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General Introduction

GENERAL INTRODUCTION

Overview of Variable Speed Drive System

The electrical drive technology is one of the most critical technologies for the quality of life of human beings. It has found wide applications in domestic and industrial sectors, including, but certainly not limited to, transportation electrification such as pure electrical vehicles, hybrid electrical vehicles, locomotives, metros, electrical multiple units and electrical boats, renewable energy conversion such as wind power generation systems, hydroelectric power plants, fuel cell power generation systems and marine power generation systems, industrial manufacturing such as machine tools, robots and conveyors, home appliances such as washing machines, electrical fans and air conditioning systems [1]- [6]. In recent decades, with the acceleration of urbanization and modernization of many countries in the world, there are increasing concerns about global warming and air quality issues, leading to the increasing demand for the environmentally-friendly alternatives to fossil-fuel-based electrical power generation systems and transportation systems, most of which require the advanced electrical drive technology [3].

The variable speed drive (VSD) system, which is the electrical drive system used for the regulation of both speed and torque of the electrical motor, plays a key role in the existing environmentally-friendly transportation systems [2]. Such a system is an electromechanical device that converts the electrical energy from the direct current (DC) or the alternating current (AC) electrical power supply into mechanical energy for the mechanical load. The VSD system can work in a hostile environment, offer a wide range of torques over a wide speed range, provide excellent starting and acceleration performance, and achieve zero-emission, low-noise and four-quadrant operation [1]. As illustrated in Figure 1.1, the VSD system is mainly composed of six parts: the electrical power supply, the power electronic converter, the electrical motor, the mechanical load, the control unit and the measurement unit [1]. The electrical power supply in the VSD system is used to meet different electrical power requirements of power electronic converters and electrical motors in different applications. In general, it receives the electrical energy from one or more power sources, such as electrical power grids, renewable energy storage devices, and generators in thermal, wind or hydro power stations [1], [4], [6]. Furthermore, it can also receive the electrical power generated by the electrical motor operating in the regenerating mode, and feed it back to the power source.

Electrical

The power electronic converter in the VSD system is constructed using uncontrollable and/or controllable power semiconductor devices, including diodes, silicon controlled rectifiers, metaloxide-semiconductor field-effect transistors and insulated-gate bipolar transistors (IGBTs) [1]- [3].

By means of the high-frequency switching of adopted controllable power semiconductor devices, power electronic converters can convert the electrical energy received from the electrical power supply into appropriate forms in terms of the voltage or the current based on the requirements of electrical motors. Although there exist many topologies of power electronic converters for different purposes, the most widely used topologies in VSD systems are uncontrolled and controlled AC-DC converters, commonly known as rectifiers, AC-DC converters, commonly known as inverters, and DC-DC converters. The existing inverters used in VSD systems can be divided into various types based on different criteria [1]- [3]. According to the types of energy storage devices in the DC-link, they can be divided into current-source and voltage-source inverters (VSIs). Based on the utilization ratio of the DC-link voltage, they can be divided into half-bridge and full-bridge inverters.

Depending on the number of output voltage or current levels, they can be divided into two-level and multilevel inverters. According to the number of electrical motor's phases, they can be divided into 3 one-phase, two-phase, three-phase and multiphase inverters. Among these different types of inverters, the three-phase two-level half-bridge VSI, or two-level VSI (2L-VSI) for short, is the most widely used inverter for commercial VSD systems [1]- [3].

The electrical motor in the VSD system achieves the electromechanical energy conversion and can be regarded as the heart of the VSD system. In fact, the purpose of the use of the control unit and the power electronic converter in the VSD system is to make it possible for the electrical motor to achieve the high-performance operation. The existing electrical motors can be divided into DC and AC motors according to the types of supplying electrical power. Moreover, they can be divided into single-phase, two-phase, three-phase and multiphase motors based on the number of phases [1].

Compared with DC motors, AC motors provide wider speed range, achieve better speed and torque control performance, and require less maintenance [3]. Owing to such attractive features, AC motors are dominant in high-performance VSD systems. Until now, various types of AC motors have been designed for VSD systems [1]- [10]. Among them, induction motors, permanent-magnet synchronous motors (PMSMs) and switched reluctance motors have gained much attention in recent decades [1]- [10]. The PMSMs used in VSD systems can be divided into surface-mounted PMSMs (SPMSMs) and interior PMSMs (IPMSMs) depending on the location of permanent-magnet materials in the rotor [1]- [3].

The mechanical load in the VSD system has different characteristics in different applications.

Meeting the requirement of the mechanical load in terms of the torque and the power is the purpose of designing the VSD system. Therefore, before starting to design the VSD system, the characteristics of the mechanical load should be obtained, such that some unexpected phenomena including overloading, overheating and instability can be avoided [1].

The measurement unit in the VSD system is mainly dependent on various measuring devices, including the absolute or the incremental encoder for acquiring the rotor position information of the electrical motor, the Hall-effect current sensors for measuring two-phase or three-phase stator currents of the electrical motor, and the DC-link voltage sensor for measuring the DC-link voltage.

The main task of the measurement unit is to achieve the real-time measurement of all necessary information required by the control unit.

The control unit in the VSD system is mainly based on hardware controllers, such as microprocessors, field programmable gate arrays and digital signal processors (DSPs), and relevant software. The control unit can be regarded as the head of the VSD system. Through the measurement unit, the control unit samples all necessary information required by the implementation of the control strategy. Afterward, based on the implemented control strategy, the control unit generates the high-frequency switching command for the controllable power semiconductor devices in the power electronic converter such that the desired response of the electrical motor and the required characteristics of the mechanical load can be accomplished.

In order to achieve certain traction characteristics of the VSD system, high-performance control strategy should be implemented in the control unit. With the rapid development of hardware controllers, the closed-loop vector-based control strategies have been widely used in highperformance VSD systems, where the field-oriented control (FOC) strategy and the direct torque control (DTC) strategy are two most widely used control strategies [1]- [3], [7]. Both these two control strategies adopt the cascaded control structure composed of the inner loop and the outer loop.

With respect to the inner loop, the FOC strategy uses it to achieve the tracking control of the certain current components and the DTC strategy use it to achieve the tracking control of the stator flux linkage and the torque. With respect to the outer loop, both these two control strategies use it to achieve the tracking control of the rotor speed.

Motivation

In this thesis, the focus is on the field-oriented controlled three-phase SynRM-based VSD (SynRM-VSD) system and the field-oriented controlled three-phase SPMSM-based VSD (SPMSM-VSD) system. Note that all AC motors mentioned in the rest of this thesis are three-phase AC motors. In the FOC strategy for each considered VSD system, the rotor speed controller used in the outer loop, or as often called the speed control loop, is designed based on the speed dynamics, while two stator current controllers used in the inner loop, or as often called the current control loop, are designed using two current dynamics in the rotor reference frame. From a practical point of view, the speed and the current dynamics of each considered motor are nonlinear systems subjected to unmodeled dynamics, such as the current measurement errors, the cogging torque and the rotor flux linkage harmonics of the SPMSM, and the inverter nonlinearities, parametric uncertainties, including the variations of mechanical and electrical parameters, and external disturbances, such as the load torque and the friction torque [11]. In the speed or the current tracking error dynamics of each considered motor, the aforementioned unmodeled dynamics, parametric uncertainties and external disturbances can be lumped together, and the lumped disturbance in each tracking error dynamics is time-varying in practice.

In the FOC strategy, the linear proportional-integral (PI) controller is the most popular choice for the speed or the current control [1]- [3]. On the basis of the integral action, the linear PI controller can asymptotically stabilize the tracking error dynamics in the presence of the constant lumped disturbance [12]. However, as has been stated above, the lumped disturbance in the speed or the current tracking error dynamics of each considered motor is time-varying rather than constant.

Therefore, the linear PI controller cannot provide satisfactory control performance over a wide operating range of each considered VSD system. In order to address the robust tracking control problem of each considered VSD system, the nonlinear controller has been regarded as a better solution compared with the linear PI controller [13]- [30].

In the last three decades, with the rapid development of the hardware controller, various nonlinear controllers have been designed and integrated into the FOC strategies for two considered VSD systems, such as adaptive controllers [13]- [16], sliding-mode controllers [17]- [20],

backstepping controllers [21]- [24], predictive controllers [25]- [28] and robust controllers [29], [30].

In theory, with the controller parameters satisfying some stability criteria, these nonlinear controllers can achieve the asymptotic or the finite-time stabilization of the tracking error dynamics in the presence of the time-varying lumped disturbance. The tracking control system based on any one of the aforementioned controllers can be regarded as a one-degree-of-freedom system in which the feedback regulation mechanism is used to deal with several control performance indices, such as system stability, tracking performance, disturbance attenuation and robustness [31]. However, with the feedback regulation mechanism, there often exist contradictions among some above-mentioned control performance indices for the tracking control system, and one of the most remarkable contradictions is the tracking performance versus disturbance attenuation [31]. Taking the slidingmode speed controller as an example, such a controller is dependent on the bounded-function-based feedback regulation mechanism [17]- [20]. When the gains of such a controller increase, the disturbance attenuation ability of the speed tracking control system improves, leading to the better dynamic response and the lower steady-state tracking error. On the other hand, if the controller gains are too large, severe high-frequency oscillations, or as often called the chattering, arise in the controller output, resulting in significantly degraded speed tracking performance and large noise [18], [32]. Therefore, the conservative gains are usually selected for the adopted nonlinear controller to trade off some above-mentioned control performance indices, which makes it difficult for this nonlinear controller to meet the performance requirements in some applications.

In order to improve the disturbance attenuation ability without sacrificing the tracking performance of the tracking control system, the idea of the disturbance-observer-based control (DOC) can be introduced to the controller design [12], [31], [33]. As illustrated in Figure 1.2, the principle behind the DOC is that the disturbance observer (DO) is introduced to the tracking control system such that the disturbance attenuation is accomplished by the DO-based feedforward 6 compensation mechanism, adding an extra degree of freedom to the tacking control system. Note that the internal disturbances shown in Figure 1.2 denote the disturbances caused by the parametric uncertainties of the plant. With the help of the DO, the design of the nonlinear controller is able to focus on the tracking performance specifications without considering the disturbance attenuation problem. In other words, the design of the DO-based nonlinear controller, or as often called the composite controller, follows the separation principle, i.e., the required tracking performance and the disturbance attenuation are accomplished by the nonlinear-controller-based feedback regulation mechanism and the DO-based feedforward compensation mechanism, respectively [12], [31], [33].

With the same conservative controller gains, the composite controller can achieve better tracking performance than the adopted nonlinear controller. Until now, assorted types of DOs have been used to construct composite controllers for the field-oriented controlled AC motor drive systems, including the frequency-domain DO [34], the unknown input observer [35], the generalized PI observer [START_REF] Wang | Generalized Proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances[END_REF], the extended state observer (ESO) [START_REF] Liu | Speed control for PMSM servo system using predictive functional control and extended state observer[END_REF], the first-order sliding-mode observer (FOSMO) [START_REF] Yang | Deadbeat control based on a multipurpose disturbance observer for permanent magnet synchronous motors[END_REF], the extended FOSMO [START_REF] Zhang | Nonlinear speed control for PMSM system using sliding-mode cotnrol and disturbance compensation techniques[END_REF], the supertwisting sliding-mode observer (STSMO) [START_REF] Wang | Static-errorless deadbeat predictive current control using second-order sliding-mode disturbance observer observer for induction machine drives[END_REF] and the artificial neural network-based disturbance observers (ANN-DOs) [START_REF] Lin | Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive[END_REF]- [START_REF] Lin | Admixed recurrent Gegenbauer polynomials neural network with mended particle swarm optimization control system for synchronous reluctance motor driving continuously variable transmission system[END_REF]. However, the composite controllers for some existing nonlinear controllers such as the modified super-twisting sliding-mode (STSM) controller proposed in [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF] still need to be developed. Moreover, with respect to some existing composite controllers such as the one proposed in [START_REF] Feng | Super-twisting sliding mode control for micro gyroscope based on RBF neural network[END_REF], there are some issues that need to be tackled.

Main Contributions

This thesis is dedicated to the development of novel composite controllers for a single-input uncertain nonlinear system with relative degree one and their application to the construction of robust FOC strategies for 2L-VSI-fed SynRM-VSD and 2L-VSI-fed SPMSM-VSD systems. The main contributions of this thesis are summarized as follows:

1) A composite controller consisting of a standard STSM controller, a Hermite neural networkbased disturbance observer (HNN-DO) and an error compensator is proposed for a single-input uncertain nonlinear system with relative degree one and applied to the speed control loop of the FOC strategy for the 2L-VSI-fed SynRM-VSD system. In such a composite controller, the standard STSM controller is used to achieve the finite-time stabilization of the sliding variable dynamics, the HNN-DO is used to compensate the lumped disturbance in the sliding variable dynamics and the error compensator is used to compensate the approximation error of the adopted HNN-DO. The rigorous stability analysis of the sliding variable dynamics with the proposed composite controller is presented. Based on that, the learning laws for the connective weights between the output neuron and the hidden neurons in the HNN-DO and the error compensator are rigorously derived. Even though the HNN-DO is replaced by another type of ANN-DO in this composite controller, such learning laws can still be used to update the connective weights between the output neuron and the hidden neurons in the adopted ANN-DO and its corresponding error compensator online. Besides the composite speed controller, two composite current controllers, each of which consists of two standard STSM controllers and takes the magnetic saturation effect into account, are also proposed for the current control loop of the FOC strategy for the 2L-VSI-fed SynRM-VSD system. Rigorous stability analysis of each current tracking error dynamics using the corresponding composite current controller is presented. Comparative hardware-in-the-loop (HIL) tests between the proposed FOC strategy, which uses the proposed composite speed controller and two composite current controllers, and the classic STA-based FOC strategy, which uses a standard STSM speed controller and two linear PI current controllers, for the 2L-VSI-fed SynRM drive system are performed to verify the feasibility and the superiority of the former.

2) A composite controller consisting of a modified STSM controller and a second-order ESO is proposed for a single-input uncertain nonlinear system with relative degree one and applied to the speed control loop of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In such a composite controller, the modified STSM controller is used to achieve the finite-time stabilization of the sliding variable dynamics and the second-order ESO is used to compensate the lumped disturbance in the sliding variable dynamics. The rigorous stability analysis of the sliding variable dynamics with the proposed composite controller is presented. Comparative experimental tests among the standard STSM speed controller, the ESO-based standard STSM speed controller, the modified STSM speed controller and the proposed composite speed controller are performed on a suitably developed experimental test bench in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system. Experimental results validate the feasibility and the superiority of this proposed composite speed controller. 
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Outline of the Thesis

This thesis is divided into eight chapters. The remaining chapters are organized as follows:

Chapter 2: At first, the practical dynamic models of the SPMSM and the SynRM in terms of the rotor mechanical speed and two stator current components in the rotor reference frame are presented, respectively. In the practical dynamic model of the SPMSM, the unmodeled dynamics, including the inverter nonlinearities, the cogging torque, the rotor flux linkage harmonics and the current measurement errors, the external disturbances consisting of the load torque and the friction torque, and the parametric uncertainties comprising the variations of mechanical and electrical parameters are taken into account. In the practical dynamic model of the SynRM, the unmodeled dynamics, including the inverter nonlinearities and the current measurement errors, the external disturbances composed of the load torque and the friction torque, and the parametric uncertainties consisting of the variations of mechanical and electrical parameters are taken into account. Afterward, the principles of the FOC strategies for these two considered VSD systems are briefly introduced.

Finally, the descriptions of the HIL test bench and the experimental test bench are presented. 

MODELING AND CONTROL OF SPMSM-VSD AND SYNRM-VSD SYSTEMS

Introduction

The AC synchronous motor, as its name implies, is the AC motor that rotates synchronously with the frequency of the stator current in the steady-state operation. Nowadays, among existing AC synchronous motors, PMSMs are the most attractive AC synchronous motors for high-performance

VSD systems [1]- [4]. Since there is no field winding in the rotor and the permanent-magnet materials are used to generate the rotor flux linkage, the PMSM has smaller mass and volume, higher efficiency, torque and power densities compared with the induction motor and the switched reluctance motor at the same power level. Such attractive features make the PMSM-based VSD (PMSM-VSD) system popular and even dominant in many applications. However, there are some shortcomings for the PMSM, and the most concerned one is the costs of the permanent-magnet materials [5]. Generally speaking, the higher the strength of the adopted permanent-magnet materials is, the larger the benefits enjoyed by the PMSM are. The neodymium-iron-boron (NdFeB) magnet materials are the most widely used high-strength rare-earth permanent-magnet materials for PMSMs [5]. It can be said that the commercial availability of such permanent-magnet materials makes it possible to achieve the mass commercialization of PMSMs in domestic and industrial sectors. For example, nearly all PMSMs used in existing commercial electrical vehicles adopt the NdFeB magnet materials [6]. The price of the neodymium metal experienced a huge increase between the beginning of 2010 and the middle of 2011, resulting in the significant rise of the costs of the NdFeB magnet materials [6]. Although the price of the neodymium metal decreased quickly after reaching the peak, the drastic variation of such a price have motivated many researchers from industry and academia to start to find powerful alternatives to the PMSM using the NdFeB magnet materials [6]. The SynRM, which can date back to the 1920s [7], has been considered as a potential choice in recent decades [5], [6], [8], [9]. This type of AC synchronous motor is equipped with a simple, windingless, magnetless and salient-pole rotor structure. Such a rotor structure makes the SynRM enjoy the advantages in terms of robustness and costs. However, the price we have to pay for obtaining these attractive features is that the torque and the power densities of the SynRM are poorer than those of the PMSM [5]. Therefore, before the advent of a breakthrough in the SynRM design, the PMSM cannot be replaced by the SynRM in high-performance VSD systems [6]. On the other hand, compared with the induction motor, the SynRM have some advantages, such as higher efficiency, higher overload capacity and lower rotor losses. Hence, the well-designed SynRM has been deemed as a powerful alternative to the induction motor in recent years, and have been successfully applied in the water pumping system, the fan system and the compression refrigeration system [9]- [12]. Up to now, various types of PMSMs have been proposed. They have the same stator structure as the SynRM. To distinguish them from each other, the motor's torque generation mechanism can be selected as an index. In general, the torque generated by PMSMs consists of two terms: the magnet torque and the reluctance torque [5], [13]. The former is proportional to the rotor flux linkage and the latter is proportional to the difference between the direct-axis and the quadrature-axis inductances, namely the rotor saliency. Different combinations of the magnet torque and the reluctance torque in the motor's torque correspond to different PMSMs, as shown in Figure 2.1, where the PMASynRM denotes the permanent-magnet-assisted SynRM which is a type of IPMSM that the value of the reluctance torque is larger than that of the magnet torque [13]. From Figure 2.1, it can be seen that the SPMSM only generates the magnet torque while the SynRM only generates the reluctance torque.

This chapter focuses on modeling and control of 2L-VSI-fed SPMSM-VSD and 2L-VSI-fed SynRM-VSD systems. Firstly, the mathematical models of the 2L-VSI considering the effects of inverter nonlinearities are given. Afterward, the dynamic models of the SPMSM and the SynRM in terms of the rotor mechanical speed and two stator current components in the rotor reference frame are presented, respectively. As has been stated in Section 1.2, two considered VSD systems are subject to various types of unmodeled dynamics, parametric uncertainties and external disturbances.

Their effects on the dynamic models of two considered motors have been taken into account. Next, the principles of the FOC strategies for two considered VSD systems are briefly introduced. Finally, the descriptions of the HIL test bench for the 2L-VSI-fed SynRM drive system and the experimental test bench based on the 2L-VSI-fed SPMSM drive system are presented. 
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2L-VSI AC Synchronous Motor

Modeling of the 2L-VSI

The 2L-VSI-fed AC synchronous motor-based VSD system is illustrated in 1) 𝑄 𝑥1 is on and 𝑄 𝑥2 is off.

2) 𝑄 𝑥2 is on and 𝑄 𝑥1 is off.

Since the on-off condition of 𝑄 𝑥1 is always opposite to that of 𝑄 𝑥2 , the switching function for each leg of the 2L-VSI can be defined as 

    , , , , , (2.1)
where 𝑆 𝑥 denotes the switching function for the leg x.

According to (2.1), ( 𝑆 𝑎 , 𝑆 𝑏 , 𝑆 𝑐 ) has eight possible combinations corresponding to eight switching states of the 2L-VSI. In practice, the 2L-VSI is continuously switched from one switching state to another to generate the required three-phase output voltages, such that the operation of the VSD system follows the implemented control strategy. However, there exist several nonlinearities in the 2L-VSI, including the dead time, the turn-on/off time and the saturation voltage of the controllable power semiconductor device, the diode forward voltage, the zero current clamping and the parasitic capacitance [1]. The existence of such inverter nonlinearities introduces the distorted voltage and current components to the output voltages provided by the 2L-VSI and the stator currents of the AC synchronous motor fed by the 2L-VSI, respectively. In this thesis, the first four aforementioned inverter nonlinearities are considered into the modeling of the 2L-VSI. Taking the leg x of the 2L-VSI as an example, the effects of the considered inverter nonlinearities on the switching sequence and the pole voltage can be described as Figure 2.3 [14], where 𝑢 𝑥𝑜 denotes the pole voltage of the phase x, 𝑇 𝑠 represents the sampling period, 𝑇 𝑥 * and 𝑇 𝑥 denote the applied and the actual conducting time of 𝑄 𝑥1 , respectively.

High-Frequency Model

In this subsection, the three-phase high-frequency model of the 2L-VSI, which is based on the switching function, is derived. Owing to the discrete nature of the switching function, such a model is also named as the discrete model of the 2L-VSI. At first, according to Figure 2.3, the relationship between 𝑇 𝑥 and 𝑇 𝑥 * can be described as

    * sgn x x off on dead xs T T T T T i     (2.2)
where 𝑇 𝑑𝑒𝑎𝑑 , 𝑇 𝑜𝑛 and 𝑇 𝑜𝑓𝑓 denote the dead time, the turn-on time and the turn-off time for 𝑄 𝑥1 , respectively, and sgn(•) represents the sign function expressed as According to Figure 2.3, considering the effects of the saturation voltage of the IGBT and the diode forward voltage, when 𝑖 𝑥𝑠 is positive, i.e., 𝑖 𝑥𝑠 flows to the load, 𝑢 𝑥𝑜 can be calculated as
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where 𝑈 𝑠𝑎𝑡 and 𝑈 𝑑𝑖𝑜𝑑𝑒 denote the saturation voltage of the IGBT and the diode forward voltage, respectively.

Moreover, when 𝑖 𝑥𝑠 is negative, i.e., 𝑖 𝑥𝑠 flows from the load, 𝑢 𝑥𝑜 can be calculated as

. if 1 2 if 0 2 d diode x xo d sat x U US u U US             , , .
(2.5)

Based on (2.4) and (2.5), 𝑢 𝑥𝑜 can be expressed as the following expression.

    1 sgn 22 sat diode xo dc sat diode x xs UU u U U U S i          (2.6) Remark 2.1.
In some literature, the slope resistances of the IGBT and the freewheeling diode are considered into the modeling of the pole voltage of the 2L-VSI. In practice, however, through some popular parameter identification schemes, the obtained stator resistance of the AC synchronous motor has included such slope resistances. In this thesis, therefore, the derivation of the 2L-VSI's model neglects the slope resistances of the IGBT and the freewheeling diode.

For the balanced three-phase loads, the three-phase output voltages of the 2L-VSI, which are also the three-phase stator voltages of the AC synchronous motor, can be calculated as

2 1 1 1 1 2 1 3 1 1 2 as ao bs bo cs co uu uu uu                               (2.7)
where 𝑢 𝑎𝑛 , 𝑢 𝑏𝑛 and 𝑢 𝑐𝑛 are three-phase stator voltages of the AC synchronous motor.

