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Introduction

Extreme working conditions are found inside the core of a nuclear reactor, among which the high irradiation
dose and the highly corrosive environment, thus subjecting the components inside to constant evolution. The
fuel cladding, made of zirconium-alloy, needs to endure these highly degrading conditions, in particular in
accidental conditions, for instance in the event of a loss of coolant accident (LOCA), where the temperature
inside the core of the reactor can rapidly increase, thus accelerating oxidation and degradation processes,
which can lead to the failure of the cladding. Application of a thin coating layer of chromium (Cr), known
for its high resistance to corrosion, on the fuel cladding is currently explored as a possible solution to pre-
vent oxidation of the cladding [1–4]. Under these conditions (temperature, pressure, irradiation), the Cr
coating needs to be able to deform plastically, to accommodate the deformation imposed by the cladding
and the fuel. However, Cr shows a high transition temperature from brittle to ductile behavior, and which
strongly depends on the purity of the sample [5]. Additionally, irradiation damages are known to induce a
considerable hardening, further pushing the transition to ductile behavior towards high temperatures, with
enhanced brittleness at low temperatures. Thus, depending on the material and the working temperature,
the Cr coating may be subjected to deformation while in a brittle state, which would then result in initiation
of cracks in the coating, and ultimately the loss of its protective properties. In this respect, it is necessary
to have a good understanding of its plasticity to accurately predict its properties under working conditions.

Cr is one of the seven pure body-centered cubic (bcc) transition metals, a class of metal used for various
structural components for applications under severe working conditions due to their interesting mechanical
properties and high melting point. Plasticity of bcc transition metals operates through the motion of dislo-
cations with a 1/2〈111〉 Burgers vector, the smallest periodicity vector of the bcc lattice. At low temperature,
most particularly below the brittle to ductile transition, their motion is governed by the high lattice friction
their screw orientation experiences, responsible for their alignment along this particular orientation, and
impeding their motion. Among the seven pure bcc transition metals, Cr is the only one with an ordered
magnetic structure close to antiferromagnetism at temperatures below ambient [6], before a transition to a
disordered high-temperature paramagnetic phase where magnetism however still remains. In the tempera-
ture range where magnetic order prevails, atoms located on the two sub-lattices of the bcc structure (i.e.
corner and center atoms) have a spin of opposite sign. Given that the 1/2〈111〉 Burgers vector of disloca-
tions links two atoms with different magnetic moments, magnetic faults are expected to be generated as a
consequence of the disruption of the magnetic order. Impact of magnetism on the properties of dislocations
therefore needs to be addressed, in particular since the brittle to ductile transition temperature of pure Cr
is close to the disappearance of magnetic order, both close to room temperature [5, 6]. The impact of mag-
netism also has to be addressed in the disordered paramagnetic phase, since magnetism persists. Plasticity
of Cr therefore raises multiple questions (impact of magnetism, types of dislocations carrying plasticity),
and has been the focus of few studies aiming at characterizing its mechanical properties. In particular, it
is not clear whether Cr has a conventional plasticity with respect to all other bcc transition metals, which
were thoroughly studied both experimentally and theoretically, which is not the case of Cr, partly because
of the added complexity of accounting for its magnetic structure.

Modeling of plasticity at the atomic scale allows for incorporation of the fine properties of the dislocation
core, needed to properly describe how they interact with the lattice as they move when subjected to ap-
plied stress. Such a modeling approach, based on atomistic simulations, has proven its ability to accurately
account for the core of dislocations, linking their properties to the macroscopic mechanical behavior of bcc
metals. Based on previous works, which laid the basis for the incorporation of all physical ingredients to
account for the core properties of dislocations using ab initio calculations, one is now able to construct
generalized yield criteria allowing for the prediction of the yield stress and slip activity as a function of the
mechanical loading, directly from ab initio calculations. The results of such model can then be compared to
experiments to test its ability to reproduce features of the yield behavior of bcc transition metals. Develop-
ment of yield criteria across all bcc transition metals also allows to qualify differences between one another,
in particular to conclude on the resemblance between Cr and other bcc metals.
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Apart from these advances allowed by atomistic simulations, some mechanisms accounting for the plastic
deformation of bcc transition metals are nevertheless still not fully understood or identified, and therefore
need further investigation to explore new possibilities. In particular, anomalous slip, characterized by ac-
tivity of dislocations in low-stressed planes in pure samples at low temperature, was first observed more
than 50 years ago and still lacks proper explanation accounting for all of its features. It is also not clear
if dislocations having a different Burgers vector than the conventional 1/2〈111〉 can actively participate to
the plastic deformation of these metals. In particular, 〈100〉 dislocations, which are slightly longer in norm,
are reported in all bcc transition metals, mostly as the junction product of two intersecting 1/2〈111〉 dis-
locations. Activity of these dislocations is often neglected when rationalizing plasticity of bcc transition
metals, although their motion is reported experimentally in a few metals at room temperature. Therefore,
a proper modeling of these dislocations is needed to understand in which conditions they can participate to
the plastic deformation of these metals.

We begin this document with a review of the experimental literature regarding features of the plasticity
of bcc transition metals, along with simulation works at the atomic scale aiming at their description (Liter-
ature review). We then present the different tools used in this work for all presented atomistic simulations,
whether for dislocation modeling or for description of the magnetic properties of Cr (Methods). The results
are structured in six different chapters, starting from the bulk properties of bcc Cr modeled using ab initio
calculations, with a focus on its magnetic phases, their elastic properties, and the stacking fault energies
in different planes (Chapter 1). We then present the properties of 1/2〈111〉 screw dislocations in bcc Cr
modeled using ab initio calculations at 0K. We focus on qualifying the impact of magnetism on their core
properties and mobility, with parametrization of a yield criterion for prediction of slip activity and yield
stress of single crystals subjected to uniaxial mechanical loading (Chapter 2). Using an effective interaction
model for magnetic properties parametrized on ab initio data, coupled to Monte Carlo simulations, we then
study finite temperature magnetism of bcc Cr, with a focus on the properties linked to its plasticity, and the
properties of 1/2〈111〉 dislocations (Chapter 3). The yield criterion developed for Cr is then extended to
all bcc transition metals, allowing for comparison between them to conclude on whether Cr shows a similar
plastic behavior, and also to test the ability of the model to reproduce the experimental features of their
plasticity (Chapter 4). We then present a new mechanism explaining anomalous slip in bcc transition
metals, which is the result of a collaboration with Daniel Caillard (CEMES, CNRS, Toulouse), with coupled
in situ straining experiments in a transmission electron microscope performed by Daniel Caillard and our
atomistic simulations (Chapter 5). Finally, we explore possibilities for dislocations having a 〈100〉 Burgers
vector, observed experimentally in all bcc transition metals, to participate to the plastic deformation, using
atomistic simulations (Chapter 6).



Literature review

As briefly prefaced in Introduction, a quantitative understanding of the mechanical properties of pure
chromium (Cr), with a focus on its plastic deformation, is required for industrial applications mentioned. In
the present context, the Cr coating needs to endure the mechanical strain imposed by the zirconium fuel rods
it covers without initiation of serious deformation or cracking, otherwise oxidation would start broaching
the fuel rod. Cr is a body-centered cubic (bcc) transition metal, whose plasticity has been the focus a very
few experimental and numerical studies compared to the other six bcc transition metals presented in the
periodic table of Tab. 1. Among them, Cr is the only one with an antiferromagnetic ground state below
ambient [6], which needs to be addressed to rationalize its plastic deformation.

Table 1: Periodic table showing the body-centered cubic (bcc) transition metals in blue.

III IV V VI VII VIII IX X XI
4 Sc Ti V Cr Mn Fe Co Ni Cu
5 Y Zr Nb Mo Tc Ru Rh Pd Ag
6 - Hf Ta W Re Os Ir Pt Au

The different mechanisms at stake and their corresponding temperature range are presented in Fig. 1a for
Cr, showing their intricate combination and relative importance. A limiting property of Cr when looking at
applications under extreme conditions is the dual observation of a high ductile-brittle transition temperature
(Fig. 1b) with a lack of ductility below, and a weak strength at high temperature, both of which are very
sensitive to multiple factors such as impurities, substitutional elements, or the microstructure of the sample
[7]. For these applications, a good understanding of the physical origin of its particular mechanical properties
is needed. The aim of the present review is to introduce the features and mechanisms at stake in the plastic
deformation of bcc metals, both experimentally and using atomistic simulations, in order to compare the
different bcc transition metals, and assess if Cr shows standard plasticity in this respect.
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Figure 1: (a) Dependence of the deformation mechanisms of Cr as a function of temperature from hardness and shear stress
measurements at constant indentation strain rate (CSR) and strain rate jump (SRJ) (reproduced from Choi et al. [8]).
(b) Temperature evolution of the fracture toughness K for high-purity and alloyed polycrystalline samples showing the high
ductile-brittle transition temperature of Cr [5].

This literature review focuses on the three following topics: properties of dislocations and features
of plasticity common to all bcc transition metals; results of atomistic simulations on dislocations in bcc
transition metals; particularities of Cr both in terms of magnetic order and experimental features of plasticity.
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1. Plasticity of body-centered cubic transition metals

Plastic flow and strength of crystals are driven by the motion of dislocations in the crystal, the line-defects
carrying elemental atomic shear deformation. Plasticity of bcc metals is mediated by the strong lattice
friction screw dislocations experience when shearing the crystal. Some characteristic features of their plastic
deformation are common to all bcc transitions metals including Cr, which are the focus of this section.

1.1. Energetic description of dislocations
Dislocations are the line defects carrying plastic deformation at the atomic scale, defined by the amount

of shear they induce to the crystal, the Burgers vector ~b, and their line orientation ~l tangent to the dislo-
cation line. When the Burgers ~b and line ~l vectors are collinear, the dislocation has a screw character, and
when both vectors are orthogonal, the dislocation has an edge character. Any other relative orientation of
these two vectors defines a mixed dislocation of character θ, the angle between ~b and ~l.

Dislocations are responsible for a deformation of the crystal, described in the frame of elasticity theory
by a strain and stress field decreasing as the inverse of the distance r to the dislocation line 1/r [9]. This
field accounts for the long-range elastic distortion of the lattice. Close to its line, the deformation induced
by a dislocation is too important to be accounted for by elasticity theory. One thus needs to define a region
near the line to encapsulate these strong displacements, a core region of radius rC leading to an energy
contribution Ecore(rC) which is independent of the surrounding microstructure. Outside this core region,
elasticity theory allows for an accurate description of its energy Eelas as a long-range elastic contribution.
This leads to the following partitioning of the total energy Etot of the dislocation:

Etot(θ) = Ecore(rC) + Eelas(θ, rC)

= Ecore(rC) +
bi [Kij(θ)] bj

4π
ln

(
R∞
rC

)
= Ecore(rC) + e(θ) ln

(
R∞
rC

)
,

(1)

where ¯̄K is the Stroh tensor, function of the character θ of the dislocation [10, 11] and the elastic constants
of the material. R∞ is the outer cutoff radius for elastic interactions, depending on the microstructure of
interest, and rC is the radius of the dislocation core, defining the region where elasticity is not valid, used to
partition the dislocation energy in two contributions resulting in Etot independent of the core radius. These
two contributions to the dislocation energy have different physical meanings, which we focus on detailing
how they relate to its macroscopic properties in the following. The elastic anisotropy is quantified by the
ratio A = C44/C

′ between the two shear moduli C ′ = (C11−C12)/2 and C44, equal to 1 in the isotropic case
of tungsten, and defines the shape of the character variation of the elastic energy of dislocations [12, 13].
Experimental elastic constants for all bcc transition metals are presented in Tab. 2, measured at 4.2K.

Table 2: Lattice parameter a0 (Å), elastic constants Cij (GPa), elastic anisotropy ratio A = 2C44/(C11 − C12), and modified
bulk to shear moduli ratio mB = (C11 + 2C12)/C44 for all bcc transition metals. Values are taken from various experimental
references and were measured at approximately 4.2K.

a0 C11 C12 C44 A mB

V [14] 3.03 230 120 43 0.78 10.90
Nb [14, 15] 3.29 246 132 28 0.50 17.95
Ta [14] 3.30 262 156 83 1.56 6.94
Cr [16] 2.88 392 91 103 0.68 5.55
Mo [17] 3.14 458 168 111 0.77 7.16
W [17] 3.16 517 203 157 1.00 5.88
Fe [18] 2.87 233 135 116 2.38 4.34
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In the frame of isotropic elasticity theory, i.e. with an elastic anisotropy ratio A = 1 and corresponding
to equal elastic shear moduli C ′ = (C11−C12)/2 and C44, the elastic energy of a straight infinite dislocation
of character θ is given by the following expression:

Eelas
iso (θ, rC) =

µb2

4π

[
sin2 (θ)

1− ν + cos2 (θ)

]
ln

(
R∞
rC

)
, (2)

with b the norm of the Burgers vector of the dislocation, µ the bulk modulus, and ν the Poisson’s ratio of
the isotropic material. Considering Eq. 2, we note that the elastic energy of a dislocation is proportional to
the square of the norm of its Burgers vector, thus minimizing the energy of dislocations having a Burgers
vector equal to the smallest periodicity vector of the lattice, which is 1/2〈111〉 for the bcc lattice. Another
consequence is that the elastic energy is minimum for the screw orientation (θ = 0), and maximum for the
edge orientation (θ = 90◦) since ν is positive and smaller than 1. We note from the elastic constants of Tab.
2 that this isotropic description only holds for bcc tungsten, which has an anisotropy ratio A = 1. For an
accurate description of the elastic properties of dislocations in other bcc metals, elastic anisotropy is required.

Now considering anisotropic elasticity theory, the Stroh tensor ¯̄K of Eq. 1 do not have an analytical
expression for all characters θ of the dislocation, and therefore needs to be evaluated numerically. This is
done using the Babel package [19] with the experimental anisotropic elastic constants measured at 4.2K
presented in Tab. 2. The anisotropic elastic energy of the 1/2〈111〉 dislocation as a function of its character θ
is presented in Fig. 2 for all bcc transition metals, which is the basis for simple line energy models developed
in the following to study for instance the formation of dislocation junctions, detailed in Chapter 5.
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Figure 2: Logarithmic prefactor to the elastic energy (blue) and line tension (brown) of a straight infinite 1/2〈111〉 dislocation
as a function of its character θ in the frame of anisotropic elasticity theory for all bcc transition metals. The core radius is set
to rC = b = a0

√
3/2 the norm of the 1/2〈111〉 Burgers vector. Anisotropic elastic constants used are presented in Tab. 2.

