Plus spécifiquement, cette thèse aborde les questions climatologiques 3 suivantes :

• Comment regrouper des points qui possèdent des précipitations extrêmes d'intensité similaires ?

• Comment prendre en compte l'apparition simultanée de phénomènes extrêmes en des endroits distincts ?

• Le changement climatique impacte-t-il la structure spatiale des précipitations extrêmes ? Ces changements sont-il identifiables ?

Dans cette thèse, ces questions sont étudiées sous l'angle statistique. Plus précisément, on s'intéressera aux questions de recherche suivantes :

Question 1 Quel modèle parcimonieux construire pour estimer les quantiles extrêmes sur un large domaine spatio-temporel ?

Question 2 Quelle méthode de clustering et, plus spécifiquement, quelle distance utiliser pour construire des régions homogènes ?

Question 3 Comment gérer la dépendance spatiale dans la RFA, dans le respect de la théorie des valeurs extrêmes ?

Question 4 Comment regrouper spatialement des régions dans le cadre de différents scénarios ?

Ces questions de recherche ont été abordées dans trois articles (soumis) qui ont inspiré largement les chapitres 2 à 4.

.

.

3 Ici, le climat désigne les conditions météorologiques moyennes pour un endroit particulier et sur une longue période de temps, voir par exemple, https://public.wmo.int/en/about-us/ frequently-asked-questions/climate
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RÉSUMÉ FRANÇAIS

Comment le changement climatique impacte-t-il les extrêmes ?

"Il est sans équivoque que l'influence humaine a réchauffé l'atmosphère, les océans et les terres. Des changements rapides et généralisés se sont produits dans l'atmosphère, les océans, la cryosphère et la biosphère", ainsi commence le sixième rapport d'évaluation du Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) (IPCC, 2021). La mission de ce groupe, fondé en 1988 1 , consiste à faire un état des lieux des savoirs scientifiques, techniques et socio-économiques pour comprendre le changement climatique induit par l'activité humaine et les risques associés. En effet, depuis la révolution industrielle, les activités humaines basées sur les énergies fossiles sont devenues l'un des principaux facteurs de changement des écosystèmes et du climat, définissant ainsi une nouvelle ère géologique souvent appelée Anthropocène [START_REF] Crutzen | The "anthropocene[END_REF] ou Capitalocène [START_REF] Malm | The geology of mankind? A critique of the Anthropocene narrative[END_REF][START_REF] Campagne | Le capitalocène: aux racines historiques du dérèglement climatique[END_REF]. Le réchauffement global engendré par les émissions de gaz à effet de serre (GES) (ex. [START_REF] Reilly | Multi-gas contributors to global climate change: Climate Impacts and Mitigation Costs of Non-CO2 Gases[END_REF] provoque d'importants changements du système climatique, en particulier des extrêmes dans plusieurs régions du globe [START_REF] Field | Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change[END_REF]. Par exemple, de nombreux auteurs ont observé un changement dans l'intensité et la fréquence des pluies extrêmes. Plus précisément, au niveau mondial, la fréquence des précipitations extrêmes a augmenté depuis 1964 [START_REF] Papalexiou | Global and regional increase of precipitation extremes under global warming[END_REF]. En Europe, en Asie et en Amérique du Nord, le nombre de stations pluviométriques présentant une hausse significative de l'intensité du maximum annuel de précipitation est plus élevé que le nombre de stations qui présentent une baisse d'intensité [START_REF] Kim | Evaluation of precipitation extremes over the Asian domain: observation and modelling studies[END_REF][START_REF] Sun | A global, continental, and regional analysis of changes in extreme precipitation[END_REF].

L'étude des changements des précipitations extrêmes est basée sur deux éléments clefs, à savoir le choix d'un jeu de données pertinent et le choix d'une échelle spatiale adaptée pour étudier la structure des précipitations [START_REF] Giorgi | Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM[END_REF]itu, 2020).

1 http://www.ipcc.ch/site/assets/uploads/2018/09/ipcc_principles_fr.pdf (dernier accès: 11.16.2021) iii Résumé Table 1: Jeux de données étudiés dans ce manuscrit, leur type, leur échelle spatiotemporelle et leur étendue spatiale. GCM: modèle de circulation globale. Quelles données pour étudier l'impact du changement climatique sur les précipitations extrêmes ?

Les données doivent être choisies en fonction de l'échelle spatiale des phénomènes qu'on souhaite étudier tel qu'illustré à la Figure 1. Ce choix doit aussi prendre en compte l'horizon temporel considéré et l'objectif fixé. Par exemple, le changement climatique peut être étudié sous l'angle de ce qui a déjà changé et des tendances en cours, il faut alors utiliser des données "historiques" comme les observations ou les réanalyses. Les modèles de climat, quant à eux, seront utiles pour fournir de l'information sur les possibles changements à venir (voir par ex. [START_REF] Meehl | The coupled model intercomparison project (CMIP)[END_REF]IPCC, 2021). Chacun de ces jeux de données possède ses propres forces et faiblesses.

Par exemple, les observations issues de stations météorologiques représentent la quantité de pluie mesurée pour un jour donné. Elles pourraient donc constituer un ensemble de données de choix. Cependant, les observations issues de stations météorologiques ne mesurent pas exactement la quantité de pluie tombée (entre autres à cause de la précision instrumentale insuffisante ou de l'environnement du pluviomètre, voir [START_REF] Steiner | Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation[END_REF][START_REF] Fekete | Uncertainties in precipitation and their impacts on runoff estimates[END_REF]. De plus, les observations peuvent être sujettes aux données manquantes (par exemple, à cause de la détérioration des pluviomètres, voir [START_REF] Sattari | Assessment of different methods for estimation of missing data in precipitation studies[END_REF]. Enfin, le réseau de stations météorologiques est inégalement réparti à la surface de la Terre. Par exemple, dans certaines zones faiblement peuplées, il existe peu voire aucune station [START_REF] Kidd | So, how much of the Earth's surface is covered by rain gauges[END_REF][START_REF] Sun | A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons[END_REF].

Des grilles de données telles que les réanalyses (par exemple, ERA-5, voir Hersbach et al., 2020) fournissent des valeurs pour plusieurs variables climatiques en tout point du globe (y compris les océans). La construction de ces données est basée sur l'assimilation de données [START_REF] Huffman | Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information[END_REF][START_REF] Law | Data assimilation[END_REF]. Ce champ de recherche vise à combiner des observations et des modèles de prédiction pour décrire les états passé et présent de l'atmosphère. De par leur nature quadrillée, les réanalyses peuvent avoir tendance à sous-estimer les extrêmes (voir par exemple [START_REF] Westra | Global increasing trends in annual maximum daily precipitation[END_REF][START_REF] Faranda | An attempt to explain recent changes in European snowfall extremes[END_REF][START_REF] Hu | Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany[END_REF], pour des études portant sur des zones avec un réseau de stations météorologiques dense). Par ailleurs, elles reposent sur des données historiques et ne permettent pas de projection dans le climat futur. Seuls les modèles climatiques (modèles de circulation générale, GCMs) permettent une telle projection.

La sortie d'un modèle climatique consiste en un jeu de données sur une grille. Les GCMs possèdent différents niveaux de complexité mais visent tous à modéliser la circulation atmosphérique et océanique. Ils sont utilisés pour simuler sur plusieurs siècles les changements climatiques induits par un changement des conditions au bord (ex. le iv Résumé rayonnement solaire) ou de paramètres physiques (ex. émissions de GES). Ces émissions dépendent de la trajectoire prise par les populations humaines selon, par exemple, le niveau de végétalisation de l'alimentation humaine, les sources d'énergies utilisées et la croissance de la population. En terme de modèle climatique, ces trajectoires sont appelées scénarios et correspondent à des forçages (i.e. une paramétrisation) spécifiques des modèles. Par exemple, il est possible de modéliser le climat futur à l'horizon 2071-2100 en choisissant des scénarios pour lesquels la quantité de GES émise double d'ici la fin du siècle. Les scénarios RCP8.5 (IPCC, 2013) et SSP5-8.5 (IPCC, 2021), analysés dans le Chapitre 4, se basent sur cette hypothèse. Etant donné un scénario, deux GCMs peuvent conduire à des sorties différentes [START_REF] Kharin | Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[END_REF][START_REF] Westra | Global increasing trends in annual maximum daily precipitation[END_REF]. Le projet d'intercomparaison des modèles couplés (Coupled Model Intercomparison Project, CMIP) [START_REF] Meehl | The coupled model intercomparison project (CMIP)[END_REF][START_REF] Alexander | Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5[END_REF]) compare les performances de ces différents modèles et les combine pour détecter les tendances communes (voir e.g. Ul [START_REF] Ul Hasson | Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections[END_REF], pour l'analyse des précipitations dans les modèles CMIP5). En résumé, les GCMs permettent d'étudier les précipitations à l'échelle mondiale pour différents scénarios. Cependant, pour étudier les précipitations à une échelle spatiale plus fine, par exemple à l'échelle de la France, les GCMs possèdent une résolution trop grossière et les observation ou les réanalyses seront plus adaptés [START_REF] Poschlod | Ten-year return levels of sub-daily extreme precipitation over Europe[END_REF].

Ces trois types de données seront étudiées dans les différents chapitres de ce manuscrit tel que précisé à la Table 1. Le Chapitre 2 traite les observations de stations météorologiques en Suisse. Le Chapitre 3 se place à une échelle plus large, celle de l'Europe, et exploite les sorties du modèle de réanalyse ERA-5. Enfin, le Chapitre 4 considère l'échelle de la Terre et étudie les structures des futures précipitations via des sorties de modèles climatiques pour différents scénarios.

Qu'entend-t-on par structure spatiale ? Notion d'homogénéité

Le terme de structure spatiale peut désigner deux aspects des précipitations : l'intensité ou la structure de dépendance entre différentes entités spatiales (stations ou point de grille par exemple). En hydrologie, le regroupement de points (stations météorologiques ou points de grille selon les données considérées) est souvent effectuée sur le critère de l'intensité. En effet, l'analyse fréquentielle régionale (RFA) [START_REF] Dalrymple | Flood-frequency analyses, manual of hydrology: Part 3[END_REF] est basée sur la définition de régions homogènes2 pour l'intensité. Etant donné une zone d'étude (ex. la Suisse), R, une région homogène C est un groupe de points, s, dont les variables aléatoires de précipitation Y (s) sont égales en distribution à une normalisation près, à savoir

C = s ∈ R, Y (s) d = λ(s)Z(s) , (1) où d 
= signifie égalité en distribution, λ(s) est un scalaire positif et Z est un processus positif stationnaire en temps et en espace. De nombreuses méthodes proposent d'identifier v Résumé de telles régions. La plupart suivent l'approche développée par [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] qui considère les étapes suivantes : i) sélection de covariables qui expliquent les précipitations, ii) clustering des points avec des caractéristiques proches et iii) test de l'homogénéité des groupes.

Les hypothèses sous-jacentes nécessaires au bon fonctionnement de cette approche incluent la disponibilité des covariables, et des hypothèses de distribution et d'indépendance (pour les tests d'homogénéité).

Bien que très populaire, cette approche en trois étapes est limitée par la disponibilité des covariables, l'hypothèse de distribution et l'hypothèse d'indépendance. Ces dernières ne sont pas toujours vérifiées en pratique tel qu'illustré dans le Chapitre 2. Par ailleurs, la méthode d [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] ne prend pas en compte la dépendance entre les sites pour constituer les régions.

Des méthodes se concentrant uniquement sur la structure de dépendance, pour regrouper les points, existent dans différents domaines tels que la finance, le traffic routier, les flots de touristes ou l'hydrologie. Par exemple, [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] ont regroupé des stations météorologiques (précipitations) françaises à l'aide d'une approche non paramétrique en combinant un algorithme de clustering avec la distance du Fmadogramme [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] définie par

d = 1 2 E |F 1 (Y 1 ) -F 2 (Y 2 )| , (2) 
où Y i est une variable aléatoire continue et positive de fonction de répartition F i , i = 1, 2.

Le F-madogramme ne prend pas du tout en compte les lois marginales puisqu'il est basé sur une transformation des variables afin de les rendre uniformes. Il décrit la force de la dépendance entre deux points et est lié au coefficient de dépendance extrémal [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF]. [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] et plus tard [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] ont obtenu des régions homogènes spatialement cohérentes pour les précipitations en utilisant cette distance et sans inclure une quelconque information géographique. En résumé, les approches de clustering dissocient la structure de dépendance et les lois marginales. Ainsi, elles ignorent soit l'homogénéité des variables aléatoires, soit leur dépendance.

Objectifs de la présente thèse

L'un des objectifs de cette thèse consiste à développer et à étudier un algorithme de clustering qui ne nécessite pas de covariables et qui soit donc basé uniquement sur les données de précipitations. Contrairement à la méthode RFA classique, qui suppose que les précipitations sont distribuées selon une loi kappa, nous souhaitons mettre en place un algorithme non paramétrique. Par ailleurs, la dépendance est souvent ignorée dans la RFA. Or, prendre en compte la dépendance spatiale dans le clustering pourrait améliorer la cohérence spatiale des régions homogènes. Finalement, dans le contexte du changement climatique, il serait intéressant d'étudier le changement de forme des régions homogènes pour différentes trajectoires d'émission de GES. vi 1.3 Pdf of an EGPD(κ, σ, ξ) and a GPD(σ, ξ) with κ = 4, σ = 1, ξ = .5. Blue (resp. green) curve represents the EGPD (resp. GPD) pdf. . . . . . . . . at Engelberg weather station. In x-axis, the empirical quantiles. In y-axis, the quantiles estimated by fitting a kappa distribution. . . . . . . . . . . . . . . . . . . . 2.3 Switzerland elevation map (the scale is in meters) . . . . . . . . . . . . . 2.4 The y-axis represents the ratio ω for a EGPD(κ, σ, ξ), see Eq. (2.7). The
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INTRODUCTION

How does climate change affects extremes?

"It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred." here is the first headline statement of the last Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 2021). Created in 1988 4 , its mission is to put forward the scientific, technical and socio-economic information required to understand human-induced climate change and associated risks. More precisely, the Working Group I contribution to the IPCC Sixth Assessment Report assesses the physical science basis of human-induced climate change.

Indeed, since the early 19 th century, fossil fuels-based human activities have become one of the major forces of ecosystem and climate change (IPCC, 2021), defining a new geological era, often called Anthropocene [START_REF] Crutzen | The "anthropocene[END_REF]. Committed historians [START_REF] Malm | The geology of mankind? A critique of the Anthropocene narrative[END_REF][START_REF] Campagne | Le capitalocène: aux racines historiques du dérèglement climatique[END_REF] recently replaced the term Anthropocene by Capitalocene, arguing that the responsibility for this period of upheaval lies solely with capitalism -via the industrial revolution -and not with humanity as a whole.

The global warming caused by greenhouse gas (GHG) emissions (e.g. [START_REF] Reilly | Multi-gas contributors to global climate change: Climate Impacts and Mitigation Costs of Non-CO2 Gases[END_REF] induces important changes in the climate system including weather and climate extremes, such as heavy precipitation, in several regions across the globe [START_REF] Field | Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change[END_REF]. For example, according to the World Weather Attribution 5 , heavy precipitation that occurred in mid-July 2021 in Germany and Belgium were made more likely by human-induced warming. These precipitation events triggered landslides and severe flooding [START_REF] Kreienkamp | Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July[END_REF] that led to extreme impacts, including more than two hundred fatalities.

Even in an unchanging climate, extreme precipitation would be irregularly distributed on the globe, both in terms of events (see, e.g. [START_REF] Otto | Challenges to understanding extreme weather changes in lower income countries[END_REF] and impacts. Impacts Introduction of extreme precipitation are uneven across and even within countries. [START_REF] Argüeso | Precipitation over urban areas in the western maritime continent using a convection-permitting model[END_REF] showed that urbanization in Jakarta and Kuala Lumpur increases precipitation by over 30%. In the same vein, [START_REF] Zhang | Regional patterns of extreme precipitation and urban signatures in metropolitan areas[END_REF] focused on extreme precipitation that occurred between 1975 and 2015 in Beijing metropolitan area and they showed that rainfall were more extreme and frequent in urban area than in close mountainous regions. In addition, risk associated with heavy precipitation not only depends on the intensity of the event but also on the exposure (e.g. density of population, presence of services and resources, infrastructures) and vulnerability (e.g. lack of capacity to adapt to an event) of the impacted zone [START_REF] Kron | Keynote lecture: Flood risk= hazard× exposure× vulnerability[END_REF][START_REF] Cardona | Determinants of risk: exposure and vulnerability[END_REF][START_REF] Zscheischler | Future climate risk from compound events[END_REF]. Thus urbanization may increase both the exposure, by densifying the population, and the vulnerability, by centralizing transport, information and care networks for example, or by artificializing the soil resulting in flash floods [START_REF] Hettiarachchi | Increase in flood risk resulting from climate change in a developed urban watershed-the role of storm temporal patterns[END_REF][START_REF] Rosenzweig | Pluvial flood risk and opportunities for resilience[END_REF]. Moreover, for a given area, consequences are also wealth-driven. The hurricane Harvey that hit Texas in 2017 induced torrential rains that resulted in the death of about 100 people and caused an estimated $100 billions in damage. The poorest people suffered the bulk of the damage as modest households were concentrated in flood-prone areas [START_REF] Ross | A disaster in the making: Addressing the vulnerability of low-income communities to extreme weather[END_REF]. It was also more difficult for them to relocate in the event of a disaster [START_REF] Boustan | The effect of natural disasters on economic activity in us counties: A century of data[END_REF]. Most of them lacked insurance, which can push them into long-term poverty.

Although precipitation extremes can occur at any time in an unchanging climate, [START_REF] Field | Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change[END_REF] noted that, when the observational data on lands had sufficient length to conclude, the frequency and intensity of heavy precipitation had globally increased. However, in general, extremes have various spatial and temporal scales [START_REF] Cattiaux | Defining single extreme weather events in a climate perspective[END_REF]. Unless otherwise stated, the literature on the precipitation extreme presented in this section is based on daily values. The spatial scale at which changes are studied may vary. In this section, the "global scale" stands for the Earth scope whereas the "regional scale" refers to some areas that can be continent or country-wide.

The mean annual maximum daily precipitation has significantly increased since the mid-20 th century over land and in the humid and arid regions of the globe [START_REF] Dunn | Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3[END_REF]. The probability of precipitation exceeding 50 mm/day increased since 1961 [START_REF] Benestad | A simple equation to study changes in rainfall statistics[END_REF]. Where data coverage is good enough, the percentage of weather stations with statistically significant increases in annual maxima daily precipitation is observed to be larger than the percentage of stations with statistically significant decreases over the global land as a whole and over North America, Europe, and Asia (see e.g. [START_REF] Sun | A global, continental, and regional analysis of changes in extreme precipitation[END_REF][START_REF] Kim | Evaluation of precipitation extremes over the Asian domain: observation and modelling studies[END_REF] and, since 1980s, over monsoon regions (East Asia and West Africa, see e.g. [START_REF] Zhang | Regional patterns of extreme precipitation and urban signatures in metropolitan areas[END_REF]. [START_REF] Papalexiou | Global and regional increase of precipitation extremes under global warming[END_REF] studied the largest values of daily precipitation on the period 1964-2013 and also showed a global increase in the frequency of extremes. In addition, they also highlighted zonal increasing trends in frequency in part of Eurasia, North Australia and the Midwestern United States. [START_REF] Weldon | Variability of rainfall characteristics over the South Coast region of South Africa[END_REF]; [START_REF] Kruger | Historical and projected trends in near-surface temperature indices for 22 locations in South Africa[END_REF] and [START_REF] Sun | A global, continental, and regional analysis of changes in extreme precipitation[END_REF] pointed up also an increase in extreme precipitation in Southern Africa. Other areas were found to present an increasing trend in the 10-year return level since the pre-industrial period (1850-1900) such as Northern Australia, Southeast of South America, Greenland and Iceland (see e.g. [START_REF] Dunn | Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3[END_REF][START_REF] Sun | A global, continental, and regional analysis of changes in extreme precipitation[END_REF]. Thus, an event that used to occur on average every 10 years, is now likely to occur about 1.3 times more often. More generally, Contractor et al. Introduction (2020) showed on a gridded dataset that light, moderate, and heavy daily precipitation has all intensified since 1950. In a nutshell, good observation station network enables to highlight increase in frequency and intensity of heavy precipitation over a majority of land regions. Heavy precipitation has increased on the continental scale over three continents that include North America, Europe, and Asia where observational data are more abundant [START_REF] Kidd | So, how much of the Earth's surface is covered by rain gauges[END_REF].

Global changes in annual daily maxima precipitation are proportional to mean global surface temperature increase (see e.g. IPCC, 2021). Every additional 0.5°C of global warming results in clearly detectable increases in the intensity and frequency of heavy precipitation. [START_REF] Trenberth | The changing character of precipitation[END_REF] gave physical reasons to explain why an increase in atmospheric temperature could also lead to an increase in extreme precipitation. They suggested that extreme precipitation adjust with the vapor water in the atmosphere (see also [START_REF] Allen | Constraints on future changes in climate and the hydrologic cycle[END_REF]. The water content was found to increase following the Clausius-Clapeyron rate of 7% for each • C of increase on both observational and modeling studies [START_REF] Kharin | Changes in temperature and precipitation extremes in the CMIP5 ensemble[END_REF]. In other words, the warmer the air, the more water vapor it can contain. However, the scaling between mean temperature increase and extreme precipitation depends on the spatio-temporal scale considered (e.g. hourly versus daily) [START_REF] Westra | Global increasing trends in annual maximum daily precipitation[END_REF]. For example, at local and regional scales, changes in extremes also strongly depend on regional forcings (for example, changes in land cover or aerosol emissions, see e.g. IPCC, 2021). Precipitation extremes can therefore experience some local variations compared to the global scale. For example, Australia's land is quite dry and this scaling rate can be lower, see e.g. O' Gorman and Muller (2010) or [START_REF] Westra | Detection of non-stationarity in precipitation extremes using a max-stable process model[END_REF], and for studies at a global scale, see [START_REF] Sherwood | Relative humidity changes in a warmer climate[END_REF] and [START_REF] Simmons | Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets[END_REF] . By contrast, [START_REF] Utsumi | Does higher surface temperature intensify extreme precipitation[END_REF], [START_REF] Ban | Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster[END_REF], [START_REF] Kendon | Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale[END_REF], [START_REF] Helsen | Consistent scale-dependency of future increases in hourly extreme precipitation in two convection-permitting climate models[END_REF] and [START_REF] Fowler | Anthropogenic intensification of short-duration rainfall extremes[END_REF] studied humid areas where this Clausius-Clapeyron scaling rate was exceeded.

Studying changes in precipitation extremes relies on two essential elements: appropriate datasets (to detect and project changes) and the choice of an appropriate spatial scale to study either global or regional changes [START_REF] Giorgi | Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM[END_REF]itu, 2020). The two following sections present the literature that deals with these issues.

What kind of dataset to study changes in extreme precipitation? Note that they do not perfectly measure the precipitation that actually fell (due to e.g. instrumental precision, type of rain gauge, slope or wind intensity, see [START_REF] Steiner | Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation[END_REF][START_REF] Fekete | Uncertainties in precipitation and their impacts on runoff estimates[END_REF]. Moreover, observations are subject to missing data (due to e.g. deterioration of raingauges, see e.g. [START_REF] Sattari | Assessment of different methods for estimation of missing data in precipitation studies[END_REF]. Eventually, in sparsely populated areas, there are few, if any, weather stations [START_REF] Sun | A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons[END_REF]. As a consequence gauge measurement networks have a very variable resolution depending on the location (see e.g. Figures 1 in [START_REF] Kidd | So, how much of the Earth's surface is covered by rain gauges[END_REF][START_REF] Cornes | An ensemble version of the E-OBS temperature and precipitation data sets[END_REF], for global and European networks respectively). Gridded datasets based on the interpolation of observations can uniformly cover wide areas [START_REF] Dunn | Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3[END_REF][START_REF] Contractor | Rainfall Estimates on a Gridded Network (REGEN)-a global land-based gridded dataset of daily precipitation from 1950 to 2016[END_REF]. For instance, E-OBS provides daily total precipitation over Europe (see e.g. [START_REF] Cornes | An ensemble version of the E-OBS temperature and precipitation data sets[END_REF]. In such datasets, precipitation values are computed from interpolated station data. As a consequence, in area with few weather stations, precipitation intensities are smoothed. In particular, this kind of dataset tends to underestimate extreme values in areas with low station density [START_REF] Cornes | An ensemble version of the E-OBS temperature and precipitation data sets[END_REF][START_REF] Rivoire | A comparison of moderate and extreme ERA-5 daily precipitation with two observational data sets[END_REF].

Other kinds of gridded dataset, such as reanalyses, exist. For example, ERA-5 [START_REF] Hersbach | The ERA5 global reanalysis[END_REF] provides various atmospheric variables (e.g. daily precipitation) for the whole globe, including oceans. Such datasets are built with data assimilation techniques based on weather forecast models. Data assimilation [START_REF] Law | Data assimilation[END_REF][START_REF] Huffman | Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information[END_REF] aims at combining observations and weather forecast models to describe the past and current state of the atmosphere. Reanalyses are therefore consistent with observations. Compared to interpolated observation gridded datasets (e.g. E-OBS), reanalysis outputs do not directly depend on the density of weather station networks and can provide variables in areas with sparse to no surface coverage [START_REF] Tarek | Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America[END_REF].
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However, the gridded nature of reanalysis datasets may imply an underestimation of extremes compared to observations (see e.g. [START_REF] Westra | Global increasing trends in annual maximum daily precipitation[END_REF][START_REF] Faranda | An attempt to explain recent changes in European snowfall extremes[END_REF][START_REF] Hu | Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany[END_REF], for some regions with dense weather station networks). Eventually, reanalyses are based on present and past observations and, therefore, they do not provide any information on the future climate. Consequently, to project future changes, GCMs are more appropriate.

A climate model is a numerical approximation of a complex system. It is based on systems of differential equations stemming from the fundamental laws of physics, fluid motion and chemistry. The most complex and complete models take into account the ocean-atmosphere coupling [START_REF] Pelletier | Etude mathématique du problème de couplage océan-atmosphère incluant les échelles turbulentes[END_REF][START_REF] Thery | Etude numérique des algorithmes de couplage océan-atmosphère avec prise en compte des paramétrisations physiques des couches limites[END_REF] and the simulation of biogeochemical cycles [START_REF] Emori | CMIP5 data provided at the IPCC Data Distribution Centre. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA)[END_REF]. GCMs include energy sources (e.g. solar radiation) and aim at modeling atmospheric and oceanic circulations. Their purpose is to numerically simulate changes in climate as a result of changes in some boundary conditions (e.g. solar radiation) or physical parameters (e.g. GHG emissions). They run for centuries and climatic variables (in our case, precipitation) are studied with a statistical point of view: the focus is on the random variable (r.v.) of precipitation. In this sense, they are to be differentiated from the numerical weather prediction/forecast models (for example, leveraged to build ERA-5 or, more generally in data assimilation). Indeed, weather is a depiction of the state of the atmosphere at one point in time ("tomorrow will be a warm day") whereas climate can be seen as a depiction of the "typical" weather over a period of time ("the mean precipitation in February, in Grenoble, is 51 mm"). Numerical weather prediction models were developed to predict the weather in the short (1-3 days) and medium (4-10 days) range future and strongly depend on the initial conditions. In practice, GCMs approximate the solution of a system of differential equations. Tridimensional meshes of several hundreds of kilometers on a side, see Figure 2 from NOAA6 , enable the implementation of this system on the globe to provide characteristics for each box, such as the mean temperature, wind speed, or daily precipitation, that will form the GCM outputs. Several GCMs have been developed by various research centres, see Table A.1 and Chapter 4 for examples.

