
HAL Id: tel-03917151
https://theses.hal.science/tel-03917151v2

Submitted on 1 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing and introducing structures in deep
convolutional neural networks

Edouard Oyallon

To cite this version:
Edouard Oyallon. Analyzing and introducing structures in deep convolutional neural networks. Com-
puter Vision and Pattern Recognition [cs.CV]. Université Paris sciences et lettres, 2017. English.
�NNT : 2017PSLEE060�. �tel-03917151v2�

https://theses.hal.science/tel-03917151v2
https://hal.archives-ouvertes.fr

	

														 			 						

Soutenue par Edouard Oyallon
le 6 Octobre 2017
h

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à l’Ecole Normale Supérieure

Dirigée par Stéphane Mallat

h

Analyzing and Introducing Structures in Deep Convolutional Neural
Networks

COMPOSITION DU JURY :

M. PARAGIOS Nikos
CentraleSupélec, Rapporteur 

M. PERRONIN Florent
Naver Labs, Rapporteur 

M. CORD Matthieu
LIP6 / UPMC, Président du jury

M. LAPTEV Ivan
INRIA / ENS, Membre du jury

M. PEREZ Patrick
Technicolor, Membre du jury

	

Ecole doctorale n°386
SCIENCES MATHEMATIQUES DE PARIS CENTRE

Spécialité INFORMATIQUE

Analyzing and Introducing Structures in Deep

Convolutional Neural Networks

Edouard Oyallon

Résumé

Cette thèse étudie des propriétés empiriques des réseaux de neurones con-
volutionnels profonds, et en particulier de la transformée en Scattering. En
effet, l’analyse théorique de ces derniers est difficile et représente jusqu’à ce
jour un défi: les couches successives de neurones ont la capacité de réaliser des
opérations complexes, dont la nature est encore inconnue, via des algorithmes
d’apprentissages dont les garanties de convergences ne sont pas bien comprises.
Pourtant, ces réseaux de neurones sont de formidables outils pour s’attaquer
à une grande variété de tâches difficiles telles la classification d’images, ou
plus simplement effectuer des prédictions. La transformée de Scattering est
un opérateur mathématique, non-linéaire dont les spécifications sont inspirées
par les réseaux convolutionnels. Dans ce travail, elle est appliquée sur des
images naturelles et obtient des résultats compétitifs avec les architectures
non-supervisées. En placant un réseaux de neurones convolutifs supervisés
à la suite du Scattering, on obtient des performances compétitives sur Ima-
geNet2012, qui est le plus grand jeu de données d’images étiquetées accessible
aux chercheurs. Cela nécessite d’implémenter un algorithme efficace sur carte
graphique. Dans un second temps, cette thèse s’intéresse aux propriétés des
couches à différentes profondeurs. On montre qu’un phénomène de réduction de
dimensionalité progressif a lieu et on s’intéresse aux propriétés de classifications
supervisées lorsqu’on varie des hyper paramètres de ces réseaux. Finalement,
on introduit une nouvelle classe de réseaux convolutifs, dont les opérateurs sont
structurés par des groupes de symétries du problème de classification.

Abstract

This thesis studies empirical properties of deep convolutional neural net-
works, and in particular the Scattering Transform. Indeed, the theoretical anal-
ysis of the latter is hard and until now remains a challenge: successive layers
of neurons have the ability to produce complex computations, whose nature is
still unknown, thanks to learning algorithms whose convergence guarantees are
not well understood. However, those neural networks are outstanding tools to
tackle a wide variety of difficult tasks, like image classification or more formally
statistical prediction. The Scattering Transform is a non-linear mathematical
operator whose properties are inspired by convolutional networks. In this work,
we apply it to natural images, and obtain competitive accuracies with unsuper-
vised architectures. Cascading a supervised neural networks after the Scattering
permits to compete on ImageNet2012, which is the largest dataset of labeled
images available. An efficient GPU implementation is provided. Then, this the-
sis focuses on the properties of layers of neurons at various depths. We show
that a progressive dimensionality reduction occurs and we study the numerical
properties of the supervised classification when we vary the hyper parameters of
the network. Finally, we introduce a new class of convolutional networks, whose
linear operators are structured by the symmetry groups of the classification task.

Remerciements

Tout d’abord merci à Stéphane pour m’avoir beaucoup appris et consacré
beaucoup de temps. J’ai passé d’intenses moments de réflexions, et ton regard
sur tous les sujets que nous avons étudiés est exceptionnellement profond, et
m’inspirera longtemps.

Je tiens à remercier tous les brillants (actuels, anciens) membres de l’équipe
de Stéphane avec qui j’ai pu parfois discuté, comme Vincent, Joakim, Joan, Lau-
rent, Irène, Tomàs, Matthew, Guy, Tomàs, Louis, John, Sira, Carmine, Sixhin,
Gilles, Alberto, Ravi, Ivan, Michaël, Mathieu. Je vous souhaite le meilleur par-
cours possible. Merci à Damien, Bogdan, Gabriel, Frederick, Maxime, Sergey,
Jörn pour les collaborations ! Enfin merci à Joëlle, Lise-Marie, Valérie et Sophie,
ainsi que le SPI qui sont d’une efficacité redoutable.

Puis de remercier mes camarades de Rennes, avec qui j’ai passé de bons mo-
ments en licence. Puis les amis parisiens. Comme Pauline, Jonathan, Thomas,
Gisela, Agnès, Adrien. Merci aux slovaques. (Michal^2 & Anna) Merci à vous
d’être des personnes formidables.

Je tiens à remercier aussi chaleureusement Maxime & Daria (les meilleurs
voisins), Paul-Darius, Rafael, Grégoire & Misko, Fred, Eugene, Mikael, Bour-
reau pour avoir contribué très négativement à l’écriture de ce manuscrit.

Je sais que j’en oublie, et je m’excuse :-)
Merci à ma famille (ma sœur, cousines, cousins, tantes, oncles, mes grand-

parents, mes parents) pour son soutien, qui est très important pour moi, et de
ne pas avoir trop râlé pendant ces 4 ans de ne pas trop me voir.

Et puis merci à toi, Hélène.

Contents

1 Introduction 1
1.1 Introduction to Convolutional Neural Networks 1

1.1.1 Neural networks: supervised and generic algorithms . . . 1
1.1.2 Supervised image classification: a high-dimensional task . 3
1.1.3 Breaking the curse of dimensionality with CNNs 5
1.1.4 Introducing and discovering structure in CNNs 7

1.2 Nature of the invariances learned 7
1.2.1 Priors compete with unsupervised representations 8
1.2.2 Filling the gap by adding supervision 9

1.3 Empirical analysis of Neural Networks 9
1.3.1 Designing generic and simplified architectures 10
1.3.2 Progressive properties of CNNs 10

1.4 Imposing symmetries of Neural Networks 11
1.4.1 Parallel transport along symmetry groups 11
1.4.2 Multiscale Hierarchical CNNs 12
1.4.3 Hierarchical Attribute CNNs 12

2 Background 14
2.1 Convolutional Neural Networks Review 14

2.1.1 Standard architectures . 15
2.1.2 Training procedure . 16
2.1.3 Theoretical challenges . 17

2.1.3.1 Generalization properties 17
2.1.3.2 Interpretability 18
2.1.3.3 Stability . 18

2.2 Scattering Transform Review . 19
2.2.1 Construction of the 2nd order Scattering Transform . . . 20
2.2.2 Successful applications of the Scattering Transform . . . 23

2.2.2.1 Translation Scattering 23
2.2.2.2 Roto-translation Scattering 24

2.2.3 Scattering Transform as a Scattering Network 25
2.2.3.1 Wavelet implementation 25
2.2.3.2 Scattering Network 27

I

3 Scattering Networks for Complex Image Classification 30
3.1 Separable roto-scattering . 31
3.2 Decorrelating Scattering coefficients with Orthogonal Least Square 35
3.3 Image classification results on standard benchmarks 37

3.3.1 Linear and Gaussian SVMs 38
3.3.2 Comparison with other methods 40

3.3.2.1 Comparison with unsupervised methods 40
3.3.2.2 Comparison with supervised methods 40
3.3.2.3 Scattering combined with different classifier . . . 41

4 Improving Scattering with Hybrid Networks 43
4.1 Fast implementation of Scattering Networks on GPUs 44

4.1.1 Tree implementation of computations 44
4.1.2 Memory efficient implementation on GPUs 46

4.2 Cascading a deep CNN: the ResNet 47
4.2.1 Scattering as an ideal initialization 47
4.2.2 Deep Hybrid CNNs on ILSVRC2012 49
4.2.3 Hybrid Representations on CIFAR-10 51
4.2.4 Limited samples setting 52

4.2.4.1 CIFAR-10 . 52
4.2.4.2 STL-10 . 53

4.3 Shared Local Encoder . 55
4.3.1 Encoding scattering coefficients 56
4.3.2 Interpreting SLE’s first layer 58

5 Empirical Analysis of CNN Properties 62
5.1 Simplifying a state-of-the-art CNN architecture 63

5.1.1 Architecture . 64
5.1.2 The role of the non-linearity 66

5.1.2.1 Unneccesity to contract via ⇢ 66
5.1.2.2 Degree of non-linearity 70

5.2 Progressive space contraction . 72
5.2.1 Intra-class variance and distance reduction 73
5.2.2 Progressive separation . 75
5.2.3 Local Support Vectors . 77

5.2.3.1 Margin separation 78
5.2.3.2 Complexity of the classification boundary 80

6 Hierarchical Attribute CNNs 82
6.1 Architectures descriptions . 83

6.1.1 Deep Convolutional Networks and Group Invariants . . . 83
6.1.2 Multiscale Hierarchical Convolutional Neural Networks . . 85
6.1.3 Hierarchical Attribute CNNs 88

6.1.3.1 5-D Dimensional Architectures 88
6.1.3.2 Filter Factorization for Training 89

6.2 Expliciting the structuration . 90

II

6.2.1 Hierarchical Attribute CNNs on CIFAR datasets 90
6.2.1.1 Performances and Parameters Reduction 90
6.2.1.2 Comparison with limited parameters architectures 92

6.2.2 A potential organization of the representation indexes . . 93
6.2.2.1 Interpreting the translation 94
6.2.2.2 Limitations . 96

7 Conclusion 98

III

List of Figures

1.0.1 A schematic representation of a Neural Network with J = 4.
Each layer is computed via the linear operators W

j

, j  J , the
non-linearity is omitted. 1

1.1.1 A typical CNN architecture. The signal is propagated through
cascades of convolutions W

j

, a point-wise non-linearity ⇢ and
progressive down-sampling. Each layer is indexed by the spatial
positions (u1, u2) and the channel index �. 7

2.2.1 The 2D morlet wavelets. The amplitude is given by the contrast,
and the phase by the the color. Best viewed in color. 20

2.2.2 A scattering network. A
J

concatenates the averaged signals. . . . 23
2.2.3 Wavelet transform as a cascade of small finite impulse response

filters . 27
2.2.4 Scattering Network . 29

3.1.1 Amplitude of two complex signals that have identical Translation
Scattering, and for which the variabilitiy is dominated by local
rotations centered at integer points. 31

4.1.1 Tree of computations for a Scattering Transform implemented via
FFT’s . 46

4.3.1 Architecture of the SLE, which is a cascade of 3 1⇥1 convolutions
followed by 3 fully connected layers. The ReLU non-linearities
are included inside the F

i

blocks for clarity. 56
4.3.2 Histogram of ˆF1 amplitude for first and second order coefficients.

The vertical lines indicate a threshold that is used to sparsify ˆF1.
Best viewed in color. 58

4.3.3 Energy ⌦1{F} (left) and ⌦2{F} (right) from Eq. (4.3.11) and
Eq. (4.3.12) for given angular frequencies. Best viewed in color. . 59

5.1.1 Schematic representation of our architecture. Our network is a
cascade of block B

l

, l being the input size of the convolutional
operator, followed by an averaging A and a projection L. 66

5.1.2 Effect of K on the classification accuracy 67

IV

5.1.3 Localization in Fourier implies that a translations results in a
phase multiplication, up to approximation terms 68

5.1.4 Accuracy when varying the degree of non-linearity k

K

, reported
with K = 32 and K = 128. When k = K, one obtains 88.0%

and 94.7% respectively for K = 32 and K = 128. The maxi-
mum accuracies are then respectively 89.8% and 94.7%, which
indicates that a point-wise non-linearity is not necessarily the
optimal configuration. 70

5.2.1 Cumulated variances of the principal component of a given class
at different depths j, for a network trained on CIFAR10 with
K = 32. In general, one observes a reduction of variance with
depth. Best viewed in color. 74

5.2.2 Averaged intra-class distances on CIFAR10, K = 32, at different
depths j. Different colors correspond to different classes. The
intra-class distances are globally decreasing with depth. Best
viewed in color. 76

5.2.3 Accuracy on CIFAR10 at depth j via a Gaussian SVM and 1-NN.
The size of the network is K = 32 and its accuracy on the testing
set is 88.0%. 77

5.2.4 Cumulative distributions of distances: between a support vector
and its nearest neighbors, e.g. B

j

(t) (continuous line), and a point
that is not a support vector and its nearest neighbor, e.g. A

j

(t)
(dashed line). Different colors correspond to different depths.
The axis of the magnitude of the distance is in log scale. At a
given depth, one sees there is a significative difference between
the cumulative distribution, which indicates the existence of a
margin. Best viewed in color. 79

5.2.5 |�k

j

| for different depth j. Different depths are represented by
different colors. The limit value of |�k

j

| is reached faster by
deeper layers, and the value |�k

j

| globally decrease with depth:
the boundary classification is progressively more regular. Best
viewed in color. 81

6.1.1 We illustrate the difference between linear operators of vanilla
CNNs (Right) and the convolution of a HCNN (Left) 85

6.1.2 Implementation of a hierarchical attribute convolutional network
as a cascade of 5D convolutions W

j

. The figure gives the size
of the intermediate layers stored in 5D arrays. Dash dots lines
indicate the parametrization of a layer x

j

and its dimension. We
only represent dimensions when the output has a different size
from the input. 88

V

6.2.1 The first images of the first and third rows are the two input image
x. Their invariant attribute array x̄

j

(v
j�1, vj

) is shown below for
j = J � 1, with high amplitude coefficients appearing as white
points. Vertical and horizontal axes correspond respectively to
v

j�1 and v
j

, so translations of v
j�1 by ⌧ are vertical translations.

An image x⌧ in a column ⌧ + 1 has an invariant attribute x̄⌧

j

which is shown below. It is the closest to x̄
j

(v
j�1 � ⌧, v

j

) in the
databases. 94

6.2.2 The first columns give the input image x, from which we compute
the invariant array x̄

j

at a depth 3  j  11 which increases
with the row. The next images in the same row are the images
x⌧ whose invariant arrays x̄⌧

j

are the closest to x̄
j

translated by
1  ⌧  7, among all other images in the databases. The value
of ⌧ is the column index minus 1. 95

VI

Chapter 1

Introduction

Designing a robot that can talk, hear, see or understand is a big sci-fi dream.
Indeed, there are no clear instructions or source codes to create it: this requires
to process efficiently a large flow of data that are often complex, and the methods
to process this information are as well unclear because there exists no clear
mathematical framework that adresses these tasks. However, recent engineering
efforts attack the question of artifical intelligence and obtain excellent results,
with techniques like Convolutional Neural Networks. This thesis studies the
latters.

1.1 Introduction to Convolutional Neural Net-
works

1.1.1 Neural networks: supervised and generic algorithms
Neural Networks exist since at least 1958 [92, 93], yet only recently have they
achieved outstanding performances in a wide range of large-scale and difficult

x0 x4 = �x

W1 W2 W3

Figure 1.0.1: A schematic representation of a Neural Network with J = 4.
Each layer is computed via the linear operators W

j

, j  J , the non-linearity is
omitted.

1

tasks for machines, like image classification [56] of huge datasets. In a ma-
chine learning context, a neuron is an elementary unit [62], which can perform
basic operations and is connected to other neurons. Typical artifical neurons
activations result from linear combination of input activations, followed by a
non-linearity. Then, a Neural Network is a stack of successive layers of neurons
that are connected to each others, in order to produce an output activation.
An initial signal is propagated through the network, which leads to successive
activation of neurons, until this final layer. Often, the neurons are optimized
to solve a specific task. The input signal can be for example an audio wave, a
text, an image, a chess-board picture, ... or even unstructured data.

Among the tasks that are solved by Neural Networks, there are classifying
signals [56, 46], transfering artistic style [37], generating images [41], detecting
signals [81] or playing a strategy game [76, 103]. The neural method is also
referred as “deep learning” [58] because it often consists in learning a deep cas-
cade of neurons. The above-mentionned tasks are difficult tasks because for
example some of them are not well defined; to illustrate this, let us take two
applications that are very different. The style transfer application [37] is a first
example: one must transfer the artistic style from an initial image to a target
image. Here, the fitting measure is purely perceptual. In other cases, the exact
goal of the task is computationally intractable, for the game of Go. Indeed,
the number of possible outcomes of the game is about 10

170 which results in
higher complexity by a googol than the game of chess [103]. Until recently, it
was thought that designing a winning strategy for this type of very complex
game would be exclusively a free-of-machine task, because humans can exploit
very complex regularities that they learn through the practice of playing, and
refine their strategies until they win. In 2015, the AlphaGo [103] of Google has
contradicted this affirmation by beating a master of the Game of Go. Larger
datasets and computational power are partially an explanation of this success
[54].

Classifying images or playing the game of Go are also different tasks by
nature, which until recently required a lot of knowledge specific to those different
domains. On the contrary, Neural Network methods tend to be generic [35]
and can be deployed in very different contexts: obtaining a sucessful Neural
Network � requires simply to accumulate a large collection of data, with a
limited preprocessing procedure.

For d 2 N, let us consider a supervised problem, where x1, ..., xN 2 Rd, are
some training samples, such that for each xn the desired output or label is given
by f(xn

). Often, (xn, f(xn

)) follow an unknown distribution of probability P.
For example, x could be an image with a label f(x) like “cat”. In our case,
we learn a parametric representation ˆf from the data (xn, f(xn

))

nN

, and the
objective is to build ˆf which is an estimator (i.e. a statistic that depends on
the data) that best fits f(x) from x.

We assume that ˆf(x) can be factorized as f0(�x), which is detailed in [71],
where � is a deep neural network and f0 a parameter-free function that assigns
a class. For example, in the case of a binary classification, f0 can be a sign

2

function, which assigns one of the elements of {�1, 1} to the different classes.
Our objective is the following supervised task [11]: estimating � which min-

imizes the risk

P(f(x) 6= ˆf(x)). (1.1.1)

Unfortunately, this quantity can only be approximated through a validation
set, via an empirical estimator of the risk, which is given by:

1

N

N

X

i=1

1

f(xi) 6=f̂(xi) (1.1.2)

We consider the representations that are constituted by Neural Networks
[58]. Figure 1.0.1 represents a typical neural network architecture. Each acti-
vation x

j

of successive neurons is obtained by a linear combination W
j

of past
activations x

j�1 followed by a non-linear operator ⇢:

x
j

= ⇢W
j

x
j�1 (1.1.3)

If the cascade is of depth J , then the final layer x
J

corresponds to the repre-
sentation �x. Training a neural network is equivalent to finding the weights W

j

,
for all j 2 {1, ..., J}, via estimation or optimization procedures based on a train-
ing dataset, and the outcome of it is to minimize the risk of Eq. (1.1.2) because
the risk of Eq. (1.1.1) is an intractable value. In particular, the supervision
permits to adapt � to the specific biases of the data (xn

)

nN

.
However the rules and mechanisms that permit to obtain the weights W

j

,
for all j 2 {1, ..., J}, are not specified explicitly during the training procedure.
It means there is no indication at training time on the nature of the operations
that are performed in the inner layers to build a representation � that leads to
a good performance, and thus that some of the properties exploited by neural
networks remain an ubiquitous enigma to researchers [112, 123].

1.1.2 Supervised image classification: a high-dimensional
task

In this subsection, we explain why classifying high dimensional signals is dif-
ficult. The high-dimensional nature of x implies that f is hard to estimate.
Indeed, typical images are represented by a vector of length d = 10

5. For illus-
tration purpose, let us consider a regression problem on [0, 1]

d, where f is real
valued. A reasonable regularity constraint in main machine learning tasks is
that f is L-lipschitz. It implies that for two x, x0 satisfying kx � x0k  ✏

L

, one
has:

|f(x) � f(x0
)|  ✏ (1.1.4)

Approximating f is equivalent to generate a partition of [0, 1]

d, with balls of
radius ✏

L

. However, in this case the partition has a covering number of about

3

(

✏

L

)

d ball centers, which grows exponentially, and typical datasets do not have
enough samples available. For example, with only d = 30, ✏ = 0.5, at least 10

9

samples are necessary which is a larger amount than the size of typical datasets.
There is a curse of dimensionality.

In this thesis, we generally study natural image classification tasks, which
implies that the signals of the dataset have a lot of (complex) structures, for
which mathematical models are often limited to geometric consideration. As
the output of a neural network is a class, � performs a necessary dimensionality
reduction, and it must contract the space along non-informative direction for
the classification task. It means that for a given t = f(x0

), the representation
� must contract the space along the level sets of f , which are:

⌦

t

= {x, f(x) = t}. (1.1.5)

The non-informative directions correspond to variabilities L that preserve
the class of an image,

8x, f(Lx) = f(x). (1.1.6)

We refer to L as a symmetry of the classification task [71, 16]. In particular
⌦

t

is preserved by L if and only if it is a symmetry. An example is given by
translations by a

8x, 8u, L
a

x(u) = x(u � a). (1.1.7)

Here, translating an image labeled with “cat” preserves its class (as the cat
is still visible), which means that:

f(L
a

x) = f(x) (1.1.8)

Other examples of Euclidean transformations that preserve the class are
given by small rotations or small deformations of an image. Similarly, the change
of colors of a background is as well non informative in a face recognition task yet
this is not in general a transformation of the Euclidean group. Thus, f0�� must
necessary eliminate those variabilities to classify images which mathematically
means that

f0(�Lx) = f0(�x) (1.1.9)

A way to build an invariant to translation is to apply an averaging, indeed
if x0

= L
a

x, then
Z

�L
b

x0db =

Z

�L
a+b

xdb =

Z

�L
b

xdb (1.1.10)

An invariant is thus created. Unfortunately, this loses important informa-
tions of an image: two very different signals can have the same averaging, be-
cause for example, in the linear case, an averaging corresponds to a projection
with codimension 1.

4

1.1.3 Breaking the curse of dimensionality with CNNs
Convolutional Neural Networks (CNNs) in vision produce low-dimensional rep-
resentations that give outstanding numerical results in classification [46, 56],
detection [80], scene understanding [114], etc. Yet they are also successfully
used in strategy games [76, 103], audio classification [90], text generation [110],
which implies this technique is generic, and thus of extreme interest. Not only
the technique is generic, yet it is possible to apply successfully an architecture
on a dataset different from the training set [122]. It implies that such networks
have captured generic properties of images that are not linked to the specific bias
of the data. The most famous Deep Convolutional Network is the AlexNet [56],
introduced by Alex Krizhevsky, which has set up the trend on deep learning,
and permitted the revival of neural networks in 2012.

We explain why Convolutional Neural Network architectures introduce nec-
essary structure in the context of image classification. For monotically-increasing
continuous non-linearities, the universal approximation theorem [29] states that
Neural Networks are universal approximators of continuous function, with only
two layers. However, the number of neurons that is necessary grows exponen-
tially with the dimension [3]: there is again a curse of dimensionality. Besides,
the use of “deep” networks with increasingly deeper [46] layers suggests that more
than 2 layers are necessary to learn from the data. Incorporating structure into
deep network in order to shed light on these phenomena is thus necessary to
understand how to design their architecture.

We now discuss the notion of Convolutional Neural Networks that were in-
troduced by LeCun [59], and explain why they outperform Neural Networks that
do not have constraints on linear operators. For example, in the case of images
a huge engineering effort has been done to design appropriate neural network
architectures. The spatial index plays an important role in images. Sharing
the weights between different spatial positions permits to reduce drastically the
number of parameters of a CNN, thus it reduces the learning complexity of the
supervised tasks.

However the number of parameters remains large. Estimating a � via the
training set, which generalizes, is hard as well. For example, for typical neural
networks like the famed AlexNet [56], the number of parameters p of � is about
p ⇡ 60M when the number of samples is about N ⇡ 1M , thus the model is
prone to overfitting, which means that the network might not generalize well
and that the risk of Eq. (1.1.1) has not been minimized because of a large
estimation error. The reason why they tackle this difficulty is still unclear [123].

In signal processing, the corresponding linear operator that shares weight
location is given by convolutions from a filter k. This latter represents the
weights of the neurons. Convolutional operators commute with translation, and
are mathematically defined as:

x ? k(u) =

Z

x(t)k(u � t)dt (1.1.11)

and thus for a spatial translation L
a

:

5

(L
a

x) ? k = L
a

(x ? k) (1.1.12)
In the case of CNNs [59, 60], the linear operator W takes as an input and

output some feature layers x(u,�), where � is a channel index:

Wx(u,�0) =

X

�

x(.,�) ? k
�,�

0 (1.1.13)

and k
�,�

0 is the kernel associated to W . The non-linearity ⇢ is often [56]
chosen as ReLU, e.g. ⇢(x) = max(0, x). Typical hyper parameters have been
widely optimized. For example, a filter has a small support for two reasons:
first, it reduces the number of parameters to learn, secondly, any filters of ar-
bitrary size can be decomposed in cascade of small filters [68]. Indeed, many
architectures incorporate an affine bias combined with a ReLU, which means
that one can write:

⇢(x(u,�)) = max(0, x(u,�) � ⇢
�

) (1.1.14)
where ⇢

�

is a weight vector learned. By choosing large values for ⇢
�

the CNNs
could literally learn to drop the effects of the non-linearity: thus a CNN can
potentially implement any convolution with arbitrary size if this is necessary,
which has the benefit to slightly reduce the number of parameters necessary to
implement this operation. While convolutions incorporate structures, they do
not tackle the question of the necessary depth, the size of the layers or other
architecture considerations.

Cascades of convolutional operators permit to build representations that are
covariant with the action of translation. It means that:

�L
a

= L
a

� (1.1.15)
and the averaging of the Eq. (1.1.10) can be written as a linear averaging A via
the spatial index u:

Z

�L
b

xdb =

Z

L
b

�xdb , A�x (1.1.16)

One important question is to understand the nature of the invariants that are
built. Translation invariance is a necessary property that is achieved by state-
of-the-art neural networks, and the previous equation shows that the structure
of the CNN plays an important role.

Data augmentation via translations can be added in order to achieve a better
invariance to translation. Yet translations are not the only source of variability.
This raises the question to understand whether the non geometric transfor-
mations invariants can be specified by similar geometrical considerations and
methods.

In summary, neural networks are generic techniques that can drastically
reduce the dimensionality of a representation, in order to solve challenging high-
dimensional and large scale tasks. However the mathematical foundations of the
strategy they use to do so remains absolutely unclear.

6

⇢W1
⇢W2

⇢W3

�

u1

u2

�x

x

Figure 1.1.1: A typical CNN architecture. The signal is propagated through
cascades of convolutions W

j

, a point-wise non-linearity ⇢ and progressive down-
sampling. Each layer is indexed by the spatial positions (u1, u2) and the channel
index �.

1.1.4 Introducing and discovering structure in CNNs
In this thesis, we introduce and analyze structures in CNNs. It means that
each chapter aims at either incorporating structures, or understanding the self
organization of the representations that are built by the CNNs. We try to
understand the design of the architecture of the CNNs: for example, among
other questions: which depth is required? How should the non-linearity be
chosen?

While the objective at the training time is clear, which is to separate the
samples of different classes, what are the inner mechanisms that permit it to
generalize? To do so, we propose methods that permit to discover empirical
properties of CNNs.

We apply the scattering transform introduced in [69, 70] which is a deep
non-blackbox representation that leads to promising numerical results.

In a nutshell, among comprehensive software implementations that we pro-
vide online 1, some of our main contributions are the following:

1. Studying the invariants learned in CNNs and in particular, geometric
transformations [86, 85, 84, 82],

2. Performing empirical analysis of CNNs trained on complex images datasets
[83],

3. Specifying CNN operators with symmetries of the classification task [50].

1.2 Nature of the invariances learned

As said above, there are two kinds of variabilities: euclidean transformations
and others. We raise the question to understand to which extent invariants

1
https://github.com/edouardoyallon/

7

to geometric transformations are incorporated in the deep pipelines. To this
end, we study the Scattering Transform which is introduced in [69, 70], and
corresponds to a representation fully specified by geometric considerations. We
apply it to complex image classification benchmarks, in order to understand
to which extent the knowledge of Euclidean groups is enough to discriminate
complex images.

1.2.1 Priors compete with unsupervised representations
The Scattering Transform is introduced by [70]. It is the only neural network
whose design and weights are fully guided by mathematical foundations, and
which has been shown useful when the classification task only aims to reduce
several geometric variabilities like translations. It is a predefined representation
that involves limited learning. In vision, its architecture consists in a cascade
of two 2D complex wavelet transforms [68, 13], that perform convolutions along
euclidean groups. The ultimate goal of a Scattering Transform is to build some
invariance w.r.t. those groups, and in particular translation: this latter is a
natural candidate of variability to remove for image classification.

