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General introduction 

Back pain is a common health problem affecting about 50 to 80% of humans at least one time during 

their life. The pain is sometimes related to muscles and ligaments, but when it is intense and chronic 

it is often linked to the intervertebral disc injuries and dysfunctions. This soft tissue located in the 

vertebral column gives to the body the mobility needed to achieve the different movements while 

resisting in parallel to the loads coming from the body weight and the daily activities. Any small 

issue in the intervertebral discs may cause many troubles in the human back varying from a simple 

back pain to disc hernia and sometimes could lead to paralysis. For this reason, the importance of 

studying the intervertebral disc conduct and predicting its response under the different physiological 

movements is mandatory in order to understand the chemo-mechano-biological mechanisms taking 

place inside the disc soft tissues which could help avoiding damage and producing better treatment 

procedures if damage is already present. Great progresses in this field were achieved over the recent 

years. Although important differences could be witnessed between the discs of different individuals, 

many experimental contributions succeeded to identify the mechanical response of the disc at 

different scales: complete spine scale, functional spine unit scale and material volume element scale. 

However, accessing the core of the disc in-vivo while maintaining unchanged its natural response 

is very hard to achieve which represents an obstructing point in the intervertebral disc research. That 

is why multi-physics simulations relating the microstructure of the chemo-biological tissue to its 

multiaxial response become mandatory for understanding the disc behavior under normal activity. 

However, the multi-subject problematic translated by the complex interactions between the different 

microstructural elements of the disc makes the task very complex. Also, due to the high 

heterogeneity of the biological tissues intervening in the intervertebral disc and the varying response 

between different individuals, a huge amount of experimental works of hardly available human 

cadavers should be established in order to construct and validate a reliable model of the disc.  
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Objective and thesis plan 

The damage in annulus fibrosus soft tissues is a complex multiscale phenomenon due to a complex 

structural arrangement of collagen network at different scales of hierarchical organization. A fully 

three-dimensional constitutive representation that considers the regional variation of the structural 

complexity to estimate annulus multiaxial mechanics till failure has not yet been developed. In the 

present PhD dissertation, a model, formulated within the framework of nonlinear continuum 

mechanics, is developed to predict deformation-induced damage and failure of annulus under 

multiaxial loading histories considering as time-dependent physical process both chemical-induced 

volumetric effects and damage accumulation. In order to realize our objective, the actual thesis was 

planned following several well-constructed steps that will be described in details through the 

following chapters: 

In Chapter I, a microstructure-based model is proposed to connect structural features, intrinsic 

mechanics and electro-chemical properties of annulus soft tissues. The multi-layered lamellar/inter-

lamellar annulus model is constructed by considering the effective interactions between adjacent 

layers and the chemical-induced volumetric strain. The model/experiments comparison 

demonstrates that the evaluation of the overall time-dependent response involves considering stress, 

volumetric change and auxetic feature simultaneously in relation to structural features.  

In Chapter II, the model is enriched by considering the hierarchical structure of the soft tissue from 

the nano-sized collagen fibrils to the micro-sized oriented collagen fibers. The stochastic process of 

progressive damage events operating at different scales of the solid phase is introduced for the 

extracellular matrix and the network of nano-sized fibrils/micro-sized fibers. The directional effects 

on annulus mechanics and failure are highlighted in relation to external loading mode, structure 

features, damage events and hydration. 

In Chapter III, the model is further developed by considering the regional variation of the complex 

structural organization of collagen network at different scales to predict the regional anisotropic 
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multiaxial damage of the intervertebral disc. After model identification using single lamellae 

extracted from different disc regions, the model predictability is verified for various multiaxial 

elementary loading modes representative of the spine movement. The stretching along the 

circumferential and radial directions till failure serves to check the predictive capacities of the 

annulus model for the different regions. Model results under simple shear, biaxial stretching and 

plane-strain compression are further presented and discussed.  

In Chapter IV, a full human disc model is constructed using the regional annulus model to examine 

the heterogeneous mechanics in the disc core. Damage fields in the disc are analyzed under axial 

compression, axial twist and combined loadings to assess the areas where the risk of failure is the 

highest. 
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A microstructure-based model for time-dependent 

mechanics of multi-layered soft tissues and its 

application to intervertebral disc annulus1 

 

Abstract 

In recent experimental studies an unusual time-dependent transversal behavior of the annulus 

fibrosus of the intervertebral disc mainly caused by the coupling between mechanics and electro-

chemical activity was disclosed. In this contribution, a microstructure-based model is proposed to 

connect structural features, intrinsic mechanics and electro-chemical properties of multi-layered soft 

tissues with a special attention to disc annulus. A hybrid experimental/modeling decoupling strategy 

is proposed to obtain the constitutive representation of each layer of the disc annulus thanks to full-

field strain data. The layers are then reconnected to each other to get the overall time-dependent 

response considering inter-layer ionic diffusion as well as stress/strain continuity along the 

interfaces. The final constitutive model is shown to describe the experimentally observed behavior 

of bovine tissues under free swelling immediately followed by quasi-static stretching, deviating 

from chemical equilibrium and provoking auxeticity, and then relaxation, allowing equilibrium 

return. The model/experiments comparison demonstrates that the evaluation of the overall time-

dependent response involves considering stress, volumetric change and auxetic feature 

simultaneously in relation to diffusion-mechanics and structural features in terms of collagen 

orientation/content, interlamellar matrix inter-spacing fiber-reinforced layers and gradual thickness 

of layers. The effective contribution of fiber-reinforced and unreinforced interlamellar layers on the 

coupling is discussed with respect to the model. Using the model, microstructure and coupling 

effects are independently investigated in order to highlight their role on the damage-related annulus 

shearing. 

 

Keywords: Multi-layered soft tissues; Microstructure; Volumetric strain; Constitutive model; 

Time-dependent response.  

 
1 This chapter is based on the following paper: Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. A microstructure-

based model for time-dependent mechanics of multi-layered soft tissues and its application to intervertebral disc 

annulus. Meccanica 56, 585-606. 
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Nomenclature 

F : Deformation gradient tensor 

E : Green-Lagrange strain tensor 

C : Right Cauchy-green strain tensor 

B : Left Cauchy-green strain tensor 

σ : Cauchy stress tensor 

R : Rotational basis-change tensor 

Ι : Identity tensor 

D : Ions diffusivity tensor 

k : Permeability tensor 

x , y , z : Cartesian coordinate vectors 

a : Unit vector of collagen fiber 

n : Unit vector at the inter-layer interfaces 

+/-: cationic/anionic 

c : Ions concentration 

t : time 

 : Fiber angle with respect to the xy-plane 

z : Layer thickness 

m : Number of layers 

 : Volume fraction 

W : Free energy function 

p : Pressure 

I : Chemical invariant 

I : Isochoric invariant 

J : Volumetric change 

 : Stretch 

 : Poisson's ratio 

Operators 

( ) • Gradient 

  Direct (outer) product 

( )
T

• Transpose 

  Simple contraction 

Abbreviations 

LM: Lamellar 

ILM: Inter-lamellar 

ECM: Extracellular matrix 

OCF: Oriented collagen fibers 

PG: Proteoglycan 

 

I.1. Introduction 

The biological soft tissues are electro-chemically active media and many of them are fiber-

reinforced laminates. Their constitutive modeling including structure-property relationship is of 

prime importance for a better understanding of the tissue biomechanics. It may also help in a broader 

way to better understand injury mechanisms, to detect and monitor pathologies and to design new 

bio-substitutes. 

The formulation of a constitutive model has to consider three main key points in order to physically 

describe the underlying chemo-mechanical mechanisms and the macro-response: (i) firstly, a 

microstructure representation has to be proposed, (ii) secondly, free energy functions have to be 

defined for each constituent of the microstructure, (iii) thirdly, the electro-chemical activity resulting 

in the fluid flow inside the tissue has to be taken into account. In existing constitutive models, the 

structural features of the soft tissue are basically related to the intrinsic properties of extracellular 

matrix (ECM) and collagen fibers (Holzapfel et al., 2000; Peng et al., 2005; Balzani et al., 2006; 



Chapter I: A microstructure-based model for time-dependent mechanics of multi-layered soft tissues 

and its application to intervertebral disc annulus 

 

7 

Guo et al., 2006; Kroon and Holzapfel, 2007; Li and Robertson, 2009; Chen et al., 2011). The 

presence of the fluid phase is implicitly modeled by considering a volumetric contribution into the 

free energy function (Rodriguez et al., 2006; Pierce et al., 2013; Swedberg et al., 2014; McEvoy et 

al., 2018; Derrouiche et al., 2019b; Kandil et al., 2019). In other constitutive models based on bi- or 

tri-phasic theory, the osmotic swelling effects due to the electro-chemical activity in the soft tissue 

are more explicitly taken into account by considering the interactions between charged ECM and 

fluid phase (Mow et al., 1980; Holmes and Mow, 1990; Lai et al., 1991; Iatridis et al., 2003; Yao 

and Gu, 2007; Ehlers et al., 2009; Stalhand et al., 2011; Stracuzzi et al., 2018).  

This work is focused on a highly complex multi-layered soft tissue, that is, the annulus fibrosus of 

the intervertebral disc. The annulus fibrosus is a fiber-reinforced tissue in which the ECM is 

reinforced by oriented type-I collagen fibers (OCF) providing tensile strength and mechanical 

stiffness (Holzapfel et al., 2005; Roberts et al., 2006). To these “solid” components, the soft tissue 

contains also a fluid phase (composed of water, mobile charges and small proteins) that interacts 

with the fixed charges of the ECM providing the chemo-mechanical coupling (Derrouiche et al., 

2019a, 2020b). The successive fiber-reinforced lamellar (LM) layers, exhibiting alternate fiber 

angles, are inter-separated by an interlamellar (ILM) matrix, i.e. intermediate ground substance 

devoid of OCF (Pezowicz et al., 2006). The organization is such that the thickness of layers is graded 

and increases from the outer annulus towards the inner annulus (Cassidy et al., 1989; Marchand and 

Ahmed, 1990; Hsu and Setton, 1999; Holzapfel et al., 2005). It is only in very recent experimental 

studies that the ILM zone has been appreciated from structural/mechanical viewpoint (Michalek et 

al., 2009; Vergari et al., 2016; Tavakoli et al., 2016, 2017, 2018). It is considered as the main factor 

ensuring disc structural integrity and disc shearing resistance. To date, the modeling studies 

including the ILM zone are rare (Nerurkar et al., 2011; Labus et al., 2014; Adam et al., 2015; 

Mengoni et al., 2015; Derrouiche et al., 2019b; Kandil et al., 2019). This ground substance is 

introduced solely into numerical models of the disc and its role is generally limited to a sliding zone 
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with either cohesive or non-cohesive features. Recently, Derrouiche et al. (2019b) and Kandil et al. 

(2019) proposed a numerical model of the annulus considering the LM/ILM interaction effects on 

the intrinsic properties and the fluid transfer through the multi-layered soft tissue in the aim to 

consider the shrinkage and swelling mechanisms. The latter may be considered as indicators of the 

chemo-mechanical coupling in annulus during the annulus stretching2. This coupling in annulus is 

believed to be the main responsible of an unusual time-dependent transversal behavior with out-of-

bounds Poisson’s ratios (higher than 0.5 and smaller than 0 for isotropic media) during short-term 

stretching followed by equilibrium return during long-term interrupted stretching (relaxation) 

towards more usual values (Baldit et al., 2014; Derrouiche et al., 2019b, 2020a; Kandil et al., 2019). 

To date, no analytical constitutive modeling is proposed to describe these effects in annulus. 

The purpose of this chapter is to formulate a constitutive model for the annulus time-dependent 

response as the result of the coupling between mechanics and electro-chemical activity. We propose 

a two-stage strategy consisting in a decoupling stage of each layer of the multi-layered soft tissue 

using full-field strain data and a re-coupling stage reconnecting the layers by inter-layer ionic 

diffusion as well as stress/strain continuity along the interfaces. The final model is then utilized to 

examine the effective role of the relevant structural features (ILM zone and LM/ILM dimensions) 

and the diffusion-mechanics on the time-dependent response of the multi-layered soft tissue. The 

response is examined under three successive steps: free swelling, quasi-static stretching and 

relaxation.  

The outline of the present chapter is as follows. Section I.2 is devoted to the microstructure-based 

model formulation. The hybrid experimental/modeling decoupling strategy is described in Section 

 
2 This loading path is representative of the compression mechanics of disc. Indeed, the vertebral column is permanently 

subjected to an axial compression (due to muscular tension and body weight) prior to further 3D loadings that expose 

the annulus to a tensile stretching in the disc circumferential direction due to the swelling of the “gelatinous” nucleus 

pulposus retained by the adjoining concentric annulus lamellae (Nachemson and Morris, 1964). 
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I.3. The effective contribution of the LM and ILM layers on the coupling is discussed in Section I.4. 

Concluding remarks are given in Section I.5. 

The following notation is used throughout the text. Tensors and vectors are denoted by normal 

boldfaced letters and italicized boldfaced letters, respectively, while scalars and individual 

components of vectors and tensors are denoted by normal italicized letters. Simple contraction of 

two vectors or two tensors is denoted by a dot ‘‘  ’’, and a direct (outer) product by the symbol  . 

Superscript ( )
T

•  indicates the transpose quantity.  

I.2. Model formulation 

I.2.1. Kinematics of the soft tissue 

Let us first introduce the kinematics for which an illustration is provided in Figure I.1. In the context 

of finite-strain continuum mechanics, the deformation gradient F  describes the transformation of a 

material point of the continuum medium. It is defined as 
0 =  F x X  for a transformation from 

the initial position 
0X , in the configuration 

0  at time 0t = , to the current position x , in the 

configuration   at time 0t  .  
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Figure I.1. Decomposition of the deformation gradient F  into chemically-induced fluid transfer 

part chemF  and purely mechanical part mechF . 

The Jacobian of the transformation, equivalent to the volumetric change of the continuum body, is 

noted ( )det 0J = F .  

As schematically represented in Figure I.2a, each LM layer of the soft tissue is connected with its 

neighborhood via an ILM layer.  

 

         
 

 

 

Figure I.2. Chemo-mechanical interactions: (a) Mechanical interactions between layers due to the 

stress/strain continuity along the interfaces (The main a0-axis of OCF in LM forms an angle θ with 

(a) (b) 
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the x-axis), (b) Electro-chemical interactions due to transfer mechanisms through the thickness of 

the multi-layered soft tissue upon different successive loading steps (free swelling/quasi-static 

stretching/relaxation). 

The LM layer is regarded as a three-phase medium consisting in ECM, OCF and fluid phase whereas 

the ILM layer is a two-phase medium consisting in ECM and fluid phase3. The deformation gradient 

F  of the multi-layered soft tissue is given by: 

 
1

_ _

_ 0 _ 0

1,3... 2,4...

m m
i LM i i ILM i

layer layer

i i

 
−

= =

= + F F F  (I.1) 

where _LM i
F  and _ILM i

F  are the deformation gradients of layers i  (LM or ILM) and _ 0

i

layer
 
is the 

volume fraction of the layer i in the initial configuration 
0 :  

 
_ 0

_ 0

_ 0

1

i

layeri

layer m
i

layer

i

z

z



=

=


 (I.2) 

in which m is the total number of layers and 
_ 0

i

layerz  is the initial thickness of the layer i. 

The condition of continuity of the deformation along the interfaces writes: 

 1

0 0

i i i i+=F . F .n n  (I.3) 

where 
0

i
n

 
(i=1, …m-1) is the arbitrary unit vector between two adjacent layers as illustrated in Figure 

I.2a. 

To combine chemical deformation and mechanical deformation in each layer, the conceptual 

sequence of configurations is used by the introduction of an intermediate chemical configuration 

I  at time 0t   as illustrated in Figure I.1. The total deformation gradient F  takes the following 

multiplicative form: 

 chem mechF = F .F  (I.4) 

 
3 ECM represents all non-fibrillar “solid” components and is mainly constituted by a network of randomly oriented and 

negatively charged proteoglycan (PG) macromolecules, conferring hydrophilic properties to the disc soft tissues (Urban 

and Maroudas, 1981), randomly oriented type-II collagen and other types of collagen. In the special case of the disc, 

the proportions of the latter constituents vary from a disc region to another (Roberts et al., 1989).  
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Two successive arrangements are thus considered. The first one, related to the chemical dilatation 

of the continuum body, is characterized by the chemically-induced volumetric deformation gradient: 

 

0

I

chem






=


F
X

X
 (I.5) 

where 
I

X  is the position of the material point in the chemical configuration. The second one, 

related to the mechanical behavior of the continuum body, is characterized by the mechanical 

deformation gradient: 

 

I

mech





=


F
x

X
 (I.6) 

In view of these transformations, the volumetric change J is defined as: 

 chem mechJ J J=  (I.7) 

The mechanical deformation is assumed incompressible, i.e. 1mechJ = , and the volumetric change 

writes: 

 ( )detchem chemJ J= = F  (I.8) 

where 
chemJ  is the chemically-induced volumetric change that only depends on the internal fluid 

variation: 

 
1

_ _

_ 0 _ 0

1,3... 2,4...

m m
i LM i i ILM i

chem layer chem layer chem

i i

J J J 
−

= =

= +   (I.9) 

in which i

chemJ
 
is the volumetric change of the layer i. 

The right Cauchy-Green deformation is 
T=C F .F

 
and the invariants of its mechanical part 

T

mech mech mech=C F .F
 
are (Spencer, 1984): 
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( )

( ) ( )( )
( )

( )

1

2 2

2

3

4 0 0

2

5 0 0

trace

trace trace 2

det 1

mech

mech mech

mech

mech

mech

I

I

I

I

I

=

= −

= =

=

=

C

C C

C

.C .

. C .

a a

a a

 (I.10) 

The unit vector 0a  of the fibers direction in the initial configuration is expressed in the Cartesian 

coordinates by 
0 cos sin = +a x y  in which   is the angle between the loading direction and the 

fibers main axis, see Figure I.2a. 

Similarly, the invariants of the chemical part T

chem chem chem=C F .F  can be defined as follows: 

 

( )

( ) ( )( )
( )

1

2 2

2

2

3

4 0 0

2

5 0 0

3

6 0 0

trace

trace trace 2

det

chem

chem chem

chem

chem

chem

chem

I

I

I J

I

I

I

=

= −

= =

=

=

=

C

C C

C

.C .

.C .

.C .

a a

a a

a a

 (I.11) 

where 0a  is again the unit vector
 
of the fibers direction. Note that a sixth invariant is introduced in 

Eq. (I.11) according to the derivations in Appendix I.A for the volumetric change in a fiber-

reinforced material system.  

I.2.2. Free energy: microstructure and chemo-mechanics decomposition 

According to the chemo-mechanics decomposition, the free energy W  is decomposed into two parts: 

 mech chemW W W= +  (I.12) 

The interaction between solid and fluid phases is considered via the concept of volume fraction. For 

each layer, the respective (time-dependent) volume fraction of the main constituents is expressed as 

a function of its chemically-induced volumetric change i

chemJ : 
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_ 0

_ 0

_ 01
1

i

ECMi

ECM i

chem

i

OCFi

OCF i

chem

i

fluidi

fluid i

chem

J

J

J










=

=

−
= −

 (I.13) 

where 
_0

i

ECM , 
_ 0

i

OCF  and 
_ 0

i

fluid  are the initial volume fractions in each layer i, and 

 
1 1,3,... in LM

1 2,4,... 1 in ILM

i i i

ECM OCF fluid

i i

ECM fluid

i m

i m

  

 

+ + = =

+ = = −
 (I.14) 

in which m is the total number of layers.  

The mechanical part i

mechW  is written as follows for the LM and ILM layers, respectively: 

 
( ) ( )

( )

_ _ _

_ _

1,3,...

2, 4,... 1

LM i i i LM i i i LM i

mech ECM ECM mech OCF OCF mech

ILM i i i ILM i

mech ECM ECM mech

W W W i m

W W i m

 



= + =

= = −

F F

F
 (I.15) 

where i

ECMW  and i

OCFW  are the ECM and OCF free energies, respectively. 

The intrinsic response of the ECM tangled PG macromolecules is supposed incompressible and 

fully defined by their stiffness. The ECM free energy i

ECMW
 
takes a simple Neo-Hookean form 

which depends only on the first-invariant:   

 ( )1

1
3

2

i i

ECM ECMW G I= −  (I.16)  

in which ECMG  is the ECM shear modulus. 

In addition to fibers direction, the transition from initially undulated to fully stretched states of the 

OCF (Pezowicz et al., 2006) affects their intrinsic nonlinear response. Thus, the OCF free energy 

i

OCFW  takes the following exponential form which depends only on the fourth-invariant (Holzapfel 

et al., 2000): 

 ( )( )( )2
1

2 4

2

1
exp 1 1

2

i i

OCF

C
W C I

C
= − −  (I.17) 
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in which 1C  and 2C  are material constants and, their ratio 1 2C C  represents the OCF stiffness. 

The chemically-induced volumetric part i

chemW  is a function of the fluid free energy i

fluidW  and is 

written in the same form for the LM and ILM layers: 

 ( )i i i i

chem fluid fluid chemW W= F  (I.18) 

The derivation details of the fluid free energy i

fluidW  are provided in Appendix I.A. The final 

expression is given by:  

 ( )( )( )2
1

2

2

1
exp 1 1

2

i i

fluid chem

K
W K J

K
= − −  (I.19) 

where 
1K  and 

2K  are material constants and, their ratio 
1 2K K  represents the volumetric stiffness.  

The volumetric change i

chemJ  takes different forms for the LM and ILM layers: 

 
6 1 5 2 4

3

_

_

1,3,...

2,4,... 1L

i i i iLM i

chem

I M i

chem

i

i

J I I I I I

I

i m

J i m

=

= =

− + =

−
 (I.20) 

Further details are provided in Appendix I.A. 

The free energy W of the multi-layered soft tissue is the sum of free energies of the LM layers 

_LM i i i

mech chemW W W= +  and free energies of the ILM layers _ILM i i i

mech chemW W W= + : 

 ( ) ( )
1

_ _

1,3,.. 2,4,..

m m
i LM i i ILM i

layer layer

i i

W W W 
−

= =

= +   (I.21) 

where i

layer  is the (time-dependent) volume fraction of each layer in the current configuration  : 

 
_ 0

_ 0

1

i i

chem layeri

layer m
j j

chem layer

j

J z

J z



=

=


 (I.22) 

Note that, in the intervertebral disc, the proportions of individual layers vary from the outer annulus 

towards the inner annulus (Cassidy et al., 1989; Marchand and Ahmed, 1990; Hsu and Setton, 1999; 

Holzapfel et al., 2005). In our approach, the thickness of layers varies continuously following a 
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special function in the aim to describe a gradual variation of fractions through the multi-layered soft 

tissue (see Appendix I.B for more details). 

I.2.3. Constitutive stress-strain response 

According to Eq. (I.21), the Cauchy stress σ  in the multi-layered soft tissue is expressed as: 

 ( ) ( )
1

_ _

1,3,.. 2,4,..

m m
i LM i i ILM i

layer layer

i i

 
−

= =

= + σ σ σ  (I.23) 

in which 
_LM i

σ  and 
_ILM i

σ  are the Cauchy stresses in the LM and ILM layers. 

In order to respect the compatibility along the interfaces, the conditions of continuity of the stresses 

is: 

 
1i i i i+=σ . σ .n n  (I.24) 

where i
n  (i=1, …m-1) is the arbitrary unit vector between two adjacent layers in the current 

configuration  . 

