schemes

Due to the high complexity of two-phase flow problems that manifests both in their behaviour and modelling up to the discrete level, the development of dedicated numerical schemes is relatively recent, especially in the case of two-phase flows driven by hyperbolic systems of equations. Indeed, hitherto unresolved discontinuities, stability and conservation issues disallowing any trust in the solution were already encountered in the single-phase case, field remaining an active research area in itself.

In order to motivate the choice of our starting points detailed in Section 4.2, let us outline the main numerical achievements in tackling two-phase flow problems that are modelled by (4.1-4.4) in the Eulerian-Eulerian framework. Within this scope, all the mentioned methods are of interface capturing type, a class of schemes where the interface is inferred from the flow state without being specifically tracked. There, as observed when deriving the mass conservation principle in Section 4.1.2, the discrete preservation of the phases' mass is often in contradiction with an accurate interface representation.

Most of the interface capturing approaches therefore only focus either on preserving mass conservation or on resolving accurately a sharp interface location. Hybrid approaches attempting to resolve both are newfangled and still suffer from substantial drawbacks. Though not being able to be exhaustive, we aim to provide a progressive view of resolved issues and current approximation challenges in those three directions.

Approaches focusing on mass conservation

Approaches focusing on mass conservation usually see the domain Ω as a tessellation of small fluid portions on which physical quantities are investigated. Initially built as thorough physical models treating the interface as a thick interaction layer, they have been then simplified to the case of thin passive interfaces, paving timidly the way for a sharp resolution of their location.

Diffuse interface One of the pioneering works focusing on mass conservation in two-phase flows is the diffuse interface model introduced by Anderson, McFadden and Wheeler [START_REF] Anderson | Diffuse-interface methods in fluid mechanics[END_REF], inspired by the physical theory of phasetransitions [START_REF] Landau | On the theory of phase transitions. I[END_REF][START_REF]On the theory of phase transitions. II[END_REF]. In this approach, the fluid selector ψ is defined by a continuous phase-representative parameter constructed from averaged molec-ular quantities on small fluid portions, exploiting typically the molecular density field. Considered as the energy-free surface of the fluid selector, the interface is then advected as to minimise the total energy coming from elementary intermolecular interactions while preserving the equilibrium profile across itself [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF] by observing the energy-free surface rule [START_REF] Van Der Waals | Thermodynamische Theorie der Kapillarit ät unter voraussetzung stetiger Dichte änderung[END_REF]. This dynamic is usually enforced by augmenting (4.4b) with the Cahn-Hillard equation [START_REF] Cahn | On spinodal decomposition[END_REF].

This model is physically accurate as long as the size of each fluid portion crossed by the interface matches the region where microscopic physical interactions occur. The interface has thus a physically meaningful width, giving its name to the diffuse interface model. Besides, the conservation is guaranteed whenever a consistent numerical scheme is used in the model's discretisation. Dramatical numerical behaviours are however encountered in the cases of very thin interfaces and topological changes, due of emerging singularities.

Phase field Often assimilated with the diffuse interface in the literature, the phase-field method has been introduced quasi-simultaneously by Jacqmin in [START_REF] Jacqmin | Calculation of two-phase Navier-Stokes flows using phasefield modeling[END_REF] and differs only in the way the interface is represented. Yet, as an emergence from the modelling of free boundary problems [START_REF] Fix | Phase field methods for free boundary problems[END_REF], the method is restricted to flows whose tangential stress across the interface can be neglected, i.e. to the free surface case. There, the molecular interactions across the interface and their width are negligible, and the physical meaning of the interface can be consequently dropped. The interface is thus considered as mathematically sharp and its representation reduced to a phase field, an adhoc indicator function ψ satisfying ψ = 1 in the reference phase and ψ = -1 otherwise. The transition between the two states has then to be artificially smoothened to allow numerical computations. As the function's shape does not impact the model dynamics, it is usually taken as

ψ : Ω -→ [-1, 1] x -→ -tanh (β x), (4.14) 
where β acts as a sharpness control parameter and determines the artificial interface width, adapted upon the numerical schemes needs. Unlike the diffuse interface method, the interface representation is not bound to any physical quantities and therefore handles natively topological changes, making it popular for modelling turbulent flows [START_REF] Soligo | Mass-conservation-improved phase field methods for turbulent multiphase flow simulation[END_REF], binary alloys [START_REF] Kim | Phase-field model for binary alloys[END_REF] and physical phase change [START_REF] Langer | Models of pattern formation in first-order phase transitions[END_REF]. However, going towards the sharp interface limit by reducing the artificial width of the interface still yields instabilities. Furthermore, another severe drawback relates to conservation, where regardless of the employed numerical scheme the partial phase-wise masses are not necessarily conserved. Indeed, due to the minimisation driven coupled convection-advection dynamic of ψ, any perturbed energy equilibrium of the interface is restored by artificially diffusing into the other phase, yield-ing partial mass leakages that shrinks small domains and grows already large ones. As a consequence, the discrete mass conservation is only achieved at the global level (4.8), not down to the control-volume wise level in the sense of (4.11). To reduce the impact of this issue, profile corrected [START_REF] Biben | Tumbling of vesicles under shear flow within an advected-field approach[END_REF] and flux corrected [START_REF] Zhang | A flux-corrected phase-field method for surface diffusion[END_REF] approaches have been investigated, without succeeding yet to provide a fully conservative framework.

Free surface capturing Another approach tackling two-phase flows separated by a passive interface is the free surface capturing method introduced by Kelecy, Pletcher [START_REF] Kelecy | The development of a free surface capturing approach for multidimensional free surface flows in closed containers[END_REF], Pan and Chang [START_REF] Pan | The capturing of free surfaces in incompressible multi-fluid flows[END_REF], here again quasi-simultaneously with the diffuse interface method. It also adopts its perspective, but instead of augmenting the equation (4.4b) to incorporate the interface dynamic, the free interface is directly described in the system (4.1-4.4b) as a contact discontinuity in the density field. The conservation is there immediate by definition of the enforced dynamics, provided that a consistent numerical scheme is used.

So defined, the free surface capturing method can handle complex surface representation, deformations, and to some extent topology changes. Very popular in modelling dam-break and tsunami problems, its numerical discretisation uses however high resolution Riemann solvers coupled with the artificial compressibility method, being thus very demanding for non-linear problems.

Volume of Fluid A very popular strategy among approaches that focus on mass conservation is to consider the interface representation ψ cell-wise as a volume fraction H ∈ [0, 1] representing the proportion of the reference phase within the mixture contained in a given control volume. The motion of the interface is then simply described as the advection of its representation by the underlying fluid velocity field (4.4b). Introduced by Hirt and Nichols in [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] under the name Volume of Fluid, this modelling strategy is flexible with respect to the mesh geometry and is naturally mass conservative, provided that a consistent numerical scheme is used in the approximation of (4.1-4.4b).

This numerical approximation has been investigated from several perspectives. A first direction has been to use Riemann solvers [START_REF] Sainsaulieu | Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver[END_REF], linearized shortly after in [START_REF] Toumi | An approximate linearized Riemann solver for a two-fluid model[END_REF]. In the same line, Godunov type schemes were considered in [START_REF] Abgrall | How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach[END_REF][START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] and later extended to (W)ENO schemes, still investigated nowadays [START_REF] Titarev | Finite-volume WENO schemes for three-dimensional conservation laws[END_REF][START_REF] Coralic | Finite-volume WENO scheme for viscous compressible multicomponent flows[END_REF]. Parallelly, the development of flux vector [START_REF] Steger | Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[END_REF][START_REF] Van Leer | Flux-vector splitting for the Euler equations[END_REF] and flux difference [START_REF] Roe | Approximate Riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Van Leer | A comparison of numerical flux formulas for the Euler and Navier-Stokes equations[END_REF][START_REF] Liou | Splitting of inviscid fluxes for real gases[END_REF] splittings schemes yielded accurate simulations and have been extended to higher dimensions [START_REF] Deconinck | A multidimensional generalization of Roe's flux difference splitter for the Euler equations[END_REF]. Further efforts to reduce oscillations have been made in [START_REF] Liou | A new flux splitting scheme[END_REF], and positivity preservation has been achieved in [START_REF] Liou | A sequel to ausm: Ausm+[END_REF]. Later, hybrid flux splitting methods have been developed [START_REF] Evje | Hybrid flux-splitting schemes for a twophase flow model[END_REF][START_REF] Evje | Hybrid flux-splitting schemes for a common two-fluid model[END_REF][START_REF] Chang | A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM-+up scheme[END_REF][START_REF] Hu | Application of implicit Roe-type scheme and Jacobian-Free Newton-Krylov method to two-phase flow problems[END_REF] in order to reduce the computational cost and restrictions caused by the need of the Jacobian, and the need of eigenstructure has been removed in [START_REF] Dumbser | FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems[END_REF].

Other Finite Volume methods also aimed at retrieving an interface location that is consistent with the physics for the turbulent case [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF][START_REF] Rhie | Numerical study of the turbulent flow past an airfoil with trailing edge separation[END_REF][START_REF] Deng | Incompressible flow calculations with a consistent physical interpolation finite volume approach[END_REF], paying an extra attention to the flux discretisation. More recently, Discontinuous Galerkin-like collocation methods have been investigated in [START_REF] Kopriva | On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods[END_REF], paving the way to entropy stability [START_REF] Chen | Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF][START_REF] Renac | Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows[END_REF]158].

Parallelly, to offset the fact that the Volume of Fluid method provides the interface location only as a layer of interfacial cells, reconstruction techniques have been developed to infer it more precisely within each interfacial control volume. A first method, SLIC [START_REF] Noh | SLIC (simple line interface calculation)[END_REF], defined the interface as a line parallel to one of the control volume's boundaries, and has been improved by the PLIC reconstruction [START_REF] Rider | Reconstructing volume tracking[END_REF] where a linear interface is determined with respect to the gradient field of the volume fraction distribution. In the same vein, spline and quadratic representations have been later investigated in [START_REF] López | A volume of fluid method based on multidimensional advection and spline interface reconstruction[END_REF] and [START_REF] Xie | Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature[END_REF]. More involved reconstruction techniques were also developed, as e.g. the Moment Of Fluid method that minimises the phase-wise volume defects in each control volume [START_REF] Dyadechko | Moment-of-fluid interface reconstruction[END_REF], or the physics-aware OST [START_REF] Chorin | Curvature and solidification[END_REF] and PROST [START_REF] Renardy | PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method[END_REF] methods, taking into account the surface tension. However, all of those techniques appear to be unsatisfactory as they do not ensure the continuity of the interface across cells nor an actual physical relevance of their shape and location.

Approaches focusing on the interface location

Resolving accurately the interface location is usually achieved by carefully designing the interface representation so that it can be precisely followed or tracked in time. The most accurate methods in this direction are mainly of Lagrangian type, as e.g. the Sharp Interface [START_REF] Nourgaliev | Numerical prediction of interfacial instabilities: sharp interface method (SIM)[END_REF][START_REF] Chang | Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method[END_REF], Ghost Fluid [START_REF] Ménard | Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF], Immerse Boundary [START_REF] Peskin | Flow patterns around heart valves: a numerical method[END_REF] and more recently the cut cells [START_REF] Berger | An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries[END_REF][START_REF] Quirk | An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies[END_REF] methods, falling therefore out of our scope.

Among the few interface capturing methods that focus on resolving precisely the interface location, accurate techniques making use of Normalised Variable Diagram [START_REF] Ubbink | A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes[END_REF] and Flux Corrected Transport [START_REF] Bonometti | An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics[END_REF] were developed. Providing a sharp description of the interface down to discrete level and making a step towards conservation, those methods however encounter untoward stability problems. Less accurate but more reliable, the widely used Level Set method [START_REF] Dervieux | A finite element method for the simulation of a Rayleigh-Taylor instability[END_REF][START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF][START_REF] Osher | Level set methods: an overview and some recent results[END_REF] dedicates itself to the passive interface case. There, the interface is defined implicitly by the zero level of a d + 1 dimensional surface that is evolved in time via its advection by the underlying fluid velocity field, obeying the equation (4.4a). Not requiring any reconstruction and being suited for representing any interface regardless its topology, this method does not however control the interface shape by any dedicated physical constraint and is far from being conservative.

Another perspective in improving the interface resolution is the use of mesh-adaptation techniques [START_REF] Hay | Computation of free-surface flows with local mesh adaptation[END_REF][START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF][START_REF] Shi | Adjoint-based error estimation and mesh adaptation for the correction procedure via reconstruction method[END_REF][START_REF] Fidkowski | Entropy-based drag-error estimation and mesh adaptation in two dimensions[END_REF] and hybrid-meshes [START_REF]Control-Volume Finite-Element Two-Phase Flow Experiments with Fractured Rock Represented by Unstructured 3D Hybrid Meshes[END_REF], where the interface is sharpened through mesh refinement rather than by elaborating suitable discretisation spaces. Despite allowing the application of specific local treatments, the width of the interface then usually remains linked with the interfacial cell widths, and a fine resolution can only be obtained at great computational cost.

Hybrid methods

Aiming to retrieve conservation while specifying the interface location, hybrid methods borrowing the strengths of several schemes that belong to either of the above classes have been investigated.

Using coupling techniques, those methods usually adjust the definition of numerical fluxes in order to enforce the conservativeness of the interface representation, exploiting natively conserved quantities. A natural approach in this direction is to combine the Level Set and Volume of Fluid methods, initiated in [START_REF] Bourlioux | A coupled level-set volume-of-fluid algorithm for tracking material interfaces[END_REF] and popularised with the CLSVOF method [START_REF] Sussman | A Coupled Level Set and Volumeof-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows[END_REF] by making use of operator splitting techniques. The need of interface reconstruction has been later removed in [START_REF] Van Der Pijl | A mass-conserving level-set method for modelling of multi-phase flows[END_REF], and flexibility with respect to the mesh type has been improved in [START_REF] Ningegowda | A coupled level set and volume of fluid method with multi-directional advection algorithms for two-phase flows with and without phase change[END_REF] and [START_REF] Ferrari | A Flexible Coupled Level Set and Volume of Fluid (flexCLV) method to simulate microscale twophase flow in non-uniform and unstructured meshes[END_REF]. Likewise, a coupled Level Set and Moment of Fluid method, CLSMOF [START_REF] Jemison | A coupled level set-moment of fluid method for incompressible two-phase flows[END_REF], has also been proposed. All of those methods are by definition fully conservative and provide a precise location of the interface. However, as modifying the numerical fluxes is subject to discretisation and geometrical restrictions, the topological flexibility of the Level Set method does not completely transfer to the coupled methods, and issues in highly distorted control volumes and topological changes are typically encountered.

To overcome those restrictions, more recent corrective approaches seem promising. The location of the interface is there corrected after its standalone evolution, within each control volume and accordingly to local conservation constraints. The coupling is therefore not simultaneous in discrete time, and no geometrical restriction is entailed by the correction process. In practice, works defining such procedures originally made use of projection methods [START_REF] Zhang | Numerical simulation of free surface flow using the level-set method with global mass correction[END_REF] or predictive-corrective approaches [START_REF] Cervone | A geometrical predictor-corrector advection scheme and its application to the volume fraction function[END_REF]. More recently, a promising procedure coupling the Level Set and Volume of Fluid methods by using an intermediate interface reconstruction inspired from the phase-field approach has been proposed in [START_REF] Shyue | An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach[END_REF] and developed in [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF]. Both conservative and geometrically flexible, there is however no cross-cell interface continuity and no physical relevance of the corrected interface location.

Scope of the presented approach

In this chapter, we propose to construct a continuous and conservative representation of the interface that separates two flows whose motion is ruled by the system (4.1-4.4). As in this model the interface is assumed to be passive and is possibly subject to large deformations, we consider a fully Eulerian framework and focus on the particular class of interface capturing schemes.

Background choices and starting point Observed while deriving the discrete conservation principle in Section 4.1.2 and noticeable in the historical developments of numerical schemes, shortly reviewed in Section 4.1.3, continuous and conservative representations of the interface are not natively compatible. Thorough representations are therefore not retrieved by stand-alone models, but rather by hybrid approaches that bring the strengths of separate monotasked numerical schemes together.

