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French Summary 
 

La nature constitue le système le plus harmonisé sur cette terre. Au fil des ans, elle a toujours réussi 

à maintenir l'équilibre entre tous les écosystèmes tout en fournissant à l’être humain ce dont il a 

besoin. Cependant, l’énorme croissance de la population a déclenché des productions industrielles 

massives pour satisfaire les besoins, en particulier au cours des dernières décennies. En 

conséquence, des menaces écologiques sont apparues suite à la surexploitation des ressources 

naturelles et au rejet des déchets nocifs, principalement dans l’air, mais également dans l’eau et le 

sol. 

Rapidement, la pollution de l'air a renforcé le réchauffement climatique (vagues de chaleur 

répétitives, désertification, pluies acides…) causé principalement par les gaz à effet de serre, et en 

particulier le dioxyde de carbone. 

Face à ces crises environnementales, les scientifiques ont été les premiers à délencher l'alerte sur 

les conséquences de ce changement climatique brusque si les niveaux de pollution de 

l'environnement sont maintenus à un niveau aussi élevé. Par la suite, des efforts prometteurs pour 

réduire les normes du principal responsable, le CO2, dans l'atmosphère ont commencé à se 

développer en tentant, par exemple, de le stocker sous terre ou de le capturer par des membranes 

sélectives. 

Les chimistes ont réfléchi différemment en proposant d’exploiter ce gaz en le transformant en des 

composés chimiques d’interêts, la fixation du CO2 s’est alors vite développée et de nouvelles 

stratégies basées sur le concept du CO2 comme brique de synthèse ont fourni des de nobreuses 

molécules de haute valeur ajoutée dans les domaines pharmaceutiques, agrochimiques et en chimie 

fine. Malheureusement, les nombreuses approches proposées ajoutent plus de complications 

qu’elles ne permettent de résoudre le dilemme principal en exigeant des températures trop élevées 

ou trop basses, une importante pression de CO2, voire pire en produisant plus de déchets tels que 

des déchets métalliques. 

Depuis son utilisation en chimie de synthèse, l'électrochimie s’est révélée être un outil de choix 

pour réaliser des réactions chimiques dans des conditions plus douces. C’est pourquoi, la fixation 

du CO2 en s’appuyant sur les avantages qu’apporte l’éléctrochimie a trouvé très vite été envisagée 

comme alternative aux additifs métalliques, voire mieux, comme moyen prometteur de synthèse 

de produits chimiques précieux tels que les acides carboxyliques, sans production de déchets 

supplémentaires. En dépit d’avancées significatives, le principal inconvénient demeure le potentiel 

électrochimique élevé requis pour la synthèse de composés visés, en plus du faible rendement et 

de la faible sélectivité. 

Dans notre groupe, nous avons utilisé l'électrochimie pour mettre en oeuvre une méthode de 

génération in situ de complexes de samarium divalents réputés être des réducteurs suffisamment 

puissants pour initier des transformations radicalaires, grâce au transfert monoélectronique. Plus 

récemment, nous avons mis au point des réactions électrocatalytiques en utilisant une quantité 



 

 

catalytique de ces complexes pour obtenir des résultats surprenants, souvent difficiles a obtenir 

avec d’autres réactifs ou nécessitant l’utilisation d’une quantité sur-stoechiométrique d’un co-

réducteur. 

Dans cette thèse, nous nous intéressons à explorer la réactivité de ces complexes de samarium 

divalents (réducteurs puissants) pour réaliser réduction efficace du CO2, en utilisant 

l’électrochimie comme source d’électrons afin de synthétiser des acides carboxyliques à partir de 

substrats commerciaux. 

Après une introduction générale et un état de l’art autour de la problématique du CO2, dans le 

premier chapitre, nous aborderons la carboxylation de chlorures et de bromures aromatiques sous 

atmosphère de CO2(g) avec un complexe de samarium divalent électrogénéré. L'espèce active Sm 

(II) est électrogénérée en continu à partir d'une electrode de samarium métallique dans le 

diméthylformamide DMF comme solvant en présence de tétrafluoroborate de 

tétrabutylammonium (nBu4NBF4) servant à la fois d’ électrolyte support et de source de ligands 

du samarium. Les études mécanistiques ont révelés que dans le cas des bromures, le mécanisme 

de la réaction a lieu suivant un couplage radicalaire alors dans le cas des chlorures, c’est une 

substitution radicalaire.  

Dans le deuxième chapitre, nous avons étudier la carboxylation des dérivés du chlorure de benzyle, 

dans l’acétonitrile, afin d’obtenir des acides phénylacétiques en utilisant cette fois une quantité 

catalytique de 20 mol% de SmI2 précisément électrogénée avant l’addition du produit de départ. 

Dans cette réaction, l’utilisation de carboglace comme source de CO2 s’est révéllé être 

avantageuse. Il est également nécessaire d’utilser le chlorure de triméthylsilyle TMSCl comme 

agent oxophile pour dissocier l’espèce trivalent de Sm du produit de la réaction et régénérer 

l’espèce divalente active. Des expériences de contrôle ont montrés que le mécanisme se fait aussi 

suivant un processus de substitution radicalaire et que la formation du radical benzylique n’est 

jamais observée sous nos conditions éléctrochimiques. L’ensemble de ces résultats confirment une 

réelle activation du CO2 en radical carboxylate correspondant pour initier la carboxylation. 

Le troisième chapitre concerne l’hydrocarboxylation des dérivés de styrène et de phénylacétylène, 

catalysée par 10 mol% de SmCl2 généré in situ par l’électroréduction de de sels de SmCl3, en 

présence de ter-butanol et bien sûr, TMSCl dans l'acétonitrile. Sous ces conditions, les alcynes ont 

fournis un mélange de acide carboxylique aliphatique et acide acrylique alors que les alcynes 

protégés ont réagis pour produire exclusivement les correpondants acides acryliques. L’ensembles 

des acides ainsi obtenus montre une selectivité totale pour une addition anti-Markovnikov du CO2, 

ce qui est tout à fait en accord avec un processus radicalaire de fixation du CO2. Les études 

mécanistiques, nous ont permis de mettre en évidence que l’acétonitrile (CH3CN) utilisée comme 

solvant est la source de proton dans cette transformations d’hydrocarboxylation. 
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General Introduction 
 

Nature crowns this world as the most harmonized system on this Earth. Over the years, it always 

succeeded to maintain the balance between all the ecosystems and to provide, on the other hand, 

to human creatures what they want. However, the increasing number of populations demanded 

massive industrial investments to satisfy their needs, especially during the past decades. 

Consequently, the industrial expand started to threaten this balance by taking extensively from 

nature’s resources and giving back nothing but harmful wastes, mainly in the air but also in water 

and soil.   

Air pollution was not a huge problem until we began to notice the global warming effects 

(repetitive heatwaves, desertification, acid rain) caused by greenhouse gases, primarily carbon 

dioxide. 

Facing these consequences, Scientists were the first to start the alert about what are we going to 

face from ecological crises to fatal diseases if the level of brutal abuse of the environment is kept 

as high. Subsequently, promising efforts to reduce the standards of the main responsible, CO2, in 

the atmosphere started to grow by trying to store it underground or capture it by selective 

membranes.  

Chemists thought differently by proposing the transformation of this gas into daily used 

compounds and encouraged the concept of CO2 fixation. Since then, a revolution in chemistry 

started and opened the way for novel strategies based on CO2 insertion to deliver valuable materials 

in pharmaceutical, agrochemical, and fine chemistry. Still, many of these protocols add more 

complications than solving the main dilemma by requiring high or low temperatures, important 

CO2 pressure, or even worst, create more wastes such as metallic ones. 

Since its establishment, the electrochemistry was the tool of choice to develop affordable chemical 

reactions under safer conditions. It did not take long before its use reunites with the CO2 fixation 

and it was commercialized as the alternative to metallic additives or even better, as a promising 

way to synthesize valuable chemicals such as carboxylic acids, without the production of 

unnecessary wastes. Despite this significant breakthrough, the principal drawback was the high 

overpotential required for the preparation of carboxylic acids in addition to the low efficiency and 

poor selectivity. 

In our group, we took advantage of the electrochemistry to produce divalent samarium as a 

reductant powerful enough to initiate radical transformations, thanks to its monoelectronic 

reductive behavior. More recently, we established electrocatalytic reactions allowing the use of a 

catalytic loading of this complex to yield amazing results that were not possible with other reagents 

or necessitated the use of an over-stoichiometric amount of a co-reducing agent.   
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 In this thesis, we are interested in exploring the reactivity of the divalent samarium complexes to 

achieve the CO2 activation, relying on the electrochemistry as a green source of electrons, to obtain 

carboxylic acids from commercially available substrates.   

After a general introduction and state of the art around the CO2 problematic, in the first chapter, 

we discuss the carboxylation of aromatic chlorides and bromides under CO2(g) atmosphere using 

electrogenerated divalent samarium complex. The active Sm (II) species is continuously 

electrogenerated from a metallic samarium rod in the presence of tetrabutylammonium 

tetrafluoroborate nBu4NBF4 as electrolyte and source of ligands, in dimethylformamide DMF as 

a solvent for this transformation. 

In the second chapter, we investigate the carboxylation of benzyl chloride derivatives, in 

acetonitrile, to obtain phenylacetic acids using this time a catalytic amount of SmI2 precisely 

electrogenerated before the addition of the starting material. This reaction requires the presence of 

trimethylsilyl chloride TMSCl to regenerate the catalyst and the use of dry ice as a source of CO2 

in the medium. 

The third chapter concerns the hydrocarboxylation of styrene and phenylacetylene derivatives 

via anti-Markovnikov addition of CO2 (dry ice), catalyzed by 10 mol% of SmCl2 generated in situ 

from the electroreduction of SmCl3, in the presence of ter-butanol t-BuOH as a proton source and 

of course, TMSCl in acetonitrile. 
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Carbon Dioxide 
 

1. Generality about the increasing carbon dioxide problematic 
 

a. Sources and role of CO2 in nature 
 

As simple as it can be, a carbon dioxide molecule is formed via the combination of three 

atoms: one carbon and two oxygens. The central atom in this compound is the carbon, presented 

in its most oxidized form (+4). However, this small molecule of CO2 plays a major role in life 

(Figure 1) and it is considered as the main carbon source in the atmosphere.  

 

         Figure 1: Carbon dioxide cycle. 

 

For example, the plants absorb the CO2 to produce glucose and release dioxygen O2 during the day 

via photosynthesis, and the opposite during the night. Besides, the oceans are one of the largest 

reservoirs of this gas after its dissolution and transformation to bicarbonate CO3
2- in deep cold 

water. This process is yet reversible on the surface due to the temperature rise leading to the 

decrease of CO2 solubility in water. 

On the other hand, the respiration, erupting volcano, and economic growth are inherently 

producing the CO2, especially this latter due to the continuous burning of fossil fuels. 1 On top of 

this category, the production of cement contributes to almost 6% of the total CO2 emission, 

 
1 a) S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16; b) N. S. Lewis, Science 2016, 351, 1920; c) B. Obama, Science 2017, 355, 126; d) A. 

Schoedel, Z. Ji, O. M. Yaghi, Nat. Energy 2016, 1, 16034; e) Z. Han, R. Kortlever, H. Y. Chen, J. C. Peters, T. Agapie, ACS Cent. Sci. 2017, 3, 
853. 
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including those coming from the raw material. Although the development of many alternatives, 

fossil fuels remain on the top of energy sources, essential for many sectors.  

Consequently, this balance between absorbed and generated CO2 is strongly disrupted, causing the 

most discussed crisis, global warming. 

 

b. Global warming 
 

The term warming signifies the temperature rise compared to normal levels, but why the CO2 

increasing levels are going to warm the Earth?  

The carbon dioxide and other gases (N2O, H2O(g), CH4 & O3), are together called the greenhouse 

gases (GHGs). These gases can absorb infrared photons, unlike others in the atmosphere (e.g., N2 

and O2 cannot absorb infrared energy). The gained energy is likely to be re-released as an infrared 

emission as a crucial phenomenon keep the global temperature in a reasonable range. 

The Intergovernmental Panel on Climate Change (IPCC)’s special report published in October 

2018 drawing the attention to the increasing levels of carbon dioxide, exceeding 414 ppm in May 

2019, 2 which is responsible for over warming the Earth’s climate to a serious problematic point. 

 

Figure 2: Chart shows observed monthly temperatures (grey line), estimated human-caused warming (red), and 

idealized potential pathways to meeting 1.5°C limit in 2100 (grey, blue, and purple). All relative to 1850-1900. 3 

 

Furthermore, this report highlighted the importance of limiting global temperature rise to 1.5°C by 

the mid-century (2040-2050) and declaring that the precedent limit to 2°C is no longer enough to 

avoid the disastrous impact of climate change arising each day. According to the report, the human 

activities are responsible for adding 0.2°C to global average temperatures each decade, and the 

CO2 emissions are on the top of the list (Figure 2). 

 
2 https://www.co2.earth/ 
3 https://www.ipcc.ch/sr15/ 

https://www.co2.earth/
https://www.ipcc.ch/sr15/
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To resolve the crisis, the 91 scientists agreed that the global CO2 emissions need to drop to net-

zero by 2050 so we can remain below 1.5°C.  

By the end of the report, the main conclusion is: if innovative new technologies for CO2 removal 

do not find its way shortly, all the proposed scenarios are threatening to fail, and the consequences 

on a global scale will be severe.  

 

c. Consequences and solutions 
 

Extreme weather, floods, biodiversity loss, deforestation… these are among the climate change 

consequences. So, as mentioned in the previous section, creating new methods to remove the 

carbon dioxide is a must to achieve the goal. 

The Carbon Capture, Storage, and Utilisation (CCSU) constitute a new technology opening the 

pathway for the reduction of CO2 emissions and meeting climate and energy goals. 4  It’s mainly 

based on three concepts:   

i- Capture: The separation of CO2 before, during, or after the fuel combustion process 

depends on the used technology. For example, the separation of CO2 known as post-combustion 

capture requires an amine-based adsorption system. Besides the high cost of this latter, the 

corrosion is one of the problems encountered by the process due to acid gases (mainly CO2 and 

H2S) which reduces subsequently its lifetime and limits its use. 

ii- Storage: The CO2 is injected under the ground which leads to its condensation into a 

liquid and to its safe storage eventually. Still, its sequestration necessitates a unique geological 

overlay of porous rocks and seal, especially this last layer as it forms an impermeable barrier to 

avoid CO2 migration toward the surface. This technique presents some complications, mainly the 

untraceable CO2 evolution over time, so in case of leaks, for example, it is hard to react 

immediately and solve the problem (Figure 3). 

 
4 a) Q-W. Song, Z-H. Zhou, L-N. He, Green Chem., 2017, 19, 3707 ; b) G. Cui, J. Wang, S. Zhang, Chem. Soc. Rev., 2016, 45, 4307; c) N.V.D. 
Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev., 2014, 43, 7982 
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Figure 3: The required soil composition to store the carbon dioxide underground 

 

iii- Utilization: The number of publications regarding CO2 usage in the last ten years has 

increased significantly, targeting two main applications (Figure 4): 

 

Figure 4: Carbon dioxide uses. 

 

A. Industrial applications: This category does not show usually any conversion of carbon 

dioxide. As an example, the CO2-based fire extinguishers for the fires caused by solvents, fuels, 

and oils. 

Another technical illustration is Enhanced oil recovery (EOR). It is based on injecting the CO2 

under high pressure into an oil reservoir. Enough pressure will allow the oil circulation through 

the pipes and arrive at the surface of the ground. The main advantage of CO2 here is reducing the 

viscosity of the oil, facilitating its recovery. 

However, these applications demand a vast amount of energy so, by the end of the process, there 

will be somehow CO2 emissions and resources depletion. 
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B. Chemical and pharmaceutical applications: These applications are not considered as the 

main path to reduce carbon dioxide levels, yet in most cases, they don’t either involve any increase 

in its emission. The CO2 transformation into methanol or methane or another hydrocarbon is well 

studied and although the great advance in this field, it appears to be critical from an economic 

point of view considering their low market value. 5  

On the other hand, these methods can yield valuable compounds (polymers, carbamates, urea, 

carboxylic acids...) extensively consumed. Notably, the carboxylic acids form a quite interesting 

category by itself. This functional group exists not only in drugs but also in paints, cosmetics, 

plastics..., products that established a great market and endless daily need translated into an 

expected gain of 5% in the carboxylic acid market by 2024. 6 

The critical question to ask here is how we can use carbon dioxide, especially in chemistry, a gas 

known for its thermodynamic stability and kinetic inertia? To answer this inquiry, the chemical 

properties of CO2 should be identified and discussed first. 

 

2. Chemical properties of CO2 
 

a. The structure of CO2 and its existing forms in solution 
 

The carbon dioxide is a non-toxic, noninflammable, renewable, abundant gas. The boiling point 

of CO2 is - 51 °C,  and it is present in a gaseous state under atmospheric pressure and room 

temperature. In the atmosphere, the density of CO2 is 1.98 Kg/m3, almost 1.65 times higher than 

the air density. 

Dissolved in water, the carbon dioxide exists in three forms depending on the pH: carbonate CO3
2- 

(pH >10), hydrogen carbonate HCO3
- (6.5< pH <10) and dissolved CO2 (pH< 6.5).  

In organic solvents, the CO2 solubility is much higher than in aqueous solution.7 Interestingly, it 

strongly depends on the polarity and the protic character of the solvent (Table 1). 

Table 1: CO2 solubility in different organic solvents. 7 

Solvents 
The concentration of dissolved 

CO2 (mol/L) at 25°C 

Dimethyl sulfoxide        0.138 ± 0,003 

Dimethylformamide        0.199 ± 0,006 

Tetrahydrofuran        0.205 ± 0,008 

Acetonitrile        0.279 ± 0,008 

Methanol    0.330 ± 0,01 

 
5 A. Tortajada, F. J. Hernandez, M. Borjesson, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948. 
6 https://www.gminsights.com/industry-analysis/carboxylic-acid-market 

         7 C. M. Sanchez-Sanchez, V. Montiel, D. A. Tryk, A. Aldaz, A. Fujishima, P. App. Chem 2001, 12, 73, 1917 

https://www.gminsights.com/industry-analysis/carboxylic-acid-market
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Under low temperature (< -78°C), this gas will transform immediately via a condensation process 

to form the “dry ice.” This solid will gradually convert to the gas state if stored at room 

temperature. Easy to transport and overpressure risk-free are the main advantages of the CO2(s) 

compared to the case of using CO2(g) bottles. 

From another point of view, this linear molecule with a D∞h symmetry has no dipole moment, yet 

the electronegativity difference between the oxygen and carbon attracts the electrons towards the 

former and thus creating a partial positive charge on the latter. This electronic distribution rules 

the CO2 interaction in a chemical medium; the carbon center is electron-poor thus possessing a 

Lewis acid character while the oxygen reacts as a Lewis base.  

Moreover, the frontier molecular orbital theory indicates the same electronic behavior. 8  As 

expected, the Highest Occupied Molecular Orbital HOMO lies on the oxygen atom while the 

Lowest Unoccupied Molecular Orbital LUMO is found on the carbon atom. Based on this fact, the 

coordination of a metal center and carbon dioxide was classified in 24 binding modes depending 

on how many metal center and CO2 molecule are involved. 9 In the case of a transitional metal, 

there are mainly four binding modes (Figure 5): 5 

  

Figure 5: Different binding modes of carbon dioxide with a transition metal center. 

 

i- 1 (C): This interaction requires an electron-rich metal center to coordinate to the deficient 

carbon atom. In this case, the orbital dz2 of the metal will react with the LUMO of CO2 via a charge 

transfer, stabilizing the formation of this type of complexes. 

 

ii- 1 (O) and 2 (O; O): The metal center is in this case electron-poor thus it coordinated to 

the electron-rich site of carbon dioxide which is the oxygen atom. An example of this type is the 

alkali metals, known for their low oxidation potential.  

 

 
8 M. Aresta, A. Dibenedetto, E. Quaranta, Reaction Mechanisms in Carbon Dioxide Conversion, Springer-Verlag: Berlin Heidelberg 2016. 
9 A. Behr, Angew. Chem. Int. Ed. Engl. 1988, 27, 661. 
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iii- 2 (C; O): as the most common binding mode, it demonstrates a double interaction between 

the metal and the CO2. The oxygen transfers the electrons into the empty dz2 of the metal. This 

latter responses by transferring a part of the dxy charge via “𝜋-back bonding” to the LUMO 

localized on the carbon. For example, the Nickel exhibited this type of binding mode in the first 

Ni-CO2 complex reported by Aresta et al. 10 

After its coordination to the metal center, the CO2 fixation to the substrate is the next step, and 

generally, the typical metal catalysis goes through a CO2 insertion mechanism while the unusual 

path, and commonly described in photochemical and electrochemical reactions, is the CO2 

activation. 

 

b. CO2 fixation: insertion vs. activation 
 

A. CO2 insertion: 

 

The CO2 is well known to be a stable molecule (∆𝐺 = -396 kJ/mol) with a high redox potential (-

2.21 V/SCE in DMF). To encounter this great stability, transition metals perform usually at first 

an oxidative addition with the available reagent in the medium (alkenes, alkynes, aryl or aromatic 

halides ...) to produce highly reactive organometallics.  

Nevertheless, the 14/16 VE rule controls the transition metal catalysis. Indeed, the metal goes 

from 14 VE to 16 VE during the oxidative addition. So, there are three options determined by the 

experimental conditions: 

(1) In the case of halogenated substrates, a co-reductant must be added in the medium to 

reduce the metal center to 15 VE (Figure 6, path 1). After this monoelectronic reduction, the 

coordinated CO2 will then follow an insertion step in the M-R bond to form the insertion adduct 

holding the same number of electrons (15). Finally, to regenerate the catalyst, another equivalent 

of the reducing agent is necessary to give back the initial active catalyst and consequently, to play 

the role of a cation of the carboxylate anion. A perfect example will be the nickel catalyst described 

by Martin’s group, for the carboxylation of pseudo(halide) bonds, involving the three oxidation 

states of Ni(0/I/II). 11 

(2) Another possible path is when only two oxidation states are concerned during the catalytic 

cycle. In this case, after the CO2 insertion, an alkyl carbanion donor like diethylzinc Et2Zn as a 

terminal reducing agent will eliminate the carboxylated product, releasing a metal-alkyl species 

(Figure 6, path 2). After the elimination of an alkyl halide, the original complex will be recovered 

to catalyze the reaction. 12   

 
10 S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299. 
11 A. Correa, T. Léon,  R. Martin, J. Am. Chem. Soc. 2013, 135, 1221. 
12 A. Correa,  R. Martin, J. Am. Chem. Soc. 2009, 131, 15974. 
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Figure 6:  Possible mechanistic pathways for the carboxylation of halogenated reagents. 

 

(3) When the used substrate contains an unsaturated bond (alkenes, alkynes, imines …), the 

reaction requires the addition of a hydrogen donor or a hydride source. Furthermore, the catalyst 

is under the control of steric hindrance due to the presence of two possibilities, which are the 

Markovnikov or anti-Markovnikov addition, and therefore, the ligand choice plays a significant 

role. This point will be detailed in the third chapter, but the major product arises from the 

Markovnikov addition13 where the hydrogen is on the less substituted carbon. The rest of the 

mechanism depends strongly on the substrate nature, the ligand, and the additives in the medium. 

The CO2 insertion has been reported in many metal-based catalyses and thus widely investigated. 
5 While it offers low catalyst loading and good selectivity, the transition metal-based route 

possesses significant drawbacks: 

i- The over stoichiometric amount of additives: The metal-based additives are mainly 

needed to reduce the catalyst and regenerate the active oxidation state. Some of these reagents 

interfere with the mechanism, facilitating the insertion by lowering the CO2 activation energy; 

others are whether toxic or air-sensitive, thus making the reaction manipulation much harder. 

ii- The expensive ligands: Although the block-d are cheap, abundant metals, yet their 

combination with costly ligands, specifically designed to enhance the selectivity, decreases the 

possibility of their use for future industrial applications. Moreover, few of these ligands are 

commercially available, which adds a pre-additional synthetic step to the reaction. 

iii- The designed substrate: Designing means adding structural modifications to the starting 

material, essential for the reaction to work. The organozinc and organoboranes reagents constitute 

a right example in this case, mostly used instead of the unfunctionalized substrates due to their 

high reactivity. Also, having these functional groups will increase the reaction selectivity leading 

to the direct insertion at the selected position.  

 
13 a) C. M. Williams, J. B. Johnson, T. Rovis, J. Am. Chem. Soc. 2008, 130, 14936; b) M. D. Greenhalgh, S. P. Thomas, J. Am. Chem. Soc. 2012, 

134, 11900; c) P. Shao, S. Wang, C. Chen, C. Xi, Org. Lett. 2016, 18, 2050; d) S. Kawashima, K. Aikawa, K. Mikami, Eur. J. Org. Chem. 2016, 
3166. 
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iv- The selectivity issues: Specifically, in the case of unsaturated products, the selectivity 

during the insertion is based on the ligand and the substrate. Under ligand-control, most of these 

reactions show high selectivity, yet a slight change in the substrate’s structure yields a considerable 

drop of selectivity indicating the critical structure dependence of the developed system. 

v- The long reaction time and the crucial role of temperature: Up to 36 hrs are sometimes 

required under very high (150°C) or on the contrary, low temperature (-70°C), causing side 

products and low reaction efficiency.   

 

B. CO2 activation 

 

To activate the CO2 means generating an active species from this stable molecule, in most common 

active form of this compound is the radical anion [CO2].-, formed via an electron transfer 

mechanism, mainly using electrochemistry and photochemistry. As previously discussed, the 

LUMO lies on the carbon center so any additional electron will likely reside in this anti-bonding 

orbital, leading to the CO2 reduction resistance (𝐸𝑟𝑒𝑑 = −2.21 𝑉). After a successful electron 

transfer, this additional radical affects the CO2 structure significantly. First, the carbon oxidation 

state decreases from (+4) to (+3) and the previous electrophilic center gains a strong nucleophilic 

character. Secondly, the symmetry changes from D∞h to C2v translated by going from linear to bent 

geometry ( 𝑂𝐶𝑂̂=180° to 138°). And lastly, the additional electron is added on the carbon atom and 

the oxygen atom bears the negative charge. This latter occupies a 𝜋-orbital on the oxygen atom 

while the transferred electron takes place in the 𝜎-orbital of the carbon center. Furthermore, the C-

O bond increases to 1.24 Å (compared to 1.16 Å before) (Figure 7). 

  

Figure 7: Reduction of carbon dioxide to the corresponding radical anion. 

 

 Once generated, this radical anion is very unstable, so the next steps depend strongly on the 

medium and the experimental conditions:  

1. In protic solvent: without any substrate and under high concentration, the [CO2].- will 

probably dimerize to give the oxalate and furtherly, the oxalic acid in the presence of traces of 

water. Low concentration can lead to the formation of formic acid instead after a hydrogen 

transfer and protonation of the carboxylate anion. Further reduction is also possible to obtain 

carbon monoxide, formaldehyde, methanol, and methane, but these reactions require harsh 

conditions and thus a highly reactive reagent (Figure 8). 



16 | P a g e  

 

 

Figure 8: Carbon dioxide reduction to oxalic acid, formic acid, methanol or methane 

 

2. In aprotic solvent: in this case, the formation of the oxalic acid is still probable but in case 

of adding a substrate, the whole pathway changes to yield much more valuable products via C-C 

bond formation. The reaction begins with the radical anion that is strong enough to activate the 

substrate in the medium, performing a radical addition, in the case of an unsaturated substrate 

(e.g alkenes), to generate another stable radical, or a radical substitution if the substrate has a 

good leaving group (I, Br, Cl, OTf). During the radical addition path, the obtained radical can 

undergo a further reduction, a dimerization or the addition of another radical anion [CO2].-. Finally, 

in both pathways, we get the corresponding products are obtained after protonation (Figure 9).  

 

Figure 9: Carboxylation of substituted and unsaturated substrates showing the possible products. 

 

This method presents the future of using carbon dioxide because it doesn’t need a designed 

substrate nor an additive to activate the CO2, most importantly, any heat. The primary issue with 

this path is selectivity. Having a free radical in the medium implies that it can add to the position 

that generates the most stable radical and also, it can furtherly combine with this latter to isolate 

𝛼,𝛽-difunctionalized products or even produce the 𝛼,𝛼-product via a second radical addition on 

the same position. So, at the end of the reaction, a mixture of at least three products is obtained.  

To control the reaction, significant optimization and profound knowledge of radical chemistry and 

carbon dioxide reactivity are crucial to overcoming these problems. 

As indicated before, this type of reactivity is known using electrochemistry and photochemistry. 

We will discuss in detail these two methods in the next section. 
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Due to the importance of carboxylic acids and their wide applications with respect to the work 

described in this manuscript, the next section will only highlight the reported examples in the 

literature using CO2 fixation methods (CO2 insertion and CO2 activation) to generate these 

valuable compounds.  

 

c. Reported synthesis of R-COOH using CO2 as C1-building block 
 

A. Over stoichiometric organometallics 

 

Reported with many transitional metals (Ni, Ti, Zn, Mo, Nb) in addition to Grignard and 

organolithium reagents,14 this method consists of using an over stoichiometric amount of a metal 

complex to activate the CO2. In most cases, this reaction goes through a CO2 insertion into the 

metal-carbon bond to afford the corresponding carboxylic acid. In some examples, an excess 

amount of additives (MgCl2, LiCl, R2Zn) (Figure 10) or harsh conditions are crucial to 

overcoming the energy-demanding CO2 insertion step. 

 

Figure 10: The role of Lewis acid in the CO2 insertion step. 

 

Interestingly, there were only a few examples regarding the carboxylation using lanthanides, 

mainly limited to the samarium, ytterbium, and europium complexes. Evans group reported 

carboxylation example using divalent organosamarium complex (Cp*)2Sm(Ƞ3-CH2CH=CHR) 

(R= H, Me, Et). 15 The authors suggested that the carboxylation goes through a CO2 insertion path 

in the Sm - C bond to obtain the unbranched carboxylic acid. Of note, this unique reactivity will 

be clarified subsequently in the samarium reactivity chapter.  

 

B. Transition metal-based catalysis 

 

After developing the stoichiometric reactions, the chemists started investigating the possibility to 

go a step further by trying to establish catalytic carboxylation as an economically better alternative. 

In 1997 when Nicholas and Shi reported the first catalytic system based on using Pd (0) to 

transform the allyl stannanes in the corresponding allyl tin esters. 16 This example offered a simple 

 
14 J. Luo, I. Larrosa, ChemSusChem. 2017, 10, 3317 
15 W.J. Evans, C.A. Seibel, J.W. Ziller, R.J. Doedens, Organometallics 1998, 17, 2103 
16 M. Shi, K. M. Nicholas, J. Am. Chem. Soc. 1997, 119, 5057 
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transformation, but the conditions were quite harsh, requiring high CO2 pressure (33 atm) and high 

temperature (70°C) and consequently limiting its application in organic synthesis.  

Afterwards, many catalysts were investigated, taking advantage of numerous transition metals 

characteristics (Ni, Pd, Cu, Ti, Co, Rh, Ag, Fe, Au) 5 to develop new reactivity and most 

importantly, to improve the conditions by lowering the catalyst loading, the temperature, the CO2 

pressure or by widening the reaction scope to obtain more interesting carboxylic acids (Figure 

11).  

 

Figure 11: The mechanism of carboxylation depending on the substrate nature and the additives. 

 

Although the remarkable advance, new problems arose: 

(1) The overuse of reducing reagents added to regenerate the catalyst initial oxidation state and 

in some other cases, to enhance the reductive elimination step at the end.  