For all bcc transition metals, the anisotropic elastic energy of the 1/2〈111〉 dislocation presented in Fig.
2 is minimum for the screw orientation and maximized for the edge orientation, as for the isotropic case
(see tungsten for comparison). Another quantity of interest given by elasticity theory is the dislocation line
tension T elas, given by [12]:

T elas(θ) =

[
e(θ) +

δ2e(θ)

δθ2

]
ln

(
R∞
rC

)
= t(θ) ln

(
R∞
rC

)
, (3)

which is plotted as function of the dislocation character θ for all bcc transition metals in Fig. 2 in brown.
This line tension, homologous to a line energy, quantifies the ease of an initially straight dislocation line of
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character θ to bow out under an applied stress, through the incorporation of the curvature of the elastic
energy with the character. As the line tension shows a maximum for the screw orientation in the isotropic
case, it will require a higher stress to induce a bowing of its line starting from an initially straight screw
dislocation. This holds for metals having an elastic anisotropy characterized by a ratio A > 1 (Ta and Fe),
for which the screw orientation of the 1/2〈111〉 dislocation minimizes its elastic energy, while maximizing its
line tension. For metals having a ratio A < 1 (V, Nb, Cr and Mo), a mixed orientation of the dislocation
minimizes its elastic energy and maximizes its line tension. However, as will be discussed in the following
section, a dislocation line can only start to bend under an applied stress at a sufficiently high temperature,
needed to completely wipe out the strong friction experienced by their screw orientation with the lattice.

Looking at elastic properties of Cr compared to other bcc transition metals, dislocations in Nb share
similar properties due to these two metals having the smallest elastic anisotropy ratio. Due to the scarcity
of experimental data on Cr, the study of other bcc transition metals with similar properties and for which
experimental data is available can allow for comparison with the presented models. For example, experimen-
tal observation of anomalous slip has been reported in all bcc transition metals, including Cr, a mechanism
believed to strongly depend on the elastic properties of the metal. Mostly studied in Nb, the obtained results
can then be reasonably extended to Cr since they share similar elastic properties.

1.2. Dislocation glide in body-centered cubic metals
Two different mechanisms account for the motion of dislocations in the crystal, namely glide and climb.

The first is a conservative mechanism where atoms in the vicinity of the dislocation line move to let the
dislocation glide in a given crystallographic plane of normal ~n satisfying ~n ⊥ ~b and ~n ⊥ ~l. Therefore, as screw
dislocations have collinear Burgers ~b and line ~l vectors, they can glide in different planes as long as they
meet the previous orthogonality relation, whereas non-screw dislocations are constrained to glide in a single
plane. The other mechanism, dislocation climb, is a non-conservative process, where dislocations move per-
pendicular to their glide planes, requiring atoms to be removed or added to allow their motion. Dislocation
climb is assisted by diffusion processes, and operate at higher temperatures than dislocation glide. Only
the glide mechanism for dislocation motion is discussed in the following as it is the focus of the present work.

VP (x)

x

V act
P

λP

(a)
VP (x)

x

V act
P

−τbλP

(b)

Figure 3: Sketch of the Peierls potential VP opposing the motion of a dislocation in its glide plane: (a) in an unstressed crystal,
and (b) under an applied resolved shear stress τ producing a Peach-Koehler force FPK = −τbλP on the dislocation.

When a dislocation moves inside a crystal, both contributions to its total energy vary, but only the
core contribution depends on the position of the dislocation line with respect to the crystal lattice. Motion
of dislocations through the lattice is therefore dictated by the variation of Ecore as a function of the line
position. This variation accounts for the lattice friction dislocations experience when shearing the lattice,
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called the Peierls potential, and sketched in Fig. 3a. This friction potential has a periodicity dictated by the
lattice, with minima corresponding to equilibrium configurations of the dislocation core, called Peierls valleys,
separated from each other by a distance λP . When their habit crystal is subjected to an applied stress, the
height V act

P of the energy barrier opposing dislocation glide decreases by the amount of work produced by the
force exerted on the moving dislocation, the Peach-Koehler force ~FPK = (¯̄σ.~b)×~l, where ¯̄σ is the stress tensor
having a component τ resolved in the glide plane. The barrier ultimately vanishes at a threshold value τP
of the applied stress at which dislocations start moving freely in the crystal without experiencing any lattice
friction, the Peierls stress. A quantitative evaluation of the lattice friction experienced by dislocations when
shearing the crystal can be computed through atomistic simulations of the Peierls potential opposing their
glide, which is the focus of the next section.

(a)
(c)

(d)

Figure 4: (a) Transmission electron microscope (TEM) observations of straight segments of screw dislocations having Burgers
vectors ~b1 = 1/2[111], ~b2 = 1/2[111], ~b3 = 1/2[111] and ~b4 = 1/2[111] at 300K in tungsten at two different times (reproduced
from Ref. [20]). (c)-(d) Differential images between snapshots recorded at three different times during in situ straining in a
TEM in iron at room temperature, showing the slow glide of screw dislocations 1 and 2 in (110) planes [21].

At low to ambient temperatures, the lattice friction experienced by screw dislocations is too important
to allow for the bending of their lines as described by the line tension of Eq. 3, thus resulting in dislocations
aligned along their screw orientations, stuck at the bottom of their Peierls valleys. In situ transmission
electron microscopy (TEM) in strained bcc metals shows long dislocation lines aligned along their screw
orientation [22, 23], like presented in Fig. 4a in tungsten at 300K [20]. These dislocations are characterized
by a Burgers vector corresponding to the smallest periodicity vector of the crystal lattice, which is 1/2〈111〉
for the bcc lattice [9]. Motion of these screw dislocations at low temperature is impeded by the strong
lattice friction they experience compared to other line orientations. As a result, plasticity of bcc metals at
low temperature is governed by glide of these screw dislocations in the close-packed crystallographic planes
of the bcc lattice [24]. At low temperature, dislocation glide in {110} planes dominates in most bcc metals
[25] as shown in iron on Fig. 4b, but is also observed in {112} [20, 26–28] and {123} [20] planes at higher
temperature, with a viscous rigid motion of their line as a whole, as shown in Fig. 4b in iron. The reported
TEM observations were recorded in situ in a strained sample and presented in differential contrast images,
i.e. through the substraction of consecutive snapshots recorded at two different times during the test, the
background and immobile dislocations are erased, and the resulting images show moving dislocations in
positive bright contrast in their new positions, and in negative black contrast in their former positions.

When thermal agitation becomes non-negligible, crossing of the Peierls barrier can operate through the
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Figure 5: (a)-(d) Glide of a 1/2〈111〉 dislocation at 300K in iron imaged in TEM at different times showing the difficult motion
of its screw component compared to its edge component (reproduced from Ref. [21]). (e) Sketch of the kink-pair nucleation
mechanism showing a dislocation line in blue bowing to cross the Peierls barrier before the two kinks propagate along the line.

nucleation and migration of highly mobile short non-screw segments, or kink-pairs [22], along the dislocation
line (Fig. 5e). In pure bcc metals, kinks glide along a dislocation line with a negligible lattice friction, and
the motion of screw dislocations is therefore controlled by kink nucleation. The difficult motion of screw
dislocations compared to other line orientations has been observed in TEM, like presented in iron on Fig.
5a-d [21]. The snapshots were recorded at different time steps under in situ straining conditions, showing
the bowing of a dislocation line under stress, ultimately resulting in the alignment of its line and motion
along its screw orientation. This confirms the limiting role of screw dislocations in the development of plastic
deformation in bcc metals.
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Figure 6: Experimental yield stress σY of a tungsten single crystal tested under uniaxial tension as a function of temperature
[29]. The solid blue line is our fit of the experimental data to Eq. 4, not presented in the original experimental work.

As a thermally activated process, dislocations require a decreasing applied stress to start moving as the
temperature increases, before ultimately reaching zero at the athermal temperature of the Peierls mechanism
Tath, which approximately corresponds to the ductile-brittle transition of the material. The evolution of the
yield stress σY for a tungsten single crystal subjected to uniaxial tension with temperature is presented in
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Fig. 6. The experimental data has been fitted to a law of the following form:

σY (T ) = σ0
Y

[
1−

(
T

Tath

)1/q
]1/p

, (4)

where σ0
Y is the estimated yield stress at 0K, and p and q are adjustable parameters defining the shape of

the temperature evolution of σY . The above mobility law results from a model developed in this work, which
will be presented in details in the following chapters. We see that the yield stress shows a very steep increase
when the temperature approaches 0K, where the lattice friction experienced by screw dislocations is the
strongest, before slowly decreasing up to the athermal temperature Tath of the Peierls mechanism. Above
Tath, i.e. in the absence of lattice friction, elasticity theory controls dislocation motion through the bowing
of their lines under applied stress as described by the line tension. Below Tath, i.e. in the temperature range
where the lattice friction impedes glide of screw dislocations, unusual features are reported experimentally
in the yield behavior of bcc metals, showing deviations from the predictions of the Schmid law, as opposed
to face-centered cubic (fcc) metals for instance [25].

1.3. Non-Schmid effects and anomalous slip
According to the Schmid law, dislocation glide in a given slip plane occurs when the resolved shear stress

in this plane exceeds a threshold value, the Peierls stress τP , necessary to overcome the lattice friction they
experience. Hence, when the plane of maximum resolved shear stress (MRSSP) makes an angle χ with
its {110} slip plane, dislocation glide starts when the applied stress projected in the glide plane is higher
than the Peierls stress τP . Then, the threshold stress necessary to activate dislocation glide for a uniaxial
mechanical test is given by the following geometrical relation, the well-known Schmid law:

σY (χ) =
2τP

cos (χ)
(5)

The yield criterion given by the Schmid law is symmetrical with respect to the {110} glide plane, one would
thus expect to have a symmetrical yield behavior considering two similar crystals with orientations defined
by χ < 0 and χ > 0. The most commonly used test to measure the yield strength of monocrystalline samples
is the uniaxial mechanical loading, for which a vast majority of experimental data is available across a wide
temperature range for all pure bcc transition metals. A sketch of such a mechanical loading is given in Fig.
7a defining the angles ζ between the loading axis ~t and the 1/2[111] slip direction, and χ between the MRSSP
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Figure 7: (a) Sketch of a uniaxial mechanical loading along an axis ~t, showing the angles ζ and χ between the dislocation glide
plane (in red) and the plane of maximum resolved shear stress (MRSSP, in blue). (b) Stress σ as a function of strain ε recorded
upon application of a tensile load to single crystals of bcc Mo having different orientations at 77K [30].
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and the (101) glide plane of the 1/2[111] screw dislocation. A typical stress/strain curve for such loading
shows an elastic region with a linear variation of the stress σ as a function of strain ε, before reaching a
yield point at which plastic deformation starts. An example is presented in Fig. 7b for three orientations
of Mo single crystals tested under uniaxial tension at 77K [30], showing the yield stress σY (squares) at
which dislocation glide can start propagate the plastic deformation. As opposed to the predictions of the
Schmid law, the yield stress differs between the two +30◦ and −30◦ orientations of the MRSSP, with a lower
tensile yield stress for χ < 0 than χ > 0. This effect is known as the twinning/antitwinning (T/AT) asym-
metry, and has been reported experimentally in all pure bcc transition metals at low temperature [26, 30–35].
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Figure 8: (a) Stereographic projection along the [111] direction showing all {110} planes contained in the (111) plane and the
angle χ between the MRSSP and the (101) glide plane. (b) Experimental variation of the yield stress in tension for Nb, Mo
and Fe single crystals as a function of χ. (c) Angle ψ between the observed slip plane and (101) as a function of the angle χ.
Experimental data were measured at 4.2K under uniaxial tension [30, 35, 36].

The variations of the yield stress σY with the orientation χ of the MRSSP for Nb [36], Mo [30] and Fe
[35] single crystals tested under uniaxial tension at 4.2K are presented in Fig. 8b, with the predictions of
the Schmid law indicated by colored dashed lines. All three metals show the same characteristic departure
from the Schmid law, with a lower yield point in the twinning region χ < 0, which is more pronounced in
Nb and Mo than in Fe. The authors also evaluated the primary 1/2〈111〉{110} slip system accounting for the
plastic deformation of each sample with its orientation as the angle ψ the observed slip plane makes with
the most highly stressed (101) plane (Fig. 8a), which are presented in Fig. 8c for Nb, Mo and Fe. At 4.2K,
the primary glide plane in Mo and Fe is the maximum resolved shear stress plane (101) across the whole
range of χ orientations, i.e. ψ(χ) = 0, whereas a change of glide plane from the expected (101) to the low
stressed (011) plane with ψ = −60◦ (Fig. 8a) is observed in Nb at χ ' 10◦. Glide of dislocations in low
stressed {110} planes has also been observed in other bcc transition metals [31, 34, 37–40] except Fe, and is
referred to as anomalous slip [25], which is the focus of Chapter 5.

At low temperature, bcc metals also exhibit an asymmetry between their tensile and compressive yield
behaviors, with a generally lower yield stress in tension than in compression along the same loading axis
[25, 42, 43], which is referred to as the tension/compression (T/C) asymmetry. Liu et al. [41] measured the
yield stress of Mo single crystals with different orientations as a function of temperature under both uniaxial
tension and compression, which are presented in Fig. 9 with corresponding fits to the law of Eq. 4. We note
that the yield stress shows a significant T/AT asymmetry under uniaxial tension and compression, comparing
red with green or blue with orange samples. This asymmetry holds in both tension and compression across
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Figure 9: Experimental yield stress of Mo single crystals tested under uniaxial tension (filled symbols) and compression (open
symbols) as a function of temperature considering four different crystal orientations shown in the stereographic projection of
the right inset. Data are taken from Liu et al. [41] and were measured at a strain rate ε̇ = 3.3 × 10−5 s−1. Solid and dashed
lines are our fit of the experimental data to Eq. 4 in tension and compression respectively.

the whole range of temperature, but becomes less pronounced as the temperature approaches Tath ' 450K,
at which the yield stress becomes zero regardless of the crystal orientation. The asymmetry between the
tensile and compressive yield stress also progressively fades out with increasing temperature, with a lower
tensile yield stress only for red and orange orientations, and a lower compressive yield stress for green and
blue samples across the whole temperature range. A summary of the low temperature yield stress σY and
athermal temperature Tath of the Peierls mechanism taken from various experimental references are listed
in Tab. A.1 of Appendix A for all bcc transition metals under either tension or compression.