The mechanical and chemical contributions in the stress may be additively split in reason of the 

chemo-mechanical coupling: 

 ( ) ( )
1

_ _ _ _

1,3,.. 2,4,..

m m
i LM i LM i i ILM i ILM i

layer mech chem layer mech chem

i i

 
−

= =

= + σ σ σ σ σ+ +  (I.25) 

Each part of the Cauchy stress is obtained from the differentiation of the free energy functions with 

respect to the corresponding deformations: 

 2
T

i
i i i imech
mech mech mechi

mech

W
p


= −


σ F . .F I

C
 (I.26) 

 
i

i chem
chem i

chem

W

J


=


σ I  (I.27) 

where 
ip  represents a hydrostatic pressure in each layer introduced in reason of the mechanical 

incompressibility and determined from boundary conditions. The term I represents the identity 

tensor. 
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In Eq. (I.26), the derivation may be expressed as follows: 

 
5

1

i i i

mech mech

i i i

mech mech

W W I

I



 =

   
=  

   


C C
 (I.28) 

with 
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4
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5
0 0 0 0
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i
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
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
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=
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
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


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
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I C
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C

C
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a a

a a a a

 (I.29) 

After a series of straightforward derivations, the different parts of the Cauchy stress are given by: 

 
( ) ( )( )( ) ( )

_ _

2
_ _ _ _

1 4 2 4 0 02 1 exp 1
T

LM i i LM i i

mech ECM ECM mech

i LM i LM i LM i LM i

OCF mech mech

G p

C I C I





= −

+ − − 

σ B I

F . .Fa a
 (I.30) 

 _ _ILM i i ILM i i

mech ECM ECM mechG p= −σ B I  (I.31) 

 ( ) ( )( )2

1 21 exp 1i i i i

chem fluid chem chemK J K J= − −σ I  (I.32) 

where 
Ti i i

mech mech mech=B F .F  is the mechanical part of the left Cauchy-Green deformation. 

I.2.4. Electro-chemical diffusivity kinetics 

Due to the physiological environment and the intrinsic ionic strength of the ionized ECM, the 

biological soft tissues are able to retain water up to several times their dehydrated volumetric state. 

As the fixed charges density of the charged hydrated ECM is large, a significant electro-chemical 

flux occurs through the multi-layered soft tissues leading to their swelling (Frijns et al., 1997). 

Because of swelling, an osmotic pressure is generated (Urban et al., 1978). According to the 
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classical Donnan theory, the osmotic pressure osmp  equals the difference between internal and 

external pressures:
  

 osm int extp p p= −  (I.33) 

In the case of a homogeneous swelling, the internal pressure intp  is a function of the concentration 

of the cationic +  and anionic −  electronic charges, c+  and c− , and the external pressure extp  depends 

on the concentration of the external solution *

extc  (Huyghe and Janssen, 1997): 

 
( )

( )* *

int int

ext ext ext ext

p RT c c

p RT c c





+ −= +

= +
 (I.34) 

in which R is the gas constant, T is the absolute temperature and, int  and ext  are the internal and 

external osmotic coefficients, respectively. 

The phenomenon of ionic migration of the solute in the charged hydrated soft tissue is related to 

absorption and diffusion process as illustrated in Figure I.2b. The motion process of the ions may 

be classically expressed using the second Fick law depending on time and space (Ferguson et al., 

2004; Soukane et al., 2009): 

 
( )

( )( )( )
, , ,

, , ,
c x y z t

c x y z t
t



 


=  


D  (I.35) 

where 
D  is the diffusivity of the ions. 

Diffusivity in biological soft tissues is anisotropic due to material heterogeneity (Hsu and Setton, 

1999; Antoniou et al., 2004) and depends on the strain and the principal direction of diffusion 

(Jackson et al., 2006, 2008, 2009; Travascio and Gu, 2007). The tensor of the diffusivity takes the 

following form: 

 ( ) ( )diag , ,chem xx yy zzJ D D D   =D  (I.36) 

the terms xxD , yyD  and zzD  being the diffusivity in the x, y and z directions, respectively.  
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The diffusivity of the ions is expressed as follows (Gu et al., 2004): 

 ( )( )1 2expfree sD r


   −= −D k  (I.37) 

where   and   are two coefficients, 
freeD  is the free diffusivity of the spherical solutes in the 

external solution, 
sr
  is the solute size and k  is the permeability tensor given by (Gu et al., 2004; 

Perie et al., 2006): 

 ( ) _ 0

0

_ 01

M

chem fluid

chem

fluid

J
J





−

 −
=   − 

k k  (I.38) 

in which M is a coefficient and 0k  is the zero-strain permeability tensor in the x, y and z directions, 

and: 

 ( )0 _ 0 _ 0 _ 0diag , ,xx yy zzk k k=k  (I.39) 

the term 
_ 0xxk , 

_ 0yyk  and 
_ 0zzk  being the permeability in the x, y and z directions, respectively.  

It worth noticing that the chemically-induced volumetric stress chemσ  of the multi-layered annulus 

and the swelling pressure given by the classical Donnan theory may be equalized:
 chem osmp=σ I . 

What may seem like a reconciliation of the two theories is especially valid when the ionic 

equilibrium is achieved (chemical potential of the fluid is null). Indeed, the chemical disequilibrium 

generated by a stretching and the equilibrium return when the stretching is interrupted induce 

differentiations between layers swelling as illustrated in Figure I.2b. 

I.3. Hybrid experimental/modeling decoupling strategy 

I.3.1.  Database 

The model is applied on annulus specimens extracted from bovine cervical spine discs using two 

useful macro-quantities to design the material kinetics and to identify the model parameters: the 

volumetric change and the macro-stress. The experimental protocol is detailed elsewhere 

(Derrouiche et al., 2020a) but some important information is provided succinctly here.  
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 Figure I.3 Annulus specimen extracted from intervertebral disc and stretched in the 

circumferential direction x with simultaneous local displacement measurements in fibers plane xy 

and in lamellae plane xz using a right-angle prism. 

 

Specimens of square cross-section (25 × 10 × 10 mm3) were cut from the inner region of the annulus 

ring in the circumferential direction as illustrated in Figure I.3. The specimen, fixed by a rapidly 

polymerizing cyanoacrylate glue to metallic plates and mounted on the testing machine, was 

constantly immersed in a physiological solution with a NaCl concentration *

extc  = 0.154 mEq.ml-1 

during room temperature (22°C) experiments. The digital image correlation technique was used to 

measure the full-field displacement on the two main planes of the specimen: fibers plane xy and 
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lamellae plane xz. After spraying speckles on the sample surfaces, the images were recorded using 

a CCD camera with a resolution of 290 pixels/mm, a recording frequency of 3 Hz and a size of 

1628×1236 pixels. 

The correlation calculation was performed using the Davis correlation software to obtain the contour 

of the Green-Lagrange deformation ( ) 2T= −E F F I  and the average deformations (axial: Exx and 

transversal: Eyy and Ezz) as a function of time. The lens axis of the CCD camera was kept 

perpendicular to fibers plane xy while lamellae plane xz was simultaneously recorded using a right-

angle prism as proposed by Roux et al. (2003) and Parsons et al. (2004) for other materials. As 

illustrated in Figure I.4, the time-dependent response of the tissue was studied under three different 

successive loading steps4:  

• The first step is a free swelling: The local strains were measured until the balance of swelling. 

• The second step is a quasi-static stretching: The sample was strained up to a strain of 4% at 

a strain-rate of 0.001 s-1 in order to study the mechanical behavior coupled with chemistry. 

Before starting the second step, the sample was preconditioned by a series of ten loading-

unloading cycles at low amplitude of 1% at a strain-rate of 0.001 s-1 in order to stimulate 

fluid exchanges inside the tissue. 

• The third step is a relaxation: At the end of a stretching step, the strain is kept constant until 

the equilibrium of the response. 

 

 

 

 

 
4 The experimental results have been analyzed statistically taking into account: (i) the errors related to the inter-specimen 

variability using fifteen samples tested under the same physiological and mechanical conditions by the analysis of 

variance (ANOVA) method with a variability factor of p < 0.05, and (ii) the errors related to the correlation procedure 

with an average error of 9.7%. 



Chapter I: A microstructure-based model for time-dependent mechanics of multi-layered soft tissues 

and its application to intervertebral disc annulus 

 

22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             (a)                                                                                    (b) 

 

Figure I.4. Hybrid experimental/modeling decoupling strategy: (a) from real-time strain field 

captured in fibers plane xy and in lamellae plane xz using digital image correlation method, the 

average deformation gradient F is determined in each plane and (b) the deformation of individual 

(homogenized) layer is extracted using the microstructure-based model. Especially, our strategy 

allows identifying the volumetric deformation of an individual layer from the specimen volumetric 

deformation upon different successive loading steps (free swelling/quasi-static 

stretching/relaxation). The chemo-mechanical response of an individual layer is then deduced. The 

reconstruction of the multi-layered tissue is finally achieved by considering the chemo-mechanical 

interactions described in Figure I.2. 

 

During the three successive loading steps, the volumetric change J was obtained using the average 

axial stretch xx  and the average transversal stretches 
yy  and zz : 

 
y zzxx yJ   =   (I.40) 

Figure I.5a presents the volumetric response of the annulus specimen in the form of symbols with 

standard deviation error bars. During the free swelling, from dehydrated state to chemically-induced 

hydrated state, the soft tissue absorbs a large amount of fluid, the volume at the equilibrium state 

being approximately 2.8 times the initial volume 0V . The quasi-static stretching and relaxation steps 
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lead to small volume changes compared to the free swelling. Nonetheless, the chemically-induced 

volumetric response influences considerably the mechanical features. During the second and third 

steps, the applied force F was simultaneously recorded and was converted into true axial stress :xx  

 
0

xx

yy zz

F F

A A


 
= =  (I.41) 

where A  and 0A  are the instantaneous and initial sections, respectively.  

 
 

(a)                                                                (b) 

 

 
(c) 

 

Figure I.5. Model vs. experiments: (a) Volumetric change, (b) Stress, (c) Apparent Poisson's ratio. 
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The stress evolution is presented in Figure I.5b in the form of symbols with standard deviation error 

bars. After a nonlinear increase during the stretching step, a substantial stress decrease occurs during 

the first few times of the relaxation period which is then followed by a more gradual decrease 

tending towards a stabilized state. As another basic mechanical quantity, the apparent Poisson's 

ratio5 can be estimated from strains. It describes the transversal behavior of axially stretched 

specimens and is defined as the ratio between the transversal strain and the axial strain. The two-

dimensional material is different according to the two main specimen planes: 

 

in lamellae plane

in fibers plane

zz
xz

xx

yy

xy

xx

E

E

E

E





= −

= −

 (I.42) 

The apparent Poisson's ratio is depicted in Figure I.5c during the two successive mechanical steps 

in the form of symbols with standard deviation error bars. Shrinkage and swelling mechanisms 

induce the unusual transversal behavior of the axially stretched specimen in its two main planes: 

0.5xz   (fibers plane) and 0xz   (lamellae plane). The auxetic behavior of the lamellae plane is 

followed during the relaxation by positive values tending towards equilibrium. In the fibers plane, 

the Poisson’s ratio presents values higher than 0.5 and reaches approximately 1.0 at the end of the 

stretching step. Subsequently, it decreases during the relaxation period to 0.5 at equilibrium.  

I.3.2. Deformation of a layer 

Under a free swelling, the deformation gradients of a layer i are: 

 
( )_ _ _diag , , 1,2,...

i

mech

i i i i

chem chem x chem y chem z i m  

=

= =

F I

F
 (I.43) 

in which 
_

i

chem x , 
_

i

chem y  and 
_

i

chem z  are the chemical stretches in the x, y and z directions, 

respectively. 

 
5 It is termed apparent Poisson's ratio since it is dependent on the fluid amount and it is not intrinsic to the tissue. 
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Assuming mechanical incompressibility, the mechanical deformation gradients under an axial 

stretching may be expressed as: 

 

( )
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2 2
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_
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F
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 (I.44) 

where   is the applied stretch and, 
f  is the stretch in the fiber direction.  

The quantity 
i

z

R  is the basis-change tensor in each layer, with a rotation i  around the z-axis: 
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 
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 
 
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 

R  (I.45) 

After a series of lengthy but straightforward derivations, we get the mechanical deformation gradient 

of the LM layers: 
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where 
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The chemical stretches are empirically expressed as follows: 
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 ( )_ 1 exp 1,2,... , ,i i
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t i m j x y z 
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  
= − − = =    

  

 (I.48) 

in which i

j  
is the chemical expansion at the equilibrium state and i

j  is the chemical expansion 

rate. The term t corresponds to the swelling time in Eq. (I.43) and to the stretching and relaxation 

times in Eq. (I.48). The identification exercise of fitting parameters of Eq. (I.48) can be formulated 

as an optimization problem and solved numerically using Matlab software (Pyrz and Zaïri, 2007). 

Using the experimental transversal stretches, 
_exp y  and 

_exp z , and the experimental volumetric 

change, 
expJ , the objective function obj

swellingF  to be minimized for the three loading steps is: 
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J J
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    

  =

      − − −
 = + +                 

  (I.49) 

where   is the number of considered data points. The identification result is presented in the top of 

Figure I.4a for the three successive loading steps. It is worth noticing that the free swelling is 

anisotropic. The transversal free swelling stretch is higher in the lamellae plane than in the fibers 

plane. The axial free swelling stretch is found between the two transversal free swelling stretches.  

 

I.3.3. Electro-chemical flux through the multi-layered soft tissue 

The electro-chemical flux operates as an inter-layer transfer process of the ions as illustrated in 

Figure I.2b. Only ions exchange along the lamellae z direction may be thus considered with the 

satisfaction of the continuity conditions between layers, and Eq. (I.35) is rewritten as follows in 

each layer: 
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 (I.50) 

The solution of the Fickian law can be analytically obtained (Oldham and Spanier, 1970; Crank, 

1979; Tixier and Mobasher, 2003) and it may be expressed for a layer as follows: 
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in which 
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The terms in Eq. (I.52) are the concentrations of the electronic charges in the left and right border 

sides of the layer i, respectively, ensuring the continuity conditions of the ions diffusivity between 

the adjacent layers. The concentrations of the electronic charges in both ends of the multi-layered 

annulus, i.e. the left border side of the layer 1 and the right border side of the layer m, are equal to 

the concentration of the external solution *

extc : 

 ( ) ( )1 *0, ,m

tissue extc t c z t c
 

= =  (I.53) 

At t =0, the concentration of the electronic charges inside each layer of the tissue is given by the 

Donnan equation (Maroudas, 1975): 

 ( )
( ) ( )

2 2
*

0 0 2
,0

2

F F

exti
c c c

c z


 + +
=  (I.54) 

where 
0

Fc
 
is the fixed charge density at the initial configuration. 

Table I.1 provides the diffusivity and permeability parameters taken from the literature (Gu et al., 

2004; Perie et al., 2006; Jackson et al., 2009) and involved in Eqs. (I.37) and (I.38). They are used 

as direct input data along with the volumetric change (Figure I.5a) to evaluate the spatio-temporal 

distribution of the anionic concentration through the multi-layered annulus.  

 

Parameters Values References 
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freeD−  9 2 11 10 m s− −     1.61 Gu et al. (2004) 

freeD+   9 2 11 10 m s− −     1.16 Gu et al. (2004) 

sr
−    nm  0.142 Gu et al. (2004) 

sr
+    nm  0.197 Gu et al. (2004) 

    −  1.25 Gu et al. (2004) 

    −  0.681 Gu et al. (2004) 

_ 0zzk   15 4 1 11 10 m N s− − −     0.42 Perie et al. (2006) 

M    −  4.81 Perie et al. (2006) 

0

Fc  1mEq ml−    0.125 Jackson et al. (2009) 

Table I.1. Parameters of Eqs. (I.37) and (I.38). 

It is provided in Figure I.6 upon the three successive loading steps. During the free swelling (Figure 

I.6a), the anionic charges are non-uniformly distributed through the tissue and the balance of 

swelling tends with time towards a uniform anionic distribution and a chemical equilibrium. The 

application of a quasi-static tensile loading (Figure I.6b) provokes a disequilibrium and the anionic 

concentration exhibits a strong contrast between LM and ILM layers with decrease and increase 

with time, respectively. The thinner ILM zones appear to exhibit uniform ionic diffusion. When the 

applied stretch is kept constant (Figure I.6c), the electro-chemical response tends towards chemical 

equilibrium and uniform anionic distribution is obtained. 
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Figure I.6. Anionic concentration through the thickness of the multi-layered soft tissue upon 

different successive loading steps along with temporal changes: (a) free swelling, (b) quasi-static 

and (c) relaxation. 

 

 

 

 

I.3.4. Stress of the multi-layered annulus 

Free swelling 

Quasi-static stretching 
(c) 

(b) 
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The stresses in each layer, _LM i

mechσ , _ILM i

mechσ  and i

chemσ , see Eqs. (I.30)-(I.32), reduced to the uniaxial 

form, are determined using the deformation gradients, issued from the hybrid 

experimental/modeling decoupling strategy. The stress components are expressed as follows: 

    
_ 0i

mech xx   and 
_ 0i

mech kl =  for all other components (I.55) 

    
_ _ _

i i i

chem xx chem yy chem zz  = =  and 
_ 0i

chem kl =  for all other components (I.56) 

The stress-stretch relationships take the following forms: 
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 (I.58) 

 ( ) ( )( )2

_ 1 21 exp 1i i i i

chem xx fluid chem chemK J K J = − −  (I.59) 

The total stress of the multi-layered annulus σ  is simply given by Eq. (I.25). The re-coupling is 

obtained by considering the electro-chemical flux through the multi-layered soft tissue, as 

constitutively presented in Section I.3.3, while considering stress/strain continuity along the 

interfaces to account for mechanical interactions between adjacent layers, see Eqs (I.3) and (I.24). 

The latter compatibility was also considered by van Dommelen et al. (2003) for semi-crystalline 

polymer systems regarded as two-phase (crystalline/amorphous) layered composite inclusions. 

Several inputs related to structural features are required by the modeling. The initial volume fraction 

of fluid is 74% by wet weight (Demers et al., 2004; Perie et al., 2006). The initial volume fraction 

of OCF is 7% (Oshima et al., 1993; Demers et al., 2004) and the angle with respect the loading axis 

is 26° for the inner zone (Holzapfel et al., 2005). The thickness of the ILM zone is one eighth that 
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of the LM layer (Tavakoli et al., 2017) while a gradual variation of thickness is adopted through 

annulus. 

The parameters involved in the stress expression have been identified using the experimental stress 

exp  for the stretching and relaxation steps by means of the following objective function obj

stressF : 

 

2

1

1
h h

mod expobj

stress h
h exp

F
  

 =

 −
=   

 
  (I.60) 

where   is again the number of considered data points and mod  is the stress provided by the model. 

Table I.2 gives the identified values with a goodness of fit R2 = 0.986. 

 

Parameters Values 

ECMG   KPa  4 (0.37) * 

1C   MPa  3.21 (0.02) * 

2C   −  11.40 (2) * 

1K   KPa  61.40 (0.24) * 

2K   −  0.12 (0.02) * 

Table I.2. Parameters of Eqs. (I.30)-(I.32). 

* Between brackets is the standard deviation. 

I.3.5. Model vs. experimental data 

The model is compared to experimental observations of the time-dependent mechanical behavior of 

the multi-layered annulus in terms of volumetric change, stress and Poisson's ratio in Figure I.5. A 

global view at this figure shows the ability of the model to capture the macro-response upon the 

different successive loading steps.  

I.4. Model results and discussion 

The model/experiments comparison in Figure I.5 demonstrates that the evaluation of the overall 

time-dependent response involves considering volumetric change, Poisson’s ratios and stress 

simultaneously in relation to structural features and diffusion-mechanics. The model can be now 

used to analyze structural features and diffusion-mechanics effects independently. 
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I.4.1. Axial (circumferential) stress and volumetric stress/strain responses 

Although the ILM zone is devoid of OCF and represents a small fraction of the whole tissue, Figure 

I.5b shows that it contributes significantly to the apparent stiffness and the stabilized relaxed due to 

the ILM swelling inducing a significant chemically-induced volumetric stress in the ILM zone. 

Physically, perpendicular fibrils bridging two adjacent LM layers are observed in the ILM zone 

(Tavakoli et al., 2017). These perpendicular fibrils could play the role of "elastic springs" in order 

to retain the significant ILM swelling. In the absence of diffusion, the apparent stiffness decreases 

and the stress no longer relax upon interrupted stretching. The absence of the electro-chemical 

activity (loss of fixed charges) simulates the dysfunction of whole PG macromolecules, their loss 

being the main indication of disc degeneration6. As a consequence of the inter-layer fluid transfer 

mechanism, the unusual time-dependent transversal behavior is vanished without diffusion and the 

two Poisson’s ratios become time-independent. 

The effective contribution of the LM and ILM layers on the coupling can be also discussed with 

respect to the model. Figure I.7 presents the chemical response in terms of volumetric change and 

corresponding stress. As a consequence of the electrolytic properties of PG macromolecules, the 

ionic diffusion between layers presented in Figure I.6 comes with internal fluid transfer resulting in 

tissue volumetric deformation. The incompressible fluid is diffused under electrolytic conditions 

and the diffusion occurs with the same flow rate along the thickness of the multi-layered tissue 

during its hydration. In the meantime, a decrease in diffusivity rate with swelling time occurs until 

the saturation state that leads to identical ionic concentration (Figure I.6a) and volumetric change 

(Figure I.7a) between two adjacent layers. The application of a stretching leads to very distinct ionic 

concentration between two adjacent layers as result of chemical disequilibrium provoked by fluid 

transfer along the thickness of the multi-layered soft tissue (Figure I.6b). The chemical imbalance 

 
6 Age-related changes include decreased PG macromolecules content and a corresponding reduction in chemically-

induced volumetric stress leading to a decrease in annulus stiffness (Eyre, 1979; Buckwalter, 1995; Roberts et al., 2006). 
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during the stretching process leads to fluid flow from the LM layers to the ILM layers with a 

significant difference in fluid amount between the two zones (Figure I.7a). A shrinkage in the LM 

layers and a significant swelling in the ILM layers. At the end of the stretching step, the volumetric 

change in the ILM zone is approximately two times that at the equilibrium state.  

 

 
      (a)                                                                      (b) 

 

 
(c) 

 

Figure I.7. Model results: (a) Volumetric change of the LM and ILM layers, (b) Chemical stress of 

the layered soft tissue, (c) Chemical stress of the LM and ILM layers. 

It worth noticing this large difference results in a significant change in the volume fraction of the 

constituents. In addition, the structural features play a fundamental role in the electro-chemical 



Chapter I: A microstructure-based model for time-dependent mechanics of multi-layered soft tissues 

and its application to intervertebral disc annulus 

 

34 

behavior of layers. A small decrease in the LM ionic concentration leads to a strong increase in the 

ILM ionic concentration, resulting in significant volumetric deformation compared to that of the 

LM layers (Figure I.7a). This model result is in accordance with the literature (Huyghe and 

Jongeneelen, 2012; Vergari et al., 2016) in which a localized strain of about two to three times 

higher in the ILM zone was reported on bovine annulus specimens. After the imbalance of the ionic 

concentration, the electrolytes return, during the relaxation process (Figure I.6c), to the less 

concentrated zones to ensure ionic stability in all the soft tissue. This electro-chemical effect 

progressively restores uniform ionic concentration until the return to the chemical equilibrium state 

of the stretched sample, giving more usual Poisson's ratio values between 0 and 0.5 in both planes 

(Figure I.5c). The large difference in the volumetric change, upon the three successive loading steps 

(Figure I.5a), results in significant difference in the corresponding chemical stress as illustrated in 

Figure I.7b. This feature at the specimen scale is connected to the chemical response at the scale of 

a layer through the concentration and diffusion of ions. As illustrated in Figure I.7c, the chemical 

stress in the LM and ILM layers is profoundly affected by the distribution of ions within each layer 

from the dehydrated state to the chemically-induced hydrated state coupled to mechanics. In 

particular, at the end of the free swelling, the chemical stress in the LM layers is eight times that in 

the ILM layers. 

