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Avant-propos

Cette thèse est rédigée en anglais mais un résumé des principaux résultats en français est
proposé dans l’annexe A.

Foreword

This thesis is written in english but a summary of the main results in french is proposed in
appendix A.
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General introduction

General introduction

I n the coastal environment, in river beds, torrents or for material transport in ducts, sediment
transport is present in many geophysical or industrial applications. Sediment transport corresponds
to mobilization, erosion and deposition of a dispersed phase composed of solid particles in a
liquid carrier phase. The generic notion of sediment transport contains a whole diversity of flows,
processes and it involves a wide range of spatio-temporal scales. Size of particles, density ratio
between the dispersed and carrier phases and flow regimes are one of the many ingredients at the
origin of the wide variety of physical mechanisms involved in sediment transport.

In the context of geophysical flows, particles can be organic (micro-organisms, algae, ...) or
mineral (sand, pebbles, ...). The latter are generally classified based on their size dp corresponding
to their equivalent diameter. The classification following Wentworth (1922) [123] is presented in
table 1.

Sediment types dp (mm)

Gravels Boulders ≥ 256

Cobbles 64−256

Pebbles 4−64

Granules 2−4

Sand Very coarse sand 1−2

Coarse sand 0.5−1

Medium sand 0.25−0.5

Fine sand 0.125−0.25

Very fine sand 0.0625−0.125

Silt Coarse silt 0.0312−0.0625

Medium silt 0.0156−0.0312

Fine silt 0.0078−0.0156

Very fine silt 0.00390625−0.0078

Clay 0.0001−0.00390625

Colloid < 0.0001

Table 1: Mineral sediment classification following following Wentworth (1922) [123].

Sediment size is crucial to determine the type of interactions occurring between the particles
and the carrier phase and between the particles themselves. The smallest particles (dp < 0.06mm),
having very small fall velocities, are easily driven and maintained into suspension by the car-
rier phase turbulence. For such small particles, electrostatic forces between the particles are im-
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General introduction

portant and cohesive behavior such as flocculation can occur. The dynamics of larger particles
(dp > 2mm), having a very high fall velocity, are mainly influenced by gravity and they will be
transported in the bedload regime (particles rolling or saltating on a still bed). In between these two
extremes, sand is composed of particles having intermediate sizes. The particles are big enough
for cohesive forces to be negligible and small enough to be driven either in the bedload or in the
suspended load regime.

The bottom shear stress τb applied on the bed by a flowing fluid is often taken as the controlling
parameter of sediment motion. The corresponding destabilizing force, proportional to (uτdp)

2/ρ f

with uτ =
√

τb/ρ f the bottom friction velocity and ρ f the fluid density can be compared to the
stabilizing force proportional the buoyant weight of the particles (ρs−ρ f )gd3

p with ρs the particles
density,and g the acceleration of gravity to construct the Shields number

θ =
u2

τ

(s−1)gdp
(1)

where s = ρs/ρ f the density ratio between the particles and the fluid. Particles start to move when
the Shields number exceeds a threshold value. The critical Shields number θc for the initiation of
motion is a function of the particle Reynolds number

Rep =
‖us−u f ‖dp

ν f (2)

with us the particle velocity, u f the fluid velocity and ν f the fluid kinematic viscosity. Typical
values of the critical Shields number for sand is θc ≈ 0.05.

In the coastal environment, great ecological and economical issues related to sediment trans-
port are at stake such as coastal erosion, silting phenomena or ecosystems modifications. In the
case of sandy beaches, marine currents, tides and waves are the main mechanisms at the origin
of sediment transport. During extreme meteorological events such as storms, waves and currents
generated by strong winds can significantly impact the beach dynamics and its morphology.

Figure 1: Schematic representation of the cross-shore profile of a sandy beach.

A sandy beach morphology is largely influenced by cross-shore hydrodynamic mechanisms
and corresponding sediment transport [43, 116]. As illustrated in figure 1, the cross-shore profile
of a beach is composed of different zones. Far away from the beach, waves can be considered as
sinusoidal (top panel of figure 2). In the shoaling zone, under the effect of decreasing water depth,
a combination of velocity and acceleration skewness develops resulting in a greater wave crest
(middle panel of figure 2) and a steeper front (bottom panel of figure 2) respectively. Once the
wave front is steep enough, waves break above the sand bar generating rollers that travel towards
the shoreline through the surf zone. The zone where waves run ashore is called the swash zone.
Depending on the cross-shore location, physical processes coming into play are different.

In the shoaling and swash zones, hydrodynamic forcing conditions are intense with strong
orbital velocities. During the passage of waves, a whole layer of sediment having a typical thick-
ness on the order of 10− 60dp [28] is transported in the sheet flow regime. In the surf zone,
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General introduction

where hydrodynamic forcing conditions are less intense, bed forms such as ripples may appear
and sediment transport is dominated by sediment-laden vortices generated at the top of the bed
forms during successive flow reversals [115]. During storms, intense hydrodynamic conditions
are generalized to all the zones. Bed forms are washed away in the surf zone and sheet flow occurs
everywhere across the beach profile.

Under the effects of currents and wave asymmetry, the flux of sediment during a wave cycle
can be non zero leading to a net transport rate and beach morphological evolution. Knowing the
direction and intensity of the net sediment transport rate for a given hydrodynamic condition in the
different zones allows to predict the beach morphological evolution. Given the great amount of
sand transported during sheet flow, it is of outmost importance to provide relations between sedi-
ment flux and hydrodynamic forcing for this flow regime. Furthermore, in the context of climate
change, the frequency and intensity of extreme events are expected to increase. Therefore, pre-
dicting the beach morphology evolution for intense flow conditions is crucial for the development
and protection of the coastal environment.

Sheet flow is characterized by multiple layers of sediment moving on top of the others by
sliding, rolling or saltating. In this flow regime, transport is mainly located in a high sediment
concentration layer close to the bed where interactions are dominated by friction and collisions
between the particles. However, interactions between the particles and turbulence can also play a
prominent role. Turbulent coherent structures of the fluid can pull the particles from the bed and
drive them into suspension. The suspended sediment flux can contribute for a significant part of
the total transport rate especially for fine sand that is more easily suspended.

0.0 0.2 0.4 0.6 0.8 1.0
t/T

−1

0

1

u
f ∞
/U

f m

Sinusoidal wave

0.0 0.2 0.4 0.6 0.8 1.0
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−1

0

1

u
f ∞
/U

f m

Velocity skewed wave

0.0 0.2 0.4 0.6 0.8 1.0
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u
f ∞
/U
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Figure 2: Time series of free stream velocity u f
∞ made dimensionless by the maximum free stream

velocity U f
m for a sinusoidal wave (top), a velocity skewed wave (middle) and an acceleration

skewed wave (bottom) with T the wave period.

There is not only an effect of turbulence on the transport of particles but also an effect of the
presence of the particles on the turbulence. Depending on flow conditions and particles param-
eters, the presence of the particles can modulate the surrounding fluid turbulence. Particles can
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General introduction

contribute to increase turbulence in their neighborhood because of wake effects [9] and attenuate
it by density stratification [29] or drag induced dissipation [23]. Because of the complexity of the
physical processes and the large range of spatio-temporal scales involved in turbulence-particles
interactions, they remain not well known especially for finite-size particles (particles having a
diameter larger than the smallest turbulent scales). Even if significant progress has been made,
turbulence-particle interactions modeling remains an open question. The complex interplay be-
tween particles and turbulence and particles themselves is often called four-way coupling.

Given the importance of fine scale physical processes occurring in the bottom boundary layer
on sediment transport, our ability to predict the evolution of the coastal environment at large
scales relies on our ability to understand and model the fine scale interactions. In this context,
this thesis aims at bringing a better characterization of fine scale physical processes involved in
sand transport in the sheet flow regime under waves using high resolution numerical simulations.
A turbulence-resolving Eulerian two-phase flow model is developed to reproduce experimental
configurations of idealized sand transport conditions in the coastal environment. The numerical
simulations conducted during this thesis help improving our understanding of the mechanisms
occurring in the wave bottom boundary layer for intense flow conditions and provide a deeper
insight into the modeling of turbulence-particle interactions.

In the first chapter, a literature review about turbulence-resolving two-phase flow models, their
strength and limitations together with a review of the most recent advances in characterizing sedi-
ment transport in oscillatory boundary layers is presented to stress the motivations of this thesis. In
the second chapter, the turbulence-resolving two-phase flow model sedFoam, its implementation
and validation are described. In the third chapter, an analysis on the physical processes involved
in oscillatory sheet flow for medium and fine sand is presented. In the fourth chapter, the effect of
the wave shape on the net sediment transport rate is investigated. In the fifth chapter, a correction
model to take into account finite-size effects is proposed and validated using dilute particle-laden
unidirectional boundary layer flow configurations. Finally, conclusions are drawn and perspectives
of this work are discussed.
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1
State of the art and motivations

This chapter presents the state of the art concerning turbulence-
resolving methodologies for sediment transport and the recent ad-
vances on the characterization of physical processes involved in sheet
flow. The objective of this chapter is twofold. First, the contribution
of turbulence-resolving methodologies to improve the physical un-
derstanding of particle-laden flows is discussed. Strength and limita-
tions of the different approaches are highlighted based on their appli-
cability to a given flow condition and their computational cost. Sec-
ond, the current knowledge on coastal sand transport in sheet flow
regime involving mono-dispersed sand particles based on both ex-
perimental and numerical studies is presented. More particularly, the
emphasis is set on oscillatory flows and the effects of grain size and
wave shape on sand transport.

Contents
1.1 Turbulence-resolving methodologies for sediment transport applications . 7

1.1.1 Fully resolved direct numerical simulation . . . . . . . . . . . . . . . . 7
1.1.2 Lagrangian point-particle methodology . . . . . . . . . . . . . . . . . 8
1.1.3 Eulerian methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Method of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.5 Toward the improvement of fluid-particle interaction modeling . . . . . 14

1.2 Sand transport in the sheet flow regime . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Investigation of sheet flow processes at the laboratory scale . . . . . . . 15
1.2.2 Turbulence-averaged numerical modeling of sheet flow . . . . . . . . . 23

1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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1.1. Turbulence-resolving methodologies for sediment transport applications

1.1 Turbulence-resolving methodologies for sediment transport ap-
plications

Our ability to predict the dynamics of the system as a whole relies on our understanding of the
fine-scale physical processes such as particle–particle interactions or fluid–particle interactions.
As a consequence, the development of modeling methodologies that account for the large number
of scales and processes involved in sediment transport is a highly active topic among the sediment
transport scientific community [120]. The modeling methodology has to be carefully chosen de-
pending on the available computational resources, flow regime and turbulence-particle interaction
regime [9].

In the next sections, different available turbulence-resolving modeling methodologies are pre-
sented together with their strength and limitations. Then, guidelines to find the “method of choice”
for given flow and particle parameters are provided based on the regime maps proposed by Bal-
achandar (2009) [9] and Finn & Li (2016) [39]. Eventually, recent development of fluid-particle
interaction models are presented.

1.1.1 Fully resolved direct numerical simulation

Fully resolved direct numerical simulation (FR-DNS) is the most powerful tool to accurately pre-
dict physical processes occurring at the grain scale. All the relevant scales of the flow, the fluid-
particle interface and, by extension, the fluid–particle interactions are explicitly resolved by solv-
ing the incompressible Navier-Stokes equations constituted of the mass and momentum equations

∂ui

∂xi
= 0 (1.1)

and
∂ρ f ui

∂ t
+

ρ f ∂uiu j

∂x j
=

∂σi j

∂xi
+ f v

i +ρ
f gi + f p

i (1.2)

with ui = (u,v,w)T the point velocity of the fluid, xi = (x,y,z)T the position vector, σi j the fluid
stress tensor, f v

i the volume forces driving the flow and f p
i a force term ensuring no-slip boundary

condition at the particle interface. Indices appearing twice in a single term implies summation of
that term over the three spatial components following Einstein’s repeated index notation.

Figure 1.1: Visual representation of marker points on the particle’s surface and background com-
putational mesh for fully resolved direct numerical simulations using immersed boundary method.

The most popular method to represent the interface between the fluid and the particles for
FR-DNS is the immersed boundary method (IBM) [120]. The particle’s surface is discretized and
tracked using marker points moving inside the fixed mesh (see figure 1.1). Unlike in conventional
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Chapter 1. State of the art and motivations

methods using body-fitted grids like overset method [121], using IBM prevents the computational
mesh to conform to the particle’s shape [11, 111].

In sediment transport applications, particles experience multiple collisions and enduring con-
tact especially when they interact with a deposited bed. Accurate description of particle-particle
interactions is therefore required to take a full advantage of the predictive capabilities that particle
resolved simulations can provide [120]. In FR-DNS applications involving large volume fraction
for which particle-particle interactions become important, contacts between particles are usually
modeled using discrete-elements method (DEM) based on the soft-sphere approach. The contact
force between two particles is assumed to be the contribution of normal and tangential elastic and
damping components and a tangential frictional component (see figure 1.2).

Figure 1.2: Representation of the contact force modeling between two particles with DEM using
the soft sphere approach.

Eventually, the movement of each particle is computed by integrating the Euler-Newton equa-
tions for rigid body motion taking into account forces and torques induced by the fluid, gravity
and solid contact between the particles.

Taking advantage of the resolved fluid-particle interactions, FR-DNS is the best method to
study finite-size effects (i.e. particles larger than the Kolmogorov scale) [60, 128, 129] and the
effect of the particle shape [5, 6, 35].

In coastal sediment transport applications, FR-DNS methodology provided significant insight
into the mechanisms responsible for initiation of transport [69], ripple formation under steady
and oscillatory flows [70, 103] or bed load transport [118]. Given the high resolution required to
perform FR-DNS, the applicability of this methodology is limited because of computational costs.
More details on the limitations of the FR-DNS methodology are provided in section 1.1.4.

1.1.2 Lagrangian point-particle methodology

In the Lagrangian point-particle (PP) methodology, particles are considered punctual. For this
assumption to be valid, the grid size must be larger than the particle diameter [9] (see figure 1.3).
As a consequence, the flow is not resolved at the particle scale and fluid particle interactions are
modeled using empirical correlations. Compared with the FR-DNS methodology, PP methodology
is less computationally expensive given the fact that requirements in term of flow resolution can
be relaxed. Indeed, the equations can be filtered to perform large-eddy simulation (LES) and still
provide quantitative results as long as the effects of unresolved turbulent scales are accurately
modeled [9, 39].

Particle trajectories are obtained by integrating thr momentum conservation equation for each
particle taking into account hydrodynamic forces and contact forces between the particles follow-
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1.1. Turbulence-resolving methodologies for sediment transport applications

Figure 1.3: Visual representation of two point-particles and their trajectories.
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with Vp and up the volume and the velocity of particle p, f f
i the hydrodynamic force applied by

the fluid on particle p and f pq
i the forces applied by a particle q on particle p.

For dilute systems, particle-particle interactions can be neglected. However, for typical sand
transport applications, sediment volume fraction can become large. Similarly to FR-DNS, contacts
between particles in the PP methodology can be modeled using DEM.

The key challenge to obtain a good representation of the flow using PP methodology is to
accurately model f f

i . The most common representation of fluid particle interactions contain the
contribution of drag, lift, added mass and Basset history forces [44, 68]. The drag force, function
of the relative velocity between the fluid and the particle and the time scale associated with the
particle’s inertia, acts as a relaxation term, lift forces take into account rotation effects and the non-
uniform pressure distribution around the particles, added mass represents the effect of the relative
acceleration between the fluid and the particle and Basset history force represents the effect of the
time development of the boundary layer around the particle in a non-uniform flow.

Assumptions made to develop these interaction laws are either limited in term of Reynolds
number or in term of flow uniformity. The problem intensifies when there is no more separation
of scales with particles bigger than the smallest turbulent scale (finite-sized particles) [9]. There is
no fundamental objection to model fluid-particle interactions for finite-size particles but complex
mechanisms occurring at grain scale should be carefully integrated by taking into account unre-
solved turbulence-particle interactions using sub-particle models [39]. More details about ongoing
development on interaction laws for PP methodology are given in section 1.1.5.

The PP methodology has successfully been applied to sediment transport applications such
as particle sedimentation in a turbulent pipe flow [7], unidirectional steady flows [104] or ripples
and sheet flow under waves [40]. Given the fact that the trajectories of each individual particles
are tracked, the applicability of the PP methodology can be limited by the number of particles
involved in the flow. More details on the limitations of the PP methodology are given in section
1.1.4.

1.1.3 Eulerian methodology

Other methodologies operate a total change of paradigm compared with the FR-DNS and PP
methodology by no longer tracking the trajectories of each individual particles but by having
an Eulerian representation of the dispersed phase. The two-phase system is represented by two
inter-penetrating continua composed of the dispersed and carrier phase for which local and in-
stantaneous concentrations and velocities are defined everywhere in the domain by performing a

9



Chapter 1. State of the art and motivations

spatial averaging operation (see figure 1.4). More details on the spatial averaging are provided in
chapter 2.

Figure 1.4: Visual representation of spatial averaging operation for Eulerian representation of the
dispersed phase with φ the volume fraction of particles.

Depending on the turbulence-particle interaction regime and on the volume fraction, differ-
ent level of complexity can be found in Eulerian models. For very small particles that perfectly
follow the carrier phase, the local dispersed phase velocity is assumed to be equal to the local
carrier phase velocity upon which is superimposed the particle settling velocity [39]. Making the
so-called passive scalar assumption allows to simplify the numerical resolution of the problem.
Compared with single-phase flow models, only one additional mass conservation equation (1.4)
for the particles needs to be solved [9]

∂φ

∂ t
+

∂

∂xi

[(
u f

i + vs
gi

‖ggg‖

)
φ

]
= ν

φ ∂φ

∂xi
(1.4)

with φ the sediment concentration, u f
i the spatially-averaged fluid velocity, vs the particle fall

velocity, ‖ggg‖ the norm of the acceleration of gravity and vφ the sediment diffusion coefficient.
This model can be extended by including a relaxation equation for the particle phase velocity to
capture more accurately the velocity difference that can exist between the particles and the carrier
phase [37]. Given the fact that the dispersed phase is assumed to be in equilibrium with the carrier
phase, this modeling methodology will be referred to as equilibrium-Eulerian (EE) methodology
in the following.

For increasing particle sizes and volume fraction, the particles do not exactly follow the carrier
phase and the effect of particle-particle interactions can no longer be neglected. A more complex
set of equations is required to represent the two-phase system including coupled mass and momen-
tum equations for both the carrier and the dispersed phase together with an energy equation for the
particles [9]. This modeling methodology will be referred to as the two-fluid (TF) methodology.
The momentum exchange between the two phases is not resolved but modeled using spatially av-
eraged contributions of the drag, added mass and lift forces. Concerning the Basset history force,
given the fact that it is defined from a purely Lagrangian point of view and not from local and
instantaneous flow variables, it would be very difficult if not impossible to obtain its average ex-
pression for the Eulerian formalism and should therefore be neglected. Derivation of the TF model
and closure models are detailed in chapter 2.

Similarly to the PP methodology, the assumptions made to derive TF models comprise grid
size larger than the particle diameter and scale separation. Equations can be filtered to perform
LES as long as a appropriate sub-grid closures are provided. Furthermore, similarly to PP method-
ology, there is no fundamental objection for simulations involving finite-size particles as long as
sub-particle interactions are modeled [39].

The EE methodology has been extensively used to study fine sediment transport in turbidity
currents [16, 101] or oscillatory flows [24, 83, 84, 130]. TF methodology has mostly been used for
gas-solid applications such as fluidized beds [1,85]. The development of the turbulence-resolving
TF methodology for sediment transport applications is more recent providing quantitative results
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for simulations of unidirectional sheet flow [23] and qualitative results for oscillatory sheet flow
configurations [21].

1.1.4 Method of choice

Depending on the flow regime and the number of particles involved, the appropriate turbulence-
resolving modeling methodology to predict the evolution of a given two-phase system should
be carefully chosen relative to the available computational resources and the turbulence-particle
interaction regimes.

FR-DNS methodology is obviously the most relevant tool to provide statistical description of
physical processes that can eventually be used as constitutive equations for larger scales sediment
transport models [120]. However, this modeling methodology suffers from important limitations
in term of flow regimes and number of particles because of the computational expense induced by
the wide range of flow scales that needs to be resolved. Even with nowadays available computa-
tional power, typical configurations investigated using FR-DNS are still far away from the most
energetic conditions present in the river or coastal environment. The most energetic oscillatory
flow conditions investigated recently using FR-DNS by Mazzuoli et al. (2019) [70], Mazzuoli et
al. (2020) [69] and Vittori et al. (2020) [118] corresponded to Shields numbers θ on the order of
0.5 whereas typical values of θ encountered in the coastal region can be up to ten times larger [81].
Configurations involving the presence of a deposited bed require modeling of a large number of
particles. As the flow regime becomes more energetic, the transport layer thickness becomes larger
and the number of moving particles that needs to be tracked increases drastically. The same lim-
itation applies to the PP methodology. Even if the flow regime in term of Reynolds number can
be relaxed by performing LES [9,39], the greater number of moving particles for flow regimes in-
creasing in intensity greatly limits the applicability of the PP methodology for the most energetic
conditions encountered in the environment. As an example, the oscillatory sheet flow configu-
ration from O’Donoghue & Wright (2004a) [81] involving medium sand with median diameter
d50 = 280µm has been successfully reproduced by Finn et al. (2016) [40] using a point-particle
model. Despite the effort made to reduce the number of particles to be tracked in the numerical
domain, their simulations involved 3.8 million particles. Compared with configurations simulated
by Finn et al. (2016) [40], other configurations involving smaller particles subjected to a similar
flow forcing, the Shields number, inversely proportional to dp, will become even greater. As a
consequence of the linear relation between the Shields number and the transport layer thickness
made dimensionless by dp [109], the number of transported particles to be tracked would increase
by several orders of magnitude making the computational cost of such simulations prohibitive.

Given the absence of limitations in term of number of particles using the Eulerian methodol-
ogy, EE and TF models have a great advantage compared with Lagrangian methodologies to pre-
dict the evolution of sediment transport systems involving intense flow regimes and a large number
of particles. However, the assumptions made to derive the EE and TF models are restrictive having
for effect to narrow their range of applicability in term of turbulence-particle interaction regimes.

As pointed out in the descriptions of the modeling methodologies, the scale separation be-
tween the flow and the particles, the capacity of a particle to follow the carrier phase fluctuations
and turbulence modulation induced by the particles come into play in the choice of a modeling
methodology for a given two-phase system. More specifically, the important flow parameters ori-
enting the choice of the modeling methodology are the size ratio dp/η with η the length scale
associated with the smallest turbulent flow scales (or Kolmogorov length scale), the stokes num-
ber St = ts/tη with ts the particle response time and tη the time scale associated with the smallest
turbulent flow scales (or Kolmogorov time scale), and the particle Reynolds number Rep.

During the last four decades, many studies represented regime maps of turbulence-particle
interactions using scaling laws based on these three parameters in order to provide guidelines
to select the “method of choice” [9, 32–34]. More recently, Finn & Li (2016) [39] re-casted
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Balachandar (2009) [9] scaling relations for sediment transport applications in terms of Shields
parameter defined in equation (1) and Galileo number

Ga =

√
(s−1)gd3

p

ν f . (1.5)

Figure 1.5a illustrates this map for typical values of the density ratio in sediment transport ap-
plication s = 2.65 with ρs = 2650 kg.m−3 for natural sediment particles and ρ f = 1000 kg.m−3 for
water. Lines of constant suspension numbers vs/uτ = 0.3, 1 and 5 representing the ratio between a
velocity scale associated with gravitational settling and a velocity scale associated with turbulent
intensity are also represented on the regime map. The suspension number characterizes the capa-
bility of the carrier phase turbulence to suspend particles by representing the relative importance
of bed load compared with suspended load. Decreasing suspension number corresponds to greater
fraction of the suspended load in the total transport. For values significantly higher than unity, sed-
iments are transported as bed-load only (no-suspension) while for values lower than 0.3 sediments
are transported as wash-load and never settle to the bed. In between these two extreme values, bed
load and suspended load coexist. The regime map is divided into five regions corresponding to
different dominant turbulence-particle interactions.
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Figure 1.5: Turbulence-particle interactions regime map (panel (a)) and method of choice (panel
(b)) for sediment transport applications with s = 2.65 from Finn & Li (2016) [39].

The first regime (regime I in panel (a) of figure 1.5) corresponds to values of the Shields pa-
rameter lower than the critical value for which particles are not moving. In regime II, gravitational
settling dominates and the carrier phase turbulence is too weak to suspend the particles. In regime
III, corresponding to rather fine particles and energetic flow conditions (St < 1 and high θ ) the up-
ward turbulent sediment flux associated with Kolmogorov scale exceeds the gravitational settling
flux to lead to the existence of a turbulent suspension. In this regime, the particles behave almost as
passive tracers of the carrier phase velocity fluctuations. In regimes IV and V, the particle Stokes
number is higher than unity St > 1 and the particles dynamics is primarily influenced by an inertial
eddy scale having a time scale that matches the particle response time. The length scale associated
with these eddies is denoted as l∗ = t3/2

s ε1/2 with ε the dissipation rate of turbulent kinetic energy
(TKE). The difference between regime IV and V is the modulation of the carrier phase turbulence
induced by the presence of particles. In regime IV, turbulence-particle interactions essentially lead
to a net dissipation of TKE corresponding to particulate Reynolds number lower than a certain crit-
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1.1. Turbulence-resolving methodologies for sediment transport applications

ical value (Rep < 400). For higher values of Rep, the particle wakes becomes oscillatory leading
to a net production of turbulence (regime V).

In panel (b) of figure 1.5, the map for the “method of choice” suggested by Finn & Li (2016)
[39] are presented for s = 2.65. For particles having a response time smaller than the Kolmogorov
time scale (St < 0.2), there is no need to have a complex representation of the two-phase system.
The action of individual particles does not affect the fluid turbulence, the time scales associated
with the particles are smaller than the Kolmogorov time scale meaning that particles follow exactly
the fluid motion. In that case, the use of EE methodology is greatly justified given the very low
computational resources required to predict the evolution of the two-phase flow system. For higher
Stokes numbers (St > 0.2) more sophisticated models such as TF models, PP models or FR-DNS
models are required to take into account the couplings between the particles and the carrier phase
turbulence.

Figure 1.6: Idealized TKE spectrum and flow scales in regions of the map PP-1 (left panel), PP-2
(middle panel) and PP-3 (left panel) from panel (b) of figure 1.5.

According to Balachandar (2009) [9] and Finn & Li (2016) [39], for inertial particles, corre-
sponding to St > 1, the PP approach is the method of choice. The region of the map for which
St > 1 can be divided into three sub-regions depending on the regime of turbulence-particle inter-
actions (see panel (b) of figure 1.5). In the PP-1 region, the grid size ∆ should be smaller than the
particle diameter to resolve l∗ and a sub-particle scale correction model is needed to accurately
predict the particle dynamics (left panel of figure 1.6). In the PP-2 region, l∗ is greater than the
particle diameter meaning that the particle relative velocity can be accurately predicted from the
resolved flow scales because the grid size can be chosen such that l∗ > ∆ > dp, i.e. a separation
of scale exists between the particle size and the most efficient eddy sizes for particles dynamics
(middle panel of figure 1.6). Eventually, in the PP-3 region, the presence of particles leads to
increase the production of turbulence and Rep > 400 (right panel of figure 1.6). In this regime,
either FR-DNS should be used or the PP methodology should incorporate additional models to
account for the unresolved sub-particle scale turbulence production processes [39].

According to the authors, the TF approach is only suited in a narrow band of the regime
map for 0.2 < St < 1. Indeed for St > 1, the uniqueness of the Eulerian particle phase velocity
field is not guaranteed [36]. In other words, for a given fluid phase velocity field, the particles
can follow different paths (i.e. the particles velocity field is not unique) depending on the initial
condition. Nevertheless, uniqueness of the particle phase velocity is not crucial considering time-
averaged particle phase quantities (e.g. concentration, velocity) and assuming ergodicity. More
precisely, time-averaged variables are issued from multiple realization of the flow and, therefore,
multiple particles trajectories. However, similarly to the point-particle approach, for finite-sized
particles, there is no clear separation of scales between the turbulent motions and the particle size
and additional sub-particle scale correction models are required.

As a consequence of supposedly narrow range of applicability of the TF model compared with
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the large number of scales involved in sand transport, the scientific community under-estimated the
predictive capabilities of the TF model and preferred the PP methodology at its expense. However,
parameter ranges provided by scaling analysis are not fixed and can even overlap [9, 39, 120].
Therefore, taking advantage of the opportunity to overcome the limitation in term of the number
of particles to simulate intense flow configurations such as oscillatory sheet flow using the TF
model is crucial.

However, fluid-particle interactions laws derived for idealized flow conditions should be im-
proved to cover the widest range of flow and particle parameters using the TF model and further
extend its range of applicability. The recent advances in fluid-particle interaction models are pre-
sented in the next section.

1.1.5 Toward the improvement of fluid-particle interaction modeling

Classical fluid-particle interaction laws based on a drag coefficient are derived for particles smaller
than the Kolmogorov length scale in a non-uniform flow in the limit of small Reynolds num-
bers [44, 68]. This assumption is no longer valid for most sediment transport applications [120].
The Reynolds number dependency of the drag law is generally accounted for using empirical
corrections obtained from either experiments or numerical simulations but taking into account
finite-size effects is not trivial [120].

Experimental studies [86,119,126] provided evidence that finite-size particle dynamics is sub-
stantially affected by turbulent flow scales smaller than the particles compared with the case of
particles smaller than the Kolmogorov length scale. It is therefore necessary to account for the
inhomogeneity of the flow at the particle scale for the case of finite-size particles [48]. All the
studies agreed on the facts that the variance of the acceleration probability density functions de-
creases for increasing particle size. These experimental observations have been further confirmed
by numerical studies using FR-DNS or PP methodology [15, 48, 51, 119].

One way to recover some of the features of finite-size particle acceleration probability density
function is to include the Faxén correction term in the fluid-particle interaction model. The Faxén
correction term takes into account the non-homogeneity of the flow in the particle’s neighborhood
by including the integral of the flow velocity and acceleration over the surface and the volume of
the particle respectively in the definition of the interaction forces. By means of approximations,
Calzavarini et al. (2009) [15] successfully implemented the Faxén correction term and tried to
reproduce acceleration statistics of finite-size particles from experimental configurations of Voth
et al. (2002) [119] and Qureshi et al. (2007) [86]. They managed to recover some of the features
of the particles acceleration such as the reduction of particle acceleration fluctuations and increase
of acceleration time correlation for increasing particle size.

Defined from a purely Lagrangian point of view, implementing the Faxén correction term in
the Eulerian framework appears to be a very challenging task. A more Eulerian friendly modeling
approach to take into account finite-size effects would be more useful.

Gorokhovski & Zamansky (2018) [48] proposed a sub-grid closure for the PP methodology
to account for the effect of unresolved turbulent flow scales in fluid-particle interactions for both
small and finite-size particles. In their model, large scale contributions of the instantaneous particle
acceleration is given by resolved flow scales and the effect of unresolved flow scales is taken into
account by the addition of a random contribution modeled using a stochastic approach.

For particles larger than the Kolmogorov length scale, the effect of turbulent flow scales
smaller than the particle is taken into account by replacing the fluid viscosity in the drag model by
an effective viscosity at the scale of the particle defined as the sum of the fluid viscosity ν f and
the turbulent viscosity at the particle scale ν t

p. From mixing length hypothesis and Kolmogorov
theory, Gorokhovski & Zamansky (2018) [48] showed that ν t

p scales with the particle diameter dp

and the local and instantaneous dissipation rate of TKE at the particle scale εp following

ν
t
p ∼ ε

1/3
p d4/3

p . (1.6)
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1.2. Sand transport in the sheet flow regime

Rather than only acting as a temporal filter, the drag law now also acts as a spatial filter. Turbulent
flow scales larger and smaller than the particle diameter will contribute differently to the particle
dynamics.

While the use of the Faxén correction term is suitable for Lagrangian simulations, the method-
ology developed by Gorokhovski & Zamansky (2018) [48], taking into account finite-size effect
through an effective viscosity at the particle scale included in the expression of the drag force,
is more suitable for volume-averaged two-phase flow models such as the TF model. Indeed, the
definition of turbulent viscosity at the scale of the particle can be function of the Eulerian flow
variables.

1.2 Sand transport in the sheet flow regime

Classical sand transport applications in the coastal environment correspond to Galileo numbers
on the order of Ga∼O(1−100) and Shields numbers θ ∼O(0−10) covering all the turbulence-
particle interaction regimes discussed in section 1.1.4. Furthermore, for unsteady flows occurring
in sediment transport configurations under waves for example, the Shields number is not constant
throughout the wave period. As a consequence, a wide variety of turbulence-particle interaction
regimes coexist at different moments or different locations resulting in complex transport mecha-
nisms.

Given the importance of the sheet flow transport regime in the morphological evolution of
sandy beaches, a lot of effort has been put into understanding the relations between intense flow
conditions and the corresponding sand transport. In the last three decades, the conjunction of
experimental and numerical investigation of sheet flow in unidirectional and oscillatory boundary
layer, an idealization of the wave bottom boundary layer, provided significant insight into sand
transport processes [97].

In this section, the knowledge acquired on sheet flow from experiments in flumes and oscil-
lating water tunnels (OWTs) are first presented. Then, the insight provided by single phase flow
models and turbulence-averaged two-phase flow models on the physical processes occurring in
oscillatory sheet flow is discussed. Eventually, the limitations of the aforementioned models to
accurately simulate oscillatory sheet flow are debated to introduce the motivations for performing
turbulence-resolving two-phase flow simulations.

1.2.1 Investigation of sheet flow processes at the laboratory scale

Unidirectional sheet flow

In a first attempt to predict sand transport in the sheet flow regime as a function of macroscopic
parameters of the flow and characterize underlying physical processes, unidirectional sheet flow
experiments were performed. Whereas early experimental investigations mainly focused on relat-
ing the dimensionless streamwise sediment flux

Q∗ =
Q√

(s−1)gd3
50

(1.7)

to the Shields number θ using power laws of the form Q∗ = m(θ −θc)
n [125], experiments from

Sumer et al. (1996) [109] focused on the vertical structure of the flow. Detailed measurements of
sediment concentration and flow velocity from dense to more dilute regions of the flow allowed
to highlight features of the velocity profile in the near bed region and to characterize flow resis-
tance and sheet flow layer thickness as a function of the Shields number. The authors showed
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that the apparent roughness increases for increasing Shields number and that the dimensionless
sheet flow layer thickness δs/d50 increases linearly with the Shields number. From figure 1.7, the
dimensionless sheet flow layer thickness is well represented by the relation

δs

dp
= 13θ . (1.8)
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Figure 1.7: Sheet flow layer thickness made dimensionless by the median diameter δs/d50 as a
function of the Shields number θ from Sumer et al. (1996) [109].

Considering the wide range of flow and particle parameters investigated by Sumer et al. (1996)
[109], their experimental configurations have been extensively used as model validations [20, 76,
87]. However, velocity and concentration were not measured simultaneously.

Taking advantage of the collocated measurements of concentration and velocity that offer the
acoustic concentration and velocity profiler (ACVP) [54], unidirectional sheet flow experiments
from Revil-Baudard et al. (2016) [89] provided significant insight into turbulent processes occur-
ring inside the sheet flow layer, especially the effect of the bed-level variability and the modifi-
cation of the von Kármán parameter in the expression of the logarithmic velocity profile. This
experimental configuration has been reproduced numerically using a TF model for LES by Cheng
et al. (2018) [23]. The numerical study from Cheng et al. (2018) [23] is the first reported use of
the turbulence-resolving TF model for sediment transport applications. Comparison between av-
erage Reynolds stress, velocity and concentration profiles from experiments and simulations using
the TF model with three different resolutions are presented in figure 1.8.

Overall, the agreement between numerical simulation and experimental measurements is sat-
isfactory. However, sediment suspension is under-estimated by the TF model in the upper section
of the flow with a significant grid size dependency.

The LES model used by Cheng et al. (2018) [23] integrates a sub-grid closure model for fluid-
particle interactions developed by Ozel et al. (2013) [85] for fluidized bed applications. The sub-
grid model takes into account the effect of unresolved mesoscale structures formed by preferential
concentration of particles in the momentum exchange term between the two phases. Considering
that typical length scale associated with the mesoscale structures is on the order of 10 to 100
particle diameters [1] and that the resolution of the simulations presented in Cheng et al. (2018)
[23] is on the order of the particle diameter or smaller, mesoscale structures are resolved and the
use of the sub-grid closure for fluid-particle interactions is not ideal. From concentration profiles
given by simulations without the use of the sub-grid model (not shown), particle suspension is
even more under-estimated.

In the sheet flow configuration investigated by Revil-Baudard et al. (2016) [89] and Cheng et
al. (2018) [23], particles are bigger than the Kolmogorov scale. Finite-size effect probably play
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1.2. Sand transport in the sheet flow regime

Figure 1.8: Profiles of averaged Reynolds stress in panel (a), velocity in panel (b) and concen-
tration in panel (c) from experiments (symbols) and numerical simulations using the TF model
with a coarse resolution (dash dotted black line), a medium resolution (dashed line) and a fine
resolution (solid line) from Cheng et al. (2018) [23]. In this figure, z is the vertical coordinate, zb
is the bed level, d is the particle diameter, .̄ is the ensemble averaging operator, u f ′ and w f ′ are
the streamwise and spanwise fluid velocity fluctuations, um is the streamwise mixture velocity and
φ the sediment concentration.
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an important role and shall be modeled to accurately predict the vertical distribution of particles.
Even if the investigation of unidirectional sheet flow helps providing relations between sand

transport rate and macroscopic flow parameters, investigation of oscillatory sheet flow configura-
tions, more representative of the wave bottom boundary layer is necessary to be able to predict
morphological evolution in the coastal environment.

Oscillatory sheet flow

Performing experiments in OWTs allows to reproduce idealized near-shore sediment transport
configurations in a controlled way. In OWTs, a piston is located at one end of the tunnel and the
other end is open to the atmosphere (see figure 1.9). The back and forth motion of the piston
allows to mimic the time dependent pressure gradient induced by the free surface oscillations.

Figure 1.9: Schematic representation of an oscillating water tunnel (OWT).