2. Atomistic study of dislocations in body-centered cubic metals

As discussed in the first section of this literature review, plasticity of bcc metals is mainly driven by glide of
1/2〈111〉 screw dislocations, which exhibit unusual properties directly linked to some of the surprising features
of the macroscopic plastic behavior of bcc metals. A fine atomistic description of the core properties of these
dislocations has helped understanding the elemental processes at the origin of such a behavior, a review of
which is the focus of the present section.

2.1. Ab initio modeling of dislocations
Fine description of forces at the atomic scale is necessary to account for the mechanisms involved in

the plastic deformation of bcc transition metals. Atomistic modeling of dislocations, whether with ab initio
density functional theory (DFT) or semi-empirical interatomic potentials, have helped uncover some of their
properties linked to the macroscopic plastic behavior of bcc metals, which are detailed in the following.

2.1.1. Core structure of the 1/2〈111〉 screw dislocation
The body-centered cubic (bcc) crystal lattice is made of a periodic stacking of three different {111}

atomic planes along a 〈111〉 direction with a three-fold helical symmetry (see Fig. 10). The projection
of the bcc lattice along a 〈111〉 direction therefore shows three atomic layers spaced from each other by a
distance equal to one third of the norm of the 1/2〈111〉 Burgers vector, i.e. b/3 = a0

√
3/6 with a0 the lattice

parameter. On the {111} projection, the three-fold high-symmetry positions of the screw dislocation match
the center of a triangle formed by three adjacent 〈111〉 atomic columns and correspond to extrema of its
core energy, either located in upward triangles with clockwise helicity of the three columns, or downward
triangles with anticlockwise helicity. When a 1/2〈111〉 screw dislocation is inserted at the center of such
triangles, it generates a helical displacement field of the lattice in the 〈111〉 direction, which either inverses
the helicity of the triangle or brings the three atomic columns at the same height. The first case corresponds
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(a) Easy core (E) (b) Hard core (H)

(c) Split core (S) (d) Saddle point

Figure 10: Differential displacement maps of a 1/2[111] screw dislocation core in bcc tungsten in its (a) easy, (b) hard, (c) split,
and (d) saddle point configurations [44]. Atoms are represented in different colors depending on their heights along the [111]
direction. Positions of the dislocation are indicated by a green symbol, also sketched on the right panel. Arrows between two
atomic columns have a size proportional to the differential displacement along [111] between both columns, which is equal to
b/3 when they join two columns. The color map is a projection of the Nye tensor, showing the dislocation density ρb normalized
by the lattice parameter a (reproduced from Ref. [45]).

to the ground state of the screw dislocation core, called the easy core configuration, presented in Fig. 10a in
tungsten [45]. The second configuration of the 1/2〈111〉 screw dislocation, presented in Fig. 10b in tungsten
as well [45], is an energy maximum called the hard core configuration [44]. The core structure of the screw
dislocation is visualized projected onto the (111) plane with differential displacement maps along the [111]
direction as first introduced by Vitek [46], showing the ground state easy configuration to have a compact
and symmetrical structure. A third particular position of the 1/2〈111〉 screw dislocation is found when its
core is located in the immediate vicinity of a 〈111〉 atomic column, called the split core configuration [47]
and presented in Fig. 10d in bcc tungsten. This position does not respect the three-fold symmetry of the
lattice and has three different variants depending on the direction the core approaches the 〈111〉 column.

This compact core is in contrast with the predictions of a broad range of interatomic potentials first used
to model dislocations in pure bcc transition metals, predicting a degenerate ground state easy core [50–59],
presented in Fig. 11b and c in bcc iron [49]. This degenerate structure was first through to be the ground
state of the 1/2〈111〉 screw dislocation core, but is in fact strongly dependent on the interatomic potential
[49, 60–62]. This degenerate core structure leads to 1/2〈111〉 screw dislocations preferentially gliding in {112}
planes, which is in contradiction with the main experimental {110} glide planes at low temperature. Since
then, ab initio calculations have systematically demonstrated the non-degenerate compact core to be the
true ground state of the 1/2〈111〉 screw dislocation in all pure bcc transition metals [44]. Early interatomic
potentials having a compact easy core however predicted the split configuration as a metastable state [49]. In
this case, the energy barrier between two adjacent easy configurations in a {110} plane passes through this
metastable state located halfway along the path, and shows a characteristic double-hump shape [49, 62, 63],
each variant of the split core being associated with a different {110} glide plane. Ab initio calculations
have since then demonstrated that this split configuration corresponds to an energy maximum, resulting in
single-hump energy barriers between two adjacent easy configurations [19, 44, 64]. Semi-empirical potentials
have then been re-adjusted to predict a compact core structure for the 1/2〈111〉 screw dislocation, and
the high energy of its split core configuration, using approximately the same form for the description of
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Figure 11: Differential displacement maps showing the core structure of the 1/2〈111〉 screw dislocation in bcc Fe in its (a)
non-degenerate, and (b) and (c) two variants of its degenerate configuration obtained with the Dudarev-Derlet EAM potential
[48] (reproduced from Ventelon et al. [49]). The same conventions as in Fig. 10 are adopted for the representation.

interactions between atoms [65, 66]. These interatomic potentials then allow for an accurate description of
the properties of the 1/2〈111〉 screw dislocation in bcc transition metals, and modeling of their plasticity.
It is however important to stress that prior to performing any simulation on dislocations using such semi-
empirical potentials, one needs to carefully check its computed properties through comparison with ab initio
calculations, to ensure no such artefact is predicted.

2.1.2. Peierls potential of the 1/2〈111〉 screw dislocation
Apart from the high-symmetry positions presented in Fig. 10, the screw dislocation can take any po-

sition in the {111} plane orthogonal to its line [67, 68]. Its core energy then depends on its position on
the {111} plane, yielding a two-dimensional (2D) energy landscape showing minima near stable easy core
positions, called Peierls valleys, separated by energy barriers which characterize the low-temperature glide
of the 1/2〈111〉 screw dislocation in the crystal. The concept of a 2D Peierls potential was first introduced
by Edagawa et al. [67, 68], and studied using a model potential, and has since then been evaluated using ab
initio calculations in all bcc transition metals except Cr in the PhD work of Lucile Dezerald [44]. At equi-
librium, the screw dislocation is in its ground state easy core configuration (Fig. 10a) and glides through a
thermally-activated process towards an adjacent easy configuration, associated with an energy barrier called
the Peierls barrier, presented in Fig. 12a [45]. The Peierls energy barrier shows a single hump, as opposed
to the split potentials obtained using interatomic potentials predicting a metastable split core, and passes
through a saddle point, presented in Fig. 10d. In addition to the Peierls barrier, the variation of the core
energy along the path going from a high-energy hard to split core, presented in Fig. 12b, completes the
definition of the 2D Peierls potential, presented for tungsten in Fig. 12c [44], which shows minima for the
easy core, primary maxima for the hard core, and secondary maxima located at split core positions.

The Peierls potential is then a direct image of the lattice friction opposing 1/2〈111〉 screw dislocation
glide. When a resolved shear stress τ is applied to the Peierls potential, the work of this stress lowers the
energy barrier opposing dislocation glide, eventually canceling the Peierls energy barrier and allowing the
dislocation to initiate its motion (see Fig. 3). At zero temperature, i.e. without thermal activation, this is
the Peierls stress τP , which corresponds to the maximum slope of the Peierls potential in the {110} glide
plane of the dislocation:

τP =
1

b
max
x

[
δVP (x, y)

δx

]
, (6)
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(a) (b)

(c)

Figure 12: Variation of the 1/2[111] screw dislocation core energy in bcc tungsten along (a) the Peierls barrier between two easy
configurations, and (b) between hard and split configurations [44]. Both paths are represented in insets, with the corresponding
reaction coordinates ξx and ξy . (c) Two-dimensional (2D) Peierls potential showing the screw dislocation trajectory along the
minimum energy paths between two easy configurations in solid line, and between hard and split configurations in dashed line
[44]. The saddle point configuration presented in Fig. 10d is shown by a green diamond (reproduced from Ref. [45]).

where b = a0
√

3/2 is the norm of the 1/2〈111〉 Burgers vector. To predict the plastic behavior of any bcc
metal at 0K under a given mechanical loading, one needs to evaluate the dependence of the Peierls stress
on the orientation and sense of the applied stress. A review of ab initio calculations focused on explaining
the plastic behavior of bcc metals under uniaxial mechanical loading is given in the following section.

2.1.3. Non-Schmid effects: screw dislocation trajectory and relaxation volume
As introduced in section 1, the plastic behavior of bcc metals deviates from the predictions of the Schmid

law, both in terms of yield stress and slip activity (see Fig. 8). In particular, the yield stress σY necessary to
activate dislocation glide under uniaxial tension is lower when the MRSSP is on the twinning (T) region with
χ < 0, than in the antitwinning (AT) region with χ > 0. This T/AT asymmetry has been demonstrated to
be a consequence of the trajectory of the 1/2〈111〉 screw dislocation in its {110} glide plane using ab initio
calculations by Dezerald et al. [69] in all bcc transition metals, except Cr. Indeed, as shown for tungsten
in Fig. 12c and presented in more details in Fig. 13a, the trajectory, corresponding to the minimum en-
ergy path when the dislocation transits between neighboring equilibrium positions, deviates from the {110}
macroscopic glide plane towards the split core configuration, which crystallographically always lays in the
twinning region, and away from the hard core configuration laying in the antitwinning region. This is also
a consequence of the position of the saddle point configuration on the hard-split line of Fig. 12b, which is
closer to the split configuration.
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Figure 13: (a) Trajectory of a 1/2[111] screw dislocation in bcc tungsten upon crossing of the Peierls barrier between two
adjacent easy configurations [45]. The angle α comes tangent to the dislocation trajectory at the inflexion point of the Peierls
potential, and the MRSSP is located by its angle χ with the (101) glide plane. (b) Variation of the yield stress σY as a function
of the angle χ according to the Schmid law (black dashed line), and including the deviated trajectory (solid orange line).

Therefore, the required stress to activate dislocation glide will be lower when the MRSSP comes tangent
to this deviated trajectory, whose amplitude can be directly linked to the amplitude of the T/AT asymmetry
through a modification of the Schmid law as follows [69]:

σY (χ) =
2τP cos (α)

cos (χ− α)
, (7)

where α is the angle between the screw dislocation trajectory and its {110} glide plane (see Fig. 13a).
This modified Schmid law now states that a dislocation starts gliding when the stress resolved in the plane
tangent to its trajectory exceeds the Peierls stress τP , instead of the stress resolved in its {110} glide plane
for the regular Schmid law (Eq. 5). The lowest yield stress is found for χ = α < 0 in the twinning region
and is proportional to the amplitude of this deviation. The corresponding variation of the yield stress with
the angle χ is presented in Fig. 13b for tungsten, showing a distinct T/AT asymmetry (orange solid line)
with respect to χ = 0 instead of the symmetrical variation predicted by the Schmid law (black dashed line).
Values of the Peierls stresses and deviation angles obtained with ab initio calculations by Dezerald et al.
[44, 69] are presented in Tab. 3. All bcc transition metals are presented, except Cr, for which no calculation
has been performed because of the added complexity of its magnetic structure.

Table 3: Peierls stress τP (GPa) [44] and deviation angle α (◦) [69] in all bcc transition metals.

V Nb Ta Cr Mo W Fe
τP 1.21 0.89 1.03 / 1.39 2.34 1.45
α −10.6 −21.7 −7.1 / −9.9 −10.9 −1.7

The α angle is negative in all bcc transition metals, systematically resulting in an easier twinning sense
for χ < 0. This deviation is the largest in Nb, followed by W, V, Mo and Ta with intermediate values, and
the lowest in Fe where the trajectory of the 1/2〈111〉 screw dislocation between adjacent Peierls valleys is
almost a straight line. This hierarchy between bcc metals is in good agreement with experiments presented
in Fig. 8 for Nb, Mo and Fe under uniaxial tension at 4.2K [30, 35, 36], where the T/AT asymmetry
is the most pronounced in Nb, followed by Mo, and almost non-existent in Fe showing a symmetrical
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variation of the yield stress with the angle χ. However, we note that the ab initio Peierls stresses are
well overestimated with respect to the experimental values shown in Fig. 8, which are reported for all bcc
transition metals in Tab. A.1 at different temperatures. This discrepancy with experiments is a well-known
error of atomistic simulations, whether using ab initio calculations [44, 69–71] or semi-empirical potentials
[72]. Several mechanisms have been proposed to explain this observation, among which influence of collective
dislocation effects [73, 74] and quantum zero-point energy correction [65].
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Figure 14: (a) Atomic displacements (×50) in the (111) plane perpendicular to the dislocation line induced in bcc tungsten
by the core of the 1/2[111] screw dislocation in its easy core configuration. (b) Variation of the relaxation volume tensor upon
crossing of the Peierls barrier as a function of the dislocation position along the glide direction. The shape of the inclusion is
sketched in inset. Change in (c) Peierls enthalpy barrier ∆HP and (d) yield stress σY upon application of a non-glide stress
σ = ±1.2GPa perpendicular to the MRSSP. All figures are adapted from Clouet et al. [45].

Ab initio calculations have also shown that the 1/2〈111〉 screw dislocation induces a short-range dilata-
tion field in the plane orthogonal to its line direction, in addition to the Volterra elastic field [75–77]. This
additional field has been observed in all bcc transition metals using ab initio calculations, and is strongly
metal-dependent [44]. It can be visualized in absolute displacements on Fig. 14a for bcc tungsten, showing
an edge component of the displacement in the (111) plane perpendicular to the 1/2〈111〉 screw dislocation
line in the vicinity of its core. This local dilatation of the lattice caused by the dislocation core is responsible
for the dislocation formation volume, evidenced experimentally through an increase of the average lattice
parameter with the dislocation density [78]. This core field can be modeled as a 2D Eshelby cylindrical
inclusion [79–82] of surface S0 and associated with an eigenstrain tensor ¯̄ε∗, the coupling of which with
an applied stress is well described by its relaxation volume tensor ¯̄Ω = S0 ¯̄ε∗ defined per unit length of
dislocation line [45, 79]. When a 1/2〈111〉 screw dislocation lays in a Peierls valley, the three-fold symmetry
of the bcc lattice in (111) planes imposes ¯̄Ω to be diagonal. However, upon crossing of the Peierls barrier,
the dilatation field loses its high-symmetry and develops non-diagonal components, the variations of which
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are presented in Fig. 14b for tungsten [45]. Because of the variations and coupling of the dilatation field
with an applied stress, the Peierls enthalpy barrier of the dislocation now becomes sensitive to non-glide
stresses, i.e. components of the stress tensor which do not produce any net force on the gliding dislocation
[45, 79]. This effect is exemplified on Fig. 14c and d for a ideal mechanical loading composed of a shear
stress resolved in the MRSSP, and a tension/compression stress σ normal to the MRSSP. When the MRSSP
is in tension (compression), i.e. σ > 0 (σ < 0), both the Peierls enthalpy barrier ∆HP and the yield stress
σY necessary to overcome the barrier decrease (increase). This is a direct consequence of the expansion of
the dilatation field in the direction orthogonal to the {110} glide plane, i.e. ∆Ω22 > 0, and contraction in
the glide plane, i.e. ∆Ω11 < 0, along the path between two adjacent Peierls valleys. The variation of the
dislocation relaxation volume therefore allows to account for the asymmetrical tensile and compressive yield
behaviors of bcc metals observed experimentally, with a generally lower yield stress in tension [25, 42, 83].

