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préparée à l’École polytechnique
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Résumé

Au cours des dernières décennies, une attention particulière en mécanique des solides a été
consacrée à l’étude des matériaux, dont la structure change en raison de transformations chim-
iques, ce qui induit des couplages forts entre la chimie, la mécanique et la physique. Ces réactions
chimiques assistées par les contraintes sont observées dans diverses applications industrielles et
médicales, et dans les technologies modernes telles que les cycles de charge/décharge des bat-
teries introduisant des changements de volume et des fissurations dans les électrodes, les pro-
cessus d’oxydation dans les MEMS ou les matériaux composites à base de métal, la thermo- ou
photo-oxydation des polymères. Il est donc nécessaire de prendre en compte en détail l’influence
de l’état de contrainte et de déformation sur la transformation chimique pour prédire le com-
portement des éléments structurels sous des chargements thermomécaniques et chimiques si-
multanés. De tels processus peuvent être décrits à l’aide du modèle de réaction à deux phases,
dans lequel la réaction est localisée au niveau d’un front ou interface de réaction, et le réactif dif-
fusant est transporté vers le front de réaction à travers le matériau transformé.Le travail présenté
dans cette thèse de doctorat s’appuie sur le cadre de la mécanique des milieux continus et sur
les couplages chemo-mécaniques appliqués à des géométries particulières et des lois de com-
portement inélastiques afin d’obtenir des solutions analytiques de référence qui sont comparées
à des résultats expérimentaux. La propagation, sous contrainte, du front de réaction chimique
dans un solide déformable inélastique (visqueux, plastique) a été considérée sur la base du con-
cept du tenseur d’affinité chimique. Pour le cas d’un composant inélastique, la réaction chimique
est obtenue et analysée par des solutions analytiques des problèmes aux limites les plus simples
décrivant la propagation de fronts de réaction plans, cylindriques et sphériques. Il a été montré
comment l’état de contrainte-déformation et la géométrie du solide affectent la cinétique de la
réaction chimique. A partir de la notion de concentration d’équilibre, les effets de l’accélération
sont étudiés, de même que le ralentissement et le blocage de la réaction par les sollicitations ex-
térieures en fonction des paramètres des matériaux. Les contraintes et déformations, induites
par les transformations chimiques, ont été déterminées. Leur impact sur les propriétés de dé-
formation et de résistance des matériaux a été estimé. A partir du tenseur d’affinité chimique,
une équation cinétique est formulée ; elle détermine la dépendance de la vitesse de propagation
d’un front de réaction chimique dans les corps visco-élastiques et élasto-plastiques par rapport
à l’état de contrainte-déformation. La propagation, sous contrainte, du front de réaction chim-
ique dans un solide déformable dans le cas de fronts de réaction plan, sphérique et cylindrique
a été ensuite considérée pour les corps élastiques. L’analyse mathématique précise de l’influence
de divers paramètres sur le comportement du front de réaction est effectuée. Le front de réaction
plan se propage uniquement selon une loi parabolique. Dans le cas du front de réaction sphérique,
la cinétique peut être logarithmique et parabolique, selon les relations entre les combinaisons
de modules d’élasticité des réactifs solides. Pour la réaction en configuration cylindrique une loi
cinétique exponentielle a été observée ainsi qu’une loi parabolique. Ces différents résultats sont
cohérents avec certaines données expérimentales issues de la littérature. Le troisième chapitre
est consacré aux réactions chimiques sous contrainte en viscoélasticité et un modèle pour l’étude
analytique de la relaxation de contrainte derrière le front de réaction est développé. Les résul-
tats montrent que les déformations visqueuses n’affectent pas directement la cinétique du front
dans le cas du modèle linéaire standard si la déformation externe agit dans le plan de l’interface,
puisqu’elles n’ont pas le temps d’apparaître pour le moment de la transformation. Mais ils per-
mettent la possibilité d’un phénomène de relaxation des contraintes derrière le front de réaction.
Selon les paramètres visqueux et élastiques, cette relaxation peut être rapide, et la région des fortes
contraintes est localisée dans une couche étroite adjacente au front de transformation. Notons
également que d’autres chargements externes sont possibles, lors desquels la relaxation des con-
traintes peut réactiver le front de réaction initialement bloqué. Le changement de rhéologie d’un
constituant solide dû à la réaction chimique localisée a été pris en compte à l’aide du Modèle
Linéaire Standard (SLSM) et ses cas particuliers. Le modèle SLSM et Maxwell ont permis d’obtenir
des solutions analytiques qui nous ont permis d’étudier les effets spécifiques des paramètres des
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matériaux sur la relaxation des contraintes derrière le front de réaction. D’autre part, les matéri-
aux visqueux purs et de Kelvin-Voigt peuvent difficilement être considérés comme des candidats
appropriés pour modéliser les produits de réaction. Les effets de la plasticité sur la cinétique du
front de réaction ont été étudiés au chapitre 4. La propagation sous contrainte du front de réaction
chimique dans un solide déformable dans le cas d’un front de réaction plan, sphérique et cylin-
drique pour le matériau transformé élastique-parfaitement plastique a également été considérée.
Dans ce cas, il est montré que la réaction chimique a un mécanisme différent des réactions en
élasticité et en viscoélasticité. Ces mécanismes sont présentés et décrits. Il est montré que la prise
en compte du seul phénomène de transformation chimique peut induire des déformations plas-
tiques. L’influence de la condition aux limites pour l’initiation de la déformation plastique dans le
matériau est étudiée. Pour le front de réaction plan, le choix de la condition aux limites conduit à
deux situations différentes pour la phase élasto-plastique (si elle apparaît). On montre que pour
le cas de déformations imposées, lorsque la limite d’élasticité est atteinte, le matériau élastique
transformé devient entièrement plastique, tandis que pour des contraintes imposées, un front
plastique apparaît. Dans le cas de la propagation du front de réaction sphérique et cylindrique,
le front plastique apparaît dans le régime élasto-plastique. Deux fronts ont leurs propres vitesses
et directions. La zone plastique s’étend dans deux directions. La relation entre le front de réac-
tion et le front plastique est déterminée. Il est montré que la plastification du matériau accélère la
réaction. En conséquence, les modèles proposés sont comparés entre eux dans le chapitre 5. Il est
montré que la cinétique du front de réaction chimique est affectée par les lois de comportement,
le type de chargement externe et les paramètres élastiques. L’influence de la géométrie des solides
sur la cinétique de réaction est étudiée. Le front de réaction plan se propage plus vite que le front
cylindrique et plus lentement que le front sphérique.

Enfin, des études expérimentales d’oxydation à haute température de fils et de billes de nickel
pur ont été menées. Les données expérimentales pour l’évolution de l’épaisseur d’oxyde au cours
du temps ont été obtenues et comparées aux modèles théoriques proposés. Il est montré que
l’oxydation des fils de nickel démontre une cinétique parabolique, alors que pour les billes de
nickel elle est plutôt logarithmique. La comparaison des résultats expérimentaux de l’oxydation
des fils de nickel avec les modèles proposés montre que les expériences peuvent être décrites avec
précision par le modèle de fronts de réaction cylindriques en élastoplasticité. Les billes de nickel
étant de tailles différentes et contenant de nombreux défauts de surface, le modèle et l’expérience
ne donnent qu’une concordance relative, qui reste à confirmer. En résumé, l’influence de la
géométrie des solides, des lois de comportement, des conditions aux limites et des propriétés
mécaniques sur la propagation du front de réaction a été analysée pour les lois de comportement
inélastiques. Comme les géométries simples considérées correspondent à des applications in-
dustrielles, les résultats obtenus pourraient être utilisés pour les développements de la concep-
tion optimale de nano-anodes dans des batteries Li-ion à capacité spécifique, pour développer
les bases théoriques du contrôle de la taille du matériau transformé (par exemple, oxyde, silicium
lithié) et la géométrie de la nano-structure. Ces solutions analytiques pourraient également être
utilisées pour vérifier les procédures numériques et pour l’estimation des impacts de la transfor-
mation et des déformations inélastiques sur l’épaississement lors de la propagation du front dans
les expériences.
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Introduction

...We went into science because it’s
fascinating and exciting, because
we wanted to explore the Universe
and find out the secrets it holds. We
wanted to understand, to know, to
comprehend, to write another
chapter in the story of humanity’s
search for knowledge. We are part
of a great tradition, using the work
of those who went before to help us
progress farther and yet farther
across this amazing Universe in
which we live. And to understand
why we are here and how it all
began. ... We bring enlightenment
by sharing our knowledge. We
don’t keep it to ourselves. We
explain, we teach, we seek...

Stephen and Lucy Hawking
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The influence of stress-strain state on chemical reactions has been widely considered since the
70s of the last century. It is of primary importance in such fields as energy storage industry, nu-
clear power, medicine, aircraft industry, civil engineering and the list is far from being exhausted.
The oxidation of silicon in nanowires [15], or in MEMS [99], reactions in ceramic composites with
inclusions, i.e. [101], lithiation of silicon in Li-ion batteries, i.e. [93], are a few representative ex-
amples of the importance of establishing interconnections between chemical transformations and
stress-strain states (see also, e.g., [54, 95, 153] and the references in [43]).

These and other similar processes can be described using a two-phase reaction model in which
the reaction is localized at the sharp interface – a reaction front, and the diffusing reactant is trans-
ported to the reaction front through the solid transformed material. One of the first and most sim-
ple models that described such reactions was the model proposed by Deal and Grove [26] for a
planar oxidation front. This model gave a general scenario of the problem statement but did not
consider stress effects. However, previously mentioned chemical reactions are accompanied by
volumetric expansion that produces internal stresses, which in turn may affect the chemical reac-
tion (see, i.e. [7, 31, 74, 101]). An extension of the Deal-Grove model was proposed by considering
a stress-dependent diffusion coefficient and a reaction rate parameter [59–61, 76, 120, 137]. Other
alternatives to taking into account the influence of stresses on the diffusion and reaction are to
introduce additional terms in the expression for the diffusion flux [71, 72, 141] or considering the
influence through a scalar chemical potential [12, 13, 80, 89, 90].

In fact, stresses may affect the reaction via their influence on diffusion flux (diffusion-controlled
reactions) or via direct influence on the reaction rate (reaction rate-controlled reactions), see, i.e.,
[22]. In the present work we focus on the second case, for which the reaction front propagation
is controlled rather by the reaction rate than by the diffusion (see, i.e., [57, 159]). Modeling of the
reaction front kinetics is based on the chemical affinity tensor derived initially for nonlinear elas-
tic constituents [37], similar to how it was done for a propagating phase interface in [70]. Then it
was derived from fundamental balance laws and the entropy inequality written down for an open
system with a chemical reaction between diffusing and solid constituents of arbitrary rheology,
and a kinetic equation in the form of the dependence of the reaction front velocity on the normal
component of the affinity tensor was formulated [38, 40, 44]. This consideration is consistent with
the approach of classical physical chemistry where reaction rate is determined by a scalar chem-
ical affinity [119], and the notion of the chemical affinity arises to pioneering works by Gibbs [47]
and de Donder [25].

In the case of solid constituents, tensorial nature of the chemical affinity follows from the con-
sideration of a chemical reaction on the oriented area element of the reaction front (see a more
detailed discussion in [43]), as well as the tensorial nature of the chemical potential followed from
the fact that a phase equilibrium took place not just in a point but at oriented area elements of
the phase interface passing through the point (see, i.e., [48]). It should be noted that the chemical
affinity tensor was not postulated but derived in the spirit of irreversible thermodynamics with
the use of the Clausius–Duhem inequality. The normal component of the tensor was conjugate
to the reaction rate at the oriented area element in the expression of the energy dissipation due
to the reaction front propagation, and this tensor was naturally called chemical affinity tensor. In
a quasi-static case, the chemical affinity tensor is represented by the linear combination of the
chemical potential tensors, which are the Eshelby stress tensors divided by the reference mass
densities (see the next Section 1.2.2). This combination is the same as the combination of scalar
chemical potentials which defines the classical chemical affinity.

Up to now, the approach based on the chemical affinity tensor has been applied to a number of
boundary value problems with propagating reaction fronts in a formulation which assumed solid
constituents to be linear elastic [41, 42, 44, 143]. Then the theory has been used to describe numer-
ically two-phase lithiation of Si particles used in Li-ion batteries, where the constituent materials
undergoing finite elasto-viscoplastic deformations were considered [116, 117]. However, inelas-
tic constitutive laws have rarely been used to obtain analytic results and a systematic analysis of
viscoelasticity or elastoplasticity influence on the chemical reaction front is clearly missing.
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In the present work we come back to the case of small strains and develop a model for ana-
lytical studies of stress relaxation behind the reaction front and of plastic deformations due to the
chemical transformation. Since one observes the total thickness of the transformed layer in sim-
ple experiments with planar reaction fronts, even simple models may be useful for estimation of
the inputs to the thickness of the reaction front propagation due to a chemical reaction and the
thickening due to inelastic deformations.

The thesis consists of five chapters. In the first chapter, a general formulation of the mechano-
chemistry problem is given. The general thermodynamical approach is formulated and a short
summary of the concept of the chemical affinity tensor is given firstly in Section 1.2.2, along with
the formulation of a general quasi-static coupled problem involving mechanics, diffusion and
chemistry.

The second chapter is devoted to the solution of the mechano-chemical problem with elas-
tic reaction product. The kinetics equation is obtained for planar, spherical and cylindrical fronts.
The influence of strains and material parameters on the kinetics of the front propagation was stud-
ied in detail with the use of the notion of the equilibrium concentration. Two types of the depen-
dencies of the equilibrium concentration and, thus, front velocity on strain are demonstrated, de-
pending on the relations between the combinations of elastic moduli of solid reactants.It is shown
that reaction kinetics depends on the geometry of the structural element. It is demonstrated the
possibility of logarithmic kinetics in the case of the spherical reaction front. For the reaction in
cylindrical element the exponential law of the kinetics was observed.

The third chapter is devoted to the viscoelastic transformed material. The changing of the rhe-
ology of a solid constituent due to the localized chemical reaction was taken into account with the
use of the Standard Linear Solid Model and its particular cases. The analytical solution is obtained.
The influence of viscosity on the chemical reaction is studied in details. Analytical expressions of
stress relaxation behind the reaction front are developed.

In the fourth chapter the influence of plastic strains on chemical reaction front propagation
is studied. Theoretical analysis is conducted for the case of elastic-perfectly plastic transformed
material. The equations for the reaction kinetics are obtained. The different mechanism of the
chemical reaction front propagation in comparison with the cases of elastic and viscoelastic reac-
tion product is studied. The importance of the type of the boundary condition for the initiation of
the plastic deformation in the material is shown. The appearance of the second (plastic) front and
its kinetics is analyzed.

The last fifth chapter is devoted to the experimental work and to the comparison between the
theoretical results and experimental data. In the first part, in order to validate this approach, high-
temperature oxidation experiments for pure nickel wires and balls are conducted. The evolution
of the oxide surface morphology and internal microstructure of Ni and NiO is obtained. The oxide
thickness is measured. The second part of the chapter is devoted to two types of comparisons:
between models and experiments and between models. Such comparisons show how the rheo-
logical properties of materials and geometry of the considered body are important to predict the
reaction front propagation.
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Chapter 1

General formulation of the
mechanochemistry problem

Thermodynamics is a funny
subject. The first time you go
through it, you don’t understand it
at all. The second time you go
through it, you think you
understand it, excepting for one or
two small point. The third time
you go through it, you know you
don’t understand it, but by that
time you are so used to the subject,
it doesn’t bother you any more...

Arnold Johannes Wilhelm
Sommerfeld
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1.1 State of the art

In recent decades the study of the materials, whose structure changes due to chemical phase
transformation under thermal and mechanical effects, has attracted extremely wide attention
due to its interesting interdisciplinary. In such research the problems of physics, mechanics and
chemistry are coupled. Moreover, stress-assisted chemical reactions are relevant in various indus-
trial and biomedical applications and in modern technologies. Important examples of such reac-
tions are: polymers degrading by hydrolysis in water (e.g. PLA, PCL), with emphasis on biomed-
ical applications (bioresorbable implants, sutures, drug delivery) (see i.e. [27, 83, 134, 144]); ox-
idation of ceramic composites dispersed metal particles for the high temperature applications
[56, 101, 102]; oxidation of nanowires [15, 65, 154], MEMS elements [98, 99] and chips; austenite-
martensite phase transformation in polymers; formation of hydrides in hydrogen-storage materi-
als [51, 64, 66, 135]; processes of charging/discharging of lithium-batteries [81, 91, 93, 129, 151]. It
is thus necessary to take into account the influence of stress-strain state on chemical transforma-
tion in detail for predicting the lifetime and the behavior of structural elements under conditions
of joint thermomechanical and chemical effects. All these and a lot of other processes can be de-
scribed using the two-phase reaction model, it is thus important to be able to handle it efficiently.
As applications are too numerous, in this state of the art, we will only focus on silicon as an exam-
ple of such mechanochemistry problems.

Figure 1.1: Chemical lithiation of two Si nanoparticles [87]

Silicon has all the required semiconducting properties, photoconductivity, high mechanical
strength, excellent temperature characteristics, good chemical compatibility, formation of junc-
tion and it highest known specific capacity to store lithium, even higher than graphite electrodes.
This is why silicon is a wide-used material in the industry, biomedicine, solar cells, batteries, mi-
croeletronics systems and in technological processes.

As previously mentioned, amorphous silicon has high theoretical specific capacity of 4200mAhg−1

[17], while for graphite it is of 372mAhg−1. Due to such high specific capacity, silicon is one of the
most promising candidate for the anode material in Li-ion batteries (another one is Sn, for which
the theoretical capacity of 873mAhg−1). However, the insertion of such big amount of Li atoms
into the silicon electrode during lithiation, leads to the enormous volume expansion up to 400%
[93, 142] and large elastic-plastic deformations [104]. There are two aspects of negative affect of
anode deformations: failure of anode particles and failure of solid electrolyte interface. Volume
changes in anode, associated with insertion or remove of Li atoms, cause the huge stresses in the
anode and in turn can lead to the fracture of the anode particle, initiation and further propagation
of cracks and places the solid electrolyte interface under tensile stress (see Fig. 1.1). Therefore, it
leads to degradation of battery performance and limits the lifetime of it [7].
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Figure 1.2: SEM and TEM images of anisotropic swelling and fracture in lithiated Si nanowires with four
different axial orientations: (A) 〈100〉 , (B) 〈110〉, (C) 〈111〉, and (D) 〈112〉[152].

Figure 1.3: SEM images of crack patterns formed in a-Si thin films [81]

Various designs for anode structure have been developed in order to reduce the effect of large
volume change, therefore, to obtain better capacity and prolongation of silicon anode life-time.
The sharp interface is observed in the experiments and is correspond to the surface between
the lithiated silicon and silicon, even in amorphous Si thin-film electrodes [85–87, 93, 100, 152].
Also it was reported that the interface has significant influence on the kinetics of charging and
discharging processes and on the induced stresses due to the chemical transformation (lithia-
tion/delithation) [21, 80, 155]. Experiments shows that the phase interface mobility is anisotropic
and depends on its orientation [78, 86, 152] (see Fig. 1.2). It was also shown in [88, 127], that
there is strong dependence between the particle size and fracture behavior during first lithiation,
the critical size exists, below which the cracking does not occur. In nanostructured materials, the
surface stresses via the induced internal stresses can change the capacity and diffusivity of the
particle, which are strongly correlated with size, geometry of the particle. Hence, the detailed un-
derstanding and controlling of the stress-strain state on the lithiation/delithiation processes can
be the major question for the life-time and performances of the batteries.

As outlined above, the huge volume change during cycles of lithition and delithiation leads to
massive cracking of the electrodes, and subsequent loss in capacity. The swelling generates stress,
which can cause fracture even after a few cycles of charge and discharge [99]. In order to reduce
the effect of the volume expansion, the different designs of Si anodes were proposed, such as thin
films, nanoparticles, nanowires or nanotubes, and more complex structure designs. To study the
size-dependent fracture of silicon electrodes during lithiation and delithiation cycles the silicon
thin films are considered. In [81] the cracks patterns, which appears during the elecrochemical
cycling of Si thin film anode, were studied. It was shown that the crack density increases with
decreasing of silicon film thickness (Fig. 1.3). Moreover, in [81, 138] it was obtained that a critical
thickness of the silicon film exists, below which a continuous film no longer cracks even under
repeated cycling [81, 138]. These results show that through the film thickness pattering of silicon
islands on a substrate it can be possible to control the electrode damage, therefore, the mechanical
degradation and capacity loss. From the experimental observations it follows that the curvature-
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Figure 1.4: TEM images of cross section of silicon samples oxidized in wet O2 at various temperatures [92].

(a) (b)

Figure 1.5: (a) TEM images of silicon nanowires after oxidation for 1h at 925°C; (b) dependency of the oxide
thickness from the oxidation time for different nanowire starting radii [15].

induced average stress of the silicon film is always in compression during lithiation and in tension
during delithiation [130].

Other examples of mechanochemistry problem are taken from microelectronics and MEMS.
Silicon dioxide is used in microelectronics to isolate one device from another, to act as a struc-
tured mask against the insertion of the additive atoms as well as gate oxide in metal–oxide–silicon
structures. The transformation of silicon substrates into Si O2 is realized by the thermal oxidation,
which is a complex process including the diffusion of the oxidants, chemical reaction and volume
change due to the chemical transformation. The oxide is susceptible to viscoelastic deformation
at the oxidation temperature [30, 31]. Due to the oxidation, the volume increases, which in turn
causes large residual stresses, especially when oxide forms on the surface subjected to the large
curvatures. The residual stresses affect the mechanical behaviour of the oxide, may modify the re-
action rate, cause the plastic deformations, especially near corners and change the electrical char-
acteristics. In [92] it was shown that the oxidation kinetics at the edges of monocrystalline silicon
and the interface between oxide and polycrystalline silicon substrate after oxidation depend on
the stresses in oxide (Fig. 1.4). The influence of external stresses was examined in [54, 69, 92, 95].
It was shown that external tensile stresses enhanced the oxidation rate, and compressive stresses
retarded it [54]. The effect of external stress on oxidation of silicon wafers was studied in [153]. It
was shown that the tensile stress strongly enhances the oxidation rate.
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(a)

(b)

Figure 1.6: (a) SEM image of the cross-section of 5Ni/PSZ oxidized at 1073K; (b) schematic illustration of
high temperature oxidation Ni/PSZ composite [102].

Figure 1.7: Deal-Grove model for the oxidation of silicon [26].

The retarded or self-limited oxidation in silicon nanostructures is a phenomena used in tech-
nology in order to manipulate the size, geometry, distribution, mechanical properties of structures
[15, 76] (see Fig. 1.5). Another experimental tests were done in [95] for silicon strips in four-point
bending in oxidizing environment. The results of this set of experiments indicated that applied
compressive stress had a retarding effect upon the growth of the oxide layer, while the effect of
tensile stress was ambiguous. In [92] the retarded oxide growth was observed at both convex and
concave corners of trenches in polycrystalline silicon. Therefore, the kinetics of oxide film grown
on non-planar substrates differs from oxide on planar substrates. The set of the cylindrical sili-
con oxidation was performed in [59, 60]. It was demonstrated that the oxidation of curved silicon
surfaces is retarded at sharp curvatures, and that the retardation is more severe on concave than
convex structures. From these facts it has been inferred that internal stresses generated during the
oxidation process affect the oxidation.

The life-time of polysilicon parts in MEMS is determined by the oxidation processes intercon-
nected with crack growth in polycrystalline silicon microscale parts. The ’reaction-layer fatigue’
mechanism is only significant in thin films where the critical crack size for catastrophic failure can
be reached by a crack growing within the oxide layer [58, 98, 99]. The silicon oxidation was also
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Figure 1.8: Stress components in (a) convex and (b) concave silicon structures during oxidation [61].

studied in the problem of the oxidation of inclusions of different types in ceramic composites for
the high temperature applications [50, 56, 101, 102]. For example, in [56, 101, 102] the metallic
inclusions in the ceramic composites being heated up and oxidized, expand and induce internal
strain to the matrix, which affects the life-time of the composite (see Fig. 1.6).

All these examples show how geometry, dimensions, temperature, loading modify mechano-
chemistry phenomena.

Despite the experimental possibilities and a large number of works devoted to the mechano-
chemistry problems the key issues of describing the couplings between chemical reaction and
stresses, which include the formulation of conditions on the moving front of chemical transfor-
mations in solids and the influence of internal and external stresses on the kinetics of the reaction,
remain rather on the empirical lever than on the theoretical level.

Hence, silicon oxidation and silicon lithiation/delithiation need detailed modelling of the in-
terconnection between chemical reaction and stress-strain state, the influence of the stresses in-
duced by the chemical transformation and external one on the reaction kinetics, the effect of the
size and geometry of the silicon construction on the reaction propagation. Silicon oxidation and
silicon lithiation are sustained by the diffusion of the diffusive constituent (oxidant or Li, corre-
spondingly, which is consumed at the reaction front) through the transformed material, and ac-
companying by the large transformation deformations, which in turn cause the internal stresses.
These two reactions take place at the sharp interface – a reaction front that divides two solid con-
stituents, and their reaction front kinetics is limited by the reaction rate and less by the diffusion
of the movable constituent [57]. Such processes can be described using the two-phase reaction
model, it is thus important to be able to handle it efficiently. The model however relies heavily on
the rheological properties of the involved materials, which are in general to be defined.

One of the first and more significant models describing such reactions was suggested by Deal
and Grove [26]. This model is one-dimensional, stress free and applied for films growth on plane
substrates (see Fig. 1.7). This model gave a general scenario of the problem statement but did not
consider stress effects (see also [41, 43] where this model is described in the context of introduc-
ing a chemical affinity tensor). However, chemical reactions can be accompanied by volumetric
expansion that produces internal stresses, which in turn may affect the kinetics of the chemical
reaction. In order to explain microscopic oxidation behavior a big amount of models have been
developed by extending the Deal-Grove model to two-dimensional stress-dependant models. In
these models the effect of stress on chemical reaction was associated with the stress-dependent
oxidation parameters: surface reaction rate, oxidation diffusivity, and oxide viscosity [19, 61, 121].
Based on the notion of the activation volume, the stress characteristics (the first invariant, the
normal stress, or the intensity of shear stresses) were chosen [61, 120, 137]. In these models, via
the boundary condition in the diffusion problem, the reaction constants are determined by the
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Figure 1.9: Scheme of volume expansion during silicon oxidation and average shear stress in the oxide [137].

consumption rate of the diffusive component at the reaction front. Simultaneously the model
parameters (reaction constant and diffusion coefficient) depend on the stresses heuristically. The
choice of the parameters was made intuitively based on the confirmation of the model results with
experimental data.

Figure 1.10: Stress at the silicon/oxide interface as a function of radius of curvature at 800°C [120].

The first models assumed that the oxidation parameters are affected mostly by hydrostatic
and normal stresses at the reaction front (see i.e.[61]). Further, the models were established with
shear stress-dependent viscosity [120, 137]. In [61], the oxidation of concave and convex cylindri-
cal silicon studied (see Fig. 1.8). In this work the viscous stress associated with the nonuniform
deformation of the oxide is identified as the fundamental force of retardation, and the oxide vis-
cosity is chosen pressure-dependent. The extension of this work by the replacement of pressure-
dependent oxide viscosity model with the shear-stress-dependent oxide viscosity model was done
in [137] (the stress distribution for this model is shown in Fig. 1.9). In [120] it was mentioned that
models in i.e.[59–61, 137] predict stresses much larger than that threshold at low temperature, it is
reasonable to assume that plastic flow does indeed occur during. Like in many studies, the plastic
flow were studied considering non-linear viscoelastic (Maxwell) model and critical stress depend-
ing on Eyring’s viscosity model. Then, the stress distribution was obtained Fig. 1.10. However,
the reaction kinetics was not studied in [120]. The problem of such viscosity-based approach not
considering the yield stress is to minimize the effect of plastic strain and residual stresses.
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Figure 1.11: Schematic of the oxidation process. The scalar ξ ∈ [0,1] denotes the volume fraction of oxide
[90].

In another group of models, a concentration-dependent volumetric expansion was introduced,
which led to the total stress-diffusion coupling, e.g. [121, 122]. In [157], the reaction is considered
pressure-dependent, and the reaction-controlled diffusion model for the lithiation process of a
spherical Si particle and numerical solution was obtained.

Other alternatives to take into account the influence of stresses on the diffusion and the reac-
tion are to introduce additional terms in the expression of the diffusion flux, e.g. [71, 72, 141],
or to consider the influence through a scalar chemical potential, which depends on the con-
centration and the stresses, and gradient of which governs the flux of the reactant, e.g. [3, 9–
14, 21, 23, 28, 80, 80, 81, 89, 90, 103, 109]. In [71] the diffusion model for a medium with a nonuni-
form internal structure is developed. The kinetic model proposed in [13] couples both mechani-
cal and chemical driving forces affects the rates of inelastic deviatoric strains and concentration.
This model was applied to analyze the mechanochemical yield condition, flow rule and ratchet-
ing by generalizing von Mises theory of plastic potential. In [89] the chemo-thermo-mechanically
coupled theory that accounts for elastic-viscoplastic deformation is formulated. Stress-diffusion
model in which the isotropic volumetric expansion depends linearly on the concentration of Li,
while the diffusion is driven by the spatial gradient of the chemical potential, is proposed in [23].
In this model the chemical potential is considered as the function of the concentration and the
pressure. Another stress-diffusion model with stress-dependent chemical potential is developed
for the case of the lithiation of spherical silicon particle [21]. This model was extended in [22] to
the problem with a chemical reaction as a kinetics governing process.

Figure 1.12: (a) The influence of Li insertion rate and elasticity on stress distributions in an electrode parti-
cle. (b) Stress distributions for particles that exceed yield only at the phase boundary [10].

In order to describe the additional physical effects, such as failure of silicon particles during
the silicon lithiation, the coupled stress-diffusion-reaction models were also developed. The ap-
proach of [157] was extended in [156], and the effective damage field was introduced. The studies
of crack growth during lithiation process were made using a coupled stress-diffusion model in
[67, 68].

The phase field method is widely used for such problems. In [89, 90] the model with a region of
oxidation front instead of the sharp interface was proposed and approved numerically for the alu-
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minium oxidation of flat plates. In this approach the region of the reaction front is described as a
mixture of the oxide with the based material (see Fig. 1.11). In this approach the term proportional
to the concentration gradient is included in the free energy.

As it was mentioned before, the chemical reaction is accompanied by plastic deformations
and viscous strains as well: the chemical transformation induces the volumetric expansion, which
in turn causes the internal stresses. The internal stresses produce plastic deformations and af-
fect the reaction kinetics. Moreover, the chemical transformation generates the growth stresses
in the transformed material and accompanying stress relaxation. Therefore, from the mechanical
perspective, there has been an extensive research focus on modelling of stresses produced by the
chemical transformation and the impact of the inelastic strains on the propagation of the chem-
ical reaction, e.g. [14, 29, 89, 90, 120, 137]. But the influence of stresses on the lithiation kinetics
still remains unclear and must be captured to model the reaction propagation accurately. The
plastic deformations were numerically studied e.g. in [3, 14, 28, 90, 103, 109]. For the extended
Deal-Grove model the plastic model as the viscosity dependent on the maximum resolved shear
stress was proposed in [76, 120]. The viscous deformations due to the chemical reaction were in-
cluded in the models in e.g. [3, 61, 89, 90, 103, 107, 137]. The disadvantages of such governing
equations that they can be solved only numerically [3, 13, 14, 71, 109, 156], what makes difficult to
isolate the effects of different parameters and inelastic strains on the reaction. Some analytical so-
lution for stresses for elastic-plastic spherical electrode particle is obtained in [10] (Fig. 1.12) and
for viscoelastic stresses in oxide film in [53].

Stresses may affect the front propagation via the direct influence on the reaction rate (see, e.g.,
[22]). This corresponds to the case of reaction rate-controlled reactions for which the reaction
front propagation is controlled rather by the reaction rate than by the diffusion, and lithiation is an
example of such a reaction (see, e.g., [57, 159]). Note, that the diffusion is also affected by stresses
in this case but not via the constitutive equation of the diffusion but via the boundary conditions
at the reaction front. In this work we focus on such type of the models.

Figure 1.13: About tensorial nature of chemical potential.

An approach to describe stresses effects based on the ideas of classical physical chemistry, ac-
cording to which the reaction rate is determined by the chemical affinity is used in this work. The
notion of the chemical affinity was introduced by Gibbs [47] and de Donder [25] and laid the foun-
dation of thermodynamical theory of phase transformations and chemical reactions [119]. The
chemical affinity as a thermodynamic force is a factor outside the reaction rate. Then, a kinetic
equation was formulated that determined the reaction rate as a function of the chemical affinity.
An additional constitutive equation is obtained as dependence between the reaction rate and the
affinity. In the case of gaseous or liquid constituents chemical potentials and affinity are scalar.
In the case of solid constituents the tensorial nature of the chemical affinity follows from the con-
sideration of a chemical reaction on the oriented area element of the reaction front (see a more
detailed discussion in [43]), as well as the tensorial nature of the chemical potential followed from
the fact that a phase equilibrium took place not just in a point but at oriented area elements of
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the phase interface passing trough the point Fig. 1.13 (see, e.g. [2, 48]). The tensorial nature of the
chemical affinity was also pointed out in [125, 126]. In a quasi-static case, the chemical affinity
tensor is represented by the linear combination of the chemical potential tensors, which are the
Eshelby stress tensors divided by the reference mass densities. This combination is the same as
the combination of scalar chemical potentials which defines the classical chemical affinity.

Modeling of the reaction front kinetics is based on the chemical affinity tensor derived from
fundamental balance laws and the entropy inequality written down for an open system with a
chemical reaction between diffusing and solid constituents of arbitrary rheology in the case of
finite strains (see [38, 40, 44] and a review [43]). It was shown that the normal component of this
tensor acts as a configurational force conjugated to the reaction rate in the expression of the energy
dissipation due to the front propagation, and a kinetic equation in the form of the dependence of
the reaction front velocity on the normal component of the affinity tensor was formulated.

The approach based on the chemical affinity tensor has been applied to the statement and
solution of a number of boundary value problems with propagating reaction fronts in formula-
tions which assumed solid constituents to be linear elastic [41, 42, 44, 143]. Then the theory has
been used to describe numerically two-phase lithiation of Si particles used in Li-ion batteries,
where the constituent materials undergoing finite elasto-viscoplastic deformations were consid-
ered [116, 117].

Following this framework, in the present work new problems related to the description of
chemical reactions between solid and diffusing components will be solved. It will be explored how
the stress-strain state and the geometry of the body affect the kinetics of the chemical reactions.
We will extend the previously developed models to describe the propagation of the front of chem-
ical reactions between deformable solids and gaseous components under conditions of thermo-
mechanical effects for reactions of inelastic (viscous, plastic) bodies. The concept of the chemical
affinity tensor will be applied for the first time to the chemical reactions in inelastic solids and a
theoretical basis for predicting the distribution of the chemical reaction front in elastic and inelas-
tic materials under different conditions of mechanical loading will be developed. For the case of
an inelastic component the chemical reaction will be received and investigated by analytical so-
lutions of the simplest boundary value problems describing the propagation of plane, cylindrical,
and spherical fronts of reaction. The relationships of chemical reactions and processes of stress
relaxation and plastic deformations will be investigated, induced by the large deformations due to
chemical transformations. The effects of acceleration will be studied, as well as the slowing down
and blocking of the reaction by mechanical loading and parameters.

The stresses and deformations, induced by chemical transformations, will be determined.
Their impact on the deformation and strength properties of the materials will be predicted. Result-
ing from the chemical affinity tensor a kinetic equation will be formulated, which determines the
dependence of the rate of a chemical reaction front propagation in visco-elastic and elastic-plastic
bodies from the stress-strain state. The impact of parameters on the kinetics of the chemical re-
action and on the mechanical properties of the components of the reaction will be studied. The
analytical solutions will be obtained in order to be used to numerical procedures in future.

High-temperature oxidation experiments for pure nickel wires and balls are conducted in or-
der to validate the model assumption, to precise the limits of the presented models and to compare
the experimental data with different proposed models.

1.2 General framework

The objective of this section is to give the general framework for the modeling of thermo-chemo-
mechanical couplings and to establish the jump conditions imposed on the discontinuity surface
due to the chemical transformation.

The main difficulties of such framework are:
– to write the mass balance, as we have the diffusion of the material from ’outside’ of the body.

Therefore, the system is ’open’. The similar problem you can find for combustion reaction prob-
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lems. Despite the diffusion flux, locally, at the reaction interface, there is a mass conservation.
– to choose the relevant state variables and derive the state equations;
– to express the dissipation and Clausius-Duhem inequality, taking into account the impact of

chemical reaction, diffusion flux and heat flux.

1.2.1 Balances laws with discontinuity surface. Chemo-mechanical couplings

We consider a deformable body of a material B− occupying a domain Ω−. The guest atoms of
diffusive material B∗ come to the surface of the solid, start to react with it and transform into a
new transformed material B+ occupying a domain Ω+. The chemical reaction between solid and
diffusing constituents of the following type is written as:

n−B−+n∗B∗ −→ n+B+

where B−, B∗ and B+ are the chemical formulae of an initial solid constituent, a diffusing con-
stituent and a transformed solid constituent, respectively, n−, n∗ and n+ are the stoichiometric
coefficients. Further sub- and superscripts refer values to materials B−, B∗ and B+.

The reaction is localized at the reaction front Γ that divides the solid constituents B− and B+,
and it is sustained by the diffusion of B∗ through the transformed material B+ (Fig. 1.14). The
reaction frontΓmoves due to the consumption of the diffusive reactant B∗, which diffuses through
the transformed material B+ from the outer surface of Ω+ to the reaction front Γ. For simplicity
we assume that the host atoms do not diffuse, but may to re-arrange to accommodate the guest
atoms. This problem comes from the classical problems of moving discontinuity surface [118, 128]
by adding a two-phase state and a chemical reaction as the governing equation for the velocity of
the interface.

Recall. Derivative of a volume integral in the case of a body with moving discontinuity surface.
Consider the quantity J (Ω, t ) = ∫

Ωb(𝑥, t )dΩwhich is the integral of the volume density b(𝑥, t ) over
the actual configurationΩ. Γ is a discontinuity surface inΩ; each point ofΓ is moving with a velocity
𝑉 . 𝑥 is the position vector in the current configuration, 𝑣 the current velocity.

dJ

d t
=

∫
Ω

∂b

∂t
dΩ+

∫
∂Ω

(b ⊗𝑣) ·𝑛d a +
∫
Γ
�b�𝑉 ·𝑛dΓ=

∫
Ω

(
∂b

∂t
+div(b ⊗𝑣))dΩ−

∫
Γ
�b ⊗ (𝑣−𝑉 )� ·𝑛dΓ

where n is the normal vector of Γ oriented toward ′+′. Only in this section, �a� = a−− a+; while in
the following parts, �a� = a+−a−; (b⊗v) is the tensor product of b and v. Recall that, if b is a scalar,
(b ⊗v) is just the product bv.

Figure 1.14: Chemical reaction between solid and diffusive constituents.
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If Ω is a control volume whose boundary moves with a velocity 𝑈 , the balance equation relative
to a continuous quantity b, which internal rate production Ri and surface rate production 𝑅𝑠 ·𝑛, is
written as:

dJ

d t
=

∫
Ω

Ri dΩ+
∫
∂Ω

𝑅𝑠 ·𝑛d a

with

dJ

d t
=

∫
Ω

(
db

d t
+b div(𝑈 ))dΩ+

∫
∂Ω

(b ⊗ (𝑣−𝑈 )) ·𝑛d a

=
∫
Ω

(
db

d t
+b div(𝑈 )+div(b ⊗ (𝑣−𝑈 )))dΩ

In the case of the presence of the discontinuity surface Γ is in Ω, the previous balance in written for
the two domains Ω− and Ω+ and then added to obtain:

dJ

d t
=

∫
Ω

(
db

d t
+b div(𝑈 ))dΩ+

∫
∂Ω

(b ⊗ (𝑣−𝑈 )) ·𝑛d a +
∫
Γ
�b (𝑣−𝑉 )� ·𝑛dΓ

=
∫
Ω

(
db

d t
+b div(𝑈 )+div(b ⊗ (𝑣−𝑈 )))dΩ+

∫
Γ
�b (𝑈 −𝑉 )� ·𝑛dΓ

The local equation derived for any point in Ω, is:

db

d t
+b div(𝑈 )+div(b ⊗ (𝑣−𝑈 ) = Ri +div𝑅𝑠

For any point of the interface Γ,
�b ⊗ (𝑈 −𝑉 )� ·𝑛= 0

The situation considered in this thesis is illustrated in figure 1.14. We denote bs the property b
associated with the materials ′+′ (namely b+) or ′−′ (b−), and b∗ the one associated with the mate-
rial ′∗′. The substance ′∗′ is assumed to occupied the same domain as ′+′, so that all the densities
considered are relative densities (densities weighted by the phase proportions which are assumed
fixed).

d

d t

∫
Ω

b(𝑥, t )dΩ= d

d t

∫
Ω

bs(𝑥, t )dΩ+ d

d t

∫
Ω

b∗(𝑥, t )dΩ

=
∫
Ω

(
dbs

d t
+bs div(𝑣))dΩ+

∫
Γ
�bs (𝑣−𝑉 )� ·𝑛dΓ+∫

Ω+
(

db∗

d t
+b div(𝑣)+div(b ⊗ (𝑣*−𝑣)))dΩ+

∫
Γ

b∗ (𝑣 −𝑉 ) ·𝑛dΓ

Balance of mass

In order to write the mass balance, we consider the following contributions for the mass change:
– diffusion flux of the guest diffusive material ’*’ through the layer of the transformed material

and its leak at the reaction front;
– consumption of the base material ’-’ at Γ;
– production of the new transformed material at the reaction front.
Therefore, the global form of the mass balance of the open "deformable body-diffusive com-

ponent" system at the time t is calculated for b = ρ is obtained as follows:∫
Ω+

(
∂ρ+

∂t
+ ∂ρ∗

∂t

)
dΩ+

∫
Ω−

(
∂ρ−

∂t

)
dΩ+

∫
∂Ω+\Γ

ρ+v+ ·nd a +
∫
∂Ω−\Γ

ρ−v− ·nd a+

+
∫
∂Ω+\Γ

ρ∗
(
v∗−v+)

·nd a −
∫
Γ

(�ρ�−ρ∗)
V ·nd a = 0 (1.1)

where ρ+ and ρ− are the densities of the materials B+ and B−, respectively, ρ∗ is the density of
the diffusing constituent; v+ and v− are the velocities of points of the transformed and initial
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materials, v∗ is the velocities of the diffusive reactant’s particles, then the relative velocity (v∗−v+)
is the diffusion rate of diffusive constituent, V is the front velocity. In local form the mass balance
can be written as:

initial material, in Ω− : ρ̇−+ρ−div(v−) = 0 (1.2)

transformed material, in Ω+ : ρ̇++ρ+div
(
v+)= 0 (1.3)

diffusive component, in Ω+ : ρ̇∗+ρ∗div
(
v∗−v+)= 0 (1.4)

reaction front Γ : �ρ (v−V)� ·n= ρ∗ ((
v∗−v+)−V

)
·n (1.5)

Let’s make the following notation

ρ (v−V) ·n=−m f (1.6)

Then our formulae (1.5) of the mass balance at the reaction front takes the following form:

�m f � =−ρ∗ ((
v∗−v+)−V

)
·n (1.7)

Balance of momentum

The friction between the guest diffusive component and the solid constituent and volumetric
forces are neglected for simplicity. Hence, the different contributions in the linear momentum
balance are:

– supply of the momentum by the diffusive ’*’ constituent;
– forces acting on the outer surface ∂Ω;
– external pressure p∗ acting on the diffusive component.
Therefore, the global form of balance of momentum (it is calculated for b = ρv) can be written

as:

∫
Ω+

∂

∂t

(
ρ+v++ρ∗v∗)

dΩ+
∫
Ω−

∂

∂t

(
ρ−v−)

dΩ+
∫
∂Ω+\Γ

(
ρ+v+⊗v+)

·nd a+

+
∫
∂Ω−\Γ

(
ρ−v−⊗v−)

·nd a +
∫
∂Ω+\Γ

(
ρ∗v∗⊗ (

v∗−v+))
·nd a −

∫
∂Ω+\Γ

S+ ·nd a−

−
∫
∂Ω−\Γ

S− ·nd a −
∫
∂Ω+\Γ

S∗ ·nd a −
∫
Γ

(�ρv�−ρ∗v∗)
V ·nd a = 0 (1.8)

where S± = (detF±)σ± ·F−T
± and S∗ =−p∗ (detF+)F−T+ are the Piola-Kirchhoff stress tensors; F± =

∇xT
± are the strain gradients and σ± are the Cauchy stress tensors.
Then using (1.2) and (1.3), in the local form the balance of momentum can be written as fol-

lows:

initial material, in Ω− : ρ−v̇−−div(S−) = 0 (1.9)

transformed material, in Ω+ : ρ+v̇+−div
(
S+)= 0 (1.10)

diffusive component, in Ω+ : ρ∗v̇∗−div
(
S∗)= 0 (1.11)

reaction front Γ : �S−S∗� ·n=−�ρv�V ·n−ρ∗v∗ ((
v∗−v+)−V

)
·n (1.12)

Using the formulae (1.6), rewrite the balance of momentum (1.12) at the reaction front:

�S−S∗� ·n=−�m f
(
v−v∗)� (1.13)

Introducing T=S ·n, we obtain

�T−T∗� =−�m f
(
v−v∗)�
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Balance of energy

For the variations in the balance of energy there are following sources:
– variations of the kinetic and internal energies of the solid and diffusive constituents;
– power of the external forces acting on the outer surface and deforming the solid;
– power of the external pressure acting on the diffusive component;
– power of the thermal energy supply (taking into account the energy supply due to the chem-

ical transformation as well).