Substituting (2.6) into (2.7), 𝑢 𝑎𝑠 , 𝑢 𝑏𝑠 and 𝑢 𝑐𝑠 can be expressed as 

.                   2 

S S S S S S

U U u U U U i i i S S S S S S U U u U U U i i i S S S S S S U U u U U U                                              2sgn sgn sgn 6 de cs as bs i i i                .(2.8)
The three-phase high-frequency model of the 2L-VSI is presented as (2.8). From this model, it can be seen that the existence of 𝑈 𝑠𝑎𝑡 and 𝑈 𝑑𝑖𝑜𝑑𝑒 introduces two types of distorted voltage components to each phase stator voltage. However, such an inverter model does not reveal the effect of the existence of 𝑇 𝑑𝑒𝑎𝑑 , 𝑇 𝑜𝑛 and 𝑇 𝑜𝑓𝑓 on the three-phase stator voltages.

Low-Frequency Model

In this subsection, the three-phase low-frequency model of the 2L-VSI, which is based on the duty cycle, is derived. Since the duty cycle, which is an average value of the switching function in a sampling period, is a continuous function, such a model is also named as the continuous model of the 2L-VSI. At first, according to Figure 2 
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In the derived low-frequency model of the 2L-VSI, the effects of all considered inverter nonlinearities are taken into account. It can be seen that the existence of inverter nonlinearities introduces two types of distorted voltage components to each phase stator voltage. For analyzing the effects of these distorted voltage components on 𝑢 𝑎𝑠 𝑙 , 𝑢 𝑏𝑠 𝑙 and 𝑢 𝑐𝑠 𝑙 , the three-phase low-frequency model of the 2L-VSI can be expressed as the following form. 
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where 𝜔 𝑖 denotes the frequency of the fundamental component of 𝑖 𝑎𝑛 .

According to (2.17) 
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Modeling of PMSM-VSD and SynRM-VSD Systems

The advent of the space-vector theory makes it possible to model the transient behavior of AC synchronous motors and develop high-performance closed-loop control strategies for AC synchronous motor-based VSD systems [4]. Such a theory uses the space vectors to describe the spatial distribution of some physical quantities of AC synchronous motors, including the stator voltage, the stator current and the stator flux linkage. These space vectors can be projected to different reference frames to derive corresponding dynamic models of AC synchronous motors for different purposes, such as the controller design and the observer design.

Reference Frame Transformation

The three-axis stator reference frame, the two-axis stator reference frame and the two-axis rotor reference frame, which are commonly known as the abc frame, the  frame and the dq frame, respectively, are three widely used reference frames to describe dynamic models of AC synchronous motors [1]. For a certain space vector rotating in the plane, it has different axes components in these three reference frames. The abc frame is a static frame in which every two axes have 120° phase difference. The  frame is also a static frame in which the -axis is aligned with the a-axis of the abc frame and perpendicular to the -axis. Since the abc frame and the  frame are both static, the components of the space vector in the axes of these two reference frame are AC components. As for the dq frame, it rotates in the plane with the same angular speed as the considered space vector and the d-axis is perpendicular to the q-axis. Therefore, the d-and q-axes components of the considered space vector are DC components.

In general, based on physical laws, the dynamic models of AC synchronous motors in the abc frame can be derived. On the other hand, the dynamic models of AC synchronous motors in the  frame or the dq frame are used to design controllers and observers. Therefore, transformation matrices are required to achieve the reference frame transformation to obtain the required dynamics models for the controller design and the observer design.

With respect to the transformation from the abc frame to the  frame, two different transformations are available. One is known as the amplitude-invariant transformation, or as often called the Clarke's transformation, the other is known as the power-invariant transformation, or as often called the Concordia's transformation. Since the former is more frequently used in the design of the controller or the observer for VSD systems, only such a transformation is introduced in this subsection. Considering a generic space vector 𝒗 whose angular speed is 𝜔 𝑣 , the distribution of its axes components in three different reference frames are presented in Figure 2 
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The inverse Clarke's transformation in which 𝑣 𝑎 , 𝑣 𝑏 and 𝑣 𝑐 are calculated from 𝑣 𝛼 and 𝑣 𝛽 is described as
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The transformation from the abc frame to the dq frame is called the Park's transformation. It can be described as 
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Classic Dynamic Models

With respect to the FOC strategies of AC synchronous motors, the controller design depends on the dynamic models of AC synchronous motors in the dq frame. In this subsection, the classic dynamic models of the SPMSM and the SynRM in terms of rotor mechanical speed and stator current components in the dq frame are presented. Deriving such dynamic models is based on the following assumptions.

1) Three-phase stator windings are symmetrical and the stator slotting effect is neglected.

2) The Magnetomotive force distributes sinusoidally and the rotor flux linkage harmonics are neglected.

3) The saturation of the magnetic circuit, the core loss and the damping effect are neglected.

4) The temperature variation effect is neglected.

Taking the four-pole SPMSM and SynRM as examples, the locations of d-and q-axes of the dq frame for these two motors are presented in Figure 2.5. Since the SPMSM is a non-salient pole AC synchronous motor and the permeability of permanent magnet materials is close to that of the Chapter 2 Modeling and Control of SPMSM-VSD and SynRM-VSD Systems 29 air, the d-axis is aligned with the rotor flux linkage vector in the SPMSM. As for the SynRM, since it is a salient pole AC synchronous motor, the d-axis is aligned with the direction of the maximum permeability and the q-axis is aligned with the direction of the minimum permeability. Note that, in the four-pole AC synchronous motor, the mechanical phase difference between the d-and q-axes is 45° such that the electrical phase difference between these two axes is 90°. In the dq frame, the classic generic stator voltage equation for the SPMSM and the SynRM are expressed as the following expressions [4].
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where 𝑢 𝑑𝑠 and 𝑢 𝑞𝑠 denote the d-and q-axes stator voltage components of each considered motor, respectively, 𝜆 𝑑𝑠 and 𝜆 𝑞𝑠 represent the d-and q-axes stator flux linkage components of each considered motor, respectively, 𝑅 𝑠 , 𝑛 𝑝 and 𝜔 𝑚 represent the stator resistance, the pole pairs and the rotor mechanical speed of each considered motor, respectively.

In the dq frame, the classic stator flux linkage equations for the SPMSM and the SynRM are expressed as the following expressions [4].

SPMSM , SynRM
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where 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 denote the d-and q-axes stator current components of each considered motor, respectively, 𝐿 𝑑 and 𝐿 𝑞 represent the synchronous inductances of each considered motor and 𝜆 𝑚 denotes the rotor flux linkage of the SPMSM.

The classic generic motion equation for the SPMSM and the SynRM is expressed as the following expression [4].
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where 𝑇 𝑒 , 𝑇 𝐿 and 𝑇 𝑓 denote the motor torque, the load torque and the friction torque of each considered motor, respectively, and J represents the rotor inertia of each considered motor.

With respect to the SPMSM, the synchronous inductances are usually considered to be equal to each other. Therefore, assuming that 𝐿 𝑑 = 𝐿 𝑞 = 𝐿 𝑠 for the SPMSM, the classic torque equation for the SPMSM and the SynRM can be expressed as 
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It can be observed that unmodeled dynamics, parametric uncertainties and external disturbances in the VSD system, which are mentioned in Section 1.2, are neglected in the classic dynamic models of the SPMSM and the SynRM, resulting in the mismatch between the derived and the actual lumped disturbances in the speed and current tacking error dynamics. On the other hand, regarding many types of nonlinear speed/current controllers used in the FOC strategies of SPMSM-VSD and SynRM-VSD systems, in theory, the selection of controller gains is dependent on the boundary of the derived lumped disturbance in the speed or the current tacking error dynamics.

Therefore, if unmodeled dynamics, parametric uncertainties and external disturbances are not considered into the derived lumped disturbances in the speed and the current tacking error dynamics of the SPMSM and the SynRM, many types of nonlinear speed/current controllers used in the FOC strategies of SPMSM-VSD and SynRM-VSD systems cannot accomplish desired tracking performance in theory. It motivates the derivation of the practical dynamic models of the SPMSM and the SynRM considering various types of unmodeled dynamics, parametric uncertainties and external disturbances.

Unmodeled Dynamics

In this thesis, the considered unmodeled dynamics contain the inverter nonlinearities, the current measurement errors, the cogging torque and the rotor flux linkage harmonics. The effects of such unmodeled dynamics on modeling of the SPMSM and the SynRM are presented in this subsection.

By applying the Park's transformation to the low-frequency model of the 2L-VSI in the abc frame presented in (2.18), the low-frequency model of the 2L-VSI in the dq frame is derived as 
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where 𝜔 𝑒 = 𝑛 𝑝 𝜔 𝑚 denotes the rotor electrical speed and 𝛿 is the phase difference between the qaxis of the dq frame and the stator current vector.

According to (2.30) 
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where 𝑢 𝑑𝑠 * and 𝑢 𝑞𝑠 * denote the ideal d-and q-axes stator voltage components of each considered motor, respectively, Δ𝑢 𝑑𝑠 and Δ𝑢 𝑞𝑠 represent the d-and q-axes DC distorted stator voltage components of each considered motor, respectively, 𝑈 𝑑𝑛 and 𝑈 𝑞𝑛 denote the amplitudes of the dand q-axes 6nth distorted stator voltage harmonics of each considered motor, respectively.

In general, with respect to 𝑖 𝑎𝑠 , 𝑖 𝑏𝑠 and 𝑖 𝑐𝑠 , only two of them are measured by current sensors and the rest is calculated based on the fact that the sum of 𝑖 𝑎𝑠 , 𝑖 𝑏𝑠 and 𝑖 𝑐𝑠 is equal to zero. Each measured stator current is converted into the voltage signal by a current sensor at first. Then, the obtained voltage signal is transformed into the digital form in the hardware controller through the low-pass filter and the analog-to-digital converter [15]. The current errors caused by this measurement process can be classified as the current offset error and the current scaling error [15].

The former is caused by the imbalanced supply voltage of the current sensor and the inherent DC offset in the analog device adopted in the measurement process, the latter is resulted from the measured signal scaling due to the use of the analog-to-digital converter [15]. Considering these two types of current errors, 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 of the SPMSM and the SynRM can be expressed as 
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where 𝑖 𝑑𝑠 * and 𝑖 𝑞𝑠 * denote the actual d-and q-axes stator current components of each considered motor, respectively, ∆𝑖 𝑑𝑠 𝑜 and ∆𝑖 𝑞𝑠 𝑜 represent the d-and q-axes current offset error components of each considered motor, respectively, which are expressed as (2.34), ∆𝑖 𝑑𝑠 𝑠 and ∆𝑖 𝑞𝑠 𝑠 denote the d-and q-axes current scaling error components of each considered motor, respectively, which are expressed as (2.35) [1], [15].
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where 𝐼 𝑜 and 𝛿 𝑜 denote the amplitude and the initial phase angle of the d-and q-axes current offset error components of each considered motor, respectively.
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where 𝐼 𝑑 𝑑 and 𝐼 𝑞 𝑑 denotes the DC current error components caused by the current scaling error of each considered motor, 𝐼 𝑠 and 𝛿 𝑠 represent the amplitude and the initial phase angle of the sinusoidal current error components caused by the current scaling error of each considered motor, respectively.

According to (2.33)-(2.35), the current measurement errors introduce the DC component, the first and the second harmonic component in terms of 𝜔 𝑒 to 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 of the SPMSM and the SynRM.

The cogging torque is generated by the interaction between the rotor flux linkage created by the permanent-magnet materials and the stator anisotropy caused by the stator slotting [16].

Therefore, such a type of pulsating torque does not exists in the SynRM. In general, the cogging torque of the SPMSM can be expressed as the following expression [17].
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where 𝑇 𝑐 denotes the cogging torque, 𝐴 𝑘 and 𝜑 𝑐𝑘 are the amplitude and the initial phase angle of the kth harmonic component of the cogging torque, respectively, 𝑄 is the number of stator slots

The long-time operation of the SPMSM-VSD system makes the SPMSM operate at relatively high temperature, which affects the strength of the NdFeB magnet materials [5]. Moreover, in practice, there exist 6nth harmonic components in terms of 𝜔 𝑒 (n = 1, 2, 3 …) in the rotor flux linkage in the dq frame [18]. Therefore, 𝜆 𝑚 can be expressed as the following expression in the dq frame [18].
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where 𝜆 𝑚𝑘 is the amplitude of the kth harmonic component of the rotor flux linkage.

Parametric Uncertainties

In practice, the mechanical and electrical parameters in the dynamic models of the SPMSM and the SynRM are time-varying rather than constant. The variations of these parameters have significant effects on modeling of the SPMSM and the SynRM.

The values of J and 𝐵 𝑚 are usually calculated based on the results of relevant measuring experiments. Nevertheless, regarding each of these two mechanical parameters, there always exists the error between calculated and actual values. Therefore, these two mechanical parameters can be described as
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where J 0 and ∆J denote the rated value and the measurement error of the rotor inertia, respectively, 𝐵 𝑚0 and ∆𝐵 𝑚 denote the rated value and the measurement error of the viscous friction coefficient, respectively.

It is well known that the stator resistance of the AC motor is sensitive to the temperature [19].

In a certain temperature range, its value is proportional to the temperature [19]. Therefore, considering the temperature effect, 𝑅 𝑠 can be described as
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where 𝑅 𝑠0 and Δ𝑅 𝑠 denote the rated value and the variation of the stator resistance, respectively, As shown in (2.24), since the magnetic saturation effect is neglected, the stator flux linkage versus current characteristics of the SPMSM and the SynRM are linear. However, in many applications, these two AC synchronous motors operate with high level of magnetic saturation, making the stator flux linkage versus current characteristics become nonlinear. The magnetic saturation effect on the AC synchronous motor can be classified as the self-saturation effect and the cross-saturation effect [20]. Since the latter has a slight effect on the SPMSM, it is neglected by the dynamic model of the SPMSM in this thesis. As for the SynRM, these two types of magnetic saturation effects have to be taken into account [21].

Considering the self-saturation effect, 𝐿 𝑑 and 𝐿 𝑞 of the SPMSM are nonlinear functions in terms of the stator current component in the same axis, i.e., ( ) ( ), ( ) ( )
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where ∆𝐿 𝑑 (𝑖 𝑑𝑠 ) and ∆𝐿 𝑞 (𝑖 𝑞𝑠 ) represent the variations of the d-and q-axes synchronous inductances of the SPMSM, respectively.

With respect to the SynRM, considering the self-and cross-saturation effects, 𝜆 𝑠𝑑 and 𝜆 𝑠𝑞 are nonlinear functions in terms of 𝑖 𝑠𝑑 and 𝑖 𝑠𝑞 , i.e.,
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where 𝐿 𝑑 (𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 ) and 𝐿 𝑞 (𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 ) are usually named as the apparent inductances of the SynRM.

Moreover, 𝜆 𝑠𝑑 and 𝜆 𝑠𝑞 can be linearized at the operating point, i.e., [22] ( , ) 
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where 𝐿 𝑑𝑑 (𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 ) , 𝐿 𝑑𝑞 (𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 ) , 𝐿 𝑞𝑑 (𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 ) and 𝐿 𝑞𝑞 (𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 ) denote the incremental inductances of the SynRM, which can be calculated as 

LL i i i i LL i i i i                                     (2.44)
Defining 𝐿 𝑑0 , 𝐿 𝑞0 , 𝐿 𝑑𝑑0 , 𝐿 𝑑𝑞0 , 𝐿 𝑞𝑑0 and 𝐿 𝑞𝑞0 as rated apparent and incremental inductances of the SynRM for a certain combination of 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 , the apparent and incremental inductances of the SynRM can be expressed as 00 00 00 ( , ) 
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denote the variations of apparent and incremental inductances of the SynRM.

External Disturbances

The load torque and the friction torque are two types of external disturbances considered in this thesis. The former depends on the characteristics of the mechanical load and has a significant impact on the dynamic performance of the VSD system. As for the latter, it has highly nonlinear characteristics in practice and can result in the steady-state errors and the limit cycles in the VSD system [23]. Until now, some static models, including the Karnopp model and the Armstrong's model, and dynamic models, such as the Dahl model, the Bristle model, the Bliman-Sorine model and the LuGre model, have been proposed to formulate the friction torque [23]. Among them, the LuGre model proposed in [24] is the most widely used one in the design of high-performance speed controllers for the VSD system [25]- [27]. Therefore, such a model is adopted in this thesis.

According to the LuGre model, 𝑇 𝑓 can be formulated as

01 f m m T B B B       (2.46)
where 𝐵 0 and 𝐵 1 are the averaged stiffness and the damping coefficient of bristles, respectively, and 𝜗 is an intermediate variable describing the average deflection of the bristles between two contact surfaces, whose dynamics can be expressed as the following expression [24].

  m m m g       (2.47)
where g(𝜔 𝑚 ) is a nonlinear function describing the Stribeck effect, which is expressed as
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where 𝑇 𝑐 is the Coulomb friction torque, 𝑇 𝑠 is the static friction torque, and 𝜔 𝑠 is the Stribeck speed.

Practical Dynamic Models

With respect to the SPMSM-VSD system, considering the above-mentioned unmodeled dynamics, 
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where 𝑢 𝑑 𝑑𝑃 , 𝑢 𝑞 𝑑𝑃 and 𝑇 𝜔 𝑑𝑃 represent the d-and q-axes disturbance voltages and disturbance torque, respectively, which are expressed as ( ) ( )
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where 𝜀 𝑑 𝑃 and 𝜀 𝑞 𝑃 denote the unmodeled dynamics in the d-and q-axes stator voltage equations of the SPMSM, respectively, and 𝜀 𝜔 𝑃 represents the unmodeled dynamics in the motion equation of the 
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where 𝜀 𝑑 𝑆 and 𝜀 𝑞 𝑆 denote the unmodeled dynamics in the d-and q-axes stator voltage equations of the SynRM, respectively, and 𝜀 𝜔 𝑆 represents the unmodeled dynamics in the motion equation of the SynRM.

Based on (2.55) and (2.56), the practical dynamic model of the SynRM in terms of 𝑖 𝑑𝑠 , 𝑖 𝑞𝑠 and 𝜔 𝑚 can be derived as 
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where 𝑀 0 = 𝐿 𝑑𝑑0 𝐿 𝑞𝑞0 -𝐿 𝑑𝑞0 𝐿 𝑞𝑑0 , 𝜌 𝜔 𝑆 = 𝑇 𝜔 𝑑𝑆 / J 0 denotes the lumped disturbance in the 𝜔 𝑚dynamics of the SynRM, 𝜌 𝑑 𝑆 and 𝜌 𝑞 𝑆 represent the lumped disturbances in the 𝑖 𝑑𝑠 -and 𝑖 𝑞𝑠dynamics of the SynRM, respectively, which are expressed as 
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Field-Oriented Control Strategy

The FOC strategy for the AC synchronous motor-based VSD system follows a principle akin to the control of a separately excited DC motor. It is designed using the dynamic model of the AC synchronous motor in the dq frame and requires Park's transformation and its inverse form to achieve the reference frame transformation, which is based on the rotor mechanical position 𝜃 𝑚 usually measured by the built in incremental encoder. As for 𝜔 𝑚 , it is usually calculated from 𝜃 𝑚 by the digital differentiator and the low-pass filter implemented in the adopted hardware controller. Moreover, as has been stated in Section 1.1, the FOC strategy adopts the cascaded control structure composed of the speed control loop and the current control loop. Since the dynamics of the current control loop is much faster than that of the speed control loop, the rotor speed controller and two stator current controllers are designed separately.

With respect to the FOC strategies for SPMSM-VSD and SynRM-VSD systems, in the speed control loop, the rotor speed controller is designed to make 𝜔 𝑚 track its reference 𝜔 𝑚𝑟 . Moreover, it can be used to generate the reference torque such that the reference d-and q-axes stator current components 𝑖 𝑑𝑠𝑟 and 𝑖 𝑞𝑠𝑟 can be indirectly calculated from it for a certain purpose or generate 𝑖 𝑞𝑠𝑟 such that 𝑖 𝑑𝑠𝑟 can be directly set by the designer. In the current control loop, two stator current controllers are designed to make 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 track 𝑖 𝑑𝑠𝑟 and 𝑖 𝑞𝑠𝑟 , respectively, and provide the reference stator voltage d-and q-axes components 𝑢 𝑑𝑠𝑟 and 𝑢 𝑞𝑠𝑟 . Based on them, a pulse-width modulation (PWM) algorithm is implemented for the voltage-source inverter adopted in the VSD system. The block diagram of the FOC strategy is illustrated in Figure 2.6, where 𝑺 =

[𝑆 𝑎 , 𝑆 𝑏 , 𝑆 𝑐 ], 𝒊 𝑠 = [𝑖 𝑎𝑠 , 𝑖 𝑏𝑠 , 𝑖 𝑐𝑠 ] and 𝒖 𝑠𝑟 = [𝑢 𝑎𝑠𝑟 , 𝑢 𝑏𝑠𝑟 , 𝑢 𝑐𝑠𝑟 ].
In this thesis, the FOC strategy is selected as the main control strategy to integrate with the composite controllers presented in the following chapters.

HIL and Experimental Test Benches

In this thesis, the proposed composite controller-based FOC strategy for the SynRM-VSD system is tested in the HIL test bench, which is a cost-effective real-time verification platform as described in 

Summary

In this chapter, the effects of the considered unmodeled dynamics, parametric uncertainties and external disturbances on modeling of the SPMSM and the SynRM are presented. Based on them, the practical dynamic models of these two considered motors in terms of rotor mechanical speed and stator current components in the dq frame are derived. Then, the principles of the FOC strategies for SPMSM-VSD and SynRM-VSD systems are briefly introduced. Finally, the HIL test bench used to test the control strategy for the 2L-VSI-fed SynRM-VSD system and the experimental test bench adopted to test the control strategy for the 2L-VSI-fed SPMSM-VSD system are described.

3 Selected Model-Based and Model-Free Disturbance Observers

SELECTED MODEL-BASED AND MODEL-FREE DISTURBANCE OBSERVERS

Introduction

As mentioned in Section 1.2, there are various types of DOs for constructing composite controllers.

Based on whether or not the system model is used in the DO design, the existing DOs can be classified into two categories: the model-based DOs and the model-free DOs. With respect to the former, as their name implies, the designs of these DOs are based on the system model. Among the existing model-based DOs, the extended DOs have gained much attention [1]- [8]. For the constructions of such DOs, unmodeled dynamics, parametric uncertainties and external disturbances in the system are lumped together, and the lumped disturbance is regarded as an augmented state to be estimated [1], [2]. Therefore, the extended DOs require minimum information of the system.

Owing to this attractive feature, the extended DOs have been widely used in the DOC of AC motor drive systems [2]- [8]. The existing extended DOs can be divided into linear and nonlinear extended DOs. For the DOC of AC motor drive systems, the ESO and the extended sliding-mode DO are the most popular linear and nonlinear extended DOs, respectively. There are two widely used extended sliding-mode DOs for the DOC of AC motor drive systems. One is the extended FOSMO, and the other is the STSMO [6]- [8]. The extended FOSMO is based on the first-order sliding-mode (FOSM) algorithm, which can guarantee the finite-time convergence of the state estimation error to the origin in theory. In this sliding-mode algorithm, the discontinuous sign function with a large gain is used to achieve the disturbance estimation. In practice, however, the implementation of the discontinuous sign function with a large gain in the hardware controller yields severe chattering. There are two popular methods to overcome this drawback. One is to add a low-pass filter to the observer, and the other is to use a continuous function, such as the saturation function, the sigmoid function and the hyperbolic tangent function, to replace the sign function in the observer. However, the price we pay for the chattering alleviation is the reduction of the disturbance estimation accuracy. The STSMO is designed using the standard super-twisting algorithm (STA), which is a continuous sliding-mode algorithm [9]- [11]. Compared with the FOSM algorithm, the standard STA is able to significantly alleviate the chattering in practice without sacrificing the disturbance estimation accuracy. Therefore, compared with the extended FOSMO, the STSMO is more suitable for the DOC of AC motor drive systems.