Ab initio evaluation of non-Schmid effects through the deviated trajectory and variations of the dilatation
field of the 1/2〈111〉 screw dislocation was only done in tungsten [79], and has been extended to all bcc
transition metals in this work, including Cr for which no ab initio data on the properties of dislocations was
available. All these physical ingredients can then be integrated in models describing kink-pair nucleation,
to account for non-Schmid effects in the prediction of the flow stress of bcc metals with temperature. This
approach, based on ab initio calculations to provide the required parameters, is detailed in Chapter 2.

2.2. Dislocation-based plasticity using interatomic potentials
As discussed in the previous section, a broad picture of the atomic properties of dislocations in bcc

metals can be obtained with the precision of ab initio calculations, however limiting the accessible system
size to study of isolated straight infinite screw dislocations. To study processes involving long dislocation
lines, like kink-pair nucleation and migration [85], interaction between multiple dislocations [74, 86] taking
part in the plastic behavior of metals at the macroscopic scale, larger simulation cells are needed to cap-
ture these elemental mechanisms occurring at a larger characteristic scale. Common simulation tools for
the study of large scale processes, keeping an atomistic resolution, goes through semi-empirical interatomic
potentials describing interactions between the atoms of a given system. As stressed in the previous section,

(a) Influence of the strain rate
(b) Influence of the temperature

Figure 15: Simulated stress/strain response of a tantalum [001] single crystal to uniaxial compression using molecular dynamics
straining simulations at different (a) strain rates taking ε̇ = 1.1 × 107 s−1 as a reference, and (b) temperatures ranging from
5 to 1 000K with ε̇ = 1.1 × 107 s−1. Snapshots of the simulations showing the obtained microstructures are presented on the
right of each stress/strain plots, with 1/2〈111〉 and 〈100〉 dislocations represented by green and purple lines respectively, twins
appearing as colored planes (reproduced from Zepeda-Ruiz et al. [84]).
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one needs to carefully choose the potential for studying crystal plasticity to avoid artefacts such as the
degenerate core structure of the 1/2〈111〉 screw dislocation in bcc metals. Semi-empirical potentials also
allow to study dynamic processes through classical molecular dynamics (MD) simulations, including the
effect of temperature or under dynamical straining conditions. Interatomic potentials suited for the study of
plasticity have been the focus of many developments, ranging from embedded-atom method (EAM) [65, 66]
to machine-learning potentials fitted to DFT data [87, 88]. Studying plasticity of bcc transition metals,
one can rely on the modified EAM (MEAM) method [89], which includes the orientational dependence of
interactions between atoms. This is not accounted for in standard EAM potentials, and an a priori im-
portant feature since atomic bonds in transition metals are known to have a strong orientational dependence.

Such interatomic potentials drastically cut computational times with respect to ab initio calculations,
allowing one to run large-scale MD simulations in order to test the ability of direct atomistic calculations
to study dislocation-based plasticity and compare with experiments. Example of MD straining simulations
performed on a micrometer cube sample of roughly 400 million atoms are presented in Fig. 15 [84] at different
strain rates and temperatures. The simulated stress/strain curves show the characteristic experimental
features and reveal complex microstructural evolutions during the simulations. However, the time scales
accessible to such atomistic simulations remains of the order of a few nanoseconds, resulting in extreme
strain rates (1.1× 107 s−1 on Fig. 15 [84], compared to ' 10−5 s−1 in experiments on Fig. 9 [41]).

3. The case of chromium

3.1. Magnetic phases of chromium
As will be discussed in the following sections, Cr has an ordered magnetic ground state at low to ambient

temperature, the impact of which on its plastic deformation and elasticity is discussed here.

3.1.1. Experimental observations
Neutron diffraction experiments on bulk bcc Cr [90] demonstrated the occurrence of complex magnetic

orderings, first thought to be linked to the presence of magnetic domain walls and spirals. Later experiments
using both neutron diffraction [91–93] and X-ray scattering [94, 95] established the magnetic ground state of
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Figure 16: Sketches of the different bulk magnetic phases occurring in bcc Cr at low temperature: (a) antiferromagnetic
(AF), (b) longitudinal SDW (LSDW), and (c) transverse SDW (TSDW). The arrows represent the directions and approximate
magnitudes of the magnetic moments. The envelope of the magnetic moment modulation along the wave is shown in orange.
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Cr at low temperature to be a spin-density wave (SDW), a quasi-sinusoidal modulation of spins magnitude
along a 〈100〉 crystal direction with local antiferromagnetic (AF) order, but with incommensurate periodicity
of about 20 lattice parameters with respect to the lattice [6]. This complex magnetic phase occurs in bcc Cr
below its Néel temperature of 311K [6, 96], above which the disordered paramagnetic (PM) phase becomes
prominent. Below ambient, a magnetic transition has been observed around 120K [6, 92, 93] corresponding
to a change in the polarization of the SDW. At low temperature, the SDW has a longitudinal polarization,
with magnetic moments oriented along its direction of propagation (Fig. 16b), before transitioning to a
transverse wave, with spins orthogonal to its propagation vector (Fig. 16c) above 120K, keeping the same
incommensurate periodicity with the crystal lattice. This temperature is called the spin-flip transition Tsf,
and occurs around 200K below the Néel temperature TN [6]. The magnetic structure of the SDW is sketched
in Fig. 16, showing the longitudinal SDW (LSDW) in b, and transverse SDW (TSDW) in c. Regardless
of its polarization, the SDW shares the same local magnetic order as the AF phase shown in Fig. 16a,
where atoms located on the two different sub-lattices of the bcc lattice are represented in dark blue and red
respectively, which coincide with two orientations of the magnetic moments, namely up ↑ (blue) and down
↓ (red) respectively. In the SDW phase, the sinusoidal modulation of the spin magnitudes is responsible
for the introduction of a locally zero magnetic moment located halfway along the period of the wave (black
shaded {100} plane in Figs. 16b and c). On top of the modulation of the magnetic moments of atoms
along the wave, the SDW is accompanied with a charge modulation, or charge-density wave (CDW), and
also a perturbation of atomic positions, or strain wave [6]. These two waves are characterized by half the
period of the SDW and a similar sinusoidal evolution. It has been shown experimentally, also using neutron
diffraction, that these three waves are closely linked, the charge and strain waves being a direct consequence
of the magnetic modulation [6, 97, 98].
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Figure 17: (a) Characteristic neutron scattering pattern for the three LSDW, TSDW and AF phases of bcc Cr for a neutron
wave vector ~q along (0, 1, ξ) and (0, 0, 1− ξ), with δ the shift of the satellite peaks due to the incommensurate scattering of the
SDW magnetic order. The temperature dependence of (b) the intensity of the LSDW and TSDW satellite peaks, and (c) the
magnitude of the wave vector QSDW are reproduced from Werner et al.. [99].

Characteristic patterns obtained through neutron diffraction are presented in Fig. 17a for the two
polarizations of the SDW, and the AF order. Neutrons are scattered by the spin structure when their wave
vector ~q is orthogonal to the spin order ~S of the sample. Hence, depending on the polarization of the SDW,
different characteristic patterns are expected due to the change in orientation of the magnetic moments
with respect to the constant wave vector ~qSDW of the SDW. Assuming ~qSDW to be along the [001] direction,
neutrons with wave vectors along (0, 1, ξ) will then be scattered by the magnetic order of the sample by the
longitudinal SDW only with ~SSDW ‖ ~qSDW, and (0, 0, ξ) in the transverse state with ~SSDW ⊥ ~qSDW. If it was
for the AF order, a single diffraction peak would appear in the neutron scattering, centered on the (0, 0, 1)



Literature review Page 27

direction, since there is no modulation of the spins magnitude, with a commensurate magnetic order. Since
the SDW has an incommensurate periodicity with respect to the lattice, neutron scattering patterns show
satellite peaks located at ξ = ±δ. The relative intensity and presence of these two peaks can then be related
to the different magnetic orderings inside the crystal. The temperature evolution of the intensity of the two
characteristic peaks of the LSDW at (0, 1,±δ) and TSDW at (0, 0, 1± δ) is presented in Fig. 17b up to the
Néel temperature TN = 311K [99]. Below the spin-flip transition at Tsf = 120K, only the LSDW phase is
present, with no scattering along (0, 0, ξ). Above Tsf the characteristic peak of the TSDW phase becomes
prominent, with however a non-negligible peak corresponding to a remanent LSDW order. Both satellite
peaks then vanish at the Néel temperature where the disordered PM phase prevails.

(a)

(c)

LSDW

TSDW AF PM

LSDW TSDW AF PM

(b)

(d)

LSDW TSDW AF PM

LSDW TSDW PM

Figure 18: Stability and coexistence of the different ordered magnetic phases of bulk bcc Cr presented in Fig. 16, antifer-
romagnetic (AF), longitudinal SDW (LSDW), transverse SDW (TSDW) and disordered paramagnetic (PM) as a function of
temperature in (a) powder sample, same sample after annealing at (b) 600◦ C and (c) 1 000◦ C. The ideal case of a perfect
monocrystalline sample is shown in (d) (reproduced from Bacon and Cowlam [100]).

Neutron diffraction performed at various temperatures by both Bacon and Cowlam [100] and Williams
and Street [101] helped determine how these different magnetic phases coexist and in which proportions.
Magnetic phase diagrams showing the relative proportion of the different phases as interpreted by the au-
thors are presented in Fig. 18 considering four different samples. The case of a perfect bulk monocrystalline
sample as discussed above is presented in d. The three other diagrams are obtained using the same coarse
grain powder sample (with a grain size of approximately 100µm), before and after annealing at different
temperatures. The initial sample is strained due to the fabrication process, and shows a complex ordering of
the three magnetic phases presented in Fig. 16 with the occurrence of a region where the simple AF phase
prevails from 300K to the Néel temperature of 450K, higher by 150K compared to the monocrystalline case.
After annealing at 600◦ C in b, and then 1 000◦ C in c, the phase diagram tends to the model case presented
in d, with a reduced temperature range where the AF phase is present, and a decreasing Néel temperature.
This study of Bacon and Cowlam [100] shows how the dislocation density present in a sample influences the
occurrence and coexistence of different magnetic structures. Williams et al. [101–103] proposed a model
based on the dislocation density present in the sample to account for the relative stability and coexistence
of the different magnetic phases shown in Fig. 18, assuming the prominent magnetic order to be linked to
the representative length scale allowed by the dislocation density.

With increasing temperature, magnetic fluctuations become more and more important, gradually leading
to the disappearance of long-range magnetic order in the PM phase, which prevails above the Néel temper-
ature TN . As shown in Fig. 18, TN depends on the deformation state of the sample, ranging from 311K
in a perfectly monocrystalline sample up to 450K for an AF ground state in a strained sample [100, 101].
Neutron diffraction experiments [97, 98, 104] and X-ray photoelectron spectroscopy [105] in this disordered



Literature review Page 28

PM phase demonstrated the persistence of atomic magnetic moment above the Néel transition. Grier et al.
[98] measured short-range correlations between magnetic moments over 11 bcc unit cells up to a temperature
of 700K, well above TN , showing magnetic order still exists, in a lesser extend, in this disordered PM phase.
The corresponding magnetic scattering are presented in Fig. 19a at 4 different temperatures, from 200K in
the TSDW phase showing the two characteristic satellite peaks, up to 650K in the disordered PM phase. A
measure of the short-range magnetic order as a function of temperature is obtained through the evolution of
the intensity and width of the peak in the magnetic scattering centered around (0, 0, 1), corresponding to the
AF commensurate order. Both peak intensity and widths as obtained through a Gaussian fit are reported on
Fig. 19b, showing a decreasing but non-zero intensity up to approximately 700K, and a widening of the peak
with increasing temperature indicating the weakening magnetic correlations. Ziebeck et al. [104] confirmed
the persistence of a magnetic moment in Cr far above TN , with a decreasing characteristic wavelength of
the magnetic correlations with increasing temperature. However, the average atomic magnetic moment was
reported to be almost independent of temperature and magnetic order. The authors [6, 97, 98, 104] also
linked the spin-flip transition between the two polarizations of the SDW and the disappearance of long-range
order to magnetic excitations in both the spin magnitude and electronic density.
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Figure 19: Intensity of the TSDW satellite (0, 0, QSDW) and AF commensurate (0, 0, 1) neutron scattering peaks at different
temperatures from 200K to well above the Néel temperature of 311K are presented in (a), with the corresponding peak intensity
and width obtained from a fit to a Gaussian function shown in (b) and (c) respectively (reproduced from Grier et al. [98]).

3.1.2. Theoretical investigations
Since the experimental confirmation of the low temperature SDW magnetic ground state of bulk bcc Cr,

many theoretical works have been focused on explaining the physical origin of such a complex structure.
The first investigations of both Overhauser [107] and Lomer et al. [108] pointed out that the mechanism
responsible of the stabilization of the SDW comes from particular features in the Fermi surface of Cr. The
(100)-cut of the theoretical Fermi surface presented in Fig. 20 is composed of electron pockets located close
to the center of the Brillouin zone, and hole pockets at the corners. The latter is slightly larger than the
electron pocket, resulting in two so-called nesting vectors Q± = 2π/a0(1± δ, 0, 0) (with a0 = 2.884Å [109]
the lattice parameter) joining electron and hole pockets. Then, the difference in the size of these two pockets
explains the incommensurate character of the SDW. These nesting vectors are linked to the wave vector ~q
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Figure 20: Cut of the Fermi surface of bulk bcc Cr in a (100) plane showing the nesting vectors Q+ and Q− linked to the
wave vector of the SDW ~q = Q+ − Q− between electron and hole pockets shown by open and dashed surfaces respectively
(reproduced from Laurent et al. [106]).

of the SDW by the relation ~q = Q+ −Q− = 2π/a0(2δ, 0, 0), corresponding to a periodicity of about 20 a0
at 4.2K, showing small variations with temperature, as presented in Fig. 17b [99].