I.4.2. Shearing 

Figure I.8a shows the annulus shearing predicted by the model in response to changes in structural 

features and diffusion-mechanics. It is well-known that the misalignment of fibers with respect to 

the loading axis provokes a shearing in the fiber-reinforced layer (Pipes and Pagano,1970; Nerurkar 

et al., 2009) but an equilibrated stratification with uniform thickness leads to cancel the shearing. 

This feature is obviously taken into account by the model as shown in Figure I.8a. In spite of 

alternate fiber angles between successive LM layers, the model shows that the tissue presents a 
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shearing when thickness variation of layers is considered as a consequence of non-equilibration of 

the stratified system.  

 
          (a)                                                                         (b) 

 

 
          (c) 

 

Figure I.8. Model results: (a) Shear stress, (b) Ratio between shear stress and axial stress, (c) 

Transversal stress. 

Another important structural feature is the ILM zone. The highest shearing occurs in the absence of 

ILM zone but the increase of relative dimensions between ILM and LM layers diminish the shearing 

extent. In accordance with experimental observations of Michalek et al. (2009), and latter of Vergari 

et al. (2016), on bovine annulus specimens, the shearing does not result from a sliding mechanism 
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between layers due to strong LM-ILM cohesion. The model shows that annulus shearing results 

from an antagonist combination of ILM thickness and dimensional graduation. The loss of diffusion-

mechanics provokes a diminution of axial and shear stresses but their relative extent increases as 

demonstrated in Figure I.8b. In the absence of ILM zone, this ratio is even higher. The transversal 

stress in LM is also increased when ILM zone is neglected (Figure I.8c). The coupled effect of aged-

related deterioration of ILM zone and PG loss has for consequence to enhance shearing which is 

considered as the main factor of disc damage mechanisms such as disc herniation (Iatridis and 

Gwynn, 2004). More work is clearly needed to propose a more proper description of the aging and 

degeneration evolution using physically realistic kinetics. 

I.4.3. Limitations 

Some limitations ought to be mentioned. One limitation of this study is the use of data obtained at 

room temperature (22°C) which does not replicate the real physiological environment in-vivo. The 

latter could influence osmotic effects, since osmotic pressure is related to temperature (Emanuel et 

al., 2018). The biological reactions have not been considered in the current study which could 

influence the predicted plots of the electro-chemical activity in the soft tissue. Also, the current 

theory requires a more accurate description of the collagen network at different scales (Tavakoli et 

al., 2017, 2018). Another limitation of this study concerns the mechanical conditions used to 

illustrate the model. Although it is representative of the disc compression mechanics, the model 

application should not be limited to the uniaxial circumferential data. The application on multiaxial 

loading paths is indeed mandatory to further verify the model (Kandil et al., 2020). Finally, because 

the annulus mechanics is different between species, it would have been more clinically relevant to 

conduct the model application on human data by including directional and regional effects.  
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I.5. Conclusion 

In this work, we have presented a physically-based model including realistic structural features 

(collagen orientation/content, interlamellar thickness and dimensional graduation) in the material 

representation of the disc annulus along with the electro-chemical activity of the soft tissue. The 

model successfully reproduced a series of experimental data on bovine tissues under free swelling, 

quasi-static stretching and relaxation. It was demonstrated that for the evaluation of the overall time-

dependent response, it is fundamental to consider simultaneously the structural features and 

diffusion-mechanics effects on volumetric change, Poisson’s ratios and stress. The final model is a 

powerful tool to better understand the annulus mechanics in relation to loading conditions, electro-

chemical environment, intrinsic properties / proportion / orientation (if any) of constituents 

(extracellular matrix, fibers, fluid) and structural features. 

The mathematical structure of the constitutive model is general enough to be applicable to the time-

dependent response of all electro-chemically active multi-layered soft tissues, whatever biological 

or synthetic (such as hydrogels). In particular, the model could be employed to design prostheses 

including regional variation (Jiang et al., 2019) and interaction with electro-chemical environment 

to better mimic the healthy disc function. Moreover, the model could be used to better understand 

the tissue response changes during aging and degeneration in response to changes in the tissue 

composition. These aspects will be the subject of future works. 

Appendix I.A. Volumetric free energy function 

The Cayley-Hamilton theorem applied to the chemical part chemC  of the right Cauchy-Green 

deformation tensor gives: 

 3 2 2

1 2chem chem chemI I J− + =C C C I  (I.A1) 

The Nanson relation dv J dV= , between volumes in the actual and initial configurations, dv  and 

dV , respectively,  may be written as: 
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 2J dv J dV=Ι Ι  (I.A2) 

Substituting Eq. (I.A1) into Eq. (I.A2), we obtain: 

 ( )3 2

1 2chem chem chemJ dv I I dV= − +Ι C C C  (I.A3) 

Multiplying the two sides of Eq. (I.A3) by the unit vector 0a , we get: 

 ( )3 2

0 0 0 1 2 0chem chem chemJ dv I I dV= − +Ι C C Ca a a a  (I.A4) 

which can be also written as: 

 

6 5 41

3 2

0 0 0 0 1 0 0 2 0 0

I I I

chem chem chemJ dv I I dV

 
 = − +
 
 

Ι C C Ca a a a  a a  a a  (I.A5) 

The invariants in Eq. (I.11) of the main chapter body are used to re-write Eq. (I.A5) as follows: 

 6 1 5 2 4

dv
I I I I I

dV
= − +  (I.A6) 

The quantity 3

0 0chemCa a  is termed 6I  in the present study. 

Eq. (I.A6) describes the volumetric change in the LM layers. In the ILM zones devoid of OCF, the 

volumetric change is simply given by: 

 3

dv

dV
I=  (I.A7) 

An exponential form of the free energies of LM and ILM layers was proposed in Eq. (I.19) of the 

main chapter body using Eq. (I.A6) or Eq. (I.A7), respectively, for dv dV :  
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2

1
exp 1 1

2
fluid

d
W

K
K

K

v
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   
= − −        

 (I.A8) 

The behavior of the formulated free energy function (I.A8) has to be verified to get physically 

reasonable responses and convergence of solutions (Balzani et al., 2006; Ehret et al., 2011). In the 

case of a confined stretching ( )diag ,1,1=F , Figure I.A1 presents the free energy function and its 

derivative with respect to J, in the stretch-K2 space and for different K1 values. A global view at 
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these plots shows that the free energy presents a minimum whereas its derivative continuously 

increases. This behavior ensures the existence of a stable equilibrium state for any stretching 

condition in which the derivative is null whatever the values of the model parameters.  

 

 
                               

(a)                                                                         (b) 

 

Figure I.A1. Surface of (a) free energy and (b) free energy derivative in the stretch-K2 space for 

different K1 values. 

 

Appendix I.B. Structural features 

In order to account the gradual variation of the thickness of layers, which increases from the outer 

annulus towards the inner annulus (Cassidy et al., 1989; Marchand and Ahmed, 1990; Hsu and 

Setton, 1999; Holzapfel et al., 2005), a second-order polynomial function is introduced: 

 
_ 2LM i

layerz ai bi c= + +

  

1,3,...i m=  (I.B1) 

in which m is the total number of layers and, a, b and c are parameters governing the graduation. 

Figure I.6 shows the dimensional graduation taken for this study. 

According to Tavakoli et al. (2017), the thickness of the LM phase is eight times that of the ILM 

phase, and the ILM thickness is given by: 
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A multiscale and multiaxial model for anisotropic 

damage and failure of human annulus fibrosus7 

 

 

Abstract 

This article presents a multiscale model to predict deformation-induced damage and failure of 

human annulus fibrosus under multiaxial loading. In the modeling approach, formulated within the 

framework of nonlinear continuum mechanics, the hierarchical structure of the soft tissue is 

considered from the nano-sized collagen fibrils to the micro-sized oriented collagen fibers. At the 

macroscale, the multi-layered lamellar/inter-lamellar organization of the soft tissue is introduced by 

considering the effective interactions between adjacent layers. The stochastic process of progressive 

damage events operating at different scales of the solid phase is introduced for the extracellular 

matrix and the network of nano-sized fibrils/micro-sized fibers. The damage is made anisotropic 

due to lamellar oriented collagen fibers and special orientation distribution of the inter-fibrillar and 

inter-lamellar network of fibrils. The chemical-induced volumetric strain is also considered in our 

modeling approach to take into account the osmolarity effects along with the anisotropic time-

dependent transversal deformations. The capacity of the model is discussed using a few available 

stretching datasets till failure along circumferential and radial directions. Model predictions under 

tilted stretching, biaxial stretching and shearing are also presented to illustrate further the 

efficiencies of our modeling approach. This work shows for the first time the directional effects on 

annulus mechanics and failure in relation to external loading mode, structure features, damage 

events and hydration. 

 

Keywords: Multiscale; Osmolarity; Multiaxial; Damage; Failure. 

 

 

 
7 This chapter is based on the following paper: Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. A multiscale and 

multiaxial model for anisotropic damage and failure of human annulus fibrosus. International Journal of Mechanical 

Sciences, 106558. 
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Nomenclature 

F : Deformation gradient tensor 

L : Velocity gradient tensor 

C : Right Cauchy-green strain tensor 

E : Green-Lagrange strain tensor 

σ : Cauchy stress tensor 

P : First Piola-Kirchhoff stress tensor 

R : Rotational basis-change tensor 

Ι : Identity tensor 

x , y , z : Cartesian coordinate vectors 

a : Unit vector of collagen fiber 

b : Unit vector of collagen fibril 

n : Unit vector at the inter-layer interfaces 

 : Fiber angle with respect to the xy-plane 

 : Fibril angle with respect to the az-plane 

 : Load angle with respect to xz-plane 

q : Fibril quantity 

 : Fibril bundle number 

z : Layer thickness 

m : Number of layers 

 : Volume fraction 

W : Free energy function 

p : Hydrostatic pressure 

I : Isochoric invariant 

J : Volumetric change 

 : Stretch  
* : Transition stretch  

 : Shear strain 

 

Operators 

( )H •  Heaviside 

  Direct (outer) product 

( )
T

• Transpose 

  Simple contraction  

 

Abbreviations 

LM: Lamellar 

ILM: Inter-lamellar 

ECM: Extracellular matrix 

OCF: Oriented collagen fibers 

NEF: Nano-sized elastic fibers 

 

II.1. Introduction 

The ineluctable deterioration of the intervertebral disc annulus fibrosus is a multiscale phenomenon 

due to the hierarchical structure of this soft tissue (Yu et al., 2002, 2015; Pezowicz et al., 2006a, 

2006b; Melrose et al., 2008; Schollum et al., 2008; Han et al., 2012; Vergari et al., 2016; Han et al., 

2016; Tavakoli at al., 2016, 2017, 2020a, 2020b). The irreversible degradation in annulus fibrosus 

operates from the nanoscale (Tang et al., 2009) to the macroscale (Werbner et al.,2019) and results 

in the development of multiple cracks and tears (Osti et al., 1992; Vernon-Roberts et al., 2007). 

There is a considerable qualitative understanding of the microstructure and chemical factors that 

govern the response of the soft tissue. However, the coupling between these factors and mechanics 

is yet far to be fully understood in annulus fibrosus.  

The introduction of the tissue structure at different scales in a continuum-based modeling framework 

would allow to propose predictive tools for mechanical damage and failure in a physically consistent 
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way. Over the years, macroscopic continuum-based damage models were proposed using two main 

approaches. The first one considers reduction factors incorporated in the free energy function 

(Rodriguez et al., 2006; Calvo et al., 2007; Pena et al., 2010; Blanco et al., 2015; Shahraki et al., 

2015; Li, 2016; Holzapfel and Fereidoonnezhad, 2017; Li and Holzapfel, 2019; Ghezelbash et al., 

2020a). The second one introduces an energy limiter in the expression of the free energy function 

(Volokh, 2007, 2011). No model until now is able to predict the multiaxial behavior of annulus 

fibrosus till failure and such a development remains a challenging task. The main difficulty comes 

from the anisotropic mechanics of a tissue with a complex hierarchical solid phase starting from the 

nanoscale (Tavakoli et al., 2020a, 2020b). The degree of knowledge of the collagen network has 

considerably increased thanks to the technological advances in the imaging field (Yu et al., 2002, 

2015; Pezowicz et al., 2006a, 2006b; Melrose et al., 2008; Schollum et al., 2008; Han et al., 2012; 

Vergari et al., 2016; Han et al., 2016; Tavakoli at al., 2016, 2017). For a physically consistent 

constitutive representation, an accurate structure of the solid phase must be taken into account 

(Ghezelbash et al., 2020b) in interaction with the surrounding environment. In this regard, the fluid 

phase transfer by osmotic effect through the tissue solid phase affects largely the biochemical 

volumetric behavior (Derrouiche et al., 2019a, 2020a; Yang and O’Connell, 2019; Feki et al., 2020). 

The coupling between deformation-induced stress and swelling due to internal fluid content 

variation by osmosis is mandatory to quantitatively analyze the annulus fibrosus multiaxial 

mechanics (Kandil et al., 2020) along with the failure (Werbner et al., 2019).  

The deterioration of the annulus fibrosus is indeed a multi-physics phenomenon since it implies 

biochemical degradation processes interacting in a complex manner with the external loading mode 

and the induced mechanical damage. A loss of electrolytic properties of extracellular matrix (ECM) 

proteoglycan macromolecules occurs with the tissue degeneration, which results in a decrease of 

osmotic pressure (Kiani et al., 2002; Urban and Robert, 2003). In the meantime, high mechanical 

loads cause tissue degenerative changes resulting in the degradation of the proteoglycan 
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macromolecules associated with the enzymes of the ECM metalloproteinase activity (Iatridis et al., 

2011). The induced metabolic phenomena in the ECM cause a degradation of the osmotic properties 

of the annulus fibrosus associated with a decrease in water content and structure changes (Iatridis at 

al., 2006). These changes may alter the resistance of the annulus fibrosus to the mechanical-induced 

crack propagation (Werbner et al., 2019; Vergari et al., 2017). Establishing annulus damage-

structure-osmotic relationships is a fundamental task for a detailed understanding of the 

degeneration mechanisms, to reduce their effects and to potentially prevent dangerous degenerative 

cases from happening. For an accurate annulus behavior, the structure-chemo-mechanics 

relationship can only be seen by considering, in addition to the annulus stretching in the 

circumferential direction, representative of the disc compression mechanics, the multiaxiality of the 

external mechanical loading representative of the body movements (Kandil et al., 2020). The latter 

is the key point to better understand the origin of multi-directional micro-cracks and tears commonly 

observed in the annulus fibrosus (Boos et al., 2002). 

In this chapter, a multiscale model for deformation-induced damage and failure of annulus fibrosus 

is proposed by considering the structure at different scales, the micromechanical deformation 

processes leading to the final failure, the anisotropic nonlinear mechanics and the coupling with the 

osmotic effects. The proposed model, fully three-dimensional, is used to examine the multiaxial 

mechanics of the tissue and the directional effects. Uniaxial stretching, biaxial stretching and 

shearing are all being considered. The multiaxial model results are correlated to the microstructure 

features, to their progressive deformation-induced changes, to the tissue volumetric behavior and to 

the final failure.  

This chapter is organized as follows. In Section II.2, the annulus multiscale model is presented 

within the framework of nonlinear continuum mechanics. In Section II.3, the model is verified for 

different loading paths and is used to discuss important aspects of the annulus mechanics in relation 
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to volumetric effects and to damage accumulation in the tissue due to progressive local failure 

events. Section II.4 closes the chapter with some concluding remarks.   

 

II.2. Model formulation 

The following notation is used throughout the text. Tensors and vectors are respectively denoted by 

normal boldfaced letters and italicized boldfaced letters, while scalars and individual components 

of vectors and tensors are denoted by normal italicized letters. The superposed dot designates the 

time derivative.  

 

II.2.1. Hierarchical organization of annulus fibrosus   

Let us start by the presentation of the hierarchical organization of all discrete solid components. 

Figure II.1 presents a schematic representation of the soft tissue hierarchical structure based on 

earlier experimental observations starting from the intervertebral disc at the upper scale and ending 

to the organization of the collagen network at the microscale and at the nanoscale. The multiple-

network medium is constantly immerged in a physiological solution of water and ions. At the scale 

of the annulus fibrosus, inter-lamellar (ILM) matrix connects fibers-reinforced lamellae (LM) such 

that a (concentric) multi-layered material element is formed with distinct radial and circumferential 

microstructure features (retaining inner gel-like disc portion, i.e. nucleus pulposus). The tangled 

ECM consists in very large randomly oriented proteoglycan macromolecules with 

glycosaminoglycan chains that have ionic imbalances and interact with the ionic components of the 

surrounding physiological fluid to maintain electroneutrality by osmotic effect. 
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Figure II.1. Multiscale view of (a) the intervertebral disc annulus fibrosus (AF: annulus fibrosus, 

NP: nucleus pulposus) starting from (b) the multi-layered material element to the local 

organization of the collagen-network at the (c) microscale and the (d) nanoscale. The picture is 

adapted from the experimental analyzes in (Han et al., 2012; Yu et al., 2015; Tavakoli et al., 

2017). 

 

The micro-sized type-I oriented collagen fibers (OCF) represent up to 80% of the total volume of 

collagen network 
collagen  (Yu et al., 2002; Schollum et al., 2008; Sharabi et al., 2018). This family 

of fibers is described geometrically by a unit vector a  in the initial configuration with respect to the 

global benchmark of the disc as illustrated in Figure II.2a. It is expressed in the Cartesian coordinates 

by: 

 cos sin = +a x y  (II.1) 

where   is the fibers angle with respect to the circumferential direction. 
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                                                      (a)                                                     (b)  

   

Figure II.2. Coordinate systems of (a) the multi-layered material element (n0-axis is the unit vector 

at inter-layer interfaces and a-axis is the unit vector along OCF that forms an angle θ with the x-

axis) and (b) of the five NEF bundles  = {0°, 45°, 90°, 135°, 180°} (b-axis is the unit vector 

along NEF that forms an angle   with the a-axis). 

The nano-sized elastic fibers (NEF) consist in a complex network of collagen fibrils, present both 

in the LM zone and in the ILM zone. In the LM zone, they act as inter-fibrillar connections of type-

I collagen fibers (Figure II.1c). In the ILM zone, they act as inter-lamellar connections of two 

adjacent lamellae (Figure II.1d) (Yu et al., 2002, 2015; Melrose et al., 2008; Schollum et al., 2008; 

Han et al., 2012). For symmetry reasons, the distribution of NEF is described geometrically by an 

angle   ranged from 0° to 180° with respect to the radial direction in the parallel plane of the fibers 

as illustrated in Figure II.2b. The unit vector b of each fibril
 
in the initial configuration is expressed 

with respect to the global benchmark of the disc in the Cartesian coordinates as follows: 

 cos cos sin cos sin    b = x + y + z  (II.2) 
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The fruitful experimental quantifications of NEF performed by Tavakoli et al. (2017) are used as 

direct inputs of our modeling approach. Figure II.3 provides the number of NEF in the LM and ILM 

layers as a function of the orientation  . We use a Gaussian probability density function to describe 

these experimental trends: 

 ( )( )2
expLM LM LMq    = − −  and ( )( )2

expILM ILM ILMq    = − −  (II.3) 

where LM

  and ILM

  denote the respective peak values with   = {0°, 45°, 90°, 135°, 180°} and, 

LM  = 0.05 and ILM  = 0.11 are two factors. 

 

 
         

    (a)               (b) 

 

Figure II.3. Quantity of NEF (a) in LM and (b) in ILM; continuous lines: Eq. (II.3), dashed lines: 

experimental data (Tavakoli et al., 2017). 

The volume fraction of a fibril in each layer i is given by: 
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 





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

= 
=   



 (II.4) 

where LMq  and ILMq  are the respective total number of NEF in each layer i: 
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0 ,180

LM LM ILMq q q 
   =  

= +    and 
45 ,90 , 135

ILM ILMq q
 =   

=    (II.5) 

Due to the presence of inter-fibrillar connections of type-I collagen fibers in LM zone, a second 

term appears in the first equation.  

In what follows, the features of the annulus mechanics are described along with a set of constitutive 

equations for the solid phase behavior using a physically realistic approach accounting for 

microstructure organization at different scales, damage and hydration. 

II.2.2. Free energy of the fluid phase and swelling-related changes  

Local ionic diffusion is responsible for dilatation effects and nonlinear time-dependent transversal 

stretch response of the multi-lamellar annulus (Sarkadi and Parker, 1991; Guizouarn and Motais, 

1999; de los Heros et al., 2018; Derrouiche et al., 2020b). The derivation of the constitutive model 

must take into account this chemical coupling in the description of the finite-strain kinematics 

(Derrouiche et al., 2019b). In this framework, the basic quantity is the deformation gradient tensor 

mapping material tangent vectors in their reference configuration to their actual position in the 

deformed configuration. It is designated here as i
F  for each layer i of the multi-layered material 

element. The introduction of an intermediate (virtual) configuration assumed stress-free allows to 

multiplicatively decompose the deformation gradient tensor i
F  into a chemical-induced volumetric 

part i

chemF  and a mechanical part i

mechF  as follows: 

 i i i

chem mech=F F .F  (II.6) 

in which i

chemF  is the swelling expansion due to internal fluid content variation and i

mechF  is the 

mechanical (isochoric) stress-producing contribution. The sequence of configurations implies also 

an additive split of the gradient tensor i
L

 
of the spatial velocity into a chemical-induced volumetric 

part i

chemL  and a mechanical part i

mechL  as: 
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1 1 1

i i
chem mech

i i i i i i i

chem chem chem mech mech chem

− − −

= +

L L

L F .F F .F .F .F  (II.7) 

The determinant (Jacobian) ( )det 0i iJ = F  of the deformation gradient tensor i
F  gives: 

 i i i

chem mechJ J J= , ( )det 1i i

mech mechJ = =F  and ( )deti i

chem chemJ = F   (II.8) 

where the term i

chemJ
 
represents the tissue chemical-induced volumetric change. In view of the 

mechanical incompressibility of all solid components (ECM, OCF and NEF), the term i

mechJ  is equal 

to one. We may define the total Green-Lagrange strain tensor i
E , the mechanical (isochoric) Green-

Lagrange strain tensor i

mechE  and the chemical-induced volumetric strain i

chem : 

 ( )
1

2

i i= −E C I , ( )
1

2

i i

mech mech= −E C I  and 1i i

chem chemJ = −   (II.9) 

where I  is the unit tensor, 
Ti i i=C F .F  is the total right Cauchy-Green strain tensor and 

Ti i i

mech mech mech=C F .F  is the mechanical (isochoric) right Cauchy-Green strain tensor. 

For each layer, the respective volume fractions of the three solid components (ECM, OCF and NEF) 

may be expressed as: 

 
_ 0

i

ECMi

ECM i

chemJ


 = , 

_ 0

i

OCFi

OCF i

chemJ


 =  and 

_ 0

i

NEFi

NEF i

chemJ


 =   (II.10) 

where 
_0

i

ECM , 
_ 0

i

OCF  and 
_ 0

i

NEF  are the initial volume fractions in each layer i. 