We aim to step further in this direction by improving existing hybrid approaches. To allow an independent numerical discretisation of each scheme component and to prevent any topological issue in the interface representation, we focus on corrective approaches that do not restrict the use or features of any scheme component. Each of those components is then selected upon the properties we aim to instil in the comprehensive hybrid scheme. Here, we consider a level set representation for determining the location of a possibly topologically changing interface, and select the Volume of Fluid approach for providing a set of phase-wise discrete mass conservation constraints. Given those three choices, the hybrid method THINC-LS [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] appears as a natural, flexible, and powerful framework. We therefore consider it as our starting point, combining the Level Set and Volume of Fluid approaches in a corrective way so that the discrete conservation principle (4.11) holds.

Objectives and achievements

The two main drawbacks of the THINC-LS approach are the lack of cross-cell continuity and physical meaning of the retrieved interface. We eliminate here the former by redefining the discrete representation of the initial interface and modifying the expression of the THINC correction term. Fully conservative, this technique can be applied to any numerical scheme assessing (4.1-4.4a), provided that a pointwise reconstruction of the solution is available.

Outline In order to ease the presentation of the proposed technique, we start in Section 4.2 by describing more in details the three fundamental works from which stem our investigations. We then describe the core of our improved method in Section 4.3, presenting an intuitive design of an admissible correction function in Section 4.3.2. Various extensions are then given in Section 4.3.3, followed in Section 4.3.5 by the numerical details required in practical applications. Essential numerical results are finally showed in Section 4.3.5.

Description of three fundamental methods

As the presented technique consists in an improvement of the hybrid THINC-LS approach, we first describe the essentials of this approach. We start by describing each of the involved components, that are the Level Set and the Volume of Fluid methods, presented respectively in Section 4.2.1 and 4.2.2. The classical THINC-LS approach is then introduced in Section 4.2.3.

The Level Set approach

Introduced in particular by Dervieux, Thomasset, Osher, Sethian, Sussmann and Fedkiw [START_REF] Dervieux | A finite element method for the simulation of a Rayleigh-Taylor instability[END_REF][START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF][START_REF] Osher | Level set methods: an overview and some recent results[END_REF], the Level Set approach is an interface-capturing method that relies on an implicit description of the interface location. Providing a continuous phase-selector to the system dynamics, this interface representation allows a pointwise selection of the phase properties to consider. However, despite allowing an easy spatial representation of the interface, this method is prone to conservation errors.

Implicit geometry representation

In the Level Set approach, the interface is represented implicitly as the zero level of a d+1 dimensional evolving surface, parametrised by a function φ : R + ×Ω → R. The space-time-dependent sign of the function selects the phase, a positive sign representing a given reference phase and a negative one its complementary in Ω. Hence, assuming without loss of generality that the reference phase is occupying the subset Ω 0 , the level set function φ satisfies the following property. Note that only one level set is defined over the entire domain Ω, even if the interface is made of several components. The level set function is therefore led to represent interfaces having various topologies and being possibly highly distorted. Seemly challenging, this flexibility is in fact handled naturally. Indeed, any implicit representation always relies on the same parametrisation nature of the level set function, depending only on its given expression.

φ : R + ×Ω -→ R (t, x) →        φ(t, x) > 0 if x ∈ Ω 0 (t) φ(t, x) = 0 if x ∈ Λ(t) φ(t, x) < 0 if x ∈ Ω 1 (t)

Spatial evolution of the interface

The interface location is evolved by advecting its level set representation accordingly to the velocity field v derived from the state variables. Likewise, the state evolution depends on the timedependent interface location. Therefore, the comprehensive dynamic is given by augmenting the system Method strengths and drawbacks By definition, the Level Set method provides an interface representation that is suitable to any time-dependent topology and allows a pointwise selection of the relevant phase over the domain Ω. However, the level set function suffers from the development of singularities as its gradient becomes far from |∇φ| = 1 through its advection, even for smooth initial conditions (see Figure 4.11 for an illustration).

Possible development of singularity when merging domains

Ω 0 Ω 1 φ |∇φ| 1 
The developped shape of the level set also depends on the boundary conditions prescribed to the advection problem As particular consequence, the interface representation may become sloppy when φ becomes too flat near the zero level set. On the computational side, spurious interfaces may even develop due to singularities or possible numerical diffusion (see Figure 4.12 for an illustration). To prevent those pitfalls, a redistancing technique can be regularly employed. Commonly consisting in evolving the Eikonal equation

   ∂ φ ∂τ +sign( φ0 )(||∇ φ|| 2 -1) = 0 φ(0, •) = φ(t, •) (4.18)
until a space-dependent pseudo-final time τ F,x for which |∇φ(τ F,x , x)| = 1, the level set is then reinitialized to φ(t, x) = φ(τ F (x), x). The interface therefore stays sharp all through its evolution [START_REF] Russo | A Remark on Computing Distance Functions[END_REF].

An other main issue is yielded by the sole discretization of (4.17). Indeed, as the level set field is practically known from the degrees of freedom only, the shape of the interface within each cell depends on the point-value reconstruction technique associated to the discretisation setting. Therefore, the mass conservation principle (4.7) does not natively transfer to the discrete level. 

The Volume of Fluid method

Primarily focusing on mass conservation, the Volume of Fluid method tackles two-phase problems without describing specifically the interface location. Instead of considering two fluids as distinct entities, it appraises the properties of a single mixed phase characterised within each cell by a volume fraction.

Phase representation This mixture is continuously defined over Ω by an indicator function H featuring a given reference phase, assumed here without loss of generality to be lying on Ω 0 ⊂ Ω, i.e.

H : Ω -→ {0, 1}

x -→ 1 x∈Ω 0 .

(4.19)

The nature of the mixture is then given cellwise accordingly to the average value of H on the considered cell C i , referred to as volume of fluid, denoted H i and defined by

H i := C i H(x)dx = |Ω 0 ∩C i |. ( 4 

.20)

The associated field is then set as the piecewise constant function H expressed as

H : Ω -→ [0, 1] x -→ H i , i s.t. x ∈ C i , (4.21) 
and the interface is seen as the layer of cells C i whose associated value H i are neither 0 nor 1. phase. Respectively, the properties of the other phase are considered wherever H i = 0. In the case of an interfacial cell C i , where 0 < H i < 1, the mixture's properties are derived for each cell from the value of H i and the properties of the two phases themselves. In accordance with physical principles, the specific density ρ would typically be taken as the weighted average ρ = ρ 1 H i + ρ 2 (1 -H i ), while other properties as viscosity may involve a non-linear expression.

Phase and state evolution

The space-dependent nature of the mixture is evolved cell-wise by advecting the discrete volume of fluid quantities (4.20) accordingly to the velocity field v obtained from the state variables, that is,

∂H ∂t + ∇ • (v H) = 0. (4.22) 
Similarly as in the Level Set method, the state (and thus the velocity field) is obtained by evolving the augmented system 

Method strengths and drawbacks

Advecting volume fractions from a velocity field, the Volume of Fluid method is mass conservative in essence. However, the volume of fluid field is piecewise constant, thus discontinuous, and the location of the interface is not exactly known within interfacial cells. Therefore, should the interface location be known, a reconstruction technique has to be employed. Although a variety of techniques exists, as e.g. [START_REF] Noh | SLIC (simple line interface calculation)[END_REF][START_REF] Rider | Reconstructing volume tracking[END_REF], they are usually restricted to low order and yield discontinuous interfaces. A more recent technique, THINC-LS, retrieves a spatially determined interface while preserving mass conservation by combining the Volume of Fluid technique with the Level Set method via the THINC reconstruction.

The THINC-LS approach

The THINC reconstruction is a local correction procedure that is applied after each time step to the level set field. Using a phase-field function generated out of the level set values by a tangent hyperbolic profile, the interface correction is determined within each interfacial control volume with respect to conservative volume of fluid constraints. When considered as part of the THINC-LS hybrid scheme [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF], it modifies the discrete model dynamics presented in Section 4.1.1 by incorporating the correction step after the individual interface and state evolutions, as depicted in Figure 4 Time step Being a hybrid approach, each time step comprehends the evolution of three entities; the state, the level set representation φ of the interface, and the volume of fluid representation H of the interface. Each of the above evolutions is assumed to be performed on a same mesh T h = {C i } i accordingly to the system (4. considered here as a constraint. This correction consists in six steps, detailed and depicted in Algorithm 1.

Method strengths and drawbacks

As a corrective approach, the THINC-LS correction procedure preserves the topology flexibility of the level set and conserves the partial masses down to the local control volumes. However, by construction of the local fluid selector ψ i and by definition of the correction term c i , the expression of the corrected level set yields a discontinuous interface. Furthermore, the correction being only an artificial shift up or down of the initial level set, the shape of the obtained interface has no physical meaning and is subject to the choices of the polynomial locator function's order and of its determination constraints.

A less visible and yet critical drawback lies in the nature of the corrected level set's expression. Indeed, the corrected level set can be expressed in the original level set discretisation framework if and only if the shape of the initial interface locator and of its offsets can. Therefore, whenever one likes to preserve the nature of the discrete representation through the correction procedure, a special attention has to be paid to the compatibility between the shape of the interface locator and the discretisation of (4.24). In this respect and to allow any interface locator, the classical THINC approach [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] evolves the level set with a semi-Lagrangian method. One could also be more tailored and choose an expression of ψ i so that for any c i ∈ R, ψ i + c i can be represented in the level set discretisation associated to the cell C i . However, this issue cannot be resolved in a general scope not specifying the underlying level set advection scheme.

In what follows, we propose to improve the THINC-LS approach by enforcing the interface cross-cell continuity by simply redefining the expressions of the locator and corrector functions.

1. Redefine the implicit representation of the interface location within C i to an arbitrary order k ∈ N representation by constructing a constrained polynomial

ψ i ∈ Q k (R d ) out of the local discrete level set field φ i .
Choosing in particular the constraints as 

∂ d ψ i (x m ) ∂ d 1 x 1 ∂ d 2 x 2 = ∂ d φ i (x m ) ∂ d 1 x 1 ∂ d 2 x 2 for k ∈ N, d 1 ,d 2 ∈ 0, d such that d 1 + d 2 = d,
H i = 1 2 (1 + tanh( ψ i + c i )),
referred to in the following as volume of fluid estimator. There, 2 ∈ R * + represents a chosen artificial interface thickness parameter.

4. Retrieve the evaluated volume of fluid value H i ∈ [0, 1], representing the total quantity of the reference phase in C i as dictated by the corrected interface location represented by ψ i + c i , i.e.

H i = C H i (x)dx.
5. Determine the value of c i by matching the evaluated volume of fluid value with the actual volume of fluid constraint H i , that is,

Find c i such that H i = H i .
6. Update the local expression of the level set φ i in C i by using the reciprocal THINC function, i.e. First four steps of the correction procedure in the one-dimensional case.

φ i (x) = 1 tanh -1 (2H i (x) -1) = ψ i (x) + c i . ( 4 

A continuity preserving procedure

The discontinuity problem encountered in [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] and observed in Section 4.2.3 is only due to the definition of the cell-wise locator function ψ i and to the nature of its correction c i . By redefining their expressions, we propose a correction procedure that ensures both mass conservation and interface continuity.

After sketching the introduced idea in Section 4.3.1, we present in Section 4.3.2 intuitive definitions that can be used with continuous discretisations of (4.24) and (4.23) considering primal meshes of convex elements. They are then extended to the cases of non-convex control volumes, staggered settings, and discontinuous discretisations in Section 4.3.3. A set of admissibility conditions for designing general expressions of locator and corrector functions is then provided in Section 4.3.3.4, while possible numerical approximations are proposed in Section 4.3.4. Lastly, numerical results are presented in Section 4.3.5, followed in Section 4.3.6 by a critical assessment of the method.

The general idea in a nutshell

As in the THINC-LS approach, the conservative location of the interface is determined by an extraneous correction enforcing volume of fluid constraints. This correction is applied on the level set field φ in each interfacial cell of the volume of fluid discretisation, that is, within each cell C i where H i ∈ (0, 1).

There, the initial non-conservative interface is represented as in [START_REF] Qian | Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations[END_REF][START_REF] Xie | Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: the THINC method with quadratic surface representation and Gaussian quadrature[END_REF]] by a parameter-dependent function that is constrained by locally reconstructed point-values of the level set and its derivatives. However, contrarily to [START_REF] Qian | Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations[END_REF], this reconstruction has not for objective to provide an arbitrary high order representation, but to enforce cross-cell continuity and to allow flexibility in the schemes design. Indeed, when different schemes are used to tackle the equations (4.23) and (4.24), the spatial discretisations of the volume of fluid and level set fields are not necessarily identical. The control volume C i may therefore not match any of the cells associated to the level set discretisation, and no local point-value reconstruction of the level set may have a support matching any of the given volume of fluid constraints. As the initial discretisation may be further discontinuous, a cross-cell continuous interface locator function ψ i , local reconstruction of the level set field φ over C i , is therefore constructed before applying the correction procedure on the local control volume.

The expression of this initial locator function is defined as to enforce the interface cross-cell continuity while only requiring a compact stencil for determining its parameters. Mass conservation is then achieved by adding a correction term that is tuned towards the associated volume of fluid constraint H i . There, we consider a parameter-dependent function ψ ∆ i that vanishes on the control volume boundaries, hence preserving any pre-existing cross-cell interface continuity. Thus, as the initial interface locator is cross-cell continuous, the obtained corrected interface is conservative and globally continuous.

An intuitive continuous interface correction

In order to ease the presentation of the proposed technique, we first consider the two spatial dimensional case where both the discrete level set and volume of fluid fields are resolved on a same primal mesh of convex elements. There, we apply step by step the THINC-LS procedure and detail the proposed improvements, impacting only the second and third steps. Notations We consider Ω ⊂ R 2 the study domain where the spatial points x ∈ Ω have for coordinates x = (x 1 , x 2 ). Let then T h be a primal mesh consisting of convex elements K ⊂ Ω and Ω := ∪ K∈τ h {K} represent the computational domain. Each element K has for boundary ∂K, a union of n K faces generically denoted by f . Moreover, during the correction process, K is identified to a control volume C i for some given index i ∈ N. We thus denote by Ξ i the set of faces f ∈ ∂K that are crossed by the interface Λ and refer to any face f ∈ Ξ i by the term "interfacial face".

Discretisation setting

Λ τ h  ∈ Ξ i  ∈ Ξ i K - C i = K Interfacial edges Control volume (a) Used spatial notations H i K - φ K (x) ∀x ∈ K C i = K

Known information layout

We assume that the equation (4.24) is tackled with a primal scheme that offers a continuous representation of the level set field over Ω and provides a local pointwise reconstruction of the level set within each element K. That is, we assume that there exists a local level set function

φ K : K -→ R x -→ φ K (x)
determined from local degrees of freedom associated to the element K, and that the global level set function

φ : Ω -→ R x -→ φ K (x), K s.t. x ∈ K
is continuous across cells. We further assume that the volume of fluid value is given for each primal element K and ruled by a discretely conservative evolution of (4.23), providing conservative constraints on the associated control volume C i := K. A visual description of the spatial layout of the state, volume of fluid and level set information is provided in Figure 4.17.

The modified correction procedure

As in this setting the representation of the level set is continuous over the primal mesh, yielding a cross-cell continuous interface location, we do not require any reconstruction of a local interface locator. The level set field is therefore directly corrected in each primal control volume C i := K by a local correction function ψ ∆ i,c : C i → R. The corrected level set field then reads

ψ : Ω -→ R x -→ φ K (x) + ψ ∆ i,c (x), i s.t. C i = K and x ∈ K, (4.26) 
where the parameters of each correction function ψ ∆ i,c are determined with respect to the local volume of fluid constraint H i . The adaptation of the THINC-LS procedure we present here therefore only lies in the expression of the locator function ψ i and the corrector function ψ ∆ i,c , impacting only the second and third steps. We however derive the complete procedure once again for the sake of self-sufficiency of the detailed algorithm.

Having defined all the prerequisites, let us now explicit the continuous and conservative correction procedure. We consider the correction step performed at a given discrete time t n+1 and assume that the discrete level set φ n and volume of fluid H n fields are known and have been evolved to φ n+1 and H respectively. In other words, we explicit the contents of the orange box in the Figure 4.16 so that the correction preserves the interface continuity.

1. Select an interfacial element K within which to correct the interface location and define the control volume as C i := K. Retrieve then the pointwise reconstruction of the local level set φ K as well as the average volume of fluid value H i on C i .