As any numerical approximations, all GCMs overly simplify the complex system under study (here our climate system). More precisely, the meshes size or the choice of parameters in each model result in uncertainties in output variables (see e.g. [START_REF] Volosciuk | Extreme precipitation in an atmosphere general circulation model: impact of horizontal and vertical model resolutions[END_REF]. Their performances for past and present climate are assessed by comparing them with observations or reanalysis datasets to see how well they match (see e.g. [START_REF] Hulme | Validation of large-scale precipitation fields in general circulation models[END_REF]Kamworapan and Surussavadee, 2019, for precipitation). As climate varies in space, GCM output performance may differ according to the regions of interest. For example, CMIP6 models have deficiencies in simulating small-scale precipitation patterns, particularly in the tropical ocean but they capture well the large-scale spatial distribution of precipitation extremes over land [START_REF] Anav | Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models[END_REF][START_REF] Richter | An overview of the performance of cmip6 models in the tropical atlantic: mean state, variability, and remote impacts[END_REF]. Once, a GCM is assumed to adequately approximate the main features of past and present climate, it can be employed to simulate climate under various future scenarios. Scenarios are possible trajectories about how quickly human population will grow, what kind of energy will be spend, how breeding will extent, and the atmospheric conditions (and Introduction Figure 2: Physical processes taken into account in GCMs and example of a three dimensional globe discretization considered to solve equilibrium and dynamical equation systems. In the CMIP models studied in Chapter 4, the horizontal grid is uniform on lands and oceans, see Table A.1 for more details. Source: http://celebrating200years. noaa.gov/breakthroughs/climate_model/welcome.html (accessed 11.16.2021). therefore, climate forcing) that would result for each pathway. Each "trajectory" can be converted to a certain parameterization of the forcings in GCMs. For example, it is possible to simulate the climate of a counterfactual world by considering only the natural forcings (orbit effects, changes in solar activities or explosive volcanic eruptions such as Mont Pinatubo in 1991 see, e.g. [START_REF] Ammann | Statistical volcanic forcing scenario generator for climate simulations[END_REF]. Parameterizing the forcings also makes it possible to simulate the climate of a factual world where anthropogenic forcings (such as increasing GHG) are also taken into account. Future climate (e.g. on the period 2071-2100) can also be simulated but the forcings have to be chosen. For example, scenarios RCP8.57 for CMIP5 (IPCC, 2013) and SSP5-8.58 for CMIP6 (IPCC, 2021) will be analyzed in Section 4. They are both scenarios with very high GHG emissions that roughly double by 2100. Given a same scenario, each GCM can provide different climatic outputs [START_REF] Kharin | Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[END_REF][START_REF] Westra | Global increasing trends in annual maximum daily precipitation[END_REF]. This variability between models motivates the use of several of them in order to identify global trends. The Coupled Model Intercomparison Project (CMIP) [START_REF] Meehl | The coupled model intercomparison project (CMIP)[END_REF][START_REF] Alexander | Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5[END_REF] aims at comparing the performances of various GCMs (see e.g. Table A.1 and Chapter 4) and identifying common trend, for example in terms of precipitation [START_REF] Ul Hasson | Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections[END_REF]. In a nutshell, GCMs enable the study of extreme precipitation at a global scale and under various scenarios. They are studied in a statistical sense, i.e. to detect decadal trends in the atmospheric variables of interest. To study precipitation at a local (e.g. France) scale, GCMs reach their spatial limit and regional models or reanalysis datasets provide a finer spatial scale [START_REF] Poschlod | Ten-year return levels of sub-daily extreme precipitation over Europe[END_REF].
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In this manuscript, each contribution focuses on one of the three kinds of datasets introduced above (see Table 1.1). The first paper (Chapter 2) focuses on records from weather stations in Switzerland. To zoom out from the country scale to the continental one, the second paper (Chapter 3) conducts an analysis of European extreme precipitation patterns under the prism of a reanalysis dataset. To reach the global scale and study future climate, the last paper (Chapter 4) treats GCMs outputs annual daily maxima under different scenarios.

Studying extreme precipitation changes at an appropriate scale: What do we mean by spatial patterns?

To study extreme precipitation spatial patterns at an appropriate scale, one should first precise what is meant by patterns. Most of the time, the focus is set on either the intensity of precipitation, or either on the dependence structure between precipitation at various locations.

To reduce the dimensionality of extreme precipitation datasets and to identify spatial patterns, a common option in hydrology is the regional frequency analysis (RFA) [START_REF] Dalrymple | Flood-frequency analyses, manual of hydrology: Part 3[END_REF], see green disc in Figure 4. This approach is based on the definition of so-called homogeneous regions9 (see e.g. [START_REF] Forestieri | Regional frequency analysis of extreme rainfall in Sicily (Italy)[END_REF][START_REF] Boucefiane | Regional growth curves and extreme precipitation events estimation in the steppe area of northwestern Algeria[END_REF]Darwish et al., 2021, for recent works). They are regions where precipitation intensity cumulative distribution functions (cdf) are equal to a regional cdf up to a scaling factor. In practice, these homogeneous regions are leveraged to pool data and improve the inference of extreme quantiles. A wide variety of approaches attempted at identifying homogeneous regions, see e.g. Table 2 and Figure 3. Most of them built on the method proposed by [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] that worked in three steps: i) selection of covariates, ii) clustering of stations/grid points with similar features and iii) testing homogeneity of the group.

They are therefore based on three underlying hypothesis that are: covariate availability, distributional assumption and independence assumption.

Point i) is the one for which the literature proposes a greater diversity. In a nutshell, either the authors used prior expert knowledge to select appropriate covariates, either they developed variable selection tools. As an example, [START_REF] Zaifoglu | Regional frequency analysis of precipitation using time series clustering approaches[END_REF] regarded coordinates, elevation and mean annual precipitation recorded at weather stations as good descriptors of the annual maximum precipitation in Northern Cyprus. In the same vein, [START_REF] Wang | Identification of Design Rainfall Changes Using Regional Frequency Analysis: A Case Study in Ontario, Canada[END_REF] judges the distance of stations to the Great Lakes in Ontario relevant to characterize hourly precipitation maxima. To automatically combine and weight the role played by the covariates, [START_REF] Kar | Application of clustering techniques using prioritized variables in regional flood frequency analysis-Case study of Mahanadi Basin[END_REF]; [START_REF] Meddi | Spatial variability and cartography of maximum annual daily rainfall under different return periods in Northern Algeria[END_REF] applied principal component analysis (PCA) to geographical (e.g. elevation of the raingauge) Introduction and meteorological (e.g. annual average precipitation) covariates to find uncorrelated combinations that best explained the variability between stations. [START_REF] Ouarda | Regional flood frequency estimation with canonical correlation analysis[END_REF] selected physiographic (e.g. drainage area) and meteorological (e.g. mean precipitation) variables by canonical correlation analysis (CCA).

RFA

Step ii) consists of gathering stations or grid points according to the selected covariates. In the literature, usual clustering algorithms such as pam [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF]Rousseeuw, 1990), k-means (MacQueen et al., 1967) or hierarchical clustering (HCA, see e.g. [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF] are often applied to the selected covariates, see Section 2.1 for more details. As an illustration, [START_REF] Smith | Regional flood frequency analysis at the global scale[END_REF] applied hierarchical and then k-means algorithms to gather flood catchments with similar location, slope and average precipitation. [START_REF] Hassan | Regional Rainfall Frequency Analysis for the Luanhe Basin-by Using L-moments and Cluster Techniques[END_REF] hierarchically grouped weather stations of the LuanHe basin. On the other side, some author directly worked with administrative boundaries of Punjab (Pakistan, see [START_REF] Fawad | Estimation of wind speed using regional frequency analysis based on linear-moments[END_REF] or implicit geographic information in the Cevennes [START_REF] Neppel | Connaissance régionale des pluies extrêmes.: Comparaison de deux approches appliquées en milieu méditerranéen[END_REF]. A variation of step ii) consists of defining regions of influence (see e.g. [START_REF] Burn | Evaluation of regional flood frequency analysis with a region of influence approach[END_REF][START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF][START_REF] Asadi | Optimal regionalization of extreme value distributions for flood estimation[END_REF] instead of partitioning the stations in groups. In this case, an homogeneous region is defined with respect to a site and a station can therefore belong to several homogeneous regions. However, in this section, we will focus only on partitioning in homogeneous regions rather than regions of influence.

RFA

Step iii) consists of testing homogeneity of the delineated regions. [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] proposed to computed three tests to check the validity of the homogeneity assumption. This step is the only one to work with the precipitation data i.e. the variable of interest. These tests are based on a distributional assumption (precipitation are kappa distributed, see e.g. [START_REF] Hosking | The four-parameter kappa distribution[END_REF]. For more details, one can refer to sections 1.3 and 2.1.

However widely employed (see Table 2 and e.g. [START_REF] St-Hilaire | La régionalisation des précipitations: une revue bibliographique des développements récents[END_REF], the traditional RFA method is restricted by the availability and selection of covariates that requires expert knowledge. In particular, in a climate change framework, the main drivers of precipitation extremes might change and the relevance of chosen covariates might become obsolete. Some authors bypassed the covariate selection Step i). For example, [START_REF] Saf | Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey[END_REF] applied the k-mean algorithm to the first five estimated L-moments of annual maxima of flood discharge in West Turkey. Still, the kappa distribution and the independence hypothesis were needed to check the homogeneity in Step iii).

In a nutshell, to our knowledge, in the literature, RFA always requires at least homogeneity tests and therefore a distributional and independence assumptions. However, [START_REF] Viglione | A comparison of homogeneity tests for regional frequency analysis[END_REF] underlined that the distributional assumption of homogeneity tests might turn the problem into a goodness of fit issue, see also Section 2.1. They therefore deplored the theoretical incoherence. In addition, pairwise independence is assumed in most of the literature [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF][START_REF] Pansera | Clustering rainfall stations aiming regional frequency analysis[END_REF][START_REF] Goudenhoofdt | Regional frequency analysis of extreme rainfall in Belgium based on radar estimates[END_REF] . However, it is barely satisfied in practice (see e.g. [START_REF] Hosking | Parameter and Quantile Estimation for the Generalized Pareto Distribution[END_REF]. For example, a storm is expected to occur at several locations at the same time (Weiss et al., 2014a). Not accounting for dependence leads to two issues. First, [START_REF] Castellarin | Homogeneity testing: How homogeneous do heterogeneous cross-correlated regions seem[END_REF] showed that intersite dependence could reduce the power of homogeneity tests proposed by [START_REF] Hosking | Some statistics useful in regional frequency analysis[END_REF]. Therefore, assuming spatial independence might Introduction distort the detection of homogeneity when using homogeneity tests. Second, strongly dependent stations or grid points that should ideally be part of the same region may be classified into different regions. Steps to delineate homogeneous regions in RFA (traditional vs. method introduced in Chapter 2). Rx1day is the annual maximum daily precipitation), q x : x-quantile. The bold way corresponds to the methods developed in this manuscript (chapters 2 to 4). The other way is the traditional RFA path, see e.g Table 2.

The following paragraph presents various methods that deal with dependence based clustering (see purple disc of Figure 4). The literature on dependence clustering is sparse in environmental matters and comes from a wide variety of fields (e.g. finance, tourist flows or road traffic, see De [START_REF] De Luca | A tail dependence-based dissimilarity measure for financial time series clustering[END_REF][START_REF] Disegna | Copula-based fuzzy clustering of spatial time series[END_REF][START_REF] Kim | Evaluation of precipitation extremes over the Asian domain: observation and modelling studies[END_REF]. To model dependence, copulas (see e.g. [START_REF] Sklar | Fonctions de repartition an dimensions et leurs marges[END_REF][START_REF] Joe | Multivariate models and multivariate dependence concepts[END_REF][START_REF] Genest | Everything you always wanted to know about copula modeling but were afraid to ask[END_REF][START_REF] Gudendorf | Extreme-value copulas[END_REF] are often used. For instance, [START_REF] Kim | Evaluation of precipitation extremes over the Asian domain: observation and modelling studies[END_REF] applied steps i) and ii) of RFA (see also [START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF] but treated the third RFA step by fitting a multivariate Gumbel copula to obtain clusters in mobility networks. However, just as Introduction in the traditional RFA method, this strategy is restricted by the availability and selection of covariates. In addition, the distributional assumption on the dependence structure (Gumbel copula) is not necessarily satisfied in practice and, just as the homogeneity tests, the risk is to reject dependency hypothesis because of the poor goodness of fit of the parametric model. [START_REF] Disegna | Copula-based fuzzy clustering of spatial time series[END_REF]; De Luca and Zuccolotto (2021) bypassed steps i) and ii) by developing distances to identified dependent time series. Their approaches were based on multivariate extreme value distributions (EVDs). For instance, De Luca and Zuccolotto (2011) built a dissimilarity from the tail dependence coefficient estimates. This dissimilarity estimation relied on the estimation of a parametric bivariate copula of market indices. Bypassing the distributional assumption, [START_REF] Disegna | Copula-based fuzzy clustering of spatial time series[END_REF] empirically estimated the copulas. Then, their dissimilarity consisted of comparing this empirical estimate to the copula of full dependence. Other non parametric approaches, not explicitely based on copulas, were also proposed. For example, [START_REF] Janßen | k-means clustering of extremes[END_REF] and [START_REF] Drees | Principal component analysis for multivariate extremes[END_REF] adopted strategies based on exceedances (0.9-quantile for air pollutant concentration in [START_REF] Janßen | k-means clustering of extremes[END_REF]. After projection of the observations onto the unit sphere, they gathered points using k-means algorithm [START_REF] Janßen | k-means clustering of extremes[END_REF] or principal component analysis (PCA [START_REF] Drees | Principal component analysis for multivariate extremes[END_REF][START_REF] Fomichov | Detection of groups of concomitant extremes using clustering[END_REF]. [START_REF] Engelke | Sparse structures for multivariate extremes[END_REF] applied this PCA method to the 90% quantile of river flow of the Rhine basin in Switzerland (same dataset as in [START_REF] Asadi | Optimal regionalization of extreme value distributions for flood estimation[END_REF]. Eventually, [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] grouped French weather stations by combining machine learning techniques and the F-madogram distance [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] defined by

d = 1 2 E |F 1 (Y 1 ) -F 2 (Y 2 )| , (3) 
where Y i is a continuous r.v. (e.g. the r.v. of precipitation) with cdf F i , i = 1, 2. The F-madogram consists of converting marginal variables to uniform margins. However, this "uniformization" does not require to specify the margin distribution. The F-madogram is therefore completely marginal-free. In addition, it is closely linked to the pairwise tail dependence coefficient (see e.g. [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF]. In a certain sense, the F-madogram could be considered as a measure of the synchronicity of precipitation events. For instance, when computed on weekly maxima, a small value of F-madogram indicates that, most of the time, two sites experience extreme events the same weeks (but not necessarily the same day). [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] then took this distance as an input in pam algorithm. Later, [START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF] applied this clustering algorithm onto seasonal temperature maxima of E-OBS. [START_REF] Toreti | Precipitation extremes in the Mediterranean region and associated upper-level synoptic-scale flow structures[END_REF] also applied this clustering algorithm to delineate nominally homogeneous regions for seasonal maxima precipitation. Recently, [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] modified this algorithm by applying hierarchical clustering (see Section 1.3) rather than pam. They all obtained spatially coherent regions even though no geographical covariates were considered. In contrast to the RFA that is solely based on margins, the methods of [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] and [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] is fully decoupled from the margins. Indeed, they grouped weather stations according to their spatial dependence not accounting for the similarity/homogeneity of margins, see Section 4.2 for more details.

In a nutshell, studying the dependence structure of extremes requires uniformization [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] or, at least, standardization [START_REF] Engelke | Sparse structures for multivariate extremes[END_REF] of the margins. In particular, it is important to highlight that the key principle of RFA, scale-Introduction invariance, is never taken into account with dependence based algorithms. However, some authors modeled dependence within homogeneous regions. For example, [START_REF] Renard | A Bayesian hierarchical approach to regional frequency analysis[END_REF] and [START_REF] Wang | Incorporating spatial dependence in regional frequency analysis[END_REF] modeled intersite dependence with, respectively, elliptical and extreme copula. Eventually, [START_REF] Weiss | Modeling intersite dependence for regional frequency analysis of extreme marine events[END_REF] estimated a so-called regional dependence function. Likewise, it could be possible to consecutively apply, say, a RFA clustering algorithm and then a dependence-based algorithm to subdivide the homogeneous regions. Symmetrically, Weiss et al. (2014a) grouped offshore points using a distance that measures the synchronicity. This distance was based on the probability that a point experiences an extreme event knowing that the same extreme event is happening on another site. It therefore measured the dependence between sites. Intuiting that a similar behavior in terms of occurrence would result in a similar behavior in terms of intensity, Weiss et al. (2014a) then applied the traditional homogeneity tests to the regions. The regions obtained were therefore based both on dependence and homogeneity. However, the difficulty of distributional and independence assumption towards homogeneity tests still remained. To our knowledge, no clustering algorithm allows to detect spatial patterns of precipitation extremes by combining both dependence and homogeneity. We deal with this issue in Chapter 4. 
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Thesis objectives

Extreme events depend on various meteorological and physiographic features and their intensity can be highly variable in space. As a consequence, there is a need for algorithms that highlight physical processes inducing extreme precipitation. In other words, statistical methods are needed to group together points with similar extreme precipitation behavior. One of the difficulties lies in defining what is meant by "similar". Is it in terms of intensity? In terms of occurrence? When focusing on precipitation intensities, a first option would be to fit a distribution, e.g. EVDs, see Section 1.3.3, at each point and to gather points with similar extreme quantiles or tail index. However, when it comes to large datasets (e.g. CMIP models or ERA-5 outputs), the computational burden becomes too challenging to impose pointwise parametric families. For instance, fitting a gridded dataset that covers the Earth with a resolution of 5 • would require the estimation of more than 2500 tail parameters. Moreover, at-site estimation of tail shape parameter is known to be poorly robust (see e.g. [START_REF] Malekinezhad | Regional frequency analysis of daily rainfall extremes using L-moments approach[END_REF][START_REF] Jalbert | A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America[END_REF].

In RFA, the goal is to gather locations into homogeneous regions in which parameter pooling can lead to parsimonious regional models. In particular, we would like an homogeneous region to be made up of points with the same tail parameter without estimating it. Still, classical clustering approaches based on covariates, see e.g. Table 2, may be difficult to apply at the global scale. Indeed, the main drivers of extreme precipitation strongly differ regionally (e.g. orography in UK and distance to the sea in Australia, see respectively [START_REF] Darwish | New hourly extreme precipitation regions and regional annual probability estimates for the UK[END_REF][START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF]. Consequently, the objective of this thesis is to propose and study clustering algorithms that solely rely on precipitation and do not require the use of covariates. For these reasons, this PhD thesis develops a data-driven clustering algorithm to detect homogeneous regions (provided they exist). Contrary to the traditional RFA approach that assumes precipitation to be kappa distributed (for homogeneity tests), we do not want to impose any distributional parametric assumption. Furthermore, spatial dependence is often overlooked in RFA. Indeed, spatial independence of the data is wrongly assumed in homogeneity tests. This leads to inaccurate test powers. In addition, including spatial dependencies within clustering algorithms should improve the spatial coherence within the found homogeneous regions. A clustering algorithm with the same characteristics as those described above (non parametric and data-driven), but which, in addition, considers the pairwise spatial dependence strength is introduced in this PhD thesis. Eventually, in the current context of human-induced climate change, it would be interesting to analyze, based on GHG emission trajectories, possible future changes in the spatial distribution of extreme precipitation. More specifically, this PhD thesis addresses the following climatological10 questions:

• How to identify areas with similar extremal precipitation intensity behavior?

• How to take into account simultaneous occurrence of extremes at distinct locations?

• Does climate change impact the spatial structure of extreme precipitation? and can we identify these changes?

In this PhD thesis, we handle these questions from a statistical perspective. More precisely, we focus on these four statistical research questions:

Question 1 What model should we build to estimate parsimoniously and accurately high quantiles over a large spatio-temporal domain?

Question 2 What clustering method and distance can we use to gather homogeneous distributions?

Question 3 How to manage spatial dependence in RFA clustering and in compliance with extreme value theory (EVT)?

Question 4 How to cluster spatially regions under different scenarios?

These research questions were addressed in three papers (submitted) that analyzed three kinds of datasets (observations, reanalyses and GCM outputs). These papers inspired a large part of chapters 2 to 4. Paper I (Chapter 2) contributes to answer questions 1 and 2.

More precisely, it deals with Question 2 by proposing a simple and fast clustering algorithm based on precipitation data-only. This clustering algorithm thus avoids the selection of appropriate precipitation covariate, such as characteristics of the weather station. This method also bypasses the distributional and spatial independence assumptions required in homogeneity tests. It is then applied to observed daily precipitation in Switzerland (between 1930 and 2014). Paper I then addresses Question 1 by introducing a parsimonious regional model that enables the modeling of low, moderate and extreme precipitation over an area partitioned into homogeneous regions.

Paper II (Chapter 3) also discusses questions 1 and 2 by considering a reanalysis dataset over a wider area. European grid points of ERA-5 are therefore grouped according to the homogeneity of their daily precipitation distributions. The number of clusters and the model complexity are further discussed.

Paper III (Chapter 4) deals with Questions 3 and 4. First, a dissimilarity measure combines both homogeneity and pairwise spatial dependence strength. It is interpretable in the bivariate EVT framework. This dissimilarity measure, called RFA-madogram, is then plugged into a traditional clustering algorithm to cope with Question 3. Examining Question 4 requires the use of GCM outputs with different forcing parametrizations that are in compliance with IPCC emission scenarios. In Paper III, RFA-madogram is therefore computed on annual daily maxima precipitation of 16 CMIP models under two scenarios: natural-forcing-only or high GHG emissions. We then propose a method to handle multi-model partitions and compare the spatial patterns of heavy precipitation between two scenarios.

The three papers form a logical sequence and are closely linked, see 

Homogeneous region: definition

The core of this manuscript is the detection of homogeneous regions in the RFA framework. In this thesis, regions will designate groups of stations or grid points. In line with [START_REF] Dalrymple | Flood-frequency analyses, manual of hydrology: Part 3[END_REF]; [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF], we use a probability based definition of homogeneous regions. Given an area of interest (e.g. Switzerland), say R, a homogeneous region C is defined as a group of stations or grid points, s, with precipitation r.v. Y (s) equal up to a positive normalizing factor λ(s) that is site-specific

C = s ∈ R, Y (s) d = λ(s)Z(s) , (1.1) 
where d = means equality in distribution and Z is a positively-valued stationary process in time and space. In particular, the tail behavior of Z is common to all points in the homogeneous region. The cdf of Z is thus called the regional cdf. Although non parametric, this definition of homogeneity can be interpreted in the EVT framework, see Section 1.3. In Paper II, we use an alternative but equivalent definition based on the quantiles, see Section 3.2. By extension, in this thesis, two points i and j or their variables Y i and Y j or their cdf will be said to be homogeneous if their quantiles are proportional or, equivalently, if the two r.v. are equal within one positive normalization factor λ

Y j d = λY i . (1.2)
In particular, two homogeneous r.v. rescaled by their means are equal in distribution. For example, let's consider the weekly maxima at Muri and Lachen stations in Switzerland.

Their rescaled quantiles are almost equal, see Figure 4.3, meaning that the variables can be considered as homogeneous. Others stations may be homogeneous to Lachen. To identify them, it would be possible to look at about 18, 000 pairwise rescaled QQ-plots for all stations in Switzerland. Nevertheless, this approach is quite costly and not automatic at all. One of the aims of RFA is to automatically gather homogeneous sites in the same clusters.

Actually, regionalization proceeds in two stages. First, delineating homogeneous regions i.e. grouping points with homogeneous cdf. Second, pooling data from all weather stations in a homogeneous region to estimate the regional cdf, see Eq. (1.1). More specifically, delineation of regions, including the traditional approach of [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF], is based on clustering techniques. Modeling the regional heavy precipitation requires the choice of a parametric cdf. Section 1.3 recalls the general and existing statistical tools required for these two steps. In Section 1.2, we introduce the three datasets we analyze in this manuscript to tackle Question 1 to 4.

We show in Section 2.1 that the traditional method [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] is complex to set up on Swiss data (see Table 1.1) and, moreover, it does not provide satisfactory results. We also underline that the distributional assumption in homogeneity tests is not always satisfied in practice. Therefore, in Papers I, II and III, we introduce two simple and non-parametric algorithms to group stations in homogeneous regions, see sections 2.7, 3.8 and 4.7. These two algorithms are based on classical clustering techniques, themselves based on appropriate distance or dissimilarity. The novelty of our methods lies in the choice of the dissimilarities. The two dissimilarity measures we introduce are based on raw data. Compared to the traditional RFA approach, our two clustering algorithms have the advantage to not use covariate.

Data

To tackle questions 1, 2 and 3, in this manuscript, we will consider three kinds of datasets, see also Table 1.1, with various temporal and spatial scales:

• daily observations (over Switzerland, see e.g. [START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF],

• reanalysis (daily precipitation of ERA-5 with a resolution of about 25 km over Europe, see [START_REF] Hersbach | The ERA5 global reanalysis[END_REF] and

• GCMs (annual maxima of models with various native resolutions but aggregated to cells of 5 degrees, see [START_REF] Meehl | The coupled model intercomparison project (CMIP)[END_REF][START_REF] Naveau | Multi-model errors and emergence times in climate attribution studies[END_REF].

Observations of Swiss daily precipitation (Chapter 2) and European ERA-5 daily precipitation (Chapter 3) span the 1930-2014 and 1950-2018 periods respectively. Eventually, studying climate change requires decades or even centuries of data (see e.g. [START_REF] Tavakolifar | Evaluation of climate change impacts on extreme rainfall events characteristics using a synoptic weather typingbased daily precipitation downscaling model[END_REF] Figure 1). GCMs provide simulated data and they are therefore able to provide such a large amount of data. In addition, they provide precipitation data for various emission scenarios, including natural GHG emission only. In particular, it is possible to compare the future precipitation patterns in a worst-case scenario with the precipitation patterns in a counterfactual world without GHG emission. Therefore, GCMs are appropriate to address Question 4.

A country level example: Switzerland

Although small compared to its neighboring countries, Switzerland provides a good illustrative case for our regionalization methods (see sections 2.5 and 4.1) because its complex topography leads to a wide variety of precipitation patterns (see e.g. [START_REF] Schmidli | Mesoscale precipitation variability in the region of the European Alps during the 20th century[END_REF][START_REF] Umbricht | Seasonal variation of daily extreme precipitation in Switzerland[END_REF][START_REF] Isotta | The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data[END_REF][START_REF] Froidevaux | Exceptional integrated vapour transport toward orography: an important precursor to severe floods in Switzerland[END_REF][START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF]. MeteoSwiss (MeteoSwiss, 2019) network includes 666 weather stations that provided daily observations of precipitation from 1863 to 2014. As the network has grown over the years, the length of observation of the stations varies. As a consequence, some sites are subject to important missing data proportion. The dataset is sorted to consider only days for which all stations provide data. In addition, we extract the stations that have at least 30 years of data. Finally, we consider 191 weather stations with daily observations between 1930 to 2014. At each site, we focus on strictly positive Chapter 1 Toolbox (i.e. > 1 mm) precipitation (see e.g. [START_REF] Hofstra | Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature[END_REF]. This leads to years with around 128 wet days, in average.

A reanalysis dataset: ERA-5

To consider precipitation patterns induced by weather events with broader scales than frontal systems, see Figure 1, a larger dataset than Switzerland observations is required. Here, we focus on a dataset that includes Switzerland and we consider precipitation over European lands. Weather stations are unevenly distributed over Europe, as we want to cover the whole Europe, we need a gridded dataset. In Chapter 3, ERA-5, the latest reanalysis dataset from the European Center for Medium-Range Weather Forecasts (ECMWF, see [START_REF] Hersbach | The ERA5 global reanalysis[END_REF], provides precipitation at a hourly time resolution on the 1950-2018 period. We aggregate hourly precipitation to daily precipitation and focus on strictly positive (i.e. > 1 mm) precipitation. ERA-5 precipitation are interpolated to a regular .25 • -grid (thus consisting of more than 20,000 grid points over Europe).

An ensemble of GCMs: CMIP models

To deal with precipitation in a changing climate, we analyze 16 GCMs from the CMIP [START_REF] Meehl | The coupled model intercomparison project (CMIP)[END_REF] phase 5 and phase 6. They were developed independently by various research centers. For this reason, they can have distinct spatial resolutions. For example, the Canadian models (CaneESM2 and CanESM5) have a resolution of 2.8 • whereas the Japan Meteorological Reasearch Institute provides models with resolution 1.1 • (MRI-CGCM3 and MRI-ESM2-0). As our aim is to handle multi-model precipitation patterns, we study these model outputs on a coarser grid of resolution 5 • , see e.g. [START_REF] Naveau | Multi-model errors and emergence times in climate attribution studies[END_REF]. This leads to a dataset of 2592 grid points. We consider annual maxima of daily precipitation under two scenarios of radiative forcings: a natural-forcing-only (NAT) scenario and a doubling GHG emission worst-case scenario. Given that none of these scenario has actually happened, they can be considered as experiments. The NAT experiment produces a stationary climate and represents a world with no human GHG emission. in Chapter 4, it is therefore referred to as counterfactual experiment. It is considered on a period of 150 years [START_REF] Hannart | Causal counterfactual theory for the attribution of weather and climate-related events[END_REF]. The worst-case scenario (also called RCP8.5 in phase 5 and SSP5-8.5 in phase 6) corresponds to an average temperature increase (relative to 1986-2005) of about 4C • by 2100 (see e.g. Chap. 11 in IPCC, 2021). In Chapter 4, it is referred to as factual experiment. Data stemming from this factual experiment are considered on the 2071-2100 period (see e.g. [START_REF] Rajczak | Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region[END_REF][START_REF] Vicente-Serrano | Global characterization of hydrological and meteorological droughts under future climate change: The importance of timescales, vegetation-CO2 feedbacks and changes to distribution functions[END_REF].

Statistical tools

In this section, we recall suitable general statistical tools for both the RFA step (clustering techniques) and regional inference step (EVDs). Other existing but more specific tools will be recalled in chapters 2, 3 and 4.
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Clustering tools

Several clustering methods are available (for a review, e.g. see [START_REF] Jain | Data Clustering: A Review[END_REF]. They divide in two kinds: hierarchical clustering algorithm (HCA, see e.g. [START_REF] Mojena | Hierarchical grouping methods and stopping rules: an evaluation[END_REF] or partitioning. The k-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] and k-medoids or pam [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF] fall in the second category. For each algorithm (HCA, k-means, pam), the idea it to gather points that are close in compact and well-separated groups. Regardless of the algorithm used, a (dis)similarity measure between the points must be defined. It is a positive function with two variables which is null if and only if the two arguments are equal. Compared to a distance, it does not satisfies the triangle inequality. The widely-used clustering techniques recalled below only require the use of a dissimilarity measure [START_REF] Schubert | Fast and eager k-medoids clustering: O (k) runtime improvement of the PAM, CLARA, and CLARANS algorithms[END_REF]. Given a dataset and a clustering algorithm, two dissimilarities can provide two distinct partitions. Therefore, the selection of an appropriate dissimilarity is paramount to make the best use of the information available a priori. The notion of dissimilarity is developed and exemplified in Paper II, see Eq. (3.3), and Paper III, see Eq. (4.3). In this section, we simply refer to the dissimilarity measure as d.