The volume fraction of the fluid phase i

fluid  in each layer i is then given by: 

 
_ 0 _ 0 _ 0

1

i i i

ECM OCF NEFi

fluid i

chemJ

  


+ +
= −  (II.11)  

The Cauchy stress tensor i
σ , defined in the deformed configuration, is additively split into a 

mechanical part i

mechσ  and a chemical-induced volumetric part i

chemσ . The latter tensor is given by: 

 
i

i chem
chem i

chem

W

J


=


σ I  (II.12) 
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where i

chemW  is the chemical-induced volumetric free energy function, due to the internal fluid 

content variation, expressed in the following form: 

 ( )( )( )2
1

2

2

1
exp 1 1

2

i i i

chem fluid chem

K
W K J

K
= − −  (II.13) 

where 1K  and 2K  are material constants, 1K  and 1 2K K  being respectively the initial and maximal 

volumetric stiffness values. 

II.2.3. Free energies of the solid phase 

Each individual component of the solid phase (ECM, OCF and NEF) is assumed as isotropic, 

homogeneous, incompressible and hyperelastic body. The mechanical Cauchy stress tensor i

mechσ  is 

obtained from the differentiation of the mechanical free energy function i

mechW  with respect to the 

corresponding deformation: 

 2
i

i i iT imech
mech mech mechi

mech

W
p


= −


σ F . .F I

C
 (II.14) 

where ip  is determined from boundary conditions. 

The mechanical free energy i

mechW  is given as a function of the free energies of the three solid 

components (ECM, OCF and NEF) using the volume fraction concept: 

 _ _ _LM i i i i LM i i LM i

mech ECM ECM OCF OCF NEF NEFW W W W  = + +  (II.15) 

in LM layer and, 

 _ _ILM i i i i ILM i

mech ECM ECM NEF NEFW W W = +  (II.16) 

in ILM layer. 

The free energy functions of the solid components (ECM, OCF and NEF) are separately described 

below. 

II.2.3.1. ECM free energy 
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The ECM proteoglycan macromolecular network is described as an isotropic deformable solid 

component with a free energy i

ECMW   expressed by a Neo-Hookean form:   

 ( )1

1
3

2

i i

ECM ECMW G I= −  (II.17)  

in which ECMG  is the ECM shear modulus and ( )1 tracei i

mechI = C  is the first stretch invariant.  

II.2.3.2. OCF free energy 

The OCF network gives anisotropy, high stiffness and mechanical resistance to annulus. The sketch 

in Figure II.4 shows the different stretch stages of a stretched fiber in relation to its deformation 

behavior. In addition to fiber orientation and intrinsic properties, the description of the OCF 

nonlinear response requires two distinct relations below and above a stretch *

OCF  to consider the 

deformation-induced morphological evolution. The OCF free energy i

OCFW
 
is expressed as a 

function of the fourth stretch invariant 2

4

i i i

mechI  = =.C .a a  by: 

 ( ) ( )( )( )2
*1

4 2 4

2

1
1 exp 1 1

2

i i i i

OCF OCF

C
W H I C I

C
   

 
= − − −  

 
 (II.18) 

below *

OCF  and, 

 ( ) ( ) ( )
2

* *3
4 4 4 41

2

i i i i i

OCF OCF

C
W H I I I I       

 
= − − + −  

 
 (II.19) 

above *

OCF . 

The stretch *

OCF  defines the stretch transition between the ‘toe’ and ‘linear’ regions of the stress-

stretch curve (Quapp and Weiss, 1998; Werbner et al., 2017; Li and Holzapfel, 2019). These two 

regions are related to the peculiar local behavior of a collagen fiber passing from the initially 

undulated configuration to the fully stretched state as illustrated in Figure II.4. The terms 1C , 2C  

and 3C  are material constants of the OCF, ( )H •
 
is the Heaviside function that ensures only 
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stretching of the OCF, *

4I 
 is the fourth stretch invariant for *i

OCF =  and,   and   are functions 

that ensure continuity between ‘toe’ and ‘linear’ regions: 

 ( ) ( )( )2
* *

1 4 2 41 exp 1C I C I  = − −  and ( )( )( )2
* *1

4 2 4

2

exp 1 1
2

C
I C I

C
 


= − − −  (II.20) 

 

 

Figure II.4. Behavior of a single collagen fiber stretched until failure. 

II.2.3.3. NEF free energy 

The inter-fibrillar and inter-lamellar network of fibrils is described by the free energy i

NEFW  given 

by: 

 _ _LM i LM i i

NEFW W 
 

=  and _ _

45,90,135

ILM i ILM i i

NEFW W 
 


=

=    (II.21) 

For the same reasons invoked for OCF, the free energy of each fibril iW  is given by two distinct 

relations below and above a stretch *

NEF : 

 ( ) ( )( )( )2
*4

4 5 4

5

1
1 exp 1 1

2

i i i i

NEF

C
W H I C I

C
    

 
= − − −  

 
 (II.22) 

below *

NEF  and, 

 ( ) ( ) ( )
2

* *6
4 4 4 41

2

i i i i i

NEF

C
W H I I I I          

 
= − − + −  

 
 (II.23) 

above *

NEF . 
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The terms 4C , 5C  and 6C  are material constants of the NEF, ( )H •  is again the Heaviside function, 

2

4

i i i

mechI    = =.C .b b  is the fourth stretch invariant for the NEF, *

4I   is the fourth stretch invariant 

for *i

NEF =  and,   and   are two functions expressed as: 

 ( ) ( )( )2
* *

4 4 5 41 exp 1C I C I   = − −  and ( )( )( )2
* *4

4 5 4

5

exp 1 1
2

C
I C I

C
  






= − − −  (II.24) 

II.2.4. Damage 

Under external mechanical loading, the nature of local failure is the scission of the ECM tangled 

proteoglycan macromolecules, the detachment of the internal bonds in the discrete (inter-fibrillar 

and inter-lamellar) fibrils and the breaking of the regularly-oriented fibers. When an individual solid 

component (ECM, OCF and NEF) is broken, it does no longer contribute to sustain the macro-stress. 

Damage induces thus a progressive evolution of the effective amount of the solid components: 

 ( )_ 1i i i

ECM d ECM ECMd = − , ( )_ 1i i i

OCF d OCF OCFd = −  and ( )_ 1i i i

d d   = −  (II.25) 

where i

ECMd , i

OCFd  and id  characterize the damage evolution occurring within the multi-layered 

material element microstructure. This damage representation is in line with the general damage 

mechanics framework for the hyperelasticity theory. The respective internal stress of each solid 

component is considered as the quantity controlling the progressive damage evolution from 0.0 for 

the virgin state to 1.0 for the fully damaged state. Two-parameter Weibull statistical distributions 

are used to introduce the stochastic nature of the damage process: 

 1 exp

ECMi

ECMi

ECM

ECM

d





  
  = − −
  

  

P
 (II.26) 

 1 exp

OCFi

OCFi

OCF

OCF

d





  
  = − −
  

  

P
 (II.27) 
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 1 exp

NEFi

i

NEF

d








  
  = − −
  

  

P
 (II.28) 

in which   and   are respectively the Weibull shape parameter and the Weibull scale parameter 

and, i

ECMP , i

OCFP  and 
i

P  are the effective first Piola-Kirchhoff stresses given by the Frobenius 

norm: 

 ( )tr
Ti i i

ECM ECM ECM=P P .P , ( )tr
Ti i i

OCF OCF OCF=P P .P  and ( )tr
Ti i i

  =P P .P   (II.29) 

Taking into consideration the organization of the collagen network at different scales (as illustrated 

in Figure II.1) allows to propose a proper description of the progressive degradation considering 

both localization and anisotropy. The coupling between damage and osmotic effects is considered 

by introducing the following modification of the chemical-induced volumetric change: 

 ( )( )( )_ 1 1 1i i i i i

chem d chem ECM OCF NEFd d d = − − −  (II.30) 

in which 1
n

i i

NEFd n d


=   is the damage of NEF and n  is the number of fibrils. 

II.2.5.  Summary of the model 

A new model for the microscopic description of the annulus mechanics is constructed by using the 

constitutive equations described above. To formulate the overall mechanical response of the multi-

layered annulus under general three-dimensional loading conditions, the compatibility at inter-layer 

interfaces (Figure II.2a) must be respected while the above descriptions and definitions are used. In 

this regard, the continuity conditions in deformation and stress to be satisfied are: 

 _ _ 1

0 0

LM i i ILM i i+=F . F .n n  and _ _ 1LM i i ILM i i+=σ . σ .n n  (II.31) 

where 
0

i
n  and i

n  are the arbitrary unit vectors between two adjacent layers in the initial and current 

configurations, respectively. 
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The macro-deformation F  and the macro-stress σ  of the soft tissue are expressed as: 

 
1

_ _

_ 0 _ 0

1,3... 2,4...

m m
i LM i i ILM i

layer layer

i i

 
−

= =

= + F F F  (II.32) 

and 

 
1

_ _

1,3,.. 2,4,..

m m
i LM i i ILM i

layer layer

i i

 
−

= =

= + σ σ σ  (II.33) 

where the deformation gradients and the Cauchy stresses in LM and ILM are given by their 

volumetric and mechanical parts: 

 _ _ _LM i LM i LM i

chem mech=F F .F  and _ _ _ILM i ILM i ILM i

chem mech=F F .F  (II.34) 

and 

 _ _ _LM i LM i LM i

mech chem=σ σ σ+  and _ _ _ILM i ILM i ILM i

mech chem=σ σ σ+  (II.35) 

The deformation gradients are detailed in Appendix II.A. The different parts of the Cauchy stress 

tensor are provided in Appendix II.B. The volume fractions in the initial and current configurations, 

_ 0

i

layer
 
and i

layer
 
are, respectively: 

 
_ 0

_ 0

i

layeri

layer

tissue

z

z
 =  and 

_ 0

_ 0

1

i i

chem layeri

layer m
j j

chem layer

j

J z

J z



=

=


 (II.36) 

in which 
_ 0

i

layerz  is the initial thickness of the layer i and tissuez
 
is the tissue thickness:  

 
1

_ _

1,3,.. 2,4,..

m m
LM ILM LM i ILM i

tissue layer layer layer layer

i i

z z z z z
−

= =

= + = +   (II.37) 

with _LM i

layerz  1,3,...i m=  and _ILM i

layerz  2,4,... 1i m= −  are the functions describing respectively the LM 

thickness and the ILM thickness: 

 _LM i

layerz ai b= +  and ( )_ _ 1 _ 12 2ILM i LM i LM i

layer ILM LM layer layerz r z z− += +  (II.38) 
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where ILM LMr  represents the thickness ratio of the two zones and, a and b are constants calculated 

according to the maximum and minimum thicknesses of the annulus layers maxz  and minz : 

 
1

max minz z
a

m

−
=

−
 and minb z a= −  (II.39) 

where m is the number of layers.  

The model makes it possible to estimate the deformation-induced damage and failure of annulus 

under three-dimensional loading conditions. The multi-layered material element will be subjected 

to the different mechanical paths illustrated in Figure II.5, namely, uniaxial (UA) stretching in 

different directions (circumferential, radial and tilted), biaxial stretching and shearing.  

 

 

Figure II.5. Loading paths applied on the multi-layered material element. 

II.3. Results and discussion 
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In addition to the hierarchical organization of the collagen network presented in Section II.2.1, some 

direct structure inputs required by the modeling (namely dimensions, collagen orientation/content 

and water content) are extracted from well-documented papers of the literature (Skaggs et al., 1994; 

Acaroglu et al., 1995; Holzapfelet al., 2005; Baldit, 2013; Tavakoli et al., 2017) and are listed in 

Table II.1. 

Parameters Values References 

maxz  0.76  mm  Holzapfel et al. (2005) 

minz  0.69  mm  Holzapfel et al. (2005) 

ILM LMr  0.133  −  Tavakoli et al. (2017) 

  30  deg  Holzapfel et al. (2005), Baldit 2013 

collagen  0.07  −  Skaggs et al. (1994) 

_ 0fluid  0.7  −  Acaroglu et al. (1995) 

Table II.1. Structural parameters. 

The in-vitro experiments used for model identification and verification do not generally precise the 

exact disc region whereas variations in water content and collagen content/orientation actually exist. 

Due to the lack of precise information, the selected structure features are representative of the 

annulus anterior area. Nine LM/ILM layers are considered resulting in a parallelepipedic material 

element of 10 × 4 × 4 mm3 for circumferential direction, and 2 × 2 × 4 mm3 for radial direction, in 

order to respect the sample size effect on the mechanical behavior of the annulus (Zhou et al., 2019; 

Kandil et al., 2020) The simulations were performed by using a constant strain rate of 0.001 s-1. 

 

 

 

 

 

 
 

 Components Parameters Values 
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Swelling Fluid 
1K  0.14  MPa  

  
2K  0.075  −  

Toe ECM 
ECMG  0.01  MPa  

OCF 
1C  26  MPa  

2C  12  −  

NEF 
4C  25  MPa  

5C  0.2  −  

Linear OCF 
3C  70  MPa  

*

OCF  1.09  −  

NEF 
6C  1.5  MPa  

*

NEF  1.7  −  

Damage ECM 
ECM  2  −  

ECM  5.5  MPa  

OCF 
OCF  5  −  

OCF  43  MPa  

NEF 
NEF  6  −  

NEF  850  MPa  

Table II.2. Model parameters. 

Table II.2. gives the identified values of the intrinsic mechanical parameters of the solid components 

(ECM, OCF and NEF) and the swelling response. Their identification was solved numerically as an 

optimization problem using MATLAB software considering the two following objective functions 

obj

swellingF  and obj

stressF  to be minimized: 

 

2 2 2

1

1
h h h hh h
y yobj chem chemz z

swelling hh h
h chemy z

F
     

  =

  −    −− = + +           

  (II.40) 

 

2 2

1

1
h h h h

obj circ circ rad rad
stress h h

h circ rad

P P P P
F

P P



 =

    − −
 = +   
     

  (II.41) 

in which the letters with an overbar denote the experimental data with   the number of considered 

data points. The optimization of the model parameters was performed using a few well-known 

available datasets of the swelling response (transversal stretches and volumetric strain) and the UA 
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(circumferential and radial) stress responses till moderate stretching and ultimate failure. Before 

their final optimization using formulae (II.40) and (II.41), a first set of model parameters was 

estimated via a step-by-step approach to dissociate the different phenomena: osmotic effect, 

directional-dependent straightening of collagen networks and damage effect. The volumetric 

parameters, 1K  and 2K , were identified using the UA circumferential data of Baldit (2013) 

describing the time-dependent volumetric response upon stretching followed by relaxation. The 

collagen parameters, 1C , 2C , 4C  and 5C , were identified using the nonlinear part (toe zone) of the 

UA circumferential data of Acaroglu et al. (1995) and the radial data of Fujita et al. (1997). The 

stretches, *

OCF  and *

NEF , as well as the remaining collagen parameters, 3C  and 6C , were 

determined using the transition between the UA nonlinear response and the UA linear response of 

the Acaroglu et al. (1995) and Fujita et al. (1997) data. The OCF damage parameters, OCF  and 

OCF , were determined using the UA circumferential data of Acaroglu et al. (1995) whereas the 

ECM and NEF damage parameters, ECM , ECM , NEF  and NEF , were determined using the UA 

radial data of Fujita et al. (1997). 

Unless explicitly otherwise stated, the values in Table II.2. will be employed in all model results, 

especially to generate the multiaxial model predictions under other loading paths. 

II.3.1. Chemical-induced swelling  

The swelling response was identified using experimental data under free-swelling and UA 

circumferential stretching (Acaroglu et al., 1995; Baldit, 2013). For the latter, only moderate levels 

of stretching are available in the literature. The variation of fluid content by osmotic effect is firstly 

used to identify the free-swelling response. The identification result is provided in Figure II.6a until 

chemical equilibrium in a physiological NaCl solution (0.15 M). The volumetric tissue deformation 

induced by the internal fluid content variation under mechanical loading was then calibrated using 
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the experimental data of Baldit (2013) considering UA circumferential stretching and relaxation at 

constant circumferential stretch under a physiological surrounding environment. The temporal 

changes of transversal (radial and axial) stretches and the associated circumferential stress are given 

in Figure II.7. Our model considers the time-dependent chemo-mechanical coupling in the soft 

tissue to capture the unusual transversal strain history in relation to the actual structure and the 

chemical-induced internal fluid variation. The strong shrinking in the axial direction and the 

swelling in the radial direction upon UA circumferential stretching tend towards more usual 

transversal behavior upon relaxation due to chemo-mechanical equilibrium. The ILM zone is 

introduced as the key structural parameter governing inter-lamellae fluid exchanges under external 

mechanical loading and especially the auxetic behavior. This annulus feature was only appreciated 

through very recent contributions (Derrouiche et al., 2019b; Kandil et al., 2019; Tamoud et al., 2021) 

and was shown as determinant in the time-dependent multiaxial response (Kandil et al., 2020). The 

ILM anatomic function is also to confer a shearing resistance to the annulus and the inclusion of the 

network of inter-lamellar fibrils in the model allows a more realistic material representation. Note 

that the ECM reorganization may induce viscoelastic features in the annulus fibrosus (Tavakoli and 

Costi, 2018). Nonetheless, the quantitative estimation of the coupling between viscoelastic effects 

and chemical-induced volumetric effects showed that the volumetric features are first-order factors 

in the annulus mechanics compared to the deformation-induced viscoelastic stress in ECM 

(Derrouiche et al., 2019b; Kandil et al., 2019, 2020). Although the solid components are described 

by purely hyperelastic laws, the present constitutive representation considers the rate-dependency 

of the annulus mechanics implied by the deformation-induced damage mechanisms and the 

volumetric effects. 
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                                      (a)                                                                        (b) 

Figure II.6. Volumetric response of the multi-layered material element: (a) under free swelling 

(line: model, symbol: experimental data of Acaroglu et al. (1995)), (b) under UA circumferential 

stretching (solid line: model, dashed line model without damage). 

The results in Figure II.7 are presented for a moderate stretch range within which the soft tissue 

stays in a physiological level avoiding any damage effects. The question which arises is now how 

the tissue behaves under large strains till final failure by including as time-dependent physical 

process both volumetric effects and damage accumulation. 

  

      (a)               (b) 

Figure II.7. Temporal changes of (a) transversal stretches and (b) normalized stress of the multi-

layered material element under a UA circumferential stretching until 1.1 followed by a relaxation 

(lines: model, symbols: experimental data of Baldit (2013)). 



Chapter II: A multiscale and multiaxial model for anisotropic damage and failure of human annulus 

fibrosus 

67 

II.3.2.UA stretching path 

The model efficiencies to capture the stress-stretch behavior of the annulus till failure under UA 

stretching is presented in Figures II.8 and II.9 for the two main directions in comparison with the 

experimental data extracted from the works of Acaroglu et al. (1995) and Tavakoli and Costi (2018). 

The numerical curves show an excellent agreement with the annulus circumferential experimental 

results of Acaroglu et al. (1995) in Figure II.8a including the nonlinear stress-stretch response and 

the failure stage displaying stress drop. Figure II.8c shows that both moduli and ultimate properties 

are in agreement with other data taken form the literature (Ebara et al., 1996). A direct relation 

between the annulus circumferential mechanics and the microstructure at the different scales can be 

pointed out. The straightening of the collagen network during stretching causes a (toe) nonlinear 

macro-response until the disappearance of the undulations of the collagen fibers at a strain of about 

13%. Then, a nearly linear response appears up to reach the limiting extensibility of the collagen 

fibers that is seen at a strain of about 16%. A catastrophic stiffness decrease is then observed at a 

strain of about 18% due to damage accumulation that arises out of a wide fibril network degradation. 

 The circumferential stretching creates ionic imbalance and chemical stress due to chemo-

mechanical coupling. The predicted volumetric change is provided in Figure II.6b and is found 

moderately affected by the damage. Nonetheless, the chemical disorder induced by the fluid phase 

diffusion through the tissue plays an important role in absorbing the mechanical loads applied to the 

annulus. Figure II.8b shows the progressive damage events in ECM, OCF and NEF upon a 

circumferential UA stretching. The figure provides a clear picture of the sequence of damage 

operating in the different solid components. Before the incubation stretch, from which the damage 

initiates, the chemo-mechanical coupling is a reversible process dependent on hydration. The critical 

stretch is the lowest for ECM and the highest for OCF. The progressive breaking of NEF leads to 

the progressive loss of connectivity between neighboring OCF in a same LM layer, but also between 

OCF of two neighboring LM layers. The damage in NEF during circumferential stretching can be 
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explained by NEF stretching due to annulus chemical expansion (Figure II.6b). The latter has 

profound impact on the local damage events and thus on the overall annulus mechanics, especially 

along the circumferential direction. Without diffusion mechanism, the damage process is activated 

prematurely as evidenced in Figure II.8b. That results in stiffening, lower stretchability and a 

remarkably weakened stress peak as shown in Figure II.8a.  

   

   (a)                                                                       (b) 

   
(c) 

 

Figure II.8. UA circumferential stretching of the multi-layered material element: (a) stress-stretch 

response (solid line: model; dashed line: model without chemical effect, symbols: experimental 

data of Acaroglu et al. (1995)), (b) local damage events in the different solid constituents (solid 

line: model; dashed line: model without chemical effect), (c) toe and linear circumferential 

moduli, failure strain and failure stress. 
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 (a)        (b) 

   

(c) 

 

Figure II.9. UA radial stretching of the multi-layered material element: (a) stress-stretch response 

(solid line: model; dashed line: model without NEF activation, symbols: experimental data of 

Tavakoli and Costi (2018)), (b) local damage events in the different solid constituents, (c) toe and 

linear radial moduli, failure strain and failure stress. 

Figure II.9a shows the UA macro-stress response in the radial direction. A fairly good agreement 

between the experimental data of Tavakoli and Costi (2018) and the model result is shown in Figure 

II.9a, and that, until complete loss of tissue integrity. Although the data of Tavakoli and Costi (2018) 

concern bovine annulus, Figure II.9c points out that both moduli and ultimate properties of human 

annulus, taken from the work of Fujita et al. (1997), are also well reproduced by the model using 
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the same set of parameters. Stretching in the radial direction shows a different behavior to that 

exhibited in the circumferential direction. This directional effect is observed both in the stress 

response and in the damage mechanisms. The radial stretchability of the annulus is considerably 

higher than the circumferential stretchability. The maximum stress is observed at a strain of 

approximately 200%. Because they are load-bearing elements in the radial direction, the onset of 

damage is earlier in NEF than in ECM as shown in Figure II.9b. In this direction, OCF experiences 

no damage. The increase in damage amount of NEF causes a decrease in stiffness until the 

observable peak stress at approximately 0.37 MPa. After the peak stress, both undamaged NEF and 

ECM continue to resist the applied stretching until the appearance of a second local peak stress at a 

strain of approximately 400%. Figure II.9c presents the moduli and the ultimate properties.  

As shown in Figure II.10 the local stress response in fibrils differs according to the macroscopic 

stretching direction. In physics, the localization and concentration of the maximum stress in fibrils 

is highly dependent on the regional variation of the orientation of the bundles of fibrils, i.e. inter-

fibrillar and inter-lamellar fibrils, respectively, in LM and ILM zones.  

The model is also used to analyze the macroscopic failure behavior. The annulus is uniaxially 

stretched till failure along a loading direction successively tilted from the circumferential direction 

to the radial direction. The failure state is identified as the maximum stress corresponding to the 

first local failure detected. The computed ultimate points in terms of effective stress and maximum 

principal strain are reported in Figure II.11 such that failure envelops are formed. A global view at 

these plots shows a strong directional effect on the macroscopic ultimate properties due to the 

layered LM/ILM organization and to the anisotropic local response of the collagen network in the 

LM and ILM zones. The respective role of the collagen network and the chemical effect on the UA 

failure response is identified in Figure II.11.        
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(a) 

 

 

 

  
(b) 

 

Figure II.10. Local NEF stress maps under (a) UA circumferential stretching and (b) UA radial 

stretching. 