(2) The organoboranes and organozinc reagents, used to achieve the carboxylation, require at 

least one additional step. The former is used not only to increase the reactivity but also to control 

the selectivity while the latter mainly due to its good functional tolerance. Additionally, the 

organoaluminium intermediates were also investigated in some examples, but the reactions turned 

to be less general with these species. 17 

(3) The expensive ligands associated with these catalysts limit their further industrial 

application and even decrease the probability of future academic use. Moreover, most of these 

ligands are not commercially available, so an additional synthetic step is necessary before trying 

the reaction.  

 

 

 

 
17 M. Takimoto, Z. Hou, Chem., Eur. J. 2013, 19, 11439; A. Ueno, M. Takimoto, W. N. O. Wylie, M. Nishiura, T. Ikariya, Z. Hou, 

Chem. Asian J. 2015, 10, 1010; A. Ueno, M. Takimoto, Z. Hou, Org. Biomol. Chem. 2017, 15, 2370. 
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C. Photochemistry 

 

One of the chemist's tools recently developed to generate carboxylic acids is the carboxylation 

using photochemistry. 18 Generally, the photocatalyst is capable of absorbing light in a spectral 

range that neither the solvents nor the common organic substrates usually absorb. It’s a new 

method opening the way to access a high level of selectivity by adjusting the redox potentials. 

A typical photocatalytic system is based on three components ( 

Figure 12): 

(a) Photosensitizer: It is a chemical compound that has light sensitivity and can absorb it to 

form the excited state. Its addition is needed when the catalyst is not sensitive to the light, and so, 

it requests an intermediate to transfer the energy. Usually, the added amount of this compound 

exceeds slightly the amount of the catalyst. 

(b) Sacrificial electron donor: Present in excessive amount, a sacrificial electron donor is 

required to whether retrieve the original photosensitizer (oxidative quenching mechanism) or to 

perform the reduced state from its excited form (reductive quenching mechanism). Tertiary amines 

present this kind of reactivity as a rich electron donor species. 

(c) The catalyst: As the only component interacting with the carbon dioxide via coordination, 

it is thus responsible for its subsequent reduction. The catalyst mainly interacts with the 

photosensitizer via an electron transfer process to produce the active radical anion [Cat].-.  

 

Figure 12: Oxidative and reductive quenching mechanisms in a photochemical reaction 

 

This method proved its efficiency in different types of carboxylation: the carboxylation of aryl 

halides, hydrocarboxylation (Markovnikov and anti-Markovnikov), thiocarboxylate formation, 

carboxylation of Csp3-H and Csp2-H bonds, carbocarboxylation, dicarbofunctionnalization and 

finally, the synthesis of the amino acids via CO2 activation. 5 

 
18 a) C.S. Yeung, Angew. Chem. Int. Ed. 2019, 58, 5492; b) A. Paul, M. D. Smith, A. K Vannucci, J.Org. Chem. 2017, 82, 1996; c) K. N. Lee, Z. 

Lei, M-Y. Nagai, J. Am. Chem. Soc. 2017, 139, 5003; d) M. Chen, X. Zhao, C. Yang, W. Xia, Org. Lett. 2017, 19, 3807; e) K. Shimomaki, K. 
Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc. 2017, 139, 9467. 
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If Eredox catalyst > Eredox CO2, the catalyst can activate the CO2 and reduce it to the corresponding 

radical anion. On the other hand, if Eredox substrate < Eredox catalyst < Eredox CO2, it reduces the 

substrate in the medium to generate the radical strong enough to reduce the carbon dioxide  

Although the future of photochemistry looks promising, yet it suffers from many drawbacks:  

(1) The excessive amount of electron donor. 

(2) The need for a substoichiometric quantity of base (K2CO3, Cs2CO3) in the medium to buffer a 

produced acid or to facilitate the reductive elimination step. 

(3) the repetitive use of activated substrates which limits the scope investigation. 

(4) The crucial role of electron-rich ligands needed to avoid the formation of side products. 

 

D. Electrochemistry 

  
Known since decades ago, electrochemistry offers a great alternative to the existing methods by 

replacing excessive quantities of reducing reagents with clean electrons. 19 Gladly, the reduction of 

carbon dioxide requires a single electron transfer, therefore the electrochemistry seems to be the right 

choice for this kind of transformation. Although it can be used for an efficient pathway to obtain 

biofuels such as formic acid, methanol, and methane via electron transfer mechanism (Figure 8), the 

electrocarboxylation of commercially available organic substrates permits to access valuable products 

like carboxylic acids. 20 

In the 1960s, Loveland et al. described the first electrocarboxylation of 1,3-butadiene using a 

platinum anode and a mercury cathode in a two-compartments cell, initially used to eliminate any 

side products. 21 However, a mixture of mono and dicarboxylic acids were obtained due to the 

manipulation under a low CO2 pressure, which plays a significant role in the selectivity, in addition 

to the high cost of used membranes.  

The use of a sacrificial anode (e.g., Mg, Al) instead of an inert anode combined with other cathode 

materials (e.g., Ni, stainless steel) can work efficiently in an undivided cell (Figure 13). This 

modification allowed the use of high CO2 pressure and consequently, provided higher reaction 

selectivity. 22  

As in photochemistry, the metal-CO2 interaction depends on the redox potential of the metal center. 

If the metal complex has a higher Eredox than the Eredox CO2 ( -2.21 V vs. SCE in DMF), CO2 

activation yields the formation of the corresponding radical anion. However, organic frameworks 

characterized by a reduction potential in this window can also be reduced. On the opposite case 

(Eredox metal complex <  Eredox CO2), the metal will likely undergo a reduction of the substrate in the 

 
19 P.S. Baran, Y. Kawamata, M. Yan, Chem. Rev. 2017, 117, 13230 
20 D.E. De Vos, K. Binnemans, J. Fransaer, R. Matthessen, Beilstein J. Org. Chem. 2014, 10, 2484 
21 J. W Loveland, U.S. Patent 3,032,489, May 1, 1962 
22 G. Silvestri, S. Gambino, G. Filardo, Acta Chem. Scand. 1991, 45, 987 
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medium to form a strong nucleophile (Grignard type reagent) that will eventually reduce the CO2 

delivering the expected carboxylic acid. 

 

Figure 13: The difference between the electrocarboxylation using inert anode (on the left) and sacrificial anode (on 

the right)  

 

Based on these points, many systems were developed with different sacrificial anodes aiming to 

extend the reactivity and to transform diverse substrates (organic halides, alkenes, dienes, alkynes, 

imines, ketones, aldehydes, amino acids...). 19 Furthermore, many attempts to increase the 

selectivity by adding redox mediators, proton scavengers, different ammonium salts, etc.… were 

performed and well investigated. 19 Still, large amount of waste generated from the significant 

consumption of metal (the anode), remained a considerable drawback besides the use of toxic lead 

and expensive platinum as cathodes. 

After 35 years, the electrocatalytic reduction of CO2 still suffers from these problems and needs 

much more attention to fulfill its goal. It reflects the immense challenge behind the development 

of an electrochemical system capable of overcoming the high thermodynamic stability and kinetic 

inertia of this gas without demanding harsh conditions or an additional additive. 

In our group, we have developed recently a new electrochemical method based on using samarium 

electrode as the anode to generate in situ divalent samarium complexes, known as active 

monoelectronic reductive reagents, 23 and widely used since their simple and easy preparation 

developed by Professor Henri Kagan in 1977. 24 

This electrochemical intervention allowed not only to access a broader application for these 

complexes but also to prepare in situ this air-sensitive reagent under mild conditions and without 

extreme precautions. 

Inspired by the literature and relying on our expertise in the divalent samarium domain, we decided 

to investigate its affinity towards the CO2 and to elaborate a new strategy to activate the carbon 

dioxide using catalytic amounts of Sm(II) electrogenerated complexes. 

 
23 a) M. Mellah, K. Sahloul, Chem. Eur. J , 2012, 11205; b) M. Mellah, L. Sun Organometallics, 2014, 33, 4625. 
24 P. Girard, J.-L. Namy, H.B. Kagan, New. J. Chem. 1977, 1, 5; P. Girard, J.-L. Namy, H.B. Kagan, J. Am. Chem. Soc. 1980, 102, 2693; J.-L. 
Namy, P. Girard, H.B. Kagan, Nouv. J. Chim. 1981, 5, 479. 
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Samarium (II): a powerful reducing 

agent 
 

1. Complexes of divalent samarium and their applications  
 

a. The synthesis of SmI2 

 

The synthesis of SmI2 has gone through a long series of optimization before becoming a 

commercially available solution today.  

In 1906, Matignon and Cazès successfully reduced SmI3 to the SmI2 by using metallic samarium 

as a reductant or dihydrogen gas under very high temperature (between 600-900°C). 25 However, 

these harsh conditions impede their future applications in fine chemistry. 

Seventy years later, Professor Kagan introduced the first synthesis of SmI2 under mild conditions, 

and since then, the SmI2 in solution is called “Kagan’s reagent”. A dark blue solution of SmI2 was 

obtained, after 1h, in anhydrous THF containing a mixture of samarium powder and 1,2-

diiodoethane under an inert atmosphere, ready to use in organic synthesis.  

Kagan’s work on divalent samarium encouraged other chemists to develop a more efficient 

synthesis of SmI2. The use of some protocols replaced ICH2CH2I with I2, 
26 others described later 

the use of sophisticated systems such as ultrasounds 27  and microwaves 28  to produce more 

efficiently this reagent (Figure 14). 

The limitations of these synthetic protocols were the poor SmI2 solubility in THF in addition to the 

air sensitivity of this complex. For this reason, the manipulation using this reagent was possible 

only under inert atmosphere and in anhydrous solvents to achieve the desired results. Moreover, 

most of the transformations mediated by SmI2 required an over stoichiometric amount of this 

reagent to furnish the targeted product according to the number of transferred electrons. 

 
25 C.A. Matignon, Cazès,  Ann. Chim. Et de Phys., 1906, 8ème série, t. VIII, 417 
26 a) T. Imamoto, M. Ono, Chem. Let., 1987, 501; b, Y. Nishiyama, Y. Kanagawa, N. Akane, Y. Ishii, Chem. Lett., 1992, 2431; c) Y. Nishiyama, 

H. Kusui, T. Hatano, N. Akane, Y. Ishii, J. Org. Chem., 1994, 59, 7902. 
27 a) J.M. Concéllon, H. Rodriguèz-Solla, E. Bardales, M. Huerta, J. Org. Chem., 2003, 1775; R.A. Flowers, E.N. Pesciotta, E. Prasad, P.K.S. 

Antharjanam, J.A. Teprovich, Inorg. Chem., 2008, 5015.    
28 a) G. Hilmersson, A. Dahlén, J. Inorg. Chem, 2004, 3020; b) G. Hilmersson, R.A. Flowers, E. Prasad, A. Dahlén, Chem. Eur. J., 2005, 11, 
3279  
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Figure 14: The reported optimization of the synthesis and the electrolysis of SmI2 between 1907 and 2012. 29 

 

These critical points encouraged the chemists to investigate other samarium complexes, aiming to 

enhance not only the solubility of these species but also their reactivity and the resulting selectivity. 

 

b. Other complexes of divalent samarium 
 

To modulate the reactivity of samarium, different complexes were prepared, generally starting 

from SmI2 through salt metathesis (Figure 15): 

 

 

Figure 15: Sm(II)-based reductants. 

 

 
29 M. Szostak, M. Spain, D. J. Procter, J. Org. Chem. 2012, 77, 3049 
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The obtained Sm(II) complexes were subject for extensive reactivity investigations to study their 

potentials in radical chemistry, especially the SmI2 (Figure 16). 30  Consequently, many 

applications arose over the years from the reduction of diverse functional groups to C-C, C-N and 

very recently, N-N bond formation. 31 

 

Figure 16: Applications of the divalent SmI2 in the literature. 

 

Since the reactivity of the Sm(II)-based complexes is quite extraordinary, and it took many years 

to uncover the secret behind this particular behavior of the metal center. The primary concern is 

how to control such reactivity to obtain the desired selectivity in a chemical transformation. 

 

c. The influence of additives on Sm(II) complexes reactivity 
 

The Sm(II) center presents a unique monoelectronic reactivity, due to the high stability of its (+3) 

oxidation state. The redox potential of the corresponding complexes depends on many factors, and 

particularly the associated ligand. The ligand choice indeed modulates the reductive power of these 

colorful complexes and controls thus their selectivity. 30,32  

Interestingly, these species show a high affinity for the oxygen and nitrogen atoms. Therefore, 

their air sensitivity is attributed to their affinity to the oxygen in the atmosphere. Any manipulation 

using Sm(II) complexes should be conducted under an inert atmosphere, otherwise, the oxidation 

to the (+3) state can occur rapidly, evidenced by an immediate change of the color of the solution. 

 
30 M. Szostak,  M. Spain, D. J. Procter, Chem. Soc. Rev. 2013, 42, 9155; M. Szostak, N. J. Fazakerley, D. Parmar, D. J. Procter, Chem. Rev. 2014, 
114, 5959. 
31 D. Procter, R.A. Flowers, T. Skrydstrup, Organic Synthesis Using Samarium Diiodide: A Practical Guide, RSC Publishing: Cambridge, U.K., 

2010. 
32 S. Maity, R.A. Flowers, J. Am. Chem. Soc. 2019, 141, 3207 
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The SmI2 remained representative for the divalent Sm complexes over the past decade. Many 

radical transformations were mediated by this reagent with considerable selectivity. After studying 

the literature, the main parameters to manipulate the redox potential of the divalent samarium 

species are summarized below: 

i. Lewis Base: These additives are characterized by high electron density, and therefore, their 

coordination to the divalent metal center enhances its redox potential. The most common example 

is the use of hexamethylphosphoramide (HMPA) introduced by Inanaga in 1987, who proved its 

effect on the reduction rate of alkyl and aryl halides allowing alkyl chlorides to react at room 

temperature.33 By adding HMPA, not only the reaction rate increased but also a remarkable gain 

in selectivity towards the desired product was reported by Molander in 1992 in a reductive 

cyclization of unactivated unsaturated ketones. 34 This selectivity was subsequently explained by 

a formation of a sterically encumbered reductant Sm-HMPA responsible for limiting the side 

reactions (hydrogen atom abstraction from THF), stabilizing the radical intermediates and boosting 

the diastereoselectivity. 35 

 

Figure 17: Lewis Base reagents used with SmI2 chemistry 

 

For toxicity reasons, HMPA was afterward substituted by other nitrogen-containing reagents such 

as 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) and 1,1,3,3-tetramethylurea 

(TMU) that demonstrated a similar reactivity in different transformations (Figure 17). 

ii. Proton donor: The proton source offers an opportunity to modulate the reaction rate and the 

selectivity at the same time, as reported in previous examples. 31 The reduction of ketones was 

successfully performed to the corresponding alcohols using a combination of SmI2 and proton 

donors. This latter has a considerable impact on the mechanistic pathway as described by Procter’s 

group in 2003. In this work, two different cyclization products were independently obtained by 

only varying the proton source, with either methanol or t-butanol (Figure 18). 36 Using the former 

permitted the isolation of the spiro compound while the latter gave the four-membered ring, clearly 

from another mechanistic route. To explain this difference, the authors proposed that MeOH 

reacted as a ligand to the metal center which made the protonation step much faster. Whereas, in 

t-BuOH, a noncoordinating bulky proton donor, the samarium was coordinated by THF. As a 

result, the radical anion intermediate underwent a radical cyclization to form the cyclobutanol 

derivatives.  

 
33 J. Inanga, M. Ishikawa, M. Yamaguchi, Chem. Lett. 1987, 1485. 
34 G.A. Molander, J.A. Mckie, J. Org. Chem. 1992, 57, 3132. 
35 K.A. Choquette, D.V. Sadasivam, R. A. Flowers, J. Am. Chem. Soc. 2010, 132, 17396. 
36 T.K. Hutton, K.W. Muir, D.J. Procter, Org. Lett., 2003, 5, 25, 4811.  



26 | P a g e  

 

 

Figure 18: Stereoselective cyclization of 𝜸, 𝜹-unsaturated ketones mediated by SmI2 according to the alcohol 

cosolvent. 36 

 

In this context, water can also be used as an proton donor as Procter and co-workers described for 

the reduction of aliphatic esters that remained a great challenge since many years ago, by using a 

SmI2-H2O system. 37 Interestingly, this duo allowed many difficult reactions to work efficiently.  

This distinct behavior of the alcohols, known as weak acids, is attributed to the ability of Sm(II) 

to withdraw the oxygen electrons, which enhances the ionic character of the O-H bond and results 

in an important drop in pKa.  

iii. Inorganic additives: Mineral salts are considered key components in some reactions mediated 

by SmI2. While some of them stimulate a ligand exchange to form in situ a stronger reductive 

samarium complex (e.g., LiBr2, LiCl2 to generate SmBr2 and SmCl2 from SmI2, respectively) 

(Figure 19, on the left), 38 others like FeCl3 and NiI2 can interfere in the mechanism of the reaction. 
30,39 The evaluation of the E° value of these transition metals proves that samarium easily reduces 

Ni(II) to Ni(0) and Fe(III) to Fe(II) or Fe(0) (Figure 19, on the right). As a result, a new type of 

reactivity can arise that usually does not exist in the unique presence of SmI2. 

 
37 M. Szostak, M. Spain,  A.J. Eberhart, D. J. Procter, J. Org. Chem. 2014, 79, 24, 11988. 
38 A. Dahlén, G. Hilmersson, Eur. J. Inorg. Chem. 2004, 3393. 
39 H.B. Kagan, J. Alloys Compd. 2006, 408, 421.  
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Figure 19: Comparison between the redox potential of SmI2, SmBr2, and SmCl2 (on the left); The redox potential of 

inorganic additives compared with the Sm(II) (on the right). 

 

In conclusion, depending on the desired reactivity, the samarium chemistry offers a wide range of 

applications for the reduction of many functional groups and for C-C bond formations. Whether it 

is a cyclization to trigger a simple reduction or to produce a complex product, the additives are an 

important option to consider, according to their enormous effect on the rate, the yield, and the 

selectivity of a reaction. 

These complexes were continuously used in an over stoichiometric amount until the establishment 

of catalytic conditions by Endo and co-workers in 1996. 40  

 

d. The challenge behind developing processes catalyzed by Sm(II) 
 

Elaborating catalytic reactions with Sm(II) complexes requires thinking about different critical 

aspects. Firstly, exploring a reaction with 1/10 of the original amount of Sm(II) could not work as 

with an over stoichiometric quantity of this latter, like the reduction of some challenging functional 

group usually necessitating harsh conditions to induce the expected reactivity. Furthermore and 

most importantly, the use of catalytic amount of samarium requires finding a technique to cleave 

the Sm(III) from the product, especially those holding an oxygen atom. Therefore, an oxophilic 

reagent must be used to regenerate the Sm(II). 

Endo’s group found an answer to all these concerns in a pinacol coupling reaction, by adding 

trimethylsilyl chloride TMSCl as an oxophilic reagent to dissociate the trivalent samarium and 

magnesium in the solid-state as a co-reductant. 40 The reaction led to moderate to good yields. 

 
40 R. Nomura, T. Matsuno, T. Endo, J. Am. Chem. Soc. 1996, 118, 11666. 
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Figure 20: Pinacolisation mechanism catalyzed by SmI2. 

 

 Based on this concept, several conditions were developed with different reactions, involving 

various oxyphilic reagents (TMSOTf) and reductants (Zn-Hg, mischmetal). 41 The main problem 

was the excessive amount of co-reductant required for each transformation in addition to the 

absence of general conditions to applicate for different types of reactions. 

Very recently, Procter’s group published the first radical cyclization reaction catalyzed by SmI2 

with no need for a reductant or an oxophilic additive (Figure 21). 42  

 

Figure 21: The proposed mechanism for the cyclization cascades catalyzed by SmI2. 

 

In this reaction, a cyclopropane substituent is mandatory on the 𝛼-position of the ketyl radical to 

open and subsequently form another radical. This latter then undergoes a radical addition on the 

 
41 a) E.J. Corey, G.Z. Zheng, Tetrahedron Lett. 1997, 38, 2045; b) F. Hélion, J.-L. Namy,  J. Org. Chem. 1999, 64, 2944; c) M.-I. Lannou, F. 

Hélion, J.-L. Namy, Tetahedron 2003, 59, 10551 
42 H-M. Huang, J.J.W. McDouall, D.J. Procter, Nature Catalysis 2019, 2, 11 
 

Product 

https://www.nature.com/articles/s41929-018-0219-x#auth-1
https://www.nature.com/articles/s41929-018-0219-x#auth-2
https://www.nature.com/articles/s41929-018-0219-x#auth-3
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alkyne leading to the formation of the first cycle and a vinyl radical that performs 1,2-radical 

addition to the Sm(III) enolate and form the ketyl radical again. The critical step lies in the 

regeneration of Sm(II) and which is due to the thermodynamic stability of the final product, 

allowing a back-electron transfer process to Sm(III).  

Despite the great presented work, this protocol is based on specifically designed substrates and 

does not offer a general protocol for catalytic Sm(II) mediated reactions.  

With no doubt, the efforts involved to develop catalytic conditions have achieved a great advance 

since the first preparation of Sm(II) complexes. The main difficulty resides in finding the optimal 

system to regenerate the (+2) oxidation state of samarium without using a large quantity of a non-

innocent co-reductant. Besides, the oxyphilic additive remains an essential addition to the reaction, 

even though it is frequently used in an over-stoichiometric quantity. Nevertheless, it does not 

interfere at least in the mechanism. 

In this context, electrochemistry appears to be an excellent substitute for the co-reductants, as an 

efficient clean-electron source to regenerate the Sm(II) without producing any metallic wastes. 

Périchon’s group applied this idea by using a magnesium or aluminum sacrificial anode and a 

nickel cathode in the presence of SmCl3 for radical coupling of aldehydes and ketones, 43a and later 

on for direct reductive dimerization of aromatic esters. 43b Under these electrochemical conditions, 

the Sm(II) is generated in situ from the electroreduction of SmCl3. Moreover, the Mg2+ or Al3+ 

cations served as oxyphilic reagents to dissociate the Sm(III) from the final product. Although the 

amazing advance reported in this work, the continuous generation of additional active metallic 

salts in the reaction remains a considerable disadvantage from a mechanistic and ecologic point of 

view. 

 

e. Electrogenerated Samarium complexes 

 

The work of our group is based on using a samarium sacrificial anode in the presence of 

ammonium salts, as the source of anions/ligands for samarium (I -, Br -, Cl - ...).  The electricity 

allows the in situ oxidation of Sm(s) anode to access the divalent samarium complexes and on the 

other hand, the cathodic reduction transforms the tertrabutyl ammonium cations to a mixture of 

tributylamine, butane, and n-butene. 24 

 
43 a) E. Léornard, E. Duñach, J. Périchon, J. Chem. Soc., Chem. Commun. 1989, 276; b) H. Hébri, E. Duñach, M. Heintz, M. Troupel, J. Perichon, 
Synlett. 1991, 901. 
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Figure 22: Samarium(II) complexes prepared by electrolysis from Sm anode. 

 

The equivalents of samarium generated in the solution are calculated using the equations below. 

During a chronopotentiometry experiment, the quantity of electricity Q (in Coulomb C) is 

proportional to the current value i (in Ampere A) and the electrolysis time t (in seconds s), so: 

𝑄 =  𝑖 × 𝑡 

Also, Faraday’s first law states that: 

𝑄 =  𝑧 × 𝑛 × 𝐹 

z: the valency number of ions of the substance (electrons transferred per ion) 

n: number of moles of the electrogenerated species. 

F: Faraday’s constant = 96485 C.mol-1 

 Depending on the dielectric constant of the solvent, the electrons circulation suffers from more or 

less medium resistance, and thus, the quantity of electricity is never the exact as the calculated 

one, so we finally obtain this equation: 

Ƞ × 𝑖 × 𝑡 =  𝑧 × 𝑛 × 𝐹 

 Ƞ: Faraday efficiency (calculated by titration around 70% in THF). 

Fixing the current value and adding a determined quantity of the substrate allows the calculation 

of the reaction time t to electrogenerate the desired number of Sm(II) equivalents in the medium. 

Additionally, this method demonstrated that the in situ generation of this monoelectronic reductant 

does not only increase the reactivity of the divalent complex but also facilitates the manipulation 

of such sensitive species. As an example, the reduction of alkyl chloride derivatives was only 

possible with a chemically prepared SmI2 solution containing 8 equivalent of HMPA under 60°C 

for 8 hours (Figure 23, Condition A). 33 Under electrochemical conditions, and after only 2 hours, 

the reduction afforded 77% of the product in the presence of t-BuOH as a proton source, at room 

temperature (Figure 23, Condition B). 23b 
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Figure 23: The reduction of aliphatic chloride by divalent samarium complexes. 

 

Another representative example is the reduction of aliphatic ketones, known for their high 

reduction potential. In batch, these compounds are only accessible with SmBr2, while 

electrogenerated SmI2 achieved the reduction using mild conditions (Figure 24). 23a 

 

Figure 24: Reduction of aliphatic ketones mediated by electrogenerated SmI2. 

 

f. Electrocatalysis using Sm(II) complexes 
 

The primary goal of this electrochemical method was always the elaboration of catalytic 

applications using the divalent Sm complexes. After several optimizations, the addition of 1.5 

equiv of TMSCl allowed decreasing the amount of the electrogenerated Sm(II) to 10 mol% in the 

previous reactions (pinacolization and Barbier-type reactions). 44 Furthermore and to regenerate 

the Sm(II), the polarity of the electrodes was reversed after the electrogeneration of the calculated 

catalytic amount. Thus, the samarium electrode becomes the cathode where the reduction takes 

place and the glassy carbon (GC) or the stainless steel (SS) anode for the oxidation. After the 

electron transfer, the Sm(III) dissociation from the intermediate or the product assisted by the 

TMSCl, permits its reduction on the Sm cathode and the regeneration of the active Sm(II) species.   

The figure below illustrates the process in detail: 

 
44 L. Sun, K. Sahloul, M. Mellah, ACS Catal. 2013, 3, 256. 
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Figure 25: Electrogeneration (on the left) and electrocatalysis (on the right) processes with SmX2. 

 

Under these conditions, a reducing agent is no more needed during the electrocatalysis process and 

thus, metallic wastes are consequently not produced leading to a reaction clearly mediated by the 

unique catalyst in the mixture, the divalent samarium.  

Using this process, the synthesis of symmetric and dissymmetric azobenzene derivatives was 

reported by our group, starting from the corresponding nitrobenzenes (Figure 26). 45  In the 

literature, the reduction of nitrobenzenes is achieved only under harsh conditions using expensive 

catalysts.  

 

Figure 26: The synthesis of azobenzene derivatives catalyzed by electrogenerated SmI2. 45 

 

 
45 Y. Zhang, M. Mellah, ACS Catal 2017, 7, 8480. 
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Furthermore, the challenging reduction of phthalimides and sulfoxides was also viable using our 

method (unpublished results). 

Undoubtedly, our electrocatalytic procedure offers a promising tool to widen the catalytic 

applications of divalent samarium complexes. Nowadays, the reduction of carbon dioxide and its 

use as a C1-building block is one of the most discussed topics in chemistry. While our method was 

successful for the reduction of challenging functional groups, we wondered if it can be applied in 

the case of CO2, known for its high thermodynamic and kinetic stability. 

In this context, the reported examples combining the use of divalent samarium complexes with CO2 

are reported in the next section. 

 

g. Carbon dioxide activation using divalent Sm in the literature 
 

The first CO2 reduction to oxalate using Cp*2Sm(THF)2 complex was described in 1998 by Evans’s 

group. 15 Under CO2 atmosphere and after only 6 min in THF, the authors demonstrated that the 

oxidation of Sm(II) to Sm(III) occurred based on the Cp* chemical shift in 13C NMR spectra and 

the presence of a carboxylate carbon shift at 200 ppm indicating the reduction of carbon dioxide. 

Crystals could be recovered and they surprisingly showed a bimetallic complex with an oxalate 

molecule bridging the two centers to form the orange [(C5Me5)2Sm]2(𝜇-2: 2-O2CCO2) complex 

(Figure 27, top). In this complex, each metal center is attached to two oxygen atoms to create a 

five-membered ring instead of a four-membered ring.  

 

Figure 27: The formation of the oxalate complex issued from the reaction of (Cp*)2Sm(THF)2 derivatives with CO2 

reported by Evans. 15, 46 
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Notably, the same group and others published a few years later another Sm(II) complexes just by 

changing the ligand and exhibiting an analog reactivity (Figure 27, bottom). 46  

After more than 15 years, a DFT study to explain the Cp*2Sm - CO2 interaction was reported. 47 

The calculation demonstrated that the oxalate product is thermodynamically favorable, and its 

formation is a two-step process: First, the Cp*2SmII reduces the CO2 to form not the mononuclear 

radical, anionic species [Cp*2SmIII (CO2
.-)] but the dinuclear complex found to be much more 

stable than the first. Second, by the elongation of the Sm1-C bond with a shortening of the Sm1-O 

one allows the insertion of a second molecule of CO2 to yield the bridged oxalate complex (Figure 

28). 

 

Figure 28: The proposed pathway for the reaction of the Cp*
2Sm complex with CO2. 47 

 

Besides the reductive disproportionation of carbon dioxide, 48  examples targetting C-C bond 

formation via CO2 activation using divalent samarium as a reductive reagent, are limited, as far as 

we know, to one report by Ogawa’s group describing a photoinduced reductive carboxylation of 

alkyl halides (Figure 29). 49 The authors described two mechanistic pathways. Path A proposed 

the formation of an organosamarium in the medium that attacks the CO2 moiety to furnish the 

corresponding carboxylic acid. Whereas the path B suggested that after the formation of alkyl 

radical species and the coordination of CO2 to SmI2, a photoinduced electron transfer to the CO2 

triggers the formation of the corresponding radical anion and finally, the radical coupling yields 

the desired carboxylic acid.  

 

Figure 29: Photoinduced reductive carboxylation of alkyl halides reported by Ogawa's group. 49 

 
46 W.J. Evans, J.M. Perotti, J.C. Brady, J.W. Ziller, J. Am. Chem. Soc. 2003, 125, 5204. 
47 L. Castro, S. Labouille, D.R. Kindra, J.W. Ziller, F. Nief, W. J. Evans, L. Maron, Chem. Eur. J. 2012, 18, 7886. 
48 M. Mazzanti, M. Laurent, Y. Yang, F. Fadaei-Tirani, D. Toniolo, A.R. Willauer, Dalton Trans. 2019, 48, 6100 
49 A. Nomoto, Y. Kojo, G. Shiino, Y. Tomisaka, I. Mitani, M. Tatsumi, A.Ogawa, Tetrahedron Lett. 2010, 51, 6580.  
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However, the reduction of CO2 does not occur without the light, and thus, the SmI2 reductive 

power is not strong enough to activate the CO2. Moreover, without the light, the transformation 

takes another route, leading to the reduced product R-H. 

Other strategies based on the classic organosamarium reactivity were illustrated. For example, Py’s 

group highlighted an interesting pathway to obtain 𝛼-amino acids mediated by SmI2 starting from 

nitrones (Figure 30). 50 Under 50 bar pressure of CO2 and an excess amount of SmI2, this latter 

interacts firstly with the nitrones to generate a radical intermediate. After a second electron 

transfer, the anionic species was produced that was capable to perform a nucleophilic addition with 

the CO2 and yielded the desired amino acid.  

 

Figure 30: Reductive coupling of nitrones with CO2. 50 

 

Despite the various molecules synthesized in this publication, the carboxylation competes with 

two side reactions, limiting thus the efficiency of this method: the reduced product A, obtained 

after proton abstraction from the solvent and the radical homocoupling leading to the dimer B. 