HCA (see e.g. [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF][START_REF] Johnson | Hierarchical clustering schemes[END_REF][START_REF] Reynolds | Clustering rules: a comparison of partitioning and hierarchical clustering algorithms[END_REF] provides partitions for all numbers of clusters from the number of points N to classify to one. In other words, it provide partitions with increasing cluster size: from N singletons to one group that contains all the points (see e.g. [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF], for details on the algorithm). The partitions obtained at each stage are nested within each other, so it is possible to represent them as a tree (the dendrogram). A branch connecting two elements represents the merging of these two elements into one class. Its height is proportional to the distance between the merged elements (the closer the points are to each other, the shorter the branch, and therefore, the higher up the tree, the longer the branches). A key element of the HCA is the linkage method i.e. the way to compute the distance between two clusters (see e.g. [START_REF] Murtagh | Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?[END_REF]. Various linkage methods exists (see e.g. [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF][START_REF] King | Step-wise clustering procedures[END_REF][START_REF] Sneath | Numerical taxonomy. The principles and practice of numerical classification[END_REF], the most popular ones are single linkage, complete linkage, average linkage and Ward's. The first two consist in calculating the minimum/maximum distance between two different cluster points. The average linkage is merely the average distance between each pair of points from two clusters (see e.g. [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF]. The Ward's method consists in minimizing the intra-cluster variance at each fusion.

Contrary to HCA, pam and k-means are partitioning techniques that does not necessarily provide nested partitions. They are iterative algorithms that look alike. They both aim at finding k points m 1 , . . . , m k that minimize the total cost

j min m 1 ,...,m k d j,m , (1.3) 
where m i , i = 1 . . . k are the centers of the k clusters and d i,j is the dissimilarity between weather stations (or grid points) i and j. In k-means, d is often the Euclidean distance.
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Grouping points in clusters is therefore an optimization problem. pam and k-means are two iterative methods that aim at minimizing the total cost but their algorithms are different. We recall that k-means algorithm initializes k centers (deterministically or randomly), associates each point to the closest center and then updates each center as the isobarycenter of each group. It ends when the center update does not modify any cluster. Initialization plays a great part in the final outcome (see e.g. [START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF]. For this reason, various techniques aims to offset this sensitivity. For example, one can make several random initializations and choose the best (e.g. in terms of total cost function) final partition. Others methods propose to select the initial centers in a deterministic way [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF][START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF]. The pam algorithm is recalled in Paper I, see Section 2.3.3.

The main difference between pam and k-means lies in the definition of cluster centers m i . In k-means, a center is the isobarycenter of its cluster, in other words, the centers can be points that were not initially in the dataset. By contrast, in pam, a center (called medoid) is an actual point of the dataset. This essential difference in the definition of cluster centers has two consequences. First, pam partitions are easier to interpret than k-means ones, especially when it comes to extremes. Second, compared to k-means, pam algorithm is less sensitive to outliers (see e.g. [START_REF] Boleti | Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach[END_REF]. Albeit pam robustness, [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] highlighted its sensitivity to the spatial density of points. However, Swiss weather stations studied in Paper I are much more uniformly spatially distributed than the Australian ones studied by [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF], see e.g. Figure 2.1. In addition, in Paper II, we work with the gridded reanalysis dataset ERA-5 (see e.g. Section 3.3), and in Paper III, we analyze 16 gridded GCMs (see Table A.1). As a consequence, in these three papers, we work with evenly distributed (grid) points. All things considered, this sensitivity drawback does not hinder our use of pam algorithm. In this thesis, we will use pam algorithm.

Homogeneity tests and L-moments

Hosking and Wallis (2005) advised to test the homogeneity, i.e. the validity of Eq. (1.1) of delineated regions. These tests are based on the so-called L-moments that can characterize the shape1 of the precipitation probability distribution function (pdf). Usually, conventional moments can describe distributions. For instance, a Gaussian r.v. is characterized by its mean and its variance. Moments of higher orders k exist, they are defined as

E (Y -EY ) k , k = 2, 3, . . . (1.4)
However, when it comes to more heavily-tailed distributions, they are not always defined. For example, when the shape parameter ξ of a Generalized Extreme Value distribution (see Section 1.3.3) is higher than 1/3, the conventional moment of order 3 does not exist. [START_REF] Greenwood | Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form[END_REF] generalized these moments into the probability weighted moments (PWMs) that involved the cdf, F , and the survival function F = 1 -F , and defined as

E Y p F (Y ) k F (Y ) s , p, k, s ∈ N.
(1.5)
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Conventional moments correspond to the case k = s = 0. In this thesis, we focus on the case p = 1, s = 0 and denote α k (Y ) the PWM of Y of order k (see also Eq. ( 2.3)), and when self-evident merely α k . Provided the mean of Y is finite, α k is defined for all k ∈ N. [START_REF] Greenwood | Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form[END_REF] highlighted that the parameters of some EVDs could be expressed as functions of the PWMs (see also [START_REF] Diebolt | Improving probabilityweighted moment methods for the generalized extreme value distribution[END_REF][START_REF] Kojadinovic | Detecting distributional changes in samples of independent block maxima using probability weighted moments[END_REF]. For the sake of interpretation, [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] linearly combined the PWMs in so-called L-moments. For example, the four first L-moments were defined as

λ 1 = α 0 , λ 2 = 2α 1 -α 0 , λ 3 = 6α 2 -6α 1 + α 0 , λ 4 = 20α 3 -30α 2 + 12α 1 -α 0 .
Hosking and Wallis (2005) then advised to consider dimensionless L-moment ratios defined as

τ = λ 2 /λ 1 , τ k = λ k /λ 2 , k = 3, 4, . . .
τ describes the dispersion of the pdf, while τ 3 and τ 4 provide information about its asymmetry and peakedness. They are respectively named L-CV, L-skewness and Lkurtosis.

The homogeneity tests consist of assessing the dispersion of the estimated L-moments (for all sites in the region) around a theoretical regional value of these L-moments. More precisely, the statistics are defined by

H k = V k -µ V k σ V k , k = 1, 2, 3,
where µ V k and σ V k are the mean and standard deviation estimates of V k . The mean and standard deviation are estimated by simulating kappa distributed r.v. with same L-moments as those of the region considered. Statistics V k are defined by

  N i=1 n i i=1...N n i τ (i) -τ R 2   1 2 , for k = 1 (1.6) and N i=1 n i i=1...N n i τ (i) k -τ R k 2 + τ (i) k+1 -τ R k+1 2 1 2 , for k = 2, 3, (1.7)
where N is the number of sites in the region, n i is the record length, τ (i) , τ (i) 3 , τ (i) 4 are the L-moment ratio estimates at site i, and τ R , τ R 3 , τ R 4 are their regional counterparts. These Chapter 1

Toolbox statistics V k are supposed to be normally distributed, with null mean and unit variance if the region is homogeneous. However, it must be remembered that these homogeneity tests are based on an assumption of kappa distributed precipitation. As a consequence, a value far from 0 could reveal the non validity of this distributional assumption rather than a non-homogeneity of the cdf, see e.g. Section 2.1 and [START_REF] Viglione | A comparison of homogeneity tests for regional frequency analysis[END_REF].

Extreme Value Theory in the homogeneous case

When designing protective infrastructures, extreme value analysis aims at estimating the probability of more extreme events than those ever observed. For instance, designing a dam requires to know the intensity of precipitation that can be reached, say, over the coming century. This level of precipitation intensity is called the 100-year return level. Symmetrically, for this event, 100 years is called the return period. The average frequency of occurrence is the inverse of the return period between occurrences. For example, a T-year flood has a 1/T chance of being exceeded in any one year e.g. a 100-year flood has a 0.01 chance of being exceeded in any one year. Note that, despite the suggestion of the name "return period", a 100-year flood will not necessarily happen regularly every 100 years, or exactly once in 100 years. For example, a person who will live 80 years will have an 80% chance of seeing this 100-year event. Over any given 100-year period, a 100-year event may occur once, twice, more, or not at all. Second point, the estimated return period is a statistic: it is computed from a dataset (e.g. observations) and not always equal to its theoretical value. More precisely, in a 100 year-long dataset, an event can be observed exactly once without being the 100-year event. This point is of great interest because extreme events seldom are observed. Moreover, the data we have are often concentrated on a much shorter duration e.g. 30 years in ERA-5 (Chapter 3) or about 80 years for precipitations in Switzerland (Chapter 2). Furthermore, finding the amplitude of a 100-year event cannot be based on such records alone. For instance, an empirical approach can underestimate the probability of occurrence of extremes. For instance, we observe maxima of daily precipitation over the last 10 years. The empirical probability to exceed all these ten values is null. Instead, the probability of exceedance should be deduced from a statistical model to predict the magnitude of such an (unobserved) event.

Gamma distributions are widely used when it comes to modeling precipitation (see e.g. [START_REF] Katz | Precipitation as a chain-dependent process[END_REF]Vrac et al., 2007;[START_REF] Wilks | Statistical methods in the atmospheric sciences[END_REF]. However, this distribution is no longer relevant when it comes to modeling heavy precipitation. Indeed, this approximation of precipitation cdf by a gamma cdf leads to an underestimation of the return level of heavy precipitation (and therefore the impacts related with heavy precipitation , see e.g. [START_REF] Katz | Statistics of extremes in hydrology[END_REF][START_REF] Vrac | Stochastic downscaling of precipitation: From dry events to heavy rainfalls[END_REF]. To avoid this pitfall, a common approach in hydrology consists of not taking into account light and moderate precipitation and only focusing on the study of heavy precipitation i.e. the highest intensities (maximum over a duration or values above a threshold).

Extreme value theory [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF][START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF] provides a framework that allows extrapolation beyond the range of usually observed precipitation intensities. More precisely, when precipitation extremes are defined as block maxima [START_REF] Jenkinson | The frequency distribution of the annual maximum (or minimum) values of meteorological elements[END_REF] or threshold exceedances [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF], see Figure 1.1, EVT provides asymptotic results for their limiting cdf. The following section recalls these results on block maxima or threshold exceedances. In the last section, we summon a cdf that models precipitation from low to high intensities. In this section, the variable of precipitation at day t and location s (e.g. a Swiss weather station) is denoted Y t (s).

In univariate modeling, we will simply use the notation Y t . The key hypothesis in this section is that, given a site s, Y t (s) are independent and identically distributed (i.i.d.) with cdf F .

1.3.3.a Two classical EVT cdf

In this paragraph, mainly based on the work of [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF], we remind classical cdfs to model the extremal behavior of precipitation variables. Two traditional approaches consist of considering extremes as block (e.g. a year) maxima or threshold exceedances. In this section, block maxima will be considered in both the univariate and the bivariate case as in the numeric illustration of Paper III, see Section 4.3. Precipitation maximum2 over the period T (e.g. T = 7 when considering weekly max as in [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] is denoted M T = max t∈T Y t . We denote Y (1) , . . . , Y (T ) , the ordered statistics i.e. Y (T ) (s) is the largest intensity of precipitation over the T days considered. The cdf of M T could be estimated empirically. To consider that the worst has already happened is to consider the cdf of M T . By i.i.d., cdf of M T satisfies

P (M T ≤ x) = T t=1 P (Y t ≤ x) = F T (x).
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The limiting cdf of M T is

F T (x) -→ T →∞ 0 if x < x * 1 else,
where x * is the terminal point of F . In other words, the limiting cdf is degenerated. It is possible to make an analogy with sum of i.i.d. r.v.. Suppose EX 1 = m ∈ R and V ar(X 1 ) = σ 2 ∈]0; +∞[. The law of large numbers asserts that

XT := 1 T T t=1 X t a.s.
-→

T →∞ m.
In other words, limiting cdf of XT is degenerated. The question that arises is : Is it possible to find two sequences a T > 0 and b T such that

XT -b T a T
has a non-degenerated limiting cdf? The answer is positive, the cdf and the sequences (a t ), (b t ) are precised in the "central limit theorem".

In the same way, [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF]; [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une serie aleatoire[END_REF]; Von [START_REF] Mises | La distribution de la plus grande de n valeurs[END_REF] showed that if there exist two sequences a T > 0, b T and a non-degenerated cdf G s.t.

P Y (T ) -b T a T ≤ x = F T (a T x + b T ) d -→ T →∞ G(x), (1.8)
then, G has the following parametric form

G µ,σ,ξ (x) =          exp -1 + ξ x -µ σ -1/ξ + if ξ ̸ = 0 exp -exp - x -µ σ else, (1.9)
where µ, σ and ξ are respectively called the location, scale and shape parameters and

1 + ξ x -µ σ ≥ 0 if ξ ̸ = 0 and x ∈ R else.
The shape parameter drives the tail behavior. Positive values of ξ produce intense extremes whereas negative values indicate a bounded cdf support. The Generalized Extreme Value (GEV) cdf is a generalization of Gumbel (ξ = 0), Fréchet (ξ > 0) and Weibull (ξ < 0) cdf. Precipitation are often modeled with positive shape parameter (see e.g. [START_REF] Neppel | Connaissance régionale des pluies extrêmes.: Comparaison de deux approches appliquées en milieu méditerranéen[END_REF][START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF]. If F satisfies Eq. (1.8), F is said to belong to the domain of attraction of G µ,σ,ξ .

In various cases, modeling a few r.v. at the same time can be required (see e.g. [START_REF] Dupuis | Multivariate extreme value theory and its usefulness in understanding risk[END_REF]. Strong wind and heavy rainfall that may affect a particular location are expected to cause important damages. In the same vein, heavy precipitation impacting several nearby sites can lead to huge damage. Indeed, precipitation extremes rarely occur in spatial isolation (see e.g. [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] and, even worse, simultaneous precipitations extremes may increase the associated risk of flooding [START_REF] Davison | Statistics of extremes[END_REF]. For this reason, modeling various r.v., i.e.describing both the margins and the
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Chapter 1 dependence structure of precipitation extremes (e.g. annual maxima) between two sites could be appealing [START_REF] Dupuis | Multivariate extreme value theory and its usefulness in understanding risk[END_REF]. As an illustration, Figure 1.2 exemplified different dependence strengths (from strong dependence to independence) between two variables.

Studying bivariate extremes starts with the study of the limiting behavior of componentwise maxima. The r.v. of precipitation at two sites (Y t (s 1 ), Y t (s 2 ) are no longer studied independently of each other. We therefore consider the random vector Y t defined as

Y t = (Y t (s 1 ), Y t (s 2 )). We denote x = (x 1 , x 2 ) ∈ R 2 .
The random vectors Y t , t = 1, . . . , T are assumed to be i.i.d. with common cdf F . Similarly to the univariate case, if there exist two R 2 sequences (a T ), (b T ), with a T (s j ) > 0 for j = 1, 2 and G, a cdf with non-degenerated margins s.t.

P max t=1...T Y t -b T a T ≤ x = F T (a T x + b T ) d -→ T →∞ G(x), (1.10) 
then G is a bivariate extreme value cdf function and F is said to belong to the domain of attraction of G. In particular, margins of G are GEV distributed. To specify the dependency structure, we separate it from the margins. Without loss of generality, we can assume that the margins are unit Fréchet distributed [START_REF] Finkenstadt | Extreme values in finance, telecommunications, and the environment[END_REF] i.e. for i = 1, 2,

P (Y t (s i ) < z) = exp - 1 z , z > 0 A parametric form of the bivariate cdf is G(x) := P (Y t ≤ x) = exp [-V (x)] (1.11)
where V is homogeneous of degree -1. In other words,

V x a = aV (x)
, for any strictly positive scalar a.

For example, when the two components of Y t are independent, their dependence function is defined by

V (x) = 1 x 1 + 1 x 2
. By contrast, perfectly dependent components, with

Y t (s 1 ) a.s. = Y t (s 2 ), have a dependence function defined by V (x) = max 1 x 1 , 1 x 2 . More
generally, a wide variety of dependence strength and structure exists. For instance, the logistic family is able to model null to perfect dependence

V α (x) = 1 x 1/α 1 + 1 x 1/α 2 α , x > 0, α ∈ (0; 1) (1.12)
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The special case V α→1 (resp. V α→0 ) corresponds to independence (resp. prefect dependence). An illustration of several logistic dependence strengths is provided in Figure 1.2. Dependence structure can be modeled via copulas (see e.g. [START_REF] Dupuis | Multivariate extreme value theory and its usefulness in understanding risk[END_REF][START_REF] Genest | Everything you always wanted to know about copula modeling but were afraid to ask[END_REF] but we do not use them in this thesis. In addition, the dependence function can take into account covariates [START_REF] Mhalla | Non-linear models for extremal dependence[END_REF]. Homogeneity is all about margins proportionality. If two sites s 1 and s 2 are homogeneous, their quantiles are, by definition, equal up to a normalizing constant λ, see Eq. (1.1). Be it in the univariate or in the bi-variate GEV case, the homogeneity constraint only concerns the margins. In terms of cdf, scale-invariance translates into F 1 (x) = F 2 (λx) for all positive x in the domain of F 1 . Therefore, in terms of parameters, it corresponds to equality of shape parameters ξ 1 = ξ 2 and no constraint on the scale parameters σ i , i = 1, 2 that can be site-specific.

The block maxima approach is easy to implement but long time series are needed. For example, a 8400-day-long sample (e.g. 23 years) of observations will be condensed into a shorter sample of length 23, see Panel (a) of Figure 1.1 To model the tail of the precipitation pdf, another approach consists of considering exceedances [START_REF] Balkema | Residual life time at great age[END_REF]) over a threshold u. This threshold can be arbitrarily set, e.g. the .98-th quantile of positive precipitation at each site in [START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF] and Panel (b) of Figure 1.1. It can also be defined automatically (see e.g. [START_REF] Dupuis | Exceedances over high thresholds: A guide to threshold selection[END_REF][START_REF] Fukutome | Automatic threshold and run parameter selection: a climatology for extreme hourly precipitation in Switzerland[END_REF]. The limiting cdf for increasingly high threshold is linked to the survival function of the Generalized Pareto distribution (GPD) defined as where the scale parameter satisfies σ = σ + ξ(u -µ). As for the GEV distribution, the shape parameter ξ describes the tail behavior: if ξ < 0, the distribution upper tail is bounded; if ξ = 0 the distribution is light-tailed (e.g. Gaussian or exponential distribution [START_REF] Sibuya | Bivariate extreme statistics, i[END_REF][START_REF] Resnick | Extreme values, regular variation, and point processes[END_REF]; if ξ > 0, it is heavy-tailed. When modeling threshold exceedances by a GP D(σ, ξ), the scale-invariance constraint between two sites merely translates into the equality of their shape parameters ξ. The scale parameter can vary between sites.

Hσ,ξ (x) =    1 + ξ x σ -1/ξ + if ξ ̸ = 0 exp (-x/σ) else, (1.13) with 1 + ξ x σ ≥ 0 if ξ ̸ = 0 and x ∈ R
The two traditional approaches consist in modeling extremes as block maxima or peaks over threshold. However, in these approaches, most of the data is discarded (e.g. daily precipitation that are not the annual maxima, or precipitation with intensities below the threshold). The second difficulty of these approaches is the block size or threshold choice. Indeed, a large block (resp. threshold) ensures that the model well fits the data, but reduces the amount of available data. In brief, the choice of the block size or the threshold leads to a classical bias/variance trade-off. In addition, the RFA techniques we develop in Papers I and III, see sections 2.3 and 4.3, can both be applied to daily precipitation. As a consequence, we would like to model the whole spectrum of intensities and not only annual maxima or threshold exceedances, see sections 2.5.3 and 3.4.3.

1.3.3.b Modeling the whole spectrum of intensities

To model the full range of precipitation intensities, various approaches have been proposed [START_REF] Carreau | Stochastic downscaling of precipitation with neural network conditional mixture models[END_REF][START_REF] Papastathopoulos | Extended generalised Pareto models for tail estimation[END_REF]. For example, [START_REF] Carreau | A hybrid Pareto model for asymmetric fat-tailed data: the univariate case[END_REF] combined a Gaussian and a heavy-tailed (GPD) pdf in a hybrid Pareto model. The two main drawbacks of the resulting distribution is i) the existence of negative precipitation (due to the Gaussian part) and ii) the strong constraints required on the parameters, in particular on the shape parameter. [START_REF] Frigessi | A dynamic mixture model for unsupervised tail estimation without threshold selection[END_REF] also associated two pdf (one light-tailed and one heavy-tailed) by balancing the mixture with a weight function. The main advantage of this approach is the avoidance of a threshold selection step. However, it has many parameters that are difficult to estimate [START_REF] Frigessi | A dynamic mixture model for unsupervised tail estimation without threshold selection[END_REF][START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF]. In addition, the shape parameter ξ tends to be under-estimated and cannot be null [START_REF] Frigessi | A dynamic mixture model for unsupervised tail estimation without threshold selection[END_REF]. [START_REF] Rohrbeck | A spatio-temporal model for Red Sea surface temperature anomalies[END_REF] also introduced an extreme mixture model that combines GPD pdf with a Gaussian one. Their approach consisted in considering high (resp. low) values of the Read Sea surface temperature and modeling threshold exceedances of the r.v. (resp. the opposite of the r.v.) by GP distributions. Between the low and high thresholds that delimit the lower and upper tails, the temperature variable bulk was assumed to be normally distributed. This approach, just as the traditional threshold exceedance approach, required the choice of two thresholds. [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] proposed a model that bypasses the threshold selection. They introduced a smooth cdf that is able to model low, heavy and moderate precipitation with few parameters. By modeling low precipitation, they extend the models proposed by [START_REF] Papastathopoulos | Extended generalised Pareto models for tail estimation[END_REF]. Note that this model is developed for positive precipitation only and does not include modeling of dry days. Their extended Generalized Pareto Distribution (EGPD) is rooted Chapter 1 Toolbox in EVT. More precisely, EVDs not only models heavy precipitation (upper tail) but also small intensity precipitation (lower tail). The upper tail is simply modeled by a classic GPD with survival function Hσ,ξ , whereas the lower tail is model by a bounded EVD. The small values of daily precipitation r.v. Y t are modeled by considering Ỹt := -Y t . The conditional r.v. Ỹt + u| Ỹt < -u is then equal to Y t -u|Y t > u. For a threshold -u that is low enough (i.e. for u high enough), the survival function of Ỹt -(-u)| Ỹt < -u can be approximated by a GPD. As representing daily precipitation, Y t , is always non-negative and, a contrario, Ỹt is upper-bounded by 0. As a consequence, its shape parameter is negative. Therefore, it can be rewritten in -κ, with κ > 0. For positive x, the survival function is

P Ỹt > x| Ỹt < -u = P Ỹt + u > x + u| Ỹt < -u , = Hσ,-1/κ (x + u), = 1 - 1 κ x + u σ κ .
The survival function is therefore defined when

1 - 1 κ x + u σ > 0.
As Ỹt is upper bounded by 0, the threshold u must verify Hσ,-1/κ (0 + u) = 0, leading to the constraint u = κσ. The survival function becomes

P Ỹt > x| Ỹt < -u = 1 - 1 κσ (x + κσ) κ , = - x κσ κ , = c(-x) κ , for any x ≤ 0 small enough.
In a nutshell, heavy and low precipitation are modeled based on the EVT. As for the moderate precipitation, [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] used the concept of skewed distribution. Their idea was that simulating a GPD distributed r.v. only requires to apply the inverse function of a GPD H ← 1,ξ to a r.v. U , uniform on (0, 1). The variable Y := σH ← 1,ξ (U ), therefore follows a GPD with shape parameter ξ and scale parameter σ. To add flexibility to this r.v., they replaced the uniform r.v. U by

V := G -1 (U ) where G is a cdf on [0, 1].
We call G the flexibility function. To match the EVT design of the lower and upper tails of F , G has to satisfy some limiting constraints. More precisely, finite values of G(u) u κ and 1 -G(1 -u) u as u goes to zero, for some positive κ, are needed. In practice, the choice of G(u) = u κ appears to be flexible enough to model most observed daily rainfall r.v. while keeping parsimony at hand (see, e.g. [START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF]. Figure 1.3 displays the pdf of an EGPD and a GPD with same scale and shape parameters.

Although it is also possible to estimate G nonparametrically by using a Bernstein polynomial basis (see [START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF][START_REF] Rivoire | A comparison of moderate and extreme ERA-5 daily precipitation with two observational data sets[END_REF], in chapters 2 and 3, we Chapter 1

Toolbox simply use a monomial flexibility function. [START_REF] De Carvalho | An Extreme Value Bayesian Lasso for the Conditional Bulk and Tail[END_REF] suggested to take into account covariates in the estimation of the parameters of an EGP D(κ, σ, ξ) distributed r.v.. However, in this thesis, no covariate will be used (neither for the delimitation of regions, nor for the estimation of parameters). Eventually, daily positive precipitation are therefore modeled with a 3-parameter distribution EGP D(κ, σ, ξ) where κ, σ and ξ are respectively the flexibility, scale and shape parameters. When modeling daily positive precipitation by an EGP D(κ, σ, ξ), the scale-invariance constraint between two sites transcribe into the equality of the flexibility and shape parameters. The scale parameter σ can be site-specific. However, in Papers I and II, we study a model that relaxes the homogeneity constraint by allowing the flexibility parameter to vary between sites. This distribution is called "semiregional", see sections 2.5.3 and 3.4.3.

In brief, homogeneity is a way to decrease the dimension of the precipitation modeling variable. For example, a single shape parameter can describe the tail behavior of the precipitation pdf of each of the 158 sites in a homogeneous region instead of 158 site-specific ones, see Section 2.5.3. * * * Chapter 2
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Preamble to Paper I: Traditional RFA

Orography plays an important role in the distribution of extreme precipitation [START_REF] Gottardi | Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains[END_REF] and Switzerland is a country with different mountain ranges (e.g. Jura, Alps). We are first interested in this geographical information, i.e. elevation, to identify homogeneous regions. We apply the three steps of the conventional RFA method (see Introduction and [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] to daily positive precipitation over Switzerland. Step i) is to select covariates that we hope will characterize the homogeneous regions. We then go to step ii) by applying pam algorithm to gather weather stations with similar elevation. The regions obtained are not smooth at all, whatever the number of clusters, see Figure 2.1a for the partition with two clusters (optimal number according to silhouette criterion). We therefore reconsider our selection of covariates. The other available covariates in our dataset are the coordinates, the sample size, the mean annual maxima, the mean precipitation and the proportion of missing data. [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] recommended using variables that will not be needed in homogeneity tests. Thus, the focus is on the combination of longitude, latitude and elevation to describe precipitation rather than on variables explicitly related to precipitation (such as the mean precipitation and the mean maximum daily precipitation). More precisely, to avoid a greater weight given to one covariate, we center and reduce all covariates. We then implement again step ii) by clustering sites according to their coordinates and elevation, using pam algorithm. The four regions (optimal number according to silhouette criterion) we obtain are spatially coherent, see e.g. Figure 2.1b. The last Step iii) of traditional RFA consists of testing the regions for homogeneity. However, on each of the regions displayed in Figure 2.1b, the test statistics are far from 0 whatever the region. This could be considered as a proof of the heterogeneity of the identified clusters. However, another reason could be the non validity of the kappa distributional assumption. As an illustration, we fit a kappa cdf to positive daily precipitation at Engelberg weather station. Figure 2.2 displays the QQ-plot of the empirical quantiles vs. the estimated
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Chapter 2 kappa quantiles. The quantile curve is far from the line y = x, the kappa distribution hypothesis does not hold for this time series. More generally, homogeneity test failure could be caused by the underlying goodness-of-fit test. In summary, our dataset is not adapted to the traditional method. We do not have appropriate covariates to delineate homogeneous regions. For example, in our dataset, there is no information on the proximity of lakes (that can be an relevant when studying daily precipitation, see e.g. [START_REF] Wang | Identification of Design Rainfall Changes Using Regional Frequency Analysis: A Case Study in Ontario, Canada[END_REF]. There is also not enough information in our dataset to compute the crossing distance as [START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF] did. Moreover, as underlined by [START_REF] Viglione | A comparison of homogeneity tests for regional frequency analysis[END_REF] and illustrated previously, the tests are prone to reject homogeneity for distributional assumption reasons.

In Paper I, we propose an approach that does not require homogeneity tests but consists of working directly with a ratio ω of the first three probability weighted moments. Actually, this ratio is an affine transformation of the L-moment t 3 [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] and allows to characterize the shape of the rescaled cdf at each site. This at-site ω estimates are the basis of our regional analysis. In this paper, we therefore bypass the Chapter 2

Improved Regional Frequency Analysis of rainfall data kappa distributional assumption. In addition, our algorithm is based on precipitation data-only. As a result, it does not require the use of any covariate.
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Here starts Paper I (Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF]. It was written in collaboration with Anne-Catherine Favre, Philippe Naveau and Clémentine Prieur. It was submitted to Weather And Climate Extremes.