A deeper understanding of the annulus mechanics till final failure is brought by our modeling 

approach. The NEF supports the inter-layer connection and makes the annulus stiff especially in the 

radial direction. As illustrated in Figure II.9a when the NEF influence is neglected in the model a 

weak annulus resistance is obtained in the radial direction and a single peak stress is observed. By 

contrast, in the circumferential direction, no significant change is pointed out in the failure response 

as shown in Figure II.11. Nonetheless, as the stretching direction approaches radially, the annulus 

becomes much softer, with low failure stresses and high failure strains. 
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(a)                                                                                (b) 

 

Figure II.11. UA failure envelopes: (a) effective stress [MPa] and (b) maximum principal strain 

[%] (continuous blue line: model, dashed yellow line: model without NEF, dashed red line: model 

without chemical effect). 

II.3.3. Biaxial stretching path 

The biaxiality effects on the annulus stress-stretch curves till failure are presented in Figure II.12 

for different biaxial states. As far as we know, no experimental data are available in the literature 

when circumferential stretching and radial stretching are combined. These results are for predictive 

purpose only. The computed results are shown for different strain loading ratios (= circumferential 

strain : radial strain, {1:0, 0:1, 1:0.5, 1:1 and 1:2}). The stiffness and ultimate properties are strongly 

influenced by the biaxial stretch ratio with a larger effect on the radial behavior than on the 

circumferential one. The radial stretchability of the annulus is considerably decreased under a 

biaxial stretching state. The difference in circumferential and radial behaviors is connected to the 

difference in how local failure occurs due to the collagen orientation. 
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     (a)                                                                          (b) 

 

Figure II.12. Biaxial stretching of the multi-layered material element for different biaxiality ratios: 

(a) circumferential stress-stretch response, (b) radial stress-stretch response. 

The model takes into consideration the directional effects along with electro-chemical activity 

reproduced thought the volumetric effects. It can be employed to study how individual failure of the 

annulus components acts on the overall progressive failure under biaxial loading. The macro-

stretches at failure are presented in Figure II.13 under a wide range of biaxial loading conditions 

such that a failure envelope is obtained. Again, the retained criterion is the nucleation of the local 

failure macroscopically identified by the maximum stress. The biaxial failure envelopes are 

normalized by their maximal stretch values. Different microstructure cases are considered and 

important insights are observed. When the collagen network is not considered, the failure is 

governed by the isotropic ECM and a symmetric failure envelope with respect to the main bisectrix 

is obtained. The symmetry is lost for the other cases. Both collagen network and LM/ILM 

organization significantly impact the ultimate properties by conferring a directional effect on the 

failure envelope.  

Both tilted and biaxial stretching help us to better understand the chemo-mechanical-damage 

behavior of the annulus till failure in relation to the hierarchical organization of all discrete solid 

components. 
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Figure II.13. Biaxial failure envelope. 

II.3.4.Shearing path 

To illustrate further the predictive capability of the model, the numerical results are compared to the 

annulus shearing data extracted from the literature in Figures II.14 and II.15. The predicted stress-

strain curve is found in acceptable agreement with the typical experimental curve of Tavakoli and 

Costi (2018) in Figure II.14, highlighting the predictive capabilities of the model. Recall that this 

typical curve is taken from bovine annulus. 

                                               

Figure II.14. Shearing of the multi-layered material element (continuous line: model, symbols: 

experimental data of Tavakoli and Costi (2018)). 
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                                   (a)                                                         (b)                            (c)  

Figure II.15. Shearing of the multi-layered material element: (a) Toe and linear shear moduli, (b) 

failure strain and (c) failure stress. 

The numerical shear modulus is calculated in the toe and linear regions and reported in Figure II.15a. 

It is compared to shear values reported in other papers considering different species: Fujita et al. 

(2000) for human, Gregory et al. (2011) for porcine and Labus et al. (2014) for bovine. Except 

Labus et al. (2014), the precise annulus position is not provided. The model prediction of the toe 

shear modulus is found in acceptable agreement with that of the inner annulus from (Labus et al., 

2014); it is lower than the outer annulus since collagen content and layers dimensions are smaller. 

The Tavakoli and Costi (2018) toe shear data, that is between the inner and outer values of Labus et 

al. (2014), is underestimated by the model prediction. By contrast, the model is in good agreement 

with the value of Fujita et al. (2000). The model overestimates the values of Gregory et al. (2011) 

in the toe and linear regions. But for the shearing failure strain, it falls within the experimental 

standard deviation intervals of Gregory et al. (2011) as shown in Figure II.15b. However, the 

shearing failure stress of Gregory et al. (2011) is largely overestimated as shown in Figure II.15c. 

Although the predicted failure stress is found smaller than the Tavakoli and Costi (2018) shearing 

data, the predicted failure strain is in excellent agreement with the experiments. Like a loading in 

radial stretching, the important role of NEF to keep the integrity of the inter-layer connection is 

shown again. 
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II.4. Concluding remarks 

In the present chapter, a novel human annulus multiscale model was proposed to constitutively relate 

the structure at different scales (tangled ECM, network of nano-sized fibrils/micro-sized fibers and 

multi-layered LM/ILM organization) and the multiaxial macroscopic response till failure in 

connection to volumetric effects and damage mechanisms. It was shown that the model captures 

quantitatively experimental observations including directional effects upon different loading 

histories. The model provides a useful tool for annulus failure estimate in relation to complex 

interactions between external loading mode, structure features, damage events and hydration.  

For future works, the annulus regional microstructure will be implemented in an axisymmetric 

version of the present (multiscale and multiaxial) model in the main goal to predict anisotropic 

damage and failure in a complete intervertebral disc model including nucleus-annulus interaction.  

Appendix II.A. Deformation gradients 

II.A.1. Chemical-induced swelling 

The hydration effect is considered in our modeling approach. Under a free-swelling, the deformation 

gradients of a layer i are: 

 
( )_ _ _diag , , 1,2,...

i

mech

i i i i

chem chem x chem y chem z i m  

=

= =

F I

F
 (II.A1) 

in which 
_

i

chem x , 
_

i

chem y  and 
_

i

chem z  are the chemical stretches in the x, y and z directions, 

respectively. 

No fluid transfer occurs under shearing, i.e., i

chem =F I . Under UA or biaxial stretching, the chemical 

deformation gradient is empirically expressed as follows: 

 ( )diag cos , cos ,i i i i i i i

chem x x y y z z       = +F I  (II.A2) 

Such that the chemical-induced volumetric strain i

chem  is given by: 
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 ( )( )( )1 cos 1 cos 1 1i i i i i i i

chem x x y y z z        = + + + −  (II.A3) 

where   is a coefficient that changes according to the loading mode.  

Guided by the experimental observations of Baldit (2013) and Derrouiche et al. (2020b) on 

circumferentially stretched annulus specimens, the chemical deformation gradient (II.A2) was 

initially proposed in the previous chapter. The term   is introduced here to consider the loading 

angle effect on tilted stretching behavior and on biaxial stretching behavior.  

For tilted stretching, the term   is given by: 

  =  (II.A4) 

in which   is the angle between the loading direction and the circumferential direction. 

For biaxial stretching, the term   is geometrically deduced from the biaxiality ratio:  

 ( ) ( )( )acrtan 1 1rad circ  = − −  (II.A5) 

in which circ  and rad  are the applied stretches in the circumferential and radial directions, 

respectively. 

The terms i

x , i

y  and i

z  are the chemical expansions at the equilibrium state and, i

x  , i

y  and i

z  

are functions of time (chapter I):  

 ( )1 expi i

x xt = − − , ( )1 expi i

y yt = − −  and ( )1 expi i

z zt = − −   (II.A6) 

where i

x , i

y  and i

z  are the chemical expansion rates. 

In what follows, the mechanical deformation gradients of each loading case, given in Figure II.5, 

are separately provided.  

II.A.2. UA stretching path 

The UA stretching of the multi-layered material element can be carried out along the circumferential 

direction, along the radial direction or along a direction tilted by an angle   with respect to the 
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circumferential direction. The mechanical deformation gradients may be expressed as a function of 

the applied stretch   and the stretch in the fiber direction 
f : 

 ( )
1 1

2 2_ _ _diag , , 1,3,...
T TLM i i i

mech y z f f f z y i m     
− − = =

 
F R . R . .R .R  (II.A7) 

in LM layer and, 

 

1 1
2 2

_

_ _ _

diag , , 2,4,... 1
TILM i

mech y yi i i

chem x chem x chem x

i m   

  

− −    
 = = −           

F R . .R  (II.A8) 

in ILM layer. 

The quantities _ i

z


R  and 

y


R  are the basis-change tensor in each layer, with a rotation i  around the 

z-axis and stretch direction   around the y-axis, respectively: 

 _

cos sin 0

sin cos 0

0 0 1

i i

i i i

z



 

 

 
 
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 
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cos 0 sin

0 1 0

sin 0 cos

y



 

 

− 
 

=
 
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R   (II.A9) 

After a series of lengthy but straightforward derivations, we get the mechanical deformation 

gradients under UA stretching path: 

 ( )

2 2
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_ _2 2

__ 2

3 2 3 3

2 2

3

_ _2 2

cos sin 1
cos cos sin
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 
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  − +

  
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F (II.A10) 

in LM layer and, 
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(II.A11) 

in ILM layer. 

The terms 
1

iS , 
2

iS  and 
3

iS  are given by: 
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 (II.A12) 

II.A.3. Biaxial stretching path 

The biaxial mechanical deformation gradients may be expressed as a function of the stretches in the 

fiber axes 
1x

f , 
2xf  and 

3xf
 : 

 ( )
1 2 3

_ _ _diag , , 1,3,...
T

x x x

LM i i i

mech z f f f z i m   = =F R . .R  (II.A13) 

in LM layer and, 

 
_ __

_ _
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  
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F  (II.A14) 

in ILM layer. 
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The mechanical deformation gradient in LM layer is given by: 
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The terms 
4

iS , 
5

iS  and 
6

iS  are given by: 
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II.A.4. Shearing path 

The annulus under shearing is subjected to the following mechanical deformation gradients: 
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where   is the shear stretch. 

 

Appendix II.B. Multi-layered annulus behavior 

The mechanical Cauchy stress tensor i

mechσ  is written as follows: 

 _ _ _LM i i LM i LM i

mech ECM OCF NEF= +σ σ σ σ+    (II.B1) 

in LM layer and, 

 _ _ILM i i ILM i

mech ECM NEF= +σ σ σ    (II.B2) 

in ILM layer. 
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The NEF Cauchy stress tensor i

NEFσ  is given by the sum of the Cauchy stress tensor i

NEF


σ  of all 

discrete fibrils as follows: 

 _ _LM i LM i

NEF NEF
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=σ σ  and _ _
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ILM i ILM i
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=  σ σ  (II.B3) 

In Eq. (II.14), the derivation may be expressed as follows: 
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After a series of straightforward derivations, the different parts of the Cauchy stress tensor are given 

by: 
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where ip  is written from boundary conditions in each loading case: 
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for UA stretching path, 
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for biaxial stretching path and, 
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ECM d ECMp G = +  (II.B13) 

for shearing path. 
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Modeling multiaxial damage regional variation in 

human annulus fibrosus8 

 

Abstract 

In the present article, a fully three-dimensional human annulus fibrosus model is developed by 

considering the regional variation of the complex structural organization of collagen network at 

different scales to predict the regional anisotropic multiaxial damage of the intervertebral disc. The 

model parameters are identified using experimental data considering as elementary structural unit, 

the single annulus lamellae stretched till failure along the micro-sized collagen fibers. The multi-

layered lamellar/inter-lamellar annulus model is constructed by considering the effective 

interactions between adjacent layers and the chemical-induced volumetric strain. The regional 

dependent model predictions are analyzed under various loading modes and compared to 

experimental data when available. The stretching along the circumferential and radial directions till 

failure serves to check the predictive capacities of the annulus model. Model results under simple 

shear, biaxial stretching and plane-strain compression are further presented and discussed. Finally, 

a full disc model is constructed using the regional annulus fibrosus model and simulations are 

presented to assess the most likely failed areas under disc axial compression. 

 

Keywords: Annulus fibrosus; Regional dependence; Multiscale structure; Multiaxial damage and 

failure. 

 

 

 
8 This chapter is based on the following paper: Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. Modeling multiaxial 

damage regional variation in human annulus fibrosus. Acta Biomaterialia 136, 375-388. 



Chapter III: Modeling multiaxial damage regional variation in human annulus fibrosus 

88 

III.1. Introduction 

The annulus fibrosus of the intervertebral disc is probably one of the most extraordinary composites 

that the nature produces. The annulus soft tissues exhibit an organized structural arrangement of 

collagen network at different scales of hierarchical organization (Yu et al., 2002; Pezowicz et al., 

2006a, 2006b; Melrose et al.,2008; Schollum et al., 2008). The detailed information was only 

appreciated very recently (Han et al., 2012; Yu et al., 2015; Vergari et al., 2016; Han et al., 2016; 

Tavakoli et al., 2016, 2017, 2020a, 2020b). The structural arrangement of collagen network varies 

throughout the disc which leads to a regional variation of its mechanics. In this regards, various 

damage and failure mechanisms operate in the different disc regions (Osti et al., 1992; Boos et al., 

2002; Vernon-Roberts et al., 2007). In order to prevent all kinds of sudden disc injuries, it is 

necessary to understand the failure risks considering the regional variation under various static 

loading conditions. Fruitful experimental studies have been undertaken over the years allowing the 

assessment of the annulus intrinsic constitutive response in relation to disc region and mechanical 

loading (Acaroglu et al., 1995; Ebara et al., 1996; Fujita et al., 1997; O’Connell et al., 2012). 

Modeling multiaxial damage regional variation in annulus can provide a better understanding of the 

failure onset and location in the disc, beyond experimental observations. Modeling mechanics of 

the healthy annulus was developed in several papers considering different approaches as physically 

realistic as possible, to name a few recently published (Derrouiche et al., 2019b; Kandil et al., 2019; 

Ghezelbash et al., 2021; Kandil et al., 2020; Castro and Alves, 2020; Komeili et al., 2021; Tamoud 

et al., 2021a; Zhou et al., 2019, 2021). The quantitative prediction of the annulus damage is less 

reported. Damage criteria were proposed to predict annulus failure under different loading 

conditions (Qasim et al., 2012, 2014; Shahraki et al., 2015; Subramani et al., 2020). Nevertheless, 

the interest of this approach is questionable because it is intrinsically decoupled from the intrinsic 

properties and disconnected from the real microstructure and its evolution. The progressive loss of 

collagen network integrity implies a damage accumulation in annulus (Tamoud et al., 2021b). 
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Proper description of damage and failure requires to consider the latter that can be introduced in 

continuum-based models. Mengoni et al. (2016) developed a damage model for the non-fibrillar 

matrix restricted to the anterior annulus stretched in the radial direction. Later, Gao et al. (2017) and 

Ghezelbash et al. (2020) proposed a damage model considering only the collagen fibers failure as 

local damage event. Tamoud et al. (2021b) developed a damage model considering the multiscale 

failure due to network hierarchical organization. The chemical-induced volumetric effects on the 

structure-damage relation were also introduced to consider the hydration state effects. Nonetheless, 

our previous work in (Tamoud et al., 2021b) disregards the regional variation while it is the 

prerequisite condition to any disc prediction. The directional effects due to the structural 

arrangement along with the regional dependence make damage prediction a challenging task that 

still remains largely an open issue. To date, no constitutive model has been proposed to predict the 

multiaxial mechanics of the annulus fibrosus while the regional dependence of the relation between 

structure and damage is taken into consideration. 

The main objective of this work is to formulate a fully three-dimensional constitutive representation 

of the annulus fibrosus to capture the regional dependence of the structure-damage relation. In order 

to reproduce the multiaxial loadings as close as to those undergone in-vivo by the annulus fibrosus, 

the material representation considers the complex collagen network arrangement of each disc 

region. To consider the progressive deformation-induced changes in the tissue, the model introduces 

the stretch-induced network re-orientation as well as the network damage leading to final failure. 

The model is identified at the scale of single annulus lamellae stretched along the fibers main 

direction. The regional dependent model predictions are then analyzed under various loading modes 

at the scale of multi-lamellae and compared to experimental data when available. The human 

annulus constitutive model is finally used to predict the heterogeneous mechanics of a full disc 

model. 
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The outline of the present chapter is as follows. The constitutive model is fully described in Section 

III.2. Section III.3 presents the constitutive model identification and predictions. Full disc model 

predictions are presented and discussed in Section III.4. Finally, remarks and conclusions are given 

in Section III.5.   

The following notation is used throughout the text. Tensors and vectors are respectively denoted by 

normal boldfaced letters and italicized boldfaced letters, while scalars and individual components 

of vectors and tensors are denoted by normal italicized letters. The superposed dot designates the 

time derivative.  

III.2. Model formulation 

We propose here a two-step strategy consisting in single lamellae identification followed by multi-

lamellae multiaxial predictions as illustrated in Figure III.1. The required model parameters are 

identified on axial tests performed along the micro-sized collagen fibers of single annulus lamellae 

extracted from the different disc regions (AO: Anterior-Outer, AI: Anterior-Inner, PI: Posterior-

Inner, PO: Posterior-Outer). Beyond taking into account the regional effect, this identification 

strategy is a valuable difference with our previous work (Tamoud et al., 2021b) in which the model 

identification had been performed at the scale of multi-lamellae. In this chapter, after its 

identification at the scale of single lamellae, the model is then verified by comparing its prediction 

with the experimental data of multi-lamellae performed under multiaxial loading. Uniaxial (UA), 

simple shear (SS), biaxial (BA) and plane-strain compression (PSC) tests are all being considered. 
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Figure III.1. Two-step strategy consisting in annulus model identification using single lamellae 

extracted from different disc regions followed by multi-lamellae annulus model predictions for 

multiaxial elementary loading modes representative of the spine movement. 

 

III.2.1. Multiscale structure 

The model considers the hierarchical organization of the solid phase starting from the nanoscale 

(Tavakoli et al., 2020a, 2020b) as well as its regional variation. As schematically represented in 

Figure III.2, the disc annulus is a multiple-network medium in which the organization in terms of 

orientation and distribution is regional dependent. The annulus consists in concentric lamellae (LM) 

reinforced by micro-sized type-I oriented collagen fibers (OCF). Two adjacent LM are connected 
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by an inter-lamellar (ILM) matrix. A network of nano-sized elastic fibers (NEF) connects both two 

OCF and two adjacent LM between them (Yu et al., 2002; Melrose et al., 2008). The network of 

OCF and NEF will be described geometrically with respect to the global benchmark of the disc, 

respectively, with the angle   with respect to the circumferential direction and with the angle   

with respect to the radial direction in the parallel plane of the fibers. 

 

 
 

Figure III.2. Multiscale view of the intervertebral disc annulus. The organization, in terms of 

orientation and distribution, of this multiple-network medium is regional dependent. 
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Quantities and orientations of the constituents can be found in the Appendix III.A. The latter is 

based on well-documented papers for the four main disc regions (Skaggs et al., 1994; Acaroglu et 

al., 1995; Ebara et al., 1996; Holzapfel et al., 2005; Tavakoli et al., 2020a, 2020b). 

III.2.2. Damaged free energy functions 

The randomly oriented proteoglycan macromolecules of the extracellular matrix (ECM), the OCF 

and the (inter-fibrillar and inter-lamellar) NEF are all being considered to model the solid phase. 

Each individual component is assumed as isotropic, homogeneous, incompressible and hyperelastic 

body. During the mechanical loading, the initiation and propagation of damage occur through a 

continuous evolution over the entire loading history. A damage variable d is introduced to provide 

a mathematical description of the local damage events occurring within the collagen network. Their 

progressive evolution is given by an expression following a two-parameter Weibull statistical 

distribution governed by the internal stress: 

 1 expd





  
 = − − 
   

P
 (III.1) 

in which   and   are two damage parameters and ( )tr T=P P.P  is the Frobenius norm of the 

effective first Piola-Kirchhoff stress P of the individual solid component (ECM, OCF and NEF). 

The damage variable d varies between 0 for the virgin state and can increase up to 1 in the case of 

fully damaged (cracking) state. It is taken as a monotonic increasing function of loading, i.e. the 

damage is considered as an irreversible phenomenon without possible recovery. Note that the 

anisotropy of the damage mechanisms developed in the annulus is due to the collagen network 

organization. The model is based on the general damage mechanics framework for the 

hyperelasticity theory that introduced hyperelastic laws derived from free energy functions 

(Lemaitre and Chaboche, 1994; Miehe, 1995). The mechanical free energy mechW  is expressed as a 

function of the ECM free energy 
ECMW  and the collagen networks free energies W  and W : 
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 ( ) ( ) ( )1 1 1mech ECM ECM ECM OCFW d W d W d W    


  = − + − + −  (III.2) 

where 
ECMd , d  and d  are the damage variables that degrade the internal stiffness of respective 

components, 
_0ECM ECM chemJ =  is the ECM volume fraction, 

_0OCF OCF chemJ =  is the OCF 

volume fraction, 
NEF   =  is the fibrils volume fraction calculated using the NEF volume fraction 

_0NEF NEF chemJ =  in a layer and the volume fraction of fibril bundles    in a layer dependent on 

  with 1


 = . The terms 
_0ECM , 

_ 0OCF  and 
_ 0NEF  are the volume fractions at the chemical 

equilibrium state. The term chemJ
 
is the chemical-induced volumetric change. 

The set of free energies must be prescribed for each component of the solid phase.  The simple Neo-

Hookean formulation is employed for the ECM free energy 
ECMW : 

 ( )1

1
3

2
ECM ECMW G I= −  (III.3)  

in which ECMG  is the ECM shear modulus and ( )1 tr mechI = C  is the first stretch invariant of the right 

Cauchy-Green deformation9 T

mech mech mech=C F .F . 

The collagen response exhibits ‘toe’ and ‘linear’ regions as described in Figure III.3. The ‘toe’ 

region is due to the collagen straightening during stretching that is followed by the “linear” region 

when the undulations disappear. The free energies W  and W  
are expressed by two distinct 

relations below and above *

,   to describe the transition between ‘toe’ and ‘linear’ regions: 

 ( ) ( )( )( )2
*1

, 4 , 2 4 , , ,

2

1
1 exp 1 1

2

C
W H I C I

C
          

 
= − − −  

 
 (III.4) 

 
9 The chemo-mechanical coupling is considered by the multiplicative decomposition of the total deformation gradient 

chem mechF = F .F  into chemically-induced volumetric and mechanical parts 
chemF  and 

mechF . 
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 ( ) ( ) ( )
2

* *3
, 4 , 4 , 4 , , 4 , , , ,1

2

C
W H I I I I                    

 
= − − + −  

 
 (III.5) 

where 
1C , 

2C  and 
3C  are material constants, ( )H •

 
is the Heaviside function, 

,   and 
,   are 

functions that ensure continuity between ‘toe’ and ‘linear’ regions: 

 ( ) ( )( )2
* *

, 1 4 , 2 4 ,1 exp 1C I C I      = − −  (III.6) 

 ( )( )( )2
* *1

, 4 , 2 4 ,

2 ,

exp 1 1
2

C
I C I

C
     

 




= − − −  (III.7) 

The fourth stretch invariants 
4I   and 

4I   are given by: 

 2

4 mechI  = =.C .a a  and 2

4 mechI  = =.C .b b  (III.8) 

where a  and b  are the unit vectors expressed in the Cartesian coordinates by: 

 cos sin = +a x y  and cos cos sin cos sin    b = x + y + z  (III.9) 

The term *

4 ,I    is the fourth stretch invariant for *

, ,    = . The two angles follow the following 

geometrical relations to consider stretch-induced re-orientation of the OCF and NEF networks: 

 ( ) ( )0tan tan
y

x


 


=  and ( )

( )

( )

0 0

0 0

tan 90

tan

180 tan 90

z

f

z

f


 





 




 


= 
 +  



 (III.10) 

where 0  and 0  are the angles in the initial configuration, x , 
y  and z  are the principal stretches, 

respectively, in the circumferential (x), axial (y) and radial (z) directions, and 
f  is the stretch in the 

OCF direction. The re-orientation allows to update the fourth invariant by considering the current 

fibers orientation in the deformed configuration (Karsaj et al., 2009; O’Connell et al., 2012; 

Ghezelbash et al., 2021). 
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Figure III.3. Phenomenon of reorientation of collagen fibers. 