Water tunnel experiments allows to provide important data to derive empirical descriptions
of the physical processes and to develop and test numerical models [81]. Indeed, they offer the
advantage to be easily reproduced numerically because of the absence of a free surface. However,
compared with real waves, free surface effects such as progressive wave streaming and spatial non-
uniformity of the flow in the direction of the wave propagation are not reproduced in OWTs [28].
Nevertheless, flows generated in water tunnels remain a good approximation of flows occurring
under real waves [82].
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Figure 1.10: Maximum sheet flow layer thickness made dimensionless by the median diameter
δ m

s /d50 as a function of the maximum Shields number θ m from Dohmen-Janssen et al. (2001) [29]
ans Sumer et al. (1996) [109].

From comparative experiments performed in an OWT and a wave flume, Dohmen-Janssen &
Hanes (2002) [28] showed that the behavior of oscillatory sheet flow is the same between the two
experimental facilities for a given wave condition. However, vertical contributions of the orbital
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velocity present under progressive waves are suppressed in a water tunnel having for effect to
slightly decrease the vertical diffusion of particles into the flow.

Time dependent concentration measurements in OWTs experiments allowed to describe the
behavior of the sheet flow transport layer. Experiments involving medium sand of median diameter
d50 = 210 µm under velocity skewed and sinusoidal flow forcing typical from the near shore
environment with maximum free stream velocity U f

max ∼ O(0.5− 1.5 m.s−1) and wave period
T ∼O(6−9 s) from Ribberink & Al-Salem (1995) [92] and Dohmen-Janssen & Hanes (2002) [28]
showed that the sheet flow layer thickness δs has a typical size of 10 to 60 particle diameter. In
their definition, δs is calculated as the difference between the erosion depth δe corresponding to
the bed level at which the fluid velocity goes back to zero and the bed level at which the sediment
concentration is equal to φ = 8% corresponding to location where inter-particle collisions become
less dominant.

Figure 1.11: Time series of sediment concentration in percent at different elevations (denoted zb
as a fraction of the particle diameter d in this figure) in the pick-up layer (positions zb = 2d and
zb = 4d under the initial bed level), in upper sheet flow layer (positions zb = 1d, zb = 2d and
zb = 4d above the initial bed level) and at initial bed level (position zb = 0d) in the bottom panel
compared with the free stream velocity as a fraction of its maximum value (u f

0/um in this figure) in
the top panel taken from Hsu et al. (2004) [53].

Furthermore, the authors stressed the fact that the dimensionless maximum sheet flow layer
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thickness δ s
m/d50 increases linearly with the maximum Shields number θ m. Similarly to the steady

sheet flow configurations from Sumer et al. (1996) [109], Dohmen-Janssen et al. (2001) [29]
showed that the dimensionless maximum sheet flow layer thickness for configurations involving
medium and coarse sand is well represented by expression (1.8) (see figure 1.10) .

In other words, for the flow and particle parameters investigated in their experiments, the
evolution of the sheet flow layer thickness during the wave can be represented as a succession of
quasi-steady states.

In more details, Ribberink & Al-Salem (1995) [92] and Dohmen-Janssen & Hanes (2002) [28]
highlighted the existence of three layers in the sediment concentration profile. In the lower part
of the sheet flow layer called the pick-up layer, successive erosion and deposition phases occur
during acceleration and deceleration phases of the wave respectively. In the upper part of the sheet
flow layer, concentration increases during acceleration phases and decreases during deceleration
phases. Above the sheet flow layer, the suspension layer is characterized by dilute particles driven
into suspension by the carrier phase turbulence. Typical time series of sediment concentration in
the pick-up layer and upper sheet flow layer for oscillatory sheet flow configurations involving
medium or coarse sand are compared with the free stream velocity in figure 1.11.

In the upper sheet flow layer, concentration is in phase with the free stream velocity. Between
the pick-up layer and the upper sheet flow layer, concentration is in opposition of phase because
of the vertical exchange of sediment between the two layers during acceleration and deceleration
phases of the waves. From observations made by Ribberink & Al-Salem (1995) [92], at the top part
of the sheet flow layer (bottom of the suspension layer), the maximum concentration corresponds
to the moment of highest orbital velocity. The higher up in the suspension layer, the larger the
phase shift between concentration and flow velocity becomes.

Visually, this evolution of the concentration profile can be represented as a clockwise rotation
of the concentration profile around an almost constant concentration “pivot” during flow accelera-
tion resulting in a decrease in concentration in the pick-up layer and an increase in the upper sheet
flow layer layer and an anticlockwise rotation resulting in an increase of the concentration of the
pick-up layer and a decrease in the upper layer as sediments settle back to the bed during flow
deceleration [81] (see figure 1.12).

Figure 1.12: Schematic representation of the concentration profile rotating clockwise during flow
acceleration and anti-clockwise during flow deceleration around the concentration pivot (drawn
from O’Donoghue & Wright (2004a) [81]).

From their experiments involving similar flow forcing compared with Ribberink & Al-Salem
(1995) [92] and Dohmen-Janssen & Hanes (2002) [28] and different type of sand, O’Donoghue
& Wright (2004a) [81] provided quantitative description of intra-wave sediment concentration
profiles. Based on their observations the concentration profile can be well characterized by the
erosion depth δe(t) and a reference concentration φ0 at a reference bed level y0 taken at the top of

20



1.2. Sand transport in the sheet flow regime

the pick-up layer where concentration is relatively constant following the power law

〈φ〉(y, t) = (y0−δe(t))αφ

(y0−δe(t))αφ +

(
1
φ0
−1
)
(y−δe(t))

(1.9)

with 〈 ·〉 the phase averaging operator, αφ an empirical coefficient and y the vertical space coordi-
nates.

For more severe wave conditions (greater maximum free stream velocity or shorter period),
the effect of the pressure gradient can become dominant at flow reversal resulting in a totally
different sheet flow layer behavior. Experimental studies from Zala-Fores and Sleath (1998) [131]
and Sleath (1999) [107] revealed the existence of a bed failure and formation of a plug flow under
strong flow acceleration. For pressure gradient higher to a certain threshold, the bed loses its
yield strength and sediments move as a single block like a plug. As flow velocity increases, a
shear layer develops having for effect to erode the plug and the sheet flow layer recovers classical
characteristics but with a much larger thickness.

To characterize the flow acceleration, a dimensionless parameter called the Sleath parameter
Sl =U f

maxω/(s−1)g with ω = 2π/T the angular frequency has been introduced by Sleath (1999)
[107]. Based on a force balance analysis, Sleath (1999) [107] found the threshold value for plug
formation to be Sl > 0.3 but field measurements highlighted the occurrence of plug flow for values
of Sleath parameter as low as Sl = 0.1− 0.2 [41]. The threshold for plug flow can be modified
by (i) the compaction of the sediment bed [107] and (ii) the Shields number [22, 41]. On the one
hand, the lesser the sediment is compacted, the lower the yield strength of the bed and the lower
the pressure gradient is necessary to generate the plug flow. On the other hand, the higher the
Shields number is, the deeper the mobile sediment layer is during flow acceleration, the looser the
sediment bed becomes at the next flow reversal having for effect to alter the yield strength of the
sediment bed.

Experimental studies also provided information of the sediment flux and velocities inside the
sheet flow layer. From velocity measurements, Dohmen-Janssen et al. (2001) [29] pointed out
the fact that the apparent bed roughness is increased by the presence of the sheet flow layer with
a roughness length scale on the order of the sheet flow layer thickness. Similarly to observations
made for steady sheet flow by Sumer et al. (1996) [109], greater flow resistance is observed for
increasing sheet flow layer thickness due to inter-particles and turbulence-particle interactions,
especially turbulence attenuation due to stable density stratification.

Flux measurements performed by O’Donoghue & Wright (2004b) [82] confirmed the obser-
vation made by Dohmen-Janssen & Hanes (2002) [28] that given the strong velocities and concen-
tration close to the bed, most of the transport happen in the sheet flow layer. For sinusoidal waves,
the net flux generated during a full wave cycle is zero. Indeed, the onshore directed sediment flux
generated during the first half of the wave is balanced by the offshore-oriented sand flux generated
during the second half of the wave because of flow symmetry. However, when flow asymmetry
comes into play, the sediment flux generated during the first and the second half of the wave do
not balance each other and a net sediment flux is observed. Given the fact that the cross-shore
morphological evolution of a beach is controlled by the net sediment flux generated under waves,
the effect of wave shape on oscillatory sheet flow has been intensively investigated.

For experimental configurations involving medium and coarse sand under velocity skewed
waves, Ribberink & Al-Salem (1995) [92], O’Donoghue & Wright (2004b) [82] and Dohmen-
Janssen et al. (2002) [30] observed a net onshore-oriented sand flux. As a result of the higher
amplitude of the flow forcing during the wave crest (see middle panel of figure 2 in the general
introduction), the amount of sediment transported onshore is greater than the amount of sediment
transported offshore during wave trough. However, Ribberink & Al-Salem (1995) [92] noticed a
small offshore sand flux in the upper section of the suspension layer due to phase-lag effects. For
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Chapter 1. State of the art and motivations

these particle and flow conditions, contributions of the flux from phase-lag effects are not strong
enough to generate a net offshore-oriented sand flux.

Acceleration skewed waves are symmetric (see bottom panel of figure 2 in the general in-
troduction) but an onshore-oriented net flux in the direction of the strongest acceleration is ob-
served [93, 105, 112]. As a consequence of a stronger acceleration during wave crest, the amount
of sediment transported onshore is larger compared with the amount of sediment transported dur-
ing wave trough. The net sand flux increases for increasing acceleration asymmetry. The quantity
of sand transported under acceleration skewed waves is comparable to the one transported under
velocity skewed waves for comparable free stream velocity amplitude and flow period demonstrat-
ing the importance of acceleration skewness in oscillatory flows [112].

0 2 4 6
θm

0

20

40

60

80

100

δm s
/d

50

DJ2001 - coarse

DJ2001 - medium

DJ2001 - fine

SUM1996

13θm

25θm

Figure 1.13: Maximum sheet flow layer thickness made dimensionless by the median diameter
δ m

s /d50 as a function of the maximum Shields number θ m from Dohmen-Janssen et al. (2001) [29]
and Sumer et al. (1996) [109].

One of the factor playing a major role in the behavior of the sheet flow layer and net sedi-
ment flux under velocity or acceleration skewed waves is the size of the particles. According to
Dohmen-Janssen & Hanes (2002) [28], for medium sand of diameter d50 > 200µm, the sediment
bed response to changes of the velocity is very quick because the sheet flow layer is relatively
thin close to the bed. O’Donoghue & Wright (2004a) [81] also found that the time evolution of
the erosion depth for medium and coarse sand can directly be related to the instantaneous Shields
parameter. However, empirical models to determine the erosion depth becomes less accurate for
decreasing grain sizes [81]. Dohmen-Janssen et al. (2001) [29] showed that erosion depth and
sheet flow layer thickness were greater for fine sand. This result is in contradiction with previous
observations suggesting that erosion depth and sheet flow layer thickness were independent of the
grain size. Indeed, dimensionless erosion depth and sheet flow layer thickness δe/d50 and δs/d50
increase linearly with the Shields parameter. The particle diameter being at the denominator in the
expression of the Shields parameter (1), the sheet flow layer thickness and the erosion depth only
scale as the square of the bottom friction velocity and are independent of the particle diameter for
a given flow condition. As visible on figure 1.13, the maximum sheet flow layer thickness for fine
sand is well represented by the expression

δ m
s

d50
= 25θ

m (1.10)

used in the practical sand transport model proposed by van der A et al. (2013) [114] for fine
sand. According to Dohmen-Janssen et al. (2001) [29], the sheet flow layer thickness and erosion
depth dependence on the grain size indicates that fine sand is transported in a different flow regime
compared with medium and coarse sand.

22



1.2. Sand transport in the sheet flow regime

Dohmen-Janssen et al. (2002) [30] showed that the net sediment flux generated under veloc-
ity skewed waves can be significantly reduced due to the increasing importance of the offshore
sand flux contribution consequence of the phase-lag between the velocity and the concentration.
Indeed, for fine sand, the sediment flux is not confined to a region immediately close to the bed as
for medium and coarse sand [82]. In the experimental configurations involving fine sand under ve-
locity skewed waves from O’Donoghue & Wright (2004b) [82], phase-lag effects are so large that
the net sediment flux changes sign and becomes offshore-oriented. This process probably plays a
role in the change of direction of sand bars migration that is directed onshore during low-energy
periods and offshore during storms.

To characterize phase-lag effects, Dohmen-Janssen et al. (2002) [30] introduced the phase-lag
parameter p = δsω/vs relating the time needed for a particle to settle through the sheet flow layer
thickness during the wave period at its terminal settling velocity. From Dohmen-Janssen et al.
(2002) [30] observations, phase-lag effects are particularly present for p > 0.5.

Based on the definition of the phase-lag parameter, the occurrence of phase-lag effects is not
directly related to particle size but on the relations between the particle settling velocity, the sheet
flow layer thickness and the wave period. For example, phase-lag effects can happen for medium
sand if the period of the wave is very short or if the sheet flow layer thickness is sufficiently
large [30]. However, for a given wave condition, phase-lag effects increase for decreasing particle
size (decreasing fall velocity).

Contrary to velocity skewed waves, experiments performed by van der A et al. (2010) [112]
showed that phase-lag effects contribute to increase the onshore-oriented net flux for acceleration
skewed waves. The net sediment flux generated in configurations involving fine sand will be
greater than the one generated in configuration involving medium sand for a given condition.

The effect of grain size on the behavior of the sheet flow layer and the net transport rate
under velocity or acceleration skewed waves from experiments remain mainly qualitative. To
further characterize the physical processes associated with the effect of the wave shape and the
size of the particles on the sheet flow layer dynamics, detailed high resolution measurements of
concentration, velocity and turbulent statistics are required. However, measurements in the near
bed are very difficult, even in laboratory experiments [92].

In this context, the development of turbulence-averaged numerical models can significantly
contribute to improve our understanding of the physical processes occurring in oscillatory sheet
flow. Indeed, they can be set up much more easily than an experiment campaign and therefore
cover a wider range of flow and particle parameters for a lesser effort.

1.2.2 Turbulence-averaged numerical modeling of sheet flow

Two modeling methodologies are available to perform turbulence-averaged simulations of sheet
flow: the conventional single phase flow and the two-phase flow approaches.

In the conventional approach, a distinction is made between sediment transported as bed load
and suspended load (left panel of figure 1.14). In the upper section of the flow, Reynolds averaged
mass and momentum equations for the fluid phase are solved together with the advection-diffusion
equation (1.4) for sediment to ensure mass conservation and describe the evolution of suspended
load. The sediment flux transported as bed load qs in the lower section of the transport layer is
empirically related to the bottom shear stress computed using the single phase model. Sediment
exchange between the lower and upper sections of the transport layer is modeled using empirical
relations for erosion of the sediment bed. Bed elevation yb is calculated by solving the Exner
equation

ρ
s
φ

∂yb

∂ t
+

∂qs

∂x
= D−E (1.11)

with D and E the erosion and deposition fluxes.
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Figure 1.14: Schematic representation of the conventional and the two-phase modeling ap-
proaches.

In early conventional models, the evolution of sediment transport forced by an oscillatory
free stream velocity was assumed to be a succession of quasi-steady states. In other words, sand
transport rate is modeled as a function of the time-dependent velocity or the bed shear stress
assuming quasi-steady approximation [92]. Processes such as pick-up and settling are assumed to
occur at a time scale much smaller than the wave period [92].

According to Dohmen-Janssen et al. (2002) [30], models based on the quasi-steady approx-
imation accurately predict net sediment flux for phase-lag parameter up to p = 0.5. For p > 0.5
the net sediment flux is always over-estimated.

The development of semi-unsteady model integrating phase-lag effects in an empirical man-
ner allowed to improve the net sand transport prediction but significant differences still persist
between predictions and measurements. The high degree of empiricism in the conventional mod-
eling approach does not allow to cover a wide range of flow and particle parameters without any
significant model coefficient tuning. Integrating more physics in the modeling methodology such
as in the two-phase flow approach should help overcome this strong limitation.

The two-phase flow approach corresponds to the turbulence-averaged version of the TF model
presented in section 1.1.3. Contrary to single phase flow models, continuity and momentum equa-
tions for both the dispersed and the carrier phases are solved. To avoid correlations between the
concentration and the fluid and solid phase velocities u f

i and us
i respectively in the two-phase flow

equations, Favre averaged fluid and solid phase velocities are introduced:

〈u f
i 〉F =

〈(1−φ)u f
i 〉

〈1−φ〉 , 〈us
i 〉F =

〈φu f
i 〉

〈φ〉 (1.12a,b)

with 〈 ·〉F the Favre averaging operator and 〈 ·〉 representing either the ensemble averaging operator
for steady flows or the phase averaging operator for oscillatory flows.

Applying the ensemble averaging operator to the two-phase flow equations presented in chap-
ter 2 and expressing the terms in term of Favre averaged variables gives the turbulence averaged

24



1.2. Sand transport in the sheet flow regime

mass and momentum conservation equations for fluid and solid phases:

∂ 〈1−φ〉
∂ t

+
∂ 〈1−φ〉〈u f

i 〉F
∂xi

= 0, (1.13)

∂ 〈φ〉
∂ t

+
∂ 〈φ〉〈us

i 〉F
∂xi

= 0, (1.14)

∂ρ f 〈1−φ〉〈u f
i 〉F

∂ t
+

∂ρ f 〈1−φ〉〈u f
i 〉F〈u

f
j 〉F

∂x j
=−〈1−φ〉∂ 〈P

f 〉
∂xi

+
∂

∂x j

(
T f

i j +R f
i j

)
(1.15)

+〈1−φ〉ρ f gi + 〈1−φ〉 f v
i −〈φ〉〈1−φ〉K

[
〈u f

i 〉F −〈us
i 〉F
]

+〈1−φ〉ν
f

t

Sc

∂ 〈φ〉
∂xi

,

∂ρs〈φ〉〈us
i 〉F

∂ t
+

∂ρs〈φ〉〈us
i 〉F〈us

j〉F
∂x j

=−〈φ〉∂ 〈P
f 〉

∂xi
− ∂ 〈Ps〉

∂xi
+

∂

∂x j
(T s

i j +Rs
i j)+ 〈φ〉ρ f gi (1.16)

+〈φ〉 f v
i + 〈φ〉〈1−φ〉K

[
〈u f

i 〉F −〈us
i 〉F
]
−〈1−φ〉ν

f
t

Sc

∂ 〈φ〉
∂xi

,

with 〈P f 〉 and 〈Ps〉 the averaged fluid and solid phase pressures, T f
i j and T s

i j the fluid and solid

phase viscous stress tensors, R f
i j and Rs

i j the fluid and solid phase Reynolds stress tensor, K the

drag parameter, ν
f

t the eddy viscosity and Sc the Schmidt number representing the ratio between
the turbulent momentum diffusivity or eddy viscosity and the sediment mass diffusivity.

The two-phase flow equations are very similar to the single-phase Navier-Stokes equations
with the addition of coupling terms. The last two terms of equations (1.15) and (1.16) represent
the momentum exchange between the two phases. The first term represents the drag force between
the fluid and the particle function of the drag parameter and the relative velocity between the two
phases and the second term represents the upward diffusion of particles due to turbulence function
of the eddy viscosity, the Schmidt number and the concentration gradient. Accurate predictions
using the two-phase flow model rely on an accurate modeling of the fluid phase eddy viscosity ν

f
t

by a turbulence model and solid phase pressure 〈Ps〉 and shear stress tensor T s
i j to take into account

the rheological behavior of the dispersed phase induced by particle-particle interactions. The solid
phase Reynolds stress tensor Rs

i j is usually neglected but new models are developed to take into
account the solid phase turbulence [47].

As a consequence of the continuum vision of the fluid and the solid phases, there is no dis-
tinction between bed load and suspended load. A description of the velocity and concentration
profiles is provided from the immobile bed to the top of the domain (right panel of figure 1.14).
Compared with conventional models, the degree of empiricism in the two-phase flow approach is
significantly reduced. The physical basis upon which two-phase flow models are developed should
improve sediment transport predictions.

Dong et Zhang (2002) [31] proposed a turbulence-averaged two-phase flow model capable of
capturing erosion and transport processes in the sheet flow layer. Their work is the first attempt to
predict time series of the concentration in the pick-up layer. The amplitude of the time variation
of the concentration is slightly under-estimated compared with experiments. For smaller particles,
the model fails to reproduce concentration peaks observed experimentally at flow reversal.

The early modeling approach proposed by Hsu et al. (2004) [53] who implemented the turbu-
lent diffusion term in the momentum equation and introduced a two-equation turbulence model for
two-phase flow based on the single phase k− ε , allowed to quantitatively predict time-evolution
of the concentration profile for configurations involving large inertial particles for which effects
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of the fluid are of minor importance. Using the same model, Hsu & Hanes (2004) [52] recovered
the net onshore sediment flux for velocity and acceleration skewed waves. Furthermore, horizon-
tal momentum balance revealed that collisional forces compensate the drag contribution having
for effect to increase the relative contribution of the pressure gradient in the sediment dynam-
ics. Numerical experiments showed that sediment bed failure is a direct consequence of strong
horizontal pressure gradients corresponding to strong flow acceleration confirming the findings
of Sleath (1999) [107]. Similarly to Ribberink & Al-Salem (1995) [92] and Dohmen-Janssen &
Hanes (2002) [28], they showed that sediment transport can directly be related to the bed shear
stress for such flow and particle parameters.

Liu and Sato (2006) [64] also studied the effect of wave shape with a turbulence-averaged two-
phase flow model but this time for different particle sizes. The model failed to reproduce unsteady
effects for fine sand and the net sediment flux was under-estimated. Considering that for fine sand,
the particles inertia is no longer dominant, the discrepancy observed for smaller particles can be
related to missing features of the effect of the fluid phase on the particles in the model such as
turbulence-particle interactions.

Significant progress has been made by Amoudry et al. (2008) [2] and Amoudry (2014) [4] to
improve the two-phase model from Hsu et al. (2004) [53]. First, the inclusion of an additional
fluid-particle interactions in the two-phase k− ε turbulence model by Amoudry et al. (2008)
[2] allowed to improve sediment transport under waves even if some discrepancies still remain
in the concentration time series. Second, based on the observation that the turbulence model
remains dominant for accurate velocity and concentration profile predictions [3], Amoudry (2014)
[4] proposed a two-phase flow version of the k−ω turbulence model. From the simulations, the
k− ε model provide better results but the differences between the two models are small. For both
models, the suspension of fine particles at flow reversal is under-estimated suggesting that some
of the physics behind oscillatory sheet flow involving fine sand is still missing in the two-phase
flow model. Nevertheless, more than just a turbulence model, Amoudry (2014) [4] introduced
a systematic methodology to adapt single phase flow turbulence models to the two-phase flow
formalism.

More recently, Cheng et al. (2017) [22] used a turbulence-averaged two-phase flow model to
study the formation of plug flow and particularly the dependence in term of Sleath and Shields
number. They confirmed the field observations that plug flow occurs for threshold values of the
Sleath number much smaller for larger Shields numbers. It should be noted that the model results
are strongly sensitive to the closure coefficients associated with turbulence-particle interactions
[22].

Even if significant insight into mechanisms involved in oscillatory sheet flow has been pro-
vided, the promises of the two-phase flow model to overcome the limitations of the conventional
approach is not completely fulfilled considering that simulations results are not very accurate and
still extremely sensitive to the model coefficients for fine sand [62].

1.3 Motivations

Our understanding of the physical processes involved in sediment transport at small scale is an
important step toward developing predictive tools for large scale applications. This is especially
the case for physical processes occurring in sediment transport under intense flow forcing such
as oscillatory sheet flow. Indeed, the prediction of the cross-shore morphological evolution of a
beach depends on the accurate modeling of sand transport under a given wave forcing.

Experimental configurations of idealized oscillatory sheet flow occurring in the near shore
environment reproduced in OWTs allowed to provide both quantitative and qualitative description
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of the sheet flow layer involving medium and coarse sand. When unsteady effects induced by the
phase-lag between the flow velocity and sediment concentration are small, the evolution of the
sheet flow layer is composed of a succession of quasi-static events meaning that sand transport
can directly be related to the instantaneous mean flow quantities such as the near bed velocity and
the Shields parameter.

For smaller particles in similar wave conditions, unsteady effects become dominant and the
behavior of the transport layer changes drastically. The sheet flow layer increases having for
effect to significantly affect the flow by modifying the apparent bed roughness and the turbulence
modulation due to density stratification for example.

Understanding physical processes at the origin of unsteady effects is extremely important con-
sidering that phase-lag significantly affects the net sand flux generated under velocity and accel-
eration skewed waves. For velocity skewed waves, phase-lag effects induce a reduction of the
net onshore sediment flux. It can even change sign and become offshore-oriented when unsteady
effects are dominant. For acceleration skewed waves, phase-lag effects induce greater onshore
directed sediment flux compared with configurations where phase-lag effects are absent. To this
day, the origin of unsteady effects is not well understood. The effect of phase-lag is taken into
account in large scale morphological models through empirical closures and model predictions
show a significant variability.

Unfortunately, turbulence-averaged numerical models, supposed to provide a deeper insight
into grain-scale processes involved in oscillatory sheet flow, show limited predictive capabilities
when it comes to oscillatory sheet flow involving fine sand. Simulations results are extremely
sensitive to the turbulence-particle interaction closure models and need to be fine tuned to cover
a wide range of flow and particle parameters highlighting our misunderstanding of the underlying
physical processes.

Provide empirical relations to tune model coefficients in order to match measurements is equiv-
alent to blindly integrate the missing physics. A more efficient way of improving the models pre-
dictive capabilities is to provide more physically based parameterizations for turbulence-averaged
models. To do so, turbulence-resolving two-phase flow methodologies represent a great oppor-
tunity to investigate the fine scale processes involved in sediment transport such as turbulence-
particle and particle-particle interactions.

The choice of modeling methodology has to be carefully chosen based on the flow regime
and available computational resources. For intense flow conditions such as oscillatory sheet flow
involving fine sand for example, the significant number of particles interacting in the transport
layer would make the computational cost of such simulations using FR-DNS or PP methodologies
prohibitive. In this context, the development of Eulerian modeling methodologies for which there
is no limitations in terms of number of particles is needed.

Simplifying assumptions made to derive the EE modeling methodologies are too restrictive
to represent the fluid-particle interactions occurring in sand transport under an intense flow forc-
ing. Therefore, the TF methodology appears to be the only viable option to simulate such con-
figurations. However, considering the wide range of flow and particle parameters involved in
typical sand transport applications typical of the coastal environment, the modeling methodology
should be able to accurately predict particles’ dynamics for multiple turbulence-particle interaction
regimes occurring at different moments or different locations. As a consequence, the applicabil-
ity of the TF model should be extended to cover a wider range of turbulence-particle interaction
regimes.
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2
Turbulence-resolving two-fluid model

In this chapter, the Eulerian two-phase flow (or two-fluid) model sed-
Foam used in this thesis is presented. First, the governing equations
are derived using the detailed averaging procedure and closure mod-
els. Then, Favre filtered two-phase flow equations and their numeri-
cal implementation are presented. Eventually, the model is validated
using numerical and experimental data of two boundary layer flows:
one unidirectional and one oscillatory.
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Chapter 2. Turbulence-resolving two-fluid model

2.1 Eulerian two-phase flow equations

The Eulerian two-phase flow equations of the two-fluid model can be derived by performing
ensemble or spatial averaging of the local and instantaneous mass and momentum equations of the
fluid and dispersed particles over the mixture. On the one hand, the ensemble averaging procedure
used to derive the two-phase flow equations presented in Zhang & Prosperetti (1997) [132] consists
of averaging the equations at each point of space over an ensemble of macroscopically equivalent
systems. On the other hand the spatial averaging procedure proposed by Jackson (2000) [55]
consists of a local spatial average of a given quantity over the volume occupied by the fluid or
the particles. Both procedures eventually lead to the same set of equations and only the spatial
averaging methodology proposed by Jackson (2000) [55] will be detailed in the thesis.

2.1.1 Derivation of the two-phase flow equations

To derive the two-phase flow equations, spatial averaging operators are applied on the mass and
momentum conservation equations of the fluid and on the momentum conservation equation of a
single particle. The averaging operators and their properties are presented in the following section
and are eventually used for the derivation of the two-phase flow equations.

Averaging operators

The spatial average value 〈ψ〉S(xi, t) of a quantity of interest ψ in the control volume V at position
xxx = (x,y,z)T and time t is defined by the following expression:

〈ψ〉S(xi, t) =
∫

V
ψ(yi, t)G(|xi− yi|)dV (2.1)

with G(|xi− yi|) a weighting function given by:

G(|xi− yi|) =





3
4πL3

G
for |xi− yi| ≤ LG

0 for |xi− yi|> LG

(2.2)

associating the spatial averaging operator with a given length scale LG. In order to have a clear
separation of scales to obtain phase averaged quantities, LG has to be smaller than the macroscopic
length scale of interest and greater than the particle diameter.

For dispersed particles in a fluid, the particle volume fraction φ and the void fraction (or vol-
ume occupied by the fluid) 1−φ at location xi are obtained by integrating the weighting function
G over the volume occupied by the particles and the fluid respectively following the expressions

φ(xi, t) = ∑
p

∫

Vp

G(|xi− yi|)dV (2.3)

(1−φ)(xi, t) =
∫

Vf

G(|xi− yi|)dV (2.4)

with Vp the volume occupied by a single particle p and Vf the volume occupied by the fluid.
Similarly, for a quantity of interest ψ , the corresponding solid phase and fluid phase averaged
quantities 〈ψ〉sS and 〈ψ〉 f

S at location xi (written ψs and ψ f for simplicity) are given by

ψ
s(xi, t) =

1
φ

∑
p

∫

Vp

ψ(yi, t)G(|xi− yi|)dV (2.5)

ψ
f (xi, t) =

1
1−φ

∫

Vf

ψ(yi, t)G(|xi− yi|)dV. (2.6)
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The averaging operators do not commute with the partial differential operators but, using Leib-
niz rule, we can write the following expressions:

(
∂ψ

∂ t

)s

(xi, t) =
1
φ

(
∂φψs

∂ t
− ∂

∂xk
∑
p

ψ
sup

kVpG(|xi− yi|)
)

(2.7)

(
∂ψ

∂xi

) f

(xi, t) =
1

1−φ

(
∂ (1−φ)ψ f

∂xk
−∑

p

∫

Sp

ψ(yi)nk(yi)G(|xi− yi|)dS

)
(2.8)

(
∂ψ

∂ t

) f

(xi, t) =
1

1−φ

(
∂ (1−φ)ψ f

∂ t
+∑

p

∫

Sp

ψ(yi)nk(yi)uk(yi)G(|xi− yi|)dS

)
(2.9)

with up
k the velocity of particle p, Sp the surface of particle p and nk the outward unit vector normal

to the particle surface.

Two-phase mass and momentum equations

To derive the constitutive equations of the two-phase flow model, the spatial averaging operators
defined in section 2.1.1 are applied to the equations of motion of the fluid and the particles. Starting
with the mass conservation equation for an incompressible fluid, ∂ui/∂xi = 0, using equations
(2.8) and (2.9) gives the mass conservation equation for the fluid phase:

∂ (1−φ)

∂ t
+

∂ (1−φ)u f
i

∂xi
= 0. (2.10)

Knowing that the mixture is incompressible, substracting equation (2.10) from the mass conser-
vation equation of the mixture ∂um

i /∂xi = 0 with um
i = (φus

i +(1−φ)u f
i ) the mixture velocity we

obtain the solid phase mass conservation equation:

∂φ

∂ t
+

∂φus
i

∂xi
= 0. (2.11)

Taking the momentum conservation equations of the fluid and a particle p

∂ρ f ui

∂ t
+

∂ρ f uiu j

∂x j
=

∂σi j

∂xi
+ρ

f gi + f v
i , (2.12)

ρ
sVp

∂up
i

∂ t
=
∫

Sp

σi jnk(yi)dS+ ∑
q6=p

f pq
i +ρ

sVpgi + f v
i , (2.13)

with σi j the fluid stress tensor, f v
i the external volume force driving the flow and f pq the force

exerted by a particle q on particle p and applying the averaging operators gives the fluid and solid
phase momentum conservation equations:

∂ρ f (1−φ)u f
i

∂ t
+

∂ρ f (1−φ)u f
i u f

j

∂x j
=

∂ (1−φ)σ f
i j

∂x j
−∑

p

∫

Sp

σi j(yi)nk(yi)G(|xi− yi|)dS

+(1−φ)ρ f gi +(1−φ) f v
i , (2.14)

∂ρsφus
i

∂ t
+

∂ρsφus
i u

s
j

∂x j
= ∑

p
G(|xi− yp|)

[∫

Sp

σi jnkdS+ ∑
q6=p

f pq

]
+ρ

s
φgi +φ f v

i . (2.15)

Using Newton’s third law and Taylor series expansions of the weighting function G (more de-
tails in Jackson (2000) [55]) allows to decompose the second term of the right-hand-side (R.H.S.)
of equation (2.14) and the first term of the R.H.S. of equation (2.15) into the average force applied
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by the fluid on the particles Mi and a stress related term to eventually give the final form of the
fluid and solid momentum conservation equations

∂ρ f (1−φ)u f
i

∂ t
+

∂ρ f (1−φ)u f
i u f

j

∂x j
=

∂Σ
f
i j

∂x j
−Mi +(1−φ)ρ f gi +(1−φ) f v

i , (2.16)

∂ρsφus
i

∂ t
+

∂ρsφus
i u

s
j

∂x j
=

∂Σs
i j

∂x j
+Mi +ρ

s
φgi +φ f v

i , (2.17)

with Σ
f
i j and Σs

i j the fluid and solid phase effective stress tensor respectively.

2.1.2 Closure models for the effective stress tensors

The effective fluid and solid phase stress tensors are decomposed into normal and shear stress
respectively following Σ

f
i j = −P f δi j + T f

i j and Σs
i j = −Psδi j + T s

i j with P f and Ps the fluid and

solid pressures, δi j the Kronecker symbol and T f
i j and T s

i j the fluid and solid shear stress tensors
defined by

T f
i j = ρ

f (1−φ)ν f

(
∂u f

i
∂x j

+
∂u f

j

∂xi
− 2

3
∂u f

k
∂xk

δi j

)
, (2.18)

T s
i j = ρ

s
φν

s
(

∂us
i

∂x j
+

∂us
j

∂xi
− 2

3
∂us

k
∂xk

δi j

)
, (2.19)

with ν f and νs the fluid and solid viscosities respectively. The fluid is considered Newtonian
with a constant viscosity but the solid phase pressure and viscosity taking into account friction,
collisions and kinetic effects in the granular flow are modeled using the kinetic theory for granular
flows presented in the next section.

Kinetic Theory for granular flows

In the kinetic theory of granular flows, an analogy is made between the behavior of a granular
flow for moderate to low volume fraction and the behavior of molecules in a gas. It is extended to
tackle high volume fraction for which friction between the particles is dominant by the inclusion a
frictional model. The solid phase pressure Ps and shear stress tensor T s

i j are given by Ps = Pc+P f r

and νs = νc +ν f r with Pc and νc the granular pressure and viscosity due to collisions and kinetic
effects, P f r and ν f r the granular pressure and viscosity due to friction between the particles. The
frictional granular pressure is modeled following Johnson and Jackson (1987) [58]

P f r =





0, for φ < φ f r

0.05

(
φ −φ f r

)3

(φ m−φ)5 for φ > φ f r
(2.20)

where φ f r = 0.57 is the minimum volume fraction for which friction occurs and φ m = 0.635 the
maximum volume fraction. To define the frictional viscosity, shear and normal stresses are related
to the friction angle θ f r (32◦ for sand particles) following Schaeffer (1987) [102]

ν
f r =

P f rsin(θ f r)

ρs
√
‖SSSs‖2 +S2

small

(2.21)

with ‖SSSs‖ =
√

Ss
i jS

s
i j the norm of the resolved solid phase strain rate tensor SSSs and Ssmall = 1×

10−4s−1 a regularization parameter.
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2.1. Eulerian two-phase flow equations

The filtered granular pressure Pc and viscosity νc induced by collisions and kinetic effects are
given by

Pc = ρ
s
φ [1+2(1+ e)φg0]Θ−ρ

s
λ

∂us
k

∂xk
(2.22)

and

ν
c = dp

5
√

π

96
(ν∗k +ν

∗
c +ν

∗
b )
√

Θ (2.23)

with λ , ν∗k , ν∗c and ν∗b the compressible, kinetic, collisional and bulk viscosity contributions fol-
lowing

λ =
4
3

φ
2
ρ

sdpg0(1+ e)

√
Θ

π
, (2.24)

ν
∗
k =

48/(5
√

π)φ −2/5(1+ e)(1−3e)φg0

(1−1/4(1− e)2−5/24(1− e2))g0
, (2.25)

ν
∗
c =

4
5
(1− e)φg0ν

∗
k , (2.26)

ν
∗
b =

384
25π

(1− e)φ 2g0, (2.27)

where e is the restitution coefficient for binary collisions (0.8 for sand particles), Θ is the filtered
granular temperature representing the pseudo-thermal kinetic energy associated with the uncorre-
lated random motions of the particles and

g0 =
2−φ

2(1−φ)3 +
2.71φ 2

(φ b−φ)3/2 (2.28)

is the radial distribution function adapted for sand particles. Compared with the definition pro-
posed by Chassagne et al. (submitted) [18], the radial distribution function does not diverges for
φ = φ m but for a smaller value φ = φ b = 0.612 with φ b the effective maximum concentration
in the bed. The fact that a radial distribution function diverging for a slightly smaller value of
the volume fraction provide better results can be explained by the increased frictional contact for
real sediment compared with the smooth spherical spheres used in the discrete element method
simulations of Chassagne et al. (submitted) [18].

The filtered granular temperature Θ is obtained by solving the following transport equation:

3
2

[
∂φρsΘ

∂ t
+

∂φρsus
i Θ

∂x j

]
= ΠR +Πq + Jint − γ. (2.29)

Here ΠR is the production of granular temperature given by

ΠR =
(
−Pc

δi j +ρ
s
φν

cSs
i j
) ∂us

i
∂x j

, (2.30)

Πq the divergence of the granular temperature flux analogous to the Fourier’s law of conduction is
given by

Πq =
∂

∂xi

[
−κΘ

∂Θ

∂x j

]
, (2.31)

where κΘ is the conductivity of the granular temperature calculated following

κΘ = ρ
sdp

225
√

π

1152
(κ∗k +κ

∗
c +κ

∗
b )
√

Θ, (2.32)

with κ∗k , κ∗c and κ∗b kinetic, collisional and bulk conductivity contributions given by

κ
∗
k =

2[576/(225
√

π)φ +3/5(1+ e)2(2e−1)φg0]

(1−7/16(1− e))(1+ e)g0
, (2.33)
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κ
∗
c =

6
5
(1+ e)φg0κ

∗
k , (2.34)

and
κ
∗
b =

2304
225π

(1+ e)φ 2g0, (2.35)

γ is the dissipation rate of granular temperature given by

γ = 3(1− e2
e f f )φ

2
ρ

sg0Θ

[
4
dp

√
Θ

π
−

∂us
j

∂x j

]
, (2.36)

with ee f f = e− 3/2µ pexp(−3µ p) the effective restitution coefficient for dissipation taking into
account the effect of friction through the friction coefficient µ p (0.4 for sand particles).