Introduction

It is well known that heavy rainfall can be responsible for critical floods (e.g., see [START_REF] Gottardi | Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains[END_REF]. Physically, the spatial distribution of daily precipitation depends on multivariate and complex factors, in particular on local orography features and small scale and large climatic phenomena (e.g., see [START_REF] Boucefiane | Regional growth curves and extreme precipitation events estimation in the steppe area of northwestern Algeria[END_REF]. As an example, the annual mean precipitation in Switzerland is significantly higher than the European one, 1456 mm vs 790 mm (e.g., see [START_REF] Hilker | The Swiss flood and landslide damage database 1972-2007[END_REF]. The specific Helvetic orography greatly influences precipitation probability distributions, see Figure 2.1 for the elevation map of Switzerland. The annual mean precipitation in Valais, a canton in southern Switzerland, is twice lower than the national one. A great part of these precipitation stems from Atlantic air flows. The regions on the leeward side are drier than the windward regions (e.g., see [START_REF] Zryd | Les glaciers en mouvement: la population des Alpes face au changement climatique[END_REF]. Concerning extremes, 3-day heavy rainfall over Switzerland induced numerous fatalities and huge loss (e.g., see [START_REF] Hilker | The Swiss flood and landslide damage database 1972-2007[END_REF][START_REF] Barton | Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland[END_REF]. Again, low, moderate and extreme precipitation intensities can be highly variable in space. Chapter 2
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In this context, delimiting coherent regions is essential to efficiently capture the distributional climatic features of rainfall at the correct spatial scale. This also makes sense from a statistical point of view. It is almost impossible to detect trends in a single rainfall time series because of its high variability. Combining a few stations together can improve the signal/noise ratio and allows hydrologists and climatologists to detect significant signals, like the impact of anthropogenic forcing on rainfall data. Defining so-called homogeneous regions has been a recurrent theme in hydrology and, in this article, we anchor our work to the following probability based definition (see, e.g. [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF]. Given a region of interest, say R, a homogeneous cluster, say C, is defined as a sub-region where all spatial points, say s, have the same marginal distribution up to a normalizing factor, i.e.

C = s ∈ R : Y (s) d = σ(s) × Z(s) , (2.1) 
where d = means equality in distribution, the positive scalars σ(s) are allowed to vary in space, and Z(s) represents a positively-valued stationary process in time and space. In particular, the stationarity of Z(s) implies that its marginal probability density function (pdf) does not depend on s. Eq. ( 2.1) is closely linked to the Regional Frequency Analysis (RFA) methodology introduced by [START_REF] Hosking | An appraisal of the regional flood frequency procedure in the UK Flood Studies Report[END_REF] and applied by various authors (e.g., see [START_REF] Onibon | Analyse fréquentielle régionale des précipitations journalières maximales annuelles au Québec, Canada/Regional frequency analysis of annual maximum daily precipitation in Quebec, Canada[END_REF][START_REF] Ouarda | Synthèse des développements récents en analyse régionale des extrêmes hydrologiques[END_REF].

There exists a wide variety of methods that attempt to find homogeneous regions that satisfy Eq. ( 2.1). Most approaches rely on auxiliary geographical features and/or climatic information (e.g., see [START_REF] Asadi | Optimal regionalization of extreme value distributions for flood estimation[END_REF][START_REF] Fawad | Estimation of wind speed using regional frequency analysis based on linear-moments[END_REF], for recent works on this approach). In nutshell, explanatory covariates characterizing station locations and/or weather patterns are carefully selected to spatially explain rainfall features (e.g., see [START_REF] Burn | Evaluation of regional flood frequency analysis with a region of influence approach[END_REF][START_REF] St-Hilaire | La régionalisation des précipitations: une revue bibliographique des développements récents[END_REF][START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF]. For example, [START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF] regressed non-parametrically σ(s) as a function of weather stations latitude and longitude coordinates. This crucial variable selection step requires subjectivity, data availability and may be complex to transfer over regions with different climatic drivers. For example, the chosen covariates tailored to the Valais region could be different for stations a few hundred of kilometers away.

To assess the quality of a given partitioning, RFA homogeneity tests were also proposed to check the validity of model expressed in Eq. (2.1) (see [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF]. A major ingredient is the computation of specific moments and related ratios to measure variability, sknewness and kurtosis for positive random variables. To implement goodnessof-fit tests, another key component to obtain significance levels was the parametric assumption that rainfall follow kappa-like distributions. Such parametric assumptions may be too stringent in practice. In addition, and according to [START_REF] Viglione | A comparison of homogeneity tests for regional frequency analysis[END_REF], RFA homogeneity tests can suffer from a lack of power.

The first objective of this work is to bypass the delicate step of explanatory variables (covariates) selection that produces a priori clusters. Instead, our strategy is to cluster from the raw data, i.e. precipitation themselves. A second goal is to avoid imposing a parametric family like the kappa distribution present in the RFA homogeneity tests.

Concerning our first objective and since the work of Hosking and his colleagues, it is known that a few well chosen moments can characterize important features of Improved Regional Frequency Analysis of rainfall data Chapter 2 precipitation intensities. For example, PWMs can adequately capture the main features of heavy rainfall distribution (e.g., see [START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF]. The theoretical justification of this claim resides in EVT (e.g., see [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF][START_REF] Fougères | Multivariate extremes[END_REF][START_REF] Davison | Statistics of extremes[END_REF]. In particular, mathematical arguments can be used to justify that the upper tail behavior of renormalized rainfall excesses over a high threshold can be well approximated by a generalized Pareto (GP) survival function. If we now look at GP distributed extremes with respect to Eq. ( 2.1), then the ratio of survival functions from two stations, say s and s ′ , in C satisfies

lim y→∞ P[Y (s) > y] P[Y (s ′ ) > y] = lim y→∞ F (σ(s)y) F (σ(s ′ )y) = c ∈ (0, ∞) (2.2)
where P[Z(s ′ ) > z) = F (z) and, according to EVT, the finite positive constant c depends on the ratio of σ(s) over σ(s ′ ). In contrast, if the two stations, s and s ′ , belong to two different clusters with non-equal GP shape parameters, then this ratio of two survival functions will either go to zero or infinity. It follows that a homogeneous cluster, by construction, means to be tail invariant, i.e. the ratio goes to the same positive constant c within a cluster. Note that condition Eq. ( 2.1) implies condition Eq. ( 2.2), but the converse is not true. So, our simulation study explores a setup based on Eq. ( 2.2), a broader family, and our Swiss rainfall will be analyzed with models satisfying both conditions.

Clustering stations in homogeneous regions is a simply way, by gathering stations with an equivalent tail behavior, to improve the analysis of heavy rainfall (e.g., see [START_REF] Zhang | Regionalization and spatial changing properties of droughts across the Pearl River basin, China[END_REF]. Traditional at-site method consists in fitting an EVD to each site (e.g., see [START_REF] Li | Comparative Study of Regional Frequency Analysis and Traditional At-Site Hydrological Frequency Analysis[END_REF]. Then, stations could be gathered according to their parameter estimates. At-site estimators of shape parameter though are known to be poorly robust and require long sequences to be reliable (e.g., see [START_REF] Zhang | Regionalization and spatial changing properties of droughts across the Pearl River basin, China[END_REF][START_REF] Malekinezhad | Regional frequency analysis of daily rainfall extremes using L-moments approach[END_REF][START_REF] Jalbert | A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America[END_REF]. At the other end of complexity and away from analysis, complicated models based on a hierarchy of layers can also capture spatial dependence by imposing random smooth fields over some EVT parameters [START_REF] Cooley | Bayesian spatial modeling of extreme precipitation return levels[END_REF][START_REF] De Fondeville | High-dimensional peaks-over-threshold inference[END_REF]. The main drawback of these techniques is the complexity of implementation in the sense that a deep knowledge of Bayesian hierarchical modeling, in particular of Monte-Carlo sampling techniques, is required to fit and understand such models.

As a computationally simple inference alternative, many authors have studied the links between PWMs and EVT parameters (e.g., see [START_REF] Kojadinovic | Detecting distributional changes in samples of independent block maxima using probability weighted moments[END_REF]. In particular, explicit expressions of PWMs parameters for EVDs have been investigated theoretically (e.g., see [START_REF] Ferreira | On the block maxima method in extreme value theory: PWM estimators[END_REF] and used in practical setups (e.g., see [START_REF] Ribereau | Estimating return levels from maxima of non-stationary random sequences using the Generalized PWM method[END_REF][START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF]. Besides characterizing EVDs, PWMs are also distribution-free moments that can be quickly estimated non-parametrically for any dataset. Our idea is to use them as direct inputs of classical clustering algorithms. The only requirement is that the PWM based input remains scale invariant within Eq. (2.1). Although simple, this strategy can lead to coherent regions with the advantage of avoiding the arbitrary choice of explanatory covariates. In addition, no strong parametric assumptions are needed to implement our approach, see Section 2.3 for details.
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To assess our method with a simulation study, we need a class of distribution that is capable of modeling the whole spectrum of rainfall intensities. In recent years, various approaches (see, e.g. [START_REF] Carreau | A hybrid Pareto model for asymmetric fat-tailed data: the univariate case[END_REF][START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF][START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF][START_REF] Stein | Parametric models for distributions when interest is in extremes with an application to daily temperature[END_REF] have been proposed to combine a Pareto pdf, for modeling the upper tail, with different types of transfer functions to allow the fit of the distribution bulk and its lower tail. Daily rainfall over Switzerland were well captured by the so-called Extended GPD (EGPD) [START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF] studied by [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF]. In addition, PWMs were also explicitly derived for special cases of the EGPD family. Hence, this class offers a well understood benchmark for our clustering approach.

Section 2.4 details our simulation study and highlights the advantages and limitations of our approach. In Section 2.5, we apply this algorithm to Swiss precipitation data. Our clustering is compared to the classical RFA approach based on geographical covariates and described in [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF]. RFA homogeneity test-based algorithm are applied to assess the two approaches. In addition, we propose a semi-regional fit to improve flexibility within each cluster, see Subsection 2.52.5.3.

Methods

PWMs and metrics

To compare distributional features of different rainfall time series, simple and fast summaries are needed. In this context, computing metrics offers mathematically sound tools. For symmetrical distributions with finite variances, L 2 -norms of the type E |Z 1 -Z 2 | 2 are convenient to capture relevant information contained in Z 1 and Z 2 . The archetypical example is Gaussian random variables that are entirely characterized by their mean and variance. As rainfall are positive, skewed and can be heavy-tailed, other distances need to be proposed and studied. In this work, we focus on L 1 -distance of the type E |Z 1 -Z 2 | because they are closely linked to PWMs. These moments were defined by [START_REF] Greenwood | Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form[END_REF] as .3) where α j denotes the PWM of order j for the random variable Z with cumulative distribution function (cdf) F . Extensions of PWMs have been proposed in the literature (see, e.g. [START_REF] Diebolt | Improving probabilityweighted moment methods for the generalized extreme value distribution[END_REF]. We will use the simpler notation α j when the link with the variable Z in α j (Z) is self evident. Different types of connections with EVT have been studied in details (see, e.g. [START_REF] Ferreira | On the block maxima method in extreme value theory: PWM estimators[END_REF].

α j (Z) = E ZF j (Z) . ( 2 
To make the link between PWMs and L 1 -distances, one can show that

1 2 E |Z 1 -Z 2 | = θ 1:2 • α θ 1:2 -1 -α 0 , (2.4) whenever P [max (Z 1 , Z 2 ) ≤ z)] = F θ 1:2 (z)
with the scalar θ 1:2 representing a dependence index between Z 1 and Z 2 . More generally, suppose that the multivariate vector

Z = (Z 1 , Z 2 , . . . , Z k ) t satisfies P [max Z ≤ z] = F θ 1:k (z). (2.5)
for some scalar θ 1:k ∈ [0, k]. Note that this scalar can be interpreted as a well known measure of dependence in maxima and it is linked to temporal clustering in EVT and
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the concept of max-stability (e.g., see [START_REF] Davison | Statistics of extremes[END_REF]. Then one can see that

E [max Z] = θ 1:k • α θ 1:k -1 (Z).
It follows that any affine transformation of the Z satisfies

α θ 1:k -1 (a + bZ) = a θ 1:k + b • α θ 1:k -1 (Z), for any b > 0.
While the last equality and Eq. ( 2.4) highlight the close link between the L 1 -distance and PWMs, the RFA constraint has not been applied yet. Under model of Eq. ( 2.1), we can write that for any s ∈ C,

1 2 E |Y 1 (s) -Y 2 (s)| = σ(s) × 1 2 E |Z 1 (s) -Z 2 (s)|
To build homogeneous regions, one needs to remove the effect of the scaling factor σ(s). This can be done by introducing the following ratio

ω = E |max (Z 1 , Z 2 ) -max (Z 1 , Z 3 )| E |Z 1 -Z 2 |
.

It is possible to show 0 ≤ ω ≤ 1, see Appendix A.1.1 for a proof. Concerning our RFA problem, one can notice that the ratio ω satisfies ω(a + bZ) = ω(Z) for any a and b > 0.

The ratio ω can also be rewritten as

ω = E [max (Z 1 , Z 2 , Z 3 ) -(Z 1 + Z 2 + Z 3 ) /3] E [max (Z 1 , Z 2 ) -(Z 1 + Z 2 ) /2] -1
where the numerator is the L 1 -distance between the triplet maximum and its mean. A similar ratio was highlighted in [START_REF] Kojadinovic | Detecting distributional changes in samples of independent block maxima using probability weighted moments[END_REF] who studied change point detection in block maximum time series. By construction, the ratio ω has also a clear connection with PWMs and can be rewritten, under assumption Eq. (2.5), as

ω = θ 1:3 • α θ 1:3 -1 -α 0 θ 1:2 • α θ 1:2 -1 -α 0 -1.
In the special independent and identically distributed (i.i.d.) case, θ 1:k = k and the ratio ω simply becomes

ω = 3α 2 -α 0 2α 1 -α 0 -1. (2.6)
This expression can be rewritten as

ω = 1 2 - 1 2 
λ 3 λ 2 ,
where λ 2 and λ 3 represent the second and third L-moments studied by [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF], see Appendix A.1.3 for their definition.
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Explicit expressions of ω can be found when the practitioner is ready to impose a parametric family. For example, if Z has a survival Generalized Pareto (GP) function, i.e.

P(Z > z) = H ξ (z) = (1 + ξz) -1/ξ +
where ξ is called the shape parameter and drives the upper tail behavior (see, e.g. [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF]. For ξ = 0, H 0 (z) = exp(-z) for z > 0. For ξ ≥ 1, the mean of Z is not finite anymore and the interpretation with PWMs is lost. So, we always assume that ξ < 1 in this work. Applying Eq. (2.6) for the GP case gives

ω = 5 -ξ 3 -ξ -1.
If Z follows a standardized Generalized Extreme Value (GEV) distribution, i.e.

P(Z ≤ z) = exp(-H ξ (z)), then ω = 3 ξ -1 2 ξ -1 -1.
By construction, the location and scale parameters of the GEV or the GP distributions do not appear in these explicit expressions. The gray dotted and solid black lines in Figure 2.4 correspond to the GEV and GP cases, respectively. In particular, these convex and increasing functions indicate that ω provides a "standardized" proxy of the upper tail behavior for EVDs. Standardized in the sense that ω is always between zero and one, and it is fully decoupled from any scale and location parameters. The GEV and GP examples have been tailored to model extremes, but our goal is to capture information from the full rainfall range. To model the full intensity of precipitation, [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] and [START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF] proposed and studied a simple scheme to construct a flexible distribution by writing

F (z) = G (H σ,ξ (z))
where G(.) can be any cumulative distribution function such that the limits of G(u) u κ and 1 -G(1 -u) u have to be finite as u goes to zero and for some positive κ. These two constraints imply that the cumulative distribution F is in compliance with EVT for small and heavy rainfall. In practice, the choice of G(u) = u κ appears to be flexible enough to model most observed daily rainfall distributions while keeping parsimony at hand (see, e.g. [START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF]. It is also possible to define G nonparametrically by using a Bernstein polynomial basis (see [START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF]. In this case, the ratio ω has also an explicit form expressed as

ω = 3B(3κ, 1 -ξ) -B(κ, 1 -ξ) 2B(2κ, 1 -ξ) -B(κ, 1 -ξ) -1, (2.7) 
where B(•, •) denotes the beta function. The right panel of Figure 2.4 focuses on values of ξ ∈ (0, 1), the classical range for hourly and daily rainfall. The effect of κ, see the different colors, appears to be minor for positive ξ and the increase in ω with respect to ξ remains for any κ ∈ {.5, .9, 1, 1.3, 1.6}. This indicates that a choice based on ω, even if the distribution is not an exact GPD, will be robust with respect to ξ, the main driver of the upper tail behavior.
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Inference of the ratio ω

In the i.i.d. case, Eq. ( 2.6) tells us how to get ω from the three PWMs α 0 , α 1 and α 2 . A natural estimator of ω follows

ω = 3α 2 -α0 2α 1 -α0 -1, (2.8) 
where the PWM α j is estimated by a linear combination of order statistics defined as

αj = 1 n n i=1 i n j Z (i)
with Z (i) the i-th order statistic of the sample (Z 1 , . . . , Z n ) t . Asymptotic properties of these L-statistics were studied, among others, by [START_REF] Guillou | Return level bounds for discrete and continuous random variables[END_REF], see their Theorem 1. The i.i.d. assumption can be replaced by the weaker hypothesis defined by Eq. ( 2.5).

The asymptotic convergence of our estimator towards a Gaussian distribution will be still valid, but the confidence intervals will differ. Classical delta-method (e.g., see [START_REF] Oehlert | A Note on the Delta Method[END_REF] arguments lead to the following result, see Appendix A.1.6 for details.

Proposition 2.3.1: Let Σ the covariance matrix of the PWM vector (α 0 , α 1 , α 2 ). We have

√ n (ω -ω) d -→ N 0, D(α 0 , α 1 , α 2 )Σ t D(α 0 , α 1 , α 2 ) ,
where D is the Jacobian matrix of the trivariate function defined as (x, y, z) -→ 3z -x 2y -x .

Simulations about the inference of ω for different sample sizes are available upon request.

In a nutshell, they indicate that accuracy increases with sample size and, for simulations mimicking our Swiss rainfall dataset, the estimation of ω appears reasonable. It does not depend much on κ, the shape parameter ξ being the most relevant one in terms of mean square errors. A value of ξ close to .5 touches the limit of our inference scheme. These inferential conclusions are classical and in compliance with other studies of PWM's estimation (see, e.g. [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF][START_REF] Carreau | A hybrid Pareto model for asymmetric fat-tailed data: the univariate case[END_REF][START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF][START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF].

Clustering method

Several clustering methods are available in the statistical literature (e.g., see [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF][START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF][START_REF] Jain | Data Clustering: A Review[END_REF][START_REF] Saxena | A Review of Clustering Techniques and Developments[END_REF] with two major types: partitioning and hierarchical. All clustering algorithms need a common ingredient, a dissimilarity measure (e.g., see [START_REF] Saunders | An investigation of Australian rainfall using extreme value theory[END_REF]. In Subsection2.3.1, we highlighted that ω can be interpreted as a standardized ratio of two L 1 -distances. As such, comparing two values of ω estimated at two different sites provides a simple dissimilarity measure. If the difference between two values of ω is close to zero, it means that the two locations have similar (up to a rescaling constant) marginal distributions, especially in the upper tail, see Figure 2.4. To keep working with L 1 -metrics, the Manhattan distance, i.e. |ω i -ω j |, was used to obtain our dissimilarity matrix (see also [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF][START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF].

Chapter 2 Figure 2.4: The y-axis represents the ratio ω for a EGPD(κ, σ, ξ), see Eq. (2.7). The x-axis corresponds to the upper tail shape parameter ξ. The left panel has ξ ∈ (-5, 1) while the right panel provides a zoom on ξ ∈ (0, 1). Each color represents a different value of κ ∈ {.5, .9, 1, 1.3, 1.6} The gray dotted line corresponds to the GEV case. The black line with κ = 1 corresponds to the GP case.
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The choice of building our clustering dissimilarity on ω is in compliance with our two original desiderata: the RFA constraint and the avoidance of selecting any covariates such as geographical coordinates, altitudes, distance to sea and so on.

In this work, we focus on a partitioning technique called pam for Partitioning Around Medoid, also called k-medoids, that was proposed by [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF]. Its goal is similar to the well-known k-means algorithm that returns a partition of the data-set into k clusters. The pam algorithm can be favored over k-means with respect to the following aspects: robustness to outliers, determinism, computational cost and ease-of-interpretation. As for k-means, the user has to provide the number of clusters, k, beforehand. Centers called medoids, are just a subset of the original data points, so they are easy to interpret. Without the step of recomputing "averaged" centers at each iteration, the only input to run pam is the pairwise dissimilarity matrix that has to be computed only once. To summarize, the practitioner has to provide a number of clusters k and a matrix containing all the pairwise dissimilarities, say D = [d i,j ],
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Chapter 2 where d i,j represents the dissimilarity between ω i and ω j of the weather stations i and j. Each non-medoid point, say j, of the data-set is associated to its closest medoid, i.e. it minimizes min m 1 ,...,m k d j,m where the k medoids set is denoted {m 1 , . . . , m k }. The overall, silhouette criterion is to find the group of medoids that minimizes the total cost

j min m 1 ,...,m k d j,m
(2.9)

To solve this optimization problem, the first medoid is the solution to Eq. ( 2.9) with k = 1, that is to say the most centrally located point. The second medoid is the solution with k = 2 but with the first medoid fixed (to the one previously found). Still, every swap possible between a medoid and any point non-medoid is tested. If the cost function decreases, then the swap is kept and the algorithm stops when no swap improves the total cost of the partition.

To determine the optimal number of clusters, [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF] introduced the silhouette coefficient that measures tightness of clusters and dissociation between the clusters. Given k the number of clusters, the silhouette coefficient for site i that belongs to the cluster j is defined as

s i (k) = 1 - d ij δ i,-j (2.10) 
where δ i,-j the smallest of the j -1 average distance between site i and all other sites associated with a cluster different from j. If s i (k) ≈ 1, station i is well classified since the intra-cluster distance is significantly smaller than the distance between clusters. On the contrary, if s i (k) ≈ -1, the station i should be in another cluster. If s i (k) ≈ 0, the point is as close to points in the medoid as to other points. The overall quality of the partitioning in k clusters is assessed by computing the average silhouette coefficient over all sites. The partition with the highest silhouette criterion is the best partition. As k increases, the number of points in each cluster decreases and consequently the uncertainty within each class increases. This leads to a classical trade-off between bias and variance.

Another criterion to determine the number of clusters is based on cluster inertia. Intra-cluster inertia is defined as (2.11) where C i corresponds to the i th cluster and G i is the associated medoid. The tightness of clusters is obtained by computing the ratio of intra-cluster inertia over the total inertia. Best partitions are the ones with lowest relative intracluster inertia.

k i=1 x∈C i ∥x -G i ∥ 2 ,
To assess the efficiency of silhouette coefficient and inertia criterion for our application, we need to define a simulation study mimicking Swiss rainfall intensities.

Simulation study

Numerical design setup

Eq. ( 2.7) provides an explicit expression of ω for a specific EGDP with G(u) = u κ that appears to well capture low, moderate and heavy rainfall intensities (see, e.g. Evin Chapter 2

Improved Regional Frequency Analysis of rainfall data et al., 2018). It is also easy to simulate random samples from this distribution. For these reasons, our simulation study is based on the EGPD(κ, σ, ξ) with the following design.

In Figure 2.5, the 10 colors represent the different values of ω for 10 pairs of (κ, ξ)'s from ξ ∈ {.0, .1, .2, .3, .4} and κ ∈ {.5, .9, 1.3, 1.6}. We consider these 10 rectangles as 10 homogeneous regions, the size of the rectangles being proportional to the number of points in each region; 40 in large rectangles and 20 for small ones. Each region is associated with its own 99% return level (to simplify interpretation, the return levels are calculated after renormalizing by the mean, see Appendix A.1.7 for explicit form), see values between brackets in the color legend. By construction, theoretical values ω do not change with σ. As both κ and ξ vary, the ideal clustering according to Eq. ( 2.2), i.e. 4 clusters, is different from the one obtained with respect to condition Eq. ( 2.1), i.e. 10 clusters. Hence, one question that we want to explore with our design setup is to determine, for finite samples, the robustness of our clustering approach according to the number of clusters.

To mimic the setup of hourly rainfall studies over Europe, we consider 128 wet days in a given year and the number of years varies from 30 to 150. This leads to samples of sizes 128 × {30, 50, 80, 150}. This step is replicated 100 times. For each of these 100 experiments, the estimate ω is calculated at each location in Figure 2.5. Then, we can apply the clustering algorithm presented in Section 2.3.3.
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Improved Regional Frequency Analysis of rainfall data years has to be large. If it is not the case, then the pam algorithm provides stable clusters by joining similar clusters that are undistinguishable with respect to moderate sample sizes. By appropriately joining clusters, misspecification rates then get smaller. Note also that this phenomenon is linked to the rectangle sizes, i.e. the number of locations. The difference of .01 between ω = .66 (dark blue ) and ω = .67 (light green) in Figure 2.5 is of second order because the dark blue and light green rectangles have 40 points each, while the pink, red and light orange rectangles have only 20 locations each. Overall, the pam algorithm with silhouette criterion appear conservative in terms of the number of clusters. So, the risk of creating artificial clusters is low and a second step may be needed to fine-tune the distribution within each cluster that may combine two clusters, see 2.5.3. in the next section. In addition, panel (b) indicates that the misspecification rate is below 5% for 80 years long time series. This temporal length corresponds to our application setup.
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Regional analysis of Swiss daily precipitation

MeteoSwiss network includes 666 rainfall stations providing daily values from 1930 to 2014. In our study we only consider stations with less of 10 % missing data leading to 191 data series. At each site, we focus on strictly positive precipitation and remove dry events. This leads to years with, in average, around 128 wet days.

Number of clusters

After computing the ratio ω using Eq. ( 2.8) at each location, a number of clusters has to be chosen when applying pam. To take into account rainfall variability, we randomly shuffle our whole dataset in space and time. This step should remove all spatial clustering and, hence under the null hypothesis of the absence of clusters, a base level for silhouette coefficients, see Eq. ( 2.10), can be obtained and gives us a yardstick. In Figure 2.7, solid black points indicate the difference between the base level and the level obtained without reshuffling for different cluster numbers, say k = 1, . . . , 20. We suggest to consider the number of clusters for which the discrepancy between partition of white noise and partition of real data is the most significant. A partition with two clusters clearly appears as the optimal choice. To double-check this optimization, we apply the same procedure with the inertia ratio (with the exception that we consider the highest value of the difference between inertia on shuffled data and inertia on observed data), see Eq. (2.11). The grey diamonds confirm the value of k = 2 clusters.

Both criteria lead to an optimal value of clusters equal to two and we can visually check if the two clusters provide spatially rainfall patterns. Panel (a) in Figure 2.8 displays the pam clustered sites with k = 2. The first cluster are represented by diamond shapes, while the second cluster corresponds to circles. The size of the points are proportional to their silhouette coefficient: largest points are the best classified ones. Although the geographical covariates have not been used, this division of Switzerland reveals a spatially coherent structure. Our so-called northern cluster (diamonds) mainly covers the plain, the Jura mountains and a few points at the south tip of the Ticino canton. Our so-called southern cluster (circles) appears to gather sites in the south. Climatologically, the dichotomy appears reasonable with heavier rainfall in the southern class than in the northern one. .8: Swiss daily precipitation modeled with the regional Model (2.13). pam outputs in two clusters that are identified by circles (so-called "northern cluster") and diamonds (so-called "southern cluster"). Panel (a): The size of the points is proportional to the silhouette coefficient. The gray nuance color legend corresponds to .99 return level fits from Model (2.13). Panel (b): The gray nuance color legend corresponds to estimates of σ in Model (2.13).
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Comparison with the RFA approach

A natural question is to wonder if the classical RFA analysis [START_REF] Hosking | Some statistics useful in regional frequency analysis[END_REF] would have given the same type of clustering. To apply the RFA approach, covariates have to be given a priori. Since orography can largely influence precipitation (e.g., see [START_REF] Gottardi | Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains[END_REF], we consider normalized elevation and coordinates as covariates. They are then clustered by pam algorithm, figures available upon request. To compare the RFA outputs with our approach, we compute the relative intra-cluster inertia, silhouette criterion and homogeneity tests. Table 2.1 shows silhouette criteria and relative inertia for the classical RFA and our clustering approach based on ω, see Eq. (2.8). Clearly, the classical RFA that has a very low mean silhouette coefficient and high inertia, two undesirable features, is outperformed by our method.

pam clustering

Mean silhouette intracluster approach type coefficient inertia ratio classical RFA .05 .96 with ω, see Eq. (2.8) .69 .32

Table 2.1: Swiss daily precipitation. A higher mean silhouette criterion and a lower intra-cluster inertia ratio indicate a better clustering performance.
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To assess homogeneity within each of the two clusters, we compute the three RFA homogeneity tests (see [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF], for the mathematical definition of these tests). We recall that, asymptotically, these three RFA tests reject homogeneity when they are far from a zero-mean Gaussian distribution (the variance depends on the sample size). They are also based on the assumption that rainfall follow a kappa distribution. However, there is no guarantee that a kappa distribution correctly fits the dataset at hand. This may explain why the three tests strongly reject the homogeneity hypothesis when applied to the two RFA clusters. Table 2.2 tells us that, even small sub-regions with 10% of locations have difficulty to be considered as homogeneous. For example, the second row indicates that the three RFA tests are far from zero, pointing out that the RFA northern cluster is strongly heterogeneous. In contrast, Table 2 our clustering approach provides larger and more homogeneous regions, at least 30% of locations can be kept. Still, this leads us to revisiting the strict definition of homogeneity via Eq. (2.1). In our Introduction section, the tail condition defined by Eq. ( 2.2) offers a less stringent way to define homogeneity. More generally, it is of interest to compare different parametric models within a given region under the tail constraint Eq. (2.2). The next section compares three EGPD-based models for our Swiss data. Each one can be viewed as a different level of flexibly within a regional frequency analysis, in particular within each of our southern and northern clusters. 2.2 but for our pam approach based on ω, see Eq. (2.8).
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2.5.3 Local, semi-regional and regional EGPD models

Given a cluster set C, our so-called "local" model is the most flexible and allows variability in each of the EGPD parameters Y (s) ∼ EGPD(κ(s), σ(s), ξ(s)), s ∈ C.