2. Define the locator function ψ i as being equal to the local level set reconstruction φ K .

3. Define the corrector function ψ ∆ i,c : C i → R as the polynomial defined as the pondered product of the faces' Cartesian equations, i.e.

ψ ∆ i,c (x) = c j∈ 1,n K (d j x 2 -a j x 1 -b j ). ( 

4.27)

There, a j , d j are the slope and b j the offset coefficients of the line extending the face f j ∈ ∂K, and c ∈ R is a constant.

Those two definitions alone are sufficient to ensure a cross-cell continuous representation of the interface. Indeed, the interface locator is in particular cross-cell continuous by assumption, and the corrector function is defined as to be continuous and vanishing on the cell boundary ∂K. The crossing locations of the interface on the cell boundary are thus preserved regardless the value of the constant c, that can be adjusted against any volume of fluid constraint without further assumption (see Section 4.3.2.3 for an existence statement). To this aim, an auxiliary volume of fluid estimator is constructed.

4. Set an artificial interface thickness 2 ∈ R * + . 5. Define a volume of fluid estimator H i,c for the control volume C i by applying the THINC reconstruction to the corrected locator function

ψ i + ψ ∆ i,c
pondered by the interface thickness. Namely, define

H i,c = 1 2 1 + tanh( ψ i + ψ ∆ i,c ) . ( 4 

.28)

Following this definition, the integral of H i,c over C i provides an estimated volume of fluid value that corresponds to the corrected interface location. Knowing in parallel the volume of fluid constraint associated to C i is therefore enough to enforce mass conservation, as one can match the evaluated volume of fluid value with the constraint H i .

6. Apply the conservative constraint associated with the cell C i to the volume of fluid estimator and resolve the parameter c ∈ R of the correction function accordingly. In other words,

Find c ∈ R such that 1 |C i | C i H i,c (x)dx = H i . ( 4 

.29)

The solution to (4.29) provides the parameter c ∈ R of the correction function ψ ∆ i,c to be used within the cell C i , and therefore the conservative locator function ψ i + ψ ∆ i,c . There is then only left to update the values of the level set field φ by using the reciprocal volume of fluid estimator.

7. Redefine the level set function on the primal elements K from the reciprocal volume of fluid estimator, namely,

∀x ∈ K, φ(x) = 1 tanh -1 (2H i,c (x) -1) = ψ i (x) + ψ ∆ i,c (x). 
(4.30)

At the end of the procedure, the mass conservation is enforced by the value of c ∈ R, while the cross-cell interface continuity is enforced by the expression of φ K and preserved by the definition of the correction functions ψ ∆ i,c . Furthermore, the interface thickness 2 that has been used in the correction procedure is not involved anymore in the corrected level set evaluation.

Analysis

The feasibility and relevance of the proposed improvements to the THINC-LS approach rely entirely on the shape given to the corrector function ψ ∆ i,c . Indeed, its sole definition is responsible for the existence of a corrected interface location that lies within the control volume C i and further satisfies the relation (4.29). We show that the proposed shape (4.27) fulfils those two essentials and subsequently derive an additional property that will be beneficial to the numerical approximation of the correction procedure. of the correction algorithm, the obtention of a conservative interface is conditional on the existence of a solution to (4.29).

Existence of a conservative corrected interface location By definition

The free parameter of the corrector function should therefore have a direct impact on the location of the interface within the control volume, deforming the zero level set of ψ i + ψ ∆ i,c without creating any artificial boundary crossing or modifying existing ones. In addition, the set of corrected interface locations that can be obtained through the parameter range must contain at least one interface that splits the control volume into areas whose proportion corresponds to H i for any H i ∈ (0,1). Together, those two conditions reduce to requiring the surjectivity of the evaluated volume of fluid function

H i : R -→ R c -→ 1 |C i | C i 1 2 1 + tanh( ψ i (x) + ψ ∆ i,c (x)) dx, (4.31) 
property that is ensured for the proposed function (4.27) by Proposition 4.3.1.

Proposition 4.3.1 Feasibility of the volume of fluid constraint

Let C i be the control volume to which is associated the volume of fluid constraint H i ∈ (0, 1) and consider c the parameter of the correction function ψ ∆ i,c given by (4.27). Then,

∀H i ∈ (0, 1), ∃c ∈ R s.t. 1 |C i | C i H i,c (x)dx = H i .
The presented proof, based on the intermediate value theorem, is fairly simple but requires specific properties of the proposed corrector and volume of fluid estimator functions. Hence, we start by specifying them in the two following lemmas before presenting surjectivity arguments in Proof of Proposition 4.3.1.

Lemma 4.3.1 Properties of the correction function

For any control volume C i ⊂ Ω whose any of its faces f j ∈ ∂K is parametrised by the slope a j , d j ∈ R and offset b j ∈ R coefficients, and for any constant c ∈ R * , the function

ψ ∆ i,c : C i -→ R x -→ c j∈ 1,n K (d j x 2 -a j x 1 -b j ),
• is never vanishing strictly within C i ,

• does not change sign within the control volume C i , • is bounded within C i and achieves its maximum absolute value strictly within C i , i.e. max

x∈C i {|ψ ∆ i,c (x)|} = max x∈ Ci {|ψ ∆ i,c (x)|} := |cγ i | ∈ R with |γ i | > 0.
Proof.

• Let us start by showing that the correction function ψ ∆ i,c does not change sign strictly within the control volume C i . For this purpose, we can directly use the definition by observing that ψ ∆ i,c is a polynomial belonging to

Q n K (K) = Q n K (C i )
and consists in a weighted product of the factors (d j x 2 -a  x 1 -b  ) for j ∈ 1, n K . Therefrom, one can apply the factor theorem and assert that whenever c = 0, the zeros of ψ ∆ i,c correspond exactly to the union of those of the factors. The kernel of ψ ∆ i,c is thus given by {x = (d j x 2 ,a j x 1 + b j ), j ∈ 1, n K }, describing the union of the lines extending the faces of C i . As here the control volume C i is assumed to be convex and of positive area, we can directly infer that none of those line intersect with the interior of the cell. Consequently, whenever c = 0, the function ψ ∆ i,c never vanishes within any convex control volume C i .

• The property of ψ ∆ i,c to have a constant sign strictly within C i is an immediate consequence of the above statement. Indeed, as the function ψ ∆ i,c is a continuous polynomial never vanishing in the interior of C i , it follows by the contraposition of the intermediate value theorem that the function ψ ∆ i,c never changes sign strictly within the control volume C i .

• The maximum of |ψ ∆ i,c | being bounded and achieved strictly within C i is equally straightforward. Indeed, as the control volume C i is compact and ψ ∆ i,c : C i → R continuous, the function is bounded on C i . Furthermore, we saw above that ψ ∆ i,c is never vanishing strictly within C i whenever c = 0. The maximum absolute value of ψ ∆ i,c is therefore positive and real valued. Moreover, as by definition ψ ∆ i,c | ∂C i ≡ 0, the maximum absolute value is necessarily achieved strictly within C i . Thus, max

x∈C i {|ψ ∆ i,c (x)|} = max x∈ Ci {|ψ ∆ i,c (x)|} := |cγ i | > 0.
The obtained properties of the corrector function engender those of the estimator function, crucial to proving the well-posedness of the problem (4.29).

Note In order to ease the analysis of the estimator function (4.28), let us now break the expression of the corrector function (4.27) into its two natural parts, the first one depending only on the free parameter and the second depending only on the shape of the control volume. Expressly, we write the corrector function as ψ ∆ i,c := cω ∆ i where c ∈ R and ω ∆ i is defined by the parameter-free function

ω ∆ i : C i -→ R x -→ j∈ 1,n K (d j x 2 -a j x 1 -b j ), (4.32) 
d j , a j and b j being predetermined by the control volume C i as the slope and offset coefficients of the line extending the face f j ∈ ∂K. So defined, note that the function ω ∆ i itself still satisfies the properties derived in Lemma 4.3.1 when considering the constant c as equal to 1. 

H i,c : C i -→ R x -→ 1 2 1 + tanh( ψ i (x) + cω ∆ i (x))
• is non-negative, i.e. ∀x ∈ C i , H i,c (x) ≥ 0,

• is bounded, and more particularly max{H i,c (x), x ∈ C i } ≤ 1,

• is continuous and Lebesgue integrable, i.e.

H i,c ∈ L 1 (C i ) ∩ C 0 (C i ).
Proof.

• (First two points) By definition of the level set locator and corrector functions, one has that ψ i and ψ ∆ i,c are real-valued at any point x ∈ C i . Hence, we get by definition of the hyperbolic tangent that

-1 ≤ tanh ψ i (x) + cω ∆ i (x) ≤ 1 ∀x ∈ C i , ∀ ∈ R + and ∀c ∈ R.
Reconstructing the expression of H i by elementary operations, we retrieve

0 ≤ 1 2 1 + tanh ψ i (x) + cψ ∆ i (x) ≤ 1 ∀x ∈ C i , ∀ ∈ R + and ∀c ∈ R, bounding H i,c
on C i and implying straightforwardly the two first properties.

• (Last point) To begin with, we notice that the function H i,c is continuous for any c ∈ R as being defined as the addition and composition of continuous functions. From there, one can simply use the above point and state that as H i,c is bounded and

C i ∈ Ω compact, C i H i,c (x)dx is real valued. Thus, H i,c is further Lebesgue integrable and H i,c ∈ C 0 ∩ L 1 (C i ).
Given those regularity properties, we can now proceed to proving the surjectivity of the function H i when considering the corrector function (4.27).

Proof of Proposition 4.3.1

In order to prove the surjectivity of the function H i defined by (4.31), it is enough to show that H i is continuous and satisfies

   lim c→-∞ H i (c) = 0 and lim c→+∞ H i (c) = 1 when ω ∆ i ≥ 0 lim c→-∞ H i (c) = 1 and lim c→+∞ H i (c) = 0 when ω ∆ i ≤ 0,
the surjectivity of H i then following from the intermediate value theorem.

• The continuity of H i : R → R is an immediate consequence of the continuity of its integrand H i,c given by Lemma 4.3.2. Indeed, the function H i,c is itself continuous as being formed by additions and compositions of continuous functions. Besides, as its definition domain C i ⊂ R 2 is compact, it is further absolutely continuous. Thus, its integral over C i is continuous with respect to the parameter c, implying by definition the continuity of H i .

• Let us now investigate the limits of H i as c → ±∞ when ω ∆ i is non-negative. Analogous, the case ω ∆ i ≤ 0 will not be detailed here for the sake of concision.

We first derive the limit of H i as c → +∞ by investigating the expression of the integrand H i,c and using its properties for obtaining integral estimates depending on the value of c. More precisely, we know by Lemma 4.3.2 that for any constant c ∈ R the function H i,c is Lebesgue integrable, non-negative and bounded by 1. Hence, we can apply Fatou's lemma and assert that

1 |C i | C i lim c→+∞ 1 2 1 + tanh( ψ i (x) + cω ∆ i (x)) dx ≤ lim c→+∞ 1 |C i | C i H i,c (x)dx,
where we have made explicit the expression of H i,c in the left hand side. There, using the non-negativity assumption over ω ∆ i and recalling from Lemma 4.3.1 that in this case ω ∆ i > 0 strictly within C i , we obtain

lim c→+∞ 1 2 1 + tanh( ψ i (x) + cω ∆ i (x)) = 1, ∀ ∈ R + , ∀x ∈ Ci .
Indeed, the functions ω ∆ i and ψ i are continuous and therefore bounded on their compact support C i . They can thus be treated as constants, and the limit follows by definition of the hyperbolic tangent. The lower bound then reads

1 ≤ lim c→+∞ 1 |C i | C i H i,c (x)dx.
In turn, the upper bound is simply obtained by plugging the global maximum of H i,c , given by Lemma 4.3.2 and reading ∀c ∈ R, max

x∈C i {H i,c (x)} ≤ 1,
in the integrand's expression. Namely,

lim c→+∞ 1 |C i | C i H i,c (x)dx ≤ lim c→+∞ 1 |C i | C i max x∈C i {H i,c (x)}dx ≤ lim c→+∞ 1 |C i | C i 1dx = 1,
allowing us to conclude that indeed lim c→+∞ H i = 1 by the squeeze theorem.

Let us now derive the limit of H i as c i → -∞. In this case, we can bound directly the integral from above by using only the expression of H i,c itself. Indeed, by assumption for ψ i and definition for ω ∆ i , those functions are continuous. Therefore, as C i has a compact support their values are bounded by two constants α ψ ∈ R and α ω ∈ R. In other words,

∀x ∈ C i , |ψ i (x)| ≤ α ψ and |ω ∆ i (x)| ≤ α ω .
The hyperbolic tangent function being strictly increasing, one can then bound the value of H i,c at any point x ∈ C i by writing

H i,c (x) = 1 2 (1 + tanh( ψ i (x) + cω ∆ i (x))) ≤ 1 2 (1 + tanh( α ψ + cα ω )),
yielding naturally by non-negativity of the volume of fluid estimator H i,c

1 C i C i 1 2 1 + tanh( ψ i (x) + cω ∆ i (x)) dx ≤ 1 2 (1 + tanh( α ψ + cα ω )).
Considering the limit of both terms as c → -∞, we then obtain

lim c→-∞ 1 C i C i 1 2 1 + tanh( ψ i (x) + cω ∆ i (x)) dx ≤ lim c→-∞ 1 2 (1 + tanh( α ψ + cα ω ))
and thus retrieve by definition of the hyperbolic tangent the upper bound

lim c→-∞ 1 |C i | C i H i,c (x)dx ≤ 0.
Recalling further that H i,c ≥ 0 for any c ∈ R, we observe that H i is necessarily non-negative and apply the squeeze theorem, yielding lim

c→-∞ H i (c) = 0.
Summarising the above two cases, we can the state that whenever ω ∆ i ≥ 0, lim

c i →-∞ H i = 0 and lim c i →+∞ H i = 1.
The case of ψ ∆ i turns to be analogous by writing c = -c and ω ∆ i = -ω ∆ i . There, we derive similarly lim c i →-∞ H i = 1 and lim c i →+∞ H i = 0, concluding the proof. Now proven, Proposition 4.3.1 provides the existence of a solution to the problem (4.29), and therefore the existence of a corrected interface for any value of the conservative constraint H i . If our approach can thus be validated in prin-ciple, we still have to attest of its robustness. We therefore derive the strict monotonicity of the corrector function H i , ensuring the uniqueness of the corrected interface and the continuous dependency of its associated parameter c on the volume of fluid constraint H i .

Lemma 4.3.3 Monotonicity of the volume of fluid estimator

The function H i : R → R actually takes values in (0, 1), and

• is strictly increasing whenever ω ∆ i ≥ 0, • is strictly decreasing whenever ω ∆ i ≤ 0.

Proof.

• (Monotonicity) Let us first derive the monotonicity of H i by studying the sign of its derivative. As H i is defined by the integral of H i,c over C i , we can directly apply the Leibnitz integral rule and make use of the integrand's properties. There,

d dc 1 |C i | C i H i,c (x)dx = 1 2|C i | C i ∂ ∂c 1 + tanh( ψ i (x) + cω ∆ i (x)) dx = 1 2|C i | C i ω ∆ i (x) sech 2 ( ψ i (x) + cω ∆ i (x))dx. (4.33) 
Thus, as we saw in Lemma 4.3.1 that the sign of ω ∆ i is constant within C i , bounds ensuring monotonicity can be derived accordingly to the sign of ω ∆ i .

Let us first consider the case where ω ∆ i is non-negative. To begin with, one can observe that by definition of the hyperbolic secant and the fact that ψ i and ω ∆ i are real valued, sech 2 ( ψ i + c ω ∆ i ) ∈ (0, 1) and is thus greater than zero. Hence, C i being compact there exists a constant η 1 ∈ R * + so that max

x∈C i {sech 2 ( ψ i (x) + cω ∆ i (x))} ≥ η 1 > 0, (4.34) 
and we have that d dc

1 |C i | C i H i,c (x)dx ≥ η 1 2|C i | C i ω i dx. ( 4 

.35)

Furthermore, we know by Lemma 4.3.1 that the function ω ∆ i is never changing sign nor vanishing strictly within C i , and that max{|ω ∆ i (x)|, x ∈ Ci } = |γ i | for some γ i ∈ R. As we further assume that ω ∆ i ≥ 0, we can infer that γ i > 0 and reduce (4.35) to d dc

1 |C i | C i H i,c (x)dx ≥ η 1 γ i > 0, (4.36) 
guaranteeing that H i is strictly increasing along with the value of c.