 

 

 

 

 

  

 
50 A. Prikhod’ko, O.Walter, T.A. Zevaco, J.Garcia-Rodriguez, O. Mouhtady, S. Py, Eur. J. Org. Chem. 2012, 3742. 
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Summary 
 

This concise state of the art serves as an introductory guide for the general impact of carbon dioxide 

on this life generally and its utilization in fine chemistry. Our aim is to convert it into valuable 

compounds like pharmaceuticals, polymers, and valuable compounds. 

At this stage, the current strategies involve mostly expensive catalysts, strong metal-based 

reductant, harsh reaction conditions (temperature, pressure)… these drawbacks clearly emphasize 

the urge to create new routes that avoid these processes and remain efficient and eco-friendly.  

Low valent samarium complexes are known since the seminal Kagan’s work in 1977. These 

species are acknowledged for their active monoelectronic redox potentials. Over the past few 

years, a large variety of transformations were reported with these complexes, but their use was 

limited to over stoichiometric conditions while the catalytic procedures emerged only after the 

addition of a reducing agent.  

Targeting these flaws, a new electrochemical protocol was developed in our group, allowing the 

generation in situ of these divalent complexes. Generally, the divalent electrogenerated species 

appear to be powerful and more selective than “classical SmI2”. This electrochemical approach for 

SmX2 chemistry opened a new way for catalytic application and made the catalysis more 

ecological by replacing the metallic reductant by electricity, as a clean source of electrons. 

However, in the literature, we rarely find these two branches of chemistry (carbon dioxide and 

divalent samarium) combined together for C-C bond formation purposes. Apparently, the Sm (II) 

species is powerful enough to reduce the CO2 and on the other hand, we have a rich literature in 

the C-C coupling mediated by samarium complexes. 51 Still, as far as we know, an example in 

which the CO2 is undoubtedly reduced by Sm(II) to consequently promote a radical transformation 

is not addressed before.  

For this reason, the subject of this thesis targets this major field to elaborate carboxylation reactions 

via CO2 activation mediated by electrogenerated Sm(II) complexes. We aim to combine our 

knowledge in divalent samarium chemistry and in electrochemistry to create a new reductive 

carboxylation procedure. This type of protocols can allow not only the elaboration of reductant-

free reactions but also the synthesis of valuable compounds such as carboxylic acids under mild 

conditions. 

 

  

 
51  a) M. Szostak, N.J. Fazakerley, D. Parmar, D.J. Procter, Chem. Rev. 2014, 114, 5959; b) M. Szostak, D.J. Procter,  Angew. Chem., Int. Ed. 
2012, 51, 9238. 
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Carboxylation of aryl halides using 

electrogenerated samarium(II) complex 

via CO2 activation 
 

1. Aryl carboxylic acids: state of the art  

 

Aryl carboxylic acids (benzoic acids) and their derivatives are found not only in many natural, 

medicinal (drugs, radiolabeled tracers, inhibitors) and agrochemical products (herbicides) (Figure 

31) but also in polymers, detergents, cosmetics, etc. In other words, this class of carboxylic acids 

is essential and used daily in a large amount, justifying thus the need for efficient, economical, and 

fast strategies to synthesize these valuable motifs.  

 

 

Figure 31: Representative examples of benzoic acids in the pharmaceutical and agrochemical industry. 

 

In this context, the use of carbon dioxide as a cheap, abundant, and non-toxic reagent stands as the 

best ecologic and economic candidate to satisfy the industrial urge for these compounds. 

Therefore, different carboxylation reactions were indeed developed exploiting stoichiometric 

organometallics, transition metal catalysis, and also electrochemistry. 
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2. Synthesis of benzoic acids using stoichiometric organometallic and 

metal-based catalysis  
 

The treatment of Grignard, arylzinc, and aryllithium reagents with CO2 allowed the carboxylation 

of numerous aromatic moiety. Though the remarkable efficiency of these stoichiometric 

transformations, yet they suffered from many constraints, especially due to the short lifetime and 

the air/moisture sensitivity of these species. Furthermore, these metal-based compounds exhibited 

an incompatibility with electrophilic functional groups like cyano, nitro, and carbonyl moieties. 

This significant drawback made the synthesis of a variety of carboxylic acids not possible using 

these organometallics (Figure 32). 52 

 

Figure 32: Synthesis of benzoic acids using stoichiometric organometallic species. 

 

On the other hand, transition metals are characterized by a good functional group tolerance, and 

consequently, their use was the key to synthesize aryl carboxylic acid with high selectivity and 

under mild conditions. 53 Therefore, catalytic carboxylation reactions were rapidly developed with 

these metals, such as reductive carboxylation, which provides a promising method to access aryl 

carboxylic acids using CO2. 
5, 18a  

For example, the reductive carboxylation of aryl sulfonates (e.g., OTf, OTs), aryl esters, and more 

recently, aryl fluorosulfates 54 furnished a wide range of aryl carboxylic acids (Figure 33). Various 

methods are reported to cleave the strong Csp2-O bond, but they mostly require an additional source 

of energy (heat up to 100°C) for the catalyst to overcome the high activation energy of the C-O 

bond. Furthermore, an excessive amount of reductants, like Mn powder, must be added in these 

procedures which can limit their future industrial use. 

 
52 M. Ahamed, J. Verbeek, U. Funke, J. Lecina, A. Verbruggen, G. Bormans, ChemCatChem, 2016, 8,3692; A. Nagaki, Y. Takahashi, J. Yoshida, 

Chem. -Eur. J. 2014, 20, 793; I. Mutule, E. Suna, Tetrahedron, 2005, 61, 11168. 
53 a) K. Osakada, R. Sato, T. Yamamoto, Organometallics 1994, 13, 4645; b) H. Sugimoto, Y. Fujiwara, I. Kawata, H. Taniguchi, J. Organomet. 

Chem. 1984, 266, 44; c) G.W. Ebert, W.L. Juda, R.H. Kosakowski, B. Ma, L. Dong,K. E. Cummings, M.V.B. Phelps, A.E. Mostafa, J. Luo, J. 

Org. Chem. 2005, 70, 4314. 
54 C. Ma, C.Q. Zhao, X.-T. Xu, Z.-M. Li, X.-Y. Wang, K. Zhang, T.-S. Mei, Org. Lett. 2019, 21, 2464 
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Figure 33: Ni-catalyzed carboxylations of various electrophilic C-O bonds. 

 

The carboxylation of phenylboronic esters was also investigated with different catalysts (Cu, Ni, 

Ag or Rh). Remarkably, DFT calculations proved that a transmetallation, between the boron and 

the active catalyst, precedes and facilitates the CO2 insertion step. 55  

Later on, interesting CO2 fixation systems based on using aryl zinc reagents emerged, showing a 

comparable reactivity with the boron-containing substrates. Of note, these transformations 

required a large number of additives (base and metallic salts like CsF) whether to accelerate the 

transmetallation step or to enhance the nucleophilicity of the organometallic species by creating 

four-coordinate boronate complexes allowing a smooth CO2 insertion. 56  

Besides the additives, ligand choice played a crucial role in some protocols by allowing to decrease 

the catalytic loadings and to expand the applicability of the reaction as reported by Hou and co-

workers using IPr as a ligand for Cu catalyst. 57  

 Since the synthesis of aryl boronate and aryl zinc reagents starts from the corresponding aryl 

halides, carboxylation strategies starting directly from aryl halides, known as cheap and 

commercially available products, arose rapidly to produce aryl carboxylic acids (Figure 34).  

 
55 L. Dang, Z. Lin, T. B. Marder, Organometallics 2010, 29, 917 
56 K. Ukai, M. Aoki, J. Takaya, N. Iwasawa,  J. Am. Chem. Soc. 2006, 128, 8706 
57 T. Ohishi, M. Nishiura, Z. Hou, Angew. Chem. 2008, 127, 5876; Angew. Chem., Int. Ed. 2008, 47, 5792. 
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Figure 34: Preparation of different organometallic compounds prior to the carboxylation reactions. 

 

In 1994, Osakada and his coworkers succeeded to produce benzoic acids from aryl bromides in 

good yields (up to 55%), using a stoichiometric amount of a Ni complex. 53a Strangely, this strategy 

did not trigger further investigation until 2009, when Martin’s group published a Pd-catalyzed 

carboxylation of aryl bromides (Figure 35). 12 

 

Figure 35: Carboxylation of aryl bromide reported by Osakada in 1994 (top) and the first catalytic carboxylation of 

the same compounds described by Martin in 2009 (bottom). 

 

The reaction conditions exhibited an excellent functional tolerance and furnished various 

carboxylic acids in satisfying yields (40-82%). However, the addition of the pyrophoric diethylzinc 

Et2Zn was crucial for this transformation in addition to the use of an electron-rich phosphine ligand 

to decrease the Negishi-type cross-coupling side product, and thus to enhance the selectivity of the 

reaction.  

Pioneered by this example, several groups published the carboxylation of aryl bromide and iodide 

substrates but not of the more challenging aryl chlorides. Tsuji and Fujihara were the first to 

overcome this challenge by combining a Ni-catalyst with Mn powder as a reducing reagent and 
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ammonium salts (Et4NI) to achieve the carboxylation of aryl chlorides (Figure 36). 58 In this 

protocol, the Mn facilitated the regeneration of the Ni(I) intermediate after the oxidative addition 

by performing a SET to the Ni(II) center. The active Ni(I) underwent then a CO2 insertion followed 

by a second SET and a transmetallation step that allowed the regeneration of Ni(0) complex. On 

the other side, the authors suggested that the addition of Et4NI enhanced the electron transfer steps 

between Mn and nickel via an “Mn - I - Ni” bridge, a hypothesis inspired from Iyoda’s approach 

in 1990. 59  

 

Figure 36: Ni-catalyzed carboxylation of aryl chlorides. 58 

 

A light-promoted carboxylation of aryl bromides and chlorides was reported in 2017 by Iwasawa 

and Martin using Pd/photoredox dual catalysts, allowing to replace the metallic reducing agent by 

a tertiary amine as an electron donor. 18e As is the previous example with Pd catalyst, 12 the 

electron-rich phosphine ligand tBuXPhos was necessary for the carboxylation of aryl chlorides, 

while the addition of Cs2CO3 reduced the formation of the hydrohalogenated side product.  

However, electrochemical studies provided additional information regarding the mechanistic 

pathway. The cyclic voltammetry of the ArPdIIBr(XPhos) indicated that its reduction potential (-

2.28 V vs. Fc/Fc+) is lower than the IrII complex (- 1.87 V vs. Fc/Fc+). This observation signifies 

that the IrII-based reducing agent cannot trigger the regeneration of Pd (I) intermediate, responsible 

for the CO2 insertion step. However, a new peak at -1.4 V vs. Fc/Fc+ was observed in the CV of 

the same complex under CO2 atmosphere. The authors suggested that a Pd-CO2 adduct is formed 

in the medium, exhibiting a lower redox potential than the initial complex, and consequently, allow 

to be reduced by the IrII complex. However, the 31P NMR spectra did not support this theory and 

no significant shift was observed. So based on these data, the authors proposed two mechanistic 

pathways (Figure 37):  

 
58 T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 2012, 134, 9106 
59 H. Otsuka, K. Sato, N. Nisato, M. Oda, M. Iyoda, Bull. Chem. Soc. Jpn. 1990, 63, 80; M. Sakaitani, H. Otsuka, M. Oda, M. Iyoda, Chem. Lett. 
1985, 127 
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Figure 37: The proposed mechanism of photoinduced carboxylation of aryl bromide and chloride mediated by Pd/Ir 

dual catalysts. 18e 

 

The path (a) proposes the coordination of CO2 to ArPdIIX(XPhos) to form a new PdII – CO2 

species. This adduct has a lower reduction potential than the ArPdX(XPhos), and thus, it undergoes 

the electron transfer from the IrII catalyst. After a CO2 insertion step followed with another SET, 

the initial catalyst is regenerated. 

The path (b) favors first the formation of a CO2 insertion product (ArCOO)PdX(XPhos) while the 

electron transfer step comes at last to furnish the Pd(I) intermediate. Notably, the 31P NMR showed 

only the peak corresponding to the oxidative addition intermediate ArPdX(XPhos) and thus, no 

additional poof for the formation of (ArCOO)PdX(XPhos) was provided by the authors. 

Another important photoredox system developed by König, but with a NiII - complex, described 

the carboxylation of aryl as well as alkyl bromides. 60 In this case, a mixture of the organic 

photosensitizer 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN), a Hantzsch ester 

(HEH) as a sacrificial reductant, and neocuproine offered the right combination to generate aryl 

carboxylic acids. Although the significant advancement presented by this method, the number of 

additives required for this approach cannot be ignored (Figure 38). 

 
60 Q.-Y. Meng, S. Wang, B. König, Angew.Chem. Int. Ed. 2017, 56, 13426. 
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Figure 38: König's light promoted carboxylation of aryl sulfonates and bromides. 

 

Direct Csp2-H activation was also very recently reported for the carboxylation of aryl compounds 

to produce benzoic acids. 61 Still, its application remained limited to acidic sp2 C-H bonds such as 

polyfluorinated arenes (Figure 39, A). In addition, some Rh-catalyzed carboxylation of benzene 

derivatives were efficient when they hold a directing group  (Figure 39, B). It is essential to 

guarantee a selective CO2 fixation, otherwise, the reaction yielded a mixture of carboxylated 

products, as shown in Iwasawa’s work (Figure 39, C). 62 And finally, the presence of the metallic 

reducing agent in a great amount, similarly to the previously reported methods, persisted as a 

significant drawback. 

 

Figure 39: Carboxylation of C-H acidic bonds (A); directed carboxylation (B); non-directed 

carboxylation (C). 

 

Noteworthy, several base and Lewis acid-mediated carboxylation reactions exist in the literature, 

but they will not be discussed in this introduction. 13   

 

 

 

 

3. The advance achieved by electrochemistry in the synthesis of benzoic 

acids 
  

 
61 J. Hong, M. Li, J. Zhang, B. Sun, F. Mo, ChemSusChem, 2019, 12, 6. 
62 T. Suga, H. Mizuno, J. Takaya, N. Iwasawa, Chem. Commun. 2014, 50, 14360 
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Since its discovery, the electrochemistry has been introduced as the perfect tool to synthesize fine 

chemicals under mild and safe conditions. But over the last decade, it gained an additional 

advantage by being an eco-friendly option as it substitutes the redox reagent essential in many 

transformations, thereby fulfilling most of the green chemistry principles. 

However, the electrocarboxylation reactions, mainly those starting from aryl halides, are still 

under-investigated and deserves more attention. 

In 1984, preliminary studies conducted by Silvestri and Perichon, independently, revealed that 

using sacrificial Al or Mg anodes in an undivided cell setup, led to the carboxylation of aryl halides 

under a CO2 atmosphere. 63 In these cases, the metal played mainly two roles: (1) it delivered the 

electrons and (2) it stabilized the reduced fragments. Noteworthy, the electrogenerated Al3+ and 

Mg2+ cations display no significant reductive power. However, these methods require high 

overvoltages, which consequently affect the efficiency of the carboxylation.  

Targeting this problematic point, catalytic electrocarboxylation mediated by Pd, 64 Ni 65 and Co 66 

complexes emerged and enabled the carboxylation of aromatic halides under low overvoltage, 

which subsequently improved the chemoselectivity. Still, a sacrificial anode was required in these 

examples to avoid the oxidation of the catalyst and then lose its reactivity.  

Concerning the mechanism, most of the reported approaches were based on one proposed pathway 

(Figure 40): the generated electrons reduced the aryl halide to the corresponding radical. This 

radical species was then reduced to the corresponding carbanion or the organometallic 

intermediate that underwent then a nucleophilic addition with the CO2 and delivered the benzoic 

acid. 

 

Figure 40: Reported mechanism for the electrocarboxylation of aryl halides. 

 

Of note, the formation of [CO2].- radical anion was not reported, and the electrocarboxylation 

followed a typical CO2 fixation mechanism with a metal-based reagent/catalyst.  

Within our continuous efforts to expand the reactivity of electrogenerated divalent samarium 

complexes, the CO2 activation for C-C bond formation seemed an attractive, yet challenging 

mission to begin. The challenge lies in these following points:  

I- Stability: The electrochemical conditions established by our group involve the use of simple 

ligands X ( I-, Cl-, Br -, BF4
-, OTf - . . .) deriving from the electrolytes (like ammonium salts 

 
63 G. Silvestri, S. Gambino, G. Filardo, A. Gulotta, Angew. Chem. Int. Ed. 1984, 23, 979; O. Sock, M. Troupel, J. Périchon, Tetrahedron Lett. 
1985, 26, 1509. 
64 C. Amatore, A. Jutand, J. Am. Chem. Soc. 1991, 113, 2819; M. Troupel, Y. Rollin, J. Périchon, J. F. Fauvarque Nouv. J. Chim. 1981, 2, 621. 
65 C. Amatore, A. Jutand,  J. Am. Chem. Soc. 1992, 114, 7076. 
66 H. Senboku, A. Katayama, Cur. Opin. Green Sustain. Chem. 2017, 3, 50. 
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nBu4NX) to coordinate the samarium for its dissolution from the anode. As for the reported 

examples, the CO2 reduction by divalent samarium complexes was possible only when it is 

coordinated to very electron-rich ligands such as Cp* derivatives. 

II- Solubility: The CO2 is a polar molecule, so its solubility increases in polar solvents like 

DMF, acetonitrile, water. The utilization of such solvents is unusual in the Sm(II) chemistry.  

III- Reactivity: The CO2 radical anion can initiate many side reactions in the medium. For 

example, the CO2 dimerization to produce the oxalate species is thermodynamically the most 

favorable reaction as mentioned previously. 46 Furthermore, the generated carboxylic acid presents 

a higher reactivity than the initial substrate and can thus undergo a second CO2 addition to yield a 

dicarboxylated product. These two hypotheses can influence the efficiency of the reaction, which 

is a key parameter towards successful electrochemical transformations. 

In the next part, our results concerning the activation of CO2 using electrogenerated Sm(II) 

complexes will thus be described, keeping in mind these challenges. 

 

4. Carboxylation of aryl halides via CO2 activation using electrogenerated 

Sm(II) complexes  
 

To start our investigation, a solution of nBu4NBF4 (0.2 equiv) in 100 mL of DMF was introduced 

in a one-compartment cell containing a stainless steel grid as the cathode and a cylindric samarium 

rod as the anode. Choosing to work in a chronopotentiometry mode, the current was fixed at 100 

mA. The reaction was then started to electrogenerated in situ the SmI2 following the electrolysis 

conditions explained in the introduction chapter. During the reaction time, the CO2 was 

continuously bubbled via a fritted glass (Figure 41).  

 

Figure 41: Detection of oxalic acid after 15 min of Sm(II) electrolysis under CO2 atmosphere. 
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During the electrolysis, the accumulation of a white precipitate was observed, and after 15 min, 

the solution turned entirely white. The 13C NMR analysis showed one signal at 161.12 ppm, in d6 

-DMSO, which corresponded to a carboxylic acid shift. The obtained spectra matched perfectly 

the one obtained from a commercial oxalic acid. This result confirms that, under our conditions, 

the electrogenerated samarium can effectively reduce the CO2 into the corresponding radical anion, 

and produce after radical homocoupling, the oxalate species. 

Next, another solution of nBu4NBF4 was prepared, and the 1-bromo-4-methoxybenzene 1a was 

added as the substrate, the electrolysis was started following the previous electrolytic conditions 

(Figure 42). Interestingly, the white precipitation did not appear during the transformation, 

indicating that the addition of the aryl bromide inhibited somehow the CO2 dimerization. After 4 

hours of electrolysis, the 4-methoxy benzoic acid 1’a was isolated with a 71% yield. 

 

Figure 42: Carboxylation of 1a using electrogenerated divalent samarium. 

 

To validate this particular behavior of divalent samarium, the samarium rod was replaced by a 

magnesium or a nickel one. None of them presented the same capacity to reduce the CO2 or to 

form the carboxylated products. 

With these results in hand, we turned out attention to the scope of the reaction to confirm the 

efficiency of our approach and to also evaluate the effect of various substituents on the starting 

material  (Figure 43). The carboxylation of aryl bromide occurred nicely with electron-donating 

(1a-e), and electron-withdrawing groups (1g-i) except for the nitro group (1k). In this case, a 

mixture of products was isolated, none of it corresponding to the carboxylic acid. We attributed 

this result to the reduction of the nitro group by Sm(II), a reactivity which was recently reported 

by our group. 45 

Furthermore, the substrate 1j was totally recovered, an expected behavior due to the high-affinity 

of the samarium for oxygen atoms. The hydroxyl group probably trapped the Sm(II) during the 

reaction and subsequently inhibited its interaction with the CO2.  
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Figure 43: Scope of the carboxylation of aryl bromide using electrogenerated Sm(II) in DMF                                           

under CO2 atmosphere. 

 

Unexpectedly, the carboxylation of dihalogenated substrates did not demonstrate the typical 

reactivity. Starting with 1,4-dibromobenzene 1l, three compounds were isolated: 4-bromobenzoic 

acid 1’l as the main product with a yield of 66% resulting from the monocarboxylation of 1l. This 

latter also underwent the dicarboxylation to furnish terephthalic acid with a 20% yield. The third 

compound was the benzoic acid as a minor product coming from the addition of one molecule of 

CO2 while the second bromide was eliminated. In sharp contrast, the benzoic acid was mainly 

isolated (43%) by starting from 1,2-dibromobenzene 1m, whereas the yield of the brominated 

monocarboxylated compound was about 8%. Apparently, the dehalogenation rate is higher when 

the two bromine atoms are placed in ortho position for each other. We propose that once the first 

CO2 is fixed, the bromine undergoes an elimination assisted by the Sm(II) in the medium via this 

mechanism (Figure 44): 
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Figure 44: Proposed mechanism for halogen elimination mediated by Sm(II). 

 

After the CO2 fixation step, the bromine atom can interact with the Sm(II) metal center to create a 

five-membered transition state, favorizing the electron transfer and the reduction of the second 

bromine. A second electron transfer furnishes the carbanion that after protonation delivers the 

benzoic acid 1’f. Following the reaction by 1H NMR revealed the direct formation of benzoic acid 

1’f while only traces of 1’m were detected. indicating that dehalogenation and the CO2 fixation 

occur at the same time which explains the low yield of 1’m.  

Moreover, the carboxylation of 3-bromothiophene 1n and 2,8-dibromo dibenzothiophene 1o was 

examined. While the former yielded the corresponding carboxylic acid with 42% yield, the latter 

produced the dibenzothiophene-2-carboxylic acid 1’o with 45% yield as a unique product. In this 

case, we believe that this electron-rich structure enhances the dehalogenation, in our conditions, 

to create a conjugated and stable radical.  

After achieving the carboxylation of aryl bromides, we investigated the carboxylation of more 

challenging aryl chlorides. Fortunately, we isolated the corresponding carboxylic acids, with 

slightly lower yields starting from the bromide analogs (Figure 45). Surprisingly, the dichlorinated 

substrates (1p, 1q, and 1r) reacted to produce monocarboxylated products (1’p, 1’q, and 1’r) 

without any side reaction. Indeed, the dehalogenation process is much more difficult with these 

compounds, a hypothesis based on the difference of the bond dissociation energy (BDE) between 

C-Br (~270 kJ/mol) and C-Cl (~ 330 kJ/mol). 
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Figure 45: Carboxylation of aryl chlorides by electrogenerated Sm(II) in DMF under CO2 atmosphere. 

 

At this point, we turned our attention to the control experiments aiming to understand the 

mechanism of the carboxylation of aryl halides. 

 

5. Mechanistic studies 
 

a. Control experiments 
 

Several experiments were conducted under the optimized conditions to get insight into the 

mechanistic pathway. 

After having proved that the samarium can perform a CO2 reduction to yield the oxalate via 

dimerization, we tested the behavior of bromo and chlorobenzene alone under continuous 

electrogeneration of Sm(II). Therefore, we added Ph-Br and Ph-Cl in two separated cells, and we 

started the electrolysis for 4 hours (Figure 46).   
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Figure 46: CO2 only (on the left); Ph-Br (in the middle) and Ph-Cl (on the right) without CO2 

 

Starting from Ph-Br, we isolated the homocoupling product (43%) while the rest was the recovered 

starting material. In the case of Ph-Cl, the substrate did not react at all and was totally recovered. 

This distinct behavior supports our hypothesis concerning the strength of the C-Cl bond compared 

to the C-Br, and furthermore, it explains the fast dehalogenation rate observed with the 

dibrominated substrates. 

These findings suggest also that with the bromobenzene, the carboxylation starts with the 

formation of the [CO2]
.- radical anion along with the reduction of the bromine to result in the 

corresponding Csp2 radical, and afterward, a radical coupling provides the benzoic acid. 

On the contrary, the inertia of the aryl chloride during the electrolysis supports a radical 

substitution mechanism initiated by the [CO2]
.-

 radical anion to deliver finally the benzoic acid.  

 

b.  Kagan’s reagent vs. the electrogenerated Sm(II) 
 

The SmI2, or Kagan’s reagent, constitutes one the most effective reductive reagents and numerous 

studies highlighted its significant applications in organic chemistry. As previously mentioned, and 

to our best knowledge, only one photoinduced carboxylation mediated by SmI2 is reported in the 

literature proposing the formation of a CO2 radical anion.47 With this in mind, we tested this 

reagent under CO2 atmosphere. 
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Figure 47: Experimental tests using Kagan's reagent. 

 

As shown in Figure 47, in a freshly prepared solution of 0.1 M SmI2 in THF, the CO2 was 

introduced for 16 hours under inert atmosphere. Remarkably, the solution kept its blue color, which 

indicates the persistence of divalent samarium species. Nevertheless, the white precipitate was not 

formed during the reaction, and even after treatment of the reaction mixture, the 1H and 13C NMR 

spectra did not reveal the formation of oxalic acid. 

Next, 0.5 mmol of phenyl bromide was added to another two solutions of SmI2 in THF, and the 

CO2 was bubbled in one of them. With or without CO2, we isolated only the homocoupling product 

would be isolated after 2 hours. This outcome marks certainly, the enormous difference between 

the reactivity of chemical and electrochemical divalent samarium species. 

 

c. Radical trapping experiment 
 

Trying to get evidence of the [CO2]
.- formation, we added one equivalent of 2,2,6,6-tetramethyl 

piperidine-1-yl)oxy (TEMPO) as a radical scavenger along with the addition of phenyl bromide 

and carbon dioxide to the reaction mixture (Figure 48, (a)). Unfortunately, we were not able to 

trap the CO2 radical anion (1’s), and the reaction was inhibited and the bromobenzene was 

recovered entirely whereas the TEMPO disappeared by the end of the electrolysis. Noteworthy, 

the treated mixture did not show traces of radical coupling product between the TEMPO and the 

Csp2 radical (1’t).  

 

Figure 48: Radical trapping experiment with TEMPO. 
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Based on these observations, we believe that the TEMPO reacted with the [CO2]
.- but the 

intermediate 1’s was probably highly unstable, and thus it decomposed leaving the starting 

material Ph-Br intact.  

 

6. Electrochemical Studies  
 

a. The oxidation of samarium: a noteworthy interaction 
 

Aiming to confirm the interaction between the samarium and CO2, we evaluated the oxidation of 

a samarium rod of 20 mm2 surface in a solution of 0.1 M of nBu4NPF6, in DMF. 

The oxidation of Sm(0) to Sm(II) began at -0.5 V/SCE (blue curve). The addition of 0.025 M of 

chlorobenzene in DMF did not furnish a significant variation of potential (green curve). However, 

bubbling the CO2 for around 5 minutes before the analysis provoked a significant shift towards the 

negative direction from -0.5 V to -0.8 V (red curve). This shift indicates that adding the CO2 

facilitated the electrogeneration of samarium (II) and its solubilization in the medium as samarium 

salts.  

 

Figure 49: Samarium anode oxidation: Sm electrode surface 20 mm2, scanning potential between -1.5 and 0.9 V vs. 

SCE in DMF with nBu4NPF6 [0.1 M]. Scan rate : 100 mV.s-1. (a) blue line: without additive; (b) green line: in the 

presence of chlorobenzene 0.025 M; (c) Red line: after bubbling CO2 in the solution for 5 min. 
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b. Sm(II)+ CO2 = CO2 activation 
 

The results above encouraged us to conduct a cyclic voltammetry study for the carboxylation of 

aryl halides. A pre-electrogenerated solution of 0.01 M SmCl2 in MeCN exhibited a redox couple 

with a formal potential of -1.5 V/SCE (green line). Upon the introduction of CO2, the CV revealed 

a total loss of the Sm(II) to Sm(III) oxidation wave the reduction signal remained at -1.4 V/SCE 

(red line). This remarkable change in the electrochemical behavior of the samarium reveals the 

evident consumption of Sm(II) by CO2 and the formation of Sm(III) - CO2 species.  

 

 

Figure 50: Cyclic voltammetry of SmCl2 before and after adding CO2: Glassy carbon electrode surface 20 mm2, and 

platinum wire as counter electrode scanning potential between – 0.5 and -3 V vs. SCE in CH3CN with nBu4NPF6 [0.1 M]. 

Scan rate: 100 mV/s. (a): 0.1 M nBu4NPF6; (b): 0.1 M SmCl2 in CH3CN; (c): 0.1 M SmCl2 + CO2. 

 

Compared to other reagents produced from sacrificial anodes (e.g., Mg2+, Al3+, Li+) that are inert 

towards the CO2 reduction, it is noteworthy to highlight the unique reductive character of 

electrogenerated divalent samarium. 

 

7. Proposed mechanism 
 

All these observations suggest two different pathways depending on the nature of the starting 

material (Figure 52): 

Substrate Ar-Br: The aryl bromides were found to follow a radical coupling mechanism due to 

the low bond dissociation energy compared to the chloride analogs. Along with the activation of 

carbon dioxide, the substrate is reduced to form the radical anion. The unstable Csp2 radical, 
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generated after the dissociation of the bromide, immediately couples with the CO2 radical anion in 

the medium to deliver the corresponding benzoic acid. 

 

Figure 51: Proposed mechanism for the carboxylation of aryl bromides via radical coupling. 

 

Substrate Ar-Cl: Aryl chloride derivatives possessing a higher redox potential than the Ar-Br ones, 

in this case, the CO2 undergoes exclusively the reduction. The generated radical anion induces then 

a radical substitution with the substrate in the medium to give the corresponding carboxylic acid. 

 

Figure 52: Proposed mechanisms for the carboxylation of aryl chlorides via radical substitution. 

 

8. Attempts to perform a catalytic reaction 
 

After establishing the stoichiometric procedure, we investigated next the same transformation but 

with a catalytic loading of divalent samarium. 

Different electrolytes were screened to test their reactivity towards the carboxylation of aryl 

chlorides. The best yield was 16% with the nBu4NI using 20 mol% of Sm2+, electrogenerated 

following the electrocatalysis conditions explained in the introduction chapter, in the presence of 

3 equiv of TMSCl, as an oxophilic reagent, in DMF.  

However, replacing the DMF with other polar solvents furnished only the starting material, which 

reflects the critical role of the solvent choice in this reaction. 

We examined then the effect of the oxophilic reagent, speculating that the TMSCl is not strong 

enough in this case, probably due to the electron-richness of the carboxylic acid, increased by -

donation from the aromatic ring. 
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Therefore, we conducted several experiments using compounds well known to form strong bonds 

with the oxygen atom, such as boron reagents, titanium complexes, phosphines, or other silyl 

reagents like TMSOTf. Unfortunately, all of these attempts failed, and in the few reactions where 

we detected the targeted product, the yield remained lower than the catalyst loading. Also, the 

addition of an organic acid in the medium, such as methanesulfonic acid MsOH, did not yield any 

carboxylation product. 