Contrary to fully supervisedly learned CNNs, the operators of a Scattering
Network can be fully analyzed. In particular, the connection, non linearity and
linear combinations between the neurons of the Scattering layers are specified
by the wavelets that are used: it implies that the indexes of the layer of a
Scattering Network are organized. We review its properties in Chapter 2.

A natural question that arises in the context of classification with a Scat-
tering representation is to understand to which extent the invariants from non-
Euclidean transformations are necessary for image classification. Indeed, in an
ideal case, an appropriate geometrical representation of an image would reduce
the variance of the classification task to a pure sample variance problem.

This is the case for example with classification of small handwritten digits
[15]: the main variabilities are due to small deformations and small translations.
As they are reduced by the Scattering Transform, a classifier such as a Gaussian
SVM [113] completely solves this digit recognition task.

In Chapter 3, we show that with a purely roto-translation representation
that relies on a limited amount of learning, it is possible to obtain significative
numerical performances on natural image classification. Furthermore, the Scat-
tering representation is generic (i.e. is not adapted to very different datasets)
and the numerical accuracies that we obtain are competitive with unsupervised
algorithms for building a representation for classification. It indicates that cur-
rent unsupervised representations do not capture more complex invariants than
Euclidean ones.

This is a problem since many efforts are done to use the large unlabeled
datasets that are available. Indeed, annotating data is expensive. Thus, we
suggest that in the case of images that are signals with a lot of geometry, incor-
porating this geometry might lead to similar performances to representations
that are built upon a very large unlabeled dataset. However, there exists still
an important gap between unsupervised and supervised representations that

8

we discuss in the next Subsection: how can we integrate supervision in the
Scattering, in order to fill in this gap?

1.2.2 Filling the gap by adding supervision
Using a discriminative descriptor in a supervised pipeline permits to incorpo-
rate more predefined complex structure than with the raw signal. We could
incorporate some learning that will be adapted to the wavelets in the Scattering
Transform. Although this direction has not been explored in this thesis, this
property would mean that the operators of the Scattering Transform must be
adapted to a specific dataset.

Instead, our contribution is to show a stronger property: we demonstrate
that the Scattering Transform is an appropriate predefined and fixed initializa-
tion of the first layers, in Chapter 4, for natural images. This is coherent with
the transfer learning properties of CNNs as well [122], that shows that the ear-
lier layers of CNNs are related to geometric considerations. We refer to those
networks as Hybrid Networks. It implies that the generic geometrical invariants
that are encoded by the Scattering Transform can be exploited by a supervised
CNNs cascaded on top of it and propagate other sources of regularity which are
important for the classification.

Thus the scattering does not lose discriminative information that is used
by the supervised CNNs. In fact, we demonstrate that incorporating the geo-
metrical prior improves the classification algorithms in the case where a limited
amount of data is available. This is coherent, because it permits to avoid learn-
ing those invariants and to reduce the geometric variance of the supervised task.

A contribution of Chapter 4 is to show that since the input of the Hybrid
CNN is covariant with rotation, the CNN learns to build a linear invariant to the
rotation: an averaging along the rotation group. While this is not surprising, it
was not specified during the optimization. Obtaining insights in the inner layers
is complicated to do, but thanks to the Scattering Transform, it is possible to
interpret a few of them: the depth of the network is smaller, then we understand
the first learned layers and the non learned layers: this is a promising direction
to understand the remaining layers.

1.3 Empirical analysis of Neural Networks

Here, we report the empirical properties that we obtained in this thesis. Several
works suggest that a progressive specialization of the layers occurs. It means for
example that the different atoms of the operators of a CNN answer to different
stimuli. First they are more sensitive to geometrical patterns, then in the next
layers, they are more task-specific.

However, more analysis remains to be done to understand more precisely the
nature of the operation performed at each layer of a CNN, and identifying or
estimating the variabilities that are not related to geometrical transformations
in a classification problem is hard.

9

Several models rely on a manifold hypothesis, which is a simplification that
can not permit to modelize the whole diversity and the hardness of the classi-
fication task. Indeed, it could imply that the variability of images are related
to a manifold structure. However, no manifold learning techniques have been
shown to be applicable (which suggests the dimension of the data is locally low)
in the case of image classification because this task is high-dimensional. Let us
give an example, the small deformations by ⌧ 2 C1, kr⌧k < 1, which act via

L
⌧

x , x(u � ⌧(u)) (1.3.1)

They are high-dimensional objects that are not parametric, and thus they
can be potentially hard to estimate. Besides, there is a large number of variabil-
ities that can potentially have a manifold structure in several cases (occlusions,
light change, color changes, euclidean and projective variabilities, ...) and they
fail to lay in a low dimensional structure thus their estimation is delicate.

For example, the work of [2] suggests that a deep network is able to build a
tangent space of variabilities. This is also proved for the Scattering Transform
[70]. It implies the variability has been locally linearized, which means that:

�Lx ⇡ �x + @�(x).L (1.3.2)

Here, a linear projector ⇧ can build an invariant to this variability by re-
moving the dependency in L, if:

span(@�(x)) ⇢ ker ⇧. (1.3.3)

1.3.1 Designing generic and simplified architectures
We explain how to simplify CNN architectures. They use a wide number of
different modules [126, 119, 116, 107, 63, 60, 49, 10] that are cascaded through
the architecture. Yet, many of them have a limited impact on the classification
while adding a lot of non-linear effects, and often improving only marginally a
benchmark. They are often hard to analyze because many variations of their
combinations are possible and the optimal setting is never clear.

Very deep networks are also harder to analyze than shallow ones. Indeed,
each extra-layer which is learned through back-propagation and that can be
removed is a layer less to analyze. They are also harder to train and need some
specific hints to be optimized, like the “shortcut connections” with the ResNet
[46] that permit to train very deep and state-of-the-art networks.

In Chapter 5, we propose a generic class of state-of-the-art deep networks
that depends only on two hyper parameters: the non-linearity and the width of
the network. We study its classification performances w.r.t. those parameters.

1.3.2 Progressive properties of CNNs
The work of [122] suggests that CNN representations are progressively linearly
separable. In Chapter 5, our contribution is to refine the description of this

10

progressive separation.
Since the cascade of CNNs operators is non-linear, we must refine the usual

linear tools that are used. While the final representation of a CNN is built
by the cascade, we propose to study the representations layer wise, for each
x

j

. We derive some basic properties that indicate a progressive reduction of
dimensionality: as j increases, the representations have a lower variance along
the principal axis and the intra-class distances are reduced.

Let us recall that a nearest neighbor is a classifier that assigns the class of
its nearest neighbors. Its success relies on the choice of the metric that is used.
The classification boundary corresponds to the sets that delimit the different
classes of a classification task.

We refine the previous analysis by introducing a notion of local support
vectors, in order to describe the classification boundary of CNNs at different
depths. They correspond to sample representations of the training set that
are mis-classified by a nearest neighbor algorithm, and thus locally support the
boundary of classification. We show that their number is progressively reduced,
which indicates a phenomenon of contraction. Besides, we introduce a notion
of complexity of the classification boundary at these points: it shows that the
classification boundary is getting lower dimensional with depth, which indicates
the representations of the different classes are more easily to be separated with
depth.

This explains why a nearest neighbor classifier accuracy progressively im-
proves with depth: the linear metric is progressively more meaningful.

1.4 Imposing symmetries of Neural Networks

We describe a novel class of deep neural networks inspired by the hypothesis of
the existence of a Lie group which aims at approximating the symmetry group
of the classification task [71, 16, 38, 25].

1.4.1 Parallel transport along symmetry groups
We explain the notion of parallel transport along a symmetry group, which is
also described by [71]. As said before, a symmetry in a supervised classification
task is an invertible operator L that preserves the class:

8x, f(Lx) = f(x) (1.4.1)

We recall that the symmetries of f are a group. Indeed, if L, L0 are two invertible
operators, L�1L0 is invertible as well and:

8x, f(L�1L0x) = f(L0x) = f(x) (1.4.2)

However, this group can be infinitely dimensional, and by definition non-
parametric, thus difficult to estimate. [71] proposes to progressively approximate

11

it with finite dimensional groups of symmetries that correspond to Lie groups.
To this end, we consider each layer at depth j and write:

�(x) =

ˆ

�

j

(x
j

), where ˆ

�

j

= ⇢W
J

⇢...⇢W
j

(1.4.3)

A parallel transport is defined [71] as an action g
j

along the coordinate of
x

j

:

8v, g
j

.x
j

(v) , x
j

(g
j

.v) (1.4.4)

Translations are an example of such actions. For each ˆ

�

j

, [71] specifies its
linear group of symmetry, which is given by the linear and invertible operators
g

j

such that:

8x, ˆ

�

j

(g
j

.x) =

ˆ

�

j

(x) (1.4.5)

where the inputs x to ˆ

�

j

do not necessarily correspond to the representation
at depth j. Each g

j

belongs to a Lie group G
j

and this group of symmetry is
increasing, in the sense that G

j

⇢ G
j+1. How can we exploit those groups of

symmetries? An answer is proposed in [71].

1.4.2 Multiscale Hierarchical CNNs
The objective of a good representation is to build invariances w.r.t. symmetry
groups while preserving discriminating informations. At each depth j, local in-
variants can be obtained by performing operations along the orbit {g

j

.x
j

}
g

j

2G

j

.
To do so, [71, 16, 38] propose to build operators ⇢W

j

such that applying g
j

2 G
j

to x
j

corresponds to the action of a symmetry g
j+1 2 G

j+1 on x
j+1, e.g.:

⇢W
j

(g
j

.x
j

) = g
j+1.(⇢Wj

x
j

) (1.4.6)

It implies that if ˆ

�

j

(g
j

.x
j

) =

ˆ

�

j

(x
j

) then ˆ

�

j+1(gj+1.xj+1) =

ˆ

�

j+1(xj+1):
invariants are propagated through this operator. A cascade of those operators
is referred as Multiscale Hierarchical CNNs.

However, a naive implementation of the W
j

requires a number of parameters
that grows exponentially with depth, which is thus hard to engineer. Hierarchi-
cal Attribute CNNs provides a solution to this issue.

1.4.3 Hierarchical Attribute CNNs
A contribution of the Chapter 6 is to prove that the operators W

j

can be imple-
mented and trained with symmetry groups that contain Euclidean translations
G

j

= Rd

j , d
j

2 N⇤, and thus are linear convolutions. We thus have d
j

 d
j+1. It

is less general than the Multiscale Hierarchical CNNs because non-commutative
groups convolutions can not be embedded so, as in the case of the non-separable
Roto-translation Scattering [101].

We construct each layer x
j

such that they depend upon a set of indexes
structured by translations along G

j

to which we refer as attributes. It defines

12

Hierarchical Attribute CNNs which are a subclass of the Multiscale Hierarchi-
cal CNNs introduced in [71]. The operator W

j

performs convolutions along the
attributes of G

j

and build invariants to these via linear averaging. The final
output �x is linearly averaged along all those directions of variabilitiy, and thus
completely invariant to the translations G

J

. It requires to use high-dimensional
convolutions and we thus propose an efficient implementation of it. The aver-
aging is also important because it permits to control the dimensionality of the
network.

Our work aims at mapping non-linear symmetries of � into the symmetries
of �

j

, that are linear translations. It implies that the former have been lin-
earized. Without structuring the network, it is difficult to observe symmetries
because they can potentially correspond to high-dimensional operators. For
instance, in the case of a linear translation of signals of length N , the corre-
sponding matrix has N2 coefficients. Directly specifying the translations permit
to tackle the necessity to estimate the symetries because they are explicitly in-
corporated. Can we analyze those symmetries? When training a neural network
with these constraints, we drastically reduce the number of parameters necessary
to parametrize the W

j

.
We study the properties of those attributes and translations on natural im-

ages, and explain the limitation of our method.

13

Chapter 2

Background

This chapter gives a short introduction to Convolutional Neural Networks (CNNs)
[59] and Scattering Transform [70] that we use systematically in each chapter of
this thesis. We first describe them in term of architectures and mathematical
properties. CNNs and in particular Scattering Transforms can both be used as
a strong baseline for image classification, albeit their fundations might seem op-
posed. For example, a CNN is fully learned via supervision when a Scattering
Transform depends upon a limited number of hyper parameters. Few math-
ematical results are available for CNNs, contrary to a Scattering Transform.
However, a Scattering Transform can be interpreted as a specific class of CNN,
and it was introduced so in [69].

2.1 Convolutional Neural Networks Review

convolutional neural networks (CNNs) were introduced at the end of the 80s by
LeCun [59]. Now, they are standard to solve vision tasks [58, 56, 60]. They
are a specific class of neural networks, where almost each operation performed
by the network is covariant with translations. A neural network is the cascade
of linear and non-linear operators, or more informally, a hieararchical stack of
neurons, fully learned via supervision. They are inspired from neuroscience, and
how the brain works [4]. However, these interpretations remain unclear in many
cases [36].

From a technical point of view, Neural Networks had a revival of interest
since the arrival of GPUs and large datasets. Indeed, those models have a large
amount of parameters, and are extremely prone to overfitting. Their training is
computationally heavy, as they rely on a large number of trainable parameters.
GPUs permit to speed-up linear algebra routines and are a core element of
CNNs. Their use in machine learning is recent, and almost corresponds to the
release of the large image dataset, ImageNet. It consists in one million large
natural colored images divided into one thousand classes, that were annotated
by humans. Such a dataset is necessary to train those large models. The

14

combinations of those two techniques is thus attractive in the industry for where
a lot of data is available with high-dimensional problems that were unsolved
until now, and these possibilities show that deep networks are a large-scale
architecture.

While the flexibility and the possibility to train larger models is appealing
to improve current benchmarks, it also makes their analysis harder. Few math-
ematical results explain why those networks generalize well from a training set
to a validation set.

First we describe the “neurons” that arise in CNNs via Subsection 2.1.1, how
to optimize the weights of this architecture in Subsection 2.1.2, and we explain
the theoretical challenges that arise in Section 2.1.3.

2.1.1 Standard architectures
We summarize some pivotal definitions about standard CNNs architecture that
we will widely use in the next sections. We also recall simple properties that hold
for CNNs, for example they can build invariance to translation and are Lipschitz
w.r.t. their input. A Neural Network is the cascade of linear operators and non-
linearity. It propagates an input signal x0 = x 2 L2 through the last layer x

J

,
where J is referred as the depth of the network. Let us consider a spatial index
p. We refer to x

j

[p,�] as the propagated layer at depth 0  j  J , where �  �

j

is the index of the feature map. Each layer is computed from the previous layer
via:

x
j+1 = P

j

⇢
j

W
j

x
j

(2.1.1)

where W
j

is a CNN linear operator, ⇢
j

a point-wise non-linearity and P
j

is an
extra operator, like a pooling operator or the identity. Let us discuss briefly the
different operators of each layers.

CNN linear operator W
j

A CNN linear operator is defined as an operator of l2 between two layers ,
8p, 8�  ⇤:

Wx[p,�] =

X

�̃

x ? k
�,�̃

[p] (2.1.2)

where p is a discrete spatial position index, � the index of a feature map and
k

�,�̃

is convolutional kernel. Usually, the convolutions are performed with a
zero-padding. In this case, one can show that a linear operator is a CNN linear
operator if and only if it is covariant with the action of spatial translations.
Purely cascading linear operators without intermediary non-linearity would be
equivalent applying one linear operator. To avoid extra non-necessary opera-
tions and to obtain a non-trivial CNN, pointwise non linearities are applied.
Each of the weights k

�,�̃

will be learned via a gradient descent procedure de-
scribed in Subsection 2.1.2.

15

Pointwise non-linearity

Let be ⇢�

: R ! R a non-linearity. We call ⇢ = (⇢�

)

�

a non-uniform
pointwise non-linearity, the operator given by:

⇢(x)[p,�] = ⇢�

(x[p,�]) (2.1.3)

Observe that its action commutes with translation as well. If ⇢�

= ⇢�

0
, 8�,�0,

we say that it is a pointwise non-linearity. In particular, this means that each
layer is covariant with the action of translation, if the module P

j

satisfies P
j

= I
for example.

Extra-modules P
j

For example, the operator P
j

can be a pooling operator. Pooling operators
are given by the

P

or the max pooling, that are applied on a predefined window
size. They are expected to build invariance [10] w.r.t. translations. One of the
issues with the latter is that it is unstable w.r.t. to translations. We write:

Ax[�] =

X

p

x[p,�] (2.1.4)

a global average pooling operator.
Besides, P

j

could also be a batch normalization module, which consists in
an affine operator that helps to improve the conditioning of the layer at training
time, by standardizing the representations at each iterations of an optimization
algorithm. As this operator is completely affine at test time, we however omit
it in our notations and simply mention it as an optimization trick.

As all the operators that are involved are covariant with translation, applying
a global averaging A after the last convolution imposes a translation invariance
on the output of the CNN and removes this variability. Similarly, assuming
that each operator is non-expansive implies that the cascade will be as well non
expansive.

2.1.2 Training procedure
We describe the common training procedure of CNNs, which is at the funda-
tions of almost all the experiments performed during this thesis. Usually, CNN
operators depend on a large amount of trainable parameters, that we denote as
✓ and non-trainable parameters, ⌘ that are computed through fixed policy rules
P. A policy rule can be for example an iterative update of the affine weights
of a regularization procedure (such a dropout or a batch normalization), via a
Markov Chain. For an input x, f(x, ✓, ⌘) is the outpout of the CNN with pa-
rameters ✓ 2 ⇥. All the operators in the cascade of the CNN are chosen weakly
differentiable, with respect to their input, but as well to their parameters. In
particular, it is possible to train them via a gradient descent algorithm, to min-
imize a loss function E . This latter aims to measure the distance between the

16

label of the datasets and the output of the CNN. Typically, a loss can be the l2

norm of the difference between an output and its desired value:

E(x, y) = kf(x) � yk2 (2.1.5)

or the neg entropy, i.e.:

E(x, y) = �
X

y
i

log(

y
i

f(x)

i

) (2.1.6)

which represents the distance between the distribution of coefficients of f(x)

and y. Those losses being also differentiable, training a CNN on a dataset
X = {(x1, y1), ..., (xK

, y
K

)} aims to minimize:

inf

✓2⇥,⌘

1

K

K

X

k=1

E(f(x
k

, ✓, ⌘), y
k

) = inf

✓2⇥,⌘,X
¯E(✓, ⌘, X) (2.1.7)

One could use a gradient descent scheme combined with the policy rules P
at step n and with gradient step ↵:

(

✓n+1
= ✓n � ↵@Ē

@✓

(✓n, ⌘n, X)

⌘n+1
= P⌘n

(2.1.8)

However, typically, K � 1 and using Stochastic Gradient Descent (SGD)
batches of size B often demonstrates better performances, which leads to using
the following SGD:

(

✓n+1
= ✓n � ↵ 1

B
PB

k=1
@E
@✓

(f(x
�(k), ✓

n, ⌘n

), y
�(k))

⌘n+1
= P⌘n

(2.1.9)

(2.1.10)

A batch normalization procedure is often used at the intermediary layers of
f , since deep learning training operators often suffer from ill-conditionning.

2.1.3 Theoretical challenges
There is a lack of mathematical understanding of deep learning techniques. In
particular, Subsection 2.1.3.1 explains the obstacles to obtain good generaliza-
tion properties. Then, Subsection 2.1.3.2 develops existing results on inter-
preting the models. Finally, we recall they might have some unstabilities in
Subsection 2.1.3.3.

2.1.3.1 Generalization properties

In this subsection, we discuss the generalization properties of a CNN, and to
this end, we first recall several statistics results and explains results that suggest
an appropriate framework to understand their performances is missing.

17

First, a CNN has usually more parameters than commons models, such as
SVMs or Random Forests. Those classifiers are analogous to the fully connected
layers of the AlexNet, that concentrate the mass of the parameters. It is well-
known, and it has been stated recently in [123], that despite their size, they do
not overfit, even without l2 regularization or data augmentation. It means that
the optimization procedure captures some source of regularities via the gradient
descent that we do not have access to.

Secondly, [123] shows that the Rademacher [11] complexity results do not
stand. The Rademacher complexity permits to relate a notion of expressive-
ness with a functional subspace. The capacity of an algorithm can then be
bounded, w.r.t. to its parameters and the number of training samples, using
the Rademacher complexity bounds. [123] shows that the Rademacher complex-
ity does not decrease in the case of CNNs since they have the ability to learn
perfectly the boundary classification of random labeled data.

A solution is suggested by [71, 16], which uses the concept of symmetry
groups of a classification problem. It is a high-dimensional object that corre-
sponds to all the undesirable variability that one must reduce in a classification
task. A model is developped, in which a deep network would progressively
build a finite dimensional approximation of this group of symmetries, and build
progressive invariants. The last Chapter 6 of this thesis tries to use this concept.

2.1.3.2 Interpretability

Interpretating a CNN which obtains good performance is necessary, for exam-
ple, in the case of medicine problems to understand which features permit the
building of a decision and to refine the analysis performed by a doctor.

The back-propagation of the gradient through several layers makes the anal-
ysis hard, because the optimization is not constrained. It means that the choice
of a weight for a given layer is fully guided by the supervision, and there is
currently limited hypothesis to explain their mechanisms. Some works [71, 16]
suggest that each deep operators could correspond to parallel transport along
group of symmetries, yet some other works suggest CNNs detect “patterns”,
[118].

In order to understand the operations implemented by a “neuron” (i.e. a
filter of the linear operator), [122] selects images that maximizes the activation
of the output of a CNN at a given depth. However, this is extremely empirical,
and [112] suggests that any linear combinations of neurons is an interesting
direction as well. Yet, the nature of each operator is still unclear.

2.1.3.3 Stability

Among theoretical properties, the stability of CNNs [19, 112] is essential to apply
these methods in practical cases. Stability means that a small perturbation
should not have large effects on the representation built via a CNN. Therefore,
for training purpose, small modifications of a dataset should not drastically
alterate the quality of the learned representation. It also means that a small

18

perturbation of the input of a CNN which is almost not perceptible should not
affect the corresponding output of the CNN.

Several works indicate that CNNs do not have this property. For example,
[77, 112] show that it is possible to find an additive perturbation of an image
which is visually imperceptible but drastically changes the estimated class from
the CNN representation. In fact, [77] shows such a vector consistently exists
and is the same across all images, which makes it universal in some sense. These
effects can be avoided to a certain degree [126, 42], but no theoritical results to
quantify its existance [112]. Besides additive transformations, few results exist
to measure the invariance that is built w.r.t. rotations or scaling effects for
example [40, 87].

2.2 Scattering Transform Review

In this section, we review the scattering transform of order 2. We will show that
it is a cascade of two wavelets transforms followed by a modulus non-linearity,
which is spatially averaged. The final averaging permits to build invariance to
translation and to build stable invariants w.r.t. small deformations. Those two
properties are of interest for image classification because they represent some of
the main variabilities of natural images.

The Scattering Transform has been first defined and studied mathemati-
cally in [70, 69]. It has been successfully used in classification task of stationary
textures and small digits [13, 15]: its success relies in the fact that in those prob-
lems, samples variance is small relatively to the geometric variabilities. Indeed,
deformations and rigid deformations, in particular translations, are mainly re-
sponsible for the variance in those problems. In fact, it is possible to build a
scattering transform along more complex variabilities on the non commutative
roto-translation group [100, 101], that permits obtaining a significant improve-
ment.

This representation has wide connection with deep learning techniques that
lead to state-of-the-art results on all standard vision benchmarks. First, one
can show that a scattering of scale J is actually a predefined deep network
with depth J , with appropriate down-samplings. Secondly, wavelets are often
observed in the first layer of a deep network [56]: in the scattering, they are
systematically present. This raises the question of understanding the nature of
the next layer of a deep network, in order to verify if the connection with a
Scattering Transform concerns deeper layers.

The Subsection 2.2.1 starts with an input signal, and explains how to build
an invariant to translation representation that still discriminates important spa-
tial information. Next Subsection 2.2.2 recalls the properties of the Scattering
Transform that permit to obtain the state of the art on the MNIST dataset and
textures datasets. The last Subsection 2.2.3 argues that a Scattering Transform
is actually a deep network, which leads to the name of “Scattering Network”.

19

Figure 2.2.1: The 2D morlet wavelets. The amplitude is given by the contrast,
and the phase by the the color. Best viewed in color.

2.2.1 Construction of the 2nd order Scattering Transform

Consider a signal x(u) with finite energy, i.e. x 2 L2
(R2

), with u the spatial
position index and an integer J 2 N, which is the spatial scale of our scattering
transform. We propose to explain how to build invariant representations up
to translations of 2

J , but which remains discriminative. Let �
J

be a local
averaging filter with a spatial window of scale 2

J . This filter is chosen to be
dilated from a low-pass filter that builds invariance up to 2:

�
J

(u) =

1

2

2J

�(

u

2

J

) (2.2.1)

For example, � can be set as:

�(u) =

1

2⇡�2
e�

kuk2

2�2

where � = 0.85 is a parameter that controls the bandwidth of the averaging
according to Nyquist sampling [31, 68]. Interestingly, gaussian envelops permit
to obtain an optimal trade-off between spatial and frequency localizations, w.r.t.
the Heisenberg inequality [78, 68]. It defines a local averaging operator via:

A
J

x(u) = x ? �
J

(2

Ju)

Applying the latter on the signal x we obtain the zeroth order scattering
coefficient:

S0
J

x(u) , A
J

x(u) (2.2.2)

This operation builds an approximate invariant to translations smaller than
2

J , but it also results in a loss of high frequencies that are necessary to dis-
criminate signals. A solution to avoid the loss of high frequency information is

20

provided by the use of wavelets. A wavelet [74] is an integrable and localized
function in the Fourier and space domain, with zero mean. Let us consider for
example a Morlet wavelet, which is given by:

 (u) = C(eiu

T

⇠ � )e�
u

T

Bu

2�2 (2.2.3)

where C is a normalization factor,  is chosen such that the wavelet has 0
averaging, ⇠ =

3
4⇡ corresponds to the central frequency of the wavelet and B

is a symmetric matrix that permits to adapt the selectivity angular frequencies

of the wavelet [68]. For instance, B =



1

⇠2

�

, ⇠ =

1
2 < 1 is used in current

implementations and it implies that the level set of the amplitude of a Morlet
wavelet corresponds to some ellipsoids. A family of wavelets is obtained by
dilating and rotating the complex mother wavelet such that:

j,✓

(u) =

1

2

2j

 (r�✓

u

2

j

) (2.2.4)

, where r�✓

is the rotation by �✓, and j is the scale of the wavelet. An example
of this family is given by Figure 2.2.1. A given wavelet

j,✓

has thus its energy
concentrated at a scale j, in the angular sector ✓. Let L 2 N be an integer
parametrizing a discretization of [0, 2⇡]. A wavelet transform is the convolution
of a signal with the family of wavelets introduced above, with an appropriate
downsampling:

W1x(j1, ✓1, u) = {x ?
j1,✓1(2

j1u)}
j1J,✓1=2⇡

l

L

,1lL

(2.2.5)

Observe that j1 and ✓1 have been discretized: the wavelet is chosen to be
selective in angle and localized in Fourier. With appropriate discretization of
✓1, j1 , {A

J

x, W1x} is approximatively an isometry on the set of signals with
limited bandwidth, and this implies the energy of the signal is preserved: there
exists 0  ✏ < 1, for such signals x,

(1 � ✏)kxk2  kA
J

xk2
+ kW1xk2  kxk2 (2.2.6)

This operator then belongs to the category of multi-resolution analysis oper-
ators, each filter being excited by a specific scale and angle, but with the output
coefficients not being invariant to translation. To achieve invariance we can not
apply A

J

to W1x since it gives almost a trivial invariant, namely zero.
To tackle this issue, we apply a non-linear point-wise complex modulus to

W1x, followed by an averaging A
J

, which builds a non trivial invariant. Here,
the mother wavelet is analytic, thus |W1x| is regular [6] (and we prove it in
Subsection 5.1.2.1) which implies that the energy in Fourier of |W1x| is more
likely to be contained in a lower frequency domain than W1x [70].

Thus, A
J

preserves more energy of |W1x|. It is possible to define S1
J

x ,
A

J

|W1|x, which can also be written as:

S1
J

x(j1, ✓1, u) = |x ?
j1,✓1 | ? �J

(2

Ju)

21

which are the first order scattering coefficients. Again, the use of the averaging
builds an invariant to translation up to 2

J . Once more, we apply a second
wavelet transform W2, with the same filters as W1, on each channel.

This permits the recovery of the high-frequency loss due to the averaging
applied to the first order, leading to:

S2
J

x , A
J

|W2||W1| (2.2.7)

which can also be written as:

S2
J

x(j1, j2, ✓1, ✓2, u) = |x ?
j1,✓1 | ? j2,✓2 | ? �J

(2

Ju)

We only compute increasing paths, e.g. j1 < j2 because non-increasing paths
have been shown to bear no energy [13]. We do not compute higher order scatter-
ings, because their energy is negligible [13]. We call S

J

x(u) the final scattering
coefficient corresponding to the concatenation of the order 0, 1 and 2 scattering
coefficients, intentionally omitting the path index of each representation:

S
J

x(u) , {S0
J

x(u), S1
J

x(., u), S2
J

x(., u)} (2.2.8)
= {A

J

x(u), A
J

|W1|x(u), A
J

|W2||W1|x(u)} (2.2.9)

With discrete signals, at computation time, intermediary downsamplings are
involved to speedup the algorithm used to a compute a Scattering Transform[15,
13], and are discussed in Subsection 2.2.3, when combined with an “algorithme
à trou”, with a critical sampling.