With respect to the model-free DOs, since ANNs are able to provide excellent input-output mapping ability without requiring the system model, ANN-DOs are the most popular choices to construct the model-free DO-based composite controllers for AC motor drive systems. Until now, various types of ANN-DOs with different activation functions and different structures have been proposed for the DOC of AC motor drive systems [12]- [27]. Among them, the ANN-DOs with single hidden layer are dominant. Based on whether or not the feedback loop is adopted in ANN-DOs, the existing ANN-DOs with single hidden layer can be divided into FNN-DOs with single hidden layer, each of which does not use any feedback loop, and RNN-DOs with single hidden layer, each of which adopts at least one feedback loop. The former can be regarded as static functions and the latter can be deemed as dynamic systems due to the use of feedback loops. Therefore, the RNN-DOs can store and process the temporal information and provide more powerful input-output mapping ability.

The speed/current tracking error dynamics of the SPMSM or the SynRM can be regarded as a single-input uncertain nonlinear system with relative degree one. In this chapter, the designs and the rigorous stability analyses of two extended DOs, i.e., the second-order ESO and the STSMO for a single-input uncertain nonlinear system with relative degree one are presented. Next, the structures of three widely used FNN-DOs with single hidden layer, i.e., the TLP-DO, the RBFNN-DO and the HNN-DO, and a widely used RNN-DO with single hidden layer, i.e., the ENN-DO for a single-input uncertain nonlinear system with relative degree one are presented. Moreover, two widely used approaches for deriving the learning laws, which are adopted to update some parameters in these ANN-DOs online, are introduced.

Problem Statement

A single-input uncertain nonlinear system with relative degree one expressed as (3.1) is considered in this chapter.

    ,, x a x t b x t yx         (3.1)
where 𝑥 ∈ 𝑅 represents the state variable, 𝜇 ∈ 𝑅 denotes the control law, 𝑦 ∈ 𝑅 represents the controlled output, 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) ≠ 0 are smooth uncertain functions expressed as
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where 𝑎 𝑛 > 0 and 𝑏 𝑛 > 0 are the known parts of 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) , respectively, Δ𝑎(𝑥, 𝑡)

and Δ𝑏(𝑥, 𝑡) are bounded uncertainties of 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡), respectively, for ∀𝑥 ∈ 𝑅 and 𝑡 ∈ [0, ∞).

Combing (3.1) with (3.2), the 𝑥-dynamics can be rewritten as
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where 𝜌 𝑥 (𝑥, 𝑡) denotes the lumped disturbance in the 𝑥-dynamics. The task of the DO designed for the system (3.3) is to estimate 𝜌 𝑥 .

Two Extended DOs

The designs and the rigorous stability analyses of the second-order ESO and the STSMO for the estimation of 𝜌 𝑥 will presented in this section.

The designs of the extended DOs for the estimation of 𝜌 𝑥 are based on the extended 𝑥-dynamics.

Based on (3.3), selecting 𝜌 𝑥 as an augmented state variable, the extended 𝑥-dynamics can be derived

as 12 2 xx x n x z b z z          (3.4)
where 𝑧 1 𝑥 = 𝑥 and 𝑧 2 𝑥 = 𝜌 𝑥 are state variables of the extended 𝑥-dynamics.

ESO

From (3.4), the second-order ESO for the estimation of 𝜌 𝑥 is designed as
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where 𝑧̂𝑒 1 𝑥 = 𝑥 ̂ and 𝑧̂𝑒 2 𝑥 = 𝜌 ̂𝑥 denote the estimated state variable and lumped disturbance, respectively, 𝛽 1 and 𝛽 2 are the positive constant gains of the second-order ESO.

Based on (3.4) and (3.5), the state estimation error system for the second-order ESO can be obtained as 
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where 𝑠 denotes the Laplace operator.

From (3.7), it can be seen that the characteristics of the second-order ESO-based lumped disturbance estimation is the same as that of a second-order low-pass filter. Thus, the state estimation performance of the second-order ESO depends on the values of 𝛽 1 and 𝛽 2 . In order to tune these two parameters, a simple yet effective method presented in [28] is adopted in this thesis. In this method, the values of 𝛽 1 and 𝛽 2 are selected such that the second-order ESO has two identical negative real poles. Toward this end, 𝛽 1 and 𝛽 2 are selected as

2 12 2, bb      (3.8)
such that characteristic polynomial of (3.7) is expressed as
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where 𝜔 𝑏 is the bandwidth of the second-order ESO.

Regarding the second-order ESO, in general, with the growth of the bandwidth, namely the value of 𝜔 𝑏 , not only the rate of convergence improves, but also the noise sensitivity increases. Thus, the value of 𝜔 𝑏 should be selected to trade off the state estimation performance and the noise rejection ability.

Lemma 3.1 [29]. Considering the state estimation error system (3. 

STSMO

From (3.4), the STSMO for the estimation of 𝜌 𝑥 is designed as
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where 𝑧̂𝑠 1 𝑥 = 𝑥 ̂ and 𝑧̂𝑠 2 𝑥 = 𝜌 ̂𝑥 denote the estimated state variable and lumped disturbance, respectively, 𝑘 1 and 𝑘 2 are the positive constant gains of the STSMO.

Based on (3.4) and (3.11), the state estimation error system for the STSMO can be described as the following form. where 𝑒 𝑠1 𝑥 = 𝑧   The time derivative of  along the trajectories of the system (3.12) is calculated as
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For the system (3.12), the Lyapunov candidate function V STA is selected as follows [30].

T STA V  P  (3.16)
where P is a positive definite symmetric matrix expressed as
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Since P is a positive definite symmetric matrix, the following inequality holds.
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where 𝜆 𝑚𝑖𝑛 {𝑷} and 𝜆 𝑚𝑎𝑥 {𝑷} represent the minimum and maximum eigenvalues of P, respectively, and ‖•‖ 2 denotes the Euclidean norm of a vector.

The time derivative of V STA along the trajectory of the -dynamics is calculated as
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The time derivative of V STA along the trajectory of the -dynamics is calculated as
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Since |𝑧̇2 𝑥 | ≤ 𝐿 2 𝑥 , the following inequality holds. () 0
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Where C = [ 1 0 0 0 ] and Q can be expressed as the following expression [31].
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Since 𝑘 1 and 𝑘 2 are selected as (3.13), based on the principle of the Schur complement of a matrix, 𝑸 is a positive definite symmetric matrix. As a result, the following inequality holds.
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where 𝜆 𝑚𝑖𝑛 {𝑸} represents the minimum eigenvalue of 𝑸 and  is a positive constant expressed as
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On the basis of (3.24) and the comparison principle [32], 𝑒 𝑠1 𝑥 and 𝑒 𝑠2 𝑥 will converge to the origin in a finite time. The proof is completed. ■

Since 𝑒 𝑠2 𝑥 will converge to the origin in a finite time, the following assumption can be stated.

Assumption 3.3. 𝑒 𝑠2 𝑥 is bounded as |𝑒 𝑠2 𝑥 | ≤ 𝐿 6
𝑥 for a positive constant 𝐿 6 𝑥 .

Selected ANN-DOs

In this section, the structures of three widely used FNN-DOs with single hidden layer, i.e., the TLP-DO, the RBFNN-DO and the HNN-DO, and the ENN-DO, which is a widely used RNN-DOs with single hidden layer, for the estimation of 𝜌 𝑥 are introduced. Moreover, with respect to the derivation of the learning laws for some parameters in these ANN-DOs, two widely used approaches are introduced.

Three FNN-DOs

The structure of a FNN-DO with single hidden layer for the estimation of 𝜌 𝑥 can be described as 

Output Layer Hidden Layer Input Layer

A 1 S A M A i x 1
(1) (n)

x N (1) (n) As presented in Figure 3.1, the signal propagation and the activation function of each layer of the TLP-DO are described as follows.

y 1 (3) (n)
Input Layer: In this layer, regarding the jth input neuron ( j = 1, 2, . . . , N ), the signal propagation can be described as

(1) (1) 
( ) ( ), 1, 2,..., jj y n x n j N  (3.28)
where 𝑦 𝑗 (1) (𝑛) is the output signal of the jth input neuron at the nth instant, 𝑥 𝑗 (1) (𝑛) is the input signal of the jth input neuron at the nth instant.

Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, M ), the signal propagation can be described as
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where 𝑥 𝑖 (2) (𝑛) and 𝑦 𝑖 (2) (𝑛) represent the input and output signals of the ith hidden neuron at the nth instant, respectively, 𝑊 𝑖𝑗 (1) (𝑛) denotes the connective weight between the ith hidden neuron and the jth input neuron at the nth instant.

Output Layer: In this layer, the output signal is 𝜌 ̂𝑥, which can be calculated as

(3) (2) (2) 1 1 ˆ( ) ( ) ( ) M x i i i y n W n y n     (3.31)
where 𝑦 1 (3) (𝑛) represents the output signal of the output neuron at the nth instant, 𝑊 𝑖 (2) (𝑛) denotes the connective weight between the output neuron and the ith hidden neuron at the nth instant.

Remark 3.1. In the TLP-DO, N, M, 𝑊 𝑖𝑗 (1) (𝑛) and 𝑊 𝑖 (2) (𝑛)

( i = 1, 2,…, M, j = 1, 2, . . . , N ) need
to be determined. In general, N and M are set in advance, while 𝑊 𝑖𝑗 (1) (𝑛) and 𝑊 𝑖 (2) (𝑛) are updated online by the learning laws [12].

RBFNN-DO

The RBFNN-DO usually uses the Gaussian function as the activation function in each hidden neuron.

The Gaussian function with single input signal is written as

    2 2 , 2 g c G e g       (3.32)
where 𝛿 and 𝑐 are the width and the center of the Gaussian function, respectively.

When 𝑐 = 0 and 𝛿 = 2, the Gaussian function with single input signal in the interval [-10, 10] is illustrated in Figure 3. Input Layer: In this layer, like the TLP-DO, the signal propagation of the jth input neuron ( j = 1, 2, . . . , N ) can be described as (1) (1)

( ) ( ), 1, 2,..., jj y n x n j N  (3.33)
Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, M ), the signal propagation can be described as

2 (1) (2) 2 1 () ( ) , 1, 2,..., 2 N j ji i j ji y n c x n i M        (3.34) ( 2) () (2) () i xn i y n e   (3.35)
where 𝛿 𝑗𝑖 and 𝑐 𝑗𝑖 represent the width and the center of the Gaussian function in the ith hidden neuron for the jth input neuron, respectively.

Output Layer: In this layer, like the TLP-DO, the output signal is 𝜌 ̂𝑥, which can be calculated as

(3) (2) (2) 1 1 ˆ( ) ( ) ( ) M x i i i y n W n y n     (3.36)
Remark 3.2. In the RBFNN-DO, N, M, 𝛿 𝑗𝑖 , 𝑐 𝑗𝑖 and 𝑊 𝑖 (2) (𝑛) ( i = 1, 2,…, M, j = 1, 2, . . . , N ) need to be determined. In general, N, M, 𝛿 𝑗𝑖 and 𝑐 𝑗𝑖 are set in advance [13]- [15]. As for 𝑊 𝑖 (2) (𝑛), it is updated online by the learning laws.

HNN-DO

The HNN-DO uses the Hermite function, which is derived from the Hermite polynomials, as the activation function in each hidden neuron. The Hermite polynomials {𝐻 𝑛 (𝜑)} 𝑛=0 ∞ , which is defined in the interval (-∞, ∞), can be expressed by the following so-called Rodrigues' formula.

 

22

( 1) ( ), 0,1, 2,...

n n n n d H e e n d        (3.37)
Based on (3.37), a useful recurrence relation for the calculation of each 𝐻 𝑛 (𝜑) can be derived as

            0 1 1 2 1, 2 , 2 2 1 , 2 n n n H H H H n H n               (3.38)
Although {𝐻 𝑛 (𝜑)} 𝑛=0 ∞ are orthogonal with regard to the weight function 𝜅(𝜑) = 𝑒 -𝜑 2 , they 56 are not orthonormal. Regarding the polynomial-based activation functions in the hidden layer of FNNs, the orthonormal polynomials are preferred [33]. Toward this end, based on {𝐻 𝑛 (𝜑)} 𝑛=0 ∞ , the Hermite functions {ℎ 𝑛 (𝜑)} 𝑛=0 ∞ , which are orthonormal functions, are derived as follows [33]- [35].

    2 2 1 2! nn n h H e n      (3.39)
The first six Hermite functions in the interval [-10, 10] is illustrated in Figure 3.4.

As presented in Figure 3.1, the signal propagation and the activation function of each layer of the HNN-DO are described as follows.

Input Layer: In this layer, like the aforementioned two FNN-DOs, the signal propagation of the jth input neuron ( j = 1, 2, . . . , N ) can be described as

(1) (1) 
( ) ( ), 1, 2,...,

jj y n x n j N  (3.40)
Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, M ), the signal propagation can be described as (2) (

...,

N ij j x n y n i M    (3.41) (2) (2) ( ) ( ( ) 
) i i i y n h x n  (3.42)
Output Layer: In this layer, like the aforementioned two FNN-DOs, the output signal is 𝜌 ̂𝑥, which can be calculated as

(3) (2) (2) 1 1 ˆ( ) ( ) ( ) M x i i i y n W n y n     (3.43)
Remark 3.3. In the HNN-DO, N, M and 𝑊 𝑖 (2) (𝑛) ( i = 1, 2,…, M, j = 1, 2, . . . , N ) need to be determined. In general, N and M are set in advance, while 𝑊 𝑖 (2) (𝑛) are updated online by the learning laws. Among three FNN-DOs presented in this subsection, the parameters that need to be determined in the HNN-DO is minimum.

ENN-DO

The ENN-DO is one of the most widely used RNN-DO for the DOC of AC motor drive systems.

The structure of such a model-free DO for the estimation of 𝜌 𝑥 is illustrated as Figure 3.5 [16]- [19].

It consists of the input layer, the hidden layer, the context layer and the output layer. In the input As presented in Figure 3.5, the signal propagation and the activation function of each layer of the ENN-DO are described as follows.

Input Layer: In this layer, like the FNN-DOs presented in Section 3.4.1, the signal propagation of the jth input neuron ( j = 1, 2, . . . , N ) can be described as Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, M ), the signal propagation can be described as

(1) (1) ( ) ( ) 
    3 (2) (1) (1) 11 ( ) 
( ) ( ) , 1, 2,..., NM i ij j i ji x n n y n y n i M       (3.45) (2) (2) ( ) ( ( )) ii y n L x n  (3.46)
where 𝑦 𝑖 (3) (𝑛) represents the output signal of the ith context neuron at the nth instant, Φ 𝑖𝑗 (1) (𝑛)

denotes the connective weight between the ith hidden neuron and the jth input neuron at the nth instant.

Context Layer: In this layer, regarding the ith context neuron ( i = 1, 2,…, M ), the signal propagation can be described as

(3) (3) (2) ( ) ( ) ( 1) 
, 1,2,...,

i i i y n x n y n i M     (3.47)
where 𝑥 𝑖 (3) (𝑛) is the input signal of the ith context neuron at the nth instant, and 𝑦 𝑖 (2) (𝑛 -1) is the output signal of the ith hidden neuron at the (n-1)th instant.

Output Layer: In this layer, the output signal is 𝜌 ̂𝑥, which can be calculated as

(4) (2) (2) 1 1 ˆ( ) ( ) ( ) M x i i i y n n y n       (3.48)
where 𝑦 1 (4) (𝑛) represents the output signal of the output neuron at the nth instant, Φ 𝑖 (2) (𝑛) denotes the connective weight between the output neuron and the ith hidden neuron at the nth instant.

Remark 3.4. In the ENN-DO, N, M, Φ 𝑖𝑗 (1) (𝑛) and Φ 𝑖 (2) (𝑛) (i = 1, 2,…, M, j = 1, 2, . . . , N ) need to be determined. In general, N and M are set in advance, while Φ 𝑖𝑗 (1) (𝑛) and Φ 𝑖 (2) (𝑛) are updated online by the learning laws.

Learning Law Derivation

In each aforementioned ANN-DO, there are some parameters that need to be updated online by the learning laws. The derivation of these learning laws has to take into account the stability issue of the composite controller-based tracking control system. Toward this end, there are two widely used approaches for deriving these learning laws. One is the Lyapunov synthesis approach, and the other is the hybrid approach. The former uses the Lyapunov stability analysis of the tracking control system to derive the learning laws for all parameters that need to be updated online. As for the latter, only the learning law for the connective weights between the output neuron and the hidden neurons are derived by the Lyapunov stability analysis of the tracking control system, and the learning laws for other parameters that need to be updated online are derived from other algorithms such as the well-known back-propagation (BP) algorithm.

In above-mentioned two approaches, the Lyapunov stability analysis of the tracking control system is used to derive the learning laws for the connective weights between the output neuron and the hidden neurons. Therefore, the derived learning law is related to the controller used by the tracking control system. Since the aforementioned ANN-DOs have the same output layer structure, the learning laws for the connective weights between the output neuron and the hidden neurons in each aforementioned ANN-DO are the same for a certain controller. 

TYPE-1 COMPOSITE CONTROLLER: DESIGN AND APPLICATION

Introduction

With respect to the single-input uncertain nonlinear system with relative degree one, the slidingmode controller is one of the most promising robust nonlinear controllers. In theory, it can completely reject the bounded lumped disturbance, which consists of unmodeled dynamics, parametric uncertainties and external disturbances in the system [1]. In general, the first step of designing a sliding-mode controller is to select the sliding variable based on the control objective.

Afterward, a sliding-mode control law is designed to make the selected sliding variable converge to the origin, commonly known as the sliding surface, in a finite time, and keep it at the origin thereafter, such that the control objective is accomplished in a finite time in the presence of unmodeled dynamics, parametric uncertainties and external disturbances. For the classic sliding-mode controller, it is based on the FOSM algorithm. As mentioned in Section 3.1, the implementation of such a sliding-mode algorithm in the hardware controller results in severe chattering in practice.

To alleviate the chattering, several modified sliding-mode algorithms have been proposed [1], [2]. Among them, the second-order sliding-mode (SOSM) algorithms, which can guarantee the finite-time convergence of the sliding variable and its time derivative to the origin in a finite time, is an approach to chattering alleviation that has gained much attention in the sliding-mode control community in recent decades [1]- [4]. Amongst the existing SOSM algorithms, the standard STA is a unique absolutely continuous SOSM algorithm that can be applied to the relative degree one system and only require the information of the sliding variable. Because of such attractive features, 64 the standard STSM controller, which is based on the standard STA, has found wide applications [5]- [18]. The nonlinear correction terms of the standard STA are dependent on the bounded sign function.

In other words, the standard STSM controller is based on the bounded function-based feedback regulation mechanism. As has been stated in Section 1.2, the use of such a feedback regulation mechanism results in a trade-off problem between the tracking performance and the disturbance attenuation during the selection of controller gains, and the development of a composite controller is an effective method to tackle such an issue.

In recent years, some composite controllers combining a standard STSM controller with a model-based or model-free DO have been proposed. For example, the composite controller combining a standard STSM controller with a ESO [14]- [16], the composite controller combining a standard STSM controller with a STSMO [17], and the composite controller combining a standard STSM controller with a RBFNN-DO [18]. For the last-mentioned composite controller, although its performance has been verified by simulation results, the presented Lyapunov stability analysis for the tracking control system is not rigorous in theory. It means that the derivation of the learning laws for the connective weights between the output neuron and the hidden neurons in the adopted RBFNN-DO is also not rigorous in theory. Therefore, from a theoretical viewpoint, the rigorous stability analysis for the composite controller combining a standard STSM controller with an ANN-DO and the rigorous derivation of the learning laws for the connective weights between the output neuron and the hidden neurons in the adopted ANN-DO still need to be explored.

In this chapter, the type-1 composite controller, which consists of a standard STSM controller, a HNN-DO and an error compensator, is proposed for a single-input uncertain nonlinear system with relative degree one. In such a composite controller, the finite-time stabilization of the sliding variable dynamics is guaranteed by the standard STSM controller, the lumped disturbance in the sliding variable dynamics is compensated by the HNN-DO, and the approximation error of such an ANN-DO is compensated by the error compensator. The rigorous stability analysis of the sliding variable dynamics with the type-1 composite controller is presented. On the basis of that, the learning laws for the connective weights between the output neuron and the hidden neurons in the HNN-DO and the error compensator are rigorously derived. In fact, such learning laws are suitable for any type of ANN-DO, including the MLP-DO, the RBFNN-DO and the ENN-DO, and its corresponding error compensator used in the standard STSM controller-based composite controller.

After the rigorous theoretical analysis of the proposed type-1 composite controller, such a controller applies to the construction of a novel robust FOC strategy for the 2L-VSI-fed SynRM-VSD system. In such a FOC strategy, the proposed type-1 composite controller serves as the rotor 65 speed controller for the robust rotor speed tracking control. Moreover, based on the current dynamics of the SynRM in the dq frame, each of which is a nonlinear system in terms of 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 considering the magnetic saturation effect, two composite current controllers, each of which is composed of two standard STSM controllers, are designed to achieve the robust stator current tracking control. Rigorous stability analysis of each current tracking error dynamics using the corresponding composite current controller is presented. Finally, the results of the comparative HIL tests between the proposed FOC strategy and the classic STA-based FOC strategy proposed in [19], which is based on a standard STSM speed controller and two linear PI current controllers, for the 2L-VSI-fed SynRM-VSD system are presented and analyzed.

Type-1 Composite Controller Design 4.2.1 Problem Statement

Considering the single-input uncertain nonlinear system with relative degree one presented in (3.1), the sliding variable can be designed as

1 r s y y  (4.1)
where 𝑦 𝑟 is the reference output for the considered system.

Assumption 4.1. 𝑠̇1 is bounded and 𝑦̇𝑟 is known.

Based on (3.1) and (4.1), the 𝑠 1 -dynamics can be derived as

    1 ,, rr s y y y a x t b x t       (4.2)
Combing (4.2) with (3.2), the 𝑠 1 -dynamics can be rewritten as

                1 , , , ,, , s r n 
n n r n xt ns s y a a x t b b x t b y a a x t b x t b x t                       (4.3)
where 𝜌 𝑠 (𝑥, 𝑡) denotes the lumped disturbance in the 𝑠 1 -dynamics. The control objective is to let 𝑠 1 converge to the origin in a finite time. 

Output Layer Hidden Layer Input Layer

HNN-DO Design

The HNN-DO used in the type-1 composite controller is illustrated in Figure 4.1. It can be seen that there are one input neuron, five hidden neurons and one output neuron in such an ANN-DO. The signal propagation and the activation function of each layer are described as follows.

Input Layer: In this layer, 𝑠 1 is selected as the input signal. Thus, the output signal of the input neuron can be expressed as

(1) (1) 1 1 1 ( ) ( ) ( ) y n x n s n  (4.4)
where 𝑠 1 (𝑛) is the sliding variable at the nth instant.

Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, 5 ), the signal propagation can be described as

(2) (1) 1 ( ) ( ), 1,2, 
...,5

i x n y n i  (4.5) (2) (2) 
( ) ( ( ))

i i i y n h x n  (4.6)
Output Layer: In this layer, the output signal is the estimated lumped disturbance in the 𝑠 1dynamics, which can be calculated as

5 (3) (2) (2) 1 1 ˆ( ) ( ) ( ), 1, 2,..., 5 
HNN hi i i y n W n y n i       (4.7)
where 𝜌 ̂𝐻𝑁𝑁 is the estimated lumped disturbance from the HNN-DO, 𝑊 ℎ𝑖 (2) (𝑛) denotes the connective weight between the output neuron and the ith hidden neuron at the nth instant.

Based on the universal approximation property of the ANN, there is an optimal estimated lumped disturbance 𝜌 ̂𝐻𝑁𝑁 * for the HNN-DO such that

* (2)* (2) 
ˆ( ) ( )

T s HNN HNN h HNN nn         Wy (4.8)
where 𝑾 ℎ (2) * (𝑛) = [𝑊 ℎ1

(2) * (𝑛), 𝑊 ℎ2 (2) * (𝑛), 𝑊 ℎ3 (2) * (𝑛), 𝑊 ℎ4 (2) * (𝑛), 𝑊 ℎ5

(2) * (𝑛)] T and 𝒚 (2) (𝑛) = [𝑦 1 (2) (𝑛), 𝑦 2 (2) (𝑛), 𝑦 3 (2) (𝑛), 𝑦 4 (2) (𝑛), 𝑦 5

(2) (𝑛)] T are the optimal output weight vector and the output signal vector of the hidden layer of the HNN-DO, respectively, 𝜀 𝐻𝑁𝑁 is the minimum approximation error of the HNN-DO.