 

Figure 53: Screening catalytic carboxylation of aryl chloride reaction conditions. 

 

We believe that the key-step holding the catalysis back lies in the separation of the Sm(III) from 

the final product. The successful stoichiometric carboxylation of aryl chlorides in DMF 

exclusively suggests also that the solvent is somehow involved in this transformation.  

 

9. Conclusion and Perspectives 
 

In this chapter, we introduced the CO2 activation by electrochemically generated Sm(II). The 

formation of oxalic acid in the absence of any substrate was the indisputable proof of the reduction 

of CO2 mediated by this reductive reagent. 

Based on this concept, we elaborated the carboxylation of aryl halides via CO2 activation under 

CO2 atmosphere in DMF. 

The carboxylation worked with aryl bromide to give the corresponding products with good to 

excellent yields. Interestingly, dibrominated starting materials showed a fast debromination rate 
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after the first carboxylation, especially for the ortho-substituted compounds. We attributed this 

reactivity to the capacity of the samarium to eliminate halogens adjacent to a carbonyl functional 

group via coordination followed by a sequence of electron-transfer steps. 

Luckily, the challenging aryl chlorides were also nicely transformed under our conditions to give 

the corresponding carboxylic acid in lower yields than the brominated analogs, yet without any 

elimination product in the case of dichlorinated starting materials. 

Several control experiments exposed the crucial role of Sm(II) to run the carboxylation of the 

aromatic halides in addition to a significant selectivity towards the CO2 reduction. The radical 

trapping experiment with TEMPO did not furnish any product and led to the recovery of the 

starting material. 

Lastly, we proved by electrochemical measurements that the introduction of carbon dioxide boosts 

the release of Sm divalent species, unlike the aryl chloride. Also, the cyclic voltammetry revealed 

the loss of Sm(II)/Sm(III) wave after bubbling the CO2 for 5 minutes, indicating the effective 

chemical interaction between the Sm(II) and CO2 in solution. 

 

Figure 54: required further investigation for the carboxylation of aromatic halides 

 

Further prospects are needed such as a kinetic study of the debromination process vs. carboxylation 

reaction to explain the reason behind this side reaction. Additionally, an electro-spectrometry 

could be an efficient method to detect the different species involved in the carboxylation of aryl 

bromides as well as of aryl chlorides (Figure 54). 

Further interesting work would be the examination of other substrates such as the carboxylation of 

activated alkenes as chalcone derivatives and methyl cinnamate under our conditions. Preliminary 

experiments showed that it is possible to fix the CO2 on the -position of an EWG group (Figure 

55). We also discovered that this reactivity was, similarly to the carboxylation of aromatic halides, 

solvent-dependant and occurred only in DMF. So, the next step involves understanding the role of 

DMF in our conditions. 
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Figure 55: Carboxylation of activated alkenes by electrogenerated Sm(II) 

 

Finally, the ultimate goal remains to find convenient conditions to perform such carboxylation 

reactions efficiently promoted by a catalytic amount of electrogenerated divalent samarium 

species. 
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Experimental Part 
 

Instrumentation and Chemicals 

 

All commercially available reagents were used without further purification unless otherwise 

stated. All solvents were also used without further purification. Dimethylformamide (DMF) was 

purchased from Carlo Erba and tetrabutylammonium tetrafluoroborate (nBu4NBF4) from Fluka. 

The samarium rod was a 12.7mm diameter, 99.9% (metals basis excluding Ta) rod, purchased 

from Alfa-Aesar and the stainless-steel grid from Goodfellow. Electrolysis was performed using 

an EGG Instrument Potentiostat/Galvanostat Model 273 in an undivided cell equipped with a 

samarium rod as anode and a stainless-steel grid as a cathode. NMR spectra were recorded on 

Bruker AM 360 (360 MHz), 300 (300 MHz) or AM 250 (250 MHz) in CDCl3 with drops of CD3OD 

in some cases or totally in DMSO-d6 due to the solubility of some products. Data for 1H NMR are 

recorded as follows: chemical shift (δ, ppm), coupling constant (J, Hz), multiplicity (s = singlet, d 

= doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, 

td = triplet of doublets, and br = broad signal, integration). Reactions were monitored by thin-layer 

chromatography (TLC), and column chromatography purifications were carried out using silica 

gel.  

 

General Procedure for the carboxylation of aryl halides 

 

Under CO2 (1 atm), the reactions were carried out in an undivided cell containing a magnetic 

stirring bar, equipped with a samarium rod as anode and a stainless-steel as the cathode. The cell 

was charged with 322 mg of tetrabutylammonium tetrafluoroborate nBu4NBF4 (1 mmol) and the 

aryl halide (5 mmol) dissolved in 100 mL of DMF. The electrolysis was started using a 

chronopotentiometry mode with i = 100 mA for 15000 seconds. During the reaction, precipitation 

was observed, indicating the formation of a samarium carboxylate salt in the medium, insoluble in 

DMF. When the substrate is no longer detected on the TLC, the reaction was quenched with 6 M 

HCl aq. (40 mL), slowly added, and the mixture was stirred at room temperature until a 

homogenous solution was obtained. After dissolution, 300 mL of distilled water was added, and 

the aqueous solution was extracted with ethyl acetate (3 x 100 mL). The organic phase was 

extracted with ethyl acetate (5 x 200 mL). The collected organic layer was washed with brine (3 x 

100 mL), dried over MgSO4, and concentrated under vacuo. The residue was purified by silica gel 

chromatography using petroleum ether/ethyl acetate (80/20 and then 50/50). 
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Characterization of the compounds 

 

 

4-methoxybenzoic acid (1’a): 539 mg (3.55 mmol, yield: 71%,). 1H NMR (300 MHz, CDCl3) δ 

8.00 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.85 (s, 3H). 

 13C NMR (91 MHz, CDCl3) δ 169.1, 163.5, 132.0, 122.4, 113.5, 55.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.67 

 

 

2-methoxybenzoic acid (1’b): 524 mg (3.45 mmol, yield: 69%). 1H NMR (300 MHz, DMSO-

d6): δ 7.65 (d, J = 10.1 Hz, 1H), 7.49 (td, J = 11.3, 4.4 Hz, 1H), 7.10 (d, J = 9.8 Hz, 1H), 6.97 (td, 

J = 17.4, 10.0 Hz, 1H), 3.77 (s, J = 20.6 Hz, 3H).   

13C NMR (75 MHz, DMSO-d6): δ 167.8, 158.5, 133.4, 131, 121.7, 120.4, 112.8, 56.1. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.68 

 

 

4-methylbenzoic acid (1’c): 544 mg (4 mmol, yield: 80%,) 1H NMR (360 MHz, CDCl3) δ 7.89 

(d, 2H), 7.20 (d, 2H), 2.36 (s, 3H).  

13C NMR (63 MHz, CDCl3) δ 169.6, 143.6, 129.7, 128.8, 127.1, 21.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.69 

 

 
67 X. Zhang, W. –Z. Zhang, L. –L. Shi, C. –X. Guo, L. –L. Zhang, X. –B. Lu, Chem. Commun. 2012, 48, 6292. 
68 A. Correa, R. Martín, J. Am. Chem. Soc. 2009, 131, 44, 15974. 
69 T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 2012 134, 22, 9106. 
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2-methylbenzoic acid (1’d):  482 mg (3.55 mmol, yield: 71%). 1H NMR (300 MHz, CDCl3 + 

CD3OD): δ 7.83 (d, J = 7.5 Hz, 1H), 7.29 (dd, J = 8.3, 6.5 Hz, 1H), 7.20 – 6.97 (m, 2H), 2.49 (s, 

3H).  

13C NMR (91 MHz, CDCl3+ CD3OD) δ 169.9, 139.9, 131.7, 131.3, 130.5, 129.5, 125.3, 21.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.69 

 

 

3-methylbenzoic acid (1’e):  530 mg (3.9 mmol, yield: 78%). 1H NMR (300 MHz, CDCl3) δ 

7.93 (m, J = 7.3 Hz, 2H), 7.51 – 7.29 (m, 2H), 2.43 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.5, 138.3, 134.5, 130.7, 129.2, 128.3, 127.3, 21.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.69 

 

 

Benzoic acid (1’f): 464 mg (3.8 mmol, yield: 76%) 1H NMR (360 MHz, CDCl3) δ 7.99 (d, J = 

7.7 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H).  

13C NMR (91 MHz, CDCl3) δ 169.2, 132.9, 130.1, 129.7, 128.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.68 
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4-flurobenzoic acid (1’g): 483 mg (3.45 mmol, yield: 69%). 1H NMR (300 MHz, CDCl3) δ7.99 

(m, 2H), 7.03 (t, 2H).  

13C NMR (91 MHz, CDCl3) δ 167.9, 165.7(d, JC-F= 250Hz), 132.3(d, JC-F= 9.5Hz), 126.5, 

115.2(d, JC-F =22Hz). 

19F NMR (75 MHz, CDCl3): δ 106.94. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.70 

 

 

4-(trifluoromethyl) benzoic acid (1’h): 741 mg (3.9 mmol, yield: 78%). 1H NMR (300 MHz, 

CDCl3+ MeOD) δ 8.02 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H).  

13C NMR (63 MHz, DMSO) δ 166.1, 134.6, 132.5(d, J=31 Hz), 130.1, 125.9, 125.5(q, J=272 

Hz). 

19F (282 MHz, CDCl3): δ 61.6. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.69 

 

 

Methyl -4-carboxybenzoate acid (1’i): 549 mg (3.05 mmol, yield: 61%). 1H NMR (300 MHz, 

CDCl3) δ 8.03 (m, 4H), 3.88 (s, 3H).  

13C NMR (91 MHz, CDCl3) δ 167.8, 166.6, 134.4, 133.6, 129.7, 129.4, 52.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.70 

 

 
70 F. Rebih, M. Andreini, A. Moncomble, A. Harrison-Marchand, J. Maddaluno, M. Durandetti, Chem. Eur. J. 2016, 22, 3758. 
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4-bromobenzoic acid (1’m): 573 mg (2.85 mmol, yield: 57%). 1H NMR (300 MHz, DMSO-d6): 

δ 13.19 (s, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H). 

 13C NMR (75 MHz, DMSO-d6) δ 167.1, 132.1, 131.7, 130.4, 127.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.71 

 

 

4-chlorobenzoic acid (1’o): 511.5 mg (3.3 mmol, yield: 66%). 1H NMR (300 MHz, DMSO) δ 

13.21 (s, 1H), 8.03-7.84 (m, 2H), 7.65-7.41 (m, 2H). 

13C NMR (75 MHz, DMSO) δ 166.5, 133.7, 133.3, 133, 130, 129.3, 128.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.71 

 

 

2-chlorobenzoic acid (1’p): 473 mg (3.05 mmol, 61%). 1H NMR (300 MHz, DMSO) δ 13.21 (s, 

1H), 7.94 (d, 2H), 7.57(d, 2H). 

13C NMR (75 MHz, DMSO) δ 166.2, 133.4, 133, 132.7, 130.6, 128.9, 127.9. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.71 

 

 

3-chlorobenzoic acid (1’q): 457 mg (2.95 mmol, 59%). 1H NMR (300 MHz, CDCl3) δ 8.11 (t, J 

= 1.8 Hz, 1H), 8.05 – 7.97 (dt, 1H), 7.60 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.44 (t, J = 7.9 Hz, 1H). 
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13C NMR (91 MHz, CDCl3) δ 171.1, 134.7, 133.9, 130.9, 130.3, 129.8, 128.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.71 

 

 

3-thiophenecarboxylic acid (1’n): 267 mg (2.1 mmol, yield: 42%,). 1H NMR (300 MHz, 

CDCl3) δ 8.25 (dd, J = 3.0, 1.1 Hz, 1H), 7.58 (dd, J = 5.1, 1.1 Hz, 1H), 7.39 – 7.30 (m, 1H).  

13C NMR (91 MHz, CDCl3) δ 168.2, 134.6, 132.9, 128.1, 126.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.72 

 

 

Dibenzothiophene-2-carboxylic acid (1’o): 513 mg (2.25 mmol, yield: 45%,). 1H NMR (250 

MHz, DMSO) δ 8.91 (d, J = 1.1 Hz, 1H), 8.49 (dd, J = 6.4, 1.6 Hz, 1H), 8.15 (d, J = 6.1 Hz, 1H), 

8.07 (m, 2H), 7.61 – 7.52 (m, 2H). 

13C NMR (63 MHz, CDCl3) δ 167.8, 143.7, 139.4, 135.5, 135, 128.1, 128, 127, 125, 123.6, 

123.5, 123.4, 122.8. 

ESI (-): [M-H] = 227.0174. 

 

Carboxylation of chalcone  

 

 

 
71 S. Mukhopadhyay, S. Batra, Chem. Eur. J. 2018, 24, 14622. 
72 K. Paridala, S. M. Lu, M.M. Wang, C. Li, Chem. Commun. 2018, 54, 11574. 
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Under CO2 (1 atm), the reaction was carried out in an undivided cell containing a magnetic stirring 

bar, equipped with a samarium rod as anode and a stainless-steel as the cathode. The cell was 

charged with 322 mg of tetrabutylammonium tetrafluoroborate nBu4NBF4 (1 mmol) and (E)- 

chalcone (208 mg, 1 mmol) dissolved in 50 mL of DMF. The electrolysis was started using a 

chronopotentiometry mode with i = 100 mA for 7200 seconds. When the substrate was no longer 

detected on the TLC, the reaction was quenched with 2 M HCl aq. (40 mL), slowly added, and the 

mixture was stirred at room temperature until a homogenous solution was obtained. After 

dissolution, 50 mL of distilled water was added, and the aqueous solution was extracted with ethyl 

acetate (3 x 20 mL). The collected organic layer was washed with brine (3 x 20 mL), dried over 

MgSO4, and concentrated under vacuo. The residue was purified by silica gel chromatography 

using petroleum ether/ethyl acetate (80/20 and then 50/50) to deliver 152.4 mg of 4-oxo-2,4-

diphenylbutanoic acid (0.6 mmol, 60%). 

4-Oxo-2,4-diphenylbutanoic acid (1’v): 152.4 mg (0.6 mmol, yield: 60%,). 1H NMR (360 

MHz, CDCl3) δ 7.98 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.4-

7.25 (m, 5H), 4.34 (dd, J = 10.1, 4.1 Hz, 1H), 3.93 (dd, J = 18.1, 10.1 Hz, 1H), 3.31 (dd, J = 

18.1, 4.2 Hz, 1H). 

13C NMR (91 MHz, CDCl3) δ 197.6, 179, 137.6, 136.1, 133.4, 129.0, 128.9, 128.3, 128.0, 46.3, 

42.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.73 

 
73 T. Song, S. Arseniyadis, J. Cossy, Org. Lett. 2019, 21, 3, 603 
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Electrogenerated Sm(II)-catalyzed the 

carboxylation of benzyl chloride 

derivatives 
1. Phenylacetic acids: state of the art  

  

In the previous chapter, the synthesis of benzoic acids from organic frameworks was discussed 

in addition to their numerous applications in fine chemistry. Having one additional carbon atom 

give rise to phenylacetic acids, an interesting class of carboxylic acids highly valued in 

pharmaceutical chemistry. More specifically, phenylacetic acids moiety is the reactive center in 

many non-steroidal anti-inflammatory drugs (NSAIDs) (Figure 56). 74  

 

Figure 56: Examples of NSAIDs containing the phenylacetic acid motif. 

 

To access these products, many protocols were evaluated, searching for the most economical and 

efficient pathway and the carboxylation route using CO2 satisfied these requests.  

The electrochemistry was the first to investigate this approach, 21,75 but catalytic carboxylation 

based on transition metals were also developed to produce phenylacetic acids via Markovnikov 

hydrocarboxylation of styrene derivatives using CO2 as C1-building block. The stability of η3-

benzylic metal intermediate allowed the CO2 insertion to occur selectively on the benzylic 

position. However, these strategies required the use of an excessive quantity of organometallic 

reductant and remained limited to unsubstituted styrenes. 76,13 Targeting this point, ongoing efforts 

based on photoinduced carboxylations of styrene derivatives present a promising method to solve 

the drawback related to the overuse of co-reductants.77 

On the other hand, the reductive carboxylation of benzyl halides was recently presented as a short-

cut route to obtain substituted phenylacetic acids.78 Very recently, the carboxylation of other 

 
74 H. Maag, Prodrugs of Carboxylic Acids; Springer: New York, 2007 
75 O. Sock, M. Troupel, , J. Perichon, Tetrahedron Lett. 1985, 26, 1509 
76 S. Saini, H. Singh, P. K. Prajapati, A. K. Sinha, S. L. Jain., ACS Sustainable Chem. Eng. 2019, 7, 13, 11313; W. Butcher, E. J. McClain, T. G. 

Hamilton, T. M. Perrone, K. M. Kroner, G. C. Donohoe, N. G. Akhmedov, J. L. Petersen, B. V. Popp, Org. Lett. 2016, 18, 6428. 
77 a) K. Murata, N. Numasawa, K. Shimomaki, J. Takaya, N. Iwasawa, Chem. Commun. 2017, 53, 3098; b) Q.-Y. Meng, S. Wang, G. S. Huff, B. 
König, J. Am. Chem. Soc. 2018, 140, 9, 3198; c) V.R. Yatham, Y. Shen, R. Martin, Angew. Chem. 2017, 129, 11055; Angew. Chem., Int. Ed. 

2017, 56, 10915. 
78 Y.-G. Chen, X.-T. Xu, K. Zhang, Y.-Q. Li, L.-P. Zhang, P. Fang, T. -S. Mei, Synthesis 2018, 50, 35 
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benzylic derivatives revealed a worth noting reactivity by tolerating tertiary starting materials 

under mild conditions.79 

In this introduction, we will focus our study on the reductive carboxylation of organic(pseudo) 

halides as an interesting alternative for the CO2 insertion mediated by typical organometallic 

reagents. 

  

2. Catalytic carboxylation of organic (pseudo)halides  

 

a. Using benzyl halides as starting material 
 

In 2013, Martin’s group described the first catalytic carboxylation of benzyl bromides and 

chlorides using Ni(0) catalysis.11 After oxidative addition of the benzyl halide, a Ni(I) intermediate 

was generated via single electron transfer from the zinc powder, added in the medium as a co-

reductant (Figure 57).  

 

Figure 57: Proposed mechanism for the carboxylation of benzyl halides described by Martin's group. 

 

Concerning the scope, the carboxylation of primary benzyl halides was efficiently achieved using 

this protocol while secondary and tertiary substrates were tested only with benzyl bromides. 

Overall, the authors described the Ni-based carboxylation as a substitute for previous procedures 

 
79 a) A. Correa, T. Leoń, R. Martin, J. Am. Chem. Soc. 2014, 136, 1062; b) T. Moragas, M. Gaydou, R. Martin, Angew. Chem. 2016, 128, 5137; 
Angew. Chem., Int. Ed. 2016, 55, 5053 
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that suffered from many problems such as low selectivity, the excessive use of co-reductants, and 

scope limitation. This Ni-based system presented also several drawbacks: 

➢ The use of zinc powder: This overly used additive (5 equiv) was crucial for the 

carboxylation, permitting the generation of the Ni(I)-intermediate so the CO2 insertion could occur 

subsequently.  

➢ Magnesium dichloride MgCl2 as additive: The addition of MgCl2 was a key factor in the 

CO2 insertion step, and without it, the yield dropped to 28% (vs. 74% with MgCl2). In 2014, 

Sakaki’s DFT calculations explained this behavior by proposing a transition state combining the 

Ni(I) and MgCl2. This latter activates the CO2 by its Lewis acidity and thus, facilitates the CO2 

insertion into the Ni(I)-C bond. 80 

➢ The scope limitation: Even though the secondary and tertiary benzyl bromides reacted 

smoothly, but this was not the case with the corresponding chlorides. The scope of challenging 

benzyl chlorides covered only unsubstituted substrates exposing a major reaction limitation.  

Two years later, He and co-workers reported similar conditions, but the carboxylation was 

mediated by a Pd(0) catalysis with Mn powder as co-reducing agent and also in the presence of 

MgCl2 (Figure 58). 81 DFT studies proved the existence of a non-innocent interaction between this 

additive and CO2, as similarly described in the Ni-catalysis case. 

 

Figure 58: Pd-catalyzed the carboxylation of benzyl chlorides. 81 

 

A worth noting example from Beller’s group described the carboxylation of benzyl halides with 

formic acid to obtain phenylacetic acids. 82 This method consisted in using a Pd(0)/Pd(II) catalytic 

cycle, and the in situ generation of carbon monoxide via the decomposition of formic acid, assisted 

by the ligand and the N, N, N', N'-tetramethylethylenediamine (TMEDA) as a base. After the 

oxidative addition, an excess of base in the medium triggered the reductive elimination step to 

yield the acid anhydride. Finally, hydrolysis or the release of CO, allowed the formation of the 

phenylacetic acids in good yields.   

 
80 F. B, Sayyed, S. Sakaki, Chem. Commun. 2014, 50, 13026 
81 S. Zhang, W.Q. Chen, A. Yu, L.N. He, ChemCatChem. 2015, 7, 3972 
82 L. Wang, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2018, 57, 1 
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Figure 59: Mechanistic pathway for the carboxylation of benzyl halides with formic acid. 82 

 

Indeed, this approach presented an original path to access this category of carboxylic acids in the 

absence of a reducing agent. Nevertheless, this transformation was limited to unsubstituted 

phenyl chlorides due to the bulky ligand, and optimal carboxylation yield was achieved only at 

high temperature (115°C).  

 

b. Using benzyl esters derivatives as starting material 
 

The carboxylation using these starting materials goes through Csp3-O bond cleavage and it is 

known as a challenging process due to the high activation energy barrier. Martin’s group was also 

in this case the first to publish the carboxylation of aryl and benzyl esters derivatives using a Ni(II) 

complex. 79a  

 

Figure 60 Ni-catalyzed the carboxylation of Csp3-O bonds.79a 

 

The optimized conditions tolerated different leaving groups such as pivalates, carbamates, and 

acetates. Due to its higher atom economy, the acetate derivatives were used to study the scope of 

this reaction. Remarkably, high yields were observed mainly with π-extended systems like 

naphthalene or anthracene while simple phenyl-containing substrates did not react as well as 

expected (Figure 61, A). This reactivity was rationalized based on the Dewar-Chatt-Duncanson 

proposed model, which suggested a 2-coordination mode between the Ni(0) center and the π-
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system. 83  Furthermore, an X-ray structure described by Krüger showed this binding mode 

between Ni(0) and anthracene. 84  

 

Figure 61: Proposed hypothesis for the different behavior observed according to the substrates. 79a 

 

Apparently, filling a coordinating site on the Ni center had a crucial impact on the reaction. 

Therefore, the authors conducted a study using traceless directing groups to investigate probable 

chelation assistance. This test revealed the major role played by the leaving group bearing 

coordinating frameworks like ethers or pyridyl (Figure 61, B). This observation allowed the 

extension of the scope to benzyl esters derivatives, affording substituted phenylacetic acids in 

moderate to good yields (up to 79%).  

Despite the advance accomplished in this work, the complexity of the parameters affected 

enormously the sustainability of this transformation. Many compounds were not compatible with 

the conditions such as substrates bearing halides that underwent dehalogenation processes. Also, 

substrates containing ortho chelating groups (pyrazole, esters, aldehyde…) were inert in all the 

experimental conditions, and even some compounds furnished the homodimerization product.  

 

c. Using ammonium salts as starting material 
 

Benzylic ammonium salts form an interesting category of benzylic derivatives that can be easily 

synthesized from the corresponding amines. The group of Martin reported the carboxylation of 

benzylic C-N bonds using CO2 via an electrophilic cross-coupling reaction mediated by Ni-

catalysis, combined with 1,10-phenanthroline derivatives, as bench-stable ligands (Figure 62). 79b 

These compounds demonstrated a high insensitivity to the electronic changes of the aromatic ring 

and afforded the corresponding carboxylic acids in good to excellent yields. Notably, secondary 

benzyl ammonium salts also reacted very well under these conditions. The proposed mechanism 

was based on the generation of a Ni(I) intermediate, produced via a SET from the co-reductant 

(Mn), similarly to a previous report. 11 

 
83 M. J. S. Dewar, Bull. Soc. Chim. Fr. 1951, 18, 79; J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939; J. Chatt, L. A. Duncanson, L. M. 

Venanzi, J. Chem. Soc. 1955, 4456. 
84 D. J. Brauer, C. Krueger, Inorg. Chem. 1977, 16, 884. 
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Figure 62: First cross-electrophile coupling reaction via unconventional C-N bond cleavage/CO2 insertion. 79b 

 

This approach allowed to overcome the problem of side reactions (dehalogenation, dimerization) 

and tolerated unusual starting material to produce new carboxylic acids. However, an additional 

synthetic step was required to access the starting substrates, and high reaction temperature (90°C) 

was essential as well as long reaction time (72 h) to achieve satisfying yields.  

Very recently, an elegant photoinduced cross-electrophile coupling of tetraalkylammonium salts 

with CO2 was introduced by Yu and co-workers. 85 The advantages of this protocol, compared to 

the previous one, are the compatibility with tertiary substrates and the mild reaction temperature. 

 

d. Photocarboxylation of benzylic C−H bonds 
 

Even though no pseudo(halides) carboxylation is used in this protocol, yet it deserves to be 

discussed as an original pathway to obtain phenylacetic acids.  König’s group established the 

photocarboxylation of benzylic C-H bonds as a straightforward tool for the synthesis of carboxylic 

acids (Figure 63). 86  In this strategy, catalytic amounts of the photosensitizer 1,2,3,5-

tetrakis(carbazol-9-yl)-4,6-dicyanobenzene 4CzIPN in the presence of triisopropylsilanethiol 

(iPr3SiSH) as a hydrogen atom transfer catalyst were added to achieve the carboxylation. This 

transformation tolerated different functional groups with good to very good yields. Control 

experiments proved the formation of 2,3,4,6-tetra(9H-carbazol-9-yl)-5-(1-

phenylethyl)benzonitrile (4CzPEBN), after the substitution of one cyano group of 4CzIPN by a 

benzyl moiety. Thus, they proposed the mechanism illustrated below with 4CzPEBN instead of 

4CzIPN: 

 

 
85 L-L. Liao, G-M. Cao, J-H. Ye, G-Q. Sun, W-J. Zhou, Y-Y. Gui, S.-S. Yan, G. Shen, D-G. Yu, J. Am. Chem. Soc. 2018, 140, 50, 17338. 
86 Q.-Y. Meng, T. E. Schirmer, A. L. Berger, K. Donabauer, B. König, J. Am. Chem. Soc. 2019 DOI: 10.1021/jacs.9b05360 
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Figure 63: Plausible mechanism for the photocarboxylation of benzylic Csp3-H bonds. 86 

 

The visible light enabled the formation of 4CzPEBN* that underwent a first electron transfer with 

the HAT catalyst iPr3SiSH to form the corresponding 4CzPEBN .- and iPr3SiSH.+. The 

deprotonation of this latter generated the radical iPr3SiS
.
, and this intermediate abstracted furtherly 

the benzylic hydrogen to furnish the benzyl radical 1. A second electron transfer between 1 and 

4CzPEBN
.-

 allowed the regeneration of 4CzPEBN and the formation of the carbanion 2.  The CO2 

was then captured by this benzylic anion to deliver the phenylacetic acid. 

Even though this system offered a new perspective for the carboxylation reactions, yet the 

conditions worked only with secondary benzylic C-H bond. 

 

3. Electrocarboxylation of benzyl chlorides 
 

As previously mentioned,  electrochemistry was the first method used to achieve the carboxylation 

of benzyl chlorides. In a one-compartment electrochemical cell, the electrocarboxylation (or 

carboxylation assisted by electrochemistry) can occur in two different pathways: direct or indirect 

electrocarboxylation. 

 

b. Direct Electrocarboxylation  

 

In the literature, different electrochemical approaches with various cathode materials were 

investigated for the direct carboxylation of benzyl chlorides. From mercury to platinum or glassy 
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carbon, all of the proposed systems imposed a very negative potential (overpotential), which is the 

principal cause of side reactions (Figure 64, I). 87  

Recently, many papers dealing with the electroreduction of organic chlorides at silver cathodes 

have appeared. In this case,  the reduction occurred at a more positive potential than the previously 

reported ones, probably due to the high affinity of silver for halides (Figure 64, II). 88 Still, various 

side products were described (reduced and dimerized products) and resulting in a complex mixture. 

On the other hand, an eco-friendly silver-based approach was described by Lu’s group using an 

ionic liquid as an alternative for the massive amount of supporting electrolytes. 89     

 

Figure 64: Developed systems for direct electrocarboxylation of benzyl chlorides. 

 

Recently, Atobe and co-workers proposed an elegant procedure based on flow electrochemistry. 
90 In a microreactor, the electrocarboxylation occurred using a platinum anode and a glassy carbon 

cathode, with the unstable carboxylate being directly acidified in an acidification region. 

Therefore, this technique represents an excellent alternative for the sacrificial anodes in addition 

to the multiple advantages offered by the use of a microreactor such as the important surface-to-

volume ratio, the precise temperature control, and the high-speed mixing.  

Very recently, a direct electrochemical reduction of benzylic C-N bonds was reported by 

Manthiram’s group. 91 Using platinum as the cathode and glassy carbon as the anode, the authors 

managed to carboxylate primary and secondary substrates with good to excellent yields. 

Meanwhile, some examples reported the use of sacrificial anodes (mainly Mg and Al) to produce 

phenylacetic acids. 75,92 The primary role of the released metal cation was the stabilization of the 

generated carboxylate anion and the limitation of its decomposition. However, the distance 

between the electrodes was critical in these electrochemical transformations. Due to the dissolution 

 
87 S. Wawzonek, R. C. Duty J. H. Wagenknecht, J. Electrochem. SOC. 1964, 111, 74; M. M. Baizer and J. L. Chruma, J. Org. Chem. 1972, 37, 

1951; J. H. Wagenknecht, J., Electroanal. Chem. Interfacial Electrochem. 1974, 52, 489; D. A. Tyssee, J. H. Wagenknecht, M. M. Baizer, J. L. 

Chruma, Tetrahedron Lett. 1972, 4809. 
88 A. A. Isse, A. Gennaro, Chem. Comm. 2002, 2798; A. A. Isse, M. G. Ferlin, A. Gennaro, J. Electroanal. Chem. 2005, 581, 38; O. Scialdone, A. 

Galia, G. Errante, A. A. Isse, A. Gennaro, G. Filardo, Electrochimica Acta 2008, 53, 2514. 
89 D. NIU, J. Zhang, K. Zhang, T. Xue, J. Lu, Chin. J. Chem., 2009, 27, 1041  
90 H. Tateno, Y. Matsumura, K. Nakabayashi, H. Senbokub, M. Atobe, RSC Adv. 2015, 5, 98721. 
91 D.-T. Yang, M. Zhu, Z. J. Schiffer, K. Williams, X. Song, X. Liu, K. Manthiram, ACS Catal. 2019, 9, 4699 
92 G. Silvestri, S. Gambino, G. Filardo, A. Gulotta, Angew. Chem.. Int. Ed. Engl., 1984, 23, 979; G. Silvestri, S. Gambino, G. Filardo, G. Greco, 
A. Gulotta, Tetrahedron Lett., 1984, 25,4307; O. Sock,; J. Pouliquen, M. Heintz, O. Sock, M. Troupel, J. Chem. Educ. 1986, 63, 1013; M. 