(2.12)

The "regional" model is the most stringent one and it is defined by

Y (s) ∼ EGPD(κ C , σ(s), ξ C ), s ∈ C. (2.13)
Between these two cases, the "semi-regional" model consists of regionalizing only the shape parameter ξ and letting the scale σ and flexibility κ parameters vary

Y (s) ∼ EGPD(κ(s), σ(s), ξ C ), s ∈ C.
(2.14) Models (2.13) and (2.14), but not Model (2.12), satisfy Eq. ( 2.2), and only Eq. ( 2.13) satisfies Eq. ( 2.1). The key aspect is to avoid both overfitting, say with Model (2.12), and oversimplified models that may not well capture local extremes.

In terms of inference, the fitting of Model (2.12) is obtained by using the mev package in R. Concerning the parameters of Model (2.14), they are estimated with the following PWM based algorithm. The PWM of order one for EGPD in Appendix B in [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] provides the key ingredient of our algorithm, see steps 8 and 10 below. Note that Algorithm 1 can be adapted to the regional version defined by Eq. (2.13). This inferential procedure performs well on simulated data, results available upon request.

Concerning the fit of our regional model to Swiss rainfall, the .99 return levels of panel (a) in Figure 2.8 reproduce the expected climatological Helvetic features where the Ticino canton presents the highest return values. This spatial pattern is captured by the scale parameter σ displayed in panel (b) of Figure 2.8. By construction, the parameters κ and ξ do not change within each cluster. But they vary from clusters to clusters. More precisely, κ is higher in the northern cluster (1.08) than in the southern one (.6). As climatologically expected, ξ is higher in the southern cluster (.17) than in the northern one (.03).

To improve our understanding of the difference between our southern and northern clusters, we recall that EGPD p-return level of Y

E[Y ]
is given by

y p = 1 κB(κ, 1 -ξ) -1 1 -p 1/κ -ξ -1 .
See proof in Appendix A.1.7. Applying this formula for Model of Eq. (2.14), Figure 2.9 displays y .99 and its associated .95 confidence intervals. The confidence intervals are obtained by bootstrapping. We remove the autocorrelation by extracting randomly a third of precipitation observation for each time series. The number of bootstrap replicates is chosen equal to 300. The dichotomy between the two clusters is clearly confirmed. But it is not clear if letting κ free clearly improves the fit.
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Algorithm 1 Semi-regional fit of Model 2.13 in cluster C

1: cond = T RU E, eps = .001, and u = 1(mm) 2: procedure Input(Rainfall Matrix for cluster C) while cond = T RU E do 8:

Compute

σ new (s) = ξ 0 m(s) κ0 F (u) IB H ξ0 u σ0 , 1, κ 0 , 1 -ξ 0 -1
where IB(., ., .) is the incomplete Beta function

9:

Compute mn the cluster mean over all Y (s)

σ new (s) ▷ The cdf Y (s) σ(s)
does not depend on s in Model (2.13) 10:

Calculate Hence, a remaining question is to determine if the semi-regional and the regional models are truly different. In terms of the classical Akaike Information Criterion [START_REF] Akaike | Factor analysis and AIC[END_REF]), the regional model, Model (2.13), has a lower value than the semi-regional one: 146 168 versus 146 532. Hence, from a parsimony perspective, it seems better to regionalize not only the shape parameter ξ but also the parameter κ, the spatial component being captured by σ(s). To confirm this statement, Figure 2.10 compares the quantiles of models (2.14) and (2.13) with the local one, Model (2.12), (x-axis) at three different locations. The left and right columns correspond the two stations with lowest and highest Chapter 2

κ new = ξ 0 mn 1 F (u) IB H ξ u σnew , 1, κ 0 , 1 -ξ 0 -1 κ0 11: if max(|κ new -κ 0 |, |σ new -σ 0 |) <
Improved Regional Frequency Analysis of rainfall data silhouette coefficients, while the center column represents the cluster medoid. The first row corresponds to the southern cluster and the second one to the northern cluster. As pointed by the Aikaike criterion, the regional and semi-regional models provide similar quantiles.

Figure 2.10: Comparison of quantile-quantile plots: The x-axis corresponds to the local quantiles from Model (2.12). The y-axis displays semi-regional and regional quantiles, i.e. from models (2.14) and (2.13), respectively. Rows indicate the cluster family, southern or northern, and the column corresponds to the station type: the worst (best) classified station in the first (third) column. The medoid station is represented by the middle column.

Concerning the comparison with the local model, one has to keep in mind that Model (2.12) has 191 × 3 different parameters compared to 2 + 191 × 2 parameters for Model (2.14) and 2 × 2 + 191 parameters for Model (2.13). Clearly, the second and third columns indicate that the strong reduction of parameters from Model (2.12) to Model (2.13) has a low impact for medoids and well classified stations. Concerning the southern and northern stations with the lowest silhouette coefficients, the first column indicates a
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Chapter 2 departure for a few extreme values. This is certainly due to the estimation of ξ that is always difficult to estimate locally.

Conclusion

Our main goal in this work was to show that a simple and fast clustering approach based on an interpretable ratio could highlight climatologically coherent regions. One advantage is that this method is fully data driven and avoid the need of finding relevant co-variates. The proposed approach was built on the main RFA idea, i.e. a normalizing factor that can capture well the spatial component in rainfall data. All the inferential part was done by using probability weighted moments, simple quantities to estimate and interpret. We completely bypassed the delicate threshold selection step to define heavy rainfall by fitting the extended Pareto distribution.

Our analysis of Swiss daily precipitation data reveals an interesting point concerning model complexity. A relatively simple regional model with only two clusters and a spatially varying scale parameter can compete very well against complex models with various varying parameters. This highlights the strong variability of rainfall data and goes against the idea that complex marginal models have to be fitted. Still, one has to keep in mind that we do not model the spatial dependence, but only marginal behaviors. Our proposed approach is useful to infer at-site return levels, but irrelevant to infer ungauged locations. In addition, our data-driven pam clustering algorithm also did not take into account the dependence between sites. One interesting perspective will be to combine our approach with the work of [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF], [START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF] and [START_REF] Saunders | An investigation of Australian rainfall using extreme value theory[END_REF] who only partitioned with respect to the spatial dependence, but not the marginal behaviors.

Take-home messages from Paper I

The method proposed in Paper I, and summarized in the grey box, enables to delineate homogeneous regions in a non-parametric way and without selecting covariate (bold items). Some advantages and limitations of this clustering algorithm are summarized in the colored box (color of the box refers to Figure 4). Chapter 2
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Question 2 What clustering method and distance can we use to gather homogeneous distributions?

1. Pointwise estimation of PWM ratio, ω, via order statistics 2. Clustering of ω estimates with Manhattan distance in pam algorithm.

Choice of the appropriate number of clusters as the average silhouette width maximum

Question 1 What model should we use to estimate parsimonously and accurately high quantiles over a large spatio-temporal domain?

4. Fit a semiregional (resp. regional) 3-parameter EGPD with constant ξ (resp. constant κ and ξ) on each homogeneous cluster and select the one with the best AIC. 
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High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions

Preamble to Paper II: How can we estimate high quantiles over large area?

In this chapter, we analyze European precipitation patterns and return-levels at a larger and a bit coarser1 scale than in Chapter 2. Indeed, Europe covers 10 million km 2 whereas Switzerland covers about 41,000 km 2 . In addition, Europe includes not only hilly and mountainous areas but also countries with maritime boundaries. Therefore, we can expect the diversity of European precipitation patterns to be wider than the Swiss ones. As a consequence, on Europe, the method introduced in Paper I, see Section 2.3, could lead to more clusters and less spatially coherent homogeneous clusters than in the analysis of Switzerland precipitation. In this chapter, we therefore tackle Questions 1 and 2 on a wider and more complex dataset than in Paper I (Chapter 2). A main difference with Chapter 2 is that different EGPD are fitted and compared. This method allows us to estimate daily precipitation quantiles over Europe. Eventually, as a perspective (see main conclusion), we further examine the sensitivity of return-levels towards the number of clusters.
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Here starts Paper II. Pauline Rivoire and I contributed equally to this paper that was written under the supervision of Anne-Catherine Favre, Philippe Naveau and Olivia Martius. For more details, please refer to Section 3.7. This paper was submitted to Weather And Climate Extremes.

Introduction

Heavy rainfall can cause natural hazards such as landslides, avalanches and floods (e.g., see IPCC, 2013;European Environmental Agency EEA, 2018). Such hazards can cause casualties and damages, with direct and indirect economic impacts [START_REF] Munichre | A stormy year: Natural Catastrophes 2017[END_REF][START_REF] Prahl | Data Descriptor: Damage and protection cost curves for coastal floods within the 600 largest European cities[END_REF]. To design protective infrastructure, for instance, a dam, one needs to know the frequency of a given intensity of precipitation [START_REF] Madsen | Review of trend analysis and climate change projections of extreme precipitation and floods in Europe[END_REF]. The return-period of an event is the duration during which the event occurs once, on average (see e.g. [START_REF] Cooley | Return periods and return levels under climate change[END_REF]. Symmetrically, for a given duration, say 100 years, the 100-year return level is defined as the level that is exceeded once every 100 years, on average. Given a dataset (e.g. observation or reanalysis), time series are finite and observing an event exactly once in 100 years does not make an event the 100-year return level. One therefore needs a statistical model to predict the intensity of such events, and even unobserved events.

The aim of this paper is to provide return levels for large return periods over Europe. The station coverage being quite heterogeneous over Europe [START_REF] Cornes | An ensemble version of the E-OBS temperature and precipitation data sets[END_REF] therefore, the use of gridded datasets is appropriate. Various types of gridded precipitation datasets are available (e.g., see Sun et al., 2018, for an overview). Precipitation gridded data can be derived from ground observations, satellite observations, combinations of ground observations and satellite observations and short-term numerical weather forecasts in reanalysis datasets. In reanalyses, past observations are assimilated in numerical weather forecast models to reconstruct past weather. The main advantage of this type of dataset is its regular spatial and temporal coverage. Reanalyses also ensure consistency of the precipitation data with the atmospheric conditions, which is a valuable characteristic for weather and climate process studies. Precipitation in this study is extracted from the ERA-5 reanalysis dataset [START_REF] C3s | ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate[END_REF][START_REF] Hersbach | The ERA5 global reanalysis[END_REF]. We study daily precipitation over continental Europe. The region of interest covers more than 20,000 grid points over European land.

EVT provides an asymptotic framework to model the distribution of extremes such as heavy precipitation. Two classical approaches for extreme modeling are the generalized extreme value (GEV) and the generalized Pareto distribution (GPD). The GEV [START_REF] Jenkinson | The frequency distribution of the annual maximum (or minimum) values of meteorological elements[END_REF] aims at modeling maxima over large blocks (for instance, a year in [START_REF] Poschlod | Ten-year return levels of sub-daily extreme precipitation over Europe[END_REF]. The GPD (see e.g. Pickands III et al., 1975, and Section 3.4.3) enables the modeling of exceedances over a given threshold (for instance, the 98-th quantile in [START_REF] Carreau | Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation[END_REF]. However, these two approaches only model extremes and our goal is to provide return levels in the full rainfall intensity range. We therefore need a class of distribution that can model the whole spectrum of precipitation intensities. [START_REF] Carreau | A hybrid Pareto model for asymmetric fat-tailed data: the univariate case[END_REF], [START_REF] Papastathopoulos | Extended generalised Pareto models for tail estimation[END_REF], [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] and [START_REF] Stein | Parametric models for distributions when interest is in extremes with an application to daily temperature[END_REF] introduced distributions that model the whole spectrum of rainfall intensities. The methods model the upper tail with a Pareto distribution. Various types of transfer High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions Chapter 3 et al., 2008;[START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF]. For instance, [START_REF] Darwish | New hourly extreme precipitation regions and regional annual probability estimates for the UK[END_REF] selected explanatory covariates by applying a principal component analysis to available geographical and climate data. They found that longitude, latitude, elevation and seasonality of events explained most hourly precipitation in the UK. With these methods, choosing covariates is an essential step that requires expert knowledge. Moreover, covariate data must be available and may be complicated to transfer across regions with different climate characteristics. For example, the covariates that best describe precipitation may be different between the UK and Italy. To check the homogeneity of covariate-based groups, [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] proposed tests to examine the validity of the model corresponding to Eq. ( 3.1). The tests rely on two components: the moments that characterize the precipitation distribution, and the distributional assumption (Kappadistributed, see e.g. [START_REF] Hosking | The four-parameter kappa distribution[END_REF]. The tests consist of measuring the dispersion of some estimated L-moments (for all sites in the region) around a theoretical regional value of L-moments. To compute the theoretical value, [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] assume that the precipitation follows a kappa distribution. This distributional assumption is not necessarily satisfied in practice. To bypass the selection of covariates, [START_REF] Saf | Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey[END_REF] and Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF] proposed methodologies using precipitation data only. They started from the hypothesis that the distributions are partially characterized by their probability weighted moments (PWM, [START_REF] Greenwood | Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form[END_REF].

Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF] recently proposed a PWM-based algorithm to identify homogeneous spatial clusters of extreme precipitation and applied the algorithm to Swiss daily precipitation observations. The algorithm provided spatially coherent regions without using any geographical covariate. In this paper, we apply the clustering algorithm from Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF] to ERA-5 daily precipitation from all European land areas to group grid points with similar upper tails.

When clusters are delineated, information from all homogeneous grid points can be pooled to accurately estimate the EVD parameters. For the regional distribution, we use an EGPD with three parameters see Section 3.4.3. Only the scale parameter can vary within a homogeneous cluster. The flexibility and shape parameters are constant over the cluster. In a nutshell, the regional approach allows us to go from a model with 3 × 20, 000 parameters to a model with 2 × n clusters + 20, 000 parameters, n clusters being the number of clusters. We also compare the performance of this regional approach to the performance of a more flexible distribution where the flexibility parameter can vary between sites of the same homogeneous cluster.

This study is the first to provide ERA-5 return levels, which, to our knowledge, have never been provided for the whole of Europe. Second, RFA is traditionally applied to smaller areas such as countries (see e.g. [START_REF] Fowler | A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000[END_REF][START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF], for RFA on the UK and Switzerland). Section 3.3 introduces the precipitation dataset and Section 3.4 describes the methods for the non-parametric clustering algorithm, the regional fitting and its assessment. The homogeneous regions, the assessment of the regional fitting and the corresponding 10, 50 and 100-year return levels are presented in the results section, Section 3.5. We discuss our results and compare our clusters to the regions obtained by national-scale studies in Section 3.6. We draw conclusions in Section 3.7.
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Data

We use ERA-5 daily precipitation with 0.25 • spatial resolution. ERA-5 is the latest global reanalysis dataset provided by the European Center for Medium-Range Weather Forecasts (C3S, 2017;[START_REF] Hersbach | The ERA5 global reanalysis[END_REF]. Precipitation is provided with hourly resolution forecasts that we aggregate to daily precipitation. We study ERA-5 precipitation for the period 1979-2018 in Europe over land, which is a region in which the dataset performs well [START_REF] Rivoire | A comparison of moderate and extreme ERA-5 daily precipitation with two observational data sets[END_REF]. Because practical applications are mainly restricted to the continent, we do not include precipitation data over the oceans. We conduct a seasonal analysis to ensure the stationarity of the time series. We consider the daily positive precipitation for each season. Days are considered as wet when precipitation exceeds 1 mm [START_REF] Maraun | Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue[END_REF].

Methods

Here, we introduce the two stages of RFA: i) identify homogeneous regions (sections 3.4.1 and 3.4.2) and ii) use data from all grid points in the same region to model rainfall intensities (Section 3.4.3). We also introduce the evaluation tools we used to assess the fitted distributions (Section 3.4.4).

A scale-invariant ratio of PWM

Following the notations of Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF], we denote α i (Z) the i-th PWM of the positive F -distributed random variable

Z α i (Z) = E ZF (Z) i .
When self-evident, it is denoted simply as α i . The first three moments are used to compute the scale-invariant ratio

ω = 3α 2 -2α 1 2α 1 -α 0 . (3.2)
Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF] showed that ω can be seen as a ratio of two distances derived from norms.

Let i and j be two grid point locations, and Y j and Y j their two associated time series of seasonal positive precipitation. To spatially cluster daily rainfall, we need to compute a dissimilarity measure between two positive time series. Here, we use the ω-based distance defined by 3.3) where ω (Y i ) is the estimate of ω(Y i ). We use this distance for two reasons. First, because the distance is based on PWM, it enables comparison of empirical distribution shapes, including heavy-tailed ones, without fitting a parametric distribution. Second, the key property of ω is its scale-invariance. For any precipitation variables Y 1 , Y 2 in a homogeneous region, see Eq. (3.1),

dij = ω (Y i ) -ω (Y j ) , ( 
ω(Y 1 ) = ω(Y 2 ).
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The ratio ω can be interpreted as the heaviness of the tail within the mathematical framework of EVT. In the block maxima or peak-over-threshold approaches, ω only depends on the shape parameter. In the EGPD approach, ω depends on the shape and the flexibility parameter, see Section 3.4.3. The distance between two grid points with homogeneous distributions should be close to zero. The clustering algorithm gather sites with similar ω estimates.

Clustering algorithm: partitioning around medoids (pam)

Grouping close ω estimates is an unsupervised learning problem: we gather unclassified points that have common characteristics (here, their ω value). The grouping of estimates into clusters is based on geometric considerations: estimates are grouped if they are close to each other in the space of variables (here the axis of reals).

Several clustering methods are available [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF][START_REF] Jain | Data Clustering: A Review[END_REF][START_REF] Schubert | Fast and eager k-medoids clustering: O (k) runtime improvement of the PAM, CLARA, and CLARANS algorithms[END_REF], most classic ones fall in two categories: partitioning or hierarchical methods. The k-medoids, or pam, and k-means are iterative algorithms that belong to the first group. They both require the final number of clusters k as input. The pam algorithm is preferred to the k-means because of its ease of interpretation. Indeed, centers of the k-means clusters are barycenters and therefore virtual points whereas the centers of the pam clusters are actual points of the dataset (see e.g. [START_REF] Jain | Data Clustering: A Review[END_REF][START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF]. For each of these methods, the choice of the dissimilarity measure is paramount. We work with the absolute difference as a distance, also called the Manhattan distance, as recommended in [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF]; [START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF], see Eq. (3.3).

The center of each cluster is the grid point with the smallest dissimilarity to all other grid points in the cluster and is called the medoid. Each non-medoid point of the data-set is associated with its closest medoid. Generally speaking, pam converges to an ensemble of medoids and clusters that is a local minimum of the total cost, see Eq. (2.9).

To solve this optimization problem, pam starts by selecting k initial medoids, here in a deterministic way. The first medoid is the medoid of the partition for one cluster: the most centrally located point. The set of k medoids is then completed by adding the medoids of partitions with an increasing number of clusters one by one until k is reached. The second step consists of testing every swap possible between a medoid and any point non-medoid in the whole dataset. If the total cost function (see e.g. Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF] decreases, then the point is kept as medoid. Clusters are then updated with respect to their new medoids. When no swap decreases the total cost, then the algorithm stops. The computational cost of these two steps increases with the size of the dataset and the number of clusters. Because ERA-5 provides data for about 20,000 grid points in European lands, we use a faster version [START_REF] Reynolds | Clustering rules: a comparison of partitioning and hierarchical clustering algorithms[END_REF][START_REF] Schubert | Fast and eager k-medoids clustering: O (k) runtime improvement of the PAM, CLARA, and CLARANS algorithms[END_REF] of the original algorithm. This variation removes some redundant computations in the swap step.

To measure the strength of the link between a point and its cluster, [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF] introduced the silhouette score. The silhouette score for grid point i that belongs to the Chapter 3
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1 - d ik δ i,-k (3.4)
where d ik is the average intra-cluster dissimilarity between grid point i and all other grid points in cluster k, and δ i,-k the smallest of the k -1 average distance between site i and all other sites associated with a cluster different from k. When a grid point i is well classified, the intra-cluster average distance is significantly smaller than the distance between clusters. Its silhouette score is then close to 1. By contrast, a silhouette score close to -1 indicates a poorly classified grid point that should be in another cluster.

Eventually, a grid point that is not significantly closer to points in the cluster than to other points has a silhouette score close to 0. In other words, it is not strongly linked to any cluster.

Finding the number of clusters in a dataset is a tricky task [START_REF] Sugar | Finding the number of clusters in a dataset: An information-theoretic approach[END_REF][START_REF] Pansera | Clustering rainfall stations aiming regional frequency analysis[END_REF]. Numerous criteria that aim at identifying tight and wellseparated clusters exist [START_REF] Halkidi | Clustering validity checking methods: Part II[END_REF][START_REF] Desgraupes | Clustering indices[END_REF]. We compute five of them (silhouette, Dunn, Davies Bouldin, Xie Beni, S_Dbw, see e.g. [START_REF] Halkidi | Clustering validity checking methods: Part II[END_REF][START_REF] Desgraupes | Clustering indices[END_REF] to determine the number of clusters, between two and ten. These criteria are based on different distances and provide a different number of clusters. We therefore choose the number of clusters subjectively. We visually compare the maps of the partitions for numbers of clusters. We compromise between a large number of clusters and a partition that is not fragmented.

Regional fitting

To model the entire precipitation distribution, [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] and [START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF] proposed a simple scheme to build a flexible distribution by writing

F (z) = G(H σ,ξ (z))
where the flexibility function G can be any cumulative distribution function such that there exists κ > 0 such that G(u) u κ and 1 -G(1 -u) u have finite limits when u goes to zero. These constraints ensure that F follows EVT for very low and high precipitation accumulations. Here, we use G κ (u) = u κ , κ > 0, as flexibility function. Although simple, G is sufficiently flexible to model daily rainfall distributions while maintaining parsimony in the model [START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF].

We fit the parameters to different levels of regionalization, from σ, ξ and κ computed individually at every grid point to σ computed individually and κ and ξ being common between grid points in a homogeneous region (see Table 3.1).

PWM can quickly be estimated non-parametrically and used for estimation of EGPD parameters (see Appendix of [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF]. Estimates of local parameters are taken as initial values for the iterative estimation of regional or semiregional parameters, see Algorithm Algorithm 2. The quantile with probability p can be computed using the explicit formula

y p = F -1 (p) = σ ξ 1 -G -1 (p) -1 , if ξ > 0, (3.5) 
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Models Flexibility function G ξ σ

Local Bernstein G i = Bernstein polynomials, site specific site specific site specific

Local G i (u) = u κi , κ i > 0 site-specific site-specific site-specific Semiregional G i (u) = u κi , κ i > 0 site-specific constant on each cluster site-specific Regional G i (u) = u κ
, κ > 0 constant on each cluster constant on each cluster site-specific Table 3.1: Description of the four EGPD models, with various complexity compared in Section 3.5.2. The Bernstein EGPD is presented in [START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF]. The local EGPD is introduced in Naveau et al. ( 2016) and its regional version in Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF]. The comparison is mainly conducted between the local, the semiregional and the regional fitting (in bold).

0 < p < 1.
The return level associated with return period of T years is y p for p = 1 T ×n wds , where n wds is the number of wet days per season. We use the mean of the number of wet days per season during the period under study as an approximation for n wds .

For every grid point, we assume that the random variable modeling daily positive precipitation is independent and identically distributed. However, precipitation events can last for several consecutive days [START_REF] Buriticá | Some variations on the extremal index[END_REF]. To ensure independence in a time series of wet days, we randomly extract one wet day out of three to fit the EGPD models. Despite the climate change, [START_REF] Donat | Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets[END_REF] did not detect any clear trend in the whole precipitation distribution over the period of interest. The absence of a trend and the seasonal analysis are necessary to ensure identical distribution.

Assessment of the fitting

We evaluate the goodness-of-fit with standard statistical tools focusing on accuracy, flexibility of estimation, and rewarding of the parsimony (smaller number of parameters).

First, QQ-plots provide visual information on the proximity between two distributions. For selected grid points, we present QQ-plots, contrasting the empirical quantiles with the quantiles parametrically estimated with the local, semiregional and regional fits, and EGPD with Bernstein flexibility function (see Table 3.1).

We assess the agreement between the fitting and the empirical distribution with the Anderson-Darling test (see e.g. [START_REF] Anderson | Asymptotic theory of certain" goodness of fit" criteria based on stochastic processes[END_REF][START_REF] Scholz | K-sample Anderson-Darling tests[END_REF]. To ensure independence between the empirical and fitted distribution at a given grid point, we use a third of the positive precipitation time series that was not used in the fitting process as empirical data. Table 3.2 summarizes the results of the Anderson-Darling test over Europe for the regional, the semiregional, and the local fittings. To ensure spatial independence, we perform the tests for 1/8th of the grid points, randomly chosen. This way we avoid repetition of information between neighboring grid points.
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1: cond = T RU E, eps = .001, and u = 1(mm) 2: procedure Input(Rainfall Matrix for cluster C) Compute

σ new (s) = ξ 0 m(s) κ0 F (u) IB H ξ0 u σ0 , 1, κ 0 , 1 -ξ 0 -1
where IB(., ., .) is the incomplete Beta function

9: if |σ new -σ 0 | < eps then 10: cond = F ALSE 11: end if 12: σ 0 ← σ new 13:
end while 14:

Return (κ 0 , σ 0 , ξ 0 ) T 15: end procedure Model SON DJF MAM JJA local 91% 89% 90% 87% semiregional 89% 87% 88% 83% regional 88% 88% 88% 84% Table 3.2: Anderson-Darling test at a risk level of 5%: Percentages of grid points for which the hypothesis of equality between the empirical distribution and the fitted distribution is not rejected. Distributions are fitted locally semiregionally and regionally; see second, third and last row of Table 3.1.

To evaluate the goodness-of-fit, we compute the Akaike information criterion (AIC) [START_REF] Akaike | Factor analysis and AIC[END_REF] for the local, the semiregional, and the regional models. This criterion combines a measure of the goodness of fit (log-likelihood) with the parsimony andsparsity of the model. The AIC has to be minimized. A smaller number of fitted parameters is a bonus for the model because this reduces the risk of overfitting. For example, the local model requires the estimation of about 3 × 20, 000 parameters, whereas the regional model only needs the estimation of about 20, 000 + (number of clusters) × 2 parameters.

Results

Partition of ERA-5 over Europe

We apply the clustering algorithm introduced in Section 3.4.2 to ERA-5 positive daily precipitation for each season independently. The optimal number of clusters is three for September-October-November (SON), December-January-February (DJF), and March-April-May (MAM), and five for June-July-August (JJA, see Section 3.6 for a discussion about this number). Figure 3.1 shows these partitions. The shade of color indicates the silhouette coefficient of the grid points; light colors indicate low silhouette coefficients and therefore a weak association with the cluster. There are very few isolated grid points. For all the seasons, the borders between clusters follow the orography, for example in the Alps, the Carpathians, and the UK. This orographic link is present in all seasons. Hence, the ratio ω captures spatial structures associated with physical features such as orography without requiring additional covariates such as longitude, latitude, or elevation. Silhouette scores are lowest at the borders between clusters, and downward-pointing triangles, which indicate grid points with low and minimum silhouette coefficients, are often located in transition zones between clusters (Figure 3.1).

Assessment of the fitting

The fitting models are assessed with the Anderson-Darling test, the AIC criterion and QQ-plots.

The Anderson-Darling test indicates similar performance for the fitting of the regional and local EGPD models; see Table 3.1. The null hypothesis is that the fitted and the empirical distribution are the same. Table 3.2 displays the nonrejection rates of the null hypothesis for the Anderson-Darling test for each season and model across the entire Chapter 3

High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions domain. The null hypothesis is not rejected for 87% of the grid points in JJA and 91% in SON for the local fit. For the regional fit, it is not rejected for 84% of grid points in JJA and 88% in SON, DJF, and MAM. The nonrejection rate for the semiregional fitting is very similar to that the regional fitting. The percentage is lower for the local fit than for the regional fit in all seasons. Nonetheless, the difference between local and regional is smaller than 3% in all seasons. For all seasons and all fittings, the nonrejection rate indicates good performance of the model, the perfect nonrejection rate being 95% on a test with a confidence level of 5%.

The variability of meteorological processes tends to increase with the altitudinal gradient. Around complex topography, local-scale variations in precipitation may occur. Precipitation distributions might differ substantially between grid points, even within a homogeneous region, and the quality of the regional fit might decrease. We therefore distinguished the rejection rate of Anderson-Darling test between grid points below and above 1000 meters above sea level. We did not find any significant difference in the rejection rate of the Anderson-Darling test between grid points at low and high altitudes (not shown). Moreover, the goodness of the classification in the clustering procedure might impact the accuracy of the fit. At a grid point with a poor connection to its cluster, the regional value of ξ (and κ) might not be accurate and the distribution fitted regionally might be significantly different from the empirical distribution. We distinguished the Anderson-Darling test between grid points with a silhouette greater or lower than 0.2. Here too, we observe no significant difference between grid points with low and high silhouettes, for either the local or regional fits (not shown). Even if the local model is the most adaptable, the regional model seems to be sufficiently flexible to (i) take into account the local-scale variations caused by complex topography and (ii) compensate for the regionalization of two parameters out of three.