Hence, the balance of energy in the global form (calculated for b = ρ
(

u + 1

2
v2

)
) is written as:

∫
Ω+

∂

∂t

(
ρ+

(
u++ 1

2
v+2

)
+ρ∗

(
u∗+ 1

2
v∗2

))
dΩ+

∫
Ω−

∂

∂t

(
ρ−

(
u−+ 1

2
v−2

))
dΩ+

+
∫
∂Ω+\Γ

(
ρ+

(
u++ 1

2
v+2

)
v+

)
·nd a +

∫
∂Ω−\Γ

(
ρ−

(
u−+ 1

2
v−2

)
v−

)
·nd a+

+
∫
∂Ω+\Γ

(
ρ∗

(
u∗+ 1

2
v∗2

)(
v∗−v+))

·nd a −
∫
Γ

(�
ρ

(
u + 1

2
v2

)�
−ρ∗

(
u∗+ 1

2
v∗2

))
V ·nd a =

=
∫
∂Ω+\Γ

(
v+ ·S+ ·n+v∗ ·S∗ ·n

)
d a +

∫
∂Ω−\Γ

v− ·S− ·nd a +
∫
Ω+

(
ρ+r++ρ∗r∗

)
dΩ+

∫
Ω−
ρ−r−dΩ+

+
∫
Γ

qΓd a −
∫
∂Ω+\Γ

h+ ·nd a −
∫
∂Ω−\Γ

h− ·nd a (1.14)

where u± and u∗ are the mass densities of the internal energy of solid and gaseous components,
correspondingly; v2 = v ·v; h± are the heat flux vectors; r± and r∗ are the mass densities of the
bulk energy supply, and qΓ is the surface density of the energy supply due to the chemical reaction
at the reaction front Γ (this is the thermal effect of the reaction).

Therefore, using (1.3) and (1.4), the energy balance in the local form can be obtained as:

initial material, in Ω− : ρ− (u̇−+v− · v̇−) = div(v− ·S−)+ρ−r−−div(h−) (1.15)

transformed material, in Ω+ : ρ+
(
u̇++v+ · v̇+)= div

(
v+ ·S+)+ρ+r+−div

(
h+)

(1.16)

diffusive component, in Ω+ ρ∗
(
u̇∗+v∗ · v̇∗)= div

(
v∗ ·S∗)+ρ∗r∗ (1.17)

reaction front Γ :

�
ρ

(
u + 1

2
v2

)
(v−V)

�
·n−ρ∗

(
u∗+ 1

2
v∗2

)((
v∗−v+)−V

)
·n=

= (�v ·S�−v∗ ·S∗)
·n+qΓ−�h� ·n (1.18)

Using Eq.(1.6) and (1.7), the balance of energy at the reaction front (1.18) can be rewritten as
follows:

−
�

m f

((
u −u∗)+ 1

2

(
v2 − v∗2

))�
= �

v ·S−v∗ ·S∗�
·n+qΓ−�h ·n� (1.19)

Entropy balance

We introduce entropy as:

S =
∫
Ω+

(
ρ+s++ρ∗s∗

)
dΩ+

∫
Ω−
ρ−s−dΩ

where s± and s∗ are the mass densities of the entropy of the solid and diffusive components.
The rate of change of entropy:

Ψ [S] =−
∫
∂Ω−\Γ

h−

T
·nd a −

∫
∂Ω+\Γ

h+

T
·nd a +

∫
Γ
α

qΓ

T
d a +

∫
Ω+

ρ+r++ρ∗r∗

T
dΩ+

∫
Ω−

ρ−r−

T
dΩ
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where T is the temperature, 0 < α≤ 1 is the coefficient determining the part of the reaction thermal
effect which is transformed into the entropy flow, andα ̸= 1 means that, on the reaction front, there
is an additional source of entropy related to the reaction thermal effect.

The global form for the entropy balance (calculated for b = ρs) takes the following form:

∫
Ω+

∂

∂t

(
ρ+s++ρ∗s∗

)
dΩ+

∫
Ω−

∂

∂t

(
ρ−s−

)
dΩ+

∫
∂Ω+\Γ

ρ+s+v+ ·nd a +
∫
∂Ω−\Γ

ρ−s−v− ·nd a+

+
∫
∂Ω+\Γ

ρ∗s∗
(
v∗−v+)

·nd a −
∫
Γ

(�ρs�−ρ∗s∗
)
V ·nd a −

(
−

∫
∂Ω−\Γ

h−

T
·nd a −

∫
∂Ω+\Γ

h+

T
·nd a+

+
∫
Γ
α

qΓ

T
d a +

∫
Ω+

ρ+r++ρ∗r∗

T
dΩ+

∫
Ω−

ρ−r−

T
dΩ

)
≥ 0 (1.20)

Then, taking into account (1.2), (1.3), (1.4), (1.6) and (1.7) in the local for the balance of entropy
can be written as:

initial material, in Ω− : ρ− ṡ−+div

(
h−

T

)
− ρ−r−

T
≥ 0 (1.21)

transformed material, in Ω+ : ρ+ ṡ++div

(
h+

T

)
− ρ+r+

T
≥ 0 (1.22)

diffusive component, in Ω+ ρ∗ ṡ∗− ρ∗r∗

T
≥ 0 (1.23)

reaction front Γ : −�
m f

(
s − s∗

)�+ �h�
T

·n−αqΓ

T
≥ 0 (1.24)

Dissipation

To obtain the dissipation equation we have to combine two equations of the first and second prin-
ciple of thermodynamics.

For the transformed material we substitute the energy balance (1.16) in entropy inequality
(1.22)

ρ+ ṡ+ ≥ 1

T

(
ρ+

(
u̇++v+ · v̇+)−div

(
v+ ·S+))− 1

T2h+ ·∇T

Analogically for the initial material after substitution (1.15) in (1.21) we obtain:

ρ− ṡ− ≥ 1

T

(
ρ− (u̇−+v− · v̇−)−div(v− ·S−)

)− 1

T2h− ·∇T

For gaseous component we are doing the same procedure, substitute (1.17) into (1.23):

ρ∗ ṡ∗ ≥ 1

T

(
ρ∗

(
u̇∗+v∗ · v̇∗)−div

(
v∗ ·S∗))

And at the reaction front Γ we substitute (1.19) into (1.24):

−�
m f

(
s − s∗

)�+ 1

T

(�
v ·S−v∗ ·S∗�

·n+qΓ+
�

m f

((
u −u∗)+ 1

2

(
v2 − v∗2

))�)
−αqΓ

T
≥ 0

We introduce Helmholtz free energy for each component of the reaction as: f ±,∗ = u±,∗−Ts±,∗.
Then ḟ ±,∗ = u̇±,∗−Tṡ±,∗− Ṫs±,∗. We will rewrite our inequalities using the Helmholtz free energy
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Using The balances of momentum (1.10), (1.9) and (1.11) for each component, respectively, and
(1.12) for the reaction front, we obtain:

initial material, in Ω− : −ρ− (
ḟ −+ Ṫs−

)+S− : ∇v−+ 1

T
h− ·∇T ≥ 0

transformed material, in Ω+ : −ρ+ (
ḟ ++ Ṫs+

)+S+ : ∇v++ 1

T
h+ ·∇T ≥ 0

diffusive component, in Ω+ : −ρ∗ (
ḟ ∗+ Ṫs∗

)+S∗ : ∇v∗ ≥ 0

reaction front Γ :
�

m f
(

f − f ∗)�+�
m f

2

(
v2 − v∗2

)�
+�

v ·S−v∗ ·S∗�
·n+ (1−α) qΓ ≥ 0 (1.25)

Note, that as we obtained the coupled system of the equations, it is now necessary to choose
state variables and constitutive laws. In the present, case the state variables are: 𝜀, 𝜀i n , T, c, V.

𝜀i n represents the non reversible deformation due for instance to plasticity, viscosity or chem-
ical transformation.

c is the concentration of the diffusive reactant, which is non reversible or not dependent on
the other variables of the problem.

V is the velocity of the reaction front, directly related the reaction rate; it can be reversible or
not. For instance, in the oxidation problem it is not reversible, which not the case for the problem
of charging and discharging of batteries.

The constitutive laws are now described by two sets of equations:
– reversible part: through a thermodynamic potential which can be the Helmholtz free energy;
– dissipated part, usually through a dissipation potential.
The specific free energy f (𝜀,𝜀i n ,T,c,𝑉 ) defines the reversible thermodynamic forces:

𝜎 = ρ∂ f

∂𝜀

−𝜎i n = ρ ∂ f

∂𝜀i n

s =−∂ f

∂T

µ= ∂ f

∂c

𝐴= ∂ f

∂𝑉

where µ is chemical potential; c is concentration; 𝐴 is chemical affinity and 𝑉 is reaction front
velocity.

Adding Fourier and Fick’s laws and dissipated parts, this system becomes fully coupled and
can be solved numerically. However, the chemical potential in such ’state relation’ is scalar, since
it was mentioned in the ’state of the art’ it has to be tensor.

Taking into account tensorial nature of the chemical potential, we go to the approach pro-
posed in [40]. In this article, the chemical potentials are equal to the Eshelby energy-momentum
tensors, divided by the reference mass densities. Therefore, from (1.25) the equation for the chem-
ical affinity tensor has to be derived. The equations we will use in the thesis are presented in the
next section.

1.2.2 Chemical affinity tensor. Kinetic equation

In the previous section, the fully thermo-mechano-chemical coupled problem is defined.
In this section, a brief summary of the concept of chemical affinity tensor, that is used in the

present work, is given below. More detailed explanations are given in [38, 40, 43, 44].
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A chemical reaction between solid and diffusing constituents of the following type is consid-
ered:

n−B−+n∗B∗ −→ n+B+

where B−, B∗ and B+ are the chemical formulae of an initial solid constituent, a diffusing con-
stituent and a transformed solid constituent, respectively, n−, n∗ and n+ are the stoichiometric
coefficients.

The reaction is localized at the reaction front Γ that divides the solid constituents B− and B+,
and it is sustained by the diffusion of B∗ through the transformed material B+ (Fig. 1.14). Following
[38, 40, 44], we consider the solid component B+ as a solid skeleton for the diffusing constituent
B∗, neglecting the deformations which could be produced in the transformed material by the dif-
fusion. The thermal effects of the chemical reaction are also neglected and the temperature T is
assumed to be a given parameter.

To describe the chemical reaction front kinetics we use an approach based on the concept of
chemical affinity tensor developed in [38, 40, 44] (see also [43] and references therein). The nor-
mal component of the chemical affinity tensor appeared as a multiplier conjugate to the reaction
rate in the expression of the energy dissipation due to the reaction front propagation and acts as
a configurational force driving the reaction front. Initially it was derived for the case of a chemical
reaction between diffusing and nonlinear elastic constituents [37] similar to how it was done for
propagating phase interface [70]. Then as a result of the analysis of the mass, linear momentum
and energy balance equations and the entropy inequality it was written down for a chemical reac-
tion between diffusing and solid constituents of arbitrary rheology in the case of finite strains[38].

In order to understand how the chemical affinity tensor equation was derived, we consider the
kinetic equation from classical chemical thermodynamics [119]:

ω= k∗c

(
1−exp

(
− A

Rg T

))
(1.26)

where k∗ is the kinetic constant, Rg is the universal gas constant, c is the molar concentration of
the diffusive constituent per unit volume. Note that the value k∗c represents the partial rate of a
direct reaction between diffusing and solid constituents. A = −∑

nkMkµk is the scalar chemical
affinity andµk are scalar chemical potentials, M±,∗ are the molar masses of B±,∗, respectively. The
scalar nature of chemical potential and chemical affinity does not contradict the ideas of classical
chemical thermodynamics, which deals with ideal gases and liquids. But as it was mentioned at
the end of ’state of the art’ in the beginning of this chapter, that since 60th [8, 48, 126] it was shown
that chemical potential has to be a tensor. Therefore, its associate quantity, chemical affinity, has
to be tensor as well.

In [40] the chemical affinity tensor equation was obtained from Clausius-Duhem inequality by
recombining the terms in it, based on the following aspects:

– chemical affinity has to act as thermodynamical driving force;
– chemical affinity has tensorial nature;
– chemical potentials are tensors.
It was shown that the chemical affinity tensor in a quasi-static approach is given by

A= n−M−M−+n∗M∗µ∗I−n+M+M+

whereµ∗ is the chemical potential of the diffusing constituent; I is the second-rank identity tensor,
M− and M+ are the chemical potential tensors which are equal to the Eshelby energy-momentum
tensors, divided by the reference mass densities ρ− and ρ+

M− = f−I− FT−S−
ρ−

, M+ = f+I− FT+S+
ρ+

(1.27)

The stresses and strains affect the reaction front propagation as they are present in the configura-
tional force. It follows from the comparison of formulas of scalar chemical affinity and its tensorial
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expression (1.27) that the formulas have the similar form and A in (1.27) can be called the chemi-
cal affinity tensor.

Lets consider a surface element with normal N at the reaction front Γ (see Figure 1.14). The
substitution of the normal component ANN =N ·A ·N of the chemical affinity tensor into a known
formula for the reaction rate (1.26) instead of a scalar chemical potential gives the following for-
mula for the reaction rate ωN at this reaction front surface element [38]:

ωN = k∗c

(
1−exp

(
−ANN

Rg T

))
Then, since the normal component VN of the reaction front velocity is related with the reaction
rate as

VN = n−M−
ρ−

ωN

where ρ− is the mass density of the initial material B−, we accept the following dependence of the
normal component of the reaction front velocity on the normal component of the affinity tensor
[38, 44]:

VN = n−M−
ρ−

k∗c

(
1−exp

(
−ANN

Rg T

))
It can be shown that in the case of small strains, with a chemical potential of the diffusing

constituent taken as

M∗µ∗ = f∗+Rg T ln
c

c∗
(1.28)

where f∗ and c∗ are the referential chemical energy and volume concentration of the diffusing
constituent, the normal component of the chemical affinity tensor takes the form [40, 41, 44]:

ANN= n−M−
ρ−

(γ+w−−w++𝜎± : [[𝜀]])+n∗Rg T ln
c

c∗
(1.29)

which can be rewritten as

ANN= n−M−
ρ−

(γ−χ)+n∗Rg T ln
c

c∗
(1.30)

where
γ= f −

0 − f +
0 + ρ−

n−M−
f∗

is the temperature-dependent chemical energy parameter equal to the combination of the chem-
ical energies f −

0 , f +
0 of the solid constituents and the energy f∗ of the diffusing constituent, γ is

taken as a parameter at given temperature; w± are the strain energies of the solid constituents per
unit volume, [[𝜀]] = 𝜀+−𝜀− where 𝜀± are the strains at the reaction front,

χ= w+−w−−𝜎± : [[𝜀]] (1.31)

characterizes the input of stresses and strains. Note that we neglect the input of the pressure pro-
duced by the diffusing constituent into the stresses, and from the displacement and traction con-
tinuity it follows that the stresses 𝜎± on any side of the front can be substituted into Eq. (1.29).

The equilibrium concentration ceq can be introduced such that [38, 44]

ANN(c = ceq ) = 0 (1.32)

Then the normal component of the affinity tensor can be expressed via the equilibrium concen-
tration ceq and chemical potential of the diffusing constituent calculated at the current concen-
tration c(Γ) and the equilibrium concentration ceq found from (1.32) for stresses and strains at the
reaction front as

ANN = n∗M∗
(
µ∗(c(Γ))−µ∗(ceq )

)
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In a solid skeleton approach χ does not depend on the concentration. Then from (1.30) and
(1.32) it follows that

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χ)

n∗Rg T

}
(1.33)

During further analysis the stoichiometric coefficients are normalized by n∗: n− → n−/n∗,
n+ → n+/n∗ and n∗ → 1. Then, if the chemical potential of the diffusing constituent is given by
Eq. (1.28), the reaction rate and the reaction front velocity become

ωN = k∗
(
c(Γ)− ceq

)
, VN = n−M−

ρ−
k∗

(
c(Γ)− ceq

)
. (1.34)

In such a representation from (1.33) and (1.31) one can observe that equilibrium concentration ceq

is dependent on the stress-strain state in base and transformed materials. From (1.34) it follows
that the kinetics of the reaction depend on ceq . Hence, stresses and strains affect the reaction rate
via the equilibrium concentration, and one can see (1.34) that the front may propagate only if at
the front c > ceq .

1.2.3 Problem statement

To find the reaction front velocity one has to find stresses and strains at the reaction front, to solve
the diffusion problem and to calculate ANN (or find ceq corresponding to stresses and strains at
the front). Note the chemo-mechanical coupling: the front velocity depend of stress-strain state
and the concentration while stress-state and the concentration depend on the front kinetics and
position.

To find the stresses in quasistatic case, in the absence of body forces, one has to solve the
equilibrium equation

∇ ·𝜎 = 0 (1.35)

where 𝜎 is the Cauchy stress tensor. The equation Eq. (1.35) is to be solved within domains υ−
and υ+, which are occupied by materials B− and B+, respectively, with boundary conditions at the
outer surface of the body (i.e. forces and/or displacements), and with displacement and traction
continuity conditions at the reaction front.

To find the gas concentration c at the reaction front we assume that the gas diffusion flux j∗ is
given by Fick’s Law

j∗ =−D∇c

where D is the diffusion coefficient of the reactant B∗ through B+. Further we assume that D is a
constant, the diffusion process happening on much faster time scale than the chemical reaction.
We neglect the initial stage of the diffusion prior to the start of the reaction at the outer boundary
of the body. Considering reaction rate controlled front propagation, we also assume that the dif-
fusion process is fast enough to consider a steady-state diffusion. Under such assumptions, The
diffusion problem is described by the Laplace equation

∆c = 0

with the boundary conditions

D
∂c

∂N

∣∣∣∣∣
∂Ω+

−α (c∗− c(∂Ω)) = 0, D
∂c

∂N

∣∣∣∣∣
Γ

+ωN = 0

where Ω+ is the part of the outer surface of the body corresponding to the transformed material
(see Fig. 1.14), c∗ is the solubility of B∗ in the material B+, α is the mass transfer coefficient, ωN is
the reaction rate at the surface element of the reaction front with the normal N. Without loss of
generality, we may take c∗ also as the referential volume density in Eq. (1.28),
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The first boundary condition states that the diffusion flux through the outer boundary of the
body becomes zero if the saturation c∗ is reached. The second condition means that all the diffus-
ing reactant is fully consumed at the reaction front and with the use of Eq. (1.34)1 can be rewritten
as

D
∂c

∂N

∣∣∣∣∣
Γ

+k∗
(
c(Γ)− ceq

)= 0

Finally we come to the coupled problems for a solid with internal unknown propagating inter-
faces which velocity depends on mechanical stresses and the concentration of a diffusing matter,
while the stresses and concentration depend on the position of the interface. All the equations are
summarized in the following Box. Note that this set of equations can be used for any constitutive
models of the constituents.

Equilibrium equation:

∇ ·𝜎 = 0; [[𝜎]]|Γ ·N= 0, [[u]]|Γ = 0 + B.C.

Constitutive models (some examples):

Elasticity 𝜎 =C : 𝜀;

Plasticity 𝜎 =C : (𝜀−𝜀p ), 𝜀p = λ̇∂ f

∂𝑠
, f ≤ 0, λ≥ 0, λ f = 0;

Visco-elasticity 𝜎 =C : 𝜀+η𝜀;

Thermoelasticity 𝜎 =C : 𝜀+κ∆T𝐼 ; ...

Diffusion problem:

∆c = 0,

D
∂c

∂N

∣∣∣∣∣
∂Ω

−α (c∗− c(∂Ω)) = 0,

D
∂c

∂N

∣∣∣∣∣
Γ

+k∗
(
c(Γ)− ceq

)= 0

Chemical reaction front kinetics:

VN = n−M−
ρ−

k∗
(
c(Γ)− ceq

)= 0

ceq : ANN|c=ceq
= 0, ANN = n−M−

ρ−
(γ+w−−w++𝜎± : [[𝜀]])

The general framework is independent of the constitutive equations. In the following chapters
we will use different geometries, boundary conditions and constitutive models to demonstrate its
effect on the chemical reaction front propagation.

1.3 Conclusions

In this chapter we defined the thermodynamical framework for the analysis of thermo-chemo-
mechanical problem. We use the general balance equations for mass, momentum, energy and
entropy to establish the local equations and jump conditions governing the problem. After choos-
ing the state variables, the general form of the constitutive laws based on the free energy is given.
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Then the thermodynamical framework based on the concept of the chemical affinity tensor is
presented. The concept of affinity tensor was introduced and finally, the general equations of the
mechanochemistry problem have been defined. This group of equations and boundary condi-
tions is independent of the constitutive laws which will be defined and studied in the next chap-
ters.
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Chapter 2

Geometry precision. Elastic reaction
product
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The general framework is independent of the constitutive equations. This PhD thesis is con-
cerned to study the effect of inelastic material behaviour on the reaction front propagation. In
this chapter we assume the transformed material to be elastic with different elastic modulus from
the initial material. The objective of this chapter is to show how the given framework works, to ob-
tain an elastic reference solutions and to demonstrate the influence of the body’s geometry (plane,
spherical and cylindrical). The obtained results will be used in the following chapters with the aim
of comparison and demonstration of the inelastic behaviour features.

Despite there are already some results in elasticity [38, 42, 44], in this chapter will be new re-
sults even for elastic transformed material. The solution for the planar reaction front was obtained
in [44]. In this work, another boundary conditions for the diffusion problem, which affects the
form of the kinetic equation, are given. The spherically-symmetric problem was solved in [42] and
parabolic kinetics was shown. Here, for the chemical reaction in sphere, the logarithmic kinet-
ics and for which conditions it can be observed are studied. The problem of cylindrical reaction
front was considered in [38] for the case of incompressible material. In this work, the material
is considered compressible, the given problem is solved for another boundary conditions in the
diffusion problem, the kinetic equation is obtained and given, the exponential and parabolic ki-
netics and for which conditions they are achieved are studied. For all considered problems the
accurate mathematical analysis of influence of various parameters on the reaction front behavior
is conducted, and these are also new results.

In this chapter we formulate the problem for initially elastic plate, sphere and cylinder, solve
the diffusion problem for each case, present the equations for reaction front velocity, and then
derive and solve the kinetic equation.

2.1 Reaction front kinetics

To demonstrate the reaction front kinetics in the case of elastic reaction product, we consider, in
this section, the simple plane, spherically- symmetric and axially-symmetric problems, respec-
tively.

The behaviors of the initial and transformed materials are represented by rheological models
formulated as relationships between deviatoric parts of stress and strain tensors. Then we use the
following decompositions

𝜎 =σI+s, 𝜀= ϑ

3
I+e (2.1)

where σ = 1

3
tr𝜎 and ϑ = tr𝜀 denote the hydrostatic parts of the stress tensor and volume strain; s

and e are the deviatoric stress and strain, respectively.

We assume that the transformation strain is spherical: 𝜀tr = (ϑtr /3)I. Then the hydrostatic
parts of the stress tensor and volume strain are related in constituent “+” as

σ+ = k+(ϑ+−ϑtr ) (2.2)

To show the geometry effect, in this section we suppose that the solid constituents are isotropic
elastic. Then the elasticity tensors are defined as

C± = k±I⊗I+2µ±

(
I− 1

3
I⊗I

)
(2.3)

where k± and µ± are bulk and shear modulus; I is symmetric forth rank unit tensor. We consider
that initial and transformed materials are compressible.
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2.1.1 Plane front propagation

We consider in this section the simple plane strain problem for a chemical reaction in a plane
layer of thickness H and length L >> H with a planar reaction front (Fig. 4.2). The reaction starts
at the outer surface y = 0 of an initially elastic layer. The planar reaction front propagates in the y-
direction, a transformed material forms a plane layer of the material of the thickness h. The lower
y = 0 and upper y = H faces of the layer are traction free. Displacement u0 at the edges x = ±L
prescribes the strain ε0 = u0/L in x-direction. Therefore, the strains have to satisfy the following
conditions:

εz = εxz = εy z = 0, εx = ε0

0 x

y

H

h

L
C−
C+

Figure 2.1: The planar reaction front.

The diffusion problem is reduced to the diffusion equation

d 2c

d y2 = 0, y ∈ [0,h]

with boundary conditions

D
dc

d y

∣∣∣∣
y=0

= α(c(0)− c∗), D
dc

d y

∣∣∣∣
y=h

=−k∗(c(h)− ceq )

From the solution of diffusion problem it follows that the concentration of the diffusing con-
stituent B∗ at the reaction front is equal to

c(h) =
c∗+k∗

(
h

D
+ 1

α

)
ceq

1+k∗
(

h

D
+ 1

α

)
Then, by Eq. (1.34), the reaction front velocity can be calculated as

VN = n−M−
ρ−

c∗− ceq

1

k∗
+

(
h

D
+ 1

α

) (2.4)

where the equilibrium concentration ceq , defined by Eq. (1.32), depends on stresses and strains at
the reaction front. Formula (4.3) can be rewritten as

ξ̇= n−M−
ρ−

c∗− ceq

Tch +TDξ
,

where ξ= h

H
, the dot denotes the time derivative, the characteristic times of diffusion and chemi-

cal reaction, TD and Tch , are defined by formulae

TD = H2

D
, Tch = H

(
1

k∗
+ 1

α

)
. (2.5)
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In the mechanical problem, the equilibrium equations and boundary conditions are satisfied
if we take

σy = 0, σx y = 0 (2.6)

From the continuity of the displacement it follows that, at the reaction front

[[εx ]] = 0

Then, from Eq. (2.6) and plane strains conditions it follows that 𝜎− : [[𝜀]] = 0 in the expression of
the normal component of the chemical affinity tensor Eq. (1.29).

From (2.3) and due to the plane strains conditions, using Hooke’s law, non-zero stresses in the
elastic layer y ∈ [h,H] are the stresses

σ−
x = 4µ−

(
3k−+µ−

)
3k−+4µ−

ε0, σ−
z = 2µ−

(
3k−−2µ−

)
3k−+4µ−

ε0 (2.7)

Then the strain energy density of the material B− is

w− = 2µ−
(
3k−+µ−

)
3k−+4µ−

ε2
0 (2.8)

To find the strain energy w+ at the reaction front there is no need to solve the elastic problem.
We know that

𝜎+ = k+
(
ϑ+−ϑtr )

I+2µ+e+ (2.9)

Then

w+ = 1

2
k+(ϑ+−ϑtr )2 +µ+e+ : e+

Since, due to the plane strain restriction, ε+y = ϑ+−ε0,

e+ : e+ = 𝜀+ : 𝜀+− (ϑ+)2

3
= 2

(
ε2

0 −ε0ϑ
++ (ϑ+)2

3

)
(2.10)

From the relationships

σ+
y = k+(ϑ+−ϑtr )+2µ+e+y = 0

e+x = ε0 − ϑ+

3
, e+z =−ϑ

+

3
, e+y =−(e+x +e+z ) = 2ϑ+

3
−ε0

we deduce that

ϑ+ = 3(2µ+ε0 +k+ϑtr )

3k++4µ+
(2.11)

e+x = (3k++2µ+)ε0 −k+ϑtr

3k++4µ+
, e+y = k+(2ϑtr −3ε0)

3k++4µ+
, e+z =−2µ+ε0 +k+ϑtr

3k++4µ+
(2.12)

Then the strain energy of the strain constituent is found to be

w+ =
2µ+

((
3k++µ+

)
ε2

0 −3k+ϑtr ε0 +k+ϑtr 2
)

3k++4µ+
(2.13)

With the use of (2.10) and (2.11), the strain energy w+ becomes a function of the external defor-
mation ε0 and material parameters. Then the substitution of (2.8) for w− and obtained expressions
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of w+ and ϑ+ into (1.31) gives χ as the quadratic function of external and transformation strains
(ε0 and εtr , respectively) and elastic moduli of the constituents:

χ(ε0) = 2(G+−G−)ε2
0 −3Sϑtr ε0 +S+(ϑtr )2 (2.14)

where

G± = µ±
(
3k±+µ±

)
3k±+4µ±

= E±
2(1−ν2

±)
, S+ = 2k+µ+

3k++4µ+
= E+

9(1−ν+)

E± and ν± are the Young moduli and Poisson’s ratios. Substitution of (2.14) into Eq. (1.30) leads
to the explicit dependencies of ANN and ceq at the reaction front on external and transformation
strains, elastic modulus of the constituents and chemical energies. Particularly,

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χ(ε0))

Rg T

}
(2.15)

Note that at given ε0 the equilibrium concentration does not depend on the front position. Then
the integration of the Eq.(2.4) leads to the kinetic equation in the form of the parabolic law:

ξ2 +Lξ= Qt (2.16)

where ξ= h

H
, L = 2D

H

(
1

k∗
+ 1

α

)
, Q = n−M−

ρ−
2D

H2 c∗(1−φ), φ= exp

{
−n−M−

ρ−
(γ−χ(ε0))

Rg T

}
.

The new variable ξ, which is introduced above, has a meaning of a relative thickness or a degree
of the chemical transformation. Since ξ ∈ [0,1], the situation of ξ = 0 corresponds to h = 0, which
refers to the beginning of the chemical transformation; and ξ = 1 is associated with the case, when
h = H and the plate is completely transformed into a new material.

2.1.2 Spherical front propagation

In this section we consider a sphere of radius R that is subjected to the reaction from the outer sur-
face under external stress𝜎0. The spherical reaction front propagates in the direction of the center
of the sphere. Transformed materials forms a spherical layer of thickness h (Fig. 2.2 ). The chemi-
cal reaction is localized on spherical reaction front of the radius (R−h) and divides the sphere onto
regions occupied by the initial and new materials.

σ0 hσ0

R a

C−
C+

Figure 2.2: The spherical reaction front.

The Laplace diffusion equation reduce to the following one

∂2c

∂r 2 +
2

r

∂c

∂r
= 0, r ∈ [0,R]
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with boundary conditions

D
∂c

∂r

∣∣∣∣∣
r=R

= α(c∗− c(R)), D
∂c

∂r

∣∣∣∣∣
r=a

=−k∗(c(a)− ceq )

From the solution it follows that the concentration of the diffusing constituent B∗ at the reaction
front is equal to

c(a) =
c∗+k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)ceq

1+k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

, h = R−a, ξ= h

R
, D0 =

D

R

Then, by eq.(1.34), the reaction front velocity can be calculated as

VN = n−M−
ρ−

k∗

1+k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

(
c∗− ceq

)
(2.17)

Note, that the variable ξ, which is introduced above, has the same meaning as described for
the plate: it is the relative thickness or the degree of the chemical transformation. Since the body’s
geometry is spherical symmetric and since the material is isotropic, the equilibrium and kinematic
boundary conditions can be expressed as

dσr

dr
+2

σr −σϕ
r

= 0

εr =
du

dr
, εϕ = εϑ =

u

r

where u is the radial displacement. Then the radial displacements in initial and transformed ma-
terials are given by Lame formulae

u− =A−r, u+ =A+r +B+
r 2 (2.18)

where A± and B+ are found from the boundary conditions and the displacement and stress con-
tinuity at the reaction front:

u−(a) = u+(a), σ−
r (a) =σ+

r (a), σ+
r (R) =σ0

The integration constants are obtained as follows

B+ =−
(
k−k+ϑtr −σ0 (k+−k−)

)
R3(1−ξ)3

k+
(
3k−+4µ+

)−4µ+ (k+−k−) (1−ξ)3

A+ = σ0(3k−+4µ+)+k+ϑtr
(
3k−+4µ+

(
1− (1−ξ)3

))
3
(
k+(3k−+4µ+)−4µ+(k+−k−)(1−ξ)3

)
A− = σ0(3k++4µ+)+4k+µ+ϑtr

(
1− (1−ξ)3

)
3
(
k+(3k−+4µ+)−4µ+(k+−k−)(1−ξ)3

)
Then the strain and stresses in the initial and transformed materials are determined by the follow-
ing equations:

𝜀− =A−I, 𝜎− = 3k−A−I

𝜀+ =
(
A+−2

B+
r 3

)
erer+

(
A++B+

r 3

)
(I−erer)

𝜎+ =
(

k+
(
3A+−ϑtr )−4µ+

B+
r 3

)
erer+

(
k+

(
3A+−ϑtr )+2µ+

B+
r 3

)
(I−erer)
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where er is a unit radial vector.
Then the strain energy density of the initial material "-" is

w− = 9

2
k−A2

− (2.19)

in the transformed material it can be found as

w+ = 1

2
k+(3A+−ϑtr )2 +6µ+

(
B+
r 3

)2

(2.20)

and

𝜎− : �𝜀� = 9k−A−(A+−A−) (2.21)

Then, we substitute (2.19), (2.20) and (2.21) into Eq. (1.29), (1.31) and (1.33). This results in the
explicit dependencies of ANN and ceq at the reaction front on external stress and transformation
strain, elastic modulus of the constituents and the chemical energies, specifically

ceq

c∗
= exp

{
−n−M−
ρ−Rg T

(
γ+9k−A−

(
A+− 1

2
A−

)
− 1

2
k+(3A+−ϑtr )2 −6µ+

B2+
R6(1−ξ)6

)}

Hence, χ is given as the quadratic function of external stress and transformation strain, front
position and elastic modulus of the constituents:

χ(σ0,ξ) =P(k+−k−)σ2
0 −2Pk+k−σ0ϑ

tr −K(ϑtr )2 (2.22)

where

P= 1

β

(
3k+(3k−−4µ+)+4µ+(9k−+4µ+)

)
, β= 2

(
k+(3k−+4µ+)−4µ+(k+−k−)(1−ξ)3)2

K= 4µ+k−k+
β

(
k+(9k−+4µ+)−2k+(3k−+4µ+)(1−ξ)3 +4µ+(k+−k−)(1−ξ)6)

Therefore, substitution of (2.22) into Eq. (1.33) leads to the following form of ceq

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χ(σ0,ξ))

Rg T

}
(2.23)

Consequently, the kinetic equation will take form:

ξ̇= n−M−
ρ−

k∗

1+k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

(
1−exp

{
−n−M−

ρ−
(γ−χ(σ0,ξ))

Rg T

})
(2.24)

Note, that due to the spherical geometry, the kinetic equation takes a more complex form than
it was in the planar case as it depends on the relative reaction front position ξ as well, and it is not
possible to obtain the explicit form of the resulting formulae.

2.1.3 Cylindrical front propagation

In this subsection we consider the chemical reaction for an axially-symmetric problem. As an
example we consider a linear-elastic cylinder of radius R and length L subjected to an external
stress σ0. Assume L >> R. The displacement in a radial direction is a function on r alone and
does not depend on upon z. Therefore, εz = 0, as we assume that tube material is compressible,
then from (3.1) we have non zero 𝑒z . The diffusive material surrounds the cylinder. We suppose
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Figure 2.3: The cylindrical reaction front.

that reaction starts from the outer surface and transformed material forms a cylindrical layer of a
thickness h from the body surface (Fig. 2.3).

The diffusion equation in cylindrical coordinates takes the following form

∂2c

∂r 2 +
1

r

∂c

∂r
= 0

with boundary conditions

D
∂c

∂r

∣∣∣∣∣
r=R

= α(c∗− c(R)), D
∂c

∂r

∣∣∣∣∣
r=a

=−k∗(c(a)− ceq )

Therefore, the concentration of the diffusing constituent B∗ at the reaction front is equal to

c(a) =
c∗

D0

k∗(1−ξ)
+ ceq

(
ln(1−ξ)− D0

α

)
D0

k∗(1−ξ)
− D0

α
+ ln(1−ξ)

, D0 =
D

R
, h = R−a, ξ= h

R
(2.25)

Hence, by (1.34), the velocity at the reaction front can be calculated as

VN = n−M−
ρ−

c∗− ceq

1

k∗
− 1−ξ

α
+ ln(1−ξ)

D0
(1−ξ)

(2.26)

In cylindrical coordinates (r,ϕ, z) the radial displacements in the base and transformed mate-
rial are given by Lame formula:

u± =A±r + B±
r

(2.27)

where A±, B± are found from the boundary conditions and displacement and traction continuity
at the reaction front:

B+ = 3R2

G
(1−ξ)2 (

k+ϑtr (3k−+µ−)−σ0
(
3(k+−k−)+ (µ+−µ−)

))
A+ = 3

G

(
3µ+(k+ϑtr (ξ2 −2ξ)−σ0)− (3k−+µ−)(k+ϑtr +σ0)

)
A− = 3

G

(
3k+µ+ϑtr (ξ2 −2ξ)− (3k++4µ+)σ0

)
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where G = 6µ+(ξ2 −2ξ)
(
3(k+−k−)+ (µ+−µ−)

)−2(3k−+µ−)(3k++4µ+)
In the case of the cylinder u is to be finite at r = 0, therefore B− = 0.
Therefore strains and stresses in initial and transformed materials are given by

𝜀− =A−I, 𝜎− = 2

(
k−+ µ−

3

)
A−I

ε+r =A+− B+
r 2 , ε+ϕ =A++ B+

r 2 , ε+z = 0

σ+
r = 2

(
k++ µ+

3

)
A+−2µ+

B+
r 2 −k+ϑtr , σ+

ϕ = 2

(
k++ µ+

3

)
A++2µ+

B+
r 2 −k+ϑtr

σ+
z = 2

(
k+− µ+

3

)
A +−k+ϑtr

In the initial material the strain is

w− = 2

(
k−+ µ+

3

)
A 2

− (2.28)

The strain energy of the transformed material can be obtained as

w+ = 1

2
k+

(
2A +−ϑtr )2 +2µ+

(
A 2+

3
+ B2+

r 4

)
(2.29)

and the jump condition at the reaction front can be written as follows

𝜎− : �𝜀� = 4

(
k−+ µ−

3

)
A−(A+−A−) (2.30)

Substitution of (4.56), (2.29) and (2.30) into Eq. (1.29) and (1.33) causes the explicit depen-
dencies of ANN and ceq at the reaction front on external stress and transformation strain, elastic
modulus of the constituents and the chemical energies. In particularly,

ceq

c∗
= exp

{
−n−M−
ρ−Rg T

(
γ+2

(
k−+ µ−

3

)
A−(2A+−A−)− k+

2

(
2A +−ϑtr )2 −2µ+

(
A 2+

3
+ B2+

R4(1−ξ)4

))}
It gives χ as the quadratic function of external stress and transformation strain, front position

and elastic modulus of the constituents:

χ(σ0,ξ) = 1

U

(
(K+−K−)Pσ2

0 −2K−k+Pϑtrσ0 −µ+k+Q(ϑtr )2) (2.31)

where

P = 3(3k++4µ+)(K−+3µ+), U = 2
(
3µ+(K+−K−)ξ(ξ−2)− (3k++4µ+)K−

)2 , K± = 3k±+µ±
Q = 9µ+(K+−K−)(K−−µ+)ξ2(ξ2 −4ξ+4)−2(3k++4µ+)K−

(
3(K−−µ+)ξ(ξ−2)−2K−

)
Substituting (2.31) into Eq. (2.31) leads to the following form of ceq

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χ(σ0,ξ))

Rg T

}
(2.32)

Then the kinetic equation takes form:

ξ̇= n−M−
ρ−

1

1

k∗
+ 1−ξ

α
− ln(1−ξ)

D0
(1−ξ)

(
1−exp

{
−n−M−

ρ−
(γ−χ(σ0,ξ))

Rg T

})
(2.33)
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Similarly to the spherical problem, the kinetic equation takes more complex form in cylindrical
geometry in comparison with the planar case. The explicit form of the solution for Eq.(2.33) cannot
be obtained.

In sammary, we have formulated and solved the problems for a planar, spherical and cylindrical
reaction fronts propagation in the case of the elastic reaction product. We dispose now on the ref-
erence elastic solutions, that will be used further in order to study features of inelastic transformed
material. As explicit form of kinetic equation is not possible for the reaction in sphere and cylinder,
numerical solutions here have to be determined using the Runge-Kutta method.

2.2 Equilibrium concentration, kinetics of the reaction front and block-
ing effect

2.2.1 Planar reaction front

In this Section, the dependencies of the reaction front position on time and of the reaction front
velocity on the front position, which are deduced from (2.4), will be presented finally at various
values of the external strain ε0, energy parameter γ and elastic moduli. Since, by (2.4), the reac-
tion front velocity increases if ceq /c∗ decreases and, respectively, the velocity decreases if ceq /c∗
increases, the influence of various parameters on the reaction front behavior can be predicted
qualitatively if one knows how the parameters affect the equilibrium concentration. So, we start
with such predictions.