In most of the application cases, an oversampling factor ↵ is necessary to
avoid aliasing, which is equivalent to increasing by a factor of ↵ the resolution
of the input signal. The filters with the smallest scales of an (approximate)
analytic wavelet transform are likely to suffer from a bad localization in space
[68, 97]. Consequently, we systematically apply at least an oversampling of
↵ = 1 [97], which means that the final spatial size of each side of the signal
will be multiplied by 2

↵

= 2. For the sake of simplicity, we do not mention it
later however we refer the reader to the related softwares to check these subtle
implementation details.

Representation dimensionality

In the case of colored images, we apply independently a scattering transform
to each of the 3 RGB channels of an image of size N2, which means Sx has a
size equal to N

2

22J ⇥ 3 ⇥ �

1 + JL +

1
2J(J � 1)L2

�

, and the original image is
down-sampled by a factor 2

J [15].

22

x |W1| |W2| A
J

Sx

Figure 2.2.2: A scattering network. A
J

concatenates the averaged signals.

2.2.2 Successful applications of the Scattering Transform

In this section, we discuss the reason why the Scattering Transform outper-
forms standard methods on several classic benchmarks. More precisely, we will
first state several properties that the Translation Scattering Transform satisfies
which are proved in [70], and then we will briefly introduce the Roto-translation
Scattering Transform.

2.2.2.1 Translation Scattering

We review four theoretical properties of the Scattering Transform that are geo-
metrical and concern stabilities of the representation w.r.t. subsets of geometri-
cal transformations. Then, we explain how they permit to reach state-of-the-art
results on the MNIST dataset.

First, the Scattering transform of order 2 is a non-expansive operator because
all the operators of which it is composed, are non-expansive [70]. It means that:

kS
J

x � S
J

yk  kx � yk (2.2.10)

In particular, it implies this representation is stable to additive noise, like
white noise, which is common and due for example to digital camera processing.

Secondly, a Scattering Transform is almost translation invariant w.r.t. small
translations 8a, L

a

.x(u) , x(u � a), which means:

8|a| ⌧ 2

J) S
J

(L
a

.x) ⇡ S
J

x (2.2.11)

Consequently, the variability along the translation group is reduced.
Thirdly, a Scattering Transform is stable to small deformations. A small

deformations I � ⌧ is modelized as a C1 application, such that the suprema
norms of ⌧ and its Jacobian r⌧ are small, eg:

(

k⌧k1 < 1

kr⌧k1 < 1

(2.2.12)

In this case, I � ⌧ is a diffeomorphism, and for a signal x(u), the action of
a deformation ⌧ is defined as:

L
⌧

x(u) , x(u � ⌧(u)) (2.2.13)

23

In [70], it is proved that, without any band-limited assumption on a signal
x 2 L2

(R2
), under mild and realistic assumption on ⌧ , for a given J , there exists

a constant C
J

> 0 that does not depends on x or ⌧ , such that:

kS
J

(L
⌧

x) � S
J

xk  Ckr⌧k1kxk (2.2.14)

The purpose of this theorem is to show that S
J

is locally Lipschitz, w.r.t.
small deformations. In particular, it implies that S

J

is almost everywhere
Gateaux differentiable w.r.t. the deformations, and thus it does linearize small
deformations. An invariant to a subset of deformations can thus be obtained
via a linear projection.

Finally, it is also often possible to reconstruct a signal from its scattering co-
efficients which indicates it is an almost complete representation [33]. All those
properties imply that with a linear classifier, one should be able to build rele-
vant invariants for classifications, that reduce variabilities along the translation
group and deformations.

Let us give an example of an application of the Scattering Transform, in order
to stress its strength. The MNIST dataset is comprised of 610

4 digits for training
and 1 10

4 digits for testing. On this specific dataset, most of the intraclass
variability is due to small deformations and small translations. The previous
properties imply that a linear projection applied on the Scattering Transform
can remove those variabilities: it will reduce this problem with a-priori large
variance, to a problem of sample complexity. Then a localized classifier such as
a Gaussian SVM permits to discriminate the remaining variabilities, and obtain
a nearly state-of-the-art result [13]. However, a supervised CNN improves even
more the numerical performances [116], because it can capture more specific
invariants by adapting its representation to the specific bias of the dataset.

2.2.2.2 Roto-translation Scattering

A roto-translation scattering [101, 100] improves the numerical classification per-
formances on datasets where rigid deformations are the main variabilities. [101]
introduces a wavelet transform along the roto-translation group G = R2 nSO2,
that is applied on the first modulus wavelet coefficients obtained in Subsection
2.2.1. Here, we write g = (v, ✓) 2 G. Observe that in this case, |W1x|(u, ✓1, j1) =

|W1x|(g1, j1), with g1 = (u, ✓1) 2 G . The non-commutative roto-translation
group G acts on L2

(R2
) via:

L
g

x(u) , x(r�✓

(u � v))

Moreover, its action is covariant with |W1|, in the sense that its action does
correspond to a permutation of the indexes of this modulus wavelet transform:

|W1|Lg

x(g1, j1) = |W1x(g�1g1, j1)| , L
g

|W1|x(g1, j1) (2.2.15)

As a product of R2 and a compact group SO2, it is possible to define a
canonical and unique (up to a multiplicative constant) notion of measure [48],
which the product of the Euclidean measure and a Haar measure. In particular,

24

if 8j1, ✓1, |W1x(., ✓1, j1)| 2 L2
(R2

), then, since the measure along ✓1 is finite,
because the rotation group is compact, and thus the modulus wavelet transform
is integrable w.r.t. ✓1, hence |W1x(., j1)| 2 L2

(G).
A wavelet transform ˜W can be built along G [101], and in a very similar

manner to our introduction below to the Scattering Transform, permits to build
a Scattering Transform which is globally (or even locally) invariant to the roto-
translation group and stable to deformations. We do not study the details of
its construction, as invariants to roto-translation representations are not the
purpose of this thesis.

This technique was applied on textures datasets that have often a small lim-
ited number of samples per class. It implies that deep fully supervised techniques
can not be applied because not enough data are available. In his thesis [102],
Laurent Sifre proves that again, this representation lienarizes small deforma-
tion, is invariant to the roto-translation group and is stable to noise. Combined
with a data-augmentation technique in scales and ad-hoc renormalization, [101]
builds an invariant to the Euclidean group and obtain state-of-the-art results
on standard benchmarks such as UIUC or UMD.

2.2.3 Scattering Transform as a Scattering Network
This section demonstrates that a Scattering Transform can be viewed as a par-
ticular type of CNN, with small kernel filters [69]. In particular, we show that
the number of non-linearities (e.g. the order, which is 2 in our case) does not
correspond necessarly to the effective depth of the network. We recall a demon-
stration similar to the “algorithme à trou” [68] to illustrate our purpose, and
state this properly in our case.

2.2.3.1 Wavelet implementation

We first give sufficient conditions to build a wavelet transform via finite impulse
filters. Let us set �0 = �0 and let us consider h 2 l2(Z2

). We also consider
{g

✓

}
✓2⇥ ⇢ l2(Z2

) such that for all j, we define recursively:
(

ˆ�
j+1(!) =

1p
2
ˆh(2

j!)

ˆ�
j

(!)

ˆ
j,✓

(!) =

1p
2
ĝ

✓

(2

j!)

ˆ�
j

(!) 8✓ (2.2.16)

where {h, g
✓

}
✓

are the finite impulse filters associated to {�, }. In a perfect
situation, no aliasing would occur and then it would be enough to apply cascade
of convolutions with filters ˆh

j

(!) =

ˆh(2

j!). Those filters are obtain by adding
2

j � 1 zeros between each sample of h[n]. However, here we consider a set
of filters {�

J

,
j,✓

}0j<J

, which are approximatively localized in the frequency
domain. It means that they energy in Fourier of each

j,✓

is concentrated in
ball of radii proportional 2

�j . Thus we can subsampled at intervall 2

j the result
of the filtering, e.g. we consider:

x ?
j,✓

(2

jp), 0  j < J (2.2.17)

25

and, we assume similarly that �
J

permits a subsampling every 2

J :

x ? �
J

(2

Jp) (2.2.18)

No downsampling is applied after a filtering by g
✓

to avoid aliasing effects
under critic subsamplings. In this case, one has the following theorem that
permits to compute a wavelet transform with appropriate downsampling, which
can be found in [68]:

Proposition 1. For p 2 Z2, let x
j,�1[p] = x?�

j

(2

jp) and x
j,✓

[p] = x?
j,✓

(2

jp).
Then, given x

j,�1[p], we have: x
j+1,�1[p] = x

j,�1 ? h[2p], x
j+1,✓

[p] = x
j+1,�1 ?

g
✓

[p].

Proof. First observe that (2.2.16) means, by taking the inverse Fourier trans-
form:

�
j+1(u) =

1p
2

X

n

�
j

(u � 2

jn)h[n] (2.2.19)

Then, we observe that:

x
j�1,�1 ? h[2p] =

X

n2Z2

h[2p � n]x
j�1,�1[n]

=

X

n2Z2

h[2p � n]

Z

x(u)�
j

(2

jn � u)du

=

Z

x(u)

X

n2Z2

h[2p � n]�
j

(2

jn � u)du

=

Z

x(u)

X

n2Z2

h[n]�
j

(2

j+1p � 2

jn � u)du

=

Z

x(u)�
j+1(2

j+1p � u)du by inserting (2.2.19)

= x
j,�1[p]

Similar computations stand for x
j,✓

.

If �(u) 2 R, 8u 2 R2, then it is clear that h[n] 2 R from (2.2.16). Also, if the
low-pass filter is positive, h will be positive, as proved by the following lemma:

Lemma 2. j if 8x, 8u, x(u) � 0) 8u, x ? �(u) � 0, then h[n] � 0.

Proof. By linearity, it also implies 8u, x(u)  0) u, x?�(u)  0, then h[n] � 0.
This is in particular true for dilated wavelets. Assume 9n0, h[n0] < 0 and let be
x = �

n0 2 l2(Z) . Then,

x ? �
j+1(0) = x ? h

j

? �
j

(0) = h
n0�j

(n0)  0 (2.2.20)

which is absurd because x[p] � 0, 8p

26

x0 x1 x2 x3

?g
✓

+ #
?h + # h � 0

g
✓

2 L2
([0, 2⇡])

Figure 2.2.3: Wavelet transform as a cascade of small finite impulse response
filters

In the following, let us instead consider ˜

⇥ = ⇥ [{�1}. Again in this case,
down-sampled coefficients can be obtained via:

{x
j+1,✓

[p]}
✓2⇥̃ = {x

j,�1 ? h[2p], x
j+1,�1 ? g

✓

[p]}
✓2⇥ (2.2.21)

This recursive relation is expressed via Figure 2.2.3 (with an oversampling at
the first scale). Next subsection shows that a Scattering Transform is a cascade
of finite implulse response filters and modulus non-linearities.

Usually, the filters {
j,✓

,�
J

}
j<J

are chosen such that one obtains an energy
preservation property. We assume that the input signals x are sampled at the
Nyquist rate [68], e.g. they have a compact spectrum in Fourier. In this case,
if the support in Fourier of the {

j,✓

,�
J

}
j<J

covers a disk with radius ⇡ say B,
and for x 2 L2 \B, i.e. with support in Fourier included in this disk, we require:

Z

|x ? �
J

|2(u)du +

X

j<J,✓

Z

|x ?
j,✓

|2(u)du =

Z

|x|2(u)du (2.2.22)

which implies for example that (J = 1 inserted in (2.2.16)) for ! 2 B:

|ˆh(!)|2 +

X

✓

|ĝ
✓

(!)|2 = 2. (2.2.23)

2.2.3.2 Scattering Network

We use the properties from the previous section to show that a Scattering Trans-
form can be interpreted as a deep cascade [69], in the case of wavelets obtained
by filter bank algorithms. As reviewed in Section 2.2, the Scattering Transform
is a cascade of modulus-non linearities and wavelets. Let us focus on order 0,
1 and 2 Scattering coefficients with increasing paths and scales between 0 and

27

J because they are the only ones used in an effective implementation. We will
show that it is equivalent to applying the filters {h, g

✓

}
✓

with modulus non-
linearity |.| to an input image x J times, and then selecting the paths for which
at most 2 non-linearities have been applied.

First, as explained in the previous section, the low-pass filter is a cascade
of J filters h with down-samplings. We will then make one assumption, which
simplifies the next formula and is fundamental about the regularity of non-
linearity:

8x, |x ?
j,✓

| ? �
j

(2

ju) = |x ?
j,✓

|(2ju) (2.2.24)

It means that the envelope of the signal is smoother than the original signal.
Let us consider P

j

= {(✓1, ..., ✓j

), ✓
i

2 ˜

⇥, 8i  j}, and for j 2 N, we define
recursively:

xj+1
(✓1,...,✓

j

,✓

j+1)
[p] =

(

|xj

(✓1,...,✓

j

) ? g
✓

|[2p] if ✓
j+1 2 ⇥

|xj

(✓1,...,✓

j

) ? h|[2p] if ✓
j+1 = �1

(2.2.25)

Here, we subsample the results of the filtering by g
✓

as the envelop of the
signal is assumed to be smooth. Observe that if h � 0, then:

|x(✓1,...,✓

j

) ? h|[2p] = x(✓1,...,✓

j

) ? h[2p] (2.2.26)

We further consider the indexes P2
j

= {(✓1, ..., ✓j

) 2 P
j

, |{✓
i

2 ⇥}|  2}. In
this case:

Proposition 3. Thanks to (2.2.24), {xJ

✓

, ✓ 2 P2
J

} corresponds exactly to the
second order coefficients at scale J .

This recursive relation is again shown in Figure 2.2.4 (with an oversampling
at the first scale).

Removing aliasing in the case of modulated Gaussian filters

We now discuss the aliasing issues due to a filter bank implementation. For
wavelets such as Haar wavelets, h has a finite support. In this case, we are
precisely in the setting of a CNN. [101] showed that it permits to obtain a
fast implementation of the Scattering Transform. Typical support lenght of the
filters should be about 3, except for the first layer where they have a larger
support to avoid aliasing.

First, the input signals verify the Nyquist condition, thus the filters (which
are in finite number) must be adapted such that they cover a domain in Fourier
large enough.

Then, the previous writing can only approximately hold for Morlet wavelets
because they have an infinite support, and the ratio between the dilated Fourier
transforms is not periodic: the filters {h, g

✓

} do not exist. In an implementation

28

x0 x1 x2 x3

Modulus

S3x = {x3}
Figure 2.2.4: Scattering Network

that tries to mimic the Morlet wavelets with cascade of small filters, the high-
frequency wavelets of the transform suffer the most from the aliasing. Indeed, a
high frequency Morlet has a large support in Fourier and can not be implemented
because numerically the support in Fourier must be finite. There is a trade-off
between the localization in Fourier and space. Besides, for Morlet wavelets, it is
required to oversample the wavelet convolutions, to avoid losing high-frequencies
that would be lost because of the down-sampling and the lack of localization in
Fourier, and thus could not be recovered via a linear interpolation of the signal.

To have more accurate computations, each filters of the cascade could be
optimized [101] to improve the approximation of (2.2.24), instead of being cho-
sen fixed and constant equal to {h, g

✓

}. For example, without the hypothesis
(2.2.24), it is necessary to chose a different set of finite impulse response filters
{˜h, g̃

✓

} for the first order wavelets to handle the aliasing, and to adapt the next
filters to these.

Those considerations require a lot of design that do not speed-up significantly
the computations, without an extra-loss in precision, and are not the purpose of
this thesis: we will thus not implement the Scattering via filter banks to avoid
these issues, yet rather with cascades of Fourier transform with plain filters.
Oversampling in space the wavelet transform is however still necessary as we
use Morlet wavelets.

29

Chapter 3

Scattering Networks for
Complex Image Classification

This chapter shows that a Scattering Network cascaded with a simple classifier
obtains results that are competitive with unsupervised algorithms on complex
images datasets. We extend the experiments performed on textures or small
handwritten digit datasets to complex images classification [100, 101, 102, 13,
15]. A major difference is that, in the case of natural images, the variabilities of
the classification are partially known. Thus, we here restrict ourselves to rep-
resentations that are built only via the roto-translation group SO2 ⇥R2, which
acts naturally on images: a Translation Scattering Transform and a Separable
Rototranslation Scattering. We address the following question: are predefined
discriminative representations built via convolutions along the orbits of this
group enough to classify natural images?

Among images representations, unsupervised representations [9, 10] tend to
perform better than predefined representations [99]. Typically, they consist in
the aggregation of a local descriptor, such as SIFT, that has been encoded by
an unsupervised algorithm, such a k -means. It can be interpreted as a two
layers architectures, since two non-linear modules have been cascaded. These
pipelines hold a lot of hyper-parameters, that must be carefully selected. We
will compare our work to these architectures.

The Scattering Transform of order 2 is as well a two layers architectures. In-
deed, while the first order coefficients are analog to a SIFT descriptor and have
only one non-linearity, the second order coefficients allow to recover discrimi-
native information that were lost by the averaging of the first order coefficients
and are built upon two non-linearity. Contrary to bag-of-words approaches,
no-extra learning is performed on the Scattering Coefficients, which imply that
this representation can be considered as an unsupervised representation.

The representation we used is generic, in the sense that for very different
datasets, the representation was fixed and predefined; no hyper parameter were
adapted, except the window length of invariance, as the size of the images

30

Figure 3.1.1: Amplitude of two complex signals that have identical Transla-
tion Scattering, and for which the variabilitiy is dominated by local rotations
centered at integer points.

were different. Indeed, we used the exact same wavelets, without adapting
the representation to a specific bias of the dataset. We obtain some results
that are competitive with unsupervised algorithms, and tend to suggest that
unsupervised algorithms do not capture invariants that are more discriminative
than euclidean invariants. Yet, we show also that there exists a large gap with
pre-trained and trained from scratch CNNs.

This chapter is divided in three sections. The first Section 3.1 introduces a
variant of the scattering transform on the rotation group introduced by [101].
Next Section 3.2 reviews an algorithm to decorrelate scattering coefficients, and
finally Section 3.3 reports accuracies results on CIFAR and Caltech standard
datasets.

3.1 Separable roto-scattering

In this section, we build a variant of the Roto-translation Scattering that consists
in a simple modification of the second wavelet transform of the order 2 Trans-
lation Scattering. Contrary to the case of textures to which Roto-translation
Scattering was applied, invariance to rotation is not desired in the case of natural
images. However, with ad-hoc wavelets, it is possible to build a representation
that discriminate important information relative to rotations. Let us first give
an example of patterns that are locally rotated, and can not be discriminated
by a translation scattering, with a very similar proof to [102]:

Proposition 4. If 8✓ 6= ✓0 2 {0, ⇡

4 , ⇡

2 , 3⇡

4 },
✓

?
✓

0
= 0, then:

x =

X

n2Z2

L2n

.
j,0(u)+L2n

.
j,

⇡

2
(u)+

X

n2Z2

L2n+(1,1). j,

⇡

4
(u)+L2n+(1,1).

j,

3⇡
4

(u)

and

31

y =

X

n2Z2

L2n

.
j,0(u)+L2n

.
j,

3⇡
4

(u)+

X

n2Z2

L2n+(1,1). j,

⇡

4
(u)+L2n+(1,1). j,

⇡

2
(u)

have the same Translation Scattering coefficients, whereas the integer coordi-
nates of x can be locally deduced from y by a rotation of amplitude ⇡

4 , as shown
on Figure 3.1.1.

In the previous example, the energy of different patterns is distributed along
scattering paths that are independent. To discriminate these, it is necessary to
apply an operator along the rotation variable, before the spatial averaging that
will discard most of the relative spatial informations. Moreover, such discrimi-
native coefficients might be obtained by a linear operator that would recombine
the wavelet transform coefficients, but this would be equivalent to change the
filterbank. Indeed, let C : ⇥ ! RK , K 2 N be a linear operator along the angles
and let us consider:

[CW1x(u, j1, k)] =

X

✓1

C
k,✓1x ? ✓1,j1(u) (3.1.1)

Notice that then:

[CW1x(u, j1, k)] = x ?
X

✓1

C
k,✓1 ✓1,j1(u) (3.1.2)

and it was equivalent to first perform a convolution with a different filter. instead
of designing a different filter bank, we take advantage of an operator applied on
the modulus of the wavelet transform.

The Roto-translation Scattering consists in a non-separable wavelet trans-
form on the semi-direct rototranslation group as explained in Subsection 2.2.2.2,
which is applied on the modulus of the wavelet coefficients. Here, we replace
it by a separable wavelet transform along rotation and spatial variables. This
Scattering Transform can still be reformulated as a Scattering Network, as it
can be implemented via an “algorithme à trou” as in Subsection 2.2.3.2. We will
consider 3 dimensional morlet wavelets, for which the the filter bank algorithm
is true up to approximations terms.

Section 4 will show that a deep network recombines efficiently the Scattering
paths, in order to build locally invariants to rotation representation. Following
this idea, we propose to discriminate angular high-frequencies by applying a
wavelet transform along ✓1 on the first modulus wavelets coefficients, that will
recombine angles along rotation. Contrary to deep networks, no extra-learning
parameters are involved, except the maximum scales of the respective wavelet
transforms along space and angles.

As in Section 2.2.1, let us consider the modulus wavelets coefficients given
by:

|W1x|(u, ✓1, j1) = |x ?
j1,✓1 |(u)

32

In the case of natural images, ✓1 ! |W1x|(u, ✓1, j1) is a smooth application
if the selectivity in angle is not too abrupt. For example, a worst case in space
is given by x = �0. In the case of Gabor filters, for example:

|W1�0|(u, ✓1, 0) / e�
u

T [r�✓1
]B[r

✓1
]u

2�2 (3.1.3)

where [r
✓1] is the matrix of the rotation by ✓1. Indeed, for u0 = (0,

p
2

�

⇠

), a
limited development of ✓1 gives around 0:

log(|W1�0|(u0, ✓1, 0)) = �1 + ✓21(1 � 1

⇠
) + O(✓31)

It shows that the smaller is ⇠, the larger will be the derivative which is
related to the local regularity of the signal. Thus, the sampling in angle must
be adapted to the selectivity in angles. It is important, in order to further define
a convolution along this axis.

Let us now build the separable roto-translation scattering. Similarly to deep
convolution network architectures, we also recombine the information in these
image frames indexed by the angle ✓1. To understand how to do so, let us
compute the wavelet coefficients of a rotated image L

r

↵

.x(u) , x(r�↵

u) by
angle ↵:

|(L
r

↵

.x) ?
j1,✓1 |(u) = |x ?

j1,✓1�↵

|(r�↵

u) , L
r

↵

|x ?
j1,✓1 |(u) (3.1.4)

It rotates the spatial coordinates u but also “translates” by ↵ the angle parameter
✓1. It means that the representation is covariant with the action of rotation.

As explained at the beginning of this section, our goal is not to build a rota-
tion invariant representation but a representation which linearizes variabilities
along rotation angles. These rotation variabilities can thus be discriminated or
removed by a linear classifiers at the output. We thus do not use a rotation in-
variant scattering representation as in [101]. To build a representation which is
stable to rotations, and to deformations, we compute a wavelet transform along
the angle parameter ✓1. A proof of the stability can be adapted from [101].

We perform convolutions along ✓1, with angular one-dimensional wavelets:

˘
k

(✓1) = 2

�k

˘ (

✓1
2

k

)

and

˘ �k

(✓1) = 2

�k

˘ ⇤
(

✓1
2

k

)

where ˘ is a one dimensional Morlet wavelets, which is given by:

˘ (✓1) =

˘C(ei⇠̆✓1 � ̆)e�
✓

2
1

2�̆ (3.1.5)

33

where the parameters that are chosen are completely analogous from Equation
(2.2.3). Considering the conjugate of the wavelet is absolutely mandatory, be-
cause as we will see below, we will consider a complex wavelet transform and
not a real transform, because the input will be in the complex domain. We also
consider ˘�

K

being a 1 dimensional real and positive averaging such that the
little hood paley is approximately verified, for complex valued signals, eg there
exists 0  ✏ < 1, such that for any angular frequency !:

1 � ✏ 
X

|k|K

|c˘
k

(!)|2 + |c˘�
K

(!)|2  1 (3.1.6)

The resulting wavelet transform ˘Wy = { ˘
k

? y, ˘�
K

? y}|k|K

allows to com-
pute separable convolutions along both the 2d spatial variable u and the angle
variable ✓1, with a 3d separable complex wavelet defined by two wavelets:

˘ 0,j2,✓2,k

(u, ✓1) =
j2,✓2(u)

˘
k

(✓1) (3.1.7)
and:

˘ 1,j2,✓2(u, ✓1) =
j2,✓2(u)

˘�
K

(✓1) (3.1.8)
where (j2, ✓2) corresponds to the spatial frequencies, whereas k corresponds to
the scale of the wavelets along ✓1. It is a separable product of a spatial wavelet

j1,✓2(u) of scale j1 and an angular wavelet
k

(✓) of scale k for 1  |k| 
K < log2 L. If ˘

k

(✓1) are one-dimensional Morlet wavelets, then the resulting
separable wavelet transform ˘W2 = W2

˘W is a stable and invertible operator
[68], which nearly preserves the signal norm, bounded by (3.1.6). The latter
can be proved by inserting Equation (2.2.6) and Equation (3.1.6) because the
Fourier transform of a separable operator is the product of each of the Fourier
transform. As this wavelet transform is separable,

˘W2 = W2
˘W =

˘WW2.

Here again, the wavelet transform modulus for j2 > j1 is computed with a
three-dimensional separable convolution along the spatial and angular variables
(u, ✓), and it performs a sub-sampling along both variables. The 3D separable
wavelet transform ˘W2 could be either computed with a cascade of filtering across
the deep network layers introduced in 2.2.3.2, or directly with 3 dimensional
convolutions calculated with FFT’s.

The deep roto-scattering is computed by cascading the modulus |W1| of a
first 2 dimensional spatial wavelet transform, followed by the modulus | ˘W2| of
a second 3 dimensional separable wavelet transform along space and angles,
followed by the averaging A

J

introduced in

˘S
J

x = {A
J

x, A
J

|W1|x, A
J

| ˘W2||W1|x} (3.1.9)
Since W1, ˘W2 and A

J

are contractive operators it guarantees that S
J

is
also contractive and hence stable to additive perturbations, as in the case of
translation scattering, which is proven in [101]. It means that:

34

k ˘S
J

x � ˘S
J

yk  kx � yk (3.1.10)

Moreover, since the wavelet transforms W1, ˘W2 and A
J

are Lipschitz-stable
relatively to deformations [70], ˘S

J

is also Lipschitz-stable and hence linearizes
small deformations. This guaranties to avoid the instabilities observed on deep
networks such as Alex-net [77] where a small image perturbation can consider-
ably modify the network output and hence the classification.

Dimensionality of the representation

The wavelet transform ˜W preserves the number of coefficients, thus the di-
mensionality of the Translation and the Separable Roto-translation Scattering
are the same. Good quality images can be reconstructed from scattering coeffi-
cients as long as the number of scattering coefficients is larger than the number
of image pixels [14].

3.2 Decorrelating Scattering coefficients with Or-
thogonal Least Square

In this section, we review a dictionary learning algorithm to decorrelate Scatter-
ing coefficients which are introduced in the previous section, called Orthogonal
Least Squares (OLS), described in [21]. We first motivate the use of this al-
gorithm with scattering coefficients, and we explains its steps. For example,
a singularity (or a pattern) can excite a large panel of scattering path across
scales, which introduce correlations between those coefficients. Decorrelating
the representation permits to reduce the variance of a representation and to
separate independent coefficients, however it also introduces a bias (because it
is a linear projection operator) that can be significant during experiments, as
explained in the numerical experiments, Section 3.3.

The number of scattering coefficients is of the same order as the original
image. It provides a nearly complete signal representation, which allows one to
build a very rich set of geometric invariants with linear projection operators. The
choice of these linear projection operators is done at the supervised classification
stage with an SVM. As said below, scattering coefficients are strongly correlated.

In the case of non-linear classifiers, results are improved by reducing the
variance of the representation, with a supervised feature selection, which con-
siderably reduces the number of scattering coefficients before computing an SVM
classifier. This is implemented with a supervised orthogonal least square regres-
sion [21, 8], which greedily selects coefficients with a regression algorithm.

A logarithm non-linearity is applied to scattering coefficients in order to
separate low frequency multiplicative components due to the variations of illu-
minations. These low-frequency modulations add a constant to the logarithm
of scattering coefficients which can then be removed with an appropriate lin-

35

ear projector by the final classifier. Also, it linearizes exponential decay of the
scattering coefficients across scales.