Heintz, O. Sock, C. Saboureau, J. Perichon, M. Troupel, Tetrahedron, 1988, 44, 1631.O. Scialdone, A. Galia, G. Silvestri, C. Amatore, L. 

Thouin, J.-N. Verpeaux, Chem. -Eur. J. 2006, 12, 7433; S. Chanfreau, P. Cognet, S. Camy, J.-S. Condoret,  J. Supercritic. Fluid. 2008, 46, 156; 
Y. Hiejima, M. Hayashi, A. Uda, S. Oya,H. Kondo, H. Senbokub, K. Takahashi, Phys. Chem. Chem. Phys. 2010, 12, 1953. 
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of the sacrificial anode, the space between the two dipoles increased during the electrolysis, 

causing a Joule-heating effect which could limit their further industrial application. 

 

b. Indirect electrocarboxylations of benzyl chloride derivatives 
 

This method consisted in using a homogeneous catalyst exhibiting a reductive power and thus, 

capable of reducing the benzyl halide or the CO2 in the mixture. In this context, the electricity 

served as a reductant to regenerate the active catalyst.  

Various transition metal complexes catalyzed this type of transformations. For example, several 

nickel, 93 palladium, 94 and cobalt 75,95 catalysts achieved the carboxylation of benzyl chlorides 

with significant current efficiency under mild conditions. Yet these protocols provided 

phenylacetic acids with low to moderate turnover numbers due to the deactivation of the catalyst 

after hydrogen abstraction from the solvent or residual water traces.  

  

Figure 65: Carboxylation of benzyl halides using transition metal catalysts (TM) as chemical mediators. 

 

Whether directly or via a catalyst, the electrocarboxylation pathway followed this mechanism 

(Figure 66): the reaction started first by the reduction of benzyl chloride (Ep= -1.62 V vs. SCE) to 

generate the benzyl radical BnCH2
.
, possessing a lower standard reduction (-1.43 V vs. SCE) with 

an estimated lifetime around 10-6 s. This radical underwent thus a second electron transfer to 

provide the anionic form BnCH2
-
. Along with other side reactions, the BnCH2

- performs a 

nucleophilic attack to generate the corresponding carboxylic acid. 

 
93 A. Gennaro, A. A. Isse, F. Maran, J. Electroanal. Chem. 2001, 507, 124; J. F. Fauvarque, Y. De Zelicourt, C. Amatore, A. Jutand, J. App. 
Electrochem. 1990, 20, 338; J. F. Fauvarque, C. Amatore, A. Jutand, J. App. Electrochem. 1988, 18, 109. 
94 J.  Damodar, S. R. K. Mohan, S. R. J. Reddy, Electrochem. Commun. 2001, 3, 762. 
95 W. H. Chung,. P. Guo,; K. Y. Wong, C. P. Lau, J. Electroanal. Chem. 2000, 486, 32; A. A. Bessel, D. R. Rolison, J. Am. Chem. Soc. 1997, 
119, 12673; A. A. Isse, A. Gennaro, E. Vianello, J. Chem. Soc., Dalton Trans. 1996, 1613. 
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Figure 66: General mechanistic pathway for the carboxylation of benzyl chloride. 

 

Noteworthy, the reduction of carbon dioxide to the CO2 radical anion was observed in some of 

these cases but only as an undesirable pathway affecting the efficiency of the electrocarboxylation.  

In the previous chapter, the carboxylation of aryl halides via CO2 activation mediated by 

electrogenerated Sm(II)-salts was successfully realized. Aiming to expand the application of this 

method, the carboxylation of benzyl chlorides was then targeted to produce phenylacetic acids 

using Sm(II) electrolysis. 

 

4. Carboxylation of benzyl chlorides 
 

As a preliminary test using electrogenerated Sm(II) complexes, benzyl chloride was added to the 

electrochemical cell containing ammonium tetrafluoroborate nBu4NBF4 as electrolyte in DMF. 

The current intensity was then fixed at 100 mA, and the electrolysis started along with a constant 

bubbling of CO2 through a fritted glass as previously established for the electrocarboxylation of 

aryl halides.  

After four hours, the phenylacetic acid was isolated with only 11% yield (Figure 67, (1)). 

Replacing DMF by acetonitrile CH3CN due to the higher CO2 solubility in this latter (0.59 M vs. 

0.38 M) 96 afforded a higher yield of 29% (Figure 67, (2)).  

With a green and safe approach in mind, the increase of CO2 pressure was not an option, and a 

practical technique allowing to improve the CO2 concentration in the medium was thus required.  

Carbon dioxide is available not only as gas but also in the solid-state as dry ice. So, the dry ice was 

added during the electrolysis as a CO2 source. Surprisingly, the phenylacetic acid was isolated, in 

this case, in quantitative yield after only two hours of electrolysis without any side product (Figure 

67, (3)). This finding clearly evidenced the intimate interplay between [CO2] soluble and the 

efficiency of the electrocarboxylation.  

 
96 A. Gennaro, A. Isse, E. Vianello, J. Electroanai. Chem. 1990, 289,  203. 
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Figure 67: Carboxylation of benzyl chloride using a stoichiometric amount of electrogenerated divalent Sm in 

different solvents and different CO2 source 

 

To confirm this result, several substrates were engaged under the same conditions (2a-j), and 

moderate to excellent yields were obtained with primary (2a-h) and secondary chloride substrates 

(2i), even the p-nitrobenzyl chloride 2h provided the carboxylated product selectively without any 

reduction of the nitro group as was observed previously starting from nitro-substituted aryl 

bromide. Triphenylmethyl chloride 2j furnished the corresponding carboxylic acid 2’j under these 

conditions but unfortunately in a low yield, probably due to steric bulk. 

 

Figure 68: Scope of the carboxylation of benzyl chlorides with electrogenerated Sm(II) 
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Considering these results, we started the investigations seeking the elaboration of catalytic 

carboxylation conditions using electrogenerated Sm(II) in CH3CN. 

 

5. Sm(II)-catalyzed carboxylation of benzyl chlorides via CO2 activation 
 

a. Optimization & Scope of the catalytic carboxylation 
 

We began our study by generating 20 mol% of Sm2+ in a solution containing nBu4NBF4 in CH3CN. 

This generation was made using a samarium rod first as an anode with a stainless-steel grid (SS) 

as the cathode. The required time to generate 20 mol% of Sm(II) was calculated to be 386 seconds 

under a current intensity equal to 100 mA. After this period, the polarity was reversed and the 

electrocatalysis was started. Then dry ice was added together with benzyl chloride 2a and to 3 

equivalents of trimethylsilyl chloride (TMSCl). During the electrolysis time (2 hours), the dry ice 

was introduced each 15 min in small pieces without significantly perturbing the surface of the 

solvent, to maintain a correct CO2 concentration during the electrolysis without affecting the 

temperature of the medium. The treatment of the final mixture provided 60% of phenylacetic acid 

as isolated yield (Table 2, entry 1).  

 

Table 2: Screening for the reaction conditions catalytic carboxylation of benzyl chlorides. 

 

Entry Y mol% 
Additives 

(equiv) 

Electrolytes 

(equiv) 
2’a Yield(%)a 

1 20 TMSCl (3) nBu4NBF4 (1) 60 

2 20 TMSOTf (3) nBu4NBF4 (1) 45 

3 20 
AcOH, TsOH or 

MsOH (3)  
nBu4NBF4 (1) 0 

4 20 
AcOH, TsOH or 

MsOH (1)  
nBu4NBF4 (1) 0 

5 20 TMSCl (3) nBu4NOTf (1) 59 

6 20 TMSCl (3) nBu4NI (1) 98 
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7 20 TMSCl (3) 
nBu4NI (0.25) + 

nBu4NPF6 (0.75) 
21 

8 20 TMSCl (1.5) nBu4NI (1) 96 

9 10 TMSCl (3) nBu4NI (1) 39 

a Isolated yields 

Replacing TMSCl with trimethylsilyl triflate (TMSOTf) decreased the yield to 45% (entry 2). The 

use of organic acids such as acetic acid instead of TMSCl, aiming to produce directly in the 

medium 2’a, did not yield any carboxylated product and the starting material was recovered (entry 

3 and 4). Changing the nature of the electrolyte, knowing that the ligand choice modifies the redox 

potential Sm(II), to tetrabutylammonium iodide (nBu4NI) yielded 2’a with 98% yield (entry 6). 

However, using less than one equivalent of nBu4NI had a deleterious impact on the reactivity 

(entry 7). In contrast, reducing the amount of TMSCl to half (1.5 equiv) did not significantly affect 

the yields (entry 8). Furthermore, maintaining 20 mol% catalytic loading was critical to obtain a 

high yield (entry 9).  

 

Figure 69: Divalent Sm(II)-catalyzed carboxylation of primary and secondary benzyl chlorides. 
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With these optimized conditions in hands, we next turned our attention to study the scope of the 

reaction using commercially available benzyl chlorides as substrates (2a-t) (Figure 69). Diverse 

primary compounds underwent the carboxylation efficiently with electron-donating (2b-k) and 

electron-withdrawing groups (2l-n). Interestingly, p-vinyl benzyl chloride 2p and 2-chlorobenzyl 

chloride 2q reacted selectively to give the corresponding products with 42% (2’p) and 25% (2’q)  

respectively, without any dehalogenation or dicarboxylation as side reactions already reported in 

other approaches. Moreover, under these conditions, the secondary chloride (2i, 2s, and 2t) 

furnished the relevant products with good to very good yields (yields up to 81%). 

To understand the mechanism of this catalytic reaction, control experiments and mechanistic 

studies were conducted subsequently. 

 

b. Mechanistic studies 
 

To reveal whether a benzyl radical or the corresponding anion initiates the nucleophilic attack or 

indeed the CO2 radical anion species was formed in the solution before a radical substitution with 

the benzyl chloride, numerous blank tests were elaborated to get insight into the mechanistic 

pathway of this transformation (Figure 70). 

 

Figure 70: Blank tests: (1) without Sm(II); (2) without TMSCl; (3) without benzyl chloride; (4) without CO2. 

 

Control experiments showed that substituting the samarium rod with an inert glassy carbon (GC) 

anode provided, after 2 hours, 36% of the carboxylic acid (Figure 70, (1)). This reactivity is 

associated with the direct electrocarboxylation of the benzyl chloride as reported previously in 
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2015. 97  In this case, the benzyl radical or anion attacks the CO2 to yield the carboxylated 

compound. In fact, this result also proves that the presence of divalent samarium enhances the 

carboxylation rate almost three times more than the direct electrocarboxylation.  

Furthermore, without TMSCl and in the presence of the Sm cathode, 2’a was isolated with 8% 

yield (Figure 70, (2)). But surprisingly, in the absence of 2a, white-grey solid precipitation was 

observed when the electrolysis was conducted with dry ice only (Figure 70, (3)). Just as in the 

previous chapter, the crude 13C-NMR revealed the formation of oxalic acid, proving undoubtedly 

that the samarium performed the CO2 reduction catalytically under these reactions. Indeed, 

performing the electrolysis without CO2 which led to the complete recovery of the starting material 

at the end (Figure 70, (3)). 

Due to the presence of chloride ions resulting from TMSCl, ion exchange tests between chloride-

iodide anion were executed (Figure 71). 

Other tests allowed the examination of the effect of replacing 2a by benzyl iodide 2v as a substrate. 

After treatment, the purification provided 2’a with a 52% yield. Second test considered replacing 

the iodide source (nBu4NI) with ammonium hexafluorophosphate (nBu4NPF6) and using 20 mol% 

SmCl3 as a precatalyst. By using this latter, the electrogeneration step is no longer needed, and the 

electrocatalysis process was directly started. This test furnished the product 2’a with 75% yield. 

 

Figure 71: Investigating the role of ion exchange. 

 

Comparing these results with the previous ones obtained under optimized conditions, led to the 

conclusion that the ion exchange did not play a critical role in the carboxylation with the generated 

in situ CO2
 radical anion ability to induce the C-Cl bond dissociation. 

As radical species were generated during this process, radical trapping experiments were essential 

to identify the intermediates involved in this reaction (Figure 72). However, similarly to the case 

encountered with aryl halides, the carboxylic acid 2’a was not detected in the presence of 

additional TEMPO. Even though a TEMPO-CO2 intermediate was not isolated, a radical coupling 

product between the benzyl radical and the TEMPO was neither obtained. Therefore, we suggest 

 
97 H. Tateno, Y. Matsumura, K. Nakabayashi, H. Senboku, M. Atobe, RSC Adv. 2015, 5, 98721.  

https://pubs.rsc.org/en/results?searchtext=Author%3AHiroyuki%20Tateno
https://pubs.rsc.org/en/results?searchtext=Author%3AYoshimasa%20Matsumura
https://pubs.rsc.org/en/results?searchtext=Author%3AKoji%20Nakabayashi
https://pubs.rsc.org/en/results?searchtext=Author%3AHisanori%20Senboku
https://pubs.rsc.org/en/results?searchtext=Author%3AMahito%20Atobe
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that the TEMPO trapped the CO2 radical anion, and then the unstable intermediate underwent a 

degradation process, which explains its absence in the reaction mixture.   

 

Figure 72: Radical trapping attempt using TEMPO as a radical scavenger. 

 

As a compound exhibiting high sensitivity towards radical species, -pinene was added to the 

reaction mixture (Figure 73).  

 

Figure 73: Radical trapping experiment using -pinene as a radical scavenger. 

 

Indeed, the CO2 insertion product 1’u was detected by GC-MS, whereas 2a was completely 

recovered. This result offered certain evidence for the formation of the CO2 radical anion under 

the optimized conditions. 

To evaluate an electrocatalytic process, the cyclic voltammetry (CV) offers many options such as 

the evaluation of the redox behavior of the catalyst and the existence of a catalytic current under 

the optimized conditions. Based on these arguments, cyclic voltammetry studies were conducted 

to provide further proof for the mechanistic pathway. 
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c. Electrochemical studies of the catalytic carboxylation of benzyl chloride 
 

Figure 74 presents the cyclic voltammogram of the catalyst obtained in the absence and in the 

presence of CO2 in addition to the effect of TMSCl on generating a catalytic current under 

optimized conditions. 

 

Figure 74 Cyclic voltammetry analysis of the carboxylation of benzyl chloride: Glassy carbon electrode surface 20 

mm2, and platinum wire as counter electrode scanning potential between – 0.5 and -2 V vs. SCE in CH3CN with 

nBu4NPF6 [0.1 M]. Scan rate: 100 mV/s. (a): 0.1 M nBu4NPF6; (b): (a) + 0.2 M SmCl2; (c): (b) + CO2: (d): (c) + 

0.5 mL solution of BnCl:TMSCl 1:1.5 in CH3CN; (e): (d) + 0.5 mL solution of BnCl:TMSCl 1:1.5.  

 

Without CO2, the quasi-reversible system of Sm(III)/Sm(II) was registered effectively at -1.4 V/ 

SCE (b). Once the CO2 is added, the oxidation wave disappeared, and a weak reduction wave 

emerged with a cathodic shift towards -1.8 V/SCE (c). The addition of a mixture containing 

substrate 1a and TMSCl (1:1.5) triggered a significant reduction wave that started at -0.95 V/SCE 

while further addition of this mixture magnified this wave (d). Overall, these findings confirm the 

existence of a catalytic current involving the Sm(III)/Sm(II) redox couple, assisted by TMSCl. 

After analyzing all these results, we assume the proposed mechanism below (Figure 75): 

First, the Sm2+ reduces the carbon dioxide to the corresponding CO2
.- radical anion and forms the 

complex A. This latter then undergoes a radical substitution with 2a to deliver the samarium 

carboxylate adduct B. After transmetallation with TMSCl, the compound C is formed and the 

oxidized samarium Sm(III) allows the regeneration of the active catalyst Sm(II) via cathodic 

reduction on the Sm rod. Finally, the carboxylic acid 2’a is isolated after hydrolytic treatment. 
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Figure 75 Proposed mechanism for the carboxylation of benzyl chlorides catalyzed by SmI2 

 

6. Conclusion and perspectives 
 

In this chapter, we introduced a new catalytic carboxylation of benzyl chlorides based on 

electrogenerated divalent samarium complexes. This procedure tolerated different functional 

groups, and even secondary benzyl chlorides reacted well under the optimized conditions. Also, 

we propose that this process goes through CO2 activation to generate radical anion [CO2] 
.- that 

triggers a radical substitution to furnish valuable carboxylic acids. 

This method demonstrated a significant advance considering that it is the first carboxylation of 

benzyl chlorides without additional metal as co-reductant. 

This process reveals high efficiency, compared to direct electrocarboxylation on a GC electrode, 

and it thus offers a great alternative to other methods requiring high overpotential and producing 

multiple side products. 

Moreover, a remarkable selectivity towards the carboxylation at the benzylic position was 

observed in the absence of any side product from dehalogenation, -hydrogen elimination or even 

dimerization as reported in previous cases. Furthermore, the ligand exchange was not behind the 

observed reactivity, and we assume that the SmI2 is the real catalyst for the carboxylation in the 

medium. 

Considering these facts, we wondered about the reason behind the failure to elaborate a catalytic 

procedure with aryl chlorides. The main difference between both protocols being the solvent, we 

suggest a catalyst-solvent interplay that dominates the catalytic reactivity. Besides, the electronic 

character of the benzoic acid, where the oxygen is electron-rich by -donation making thus the 
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Sm-O bond stronger, causes a more difficult dissociation requires much more energy than in the 

case of phenylacetic acid, attached to an sp3 carbon center. These hypotheses should be extensively 

studied by DFT calculations to compute the energy barrier for the synthesis of each product and 

the possible role of the solvent to propose an explanation. 

 

Figure 76 Comparison between the aromatic carboxylic acid and phenyl carboxylic acid 

 

Furthermore, as a stereogenic center is produced at the end of the carboxylation of racemic 

secondary benzyl halides, it is worth-studying the reaction simply by starting from a chiral 

substrate to observe if the chirality is retained after the CO2 fixation. Subsequently, investigating 

the carboxylation using a chiral ligand is highly interesting for the direct synthesis of valuable 

enantio-enriched phenylacetic acid derivatives. Indeed, after the CO2 activation, the Sm(III) may 

remain coordinated to the radical surrounded by a chiral environment, to induce the formation of 

a non-racemic carbon center.  

 

Figure 77 Enantioselective carboxylation of benzyl chlorides by chiral Sm(II) complex 

 

Having these catalytic conditions in hand, we can now extend the reactivity of this method by 

testing different substrates suitable for carboxylation reactions, such as unsaturated hydrocarbons. 
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Experimental Part 
 

Instrumentation and Chemicals 

All commercially available reagents were used without further purification unless otherwise 

stated. All solvents were also used without further purification. Dimethylformamide (DMF) and 

Acetonitrile (CH3CN) were purchased from Carlo Erba and VWR chemicals, respectively. 

Tetrabutylammonium tetrafluoroborate (nBu4NBF4) and tetrabutylammonium iodide (nBu4NI) 

were bought from Fluka. The samarium rod was a 12.7mm diameter, 99.9% (metals basis 

excluding Ta) rod, purchased from Alfa-Aesar and the stainless-steel grid from Goodfellow (AISI 

304). Electrolysis was performed using an EGG Instrument Potentiostat/Galvanostat Model 273 

in an undivided cell equipped with a samarium rod as anode and a stainless-steel grid as a cathode. 

NMR spectra were recorded on Bruker AM 360 (360 MHz), 300 (300 MHz) or AM 250 (250 

MHz) in CDCl3. Data for 1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity 

(s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = 

doublet of triplets, td = triplet of doublets, and br = broad signal), coupling constant (J, Hz) and 

integration. Reactions were monitored by thin-layer chromatography (TLC) using bromocresol as 

TLC stain, and column chromatography purifications were carried out using silica gel.    

 

General Procedure for the stoichiometric carboxylation of benzyl chloride 

derivatives 

 

An undivided cell charged with tetrabutylammonium iodide nBu4NBF4 (2 mmol) in acetonitrile 

(40 mL) was used with a chronopotentiometry mode, the electrolysis of Sm2+ was performed for 

7200 seconds with i= 100 mA, and the dry ice was carefully added to the mixture in small pieces 

then the substrate (1 mmol). Then, the reaction was left along with adding a small piece of dry ice 

each 15 min. When the electrolysis stopped, the solvent was evaporated, and a solution of HCl (2 

M) was added to obtain the carboxylic acid which was extracted using Et2O (50 mL). After phase 

separation, the organic phase was washed with water and brine and dried over anhydrous MgSO4. 

The crude obtained after the solvent evaporation under vacuo was purified by column 

chromatography on silica gel (90/10 then 50/50 PE/ EtOAc). 
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General Procedure for the catalytic carboxylation of benzyl chloride 

derivatives 

 

In an undivided cell charged with tetrabutylammonium iodide nBu4NI (1 mmol) in acetonitrile (40 

mL), the electro-generation of Sm2+ was started by setting the chronopotentiometry mode for 386 

seconds with i= 100 mA, which is the required time to produce 20 mol% of SmI2 in solution. After 

this first step, the second one consisted of switching the polarity of the electrodes, so the Sm rod 

now is playing the role of the cathode where the regeneration of the catalyst is going to take place. 

At this point, the dry ice was carefully added to the mixture in small pieces followed by the 

substrate (1 mmol) and the trimethylsilyl chloride TMSCl (1.5 mmol). Now, the time was changed 

to 7200 seconds, and the reaction was left along with adding a small piece of dry ice each 15 min. 

When the electrolysis stopped, the solvent was evaporated, and a solution of HCl (2 M) was added 

to obtain the carboxylic acid which was extracted using Et2O (50 mL). After phase separation, the 

organic phase was washed with water and brine and dried over anhydrous MgSO4. The crude 

obtained after the solvent evaporation under vacuo was purified by column chromatography on 

silica gel (90/10 then 50/50 PE/ EtOAc). 

 

Characterization of the compounds 

 

              

 

 

Phenylacetic acid (2’a): 130 mg (0.96 mmol, 96%). 1H NMR (250 MHz, CDCl3) δ 10.98 (s, 

1H), 7.36 (m, J = 4.8 Hz, 5H), 3.70 (s, 2H). 

13C NMR (63 MHz, CDCl3) δ 178.2, 133.2, 129.4, 128.6, 127.3, 41.1. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.11 

 

2-(o-tolyl)acetic acid (2’b): 39 mg (0.26 mmol, 26%). 1H NMR (360 MHz, CDCl3) δ 7.24 (s, 

4H), 3.72 (s, 2H), 2.37 (s, 3H). 

13C NMR (91 MHz, CDCl3) δ 177.9, 137, 132.1, 130.4, 130.2, 127.9, 126.2, 38.9, 19.3. 
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The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.82 

 

2-(p-tolyl)acetic acid (2’c): 93 mg (0.62 mmol, 62%). 1H NMR (360 MHz, CDCl3) δ 10.72 (s, 

1H), 7.22 (m, 4H), 3.66 (s, 2H), 2.40 (s, 3H). 

13C NMR (63 MHz, CDCl3) δ 178.2, 137.1, 130.3, 129.4, 129.3, 40.7, 21.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 81 

 

2-(p-tolyl)acetic acid (2’d): 160 mg (0.98 mmol, 98%). 1H NMR (250 MHz, CDCl3) δ 7.22 – 

6.93 (m, 3H), 3.66 (s, 2H), 2.34 (s, 3H), 2.31 (s, 3H). 

13C NMR (63 MHz, CDCl3) δ 177.7, 135.8, 133.7, 131.7, 131.1, 130.1, 128.5, 38.7, 20.9, 18.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 98 

 

2-mesitylacetic acid (2’e): 85 mg (0.48 mmol, 48%). 1H NMR (250 MHz, CDCl3) = 6.87 (s, 

2H), 3.68 (s, 2H), 2.29 (s, 6H), 2.26 (s, 3H). 

13C NMR (63 MHz, CDCl3) δ 177.6, 137.1, 136.8, 129.0, 127.9, 34.6, 20.9, 20.1. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 98 

 

 
98 M. She, D. Xiao, B. Yin, Z. Yang, P. Liu, Ji. Li, Z. Shi, Tetrahedron 2013, 69, 7264. 
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2-(4-methoxyphenyl)acetic acid (2’f): 83 mg (0.5 mmol, 50%). 1H NMR (250 MHz, CDCl3) δ 

11.97 (s, 1H), 7.30 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H), 3.76 (s, 2H). 

13C NMR (63 MHz, CDCl3) δ 178.5, 158.9, 130.5, 125.4, 114.1, 55.2, 40.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-(4-(tert-butyl)phenyl)acetic acid (2’g): 96 mg (0.5 mmol, 50%). 1H NMR (250 MHz, 

CDCl3) δ 7.40 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 3.66 (s, 2H), 1.36 (s, 9H). 

13C NMR (63 MHz, CDCl3) δ 178.1, 150.2, 130.4, 128.7, 125.4, 40.5, 34.6, 31.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-(4-nitrophenyl)acetic acid (2’h): 90.5 mg (0.5 mmol, 50%). 1H NMR (300 MHz, CDCl3) δ 

8.16 (d, J = 8.5 Hz, 2H), 7.3 (d, J = 8.5 Hz, 2H), 3.13 (s, 2H). 

13C NMR (75 MHz, CDCl3) δ 171.7, 148.3, 143.6, 131.8, 124.3, 41.2.  

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.99 

 

9H-fluorene-9-carboxylic acid (2’i): 170 mg (0.81 mmol, 81%). 1H NMR (360 MHz, CDCl3) δ 

7.77 (dt, J = 7.6, 1 Hz, 2H), 7.69 (dt, J = 7.5, 1.0 Hz, 2H), 7.44 (dt, J = 7.5, 1.1 Hz, 2H), 7.35 (t, 

J = 7.4 Hz, 2H), 4.90 (s, 1H). 

13C NMR (91 MHz, CDCl3) δ 171.8, 141.4, 140.6, 127.5, 127.3, 125.2, 120.3, 53.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 
99 S. M. Cho, H. K. Lee, Q. Liu, M.-W. Wang, H. J. Kwon, ACS Chem. Biol. 2019, 14, 11. 
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2,2,2-triphenylacetic acid (2’j): 83 mg (0.29 mmol, 29%). 1H NMR (360 MHz, CDCl3) δ 7.35-

7.22 (m, 9 H), 7.17-7.15 (m, 6H). 

13C NMR (91 MHz, CDCl3) δ 174.6, 143.5, 130.4, 128.3, 127.1, 67.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-(m-tolyl)acetic acid (2’k): 63 mg (0.42 mmol, 42%). 1H NMR (360 MHz, CDCl3) δ 7.51 – 

6.94 (m, 4H), 3.69 (s, 2H), 2.43 (s, 3H). 

13C NMR (91 MHz, CDCl3) δ 178.5, 138.4, 133.2, 130.2, 128.6, 128.2, 126.4, 41.0, 21.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.98 

 

2-(4-fluorophenyl)acetic acid (2’l): 69 mg (0.45 mmol, 45%). 1H NMR (300 MHz, CDCl3) δ 

10.45 (s, 1H), 7.42 – 7.16 (m, 2H), 7.16 – 6.89 (m, 2H), 3.65 (s, 2H). 

13C NMR (91 MHz, CDCl3) δ 178.1, 162.5 (d, J = 246 Hz), 130.9 (d, J = 8.0 Hz), 128.9 (d, J = 

3.6 Hz), 115.6 (d, J = 21.6 Hz), 40.1. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-(2-fluorophenyl)acetic acid (2’m): 118 mg (0.77 mmol, 77%). 1H NMR (250 MHz, CDCl3) δ 

11.97 (s, 1H), 7.3-7.25 (m, 2H), 7.17-7.03 (m, 2H), 3.72 (s, 2H). 
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13C NMR (63 MHz, CDCl3) δ 177.4, 160.9 (d, J = 254.7 Hz), 131.4 (d, J = 3.9 Hz), 129.3 (d, J = 

8.1 Hz), 124.1 (d, J = 3.8 Hz), 120.5 (d, J = 15.9 Hz), 115.4 (d, J = 21.7 Hz), 34.2 (d, J = 3.3 

Hz). 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 98 

 

2-(4-(trifluoromethyl)phenyl)acetic acid (2’n): 143 mg (0.7 mmol, 70%). 1H NMR (360 MHz, 

CDCl3) δ 11.10 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 3.76 (s, 2H). 

13C NMR (63 MHz, CDCl3) δ 176.4, 135.7, 129.6, 129.5 (q, J = 32.6 Hz), 125.3 (q, J = 3.8 Hz), 

123.7 (q, J = 271.9 Hz), 40.4.  

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-(naphthalen-1-yl)acetic acid (2’o): 50 mg (0.27 mmol, 27%). 1H NMR (250 MHz, CDCl3) δ 

8.07 – 7.73 (m, 4H), 7.62 -7.41 (m, 4H), 4.12 (s, 1H). 

13C NMR (63 MHz, CDCl3) δ 177.6, 133.8, 132.0, 129.7, 128.8, 128.3, 128.2, 126.5, 125.8, 

125.4, 123.6, 38.7.  

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 98 

 

2-(4-vinylphenyl)acetic acid (2’p): 40.5 mg (0.25 mmol, 25%). 1H NMR (360 MHz, CDCl3) δ 

7.4 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 6.7 (dd, J = 17.6, 10.9 Hz, 1H), 5.75 (dd, J = 

17.6, 0.9 Hz, 1H), 5.26 (dd, J = 10.8, 0.9 Hz, 1H), 3.67 (s, 2H). 

13C NMR (91 MHz, CDCl3) δ 176.9, 136.8, 136.3, 132.7, 129.5, 126.5, 114.0, 40.6.  

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 81 



101 | P a g e  

 

 

2-(2-chlorophenyl)acetic acid (2’q): 71.4 mg (0.42 mmol, 42%). 1H NMR (250 MHz, CDCl3) 

δ 7.44-7.37 (m, 2H), 7.34-7.21 (m, 2H), 3.82 (s, 2H). 

13C NMR (63 MHz, CDCl3) δ 177.2, 134.6, 131.8, 131.7, 129.6, 129, 127, 38.9. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-([1,1'-biphenyl]-4-yl)acetic acid (2’r): 91 mg (0.43 mmol, 43%). 1H NMR (250 MHz, 

CDCl3) δ 7.6 (dd, J = 12.6, 7.9 Hz, 4H), 7.44-7.29 (m, 5H), 3.64 (s, 2H). 

13C NMR (63 MHz, CDCl3) δ 177.1, 140.7, 140.5, 132.2, 129.8, 128.7, 128.0, 127.4, 127.1, 

40.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 82 

 

2,2-diphenylacetic acid (2’s): 127 mg (0.6 mmol, 60%). 1H NMR (300 MHz, CDCl3) δ 7.44 – 

7.26 (m, 10H), 5.06 (s, 2H). 

13C NMR (91 MHz, CDCl3) δ 178.5, 137.8, 128.3, 128.2,127.1, 56.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 

 

2-phenylpropanoic acid (2’t): 78 mg (0.52 mmol, 52%). 1H NMR (360 MHz, CDCl3) δ 9.91 

(s, 1H), 7.44 – 7.28 (m, 5H), 3.80 (q, J = 7.2 Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 181.1, 139.8, 128.7, 127.6, 127.4, 45.5, 18.1. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 11 
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Radical trapping experiment with beta-pinene 
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Electrogenerated Sm(II)-catalyzed the 

hydrocarboxylation of styrene and 

phenylacetylene derivatives 
 

1. Hydrocarboxylation of styrene and phenylacetylene derivatives: state 

of the art 
 

The carboxylation of aryl and benzyl halides does not involve a regioselectivity issue due to the 

existence of an activated bond in these substrates, which is the carbon-halogen one. Despite the 

significant development in this field, still, the use of unfunctionalized starting material remains 

tempting. More specifically, unsaturated hydrocarbons present a perfect example for this type of 

compound, characterized by at least, one -bond between two carbon centers. The electrons 

involved in this bond occupy a molecular orbital with a higher energy value than the one implicated 

in a simple C-C, responsible for the reactivity of these molecules. Besides reaction with ethylene, 

the reaction with a metal catalyst arises a regioselectivity question using these compounds due to 

the presence of two active sites. Nevertheless, the addition of a phenyl substituent favors the 

formation of - benzylic metal intermediate to yield mainly the Markovnikov product (Figure 

78, top). 