Assumption 4.3. 𝑊 ℎ𝑖 (2) * (𝑛) and 𝜀 𝐻𝑁𝑁 are constant in each sampling period.

Remark 4.1. In the HNN-DO, all elements in the output weight vector 𝑾 ℎ (2) (𝑛) = [𝑊 ℎ1 (2) (𝑛), 𝑊 ℎ2 (2) (𝑛), 𝑊 ℎ3 (2) (𝑛), 𝑊 ℎ4 (2) (𝑛), 𝑊 ℎ5

(2) (𝑛)] T need to be updated online. To maintain the stability of the tracking control system, the learning laws for these connective weights are derived from the Lyapunov synthesis approach.

Controller Design

To achieve the control objective, the type-1 composite control law 𝜇 𝑐1 is designed as

  11 1 c STA h c n yy b     (4.9) 
where 𝜇 𝑆𝑇𝐴 , 𝑦 ℎ and 𝑦 𝑐1 are the standard STA for the finite-time stabilization of the 𝑠 1 -dynamics, the output signal of the adopted HNN-DO for the compensation of the lumped disturbance in the 𝑠 1dynamics and the output signal of the error compensator for the compensation of the approximation error of the adopted HNN-DO, respectively, which are expressed as where 𝑘 1 𝑐1 and 𝑘 2 𝑐1 are the positive constant gains, 𝜀 𝑐1 is the estimated approximation error of the adopted HNN-DO.

Remark 4.2.

If 𝑦 ℎ = 𝑦 𝑐1 = 0, the type-1 composite control law is converted to the standard STSM control law.

Remark 4.3. In the type-1 composite control law, 𝜀 𝑐1 is updated online. To maintain the stability of the tracking control system, the learning law for 𝜀 𝑐1 is derived by the Lyapunov synthesis approach.

68 Substituting (4.8) and (4.9) into (4.3), the closed-loop 𝑠 1 -dynamics with the type-1 composite control law is expressed as

1 1 (2) (2) 1 1 1 1 2 1 1 1 1 (2) (2) (2)* (2) 1 1 1 2 1 1 1 1 (2) (2) 1 1 1 2 1 sgn( ) sgn( ) ( ) ( ) sgn( ) sgn( ) ( ) ( ) ( ) ( ) sgn( ) sgn( ) ( ) ( ) c c T h c s c c T T h c h HNN c c T h HNN s k s s k s dt n n k s s k s dt n n n n k s s k s dt n n                         Wy W y W y Wy (4.13)
where 𝑾 ̃ℎ (2) (𝑛) = 𝑾 ℎ (2) * (𝑛) -𝑾 ℎ (2) (𝑛) = [𝑊 ̃ℎ1 (2) (𝑛), 𝑊 ̃ℎ2 (2) (𝑛), 𝑊 ̃ℎ3 (2) (𝑛), 𝑊 ̃ℎ4 (2) (𝑛), 𝑊 ̃ℎ5

(2) (𝑛)] T and

𝜀̃𝐻 𝑁𝑁 = 𝜀 𝐻𝑁𝑁 -𝜀 𝑐1 .
The following Theorem can be used to derive the learning laws for 𝑾 ℎ (2) and 𝜀 𝑐1 .

Theorem 4.1. Considering the system (4.13), if the learning laws for 𝑾 ℎ (2) and 𝜀 𝑐1 are designed as (4.14) and (4.15), respectively, the origin is a globally asymptotically stable equilibrium point.

 

(2)

1 (2) 1 2 1 sgn c hc ks   Wy (4.14)   1 1 2 2 1 sgn c cc ks   (4.15)
where 𝜂 𝑐1 and 𝜂 𝑐2 are positive learning rates.

Proof. At first, the system (4.13) is converted to the following equivalent system.

1 (2) (2) 1 1 1 1 1 1 1 2 1 sgn( ) sgn( ) cT h HNN c s k s s ks             

Wy

(4.16)

For the system (4.16), the Lyapunov candidate function 𝑉 𝑐1 is selected as follows

1 2 (2) (2) 2 1 2 1 1 12 1 1 1 2 2 2 cT c h h HNN cc V k s       WW (4.17)
Considering Assumption 4.3, 𝑉 ̇𝑐1 along the trajectories of the system (4.16) can be obtained as

          1 (2) (2) 1 2 1 1 1 1 1 12 1 1 (2) (2) 2 1 1 1 1 1 1 (2) (2) 1 2 1 1 12 1 1 1 (2) (2) 1 1 2 1 2 1 2 1 1
11 sgn sgn sgn( )

11 sgn( ) 1 sgn sgn cT c h h HNN c cc c c T h HNN cT h h HNN c cc c c c T c h HNN c V k s s k s k s s ks k k s k s k s                              WW Wy WW Wy     (2) (2) 1 2 1 1 (2) 1 (2) (2) 1 1 2 1 2 1 2 1 1 12 1 11 sgn sgn T h h HNN c c c c T c c h h HNN c cc k k s k s k s                        WW W y W (4.18)
69 Substituting (4.14) and (4.15) into (4.18), 𝑉 ̇𝑐1 can be expressed as

11 1 1 2 1 0 cc c V k k s    (4.19)
Since 𝑉 ̇𝑐1 is negative semidefinite, the following inequality can be derived.

                    (2) (2) 1 1 1 1 1 1 , , , 0 , 0 , 0 , 0 c h HNN c h HNN V s t t t t V s      WW (4.20)
According to (4.20), 𝑠 1 (𝑡), 𝜙 1 (𝑡), 𝑾 ̃ℎ (2) (𝑡) and 𝜀̃𝐻 𝑁𝑁 (𝑡) are bounded. Based on (4. 19) and (4.20), the following function is defined.

            1 1 (2) 1 2 1 1 1 1 , , , cc HNN c h HNN t k k s V s t t t t       W (4.21)
Since 𝑉 𝑐1 (𝑠 1 (0), 𝜙 1 (0), 𝑾 ̃ℎ (2) (0), 𝜀̃𝐻 𝑁𝑁 (0)) is bounded and 𝑉 𝑐1 (𝑠 1 (𝑡), 𝜙 1 (𝑡), 𝑾 ̃ℎ (2) (𝑡), 𝜀̃𝐻 𝑁𝑁 (𝑡))

is a non-increasing bounded function, the following inequality can be derived. the origin is a globally asymptotically stable equilibrium point of the system (4.13). The proof is completed. ■

The system (4.13) can be converted to another equivalent system described as

1 1 1 1 1 2 1 2 2 1 1 sgn( ) sgn( ) c c s s k s s k s dt              (4.23)
where 𝜌 𝑠1 is expressed as The proof is completed. ■

      (2) (2) (2) (2) (2) (2) 11 1 (2) (2) (2) (2) 1 1 2 1 2 2 1 sgn sgn T T T s h HNN h h c c T T c c h c d dt k s k s               W y

Application

In this section, a novel robust FOC strategy based on the type-1 composite speed controller and two composite current controllers for the 2L-VSI-fed SynRM-VSD system is presented. The designs of the type-1 composite speed controller and two composite current controllers are based on the practical dynamic model of the SynRM presented in (2.60). In this FOC strategy, 𝑖 𝑑𝑠𝑟 is a constant set in advance and 𝑖 𝑞𝑠𝑟 is generated by the type-1 composite speed controller. Finally, the results of comparative HIL tests between the proposed FOC strategy and the classic STA-based FOC strategy for the 2L-VSI-fed SynRM-VSD system are presented to demonstrate the superiority of the former.

Type-1 Composite Speed Controller Design

The speed tracking error 𝑒 𝜔1 for the field-oriented controlled SynRM-VSD system is defined as

1 mr m e    (4.26)
Since the dynamics of the current control loop is much faster than that of the speed control loop, it can be considered that 𝑖 𝑑𝑠 = 𝑖 𝑑𝑠𝑟 and 𝑖 𝑞𝑠 = 𝑖 𝑞𝑠𝑟 in the rotor speed controller design. Therefore, based on (2.60) and (4.26), the 𝑒 𝜔1 -dynamics can be expressed as  
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where 𝑏 𝜔𝑛1 is a constant and 𝜌 𝜔1 (1) denotes the lumped disturbance in the 𝑒 𝜔1 -dynamics.

Selecting 𝑒 𝜔1 as the sliding variable, the type-1 composite speed control law 𝑖 𝑞𝑠𝑟 𝑐1 is designed as

  1 11 1 1 c qsr s h c n i y y b         (4.28)
where 𝜇 𝑠𝜔1 , 𝑦 ℎ𝜔1 and 𝑦 𝑐𝜔1 are the standard STA for the finite-time rotor speed tracking control, the output signal of the adopted HNN-DO for the compensation of the lumped disturbance in the 𝑒 𝜔dynamics and the output signal of the error compensator for the compensation of the approximation error of the adopted HNN-DO, respectively, which are expressed as where 𝑘 𝜔1 𝑐1 and 𝑘 𝜔2 𝑐1 are the positive constant gains, 𝑾 ℎ𝜔 (2) = [𝑊 ℎ𝜔1 (2) , 𝑊 ℎ𝜔2 (2) , 𝑊 ℎ𝜔3 (2) , 𝑊 ℎ𝜔4 (2) , 𝑊 ℎ𝜔5 (2) ] T and 𝒚 ℎ𝜔 (2) = [𝑦 ℎ𝜔1 (2) , 𝑦 ℎ𝜔2 (2) , 𝑦 ℎ𝜔3 (2) , 𝑦 ℎ𝜔4 (2) , 𝑦 ℎ𝜔5 (2) ] T are the output weight vector and the output signal vector of the hidden layer of the adopted HNN-DO, respectively, 𝜀 𝑐𝜔1 is the estimated approximation error of the adopted HNN-DO.

Remark 4.4.

If 𝑦 ℎ𝜔 = 𝑦 𝑐𝜔1 = 0 , the type-1 composite speed control law is converted to the standard STSM speed control law.

The structure of the HNN-DO used in the type-1 composite speed controller is illustrated in Figure 4.1. 𝑒 𝜔1 is selected as the input signal of the HNN-DO and the learning laws for 𝑾 ℎ𝜔 (2) and 𝜀 𝑐𝜔1 are designed as

  (2) 1 1 (2) 1 2 1 sgn cc h c h ke        Wy (4.32)   11 1 2 2 1 sgn cc cc ke       (4.33)
where 𝜂 𝑐𝜔1 𝑐1 and 𝜂 𝑐𝜔2 𝑐1 are positive learning rates.

Substituting (4.28) into (4.27), the closed-loop 𝑒 𝜔1 -dynamics with the type-1 composite speed control law is expressed as 

( 2) 1 (1) 1 1 (2) (2) (1) 1 1 1 1 1 1 1 2 1 1 1 1 1 (2) 1 1 1 2 
                                           Wy (4.34)
Assumption 4.6. 𝜌 𝜔1 (2) and its time derivative 𝜌̇𝜔 1 (2) are bounded as |𝜌 𝜔1 (2) 
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L L e u R i n L i u R i n L i i MM L L u b u b MM                   (4.38)
where 𝜌 𝑑 (1) and 𝜌 𝑞 (1) denote the lumped disturbance in the 𝑒 𝑑 -and 𝑒 𝑞 -dynamics, respectively.

Assumption 4.7. There are four positive constants 𝐿 𝑑1 𝑐1 , 𝐿 𝑑2 𝑐1 , 𝐿 𝑞1 𝑐1 and 𝐿 𝑞2 𝑐1 such that 𝜌 𝑑 (1) and 𝜌 𝑞 (1) and their time derivatives 𝜌̇𝑑 (1) and 𝜌̇𝑞 (1) are bounded as |𝜌 𝑑 (1) | ≤ 𝐿 𝑑1 𝑐1 , |𝜌 𝑞 (1) | ≤ 𝐿 𝑞1 𝑐1 , |𝜌̇𝑑 (1) | ≤ 𝐿 𝑑2 𝑐1 and |𝜌̇𝑞 (1) | ≤ 𝐿 𝑞2 𝑐1 , respectively.

Selecting 

    1 2 1 2 1 2 1 2 12 1 1 1 1 12 1 2 1 2 11 11 ( ) 4( ) ( ) 4( ) 2, , 2, 4 2 4 2 cc cc qq c c c c dd d d q q cc dq kL kL k k k k kk        (4.43)
The block diagram of the composite current controllers are shown in 

HIL Test Results

The HIL test bench described in Section 3.5 is used to perform comparative tests between the proposed FOC strategy and the classic STA-based FOC strategy for the 2L-VSI-fed SynRM-VSD system. In the HIL tests, the sampling frequencies of the hardware controller and the emulator are set to 5 kHz and 10 kHz, respectively. In the emulator, the three-phase low-frequency model presented in (2.12) is used to describe the 2L-VSI, and the following dynamic model modified from (2.60) is adopted to describe the SynRM. 

          3 
LL i u R i n L i u R i n L i MM L L i u R i n L i u R i n L i MM n L L i i T T J J J                              (4.44)
where 𝑀 = 𝐿 𝑑𝑑 𝐿 𝑞𝑞 -𝐿 𝑑𝑞 𝐿 𝑞𝑑 .

To describe the magnetic saturation effect of the SynRM in the emulator, the apparent inductance model proposed in [21], which can approximate the values of 𝐿 𝑑 and 𝐿 𝑞 for different combinations of 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 in a wide range, is adopted. According to such a model, 𝐿 𝑑 and 𝐿 𝑞 can be formulated as 

0 1 2 0 2 1 ( , ) ( ) ( ) ( ), ( , ) ( ) ( ) ( ) d ds qs d ds d ds q qs q ds qs q qs d ds q qs L i i L i L i L i L i i L i L i L i     (4.
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Based on (2.42), (2.43), (2.44) and (4.45), the incremental inductances can also be formulated.

For the hardware controller, it not only generates 𝑑 𝑎 * , 𝑑 𝑏 * and 𝑑 𝑐 * based on the principle of the space vector modulation for the 2L-VSI in the emulator but also samples 𝑖 𝑎𝑠 , 𝑖 𝑏𝑠 , 𝑖 𝑐𝑠 and 𝜃 𝑚 from the emulator. The implementation of the field-oriented controlled 2L-VSI-fed SynRM-VSD system is illustrated in Figure 4.4. The parameters of the SynRM are presented in Table 4.1 [23]. The specifications of the 2L-VSI are shown in Table 4.2. [23]. The adopted apparent inductance model of the SynRM is illustrated in Regarding the implementation of standard STA in the hardware controller, the sign function is usually replaced by a continuous function, including the saturation function and the hyperbolic tangent function, to further alleviate the chattering in practice [13], [16]. Therefore, in this chapter, 77 the sign function in each standard STA-based controller is replaced by the following saturation function in HIL tests.

    if sat sgn if z z z zz          , , (4.47)
where  denotes the boundary layer that is set to 1.0 in HIL tests.

In the first test, the values of 𝜔 𝑚𝑟 , 𝑖 𝑑𝑠𝑟 , ∆J and ∆𝑅 𝑠 are set to 1000 rpm, 5 A, 0 and 0, respectively. The value of 𝑇 𝐿 declines from 4.8 N•m to 0 N•m at first, and then the value of 𝑇 𝑓 steps tenfold by raising the value of 𝐵 𝑚 to ten times. 

Summary

In this chapter, a novel composite controller named as the type-1 composite controller is proposed for a single-input uncertain nonlinear system with relative degree one. The proposed composite controller consists of a standard STSM controller, a HNN-DO and an error compensator. The standard STSM controller is used to achieve the finite-time convergence of the sliding variable to the origin. The HNN-DO is used to estimate and compensate the lumped disturbance in the sliding variable dynamics for the disturbance attenuation ability improvement. The error compensator is used compensate the approximation error of the adopted HNN-DO. The rigorous stability analysis of the sliding variable dynamics with the type-1 composite controller is presented. Based on that, the learning laws for the connective weights between the output neuron and the hidden neurons in the adopted HNN-DO and the error compensator are rigorously derived. Moreover, with respect to any composite controller combining a standard STSM controller with a ANN-DO for a single-input uncertain nonlinear system with relative degree one, these derived learning laws can be used to update online the connective weights between the output neuron and the hidden neurons in the adopted ANN-DO and its corresponding error compensator.

With respect to the 2L-VSI-fed SynRM-VSD system, a novel robust FOC strategy is proposed.

In the speed control loop, the type-1 composite controller is designed as a rotor speed controller for the robust rotor speed tracking control. In the current control loop, since each current dynamics of the SynRM in the dq frame is a nonlinear system in terms of 𝑖 𝑑𝑠 and 𝑖 𝑞𝑠 considering the magnetic saturation effect, two composite current controllers, each of which is composed of two standard STSM controllers, are proposed to achieve the robust stator current tracking control. The rigorous stability analysis for each current tracking error dynamics using the corresponding composite current controller is presented. The results of the comparative HIL tests show that the SynRM-VSD system using the proposed FOC strategy is able to accomplish better tracking performance and higher robustness against disturbances/uncertainties in comparison with the SynRM-VSD system using the classic STA-based FOC strategy, which is based on a standard STSM controller and two linear PI current controllers.

Type-2 Composite Controller: Design and Application

TYPE-2 COMPOSITE CONTROLLER: DESIGN AND APPLICATION

Introduction

As mentioned in Section 4.1, since the standard STSM controller, which is designed using the standard STA, is based on the bounded function-based feedback regulation mechanism, a trade-off problem between the tracking performance and the disturbance attenuation arises during the selection of controller gains. To alleviate such a problem, the modified STA, which is developed from the standard STA by adding the linear correction terms, is proposed [1], [2]. Until now, the modified STSM controller, which is designed using the modified STA, has been used in some applications, including the five-phase induction motor-based VSD system [3] and the unmanned aircraft system [4].

Although the modified STSM controller can provide more powerful feedback regulation mechanism than the standard STSM controller due to the use of the linear correction terms, selecting the gains of the modified STSM controller still has to face the above-mentioned trade-off problem, which may make it difficult for such a controller to provide satisfactory performance in some applications. To deal with such an issue, the development of a composite controller combining a modified STSM controller with a DO is an effective method. As mentioned in Section 3.1, the ESO is the most popular linear extended DO for the DOC of AC motor drive systems. Up to now, the ESO has been combined with assorted feedback control algorithms, including the proportional control algorithm [5], [6], the robust control algorithm [7], [8], the predictive control algorithm [9], [10], the feedback linearization algorithm [11], [12], the dynamic surface control algorithm [13],

85 [14], the backstepping control algorithm [15], [16], the repetitive control algorithm [17], [18], the first-order sliding-mode algorithm [19], [20], and the standard STA [21], [22], for constructing composite controllers. However, to the best of the author's knowledge, no published literature investigates the composite controller combining a modified STA with an ESO; let alone the application of this controller to the PMSM-VSD system.

In this chapter, the type-2 composite controller, which consists of a modified STSM controller and a second-order ESO, is proposed for a single-input uncertain nonlinear system with relative degree one. In such a composite controller, the modified STSM controller is used to stabilize the sliding variable dynamics in a finite time and the lumped disturbance in the sliding variable dynamics is compensated by the second-order ESO. The rigorous stability analysis of the sliding variable dynamics with the type-2 composite controller is presented.

After the rigorous theoretical analysis of the proposed type-2 composite controller, such a controller applies to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In such a FOC strategy, the proposed type-2 composite controller serves as the rotor speed controller in the speed control loop and two linear PI current controllers are used in the current control loop. To validate the effectiveness and the superiority of the type-2 composite speed controller, based on the experimental test bench described in Section 2.5, comparative experimental tests among the standard STSM speed controller, the ESO-based standard STSM speed controller, the modified STSM speed controller and the type-2 composite speed controller in the frame of the FOC strategy are performed. Finally, the experimental results are presented and analyzed.

Type-2 Composite Controller Design

Considering the single-input uncertain nonlinear system with relative degree one presented in (3.1), the sliding variable 𝑠 1 is designed as (4.1) and its dynamics is presented in (4.3). The control objective is to let 𝑠 1 converge to the origin in a finite time.

ESO Design

As mentioned in Section 3.3.1, the ESO design is based on the extended dynamics in which the lumped disturbance is selected as an augmented state variable to be estimated. According to (3.3) and (4.3), the relationship between the lumped disturbance in the 𝑥 -dynamics and the lumped disturbance in the 𝑠 1 -dynamics is expressed as 

Controller Design

To achieve the control objective, the type-2 composite control law 𝜇 𝑐2 is designed as

  2 1 ĉ MSTA r ESO n y b       (5.2)
where 𝜇 𝑀𝑆𝑇𝐴 is the modified STA for the finite-time stabilization of the 𝑠 1 -dynamics, which is expressed as (5.3), and 𝜌 ̂𝐸𝑆𝑂 is the estimated lumped disturbance from the adopted ESO for the compensation of 𝜌 𝑥 . Substituting (5.2) into (4.3), the closed-loop 𝑠 1 -dynamics with the type-2 composite control law is expressed as
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where 𝑒 𝐸𝑆𝑂 is the lumped disturbance estimation error of the ESO.

Considering Assumption 3.2, 𝑒̇𝐸 𝑆𝑂 is bounded as |𝑒̇𝐸 𝑆𝑂 | ≤ 𝐿 5 𝑥 for a positive constant 𝐿 5 𝑥 .

Lemma 5.1 [23]. Let 𝑦 ≥ 0, 𝑧 ≥ 0, 1 > 𝑎 1 > 0, and 𝑏 > 0. If a constant 𝑎 2 satisfies

1 𝑎 1 + 1 𝑎 2 =
1, the following inequality holds. and 𝑝 2 𝑐2 are selected as (5.9), 𝑠 1 will converge to the origin in a finite time.
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Proof. The system (5.5) can be rearranged as
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At first, the following state variable vector is defined.
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For the system (5.10), the Lyapunov candidate function 𝑉 𝑐2 is selected as follows [2].

2 2 2 2 2 2 2 1 2 2 1 1 2 1 1 ( ) ( ) ( ) 2 c T c c c c c V k p s p s      R  (5.12)
where R is a symmetric and positive definite matrix expressed as
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Based on (5.12), 𝑉 ̇𝑐2 is expressed as
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Combining (5.14) with (5.10), 𝑉 ̇𝑐2 can be calculated as , 𝑎 1 = 0.5, 𝑎 = -1 and 𝑏 =
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Combining (5.15) with (5.16) and considering the fact that |𝑒̇𝐸 𝑆𝑂 | ≤ 𝐿 5 𝑥 , the following inequality can be obtained.
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With respect to 𝜇 1 𝑐2 , the following inequality holds.
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Substituting (5.18) into (5.17), the following inequality can be derived.
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According to (5.8) and (5.9), 𝜆 1 𝑐2 and 𝜆 2 𝑐2 in (5.19) are two positive constants. Since R is positive definite, based on (5.12), the following inequality can be derived.
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where  max {R} represents the maximum eigenvalue of R,  is written as
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Based on Lemma 5.2, (5.8) and (5.9), the following inequality holds.
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where 𝑘 𝑐2 is a positive constant such that

  2 2 2 2 12 2 max ( ) ( ) min , cc c k         R (5.23)
According to (5.22), the following inequality holds.

2 2 2 c c c V k V  (5.24)
On the basis of (5.24) and the comparison principle [24], all trajectories of the system (5.10)

will converge to the origin in a finite time. It means that 𝑠 1 will converge to the origin in a finite time. The proof is completed. ■

Application

In this section, the type-2 composite speed controller, which is designed using the practical speed dynamics of the SPMSM presented in (2.54), is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In this FOC strategy, two linear PI current controllers are used as stator current controllers. Moreover, 𝑖 𝑑𝑠𝑟 is set to 0 and 𝑖 𝑞𝑠𝑟 is generated by the type-2 composite speed controller. The results of the comparative experimental tests among the standard STSM speed controller, the ESO-based standard STSM speed controller, the modified STSM speed controller and the type-2 composite speed controller in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system are presented to demonstrate the superiority of the type-2 composite speed controller.