In the following, we denote by �x(u) the logarithm of scattering coefficients
at a scale 2

J , that can be either the roto-scattering or the translation Scattering.
We are given a set of training images {x

i

}
i

with their class label. The orthogonal
least square selects a set of features adapted to each class C with a linear
regression of the one-versus-all indicator function

f
C

(x) =

⇢

1 if x belongs to class C
0 otherwise . (3.2.1)

It iteratively selects a feature in the dictionary and updates the dictionary,
which implies that the size of the dictionary is reduced at each iteration. Let
�

kx = {�k

p

x}
p

be the dictionary at the kth iteration. We select a feature �k

p

k

x,
and we update the dictionary by decorrelating all dictionary vectors, relatively
to this selected vector, over the training set {x

i

}
i

:

˜�k+1
p

= �k

p

�
⇣

X

i

�k

p

k

(x
i

)�k

p

(x
i

)

⌘

�k

p

k

. (3.2.2)

Each vector is then normalized

�k+1
p

=

˜�k+1
p

⇣

X

i

|˜�k+1
p

(x
i

)|2
⌘�1

. (3.2.3)

The kth feature �k

p

k

x is selected so that the linear regression of f
C

(x) on
{�r

p

r

x}1rk

has a minimum mean-square error, computed on the training set,
e.g.:

�k

p

k

= arg min

�

k�1
p

kf
C

(x) � �k�1
p

xk2 (3.2.4)

This is equivalent to finding �k

p

k

in �

k which maximizes the correlation:

�k

p

k

= arg max

X

i

f
C

(x
i

)�k

p

(x
i

).

The orthogonal least square regression thus selects and computes K scatter-
ing features {�

p

k

x}
k<K

for each class C, which are linearly transformed into K
decorrelated and normalized features {�k

p

k

x}
k<K

. For a total of n
C

classes, the
union of all these feature defines a dictionary of size M = K n

C

. They are linear
combinations of the original log scattering coefficients {�

p

x}
p

. This dimension
reduction can thus be interpreted as a last fully connected network layer, which
outputs a vector of size M . The parameter M governs the bias versus variance
trade-off. It can be adjusted from the decay of the regression error of each f

C

or
fixed a priori. In classification experiments, M is about 30 times smaller than
the size of the original scattering dictionary. We discuss in the next Section 3.3
applications to standard datasets.

36

3.3 Image classification results on standard bench-
marks

The unsupervised representation that we built can be fed to a supervised clas-
sifier, in order to measure its discriminability performances. To this end, we
apply SVMs algorithms that are discriminative models and a perceptron on the
scattering coefficients, which is a neural network method. First we describe
the datasets and the hyper parameters of the Scattering Transforms, and then
numerical accuracies will be discussed in Subsection 3.3.1 and 3.3.2.

We compare the performance of a scattering network with state-of-the-art al-
gorithms on CIFAR and Caltech datasets, which include complex object classes,
at different or fixed resolutions. In particular, unsupervised algorithm will be
compared because Scattering Transform lands in this type of algorithm. Images
of each databases are rescaled to become square images of N2

= 2

2d pixels.
The scattering transform depends upon few parameters which are fixed a priori.
The maximum scale of the scattering transform is set to 2

J

= 2

d�2. Scat-
tering coefficients are thus averaged over spatial domains covering 1/4 of the
image width, and coefficients sampled over a spatial grid of 4 ⇥ 4 points, a fi-
nal down-sampling being performed without degrading classification accuracies.
This preserves some coarse localization information.

Coefficients are computed with Morlet wavelets having L = 8 orientations.
The wavelet transform along these L = 8 angles are computed at a maximum
scale 2

K

= L/2, which corresponds to a maximum angular variation of ⇡

2 .
Indeed these object recognition problems do not involve larger rotation vari-
ability. The resulting scattering representation is nearly complete as previously
explained. It is computed independently along the 3 color channels YUV. We
apply a logarithm to separate illumination components. The classifier is imple-
mented by first reducing the dimensionality, to M = 2000 feature vectors on
CIFAR-10 for instance, with the orthogonal least square regression previously
introduced, and applying a SVM.

To stress the genericity of our representation, we use the same architecture
and same hyper parameters for each datasets, apart from the number M of
selected coefficients, which increases proportionally to the size of the scattering
representation, which depends upon the image size.

Caltech-101 and Caltech-256 are two color image databases, with respec-
tively 101 and 256 classes. They have 30 images per class for training and
the rest is used for testing. Caltech images are rescaled to square images of
N = 2

2d

= 256

2 pixels. Average per class classification results are reported with
an averaging over 5 random splits. We removed the clutter class both from our
training and testing set.

CIFAR are more challenging color image databases due to its high class
variabilities, with 6 10

4 tiny colors images of N = 2

2d

= 32

2 pixels. CIFAR-10
has 10 classes with 5 10

3 training images per class, whereas CIFAR-100 has 100
classes with 5 10

2 training images per class.

37

3.3.1 Linear and Gaussian SVMs
We first classify our scattering coefficients using kernel methods. Linear SVMs
are discriminant classifiers that select few samples to build a classification bound-
ary. It uses the linear metric define by k(x, y) = hx, yi. They have proved
generalization bound properties in the case many unlabeled data are available.
Contrary to a Linear SVM, a Gaussian SVM classifier uses a non-linear kernel,
k

�

(x, y) = e�
kx�yk2

�

2 , where � is the bandwidth of the kernel. It can be viewed as
a localization of the linear metric, as when � ! 1, the metric which is defined
approaches the linear SVM. The selected features of the previous section are
then provided to SVM classifiers.

A supervised SVM classifier is applied to the logarithm of the scattering
transform coefficients �x = log S

J

x, as in texture classification [101]. In both
case, a large oversampling is used (e.g. ↵ = 2, Subsection 2.2.1) to compensate
aliasing effects and linearizing small translations. As the scattering represen-
tation are precomputed once, this is not a bottleneck in this pipeline. The
logarithm enables the linear SVM to be invariant to variations of illuminations.
Indeed, these variations introduce low-frequency multiplicative factors in scat-
tering coefficients which become additive with the logarithm.

The linear SVM is invariant to these components if the generated weight vec-
tor is orthogonal to the low-dimensional space generated by these variabilities.
The logarithm of scattering coefficients are standardized by subtracting their
mean and normalizing their variance, before applying the linear SVM using a
“one versus all” strategy, with cross-validated parameters.

A Gaussian SVM can not build exact invariance to linear variabilities, yet it
is a locally linear classifier. In particular, this classifier has the ability to build
a linear decision boundary if necessary. The variance of the Gaussian kernel is
set to the average norm of the scattering vectors, calculated from the training
set. This large variance performs a relatively small localization in the feature
space, but it reduces classification errors, as we will see below.

Table 3.1 reports the classification accuracy of a second order roto-translation
scattering algorithm in various setting, for CIFAR and Caltech databases. It
is compared to state of the art algorithms, divided in four categories. “Prior”
feature algorithms apply a linear or an RBF type classifier to a predefined set
of features, which are not computed from training data. Scattering, SIFT and
HOG vectors, or deep networks with random weights belong to this Prior class.
“U. Deep” algorithms correspond to unsupervised convolutional deep learning
algorithms, whose filters are optimized with non-labeled training data, before
applying a linear classifier or a Gaussian kernel SVM. “Unsup.” algorithms
transform SIFT type feature vectors or normalized pixel patches, with one, two
or three successive sparse dictionaries computed by unsupervised learning. It
may then be followed by a max-pooling operator over a pyramid structure [57].
“Sup.” algorithms compute feature or kernel representations, which are opti-
mized with supervised learning over labeled training data. In this case, the
training may be performed on a different databases such as ImageNet, or may
include a data augmentation by increasing the dataset with affine transforma-

38

Method Acc. Type
Translation Scattering
+ Gaussian SVM

70.0 Prior

Separable Roto-translation
Scattering
+ Linear SVM

75.6 Prior

Separable Roto-translation
Scattering
+ Gaussian SVM

74.5 Prior

Separable Roto-translation
Scattering
+ OLS
+ Gaussian SVM

79.9 Prior

Random features [96] 50.3 Prior
CDBN [61] 65.4 U. Deep
M-HMP [9] 82.5 Unsup.
SLC [73] 81.0 Unsup.

Ask the locals [10] 77.3 Unsup.
RFL [53] 75.3 Unsup.

CNN [125] 92.3 Sup.
(a) Results for different types of representations, on Cal-

tech101

Method Acc. Type
Translation Scattering
+ Gaussian SVM

80.3 Prior

Translation Scattering
+ Perceptron

84.7 Prior

Separable Roto-translation
Scattering
+ Linear SVM

78.4 Prior

Separable Roto-translation
Scattering
+ Gaussian SVM

81.5 Prior

Separable Roto-translation
Scattering
+ OLS
+ Gaussian SVM

82.3 Prior

RFL [53] 83.1 Unsup.
NOMP [64] 82.9 Unsup.
LIFT [104] 82.2 U. Deep

Exemplar CNN [34] 84.3 U. Deep
CNN [120] 96.1 Sup.

(b) Results for different types of representations, on CI-

FAR10

Method Acc. Type
Separable Roto-translation
Scattering
+ Linear SVM

50.5 Prior

Separable Roto-translation
Scattering
+ OLS
+ Gaussian SVM

56.8 Prior

RFL [53] 54.2 Unsup.
NOMP [64] 60.8 Unsup.
CNN [120] 81.2 Sup.

(c) Results for different types of representations, on CI-

FAR100

Method Acc. Type
Separable Roto-translation
Scattering
+ Linear SVM

46.2 Prior

Separable Roto-translation
Scattering
+ OLS
+ Gaussian SVM

43.6 Prior

M-HMP [9] 50.7 Unsup.
SLC [73] 46.6 Unsup.

Ask the locals [10] 41.7 Unsup.
CNN [125] 86.0 Sup.

(d) Results for different types of representations, on Cal-

tech256

Table 3.1: Classification rates for Caltech and CIFAR data bases, with the
same Scattering network, compared to state of the art unsupervised learning
algorithms and supervised convolution networks, with algorithms provided in
reference.

39

tions and deformations. Supervised deep convolution networks or supervised
kernel learning are examples of such algorithms.

Let us emphasize again that we are using the same scattering representation,
besides image size adaptation, for Caltech and CIFAR databases. RFL (Re-
ceptive Field Learning) [53] is the only unsupervised learning algorithm which
reports close to state of the art results, both on Caltech and CIFAR data bases.
RFL does not perform as well as a scattering on Caltech and CIFAR-100, and
slightly better on CIFAR-10. This illustrates the difficulty to have a single al-
gorithm which works efficiently on very different databases. We reported the
result on CIFAR-100 from [53] via [67]. We first compare the numerical results
obtained with a Gaussian SVM, and then discuss the accuracy, depending on
the classifier on top of the Scattering Network.

3.3.2 Comparison with other methods

3.3.2.1 Comparison with unsupervised methods

Scattering gives better classification results than all Prior features classification
on Caltech-101, as shown by Table 3.1. Convolutional network with random
filters on mono-CIFAR-10 (gray level CIFAR-10) have an accuracy of 53.2% in
[96]. Color information improves classification results by at most 10% on all
algorithms, so it remains well below scattering accuracy. No result is reported
on CIFAR-100 using predefined “prior” feature classifiers.

The unsupervised classification algorithm reporting state of the art classi-
fication results on CIFAR is different than the one of Caltech, but still based
on patch of pixels encoded with an unsupervised dictionary, max pooled [24].
For CIFAR, there are enough images to obtain state of the art results with a
supervised training of convolution networks, without data augmentation. For
CIFAR-100, previous state of the art with unsupervised learning lead to 51.7%

error [24, 67], which is comparable with the accuracy of scattering networks.
The accuracy of recent results improves by 9.7% this state of the art by us-
ing a variant of OMP during the encoding step [64]. The results of scattering
networks are comparable, achieving 56.8% on CIFAR-100, without feature se-
lection, since results on this databases are known to scale well towards much
larger data bases. For CIFAR as well as Caltech data bases, scattering network
results are at the level of state of the art algorithms in 2012 [9, 10, 56], both
for unsupervised and supervised learning, and is thus two years late. Further
refinements need to be added to this representation, and in particular reduce the
output dimensionality of the scattering network, to reduce intra-class variability,
which could be potentially done with a cascaded CNN.

3.3.2.2 Comparison with supervised methods

The best classification results are obtained by supervised deep convolutional
networks [120, 45, 125]. They improve non-supervised accuracy by about 15%

on CIFAR and Caltech datasets. The improvement on CIFAR-100 is smaller

40

than on CIFAR-10 because there is only 500 samples per classes for supervised
training, as opposed to 5000. The Caltech databases does not have enough train-
ing sample to train a supervised deep network: there are not enough labeled
images to train algorithms that outperform unsupervised techniques [122]. This
is particularly important in Caltech-256 because each class has a considerable
variability and relatively few training images per class. We thus report classifi-
cation results obtained by the supervised Alex-network trained on ImageNet, to
which is applied a linear SVM classifier which is trained on Caltech [125]. Al-
though this deep network was not trained on Caltech, it still achieves the state
of the art on this databases. Experiments show that if the training and testing
image datasets are different, a supervised deep network provides a feature vector
having a lower accuracy for classification, but this accuracy is not dramatically
reduced. It indicates that supervised deep classifiers are learning generic image
representations which are likely to capture more complex geometric properties
than unsupervised algorithms or a roto-translation scattering transform.

A scattering network with a Linear or Gaussian SVM yields classification
results which are about the best unsupervised learning algorithms for Caltech-
101 and Caltech 256.

3.3.2.3 Scattering combined with different classifier

Table 3.2 gives the classification accuracy for different scattering projections, fol-
lowed by a Gaussian SVM, on the datasets CIFAR-10 and Caltech-101. We con-
sider predefined projection that selects first or second order, and then supervised
projection learned via the OLS algorithm. First order scattering coefficients are
comparable to SIFT [15], but are calculated over larger neighborhoods. Sec-
ond order scattering coefficients computed with translated wavelets (no filtering
along rotations) reduces the error by 10%, which shows the importance of this
complementary information. Incorporating a wavelet filtering along rotations,
leads to a further improvement of 4.5% on Caltech-101 and 1.2% on CIFAR-10.
Rotations produce larger pixel displacements on higher resolution images. It
may explain why improving sensitivity to rotations plays a more important role
on Caltech images, which are larger. Adding a feature reduction by orthogonal
least square reduces the error by 5.4% on Caltech-101 and 0.7% on CIFAR-10.
The orthogonal least square has a bigger impact on Caltech-101 because there
are less training examples per class, so reducing the variance of the estimation
has a bigger effect.

Table 3.1 shows that applying a Gaussian SVM improves by a considerable
margin the classification accuracy on most of the datasets. It indicates that all
the important variabilities of classification have not been linearized, and thus,
a non-linear classifier can handle them better. The linear SVM performs better
on Caltech-256, yet this might be due to ad-hoc normalization phenomenon and
specific bias of this dataset. No results of the OLS combined with a linear SVM
are displayed, as it systematically reduces the classification accuracies. It shows
that this algorithm introduces a bias (due to the projection) that can not help
a linear classifier. An OLS algorithm followed by a Gaussian classifier can be

41

Method Caltech101 CIFAR10
Translation, order 1 59.8 72.6
Translation, order 2 70.0 80.3

Translation, order 2 + OLS 75.4 81.6
Roto-translation, order 2 74.5 81.5

Roto-translation, order 2 + OLS 79.9 82.3

Table 3.2: Classification accuracy with 5 scattering configurations. First a
translation scattering up to order 1, then up to order 2, then with an Orthogonal
Least Square (OLS) feature reduction. Then a roto-translation scattering up to
order 2, then with an OLS feature reduction.

interpreted as a two layers classifier, and permits to fill by a limited margin
this gap. Training a neural network that consists in three fully connected layers
permits to substantially reduce this gap, and we exhibit state-of-the-art results
in the unsupervised case of CIFAR10, and will be studied in the next section.

42

Chapter 4

Improving Scattering with
Hybrid Networks

In this chapter, we combine a Scattering Network with a fully supervised learned
CNN and show accuracies that are competitive with the state of the art on the
dataset ImageNet2012. As explained in the previous chapter, Scattering Net-
works are predefined deep networks that use geometrical priors and which are
competitive with unsupervised algorithm. The first layer of [56] suggests that
initial layers of a CNN are composed of atoms similar to wavelets [115]. In
order to extend this idea and avoid learning those initial filters, we consider
Hybrid Networks that consists in the cascade of a Scattering Network, and a
supervised CNN. Our work aims to show that it is as well a competitive and
generic initialization of the first layer of a CNN that does not reduce discrim-
inative informations that are exploited by those algorithms. In particular, we
show the Scattering Networks do improve small data regimes and permit the
building of a competitive local descriptor, the Shared Local Encoder. We also
release a very fast GPU implementation of the Scattering Network.

Scaling the Scattering Transform for computations on ImageNet requires to
implement a Scattering Network on GPUs. While no extra computation time
for back-propagating a gradient is required, FFT based convolutions make this
implementation challenging. Indeed, GPUs have a very limited memory, which
requires rethinking the order of the computations performed in [1].

We demonstrate that a Scattering Network permits preserving discriminative
and relevant information for CNNs classification. Indeed, cascading the scat-
tering module with a ResNet leads to state-of-the-art results on ImageNet. We
use again the generic representation of Chapter 2.2, without extra-adaptation,
except the maximum scales of the averaging.

We also show that in the case of the ResNet, at a given number of parame-
ters, the Hybrid and non Hybrid networks performs similarly while the Hybrid
Network is significantly more shallow.

The geometric priors that are incorporated are also useful in the case of

43

limited samples, which is a a problem of interest. Indeed, those situations are
really common in real world dataset, as supervised data is either costly either
complex to produce, as in the case of medical imaging for example. We show
state-of-the-art results in the limited data setting on CIFAR10 and STL10 are
obtained via a Hybrid Network and the accuracies are above the fully supervis-
edly learned counterpart (e.g. which does not include the Scattering Transform).
This indicates that incorporating geometric invariants regularizes the process of
learning of the cascaded CNN, as they are not required to be learned anymore.

We introduce a novel local descriptor, the Shared Local Encoder (SLE),
which is fully learned through supervision. It consists in a cascade of 3 fully con-
nected layers applied on scattering representation. Aggregating non-overlapping
patches of this descriptor leads to AlexNet-like performance. Finally, we prove
that an explicit invariant to rotations is learned by the SLE.

This chapter is divided into three sections. First, Section 4.1 explains how to
implement a fast Scattering Transform on GPUs. Then, we develop the training
procedure and numerical results obtained by a Hybrid architecture, in Section
4.2. The last Section 4.3 introduces the SLE and its properties.

4.1 Fast implementation of Scattering Networks
on GPUs

The implementation of a Scattering Network must be re-thought to benefit from
the GPU acceleration. Indeed, a GPU is a device which has a limited memory
size in comparison with a CPU, and thus it is not possible to store intermediary
computations. In this section, we do not review a faster algorithm, yet how to
solve this problem of memory.

4.1.1 Tree implementation of computations
We recall the algorithm to compute a Scattering Transform and its implemen-
tation as done in [15], for order 2 Scattering with a scale of J and L angles.
We explicitly show this algorithm is not appropriate to be scaled on a GPU.
It corresponds to a level order traversal of the tree of computations of the Fig-
ure 4.1.1 Let us consider an input signal x[p] of size N2 which is a power of
2, which has a spatial sampling of 1. For the sake of simplicity, we assume
that an algorithm such as a symmetric padding has already been applied to x,
in order to avoid boundaries effects that are inherent to periodic convolutions.
The filter bank corresponds, as described in Section 2.2.1, to JL + 1 filters, e.g.
: {

✓,j

,�
J

}
✓,jJ

. We only consider periodized filters, e.g.:

˜
✓,j

(u) =

X

k1,k2

✓,j

(u + (Nk1, Nk2)) (4.1.1)

A first wavelet transform must be applied on the input signal of the Scatter-
ing Transform. To this end, a FFT (a) of size N is applied. Then, JL dot-wise

44

multiplications (b) with the resulting signal must be applied, using the filters in
the Fourier domain, { ˆ

˜
✓,l

(!),
ˆ

˜�
J

(!)}. Each of the the resulting filtered x? ˜
j,✓

[p]

or x ? ˜�
J

[p] signals must be down-sampled respectively by a factor 2

j and 2

J ,
in order to reduce the computational complexity of the next operations. This is
performed by a periodization (c) of the signal in the Fourier domain, which is
equivalent to a spatial down-sampling in the spatial domain, e.g. the resulting
signal is x ? ˜

j,✓

[2

jp] or x ? ˜�
J

[2

Jp]. This last operation will lead to an aliasing,
because there is a loss of information that can not be exactly recovered with
Morlet filters, because they introduce an aliasing. An iFFT (a’) is then applied
on each of the resulting filtered signals, that are of size N

2

2j

, j  J . A modulus
operator (d) is applied on each of the signals, except on the real filters given.
It means there are {|x ? ˜

j1,✓1 [2
j1p]|}

✓1L,j1<J,p1 N

2j1
,p2 N

2j1
that will be reused

at the next layer, and a low pass filter. It requires to store O1 intermediary
coefficients, where:

O1
= L

J�1
X

j1=0

N2

2

2j1
+

N2

2

2J

= N2
[L(4

1 � 4

�J

3

) + 4

�J

]

This exact step is iterated one more time, on each of the JL wavelet modulus
signals, yet only considering increasing paths. It means that a wavelet transform
and a modulus applied on a signal |x ? ˜

j1,✓1 [2
jp]| leads to:

O2
j1

= L

J�1
X

j2=j1+1

N2

2

2j2
+

N2

2

2J

(4.1.2)

= N2
[L(4

4

�j1�1 � 4

�J

3

) + 4

�J

] (4.1.3)

Consequently, the total number of coefficients relatively to the second order,
that is stored will be:

O2
=

J�1
X

j1=0

LO2
j1

(4.1.4)

=

J�1
X

j1=0

LN2
[L(4

4

�j1�1 � 4

�J

3

) + 4

�J

] (4.1.5)

= LN2
[�JL

4

�J+1

3

+ J4

�J

+

L

3

(4

1 � 4

�J

3

)] (4.1.6)

Finally, an averaging is applied on the second order wavelet modulus coeffi-
cients, which leads to:

45

Modulus

Lowpass
1st wavelet

2nd wavelet

Proposed algorithm

ScatNet algorithm

Figure 4.1.1: Tree of computations for a Scattering Transform implemented via
FFT’s

O3
=

J(J � 1)

2

L2 N2

2

2J

(4.1.7)

At the end, the total number of coefficients stored is:

O = O1
+ O2

+ O3 (4.1.8)

For example, for J = 2, 3, 4, L = 8, and N = 256, which corresponds to the
setting used on ImageNet, we numerically have O ⇡ 2M, 2.5M, 2.6M parameters
for a single tensor. A parameter is about 4 bytes, thus an image is about 8MB
in the smallest case. In the case of batches of size 256 with colored images,
we thus need at least 6GB of memory, simply to store the intermediary tensors
used by the scattering, which does not take in account extra-memory used by
libraries such as cuFFT for example. In particular, it shows that a typical GPU
with 12GB of memory can not handle simultaneously that much images.

4.1.2 Memory efficient implementation on GPUs
We now describe a GPU implementation which tries to minimize the memory
usage during the computations. The procedure (a/a’), (b), (c) and (d) of the

46

Params pyScatWave Speed up w.r.t. ScatNetLight
32 × 32 × 3 × 128 (J = 2) 0.03s 8⇥

256 × 256 × 3 × 128 (J = 2) 0.71s 225⇥

Table 4.1: Different computation times between CPU and GPU

previous section can be fully implemented on GPUs, in a GPU friendly way.
They are fast, and can be implemented in batches, which permits to perform
parallel computations of the scattering representation. This is necessary for the
deep learning pipeline, that commonly uses batches of data augmented samples.
However, a GPU is a device with a limited amount of memory.

To this end, we propose to perform an “infix parcours” of the tree of compu-
tations of the scattering. To this end, we introduce { ˜U1

j

, ˜U2
j

}
jJ

that are two
sequences of temporary stamp variables of length { N

2j

}
jJ

and a ˜U0
0 of length

N . It means that the total amount of memory that will be used is at most
5N2. Here, a colored image of N = 256 coefficients correspond to about 0.98M
coefficients, at most. It divides by 2 at least the memory sized used and per-
mits to scale on ImageNet. The Algorithm 4.1 presents the algorithm we used in
PyScatWave [84], which gives an identical output relatively to the one described
previously. The Table 4.1 introduces the speed-up for different values of tensors
on a TitanX, compared with ScatNetLight [85].

We shall mention that it is possible to store the intermediary computed
scattering coefficients, via a system of cache. In this case, it is possible to
obtain a speed up by a large factor since no extra computations are required to
compute the earlier layer that are the computationally extensive in comparison
with deeper layers, that have been downsampled.

4.2 Cascading a deep CNN: the ResNet

We now demonstrate cascading deep CNN architectures on top of the scattering
network can produce high performance classification systems. First, we justify
that a Scattering Network is an ideal initialization of a CNN in Subsection 4.2.1.
We then apply hybrid convolutional networks on the Imagenet ILSVRC2012
dataset (Subsection 4.2.2) as well as the CIFAR-10 dataset (Subsection 4.2.3)
and show that they can achieve performance comparable to deep end-to-end
learned approaches. In the last Subsection 4.2.4, we evaluate the hybrid net-
works in the setting of limited data by utilizing a subset of CIFAR10 as well
as the STL10 dataset and show that we can obtain substantial improvement in
performance over analogous end-to-end learned CNNs.

4.2.1 Scattering as an ideal initialization
We now motivate the use of a supervised architecture on top of a Scattering
Network. Indeed, as said in the previous section, Scattering transforms have

47

Algorithm 4.1 Algorithm used for GPU fast implementation
input: x

1. ˜U0
0 = FFT (x)

2. ˜U1
0 =

ˆ

˜�
J

� ˜U0
0

3. ˜U1
J

= periodize(˜U1
0 , J)

4. S0
J

x = iFFT (

˜U1
J

)

5. for �1 = (j1, ✓1)

(a) ˜U1
0 =

ˆ

˜
�1 � ˜U0

0

(b) ˜U1
j1

= periodize(˜U1
0 , j1)

(c) ˜U1
j1

= iFFT (

˜U1
j1

)

(d) ˜U1
j1

= | ˜U1
j1

|
(e) ˜U1

j1
= FFT (

˜U1
j1

)

(f) ˜U2
j1

=

ˆ

˜�
J

� ˜U1
j1

(g) ˜U2
J

= periodize(˜U2
j1

, J)

(h) S1
J

x[�1] = iFFT (

˜U2
J

)

(i) for �2 = (j2, ✓2)

i. ˜U2
j2

=

ˆ

˜
�2 � ˜U1

j1

ii. ˜U2
j2

= periodize(˜U2
j2

, j2)

iii. ˜U2
j2

= iFFT (

˜U2
j2

)

iv. ˜U2
j2

= | ˜U2
j2

|
v. ˜U2

j2
= FFT (

˜U2
j2

)

vi. ˜U2
j2

=

ˆ

˜�
J

� ˜U1
j2

vii. ˜U2
J

= periodize(˜U2
j2

, J)

viii. S2
J

x[�1,�2] = iFFT (

˜U2
J

)

output: Sx = {S0
J

x, S1
J

x, S2
J

x}

48

yielded excellent numerical results [15] on datasets where the variabilities are
completely known, such as MNIST or FERET. In these task, the problems
encountered are linked to sample and geometric variance and handling these
variances leads to solving these problems.

However, in classification tasks on more complex image datasets, such vari-
abilities are only partially known as there are also non geometrical intra-class
variabilities. Although applying the scattering transform on datasets like CI-
FAR or Caltech leads to nearly state-of-the-art results in comparison to other
unsupervised representations there is a large gap in performance when compar-
ing to supervised representations, as we showed in Section 3.3. CNNs fill in this
gap, thus we consider the use of deep neural networks utilizing generic scatter-
ing representations in order to reduce more complex variabilities than geometric
ones.

Recent works [16, 71] have suggested that deep networks could build an
approximation of the group of symmetries of a classification task and apply
transformations along the orbits of this group, like convolutions. This group of
symmetry corresponds to some of the non-informative intra class variabilities,
which must be reduced by a supervised classifier. [71] motivates that to each
layer corresponds an approximated Lie group of symmetry, and this approxima-
tion is progressive, in the sense that the dimension of these groups is increasing
with depth.

For instance, the main linear Lie group of symmetry of an image is the
translation group, R2. In the case of a wavelet transform obtained by rotation
of a mother wavelet, it is possible to recover a new subgroup of symmetry af-
ter a modulus non-linearity, the rotation SO2, and the group of symmetry at
this layer is the roto-translation group: R2 n SO2. As stated in Subsection
3.1, if no non-linearity was applied, a convolution along R2 n SO2 would be
equivalent to a spatial convolution. Discovering explicitly the next new and
non-geometrical groups of symmetry is however a difficult task because they are
highly dimensional and there is no known algorithm to obtain them ; nonethe-
less, the roto-translation group seems to be a good initialization for the first
layers. In this work, we investigate this hypothesis and avoid learning those
well-known symmetries.

A major strength of using a fixed and predefined Scattering Network with
a CNN is that the operators of the first layers perform combinations of the
Scattering coefficients. It implies that the operations performed by the filtering
of the first layer of the CNN can be explicitly written with a meaning of the
weights, and thus mathematically analysed to a certain extent.