The study of the stability of the SDW has then been the focus of great simulation efforts, using dif-
ferent electronic structure calculations to explain the origin of its stability. Due to the periodic boundary
conditions in simulation cells used for the study of the SDW, it is impossible to consider the experimen-
tal incommensurate wave, but commensurate waves are studied instead. However, DFT calculations have
systematically failed to reproduce the SDW magnetic phase as the ground state of bcc Cr at 0K. All calcu-
lations performed either within the KKR scheme [110, 111] or using different approximations and exchange
and correlation functionals within DFT [112–115] invariably found the AF phase to have a lower energy than
the SDW. These discrepancies with experiments have been blamed on the impossibility to account for the
incommensurability of the SDW [115], which could not be confirmed due to the inner limitations of these
calculations. Another possible explanation is the influence of the polarization of the SDW on its stability.
Soulairol et al. [113] performed DFT calculations using non-collinear magnetism and spin-orbit coupling,
both necessary to account for the two polarizations, in order to investigate the influence of the polarization
of the wave on its stability. Their study concluded that regardless of the approximations used, the energy
difference between the transverse and longitudinal SDW falls within DFT accuracy, still having a higher
energy than the AF phase, and therefore invalidating such hypothesis. However, the authors stress that
the energy difference between the AF and SDW phases is very low, of a few meV/atom, whereas switching
off magnetism to study the non-magnetic (NM) phase reveals an energy difference ten times higher with
respect to the AF ground state [112–115]. Therefore, it appears that no standard DFT calculations can
properly describe the electronic structure of Cr to effectively predict the incommensurate SDW as its low
temperature ground state, nor explain its physical origin. Nevertheless, proper incorporation of electronic
correlations in the frame of a Hubbard model showed the incommensurate SDW can arise spontaneously as
a result of a strong spin-orbit coupling [116].

3.2. Elastic properties of chromium
The occurrence of different magnetic phases in bulk bcc Cr can impact other bulk properties of the ma-

terial. The influence of the magnetic state on the elastic properties of Cr has been investigated in numerous
experimental studies [16, 109, 117–120], mostly as a function of temperature. The three independent C11,
C12, and C44 elastic constants of bcc Cr are presented in Fig. 21 as a function of temperature with experi-
mental data of Palmer and Lee [109] measured on monocrystalline samples. The SDW magnetic phase has a
tetragonal symmetry, corresponding to 6 independent elastic constants, where a regular bcc crystal requires
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Figure 21: Elastic constants Cij (in GPa) and anisotropy A of bulk bcc Cr from 0K to above the Néel temperature TN = 311K,
showing the spin flip transition at Tsf = 123K from the longitudinal (LSDW) to the transverse (TSDW) polarizations of the
SDW. Data are taken from Palmer and Lee [109] and were measured on monocrystalline samples.

3 independent constants. However, the tetragonal elastic anisotropy of the SDW is small, thus elastic con-
stants are presented with cubic symmetry, an average of the three possible 〈100〉 orientations of the SDW
contained in the test material. The two transition temperatures Tsf = 123K and TN = 311K are marked
by vertical lines, which are associated with an abrupt change in the elastic constants. This observation was
also reported on experimental measurements of the specific heat [102] and electrical resistivity [103], a priori
indicating a strong impact of magnetism on bulk properties. The dependence of the elastic properties of bcc
Cr on its magnetic phase can then influence the elastic behavior of dislocations when investigating the plastic
deformation of bcc Cr. In particular, the elastic anisotropy A shows a slight increase in the temperature
range between Tsf and TN , which has an impact on both the formation of dislocation junctions, and the
ratio between elastic energies of dislocations having different Burgers vectors, discussed in the following.

3.3. Plasticity of chromium
As a bcc metal, the plastic deformation of Cr at low temperature is a priori governed by screw dislo-

cations gliding in close-packed {110} crystallographic planes. This motion is difficult and requires thermal
activation to ease plastic deformation, a phenomenon responsible for the brittleness of Cr at low temperature
[7, 8, 121]. Presence of 1/2〈111〉 screw dislocations have been observed by TEM in strained Cr polycrystals
[13, 122, 123] at temperatures where its magnetic order prevails, below its Néel temperature TN of 311K.
Analysis of slip traces confirmed that these dislocations glide in the expected {110} planes [13, 122, 124],
with glide in {112} and {123} planes also observed at higher temperatures [122, 125]. These features are
common to plasticity of all bcc transition metals, showing that bcc Cr has a priori a standard plastic
behavior. Among the seven pure bcc transition metals, Cr shows one the highest yield stress under uni-
axial loading, ranging from 780 to 1 200MPa [34, 126] (see Tab. A.1 in Appendix A). The ductile-brittle
transition temperature of bcc Cr, corresponding approximately to the athermal temperature of the Peierls
mechanism [42], is also high compared to other bcc metals, ranging from 400 to 600K, or 0.18 to 0.28Tmelt
in homologous temperature, depending on the loading conditions [8, 126].

Like all other bcc transition metals, dislocations responsible for their plastic deformation have a Burgers
vector equal to the smallest periodicity vector of the bcc lattice, which is 1/2〈111〉, minimizing its elastic
energy. A sketch of the bcc unit cell is presented in Fig. 24a showing this Burgers vector in orange. However,
the magnetic ground state of bcc Cr is close to antiferromagnetic at low temperature, and the smallest
1/2〈111〉 Burgers vector does not correspond to a periodicity vector of the magnetic order. Hence, when the
crystal is sheared by such dislocations, magnetic faults should be generated in their glide planes, possibly
impeding the motion of these line-defects. These faults need to be closed by another topological defect, a
priori pairing two 1/2〈111〉 dislocations separated by a magnetic fault, similar to a magnetic domain wall.
This effect was predicted by Marcinkowski and Lipsitt [126] and should be responsible for a strengthening
due to the added resistance of the magnetic fault 1/2〈111〉 dislocations are forced to drag behind them. To
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quantify the magnitude of this effect, which is proportional to the energy of the created domains, the authors
measured the yield stress slightly below and above the Néel temperature. The authors finally reported no
such antiferromagnetic strengthening in this temperature range, probably because of the low energy of the
magnetic domain walls close to the transition to the PM phase, linked to the disappearance of the long-range
magnetic order.

Figure 22: Observation of a Cr(100) surface with two screw dislocations (white arrows in a) in spin-polarized scanning tunneling
microscopy. The topology of the surface is shown in (a), and (b) shows the contrast in magnetic signal dI/dU , a cut line of the
surface is presented in (c) along the white lines in (b). The figure has been extracted from Ravlić et al. [127].

Regarding the disruption of the magnetic order, both Ravlić et al. [127] and Kleiber et al. [128] reported
the existence of AF magnetic domains at Cr{100} surfaces separated by walls using spin-polarized scan-
ning tunneling microscopy at room temperature, very close to the Néel temperature TN . These walls are
monoatomic steps with a height equal to one half of the lattice parameter a0. Some of them are not entirely
closed, suggesting the presence of dislocations going through the {100} surfaces and bounding the magnetic
fault defined by the domain walls. Given the height of the observed steps, these dislocations have a priori a
1/2〈111〉 Burgers vector, whose projection on a {100} surface would indeed give a step of a0/2. The authors
estimated the width of such walls to 120 nm at room temperature [127, 128], close to the disappearance of
the long-range magnetic order, and hence where the energy of such domain walls should quickly fall to zero.
An example of a magnetic fault bounded by two dislocations observed by Ravlić et al. [127] is presented in
Fig. 22, showing two 1/2〈111〉 screw dislocations bounding a fault visualized by magnetic contrast.

In addition to these 1/2〈111〉 dislocations, TEM observations reveal the presence of dislocations having the
slightly longer Burgers vector 〈100〉 (Fig. 24a) in magnetically ordered Cr [13, 122, 123]. Reid and Gilbert [13]
reported a cross-slip event at room temperature incompatible with a 1/2〈111〉 dislocation. As intersections
between the primary and the cross-slipped {110} planes were along 〈100〉 and not 〈111〉 directions, this
observation clearly indicates slip activity of these 〈100〉 dislocations in bcc Cr, with an ability to cross-slip
at ambient temperature. Presence of these 〈100〉 dislocations was also confirmed by Hale and Henderson
Brown [123] through determination of the Burgers vectors of dislocations using extinction experiments
(~g.~b = 0 contrast). Although these 〈100〉 dislocations have a larger Burgers vector than 1/2〈111〉 dislocations,
both have close elastic energy as a consequence of the anisotropy of the elastic constants of bcc Cr [129].
Its strong elastic anisotropy, with a ratio A = 2C44/(C11 − C12) smaller than 1 (A ' 0.68 using elastic
constants measured at 4.2K [109]), 〈100〉 and 1/2〈111〉 screw dislocations have in fact comparable elastic
energies (see Fig. 23). As presented in Fig. 21, the elastic constants of bcc Cr show discontinuities at
the spin-flip Tsf and Néel TN temperatures, with a priori an effect on the elastic energy difference between
the two Burgers vectors. The effect of temperature on their elastic energies is shown in Fig. 23b for this
character only, with the corresponding ratio between the prefactors to the elastic energies e

1/2〈111〉
screw and e〈100〉screw

for both Burgers vectors. Looking at their close energies, regardless of the temperature, there is thus no
valid physical argument to discard a priori these 〈100〉 dislocations when rationalizing plasticity of bcc Cr.
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Figure 23: (a) Prefactor e to the elastic energy of 1/2〈111〉 and 〈100〉 dislocations as a function of their character θ using
the elastic constants of Palmer and Lee at 4.2K [109]. (b) Prefactor escrew to the elastic energy of 1/2〈111〉 and 〈100〉 screw
dislocations, and ratio between them, as a function of the temperature T using the elastic constants presented in Fig. 21.

Magnetic ordering of Cr at low temperature gives another argument in favor of these 〈100〉 dislocations: as
〈100〉 is a periodicity vector of the magnetic order below the Néel temperature, such dislocations can exist
without generating magnetic faults, in contrast to 1/2〈111〉 dislocations (see Fig. 24a).

~b = 1/2〈111〉

~b = 〈100〉
[100]

[010]

[001]

(a) (b)

Figure 24: (a) Unit cell of the bcc lattice showing the two 1/2〈111〉 and 〈100〉 Burgers vectors. Atoms are represented in
different colors according to the sign of their magnetic moments in bcc Cr (see Fig. 16). (b) Bright field STEM image showing
a dislocation network lying in the (011) foil plane (adapted from Holzer et al. [34]).

The existence of such 〈100〉 dislocations have been observed in most bcc metals at the intersection be-
tween two 1/2〈111〉 dislocations, the sum of their Burgers vectors resulting in a 〈100〉 junction, a reaction
driven by elasticity [9]. These junctions have been observed in Cr recently by TEM in compressed single
crystals at 77K by Holzer et al. [34], and is presented in Fig. 24b. Despite their presence, the authors did
not report activity of 〈100〉 dislocations gliding in {110} planes for the compression axis they investigated
at 77K. However, as opposed to the variety of experimental and theoretical works focused on its magnetic
properties, very little is known about the plastic deformation of bcc Cr, and the comparison with other
bcc transition metals still has to be addressed to conclude on whether it has a similar behavior or not.
The recent study of Holzer et al. [34] coupled compression experiments with atomistic simulations using a
non-magnetic bond-order potential developed by Lin et al. [130], which has also been used by Gröger and
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Vitek [131] to study non-Schmid effects. These studies concluded on a standard low temperature plastic
behavior compared to other bcc transition metals, however omitting the impact of magnetism, which should
a priori have a non-negligible contribution to the plasticity of bcc Cr. A yield criterion for bcc Cr subjected
to a uniaxial test has been developed by Gröger and Vitek [131] based on a modeling of 1/2〈111〉 dislocations
using a non-magnetic bond-order potential (BOP). The authors report deviations from the Schmid law in
terms of T/AT and tension/compression asymmetries, as observed in all other bcc transition metals using
similar potentials. The same interatomic potential has also been used in the experimental work of Holzer et
al. [34], focusing on explaining their observation of anomalous slip traces in specimens compressed at 77K
in terms of motion of dislocation networks such as presented in Fig. 24b.

In conclusion, the plastic deformation of bcc Cr has been the focus of very few experimental and simu-
lation works compared to other bcc transition metals, therefore not allowing to conclude on the similitudes
and differences existing between plasticity of Cr and other bcc transition metals. The experimental review
presented in this section shows an a priori standard behavior of Cr, with motion of screw dislocations at
low temperature. The impact of magnetism on the plastic deformation of bcc Cr still has to be addressed
since most simulation works have been carried out without considering its AF order [34, 131], possibly
having a strong impact on properties of dislocations. Indeed, both the disruption of the AF order by the
1/2〈111〉 Burgers vector and elastic properties of dislocations must be studied with a proper description of
magnetism, since for instance a change in the elastic constants is observed depending on which magnetic
phase is prevailing as shown in Fig. 21.

Summary of the Literature review:

• The plastic deformation of bcc metals is controlled by the motion of 1/2〈111〉 screw dislocations in the
crystal due to the strong lattice friction they experience compared to other line orientations. Motion
of screw dislocations is a thermally activated process operating through nucleation and migration of
highly mobile non-screw segments along their line. Lattice friction experienced by dislocations vanishes
at the athermal temperature of the Peierls mechanism.

• The yield behavior of bcc metals at low temperature shows deviations from the Schmid law, with de-
fined twinning/antitwinning and tension/compression asymmetries also affecting slip activity. Anoma-
lous slip in low-stressed {110} glide planes is also reported experimentally.

• Ab initio calculations on the 1/2〈111〉 screw dislocation have demonstrated its compact core structure,
and a mapping of its core energy as a function of its position in the (111) plane, the Peierls poten-
tial, quantifies the lattice friction it is subjected to when shearing the crystal. The trajectory and
variations of the dislocation relaxation volume upon crossing of the Peierls barrier are linked to the
twinning/antitwinning and tension/compression asymmetries observed experimentally.

• Among all bcc transition metals, chromium is the only one with an ordered magnetic ground state
close to AF order below ambient, with sinusoidal modulation of magnetic moments in the form of a
SDW. Despite thorough theoretical investigations, the AF phase is predicted to have a lower energy
than the SDW by ab initio DFT calculations.