Eventually, Jint the fluid-particle interaction term representing the dissipation of granular tem-
perature due to drag is given by

Jint =−3
ρsφ

ts
Θ (2.37)

with ts the response time of the particle defined in section 2.1.3.

2.1.3 Closure models for the momentum exchange term

The momentum exchange term Mi between the two phases is composed of buoyancy, drag, lift and
added mass forces Bi, Di, Li and Ai respectively following the expression:

Mi = Bi +Di +Li +Ai with





Bi =−φ
∂P f

∂xi

Di =
ρsφ

ts

(
u f

i −us
i

)

Li = φ(1−φ)Clρ
m‖u f

i −us
i‖εi jk

∂um
k

∂x j

Ai = φ(1−φ)Caρ f

[
∂u f

i
∂ t

+
∂u f

i u f
j

∂x j
−
(

∂us
i

∂ t
+

∂us
i u

s
j

∂x j

)]

(2.38)
where Cl = 0.5 and Ca = 0.5 are the lift and added mass coefficients, εi jk the Levi-Civita symbol
and ts is the particle response time following the drag law proposed by Ding & Gidaspow (1990)
[27] gathering the model of Ergun (1952) [100] for high concentrations (φ > 0.2) and the model
of Wen & Yu (1966) [122] for low concentrations (φ < 0.2) following

ts =





ρs

(
150φν f ρ f

(1−φ)d2
p
+

1.75ρ f ‖u f
i −us

i‖
dp

)−1

, φ > 0.2

4
3

ρs

ρ f
dp

CD‖u f
i −us

i‖
(1−φ)1.65, φ < 0.2

(2.39)

with CD the drag coefficient given by

CD =
24

Rep

(
1+0.15Re0.687

p
)

(2.40)

and the particle Reynolds number Rep expressed as

Rep =
(1−φ)dp‖u f

i −us
i‖

ν f . (2.41)
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2.2. Favre filtered Eulerian two-phase flow equations

2.2 Favre filtered Eulerian two-phase flow equations

To perform LES with a two-phase flow model, a separation between the large turbulent flow
scales, low frequency, and the small ones, high frequency, is operated by a filter (operator ·̄ ).
In analogy with compressible flows, a change of variable called Favre filtering is used to obtain
filtered two-phase flow equations. Any variable ψ(xi, t) can be decomposed into the sum ψ(xi, t)=
ψ̃(xi, t)+ψ

′′
(xi, t) with ψ̃(xi, t) the resolved Favre filtered part and ψ

′′
(xi, t) the unresolved sub-

grid part. Favre-filtered fluid and solid velocities, ũ f
i and ũs

i , are defined as follows:

ũ f
i =

(1−φ)u f
i

(1− φ̄)
, ũs

i =
φus

i

φ̄
, (2.42a,b)

with u f ′′
i = u f

i − ũ f
i and us′′

i = us
i − ũs

i the sub-grid scale velocity fluctuations.
Applying the filtering operator to the mass and momentum equations (2.10), (2.11), (2.16),

(2.17) and the granular temperature equation (2.29) gives the following filtered two-phase flow
equations:

∂ (1− φ̄)

∂ t
+

∂ (1− φ̄)ũ f
i

∂xi
= 0, (2.43)

∂ φ̄

∂ t
+

∂ φ̄ ũs
i

∂xi
= 0, (2.44)

∂ρ f (1− φ̄)ũ f
i

∂ t
+

∂ρ f (1− φ̄)ũ f
i ũ f

j

∂x j
=−(1− φ̄)

∂ P̄ f

∂xi
+

∂

∂x j

(
T̃ f

i j +σ
f ,sgs

i j

)
− Īi

+ρ
f (1− φ̄)gi +(1−φ) f v

i − Isgs
i +Φ

f ,sgs
i , (2.45)

∂ρsφ̄ ũs
i

∂ t
+

∂ρsφ̄ ũs
i ũ

s
j

∂x j
=−φ̄

∂ P̄ f

∂xi
− ∂ P̄s

∂xi
+

∂

∂x j

(
T̃ s

i j +σ
s,sgs
i j

)
+ Īi +ρ

s
φ̄gi

+φ f v
i + Isgs

i +Φ
s,sgs
i , (2.46)

3
2

[
∂ φ̄ρsΘ̄

∂ t
+

∂ φ̄ρsũs
i Θ̄

∂x j

]
= Π̃R + Π̃q + J̃int − γ̃ +Φ

sgs
Θ
. (2.47)

where Īi = M̄i− B̄i is the momentum exchange term without the buoyancy term, σ
f ,sgs

i j and σ
s,sgs
i j

are the fluid and solid sub-grid scale stress tensors coming from the filtering of the non-linear
advection terms, Isgs the sub-grid term coming from the filtering of the momentum exchange term,
Φ

f ,sgs
i and Φ

s,sgs
i are the fluid and solid sub-grid scale contributions coming from the filtering of

pressure terms and effective stress tensors and Φ
sgs
Θ

the sub-grid term coming from the filtering of
the terms of the granular temperature transport equation [85]. The effective stress tensors T̃ f

i j and
T̃ s

i j, the solid phase pressure P̄s, the momentum exchange term Īi, and the terms of the granular
temperature equation are given by their respective expressions in section 2.1 but are expressed in
term of filtered variables. The particle-interaction term is modified to take into account the balance
between the dissipation of granular temperature due to drag and the production due to the sub-grid
fluid pseudo-thermal kinetic energy Θ f following:

J̃int =−3
ρsφ̄

t̃s
(Θ̄− Θ̄

f ). (2.48)

This formulation is similar to the interaction term presented in Fox (2014) [42] but transcripted
in the LES formalism with the difference that, the fluid pseudo-thermal kinetic energy is con-
founded with the sub-grid TKE. It is given by Θ f = 2

3 k̃ f
sgs, with the sub-grid fluid TKE k̃ f

sgs =
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(C f
1/Cε)

2/3‖S̃SS f ‖, where Cε is an empirical constant of the order of unity coming from the Kol-
mogorov theory [127] taken to be Cε = 1.048 in recent studies [8, 19, 95] and C f

1 a coefficient
determined using a sub-grid scale model detailed in the next section.

2.2.1 Sub-grid scale modeling

The fluid and solid sub-grid stress tensors σ
f ,sgs

i j = ρ f (1− φ̄)(ũ f
i u f

j − ũ f
i ũ f

j ) and σ
s,sgs
i j = ρsφ̄(ũs

i u
s
j−

ũs
i ũ

s
j) are modeled using the dynamic Lagrangian procedure proposed by Meneveau et al. (1996)

[72]. The most common way to model the sub-grid stress is to use the Smagorinsky model,

σ
a,sgs
i j = 2ρ

a
φ

a
∆

2‖S̃SSa‖
(

Ca
1 S̃a

i j−
1
3

Ca
2 S̃a

kkδi j

)
, (2.49)

with the superscript a = f ,s denoting either the fluid or solid phase, and Ca
1 and Ca

2 the model co-
efficients and ∆ the filter width. To adjust the model coefficients, the dynamic procedure proposed
by Meneveau et al. (1996) [72] samples the turbulent stress from the smallest resolved scales
and extrapolates to determine the turbulent stress associated with unresolved turbulent flow scales
below ∆.

The starting point to determine the first coefficient Ca
1 is the algebraic identity

L a
i j = T a

i j − τ
a
i j, (2.50)

relating the turbulent stress associated to two different filter widths ∆ and ∆̂ = 2∆ with

L a
i j = ̂̃ua

i ũa
j − ̂̃u

a
i
̂̃ua

j , T a
i j =

̂̃ua
i ua

j − ̂̃u
a
i
̂̃ua

j and τ
a
i j =

̂̃ua
i ua

j − ̂̃ua
i ũa

j (2.51)

where the operator ·̂ represents filtering at scale ∆̂.
The Smagorinsky model is used to model the turbulent stress τa

i j at scale ∆ and T a
i j at scale 2∆

following:
τ

a
i j =−2Ca

1∆
2‖S̃SSa‖S̃a

i j, (2.52)

T a
i j =−2Ca

1(2∆)2‖ ̂̃SSSa‖̂̃Sa
i j. (2.53)

Replacing expressions (2.52) and (2.53) in the identity (2.50) and minimizing the mean square
error between the resolved identity and the Smagorinsky model leads to the expression for the
coefficient Ca

1 ,

Ca
1 =

F a
LM

F a
MM

, (2.54)

with F a
LM and F a

MM the products L a
i jM

a
i j and M a

i jM
a
i j with M a

i j = 2∆2
[
‖̂S̃SSa‖S̃a

i j−4‖ ̂̃SSSa‖ ̂̃Sa
i j

]

averaged over streamlines following the expressions:

F a
LM =

∫ t

−∞

L a
i jM

a
i j(z(t

′), t ′)W (t− t ′)dt ′, (2.55)

F a
MM =

∫ t

−∞

M a
i jM

a
i j(z(t

′), t ′)W (t− t ′)dt ′. (2.56)

The kernel W (t−t ′) is used to control the relative importance of the events around time t with those
of earlier times. The exponential form W (t − t ′) = T−1e−(t−t ′)/T , with T = 3∆

2 (F a
LMF a

MM)−
1
8 ,

makes the integrals (2.55) and (2.56) solutions of the transport equations

∂φ
a
F a

LM
∂ t

+
∂φ

aũa
jF

a
LM

∂xi
=

2
3∆

(F a
LMF a

MM)
1
8 (L a

i jM
a
i j−F a

LM), (2.57)
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and
∂ρaφ

a
F a

MM
∂ t

+
∂ρaφ

aũa
jF

a
MM

∂xi
=

2
3∆

(F a
LMF a

MM)
1
8 (M a

i jM
a
i j−F a

MM). (2.58)

To compute the second model coefficient Ca
2 , a similar procedure is used. Using the following

identity for the spherical part of the sub-grid scale shear stress tensor:

L ∗,a = T ∗,a− τ
∗,a. (2.59)

Here

L ∗,a =
1
3

tr(̂̃ua
i ũa

j − ̂̃u
a
i
̂̃ua

j), T ∗,a =
1
3

tr(̂̃ua
i ua

j − ̂̃u
a
i
̂̃ua

j) and τ
∗,a =

1
3

tr(̂̃ua
i ua

j − ̂̃ua
i ũa

j),

(2.60)
modeled following

τ
∗,a =−2

3
Ca

2∆
2‖S̃SSa‖S̃a

kkδi j, (2.61)

T ∗,a =−2
3

Ca
2(2∆)2‖ ̂̃SSSa‖̂̃Sa

kkδi j. (2.62)

Minimizing the mean square error between the resolved identity and the Smagorinsky model
leads to the expression for the coefficient Ca

2 ,

Ca
2 =

〈L ∗,a〉C
〈M ∗,aM ∗,a〉C

, (2.63)

with M ∗,a = −2
3 ∆2

[
̂‖S̃SSa‖S̃a

kkδi j−4‖ ̂̃SSSa‖ ̂̃Sa
kkδi j

]
and operator 〈 ·〉C representing average over the

cell faces.
The main difference between this modeling methodology and the dynamic procedure proposed

by Germano et al. (1992) [45] and Lilly (1992) [63] used in Cheng et al. (2018) [23] is that
model coefficients are averaged over streamlines and not plane-averaged over homogeneous flow
directions. The dynamic Lagrangian procedure has the advantage of getting rid of the necessity to
have homogeneous directions and of preserving a certain locality in space making it applicable to
more complex-geometries and inhomogeneous flows in future research [72].

The other Eulerian-Eulerian sub-grid contributions resulting from the filtering of the pressure,
stress, momentum exchange terms and terms in the granular temperature equation represented by
Φ

f ,sgs
i , Φ

s,sgs
i , Isgs

i and Φ
sgs
Θ

are taking into account the effect of unresolved particles clusters and
streamers having length scales smaller than the filter width ∆ [1]. Cheng et al. (2018) [23] modeled
the sub-grid momentum exchange term Isgs

i using a drift velocity model proposed by Ozel et al.
(2013) [85] but since the typical size of the smallest mesoscale structures is on the order of 10 to
100 particle diameters [1], the sub-grid terms taking into account these effects should vanish for
filter sizes on the order of the particle size. This has been confirmed by Ozel et al. (2013) [85] who
quantitatively reported the relative importance of sub-grid terms by explicitly filtering two-phase
Eulerian-Eulerian DNS results for different filter sizes. In all the simulations presented in this
paper, ∆ is always on the order of the particle size or slightly smaller and therefore, the sub-grid
contributions Φ

f ,sgs
i , Φ

s,sgs
i , Isgs

i and Φ
sgs
Θ

can be considered as negligible.

2.3 Energy transfers, mean field and turbulent kinetic energy bud-
gets

To better understand the role of the different terms of the two-phase flow model in the LES
framework, a schematic representation of the energy transfers between the mean resolved fluid
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and solid phase kinetic energies K̃ f = 〈ũ f
i ũ f

i 〉F/2 and K̃s = 〈ũs
i ũ

s
i 〉F/2, the correlated sub-grid

fluid and solid phase kinetic energies k̃ f
sgs = 〈ũ f ′′

i ũ f ′′
i 〉F/2 and k̃s

sgs = 〈ũs′′
i ũs′′

i 〉F/2 and the fluid and
solid pseudo-thermal kinetic energies Θ̄ f and Θ̄ is presented in figure 2.1 with ε f the fluid phase
sub-grid dissipation of TKE.

Figure 2.1: Schematic representation of the energy transfers between fluid and solid resolved,
unresolved, correlated and uncorrelated scales of the flow with K̃ f and K̃s the resolved fluid and
solid TKE, k̃ f

sgs and k̃s
sgs the fluid and solid sub-grid TKE, Θ̄ f the fluid pseudo-thermal kinetic

energy and Θ̄ the granular temperature. Terms in red are neglected because the grid size ∆ is of
the order of the particles diameter dp [1, 85]

To further study energy transfers between resolved flow scales, taking the filtered momentum
equation of the fluid phase (2.45), multiplying it by the fluid velocity and rearranging the equation
gives a transport equation of the mean resolved kinetic energy:

∂ (1−〈φ〉)K̃ f

∂ t︸ ︷︷ ︸
rate of
change

+
∂ (1−〈φ〉)〈ũ f
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〉

︸ ︷︷ ︸
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+
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〉
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viscous

diffusion

−
〈
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i

∂x j

〉

︸ ︷︷ ︸
viscous

dissipation

−
〈
ũ f

i Ii
〉
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coupling
contribution

+(1−〈φ〉)〈ũ f
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gravity
contribution

+

〈
∂ ũ f

i σ
f ,sgs

i j

∂x j

〉

︸ ︷︷ ︸
sub-grid
diffusion

−
〈

σ
f ,sgs

i j
∂ ũ f

i
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〉
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+

〈
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i (Φ
f ,sgs
i + Isgs

i )

〉

︸ ︷︷ ︸
other
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.

(2.64)

Symmetrically, the same equation can be constructed for the solid phase.

The mean kinetic energy can be decomposed into the sum of the mean field kinetic energy
〈K̃ f 〉F = 〈ũ f

i 〉F〈ũ
f
i 〉F/2 and the turbulent kinetic energy k̃ f = 〈ũ f ′

i ũ f ′
i 〉F/2 with ũ f ′

i the resolved
fluid velocity fluctuations. Making the decomposition of the mean kinetic energy in equation
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(2.64) allows to extract the transport equations of the mean field and the turbulent kinetic energy:

∂ (1−〈φ〉)〈K̃ f 〉F
∂ t︸ ︷︷ ︸

rate
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(2.65)

∂ (1−〈φ〉)k̃ f
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∂ ũ f ′

i
∂x j

〉

︸ ︷︷ ︸
sub-grid
dissipation

+

〈
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(2.66)

More details on the derivation of the kinetic energy equations are given in appendix B.

2.4 Numerical implementation

The present model is adapted from the turbulence-averaged two-phase flow solver sedFoam
(https://github.com/sedFoam/sedFoam) [20, 22]. It is implemented in the open-source computa-
tional fluid dynamics toolbox OpenFoam [56] and solves the Eulerian-Eulerian two-phase flow
mass and momentum equations using a finite volume method and a pressure-implicit with split-
ting of operators (PISO) algorithm for velocity-pressure coupling [99].

First, the solid mass conservation equation (2.11) is solved using the MULES (Multidimen-
sional Universal Limiter for Explicit Solution) solver [66] to ensure boundedness of the solution.
Then, the momentum exchange term, turbulence models coefficients and particle phase stress are
updated. To solve for the coupled pressure and velocities, the fluid phase momentum equation
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Chapter 2. Turbulence-resolving two-fluid model

(2.45) written in vector form (taking only the drag force into account for simplicity) is rearranged
and divided by ρ f (1− φ̄) as follows

∂ ũ f

∂ t
+∇ ·(ũ f ũ f )− (∇ · ũ f )ũ f =− 1

ρ f ∇P̄ f∗− φ̄K
ρ f (ũ

f − ũs)+
fv

ρ f

+
1

(1− φ̄)
∇ ·(T̃ f +σ

f ,sgs) (2.67)

with P̄ f∗ = P̄ f −ρ f gy the reduced pressure and K = ρs/t̃s(1− φ̄) the drag coefficient. The last
term of the right hand side (R.H.S.) of equation (2.67) can be expended as follows

1
(1− φ̄)

∇ ·(T̃ f +σ
f ,sgs) =

1
(1− φ̄)

∇ ·
[

ν
f

E f f

(
∇ũ f +∇ũ f T )− 2

3
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f
sp∇ · ũ f

]

= ∇ ·
(

ν
f

E f f ∇ũ f
)
+ν

f
E f f

∇(1− φ̄)

(1− φ̄)
∇ũ f +

1
(1− φ̄)

∇ ·
[
(1− φ̄) ν

f
E f f ∇ũ f T − 2

3
ν

f
sp∇ · ũ f

]
. (2.68)

with ν
f

sp = ν f +2C f
2 ∆2‖S̃SS f ‖ and ν

f
E f f = ν f +2C f

1 ∆2‖S̃SS f ‖ the effective viscosities of the spherical
and deviatoric parts of the stress tensor respectively taking into account sub-grid contributions.

The first two terms of equation (2.68), are treated implicitly whereas the last two terms are
treated explicitly. Substituting this decomposition of the stress tensors in equation (2.67) gives

∂ ũ f
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+∇ ·(ũ f ũ f )− (∇ · ũ f )ũ f −∇ ·
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E f f ∇ũ f
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f
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3
ν

f
sp∇ · ũ f

]
.(2.69)

In (2.69), all the terms on the left hand side (L.H.S) are treated implicitly and all the terms on the
R.H.S. are treated explicitly. In the matrix form, equation (2.69) gives:

A f · ũ f = H f +R f +
φ̄K
ρ f ũs− 1

ρ f ∇P̄ f∗ (2.70)

with A f and H f the matrices composed of the diagonal and off-diagonal terms of the algebraic
system associated with equation (2.69) respectively and R f the matrix composed with explicit
terms.

Following the same methodology, the solid phase momentum equation can be decomposed
following:

∂ ũs
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s
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f r)∇ũsT ](2.71)

− 1
φ̄

∇ ·
[

2
3
(φ̄ν

s
sp +ν

f r)∇ · ũs
]
.

with νs
sp = νc +2Cs

2∆2‖S̃SSs‖ and νs
E f f = νc +2Cs

1∆2‖S̃SSs‖ the effective viscosities for the spherical
and deviatoric parts of the stress tensor respectively taking into account sub-grid, collisional and
kinetic effects. Written in matrix form, equation (2.72) gives:

As · ũs = Hs +Rs +
(1− φ̄)K

ρs ũ f − 1
ρ f ∇P̄ f∗ (2.72)

with As and Hs composed of the diagonal and off-diagonal terms and Rs composed with explicit
terms.
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2.4. Numerical implementation

2.4.1 Velocity-pressure algorithm

The PISO algorithm is used to solve fluid and particle velocities with the Rhie & Chow (1983) [90]
method to ensure pressure-velocity coupling and avoid oscillations in the pressure field [99]
Step 1: Velocity predictor at the cell centers

First, the intermediate velocities ũs∗,ũ f∗ are computed using the corresponding momentum
equations (equations without the pressure gradient term and the explicit terms):

ũs∗ =
[
As]−1Hs,

ũ f∗ =
[
A f ]−1H f ,

(2.73)

where
[
As
]−1 and

[
A f
]−1 represent the inverse matrices of As and A f , respectively. Given that

As and A f are diagonal, computation of
[
As
]−1 and

[
A f
]−1 is rather straightforward. These

intermediate velocities do not satisfy the mass conservation equations (2.10) and (2.11) and should
be corrected.
Step 2: Velocity fluxes at the cell faces

The R.H.S. of equations (2.70) and (2.72) are computed at the cell faces (operator · | f ):

Φ
s
R =

[
As| f

]−1
Ra| f and Φ

f
R =

[
A f | f

]−1
R f | f (2.74)

and the velocity flux associated with the predictor step is interpolated at the cell faces:

Φ
s
U =

([
As
]−1

Hs
)∣∣∣∣∣

f

and Φ
f
U =

([
A f
]−1

H f
)∣∣∣∣∣

f

(2.75)

Introducing the notation:

AKs =

([
As
]−1

(1− φ̄)K/ρ
s
)∣∣∣∣∣

f

and AK f =

([
A f
]−1

φ̄K/ρ
f
)∣∣∣∣∣

f

(2.76)

one can write the volume averaged velocity flux at the cell faces as:

Φ
∗ = φ̄ | f

[
Φ

s
U +Φ

s
R +AKs

Φ
f ]+(1− φ̄)| f

[
Φ

f
U +Φ

f
R +AK f

Φ
s
]

(2.77)

where Φs = us| f .n| f S f and Φ f = u f | f .n| f S f denote the fluid and particle phases velocity
fluxes at the previous iteration or time step and at the cell faces, respectively, and S f is the cell
face area. At this stage, the drag force is partially treated explicitly for the mixture flux Φ∗.

Step 3: Velocity corrector at the cell faces

Writing the semi-discrete velocity equation including the pressure gradient term leads to the
following equations:

Φ
s∗∗ = Φ

s
U +Φ

s
R +AKs

∣∣
f Φ

f∗∗− ∇⊥P f∗| f
ρsAs| f

(2.78)

Φ
f∗∗ = Φ

f
U +Φ

f
R +AK f

∣∣
f Φ

s∗∗− ∇⊥P f∗| f
ρ f A f | f

(2.79)

Taking the divergence of the volume averaged mixture velocity and imposing the incompress-
ibility constraint, ∇ · Ũm∗∗ = ∇ ·(φ̄ ũs∗∗+(1− φ̄)ũ f∗∗) = 0, one can built the pressure equation as

41



Chapter 2. Turbulence-resolving two-fluid model

a function of the predicted velocity or predicted face fluxes:

∫

V
∇ ·
[(

φ̄

ρs [A
s]−1 +

(1− φ̄)

ρ f

[
A f ]−1

)
∇P f∗

]
dV =

∫

V
∇ · Ũm∗dV (2.80)

or
∮

S

(
φ̄ | f
ρs [As]−1 | f +

(1− φ̄)| f
ρ f

[
A f ]−1 | f

)
∇
⊥P f∗| f n| f dS =

∮

S
Ũm∗| f n| f dS. (2.81)

Using Gauss theorem, one can write the following expression:
∫

V
∇ ·
[
φ̄ ũs∗∗+(1− φ̄)u f∗∗]dV =

∮

S

[
φ̄ | f ũs∗∗| f +(1− φ̄)| f ũ f∗∗| f

]
·n dS = 0. (2.82)

At the discrete level, this equation is written as:

∑
f

[
φ̄ | f Φs∗∗+(1− φ̄)| f Φ f∗∗]= 0. (2.83)

Substituting the velocity corrector equations (2.78) and (2.79) into the previous equation, the Pois-
son equation for the pressure reads:

∑
f

(
φ̄ | f
ρs [As]−1 | f +

(1− φ̄)| f
ρ f

[
A f ]−1 | f

)
∇
⊥P f∗| f n| f S f = ∑

f
Φ
∗. (2.84)

This equation leads to a matrix system written at the cell faces. The resulting algebraic system
is usually solved using a multi-grid solver (GAMG). The resulting pressure field P f∗ is used for
the correction step in which the mixture velocity face flux is corrected using equations (2.78) and
(2.79):

Φ
∗∗ = Φ

∗−∑
f

∇
⊥P f∗| f S f (2.85)

and the fluid and particle phase face fluxes are corrected accordingly

Φ
s
c = Φ

s
U +Φ

s
R−

∇⊥P f∗| f
ρsAs| f

(2.86)

Φ
f
c = Φ

f
U +Φ

f
R−

∇⊥P f∗| f
ρ f A f | f

(2.87)

in which the explicit drag contributions coming from the other phase are still missing. We can
rewrite the corrected fluxes for each phase as:

Φ
s∗∗ = Φ

s
c +AKs

Φ
s∗∗ (2.88)

Φ
f∗∗ = Φ

f
c +AK f

Φ
f∗∗ (2.89)

and the face flux associated with the relative velocity as:

Φ
r∗∗ = Φ

s∗∗−Φ
f∗∗ = Φ

s
c +AKs(Φ f

c +AK f
Φ

s∗∗)−
[
Φ

f
c +AK f (Φs
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Φ
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]

(2.90)

Φ
r∗∗ = Φ

s
c +AKs

Φ
f
c −
[
Φ

f
c +AK f

Φ
s
c
]
+AKsAK f [

Φ
s∗∗−Φ

f∗∗] (2.91)

(1−AKsAK f )Φr∗∗ = Φ
s
c +AKs

Φ
f
c −
[
Φ

f
c +AK f

Φ
s
c
]

(2.92)

Φ
r∗∗ =

1
1−AKsAK f

{
Φ

s
c +AKs

Φ
f
c −
[
Φ

f
c +AK f

Φ
s
c
]}

(2.93)
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This new expression for the relative flux allows to treat the drag force almost implicitly. This
operation is made to stabilize the coupling between the two momentum equations and allows for
higher time steps with regard to the particle response time.

The predicted fluxes for each phase is then obtained from the mixture flux plus a correction
coming from the relative flux. Let’s write the mixture velocity and relative velocity expression:

Φ
∗∗ = φ̄ | f Φs∗∗+(1− φ̄)| f Φ f∗∗ and Φ

r∗∗ = Φ
s∗∗−Φ

f∗∗ (2.94)

from which we can deduce the following relationships:

Φ
s = Φ

∗∗+(1− φ̄)| f Φr∗∗ and Φ
f = Φ

∗∗− φ̄ | f Φr∗∗ (2.95)

The same type of procedure is applied for the reconstruction of the velocities at the cell centers.

2.4.2 Summary of the solution procedure

The numerical solution procedure for the proposed two-phase flow model is outlined as follow:

1. Solve for sediment concentration φ̄ , i.e., Eq. (2.11);

2. Update the drag parameter K;

3. Solve for the turbulence closure, update C f
1 , C f

2 , Cs
1, Cs

2;

4. Solve for the particle phase stress;

5. PISO-loop, solving velocity-pressure coupling for N loops:

(a) Construct the coefficient matrix As, A f , Hs and H f using Eqn (2.72) and (2.70).

(b) update the other explicit source terms Rs and R f .

(c) Calculate ũs∗,ũ f∗ using equations (2.73) without fluid pressure gradient term;

(d) Construct and solve the pressure Eq. (2.84);

(e) Correct fluid and particle velocities after solving pressure and update fluxes Eqns
(2.85)-(2.95);

(f) go to (a-e) if the number of loops is smaller than N (no tolerance criteria).

6. Advance to the next time step

2.5 Model validation

Two academic configurations of sedimentation and laminar bed load used to validate the
Reynolds average model from Chauchat et al. (2017) [20] have been successfully reproduced
using the two-phase flow model (not shown). The good agreement between numerical and analyt-
ical results allows to validate the implementation of the coupling between the two phases and the
stress terms. In order to further validate the TF model and measure its the predictive capabilities,
two turbulent clear water configurations (i.e. without particles) are reproduced numerically. The
first one is a unidirectional turbulent boundary layer flow for which both experimental and nu-
merical data are available and the second one is an oscillatory boundary layer in the transitionally
turbulent regime for which experimental data is available for comparison. All the simulations pre-
sented in this thesis are performed using the GRICAD infrastructure and the GENCI infrastructure
under the allocations A0060107567, A0080107567 and A0100107567.
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2.5.1 Unidirectional boundary layer flow

The clear water configuration from Kiger & Pan (2002) [61] consists of a closed unidirectional
channel flow with Reynolds number Reτ = uτh/ν f = 560 based on the wall-friction velocity uτ =
2.8×10−2 m.s−1 and channel half height h = 0.02 m. The flow parameters are presented in table
2.1.

Ub (m.s−1) h (m) uτ (m.s−1) Reτ

0.51 0.02 2.8×10−2 560

Table 2.1: Flow parameters of the clear water configuration from Kiger & Pan (2002) [61].

The numerical domain is a bi-periodic rectangular box (figure 2.2) with cyclic boundary con-
ditions in x and z directions and no slip boundary condition at the top and bottom boundaries for
the velocities. The gradient of any other quantities is set to zero at the walls. The flow is driven
by the volume force f v

i dynamically adjusted at each time step in order to match the experimental
bulk velocity Ub = 0.51 m.s−1. The mesh is composed of 314×220×160 elements correspond-
ing to a total of 11,105,280 cells. The span-wise and stream-wise resolution is constant with
∆+

x ≈ ∆+
z ≈ 11 wall units (+ symbol for a given variable ψ reads ψ+ = ψuτ/ν f ). The mesh is

stretched along the y-axis with ∆+
y ≈ 1 at the wall and ∆+

y ≈ 6 at the centerline. The time step
is fixed to ∆t = 10−4 s to ensure a maximum Courant-Friedrichs-Lewy number (CFL) lower than
0.3 for stability reasons. In a recent publication, Montecchia et al. (2019) [73] performed a sen-
sitivity analysis to the CFL number (CFL=0.1, 0.2 and 0.3) and the results did not show strong
sensitivities. Numerical parameters are presented in table 2.2

Mesh Number of cells ∆+
x ∆+

z ∆+
y (wall) ∆t (s)

314×220×160 11,105,280 11 11 1 10−4

Table 2.2: Numerical parameters of the clear water configuration from Kiger & Pan (2002) [61].

All the simulations involving unidirectional flows presented in this thesis have a fully de-
veloped turbulent boundary layer flow for initial condition obtained from a preliminary simula-
tion initialized with a perturbed velocity field following the methodology proposed by De Villiers
(2006) [25] implemented in OpenFoam (https://github.com/wyldckat/perturbU). A first run is con-
ducted to let the turbulence develop until the wall friction velocity and the integral of the total
flow kinetic energy have reached a steady-state. This corresponds to approximately 200Tb with
Tb = h/Ub the non-dimensional bulk timescale of the flow. Then, a second run is performed to
compute turbulence statistics and Favre-averaged quantities over a duration of 200Tb. The Favre-
averaging procedure is represented by the operator 〈 ·〉F (details can be found in appendix C). In
clear water flow conditions, Favre-averaging is equivalent to ensemble-averaging denoted as 〈 ·〉.
In the remaining of the manuscript, the operators 〈 ·〉F and 〈 ·〉 are used to denote Favre averag-
ing and ensemble averaging for configurations involving an unidirectional flow and Favre phase
averaging and classical phase averaging for configurations involving an oscillatory flow.

Second-order centered scheme is used for advection terms for which high frequency filtering of
the oscillations induced by second-order discretization is performed by introducing a small amount
of upwind scheme (filteredLinear2V in OpenFoam), a backward scheme is used for temporal
integration (backward in OpenFoam) and gradients are calculated using a second order centered
scheme (linear in OpenFoam).

Similarly to what has been done by Kiger & Pan (2002) [61], the average profiles obtained
experimentally and numerically are compared to the profiles from the DNS of Moser et al. (1999)
[74] with Reτ = 590. Since the Reynolds number in the configuration from Kiger & Pan (2002)
[61] is close to the DNS, it is reasonable to compare the profiles between the two configurations.
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The averaged velocity profiles, Reynolds stress and root-mean-square (r.m.s) of the stream-
wise velocity fluctuations ũ f ′

rms and wall normal velocity fluctuations ṽ f ′
rms are presented in figure

2.3 in wall units. In the simulations, the friction velocity is calculated based on the time-averaged
stream-wise volume force following uτ =

√
h〈 f v〉.

The computed wall-friction Reynolds number is equal to Reτ = 544 (uτ = 2.72×10−2 m.s−1)
which corresponds to an error below 3% compared with the experiments.

x

y
z 2h = 0.04m

2πh
πh

Cyclic

Wall

Figure 2.2: Sketch of the geometry and boundary conditions of the numerical domain for the
simulation of the clear water configuration from Kiger & Pan (2002) [61].

The present clear water simulation produces profiles of averaged velocity and turbulence
statistics that agree very well with the DNS and experimental data. However, especially for the
Reynolds stress, some discrepancies between experimental measurements and the simulations ap-
pear near the wall. Kiger & Pan (2002) [61] stated that their measurements can be considered
highly reliable in the outer log layer with less than 5% error for y+ > 50 and up to 25% variability
for y+ < 50.

The present results shows the good predictive capabilities of the TF model for single phase
unidirectional flows.

2.5.2 Oscillatory boundary layer

The clear water experimental configuration from Jensen et al. (1989) [57] is reproduced using
the two-phase flow model. The configuration investigated corresponds to the test number 8 of
Jensen et al. (1989) [57] with a smooth bottom boundary and a Reynolds number Re = aU f

m/ν f =
1.6× 106 based on the maximum free stream velocity U f

m = 1.02m.s−1, the fluid viscosity ν f =
1×10−6m2.s−1 and the orbital excursion length a =U f

m/ω = 1.58m. The free stream velocity is
sinusoidal with a period T = 9.72s. The Reynolds number based on the Stokes-layer thickness δ =√

2ν f /ω = 1.76×10−3m with ω = 2π/T the pulsation of the flow is equal to Reδ =U f
mδ/ν f =

1790 and the maximum friction velocity is um
τ = 0.047m.s−1. The hydrodynamic parameters are

presented in table 2.3.

T (s) U f
m (m.s−1) a (m) δs (m) um

τ (m.s−1) Re Reδ

9.72 1.02 1.58 1.76×10−3 0.047 1.6×106 1790

Table 2.3: Hydrodynamical parameters of the clear water configurations from Jensen et al. (1989)
[57].

The numerical domain is a box of dimensions 80δ ×50δ ×40δ . Mesh dimensions and bound-
ary conditions are represented on figure 2.4. A symmetry boundary condition is applied at the top
boundary, a wall boundary condition is applied at the bottom boundary and cyclic boundary con-
ditions are applied for the boundaries coincident the planes orthogonal to the x-axis and z-axis.
The same scheme as in section 2.5.1 are used.
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Figure 2.3: Average profiles of velocity in (a), Reynolds stress in (b), r.m.s of stream-wise ve-
locity fluctuations in (c) and r.m.s of wall-normal velocity fluctuations in (d) from the two-fluid
model (T.F. model) compared with the numerical results from Moser et al. (1999) [74] (DNS) and
experimental data from Kiger & Pan (2002) [61] (Exp.).
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Figure 2.4: Sketch of the geometry and boundary conditions of the numerical domain for the
simulation of the clear water configuration from Jensen et al. (1989) [57].

The mesh is decomposed into 60× 60× 55 elements for a total of 198,000 cells with a non-
uniform grid size distribution along the y-axis. Cells sizes expands from the bottom wall toward
the top boundary with an expansion ratio of 1.0135 giving a size ratio between the smallest and
largest cells equal to 5.8446. The dimensionless grid spacing based on the maximum friction
velocity is ∆x+ = ∆xum

τ /ν f = 110, ∆z+ = 60 and dimensionless cell size at the wall is ∆y+wall = 25.
Typical mesh resolution to resolve the laminar sub-layer impose a mesh requirement of ∆y+wall < 4.
However, accurate prediction of the flow hydrodynamics is obtained without resolving the laminar
sub-layer and without any near-wall treatment. The time step is calculated to ensure a CFL below
0.3. Numerical parameters are presented in table 2.4.

Mesh Number of cells ∆+
x ∆+

z ∆+
y (wall) ∆t

60×60×55 198,000 110 60 25 Adaptative (CFL < 0.3)

Table 2.4: Numerical parameters of the clear water configurations from Jensen et al. (1989) [57].

The volume force driving the flow in the x-direction given by

f v
i =

(
−ρ

f ∂u f
∞

∂ t
, 0 , 0

)
=
(
−ρ

fU f
mωcos(ωt), 0 , 0

)
(2.96)

with u f
∞ =U f

msin(ωt) the free-stream velocity.

0 50 100 150 200 250 300 350
Phase (deg.)

−1

0

1

u
f ∞
/U

f m

0◦
30◦

60◦ 90◦ 120◦

150◦

Figure 2.5: Time series of the free stream velocity with indications on the wave phases for which
intra-wave profiles are shown in the remaining of the manuscript.

For the oscillatory flow simulations presented in this manuscript, four period are simulated to
let the oscillating boundary layer develop and average profiles are calculated on the subsequent
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Chapter 2. Turbulence-resolving two-fluid model

four periods. A double average procedure (phase averaging operator 〈 ·〉 for oscillatory flow with
corresponding fluctuation · ′) is performed to increase statistical convergence. Indeed, the quantity
of interest at a given moment of the wave period is averaged over the four periods and then, a
spatial average is performed over the homogeneous directions of the flow (x- and z-directions) to
obtain intra-wave one-dimensional vertical profiles.
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Figure 2.6: Phase averaged friction velocity as a fraction of the experimental maximum friction
velocity predicted by the two-fluid model (T.F. model) compared with experimental results of the
clear water configuration from Jensen et al. (1989) [57] (Exp.) and analytical solution for the
laminar case (laminar)

.

Given that the wave forcing is symmetrical, intra-wave profiles from sinusoidal oscillatory
flow configurations shown in the manuscript are presented only for the first half of the wave period
(between 0◦ and 180◦). For a given configuration, the figures are composed of six panels showing
profiles at 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦ (see figure 2.5).
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Figure 2.7: Phase averaged velocity as a fraction of the maximum velocity (top) and phase
averaged Reynolds stress as a fraction of the maximum velocity squared (bottom) predicted by the
two-fluid model (T.F. model) compared with experimental results of the clear water configuration
from Jensen et al. (1989) [57] (Exp.).