The AIC criterion summarizes the information contained in the likelihood and penalizes the number of parameters. It should be as low as possible. The AIC is much lower for the regional model than for the semiregional and local models independent of the season (see Table 3.3). AIC values across all grid points vary between -115, 106 in JJA and -107, 250 in DJF for the regional fitting, between -79, 400 in JJA and -67, 614 in DJF for the semiregional fitting and between -43, 704 in JJA and -27, 984 in SON for the local fitting. These AIC values highlight the trade-off between parsimony and goodness of fit of the regional fitting. Having only one EGP parameter varying within one cluster in the regional model substantially reduces the AIC. Figure 3.2 displays the QQ-plots for cluster medoid, cluster minimum, and cluster maximum silhouette coefficient in each cluster in SON (see partition in Figure 3.1(a)). For the most centrally located grid point, the medoid, all the fittings perform similarly well. One exception is the upper tail in the northern and southern clusters, which High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions Chapter 3 is slightly overestimated with the regional fitting compared to the local one. For the grid point with a minimum silhouette, the regional and semiregional fit have a similar performance to the local one or even outperform them in the southern cluster. In the intermediate and southern clusters, for the semiregional and regional fittings only the most extreme precipitation is overestimated compared to the local fit. For the grid point with the maximum silhouette, the regional and semiregional fits outperform the local fit for the whole distribution. Extremes are well captured with the regional method, except in the northern cluster, where the highest precipitation is overestimated for all the fittings. The semiregional and regional fittings seem to significantly improve the quality of estimation for the best-classified points. The semiregional and regional fittings have similar performances. We also compared with the local Bernstein fitting; see Table 3.1. Its performance is similar to the semiregional and regional fittings except in the southern cluster.

Model

Return levels

The estimate of the return levels is spatially smooth despite the regionalization of two out of three parameters in the EGPD. Figures 3.3,3.4 and 3.5 show the 10-, 50-, and 100-year return levels for all seasons. Even though the shape and flexibility parameters ξ and κ are constant across each cluster, the variability of scale parameter σ (estimated locally) accounts for the high level of spatial detail of the fit. Regions with high return levels are shown in deep blue and purple colours on the map. Specific regions known to experience heavy precipitation are highlighted, such as the Cévennes, South of France (with Cévenols episodes, see e.g. [START_REF] Ducrocq | A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors[END_REF][START_REF] Vautard | Extreme Fall 2014 Precipitation in the Cévennes Mountains[END_REF] in SON and the Canton of Ticino in southern Switzerland [START_REF] Isotta | The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data[END_REF][START_REF] Barton | Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland[END_REF][START_REF] Panziera | A 12-year radarbased climatology of daily and sub-daily extreme precipitation over the Swiss Alps[END_REF] in SON, MAM, and JJA.

Finally, we compare the return levels obtained with the local fit and the regional fit. Figure 3.6 displays the relative difference between the 50-year return levels for regional and local fittings. The return levels differ by less than 10% for about 60% of the grid points in SON and for up to 80% of the grid points in DJF. The mean value of the absolute difference lies between 7% (DJF) and 10% (SON). Areas with the highest relative differences are generally located in the cluster with the highest shape parameters: those with more frequent extremes. The same maps for the 10-and 100-year return levels can be found in appendix (Figure A.1 and A.2).

Discussion

We conduct a pam clustering procedure based on the PWM ratio ω. We find that the optimal number of clusters is three in SON, DJF and MAM, and five in JJA. The higher number of clusters in JJA might be explained by a larger spatial variability of precipitation extremes in Europe in summer (see e.g Cortesi et al., 2014, in Spain). The same analysis was conducted for hierarchical partitioning, leading to the same clusters for some parametrization (results available upon request).

The choice of the optimal number of clusters is challenging. The various criteria for the choice proposed in the literature did not agree on the optimal number of clusters High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions Chapter 3

Figure 3.3: 10-year return levels computed with the regional fitting, see Table 3.1.

Figure 3.4: 50-year return levels computed with the regional fitting, see Table 3.1.

Chapter 3

High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions Figure 3.5: 100-year return levels computed with the regional fitting, see Table 3.1. Figure 3.6: Relative difference between the 50-year return levels computed with the regional fitting and the local fitting.
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(see e.g. [START_REF] Pansera | Clustering rainfall stations aiming regional frequency analysis[END_REF]. This can be explained by the large number of grid points in the analysis, resulting in more noise in the criteria than actual information about the goodness of the partitioning. In general, if many grid points are involved, we recommend using more than one criterion and checking the maps visually for the plausibility of the partition obtained.

We analyze the impact of the number of clusters on the regional fit. For this purpose, we compare the difference between the 50-year return levels based on the pam partition with three clusters and the one with four clusters, in SON (not shown). For a large majority of the grid points, the difference in return levels is lower than 5%. The difference is a bit larger for a few outliers but remains lower than 25%. The outliers are generally located in regions with a very low silhouette score for the partition with 3 clusters.

We compare our partition in Central Europe to that obtained by [START_REF] Gvozdiková | Spatial patterns and time distribution of central European extreme precipitation events between 1961 and 2013[END_REF] over Germany, Poland, Austria and the Czech Republic. They considered extreme events between 1961 and 2013. Their approach was based on the weather extremity index. They computed Ward's linkage in the hierarchical clustering algorithm. The clusters they found exhibit a west-east pattern. The partition we obtain over these four countries also tends to separate eastern and western regions. [START_REF] Darwish | New hourly extreme precipitation regions and regional annual probability estimates for the UK[END_REF] also found this west-east pattern in the UK. They delineated the regions using the most explanatory covariates (among those that were available) and then assessed their homogeneity by computing tests of [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] on hourly precipitation. Our results generally agree with the partition they obtained.

The regional model is more parsimonious than the local model; see Table 3.1. It is also more precise on well-classified points (see Figure 3.2). The semiregional and regional models have similar performance; hence, the regional model should be preferred because it is more parsimonious. An alternative to our fitting method would be to select only grid points with a satisfactory silhouette score (e.g. greater than 0.2) to estimate the regional parameters. The quantiles of points with very low silhouette scores would then be estimated locally. This could increase the likelihood of the fitted distribution in some cases but would also increase the number of parameters to fit. However, the performance of the regional fit was not substantially lower than the local fit for the border areas between the clusters, and the rate of rejection in the Anderson-Darling test was not substantially higher at grid points with low silhouettes. For the sake of simplicity and parsimony, we choose to keep the regional approach for all points.

The local Bernstein distributions do not seem to be substantially closer to the empirical distribution than the regional ones; see Figure 3.2. Hence the flexibility brought by the scale parameter σ in the regional model is sufficient to fit the data well and therefore the most parsimonious model is as precise as the others.

The spatial pattern of our seasonal 10-year return levels (Figure 3.3) is similar to that of the yearly 10-year return levels obtained by [START_REF] Poschlod | Ten-year return levels of sub-daily extreme precipitation over Europe[END_REF] with an observational dataset and the Canadian Regional Climate Model.

We also compare the return levels over Switzerland with those provided by MeteoSwiss (2019) for all the seasons (see Figure A.3,A.4 and A.5 in appendix). This small country provides a good test case for our study because the complex orography leads to a wide Chapter 3

High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions variety of precipitation patterns [START_REF] Schmidli | Mesoscale precipitation variability in the region of the European Alps during the 20th century[END_REF][START_REF] Umbricht | Seasonal variation of daily extreme precipitation in Switzerland[END_REF][START_REF] Isotta | The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data[END_REF][START_REF] Evin | Stochastic generation of multi-site daily precipitation focusing on extreme events[END_REF]. Return levels obtained by MeteoSwiss (2019) were computed by fitting a GEV to observed seasonal maxima, with a much higher spatial grid resolution than ERA-5 (up to 1km, see [START_REF] Meteoswiss | Spatial Climate Analyses[END_REF]. The maps of return levels are close in terms of magnitude and exhibit very similar spatial patterns. Only the small-scale structures are not captured by ERA-5 which is due to the coarser grid resolution of ERA-5. The magnitudes of extremes are slightly underestimated in ERA-5, especially in MAM. This agrees with the study of [START_REF] Hu | Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany[END_REF] over Germany. They state that ERA-5 generally underestimates extremes of daily precipitation compared to observation-based gridded datasets (and weather station observations). In our analysis, despite the regionalization (three or five clusters in Switzerland depending on the season) of two parameters out of three, the scale parameter σ presents sufficient variability to have correct return levels. The variability of σ alone is sufficient to provide accurate fitting, even in a country with a complex topography and high local spatial variability of extreme precipitation.

Conclusions

We derive return levels of extreme daily precipitation ( > 1 mm) over Europe using regionalized parameters for the EGPD fits. The regionalization requires two steps. First, all land grid points are partitioned into a few homogeneous regions with a clustering algorithm. As distance measure, we estimate a scale-invariant ratio of PWM for each grid point, focusing on the tail of the distribution, and then use the pam clustering algorithm to group these estimates into regions. The second step is the choice and fitting of a model to estimate return levels. We choose to fit an EGP distribution that models the full range of precipitation intensity. Only the scale parameter is allowed to vary within a homogeneous cluster, and the tail and flexibility parameters are common to all grid points in that cluster.

We assessed our regional analysis with classical statistical tools and compared it to previous analyses and return level estimates. Although parsimonious, the regional model is sufficiently flexible to capture the strong spatial variability of rainfall intensities.

This paper provides two main contributions. We provide maps of 10-, 50-and 100-year return levels for European precipitation of ERA-5, and we have made the algorithms for clustering and regional model available in a GitHub repository2 .
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Take-home messages from Paper II

The method applied in Paper II, and summarized in the grey box, enables to delineate homogeneous regions in a non-parametric way and without selecting covariate. Some advantages and limitations, particularly with regard to the choice of the number of clusters, are summarized in the colored box (color of the box refers to Figure 4). 
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Preamble to Paper III

In the two previous chapters, we proposed a distance that only focused on the scale-invariance of precipitation margins. The spatial dependence structure was not taken into account. In this section, we examine in detail the role played by spatial dependence. To highlight the dependence between sites, the F-madogram distance is illustrated on observed Swiss daily precipitation for fall corresponding to September, October and November (SON), see Chapter 2 or Table 1.1 for more details. We compute the F-madogram, see Eq. (4.2), at two time scales: on daily (positive) precipitation (as in Chapter 2) and weekly maximum daily precipitation (referred to as weekly maxima in this section). As recommended by [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] and [START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF], we then plug this distance in pam algorithm. When applied to weekly maxima, this algorithm provides spatially coherent clusters (e.g. in orange, the Jura mountains; and in blue, the south of the Alps), see Figure 4.1. Nevertheless, when the block size decreases to a day, the F-madogram algorithm produces a less satisfactory partition, see Figure 4.2. Clusters are unequally spatially coherent. Southern (blue) cluster covers the Ticino, south of Valais and south of Grisons cantons. Orange cluster groups points of the Jura mountains. The red cluster, in the north of the canton of Valais, is quite patchy and contains weather stations from the north of the canton of Grisons. In a nutshell, the partition is much more patchy than the partition obtained on weekly maxima. In addition, the clustering algorithm of [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] is based only on the spatial dependence structure and sites with similar margins (up to normalization) can belong to distinct clusters. As an example, the sites of Lachen and Muri (highlighted by white diamonds on the map 4.1) belong to green and purple clusters but their margins seem to satisfy the homogeneity condition, defined in Eq. (4.1). Figure 4.3 displays the QQ-plots of the normalized weekly maxima for both sites. They appear to have a close extreme intensity behavior. Therefore, it would be relevant to build a distance or dissimilarity that takes this homogeneity into account. This issue is addressed in the third paper (i.e. in the following sections).

We obtain a dissimilarity matrix from the so-called RFA-madogram dissimilarity, introduced in the following sections (see Eq. (4.3)), and apply the clustering algorithm pam. We assess the quality of the clustering with the pointwise silhouette score. Size of the points increases with their silhouette scores: largest points are the best classified ones (for more detail, see Figure 4.6). Clusters obtained with the RFA-madogram are spatially coherent for both weekly maxima or daily precipitation, see Figures 4.4 and 4.5. As the clustering algorithm introduced in Paper I and the F-madogram algorithm of [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF], the RFA-madogram does not require any covariate to provide coherent clusters. Still, clusters can be physically/climatically interpreted. For example, the orange cluster corresponds to the Jura mountains and the blue one to the Ticino canton. The clusters shape slightly changes from weekly to daily scale.
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Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Finally, we assess the role played by spatial dependence strength and the role played by homogeneity in the RFA-madogram computed on weekly maxima. To measure the "bonus" brought by dependence in the distance, we build a dataset with independent time series (but with same margin at each weather station). The independent dataset is made of temporally shuffled data, see e.g. Figure 4.7 for an illustration. Within each cluster, we compute the relative difference of the RFA-madogram on original data vs. on temporally shuffled data, with respect to the medoids. the closeness of the points considered, the contribution of the dependence between sites is expected to be higher on this observational dataset than on a dataset with coarser resolution, such as the CMIP model outputs studied in Paper III where grid points cover an area of more than hundred kilometers. Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution

Introduction

Since the early 19 th century, fossil fuels-based human activities have become one of the major forces of ecosystem and climate change, defining a new geological era, called Anthropocene [START_REF] Crutzen | The "anthropocene[END_REF] or Capitalocene [START_REF] Malm | The geology of mankind? A critique of the Anthropocene narrative[END_REF][START_REF] Campagne | Le capitalocène: aux racines historiques du dérèglement climatique[END_REF]. The global warming caused by these activities induces important changes in the climate system (IPCC, 2021). Working Group I of the IPCC, which assesses the physical science of climate change, summarizes the latest advances in climate science to understand the climate system and assess climate change, by combining data from paleoclimate, observations and global circulation model (GCM) simulations. The latter are based on differential equations linked to the fundamental laws of physics, thermodynamics and chemistry. GCMs simulate the evolution of various climate variables on discretized tridimensional meshes with a typical horizontal resolution of 100 [km] or more. The coupled model intercomparison project (CMIP) [START_REF] Meehl | The coupled model intercomparison project (CMIP)[END_REF][START_REF] Alexander | Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5[END_REF] aims at comparing the performances of several dozen of GCMs developed by different research centers, e.g. see Table A.1 in Appendix. As numerical experiments and approximations of the true climate system, these GCMs can produce different climate responses to different given inputs, e.g. emission scenarios. To reduce model errors and gain robustness in signal detection, GCMs are often analyzed jointly. In particular, CMIP models have been used in the field of detection and attribution that aims at finding causual links between the climate response and known external forcings (see, e.g. [START_REF] Naveau | Statistical methods for extreme event attribution in climate science[END_REF][START_REF] Ribes | Making climate projections conditional on historical observations[END_REF][START_REF] Van Oldenborgh | Pathways and pitfalls in extreme event attribution[END_REF]. As a yardstick, the so-called "natural forcings" runs have not been influenced by human activities and were only driven by external forcings, e.g. solar variations, explosive volcanic eruptions like Mont Pinatubo in 1991 (see, e.g. [START_REF] Ammann | Statistical volcanic forcing scenario generator for climate simulations[END_REF]. Such a numerical setup can be viewed as a thought-experiment and it corresponds to a counterfactual world, but not to the observed one. In contrast, a factual world is produced by integrating all forcings, including rising GHG, and factual runs aims at reproducing the observed climatology over the last century. Future periods, say 2071-2100, can also be explored with GCMs but future forcing and emission scenarios need to be chosen. For example, RCP8.5 for CMIP5 (IPCC, 2013) and SSP5-8.5 for CMIP6 (IPCC, 2021) will be analyzed in this paper. In this context, a natural question is to wonder how the climate system will change under these scenarios.

Due to their large societal and economical impacts, a vast literature has be dedicated to answering this question for extreme events. In particular, heavy rainfall and heatwaves have received a particular attention, see chapters 10 and 11 in the Working Group I contribution of IPCC (2021) report. In this paper, we focus on annual maxima of daily precipitation from 1850 to 2100 provided by the factual (all forcings) and counterfactual (natural forcings only) models listed in Table A.1 of the Appendix. Note that our main climatological goal is not to directly assess changes in heavy rainfall intensities and frequencies, but rather to detect how spatial patterns (clusters) of yearly maxima of daily precipitation could be modified by anthropogenic forcing.

To model yearly block maxima, one classical statistical approach is to impose a parametric generalized extreme value (GEV) distributions (see e.g. [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF][START_REF] Davison | Statistical modeling of spatial extremes[END_REF]. For example, each grid point of each individual CMIP model could Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Chapter 4

be fitted with a spatial structure embedded within the GEV parameters (see, e.g. [START_REF] Kharin | Changes in temperature and precipitation extremes in the CMIP5 ensemble[END_REF]. However, the computational cost can be high (more than 200 years of precipitation data at thousands of grid points for 16 models), especially if the spatial dependence is included. Another aspect is the ease of interpretation. Well defined spatial patterns (clusters) in extreme precipitation are very useful for climatologists who can interpret them according to known physical phenomena (e.g., [START_REF] Pfahl | Understanding the regional pattern of projected future changes in extreme precipitation[END_REF][START_REF] Tandon | Understanding the dynamics of future changes in extreme precipitation intensity[END_REF][START_REF] Dong | Attribution of Extreme Precipitation with Updated Observations and CMIP6 Simulations[END_REF]. For example, the so-called RFA has been frequently used in hydrology, see [START_REF] Dalrymple | Flood-frequency analyses, manual of hydrology: Part 3[END_REF]; [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] spatial distributions (see e.g. [START_REF] Burn | Evaluation of regional flood frequency analysis with a region of influence approach[END_REF][START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF][START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF]. For example, [START_REF] Toreti | Precipitation extremes in the Mediterranean region and associated upper-level synoptic-scale flow structures[END_REF] let scale parameters vary as a function of weather station locations. However, selecting relevant covariates is constrained by their availability, expert subjectivity and the scale of the problem. In particular, finding appropriate covariates for heavy rainfall patterns at the global scale is tedious. In addition, assessing the homogeneity of regions [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF] relies on specific moments like skewness and kurtosis that are not necessary robust (based on the spatial independence assumption). Other techniques bypass the use of covariates by only working with the data at hand, here precipitation [START_REF] Saf | Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey[END_REF]. For example, Le [START_REF] Gall | Improved regional frequency analysis of rainfall data[END_REF] considered a ratio of probability weighted moments, see [START_REF] Greenwood | Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form[END_REF] and applied a clustering algorithm on this ratio. More precisely, this ratio, denoted ω ∈ [0, 1], is mean and scale invariant, i.e. in compliance with Eq. (4.1), and it is a simple increasing function of ξ when rainfall extremes can be assumed to either follow a GEV or Pareto distribution with shape parameter ξ. To illustrate the spatial variability of CMIP rainfall tail index (i.e. of ω), panel (a) of Figure 4.10 displays the ratio ω at each grid point of a counterfactual CCSM4 annual maxima run. Note that grid points A and B exhibit similar ω estimates, while grid point C differs (lighter tail).

(x) = P(Y i ≤ x) with i ∈ {1, 2} as F 2 (λx) = F 1 (x). ( 4 
All aforementioned RFA techniques has one major drawback. They rely on the assumption of pairwise independence or pairwise conditional independence (given the covariates). Note that Eq. (4.1) also constraints the marginal behavior, but does not take into account of any information about the spatial dependence strength. Still, precipitation series at two nearby grid points are likely to be dependent. To illustrate this point, we can go back to Figure 4.10. Panels (b) and (e) display the scatter plots (rescaled by their means) between points A and B, and between points A and C, respectively. As expected from their local proximity, not only A and B have same similar marginals, but annual maxima of daily precipitation appears to be strongly correlated. This information coupled with constraint Eq. (4.1) should play an important role in improving RFA methods.

Modeling the dependence structure in clustering algorithms can be handled in different ways depending on the assumptions one is ready to make. Fully non-parametric or parametric approaches can be developed. Explanatory covariates can be included or difficult to find. For example, [START_REF] Kim | Evaluation of precipitation extremes over the Asian domain: observation and modelling studies[END_REF] introduced a parametric approach based on copulas in the context of cluster detection in mobility networks. They grouped sites subject to intense traffic according to covariates (e.g. geographical), and checked the dependence strength within each cluster by fitting a multivariate Gumbel copula. [START_REF] Drees | Principal component analysis for multivariate extremes[END_REF] and [START_REF] Janßen | k-means clustering of extremes[END_REF] proposed approaches based on exceedances; after projecting observations onto the unit sphere, they reduced their dimension through K-means clustering [START_REF] Janßen | k-means clustering of extremes[END_REF] and principal component analysis [START_REF] Drees | Principal component analysis for multivariate extremes[END_REF]. Finally, [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] applied a non-parametric approach based on the F-madogram to weekly precipitation maxima. The so-called F-madogram [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] is defined by Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution vector (Y 1 , Y 2 ) follows a bivariate GEV distribution (see e.g. [START_REF] Gumbel | Distributions des valeurs extremes en plusieurs dimensions[END_REF][START_REF] Tawn | Bivariate extreme value theory: models and estimation[END_REF], this distance can be interpreted as linear transformation of the extremal coefficient (see e.g. [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF]Naveau et al., 2009, and Section 4.3.2). [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF], [START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF] and later [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] computed this distance to build a pairwise dissimilarity matrix that was used as an input of a clustering algorithm. In these two former studies, a partitioning around medoids (pam) algorithm [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF] was applied whereas the latter used hierarchical clustering. But, the RFA requirement defined by Eq. (4.1) was not imposed, and so the marginal differences between Y 1 and Y 2 were not taken into account. To visualise this issue within the CMIP repository, it is simple to cluster a counterfactual CCSM4 annual maxima run with the pam algorithm1 based on the distance d. The resulting map displayed in panel (b) of Figure 4.10 shows a few spatially coherent structures, but, overall is very patchy. In addition, panel (a) related to the marginals behavior appears to be unrelated to panel (b) that describes the spatial dependence. This was expected from the F-madogram distance, but it would make sense to cluster grid points that are both correlated but also the same type of marginal, see Eq. (4.1), the essence of the RFA. [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF], with four clusters for each hemisphere separately. Each color corresponds to a cluster.

d = 1 2 E |F 1 (Y 1 ) -F 2 (Y 2 )| , ( 4 
To reach this goal, we propose the following work plan. In Section 4.3, we integrate the homogeneity condition Eq. (4.1) into a new definition of the F-madogram distance. The properties of this new dissimilarity, which we call RFA-madogram, is explained by analyzing a special case: the logistic bivariate GEV model in Section 4.3.2. A nonparametric estimator of the RFA-madogram is proposed and its asymptotic consistency in law is detailed in Section 4.4. Concerning the CMIP database, we compute, in Section 4.5, a RFA-madogram dissimilarity matrix on annual maxima of daily precipitation for each CMIP models listed in Table A.1, and then cluster them with the pam algorithm. Finally, we propose a method to build a "central" partition that summarizes the partitions obtained for each model and compare the spatial patterns obtained for counterfactual Chapter 4

Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution (1850-2005) and factual (2071-2100) experiments. Section 4.6 concludes the paper by providing a short discussion.

Joint modeling of dependence and homogeneity

RFA-madogram

To introduce homogeneity criteria, see Eq. (4.1), into distance defined in Eq. (4.2), we propose to define and study the following expectation

D(c, Y 1 , Y 2 ) = 1 2 E F 2 (cY 1 ) -F 1 Y 2 c , (4.3) 
where c > 0 is a normalizing positive constant. The D(c, Y 1 , Y 2 ) is always non-negative and equal to zero for c = λ when Y 2 a.s = λY 1 . The homogeneous regions are not defined a priori, so the existence of λ and its value are not known. We denote The key point from a RFA point of view is that, if Eq. (4.1) is satisfied, D behaves as the classical F-madogram distance. Note that D is not a true distance, but a dissimilarity. The triangle inequality is satisfied under homogeneity condition but may not be valid in general. Still, D captures information about the extremal dependence like the F-madogram, and, in addition, it encapsulates marginal information concerning the departure from Eq. (4.1). More precisely, one can show (see Appendix A for the proof) that

c * 12 = argmin{D(c, Y 1 , Y 2 ) : c > 0}. (4.4) Note that D(c, Y 1 , Y 2 ) = D 1 c , Y 2 , Y 1 ,
2 |d -D| ≤ E [∆(c, Y 1 )] + E [∆(c, Y 2 /c)] , (4.5) 
where the function ∆(c, x) = |F 2 (cx) -F 1 (x)| measures the difference between the rescaled cdfs.

To deepen our understanding of D, we comment on the special case of a bivariate-GEV distributions.

RFA-madogram for bivariate GEVs

In this section, we suppose that the bivariate vector (Y 1 , Y 2 ) follows a max-stable distribution [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF][START_REF] Fougères | Multivariate extremes[END_REF][START_REF] Guillou | Madogram and asymptotic independence among maxima[END_REF] with dependence Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Chapter 4 function V (., .)

P(Y 1 ≤ x; Y 2 ≤ y) = exp -V -1 log F 1 (x) , -1 log F 2 (y)
,

where

F i corresponds to a GEV marginal cdf. If F i (x) = exp - x σ i -1/ξ i with ξ 1 = ξ 2 = ξ, then the equality Y 2 d = σ 2 σ 1
Y 1 holds and we are in the homogeneity case.The shape parameter ξ describes the common upper-tail behavior. The larger ξ is, the heavier the upper-tail of the distribution. Although complex, Section A.3.4 in Appendix A.3.4, summarizes how D(c) can be expressed in function of V (., .) and the marginal parameters.

To simplify the dependence strength interpretation, it is common to focus on the extremal coefficient defined as the scalar θ 12 such that

P(Y 1 ≤ u, Y 2 ≤ u) = {P(Y 1 ≤ u)P(Y 2 ≤ u)} θ 12 2 .
It is equal to θ 12 = V (1, 1). If Y 1 and Y 2 are independent, then θ 12 = 2, while if they are fully dependent, then θ 12 = 1. Appendix A.3.5 provides the mathematical details to link the extremal coefficient with D(c). It allows to find an optimal value for rescaling parameter c * 12 . For example, it is possible to show that c

* 12 = σ 2 σ 1 = λ. for the logistic GEV model, V (x, y) = x -1 α + y -1 α α
, with α > 0.

(4.6)

In particular, the value of the dissimilarity D(c * 12 ) can be plotted as a function of the logistic coefficient α and of the ratio ξ 1 /ξ 2 . From Figure 4.11, one can see that the full dependence case corresponds to α ≈ 0, and the independence case to α = 1. In addition, the ratio ξ 1 /ξ 2 varies between 1 (homogeneity case) and 10, i.e. cases with ξ 1 = 0.1 and ξ 2 = 0.01. The dissimilarity is small when both the dependence is strong and the marginals are homogeneous (leftmost corner). Large dissimilarities correspond to the opposite cases, a near independence and/or strong heterogeneity in the shape parameters (rightmost corner). Note also that, as the homogeneity and the dependence strength decrease jointly, dissimilarity increases (concavity of the surface). These features correspond to our goal that, given the same dependence strength, the price to pay is high when the RFA condition Eq. (4.1) does not hold. In other words, our aim to cluster grid points that are jointly strongly dependent and in compliance with Eq. (4.1) seems, at least conceptually, to have been reached. The remaining question is to know if this strategy works in practice with the CMIP archive. To answer this, we need to first check that a non-parametric estimator can be developed and its asymptotic properties can be well understood.
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RFA-madogram inference

Given X ⊂ R n and n ∈ N, let ℓ ∞ (X ) denote the spaces of bounded real-valued functions on X . For f: X → R, let ∥f ∥ ∞ = sup x∈X |f (x)|. The arrows " a.s.

-→", "⇒", and "⇝" denote almost sure convergence, convergence in distribution of random vectors (see Vaart, 1998, Ch. 2) and weak convergence of functions in ℓ ∞ (X ) (see Vaart, 1998, Ch. 18-19), respectively. Let L 2 (X ) denote the Hilbert space of square-integrable functions

f: X → R, with X equipped with n-dimensional Lebesgue measure; the L 2 -norm is denoted by ∥f ∥ 2 = X f 2 (x) dx 1/2 .
In this section, given a sample of bivariate observations, say (Y 1 , . . . , Y n ) t , we focus on the asymptotic properties of two RFA-madogram estimators. Two cases can be studied: when the marginal distributions, F 1 and F 2 , are known or when we need to use their empirical estimator, say F 1 and F 2 . In both cases, the copula function of the bivariate vector (Y 1 , Y 2 ) t , say C(u 1 , u 2 ), that captures the dependence structure needs to be inferred. To derive our asymptotic results, we adapt the main ingredients of Theorem 2.4 from [START_REF] Marcon | Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials[END_REF] 

(u) = F 2 {cF ← 1 (u)} , we can write D(c) = 1 2 E |a c (U 1 ) -a ← c (U 2 )
| , where the bivariate vector U = (U 1 , U 2 ) t follows the copula C(u). This leads us to the estimators

D n (c) = 1 n n i=1 D c (U i ) , with U i = (F 1 (Y 1,i ), F 2 (Y 2,i )) t and D c (U i ) = |a c (U 1,i ) -a ← c (U 2,i )| .
If F 1 and F 2 are unknown and are replaced by their empirical estimators, we have, with

âc (u) = F2 c F ← 1 (u) , D n (c) = 1 n n i=1 Dc U i , with U i = F 1 (Y 1,i ), F 2 (Y 2,i ) t and D c U i = âc U 1,i -â← c U 2,i .
In practice, D n (c) is directly computed from the expression

D n (c) = 1 n n i=1 F 2 (cY 1,i ) -F 1 (Y 2,i /c) .
Still, the definition of D n (c) with U i facilitates the derivation of theoretical results by leveraging existing properties of the empirical copula

C n (u) = 1 n n i=1 I(U i ≤ u) and by writing D n (c) = [0,1] 2 D c (U) dC n (u) .
In particular, the following classical smoothness condition on copula C is needed, see Example 5.3 in Segers (2012) for details.

Condition (S)

For every i ∈ {1, 2}, the partial derivative of C with respect to u i exists and is continuous on the set {u ∈ [0, 1] 2 : 0 < u i < 1}.

Proposition 4.4.1: Let (Y 1 , . . . , Y n ) t be n independent and identically distributed random vectors whose common distribution has continuous margins and a copula function C that satisfies condition (S).