The case were ω ∆ i ≤ 0 can be treated analogously. Indeed, arguing with the identical arguments as for obtaining (4.34), we get the existence of a constant η 2 ∈ R * -that verifies max

x∈C i {sech 2 ( ψ i (x) + cω ∆ i (x))} ≤ η 2 < 1.
Using this estimate directly in (4.33), we retrieve

d dc 1 |C i | C i H i,c (x)dx ≤ η 2 2|C i | C i ω i dx. ( 4 

.37)

Thus, as here the function ω ∆ i is negatively valued everywhere within the C i , control volume that is a subset of Ω having a non-null measure, we get

d dc 1 |C i | C i H i,c (x)dx < 0, (4.38) 
guaranteeing that H i is strictly decreasing along with the value of c.

• (Image space) By the above point, we know that the function H i is strictly monotonous over R. Therefore, recalling the limit bounds obtained in Proof of Proposition 4.3.1, the image space of H i is reduced to (0, 1).

As a consequence of Lemma 4.3.3, there always exists a unique corrector function associated to a given constraint H i ∈ (0, 1). Not requiring any condition on the initial interface locator other than its continuity, the presented technique is therefore able to correct any initial interface towards any volume of fluid constraint within any control volume, regardless the amount of correction needed to achieve conservation. Moreover, the presented technique is robust towards possibly small numerical perturbations, the core problem of the correction procedure (4.29) being well-posed. 

Proof.

The proof is immediate given the properties of (4.27). Indeed, we saw in Proposition 4.3.1 that the function H i : R → (0, 1) is continuous and in Lemma 4.3.3 that it is strictly monotonous. Therefore, it is bijective and the problem (4.29) admits a unique solution depending continuously on the value of the volume of fluid constraint H i .

The well-posedness of the problem (4.27) states in particular that the value of the constant c adapts continuously to the constraint value H i . Therefore, as the corrector function ψ ∆ i,c is also continuous, the spatial location of its zero level set changes smoothly, and we can investigate the spatial properties of the obtained corrected interfaces.

Spatial properties of the corrected interface

Let us now drive our interest towards the spatial properties of the interface given as the zero level set of the corrected function ψ i + ψ ∆ i,c . We aim there to justify the cross-cell continuity of its zero level set and get a glimpse of its topological behaviour.

To begin with, let us start by confirming that the main goal of achieving a conservative and cross-cell continuous interface has been reached. To this aim, we summarise the above discussions in the following proposition.

Proposition 4.3.2 Interface continuity and conservation principle

Given the conservative volume of fluid constraint H i associated to any control volume C i , the locally corrected interface defined as the zero level set of the function ψ i + ψ ∆ i,c is conservative and cross-cell continuous.

Proof.

• Let us first focus on the conservation principle. According to the course of the correction procedure, the compliance of the corrected interface location with the discrete conservation principle is directly ensured at the last step. Indeed, as we assume here that the underlying numerical scheme evolving (4.23) is conservative, we have by Proposition 4.3.1 that (4.29) always admits a solution on any control volume C i yielding to the definition of a conservative interface location on C i . Furthermore, as we are considering a fully primal setting, any control volume C i match some given element K ∈ T h on which the initial level set field has been determined. The interface locator function ψ i is therefore built and modified on each primal cell K = C i to become consistent with the conservative volume fraction. Hence, the mass conservation is achieved down to the cell level of the level set discretisation, and (4.11) is fulfilled.

• As shortly stated when describing the correction procedure, the cross-cell continuity is achieved by construction. Indeed, assuming that the initial interface locator function ψ i is already cross-cell continuous, defining the interface corrector ψ ∆ i,c as a continuous function that vanishes on the boundary is enough to preserve all the intersection points of the interface with the boundary of the control volume. The cross-cell continuity of the interface is therefore preserved through all the correction procedure.

While preserving the continuity of the interface within the cell and across its boundaries, the proposed shape of the interface corrector makes the procedure entirely local, not impacting the interface's representation in neighbouring cells. In particular, the above statement implies that no spurious interface crossing point will be created on the boundary of the control volume.

Corollary 4.3.1 Behaviour of the local interface within its cell

Each connected component of a locally corrected interface is continuous within its supporting cell, and no spurious boundary crossing is created during the correction procedure.

Proof. • (Continuity) Already cross-cell continuous by construction, the corrected interface is also continuous within the cell. Indeed, any primal cell K is here directly identified to some control volume C i , a bounded subset of R 2 . There, the locally defined interface locator and corrector functions are continuous. Thus, the zero level set of their sum has for connected components subsets of C i that are either closed and contained in the cell or crossing it from one subset of its boundary to another. Especially, in the case where the zero level set of the initial locator function contains only one-dimensional curves, classical scope of this work, the corrected interface has for connected components single curves that are either closed or having their end points on the cell's boundary. Thus, each connected component of the interface is continuous within C i .

• (No spurious boundary crossing) The corrected interface not crossing the boundary at more, less or different locations than the original ones is again a consequence of the chosen shape of the corrector function ψ ∆ i,c . Indeed, vanishing on the boundary being continuous and not changing sign within C i , the number of boundary crossing points remains the same.

Although not creating any spurious boundary crossing point, we saw that the correction procedure is able to correct any continuous initial interface locator function for any volume of fluid constraint, regardless its shape. In particular, initial locator functions not having any single zero level set within the cell can still be corrected. There, the corrector function is enforcing the conservative constraint by creating an interface whose connected components are contained within the control volume, thus not creating any boundary crossing point. On the same vein, the sign-constant polynomial nature of the corrector function yields specific patterns of the corrected interface location that depends both on the topology of the initial interface and on the needed correction amount. Not yet rigorously proven, those observations are simply reported as numerical results in Section 4.3.5.

Lastly, let us point out once again that this procedure holds for any continuous shape of the initial interface locator and does not depend explicitly on the underlying numerical schemes. More than defining a conservative and continuous interface, the presented approach is therefore flexible towards the mesh geometry and discretisation setting, only requiring the existence of control volumes that cover the computational domain Ω and to which are associated conservation constraints.

Extensions

The flexibility of the THINC-LS approach combined with the local definition of the corrector function allows us to extend the presented approach to more general cases. We go through crucial extensions, ranging from the drop of the continuity requirement on the initial level set field to non-convex control volumes and staggered discretisations. As an opening, we present a set of sufficient conditions for defining continuity-preserving corrector functions, paving the way for designs suited e.g. to specific physical or geometrical constraints. In order to preserve the interface continuity, the presented modification to the THINC-LS procedure requires in particular the correction function ψ ∆ i,c to have a constant sign within the control volume C i and to vanish on its boundary. Even though the proposed expression (4.27) always fulfils the second condition, being part of the vanishing ideal of ∂C i , the first property does not hold for non-convex control volumes. Indeed, as the corrector function ψ ∆ i,c ∈ Q n K (C i ) is explicitly built so that the lines extending the faces of the control volume provide its zeros, its construction over any nonconvex control volume would result in the existence of zero lines in its interior. The regularity of the polynomial would then imply a sign change of ψ ∆ i,c within the cell, failing to meet the requirements.

Extension to non-convex control volumes

As particular consequence, a collection of polygonal subcells where ψ ∆ i,c has constant sign will be created. Thus, even if on each of those subcell the function ψ ∆ i,c meets the Lemma 4.3.1, the range of volume fraction values that can be achieved through the correction process would be upper bounded by the cumulative area of the subcells that support the initial interface. The existence of a solution to the problem (4.29) could therefore not be guaranteed anymore in case of large corrections (see an illustration in Figure 4.19).

To overcome this issue, it is enough to define a bijective mapping ζ : C ref → C i that deforms a convex polygon of reference C ref to the considered control volume C i so that the transformation of any path contained in C ref lies in C i . However, the design of such transformation usually requires smooth continuous bijective mappings and is computationally costly. Thus, as a proof of concept only, we consider ζ as the smooth harmonic map proposed in [START_REF] Schneider | Smooth bijective maps between arbitrary planar polygons[END_REF], applied between the regular polygon having the same number of faces as the considered control volume C i and C i itself (see an illustration in Figure 4.20). in polar coordinates. The corrector function can then be defined as

ψ ∆ i,c : C i -→ R x -→ ψ ∆,ref i ζ -1 (x) , (4.39) 
where ζ is given component-wise as in [START_REF] Schneider | Smooth bijective maps between arbitrary planar polygons[END_REF] through built on the regular polygon C ref can then be defined as previously by

∆ζ l = 0 ζ l | ∂C i = L l , l ∈ 
ψ ∆,ref i,c : C ref -→ R x -→ c j∈ 1,n K (d j x 2 -a j x 1 -b j ),
where a j , d j are the leading and b j the offset coefficients of the line extending the face f j ∈ ∂K, and satisfies the set of properties described in Lemma 4.3.1. Thereby, the same continuous and conservative interface correction procedure as the one detailed in Section 4.3.2 can be applied. Indeed, the mapping ζ is smooth, bijective and all the trajectories contained within the reference polygon C ref have their image contained in the non-convex control volume C i . The properties of the reference corrector function ψ ∆,ref i,c thus naturally transfer to ψ ∆ i,c , and the well-posedness of the problem (4.29) constructed on the expression (4.39) of ψ ∆ i,c can be established. A conservative and continuous interface entirely contained in C i can therefore be retrieved by the proposed approach, even when the conservative volume of fluid constraint is given on non-convex control volumes.

Extensions to discontinuous and high order representations of the initial level set field

So far, as defined in Section 4.3.2 and Section 4.3.3.1, the correction procedure only preserves the cross-cell continuity of the interface, not bringing it in when the interface is initially discontinuous. Therefore, dropping the assumption on the continuous initial level set field requires to change the definition of the initial locator function ψ i to a local reconstruction of the level set enforcing cross-cell continuity.

A straightforward definition of a local reconstruction that interpolates the level set in such a way relies on a simple adaptation of the arbitrary high order THINC-LS approach [START_REF] Qian | Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations[END_REF]. Indeed, there, the interface locator is defined as a polynomial constrained by the level set field, providing an arbitrary high order interface representation within the considered cell. Following this line, we simply modify the shape of the interpolation polynomial in order to enforce by construction the continuity of the interface across the cell boundary.

To this aim, we design an interface locator ψ i whose expression on each interfacial face is independent of the actual control volume C i that supports it. Aiming in addition to keep the determination stencil local to C i , we define ψ i as a polynomial whose expression on any interfacial face depends on that face's parametrisation alone. Namely, denoting Ξ i the set of all interfacial faces of the control volume C i , the proposed interface locator reads

ψ i : C i -→ R x -→ ∈Ξ i p  k (γ  (x)) ı∈Ξ i ı = (d ı x 2 -a ı x 1 -b ı ), (4.40) 
where

p  k ∈ Q k (R d-1
) is a polynomial of degree at most k ∈ N, a ı , d ı are the leading and b ı the offset coefficients of the line extending the face ı, and γ ı is any of its parametrisation. Naming x A and x B the endpoints of a given face , one may typically consider the distance based representation

γ  (x) = ||x -x A || 2 ||x A -x B || 2 , (4.41) 
defining p k as a radial function centred in x A whenever a robust representation is desirable, or simply

γ  (x) = x 2 if d  = 0 γ  (x) = a d x 1 + b d otherwise (4.42)
when one prefers to consider an expression that is similar to the definition of the corrector function ψ ∆ i,c . Either way, the product term of (4.40) cancels the contribution of polynomial taking care of the representation on any other interfacial face. Furthermore, the number of interfacial faces defines the minimum polynomial order, while the degree of p k prescribes the available freedom for fitting the polynomial to the possibly discontinuous initial level set field φ.

Choice of the constraints characterising the locator function Once the shape (4.40) of the locator function ψ i has been selected, characterising its expression on the control volume C i upon the initial level set field φ comes down to finding the coefficients of each polynomial p  k ,  ∈ Ξ i . To this aim, and in order to ensure cross-cell continuity of the locator function, we constrain the polynomial accordingly to the local level set reconstructions φ K whose support contains any of the faces f ∈ ∂C i . More precisely, we consider the local set of reconstructions

φ K : K → R, K ∈ T h s.t. K ∩ ∂C i = ∅ (4.43)
and select constraints that ensure both the compactness and relevance of the characterisation. We therefore focus specifically on constraints acting on the faces  that force the zero level set of the locator function to be consistent with the boundary crossings of the initial interface as described by the possibly discontinuous level set field. In practice, we simply use the same set of pointvalue constraints as the one proposed in [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF], set up however at a finite set of evaluation points {x m } m that belongs to the cell boundary ∂C i . Namely, denoting K := {K s.t. x m ∈ K} and assuming a discontinuous level set discretisation, we impose the constraints

∂ d ψ i ∂ l 1 x 1 ∂ l 2 x 2 (x m ) = 1 |K| K∈K ∂ d φ K ∂ l 1 x 1 ∂ l 2 x 2 (x m ), where l 1 ,l 2 ∈ 0,d , s.t. l 1 +l 2 =d (4.44) 
and where the set {x m } m is defined so that the number of evaluation points distributed on the face  ∈ ∂C i matches the freedom amount of the polynomial p  k , that is e.g. k + 1 in two dimensions. Alternatively, the behaviour of the locator function can be prescribed more directly by

∂ψ i ∂x l (x m ) = 1 |K| K∈K ∂φ ∂x l (x m ), l ∈ 1, d and ψ i (x m ) = 1 |K| K∈K φ(x m ), (4.45) 
even though this set of constraints may yield unwanted behaviour of the polynomial within C i in case of distorted initial level set field, as direct pointvalues constraints are prone to yielding large derivative values and thus to creating spurious polynomial roots within the control volume.

When the underlying level set discretisation setting does not provide a pointwise reconstruction on ∂C i but rather face-averaged quantities, one can easily turn the above constraints into moments by testing their expressions against given functions and integrating over the control volume. On the same line, whenever the degrees of freedom of the initial level set discretisation are pointwise values or face-supported moments, one could also apply their expression directly to the locator function and use their values as constraints.

A note on high order representation and characterisation flexibility

Following the characterisation of the interface locator presented in the above paragraph when assuming the existence of a pointwise reconstruction of the initial level set field, allowing us to consider the pointwise quantities (4.44), the number of constraints that can be set up on each boundary is not restricted. The order of the polynomials p  k is therefore up to one's choice, providing an arbitrary high order (≥ n K ) representation of the interface that is similar to the one proposed in [START_REF] Qian | Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations[END_REF]. However, the conditioning of the characterisation system may worsen with the order increase, as it can be observed in the shape of the characterisation matrix shape derived in Section 4.3.4.2.

Another consequence of the chosen determination stencil is the lack of flexibility in the polynomial representation, impacting the range of local features that the interface locator (4.43) is able to represent. Indeed, as the actual shape of the interpolation polynomial is directed by the face parametrisations and constrained solely by boundary quantities, the interface locator would smooth out local features that may have been initially detected by a high order level set representation. In particular, any closed component of the interface whose location is contained within the control volume and could be inferred by a high order initial level set field would be completely ignored or mishandled, as its existence would not be reflected in any boundary constraint and thus not directly known by any of the interpolation polynomials p  k . Indeed, when not explicitly enforced, the local and closed zero level set of the interface locator (4.43) is only a by-product of its variations, which may be misplaced or even not existing if the local extrema are of the same sign. Therefore, when a high order representation of the level set is available, one may improve the definition of the locator function by refining the inner cell representation, adding by example a polynomial that vanishes on the boundary and whose dimension of the minimal space containing it matches the order of the initial level set representation within the control volume. When this refinement appears to be too costly, it is alternatively possible to perform the interface correction on the subcells defining the variational grid, on which the level set representation would be reduced to first order.

From a geometrical perspective, the given shape of the locator function is very flexible towards the geometry of the control volume, and does not retain the cell affiliation of the level set constraints in its expression. The initial approximation of the interface location can thus be performed e.g. on nonconvex dual control volumes, even when the initial level set field is discretised on convex primal elements. Therefore, as the corrector function (4.39) can equally be defined for any control volume shape, one can straightforwardly extend the correction procedure to any fully dual discretisation of the level set and volume of fluid fields by considering (4.45) as the interface locator. More challenging, let us now extend the procedure to the staggered setting.