• Plasticity of chromium shows the characteristic features shared by all bcc metals, with a viscous glide
of 1/2〈111〉, but also 〈100〉, dislocations, both in {110} planes. The disruption of its AF order by the
1/2〈111〉 Burgers vector should generate magnetic faults upon shearing the crystal.
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Aim of the present work: The aim of the present work is to gain insights on the properties and mobility
of dislocations in chromium using atomistic simulations. Comparison of the obtained properties with other
bcc transition metals will then help assess if chromium has a standard plastic behavior, for which the validity
of the approach can be measured through comparison to experimental data. The following points will then
be addressed in the present work:

• Quantify the influence of magnetism at both zero and finite temperature on the properties of disloca-
tions in bcc chromium, including both 1/2〈111〉 and 〈100〉 Burgers vectors reported experimentally.

• Develop a yield criterion based on ab initio properties of screw dislocations across all bcc transition
metals, including non-Schmid effects. The ability of the model to compare with experimental data can
then be used to assess the validity of the approach in chromium.

• Investigate with atomistic simulations a new mechanism explaining anomalous slip based on in situ
TEM observations in niobium. Such results can then be extended to other bcc transition metals where
anomalous slip has been reported experimentally, including chromium.

• Study the properties of 〈100〉 dislocations in all bcc transition metals using both ab initio calculations
and interatomic potentials to get insights on their mobility, and conclude on whether chromium has a
particularity explaining experimental observation and motion of such dislocations.





Methods

We give in this section a detailed review of all methods which were used in this work to obtain all results
presented in the following chapters. References to the different techniques presented in this section will then
be made accordingly in the following chapters without further details.

1. Energetic models

We begin this methods section by giving a review of the energetic models used to describe atomic systems
of interest in the present work.

1.1. Ab initio density functional theory calculations
Ab initio or first principles calculations, are a class of simulation methods which include explicitely the

electronic structure of atoms to evaluate the energy of a given system, based on the resolution of Schrödinger’s
equation, with no prior adjustment required. This section focuses on density functional theory (DFT), a
first principles method to solve Schrödinger’s equation under approximations detailed in the following.

1.1.1. Solving Shrödinger’s equation
The aim of ab initio methods is to solve time-independent Schrödinger’s equation:

Hψ = Eψ, (1)

where E and ψ are the total energy and the wave function of the system, and H is the Hamiltonian, which
is written as the sum of the following components:

H = Te + Tn + Vee + Vnn + Ven, (2)

where Te and Tn are the kinetic energies of electrons and nuclei respectively, while Vij are the potential
energies corresponding to electron-electron (Vee), nucleus-nucleus (Vnn), and electron-nucleus (Ven) Coulomb
interactions. A common approximation for solving Schrödinger’s equation in the frame of DFT is the Born-
Oppenheimer approximation, under which nuclei are considered immobile or "frozen" due to their high
mass compared to the one of electrons. Their kinetic energy Tn is then zero, and the interaction term Vnn
is constant, equal to Enn. Under this approximation, the system of N electrons at positions {ri}i∈[1,N ] has
the following Hamiltonian in reduced units:

H = −1

2

N∑
i=1

δ2

δr2
+ ��Tn +

N∑
i>j

1

|ri − rj |
+ Enn +

N∑
i=1

v(ri), (3)

where the first term of the above Hamiltonian is the kinetic energy Te of the electrons, and the second and
last terms are Coulomb interaction potentials acting between electrons Vee, and electrons and nuclei Ven
respectively. This is the complete form of the Hamiltonian of the Schrödinger’s equation for any system
under the Born-Oppenheimer adiabaticity approximation. An exact resolution of Schrödinger’s equation for
systems made of more than two electrons is not possible due to the Coulombian repulsion term Vee. To be
able to study more complex systems, some approximations are needed to solve Eq. 1, which are developed
in the following sections in the frame of DFT calculations.

1.1.2. Density functional theory
Resolution of Schrödinger’s equation in the frame of DFT, as introduced by Hohenberg and Kohn [132],

states that the total energy E of the system is a functional of the electronic density ρ(r), and its ground
state energy is obtained by minimizing this functional. Since the kinetic energy of an interacting electron
gas is unknown, Kohn and Sham [133] proposed a different formulation of the N -body problem (Eq. 3),
which is replaced by a system of N independent particles interacting with an external potential Vext, which
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is a function of a single variable, the electronic density ρ(r). The problem is then expressed as a system of
N single-electron equations, with wave functions ψi, called Kohn-Sham states:

Hψi = εiψi = −∆

2
ψi + Vextψi, (4)

with εi the eigenvalues of each independent single-electron system of wave function ψi. The electronic density
ρ(r) of the system is then obtained through a sum over all subsystems, as:

ρ(r) =

N∑
i=1

|ψi|, (5)

The energy E of the N -independent particles system is expressed in functional form as:

E[ρ] =

∫
Vext(r)ρ(r)dr + Te[ρ] + VH [ρ] + Eexc[ρ], (6)

with Vext the external potential energy (e.g. Coulomb electron-nuclei interactions), Te the kinetic energy of
the isolated electron, VH the Coulomb interaction between electronic densities at two different positions r
and r′, or the Hartree potential, given by:

VH [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r − r′| d
3r d3r′, (7)

and Eexc is the exchange and correlation functional, which is unknown and needs to be approximated as will
be discussed in the following section. To determine the ground state of the system, DFT calculations aim
at minimizing Eq. 6 with respect to the electronic density ρ through a self-consistent scheme. A starting
density ρ0 is set, allowing for a new evaluation of the electronic density and energy of the system using
Eqs. 5 and 6 respectively, and repeating this process until convergence of the energy E is reached, and the
electronic density then corresponds to the ground state of the system. A convergence criterion on E thus
needs to be chosen, under which the self-consistent step on the electronic density is stopped, which in this
work is set to a 10−6 eV energy difference between two consecutive steps.

From the derivatives of the total energy with respect to atomic positions, the forces acting on each atom
can be deduced when convergence on the energy is reached at the end of each electronic step. Minimization
of these forces then allows to find the equilibrium structure of a system, which is achieved self-consistently
as well, thus starting new electronic steps at each force evaluation until convergence is met. The stopping
criterion for atomic relaxation is set on all forces acting on each atom of the system to be less than 5 eV/Å
in all Cartesian directions. The stress on the simulation cell is then obtained through the derivative of the
atomic forces when the equilibrium structure is found.

1.1.3. Exchange and correlation functional
Two types of exchange and correlation functionals to describe Eexc in Eq. 6 are widely used depending

on the system and properties of interest:
- Local density approximation (LDA): Assuming the electronic density ρ of the system to have very little
variations in space, the exchange and correlation functional can be expressed as a local term:

ELDA
exc [ρ] =

∫
ρ(r)εexc

(
ρ(r)

)
dr, (8)

where εexc is the exchange and correlation energy density of a uniform electron gas with electronic density
ρ, which is evaluated using quantum Monte Carlo simulations. The effective Kohn-Sham potential of Eq.
6 can then be expressed as the sum between the external potential Vext, the Hartree potential VH and the
exchange and correlation potential µexc = δE/δρ;
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- Generalized gradient approximation (GGA): Given that the electronic density is far from homogeneous in
most systems, one can also choose to account for its variations in space by expressing the exchange and
correlation energy as a function of the electronic density ρ and its gradient ∇ρ as:

EGGA
exc [ρ] =

∫
ρ(r)εexc

(
ρ(r),∇ρ(r)

)
dr (9)

As opposed to the LDA, evaluation of the εexc
(
ρ(r),∇ρ(r)

)
term in the frame of the GGA approximation

has different formulations, among which the one of Perdew, Burke and Ernzerhof (PBE) [134] used for all
ab initio calculations performed in this work.

The choice of the GGA over the LDA approximation strongly depends on the properties of interest, which
is motivated here by a better agreement with experiments than the LDA in terms of the predicted lattice
parameter and elastic constants of most body-centered cubic transition metals. Other forms for the exchange
and correlation functionals are available, including hybrid formulations, and allowing for a better inclusion
of electronic correlations, but coming at a higher computational cost.

1.1.4. Pseudo potential approximation

In an attempt to reduce the computational cost of DFT calculations for systems containing a high num-
ber of electrons, atoms are modeled with a so-called pseudo-potential (PP). These calculations only include
a fraction of the total electrons of a given atomic species, namely valence electrons. Core electrons, strongly
anchored to the nuclei, do not participate to the formation of chemical bonds, and hence can be neglected
when one is interested in computing structural properties of a solid. Additionally, the potential created by
core electrons has fast oscillations, resulting in a high computational cost to include them. The purpose of
the PP approach is then to replace both nuclei and core electrons (contained in a sphere of radius rc) by an
approximated, softer potential, mimicking the potential they both exercise on valence electrons.

In practice, three different methods are commonly used for constructing a PP, namely:
- Norm-conserving (NC): both eigenvalues and wave-functions outside the sphere of radius rc are equal to
the full-electron calculation, and the charge is equal inside the same sphere. This method ensures the norm
of wave-function obtained is the same as would be obtained from a full-electron calculation;
- Ultra-soft (US): same method as for the norm-conserving PPs, but the potential inside the sphere is even
softer, and the condition on the charge is not enforced anymore;
- Projector-augmented wave (PAW): the wave-function outside the core sphere is the same as the full-electron
calculation, like for the two other methods. The pseudo wave-function inside the sphere is obtained from
applying a linear transformation to the full-electron wave-function, so one can recover the full-electron wave-
function at any time. This method is more robust than the two others, but can be more expensive.

All ab initio DFT calculations presented in this work are performed using the PAW method, including semi-
core electrons, i.e. electrons which are not explicitely in the outer valence band are considered as valence

Table 1: Period, group and electronic configuration of the seven bcc transition metals. Core electrons are indicated between
brackets, while valence electrons are outside the brackets. Semi-core electrons are indicated in red, with the corresponding
number N of valence electrons included in the DFT calculations for each element.

Element Period Group N Electronic configuration
V 4 V 13 [1s2 2s2 2p6 3s2 3p6] 3d3 4s2
Cr 4 VI 12 [1s2 2s2 2p6 3s2 3p6] 3d5 4s1
Fe 4 VIII 16 [1s2 2s2 2p6 3s2 3p6] 3d6 4s2
Nb 5 V 13 [1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6] 4d4 5s1
Mo 5 VI 12 [1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6] 4d5 5s1
Ta 6 V 11 [1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6] 5d3 6s2
W 6 VI 14 [1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6] 5d4 6s2
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and thus included in the computation. The electronic structure and total number N of electrons included
in the calculation are summarized in Tab. 1 for all bcc transition metals.

1.1.5. Plane wave basis
To decompose the Kohn-Sham wave functions ψi of each independent particle, different basis can be used.

Most DFT calculations are performed using a plane wave basis set, like PWSCF and Vasp [135] codes, or
localized basis centered on each atom and describing its orbitals, which are used in the SIESTA code. Plane
wave basis necessitate the use of a large number of functions to correctly describe the pseudo wave functions
of valence electrons, but are easier to use than localized basis, which are less computationally costly but
require a prior adjustment to ensure accurate results. All DFT calculations performed in the present work
use the Vasp code, with a plane wave basis, and simulation cells which are periodic in each direction. In
principle, one needs an infinite basis to accurately evaluate the electronic wave functions. In practice, a
finite number of plane waves is used by defining a cutoff kinetic energy below which all plane waves are used.
Increasing this cutoff energy leads to higher accuracy, but can drastically increase the computational cost
of DFT calculations. One thus needs to set a criterion for the desired accuracy by selecting a reasonable
number of plane waves. This criterion also depends on the type of PP and the electrons included in the
valence for the calculation. With semi-core electrons included, a higher cutoff energy needs to be set for
the basis, since their potentials show faster oscillations. The cutoff energy for the plane wave basis is set to
600 eV in all calculations presented in this work, which assures very satisfactory convergence of the properties
of interest, in terms of energy, forces and stresses.

1.1.6. Sampling of the Brillouin zone
Integrating the total energy of the system is performed in reciprocal space, sampled using a finite grid of

~k-points at which the wave functions of the Kohn-Sham states are evaluated. Such a grid is set as to ensure
that the ~k-points density is constant in all simulation cells and in each Cartesian direction. In this work,
the sampling grid is generated using the Monkhorst-Pack scheme [136] with a Methfessel-Paxton broadening
with a smearing of width 0.1 eV. For metals, a precise evaluation of the Fermi level is required to have correct
electronic properties of the system, which require a denser grid than for other materials. We also note that
ab initio stresses require a higher ~k-points density to reach a satisfactory convergence than the energy or
forces, which is ensure by a sampling of 24~k-points per lattice parameter length in all Cartesian directions.
The sampling used for ab initio modeling of dislocations will be given in the following section.

1.1.7. Spin-polarized density functional theory
The total magnetic moment of a given atomic system has both a spin and an orbital component, the

latter being negligible for the two magnetic bcc transition metals Cr and Fe we are interested in. Depending
on the complexity of the magnetic order of interest, two different approaches can be used to describe the
spin magnetism of a given electronic system: the collinear and non-collinear approaches.

In the collinear frame, only up ↑ and down ↓ states are allowed for the spin, the only degree of freedom
being the magnitude of the magnetic moments ||~mi||. This simple description allows to model most of the
bulk magnetic phases of a wide range of materials, having a ferromagnetic (FM) or an antiferromagnetic
(AF) order. All spins are aligned along a randomly oriented quantization axis, defining whether a spin should
be considered in its ↑ or ↓ state. Collinear magnetism in the frame of spin-polarized DFT is described by
decomposing the total electronic density ρ into a up ρ↑ and down ρ↓ component, the energy of the system
being a functional of both densities. The total magnetization of the system is then given as the difference
between the two sub-densities. The collinear frame then limits a calculation to simple magnetic orderings.

On the other hand, in the non-collinear frame, a great variety of magnetic structures can be considered,
allowing magnetic moments to have both a magnitude and orientational degree of freedom. Non-collinear
magnetic configurations can be ground states of certain systems, or emerge as its temperature rises, and
can also help describe the magnetic structure of domain walls in a wide range of materials. In non-collinear
DFT calculations, the 3D spin vector is transformed into a two-dimensional spinor described by a 2 × 2
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electronic density matrix whose non-diagonal components are responsible of non-collinear effects. All three
types of spin-polarized DFT calculations are used in this work: non-magnetic, collinear and non-collinear
calculations, depending on the magnetic structures of interest. The non-collinear frame also allows to define
explicitely the quantization axis of the spins with respect to the crystal lattice, called spin-orbit coupling,
which in this work is mostly neglected unless otherwise specified.