By (2.4), the reaction front can propagate only if the stress-strain state at the front and the en-
ergy parameter are such that ceq < c∗. We study further how the condition ceq < c∗ is affected by
the parameters. By (2.15), this is possible only if the transformation strain, external strains, elastic-
ity parameters and the energy parameter are such that χ< γ [38, 44]. By (2.14), in the considered
case this condition takes the form

χ(ε0)−γ= 2(G+−G−)ε2
0 −3S+ϑtr ε0 −

(
γ−γ0

)< 0,

where

γ0 = S+(ϑtr )2 (2.34)

is the critical value of the parameter γ in the sense that the reaction front may propagate at the
external strain ε0 = 0 only if

γ> γ0.

Formula (2.34) for the critical value of γ for the plane transformation strain with slightly different
S+ was presented in [41, 44] for the case of elastic reaction constituents. The same formula appears
here because of the pure elastic behavior of both constituents at the front at the transformation
moment ty .

The dependencies of ceq /c∗ on external strain ε0 for the planar front are schematically shown
in Fig. 2.4. The extrema is reached at ε0 = ε∗0 with ceq /c∗ = c∗eq /c∗:

ε∗0 = 3S+ϑtr

4(G+−G−)
,

c∗eq

c∗
= exp

{
n−M−
ρ−

(χ(ε∗0 )−γ)

Rg T

}
, χ(ε∗0 ) =

(
1− 9S+

8(G+−G−)

)
γ0 ≡ γ∗. (2.35)

Note that ε∗0 ̸= 0, since k+ and µ+ are positive values. The character of the dependence of ceq /c∗
on ε0 and the signs of ε∗0 and χ(ε∗0 ) depend on the relation between G+, G− and S+ and the sign of
the transformation strain ϑtr . Without loss of generality, we assume further that ϑtr > 0. As for the
elastic modulus, the following three cases can be listed.

(i) If

8(G+−G−)−9S+ > 0, (2.36)
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Figure 2.4: Dependencies of the equilibrium concentration on the external strain: (a) G+ > G−,γ > γ∗, (b)
G+ < G−,γ> γ∗.

then G+ > G− and, therefore, χ(ε∗0 ) > 0 and ε∗0 > 0 correspond to the minimal value of χ(ε0) as it is
shown in Fig. 2.4a. Note that the inequality (2.36) can be rewritten through elastic moduli as

µ+ > 4µ−(3k−+µ−)

3k−+4µ−
⇐⇒ E+

1+ν+
> 2E−

1−ν2−
.

The front can propagate only if the energy parameter, elastic moduli of the solid constituents and
transformation strain are such that γ> γ∗ and only at strains ε0 ∈ [εI,εII] where εI,εII are the roots
of the quadratic equation χ(ε0)−γ= 0. Both roots are positive if γ∗ < γ< γ0, and the front cannot
propagate without applied tensile strain ε0 > εI > 0.

If the front can propagate at ε0 = 0 then γ> γ0 and the roots have different signs, εI < 0, εII > 0.
The front cannot propagate at ε0 > εII and at ε0 < εI, i.e. the propagation is blocked starting from
some strains in both tension and compression.

If the energy parameter is such that γ < γ∗ then ceq /c∗ > 1 at all ε0, and the planar front can-
not propagate in y-direction. To avoid misunderstanding, note that this does not mean that the
reaction cannot occur at all. In a general case, χ depends on the geometry of the front since the
stress-strain state at the reaction front depends on the geometry. It may happen that other con-
figurations of the reaction front than a configuration with a planar reaction front may develop.
On the other hand, a forbidden zone can be constructed in a strain space, formed by the strains
at which the reaction front cannot propagate whatever the local normals to the front are [39, 41].
Also, strictly speaking, even if the considered solution with a planar propagating front is allowed
by kinetic equation at given ε0, an additional stability analysis would be appropriate [96]. Consid-
eration of these aspects is beyond the scope of this work. Note only that the use of the semi-inverse
approach may give a mathematically consistent solution but other solutions that do not follow a
priori assumptions about the geometry of the front may also be of interest.

(ii) If the elastic moduli satisfy the inequalities

G+ > G− but 8(G+−G−)−9S+ < 0,

which can be rewritten as

µ+ < 4µ−(3k−+µ−)

3k−+4µ−
< 4µ+

(
3k++µ+

)
3k++4µ+

⇐⇒ E+
2(1+ν+)

< E−
1−ν2−

< E+
1−ν2+

,

then ε∗0 > 0 as in the case (i), but the minimal value of χ is negative, χ(ε∗0 ) < 0. The front may
propagate even at negative jump of the chemical energies, γ < 0, but such that γ > −|γ∗|, and at
strains ε0 such that χ(ε∗0 ) < χ(ε0) < γ < 0. This would be impossible without accounting for strain
energy effects.
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Figure 2.5: Planar reaction front: dependencies of the equilibrium concentration on external strain ε0 for
the case G+ > G−: (a) for different values of the energy parameter γ; (b) for different values of bulk modulus
k+; (c) different values of µ+.

Since ε∗0 > 0 at G+ > G−, the increase of the tensile strain from ε0 = 0 until ε∗0 accelerates the
reaction front in both cases (i) and (ii). Further increase of ε0 retards the front until blocking at εII.
On the whole, if |ε0 −ε∗0 | increases then the front velocity decreases until zero.

(iii) If G+ < G− then γ0 < γ∗, ε∗0 < 0, and χ(ε∗0 ) > 0 corresponds to the maximal value on the
dependence χ(ε0) (Fig. 2.4b). Such a case was also discussed for an elastic case with plane trans-
formation strain in [44]. If γ> γ∗ then the front may propagate at any ε0. If γ< γ∗ then the propa-
gation of the front is blocked at ε0 ∈ [εI,εII] but may start to propagate at proper tension ε0 > εII or
compression ε0 < εI. Thus, in this case, in contrast to the previous ones, the front can propagate at
any γ at some external strains.

By (2.35), the bulk and shear elastic modules, k± andµ±, affect the dependence χ(ε0) and, thus,
the dependencies of ceq /c∗ and the reaction front velocity on ε0 via parameters (G+−G−) and S+,
and the strain ε∗0 is determined by the dimensionless parameter S+/(G+−G−). For example, it is
easy to see that ε∗0 decreases if µ+ increases and other moduli are fixed. As another example, one
can examine how k+ affects the dependence χ(ε0) and the extrema values χ(ε∗0 ) and ε∗0 . From (3.13)
it follows that

∂χ(ε0)

∂k+
= 2µ2+(3ε0 −2ϑtr )2

(3k++4µ+)2 ≥ 0.

Then, if the front propagates at a given set of parameters, further increase of k+ increases χ(ε0)
and, therefore, decreases the front velocity. Note also that increase of k+ leads to increasing the
extrema value χ(ε∗0 ) for both cases G+ > G− and G+ < G−.

The dependence of extrema strain ε∗0 on bulk module k+ is defined by relations between elastic
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Figure 2.6: Planar reaction front: dependencies of the equilibrium concentration on external strain ε0 for
the case G+ < G−: (a) for different values of the energy parameter γ; (b) for different values of bulk modulus
k+; (c) different values of µ+.

moduli. Since, by (2.35),
∂ε∗0
∂k+

= 3µ2+ϑtr

(3k++4µ+)2

8(G+−G−)−9S+
4(G+−G−)2

one can see that if 8(G+−G−)−9S+ > 0 (the case (i)) then the point ε∗0 in Fig. 2.4a is shifted to the
right if k+ increases, and is shifted to the left leaving ε∗0 positive if k+ decreases, respectively.

If G+ > G− but 8(G+−G−)−9S+ < 0 (the case (ii)) or G+ < G− (the case (iii)), then the extrema
point ε∗0 in Fig. 2.4a is shifted to the left or right if k+ increases or decreases, respectively.

More detailed quantitative analysis is presented in Fig. 2.5 and Fig. 2.6, where the dependen-
cies of the relative equilibrium concentration c∗eq /c∗ on the external stain ε0 at various values of the
energy parameter γ and the bulk and shear modules k+,µ+ of the transformed material are shown
for the cases G+ > G− and G+ < G−, respectively. The reference values of the parameters for the
cases G+ > G− and G+ < G− and corresponding values of γ0 and γ∗ are given in Tables 2.1 and 2.2,

Table 2.1: Material parameters used in the simulations for the case G+ > G−

Parameter k−[GPa] µ−[GPa] η0[GPa·s] D[m2/s] M−[g/mol] T[K] σyd [GPa] n− R[m]

Value 27.3 25.9 15.9 8·10−10 28.1 920 1.65 1 10−3

Parameter k+[GPa] µ+[GPa] ρ−[g/cm3] α[m/s] k∗[m/s] εtr H[m] c∗
Value 90.9 67.7 2.2 2.3·10−7 1.27·10−6 0.01 10−3 1
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Figure 2.7: Planar reaction front: dependencies of the dimensionless front position on time (a), and the
front velocity on the front position (b) at various values of external tension ε0 for the case G+ > G−; (c) – the
front position versus time at the initial stage of the front propagation

respectively. Only the parameters differ in two cases are shown in Table 2.2.

The choice of the values was made according to the reasons of the consistency with a small
strain approach and better visualisation of the parameters influence. To demonstrate the variety
of the reaction front behaviours and to examine quantitatively how the parameters affect the front
behaviour two sets of bulk and shear moduli, k± and µ±, are taken which correspond to the cases
G+ > G− and G+ < G−. The data for quantitative analysis were taken from [41, 42, 97], where they
were examined for such type of the problems.

Fig. 2.5a and Fig. 2.6a reflect the competition between strain and chemical energies at G+ > G−
and G+ < G−, respectively. If γ= γ0 then the dependence of ceq /c∗ on ε0 passes through the point
ε0 = 0, ceq /c∗ = 1. If G+ > G− and γ= γ0 then the front may propagate only at tension restricted by
the strain ε̂= 3Sϑtr /[2(G+−G−)], i.e. at strains 0 < ε0 < ε̂ (ε̂= 0.037 in Fig. 2.5a). One can see how
increasing γ results in enlarging the interval of allowed strains ε0 (see the curves for γ = 2γ0 and
γ= 5γ0) and how the decrease of γ shortens and shifts the interval of the strains at γ∗ < γ< γ0.

Table 2.2: Material parameters used in the simulations for the case G+ < G−

Parameter k−[GPa] µ−[GPa] k+[GPa] µ+[GPa]

Value 62.3 33.9 27.3 25.9
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Figure 2.8: Planar reaction front: dependencies of the front position on time (a) and the front velocity on
the front position (b) at various values of energy parameter γ
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Figure 2.10: Planar reaction front: dependencies of the front position on time (a) and the front velocity on
the front position (b) at various initial thickness H of the plate

If G+ < G− and γ = γ0 then the front may propagate only at tension ε0 > 0 or compression
ε0 < ε̂ = −0.042 (Fig. 2.6a). If γ < γ0, for example, γ = γ0/2, then the front can propagate only

47



if additional tension ε0 > εII > 0 or compression ε0 < εI < 0 is applied. The case γ0 < γ < γ∗ is
presented by γ = 1.5γ0, and the front propagation is blocked at ε0 ∈ [−0.036,−0.006]. If γ > γ∗
(γ= 2γ0 and γ= 5γ0 in Fig. 2.6a then the front may propagate at any ε0.

One can also see in Fig. 2.4b, Fig. 2.6a that if, at G+ < G−, the front can propagate at some ε0

then further increasing of the absolute value |ε0| decreases c∗eq /c∗ and, thus, increases the front
velocity.

Fig. 2.5b,c and Fig. 2.6b,c characterize quantitatively the role of volume and shear strain ener-
gies via the influence of the bulk module k+ and shear module µ+ on the dependencies of c∗eq /c∗
on ε0. Since G+ decreases if µ+ decreases and G+ increases if µ+ increases, one can observe in
Fig. 2.5c and Fig. 2.6c how the dependencies change if G+ → G− due to decreasing µ+ at G+ > G−
and increasing µ+ at G+ < G−.

Corresponding dependencies of the front position on time and the front velocity on the front
position for the case G+ > G− are shown in Fig. 2.7. The parameters are given in Table 2.1; if
the parameters are varying then the values are indicated in figures. One can see how the strains
retard or accelerate the reaction front. The maximal front velocity is observed at tensile strain ε0 =
ε∗0 = 0.019. The velocity decreases at both additional tension (as at ε0 = 0.04) and at compression
relatively to ε∗0 (as at ε0 = 0.005,0.009,−0.005), as it has to be in accordance with the increasing
ceq /c∗ in Fig. 2.5a.

Fig. 2.8 and 2.9 demonstrate how increasing of the energy parameter accelerates the front, and
how the values of elastic moduli affect the front kinetics. These dependencies are consistent with
the dependencies of ceq /c∗ shown in Fig. 2.5.

The initial thickness of the plate also has an effect on the front kinetics (Fig. 2.10) through
characteristic times TD and Tch of the diffusion supply and chemical reaction (see Eq. (2.5)). In-
creasing the plate thickness increases the characteristic times and therefore decreases the relative
front velocity.

2.2.2 Spherical reaction front

In this section, in the same way as it was done for the planar reaction front, the dependencies of
the reaction position on time and of the reaction front velocity on the front position in a sphere will
be presented finally for various values of the external stresses σ0, energy parameter γ and elastic
moduli. Since, by (2.17), the reaction front velocity increases if ceq /c∗ decreases and, respectively,
the velocity decreases if ceq /c∗ increases, the influence of various parameters on the reaction front
behavior can be predicted qualitatively if one knows how the parameters affect the equilibrium
concentration.

By (2.24) and (2.23), the main difference between spherical and plane reaction front is that the
kinetic equation and equilibrium concentration depend on the reaction front position as well for
the spherical reaction front propagation.

We study further how the condition ceq < c∗ is affected by the parameters for the purpose of
analysis the propagation of the reaction front. By (2.23), this is possible only if the transformation
strain, external stress, elasticity parameters and the energy parameter are such that χ < γ. By
(2.22), in the considered case this condition takes the form

χ(σ0,ξ)−γ=P(k+−k−)σ2
0 −2Pk+k−σ0ϑ

tr − (γ−γ0) < 0

where

γ0 =K(ϑtr )2

is the critical value of the parameter γ in the sense that the reaction front can start from the outer
surface at σ0 = 0 only if

γ> γ0
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The dependencies of ceq /c∗ on external stress σ0 for the spherical front are schematically
shown in Fig. 2.4. The extrema is reached at σ0 =σ∗

0 with ceq /c∗ = c∗eq /c∗:

σ∗
0 = k+k−ϑtr

k+−k−
,

c∗eq

c∗
= exp

{
n−M−
ρ−

(
χ(σ∗

0 ,ξ)−γ)
Rg T

}
, χ(σ∗

0 ,ξ) = k+k−
(
ϑtr

)2

2(k+−k−)
≡ γ∗ (2.37)
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∂k+

Figure 2.11: Spherical reaction front: behavior of
∂χ(σ0,ξ=0 )

∂k+
at different intensity of the external loading σ0

a) k+ > k− and b) k+ < k− front

The character of the dependence of ceq /c∗ onσ0 and ξ and the sign ofσ∗
0 and χ(σ∗

0 ) depend on
the relation between P and K and the sign of (k+−k−) as well as ϑtr . Note that to study the sign
of χ(σ0,ξ) we have to consider the sign of (k+−k−) and the discriminant of the quadratic equation
(2.22). It means that we have to study the sign of P

(
(k+k−)2P+ (k+−k−)K

)
, where the expression

in bracket is always positive for any positive elastic moduli and thickness of transformed layer ξ.
As for elastic modulus, the following three cases can be listed.

(i) If

k+ > k− and P< 0, (2.38)

therefore, χ(σ∗
0 ,ξ) > 0 and σ∗

0 > 0 correspond to the maximal value of χ(σ0,ξ) as it is shown in
Fig. 2.4a. Note that inequalities (2.38) can be rewritten through elastic moduli as

k− < 4µ+(3k+−4µ+)

9(4µ++3k+)

The front can propagate only if the energy parameter, elastic moduli of the solid constituents
and transformation strain are such that γ> γ∗ and only at stressesσ ∈ [σI,σII], whereσI andσII are
the roots of the quadratic equation χ(σ0)−γ= 0. Both roots are positive if γ∗ < γ< γ0, and the front
cannot propagate without applied tension σ0 > σI > 0. If the front can propagate at σ0 = 0 then
γ > γ0 and the roots have different signs, σI < 0, σII > 0. The front cannot propagate at σ0 > σII

and σ0 < σI, i.e. the propagation is blocked starting from some stress in both compression and
tension.

(ii) If the elastic moduli satisfied the inequalities

k+ > k− and P> 0,

which can be rewritten as follows

k+ > k− > 4µ+(3k+−4µ+)

9(4µ++3k+)
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Figure 2.12: Spherical reaction front: behavior of
∂χ(ξ,σ0=0 )

∂k+
at different position of the reaction front for the

cases a) k+ > k− and b) k+ < k− front

then σ∗
0 > 0 as in the case (i), but the minimal value of χ is negative, χ(σ∗

0 ) < 0. Then front may
propagate even at negative jump of the chemical energies, γ < 0, but such that γ > −|γ∗|, and at
stresses σ0 such that χ(σ∗

0 ) < χ(σ0) < γ< 0.

Since σ∗
0 > 0 at k+ > k−, the increase of tensile stress from σ0 = 0 until σ∗

0 accelerates the
reaction front in both cases (i) and (ii). Further increase of σ0 retards the front until blocking at
σII. On the whole, if |σ0 −σ∗

0 | increases then the front velocity decreases until zero.

(iii) If k+ < k− then γ0 < γ∗, σ∗
0 < 0, and χ(σ∗

0 ) > 0 corresponds to the maximal value on the
dependence χ(σ0). If γ < γ∗ then the front may propagate at any σ0. If γ0 < γ < γ∗ then the
propagation of the front is blocked at σ0 ∈ [σI,σII], in contrast to the case k+ > k−. On the other
hand, the spherical reaction front may start propagate at proper tension σ0 > σII or compression
σ0 < σI even if it is blocked in the underformed state σ0. In this case the front can propagate at
any γ at some external loading.

By (2.22) and (2.37), the bulk and shear elastic modules, k+ and µ+, affect the dependence
χ(σ0) and, thus, the dependence of ceq /c∗ and the reaction front velocity on σ0 via parameters
(k+−k−), P and K, and the stress σ∗

0 is determined by the k+k−ϑtr /(k+−k−). One can examine
how k+ affects the dependence χ(σ0) and the extrema values χ(σ∗

0 ) and σ∗
0 . Note, that from the

form of the function χ(σ0,ξ) (see eq.(2.22)), we can study separately the influence of σ0 and ξ,
since the terms containing σ0 do not contain ξ, and vice versa. From (2.23) at ξ= 0 it follows that

∂χ(σ0,ξ=0 )

∂k+
= (σ0(3k−+4µ+)−4k−µ+ϑtr )

2k2−(3k++4µ+)3

(
σ0

(
4µ+(4µ++15k−)+9k+(k−−4µ+)

)+
+k−µ+ϑtr (

9k+−4µ+
))≤ 0

so that

∂χ(σ0,ξ=0 )

∂k+
≥ 0 if k+ > k− and

{
(3k−+4µ+)σ0 > 4k−µ+ϑtr

12µ+k+k−ϑtr +k−(3k++4µ+)σ0 > 12µ+(k+−k−)σ0

or

{
(3k−+4µ+)σ0 < 4k−µ+ϑtr

12µ+k+k−ϑtr +k−(3k++4µ+)σ0 < 12µ+(k+−k−)σ0

if k+ < k− and (3k−+4µ+)σ0 > 4k−µ+ϑtr
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Figure 2.13: Spherical reaction front: dependencies of the equilibrium concentration on external stress
σ0 for the case k+ > k−: (a) for different values of the energy parameter γ; (b) for different values of bulk
modulus k+; (c) different values of µ+.

∂χ(σ0,ξ=0 )

∂k+
≤ 0 if k+ > k− and

{
(3k−+4µ+)σ0 > 4k−µ+ϑtr

12µ+k+k−ϑtr +k−(3k++4µ+)σ0 < 12µ+(k+−k−)σ0

or

{
(3k−+4µ+)σ0 < 4k−µ+ϑtr

12µ+k+k−ϑtr +k−(3k++4µ+)σ0 > 12µ+(k+−k−)σ0

if k+ < k− and (3k−+4µ+)σ0 < 4k−µ+ϑtr

Such non-monotonic behaviour of
∂χ(σ0,ξ=0 )

∂k+
is presented on Fig. 2.11 at various σ0. It shows

how k+ affects the dependence χ(σ0) at initial position of the reaction front, ξ= 0.

To study the influence of k+ on χ(σ0,ξ) for propagating reaction front, let σ0 = 0. Then for
various ξ, we have:

∂χ(ξ,σ0=0 )

∂k+
=

(
2µ+k−ϑtr

)2
z
(
k+(z−2)(4µ+(z−1)−9k−)−4µ+k−z2

)(
k+(µ+(z−1)−3k−)−4µ+k−z

)3 , z= (1−ξ)3, z ∈ [0,1]
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Figure 2.14: Spherical reaction front: dependencies of the equilibrium concentration on external stress
σ0 for the case k+ < k−: (a) for different values of the energy parameter γ; (b) for different values of bulk
modulus k+; (c) different values of µ+.

so that

∂χ(ξ,σ0=0 )

∂k+
≥ 0 if k+ > k− and

{
k+(3k−+4µ+) < 4µ+(k+−k−)z

9(3k−+4µ+)z< 8µ+k2
+(9k−+4µ+)

or

{
k+(3k−+4µ+) > 4µ+(k+−k−)z

9(3k−+4µ+)z> 8µ+k2
+(9k−+4µ+)

if k+ < k− and k+(3k−+4µ+) < 4µ+(k+−k−)z

∂χ(ξ,σ0=0 )

∂k+
≤ 0 if k+ > k− and 16

µ2+
k2+

(k+−k−)2z2 < (3k−+4µ+)2 < 32

9
µ2
+k+(k+−k−)(9k−+4µ+)

or 16
µ2+
k2+

(k+−k−)2z2 > (3k−+4µ+)2 > 32

9
µ2
+k+(k+−k−)(9k−+4µ+)

such function is shown on Fig. 2.12 for different position of the reaction front.
Then, if the front propagates at a given set of parameters, further increase of k+ firstly de-

creases χ(σ0,ξ), but following increase of bulk modulus of the transformed material as well as
front propagation increases χ(σ0,ξ) accelerates the reaction.
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Figure 2.15: Spherical reaction front: Dependencies of equilibrium concentration on the reaction front
relative position ξ= h/R at σ0 = 0 and various values of energy parameter γ for the case: a) k+ > k− and b)
k+ < k−
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Figure 2.16: Spherical reaction front: Dependencies of equilibrium concentration on the reaction front
relative position ξ= h/R at γ= 1.1γ0 and various values of σ0 for the case: a) k+ > k− and b) k+ < k−

The dependence of extrema stressσ∗
0 on bulk module k+ is defined by relations between elastic

moduli. Since, by (2.22)

∂σ∗
0

∂k+
=− k2−ϑtr

(k+−k−)2

one can see that if k+ < k− then the extrema point σ∗
0 in Fig. 2.4b is shifted to the left/right if

k+ increases/decreases. If k+ > k−, then the extrema point σ∗
0 in Fig. 2.4a is also shifted to the

left/right if k+ increases/decreases.
More detailed quantitative analysis is presented in Fig. 2.13 and Fig. 2.14, where the depen-

dencies of the relative equilibrium concentration c∗eq /c∗ on the external stress σ0 for initial po-
sition of the reaction front, ξ = 0, at various values of the energy parameter γ and the bulk and
shear modules k+,µ+ of the transformed material are shown for the cases k+ > k− and k+ < k−,
respectively. The reference values of the parameters for the cases k+ > k− and k+ < k− are given
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Figure 2.17: Spherical reaction front: kinetics of the reaction front at various values of external loading σ0

for the case k+ > k−. Dependencies of the dimensionless front position on time (a), and the front velocity
on the front position (b); (c) – the front position versus time at the initial stage of the front propagation

in Tables 2.1 and 2.2, respectively. Only the parameters which differ in two cases are shown in
Table 2.2.

Fig. 2.13a and Fig. 2.14a reflect the competition between strain and chemical energies at k+ >
k− and k+ < k−, respectively. If γ = γ0 then the dependence of ceq /c∗ on σ0 passes through the
point σ0 = 0, ceq /c∗ = 1. If k+ > k− and γ = γ0 then the front may propagate only at tension
restricted by σ̂= 2k+k−ϑtr /(k+−k−) (Fig. 2.13a). One can see how increasing γ results in enlarging
the interval of allowed stresses σ0 (see the curves for γ= 2γ0 and γ= 5γ0) and how the decrease of
γ shortens and shifts the interval of the stresses at γ∗ < γ< γ0.

If k+ < k− and γ = γ0 then the front may propagate only at tension σ0 > 0 or compression
σ0 < σ̂ = 2k+k−ϑtr /(k+ − k−) (Fig. 2.14a). If γ < γ0, for example, γ = γ0/2, then the front can
propagate only if additional tension σ0 > σII > 0 or compression σ0 < σI < 0 is applied. If γ > γ∗
(e.g., γ= 5γ0 in Fig. 2.14a) then the front may propagate at any σ0.

One can also see in Fig. 2.4b, Fig. 2.14a that if, at k+ < k−, the front can propagate at some σ0

then further increasing of the absolute value |σ0| decreases c∗eq /c∗ and, thus, increases the front
velocity.

Fig. 2.13b,c and Fig. 2.14b,c characterize quantitatively the role of volume and shear strain
energies via the influence of the bulk module k+ and shear module µ+ on the dependencies of
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Figure 2.18: Spherical reaction front: kinetics of the reaction front at various values of external loading σ0

for the case k+ < k−. Dependencies of the dimensionless front position on time (a), and the front velocity
on the front position (b); (c) – the front position versus time at the initial stage of the front propagation

c∗eq /c∗ on σ0 at initial position of the reaction front, ξ= 0. We can see from Fig. 2.13c and Fig. 2.14
that shear module does not affect on extrema of χ (it comes from (2.37)), when in the case of
planar front propagation it affects. In the spherical geometry, the increasing of shear module of the
transformed material decreases the range of allowable loading for chemical reaction propagation,
as well as decelerates the reaction velocity.

If the reaction front moves then stresses at the front changes and, thus, the equilibrium con-
centration changes. Let us consider how χ(σ0,ξ) changes if the reaction front propagates. Let the
stress σ0 be given. If the front propagates, then χ(σ0,ξ) changes according to (2.22) so that

∂χ(σ0)

∂ξ
=−12µ+

(
k+k−ϑtr (1−ξ)

)2 (
16µ2++12µ+(3k−−k+)+9k+k−

)(
4µ+

(
k−(1−ξ)3 +k+ξ(ξ2 −3ξ+3)

)+3k+k−
)3 ≤ 0

Then from above relationships it follows that increase of relative thickness of the transformed
layer ξ increases χ(σ0) and decreases equilibrium concentration ceq . Thus, the equilibrium con-
centration at the reaction front decreases as the front propagates if the external stress is given as a
boundary condition.

If the external stress σ0 and energy parameter γ are such that ceq (ξ= 0|σ0,γ) ≥ c∗ then the re-
action can not start from the external surface of the sphere, but can start if an initial layer of a new
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Figure 2.19: Spherical reaction front: dependencies of the front position on time (a), and the front velocity
on the front position (b) at various values of energy parameter γ for the case k+ > k−
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Figure 2.20: Spherical reaction front: dependencies of the front position on time (a), and the front velocity
on the front position (b) at various values of energy parameter γ fro the case k+ < k−

material already exists of thickness ξ0 : c(ξ0|σ0,γ) ≥ c∗ (Fig. 2.15). Fig. 2.16 shows the dependen-
cies of the equilibrium concentration on the thickness of transformed material at various external
stresses. In the case of the sphere, the equilibrium concentration decreases with propagation of
the reaction front, and this in turn accelerates the reaction.

Fig. 2.15 shows the dependence of the equilibrium concentration on the reaction front posi-
tion at fixed stress at the sphere surface. If the stress σ0 is given then the layer growth decreases
the equilibrium concentration and enhances the reaction (Fig. 2.15). The yellow curves in Fig. 2.15
demonstrates that a thin layer of a new material can act as a protective layer if the value of the
equilibrium concentration exceeds the gas solubility. External tension decreases the equilibrium
concentration while compression increases it. Note also that at different values of the energy pa-
rameter the curves are similar but pass lower at larger values of γ or higher at smaller one. This
means that the temperature change can initiate the reaction or, conversely, block it.

The dependencies of the front position on time and the front velocity on the front position
for various values of external stress σ0, energy parameter γ, bulk and shear moduli k+ and µ+ are
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Figure 2.21: Spherical reaction front: dependencies of the front position on time at various values of bulk
modulus k+ for the case (a) k+ > k− and (b) k+ < k− energy parameter γ
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Figure 2.22: Spherical reaction front: dependencies of the front position on time at various values of shear
modulus µ+ for the case (a) k+ > k− and (b) k+ < k−

shown in Fig. 2.17 – Fig. 2.23. One can see how the strains can retard or accelerate the reaction
front, how the increase of the energy parameter accelerates the front, how elastic moduli affect
the front kinetics.

Note, that in the case of the spherical reaction front the reaction can propagate not only with
parabolic law: logarithmic law is observed in the case k+ < k− (see e.g. Fig. 2.21b and Fig. 2.22b).
The behaviour of kinetic depends on the mechanical properties of the initial and transformed
materials and of geometry of the structure element (body’s geometry affect the diffusion equation,
which defines the form of the kinetic equation (1.34), while the stress-strain state has influence on
the reaction velocity through the equilibrium concentration ceq (1.33), (1.34)). The front velocity
is shown in Fig. 2.17b, Fig. 2.18b at various values of external loading σ0 and in Fig. 2.19b and
Fig. 2.20b at various γ. From these plots we can conclude, that initially the reaction front velocity
decelerates along the front propagation and from some position it increases. Such kinetics was
described by Cabrera-Mott model and this behavior was observed in the experiments (see i.e.,
[6, 33, 34, 46, 77, 79, 150, 160]). Depending of the material properties and structure geometry,
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Figure 2.23: Spherical reaction front: dependencies of the front position on time at various initial radius R
of the sphere fro the case (a) k+ > k− and (b) k+ < k−

non-parabolic kinetics can be reached or not.
The influence of the elastic modulus k+ and µ+ of transformed material is shown in Fig. 2.21

and Fig. 2.22. Initially, increase of k+ decelerates the reaction, but with front propagation we see
that the effect become inverse, and from some moment as bigger k+ as faster the reaction kinetics
(Fig. 2.21). Similarly, shear modulus µ+ affects the reaction velocity: firstly, up to some moment,
as smaller the value of µ+ as faster the reaction goes, but at some position of the reaction front the
dependence changes, and increasing of µ+ accelerates the reaction at the end.

2.2.3 Cylindrical reaction front

In this last section, similar to how it was done for the chemical reaction in the plane and sphere,
the dependencies of the reaction position on time and of the reaction front velocity on the front
position in a cylinder will be presented for various values of the external stresses σ0, energy pa-
rameter γ and elastic moduli. Given that, by (2.26), the kinetics of the reaction front accelerates if
ceq /c∗ decreases and, respectively, the reaction kinetics slows down if ceq /c∗ increases, knowing
how the parameters affect the equilibrium concentration the influence of various parameters on
the reaction front behavior can be predicted qualitatively.

By (2.33), the reaction front can propagate only if the stress-strain state at the front and the
energy parameter are such that ceq < c∗. We study further how the condition ceq < c∗ is affected by
the parameters. By (2.32), this is possible only if the transformation strain, external stress, elasticity
parameters and the energy parameter are such that χ < γ. By (2.31), in the considered case this
condition takes the form

χ(σ0)−γ= 1

U

(
(K+−K−)Pσ2

0 −2K−k+Pϑtrσ0
)− (γ−γ0) < 0

where

γ0 =
µ+k+Q(ϑtr )2

U

is the critical value of the parameter γ in the sense that the reaction front may propagate at the
external stress σ0 = 0 only if

γ> γ0
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The dependencies of ceq /c∗ on external stress σ0 for the spherical front are schematically
shown in Fig. 2.4. The extrema is reached at σ0 =σ∗

0 with ceq /c∗ = c∗eq /c∗:

σ∗
0 = k+K−ϑtr

K+−K−
,

c∗eq

c∗
= exp

{
n−M−
ρ−

(
χ(σ∗

0 )−γ)
Rg T

}
, χ(σ∗

0 ) = −k+(ϑtr )2

U

(
µ+Q+ Pk+K 2−

K+−K−

)
≡ γ∗

(2.39)

ξ
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(a)
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Figure 2.24: Cylindrical reaction front: behavior of
∂χ(ξ,σ0=0 )

∂k+
at different position of the reaction front for

the cases a) K+ >K− and b) K+ <K− front

The character of the dependence of ceq /c∗ on σ0 and the sign of σ∗
0 and χ(σ∗

0 ) are determined
by the sign of (K+−K−) and the sign of (Pk+K +− +µ+Q(K+−K−)). The following cases can be
listed:

(i) if

K+ >K− and 0 >Q > Pk+K 2−
K−−K+

therefore χ(σ∗
0 ,ξ) > 0 andσ∗

0 > 0 corresponds to the maximal value of χ(σ0,ξ). Note that Q depends
on the relative thickness of the transformed layer, and has a complex form. It can change the sign
along with the front propagation.

(ii) If the elastic moduli and position of the reaction front satisfy the inequalities

K+ >K− and

 Q > 0

Q < Pk+K 2−
K−−K+

then σ∗
0 > 0 as in the case (i), but the minimal value of χ is negative, χ(σ∗

0 ,ξ) < 0. Then front may
propagate even at negative jump of the chemical energies, γ < 0, but such that γ > −|γ∗|, and at
stresses σ0 such that χ(σ∗

0 ) < χ(σ0) < γ< 0.
(iii) if

K+ <K− and Q > Pk+K 2−
K−−K+

then γ0 < γ∗, σ∗
0 < 0, and χ(σ∗

0 ) > 0 corresponds to the maximal value on the dependence χ(σ0). If
γ < γ∗ then the front may propagate at any σ0. If γ0 < γ < γ∗ then the propagation of the front is
blocked at σ0 ∈ [σI,σII], in contrast to the case k+ > k−. On the other hand, the spherical reaction
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Figure 2.25: Cylindrical reaction front: dependencies of the equilibrium concentration on external strain
ε0 for the case K+ > K−: (a) for different values of the energy parameter γ; (b) for different values of bulk
modulus k+; (c) different values of µ+.

front may start propagating at proper tension σ0 >σII or compression σ0 <σI even if it is blocked
in the underformed stateσ0. In this case the front can propagate at any γ at some external loading.

By (2.31) and (2.39), the bulk ans shear elastic modules, k+ and µ+, affect the dependence
χ(σ0,ξ) and, thus, the dependence of ceq /c∗ and the reaction front velocity on σ0 via parameters
(K+−K−), P and Q. One can examine how k+ affects the dependence χ(σ0) and the extrema
values χ(σ∗

0 ) and σ∗
0 . Note, that from the form of the function χ(σ0,ξ) we can study separately the

influence of σ0 and ξ, since the terms containing σ0 do not contain ξ, and vice versa. From (2.32)
at ξ= 0 it follows that

∂χ(σ0,ξ=0 )

∂k+
=

(
4µ+K−ϑtr −3σ0(K−+µ+)

)2

2K 2− (3k++4µ+)2 ≥ 0

and for σ0 = 0 at various ξ, we have:

∂χ(ξ,σ0=0 )

∂k+
= 3

(
µ+ϑtr

)2 (
3(K−−µ+)ξ(ξ−2)+K++3µ+

)
2
(
3µ+(K+−K−)(ξ2 −2ξ)−K−(K++3µ+)

)3

(
3µ+(K−−µ+)(K+−K−)ξ2(ξ2 −4ξ+4)−

− K−
((

9k+K−+µ+(8K−+K+−9µ+)
)
ξ(ξ−2)+4(K++3µ+)K−

))
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Figure 2.26: Cylindrical reaction front: dependencies of the equilibrium concentration on external strain
ε0 for the case K+ < K−: (a) for different values of the energy parameter γ; (b) for different values of bulk
modulus k+; (c) different values of µ+.

In this case the behavior of derivative is non-monotonic, and it is shown on the Fig. 2.24.

More detailed quantitative analysis is presented in Fig. 2.25 and Fig. 2.26, where the dependen-
cies of the relative equilibrium concentration c∗eq /c∗ on the external stress σ0 for initial position
of the reaction front, ξ = 0, at various values of the energy parameter γ and the bulk and shear
modules k+,µ+ of the transformed material are shown for the cases K+ > K− and K+ < K−, re-
spectively. The reference values of the parameters for the cases K+ >K− and K+ <K− are given
in Tables 2.1 and 2.2, respectively. Only the parameters differ in two cases are shown in Table 2.2.

Fig. 2.25a and Fig. 2.26a reflect the competition between strain and chemical energies at K+ >
K− and K+ <K−, respectively. If γ= γ0 then the dependence of ceq /c∗ on σ0 passes through the
point σ0 = 0, ceq /c∗ = 1. If K+ > K− and γ = γ0 then the front may propagate only at tension
restricted by σ̂ = 2k+K−ϑtr /(K+−K−) (Fig. 2.25a). One can see how increasing γ results in en-
larging the interval of allowed stresses σ0 (see the curves for γ = 2γ0 and γ = 5γ0) and how the
decrease of γ shortens and shifts the interval of the stresses at γ∗ < γ< γ0.

If K+ <K− and γ= γ0 then the front may propagate only at tensionσ0 > 0 or compression σ̂=
2k+K−ϑtr /(K+−K−) (Fig. 2.26a). If γ < γ0, for example, γ = γ0/2, then the front can propagate
only if additional tension σ0 >σII > 0 or compression σ0 <σI < 0 is applied. If γ> γ∗ (corresponds
to γ= 5γ0 in Fig. 2.26a), then the front may propagate at any σ0.
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Figure 2.27: Cylindrical reaction front: dependencies of equilibrium concentration on the reaction front
relative position ξ = h/R at σ0 = 0 and various values of energy parameter γ for the case: a) K+ > K− and
b) K+ <K−
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Figure 2.28: Cylindrical reaction front: dependencies of equilibrium concentration on the reaction front
relative position ξ= h/R at γ= 1.1γ0 and various values of σ0 for the case: a) K+ >K− and b) K+ <K−

One can also see in Fig. 2.4b, Fig. 2.26a that if, at K+ <K−, the front can propagate at some σ0

then further increasing of the absolute value |σ0| decreases c∗eq /c∗ and, thus, increases the front
velocity.

Fig. 2.25b,c and Fig. 2.26b,c characterize quantitatively the role of volume and shear strain
energies via the influence of the bulk module k+ and shear module µ+ on the dependencies of
c∗eq /c∗ on σ0 at initial position of the reaction front, ξ= 0. We can see from Fig. 2.25c and Fig. 2.26
that shear module affects on extrema of χ (it comes from (2.39)).

If the reaction front moves then stresses at the front changes and, thus, the equilibrium con-
centration changes. As χ(σ0,ξ) depends on the position front ξ as well, therefore consider how it
changes if the reaction front propagates. Let the stress σ0 be given. If the front propagates, then
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Figure 2.29: Cylindrical reaction front: kinetics of the reaction front at various values of external loading σ0

for the case K+ >K−. Dependencies of the dimensionless front position on time (a), and the front velocity
on the front position (b); (c) – the front position versus time at the initial stage of the front propagation

χ(σ0,ξ) changes according to (2.31) so that

∂χ(ξ,σ0=0 )

∂ξ
= k+µ+ϑtr 2(

µ2+ξ2 −µ+(K+−K−+µ+)ξ− K−(K++3µ+)

3

)3

(
ξ2µ+(K−−µ+)(3k+−K−)

(
µ+(K+−

− K−)ξ(ξ+2)+2K−(K++3µ+)(ξ−1)
)−2K−(K++3µ+)

((
ξ

3
−K−

)(
K−K++µ+(3k+−K−)

)+3µ2
+K−

))
≤ 0

Then from above relationships it follows that increase of relative thickness of the transformed
layer ξ increases χ(σ0) and decreases equilibrium concentration ceq . Thus, the equilibrium con-
centration at the reaction front decreases as the front propagates if the external stress is given as a
boundary condition.

If the external stress σ0 and energy parameter γ are such that ceq (ξ = 0|σ0,γ) ≥ c∗ then the
reaction can not start from the external surface of the cylinder, but can start if an initial layer
of a new material already exists of the thickness ξ0 : c(ξ0|σ0,γ) ≥ c∗ (Fig. 2.27). Fig. 2.28 shows
the dependencies of the equilibrium concentration on the thickness of transformed material at
various external stresses. In the case of the cylinder, similarly as it was in the case of the sphere,
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Figure 2.30: Cylindrical reaction front: kinetics of the reaction front at various values of external loading σ0

for the case K+ <K−. Dependencies of the dimensionless front position on time (a), and the front velocity
on the front position (b); (c) – the front position versus time at the initial stage of the front propagation

the equilibrium concentration decreases with propagation of the reaction front, and this in turn
accelerates the reaction.

If the stress σ0 is given then the layer growth decreases the equilibrium concentration and
enhances the reaction (Fig. 2.27). The orange curves in Fig. 2.27 demonstrates that a thin layer of
a new material can act as a protective layer if the value of the equilibrium concentration exceeds
the gas solubility. External tension decreases the equilibrium concentration while compression
increases it. Note also that at different values of the energy parameter the curves are similar but
pass lower at larger values of γ or higher at smaller one. This means that the temperature change
can initiate the reaction or, conversely, block it.

The dependencies of the front position on time and the front velocity on the front position
for various values of external stress σ0, energy parameter γ, bulk and shear moduli k+ and µ+
are shown in Fig. 2.29 – Fig. 2.35. One can see how the strains can retard or accelerate the reaction
front, how the increase of the energy parameter accelerates the front, and how elastic moduli affect
the front kinetics.

We should point out, that in the case of the chemical reaction in cylinder, the reaction can
propagate as well with parabolic law, as with exponential law (see i.e. Fig. 2.29 and Fig. 2.31).
As it was mention for spherical reaction front, the behaviour of kinetic depends on the mechan-
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Figure 2.31: Cylindrical reaction front: dependencies of the front position on time (a), and the front velocity
on the front position (b) at various values of energy parameter γ for the case K+ >K−
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Figure 2.32: Cylindrical reaction front: dependencies of the front position on time (a), and the front velocity
on the front position (b) at various values of energy parameter γ fro the case K+ <K−

ical properties initial and transformed materials and the geometry of the structure element (see
Eq.(1.33) and (1.34)). Comparing Fig. 2.29-Fig. 2.35, it is worth mentioning that case for K+ >K−
demonstrates non-parabolic (exponential law) behavior that is different from the behavior in the
case of the reaction in sphere, while the case for K+ <K− shows the parabolic law.