 

The hydration state of the annulus soft tissues due to internal fluid content variation by osmosis has 

a considerable effect on the disc mechanics (Yang and O’Connell, 2019; Derrouiche et al., 2019a, 

2020; Feki et al., 2020) and especially on the failure response (Werbner et al., 2019). The chemical 

free energy
chemW  takes the following form (see chapter I): 

 ( )( )21
2 _

2

1
exp 1

2
chem fluid chem d

K
W K

K
 = −  (III.11) 

where 1fluid ECM OCF FCN   = − − −  is the volume fraction of the fluid phase, 1K  and 2K  are material 

constants, 1K  and 1 2K K  being the initial and maximal volumetric stiffness values, respectively, 

and 
_chem d  is the damaged chemical-induced volumetric strain. The latter quantity must be 

connected to the damage accumulation due to progressive local failure events. The following 

relation is used (see chapter I): 

 ( )( )_

1
1 1 1

n

chem d chem ECMd d d
n

 


 
 

= − − − 
 

  (III.12) 



Chapter III: Modeling multiaxial damage regional variation in human annulus fibrosus 

97 

with ( )det 1chem chem = −F .  

In virtue of the chemo-mechanical coupling, the total free energy W  can be additively split into a 

mechanical part 
mechW  and a chemical part 

chemW : 
mech chemW W W= + . The multi-layered lamellar/inter-

lamellar annulus model is constructed by considering the compatibility conditions to be respected 

between adjacent layers. Some details are provided in the Appendix III.B. 

III.3. Simulation vs. experiments 

In this section, after its identification using available experimental data, the predictability of the 

above-described model is discussed. The constitutive equations were coded in MATLAB software 

and reduced to different loading forms.  

III.3.1. Single lamellae identification 

The intrinsic constitutive response of the annulus under UA loading was experimentally determined 

by Skaggs et al. (1994) and Holzapfel et al. (2005) on single annulus lamellae stretched along the 

fibers main direction. Figure III.4 shows the computed results for the identification of the OCF 

properties for the different disc regions.  

  
                                        (a)                                                                       (b) 

Figure III.4. Single lamellae identification for the different disc regions: (a) stress-stretch 

responses (lines: model simulations, symbols: experimental data of Holzapfel et al. (2005)), (b) 

ultimate properties (bars: model simulations, symbols with standard deviation intervals: 

experimental data of Skaggs et al. (1994)). 
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The identification was performed numerically using the MATLAB software to minimize the 

following objective function:  

 

2

1

1
h h

mod expobj

stress h
h exp

P P
F

P



 =

 −
=   

 
  (III.13) 

in which the letters with an overbar denote the experimental data with   the number of considered 

data points. Table III.1. provides the obtained values for the OCF properties. Note that the regional 

dependence of the single lamellae stiffness is explained by a difference in the initial undulated state 

and the OCF content (Skaggs et al., 1994; Holzapfel et al., 2005).  

 

Parameters Regions 

AO PO AI PI 

1C   MPa  40 26 26 3 

2C   −  880 58 30 11 

3C   MPa  500 300 400 80 

*

   −  1.02 1.07 1.1 1.14 

OCF   −  5 5 5 5 

OCF   MPa  215 125 120 70 

Table III.1. OCF parameters. 

 

This structural difference is reflected by distinct values. The other model parameters come from the 

previous chapter and are listed in Table III.2. 

The simulated curves of the single lamellae are in good agreement with the experiments of Holzapfel 

et al. (2005). The results are shown until the complete loss of OCF load-bearing capability in order 

to compare the ultimate points with the experimental data of Skaggs et al. (1994). Except PI, it can 

be observed that the simulated stress and strain thresholds fall within the experimental standard 

deviation intervals.  
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Constituents Parameters Values 

ECM 
ECMG  0.01  MPa  

ECM  2  −  

ECM  5.5  MPa  

NEF 
1C  12  MPa  

2C  0.2  −  

3C  1.5  MPa  

*

  1.7  −  

NEF  6  −  

NEF  400  MPa  

Swelling 
1K  0.14  MPa  

2K  0.0075  −  

Table III.2. ECM, NEF and swelling parameters. 

III.3.2.Multi-lamellae multiaxial predictions 

Table III.3. presents the range of mechanical paths used to check the predictive capacities of the 

multi-lamellae model. It includes UA stretching in the circumferential direction, UA stretching in 

the radial direction, SS loading, BA stretching and PSC loading10. Except the latter loading (in which 

the sample is confined in the radial direction), the samples are loaded in specific directions while 

the others are free. All the samples are considered to be immersed in a physiological solution at a 

concentration of 0.15 M NaCl. When experimental data are available, a quantitative comparison 

with the model results is presented. The dimensions of the annulus specimens are given in Table 

III.3. for the different loading conditions and disc regions. 

 

 

 

 

 
10 These different loadings are representative of the disc mechanics. UA stretching along the circumferential direction 

and PSC are representative of the disc axial compression (Shah et al., 1978). UA stretching along the radial direction 

may be related to the disc shearing whereas SS may be related to the disc axial twist. BA stretching may be caused for 

example by a disc bending (i.e. flexion, extension and lateral flexion) (Costi et al., 2007).  
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Loading modes 

Sample size 
3mm    Experimental data 

Anterior Posterior 

Uniaxial 

(UA) 
Circ. 

 
 

7×2×2 10×4×4 

Acaroglu et al. 

(1995) and Ebara et 

al. (1996) 

Uniaxial 

(UA) 
Radial 

 
 

2×2×2 4×4×4 Fujita et al. (1997) 

Simple 

shear (SS) 
 

 

 

2×2×2 4×4×4 No available data 

Biaxial 

(BA) 

Axial-

circ. 

 
 

7×7×2 10×10×4 
O’Connell et al. 

(2012) 

Plane-strain 

compression 

(PSC) 

Axial-

circ. 

 
 

7×7×2 10×10×4 No available data 

Table III.3. Loading modes for the multi-lamellae. 

 

The multi-lamellae predictions are presented in Figures III.5 and III.6 for UA stretching along the 

circumferential direction. The simulated stress-stretch curves are compared with the typical 

experimental curves presented by Ebara et al. (1996) in Figure III.5a. Considering the important 

variability in the experimental annulus response and that these experimental data are typical results 



Chapter III: Modeling multiaxial damage regional variation in human annulus fibrosus 

101 

(without statistical analysis), the model-experiments comparison can be considered as acceptable. 

In accordance with experiments, the outer regions have much higher stiffness than the inner regions, 

due mainly to regional variation in OCF angle. The simulations are conducted until stress drop 

corresponding to the failure stage. The simulated ultimate properties are reported in Figure III.5b 

and compared to the failure points with their standard deviation intervals extracted from the works 

of Acaroglu et al. (1995) and Ebara et al. (1996).  

 

 
(a)                                                                       (b) 

Figure III.5. Multi-lamellae UA predictions along circumferential direction for the different disc 

regions: (a) stress-stretch responses (lines: model simulations, symbols: experimental data of 

Ebara et al. (1996)), (b) ultimate properties (bars: model simulations, square symbols with 

standard deviation intervals: experimental data of Ebara et al. (1996), circle symbols with standard 

deviation intervals: experimental data of Acaroglu et al. (1995)). 

 

The failure strain predictions fail within the standard deviation intervals. Although the predicted 

failure stress can be found outside the experimental intervals, the predictive trends provide a 

regional difference in agreement with the experimental data. This important result confirms that the 

model provides a quite proper description of the regional effects on the relationship between the 

actual microstructure, the damage events and the macroscopic ultimate properties. Recall that the 

model connects macroscopic response and hydration (volumetric) effects. The capacity of the model 

to capture the regional variation of the transverse responses is shown in Figure III.6. The LM-ILM 

interaction highlights the crucial role that the OCF regional orientations play in the transverse 
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response (Kandil et al., 2020). In particular, regarding the possibility of an apparent auxeticity 

manifested by the positive transversal strains of the lamellae plane (Baldit, 2013). 

 

 
 

                                        (a)                                                                    (b)          

Figure III.6. Multi-lamellae transverse responses under UA circumferential stretching for the 

different disc regions (solid lines: fibers plane, dashed lines: lamellae plane): (a) model results, (b) 

experimental data of Baldit (2013). 

Thanks to the incorporation of the actual nanostructure materialized by the network of fibrils, the 

model can predict the regional behavior of the annulus in the radial direction. Figure III.7a shows 

the multi-lamellae stress-stretch responses under UA stretching along the radial direction. Again, 

the simulations are conducted until the appearance of the stress drop. The experimental data of Fujita 

et al. (1997) are reported in Figure III.8 to further verify the model predictive capacities. Both 

moduli and ultimate properties fall within the experimental standard deviation intervals of Fujita et 

al. (1997). By taking into account accurately the connections between layers, the model allows also 

to predict the shearing resistance. Figure III.7b shows such predictions for which it can be observed 

a strong regional dependence. In addition to amount, type and orientation of the collagen network, 

the regional variation of the NEF arrangement leads to different predicted stiffness and failure 

thresholds according to the disc region. The connection of collagen network between lamellae from 

nanoscale made it possible to represent precisely the damage processes in the LM and ILM 

connections in the different annulus regions. The model shows that the different regional thresholds 
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of radial and shear failures are caused by the regional arrangement of the NEF. These results are in 

agreement with the qualitative data analyzed in Fujita et al. (1997). Indeed, it was reported from 

image analysis that inter-layer connections such as NEF contribute to the annulus radial resistance 

(Pezowicz et al., 2006a; Tavakoli and Costi, 2018). 

      
                                      (a)                                                                         (b) 

 

Figure III.7. Multi-lamellae stress-stretch responses under (a) UA radial stretching and (b) SS 

loading for the different disc regions (lines: model simulations, circle symbols: experimental data 

of Fujita et al. (1997). 

 

 

 
                             (a)                                                                     (b) 

Figure III.8. Multi-lamellae UA predictions along radial direction for the different disc regions: (a) 

moduli, (b) ultimate properties (bars: model simulations, circle symbols with standard deviation 

intervals: experimental data of Fujita et al. (1997)). 
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The directional effects are quite well captured by the model, especially the much higher 

stretchability along the radial direction than along the circumferential direction. The BA stress-strain 

responses are presented in Figure III.9 for different strain ratios (= circumferential strain : axial 

strain, {1:1, 1:2 and 2:1}). In order to further evidence the directional effects, Figure III.10 presents 

the PSC stress-stretch responses for different strain ratios. The strain ratio has an important effect 

on the stiffness and the ultimate properties, with a stronger effect on the axial properties than the 

circumferential ones. The posterior zones show higher stiffness than the anterior zones. That can be 

justified by the fact that the OCF angles are close to 45°, and that the forces are well shared 

according to the two loading directions (circumferential and axial). Although the location was not 

indicated in the paper of O’Connell et al. (2012), it is satisfactory to observe that the BA predictions 

of the inner parts are in acceptable agreement with their typical experimental curves. The model 

indicates that the damage first initiates in the posterior zone. This result is actually found for all 

examined loading modes. PO has indeed a weak circumferential stretchability compared to other 

regions, as shown in UA stretching along the circumferential direction (see Figure III.5) and in BA 

stretching (see Figure III.7). That explains why PO exhibits a low ductility in PSC as observed in 

Figure III.10. Indeed, once PO reaches the circumferential failure, the axial failure occurs. As a 

consequence, PO shows a very low failure axial stress.  
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1-1 

  

1-2 

  

2-1 

   
Figure III.9. Multi-lamellae stress-stretch responses under BA stretching with various strain ratios 

for the different disc regions (lines: model simulations, circle symbols: experimental data of 

O’Connell et al. (2012)). 
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 1-1 

  
1-2 

  
2-1 

  
 

Figure III.10. Multi-lamellae stress-stretch responses under PSC loading with various strain ratios 

for the different disc regions. 
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III.4. Full disc model 

In this section, predictions of a full disc model are presented using the regional dependent 

constitutive representation of multi-lamellae and local damage mechanisms are clarified in order to 

get a basic insight about the starting areas of failure modes. 

 

III.4.1. Disc construction and boundary conditions 

A lot of finite element disc models were developed in the literature (Qasim et al., 2012, 2014; Castro 

and Alves, 2020; Subramani et al., 2020; Komeil et al., 2021; Kandil et al., 2021). Beyond 

fundamental differences in the constitutive representation of the disc tissues, the time of model 

design and the time of calculation remain the main common weak points of all previous disc models. 

In the final objective to create time and cost-efficient patient-specific models of human discs, the 

present disc modeling strategy is purely analytical and again coded in MATLAB. The volume 

element of multi-lamellae, constitutively designed in the Cartesian space (x, y, z), was transferred to 

the Cylindrical space (r, θ, z) in order to consider the full disc geometry as illustrated in Figure 

III.11a. From the theoretical point of view, the constitutive equations were re-written within a finite-

strain kinematic framework in Cylindrical coordinates. The reader is referred to the work of 

Holzapfel et al. (2000) for the general theory on tube-like solid mechanics. In the present chapter, 

we restrict the loading to a uniaxial compression at the disc external boundary. The disc is thus seen 

as a cylindrical solid loaded in compression on the superior surface and with a pressure in the 

cylindrical internal wall (Figure III.11b). The latter simulates the nucleus swelling applied to the 

internal wall of the disc annulus; the applied vertical axial displacement was translated to an internal 

pressure by considering the nucleus bulk modulus. The regional variation in structure and properties 

of the disc annulus was taken into account using the constitutive representation of each human 

annulus region. In order to ensure smooth transitions of the microstructural features (ECM, NEF, 

OCF and fluid) and properties from a disc annulus region to another, with a radial and 

circumferential variation, linear interpolations were considered.  
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                                                    (a)                                                                               (b) 

Figure III.11. Full disc model: (a) Passage from annulus constitutive model to anatomically 

accurate disc model including volumetric strain, regional and directional effects (disc dimensions 

at the L1-L2 level), (b) boundary conditions of the uniaxially compressed disc. 

An anatomically accurate three-dimensional model of a lumbar disc at the L1-L2 level was 

constructed using quantitative anatomical data taken from the work of Holzapfel et al. (2005). The 

L1-L2 disc geometric contours were approximated using special mathematical functions 

considering especially non-symmetric thicknesses and heights (Figure III.11a). Note that they may 

be adapted to consider the shape and size-changing with the spinal level and age (Amonoo-Kuofi, 

1991). The annulus was subdivided into 15 different layers according to the L1-L2 disc dimensions 

provided by Holzapfel et al. (2005). The annulus size is considered to be approximately 50% of the 

disc volume (Violas et al., 2007). It is worth noticing that a notable difference exists between in-

vivo and in-vitro responses regarding fluid exudation. In-vivo, the healthy disc completely recovers 

its height and intradiscal pressure after long diurnal loading. In-vitro, several studies reported losses 

in the disc height and intradiscal pressure (Feki et al., 2020). The chemical-induced volumetric strain 

was then affected by a multiplying factor. Several numerical simulations were performed with 

different values of the multiplying factor ranged from 0 to 100%, and a value of 50% was retained 



Chapter III: Modeling multiaxial damage regional variation in human annulus fibrosus 

109 

in the present work. During the simulations, a vertical axial displacement was applied on the 

superior surface while the inferior surface was constrained (Figure III.11b). The simulations were 

performed at a displacement rate of 0.01 mm/s in order to maintain quasi-static loading conditions.  

III.4.2. Damage fields 

The damage process in the disc core simulated by the model is recorded in Figure III.12 by 

differentiating the damage of the different solid constituents (ECM, NEF and OCF). That permits a 

better understanding of the origin of the damage mechanisms affecting the disc and existing at 

different scales, nanoscale for ECM proteoglycan macromolecules and for NEF network and 

microscale for OCF. A global view at the contour plots shows that damage progressively increases 

in intensity and in extent as the applied compression increases, which is accompanied by a disc 

volumetric change and an annulus-nucleus non-symmetric interaction. The different damage 

mechanisms may co-exist at the same time and initiate at different locations. Remind that, in the 

present model, damage initiation and propagation are dependent on structure-property regional 

variation but also on the variation in displacement fields due to local differences in disc height. The 

highest damage zones in OCF are mainly observed in the anterior outer/lateral anterior ring. 

Excessive damage accumulation in these zones suggests the possibility of tear creation that may 

lead to an anterior herniation as experimentally reported in (Osti et al., 1992; Schollum et al., 2018; 

Sapiee et al., 2019). Besides, the ECM and NEF damage patterns are presented in the two layers in 

order to appreciate the specific role of the ILM matrix and compare it to the adjacent LM. For both 

ECM and NEF, two critical zones appear in the lamellae on either side of the annulus with very low 

intensities. With relatively higher intensities, critical damage spots in the ILM matrix (for both ECM 

and NEF) are firstly located in the anterior side of the annulus and are then progressively more likely 

located in the neighborhood of the anterior inner part of the annulus. 
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Figure III.12. Damage contour plots in the superior view of the uniaxially compressed disc for 

different applied displacement levels (0.5, 1.0 and 1.5 mm); ECM damage 
ECMd  in LM and in 

ILM, NEF damage 
NEFd  in LM and in ILM, OCF damage d  in LM. 



Chapter III: Modeling multiaxial damage regional variation in human annulus fibrosus 

111 

Quite interestingly, a confined distribution of the ILM damage can be observed in the lateral anterior 

inner and posterior inner sides of the annulus. The latter is often judged as one of the most dangerous 

disc failure modes with the highest risk of disc delamination and failure propagation in the radial 

direction of the disc as experimentally reported in (Osti et al., 1992; Schollum et al., 2018; Sapiee 

et al., 2019). The distribution of the fibrils makes the damage anisotropic. To illustrative this model 

capacity, the damage of the fibrils is plotted in Figure III.13 for two zones taken in posterior and 

anterior sides of the inner annulus (close to the annulus-nucleus interface), respectively, in LM and 

in ILM. The contour plots are plotted in a dial (90° representing the radial direction) in such a way 

that the directional effects can be observed during continuous loading. Whereas the damage in LM 

is confined to small degrees around the radial direction, with an onset for relatively important 

applied displacements, the damage in ILM is developed earlier and is more diffused.  

 

        

                                    (a)                                                                      (b) 

Figure III.13. Damage of the fibrils in different directions (90° is the radial direction) at two zones 

of the uniaxially compressed disc: (a) posterior (in LM) and (b) anterior (in ILM) sides of the 

inner annulus for different applied displacement levels (from zero in the dial center to 2 mm in the 

dial boundary). 
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III.1. Discussion and concluding remarks 

In the present chapter, a novel human annulus model was proposed to constitutively relate the 

regional variation in structural arrangement of collagen network at different scales and the 

multiaxial mechanics till failure. The model provides a useful tool to predict a variation of the 

annulus stiffness and ultimate properties with both disc region and loading mode. The different 

loading modes were simulated and chosen to better understand the regional behavior until the failure 

of the solid components in interaction with the chemical-induced volumetric response. The 

capabilities of the model were analyzed and an acceptable agreement between predicted values and 

experimental data was highlighted. A full disc model was constructed using the regional dependent 

constitutive representation of multi-lamellae and damage fields in the compressed disc were 

analyzed to assess the areas where the risk of failure is the highest. 

The present model can be considered as the stepstone for the long-term prediction of the disc 

dysfunctions. During different complex loading scenarios of the spine, the disc dysfunctions may 

occur either by: i) mechanical damage due to a high level of loads (Acaroglu et al., 1995; Ebara et 

al., 1996) or relatively moderate loads repeated several times which cause damage accumulation 

(Green et al., 1993; Iatridis et al., 2005; Qasim et al., 2012; Subramani et al., 2020), ii) by an age-

related biological degeneration (Thompson et al., 1990; Urban and Roberts, 2003; Cegoñino et al., 

2014) or by the cellular disorders, including the cell death, the production of inflammatory mediators 

and a shift towards catabolism (Bruehlmann et al., 2004; Walter et al., 2011; Bloom et al., 2021). 

Nonetheless, it is difficult to identify or precisely model the disc failure taking into account the two 

causes of dysfunction at the same time. Since our study is based on the in-vitro annulus results, it 

cannot be directly extrapolated to the in-vivo disc response. Indeed, the understanding of the disc 

mechanobiology must be taken into account by the model considering especially nutrition and 

cellular activity along with degenerative aspects (Bruehlmann et al., 2004; Walter et al., 2011; 

Bloom et al., 2021). The model could be then a real help to provide solutions for remodeling and 
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self-healing response of the disc tissues (Likhitpanichkul et al., 2014; Borde et al., 2015; Wan et al., 

2016; Peng et al., 2020). Moreover, the near-field direct local interactions within the collagen 

network and the ECM ought to be treated through either the incorporation of a supplementary energy 

term (Guerin and Elliott, 2007) or a mean-field approach (Saadedine et al., 2021). 

Appendix III.A. Quantities and orientations 

The total number of NEF is reported in Figure III.A1 as a function of the orientation  . The 

information is extracted from the two works of Tavakoli et al. (2017, 2020a); the observed Gaussian-

type shape is mathematically represented by a special function proposed in the previous chapter. 

Due to the lack of information regarding the regional variation, we admitted similar NEF 

distributions in LM and ILM layers for outer and inner regions.  

 

    (a)                                                 (b) 

 

    (c)                                                 (d) 

Figure III.A1. Quantity of NEF in the different disc regions: (a) AO, (b) AI, (c) PO and (d) PI 

(solid lines: inter-fibrillar fibrils in LM layers, dashed lines: inter-lamellar fibrils in ILM layers, 

black lines: experimental data from Tavakoli et al. (2017) for (a) and (c) and Tavakoli et al. 

(2020a) for (b) and (d)). 
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The volume fractions of fibril bundles d i

  in the two layers are estimated as follows: 
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 (III.A1) 

where LMq  and ILMq  are the respective total number of NEF in each layer i: 

 
0 ,180

LM LM ILMq q q 
   =  

= +    and 
45 ,90 , 135

ILM ILMq q
 =   

=    (III.A2) 

Quantities and orientations of the other constituents are extracted from well-documented papers for 

the four main disc regions (Acaroglu et al., 1995; Ebara et al., 1996; Skaggs et al., 1994; Holzapfel 

et al., 2005). Theses inputs required by the model are provided in Figure III.A2. 

 

   

                                             (a)                                                                   (b) 

Figure III.A2. Model inputs in terms of (a) quantities and (b) orientations for the different disc 

regions (bars: model inputs, symbols with standard deviation intervals: experimental data). 
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Appendix III.B. Multi-lamellae mechanics  

By separating chemical-induced volumetric and mechanical quantities, the macroscopic 

deformation gradient tensor F  is given from chapter I: 

 ( ) ( )
1

_ _ _ _

_0 _ 0

1,3... 2,4...

m m
i LM i LM i i ILM i ILM i

layer chem mech layer chem mech

i i

 
−

= =

= + F F .F F .F  (III.B1) 

in which 
_0 _0

i i

layer layer tissuez z =  is the initial volume fraction of a layer i with 
_ 0

i

layerz  the initial 

thickness of the layer i and tissuez
 
the tissue thickness. 