4.2.2 Deep Hybrid CNNs on ILSVRC2012
In this section, we consider cascading the scattering transform with a deep CNN
architecture, such as Resnet [120, 46]. We find that, when both methods are
trained with the same settings of optimization and data augmentation, and
when the number of parameters is similar (12.8M versus 11.7 M) the scattering
network combined with a resnet can achieve analogous performance (11.4% Top

49

Method Top 1 Top 5 #params
AlexNet 56.9 80.1 60M
VGG-16 68.5 88.7 138M

Scat+ResNet-10 68.7 88.6 12.8M
ResNet-18 68.9 88.8 11.7M
ResNet-200 78.3 94.2 64.7M

Table 4.2: ILSVRC-2012 validation accuracy (single crop) of hybrid scatter-
ing and 10 layer resnet, a comparable 18 layer resnet, and other well known
benchmarks. We obtain comparable performance using analogous amounts of
parameters while learning parameters at a spatial resolution of 28 ⇥ 28

Stage Output size Stage details
scattering 28 ⇥ 28 J = 3, 651 channels

conv1 28⇥28 [256]

conv2 28⇥28


256
256

�

⇥2

conv3 14⇥14


512
512

�

⇥2

avg-pool 1 ⇥ 1 [14 ⇥ 14]

Table 4.3: Structure of Scattering and Resnet-10 used in Imagenet experiments.
Taking the convention of [120] we describe the convolution size and channels in
the “Stage details”.

5 for our model versus 11.1%), while utilizing fewer layers. We take the Resnet-
18 [120, 46] as a reference and construct a similar architecture with only 10 layers
on top of the scattering network. We utilize a scattering transform with J = 3

such that the CNN is learned over a spatial dimension of 28 ⇥ 28 and a channel
dimension of 651 (3 color channels of 217 each). The ResNet-18 typically has 4
residual stages of 2 blocks each which gradually decrease the spatial resolution
[120]. Since we utilize the scattering as a first stage we remove two blocks from
our model. The network is described in Table 4.3.

The accuracy is reported in Table 4.2 and compared to other CNNs. This
demonstrates both that the scattering networks does not lose discriminative
power and that it can be used to replace early layers of standard CNNs. We
also note that learned convolutions occur over a drastically reduced spatial res-
olution without resorting to pre-trained early layers which can potentially lose
discriminative information or become too task specific.

Training procedure

We describe our training pipeline, which is similar to [120]. We trained our
network for 90 epochs to minimize the standard cross entropy loss, using SGD

50

Method Accuracy Type
Separable Roto-translation
Scattering
+ OLS
+ Gaussian SVM

82.3 Unsup.

ExemplarCNN [34] 84.3 Unsup.
DCGAN [89] 82.8 Unsup.
Scat + FCs 84.7 Unsup.

Scat + ResNet 93.1 Sup.
Highway networks [108] 92.4 Sup.

All-CNN [106] 92.8 Sup.
WRN 16-8 [120] 95.7 Sup.
WRN 28-10 [120] 96.0 Sup.

Table 4.4: Accuracy of scattering compared to similar architectures on CI-
FAR10. We set a new state-of-the-art in the unsupervised case and obtain
competitive performance with hybrid CNNs in the supervised case.

with momentum 0.9 and a batch size of 256. We used a weight decay of 1 10

�4.
The initial learning rate is 0.1, and is dropped off by 0.1 at epochs 30, 60,
80. During the training process, each image is randomly rescaled, cropped, and
flipped as in [46]. The final crop size is 224 ⇥ 224. At testing, we rescale the
image to a size of 256, and extract a center crop of size 224 ⇥ 224.

4.2.3 Hybrid Representations on CIFAR-10
We again consider the popular CIFAR-10 dataset consisting of colored images
composed of 5 10

4 images for training, and 1 10

4 images for testing divided
into 10 classes. We perform two experiments, the first with a cascade of fully
connected layers, that allows us to evaluate the scattering transform as an un-
supervised representation. In a second experiment, we again use a hybrid CNN
architecture with a ResNet built on top of the scattering transform. For the
scattering transform we used J = 2 which means the output of the scattering
stage will be 8 ⇥ 8 spatially and 243 in the channel dimension.

In the unsupervised comparison we consider the task of classification using
only unsupervised features. Combining the scattering transform with a NN
classifier consisting of 3 hidden layers, with width 1.110

4, we show that one can
obtain a new state of the art classification for the case of unsupervised features,
i.e. 84.7% accuracy on CIFAR-10. This approach outperforms all methods
utilizing learned and not learned unsupervised features further demonstrating
the discriminative power of the scattering network representation.

In the case of the supervised task we compare to state-of-the-art approaches
on CIFAR-10, all based on end-to-end learned CNNs. We use a similar hybrid
architecture to the successful wide residual network (WRN) [120]. Specifically
we modify the WRN of 16 layers which consists of 4 convolutional stages. De-

51

noting the widening factor, k, after the scattering output we use a first stage
of 32 ⇥ k. We add intermediate 1 ⇥ 1 layers to increase the effective depth,
without increasing too much the number of parameters. Finally we apply a
dropout of 0.2 as specified in [120]. Using a width of 32 we achieve an ac-
curacy of 93.1%. This is superior to several benchmarks but performs worse
than the original ResNet [46] and the wide resnet [120]. We note that training
procedures for learning directly from images, including data augmentation and
optimization settings, have been heavily optimized for networks trained directly
on natural images, while we use them largely out of the box: we do believe there
are regularization techniques, normalization techniques, and data augmentation
techniques which can be designed specifically for the scattering networks.

Training procedure

We follow the training procedure prescribed in [120] utilizing SGD with mo-
mentum of 0.9, batch size of 128, weigh decay of 5 10

�4, and modest data
augmentation of the dataset by using random cropping and flipping. The initial
learning rate is 0.1, and we reduce it by a factor of 5 at epochs 60, 120 and 160.
The models are trained for 200 epochs in total. We used the same optimiza-
tion and data augmentation pipeline for training and evaluation in both case.
We utilize batch normalization techniques at all layers which leads to a better
conditioning of the optimization [49]. Table 4.4 reports the accuracies in the
unsupervised and supervised settings and compares them to other approaches.

4.2.4 Limited samples setting
A major application of a hybrid representation is in the setting of limited data.
Here the learning algorithm is limited in the variations it can observe or learn
from the data, such that introducing a geometric prior can substantially improve
performance. We evaluate our algorithm on the limited sample setting using a
subset of CIFAR10 and the STL10 dataset.

4.2.4.1 CIFAR-10

We take subsets of decreasing size of the CIFAR dataset and train both baseline
CNNs and counterparts that utilize the scattering as a first stage. We perform
experiments using subsets of 1000, 500, and 100 samples, that are split uniformly
amongst the 10 classes.

We use as a baseline the Wide ResNet [120] of depth 16 and width 8, which
shows near state-of-the-art performance on the full CIFAR-10 task in the su-
pervised setting. This network consists of 4 stages of progressively decreasing
spatial resolution detailed in Table 4.5 of [120]. We construct a comparable
hybrid architecture that removes a single stage and all strides, as the scattering
already down-sampled the spatial resolution. This architecture is described in
Table 4.5. Unlike the baseline, referred from here-on as WRN 16-8, our archi-

52

Stage Output size Stage details
scattering 8 ⇥ 8, 24 ⇥ 24 J = 2

conv1 8⇥8, 24⇥24 16 ⇥ k, 32 ⇥ k

conv2 8⇥8, 24⇥24


32⇥k
32⇥k

�

⇥n

conv3 8⇥8, 12⇥12


64⇥k
64⇥k

�

⇥n

avg-pool 1 ⇥ 1 [8 ⇥ 8], [12 ⇥ 12]

Table 4.5: Structure of Scattering and Wide ResNet hybrid used in small sample
experiments. Network width is determined by factor k. For sizes and stage de-
tails if settings vary we list CIFAR10 and then the STL10 network information.
All convolutions are of size 3⇥ 3 and the channel width is shown in brackets for
both the network applied to STL10 and CIFAR10. For CIFAR10 we use n = 2

and for the larger STL10 we use n = 4.

Method 100 500 1000
WRN 16-8 34.7±0.8 46.5±1.4 60.0±1.8

Scat + WRN 12-8 38.9±1.2 54.7±0.6 62.0±1.1

Table 4.6: Mean accuracy of a hybrid scattering in a limited sample situation on
CIFAR-10 dataset. We find that including a scattering network is significantly
better in the smaller sample regime of 500 and 100 samples.

tecture has 12 layers and equivalent width, while keeping the spatial resolution
constant through all stages prior to the final average pooling.

We use the same training settings for our baseline, WRN 16-8, and our
hybrid scattering and WRN-12. The settings are the same as those described
for CIFAR-10 in the previous section with the only difference being that we
apply a multiplier to the learning rate schedule and to the maximum number of
epochs. The multiplier is set to 10, 20, 100 for the 1000, 500, and 100 sample
case respectively. For example the default schedule of 60, 120, 160 becomes 600,
1200, 1600 for the case of 1000 samples and a multiplier of 10. Finally in the
case of 100 samples we use a batch size of 32 in lieu of 128.

Table 4.6 corresponds to the averaged accuracy over 5 different subsets, with
the corresponding standard error. In this small sample setting, a hybrid network
outperforms the purely CNN based baseline, particularly when the sample size
is smaller. This is not surprising as we incorporate a geometric prior in the
representation.

4.2.4.2 STL-10

The SLT-10 dataset consists of colored images of size 96 ⇥ 96, with only 5 10

3

labeled images in the training set divided equally in 10 classes and 8 10

3 images

53

Method Accuracy Type
Scat + WRN 19-8 76.0 ± 0.6 Supervised

CNN [111] 70.1 ± 0.6 Supervised
Exemplar CNN [34] 75.4±0.3 Unsupervised

Hierarchical Matching Pursuit (HMP) [9] 64.5±0.1 Unsupervised
Convolutional K-means Network 60.1 ± 0.1 Unsupervised

Table 4.7: Mean accuracy of a hybrid CNN on the STL-10 dataset. We find
that our model is better in all cases even compared to those utilizing the large
unsupervised part of the dataset.

in the test set. The larger size of the images and the small number of available
samples make this a challenging image classification task. The dataset also
provides 100 thousand unlabeled images for unsupervised learning. We do not
utilize these images in our experiments, yet we find we are able to outperform all
methods which learn unsupervised representations using these unlabeled images,
obtaining very competitive results on the STL-10 dataset.

We apply a hybrid convolutional architecture, similar to the one applied in
the small sample CIFAR task, adapted to the size of 96 ⇥ 96. The architecture
is described in Table 4.5 and is similar to that used in the CIFAR small sample
task. We use the same data augmentation as with the CIFAR datasets. We
apply SGD with learning rate 0.1 and learning rate decay of 0.2 applied at epochs
1500, 2000, 3000, 4000. Training is run for 5000 epochs. We use at training and
evaluation the standard 10 folds procedure which takes 1000 training images.
The averaged result is reported in Table 4.7.

Unlike other approaches we do not use the 4000 remaining training images
to perform hyper-parameter tuning on each fold, as this is not representative of
small sample situations, instead we train the same settings on each fold. The
best reported result in the purely supervised case is a CNN [34, 111] whose hy-
per parameters have been automatically tuned using 4000 images for validation
achieving 70.1% accuracy. The other competitive methods on this dataset utilize
the unlabeled data to learn in an unsupervised manner before applying super-
vised methods. We also evaluate on the full training set of 5000 images obtaining
an accuracy of 87.6%, which is quite higher than [47] who reported 81.3%, using
unsupervised learning and the full training set. These techniques add several
hyper parameters and require an additional engineering process. Applying a hy-
brid network is on the other hand straightforward and is very competitive with
all the existing approaches, without using any unsupervised learning. In addi-
tion to showing hybrid networks perform well in the small sample regime, these
results, along with our unsupervised CIFAR-10 result suggest that completely
unsupervised feature learning on image data, for downstream discriminative
tasks, may still not outperform supervised methods and pre-defined representa-
tions. One possible explanation is that in the case of natural images, learning
in an unsupervised way more complex variabilities than geometric ones (e.g the
roto-translation group), might be ill-posed.

54

4.3 Shared Local Encoder

In the previous section, we introduced a Hybrid Network based on the Scattering
Networks. This section contends the notion of global representation for image
classification, e.g. representations that potentially combine any neighborhoods
of an image in order to build a discriminative representation. We first discuss the
spatial support of different approaches, in order to motivate our local encoder
for scattering.

In CNNs constructed for large scale image recognition, the representations
at a specific spatial location and depth depend upon large parts of the initial
input image and thus mix global information. For example, at depth 2 of [56],
the effective spatial support of the corresponding filter is already 32 pixels (out
of 224). The specific representations derived from CNNs trained on large scale
image recognition are often used as representations in other computer vision
tasks or datasets [117, 122, 118].

On the other hand prior to 2012 local encoding methods led to state of the
art performance on large scale visual recognition tasks [94]. In these approaches
local neighborhoods of an image were encoded using methods such as SIFT
descriptors [65], HOG [30], and wavelet transforms [98]. They were also often
combined with an unsupervised encoding, such as sparse coding [10] or Fisher
Vectors (FVs)[94]. Indeed, many works in classical image processing or clas-
sification [55, 10, 95, 88] suggest that the local encoding of an image permit
to describe efficiently an image. Additionally for some algorithms that rely on
local neighbourhoods, the use of local descriptors is essential [65]. Observe that
a representation based on local non overlapping spatial neighborhood is simpler
to analyze, as there is no ad-hoc mixing of spatial information. Nevertheless,
on large scale classification, this approach was surpassed by fully supervised
learned methods [56].

We show that it is possible to apply, a similarly local, yet supervised encoding
algorithm to a scattering transform, as suggested in the conclusion of [88]. First
observe that at each spatial position u, a scattering coefficient S(u) corresponds
to a descriptor of a local neighborhood of spatial size 2

J . As explained in the
first Subsection 2.2.1, each of our scattering coefficients are obtained using a
stride of 2

J , which means the final representation can be interpreted as a non-
overlapping concatenation of descriptors. Then, let f be a cascade of fully
connected layers that we identically apply on each Sx(u). Then f is a cascade
of CNN operators with spatial support size 1 ⇥ 1, thus we write:

fSx , {f(Sx(u))}
u

In the sequel, we do not make any distinction between the 1 ⇥ 1 CNN op-
erators and the operator acting on Sx(u), 8u. We refer to f as a Shared Local
Encoder. We note that similarly to Sx, fSx corresponds to non-overlapping
encoded descriptors. To learn a supervised classifier on a large scale image
recognition task, we cascade fully connected layers on top of the SLE.

55

...

...

...

...
Sx(u� 2J)

Sx(u)

Sx(u+ 2J)

F4 F5 F6

F1 F2 F3

F1 F2 F3

F1 F2 F3

Figure 4.3.1: Architecture of the SLE, which is a cascade of 3 1⇥1 convolutions
followed by 3 fully connected layers. The ReLU non-linearities are included
inside the F

i

blocks for clarity.

Method Top 1 Top 5
FV + FC 55.6 78.4

FV + SVM 54.3 74.3
AlexNet 56.9 80.1

Scat + SLE 57.0 79.6

Table 4.8: Top 1 and Top 5 percentage accuracy reported from one single crop
on ILSVRC2012. We compare to other local encoding methods, and SLE out-
performs them. [88] single-crop result was provided by private communication.

Combined with a scattering network, the supervised SLE, has several ad-
vantages. Since the input corresponds to scattering coefficients, whose channels
are structured, the first layer of f is as well structured. We further explain and
investigate this first layer in Subsection 4.3.2. Unlike standard CNNs, there is
no linear combinations of spatial neighborhoods of the different feature maps,
thus the analysis of this network need only focus on the channel axis. Observe
that if f was fed with raw images, for example in gray scale, it could not build
any non-trivial operation except separating different level sets of these images.
We note it is not possible to use an average pooling as it will remove any spatial
localization information for the supervised task: extra-convolutions could have
permitted to discriminate spatial information (like wavelets), but it is impossible
to implement them with 1 ⇥ 1 convolutions.

In the next Subsection 4.3.1, we investigate empirically this supervised SLE
trained on the ILSVRC2012 dataset.

4.3.1 Encoding scattering coefficients
We use an architecture which consists of a cascade of a scattering network, a SLE
f , followed by fully connected layers. Figure 4.3.1 describes our architecture.
We select the parameter J = 4 for our scattering network, which means the
output representation has size 224

24 ⇥ 224
24 = 14 ⇥ 14 spatially and 1251 in the

channel dimension. f is implemented as 3 layers of 1⇥1 convolutions F1, F2, F3

with layer size 1024. There are 2 fully connected layers of ouput size 1524. For

56

all learned layers we use batch normalization [49] followed by a ReLU [56] non-
linearity. We compute the mean and variance of the scattering coefficients on
the whole Imagenet, and standardized each spatial scattering coefficients with
it.

Table 4.8 reports our numerical accuracies obtained with a single crop at
testing, compared with local encoding methods, and the AlexNet that was the
state-of-the-art approach in 2012. We obtain 20.4% at Top 5 and 43.0% Top 1
errors. The performance is analogous to AlexNet [56]. In term of architecture,
our hybrid model is analogous, and comparable to that of [94, 95, 88], for which
SIFT features are extracted followed by FV [95] encoding. Observe the FV is an
unsupervised encoding compared to our supervised encoding. Two approaches
are then used: either the spatial localization is handled either by a Spatial
Pyramid Pooling [57], which is then fed to a linear SVM, either the spatial
variables are directly encoded in the FVs, and classified with a stack of four
fully connected layers. This last method is a major difference with ours, as
the obtained descriptor does not have a spatial indexing anymore which are
instead quantified. Furthermore, in both case, the SIFT are densely extracted
which correspond to approximatively 2 10

4 descriptors, whereas in our case, only
14

2
= 196 scattering coefficients are extracted. Indeed, we tackle the non-linear

aliasing (due to the fact the scattering transform is not oversampled) via random
cropping during training, allowing to build an invariant to small translations.
In Top 1, [94] and [88] obtain respectively 44.4% and 45.7%. Our method brings
a substantial improvement of 1.4% and 2.7% respectively.

The BVLC AlexNet 1 obtains a of 43.1% single-crop Top 1 error, which is
nearly equivalent to the 43.0% of our SLE network. The AlexNet has 8 learned
layers and as explained before, large receptive fields. On the contrary, our
training pipeline consists in 6 learned layers with constant receptive field of size
16⇥16, except for the fully connected layers that build a representation mixing
spatial information from different locations. This is a surprising result, as it
seems to suggest context information is only necessary at the very last layers,
to reach AlexNet accuracy.

Transfer learning ability

We study briefly the local SLE, which has only a spatial extent of 16 ⇥ 16,
as a generic local image descriptor. We use the Caltech-101 benchmark which is
a dataset of 9144 image and 102 classes. We followed the standard protocol for
evaluation [10] with 10 folds and evaluate per class accuracy, with 30 training
samples per class, using a linear SVM used with the SLE descriptors. Applying
our raw scattering network leads to an accuracy of 62.8 ± 0.7, and the output
features from F1, F2, F3 brings respectively an absolute improvement of 13.7,
17.3, 20.1. The accuracy of the final SLE descriptor is thus 82.9 ± 0.4, similar
to that reported for the final AlexNet final layer in [122] and sparse coding
with SIFT [10]. However in both cases spatial variability is removed, either by

1
https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val

57

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Amplitude

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
D

is
tr

ib
ut

io
n

Order 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Amplitude

D
is

tr
ib

ut
io

n

Order 2

Figure 4.3.2: Histogram of ˆF1 amplitude for first and second order coefficients.
The vertical lines indicate a threshold that is used to sparsify ˆF1. Best viewed
in color.

Spatial Pyramid Pooling [57], or the cascade of large filters. By contrasts the
concatenation of SLE descriptors are completely local.

Training procedure

We describe our training pipeline, which is similar to [120]. We trained our
network for 90 epochs to minimize the standard cross entropy loss, using SGD
with momentum 0.9 and a batch size of 256. We used a weight decay of 1 10

�4.
The initial learning rate is 0.1, and is dropped off by 0.1 at epochs 30, 50, 70,
80. During the training process, each image is randomly rescaled, cropped, and
flipped as in [46]. The final crop size is 224 ⇥ 224. At testing, we rescale the
image to a size of 256, and extract a center crop of size 224 ⇥ 224.

4.3.2 Interpreting SLE’s first layer
Finding structure in the kernel of the layers of depth less than 2 [115, 122] is a
complex task, and few empirical analyses exist that shed light on the structure
of deeper layers, for example the work we did in Chapter 5 or Chapter 6. A
scattering transform with scale J can be interpreted as a CNN with depth J ,
as we see in Subsection 2.2.3, whose channels indexes correspond to different
scattering frequency indexes, which is a structuration. This structure is conse-
quently inherited by the first layer F1 of our SLE f . We analyze F1 and show
that it builds explicitly invariance to local rotations, yet also that the Fourier
bases associated to rotation are a natural bases of our operator. It is a promising
direction to understand the nature of the two next layers.

We first establish some mathematical notions linked to the roto-translation
group that we use in our analysis. For a given input image x 2 L2

(R2
), let us

recall we denote in Subsection 3.1:

58

-3 0 3
!✓1

-3

0

3

!
✓ 2

10�2

10�1

100

-3 0 3
!✓1

0.0

0.2

0.4

0.6

0.8

1.0
A
m
p
li
tu
d
e

Figure 4.3.3: Energy ⌦1{F} (left) and ⌦2{F} (right) from Eq. (4.3.11) and Eq.
(4.3.12) for given angular frequencies. Best viewed in color.

L
r

✓

.x(u) , x(r�✓

(u)) (4.3.1)

which is the image rotated by angle ✓, which corresponds to the linear action
of rotation on images. Observe the scattering representation is covariant with
the rotation in the following sense:

S1(Lr

✓

.x)(✓1, u) = S1x(✓1 � ✓, r�✓

u) (4.3.2)
, L

r

✓

(S1x)(✓1, u) (4.3.3)

and

S2(Lr

✓

x)(✓1, ✓2, u) = S2x(✓1 � ✓, ✓2 � ✓, r�✓

u)

, L
r

✓

(S2x)(✓1, ✓2, u)

The unitary representation framework [109] permits the building of a Fourier
transform on compact group, like rotations. It is even possible to build a scat-
tering transform on the roto-translation group [101]. Fourier analysis permits
the measurement of the smoothness of the operator and, in the case of CNN
operators, it is a natural basis.

Besides, in the case of the second order coefficients, (✓1, ✓2) is covariant with
rotations, but ↵ = ✓2�✓1 is an invariant to rotation that correspond to a relative
rotation. Thus, for S2x, the natural set of coordinates that gives a rotational
invariant for angles is in fact given by:

˜S2x(u, ✓1,↵) , S2x(u, ✓1, ✓1 + ↵) (4.3.4)

where ↵ corresponds to a relative angle, which naturally leads to:

59

˜S2(Lr

✓

x)(u, ✓1,↵) =

˜S2x(r�✓

u, ✓1 � ✓,↵) (4.3.5)
, L

r

✓

(

˜S2x)(u, ✓1,↵) (4.3.6)

We can now numerically analyze the nature of the operations performed
along angle variables by the first layer F1 of f , with output size K = 1024. Let
us define as {F 0

1 S0x, F 1
1 S1x, F 2

1 S2x} the restrictions of F1Sx to the order 0,1,2
scattering coefficients respectively. In other words,

F1Sx = F 0
1 S0x + F 1

1 S1x + F 2
1 S2x (4.3.7)

Let 1  k  K an index of the feature channel and 1  c  3 the color index.
In this case, F 0

1 S0x is the weights associated to the smoothing S0x. F 1
1 S1x

depends only (k, c, j1, ✓1), and F 2
1 depends on (k, c, j1, j2, ✓1, ✓2). We would like

to characterize the smoothness of these operators with respect to the variables
(✓1, ✓2), because Sx is covariant to rotations.

To this end, we define by ˆF 1
1 , ˆF 2

1 the Fourier transform of these operators
along the variables ✓1 and (✓1, ✓2) respectively, e.g.:

ˆF 1
1 (k, c, j1,!✓1) =

Z

F 1
1 (k, c, j1, ✓1)e

�i!

✓1✓1d✓1 (4.3.8)

and

ˆF 2
1 (k, c, j1, j2,!✓1 ,!✓2) =

Z

F 2
1 (k, c, j1, j2, ✓1, ✓2)e

�i!

✓1✓1�i!

✓2✓2d✓1d✓2 (4.3.9)

These operators are expressed in the tensorial frequency domain, which cor-
responds to a change of basis. In this experiment, we normalized each filter
of F such that they have a l2 norm equal to 1, and the normalization of the
Scattering Transform is chosen such that the transform is unitary as well, which
means:

8k, F 0
1 (k)

2
+

X

c,j1,✓1

F 1
1 (k, c, j1, ✓1)

2
+

X

c,j1,j2,✓1,✓2

F 2
1 (k, c, j1, j2, ✓1, ✓2)

2
= 1

(4.3.10)
Figure 4.3.2 shows the distribution of the amplitude of ˆF 1

1 , ˆF 2
1 . We observe

that the distribution is shaped as a Laplace distribution, which is an indicator
of sparsity, which gives an insight for the following experiment.

To illustrate that this is a natural basis we explicitly sparsify this operator in
its frequency basis and verify that empirically the network accuracy is minimally
changed. We do this by thresholding by ✏ the coefficients of the operators in
the Fourier domain. Specifically we replace the operators ˆF 1

1 by:

1|F̂ 1
1 |>✏

ˆF 1
1

60

and ˆF 2
1 by:

1|F̂ 2
1 |>✏

ˆF 2
1

We select an ✏ that sets 80% of the coefficients to 0, which is indicated in
Figure 4.3.2. Without retraining our network performance degrades by only
an absolute value of 2% worse on Top 1 and Top 5 ILSVRC2012. We have
thus shown that this basis permits a sparse approximation of the first layer, F1.
We now show evidence that this operator builds an explicit invariant to local
rotations.

To aid our analysis we introduce the following quantities:

⌦1{F}(!1) ,
X

k,j1,c

| ˆF 1
1 (k, c, j1,!✓1)|2 (4.3.11)

and

⌦2{F}(!
✓1 ,!✓2) ,

X

k,c,j1,j2

| ˆF 2
1 (k, c, j1, j2,!✓1 ,!✓2)|2 (4.3.12)

They correspond to the energy propagated by F1 for a given frequency,
and permit to quantify the smoothness of our first layer operator w.r.t. the
angular variables. Figure 4.3.3 shows variation of ⌦1{F} and ⌦2{F} along
frequencies. For example, if F 1

1 and F 2
1 were convolutional along ✓1 and (✓1, ✓2),

these quantities would correspond to their respective singular values. One sees
that the energy is concentrated in the low frequency domain, which indicates
that F1 builds explicitly an invariant to local rotations. Observe also that the
energy ⌦2{F} seems concentrated in an ellipsoid with main axis !

✓1 = �!
✓2 ,

which indicates that in the network builds a stronger invariance along relative
local rotations given by an angle ↵ = ✓2 � ✓1.

61

Chapter 5

Empirical Analysis of CNN
Properties

This chapter is dedicated to report experimental results on CNNs that are not
predicted by the theory, or intentionally due to the training scheme. The pre-
vious section introduces a class of deep networks for which the first layers are
fully initialized via wavelets. This leverages the interpretability of those lay-
ers, but the properties of the next layers are not yet fully understood. Several
works suggest that they build a representation that can be transferred on differ-
ent datasets, which implies that they build representation that captures generic
properties of images and are not merely memorizing samples or patterns [117].

Often, their ability to generalize or approximate the objective class function
is justified via the universal approximation theorem which states that a 2 layers
deep network can approximate any regular function under weak conditions [116].
However this statement is not enough. For example, a minimal depth [5] larger
than 2 is necessary to obtain good performances: in this chapter, we observe
that progressive mechanisms permit the building of a good representation. The
two mains contributions of this chapter are the following: first, we introduce
a simplified architecture that leads to state-of-the-art results and secondly, we
observe a progressive dimensionality reduction across layers, that we study in
details. Let us describe the contributions linked respectively to the architecture,
and representation aspects.

For this study, it is necessary to specify a precise class of deep networks
that we will study numerically, in order to avoid side effects that are due to
specific architectures hints or optimization. The cascade of a deep networks
can use complex non-linear submodules, such as max-pooling [10], local con-
trast normalization [56], residual connections [46]... We show it is possible
to obtain state-of-the-art results on CIFAR dataset, by simply using only few
non-linearities, linear CNNs operators with identical size and regularization at
each depth and few regularization. In particular, we show that a max-pooling
operator is not necessary to obtain good performances, which means that the

62

invariance to translation can be learned from the data via the linear operator.
Simplifying a CNN architecture permits to varying hyper parameters. For

example, increasing the width of the network leads to orders of accuracy im-
provement. This is surprising, as the number of parameters increase and the
network should be prone to a large overfitting. Another aspect we study is the
degree of the non-linearity: “more non-linear” does better is a common affirma-
tion in deep learning talks. Contrarily to this claim, we show that a point-wise
non-linearity applied to a layer can be actually linear on a fraction of the coef-
ficients. We observe other properties concerning the non-linearity.