The time evolution of the bottom friction velocity predicted by the T.F. model is compared
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to experimental data and analytical solution for the laminar case in figure 2.6. The agreement is
almost perfect between experiments and the simulation. It can also be noticed that the transition
to turbulence occurring at around 20◦ and 200◦ characterized by an increase of the bottom shear
stress compared with the laminar solution is accurately reproduced by the numerical model.

Velocity and shear stress profiles predicted by the TF model at different moments of the wave
period are compared to experimental data in figure 2.7. Given that the wave forcing is symmetrical,
only profiles in the first half of the wave period are presented (between 0◦ and 180◦). Overall, the
agreement between the TF model and the experimental data is quantitative over the wave period.

Eventually, the accurate prediction of the unidirectional boundary layer flow and oscillatory
flow hydrodynamics allows to validate the implementation and numerical configuration of the
model. These results give confidence in the model and allow us to perform particle-laden simula-
tions in the next chapters.
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3
Two-phase flow simulations of oscillatory sheet

flows subject to a sinusoidal flow forcing

In this chapter, two phase flow simulations of oscillatory sheet flow
configurations involving medium and fine sand subject to a sinu-
soidal flow forcing using the turbulence-resolving two-fluid model
are presented. Detailed analysis of concentration profiles, flow hy-
drodynamics, turbulent statistics and vertical mass balance allowed
to confirm that unsteady effects, namely phase-lag effect and en-
hanced boundary layer thickness for fine sand are not only due to
the small settling velocity of the particles relative to the wave pe-
riod. The occurrence and intensity of unsteady effects is also affected
by a complex interplay between bed instabilities, strong solid phase
Reynolds stress and turbulence attenuation caused by the presence
of the particles.
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Chapter 3. Two-phase flow simulations of oscillatory sheet flows subject to a sinusoidal flow
forcing

3.1 Introduction

Considering the limitations in term of experimental capabilities and accurate representation of
oscillatory sheet flow by turbulence-averaged model, the turbulence-resolving two-fluid model is
applied to oscillatory sheet flow configurations subject to a sinusoidal flow forcing. The main ob-
jective is to study the mechanisms responsible for the observed significant differences between the
behavior of medium and fine sand in oscillatory sheet flows. We hypothesize that the commonly
recognized phase-lag effect is not only due to the small settling velocity of fine sand but is directly
related to the enhanced transport layer thickness due to instabilities in the transitionally turbulent
flow and turbulence attenuation by the presence of sediment.

In this chapter, the experimental configurations from O’Donoghue & Wright (2004a) [81] in-
volving sinusoidal waves are reproduced numerically. Two types of sand are used: medium sand
of diameter dp = 280µm (configuration M512) and fine sand of diameter dp = 150µm (config-
uration F512) with density ρs = 2650kg.m−3. For both configurations the flow conditions are
the same with a sinusoidal flow forcing of period T = 5s and maximum free stream velocity
U f

m = 1.5m.s−1. For this wave condition, the Stokes-layer thickness is δ = 1.26× 10−3m and
the maximum excursion length is a = 1.19m giving Reynolds number based on theses quantities
Re = U f

ma/ν f = 1.8× 106 and Reδ = U f
mδ/ν f = 1890 respectively. Following the methodology

used in O’Donoghue & Wright (2004a) [81], the friction velocity is calculated using the formula
from Wilson et al. (1995) [124] giving um

τ = 0.112m.s−1. This maximum friction velocity corre-
sponds to a maximum Shields number θ m = 2.75 for medium sand and θ m = 5.16 for fine sand.
For both configurations the Sleath parameter is equal to Sl = 0.116. The flow and particles param-
eters are summarized in table 3.1.

Parameters M512 F512

T (s) 5 5

U f
m (m.s−1) 1.5 1.5

dp (µm) 280 150

ρs (kg.m−3) 2650 2650

vs (m.s−1) 3.96×10−2 1.59×10−2

a (m) 1.19 1.19

ν f (m2.s−1) 1×10−6 1×10−6

δ (m) 1.26×10−3 1.26×10−3

um
τ (m.s−1) 0.112 0.112

Re 1.8×106 1.8×106

Reδ 1890 1890

θ m 2.75 5.16

Sl 0.116 0.116

Table 3.1: Flow and particle parameters of the sheet flow configurations from O’Donoghue &
Wright (2004a) [81] involving medium sand (M512) and fine sand (F512).
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3.2. Numerical configuration

3.2 Numerical configuration

For the sheet flow configuration, the numerical domain is a box of dimensions 160δ ×100δ ×
40δ . Compared with the clear water configuration presented in section 2.5.2, the domain is two
times larger in the x-direction because of bed instabilities susceptible to have length scales larger
than 40δ . Mesh dimensions and boundary conditions are presented in figure 2.4. A symmetry
boundary condition is applied at the top boundary, a wall boundary condition is applied at the
bottom and cyclic boundary conditions are applied for the boundaries coincident with planes or-
thogonal to the x-axis and z-axis. The same numerical schemes as for the clear water configuration
presented in section 2.5.2 configuration are used. The volume force driving the flow is given by
expression (2.96).

x

y
z

40δ

60δ

160δ
40δ

Cyclic

Symmetry

Wall

Figure 3.1: Sketch of the geometry and boundary conditions of the numerical domain for the
simulation of the sheet flow configurations from O’Donoghue & Wright (2004a) [81].

The mesh is decomposed into 200× 260× 92 elements for a total of 4,784,000 cells. The
dimensionless grid spacing in the x-direction and z-direction is ∆x+ = 110, ∆z+ = 60. The mesh
is decomposed into three different regions in the vertical direction. Taking hs the height of the
deposited sediment bed initialized by a power law, from the bottom to y = hs− 24δ , the region
is decomposed into 20 cells using a non-uniform length distribution to have smaller cells with
∆y+ = 25 toward the top of the deposited sediment. The mesh region from y = hs − 24δ to
y = hs− 8δ is decomposed into 132 cells of constant grid spacing ∆y+ = 25 and eventually, the
mesh region from y = hs + 8δ to the top boundary is decomposed into 108 elements with a non-
uniform grid spacing and smallest cells having a length of ∆y+ = 25. Compared with the smooth
wall configuration presented in section 2.5.2, velocity gradients in the bottom boundary layer are
expected to be smoother in the oscillatory sheet flow configurations. The mesh resolution should
therefore be sufficient to reproduce the boundary layer hydrodynamics considering that accurate
prediction of the velocity and Reynolds stress profiles are obtained for similar grid resolution
in the clear water configuration from section 2.5.2. The mesh resolution in the near bed region
corresponds to grid sizes ∆x ≈ 3.5dp, ∆z ≈ 1.9dp and ∆y ≈ 0.8dp for configuration M512 and
∆x≈ 6.5dp, ∆z≈ 3.5dp and ∆y≈ 1.5dp for configuration F512 ensuring the condition ∆∼O(dp).
From flow initialization to the computation of phase averaged variables, numerical calculation last
for about one week on 168 cores (n nodes) for a total of approximatively 29,000 core-hours.

The pressure gradient driving the flow is given by equation (2.96) and the same averaging
procedure is performed as in section 2.5.2.
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3.3 Results

In this section, the results composed of intra-wave information on the concentration and ve-
locities are presented. The main objective is to shed light on the physical difference of behavior
between medium and fine sand for a given wave condition before exposing the underlying pro-
cesses in the next section.

3.3.1 Time evolution of the solid phase concentration

Phase averaged concentration profiles are represented at different moment of the wave period in
figures 3.2 for configurations M512 (top) and F512 (bottom). As for the results presented in
section 2.5.2, profiles are shown only for the first half of the wave period because of the wave
symmetry.
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Figure 3.2: Phase averaged concentration profiles from configurations M512 (top) and F512
(bottom) predicted by the two-phase flow model (LES) compared with experimental data from
O’Donoghue & Wright (2004a) [81] (Exp.).

As a consequence of the experimental uncertainty to determine the zero bed level, experi-
mental concentration profiles might need to be shifted to align measured and numerically mod-
eled maximum erosion depths. For configuration M512, concentration profiles do not need to be
shifted. For configuration F512, concentration profiles are shifted downward by a distance of 1.5δ .
Once the shift is determined, it is never changed for the rest of the comparison for that specific
case.

For both configurations, the agreement with experimental data is very good throughout the
wave period. The only discrepancy that can be observed for the simulation of configuration M512
is at 150◦ where the sediment concentration is overestimated in the lower part (pick-up layer)
and underestimated in the upper part (suspension layer) of the concentration profile. This feature
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suggests that the sediments settle too quickly to the bed during flow deceleration compared with
the experimental observations.

For configuration M512, the evolution of the concentration profile across the wave period
follows the well documented description proposed by O’Donoghue & Wright (2004a) [81]. A
clockwise rotation of the concentration profile around an almost constant concentration “pivot”
is observed during flow acceleration resulting in a decrease in concentration in the pick-up layer
and increase in the suspension layer. During flow deceleration, an anticlockwise rotation results
in an increase of the concentration of the pick-up layer and a decrease in the suspension layer as
sediments settle back to the bed (see figure 1.12).

However, for configuration F512, the behavior of the sediment concentration profile shape is
very different. Around flow peak (60◦, 90◦ and 120◦), the concentration profile shows a linear
shape with a change of slope at around 〈φ̄〉= 0.3. During flow deceleration, the slope of the upper
part of the concentration profile becomes steeper and the formation of a concentration plateau can
start to be observed at late stage of deceleration (150◦). At flow reversal, the concentration in
the plateau is evident at y/δ = 3 with a nearly depth uniform concentration at 〈φ̄〉= 0.3 between
y/δ = −3 to 3. The plateau is subsequently eroded during flow acceleration (30◦ and 60◦). Al-
though both cases are driven by the same oscillatory flow, we can notice at least qualitatively a
significantly larger transport layer thickness of a peak value of 15δ for configuration F512, which
is two times larger than that of configuration M512. The significantly larger transport layer thick-
ness and small settling velocity of fine sand both contribute to its unique features observed here
and we will investigate in more detail in the remaining of this chapter.

3.3.2 Velocity profiles

The profiles of Favre phase-averaged velocities 〈ũ f
i 〉F = 〈(1− φ̄)ũ f

i 〉/(1−〈φ̄〉) and 〈ũs
i 〉F = 〈φ̄ ũs

i 〉/〈φ̄〉
from configurations M512 and F512 are presented in figure 3.3.
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〈ũs,f〉F/U f

m

−5

0

5

10

15

F
51

2
y
/δ

0 1
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Figure 3.3: Favre averaged fluid and solid velocity profiles predicted by the two-phase flow model
as a fraction of the maximum velocity from configurations M512 (top) and F512 (bottom).

For both configurations, the fluid and solid velocity profiles are superimposed during flow
deceleration and flow reversal. However, during flow acceleration, the solid velocity slightly lags
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the fluid velocity. At early stages of flow acceleration, this velocity lag is located near the bed and
moves upward as the flow accelerates.

The velocity profiles in configuration M512 show expected behavior of the oscillatory bound-
ary layer. However, for configuration F512, the velocity profiles show significant differences. The
velocity profiles are affected by the concentration plateau (0◦, 30◦ and 60◦). At early stages of flow
acceleration, the boundary layer is decomposed into two different layers of almost constant veloc-
ity. This behavior is very similar to the plug flow described by Zala-Flores & Sleath (1998) [131]
and Sleath (1999) [107] but the mechanism is different. The threshold of plug flow can be mod-
ified by (i) the compaction of the sediment bed [107] and (ii) the Shields number [22, 41]. On
the one hand, the yield strength decrease for lower bed compaction. As a consequence, smaller
pressure gradient is necessary to generate the plug flow. On the other hand, the mobile sediment
bed is larger during flow acceleration for higher Shields number. The sediment bed is looser at
flow reversal having for effect to alter its yield strength. For configuration F512, the concentration
at flow reversal in the plateau is too low for a yield strength to develop between the plateau and the
immobile sediment bed. Therefore, under the action of the pressure gradient, the sediment plateau
“slides” almost freely over the sediment bed for values of the Sleath number as low as Sl = 0.116.

The hydrodynamic is further investigated by comparing the different shear stress contributions
from both phases.

3.3.3 Shear stress profiles

Profiles of Reynolds stresses for fluid and solid phases

R f
xy = ρ

f (1−〈φ̄〉)〈ũ f ′ ṽ f ′〉, Rs
xy = ρ

s〈φ̄〉〈ũs′ ṽs′〉, (3.1a,b)

and profiles of shear stress resulting from particle friction and collisions

τ
f r

xy =
〈

ρ
s
φ̄ν

f r
(

∂ ũs

∂y
+

∂ ṽs

∂x

)〉
, τ

c
xy =

〈
ρ

s
φ̄ν

c
(

∂ ũs

∂y
+

∂ ṽs

∂x

)〉
, (3.1a,b)

are presented in figure 3.4.
For both configurations, shear stress is dominated by friction in the sediment bed, collisions at

the bottom of the transport layer and Reynolds stresses in upper section of the flow. The contribu-
tion of the shear stress resulting from collisions is almost zero at flow reversal, increases during the
acceleration phase of the flow to reach its maximum before flow peak and decreases afterwards.
As expected due to the greater particle’s inertia for medium sand, the relative contribution of the
collisional shear stress is greater for configuration M512 compared with configuration F512.

The time evolution of the fluid phase Reynolds stress profiles from configuration M512 shows
the classical features of a rough oscillatory boundary layer. The relative contributions of the
Reynolds stresses from fluid and solid phase are similar at the top of the transport layer. As the
sediment concentration decreases, the solid phase contribution decreases and the fluid Reynolds
stress dominates. Furthermore, around flow reversal, particles are deposited and the solid phase
contribution to the Reynolds stress vanishes.

For configuration F512, the development of the fluid Reynolds stresses is inhibited by the
formation of the plateau around flow reversal suggesting a strong modulation of turbulence by the
particles. Turbulence modulation and formation of a concentration plateau shows similarities with
the two layer structure separated by a lutocline well known for fine sediment transport [83, 101].
However, the mechanism at play is fundamentally different. As observed by Ozdemir et al. (2010)
[83], the two layer structure with an almost homogeneous concentration profile in lower region of
the flow followed by a rapid decrease of the concentration is the result of turbulence attenuation
in the upper layer and strong mixing in the lower layer. For configuration F512, turbulence is
damped everywhere in the flow meaning that the concentration plateau is not a consequence of
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Figure 3.4: Solid and fluid Reynolds shear stress profiles Rs
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xy respectively, shear stress
resulting from particles friction τ
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xy from
configurations M512 (top) and F512 (bottom)

strong vertical mixing of sediment. The formation of the concentration plateau is further discussed
in section 3.4.2.

Compared with configuration M512, Reynolds stresses in configuration F512 penetrate deeper
into the bed, the solid phase contribution dominates in the lower part of the transport layer and
is present much higher in the flow. The great importance of solid phase Reynolds stress, usually
considered negligible, contributes to explain the limitations of turbulence-averaged models in term
of predictive capabilities for fine sand. Due to a greater contribution of the solid phase Reynolds
stress relative to fluid phase Reynolds stress to the horizontal momentum budget, what can be
called “solid phase turbulence” plays a key role during the acceleration phase of the wave for con-
figuration F512. As a consequence, mixing and boundary layer’s inertia are increased. Transport
layer becomes thicker and it takes more time for the boundary layer to adapt to the evolving flow
conditions resulting in the emergence of phase-lag effect.

3.3.4 Sheet flow layer thickness and streamwise sediment flux

An important feature of oscillatory sheet flows is the sheet flow layer thickness δs. The sheet flow
layer thickness is defined as the distance between the erosion depth and the elevation where the
phase average concentration is equal to 〈φ̄〉 = 0.08. It is rather straightforward to get the upper
limit of the sheet flow layer thickness but the definition of the erosion depth is subject to discussion.
For Dohmen-Janssen et al. (2001) [29], the erosion depth is defined as the still bed level for which
the velocity returns back to zero whereas for O’Donoghue & Wright (2004a) [81], the erosion
depth is obtained by fitting the power law to the concentration profile. The later definition can
hardly be applied to the fine sand configuration given that the concentration profile can not be
reproduced using a power-law. Therefore, the method of Dohmen-Janssen et al. (2001) [29] is
used to define the erosion depth for both configurations. According to O’Donoghue & Wright
(2004a) [81] for medium sand, the two definitions should give similar estimates of the erosion
depth.
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Figure 3.5: Time series of the sheet flow layer thickness δs made dimensionless by the Stokes layer
thickness δ from the sheet flow configurations M512 and F512.

The time series of the sheet flow layer thickness made dimensionless by the Stokes layer thick-
ness from configurations M512 and F512 are compared with the free stream velocity in figure 3.5.
The sheet flow layer thickness is perfectly in phase with the free stream velocity for configuration
M512. The sheet flow layer thickness is constant close to zero at flow reversal, start to grow at
around 25◦, reaches a maximum δ m

s /δ ≈ 9 at the maximum free stream velocity and decreases
at almost the same rate as it grew during flow acceleration to reach a constant value around 25◦

before the next flow reversal. For configuration F512, the time series of δs is not in phase with
the free stream velocity. The sheet flow layer thickness suddenly increases at around 55◦, reaches
a peak δ m

s /δ ≈ 14 at around 110◦ and then decreases slowly to reach a value of δs/δ ≈ 8 before
growing again at around 55◦ after the next flow reversal. Whereas the time series of the sheet flow
layer thickness shows a symmetrical behavior in its growth and decrease for configuration M512,
the ratio between growth phase and decrease phase for configuration F512 is lower than 0.5.

Most importantly, for the same hydrodynamic forcing between the two configurations, sheet
flow layer thickness in configuration F512 is much greater than the sheet flow layer thickness in
configuration M512 throughout the wave phase confirming the importance of unsteady effects in
configuration F512.
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Figure 3.6: Maximum sheet flow layer thickness made dimensionless by the particle diameter
δ m

s /dp as a function of the maximum Shields number θ m for configuration F512 and M512 com-
pared with experimental measurements involving coarse, medium and fine sand from Dohmen-
Janssen et al. (2001) [29].

The maximum sheet flow layer thickness δ m
s made dimensionless by the particle parameter

as a function of the maximum Shields number for both configurations is presented in figure 3.6.
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The dimensionless maximum sheet flow layer thickness for configuration M512 scales very well
with measurements from Dohmen-Janssen et al. (2001) [29] involving medium and coarse sand.
In the absence of unsteady effects, dimensionless maximum sheet flow layer thickness increases
linearly with the Shields number with δ m

s /dp = 13θ m [29]. For configurations involving fine sand,
the slope of the relation between δ m

s /dp and θ m becomes steeper as a consequence of unsteady
effects. Experimental measurements from Dohmen-Janssen et al. (2001) [29] involving fine sand
and configuration F512 are well represented by the relation δ m

s /dp = 25θ m used in the practical
sand transport model proposed by [114] for fine sand.
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Figure 3.7: Color map representing the time evolution of the solid phase concentration, time
series of the erosion depth δe and the top of the sheet flow layer corresponding to concentration
〈φ̄〉= 0.08 from the sheet flow configurations M512 and F512.

To supplement the study of the behavior of the sheet flow layer thickness, a color map repre-
senting the time evolution of the sediment concentration with the erosion depth δe and the line of
iso-concentration 〈φ̄〉 = 0.08 for both configuration are presented in figure 3.7. Compared with
the time series presented in figure 3.5, this figure allows to describe the sheet flow layer thickness
evolution in time by differentiating its upper and lower boundaries intra-wave dynamics. For con-
figuration M512, there is a symmetry between the erosion depth and the line of iso-concentration
〈φ̄〉 = 0.08 with respect to the still bed level y = 0. However, for configuration F512 the erosion
depth is almost constant throughout the wave period. The successive shrinking and enlargement
of the sheet flow layer thickness is mostly due to the variation of its upper limit. Compared with
configuration M512, given that the erosion depth is almost constant for configuration F512, the
amount of sediment in the transport layer is of lower variability throughout the wave period.

The time series of qx the streamwise depth-integrated sediment flux calculated as

qx =
∫

∞

−∞

〈φ̄ ũs〉dy (3.2)

are plotted in figure 3.8 for configurations F512 and M512. Similarly to the sheet flow layer
thickness, the sediment flux is perfectly in phase with the free stream velocity for configuration
M512. However, the temporal variability of sediment flux is more complex F512. There is a
significant phase shift between the sediment flux and the free stream velocity. Sediment flux
leads the velocity at flow reversal and lags it at flow peak. Furthermore, a sudden increase of
the streamwise sediment flux can be observed corresponding to the sheet flow layer increase at
around 55◦ and 235◦. The two-fluid simulations reveal the strong non-linear interactions between
turbulence and particles dynamics that lead to the increase of sediment transport.
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Figure 3.8: Times series of qx the streamwise depth-integrated sediment fluxes and the respective
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To better understand the difference of behavior between the two configurations, snapshots of
the simulations showing the fluid phase coherent turbulent structures and surfaces of instantaneous
concentration φ̄ = 0.5 and φ̄ = 0.08 at flow reversal (0◦), during flow acceleration (21◦ and 58◦)
and at flow peak (90◦) are presented in figure 3.9. At flow reversal, medium sand has completely
settled to the bed and turbulent structures are visible whereas fine sand is still in suspension in the
total absence of turbulence due to its low settling velocity and larger sheet flow layer thickness.
At early stage of flow acceleration, small amplitude two-dimensional shear instabilities start to
develop at the bottom in the form of small ripples on the surface of concentration φ̄ = 0.5 at
21◦ in figure 3.9 for configuration M512 and rapidly transition to three-dimensional turbulent
perturbation of the sediment bed. For configuration F512, turbulence starts to develop during flow
acceleration and two-dimensional shear instabilities of larger amplitude in the form of breaking
billows are visible on the surface of concentration φ̄ = 0.5 at 58◦ in figure 3.9. These instabilities
are visible at the bottom but the top of the sheet flow layer exhibits three-dimensional turbulent
flow structures. Strong instabilities have for effect to increase vertical mixing of the sediment and
significantly increase the sheet flow layer thickness. Eventually, the two-dimensional instabilities
transition to turbulence. For both configurations, boundary layers are fully turbulent at flow peak.

To better understand turbulence modulation induced by the particles and enhanced mixing
for configuration F512, the time evolution of resolved TKE in the oscillatory boundary layer is
investigated in the next section.

3.4 Discussion

In this section, the physical mechanisms responsible for the differences of behavior observed
in section 3.3 are discussed. First, the modulation of turbulence due to the presence of the particles
is presented and its effect on the mass balance between downward settling and upward turbulent
fluxes is analyzed.

3.4.1 Turbulence modulation induced by the particles

As suggested by Dohmen-Janssen et al. (2001) [29], an important feature of the difference of
behavior can come from turbulence modulation by the particles. Compared with experiments,
numerical simulation has the advantage to provide a better insight into turbulence statistics such
as the time-evolution of TKE in the oscillatory boundary layer. The spatio-temporal evolution of
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Figure 3.9: Snapshots of the configurations M512 (left panels) and F512 (right panels) at 0◦, 21◦,
58◦ and 90◦ with surfaces of concentration φ̄ = 0.5 (brown), φ̄ = 0.08 (silver) and fluid turbulent
coherent structures colored by the fluid velocity.
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resolved TKE during the wave period is presented in figure 3.10 for both configurations. Turbu-
lence generation during flow acceleration and decay during flow deceleration behaves completely
differently between configuration M512 and F512.
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Figure 3.10: Color map of the resolved fluid TKE from configurations M512 (top) and F512
(bottom) with white lines representing the moment where snapshots from figures 3.9 were taken.

For configuration M512, the boundary layer remains fully turbulent throughout the wave pe-
riod. Turbulence is generated due to strong shear close to the bed at early stage of the wave period,
then a sudden increase of TKE is observed corresponding to appearance of the two-dimensional
instabilities and the increase of the sheet flow layer thickness at around 20◦. TKE reaches its
maximum just before flow peak and eventually decays during flow deceleration resulting in the
deposition of particles without re-laminarization of the flow.

For configuration F512, the mechanisms of turbulence production and dissipation inside the
sheet flow layer thickness are a bit more complicated. As for configuration M512, TKE starts
to increase at the top of the immobile bed at early stages of flow acceleration but, TKE is also
produced at the top of the sheet flow layer. These production zones correspond to the high velocity
shear rate regions of the flow located at the top and bottom of the concentration plateau as can be
seen in figure 3.3. Similarly to configuration M512, the appearance of the two-dimensional shear
instabilities corresponds to a sudden spread of the TKE. The top and bottom shear layers eventually
meet and the resulting shear layer thickness increases as the sheet flow layer thickness increases.

The maximum TKE is larger for configuration F512 compared with M512 traducing the en-
hanced vertical mixing of fine sand. However, turbulence is dissipated much more rapidly with an
almost complete re-laminarization of the boundary layer near flow reversal.

In that case, stratification induced by the particles in suspension in the concentration plateau
near flow reversal has a stabilizing effect. Usually, this behavior is observed for very fine sedi-
ment with very low fall velocity [83] but, under such energetic conditions, the same phenomenon
occurs given the significant quantity of sediment maintained into suspension during flow reversal.
To quantify the stabilizing effect of density stratification, the vertical profiles of the Richardson
number defined as

Ri =
g

ρm
|∂ρm/∂y|
(∂u f /∂y)2 (3.3)

with ρm = φρs+(1−φ)ρ f the mixture density are plotted in figure 3.11. The Richardson number
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represents the ratio between turbulence attenuation induced by density stratification and turbulence
production due to shear. From stability analysis, it is generally assumed that density stratification
stabilizing forces dominate for Ri > 0.25.
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Figure 3.11: Vertical profiles of Richardson number for configurations M512 and F512. Dotted
line corresponds to Ri = 0.25 and dashed lines corresponds to the erosion depths.

For both configurations, the Richardson number is below the threshold value of 0.25 over
the still bed during the latest stage of flow acceleration, flow peak and early stage of flow reversal.
However, the Richardson number becomes greater than 0.25 at latest stage of flow deceleration and
at flow reversal for configuration F512. When shear becomes weaker during flow deceleration, the
density gradient generated by the presence of the particles in the water column strongly attenuates
the turbulence. Stabilizing forces induced by flow stratification predominates over turbulence
production and the flow becomes laminar at flow reversal.

Density stratification may not be the only mechanism responsible for turbulence attenuation.
For sand particles, drag-induced turbulence dissipation can also contribute to the reduction of the
surrounding turbulence [23]. The analysis of detailed TKE budget in the future would allow to
better identify and quantify the relative contributions of the mechanisms at the origin of turbulence
modulation by the particles in the oscillatory boundary layer.

The modulation of turbulence has not only an effect on the hydrodynamics but also vertical
mixing of the particles. Mechanisms of erosion and deposition are affected by the differences in
the behavior of the turbulent boundary layer between the two configurations.

3.4.2 Vertical fluxes

Taking the phase average of the sediment mass conservation equation (2.44) gives the following
expression:

∂ 〈φ̄〉
∂ t

+
∂ 〈φ̄ ṽs〉

∂y
= 0. (3.4)

The time evolution of the concentration profile is controlled by the divergence of the vertical sand
flux. This net sand flux can be decomposed into two components:

〈φ̄ ṽs〉= 〈φ̄〉〈ṽs〉+ 〈φ ′ṽs′〉, (3.5)

with the former being the averaged settling flux defined as the product of the average concentra-
tion and vertical velocity and the latter being the correlation between concentration and vertical
velocity fluctuations, which is called the average Reynolds flux. The Reynolds flux represents
the upward sediment flux generated by turbulence. The net flux can be either dominated by the
settling or the Reynolds flux but both of them coexist at the same time throughout the wave period.
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Figure 3.12: Vertical fluxes at different moments of the wave period from the sheet flow configu-
rations M512 (top) and F512 (bottom).

The net, settling and Reynolds fluxes for both configurations are presented at different moment
of the wave period in figure 3.12. For configuration M512, sand is completely deposited at flow
reversal resulting in a zero vertical flux. During flow acceleration, the net sand flux is dominated
by the upward Reynolds flux. Particles are picked-up from the bed by the fluid phase turbulent
flow structures. At flow peak, a similar behavior compared with steady particle-laden boundary
layer flows is observed. There is an equilibrium between upward Reynolds and downward settling
fluxes meaning that the amount of particles eroded by turbulent flow structures equals the number
of particles falling back to the bed. Eventually, during flow deceleration, the net flux is dominated
by settling but a significant contribution to the net sand flux from upward Reynolds flux remains.

For configuration F512, the time evolution of the net vertical sand flux is more complex. Un-
der the effect of instabilities during flow acceleration, solid phase Reynolds stress become large
(see figure 3.4) and vertical mixing is enhanced. As a result, the net sediment flux is still domi-
nated by Reynolds flux at flow peak. Compared with configuration M512, there is no equilibrium
between settling and Reynolds fluxes. Settling and Reynolds fluxes are balanced at 150◦ and the
net sediment flux becomes settling dominated during latest stage of flow deceleration. As a result
of turbulence attenuation due to stable stratification, Reynolds flux is almost zero around flow re-
versal. During this phase, the net sediment flux is almost exclusively controlled by the free fall of
the particles. This analysis represents the first observation of phase-lag effect on the vertical mass
budget of sediments.

For configuration M512, the position of the maximum net sand flux corresponds approximately
to the position of the inflection point of the concentration profile. In that case, the divergence of the
flux is zero at the location of the inflection point. During flow acceleration, particles are picked-up
from the bed and transits from the bottom to higher section of the flow with a maximum flux at the
inflection point and vice versa during flow deceleration. This behavior results in a concentration
profile pivoting around the inflection point during successive acceleration and deceleration phases
following the classical description provided by O’Donoghue & Wright (2004a) [81]. However,
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for configuration F512, the maximum sediment flux is located much higher in the flow when the
flux is settling dominated around flow reversal. Particles settle faster in upper sections of the
flow, the sediment concentration saturates as the particle fall velocity decreases due to hindered
settling induced by neighboring particles toward the bed and the concentration plateau forms.
Eventually, as the concentration becomes constant in the plateau, so does the net vertical flux and
the divergence of the flux inside the plateau becomes zero. As a consequence, particles settling at a
higher rate from upper section of the flow transit at a constant rate through the plateau of constant
concentration before settling back to the bed. The formation of the concentration is therefore the
direct consequence of the coupling between the shape of the concentration profile and hindered
settling, not the consequence of a turbulent mechanism as observed for fine sediment by Ozdemir
et al. (2010) [83] for fine sediment.

Indeed, the formation of concentration plateaus in sedimentation theory has already been ob-
served and extensively investigated both analytically and numerically [12–14]. Finding solutions
for the vertical sediment mass balance in sedimentation theory amounts to solving a Riemann
problem where shocks and expansion waves can form. The formation of the concentration plateau
at flow reversal in configuration F512 can directly be related to a sedimentation shock forming at
the top of the transport layer and an expansion wave eventually leading to a constant concentration
inside the plateau.
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as a fraction of the settling velocity vs at different moments of the wave period from the sheet
flow configurations M512 (top) and F512 (bottom) compared with the empirical expression of the
hindered settling velocity from Richardson & Zaki (1997) [94].

The Reynolds flux contribution for configuration M512 during flow deceleration has for effect
to decrease the net sediment flux in the upper section of the flow and shift the maximum net flux
toward the concentration profile inflection point. If the Reynolds flux contribution was zero (i.e. if
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the net flux was exclusively dominated by settling), the maximum net flux would be located higher
in the flow and the formation of a concentration plateau would be expected.

More than the sediment fluxes, quantities of interest in the prospect of modeling oscillatory
sheet flow are the vertical velocities. Taking the decomposition of the net sediment flux 3.5 and di-
viding it with the average sediment concentration 〈φ̄〉 allows to recover the vertical Favre averaged
solid velocity

〈ṽs〉F = 〈ṽs〉+ ṽs
d (3.6)

decomposed into the sum of an average settling velocity 〈ṽs〉 and a vertical drift velocity ṽs
d =

〈φ ′ṽs′〉/〈φ̄〉.
As for the fluxes in figure 3.12, the different contributions of the vertical particle velocities are

plotted in figure 3.13.
For configuration F512, the mean particle settling velocity is well represented by the em-

pirical expression of the hindered settling velocity proposed by Richardson & Zaki (1997) [94]
〈vs〉 = vs(1−〈φ̄〉)4.65 throughout the wave period. However, for medium sand, a significant re-
duction of the effective particle settling velocity can be observed. The location where this settling
velocity reduction occurs is moving upward as flow accelerates. The settling velocity reduction
corresponds to location where Reynolds stress changes sign (figure 3.4). In this flow region, com-
plex interactions between the particles and turbulent structures generated at flow reversal such as
loitering [80], non linear drag effects [71] or vortex trapping [79] may cause settling retardation.
However, this settling velocity reduction occurs at location where the concentration and the net
vertical flux are very low and do not significantly impact the time evolution of the concentration
profile.

Overall, the average settling velocity is well reproduced by the hindrance function. The de-
pendence of the settling velocity on the sediment concentration is already easily implemented in
traditional drag formulations. The modeling effort should therefore be directed toward reproduc-
ing the turbulence-particle interactions represented by the drift velocity to accurately predict the
vertical balance between settling and Reynolds fluxes for these flow conditions.

3.5 Conclusion

The turbulence-resolving Eulerian two-fluid model sedFoam has been successfully applied to
oscillatory sheet flow configurations involving fine and medium sand under a symmetrical flow
forcing (configurations F512 and M512 from O’Donoghue & Wright (2004a) [81] respectively).
Quantitative predictions of concentration profiles are obtained demonstrating the predictive capa-
bilities of the two-fluid LES model. However, small discrepancies can be observed for the config-
uration involving medium sand. Sediments settle too quickly to the bed during flow deceleration
leading to sharper concentration profile in the near bed region compared with the experimental
observations. As observed in the regime map presented in figure 1.5, for larger particles, more
complex turbulence-particle interaction regimes occur and physical processes such as finite-size
effects may become dominant. In that case, modifications of the fluid-particle interaction term,
susceptible to affect the vertical distribution of sediment, are required [39].

Nevertheless, the good quality of the model results allows us to validate the use the two-
fluid model. It is remarkable that the turbulence-resolving two-phase flow model reproduces the
differences of behavior observed between medium and fine sand whereas turbulence-averaged
models require an almost systematic tuning of empirical model coefficients for turbulence-particle
interactions. These important results demonstrate the two-fluid model explicitly resolves these
interactions and can be used to study in details the mass balance and turbulent statistics to explain
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the differences observed experimentally.
For oscillatory sheet flow involving medium sand, the evolution of the concentration profile

across the wave period follows the well documented description proposed by O’Donoghue &
Wright (2004a) [81] with a clockwise (resp. anti-clockwise) rotation of the concentration profile
during flow acceleration (resp. deceleration) around a “pivot” of constant concentration. From the
analysis of the two-fluid model results, this can be explained by a competition between downward
settling flux and upward Reynolds flux. This behavior is the result of a maximum vertical net flux
coinciding with the inflexion point of the concentration profile during most of the wave period.
The sheet flow layer thickness, the erosion depth and the horizontal sediment flux are perfectly
in phase with the free stream velocity suggesting that the sediment bed response to changes of
the near bed velocity is very quick. This observation confirms that the evolution of the sheet flow
layer is quasi-steady. In the streamwise direction, velocity and Reynolds stress profiles show the
well known behavior of the turbulent oscillatory boundary layer.

For fine sand, unsteady effects are present resulting in a completely different behavior of the
flow. As a result of instabilities observed during flow acceleration, the solid phase Reynolds
stress becomes large and the sheet flow layer thickness is significantly increased throughout the
wave period. Consequently, a large mass of sediment is transported in the boundary layer there-
fore increasing the sheet flow layer’s inertia. The response of the sediment bed is no longer in
phase with the free stream velocity. During the deceleration phase, the presence of suspended
particles induces stable stratification that strongly damp turbulence and leads to almost vanish-
ing vertical Reynolds fluxes. The boundary layer transition toward a laminar behavior and the
sediment dynamics is increasingly dominated by gravitational settling. Compared with medium
sand, the maximum vertical net flux is located higher in the flow leading to the formation of the
concentration plateau due to non-linear behavior in the mass balance. Time evolution of the con-
centration can no longer be represented by the classical description provided by O’Donoghue &
Wright (2004a) [81] using a power law. The concentration plateau slides almost freely above the
immobile bed with a constant velocity profile showing similarities with the plug flows observed
by Sleath (1999) [107] at lower concentration.

Compared with medium sand, the solid phase turbulence plays a greater role in oscillatory
sheet flow. Usually not taken into account in turbulence-averaged models, it contributes to ex-
plain their limited predictive capabilities for configurations involving fine sand. Unsteady effects
are the results of a chain of causes and consequences including shear instabilities that increase
vertical mixing of sediment, strong solid phase Reynolds stress, increased boundary layer inertia,
stable stratification, turbulence damping and hindered settling. An equilibrium between all these
mechanisms establishes during the wave period controlling the vertical mass balance of sediment
and phase-lag effects.

Eventually, accurately predict the time evolution of the concentration profile depends on a
reliable modeling of the competition between the downward settling and the upward Reynolds
fluxes. Simulation results using the two-fluid model show that the mean settling velocity can be
well reproduced using empirical formulation taking into account hindered settling. Future research
should therefore be focused on an accurate modeling of the drift velocity induced by turbulence-
particle interactions.
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4
Effect of the wave shape on the net sediment

transport rate

In this chapter, the effect of wave shape on sediment transport in
the sheet flow regime is investigated with a focus set on the grain
size dependency and phase-lag effects. The imprint of unsteady ef-
fects on streamwise sediment transport and the behavior of the os-
cillatory boundary layer are discussed based on the time evolution
of the streamwise sediment flux, the instantaneous Shields number,
the transport layer thickness and the turbulent kinetic energy. The
relation between onshore and offshore transport rate and their cor-
responding effective Shields number reveals that the sediment load
transported during a given wave phase can not be determined from
a power law using the same parameterization for medium and fine
sand. Furthermore, the maximum sheet flow layer thickness used
in the parameterization of phase-lag effects in the sand transport
formula does not follow the classical scaling laws. Eventually, sug-
gestions regarding phase-lag effects modeling based on the vertical
sediment mass balance are provided.
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Chapter 4. Effect of the wave shape on the net sediment transport rate

4.1 Introduction

After a first validation on oscillatory sheet flow under symmetric waves in chapter 3, the two-
fluid model is applied to study wave shape effects. Indeed, unsteady effects can have a significant
impact on the wave averaged net flux generated under asymmetric or skewed waves. Providing
detailed information on the effect of the wave shape using the two-fluid model is valuable consid-
ering that the wave averaged net flux controls the cross shore morphological evolution of sandy
beaches.