To consider the effective interactions between adjacent layers, the compatibility condition on the 

deformation gradients is introduced at the LM/ILM interfaces: 

 _ _ 1

0 0

LM i i ILM i i+=F . F .n n  (III.B2) 

where 
0

i
n  is the arbitrary unit vector between two adjacent layers in the initial configuration. 

From the first chapter, the macroscopic Cauchy stress tensor σ  is expressed as: 
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1
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m m
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in which i

layer  is the current volume fraction of a layer i: 
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where ( )deti i

chem chemJ = F
 
is the chemical-induced volumetric change. 

The stress equilibrium condition at the LM/ILM interfaces is given by: 

 _ _ 1LM i i ILM i i+=σ . σ .n n  (III.B5) 

where i
n  is the arbitrary unit vector between two adjacent layers in the current configuration. 

The initial thickness 
_ 0

i

layerz  of the layer i and the tissue thickness tissuez
 
are given by:  

 
1

_ _
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m m
LM ILM LM i ILM i
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i i

z z z z z
−

= =
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with _LM i

layerz  1,3,...i m=  and _ILM i

layerz  2,4,... 1i m= −  are the functions describing the LM thickness and 

the ILM thickness, respectively: 

 _LM i

layerz ai b= +  and ( )_ _ 1 _ 12 2ILM i LM i LM i

layer ILM LM layer layerz r z z− += +  (III.B7) 

where ILM LMr  represents the thickness ratio of the two zones and, a and b are constants calculated 

according to the maximum and minimum thicknesses of the annulus layers maxz  and minz : 

 
1

max minz z
a

m

−
=

−
 and minb z a= −  (III.B8) 

where m is the number of layers. 

For each disc region, structural parameters are extracted from well-documented papers (Tavakoli et 

al., 2017; Holzapfel et al., 2005) and are listed in Table III.B1. 

 

Parameters Regions References 

AO PO AI PI  

maxz   mm  0.76 0.42 0.86 0.46 Holzapfel et al. (2005) 

minz   mm  0.62 0.34 0.66 0.34 Holzapfel et al. (2005) 

ILM LMr   −  0.133 0.133 0.133 0.133 Tavakoli et al. (2017) 

Table III.B1. Structural parameters for the different disc regions. 
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A fully three-dimensional model of interpenetrating 

collagen fibrillar networks for intervertebral disc 

mechanics 11 

 

Abstract 

In this work, a fully three-dimensional model of the human intervertebral disc is proposed within 

a purely analytical framework in the final goal to create time and cost-efficient patient-specific 

models. Special functions are introduced to generate versatile disc geometries and anatomically 

accurate model taking into morphology regional variation. The complex interpenetrating collagen 

fibrillar networks are explicitly introduced in the three-dimensional model considering the regional 

variation throughout the disc. A quantitative evaluation of the predictive capabilities of the model 

shows a good agreement with compression experiments from the literature both for the overall 

disc stiffness and for the direct MRI kinematic fields. Model predictions are then performed and 

critically discussed on axially/torsionally loaded human lumbar discs. 

 

Keywords: Full disc model; Multiscale structure; Regional variation; Nucleus-annulus 

interaction. 

 

 

 

 

 

 
11 This chapter is based on the following paper: Tamoud, A., Zaïri, F., Mesbah, A., Zaïri, F., 2021. A fully three-

dimensional model of interpenetrating collagen fibrillar networks for intervertebral disc mechanics. Submitted. 
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IV.1. Introduction 

The complex structural organization of interpenetrating collagen fibrillar networks in the 

intervertebral disc has been only revealed and appreciated recently (Tavakoli et al., 2020a, 2020b). 

The disc presents a hierarchical lamellar structure in which nano-sized elastic fibers (NEF) connect 

both two micro-sized type-I oriented collagen fibers (OCF) of the concentric lamellae (LM) and 

two adjacent LM between them by crossing the inter-lamellar (ILM) ground matrix. Besides, the 

regional variation in organization of collagen fibrillar networks throughout the disc leads to a 

heterogeneous mechanics of the disc (Tamoud et al., 2021a). In the literature, a lot of disc models 

were proposed (Qasim et al., 2012, 2014; Shahraki et al., 2015; Castro et al., 2020; Subramani et 

al., 2020; Kandil et al., 2021; Komeili et al., 2021). A short overview shows that the disc is most 

naturally modeled using the finite element method. While the OCF network is commonly 

introduced in the current finite element models, the interpenetrating NEF network is still largely 

unappreciated and neglected. The consideration of the collagen fibrillar networks in disc modeling 

strategies is essential for an accurate prediction of the local and overall disc responses. To reflect 

the real disc mechanics, any model should also consider changes of the disc shape and size with 

the spinal level and age (Amonoo-Kuofi, 1991; Kim et al., 2013), the disc hydration state (Urban 

and Maroudas, 1981; Derrouiche et al., 2019) and the disc health state. The latter aspects are very 

attractive in the aim to create patient-specific models taking into account realistic 

structure/macrostructure features of each patient and disc changes under applied loadings at 

different levels including disc geometry and local degradation events. 

The main objective of this work is to formulate a fully three-dimensional model of a complete 

human intervertebral disc while taking into account the most recent discoveries about the 

interpenetrating collagen fibrillar networks and the structure-mechanics relationships of the 

annulus. The disc model is developed within a purely analytical framework in the final goal to 
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create time and cost-efficient patient-specific models. The predictions are used to predict the 

heterogeneous mechanics in the intervertebral disc under axial/torsion loading modes.  

The outline of the present chapter is as follows. Section IV.2 describes the theory considering 

general assessments of the tube-like solid mechanics along with specifities regarding disc structure 

and macrostructure. Predictions are presented and discussed in Section IV.3. Section IV.4 closes 

this chapter with concluding remarks.   

The following notation is used throughout the text. Tensors and vectors are respectively denoted 

by normal boldfaced letters and italicized boldfaced letters, while scalars and individual 

components of vectors and tensors are denoted by normal italicized letters. The superposed dot 

designates the time derivative.  

IV.2. Model  

IV.2.1. Tube-like kinematics 

This section provides the kinematics framework of the tube-like solid mechanics. The general 

theory is detailed by Ogden (1997) and Holzapfel et al. (2000) for arterial applications in which 

some adaptations to discs are here brought especially considering regional variations in 

morphology and in structure-property relationships. Combined axial/torsion loadings at the 

external boundary of the disc will be considered in the present theoretical developments as 

illustrated in Figure IV.1. An internal pressure simulating the nucleus swelling may be activated 

when the compression is considered (Shah et al., 1978; Derrouiche et al., 2020). The nucleus is 

referred as the central portion i = 0 and the annulus is seen as a multi-layered tube divided into n 

rings i = 1, … n. The half-disc topology is provided in Figure IV.2 in superior and sagittal views. 

In the initial configuration, the solid is referenced in cylindrical polar coordinates (R, Θ , Z): 

 ,i i i

inner outerR R R   ,  0,2   and 0,i iZ H    (IV.1) 
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where 
i

innerR  and 
i

outerR  denote the initial inner and outer radii of each ring, respectively, and iH  is 

the initial height. These anatomical features vary from a region to another according to the 

circumferential axe Θ .  

 

Figure IV.1. Axially/torsionally loaded functional spine unit (i.e. an intervertebral disc and two 

adjacent vertebrae) and related boundary conditions on the disc. 

 

 

Figure IV.2. Disc macrostructure in the polar coordinates. 
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The kinematics of an axially/torsionally loaded tube-like solid is given as follows (Ogden, 1997): 

 ( )1,i i i ir f R r −= ,
i

i
Z

H


 = +  and 

i i i

zz Z=  (IV.2) 

with 

 ,i i i

inner outerr r r    ,  0,2  and 0,i iz h     (IV.3) 

In the present work, 
i

innerr  and 
i

outerr  denote the current inner and outer radii of each ring, 

respectively, and ih  is the current height. The term   is the twist angle of the disc arising from 

the torsion and 
i

z  is the axial stretch applied in the z-axis. The quantity if  is a function dependent 

on the initial radius iR  of the ring i and the current radius 1ir −  of the adjacent ring 1i − .  

The deformation gradient tensor i
F  of each ring may be thus written as (Ogden, 1997): 

 
i i i i

i i

r r z z zi i i i i

r r z z
r

R R Z z Z
  

 



    
=  +  +  + 
    

F e E e E e E e E  (IV.4) 

where { rE , E , zE } and { re , e , ze } are the unit vectors in the initial and current configurations, 

respectively. 

The chemical-induced volumetric effects are also introduced via a chemo-mechanical coupling 

considering the multiplicative decomposition concept and the introduction of an intermediate 

configuration. The total deformation 
i i i

chem mech= F F F  is decomposed into chemical-induced 

volumetric and mechanical parts 
i

chemF  and 
i

mechF . 

The chemical deformation gradient tensor 
i

chemF  is expressed in each ring as follows: 

 
_ _ _

i i i i

chem chem r r r chem chem z z z    =  +  + F e E e E e E  (IV.5) 

where 
_

i

chem r , 
_

i

chem   and 
_

i

chem z  are the chemical stretches along the three polar directions r,   

and z, respectively. 
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Using Eqs. (IV.4) to (IV.5), the mechanical deformation gradient tensor 
i

mechF  may be expressed 

as: 

 
_ _ _ _

1 1 1i i i
i z
mech r r z z zi i i i i i

chem r chem chem chem z

r r r

R R H
  

 



   


=  +  +  + 


F e E e E e E e E (IV.6) 

The overall deformation gradient tensor annulusF  in the annulus may be calculated using a volume-

weighted average of the LM deformations _ _ _LM i LM i LM i

chem mech=F F .F  and the ILM deformations 

_ _ _ILM i ILM i ILM i

chem mech=F F .F : 

 
1

_ _

_ 0 _ 0

1,3... 2,4...

n n
i LM i i ILM i

annulus ring ring

i i

 
−

= =

= + F F F  (IV.7) 

in which 
_ 0

i

ring  is the initial volume fraction of a ring i . 

IV.2.2.  Annulus-nucleus interaction 

IV.2.2.1. Nucleus swelling 

When the disc is subjected to a compression, the nucleus swells (Figure IV.1). The latter may be 

introduced thanks to the chemical deformation gradient 0

chemF  in the nucleus: 

 ( )0 1chem = +F I  (IV.8) 

where   is the chemical expansion at the equilibrium state and   is a function of time 

( )1 exp t = − −  in which   is the chemical expansion rate.  

After a series of straightforward derivations, the nucleus actual radius 0r  is given by: 

 ( )
0

2
0 0

0

1chem

z

r R




+
=  (IV.9) 

in which ( )0 0det 1chem chem = −F  is the chemical-induced volumetric strain in the nucleus with 

( )0det 0chem F  the Jacobian of the deformation gradient tensor 0

chemF . 
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IV.2.2.2. Annulus swelling  

The annulus volumetric change due to the internal fluid variation is expressed by the chemical 

deformation gradient i

chemF . Considering fluid diffusivity anisotropy in annulus, the latter is 

expressed in chapter II as: 

 ( )
2

cos diag , ,
3

i i i i i i i i

chem r r z z       = +F I  (IV.10) 

where i

r , i

  and i

z  are again chemical expansions at the equilibrium state and, i

r , i

  and i

z  

are again functions of time ( ), , , ,1 expi i

r z r zt  = − −  in which i

r , i

  and i

z  are the chemical 

expansion rates. The term i  denotes the OCF angle with respect to the circumferential direction 

of the disc. 

After a series of straightforward derivations, the following expression is obtained for the function 

if  using the continuity condition between the adjacent rings ( 1i i

inner outerr r −= ) and the mechanical 

incompressibility: 

 ( ) ( )( ) ( )
2 2 2

1

,

1i
i i i ichem

inner outer inner outeri

z

f R R r




−+
= − +  (IV.11) 

where ( )det 1i i

chem chem = −F  is the chemical-induced volumetric strain in the ring i .  

The annulus is assembled by considering the effective interactions between adjacent layers via the 

compatibility conditions on the deformations i
F  and on the Cauchy stresses i

σ :  

 _ _ 1

0 0

LM i i ILM i i+=F . F .n n  and _ _ 1LM i i ILM i i+=σ . σ .n n  (IV.12) 

where 
0

i
n   and i

n  are arbitrary unit vectors at the LM/ILM interfaces in the initial and current 

configurations, respectively. 

In the absence of body loads, the equilibrium equations write as the spatial divergence of the 

overall Cauchy stress tensor σ : 
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 ( )div = 0σ  (IV.13) 

Considering the symmetry of the stress tensor T
σ = σ , Eq. (IV.13) can be re-written using the stress 

components in the cylindrical coordinate system as follows: 

 
d1

0
d

r rr rrrr rz rr

r r z r r r

        



 − − 
+ + +  + =

  
 (IV.14) 

From this equation and the boundary condition of the radial Cauchy stress 0i n
outer

i

rr r r


=
=  on the 

outer wall of the last ring of the annulus, the internal pressure of the nucleus 1i
inner

i

nucleus rr r r
 

=
= −

on the inner wall of the first ring of the annulus can be expressed dependent on   direction in the 

form (Holzapfel et al., 2000): 

 
10

2 d d

n
outer

inner

r i i
irr

nucleus i

r

r
r



 
 

−
=    (IV.15) 

IV.2.3. Disc macrostructure  

IV.2.3.1. Disc geometry  

As shown in the half-disc topology provided in Figure IV.2, we consider radial and circumferential 

variations of the geometry in order to propose anatomically accurate patient-specific models. For 

reasons of symmetry with respect to the sagittal plane of the disc, the nucleus initial radius 0R  was 

defined by the following special mathematical function by an angle Θ  between the anterior region 

( 0)Θ =  and the posterior region ( )Θ =  following the direction Θ  as illustrated in Figure IV.2: 

 ( )( )
( )

4
0 0 1

1 1 1
1

frontal R R R

f
R R f f f H f H

f


  

 

   −
= + − − + +     −    

 (IV.16) 

in which H  is the Heaviside function: 

 
2

1
3

H


=   and 

2
0

3
H


=   (IV.17) 
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The function f  is expressed as: 

 

2
2

exp
3

f



  

= − −     

 (IV.18) 

The term Rf  is a shape factor of the nucleus given by the ratio between the sagittal and frontal 

initial radii 0

sagittalR  and 0

frontalR : 

 

0

0
1

sagittal

R

frontal

R
f

R
= −  (IV.19) 

In the limit case 0 0

sagittal frontalR R= , Eq. (IV.16) becomes 0 0

frontalR R=  and the disc has a circular basis.  

The initial radius iR  in each ring is calculated as follows: 

 
0

1 2

i
i k
outer

k

t
R R

=

= +  (IV.20) 

in which kt  is the ring thickness. The continuity condition between the adjacent rings writtes 

1i i

inner outerR R −=  (see Figure IV.2).  

IV.2.3.2. Thickness regional variation 

The thicknesses of the LM and ILM layers are given by the following linear equations: 

 LM

i t tt a i b= + for 1,3,5...i n=  (IV.21) 

 ILM LM

i ILM LM it r t= for 2,4,6... 1i n= −  (IV.22) 

where 
ILM LMr  represents the thickness ratio of the ILM and LM zones and, ta  and tb  are functions 

expressed as: 

 
( ) ( )

( )1

PO PI AI AO AO AI

t

t t t t t t
a

n

 



− + − + −
=

−
 (IV.23) 

 
( )PI AI AI

t

t t t
b a

 



− +
= −  (IV.24) 
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in which POt , PIt , AOt  and AIt  are the regional ring thicknesses. The terms AOt  and POt  denote the 

thicknesses for the outer side of the ring i n= , respectively, in the anterior region ( 0) =  and the 

posterior region ( ) =  whereas the terms AIt  and PIt are their counterparts for the inner side of 

the ring 1i = . The linear interpolation is performed with an angular increment   of 1°. The same 

increment is fixed for all the other spatial discretizations in the circumferential direction. Note that 

the radial disctretization is fixed by the total number of layers n. 

IV.2.3.3. Height regional variation 

The regional variation of the disc height is taken into account using the following linear equation: 

 i

H HH a i b= +  (IV.25) 

with  

 
( ) ( )

( )1

PO AI AO PI AO AI

H

H H H H H H
a

n

 



+ − − + −
=

−
 (IV.26) 

 
( )PI AI AI

H H

H H H
b a

 



− +
= −  (IV.27) 

in which POH , PIH , AOH  and AIH  are the regional disc heights.  

The final model takes into account the non-symmetry both in thickness and in height in order to 

propose anatomically accurate representations.  

IV.2.4.  Disc structure 

IV.2.4.1. Constituents  

As illustrated in Figure IV.3, the disc collagen fibrillar networks are decomposed into OCF and 

(inter-fibrillar and inter-lamellar) NEF both superimposed into the extracellular matrix (ECM). 

The volume fractions of these different solid constituents are calculated as follows: 

 
_ 0

1

ECM

ECM

chem





=

+
, 

_ 0

1

OCF

OCF

chem





=

+
 and 

_ 0

1

NEF

NEF

chem





=

+
 (IV.28) 
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in which 
_0ECM , 

_ 0OCF  and
 _ 0NEF  are the volume fractions at the chemical equilibrium state and, 

( )det 1chem chem = −F  is the chemical-induced volumetric strain. The volume fraction of the fluid 

phase 
fluid  corresponds to 1fluid ECM OCF FCN   = − − − . 

 

 

Figure IV.3. Disc structure decomposition into ECM (along with fluid) and interpenetrating 

collagen fibrillar networks at the nanoscale (NEF) and at the microscale (OCF). Contour plots in 

the superior view of the disc show the regional dependent quantities in terms of fluid phase 

fraction 
fluid , collagen fraction 

coll NEF OCF  = +  and ECM fraction 1ECM fluid coll  = − − . 

The regional variation in quantities was taken into account using linear interpolations similar to 

those introduced above for the macrostructure features. Figure IV.3 provides the regional 

dependent quantities in the form of contour plots in the superior view of the disc. 
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IV.2.4.2. Hierarchical fibrillar structure 

The interpenetrating collagen fibrillar networks are spatially disposed in the model using two 

representative angles with respect to the global benchmark of the disc. The angles i  are 

introduced to dispose the micro-sized OCF with respect to the circumferential direction of the disc 

with alternate orientations between successive lamellae. The angles i  is introduced to dispose 

the nano-sized NEF network with respect to the radial direction in the OCF parallel plane. 

The OCF in each LM ring is described geometrically by the unit vector i
a  expressed, in the current 

configuration, with respect to the global benchmark of the disc: 

 cos sini i i = +a z  (IV.29) 

In order to introduce the change in the OCF angle induced by the circumferential stretch  , a 

measure of the reorientation may be considered geometrically using the following relation: 

 
0arctan tan

i
i i

i

z

 


 
=  

 
 (IV.30) 

in which 
0

i  is the OCF angle with respect to the circumferential direction of the disc in the initial 

configuration (see Figure IV.4a) and i

z  is the axial stretch. 

The unit vector i
b  of each fibril

 
is expressed, in the current configuration, with respect to the 

global benchmark of the disc as follows: 

 sin cos cos sin cosi i i i i    b = r + + z  (IV.31) 

Again, the stretch-induced reorientation of the fibrils array is geometrically considered in each 

ring using the following expression: 

 ( )( ) ( )0 0 0 0arctan 1 90 tan 90 180 tan
i i

i i i i ir r

i i

f f

H H
 

    
 

  
= − −  + −  +    

  

 (IV.32) 
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in which 
0

i  is the fibrils angle in the initial configuration, i

r  is the radial stretch and i

f  is the 

stretch in the OCF direction. The term ( )H •
 
is the Heaviside function.  

     

(a) 

  

 

(b)   

Figure IV.4. Organization of the interpenetrating collagen fibrillar networks: (a) OCF angle in 

the form of contour plots in the superior view of the disc, (b) fibrils angle in the form of contour 

plots in the sagittal view of the disc. The fibrils spatial distribution is obtained by the linear 

interpolation of approximated Gaussian-type distributions in the outer and inner boundaries of 

PO (Posterior-Outer), AO (Anterior-Outer), PI (Posterior-Inner) and AI (Anterior-Inner) regions. 

The dashed lines in the Gaussian-type distributions are extracted from the work of Tavakoli et al. 

(2017, 2020). 
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The regional variation in network orientation was considered using linear interpolations with radial 

and circumferential variations as detailed in Appendix IV.A. The collagen fibrillar organization is 

provided in Figure IV.4 in the form of contour plots in the superior view of the disc for the OCF 

network and in the form of contour plots in the sagittal view of the disc for the NEF network. 

IV.2.5. Constitutive equations 

The local structure-mechanics relations are described using a recently developed fully three-

dimensional constitutive model (Tamoud et al., 2021a). The model efficiencies to reproduce 

regional dependent multiaxial mechanics till failure of the human lumbar disc annulus were shown. 

In what follows, we present a summary of the constitutive equations of both healthy and damaged 

components. 

IV.2.5.1. Healthy components 

In virtue of the chemo-mechanical coupling, the total free energy W is additively split into a 

mechanical part 
mechW  and a chemical part 

chemW :  

 
mech chemW W W= +  (IV.33) 

The mechanical free energy mechW  is obtained using as ensemble-volume averaged homogenization 

procedure a volume-weighted average of the different solid components: 

 
mech OCF ECM ECMW W W W  



  = + +  (IV.34) 

in which W  is the OCF free energy, W  is the fibrils network free energy and 
ECMW  is the ECM 

free energy. The quantity 
NEF   =  is the fibrils volume fraction calculated using the NEF 

volume fraction 
NEF  in a layer and the volume fraction of fibril bundles    in a layer dependent 

on   with 1


 = . 
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The different free energies in Eq. (IV.27) are expressed by considering both collagen fibrillar 

networks and ECM as hyperelastic bodies with isotropic, homogeneous and incompressible 

features. The free energies W  and W  
may be expressed as a function of the fourth stretch 

invariants 2

4 mechI  = =.C .a a  and 2

4 mechI  = =.C .b b  of the right Cauchy-Green deformation 

T

mech mech mech=C F .F . To describe the ‘toe’-to-‘linear’ transition of the collagen response, two distinct 

relations are retained below and above *

,  : 

 ( ) ( )( )( )2
*1

, 4 , 2 4 , , ,

2

1
1 exp 1 1

2

C
W H I C I

C
          

 
= − − −  

 
 (IV.35) 

below *

,   and, 

 ( ) ( ) ( )
2

* *3
, 4 , 4 , 4 , , 4 , , , ,1

2

C
W H I I I I                    

 
= − − + −  

 
 (IV.36) 

above *

,  . 

The terms 1C , 2C  and 3C  are material constants, *

4 ,I    is the fourth stretch invariant for *

, ,    =

, ( )H •
 
is the Heaviside function that ensures only stretching of the collagen and, 

,   and 
,   

are functions that ensure continuity between ‘toe’ and ‘linear’ regions: 

 ( ) ( )( )2
* *

, 1 4 , 2 4 ,1 exp 1C I C I      = − −  (IV.37) 

 ( )( )( )2
* *1

, 4 , 2 4 ,

2 ,

exp 1 1
2

C
I C I

C
     

 




= − − −  (IV.38) 

The ECM free energy 
ECMW  is given by as a function of the first stretch invariant ( )1 tr mechI = C  

of the right Cauchy-Green deformation T

mech mech mech=C F .F : 

 ( )1

1
3

2
ECM ECMW G I= −  (IV.39)  

in which ECMG  is the ECM shear modulus. 



Chapter IV: A fully three-dimensional model of interpenetrating collagen fibrillar networks for 

intervertebral disc mechanics 

 

137 

The chemical free energy 
chemW  is expressed as follows: 

 ( )( )21
2

2

1
exp 1

2
chem fluid chem

K
W K

K
 = −  (IV.40) 

where 1K  and 2K  are material constants, 1K  and 1 2K K  being the initial and maximal volumetric 

stiffness values. 