To explore the magnetic energy landscape of a system, it is useful to constrain local magnetic moments
to have a target value. Such constrained calculations are performed by adding a penalty energy Epenalty to
the total energy of the system [137], which is given by the following:

Epenalty =
∑
i

λ
(
~mi − ~mtarget

i

)2
, (10)

with ~mi the magnetic moment of atom i with target value ~mtarget
i , and λ a Lagrange multiplier defining the

constraint. In the above equation 10, the penalty on the total energy is written so as to constrain all atomic
spins to a target vector, i.e. constraining all three Cartesian components and magnitude of the magnetic
moments, in a non-collinear frame. In a similar way, only the magnitude ||~mi|| of selected atom i can be
constrained, reducing the added computational cost due to the inclusion of non-collinear magnetism [138].
The penalty parameter λ is to be set by the user, which defines the strictness of the constraint, and needs
to be increased incrementally so as to avoid issues in the self-consistent convergence of the calculation. In
practice constrained magnetism calculations are very costly using ab initio calculations, but is easier in the
tight binding approach, presented in the next section.

Summary of ab initio parameters: All DFT calculations presented in this work are performed using
the Vasp code [135]. A summary of the ab initio parameters used is given in Tab. 2, which were chosen as
to ensure convergence of the properties of interest, derived from the energy and stresses measured in these
calculations. Semi-core electrons are included in the PPs chosen to model all bcc transition metals (see Tab.
1), which are particularly important for a correct evaluation of magnetic properties.

Table 2: Parameters used for all ab initio DFT calculations presented in this work.

Parameter Value
Pseudo-potentials PAW with semi-core electrons (see Tab. 1)
Exchange-correlation functional GGA-PBE
Plane-wave basis cutoff energy 600 eV
k-point sampling method Monkhorst-Pack
Smearing function and width Methfessel-Paxton with σ = 0.1 eV
k-point mesh 24 k-points per lattice parameter unit length
Convergence criterion for electronic density Energy change less than 10−6 eV between

two consecutive electronic steps
Atomic relaxation stopping criterion All forces are less than 5 eV/Å in all Cartesian directions

1.2. Tight-binding formalism
In the tight-binding (TB) formalism, any wave-function is described as a linear combination of pseudo-

atomic orbitals ψiλ(~r) in a localized basis, so that any wave-function Ψ(~r) is decomposed on this basis as:

Ψ(~r) =
∑
i,λ

aiλ ψiλ(~r) ↔ |Ψ〉 =
∑
i,λ

aiλ |iλ〉, (11)

where indices i and λ refer to atom i and orbital λ, and aiλ are the coefficients of the pseudo-atomic orbitals
decomposition. The number and type of orbitals taken into account depend on the electronic structure
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Atom i

εiλ

tiλ,jµ

Orbital λ

Atom j

Orbital µ

Figure 1: Schematic representation of the tight binding approach showing two atoms i and j with on-site energies ε, and
orbitals λ and µ, from which an electron can hop according to the t parameter.

of the described material, which is a spd-type of basis set in the model for 3d transition metals used in
this study [139]: 4s, 3px, 3py, 3pz, 3dxy, 3dyz, 3dxz, 3dx2−y2 and 3dz2 . The unsolvable N -body quantum
problem described by the Schrödinger’s equation is replaced by a single electron interacting with an effective
potential accounting for electron-electron interactions, which is approximated in the TB formalism by the
sum of the potentials produced by each atom on the electron (see sketch in Fig. 1). The TB Hamiltonian
then has the following form under these approximations:

Hat =
∑
iλ

εiλ(ρi)
[
c†iλ ciλ

]
+
∑
ij,λµ

(
tiλ,jµ(~rij)

[
c†iλ cjµ

]
+ Siλ,jµ(~rij)

)
, (12)

where indices i, j refer to different atomic sites, and λ, µ atomic orbitals, as sketched in Fig. 1. ciλ and c†iλ
are the creation and annihilation operators referring to the electron located on the λ-orbital of atom i. With
these notations, εiλ(ρi) is the on-site parameter describing the electron staying on the λ-orbital of atom
i, and function of the atomic density ρi surrounding atom i. The second term, tiλ,jµ(~rij), is the hopping
interaction which describes when the electron jumps from orbital λ on atom i to orbital µ on atom j, and is
a function of the distance ~rij between atoms i and j. The last term, Siλ,jµ, is the overlap integral between
orbital λ on atom i and orbital µ on atom j. The on-site εiλ, hopping tiλ,jµ and overlap integrals Siλ,jµ
parameters of the TB Hamiltonian of Eq. 12 are then adjusted to reproduce chosen properties of the material.

This contribution Hat to the TB Hamiltonian corresponds to the non-magnetic part. Magnetism is then
readily included in the TB approach using the Stoner formalism [140] with an additional term HStoner, which
induces a shift in the on-site parameters εiλ of the non-magnetic Hamiltonian Hat of Eq. 12, given by the
following in the collinear magnetism approximation:

ε↑iλ = εiλ −
Iλ
2
mλ
i

ε↓iλ = εiλ +
Iλ
2
mλ
i ,

(13)

where superscripts ↑ and ↓ refer to up and down magnetic moments respectively, and mλ
i is the projection

of the magnetic moment ~mi of atom i on orbital λ. Iλ is the Stoner parameter of orbital λ. Non-collinear
magnetism can also be described within the Stoner formalism, inducing a rotation of the collinear Hamilto-
nian to align the direction of the spin ~mi with a defined quantization axis. The total Hamiltonian HTB is:

HTB = Hat +HStoner +HSO, (14)

where Hat describes non-magnetic inter and intra atomic interactions between atoms and orbitals, given by
Eq. 12, HStoner is the magnetic Stoner Hamiltonian describing interactions between magnetic moments of
atoms, and HSO is the spin-orbit coupling. Parametrization of such a TB model for all transition metals has
been proposed by Barreteau et al. [141] including non-collinear magnetism, which has been used to study
various bulk properties and interfaces of iron-chromium by Soulairol et al. [113, 142], which will be used in
this work for bcc Cr. Constraining magnetic moments within the TB formalism is performed with a penalty
energy similar to the one introduced in section 1.1.7, which is added to the on-site energy of each atom, and
is less demanding for the self-consistency to convergence than for ab initio calculations.
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Validation of the TB model of chromium: Comparison between TB results and ab initio bulk prop-
erties of bcc chromium is presented in Tab. 3, showing a very good agreement between the two methods,
like reported in previous studies [113, 142]. All calculations using the TB model are performed with the
DyNaMol code [143]. More complex properties computed with the TB model are presented in Appendix
B, which are out of the reach of ab initio calculations.

Table 3: Properties of the bulk AF phase of bcc chromium: equilibrium lattice parameter a0, magnetic moment m0, elastic
constants Cij , and relative stability of the spin-density wave (SDW) and non-magnetic (NM) phases obtained using ab initio
and TB calculations, and compared to experimental data measured at 4.2K.

ab initio TB Expt. [6]
a0 (Å) 2.87 2.89 2.88
m0 (µB) 1.10 1.27 0.50
C11 (GPa) 432 432 394
C12 (GPa) 63 64 89
C44 (GPa) 96 92 104

∆ENM (meV/atom) 12.5 12.8 /
∆ESDW (meV/atom) 10.4 12.3 /

1.3. Generalized Heisenberg and effective interaction models
Lattice-based effective interaction models aim at describing the energetics of a system using pair interac-

tions between neighboring sites which depend on the quantity of interest (e.g. chemical species, occupation).
In this work, such model aims at describing magnetic properties of chromium. In this respect, each of the
N atomic sites i composing the system is given a magnetic moment ~mi. This class of interaction models
includes the Ising model, which is the simplest, and only allows for spins to have a magnitude ±m0:

Emag
Ising({mi}i∈[1, N ]) =

N∑
i=1

[ ∑
j∈1NN(i)

J1
(
mi.mj

)
+

∑
j∈2NN(i)

J2
(
mi.mj

)]
, (15)

where each magnetic moment mi is a scalar equal to ±m0. The parameters J1 and J2, called exchange
coupling, describe the pair interaction between the two neighboring sites i and j, where in the above Eq.
15, site j belongs to the first nearest neighbors (1NN), or second nearest neighbors (2NN) of site i. In this
work, exchange coupling between atomic sites are considered up to 2NN neighbors only, which is sufficient

J1

J2

(A,B)

(a)

J1

J2

a0

(b)

Figure 2: Sketch of the generalized Heisenberg (HL) model on (a) a two-dimensional square lattice and (b) the bcc lattice with
antiferromagnetic order, showing exchange coupling between nearest neighbors J1 and next nearest neighbors J2, and Landau
parameters (A,B) controlling the magnitude of the atomic spins.
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to have a satisfactory agreement with reference data on which the parameters of the model are adjusted. We
stress that exchange coupling can however be extended over the 2NN shell. In the frame of the Heisenberg
model, magnetic moments are described by vectors ~mi, and allows for variation of their orientations:

Emag
Heisenberg({~mi}i∈[1, N ]) =

N∑
i=1

[ ∑
j∈1NN(i)

J1
(
~mi.~mj

)
+

∑
j∈2NN(i)

J2
(
~mi.~mj

)]
(16)

In the frame of the generalized Heisenberg, or Heisenberg-Landau (HL) model, the magnetic energy is [144]:

Emag
HL ({~mi}i∈[1, N ]) =

N∑
i=1

[
A||~mi||2 +B||~mi||4 +

∑
j∈1NN(i)

J1
(
~mi.~mj

)
+

∑
j∈2NN(i)

J2
(
~mi.~mj

)]
, (17)

where A and B are the Landau parameters which control the magnitude of the on-site magnetic moments,
and the Jij parameters are the Heisenberg pair exchange coupling between atoms i and j. On a fixed
lattice, the Jij exchange parameters are defined for a shell of nearest neighboring sites j of atom i. In
the models developed for this work, only the first and second nearest neighbors of each atomic sites are
considered. For the bcc lattice, sketched in Fig. 2b, first nearest neighbors (1NN) of a given atomic site are
spaced from it by all 8 possible 1/2〈111〉 vectors, at a distance a0

√
3/2 with a0 the lattice parameter, and

second nearest neighbors (2NN) by each of the 6 〈100〉 vectors, at a distance a0. The exchange coupling
between neighboring sites allows for the orientational degree of freedom for magnetic moments ~mi. The
total magnetic energy of a system given by Eq. 17 is thus the sum between two components, controlling
the magnitude and orientations of the spins. The parameters of the HL model of bcc chromium developed
in this work are obtained through a fit to ab initio data, detailed in Chapter 3. Such simple models then
allow to study finite temperature magnetic excitations using a Metropolis Monte Carlo algorithm to access
equilibrium properties predicted by the model as a function of temperature. This method is described in
details in section 2.1.1. If one is interested in computing the dynamics of a spin system, i.e. including a
time dependence on the relaxation of the system, spin-dynamics simulations can be performed using such
generalized Heisenberg Hamiltonian, or using any other energetic model, such as a tight-binding approach
[143, 145] or ab initio calculations [146–148]. Similar effective magnetic interaction model was previously
developed for iron-chromium alloys [144, 149], and has also successfully described other magnetic properties
such as point defects and phase diagrams of various binary magnetic alloys [150–155].

1.4. Empirical interatomic potentials
The high computational cost of ab initio DFT calculations restrict their use to systems of a few hundreds

of atoms at most. Going up in both system sizes and accessible time scales keeping an atomistic resolution
requires the use of different approaches, such as the TB method (section 1.2) or effective interaction models
(section 1.3). Another approach consists in the use of empirical interatomic potentials, which are briefly
introduced in the present section. These empirical potentials rely on the description of interactions between
atoms by analytical functions whose form is chosen to suit the system of interest, and which can have a
physical justification. With the use of such analytical formulation of the energy of the system, the required
computational cost is drastically cut with respect to ab initio calculations, since electrons are not included
explicitely. Construction of an interatomic potential then comes to the adjustment of the parameters of these
analytical functions, whether to reproduce experimental properties of the material, or to fit their parameters
to other energetic models, like ab initio calculations. Once the potential is accurately constructed and its
ability to reproduce the desired properties tested, it can be used to study a wide range of atomic scale
physical phenomena necessitating larger system sizes. One approach to construct such empirical potential,
which is particularly common for the description of metals, is the embedded-atom method (EAM), composed
of pairwise interactions between atoms, and a many-body term, having the following form:

V =
∑
i>j

φ(rij) +

N∑
i

F (ρi), (18)
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where φ(rij) is the pair potential between atoms i and j separated by a distance rij , and F (ρi) corresponds
to the energy required for embedding the atom i at a given location with electronic density ρi. It is expressed
as a superposition of the atomic electronic densities ρatomic surrounding atom i:

ρi =

N∑
k=1

ρatomic
j (rij) (19)

Functions describing both terms appearing in Eq. 18 are then fitted to a set of reference data or adjusted to
reproduce experimental properties of the material of interest. Semi-empirical interatomic potentials used in
the present work were chosen as to give a good agreement in the predicted elastic properties with respect to
both ab initio calculations and experiments, but also a non-degenerate core structure of the 1/2〈111〉 screw
dislocation and a single hump Peierls energy barrier between two equilibrium easy core configurations, as
detailed in the Literature review (see section 2). Considering EAM potentials, interactions between atoms
are described solely as a function of the distance between them. However, atomic bonds in transition
metals are known to have a strong angular dependence, which is thus required for a better description of
interactions between atoms. This dependence is readily included in the frame of the modified EAM (MEAM)
method in the atomic electronic densities ρi of Eq. 19, without changing the other terms appearing in
Eq. 18. Using these potentials however yields higher computational costs than standard EAM potentials.
Empirical potentials are used in this study for bcc transition metals listed in Tab. 4 with the corresponding
choice of parameters and validation on the predicted elastic properties with respect to experiments. Atomic
relaxations are performed using a molecular statics relaxation step at 0K using the Fire algorithm [156]
with a threshold criterion of 5meV/Å set on all atomic forces in each Cartesian direction.

Summary of interatomic potentials: All calculations using semi-empirical interatomic potentials pre-
sented in this work, whether molecular statics or dynamics, are performed with the Lammps code [157],
with the potentials given in Tab. 4 used to describe interactions between atoms.

Table 4: Interatomic potentials used in this work with computed lattice parameter a0 (Å), elastic constants Cij (GPa), and
elastic anisotropy A = 2C44/(C11−C12) compared to experimental values measured at 4.2K and taken from various references,
and results of ab initio DFT calculations performed in this work with the parameters given in section 1.1.2.