Type-2 Composite Speed Controller Design

Since the dynamics of the current control loop is much faster than that of the speed control loop, it can be considered that 𝑖 𝑞𝑠 = 𝑖 𝑞𝑠𝑟 in the rotor speed controller design. Therefore, based on (2.54), the 𝜔 𝑚 -dynamics of the SPMSM can be rewritten as

0 0 2 2 2 0 0 0 3 1 2 n n pm P m m m qsr L n m n qsr a b n B i T a b i J J J                       (5.25)
where 𝑎 𝜔𝑛2 and 𝑏 𝜔𝑛2 are two constants and 𝜌 𝜔2 denotes the lumped disturbance in the 𝜔 𝑚dynamics. 
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where 𝑧̂𝑒 𝜔1 = 𝜔 ̂𝑚 and 𝑧̂𝑒 𝜔2 = 𝜌 ̂𝑒𝜔 denote the estimated rotor mechanical speed and lumped disturbance, respectively, 𝜔 𝑏𝜔 is the bandwidth of the ESO, and 𝑖 𝑞𝑠𝑟 𝑐2 is the type-2 composite speed control law.

The speed tracking error 𝑒 𝜔2 for the field-oriented controlled SPMSM-VSD system is defined as

2 mr m e    (5.28) 
Based on (5.25) and (5.28), the 𝑒 𝜔2 -dynamics can be expressed as

2 2 2 2 mr n m n qsr e a b i            (5.29) 
Selecting 𝑒 𝜔2 as the sliding variable, the type-2 composite speed control law 𝑖 𝑞𝑠𝑟 𝑐2 is designed as

  2 22 2 1 ĉ qsr s n m mr e n ia b             (5.30)
where 𝜇 𝑠𝜔2 is the modified STA for the finite-time rotor speed tracking control, which is expressed as (5.31), and 𝜌 ̂𝑒𝜔 is the estimated lumped disturbance from the adopted ESO for the compensation of 𝜌 𝜔2 . Substituting (5.30) into (5.29), the closed-loop 𝑒 𝜔2 -dynamics with the type-2 composite speed control law is expressed as
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Based on Theorem 5.1, it can be concluded that, with the type-2 composite speed control law (5.30), 𝑒 𝜔2 will converge to the origin in a finite time if 𝑘 𝜔1 𝑐2 , 𝑘 𝜔2 𝑐2 , 𝑝 𝜔1 𝑐2 and 𝑝 𝜔2 𝑐2 are selected as In the first test, the reference rotor mechanical speed increases from 500 rpm to 2500 rpm with the acceleration of 100 rpm/ms and the load torque provided by the load motor is set to 0 N⋅m. The rotor mechanical speed responses and corresponding tracking errors for four tested rotor speed controllers are illustrated in Figure 5.3. The dynamic performance of four tested rotor speed controllers are summarized in Table 5.2. Note that the tolerance band is chosen as ± 25 rpm, namely ± 1 % of 2500 rpm, for the settling time calculation. It can be seen that, in the frame of the FOC strategy, the standard STSM speed controller provides the highest overshoot and the longest settling time among four tested rotor speed controllers. With the integration of the ESO, the ESObased standard STSM speed controller can achieve lower overshoot and the significant reduction of the settling time compared with the standard STSM speed controller. In comparison with the aforementioned two standard STA-based rotor speed controllers, the overshoot for the modified STSM speed controller is able to reduce by 15.403 % (29.79 rpm) and 5.120 % (8.82 rpm), respectively. Although the settling time of the modified STSM speed controller is shorter than that of the standard STSM speed controller, it is much longer than that of the ESO-based standard STSM speed controller. Regarding the type-2 composite speed controller, it can be observed that such a rotor speed controller accomplish the smallest overshoot and the shortest settling time.
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In the second test, the reference rotor mechanical speed is kept at 2500 rpm and the load torque provided by the load motor steps from 0 to 0.6 N⋅m at 0.1 s. The rotor mechanical speed responses and corresponding tracking errors for four tested rotor speed controllers are illustrated in Figure 5.4.
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The dynamic performance of four tested rotor speed controllers are summarized in Table 5.3 in which the criterion for the settling time calculation is the same as the first test. It can be observed that, among four tested rotor speed controllers, the use of the standard STSM speed controller results in the highest maximum tracking error and the longest settling time. In comparison with such a rotor speed controller, the ESO-based standard STSM speed controller can reduce both the maximum tracking error and the settling time. Compared with these two standard STA-based rotor speed controllers, the modified STSM speed controller can further reduce the maximum tracking error whose value is about 82.804 % of that resulted by the ESO-based standard STSM speed controller.

Nevertheless, the settling time of the ESO-based standard STSM speed controller is still much shorter than that of the modified STSM speed controller. With respect to the type-2 composite speed controller, it can be seen that the maximum tracking error is 98.58 rpm, which is the lowest one among four tested rotor speed controllers. Furthermore, the settling time of the type-2 composite speed controller is also the shortest one among four tested rotor speed controllers.

Summary

In this chapter, a novel composite controller named as the type-2 composite controller is proposed for a single-input uncertain nonlinear system with relative degree one. The proposed composite controller comprises a modified STSM controller and a second-order ESO. The finite-time convergence of the sliding variable to the origin is guaranteed by the modified STSM controller and the second-order ESO is adopted to compensate the lumped disturbance in the sliding variable dynamics for the disturbance attenuation ability improvement. The rigorous stability analysis of the sliding variable dynamics with the type-2 composite controller is presented.

With respect to the 2L-VSI-fed SPMSM-VSD system, a novel robust FOC strategy is proposed, where a type-2 composite speed controller and two linear PI current controllers are used.

Comparative experimental tests among the standard STSM speed controller, the ESO-based standard STSM speed controller, the modified STSM speed controller and the type-2 composite speed controller in the frame of the FOC strategy are performed on the experimental test bench described in Section 2.5. Corresponding experimental results demonstrate that the type-2 composite speed controller can achieve the minimum rotor speed transient variation and the fastest dynamic response.

102 effective method to deal with such an issue.

ANN-DOs are the most popular DOs to construct composite controllers for the classic CSM controller [3]- [9]. Up to now, the composite controller combining the CSM algorithm with an ANN-DO, or as often called the ICSM controller, has found some applications [3]- [9]. In [3] and [4], the ICSM controller using the Takagi-Sugeno-Kang-type fuzzy neural network has been proposed for the speed control of the post-fault six-phase PMSM drive system and the synchronous control of the dual linear motor servo system, respectively. In [5], a recurrent HNN-based ICSM position controller has been proposed for the thrust active magnetic bearing system. In [6], regarding the linear ultrasonic motor system, an ICSM position controller using the recurrent wavelet neural network has been proposed. In [7], an ICSM controller using the recurrent neural fuzzy inference network has been applied to the position control of the one-link robotic manipulator and the DC motor drive system. Regarding the three-phase PMSM drive system, a RBFNN-based ICSM (RBFNN-ICSM) controller and an ENN-ICSM controller have been proposed for the position control in [8] and [9], respectively. Moreover, it has been experimentally demonstrated that the tracking performance of the latter is better than that of the former [9].

In all above-mentioned ICSM controllers, the saturation function used in the classic CSM controller is replaced by various types of ANN-DOs such that the asymptotic stabilization of the tracking error dynamics can be achieved [3]- [9]. Since the ANN is able to approximate any function of interest to any degree of accuracy as long as enough hidden neurons are used [10], each ANN-DO used in an ICSM controller is usually equipped with quite a few hidden neurons and each of them uses a complex activation function. In order to connect neurons in different layers effectively, many connective weights, each of which is updated online by a unique learning law, exist in each adopted ANN-DO. Moreover, since there exists a minimum approximation error in an ANN-DO in theory, an error compensator has to be integrated into the ICSM controller. These significantly increase the computational burden of a hardware controller to implement any one of ICSM controllers.

As mentioned in Section 3.1, besides the model-free DO, the extended DO, which is a type of model-based DO, is another popular choice to construct the composite controller. With respect to the three-phase PMSM drive system, since the classic position, speed or current dynamics of the PMSM is available and not complex, the extended DOs based on these dynamics have simpler structure than the ANN-DOs used in the composite position, speed or current controllers for the PMSM drive system. However, to the best of the author's knowledge, no published scientific literature investigates the composite controller combining the CSM algorithm with an extended DO;

103 let alone the application of this controller to the PMSM-VSD system.

In this chapter, the type-3 composite controller, which is composed of a sign function-based CSM controller and a STSMO, is proposed for a single-input uncertain nonlinear system with relative degree one. In this composite controller, the sign function-based CSM controller is used to stabilize the output tracking error dynamics asymptotically and the lumped disturbance in the tracking error dynamics is compensated by the STSMO. The rigorous stability analysis of the output tracking error dynamics with the type-3 composite controller is presented.

After the rigorous theoretical analysis of the proposed type-3 composite controller, such a controller applies to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In this FOC strategy, the proposed type-3 composite controller is used as the rotor speed controller in the speed control loop and two linear PI controllers serve as two stator current controllers in the current control loop. To validate the effectiveness and the superiority of the type-3 composite speed controller, based on the experimental test bench described in Section 2.5, comparative experimental tests among the classic CSM speed controller, three selected ENN-ICSM speed controllers and the type-3 composite speed controller in the frame of the FOC strategy are performed. Finally, the experimental results are presented and analyzed.

6.2 Type-3 Composite Controller Design

Problem Statement

Considering the single-input uncertain nonlinear system with relative degree one presented in (3.1), the output tracking error 𝑒 𝑦 is defined as yr e y y  (

Based on (3.1), (3.2) and (6.1), the 𝑒 𝑥 -dynamics can be derived as 
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where 𝜌 𝑒 (𝑥, 𝑡) denotes the lumped disturbance in the 𝑒 𝑥 -dynamics.

From (4.3) and (6.2), it can be seen that 𝜌 𝑒 is equal to 𝜌 𝑠 . The control objective is to let 𝑒 𝑥 converge to the origin asymptotically.

STSMO Design

As an extended DO, the STSMO design is dependent on the extended dynamics where the lumped disturbance is selected as an augmented state variable to be estimated. As mentioned in Section 5.2.1, the estimation of 𝜌 𝑠 is equivalent to the estimation of 𝜌 𝑥 . Considering (5.1) and the equivalence of 𝜌 𝑒 and 𝜌 𝑠 , the following expression holds 

Based on the above expression and Assumption 4.1, it can be said that the estimation of 𝜌 𝑒 is equivalent to the estimation of 𝜌 𝑥 . Therefore, the STSMO designed as (3.11) can be directly used in the type-3 composite controller.

Controller Design

According to [2], for the relative degree one system, the generalized sliding variable 𝑠 𝑔 and the complementary sliding variable 𝑠 𝑐 are designed as (6.4) and (6.5), respectively. where 𝜆 𝑦 is a positive constant gain.

The time derivatives of 𝑠 𝑔 and 𝑠 𝑐 along the trajectory of the 𝑒 𝑦 -dynamics can be calculated as (6.6) and (6.7), respectively. 

          (6.7) 
According to (6.6) and (6.7), the following expression can be derived.

  c g y g c s s s s     (6.8)
To achieve the control objective, the type-3 composite control law 𝜇 𝑐3 is designed as
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where 𝜇 𝐶𝑆𝑀 is the sign function-based CSM algorithm for the asymptotic convergence of 𝑒 𝑦 to the origin, which is expressed as (6.10), and 𝜌 ̂𝑆𝑇 is the estimated lumped disturbance from the adopted STSMO for the compensation of 𝜌 𝑥 .

 
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where 𝑘 𝑦 is a positive constant gain.

Substituting (6.9) into (6.2), the closed-loop 𝑒 𝑦 -dynamics with the type-3 composite control law is expressed as Based on (6.8), (6.9), (6.11), (6.13), 𝑉 ̇𝑐3 can be calculated as 

    ŝgn ( )
                        3 
                                          (6.14)
Combining (6.14) and (6.12), the following inequality can be obtained. Thus, 𝑒 𝑦 will converge to the origin asymptotically. The proof is completed. ■ Remark 6.1: In the type-3 composite control law, the use of the sign function is to guarantee the asymptotic convergence of 𝑒 𝑦 to the origin in theory. In order to avoid severe chattering in practice, the value selected for 𝑘 𝑦 should be small.

Application

In this section, the type-3 composite speed controller, which is designed using the practical speed dynamics of the SPMSM presented in (2.54), is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In such a FOC strategy, two linear PI current controllers are used as stator current controllers. Moreover, 𝑖 𝑑𝑠𝑟 is set to 0 and 𝑖 𝑞𝑠𝑟 is generated by the type-3 composite speed controller. Besides the type-3 composite speed controller, the designs and analyses of the classic CSM speed controller and the ENN-ICSM speed controller using the ENN-DO proposed in [9] are also presented. Results of the comparative experimental tests among the classic CSM speed controller, three selected ENN-ICSM speed controllers and the type-3 composite speed controller in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD 107 system are presented to demonstrate the superiority of the type-3 composite speed controller.

Classic CSM Speed Controller Design

Considering the speed tracking error 𝑒 𝜔2 expressed as (5.28), the generalized sliding variable 𝑠 𝜔𝑔 and the complementary sliding variable 𝑠 𝜔𝑐 for the classic CSM speed controller are designed as (6.19) and (6.20), respectively. 

                  (6.24)
The following Theorem can be used to select 𝑘 𝜔1 𝑐3 .

Theorem 6.2 [3]. Considering the system (6.24) and Assumption 5. 

ENN-ICSM Speed Controller Design

In [9], based on the three-phase linear PMSM servo system, it has been experimentally demonstrated that the tracking performance of the ENN-ICSM controller is better than that of the RBFNN-ICSM controller. Therefore, the ENN-ICSM speed controller is selected as a representative of the ICSM speed controller to be compared in this chapter. Since the ENN-ICSM controller proposed in [9] is used as the position controller rather the speed controller, the design of the ENN-ICSM speed controller using the ENN-DO proposed in [9] is presented in this subsection.

The ENN-DO proposed in [9] is illustrated in Figure 6.1. There are two input neurons, nine hidden neurons, nine context neurons and one output neuron in such an ANN-DO. The signal propagation and the activation function of each layer are described as follows.

Input Layer: In this layer, two input signals are the normalized speed tracking error and its time derivative. Thus, the output signals of two input neurons can be expressed as where 𝑒 𝜔2 (𝑛) is the speed tracking error at the nth instant and 𝜔 𝑟𝑎𝑡𝑒 is the rated rotor mechanical speed of the adopted SPMSM. where 𝚽 𝑒 (2) * (𝑛) = [ Φ 𝑒1 (2) * (𝑛) , Φ 𝑒2 (2) * (𝑛) ,…, Φ 𝑒9 (2) * (𝑛) ] T and 𝒚 (2) (𝑛) = [ 𝑦 1 (2) (𝑛) , 𝑦 2 (2) (𝑛) , … , 𝑦 9

(1) (1) 
(2) (𝑛)] T are the optimal output weight vector and the output signal vector of the hidden layer of the ENN-DO, respectively, 𝜀 𝐸𝑁𝑁 is the minimum approximation error of the ENN-DO.

Owing to the existence of 𝜀 𝐸𝑁𝑁 , the error compensator has to be integrated into the ENN-ICSM speed controller. Like the error compensator used in the type-1 composite speed controller, the error compensator used in the ENN-ICSM speed controller is updated online and the relevant learning law is derived by the Lyapunov synthesis approach. Assumption 6.2. Φ 𝑒𝑖 (2) * (𝑛) and 𝜀 𝐻𝑁𝑁 are constant in each sampling period.

Remark 6.3. In the ENN-DO, there are three weight vectors, i.e., two input weight vectors 𝚽 𝑒1 (1) (𝑛)

= [Φ 𝑒11 (1) (𝑛), Φ 𝑒21 (1) (𝑛),…, Φ 𝑒91

(1) (𝑛)] T and 𝚽 𝑒2 (1) (𝑛) = [Φ 𝑒12 (1) (𝑛), Φ 𝑒22 (1) (𝑛),…, Φ 𝑒92

(1) (𝑛)] T , and the output weight vector 𝚽 𝑒 (2) (𝑛) = [Φ 𝑒1 (2) (𝑛), Φ 𝑒2 (2) (𝑛),…, Φ 𝑒9

(2) (𝑛)] T need to be updated online. To maintain the stability of the tracking control system, the learning law for Φ 𝑒𝑖 (2) (𝑛) is derived by the 110 Lyapunov synthesis approach, while the learning laws for Φ 𝑒𝑖1 (1) (𝑛) and Φ 𝑒𝑖2 (1) (𝑛) are derived by the BP algorithm.

Based on the 𝑒 𝜔2 -dynamics expressed as (5.29), selecting 𝑠 𝜔𝑔 and 𝑠 𝜔𝑐 as the generalized and complementary sliding variables, respectively, the ENN-ICSM speed control law 𝑖 𝑞𝑠𝑟𝑒 𝑐3 can be designed as   where 𝑦 𝑒𝜔 and 𝑦 𝑐𝜔2 are the output signal of the adopted ENN-DO for the compensation of 𝜌 𝜔2 and the output signal of the error compensator for the compensation of the approximation error of the adopted ENN-DO, respectively, which are expressed as

(2) ()

T ee yn   y  (6.33) 22 cc y    (6.34)
where 𝜀 𝑐𝜔2 is the estimated approximation error of the adopted ENN-DO.

Substituting (6.32) into (5.29), the closed-loop 𝑒 𝜔2 -dynamics with the ENN-ICSM speed control law is expressed as

3 3 (2) (2) 2 2 2 2 () c c T g e c e e s n                  y  (6.35)
The following Theorem can be used to derive the learning laws for 𝜀 𝑐𝜔2 and 𝚽 𝑒 (2) . Theorem 6.3. Considering the system (6.35), for the positive constant 𝜆 𝜔 𝑐3 , if the learning laws for 𝜀 𝑐𝜔1 and Φ 𝑒𝑖 (2) are designed as (6.36) and (6.37), respectively, (𝑠 𝜔𝑔 + 𝑠 𝜔𝑐 ) will converge to the origin asymptotically.

 

3 2 c c c g c ss         (6.36)   (2) 3 (2) 1 c ei c g c i s s y         (6.37)
where 𝜂 𝑐𝜔𝜀 𝑐3 and 𝜂 𝑐𝜔1 𝑐3 are positive learning rates.

Proof. The Lyapunov candidate function 𝑉 𝐸𝑁𝑁 is selected as

  2 2 2 (2) (2) 33 1 1 1 1 2 2 2 T ENN g c ENN e e cc cc V s s           (6.38)
where 𝚽 ̃𝑒 (2) = 𝚽 𝑒 (2) * -𝚽 𝑒 (2) = [Φ ̃𝑒1 (2) , Φ ̃𝑒2 (2) ,…, Φ ̃𝑒9 (2) ] T and 𝜀̃𝐸 𝑁𝑁 = 𝜀 𝐸𝑁𝑁 -𝜀 𝑐𝜔2 .
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                                                         y yy                  (2) (2) 2 3 (2) (2) (2) (2) 2 33 1 2 3 (2) (2) (2) 
                                                                y y      (6.40)
It can be observed that (6.40) is equivalent to (6.15). Thus, following the same procedures presented in the proof of Theorem 6.1, it can be demonstrated that (𝑠 𝜔𝑔 + 𝑠 𝜔𝑐 ) will converge to the origin asymptotically. The proof is completed. ■ Remark 6.4. Since 𝑠 𝜔𝑔 + 𝑠 𝜔𝑐 = 2𝑒 𝜔2 , 𝑒 𝜔2 will converge to the origin asymptotically with the ENN-ICSM speed control law and the learning laws (6.36) and (6.37).

Since the learning laws for 𝜀 𝑐𝜔2 and 𝚽 𝑒 (2) expressed as (6.36) and (6.37) can guarantee the asymptotic convergence of 𝑒 𝜔2 to the origin, based on the BP algorithm, the learning laws for 𝚽 𝑒1 (1) (𝑛) and 𝚽 𝑒2 (1) (𝑛) are derived from the learning laws for 𝜀 𝑐𝜔2 and 𝚽 𝑒 (2) .

At first, the 𝑒 𝜔2 -based cost function 𝐸 𝜔 is defined as

2 2 1 2 Ee   (6.41)
Output Layer: The local gradient 𝜎 𝜔 is defined as the following expression [10].

      (4) 1 = En n yn       (6.42)
With respect to Φ 𝑒𝑖 (2) , the corresponding correction term ΔΦ 𝑒𝑖 (2) is defined by the so-called delta 112 rule [10], i.e.,

                  (4) 1 (2) (2) 1 1 1 (2) (4) (2) 1 ei i ei ei E n E n y n n n y n n y n n                      (6.43)
where 𝛾 𝜔1 is the positive learning rate for Φ 𝑒𝑖 (2) .

Φ 𝑒𝑖 (2) is updated online by

      (2) (2) (2) 1 ei ei ei n n n       (6.44)
It can be seen that the learning law for Φ 𝑒𝑖 (2) derived from the BP algorithm is dependent on 𝜎 𝜔 .

Based on the Euler method, the learning law for Φ 𝑒𝑖 (2) derived from the Lyapunov synthesis approach presented in (6.37) can be discretized as

        (2) (2) 3 (2) 1 1 c ei ei c s g c i n n T s s y n           (6.45)
In order to guarantee the stability of the rotor speed control system in theory, the learning law for Φ 𝑒𝑖 (2) presented in (6.44) should be equivalent to that presented in (6.45). Thus, based on the equivalence of (6.44) and (6.45), 𝛾 𝜔1 and 𝜎 𝜔 can be expressed as (6.46) and (6.47), respectively. Hidden Layer: With respect to Φ 𝑒𝑖1 (1) and Φ 𝑒𝑖2 (1) , based on the delta rule, the corresponding correction terms ΔΦ 𝑒𝑖1 (1) and ΔΦ 𝑒𝑖2 (1) are derived as 

                                (4) (2) (2) 1 (1) 1 2 2 (1) (4) (2) (2) (1) 1 1 1 (2) (2) (2) (1 
                             (6.48)                                 (4) (2) (2) 1 (1) 2 3 3 (1) (4) (2) (2) (1) 2 1 2 (2) (2) (2) (1) 32 1 ii ei ei i i ei g c ei i i E n E n y n y n x n n n y n y n x n n s s n y n y n x n                              (6.49)
where 𝛾 𝜔2 and 𝛾 𝜔3 are the positive learning rates for Φ 𝑒𝑖1 (1) and Φ 𝑒𝑖2 (1) , respectively.

Based on (6.48) and (6.49), Φ 𝑒𝑖1 (1) and Φ 𝑒𝑖2 (1) are updated online by (6.50) and (6.51), respectively. Similarly, with respect to the learning law for 𝜀 𝑐𝜔2 , its discrete form can be expressed as

      (1) (1) (1) 1 1 1 1 ei ei ei n n n       (6.50)       (1) (1) 
      22 1 c c g c n n s s             (6.52) 
where 𝛾 𝜀 = 𝑇 𝑆 𝜂 𝑐𝜔𝜀 𝑐3 is the positive learning rate for 𝜀 𝑐𝜔2 .

Remark 6.5. Since there are two input neurons and nine hidden neurons in the adopted ENN-DO, nine logistic functions are used in the hidden layer and twenty-eight learning laws need to be implemented in each sampling period of the hardware controller. Therefore, the implementation of the adopted ENN-DO significantly increases the computational burden of the hardware controller.

The block diagram of the ENN-ICSM speed controller is shown in Figure 6.2.