Let K+ >K−. The front velocity is plotted in Fig. 2.29b at various values of external loading σ0

and Fig. 2.31b at various γ. From these plots we can conclude, that initially the reaction front ve-
locity increases along the front propagation and from some position it decelerates. Such behavior
is inverse to the velocity behaviour in the spherical case. Such kinetics was described by Cabrera-
Mott model and this behavior was observed in the experiments (see i.e., [6, 32, 34, 46, 77, 160]). De-
pending of the material properties and structure geometry, non-parabolic kinetics can be reached
or not.

The influence of the elastic modulus k+ and µ+ of transformed material is shown in Fig. 2.33
and Fig. 2.34.
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Figure 2.34: Cylindrical reaction front: dependencies of the front position on time at various values of shear
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2.3 Conclusions

In this chapter the thermodynamical framework based on the concept of the chemical affinity
tensor is presented. The stress-affected chemical reaction front propagation in deformable solid
in the cases of a planar, spherical and cylindrical reaction fronts has been considered for elastic
bodies. The reaction kinetics is studied. The influence of strains and material parameters on the
kinetics of the front propagation was studied in detail with the use of the notion of the equilibrium
concentration. Two types of the dependencies of the equilibrium concentration and, thus, front
velocity on strain are demonstrated, depending on the relations between the combinations of elas-
tic moduli of solid reactants. In the first case the front can propagate only if strains belong to some
interval, and it cannot propagate at all if the energy parameter is less than the critical value defined
by the elastic moduli and transformation strain. In the second case the front can propagate at any
energy parameter at proper strains which are outside of a corresponding interval. Different cases
also correspond to different effects of strains on the front acceleration or retardation. It is shown
that reaction kinetics depends on the geometry of the structural element. It is demonstrated the
possibility of logarithmic kinetics in the case of the spherical reaction front. For the reaction in
cylindrical element the exponential law of the kinetics was observed. These different results are
consistent with some experimental data coming from literature.
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Chapter 3

Viscoelastic product of chemical reaction
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In the present chapter we develop a model for analytical studies of stress relaxation behind the
reaction front. Considered chemical reactions are accompanied by transformation strains which
may generate huge stresses, and reaction products often demonstrate more viscous than elastic
behaviours, e.g., [23,24]. This motivates the relevance of stress relaxation studies. In addition,
since the total thickness of the transformed layer is observed in experiments, even simple mod-
els may be useful for the estimation of the impacts of the transformation and inelastic (viscous)
strains on the thickening during the front propagation.

The difference of molar volumes of initial material and transformed material is a source of vol-
ume expansion due to chemical reaction. Kinematic compatibility, i.e. displacement continuity at
the reaction front, restricts the transformation strain and produces stresses which can be huge in
the case of an elastic behavior of the reaction product. Viscoelastic assumption allows the strain in
the transformed layer to be partly accommodated by the viscous deformation, making it possible
that the volume increases due to the increase of the thickness of the transformed layer leading to
the stress relaxation (see, e.g., [20, 30, 31, 73, 74]).

To study how the viscosity and the specified choice of the viscoelastic rheology of the trans-
formed material affects the reaction front propagation, we take at first the standard linear solid
model (SLSM) that was refered as the Poynting-Thomson viscoelastic material.

The results obtained in the case of planar front are part of the article S.Petrenko, A.Freidin and
E.Charkaluk "Chemical reaction planar fronts with a viscoelastic reaction product" (in revision).

3.1 Reaction front kinetics

For the inelastic material “+” we assume that volumetric strains are elastic, and inelastic behav-
iors are represented by rheological models formulated as relationships between deviatoric parts
of stress and strain tensors. Then we use the following decompositions

𝜎 =σI+s, 𝜀= ϑ

3
I+e (3.1)

where σ = 1

3
tr𝜎 and ϑ = tr𝜀 denote the hydrostatic parts of the stress tensor and volume strain,

and s and e are the deviatoric stress and strain, respectively.
We assume that the transformation strain is spherical: 𝜀tr = (ϑtr /3)I. Then the hydrostatic

parts of the stress tensor and volume strain are related in constituent “+” as

σ+ = k+(ϑ+−ϑtr ) (3.2)

To study how the viscosity and the specified choice of the viscoelastic rheology of the trans-
formed material affect the reaction front propagation, we take at first the standard linear solid
model (SLSM) (Fig. 3.2a) that was also referred as the Poynting-Thomson viscoelastic material
[124] (see also [106]).

The constitutive equation which relates the deviatoric tensors s+ and e+ in the material “+” is
derived from the following relationships (see Fig. 3.2):

s+ = s1 +s2, e+ = e1 = e2

s1 = se
1 = sη, e1 = ee

1 +eη

se
1 = s1 = 2µ1ee

1, sη = s1 = 2ηėη, s2 = 2µ2e2 = 2µ2e+ (3.3)

whereµ1 andµ2 are the shear moduli of the elastic elements, η is the viscosity, e and s with various
indices denote deviatoric strains and stresses in corresponding rheological elements. Finally, the
constitutive equation takes the known form(

1+ µ2

µ1

)
ė++ µ2

η
e+ = 1

2µ1
ṡ++ 1

2η
s+ (3.4)
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The strain energy of the constituents “+” is defined as

w+ = 1

2
k+(ϑ+−ϑtr )2 +µ1ee

1 : ee
1 +µ2e+ : e+ (3.5)

where it is taken into account that e2 = e+.

3.1.1 Planar front

To demonstrate the influence of the viscosity on the reaction front kinetics, we consider in this
section the simple plane strain problem for a chemical reaction in a plane layer of thickness H and
length L >> H with a planar reaction front (Fig. 4.2). The reaction starts at the outer surface y = 0
of an initially elastic layer. The planar reaction front propagates in the y-direction, the reaction
front position is given by y = h. The lower y = 0 and upper y = H faces of the layer are traction free.
Displacement u0 at the edges x =±L prescribes the strain ε0 = u0/L in x-direction. Therefore, the
strains have to satisfy the following conditions:

εz = εxz = εy z = 0, εx = ε0

0 x

y

H

h

L
C−
C+

Figure 3.1: The planar reaction front.

The 3D diffusion problem is reduced to 1D the diffusion equation

d 2c

d y2 = 0, y ∈ [0,h]

with boundary conditions

D
dc

d y

∣∣∣∣
y=0

= α(c(0)− c∗), D
dc

d y

∣∣∣∣
y=h

=−k∗(c(h)− ceq )

From the solution it follows that the concentration of the diffusing constituent B∗ at the reaction
front is equal to

c(h) =
c∗+k∗

(
h

D
+ 1

α

)
ceq

1+k∗
(

h

D
+ 1

α

)
Then, by Eq. (1.34), the reaction front velocity can be calculated as

VN = n−M−
ρ−

c∗− ceq

1

k∗
+

(
h

D
+ 1

α

) (3.6)

where the equilibrium concentration ceq , defined by Eq. (1.32), depends on stresses and strains at
the reaction front.

In the stress problem, the equilibrium equations and boundary conditions are satisfied if we
take

σy = 0, σx y = 0 (3.7)
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From the continuity of the displacement it follows that, at the reaction front

[[εx ]] = 0

Then, from Eq. (3.7) and plane strains conditions it follows that 𝜎− : [[𝜀]] = 0 in the expression of
the normal component of the chemical affinity tensor Eq. (1.29).

We assume that the initial material “−” is isotropic linear elastic. Then due to the plane strains
conditions, by using Hooke’s law, non-zero stresses in the elastic layer y ∈ [h,H] are the stresses

σ−
x = 4µ−

(
3k−+µ−

)
3k−+4µ−

ε0, σ−
z = 2µ−

(
3k−−2µ−

)
3k−+4µ−

ε0

where k− andµ− are the bulk and shear modules of the material B−. Then the strain energy density
of the material B− is

w− = 2µ−
(
3k−+µ−

)
3k−+4µ−

ε2
0 (3.8)

To find strain energy w+ at the reaction front there is no need to solve complete viscoelas-
tic problem. Indeed, the viscous strains cannot occur instantaneously at a point when the front
passes through this point, while the transformation and elastic strains appear instantaneously.
Therefore, the viscous strain

eη(y, ty ) = 0 (3.9)

where ty is the time at which the reaction front passed through the position y ∈ [0,h]. The depen-
dence ty = ty (y) is determined by the kinetics of the front propagation:

ty∫
0

VN(t )d t = y

The condition (3.9) will serve as initial condition in the stress relaxation analysis, but now it is
enough to know that at the reaction front ee

1 = e+ and

𝜎+ = k+
(
ϑ+−ϑtr )

I+2µ+e+

w+ = 1

2
k+(ϑ+−ϑtr )2 +µ+e+ : e+

where deviatoric strain e+ is taken at the reaction front.
Since, due to the plane strain restriction, ε+y = ϑ+−ε0,

e+ : e+ = 𝜀+ : 𝜀+− (ϑ+)2

3
= 2

(
ε2

0 −ε0ϑ
++ (ϑ+)2

3

)
(3.10)

1 2

µ1
µ2

η

µ+

η

η µ+ η

a) b) c) d)

Figure 3.2: Rheological viscoelastic models: a) standard linear solid model, b) Maxwell model, c) Kelvin-
Voigt model, d) linear viscous model.
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Thus to calculate the strain energy w+ at the reaction front it is enough to find the volume
strain ϑ+. From the relationships

σ+
y = k+(ϑ+−ϑtr )+2µ+e+y = 0

e+x = ε0 − ϑ+

3
, e+z =−ϑ

+

3
, e+y =−(e+x +e+z ) = 2ϑ+

3
−ε0

it immediately follows that at the reaction front

ϑ+ = 3(2µ+ε0 +k+ϑtr )

3k++4µ+
(3.11)

e+x = (3k++2µ+)ε0 −k+ϑtr

3k++4µ+
, e+y = k+(2ϑtr −3ε0)

3k++4µ+
, e+z =−2µ+ε0 +k+ϑtr

3k++4µ+
(3.12)

Then the strain energy of the strain constituent can be found as

w+ =
2µ+

((
3k++µ+

)
ε2

0 −3k+ϑtr ε0 +k+ϑtr 2
)

3k++4µ+

The relationships (3.12) will be also used further in the stress relaxation analysis.
With the use of (3.11) and (3.10), the strain energy w+ becomes a function of ε0 and material

parameters. Then the substitution of (3.8) for w− and obtained expressions of w+ and ϑ+ into
(1.31) gives χ as the quadratic function of external and transformation strains and elastic moduli
of the constituents:

χ(ε0) = 2(G+−G−)ε2
0 −3Sϑtr ε0 +S(ϑtr )2 (3.13)

where

G± = µ±
(
3k±+µ±

)
3k±+4µ±

= E±
2(1−ν2

±)
, H = 2k+µ+

3k++4µ+
= E+

9(1−ν+)

E± and ν± are the Young moduli and Poisson’s ratios. Substitution of (3.13) into Eq. (1.30) and
(1.33) leads to the explicit dependencies of ANN and ceq at the reaction front on external and trans-
formation strains, elastic modules of the constituents and the chemical energies. In particularly,

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χ(ε0))

Rg T

}
Note that at given ε0 the equilibrium concentration does not depend on the front position. Then
the integration of the equation (4.3) leads to the kinetic equation in the form of the parabolic law:

ξ2 +Lξ= Qt (3.14)

where ξ = h

H
, L = 2D

H

(
1

k∗
+ 1

α

)
, Q = n−M−

ρ−

2D

H2c∗(1−φ), φ = exp

{
−n−M−

ρ−

(γ−χ(ε0))

Rg T

}
(cf. with

[97]).
The dependence (3.10) for ty (y) can be presented in the explicit form:

ty = 1

Q

( y

H

)2
+ L

Q

( y

H

)
(3.15)

3.1.2 Spherical front propagation

In this section, a sphere of radius R that is subjected to the reaction from the outer surface is now
considered. We solve the problem in the same statement as it was in the Section 1.4.2., taking into
account that the transformed material is viscoelastic and described by standard linear solid model.
Transformed material forms a spherical layer of thickness h (Fig. 3.3 ). The chemical reaction
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σ0 hσ0

R a

C−
C+

Figure 3.3: The spherical reaction front.

is localized on spherical reaction front of the radius (R−h) and divides the sphere onto regions
occupied by the initial and new materials. The external stress 𝜎0 is given as a boundary condition.

The solution of the diffusion problem for the spherical geometry was done in the Section 1.4.2.
Here, we recall the resulting equations.The concentration of the diffusing constituent B∗ at the
reaction front is equal to

c(a) =
c∗+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)ceq

1+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

, h = R−a, ξ= h

R
, D0 =

D

R

The reaction front velocity can be calculated as

VN = n−M−
ρ−

k∗n∗

1+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

(
c∗− ceq

)
(3.16)

Since the body’s geometry (spherical symmetry) and since the material is isotropic, the equi-
librium and kinematic boundary conditions can be expressed as

dσr

dr
+2

σr −σϕ
r

= 0 (3.17)

εr =
dur

dr
, εϕ = εϑ =

ur

r

where ur is the radial displacement.
If the solution for the displacement field can be obtained from the stress field using the con-

stitutive equations, and if this field is compatible with the kinematic boundary conditions, the
solution is unique.

Due to the spherical symmetry condition, the only non zero component of displacement is
radial. As viscosity does not produce any volume change, the volume variation is due to the elastic
strain only

ε+r +2ε+ϕ−ϑtr =
σ+

r +2σ+
ϕ

3k+
(3.18)

As the transformed material is described by the standard linear solid model, then we obtain:

𝜎+ = k+
(
ϑ+−ϑtr )

I+2µ1ee
1 +2µ2e+ = k+

(
ϑ+−ϑtr )

I+2µ1

(
𝜖− ϑ+

3
I−eη

)
+2µ2

(
𝜀− ϑ+

3
I
)

(3.19)

𝜎+ = k+
(
ϑ+−ϑtr )

I+2ηėη+2µ2e+ = k+
(
ϑ+−ϑtr )

I+2η

(
𝜀− ϑ̇+

3
I− ėe

1

)
+2µ2

(
𝜀− ϑ+

3
I
)

(3.20)
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where

ε+r = dur

dr
= ϑ+

3
+e+r = ϑ+

3
+ee

1r +eηr

ε+ϕ = ur

r
= ϑ+

3
+e+ϕ = ϑ+

3
+ee

1ϕ+eηϕ

from (3.3) we have:

µ1ee
1 = ηėη (3.21)

Then from it, using (3.21), we have the following set of equations:

η

µ1
ėηr +eηr = 2

3

(
u′

r −
ur

r

)
,

η

µ1
ėηϕ+eηϕ = 1

3

(
ur

r
−u′

r

)
(3.22)

ėe
1r +

µ1

η
ee

1r =
2

3

(
u̇′

r −
u̇r

r

)
, ėe

1ϕ+
µ1

η
ee

1ϕ = 1

3

(
u̇r

r
− u̇′

r

)
(3.23)

where the dot means differentiation w.r.t time t , and the dash differentiation w.r.t. position r .
From condition (3.18), substituting (3.3) into (3.1), it follows:

ee
1r +2ee

1ϕ = 0, ėηr +2ėη1ϕ = 0 (3.24)

The equilibrium equation (3.17), taking into account (3.20), can be written as:(
k++ 4

3
µ2

)(
u′′

r +
2

r
u′

r −2
ur

r 2

)
+ 4

3
η

(
u̇′′

r +
2

r
u̇′

r −2
u̇r

r 2

)
−2η

((
ėe

1r

)′+ 2

r

(
ėe

1r − ėe
1ϕ

))
= 0 (3.25)

We solve Partial Differential Equations (PDEs) (3.25) and (3.23) together, with condition (3.24).
These PDEs must be solved in combination with boundary conditions and initial conditions:

ur (r,0) = 0, u+
r (a, t ) = u−

r (a, t ), σ+
r (a, t ) =σ−

r (a, t ), σ+
r (R, t ) =σ0 (3.26)

the initial condition simply requires that there is no displacement in the beginning.
Usually such type of problem can be solved using the Laplace transformation (see Appendix

A). This solution is convenient to the general problem, where we just have to describe the stress-
strain state, using only the initial conditions. But in our case, we are interested in introducing the
condition at the reaction front, which is not possible using the Laplace transformation. Therefore,
we have to solve the given problem in a general way, and the solution will be more complex. The
solution of the non-linear system of PDEs will takes the following form:

u+(r, t ) = e−z1t F1(r )+ e−z1t

η
(
3k++4µ+

)(r
∫

ez1t F2(t )d t + 1

r 2

∫
ez1t F3(t )d t

)

ee
1r (r, t ) = 2e−z2t

r 3η(3k++4µ+)

(
z2

∫
e(z2−z1)t

(∫
ez1t F3(t )d t

)
d t −e−z1t

∫
ez1t F3(t )d t

)
+

+3k++4µ2

6µ1r
e−z1t (−r F′

1(r )+F1(r )
)− C1

r 3 e−z2t

eηr (r, t ) = e−z2t

r 3

(
− 2z2

η(3k++4µ+)

∫
e(z2−z1)t

(∫
ez1t F3(t )d t

)
d t +C1

)
+ (3k++4µ+)e−z1t

6µ1r

(
r F′

1(r )−F1(r )
)

z1 =
µ1(3k++4µ2)

η(3k++4µ+)
, z2 =

µ1

η
, µ+ =µ1 +µ2

where F1(r ) is arbitrary function of r , what can be found from the initial conditions; F2(t ) and
F3(t ) are arbitrary functions of t can be found from the boundary conditions; C1 is an integration
constant.
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Introduce the following notations: f2,3(t ) = e−z1t

η(3k++4µ+)

∫
ez1t F2,3(t )d t ,

∫
ez2t f3(t )d t = f̃3(t ),

then it follows f3(t ) = ˙̃f3(t )e−z2t . Using such notation, we can rewrite our solution in more compact
and simple form:

u+(r, t ) = e−z1t F1(r )+ r f2(t )+ 1

r 2
˙̃f3(t )e−z2t (3.27)

ee
1r (r, t ) = 2

r 3e−z2t
(
z2 f̃3(t )− ˙̃f3(t )

)
+ 3k++4µ2

6µ1r
e−z1t (−r F′

1(r )+F1(r )
)− C1

r 3 e−z2t (3.28)

ee
2r (r, t ) =− 2

r 3e−z2t ˙̃f3(t )+ 2

3r
e−z1t (

r F′
1(r )−F1(r )

)
(3.29)

eηr (r, t ) = e−z2t

r 3

(−2z2 f̃3(t )+C1
)+ 3k++4µ+

6rµ1
e−z1t (

r F′
1(r )−F1(r )

)
(3.30)

Writing down the initial conditions, we have:

F1(r ) =−r f2(0)− 1

r 2
˙̃f3(0), F′

1(r ) =− f2(0)+ 2

r 3
˙̃f3(0) (3.31)

In initial material displacements are given by Lame formulae:

u−(r, t ) =L−(t )r +D−(t )

r 2 (3.32)

in our case of sphere, u−(r, t ) is to be finite at r = 0, therefore D−(t ) = 0
To solve the problem we have to find f2(t ), f̃3(t ) and L1(t ) from the boundary conditions and

the conditions at the interface. Therefore from (3.26), taking into account (3.19) and (3.32), we
have:

f̃3(t ) =C2 exp

{
z2U2

U1
t

}
−

(
k−k+ϑtr −σ0(k+−k−)

)
R3a3

z2 (U1 −U2)
ez2t + C1

2z2
(3.33)

˙̃f3(t ) = z2U2

U1
C2 exp

{
z2U2

U1
t

}
−

(
k−k+ϑtr −σ0(k+−k−)

)
R3a3

U1 −U2
ez2t (3.34)

f2(t ) =−4k−µ1z2

U1
C2 exp

{
− z2 (U1 −U2)

U1
t

}
+

(
k+ϑtr +σ0

)
(3k−+4µ2)R3 −4µ2k+ϑtr a3

3(U1 −U2)
(3.35)

L−(t ) = 4k+µ1z2
(
R3 −a3

)
U1a3 C2 exp

{
z2U2

U1
t

}
+ 4ϑtr k+µ2

(
R3 −a3

)+σ0(3k++4µ2)R3

3(U1 −U2)
(3.36)

U1 = k+(3k−+4µ+)R3 −4µ+(k+−k−)a3, U2 = 4µ1
(
k+R3 − (k+−k−)a3)

where C2 is an integration constant, can be found from the condition at the interface at the mo-
ment, when front is just came there: σ+

r (a, ta) =σ−
r (a, ta):

C2 =
(
k−k+ϑtr − (k+−k−)σ0

)
R3a3

z2 (U1 −U2)
exp

{
z2 (U1 −U2)

U1
ta

}
(3.37)

Integration constant C1 can be found from the condition (3.9), writing down for (3.30):

C1 = 2z2 f̃3(ta) (3.38)
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Then the strain density of the initial material "-" is

w− = 9

2
k−L−(t )2 (3.39)

in the transformed material from (3.5) can be found as follows

w+ = 1

2

(
3 f2(t )−ϑtr )2 + 4µ+

a3
˙̃f 2
3 (t )e−2z2t (3.40)

and

𝜎− : �𝜀� = 9k−L−(t )
(

f2(t )−L−(t )
)

(3.41)

Substitution of (3.39) for w−, (3.40) for w+ and (3.41) into (1.30) gives χ as the quadratic func-
tion of external stress and transformation strain, elastic modulus of the constituents:

ceq

c∗
= exp

{
−n−M−
ρ−Rg T

(
γ− 1

2
k+

(
3 f2(t )−ϑtr )2 − 4µ+

R3(1−ξ)3
˙̃f 2
3 (t )e−2z2t +9k−L−(t )

(
f2(t )− L−(t )

2

))}

where ξ = R−a

R
is the thickness of the transformed layer divided by radius of the sphere. Then

the substitution of (3.34), (3.35) and (3.36) into (3.1.2), gives χ as the quadratic function of external
stress and transformation strain:

χ(σ0) = R6

2U2
1

(
(k+−k−)Qσ2

0 −2k+k−Qσ0ϑ
tr −8k+k−µ+T(ϑtr )2) (3.42)

where

Q= 3k+(3k−−4µ+)+4µ+(9k−+4µ+)

T= k+
(
(9k−+4µ+)− (1−ξ)3(3k−+4µ+)

)+4µ+(1−ξ)6(k+−k−)

Substitution of (3.42) into (1.33) and (1.30) leads to the explicit dependencies of ANN and ceq at
the reaction front on external stress and transformation strain, elastic modules of the constituents
and chemical energies. In particularly,

ceq

c∗
= exp

{
−n−M−

ρ−

(γ−χ(σ0))

Rg T

}

Then integration of the equation (3.16) leads to the kinetic equation:

ξ̇= n−M−
ρ−

k∗c∗

1+k∗
(

1−ξ
α

+ ξ

D0

)
(1−ξ)

(
1−exp

{
−n−M−

ρ−

(γ−χ(σ0))

Rg T

})

3.1.3 Cylindrical front propagation

In this subsection we focus on the chemical reaction in axially-symmetric problem. As it was done
in the previous Chapter 1 in Subsection 1.4.3., we consider initially a linear-elastic cylinder of ra-
dius R and length L under external stressσ0 (Fig. 3.4). Assume L >> R. The displacement in a radial
direction is a function on r alone and does not depend on upon z. Therefore, εz = 0, as we assume
that tube material is compressible, then from (3.1) we have non zero 𝑒z . The diffusive material
surrounds the cylinder. We suppose that reaction starts from the outer surface and transformed
material forms a cylindrical layer of a thickness h from the body surface.
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Figure 3.4: The cylindrical reaction front.

The solution for the diffusion problem and kinetic equation were solved in Section 1.4.3.(Eq.
(2.25) and (2.26)). Here, we just recall the result:

The concentration of the diffusing constituent B∗ at the reaction front is equal to

c(a) =
c∗

D0

k∗(1−ξ)
− ceq

(
ln(1−ξ)− D0

α

)
D0

1−ξ+
D0

α
− ln(1−ξ)

, D0 =
D

R
, h = R−a, ξ= h

R

The reaction front velocity is given by the following equation

VN = n−M−
ρ−

c∗− ceq

1

k∗
+ 1−ξ

α
− ln(1−ξ)

D0
(1−ξ)

(3.43)

Since the body’s cylindrical geometry (cylindrical coordinates (r,ϕ, z)) and since the material
is isotropic, the equilibrium and kinematic boundary conditions can be expressed as

dσr

dr
+ σr −σϕ

r
= 0 (3.44)

εr =
du

dr
, εϕ = u

r
, εz = 0

Due to the axially-symmetric condition and from the condition L >> R, the only non zero com-
ponent of displacement is radial. As viscosity does not produce any volume change, the volume
variation is due to the elastic strain only

ε+r +ε+ϕ−ϑtr =
σ+

r +σ+
ϕ+σ+

z

3k+
(3.45)

Recall the viscoelastic equations. As the transformed material is described by the standard
linear solid model, then we obtain:

𝜎+ = k+
(
ϑ+−ϑtr )

I+2µ1ee
1 +2µ2e+ = k+

(
ϑ+−ϑtr )

I+2µ1

(
𝜖− ϑ+

3
I−eη

)
+2µ2

(
𝜀− ϑ+

3
I
)

(3.46)

𝜎+ = k+
(
ϑ+−ϑtr )

I+2ηėη+2µ2e+ = k+
(
ϑ+−ϑtr )

I+2η

(
𝜀− ϑ̇+

3
I− ėe

1

)
+2µ2

(
𝜀− ϑ+

3
I
)

(3.47)
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where, taking into account (3.3)

ee
1r +eηr = ee

2r =
1

3

(
2u′− u

r

)
= η

µ1
ėηr +eηr , ėe

1r +
µ1

η
ee

1r =
1

3

(
2u̇′− u̇

r

)
(3.48)

ee
1ϕ+eηϕ = ee

2ϕ = 1

3

(
2

u

r
−u′

)
= η

µ1
ėηϕ+eηϕ, ėe

1ϕ+
µ1

η
ee

1ϕ = 1

3

(
2

u̇

r
− u̇′

)
(3.49)

ee
1z +eηz = ee

2z =−1

3

(
u′+ u

r

)
= η

µ1
ėηz +eηz , ėe

1z +
µ1

η
ee

1z =−1

3

(
u̇′+ u̇

r

)
where the dot means differentiation w.r.t time t , and the dash differentiation w.r.t. position r .

From the condition (3.45) it follows:

ee
1r +ee

1ϕ+ee
1z = 0, ėηr + ėηϕ+ ėηz = 0 (3.50)

The equilibrium equation (3.44), taking into account (3.47), can be rewritten as follows:(
k++ 4

3
µ2

)(
u′′+ u′

r
− u

r 2

)
+ 4

3
η

(
u̇′′+ u̇′

r
− u̇

r 2

)
−2η

((
ėe

1r

)′+ 1

r

(
ėe

1r − ėe
1ϕ

))
= 0 (3.51)

We solve Partial Differential Equations (PDEs) (3.51), (3.48) and (3.49) together, with condition
(3.50). These PDEs must be solved in combination with boundary conditions and initial condi-
tions:

ur (r,0) = 0, u+
r (a, t ) = u−

r (a, t ), σ+
r (a, t ) =σ−

r (a, t ), σ+
r (R, t ) =σ0 (3.52)

the initial condition simply requires that there is no displacement in the beginning.
As it was written in the previous Section 3.1.2 for spherically-symmetric problem, such prob-

lem usually can be solved using the Laplace transformation. Such method takes into account only
the initial conditions, but in our case, we are interested in taking into account the moment when
the front passes through the body point. To make it possible we have to solve the problem in the
general way, with more complex solution. The solution of non-linear system of PDEs will takes
form:

u+(r, t ) = e−z1t F1(r )+ e−z1t

η(3k++4µ+)

(
r
∫

ez1t F2(t )d t + 1

r

∫
ez1t F3(t )d t

)

ee
1r (r, t ) =− z2e−z2t

η(3k++4µ+)

(∫
e(z2−z1)t

(
1

3

∫
ez1t F2(t )d t − 1

r 2

∫
ez1t F3(t )d t

)
d t

)
−C1e−z2t+

+ e−z1t

η(3k++4µ+)

(
1

3

∫
ez1t F2(t )d t − 1

r 2

∫
ez1t F3(t )d t

)
+ z1e−z1t

3(z2 − z1)

(
F1(r )

r
−2F′

1(r )

)

eηr (r, t ) = e−z2t

(∫ z2e(z2−z1)t

η(3k++4µ+)

(
1

3

∫
ez1t F2(t )d t − 1

r 2

∫
ez1t F3(t )d t

)
d t − z2e(z2−z1)t

3(z2 − z1)

(
F1(r )

r
−2F′

1(r )

)
+C1

)

ee
2r (r, t ) = e−z1t

η(3k++4µ+)

(
1

3

∫
ez1t F2(t )d t − 1

r 2

∫
ez1t F3(t )d t

)
− e−z1t

3

(
F1(r )

r
−2F′

1(r )

)

z1 =
µ1(3k++4µ2)

η(3k++4µ+)
, z2 =

µ1

η
, µ+ =µ1 +µ2

ee
2ϕ = ez1t

η(3k++4µ+)

(
1

3

∫
ez1t F2(t )d t + 1

r 2

∫
ez1t F3(t )d t

)
− e−z1t

3

(
F′

1(r )−2
F1(r )

r

)

ee
2z =− 2e−z1t

3η(3k++4µ+)

∫
ez1t F2(t )d t − e−z1t

3

(
F′

1(r )+ F1(r )

r

)
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where F1(r ) is arbitrary function of r , what can be found from the initial conditions; F2(t ) and
F3(t ) are arbitrary functions of t can be found from the boundary conditions; C1 is an integration
constant.

Introduce the following notations: f2,3(t ) = e−z1t

η(3k++4(µ1 +µ2))

∫
ez1t F2,3(t )d t ,

∫
ez2t f2,3(t )d t =

f̃2,3(t ), then it follows f2,3(t ) = ˙̃f2,3(t )e−z2t . Using such notation, we can rewrite our solution in
more compact and simple form:

u+(r, t ) = e−z1t F1(r )+e−z2t

(
r ˙̃f2(t )+ 1

r
˙̃f3(t )

)
(3.53)

ee
1r (r, t ) = e−z2t

(
− z2

3
f̃2(t )+ 1

3
˙̃f2(t )+ z2

r 2 f̃3(t )− 1

r 2
˙̃f3(t )−C1

)
+ z1e−z1t

3(z2 − z1)

(
F1(r )

r
−2F′

1(r )

)
(3.54)

eηr (r, t ) = e−z2t

(
z2

3
f̃2(t )− z2

r 2 f̃3(t )− z2e−z1t

3(z2 − z1)

(
F1(r )

r
−2F′

1(r )

)
+C1

)
(3.55)

ee
2r (r, t ) = e−z2t

(
1

3
˙̃f2(t )− 1

r 2
˙̃f3(t )

)
− e−z1t

3

(
F1(r )

r
−2F′

1(r )

)

ee
1ϕ(r, t ) = e−z2t

(
− z2

3
f̃2(t )+ 1

3
˙̃f2(t )− z2

r 2 f̃3(t )+ 1

r 2
˙̃f3(t )−C1

)
− e−z1t

3r

(
z2

(−2F′′
1(r )+F′

1(r )−F1(r )
)−

− 1

2µ1

(
(3k++4µ+)r 2F′′

1(r )+ (3k++4µ2 +2µ1)r F′
1(r )− (3k++4µ2)F1(r )

))
(3.56)

ee
2ϕ = e−z2t

 ˙̃f2(t )

3
+

˙̃f3(t )

r 2

− e−z1t

3

(
F′

1(r )−2
F1(r )

r

)
(3.57)

ee
1z =

2e−z2t

3

(
z2 f̃2(t )− ˙̃f2(t )

)
+e−z1t

(
3(3k++4µ+)

4µ1

(
r F′′

1(r )+F′
1(r )− F1(r )

r

)
+F′

1(r )+ F1(r )

r

)
(3.58)

ee
2z =−2

3
˙̃f2(t )e−z2t − e−z1t

3

(
F′

1(r )+ F1(r )

r

)
(3.59)

Writing down the initial conditions, we have

F1(r ) =−r ˙̃f2(0)− 1

r
˙̃f3(0), F′

1(r ) =− ˙̃f2(0)+ 1

r 2
˙̃f3(0)

In initial material displacements are given by Lame formulae

u−(r, t ) =A−(t )r + B−(t )

r 2 (3.60)

in our case of the cylinder u is to be finite at r = 0, therefore B−(t ) = 0.

To solve the problem we have to find f̃2(t ), f̃3(t ) and A−(t ) from the boundary conditions and
the conditions at the interface. Therefore, from (3.52), taking into account (3.46) and (3.60), solving
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the system of differential equation (boundary conditions and conditions at the interface), we have

f̃2(t ) = ez2t

(
3k++4µ+

4µ1z2

˙̃f2(0)e−z1t + 3
(
(k+ϑtr +σ0)(k−+µ2)R2 −k+µ2ϑ

tr a2
)

2z2P1

)
+C2eW1t +C3eW2t − 3

4
C1

(3.61)

f̃3(t ) = ez2t

(
3k++4µ+

4µ1z2

˙̃f3(0)e−z1t − R2a2

2z2P2

(
3k−k+ϑtr − (3(k+−k−)+µ2)σ0

))−(
k+−k−

k−
(R2 −a2)+ 2

3
R2

)
C3eW2t

(3.62)

A−(t ) = (3k+µ2ϑ
tr +σ0(3k++4µ2))R2 −3k+µ2ϑ

tr a2

6P1P2
+ 2µ1µ+z2

P2
(r 2 −a2)C2e(W1−z2)t−

−µ1z2(r 2 −a2)

3k−P2

(
(3k+−k−)(3k++µ+)R2 −3k+(3(k+−k−)+µ+)a2)C3e(W2−z2)t (3.63)

where

P1 = (3k++µ2)(k−+µ2)R2 −µ2(3(k+−k−)+µ2)a2, P2 = (3k++µ+)(k−+µ+)R2 −µ+(3(k+−k−)+µ+)a2

W1 =
µ1z2

P2

(
(k−+µ+)R2 −µ+a2) , W2 =

µ1z2

P2

(
(3k++µ+)R2 − (3(k+−k−)+µ+)a2) (3.64)

where C2 and C3 are integration constants, can be found from the conditions at the interface at the
moments, when reaction front is just came there: u+(a, ta) = u−(a, ta) and σ+

r (a, ta) =σ−
r (a, ta):

C2 =− 3e−(W1−z2)ta

2
(
(3k+−k−)R2 −3(k+−k−)a2

)
W1P1

(
(3k+−k−)(k−+µ2)(k+ϑtr +σ0)R4 − (k+(3k+(k−+2µ2)−

−4k−µ2)ϑtr + (3k+−4k−)µ2σ0)R2a2 +3k+(k+−k−)µ2ϑ
tr a4) (3.65)

C3 =−3
(
3k−k+ϑtr − (

3(k+−k−)−µ2
)
σ0

)
k−R2a2e−(W2−z2)ta

2
(
(3k+−k−)R2 −3(k+−k−)a2

)
W2P1

(3.66)

Then the strain density of the initial material is

w− = 2

3
(3k−+µ−)A 2

− (3.67)

in the transformed material we have

w+ = k+
(

˙̃f2(t )e−z2t − ˙̃f2(0)e−z1t −εtr
)2 + 2

3
µ+

((
˙̃f2e−z2t − ˙̃f2(0)e−z1t

)2 + 3

a4

(
˙̃f3(t )e−z2t − ˙̃f3(0)e−z1t

)2
)

(3.68)

and therefore

𝜎− : �𝜀� = 4

3
(3k−+µ−)A−(t )

(
˙̃f2(t )e−z2t − ˙̃f2(0)e−z1t −A−(t )

)
(3.69)

Substitution of (3.67), (3.68) and (3.69) into (1.30) gives χ as a quadratic function of external
stress and transformation strain, elastic modulus of the constituents:

χ(σ0) = χ(σ0,ξ) = 1

2H 2
1

(
(K+−K−)H2σ

2
0 −2K−k+H2ϑ

trσ0 −µ+k+H3(ϑtr )2) (3.70)

where

H1 = 3µ+(K+−K−)(ξ2 −2ξ)− (K++3µ+)K−, H2 = 3(K++3µ+)(K−+3µ+), K± = 3k±+µ±
H3 = 9µ+(K+−K−)(K−−µ+)ξ2(ξ−2)2 −2(K++3µ+)K−

(
3(K−−µ+)ξ(ξ−2)−2K−

)
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Substitution of (3.70) into (1.30) and (1.33) leads to the explicit dependencies of ANN and ceq at
the reaction front on external stress and transformation strain, elastic modules of the constituents
and chemical energies. In particularly,

ceq

c∗
= exp

{
−n−M−

ρ−

(γ−χ(σ0))

Rg T

}
Then integration of the equation (3.43) leads to the kinetic equation:

ξ̇= n−M−
ρ−

c∗
1

k∗
+ 1−ξ

α
− ln(1−ξ)

D0
(1−ξ)

(
1−exp

{
−n−M−

ρ−

(γ−χ(σ0))

Rg T

})

In this section, explicit or implicit kinetics equations were obtained. Now, they will be used and
solved numerically in order to study reaction kinetics, stress relaxation behind the reaction front.

3.2 Equilibrium concentration, kinetics of the reaction front and block-
ing effect

Note, that resulting kinetics equations for each reaction front are the same, as it was in the case
of elastic reaction product in Chapter 2. For planar reaction front, the equation (3.13) for χ is the
same as equation (2.14); for spherical chemical reaction front the equation (3.42) is the same as
(2.22); and for cylindrical front propagation the equation (3.70) is equal to (2.31). There are two
reasons for it:

– we calculate the equilibrium concentration at the reaction front, from where we obtain χ;
– on the assumption (3.9) that we make, the viscous strains cannot occur instantaneously at

the reaction, while the transformation and elastic strains appears instantaneously.
Therefore, from our assumption at the reaction front, we do not have the influence of the vis-

cous deformations on the reaction velocity, but we have the stress relaxation behind the reaction
front (see details bellow). This explains why the more simple Deal-Grove model works for the
kinetics prediction, since constitutive model does not affect the reaction front propagation. How-
ever, the chemical transformation induces huge stresses at the reaction front (see details in the
next section), and from the experimental observation it is shown that the chemical reaction gen-
erates stresses in the transformed layer, which causes the failure. Hence, to estimate the life-time
of the considered solid and the stresses due to the chemical transformation, it is important to take
into account the viscous and further plastic deformations.

Since the viscous deformations do not affect the reaction kinetics, therefore, the analysis of
equilibrium concentration and kinetics of the reaction is determined by the elastic deformations
and is performed in 2.2.

3.3 Stress relaxation behind the reaction front

The difference of molar volumes of initial material and transformed material is a source of volume
expansion due to chemical reaction. Kinematic compatibility, i.e. displacement continuity at the
reaction front, restricts the transformation strain and produces stresses which can be huge in the
case of an elastic behavior of the reaction product. Viscoelastic assumption allows the strain in
the transformed layer to be partly accommodated by the viscous deformation, making it possible
that the volume increases due to the increase of the thickness of the transformed layer leading to
the stress relaxation (see, e.g., [20, 30, 31, 73, 74]).

The transformation strain may produce huge stresses at the reaction front which would re-
main in a pure elastic problem statement and might cause fracture. In this section, one can see
how narrow the high stresses domain can be and how fast the stresses may relax due to the vis-
cous behavior of the reaction product at proper viscosities. This in turn demonstrates that, in
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dependence of the viscosity, the stress relaxation can or cannot prevent damage accumulation
and fracture at the reaction front.

3.3.1 Planar reaction front

To calculate stresses in the transformed material, i.e. behind the reaction front, according to (3.1),
(3.2) and (3.3) one has to know time-evolution of volume strain ϑ+ and deviators e2 = e+ and eη
or ee

1.

Substitution of 𝜀+− ϑ+

3
I and 𝜎+−σ+I into Eq. (3.4) instead of s+ and e+ with the restrictions

ε+x = ε0, ε+z = 0, leads to the equations

−
(
1+ µ2

µ1

)
ϑ̇+

3
+ µ2

η

(
ε0 − ϑ+

3

)
= 1

2µ1

(
σ̇+

x − σ̇+)+ 1

2η
(σ+

x −σ+), (3.71)

−
(
1+ µ2

µ1

)
ϑ̇+

3
− µ2

η

ϑ+

3
= 1

2µ1

(
σ̇+

z − σ̇+)+ 1

2η
(σ+

z −σ+). (3.72)

ξ

(a)
σ+x

0 ξ1 ξ2

A

B

t = ty (ξ1)

t = ty (ξ2)

(b)

t

σ+x

0 t = ty (ξ1)

Figure 3.5: Stress relaxation behind the reaction front: (a) stress distributions behind the front for two front
positions at times t = ty (ξ1) and t = ty (ξ2); (b) stress relaxation in points ξ = 0 and ξ = ξ1 starting from the
moments t = ty (0) = 0 and t = ty (ξ1), respectively.

Adding Eq. (3.71) and (3.72) and taking into account Eq. (3.2), we derive the differential equa-
tion for ϑ+:

ϑ̇++ ϑ+

τ+
− 3(k+ϑtr +2µ2ε0)

τ1
(
3k++4µ+

) = 0, (3.73)

where

τ1 = η

µ1
, τ+ = (3k++4µ+)

(3k++4µ2)

η

µ1
.

The initial condition for Eq. (3.73) is the value ϑ+(ty ) at time ty ; it is given by (3.11). Then the
solution of Eq. (3.73) takes the form:

ϑ+(y, t ) = 6µ1k+(3ε0 −2ϑtr )(
3k++4µ2

)(
3k++4µ+

) exp

(
− t − ty

τ+

)
+ 3(k+ϑtr +2µ2ε0)

3k++4µ2
, (3.74)

where the dependence ty = ty (y) is given by (3.15). One can see that the volume strain in points
behind the front increases or decreases with time depending on the sign of the difference (3ε0 −
2ϑtr ).
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Next step is to find e+x and ee
1x . Since

e+x = ε0 −ϑ+/3, (3.75)

from Eq. (3.74) it directly follows that

e+x (y, t ) =− 2µ1k+
(
3ε0 −2ϑtr

)(
3k++4µ2

)(
3k++4µ+

) exp

(
− t − ty

τ+

)
+ ε0

(
3k++2µ2

)−k+ϑtr

3k++4µ2
. (3.76)
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Figure 3.6: Planar reaction front: stress relaxation at various values of viscosity coefficient η for the standard
linear solid model: (a) stress distributions behind the front for two front positions ξ= 0.001 (dashed lines)
and ξ = 0.002 (solid lines), (b) stress relaxation in points ξ = 0 (solid lines) and for ξ = 0.005 (dashed lines)
; ε0 = 0, η0 = 15.9GPa·s. Solid and dashed curves of the same colour correspond to the same viscosity
coefficient.
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Figure 3.7: Planar reaction front: stress relaxation at various values of external strain ε0: (a) stresses behind
the reaction front; (b) stress relaxation in two points. Solid and dashed curves of the same colour correspond
to the same external strains.

By constitutive equations (3.3),

ee
1 = τ1ėη = τ1(ė+− ėe

1).