Four experimental configurations from O’Donoghue & Wright (2004a) [81] and van der A et
al. (2010) [112] are reproduced numerically to investigate the effect of the wave shape on sand
transport and grain size dependency with a focus on phase-lag effects.

Figure 4.1: Time series of free stream velocity u f
∞ made dimensionless by the maximum free stream

velocity U f
m for a velocity skewed wave corresponding to the flow forcing in configurations M5010

and F5010 (top pannel) and an acceleration skewed wave corresponding to the flow forcing in
configurations S706015m and S706015f (bottom pannel).

The effect of velocity skewness is investigated by simulating configuration M5010 involv-
ing medium sand with diameter dp = 280µm and configuration F5010 involving fine sand with
diameter dp = 150µm from O’Donoghue & Wright (2004a) [81]. Compared with the config-
urations investigated in chapter 3, only the shape of the waves changes. The wave period and
maximum free stream velocity are the same with T = 5 s and U f

m = 1.5 m.s−1 but the flow asym-
metry is equal to a f =U f

m/(U
f

m−u f
m) = 0.63 with u f

m the maximum off-shore velocity compared
with a f = 0.5 for sinusoidal waves (top pannel of figure 4.1). The Stokes boundary layer thick-
ness δ , maximum excursion length a and estimates of the maximum friction velocity um

τ being
only function of the wave period and maximum free stream velocity, remain unchanged com-
pared with the corresponding values for sinusoidal waves giving δ = 1.26× 10−3m, a = 1.19m
and um

τ = 0.112m.s−1. The corresponding Reynolds numbers based on a and δ remains also
unchanged with Re =U f

ma/ν f = 1.8×106 and Reδ =U f
mδ/ν f = 1890 respectively.

To study the effect of acceleration skewness, configuration S706015m involving medium sand
with diameter dp = 270µm and configuration S706015f involving fine sand with diameter dp =
150µm from van der A et al. (2010) [112] are reproduced numerically. For both configurations,
hydrodynamic conditions are the same with acceleration skewed waves of period T = 6s and
maximum free stream velocity U f

m = 1.3m.s−1 (bottom pannel of figure 4.1). The corresponding
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4.2. Numerical configuration

Parameters M5010 F5010 S706015m S706015f

T (s) 5 5 6 6

U f
max (m.s−1) 1.5 1.5 1.3 1.3

dp (µm) 280 150 270 150

ρs (kg.m−3) 2650 2650 2650 2650

a (m) 1.19 1.19 1.24 1.24

ν f (m2.s−1) 1×10−6 1×10−6 1×10−6 1×10−6

δ (m) 1.26×10−3 1.26×10−3 1.38×10−3 1.38×10−3

um
τ (m.s−1) 0.112 0.112 0.091 0.091

Re 1.8×106 1.8×106 1.6×106 1.6×106

Reδ 1890 1890 1794 1794

Table 4.1: Flow and particle parameters of configurations M5010 and F5010 from O’Donoghue
& Wright (2004a) [81] and configurations S706015m and S706015f from van der A et al. (2010)
[112].

Stokes layer thickness, maximum excursion length and estimated maximum friction velocity are
δ = 1.38× 10−3m, a = 1.24m and um

τ = 0.091m.s−1. Reynolds numbers based on a and δ have
similar values compared with the other configurations with Re = 1.6×106 and Reδ = 1794.

Flow and particle parameters for the configurations M5010, F5010, S706015m and S706015f
are listed in table 4.1. For simplicity, velocity skewed and acceleration skewed flow forcing are
referred to as skewed and asymmetric wave respectively in the remaining of the manuscript.

4.2 Numerical configuration

The numerical domain dimensions, mesh decomposition and discretization schemes used to
simulate the four three-dimensional configurations are the same as presented in section 3.2 for
sinusoidal waves. However, the skewed and asymmetric waves configurations differ by the ex-
pression of the free stream velocity in the volume force driving the flow f v

x =−ρ f ∂u f
∞/∂ t.

For skewed waves, the expression of the free stream velocity is given by a second order stokes
wave:

u f
∞(t) = u1sin [ω(t− t0)]−u2cos [2ω(t− t0)] (4.1)

with u1 = 1.2m.s−1, u2 = 0.31m.s−1 and t0 = 0.185s chosen to obtain U f
m = 1.5m.s−1, a f = 0.63

and u f
∞(0) = 0. For asymmetric waves, the free stream velocity is given by

u f
∞(t) = αuu f

m

6

∑
n=1

(2β −1)n−1sin(nωt)
n

(4.2)

with β = 0.7 the skewness factor and αu = 0.9725 a coefficient adjusted to recover the maximum
free stream velocity.

From now on, the flow quantities can not be monitored only during one half of the wave
period as for sinusoidal waves presented in chapter 3 but during the positive onshore-oriented
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Chapter 4. Effect of the wave shape on the net sediment transport rate

and negative offshore-oriented phases of the wave cycle denoted as wave crest and wave trough
respectively.

4.3 Results

In this section, comparison between measured and predicted net sediment fluxes are first pre-
sented. Then, intra-wave processes are investigated to provide more insight into the relations
between flow forcing, turbulence and transport rate.

4.3.1 Wave averaged sediment flux

One of the major difference between oscillatory sheet flow involving a symmetric forcing and
asymmetric and skewed waves is the occurrence of a net sediment flux in the streamwise direction
Q calculated following

Q =
1
T

∫ T

0
qxdt (4.3)

with qx the depth integrated streamwise sediment flux per unit width given by equation (3.2). The
comparison between the measured and the predicted net sand fluxes using the two-fluid model is
presented in table 4.2.

Configuration Measured Q Predicted Q Ratio

(×10−6m2.s−1) (×10−6m2.s−1)

M5010 53 139 2.6

F5010 −128 −140 1.1

S706015m 41.24 58.89 1.4

S706015 f 100.22 131.16 1.3

Table 4.2: Comparison between measured and predicted net sediment fluxes Q for configurations
F5010, M5010, S706015f and S706015m with their ratio.

Similarly to experimental observations, for configurations S706015m and S706015f, the two-
fluid model predicts a positive sand flux corresponding to a net onshore sand transport. Further-
more, the predicted net flux is close to the experimental measurements within a factor 1.4 for
configuration S706015m and 1.3 for configuration S706015f. For configuration M5010, the net
sediment flux is also positive but over-estimated by a factor 2.6 compared with the measurements.
For configuration F5010, the change of sign of the net sand flux, signature of phase-lag effects,
is well captured by the two-fluid flow model with a good prediction within a factor 1.1 compared
with experimental measurements.

Taking into account the complexity of the mechanisms occurring in sediment transport under
waves, difficulties to conduct experiments in a well controlled way and experimental measure-
ments uncertainties, a prediction of the net transport rate is generally considered accurate within
a factor two compared with the experiments [114]. The comparison between predicted and mea-
sured net sand fluxes presented in figure 4.2 shows that the predictions from the two-fluid model
can be considered very good for configurations F5010, S706015f and S706015m. For configura-
tion M5010, the agreement is only qualitative. However, on the one hand, prediction of the net
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Figure 4.2: Comparison between measured and predicted wave averaged sediment flux for con-
figurations F5010, M5010, S706015f and S706015m.

sand flux for configuration M5010 is close to the typical limit to be considered as acceptable. On
the other hand, to study the effect of the wave shape and phase-lag, the most important feature is
to be able to reproduce the behavior of the oscillatory boundary layer. In that case, the two-fluid
model accurately predicts the mechanisms at the origin of the change of sign of the net sediment
flux between configurations involving medium and fine sand subject to the same flow forcing.

4.3.2 Effect of velocity skewness

To better understand phase-lag effects associated with skewed waves, time series of intra-wave
depth integrated streamwise sediment fluxes per unit width qx for configurations M5010 and F5010
are presented in figure 4.3. For configuration M5010, sediment flux is almost zero around both off-
shore/onshore and onshore/offshore flow reversals. Flow forcing is not strong enough to mobilize
sediment at the early stages of the flow acceleration. Maximum onshore and offshore streamwise
sediment fluxes are coincident with maximum onshore and offshore maximum free stream veloc-
ities with a stronger maximum onshore-oriented sediment flux. The amount of sediment trans-
ported offshore during the wave trough does not compensate the amount of sediment transported
onshore during the shorter wave crest leading to a positive net sand flux.

For configuration F5010, streamwise sediment flux does not return back to zero throughout the
wave period. In other words, there are still particles transported during successive flow reversals.
As a consequence of unsteady effects, there is a significant phase shift between sediment flux and
free stream velocity. As for configuration M5010, maximum onshore sediment flux is larger but
the duration of the offshore oriented sediment flux is longer. The amount of sediment transported
offshore over a longer period now exceeds the amount of sediment transported onshore having for
effect to generate a net offshore-oriented (negative) flux.

In conventional approaches, sediment flux is parameterized based on the instantaneous Shields
number θ . To assess the validity of this hypothesis, the time series of the Shields number predicted
by the two-fluid model calculated based on the maximum value of the fluid Reynolds stress inside
the sheet flow layer for configurations M5010 and F5010 are presented in figure 4.4. Time series
of the sediment flux are perfectly in phase with time series of the Shields number for configuration
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Figure 4.3: Times series of qx the streamwise depth-integrated sediment fluxes for configurations
M5010 and F5010.

M5010. In other words, the bed response is fully correlated with the flow forcing represented
by the dimensionless shear stress at the bottom. For configuration F5010, the maximum flux and
maximum Shields number occur during wave crest but the time evolution of the sediment flux can
not be represented by the instantaneous Shields number. The maximum Shields number during
wave crest at 50◦ corresponds to the sudden increase of the streamwise flux but it reaches its
maximum value around 30◦ later. On the contrary, the maximum offshore sediment flux occurs
before the maximum Shields number during wave trough.
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Figure 4.4: Time series of the Shields number for configurations M5010 and F5010.

As for sheet flow configurations subjected to a symmetrical flow forcing presented in chapter
3, for configuration M5010 involving medium sand, the sheet flow layer thickness represented
in figure 4.5 is almost zero around both flow reversals. Sediment flux is in phase with the time
evolution of the sheet flow layer thickness and the instantaneous Shields number. For configuration
F5010, sheet flow layer thickness is never zero meaning that sediment are transported throughout
the wave period. The sand flux is no longer in phase with the thickness of the transport layer.
Whereas the increase of the onshore oriented sediment flux corresponds very well to the sheet flow
layer thickness increase, the maximum offshore oriented sediment flux occurs when the sheet flow
layer thickness is minimum. The flow changes direction while still carrying particles in suspension
having for effect to generate a strong offshore flux that is not correlated with the instantaneous
Shields number. There is a significant delay between the flow condition and the response of the
transport layer.

To highlight the vertical distribution of the streamwise sediment flux over the wave period,
a color map of the flux density 〈φ̄ ũs〉 for both configurations M5010 ans F5010 are presented in
figure 4.6 together with the erosion depth and the top of the sheet flow layer. For configuration
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Figure 4.5: Time series of the sheet flow layer thickness made dimensionless by the Stokes layer
thickness for configurations M5010 and F5010.

M5010, there is a symmetry between erosion depth and the top of the sheet flow layer showing
the well known behavior of the concentration profile discussed in chapter 3. For configuration
F5010, as the erosion depth shows a low variability, the evolution of the sheet flow layer thickness
is mostly the consequence of the displacement of the top boundary. As the maximum offshore
sediment flux corresponds to the minimum sheet flow layer thickness, sand is transported as a fast
moving layer very close to the bed at around 190◦.

−10

−5

0

5

10

15

20

M
50

10
y
/δ

〈φ̄〉 = 0.08

δe

0 50 100 150 200 250 300 350
Phase (deg.)

−10

−5

0

5

10

15

20

F
50

10
y
/δ

−0.20

−0.16

−0.12

−0.08

−0.04

0.00

0.04

0.08

0.12

0.16

0.20

〈φ̄
ũ
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Figure 4.6: Color map of the phase averaged sand flux from configurations M5010 (top) and
F5010 (bottom).

From the color map of TKE presented in figure 4.7 for both configurations F5010 and M5010,
the same mechanisms described in section 3.4.1 occur. Due to flow instabilities during acceleration
phase of the flow, larger maximum TKE values are observed for configuration involving fine sand.
Furthermore, compared with configuration M5010, turbulence is attenuated as a result of increased
sheet flow layer thickness and sediment concentration.

As a summary, for configuration M5010, the transport layer responds almost instantaneously to
the flow forcing represented by the Shields number. Particles are eroded during flow acceleration
and have sufficient time to settle back to the bed during flow reversal. Stronger flow velocities
during wave crest generate larger bottom shear stress resulting in larger sediment flux compared
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Figure 4.7: Color map of the TKE from configurations M5010 (top) and F5010 (bottom).

with the wave trough. Even if the duration of the wave trough is longer than the duration of the
wave crest, the average offshore oriented sediment flux during wave trough is smaller than the
onshore-oriented average sediment flux during wave crest resulting in a net onshore-oriented flux.
For configuration F5010, a large quantity of sediment is transported during wave crest that do not
have time to settle back to the bed before the flow reversal. As a result, when the flow changes
direction, sediments are still settling from the previous wave phase are transported as a fast moving
layer close to the bed. The same behavior is observed at the off-onshore flow reversal but to a lesser
extent. As a consequence, the large amount of sediment eroded from the bed during the wave crest
is still suspended during flow reversal and contributes to increase the average offshore sediment
flux during the wave trough generating a net offshore-oriented flux.

4.3.3 Acceleration skewness effect

The same analysis is performed for oscillatory sheet flow under asymmetric waves. Time se-
ries of depth integrated streamwise sediment flux for configurations S706015m and S706015f are
presented in figure 4.8.
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Figure 4.8: Times series of qx the streamwise depth-integrated sediment fluxes for configurations
S706015m and S706015f .
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As for configurations M512 investigated in chapter 3 and configuration M5010, streamwise
flux for configuration S706015m is zero during both flow reversal and their maximum onshore an
offshore values are in phase with the free stream velocity. The sediment flux is almost symmetrical
but under the effect of strong acceleration during wave crest, the amount of sediment transported
onshore is greater than the amount of sediment transported offshore resulting in a net onshore-
oriented sand flux. For configuration S706015f, streamwise sediment flux is also more important
during the wave crest and returns back to zero only at onshore/offshore flow reversal. Whereas
phase-lag effects are stronger during on-offshore flow reversal for fine sand subject to a velocity
skewed flow forcing, under acceleration skewed waves, phase-lag effects are dominant at off-
onshore flow reversal and absent at on-offshore flow reversal. Because of the longer deceleration
phase during the wave crest, sediments have sufficient time to settle back to the bed but not during
the shorter deceleration phase of the wave trough. As a consequence, particles still in suspension
at off-onshore flow reversal are transported onshore resulting in a greater onshore-oriented sand
flux for fine sand.
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Figure 4.9: Time series of the Shields number for configurations S706015m and S706015f.

Even if the shape of the time series of streamwise sand flux look similar, the time series of
Shields number presented in figure 4.9 highlight a significant difference of behavior between con-
figurations S706015m and S706015f. For configuration S706015m, the Shields number increases
suddenly at around 20◦ under the effect of strong acceleration during the wave crest, it reaches
a maximum and then decreases more gently because of the longer duration of the deceleration
phase. During the wave trough, the Shields number increases more slowly than during the wave
crest and decreases more quickly during the deceleration phase. The acceleration asymmetry of
the free stream velocity has a direct effect on the bottom shear stress evolution.

For configuration S706015f, similarly to the observations made for configuration S706015m,
during the wave crest, the Shields number suddenly increases at around 20◦ and decreases gently
during the deceleration phase. However, during the acceleration phase of the wave trough, a
similar behavior as during the wave crest is observed with a sudden increase of the Shields number
before decreasing more gently. The flow asymmetry in configuration S706015f is no longer as
clearly visible on the bottom shear stress as it is for configuration S706015m. As for configurations
involving skewed waves, the sand flux can be well parameterized by the instantaneous Shields
number for configuration S706015m involving medium sand but not for configuration S706015f
involving fine sand. However in this case, the difference of behavior can not be explained by
phase-lag effects considering that they do not play a role around the on-offshore flow reversal.
This feature further confirms the observations made in chapter 3 that other mechanisms than phase
lag are responsible for increased sheet flow layer thickness.

As a result of greater Shields number during the wave crest, the sheet flow layer thicknesses
is greater compared with their corresponding values during wave trough for both configurations
(see figure 4.10). As expected, for configuration S706015m, the sheet flow layer thickness is
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Figure 4.10: Time series of the sheet flow layer thickness made dimensionless by the Stokes layer
thickness for configurations S706015m and S706015f.

almost zero during both flow reversals and the sediment flux is in phase with the time evolution
of the sheet flow layer thickness. For configuration S706015f, sheet flow layer thickness is almost
zero around onshore/offshore flow reversal but not at off-onshore flow reversal. Particles still in
suspension during off-onshore flow reversal are transported during wave crest.

From the time series of the erosion depth and upper limit of the sheet flow layer thickness
presented in section 4.11, similarly to configuration M5010, there is a symmetry between erosion
and suspension for configuration S706015m during the wave crest and the wave trough. For
configuration S706015f, this symmetry exists during wave trough but, as a consequence of phase-
lag effects, the erosion depth shows a lower variability during wave crest. Furthermore, from the
color map of the sediment flux in the bottom panel of figure 4.11, sediment are transported as a
thin layer close to the bed during off-onshore flow reversal.
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Figure 4.11: Color map of the phase averaged sand flux from configurations S706015m (top) and
S706015f (bottom).

From the color maps of TKE for configurations S706015m and S706015f presented in figure
4.12, maximum values of the TKE during wave crest are larger for both configurations as a result
of greater flow acceleration. Similarly to the other configurations investigated in this manuscript,
maximum TKE is larger for the configuration involving fine sand as a consequence of flow in-
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stability. Furthermore, the color maps of TKE show some differences between configurations
S706015m and S706015f at both flow reversals suggesting that turbulence is strongly modulated
by the particles. Increased TKE is also observed during the acceleration phase of the wave trough
even if phase-lag effect are absent. Whereas turbulence intensity increases gently during the ac-
celeration phase of the wave trough for configuration S706015m, the almost laminar behavior of
the oscillatory boundary layer during the early stage of flow acceleration of the wave trough for
configuration S706015f has for effect to delay the initiation of turbulence and to suddenly generate
strong instabilities. These instabilities enhance the vertical mixing of sediment and the sheet flow
layer thickness further increases.
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Figure 4.12: Color map of the TKE from configurations S706015m (top) and S706015f (bottom).

Under asymmetric waves, larger bottom shear stress resulting from stronger flow acceleration
during wave crest has for effect to induce a net onshore-oriented sand flux. The net flux is further
increased by the phase-lag effects when particles extracted from the bed during the wave trough do
not have time to settle during the short deceleration phase and are transported during wave trough.
This phenomenon is amplified by the complex interplay between turbulence attenuation induced
by the particles and flow instabilities having for effect to increase vertical mixing of particles.

4.4 Discussion

Under asymmetric and skewed waves, unsteady effects highlighted in chapter 3 are also present
for configurations involving fine sand. Compared with configurations involving medium sand, the
time evolution of the vertical distribution of fine sand is the result of bed instabilities visible in
figues 4.7 and 4.12 showing higher peaks of TKE and turbulence damping around flow reversal
visible in figures 4.13 and 4.14 with a Richardson number Ri > 0.25 in the transport layer.

Compared with sinusoidal waves, the importance of streamwise sediment flux is crucial to
determine the net transport rate during a wave cycle. In this section, the role of unsteady effects
on the balance between onshore and offshore oriented sand flux is discussed. Then, suggestions
regarding phase-lag effects modeling based on the vertical sediment mass balance are provided.
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Figure 4.13: Vertical profiles of Richardson number for configurations M5010 and F5010. Dotted
line corresponds to Ri = 0.25 and dashed lines corresponds to the erosion depths.
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Figure 4.14: Vertical profiles of Richardson number for configurations S706015m and S706015f.
Dotted line corresponds to Ri = 0.25 and dashed lines corresponds to the erosion depths.
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4.4.1 Unsteady effects and streamwise sand transport rates

Typical expressions to predict sediment transport as a function hydrodynamic forcing are power
laws relating the dimensionless transport rate to the Shields number. Under waves, the transport
rate and Shields number are decomposed into an onshore and offshore components during wave
crest and wave trough. The onshore and offshore components of the dimensionless transport rate
Q∗+ and Q∗− are given by:

Q∗+ =
1

T+

∫

t∈I+

qx(t)√
(s−1)gd3

p

dt, Q∗− =
1

T−

∫

t∈I−

qx(t)√
(s−1)gd3

p

dt, (4.4a,b)

with I+ and I− the time interval for which qx > 0 and qx < 0 respectively and T+ and T− the
effective durations corresponding to intervals I+ and I−.

Similarly, the effective Shields number during the wave crest and the wave trough are calcu-
lated as follows:

θ+ =
1

T+

∫

t∈I+
θ(t)dt, θ− =

1
T−

∫

t∈I−
θ(t)dt. (4.5a,b)

Dimensionless onshore and offshore components of the dimensionless transport rate and cor-
responding effective Shields numbers for configurations M5010, F5010, S706015m and S706015f
are presented in table 4.3.

Configuration |Q∗+| |Q∗−| θ− θ+

M5010 28.3 7.3 1.1 0.5

F5010 123.0 109.3 2.3 0.9

S706015m 22.3 14.3 0.8 0.7

S706015 f 93.7 53.6 1.2 1

Table 4.3: Onshore and offshore components of the dimensionless transport rate |Q∗+| and
|Q∗−| and corresponding effective Shields numbers θ+ and θ− for configurations F5010, M5010,
S706015f and S706015m.

As expected, because of the wave shape, the effective Shields number is larger during wave
crest than during wave trough for all configurations. Furthermore, |Q∗+| is larger than |Q∗−| even
for configurations F5010. Therefore, considering that the dimensionless net transport rate is given
by

Q∗ =
T+|Q∗+|−T−|Q∗−|

T
(4.6)

it confirms that the offshore-oriented net transport rate is the result of a longer wave trough com-
pared with the wave crest.

Dimensionless transport rates |Q∗α | with α = +,− denoting the wave phase are plotted as a
function of the excess Shields number for configurations F5010, M5010, S706015f and S706015m
in figure 4.15.

For configurations M5010 and S706015m involving medium sand, phase-lag is absent and
|Q∗α | is well represented by a power law of the form |Q∗α |= m(θα−θc)

n with m = 29 and n = 1.7.
Typical values of the power law coefficients for sediment transport under waves are m∼ (5−10)
and n∼ (1.5−2) [22,114]. The larger value of the coefficient m predicted by the two-fluid model
can be explained by two factors. First, coefficients m and n are often calibrated based a broad range
of flow regimes for different flow conditions. As a consequence, the set of calibrated parameters
may not represent perfectly a given configuration. Second, from figure 4.2, the two-phase flow
model over-predicts the positive net sand flux, especially for configuration M5010 meaning that
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Figure 4.15: Dimensionless onshore and offshore sediment transport rates plotted as function of
the excess Shields number for configurations M5010, F5010, S706015m and S706015f.

for a given flow forcing, the model may over-estimate the corresponding flux. Furthermore, one
have to keep in mind that this scaling is obtained based on typical values of power law coefficients
using four numerical points. Additional configurations should be investigated to further confirm
the proposed scaling. Nevertheless, as pointed out at the beginning of the chapter, we are mainly
interested in the differences between configurations involving medium and fine sand as long as
the mechanisms are well reproduced by the two-fluid model rather than trying to obtain a perfect
quantitative agreement.

For configurations F5010 and S706015f involving fine sand, the dimensionless transport rates
are not well represented by the power law and are located above the curve. Furthermore, the
effective transport rate can not be directly related to the excess Shields number using an other
parameterization because of phase-lag effects. To be able to predict sand transport using a power
law in configurations for which phase-lag effects are dominant, a redistribution of the sediment
flux should be performed between wave crest and wave trough using adequate phase-lag modeling
[114]. However, some interesting results can be discussed from the interpretation of figure 4.15.

One reason that can explain the under-estimation of the transport rates by the power law is
that, due to phase-lag effects, a certain amount of sediment never settles back to the bed through-
out the wave period. As a consequence, an additional flux component should be added to the
total transported load to be able to parameterize sand transport using the same power law as for
configurations involving medium sand.

However, the differences between transport rates for configurations involving medium and
fine sand are not only the result of an additional load transported throughout the wave period for
fine sand but the consequence of unsteady effects, described in chapter 3. Indeed, if the under-
estimation of the sediment flux by the power law is only the consequence of an additional load,
considering that all the sediment settled back to the bed at on-offshore flow reversal of configu-
ration S706015f and that a part of the sediment load extracted during wave trough is transported
during wave crest, the effective load transported during wave trough |Q∗−| should be below the
curve representing the power law. However, as a result of bed instabilities and enhanced vertical
mixing of particles, more particles are transported by the flow having for effect to significantly
increase the horizontal sediment flux.
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To further highlight this phenomenon, the time integral of the depth average Reynolds flux

qRe
y =

∫
∞

−∞

〈φ̄ ′ṽs′〉dy (4.7)

representing the upward particle turbulent suspension flux during wave crest and wave trough
calculated as follows

QRe
+ =

1
T+

∫

t∈I+
qRe

y (t)dt, QRe
− =

1
T−

∫

t∈I−
qRe

y (t)dt, (4.7a,b)

is represented in dimensionless form as a function of the excess Shields number in figure 4.16.
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Figure 4.16: Average upward Reynolds flux as a function of the excess Shields number for config-
urations M5010, F5010, S706015m and S706015f.

Whereas the Reynolds flux increases linearly with respect to the Shields number with a factor
0.6 for configurations M5010 and S706015m involving medium sand, it increases linearly with
a factor 1 for configurations F5010 and S706015f involving fine sand traducing a larger upward
turbulent flux.

Considering that more particles are transported for a given flow condition, the transport rates
can not be related to the excess Shields number using the same power law between fine and
medium sand. Similarly to the sheet flow layer thickness, different parameterization should be
used to predict the transport rates in configurations involving fine and medium sand. To be able to
propose such a parameterization, phase-lag effects should be carefully integrated.

Up to now, models to take into account phase-lag effects are function of the particle fall ve-
locity vs and the dimensionless maximum sheet flow layer thickness δ s

m/d50 [30, 114]. For the
phase-lag modeling to be efficient in determining phase-lag contributions, the prediction of the
maximum sheet flow layer thickness should be accurate. Maximum sheet flow layer thicknesses
made dimensionless by the particle diameter are plotted as a function of the maximum Shields
parameter for configurations M5010, F5010, S706015m and S706015f in figure 4.17.

The sheet flow layer thickness is well predicted by the linear relation from Dohmen-Janssen et
al. (2001) [29] for configurations M5010 and S706015m involving medium sand but a significant
scatter can be observed for configurations F5010 and S706015f involving fine sand. Indeed, for
configuration F5010, considering the large amount of sediment extracted during wave crest and
transported during wave trough, the sheet flow layer thickness is much larger than predicted by the
empirical relation. On the contrary, for configuration S706015f, particles have completely settle at
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Figure 4.17: Maximum sheet flow layer thickness made dimensionless by the particle diameter
as a function of the maximum Shields number for configurations M5010, F5010, S706015m and
S706015f.

the bed during on-offshore flow reversal, phase-lag effect are absent and sheet flow layer thickness
smaller than predicted by expression (E.8). However, the maximum sheet flow layer thickness is
larger than the empirical relation for medium sand confirming the increase of the transport layer
due to bed instabilities for fine sand.

From these observations, the prediction of phase lag effects based on the determination of the
maximum sheet flow layer thickness from the empirical relation (E.8) shows some limitations.
More physically-based relations should help improving model predictions for configurations in-
volving fine sand. Suggestions on the improvement of phase-lag effects predictions are shown in
the next section.

4.4.2 Suggestions regarding phase-lag effects modeling

As highlighted in section 3.4.2, the signature of phase-lag effects is clearly visible in the vertical
sediment mass balance and vertical fluxes. Time series of depth integrated vertical total sediment
fluxes

qy =
∫

∞

−∞

〈φ̄ ṽs〉dy (4.8)

and its two contributions: Reynolds flux qRe
y given by expression (4.7) and settling flux

qSe
y =

∫
∞

−∞

〈φ̄〉〈ṽs〉dy (4.9)

respectively are plotted in figure 4.18 for configurations M5010, F5010, S706015m and S706015f.

For configurations M5010 and S706015m involving medium sand, for which there is no phase-
lag, the upward flux of sediment extracted from the bed represented by the Reynolds flux is fully
compensated by the settling flux during wave crest and wave trough. The total vertical flux is
first dominated by Reynolds fluxes during the acceleration phase of wave crest and wave trough,
then it is dominated by settling during the deceleration phase with zero vertical flux during flow
reversals. As a consequence, the time average net vertical fluxes during wave crest and wave
trough are Qy

+ = 0 and Qy
− = 0.

However, for configurations F5010 and S706015f involving fine sand, phase-lag effects are
visible on the total vertical flux. The total vertical sediment flux is still settling dominated during
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on-offshore flow reversal for configuration F5010 and during off-onshore flow reversal for con-
figuration S706015f. Particles that are still settling during flow reversal contribute to increase the
streamwise sediment flux during the next wave phase.

For configurations without phase-lag, the ratios between the time average settling and Reynolds
fluxes during wave crest and wave trough are QSe

+ /QRe
+ = 1 and QSe

− /QRe
− = 1. For configurations

with phase-lag, the settling flux is redistributed over wave crest and wave trough yielding either
QSe
+ /QRe

+ > 1 and QSe
− /QRe

− < 1 or QSe
+ /QRe

+ < 1 and QSe
− /QRe

− > 1 with a greater redistribution of
fluxes for greater phase-lag effects.

The ratios QSe
+ /QRe

+ and QSe
− /QRe

− , being accurate proxies for both the existence and the mag-
nitude of phase-lag effects, should help parameterize the redistribution of sediment loads during
wave crest and wave trough. However, to this point, the observations made in this section are
only modeling suggestions. Indeed, the results obtained from the two configurations F5010 and
S706015f investigated in this chapter are not sufficient to even try to propose accurate scaling laws
based on this new set of parameters. To do so, additional configurations should be numerically
investigated to explore the parameter space in term of flow intensity, wave period relative to the
particle fall velocity and asymmetry/skewness factors.

4.5 Conclusion

The effect of wave shape on oscillatory sheet flow has been investigated using the turbulence-
resolving two-fluid model sedFoam with a focus on grain size dependency and phase-lag effects.

Four configurations involving fine and medium sand subject to a asymmetric and skewed
waves have been reproduced numerically. From a comparison between experimental measure-
ments and numerical predictions of the net transport rate generated under non-sinusoidal waves,
mechanisms responsible of the larger net transport rate for fine sand under asymmetric waves and
negative sediment rate for fine sand under skewed waves are reproduced by the two-phase flow
model.

For oscillatory sheet flow involving medium sand subjected to skewed waves, streamwise
sediment flux is fully correlated to the flow forcing and the instantaneous Shields number. The
sediment flux is zero at flow reversals, increases during the acceleration phase and decreases during
the deceleration phase. As a result of larger bed shear stress during the wave crest, a larger amount
of sediment is transported compared with wave trough. Even if the duration of the wave trough
is larger, the small quantity of sediment transported offshore does not compensate the onshore
contribution from wave crest and the corresponding net transport rate is directed onshore.

For fine sand, contrary to medium sand, particles eroded during the wave crest do not have
the time to settle back to the bed before the on-offshore flow reversal. A significant amount
of suspended sediments at flow reversal is transported offshore during the wave trough and the
sediment flux is no longer correlated with the instantaneous Shields number. Even if the magnitude
of the streamwise sediment flux is smaller compared with the magnitude of the sediment flux
during the wave crest, the duration of wave trough is larger. As a consequence, the amount of
sediment transported offshore exceeds the amount of sediment transported onshore having for
effect to generate a net offshore transport rate.

The same observations can be made between configurations involving medium sand subjected
to asymmetric and skewed waves. However, the larger bed shear stress observed during wave crest
is the result of the stronger acceleration compared with the wave trough. Sediment flux is zero at
flow reversal and the amount of sediment transported onshore exceeds the amount of sediment
transported offshore generating a net onshore-oriented transport rate.

For fine sand, sediment flux returns back to zero during the on-offshore flow reversal but not at
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off-onshore flow reversal. Particles remaining in suspension are transported during the wave crest
having for effect to further increase the onshore-oriented net transport rate.

The same mechanisms playing a role in unsteady effects as observed in chapter 3 are present
in configurations involving fine sand. The sheet flow layer thickness is increased compared with
configurations involving medium sand, turbulence is attenuated at flow reversals and bed instabil-
ities increase vertical mixing of particles. Furthermore, the increased sheet flow layer thickness
during wave trough for the configuration involving fine sand subjected to asymmetric waves can
only be attributed to larger bed instabilities considering that the sheet flow layer thickness was
close to zero at on-offshore flow reversal.

The scaling between onshore and offshore transport rates and their corresponding representa-
tive Shields numbers revealed that the sand flux in configurations involving fine and medium sand
can not be represented by a power law using the same parameterization. Indeed, for configurations
involving medium sand for which there is no phase-lag effects, the sediment load are well repre-
sented by a classical power law. However, for configurations involving fine sand, the sediment
load are located above the curve representing the power law meaning that, as a consequence of
unsteady effects, streamwise sediment flux is increased for configurations involving fine sand.

The comparison between the predicted maximum sheet flow layer thickness during wave crest
and wave trough from the two-fluid model and the empirical relation proposed by Dohmen-Janssen
et al. (2001) [29] has shown that the maximum sheet flow layer thickness from configuration
involving medium sand can be well represented by the maximum Shields number but not for
configurations involving fine sand.

From the time series of the vertical sediment mass balance between upward Reynolds fluxes
and downward settling fluxes, suggestions on more physically based modeling methodologies
have been provided. Indeed, the imprint of phase-lag effects are clearly visible on the competition
between turbulent suspension of particles and their settling. However, additional configurations
involving different grain sizes, flow periods and asymmetry/skewness factors are necessary to start
developing new scaling laws.

Furthermore, provide accurate scaling laws require to obtain more quantitative results in term
of transport rate and concentration profiles for configurations involving medium sand. As pointed
out in section 3.3.1, medium sand appears to settle back to the bed too quickly compared with
the experiments. For large particles, the separation of scale between the particles and the smallest
turbulent eddies is no longer verified, the particle diameter is larger than the smallest turbulent
length scale η . Finite-size effects may become important and should be taken into account to
accurately predict fluid-particle interactions [39].
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5
Finite size correction model

In this chapter, the capabilities of the turbulence-resolving Eule-
rian–Eulerian two-phase flow model to predict the suspension of
mono-dispersed finite-sized solid particles in a turbulent boundary
layer flow are investigated. For heavier-than-fluid particles, having
settling velocity of the order of the bed friction velocity, the two-fluid
model significantly under-estimates the turbulent dispersion of parti-
cles. It is hypothesized that finite-size effects are important and a cor-
rection model for the drag law is proposed. This model is based on
the assumption that the turbulent flow scales larger than the particle
diameter will contribute to the resolved relative velocity between the
two phases, whereas eddies smaller than the particle diameter will
have two effects: (i) they will reduce the particle response time by
adding a sub-particle scale eddy viscosity to the drag coefficient, and
(ii) they will contribute to increase the production of granular tem-
perature. Integrating finite-size effects in the two-fluid model allows
us to quantitatively predict the concentration profile for heavier-than-
fluid particles without any tuning parameter. The proposed modifica-
tion of the two-fluid model extends its range of applicability to tackle
particles having a size belonging to the inertial range of turbulence.
The results presented in this chapter are published in Mathieu et al.
(2021) [67].
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5.1. Introduction

5.1 Introduction

The two-fluid LES of unidirectional sheet flow from Cheng et al. (2018) [23] highlighted the
under-prediction of the vertical turbulent diffusion of particles by the Eulerian model (figure 1.8).
They attributed this under-prediction to the effect on the unresolved particle clusters and streamers.
However, given the grid resolution of their simulation (∆/dp < 1) and the typical size of these
mesoscale structures (of the order of 10 to 100 particle diameters [1]), the observed discrepancy
may certainly be due to another cause.

Indeed, the under-prediction of sediment suspension in the simulations is more probably due
to the consequence of assumptions made to derive the two-fluid model that are violated in the
sheet flow configuration reproduced by Cheng et al. (2018) [23]. First, according to Ferry and
Balachandar (2001) [36], the Eulerian representation of the dispersed phase is only valid for Stokes
numbers smaller than one which is not the case in the configuration from Cheng et al. (2018) [23].
For St > 1, the uniqueness of the Eulerian particle phase velocity field is no longer guaranteed.
Nevertheless, uniqueness of the particle phase velocity is not crucial considering time-averaged
particle phase quantities (e.g. concentration, velocity) and assuming ergodicity. More precisely,
time-averaged variables are issued from multiple realization of the flow and, therefore, multiple
particles trajectories. The cause of the observed discrepancies is therefore more probably related to
the absence of scales separation in the flow. In the sheet flow configuration investigated in Cheng
et al. (2018) [23], particles are finite-sized. There is no separation of scales between the dispersed
phase and the turbulent flow scales associated with the carrier phase. Classical interaction laws do
not hold any longer and additional sub-particle scale correction models are required to account for
finite-size effects [39].

In order to extend the range of applicability of the two-fluid model to configurations involving
finite-sized particles, interaction laws should be modified to include the missing physics. From the
two methodologies used to model finite size effect discussed in chapter 1, the correction model
proposed by Gorokhovski & Zamansky (2018) [48] taking into account finite-size effect through
an effective viscosity at the particle scale included in the expression of the drag force is more
suitable for volume-averaged two-phase flow models compared with the Faxén correction term
which is more appropriate in a Lagrangian framework.

In this chapter, the two-fluid LES approach is applied to dilute suspension of finite-sized parti-
cles transported in a turbulent boundary layer flow. A finite-size correction model for the two-fluid
approach inspired from the model proposed by Gorokhovski & Zamansky (2018) [48] is developed
and tested against experimental data for particle-laden boundary layer flow configurations having
dp/η > 1. First, the finite-size correction model is presented. Then, numerical configurations used
to reproduce four particle-laden flow configurations are presented as long as preliminary results
without the correction model. Eventually, the performances of the correction model are discussed
including the sensitivity to the correction model components, grid resolution and filter size.