Type-3 Composite Speed Controller Design

According to the STSMO design presented in Section 3. where 𝜇 𝑐𝜔 denotes the sign function-based CSM control term expressed as (6.56), and 𝜌 ̂𝑠𝜔 is the estimated lumped disturbance from the adopted STSMO for the compensation of 𝜌 𝜔2 .

 

3 3 3 2 2 2 sgn c c c c mr n m g g c a e s k s s                     (6.56)
where 𝑘 𝜔2 𝑐3 is the positive constant gain.

Substituting (6.55) into (5.29), the closed-loop 𝑒 𝜔2 -dynamics with the type-3 composite speed control law is expressed as 

   
                                    (6.57)
Based on Theorem 6.1, it can be concluded that, for the positive constant 𝜆 𝜔 𝑐3 , with the type-3 composite speed control law (6.55), 𝑒 𝜔2 will converge to the origin asymptotically if 𝑘 𝜔2

𝑐3 is selected as 33 21 cc kL   (6.58)

In the type-3 composite speed controller, 𝜌 𝜔2 is compensated by the STSMO, and the role of the sign function is to guarantee the asymptotic stability of the 𝑒 𝜔2 -dynamics in theory, as discussed in Remark 6.1. Therefore, the value selected for 𝑘 𝜔2 𝑐3 should be small such that the implementation of the type-3 composite speed controller in the DSP does not yield severe chattering phenomena in practice.

The block diagram of the type-3 composite speed controller is shown in Figure 6. 

Experimental Results

The experimental test bench described in Section 116

The parameters of these speed controllers are listed in Table 6 In order to evaluate the implementation complexities of the classic CSM speed controller, the selected ENN-ICSM speed controller and the type-3 composite speed controller, the calculation time of the FOC strategy in each sampling period is chosen as the index. Table 6.4 shows such indexes for FOC strategies using the classic CSM speed controller, the selected ENN-ICSM speed controller and the type-3 composite speed controller. It can be seen that the use of the selected ENN-ICSM speed controller or the type-3 composite speed controller to replace the classic CSM speed controller in the FOC strategy inevitably increases the calculation time of the FOC strategy in each sampling period. More specifically, compared with the FOC strategy using the classic CSM speed controller, the calculation times of the FOC strategies using the selected ENN-ICSM speed controller and the type-3 composite speed controller in each sampling period increases by 174.17 % and 14.76%, respectively. Based on above analyses, it can be concluded that the type-3 composite speed controller is more computationally efficient than the ENN-ICSM speed controller that uses the ENNbased DO proposed in [9].

Summary

In this chapter, a novel composite controller named as the type-3 composite controller is proposed for a single-input uncertain nonlinear system with relative degree one. The proposed composite controller is composed of the sign function-based CSM algorithm and a STSMO. The asymptotic convergence of the output tracking error is accomplished by the sign function-based CSM controller and the STSMO is adopted to compensate the lumped disturbance in the output tracking error dynamics for the disturbance attenuation ability improvement. The rigorous stability analysis of output tracking error dynamics with the type-3 composite controller is presented.

With respect to the 2L-VSI-fed SPMSM-VSD system, a novel robust FOC strategy is proposed.

In this FOC strategy, a type-3 composite speed controller and two linear PI current controllers are adopted. Comparative experimental tests among the classic CSM speed controller, three selected ENN-ICSM speed controllers and the type-3 composite speed controller in the frame of the FOC 121 strategy are performed on the experimental test bench described in Section 2.5. Corresponding experimental results demonstrate that the type-3 composite speed controller can achieve the minimum rotor speed transient variation and the fastest dynamic response. Moreover, compared with the selected ENN-ICSM speed controller, the computational burden of the DSP to implement the type-3 composite speed controller is lower.

Introduction

The adaptive control is a widely used nonlinear control technique for the single-input uncertain nonlinear system with relative degree one. It can be regarded as a combination of a control law with one or more online parameter estimators, commonly known as adaptive laws, which accomplish online estimation of unknown parts in the control law [1], [2]. The types and combinations of control laws and adaptive laws lead to a wide class of adaptive controllers. The MRA controller is one of the most popular adaptive controllers. In general, the first step of designing the MRA controller is to select a reference model to specify the desired output trajectory for the system. Afterward, to make the actual output of the system follow such a trajectory, a control law is designed, where one or more compensation terms updated online by the adaptive laws are used to deal with the unknown parts of the system. Until now, MRA controllers have found wide applications [3]- [13]. However, the classic MRA controller is based on the feedback regulation mechanism, which may not be able to react fast enough for strong disturbances [14]. To overcome this limitation, the composite controller combining the classic MRA controller with a DO can be developed.

For AC motor-based VSD systems, the ANN-DO is a popular choice to construct the MRAbased composite speed controller [15]- [17]. However, as has been stated in Section 6.1, the implementation of the ANN-DO significantly increases the computational burden of the hardware controller, and the model-based extended DO is a better choice in terms of simplicity. As mentioned in Section 3.1, the STSMO is one of the most popular nonlinear extended DO for the DOC of AC motor drive systems. However, to the best of the author's knowledge, no published literature investigates the composite controller combining a classic MRA controller with a STSMO; let alone the application of this controller to the PMSM-VSD system.

In this chapter, the type-4 composite controller, which is composed of a classic MRA controller and a STSMO, is proposed for a single-input uncertain nonlinear system with relative degree one.

A stable first-order linear model is selected as the reference model to describe the desired output trajectory for the system. The proposed composite controller consists of three terms. The first term is the stabilization term dependent on known parts of the system and the selected reference model.

The second term is the disturbance compensation term based on the STSMO. The third term is the error compensation term updated online by an adaptive law, which is derived by the Lyapunov synthesis approach. The rigorous stability analysis of the dynamics of the output tracking error between the desired and actual outputs of the system with the type-4 composite controller is presented.

After the rigorous theoretical analysis of the proposed type-4 composite controller, this controller is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In this FOC strategy, the proposed type-4 composite controller is used as the rotor speed controller in the speed control loop and two linear PI controllers serve as two stator current controllers in the current control loop. To validate the effectiveness and the superiority of the type- 

           (7.4)
The control objective is to let 𝑒 𝑟 converge to the origin asymptotically.

STSMO Design

From (7.4), it can be seen that the only unknown part in the 𝑒 𝑟 -dynamics is 𝜌 𝑥 . Therefore, the STSMO designed as (3.11) for the estimation of 𝜌 𝑥 can be directly used in the type-4 composite controller.

Controller Design

To achieve the control objective, the type-4 composite control law 𝜇 𝑐4 is designed as

  43 1 ĉ s ST c n b        (7.5)
where 𝜇 𝑠 is the stabilization term for the asymptotic convergence of 𝑒 𝑦 to the origin, which is expressed as (7.6), 𝜌 ̂𝑆𝑇 is the estimated lumped disturbance from the adopted STSMO for the compensation of 𝜌 𝑥 , and 𝜀 𝑐3 is the error compensation term for confronting of the estimation error of the adopted STSMO. 

               (7.7)
where 𝜀̃𝑐 3 = 𝑒 𝑆𝑇 -𝜀 𝑐3 .

Assumption 7.1. 𝑒 𝑆𝑇 is constant in each sampling period.

The following Theorem can be used to derive the adaptive law for 𝜀 𝑐3 to accomplish the control 126 objective.

Theorem 7.1. Considering the system (7.7), for the positive constant 𝛼 𝑟 , if the adaptive law for 𝜀 𝑐3 is designed as (7.8), 𝑒 𝑟 will converge to the origin asymptotically. 

Application

In this section, the type-4 composite speed controller, which is designed using the practical speed dynamics of the SPMSM presented in (2.54), is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In such a FOC strategy, two linear PI current controllers are used as stator current controllers. Moreover, 𝑖 𝑑𝑠𝑟 is set to 0 and 𝑖 𝑞𝑠𝑟 is generated by the type-4 composite speed controller. Besides the type-4 composite speed controller, the designs and analyses of the classic MRA speed controller and the RBFNN-MRA speed controller proposed in [16] are also presented. Results of the comparative experimental tests among three selected classic MRA speed controllers, three selected RBFNN-MRA speed controllers and the type-4 composite speed controller in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system are presented to demonstrate the superiority of the type-4 composite speed controller.

Problem Statement

According to (5.25), the 𝜔 𝑚 -dynamics of the SPMSM can be rewritten as

  2 2 2 2 r m n qsr n m n qsr r b i a b i                 (7.15)
where 𝜌 𝜔𝑟 denotes the lumped disturbance in the derived 𝜔 𝑚 -dynamics. where 𝑒 𝐴 = 𝜌 𝜔𝑟 -𝜌 ̂𝐴.

The following Theorem can be used to derive the adaptive law for 𝜌 ̂𝐴 to achieve the control objective.

Theorem 7.2. Considering the system (7.21), for the positive constant 𝛼 𝜔𝑟 𝑐4 , if the adaptive law for 𝜌 ̂𝐴 is designed as (7.22), 𝑒 𝜔𝑟 will converge to the origin asymptotically.

ˆA

A r e    (7.22) where 𝜂 𝜔𝐴 is the positive constant gain.

Proof. The Lyapunov candidate function 𝑉 𝐴 is selected as It can be observed that (7.25) is equivalent to (7.11). Thus, following the same procedures presented in the proof of Theorem 7.1, it can be demonstrated that 𝑒 𝜔𝑟 will converge to the origin asymptotically. The proof is completed. ■

RBFNN-MRA Speed Controller Design

In [16], a RBFNN-MRA speed controller has been proposed for the five-phase PMSM-VSD system,

and it has been experimentally demonstrated that the tracking performance of such a speed controller is better than that of the linear PI speed controller. Therefore, the RBFNN-MRA speed controller proposed in [16] is selected as a representative of the composite speed controller combining a classic MRA speed controller with an ANN-DO to be compared in this chapter.

The adopted RBFNN-DO is illustrated in Figure 7.1. There are two input neurons, fifty-one hidden neurons and one output neuron in such an ANN-DO. The signal propagation and the activation function of each layer are described as follows.

Input Layer: In this layer, two input signals are the normalized rotor mechanical speed and the normalized RBFNN-MRA speed control law [16]. Thus, the output signals of two input neurons can be expressed as where 𝑐 𝑟1𝑖 and 𝑐 𝑟2𝑖 denote the centers for two Gaussian functions in the ith hidden neuron at the nth instant, 𝛿 𝑟1𝑖 and 𝛿 𝑟2𝑖 represent the widths for two Gaussian functions in the ith hidden neuron at the nth instant.

Output Layer: In this layer, the output signal is the estimated lumped disturbance in the 𝜔 𝑚dynamics, which can be calculated as where 𝜌 ̂𝑅𝐵𝐹 is the estimated lumped disturbance from the RBFNN-DO, 𝑊 𝑟𝑖 (2) (𝑛) denotes the connective weight between the output neuron and the ith hidden neuron at the nth instant.

Remark 7.2. In the RBFNN-DO adopted by the RBFNN-MRA speed controller proposed in [16],

the values of 𝑐 𝑟1𝑖 , 𝑐 𝑟2𝑖 , 𝛿 𝑟1𝑖 and 𝛿 𝑟2𝑖 are set in advance, and 𝑊 𝑟𝑖 (2) (𝑛) is updated online by the adaptive law.

On the basis of the 𝑒 𝜔𝑟 -dynamics expressed as (7.18) and the reference model expressed as (7.17), the RBFNN-MRA speed control law 𝑖 𝑞𝑠𝑟𝑏 𝑐4 is designed as follow [16]:

  where 𝑦 𝑟𝜔 is the output signal of the adopted RBFNN-DO for the compensation of 𝜌 𝜔𝑟 , which is expressed as

(2)

(2) () T rr yn  Wy (7.31) are the output weight vector and the output signal vector of the hidden layer of the RBFNN-DO, respectively. The following Theorem can be used to derive the adaptive laws for 𝑾 𝑟 (2) (𝑛) for accomplishing the control objective.

+

Theorem 7.3 [16], [18]. Considering the system (7.21), for the positive constant 𝛼 𝜔𝑟 𝑐4 , if the adaptive law for 𝑊 𝑟𝑖 (2) is designed as (7.33), 𝑒 𝜔𝑟 will converge to the origin asymptotically. where 𝜂 𝜔𝑅1 and 𝜂 𝜔𝑅2 are two positive constant gains.

Remark 7.3. In the RBFNN-MRA speed controller, the construction of the disturbance compensation term is achieved by the RBFNN-DO. The adaptive laws are employed for the online update of the connective weights of the RBFNN-DO, rather than the estimation of 𝜌 𝜔𝑟 .

Remark 7.4. From a practical point of view, the existence of the second term in the right side of (7.33) leads to the fact that the low-pass filter rather than the pure integrator is adopted by each adaptive law of the RBFNN-DO presented in [16].

The block diagram of the RBFNN-MRA speed controller is illustrated in Figure 7.2. 132

Type-4 Composite Speed Controller Design

The design of the STSMO for the estimation of 𝜌 𝜔𝑟 is dependent on the extended 𝜔 𝑚 -dynamics.

Based on (7.15), selecting -𝜌 𝜔𝑟 as an augmented state variable, the extended 𝜔 𝑚 -dynamics can be derived as where 𝑧 𝑟𝜔1 = 𝜔 𝑚 and 𝑧 𝑟𝜔2 = -𝜌 𝜔𝑟 denote two state variables of the extended 𝜔 𝑚 -dynamics.

On the basis of the STSMO design presented in Section 3.3.2, the STSMO can be designed as (7.35) for the estimation of 𝜌 𝜔𝑟 . Based on (7.34) and (7.35), the state estimation error system for the adopted STSMO can be described as where 𝜀 𝑐𝜔3 is the error compensation term for the estimation error of the adopted STSMO in practice. where 𝜀̃𝑐 𝜔3 = 𝑒 𝑟𝜔2 -𝜀 𝑐𝜔3 .

Based on Theorem 7.1, it can be concluded that, for the positive constant 𝛼 𝜔𝑟 𝑐4 , with the type-4 composite speed control law (7.38), 𝑒 𝜔𝑟 will converge to the origin asymptotically if the adaptive law for 𝜀 𝑐𝜔3 is designed as

3 c s r e   
  (7.40) where 𝜂 𝜔𝑠 is the positive constant gain.

The block diagram of the type-4 composite speed controller is shown in Figure 7.3.

Experimental Results

The experimental test bench described in Section 7.1. Note that, in accordance with [16],

both 𝛿 𝑟1𝑖 and 𝛿 𝑟2𝑖 are equal to 0.5, and the values of 𝑐 𝑟1𝑖 and 𝑐 𝑟2𝑖 are evenly distributed between 139 classic MRA speed controller and the RBFNN-MRA speed controller decrease, respectively.

Nevertheless, similar to the first test, the price we pay for the reductions of the maximum tracking error is the growth of the settling time and the appearance of undesired oscillations in the transient period. Among all tested rotor speed controllers, the proposed type-4 composite speed controller achieves the shortest settling time and the smallest maximum tracking error. In order to evaluate the implementation complexities of the classic MRA speed controller, the selected RBFNN-MRA speed controller and the type-4 composite speed controller, the calculation time of the FOC strategy in each sampling period is chosen as the index. Table 7.4 shows such indexes for FOC strategies using the classic MRA speed controller, the selected RBFNN-MRA speed controller and the type-4 composite speed controller. It can be seen that, compared with the classic MRA speed controller-based FOC strategy, the calculation times of the FOC strategies using the selected RBFNN-MRA speed controller and the type-4 composite speed controller in each sampling period rise by 765.77 % and 12.67 %, respectively. Therefore, the implementation of the RBFNN-DO presented in [16] significantly increases the computational burden of the DSP, such that it may be difficult for the corresponding RBFNN-MRA speed controller-based FOC strategy to incorporate the schemes for other purposes, such as the rotor position observation and the inverter nonlinearity effect compensation. Moreover, the type-4 composite speed controller is more computationally efficient than the selected RBFNN-MRA speed controller.

Summary

In this chapter, a novel composite controller named as the type-4 composite controller is proposed for a single-input uncertain nonlinear system with relative degree one. The proposed composite controller is composed of a classic MRA controller and a STSMO. A stable first-order linear model is selected as the reference model to describe the desired output trajectory for the system. There are three terms in the proposed composite controllers. The first term is the stabilization term dependent on known parts of the system and the selected reference model for stabilizing the dynamics of the output tracking error between the desired and actual outputs of the system asymptotically. The second term is the disturbance compensation term based on the STSMO for compensating the lumped disturbance in the dynamics of the output tracking error between the desired and actual outputs of the system. The third term is the error compensation term updated online by an adaptive law, which is derived from the Lyapunov synthesis approach, for confronting the estimation error of the STSMO in practice. The rigorous stability analysis of the dynamics of the output tracking error between the desired and actual outputs of the system with the type-4 composite controller is presented.

With respect to the 2L-VSI-fed SPMSM-VSD system, a novel robust FOC strategy is proposed.

In this FOC strategy, a type-4 composite speed controller and two linear PI current controllers are adopted. Comparative experimental tests among three selected classic MRA speed controllers, three selected RBFNN-MRA speed controllers and the type-4 composite speed controller in the frame of the FOC strategy are performed on the experimental test bench described in Section 2.5.

Corresponding experimental results demonstrate that the type-4 composite speed controller can achieve the minimum rotor speed transient variation and the fastest dynamic response. Moreover, compared with the selected RNFNN-MRA speed controller, the computational burden of the DSP to implement the type-4 composite speed controller is lower.

Conclusions and Perspectives

CONCLUSIONS AND PERSPECTIVES

Conclusions

Combining a feedback controller with a well-designed DO is an effective way to improve the robustness of such a controller-based closed-loop tracking control system against the unmodeled dynamics, parametric uncertainties and external disturbances. In this thesis, four novel composite controllers, each of which combines a nonlinear feedback controller with a DO, are proposed for a single-input uncertain nonlinear system with relative degree one for the disturbance attenuation ability improvement and applied to the construction of novel robust FOC strategies for 2L-VSI-fed SynRM-VSD and 2L-VSI-fed SPMSM-VSD systems.

The first proposed composite controller is named as the type-1 composite controller. Such a composite controller consists of a standard STSM controller, a HNN-DO and an error compensator.

The standard STSM controller is used to achieve the finite-time convergence of the sliding variable to the origin. The HNN-DO is used to compensate the lumped disturbance in the sliding variable dynamics. The error compensator is used to compensate the approximation error of the adopted HNN-DO. The rigorous stability analysis of the sliding variable dynamics with the type-1 composite controller is presented. On the basis of that, the learning laws for the connective weights between the output neuron and the hidden neurons in the HNN-DO and the error compensator are rigorously derived. Besides the HNN-DO and its corresponding error compensator, these learning laws are suitable for any other type of ANN-DO and its corresponding error compensator used in a standard STSM controller-based composite controller. After the rigorous theoretical analysis, the type-1 composite controller is applied to the construction of a novel robust FOC strategy for the 2L-VSIfed SynRM-VSD system. In this FOC strategy, the type-1 composite controller is used as a rotor 

Future Work

For future work, the following research topics will be taken into account:

1) A comparative study between the composite controller combining a standard STSM controller with an ANN-DO and the composite controller combining a standard STSM controller with a model-based extended DO.

2) Applying four proposed composite controllers to the current control loop of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system to further improve the robustness of the FOC strategy against the unmodeled dynamics, parametric uncertainties and external disturbances in the stator current dynamics

3) Developing a novel magnetic model for the SynRM.
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 11 Figure 1.1 Block diagram of the variable speed drive system.
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 12 Figure 1.2 Block diagram of the disturbance-observer-based nonlinear control.
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 311 A composite controller consisting of a sign function-based complementary sliding-mode (CSM) controller and a STSMO is proposed for a single-input uncertain nonlinear system with relative degree one and applied to the speed control loop of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In such a composite controller, the sign function-based CSM controller is used to achieve the asymptotic stabilization of the output tracking error dynamics and the STSMO is used to compensate the lumped disturbance in the output tracking error dynamics.The rigorous stability analysis of the output tracking error dynamics with the proposed composite controller is presented. Comparative experimental tests among the classic CSM speed controller, three selected Elman neural network (ENN)-based intelligent CSM (ENN-ICSM) speed controllers, each of which is dependent on a ENN-based DO (ENN-DO) and an error compensator, and the proposed composite speed controller are performed on a suitably developed experimental test bench in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system. Experimental results validate the feasibility and the superiority of this proposed composite speed controller.4) A composite controller based on a classic model reference adaptive (MRA) controller and aSTSMO is proposed for a single-input uncertain nonlinear system with relative degree one and applied to the speed control loop of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system.A stable first-order linear model is selected as the reference model to describe the desired output trajectory. The proposed composite controller comprises three terms. The first term is the stabilization term, which is dependent on known parameters of the system and the selected reference model, for stabilizing the output tracking error dynamics asymptotically. The second term is the disturbance compensation term, which is based on the STSMO, for compensating the lumped disturbance in the output tracking error dynamics. The third term is the error compensation term, which is updated online by an adaptive law, for confronting the estimation error of the STSMO in practice. The rigorous stability analysis of the output tracking error dynamics with the proposed composite controller is presented. Based on that, the adaptive law for the error compensation term in the proposed composite controller is rigorously derived.Comparative experimental tests among three selected classic MRA speed controllers, three radial basis function neural network-based MRA (RBFNN-MRA) speed controllers, each of which is dependent on a RBFNN-based DO (RBFNN-DO), and the proposed composite speed controller are performed on a suitably developed experimental test bench in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system. Experimental results validate the feasibility and the superiority of this proposed composite speed controller. In this thesis, to distinguish above-mentioned proposed composite controllers from each other, the proposed composite controller consisting of a standard STSM controller, a HNN-DO and an error compensator is named as the type-1 composite controller, the proposed composite controller consisting of a modified STSM controller and a second-order ESO is named as the type-2 composite controller, the proposed composite controller consisting of a sign function-based CSM controller and a STSMO is named as the type-3 composite controller, and the proposed composite controller consisting of a classic MRA controller and a STSMO is named as the type-4 composite controller.
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 4 Y. -C. Liu, A. N'Diaye, S. Laghrouche, A. Djerdir, and M. Cirrincione, "Identification of neural network magnetic models of synchronous reluctance motors based on Levenberg-Marquardt back-propagation algorithm and genetic algorithm optimization," in Proceedings of 2019 International Conference on Innovation Energy, pp. 1-10, Oct. 2019.