In a classification task, the intrinsic dimension of the classes is a quite low-
dimensional structure in comparison with the original dimension of the signals,
thus a classification task requires estimating a (often non-linear) projection onto
a low-dimensional space. It implies that the space of representation is con-
tracted. Up to renormalization, a linear operator is always a contractive opera-
tor, yet this is not necessary the case of a non-linear operator. In particular, we
show it is possible to use point-wise non-linearity that are neither continuous
nor contractive: it implies that the intermediary CNN layers are not contractive
on the whole space.

Furthermore, we propose a taxonomy of the classification boundary. In
particular, we show that the intra-class variance and distances of the CNNs
representation at each layer are progressively reduced. It means that the latters
are decreasing with depth, until the final layer for which the representations of
different classes are linearly separable.

This leads us to the notion of Local Support Vectors, that consist in points
that permits to define locally the complexity of the boundary of classification.
We build a measure of the contraction and separation due to those vectors, that
indicates a progressive contraction of the space. In particular, this suggests
that the representation is progressively embedded in a lower dimensional space,
which explains why a nearest-neighbor is progressively improves with depth.

This chapter is divided as follow. First, in Section 5.1, we define a sim-
plified framework that leads to state-of-the-art results on CIFAR10. Then, we
numerically study it in Section 5.2.

5.1 Simplifying a state-of-the-art CNN architec-
ture

We introduce a state-of-the-art pipeline for CIFAR10 classification that uses
a minimal number of ad-hoc engineered tricks, which depends on two hyper-
parameters: its width and a non-linearity. We demonstrate that this framework
is flexible and simple, as we can vary those hyper parameters and relate them
to the final accuracy of the network.

In particular, adjusting the width of each CNN operators, and thus the
size of the representation, permits adjusting a trade-off between performance
accuracies and speed of computations. In all our practical cases, we report that

63

increasing the width systematically improves the final test performances.

5.1.1 Architecture
We describe the architecture that we used during all our experiment, with the
datasets CIFAR10 and CIFAR100. It will depend only on K 2 N, which is the
width of our network, and ⇢ a non-linear function. Our deep network consists of
the cascade of 13 convolutional layers W

j

with non-linearity ⇢. A convolutional
layer is by defined as an operator of l2 which specified by an index of layers ⇤

j

,
such that 8p, 8�  ⇤

j

:

W
j

x
j

[p,�] =

X

�̃

x
j

? k
j,�,�̃

[2

d

jp] (5.1.1)

where p is a discrete spatial index and k
j,�,�̃

is convolutional kernel, and
d

j

2 {0, 1}, in order to apply a downsampling. The spatial support of the
kernel is 3 ⇥ 3, and except for the first layer, the number of input and output
layers is fixed equal to ⇤

j

= K, 81 < j < 13, which is typically a power of 2.
We did not learn any biases in the convolutional layers, however we subtract
the empirical mean Ex

j

2 R⇤
j from our feature maps, which is estimated on

all the dataset via the batch normalization technique [49].
For computational speed-up, we apply a spatial down-sampling of 2 at the

output of the layers 6 and 10. Figure 5.1.1 describes our network, which can be
formally summarized for an input x, via x0 = x, and a cascade of blocks:

x
j+1 = ⇢W

j

(x
j

� Ex
j

) (5.1.2)

In this case we are in a similar setting as [72], which proves that if W
j

is
unitary then for any depths j  J the network preserves the energy of the input
signal and is non-expansive. The output x

J

of the final convolutional layer is
linearly and globally spatially averaged by A:

Ax
J

[�
J

] =

X

p

x
J

[p,�
J

] (5.1.3)

, and then reduced to the number of classes C of the problem by a projection
L : RK ! RC .

Again, no extra-max pooling was involved, which permits to remove extra-
instabilities that could have been introduced by this module and should have
been removed by the linear operators. Furthermore and again, all the trainable
affine biases have been removed, which means the biases are computed via an
estimator of the expected values of each layer.

CIFAR datasets are preprocessed using a standard procedure of whiten-
ing. The number of parameters used by our network with CIFAR10 is 9 ⇥
(3K + 12K2

) + 10K. To get our best accuracy, we used K = 512 which cor-
responds roughly to 28M parameters, that lead to 95.4% and 79.6% accuracies
on CIFAR10 and CIFAR100 respectively, which is a competitive performance

64

Methods Depth #params CIFAR10 CIFAR100
Ours 13 28M 95.4 79.6

SGDR 28 150M 96.2 82.3
RoR 58 13M 96.2 80.3
WRN 28 37M 95.8 80.0

All-CNN 9 1.3M 92.8 66.3

Table 5.1: Accuracy on CIFAR10 and CIFAR100 for state-of-the-arts supervised
deep networks. Depth and number of parameters are reported to perform a fair
comparison.

according to Table 5.1. Thus, we are in a state-of-the-art setting to perform an
analysis of the features learned.

Surprisingly, increasing the number of parameters significantly increase the
performances instead of reducing them, which is consistent with the facts that
neural networks are not prone to overfitting [123]. We show that increasing K
increases the classification accuracy of the network. In particular, it permits
to work on a network with a small number of parameters, before scaling up
the network with an expecting accuracy for a given size. [120] reports also
this observation, which is not obvious since increasing K increases by K2 the
number of parameters and could lead to a severe overfitting. Besides, since a
final dimensionality reduction must occur at the last layer, one could expect that
the intermediate layers might have a small number of feature maps. Figure 5.1.2
reports the numerical accuracy respectively on CIFAR10 and CIFAR100, with
respect to K. Setting K = 512 leads to 95.4% and 79.6% accuracy respectively
on CIFAR10 and CIFAR100, while K = 16 leads to 79.8% and 30.6% accuracy
on CIFAR10 and CIFAR100 respectively. It is not clear if the reason of this
improvement is the optimization or if it is a structural reason. Nevertheless, it
indicates that increasing the number of feature maps is a simple way to improve
the network accuracy.

Training procedure

We trained our network via a SGD with momentum 0.9 to minimize the
standard negative cross-entropy. We used a batch size of 128, and the training
lasts 1.2 10

5 iterations. We used an initial learning rate of 0.25, that we divided
by two every 1 10

4 batches. To avoid overfitting, we apply 4 regularizations.
First, a weight decay of 2 10

�4 that corresponds to a l2 regularization. Then,
we used dropout every two layers, starting at the second layer, that randomly
sets 40% of the activation layers to 0: this is our main trick to achieve good
performances. Thirdly, we used spatial batch normalization regularization that
is supposed to remove instabilities during the training, as developed in [49].
Finally, we applied standard random flipping and cropping techniques as data
augmentation. Observe that we did not use any bias, simply removing the mean
and did not use any non-linear pooling. Our architecture is thus kept as simple

65

Input

B3

BK

...
5⇥

2

BK

...
4⇥

2

BK

...
3⇥

A

L

Output

x
j

x
j+1

A block B
l

3 ⇥ 3
K ⇥ l

�-+
Ex

j

W
j

⇢

Figure 5.1.1: Schematic representation of our architecture. Our network is a
cascade of block B

l

, l being the input size of the convolutional operator, followed
by an averaging A and a projection L.

as possible, as in [106] but it only depends only on a few hyper parameters: its
width and the non-linearity. Without any contrary mentions, we used ⇢ = ReLU
since it has heuristically been shown to achieve better performances. The first
layer will always have a ReLU non-linearity.

5.1.2 The role of the non-linearity
Contraction phenomenon is a necessary step to explain the tremendous dimen-
sionality reduction of the space that occurs. A network cannot be purely linear,
since most of the image classification problems are not linearly separated: in-
deed a linear operator can only contract along straight lines. Should ⇢ also be a
contracting operator, as suggested in [71]? We study specifically the point-wise
non linearity ⇢ in a CNN and its necessary conditions to reach good classification
accuracy.

5.1.2.1 Unneccesity to contract via ⇢

In this subsection, we review several non-linearities and their properties. We
discuss the contraction which is built by a non-expansive non-linearity, and the
properties of the modulus combined with an analytical filter. Our conclusion is

66

(a) Accuracy when varying K on CIFAR10 dataset, the axis of K

is in log scale.

(b) Accuracy when varying K on CIFAR100 dataset, the axis of

K is in log scale.

Figure 5.1.2: Effect of K on the classification accuracy

67

!

!0

| ˆ (!)|

!0
!T a ˆ (!) ⇡ !T

0 a ˆ (!)

Figure 5.1.3: Localization in Fourier implies that a translations results in a
phase multiplication, up to approximation terms

that none of these properties are necessary to obtain good classification accura-
cies.

First, we explain the contraction property. Since the AlexNet [56] , non-
linearity is often chosen to be a ReLU(x) = max(0, x). This is a non-expansive
function, e.g.:

|ReLU(x) � ReLU(y)|  |x � y| (5.1.4)

, which implies it is also continuous. Adding the negative part [7, 121], it is
possible to avoid any loss of information. Consequently, a cascade of linear
operators of norm less than 1 and this non-linearity is non-expansive which is a
convenient property to reduce or maintain the volume of the data. For example,
in the framework of [71], the non-linear operator is simply viewed as a way to
contract the space.

Now, we explain how the modulus non-linearities in complex networks have
been suggested to remove the phase of a signal, which is in several frameworks
variability due to translation[70, 71, 15, 13]. For example, in Fourier, for any
translations a, one has:

dL
a

x(!) = ei!

T

ax̂(!) (5.1.5)

For instance, if the linear operator consists in a wavelet transform with appro-
priate mother wavelet [68], then the spectrum of each convolution with a wavelet
is localized in Fourier, and in this case, a modulus smoothens the envelop of the
signal. Mathematically, we mean that the filter energy should be concentrated
in Fourier around !0 with radius ⌘0, which is expressed by:

68

9⌘0 > 0, 9!0, ✏ � 0,

Z

k!�!0k�⌘0

| ˆ (!)|2d!  ✏ (5.1.6)

then, in this case:

Z

|(ei!

T

a � ei!

T

0 a

)

ˆ (!)|2d!  2✏+

Z

k!�!0k<⌘0

|(ei!

T

a � ei!

T

0 a

)

ˆ (!)|2d!

= 2✏+

Z

k!�!0k<⌘0

| sin(

aT

(! � !0)

2

)

ˆ (!)|2d!

 2✏+

kak2k⌘0k2

4

(5.1.7)

The remaining energy is thus bounded by the vanishing energy of the wavelet
out of the ⌘0-ball, and the magnitude of a. This property is illustrated on Figure
5.1.3. It means as well that if k!0k > ⌘0, then the wavelet is approximatively
analytic. An informal way to understand this equation is to use the fact that
the infinitesimal generator of the translation is the derivation operator, indeed,
observe that if x is C1:

L
a

x(u) = x(u + a) =

X

n�0

x(n)
(u)(a, ..., a)

n!

(5.1.8)

where x(n) is the order n differential, which is equivalent in Fourier to:

dL
a

x(!) =

X

n�0

(i!T a)

n

n!

x̂(!) (5.1.9)

Thus, again, informally:

\L
a

(x ?)(!) = ei!

T

a

ˆ (!)x̂(!) (5.1.10)

=

X

n�0

(i!T a)

n

n!

ˆ (!)x̂(!) (5.1.11)

⇡
X

n�0

(i!T

0 a)

n

n!

ˆ (!)x̂(!) by the Figure 5.1.3 (5.1.12)

= ei!

T

0 a

ˆ (!)x̂(!) (5.1.13)

= ei!

T

0 a [x ? (!) (5.1.14)

It implies that in the real domain, if a is small enough:

L
a

x ? ⇡ ei!

T

0 ax ? (5.1.15)

Applying a modulus removes this variability. As a classical result of signal
theory, observe also that an averaged rectified signal is approximately equal

69

Figure 5.1.4: Accuracy when varying the degree of non-linearity k

K

, reported
with K = 32 and K = 128. When k = K, one obtains 88.0% and 94.7%

respectively for K = 32 and K = 128. The maximum accuracies are then
respectively 89.8% and 94.7%, which indicates that a point-wise non-linearity
is not necessarily the optimal configuration.

to the average of its complex envelope [68]. Consequently, cascaded with an
average pooling and an analytic wavelet, a ReLU and a modulus might have the
same use.

Our conclusion is the following: experimentally, it is possible to build a deep
network that leads to 89.0% accuracy on CIFAR10, with K = 256, with the
non-linearity chosen as:

⇢(x) = sign(x)(

p

|x| + 0.1) (5.1.16)

In the neighborhood of 0, this non-linearity is not continuous in 0, has an
arbitrary large derivative, and preserves the sign of the signal. This shows that
those three properties are not necessary to obtain good classification accuracy,
and that the linear operator can handle the necessary contraction process.

5.1.2.2 Degree of non-linearity

In this subsection, we try to weaken the traditional property of point-wise non-
linearity. Indeed, being non-linear is essential to ensure that the different classes
can be separated, however the recent work on ResNet [46], that we introduced

70

in the previous chapter, suggests that it is not necessary to apply a point-wise
non-linearity, thanks to identity mapping that can be interpreted as the the
concatenation of a linear block (the identity) and a non-linear block. In this
case, a non-linearity is applied only on a half of the feature maps. We investigate
the question to understand if this property generalizes to our architecture by
introducing a ReLU with a degree k

K

of non-linearity that we apply to a feature
map x(u, l), defined by:

ReLUK

k

(x)(u, l) ,
(

ReLU(x(u, l)), if l  k

x(u, l), otherwise
(5.1.17)

A counter example is given by the scattering network for example, which
has quite less effective non-linearity than usual deep network: #non�linearity

#kernels

=

JL+2⇥ J(J�1)
2 L

2

J(1+JL+ J(J�1)
2 L

2)
⇡ 2

J

(a typical value of J is 3) when a Deep network has
usually a ratio of 1. Let us count the number of non-linearity, to compute the
ratio of the non-linearity.

In the case k = 0, we have an almost linear network (there is the ReLU
non-linearity at the first layer), and when k = K, it is a standard deep network
with point-wise non-linearity. Figure 5.1.4 reports the numerical accuracy when
we vary k, fixing K equal to 32 or 128. A linear deep network performs poorly,
leading to an accuracy of roughly 70% on CIFAR10. We see that there is a
plateau when k

K

� 0.6 =

k0
K

, and that the maximum accuracy is not necessary
obtained for k = K. Our networks could reach 89.8% and 94.4% classification
accuracy respectively for K = 32 and K = 128, whereas an almost linear
network achieves 66.7%$ and 70.3% accuracies respectively.

This is an opportunity to reinterpret the non-linearity. Let ⌧ be a cyclic
translation of {1, ..., K}, which is:

⌧([1, ..., K]) = [K, 1, ..., K � 1]

such that we define:

⌧(x)(u, l) , x(u, ⌧(l)). (5.1.18)

In this case, ⌧ is a linear operator that translates cyclically the channels of
a feature map. Observe that:

ReLUK

k

x = ⌧ � ReLUK

1 � ...⌧ � ReLUK

1
| {z }

k times

(5.1.19)

In this setting, one might interpret a CNN with depth J and that uses K
feature maps as a CNN of depth JK, since it is also a cascade of JK ReLUK

1 .
⌧ might be learned as well as being fixed. It means also that if k < K, by
cascading enough layers, it is possible to write a solution of our classification
problem that uses a ReLU as a network using ReLUk

K

. For k < k0, we tried
to increase the depth of the deep network to recover its original accuracy since
there will be as much non-linearity as in the case k = K, and we know there

71

exists an optimal solution. However, our network was not able to perform as
well, which implies that there is an issue with the optimization. Restricting the
non-linearity application to only one feature map could help future analysis,
since it gives explicitly the coefficients that exhibits non-linear effects. This
framework is intensively used in the next section.

5.2 Progressive space contraction

We now describe necessary conditions to solve a classification task. Regularity
of a representation with respect to the classes is necessary to classify high-
dimensional samples. Regularity means here that a supervised classifier builds
a covering of the full data space with training samples via "-balls that is small
in term of volume or number of balls, yet that it still generalizes well [113]. The
issue is that it is hard to track this measure.

For example, assume the data lay on a 2D or 3D manifold and are smooth
with respect to the classes, then it is possible to build a classifier which is locally
affine using manifold learning techniques. In particular, this implies that the
euclidean metric is locally meaningful. We take a second example: when a
nearest neighbor obtains good generalization properties on a test set. In this
case, our problem is regular since it means again that locally the euclidean
metric is meaningful and that the representation of the training set is mostly
covering the data space.

We show that supervised deep networks progressively build a representation
where euclidean distance becomes more meaningful. Indeed, we numerically
demonstrate that the performance of local classifiers, e.g. which assign a class
by giving more important weights to points of the training set that are in a
neighborhood of the testing sample, progressively improves with depth. We
also show that a progressive variance reduction occurs with depth.

In this section and the following, in order to save computation time, we used
the network previously introduced with K = 32 and ⇢ = ReLU. Numerically,
we however tried several parameters as a sanity check that our conclusion gen-
eralizes to any values of K, to avoid a loss in generality. With K = 32, the
accuracy of the network is 88.0%. Increasing K to 512 should approximatively
increase all the reported results by 7 absolute percents of accuracy.

Translation is one of the symmetries of the image classification problem, thus
it is necessary to remove this variability, even if the features are not extracted
at the final layer. In the following, we perform our experiments using:

x̄ , Ax 2 R32 (5.2.1)

We have the following ✏ separation property, thanks to non-expansivity of
averaging operators:

kx � yk � kx̄ � ȳk � ✏ (5.2.2)

72

The previous equation means that a separation by ✏ of the averaged signals
implies a separation by at least ✏ of any translated versions of the original signals.
We denote the features at depth j of the training set by:

¯Xj

train = {x̄
j

, x 2 training} (5.2.3)

and the features of depth j of the testing set by

¯Xj

test = {x̄
j

, x 2 testing} (5.2.4)

For a given x, x
j

or x̄
j

, we write its class y(x), y(x
j

) or y(x̄
j

) since there is
no confusion possible.

5.2.1 Intra-class variance and distance reduction
We want to quantify the contraction of the space performed by our CNN. In
this subsection, we show that the samples of a same class define a structure
that progressively becomes low-dimensional. We investigate the question to
understand if there is a progressive variance reduction, layer per layer. First,
we check wether a linear dimensionality reduction is implemented by our CNN.
To this end, we apply a PCA on the features ¯Xj

train belonging to the same class
at each depth j. As a normalization, the features at each depth j were globally
standardized. In other words, the data at each depth are in the l2 balls of radius
32. Remember that in our case, x̄

j

2 R32.
Figure 5.2.1 represents the cumulated variances of the K = 32 principal

component axis of a given class at different depth j. The obtained diagram and
conclusions are not specific to this class. The accumulated variance indicates
the proportion of energy that is explained by the first axis. The slope of a
curve is an indicator of the dimension of the classes: as a plateau is reached,
the last components are not useful to represent the class for classifiers based on
l2 distances.

The first observation is that the variance seems to be uniformly reduced with
depth. However, certain plots of successive depths are almost indisguishable:
it indicates that almost no variance reduction has been performed. Except for
the last layer, the decay of the 20 last eigenvalues is slow: this is not surprising
since nothing indicates that the dimension should be reduced and small variance
coefficients might be important for the classification task. The very last layer
exhibits a large variance reduction and is low-dimensional, yet this is logical
since by construction, the final features should be linearly separable and be in
space of dimension 10.

We then focus on the contraction of the intra-class distances. As a cascade
of non-expansive operators, a deep network is also non-expansive up to a mul-
tiplicative constant. In particular, the intra-class distances should be smaller.
We should observe a progressive reduction of the volume of the space, yet does
it occur class per class as well? Under this hypothesis, in a similar fashion as
[39], we study the average intra-class distances. As a normalization, the features
¯Xj

train at depth j are standardized over the dataset. On CIFAR10 (where each

73

Figure 5.2.1: Cumulated variances of the principal component of a given class at
different depths j, for a network trained on CIFAR10 with K = 32. In general,
one observes a reduction of variance with depth. Best viewed in color.

74

of the 10 classes has 5000 samples) we compute an estimation of the average
distances of the intra-class samples of the features ¯Xj

train at depth j for the class
c:

1

5000

2

X

x̄

j

2X̄

j

train
y(x

j

)=c

X

x̄

0
j

2X̄

j

train
y(x0

j

)=c

kx̄
j

� ¯x0
j

k (5.2.5)

Figure 5.2.2 reports this value for different classes c and different depths
j. One sees that the intra-class distances do not strictly decrease with depth,
except on the last layer, which must be low-dimensional since the features are,
up to projection, in a space of size 10. This is due to two phenomena: the
normalization procedure whose choice can drastically change the final results
and the averaging. Indeed, let us assume here that kW

j

k  1, then if x, x̃ are
in the same class,

kx
j+1 � x̃

j+1k  kx
j

� x̃
j

k, (5.2.6)

but this does not imply that

kx̄
j+1 � ¯x̃

j+1k  kx̄
j

� ¯x̃
j

k, (5.2.7)

since the averaging is a projection and could break the distance inequality.
Those two experiments indicate we need to refine our measurement of con-

traction to explain the progressive and constant improvement of a 1-NN, that
we will demonstrate in the next Section 5.2. Specifically, one should estimate
the local intrinsic dimension: this is not possible since we do not have enough
available samples in each neighborhood [28].

5.2.2 Progressive separation
Brutal contraction via a linear projection of the space would not preserve the
distances between different classes. Yet, with a cascade of linear and non linear
operators, it would be possible to progressively contract the space without losing
in discriminability [72]. Several works [122, 79] reported that linear separability
of deep features increases with depth. It might (but this is not the only solution)
indicate that intra-class variabilities are progressively linearized [71], until the
last layer, such that a final linear projector can build invariants. Following this
approach, we start by applying a Gaussian SVM at each depth j, which is a
discriminative locally linear classifier, with a fixed bandwidth. Indeed, observe
here that the case of an infinite bandwidth corresponds to a linear SVM. We
train it on the standardized features ¯Xj

train corresponding to the training set at
depth j and test it on ¯Xj

test, via a Gaussian SVM with bandwidth equal to the
average l2-norm of the points of the training set. We only cross-validate once
the regularization parameter at one layer and then kept the parameters of the
SVM constant. Figure 5.2.3 reports that the accuracy of this classifier increases
at regular step with depth, which confirms the features become more separable.

75

Figure 5.2.2: Averaged intra-class distances on CIFAR10, K = 32, at differ-
ent depths j. Different colors correspond to different classes. The intra-class
distances are globally decreasing with depth. Best viewed in color.

76

Figure 5.2.3: Accuracy on CIFAR10 at depth j via a Gaussian SVM and 1-NN.
The size of the network is K = 32 and its accuracy on the testing set is 88.0%.

In fact, we prove this Gaussian SVM acts as a local classifier. A 1 nearest
neighbor (1-NN) classifier is a naive and simple non-parametric classifier for
high-dimensional signals, that simply assigns to a point the class of its closest
neighbor. It can be interpreted as a local classifier with adaptive bandwidth
[18]. It is unbiased, yet it bears a lot of variance. Besides, resampling the data
will affect a lot the classification results. We train a 1-NN on ¯Xj

train and test it
on ¯Xj

test. We denote by x(k) the result of the k-th closest neighbor of a point,
that is distinct of itself. We observe in Figure 5.2.3 that a 1-NN trained on
¯Xj

train and tested on ¯Xj

test performs nearly as well as a Gaussian SVM. Besides,
the progression of this classifier is almost linear with respect to the depth. It
means that the representation built by a deep network is in fact progressively
more regular, which explains why the Gaussian SVM accuracy progressively
improves.

5.2.3 Local Support Vectors
Our objective is to quantify at each depth j, the regularity of the representation
constructed by a deep net in order to understand the progressive contraction of
the space. In other words, we need to build a measure of this regularity. The
contraction of the space is global, but we know from below that neighbors are
meaningful: we would like to explain how they separate the different classes. We

77

thus introduce a notion of local support vectors. In the case of a SVM, a support
vector corresponds to samples of the training set that delimit different classes, by
interpolating a hyperplane between them [27]. It means that a support vectors
permit to avoid the collapsing of the boundary classification [71]. But in our
case, we do not have enough samples to estimate the exact boundaries. Local
support vectors corresponds to support vectors defined by a local neighborhood.
In other words, at depth j, the set of support vectors is defined as

�

j

= {x̄
j

, y(x̄
(1)
j

) 6= y(x̄
j

)} ⇢ ¯Xj

train (5.2.8)

which is the set of nearest neighbors that have a different class. In this section
for a finite set X, we denote its cardinality by |X|.

5.2.3.1 Margin separation

In this subsection, we numerically observe a margin between support vectors.
In [105], bounds on the margin are obtained with hypothesis of low dimensional
structures, and this might be restrictive according to the analysis above. A
margin at depth j is defined as:

�j

= inf

y(x̄(1)
j

) 6=y(x̄
j

)
kx̄

(1)
j

� x̄
j

k � 0 (5.2.9)

Since our data are in finite number this quantity is always different from 0,
but we need to measure if it is significant. We thus compare the distributions
of distances of nearest neighbors belonging to the same class:

A
j

= {kx̄
(1)
j

� x̄
j

k, x̄
j

62 �

j

}
and the distributions of the distances between support vectors

B
j

= {kx̄
(1)
j

� x̄
j

k, x̄
j

2 �

j

}. (5.2.10)

The features have been normalized by a standardization. Figure 5.2.4 rep-
resents the cumulative distributions of A

j

and B
j

for different depths j. We
recall that a cumulative distribution of a finite set A ⇢ R is defined as:

A(t) =

|{x  t, x 2 A}|
|A| (5.2.11)

. One observes that in a neighborhood of 0, A
j

(t) is roughly the translation
of B

j

(t) by 0.5. It indicates there is a significant difference, showing �
j

is
actually meaningful. Consequently there exists a margin between the spatially
averaged samples of different classes, which means by Equation 5.2.2 that this
margin exists between the samples themselves and their orbits by the action of
translations.

78

Figure 5.2.4: Cumulative distributions of distances: between a support vector
and its nearest neighbors, e.g. B

j

(t) (continuous line), and a point that is not
a support vector and its nearest neighbor, e.g. A

j

(t) (dashed line). Different
colors correspond to different depths. The axis of the magnitude of the distance
is in log scale. At a given depth, one sees there is a significative difference
between the cumulative distribution, which indicates the existence of a margin.
Best viewed in color.

79

5.2.3.2 Complexity of the classification boundary

Estimating a local intrinsic dimension is difficult when few samples per neighbor-
hood are available, but the classes of the neighbors of each layers of the samples
of ¯Xtrain are known. In this subsection, we build a measure of the complexity of
the classification boundary based on neighbors. This permits evaluating both
separation and contraction properties. It can be viewed as a weak estimation
of the intrinsic dimension [12], even if the manifold hypothesis might not hold.
We compute an estimate of the efficiency of a k-NN to correctly find the label
of a local support vector. To this end, we define by recurrence at depth j and
for a given k 2 N, which is a number of neighbors, �

k

j

via �

1
j

= �

j

and:

�

k+1
j

=

n

x̄
j

2 �

k

j

, |{y(x̄
(l)
j

) 6= y(x̄
j

), l  k + 1}| >
k

2

o

(5.2.12)

In other words, �

k

j

is the set of points at depth j that are not well-classified
by l-NN using majority vote, for l  k. By construction, �

k+1
j

⇢ �

k

j

which
implies that

|�k+1
j

|  |�k

j

|. (5.2.13)

Since the number of samples is finite, this sequence converges to the number
of samples of the training set that can not be identified by their nearest neigh-
bors. The decay and the amplitude of |�k

j

| is an indicator of the regularity of
the classification boundary. Recall that for a deep network, the 1-NN classifier
has better generalization properties with deeper features. A small value of |�k

j

|
indicates that a few samples are necessary to build the classification boundary
(contraction), and at a given depth j, if |�k

j

| decreases quickly to its constant
value, it means a few neighbors are required to build the decision boundary
(separation).

Figure 5.2.5 indicates that the classification boundary is uniformly more
regular with depth, in term of number of local support vectors and number of
neighbors required to estimate the correct class. This measure has the advantage
of being simple to compute, yet this analysis must be refined in a future work.

80

Figure 5.2.5: |�k

j

| for different depth j. Different depths are represented by
different colors. The limit value of |�k

j

| is reached faster by deeper layers, and
the value |�k

j

| globally decrease with depth: the boundary classification is pro-
gressively more regular. Best viewed in color.

81

Chapter 6

Hierarchical Attribute CNNs

This chapter introduces some classes of CNNs that organizes the channel axes of
each layer. Indeed, their architectures consist in high-dimensional convolutions
that are performed jointly in space and along multi-dimensional channel axis.
It can be viewed as an incremental work over the roto-translation scattering
presented in Chapter 3, in the following sense: a roto-translation scattering
performs a convolution along the index of the angular and spatial variables
[101], that were created by the first wavelet transform. Following this idea,
CNNs [71, 16, 25] that perform convolutions along each newly created indexes
are built. We refer to these indexes as attributes because they aim to hold
the discriminative information of the representation, and thus non-informative
attributes should be progressively reduced as we explain below.