Then from (3.75) it follows that ee
1x can be found from the equation

ėe
1x +

1

τ1
ee

1x =− ϑ̇
+

3
(3.77)
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with the initial condition

ee
1x (y, ty ) = e+x (y, ty ) = ε0 −

ϑ+(y, ty )

3
. (3.78)

The condition (3.78) follows from Eq. (3.9) with ϑ+(y, ty ) taken from Eq. (3.11).
After calculating the time derivative ϑ̇+ from Eq. (3.74) and substituting it into the right hand

side of Eq. (3.77) we come to the equation for ee
1x that, with the initial condition (3.78), has a solu-

tion:

ee
1x (y, t ) = k+(3ε0 −2ϑtr )

2(3k++4µ+)
exp

(
− t − ty

τ+

)
+ ε0

2
exp

(
− t − ty

τ1

)
. (3.79)
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Figure 3.8: Planar reaction front: stress relaxation at various values of energy parameter γ for the standard
linear solid model: (a) stresses behind the reaction front, (b) stress relaxation in two points ξ= 0 (solid lines)
and for ξ= 0.005 (dashed lines). Solid and dashed curves of the same colour correspond to the same energy
parameter.

Finally, from (3.74), (3.76) and (3.79) it follows that

σ+
x (y, t ) = 9µ1k2+

(
3ε0 −2ϑtr

)(
3k++4µ2

)(
3k++4µ+

) exp

(
− t − ty

τ+

)
+µ1ε0 exp

(
− t − ty

τ1

)
+

+2µ2
(
2(3k++µ2)ε0 −3k+ϑtr

)
3k++4µ2

(3.80)

Then at the reaction front

σ+
x (y, ty ) = 2µ+

(
2
(
3k++µ+

)
ε0 −3k+ϑtr

)
3k++4µ+

Since

σ+
z (y, t ) = 3k+(ϑ+(t )−ϑtr )−σ+

x (t ) =

= 9µ1k+2 (
3ε0 −2ϑtr

)
(3k++4µ2)(3k++4µ+)

exp

(
− t − ty

τ+

)
−µ1ε0 exp

(
− t − ty

τ1

)
+2µ2

(
3k+

(
ε0 −ϑtr

)−2µ2ε0
)

3k++4µ2

(3.81)

at the reaction front

σ+
z (y, ty ) = 2µ+

((
k+−2µ+

)
ε0 −k+ϑtr

)
3k++4µ+
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Figure 3.9: Planar reaction front: evolution and redistribution of viscous and elastic strains: (a) and (c) –
evolution of viscous strains eηx and eηy in point ξ= 0 from the moment t = 0 and in the point y that is reached
by the reaction front at time ty = 200s for various viscosity coefficients; (b) and (d) – relation between the
inputs of elastic strains ee

1x , ee
1y and viscous strains eηx , eηy into total strains e+x , e+y .

For completeness, we also write down the formulas for strain the strains eηy and ε+y . To specify
eη, note that from (3.3) it follows that

eη =
(
1+ µ2

µ1

)
e+− 1

2µ1

(
𝜎+−σ+I

)
(3.82)

Then, with e+y = 2

3
ϑ+−ε0 and σy = 0, from (3.82) it follows that

eηy (y, t ) = 1

2µ1

{(
k++ 4

3
µ+

)
ϑ+(y, t )− (

k+ϑtr +2µ+ε0
)}

where the dependence of ϑ+ is given by (3.74). The dependence ε+y (y, t ) follows from the equality
ε+y = ϑ+−ε0 and (3.74).

The distributions of stress σ+
x behind the reaction front at two moments ty (y) which corre-

spond to the dimensionless front positions ξ= ξ1 and ξ2 are schematically shown in Fig. 3.5a. The
stress σ+

x at ξ= ξ1 relaxes from A to B during the time of the front propagation from ξ1 to ξ2. Stress
relaxation in two points at ξ= 0 and ξ= ξ1 starting from the moments t = ty (0) = 0 and t = ty (ξ1),
respectively, is shown in Fig. 3.5b.

The results of quantitative studies of stress relaxation and strains evolution and the redistri-
bution of various modes of strains are shown in Fig. 3.6, 3.7 and Fig. 3.9, respectively. Material
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parameters are given in Table 2.1. Two sets of the stress distributions behind the reaction front
at two moments ty which correspond to the front positions ξ = 0.001 and ξ = 0.002, and two sets
of stress relaxation curves for stresses in points ξ= 0 and ξ= 0.005 are shown for various viscosity
coefficients η and various external strains ε0. Fig. 3.7 shows how the curves are affected by external
strain, in particular, how fast the limit residual “elastic” stress is reached.

Relaxation times τ+ and τ1 do not depend on energy parameter γ. But γ affects the front
velocity and, thus, the front kinetics. Increasing γ increases the front velocity and decreases the
time ty , in other words, increasing γ “compresses” the time in Eq. (3.14) due to the increase of
parameter Q. That is why stresses found for the same two front positions but at various γ have less
time for the relaxation if γ increases. This tendency is reflected by the stress distributions shown
in Fig. 3.8b. Note that the energy parameter depends on temperature, and the temperature may
also affect stress relaxation via the viscosity coefficient.

Note that in experiments the thickness of the layer of the transformed material is usually ob-
served which does not coincide with the front position predicted by the model. Fig. 3.9(b) demon-
strates how residual strain e+y = lim

t→∞eηy is formed at various viscosity coefficients.

3.3.2 Spherical reaction front

For the case of the chemical reaction localized on spherical reaction front, we obtain the resulting
equations for the deviators ee

1 and eη. Substitution of (3.33), (3.34), (3.31) for f̃3, its time derivative
and for F1, into (3.28), and taking into account (3.38) and (3.37), leads to the equation

ee
1r =

2
(
k+k−ϑtr − (k+−k−)σ0

)
R3(1−ξ)3(

k+(3k−+4µ+)−4µ+(k+−k−)(1−ξ)3
)

r 3
exp

{
−z2 (U2 −U1)

U1
(t − ta)

}
(3.83)

Replacing f̃3 and F1 by (3.33) and (3.31), respectively, in the formula (3.29), we obtain

eηr =
(
k+k−ϑtr − (k+−k−)σ0

)
R3(1−ξ)3(

k+(3k−+4µ2)−4µ2(k+−k−)(1−ξ)3
)

r 3

(
1−2exp

{
−z2 (U2 −U1)

U1
(t − ta)

})
(3.84)

To calculate stresses in the transformed material, i.e. behind the reaction front, we write down
the equation (3.19) for the radial component, where the deviatoric strain parts are defined by for-
mulas (3.83) and (3.84):

σ+
r = 4

(
k+k−ϑtr − (k+−k−)σ0

)
R3(1−ξ)3(

k+(3k−+4µ2)−4µ2(k+−k−)(1−ξ)3
)

r 3

(
µ2 +

(
µ2 +

3k+k−µ1(R3 − r 3)

U1

)
exp

{
−z2 (U2 −U1)

U1
(t − ta)

})
+

+k+
(3k−+4µ2)σ0 −4µ2k−ϑtr (1−ξ)3

k+(3k−+4µ2)−4µ2(k+−k−)(1−ξ)3

Likewise the calculations of tangential stress and strain can be obtained, taking into account
that

ee
1ϕ =−ee

1r

2
, eηϕ =−eηr

2

From (3.20) we have the resulting formulae for σ+
ϕ:

σ+
ϕ =− 2

(
k+k−ϑtr − (k+−k−)σ0

)
R3(1−ξ)3(

k+(3k−+4µ2)−4µ2(k+−k−)(1−ξ)3
)

r 3

(
µ2 +

(
µ2 +

3k+k−µ1(R3 − r 3)

U1

)
exp

{
− z2 (U2 −U1)

U1
(t − ta)

})
+

+k+
(3k−+4µ2)σ0 −4µ2k−ϑtr (1−ξ)3

k+(3k−+4µ2)−4µ2(k+−k−)(1−ξ)3

As it was mentioned in the case of planar reaction front, the chemical transformation generates
stresses which can be huge. Viscoelastic assumption allows the strain in the transformed layer to
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Figure 3.10: Spherical reaction front: stress relaxation at various values of viscosity coefficient η for the stan-
dard linear solid model: stress relaxation in points ξ= 0 (solid lines) and for ξ= ξ(t = 100s) (dashed lines) ;
η0 = 15.9GPa·s. Solid and dashed curves of the same colour correspond to the same viscosity coefficient.

t [s]

σ+r [GPa]

σ0 = 0
σ0 =−1GPa
σ0 = 1GPa
σ= 2GPa

Figure 3.11: Spherical reaction front: stress relaxation at various values of external stress σ0: stress relax-
ation in two points. Solid and dashed curves of the same colour correspond to the same external strains.

be partly accommodated by the viscous deformation, making it possible that the volume increases
due to the increase of the thickness of the transformed layer leading to the stress relaxation.

The distributions of stress behind the reaction front at two moments ta which correspond
to the dimensionless front positions ξ = ξ1 and ξ2 are schematically shown in Fig. 3.5a. Stress
relaxation in two points at ξ= 0 and ξ= ξ1 starting from the moments t = ta(0) = 0 and t = ta(ξ1),
respectively, is shown in Fig. 3.5b.

The results of quantitative studies of stress relaxation and strains evolution and the redistri-
bution of various modes of strains are shown in Fig. 3.10, 3.11 and Fig. 3.12, respectively. Mate-
rial parameters are given in Table 2.1. Two sets of stress relaxation curves for stresses in points
ξ = 0 and ξ = ξ(t = 100s) are shown for various viscosity coefficients η and various external stress
σ0. Fig. 3.11 shows how the curves are affected by external stress, in particular, how fast the limit
residual “elastic” stress is reached.

Note that in experiments the thickness of the layer of the transformed material is usually ob-
served which does not coincide with the front position predicted by the model. Fig. 3.12(b)
demonstrates how residual strain e+r = lim

t→∞eηr is formed at various viscosity coefficients.
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Figure 3.12: Spherical reaction front: Evolution and redistribution of viscous and elastic strains: (a) and –
evolution of viscous strains eηr in point ξ= 0 from the moment t = 0 and in the point y that is reached by the
reaction front at time ty = 100s for various viscosity coefficients; (b) – relation between the inputs of elastic
strains ee

1r and viscous strains eηr into total strains e+r .

3.3.3 Cylindrical reaction front

In cylindrical geometry, the resulting formulas are huge, so we provide here the more compact
form of the results.

To calculate stresses in the transformed material, according to (3.46) one has to know time
evolution of volume strain ϑ+ and deviators e2 = e+ and ee

1 or eη.
Substitution of (3.61) and (3.62) into equations (3.54) and (3.55) for ee

1r and eηr , respectively,
leads to the formulas:

ee
1r (r, t ) = C2

3
(W1 − z2)e(W1−z2)t +C3(W2 − z2)

(
1

3
+ 1

r 2

(
k+−k−

k−
(R2 −a2)+ 2

3R2

))
e(W2−z2)t

eηr (r, t ) = (k+ϑtr +σ0)(k−+µ2)R2 −k+µ2ϑ
tr a2

2P1
+ R2a2

2P2r 2

(
3k+k−ϑtr − (3(k+−k−)+µ2)σ0

)+
+ z2

3
C2e(W1−z2)t +

(
z2

3
+ 1

r 2

(
k+−k−

k−
(R2 −a2)+ 2

3
R2

))
C3e(W2−z2)t

where C2 and C3 are defined by (3.65) and (3.66) accordingly; W1 and W2 are determined by (3.64).
In the same way, from (3.56), (3.57) and (3.58), (3.59), we obtain the following equations for the

strain deviatoric components:

ee
1ϕ(r, t ) = C2

3
(W1 − z2)e(W1−z2)t +C3(W2 − z2)

(
1

3
− 1

r 2

(
k+−k−

k−
(R2 −a2)+ 2

3R2

))
e(W2−z2)t

ee
2ϕ(r, t ) = (k+ϑtr +σ0)(k−+µ2)R2 −k+µ2ϑ

tr a2

2P1
− R2a2

2P2r 2

(
3k+k−ϑtr − (3(k+−k−)+µ2)σ0

)+
+W1

3
C2e(W1−z2)t +W2

(
1

3
− 1

r 2

(
k+−k−

k−
(R2 −a2)+ 2

3
R2

))
C3e(W2−z2)t

ee
1z (r,r ) = 2

3

(
(z2 −W1)C2e(W1−z2)t + (z2 −W2)C3e(W2−z2)t

)
ee

2z (r, t ) =− 1

P1

(
(k+ϑtr +σ0)(k−+µ2)R2 −k+µ2ϑ

tr a2)− 2

3

(
W1C2e(W1−z2)t +W2C3e(W2−z2)t

)
From (3.46), taking into account the resulting formulas for strain deviator, we conduct the
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Figure 3.13: Cylindrical reaction front: stress relaxation at various values of viscosity coefficient η for the
standard linear solid model: stress relaxation in points ξ= 0 (solid lines) and for ξ= ξ(t = 30s) (dashed lines)
; η0 = 15.9GPa·s. Solid and dashed curves of the same colour correspond to the same viscosity coefficient.
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Figure 3.14: Cylindrical reaction front: stress relaxation at various values of external stress σ0: stress relax-
ation in two points. Solid and dashed curves of the same colour correspond to the same external strains.

equations for stresses:

σ+
r (r, t ) = K+−µ1

P1

(
(k−+µ2)(k+ϑtr +σ0)R2 −k+µ2ϑ

tr a2)−k+ϑtr − µ2R2a2

P2r 2

(
3k+k−ϑtr − (3(k+−k−)+µ2)σ0

)+
+2

3
C2(W1K+−µ1z2)e(W1−z2)t +2C3

(
W2K+−µ1z2

3
+ 1

r 2(µ+W2 −µ1z2)

(
k+−k−

k−
(R2 −a2)

2

3
R2

))
e(W2−z2)t

σ+
ϕ(r, t ) = K+

P1

(
(k+ϑtr +σ0)(k−+µ2)R2 −k+µ2ϑ

tr a2)−k+ϑtr − µ2R2a2

P2r 2

(
3k+k−ϑtr − (3(k+−k−)+µ2)σ0

)+
+2

3
C2(K+W1 −µ1z2)e(W1−z2)t +2C3

(
k+W2 + (µ+W2 −µ1z2)

(
1

3
− 1

r 2

(
k+−k−

k−
(R2 −a2)+ 2

3
R2

)))
e(W2−z2)t

The results of quantitative studies of stress relaxation and strains evolution and the redistri-
bution of various modes of strains are shown in Fig. 3.13, 3.14 and Fig. 3.15, respectively. Mate-
rial parameters are given in Table 2.1. Two sets of stress relaxation curves for stresses in points
ξ = 0 and ξ = ξ(t = 30s) are shown for various viscosity coefficients η and various external stress
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Figure 3.15: Cylindrical reaction front: evolution and redistribution of viscous and elastic strains: (a) and –
evolution of viscous strains eηr in point ξ= 0 from the moment t = 0 and in the point y that is reached by the
reaction front at time ty = 30s for various viscosity coefficients; (b) – relation between the inputs of elastic
strains ee

1r and viscous strains eηr into total strains e+r .

σ0. Fig. 3.14 shows how the curves are affected by external strain, in particular, how fast the limit
residual “elastic” stress is reached.

Note that in experiments the thickness of the layer of the transformed material is usually ob-
served which does not coincide with the front position predicted by the model. Fig. 3.15(b)
demonstrates how residual strain e+r = lim

t→∞eηr is formed at various viscosity coefficients.

3.4 Particular cases of viscoelastic behaviors

In this section we specify the equations for stresses and strains behind propagating reaction front
for three rheological models which can be considered as particular cases of Standard Linear Solid
Model and discuss the applicability of these models in the statement of mechanochemistry prob-
lems. We focus here only on the case of the planar reaction front, as for other two body’s geome-
tries the analysis would be similar.

3.4.1 Maxwell material

We obtain the Maxwell material, Fig. 3.2 b, from SLSM setting µ2 = 0 and µ1 = µ+. The formula
(3.13) for χ0 remains the same with new µ+. The formulae (3.74), (3.76), (3.79), (3.80) (3.81) for
strains ϑ+, e+x , ee

1x and stresses σ+
x and σ+

z behind the front become

ϑ+(y, t ) = ϑtr + 2µ+
(
3ε0 −2ϑtr

)
3k++4µ+

exp

(
− t − ty

τ+

)
,

e+x (y, t ) = ε0 − ϑtr

3
− 2µ+

(
3ε0 −2ϑtr

)
3
(
3k++4µ+

) exp

(
− t − ty

τ+

)
,

ee
x (y, t ) = k+(3ε0 −2ϑtr )

2(3k++4µ+)
exp

(
− t − ty

τ+

)
+ ε0

2
exp

(
− t − ty

τ1

)
,

and

σ+
x (y, t ) = 3k+µ+

(
3ε0 −2ϑtr

)
3k++4µ+

exp

(
− t − ty

τ+

)
+µ+ε0 exp

(
− t − ty

τ1

)
,

σ+
z (y, t ) = 3k+µ+

(
3ε0 −2ϑtr

)
3k++4µ+

exp

(
− t − ty

τ+

)
−µ+ε0 exp

(
− t − ty

τ1

)
,
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where

τ1 = η

µ+
, τ+ = (3k++4µ+)

3k+
η

µ+
.

3.4.2 Kelvin-Voigt material

Another particular case is the Kelvin-Voigt material (Fig. 3.2c). In this case

µ1 →∞, µ2 →µ+, (3.85)

e+ = eη = ee , 𝜎+ = k+
(
ϑ+−ϑtr )

I+2µ+e++2ηė+. (3.86)

Since the dash-pot element cannot deform simultaneously, at the reaction front eη = e+ = 0. Then
this degenerative case can be realized only if ε0 = 0. Then w− = 0 and at the reaction front

ϑ= ϑ(y, ty ) = 0. (3.87)

Then χ = w+ = 1

2
k+(ϑ+)2. Mechanics just subtracts

1

2
k+(ϑ+)2 from γ in the expression ofANN. Of

course, this also directly follows from (3.13) and (3.1.1) if one takes (3.85).
The equation (3.73) for ϑ behind the front takes the form

ϑ̇++ ϑ+

τ
− 3k+

4η
ϑtr = 0, τ= 4η

3k++4µ+
.

The solution, satisfying the initial condition (3.87), is

ϑ+(y, t ) = 3k+ϑtr

3k++4µ+

(
1−exp

(
− t − ty

τ

))
. (3.88)

The volume strain in points behind the front increases with time if ϑtr > 0. Since e+x = e+z =−ϑ/3,
from (3.86) and (3.88) it follows that the stresses behind the front can be expressed via ϑ and relax
as

σ+
x (y, t ) =σ+

z (y, t ) =−2

3
ηϑ̇++

(
k+− 2

3
µ+

)
ϑ+−k+ϑtr

=− 6k+µ+ϑtr

3k++4µ+

(
1+ 3k+

4µ+
exp

(
− t − ty

τ

))
. (3.89)

At the reaction front

σ+
x =σ+

z =−3

2
k+ϑtr . (3.90)

Of course, Eq. (3.88),(3.90) and (3.90) directly follow from (3.74), (3.80) if to take µ1 and µ2 from
(3.85), but, since this case may be of a special interest, we presented the short derivations (3.86)–
(3.89).

3.4.3 Pure linear-viscous material

The linear-viscous material (Fig. 3.2d) can be obtained by setting µ+ = 0 in above formulae. It
can be considered only at the same restriction ε0 = 0 as above. Then at the reaction front w− = 0,

χ= w+ = 1

2
k+(ϑ+)2,

ϑ+ = 0, σ+
x =σ+

z =−3

2
k+ϑtr

It is easy to see that the volume strain in points behind the front increases up to ϑtr > 0 (decreases
if ϑtr < 0) with time as

ϑ+(y, t ) = ϑtr
(
1−exp

(
− t − ty

τ

))
, τ= 4η

3k+
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and stresses relax as

σ+
x (y, t ) =σ+

z (y, t ) =−3

2
k+ϑtr exp

(
− t − ty

τ

)
Note that the restriction ε0 = 0 makes the Kelvin-Voigt and pure viscous materials rather un-

suitable than suitable as rheological models, as opposed the Standard Linear Solid Model and the
Maxwell material. This indicates that not every common rheological model can be used for reac-
tion constituents in the considerations of coupled problems of mechanochemistry.

3.5 Conclusions

In this Chapter the stress-affected chemical reaction front propagation in deformable solid in the
cases of a planar, spherical and cylindrical reaction fronts has been considered based on the con-
cept of the chemical affinity tensor. The theoretical analysis is made for the case of elasto-viscous
reaction product. The changing of the rheology of a solid constituent due to the localized chemical
reaction was taken into account with the use of the Standard Linear Solid Model and its particular
cases. The SLSM and Maxwell model allowed to obtain analytical solutions which gave us possi-
bilities to study the specific effects of material parameters on stress relaxation behind the reaction
front. On the other hand, the Kelvin-Voigt and pure viscous materials can hardly be considered as
proper candidates for modeling the reaction products. Results show that viscous deformations do
not affect directly the kinetics of the front in the case of the SLSM, since they do not have time to
appear at the moment of the transformation. But they enable the possibility for a stress relaxation
phenomenon behind the reaction front. Depending on the viscous and elastic parameters, this
relaxation can be fast, and the high stresses region is localized in a narrow layer adjacent to the
transformation front. Following these results, different perspectives could be drawn for coupled
mechanochemistry simulations based on the chemical affinity tensor in order to be applied for
more complex external loading and towards plasticity and viscoplasticity.
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Chapter 4

The influence of plastic strains on
chemical front propagation
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In this chapter we focus on the effects of plasticity on the reaction front kinetics. We consider a
plane with given external deformation, a sphere and cylinder subjected to a homogeneous exter-
nal all-around loading. The chemical reaction starts from outer surface of body and is localized at
a reaction front dividing the deformable body into two parts occupied by the initial linear elastic
material and transformed elastoplastic material. We study the front propagation for elastoplastic
material at various loading conditions. We study in detail interconnections between the reaction
front propagation and the evolution of plastic domain, and discuss differences between the front
behaviours in the cases of various constitutive models of the reaction product.

Before considering different cases, let us precise the framework. As it was precised before, the
initial material is elastic, homogeneous, isotropic, compressible. We assume that the transformed
material behaves as an elastic-perfectly plastic material in perfect von Mises type plasticity. Dif-
ferent boundary conditions will be considered: either a radial displacement u0 (plane problem) or
a normal loading σ0 is fixed at the outer boundary of the body.

The stress deviator s for the initial material is defined by the following equation:

s− = 2µ−e−

To describe the elastoplastic behavior of the transformed material we consider an elastic-perfectly
plastic model (see Fig. 4.1). In this case the deviatoric parts of stress and strain tensors in the
transformed material are written as follows:

s+ = 2µ+eel = 2µ+
(
e+−epl

)
, e+ = eel +epl (4.1)

where µ± are shear moduli, eel and epl are the elastic and plastic deviatoric components of the
strain.

E σyd

Figure 4.1: Rheological elastic-perfectly plastic model.

The initial part of the stress-strain curve for such material corresponds to a linear elastic be-
havior. Once the yield stressσyd is reached the material behaves as plastic, flowing at the constant
stress σyd . To determine the yield stress that corresponds to the onset of plastic flow, we use the
von Mises criterion. Von Mises criterion postulates that a given material is safe as long as the max-
imum value of the distortion energy per unit volume in that material remains smaller than the
distortion energy per unit volume required to cause yield in a tensile-test specified of the same
material. The yield condition is independent of hydrostatic pressure. The criterion suggests that

plasticity begins when the second deviatoric stress invariant J2 = 1

2
𝑠 : 𝑠 reaches a critical value.

Prior to yield, material response is assumed to be elastic. Therefore for von Mises criterion, fol-
lowing the normality law for elasto-plastic stage we have:

ėpl = λ̇ ∂ f

∂𝜎+, λ̇≥ 0, f (𝜎) =
√

3J2 −σyd ≤ 0

where λ̇ is the plastic multiplier. And we obtain:

ė+ = ėel + ėpl = ṡ+

2µ+
+


0 if

p
3J2 <σyd

λ̇
∂ f

∂𝜎+ if
p

3J2 =σyd

(4.2)

where σyd =p
3J2 is the von Mises equivalent stress.
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4.1 Reaction front kinetics

4.1.1 Planar reaction front propagation

To demonstrate the influence of plasticity, we consider in this section the simple plane strain prob-
lem for a chemical reaction in a plane layer of thickness H and length L >> H with a planar reaction
front (Fig. 4.2). The reaction starts at the outer surface y = 0 of an initially elastic layer. The pla-
nar reaction front propagates in the y-direction, a transformed material forms a plane layer of the
material of the thickness h. The lower y = 0 and upper y = H faces of the layer are traction free.
Displacement u0 at the edges x =±L prescribes the strain ε0 = u0/L in x-direction. Therefore, the
strains have to satisfy the following conditions:

εz = εxz = εy z = 0, εx = ε0

0 x

y

H

h

L
C−
C+

Figure 4.2: The planar reaction front.

Following the plane mechanochemical problem with elastic and viscoelastic reaction products
in Chapter 2 and Chapter 3, correspondingly, the 3D Laplace diffusion problem is reduced to 1D
scalar equation

d 2c

d y2 = 0, y ∈ [0,h]

with boundary conditions

D
dc

d y

∣∣∣∣
y=0

= α(c(0)− c∗), D
dc

d y

∣∣∣∣
y=h

=−k∗(c(h)− ceq )

Hence, the concentration of the diffusing constituent B∗ at the reaction front is equal to

c(h) =
c∗+k∗

(
h

D
+ 1

α

)
ceq

1+k∗
(

h

D
+ 1

α

)
Then, by Eq. (1.34), the reaction front velocity can be calculated as

VN = n−M−
ρ−

c∗− ceq

1

k∗
+

(
h

D
+ 1

α

) (4.3)

where the equilibrium concentration ceq , defined by Eq. (1.32), depends on stresses and strains at
the reaction front.

In the stress problem, the equilibrium equations and boundary conditions are satisfied if we
take

σy = 0, σx y = 0

From the continuity of the displacement it follows that, at the reaction front

[[εx ]] = 0

Then, from Eq. (3.7) and plane strains conditions it follows that 𝜎− : [[𝜀]] = 0 in the expression of
the normal component of the chemical affinity tensor Eq. (1.29).
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4.1.1.1 Elastic stage

We consider that the first stage corresponds to a situation where all materials, base and trans-
formed, are elastic. This problem was solved already in 2.1.1, and we will use these results. For
elastic stage, the stresses and strains in the base and transformed materials are defined by Eq.(2.7),
(2.9), (2.11) and (2.12). It is worth mentioning that if the external deformation ε0(t ) = ε0 is con-
stant, the stresses and strains are constant in time and uniform. Here, in plasticity, we have to
estimate 𝑒̇pl , this is rate-formulated problem. Then we need to introduce time-dependent exter-
nal deformation ε0(t ) =U t .

From (2.11) and (2.12), we have the equation to determine stresses in the transformed material:

σ+
x = 2µ+

(
2(3k++µ+)U t −3k+ϑtr

)
3k++4µ+

= σ+
z

ν+
= 2σ+

z (3k++µ+)

3k+−2µ+
(4.4)

Using the von Mises criterion, we define the yield stress from the second deviatoric stress in-
variant as follows

σyd =
√
σ+

x
2 −σ+

xσ
+
z +σ+

z
2 (4.5)

or using (4.4) we can rewrite (4.5) as follows

σyd = µ+
(
2(3k++µ+)U t∗−3k+ϑtr

)
(3k++4µ+)(3k++µ+)

√
3
(
9k2++6k+µ++4µ2+

)
(4.6)

where t∗ is the critical time, when the second stress invariant reaches the critical value (Fig. 4.3).

It means that the plastic yield is reached when
√
σ+

x
2 −σ+

xσ
+
z +σ+

z
2, increasing the function of

ε0(t ) =U t , is equal toσyd , the yield limit in one-dimensional tension. As the stresses are constant
along all transformed layer, it will be fully transformed in the plastic zone immediately.

0.5

0.5

t [s]

σyd

−σyd

t∗ t∗

√
σ+x

2 −σ+x σ+z +σ+z 2

U = 5·10−5

U = 2·10−5

U = 10−5

U = 10−6

U = 0

Figure 4.3: Influence of the magnitude U of external strain ε0(t ) =U t on the moment t∗ when the second
deviatoric stress invariant J2 reaches the yield stress σyd (solid and dashed curves of the same colour corre-
spond to the same |U |, but solid line for ε0(t ) =U t and dashed line for the case of ε0(t ) =−U t ).

The strain energy density of initial and transformed material for the elastic stage are defined
by (2.8) and (2.13), respectively:

w− = 2µ−
(
3k−+µ−

)
3k−+4µ−

ε2
0(t ), w+ =

2µ+
((

3k++µ+
)
ε2

0(t )−3k+ϑtr ε0(t )+k+ϑtr 2
)

3k++4µ+
(4.7)

where ε0(t ) = U t . Therefore, as it was obtained in the Chapter 2, we have χ as the quadratic
function of external and transformation strains and elastic constituents:

χel (ε0) = 2(G+−G−)ε2
0(t )−3S+ϑtr ε0(t )+S+(ϑtr )2 (4.8)
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where

G± = µ±
(
3k±+µ±

)
3k±+4µ±

, S+ = 2k+µ+
3k++4µ+

Substitution of (4.8) into Eq. (1.30) leads to the explicit dependencies of ANN and ceq at the re-
action front on external and transformation strains, elastic modulus of the constituents and chem-
ical energies for the elastic stage. Particularly,

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χel (ε0))

Rg T

}
(4.9)

Note that at given ε0 the equilibrium concentration does not depend on the front position.

4.1.1.2 Plastic state

In this section we find the stress and displacement field in the elastoplastic regime. When the sec-
ond invariant of deviatoric stress reaches a critical value, the elastic transformed layer converts
into a completely plastic one immediately. Therefore, only the plastic state will be in the trans-
formed material. We will make the plastic analysis. The elastic equations are not valid anymore.
The stress components for any point in the plastic layer can be determined only from the equilib-
rium equations and von Mises criteria of plasticity:

∂σx

∂x
= 0, σyd =

√
σ+

x
2 −σ+

xσ
+
z +σ+

z
2 (4.10)

and strains can be found from:

εx = ∂u(x, y)

∂x
=U t , εy =

∂u(x, y)

∂y
(4.11)

Then solving the system of differential equations (4.10) and (4.11), taking into account (3.2) and
(4.6), we obtain the following solution for plastic state:

σ
pl
x =−2

µ+
∣∣2U t∗(3k++µ+)−3k+ϑtr

∣∣√9k2++6k+µ++4µ2+
(3k++4µ+)(3k++µ+)

=−2
p

3

3
σyd , σ

pl
z =−

p
3

3
σyd

(4.12)

εtot
x =U t , εtot

y =−
p

3

3k+
σyd −U t +ϑtr

where εtot
x,y are total strains in the plastic zone. Since plasticity does not produce any volume

change, the volume variation is due to the elastic strain only. Knowing the stress in the plastic
zone (4.12), we can calculate the elastic strains:

eel
x =−

p
3σyd

6µ+
, eel

y =
p

3σyd

6µ+
(4.13)

Then from (4.1), we obtain the plastic deformations by subtracting the elastic strain to the total
strain:

epl
x =

p
3(3k++2µ+)

18k+µ+
σyd +U t − ϑtr

3
, epl

y =−
p

3(3k++4µ+)

18k+µ+
σyd −U t + 2

3
ϑtr , epl

z =
p

3

9k+
σyd − ϑtr

3
(4.14)

Note, that in elastic stage the new transformed material is elastic. The layer thickness of new
material grows due to the front propagation. The second stress invariant does not depend on the
reaction front, but it depends on the external deformation. As it was mentioned before, to initiate
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the plasticity in plane problem, we choose the external deformation increasing in time. Increas-
ing of external deformation affect on the reaction rate as well as on J2. When the second stress
invariant reaches the critical value, all elastic transformed material becomes plastic. Following in-
creasing of ε0 has influence on the chemical reaction, that defines the velocity of plastic front (in
this particular case they are the same).

For the elasto-plastic stage, the new material is elasto-plastic. The strain energy density of the
initial elastic material B− is

w− = 2µ−(3k−+µ−)

3k−+4µ−
U 2t 2 (4.15)

The strain energy w+ at the reaction front is found to be

w+ = k2++µ+
6k2+µ+

σ2
yd (4.16)

Then substitution of (4.15) for w− and obtained expression of w+ into (1.31), gives χ for elasto-
plastic stage:

χpl =
2µ−(3k−+µ−)

3k−+4µ−
ε2

0 −
k2++µ+
6k2+µ+

σ2
yd (4.17)

where ε0 =U t
Substitution of (4.17) into Eq. (1.30) leads to the explicit dependencies of ANN and ceq at the re-

action front on external and transformation strains, elastic modulus of the constituents and chem-
ical energies. Particularly,

ceq

c∗
= exp

{
−n−M−

ρ−

(γ−χpl (ε0))

Rg T

}
(4.18)

4.1.2 Spherical reaction front propagation

In this section we focus on spherically- symmetric problem. We consider a sphere of radius R
that is subjected to the reaction from the outer surface under external stress 𝜎0(t ) (different cases
for σ0(t ) will be considered later). The spherical reaction front propagates in the direction of the
center of sphere. Transformed materials forms a spherical layer of thickness h (Fig. 4.4 ). The
chemical reaction is localized is on spherical reaction front of the radius (R−h) and divides the
sphere onto regions occupied by the initial and new materials.

σ0 hσ0

R a

C−
C+

Figure 4.4: The spherical reaction front.

The solution of the diffusion problem for the spherical geometry was done in the Section 2.1.2.
Here, we recall the resulting equations.The concentration of the diffusing constituent B∗ at the
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reaction front is equal to

c(a) =
c∗+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)ceq

1+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

, h = R−a, ξ= h

R
, D0 =

D

R

The reaction front velocity can be calculated as

VN = n−M−
ρ−

k∗n∗

1+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

(
c∗− ceq

)
(4.19)

The normal stresses σr , σϕ satisfy the equilibrium equation

dσr

dr
+2

σr −σϕ
r

= 0

and principal strains are

εr =
du

dr
, εϕ = εϑ =

u

r
(4.20)

where u is the radial displacement.
In the spherical geometry the conditions (4.2) can be rewritten as follows

ė+ = ėel + ėpl = ṡ+

2µ+
+


0 if |σ+

r −σ+
ϕ| <σyd

λ̇
∂ f

∂𝜎+ if |σ+
r −σ+

ϕ| =σyd

4.1.2.1 Elastic stage

We consider that the first stage corresponds to a situation where all materials, initial and trans-
formed, are elastic (the external loading is moderate as the sphere is in an elastic state). Solution
for this step was done in 2.1.2. Here we recall the main equations, what are needed for further
calculations. More details of solution for this case can be found in 2.1.2.

Then the strains and stresses in the initial and transformed materials are determined by the
following equations:

𝜀− = A−I, 𝜎− = 3k−A−I (4.21)

𝜀+ =
(

A+−2
B+
r 3

)
erer+

(
A++ B+

r 3

)
(I−erer) (4.22)

𝜎+ =
(

k+
(
3A+−ϑtr )−4µ+

B+
r 3

)
erer+

(
k+

(
3A+−ϑtr )+2µ+

B+
r 3

)
(I−erer) (4.23)

where er is a unit radial vector, and

B+ =
(�k−1�σ0(t )+ϑtr

)
R3(1−ξ)3

−4µ+�k−1�(1−ξ)3 −
(

4µ+
k−

+3

), A+ =
σ0(t )+k+ϑtr +4µ+

B+
R3

3k+
, A− = A++ B+

R3 (1−ξ)3

where ξ= h

R
- is the relative thickness of the transformed material such as ξ ∈ [0,1] or the degree of

the chemical transformation and h = R−a; �k� = k−−k+.

101



In order to evaluate the time and location of plastic flow onset, von Mises criterion, i.e. |σr −
σϕ| =σyd , is used. Taking into account (4.23), conducts to

|σr −σϕ| =
6µ+

∣∣�k−1�σ0(t )+ϑtr
∣∣R3(1−ξ)3(

4µ+�k−1�(1−ξ)3 + 4µ+
k−

+3

)
r 3

(4.24)

|σr −σϕ|el

σyd

0

0 a R

r

Figure 4.5: Change
∣∣σr −σϕ

∣∣ along the radius of the sphere.

The plastic yield is reached when |σr −σϕ| is equal toσyd when ξ is increasing and/or we increase
σ0(t ). Thus, both aspects ξ andσ0(t ) have an action to influence plastic activity. Therefore, there are
two ways to initiate plastic deformations:

– evolution of the chemical transformation (through an increase in ξ as internal source for acti-
vation of plasticity);

– chemical front propagation and a simultaneously increase of the external loading σ0(t ) (the
given stress as an external source for plasticity).

Therefore, the plastic deformations in solid can be caused even only by chemical reaction.
The modulus |σr −σϕ| has a maximum at r = a (Fig. 4.5), therefore initial plastic zone (if it

appears) is located in r = a, what corresponds to the reaction front position. The maximum of the
modulus is found out as:

|σr −σϕ|max = 6µ+
∣∣�k−1�σ0(t )+ϑtr

∣∣
4µ+�k−1� (1−ξ)3 + 4µ+

k−
+3

(4.25)

Note, that external loading can be different types: constant, increasing linearly in time, peri-
odic, etc. Let’s consider some cases more detailed:

Constant external loading σ0(t ) =σ0

If the external loadingσ0 is constant, then |σr −σϕ| increases only due to the front propagation,
i.e increasing of ξ. Then the value |σr −σϕ|max reaches the yield stress σyd , when the thickness of
the transformed material is equal to h∗(t∗) = ξ∗(t∗)R, such as:

6µ+
∣∣�k−1�σ0 +ϑtr

∣∣
4µ+�k−1� (1−ξ∗)3 + 4µ+

k−
+3

=σyd

From where ξ∗ is found out as:

ξ∗(t∗) = 1−
3

√√√√√√ 6µ+|�k−1�σ0 +ϑtr |
σyd

− 4µ+
k−

−3

4µ+�k−1�
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The situation of the chemical reaction in the sphere without any external loading, i.e σ0(t ) = 0,
is the representative example of the case of the constant external loading. Note that in this case
the plasticity can be induced only by the transformation strains.

When the front position ξ< ξ∗ the sphere remains in an elastic state. When ξ= ξ∗ the material
of the sphere goes over into a plastic state on the surface r = a. A second (plastic) front appears at
the reaction front, it has it own velocity and direction (more details will be given later). On further
chemical transformation the region of plastic deformation is enlarged.

External loading as linear function of time, σ0(t ) =S t
Ifσ0 is a linear function of time, i.eσ0(t ) =S t , then |σr −σϕ| increases due to the front propa-

gation as well as increasing of σ0 in time. Then the value |σr −σϕ|max reaches the yield stress σyd ,
when the thickness of the transformed material is equal to h∗(t∗) = ξ∗(t∗)R and at the same time
when σ0(t∗) =S t∗ =σ∗

0 :

6µ+

∣∣[k−1]σ∗
0 (t∗)+ϑtr

∣∣
4µ+[k−1] (1−ξ∗(t∗))3 + 4µ+

k−
+3

=σyd

where σ∗
0 is the stress at which the plasticity begins at the reaction front. The equation to deter-

mine σ∗
0 takes the following form

σ∗
0 (t∗) =−sign

(
σr −σϕ

) σyd
(
4µ+ (k−−k+) (1−ξ∗(t∗))3 − (

4µ++3k−
)

k+
)

6µ+ (k−−k+)
−k−k+ϑtr

Note that in this case the yield stress is reached by the increasing of both external loading and
the thickness of the transformed material (due to the chemical transformation), which both are
time-dependent.

When the loading σ0(t ) < σ∗ the sphere remains in an elastic state. When σ0(t ) = σ∗ the ma-
terial of the sphere goes over into a plastic state on the surface r = a. Similarly to how it was
described above for the case of the constant external loading, the plastic reaction front arises at
the reaction front, and with further propagation of the chemical reaction the plastic deformation
region increases.

Harmonic external loading σ0(t ) =Z sin(ωt )
If the external loading σ0(t ) is the periodic function, i.e σ0(t ) =Z sin(ωt ), then, as in the pre-

vious case, |σr −σϕ| increases due to the front propagation as well as increasing of σ0(t ) in time.
But it has to be mention, that as σ0(t ) is a periodic function, it can decelerate and accelerate the
reaction, and even block the reaction and further initiate it again, as well as it affects the moment
when the value |σr −σϕ|max reaches the yield stress σyd . It depends on the amplitude Z and
frequency ω of the external loading. The yield stress is reached, when the thickness of the trans-
formed material is equal to h∗(t∗) = ξ∗(t∗)R and at the same time when σ0(t ) =Z sin(ωt∗):

6µ+

∣∣[k−1]Z sin(ωt∗)+ϑtr
∣∣

4µ+[k−1] (1−ξ∗(t∗))3 + 4µ+
k−

+3

=σyd (4.26)

Considering now these different cases, as the transformed material is elastic then in the elastic
stage the strain energy density of the initial material B− is

w− = 9

2
k−A2

− (4.27)

in the transformed material it can be found as

w+ = 1

2
k+(3A+−ϑtr )2 +6µ+

(
B+
r 3

)2

(4.28)
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and

𝜎− : �𝜀� = 9k−A−(A+−A−) (4.29)

Substitution of (4.27), (4.28) and (4.29) into Eq. (1.30) and (1.33) leads to the explicit depen-
dencies of ANN and ceq at the reaction front on external stress and transformation strain, elastic
modulus of the constituents and the chemical energies. In particular,

ceq

c∗
= exp

{
−n−M−
ρ−Rg T

(
γ+9k−A−

(
A+− 1

2
A−

)
− 1

2
k+(3A+−ϑtr )2 −6µ+

B2+
R6(1−ξ)6

)}
It gives χ as the quadratic function of external stress and transformation strain, front position

and elastic modulus of the constituents:

χel (σ0,ξ) =P(k+−k−)σ2
0 −2Pk+k−σ0ϑ

tr −K(ϑtr )2 (4.30)

where

P= 1

β

(
3k+(3k−−4µ+)+4µ+(9k−+4µ+)

)
, β= 2

(
k+(3k−+4µ+)−4µ+(k+−k−)(1−ξ)3)2

K= 4µ+k−k+
β

(
k+(9k−+4µ+)−2k+(3k−+4µ+)(1−ξ)3 +4µ+(k+−k−)(1−ξ)6)

Substitution of (4.30) into Eq. (1.30) and (4.30) leads to the explicit dependencies of ANN and
ceq at the reaction front on external and transformation strains, elastic modules of the constituents
and the chemical energies. In particularly,

ceq

c∗
= exp

{
−n−M−

ρ−
(γ−χel (σ0,ξ))

Rg T

}
(4.31)

Note, that the external loading σ0 can be given in different types: constant, time-dependent or
harmonic.