 

Figure 78: The hydrocarboxylation outcome depending on the reactional conditions. 

 

In contrast, the formation of the anti-Markovnikov compound presents a challenging goal for 

standard transition metal catalysis. Therefore, various strategies mediated by these metals were 

developed to adjust the selectivity of the reaction towards the -position (Figure 78, bottom). For 

example, the use of a bulky ligand or the addition of a directing group on the substrate provided 
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successful pathways to modulate the regioselectivity of the catalyst and achieve the -CO2 

insertion. 

Hydrocarboxylation of styrenes and phenylacetylenes with CO2 is considered as an atom-

economic and straightforward approach to deliver carboxylic acids. As mentioned in the previous 

chapter, most of the reported methods using styrenes as starting materials led to the formation of 

branched carboxylic acids via CO2 insertion on the -position. 13,76,77 On the other hand, only a 

few reports exist in the literature describing the synthesis of linear carboxylic acids, resulting from 

the direct β-selective hydrocarboxylation and most of them are based on single-electron pathways 

(Figure 79). 100, 101 77b 

 

Figure 79: Described protocols leading to the anti-Markovnikov hydrocarboxylation 

 

The reason behind this -selectivity of a radical addition is principally the stability of the generated 

benzyl radical, which is rapidly reduced, and after protonation, furnishes the anti-Markovnikov 

product. Considering these facts, the CO2 activation-based process could offer the right 

combination to perform the anti-Markovnikov addition with unsaturated substrates such as styrene 

and phenylacetylene derivatives. The reported methods describing the anti-Markovnikov addition 

of styrenes and phenylacetylene derivatives, even as a side reaction, will be discussed in the next 

section (Figure 79).  

 

 

 
100 X. Wang, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2015, 137, 8924. 
101 H. Seo, A. Liu, T. F. Jamison, J. Am. Chem. Soc. 2017, 139, 13969. 
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2. Catalytic -hydrocarboxylation of styrene and phenylacetylene 

derivatives 

 

The principal transition metals allowing the preparation of acrylic acids are nickel, copper, and 

iron. Höberg investigated first the reaction of alkenes and CO2 with a stoichiometric amount of 

Ni(cod)2. 
102 A mixture of branched and linear carboxylic acids was obtained, and the proportion 

of these two products depended on the reaction temperature and electronic features of the alkenes 

(Figure 80).  

 

Figure 80: Höberg's work on the carboxylation of styrene derivatives 

 

Indeed, these results inspired others to test catalytic approaches based on Ni0 complexes. Earlier 

attempts to generate carboxylic acids selectively from styrenes and phenylacetylenes derivatives 

were limited to the use of organoboranes, organozinc and Grignard reagents as hydride sources 

and reductants. After a few years of investigations, direct hydrocarboxylation was achieved using 

water as proton source but still, the regioselectivity was not as expected. And finally, the use of 

proper ligand for the metal center and the addition of a suitable proton source allowed the 

establishment of direct and selective -hydrocarboxylation of double and triple bonds.77b, 100 

 

a. The use of organoboranes 
 

Boranes are compounds containing an active hydrogen-boron bond capable of reducing a C=C, 

C=N or C=O motifs via hydroboration reaction. Interestingly, this reduction follows an anti-

Markovnikov syn-addition manner where the bulky boron attaches to the less substituted position 

while the hydrogen reacts with the more substituted one. Thanks to the boron’s empty p orbital, 

this group can be easily transmetallated once transformed to boronate by accepting two electrons 

usually from a base or a halide. 

 
102 a) H. Hoberg, D. Schaefer, J. Organomet. Chem. 1982, 238, 383; b) H. Hoberg, D. Schaefer, G. Burkhart, J. Organomet. Chem. 1982, 228, 21; 

c) G. Burkhart, H. Hoberg, Angew. Chem. 1982, 94, 75, Angew. Chem. 1982, 94, 75; Angew. Chem., Int. Ed. 1982, 21, 76; d) H. Hoberg, D. 

Schaefer, J. Organomet. Chem. 1982, 236, 28; e) H. Hoberg, D. Schaefer, J. Organomet. Chem. 1983, 51-53; c) H. Hoberg, Y. Peres, A. 
Milchereit, J. Organomet. Chem. 1986, 307, 38. 



110 | P a g e  

 

Based on this characteristic, various -hydrocarboxylation of unsaturated hydrocarbons were 

elaborated and catalyzed with transition metals.5 In the case of styrenes and phenylacetylenes, 

copper(I) catalysis allowed the preparation of the corresponding carboxylic acids with high 

regioselectivity.103  

In 2011, Sawamura104 and Hou105 described independently the hydrocarboxylation of alkenes 

mediated by a Cu-catalyst in two steps (Figure 81). First, a hydroboration reaction using 9-BBN 

permitted the fixation of the boron moiety on the distal position. Secondly, the strong base used 

as an additive (tBuOK or LiOMe) gave rise to the boronate species, facilitating the 

transmetallation step via a Cu-O-B transition state. Finally, the CO2 insertion into the Cu-C bond 

delivered the expected carboxylic acid. Even though this method tolerated unactivated alkenes, 

the hydrocarboxylation of internal alkenes remained inaccessible and only two examples were 

highlighted with styrene derivatives. 

 

Figure 81: Hydrocarboxylation of alkenes catalyzed by Cu-complexes. 104, 105 

 

Skrydrups’s work overcame this barrier by replacing the harsh bases with cesium fluoride (CsF) 

and elevating the reaction temperature to 120°C (Figure 82).106 

Similarly to the previous examples, the boron-fluoride interaction triggered the transmetallation 

step between the boronate and the copper catalyst and the subsequent CO2 insertion into Cu-C 

bond. Under these conditions, the hydrocarboxylation occurred successfully with different 

alkenes and alkynes. However, styrenes and stilbenes derivatives delivered a mixture of 2 and 3-

propionic acid with poor regioselectivity, except with heteroaromatics. Terminal 

phenylacetylenes underwent a  -dicarboxylation, furnishing at the end malonic acids instead 

of acrylic acids. 

 
103 S. Wang,  G. Du, C. Xi, Org. Biomol. Chem. 2016, 14, 3666. 
104 H. Ohmiya, M. Tanabe, M. Sawamura, Org. Lett. 2011, 13, 1086. 
105 T. Ohishi, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2011, 50, 8114. 
106 M. Juhl, S. L.R. Laursen, Y. Huang,  D. U. Nielsen, K. Daasbjerg, T. Skrydstrup, ACS Catal. 2017, 7, 2, 1392. 

https://pubs.rsc.org/en/results?searchtext=Author%3ASheng%20Wang
https://pubs.rsc.org/en/results?searchtext=Author%3AGaixia%20Du
https://pubs.rsc.org/en/results?searchtext=Author%3AChanjuan%20Xi
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Martin++Juhl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Simon+L.+R.++Laursen
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Yuxing++Huang
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Dennis+U.++Nielsen
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Kim++Daasbjerg
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Troels++Skrydstrup
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Figure 82: Skydrup's hydrocarboxylation of alkynes to produce malonic acids. 106 

 

b. The use of organozinc and Grignard reagent 
 

Due to the stability of the - benzylic metal intermediate, hydrocarboxylation approaches based 

on metal-hydride catalysis contributed typically to the CO2 fixation on the -position and the 

subsequent isolation of phenylacetic acids as the main product while the linear carboxylic acid 

remained a minor impurity. For example, Ma’s group described a Ni-catalyzed syn-

hydrocarboxylation of alkynes using air-sensitive and pyrophoric Et2Zn as a hydride source.107 

The optimized conditions gave the phenylacetic acid with 84% yield while less than 3% of linear 

carboxylic acid was obtained, along with the reduced product. The formation of nickel hydride 

during the reaction on the −carbon along with organozinc on the adjacent position furnished the 

Markovnikov product eventually. However, the single example where the anti-Markovnikov 

product was isolated majorly with 54% yield was started from 1-phenyl-1-propyne as a substrate. 

Unfortunately, this inversed reactivity was not furtherly explained (Figure 83). 

 

Figure 83: Products of the hydrocarboxylation of 1-phenyl-1-propyne using Ma’s conditions.107 

 

Likewise, Thomas’ work used FeCl2 as a catalyst mixed with EtMgBr to form in situ the metal 

hydride complex for the hydrocarboxylation of styrenes (Figure 84). 13b In most of the screened 

molecules, the phenylacetic acid remained the primary product. Surprisingly, changing the 

hydride source from EtMgBr to CpMgBr reversed the regioselectivity and furnished the linear 

carboxylic acid in much higher yield (74%, 1/6 /) without further explanation. 

 

 
107 S. Li, W. Yuan, S. Ma, Angew. Chem. 2011, 123, 2626; Angew. Chem. Int. Ed. 2011, 50, 2578 
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Figure 84: Effect of the hydride source on the regioselectivity. 13b 

 

c. Ligand-controlled hydrocarboxylation 
 

The first regioselective hydrocarboxylation was reported in Martin’s laboratory using a dual-

system of bulky Ni0 complex with iPrOH or t-BuOH as a readily available and green proton 

source for the hydrocarboxylation of alkynes.100 This approach demonstrated a high 

regioselectivity profile in favor of the -position, in most cases, along with very good yields 

(Figure 85). 

The proposed mechanism attributed the observed selectivity to the formation of two 

oxinickelalacyclopentene in equilibrium where one of them exhibit a higher steric hindrance 

between the proton source and the alkyl substituent on the terminal position of the alkyne (Figure 

85).  

 

 

Figure 85: Ni-catalyzed selective hydrocarboxylation of alkynes to yield acrylic acids.100 
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Still, substrates bearing large substituent at the terminal position of the alkyne afforded a 

mixture of the  and -carboxylic acids, and in many cases, the authors switched from iPrOH 

to t-BuOH to obtain higher regioselectivity. 

 

In 2018, König reported a novel strategy combining photochemistry and Ni-catalysis to 

achieve a selective hydrocarboxylation (Figure 86).77b Concerning the reactional conditions, 

a mixture of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as photosensitizer 

with Hantzsch ester (HEH) as a terminal reductant in addition to different inorganic salts 

(K2CO3, LiOOCCH3) was used to perform this reaction. This method is under ligand control, 

as a simple ligand like neocuproine led to the branched carboxylic acid while the use of 

bis(diphenylphosphino)butane (dppb) resulted in the formation of the -carboxylated product.  

 

Figure 86: Ligand controlled photo-hydrocarboxylation of styrene derivatives reported                                                

by König and his co-workers.77b 

 

Based on DFT calculations, the authors proposed two pathways depending on the ligand 

choice:  

 

1-With the neocuproine (Figure 86, on the left), a nickel hydride complex was generated after 

protonation by HEH.+, which reacted subsequently with the styrene and the Ni(II) occupied 

the benzylic position. An electron transfer permitted the generation of Ni(I) and the 

subsequent insertion of CO2 into the Ni-C bond. Lastly, another electron transfer delivered 

the branched carboxylic acid.  

2- With dppb (Figure 86, on the right), the calculation revealed an interaction between the Ni 

and CO2, to form Aresta’s complex first. This latter underwent then the styrene insertion, 

giving rise to the nickelalactone intermediate, similar to the one reported in Martin’s work,100 
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where the carboxylate is on the distal site. After double electron transfer, it furnished the 

desired acrylic acid. However, the -hydrocarboxylation worked only with unsubstituted 

styrenes and the need for inorganic salts was not fully explained.  

  

d. Site-selectivity controlled by the substrate 
 

This reactivity was described by Ma’s group inspired by a recently developed approach based 

on a Ni-catalysis to achieve the hydrocarboxylation of alkynes (Figure 87). 108 While in the 

previous report, the authors obtained the phenylacetic acid as the main product, 107 the 

authors reversed the regioselectivity in this work by adding a hydroxyl group as a directing 

group towards the -position and producing the desired -alkylidene--butyrolactones 

finally. 101b 

 

Figure 87: Synthesis of lactones via the hydrocarboxylation of alkynes mediated by Ni catalysis 

 

The reaction proceeded precisely the same as in the previous report, 107 but in this case, the 

Ni center was coordinated to the hydroxy group, forming a much stronger intermediate than 

the - benzylic metal ones. This coordination dictated subsequently the addition of the 

metal-hydride complex to the CO2 and provides the anti-Markovnikov product.  

 

Another illustration for this type of reaction was reported by Sato and co-workers in 2017. 
109 In this example, a Ni-catalyst was used in the presence of water as a proton source for the 

selective -carboxylation of ynamides (Figure 88). After reporting the synthesis of  -

amino--unsaturated esters where the carboxylation occurred on the -carbon of the 

ynamides,110 the authors were surprised to obtain the -selectivity using the Ni-H2O system.  

 

 

Figure 88: Hydrocarboxylation of ynamides to produce -amino--unsaturated esters.109110 

 

 
108 S. Li, S. Ma, Chem. Asian J. 2012, 7, 2411. 
109 R. Doi, I. Abdullah, T. Taniguchi, N. Saito, Y. Sato, Chem. Commun. 2017, 53, 7720 
110 N. Saito, I. Abdullah, K. Hayashi, K. Hamada, M. Koyama, Y. Sato, Org. Biomol. Chem. 2016, 14, 10080. 
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After several investigations, the authors discovered that using the mixture Zn/MgBr2 was 

crucial to obtain this selectivity and unlike Martin’s work,100 the steric hindrance was not the 

critical factor. Therefore, the authors suggested that either a steric repulsion between the Ni-

catalyst and the alkyl substituent on the -position of the ynamides was at the origin of the 

-selectivity, or the coordination of the nitrogen atom of the substrate and the Ni-complex 

directed the CO2 addition towards the -position. 

 

3. -Selective hydrocarboxylation initiated by CO2
.- 

 

The main difficulty with the CO2 was the high redox potential, requiring thus harsh conditions 

and strong organometallics to overcome this barrier. On the other hand, some organic 

frameworks demonstrated, once activated by light, a high reductive power that could offer a 

solution for the challenging CO2 reduction.  

Jamison’s group adopted this idea and described a -selective hydrocarboxylation with styrene 

derivatives via continuous flow using p-terphenyl as a photoredox organocatalyst (Figure 

89).101 After screening different reductants and proton sources, a mixture of 1,2,2,6,6-

pentamethylpiperidine (PMP) and water afforded the best result with 87% yield and a 29:1 

ratio of mono- to dicarboxylated product in DMF. Moreover, the hydrocarboxylation furnished 

the carboxylic acids in good yields, regardless of the styrene substitution. 

To get insight into the mechanism, the authors conducted two reactions: one without the CO2 

and the other without the PMP. Even though in both cases no carboxylic acid was detected, 

still the conversion was 88% without the CO2, and ethylbenzene was detected. This result can 

be rationalized by the reduction of styrene (E°= - 2.58 V/SCE in DMF) to the corresponding 

benzyl radical by the p-terphenyl (E°= - 2.63 V/SCE in DMF). Furthermore, a deuterium 

labeling study proved undoubtedly that the water is the proton source in the hydrocarboxylation 

process.  

 

Figure 89: p-Terphenyl catalyzed the photocatalytic hydrocarboxylation of styrene derivatives. 
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Concerning the mechanistic pathway, the authors proposed a radical mechanism initiated by 

the photoexcitation of p-terphenyl and its subsequent reduction to the corresponding radical 

anion via SET from PMP (Figure 89). This strong reductant performed the CO2 reduction to 

the corresponding radical anion and this latter underwent an anti-Markovnikov addition with 

the styrene to generate the benzyl radical. As previously mentioned, this radical is unstable and 

thus the corresponding carbanion is rapidly generated. Lastly, the protonation of this anion 

yielded the expected -carboxylic acid, whereas the dicarboxylated product was delivered by 

trapping a second molecule of CO2 instead of the proton. 

 

4. Electrocarboxylation of styrene and phenylacetylene derivatives 
 

Different electrochemical strategies addressed the hydrocarboxylation of unsaturated 

hydrocarbons. 21 Most of the reported approaches with styrenes were based on using a 

magnesium or an aluminum electrode as a sacrificial anode with different types of cathode 

material (GC, Pt, Ti, Ni …). The released cations in these procedures facilitated the electron 

transfer by decreasing the overpotential and most importantly, stabilizing the obtained 

carboxylate and limiting its decomposition.  

Nevertheless, the investment in chemical mediators, which are usually group d-complexes, 

allowed the elaboration of much more selective electrocarboxylation by exploiting the capacity 

of the transitional metal to favor the interaction with one substrate over another, thus enhancing 

the regioselectivity of the CO2 fixation process.  

 

a. Electrocarboxylation using sacrificial anodes 
 

Under these conditions, different possible reactions can occur depending on the reduction 

potential of the olefin. If E°CO2 > E° styrene, this indicates that the CO2 undergoes the reduction 

first to yield the [CO2]
.- that attacks the double bond and generates the carboxylate anion. As 

side products, the CO2 dimerization to oxalate, CO, or even carbonate can be obtained in 

proportions determined by the experimental conditions. If E°CO2 ≈ E° styrene, in this case, 

depending on the concentration of the reaction components, an electron transfer between the 

styrene and CO2 is considered the primary step in this process. Usually, this type of 

electrocarboxylations led to low yields. If E°CO2< E° styrene, the styrene receives first the electron 

to produce the radical anion species which then acts as a nucleophile towards CO2 and delivers 

the corresponding radical anion.  

Even if in most cases, the succinic acid is the primary product,111 various parameters affect the 

electrocarboxylation of styrenes like the electrode material, the concentration of the substrate, 

 
111 H. Senboku, H. Komatsu, Y. Fujimura, M. Tokuda, Synlett 2001, 3, 418; H. Wang, M.‐Y. Lin, H.‐J. Fang, T.‐T. Chen, J.‐X. Lu, Chin. J. 
Chem. 2007, 25, 913; G.-Q. Yuan, H.-F. Jiang, C. Lin, S.-J. Liao, Electrochimica Acta 2008, 53, 2170 

https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
https://www.sciencedirect.com/science/journal/00134686
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the proton donor choice. Changing any factor alters significantly the efficiency of the 

electrocarboxylation, and leads to different product distributions.  

Addressing this problem, an important study of the electrochemical carboxylation of styrene 

was conducted by Silvestri and his co-workers using Al sacrificial anode (Figure 90).112 The 

authors discussed the different side reactions resulting from each component. For example, the 

styrene undergoes the reduction to ethylbenzene via hydrogen transfer from water traces in 

DMF or the exothermic polymerization if its concentration exceeded 0.8 M.  

Furthermore, the cathode material had a high impact on the reaction. While the use of Zn, Cu 

or mercury as cathodes enhances the styrene polymerization even at low concentration, the use 

of vitreous carbon resulted in the isolation of monocarboxylic acid in high yield along with 3,4-

diphenyl adipic acid in addition to causing high overpotential and low Faradic efficiency.    

 

 

Figure 90: Possible transformations of styrene and carbon dioxide in an electrochemical process. S= styrene, D-H: 

proton donor. 112 

 

On the other hand, the addition of a proton donor like water or phenol led to a dramatic change 

in the composition of the mixture. The use of water led to an increase in the protonation rate of 

the styrene (104 M-1.s-1) and thus the yield of the phenyl propionic acid raised significantly. 

However, the phenol revealed a higher reactivity by elevating the rate to more than 105 M-1.s-1. 

This difference can be attributed to the interaction of water with DMF, and the higher proton 

transfer efficiency of phenol with respect to H2O. 

 
112 S. Gambino, A. Gennaro, G. Filardo, G. Silvestri, E. Vianello, J. Electrochem. Soc. 1987, 134, 9, 2172 

http://jes.ecsdl.org/search?author1=S.+Gambino&sortspec=date&submit=Submit
http://jes.ecsdl.org/search?author1=A.+Gennaro&sortspec=date&submit=Submit
http://jes.ecsdl.org/search?author1=G.+Filardo&sortspec=date&submit=Submit
http://jes.ecsdl.org/search?author1=G.+Silvestri&sortspec=date&submit=Submit
http://jes.ecsdl.org/search?author1=E.+Vianello&sortspec=date&submit=Submit
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Furthermore, the authors proved that the formation of ethylbenzene via protonation became 

disfavored upon the addition of CO2 even under high concentration of proton source, and the 

carboxylation of the styrene occurred smoothly to furnish phenylsuccinic acids and/or phenyl 

propionic acid.  

 

As for the phenylacetylene, its transformation into carboxylic acids was not well investigated 

without the addition of transitional metals in the medium. In the literature, only one approach 

introduced the electrocarboxylation of phenylacetylene to produce maleic acid as the main 

product (Figure 91). 113  

The combination of a Ni cathode with an Al anode using nBu4NBr as conducting salts in DMF 

under 4 MPa CO2 pressure was crucial to obtain an excellent yield of phenyl maleic anhydride 

(88%) along with 5% of dicarboxylic acid.  

 

Figure 91: Electrocarboxylation of phenylacetylene derivatives using a Ni-cathode.113 

 

However, the addition of water reversed these results in favor of the formation of the 

dicarboxylic acid for which the yield increased from 4% in a dry solvent to 90% after the 

addition of 0.3 mL of H2O. The authors proposed that the water provided protons, favoring the 

reduction of phenylacetylene into styrene, and finally delivering the saturated phenylsuccinic 

acid.  

Recently, the same group reported an interesting electrosynthesis of saturated tricarboxylic 

acids besides dicarboxylic acids just by adding CuI as a catalyst to activate the double bond of 

phenyl maleic anhydride and subsequently to trigger a third CO2 fixation (Figure 92).114 

 
113 G.-Q. Yuan, C. Lin, H.-F. Jiang, Tetrahedron 2008, 64, 5866. 
114 C. Li, G. Yuan, H. Jiang, Chin. J. Chem. 2010, 28, 1685 

https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
https://www.sciencedirect.com/science/article/pii/S0013468607011656#!
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Figure 92: The effect of adding CuI on the electrocarboxylation of alkynes.114 

 

b. Carboxylations via chemical mediators 
 

Besides lowering the overpotential, the addition of a chemical mediator can favor the 

electrocarboxylation over other side reactions regardless of the parameters mentioned above. 

A remarkable example based on a FeI-complex [CpFe(CO)2]2 (Fp2) was presented in 2000, 

using an aluminum foil as a cathode and Hg pool as an anode for the carboxylation of 

styrenes.115 This Fe-complex activated the CO2 selectively to form the CO2
.- that performed 

then a radical addition with styrene delivering mainly the dicarboxylic acid while the low 

amount of 3-phenyl propionic acid came from the water traces in DMF. Finally, cyclic 

voltammetry studies demonstrated the definite interaction between the Fp2 and CO2 because, 

after the addition of this latter, the oxidation wave disappeared whereas the reduction one 

multiplied.   

 

Figure 93: Fe-catalyzed carboxylation of styrene derivatives via CO2 activation.115 

 
115 D. Ballivet-Tkatchenko, J.-C. Folest, J. Tanji, Appl. Organometal. Chem. 2000, 14, 847 
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In the case of phenylacetylene, the carboxylation was mainly reported with Ni-bipyridine 

complexes, by Périchon and his co-workers under mild conditions. The electricity serves as a 

clean reductant by transforming NiII to Ni0 complex, which is the active catalyst in this reaction. 

Inspired by Hoberg’s work 92, the authors elaborated the reductive electrocarboxylation of 

alkynes catalyzed by Ni complexes using Mg as a sacrificial anode. In their initial, work, only 

the -acrylic acid was obtained with terminal alkynes.116 However, the use of phenylpropene 

gave 65% of a mixture of monocarboxylic acid with  regioselectivity of 62/38 with 7% of 

the corresponding dicarboxylic acid (Figure 94). 117  

 

Figure 94: Carboxylation of phenylpropene and the isolated mixture of carboxylic acids reported by Périchon's 

group. 117 

 

This result made the authors realize the steric hindrance effect on the regioselectivity. A few 

years later, they highlighted the role of Mg2+ as it allows the Ni2+ cleavage from the final 

product, leaving it free to regenerate the Ni0 via cathodic reduction. 

 

As far as we know, a sustainable electrochemical procedure delivering the -carboxylation of 

styrenes and phenylacetylenes selectively does not exist in the literature. Therefore, the 

electrocatalytic strategy developed in our group to generate in situ Sm2+ as a strong 

monoelectronic reductant from soluble samarium anode that, unlike the unreactive Mg2+ and 

Al3+, reacts as a catalyst and reduces the CO2 to CO2
.-  presents a worth-trying option for the 

hydrocarboxylation of unsaturated substrates to produce selectively the anti-Markovnikov 

product. 

 

 
116 E. Duñach, J. Périchon, J. Organomet. Chem. 1988, 352, 239 
117 E. Duñach, S. Dérien, J. Périchon, J. Organomet. Chem. 1989, 364, 33 
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5. Catalytic hydrocarboxylation of styrene and phenylacetylene 

derivatives mediated by electrogenerated Sm(II) 
 

a.  Hydrocarboxylation of styrene derivatives 
 

For the optimization, indene 3w was chosen as a starting material to test the carboxylation using 

SmCl3 as a precatalyst for the reaction along with a samarium rod as a cathode and a stainless steel 

grid as the anode (Table 3). Indeed and according to our preliminary tests with benzyl chlorides 

in the precedent chapter, the electrogeneration step was not performed and the electrocatalysis 

process was directly started in acetonitrile. Of note, dry ice was added as  CO2 source along with 

TMSCl as an oxophilic reagent. As for the proton donor, water was firstly chosen after the reported 

accomplishments using the SmI2-H2O system for the reduction of challenging functional groups.118 

Even though a large quantity of the starting material was recovered, still the monocarboxylic acid 

was isolated with 35% yield (entry 1). However, at the end of the electrolysis, the Sm electrode 

was covered with a black layer. H2O was thus replaced with simple alcohols, leading to a clear 

solution, and slightly higher yields were observed with MeOH and EtOH (entry 2-3). The addition 

of t-BuOH gave 50% of the monocarboxylic acid, revealing the essential function played by the 

proton source choice (entry 4). Due to its ever-increasing applications in organic chemistry and 

catalysis, hexafluoroisopropanol (HFIP) was added to the electrochemical medium as a potential 

proton donor. 119 However, the desired product was delivered but only with 22% yield along with 

a great amount of degradation (entry 5).   

Next, we found that decreasing the number of equivalents of t-BuOH led to a lower amount of the 

desired product, accompanied by traces of phenylsuccinic acid (entry 6-7). Similarly, a large 

amount of TMSCl was required for this transformation (entry 8-9). Eventually, a mixture of 10 

equiv of t-BuOH and 8 equiv of TMSCl afforded, after four hours of electrolysis, the highest yield 

about 62% (entry 10). It is worth noting that increasing the catalyst loading to 20 mol% did not 

furnish any further improvement of the yield (entry 12). On the contrary, inferior results were 

obtained with 5 mol% of SmCl3 with no significant side reaction (entry 13). Lastly, using dry ice 

(entry 14) and maintaining a diluted medium (entry 15) were beneficial for the carboxylation.   

 

 

 

 
118 M. Szostak, M. Spain, D. Parmar, D. J. Procter, Chem. Commun. 2012, 48, 330 
119 I. Colomer, A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat. Rev. Chem. 2017, DOI: 10.1038/s41570-017-0088. 



122 | P a g e  

 

Table 3 Screening of the reaction conditions for the hydrocarboxylation of alkenes  

Entry Y mol% 
Proton donor 

(equiv) 
TMSX (equiv) Yield(%)a 

1 10 H2O (20) TMSCl (6) 35 

2 10 MeOH (20) TMSCl (6) 37 

3 10 EtOH (20) TMSCl (6) 42 

4 10 t-BuOH (20) TMSCl (6) 50 

5 10 HFIP (20) TMSCl (6) 22 

6b 10 t-BuOH (3) TMSCl (6) 39 

7b 10 t-BuOH (5) TMSCl (6) 51 

8 10 t-BuOH (10) TMSCl (6) 56 

9 10 t-BuOH (10) TMSCl (3) 38 

10 10 t-BuOH (10) TMSCl (8) 62 

11 10 t-BuOH (10) TMSOTf (6) N.R 

12 20 t-BuOH (10) TMSCl (8) 60 

13 5 t-BuOH (10) TMSCl (8) 27 

14c 10 t-BuOH (10) TMSCl (8) 35 

15d 10 t-BuOH (10) TMSCl (8) 53 

a 
Isolated yields. b traces of succinic acid were detected by 1H NMR. c dry ice was replaced by CO2(g) (1 atm). d 15 

mL instead of 35 mL of CH3CN. 

The best results were eventually obtained using 10 mol% of SmCl3 with a 1/10/8 mixture of the 

alkene, t-BuOH, and TMSCl, respectively in the presence of CO2 added to the reaction as dry ice. 

Encouraged by these findings, we started investigating the scope of SmII-catalyzed regioselective 

hydrocarboxylation of styrene derivatives (Figure 95). Initially, different unsubstituted styrenes 

were tested. Electron-deficient (3c) and -rich motifs (3g-h)  afforded the corresponding acrylic 

acids with yields up to 95% with total regioselectivity. This successful carboxylation of electron-

rich compounds (e.g. 3g and 3h), known for their high reduction potential, presents strong 

evidence that the CO2 is predominantly reduced by the divalent samarium. Substrates bearing a 

chlorine substituent (3d and 3j) caused a dramatic decrease in the conversion and in the yield. This 

behavior was attributed to the previously reported reactivity of aryl chlorides with CO2 using 

Sm(II) complex (see chapter 2), although no aryl carboxylic acid was detected in the mixture.  

When a substrate bearing a phenyl (3f) or a methyl group (3i)  on the benzylic position was tested, 

the reaction delivered the desired product successfully with moderated yields (50% and 60%, 

respectively). To our delight, a (hetero)aromatic reagent such as 2-vinylbenzofuran (3k)  was also 
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tolerated under our conditions and gave  3-(1-benzofuran-2-yl)propionic acid (3’k) with 52% 

yield. Lastly, substrates bearing an – OH (3l), or -CN (3m) group inhibited the reaction. This 

observation can be rationalized with the high tendency of the low valent lanthanides to coordinate 

to such electron-donating substituents which may lead to catalyst quenching. 

 

Figure 95: Substrate scope of styrene derivatives. 

 

Interestingly, vinyl bromides (3o and 3p) were unstable under the electrochemical conditions, 

furnishing 3’a as a final product with comparable yields to the one obtained from styrene (3a) 

(Figure 96). 

 

Figure 96: hydrocarboxylation of bromovinyl benzene as a substrate. 
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The electrochemical hydrocarboxylation conditions were also compatible with a range of 1,2-

disubstituted olefins. As shown in Figure 97, the hydrocarboxylation of alkenes with a methyl 

substituent (3q-t) delivered the corresponding carboxylic acids (3’q-t) in moderate to excellent 

yields (45-95%). Also, stilbenes derivatives (3w-x) underwent smoothly the transformation, and 

furnished the desired linear carboxylic acids (3’w-x), albeit in lower yields, probably due to steric 

hindrance.  

 

Figure 97: Substrate scope of 1,2 disubstituted styrene derivatives. 