The variabilities which must be eliminated are mathematically defined as
the group of symmetries of the classification function [71, 38]. It is the group of
transformations (not necessarily linear) which preserves the labels of the clas-
sification problem. Translations are one example of such a symmetry group.
In a vanilla CNN invariants to translations are computed with spatial convolu-
tions, followed by a final averaging. Besides memorizing symmetries, a network
must as well memorizing properties of the samples of a dataset: can those two
mechanisms be unified? Memory means here the ability to encode and restore
properties that are important for classification.

Fully understanding a deep neural network classifier requires specifying its
symmetry group and invariants beyond translations, especially of non-geometrical
nature and without any specific semantic meaning. The Multiscale Hierarchical
CNNs introduced in [71] are a new class of CNNs. A typical Multiscale Hierar-
chical CNNs [71] is a cascade of general convolutions along the symmetry group.
Contrarily to common CNNs introduced by [59] that perform a unspecified sum
of weighted spatial kernels, the spatial kernels are combined through convolu-
tions along the channel indexes. They give explicit information on invariants
by disentangling progressively more signal attributes as the depth increases. It
permits to study the invariances w.r.t. those symmetries, and addresses several
questions: is it possible to organize the memory of the network with high dimen-

82

sional translations? If so, what is the nature of those translations? However, its
implementation is complicated because the number of parameters and the size
of the layers grows exponentially with the depth.

To tackle this issue, we introduce and implement a novel class of CNNs,
called Hierarchical Attribute Convolutional Neural Networks (HCNNs), which
is a subset of the generic class Multiscale Hierarchical CNNs described in [71].
We suggest that images variabilities can be then learned and smoothly mapped
into the group of translations of Rd, d 2 N. Smoothly means that the linear
metric preserves locally the property of an image, and that it is almost always
possible to obtain translated representations along the attributes, which should
not be the case in vanilla CNNs.

Our contributions via an experimental study of the trained HCNNs are the
following. First, we discuss CNNs and necessary conditions on their structure in
Subsection 6.1.1, and we relate them to Multiscale Hierarchical CNNs in Sub-
section 6.1.2. Then, we introduce the class of HCNNs in Subsection 6.1.3. Sub-
section 6.2.1 shows that they require a reduced number of parameters compared
to vanilla CNNs to achieve similar performances. Secondly, we give evidence of
an effective memory organization at several layers in Subsection 6.2.2.1. We also
explain in Subsection 6.2.2.2 why this method is not likely to have structured
correctly the memory of the network.

6.1 Architectures descriptions

6.1.1 Deep Convolutional Networks and Group Invariants

A classification problem associates a class y = f(x) to any vector x 2 RN of
N parameters. Deep convolutional networks transforms x into multiple layers
x

j

of coefficients at depths j, whose dimensions are progressively reduced after
a certain depth [60]. We review general properties of CNNs and motivate the
notion of group of symmetries, which is a key concept of this work.

We adopt different notations from the previous sections as we interpret dif-
ferently the layers of a neuron.We shall numerically concentrate on color images
x(u, v) where u = (u1, u2) are the spatial coordinates and 1  v  3 is the index
of a color channel. The input x(u, v) may, however, correspond to any other
type of signals. For sounds, u = u1 is time and v may be the index of audio
channels recorded at different spatial locations.

Each layer is an array of signals x
j

(u, v) where u is the native spatial index
of x, and v is a 1-dimensional channel parameter. A deep convolutional network
iteratively computes:

x
j+1 = ⇢W

j+1xj

(6.1.1)

with x0 = x. Each W
j+1 computes sums over v of convolutions along u, with

filters of small support, here chosen to be 3. The resolution of x
j

(u, v) along u is
progressively reduced by a subsampling as j increases until an averaging in the
final output layer. The operator ⇢(z) is a point-wise non-linearity In this work,

83

we shall use exponential linear units ELU [23]. It transforms each coefficient z
with bias b into:

⇢(z) =

(

z + b if z � �b

ec � 1 otherwise
(6.1.2)

As the depth increases, the discriminative variations of the initial image x
along u are progressively transferred to the channel index v of x

j

. At the last
layer x

J

, v stands for the class index and u has disappeared. An estimation ỹ
of the signal class y = f(x) is computed by applying a soft-max to x

J

(v). It
is difficult to understand the meaning of this channel index v whose size and
properties changes with depth. It mixes multiple unknown signal representations
with an arbitrary ordering. Hierarchical Attribute convolution networks will
dress this issue by imposing a high-dimensional hierarchical structure on v,
with an ordering specified by the translation group.

In standard CNN, each x
j

= �

j

x is computed with a cascade of convolutions
and non-linearities

�

j

= ⇢W
j

...⇢W1, (6.1.3)

whose supports along u increase with the depth j. These operators replace x
by the variables x

j

to estimate the class y = f(x). To avoid errors, this change
of variable must be discriminative, despite the dimensionality reduction, in the
sense that

8(x, x0
) 2 R2N

�

j

(x) = �

j

(x0
)) f(x) = f(x0

). (6.1.4)

This is necessary and sufficient to guarantee that there exists a classification
function f

j

such that

f = f
j

� �

j

(6.1.5)

and hence

8x 2 RN , f
j

(x
j

) = f(x). (6.1.6)

The function f(x) can be characterized by its groups of symmetries. A group
of symmetries of f is by definition a group of operators g that are invertible and
stable w.r.t. composition, which transforms any x into x0

= g.x which belong
to the same class: f(x) = f(g.x). The discriminative property (6.1.4) implies
that:

�

j

(x) = �

j

(g.x)) f(x) = f(g.x). (6.1.7)

The property (6.1.4) is thus equivalent to impose that groups of symmetries
of �

j

are groups of symmetries of f . Learning appropriate changes of variables
can thus be interpreted as learning progressively more symmetries of f , from
the perspective of [71]. The network must be sufficiently flexible to compute
changes of variables �

j

whose symmetries approximate the symmetries of f .

84

Directions of convolution
Directions of summation

u

v v

u

Figure 6.1.1: We illustrate the difference between linear operators of vanilla
CNNs (Right) and the convolution of a HCNN (Left)

Deep convolutional networks are cascading convolutions along the spatial
variable u so that �

j

is covariant to spatial translations. If x is translated along
u then x

j

= �

j

x is also translated along u. This covariance implies that for
all v,

P

u

x
j

(u, v) is invariant to translations of x. Next section explains how
to extend this property to higher dimensional attributes with multidimensional
convolutions.

6.1.2 Multiscale Hierarchical Convolutional Neural Net-
works

Multiscale Hierarchical networks are convolutional networks that explicitly struc-
ture the channel dimension via cascade of convolutions along symmetry groups
[71, 16]. The one-dimensional unordered index v of a vanilla CNN is replaced by
an ordered multidimensional vector of attributes v = (v1, ..., vj

) and all linear
operators W

j

are convolutions over (u, v). We explain their construction and
a specific architecture adapted to an efficient learning procedure. Each layer
x

j

(u, v) is indexed by a vector of multidimensional parameters v = (v1, ..., vj

)

of dimension j. Each v
k

is an “attribute” of x which is learned to discriminate
classes y = f(x). This word is appropriate as it refers to a strong discriminative
index of the channels: this is in particular true for the final layer of the CNN,
as an attribute corresponds to one class of the classification problem. The op-
erators W

j

are defined as multidimensional convolutions along the index space

85

(u, v). As previously explained, this covariance to translations implies that, for
0  k  j, the sum:

X

v

k

x
j

(u, v0, ..., vj

) (6.1.8)

is invariant to translations of previous layers along v
k

. A convolution of z(u, v)

by a filter w(u, v) of support S is written

z ? w(u, v) =

X

(u0
,v

0)2S

z(u � u0, v � v0) w(u0, v0). (6.1.9)

Since z(u, v) is defined in a finite domain of (u, v), boundary issues can be
solved by extending z with zeros or as a periodic signal. We use zero-padding
extensions for the next sections, except for the last section, where we use periodic
convolutions. Both cases give similar accuracies. The Figure 6.1.1 highlights
the differences between the convolutions performed in a vanilla CNN and in a
Multiscale Hierarchical CNN.

The network takes as an input a color image x(u, v0), or any type of multi-
channel signal indexed by v0. The first layer computes a sum of convolutions of
x(u, v0) along u, with filters w1,v0,v1(u)

x1(u, v1) = ⇢
⇣

X

v0

x(·, v0) ? w1,v0,v1(u)

⌘

. (6.1.10)

For any j � 2, W
j

computes convolutions of x
j�1(u, v) for v = (v1, ..., vj�1)

with a family of filters {w
v

j

}
v

j

indexed by the new attribute v
j

:

x
j

(u, v, v
j

) = ⇢
⇣

x
j�1 ? w

v

j

(u, v)

⌘

. (6.1.11)

As explained in [71], W
j

has two roles. First, these convolutions indexed by
v

j

prepare the discriminability (6.1.4) of the next layer x
j+1, despite local or

global summations along (u, v1, ..., vj�1) implemented at this next layer. It thus
propagates discriminative variations of x

j�1 from (u, v1, ..., vj�1) into v
j

.
Second, each convolution with w

v

j

computes local or global invariants by
summations along (u, v1, ..., vj�2), in order to reduce dimensionality. This di-
mensionality reduction is implemented by a subsampling of (u, v) at the output
(6.1.11), which we omitted here for simplicity. Since v

k

is the index of multidi-
mensional filters, a translation along v

k

is a shift along an ordered set of multi-
dimensional filters. Again, for any k < j � 1,

P

v

k

x
j�1(u, v1, ..., vk

, ..., v
j�1) is

invariant to any such shift.
The final operator W

J

computes invariants over u and all attributes v
k

but
the last one:

x
J

(v
J�1) =

X

u,v1,...,v

J�1

x
J�1(u, v1, ..., vJ�1). (6.1.12)

86

The last attribute v
J�1 corresponds to the class index, and its size is the

number of classes. The class y = f(x) is estimated by applying a soft-max
operator on x

J

(v
J�1).

Proposition 5. The last layer x
J

is invariant to translations of x
j

(u, v1, ..., vj

)

along (u, v1, ..., vj

), for any j < J � 1.

Proof. Observe that x
J

= W
J

⇢W
J�1...⇢Wj

x
j

. Each W
k

for j < k < J is
a convolution along (u, v0, ..., vj

, ..., v
k

) and hence covariant to translations of
(u, v0, ..., vj

). Since ⇢ is a point-wise operator, it is also covariant to translations.
Translating x

j

along (u, v1, ..., vj

) thus translates x
J�1. Since (6.1.12) computes

a sum over these indices, it is invariant to these translations

This proposition proves that the soft-max of x
J

approximates the classifica-
tion function:

f
J

(x
J

) = f(x) (6.1.13)

by an operator which is invariant to translations along the high-dimensional
index (u, v) = (u, v1, ..., vj

) 2 Rj+2. Ideally, the change of variable x
j

thus aims
at mapping the symmetry group of f into a high-dimensional translation group,
which is the translation group Rj . The next Section 6.2 develops the outcomes
of this approach.

However, this requires an important word of caution. A translation of
x

j

(u, v1, ..., vj

) along u corresponds to a translation of x(u, v0) along u. On
the contrary, a translation along the attributes (v1, ..., vj

) usually does not cor-
respond to transformations on x. Translations of x

j

along (v1, ..., vj

) form a
group of symmetries of f

j

but do not define transformations of x and hence do
not correspond to a symmetry group of f . Next sections analyze the properties
of translations along attributes computed numerically.

Let us give examples over images or audio signals x(u) having a single chan-
nel. The first layer (6.1.10) computes convolutions along u:

x1(u, v1) = ⇢(x ? w
v1(u))

For audio signals, u is time. This first layer usually computes a wavelet
spectrogram, with wavelet filters w

v1 indexed by a log-frequency index v1. A
frequency transposition corresponds to a log-frequency translation x1(u, v1 � ⌧)
along v1. If x is a sinusoidal wave then this translation corresponds to a shift
of its frequency and hence to a transformation of x.

However, for more general signals x, there exists no x0 such that ⇢(x0 ?
w

v1(u)) = x1(u, v1 � ⌧). It is indeed well known that a frequency transposition
does not define an exact signal transformation. Other audio attributes such
as timber are not well-defined transformations on x either although important
attributes to classify sounds.

For images, u = (u1, u2) is a spatial index. If w
v1 = w(r�1

v1
u) is a rotation

of a filter w(u) by an angle v1 then

87

x(u, v0) ⇢W1 ⇢W2 ⇢W3 ⇢W4 ⇢W5 ⇢W6 ⇢W7 ⇢W8 ⇢W9 ⇢W10 ⇢W11 W12 x
J

(v
J�1)

N

2 ⇥ 3

x1(u, v1)

N

2 ⇥ K

x2(u, v1, v2)
N

2 ⇥ K ⇥ K

x3(u, v1, v2, v3)
N

2 ⇥ K

4
⇥ K

2
⇥ K

x5(u, v3, v4, v5)
N

2
4

⇥ K

4
⇥ K

2
⇥ K

x9(u, v7, v8, v9)
N

2
16

⇥ K

4
⇥ K

2
⇥ K

10/100

Figure 6.1.2: Implementation of a hierarchical attribute convolutional network
as a cascade of 5D convolutions W

j

. The figure gives the size of the intermediate
layers stored in 5D arrays. Dash dots lines indicate the parametrization of a
layer x

j

and its dimension. We only represent dimensions when the output has
a different size from the input.

x1(u, v1 � ⌧) = ⇢(x
⌧

? w
v1(r⌧

u)) with x
⌧

(u) = x(r�1
⌧

u). (6.1.14)

However, there exists no x0 such that:

⇢(x0 ? w
v1(u)) = x1(u, v1 � ⌧)

because of the missing spatial rotation r
⌧

u. These examples show that trans-
lations x

j

(u, v1, .., vj

) along the attributes (v1, ..., vj

) usually do not correspond
to a transformation of x.

6.1.3 Hierarchical Attribute CNNs
We now depict the Hierarchical Attribute Networks and specify its properties
and implementation.

6.1.3.1 5-D Dimensional Architectures

Hierarchical Attribute Network are in a subset of the Multiscale Hierarchi-
cal Networks, with an efficient implementation. Indeed, the convolutions ker-
nels size and layer size grow exponentially with depth, and thus it is neces-
sary to incorporate intermediate projections to avoid this difficulty. The lay-
ers are indexed by two-dimensional spatial indices u = (u1, u2) and progres-
sively higher dimensional attributes v = (v1, ..., vj

). To avoid computing high-
dimensional vectors and convolutions, we introduce an image classification ar-
chitecture which eliminates the dependency relatively to all attributes but the
last three (v

j�2, vj�1, vj

), for j > 2. Since u = (u1, u2), all layers are stored in
five dimensional arrays.

The network takes as an input a color image x(u, v0), with three color chan-
nels 1  v0  3 and u = (u1, u2). Applying (6.1.10) and (6.1.11) up to j = 3

computes a five-dimensional layer x3(u, v1, v2, v3). For j > 3, x
j

is computed
as a linear combination of marginal sums of x

j�1 along v
j�3. Thus, it does not

depend anymore on v
j�3 and can be stored in a five-dimensional array indexed

88

by (u, v
j�2, vj�1, vj

). This is done by convolving x
j�1 with a a filter w

v

j

which
does not depend upon v

j�3:

w
v

j

(u, v
j�3, vj�2, vj�1) = w

v

j

(u, v
j�2, vj�1) . (6.1.15)

We indeed verify that this convolution is a linear combination of sums over
v

j�3, so x
j

depends only upon (u, v
j�2, vj�1, vj

). The convolution is subsampled
by 2

s

j with s
j

2 {0, 1} along u, and a factor 2 along v
j�1 and v

j

:

x
j

(u, v
j�2, vj�1, vj

) = x
j�1 ? w

v

j

(2

s

ju, 2v
j�2, 2v

j�1), (6.1.16)

At depth j, the array of attributes v = (v
j�2, vj�1, vj

) is of size K/4⇥K/2⇥
K. The parameters K and spatial subsampling factors s

j

are adjusted with a
trade-off between computations, memory and classification accuracy. As said
below, the final layer is computed with a sum (6.1.12) over all parameters but
the last one, which corresponds to the class index:

x
J

(v
J�1) =

X

u,v

J�3,v

J�2

x
J�1(u, v

J�3, vJ�2, vJ�1). (6.1.17)

6.1.3.2 Filter Factorization for Training

Due to its substantial number of parameters, the optimization of CNN is ill-
conditioned [43]. The work of [49] suggests that a batch normalization permits
to partially solve this problem and permits to remove other regularization tech-
niques such as dropout [107].

Just as in any other CNN, the gradient descent is badly conditioned because
of the large number of parameters [43]. We precondition and regularize the
4 dimensional filters w

v

j

, by normalizing a factorization of these filters. We
factorize w

v

j

(u, v
j�3, vj�2, vj�1) into a sum of Q separable filters:

w
v

j

(u, v
j�3, vj�2, vj�1) =

Q

X

q=1

h
j,q

(u) g
v

j

,q

(v
j�2, vj�1) (6.1.18)

and introduce an intermediate normalization before the sum. For � a Dirac, to
highlight that multidimensional convolutions are performed, let us write:

h
j,q

(u, v) = h
j,q

(u) �(v) (6.1.19)

and

g
v

j

,q

(u, v) = �(u) g
v

j

,q

(v). (6.1.20)

The batch normalization is applied to x
j�1 ?h

j,q

and subtracts a mean array
m

j,q

while normalizing by the standard deviations �
j,q

:

x̃
j,q

(u, v) =

x
j�1 ? h

j,q

� m
j,q

�
j,q

. (6.1.21)

89

This normalized output is retransformed according to (6.1.16) by a sum over
q and a subsampling:

x
j

(u, v) = ⇢
⇣

Q

X

q=1

x̃
j,q

? g
v

j

,q

(2

s

ju, 2v)

⌘

(6.1.22)

The convolution operator W
j

is thus subdivided into a first operator Wh

j

which computes standardized 2D convolutions along u cascaded with W g

j

which
sums Q 2D convolutions along v. Since the tensor rank of W

j

cannot be larger
than 9, using Q � 9 does not restrict the rank of the operators W

j

. However,
as reported in [51], increasing the value of Q introduces an overparametrization
which regularizes the optimization. Increasing Q from 9 to 16 and then from 16
to 32 brings a substantial improvement.

We also report a modification of our network (denoted by (+)) which in-
corporates an intermediate non-linearity:

x
j

(u, v) = ⇢(W g

j

⇢(Wh

j

x
j�1)). (6.1.23)

Observe that in this case, x
j

is still covariant with the actions of the trans-
lations along (u, v), yet the factorization of w

v

j

into (h
j,q

, g
v

j

,q

) does not hold
anymore. Figure 6.1.2 describes our two model architectures, with layer sizes
that are discussed in the next subsection.

6.2 Expliciting the structuration

This section shows that Hierarchical Attribute Convolution Networks achieve
similar classification accuracies on the CIFAR image dataset as state-of-the-art
architectures, with much fewer parameters. We also investigate the properties
of translations along the attributes v

j

learned on CIFAR.

6.2.1 Hierarchical Attribute CNNs on CIFAR datasets

6.2.1.1 Performances and Parameters Reduction

Our newly introduced Hierarchical Attribute Convolution Networks (HCNN)
have been tested on CIFAR10 and CIFAR100 image databases. CIFAR10 has
10 classes, while CIFAR100 has 100 classes, which makes it more challenging.
The train and test sets have 50k and 10k colored images of 32⇥32 pixels. Images
are preprocessed via a standardization along the RGB channels. No whitening
is applied as we did not observe any improvement.

Our HCNN is trained in the same way as a classical CNN. We train it by
minimizing a neg-log entropy loss, via SGD with Nesterov momentum 0.9 for 200
epochs. An initial learning rate of 0.25 is chosen while being reduced by a factor
2 every 40 epochs. Each mini-batch is of size 50. The learning is regularized
by a weight decay of 2 10

�4 [56]. We incorporate a data augmentation with
random translations of 4 pixels and flips [56].

90

Model # Parameters Accuracy
HCNN 0.098M 91.43

HCNN (+) 0.34M 92.50
All-CNN [106] 1.3M 92.75
ResNet-20 [46] 0.27M 91.25

NiN [63] 0.98M 91.20
WRN-student [119] 0.17M 91.23

FitNet [91] 2.5M 91.61
(a) Classification accuracy on CIFAR10 dataset.

Model # Parameters Accuracy
HCNN 0.25M 62.01

HCNN (+) 0.89M 63.19
All-CNN [106] 1.3M 66.29

NiN [63] 0.98M 64.32
FitNet [91] 2.5M 64.96
(b) Classification accuracy on CIFAR100 dataset.

Table 6.1: Classification accuracy on CIFAR datasets, with the number of pa-
rameters of a given architecture.

We evaluate our Hierarchical CNN on CIFAR datasets (Table 6.1) in the
setting explained above. Our network achieves an error of 8.6% on CIFAR-
10, which is comparable to recent architectures. On CIFAR-100 we achieve
an error rate of 38%, which is about 4% worse than the closely related all-
convolutional network baseline, but our architecture has an order of magnitude
fewer parameters.

Classification algorithms using a priori defined representations or represen-
tations computed with unsupervised algorithms have an accuracy which barely
goes above 80% on CIFAR-10, as shown in Chapter 3. On the contrary, super-
vised CNN have an accuracy above 90% as shown by Table 6.1a. This is also the
case for our structured hierarchical network which has an accuracy above 91%.
Improving these results may be done with larger K and Q which could be done
with faster GPU implementation of multidimensional convolutions, although it
is a technical challenge [17].

Our proposed architecture is based on “plain vanilla” CNN architectures to
which we compare our results in Table 6.1. Even though the performance gap
to the best models is substantial, we do perform in the same regime as state-
of-the-art architectures, showing that our HCNN, despite its highly constrained
architecture, manages to capture most important variations in the data. In the
following, we study the properties resulting from the hierarchical structuration
of our network, compared with classical CNN.

The structuration of a Deep neural network aims at reducing the number
of parameters and making them easier to interpret in relation to signal models.

91

Reducing the number of parameters means characterizing better the structures
which govern the classification. Let us then count the number of parameters of
our implementation of the HCNN.

The number of free parameters of the original architecture is the number
of parameters of the convolution kernels w

v

j

for 1  v
j

 K and 2 < j < J ,
although they are factorized into separable filters h

j,q

(u) and g
v

j

,q

(v
j�2, vj�1)

which involve more parameters. The filters w
v

j

have less parameters for j = 2, 3
because they are lower-dimensional convolution kernels.

Parametrization of the HCNN

For CIFAR datasets, a spatial downsampling by 2 along u is applied at depth
j = 4, 8. Figure 6.1.2 describes our two model architectures, omitting batch
normalization and non-linearity for brevity. Each layer has K = 16 outputs
and its total depth is J = 12. In CIFAR-10, for 3 < j < J , each w

v

j

has
a spatial support of size 3

2 and a support of 7 ⇥ 11 along (v
j�2, vj�1). If we

add the 10 filters which output the last layer, the resulting total number of
network parameters is approximately 0.098M. In CIFAR-100, the filters rather
have a support of 11 ⇥ 11 along (v

j�2, vj�1) but the last layer has a size 100
which considerable increases the number of parameters which is approximatively
0.25M.

The second implementation (+) introduces a non-linearity ⇢ between each
separable filter, so the overall computations can not be reduced to equivalent
filters w

v

j

. There are Q = 32 spatial filters h
j,q

(u) of support 3 ⇥ 3 and QK
filters g

v

j

,q

(v
j�2, vj�1) of support 7 ⇥ 11. The total number of coefficients re-

quired to parametrize h
j,q

, g
v

j

,q

is approximatively 0.34M. In CIFAR-100, the
number of parameters becomes 0.89M. The total number of parameters of the
implementation (+) is thus much bigger than the original implementation which
does not add intermediate non-linearities. Next section compares these numbers
of parameters with architectures that have similar numerical performances.

6.2.1.2 Comparison with limited parameters architectures

This section compares our HCNN to other structured architectures and algo-
rithms which reduce the number of parameters of a CNN during, and after
training. We show that Hierarchical Attribute Convolutional Networks involve
less parameters during and after training than other architectures in the litera-
ture.

We review various strategies to reduce the number of parameters of a CNN
and compare them with our Hierarchical Attribute CNN. Several studies show
that one can factorize CNN filters [32, 52] a posteriori. A reduction of pa-
rameters is obtained by computing low-rank factorized approximations of the
filters calculated by a trained CNN. It leads to more efficient computations with
operators defined by fewer parameters. Another strategy to reduce the num-
ber of network weights is to use teacher and student networks [119, 91], which

92

optimize a CNN defined by fewer parameters. The student network adapts a
reduced number of parameters for data classification via the teacher network.

A parameter redundancy has also been observed in the final fully connected
layers used by number of neural network architectures, which contain most of
the CNN parameters [22, 66]. This last layer is replaced by a circulant matrix
during the CNN training, with no loss in accuracy, which indicates that last
layer can indeed be structured. Other approaches [51] represent the filters with
few parameters in different bases, instead of imposing that they have a small
spatial support. These filters are represented as linear combinations of a given
family of filters, for example, computed with derivatives. This approach jointly
structures the channel and spatial dimensions. Finally, HyperNetworks [44]
permit to drastically reduce the number of parameters used during the training
step, to 0.097M and obtain 91.98% accuracy. However, we do not report them
as 0.97M corresponds to a non-linear number of parameters for the network,
e.g. the parametrization they use is not linear. No other architecture trained
from scratch with this number of parameters obtains a similar performance.

Table 6.1 gives the performance of different CNN architectures with their
number of parameters, for the CIFAR10 and CIFAR100 datasets. For Hierar-
chical Attribute networks, the convolution filters are invariant to translations
along u and v which reduces the number of parameters by an important factor
compared to other architectures. All-CNN [106] is an architecture based only
on sums of spatial convolutions and ReLU non-linearities, which has a total of
1.3M parameters, and a similar accuracy to ours. Its architecture is similar to
our hierarchical architecture, but it has much more parameters because filters
are not translation invariant along v. Interestingly, a ResNet [46] has more
parameters and performs similarly whereas it is a more complex architecture,
due to the shortcut connections. WRN-student is a student resnet [119] with
0.2M parameters trained via a teacher using 0.6M parameters and which gets
an accuracy of 93.42% on CIFAR10. FitNet networks [91] also use compression
methods but need at least 2.5M parameters, which is much larger than our net-
work. Our architecture brings an important parameter reduction on CIFAR10
for accuracies around 90% There is also a drastic reduction of parameters on
CIFAR100.

6.2.2 A potential organization of the representation in-
dexes

The principal motivation and investigation of this work was to understand if
the translation along the new attributes is effective. It means that the structure
of the operators should be inherited by the representation. The attributes and
their translation should ideally have a semantic meaning. For example, in the
last layer, an attribute stands for the class.

This was partially achieved, and we suggest solutions to improve it. First,
we explain a method to interpret translations along a new attribute, and finally
we explain the issues of our result.

93

Bird 1

τ

Bird 2

τ

Figure 6.2.1: The first images of the first and third rows are the two input image
x. Their invariant attribute array x̄

j

(v
j�1, vj

) is shown below for j = J �1, with
high amplitude coefficients appearing as white points. Vertical and horizontal
axes correspond respectively to v

j�1 and v
j

, so translations of v
j�1 by ⌧ are

vertical translations. An image x⌧ in a column ⌧ + 1 has an invariant attribute
x̄⌧

j

which is shown below. It is the closest to x̄
j

(v
j�1 � ⌧, v

j

) in the databases.

6.2.2.1 Interpreting the translation

In this subsection, we try to interpret semantically the notion of translation
along an attribute. In other words, we try to derive if translations along at-
tributes are related to properties of natural images.

The structure of Hierarchical Attribute CNN opens up the possibility of in-
terpreting inner network coefficients, which is usually not possible for CNNs.
A major mathematical challenge is to understand the type of invariants com-
puted by deeper layers of a CNN. Hierarchical networks computes invariants to
translations relatively to learned attributes v

j

, which are indices of the filters
w

v

j

. One can try to relate the translations of these attributes to modifications
of image properties.

As explained in Section 6.1.2, a translation of x
j

along v
j

usually does not
correspond to a well-defined transformation of the input signal x but it pro-
duces a translation of the next layers. Translating x

j

along v
j

by ⌧ translates
x

j+1(u, v
j�1, vj

, v
j+1) along v

j

by ⌧ .
To analyze the effect of this translation, we eliminate the variability along

v
j�2 and define an invariant attribute array by choosing the central spatial

position u0:

94

x11

x10

x9

x8

x7

x6

x5

x4

x3

Figure 6.2.2: The first columns give the input image x, from which we compute
the invariant array x̄

j

at a depth 3  j  11 which increases with the row. The
next images in the same row are the images x⌧ whose invariant arrays x̄⌧

j

are the
closest to x̄

j

translated by 1  ⌧  7, among all other images in the databases.
The value of ⌧ is the column index minus 1.

95

x̄
j

(v
j�1, vj

) =

X

v

j�2

x
j

(u0, vj�2, vj�1, vj

).

We relate this translation to an image in the training dataset by finding the
image x⌧ in the dataset which minimizes:

kx̄
j

(v
j�1 � ⌧, v

j

) � x̄⌧

j

(v
j�1, vj

)k2,

if this minimum Euclidean distance is sufficiently small. To compute accurately
a translation by ⌧ we eliminate the high frequency variations of x

j

and x⌧

j

along
v

j�1 with a filter which averages consecutive samples, before computing their
translation. The network used in this experiment is implemented with circular
convolutions to avoid border effects, which have nearly the same classification
performance.