5.2 Finite-size correction model

5.2.1 Model description

Compared with particles smaller than the Kolmogorov length scale, finite-size particles do not
only act as a temporal filter of the turbulent flow scales through the drag force but also as a spatial
filter [15, 86]. In order to take into account the finite-size effect of the particles in the Eulerian-
Eulerian two-phase flow model, a distinction is made between turbulent eddies having larger or
smaller length scales than the particle diameter dp (blank and hatched zones, respectively, of the
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idealized turbulent spectrum represented in figure 5.1). Following observations made by Qureshi
et al. (2007) [86] and Calzavarini et al. (2009) [15], turbulent eddies larger than the particle
diameter will contribute to the relative velocity between the two phases in the drag force as fluid
velocity “seen” by the particles whereas smaller eddies are assumed to (1) modify the particle
response time by increasing the viscosity “seen” by the particles by defining an effective turbulent
viscosity at the particle scale following Gorokhovski & Zamansky (2018) [48] and (2) contribute
to particle agitation by increasing the production of granular temperature to be consistent with
the energy transfers between correlated and uncorrelated solid phase velocity fluctuations [38,42].
The idealized turbulent spectrum presented in figure 5.1 summarizes the different contributions of
the turbulent fluid flow scales to the solid phase dynamics.

Figure 5.1: Schematic representation of an idealized turbulent spectrum including the different
flow scales and their contributions to the particles dynamics (η: Kolmogorov scale, ∆: filter
width, dp: particle diameter, ∆̆: second filter width, L: integral scale of turbulence).

To take into account finite-size effects, the filtered effective drag force is rewritten as

D̄i =
ρsφ̄

t̆s
(ŭ f

i − ũs
i ), (5.1)

with ŭ f
i the fluid velocity “seen” by the particles corresponding to the resolved fluid phase velocity

ũ f
i filtered at a scale ∆̆ ∼ O(dp). According to Kidanemariam et al. (2013) [60] the value of ∆̆

should not be too large to still be relevant to predict the particles motion but not too small to be
sufficiently free from the local flow disturbances generated by the presence of the particles. To be
able to determine the filter length ∆̆, they reported the ratio between the averaged magnitude of the
flow velocity around spheres and the undisturbed flow field as a function of the distance from the
center of the sphere for different particle Reynolds numbers. From their analysis, around 80% of
the undisturbed mean flow velocity is recovered with a filter width taken as twice the diameter of
the particle. Therefore, to compute the fluid velocity “seen” by the particles, the filter size is first
chosen to be ∆̆ = 2dp. A sensitivity analysis to the filter size is presented in §5.4.2.

Whereas the turbulent scales smaller than the particle diameter are usually unresolved, due
to the mesh refinement close to the wall, these turbulent scales are composed of both resolved
and unresolved eddies in this region. In the present configuration, ∆̆ = ∆x,z in the streamwise and
spanwise directions but ∆̆>∆y in the wall-normal direction. To calculate ŭ f

i , a weighted average of
the resolved fluid velocity in the wall-normal direction is performed using a Gaussian distribution
function Gw with standard deviation ∆̆/2

Gw = exp

[
−1

2

( |y0− yk|
∆̆/2

)2
]

(5.2)
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where y0 is the vertical coordinate of the cell where the avearge is computed and yk is the vertical
coordinate of cell k to compute the weighting coefficients.

The calculation of filtered variable imposes constraints on the parallelization of the numerical
domain detailed in appendix D.

The new particle response time t̆s still follows the drag law given by equation (2.39) but the
relative velocity between the two phases is calculated using the filtered fluid velocity ŭ f

i , and the
expression for the particle Reynolds number is modified according to Gorokhovski & Zamansky
(2018) [48] to take into account the effect of turbulent scales smaller than the particles by the mean
of a turbulent eddy viscosity ν t

p at the scale of the particles following

Rep =
dp‖ŭ f

i − ũs
i‖

ν f +ν t
p

. (5.3)

The turbulent viscosity at the particle scale can be calculated using Kolmogorov scaling and
Prandtl’s mixing length hypothesis following ν t

p ∼ ε
1/3
p d4/3

p , with εp the dissipation of TKE at the
particle scale [48]. By assuming that the turbulent scales between ∆̆ and dp are in the inertial range
of the turbulent spectrum, the approximation ε

∆̆
= εp can be made with ε

∆̆
the dissipation rate at

the filter scale.
The expression of the dissipation rate at the filter scale ε

∆̆
is estimated following the expression

from Yoshizawa and Horiuti (1985) [127] defined as a function of the filter width ∆̆ and the total
TKE below ∆̆ defined as the sum of k̆= 1

2 ũ f ′′
i ũ f ′′

i the resolved TKE (from ∆̆ to ∆), with ũ f ′′
i = ũ f

i − ŭ f
i

and k̃ f
sgs the sub-grid TKE (from ∆ to η), i.e.

ε
∆̆
=Cε

(k̆+ k̃ f
sgs)

3/2

∆̆
. (5.4)

Eventually, the particle response time with finite-size correction is written following Gorokhovski
& Zamansky (2018) [48] as

t̆s =
4
3

ρs

ρ f
dp

CD‖ŭ f
i − ũs

i‖
(1− φ̄)2.65 with





CD = 24
Rep

(
1+0.15Re0.687

p
)

Rep =
dp‖ŭ f

i −ũs
i‖

ν f +ε
1/3
∆̆

d4/3
p

(5.5)

Furthermore, the turbulent flow scales smaller than ∆̆ contribute to increase the production
of granular temperature isotropically. The fluid particle-interaction term Jint in equation (2.29)
includes the resolved sub-particle TKE, i.e.

Jint =
ρs

t̆s

φ

1−φ

[
2(k̆+ k̃ f

sgs)−3Θ̄
]
. (5.6)

It shall be mentioned that the proposed model tends to the two-fluid model in its traditional
formulation for particles smaller than the Kolmogorov length scale (dp/η < 1). Indeed, if ∆̆≤ η

then ŭ f
i = ũ f

i and, therefore, k̆ = k̃ f = 0. The turbulent viscosity at the particle scale vanishes
ν t

p = 0 and eventually t̆s = t̃s. Furthermore, the proposed finite-size correction model allows us to
approach the exact solution for vanishingly small mesh sizes. Indeed, the correction model allows
us to decorrelate the filter width associated with the particle size in the drag law and the filter size
imposed by the mesh for the LES making the solution mesh independent.

5.2.2 Numerical implementation

For the implementation of the finite size correction model, some changes need to be made com-
pared with the numerical implementation presented in section 2.4. Given the fact that the expres-
sion of the fluid velocity in the drag force does no longer correspond to the resolved fluid velocity,
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the fluid contribution to the drag term can not be treated implicitly. More precisely, the fluid and
solid contributions of the drag force is transfered to the term R f in equation (2.70) and the fluid
contribution is transfered to the term Rs of equation (2.72). The solution procedure remains the
same but with expressions AKs = AK f = 0 and the suppression of the terms involving the drag
parameters in equations (2.78) and (2.79).

5.3 Results

5.3.1 Particle-laden channel flow configurations

In this section, particle-laden configurations involving spherical Glass Beads (GB) from Kiger
& Pan (2002) [61], Natural Sediment (NS) particles from Muste et al. (2005) [75] and almost
Neutrally Buoyant Sediment (NBS) particles from Muste et al. (2005) [75] are reproduced nu-
merically.The flow and particles parameters are presented in table 5.1.

Parameters Units GB NS NBS NS*

Ub m.s−1 0.51 0.84 0.84 0.84

uτ (×10−2) m.s−1 2.99 4.20 4.20 4.20

h m 0.02 0.021 0.021 0.021

ρs kg.m−3 2600 2650 1025 2650

dp µm 195 230 230 230

φtot (×10−4) - 2.31 4.6 4.6 16.2

vs/uτ - 0.87 0.54 0.01 0.54

Rep - 4.8 9.1 0.39 9.1

St - 3.2 5.7 6.6 5.7

dp/η - 5.5 9.7 9.7 9.7

Table 5.1: Flow and particles parameters for configurations GB, NS, NBS and NS*.

In the model used to reproduce these configurations, the definitions of the viscosity and con-
ductivity of granular temperature induced by collisions and kinetic effects are based on an earlier
version of the kinetic theory from Gidapsow (1994) [46]. Compared with the model presented in
section 2.1.2, the viscosity and conductivity of granular temperature are given by

ν
c = dp

√
Θ̄

[
4φ̄ 2g0(1+ e)√

5π
+

√
πg0(1+ e)2(2e−1)φ̄ 2

15(3− e)
+

√
πφ̄

6(3− e)

]
(5.7)

and

κΘ = ρ
sdp

√
Θ̄

[
2φ̄ 2g0(1+ e)√

π
+

9
√

πg0(1+ e)2(2e−1)φ̄ 2

2(49−33e)
+

5
√

πφ̄

2(49−33e)

]
, (5.8)

with g0 = (2− φ̄)/2(1− φ̄)3 the radial distribution function for dense rigid spherical particle
gases from Carnahan & Starling (1969) [17]. However, for dilute configurations, fluid-particle
interaction are dominant compared with contributions from the solid phase stress. This point is
further addressed in the next sections.
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The targeted configurations correspond to turbulent dilute suspended sediment transport bound-
ary layer flows. In this situation, particles are entrained into suspension by the turbulent coherent
flow structures and under steady-state flow conditions, an equilibrium concentration profile across
the water depth establishes as the result of an equilibrium between the gravity driven settling
flux, vs〈φ〉 with vs the settling velocity of the particles, and the turbulent Reynolds sediment flux
〈vs′φ ′〉 [98] with vs′ the solid phase vertical velocity fluctuations and φ ′ the sediment concentration
fluctuations. By analogy with Fickian diffusion, this Reynolds sediment flux is modeled using a
gradient diffusion model. Introducing this model in the Reynolds-averaged sediment mass balance
leads to the following equation:

vs〈φ〉−
ν

f
t

Sc

d〈φ〉
dy

= 0, (5.9)

with ν
f

t the turbulent eddy viscosity (or turbulent momentum diffusivity) and Sc the turbulent
Schmidt number representing the efficiency of the sediment diffusion relative to ν

f
t . For Sc < 1

sediment particles are dispersed more efficiently by turbulence than fluid parcels.
Given that ν t

f = l2
md〈u f 〉/dy using Prandtl’s mixing length lm = κy, with κ = 0.41 the von

Karman constant and using the log-law-of-the-wall to describe the mean velocity profile, equation
(5.9) can be integrated analytically to give the following expression for the Reynolds averaged
particle concentration profile:

〈φ〉
φ0

=

(
y0

y

)Ro

, (5.10)

with φ0 a reference concentration at a given reference elevation y0 and Ro = Scvs/uτκ the Rouse
number. For open-channel flows, a free surface correction to the Prandtl’s mixing length is intro-
duced lm = κy

√
1− y/h with h representing the water depth and the Reynolds averaged particle

concentration profile reads:
〈φ〉
φ0

=

[
y

h− y
h− y0

y0

]−Ro

. (5.11)

These two analytical solutions provide a reference with which the two-fluid LES model results
can be compared. The value of Sc is still debated in the sediment transport community [65], the
most widely accepted model is the one from van Rijn (1984) [117] relating the turbulent Schmidt
number to the suspension number as follows: Sc = (1+ 2(vs/uτ)

2)−1 in the limit 1/3 < Sc <
1. Nevertheless, a lot of scatter is observed on existing experimental data and no satisfactory
explanation exists to support van Rijn’s empirical formula [65].

The hydrodynamic configuration, numerical domain and parameters for configuration GB are
the same as the unidirectional boundary layer validation case presented in section 2.5.1. The
only difference comes from the addition of a given amount of glass beads in the flow corre-
sponding to a mean volumetric concentration of particles in the channel φtot = 2.31× 10−4. The
particles are spherical and mono-dispersed with diameter dp = 195 µm (d+

p ≈ 5.5) and density
ρs = 2600 kg.m−3. For such particles, the computed fall velocity in still water using the drag law
from equation (2.39) is vs = 2.4×10−2 m.s−1 (vs/uτ = 0.85).

Configurations NS and NBS from Muste et al. (2005) [75] consist of turbulent particle-laden
open-channel flows with water depth h = 0.021m in which finite-sized particles with density ρs =
2650 kg.m−3 and ρs = 1025 kg.m−3, respectively, are seeded. The NS and NBS hydrodynamic
conditions are the same with a bulk velocity Ub = 0.84 m.s−1 and a targeted friction velocity
uτ = 4.2× 10−2 m.s−1 corresponding to a Reynolds number based on the wall friction velocity
Reτ = 882. Both type of particles have the same diameter dp = 230 µm (d+

p ≈ 9.7) resulting in a
larger fall velocity ( i.e. larger suspension number) for NS vs = 2.4×10−2 m.s−1 (vs/uτ = 0.57)
compared with NBS vs = 6× 10−4 m.s−1 (vs/uτ = 0.01). For both configurations, the mean
volumetric concentration of sediment is equal to φtot = 4.6×10−4. The computational domain is
a rectangular box with bi-periodic boundary conditions along x and z axis and no slip boundary
conditions at the bottom boundary (figure 5.2).
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Figure 5.2: Sketch of the geometry and boundary conditions of the numerical domain for configu-
rations NS, NBS and NS* from Muste et al. (2005) [75].

The mesh is decomposed into 287×200×147 elements for a total of 8,323,000 cells with uni-
form stream-wise and span-wise grid resolution ∆+

x = ∆+
z = 19. The mesh resolution is stretched

along the y axis with the first grid point located at ∆+
y ≈ 1 and ∆+

y ≈ 3 at the top. The time step
is constant ∆t = 5× 10−5. Numerical parameters for configurations NS, NBS ans NS* are pre-
sented in table 5.2. Rep, St and dp/η are calculated based on the scaling analysis from Finn &
Li (2016) [39]. Simulations of configuration GB lasted for about 4 to 5 days on 288 cores (n
nodes) for a total of approximatively 30,000 core-hours per simulation. For configurations NS
and NBS, simulations also lasted for about 4 to 5 days but on 336 cores (n nodes) for a total of
approximatively 36,000 core-hours per simulation.

Mesh Number of cells ∆+
x ∆+

z ∆+
y (wall) ∆t

287×200×145 8,323,000 19 19 1 5×10−5

Table 5.2: Numerical parameters of the NS, NBS ans NS* configurations from Muste et al. (2005)
[75].

A first set of simulations for each configuration is performed in order to evaluate the predictive
capability of the two-fluid model without finite-size correction. The visualization of the instanta-
neous turbulent coherent structures using an iso-contour of Q-criterion (figure 5.3a) and volume
rendering of the concentration (figure 5.3b) from the GB configuration shows the imprint of tur-
bulence on the sediment concentration field. The differences of sediment concentration relative to
the coherent structures highlights the importance of turbulence-particle interactions. The averaged
solid phase concentration profiles obtained experimentally and numerically are compared in fig-
ure 5.4. For GB (figure 5.4a), experimental and numerical concentration profiles are normalized
by the reference concentration φ0 taken at y0 = 0.06h. For both configurations GB and NS (fig-
ure 5.4a and 5.4b), the volume fraction of particles in suspension is significantly under-estimated
compared with the experimental data. However, for the NBS configuration (figure 5.4c), the av-
erage concentration profile predicted by the two-fluid model fits perfectly well the experimental
results. For vs/uτ � 1, the weight of the particles is entirely supported by turbulence [10]. The
two-phase flow model in its original formulation correctly reproduces the vertical balance between
settling and Reynolds fluxes. For this flow and these particle parameters, finite-size effects can be
considered as negligible and the two-fluid model shows very good predictive capabilities without
finite-size correction model. In the following, configurations GB and NS for which the suspen-
sion number is higher are further investigated to understand the physical origin of the observed
discrepancies.

The research hypothesis developed in this work is that the discrepancies observed in figure 5.4
are due to finite-size effects. One could also argue that these discrepancies are due to missing fluid-
particle forces such as added mass and lift forces. A simulation including these two forces have

96



5.3. Results

Figure 5.3: Visualization of the instantaneous turbulent coherent structures using an iso-contour
of Q-criterion colored by the velocity (panel (a)) and volume rendering of the concentration (panel
(b)) from the GB configuration.
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Figure 5.4: Solid phase volumetric concentration profiles from the experiments (Exp.) and two-
phase flow simulations (T.F. model) from configurations GB (panel (a)), NS (panel (b)) and NBS
(panel (c)). In panel (a), experimental and numerical concentration profiles are normalized by the
reference concentration φ0 taken at y0 = 0.06h.
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Figure 5.5: Solid phase volumetric concentration profiles from the experiment (Exp.), two-phase
flow simulation including only the drag force (T.F. model (D̄i)) and two-phase flow simulation
including drag, lift and added mass forces (T.F. model (D̄i + L̄i + Āi)) from configuration GB in
semi-log scale in panel (a) and in log-log compared with analytical profiles from equation (5.10)
with Ro = 2.04 and Ro = 2.85 in panel (b).

been performed for the configuration GB and the averaged concentration profiles are compared
with the experiments and the analytical concentration profile from equation (5.10) in figure 5.5.
Since this expression is derived for an infinite boundary layer, one have to keep in mind that
for closed channel flows, this expression could become less accurate near the centerline of the
channel. The comparison between the simulation including only the drag force and the simulation
including drag, lift and added mass forces indicates that the drag force is the dominant interaction
force for this configuration. Lift and added-mass forces contributions are almost negligible in this
problem. The concentration profiles from both simulations show a power law that fits with the
equation (5.10) with Ro = 2.85 whereas Ro = 2.04 in the experiments (figure 5.5b). The Basset
history force does not appear in the momentum exchange term between the two phases since it
is defined from a purely Lagrangian point of view. It would therefore be very difficult to obtain
a volume average expression of the history force in the Eulerian formalism. To the best of the
authors knowledge, there is no references in the literature showing the Eulerian expression of
the Basset history force. The authors believe that the Basset history force would be significant
very near the bottom boundary where wall-particle collision occur but should not affect too much
the vertical distribution of particles in the upper part of the channel where particles acceleration
is weaker. It is only through a detailed comparison with Lagrangian point-particle simulations
including the Basset history force that the role of this force could be investigated which is beyond
the scope of the present work.

The two-phase flow model in its initial formulation, using a standard drag law, added mass and
lift forces, can not reproduce the turbulent suspension of particles in this configuration. In the fol-
lowing, the role of unresolved turbulent length scales smaller than the particle size is investigated.

5.3.2 Evaluation of the finite-size correction model

From the scaling analysis proposed by Balachandar (2009) [9], the relative velocity between the
fluid phase and inertial particles is mainly influenced by an eddy having the same timescale as the
particles with the corresponding length scale l∗ = ε f 1/2t3/2

s with ε f the dissipation rate of fluid
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TKE. According to Finn & Li (2016) [39], if l∗ > ∆ > dp, all the relevant flow scales are resolved
and the particle dynamics can be accurately predicted. The average value of l∗ for configuration
GB is calculated in the simulation and plotted in figure 5.6. It can be seen that l∗/dp < 1 and that
l∗ decreases by one order of magnitude from the wall to the centerline of the channel. This result
shows that, for this configuration, turbulent scales smaller than the particles can have a significant
effect on the particle dynamics and may be responsible for the observed discrepancies.
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〈l∗〉/dp
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y
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Figure 5.6: Average profile of the length scale l∗ associated with the turbulent eddy having the
same timescale as the particles as a fraction of dp from the two-phase simulation of configuration
GB.

Given the broad range of length and time scales involved in a particle-laden horizontal bound-
ary layer flows, multiple types of turbulence-particle interactions occur at different locations of
the boundary layer. It is therefore crucial to develop a model applicable over a wide range of
turbulence-particle interaction regimes. In the following, the finite-size correction model pre-
sented in subsection 5.2 is tested for the three configurations GB, NS and NBS. The results of
the simulations for the averaged concentration profile for configuration GB with and without the
finite-size correction model are compared in figure 5.7. The prediction of the concentration profile
by the two-phase flow model is significantly improved by the finite-size correction model with-
out any tuning coefficient. The Rouse number predicted with the finite-size correction model is
Ro = 1.86 which is much closer to the experimental value compared with the prediction without
correction (figure 5.7b). However, in the experiment, the concentration profile is well described
by the power law across the water depth whereas in the simulation, the concentration decreases
more rapidly toward the centerline of the channel.

In order to further evaluate the finite-size correction model, the configurations NS and NBS
are reproduced numerically using the two-phase flow model with finite-size correction. Analytical,
experimental and numerical averaged concentration profiles are compared in figure 5.8 for both
configurations.

For configuration NS (figure 5.8a), the same conclusions as for configuration GB can be drawn.
The finite-size correction model significantly improves the prediction of the turbulent suspension
of particles without any tuning coefficient. The predicted Rouse number (Ro = 0.83) is closer to
the experimental value (Ro = 1.00). The modeled concentration profile obtained using finite-size
correction is in very good agreement with the experimental data compared with the simulation
without finite-size correction model.
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Figure 5.7: Solid phase volumetric concentration profiles from the experiment (Exp.), two-phase
flow simulation with finite-size correction model (T.F. model (FS)) and two-phase flow simulation
without finite-size correction model (T.F. model) from configuration GB in semi-log scale in panel
(a) and in log-log compared with analytical profiles from equation (5.10) with Ro = 2.04, Ro =
2.90 and Ro = 1.86 in panel (b).

Figure 5.8: Solid phase volumetric concentration profiles from the experiment (Exp.), two-phase
flow simulation with finite-size correction model (T.F. model (FS)), two-phase flow simulation
without finite-size correction model (T.F. model) and analytical profiles from equation (5.11) with
Ro = 0.83, Ro = 1.00, Ro = 2.29 and Ro = 0.07 from configuration NS in panel (a) and configu-
ration NBS in panel (b)
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For configuration NBS (figure 5.8b), the finite-size correction model does not alter the re-
sults predicted without finite-size correction. Almost no differences can be observed between the
concentration profiles obtained with and without finite-size correction confirming that finite-size
effects are negligible for configurations with low suspension number.

As a partial conclusion, it has been demonstrated that finite-size effects are important to predict
turbulent suspension of inertial particles in a boundary layer flow when the suspension number is
of the order of unity. The finite-size correction model proposed in this work significantly improves
the model prediction for the average sediment concentration profile without the use of tuning
parameter to fit the experimental data.

5.3.3 Lag velocity

Another interesting feature of turbulent suspension of inertial particles is the existence of a velocity
lag between the average stream-wise velocity of the fluid and of the particles [59–61, 75, 78, 96].
Kidanemariam et al. (2013) [60], based on fully-resolved DNS, have been able to clearly identify
the physical origin of this velocity lag as being due to the preferential concentration of suspended
particles in low speed regions of the fluid flow which can be identified with ejection events. This
velocity lag is not observed for particle-laden flows with low suspension number [75] such as NBS
but can be as high as 20% of the bulk fluid velocity [60].

The averaged fluid and solid velocity profiles obtained numerically with or without the finite-
size correction for configurations GB, NS and NBS are shown in the top panels of figure 5.9. The
velocity profiles are in very good agreement with the experiments and they do not show much
sensitivity to the finite-size correction model. The velocity difference is too small to be visible
on these graphs, the lag velocity ulag = 〈ũ f

i 〉− 〈ũs
i 〉 is shown in the bottom panels of figure 5.9.

For configurations GB and NS, the lag velocity is positive and of the order of 5-10% of the bulk
fluid velocity. The two-fluid model predicts the correct sign and order of magnitude for the lag
velocity. The major discrepancy is observed in the near-wall region y/h < 0.2 where the two-fluid
model predict a peak that is not observed in Kiger & Pan (2002) [61] experiments. For the NS
configuration, the lag velocity decreases linearly with the distance to the free surface. This is
probably a free surface effect that is not fully captured by the symmetry plane boundary condition
used in the present simulation, nevertheless the model predictions are very satisfactory. Given
the role played by the coherent structures of the flow in the velocity lag, the fact that the flow is
over-resolved near the bottom boundary could explain the observed discrepancies for the GB case.
However, since this difference is not observed for the other configurations, it might also be due
to the high variability of the velocity measurements of Kiger & Pan (2002) [61] near the bottom
(up to 25% for y+ < 50). In both GB and NS configurations the finite-size correction model has
a small influence on the lag velocity. In the NBS configuration, the experimental data reveals a
negligible lag velocity that can even becomes negative. The two-fluid model with and without
finite-size correction model predict a zero lag velocity except very near the bottom wall. From
these three configurations one can conclude that the existence of a lag velocity is not due to finite-
size effects. More importantly, the fact that the model is able to recover the absence of lag velocity
for NBS means that the two-fluid LES captures the physical mechanism correctly and can be used
as a predictive tool to study this mechanism.

5.3.4 Turbulent statistics

Among the three configurations, the most accurate measurements of turbulent statistics have been
obtained for configuration GB. In the following, this configuration is analyzed in details for the
fluid and particle phase flow statistics.

The wall friction velocity for configuration GB predicted with and without finite-size correc-
tion is uτ = 2.70×10−2 m.s−1 and uτ = 2.72×10−2 m.s−1 respectively. Whereas the numerical
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Figure 5.9: Averaged fluid and solid velocity profiles in (a,b,c) and lag velocity in (d,e, f ) from
the two-fluid model with finite-size correction (T.F. model (FS)) and the two-fluid model without
finite-size correction (T.F. model) for configurations GB (a, d), NS (b, e) and NBS (c, f) compared
with experimental data (Exp.).
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wall friction velocity is similar between the clear-water and particle-laden configurations, the ex-
periments suggest an increase of the friction velocity up to uτ = 2.99×10−2 m.s−1. Averaged fluid
and solid Reynolds stress and Root Mean Square (RMS) of stream-wise and wall-normal velocity
fluctuations profiles from configuration GB with or without finite-size correction are compared
with experimental data in figure 5.10. From figure 5.10a, the two-fluid model slightly underesti-
mates the fluid Reynolds shear stress compared with the experiments explaining the lower friction
velocity in the simulations. However, experimental and numerical results are similar: the solid
phase Reynolds shear stress is slightly greater than the fluid Reynolds shear stress away from the
bottom wall. The maximum value for the solid Reynolds shear stress predicted by the two-fluid
LES model is the same as in the experiments but the location is different. The RMS of stream-
wise and wall-normal velocity fluctuations are in very good agreement with experimental results
(figure 5.10b and 5.10c). As for the fluid Reynolds shear stress, the fluid phase velocity fluctu-
ations are slightly under-estimated by the two-fluid model for y/h > 0.1. For both experimental
and numerical profiles, the RMS of stream-wise solid phase velocity fluctuations are equal near
the centerline of the channel and becomes smaller in the near bottom wall region. Similarly to the
observation of Kidanemariam et al. (2013) [60] in their fully resolved DNS, the two-fluid model
predicts stronger wall-normal solid velocity fluctuations compared with the fluid away from the
wall whereas experimental solid and fluid profiles are similar close to the channel centerline. The
RMS of the solid velocity fluctuations decreases more rapidly than the fluid ones towards the wall.
Overall, the turbulent statistics are not significantly affected by the finite-size correction model.
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Figure 5.10: Average profiles of fluid and solid Reynolds stress in (a), r.m.s of stream-wise velocity
fluctuations in (b) and r.m.s of wall-normal velocity fluctuations in (c) from the two-phase model
with finite-size correction (T.F. model (FS)) and the two-phase model without finite-size correction
(T.F. model) compared with experimental data (Exp.) from configuration GB.

The slight differences observed between the experimental and numerical fluid phase turbulent
statistics come from the modulation of the turbulence by the particles. Again, from the scaling
analysis by Finn & Li (2016) [39] and given the parameters of the configuration from Kiger &
Pan (2002) [61], the presence of the particles is expected to damp the fluid turbulence whereas
in the experiments, a slight increase of the Reynolds stress and velocity fluctuations are observed
compared with the clear water configuration. Indeed, according to Balachandar (2009) [9], the
turbulence enhancement due to the presence of the particles comes from the action of the oscillat-
ing wakes behind particles having a high particle Reynolds number. The conjugate action of all
the wakes of the particles participates to increase the overall fluid turbulence.
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To be able to predict the turbulence enhancement, the two-fluid model should have the capacity
to capture the vortex shedding behind the particles by fully resolving the fluid/solid interface which
is not the case for the Eulerian-Eulerian two-phase flow model. Nevertheless, the turbulence
enhancement due to the particles is not a dominant mechanism in this configuration. According
to Finn & Li (2016) [39], the net production of turbulence by the particles is dominant for particle
Reynolds numbers higher than Reynolds number Rep = 400 even if oscillatory wakes behind
particles can be observed for lower Rep depending on flow properties, particle shape or distance
from the wall for example. In the present configuration, the particle Reynolds number based on
the scaling relations from Finn & Li (2016) [39] is equal to Rep = 4.8 and the maximum particle
Reynolds number predicted in the simulation is Rep,max ≈ 20, which is significantly below the
threshold value of 400.

Nevertheless, flow hydrodynamics and turbulent statistics are in good agreement with experi-
mental data and the overall relative behavior between the fluid and solid phase is correctly captured
by the two-phase flow model. The fact that the two-fluid model does not resolve the particle-fluid
interface implies that the turbulence enhancement induced by the presence of the particles is not
resolved. However, for such flow and particle parameters, according to the scaling analyses from
Balachandar (2009) [9] and Finn & Li (2016) [39], this mechanism is not dominant. The lower
fluid velocity fluctuations predicted by the two-fluid model near the channel centerline only results
in a slight under-estimation of the sediment concentration in the same region compared with the
experiments.
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Figure 5.11: Resolved and sub-grid fluid phase turbulent kinetic energy K̃ f and k̃ f
sgs in (a), resolved

and sub-grid solid phase turbulent kinetic energy K̃s and k̃s
sgs and granular temperature Θ in (b)

made dimensionless by the friction velocity uτ from configuration GB.

From the resolved and sub-grid turbulent kinetic energy profiles for the fluid and solid phases
presented in figure 5.11, it appears that most of the turbulent kinetic energy is resolved (k̃ f

sgs/K̃ f <
5% and k̃s

sgs/K̃s < 5%). The fact that the solid phase sub-grid turbulent kinetic energy is equal to
zero through the channel height shows that the resolution is very close to DNS and validates the
hypothesis to neglect the sub-grid terms. Furthermore, K̃s � Θ in the channel except very near
the solid boundary (y/h < 0.05) showing that kinetic and collisional dispersive forces should not
be dominant compared with the drag force to suspend the solid particles for such dilute configura-
tions. This hypothesis is further investigated in section 5.4.
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5.3.5 Volume fraction sensitivity

An additional simulation (configuration NS*) is performed to evaluate the robustness of the pro-
posed model to an increase of the mass loading. Experimental data from Muste et al. (2005) [75]
using natural sediment having higher volume fractions compared with the previous NS config-
uration is reproduced numerically using the two-fluid model. The hydrodynamic and particle
parameters are the same as for the NS configuration but the total solid phase volume fraction is
multiplied by a factor 3.5 (φtot = 16.2× 10−4). The concentration can still be considered dilute
and particles do not form a settled bed at the bottom of the channel.
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Figure 5.12: Solid phase volumetric concentration profiles from the experiment (Exp.), two-phase
flow simulation with finite-size correction model (T.F. model (FS)), two-phase flow simulation
without finite-size correction model (T.F. model) from configuration NS*.

The averaged concentration profile from the simulation of configuration NS with higher vol-
ume fraction is compared with experimental data in figure 5.12. As observed in the previous
sections, the agreement with experimental data is significantly improved by the finite-size cor-
rection for natural sediments. This result is even more spectacular considering that without the
correction model, the particles settle almost completely at the bottom of the channel resulting in
an even larger under-estimation of the suspension of particles at higher volume fraction by the
original two-fluid model.

5.4 Discussion

In this section, the sensitivity of the two-fluid model results to the different components of
the finite-size correction model are discussed as well as the sensitivity to the grid/second filter
resolution is presented.

5.4.1 Relative influence of the different terms of the finite-size correction model

In order to evaluate the relative influence of the modified drag law and the modified production
of granular temperature, a new simulation is performed for which finite-size effects are taken into
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Figure 5.13: Solid phase volumetric concentration profiles from the two-phase flow simulation
with finite-size correction model (T.F. model (FS)), two-phase flow simulation with finite-size cor-
rection only in the production term of granular temperature (T.F. model (FS-Jint only) and two-
phase flow simulation without finite-size correction model (T.F. model) from configuration GB in
semi-log scale.

account only in the production term of the granular temperature transport equation. In other words,
the simulation is performed using the drag law from equation (2.39) and the production of granular
temperature from equation (5.6). The average concentration profile obtained from the simulation
including finite-size effects only in the production of granular temperature equation is compared
with the concentration profile from the simulations with or without finite-size correction in figure
5.13.

The concentration profile obtained from the two-fluid simulation including finite-size effects
only in the production term of the granular temperature is similar to the profile without finite-
size correction model. Indeed, for dilute suspension of particles, fluid-particle interactions are
dominant compared with particle-particle interactions. The slope of the concentration profile in
dilute regions of the flow is controlled by the drag force and the modification of the production
term of granular temperature has almost no effect. However, the effect of the modification of
the granular temperature transport equation could become dominant for higher concentrations.
It should be noted that the modification of granular temperature transport equation is necessary
because a simulation including finite-size effects only in the drag law and not in the production
term of granular temperature was shown to be highly unstable. The observed instability is not the
result of a numerical issue but rather the consequence of a physical inconsistency in the energy
transfers between the two phases. Indeed, including finite-size effects only in the drag law and
not in the production term of granular temperature is not physically consistent. Some of the
turbulent flow scales are not taken into account in the energy budget between the phases making
the simulation unstable.

The averaged wall normal momentum balance for the solid phase can be written as:
〈
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(5.12)

with Ri j = ∂ 〈ρsφ̄ ũs′
i ũs′

j 〉/∂x j the Reynolds shear stress coming from averaging of the non-linear

106



5.4. Discussion

−0.5 0.0 0.5 1.0
〈Cy〉/〈φ̄ρsg〉

10−1

100

y
/h

Reynolds
stresses

Buoyancy

Granular
pressure

Drag

R.H.S. of
equation (4.1)

Figure 5.14: Averaged contributions to the wall normal momentum budget 〈Cy〉 on the right hand
side of the momentum balance (5.12) and their sum as a fraction of the gravity force 〈φ̄ρsg〉 from
configuration GB.

advection terms with ũs′
i = ũs

i −〈ũs
i 〉 the solid phase resolved velocity fluctuations. In figure 5.14,

the four terms of the R.H.S. of equation (5.12) are plotted in dimensionless form, normalized
by 〈ρsφ̄g〉, in semi-log scale for y/h. This figure shows that the predicted suspended particle
concentration profile results from a balance between gravity, buoyancy and drag forces in the
upper part of the channel. In such dilute systems, the effect of dispersive kinetic and collisional
forces are not significant except very near the wall y/h < 0.05 (y/dp < 5). This supports the
hypothesis that the discrepancies observed in the original model can not be due to a flaw in the
kinetic-theory formulation but are due to fluid-particle interaction forces.

5.4.2 Second filter size sensitivity

As mentioned in section 5.2, the width of the second filter ∆̆ should not be too small to be free from
disturbances generated by the presence of the particles. On the other hand, the second filter size
should not be too large in order to provide an accurate representation of the velocity “seen” by the
particles. The minimum filter width ∆̆min = 2dp has been determined from Kidanemariam et al.
(2013) [60] but there is no clear criteria for the maximum filter width. However, for computational
efficiency, since the second filter width depends on the spatial discretization in the stream-wise and
span-wise direction for this configuration, it can be crucial to determine the maximum acceptable
filter width to accurately predict the average concentration profile with coarser grid resolutions.

Mesh Nx×Ny×Nz ∆+
x , ∆+

z ∆+
y (bottom) ∆̆

M1 314×220×160 11 1 2dp

M2 210×147×107 17 1.5 3dp

M3 126×88×63 22 2 4dp

M4 80×56×40 44 4 8dp

Table 5.3: Mesh characteristics for the second filter size sensitivity test.

Additional simulations for configuration GB with different mesh resolutions have been per-
formed to measure the influence of the spatial discretization and the second filter width ∆̆ on the
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Figure 5.15: Averaged Reynolds flux (panel (a)) and solid phase volumetric concentration
(panel(b)) profiles from two-phase flow simulations with finite-size correction model (T.F. model
(FS)) from configuration GB using mesh M1, M2, M3 and M4 and without finite-size correction
model (T.F. model) using mesh M1 and M4.

sediment concentration profile prediction. The mesh characteristics for the different simulations
are presented in table 5.3. The comparison between Reynolds fluxes and concentration profiles
with and without finite-size correction obtained with mesh M1, M2, M3 and M4 are presented in
figure 5.15.

The turbulent dispersion of the particles increases for coarser resolution (figure 5.15a). As a
consequence, the amount of suspended particles in the water column predicted by the two-fluid
model increases with increasing filter width (figure 5.15b). The difference between the concen-
tration profiles from simulations using the finite-size correction model with ∆̆ = 2dp (mesh M1)
and ∆̆ = 3dp (mesh M2) is negligible and the agreement can still be considered as acceptable for
a filter width of ∆̆ = 4dp (mesh M3). However, discrepancies become important for larger filter
width (∆̆ = 8dp with mesh M4). More quantitatively, the concentration profile converges at first
order with the reference simulation results from mesh M1 for increasing vertical resolution.

Even without finite-size correction model, the Reynolds flux is increased between simulations
using mesh M1 and mesh M4 (figure 5.15a) suggesting that the over-prediction of the concentra-
tion does come from the finite-size correction model only but also from the modification of the
flow hydrodynamic for coarser grid resolutions.

As a conclusion, in order to accurately predict the concentration profile, the sensitivity analysis
suggests that the grid resolution at the wall should not exceed 4 wall units ∆+

y < 4. It is mandatory
to have at least one grid point in the laminar sub-layer in order to resolve the turbulent coherent
flow structures in the near wall region and to use a second filter smaller than 8dp (∆̆ < 8dp) to
accurately resolve the fluid velocity “seen” by the particles.