 

Compared to the previously reported hydrocarboxylation strategies, the use of electrogenerated 

divalent samarium from SmCl3 demonstrated a remarkable -selectivity by furnishing exclusively 

the product of the anti-Markovnikov addition in all cases described above. Encouraged by these 

results, we decided to extend the hydrocarboxylation conditions to the aryl acetylene derivatives, 

aiming to produce the corresponding acrylic acids. 

 

b. Hydrocarboxylation of phenylacetylene derivatives 
 

We started our investigation with the alkynes based on the optimized conditions established for 

the styrenes derivatives (Table 4). Starting from 4-ethynyltoluene 4b and using 10 mol% of 

SmCl3, 10 equiv of t-BuOH, and 8 equiv of TMSCl in acetonitrile along with the addition of dry 

ice as a CO2 source, we identified, after four hours of electrolysis, three different products: 3-(p-

tolyl)propanoic acid 3’b as the main product (60%), 3-(p-tolyl)acrylic acid 4’b as a secondary 

product (19%, E/Z 1/4), and traces of 2-(p-tolyl)succinic acid 4’’b (10%) (entry 1). The increase 

of t-BuOH to 20 equiv disfavored the formation of dicarboxylic acid 4’’b but enhanced the 

cinnamic acid yield to become 28%( E/Z 1/4) while the unsaturated carboxylic acid remained the 
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major product with 64% yield (entry 2). Any decrease in TMSCl to less than 6 equiv caused a 

considerable drop in the hydrocarboxylation yield (entry 4).  

Table 4 Optimization of the hydrocarboxylation of alkynes reaction conditions. 

 

Entry 
Proton donor 

(equiv) 
Y equiv of TMSCl  

Yield(%)a 

(3’b:4’b:4’’b)b 

1 t-BuOH (10)  8 79% (60:19:10) 

2 t-BuOH (20) 8 92 (64:28:0) 

3 t-BuOH (20) 6 91 (66:25:0) 

4 t-BuOH (20) 3 36 (30:6:0) 

5 MeOH (20) 6 25 (25:0:0) 

6 EtOH (20) 6 31 (31:0:0) 

7 PhOH or PhSH (20) 6 0 

8 
Et3SiH or Ph3SiH 

(1, 3 or 5) 
0 0 

9 MsOH or AcOH (3) 6 0 

10c t-BuOH (20) 6 12 (6:5:1) 

11d t-BuOH (20) 6 0 

12e t-BuOH (20) 6 92 (70:22:0) 

 a Isolated yields. b Due to the unsuccessful separation of the unsaturated product from the saturated one, the 

proportions are determined by 1H NMR. c THF was used as a solvent. d MeOH was used as a solvent. e electrocatalysis 

for 8 hrs.  

 

The use of other alcohols like MeOH, EtOH instead of t-BuOH furnished exclusively the 

unsaturated carboxylic acid but with a low yield (22% and 35% respectively) (entry 5-6). 

Interestingly, adding phenol or thiophenol, aiming to trigger a hydrogen atom abstraction (HAT), 

resulted in the full recovery of 4b (entry 7). Furthermore, we evaluated the reaction with silanes 

such as Et3SiH or Ph3SiH as hydrogen donors and oxophilic reagents. However, only the reduction 

of the triple bond was detected without any CO2 insertion in this case (entry 8). As observed with 

aryl and phenyl chlorides, the use of organic acids (MsOH or AcOH) inhibited the carboxylation 

(entry 9).  
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Regarding the solvent effect, the use of THF instead of MeCN decreased the yield to 12% (entry 

10). Moreover, the MeOH was not a suitable solvent for this reaction (entry 11).  

Increasing the time to 8 hours instead of 5 hours resulted in a slight change of the products mixture 

towards the formation of 3’b (70%) isolated together with 22% of 4’b (entry 12). 

After all these optimizations, we decided to adopt the best conditions to perform the 

hydrocarboxylation of phenylacetylene derivatives (Table 4, entry 3). The scope of this method 

showed better yields than the ones obtained with the styrene derivatives, which is consistent with 

the higher reactivity of alkynes vs. alkenes. 

 

Figure 98: Scope of the hydrocarboxylation of phenylacetylene derivatives 

 

A remarkable substituent effect was observed in the case of alkynes. Compared to the substrate 

4a, the electron-rich substituents (4b-d) favorized the formation of the corresponding cinnamic 

acids (4’b-d) on the detriment of the saturated products (3’b-z). Only one alkyne moiety of the use 

of 1,3-diethynylbenzene (4g) reacted to afford exclusively 3-(3-ethynylphenyl) acrylic acid 4’g 

without notable diastereoselectivity. The hydrocarboxylation of internal alkynes was also possible 

under our electrochemical conditions with good yields (4h-i) and E-selectivity. Lastly, the 1,2-

diphenylethyne (4j) furnished a mixture of 3’x and 4’j (E) but only with a yield of 10%. 
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We next turned our attention to the hydrocarboxylation of protected alkynes. The optimized 

electrochemical conditions tolerated a trimethylsilyl group and led to the exclusive preparation of 

the analogous acrylic acids in good yields (Figure 99). 

All the tested substrates (4k-o) produced the desired carboxylic acids (4’k-o) with yields up to 

60% but unfortunately, without any significant diastereoselectivity.  

 

Figure 99: Scope of the hydrocarboxylation of protected alkynes 

 

This new class of acrylic acids bearing TMS group in the -position could provide access to new 

products via post-functionalization strategies such as fluorination or C-C coupling reactions. 

However, when the para substituent was a powerful electron-donating group such as a methoxy 

(4p) or a dimethylamine (4q) (Figure 100), a mixture of products was isolated, similarly to the 

case of unprotected alkynes with total elimination of the TMS group.  
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Figure 100: Hydrocarboxylation with strong electron-rich substrates 

 

We speculated that the elimination of the TMS group occurred after the formation of an unstable 

benzyl radical that triggered a radical elimination of the silyl moiety and the subsequent 

regeneration of the double bond.  

All these findings in this part prompted many questions about the mechanistic pathway leading to 

this reactivity, especially with the hydrocarboxylation of alkynes. 

 

c. Mechanistic studies 

 

A. Control experiments 

 

Our studies were first focused on assigning the role of each component present in the cell (Figure 

101). Without the catalyst or t-BuOH Eq. (1), the transformation of the alkenes and alkynes failed 

and low yields were obtained in the absence of TMSCl Eq. (2). While the alkynes demonstrated 

inertia towards direct electrocarboxylation, the alkenes on the other side showed a considerable 

degradation but without any formation of carboxylic acid Eq. (3).  
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Figure 101: Blank experiments with styrene and phenylacetylene derivatives. 

 

These tests are clear proof that without the CO2 activation by SmCl3, the carboxylation of such 

unsaturated products is not possible under typical electrochemical conditions.  

  

B. Stoichiometric tests 

 

In order to understand the reason behind the obtained mixture of saturated and unsaturated 

carboxylic acids, stoichiometric trials were conducted (Figure 102). The continuous 

electrogeneration of  Sm2+ (Eq. 4, Condition A) and the addition 4 equiv of SmCl3 (Eq. 4, 

Condition B) led, after 2 hours of electrolysis, to the total conversion of 4b to 3-phenylpropionic 

acid 3’b in excellent yields, without any trace of 4-methylcinnamic acid 4’b. We speculate that 

the reduction of the double bond could be the rate-determining step, which could rationalize the 

outcome under catalytic conditions after 8 h (Table 4, entry 12).  

After omitting the TMSCl (Eq. 5), even with a stoichiometric amount of electrogenerated divalent 

Sm, the yield dropped to 37% with a mixture of 3’b:4’b around 12:1, calculated from 1H NMR 

spectra. 
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Figure 102: Stoichiometric tests starting from 4-ethynyltoluene 

 

This significant decrease in yield signified that TMSCl has another crucial role in the mechanistic 

pathway, besides the dissociation of the Sm(III) from the final product.  

 

C. Deuterium-labeling experiments 

 

To identify the definitive proton source in our conditions, we chose styrene 3a and phenylacetylene 

4a as model substrates to conduct the deuterium-labeling experiments (Figure 103). 

We explored first the hydrocarboxylation of 3a under our conditions and followed by DCl quench, 

which led to the isolation of 3’a without any deuterium fixation (Eq. 6). Surprisingly, the addition 

of t-BuOD, supposed to be the proton donor, delivered the deuterium-free product (Eq. 7). Based 

on these results, we investigated the CO2 fixation in CD3CN and 3’aa was isolated with >80% 

deuterium incorporation on the benzylic position (Eq. 8).  

 

Figure 103: Deuterium labeling experiments with styrene derivatives 
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The same tests were applied to the hydrocarboxylation of phenylacetylene (Figure 104). Similarly 

to the case of styrene, the DCl quench did not trigger any deuterium fixation (Eq. 9). The result 

obtained in Eq. 10 indicated undoubtedly that the carboxylation did not start by the deprotonation 

of the alkyne. The outcome of the Eq. 11 and 12 confirmed that the proton source in the 

hydrocarboxylation of alkenes and alkynes is the solvent (CH3CN).  

 

Figure 104: Deuterium labeling experiments with phenylacetylene.  

 

At this point, we speculated that: (1) the unique C-H activation of the acetonitrile is triggered by 

its coordination to the Sm(II), which renders the protons much more acidic and thus explains the 

observed proton donor character that we observed. Noteworthy, this behavior was also described 
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with transition-metal based catalysts. 120  (2) The role played by the t-BuOH in the medium 

appeared to be not the proton donor, but it remains an essential additive in the protocol as we 

showed in the previous blank experiments (Figure 101).  

We believe that after the deprotonation of CH3CN, the simple coordination of Sm(II) via the 

nitrogen (Sm-NCCH3) to a strong Sm-CH2CN bond (Figure 105). At this stage, the t-BuOH, 

known as non-coordinating alcohol,36 is activated by TMSCl, and can, therefore, be deprotonated 

by the generated carbanion, thus leading to the dissociation of the Sm(III). This hypothesis 

explains the low or absent reactivity without these two additives and how the acetonitrile acts as 

an H-source under our conditions. 

 

Figure 105: Suggested intermediates interpreting the D-labeling results 

 

D. Reaction with a radical clock 

 

To furtherly clarify the mechanism of our protocol, a radical clock substrate was added to the 

reaction mixture (Figure 106). Under optimized conditions, an inseparable combination of two 

ring-opening products was obtained and analyzed by 1H NMR and HRMS. The primary compound 

is the monocarboxylated one (I), demonstrating the reduction of the double bond. The product (II) 

resulted from the dicarboxylation reaction. Overall, this outcome proves the generation of benzyl 

radical from the addition of CO2 radical anion to the alkene. 

 

Figure 106: Radical clock experiment. 

 

 

E. Trapping with TEMPO 

 

 
120 A. C. Bissember, M. G. Gardiner, T. S. Wierenga, J. Organomet. Chem. 2018, 869, 213. 

https://www-sciencedirect-com.proxy.scd.u-psud.fr/science/article/pii/S0022328X18302407?via%3Dihub#!
https://www-sciencedirect-com.proxy.scd.u-psud.fr/science/article/pii/S0022328X18302407?via%3Dihub#!
https://www-sciencedirect-com.proxy.scd.u-psud.fr/science/article/pii/S0022328X18302407?via%3Dihub#!
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After confirming that the hydrocarboxylation goes through several radical species, a radical 

scavenger was added to the cell, aiming to quench a radical intermediate. 

However, adding the TEMPO did not only decrease the yield of the reaction but the 

hydrocarboxylation of indene (Figure 107, Eq. 13) and 4-ethynyltoluene ((Figure 107, Eq. 14) 

was utterly inhibited upon adding 2 equiv and 10 equiv of TEMPO, respectively. Extending the 

reaction time to 8 hours of electrocatalysis resulted in the restoration of reactivity, and finally, the 

expected products were isolated with the same yield as without TEMPO.  

 

Figure 107: Radical trapping experiments of indene and 4-ethynyltoluene with TEMPO 

 

This result shows that the radical scavenger did not deactivate the catalyst. We propose that it was 

neutralized by the formed CO2
.- to lead to an unstable, not isolable intermediate. This hypothesis 

also explains the restored reactivity after the complete consumption of TEMPO. 

Based on these facts, we assume that the number of equivalents of TEMPO reveals the amount of 

CO2 radical anion involved in the hydrocarboxylation reaction and leading eventually to the 

formation of the products.  

 

 

 

 

F. Electrochemical analysis 

 

➢ In the case of the hydrocarboxylation of styrene derivatives (indene 3v) 
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To gain insight into the electrochemical behavior of the present species in the solution, we carried 

out a series of cyclic voltammetry (Figure 108). These studies were initiated by determining the 

behavior of each reactant in the electrochemical medium. The cyclic voltammogram of SmCl2 

electrogenerated from SmCl3 in CH3CN containing tetrabutylammonium hexafluorophosphate 

nBu4NPF6 as supporting electrolyte is presented in the figure below. It shows a quasi- reversible 

system with a redox potential around -1.4 V/SCE. The addition of CO2 caused the loss of the 

oxidation wave of SmCl2 while the reduction wave persisted with a slight cathodic shift to -1.6 

V/SCE. This result indicates that a chemical reaction takes place between the CO2 and Sm(II), 

releasing another Sm(III) complex. 

 

 

Figure 108: Cyclic Voltammetry analysis of hydrocarboxylation of alkenes: Glassy carbon electrode surface 20 

mm2, and platinum wire as counter electrode scanning potential between – 0.5 and -2 V vs. SCE in CH3CN with 

nBu4NPF6 [0.1 M]. Scan rate: 100 mV/s. (a): 0.1 M electrogenerated SmCl2 in 0.1 M nBu4NPF6 in CH3CN; (b): (a) 

+ CO2; (c): (b) + 1 mL tBuOH:TMSCl:indene (10:8:1) 

 

Moreover, upon the addition of 1 mL of a solution containing 1 mmol indene, 10 equiv t-BuOH 

and 8 equiv of TMSCl, a massive reduction wave emerged.  This electrochemical response 

signifies that the analysis electrode is detecting a larger quantity of SmCl3 while the amount of this 

latter did not change. This behavior indicates the existence of a catalytic current and proves that 

the hydrocarboxylation is catalyzed by SmCl2. 

 

 

 

➢ In the case of the hydrocarboxylation of phenylacetylene derivatives (ethynylbenzene 4a) 

 



135 | P a g e  

 

Likewise, the hydrocarboxylation of the phenylacetylene was investigated by cyclic voltammetry 

to check if it follows the same potential regime as the indene (Figure 109). Indeed, the CO2 

changed the quasi-reversible behavior of SmCl2 to an irreversible reduction wave.  

 

Figure 109: Cyclic voltammetry study of hydrocarboxylation of phenylacetylene: Glassy carbon electrode surface 

20 mm2, and platinum wire as counter electrode scanning potential between – 0.5 and -2 V vs. SCE in CH3CN with 

nBu4NPF6 [0.1 M]. Scan rate: 100 mV/s. (a): 0.1 M nBu4NPF6; (b): (a) +  0.1 M electrogenerated SmCl2; (c): (b) + 

CO2; (d): (c) + 1 mL tBuOH:TMSCl:phenylacetylene (20:6:1) 

 

The addition of a mixture of 1 mmol of phenylacetylene, 20 equiv of t-BuOH and 6 equiv of 

TMSCl triggered a catalytic current similar to the case of indene as previously described. 

 

➢ Electrochemical study for silylated product and cinnamic acid 

 

In the case of alkynes, the hydrocarboxylation of phenylacetylene derivatives resulted in a mixture 

of linear carboxylic acid and the acrylic acid, whereas the hydrocarboxylation of substrates 

protected by a TMS terminal group yielded the corresponding acrylic acid exclusively. Therefore, 

electrochemical investigations were essential to reveal this distinct behavior. 

After conducting the cyclic voltammetry study for cinnamic acid 4’a and for the silylated product 

4’l, we found that electrochemically, these two products behaved differently. In a cell containing 

0.2 mmol of cinnamic acid in a solution of 0.1 M TBAP in CH3CN, the CV furnished two reduction 

waves at -1.4 V and -1.8 V vs. SCE, present in the redox potential window of Sm(III)/Sm(II). On 

the other hand, the silylated product showed no sign of reduction and remained inert against any 

electron transfer. This behavior could explain the outcome obtained with this type of substrates.  
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According to all our realized tests in addition to the electrochemical analyses, we propose the 

following mechanism for the hydrocarboxylation of alkenes and alkynes (Figure 110): 

 

Figure 110: Suggested mechanism for the carboxylation of alkenes catalyzed                                                                

by SmCl2 complex 

 

Firstly, the Sm(II) activates the CO2 and generates the corresponding radical anion A. This latter 

then undergoes an anti-Markovnikov addition with the alkene or the alkyne to produce the benzylic 

radical B which is rapidly reduced to the carbanion C. In the solution, the t-BuOH, activated by 

TMSCl, is essential for the reaction. Therefore, we suggested a mechanism displaying two 

successive proton donations: the first one involves the solvent CH3CN that after its activation by 

the catalyst, transfers one proton to form the product D (in the case of styrene). The - CH2CN anion 

abstracts the nearest activated proton, from the t-BuOH-TMSCl adduct, to restore its original 

structure and dissociate the Sm(III) to be regenerated on the cathode. In the case of 

phenylacetylene, further reduction/protonation steps of the acrylic acid furnish the mixture of two 

carboxylic acids. 

 

6. Conclusion and Perspectives 
 

In this chapter, we developed the regioselective hydrocarboxylation of styrene and 

phenylacetylene derivatives via CO2 activation, catalyzed by a reductive SmCl2 complex in 

acetonitrile. This reaction showed a remarkable anti-Markovnikov selectivity in both cases and 

occurred even with the reduction-resistant rich substrates to give selectively the aliphatic 

carboxylic acids with the alkenes, and majorly with the alkynes in good to excellent yields. Also, 
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protected alkynes achieved the carboxylation with good yields to afford the corresponding acrylic 

acids solely. 

 

Several experimental investigations permitted the identification of the role of each species present 

in this reaction. Foremost, SmCl2 was proved to catalyze this reaction by different blank tests and 

after adding the ter-butanol as a proton donor, our deuterium labeling studies showed that the real 

proton source is the acetonitrile.  

On the other hand, the exclusive formation of acrylic acids from protected alkynes was attributed 

to the resistance of the generated silylated product to reduction, as a conclusion deduced after 

examination of its electrochemical behavior. 

Electrochemical measurements of both systems led us to confirm the existence of a catalytic 

current after the addition of TMSCl proving the transmetallation step between Sm(III) and TMSCl. 

Nevertheless, this unprecedented method requires further electrochemical investigations such as 

electro-spectrometry experiments to identify the species concerned, mainly with the protected 

alkynes due to their unique reactivity depending on the substitution.  

Investing in the new C-H activation of acetonitrile by the samarium chemistry looks also promising 

as a new tool combining the role of solvent and proton donor. To our knowledge, it’s the first 

report describing this kind of reactivity with an Sm complex. Applying this protocol to other 

transformations such as the carboxylation of imines is worth trying for selective access to original 

amino acids. 

Targeting this subject, we conducted preliminary studies starting from (p-

methoxybenzylidene)aniline to test the feasibility of this transformation. However, the 

hydrocarboxylation always resulted in the hydrolysis of the imine in MeCN. Finally, we were able 

to isolate 19% of the corresponding amino-acid after 2 hours of electrolysis, under 

electrogenerated Sm(II) stoichiometric conditions using a 0.02 M solution of nBu4NBF4 in DMF.  
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The hydrolysis of the imine in these conditions was the main obstacle for the hydrocarboxylation. 

This perspective opens another new level of reactions in samarium chemistry, and hence, it is 

worth a whole research topic dedicated to examining this novel reactivity. 

Similarly to the previous chapter, our reaction yielded the formation of a stereogenic carbon center, 

which presents an excellent opportunity to evaluate asymmetric catalysis with divalent samarium 

complexes.   
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General conclusion 

For many years, the divalent samarium was used for typical stoichiometric reactions such as 

the reduction of functional groups or the C-C bond formation via radical cascades for instance. 

Looking at the fast progress in chemistry, raising the bar of creativity is the core of research today. 

In this thesis, we did not stick to the rules of divalent samarium, and we decided to invest its unique 

monoelectronic reactivity in a hot topic of current environmental, industrial and chemical research, 

the activation of carbon dioxide.  

As we reported in this manuscript, risking and defying the norms resulted in the introduction of a 

whole new episode of samarium chemistry by combining three fundamental concepts: (1) The 

electrochemistry as a clean source of electrons and as a promising tool towards greener chemistry; 

(2) the catalysis based on Sm(II) complexes which was, not far ago, a huge challenge and (3) most 

importantly, the CO2 activation, one of the most discussed topics in chemistry, to produce 

economy-growing class of products, the carboxylic acids.  

Our principal aim concerned using commercially available starting material to keep this chemistry 

affordable and accessible for everyone. Besides, the use of dry ice offered easy access and danger-

free CO2 source compared to the standard usage of CO2 bottles under pressure.  

We started this work using CO2 gas for the carboxylation of aromatic bromides and chlorides to 

deliver benzoic acids under stoichiometric conditions (Figure 111). Primarily, this first chapter 

demonstrated the formation of oxalic acid as evidence of the reduction of CO2 by the 

electrogenerated divalent samarium. Also, it turned our attention to the impact of the solvent 

choice not only on the desired transformation but also on the establishment of a catalytic process. 

 

Figure 111: Carboxylation of aryl halides mediated by electrogenerated Sm(II) complex. 

 

Based on the assembled information, we focused on optimizing catalytic conditions for the 

carboxylation of benzyl chlorides, motivated by the high pharmaceutical value of the 

corresponding phenylacetic acids (Figure 112). After successful catalytic attempts using dry ice 

as CO2 source, the reaction provided a series of carboxylic acids, giving us hope that other 

applications may find its way relying on this new reactivity. 
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Figure 112: Catalytic carboxylation of benzyl chloride derivatives initiated by Sm(II) complexes. 

 

Unactivated hydrocarbons are considered as a challenging material to deal with due to their 

stability and the absence of any significant functional group suitable for chemical transformations. 

Looking for an original goal, we tested the hydrocarboxylation of styrene and phenylacetylene 

analogs as starting materials to generate acrylic and aliphatic carboxylic acids (Figure 113).  

 

Figure 113: Carboxylation of styrene and phenylacetylene derivatives catalyzed by electrogenerated Sm(II) 

complexes. 

 

We were amazed by the -selectivity of this method, which encouraged us to dig deeper into the 

mechanistic pathway. Several experiments revealed surprisingly that the solvent, which is 

acetonitrile, reacted as a proton donor in this case. The activation of CH3CN by samarium 

complexes can be exploited in another type of reaction and can reveal an unexplored section of 

samarium applications.   

Despite the significant advance, the next challenge to overcome remains the asymmetric catalysis 

using divalent Samarium complexes. The radical reducing nature of these species and their high 

number of coordination sites complicate its use in this field. 42 Still, it is worth investing time and 

resources to solve this mystery because once exposed, another horizon of samarium chemistry 

begins.     
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Experimental Part 
 

Instrumentation and Chemicals 

All commercially available reagents were used without further purification unless otherwise 

stated. All solvents were also used without further purification. CH3CN was purchased from VWR 

chemicals and tetrabutylammonium hexafluorophosphate (nBu4NPF6) from TCI. The samarium 

rod was a 12.7mm diameter, 99.9% (metals basis excluding Ta) rod, purchased from Alfa-Aesar 

and the stainless-steel grid from Goodfellow (AISI 304). Electrolysis and electrochemical studies 

were performed using an EGG Instrument Potentiostat/Galvanostat Model 273. The electrolysis 

was conducted in an undivided cell equipped with a samarium rod as anode and a stainless-steel 

grid as a cathode. NMR spectra were recorded on Bruker AM 400 (400 MHz), 360 (360 MHz), 

300 (300 MHz) or AM 250 (250 MHz) in CDCl3. Data for 1H NMR are recorded as follows: 

chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, 

dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, and br = broad signal), 

coupling constant (J, Hz) and integration. Reactions were monitored by thin-layer chromatography 

(TLC), using bromocresol as TLC stain and column chromatography purifications were carried 

out using on silica gel.  

   

Synthesis of 2-vinylbenzofuran (3k) 

 

 

Following a reported procedure in the literature,121 to a solution of benzofuran (500 mg, 1.0 equiv) in dry 

THF (20 mL) cooled at -78 °C under Ar was added n-BuLi (3.16 mL, 1.6 M in hexane, 1.2 equiv), 

dropwise. After stirring the mixture for 1 h at -78°C, DMF (0.63 mL, 2 equiv) was added dropwise and 

stirred for another 4.5 h at -78°C. After the complete consumption of benzofuran, the reaction was 

quenched with sat. NH4Cl. The aqueous layer was extracted with EtOAc (3x) and the combined organic 

layer was dried over MgSO4, filtered, concentrated in vacuo. The resultant crude residue was purified by 

column chromatography (0-100% EtOAc/cyclohexane) and the benzofuran-2-carbaldehyde was isolated 

in 76% yield (504 mg, 3.2 mmol).  

 
121 S. Senaweera, J. D. Weaver, Chem. Commun. 2017, 53, 7545. 
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Following a reported procedure in the literature,101 to a solution of methyltriphenylphosphonium bromide 

(1.25 g, 1.1 equiv) in THF (20 mL) was slowly added n-BuLi (1.4 mL, 2.5 M solution in hexanes, 1.1 

equiv) at room temperature. The mixture was stirred for 2 h at room temperature before adding a solution 

of aldehyde (540 mg, 1.0 equiv) in THF (5 mL) dropwise and leave the reaction for another 2 h at room 

temperature. The reaction mixture was quenched with water, and the aqueous portion was extracted with 

diethyl ether. The combined organic layers were washed with brine, dried over anhydrous magnesium 

sulfate, filtered, and concentrated under reduced pressure. The crude mixture was purified by column 

chromatography (100% cyclohexane) to afford the 2-vinylbenzofuran 3k (2.56 mmol, 80%).  

 

General Procedure for the catalytic carboxylation of styrene derivatives 

 

An undivided cell charged with tetrabutylammonium hexafluorophosphate nBu4NPF6 (1mmol) in 

acetonitrile (40 mL), equipped with a samarium rod as the cathode and a stainless-steel as the 

anode, was used. The electro-generation of Sm2+ from SmCl3 (0.1 equiv) was started by setting the 

chronopotentiometry mode for 15000 seconds with i= - 50 mA. The dry ice was carefully added 

to the mixture in small pieces followed by the alkene (1.0 mmol), the ter-butanol t-BuOH (10 

equiv) the trimethylsilyl chloride TMSCl (8 equiv). During the electrolysis, small pieces of dry ice 

were added each 15 min. After 4 hours of electrolysis, the reaction was quenched with diethyl 

ether Et2O (10 mL), and the solvent was evaporated. To the obtained solid, a solution of HCl (2 

M) was added and the aqueous solution was extracted with Et2O (2*30 mL). The combined organic 

phase was washed with water and brine and dried over anhydrous MgSO4. The solvent evaporation 

under vacuo furnished the product that was purified by column chromatography on silica gel 

(90/10 then 50/50 PE/ EtOAc). 
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Characterization of the compounds 

  

 

3-phenylpropanoic acid (3’a): 97.5 mg (0.65 mmol, 65%). 1H NMR (360 MHz, CDCl3) δ 11.31 (br, 

1H), 7.42-7.32 (m, 5H), 3.08 (t, J = 7.5 Hz, 2H), 2.80 (t, J = 7.6 Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 177.8, 140.1, 128.5, 128.2, 126.3, 35.3, 30.5. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 101 

 

3-(p-tolyl)propanoic acid (3’b): 100 mg (0.61, 61%). 1H NMR (360 MHz, CDCl3) δ 7.19 (m, 4H), 

3.00 (t, J = 7.8 Hz, 2H), 2.74 (t, J = 7.8 Hz, 2H), 2.41 (s, 3H). 

13C NMR (91 MHz, CDCl3) δ 179.6, 137.1, 135.9, 129.3, 128.2, 35.8, 30.2, 21.0. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 101 

 

3-(4-fluorophenyl)propanoic acid (3’c): 70.5 mg (0.42, 42%). 1H NMR (360 MHz, CDCl3) δ 7.22 – 

7.11 (m, 2H), 7.04 – 6.91 (m, 2H), 2.93 (t, J = 7.7 Hz, 2H), 2.67 (t, J = 7.7 Hz, 2H). 

13C NMR (91 MHz, CDCl3) δ 179.2, 161.4 (d, J = 257.6 Hz), 135.7 (d, J = 3.6 Hz), 129.6 (d, J = 7.9 

Hz), 115.3 (d, J = 21.2 Hz), 35.6, 29.6. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.101  

 

3-(4-chlorophenyl)propanoic acid (3’d): 40.5 mg (0.22, 22%). 1H NMR (360 MHz, CDCl3) δ 7.42 – 

7.15 (m, 4H), 3.02 (t, J = 7.8 Hz, 2H), 2.70 (t, J = 7.8 Hz, 2H). 

13C NMR (91 MHz, CDCl3) δ 178.6, 140.1, 128.5, 128.2, 126.3, 35.5, 30.5. 
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The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 122 

 

3-(o-tolyl)propanoic acid (3’e): 156 mg (0.95, 95%). 1H NMR (300 MHz, CDCl3) δ 11.56 (br, 1H), 

7.24 (m, 4H), 3.05 (t, J = 7.0 Hz, 2H), 2.80 – 2.67 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 179.8, 138.3, 136.0, 130.4, 128.5, 126.6, 126.2, 34.4, 28.0, 19.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.122 

 

3,3-diphenylpropanoic acid (3’f): 113 mg (0.5 mmol, 50%). 1H NMR (360 MHz, CDCl3) δ 7.55 – 

7.08 (m, 10H), 4.58 (t, J = 7.9 Hz, 1H), 3.14 (d, J = 7.9 Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 178.0, 143.2, 128.6, 128.1, 128.0, 127.6, 126.6, 46.6, 40.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 101  

 

3-(4-methoxyphenyl)propanoic acid (3’g): 99 mg (0.55 mmol, 55%). 1H NMR (360 MHz, CDCl3) δ 

7.17 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H), 2.94 (t, J = 7.7 Hz, 2H), 2.68 (t, J = 7.7 

Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 177.4, 159.0, 130.5, 125.4, 114.2, 55.4, 40.1. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 101 

 

 

3-(2-methoxyphenyl)propanoic acid (3’h): 81 mg (0.45 mg, 45%). 1H NMR (300 MHz, CDCl3) δ 

7.30 – 7.14 (m, 2H), 6.90 (dd, J = 14.3, 7.6 Hz, 2H), 3.85 (s, 3H), 2.98 (t, J = 7.7 Hz, 2H), 2.69 (t, J = 

7.7 Hz, 2H). 

 
122 S. M. Kim, H. Y. Shin, D. W. Kim, J. W. Yang, ChemSusChem 2016, 9, 241. 
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13C NMR (75 MHz, CDCl3) δ 179.8, 157.4, 129.9, 128.4, 127.7, 120.4, 110.2, 55.1, 34.0, 25.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.123  

 

3-phenylbutanoic acid (3’i): 94.5 mg (0.6 mmol, 60%). 1H NMR (360 MHz, CDCl3) δ 7.49 – 7.13 (m, 

5H), 3.41 – 3.24 (m, 1H), 2.76 – 2.59 (m, 2H), 1.37 (d, J = 7.0 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 178.7, 145.4, 128.5, 126.7, 126.5, 42.6, 36.1, 21.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 101 

 

3-(4-chlorophenyl)butanoic acid (3’j): 13 mg (0.07 mmol, 7%). 1H NMR (360 MHz, CDCl3) δ 7.35 – 

7.30 (m, 2H), 7.27 – 7.22 (m, 2H), 3.35 – 3.24 (m, 1H), 2.75 – 2.55 (m, 2H), 1.35 (d, J = 6.9 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 178.5, 144.0, 132.4, 128.9, 128.3, 42.6, 35.8, 22.1.  