Extensions to the staggered setting

Let us outline the correction procedure for staggered settings where the level set field is assumed to be reconstructed from simplicial primal elements while the volume of fluid constraints are given on the possibly non-convex dual cells, the reverse case being addressable in a similar way. As in the primal approach, the presented procedure can be set up regardless the schemes used for tackling (4.24) and (4.23). In particular, any discontinuous primal representation of the level set field is admissible, as well as any representation of the volume of fluid field from which an average value on the dual control cells can be determined. 

T h J h Λ  Ci K xi ∂Ci Ci ∩ K  ∈ Ξi  ∈ Ξi

Notations

We consider here J h the dual mesh of T h and denote by C i its i th cell, centred at x i . Any portion C i ∩ K is called subcell. The boundary of C i is denoted ∂C i , any of its face f . The set of faces crossed by the interface Λ is further denoted Ξ i and any of those faces  are referred to as "interfacial face".

Known information layout

We assume a local state and level set field to be defined on each primal element K, upon possibly a reconstruction from associated degrees of freedom values. We also assume H i , the average volume of fluid value, to be known or retrievable over C i without approximation error other than the one of (4.23)'s discretisation. The spatial layout of the known information is pictured in Figure 4.22b.

Correction procedure As presented in the fully primal approach, the level set values are updated at the end of the correction procedure that follows the guidelines of [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] and enforces conservation from the local volume of fluid constraint given for each dual cell C i . Simultaneously, the interface continuity is obtained by the sole definition of the corrected locator function

ψ : Ω -→ R x -→ ψ i (x) + ψ ∆ i,c (x), i s.t. x ∈ C i . ( 4 

.46)

More precisely, the continuity across each dual cell is enforced by the definition (4.40) of each ψ i , and preserved using the corrector functions ψ ∆ i ex-pressed by (4.39), vanishing on ∂C i . Paying attention to the interplay between the cells of different discretisations, the complete procedure takes eight steps.

1. Select the dual cell C i within which to construct the corrected interface and retrieve the set of primal elements K that overlap with C i , that is, define K = {K s.t. C i ∩ K = ∅}.

2. Retrieve the average volume of fluid value H i on C i .

3. Define a cross-cell continuous interface locator function ψ i,c on C i in the shape (4.40), and retrieve its parameters by setting constraints taken from the sets (4.44) and (4.45) based on the local level set reconstructions φ K i for all K ∈ K. Alternatively, use directly the sets of degrees of freedom associated to the primal elements discretisation whose support are restricted to interfacial faces. This third step can be simplified when the discretisation of (4.24) provides a continuous representation of the level set field over the computational domain by taking benefit of the staggered setting. Indeed, defining ψ i on each subcell K ∩ C i , K ∈ K as the primal reconstruction function over K simply reads

ψ i : C i -→ R x → φ K (x), K s.t. x ∈ C i ∩ K. (4.47) 
There, the local reconstruction from the degrees of freedom to the continuous representation φ K on each element K contributing to C i brings directly the continuity across ∂C i , each segment of the boundary being contained in a single primal element K (see Figure 4.22b). Furthermore, the continuity within C i is equally immediate as the primal setting is continuous across primal elements . Hence, no additional determination constraint is required and one has just left to define a continuity-preserving corrector function.

4. Define a correction function ψ ∆ i,c on C i in the shape (4.39), having a free parameter whose value impacts the zero level set of ψ i + ψ ∆ i,c and will be tuned against the volume of fluid constraint.

Set an artificial interface thickness

2 ∈ R * + .
6. Define the volume of fluid estimator H i by applying the THINC reconstruction to the corrected locator function ψ i + ψ ∆ i,c and considering the interface thickness 2 , that is,

H i,c = 1 2 1 + tanh( ψ i + ψ ∆ i,c ) . ( 4 

.48)

7. Set the conservative constraint on the cell C i and determine the parameter of the corrector function ψ ∆ i,c accordingly, that is,

Find c s.t. 1 |C i | C i H i,c (x)dx = H i . ( 4 

.49)

Note that as the properties of ψ ∆ i,c are independent of the shape of the dual cell, the well-posedness of this problem is identical to the fully primal setting and will not be specifically discussed. However, the existence of a solution to (4.49) is here a-priori not enough to guarantee the interface continuity. Indeed, one needs to ensure that the solution found on the dual cell transfers to the primal setting, property ensured only by the last step.

8. Redefine the level set function on the primal elements K from the dual reciprocal volume of fluid estimator 

∀x ∈ K ∩ C i , φ(x) = 1 tanh -1 (2H i,c (x) -1) = ψ i (x) + ψ ∆ i,c (x). 
K (x) = ψ i (x) + ψ ∆ i (x) φ K (x) = ψ j (x) + ψ ∆ j (x) ψ j + ψ ∆ j ψ i + ψ ∆ i (b) Evaluation of corrected level set values

Extensions to general forms of interface functions

Even though we could already extend the proposed corrector and locator functions to more general discretisation settings as discontinuous or staggered, their proposed shapes remain intuitive and are not able to take into account specific interface behaviours within the inner cell, as e.g. those resulting from a local fluid state or obeying to a physical principle such as surface tension. We therefore aim to further generalise the approach by deriving sufficient conditions on the shape of the interface locator and corrector functions to yield a continuous and conservative corrected interface by construction.

Admissibility conditions on locator functions

The correction procedure requires a continuous interface locator function whose expression can be modified locally on each control volume of the volume of fluid discretisation. Thus, whenever the discretisation of the level set field is not performed on the same mesh, is discontinuous, or when a higher representation order is aimed at, a cross-cell continuous local reconstruction of the interface locator is required.

In order to derive admissible definitions of reconstruction functions, we consider interfacial control volumes {C i } i either belonging to T h or J h within which to design a local locator function ψ i , and aim to approximate continuously the possibly non-conservative initial interface as its zero level set. This goal in mind, one should therefore define those local functions so that their sum defines over Ω a continuous implicit interface representation of the form

ψ : Ω -→ R x -→ ψ i (x), i s.t. x ∈ C i .
Furthermore, in view of the correction procedure, one may consider locator functions ψ i that are exactly supported on C i in order to allow a compact correction and prevent multiply defined values. Asking ψ to determine implicitly a continuous interface would there reduce to asking the cross-cell and within continuities of the local interface represented in each cell C i by the local locator function ψ i . Hence, one should shape the functions {ψ i } i so that the boundary crossing locations of its zero level set on a given face coincide with those determined by the neighbouring local reconstructions.

Lastly, in addition to being continuous, the interface should delimit the actual subdomains of the problem (4.1-4.2). Each local reconstruction should therefore be constrained by the initial level set field φ, the location of the interface's boundary crossings approximating its zeros in order to preserve the interfacial nature of the selected faces under the reconstructed representation ψ. One can therefore derive sufficient conditions over the interface locator shape by asking it to vanish on the boundary at the same locations as φ. All in all, the set of admissibility conditions then reads as follows.

Admissibility conditions 4.3.1 Locator function

A function ψ i can be used as an interface locator function on a cell C i when

• ψ i is supported on C i ,
• ψ i is continuous within C i and ψ is continuous across Ξ i ,

• the zeros' location of ψ i on ∂C i coincide with those of the interface representations φ K on C i ∩ K for each element K of the initial level set discretisation that overlaps with C i .

Additionally, one may ask the construction of ψ i to stay compact, that is,

• ψ i is determined from level set values contained in or on C i .

The first and second properties ensure that the expression of ψ i is compact and continuous within and across the control volume boundaries. The third property guarantees that the interface represented by ψ i coincides on ∂C i with the local representations of the initial level set field whose support intersect with C i , where the term coincide has to be understood in the errorminimisation sense whenever the initial level set field φ is discontinuous and yields different interface locations on the boundary. In practice, one could consider e.g. finding the interface locator ψ i whose zero level set minimises the minimum homotopy area between the different interface locations.

Having then defined an interface locator ψ i fulfilling Admissibility conditions 4.3.1, its zero level set naturally provides an admissible interface contained within the cell C i , interpolating on its boundary the one determined by the non-conservative initial level set field. Within the control volume however, the Admissibility conditions 4.3.1 do not require the interface locator to be specifically constrained, as its inner behaviour does not prevent to obtain a cross-cell continuous and conservative interface trough the correction procedure presented in Section 4.3.2, as already observed in Section 4.3.3.3. One is therefore free to design its inner shape prior to its correction by using any continuous function supported on C i , aiming e.g. to approximate the initial zero level set as accurately as possible, to enforce a given representation order or even to consider physical principles such as surface tension. However, as those tunings necessarily increase the dimension of the space where the locator function live, one has to design enough independent determination constraints in order to guarantee unisolvence, or be keen on retrieving a rough initial approximation through an over or underdetermined system. In addition, one should prevent the creation of spurious interfaces by a misdistribution of constraints, possibly yielding to oscillating interpolation functions whenever high order polynomials or harmonic functions are involved.

Note For simplifying the derivation of the interface locator expression ψ, one can strengthen the Admissibility conditions 4.3.1 by asking continuity of the local functions ψ i themselves instead of their zero level set.

Admissibility conditions on corrector function

Now that we could determine sufficient conditions for the locator function ψ i to be cross-cell continuous, let us derive a set of conditions for the corrector function ψ ∆ i to be admissible. According to the correction procedure, it is enough for ψ ∆ i to be a parameter-dependent function that has enough freedom for deforming the zero level of ψ i + ψ ∆ i towards the conservation constraint (4.49) while preserving the continuity of ψ. Considered together, those requirements reduce to the following Admissibility conditions 4.3.1.

Admissibility conditions 4.3.2 Corrector function

A function ψ ∆ i can be used as an interface corrector on a cell C i when the following properties hold.

• ψ ∆ i is supported on C i • ψ ∆ i is continuous within C i and preserves the interface location of ψ across any interfacial face  ∈ Ξ i

• ψ ∆

i has at least one free parameter • The parameters range of ψ ∆ i allows the zero level set of ψ i + ψ ∆ i to define local subdomains given any area proportion constraint in (0, 1)

Impacting directly the correction process, the two last properties ensure the feasibility of (4.49) and therefore the existence of a corrector function for any value of the volume of fluid constraint. Note however that here again no requirement is set on the shape of the interface within the control volume other than respecting the interface boundary crossing points and splitting the control volume so that the volume of fluid constraint is matched. It can therefore be freely modified within C in order to meet the conservation constraint, in particular without asking its implicit representation to yield uniqueness of the solution to the problem (4.49). Even though this freedom amount may seem unrealistic, there do exist several phase distributions within C i that matches the same volume of fluid constraint H i (see Figure 4.24 for an illustration). Narrowing down the possible spatial layouts comes with enforcing physical properties or inner level set constraints, either directly in the design of the implicit interface corrector function or by imposing further determination constraints within the cell.

More importantly, on the top of preserving any pre-existing continuity of ψ over the computational domain Ω, the two first constraints ensure that the discrete conservation properties enforced on each control volume associated to the volume of fluid discretisation transfer to the possibly different mesh of the initial level set discretisation. Indeed, the last step of the correction procedure updates the level set values regardless of its original discretisation, rebuilding the field through the evaluation of the continuous interface locator function (4.26) that is here considered as a reference. The updated values of the level set thus become grid-independent, transferring the discrete conservation principle to any partition of Ω. A short note on further extensions Encompassing a wide range of expressions both for the locator and corrector functions, the Admissibility conditions 4.3.1 and Admissibility conditions 4.3.2 open a lot of possibilities for further extensions, paving in particular the way to refining the interface location within the cells. In particular, one can improve the physical relevance of the interface by adding inner constraints, and achieve higher interface regularity by dropping the optional requirement for the locator and corrector functions to be determined compactly within the cell. Generalisation to higher dimensions are also possible, being especially straightforward when considering the proposed interface locator (4.40) and corrector (4.39) functions.

The continuous and conservative correction approach being now well defined, let us specify the numerical approximations required to turn the theoretical procedure into a practical technique.

Numerical approximations

The practical definition of the presented correction procedure comes with a numerical method that determines the prescribed coefficients of ψ i , the definition of a quadrature scheme on the control volumes C i for discretising the conservation problem (4.29), and a numerical technique to solve it. The following subsections detail a possible numerical method for each of those aspects.

Quadrature rule over any control volume

Let us first define a quadrature rule over any control volume C i by taking advantage of its polygonal shape. Its convexity not being necessarily known a-priori, we start by tessellating the control volume by simplices, applying then any classical quadrature rule on each of the obtained simplicial subcells. In practice, any control volume C i can be seen as a mesh element and its shape can be assimilated to a simple polygon. Geometrically speaking, one can therefore tile C i with simplicial subdomains simply by using a Delaunay triangulation [START_REF] Delaunay | Sur la sphere vide[END_REF]. Gaussian quadrature points are then typically considered in each subcell, and the quadrature scheme on C i can be expressed for any integrable integrand f : C i → R by

1 |C i | C i f (x)dx = T ∈C i G g=1 w g f (x g ) + o(h G+1 ),
where {(x g ,w g )} g∈ 1,G is the set of points and weights of the degree G ∈ N Gaussian quadrature rule associated to the triangle T of the simplicial tessellation (see e.g a possible quadrature points distribution in Figure 4.25). When the computational power is not an issue, one can significantly improve the overall quadrature points distributions in C i by optimising the aspect ratio of each subcell, using e.g. a ray shooting algorithm [START_REF] Chazelle | Ray shooting in polygons using geodesic triangulations[END_REF] in place of the Delaunay triangulation.

Determination of the locator function coefficients

Let us now focus on the determination of the initial interface locator's coefficients under a set of constraints derived from the level set field. Even though the presented technique holds for any linear setting, we focus for the sake of the explanation on the particular interface locator In order to specify those unknowns with respect to the constraints (4.44) and (4.45), a straightforward Lagrangian interpolation may be used. However, as the conservation is anyhow retrieved afterwards, there is no need to interpolate exactly the level set values or its derivatives. Therefore, we rather consider as in [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] a least square approximation method, flexible towards the number of constraints applied to the initial locator function, and derive here the associated determination system. The interface locator ψ i thus reduces to

Derivatives expressions

ψ i (x) = ∈Ξ i [p  k (γ ı (x))T  (x)], (4.54) 
and knowing that p  k (γ f (x)) = k=1 A  k (γ f (x)) k , for A  k ∈ R, we get

ψ i (x) = ∈Ξ i k=1 A  k (γ f (x)) k T  (x) : =C k  . ( 4 

.55)

The partial derivative of the interface locator in the x 1 direction then reads

∂ψ ∂x 1 (x) = ∈Ξ i k=1 A  k k γ k-1  (x) ∂γ  ∂x 1 (x)T  (x) + k γ k  (x) ∂T  ∂x 1 (x) :=D x 1 C k  , (4.56) 
its second order partial derivative in the x 1 direction thus writing The first and second order partial derivative along x 2 are given analogously, while the second order partial derivative along x 1 x 2 reads however as follows.

∂ 2 ψ ∂x 2 x 1 (x) = ∈Ξ i k=1 A  k T  (x) k(k -1)γ k-2  (x) ∂γ  ∂x 2 (x) ∂γ  ∂x 1 (x) + k 2 γ k-1  (x) ∂γ  ∂x 2 ∂x 1 (x) + ∂T  ∂x 2 (x)T  (x)k ∂γ  ∂x 1 (x)γ k-1  (x) + ∂T  ∂x 1 (x)k ∂γ  ∂x 2 (x)γ k-1  (x) + ∂ 2 T  ∂x 2 ∂x 1 (x)γ k  (x) : =Dx 2 x 1 C k  (4.58)
There is then just left to express the derivatives of the face parametrisations Γ ı and γ  , given for reference in Table 4.1 without further computation details. and A is the vector of coefficients of each polynomial p  k given by

A 1 1 ••• A k 1 A 1 2 ••• A k 2 ••• ••• A 1 m ••• A k m A = T . ( 4 

.61)

On the right-hand-side, Ψ represents the level set values or its derivative at the evaluated points and reads

φ(x 1 ) ••• φ(x M ) ••• ∂φ ∂x1 (x i ) ••• ∂φ ∂x2 (x i ) ••• ∂φ ∂x 2 1 (x i ) ••• ∂φ ∂x 2 2 (x i ) ••• ∂φ ∂x1x2 (x i )••• Ψ = T . ( 4 

.62)

So defined, the system (4.59) can be either under or over-determined depending on the number of selected constraints and wished polynomial order on each interfacial face. In those cases, a Least-Square approximation method may be used to retrieve the vector A, providing a rough locator function ψ i in the form of (4.55).