Let D be a C-Brownian bridge, that is, a zero-mean Gaussian process on [0, 1] 2 with continuous sample paths and with covariance function given by

Cov(D(u), D(v)) = C(u ∧ v) -C(u) C(v), u, v ∈ [0, 1] 2 . (4.7)
Here u ∧ v denotes the vector of componentwise minima. We define the Gaussian process D on [0, 1] 2 by

D(u) = D(u) - ∂C ∂u 1 D(u 1 , 1) - ∂C ∂u 2 D(1, u 2 )
Then we can write that Chapter 4
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a) We have ∥D n (c) -D(c)∥ ∞ → 0 almost surely as n → ∞. Moreover, as n → ∞, √ n {D n (c) -D(c)} ⇝ {1 + D(c)} 2 2 1 0 {D(a ← c (x), 1) -D(a ← c (x), a c (x))} dx + 1 0 {D(1, a c (x)) -D(a ← c (x), a c (x))} dx b) We have ∥ D n (c) -D(c)∥ ∞ → 0 almost surely as n → ∞, and as n → ∞, √ n D n (c) -D(c) ⇝ -{1 + D(c)} 2 1 0 D {a ← c (x), a c (x)} dx c>0 .

Analysis of CMIP precipitation for 16 models under two experiments

We now apply the RFA-madogram to the problem of partitioning annual precipitation maxima from 16 CMIP GCMs (see Table A.1 in Appendix) into homogeneous regions. For each hemisphere of a given GCM run, we estimate the dissimilarity matrix D(c * ) ( Eq. (4.3)) between each pair of grid points. To cluster from a dissimilarity matrix, the pam clustering algorithm is implemented as it is fast, adapted to max-stable distributions [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF], and it does not require the triangle inequality [START_REF] Schubert | Fast and eager k-medoids clustering: O (k) runtime improvement of the PAM, CLARA, and CLARANS algorithms[END_REF]. The counterfactual and factual (2071-2100) runs are analyzed separately and later compared to identify possible differences. With 16 partitions in four clusters for each 16 counterfactual (factual) hemispheric runs, GCM in-between-model error becomes an issue in terms of interpretation. We therefore summarize them in one "central" partitions, which we obtain in two steps. First, partitions for each counterfactual hemispheric runs are relabelled so as to minimize the pairwise difference between two partitions by taking each (alternatively) as reference score. As an example with five grid points, the partitions {1 1 1 2 2 3} and {3 3 3 1 1 2} are equal up to the permutation (1, 3,2). Then, we compute the probability of each grid point to belong to each of the clusters, and associate the corresponding grid point to the cluster of highest probability. For instance, grid point B is assigned to cluster 1 for 6 models out of 16, to cluster 2 for 9 models and to cluster 3 for only one model. In the so-called central partition, B is then assigned to cluster 2 with probability 9/16. Partitions for the factual experiment are relabelled in order to minimize the difference with the counterfactual central partition.

For example, Figure 4.12 shows the central partitions in four clusters by hemisphere. Intense colors correspond to points that belong to the same cluster in most, if not all, model partitions. Beginning with the counterfactual experiment, we first note that the clusters are very coherent spatially, in stark contrast to marginal-(ω) and dependencebased (F-madogram) partitions (Figure 4.10), even though no geographical covariates were used in the clustering. The Northern Hemisphere is dominated by two clusters (pink and yellow), with two others (blue and turquoise) with limited spatial extent. The distribution is more even in the Southern Hemisphere, and also more zonally symmetric.

Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Chapter 4

These partitions, driven both by homogeneity and dependence, are generally consistent with precipitation climatology. In the Northern Hemisphere, the pink cluster extends over the storm track regions of the North Atlantic and Pacific Oceans, and over the Inter-Tropical Convergence Zone (ITCZ) around 10 • N. The blue cluster covers the dry subtropics above the Sahara, Southwest Asia and southwest of North America. The turquoise cluster is located in the dry zone above the cold Pacific tongue, while the yellow cluster includes most regions with semi-arid and continental climates. Still, it also includes monsoon-dominated regions (e.g., India) and the dry Arctic.

In the Southern Hemisphere, arid regions in Antarctica and in the dry descent regions at the eastern edge of the subtropical anticyclones are grouped together in the purple cluster, while the red cluster covers much of the wet tropics. The orange and green clusters correspond to the Southern Hemisphere storm track. Most of the clusters appear to be quite robust across GCMs. Notable exceptions are the ITCZ regions in the Northern Hemisphere, and the equatorial Pacific and the eastern Indian Ocean west of Australia in the Southern Hemisphere. This lack of robustness may be due to the choice of cluster number. In any case, some differences are expected across GCMs, as they differ in their representation of storm tracks, monsoons or ITCZ location Chapter 4

Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution and dynamics. At first order, it appears that homogeneity of the distributions plays the dominant role, with arid or wet regions grouped together in both hemispheres. Still, the clustering is by design not only based on marginal distributions but also on dependence strength. To measure the importance of dependence in the spatial structure, we apply our clustering algorithm to temporally shuffled annual maxima at each grid point. This removes any spatial dependence between variables while preserving their marginal distributions. The results of Figure 4.13 for the CCSM4 model show a much less spatially coherent partition for the shuffled data. The dependence thus plays an important role in the coherence of the partition. This role can be further quantified by computing the relative difference between RFA-madogram on shuffled and non-shuffled data (with respect to the medoids). For about 2/3 of the grid points, the RFA-madogram takes lower values on the non-shuffled data, in particular near the medoids. We now turn to the comparison of the central partitions between the factual and counterfactual experiments. The overall partition structure is very similar in both exper-Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Chapter 4 iments (Figure 4.12). The clusters are better defined in the counterfactual experiment (i.e. cluster probabilities closer to 1) because the sample size is much larger than for the factual experiment (155 versus 30 years). Globally, differences between the two central partitions are not significant compared to variability of model partitions compared to the central partition for either the factual or the counterfactual experiment (not shown).

Hence, we cannot conclude to more spatial pattern variability in the factual world. The most likely cluster changes for a number of grid points, however, as indicated by crosses on the bottom panel of Figure 4.12. In the Northern Hemisphere, the pink (humid) and blue (arid) clusters expand slightly Northwards. More specifically, the probability of a given grid point to belong to the pink cluster generally increases at high latitudes, while the probability to belong to the blue cluster increases around the 25 • N latitude. In the Southern Hemisphere the green cluster (humid) also expands Southwards.

While the resolution of our analysis is rather low (5 • ), these differences are consistent with the expected polewards shift of major climate zones under climate change, particularly the arid subtropics and the storm track regions of both hemispheres [START_REF] Scheff | Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones[END_REF].

Conclusion

When considering multivariate data, EVT can be difficult to handle. Reducing the dimensionality of extreme precipitation dataset is then a challenging task. Our main goal in this work was to show that a simple and fast clustering approach based on an interpretable dissimilarity could highlight climatologically coherent regions.

The proposed approach coupled the main RFA idea, i.e. a normalizing factor, with the dependence structure via the F-madogram. The introduced dissimilarity has links with EVT via the extremal coefficient and tail parameters. The RFA-madogram neither requires estimating any marginal parameters nor dependence parameters. It is fully data-driven and bypasses the need of selecting relevant covariates or dependence structure.

Our analysis of annual maxima of daily precipitation from each CMIP model provides more spatially coherent hemispheric regions than some other non-parametric methods focusing on only one aspect (either homogeneity or dependence). Another contribution of this work is the handling of multi-partitions as our selected CMIP set has 16 GCM runs. Our combining approach enables us to compare one multi-model partition of the factual (all forcings) world with another multi-model partition of counterfactual (natural forcings) world. It appears that spatial variability between all models for the factual (resp. counterfactual) experiment appears to be significantly higher than between the two factual and counterfactual experiments.

In this work, we focus on the spatial structure of annual maxima precipitation in CMIP models, and on the forcing impact. We did not directly study the changes in rainfall distributions and frequencies. One interesting perspective would be to model precipitation intensities and dependence structure within each cluster. This could be useful for the D&A community. Another aspect is that the statistical approach developed therein is easy-to-implement and flexible, e.g. it can be used on non-gridded products. For example, it could be applied to large weather networks, reanalysis (ERA 5) and Chapter 4

Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution radar products. Such datasets have finer spatial resolution scales than GCMs, and the dependence structure could be stronger, and consequently the analysis of heavy rainfall spatial patterns at fine spatial scales improved.

Take-home messages from Paper III

The algorithm proposed in this chapter, and summarized in the grey box, is non parametric and covariate free. It enables to delineate homogeneous regions by taking into account the pairwise dependence strength. Some advantages and limitations of this clustering algorithm are summarized in the colored box (color of the box refers to Figure 4). 

CONCLUSION AND PERSPECTIVES

Summary

Homogeneous regions, i.e. groups of points where precipitation intensities are equal in distribution up to normalization, can be identified by working directly with precipitation data. It has been shown that this approach can provide spatially coherent groups of points. It has the advantage to bypass the delicate task of covariates selection (such as location, mean precipitation, etc.) and therefore allows to identify precipitation physically coherent processes. In addition, the implemented algorithms allowing to develop data-driven approaches introduced in chapters 2 and 4 are fully non-parametric and therefore do not require any distributional assumption. As expected, clusters finally obtained depend on the dissimilarity measure used. By coupling the RFA constraint and the spatial dependence strength, the dissimilarity proposed in Chapter 4 leads to the most coherent clusters. This allowed us to compare partitions obtained under different scenarios and detect possible changes (IPCC, 2021). The main climatological2 conclusions can be summarized as follows:

• European and Switzerland daily precipitation can be modeled by relatively simple regional distributions with only few clusters (from 2 for Switzerland observations to 5 for European ERA-5 reanalysis). A spatially varying scale parameter adds flexibility to this regional distribution and thus makes it compete with more complex models with many parameters. (e.g. varying scale and shape parameters).

• Spatial changes in heavy precipitation patterns do not appear to be strongly detectable at the spatial scale of 5 • × 5 • from GCMs.

Conclusion

Limitations and perspectives

By construction, in this PhD thesis, the clusters grouped together points where the precipitation intensities were homogeneous. In particular, the RFA-madogram defined in Eq. (4.3) is studied in the framework of Definition (1.2). However, in a changing climate, trend effects can be observed on long time series (see e.g. [START_REF] Bador | Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe[END_REF]. Actually, the RFA framework also works to some non-stationary cases with, for example, Y i (t) = λY j (t). In this case, Y i and Y j have the same temporal trend (e.g., they both increase), the RFA-madogram is the same, and therefore the partitions do not depend on the common trend of Y i and Y j . As for a parametric modeling of precipitation intensities, it would be possible to complete the analysis of Chapter 4 by fitting regional EVDs on each homogeneous cluster. There exist a wide variety of EVDs. For example, incorporating time-varying covariates would allow to take into account the non-stationarity of precipitation intensities [START_REF] Vasiliades | Nonstationary frequency analysis of annual maximum rainfall using climate covariates[END_REF][START_REF] Agilan | What are the best covariates for developing non-stationary rainfall intensity-duration-frequency relationship?[END_REF][START_REF] Castro-Camilo | Practical strategies for gev-based regression models for extremes[END_REF]. Moreover, it would be of great interest to make explicit the dependence structure between the points from a same homogeneous region. For instance, [START_REF] Mhalla | Non-linear models for extremal dependence[END_REF] made it possible to integrate covariates, and thus explanatory factors, into the dependence function. More broadly, the RFA-madogram captures the pairwise dependence strength but other approaches are placed in the multivariate framework (e.g. more than 2 variables). For example, [START_REF] Marcon | Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials[END_REF] proposed a non-parametric estimation of the Pickands dependence function (related to copula) based on the Bernstein's polynomials.

In Chapter 4, we compared the worst-case scenario with a scenario without humaninduced GHG emission. IPCC (2021) emphasized that, in climate change, every degree counts. Specifically, the warmer the Earth gets, the greater the changes (especially in extreme precipitation, see [START_REF] Westra | Global increasing trends in annual maximum daily precipitation[END_REF]. Other scenarios model intermediate GHG emission pathways, such as those following the aspirational goal of the Paris Agreement (RCP1.9 and SSP1-1.9) or a significant, albeit less ambitious, reduction (RCP2.6, RCP4.5 and their CMIP6 counterparts SSP1-2.6 and SSP2-4.5). Compared with the natural forcings scenario, no clear differences were detected with the worst-case scenario, so we expect the same conclusion with the intermediate scenarios. However, the GCM resolution 5 • × 5 • is very coarse. In particular, it cannot capture changes at the national scale at which climate change adaptation policies are made [START_REF] Pitman | Regionalizing global climate models[END_REF]. For instance, this analysis does not conclude about precipitation spatial patterns in France. Therefore , it would be interesting to apply the RFA-madogram clustering algorithm to GCMs with a finer resolution and, especially, to regional models (see e.g. [START_REF] Poschlod | Ten-year return levels of sub-daily extreme precipitation over Europe[END_REF]. This would be a way to investigate the effect of increased GHG emissions on local precipitation patterns. Mathematically, it would be interesting to study the RFA-madogram dissimilarity according to the spatial resolution (change of support in geostatistics, see e.g. [START_REF] Wallace | Applications of geostatistics in plant nematology[END_REF][START_REF] Cressie | Change of support and the modifiable areal unit problem[END_REF][START_REF] Renard | Geostatistics for environmental applications[END_REF]. For example, the weight of the dependence structure is more important if the resolution is fine [START_REF] Saunders | An investigation of Australian rainfall using extreme value theory[END_REF]. Indeed, nearby locations are likely to experience common extreme events, see Figure 1. As a consequence, a same dataset with different resolution may provide different partitions.

Throughout this thesis, we computed on different datasets two dissimilarity measures and took them as input in pam algorithm. From there, the sensitivity of our algorithms Conclusion has been addressed, but some important issues remain. For instance, the sensitivity with respect to the clustering algorithm type (and, if it makes sense, to the linkage method) was not studied. Using other clustering algorithms (HCA or OPTICS, an algorithm to find density-based clusters, see e.g. [START_REF] Ankerst | OPTICS: Ordering points to identify the clustering structure[END_REF] would also make it possible not to choose the number of clusters a priori. For example, OPTICS allows to automatically classify the points in three groups: "core", "border" or "noise" without having to define, for example, a threshold (e.g. silhouette coefficient) below which a point is "on the border".

In terms of methodology, the choice of the number of clusters remains a tricky issue. For example, silhouette coefficient alone, computed with the distance defined in Eq. (3.3), tends to underestimate the "true" number of homogeneous clusters. Indeed, let's consider again the experimental design displayed in Figure 2.5. For each point of this synthetic dataset with ten homogeneous regions, we mimic the daily Swiss precipitation and simulate EGPD time series corresponding to 30, 50, 80 and 150 years of observation. This step is replicated 100 times. For each of these 100 experiments, we apply the clustering algorithm of Chapter 2. The average silhouette criterion identified 2, 7 or 8 homogeneous clusters for samples with size similar to the length of the Swiss dataset samples, and, more rarely, 9 clusters for long samples of size 150 years, see Figure 5.14. In brief, the silhouette criterion alone does not give a satisfactory result. Many authors proposed other criteria that aimed at finding the "optimal" number of clusters (see e.g. [START_REF] Halkidi | Clustering validity assessment: Finding the optimal partitioning of a data set[END_REF][START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF][START_REF] Halkidi | Clustering validity checking methods: Part II[END_REF][START_REF] Desgraupes | Clustering indices[END_REF] so that these clusters are tight and well-separated. However, given a same dissimilarity matrix, they can still provide distinct results and an automatic univocal choice is not always possible. Figure 5.15 illustrates this issue on ERA-5 positive daily precipitation. In Chapter 3, we chose the number of clusters by making a trade-off between the statistical information available (e.g. the average silhouette width, Dunn's criterion, etc.) and physical interpretability. Still, it would be interesting to find a way to select the most relevant criteria (e.g. among those of Figure 5.15), provided it exists. In other respects, computation of the RFA-madogram can be a bit costly due to the optimization step, see Eq. (4.4). When dealing with small datasets such as the one used in, e.g., Section 4.1, the computation remains fast. However, when it comes to larger datasets such as regional models or GCMs with finer resolution, the value of the optimization step could be discussed in more detail. More precisely, the aim of the RFA-madogram is to highlight proximity (homogeneity and dependence) in the precipitation behavior at two points. As a consequence, the optimization efficiency between remote points (that cannot be in the same cluster) has little impact. In addition, in the homogeneity case, c * is merely the ratio of the expectations. Therefore, assigning the expectation ratio value to c * could be a way to reduce the computational cost. However, such a shortcut in the optimization step was not implemented.

Chapter A Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Overall, the main message of this thesis could be that spatial scales at which precipitation are studied are paramount and introducing scalability in our clustering algorithms could be a fruitful perspective. * * *
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 1 Partition of Swiss weather stations according to their covariates. Elevation (m) is indicated by ground colors. Panel (a): pam outputs in two elevation clusters that are identified by the colors. Panel (b): pam outputs in four location (normalized coordinates and elevation) clusters that are identified by the colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 QQ-plot of daily positive precipitation

3. 1

 1 Partition with the pam algorithm applied on ERA-5 daily positive precipitation over Europe for all seasons. Each cluster is identified by a color. The shades of color indicate the silhouette coefficient at every grid point. Intense hues indicate a strong association with the cluster. The black lines are 500 m altitude isolines of the surface topography in ERA-5. Within a cluster, the circle indicates the location of the medoid, and the triangle pointing up (resp. down) indicates the grid point with the highest (resp. lowest) silhouette coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Example QQ-plots of the regional, semiregional, local, and local Bernstein (local BB) fittings, for the medoid point (left) and the grid points with minimum (middle) and maximum (right) silhouettes in the northern (top row), intermediate (middle row), and southern (bottom row) clusters in SON (blue cluster in Figure 3.1). . . . . . . . . . . . . . . . . . . . . . . 3.

4. 1

 1 Clusters of Swiss weather stations by computing the F-madogram distance[START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] on fall weekly maxima. The size of the points is proportional to the silhouette coefficient (i.e. clustering quality). Clusters are indicated by their color. Sites indicated by black diamonds are the medoids. Stations (Muri and Lachen) highlighted by white diamonds are homogeneous. Their QQ-plot is displayed in Figure4.3 . . . . . . . . . . 4.2 Same as Figure 4.1 but for daily maximum precipitation. . . . . . . . . . 4.3 QQ-plot of Muri and Lachen normalized weekly maxima precipitation. These two sites belong to different F-madogram clusters. They are highlighted by white diamonds on Figure 4.1. . . . . . . . . . . . . . . . . . 4.4 Clusters of Swiss weather stations by computing the RFA-madogram, see Eq. (4.3), dissimilarity on fall weekly maxima. The size of the points is proportional to the silhouette coefficient (i.e. clustering quality). Clusters are indicated by their color. Sites indicated by black diamonds are the medoids. Stations (Muri and Lachen) highlighted by white diamonds are homogeneous. Their QQ-plot is displayed in Figure 4.3. . . . . . . . . . 4.5 Same as Figure 4.4 but for daily (positive) maximum precipitation. . . . 4.6 Silhouette scores for each of the two partitions of fall weekly maxima in Switzerland displayed in Figures 4.1 and 4.4. The x-axis corresponds to the silhouette scores in the F-madogram partition, see Eq. (4.2). The y-axis corresponds to the silhouette scores in the RFA-madogram partition, see Eq. (4.3). The dots colors indicate the clusters of the RFA-madogram partition (same color code as on the map). The colors of the stars indicate the clusters of the F-madogram partition. . . . . . . . . . . . . . . . . . 4.7 Time series of positive daily precipitation in Bern in 1930 between January and December. The y-axis indicates the height of recorded precipitation (mm). Panel 4.7a: non shuffled data. Panel 4.7b: temporally shuffled data. 4.8 Relative difference between RFA-madogram for independent data and RFA-madogram on non shuffled data. The relative difference is computed on each cluster. The fall weekly maxima are considered between 1930 and 2014. The RFA-madogram dissimilarity is computed within each cluster (indicated by the shape of the points) with respect to the medoids, indicated by black diamonds on Figure 4.4. For these points, the dependence is complete ( D = 0), they are then colored in red. Independent fall weekly maxima are obtained by temporally shuffling data, at each grid point. . 4.9 Localization (a), QQ-plots (b) and (d) and scatter plots (c) and (e) of annual precipitation maxima at three grid points A,B and C in the counterfactual run of the CCSM4 model (1850-2005). Panels (b) and (d) show the QQ-plots of rescaled precipitation for pairs (A,B) (b) and (A,C) (d). Panels (c) and (e) display the (rescaled) scatter plots for the same pairs. 4.10 Two summaries of the structure of the precipitation annual maxima of counterfactual (1850-2005) CCSM4 model. (a) Pointwise ω ratio (Le Gall et al., 2021a). High values of ω correspond to heavy tailed distributions. (b) Results of pam clustering with the F-madogram distance (Bernard et al., 2013), with four clusters for each hemisphere separately. Each color corresponds to a cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Distance (z-axis) D defined in Eq. (4.3) in the logistic bivariate GEV model example. The normalizing coefficient is chosen as the optimal one, c * . The x and y-axis indicate the dependency coefficient α in the logistic dependence, see Eq. (4.6) and the ratio of tail parameters i.e. the homogeneity of the two r.v. A ratio equal to one corresponds to the homogeneous case. A ratio equal to 10 can be illustrated by the realistic case of ξ 1 = 0.1, ξ 2 = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Central partitions of CMIP models (with four clusters for each hemisphere), for (top) the counterfactual experiment (1850-2005) and (bottom) the factual experiment (2071-2100). Each color corresponds to a cluster, with the shade indicating the probability of belonging to that cluster. In the bottom map, brown crosses indicate points where the most likely cluster is different between the counterfactual and the factual experiments. . . . 4.13 Partition of CCSM4 model in the counterfactual experiment based on the RFA-madogram dissimilarity D(c * ) and pam algorithm, for (top) original data, and (bottom) data randomly shuffled in time at each grid point. The clustering algorithm is applied to each hemisphere independently. . 5.14 Number of clusters identified with the silhouette criteria and distance (3.3), based on ω, on simulated data. The ten true homogeneous clusters are displayed in Figure 2.5. The x-axis indicates the sample size or, more precisely, the number of years of observation required to obtain sample with similar length. The y-axis indicates the proportion of simulation that provide a given number of cluster (indicated by the color). . . . . . . . . 5.15 Values of criteria designed to choose the number of clusters in an ERA-5 partition, see Halkidi et al. (2002); Desgraupes (2013). Criteria represented with triangles pointing upwards (resp. downwards) should be maximized (resp. minimized). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1 Relative difference between the 10-year return levels computed with the regional fitting and the local fitting. . . . . . . . . . . . . . . . . . . . .
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 1 Figure 1: Spatial and temporal scales of precipitation phenomena. Spatio-temporal scale of the three datasets analyzed in chapters 2 to 4. GCM: global climate models. Adapted from Tavakolifar et al. (2017).

Figure 3 :

 3 Figure 3: Steps to delineate homogeneous regions in RFA (traditional vs. method introduced in Chapter 2). Rx1day is the annual maximum daily precipitation), q x : x-quantile. The bold way corresponds to the methods developed in this manuscript (chapters 2 to 4). The other way is the traditional RFA path, see e.g Table2.
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  Figure 1.1: Time series of observed daily positive precipitation (1993-2013) at Engelberg weather station. In x-axis, observation dates. In y-axis, the observed intensity of precipitation in mm/day. Panels a) and b) display the same time series. Panel a) highlights the annual maxima (in yellow) of daily precipitation. Panel b) highlights intensities above the 0.98 quantile.
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 12 Figure 1.2: Simulation of 20 000 pairs of points using bivariate GEV with logistic dependence function, see Eq. (1.12).

  else. If F belongs to the domain of attraction of G µ,σ,ξ , then Fu , the survival function of the r.v. Y t -u|Y t > u satisfies Toolbox Chapter 1 Fu (x) -→ u→x * Hσ,ξ (x), for all x ∈ (0, x * ), (1.14)
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 13 Figure 1.3: Pdf of an EGPD(κ, σ, ξ) and a GPD(σ, ξ) with κ = 4, σ = 1, ξ = .5. Blue (resp. green) curve represents the EGPD (resp. GPD) pdf.

Figure 2 . 1 :

 21 Figure 2.1: Partition of Swiss weather stations according to their covariates. Elevation (m) is indicated by ground colors. Panel (a): pam outputs in two elevation clusters that are identified by the colors. Panel (b): pam outputs in four location (normalized coordinates and elevation) clusters that are identified by the colors.
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 22 Figure 2.2: QQ-plot of daily positive precipitation at Engelberg weather station. In x-axis, the empirical quantiles. In y-axis, the quantiles estimated by fitting a kappa distribution.
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 23 Figure 2.3: Switzerland elevation map (the scale is in meters)

  (a) k = 10 clusters (b) k = 8 clusters

Figure 2 . 6 :

 26 Figure 2.6: Misspecified pam clustering rates with respect to the 10 clusters shown in Figure 2.5 with k = 10 (left panel) and k = 8 (right panel). The x-axis corresponds to the number of years from 30 to 150 years

Figure 2

 2 Figure2.8: Swiss daily precipitation modeled with the regional Model (2.13). pam outputs in two clusters that are identified by circles (so-called "northern cluster") and diamonds (so-called "southern cluster"). Panel (a): The size of the points is proportional to the silhouette coefficient. The gray nuance color legend corresponds to .99 return level fits from Model (2.13). Panel (b): The gray nuance color legend corresponds to estimates of σ in Model (2.13).

3 :

 3 Remove dry days by only taking {Y (s)|Y (s) > u} 4: Fit locally Model (2.12) at each location s ∈ C 5: Denote κ 0 and ξ 0 the cluster means of κ and ξ from Step 4 6: Compute m(s) the sample mean at each s ∈ C 7:
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 29 Figure 2.9: Confidence intervals of normalized .99-return level estimates at the 95% level from Model (2.14). Each horizontal line corresponds to a station from either the northern or southern clusters, see panel (a) of Figure 2.8. The dotted vertical lines indicate mean estimates within each cluster.
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 3 Remove dry days by only taking {Y (s)|Y (s) > u} 4: Fit local Model at each location s ∈ C 5: Denote κ 0 and ξ 0 the cluster means of κ and ξ from Step 4 6: Compute m(s) the sample mean at each s ∈ C 7:while cond = T RU E do 8:

3 Figure 3

 33 Figure 3.1: Partition with the pam algorithm applied on ERA-5 daily positive precipitation over Europe for all seasons. Each cluster is identified by a color. The shades of color indicate the silhouette coefficient at every grid point. Intense hues indicate a strong association with the cluster. The black lines are 500 m altitude isolines of the surface topography in ERA-5. Within a cluster, the circle indicates the location of the medoid, and the triangle pointing up (resp. down) indicates the grid point with the highest (resp. lowest) silhouette coefficient.

Question 2 3 .

 23 What clustering method and distance can we use to gather homogeneous distributions? 1. Pointwise estimation of PWM ratio, ω, via order statistics a 2. Clustering of ω estimates with Manhattan distance in pam algorithm. Choice of the appropriate number of clusters that is a trade-off between the criteria computed and the spatial smoothness of the clusters Question 1 What model should we use to estimate parsimonously and accurately high quantiles over a large spatio-temporal domain such as Europe on the 1979-2018 period ? 4. Fit a regional 3-parameter EGPD with constant κ and ξ on each homogeneous cluster b . a Code provided at https://github.com/PhilomeneLeGall/RFA_regional_EGPDk. b Idem. Paper II + No covariate selection + No distributional assumption for the delineation of homogeneous regions + Clustering algorithm not interfered by spatial dependence + Parsimonious model that can model the full spectrum of intensity -No automatic choice of the number of clusters -Partition a bit patchy, especially for more than 3 clusters -Dependence not taken into account
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Figure 4 Figure 4 . 2 :

 442 Figure 4.1: Clusters of Swiss weather stations by computing the F-madogram distance (Bernard et al., 2013) on fall weekly maxima. The size of the points is proportional to the silhouette coefficient (i.e. clustering quality). Clusters are indicated by their color. Sites indicated by black diamonds are the medoids. Stations (Muri and Lachen) highlighted by white diamonds are homogeneous. Their QQ-plot is displayed in Figure 4.3 .

  Figure 4.3: QQ-plot of Muri and Lachen normalized weekly maxima precipitation. These two sites belong to different F-madogram clusters. They are highlighted by white diamonds on Figure 4.1.

Figure 4

 4 Figure 4.4: Clusters of Swiss weather stations by computing the RFA-madogram, see Eq. (4.3), dissimilarity on fall weekly maxima. The size of the points is proportional to the silhouette coefficient (i.e. clustering quality). Clusters are indicated by their color. Sites indicated by black diamonds are the medoids. Stations (Muri and Lachen) highlighted by white diamonds are homogeneous. Their QQ-plot is displayed in Figure 4.3.

Figure 4

 4 Figure 4.6: Silhouette scores for each of the two partitions of fall weekly maxima in Switzerland displayed in Figures 4.1 and 4.4. The x-axis corresponds to the silhouette scores in the F-madogram partition, see Eq. (4.2). The y-axis corresponds to the silhouette scores in the RFA-madogram partition, see Eq. (4.3). The dots colors indicate the clusters of the RFA-madogram partition (same color code as on the map). The colors of the stars indicate the clusters of the F-madogram partition.

Figure 4 . 7 :

 47 Figure 4.7: Time series of positive daily precipitation in Bern in 1930 between January and December. The y-axis indicates the height of recorded precipitation (mm). Panel 4.7a: non shuffled data. Panel 4.7b: temporally shuffled data.