Figure 6.2.1 shows the sequence of x⌧ obtained with a translation by ⌧ of x̄
j

at depth j = J � 1, for two images x in the “bird” class. Since we are close to
the output, we expect that translated images belong to the same class, because
by construction, two signals with a similar averaging will belong to the same
class. This is not the case for the second image of the first "Bird 1". It is a
"car" instead of a "bird". This corresponds to a classification error but observe
that x̄⌧

J�1 is quite different from x̄
J�1 translated. We otherwise observe that in

these final layers, translations of x̄
J�1 defines images in the same class.

Figure 6.2.2 gives sequences of translated attribute images x⌧ , computed by
translating x̄

j

by ⌧ at different depth j and for different input x. As expected, at
small depth j, translating an attribute v

j�1 does not define images in the same
class. These attribute rather correspond to low-level image properties which
depend upon fine scale image properties. However, these low-level properties
can not be identified just by looking at these images. Indeed, the closer images
x⌧ identified in the databases are obtained with a distance over coefficients
which are invariant relatively to all other attributes. These images are thus very
different and involve variabilities relatively to all other attributes. To identify
the nature of an attribute v

j

, a possible approach is to correlate the images x⌧

over a large set of images, while modifying known properties of x.
At deep layers j, translations of x̄

j

define images xr which have a progres-
sively higher probability to belong to the same class as x. These attributes
transformations correspond to large scale image pattern related to modifica-
tions of the filters w

v

j�1 . In this case, the attribute indices could be interpreted
as addresses in organized arrays. The translation group would then correspond
to translations of addresses. Understanding better the properties of attributes
at different depth is an issue that will be explored in the future.

6.2.2.2 Limitations

Ideally, HCNNs are an easier way to learn symmetries. Surprisingly, we could
not relate those symmetries to geometrical properties of a signal such as rota-
tion. It implies that a reverse engineering to understand the meaning of the
translation is difficult.

96

Besides, none of the filters or the intermediary representation were smooth or
with a localized support, w.r.t. the attributes v. It is surprising because it sug-
gests that the network builds an irregular representation, which is inconsistent
with the hypothesis of learning a Lie group of symmetries.

This suggests also that we do not know if there is a memorization phe-
nomenon linked to translations along attributes, or if there is a generalization
thanks to those translations. A large part of the problem is to make apparent
the regularities that the network exploits.

There is an analogy with the work of Coifman [26] on databases. It sug-
gests that, in the case of “questionnaires”, finding regular representations aim at
organizing the “question”, yet as well the “answers” to the questionnaires, simul-
taneously. This is not a natural property. In our work, “questions” correspond
to the architecture whereas “answers” are the set of representation at a given
depth. We organized the “questions”, and we observed it does not imply an
organization of the “answers”. This is surprising, because the “questions” (e.g.
the model) are optimized through the “answers” (e.g. the training set), and this
seems to indicate that we should more precisely incorporate an organization of
the “answers”. In particular, it requires to better understand the nature of the
source of regularity of CNNs: are they indeed parallel transport along group of
variabilities, as suggested by [71]?

97

Chapter 7

Conclusion

In this thesis, we have provided some various pipelines for classifications of
images, that permit to elucidate some intriguous properties of deep neural net-
works. We now review the content of each chapter of this thesis.

We conclude that despite not being learned, the Scattering Transform can be
applied to complex image classification with competitive performances. We have
presented applications of the Separable Roto-translation Scattering Transform
followed by SVM classifiers for complex image classification. We demonstrate
that this representation is competitive with unsupervised algorithms. Yet, con-
trary to them, no specific adaptation to a dataset is necessary, and the Scattering
Transform provides theoretically stability properties w.r.t. the roto-translation
group and small deformations.

However, we could not integrate the full affine group. For example, the
scaling transformations are missing. Several explanations can be found: first,
contrary to the Euclidean group, applying a wavelet transform along the scale
is non trivial because few scales are used in practice, and handling the border
effect is difficult. Secondly, the work on the SLE, which is a very localized
descriptor, in Chapter 4 indicates that scale variations might not be important
variations. In [101], scales are linearized via a data augmentation using scales,
which improves by about 5% relative percent the classification accuracies.

Besides, we do not capture color variation. The first layer of a deep network
often incorporates a localized filter that performs a difference between for ex-
ample the blue and its opposite color, the yellow. It has been suggested in [124]
that this could possibly lead to an improved representation.

Finally, it is not clear if we want to enumerate each image variability since
there can be a lot of them. Instead, similarly to CNNs, we would like to auto-
matically discover them. Yet, contrary to CNNs, we try to find a way to explicit
them (e.g. the work of Chapter 6).

We establish that predefined representations are of interest for deep learning
applications and that learning all the layers from scratch is not necessary to

98

obtain a competitive deep network. We improve the Translation Scattering
Transform implementation to scale it on ImageNet2012 via GPUs, and provide a
wide range of results in settings where a limited amount of data is available. We
also introduce the Share Local Encoder, which is a cascade of 1⇥1 convolutions
that encodes non-overlapping patches of the Scattering Transform. While the
localization is a strong constraint, we however were able to obtain competitive
performances with the famous AlexNet [56].

Incorporating the Scattering permits to speed up the computations due to
the learning procedure of CNNs since it acts as an efficient down-sampler. Most
of the computation cost is due to the earlier layers, and it is possible to store
the Scattering representation to obtain a significant speed-up of 20. The storage
requires to buy some SSD to store the Scattering features. Efficient implemen-
tations could be also obtained with FGPA [20] chips.

Finally, the 1 ⇥ 1 layers brings an opportunity to interpret the layer of a
CNN, because the representation is shallower and does not mix up different
spatial locations. More structure should be incorporated in those layers or an-
alyzed. Besides, this new image “descriptor” could find different applications
than image classification, for example for detection of image matching as SIFT
[65].

We have dissected several CNNs in Chapter 5 and show empirically that they
build a progressively lower dimensional representation. We introduce a simpli-
fied class of CNNs which uses only convolutions and non-linearities and which
involve no other extra-modules, while having a fixed depth and leading to the
state-of-the-art on standard benchmarks. Variations of the hyper-parameters
on the final classification accuracy have been studied, for example increasing
the width of a CNN permits to increase its final accuracy to a similar extent to
stacking more layers.

We however did not explain why the progressive dimensionality reduction
has occurred. For example, investigating linearization phenomena is an im-
portant topic: several works [2, 71, 75] suggest that a deep network linearizes
variabilities. The properties of the representation are a conundrum that will
require to design new mathematical tools [123, 112].

Finally, we show that structure constraints can be incorporated in the con-
volutional operators of deep networks. This structure relies on a notion of sym-
metry of the classification task that has been introduced in [71, 16]. We define
the Hierarchical Attribute CNNs, that are a subclass of Multiscale Hierarchical
CNNs [71], which consist in a deep cascade of high-dimensional convolutions
that we interpret as parallel transports along the symmetries of the classifica-
tion task. This structure reduces drastically the number of parameters, yet,
interpreting those symmetries remains a complex task.

There are at least two limitations in this work: the multi-dimensional con-
volution implementations are slow, and thus it is difficult to scale it on natural
image tasks. Fortunately, more pipelines [17] are dedicated to fast tensor com-
putations. And secondly, it is not clear if the symmetries that we captured are

99

related to attributes of image classification. Combining the SLE of the Chapter
4 with high-dimensional convolutions along the channel axis would be an inter-
esting start.

To conclude, CNNs are efficient algorithms to solve complex high-dimensional
tasks and their theoretical properties must be understood because their usage
becomes more prominent in the industry: theoretical guarantees are necessary.
For example, in settings like self-driving cars where the safety of the “driver”
is critical, stability properties must be derived. Furthermore, this thesis sug-
gests that pre-defined features are still of interest. Combined with appropriate
learning methods, they could permit having more theoretical guarantees that
are necessary to engineer better deep models and stable representations.

100

Bibliography

[1] J Andén, L Sifre, S Mallat, M Kapoko, V Lostanlen, and E Oyallon.
Scatnet. Research University Paris,[Online]. Available: http://www. di.
ens. fr/data/software/scatnet/.[Accessed 13 July 2016], 2014.

[2] Mathieu Aubry and Bryan C Russell. Understanding deep features with
computer-generated imagery. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2875–2883, 2015.

[3] Francis Bach. Breaking the curse of dimensionality with convex neural
networks. arXiv preprint arXiv:1412.8690, 2014.

[4] Yoshua Bengio, Aaron C Courville, and Pascal Vincent. Unsupervised
feature learning and deep learning: A review and new perspectives. CoRR,
abs/1206.5538, 1, 2012.

[5] Yoshua Bengio and Olivier Delalleau. On the expressive power of deep ar-
chitectures. In International Conference on Algorithmic Learning Theory,
pages 18–36. Springer, 2011.

[6] Swanhild Bernstein, Jean-Luc Bouchot, Martin Reinhardt, and Bettina
Heise. Generalized analytic signals in image processing: comparison, the-
ory and applications. In Quaternion and Clifford Fourier Transforms and
Wavelets, pages 221–246. Springer, 2013.

[7] Michael Blot, Matthieu Cord, and Nicolas Thome. Max-min convolutional
neural networks for image classification. In Image Processing (ICIP), 2016
IEEE International Conference on, pages 3678–3682. IEEE, 2016.

[8] Thomas Blumensath and Mike E Davies. On the difference between or-
thogonal matching pursuit and orthogonal least squares. 2007.

[9] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Multipath sparse coding using
hierarchical matching pursuit. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 660–667, 2013.

[10] Y-Lan Boureau, Nicolas Le Roux, Francis Bach, Jean Ponce, and Yann
LeCun. Ask the locals: multi-way local pooling for image recognition. In
Computer Vision (ICCV), 2011 IEEE International Conference on, pages
2651–2658. IEEE, 2011.

101

[11] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction
to statistical learning theory. In Advanced lectures on machine learning,
pages 169–207. Springer, 2004.

[12] MR Brito, AJ Quiroz, and Joseph E Yukich. Intrinsic dimension iden-
tification via graph-theoretic methods. Journal of Multivariate Analysis,
116:263–277, 2013.

[13] Joan Bruna and Stéphane Mallat. Classification with scattering opera-
tors. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 1561–1566. IEEE, 2011.

[14] Joan Bruna and Stéphane Mallat. Audio texture synthesis with scattering
moments. arXiv preprint arXiv:1311.0407, 2013.

[15] Joan Bruna and Stéphane Mallat. Invariant scattering convolution net-
works. IEEE transactions on pattern analysis and machine intelligence,
35(8):1872–1886, 2013.

[16] Joan Bruna, Arthur Szlam, and Yann LeCun. Learning stable group
invariant representations with convolutional networks. arXiv preprint
arXiv:1301.3537, 2013.

[17] David Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray
Chaudhuri, and Nir Shavit. Deep tensor convolution on multicores. arXiv
preprint arXiv:1611.06565, 2016.

[18] Prabir Burman and Deborah Nolan. Location-adaptive density estima-
tion and nearest-neighbor distance. Journal of multivariate analysis,
40(1):132–157, 1992.

[19] Micael Carvalho, Matthieu Cord, Sandra Avila, Nicolas Thome, and Ed-
uardo Valle. Deep neural networks under stress. In Image Processing
(ICIP), 2016 IEEE International Conference on, pages 4443–4447. IEEE,
2016.

[20] Jeff Chase, Brent Nelson, John Bodily, Zhaoyi Wei, and Dah-Jye Lee.
Real-time optical flow calculations on fpga and gpu architectures: a
comparison study. In Field-Programmable Custom Computing Machines,
2008. FCCM’08. 16th International Symposium on, pages 173–182. IEEE,
2008.

[21] S Chen and J Wigger. Fast orthogonal least squares algorithm for effi-
cient subset model selection. IEEE Transactions on Signal Processing,
43(7):1713–1715, 1995.

[22] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary,
and Shi-Fu Chang. An exploration of parameter redundancy in deep net-
works with circulant projections. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2857–2865, 2015.

102

[23] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

[24] Adam Coates and Andrew Y Ng. The importance of encoding versus
training with sparse coding and vector quantization. In Proceedings of the
28th International Conference on Machine Learning (ICML-11), pages
921–928, 2011.

[25] Taco Cohen and Max Welling. Group equivariant convolutional networks.
In International Conference on Machine Learning, pages 2990–2999, 2016.

[26] Ronald R Coifman and Matan Gavish. Harmonic analysis of digital data
bases. In Wavelets and Multiscale analysis, pages 161–197. Springer, 2011.

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[28] Jose A Costa, Abhishek Girotra, and AO Hero. Estimating local intrinsic
dimension with k-nearest neighbor graphs. In Statistical Signal Processing,
2005 IEEE/SP 13th Workshop on, pages 417–422. IEEE, 2005.

[29] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–
314, 1989.

[30] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 886–893.
IEEE, 2005.

[31] Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

[32] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob
Fergus. Exploiting linear structure within convolutional networks for effi-
cient evaluation. In Advances in Neural Information Processing Systems,
pages 1269–1277, 2014.

[33] Ivan Dokmanić, Joan Bruna, Stéphane Mallat, and Maarten de Hoop.
Inverse problems with invariant multiscale statistics. arXiv preprint
arXiv:1609.05502, 2016.

[34] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and
Thomas Brox. Discriminative unsupervised feature learning with convo-
lutional neural networks. In Advances in Neural Information Processing
Systems, pages 766–774, 2014.

[35] Thibaut Durand, Taylor Mordan, Nicolas Thome, and Matthieu Cord.
Wildcat: Weakly supervised learning of deep convnets for image classifi-
cation, pointwise localization and segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

103

[36] Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, and Bertrand
Thirion. Seeing it all: Convolutional network layers map the function of
the human visual system. NeuroImage, 152:184–194, 2017.

[37] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style
transfer using convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2414–
2423, 2016.

[38] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Ad-
vances in neural information processing systems, pages 2537–2545, 2014.

[39] Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural net-
works with random gaussian weights: A universal classification strategy.
CoRR, abs/1504.08291, 2015.

[40] Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe, and Andrew Y
Ng. Measuring invariances in deep networks. In Advances in neural in-
formation processing systems, pages 646–654, 2009.

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[42] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[43] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively
characterizing neural network optimization problems. arXiv preprint
arXiv:1412.6544, 2014.

[44] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arxiv preprint.
arXiv preprint arXiv:1609.09106, 2016.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyra-
mid pooling in deep convolutional networks for visual recognition. In Eu-
ropean Conference on Computer Vision, pages 346–361. Springer, 2014.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778, 2016.

[47] Elad Hoffer, Itay Hubara, and Nir Ailon. Deep unsupervised learning
through spatial contrasting. arXiv preprint arXiv:1610.00243, 2016.

[48] Gilbert Agnew Hunt. Semi-groups of measures on lie groups. Transactions
of the American Mathematical Society, 81(2):264–293, 1956.

104

[49] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[50] Jörn-Henrik Jacobsen, Edouard Oyallon, Stéphane Mallat, and
Arnold WM Smeulders. Multiscale hierarchical convolutional networks.
arXiv preprint arXiv:1703.04140, 2017.

[51] Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold WM
Smeulders. Structured receptive fields in cnns. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2610–2619, 2016.

[52] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014.

[53] Yangqing Jia, Chang Huang, and Trevor Darrell. Beyond spatial pyra-
mids: Receptive field learning for pooled image features. In Computer Vi-
sion and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages
3370–3377. IEEE, 2012.

[54] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. Pycuda and pyopencl: A scripting-based ap-
proach to gpu run-time code generation. Parallel Computing, 38(3):157–
174, 2012.

[55] Jan J Koenderink and Andrea J Van Doorn. The structure of locally
orderless images. International Journal of Computer Vision, 31(2):159–
168, 1999.

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[57] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene categories.
In Computer vision and pattern recognition, 2006 IEEE computer society
conference on, volume 2, pages 2169–2178. IEEE, 2006.

[58] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[59] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

105

[60] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional
networks and applications in vision. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, pages 253–256.
IEEE, 2010.

[61] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Con-
volutional deep belief networks for scalable unsupervised learning of hier-
archical representations. In Proceedings of the 26th annual international
conference on machine learning, pages 609–616. ACM, 2009.

[62] Jerome Y Lettvin, Humberto R Maturana, Warren S McCulloch, and
Walter H Pitts. What the frog’s eye tells the frog’s brain. Proceedings of
the IRE, 47(11):1940–1951, 1959.

[63] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[64] Tsung-Han Lin and HT Kung. Stable and efficient representation learning
with nonnegativity constraints. In ICML, pages 1323–1331, 2014.

[65] David G Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on, volume 2, pages 1150–1157. Ieee, 1999.

[66] Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath. Learning compact
recurrent neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pages 5960–5964.
IEEE, 2016.

[67] Mateusz Malinowski and Mario Fritz. Learning smooth pooling regions
for visual recognition. In 24th British Machine Vision Conference, pages
1–11. BMVA Press, 2013.

[68] Stéphane Mallat. A wavelet tour of signal processing. Academic press,
1999.

[69] Stéphane Mallat. Recursive interferometric representation. In Proc. of
EUSICO conference, Danemark, 2010.

[70] Stéphane Mallat. Group invariant scattering. Communications on Pure
and Applied Mathematics, 65(10):1331–1398, 2012.

[71] Stéphane Mallat. Understanding deep convolutional networks. Phil.
Trans. R. Soc. A, 374(2065):20150203, 2016.

[72] Stéphane Mallat and Irene Waldspurger. Deep learning by scattering.
arXiv preprint arXiv:1306.5532, 2013.

[73] Sancho McCann and David G Lowe. Spatially local coding for object
recognition. In Asian Conference on Computer Vision, pages 204–217.
Springer, 2012.

106

[74] Yves Meyer and L Ondelettes. Algorithms and applications. SIAM,
philadelphia, 1993.

[75] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages 3111–
3119, 2013.

[76] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[77] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal adversarial perturbations. arXiv preprint
arXiv:1610.08401, 2016.

[78] José E Moyal. Quantum mechanics as a statistical theory. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 45, pages 99–
124. Cambridge Univ Press, 1949.

[79] Tasha Nagamine, Michael L Seltzer, and Nima Mesgarani. Exploring
how deep neural networks form phonemic categories. In INTERSPEECH,
pages 1912–1916, 2015.

[80] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object
localization for free?-weakly-supervised learning with convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 685–694, 2015.

[81] Wanli Ouyang and Xiaogang Wang. Joint deep learning for pedestrian
detection. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2056–2063, 2013.

[82] Edouard Oyallon. A hybrid network: Scattering and convnet. 2016.

[83] Edouard Oyallon. Building a regular decision boundary with deep net-
works. arXiv preprint arXiv:1703.01775, 2017.

[84] Edouard Oyallon, Eugene Belilovsky, and Sergey Zagoruyko. Scal-
ing the scattering transform: Deep hybrid networks. arXiv preprint
arXiv:1703.08961, 2017.

[85] Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering
for object classification. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2865–2873, 2015.

[86] Edouard Oyallon, Stéphane Mallat, and Laurent Sifre. Generic deep net-
works with wavelet scattering. arXiv preprint arXiv:1312.5940, 2013.

107

[87] Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Exploring
invariances in deep convolutional neural networks using synthetic images.
CoRR, abs/1412.7122, 2(4), 2014.

[88] Florent Perronnin and Diane Larlus. Fisher vectors meet neural networks:
A hybrid classification architecture. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3743–3752, 2015.

[89] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

[90] Mirco Ravanelli, Benjamin Elizalde, Karl Ni, and Gerald Friedland. Au-
dio concept classification with hierarchical deep neural networks. In Signal
Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd Euro-
pean, pages 606–610. IEEE, 2014.

[91] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chas-
sang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014.

[92] Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[93] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the the-
ory of brain mechanisms. Technical report, DTIC Document, 1961.

[94] Jorge Sánchez and Florent Perronnin. High-dimensional signature com-
pression for large-scale image classification. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages 1665–1672.
IEEE, 2011.

[95] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek.
Image classification with the fisher vector: Theory and practice. Interna-
tional journal of computer vision, 105(3):222–245, 2013.

[96] Andrew Saxe, Pang W Koh, Zhenghao Chen, Maneesh Bhand, Bipin
Suresh, and Andrew Y Ng. On random weights and unsupervised feature
learning. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 1089–1096, 2011.

[97] Ivan W Selesnick, Richard G Baraniuk, and Nick C Kingsbury. The
dual-tree complex wavelet transform. IEEE signal processing magazine,
22(6):123–151, 2005.

[98] Thomas Serre and Maximilian Riesenhuber. Realistic modeling of simple
and complex cell tuning in the hmax model, and implications for invariant
object recognition in cortex. Technical report, DTIC Document, 2004.

108

[99] Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with
features inspired by visual cortex. In Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol-
ume 2, pages 994–1000. Ieee, 2005.

[100] Laurent Sifre and Stéphane Mallat. Combined scattering for rotation
invariant texture analysis. In ESANN, volume 44, pages 68–81, 2012.

[101] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation
invariant scattering for texture discrimination. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1233–
1240, 2013.

[102] Laurent Sifre and Stéphane Mallat. Ecole polytechnique, cmap phd thesis
rigid-motion scattering for image classification author. 2014.

[103] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[104] Kihyuk Sohn and Honglak Lee. Learning invariant representations with
local transformations. arXiv preprint arXiv:1206.6418, 2012.

[105] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel RD Ro-
drigues. Robust large margin deep neural networks. arXiv preprint
arXiv:1605.08254, 2016.

[106] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin Riedmiller. Striving for simplicity: The all convolutional net. arXiv
preprint arXiv:1412.6806, 2014.

[107] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[108] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. High-
way networks. arXiv preprint arXiv:1505.00387, 2015.

[109] Mitsuo Sugiura. Unitary representations and harmonic analysis: an in-
troduction, volume 44. Elsevier, 1990.

[110] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.

[111] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian
optimization. In Advances in neural information processing systems, pages
2004–2012, 2013.

109

[112] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

[113] Vladimir N Vapnik. Methods of pattern recognition. In The nature of
statistical learning theory, pages 123–180. Springer, 2000.

[114] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach,
Raymond Mooney, and Kate Saenko. Translating videos to natu-
ral language using deep recurrent neural networks. arXiv preprint
arXiv:1412.4729, 2014.

[115] Irène Waldspurger. Wavelet transform modulus: phase retrieval and scat-
tering. 2015.

[116] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus.
Regularization of neural networks using dropconnect. In Proceedings of
the 30th International Conference on Machine Learning (ICML-13), pages
1058–1066, 2013.

[117] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? In Advances in neural
information processing systems, pages 3320–3328, 2014.

[118] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[119] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to at-
tention: Improving the performance of convolutional neural networks via
attention transfer. arXiv preprint arXiv:1612.03928, 2016.

[120] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016.

[121] Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training
very deep neural networks without skip-connections. arXiv preprint
arXiv:1706.00388, 2017.

[122] Matthew D Zeiler and Rob Fergus. Visualizing and understanding con-
volutional networks. In European conference on computer vision, pages
818–833. Springer, 2014.

[123] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530, 2016.

[124] Jun Zhang, Youssef Barhomi, and Thomas Serre. A new biologically
inspired color image descriptor. Computer vision–ECCV 2012, pages 312–
324, 2012.

110

[125] Liang Zheng, Yali Zhao, Shengjin Wang, Jingdong Wang, and Qi Tian.
Good practice in cnn feature transfer. arXiv preprint arXiv:1604.00133,
2016.

[126] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Im-
proving the robustness of deep neural networks via stability training. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4480–4488, 2016.

111

	

	

	

Résumé

Cette thèse étudie des propriétés empiriques

des réseaux de neurones convolutifs profonds,

et en particulier de la transformée en Scattering.

En effet, l’analyse théorique de ces derniers est

difficile et représente jusqu’à ce jour un défi: les

couches successives de neurones ont la

capacité de réaliser des opérations complexes,

dont la nature est encore inconnue, via des

algorithmes d’apprentissages dont les garanties

de convergences ne sont pas bien comprises.

Pourtant, ces réseaux de neurones sont de

formidables outils pour s’attaquer à une grande

variété de tâches difficiles telles la classification

d’images, ou plus simplement effectuer des

prédictions. La transformée de Scattering est un

opérateur mathématique, non-linéaire dont les

spécifications sont inspirées par les réseaux

convolutifs. Dans ce travail, elle est appliquée

sur des images naturelles et obtient des

résultats compétitifs avec les architectures non-

supervisées. En plaçant un réseau de neurones

convolutifs supervisés à la suite du Scattering,

on obtient des performances compétitives sur

ImageNet2012, qui est le plus grand jeux de

donnée d’images étiquetées accessibles aux

chercheurs. Cela nécessite d’implémenter un

algorithme efficace sur carte graphique. Dans

un second temps, cette thèse s’intéresse aux

propriétés des couches à différentes

profondeurs. On montre qu’un phénomène de

réduction de dimensionnalité progressif à lieu et

on s’intéresse aux propriétés de classifications

supervisées lorsqu’on varie des hyper

paramètres de ces réseaux. Finalement, on

introduit une nouvelle classe de réseaux

convolutifs, dont les opérateurs sont structurés

par des groupes de symétries du problème de

classification.

Mots Clés
Réseaux de neurones profonds, traitement du
signal, apprentissage, vision par ordinateur

Abstract

This thesis studies empirical properties of deep

convolutional neural networks, and in particular

the Scattering Transform. Indeed, the

theoretical analysis of the latter is hard and until

now remains a challenge: successive layers of

neurons have the ability to produce complex

computations, whose nature is still unknown,

thanks to learning algorithms whose

convergence guarantees are not well

understood. However, those neural networks

are outstanding tools to tackle a wide variety of

difficult tasks, like image classification or more

formally statistical prediction. The Scattering

Transform is a non-linear mathematical operator

whose properties are inspired by convolutional

networks. In this work, we apply it to natural

images, and obtain competitive accuracies with

unsupervised architectures. Cascading a

supervised neural networks after the Scattering

permits to compete on ImageNet2012, which is

the largest dataset of labeled images available.

An efficient GPU implementation is provided.

Then, this thesis focuses on the properties of

layers of neurons at various depths. We show

that a progressive dimensionality reduction

occurs and we study the numerical properties of

the supervised classification when we vary the

hyper parameters of the network. Finally, we

introduce a new class of convolutional

networks, whose linear operators are structured

by the symmetry groups of the classification

task.

Key Words
Deep learning, signal processing, machine
learning, computer vision

	Introduction
	Introduction to Convolutional Neural Networks
	Neural networks: supervised and generic algorithms
	Supervised image classification: a high-dimensional task
	Breaking the curse of dimensionality with CNNs
	Introducing and discovering structure in CNNs

	Nature of the invariances learned
	Priors compete with unsupervised representations
	Filling the gap by adding supervision

	Empirical analysis of Neural Networks
	Designing generic and simplified architectures
	Progressive properties of CNNs

	Imposing symmetries of Neural Networks
	Parallel transport along symmetry groups
	Multiscale Hierarchical CNNs
	Hierarchical Attribute CNNs

	Background
	Convolutional Neural Networks Review
	Standard architectures
	Training procedure
	Theoretical challenges
	Generalization properties
	Interpretability
	Stability
	Scattering Transform Review
	Construction of the 2nd order Scattering Transform
	Successful applications of the Scattering Transform
	Translation Scattering
	Roto-translation Scattering
	Scattering Transform as a Scattering Network
	Wavelet implementation
	Scattering Network
	Scattering Networks for Complex Image Classification
	Separable roto-scattering
	Decorrelating Scattering coefficients with Orthogonal Least Square
	Image classification results on standard benchmarks
	Linear and Gaussian SVMs
	Comparison with other methods
	Comparison with unsupervised methods
	Comparison with supervised methods
	Scattering combined with different classifier

	Improving Scattering with Hybrid Networks
	Fast implementation of Scattering Networks on GPUs
	Tree implementation of computations
	Memory efficient implementation on GPUs
	Cascading a deep CNN: the ResNet
	Scattering as an ideal initialization
	Deep Hybrid CNNs on ILSVRC2012
	Hybrid Representations on CIFAR-10
	Limited samples setting
	CIFAR-10
	STL-10

	Shared Local Encoder
	Encoding scattering coefficients
	Interpreting SLE's first layer
	Empirical Analysis of CNN Properties
	Simplifying a state-of-the-art CNN architecture
	Architecture
	The role of the non-linearity
	Unneccesity to contract via
	Degree of non-linearity

	Progressive space contraction
	Intra-class variance and distance reduction
	Progressive separation
	Local Support Vectors
	Margin separation
	Complexity of the classification boundary
	Hierarchical Attribute CNNs
	Architectures descriptions
	Deep Convolutional Networks and Group Invariants
	Multiscale Hierarchical Convolutional Neural Networks
	Hierarchical Attribute CNNs
	5-D Dimensional Architectures
	Filter Factorization for Training
	Expliciting the structuration
	Hierarchical Attribute CNNs on CIFAR datasets
	Performances and Parameters Reduction
	Comparison with limited parameters architectures

	A potential organization of the representation indexes
	Interpreting the translation
	Limitations
	Conclusion