5.5 Conclusion

In this chapter, the two-fluid LES method has been tested against experimental data and a
finite-size correction model has been developed. The new model has been validated against avail-
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able experimental data for the dilute turbulent suspension of finite-sized particles transported by
a boundary layer flow. The improved model has been shown to accurately predict the suspended
particle concentration profile as well as the existence of a streamwise lag velocity for heavier-than-
fluid particles without the use of any tuning parameter to fit the experimental data. In the proposed
correction model, a distinction is made between turbulent flow scales larger or smaller than the
particle diameter. The velocity field “seen” by the particles in the drag law is filtered at a scale
∆̆≥ 2dp and smaller turbulent scales contribute to reduce the particle response time by the addition
of a sub-particle scale eddy viscosity to the molecular viscosity in the particle Reynolds number
definition. The second effect of the correction is to increase the production of granular temperature
by a modification of the source term in the granular temperature equation. While modification of
the drag law is more important for the accurate prediction of the suspended particle concentration
profile in the dilute configuration investigated herein, the modification of the granular temperature
equation is mandatory for the physical consistency and the numerical stability of the model. At
last, the sensitivity analysis of the model results for the second filter size ∆̆ has shown that the grid
resolution could be as high as 4 particle diameters without loss of accuracy as long as one grid
point is located in the laminar sub-layer.
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Conclusion

In this thesis, sedFoam, a turbulence-resolving two-fluid model for sediment transport applica-
tions is developed and applied to oscillatory sheet flow configurations and unidirectional boundary
layer flow with finite-size particles at low volume fraction.

In the model presented in chapter 2, both phases are seen as inter-penetrating continua. Fluid-
particle interactions are modeled using volume-averaged formulation of the drag, lift and added
mass forces. Granular stresses are modeled using the kinetic theory of granular flows [18]. The Eu-
lerian equations of the two-fluid model are filtered to perform large-eddy simulations. The effect
of unresolved sub-grid turbulent flow scales are taken into account using the dynamic Lagrangian
sub-grid model from Meneveau et al. (1996) [72]. The model is validated using numerical and
experimental data of two boundary layer flows: one unidirectional and one oscillatory.

Unsteady effects in oscillatory sheet flow

In chapter 3, the turbulence-resolving two-fluid model sedFoam accurately reproduced oscil-
latory sheet flow configurations involving fine and medium sand under a symmetrical flow forcing
from O’Donoghue & Wright (2004a) [81]. Quantitative predictions of concentration profiles were
obtained demonstrating the predictive capabilities of the two-fluid LES model. Furthermore, two-
phase flow simulations highlighted the difference of behavior that exists between oscillatory sheet
flow involving medium and fine sand due to unsteady effects. Whereas turbulence-averaged mod-
els require an almost systematic tuning of empirical coefficient to model turbulence-particle inter-
actions, the turbulence-resolving two-fluid model explicitly resolves them. The main conclusions
of this chapter are:

• For medium sand, the evolution of the concentration profile shows a clockwise (resp. anti-
clockwise) rotation of the concentration profile during flow acceleration (resp. deceleration)
around a “pivot” of constant concentration following the classical description proposed by
O’Donoghue & Wright (2004a) [81]. From a mass balance between downward settling and
upward Reynolds sediment fluxes, this behavior is the result of the presence at the same
location of the maximum vertical net sediment flux and the concentration profile inflexion
point. The sheet flow layer characteristics such as the thickness, the erosion depth and the
streamwise sand flux are in phase with the freestream velocity. The sediment bed response
is relatively quick compared with the wave period and the evolution of the sheet flow layer
can be considered quasi-steady.

• Sediments settle too quickly to the bed during flow deceleration leading to sharper concen-
tration profile in the near bed region compared with the measurements. For larger particles,
more complex turbulence-particle interaction regimes susceptible to affect the vertical dis-
tribution of sediment such as finite-size effects may become dominant.

• For fine sand, the presence of unsteady effects induced by the smaller particle settling ve-
locity completely modifies the behavior of the flow compared with medium sand. As a
consequence of the greater number of particles transported through the wave period, the
inertia of the sheet flow layer increases, the bed response is no longer in phase with the free
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stream velocity and turbulence is strongly attenuated by stable density stratification. The
flow becomes almost laminar at flow reversal resulting in vanishing Reynolds fluxes and
settling dominated vertical net flux. As a consequence of the nonlinear behavior of the mass
conservation equation, a concentration plateau forms around flow reversal (formation of a
shock). Time evolution of the concentration can no longer be represented by the classical
description provided by O’Donoghue & Wright (2004a) [81] using a power law.

• Unsteady effects are the result of a chain of causes and consequences including shear in-
stabilities and high Reynolds stress of the solid phase increasing vertical mixing of the
sediment, increased boundary layer inertia, stable stratification leading to turbulence damp-
ing, and hindered settling of particles. An equilibrium between all these mechanisms is
established during the wave period that controls the vertical sediment mass balance and the
observed phase-lag effects.

• The mean settling velocity can be well reproduced using empirical formulation taking into
account hindered settling. Therefore, to accurately predict the competition between settling
and Reynolds fluxes, future research should be focused on an accurate modeling of solid
phase Reynolds stresses and the vertical drift velocity.

Wave shape effects

In chapter 4, the effect of wave shape and particle size was investigated using the two-fluid LES
model sedFoam by reproducing four experimental configurations involving fine and medium sand
under velocity and acceleration skewed flow forcing from O’Donoghue & Wright (2004a) [81]
and van Der A et al. (2010) [112] respectively. The main conclusions of the chapter are:

• The mechanisms responsible for the generation of the net transport rate under non-sinusoidal
waves are reproduced by the turbulence-resolving two-fluid model. Especially, the larger net
transport rate for fine sand under acceleration skewed waves and negative sediment rate for
fine sand under velocity skewed waves, consequences of phase-lag effects, are accurately
predicted by the two-phase flow model.

• Unsteady effects highlighted in chapter 3 are also present in the configurations investigated
in this chapter. Larger sheet flow layer thickness, turbulence modulation by the particles and
increased vertical mixing of particles due to bed instabilities are observed for configurations
involving fine sand but not for medium sand.

• As a consequence of phase-lag, the sediment flux for configurations involving fine sand
can not be parameterized by the instantaneous Shields parameter. In the absence of phase-
lag effects, for configurations involving medium sand, streamwise sediment flux is fully
correlated with the time series of the Shields number.

• Because of unsteady effects, the onshore and offshore transport rate can not be related to
the corresponding representative Shields number using a power law with the same param-
eterization for configurations involving fine and medium sand. Fine sand exhibits higher
transport rates than medium sand, uncorrelated with the Shields number.

• The dimensionless maximum sheet flow layer thickness, used to determine the phase-lag
contributions in the sand transport formula, is not accurately predicted by the scaling law
proposed by Dohmen-Janssen et al. (2001) [29] for configurations involving fine sand.
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• More physically based modeling of phase-lag effects based on the mass balance between
Reynolds upward flux and downward settling flux should help improve predictions of the
decomposition of the sediment loads between wave crest and wave trough. Indeed, the im-
print of phase-lag effects are clearly visible on the competition between turbulent suspension
of particles and their settling. However, additional configurations involving different grain
sizes, flow periods and asymmetry/skewness factors and provide more quantitative results
for configurations involving medium sand are necessary to start developing new scaling
laws.

Finite size correction model

In chapter 5, the two-fluid LES method was tested against experimental data for an unidirec-
tional boundary layer flow with finite-size particles and a finite-size correction model was devel-
oped. The main conclusion of the chapter are:

• Without finite-size correction model, the suspension of particles is greatly under-estimated
by the two-fluid LES model for configurations having a suspension number vs/uτ ∼ O(1).
The drag force is dominant and numerical results are not sensitive to the other interaction
forces.

• The implementation of a correction model, taking into account finite-size effects in the cou-
pling between the fluid and solid phases, significantly improved the predictive capabilities
of the two-fluid model without the use of any tuning parameter to fit experimental data in
three different configurations.

• In the proposed correction model, a distinction is made between turbulent flow scales larger
or smaller than the particle diameter. The velocity field “seen” by the particles in the drag
law is filtered at a scale ∆̆ ≥ 2dp and smaller turbulent scales contribute to reduce the par-
ticle response time by the addition of a sub-particle scale eddy viscosity to the molecular
viscosity in the particle Reynolds number definition. The second effect of the correction is
to increase the production of granular temperature by a modification of the source term in
the granular temperature equation.

• In dilute conditions, the effect of the drag law modification is dominant compared with the
modification of the granular temperature. However, from our experience, this modification
is mandatory for physical consistency and numerical stability of the model.

• Model results are not very sensitive to the grid resolution as long as the condition that the
filter size is smaller than four times the particle diameter (∆̆≤ 4dp) is respected and that one
grid point is located in the laminar sub-layer near the wall.

The Eulerian model has a very high potential considering its predictive capabilities, the sig-
nificant insight that it provides into turbulent mechanisms occurring in the transport layer and its
capacity to avoid the limitations in term of number of particles compared with Lagrangian model-
ing methodologies.

This work represents one of the first steps toward exploiting the full capabilities of the two-
fluid LES model sedFoam for sediment transport applications. It opens the way to investigate
many scientific topics related to sediment transport in the coastal, estuarine or river environments.
Some of these perspectives are presented in the next section.
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Perspectives

Recent development of the two-fluid model for sediment transport applications should help
provide answers to scientific questions for which experiments, turbulence-averaged and Lagrangian
modeling methodologies are not appropriate or not the best option. Two main perspectives related
to the two-fluid model are detailed in the next sections. The first one, more fundamental, deals
with the improvement of the finite-size correction model. The second one, more applied, is related
to the parameterization of a practical sand transport formula.

Extended finite-size correction model

In a prospect of providing more physically based parameterization for turbulence-averaged and
larger-scale models, the turbulence-resolving two-fluid model should be applied to a wide range of
flow and particle parameters. However, given the great diversity of turbulence-particle interaction
regimes present in sediment transport conditions typical of the coastal and river environments,
the two-fluid model and especially the finite size correction model should be further improved to
extend its range of applicability to larger size ratios dp/η .

Indeed, using the finite size correction model introduced in chapter 5 for oscillatory sheet flow
configurations of chapters 3 and 4 and unidirectional sheet flow configuration from Revil-Baudard
et al. (2015) [88] investigated by Cheng et al. (2018) [23] resulted in a over-estimation of the
particle suspension.

In configurations investigated in chapter 5, Stokes number is on the order of unity. As a
consequence, the length scale associated with turbulent eddies having the same timescale as the
particle l∗ is of the order of the Kolmogorov length scale η justifying taking into account the effect
of the full range of the turbulent flow scales below the particle diameter in the coupling between
the fluid and solid phase. However, more inertial particles act as a temporal filter of the turbulent
spectrum. In that case, l∗ > η and taking into account the effect of turbulent flow scales between
l∗ and η has for effect to overestimate the effective viscosity in the finite-size correction model
and turbulent suspension of particles.

In this section, the development of an extended finite-size correction model for inertial par-
ticles is proposed. This improvement is still at the early stage of development and should be
regarded as a possible way to include the Stokes number dependency in the finite size correction
model.

Contrary to the finite-size correction model presented in chapter 5, the definition of the ef-
fective viscosity in the momentum coupling and the sub-particle TKE in the granular tempera-
ture transport equation should only include the effect of turbulent flow scales between l∗ and η .
The effective viscosity is now function of the dissipation rate of TKE between scales dp and l∗

εdp−l∗ . Making the assumption that dp and l∗ are in the inertial range of turbulence, following
Kolmogorov’s theory, εdp−l∗ can be calculated by integrating the dissipation rate of TKE spectrum
between dp and l∗ following:

εdp−l∗ = 2ν
f
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with E(K f ) = (K f )−4/3 the expression of the TKE spectrum in the inertial range of turbulence,
Ck = 0.5 an empirical constant. Similarly, sub-particle TKE between dp and l∗ is obtained by
integrating the TKE spectrum as follows:
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dp−l∗ =
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Eventually, the expression of the effective viscosity and sub-particle TKE are given by:
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(5.15a,b)
taking the minimum between the values calculated using new version and the values calculated
using the previous version presented in chapter 5. Indeed, values calculated using the new version
can not be larger than the values calculated using the previous finite-size correction model given
that it already includes the effect of the full the turbulent spectrum between dp and η .

To assess the extended finite-size correction model, a configuration involving large plastic par-
ticles taken from new experiments carried out during the Ph.D thesis of Hélder Guta in the LEGI
tilting flume [49, 50] are reproduced numerically using the TF model. Particles having a mean
diameter dp = 3mm, and density ρs = 1192 (vs = 0.056m.s−1) are transported by an unidirectional
flow having a bulk velocity Ub = 0.75m.s−1, water depth h = 0.1m and bottom friction velocity
uτ = 0.042m.s−1. Such particles and flow conditions yields dp/η ≈ 120, St ≈ 160 and vs/uτ = 1.3.

Similarly to configurations investigated in chapter 5, volume fractions is very low (φtot =
3× 10−3) to isolate the effect of turbulence-particle interactions and avoid interactions with a
deposited bed. However, unlike in previous configurations, the bottom is composed of roughness
elements having the same size as the particles.

To take into account bottom roughness in LES, a canopy model presented in appendix F is
developed and tested against clear water configurations carried out in the same flume. This model
allows to recover mean flow and second order turbulent statistical features typical of rough bound-
ary layer flows.

Given the large channel dimensions, the resolution of the numerical domain is coarser com-
pared with previous configurations. Nevertheless, high numerical resolution is not yet an objective
considering that simulations are performed for first evaluation of a model under development. Fur-
thermore, in rough boundary layers, the near wall resolution constraint can be relaxed given that
the laminar sub-layer is no longer present and does not need to be resolved. For the numerical
configuration presented in this section, the dimensionless cell size in the streamwise and spanwise
directions are ∆x+ ≈ 240 and ∆z+ ≈ 200. Cells in the wall normal directions are non-uniform with
a first cell size ∆y+ ≈ 30.

Averaged concentration profiles from simulations with the TF model using the finite size cor-
rection presented in chapter 5, extended finite size correction and no correction are compared with
the experimental profile in figure 3.

As for configurations presented in chapter 5, the absence of finite-size correction leads to
a great under-estimation of particle suspension. However, as experienced in unidirectional and
oscillatory sheet flow configurations, using the original finite-size correction model greatly over-
estimate particle suspension. The concentration profile is almost vertical across the water depth
justifying the inclusion of a Stokes number dependency. The early development of the extended
finite-size correction model is extremely promising given the significant improvement of the model
predictions without the use of tuning coefficients. However, particle suspension is still slightly
over-estimated especially in the outer region.
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Figure 3: Average concentration profiles from experiments (Exp.) and two-phase flow simula-
tions without finite size correction (T.F. model), with the original finite-size correction model (T.F.
model (FS)) and with the extended finite size correction model (T.F. model (FS extended)) using
conventional axis scaling in the left panel and in semi-log scaling in the right panel.

Considering the strong assumptions made to derive the model, the coarse mesh resolution and
the difficulty to represent rough boundary layer features in the LES framework, we believe that
the quality of the simulation results using the TF model together with the extended finite-size
correction is very good.

We believe that this vision on the inclusion of turbulence-particle interactions into the mo-
mentum coupling between the two phases represent a great opportunity to extend the range of
applicability of the TF model. However, additional development are required to further improve
the model predictions to be able to apply it to more complex configurations involving a greater
volume fraction and larger range of particle and flow parameters.

An accurate prediction of the concentration profiles using the finite-size correction model
should help providing more physically-based parameterization for the vertical turbulent diffusion
of particles. As pointed out in chapter 5, the value of the Schmidt number Sc representing the effi-
ciency of sediment mass diffusion relative to the turbulent momentum diffusion or eddy viscosity
is highly debated [65]. The most widely accepted model is the one from van Rijn (1984) [117] re-
lating the turbulent Schmidt number to the suspension number as follows: Sc = (1+2(vs/uτ)

2)−1.
Nevertheless, a lot of scatter is observed on existing experimental data and no satisfactory expla-
nation exists to support van Rijn’s empirical formula [65].

From two-phase flow simulations, detailed information on the concentration profiles, turbulent
statistics (ν f

t ) and Reynolds fluxes can be obtained to study the relative mass and momentum
diffusion processes in particle-laden boundary layer flows. Covering a large number of flow and
particle parameters should help improving Sc predictions by proposing more physically based
relationships.

Furthermore, as observed in chapters 3 and 4, the presence of particles can significantly damp
the fluid turbulence. Accurately modeling the momentum exchange between the two phases offers
the opportunity to investigate energy transfers between the fluid and the solid phase and between
resolved and unresolved scales of the flow based on the two-phase energy balance equations (see
figure 2.1).

The complete set of balance equations for the total and turbulent kinetic energy in term of
filtered and unfiltered flow variables are presented for the fluid phase in appendix B. The same
methodology can be followed to derive balance equations for the solid phase total and turbulent
kinetic energy.

Considering the great importance of energy transfers between both phases, having an energy-
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based approach with a turbulence-resolving two-phase flow model should help improving the cou-
pling between fluid and solid phases in turbulence models and in particle phase stress models.

Comparison between simulation results and a practical sand transport
formula

Results presented in chapter 4 showed that high resolution simulations using the two-fluid
model are a powerful tool to investigate the relationships between sand transport and hydrody-
namic conditions in oscillatory sheet flow. In the future, two-phase flow simulation results should
help providing more physically based relationships between the net transport rate and a given wave
condition in practical sand transport formulas.

One of the most accurate and advanced modeling approach to model the net sediment flux un-
der velocity and acceleration skewed waves is the practical sand transport formula from van Der
A et al. (2013) [114]. This approach is based on the semi-unsteady half-cycle concept introduced
by Dibajnia and Watanabe (1992) [26]. The net sediment flux is calculated based on the difference
between the onshore transport rate generated during wave crest and offshore transport rate gener-
ated during wave trough. Contributions due to phase-lag are taken into account by calculating the
amount of sediment entrained during the previous wave phase and transported during the current
wave phase. More details on the sand transport formula are proposed in appendix E.

In the next sections, we discuss the scaling and empirical relations used to compute the net
sediment flux based on the two-phase flow simulations. The accuracy of the model relies on a
good prediction of the duration of the wave crest and wave trough Tc and Tt , the representative
Shields numbers during the wave crest and the wave trough θc and θt , the corresponding sediment
loads Ω∗c and Ω∗t and their distribution over wave crest and trough using the phase-lag parameters
Pc and Pt . All these modeling aspects are investigated in the following sections.

Duration of the wave phases

In the formula from van Der A et al. (2013) [114], the respective durations of wave crest and wave
trough are calculated using the time series of the free stream velocity. However, the corresponding
durations of onshore and offshore flow velocities inside the boundary layer can be different. In the
numerical simulations, the effective durations of wave crest and trough is retrieved from durations
of positive (onshore) and negative (offshore) sediment fluxes T+ and T−.

The ratio between durations of wave crest and wave trough determined from time series of
freestream velocity and effective durations of wave crest and trough from positive/negative sed-
iment fluxes are presented in figure 4. For all configurations, duration of wave crest determined
from free stream velocity is greater than the effective duration of positive sediment flux. Symmet-
rically, duration of wave trough is smaller.

For velocity skewed waves (configurations M5010 and F5010), the effect of velocity asymme-
try is increased inside the boundary layer with T+/T− < Tc/Tt . Furthermore, flow asymmetry is
even greater for configurations F5010 for which phase-lag has a significant effect.

More strikingly, for configurations S706015m and S706015f, even if there is no velocity asym-
metry in the flow forcing, the effective duration of wave crest and wave trough are not equal.
From experimental observations of flow hydrodynamics under skewed waves by van Der A et al.
(2011) [113], onshore/offshore flow reversal occurs sooner towards the bottom leading to a smaller
ratio of onshore/offshore wave phase duration. As a consequence, the effective flow asymmetry is
greater for configuration S706015m for which the transport layer is very thin close to the bed in
comparison with the thicker transport layer from configuration S706015f.
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Figure 4: Ratio between duration of wave phases determined from time series of freestream ve-
locity and effective durations from positive/negative sediment fluxes Tc/T+ and Tt/T− (left panel)
and Tc/Tt and T+/T− (right panel) for configurations M5010, F5010, S706015m and S706015f.

There is a significant difference between flow asymmetry far from the bed and inside the bot-
tom boundary layer. To a smaller extent, as the flow asymmetry is not constant in the wall normal
direction, the effective flow asymmetry is function of the sheet flow layer thickness. Asymmetry
is increased for larger sheet flow layer thickness subject to a velocity skewed flow forcing and
decreased for larger sheet flow layer thickness subject to an acceleration skewed flow forcing.

Shields number determination

In the model proposed by van Der A et al. (2013) [114], the representative Shields number during
wave crest and wave trough are calculated as a function of the representative velocities during the
corresponding wave phase u f

c,r =
√

2
2 U f

m and u f
t,r =

√
2

2 u f
m following:

θc =
1
2 fc|u f

c,r|2
(s−1)gdp

, θt =
1
2 ft |u f

t,r|2
(s−1)gdp

(5.16a,b)

with fc and ft the friction factor during wave crest and wave trough respectively.
Following van Der A et al. (2013) [114], the friction factor for phase α is calculated based on

Swart (1974) [110] modified by Silva et al. (2006) [106] to include acceleration effects yielding:

fα =





0.00251exp


5.21

[(
2Tαu

Tα

)2.6 ar

ks

]−0.19

 ,

ar

ks
> 1.587

0.3,
ar

ks
≤ 1.587

(5.17)

with ks the bed roughness and ar = u f
r T/2π the representative excursion length function of the

representative orbital velocity amplitude defined as:

u f
r =

√
2
T

∫ T

0
u f

∞(t)2dt. (5.18)

The bed roughness ks is calculated based on Ribberink (1998) [91]:

ks = max
(

dp, dp
[
µ +6(θav−1)

])
(5.19)
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with µ a coefficient taking into account the increased bed roughness for increased sheet flow layer
thickness for fine sand (µ = 6 for fine sand and µ = 1 for medium sand) and θav the wave-averaged
Shields number calculated as

θav =
1
4 fwu f 2

r

(s−1)gdp
. (5.20)

with fw the wave friction factor given by the expression

fw =





0.00251exp

[
5.21

(
ar

ks

)−0.19
]
,

ar

ks
> 1.587

0.3,
ar

ks
≤ 1.587

. (5.21)

Considering that the expression of the wave averaged Shields number is also function of ks, it is
calculated iteratively.

Configuration θc θ+ θt θ−

M5010 0.93 1.11 0.32 0.45

F5010 2.68 2.31 0.93 0.95

S706015m 0.78 0.71 0.59 0.59

S706015 f 2.40 1.19 1.59 1.03

Table 2: Representative Shields numbers calculated using the methodology proposed in van Der
A et al. (2013) [114] and from two-phase flow simulations for configurations M5010, F5010,
S706015m and S706015f.

Representative Shields numbers calculated using the methodology proposed by van Der A et
al. (2013) [114] and from two-phase flow simulations using expression 4.5 are listed in table 2 and
compared in figure 5. In the left panel of figure 5, the ratio between representative Shields numbers
θc/θ+ and θt/θ− are represented for configurations M5010, F5010, S706015m and S706015f.
For configuration M5010, the representative Shields number ratios for wave crest and trough are
both below unity. For this configuration, the empirical determination of the Shields number leads
to a slight under-estimation compared with the predictions made with the two-fluid model. For
configurations F5010 and S706015m, Shields number predictions using the two-fluid model and
empirical relation are very close. However, for configuration S706015f, differences between the
empirical relation and the two-fluid model are more important with a factor two.

In the right panel of figure 5, ratios between representative Shields numbers during wave crest
and wave trough θc/θt and θ+/θ− are presented. As expected, for velocity skewed waves (con-
figurations M5010 and F5010), the Shields number during wave crest is much larger, by a factor
2.5, than during wave trough because of largest onshore near bed velocities. From the empirical
relation, the ratio between onshore and offshore representative Shields number is independent of
the particle size. For acceleration skewed waves, strongest acceleration generates larger bed shear
stress resulting in larger Shields numbers during wave crest. The same dynamics is observed for
all configurations but with greater ratios from the empirical predictions compared with numerical
results.

Sediment load calculation

The accurate prediction of the sediment loads Ω∗cc, Ω∗tt , Ω∗ct and Ω∗tc relies on the representation
of the sediment load ω∗α by a power law and an accurate decomposition between sediment ex-
tracted during one half wave phase and transported during the other. As presented in chapter 4, for
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Figure 5: Ratio between representative Shields numbers during wave crest and wave trough deter-
mined from the methodology proposed in van Der A et al. (2013) [114] and from two-phase flow
simulations θc/θ+ and θt/θ− (left panel) and θc/θt and θ+/θ− (right panel) for configurations
M5010, F5010, S706015m and S706015f.

medium sand, the dimensionless transport rate is well represented by a power law of the excess
Shields number. Considering that, in the sheet flow regime, θα � θcr, the sediment load defined
as the transport rate divided by the square root of the representative Shields number should also
be well represented by a power law.

Nevertheless, from the results presented in chapter 4, the presence of unsteady effects play an
important role in streamwise sediment transport. As a consequence, the dimensionless transport
rate can not be related to the excess Shields number using the same parameterization between fine
and medium sand. However, in van Der A et al. (2013) [114], the same power law is used to
determine the sediment loads for fine and medium sand.

Phase-lag contribution

In the practical sand transport formula from van Der A et al. (2013) [114], phase-lag is taken into
account through a redistribution of the sediment load extracted during a given wave phase between
the current and the next wave phase following equations (E.4)-(E.7). The parameters controlling
this re-distributions are the phase-lag parameters Pc and Pt function of the particle fall velocity vs

and the dimensionless sheet flow layer thickness. As observed in figure 4.17, the dimensionless
sheet flow layer thickness as a function of the maximum Shields number shows a significant scatter
for configurations involving fine sand and can not be parameterized using the relation proposed
by Dohmen-Janssen et al. (2001) [29]. As a consequence, the redistribution of the sediment loads
during wave crest and wave trough based on the determination of the maximum sheet flow layer
thickness to take into account phase-lag effects is not accurate.

In order to provide better parameterizations and more physically-based scaling laws for prac-
tical sand transport formulas as suggested in section 4.4.2, additional configurations should be in-
vestigated to cover a wider range of flow and particle parameters. Furthermore, finite-size effects
should be carefully integrated to obtain quantitative results for configurations involving medium
sand.
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A
Résumé de la thèse en français

Un résumé en français comprenant le contexte, les motivations et
les principaux résultats obtenus au cours de cette thèse est présenté
dans cette annexe.

La compréhension des processus physiques impliqués dans le transport intense de sédiments
est de la plus haute importance. Lors d’événements météorologiques extrêmes, comme les tem-
pêtes par exemple, l’évolution morphologique des plages de sable est fortement influencée par le
transport de sédiment en régime de charriage intense induit par les vagues. Dans le contexte du
changement climatique, pour lequel on s’attend à ce que la fréquence et l’intensité des événements
extrêmes augmentent, il est fondamental de pouvoir comprendre les mécanismes impliqués dans le
transport par charriage intense pour des écoulements oscillants typiques de l’environnement côtier
afin de modéliser et de prévoir la morphologie des plages sableuse à grande échelle [97].

Il existe dans la littérature un grand nombre de publications présentant des expériences menées
dans des tunnels hydrodynamiques (voir figure 1.9) pour étudier le transport de sable en régime de
charriage intense dans la couche limite oscillante. Cette configuration représente une idéalisation
de la couche limite générée par les vagues réelles en milieu côtier et présente l’avantage d’être
plus facile à reproduire numériquement en évitant la résolution de la surface libre. Les données
expérimentales ont servis à développer des modèles de transport de sédiments que ce soit des
formules de transport net par vague [114] ou des modèles diphasiques à phases résolues [2, 53].
Ces dernières décennies, des progrès significatifs ont été obtenus par la modélisation empirique et
numérique. Cependant, certains phénomènes ne sont pas encore bien compris et modélisés, c’est
le cas par exemple des effets instationnaires pour les sables fins comme le déphasage entre le flux
de transport de sables et la contrainte de cisaillement au fond ou l’effet de l’asymétrie des vagues
sur le flux net de sable.

De plus, étant donné que l’érosion, le transport et le dépôt des sédiments dans les écoule-
ments oscillants sont principalement contrôlés par des processus liés à la turbulence, les capacités
de prédiction des modèles basés sur une vision moyennée de la turbulence souffrent de limita-
tions majeures, en particulier pour les sables fins pour lesquels les interactions entre particules et
turbulence sont dominantes.

Pour étudier les processus fins jouant un rôle dans le transport de sédiment, différentes ap-
proches de simulation numérique à turbulence résolue existent. Ces approches peuvent être re-
groupées en deux familles : les approches Lagrangiennes et Eulériennes. Dans les approches
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Lagrangiennes, la trajectoire de chaque particule est résolue. Au contraire, dans les approches
Eulériennes, des équations de conservation de la masse et de quantité de mouvement sont obtenue
par la réalisation d’une moyenne spatiale sur l’ensemble des particules contenu dans un volume
de contrôle. L’écoulement peut alors être défini en fonction de la concentration volumique de par-
ticules et des valeurs moyennes des quantités (vitesse, pression, ...) de la phase porteuse fluide et
de la phase dispersée composée de l’ensemble des particules.

Dans les régimes d’écoulement intenses, typiques de l’environnement côtier, un très grand
nombre de particules est transporté dans l’écoulement. Suivre la trajectoire des particules indi-
viduelles est impossible compte tenu des ressources informatiques disponibles actuellement. Dans
ce contexte, le développement des approches Eulériennes à turbulence résolue représente un en-
jeu majeur pour la compréhension des processus physiques impliqués dans le transport de sable en
régime de charriage intense. Néanmoins, les hypothèses émises pour obtenir les équations du mod-
èle diphasique Eulérien restreignent son champ d’applicabilité en terme de régimes d’interaction
turbulence-particule. En effet, lorsque les particules sont plus grosses que plus petites échelles
spatiales de la turbulence, les particules sont dites de taille finie, il n’y a plus séparation d’échelle
entre l’écoulement et les particules et les lois d’interactions entre la phase fluide et la phase solide
ne sont plus valides. Il est alors nécessaire de développer de nouveaux modèles prenant en compte
les interactions complexes existant entre turbulence et particules.

Dans ce contexte, un modèle diphasique Eulérien (ou modèle bi-fluide) à turbulence résolue
pour des applications de transport de sédiments a été développé au cours de cette thèse.

Le chapitre 2 expose les développements nécessaires à l’obtention du modèle bi-fluide tels que
les opérations de moyenne spatiale, les différents modèles de fermeture. Pour les contraintes de
la phase solide, la théorie cinétique pour les écoulements granulaires de Chassagne et al. (submit-
ted) [18] est utilisée. Les interactions fluides-particules sont modélisées en prenant en compte la
poussée d’Archimède, la force de traînée, de portance et de masse ajoutée. Enfin, les équations
sont filtrées pour pouvoir réaliser des simulations des grandes échelles de la turbulence. L’effet
des contributions sous-mailles non résolues est pris en compte par le modèle de turbulence de
type Smagorinsky avec une procédure dynamique dite Lagrangienne proposée par Meneveau et
al. (1996) [72] pour calculer les coefficients du modèle. Deux configurations sans particules sont
reproduites numériquement afin de valider l’implémentation du modèle.

Dans le chapitre 3, le modèle bi-fluide a été appliqué dans un premier temps aux configurations
d’écoulement en régime de charriage intense pour deux types de sable (sable fin de diamètre
dp = 150 µm et moyen de diamètre dp = 280 µm) soumis à un forçage hydrodynamique oscillant
sinusoïdal afin de rendre compte des différences de comportement de la couche limite oscillante en
fonction de la taille des particules. L’effet de la forme des vagues est investigué dans le chapitre 4
en appliquant le modèle bi-fluide à des configurations impliquant les mêmes types de sable, mais
des forçage hydrodynamiques asymétriques en vitesse et en accélération. Enfin, un modèle de
correction prenant en compte les effets de taille finie des particules est développé et validé sur des
configurations d’écoulements unidirectionnels chargés en particules à faible fraction volumique
dans le chapitre 5.

Effets instationnaires dans un écoulement oscillant en régime de char-
riage intense

Le modèle bi-fluide à turbulence résolue a été appliqué avec succès à des configurations
d’écoulements oscillants en régime de charriage intense impliquant des sables fins et moyens sous
un forçage d’écoulement symétrique (configurations F512 et M512 de O’Donoghue & Wright
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(2004a) [81]). Un aperçu des simulations montrant les interactions entre concentration de par-
ticules et la turbulence du fluide ainsi que les différences de comportement de la couche limite
oscillante est présenté sur la figure 3.9.

Un accord quantitatif des profils de concentration moyens 〈φ̄〉 est obtenu par rapport aux
profils expérimentaux (figure A.1), démontrant les capacités de prédiction du modèle. Cepen-
dant, de petites divergences peuvent être observées pour la configuration impliquant des sables
moyens. Les sédiments se déposent trop rapidement sur le lit pendant la phase de décélération de
l’écoulement, ce qui entraîne un profil de concentration plus plat dans la région proche du lit par
rapport aux mesures. D’après l’étude des régimes d’interactions turbulence-particules présentée
dans le chapitre 1, pour des particules plus grandes, des régimes d’interaction plus complexes ap-
paraissent et des processus physiques tels que les effets de taille finie peuvent devenir importants.
Dans ce cas, des modifications du terme d’interaction fluide-particule, susceptibles d’affecter la
distribution verticale des sédiments, sont nécessaires [39].
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Figure A.1: Profils de concentration moyenne des configurations M512 et F512 présentées
dans le chapitre 3 prédits par le modèle bi-fluide (LES) comparés aux données expérimentales
d’O’Donoghue & Wright (2004a) [81] (Exp.)

Néanmoins, le bon accord entre les résultats de simulation et les expériences valide le modèle
bi-fluide. Il est remarquable que le modèle bi-fluide à turbulence résolue reproduise de manière
satisfaisante les différences de comportement observées entre sables moyens et sables fins alors
que les modèles bi-fluides à turbulence moyennée nécessite un ajustement des paramètres em-
piriques pour les modèles d’interactions turbulence-particules [4, 64]. Ce résultat important dé-
montre que le modèle bi-fluide à Simulation des Grandes Échelles résout explicitement ces inter-
actions et il peut donc être utilisé pour analyser en détails les bilan de masse et les statistiques
turbulentes pour expliquer les différences observées expérimentalement.

Pour un écoulement oscillant en régime de charriage intense impliquant des sables moyens,
l’évolution du profil de concentration à travers la période de la vague suit la description bien
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documentée proposée par O’Donoghue & Wright (2004a) [81] avec une rotation dans le sens des
aiguilles d’une montre (resp. dans le sens inverse) du profil de concentration pendant l’accélération
(resp. la décélération) de l’écoulement autour d’un “pivot” de concentration constante (voir figure
1.12). Ce comportement est le résultat d’une compétition entre les flux de sédimentation et de
suspension turbulente pendant le cycle de la vague. L’épaisseur de la couche de transport, la
profondeur d’érosion et le flux horizontal de sédiments sont parfaitement en phase avec la vitesse
de l’écoulement externe i.e. en dehors de la couche limite, ce qui suggère que la réponse du lit de
sédiments aux changements de l’écoulement est très rapide. Ce résultat confirme qu’une vision
quasi-stationnaire de l’évolution de la couche de transport est pertinente.

Pour le sable fin, des effets instationnaires sont présents entraînant un comportement com-
plètement différent de l’écoulement et du transport. En raison des instabilités hydrodynamiques
observées pendant la phase d’accélération, la contrainte de Reynolds de la phase solide devient
importante et l’épaisseur de la couche de transport est considérablement augmentée pendant toute
la période de la vague. Par conséquent, une grande quantité de sédiments est transportée dans la
couche limite, ce qui augmente l’inertie de la couche de transport. La réponse du lit de sédiments
n’est plus en phase avec la vitesse de l’écoulement loin du lit. Pendant la phase de décéléra-
tion, la présence de particules en suspension induit une stratification de l’écoulement qui amortit
fortement la turbulence et conduit à des flux de suspension turbulente verticaux presque nuls. La
couche limite passe d’un comportement turbulent à un comportement laminaire et la dynamique
des sédiments est de plus en plus dominée par la sédimentation. Par rapport aux sables moyens, le
flux net vertical maximal est situé plus haut dans l’écoulement, ce qui conduit à la formation d’un
plateau de concentration dû à un comportement non-linéaire dans le bilan de masse (formation
d’un choc). L’évolution temporelle de la concentration ne peut plus être représentée par la de-
scription classique fournie par O’Donoghue & Wright (2004a) [81]. Le plateau de concentration
“glisse” presque librement au-dessus du lit immobile avec un profil de vitesse constant présentant
des similitudes avec les écoulements en bouchon observés par Sleath (1999) [107].

Par rapport aux sables moyens, la turbulence de la phase solide joue un rôle plus important
dans l’écoulement en régime de charriage intense pour des sables fins. Habituellement non prise
en compte dans les modèles à turbulence moyennée, elle contribue à expliquer leurs incapacités
à prédire les configurations impliquant des sables fins. Les effets instationnaires sont le résultat
d’une chaîne de causes et de conséquences comprenant des instabilités de cisaillement et une
forte contrainte de Reynolds de la phase solide augmentant le mélange vertical des sédiments,
une inertie accrue de la couche limite, une stratification stable conduisant un amortissement de la
turbulence et la chute entravée des particules à forte concentration. Un équilibre entre tous ces
mécanismes s’établit pendant la période des vagues qui contrôle le bilan de masse vertical des
sédiments et les effets de déphasage observés.

En conclusion, la prédiction précise de l’évolution temporelle du profil de concentration dépend
d’une modélisation fiable de la compétition entre le flux de sédimentation et le flux de suspen-
sion turbulente. Les résultats de la simulation utilisant le modèle bi-fluide montrent que la vitesse
moyenne de sédimentation peut être bien reproduite en utilisant une formulation empirique prenant
en compte la chute entravée des particules. Les recherches futures devraient donc se concentrer
sur une modélisation précise des contraintes de Reynolds particulaire et de la vitesse de glissement
turbulent entre le fluide et les particules.

Effets de la forme des vagues

Dans un deuxième temps, l’effet de la forme des vagues sur l’écoulement oscillant en régime
de charriage intense a été étudié en mettant l’accent sur la dépendance à la taille des grains et aux
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effets de déphasage.
Quatre configurations impliquant des sables fins et moyens soumis à des vagues asymétriques

en vitesse (panneau du milieu sur la figure 2) et en accélération (panneau du bas sur la figure 2)
provenant de O’Donoghue & Wright (2004a) [81] et de van der A et al. (2010) [112] ont été
reproduites numériquement.

Contrairement aux vagues symétriques, le flux de sédiments net moyenné sur une période
complète de vague non nul. Il est positif i.e. dirigé vers la côte, ou négatif i.e. dirigé vers le large
suivant les cas. À partir d’une comparaison entre les mesures expérimentales et les prédictions
numériques, les mécanismes physiques responsables du flux net de sédiments plus important pour
les sables fins sous des vagues asymétriques en accélération et du flux net de sédiments négatif
pour les sables fins sous des vagues asymétriques en vitesse sont reproduits par le modèle bi-fluide.