The overall Cauchy stress tensor annulusσ  in the annulus may be calculated as: 

 ( ) ( )
1

_ _ _ _

1,3,.. 2,4,..

n n
i LM i LM i i ILM i ILM i

annulus ring mech chem ring mech chem

i i

 
−

= =

= + σ σ σ σ σ+ +  (IV.41) 

in which i

ring  is the current volume fraction of a ring i: 

 
( )

( )
1

1

1

i

chem ii

ring n
j

chem j

j

t

t





=

+
=

+
 (IV.42) 

The stress in the nucleus is given by Eq. (IV.15). 

IV.2.5.2. Damaged components 

The above free energies may be modified to consider the internal stiffness degradation due to the 

development of mechanical-induced damage (see chapter II): 

 ( ) ( ) ( )1 1 1mech OCF ECM ECM ECMW d W d W d W    


  = − + − + −  (IV.43) 

in which d  and d  are variables representing the damage events occurring within the 

interpenetrating collagen fibrillar networks and 
ECMd  is the variable representing the ECM 

damage.  

A continuous damage evolution is assumed over the entire loading history without healing 

possibilities. The progressive damage of each individual solid component (OCF, NEF and ECM) 

follows a two-parameter Weibull statistical distribution governed by their respective internal 

stress: 
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 1 exp

OCF

OCF

OCF

d






  
 = − − 
   

P
 0 1d   (IV.44) 

 1 exp

NEF

NEF

d








  
  = − −

  
  

P
 0 1d   (IV.45) 

 1 exp

ECM

ECM

ECM

ECM

d





  
 = − − 
   

P
 0 1ECMd   (IV.46) 

in which OCF , OCF , NEF , NEF , ECM  and ECM  are damage parameters. The term 

( )tr T=P P P  denotes the Frobenius norm of the effective first Piola-Kirchhoff stress P.  

A strong coupling exists between hydration and mechanical-induced damage (Werbner et al., 

2019). In ordert to consider the latter coupling, the chemical-induced volumetric strain 
chem  in the 

free energy (IV.40) is affected by the local damage events using the following expression (see 

chapter II): 

 ( )( )( ) ( )
1

det 1 1 1 1
n

chem chem ECMd d d
n

 



 

= − − − − 
 

F  (IV.47) 

IV.2.6.  Overall disc response 

For a known deformation state, the torsional couple tM  of the whole disc may be expressed as the 

additional contribution of the annulus and the nucleus 
_ _t t annulus t nucleusM M M= + : 

 ( )
1

2

_

0

2 d d

n
outer

inner

r

i i i

t annulus z

r

M r r



 =    and ( )
0

2
0 0 0

_

0 0

2 d d

r

t nucleus zM r r



 =    (IV.48) 

in which i

z  is the local shear stress component. 

For a known deformation state, the axial load annulusF  of the annulus may be expressed by: 

 
10

2 d d

n
outer

inner

r

i i i

annulus zz

r

F r r



 =    (IV.49) 
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The axial load F of the disc is obtained from the following formula:  

 ( )
10

2 2 d d

n
outer

inner

r

i i i i i

zz rr

r

F r r



 −  = −   (IV.50) 

in which i

zz , i

  and i

rr  are the axial, circumferential and radial stress components. 

IV.3. Results and discussion 

The model was entirely coded in MATLAB software. At this step of the model development, 

predictions on axially/torsionally loaded discs can be analyzed. The simulations were performed 

at a displacement rate of 0.01 mm/s and a twist rate of 0.1 °/s in order to maintain quasi-static 

loading conditions. The maximum ranges are changed according to the observed local fields in the 

disc core.  

IV.3.1.  Model inputs 

Table IV.1 provides the anatomical data used as direct inputs for a lumbar disc model geometry 

taken from cadaver disc images at the L1-L2 level of the Holzapfel et al. (2005) work. The annulus 

size is considered to be approximately 50% of the disc volume (Violas et al., 2007) and is 

subdivided into 15 different lamellae that are intercalated with 14 ILM. The base radius 0R  is 

calibrated from the cadaver disc images of Holzapfel et al. (2005) resulting in a ratio between the 

sagittal and frontal radii of 0 0

sagittal frontalR R = 0.68 with a frontal radius of 0

frontalR = 15 mm. The 

values of the OCF orientation (with alternating signs between successive lamellae), the collagen 

volume fraction and the fluid volume fraction are extracted from previous documented 

experimental findings (Skaggs et al., 1994; Acaroglu et al., 1995; Ebara et al., 1996) and are listed 

in Table IV.1.  
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 Regions References 

 AO AI PO PI  

Layer thickness [mm] 
AOt  

0.69 

AIt  

0.76 

POt  

0.38 

PIt  

0.40 

Holzapfel et al. (2005) 

Disc height [mm] 
AOH  

12.8 

AIH  

8.40 

POH  

8.00 

PIH  

7.20 

Holzapfel et al. (2005) 

OCF orientation [deg] /

AO + −
 

+25.7/-

22.1 

/

AI + −
 

+29.9/-

27.6 

/

PO + −

+49.3/-

50.1 

/

PI + −
 

+45.8/-

46.1 

Holzapfel et al. (2005) 

Collagen volume fraction [-] 
_coll AO

0.127 

_coll AI

0.087 

_coll PO

0.135 

_coll PI  

0.093 

Skaggs et al. (1994) 

 

Fluid volume fraction [-] 
_fluid AO

0.710 

_fluid AI

0.790 

_fluid PO

0.695 

_fluid PI  

0.800 

Acaroglu et al. (1995) 

and Ebara et al. (1996) 

Table IV.1. Disc macrostructure and structure features. 

The intrinsic material parameters, identified in the previous chapters, are listed in Tables IV.2 and 

IV.3. A linear interpolation is here achieved for the regional dependent fibers parameters using the 

formulation provided in Appendix IV.B. 

 

Constituents Parameters Values 

ECM 
ECMG  0.01  MPa  

ECM  2  −  

ECM  5.5  MPa  

NEF 
1C  12  MPa  

2C  0.2  −  

3C  1.5  MPa  

*

  1.7  −  

NEF  6  −  

NEF  400  MPa  

Swelling 
1K  0.14  MPa  

2K  0.0075  −  

Table IV.2. ECM, NEF and swelling parameters.  
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Parameters Regions 

AO PO AI PI 

1C   MPa  40 26 26 3 

2C   −  880 58 30 11 

3C   MPa  500 300 400 80 
*

   −  1.02 1.07 1.1 1.14 

OCF   −  5 5 5 5 

OCF   MPa  215 125 120 70 

Table IV.3. OCF parameters. 

IV.3.2.  Overall disc response 

The simulated load curve obtained on a healthy disc upon compression are compared in Figure 

IV.5a with available experimental observations taken from the literature (Virgin, 1951; Markolf et 

al., 1974; Adams et al., 1993). As far as we know, these papers are the only one that provide data 

on lumbar discs loaded till failure upon a displacement-controlled compression. Note that the exact 

level in the lumbar spine is not specified in these experimental works and important variabilities 

may exist regarding the disc health state of donor (age, degeneration…) and the testing protocol 

(loading conditions, environment…). In this regard, the predicted curve may be considered as 

acceptable since it falls through the experimental points. Nonetheless, when the damage process 

is introduced in the model prediction, the result underestimates the experimental points as observed 

in Figure IV.5b. When the OCF damage is excluded from the analysis, the overall disc response 

first follows the damaged disc response path and then converges progressively towards the healthy 

disc response path at higher applied displacements. Recall that the constitutive model has been 

identified at the scale of a unit lamella (stretched along the OCF direction) for the four main disc 

regions (PO, PI, AO and AI) (Tamoud et al., 2021a). It is clear that the passage from the structural 

unit to the whole macrostructure needs some adjustement to consider effective interactions 

between the different lamellae and even between the different networks by adjusting the damage 

severity to correct its effect on the overall disc stiffness. The latter statement holds true for the 
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interpenetrating network of fibrils for which identification has been carried out at the scale of 

multi-layered annulus stretched along the radial direction (Tamoud et al., 2021c). Whereas the 

fibrils in LM (inter-fibrillar fibrils) seems to play a minor role on the disc resistance, Figure IV.5a 

emphasizes the influential and decisive role of the NEF network in ILM (inter-lamellar fibrils) on 

the disc stiffness especially at low applied displacements. As shown in Figure IV.5b, when the 

NEF network damage in ILM is not taken into consideration, the overall response is first that of a 

healthy disc and then it diverges more and more as the applied displacement increases. It can be 

also observed that the ECM damage has a minor effect on the overall disc resistance. 

 

  

                                                    (a)                                                                   (b) 

Figure IV.5. Predicted load curves of the axially compressed disc in comparison to experiments 

(lines: model; symbols: experiments): (a) influence of the LM/ILM collagen networks, (b) 

influence of the damage events. 

IV.3.3.  Strain fields 

The predicted radial strains in the core of a compressed healthy disc are compared in Figure IV.6 

with the stereo-radiographic experimental data of Costi et al. (2007). The model results were 

averaged in different zones and then normalized by the applied displacement. Note that the Costi 

et al. (2007) data are typical results averaged for the asymmetric values in the right and left sides 
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of the sagittal plane. A weak regional variation is predicted but, except posterior and nucleus zones, 

the model provides acceptable predictions of the other disc regions.  

 

 

Figure IV.6. Predicted normalized radial strains (%/mm) in a disc compressed at 1.1 mm. The 

comparison to Costi et al. (2007) data is performed for different regions in which the local strains 

are averaged (A: Anterior, P: Posterior, AL: Anterior-Lateral, L: Lateral, PL: Posterior-Lateral, 

NP: nucleus pulposus). 

For different loading cases of combined axial/torsion loadings, the local strain components can be 

analyzed in Figures IV.7 and IV.8. Figure IV.7 shows the low strain components that appeared 

under torsion are extremely amplified when the nucleus is activated by the combined effect of a 

compression.  

Figure IV.8 highlights the very-low radial strains upon pure torsion and important values when the 

compression is applied. In the latter case, the ILM is found to severly swell whereas the LM 

shrinks. This phenomenon leads to an auxetic behavior in the radial direction (Tamoud et al., 

2021b). This volumetric feature of the lamellar structure is fundamental for the disc functionality 

for maintaining nucleus swelling and absorbing applied loads. Interestingly, the auxetic response 

is also influenced by the disc morphology as evidenced in Figure IV.9 in which the contour plots 

of a simplified disc version are presented. Actually, the heterogeneity of the strain fields is 

determined by the local structure-mechanics relations but also by the morphology. 
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Figure IV.7. Contour plots of the local axial, circumferential and shear strains zE , E  and zE  in 

axially/torsionally loaded discs. 

 

 
(a) 

 
(b) 

Figure IV.8. Contour plots of the local radial strain rE  in axially/torsionally loaded discs: (a) in 

ILM, (b) in LM. 
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(a) 

 
(b) 

Figure IV.9. Morphology influence on the local strains local axial, circumferential and radial 

strains zE , E  and rE  (in ILM and in LM) in axially compressed discs: (a) simplified disc 

morphology in circular basis with 0 0

sagittal frontalR R=  (all initial heights and OCF orientations in 

Table IV.1 are averaged), (b) actual disc morphology. 

IV.3.4.  Damage fields 

In this subsection, the damage fields for the different solid components (ECM, NEF and OCF) are 

analyzed in order to identify their respective role in the starting areas of failure modes under 

combined axial/torsion loadings.  

The ECM and NEF damage are presented both in LM and in ILM in Figures IV.10 and IV.11, 

respectively. The ECM and the network of inter-lamellar fibrils (in LM) of the anterior side are 

more likely damaged when the disc is compressed. The latter can be the sign of the starting areas 

of the annulus delamination failure mode. The nucleus-annulus interface is also the site of a 

damage zone (Figures IV.10b and IV.11b) due to the pressure difference between the two portions. 

When the disc is stretched, the highest damage zones are shifted from the anterior side to the 

posterior side. Compared to the NEF network in ILM, the damage of inter-fibrillar fibrils (in LM) 

exhibits a very low intensity with an important effect of the loading mode both for the intensity 
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and the extent. Whatever the loading mode, the highest ECM damage zones in LM are located in 

the posterior side. 

 
(a) 

 

 
(b) 

Figure IV.10. Contour plots of the ECM damage 
ECMd  in axially/torsionally loaded discs: (a) in 

LM, (b) in ILM. 

 

 

 
(a) 

 
(b) 
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Figure IV.11. Contour plots of the NEF damage 
NEFd  in axially/torsionally loaded discs: (a) in 

LM, (b) in ILM. 

Figure IV.12 shows the loading mode has a profound effect on the OCF damage. When the disc is 

compressed the highest OCF damage zones are mainly observed in mid-anterior/lateral anterior 

ring. The latter can be the sign of the starting areas of annulus circumferential tears. Combined to 

a compression, the twisted disc presents the highest OCF damage zones for the fibers oriented in 

twist direction with a progression from the AO side to the PO side. The alternate fibers are only 

damaged in a small area of the AO side. When the twisted disc is combined to a tension, the 

damage progression is reversed from the posterior side to the anterior side and, the damage of the 

alternate fibers is located in the PO region. The NEF network in ILM follows the same reverse 

compression/tension effect as shown in Figure IV.11. The latter may be due to the nucleus swelling 

effect but also to the regional difference in disc height.  

 

Figure IV.12. Contour plots of the OCF damage d  (in LM) in axially/torsionally loaded discs. 

IV.4. Conclusion 

In this work, we have presented a new and direct analytical method for the creation of 

intervertebral discs considering accurate morphology, multiscale structure (ECM proteoglycan 

macromolecules, interpenetrating collagen fibrillar networks and LM/ILM/nucleus interaction) 

and hydration-damage effects. A first quantitative evaluation of the disc model was presented 

using available experimental observations. The model was used to assess the local fields under 



Chapter IV: A fully three-dimensional model of interpenetrating collagen fibrillar networks for 

intervertebral disc mechanics 

 

148 

combined axial/torsion loadings and especially the damage areas where the risk of failure is the 

highest. 

The model can be improved by acting on the constitutive representation to take into consideration 

the age effects by biological coupling in order to assess the interaction with damage events. Other 

physiological movements could be introduced in further developments of the disc kinematics in 

order to propose quantitive predictions under more complex loading modes. 

Appendix IV.A. Structure regional variation 

IV.A.1. OCF regional variation 

The regional variation in OCF angle is taken into account using the following linear equation: 

 0

i a i b − −= + for 3,7,11...i n=  (IV.A1) 

 0

i a i b + += + for 1,5,9... 2i n= −  (IV.A2) 

with 

 
( ) ( )

( )

/ / / / / /

/

1

PO AI AO PI AO AI
a

n

       



+ − + − + − + − + − + −

+ −
+ − − + −

=
−

 (IV.A3) 

 
( )/ / /

/ /PI AI AI
b a

    



+ − + − + −

+ − + −
− +

= −  (IV.A4) 

in which 
/

PO + −
, 

/

PI + −
, 

/

AO + −
 and 

/

AI + −
 are the regional OCF angles. 

 

IV.A.2. NEF regional variation 

The volume fraction of a fibril in each ring i is given by: 

 

_ _

_

_

_

_

0 ,180

45 ,90 ,135

LM i ILM i

LM i

LM i

LM i

LM i

q q

q

q

q

 











 +
=  


= 


=   


 and 
_ _

_

0 0 ,180

45 ,90 ,135

ILM i ILM i

ILM i

q

q

 






=  


= 
=   



(IV.A5) 

where _LM iq  and _ILM iq  are the respective total number of NEF in each ring i: 
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_ _ _

0 ,180

LM i LM i ILM iq q q 

   =  

= +    and 
_ _

45 ,90 , 135

ILM i ILM iq q
 =   

=    (IV.A6) 

The quantities _LM iq  and  _ILM iq  are descibed using Gaussian probability density functions: 

 ( )( )2_ _ _expLM i LM i LM iq     = − −  and ( )( )2_ _ _expILM i ILM i ILM iq     = − −  (IV.A7) 

where _LM i

  and _ILM i

  denote the respective peak values of each fibrils bundle   = {0°, 45°, 

90°, 135°, 180°} (Figure IV.4): 

 _

_ _

LM i LM LMa i b     = +  and _

_ _

ILM i ILM ILMa i b     = +  (IV.A8) 

and, _LM i

  and _ILM i

  are unitless scale factors: 

 _

_ _

LM i LM LMa i b     = +  and _

_ _

ILM i ILM ILMa i b     = +  (IV.A9) 

The terms ,

_

LM ILMa   and ,

_

LM ILMb   are expressed as a function of the posterior peak values ,

_

LM ILM

PO  

and ,

_

LM ILM

PI  ( = ) of the outer ring i n=  and the anterior peak values ,

_

LM ILM

AO  and ,

_

LM ILM

AI  (

0 = ) of the inner ring 1i = : 

 
( ) ( )

( )

, , , , , ,

_ _ _ _ _ _,

_
1

LM ILM LM ILM LM ILM LM ILM LM ILM LM ILM

PO AI AO PI AO AILM ILMa
n

     

 

       



+ − − + −
=

−
 (IV.A10) 

 
( ), , ,

_ _ _, ,

_ _

LM ILM LM ILM LM ILM

PI AI AILM ILM LM ILMb a
  

   

    



− +
= −  (IV.A11) 

The terms ,

_

LM ILMa   and ,

_

LM ILMb   are expressed as a function of the posterior and anterior scale factors 

,

_

LM ILM

PO , ,

_

LM ILM

PI , ,

_

LM ILM

AO  and ,

_

LM ILM

AI : 

 
( ) ( )

( )

, , , , , ,

_ _ _ _ _ _,

_
1

LM ILM LM ILM LM ILM LM ILM LM ILM LM ILM

PO AI AO PI AO AILM ILMa
n

     

 

       



+ − − + −
=

−
 (IV.A12) 

 
( ), , ,

_ _ _, ,

_ _

LM ILM LM ILM LM ILM

PI AI AILM ILM LM ILMb a
  

   

    



− +
= −  (IV.A13) 



Chapter IV: A fully three-dimensional model of interpenetrating collagen fibrillar networks for 

intervertebral disc mechanics 

 

150 

Appendix IV.B. Material properties regional variation 

The regional variation of the (regional dependent) material properties is taken into account using 

the following linear equation: 
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in which POC , PIC , AOC  and AIC  are the regional material properties.  
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General conclusions and perspectives 

In this thesis, we have presented a physically-based model including realistic structural features in 

the material representation of the disc annulus. We have introduced features such as collagen 

orientation/content, interlamellar thickness and dimensional graduation along with the electro-

chemical activity of the soft tissue. The model successfully reproduced a series of experimental data 

on bovine tissues under free swelling, quasi-static stretching and relaxation. It was demonstrated 

that for the evaluation of the overall time-dependent response, it is fundamental to consider 

simultaneously the structural features and diffusion-mechanics effects on volumetric change, 

Poisson’s ratios and stress. The model was shown to be a powerful tool to better understand the 

annulus mechanics in relation to loading conditions, electro-chemical environment, intrinsic 

properties / proportion / orientation (if any) of constituents (ECM, fibers, fluid) and structural 

features.  

The model was further enriched to constitutively relate the structure at different scales and the 

multiaxial macroscopic response till failure in connection to volumetric effects and damage 

mechanisms. It was shown that the model captures quantitatively experimental observations 

including directional effects upon different loading histories. The model provides a useful tool for 

annulus failure estimate in relation to complex interactions between external loading mode, structure 

features, damage events and hydration. It was also used to predict the variation of the annulus 

stiffness and ultimate properties with both disc region and loading mode. The different loading 

modes were simulated and chosen to better understand the regional behavior until the failure of the 

solid components in interaction with the chemical-induced volumetric response. The capabilities of 

the model were analyzed and an acceptable agreement between predicted values and experimental 

data was highlighted.  
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A full disc model was finally constructed. The model represents a new and direct analytical method 

for the creation of intervertebral discs considering accurate morphology, multiscale structure (ECM, 

interpenetrating collagen fibrillar networks and LM/ILM/nucleus interaction) and hydration-

damage effects. A first quantitative evaluation of the disc model was presented using available 

experimental observations. The model was used to assess the local fields under combined 

axial/torsion loadings and especially the damage areas where the risk of failure is the highest. 

Other physiological movements could be introduced in further developments of the disc kinematics 

in order to propose quantitive predictions under more complex loading modes. The model could be 

improved by acting on the constitutive representation to take into consideration the age effects by 

biological coupling in order to assess the interaction with damage events. The model could be indeed 

used to better understand the tissue response changes during aging and degeneration in response to 

changes in the tissue composition. The present model can be thus considered as the stepstone for 

the long-term prediction of the disc dysfunctions. During different complex loading scenarios of the 

spine, the disc dysfunctions may occur either by: i) mechanical damage due to a high level of loads 

or relatively moderate loads repeated several times which cause damage accumulation, ii) by an 

age-related biological degeneration or by the cellular disorders, including the cell death, the 

production of inflammatory mediators and a shift towards catabolism. Nonetheless, it is difficult to 

identify or precisely model the disc failure taking into account the two causes of dysfunction at the 

same time. Since our study is based on the in-vitro annulus results, it cannot be directly extrapolated 

to the in-vivo disc response. Indeed, the understanding of the disc mechanobiology must be taken 

into account by the model considering especially nutrition and cellular activity along with 

degenerative aspects. The model could be then a real help to provide solutions for remodeling and 

self-healing response of the disc tissues. Moreover, the near-field direct local interactions within the 

collagen network and the ECM ought to be treated through either the incorporation of a 

supplementary energy term or a mean-field approach. 



 

 



 

 

Abstract 

The damage in annulus soft tissues is a complex multiscale phenomenon due to a complex structural 

arrangement of collagen network at different scales of hierarchical organization. A constitutive 

representation that considers the structural complexity to estimate annulus multiaxial mechanics till 

failure has not yet been developed. In the present PhD dissertation, a model, formulated within the 

framework of nonlinear continuum mechanics, is developed to predict deformation-induced damage 

and failure of annulus under multiaxial loading histories. After model identification using an 

elementary lamellar unit, the model predictability is verified for various multiaxial loading modes 

representative of the spine movement. The heterogeneous mechanics of a full human disc model is 

finally presented. 

 

Keywords: Multi-layered soft tissues; Intervertebral disc; Regional dependence; Multiscale 

structure; Multiaxial damage and failure; Constitutive modeling. 

 

 

Résumé 

L’endommagement dans les tissus souples de l'annulus fibrosus est un phénomène multi-échelle 

complexe dû à un arrangement structural complexe du réseau de collagène à différentes échelles 

d'organisation hiérarchique. Une représentation constitutive, considérant la complexité structurale, 

n'a pas encore été développée, pour estimer la mécanique multiaxiale de l'annulus jusqu'à la rupture. 

Dans la présente thèse de doctorat, un modèle, formulé dans le cadre de la mécanique non linéaire 

des milieux continues, est développé pour prédire l’endommagement et la rupture de l'annulus 

induits par la déformation sous des histoires de chargements multiaxiaux. Après identification du 

modèle sur une unité lamellaire élémentaire, le caractère prédictif du modèle est vérifié pour divers 

modes de chargement multiaxiaux représentatifs du mouvement de la colonne vertébrale. La 

mécanique hétérogène d’un disque humain complet est finalement présentée. 

 

Mots-clés : Tissus souple multicouches ; Disque intervertébral ; Dépendance régionale ; Structure 

multi-échelles ; Endommagement multiaxial et rupture ; Modélisation constitutive. 

 