A note on the constraint selection As the solution of the system (4.59) is to be retrieved with a Least-Square approach, one does not explicitly require the matrix X to be invertible and is therefore free to choose the type of constraints to apply on the expression of ψ i , even though prescribing constraints regardless of unisolvence considerations may significantly reduce the accuracy of the initial interface approximation. In the proposed setting however, the unisolvence of (4.59) is guaranteed by the definitions of the interface locator (4.40) and constraints expressions (4.44) and (4.45). Indeed, as derived in the first paragraph of this section, the left hand side of the constraints expressions applied to (4.40) at a given point x m ∈ C i are linearly independent. As a consequence, whenever as many constraints as unknowns are selected, the solution of (4.59) is an actual polynomial interpolation, not only a best polynomial fit. Regarding the constraint selection, one can first notice that the number of constraints that are applicable to the interface locator is unbounded, as the sets (4.44) and (4.45) define pointwise constraints. It is therefore enough to select as many points x m as needed in order to cope with the dimension of the space the interface locator is discretised in, knowing that the set of constraints (4.44) and (4.45) provide several constraints per discrete point (e.g. up to three in two dimensions). However, the number and spatial distribution of the selected points impact the conditioning number of the determination matrix, making their choice determinant for an accurate representation of the initial interface. On a last note, let us point out that those observations transfer to moment-type constraints, where the point selection have to be replaced by the definition of a set of test functions.

Numerical techniques to enforce conservation

Having approximated the quadrature scheme and determined the initial locator function, let us focus on a numerical technique tackling (4.49) in the particular case of the interface locator and corrector shapes introduced in Section 4.3.2. In essence, we aim to derive a numerical procedure that approximates the solution c ∈ R to the problem

H i := 1 |C i | C i 1 2
(1 + tanh(

ψ i + ψ ∆ i,c ))dx = H i , (4.49) 
where the interface locator ψ i and corrector ψ ∆ i,c are respectively given by the expressions (4.40) and (4.39), the constraint H i being directly retrieved on the control volume C i from a conservative approximation of (4.23).

Problem discretisation Considering C i as any simple polygon, we start with the discretisation of the left-hand side by directly making use of the quadrature rule derived in Section 4.3.4.1. More precisely, given the set of quadrature points and weights {(x g , w g )} g∈ 1,G distributed on the control volume C i , the problem (4.49) approximates to

H i (c) := 1 2|C i | G g=1 w g 1 + tanh( ψ i (x g ) + ψ ∆ i,c (x g )) = H i . (4.63) 
There, the expressions of ψ and ψ ∆ are continuous and explicit within C i , allowing their direct evaluation. The right hand side term H i being a predefined constant, the discretisation of (4.49) thus immediately follows.

Numerical approximation of a solution

As seen in Section 4.3.2.3, the shape of the corrector function allows to correct any initial interface locator by providing a unique value of the correction parameter c for which the conservative constraint H i is achieved, without imposing any restriction on the shape of the initial locator function other than its continuity. In addition, as defined in (4.63), the approximated volume of fluid estimator function H i is valued in (0, 1) and, up to quadrature errors, is strictly monotonous on R. Any root finding method applying on open intervals is therefore suitable, and we choose here the simple secant method for the sake of generality, not relying on any knowledge or approximation of H i 's derivative. Namely, we iterate

c 0 = c c 1 = -c c n+1 = c n -H i (c n ) c n -c n-1 H i (c n ) -H i (c n-1 )
over n ∈ N until the tolerance |c n+1 -c n | < 1e -8 is reached from an initial guess c ∈ R, chosen as to avoid initial computational instabilities and round off errors in the right hand side of the iteration rule.

A note on numerical defects Relying on several approximations, the practical realisation of the discrete conservation principle through the correction procedure remains up to the accuracy of involved numerical methods and the amount of computational errors.

In particular, as defined in [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] and adapted in Section 4.3.2, the correction procedure is sensitive to the quadrature scheme, both in terms of its accuracy and layout of its sampling points. Especially, as already mentioned in Section 4.1.2 and depicted in Figure 4.9, the discrete volume of fluid estimator H i may yield different values for cells within which the local subdomains occupy a same volume but have a different spatial distribution, the layout of their interface not necessarily encompassing weight-equivalent quadrature points. The distribution of the quadrature points x g may therefore prevent the continuous deformation of the interface from being accurately described, in turn impeding the value H i to adapt smoothly with the correction amount. In particular, the approximated function H i may loose the strict monotonicity of H i in case of subdomains expanding or deforming along with c, as depicted in Figure 4.26. In extreme cases, the numerical method used to tackle (4.63) may be impacted, as e.g. when a local extremum is created or when the approximated volume of fluid estimator function H i adopts a constant behaviour in a vicinity of its zero.

Initial interface Control volume

Corrected interface Quadrature point

Initial interface Control volume

Corrected interface Quadrature point Another delicate point when considering the numerical application of the presented technique relates to the artificial width of the interface, defined as the steepness parameter of the volume of fluid estimator. Indeed, its value should never to be too high for the root finding algorithm to operate, but still be high enough for the volume of fluid evaluation to remain meaningful. If this concern has already to be taken into account in the classical THINC-LS approach [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF], one can here be more tactful and consider one steepness parameter for each of the two functions, corrector and locator, each parameter depending on the function's general shape and the natural steepness of its variations around the interface.

Having described all the involved numerical approximations, let us now assess the versatility of the presented correction approach as well as its relevance in the numerical results Section 4.3.5.

Numerical results

Well established theoretically, let us assess the practical relevance of the presented approach by testing the corrector function ψ ∆ i,c as expressed by (4.3.3.1) for various control volume shapes. We start in Section 4.3.5.2 by investigating the spatial layout of corrected interfaces, before exemplifying the Proposition 4.3.1 in Section 4.3.5.3 by testing the behaviour of the evaluated volume of fluid quantity H i against the correction parameter. Lastly, we explore the limitations of the proposed approach in Section 4.3.5.4, investigating the impact that highly non-linear locator functions have on the shape of the corrected interface, and focusing on huge correction amounts.

Implementation of involved numerical techniques

As already detailed in Section 4.3.4, the correction procedure requires a collection of numerical techniques to be carried out in practice. Here, the presented results were obtained by using the composite quadrature rule presented in Section 4. Furthermore, all the results involving non convex control volume are based on the smooth bijective map described in Section 4.3.3.1, using as boundary term the collection of the n affine transformations mapping the i th face of the control volume to the i th face of the reference polygonal shape by designating the plane origin as its invariant. The two Poisson problems have there been practically solved by a Fenics [START_REF] Alnaes | The FEniCS project version 1.5[END_REF] solver using a second order Finite Element Continuous Galerkin method on a simplicial mesh of the control volume. Lastly, note that the initial locator function satisfying |∇ψ i | ≡ 1 have been obtained by redistancing a possibly highly non-linear function that generates the zero level set of interest. Already used right after the level set evolution when considering a two-phase flow problem, the practical implementation is borrowed from the LESARD code [START_REF] Mélédo | LESARD: LEvel Set algorithm for Residual Distribution[END_REF] and involves a Gradient descent procedure applied to the Lax-Hopf formulation of the problem (4.18).

Spatial behaviour of the interface

Let us start by investigating the dependence of the corrected interface shape on the nature of the control volume and the regularity of the initial interface locator. We represented in Figure 4.28 the considered control volume, the zero level of the initial interface locator as a plain line and the corrected interfaces in dashed line for several values of the correction parameter c. First of all, we can observe that as stated in Corollary 4.3.1, the corrected interface is contained within the control volume, not modifying the number of interface boundary crossings or changing their locations. Valid for any shape of the initial locator function, we further observe that the spatial deformation of the initial interface is smooth with respect to the correction parameter.

In light of those behaviours, one can further wonder whether topological changes of an already existing interface can occur through its correction, as it already appears in the bottom row of Figure 4.28 that a new interface can be forced into the control volume when no interface pre-existed. We thus investigate the particular behaviour of multi-component interfaces, whose test cases are reported in Figure 4.29. There, we are indeed facing topological changes of the interface whenever the correction amount becomes extensive. Especially, in both presented cases the originally disconnected subdomains merge as the evaluated volume of fluid value gets high. Reversely, when its value decreases, connected components that are contained within the control volume simply vanish, while crossing interfaces are preserved and tend to run alongside the boundary.

As those topological changes depend on the space-dependent relationship between the variations of the locator and corrector, they may seem dramatical. Yet, the changes in the spatial layout of the corrected interface remain smooth with respect to the correction parameter, and the subdomains proportions are monotonously adjusting. Therefore, the topological changes can be seen as a simple by-product of the problem (4.49)'s well-posedness when facing an oscillating locator function whose variations locally overgrows those of the corrector function. Indeed, as one is able to reach any volume of fluid constraint and thus any subdomains' proportion through the correction procedure, the deformation, merge or creation of subdomains is a necessary feature. The location and number of created or vanished components then depends on the shape of the initial locator function, as observed later in particular examples given in Section 4.3.5.4.

Correction procedure

As we saw that the shape of the numerically corrected interface is smoothly modified with respect to the parameter c and is consistent with the above analysis, let us now investigate the properties of the discrete volume of fluid estimator function H i , representing in the bottom row of First and foremost, one can observe that regardless the shape of the control volume, the continuous and monotonous behaviour of H i obtained in Lemma 4.3.3 is preserved at the discrete level, and that any volume of fluid constraint in (0, 1) can indeed be reached. However, even though the convexity does not impact the qualitative behaviour of the estimator function, the order of magnitude of the parameter c required for spanning a same range of constraint values H i is considerably larger in the non-convex case due to the influence of the bijective mapping.

Secondly, one can assert that the observed behaviour of H i is independent on the shape of the initial locator function, confirming here too the analysis performed in Section 4.3.2.3. Indeed, originally presented in Figure 4.30 for the case of an affine locator function, exact same observations can be made by analysing the results obtained for any initial locator function, as e.g. when considering the quintic case reported in Figure 4.31.

There, one can further confirm that the increasing or decreasing property of H i relates only to the Cartesian parametrisation of each polygon face, and not to the shape of the initial locator function by simply comparing the results of the simplicial and convex shapes given for the same initial interface locator. Given those test cases, one can infer that the well-posedness property derived in Proposition 4.3.1 transfers to the discrete level for any shape of control volume and initial interface locator. However, paying attention to the shape of the volume of fluid estimator itself, one can foresee a significant numerical sensitivity of the corrected interface location towards possibly computational errors of the volume of fluid constraint. Indeed, the estimator function being very sharp around c = 0, most of the correction cases are achieved in a narrow parameter range. Thus, as the spatial location of the interface evolves smoothly with respect to the parameter c, a small numerical defect can greatly impact the interface location. To emphasise this behaviour, corrected interfaces have been represented as dashed lines in the top row of Figure 4.30 and Figure 4.31 for parameters c sampled in R in a logarithmic scale. One can there notice that the regular stretching out of the interface towards the faces of the polygon is non linear, the vicinity of the original interface location being covered by interfaces that have been corrected by a small magnitude parameter. Furthermore, this non-linearity is locally amplified in the non convex case through the deformations induced by the continuous mapping.

On the bright side, the steepness of the estimator function is independent of the artificial interface thickness parameter and of the initial locator function, only depending on the number of faces of the polygon through the definition (4.39) of the corrector function. One can then a-priori apply a damping parameter on the corrector function ψ ∆ i,c , reducing the impact of numerical defects when solving the problem Now that we assessed the legitimacy of the correction function behaviour, let us turn to practical applications and exemplify the cross cell continuity of the corrected interface. We represented in Figure 4.32 examples of interface corrections for various volume of fluid values and control volume shapes where one can there see that in any case the cross cell continuity of the interface is preserved and the conservative volume of fluid constraint realised. Especially, in the top right case involving a two-components initial interface, all the interface crossings are preserved and the created subdomains are meaningful both within each control volume and in the full domain. However as already mentioned in the theoretical section, in case of a large correction amount the interface aspect is mainly determined by the correction function shape and is therefore not physically relevant.

Lastly, let us mention here again that those observations hold regardless the shape and convexity of the control volume, making the correction procedure applicable to any primal, dual, and hybrid meshes.

Impact of the interface locator function's shape

Overlooked until now as being negligible with respect to the overall behaviour of the interface corrector during the correction process, let us now focus on the locator function and its impact on the spatial location of the corrected interface. In particular, let us point out that although the interface is smoothly deforming from the initial interface towards the control volume boundaries along with the correction parameter, local extrema of the locator function could cause spatial artefacts in the process, as represented in Even though those artefacts do not impact the behaviour of the estimator function, unphysical bubbles and unwanted heavy distortions may be created at locations that only depend on the interplay between the locator and corrector functions, and are not not explicitly manageable without imposing further constraints. The initial locator function so redistanced, no spurious connected component is created during the correction process and the regularity of the interface shapes is improved. The stability of the correction procedure and the quality of the interface shape are consequently enhanced. Especially, and as depicted in Figure 4.36, the corrected interface based on the redistanced interface locator tend to keep a better shape memory of the initial interface, improving the reliability of the corrected interface.

Lastly, let us note that a binding issue related to the shape of the interface locator arises in the case of interfaces that are made of several connected components initially crossing the control volume. There, the connectivity of the crossing points may not be preserved whenever the shape of the control volume yields a corrector function that parametrises an hyperbolic surface. Indeed, for large corrections, the shape of interface corrector dominates the one of the initial interface locator, and the hyperbolic nature of the corrector surface will force the point connectivity to swap whenever the corrected level set lies across a saddle point (see e.g. Unavoidable without imposing constraints on the corrector function within the cell, this pitfall simply highlights that by using the definition (4.55) as part of the correction procedure, one corrects the interface location unquestionably to the path taken within the cell, thus not having any shape control. As a consequence, applications requiring a high amount of correction and frequent multi-component interfaces within cells would require an augmented definition of the proposed corrector function in order to encompass adequate constraints within the control volume.

Critical assessment of the proposed approach

As proven in Section 4.3.2.3 and observed in Section 4.3.5, the adaptation of the conservative THINC-LS correction procedure [START_REF] Xie | Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: the THINC method with quadratic surface representation and Gaussian quadrature[END_REF][START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] presented in Section 4.3.2 allows us to preserve the interface continuity of the interface by a simple modification of the corrector function's definition. As a final note, let us shortly wrap up the derived properties and observations, before going through possible perspectives of the presented work.

Limitations First of all, let us mention that by using the THINC-LS framework, we inherit the intrinsic drawbacks of the general correction procedure. If some are purely numerical, as achieving conservation only up to the accuracy of the employed quadrature scheme, others are structural and more problematic. Especially, as already pointed out back in Section 4.2.3, a representation of the corrected interface (4.25) in discretisation setting of the initial level set scheme does not necessarily exist, making the time evolution of the conservative level set particularly delicate. In the same vein, one may also have to apply more regularly a redistancing technique due to a possible recklessness of the locator function.

On the top of those intrinsic disadvantages, two limitations that are specific to the choice (4.39) of the corrector function are encountered. Requiring careful considerations, the first drawback consists in the trouble of preserving the connectivity of boundary crossing points of multicomponent interfaces in the case of very large corrections. Less cumbersome, the second relates to the possible need to ponder the corrector function in cells having a high number of faces, in order to lessen its steepness and improve the computational accuracy of the resolved correction parameter.

Strengths On the bright side, let us mention again that the proposed corrector function can be constructed on any polygonal control volume, allowing to correct any locator function to any volume of fluid constraint while preserving the continuity of the interface. In particular, when the control volume associated to the conservative constraint does not match with any mesh element of the level set discretisation, one can locally reconstruct the interpolation (4.46) of the level set field, whose shape and selected constraints enforce cross-cell continuity. The comprehensive correction procedure is thus free from any geometrical or variational constraint and can be immediately adapted to fully primal, fully dual or even staggered settings.

Applied on each control volume where the local volume of fluid constraint is contained in (0, 1), the mass conservation principle is then achieved at the discrete level, and the global continuity of the interface naturally extends the conservation principle to the phase-wise level both to any other discrete mesh and on the full computational domain Ω.