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 124 

 

3-(benzofuran-2-yl)propanoic acid (3’k): 99mg (0.52 mmol, 52%). 1H NMR (360 MHz, CDCl3) δ 

7.52 – 7.45 (m, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.20 (td, J = 14.1, 7.1 Hz, 2H), 6.45 (s, 1H), 3.13 (t, J = 

7.5 Hz, 2H), 2.84 (t, J = 7.5 Hz, 2H). 

13C NMR (91 MHz, CDCl3) δ 177.2, 156.8, 154.6, 128.5, 123.4, 122.6, 120.5, 110.8, 102.6, 31.8, 23.7. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 101 

 

2-methyl-3-phenylpropanoic acid (3'r): 156 mg (0.95 mmol, 95%). 1H NMR (360 MHz, CDCl3) δ 

10.70 (br, 1H), 7.50 – 7.14 (m, 5H), 3.14 (dd, J = 13.3, 6.2 Hz, 1H), 2.82 (dq, J = 13.2, 6.8 Hz, 1H), 

2.73 (dd, J = 13.3, 8.0 Hz, 1H), 1.23 (d, J = 6.9 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 182.8, 139.1, 129.0, 128.5, 126.5, 41.3, 39.3, 16.5. 

 
123 S. Shabbi, S. Lee, M. Lim, H. Lee, H. Ko, Y. Lee, H. Rhee, J. Organom. Chem. 2017, 846, 296. 
124 Y. Wang, W. Ren, J. Li, H. Wang, Y. Shi, Org. Lett. 2014, 16, 5960. 
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The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.101  

 

 

3-(3,4-dimethoxyphenyl)-2-methylpropanoic acid (3’s): 80 mg (0.36 mmol, 36%). 1H NMR (360 

MHz, CDCl3) δ 6.76 (m, 3H), 3.85 (s, 6H), 3.01 (dd, J = 13.4, 6.5 Hz, 1H), 2.73 (dq, J = 13.5, 6.9 Hz, 

1H), 2.63 (dd, J = 13.4, 7.8 Hz, 1H), 1.18 (d, J = 6.9 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 182.3, 148.7, 147.5, 131.5, 121.0, 112.1, 111.1, 55.8, 55.7, 41.4, 38.9, 

16.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 125 

 

 

3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropanoic acid (3't): 93 mg (0.45 mmol, 45%). 1H NMR (360 

MHz, CDCl3) δ 6.69 (m, 3H), 5.94 (s, 2H), 3.00 (dd, J = 13.4, 6.5 Hz, 1H), 2.71 (m, 1H), 2.62 (dd, J = 

13.4, 7.8 Hz, 2H), 1.19 (d, J = 6.9 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 182.4, 147.6, 146.1, 132.7, 121.9, 109.3, 108.1, 100.8, 41.4, 39.0, 16.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 126 

 

3-(4-methoxyphenyl)-2-methylpropanoic acid (3’u): 105 mg (0.54 mmol, 54%). 1H NMR (360 MHz, 

CDCl3) δ 7.14 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.05 (dd, J = 13.3, 6.3 Hz, 

1H), 2.85 – 2.71 (m, 1H), 2.67 (dd, J = 13.3, 7.8 Hz, 1H), 1.21 (d, J = 6.8 Hz, 3H). 

13C NMR (91 MHz, CDCl3) δ 182.4, 158.2, 131.1, 129.9, 113.9, 55.2, 41.4, 38.4, 16.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.127 

 

 
125 J. P. Cueva, A. Gallardo-Godoy, J. I. Juncosa, P. A. Vidi, M. A. Lill, V. J. Watts, D. E. Nichols,  J. Med. Chem. 2011, 54, 15, 5508. 
126 M. Schulze, Synthetic Communications 2010, 40, 10, 1461.  
127 Y. Zhu, X. Chen, C. Yuan, G. Li, J. Zhang, Y. Zhao, Nature Comm. 2017, 8, 14904. 
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1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (3’v): 126 mg (0.73 mmol, 73%). 1H NMR (300 

MHz, CDCl3) δ 11.42 (s, 1H), 7.38 – 7.03 (m, 4H), 3.13 (d, J = 7.3 Hz, 2H), 3.01 – 2.81 (m, 3H), 2.34 

(m, 1H), 1.98 (m, 1H). 

13C NMR (63 MHz, CDCl3) δ 181.4, 135.6, 134.6, 129.1, 128.9, 126.0, 125.9, 39.7, 31.3, 28.4, 25.6. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.101  

 

2,3-dihydro-1H-indene-2-carboxylic acid (3'w): 100 mg (0.62 mmol, 62%). 1H NMR (360 MHz, 

CDCl3) δ 7.35 – 7.13 (m, 2H), 3.49 – 3.23 (m, 3H). 

13C NMR (63 MHz, CDCl3) δ 182.0, 141.3, 126.7, 124.4, 43.4, 36.0. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.101  

 

2,3-diphenylpropanoic acid (3’x): 158 mg (0.7 mmol, 70%). 1H NMR (300 MHz, CDCl3) δ 10.16 (br, 

1H), 7.65 – 6.97 (m, 10H), 3.94 (t, J = 7.7 Hz, 1H), 3.49 (dd, J = 13.8, 8.3 Hz, 1H), 3.11 (dd, J = 13.8, 

7.1 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 179.6, 138.7, 137.9, 128.9, 128.7, 128.4, 128.1, 127.6, 126.5, 53.5, 39.3. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.86 

 

2,2,3,3-tetraphenylpropanoic acid (3’y): 166 mg (0.44 mmol, 44%). 1H NMR (300 MHz, CDCl3) δ 

8.06 – 6.54 (m, 15H), 5.08 (s, 1H). 

13C NMR (75 MHz, CDCl3) δ 177.7, 137.9, 128.6, 128.3, 127.5, 77.2, 56.9. 

HRMS (m/z) [M + Na]+ calculated 401.1512 found 401.1520. 
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General Procedure for the catalytic carboxylation of phenylacetylene 

derivatives 

 

An undivided cell charged with tetrabutylammonium hexafluorophosphate nBu4NPF6 (1 mmol, 

1.0 equiv) in acetonitrile (40 mL), equipped with a samarium rod as the cathode and a stainless-

steel as the anode, was used. The electro-generation of Sm2+ from SmCl3 (0.1 equiv) was started 

by setting the chronopotentiometry mode for 15000 seconds with i= - 50 mA. After a few minutes, 

the dry ice was carefully added to the mixture in small pieces followed by the alkyne (1 mmol), 

the ter-butanol t-BuOH (20 equiv) the trimethylsilyl chloride TMSCl (6.0 equiv). During the 

electrolysis, small pieces of dry ice were added each 15 min. After 4 hours of electrolysis, the 

reaction was quenched with diethyl ether Et2O (10 mL), and the solvent was evaporated. To the 

obtained solid, a solution of HCl (2 M) was added and the aqueous solution was extracted with 

Et2O (2*30 mL). The combined organic phase was washed with water and brine and dried over 

anhydrous MgSO4. The solvent evaporation under vacuo furnished the product that was purified 

by column chromatography on silica gel (90/10 then 50/50 PE/ EtOAc). 

 

Characterization of the compounds 

 

 

3-phenylacrylic acid (4’a): 1H NMR (300 MHz, CDCl3) 7.63 – 7.21 (m, 5H), 6.48 (d, J = 15.9 Hz, 1H) 

(E), 6.01 (d, J = 12.6 Hz, 1H) (Z). 

13C NMR (75 MHz, CDCl3): 171.8, 143.2, 135.2, 130.2, 128.5, 127.9, 116.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.128 

 

 

 
128 D. Wang, W. Liu, F. Bian, W. Yu, New J. Chem. 2015, 39, 2052. 
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3-(p-tolyl)acrylic acid (4’b): 1H NMR (360 MHz, CDCl3) δ 7.80 (d, J = 15.9 Hz, 1H) (E), 7.59 (d, J = 

8.1 Hz, 2H) (Z), 7.49 (d, J = 8.1 Hz, 2H) (E), 7.25 (d, J = 7.9 Hz, 2H) (E), 7.21 (d, J = 7.9 Hz, 2H) (Z), 

7.07 (d, J = 12.7 Hz, 1H) (Z), 6.44 (d, J = 15.9 Hz, 1H) (E), 5.95 (d, J = 12.7 Hz, 2H) (Z), 2.43 (s, 3H) 

(E), 2.41 (s, 3H) (Z). 

13C NMR (91 MHz, CDCl3) δ 172.6, 147.1, 141.3, 131.3, 129.7, 128.4, 116.2, 21.5. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 128 

 

(Z)-3-(4-methoxyphenyl)acrylic acid (4’c): 1H NMR (360 MHz, CDCl3) δ 7.73 (d, J = 8.7 Hz, 2H), 

6.99 (d, J = 12.8 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 5.86 (d, J = 12.8 Hz, 1H), 3.86 (s, 3H). 

13C NMR (91 MHz, CDCl3) δ 172.1, 160.6, 145.9, 132.6, 126.9, 115.9, 113.5, 55.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 128 

 

3-mesitylpropanoic acid (3’z): 1H NMR (360 MHz, CDCl3) δ 6.85 (s, 2H), 2.97 (t, J = 8.4 Hz, 2H), 

2.49 (t, J = 8.4 Hz, 2H), 2.31 (s, 6H), 2.25 (s, 3H).  

13C NMR (91 MHz, CDCl3) δ 179.8, 136.2, 135.9, 133.9, 129.3, 33.7, 24.7, 21.0, 19.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.129 

(Z)-3-mesitylacrylic acid (4’d): 1H NMR (360 MHz, CDCl3) δ 7.14 (d, J = 11.9 Hz, 1H), 6.88 (d, J = 

13.2 Hz, 2H), 6.13 (d, J = 12.1 Hz, 1H), 2.29 (s, 3H), 2.18 (s, 6H). 

13C NMR (91 MHz, CDCl3) δ 171.1, 146.2, 136.9, 134.4, 131.9, 127.8, 122.0, 20.8, 20.0. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature. 130 

 
129 W. Liu, W. Ren, J. Li, Y. Shi, W. Chang, Y. Shi, Org. Lett. 2017, 19, 7, 1748. 
130 T. Hashimoto, S. Kutubi, T. Izumi, A. Rahman, T. Kitamura, Tetrahedron 2011, 696, 1, 99. 
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3-(naphthalen-1-yl)propanoic acid (3’aa): 1H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 8.3, 1H), 7.87 

(d, J = 7.9, 1H), 7.75 (d, J = 7.9, 1H), 7.52 (m, 2H), 7.44 – 7.29 (m, 2H), 3.52 – 3.4 (m, 2H), 2.90 – 2.77 

(m, 2H). 

13C NMR (75 MHz, CDCl3) δ 178.2, 136.0, 133.8, 131.5, 128.9, 127.2, 126.1, 125.9, 125.6, 125.5, 

123.2, 34.7, 27.8. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.131 

3-(naphthalen-1-yl)acrylic acid (4’e): 1H NMR (360 MHz, CDCl3) δ 8.52 (d, J = 16.0 Hz, 1H) (E), 

8.15-8.20 (m, 1H), 7.79-7.95 (m, 3H), 7.72 (d, J = 11.6 Hz, 1H) (Z), 7.46-7.61 (m, 3H), 6.54 (d, J = 

16.0 Hz, 1H) (E), 6.30 (d, J = 11.3 Hz, 1H) (Z). 

13C NMR (91 MHz, CDCl3) δ 170.1, 143.1, 135.3, 132.7, 131.7, 129.8, 128.0, 127.4, 126.6, 126.1, 

124.1, 122.0. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.132 

 

3-([1,1'-biphenyl]-4-yl)propanoic acid (3’ab): 1H NMR (300 MHz, CDCl3) δ 7.60-7.55 (m, 2H), 

7.55-7.50 (m, 2H), 7.47-7.39 (m, 2H), 7.36-7.31 (m, 1H), 7.31-7.27 (m, 2H), 3.01 (t, J = 7.6 Hz, 2H), 

2.73 (t, J = 8.0 Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 179.1, 141.1, 139.6, 139.4 129.0, 128.9, 127.5, 127.4, 127.2, 35.7, 30.4. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.124 

3-([1,1'-biphenyl]-4-yl)acrylic acid (4’f): 1H NMR (300 MHz, CDCl3) δ 7.85 (d, J = 16.0 Hz, 1H) (E), 

7.76–7.29 (m, 9H), 7.12 (d, J = 12.7 Hz, 1H) (Z), 6.51 (d, J = 15.9 Hz, 1H) (E), 6.03 (d, J = 12.7 Hz, 

1H) (Z). 

 
131 M. Lemhadri, H. Doucet, M. Santell, Tetrahedron 2004, 60, 50, 11533. 
132 X. Zhao, H. Alper, Z. Yu, J. Org. Chem.2006, 71, 10, 3988. 
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13C NMR (91 MHz, CDCl3) δ 167.5, 143.3, 141.6, 139.2, 133.3, 128.9, 128.8, 127.9, 127.0, 126.6, 

119.2. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.133 

 

3-(3-ethynylphenyl)acrylic acid (4’g): 81 mg (0.47 mmol, 47%, E/Z 1.2/1). 1H NMR (300 MHz, 

CDCl3) δ 7.76 (d, J = 16.0 Hz, 1H) (E), 7.70 (s, 1H), 7.55 (m, 2H), 7.41 (d, J = 7.7 Hz, 1H), 7.05 (d, J = 

12.5 Hz, 1H) (Z), 6.48 (d, J = 16.0 Hz, 1H) (E), 6.04 (d, J = 12.6 Hz, 1H) (Z), 3.14 (s, 1H). 

13C NMR (75 MHz, CDCl3) δ 170.7, 145.8, 134.3, 134.0, 131.8, 129.0, 128.5, 122.6, 118.1, 82.4, 78.1. 

HRMS (m/z) [M + Na]+ calculated 195.0417 found 195.0409. 

 

(E)-2-methyl-3-phenylacrylic acid (4’h): 1H NMR (300 MHz, CDCl3) δ 7.85 (q, J = 1.3 Hz, 1H), 7.45 

(m, 5H), 2.17 (d, J = 1.4 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 174.2, 141.1, 135.7, 129.8, 128.7, 128.3, 127.6, 13.9. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.134 

 

(E)-2-benzylidene-3,3-dimethylbutanoic acid (4’i): 123 mg (0.6 mmol, 60%, only E isomer). 1H 

NMR (360 MHz, CDCl3) δ 7.39 – 7.25 (m, 5H), 6.61 (s, 1H), 1.36 – 1.22 (m, 9H). 

13C NMR (91 MHz, CDCl3) δ 175.8, 143.9, 136.1, 128.4, 127.8, 127.7, 127.2, 35.2, 29.4. 

HRMS (m/z) [M + Na]+ calculated 227.1043 found 227.1051. 

 
133 J. J. Matasi, J. P.Caldwell, J. Hao, B. Neustadt, L. Arik, C. J. Foster, J. Lachowicz, D. B.Tulshian, Biorganic and Medicinal Chem. Lett. 2005, 

15, 5, 1333. 
134 Z.-G. Wang, L. Chen, J. Chen, J.-F. Zheng, W. Gao, Z. Zeng, H. Zhou, X. Zhang, P.-Q. Huang, Y. Su, European Journal of Medicinal 
Chemistry 2013, 62, 632. 
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(E)-2,3-diphenylacrylic acid (4’j): 1H NMR (300 MHz, CDCl3) δ 7.96 (s, 1 H), 7.50-7.32 (m, 3H), 

7.30-7.12 (m, 5H), 7.07 (d, J = 7.2 Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 173.1, 142.4, 135.3, 134.3, 131.6, 130.8, 129.7, 129.5, 128.7, 128.3, 

128.0. 

The 1H NMR and 13C NMR spectra are in agreement with those reported in the literature.135 

 

General Procedure for the synthesis of silyl protected acetylene 

derivatives 

 

Following a reported procedure in the literature,136 to a solution of aryl halide (bromide or iodide) (5 

mmol, 1.0 equiv), copper iodide CuI (0.04 equiv) and Pd(PPh3)2Cl2 (0.02 equiv) in triethylamine Et3N (5 

mL) was added trimethylsilylacetylene (1.2 equiv) dropwise under inert atmosphere. The mixture was 

heated under an Ar atmosphere at 80 °C for 24 h. After completion of the reaction, it was filtered and the 

filtrate was treated with water and extracted with DCM (3 * 20 mL). The combined organic layers were 

washed with brine, dried over anhydrous MgSO4 and concentrated under vacuo to yield the crude product. 

The crude product was purified by column chromatography (0-10% EtOAc/ PE) to give silyl protected 

acetylene derivatives. 

 

 

 

 
135 J. Hou, J.-H. Xie, Q.-L. Zhou, Angew. Chem. Int. Ed. 2015, 54, 6302. 
136 P. Kumar, R. Panyam, R. Sreedharan, T. Gandhi, Org. Biomol. Chem. 2018, 16, 4357. 
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Characterization of the compounds 

 

 

 

3-phenyl-2-(trimethylsilyl)acrylic acid (4’k): 132 mg as a white solid (0.6 mmol, 60%). 1H NMR 

(360 MHz, CDCl3) δ 8.35 (s, 1H) (Z), 7.55 – 7.21 (m, 5H) (E), 6.89 (s, 1H) (E), 0.29 (s, 9H) (E), 0.10 

(s, 9H) (Z). 

13C NMR (101 MHz, CDCl3) δ 176.7, 155.0, 137.5, 136.5, 128.5, 128.4, 128.0, 0.3. 

HRMS (m/z) [M + Na]+ calculated 243.0812 found 243.0807. 

 

3-(p-tolyl)-2-(trimethylsilyl)acrylic acid (4’l): 105 mg as a white solid (0.45 mmol, 45 %). 1H NMR 

(360 MHz, CDCl3) δ 8.31 (s, 1H) (Z), 7.26 – 7.07 (m, 4H), 6.86 (s, 1H) (E), 2.39 (s, 3H) (Z), 2.35 (s, 

3H) (E), 0.11(s, 9H) (E), 0.09 (s, 9H) (Z). 

13C NMR (101 MHz, CDCl3) δ 176.5, 155.3, 138.7, 135.7, 134.7, 128.7, 128.6, 21.3, 0.4. 

HRMS (m/z) [M + Na]+ calculated 257.0968 found 257.0963. 

 

3-(4-(trifluoromethyl)phenyl)-2-(trimethylsilyl)acrylic acid (4’m): 158.5 mg as a yellow solid (0.55 

mmol, 55%). 1H NMR (360 MHz, CDCl3) δ 8.30 (s, 1H) (Z), 7.7-7.41 (m, 4H), 6.89 (s, 1H) (E), 0.3 (s, 

9H) (E), 0.09 (s, 9H) (Z). 

13C NMR (101 MHz, CDCl3) δ 173.5, 152.8, 138.3, 129.8 (q, J = 31.9 Hz), 128.9, 125.7 (q, J = 3.7 Hz), 

124.0 (q, J = 272.2 Hz), 122.2, -2.31. 

HRMS (m/z) [M + Na]+ calculated 311.0686 found 311.0678. 

 

3-(naphthalen-2-yl)-2-(trimethylsilyl)acrylic acid (4’n): 138 mg as a yellow solid (0.51 mmol, 51%). 
1H NMR (300 MHz, CDCl3) δ 9.00 (s, 1H) (Z), 8.48-7.51 (m, 7H), 6.67 (s, 1H) (E), 0.34 (s, 9H) (E), 

0.32 (s, 9H) (Z). 
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13C NMR (101 MHz, CDCl3) δ 175.1, 152.3, 133.8, 133.6, 133.5, 133.2, 128.7, 128.2, 128.1, 127.8, 

126.4, 126.0, 125.7, 0.5. 

HRMS (m/z) [M + Na]+ calculated 293.0968 found 293.0950. 

 

3-(thiophen-3-yl)-2-(trimethylsilyl)acrylic acid (4’o): 120 mg as a white solid (0.53 mmol, 53%). 1H 

NMR (300 MHz, CDCl3) δ 8.17 (s, 1H) (Z), 7.52 – 7.45 (m, 1H), 7.34 (dd, J = 4.9, 3.0 Hz, 1H), 7.08 

(dd, J = 4.9, 1.2 Hz, 1H), 6.85 (s, 1H) (E), 0.28 (s, 9H) (E), 0.15 (s, 9H) (Z). 

13C NMR (101 MHz, CDCl3) δ 177.35, 138.03, 135.97, 134.68, 127.29, 126.7,  125.8, -1.6. 

HRMS (m/z) [M + Na]+ calculated 249.0376 found 249.0372. 

 

Deuterium labeling experiments 

 

 

Following the general procedure for the hydrocarboxylation of styrene derivatives, using 3a (0.5 mmol), 

SmCl3 (12.25 mg, 0.1 equiv), t-BuOH (0.5 mL, 10 equiv) and TMSCl (0.5 mL, 8.0 equiv) in 20 mL 

deuterated acetonitrile CD3CN. The isolated product 3’aa-d was obtained with 45% yield, with >90% 

deuterium incorporation at the -position of the hydrocarboxylated products.  

3’aa-d: 1H NMR (300 MHz, CDCl3) δ 7.38 – 7.18 (m, 5H), 2.96 (m, 1H), 2.71 (d, J = 7.6 Hz, 2H). 

HRMS (m/z) [M + Na]+ calculated 174.0636 found 174.0634. 

 

 

Following a reported procedure in the literature,137 to a solution of phenylacetylene 4a (0.55 mL, 5 

mmol) in dry hexane (10 ml) was added n-BuLi (5.2 mL, 1.6 M in hexane solution, 2.0 equiv), 

 
137 J.-S. Zhang, J.-Q. Zhang, T. Chen, L.-B. Han, Org. Biomol. Chem. 2017, 15, 5462 
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dropwise, at −78°C under argon atmosphere. After being stirred at the same temperature for 30 min, 

D2O (4 mL) was added at the room temperature and the reaction was stirred continuously at the same 

temperature for 16 h. The organic layer was separated and the aqueous layer was extracted with CH2Cl2 

(3*10 mL). The combined organic layer was dried over MgSO4 and filtered. The filtrate was 

concentrated in vacuo to afford the (ethynyl-d)benzene 4aa with 99% deuterium incorporation.  

 

Following the general procedure for the hydrocarboxylation of phenylacetylene derivatives, using 4aa (1 

mmol), SmCl3 (0.1 equiv), t-BuOH (20 equiv) and TMSCl (6.0 equiv) in 40 mL acetonitrile. The isolated 

products 4’aa and 4’ab were obtained 75% yield, with >98% deuterium incorporation at the -position 

of the hydrocarboxylated products.  

4’aa: 1H NMR (300 MHz, CDCl3) δ 7.82 (s, 1H), 7.68-7.52 (m, 2H), 7.47-7.28 (m, 3H), 7.11 (s, 1H). 

HRMS (m/z) [M + Na]+ calculated 172.0479 found 172.0530. 

3’ab: 1H NMR (300 MHz, CDCl3) 7.37-7.21 (m, 5H), 3.01 (d, J = 7.5 Hz, 2H), 2.73 (t, J = 7.5 Hz, 1H). 

HRMS (m/z) [M + Na]+ calculated 174.0636 found 174.065. 

 

Following the general procedure for the hydrocarboxylation of phenylacetylene derivatives, using 4a (0.5 

mmol), SmCl3 (0.1 equiv), t-BuOH (20 equiv) and TMSCl (6.0 equiv) in 20 mL deuterated acetonitrile 

CD3CN. The isolated products 4’aa-d and 3’ab-d were obtained 60% yield, with >80% deuterium 

incorporation at the  and -positions of the hydrocarboxylated products. 

4’aa-d : 1H NMR (360 MHz, CDCl3) δ 7.6-7.2 (m, 5H), 6.46 (s, 1H) (E), 2.98 (s, 0.4H), 2.69 (s, 1H). 

HRMS (m/z) [M - H]- calculated 148.0514 found 148.2449. 

3’ab-d: 1H NMR (360 MHz, CDCl3) δ 7.36 – 7.17 (m, 5H), 2.98 (s, 0.41H), 2.68 (s, 1H). 

HRMS (m/z) [M - H]- calculated 152.0796 found 152.2692. 

 

Radical clock experiment 
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Synthesis of (1-(2-Phenylcyclopropyl)vinyl)benzene: 138 

 

 

 

 

To a two-necked round flask, sodium hydride (6.0 mmol, 1.2 equiv) was added. In dry DMSO (17 mL,) 

trimethylsulfoxonium iodide (5.5 mmol, 1.1 equiv) was added to the flask under argon atmosphere. The 

flask was immersed in an ice bath and a solution of chalcone (5 mmol, 1.0 equiv) in dry DMSO (5 mL) 

was added to the reaction mixture. After completion, the reaction mixture was extracted with ether. The 

crude product was purified by flash column chromatography with eluent (petroleum ether/ethyl acetate = 

10:1) to afford phenyl(2-phenyl cyclopropyl)methanone with 80% yield. 

 

 

The reaction vessel was charged with phosphonium salt (1.2 equiv) in dry THF. To the stirred mixture, 

n-BuLi (1.2 equiv) was added under argon atmosphere at -78 °C. The mixture was stirred at 0° C for 5 

mins and then substituted phenyl(2-phenyl cyclopropyl)methanone (1.0 equiv) in dry THF was added 

dropwise over 15 min. After stirring at rt for 4 h, the mixture was quenched with saturated NH4Cl, then 

was extracted with CH2Cl2 (3*15 mL). The combined organic layers were dried over anhydrous sodium 

sulfate, concentrated and purified by column chromatography (100% PE) to give the (1-(2-

Phenylcyclopropyl)vinyl)benzene with 65% yield.  

 

 

 

Radical Clock experiment: 

 

 
138 L. Ge, Y. Li, H. Bao, Org. Lett. 2019, 21, 1, 256. 

https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Liang++Ge


161 | P a g e  

 

 

Following the general procedure for the hydrocarboxylation of styrene derivatives, using 1-(2-

Phenylcyclopropyl)vinyl)benzene (1 mmol), SmCl3 (0.1 equiv), t-BuOH 10 equiv) and TMSCl (8.0 

equiv) in 40 mL acetonitrile for 4 hours. After treatment, the obtained crude was analyzed by HRMS 

and gave the spectra below: 

 

HRMS (I) [M + Na
+

] calculated 291.1356 found 291.1348 

HRMS (II) [M + H
+

] calculated 313.1434 found 313.1168; HRMS (II) [M + Na
+

] calculated 

335.1254 found 335.1248 
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Synthesis of 2-(4-methoxyphenyl)-2-(phenylamino)acetic acid using 

electrogenerated divalent samarium 

 

 

The reaction was carried out in an undivided cell containing a magnetic stirring bar, equipped 

with a samarium rod as anode and a stainless-steel as the cathode. The cell was charged with 322 

mg of tetrabutylammonium tetrafluoroborate nBu4NBF4 (1 mmol) and (E)-1-(4-methoxyphenyl)-

N-phenylmethanimine (211 mg, 1 mmol) dissolved in 50 mL of DMF. The electrolysis was 

started using a chronopotentiometry mode with i = 50 mA for 7200 seconds. When the substrate 

was no longer detected on the TLC, the reaction was quenched with Et2O and the DMF was 

evaporated under vaccuo. 1 M NaOH (30 mL) was added to the obtained solid and the mixture 

was extracted with Et2O (3*30 mL). the aqueous phase was then acidified with 2 M HCl to 

pH=4, a yellow solid precipitated. The obtained precipitation was filtered and dried under vaccuo 

to obtain 40 mg of the 2-(4-methoxyphenyl)-2-(phenylamino)acetic acid (0.019 mmol, 19%). 

1H NMR (360 MHz, C6D6) δ 7.41 (d, J = 8.7 Hz, 2H), 7.19 – 7.11 (m, 3H), 6.80 – 6.76 (m, 2H), 

6.57 (dd, J = 8.2, 4.0 Hz, 2H), 5.03 (s, 1H), 3.31 – 3.25 (m, 3H). 

13C NMR (63 MHz, DMSO) δ 173.6, 159.4, 147.4, 130.8, 129.1, 129.0, 116.9, 114.3, 113.5, 

59.5, 55.5. 

HRMS (m/z) [M - H]- calculated 256.0979 found 256.0985. 
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Résumé: La réduction du CO2 est considérée 

comme une des approches les plus intéressantes 

pour convertir ce gaz en produits chimique 

d’intérêt tels que les acides carboxyliques. Le 

marché de ces composés devrait augmenter 

considérablement au cours des prochaines années, 

d'où la nécessité de trouver des méthodes de 

production durables et respectueuses de 

l'environnement. 

Les complexes de samarium divalents sont 

reconnus pour leur fort pouvoir réducteur 

monoélectronique, ce qui en fait des réactifs de 

choix pour la réduction de certains groupes 

fonctionnels difficiles à réduire tels que le CO2. 

Cependant, dans la littérature, bien que ce réactif 

ait été utilisé en association avec le CO2, prouvant 

ainsi que la réduction du CO2 est possible, mais 

jamais à notre connaissance pour des applications 

synthétiques. 

 

Nous rapportons ici l'activation du CO2 initiée par 

le samarium bivalent électrogénéré. Grâce à notre 

méthode, récemment mise au point, pour la 

production électrochimique in situ d’espèces 

divalentes de samarium, la synthèse de dérivés de 

l’acide benzoïque a été réalisée avec succès. De 

plus, les conditions d'activation électrocatalytique 

du CO2 ont été établies dans ce travail et appliquées 

non seulement à la préparation des acides 

phénylacétiques à partir de dérivés du chlorure de 

benzyle, mais également à l'hydrocarboxylation 

régiosélective des analogues du styrène et du 

phénylacétylène. Ce protocole à base de Sm (II) 

électrogénéré offre la prochaine génération de 

systèmes durables pour la transformation du CO2 

en molécules de haute valeur sous des conditions 

douces et sans l'ajout de co-réducteurs. 

 

 

 

Title: Electrogenerated divalent samarium for CO2 activation: applications in carboxylic acid synthesis. 

Keywords: CO2 activation, divalent samarium, electrocatalytic carboxylation, hydrocarboxylation. 

Abstract: CO2 activation is considered one of the 

most attractive tools to convert this cheap, 

abundant and non-toxic gas into valuable chemical 

feedstocks such as carboxylic acids. The market 

value of these compounds is expecting a 

significant increase in the next few years, thus the 

urgent need for sustainable and eco-friendly 

production pathways. 

Divalent samarium complexes are known for their 

strong monoelectronic reductive power that made 

them the perfect choice for the reduction of some 

challenging functional groups. Indeed, in the 

literature, this reagent has been used in 

combination with CO2 but only to achieve the 

reductive disproportionation of CO2 while no 

example reported C-C bond formation via CO2 

activation using the Sm(II) complexes. 

 

Herein, we report the CO2 activation initiated by 

electrogenerated divalent samarium. Taking 

advantage of our recently developed method for 

the in situ generation of Sm(II) species, the 

synthesis of benzoic acid derivatives was 

successfully achieved. Furthermore, 

electrocatalytic CO2 activation conditions were 

established in this work and applied not only for 

the preparation of phenylacetic acids from benzyl 

chloride derivatives but also for the regioselective 

hydrocarboxylation of styrene and 

phenylacetylene analogs. This electrochemical 

Sm(II)-based protocol offers the next generation of 

sustainable system to transform CO2 into highly 

valued molecules under mild conditions and 

without the addition of co-reductants. 

 

 

 