Chapter 3 :Chapter 5 :Chapter 6 :Chapter 7 :

 3567 Two model-based extended DOs and four model-free DOs for a single-input uncertain nonlinear system with relative degree one are briefly reviewed. More specifically, the two modelbased extended DOs are the second-order ESO and the STSMO. Four model-free DOs include three widely used feedforward neural network-based DOs (FNN-DOs), i.e., the three-layer perceptronbased DO (TLP-DO), the RBFNN-DO and the HNN-DO, and a widely used recurrent neural network-based DO (RNN-DO), i.e., the ENN-DO. Furthermore, regarding the derivation of the learning laws for some parameters in above-mentioned model-free DOs, two widely used approaches are introduced.Chapter 4: The design and the rigorous stability analysis of the type-1 composite controller for a single-input uncertain nonlinear system with relative degree one are presented. Afterward, based on the practical speed dynamics of the SynRM, the type-1 composite controller is designed as a rotor speed controller for the construction of a novel robust FOC strategy for the 2L-VSI-fed SynRM-VSD system. Moreover, based on the practical current dynamics of the SynRM, two composite current controllers, each of which consists of two standard STSM controllers, are designed for such a robust FOC strategy, and related rigorous stability analyses are presented. The results of comparative HIL tests between the proposed FOC strategy and the classic STA-based FOC strategy, which is based on a standard STSM speed controller and two linear PI current controllers, for the 2L-VSI-fed SynRM drive system are presented and analyzed. The design and the rigorous stability analysis of the type-2 composite controller for a single-input uncertain nonlinear system with relative degree one are presented. Afterward, based on the practical speed dynamics of the SPMSM, the type-2 composite controller is designed as a rotor speed controller for the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. The results of comparative experimental tests among the standard STSM speed controller, the ESO-based standard STSM speed controller, the modified STSM speed controller and the type-2 composite speed controller in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system are presented and analyzed. The design and the rigorous stability analysis of the type-3 composite controller for a single-input uncertain nonlinear system with relative degree one are presented. Afterward, based on the practical speed dynamics of the SPMSM, the type-3 composite controller is designed as a rotor speed controller for the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. The results of comparative experimental tests among the classic CSM speed controller, 12 three selected ENN-ICSM speed controllers and the type-3 composite speed controller in the frame of the FOC strategy of the 2L-VSI-fed SPMSM-VSD system are presented and analyzed. The design and the rigorous stability analysis of the type-4 composite controller for a single-input uncertain nonlinear system with relative degree one is presented. Afterward, based on the practical speed dynamics of the SPMSM, the type-4 composite controller is designed as a rotor speed controller for the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. The results of comparative experimental tests among the three selected classic MRA speed controllers, three selected RBFNN-MRA speed controllers and the type-4 composite speed controller in the frame of the FOC strategy for the 2L-VSI-fed SPMSM-VSD system are presented and analyzed. Chapter 8: Conclusions and perspectives for future work are presented.2 Modeling and Control of SPMSM-VSD and SynRM-VSD Systems

Figure 2 . 1

 21 Figure 2.1 Categorization of AC synchronous motors based on the torque generation mechanism [13].

Figure 2 . 2

 22 Figure 2.2 2L-VSI-fed AC synchronous motor-based VSD system.

Figure 2 . 2 ,

 22 where 𝑈 𝑑 is the voltage of the DC electrical power supply, C denotes the DC-link capacitor, 𝑄 𝑥𝑦 and 𝐷 𝑥𝑦 for all 𝑥 ∈ {𝑎, 𝑏, 𝑐} and 𝑦 ∈ {1, 2, 3} denote each IGBT and freewheeling diode in the 2L-VSI, respectively, 𝑖 𝑎𝑠 , 𝑖 𝑏𝑠 and 𝑖 𝑐𝑠 are three-phase stator currents. It can be seen that each leg of the 2L-VSI is equipped with two IGBTs and two freewheeling diodes. There are two switching states in each leg of the 2L-VSI:

)Figure 2 . 3

 23 Figure 2.3 Single-phase switching sequence and pole voltage of the 2L-VSI considering inverter nonlinearities. (a) Applied switching sequence for leg x. (b) Actual switching sequence for leg x with dead time. (c) Ideal phase x pole voltage. (d) Actual phase x pole voltage with dead time and turn-on/off time. (e) Actual phase x pole voltage with all considered inverter nonlinearities.
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 24 Figure 2.4 Distribution of the space vector components in three different reference frames. (a) The abc frame and the  frame. (b) The  frame and the dq frame.

Figure 2 . 5

 25 Figure 2.5 Locations of two axes in the dq frame for considered AC synchronous motors [3]. (a) SPMSM. (b) SynRM.
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 26 Figure 2.6 Block diagram of the field-oriented control strategy.
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 2727 Figure 2.7. In this test bench, there are two dSPACE DS1104 Research and Development Boards: one is used as the hardware controller to implement the tested FOC strategy, the other is employed as the emulator to emulate the 2L-VSI-fed SynRM-VSD system. Moreover, the sampling period of each Research and Development Boards is different from each other.
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 28 Figure 2.8 Description of the experimental test bench. (a) DC voltage source. (b) Two coupled SPMSMs. (c) Two TMDSHVMTRPFCKITs.

  Based on (3.20) and (3.21), the following matrix inequality holds

Figure 3 . 1 .

 31 Figure 3.1.It consists of the input layer, the hidden layer and the output layer. In the input layer, there are N neurons corresponding to N input signals. In the hidden layer, there are M neurons, and each of them uses an activation function to achieve signal processing. In the output layer, one neuron is adopted and its output signal is the estimated 𝜌 𝑥 , which is a weighted sum of output signals of hidden neurons. The TLP-DO, the RBFNN-DO and the HNN-DO have the same structure as
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 31321 Figure 3.1 Block diagram of a FNN-DO with single hidden layer.
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 33 Figure 3.3 Gaussian function with single input signal.
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 34 Figure 3.4 First six Hermite functions.
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 35 Figure 3.5 Block diagram of the ENN-DO.
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1 SFigure 4 . 1

 141 Figure 4.1 Block diagram of a HNN-DO in the type-1 composite controller.

  and Ω 𝐻𝑁𝑁 (𝑡) is a uniformly continuous function, according to Barbălat's Lemma[20], lim 𝑡→∞ Ω 𝐻𝑁𝑁 (𝑡) = 0 holds. It means that lim 𝑡→∞ 𝑠 1 (𝑡) = 0 holds. Therefore,
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 443 Figure 4.3 Block diagram of the proposed composite current controllers.
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 45144 Figure 4.4 Implementation of the field-oriented controlled 2L-VSI-fed SynRM-VSD system in HIL tests.
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 45 Figure 4.5 Apparent inductance model of the SynRM. (a) L d (i ds , i qs ). (b) L q (i ds , i qs ).
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 4 6 presents the rotor mechanical speed responses of the proposed FOC strategy and the classic STA-based FOC strategy, while the stator current responses of these two tested FOC strategies are illustrated in Figure 4.7. It can be seen that, in comparison with the classic STA-based FOC strategy, the proposed FOC strategy can achieve smaller maximum tracking error and shorter settling time for the speed and current tracking control under the sudden change of external disturbances. In the second test, the values of 𝑇 𝐿 , 𝑖 𝑑𝑠𝑟 , ∆J and ∆𝑅 𝑠 are set to 2.4 N•m, 5 A, 4J 0 and 0, respectively. The value of 𝜔 𝑚𝑟 steps from 1000 rpm to 1500 rpm at first, and then it is back to 1000 rpm. The rotor mechanical speed responses and the stator current responses of two tested FOC strategies are presented in Figure 4.8 and Figure 4.9, respectively. It can be observed that, in the presence of the rotor inertia uncertainty, the proposed FOC strategy can accomplish smaller overshoot and shorter settling time for the speed and current tracking control under the sudden change of the reference rotor mechanical speed, compared with the classic STA-based FOC strategy. In the third test, the values of 𝜔 𝑚𝑟 , 𝑇 𝐿 , 𝑖 𝑑𝑠𝑟 and ∆J are set to 1000 rpm, 2.4 N•m, 5 A and 0, respectively, while the value of ∆𝑅 𝑠 steps from 0 to 2𝑅 𝑠 . The stator current responses of two tested FOC strategies are shown in Figure 4.10. It can be seen that the proposed FOC strategy is able to achieve smaller variations of d-and q-axes stator current components compared with the classic STA-based FOC strategy.
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 46 Figure 4.6 Rotor mechanical speed responses for the first test. (a) Classic STA-based FOC strategy. (b) Proposed FOC strategy.
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 4748 Figure 4.7 Stator current responses for the first test. (a) Classic STA-based FOC strategy. (b) Proposed FOC strategy.
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 49 Figure 4.9 Stator current responses for the second test. (a) Classic STA-based FOC strategy. (b) Proposed FOC strategy.
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 410 Figure 4.10 Stator current responses for the third test. (a) Classic STA-based FOC strategy. (b) Proposed FOC strategy.
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 1 According to (5.1) and Assumption 4.1, the estimation of 𝜌 𝑠 is equivalent to the estimation of 𝜌 𝑥 . It means that the second-order ESO designed as (3.5) can be directly used in the type-2 composite controller.
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 51 Figure 5.1 Block diagram of the type-2 composite speed controller.
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 5354 Figure 5.3 Rotor mechanical speed responses and corresponding tracking errors for the first test. (a) Standard STSM speed controller. (b) ESO-based standard STSM speed controller. (c) Modified STSM speed controller. (d) Type-2 composite speed controller.
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 62 Figure 6.2 Block diagram of the ENN-ICSM speed controller.
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 6361 Figure 6.3 Block diagram of the type-3 composite speed controller.
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 25 is used to perform comparative experimental tests among the classic CSM speed controller, three selected ENN-ICSM speed controllers with different values of 𝛾 𝜔1 and the type-3 composite speed controller in the frame of the FOC strategy whose block diagram is illustrated in Figure 5.2. With respect to the construction of these tested speed controllers, 75%, 125% and 75% of rated values of J, 𝐵 𝑚 and 𝜆 𝑚 , respectively, are used.
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 64 Figure 6.4 Rotor mechanical speed responses and corresponding tracking errors for the first test. (a) Classic CSM speed controller. (b) ENN-ICSM speed controller 1. (c) ENN-ICSM speed controller 2. (d) ENN-ICSM speed controller 3. (e) Type-3 composite speed controller.
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  composite speed controller, based on the experimental test bench described in Section 2.5, comparative experimental tests among three selected classic MRA speed controllers, three selected RBFNN-MRA speed controllers and the type-4 composite speed controller in the frame of the FOC strategy are carried out. Finally, the experimental results are presented and analyzed.7.2 Type-4 Composite Controller Design7.2.1 Problem StatementConsidering the single-input uncertain nonlinear system with relative degree one presented in (3.1), based on (3.3), the 𝑦-dynamics can be written as * is the desired output of the system generated by the reference model, 𝛼 𝑟 and 𝛽 𝑟 are two positive constants determining the dynamic performance of the reference model.The output tracking error between the desired and actual outputs of the system is defined as

  into (7.4), the closed-loop 𝑒 𝑟 -dynamics with the type-

Figure 7 . 1

 71 Figure 7.1 Block diagram of the RBFNN-DO used in the RBFNN-MRA speed controller.

Figure 7 . 2

 72 Figure 7.2 Block diagram of the RBFNN-MRA speed controller.

  𝑧̂𝑟 𝜔1 = 𝜔 ̂𝑚 and 𝑧̂𝑟 𝜔2 = -𝜌 ̂𝑟𝑆𝑇 represent the estimated two state variables of the extended 𝜔 𝑚 -dynamics.

  𝑒 𝑟𝜔1 = 𝜔 𝑚 -𝜔 ̂𝑚 and 𝑒 𝑟𝜔2 = -𝜌 𝜔𝑟 + 𝜌 ̂𝑟𝑆𝑇 represent two state estimation errors.Considering Theorem 3.1 and Assumption 7.2, two positive constant gains 𝑘 𝑠1 𝑐4 and 𝑘 𝑠2 𝑐4 for the STSMO are selected as (7.37) such that the finite-time stability of the state estimation error system is guaranteed. of the 𝑒 𝜔𝑟 -dynamics expressed as(7.18) and the reference model expressed as(7.16), the type-4 composite speed control law 𝑖 𝑞𝑠𝑟 𝑐4 is designed as

Figure 7 . 3

 73 Figure 7.3 Block diagram of the type-4 composite speed controller.

2 . 5

 25 is used to perform comparative experimental tests among three selected classic MRA speed controllers with different values of 𝜂 𝜔𝐴 , three selected ENN-ICSM speed controllers with different values of 𝜂 𝜔𝑅1 and the type-4 composite speed controller in the frame of the FOC strategy whose block diagram is illustrated in Figure 5.2. The parameters of these rotor speed controllers are listed in Table

Chapter 8

 8 Conclusions and Perspectives 144 speed controller for achieving the robust rotor speed tracking control. The type-1 composite speed controller is design using the practical speed dynamics of the SynRM considering unmodeled dynamics, parametric uncertainties and external disturbances. Since the magnetic saturation effect makes each practical current dynamics of the SynRM become a nonlinear system in terms of two stator current components in the rotor reference frame, two composite current controllers, each of which is composed of two standard STSM controllers, are proposed to achieve the robust stator current tracking control. Each composite current controller is designed using the corresponding practical current dynamics of the SynRM considering unmodeled dynamics, parametric uncertainties and external disturbances. Rigorous stability analysis for each current tracking error dynamics using the corresponding composite current controller is also presented. Comparative HIL tests between the proposed FOC strategy and the classic STA-based FOC strategy for the 2L-VSIfed SynRM-VSD system, which is based on a standard STSM speed controller and two linear PI current controllers, are performed. The results of HIL tests demonstrate that the proposed FOC strategy can accomplish better tracking performance and higher robustness against disturbances/ uncertainties.The second proposed composite controller is named as the type-2 composite controller. Such a composite controller consists of a modified STSM controller and a second-order ESO. The modified STSM controller is used to stabilize the sliding variable dynamics in a finite time. The second-order ESO is used to compensate the lumped disturbance in the sliding variable dynamics. The rigorous stability analysis of the sliding variable dynamics with the type-2 composite controller is presented.After the rigorous theoretical analysis, the type-2 composite controller is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In this FOC strategy, the type-2 composite controller is used as a rotor speed controller for achieving the robust rotor speed tracking control. The type-2 composite speed controller is designed using the practical speed dynamics of the SPMSM considering unmodeled dynamics, parametric uncertainties and external disturbances. As for the current control loop of this FOC strategy, two linear PI controllers are adopted. Comparative experimental tests among the FOC strategy using the standard STSM speed controller, the FOC strategy using the ESO-based standard STSM speed controller, the FOC strategy using the modified STSM speed controller and the proposed FOC strategy using the type-2 composite speed controller are performed. Experimental results demonstrate that, among four tested FOC strategies, the proposed FOC strategy using the type-2 composite speed controller can achieve the minimum rotor speed transient variation and the fastest dynamic response.The third proposed composite controller is named as the type-3 composite controller. Such a composite controller consists of a sign function-based CSM controller and a STSMO. The sign 146 strategies, which use three selected classic MRA speed controllers, respectively, three FOC strategies, which adopt three selected RBFNN-MRA speed controllers, respectively, and the proposed FOC strategy using the type-4 composite speed controller are performed. Experimental results demonstrate that: 1) among seven tested FOC strategies, the proposed FOC strategy using the type-4 composite speed controller can achieve the minimum rotor speed transient variation and the fastest dynamic response; and 2) the type-4 composite speed controller is more computationally efficient than the selected RBFNN-MRA speed controllers.

  .3, the applied and the actual duty cycles of 𝑄 𝑥1 can be

	expressed as																	
				d	* ** , x x x x ss off on T T T dead T d d TT    	sgn	  xs i	(2.9)
	where 𝑑 𝑥 * and 𝑑 𝑥 represent the applied and actual duty cycles of 𝑄 𝑥1 , respectively.
		By replacing 𝑆 𝑥 in (2.6) with 𝑑 𝑥 , the low-frequency model of the pole voltage considering
	inverter nonlinearities can be derived as					
			u	xo		 U	dc			U	sat		U	diode		* x  1 2 d   		U	dead	sgn	  xs i	(2.10)
	where 𝑈 𝑑𝑒𝑎𝑑 is expressed as												
		U	dead		 U	dc		U	sat		U	diode		off T	on s T T dead T 		2 UU sat 	diode	(2.11)
		Substituting (2.11) into (2.7), the three-phase low-frequency model of the 2L-VSI is derived as
	(2.12), where 𝑢 𝑎𝑠 𝑙 , 𝑢 𝑏𝑠 𝑙 and 𝑢 𝑐𝑠 𝑙 are the fundamental components of 𝑢 𝑎𝑠 , 𝑢 𝑏𝑠 and 𝑢 𝑐𝑠 , respectively.
	l as	* 22 * * a b c 3 d	* a	3	* b		* c		diode			sat		dead 3	2sgn	  as	sgn	  bs	sgn	  cs
	l bs	* 22 * * b a c 3 d	* b	3		* a		* c		diode			sat		dead 3	2sgn	  bs	sgn	  as	sgn	  cs
	l cs	* 22 * * c a b 33 * c d		* a		* b		diode			sat	

  .4, where 𝑣 𝑎 , 𝑣 𝑏 and 𝑣 𝑐 are a-, b-and c-axes components of 𝒗 in the abc frame, respectively, 𝑣 𝛼 and 𝑣 𝛽 are and -axes components of 𝒗 in the  frame, respectively, 𝑣 𝑑 and 𝑣 𝑞 are d-and q-axes components of 𝒗 in the dq frame, respectively, and 𝜃 denotes the phase difference between the d-axis and the -axis. The Clarke's transformation in which 𝑣 𝛼 and 𝑣 𝛽 are calculated from 𝑣 𝑎 , 𝑣 𝑏 and 𝑣 𝑐 is described as

  21)The inverse Park's transformation in which 𝑣 𝑎 , 𝑣 𝑏 and 𝑣 𝑐 are calculated from 𝑣 𝑑 and 𝑣 𝑞 is

	described as	
	cos	sin
	cos	22 sin 33
	cos	22 sin 33

  and (2.31), the considered inverter nonlinearities introduce the DC component and the 6nth harmonic component in terms of 𝜔 𝑒 (n = 1, 2, 3,…) to 𝑢 𝑑𝑠 𝑙 and 𝑢 𝑞𝑠 𝑙 .

	Furthermore, the amplitude of each voltage harmonic component is inversely proportional to its
	harmonic order.						
	Based on the above analysis, the effects of the inverter nonlinearities on 𝑢 𝑑𝑠 and 𝑢 𝑞𝑠 of the
	SPMSM and the SynRM can be described as					
	ds	 **  sin 6 , ds ds dn e qs qs	qs	qn	 cos 6	e	
		11 kk				

  )

	sd	dd ds qs ds	dq ds qs qs	sq	qd ds qs ds	qq ds qs qs

  )

	d ds qs	d	d ds qs	q ds qs	q	q ds qs
	dd ds qs	dd	dd ds qs	dq ds qs	dq	dq ds qs
	qd ds qs	qd	qd ds qs	qq ds qs	qq	qq ds qs

  uncertainties and external disturbances, the practical stator voltage and motion equations can be derived as (2.49) and (2.50), respectively.

	** 0 dP ds , ds s ds s p m s qs d qs	0 s qs	s	qs	p m s ds	p m m	0	dP q

  𝑖 𝑞𝑠 -and 𝜔 𝑚 -dynamics of the SPMSM, respectively.With respect to the SynRM-VSD system, considering unmodeled dynamics, parametric uncertainties and external disturbances which are mentioned in Section 2.3.3-Section 2.3.5, the practical stator voltage and motion equations can be derived as (2.55) and (2.56), respectively.

	54) 𝑑𝑃 /J 0 denote the lumped disturbances in the 𝑃 = 𝑇 𝜔 ⁄ and 𝜌 𝜔 𝑑𝑃 𝐿 𝑠 𝑃 = -𝑢 𝑞 ⁄ , 𝜌 𝑞 𝑑𝑃 𝐿 𝑠 𝑃 = -𝑢 𝑑 where 𝜌 𝑑 0 0 0 0 * qs dS ds ds s ds dd dq p m q qs d qs dS ds 𝑖 𝑑𝑠 -, * 0 0 0 0 qs s qs qd qq p m d ds q

  )

	dS		ds	qs			S
	q	s qs	qd ds qs	qq ds qs	p m	d ds qs ds	q

  2 

	qq			dq				S
	ds	ds	s ds	p m q qs	qs	s qs	p m d ds	d
	qd			dd				S
	qs	ds	s ds	p m q qs	qs	s qs	p m d ds	q

Table 2 . 1

 21 Parameters of the SPMSM

	Parameter	Value
	Rated power (W)	400
	Rated current (A)	2.8
	Stator resistance ()	2.35
	Stator inductance (mH)	6.5
	Rotor flux linkage (Wb)	0.065
	Rated speed (rpm)	3000
	Rotor inertia (kg⋅m 2 )	0.00007
	Viscous friction coefficient (N⋅m⋅s/rad)	0.0015
	Rated torque (N⋅m)	1.27
	Pole pairs	

  𝑠 1 will converge to the origin in a finite time.

	𝑠 1 will converge to the origin in a finite time.				
	11 12 2, cc kk 	 1 2 13  1 1 ( ) 4( ) 42 cs c kL k  	2		(4.25)
	Proof. It can be observed that the system (4.23) has the same structure as the system (3.12). Since
	𝜌 𝑠1 is bounded as |𝜌 𝑠1 | ≤ 𝐿 3 𝑠 , the inequalities (4.25) can be obtained from (3.13) by replacing
	𝑘 1 , 𝑘 2 and 𝐿 2 𝑥 with 𝑘 1 𝑐1 , 𝑘 2 𝑐1 and 𝐿 3 𝑠 , respectively. Therefore, according to Theorem 3.1, it can be
	concluded that, with 𝑘 1 𝑐1 and 𝑘 2 𝑐1 selected as (4.25),			
	y y	y W W y	W	y	(4.24)
	Assumption 4.4. 𝑠̇1 is bounded.				
	Since 𝑾 ̃ℎ (2) , 𝑠 1 and 𝑠̇1 are bounded, based on (3.38), (3.39) and (4.6), it can be concluded that
	𝒚 (2) and 𝒚̇( 2) are bounded. Thus, 𝜌 𝑠1 is bounded.			
	Assumption 4.5. 𝜌 𝑠1 is bounded as |𝜌 𝑠1 | ≤ 𝐿 3 𝑠 for a positive constant 𝐿 3 𝑠 .	
	The following Theorem can be used to select 𝑘 1 𝑐1 and 𝑘 2 𝑐1 for accomplishing the control
	objective.				
	Theorem 4.2. Considering the system (4.23) and |𝜌 𝑠1 | ≤ 𝐿 3 𝑠 , if 𝑘 1 𝑐1 and 𝑘 2 𝑐1 are selected as (4.25),

  Block diagram of the type-1 composite speed controller. Considering Assumption 4.5, based on Theorem 4.1 and Theorem 4.2, it can be concluded that, with the type-1 composite speed control law (4.28) as well as learning laws (4.32) and (4.33), 𝑒 𝜔1 will converge to the origin in a finite time if 𝑘 𝜔1

			Learning Law (4.33)
			Error Compensator	y c1
			e 1	Standard STA		 s1	+	+	b  n1 1	i qsr c1
									+
					HNN-DO		y h
			Learning Law (4.32)
	Figure 4.2 𝑐1 and 𝑘 𝜔2 𝑐1 are selected as
			11 12 2, cc kk  	 1 2 12  1 2 1 1 ( ) 4( ) 42 cc c kL k    	(4.35)
	The block diagram of the type-1 composite speed controller is shown in Figure 4.2.
	4.3.2 Composite Current Controller Design
	Two current tracking errors 𝑒 𝑑 and 𝑒 𝑞 for the field-oriented controlled SynRM-VSD system are
	defined as							
				e i  	i	,	e i  	i	(4.36)
				d	dsr		ds		q	qsr	qs
	It can be considered that 𝑢 𝑑𝑠 * = 𝑢 𝑑𝑠𝑟 *	and 𝑢 𝑞𝑠 * = 𝑢 𝑞𝑠𝑟 *	in the stator current controller design.
	Therefore, according to (2.60) and (4.36), the 𝑒 𝑑 -and 𝑒 𝑞 -dynamics can be expressed as
	d e	00 ** 0 0 dsr s ds p m q qs qsr [ ( )] [ dq LL qq u R i n	(	0 s qs	p m d ds 0	)]	dsr	d S
		00	(1)
			bb
			dn					qn
									d
		qq	00 * ( ) dq dsr dn	(	* qsr	qn	)		(1) d	| ≤ 𝐿 𝜔1 𝑐1 and |𝜌̇𝜔 1 (2) | ≤ 𝐿 𝜔2 𝑐1 ,
	respectively, for positive constants 𝐿 𝜔1 𝑐1 and 𝐿 𝜔2 𝑐1 . 00