In addition, the proposed definition of the corrector function enforces a monotonic behaviour of the local volume of fluid estimator function with respect to the correction parameter, property that is independent of both the expression of the locator function and the shape of the control volume where the correction is performed. Solving (4.49) thus becomes computationally easier and more stable than in the classical THINC-LS technique. Lastly, this independence further ensures that any conservative constraint can always be achieved, unlike in [START_REF] Kumar | THINC-scaling scheme that unifies VOF and level set methods[END_REF] where the feasibility of (4.49) depends on the shape of the initial locator function. As a by product, it also allows us to safely redefine any high order initial interface locator by redistancing it, preventing the apparition of spurious connected components in the shape of the corrected interface within the control volume.

Perspectives Let us first point out that being flexible, the proposed setting can be directly extended to curvilinear element by defining additional bijective mappings, and to higher dimensions without a single modification. Further improvements can also be straightforwardly obtained, as e.g. by extending the definition of the corrector function so as to include physically relevant constraints controlling the interface shape within the control volume, already initiated in Section 4.3.3.4. Among the same lines, one could also consider enhancing the cross-cell regularity of the interface whenever the locality of the determination stencil can be dropped.

On a more technical note, one could also reduce the computational sensitivity on the volume of fluid constraint induced by the numerical resolution of (4.49) by determining directly the corrected interface, considering the volume of fluid constraint as the value of a moment-type degree of freedom to be observed by the reconstructed locator function. The correction procedure would then be transformed into a constrained fit of a parameter-dependent the locator function, more flexible and numerically reliable. 
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 211 • n dγ = ω ∇ • Θ dx for a given s : [0, t max ) × ω × D -→ (R q) d , we can write ω ∂q ∂t (t, x) dx + ω ∇ • (q ⊗ v + Θ) dx =ω S(t, x) dx,providing the general expression of the local conservation, and allowing us to give a definition of the general continuous conservation principle. Continuous conservation principle
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 26 Figure 2.6. Emergence of discontinuities (red circles).

  cated at ξ r (t b ) = ξ s (t b ). The left and right side values of the discontinuity would thus respectively read Y L = Y (0, ξ r ) and Y R = Y (0, ξ s ), obtained by tracing back their respective characteristics.
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 27 Figure 2.7. Discontinuous solution splitting into several constant states (a) linked by (grey) transition layers (b).
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 28 Figure 2.8. Possible solution profiles around shock discontinuities (thick line). A physical solution sees its characteristics (thin lines) merging into the shock.
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 29 Figure 2.9. An example of possible solutions that may fulfil an entropy criterion.
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 210 Figure 2.10. Density profile of the entropy weak solution to the one-dimensional Euler equations. Dashed line: initial condition. Solid line: after the discontinuity split.
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 211 Figure 2.11. Schematic description of the system entropy.
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 212 Figure 2.12. Duality between a set of degrees of freedom and its associated basis.
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 215 Figure 2.15. Illustration of the characterisation of a discrete solution living in a finite dimensional variational space.
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 218 Figure 2.18. Illustration of the convergence property.
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 219 Figure 2.19. Illustration of the stability property.
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 220 Figure 2.20. Update procedure for general Flux Reconstruction schemes.
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 1221 Figure 2.21. Choice of a set of lifting functions.
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 242 Unisolvence of the flux characterisation in V (K)Given the initial flux approximation (2.72) and the correction functions (2.77) constructing from the lifting functions (2.86), the overall characterisation
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 222 Figure 2.22. Necessity of a flexible setting that guarantees the lifting functions a same discretisation framework for any polygonal shape.
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 223 Figure 2.23. Update procedure of the Flux Reconstruction scheme built upon the chosen correction functions and discretisation points.
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 224 Figure 2.24. Example of a Residual Distribution scheme construction based on an initial primal formulation (from left to right), assuming a globally continuous discretisation setting and a characterisation made entirely through a set of point-values degrees of freedom. The control volumes are greyed, the degrees of freedom are represented with black circles.
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 225 Figure 2.25. Comparison between the geometrical dual (left) and the variational (right) duals associated to the discretisation setting of the above figure. The green points represent the vertices of the control volumes, the black ones the degrees of freedom.

  to ensure the unisolvence of the boundary characterisation from the boundary constraints (2.78)-(2.82) alone.

  More than rooting the proof of Proposition 2.5.2, solving the system (2.78)-(2.82)-(2.135) allows us to construct the general correction function

  0 for a given basis B = {b i } d i=1 of R d and all mappings p : 1, k + 1 → × d i=1 1, d generating the k + 1-multiset of 1, d . By (3.7) and choosing the canonical basis for B, expressing the kernel of ε k thus comes down to find every polynomial vector u ∈ (P k (K)) d that verify k+1 j=1

  As this specification holds for any integers k ∈ N, d ≥ 2 and for any set {p m } (k+1)! m=1 , any polynomial u ∈ (P k-1 (K)) d belongs to the kernel of k . The inclusion (3.8a) follows immediately from Lemma 3.2.1. Let us now investigate the relation (3.8b) by reproducing the work of Nédélec [94]. Theorem 3.2.1 Second kernel's subspace determination
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 31 Figure 3.1.Simplicial RT 2 (K) in two dimensions.
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 3432 Figure 3.2. Representation of RT k (K) on a square, here for k = 2
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 1133 Figure 3.3. Graphical representation of a virtual conforming element for the orders k = 1, k = 2, and k = 3, respectively.
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 331 Discretisation space suited for H(div)-conformity For any polytopal shape K ⊂ R d in any dimension d ∈ N, ≥ 2, the space H k (K) is a vectorial finite dimensional subset of H(div, K) where any function p ∈ H k (K) satisfies
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 35332 In two dimensions, the above relation reduces to an equality, and all the degrees of freedom presented in (3.27) are considered. In higher dimensions, a further selection from the set (3.27) is required. There, we consider the sets (3.27a)-(3.27b) fully and select any (l 1 + 1) d-1 moments from (3.27c). Moment based normal degrees of freedom set
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 333 Mixed-type normal degrees of freedom set Any selection of (l 1 +1) d-1 degrees of freedom among the sets (3.27a),(3.27b) and (3.29) is labelled as the "configuration Ib".
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 335 Mixed-type normal degrees of freedom setAny extraction of (l 2 +1) d-1 degrees of freedom among the sets (3.32),(3.30b) and (3.30c) is labelled as the "configuration IIb"

  where (•) |f represents the subset of the degrees of freedom (•) whose support (or evaluation point for pointvalues) matches (or lies on) the face f ∈ ∂K.
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 34 Figure 3.4. Layout of the determination matrix associated to the proposed shapes of normal degrees of freedom. Each highlighted block corresponds to a given type of degrees of freedom, characterising either the global behaviour of their normal component or the coordinate-wise one.

Figure 3 . 5 .

 35 Figure 3.5. Layout of the determination matrix associated to the proposed shapes of internal degrees of freedom.
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 36 Figure 3.6. Adaptivity of the exemplified element towards the discretisation order and the cell shape. Note that same results are obtained for non-convex elements.

Figure 3 . 7 .

 37 Figure 3.7. Left: Considered polygon. Right: Normal component of a representative internal basis functions plotted on every edge.

  Having built the elements based on the degrees of freedom configuration I, we represented the normal component of the associated internal basis functions in the right side of Figure 3.7. As desired, the normal component of basis functions corresponding to internal degrees of freedom vanish on the boundary, as shown on the right graph.

Figure 3 . 8 .

 38 Figure 3.8. Left: normal component of one representative of the normal basis functions for the element Ib and k = 2 along the edges. Middle: normal component of all the functions generated from the edge number 5, plotted on the edge number 5. Right: as middle, for the element Ia.

Figure 3 . 9 .

 39 Figure 3.9. Degeneration of a degenerating normal basis functions' representative in the case k = 2, for the element Ib. Left: normal component on all the boundaries. Right: internal behaviour of the basis functions.

Figure 3 . 10 .

 310 Figure 3.10. Scaling of the non-vanishing basis functions generated from the edge number 5 when k = 0. From left to right: Ia and Ib.

Figure 3 . 11 .

 311 Figure 3.11. Normal basis functions issued from one same edge. From left to right: (k = 2, IIa), (k = 2, IIb), (k = 0, IIa), (k = 0, IIb).

Figure 3 . 12 .

 312 Figure 3.12. Top left: regularity of the components of one representative of the basis functions for the reduced element Ib and k = 2 within the element. Top right: its normal component along the boundary. Bottom: normal component of all the functions generated from the edge number 5, plot on the edge number 5. From left to right: k = 0, k = 1, k = 2.

Figure 4 . 1 .

 41 Figure 4.1. Representation of the considered domain, phases and interface, the interface not including the domain's boundaries.

Figure 4 . 2 .

 42 Figure 4.2. Prominent flow behaviours encountered in horizontal pipes. (a)-(h): Different flow regimes. (1)-(3): Different flow natures identified when pulsing in the second phase into the reference one.

  at their center of mass Evolving along their path (characteristics) (b) Eulerian -Lagrangian

Figure 4 . 3 .

 43 Figure 4.3. Depiction of classical two-phase flows modelling strategies.

Figure 4 . 4 .

 44 Figure 4.4. Semisequential update of the time-discretised model.

Figure 4 . 5 .

 45 Figure 4.5. Topological changes that the interface may undergo.

Figure 4 . 6 .

 46 Figure 4.6. Illustration of the continuous conservation principle.

  Control volumes: C control volume of interest C -neighboring control volume sharing the face f Velocity field v Displaced density field ρ v Zone impacted by inflow boundary conditions Mass brought by the boundary inflow Mass quantity transfered to other control volumes Control volume's boundary part involved in mi's conservation Edge through which the displaced quantity of mass f ρ v • n is transfered to the neighbor, guaranteeing Mi's conservation

Figure 4 . 7 .Figure 4 . 8 .

 4748 Figure 4.7. Illustration of the discrete conservation principle.

Figure 4 . 9 .

 49 Figure 4.9. Impact of the quadrature points on the evaluated mass.

( 4 . 15 )Figure 4 . 10 .

 415410 Figure 4.10. Topological flexibility in representing interfaces by a level set.

4 . 1 )-( 4 . 2 )

 4142 coming down to specifying the expressions of (4.3) and (4.4a) of the general picture given in Section 4.1.1. There, φ indicates to (the phase to consider at any point of the domain Ω, selecting in particular the relevant equation of state and physical properties. Especially, when considering any point-value based discretisation it allows to select possibly different phases for the discretisation points of a same interfacial cell.

1 φFigure 4 . 11 .

 1411 Figure 4.11. Development of singularities.

1 Figure 4 . 12 .

 1412 Figure 4.12. Phase determination issue for flattened or perturbed level set.

Figure 4 . 13 .Figure 4 . 14 .

 413414 Figure 4.13. Mixture (top) and interface (bottom) definition for given layouts of two original phases and control volumes.The space-dependent mixture's properties to be considered in the system dynamics are then derived cell-wise from the volume of fluid values (4.20) and the respective properties of the two distinct phases themselves.

( 4 . 1 - 4 . 2 )-( 4 . 22 )Figure 4 . 15 .

 4142422415 Figure 4.15. Redefinition of the interface location with respect to the updated volume of fluid values. Left: Previous state. Right: Updated state.

Figure 4 . 16 .

 416 Figure 4.16. Semisequential update of the time-discretised model as performed by the THINC hybrid approach.

  Level set reconstruction Degrees of freedom of φ K Control volume (b) Variational layout

Figure 4 . 17 .

 417 Figure 4.17. Description of the spatially known information.

  (v H i ) = 0 (4.23) and ∂φ i ∂t + v • ∇φ i = 0, (4.24)

Figure 4 . 18 .

 418 Figure 4.18. Local correction of the interface while preserving the cross-cell continuity.

Lemma 4 . 3 . 2

 432 Properties of the volume of fluid estimator functionFor any control volume C i ⊂ Ω, any constant c ∈ R, and any interface semiwidth ∈ R + , the volume of fluid estimator function

Proposition 4 . 3 . 1

 431 Well-posednessConsidering the corrector function (4.27), the problem (4.29) is well-posed.

Figure 4 . 19 .

 419 Figure 4.19. Maximum volume fraction that can be reached by a corrected interface bluit direclty from (4.27) on a non-convex cell.

Figure 4 . 20 .Figure 4 . 21 .

 420421 Figure 4.20. Illustration of a continuous mapping ensuring that the path transformed from any arc contained in C i is contained in the reference shape, and vis-versa.

  1, d , the boundary term L : ∂C ref → ∂C i being any bijective boundary mapping for which a possible choice is described in Section 4.3.5.1. The corrector function ψ ∆,ref i,c

Figure 4 . 22 .

 422 Figure 4.22. Spatially known information in a given staggered setting.

(4. 50 )

 50 By definition of the functions ψ i and ψ ∆ i,c , the interface is continuous within and across any dual cell C, as depicted in Figure4.23a. Therefore, as the corrected level set values (4.50) are directly built on each subcell from the corrected locator function ψ i + ψ ∆ i,c , the interface stays continuous and conservative when considered from the primal representation (see Figure4.23b for an illustration).

Figure 4 . 23 .

 423 Figure 4.23. Correction procedure and evaluation of the level set values.

Figure 4 . 24 .

 424 Figure 4.24. Several interface distortions defining cells partitions that yield a same volume fraction in a given convex control volume.

Figure 4 . 25 .

 425 Figure 4.25. Quadrature points distribution and impact of the geometrical regularity of the subcells.

( 4 . 40 ) 4 . 51 )

 440451 built from the face parametrisation (4.41) on a control volume C i , and characterised by the sets of level set constraints (4.44) and (4.45). In this context, we denote by m = |Ξ i | the number of interfacial faces  ∈ Ξ i and consider m polynomials {p  k ∈ Q k (R)} ∈ 1,m supported on C i . Defined by the expressions (4.40) and (4.41), the initial locator function ψ i then readsψ i : C i -→ R x -→ ∈Ξ i p  k (γ  (x))T  (x), whereT  : C i -→ R x -→ ı∈Ξ i ,ı = Γ ı (x). (There, as detailed in Section 4.3.3.2, γ  = ||x-x A || ||x B -x A || and Γ ı = d  x 2 -a ı x 1 -b ı represent face parametrisations, where x A , x B are the end points of the face  ∈ Ξ i , and d  , a  are the leading and b  the offset coefficients of the line extending the face  ∈ Ξ i . So defined, the coefficients {d  , a  , b  } j∈ 1,m are known by the geometrical definition of C i and no freedom is given to the expression of Γ ı . One has then to determine m(k + 1) unknowns, each of them being only involved in the expression of a given polynomial p ∈ {p  k }  .

b

  Let us develop the expression of the derivatives encountered in the constraints (4.44) and (4.45). Starting by T  , and denoting indiscriminately a r = a  , b r = b  , d r = d  the coefficients of the Cartesian equation of the line extending the face  ∈ Ξ i indexed by r ∈ N, we retrieveT  = ı∈Ξ i ı = (d  x 2 -(a ı x 1 + b ı ) ı lq ,allowing us to specify the coefficients T k,p  attached to each monomial T k,p  : = 0≤ı 1 <ı 2 <...<ı m-k ≤ı m+1-k 0≤l 1 <l 2 <... <l m+1-k-p ≤l m+2-k-p

Figure 4 . 26 .

 426 Figure 4.26. Expanding (left) or distorting (right) interfaces for which the continuous expansion of the generated subdomain of reference is not represented through the value of the approximated volume of fluid estimator H i .

  3.4.1 for computing the evaluated volume of fluid H i (c), and by using the secant method for finding the correction parameter, as presented in-Section 4.3.4.3.

Figure 4 . 27 .

 427 Figure 4.27. Smooth bijective map between a non-convex octagon (left) and its reference shape (right), showing the inner distortions.

( a )

 a Corrected interfaces for an initially linear locator function (b) Corrected interfaces for an initially quintic locator function (c) Corrected interfaces for an initially linear locator function not having zeros within the control volume nor on its boundary

Figure 4 . 28 .

 428 Figure 4.28. Representation of the initial interface (plain line) and corrected interfaces (dashed lines) for various values of the correction parameter c and control volume shapes.

(

  a) c = -1.2 × 10 -5 (b) c = -0.9 × 10 -5 (c) c = -1.0 × 10 -6 (d) c = 1.2 × 10 -6 (e) c = 1.7 × 10 -6 (f) c = -1.0 10 -2 (g) c = -7.0 × 10 -6 (h) c = -5.0 × 10 -6 (i) c = 5.0 × 10 -6 (j) c = 2.0 × 10 -5

Figure 4 . 29 .