Then the kinetic equation will take form:

ξ̇= n−M−
ρ−

k∗n∗

1+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

(
1−exp

{
−n−M−

ρ−
(γ−χel (σ0,ξ))

Rg T

})
(4.32)

4.1.2.2 Elasto-plastic state

In this section we find the stress and displacement field in the elastoplastic regime. We show that
in this regime a second front (plastic front) appears. Two fronts have their own velocities and di-
rections. We show that plastic zone expands in two directions. We determine the relation between
the radius of the plastic zone, reaction front and external stress. We determine the limit stress that
produces failure by excessive deformation.

When σ0 is constant and the thickness h of the transformed material becomes larger than h∗,
or σ0 is linear time-dependent and is larger than σ∗, a natural assumption is that the plastic zone
takes a region a < r < ς, with ς a position of the plastic front, meanwhile the region ς < r < R
remains in the elastic regime. The radial stress σr is continuous at the boundary between the
elastic and plastic zone.

Elastic zone in the transformed material: ς< r < R
The stresses in elastic transformed layer are defined by equation (4.23)

σel
r = 3k+A+−4µ+

B+
r 3 −k+ϑtr

σel
ϕ = 3k+A++2µ+

B+
r 3 −k+ϑtr
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where A + and B+ are coming from the boundary conditions:

|σ+
r −σ+

ϕ|
∣∣∣
ς
=σyd , σel

r (R) =σ0

Hence we obtain

A+ =
σ0 +k+ϑtr − sign

(
σr −σϕ

) 2σydς
3

3R3

3k+
(4.33)

B+ =−sign
(
σr −σϕ

) σydς
3

6µ+
(4.34)

Then the stress components in the elastic zone are given by the equations:

σel
r =σ0 +

2

3
sign

(
σr −σϕ

)
σydς

3

(
1

r 3 −
1

R3

)

σel
ϕ =σ0 − sign

(
σr −σϕ

) σydς
3

3

(
2

R3 +
1

r 3

)
Since the layer is elastic, then from (2.18), substituting (4.33) and (4.34) into it, we obtain the

formula to calculate the displacements:

uel = 1

3k+

(
(σ0 +k+ϑtr )µ+r − sign

(
σr −σϕ

) σydς
3

6R3r 2(3k+R3 +4µ+r 3)

)
Plastic zone: a < r < ς
We will study the plastic zone. The elastic formulation is not applicable anymore. Since the

strain remains a priori undetermined, the stress components for any point in the plastic zone can
be determined only from the equilibrium equations and the plasticity criterion

∂σ
pl
r

∂r
+2

σ
pl
r −σpl

ϕ

r
= 0, |σr −σϕ| =σyd (4.35)

We have the set of continuity equations:

σ
pl
r (a) =σ−

r (a), upl (a) = u−(a) (4.36)

σ
pl
r (ς) =σel

r (ς), upl (ς) = uel (ς) (4.37)

So from (4.35) it follows that:

∂σ
pl
r

∂r
+2

σyd

r
= 0, σ

pl
r =−sign

(
σr −σϕ

)
2σyd lnr +C1 (4.38)

Figure 4.6: Elastic-plastic state.
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where C1 is an integration constant, can be determined from the continuity of stress (4.37):

C1 =σ0 +2sign
(
σr −σϕ

)
σyd

(
1

3

(
1− ς3

R3

)
+ lnς

)
(4.39)

Displacements in the initial material are defined by u− = A−r ,where A− is determined from
the condition of stress continuity(4.36):

A− = 1

3k−

(
σ0 +2sign

(
σr −σϕ

)
σyd

(
ln
ς

a
+ 1

3

(
1− ς3

R3

)))

In the plastic zone, substituting (B.6) into (B.4), we have in turn:

σ
pl
r =σ0 − sign

(
σr −σϕ

)
2σyd

(
ln

r

ς
− 1

3

(
1− ς3

R3

))
(4.40)

σ
pl
ϕ =σ0 − sign

(
σr −σϕ

)
2σyd

(
ln

r

ς
+ 1

3

(
1

2
+ ς3

R3

))
(4.41)

These stress components depend on ς, the radius of the plastic zone.
Due to the spherical symmetry, only the radial component of the displacement is not equal to

zero. Using (3.2) and (4.20) we obtain the differential equation for the total radial displacement in
the plastic zone:

3k+
(
r 2upl

)′
r

r 2 = 3k+ϑtr −6sign
(
σr −σϕ

)
σyd

(
ln

r

ς
+ ς3

R3

)

As a result, we obtain an expression to determine the total displacement in the plastic zone:

upl =
k+ϑtr −2sign

(
σr −σϕ

)
σyd

(
ln

r

ς
− 1

3

(
1− ς3

R3

))
3k+

r + C2

r 2

where C2 - is a constant, which, in turn, is found from the continuity of the displacement (4.37) at
the plastic front r = ς, that separates elastic and plastic zones in the transformed layer:

C2 =−sign
(
σr −σϕ

) σyd
(
3k++4µ+

)
18k+µ+

ς3

Therefore, in the plastic zone:

upl = 1

3k+

(
k+ϑtr − sign

(
σr −σϕ

)
2σyd r

(
ln

r

ς
− 1

3

(
1− ς3

R3

)
+ (3k++4µ+)

12µ+

ς3

r 3

))

The radial displacement is continuous at the reaction front interface r = a, then from (4.36)
we conduct the equation for the evolution of ς:

2sign
(
σr −σϕ

)�k�σyd lnς−2sign
(
σr −σϕ

) σydς
3

3R3

(
�k�+ k−

(
3k++4µ+

)
4µ+ (1−ξ)3

)
+ (4.42)

+
(

k−k+ϑtr +�k�
(
σ0 +2sign

(
σr −σϕ

)
σyd

(
1

3
− ln(R(1−ξ))

)))
= 0

Note, that evolution of ς depends on external stressσ0 as well as position of the chemical reac-
tion front ξ. Therefore, the behavior of the external stress has a direct influence on the propagation
of the plastic zone. We will consider it in more details later.
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We know the total displacement in plastic zone, then we can calculate the total strain in the
plastic zone:

εr =
1

3k+

(
k+ϑtr − sign

(
σr −σϕ

)
2σyd

(
ln

r

ς
+ 2

3
+ ς3

3R3 −
(3k++4µ+)

6µ+

ς3

r 3

))
(4.43)

εϕ = 1

3k+

(
k+ϑtr

r
− sign

(
σr −σϕ

)
2σyd

(
ln

r

ς
− 1

3

(
1− ς3

R3

)
+ (3k++4µ+)

12µ+

ς3

r 3

))
(4.44)

Since plasticity does not produce any volume change, the volume variation is due to the elastic
strain only:

e+r −e+ϕ = 1

2µ+

(
σ

pl
r −σpl

ϕ

)
+epl

r −epl
ϕ

Knowing the stress in the plastic zone (4.40) and (4.41), we can calculate the elastic strains.
Then from (4.1), we obtain the plastic deformation by subtracting the elastic strain to the total
strain:

ep = sign
(
σr −σϕ

)
·
σyd

(
3k++4µ+

)
6µ+k+

(
ς3

r 3 −1

)
𝛼 (4.45)

where

α= 1

3


2 0 0

0 −1 0

0 0 −1


The derivative of the plastic deformation:

𝑒̇p = sign
(
σr −σϕ

)
·
σyd

(
3k++4µ+

)
2µ+k+

ς2ς̇

r 3 𝛼

Using the von Mises criteria (4.2) we obtain the equation for determining λ̇

λ̇= sign
(
σr −σϕ

)
·
σyd

(
3k++4µ+

)
3µ+k+

ς2ς̇

r 3 , λ̇≥ 0

If we increase the external loading σ0, the plastic zone will expand until it reaches the outer
surface of the sphere. The solution (4.40) will then be valid up to ς = R. Using the boundary
condition, we have

σ
pl
r =−2σyd ln

r

R
+σ∗∗

0

σ
pl
r (R) =σ∗∗

0

This equation defines the limiting stress σ∗∗
0 , at which the sphere is completely in the yield

state. When the limit load σ∗∗
0 is reached, the sphere loses its ability to resist increasing external

forces.
The strain density of the initial material is

w− = σ2
v

2k−

(
2ln

ς

a
+ σ0

σyd
+ 2

ς3 −
2

R3

)2

(4.46)

in the transformed material it is found as follows

w+ =
2σ2

yd

9k+

(
3ln

r

ς
+ ς3

R3

)2

+
σ2

yd

12µ+

(
3ln

r

ς
+ 3σ0

σyd
− 1

2
+ ς3

R3

)2

(4.47)
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and jump at the reaction front:

𝜎− : �𝜀� =−
4σ2

yd

k+k−

(
ln
ς

a
+ σ0

2σyd
− 1

R3 +
1

ς3

)(
ln
ς

a
(k+−k−)− k+k−ϑtr

2σyd
+ k+σ0

σyd
+k+

(
1

ς3 −
2

R3

)
+ k−ς3

3R3

)
(4.48)

Substitution of (4.46), (4.47) and (4.48) into equation (1.30) and (1.33) leads to the explicit de-
pendence of ANN and ceq at the reaction front on external stress and transformation strain, elastic
modulus of constituents and chemical energies:

cpl
eq

c∗
= exp

{
−n−M−
ρ−Rg T

(
γ+

σ2
yd

2k−

(
2ln

ς

a
+ σ0

σyd
+ 2

ς3 −
2

R3

)2

−
2σ2

yd

9k+

(
3ln

a

ς
+ ς3

R3

)2

−
σ2

yd

12µ+

(
3ln

a

ς
+ 3σ0

σyd
− 1

2
+ ς3

R3

)2

−

−
4σ2

yd

k+k−

(
ln
ς

a
+ σ0

2σyd
− 1

R3 +
1

ς3

)(
ln
ς

a
(k+−k−)− k+k−ϑtr

2σyd
+ k+σ0

σyd
+k+

(
1

ς3 −
2

R3

)
+ k−ς3

3R3

))}
(4.49)

Note, that ceq is quadratic function of σ0.
Then the kinetic equation will take form:

ξ̇= n−M−
ρ−

k∗n∗

1+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)

1−
cpl

eq

c∗

 (4.50)

4.1.3 Cylindrical front propagation

In this subsection we focus on the chemical reaction in axially-symmetric problem. We consider
a linear-elastic cylinder of radius R and length L under external stress σ0(t ) (Fig. 4.7). Assume
L >> R, the stress along the longitudinal axis of the cylinder vanishes, σz = 0. The displacement in
a radial direction is a function on r alone and does not depend on upon z. We assume that tube
material is compressible.

z

σ0

h
σ0

R
a

C−

C+

Figure 4.7: The cylindrical reaction front.

The diffusive material surrounds the cylinder. We suppose that reaction starts from the outer
surface and transformed material forms a cylindrical layer of a thickness h from the body surface.

The solution for the diffusion problem and kinetic equation were solved in Section 2.1.3 (Eq.
(2.25) and (2.26)). Here, we just recall the result:

The concentration of the diffusing constituent B∗ at the reaction front is equal to

c(a) =
c∗

D0

k∗(1−ξ)
− ceq

(
ln(1−ξ)− D0

α

)
D0

1−ξ+
D0

α
− ln(1−ξ)

, D0 =
D

R
, h = R−a, ξ= h

R
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The reaction front velocity is given by the following equation

VN = n−M−
ρ−

c∗− ceq

1

k∗
+ 1−ξ

α
− ln(1−ξ)

D0
(1−ξ)

(4.51)

Since the body’s cylindrical geometry (cylindrical coordinates (r,ϕ, z)) and since the material
is isotropic, the equilibrium and kinematic boundary conditions can be expressed as

dσr

dr
+ σr −σϕ

r
= 0 (4.52)

εr =
du

dr
, εϕ = u

r
, εz = 0 (4.53)

where u is the radial displacement. In the cylindrical coordinates the condition (4.2) can be written
as follows:

ė+ = ėel + ėpl = ṡ+

2µ+
+


0 if

√
1

2

((
σr −σϕ

)2 + (
σϕ−σz

)2 + (σr −σz )2
)
<σyd

λ̇
∂ f

∂𝜎+ if

√
1

2

((
σr −σϕ

)2 + (
σϕ−σz

)2 + (σr −σz )2
)
=σyd

Since we assume in that σz = 0, then

ė+ = ėel + ėpl = ṡ+

2µ+
+


0 if

√
σ2

r +σ2
ϕ−σrσϕ <σyd

λ̇
∂ f

∂𝜎+ if
√
σ2

r +σ2
ϕ−σrσϕ =σyd

4.1.3.1 Elastic stage

Similar as it was done in the previous case for the sphere, we consider that the first stage corre-
sponds to a situation where all materials, initial and transformed, are elastic. Solution for this
problem was done in 2.1.3. Here we give only the main equations, that are needed for further
solution. More details can be found in 2.1.3.

The strains and stresses in the initial and transformed materials are determined by the follow-
ing equations:

𝜀− =A−I, 𝜎− = 2

(
k−+ µ−

3

)
A−I

ε+r =A+− B+
r 2 , ε+ϕ =A++ B+

r 2 , ε+z = 0

σ+
r = 2

(
k++ µ+

3

)
A+−2µ+

B+
r 2 −k+ϑtr , σ+

ϕ = 2

(
k++ µ+

3

)
A++2µ+

B+
r 2 −k+ϑtr (4.54)

where A+, A− and B+ are given by the following formula:

B+ = 3R2

G
(1−ξ)2 (

k+ϑtr (3k−+µ−)−σ0
(
3(k+−k−)+ (µ+−µ−)

))
A+ = 3

G

(
3µ+(k+ϑtr (ξ2 −2ξ)−σ0)− (3k−+µ−)(k+ϑtr +σ0)

)
A− = 3

G

(
3k+µ+ϑtr (ξ2 −2ξ)− (3k++4µ+)σ0

)
where G = 6µ+(ξ2 −2ξ)

(
3(k+−k−)+ (µ+−µ−)

)−2(3k−+µ−)(3k++4µ+)
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In order to evaluate the time and location of plastic flow onset, von Mises criterion is used.
Taking into account (4.54), this conduct to

√
σ2

r +σ2
ϕ−σrσϕ =


(
µ2
+(K+−K−)2

a4

r 4 +
K 2+
27

(K−+3µ+)2

)
σ2

0 +k2
+µ

2
+K 2

−

(
a4

r 4 +
a4

3R4

)
ϑtr 2−

−2µ+k+K−

(
µ+(K+−K−)

a4

r 4 +
K+

9
(K−+3µ+)

)
ϑtrσ0


(
µ+

(
µ++k+− K−

3

)(
1− a2

R2

)
+ K−

9
(3k++4µ+)

)2

(4.55)

where K± = 3k±+µ±.
From (4.55), we can deduce that the second invariant of deviatoric stress reaches a maximum

at r = a. It means that the initial plastic zone (if it appears) is located in r = a, which corresponds
to the chemical reaction front.

As it was presented in the previous case of the initially elastic sphere with elasto-plastic re-
action product, the external loading σ0(t ) can be of different types: it can be constant, a linear
function of time or harmonic function.

From (4.55), if σ0(t ) = σ0, then we can see that the
√
σ2

r +σ2
ϕ−σrσϕ can not increase via the

external loading as it is constant. But from the formula (4.55), we see that the second stress invari-
ant depends on reaction front position ξ. Then if the chemical reaction is initiated, then it induces
internal stresses, which initiate the plasticity at the reaction front.

If σ0(t ) =U t , then from (4.55) it follows that the second deviatoric stress invariant can reach
yield stress at the moment t = t∗ due to the increasing of the external loading as well as the reaction
propagation, such as: σ∗ =U t∗ and ξ∗ = ξ(t∗).

In the case of the harmonic external loading σ0(t ) = Z sin(ωt ), this loading can accelerate,
decelerate and even block the reaction as well as affects the initiation of plasticity.

In the elastic regime, the transformed material is elastic, and the strain densities of the initial
and transformed materials are defined by

w− = 2

(
k−+ µ+

3

)
A 2

− , w+ = 1

2
k+

(
2A +−ϑtr )2 +2µ+

(
A 2+

3
+ B2+

r 4

)
(4.56)

the jump condition can be written as follows

𝜎− : �𝜀� = 4

(
k−+ µ−

3

)
A−(A+−A−) (4.57)

Substitution of (4.56) and (4.57) into Eq. (1.30) and (1.33) leads to the explicit dependencies of
ANN and ceq at the reaction front on external stress and transformation strain, elastic modulus of
the constituents and the chemical energies. In particularly,

cel
eq

c∗
= exp

{
−n−M−

ρ−
(γ−χ(σ0,ξ))

Rg T

}
(4.58)

where χ is given as the quadratic function of external stress and transformation strain, front posi-
tion and elastic modulus of the constituents:

χ(σ0,ξ) = 1

U

(
(K+−K−)Pσ2

0 −2K−k+Pϑtrσ0 −µ+k+Q(ϑtr )2) (4.59)

with

P = 3(3k++4µ+)(K−+3µ+), U = 2
(
3µ+(K+−K−)ξ(ξ−2)− (3k++4µ+)K−

)2 , K± = 3k±+µ±
Q = 9µ+(K+−K−)(K−−µ+)ξ2(ξ2 −4ξ+4)−2(3k++4µ+)K−

(
3(K−−µ+)ξ(ξ−2)−2K−

)
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Then the kinetic equation in the elastic stage takes form:

ξ̇= n−M−
ρ−

1

1

k∗
+ 1−ξ

α
− ln(1−ξ)

D0
(1−ξ)

(
1−exp

{
−n−M−

ρ−
(γ−χ(σ0,ξ))

Rg T

})
(4.60)

4.1.3.2 Elasto-plastic state

In this section we find the stress and displacement field in the elastoplastic regime. We show that
in this regime the second front (plastic front) appears. Two fronts have their own velocities and di-
rections. We show that plastic zone expands in two directions. We determine the relation between
the radius of the plastic zone, reaction front and external stress.

When σ0 is constant and the thickness h of the transformed material becomes larger than h∗,
or σ0 is linear time-dependent and is larger than σ∗, a natural assumption is that the plastic zone
takes a region a < r < ς, with ς a position of the plastic front, meanwhile the region ς < r < R
remains in the elastic regime. The radial stress σr is continuous at the boundary between the
elastic and plastic zone.

Elastic zone in the transformed material: ς< r < R
The stresses in elastic transformed layer are defined by equations:

σel
r = 2

(
k++ µ+

3

)
A+−2µ+

B+
r 2 −k+ϑtr , σel

ϕ = 2

(
k++ µ+

3

)
A++2µ+

B+
r 2 −k+ϑtr (4.61)

where A+ and B+ are coming from the boundary conditions at the external surface and at the
interface between the plastic and elastic zones in the transformed material:√

σ2
r +σ2

ϕ−σrσϕ

∣∣∣
ς
=σyd , σel

r (R) =σ0

Therefore, we conduct formulas to determine A+ and B+:

A+ =
3
(
(3R4 +ς4)k+ϑtr +3R4σ0 +ς2

√
(3R4 +ς4)σ2

yd −3R4σ2
0

)
2K+(3R4 +ς4)

, B+ =−

(
ς4σ0 −ς2

√
(3R4 +ς4)σ2

yd −3R4σ2
0

)
R2

2µ+(3R4 +ς4)
(4.62)

Substitute (4.62) into (4.61), we obtain the equation for stress components in the elastic zone:

σel
r =

R2(3R2r 2 +ς4)σ0 − (R2 − r 2)
√

(3R4 +ς4)σ2
yd −3R4σ2

0

(3R4 +ς4)r 2 (4.63)

σel
ϕ =

R2(3R2r 2 −ς4)σ0 + (R2 + r 2)
√

(3R4 +ς4)σ2
yd −3R4σ2

0

(3R4 +ς4)r 2 (4.64)

Since the considering zone is elastic, then from (2.27), substituting (4.62) into it, we obtain the
equation for displacement in the elastic zone:

uel =
(
K+R2 +3µ+r 2

)√
(3R4 +ς4)σ2

yd −3R4σ2
0 +3k+µ+r 2(3R4 +ς4)ϑtr +R2(9µ+R2r 2 −K+ς4)σ0

2µ+K+(3R4 +ς4)r

Plastic zone: a < r < ς
We will study the plastic zone. The elastic formulation is not applicable anymore. Since the

strain remains a priori undetermined, the stress components for any point in the plastic zone can
be determined only from the equilibrium equations and the plasticity criterion

dσpl
r

dr
+ σ

pl
r −σpl

ϕ

r
= 0,

√
σ2

r +σ2
ϕ−σrσϕ =σyd (4.65)
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We have the set of continuity equations:

σ
pl
r (a) =σ−

r (a), upl (a) = u−(a) (4.66)

σ
pl
r (ς) =σel

r (ς), upl (ς) = uel (ς) (4.67)

From von Mises criterion we have

σ
pl
ϕ = 1

2

(
σ

pl
r ±

√
4σ2

yd −3σpl
r

2
)

(4.68)

To determine the proper sign of the radical in (4.68), we note, that in the elastic region, from
(4.63) and (4.64) we have

2σel
ϕ −σel

r =
3R2(R2r 2 −ς4)+ (3R2 + r 2)

√
(3R4 +ς4)σ2

yd −3R4σ2
0

(3R4 +ς4)r 2 > 0, r ∈ [ς,R]

which must be valid at the elastic-plastic interface. Thus, from (4.68) we have

σ
pl
ϕ = 1

2

(
σ

pl
r +

√
4σ2

yd −3σpl
r

2
)

(4.69)

Therefore, substituting (4.69) into equilibrium equation (4.65), we obtain

dσpl
r

dr
+ 1

2r

(
σ

pl
r −

√
4σ2

yd −3σpl
r

2
)
= 0

We can solve this differential equation by separation of variables in integration:

∫ dσpl
r√

4σ2
yd −3σpl

r
2 −σpl

r

=
∫ dr

2r
+C1

where C1 is integration constant, can be conducted from the continuity of stress (4.67) at r = ς.
After integration the radial stress can be determined from:

σ
pl
r =− 2σyd√

3J
, J ≥ 1 (4.70)

where J is defined by the equation:

ln(J )+2
p

3arctan
(√

J −1
)
−2ln

(
3
√

J −1+p
3
)
−4lnr =C1 (4.71)

From the continuity of stress at r = ς, we obtain C1:

C1 = 2
p

3arctan

p
3

3

 p
Y

σ0R2ς2(3R2 +ς2)−
√
σ2

yd (3R4 +ς4)−3R4σ2
0(R2 −ς2)


+

+2ln

 2σ2
yd (3R4 +ς4)

3(σ0R2ς2(3R2 +ς2)−
√
σ2

yd (3R4 +ς4)−3R4σ2
0(R2 −ς2)+p

Y )

 (4.72)

Y = 6R2ς2σ0(2R4 + (R2 −ς2)2)
√
σ2

yd (3R4 +ς4)−3R4σ2
0 +3(σ2

0 −σ2
yd )(3(R4 −ς4)2 −R4ς4(9R4 −ς4))+

+σ2
yd (9R4(R4 −2R2ς6 +3ς8)+4ς12 −3ς4(R2 −ς2)2)
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Displacement in initial material are defined by u− = A−r , where A− is conducted from the
stress continuity (4.66) at the reaction front r = a:

A− =− 1

3K−

(p
3σyd RootOf

(
X 2H −9

)
H

)

H = cos

RootOf


p

3C1 +
p

3ln
(
3(a4 cos(X )2)

)+2
p

3ln


cos(X )+p

3sign

(
sin(X )

cos(X )

)
sin(X )

cos(X )

−6X




2

where RootOf represents the roots of expression with respect to its single variable or X , respec-
tively. Note, that it was not possible to obtain the explicit form of the equation, but it is possible to
calculate it numerically.

In plastic zone, substituting (4.71) and (4.72) into (4.70), and then substitute the result of (4.70)
into (4.69), we obtain the equations for stresses in the plastic zone:

σ
pl
r =− 2σyd√

3J
, J ≥ 1, σ

pl
ϕ = σyd

J

√
J 2 −1−

√
J

3


These stresses components are depend on ς, the radius of the plastic zone (it comes from

J , which depends on C1, that is defined by (4.72) and depends on ς). The radial displacements
are continuous at the reaction front, r = a, therefore, from (4.66) we obtain the formula for the
evolution of ς.

Due to the cylindrical geometry (axial symmetry), only radial component of the displacement
is considered. Using (3.2) and (4.53), we conduct the differential equation for the total radial dis-
placement in the plastic zone:

3k+(r 2upl )′r
r 2 = 3k+ϑtr + σyd

J

(√
J 2 −1−

√
3J

)
Therefore, equations in this part have complex and implicit form. Hence it is not possible to

obtain analytical solution. This problem can be solved numerically using Runge-Kutta method.
Taking into account the discontinuity conditions at the plastic and reaction front and since plas-
ticity does not produce any volume change, the volume variations is due to the elastic strain only,
therefore, we have the following system of differential equations with boundary conditions:

ξ̇= n−M−
ρ−

1

1

k∗
+ 1−ξ

α
− ln(1−ξ)

D0
(1−ξ)

1−
cpl

eq

c∗

 , ξ(t∗) = ξ∗ (4.73)

cpl
eq

c∗
= exp

{
−n−M−
ρ−Rg T

(
γ+ 2

3
K−A 2

− − k+
2

(
ϑ+−ϑtr )2 −µ+𝑒el : 𝑒el −𝜎− : �𝜀�

)}
(4.74)

σ
pl
r =− 2σyd√

3J
, J ≥ 1, σ

pl
ϕ = σyd

J

√
J 2 −1−

√
J

3


3k+(r 2upl )′r

r 2 = 3k+ϑtr + σyd

J

(√
J 2 −1−

√
3J

)
u− =A−r

upl (a) = u−(a), σ
pl
r (ς) =σel

r (ς), upl (ς) = uel (ς)

σ
pl
r +σpl

ϕ = 3k+(ϑ+−ϑtr ), eel
r +eel

ϕ +eel
z = 1

2µ+

(
σ

pl
r +σpl

ϕ

)
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In the next section, numerical integration of these explicit or implicit equations will be done. It
will allow to study in details the kinetics and the evolution of two fronts: the chemical and plastic
ones.

4.2 Equilibrium concentration, kinetics of the reaction front and block-
ing effect

4.2.1 Planar reaction front

In this Section, the dependencies of the reaction front position and of the reaction front velocity
on time, which are deduced from (4.3), will be presented finally at various values of amplitude
of external strain ε0 and energy parameter γ. The effect of elastic moduli was studied in details in
Chapter 2 in Section 2.2. The main differences with the previous chapters are: the time-depending
external strain is given instead of the constant one, therefore, even in the elastic stage; the equi-
librium concentration ceq in (4.9) depends on time; and there are two stages - elastic and elasto-
plastic that have different kinetics .

By (4.3), the reaction front can propagate only if the stress-strain state at the front and the
energy parameter are such that ceq < c∗. We study further how the condition ceq < c∗ is affected by
the parameters. By (4.9), this is possible only if the transformation strain, external strains, elasticity
parameters and the energy parameter are such that χ< γ. Initially, we study the elastic stage, when
the transformed and initial materials are elastic. We consider external deformation growing in
time linearly: ε0(t ) = U t . Therefore, at initial moment we have ε0(t = 0) = 0. It means that by
(2.14), in the considered case this condition takes the same form as it was in Section 2.2:

χ(ε0)−γ= 2(G+−G−)ε2
0 −3S+ϑtr ε0 −

(
γ−γ0

)< 0,

where

γ0 = S+(ϑtr )2

is the critical value of the parameter γ in the sense that the reaction front may propagate at the
external strain ε0 = 0 only if

γ> γ0.

A detailed analysis for the initial moment t = 0, is presented in Section 2.2 for the case ε0(t ) = ε0

(in particular, the results for ε0(t ) = 0 can be found in 2.2). It shows how the initial conditions
can initiate/block the chemical reaction depending on the elastic modulus, energetic parameter
γ and different values of ε0(t ) = ε0. Note, that for the results for the constant external deformation
can be used as well for the case ε0(t ) = U t : the different values of constant ε0(t ) = ε0 can be
corresponded to ε0(t ) =U t with given magnitude U at some moment of time such as these two
values of external deformation are equal.

Note, that χ in (4.8) is a quadratic function of ε0, which is given as ε0(t ) = U t . Consequently
χ is a quadratic function of time. The elasto-plastic stage appears when the second invariant of
deviatoric stress reaches the yield stress:

σyd =
√
σ+

x
2 −σ+

xσ
+
z +σ+

z
2

From where we obtain

εcr =U t∗ =
1

2(3k++µ+)

 σyd (3k++4µ+)(3k++µ+)

µ+
√

3
(
9k2++6k+µ++4µ2+

)+3k+ϑtr

 (4.75)

where εcr is the critical value of the external strain, that is reached at the moment t = t∗, whenp
3J2 = σyd . It means that for external strain ε0 ∈ [−εcr ,εcr ] the elastic stage takes place, and the
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Figure 4.8: Planar reaction front: dependencies of the equilibrium concentration on (a) external strain ε0

and (b), (c) on time for different values of the energy parameter γ ((b) for ε0 = 10−6t ; (c) for ε0 =−10−6t ) for
the case G+ > G−. We observe something what could be associated to a jump, but it is not, it corresponds to
instantaneous decrease.

equilibrium concentration is defined by (4.9), where ξ comes from the equation (4.8). When ε0

reaches |εcr | the elasto-plastic stages begins and all transformed elastic material transforms in
plastic. Therefore for ε0 ∈ (−∞,−εcr ] ∪ [εcr ,∞) (in the limit of small deformation assumption;
finite strain is not part of this work and would necessities further developments) the equilibrium
concentration ceq is conducted from (4.18), where χ is defined by (4.17).

Fig. 4.8a and Fig. 4.9a reflect the competition between strain and chemical energies at G+ > G−
and G+ < G−, respectively. If γ = γ0 then the dependence of ceq /c∗ on ε0 passes trough the point
ε0 = 0, ceq /c∗. In the case of elastic stage ε0 ∈ [−εcr ,εcr ] and γ= γ0 then the front may propagates
only at tension. When the external strain reaches |εcr | reaction goes, even in compression, and
reaction velocity increases. We see on Fig. 4.8a and Fig. 4.9a the instantaneous concentration de-
crease at ε0 = |εcr |, it corresponds to the increase of elastic strain energy due to the plastification of
the material. In the elasto-plastic stage the dependence ceq /c∗ changes the behaviour, initiates the
reaction if it was blocked, and even accelerates the front propagation. One can see how increasing
γ results in enlarging the interval allowed strains ε0 (see the curves for γ = 2γ0 and γ = 5γ0) and
how decrease of γ shortens and shifts the interval of the strains at γ∗ < γ< γ0.

Note, that the plastification in transformed layer changes also the elastic strain energy in initial
material.

As the external deformation is given as ε0(t ) = U t , therefore, the ceq /c∗ depends on time.
From (4.75) follows, that for time t ≤ t∗, the elastic stage takes place and the equilibrium con-
centration is defined by (4.9), where ξ comes from the equation (4.8). For the instant t = t∗ the
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Figure 4.9: Planar reaction front: dependencies of the equilibrium concentration on (a) external strain ε0

and (b), (c) on time for different values of the energy parameter γ ((b) for ε0 = 10−6t ; (c) for ε0 =−10−6t ) for
the case G+ < G−. We observe something what could be associated to a jump, but it is not, it corresponds to
instantaneous decrease.
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Figure 4.10: Planar reaction front: dependencies of the front position (a) and the front velocity (b) on time
at various values of the amplitude U of external strain ε0(t ) =U t for the case G+ > G−.

elasto-plastic stages begins and the equilibrium concentration ceq is defined by (4.18), where χ is
defined by (4.17).

On Fig. 4.8b,c and Fig. 4.9b,c the dependence of the equilibrium concentration on time are
shown at G+ > G− and G+ < G−, respectively. If γ = γ0, then the dependence of ceq /c∗ on time
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Figure 4.11: Planar reaction front: dependencies of the front position (a) and the front velocity (b) on time
at various values of the amplitude U of external strain ε0(t ) =U t for the case G+ < G−.

passes through the point t = 0, ceq /c∗ = 1. In the case of tension external strain (e.g. ε = 10−6t
Fig. 4.8b) in the case of elastic stage t ∈ [0, t∗] and γ= γ0 then the front propagates and the reaction
velocity accelerates. When the time reaches the moment t = t∗ reaction is activated, even the
reaction may start even at γ∗ < γ< γ0 and reaction velocity increases. One can see how increasing
γ results in increasing of the reaction kinetics (see the curves for γ = 2γ0 and γ = 5γ0) and how
decrease of γ may block the reaction at γ∗ < γ< γ0.

In the case of compressive external loading (e.g. ε=−10−6t Fig. 4.8c and Fig.4.9c) in the case
of elastic stage t ∈ [0, t∗] and γ∗ < γ < γ0 the reaction is blocked. When the time reaches the
moment t = t∗ reaction initiates and front velocity increases. One can see how increasing γ results
in enlarging the interval allowed time (see the curves for γ= 2γ0 and γ= 5γ0).

The dependence of the front position and the front velocity on time for various magnitude ε0

are shown in Fig.4.10 and Fig. 4.11 at G+ > G− and G+ < G−, respectively. One can see how the
strains can retard or accelerates the reaction front.

4.2.2 Spherical reaction front

In this section, the dependencies of the reaction position on time and of the reaction front veloc-
ity on the front position in a sphere will be presented finally for various values and types of the
external stresses σ0. Since, by (4.19), the reaction front velocity increases if ceq /c∗ decreases and,
respectively, the velocity decreases if ceq /c∗ increases. The influence of various parameters on
the reaction front behavior can be predicted qualitatively if one knows how the parameters affect
the equilibrium concentration. The effect of elastic modulus for the case of the constant external
loading was studied in details in Chapter 2 in Section 2.2.

Constant external loading σ0(t ) =σ0

If the external loadingσ0 is constant, then |σr −σϕ| increases only due to the front propagation,
i.e increasing of ξ. Then the value |σr −σϕ|max reaches the yield stress σyd , when the thickness of
the transformed material is equal to h∗(t∗) = ξ∗(t∗)R, such as:

6µ+
∣∣�k−1�σ0 +ϑtr

∣∣
4µ+�k−1� (1−ξ∗)3 + 4µ+

k−
+3

=σyd
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Figure 4.12: Spherical reaction front: dependencies of the equilibrium concentration on time at σ0(t ) =
σ0 = 0 for the case: (a) k+ > k− and (b) k+ < k− for different values of the energy parameter γ.
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Figure 4.13: Spherical reaction front: dependencies of the equilibrium concentration on time (a) for the
case k+ > k− and (b) for the case k+ < k− for different magnitude of external loading σ0(t ) =σ0.

From where ξ∗ is found out as:

ξ∗(t∗) = 1−
3

√√√√√√ 6µ+|�k−1�σ0 +ϑtr |
σyd

− 4µ+
k−

−3

4µ+�k−1� (4.76)

where t∗ is the moment when the thickness of the transformation reaches the critical value
ξ∗ and this in turn makes

p
3J2 = σyd . It means that for the thickness of the transformed layer

ξ ∈ [0,ξ∗] the elastic stage takes place and the equilibrium concentration can be found from (4.31),
where ξ comes from (4.32). When ξ= ξ∗ the elasto-plastic stage begins. For ξ ∈ [ξ∗,1] the equilib-
rium concentration ceq is given by (4.49).

In order to study the propagation of the reaction front we study further how the condition ceq <
c∗ is affected by the reaction front propagation and external loading. By (4.31), this is possible
only if the transformation strain, external stress, elasticity parameters and the energy parameter
are such that χel < γ. As initially the elastic stage takes place, therefore, we use the results that we
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Figure 4.14: Spherical reaction front: dependencies of the dimensionless front position on time (a) and (c)
(Fig.c is zoomed Fig.a), and the front velocity on the front position (b) at various values of energy parameter
γ for the case k+ < k−, σ0(t ) =σ0 = 0
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Figure 4.15: Spherical reaction front: dependencies of the dimensionless front position on time (a) and (c)
(Fig.c is zoomed Fig.a), and the front velocity on the front position (b) at various values of energy parameter
γ for the case k+ > k−, σ0(t ) =σ0 = 0
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obtained in Chapter 2 in Section 2.2: by (4.30), in the considered case this condition takes the form

χ(σ0,ξ)−γ=P(k+−k−)σ2
0 −2Pk+k−σ0ϑ

tr − (γ−γ0) < 0

where

γ0 =K(ϑtr )2

is the critical value of the parameter γ in the sense that the reaction front can start from the outer
surface at σ0 = 0 only if

γ> γ0
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Figure 4.16: Spherical reaction front: kinetics of the reaction front at various values of external loading
σ0(t ) = σ0 for the case k+ > k−. Dependencies of the dimensionless front position on time (a) and (c), and
the front velocity on the front position (b)
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Figure 4.17: Spherical reaction front: kinetics of the reaction front at various values of external loading
σ0(t ) =σ0 for the case k+ > k−: (a) at γ= 1.1γ0 and (b) at γ= 10γ0

On Fig. 4.12 the dependence of the equilibrium concentration ceq on time at various values
of energy parameter γ is presented at k+ > k− and k+ < k− in 4.12(a) and 4.12(b), respectively.
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If γ = γ0 at t ∈ [0, t∗] the sphere is in an elastic case, and the solution corresponds to the results
obtained in Chapter 2 in Section 2.2: the reaction front propagates and its velocity increases. At
the instant t = t∗, the elasto-plastic stage takes place: the reaction goes, even if it was blocked
before and the speed of the reaction front propagation increases significantly. Note, that the bigger
energetic parameter γ, the faster elasto-plastic stage becomes and the higher reaction rate.
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Figure 4.18: Spherical reaction front: dependencies of the equilibrium concentration on time (a) for the
case k+ > k− and (b) for the case k+ < k− for different values of the energy parameter γ, σ0(t ) = 50t .
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Figure 4.19: Spherical reaction front: dependencies of the equilibrium concentration on time (a) for the
case k+ > k− and (b) for the case k+ < k− for different magnitude S of external loading σ0(t ) =S t .

The influence of the applied external stressσ0 on the equilibrium concentration ceq is demon-
strated on Fig. 4.13. For γ = γ0 at t ∈ [0, t∗] the elastic stage takes place and at tensile stress the
reaction initially blocked and starts with time, while at σ0 = 0 and at compressing stress the reac-
tion goes and velocity of the reaction front accelerates. Note, that the higher the external loading,
the faster becomes the instant t∗ - the start of the plastification of the sphere. At t = t∗ the elasto-
plastic stage takes place, and the equilibrium concentration instantaneously and significantly de-
creases, and the reaction kinetics increases. In the case for k+ > k−, the elastoplastic regime occurs
faster, than for the case k+ < k−.

The dependence of the reaction front position and its velocity on time for different values en-
ergy parameter γ and various magnitude of the external loading σ0 are demonstrated in Fig. 4.15 –
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Figure 4.20: Spherical reaction front: dependencies of the dimensionless front position on time (a) and (c)
(Fig.c is zoomed Fig.a), and the front velocity on the front position (b) at various values of energy parameter
γ for the case k+ < k−, σ0(t ) = 50t

Fig. 4.17. From equation (4.76), the plastification of the transformed material becomes at the mo-
ment t∗, when the thickness of the transformed layer reaches value ξ∗. Therefore, in Fig. 4.15 and
Fig. 4.14, the elasto-plastic stage takes place as earlier as greater value of energy parameter γ. The
reaction kinetics accelerates with beginning of the material plastification. As it was mentioned
before, in the case for k+ > k−, the elastoplastic regime occurs faster, than for the case k+ < k−.
Therefore, the thickness of the transformed layer, which is needed to pass to elastoplastic state, is
less for the case k+ > k− and, than in the case k+ < k−.

The influence of the value of the external loading σ0 on the reaction front kinetics is shown in
Fig 4.16 and in zoomed Fig. 4.17. The external compression increase the velocity of the reaction
and the elasto-plastic stage becomes earlier then in the case for σ0 = 0, while the tensile loading
decelerates the reaction propagation and the yield stress is reached later. Note, that external stress
affects as well the moment t∗ of transformed material plastification, as the critical thickness ξ∗ of
transformed layer (see Fig. 4.17).

Important to emphasise that the greater value of yield stress σyd , the later becomes the mo-
ment t = t∗ of the beginning of the elastoplastic regime, or can not occurs at all.

External loading as linear function of time σ0(t ) =S t
If the external loading is a linear function of time σ0(t ) = S t , then there are two "sources"

to increase |σr −σϕ|: ξ (degree of chemical transformation) is increasing and/or we increase the
magnitude of σ0. Therefore, both aspects ξ and σ0 have action on plastic activity. The moment
t∗, when |σr −σϕ| reaches the yield stress σyd and ξ(t∗) = ξ∗ and σ0(t∗) =S t∗, is found from the
condition:

6µ+

∣∣[k−1]S t∗+ϑtr
∣∣

4µ+[k−1] (1−ξ∗)3 + 4µ+
k−

+3

=σyd (4.77)

Similarly to what was done for the constant loading and in the case of the plate, for the time
t ∈ [0, t∗] such as the relative thickness of the transformed layer ξ ∈ [0,ξ∗] and the external loading
|σ0(t )| ∈ [0, |S | t∗], the sphere is in an elastic state. And the study of the equilibrium concentration
and reaction front propagation comes from the equations (4.31) and (4.32), respectively.

At the moment t = t∗ the external loading reaches the value σ0(t∗) = S t∗, while the degree
of the chemical transformation becomes ξ(t∗) = ξ∗, and they are both valid to the equation (4.77).
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Figure 4.21: Spherical reaction front: dependencies of the dimensionless front position on time (a) and (c)
(Fig.c is zoomed Fig.a), and the front velocity on the front position (b) at various values of energy parameter
γ for the case k+ > k−, σ0(t ) = 50t

ξ

(a)

t ·107, [s]

σ0 = 0Pa

σ0 = 5tPa

σ0 = 10tPa

σ0 = 15tPa

σ0 =−5tPa

σ0 =−10tPa

σ0 =−15tPa

V,[µm/s]

(b)

t ·107, [s]

Figure 4.22: Spherical reaction front: kinetics of the reaction front at various values of external loading
σ0(t ) =S t for the case k+ < k−. Dependencies of the dimensionless front position on time (a) and (c), and
the front velocity on the front position (b)
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Figure 4.23: Spherical reaction front: kinetics of the reaction front at various values of external loading
σ0(t ) =S t for the case k+ > k−. Dependencies of the dimensionless front position on time (a) and (c), and
the front velocity on the front position (b)

This means that elastoplastic regime occurs and develops for t ≥ t∗. The equilibrium concentra-
tions is defined by (4.49), and the reaction kinetics is obtained from (4.50).

The dependence of the equilibrium concentration ceq on time is demonstrated in Fig. 4.18 and
Fig. (4.19) at various values of energy parameter γ and for different magnitude S of external load-
ing σ0(t ) =S t , respectively. Similarly to the case σ0(t ) =σ0, the elasto-plastic regime takes place
faster with increasing of the energy parameter γ and in the case of k+ > k− (see Fig. 4.18(a),(b)).