  𝑒 𝑑 and 𝑒 𝑞 as the sliding variables, two composite current control laws 𝑢 𝑑𝑠𝑟 *

																and
	𝑢 𝑞𝑠𝑟 * are designed as														
	u	** 0 0 dsr dn dd d dq q qsr , b L L u     		qn b		qd L	0		d		qq L	0		q	(4.39)
	where 𝜇 𝑑 and 𝜇 𝑞 are two standard STSM control laws expressed as				
		11 12 | | sgn( ) cc d d d d e e k    d k	sgn( ) d e dt						(4.40)
		11 12 | | sgn( ) cc q q q q e e k    q k	sgn( ) q e dt						(4.41)
	where 𝑘 𝑑1 𝑐1 , 𝑘 𝑑2 𝑐1 , 𝑘 𝑞1 𝑐1 and 𝑘 𝑞2 𝑐1 are the positive constant gains.									
	Substituting (4.39) into (4.37) and (4.38), the closed-loop 𝑒 𝑑 -and 𝑒 𝑞 -dynamics with the
	proposed composite current control laws are expressed as										
		1 12 1 1 1 12 sgn( ) | | sgn( ) cc d d d d cc q q q q k e e k k e e k    d q e e           sgn( ) sgn( ) d q e dt e dt     (1) (1) d q				(4.42)
	Considering Assumption 4.7, based on Theorem 3.1, it can be concluded that, with the proposed
	composite current control laws expressed as (4.39), 𝑒 𝑑 and 𝑒 𝑞 will converge to the origin in a finite
	time if 𝑘 𝑑1 𝑐1 , 𝑘 𝑑2 𝑐1 , 𝑘 𝑞1 𝑐1 and 𝑘 𝑞2 𝑐1 are selected as													

Table 4 . 1

 41 Parameters of the SynRM

	Parameter	Value
	Rated power (W)	1100
	Rated current (A)	6.3
	Stator resistance ()	1.05
	Rated speed (rpm)	1500
	Rotor inertia (kg⋅m 2 )	0.0208
	Viscous friction coefficient (N⋅m⋅s/rad)	0.00268
	Rated torque (N⋅m)	4.8
	Pole pairs	2

Table 4 . 2

 42 Specifications of the 2L-VSI

								Parameter						Value
				DC-bus voltage (V)								200
				Switching period (s)								100
				Turn-on time (s)									1.3
				Turn-off time (s)									1.3
				Dead time (s)									2.0
				Saturation voltage (V)								1.6
				Diode forward voltage (V)							1.5
		0.08										0.02			
		0.07													
	Ld (H)	0.06									Lq (H)				
		0.05													
		0.04													
		10	5	0 i qs (A)	-5	-10	-10	-5	i ds (A) 0	5	10	10	5	0	-5	-10

  According to the ESO design presented in Section 3.3.1, the ESO can be designed as (5.26) for the estimation of 𝜌 𝜔2 , where two positive constant gains 𝛽 𝜔1 and 𝛽 𝜔2 are selected as (5.27) and the time derivative of the lumped disturbance estimation error 𝑒̇𝐸 𝜔 is bounded as |𝑒̇𝐸 𝜔 | ≤ 𝐿 𝜔3

	Assumption 5.1. 𝜌 𝜔2 and its time derivative 𝜌̇𝜔 2 are bounded as |𝜌 𝜔2 | ≤ 𝐿 𝜔1 𝑐2 and |𝜌̇𝜔 2 | ≤ 𝐿 𝜔2 𝑐2 ,
	respectively, for positive constants 𝐿 𝜔1 𝑐2 and 𝐿 𝜔2 𝑐2 .
	𝑐2 for a
	positive constant 𝐿 𝜔3 𝑐2 .
	2 n qsr 2 c ˆˆ() 1 2 2 1 e n m e m e 1 z a b i z z
	2 ˆ() 2 e m e 1 zz

  If 𝜌 ̂𝑒𝜔 in (5.30) is set to zero, the modified STSM speed control law is obtained.

	sgn   , c c c p e e p e        c 	2		c  p	1	sgn	e 	2		2 p e c  	2	(5.32)
	where 𝑘 𝜔1 𝑐2 , 𝑘 𝜔2 𝑐2 , 𝑝 𝜔1 𝑐2 and 𝑝 𝜔2 𝑐2 are the positive constant gains.						
	Remark 5.4. Remark 5.5. If 𝑝 𝜔2 𝑐2 in (5.32) is set to zero, the ESO-based standard STSM speed control law is
	obtained.											
	Remark 5.6. If both 𝜌 ̂𝑒𝜔 in (5.30) and 𝑝 𝜔2 𝑐2 in (5.32) are set to zero, the standard STSM speed control
	law is obtained.											
	 mr +	Modified STSM Control Law (5.31)										
	-											
	 m											

Table 5 . 2

 52 Dynamic performance of tested rotor speed controllers in the first test

	Rotor speed controller	Overshoot (%)	Settling time (ms)
	Standard STSM speed controller	7.732	80
	ESO-based standard STSM speed controller	6.894	36
	Modified STSM speed controller	6.541	52
	Type-2 composite speed controller	5.446	32

Table 5 . 3

 53 Dynamic performance of tested rotor speed controllers in the second test

	Rotor speed controller	Maximum tracking error (rpm)	Settling time (ms)
	Standard STSM speed controller	187.87	110
	ESO-based standard STSM speed controller	148.47	14
	Modified STSM speed controller	122.94	58
	Type-2 composite speed controller	98.58	10

  Assumption 6.1. 𝜌 𝑒 and its time derivative 𝜌̇𝑒 are bounded as |𝜌 𝑒 | ≤ 𝐿 1 𝑒 and |𝜌̇𝑒| ≤ 𝐿 2 𝑒 , respectively, for positive constants 𝐿 1 𝑒 and 𝐿 2 𝑒

  𝑒 𝑆𝑇 is bounded as |𝑒 𝑆𝑇 | ≤ 𝐿 6 𝑥 for a positive constant 𝐿 6 𝑥 . The following Theorem can be used to select 𝑘 𝑦 for accomplishing the control objective. Considering the system (6.11) and |𝑒 𝑆𝑇 | ≤ 𝐿 6 𝑥 , for the positive constant 𝜆 𝑦 , if 𝑘 𝑦 is selected as (6.12), 𝑒 𝑦 will converge to the origin asymptotically.

	e	 		e			s k 		s s 		  
	y			y y			y g		y		g	c	x	ST
											ST e	(6.11)
		 	e  	s k 	sgn	s s 		e
				y y			y g		y		g	c	ST
	where 𝑒 𝑆𝑇 is the lumped disturbance estimation error of the STSMO.
	y Considering Assumption 3.3, Theorem 6.1. 6 x kL 	(6.12)
	Proof. The Lyapunov candidate function 𝑉 𝑐3 is selected as
							c V	3	  22 1 g c 2 s s		(6.13)

  Since 𝑉 𝑐3 (𝑠 𝑔 (0), 𝑠 𝑐 (0)) is bounded and 𝑉 𝑐3 (𝑠 𝑔 (𝑡), 𝑠 𝑐 (𝑡)) is a non-increasing bounded function, the following inequality can be derived.

			c V	3	 		y		g s s c 		2		y g k s s c  	ST e s s g c 
					 		y		g s s c 	  2 	 k L s s 6 x y g c  	(6.15)
					 		y		g ss c 		2		0
	From (6.15), it can be concluded that 𝑉 ̇𝑐3 is negative semidefinite. Therefore, the following
	inequality holds.											
					    c 33 ,   g c V s t s t c V s  	g	    c 0 , 0 s		(6.16)
	According to (6.16), 𝑠 𝑔 (𝑡) and 𝑠 𝑐 (𝑡) are bounded. Based on (6.15) and (6.16), the following
	function is defined.											
			CSM	  t	 		y		    c s t s t g 		2	    c , V s t s t  c g 3  		(6.17)
													lim t 	0 t 		CSM	   d	 	(6.18)
	Since lim 𝑡→∞	∫ Ω 𝐶𝑆𝑀 (𝜏)𝑑𝜏 𝑡 0		exists and Ω 𝐶𝑆𝑀 (𝑡) is a uniformly continuous function, according
	to Barbălat's Lemma [11], lim 𝑡→∞	Ω 𝐶𝑆𝑀 (𝑡) = 0 holds. It means that lim 𝑡→∞	(𝑠 𝑔 (𝑡) + 𝑠 𝑐 (𝑡)) = 0 holds.

  1, for the positive constant 𝜆 𝜔 𝑐3 , if 𝑘 𝜔1 𝑐3 is selected as (6.25), (𝑠 𝜔𝑔 + 𝑠 𝜔𝑐 ) will converge to the boundary layer |𝑠 𝜔𝑔 + 𝑠 𝜔𝑐 | ≤  in a Since 𝑠 𝜔𝑔 + 𝑠 𝜔𝑐 = 2𝑒 𝜔2 , 𝑒 𝜔2 will be bounded as |𝑒 𝜔2 | ≤ /2 in a finite time with 108 the classic CSM speed control law. However, the classic CSM speed controller cannot guarantee the convergence of 𝑒 𝜔2 to the origin in theory [3]. Block diagram of the ENN-DO used in the ENN-ICSM speed controller.
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  .1. Furthermore, in all tested FOC strategies, the proportional and integral gains of each PI stator current controller are set to 20.42 and 7379, respectively.
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 62 Dynamic performance of tested rotor speed controllers in the first testIn the first test, the value of the load torque is set to 0 N⋅m, while the value of the reference rotor mechanical speed is increased from 500 rpm to 2500 rpm with the acceleration of 50 rpm/ms. The rotor mechanical speed responses and corresponding tracking errors for five tested rotor speed controllers are shown in Figure6.4. The dynamic performance of five tested rotor speed controllers are summarized in Table6.2. Note that the tolerance band is chosen as ± 25 rpm, namely ± 1 % of 2500 rpm, for the settling time calculation. It can be seen that, among all tested rotor speed controllers, the use of the classic CSM speed controller results in the largest overshoot, i.e., 5.440 % (136.01 rpm). Using the ENN-ICSM speed controller to replace the classic CSM speed controller can reduce the value of the overshoot. Moreover, with the increase of the value of 𝛾 𝜔1 , the value of the overshoot is further reduced. However, it results in the growth of the settling time and the ICSM speed controllers, the use of the type-3 composite speed controller does not lead to the growth of the settling time and the appearance of the oscillation phenomenon.

	Rotor speed controller	Overshoot (%)	Settling time (ms)
	Classic CSM speed controller	5.440	58
	ENN-ICSM speed controller 1	4.859	60
	ENN-ICSM speed controller 2	4.448	68
	ENN-ICSM speed controller 3	4.082	76
	Type-3 composite speed controller	3.696	48

Table 6 . 3

 63 Dynamic performance of tested rotor speed controllers in the second test

	Rotor speed controller			Maximum tracking error (rpm)	Settling time (ms)
	Classic CSM speed controller			315.30	34
	ENN-ICSM speed controller 1			292.12	26
	ENN-ICSM speed controller 2			274.05	32
	ENN-ICSM speed controller 3			255.31	48
	Type-3 composite speed controller		232.18	12
		 mr	 m
	Speed (rpm)			
	0.05 0.10 0.15 0.20	0.25	0.30 0.35	0.40
	Time (s)			

Table 6 . 4

 64 Calculation time in each sampling period

	Classic CSM	Selected ENN-ICSM	Type-3 composite
	speed controller-based	speed controller-based	speed controller-based
	FOC strategy	FOC strategy	FOC strategy
	10.84 μs	29.72 μs	12.44 μs

  Different from the classic MRA controller, the type-4 composite controller uses the adaptive law to update the compensation term for the estimation error of the STSMO rather than the lumped disturbance in the output tracking error dynamics.

								3   c	s r e	(7.8)
	where 𝜂 𝑠 is the positive constant gain.
	Proof. The Lyapunov candidate function 𝑉 𝑐4 is selected as
							22 43 11 22 r c s Ve c   	(7.9)
	Based on (7.7) and (7.10), 𝑉 ̇𝑐3 can be calculated as
		c V	4	 33 3 3 11  3 1 c c r r r c e e          ss c r c s ee 2  r r r r e e            	3 3 c c  	(7.10)
	Combining (7.10) with (7.8), 𝑉 ̇𝑐4 can be expressed as
								2 r r Ve  4 c  		0	(7.11)
	From (7.11), it can be concluded that 𝑉 ̇𝑐4 is negative semidefinite. Therefore, the following
	inequality holds.					
							    44 r c V e t c V e  r 	  0		(7.12)
	According to (7.12), 𝑒 𝑟 (𝑡) is bounded. Based on (7.11) and (7.12), the following function is
	defined.						
					MRA	  t	  	  e t 2 r r	    r V e t 4 c  	(7.13)
	Since 𝑉 𝑐4 (𝑒 𝑟 (0)) is bounded and 𝑉 𝑐4 (𝑒 𝑟 (𝑡)) is a non-increasing bounded function, the following
	inequality can be derived.				
							lim t 	0 t 		MRA	   d	 	(7.14)
	Since lim 𝑡→∞	∫ Ω 𝑀𝑅𝐴 (𝜏)𝑑𝜏 𝑡 0	exists and Ω 𝑀𝑅𝐴 (𝑡) is a uniformly continuous function, according
	to Barbălat's Lemma [2], lim 𝑡→∞	Ω 𝑀𝑅𝐴 (𝑡) = 0 holds. It means that lim 𝑡→∞	𝑒 𝑟 (𝑡) = 0 holds.

Thus, 𝑒 𝑟 will converge to the origin asymptotically. The proof is completed. ■ Remark 7.1.

Assumption 7.2. 𝜌

  𝜔𝑟 and its time derivative 𝜌̇𝜔 𝑟 are constant in each sampling period and bounded 𝜇 𝜔𝑠 is the stabilization term for the asymptotic convergence of 𝑒 𝜔𝑟 to the origin, which is expressed as(7.20), 𝜌 ̂𝐴 is the estimated lumped disturbance from the adaptive law for the compensation of 𝜌 𝜔𝑟 ,

	According to (7.15)-(7.17), the 𝑒 𝜔𝑟 -dynamics is expressed as
	e 	r	* mr cc 4 * m r mr        4 r mr    		2 n qsr bi 				r	(7.18)
	The control objective is to let 𝑒 𝜔𝑟 converge to the origin asymptotically.
	7.3.2 Classic MRA Speed Controller Design
	On the basis of the 𝑒 𝜔𝑟 -dynamics expressed as (7.18) and the reference model expressed as (7.16),
	the classic MRA speed control law 𝑖 𝑞𝑠𝑟𝑐 𝑐4 is designed as
				4 qsrc i	  1 s   ĉ  A	(7.19)
						b 	n	2		
	where 44 cc s r m r mr           	(7.20)
	Substituting (7.19) into (7.18), the closed-loop 𝑒 𝜔𝑟 -dynamics with the classic MRA speed
	control law is expressed as									
	e 	r		44 ĉc r r A r r e      e          	r		A e	(7.21)
	as |𝜌 𝜔𝑟 | ≤ 𝐿 𝜔1 𝑐4 and |𝜌̇𝜔 𝑟 | ≤ 𝐿 𝜔2 𝑐4 , respectively, for positive constants 𝐿 𝜔1 𝑐4 and 𝐿 𝜔2 𝑐4 .
	A stable first-order reference model for all rotor speed controllers presented in this section is
	selected as									
				* mr 	4 * cc r mr      4 r mr   	(7.16)
	where 𝜔 𝑚𝑟 * is the desired rotor mechanical speed generated by the reference model, 𝛼 𝜔𝑟 𝑐4 and 𝛽 𝜔𝑟 𝑐4 are
	two positive constants determining the dynamic performance of the reference model.
	The speed tracking error between the desired and actual rotor mechanical speeds is defined as
						* mr e   r m 	(7.17)

  𝜔 𝑚 (𝑛) and 𝑖 𝑞𝑠𝑟𝑏 𝑐4 (𝑛) are the rotor mechanical speed and the RBFNN-MRA speed control law at the nth instant, respectively.Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, 51 ), the signal

	(1) 1 y n x n (1) 1 ( ) ( ) 		() rate m n  	(1) 2 y n x n (1) 2 ( ) ( ) 		4 10 () qsrb c in	(7.26)
	where propagation can be described as					
	(2) i x n ( )		 	22 (1) 2 2 22 1 12 ( ) 22 ( ) r i r i r i r i y n c (1) 1 y n c         	,	i		1, 2,...,51	(7.27)
						(2) () i y n e 		( 2) () i xn	(7.28)

Table 7 . 3

 73 Dynamic performance of tested rotor speed controllers in the second test

	Rotor speed controller	Maximum tracking error (rpm)	Settling time (ms)
	Classic MRA speed controller 1	174.63	18
	Classic MRA speed controller 2	164.07	30
	Classic MRA speed controller 3	145.59	64
	RBFNN-MRA speed controller 1	158.02	20
	RBFNN-MRA speed controller 2	147.09	28
	RBFNN-MRA speed controller 3	135.65	46
	Type-4 composite speed controller	125.26	14

Table 7 . 4

 74 Calculation time in each sampling period

	Classic MRA	Selected RBFNN-MRA	Type-4 composite
	speed controller-based	speed controller-based	speed controller-based
	FOC strategy	FOC strategy	FOC strategy
	10.81 μs	93.59 μs	12.18 μs

22

Acknowledgments I

Summary

In this chapter, two model-based extended DOs, i.e., the second-order ESO and the STSMO, and four model-free DOs, i.e., the TLP-DO, the RBFNN-DO, the HNN-DO and the ENN-DO for a single-input uncertain nonlinear system with relative degree one are presented. At first, the designs and the rigorous stability analyses of the second-order ESO and the STSMO are given. Afterward, the structures of the TLP-DO, the RBFNN-DO, the HNN-DO and the ENN-DO are presented.

Finally, two widely used approaches for deriving the learning laws, which are adopted to update some parameters in these model-free DOs online, are introduced. 

Experimental Results

The experimental test bench described in Section 2.5 is used to perform comparative experimental tests among the standard STSM speed controller, the ESO-based standard STSM speed controller, the modified STSM speed controller and the type-2 composite speed controller in the frame of the FOC strategy in which 𝑖 𝑑𝑠𝑟 is set to 0. Such a FOC strategy is commonly known as the 𝑖 𝑑𝑠 = 0 control strategy whose block diagram is illustrated in Figure 5.2, where the sinusoidal PWM (SPWM) algorithm is adopted for the 2L-VSI. To further alleviate the chattering and the noise in practice, for the implementation of each tested rotor speed controller in the DSP, the sign function is replaced by the saturation function expressed as (4.47).

6 Type-3 Composite Controller: Design and Application

TYPE-3 COMPOSITE CONTROLLER: DESIGN AND APPLICATION

Introduction

Apart from the SOSM algorithm, the quasi-sliding-mode algorithm is another popular modified sliding-mode algorithm to alleviate the chattering [1]. In such an algorithm, the discontinuous sign function used in the FOSM algorithm is replaced by a continuous function, including the saturation function, the sigmoid function and the hyperbolic tangent function. Therefore, the quasi-slidingmode algorithm is a continuous sliding-mode algorithm. Theoretically, however, the quasi-slidingmode controller, which is based on the quasi-sliding-mode algorithm, can only let the sliding variable reach a small vicinity of the origin, namely the boundary layer, in a finite time, resulting in the degradation of the tracking control performance [1].

To improve the tracking control performance, the complementary sliding-mode (CSM) algorithm has been proposed [2]. In this sliding-mode algorithm, the saturation function is adopted and two different sliding variables, i.e., the generalized sliding variable and the complementary sliding variable, both of which are based on the control objective, are designed. In theory, the tracking error of the classic CSM controller, which is based on the CSM algorithm, can be reduced by half compared with that of the quasi-sliding-mode controller [2]. Nevertheless, like standard and modified STSM controllers, the selection of the gains of the classic CSM controller has to face a trade-off problem between the tracking performance and the disturbance attenuation since the CSM algorithm is dependent on the feedback regulation mechanism. As has been stated in Section 1.2, the development of a composite controller, which is based on the CSM algorithm and the DO, is an 109

Hidden Layer: In this layer, regarding the ith hidden neuron ( i = 1, 2,…, 9 ), the signal propagation can be described as

where Φ 𝑒𝑖1 (1) (𝑛) and Φ 𝑒𝑖2 (1) (𝑛) denote two connective weights between the ith hidden neuron and two input neurons at the nth instant.

Context Layer: In this layer, regarding the ith context neuron ( i = 1, 2,…, 9 ), the signal propagation can be described as

, 1,2,...,9

Output Layer: In this layer, the output signal is the estimated lumped disturbance in the 𝜔 𝑚dynamics, which can be calculated as

where 𝜌 ̂𝐸𝑁𝑁 is the estimated lumped disturbance from the ENN-DO, Φ 𝑒𝑖 (2) (𝑛) denotes the connective weight between the output neuron and the ith hidden neuron at the nth instant.

Based on the universal approximation property of the ANN, like the HNN-DO presented in In the second test, the value of the reference rotor mechanical speed is kept at 2500 rpm, whereas the value of the load torque is stepped from 0 N⋅m to 1.0 N⋅m at 0.1 s. Figure 6.5 presents the rotor mechanical speed responses and corresponding tracking errors for five tested rotor speed controllers. Table 6.3 summaries the dynamic performance of five tested rotor speed controllers, where the criterion for the settling time calculation is the same as the first test. It can be observed that the maximum tracking error for the use of the classic CSM speed controller is 315.30 rpm, which is the highest value in this test. Compared with such a rotor speed controller, the use of the selected ENN-ICSM speed controller can reduce the maximum tracking error when the value of the load torque steps. As illustrated in Figure 6. In the second test, the value of the applied reference rotor mechanical speed is kept at 2500 rpm, and the value of the load torque steps from 0 N⋅m to 0.6 N⋅m at 0.04 s. The rotor mechanical speed responses and corresponding tracking errors for seven tested rotor speed controllers are shown in Figure 7.5. The dynamic performance of seven tested rotor speed controllers are summarized in Table 7.3 in which the criterion for the settling time calculation is the same as the first test. It can be observed that, with the increase of the value of 𝜂 𝜔𝐴 and 𝜂 𝜔𝑅1 , the maximum tracking error for the function-based CSM controller is used to stabilize the output tracking error dynamics asymptotically.

The STSMO is used to compensate the lumped disturbance in the output tracking error dynamics.

The rigorous stability analysis of the output tracking error dynamics with the type-3 composite controller is presented. After rigorous theoretical analysis, the type-3 composite controller is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In this FOC strategy, the type-3 composite controller, which is designed using the practical speed dynamics of the SPMSM considering unmodeled dynamics, parametric uncertainties and external disturbances, is used as a rotor speed controller for achieving the robust rotor speed tracking control, and two linear PI controllers are adopted as two stator current controllers. Comparative experimental tests among the FOC strategy using classic CSM speed controller, three FOC strategies, which use three selected ENN-ICSM speed controllers, respectively, and the proposed FOC strategy using the type-3 composite speed controller are performed. Experimental results demonstrate that: 1) among five tested FOC strategies, the proposed FOC strategy using the type-3 composite speed controller can achieve the minimum rotor speed transient variation and the fastest dynamic response; and 2) the type-3 composite speed controller is more computationally efficient than the selected ENN-ICSM speed controllers.

The fourth proposed composite controller is named as the type-4 composite controller. Such a composite controller consists of a classic MRA controller and a STSMO. A stable first-order linear model is selected as the reference model to generate the desired output trajectory for the system. The type-4 composite controller comprises three terms. The first term is the stabilization term, which is based on the known parts of the system and the selected reference model, for the asymptotic convergence of the output tracking error between the desired and actual outputs of the system to the origin. The second term is the disturbance compensation term, which is dependent on the STSMO, for compensating the lumped disturbance in the dynamics of the above-mentioned tracking error.

The third term is the error compensation term, which is updated by an adaptive law online, for confronting the estimation error of the STSMO in practice. The rigorous stability analysis of the dynamics of the above-mentioned tracking error with the type-4 composite controller is presented.

Based on that, the adaptive law for the error compensation term is derived. After rigorous theoretical analysis, the type-4 composite controller is applied to the construction of a novel robust FOC strategy for the 2L-VSI-fed SPMSM-VSD system. In this FOC strategy, the type-4 composite controller, which is designed using the practical speed dynamics of the SPMSM considering unmodeled dynamics, parametric uncertainties and external disturbances, is used as a rotor speed controller for achieving the robust rotor speed tracking control, and two linear PI controllers are adopted as two stator current controllers. Comparative experimental tests among three FOC