La comparaison entre le flux net prédit par le modèle bi-fluide et celui mesuré expérimentale-
ment et présentée sur la figure A.2 avec M5010 la configuration impliquant des sables moyens
et des vague asymétriques en vitesse, F5010 la configuration sables fins pour les mêmes vagues,
S706015m la configuration sables moyens et des vagues asymétriques en accélération et S706015f
la configuration sables fins pour les mêmes vagues.
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Figure A.2: comparaison entre le taux de transport net prédit par le modèle bi-fluide et mesuré
expérimentalement pour les configurations F5010, M5010, S706015f and S706015m.

Pour la configuration M5010, le flux de sédiments est corrélé avec le nombre de Shields in-
stantané traduisant la contrainte de cisaillement appliquée sur le lit. Le flux de sédiments est nul
lors des phases de renverses de la vague, il augmente pendant la phase d’accélération et diminue
pendant la phase de décélération. En raison de la plus grande contrainte de cisaillement du lit
pendant la crête de la vague, une plus grande quantité de sédiments est transportée par rapport à la
phase de creux. Bien que la durée du creux soit plus longue, la quantité de sédiments transportée
vers le large ne compense pas la contribution dirigée vers la côte pendant la crête et le flux net sur
le cycle de vague est dirigé vers la côte.

Pour la configuration F5010, au contraire, les particules érodées pendant la crête de la vague
n’ont pas le temps de se redéposer avant la phase de renverse (de la côte vers le large). Une
quantité importante de sédiments restée en suspension lors de la phase de renverse est transportée
vers le large pendant le creux de la vague et le flux de sédiments n’est plus corrélé avec le nombre
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de Shields instantané. Même si le flux de sédiments instantané est plus faible pendant le creux que
pendant la crête de la vague, la plus longue durée du creux générer un flux net vers le large.

Les mêmes observations peuvent être faites entre les configurations M5010 et S706015m im-
pliquant des sables moyens soumis à des vagues asymétriques en vitesse et en accélération. Cepen-
dant, la plus forte contrainte de cisaillement du lit observée pendant la crête de la vague est le
résultat de la plus forte accélération par rapport au creux de la vague. Le flux de sédiments est nul
lors de la phase de renverse et la quantité de sédiments transportés vers la côte dépasse la quantité
de sédiments transportés vers le large pendant le creux conduisant à un flux net orienté vers la
côte.

Pour la configuration S706015f, le flux de sédiments revient à zéro pendant la phase de ren-
verse de la côte vers le large, mais pas lors de la phase de renverse du large vers la côte. Les
particules restant en suspension sont transportées pendant la crête de la vague ayant pour effet
d’augmenter encore le taux de transport net orienté vers la côte.

Les mêmes mécanismes jouant un rôle dans les effets instationnaires observés au chapitre 3
sont présents dans les configurations impliquant des sables fins. L’épaisseur de la couche de trans-
port est augmentée par rapport aux configurations impliquant des sables moyens, la turbulence
est atténuée lors des phases de renverses et les instabilités du lit augmentent le mélange vertical
des particules. En outre, l’augmentation de l’épaisseur de la couche de transport pendant le creux
de la vague pour la configuration impliquant de sables fins soumis à des vagues asymétriques en
accélération ne peut être attribuée qu’à des instabilités du lit plus importantes, étant donné que
l’épaisseur de la couche de transport était proche de zéro lors de la phase de renverse de la côte
vers le large.

La relation entre les taux de transport durant les demi-phases de la vague et leurs nombres de
Shields représentatifs a révélé que le flux de sable dans les configurations impliquant des sables
fins et moyens ne peut pas être représenté par une loi puissance en utilisant les mêmes paramètres
pour les deux tailles de sédiments. En effet, pour les sables moyens, il n’y a pas d’effets de
déphasage et le flux sédimentaire est bien représenté par une loi de puissance classique i.e. comme
en écoulement unidirectionnel. Cependant, pour les sables fins, le flux sédimentaire est plus im-
portant ce qui signifie que les effets instationnaires contribuent à augmenter le flux sédimentaire
dans le sens du courant.

La comparaison entre l’épaisseur maximale de la couche de transport prédite pendant la crête
et pendant le creux des vagues à partir du modèle bi-fluide et la relation empirique proposée par
Dohmen-Janssen et al. (2001) [29] a montré que l’épaisseur maximale de la couche de trans-
port d’une configuration impliquant des sables moyens peut être bien représentée par le nombre
maximal de Shields, mais pas pour les configurations impliquant des sables fins.

À partir des séries temporelles du bilan de masse vertical des sédiments entre les flux as-
cendants de suspension turbulente et les flux descendants de sédimentation, des suggestions sur
la méthodologie de modélisation des effets de décalage de phase basées sur la physique ont été
fournies. En effet, l’empreinte des effets de déphasage est clairement visible sur la compétition
entre la suspension turbulente des particules et leur sédimentation. Cependant, des configura-
tions supplémentaires impliquant différentes tailles de grains, différentes périodes d’écoulement
et différents facteurs d’asymétrie sont nécessaires pour commencer à développer de nouvelles lois
d’échelle.

En outre, pour fournir des lois d’échelle précises, il est nécessaire d’obtenir des résultats plus
quantitatifs en termes de taux de transport et de profils de concentration pour les configurations
impliquant des sables moyens. Comme souligné dans la section 3.3.1, les sables moyens semblent
se déposer sur le lit trop rapidement par rapport aux expériences. Pour les grosses particules, la
séparation d’échelle entre les particules et les plus petits tourbillons turbulents n’est plus vérifiée,
le diamètre des particules est plus grand que la plus petite échelle de longueur turbulente η . Les
effets de taille finie peuvent devenir importants et doivent être pris en compte pour prédire avec
précision les interactions fluide-particules [39].
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Modèle de correction de taille finie

Afin de mesurer les capacités prédictives du modèle bi-fluide pour des configurations impli-
quant des particules de taille finie, il a été appliqué à des configurations expérimentales de couches
limites unidirectionnelles chargées en particules ayant un rapport de taille dp/η ∼ O(1− 10).
Dans le but d’éliminer un niveau de complexité supplémentaire induit par la présence d’un lit de
particules déposées et d’isoler la contribution des interactions turbulence-particules, les configu-
rations présentées impliquent des suspension diluées.

Comme observé dans les simulations de la configuration d’écoulement unidirectionnel en
régime de charriage intense par Cheng et al. (2018) [23], la suspension des particules de taille finie
est sous-estimées pour les configurations impliquant un nombre de suspension S = uτ/vs ∼ O(1)
avec uτ la vitesse de frottement au fond et vs la vitesse de chute d’une particule isolée.

Afin d’obtenir un accord quantitatif entre les profils de concentration moyens prédits par le
modèle bi-fluide et les données expérimentales, un modèle de correction de taille finie basé sur le
modèle de Gorokhovski & Zamansky (2018) [48] a été proposé. Dans ce modèle, une distinction
est faite entre les échelles d’écoulement turbulent plus grandes ou plus petites que le diamètre
de la particule. Le champ de vitesse "vu" par les particules dans la loi de traînée est filtré à une
échelle ∆̆ ≥ 2dp et les échelles turbulentes plus petites contribuent à réduire le temps de réponse
des particules par l’ajout d’une viscosité turbulente à la viscosité moléculaire dans la définition du
nombre de Reynolds particulaire et à augmenter la production de température granulaire.
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Figure A.3: Profils de concentration moyens des configurations GB (panneau (a)) NS (panneau
(b)) et NBS (panneau (c)) obtenus avec et sans modèle de correction de taille finie (T.F. model et
T.F. model (FS) respectivement) comparés aux données expérimentales (Exp.).

Les profils de concentration moyens des configurations impliquant des billes de verre de den-
sité ρs = 2600 kg.m−3 de Kiger & Pan (2002) [61] (configuration GB) et des sédiments naturels
de densité rhos = 2650 kg.m−3 (configuration NB) et de densité ρs = 1025 kg.m−3 (configura-
tion NBS) de Muste et al. (2005) [75] obtenus avec et sans modèle de correction de taille finie
sont comparés aux données expérimentales dans la figure A.3. Pour les configurations GB et NS,
l’ajout du modèle de correction de taille finie permet d’améliorer significativement la prédiction
de la suspension turbulente des particules sans aucun paramètre de réglage. Pour la configuration
NBS, l’accord est quantitatif entre les profils de concentration avec et sans modèle de correction
de taille finie. De plus, l’étude d’une configuration supplémentaire impliquant une concentra-
tion en sédiments plus élevée (configuration NS*) a montré que la différence entre les profils de
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concentration prédits avec et sans modèle de taille finie et plus importante pour des plus fortes
concentrations en sédiments.

D’après l’évaluation du modèle de correction de taille finie, alors que la modification de la loi
de traînée est plus importante pour la prédiction du profil de concentration des particules en sus-
pension dans les configurations étudiée ici, la modification de l’équation de température granulaire
est obligatoire pour la cohérence physique et la stabilité numérique du modèle. Enfin, l’analyse de
sensibilité des résultats du modèle pour la taille de filtre ∆̆ a montré que la résolution de la grille
pouvait atteindre 4 diamètres de particules sans perte de précision, tant qu’un point de grille est
situé dans la sous-couche visqueuse.

Dans la perspective de fournir une paramétrisation plus physique pour les modèles à turbulence
moyennée, le modèle bi-fluide à turbulence résolue devrait être appliqué à une large gamme de
paramètres d’écoulement et de particules. Cependant, étant donné la grande diversité des régimes
d’interaction turbulence-particules présents dans les conditions de transport de sédiments typiques
des environnements côtiers et fluviaux, le modèle à deux fluides et en particulier le modèle de
correction de la taille finie devrait être encore amélioré pour étendre son champ d’application à
des rapports de taille dp/η plus grands.

En effet, en utilisant le modèle de correction de taille finie pour les configurations d’écoulement
oscillant en régime de charriage intense des chapitres 3 et 4 et la configuration d’écoulement uni-
directionnel de Revil-Baudard et al. (2015) [88] étudiée par Cheng et al. (2018) [23] a entraîné
une surestimation de la suspension des particules.

Dans les configurations étudiées dans le chapitre 5, le nombre de Stokes défini comme étant le
rapport entre les échelles de temps associées aux particules et aux plus petites échelles turbulentes
(échelles de Kolmogorov η) est de l’ordre de l’unité. En conséquence, l’échelle de longueur
l∗ associée aux tourbillons ayant la même échelle de temps que la particule est de l’ordre de η

justifiant la prise en compte de l’effet de toute la gamme des échelles de l’écoulement turbulent en
dessous du diamètre de la particule dans le couplage entre le fluide et la phase solide. Cependant,
les particules plus inertielles agissent comme un filtre temporel du spectre turbulent. Dans ce
cas, l∗ > η et la prise en compte de l’effet des échelles d’écoulement turbulent entre l∗ et η a
pour effet de surestimer la viscosité effective dans le modèle de correction de taille finie et de
suspension turbulente de particules.
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〈φ〉

0.0

0.2

0.4

0.6

0.8

1.0

y
/h

Exp.

T.F. model

T.F. model (FS)

T.F. model (FS extended)
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Figure A.4: Profils de concentration moyens provenant des expériences (Exp.) et des simulations
sans modèle de taille finie (T.F. model), avec le modèle de taille finie présenté dans le chapitre 5
(T.F. model (FS)) et avec le modèle de taille finie étendu (T.F. model (FS extended)) en utilisant une
échelle conventionnelle dans le panneau de gauche et en utilisant une échelle semi-logarithmique
dans le panneau de droite.

Le développement d’un modèle de correction de taille finie étendu pour les particules iner-
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Appendix A. Résumé de la thèse en français

tielles, encore à un stade précoce de développement, est proposé dans les perspectives de la thèse.
Appliqué à une configuration expérimentale impliquant des particules de taille finie ayant un rap-
port de taille dp/η ≈ 120 et un nombre de Stokes St ≈ 160, le nouveau modèle améliore sensible-
ment la prédiction du profil de concentration moyen. D’après les profils de concentration présentés
sur la figure A.4, sans le modèle de correction de taille finie, la concentration est très largement
sous-estimées dans les parties supérieures de l’écoulement. Avec le modèle de correction de taille
finie présenté dans le chapitre 5, la suspension est sur-estimée avec un profil de concentration
presque vertical. Enfin, avec le modèle de correction de taille finie étendu, la prédiction du profil
de concentration est améliorée dans la partie basse de l’écoulement. Le développement précoce du
modèle de correction de taille finie étendu est extrêmement prometteur étant donné l’amélioration
significative des prédictions du modèle sans l’utilisation de coefficients de réglage. Cependant, la
suspension des particules est encore surestimée, surtout dans la région supérieure de l’écoulement.

Cette vision sur l’inclusion des interactions turbulence-particules dans le couplage de la quan-
tité de mouvement entre les deux phases représente une grande opportunité d’étendre la gamme
d’applicabilité du modèle bi-fluide. Cependant, des développements supplémentaires sont néces-
saires pour améliorer davantage les prédictions du modèle afin de pouvoir l’appliquer à des config-
urations plus complexes impliquant une plus grande fraction volumique et une plus grande gamme
de paramètres de particules et d’écoulement.

En conclusion, le modèle bi-fluide détient un potentiel très élevé compte tenu de ses capacités
de prédiction, des informations qu’il fournit sur les mécanismes turbulents se produisant dans la
couche de transport et de sa capacité à s’affranchir les limitations en termes de nombre de par-
ticules par rapport aux méthodologies de modélisation Lagrangienne. Le travail réalisé au cours
de cette thèse représente l’une des premières étapes vers l’exploitation de toutes les capacités du
modèle bi-fluide pour les applications de transport de sédiments. Il ouvre la voie à l’étude de nom-
breux enjeux scientifiques liés au transport de sédiments dans l’environnement côtier, estuarien ou
fluvial.
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B
Derivation of kinetic energy equations for the fluid

phase in the Eulerian two-fluid formalism

The derivation of the kinetic energy equations in the Eulerian two-
fluid formalism are presented in this appendix. It includes equations
for the total, main field and turbulent kinetic energy equations. Fur-
thermore, equations are presented in term of filtered variables in the
LES framework.

B.1 Mean total kinetic energy

Starting from the momentum equation (2.16) and multiplying it by the fluid velocity u f
i gives:

u f
i

∂ (1−φ)u f
i

∂ t
+u f

i

∂ (1−φ)u f
j u

f
i

∂x j
=−u f

i
(1−φ)

ρ f
∂P f

∂xi
+u f

i

∂T f
i j

∂x j
−u f

i Ii +u f
i (1−φ)gi. (B.1)

Using the expression for the derivation of a product

∂a ·b
∂η

= b
∂a
∂η

+a
∂b
∂η

, (B.2)

and taking the ensemble average (operator 〈 ·〉) allows to write equation (B.1):

∂

〈
(1−φ)u f

i u f
i /2
〉

∂ t
+

∂

〈
(1−φ)u f

j u
f
i u f

i /2
〉

∂x j
=−

〈
u f

i
(1−φ)

ρ f
∂P f

∂xi

〉
+

〈
u f

i

∂T f
i j

∂x j

〉
−
〈

u f
i Ii

〉

+
〈

u f
i (1−φ)gi

〉
.

(B.3)

Developing the stress term on the right hand side of equation (B.3) and using Favre averaged
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Appendix B. Derivation of kinetic energy equations for the fluid phase in the Eulerian two-fluid
formalism

variables (operator 〈 ·〉F ) gives:

∂ (1−〈φ〉)〈u f
i u f

i /2〉F
∂ t

+
∂ (1−〈φ〉)〈u f

j u
f
i u f

i /2〉F
∂x j

=−
〈

u f
i
(1−φ)

ρ f
∂P f

∂xi

〉

+

〈
∂u f

i T f
i j

∂x j

〉
−
〈

T f
i j

∂u f
i

∂x j

〉
−
〈

u f
i Ii

〉
+(1−〈φ〉)〈u f

i 〉Fgi.

(B.4)

Introducing now the mean total kinetic energy K f = 〈u f
i u f

i 〉F/2 gives the final form of K f

equation:

∂ (1−〈φ〉)K f

∂ t︸ ︷︷ ︸
I

rate of
change

+
∂ (1−〈φ〉)〈u f

j u
f
i u f

i /2〉F
∂x j︸ ︷︷ ︸
II

convection

=−
〈

u f
i
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ρ f
∂P f

∂xi

〉

︸ ︷︷ ︸
III

pressure
contribution

+

〈
∂u f

i T f
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diffusion
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〈

T f
i j

∂u f
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∂x j

〉

︸ ︷︷ ︸
V

viscous
dissipation

−
〈
u f

i Ii
〉

︸ ︷︷ ︸
VI

coupling
contribution

+(1−〈φ〉)〈u f
i 〉Fgi︸ ︷︷ ︸

VII
gravity

contribution

.

(B.5)

B.2 Main field and turbulent kinetic energy

The Mean total kinetic energy can be decomposed into a main field and turbulent kinetic
energy 〈K f 〉F and k f respectively following:

K f =
〈u f

i u f
i 〉F

2
=
〈u f

i 〉F〈u
f
i 〉F

2
+
〈
〈u f

i 〉Fu f ′
i

〉
F︸ ︷︷ ︸

=0

+
〈u f ′

i u f ′
i 〉F

2
= 〈K f 〉F + k f (B.6)

with u f ′
i the fluid velocity fluctuations.

Each term of equation (B.5) is decomposed into main field and fluctuating part.

Term I:

∂ (1−〈φ〉)K f

∂ t
=

∂ (1−〈φ〉)〈K f 〉F
∂ t

+
∂ (1−〈φ〉)k f

∂ t
(B.7)
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B.2. Main field and turbulent kinetic energy

Term II:
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(B.8)

Term III:
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Term IV:
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Term VI:

〈
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(B.12)

Term VII:

(1−〈φ〉)〈u f
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i 〉Fgi (B.13)

Two equations for the main field and turbulent kinetic energy can be extracted from this de-
composition:
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Appendix B. Derivation of kinetic energy equations for the fluid phase in the Eulerian two-fluid
formalism
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(B.15)

B.3 Kinetic energy equations for filtered two-phase flow equations

Applying the same procedure as in section B.1 to the filtered fluid momentum equation (2.45)
gives the mean resolved kinetic energy K̃ f = 〈ũ f

i ũ f
i 〉F/2 equation (B.16):
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(B.16)

The mean resolved total kinetic energy can also be decomposed into a mean field and a turbu-
lent kinetic energy following :

K̃ f =
〈ũ f

i ũ f
i 〉F

2
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〈ũ f

i 〉F ũ f ′
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= 〈K̃ f 〉F + k̃ f . (B.17)

As in section B.2, the equations for the filtered main field and turbulent kinetic energy can be
extracted from equation (B.16) with the filtered velocity decomposition:

XXXII



B.3. Kinetic energy equations for filtered two-phase flow equations
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ũ f ′

i Ii
〉

︸ ︷︷ ︸
coupling

contribution

+

〈
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C
Favre averaging procedure

This appendix aims at presenting the Favre-averaging procedure
used to compute Favre-averaged variable for the undirectional flow
configurations.

The given variable ψ can be decomposed into the sum of the Favre-averaged variable 〈ψ〉F and
the associated fluctuation ψ ′. Favre-averaging operations on the variables ψ f or ψs correspond to
perform an ensemble average (operator 〈 ·〉) of the variables weighted by the ensemble-averaged
phase concentration 〈1−φ〉 or 〈φ〉 following

〈ψ f 〉F =
〈(1−φ)ψ f 〉
〈1− φ̄〉 , 〈ψs〉F =

〈φψ f 〉
〈φ〉 . (C.1a,b)

Numerically, averaged variables are calculated by performing a spatial averaging operation in
the streamwise and spanwise directions of a temporally averaged variable 〈ψ〉t following

〈ψ〉= 1
LxLz

∫ Lx

0

∫ Lz

0
〈ψ〉tdxdz, (C.2)

with Lx and Lz the lengths of the numerical domain in the streamwise and spanwise directions
respectively.

The temporal averaging operation is performed using an iterative procedure at each time step
with the temporal average value of the variable ψ at time tn+1 given by

〈ψ(tn+1)〉t =
ψ(tn+1)+n〈ψ(tn)〉t

n+1
. (C.3)

Second-order statistical moments such as r.m.s. of the velocity fluctuations or Reynolds
stresses are obtained by calculating the fluid or solid Favre-averaged covariance tensor 〈ψ ′i ψ ′j〉F
following

〈ψ ′i ψ ′j〉F = 〈ψiψ j〉F −〈ψi〉F〈ψ j〉F (C.4)

One can notice that in clear water conditions (without solid phase), fluid phase Favre averaging is
equivalent to ensemble averaging.
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D
Numerical domain parallelization constraints for

filtering operation in the finite-size correction
model

In this appendix, constraints on the numerical domain paralleliza-
tion imposed by the filtering operation in the finite-size correction
model are presented.

To compute filtered variables using the methodology developed in chapter 5, the value of the
quantity to be filtered at a distance ∆̆ of the location where the filtered variable is calculated has to
be known. In sequential, from a simple exploration algorithm, all the values from the cells located
at a distance inferior to ∆̆ together with their relative distance can be stored to compute the filtered
variables.

In parallel computations, the numerical domain is decomposed into blocks that are treated in-
dependently by multiple processors. One block is allocated to a given processor and information is
transmitted from a block to its neighbor through their shared interface following a communication
protocol. In that case, the exploration algorithm, executed by a given processor, can only explore
cells located in its own block. Gathering information of neighboring cells from an other block is
not trivial, especially for unstructured meshes. As a consequence, in order to use the filtering op-
eration in configurations requiring parallelization, some constraints on the domain decomposition
have to be respected.

In all the configurations investigated in this manuscript and, more generally, in channel flow
configurations, the mesh is uniform in the streamwise and spanwise directions (x direction and
z direction in this manuscript), and non-uniform in the wall normal direction (y-direction). In
the most simple case, corresponding to the configurations presented in chapter 5, the filter size
∆̆ is equal to the grid spacing in the x and z− directions. In that case, the filtering operation
is performed only using information from cells in the wall normal direction. The exploration
algorithm can find the neighboring cells only if the numerical domain is decomposed into blocks
in the x and z directions as presented in figure D.1. Furthermore, in order to ensure coincidence
between the block’s frontier and cell faces, the number of cells in the x and z directions should be
a multiple of the number of blocks in the same direction.

For more complicated configurations for which ∆̆ is larger than the grid size in the x and z
directions, a methodology developed to communicate information from neighboring cells located
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Appendix D. Numerical domain parallelization constraints for filtering operation in the
finite-size correction model

x

y
z

Figure D.1: Sketch of the numerical domain decomposed into 5 blocks in the x−direction and 2
blocks in the z−direction.

in an other block has been implemented. This methodology is only valid if the grid spacing is
uniform in the x and z directions. Besides constraints relative to the simplest case described above,
additional constraints on the relation between grid spacing, filter size and domain decomposition
need to be respected to be able to compute the filtered variables.

All the constraints are listed below:

• Uniform grid spacing in the x and z directions

• Numerical domain is divided into blocks only in the x and z directions

• Filter size ∆̆ smaller than the block size

• Half of the filter size ∆̆/2 not a multiple of the grid spacing in the x and y directions.

Removing the constraints on the discretization is technically possible but would require an
important development time.
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E
Practical sand transport formula

The practical sand transport formula from van Der A et al. (2013)
[114] based on the semi-unsteady half-cycle concept introduced by
Dibajnia and Watanabe (1992) [26] is presented in this appendix.

One of the most accurate and advanced modeling approach to determine the net sediment
flux under velocity and acceleration skewed waves is the practical sand transport formula from
van Der A et al. (2013) [114]. This approach is based on the semi-unsteady half-cycle concept
introduced by Dibajnia and Watanabe (1992) [26]. The net sediment flux is calculated based on the
difference between the onshore transport rate generated during wave crest and offshore transport
rate generated during wave trough. Contributions due to phase-lag are taken into account by
calculating the amount of sediment entrained during the previous wave phase and transported
during current phase. The model is applicable to configurations involving sediment transport in
the ripple or sheet flow regime subject to an oscillatory flow, under real waves and in currents
for different grain sizes but in this appendix, we present a simplified version of the sand transport
formula for oscillatory flow in the sheet flow regime involving monodispersed particles.

In the model proposed by van Der A et al. (2013) [114], the dimensionless net sediment flux
Q∗ is defined as the difference between the dimensionless onshore and offshore sediment fluxes
Q∗c and Q∗t respectively weighted by the corresponding duration of the wave crest Tc and wave
trough Tt (see figure E.1):

Figure E.1: Time series of free stream velocity with durations of wave crest Tc, accelerating phase
of the wave crest Tcu, wave trough Tt and accelerating phase of the wave trough Ttu.
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Appendix E. Practical sand transport formula

Q∗ =
Q√

(s−1)gd3
p

=
TcQ∗c−TtQ∗t

T
(E.1)

with Q∗c and Q∗t calculated as the product of a sediment load transported during the wave phase and
the dimensionless velocity represented by the square root of the representative Shields number of
the corresponding wave phase θc and θt following:

Q∗c =
√

θc

(
Ω
∗
cc +

Tc

2Tcu
Ω
∗
tc

)
, Q∗t =

√
θt

(
Ω
∗
tt +

Tt

2Ttu
Ω
∗
ct

)
(E.2a,b)

with Tcu and Ttu the durations of wave crest and trough acceleration (see figure E.1). The total
sediment load transported during wave crest and trough is decomposed into the sediment load
entrained and transported during the corresponding wave phase Ω∗cc and Ω∗tt respectively and the
sediment load entrained during the crest or trough and transported during the next wave phase Ω∗ct
and Ω∗tc respectively. The coefficients Tc/2Tcu and Tt/2Ttu take into account acceleration skewness
on the phase-lag contribution of the sediment load.

The total sediment load entrained during wave crest Ω∗c = Ω∗cc +Ω∗ct and wave trough Ω∗t =
Ω∗tt +Ω∗tc are calculated as follows:

Ω
∗
α =





0, θα ≤ θcr

m(θα −θcr)
n, θα > θcr

(E.3)

with subscript α = c, t denoting either wave crest or wave trough, θcr the critical Shields number
for initiation of motion function of the particle diameter calculated using empirical relation from
Soulsby (1997) [108], m = 12 and n = 1.2 model coefficients determined empirically by van
Der A et al. (2013) [114] based on the SANTOSS database containing 226 net transport rates
measurements in water tunnels or under real waves, in the ripple or sheet flow regime, under
acceleration or velocity skewed waves and with or without superimposed current.

To determine the ratio of the sediment load Ω∗α transported during the corresponding and the
next wave phase, a phase-lag parameter for each wave phase Pα is proposed. Corresponding
sediment loads are then given by:

Ω
∗
cc =





Ω∗c , Pc ≤ 1
1
Pc

Ω∗c , Pc > 1
(E.4)

Ω
∗
tt =





Ω∗t , Pt ≤ 1
1
Pt

Ω∗t , Pt > 1
(E.5)

Ω
∗
ct =





0, Pc ≤ 1
(

1− 1
Pc

)
Ω∗c , Pc > 1

(E.6)

Ω
∗
tc =





0, Pt ≤ 1
(

1− 1
Pt

)
Ω∗t , Pt > 1

(E.7)

The phase-lag parameters are calculated as:

Pc =
βδ m

s,c

2(Tc−Tcu)vs
, Pt =

βδ m
s,t

2(Tt −Ttu)vs
, (E.7a,b)
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with β = 8.2 a tuning coefficient calibrated using the SANTOSS database, vs the particle fall
velocity and δ m

s,c and δ m
s,t the maximum sheet flow layer thickness during wave crest and wave

trough estimated based on the scaling law proposed by Dohmen-Janssen et al. (2001) [29]:

δ m
s,α

dp
=





13θ m
α , dp ≥ 200µm

[
25− 12(dp−150)

200−150

]
θ m

α , 150µm < dp < 200µm

25θ m
α , dp ≤ 150µm

(E.8)

where the maximum Shields number θ m
α is calculated using expression (5.17) using the maximum

free stream velocity during phase α .
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F
Development of a bottom roughness model for

large-eddy simulation

The development of a canopy model to represent bottom roughness
is presented in this appendix. The model is validated by numerically
reproducing an experimental configuration of an unidirectional open
channel flow with bottom roughness.

In the model proposed in this manuscript, the increased flow resistance induced by the presence
of roughness elements at the bottom of a channel is represented by the addition of a drag term in
the fluid and solid phase momentum equations (2.16) and (2.17).

Assuming that roughness elements are immobile particles of diameter dp, the drag force has
the same expression as Di in the momentum coupling between the solid and fluid phase in the
two-fluid model shown in equation (2.38). However, in the expression of the drag force, us

i = 0
and φ is replaced by the concentration of roughness elements at the bottom of the channel φ r.
For an accurate prediction of the bottom roughness, the modeling challenge is to determine the
concentration φr.

Figure F.1: Schematic representation of a flow over a rough bed.

For rough bottom boundaries in horizontal channel flows constituted of packed particles, con-
centration φ r is assumed to decrease linearly from the maximum volume fraction at the wall φ r

m
to φ r = 0 over a distance equal to ks = 2.5dp the Nikuradse roughness length. However, the level
of fluid zero velocity, corresponding of the mesh bottom boundary of the numerical domain in the
simulation, is not coincident with the location of maximum volume fraction φ r

m. Following Nezu
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& Nakagawa (1993) [77], the distance from the top of the roughness elements to the bed level
with zero velocity is defined as a fraction of the roughness length Aks with typical values of A
between 0.15 and 0.3 (see figure F.1). As a consequence, taking the level of zero fluid velocity
coincident with the mesh boundary, the concentration φ r increases linearly from the concentration
at y = 0 in the numerical domain φ r

0 = φ r
m(1−A) to φ r = 0 at the top of the roughness elements.

The concentration of roughness elements is therefore defined everywhere in the numerical domain
following the expression:

φ
r = max

(
φ

r
0−

φ r
m

ks
y, 0

)
. (F.1)

To test and validate the model, a clear water experimental configuration carried out in the LEGI
tilting flume during the Ph.D thesis of Hélder Guta is reproduced numerically. The configuration
corresponds to an unidirectional boundary layer flow over a rough bed composed of glued plastic
particles of diameter dp = 3mm. Water flows with a bulk velocity Ub = 0.75m.s−1 and a depth
h = 0.1m. The bottom friction velocity determined experimentally is uτ = 0.042m.s−1. Flow
parameters are presented in table F.1.

Ub (m.s−1) h (m) uτ (m.s−1) Reτ

0.75 0.1 4.2×10−2 4200

Table F.1: Flow parameters of the clear water configuration from the Ph.D thesis of Hélder Guta.

Similarly to the open channel flow configurations presented in chapter 5, the numerical domain
is a bi-periodic rectangular box with cyclic boundary conditions in x and z directions, no slip
boundary condition at the bottom and a symmetry boundary condition a the top. The volume force
driving the flow is adjusted at each time step to match the bulk velocity. The mesh is composed
of 320× 200× 192 elements corresponding to a total of 12,288,000 cells. The span-wise and
stream-wise resolution is constant with ∆+

x ≈ 82 and ∆+
z ≈ 70. The mesh is stretched along the

y-axis with ∆+
y ≈ 4 at the wall and ∆+

y ≈ 60 at the top. The time step is set to the constant value
of ∆t = 2×10−4s to ensure the condition CFL < 0.3 Numerical parameters are presented in table
F.2.

Mesh Number of cells ∆+
x ∆+

z ∆+
y (wall) ∆t (s)

320×200×192 12,288,000 82 70 4 2×10−4

Table F.2: Numerical parameters of the clear water configuration from the Ph.D thesis of Hélder
Guta.

Considering the strong gradient of φ r close to the bottom, the model is very sensitive to the
near wall resolution. In this configuration, fifteen grid points are located between the wall and the
position where φ r = 0. The maximum roughness elements concentration is set to φ r

m = 0.55 and
the value of A = 0.2 have shown the best predictions.

Profiles of averaged velocity and Reynolds stresses from simulations using the two-fluid model
with and without roughness model are compared with experimental measurements in figure F.2.
Without roughness, the two-fluid model predicts much “flatter” velocity profile compared with
experiments. Furthermore, the slope of Reynolds stress is significantly under-predicted resulting
in lower bed shear stress. However, prediction made using the roughness model agree very well
with experimental measurements. This result demonstrates the importance of including the effect
of bed roughness in the simulation and the capacity of the proposed model to accurately predict
the flow hydrodynamics.
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Figure F.2: Average velocity (left panel) and Reynolds stress (right panel) profiles from simulations
of the clear water configuration the Ph.D thesis of Hélder Guta using the roughness model (rough),
without roughness model (smooth) compared with experimental measurements (Exp.)





Résumé

Compte tenu de l’importance du transport de sable dans des conditions d’écoulement intense sur
l’évolution de la morphologie des plages, la compréhension des mécanismes physiques à petite échelle
tels que les interactions particule-turbulence impliquées dans le transport de sédiments sous les vagues
est une étape importante vers des prédictions des modifications du littoral à grande échelle. Dans ce
contexte, le développement de modèles à turbulence résolue est un sujet extrêmement actif au sein de la
communauté scientifique. Cependant, les simulations utilisant les méthodes classiques de modélisation
lagrangienne, où les trajectoires des particules individuelles sont suivies, sont irréalisables du point de
vue des capacités de calcul étant donné la grande quantité de particules transportées dans l’écoulement.
Dans cette thèse, un modèle eulérien d’écoulement diphasique (ou modèle bi-fluide) à turbulence résolue
est développé. Dans ce modèle, la phase porteuse et la phase dispersée sont considérées comme des
continuums s’affranchissant des limitations en terme de nombre de particules. Le modèle est appliqué
avec succès à des configurations de charriage intense oscillant sous un écoulement sinusoïdal. les
résultats de simulation ont permis de confirmer que des instabilités du lit sédimentaire et la modulation
de la turbulence par les particules contribuent aux effets instationnaires, à savoir l’effet de décalage de
phase et l’augmentation de l’épaisseur de la couche limite pour le sable fin.
Le modèle bi-fluide est ensuite appliqué à des configurations de charriage intense oscillant impliquant un
écoulement asymétrique en vitesse et en accélération pour étudier les effets liés à la forme des vagues.
La comparaison entre les mesures et les prédictions numériques du flux net de sédiments au cours
de la vague a montré que le modèle bi-fluide est capable de capturer la dynamique de l’écoulement, en
particulier le changement de signe du flux net pour le sable fin sous des vagues asymétriques en vitesse.
Ces résultats ont permis de confirmer les observations faites à partir de configurations impliquant un
écoulement sinusoïdal.
A partir des simulations impliquant du sable moyen, certaines divergences concernant la concentration
lors de la phase de renverse de la vague sont observées. L’hypothèse est que ces divergences sont
le résultat d’une absence de séparation d’échelles entre les particules et les plus petites échelles de
l’écoulement turbulent. Pour de telles conditions d’écoulement, les lois d’interaction classiques entre les
deux phases ne sont plus valables et doivent être modifiées pour prendre en compte les effets de taille
finie.
Afin d’étendre le champ d’application du modèle bi-fluide à des configurations impliquant des particules
plus grandes que les plus petites échelles d’écoulement turbulent, un modèle de correction de taille
finie est proposé et validé par rapport à des configurations impliquant un écoulement de couche limite
unidirectionnel chargé de particules dans le régime dilué. Ce modèle est basé sur l’hypothèse que
les échelles turbulentes plus grandes que le diamètre de la particule contribueront à la vitesse relative
résolue entre les deux phases, alors que les tourbillons plus petits que le diamètre de la particule auront
deux effets : (i) ils réduiront le temps de réponse des particules en ajoutant une viscosité turbulente à
l’échelle sub-particulaire au coefficient de traînée, et (ii) ils contribueront à augmenter la production de
température granulaire. L’intégration des effets de taille finie dans le modèle bi-fluide nous permet de
prédire quantitativement le profil de concentration sans aucune paramétrisation.

Mots-clés : Transport de sédiments, simulation des grandes échelles de la turbulence, modélisation
diphasique, intéractions turbulence-particules

Abstract

Considering the importance of the cross-shore sand transport under intense flow conditions on the evo-
lution of beaches’ morphology, understanding physical mechanisms at small scales such as particle-
turbulence interactions involved in sediment transport under waves is an important step toward accurate
predictions of the coastline modifications at large scales. In this context, development of turbulence
resolving modeling approaches is an extremely active topic among the scientific community. However,
simulations using classical Lagrangian modeling methodologies, for which the trajectories of individual
particles are tracked, are computationally unfeasible given the large amount of particles transported in
the flow.
In this thesis, an Eulerian turbulence-resolving two-phase flow model (or two-fluid model) is developed.
In this modeling approach, both the carrier phase and the dispersed phase are seen as continua avoiding
the limitations in term of number of particles. The model is successfully applied to oscillatory sheet flow
configurations under a symmetric sinusoidal flow forcing. Numerical results allowed to confirm that bed
instabilities and turbulence modulation by the presence of the particles contributes to unsteady effects,
namely phase-lag effect and enhanced boundary layer thickness for fine sand.
The two-fluid model is then applied to oscillatory sheet flow configurations involving velocity skewed
and acceleration skewed flow forcing to study wave shape effects. Comparison between experimental
measurements and numerical predictions of the wave averaged net sediment flux showed that the two-
fluid model is able to accurately capture the flow dynamics, especially the change of sign of the net flux
for fine sand under velocity skewed waves. These results allowed to further confirm the observations
made from configurations involving a symmetric sinusoidal flow forcing.
From simulations of configurations involving medium sand, some discrepancies regarding the concen-
tration at flow reversal are observed. It is hypothesized that these discrepancies are the result of an
absence of separation of scales between the particles and the smallest turbulent flow scales. For such
particle and flow conditions, the classical interaction laws between the two phases do no longer hold and
should be modified to take into account finite-size effects.
To extend the range of applicability of the two-fluid model to configurations involving particles larger than
the smallest turbulent flow scales, a finite-size correction model is proposed and validated against ex-
perimental configurations involving particle-laden unidirectional boundary layer flow in the dilute regime.
This model is based on the assumption that the turbulent flow scales larger than the particle diameter
will contribute to the resolved relative velocity between the two phases, whereas eddies smaller than the
particle diameter will have two effects: (i) they will reduce the particle response time by adding a sub-
particle scale eddy viscosity to the drag coefficient, and (ii) they will contribute to increase the production
of granular temperature. Integrating finite-size effects in the two-fluid model allows us to quantitatively
predict the concentration profile for heavier-than-fluid particles without any tuning parameter.

Keywords : Sediment transport, large-eddy simulation, two-phase flow modeling, turbulence-particle
interactions
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