The influence of the external loadingσ0(t ) =S t on the reaction front propagation is shown in
Fig. 4.19. The greater the magnitude S of the external loading, the faster the reaction kinetics. In
the case k+ > k−, the elastoplastic state takes place faster, than for k+ < k− (see Fig. 4.19). For k+ >
k− (Fig. 4.19(a)), the reaction is initially blocked for the tensile external loading. The bigger value of
|S | for external tension the longer reaction would be blocked, however, the reaction propagation
initiates the reaction. It means that in this case the influence of the reaction front propagation on
the equilibrium concentration ceq is stronger, than the effect of external loading σ0(t ) = S t on
the reaction kinetics.

For the case k+ < k− (Fig. 4.19(b)), the external compressive stress has greater influence than
for k+ > k−. Moreover, for tensile load is unlikely to be possible as well as the reaction can be
blocked at some moment. The greater the tensile external loadingσ0(t ), the faster the reaction will
be blocked. It can be observed that for the smaller value of yield stress σyd , there is a possibility
to initiate the plastification of the material and to delay the blocking of the reaction for tensile
external loading.
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4.2.3 Cylindrical reaction front

In the same way, as for the planar and spherical reaction fronts, the dependencies of equilibrium
concentration and chemical reaction kinetics on time for the cylindrical reaction front is studied
in this section.

The second deviatoric stress invariant J2 in this case is equal to J2 =
√
σ2

r +σ2
ϕ−σrσϕ. There-

fore, using von Mises criterion, it follows that the plasticity at the reaction front begins at the mo-
ment t = t∗, such as

(
µ2
+(K+−K−)2 + K 2+

27
(K−+3µ+)2

)
σ2

0(t∗)+k2
+µ

2
+K 2

−

(
1+ (1−ξ(t∗))4

3

)
ϑtr 2−

−2µ+k+K−

(
µ+(K+−K−)+ K+

9
(K−+3µ+)

)
ϑtrσ0(t∗)


(
µ+

(
µ++k+− K−

3

)(
1− (1−ξ(t∗))2

)+ K−
9

(3k++4µ+)

)2 =σyd (4.78)
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Figure 4.24: Cylindrical reaction front: dependencies of the equilibrium concentration on time for the case
K+ > K− for(a) different values of the energy parameter γ at σ0(t ) = 0 and (b) various values of external
loading σ0(t ) =σ0.

Prior to yield t ∈ [0, t∗], the cylinder is in elastic state, and the equilibrium concentration ceq

and the reaction kinetics are obtained from (4.58) and (4.60). From the yield criterion (4.78), the
yield stress σyd can be reached due to the reaction front propagation (ξ is increasing) and/or due
to the change of the external stress σ0(t ). If the external load is constant σ0(t ) = σ0, hence the
elasto-plastic stage can be initiated by the chemical transformation. In the case of σ0(t ) = S t ,
at the instant t = t∗ the external stress σ0(t∗) = S t∗ and the relative thickness of the new trans-
formed material ξ(t∗) = ξ∗ are such as the yield stress is reached (the criterion (4.78) is valid) and
the material behaves as plastic. For elasto-plastic stage the reaction kinetics and the equilibrium
concentration are found from (4.73) and (4.74), accordingly.

The dependencies of the equilibrium concentration on time for various values of the energy
parameter γ are shown in Fig. 4.24(a) and in Fig. 4.26(a) for different types of the external load-
ing. The greater value of γ the faster reaction goes. In the case of the constant external loading,
decreasing the energy parameter γ the elasto-plastic stage takes place later (see Fig. 4.24(a)). As
parameter γ depends on the temperature as well, therefore, changing its value can delay or ac-
celerates the moments of the material yielding. For σ0(t ) = S t , the dependence ceq /c∗ on time
decreases with increasing of γ (Fig. 4.26(a)), and the yield stress is reached earlier, than in the case
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γ= 1.1γ0.
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Figure 4.26: Cylindrical reaction front: (a) dependencies of the equilibrium concentration on time and (b)
kinetics of the chemical reaction front for different values of the energy parameter γ for the case K+ >K−
and σ0(t ) =S t .

of the constant external loading. In Fig. 4.25 and Fig. 4.26(b) the kinetics of the reaction front is
presented for various values of γ, for different magnitude and types of the external loading.

Note, that in the case K+ <K− the yield stress is not reached. It can be possible only at smaller
values ofσyd . As it was not possible to obtain the resulting formulas in the case of the elasto-plastic
transformed material for the chemical reaction in the cylinder, it was not possible to make more
detailed analysis.

4.3 Plastic front evolution and plastic deformations

In this section the evolution of the plastic front, mechanism of the reaction front propagation for
the case of the elastoplastic transformed material and plastic deformations are studied.

To describe the chemical reaction in solid, we consider two-phases model with moving in-
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terface. The reaction between solid and diffusing reactant starts at the outer surface of the de-
formable body. The reaction front is localized at the interface dividing the initial and transformed
materials. The reaction front moves due to the consumption of the diffusive reactant, which dif-
fuses through the transformed material from the outer surface to the reaction front. In Fig.4.27
and Fig. 4.28 are demonstrated such mechanism of the chemical reaction evolution in solids with
different geometry. Such reaction evolution was in the case of the reaction with elastic and vis-
coealstic reaction product, which were studied in details in Chapter 2 and Chapter 3.

H L
-

h

H L

+
-

H L

h +

-

Figure 4.27: Evolution of the planar reaction front.

Figure 4.28: Evolution of the spherical reaction front in the case of the elastic and viscoelastic transformed
materials.

In this Chapter we consider the case of the chemical reaction with elastoplastic reaction prod-
uct. In section 4.1.1 we studied propagation of the reaction front in plate with given external
deformation ε0 =U t , which increases linearly with time. Such choice of the boundary condition
was motivated by initiating of the yielding of the material in plate. In the elastic state, the reaction
product is elastic and the reaction propagates in the same way as presented in Fig. 4.27. As result,
when the second deviatoric stress invariant reaches the value equal to yield stress, at that moment
elastic transformed layer becomes fully plastic. Further mechanism is similar to the one in the
cases of elastic and viscoelastic reaction product in Fig. 4.27, and it is demonstrated in Fig. 4.29.
The plastic deformations were found before (see equation (4.14)). In Fig. 4.30 are shown the plastic

deformations epl
x and epl

y at various magnitude of given external deformation ε0 =U t .
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Figure 4.29: Evolution of the planar chemical reaction front in the case of the elasto-plastic transformed
material with given deformations ε0(t ) =U t at the plate edges.

Note, that if the stress σ0 is given as boundary condition at the short sides of the plate, then
the second front, a plastic front, appears. In this case the stresses satisfy the integral equilibrium
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This case corresponds to the plate bending. Such effect appears due to the chemical trans-
formation. To solve such problem we suppose that εx = A y +B (assuming the planar sections
hypothesis). Von Mises criterion in this case takes the following form

|σ+
x |

√
ν2+−ν+−1 =

∣∣∣∣∣ E+
1−ν2+

(A y +B−ϑtr )

∣∣∣∣∣=σyd (4.79)

As y ∈ [0,h], the equation (4.79) has a maximum at y = h. It means that the initial plastic zone
(if it appears) is located at y = h, which corresponds to the reaction front. In elasto-plastic stage
there are two different fronts: the reaction front and the plastic one. The plastic front propagates in
inverse direction to the reaction front, and its propagation velocity is proportional to the reaction
kinetics. As results, the plastic zone expands in both directions and, more likely, occupied the
all transformation layer. Such evolution of the plastic and the reaction fronts is shown in Fig. 4.31.
Different scenarios are possible for the case of the unloading due to the stress relaxation, reversible
chemical reaction or harmonic external loading.
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Figure 4.31: Evolution of the planar chemical reaction front in the case of the elasto-plastic transformed
material with given loading σ0 at the plate edges.

Evolution of the spherical and cylindrical reaction fronts for the elastic and viscoelastic reac-
tion products is presented in Fig. 4.28. The reaction starts at the outer surface and propagates to
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the center of the sphere or to the axis of the cylinder. As the spherical and cylindrical problems
are very similar, and in the case of the reaction in cylinder the equations are very complex and
explicit, therefore, in order to analyse the reaction mechanism for the case of the elasto-plastic
transformed material, we focus only on the spherical reaction front propagation.

As it was already shown in Fig. 4.5 and from the equation (4.24), the yield stress is reached at
the reaction front r = a (see equations (4.24) and (B.2)). Thus the second (plastic) front appears in
elasto-plastic regime and the plastic zone (if it appears) starts at the reaction front (see Fig. 4.32).
The reaction and plastic fronts have their own kinetics and direction of propagation. The evolution
of the plastic front r = ς is defined be the equation (4.42). This equation represents the relation
between two fronts. The dimensionless positions of the reaction front and plastic fronts in time
are shown in Fig. 4.33. Therefore, the plastic front propagates outwards to the reaction front, and
the plastic zone expands in two directions. Such evolution of the plastic zone is shown in Fig. 4.32.
Regarding to (4.55), the same mechanism would be for the cylindrical reaction front.
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Figure 4.32: Evolution of the spherical reaction front for the elasto-plastic transformed material.
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Figure 4.33: Spherical reaction front: dimensionless positions of the reaction and plastic fronts in time.

At the elastic stage the strains and stresses in the initial and transformed materials are de-
termined by the equations (4.21), (4.22) and (4.23). In Fig. 4.34 the evolution for the radial and
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Figure 4.34: Spherical reaction front: evolution of elastic (a) radial and (b) tangential strains for different
reaction front positions at the elastic stage.

tangential elastic strains is shown for different positions of the front at the elastic stage. The dis-
tribution of the radial and tangential stresses along the radius is demonstrated in Fig. 4.35.

At the elasto-plastic stage, the plastic deformations and stresses are defined by equations (4.45)
and (4.40) and (4.41), respectively. The total strains in the plastic zone can be found from (4.43)
and (4.44).

The relation between the inputs of elastic strains eel
r , eel

ϕ and plastic strains epl
r , epl

ϕ into total
strains e+r and e+ϕ is shown in Fig. 4.36. In Fig. 4.37 the evolution of the radial εr and tangential
εϕ strains along the radius of the sphere is shown for different positions of reaction and plastic
fronts. The highest magnitude of the radial and tangential strains is achieved at the reaction front
for all positions of the reaction and plastic front, while with the front propagation this magnitude
increases.

The evolution of the second deviatoric stress invariant along the radius of the sphere is shown
in Fig. 4.38(a). In Fig. 4.37(b),(c) the profile of the radial εr and tangential εϕ stresses along the
radius of the sphere for different positions of reaction and plastic fronts is presented. The radial
and tangential stresses reach their maximum at the reaction front for all positions of the reaction
and plastic front.
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4.4 Conclusions

In this Chapter the stress-assisted chemical reaction front propagation in deformable solid in the
cases of a planar, spherical and cylindrical reaction fronts for the elastoplastic reaction product
has been considered. Theoretical analysis is conducted for the case of elastic-perfectly plastic
transformed material. The reaction kinetics is studied. The different mechanism of the chemical
reaction front propagation in comparison with the cases of elastic and viscoelastic reaction prod-
uct is studied. The importance of the type of the boundary condition for the initiation of the plastic
deformation in the material is studied. It is discussed that even due to only chemical reaction, the
yield stress can be achieved and the plastification of the material take place. It is shown that in the
case of the planar front propagation, the choice of the boundary condition leads to the two dif-
ferent situation for elasto-plastic stage (if it appears). The elastoplastic solution follows the elastic
solution (see Chapter 2) until the thickness of the transformed layer and/or the external loading
become high enough for plastic flow to occur. It is shown that for the case of given deformations,
when the yield stress is reached, the elastic transformed material becomes fully plastic, while for
the given stresses, the plastic front appears. Also the plastic front appears for the spherical and
cylindrical reaction front propagation in the elasto-plastic regime. Two fronts have their own ve-
locities and directions. We showed that the plastic zone expands in two directions. We determined
the relation between the reaction front and plastic front. It is shown that yielding of the material
accelerates the reaction.

To our knowledge, this precise analysis of chemical fronts simultaneously with the plastic
zones evolution consists in new original results in mechanochemistry.
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Chapter 5

Experiments and Comparisons
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This chapter concerns experimental works on the oxidation of pure nickel specimens and two
different types of comparisons.

The first part of this chapter is devoted to the high-temperature oxidation experiments of pure
nickel specimens in order to:

– validate some of the assumptions and precise some limits of the presented models;
– complete existing data and extract new data in order to compare with the different proposed

models;
– determine oxidation kinetics.
In the second part two types of comparisons are made:
– experimental data with the different rheological models proposed in the previous chapters;
– models between each others, in order to show the influence of solids geometry, mechanical

properties and constitutive law on the reaction front propagation.

5.1 Experiments: Oxidation of Nickel Balls and Wires

This section concerns high-temperature oxidation experiments of nickel. Two different types of
specimen shapes were investigated: spheres and cylinders. These geometries are chosen in order
to compare to the spherical and cylindrical geometry of the chosen models (see previous chap-
ters). Specimens were produced from high purity nickel. Oxidation was conducted in the air under
800◦C during different time.

This section describes the nickel oxidation studied and the different techniques used to ana-
lyze their morphological and crystallography during the oxidation process and heat treatment.

We will start by describing the different types of Nickel specimens used to carry out this work.
To be able to analyse the experimental results, we will describe the samples preparations of the
specimens, different characterization techniques used. In a second part, we provide a set of ex-
perimental data and observations for the oxidation of pure nickel withing large duration range
(100h-500h). The evolution of oxide thickness in time is measured and presented. Characteriza-
tion of the morphology and microstructure of NiO scales is presented.

5.1.1 State of the art

In this chapter we will not be completely exhaustive on all possible paper on nickel oxidation ki-
netics, we just choose some representative works. The oxidation of pure nickel is considered in this
study as one the example of high-temperature oxidation of pure metals and in order to compare
with theoretical assumption.

Nickel is one of the base metals in superalloys, and it is widely used in engineering applica-
tions. Ni-base alloys have big attention for high-temperature use due to their good mechanical
properties, resistance to corrosion at high-temperature application and to fatigue crack initiation
and growth during cyclic loading [36]. However, NiO usually does not provide such corrosion resis-
tance [75], but it shows good mechanical, thermal, optical electrical and magnetic properties. The
important examples, where detailed modeling of nickel oxidation kinetics is crucial, are: the high-
performance solar absorbing coatings [1, 62], the solid oxide fuel cells [45, 55, 84, 113, 133, 158],
ceramic matrix composites [101, 102]. The detailed review on nickel oxide application is done in
[24].

However, the main studies of nickel oxidation were concerned to the experimental works (i.e.,
[133, 158]) and the mechanism of oxidation is not well investigated.

For the oxidation of metals there are few basic diffusion-dependent models. The first one and
the earliest is the Tammann and Pilling and Bedworth parabolic law [114, 139]. This model is
based on the assumption that the oxide thickness is proportional to square root of the time at a
given time of the oxidation process, what was observed from the experiments. This model also
assumes that the concentrations in the interface and in the outer surface are independent of the
oxide thickness. In the case of thin films, the reaction velocity decreases with increasing of the
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(a)

(b)

Figure 5.1: Oxidation kinetics: some examples from literature (a) from [149] and (b) from [45]

(a) (b) (c)

Figure 5.2: NiO surface morphologies [111]: faceted grains (a), cellular (b), and platelets (c).

Figure 5.3: Schematical diagram NiO scale grain structure from [5].

(a)
(b)

Figure 5.4: Morphology of (a) simplex compact and (b) duplex scales formed during nickel oxidation [35].

oxide thickness in agreement with logarithmic rate. The first model for logarithmic kinetics was
proposed by Tammann and Koster [140], motivation for such choice was to fit the experimental
results. To explain the growth of moderately thin flat films on the metal surfaces, Cabrera and
Mott [16] suggested the model where the oxidation is limited by field-facilitated activated jumps
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Figure 5.5: Phase diagram of binary Ni-O system [149].

of metal ions at the metal-oxide interface. The reaction kinetics in this case follow an inverse
logarithmic law. Another commonly used model for thick oxide films was proposed by Wagner
[146–148]. This model is based on the assumption that metal oxidation proceeds mainly via dif-
fusion of charged particles. Wagner’s theory is based essentially on the linear diffusion equation
for charged particles. Wagner assumed that a neutral oxide evolves during growth. This requires
that the number of equivalents of positively charged cations moving through the oxide in unit time
has to be equal to the number of equivalents of negatively charged anions and electrons moving
through the film in unit time. This assumption can be used to eliminate the electric field from the
three transport equations for the three species. Now, These models are widely use and extended
to another geometry, to more general case etc (see i.e. [33, 110, 150, 160]).

(a) (b)

Figure 5.6: Cubic crystal structure for: (a) Ni and (b) NiO

The kinetic of nickel oxidation were studied theoretically and numerically in [45, 49, 62, 82,
101, 102, 110, 123, 149] (see some examples in Fig. 5.1). In most of the works big attention was
given to calculate the parabolic rate constant, and the oxidation of nickel was described by the
parabolic law (Fig. 5.1a). In [45] the non-linear oxidation of Ni particle is studied (Fig. 5.1). In
[113] the viscoelastic behavior of the nickel oxide was considered and pseudoplasticity of NiO is
discussed. The residual stresses and plastic deformations, which appear during nickel oxidation,
are studied in [35, 36, 94, 112].

Many parameters such as metal purity, surface preparation and orientation are known to sig-
nificantly effect the growth kinetics, the external morphology and the internal microstructure of
theses scales. The experimental studies of oxide scales shows three different surface morpholigies
[5, 36, 82, 111]: faceted grains, platelets and cellular (see Fig. 5.2). The faceted grains are mostly
found for oxidation at the temperature higher than 900◦C. Such structure is characterized by the
large and compact scales. Cellular morphology observed was noticed for oxidation at 450−800◦C.
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They are always thicker than the faceted ones. The specimen’s surface in this case is characterized
by a large open porosity. The platelets oxide scales were detected for oxidation at 600− 900◦C.
They have disc shape, and were observed only on top of either cellular or faceted oxide scales.
Three different microstructures of nickel oxide were obtained in [5, 35, 36, 49, 82, 94, 111]: simplex
compact, duplex and simplex porous (see one of the first results in Fig. 5.4). The simplex com-
pact is presented as single compact layer, it was observed for the experiments of the oxidation of
nickel at temperature higher than 900◦C. At lower temperature the simplex porous was obtained.
It is characterized by the large open porosity on the top of oxide layer and high density of smaller
pores at the reaction interface. For the oxidation at temperature range of 600−800◦C, the oxide
layer has duplex microstructure [5, 35, 82, 111]. It consist of two layers: porous and fine-grain
inner layer and cellular or more compact columnar outer one. One of the first representation of
duplex structure was obtained in [5, 35], and it is shown in Fig. 5.3.

From the phase diagram of Ni-O system [149] (see Fig. 5.5), it can be noted that for the tem-
perature below 1250 K the composition of nickel oxide is 50% of Ni and 50% of O. Above this
temperature there is an excess of oxygen inside of NiO. Pure nickel has FCC structure with inter-
planar space equal to 0.352nm (Fig. 5.6a). In Fig. 5.6b it is shown, that NiO structure is FCC with
every octaedric sides occupied by an atom of oxygen with interplanar space equal to 0.4177nm.

5.1.2 Microstructural characterization by electron microscope

In this parts, we will describe the equipment and techniques we used for the characterization of
our specimens :

– Scanning Electron Microscopy (SEM - QUANTA 650 - FEI) to characterize the morphology of
the oxide layer and to reveal interface between the NiO and Ni,

– Energy-dispersive X-ray spectroscopy (EDXS - X-ACT 10mm² - Oxford Instrument) for the
chemical composition,

– Electron backscatter diffraction (EBSD - SYMMETRY - Oxford Instrument) techniques in SEM
to characterize the crystallographic orientation of the grains.

5.1.2.1 SEM for morphological study

Scanning electon microscopy SEM is a device that use the interaction between electron (produce
by the SEM) and the specimen material.

SEM is mosly use with two different electrons detectors.
Everhart and Thornley detector (ETD) that collect the secondary electrons (SE). These elec-

trons are produced by an inelastic interaction and give some contrasts linked with the topography
of the specimen.

Backscattered electron detector (BSED) that will collect Backscatterd electrons (BSE). These
electrons are produced by an elastic interaction between the electrons from the SEM beam and
the atoms present in the specimen. The atoms with high atomic number Z have higher proba-
bility to interact. This result as pictures with contrasts linked to the chemistry of the specimen.
Under some specific beam conditions, it’s also possible to have qualitative contrasts linked to the
cristallography.

5.1.2.2 Chemical analyzes in Energy-Dispersive X-ray Spectroscopy (EDXS)

Energy Dispersive X-Ray Spectroscopy (EDS or EDXS) is a microanalysis technique that is used in
combination with SEM to obtain the chemical composition of the specimens.

The beam of SEM locally interacts with atoms, exciting their electrons. Hence the electrons
jumps from the inner shell to the outer ones, or even can be ejected, creating some holes. When
an electron come back to its stable state, it emits an X-ray photon, which has an energy character-
istic of the atom. These X-ray photons are capt and analysed by the EDS detector. The ’Maps’ of
elements distribution, that are presented bellow are acquired by combining SEM scan with EDS.
The software used for EDXS acquisition and data post-processing is AZtec (Oxford instruments).
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Table 5.1: Name of the wire specimens and time oxidation

Specimen W1 W2 W3 W4 W5

Oxidation time, [h] 100 200 300 400 500

5.1.2.3 Crystallographic analysis

Electron Backscatter Diffraction (EBSD) is the technique used in SEM to acquire the local crys-
tallographic information. We can construct maps that describe the structure of the specimen by
combining SEM scanning with EBSD data. This technique uses the diffraction properties of the
electrons ,when they interact with periodic structure, such as crystals. Electron, that satisfy the
Bragg’s condition, is diffracted in cone starting from interaction point. The intersection of these
cones and EBSD camera form Kikuchi patterns characteristic of the material and crystal orien-
tation. These patterns are compared with theoretical ones for the material by using software, in
order to determine the crystallographic orientation. The software used for the acquisition of the
EBSD is Aztec (Oxford instruments) and the post-processing of maps have been performed using
HKL Channel 5 (Oxford instruments)

5.1.3 Wires

In this section we focus on the experiments high-temperature oxidation on pure Ni wires. The
wires were oxidized in the air at 800◦C for 5 different duration in order to obtain the evolution of
the oxide growth with time. The studies of the surface morphology, the internal structure and the
growth of the oxide thickness are presented.

5.1.3.1 Experimental procedure and specimen preparation

This experiment is performed for 5 different wires. The specimens have approximately 1 mm di-
ameter and 10 cm length (see Fig 5.7). This length was chosen to be able to measure the mass gain.
Before the high-temperature oxidation, the specimens were ultrasonically cleaned: first in acetone
and then ethanol, and dried. EDXS analysis was performed in order to check the contamination
of the samples before the oxidation.

(a) (b)

Figure 5.7: Photos of the wires: (a) before oxidation and (b) after oxidation

Each wire was oxidized during different time (see Table 5.1). This part of the experiment was
performed at Onera Chatillon. Wires were oxidized in laboratory air at 800°C for 100, 200, 300,
400 and 500 hours in "Pyrox" furnace. The initial mass and mass gain for every 100h of each sam-
ple are presented in Table 5.2. To characterize the morphology and microstructure of the oxide,
several steps were required. First, the morphology of the oxide scales was observed in SEM. More
details concerning the surface morphology will be presented in the result part (see 5.3.2). Before
further observation, the specimens were set in epoxy resin in order to study their cross-sections.
Therefore, the samples were cut and their surfaces were manually polished. The protocol con-
sisted of mechanical polishing to a "mirror" finish, down to 4000-grade SiC-paper, followed by
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Table 5.2: Change of mass of wires during the oxidation

Mass, [g]

Time W1 W2 W3 W4 W5

initial 1.07503 1.07581 1.07192 1.0765 1.0722

100h 1.08434 1.08509 1.0815 1.08589 1.08198

200h 1.08967 1.08623 1.09065 1.08676

300h 1.09041 1.09501 1.09098

400h 1.0987 1.09462

500h 1.20496

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: BSE pictures of NiO surface morphology as a function of oxidation duration: (a) before oxidation,
and after (b) 100h, (c) 200h, (d) 300h, (e) 400h, (f)500h.

polishing with 3 µm and 1 µm diamond paste and finishing polishing with OP-AA (Active Oxide
Alumina Polishing Suspension, Struers) in vibratory polishing machine VibroMet 2, Buehler dur-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: BSE images of NiO thickness as a function of oxidation duration: (a) 100h (b) 200h, (c) 300h, (d)
400h, (e) and (f) 500h.

ing 40 min. In addition, for the specimen ’W-4’ the preparation using cross-section Ion-polishing
in PECS II Gatan has been performed at 8keV during 13h. Such preparation was made in order to
avoid hardening effect link to the mechanical polishing and to obtain the microstructure of oxide
layer by EBSD.

Note, that polishing of such specimens is a difficult step, due to the differences in material
characteristics between two materials (Ni and NiO). Moreover, mention that our experimental
work was carried out in order to validate the analytical model of Ni oxidation but not the oxide
formation itself.

5.1.3.2 Results

First, we made EDXS analysis of the specimen surface to be sure that no other elements are present
apart from Ni. Therefore, the oxide surface morphology was investigated by scanning electron mi-
croscopy. The scales morphology evolution in time is illustrated in Fig. 5.8. Within the investigated
ranges of oxidation time (100h-500h), SEM examinations of oxide exhibited the faceted grains only,
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Table 5.3: Oxide thickness measurements for Ni wires. Experimental data

Time, [h] 0h 100h 200h 300h 400h 500h

Oxide thickness, [µm] 0 14.9451 22.7125 28.9574 32.6975 37.8676

(a)

(b)

Figure 5.10: (a) Growth of oxide layer in time, based on the experimental data from Fig. 5.9 and Table 5.3,
(b) evolution of weight gain per unit area in time

Figure 5.11: Matlab script results

we do not have neither cellular no platelets morphology or growing oxide scales[111]. The size of
oxide grains increases with test duration.

The cross-section were prepared for SEM observation in order to assess the thickness and sub-
surface morphology of the oxide layer. Fig. 5.9 shows a typical cross-section through the oxide and
its evolution in time. The differences in contrast correspond to different chemical composition.
On Fig. 5.9f, is presented full cross-section of the specimen, that was oxidized during 500 hours.
As we have the roughness of the external oxide surface and reaction interface, a Matlab script (see
a ’Note...’ below) was developed in order to make more precise measurements and get statistical
data of the oxide thickness. This script is based on postprocessing of images. The mean value
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Figure 5.12: BSE image: internal microstructure of NiO (after 400h oxidation)

(a)

(b) (c)

Figure 5.13: SEM Backscattered electron image (a) and EDXS element map (for the specimen oxidized dur-
ing 100h)

was chosen as the current thickness and the standard deviation was obtained in order to calcu-
late an error estimate. The resultant measurements for oxide growth are shown in Table 5.3 and
in Fig. 5.10a. The weight per unit are in time, based on the results from Table 5.2 is shown on
Fig. 5.10b.

Note on a Matlab script for oxide measurements
There are two reasons why we needed to write this code: discontinuities at the reaction front (we

wanted to obtain the more accurate data) and a circular cross-section of the specimens (no possible
to use existing software).

First of all, note that the oxide layer is not uniform. Therefore, the image needs be edited before
the following steps: we make the gaussian filtering of image. Since the cross-sections of the samples
are circular, the next step is to decompose the image of it into a finite number of small sub-images,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Local BSE image (a) and (b) and EDXS element map (b), (c), (e) and (f) (for the specimen
oxidized during 400h).

so that in each sub-image the curvature of the cross-section is small and hence the reaction front can
be approximated locally a linear. Then we rotate the image to make the reaction front horizontally
on it: for this we draw a line along the interface between two materials, and the program identifies
the required angle from the line positions and rotate the image. Since the image is greyscale, we use
a gray threshold to determine the oxide (also the pixels dilation is used for it). The last step is to draw
a line along which all columns should be measured. Therefore, different thickness are automatically
estimated (see Fig. 5.11). The evolution of oxide thickness and standard deviation are obtained from
this analysis.

On Fig. 5.12 is shown the BSE picture of internal microstructure for nickel oxide. This image
was made for the specimen W4, that was oxidized during 400h. Such good contrast in oxide layer
was possible to obtain after Ion Polishing during 13h. Such way of specimen’s preparation gave the
possibility to have the diffraction in oxide layer and to obtain further the EBSD map. On Fig. 5.12
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(a) (b)

(c) (d)

Figure 5.15: EBSD Map of nickel oxide and nickel after 400h: (a) Band contrast, (b) Phases, (c) IPFX and (d)
grain size.

Figure 5.16: EBSD band contrast map. 1 – the outer nickel oxide layer, 2 – the inner oxide layer, blue color
corresponds to grain boundaries.

we see that NiO has duplex microstructure: the compact columnar outer layer and porous and
fine-grains inner layer. The interface between these two layer corresponds the initial wire surface
before the oxidation.

A qualitative map of the chemical composition of the specimen’s cross-section was performed
via EDXS analysis on an Oxford Instruments. A energy dispersive spectrometric analysis showed
that its composition corresponds to nickel and nickel oxide, respectively, no other elements were
found apart from Ni and O. Fig. 5.13 shows as SEM picture of examined cross-section and element
maps for Ni and O for the specimen oxidized 100h. We see that oxygen diffusion rate increase
along grain boundaries. This acquisition have been performed with an acceleration voltage of 15
keV and a beam current of 2.4 nA.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: EBSD Map of Nickel wires during oxidation: (a) 0h, (b) 100h, (c) 200h, (d) 300h, (e) 400h and (f)
500h.
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Figure 5.18: EBSD grain boundary maps showing grain boundaries with a misorientation higher than 10◦ in
black and twin boundaries in red: (a) 0h, (b) 100h, (c) 200h, (d) 300h, (e) 400h and (f) 500h.
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Table 5.4: Thickness measurements of the compact columnar outer layer of NiO for Ni wires. Experimental
data

Time, [h] 0h 100h 200h 300h 400h 500h

Average oxide outer layer thickness, [µm] 0 7.2199 9.9102 13.2843 13.8001 16.4698

% of the total NiO layer thickness 0 44.9 43.6 45.9 42.2 43.0

On Fig. 5.14 are presented BSE pictures and EDXS elements maps for the wire oxidized dur-
ing 400h. From BSE image 5.14a, we can see that there is some layer inside of Ni where plenty of
aligned precipitates. The pic. 5.14b is the zoomed area of image 5.14a, for which a local accurate
EDX analyse of long time acquisition was performed. The nickel precipitates measured by EDXS
(see image5.14d,f) correspond to nickel oxide. We can see that oxygen diffuse inside of the ma-
terial, and along the grain boundaries. These precipitates could be related to some preferential
structure of the dislocation or to a plane for the oxygen diffusion. No specific features can be veri-
fied at least at SEM scale examinations. More detailed investigations of microstructure and oxide
precipitation inside of Ni by TEM examination of scale cross-section would be required to confirm
these observations.

Note, that we did not do any heat treatment before the test, so the microstructure is not stable
between the initial state and the further ones. It should be pointed out, that the alignments don’t
seem to be linked to the wire initial microstructure. In order to verify the microstructure evolution
under the heat treatment, EBSD maps have been performed on the 5 wires cross-sections. For
these acquisitions, the acceleration voltage was 25 keV and the beam current was 5.6 nA. EBSD
maps are presented on Fig. 5.17 and grain boundaries on Fig. 5.18. Grain boundaries were defined
as minimum 10◦ misorientation. On EBSD map, that is presented on Fig. 5.17, we can see that the
reference wire (non-oxidized) has the small grains. For every specimens after the heat treatment
the grain size is much larger than for non-oxidized one. After 100h the structure is practically
stabilized, and grain size (qualitatively) does not change significantly. Note that is was not possible
to make statistical analysis of grain sizes for the wire because of the small amount of grains and
the presence of many scratch on some specimens.

EBSD map for oxide layer is presented on Fig. 5.15. On images 5.15a,b we can see the micr-
sostructure of oxide layer. For this acquisition, we have adapted the beam conditions in order to
improve the spatial resolution of the EBSD. The acceleration voltage was 15 keV and the beam
current was 2.4 nA. The difference between inner and outer oxide layer is very clear. The inner
layer has plenty of fine grains that become smaller and smaller (see Fig. 5.16 and Fig. 5.15d) as
the distance between the NiO and the Ni increase. In Fig. 5.16 (denoted by number 1) it is also
clearly visible that the grains from the outer layer have an epitaxial growth with a columnar shape.
Porosities in the inner oxide layer could be the consequences of the diffusion of nickel thought the
oxide layer in order to form the outer layer. Note, that the small NiO grains which are close the to
reaction interface, have the same orientation as grains of Ni in image. 5.15c. The map presented in
Fig. 5.15b present the phase map. It make easier to localize the interface between the oxide layer
and the nickel grains. Note that it was possible to index the diffraction patterns of some precipi-
tates. They correspond to NiO and confirm the EDXS results presented before.

In order to precise the following qualitative results for kinetics of nickel oxidation and since
it is parabolic (see Fig.5.10), we determine the parabolic rate constant kp from the experimental
results. Oxidation kinetics were taken by using the well-known formula for parabolic kinetics:

t = A+B△m +C△m2 (5.1)

where △m is the mass gain per unit area. The parabolic constant kp is defined as coefficient C in
equation (5.1). The equation (5.1) can be applied to whole process of oxidation in order to calcu-
late a global value of kp , and may be applied to only to a small part of the process to determine the
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local kp (for given time, scale thickness). Based on the experimental data from Table. 5.2 for mass
gain every 100h for every wire, and taking into account that length of wires is 10cm and radius is
1mm, we obtain:

kp ∈ [3.003543643·1010,4.383968374·1010][g 2 ·m−4 · s−1] (5.2)

From the experimental results for the internal microstructure of the oxide Fig.5.15, there are
outer and internal layers of NiO. The nature of these two layers corresponds two different mech-
anism of the oxide growth. The inner layer growths due to the diffusion of the oxygen in nickel,
while the outer layer expands as result of the nickel diffusion outward of the initial specimen sur-
face. The outer layer has the compact columnar microstructure (see Fig. 5.14). We measure man-
ually which part of the whole oxide layer is occupied by the outer one. We measured it manually in
10 points for each wire, therefore, data are not very accurate. The resultant measurements for each
specimens are presented in Table 5.4. The outer oxide layer constitutes a substantially constant
fraction of the total oxide thickness for each wire. Therefore, it gives the idea that the growth of the
outer layer relates to the reaction front kinetics.

From these different results, it’s possible to differentiate several oxidation mechanisms, each
one having its own kinetics.

Based on the EDXS and EBSD observation, it must be emphasized that the diffusion along
grain boundaries is clearly the fastest mechanism and allow the oxide formation much deeper
than the main oxide layer. It’s important to note that the diffusion rate along the twin boundaries
is slower than for other ones.

As soon as the oxide formed on the surface of the sample, we can observe precipitation of
nano-crystallites up to 30-40µm inside the nickel. It was motioned, that from EDXS analyse, these
precipitates correspond to NiO. The nucleation of these precipitate shows that the oxygen diffuse
deeper than the reaction front. It seems that they are aligned, but we were not able to understand
the reasons. Furthermore, the precipitates are also visibly deeper in the metal along the grain
boundaries. It was impossible to deeply investigate the origin of these precipitates in nickel be-
cause of the limitation of SEM. TEM examination of cross-section as required area inside of nickel
and close to oxide layer would be required to investigate and confirm these observations.

5.1.4 Balls

In the previous section we made the experiment on the wires, which were homogeneous. In this
part we try to analyze more complex structure (see in Fig. 5.19), based on the obtained results for
wires.

This section examines the oxidation of pure nickel balls. The oxidation was performed in the
air at 800◦C for 5 different duration in order to obtain the evolution of the oxide growth in time.
Investigations of surface morphology, internal structure and growth of the oxide thickness are pre-
sented.

Figure 5.19: Photo of the balls before oxidation
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Table 5.5: Name of the balls specimens, time oxidation and the average diameter after oxidation

Specimen B1 B2 B3 B4 B5

Oxidation time, [h] 100 200 300 400 500

Average diameter after oxidation, [mm] 9.98 10.31 9.5 9.02 9.9

5.1.4.1 Experimental procedure and specimen preparation

This experiment is performed for 5 different balls. The specimens have approximately a spherical
shape with surface defects (Fig. 5.19). The approximate diameter of balls is varying from 9mm to
10.3mm (see more details in Table 5.5). Such balls were manufactured by electroless deposition
layer by layer Fig. 5.20 (with different thickness of each layer). This method of metal coating devel-
oping creates Ni nanospikes arrays [52, 105]. EDXS analysis was performed in order to check the
contamination of the samples before the oxidation.

Figure 5.20: SE image of the nickel balls surface before the oxidation.

Figure 5.21: EDX spectrum shown the Ni was detected in samples

Each balls was oxidized during different time (see Table 5.5). This part of the experiment was
also performed at Onera Chatillon. Balls were oxidized in laboratory air at 800°C for 100, 200, 300,
400 and 500 hours in "Pyrox" furnace. The balls mass was measured before oxidation and every 100
h for each specimen. The mass change measurements are presented in Table 5.6. Analogously as it
was made for wires, to characterize the morphology and microstructure of the oxide, several steps
were required. First, the morphology of the oxide scales was observed in SEM. More details for the
surface morphology will be presented in the result part. Before further observation, the specimens
were set in epoxy resin in order to study their cross-sections. Therefore, the samples were cut
in the middle and their surfaces were manually polished. The protocol consisted of mechanical
polishing to a "mirror" finish, down to 4000-grade SiC-paper, followed by polishing with 3 µm
and 1 µm diamond paste and finishing polishing with OP-S(Colloidal silica suspension, Struers) in
vibratory polishing machine VibroMet 2, Buehler during 45 min.
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Table 5.6: Mass change of nickel balls during the oxidation

Mass,
[mg]

Time B1 B2 B3 B4 B5

initial 3778.53 4541.46 3832.4 3199.43 4198.92

100h 3781.37 4545.08 3836.17 3202.87 4202.21

200h 4545.92 3837.01 3203.68 4203.87

300h 3837.40 3203.92 4205.13

400h 3204.16 4206.06

500h 4206.50

Figure 5.22: Evolution of the change in the mass of nickel balls per unit area in time

5.1.4.2 Results

The half balls were prepared for SEM observation in order to access the thickness of oxide layer.
First, we made EDXS analysis of the specimen surface to be sure that no other elements are present
apart from nickel (see Fig. 5.21).

Therefore, the oxide surface morphology was examined by scanning electron microscopy. The
scales morphology evolution in time is illustrated in Fig. 5.23. Within the investigated range of
oxidation duration (100h-500h), SEM examinations of oxide exhibited the faceted grains, platelets
on the top of faceted grains, as reported in literature [36, 111]. This figure also shows coating of
oxide scales by needle-shaped oxides of varying thickness and length, which tend to be clustered
in islands. A large number of such oxide can be seen in Fig. 5.24. EDXS analysis of the needles
revealed Cr and O (see Fig. 5.25). Similar oxide particles and needle-like oxide were observed and
described in [18, 36, 63, 108, 115, 132].

The cross-section were prepared for SEM observation in order to assess the thickness and sub-
surface morphology of the oxide layer. EDXS analysis of the ball cross-section was performed.
According to EDXS analysis (see Fig. 5.27), the Cr2O3 is detected only on the top of nickel oxide
scales. Fig. 5.28 shows a typical cross-section through the oxide and its evolution in time. The
differences in contrast correspond to different chemical composition. As we have the roughness
of the external oxide surface and reaction interface, in this experiment there are more significant
surface defects due to the manufacturing method (see i.e., Fig. 5.20 and Fig. 5.28) then in the case
of nickel wires oxidation, the Matlab code was developed in order to make more precise measure-

Table 5.7: Oxide thickness measurements for Ni balls.Experimental data

Time, [h] 0h 100h 200h 300h 400h 500h

Oxide thickness, [µm] 0 6.3604 8.1073 10.5940 12.9184 16.2345
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: BSE pictures of NiO surface morphology as a function of oxidation duration for nickel balls: (a)
before oxidation, and after (b) 100h, (c) 200h, (d) 300h, (e) 400h, (f) 500h.

ments of the oxide thickness. The details of the program, how it works and analyse the images, see
in the Note in the previous part. The mean value was chosen a s the current thickness and the stan-
dard deviation was obtained in order to obtain an error estimate. The resultant measurements for
oxide growth are presented in Table 5.7 and on Fig. 5.26a. As the radius of balls was different for
each specimens, it make sense to present oxide thickness divided by the radius of each ball in or-
der to be able to see the common tendency in oxidation process, as the radius plays an important
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(a) (b)

(c) (d)

(e) (f)

Figure 5.24: BSE pictures of surface of the oxide scale covered with Cr2O3 for nickel balls: after (a) 100h (b)
200h, (c) 300h, (d) 400h, (e) and (f) 500h.

role in diffusion process and therefore has an influence on the reaction kinetics (see Fig. 5.26b).
We can notice from the experimental data, that the kinetics is not parabolic, and can be described
by logarithmic law.

On Fig. 5.29 is shown the BSE picture of internal microstructure for nickel oxide. This image
was made for the specimen B4, that was oxidized 400h. On Fig. 5.29 we see that NiO has duplex

154



microstructure: the compact columnar outer layer and porous and fine-grains inner layer. The
interface between these two layer corresponds the initial ball surface before the oxidation.

The same as for the test for nickel wire, we did not heat treatment before testing, therefore the
microstructure is not stable between the initial and the subsequent states. In order to verify the mi-
crostructure evolution under the heat treatment in time, EBSD maps have been performed on the
5 ball’s cross-sections. For these acquisitions, the acceleration voltage was 25 keV and the beam
current was 5.6 nA. EBSD maps are presented in Fig. 5.31. For analysis we make a choice minimum
10◦ misorientation to define the grain boundary. From stereographic projection (Fig. 5.30), it has
to be noted that the samples have a crystallographic texture aligned with the radius.

The EBSD map shown in Fig. 5.31, we can see that the reference ball (unoxidized) has a lot
of fine grains. For every specimens after the heat treatment, the grain size is significantly larger
than for non-oxidized one. After 100h the grain size is completely different from the initial. The
grains are able to grow through the layers of the initial ball structure; practically nothing remains
of the original structure. After 100h the structure is practically stabilized, and the grain size does
not change significantly.

Since the nickel balls were of different sizes (see Table 5.5) with many surface defects (such as
roughness, chemical contamination, porosity etc.) and due to the mass change during the oxida-
tion (see in Fig. 5.22 and Table 5.6), we should note that there is no general tendency in kinetics.
Therefore, this makes it not possible to make a more detailed analysis compared to the case of
nickel wires in the previous section.

This experiment shows us the influence of the surface morphology on the diffusion process
and the kinetics of the chemical reaction.

5.1.5 Discussions

The roughness of the reaction interface and of the outer oxide surface decreases with increasing
temperature [111]. This give us the incentive that at higher temperature our theoretical model can
work more accurately.

The oxidation kinetics in the case of nickel wires is parabolic, and for the nickel balls it can be
described by logarithmic law. The comparison of the morphological and microstructural features
is difficult due to the differences in the specimen purity, the manufacturing methods, the surface
preparation etc.