Figure 4 . 8 :

 48 Figure 4.8: Relative difference between RFA-madogram for independent data and RFAmadogram on non shuffled data. The relative difference is computed on each cluster. The fall weekly maxima are considered between 1930 and 2014. The RFA-madogram dissimilarity is computed within each cluster (indicated by the shape of the points) with respect to the medoids, indicated by black diamonds on Figure 4.4. For these points, the dependence is complete ( D = 0), they are then colored in red. Independent fall weekly maxima are obtained by temporally shuffling data, at each grid point.

  climate model grid points are said to belong to the same homogeneous region if they satisfy Eq. (4.1). To visually understand this condition within the CMIP archive, three grid points, say A, B and C, from the CCSM4 counterfactual run are plotted in panel (a) of Figure4.9. In panel (b), ranked annual precipitation maxima (rescaled by the empirical mean) of point A are compared to the ones from point B. Panel (d) provides the same information but between point A and point C. It appears that points A and B are likely to satisfy Eq. (4.1) and, consequently, could belong to the same homogeneous region. In contrast, the rescaled distribution at point A is much more heavy-tailed than at point C. This is not surprising because A and B are nearby and C far away from them. Still, panels (b) and (d) only rely on the marginal behaviors, and pairwise dependence information and/or covariates could help finding of homogeneous regions.

Figure 4 .

 4 Figure 4.10: Two summaries of the structure of the precipitation annual maxima of counterfactual (1850-2005) CCSM4 model. (a) Pointwise ω ratio (Le Gall et al., 2021a). High values of ω correspond to heavy tailed distributions. (b) Results of pam clustering with the F-madogram distance[START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF], with four clusters for each hemisphere separately. Each color corresponds to a cluster.

= Y 2 ,

 2 for all positive c. Therefore, corresponds to the case where c * 12 = c * 21 = 1. An important feature of Eq. (4.3) is that, under the homogeneity condition of Eq. (4.1), D(λ, Y 1 , Y 2 ) = d(Y 1 , Y 2 ), where d is the classical F-madogram, see Eq. (4.2). To simplify notations, D or D(c) will be a shortcut for D(c, Y 1 , Y 2 ).

Figure 4 .

 4 Figure 4.11: Distance (z-axis) D defined in Eq. (4.3) in the logistic bivariate GEV model example. The normalizing coefficient is chosen as the optimal one, c * . The x and y-axis indicate the dependency coefficient α in the logistic dependence, see Eq. (4.6) and the ratio of tail parameters i.e. the homogeneity of the two r.v. A ratio equal to one corresponds to the homogeneous case. A ratio equal to 10 can be illustrated by the realistic case of ξ 1 = 0.1, ξ 2 = 0.01.

Figure 4 .

 4 Figure 4.12: Central partitions of CMIP models (with four clusters for each hemisphere), for (top) the counterfactual experiment (1850-2005) and (bottom) the factual experiment (2071-2100). Each color corresponds to a cluster, with the shade indicating the probability of belonging to that cluster. In the bottom map, brown crosses indicate points where the most likely cluster is different between the counterfactual and the factual experiments.

Figure 4 .

 4 Figure 4.13: Partition of CCSM4 model in the counterfactual experiment based on the RFA-madogram dissimilarity D(c * ) and pam algorithm, for (top) original data, and (bottom) data randomly shuffled in time at each grid point. The clustering algorithm is applied to each hemisphere independently.

Question 2 3 .

 23 What clustering method and distance can we use to gather homogeneous distributions? Question 3 How to manage spatial dependence in RFA clustering and in compliance with EVT? 1. Compute and optimize RFA-madogram dissimilarity for all pairs of sites a 2. Input this dissimilarity into pam algorithm to cluster sites. Question 4 How to cluster spatially regions under different scenarios? Do steps 1. and 2. for different scenarios of all GCMs 4. Make the maps of a same scenario overlayable by relabelling the clusters 5. "Overlay" the maps (as many layers as GCMs analyzed) a Code provided at https://github.com/PhilomeneLeGall/RFAmadogram. Paper III + No covariate selection + No distributional assumption for the delineation of homogeneous regions + Dependence is taken into account and improve spatial consistency to clusters + Multi-model clustering enables to study climate change -No automatic choice of the number of clusters -Possible ungauged sites cannot be assigned to a cluster with this algorithm alone

Figure 5 .

 5 Figure 5.14: Number of clusters identified with the silhouette criteria and distance (3.3), based on ω, on simulated data. The ten true homogeneous clusters are displayed in Figure 2.5. The x-axis indicates the sample size or, more precisely, the number of years of observation required to obtain sample with similar length. The y-axis indicates the proportion of simulation that provide a given number of cluster (indicated by the color).

Figure 5 .

 5 Figure 5.15: Values of criteria designed to choose the number of clusters in an ERA-5 partition, see Halkidi et al. (2002); Desgraupes (2013). Criteria represented with triangles pointing upwards (resp. downwards) should be maximized (resp. minimized).
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	Introduction
	(Chap 4)
	Figure 4: Various regionalization techniques for extremes: RFA and dependence. In
	green disc, methods that focus on the scale-invariance (i.e. homogeneity of margins) of
	the r.v.. In purple, methods that focus on the occurrence of events (i.e. dependence
	structure between variables). In orange, methods that work with precipitation data only
	(and do not require any covariate). Papers indicated in bold compose, for a large part,
	this manuscript. PWM ratio method is developed in Chapter 2 and implemented step by
	step in Chapter 3. RFA-madogram method is developed in Chapter 4.

Table 2 :

 2 Some regionalization methods for extremes. Rows in bold refer to the three papers contained in this manuscript

	in chapters 2 to 4. Colors of the first three columns refer to the framework of methods in Figure 4. Covariate selection	(unless otherwise stated, subjective choice) or not; Is scale invariance of r.v. considered; idem for dependence; Which distance	computed in the clustering algo (in green: hierarchical clustering with Ward's linkage, unless otherwise stated, in black : pam	with Manhattan distance, in red : k-means (euclidean distance), in grey: discs with increasing radius); kind of dataset studied	(unless otherwise stated, observations) and related spatial extent (resolution if provided); variables studied (unless otherwise	indicated, precipitation). PCA: principal component analysis; CCA: canonical correlation analysis. T X x : Annual maximum of	daily temperature, T X n : Annual minimum of daily temperature, Rxy: Maximum y (duration) precipitation (e.g. annual	Rx1day is the annual maximum daily precipitation), q	Paper Covariates Homogeneity Dependence Distance Data/scale Variable	Bernard et al. (2013) None No Yes F-mado Country weekly Rx1day	Saunders et al. (2021) None No Yes F-mado (average) Continent annual Rx1day	Bador et al. (2015) None no Yes F-mado E-OBS (0.5 and 1.4 • ), continent seasonal max (temperature)	Asadi et al. (2018) Yes Not No Euclid Basin discharge	Boucefiane and Meddi (2019) Yes Yes No Euclid Country annual Rx1day	Wang et al. (2021) yes Yes no Euclid Country daily Rx1hour	Smith et al. (2015) yes Yes no Euclid Global discharge (annual max)	Carreau et al. (2017) None yes no PWM of order 1 Basin q 0.98

x : x-quantile

Table 1 .

 1 1: Datasets analyzed in this manuscript, their type and spatio-temporal scale and extent. GCM: Global climate model. For more details, see Section 1.2.

	Toolbox	Chapter 1

Table 2 .

 2 .3 shows that

	Percentages	Cluster	Three RFA
	of sites	names	homogeneity tests
	10% (.63)	northern .343 -2.08 -1.48
	10% (.10)	southern 13.2 8.62	4.10
	20% (.62)	northern 2.23 -1.62 -.948
	20% (.025) southern 21.7 18.7	15.9

2: RFA Swiss daily precipitation analysis. First row: homogeneity tests calculated with only locations having a silhouette coefficient above .63, representing 10% of the northern cluster. A departure from zero in the three test values indicate a lack of homogeneity. The other three rows show that the RFA southern cluster is less homogeneous than the northern one and that increasing the number of sites, say 20%, deteriorates homogeneity.

Table 2 .

 2 

	Percentages	Cluster	Three RFA
	of sites	names	homogeneity tests
	10% (.81)	northern .215 -2.07 -2.27
	10% (.71)	southern 2.76 .282	1.75
	20% (.80)	northern 5.36 .624 -.863
	20% (.71)	southern 2.21 .692	2.52
	25% (.80)	northern 6.00 2.21	1.23
	25% (.70)	southern 1.96 .568	2.65
	30% (.79)	northern 9.19 4.72	2.61
	30% (.69)	southern 3.15 1.69	3.34

3: Same as Table

Table 3 .

 3 3: Akaike information criterion over Europe for each model and season.

		SON	DJF	MAM	JJA
	local	-30,888	-27,984	-30,016	-43,704
	semiregional -69,792	-67,614	-69,138	-79,400
	regional	-108,702 -107,250 -108,266 -115,106

  , but it has been rarely implemented in a D&A context, especially within the CMIP repository. The main idea of RFA is to identity homogeneous regions with identical distributional features, up to normalizing constants. More precisely two positive absolutely continuous r.v. Y 1 and Y 2 are said to be homogeneous if there exists a positive constant λ such that

	Y 2	d = λY 1 ,
	where	

d

= denotes equality in distribution. This condition can be reformulated in terms of their cdf F i

  .2)where Y i is the continuous r.v. with cdf F i . It is a distance which, by construction, is marginal-free because the r.v. F

1 (Y 1 ) and F 2 (Y 2 ) are both uniformly distributed on [0, 1]. Note that if Y 1 and Y 2 are equal in probability, the distance d = 0. Whenever the bivariate Chapter 4

  to our settings, see Appendix B for details. With the

	Non-parametric multimodel Regional Frequency Analysis applied to climate change	
	detection and attribution	Chapter 4
	notation	
	a c	

Cette terminologie utilisée en hydrologie ne correspond pas à celle utilisée dans les rapports du GIEC (IPCC, 2013, 2021) où l'homogénéité est caractérisée par la température et les précipitations moyennes[START_REF] Giorgi | Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM[END_REF] itu, 2020).

http://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html(accessed 11.16.2021).

radiative concentration pathways refers to an approximate level of radiative forcing resulting in 2100

shared socio-economic pathways equivalent to RCP scenarios (e.g. SSPx-y is equivalent in terms of radiative forcing to RCPy).

It should be noted that the terminology "homogeneous regions" in hydrology does not correspond to that used in the IPCC reports[START_REF] Stocker | Climate Change 2013: The Physical Science Basis[END_REF] IPCC, 2021). Indeed, homogeneity of these regions is characterized in terms of mean temperature and precipitation[START_REF] Giorgi | Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM[END_REF] itu, 2020).

Here, climate refers to the average weather conditions for a particular location and over a long period of time, see for example https://public.wmo.int/en/about-us/frequently-asked-questions/climate

Here, "shape" is used in the common sense and not only to the qualify the distribution tail.

Note that results on minima can be deduced using the property that for any variable Y , min Y = -max (-Y ).

For instance, in dataset of Paper II (this chapter), Switzerland is covered by less than 100 grid points, compared to 191 (weather stations) in the dataset of the previous chapter

https://github.com/PhilomeneLeGall/RFA_regional_EGPDk.git

In all our CMIP analysis, pam was applied separately to the southern and northern hemispheres. Global analysis (available upon request) were also made, but the climatological interpretation was not as clear as with the hemispheric scale. Also, different numbers of clusters were investigated and basic criteria like the silhouette coefficient were computed. No particular number could be clearly identified. But, in terms of interpretation, four clusters appear as a reasonable compromise between climate understanding, visual simplicity and statistical criteria.

average weather conditions over a long period of time, see https://public.wmo.int/en/about-us/ frequently-asked-questions/climate

Improved Regional Frequency Analysis of rainfall data

Chapter 2 Figure 2.5: Experimental design setup based on EGPD(κ, σ, ξ), see Eq. (2.7). The colors correspond to 10 values of the ratio ω with their associated κ and ξ parameter values. A large (small) rectangle contains 40 (20) locations. The numbers in brackets in the color legend represent the 99% return level associated with each combination.

Sensitivity to the number of clusters

In Figure 2.6, the top and bottom panels compare the pam clustering misspecification rates between two arbitrary pre-determined number of clusters, k = 10 and k = 8 for the top and bottom panels, respectively. As the true number of clusters is k = 10 in our experimental design, see Figure 2.5, one may be puzzled as misspecification rates in panel (b) of Figure 2.6 with k = 8 appear to be inferior to the rates in panel (a). This result can be explained if we notice that the value of ω in Figure 2.5 for κ = 1.6 and ξ = .2 (dark green) is .69 and very close to the one obtained with κ = .9 and ξ = .1 (pink), precisely ω = .70. The same can be said between the two setups of κ = 1.3 and ξ = .3 (ω = .73) and κ = .9 and ξ = .2 (ω = .72). To identify small differences in ω like .01, the number of Chapter 2

Improved Regional Frequency Analysis of rainfall data High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions functions then fit the bulk and lower tail distribution. [START_REF] Tencaliec | Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount[END_REF] defined a flexible version of the extended generalized Pareto distribution (EGPD) and [START_REF] Rivoire | A comparison of moderate and extreme ERA-5 daily precipitation with two observational data sets[END_REF] used it to fit the positive daily precipitation of ERA-5. The transfer function is estimated using Bernstein polynomials which bring flexibility to the transfer function estimation but require a large number of parameters (for example 30 for each grid point in [START_REF] Rivoire | A comparison of moderate and extreme ERA-5 daily precipitation with two observational data sets[END_REF]. In this paper, we simply use a monomial transfer function with a single flexibility parameter, see Section 3.4.3 for more details. [START_REF] Poschlod | Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria[END_REF] fitted GEV distributions at each grid point of ERA-5 in Bavaria (Germany) to estimate 10-year precipitation return levels. However, extending this pointwise analysis of precipitation across Europe is quite onerous. Fitting a GEV and computing return levels for each grid point requires the estimation of more than 3×20, 000 parameters (location, scale and shape parameters). In addition, estimates of the shape parameter at a specific location are quite sensitive to the length of the time series (e.g., see [START_REF] Zhang | Regionalization and spatial changing properties of droughts across the Pearl River basin, China[END_REF][START_REF] Malekinezhad | Regional frequency analysis of daily rainfall extremes using L-moments approach[END_REF][START_REF] Jalbert | A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America[END_REF]. Therefore reducing the dimensionality of the fitted parameters is of great practical importance. In contrast to this local approach, [START_REF] Sang | Hierarchical modeling for extreme values observed over space and time[END_REF] and [START_REF] Naveau | A fast nonparametric spatiotemporal regression scheme for generalized Pareto distributed heavy precipitation[END_REF] assumed the shape parameter to be constant over the area of interest (Cape Floristic Region in South Africa and Switzerland, respectively). However, Europe is much larger than these areas, and the diverse climate and complex orography (ECMWF, 2006;[START_REF] Beck | Present and future Köppen-Geiger climate classification maps at 1-km resolution[END_REF]Climate Change Service, 2020) strongly influence the spatial distribution of precipitation (e.g., see [START_REF] Evin | A regional model for extreme rainfall based on weather patterns subsampling[END_REF][START_REF] Marra | Orographic effect on extreme precipitation statistics peaks at hourly time scales[END_REF]. The method used for dimensionality reduction should preserve the diverse spatial patterns of precipitation over Europe. In this paper, we therefore consider an intermediate approach in which the shape parameter is common between grid points within homogeneous regions.

The regional frequency analysis (RFA), a concept from hydrology, attempts to build these homogeneous regions which consist of grid points with similar precipitation distributions [START_REF] Dalrymple | Flood-frequency analyses, manual of hydrology: Part 3[END_REF][START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF]. In a homogeneous region, distributions are all equal to a common regional distribution up to a normalizing factor. In particular, their extreme behaviour should be analogous. Clustering grid points in homogeneous regions reduces the dimensionality of large precipitation datasets while preserving the spatial patterns. We use the definition of homogeneous distributions proposed by [START_REF] St-Hilaire | La régionalisation des précipitations: une revue bibliographique des développements récents[END_REF] and [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF]: given a region of interest, say R (here Europe), a homogeneous cluster (C) is defined as a sub-region where all spatial points s, have the same marginal distribution up to normalization:

where Q s is the quantile function at site s, the positive scalar λ(s) varies in space, and q represents a positively-valued and dimensionless quantile function (common to every site in the cluster). As a consequence rescaled quantiles within a homogeneous cluster do not depend on localization s.

Several methods allow regions to be delineated as in Eq. (3.1). They often require climate and/or geographical covariates (see e.g. [START_REF] Fawad | Estimation of wind speed using regional frequency analysis based on linear-moments[END_REF]Forestieri et al., 2018, for recent work) and work in three steps: i) selecting explanatory covariates, ii) grouping sites with similar covariates, and iii) testing the homogeneity of the groups obtained. Covariates are selected for their ability to explain the precipitation distribution (Ouarda Chapter 3 High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions 

Author contributions

Data availability

We use ERA-5 global total daily precipitation data at resolution 0.25 • . Hourly values were downloaded from the ECMWF MARS server (a valid ECMWF account required): https://apps.ecmwf.int/data-catalogues/era5/?type=fc&class=ea&stream= oper&expver=1 Forecast steps 6 to 17, variable: Total precipitation (228.128). The MARS / EMOSLIB interpolation library has been used.

Chapter 4

Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution

The RFA-madogram appears to be a dissimilarity that can handle Questions 2 and 3. As for Question 4, the use of climate models is fundamental. In the following sections of this chapter, based on the third paper, climate change is treated on a global scale on simulated data (GCMs).

Chapter 4

Non-parametric multimodel Regional Frequency Analysis applied to climate change detection and attribution Various RFA techniques based on explanatory covariates (e.g., see [START_REF] Asadi | Optimal regionalization of extreme value distributions for flood estimation[END_REF][START_REF] Fawad | Estimation of wind speed using regional frequency analysis based on linear-moments[END_REF] 

A.1 Appendix of Chapter 2

A.1.1 Bounds of ω

It is obvious that ω is non-negative. So, we just need to show that it is smaller than one.

Appendix

As we assume stationarity among Z j , we always have

Expressing ω as a ratio of differences between maxima and means

. Let's relate it to the ratio expressed in Kojadinovic and Naveau ( 2017)

and

The L1-distance between max(Z 1 , Z 2 ) and max(Z 1 , Z 3 ) is equal to

Hence,

Finally, we can write that

Link between PWM and L-moments

Straightforwardly from [START_REF] Hosking | Regional frequency analysis: an approach based on L-moments[END_REF], we have:

A.1.4 PWM of order 0, 1 and 2 for EGP D(κ, σ, ξ = 0)

The PWM of order 0,1 and 2, as defined in Eq. (2.3), for an EGPD with null shape parameter are given by:

A.1.5 Convergence of PWM estimators

The convergence of PWMs estimators, αi , i = 1, 2, 3 is insured by Theorem 2.1 of [START_REF] Li | The law of the iterated logarithm and central limit theorem for L-statistics[END_REF], with H = u, G = F -1 and J = v, under appropriate conditions on Y .

□

Following proposition provides more details.

Proposition A.1.1: Let the random variable Y with c.d.f F s.t EY 2 is finite. The PWMs , α k , of order k = 0, 1, 2 and their estimators, αk , satisfy

where U ∼ U (0, 1).

Appendix

A.1.6 Proof of Proposition 2.3.1 (convergence of ω)

We apply delta method to the PWM estimators. Indeed, proving the convergence of

. where g : R 3 \ P -→ R where P : 2y -x = 0 is defined by g(x, y, z) = 3z -x 2y -x .

The random vector (α 0 , α1 , α2 ) converges to (α 0 , α 1 , α 2 ) with covariance matrix written Σ. In addition, the function g is differentiable in (α 0 , α 1 , α 2 ) with Jacobian

. Eventually, the delta method ensures convergence in distribution of ω. □

A.1.7 Normalized return level values

Let Y ∼ EGP D(κ, σ, ξ). By [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF], expectation of Y (non-censored PWM of order 0) is

Eventually, when ξ > 0, the p-return level of Y EY only depends on flexibility parameter κ and shape parameter ξ. More precisely, the p-return level is given by

Appendix of Chapter 3

A.2.1 Difference between the regional and the local fittings 

CNRM-CM5

Centre National de Recherches Météorologiques France 1.4

CSIRO and Bureau of Meteorology Australia 1.9

We can write that

In the same way, we can write that

It follows that the inequality expressed in Eq. (4.5) is valid. □

A.3.3 Proof of Proposition 4.4.1

Let a(u) be any continuous non-decreasing function from [0, 1] to [0, 1] and denote its inverse by a ← (u). The map

is linear and bounded, and therefore continuous. To continue, we need the following lemma.

Lemma A.3.1: For any cumulative distribution function H on [0, 1] 2 and for any non-decreasing function a(.) on [0, 1], the function

For any u ∈ [0, 1] 2 , we have

Subtracting both expressions and integrating over H implies

The stated lemma can be deduced by applying Fubini's theorem on the three double integrals. □

Classical results about empirical copulas gives uniform strong consistency, see Segers .... Similar arguments can be used for D n (â c ). Now, we can consider the empirical process

and we can write

We recall now that in the space ℓ ∞ ([0, 1] d ) equipped with the supremum norm, D n ⇝ D, as n → ∞, where D is a C-Brownian bridge, and, as condition (S) holds, then D n ⇝ D, as n → ∞, where D is the Gaussian process defined in Proposition 4.4.1, see [START_REF] Segers | Asymptotics of empirical copula processes under non-restrictive smoothness assumptions[END_REF] for details. In addition, âc converges in probability to a c . The continuous mapping theorem then implies, as n → ∞,

From the continuity of its sample paths and by the form of the covariance function Eq. (4.7), the Gaussian process D satisfies

This provides all the elements to conclude the proposition. □.

Appendix

A.3.4 Expression of D(c) in the bivariate GEV case

As |a -b| = 2 max(a, b) -a -b, we have

To deal with each term, we recall that the quantile function of

This implies that

where Z i follows an unit Fréchet. If follows that, with

.

In the same way, with

.

By noticing that W i follows a Weibull distribution with P(W 1 > w) = exp(-w -ξ 2 /ξ 1 ), the expectation E[F 2 (cY 1 )] can be linked as the Laplace transform of a Weibull r.v.

For the bivariate structure, we can write that, for any u ∈ (0, 1),

)) ≤ u is positive, in the general setup, we have

where W i follows a Weibull distribution with P(W 1 > w) = exp(-w ξ 1 /ξ 2 ). Note that

Conversely, (a 21 )

Homogeneous case

In the special case where ξ 1 = ξ 2 = ξ, we denote θ c = V (a 12 , a 21 ), where

We can write

where W i , i = 1, 2 has cdf equal to exp(-x).

Hence,

To minimise D as a function of c, we study the variations of r :

. We suppose that V is differentiable. If the previous function r admits a minimum, its derivative cancels in some c 0 . The r ′ cancels if and only if the

x cancels, if and only if there exists x s.t.

x, 1

x . In the special case where the dependence is logistic i.e.

x , for all positive x. Therefore, if r admits a minimum, it is for x = ±1. Eventually, for logistic dependence, D is minimal for

Abstract

Rainfall are subject to various spatial features and their intensities can be highly variable, especially at the global scale. A recurrent question from risk analysis and climatologists is to determine how heavy rainfall patterns will differ around 2100. From a statistical point of view, partitioning the globe into homogeneous sub-regions is a delicate task, especially in regards to modeling heavy rainfall features in climate change detection and attribution. More precisely, different global climate models have to be combined and two scenarii (with and without anthropogenic forcings) have to be compared. In this thesis, our main goal is to propose and study fast and efficient clustering algorithms that can partition wide areas into homogeneous sub-regions. Compared to classical regional frequency analysis techniques, a key aspect is that our algorithms do not rely on the a priori choice of covariates. The proposed numerical schemes are only based on the precipitation dataset at hand, including low, moderate and heavy rainfall. While being in compliance with extreme value theory, we do not impose a parametric form on rainfall distributions and, neither thresholding nor block maxima steps are required in our proposed approach. By construction, our clustering methods preserve the scale invariance principle of any classical regional frequency analysis.

In terms of inference, our first approach builds on the easy-to-compute and reliable probability weighted moments commonly used in hydrology. The performance of our clustering algorithm is assessed on a detailed experimental design based on the extended Generalized Pareto distribution. Sensitivity to the number of clusters is carefully analyzed. We apply our clustering algorithm to two datasets. The first one is Switzerland daily precipitation measured at 191 sites. The found homogeneous regions are consistent with local orography and our approach outperforms the classical regional frequency analysis based on normalized elevation and coordinates as covariates. To complete our analysis of Swiss rainfall, we propose three models based on our clustering outputs. A comparison between our local, semi-regional and regional models indicates that a relatively simple model with two clusters and a spatially varying scale parameter can compete very well against complex models. We then apply this algorithm to the largest data set of the European precipitation of ERA-5 and produce maps of return level estimates for various return-periods and seasons We discuss limitations and practical challenges and also provide a git hub repository. We show that a relatively parsimonious model with only a spatially varying scale parameter can compete well against statistical models of higher complexity.

Our second clustering algorithm additionally takes into account dependence between sites. The introduction of a new dissimilarity that integrates the scale-invariance principle of classical regional frequency analysis with the dependence strength between two locations constitutes the main originality of the method. Our clustering algorithm is tested on the bivariate Generalized Extreme Value (GEV) distribution. We also apply this algorithm on multi-model yearly maxima of daily rainfall from 16 Coupled Model Intercomparison Project (CMIP). A method to handle and summarize such ensembles of data is proposed, as well as a comparison of the spatial clustering between two different experiments (with or without anthropogenic forcing). The partitions are compared to those obtained with partitioning method only focusing on margins or dependence. Our clustering algorithm leads to more coherent regions which are climatologically and physically consistent. Finally, we propose a detailed detection and attribution analysis of how the clustering changes between the two scenarii (with and without anthropogenic forcings).

Keywords : spatial clustering, regional frequency analysis (RFA), precipitation extremes, climate change * * *

Résumé

Les précipitations sont soumises aux diverses caractéristiques spatiales et leur intensité peut être très variable, notamment à l'échelle mondiale. Une question récurrente en analyse du risque et du climat est de déterminer, à l'horizon 2100, les changements dans les régimes de fortes précipitations. D'un point de vue statistique, le découpage du globe en sous-régions homogènes est une tâche délicate, notamment en ce qui concerne la modélisation des caractéristiques des fortes précipitations dans le cadre de la détection et de l'attribution du changement climatique. Plus précisément, il faut combiner différents modèles climatiques globaux et comparer deux scénarios (avec et sans forçages anthropogéniques). Dans cette thèse, notre objectif principal est de proposer et d'étudier des algorithmes de clustering rapides et efficaces qui peuvent partitionner de larges zones en sous-régions homogènes. Par rapport aux techniques classiques d'analyse fréquentielle régionale, un aspect clé de nos algorithmes est qu'ils ne reposent pas sur le choix a priori des covariables. Les méthodes numériques proposées sont basées uniquement sur les données de précipitations disponibles, qu'elles soient faibles, modérées ou fortes. Bien qu'en conformité avec la théorie des valeurs extrêmes, notre approche n'impose pas de forme paramétrique aux distributions et ne requiert donc, en particulier, ni seuillage ni sélection de taille de bloc pour définir des maxima. Par construction, nos méthodes de regroupement préservent le principe de proportionalité de l'analyse fréquentielle régionale classique.

En terme d'inférence, notre premier algorithme est basé sur les probability weighted moments, faciles à calculer, couramment utilisés en hydrologie. La performance de notre algorithme de clustering est évaluée suivant un plan expérimental détaillé basé sur une extension de la distribution de Pareto généralisée. La sensibilité au nombre de clusters est soigneusement étudiée. Nous appliquons ensuite notre algorithme de clustering à deux ensembles de données. Le premier est formé des précipitations quotidiennes Suisses mesurées en 191 sites. Les régions homogènes identifiées sont cohérentes avec le relief local et notre approche surpasse l'analyse fréquentielle régionale classique basée sur l'élévation et les coordonnées. Nous appliquons ensuite cet algorithme à un ensemble de données plus large que sont les précipitation européennes de ERA-5 afin de produire des cartes de niveaux de retour pour plusieurs périodes de retour et saisons. Nous discutons des limitations et des difficultés pratiques et fournissons également un dépôt git hub. Pour chacun de ces deux ensembles de données, nous montrons qu'un modèle régional relativement parcimonieux avec seulement un paramètre d'échelle variant dans l'espace peut rivaliser avec des modèles complexes.

Notre deuxième algorithme de clustering repose sur le développement d'une dissimilarité qui, en plus, prend en compte la dépendance entre les sites. L'originalité principale de cette dissimilarité est qu'elle associe le principe d'invariance (propre à l'analyse fréquentielle régionale) et la force de dépendance entre deux sites. Notre dissimilarité est illustrée sur la distribution bivariée GEV (Generalized Extreme Value). Nous appliquons également cet algorithme à des maxima annuels de précipitations quotidiennes provenant de 16 modèles couplés du projet CMIP (Coupled Model Intercomparison Project). Une méthode pour manipuler et résumer de tels ensembles de données est proposée, ainsi qu'une comparaison du clustering spatial entre deux expériences différentes (avec ou sans forçage anthropique). Les partitions sont comparées à celles obtenues avec une méthode de partitionnement se concentrant uniquement sur les marges ou la dépendance. Notre algorithme de clustering conduit à des régions plus cohérentes qui sont climatologiquement et physiquement interprétables. Enfin, nous proposons une analyse détaillée de détection et d'attribution de la façon dont le clustering change entre les deux scenarii (avec et sans forçages anthropogéniques).

Mots-Clés : clustering spatial, analyse fréquentielle régionale, précipitations extrêmes, changement climatique