 429 Figure 4.29. Layout of an initially multi-component interface depending on the correction parameter c. Top: Degree 6 locator function having an initial zero level set made of three distinct connected components. Bottom: Degree 5 locator function having an initial zero level set made of three distinct connected components, two contained within the control volume and one crossing it.

Figure 4 .

 4 30 the evaluated volume of fluid value H i against the correction parameter c.

( a )

 a Control volume, initial (solid) and corrected (dashed) interfaces (b) Value of H i against the correction parameter c

Figure 4 . 30 .

 430 Figure 4.30. Behaviour of the volume of fluid estimator function H i and of the corrected interface location for an initially linear locator function. Top: Associated control volume and example of interfaces that are generated from values of c following a logarithmic scale. Bottom: Value of the volume of fluid estimator against the parameter c.

( a )

 a Control volume, initial (solid) and corrected (dashed) interfaces (b) Value of H i against the correction parameter c

Figure 4 . 31 .

 431 Figure 4.31. Behaviour of the volume of fluid estimator function H i and of the corrected interface location for an initially quintic locator function. Top: Associated control volume and example of interfaces generated from values of c following a logarithmic scale. Bottom: Value of the volume of fluid estimator against the parameter c.

( 4 . 49 )

 449 for intermediate constraint values.

Figure 4 . 32 .

 432 Figure 4.32. Corrected interfaces in several juxtaposed control volumes within which high or low volume of fluid constraints are prescribed. Top: (a)-(c) Bubbly shape interface spanning four elements. (d) Single component interface going through topological change across the control volumes. Bottom: (e)-(g) Single component interface spanning four elements. (h) No initial interface, forced into by the conservation constraint.

  Figure 4.33.

  Corrected interface for H i = 0.8 (c) Volume of fluid estimator H i

Figure 4 . 33 .

 433 Figure 4.33. Corrected interfaces for various parameters c sampled in a logarithmic scale, and given volume of fluid constraints.

Figure 4 . 34 .

 434 Figure 4.34. Interface correction of a locator function having huge variations amplitudes. (a): Initial locator function. (b): Shape of the corrected interfaces for various parameters c sampled on R in logarithmic scale. (c): volume of fluid estimator function.

Figure 4 . 35 .

 435 Figure 4.35. Interface correction based on an initial redistanced locator function. (a): Initial locator function. (b): Shape of the corrected interfaces for various parameters c sampled on R in logarithmic scale. (c): volume of fluid estimator.

( a )

 a Correction based on an initially reckless interface locator (b) Correction based on a redistanced initial interface locator

Figure 4 . 36 .

 436 Figure 4.36. Corrected interface shapes obtained for various conservation constraints. Left: H i = 0.2. Middle: H i = 0.5. Right: H i = 0.8.

Figure 4 .

 4 [START_REF] Dafermos | The entropy rate admissibility criterion for solutions of hyperbolic conservation laws[END_REF].

Figure 4 . 37 .

 437 Figure 4.37. Correction of a multi-component interface yielding a change in the boundary crossing points' connectivity. Plain line: initial interface. Dashed line: corrected interface for various correction parameters.
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  Coupled with those last relations, the Riemann problem (2.43) admits a unique discontinuous solution whenever the associated k th characteristic field is linearly degenerated. Indeed, applying (2.47) to a field where ∇λ k

  one can construct a Piola transform as follows.

	Definition 2.2.2 Piola transform
	Given any K, K geometrical shapes contained in R d , functional subspaces

Orientation preserving map for non-convex polytopal elements The

  definition of an orientation preserving map for general non-necessarily convex

		F
	Figure 2.14. Difficulty in defining
	the notion of orientation when there is
	a change in the element local convexity.
	(x1,4, x2,4)	
	F	
	(x1,3, x2,3)
		,2, x2,2)
	Reference Quadrangle	Target Quadrangle
	Figure 2.13. Orientation-preserving mapping in the simplicial
	(grey area) and quadrangle (grey and white areas) cases.

In numerical analysis, any approximate solution to the problem (2.1a) is

  given for a bounded time interval [0, T ] ⊂ R + , T ∈ R + and is always finite dimensional. More precisely, the discrete solution lives in a variational space W h of finite dimension |W h | and is represented by the values Y h = {Y σ } σ∈ 1, |W h | of a finite set of degrees of freedom {σ} σ∈ 1, |W h | from which a global solution approximation Y h : Ω → W can be reconstructed. The value of those degrees of freedom are obtained and updated through numerical schemes, whose construction can follow or combine several flux discretisation approaches.

	Discrete solution given through the values of
	moments based degrees of freedom supported
	on	and	, and pointwise degrees
	of freedom located at	.
		Reconstructed solution from the set of de-
		grees of freedom and the associated values

Figure 2.17. Example of a pathological hybrid mesh containing quads and simplices,

  

	Distorted element
	Non-homogeneous scaling
	Hanging node

  a global constant C such that for any mesh τ h of the sequence, the associated discrete solution satisfies ||Y h || ∞ ≤ C,

.108) holds for any approximate solution Y h ∈ W h whose discrete counterpart satisfies ||Y h || ∞ ≤ M and where the constant c depends only on M and τ h , and more generally that • there exists

  While the approximate solution to the steady analogue of the problem (2.1) converges towards a weak solution given the hypothesis of Theorem 2.4.1, further conditions on the residuals should be imposed to ensure its physical relevance. Considering here entropy conservation as a selection criterion, we state in Proposition 2.4.2 sufficient conditions for the solution to be entropy conservative with respect to a given entropy function and fluxes pair.

	and is a weak solution to the steady
	analogue of the problem (2.1).

Proposition 2.4.2 Convergence towards weak entropy solutions Let us consider (S, G) an entropy pair for the steady analogue of the system (2.1a), G n a numerical entropy flux whose normal component on each element boundary is consistent with G • n, and U := ∇ Y S the entropy variable vector associated with the entropy flux S. Then, given a Residual Distribution scheme expressed by (2.98) and for which • the assumptions of Theorem 2.4.1 hold,

  .79) expression from which a Residual Distribution formulation can be derived. Indeed, the solution Y K is reconstructed in each element K ∈ τ h as a polynomial of order k ∈ N whose characterisation involves exactly |κ Y | = dim P k (K) pointvalues degrees of freedom. One can therefore define partial residuals that describe the scheme (2.88) by splitting the expression (2.79) on the nodal basis

.119)

  

	Provided that both conditions (2.78) and (2.119) are fulfilled, the Flux Recon-
	struction scheme (2.88) can therefore be properly embedded in the Residual
	Distribution framework, the conservation relation (2.100) being guaranteed
	for the associated residuals (2.112). We can therefore pursue the analysis and
	derive further conditions on the correction term to grasp physically relevant
	solutions.

  The conservation relation on the term τ σ is then obtained through the conservation of the comprehensive correction term, i.e.

.129) is both conservative and entropy conservative. Proof. Let us simply retrieve the relations (2.126) and (2.127) given the expression (2.128) of the correction terms. Considering first the conservation relations, one shall just recall that the condition on r σ is obtained by the assumption (2.119) on the correction function (2.77). σ∈Σ W (K)

2.78)-(2.82)-(2.135) satisfies

  Lastly, if it further holdsσ∈K U σ , ψ σ ≥ E, for E the entropy error (2.122) of the Discontinuous Galerkin scheme, then the Flux Reconstruction scheme (2.88) is additionally entropy stable.To conclude this summary by an example, let us point out that as any correction function solving the discrete Neumann problem (all of the above criterion, any such solution necessarily yields an entropy conservative Flux Reconstruction scheme.

is associated to the recast formulation (2.116) in W (K), then the Flux Reconstruction scheme (2.88) is conservative and can be recast into the Residual Distribution framework, all the results of Section 2.4.3 therefore applying.
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definitions of normal degrees of freedom in the 2D case, where γ represent any polynomial parametrisation of the face f of first order.

  4.1 Problem statement, modelling, and approximation strategy 4.1.1 Modelling strategy . . . . . . . . . . . . . . . . . . . . 4.1.2 Conservation principle . . . . . . . . . . . . . . . . . 4.1.3 Dedicated approaches and numerical schemes . . . . 4.1.4 Scope of the presented approach . . . . . . . . . . . . 4.2 Description of three fundamental methods . . . . . . . . . . 4.2.1 The Level Set approach . . . . . . . . . . . . . . . . . 4.2.2 The Volume of Fluid method . . . . . . . . . . . . . . 4.2.3 The THINC-LS approach . . . . . . . . . . . . . . . . 4.3 A continuity preserving procedure . . . . . . . . . . . . . . . 4.3.1 The general idea in a nutshell . . . . . . . . . . . . . 4.3.2 An intuitive continuous interface correction . . . . . 4.3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Numerical approximations . . . . . . . . . . . . . . . 4.3.5 Numerical results . . . . . . . . . . . . . . . . . . . . 4.3.6 Critical assessment of the proposed approach . . . .

  .4.

	Updated state Y n+1	Updated interface representation	t n+1
	System dynamics Equation of State	Interface evolution	Decoupled update
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	Previous state Y n	Interface representation	t n
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	System dynamics Equation of State Updated state Y n+1 Interface location Subdomains determination	Correction of the interface location Velocity field extraction Updated Level Set interface representation Evolution of the spatial interface representation (Level Set)	Updated Volume of Fluid interface representation Evolution of the conservative interface representation (Volume of Fluid)	Static correction Decoupled update Coupled static precomputations	t n+1
	Previous state Y n	Interface representation Level Set	Interface representation Volume of Fluid	t n

  is the local reconstruction of the level set within the cell C i and H i n is the value of the piecewise constant volume of fluid within the cell C i .The update of both quantities from the discrete time t n to t n+1 is then computed independently for each control volume C i through the approximations Correction procedure After each time step, the level set expression φ n+1 i is corrected in each cell C i with respect to the volume of fluid value H i n+1

	1-4.2) for the state and to the dynamics (4.17) and (4.22) for the respective interface representations. More precisely, the discrete level set and volume of fluid fields are expressed at the time t n by φ n : Ω -→ R x -→ φ n i (x), i s.t. x ∈ C i and H n : Ω -→ R x -→ H i n , i s.t. x ∈ C i , where φ n dH i dt + ∇ • (v H i ) = 0 (4.23) and ∂φ i ∂t + v • ∇φ i = 0, (4.24) determining the degrees of freedom values characterising the level set φ n+1 and volume of fluid H n+1 discrete fields. There, the numerical method assess-ing (4.24) can a-priori be chosen freely among stable and consistent schemes, while the discretisation of (4.23) requires to be further conservative. Once i of evolved, the level set expression φ n+1 is then corrected with respect to the i volume of fluid value of H i n+1 in each interfacial control volume C i ∈ T h .

  and for {x m } m ∈ 1, M a set of M ∈ N evaluation points contained in C i , the values of ψ i and its derivatives at any point x ∈ {x m } m are consistent with the initial local level set reconstruction φ i . Furthermore, the so constrained interpolation function ψ i , referred to in the following as interface locator, is of maximum steepness near the interface.2. Add a corrective constant c i ∈ R to the expression of ψ i , whose value will be later adjusted with respect to the local volume of fluid constraint.3. Construct a smoothed indicator function Hi : C i → [0, 1]tagging the phases within C i through the tangent hyperbolic phase-field profile

.25)

  

		Degrees of freedom
		Reconstructed Level Set φi
		Level Set polynomial ψi
		Implicit interface location
		Degrees of freedom
	|ci|	Level Set polynomial ψi Corrected polynomial φi + ci
		Corrected interface location
	1	Corrected polynomial φi + ci Volume of Fluid evaluator
		Corrected interface location
	0	
	2	
		Corrected polynomial φi + ci
	1	Volume of Fluid evaluator
		Corrected interface location
		Evaluated volume of fluid Hi
		Volume of fluid constraint Hi
	Interface location shifting
	according to the value of ci
	0	
	Algorithm 1.	

Table of Contents 1

 of1 Introduction 1.1 Problem of interest and general difficulties . . . . . . . . . . . . 1.2 Scope of the presented work . . . . . . . . . . . . . . . . . . . . . 1.3 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 H(div)-conforming elements on general polytopal meshes 3.1 Conforming discretisation strategies . . . . . . . . . . . . . . . . 3.1.1 Discrete features and conformity . . . . . . . . . . . . . . 3.1.2 The variational space H(div) and its specificities . . . . . 3.1.3 Application of H(div)-conforming discretisations . . . . . 3.1.4 Classical polytopal and H(div)-conforming elements . . . 3.1.5 Scope of the presented method . . . . . . . . . . . . . . . . 3.2 Description of two conforming elements . . . . . . . . . . . . . . 3.2.1 Simplicial Raviart -Thomas elements . . . . . . . . . . . 3.2.2 Quadrilateral Raviart -Thomas elements . . . . . . . . . 3.2.3 The classical Virtual Elements . . . . . . . . . . . . . . . 3.2.4 The H(div)-conforming virtual element space . . . . . . . 3.3 A framework for arbitrary polytopes . . . . . . . . . . . . . . . . 3.3.1 The general idea in a nutshell . . . . . . . . . . . . . . . . 3.3.2 Necessary conditions over spaces and elements . . . . . . 3.3.3 A class of admissible approximation spaces . . . . . . . . 3.3.4 Definition of H(div)-conforming elements . . . . . . . . . 3.3.5 Summary of the construction . . . . . . . . . . . . . . . . 3.3.6 Two examples in two dimensions . . . . . . . . . . . . . . 3.3.7 Link to other discretisation spaces . . . . . . . . . . . . . 3.3.8 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 3.3.9 Critical assessment of the proposed approach . . . . . . . Problem statement, modelling, and approximation strategy . . . 4.1.1 Modelling strategy . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Conservation principle . . . . . . . . . . . . . . . . . . . . 4.1.3 Dedicated approaches and numerical schemes . . . . . . 4.1.4 Scope of the presented approach . . . . . . . . . . . . . . . 4.2 Description of three fundamental methods . . . . . . . . . . . . . 4.2.1 The Level Set approach . . . . . . . . . . . . . . . . . . . . 4.2.2 The Volume of Fluid method . . . . . . . . . . . . . . . . . 4.2.3 The THINC-LS approach . . . . . . . . . . . . . . . . . . . 4.3 A continuity preserving procedure . . . . . . . . . . . . . . . . . 4.3.1 The general idea in a nutshell . . . . . . . . . . . . . . . . 4.3.2 An intuitive continuous interface correction . . . . . . . . 4.3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Numerical approximations . . . . . . . . . . . . . . . . . . 4.3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 4.3.6 Critical assessment of the proposed approach . . . . . . .

	4 A conservative and continuity preserving interface correction	
	4.1 Bibliography	iii

H(div)-CONFORMING ELEMENTS ON GENERAL POLYTOPAL MESHES

A CONSERVATIVE AND CONTINUITY PRESERVING INTERFACE CORRECTION

Acknowledgments

H(div)-conforming elements

Let us now combine the two previous subsections with the definition of the space H k (K) and define a class of H(div, K)-conforming polytopal elements. Proposition 3.3.1 H(div)-conforming elements • Let K be any polytope and H k (K) be a finite dimensional space given by Definition 3.3.1 that verifies the Admissibility conditions 3.3.5.

• Let also {σ N } be any selection of d(l Then, the set {σ N } ∪ {σ I } is unisolvent for the discretisation space H k (K) and defines a H(div, K)-conforming element.

The well definition of the elements is an immediate corollary of the following proposition, while the H(div)-conformity is immediate by definition of the face-wise support of the normal degrees of freedom and the polynomial nature of the space H k (K) on the boundary.

Proposition 3.3.2 Unisolvence of the derived elements

Let q ∈ H k (K), and denote σ N (q) the n-tuple of normal degrees of freedom extracted from the set (3.26) for each face f ∈ ∂K. Then, Derivatives of the face-selecting polynomial T  First order

Derivatives of the face parametrisation γ  First order To this aim, we assume that the constraints are set on a finite number M of sampling points {x m } m∈ 1,M within C i , and that the value of their right hand side can be directly obtained from any local reconstruction of the level set field φ. In such a setting, the determination system over ψ i on the cell C then reads

Derivation of the determination system

where X is the matrix containing the evaluated monomials of (4.53) at the sampling points