The experiment on the oxidation of nickel wires shows that the oxide has a two-layers mi-
crostructure and each layer has its own kinetics. Therefore, there are two reaction fronts:

– the reaction front, which is localized at the interface between Ni and NiO. Its kinetics deter-
mines the growth of the inner oxide layer due to the diffusion of oxygen through the entire oxide
to this reaction front;

– the second front associated with the expansion of the oxide outward from the original speci-
men surface (the outer oxide layer). This process is related to nickel diffusion to the outside of the
sample. Its kinetics is associated with the chemical reaction front propagation.

Hence, the theoretical model has to take into account the second reaction front. In the ap-
proach we use, this volumetric expansion is introduced via 𝜀tr . In the future work, we can modify
this chemical transformation deformations to make them dependent on the chemical reaction
front velocity.

The nickel precipitates can be associated with the oxygen diffusion and oxide formation. But
to check this hypothesis, a more detailed analysis by TEM have to be investigated.

As we can see, there are few mechanisms of oxidation: the growth of the main oxide layer
(due to the diffusion of oxygen through whole oxide layer to the reaction front and the diffusion
of the nickel outwards of the original specimen surface), the diffusion of oxygen along the nickel
grain and twin boundaries and NiO precipitates. The diffusion along the grain boundaries is the
fastest process during the oxidation and it is important to include this mechanism in the theoreti-
cal model to predict the possible crack initiation and failure of the solid. In our theoretical model
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we did not take into account the grain boundaries, then it gives us the motivation to improve the
diffusion model in given approach.

Since we did not do any heat treatment before the oxidation, the microstructure between the
initial state and the further ones is not stable. And it makes not possible to take into account the
influence of the initial microstructure on the diffusion along the grain boundaries, but we can use
the experimental data to predict the kinetics along the GBs. To model the kinetics of the oxygen
diffusion along the grain boundaries for the initial microstructure, the set of the experiment with
heat treatment before the oxidation has to be preformed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.25: BSE images (a) and (b) and EDXS element maps (b) - (h) for the ball oxidized 300h.
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(a) (b)

Figure 5.26: Growth of oxide layer in time for balls, based on the experimental data from Fig. 5.28 and
Table 5.7: (a) actual measurements, (b) relative oxide thickness (divided by the radius of each ball)

(a) (b)

(c) (d)

Figure 5.27: BSE images (a) and (b) and line-profile EDXS (c) and (d) for the ball oxidized 100h.
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(a) (b)

(c) (d)

(e)

Figure 5.28: Nickel Balls: BSE images of NiO thickness as a function of oxidation duration: (a) 100h (b) 200h,
(c) 300h, (d) 400h and (e) 500h.

a)

Figure 5.29: Nickel Balls: BSE image: internal microstructure of NiO (after 400h oxidation)

159



(a)

a)

Figure 5.30: (a) EBSD Map and (b) Pole figure displaying crystallographic texture for Nickel ball before oxi-
dation

(a) (b)

(c) (d)

Figure 5.31: EBSD Map of Nickel balls during oxidation: (a) 0h, (b) 100h, (c) 300h and (d) 500h. The legend
for grain size for balls after oxidation is common for all specimens and presented in pic.(b)
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5.2 Comparisons

In this section we make two types of comparisons:
-– models between each others, in order to show the influence of solids geometry, mechanical

properties, type of the loading and constitutive law on the reaction front propagation;
-– experimental data with different proposed models, in order to validate the model and to

show the constitutive law impact.

5.2.1 Models comparison: influence of the constitutive law, elastic modulus, solids
geometry and types of loading on the reaction front propagation

In this part we make the comparison between models and obtained results in order to show the
influence of the constitutive law, elastic modulus, solids geometry and types of loading on the
reaction front propagation.

5.2.1.1 Influence of the elastic modulus on the reaction propagation
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Figure 5.32: Kinetics of the planar reaction front with (a) elastic and (b) elasto-plastic reaction product at
various values of external tension ε0 for the case G+ > G− (solid lines) and for the case G− > G+ (dashed
lines).

As it was shown in the previous chapters, the mechanical parameters, such as bulk and shear
modulus, k+ and µ+ respectively, affect the equilibrium concentration ceq and hence the reaction
kinetics (see more details in sections 2.2, 3.2 and 4.2). Here, we study how the elastic modulus
affect the reaction front propagation.

In Chapter 3, it was shown that the viscous deformations do not affect the reaction kinetics in
the case of viscoelastic reaction product. Therefore, for the case of the viscoelastic transformed
material, the chemical reaction propagates with the same velocity as for the case of a pure elastic
reaction product (see more details in Section 3.2).

In the case of the planar reaction front with elastic, the reaction kinetics is defined by Eq.(2.16)
in the form of parabolic law. The character of the equilibrium concentration ceq (2.15) depend on

the relation between G+,G− and S+ (see section 2.2), where G± = µ±
(
3k±+µ±

)
3k±+4µ±

and S = 2k+µ+
3k++4µ+

.

We illustrate how the sign of the difference (G+−G−) and the value of the parameter S+ affect the
reaction front kinetics (Fig. 5.32a). By (2.14) and (2.16) the elastic moduli and external strain affect
the parabolic kinetic via the influence on the coefficient Q, i.e. via changing the time-scale due to
changing the parameters S+ and the difference (G+−G−).
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Figure 5.33: Kinetics of the spherical reaction front with elastic reaction product at various values of external
stress σ0 for the case k+ > k− (solid lines) and for the case k− > k+ (dashed lines).
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Figure 5.34: Kinetics of the spherical reaction front with elasto-plastic reaction product at various values of
external stress (a) σ0(t ) = σ0 and (b) σ0(t ) = S t for the case k+ > k− (solid lines) and for the case k− > k+
(dashed lines).

If ε0 = 0 the difference (G+−G−) itself does not affect the front kinetics, and the front prop-
agates slowly in the case G+ < G− just because the value S+ is smaller than in the case G+ > G−
at elastic moduli taken in this example (see Tables 2.1, 2.2). Note that S+ is defined by the elastic
moduli of the transformed material only.

One case also compare quantitatively how the external strain affects the kinetics if the elas-
tic moduli of the solid constituents are such that G+ > G− or G+ < G−. In particular, the front
propagates at G+ < G− slower than at G+ > G− as it was due to the different values of S+, but the
difference is grater at compression and smaller at tension in comparison with the case ε0 = 0.

Same comparison can be done for the case of planar reaction front with the elasto-plastic re-
action product, using the Eq.(4.8) and (4.9) for the elastic stage and Eq.(4.17) and (4.18) for the
plastic stage (Fig. 5.32b). From the quantitative comparison it follows, that in the case G+ > G−
front propagates much faster that at G− > G+ due to the differences in elastic modulus of initial
and transformed materials (see Eq.(4.17)).

For the spherical reaction front with elastic transformed material, from the Eq.(2.22) and (2.17)
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Figure 5.35: Kinetics of the cylindrical reaction front with elastic reaction product at various values of exter-
nal stress σ0 for the case K+ >K− (solid lines) and for the case K− >K+ (dashed lines).

it can be noticed, that the character of ceq depends on the relation between P and K and the sign
of (k+ − k−). In Fig. 5.33 the influence of the P and K and the sign of (k+ − k−) on the reaction
front kinetics is shown. By (2.22) and (2.17), the reaction kinetics depends on the elastic modulus,
external stress and the reaction front position. The reaction propagates according to the parabolic
and logarithmic laws (depending on the elastic modulus, see details in section 2.2).

From the equation (2.22), at σ0 = 0 the difference (k+−k−) itself and the parameter P do not
affect the reaction kinetics, there is the influence of the parameter K on it. In the case of k+ > k−
the reaction propagates faster than in the case k+ < k− due to the greater value of K in this case.
The quantitative comparison at various values of external stress σ0 of the kinetics for the cases
k+ > k− and k+ < k− shows that in the case k+ > k− the reaction front propagates faster, than for
the case k− > k+.

The analysis of the spherical reaction front with the elasto-plastic reaction product is carried
out in the same way as for the case of the elastic reaction product (Fig. 5.34). Two different types
of the external loading are considered: σ0(t ) =σ0 and σ0(t ) =S t .

Note, that for the constant loading σ0(t ) = σ0, in the initial stage of the chemical transfor-
mation at σ0 = 0, the reaction kinetics is faster for the case k− > k+, than for the case k+ > k−
(Fig. 5.34a). This initial stage corresponds to the moment, when the solid in both cases is in the
elastic state. However, since in the case k+ > k− the plastic stage takes place, the reaction fronts
propagates much faster, than for k− > k+. Note, that it was discussed in the chapter 4, that the
plastification of the material at the same conditions becomes earlier in the case of k+ > k−. At
given external tension or compression, the reaction propagates slower at k− > k+.

In the case of external loading as linear function of time, σ0(t ) = S t , the chemical reaction
propagates much faster in the case of k+ > k−, than for the case k− > k+ (Fig. 5.34b).

In the same manner, in Fig. 5.35 is shown that for cylindrical reaction front the reaction kinetics
is faster for the case of K+ > K−, than for the case K+ > K− (see (2.31) and (2.33)). Note, that
cylindrical reaction front propagates according to the parabolic and exponential laws (depending
on the elastic modulus, more details can be found in section 2.2).

All these analysis show how much the reaction front propagation is affected by constitutive
law and by elastic parameters.

5.2.1.2 Impact of the solids geometry on the reaction kinetics

In this part we analyse the influence of the solids geometry on the reaction front propagation.
In the case of elastic reaction product, the kinetics of the reaction front for various solids ge-
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Figure 5.36: Influence of the solids geometry on the kinetics of reaction front with elastic reaction product
at σ0 = 0 for the case K+ >K− (solid lines) and for the case K− >K+ (dashed lines).
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Figure 5.37: Influence of the solids geometry on the kinetics of reaction front with elasto-plastic reaction
product at σ0 = 0 for the case K+ >K−.

ometries is presented in Fig. 5.36 for different ratio of the elastic modulus (see the previous sub-
section). It is shown that in the case of the spherical reaction front propagates with highest velocity
among the fronts of presented geometries. The kinetics of the cylindrical front is the slowest one,
and it demonstrates two different behaviours for the cases of K+ >K− and K+ <K−, respectively.
The comparison was made for the sphere and cylinder of the same radius R = 1mm and for the
plate with thickness of H = 0.5mm.

For elasto-plastic transformed material the kinetics for the spherical, cylindrical and planar
reaction front is shown in Fig. 5.37. Similarly to the case of the elastic reaction product, the planar
reaction front propagates faster than the cylindrical one and slower than the spherical reaction
front.
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Figure 5.38: Kinetics of planar reaction front with elastic reaction product at various external deformation
ε0 = 0 for G+ > G−.
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Figure 5.39: Kinetics of planar reaction front with elastic (at ε0(t ) = ε0) and elasto-plastic (at ε0(t ) = U t )
reaction products for G+ > G−.

5.2.1.3 Influence of the constitutive law and of the type of loading on the reaction front prop-
agation

In the case of the planar reaction front with elastic reaction product, we consider two types of
the given external deformation: ε0(t ) = ε0 and ε0(t ) = U t (Fig. 5.38). It can be noticed, that for
constant external deformation the kinetics is faster than at time-dependent external deformation.
Moreover, in the case of time-dependent loading the reaction front can be blocked. Note, that as
higher the magnitude U of the external loading ε0(t ) =U t as faster the reaction will be blocked.

In Fig. 5.39 is shown the influence of the constitutive law on the front propagation for the
planar front. It can be noticed, that for the case of the elasto-plastic reaction product the kinetics
of the chemical reaction is much slower than for the case of elastic transformed material.

For the chemical reaction propagates from the surface of the sphere, we consider the different
types of the loading for elastic and elasto-plastic reaction products (see Fig. 5.40). One can see
that for the case of time-dependent external loading σ0(t ) = S t the reaction propagates faster,
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Figure 5.40: Kinetics of spherical reaction front with elastic (dashed lines) and elasto-plastic (solid lines)
reaction products at various external loading σ0(t ) for k+ > k−.

than for the constant external stress σ0(t ) = σ0 both for elastic and elasto-plastic transformed
material. In the case of the elasto-plastic reaction product (solid lines in Fig. 5.40), the reaction
kinetics is faster, than for elastic transformed material (dashed lines in Fig. 5.40). This underlines
the complexity of the reaction two fronts (transformation and plastic) act.
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Figure 5.41: The influence of the solids geometry and constitutive law on the kinetics of the chemical reac-
tion at σ0(t ) = 0 and for the case K+ <K−.

In summary of this part, the scheme of the influence of the solids geometry and constitutive
law on the kinetics of the chemical reaction is shown in Fig. 5.41. One can see, that the spherical re-
action front propagates faster than planar and cylindrical fronts both for elastic and elasto-plastic
transformed material. However, for the initial stage of the chemical transformation (Fig. 5.41a),
the dependence of reaction kinetics on the solid geometry is more complex and very ’sensitive’
to the external conditions (temperature through the energy parameter γ, external loading, etc.).
In the case of the cylindrical reaction front the kinetics is much slower than for the spherical and
planar fronts.
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Note, that as it was discussed in Section 3.2, predicting stresses due to chemical transformation
and taking into account viscous and plastic deformations, very important to estimate the lifetime
of the considered solid. The evolution of the viscous strains and the stress relaxation behind the
reaction front can be found in section 3.2. The redistribution of the plastic and elastic strains and
stresses profiles at different positions of the reaction front are conducted in Section 4.3.

5.2.2 Comparison of experimental and theoretical results

ξ

(a)

t , [s]

ξ

t , [s]

(b)

Figure 5.42: Oxidation of pure nickel. Comparison of the experimental data with theoretical models: (a)
nickel wires and (b) nickel balls.

In this part we compare the experimental data with the models proposed in the previous chap-
ters.

In order to plot the theoretical curve, we use some data coming from the literature since the
investigation on the nickel oxidation were performed mostly experimentally.

The diffusion of oxygen inside of nickel and nickel oxide were studied and discussed in [4, 5,
110, 112, 131, 145, 149]. The coefficient of diffusion for nickel oxidation as well as solubility of
the oxygen in solid nickel can be found in these articles. The mechanical properties of nickel and
nickel oxides were obtained in [1, 35, 94, 113], Young’s modulus, Poisson’s ratio and yield stress for
Ni and NiO are given in these articles.

As it was discussed in Chapter 1 in the general framework, the energy parameter γ, depending
on the temperature, is defined empirically. We approximate this energy by the energy formation of
NiO at 800°C, divided by the molar volume of NiO, since the unit of energy parameter γ is energy
density per unit volume. The value of the energy formation for NiO is given in [136] at various
temperature.

In Fig. 5.10 we can notice, that the kinetics fits very well a parabolic evolution. Hence we will
use only the relation between parameters, that give us such parabolic kinetics and in the case
of the cylindrical reaction front it corresponds to the case K− > K+. In Fig. 5.42a is shown the
results for the cylindrical front propagation with elasto-plastic reaction product. The theoretical
curve for elastic transformed material is much lower than the experimental data. Note, that with
our theoretical model we can describe the experimental curve very accurately. The values of the
parameters used in the simulation: D = 6.75·10−16cm2s−1, E+ = 172GPa, ν+ = 0.35, E− = 190GPa,
ν− = 0.305, ρ− = 8.9g /cm3.

We can notice from the experimental data for the oxidation of the nickel balls (Fig. 5.26), that
the kinetics is not parabolic, and can be described by logarithmic type law, which corresponds
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with our theoretical models for the case to the spherical front propagation. The theoretical curve
corresponds to the solution for the spherical reaction front with elasto-plastic transformed mate-
rial. In this case, we are able to obtain a relative confirmation of the theoretical results with the
experimental one, since large variation of the thickness for this set of the experiment is observed.

Indeed, as it was mentioned in the experimental part of this chapter, and it was noted in the
literature, that the surface preparation, purity of the samples have big influence on the reaction
kinetics. Since here, nickel balls were of different sizes (see Table 5.5) and with many surface de-
fects, it affect the diffusion process and then the kinetics of the oxidation. Therefore, in the case of
balls, model and experiments give only a relative accordance and more test are necessary to val-
idate these final results. In order to do it, it needs to conduct one more experiment for balls with
the same radius and smooth surface.

5.3 Conclusions

In the first part of this chapter high-temperature oxidation of pure nickel wires and balls were
conducted.

A high temperature oxidation of pure nickel wires and balls were performed. The evolution
of oxide thickness in time is measured and presented. The morphological and microstructural
evolution of NiO scales are obtained. The scale morphology is faceted. The oxide scales have
duplex microstructure. The evolution of nickel microstructure during the oxidation is presented.
The constant parabolic rate is obtained in the case of nickel wires oxidation. Different mechanisms
of oxidation are shown and discussed.

In the second part of this chapter, two types of comparisons are made: between models and
experiments and between models.

The effect of the elastic modulus on the reaction front kinetics is presented for each geometry
of solid and for the cases of elastic and elasto-plastic transformed materials. It is shown that the
reaction front propagation is affected by the constitutive laws and by elastic parameters. The in-
fluence of the solids geometry on the reaction kinetics is investigated. The planar reaction front
propagates faster than cylindrical one and slower than the spherical reaction front. The influence
of the constitutive law and of the type of loading on the reaction front propagation for various
solids geometry is investigated.

The comparisons of the experimental data with proposed models are made. The experimental
results of nickel wires oxidation can be described accurately by the model for cylindrical reaction
front with elasto-plastic reaction product. Since the nickel balls were of different sizes and with
many surface defects, model and experiment give only a relative accordance.
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Conclusion
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The stress-affected chemical reaction front propagation in inelastic (viscous, plastic) deformable
solid has been considered based on the concept of the chemical affinity tensor. For the case of an
inelastic component the chemical reaction is obtained and investigated by analytical solutions
of the simplest boundary value problems describing the propagation of plane, cylindrical, and
spherical fronts of reaction. It was shown how the stress-strain state and the geometry of the solid
affect the kinetics of the chemical reaction. Using the notion of the equilibrium concentration,
the effects of acceleration is studied, as well as the slowing down and blocking of the reaction by
external loading and material parameters. The stresses and deformations, induced by chemical
transformations, have been determined. Their impact on the deformation and strength proper-
ties of the materials have been predicted. Resulting from the chemical affinity tensor a kinetic
equation is formulated, which determines the dependence of the rate of a chemical reaction front
propagation in visco-elastic and elastic-plastic bodies from the stress-strain state.

The stress-affected chemical reaction front propagation in deformable solid in the cases of a
planar, spherical and cylindrical reaction fronts has been considered for elastic bodies in Chapter
2. The accurate mathematical analysis of the influence of various parameters on the reaction front
behavior is conducted. The planar reaction front propagates only according a parabolic law. In the
case of the spherical reaction front, the kinetics can be logarithmic and parabolic, depending on
the relations between the combinations of elastic moduli of solid reactants. For the reaction in
cylindrical element an exponential kinetics law was observed as well as a parabolic one. These
different results are consistent with some experimental data coming from literature.

The third chapter is devoted to the stress-assisted chemical reactions with viscoelastic reac-
tion product and a model for analytical studies of stress relaxation behind the reaction front is
developed. Results show that viscous deformations of the reaction product do not affect directly
the kinetics of the front in the case of the Standard Linear Solid Model if the external strain acts in
the plane of the interface, since they do not have time to appear at the moment of the transforma-
tion. But they enable the possibility for a stress relaxation phenomenon behind the reaction front.
Depending on the viscous and elastic parameters, this relaxation can be fast, and the high stresses
region is localized in a narrow layer adjacent to the transformation front. Note also that other
external loadings are possible, at which stress relaxation can restart the initially blocked reaction
front. The changing of the rheology of a solid constituent due to the localized chemical reaction
was taken into account with the use of the Standard Linear Solid Model and its particular cases.
The SLSM and Maxwell model allowed to obtain analytical solutions which gave us possibilities to
study the specific effects of material parameters on stress relaxation behind the reaction front. On
the other hand, the Kelvin-Voigt and pure viscous materials can hardly be considered as proper
candidates for modeling the reaction products.

The effects of plasticity on the reaction front kinetics were investigated in Chapter 4. The
stress-assisted chemical reaction front propagation in deformable solid in the cases of a planar,
spherical and cylindrical reaction fronts for the elastic-perfectly plastic transformed material has
been also considered. It is shown that the chemical reaction has differ mechanism from the re-
action with elastic and viscoelastic reaction product. These mechanism are presented and de-
scribed. It is shown that even only chemical transformation cans induce the plastic deformations.
The influence of the boundary condition for the initiation of the plastic deformation in the ma-
terial is studied. For the planar reaction front, the choice of the boundary condition leads to two
different situation for elasto-plastic stage (if it appears). It is shown that for the case of given defor-
mations, when the yield stress is reached, the elastic transformed material becomes fully plastic,
while for given stresses, a plastic front appears. In the case of the spherical and cylindrical reaction
front propagation the plastic front appears in the elasto-plastic regime. Two fronts have their own
velocities and directions. The plastic zone expands in two directions. The relation between the
reaction front and plastic front is determined. It is shown that yielding of the material accelerates
the reaction.

As a result, the proposed models are compared with each other in Chapter 5. It is shown that
the kinetics of the chemical reaction front is affected by the constitutive laws, type of the external
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loading and by elastic parameters. The influence of the solids geometry on the reaction kinetics is
investigated. The planar reaction front propagates faster than cylindrical one and slower than the
spherical reaction front.

Finally, experimental high temperature oxidation of pure nickel wires and balls experiments
were conducted. The experimental data for the oxide thickness evolution in time were obtained
and compared with proposed theoretical models. It is shown that the oxidation of nickel wires
demonstrates a parabolic kinetics, while for the nickel balls it is more a logarithmic one. The com-
parison of experimental results of nickel wires oxidation with proposed models shows that the
experiments can be described accurately by the model for cylindrical reaction fronts with elasto-
plastic reaction product. Since the nickel balls were of different sizes and with many surface de-
fects, model and experiment give only a relative accordance, which has to be confirmed.

In summary, we can see the influence of the solids geometry, constitutive laws, boundary con-
ditions and mechanical properties on the reaction front propagation for inelastic constitutive laws.
As these simple geometries correspond to industrial applications, then the obtained results could
be used for the developments of the optimal design of nano-anodes in Li-ion batteries with spe-
cific capacity, to develop the theoretical basis for the control of the size of the transformed material
(e.g., oxide, lithiated silicon) and geometry of the nano-structure. These analytical solutions could
also be used to check numerical procedures and for the estimation of the impacts of the transfor-
mation and inelastic strains on the thickening during the front propagation in the experiments.

Following these results, different perspectives could be drawn for coupled mechanochemistry
simulations based on the chemical affinity tensor:

– be applied for more complex external loading and geometry;
– be extended it to viscoplasticity;
– numerical implementation of models of chemical propagation fronts in inelastic bodies. Our

approach has a deal with the sharp interface, that makes such simulations significant and difficult
to realize;

– extend to thermo-elasticity, thermo-viscosity and thermo-plasticity with strong thermo-chemo-
mechanical couplings;

– develop new diffusion model, in order not to be limited with this simple stationary one;
– to take into account the diffusion along the grain boundaries by taking into account the mi-

crostructure features;
– introduce the second reaction front, in accordance with the expansion of the material out-

wards (see the discussions at the end of Section 5.1). In the approach we use, this volumetric
expansion is introduced via ϑtr . In the future work, we could modify this chemical transformation
deformations to make them dependent on the chemical reaction front velocity;

– conduct experiments with cyclic thermal and mechanical loadings.
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Appendix A

Solution for Laplace transformation
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For analysis it is best to work with dimensionless quantities. In the case of a sphere the outer
radius R is the only length parameter in the problem. Hence, there is no other choice but to define
a dimensionless distance and dimensionless displacement by

u = ur

R
, x = r

R
(A.1)

We solve PDEs by mapping them onto Laplace space w.r.t. time t ↔ p and then finding a
solution of the corresponding Ordinary Differential Equation (ODE). The Laplace transform of the
displacement will be identified by a bar, ū = ū(x, p), ēe

1 = ēe
1(x, p), and we may write according to

the usual rules of Laplace transforms:(
k++ 4

3
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4

3
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(A.4)

The terms in brackets drops out. We can give two reasons for that. The first is the initial condition,
according to which the displacement (and all its derivative) shall vanish initially. Second, we note
that these very terms represents the (stationary) ODEs, which is then zero to begin with. The
solution of the remaining system of ODEs for ū(x, p) and ēe

1(x, p). We may write:

ū+(x, p) = F̄1(p)x + F̄2(p)

x2 , ēe
1r (x, p) =− 2pηF̄1(p)

x3
(
pη+µ1

), ēe
1ϕ(x, p) = pηF̄1(p)

x3
(
pη+µ1

) (A.5)

where F̄1(p), F̄2(p) are arbitrary functions, what can be found from the boundary conditions at the
interface. In initial material displacements are given by Lame formulae:

u−(x, t ) = A−(t )x + B−(t )

x2 , ū−(x, p) = Ā−(p)x + B̄−(p)

x2 (A.6)

in the case of sphere u− is to be finite at r = 0, therefore B−(t ) = B̄−(p) = 0.
In order to determine the arbitrary functions F1(p), F2(p) and Ā−(p) we have to transform the

boundary conditions (3.26) into Laplace space:

ū+(ξ, p) = ū−(ξ, p) : F1(p)ξ+ F2(p)

ξ2 = Ā−(p)ξ, ξ= a
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Then we have:
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where

Υ1 = 4(µ1 +µ2)k+ϑtr ξ3 − (
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Take the inverse Laplace transform, reminding that
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Analogously, from (A.5) using (A.8), we obtain:
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Appendix B

Influence of plastic strains on a chemical
reaction front propagation in
spherically-symmetric problems of
mechanochemistry with given
displacement u0
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The solution of the spherically-symmetric problem of mechanochemistry with elastic reaction
product is given in [42]. As it was shown in Chapter 3, the viscous strain do not affect the reaction
kinetics, then the kinetics is the same as in the case of the elastic transformed material.

Here, we give the solution of the chemical reaction propagating in the sphere radius R with
given displacement u0 at the outer surface. The spherical reaction front propagates in the direc-
tion of the center of sphere. Transformed materials forms a spherical layer of thickness h. The
chemical reaction is localized is on spherical reaction front of the radius (R−h) and divides the
sphere onto regions occupied by the initial and new materials.

The solution of the diffusion problem for the spherical geometry was done in [42]. Here, we
recall the resulting equations.The concentration of the diffusing constituent B∗ at the reaction
front is equal to

c(a) =
c∗+n2∗k∗

(
1−ξ
α

+ ξ

D0

)
(1−ξ)ceq

1+n2∗k∗

(
1−ξ
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(1−ξ)

, h = R−a, ξ= h

R
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D

R

The reaction front velocity can be calculated as
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ρ−

k∗n∗
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)
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(
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)

The normal stresses σr , σϕ satisfy the equilibrium equation

dσr

dr
+2

σr −σϕ
r

= 0

and principal strains are

εr =
du

dr
, εϕ = εϑ =

u

r

where u is the radial displacement.
In the spherical geometry the conditions (4.2) can be rewritten as follows

ė+ = ėel + ėpl = ṡ+

2µ+
+


0 if |σ+

r −σ+
ϕ| <σyd

λ̇
∂ f

∂𝜎+ if |σ+
r −σ+

ϕ| =σyd

Elastic stage

We consider that the first stage corresponds to a situation where all materials, initial and trans-
formed, are elastic (the external loading is moderate as the sphere is in an elastic state). Solution
for this step was done in 2.1.2. Here we recall the main equations, what are needed for further
calculations.

Then the strains and stresses in the initial and transformed materials are determined by the
following equations:

𝜀− = A−I, 𝜎− = 3k−A−I

𝜀+ =
(

A+−2
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r 3

)
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r 3
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where where er is a unit radial vector, and A−, B−, A+ and B+ are found from the boundary condi-
tions and conditions at the reaction front:

B+ =

(
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R
−k+ϑtr

)
R3 (1−ξ)3
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where ξ= h

R
- is the relative thickness of the transformed material such as ξ ∈ [0,1] or the degree of

the chemical transformation and h = R−a; �k� = k−−k+.
In order to evaluate the time and location of plastic flow onset, von Mises criterion, i.e. |σr −

σϕ| =σyd , is used. Taking into account (4.23), conducts to

|σr −σφ| = 6µ+

∣∣∣∣∣∣∣∣∣∣
3u0�k−1�

R
+ ϑtr

k−

3�k−1�− 4µ++3k−
k+k− (1−ξ)3

∣∣∣∣∣∣∣∣∣∣
R3

r 3

The modulus |σr −σϕ| has a maximum at r = a (Fig. 4.5), therefore initial plastic zone (if it
appears) is located in r = a, what corresponds to the reaction front position. The maximum of the
modulus is found out as:

|σr −σφ|max =
6µ+

∣∣∣∣∣3u0�k−1�
R

+ ϑtr

k−

∣∣∣∣∣
4µ++3k−
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−3�k−1� (1−ξ)3

(B.2)

If the external displacement u0 is constant, then |σr −σϕ| increases only due to the front prop-
agation, i.e increasing of ξ. Then the value |σr −σϕ|max reaches the yield stress σyd , when the
thickness of the transformed material is equal to h∗(t∗) = ξ∗(t∗)R, such as:

6µ+

∣∣∣∣∣3u0�k−1�
R

+ ϑtr

k−

∣∣∣∣∣
4µ++3k−

k+k−
−3�k−1� (1−ξ∗)3

=σyd

From where ξ∗ is found out as:

ξ∗(t∗) = 1− 3

√√√√ 4µ++3k+
3(k+−k−)

− 2µ+
�k−1�σyd

∣∣∣∣∣3u0�k−1�
R

+ ϑtr

k−

∣∣∣∣∣
When the front position ξ< ξ∗ the sphere remains in an elastic state. When ξ= ξ∗ the material

of the sphere goes over into a plastic state on the surface r = a. A second (plastic) front appears
at the reaction front, it has it own velocity and direction. On further chemical transformation the
region of plastic deformation is enlarged.

If u0 is a linear function of time, i.e u0(t ) =S t , then |σr −σϕ| increases due to the front propa-
gation as well as increasing of u0 in time. Then the value |σr −σϕ|max reaches the yield stress σyd ,
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when the thickness of the transformed material is equal to h∗(t∗) = ξ∗(t∗)R and at the same time
when u0(t∗) =S t∗ = u∗

0 :

u∗
0 =S t∗ = sign

(
σr −σϕ

) σyd R

18µ+

(
3
(
1−ξ∗)3 + 4µ++3k−

�k�

)
+ k+Rϑtr

3�k�

When the displacement u0(t ) < u∗ the sphere remains in an elastic state. When u0(t ) = u∗ the
material of the sphere goes over into a plastic state on the surface r = a. Similarly to how it was
described above for the case of the constant external loading, the plastic reaction front arises at
the reaction front, and with further propagation of the chemical reaction the plastic deformation
region increases.

Elasto-plastic state

In this section we find the stress and displacement field in the elastoplastic regime. We show that
in this regime a second front (plastic front) appears. Two fronts have their own velocities and di-
rections. We show that plastic zone expands in two directions. We determine the relation between
the radius of the plastic zone, reaction front and external stress. We determine the limit stress that
produces failure by excessive deformation.

When u0 is constant and the thickness h of the transformed material becomes larger than h∗,
or u0 is linear time-dependent and is larger than u∗, a natural assumption is that the plastic zone
takes a region a < r < ς, with ς a position of the plastic front, meanwhile the region ς < r < R
remains in the elastic regime. The radial stress σr is continuous at the boundary between the
elastic and plastic zone.

Elastic zone in the transformed material: ς< r < R

The stresses in elastic transformed layer are defined by equation (B.1):

σe
r = 3k+A+−4µ+

B+

r 3 −k+ϑtr

σe
ϕ = 3k+A++2µ+

B+

r 3 −k+ϑtr

where A+ and B+ from the boundary conditions:

|σ+
r −σ−

ϕ|
∣∣∣
ς
=σyd , u|R = u0

Figure B.1: Elasto-plastic state.
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Hence we obtain

B+ =−sign
(
σr −σϕ

) σydς
3

6µ+

A+ = u0

R
+ sign

(
σr −σϕ

) σydς
3

6µ+R3

Then the stress components in the elastic zone are given by the equations:

σe
r =

3k+u0

R
−k+ϑtr + sign

(
σr −σϕ

) σydς
3

6µ+

(
4µ+
r 3 + 3k+

R3

)

σe
φ = 3k+u0

R
−k+ϑtr − sign

(
σr −σϕ

) σydς
3

6µ+

(
2µ+
r 3 − 3k+

R3

)

Plastic zone: a < r < ς
We will study the plastic zone. The elastic formulation is not applicable anymore. Since the

strain remains a priori undetermined, the stress components for any point in the plastic zone can
be determined only from the equilibrium equations and the plasticity criterion

∂σ
pl
r

∂r
+2

σ
pl
r −σpl

ϕ

r
= 0, |σr −σϕ| =σyd

We have the set of continuity equations:

σ
pl
r (a) =σ−

r (a), upl (a) = u−(a)

σ
pl
r (ς) =σel

r (ς), upl (ς) = uel (ς) (B.3)

So from (4.35) it follows that:

∂σ
pl
r

∂r
+2

σyd

r
= 0, σ

pl
r =−sign

(
σr −σϕ

)
2σyd lnr +C1 (B.4)

where C1 is an integration constant, can be determined from the continuity of stress (B.3):

C1 = 3k−A−+ sign
(
σr −σϕ

)
·2σyd ln a (B.5)

Using the another one boundary condition σp
r (ς) =σe

r (ς), we obtain:

−3k−A−+ 3k+u0

R
−k+ϑtr = sign

(
σr −σϕ

)
σyd

(
2ln

a

ς
− ς3

6µ+

(
4µ+
ς3 + 3k+

R3

))
(B.6)

Substitute (??) to (B.6), we obtain equation for A−

A− = 1

3k−

(
3k+u0

R
−k+ϑtr + sign

(
σr −σϕ

)
σyd

(
ς3

6µ+

(
4µ+
ς3 + 3k+

R3

)
+2ln

ς

a

))
(B.7)

Due to the spherical symmetry, only the radial component of the displacement is not equal

to zero. Taking into account σ+ = k+
(
ϑ+−ϑtr

)
, εr = du

dr
and εϕ = u

r
, we obtain the differential

equation for the total displacement in plastic zone:

3k+
(
r 2up

)′
r

r 2 = 9k+u0

R
+3

(
σr −σϕ

)
σyd

(
k+ς3

2µ+R3 + ln
ς2

r 3 −
1

3

)
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As a result, we obtain an expression for determining the total displacement in plastic zone::

up = u0

R
r + sign

(
σr −σϕ

) σyd

3k+

(
2

3
+ k+ς3

2µ+R3 +2ln
ς

r

)
r + C2

r 2

where C2 - is a constant, we find it from the boundary condition.
Take into account (??) and (B.7), rewrite (B.5) and obtain a formula for σp

r :

σ
p
r = 3k+u0

R
−k+ϑtr + sign

(
σr −σϕ

)
σyd

(
2

3
+ k+ς3

2µ+R3 +2ln
ς

r

)
(B.8)

Using the condition of the continuity of the displacement up (ς) = ue (ς), we obtain a formulae
for determining the constant C2

u0

R
ς+ sign
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σr −σϕ

) σydς

6µ+

(
ς3

R3 −1

)
= u0

R
ς+ (

σr −σϕ
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3k+

(
2

3
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2µ+R3

)
+ C2

ς2

C2 =−sign
(
σr −σφ

)
·
σyd

(
3k++4µ+

)
18k+µ+

ς3

Using the condition of the continuity of the displacement at the interface up (a) = u−(a), we
obtain the equation for ς

a

(
u0

R

(
k+
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−1

)
− k+ϑtr
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= sign

(
σr −σϕ

) σyd

3
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)
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We know the total displacement in plastic zone, then we can calculate the total strain in plastic
zone:

εr =
u0

R
+ sign

(
σr −σϕ

) σyd
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(
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r
− 4

3
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R
+ sign
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(
2ln

ς

r
+ 2

3
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2µ+R3 −
(
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)
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6µ+r 3

)

Since plasticity does not produce any volume change, the volume variation is due to the elastic

strain only, er −eφ = 1

2µ+

(
σr −σφ

)+ep
r −ep

φ, we obtain the plastic deformation

𝑒p = sign
(
σr −σφ

)
·
σyd

(
3k++4µ+

)
6µ+k+

(
ς3

r 3 −1

)
𝛼

Then the derivative of the plastic deformation

𝑒̇p = sign
(
σr −σφ

)
·
σyd

(
3k++4µ+

)
2µ+k+

ς2ς̇

r 3 𝛼

We compare the result with the associated flow law, and we obtain the equation for determin-
ing λ̇

λ̇= sign
(
σr −σφ

)
·
σyd

(
3k++4µ+

)
3µ+k+

ς2ς̇

r 3 , λ̇≥ 0
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n±,∗ Stoichiometric coefficients

M Chemical potential tensor

µ∗ Chemical potential of the diffusing constituent

A Chemical affinity tensor

ANN Normal component of affinity tensor

M±,∗ Molar masses

k∗ Kinetic constant

Rg Universal gas constant

c
Molar concentration of the diffusive constituent per unit

volume

ω Reaction rate

VN Reaction front velocity of surface element with normal 𝑁

T Temperature

t Time

ρ Mass density

f∗ Referential chemical energy of the diffusing constituent

c∗ Solubility of the diffusing constituent

γ Temperature-dependent chemical energy parameter

f ±
0 Chemical energy

w± Strain energies of the solid constituents per unit volume

𝜎 Stress

𝜀 Strain

𝜀tr Transformation strain

s Deviatoric stress

e Deviatoric strain

ceq Equilibrium concentration of the diffusing constituent

j∗ Gas diffusion flux

D
Diffusion coefficient of the diffusive reactant through the

transformed material

α Mass transfer coefficient

k± Bulk modulus

µ± Shear modulus

R Initial radius of sphere or cylinder

H Initial thickness of the plate

h Thickness of the transformed layer

ξ Relative thickness or degree of the chemical transformation

η Viscosity coefficient

σyd Yield stress

λ̇
Plastic multiplier
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Titre : Couplages chimio-mécaniques dans les solides inélastiques : solutions analytiques et application à l’oxydation

Mots clés : Chimio-mécanique, Solutions analytiques, Oxydation, Viscoélasticité, Plasticité

Résumé : Au cours des dernières décennies, une attention
particulière en mécanique des solides a été consacrée à
l’étude des matériaux, dont la structure change en raison de
transformations chimiques, ce qui induit des couplages forts
entre la chimie, la mécanique et la physique. Ces réactions
chimiques assistées par les contraintes sont observées
dans diverses applications industrielles et médicales. Il est
donc nécessaire de prendre en compte en détail l’influence
de l’état de contrainte et de déformation sur la transforma-
tion chimique pour prédire le comportement des éléments
structurels sous des chargements thermomécaniques et
chimiques simultanés. Le travail présenté dans cette thése
de doctorat s’appuie sur le cadre de la mécanique des
milieux continus et sur les couplages chimio-mécaniques
appliqués à des géométries particuliéres et des lois de
comportement inélastiques afin d’obtenir des solutions
analytiques de référence. Dans la première partie de la
thèse, à l’aide d’une approche thermodynamique basée
sur le concept de tenseur d’affinité chimique, une analyse
théorique est menée afin de prendre en compte les ef-
fets de la viscosité et de la plasticité sur la propagation du

front de réaction chimique pour différentes géométrie (plan,
sphère, cylindre), la vitesse de réaction étant définie par
la composante normale du tenseur d’affinité chimique. Les
expressions analytiques de la relaxation des contraintes
en arrière du front de réaction sont développées dans le
cas viscoélastique. Par ailleurs, la solution obtenue pour
un matériau transformé parfaitement plastique montre que
même uniquement en raison de transformations chimiques,
sans chargement externe, le matériau peut plastifier. Il est
également montré comment les propriétés mécaniques du
matériau initial et transforme peuvent avoir un impact sur
les évolutions des réactions chimiques. Dans la deuxième
partie de la thèse, afin de valider cette approche, des
expériences d’oxydation à haute température de fils et de
billes de nickel pur sont menées. L’objectif est d’étudier la
cinétique d’un tel front aux échelles locales et de compa-
rer les résultats obtenus avec les diverses solutions analy-
tiques. De telles comparaisons montrent ainsi comment les
propriétés rhéologiques des matériaux et de la géométrie
du solide considérées sont importantes pour prédire la pro-
pagation du front de réaction.

Title : Chemo-mechanical couplings in inelastic solids: analytical solutions and application to oxidation

Keywords : Mechanochemistry, Analytical solutions, Oxidation, Viscoelasticity, Plasticity

Abstract : In the last decades, a particular attention in
solid mechanics has been devoted to the investigation of
materials, whose structure changes due to chemical trans-
formations , which induces strong couplings between che-
mistry, mechanics and physics. Such stress-assisted che-
mical reactions are relevant in various industrial and medi-
cal applications and in modern technologies like batteries
charging/discharging cycles introducing volume changes
and cracks in electrodes, oxidation processes in MEMS
or metal-based composite materials, thermo- or photo-
oxidation of polymers. It is thus necessary to take into ac-
count the influence of stress-strain state on chemical trans-
formation in detail for predicting the lifetime and the behavior
of structural elements under simultaneous thermomechani-
cal and chemical effects. Such processes can be described
using the two-phase reaction model, in which reaction is lo-
calized at the sharp interface- reaction front, and the dif-
fusing reactant is transported to the reaction front through
the transformed material. The work presented in this PhD
thesis is based on a coupled chemo-mechanical continuum
theory applied to particular geometries and constitutive re-
lations in order to obtain analytical solutions compared to
experiments results. In the first part of the work, using the
thermodynamical approach based on the concept of che-
mical affinity tensor, a theoretical analysis is conducted in
order to take into account inelastic effects (viscosity, plasti-
city) and the geometry of structural elements (plane, sphe-

rical and cylindrical) on the chemical front propagation. The
reaction rate is defined by the normal component of the
chemical affinity tensor, which is equal to the combination
of chemical potentials. After defining equilibrium conditions,
the influence of inelastic behaviour of the transformed ma-
terial on the reaction rate is studied in details. Analytical
expressions of stress relaxation behind the reaction front
are developed in the viscoelastic case. The analytical so-
lution for perfectly plastic transformed material is obtained
and shows that even only due to chemical transformations,
without any external loading, the material can plastify. The
effect of the structure’s geometry on the chemical reaction
propagation is studied for plane, spherical and cylindrical
problems. It is also shown how the mechanical properties of
initial and new material can impact chemical reaction evolu-
tions. In the second part of the work, in order to validate this
approach, high-temperature oxidation experiments for pure
nickel wires and balls are conducted. The objective of such
experiments is to study the kinetics of such a front at local
scales and to compare the obtained results with analytical
solutions. Such comparisons show how the rheological pro-
perties of materials and geometry of the considered body
are important to predict the reaction front propagation. By
combining these experiments with the analytical solutions,
values for the diffusion coefficient and the chemical reaction
constants are obtained.
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