Element Type Reference a0 C11 C12 C44 A

Niobium (Nb)

EAM Fellinger et al. [158] 3.31 233 124 32 0.59
MEAM Yang and Qi [159] 3.32 249 135 21 0.37
ab initio This work 3.31 255 138 20 0.34
Expt. Caroll et al. [15] 3.29 246 132 28 0.49

Tantalum (Ta)
MEAM Park et al. [89] 3.32 287 172 94 1.63
ab initio This work 3.32 269 169 76 1.53
Expt. Bolef et al. [14] 3.30 262 156 83 1.57

Molybdenum (Mo)

EAM Ackland et al. [160] 3.15 465 162 109 0.72
MEAM Park et al. [89] 3.17 423 143 95 0.68
ab initio This work 3.16 485 170 100 0.64
Expt. Bolef et al. [17] 3.14 458 168 111 0.77

Tungsten (W)

EAM Marinica et al. [66] 3.14 523 202 161 1.00
MEAM Park et al. [89] 3.19 524 205 161 1.01
ab initio This work 3.19 517 217 141 0.94
Expt. Bolef et al. [14] 3.16 517 203 157 1.00
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2. Finite temperature simulations

We now detail two different methods for performing simulations including various degrees of freedom allowed
at finite temperature, namely a Metropolis Monte Carlo sampling, and molecular dynamics simulations.

2.1. Magnetic excitations
The methods presented in the present section aim at performing efficient sampling of finite temperature

excitations predicted by a given energetic model, with a focus on magnetic excitations in bcc Cr.

2.1.1. Metropolis Monte Carlo sampling
Monte Carlo simulations encapsulate a range of methods based on the stochastic evolution of a system,

the energy of which is given by any energetic model, like those described above. By attributing a success
probability to a given event, associated with a change δE in the energy of the system, it is then accepted or
rejected based on the comparison of the statistical probability associated to δE with a randomly generated
number. Here, the system of interest is a given number of N atoms, arranged on a rigid lattice and associated
with a magnetic moment ~mi∈[1,N ]. The purpose of Monte Carlo simulations is to explore finite temperature
magnetic excitations in a system, to find its equilibrium magnetic states at different simulated temperatures,
based on the following Metropolis algorithm:

• The energy Ei of the current state of the system is calculated.
• One out of the N spins is chosen and a random change of its three Cartesian components is performed.

The energy Ef of the new system is then re-evaluated after the transition.
• The energy difference δE = Ef − Ei associated with the transition is calculated.
• The transition is accepted:

– if δE ≤ 0, i.e. if the energy of the system decreases;

– or δE > 0 and exp

[
− δE

kBT

]
< rand, with rand a randomly generated number between 0 and 1,

and the system is updated accordingly.
• If the transition is rejected, the system is brought back to its initial state at the beginning of the step.

Monte Carlo steps are then performed until the equilibrium state of the magnetic system at the simulated
temperature T is reached. To have a good sampling of the energy landscape at T and ensure that even rare
magnetic transitions are allowed to occur, a sufficiently large number of Monte Carlo thermalization steps
needs to be performed at each temperature, which is the case for approximately 108 steps, in all simulations
presented in this work. Stable configurations of a magnetic system at zero temperature are found with the
same Metropolis Monte Carlo algorithm, with T = 0. More accurate minimization methods would need to
be implemented to properly quench the system at 0K, which was not done for the present work. We now
focus on how to extract thermodynamics properties from these simulations.

2.1.2. Thermodynamics using Metropolis Monte Carlo sampling
From the Monte Carlo sampling with temperature, one can access thermodynamical equilibrium prop-

erties of the system through ensemble average of its magnetic energy Emag. The magnetic heat capacity
Cmag
P is then obtained from the derivative of Emag with respect to the temperature T as:

Cmag
P (T ) =

∂Emag

∂T
(20)

From the magnetic heat capacity Cmag
P , the magnetic entropy Smag of the system is given by:

Smag(T ) =

∫ T

0

Cmag
P (T ′)

T ′
dT ′ (21)
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The magnetic free energy of the system is then Fmag(T ) = Emag(T )−TSmag(T ). An alternate way to access
the magnetic free energy Fmag of the system is through a thermodynamical integration over the temperature
range covered by the simulation, where the magnetic energy Emag is sampled. The use of this method thus
requires a reference point at which the value of Fmag is known. This reference is set at a temperature Tref,
whose choice depends on the system of interest. The magnetic free energy Fmag of the system is given by:

Z = exp

(
−F

mag

kBT

)
→ lnZ = −F

mag

kBT
, (22)

with Z the partition function of the system. Using the expression of the internal magnetic energy Emag as
a function of this partition function Z, we have:

Emag = kBT
2 ∂ lnZ

∂T
= −kBT 2

(
1

T

∂Fmag

∂T
− Fmag

T 2

)
= Fmag − T ∂F

mag

∂T
(23)

It is then convenient to work with the inverse temperature β = 1/kBT to express thermodynamical quantities
of interest. Performing the change of variable β ↔ 1/kBT , the above equation becomes:

Emag = Fmag − T ∂F
mag

∂β
× ∂β

∂T
= Fmag − T ∂F

mag

∂β

(
− 1

kBT 2

)
= Fmag + β

∂Fmag

∂β
=

∂

∂β
[βFmag]

(24)

Integration of the above equation between β and βref gives the following:

βFmag(β)− βrefF
mag(βref) =

∫ β

β′=βref

Emag(β′)dβ′ (25)

We now focus on performing this thermodynamical integration for a system containing a defect (e.g.
magnetic fault, point defects, dislocation core). The magnetic excess energy ∆Emag and free energy ∆Fmag

associated with the defect are defined as:

∆Emag(β) = Emag
fault(β)− Emag

bulk(β)

∆Fmag(β) = Fmag
fault(β)− Fmag

bulk(β)
(26)

where Emag
fault and E

mag
bulk refers to the energy of the simulation cell containing the defect, and the perfect bulk

crystal respectively. Applying Eq. 25 to these excess magnetic energies, we obtain:

β∆Fmag(β)− βref∆F
mag(βref) =

∫ β

β′=βref

∆Emag(β′)dβ′ (27)

As will be detailed in Chapter 3, two main defects are studied in Cr using this method, which are an infinite
magnetic fault caused by a ferromagnetic frustration due to a 1/2〈111〉 shear, and the magnetic contribution
to the core energy of a 1/2〈111〉 screw dislocation. In both cases, we find that ∆Fmag(βref) = 0 setting the
reference Tref = 5TN/4, where the system is in the disordered paramagnetic (PM) phase. We then checked
that the excess magnetic energy contained in a faulted simulation cell is zero at this temperature, i.e. the
system has the same energy whether a defect is present or not. In this case, the magnetic free energy ∆Fmag

of these two defects can be expressed as:

∆Fmag(β) =
1

β

∫ β

β′=βref

∆Emag(β′)dβ′ ↔ ∆Fmag(T ) = T

∫ Tref

t=T

∆Emag(t)

t2
dt (28)

The convergence of these thermodynamical properties was checked by comparing values obtained upon
heating the system from 0K, and cooling down to 0K. All simulation cells contain approximately 14 000
atoms to allow for magnetic fluctuations to occur without boundary effects in the simulated volume.
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2.1.3. Including quantum statistics
In the frame of classical physics, the energy distribution of magnetic excitations described by Hamiltonian

17 is assumed continuous, thus allowing for fluctuations in the magnitude and angle of the spins even at very
low temperatures, as soon as thermal energy is sufficient to explore higher energy configurations. However,
this yields non-physical results as the magnetic heat capacity Cmag

P evaluated from Eq. 20 does not converge
to zero at 0K, where the magnetic entropy Smag given by Eq. 21 thus diverges [161]. Therefore, a correct
evaluation of the magnetic free energy cannot be obtained through thermodynamical integration since the
value of Fmag is not known at 0K, where it should enforce Fmag(0K) = Emag(0K). Considering discrete
energy levels, these low temperature thermal excitations are no longer permitted, accounted for by evaluating
the thermal energy using quantum statistics. Magnetic fluctuations operate through excitation modes of
the spin structure in the form of elementary spin spirals (Fig. 3a) called magnons, similar to phonons when
looking at the vibration modes of a crystal. Thermal energy given to the system allows for excitation of
these magnons, corresponding to a disorientation of the spins with respect to the 0K ground state of the
system. These modes are composed of elementary spin spirals, i.e. non-collinear magnetic structures which
propagate a rotation of magnetic moments of fixed magnitude. The magnon spectrum of bcc Cr, i.e. the
energy of spin spirals as a function of the wave-vector ~q over the Brillouin zone, obtained using the TB model
is presented in Fig. 3b, with the corresponding density of states (mDOS) obtained through integration of
the spectrum over the entire Brillouin zone presented in Fig. 3c. Accounting for the quantization of magnon
modes in the Metropolis algorithm allows for a quantum description of low temperature energetics.
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Figure 3: (a) Schematic representation of a spin spiral of wave-vector ~q along the ~z axis. (b) Magnon spectrum of bcc chromium
along the high-symmetry path Γ−H − P − Γ−N − P −N − Γ of the Brillouin zone of the bcc lattice. (c) Magnon density of
states (mDOS) g(E), obtained through integration of the magnon spectrum over the Brillouin zone. The Brillouin zone of the
bcc lattice, with special points Γ = (0, 0, 0), H = (1,−1, 1), P = (1/2, 1/2, 1/2) and N = (0, 0, 1), is shown in inset on (b) [162].

As detailed in section 2.1.1, the acceptance probability p(δE) of a magnetic transition of energy δE is:

p(δE) =

1, if δE ≤ 0

exp

[
− δE

η(T )

]
, if δE > 0

(29)

where η(T ) = kBT using the classical Boltzmann distribution in the Metropolis algorithm. To have a proper
sampling of the thermodynamical properties of the system, quantum statistics must be included, i.e. with a
Bose-Einstein distribution, for which the quantum scaling factor η(T ) of the Metropolis algorithm is [161]:

ηQ(T ) =

∫ ∞
0

E

exp

(
E

kBT

)
− 1

g(E, T )dE, (30)
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with E the energy of a magnon of wave-vector ~q (see Fig. 3b), and g(E, T ) is the magnon density of states
(mDOS) (see Fig. 3c) at the temperature T and the energy E. Given that the mDOS is zero above a certain
maximum energy (approximately 625meV/atom in Fig. 3b), one can perform the above integral from 0 to
EC , where EC is the highest energy contributing to the mDOS at T , i.e. the maximum energy on Fig. 3b.
One sees that the key to construct such quantum statistics from Eq. 30 is the knowledge of the temperature
dependent mDOS, g(E, T ). Following the method introduced by Woo et al. [163] and Bergqvist et al. [161],
the temperature dependence of the mDOS is evaluated by rescaling the upper limit in energy EC of the
mDOS at 0K, resulting in the following expression at temperature T :

EC(T ) = EC(T = 0K)×
(

1− T

TN

)β
, (31)

with TN the Néel temperature, identical whether classical or quantum statistics is employed, and β ' 0.375
is the critical exponent of the 3D Heisenberg model [164], which only depends on the dimensionality of the
Heisenberg model and is the same regardless of the structure of the system of interest. This implies that
the temperature dependent mDOS is rescaled upon temperature, keeping the same shape with this rescaled
cutoff magnon energy, as presented in Fig. 4a at different temperatures, with the following expression:

g(E, T ) =

g

(
E × EC(T )

EC(T = 0K)
, T = 0K

)
∫ EC

e=0

g

(
e× EC(T )

EC(T = 0K)
, T = 0K

)
de

(32)

This model assumes that above TN , i.e. when long-range magnetic order vanishes, the cutoff energy EC
becomes zero and the statistics thus sharply switches from quantum to classical. Hence, such approximation
is expected to be valid at low temperatures only, well below TN . This method is applied with the magnon
spectrum obtained with one of the presented energetic models, from which the mDOS at 0K is obtained by
integrating the energy of the magnons over the entire Brillouin zone. The scaling factor η of the Metropolis
algorithm is then interpolated at the transition from classical to quantum statistics:

η(T ) =

{
ηQ(T ) (Eq. 30), if T < TN

kBT, if T ≥ TN
(33)

correctly accounting for low temperature thermal excitations below the Néel temperature TN through quan-
tum statistics, and using a classical Boltzmann distribution above. We note that a more accurate evaluation
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Figure 4: (a) Temperature dependent magnon density of state (mDOS) g(E, T ) in the approximation of Eq. 31 at different
temperatures below TN obtained using the TB model. (b) Scaling factor η(T ) of the Metropolis algorithm using classical
Boltzmann statistics, η(T ) = kBT , and approximate quantum statistics, η(T ) = ηQ(T ) (Eq. 30), as a function of temperature.
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of the temperature dependent mDOS can be obtained through evaluation of the dynamical structure factor
S(~q,E) [146–148], including temperature effects originating from magnon-magnon interactions and magnetic
damping. However, this approach is much more computationally expensive and yields a similar scaling fac-
tor at low temperature as the quantum approximation introduced in this section. Thus, finite temperature
magnetic excitations in bcc chromium will be studied using the statistics of Eq. 33. When studying magnetic
properties of a 1/2〈111〉 screw dislocation dipole in bcc Cr in a simulation cell containing 546 atoms using
the TB model (see Appendix B), we realized that the computational cost of these simulations was already
high for this rather small system size. Hence, finite temperature magnetic excitations will not be studied
using the TB model, requiring the use of much larger systems and number of simulations to sample finite
temperature magnetic excitations. This study will be performed using a generalized Heisenberg-Landau
model (see section 1.3), drastically cutting computational cost, and thus allowing for the treatment of finite
temperature magnetic excitations, which is the focus of Chapter 3.

2.2. Molecular dynamics simulations
Molecular dynamics simulations aim at computing equilibrium and dynamical properties of many-body

atomic systems through integration of Newton’s classical equations of motion for nuclei, which obey classical
mechanics. Such equations are written for each atom i as:

matom
i

d~vi
dt

= ~Fi = −~∇Vi, (34)

with matom
i the mass of atom i, ~vi its velocity, and ~Fi the sum of the forces acting on atom i, derived as the

gradient of its potential energy with respect to its position given by the energetic model chosen to describe
interactions between atoms (see section 1). Such molecular dynamics simulations will only be used in the
present work for the simulation of dynamical properties of a dislocation microstructure using interatomic
potentials to model interactions between atoms. However, other energetic models could be used in the same
framework for performing molecular dynamics simulations. The dynamic evolution of the system is then
evaluated by integrating the equations of motion of Eq. 34 at each time step ∆t, and for each atom i of the
system using a velocity-Verlet algorithm:

~ri(t+ ∆t) = ~ri(t) + ~vi∆t+
~Fi
(
~ri(t)

)
2matom

i

∆t2 +O(∆t3)

~vi(t+ ∆t) = ~vi(t) +
~Fi
(
~ri(t)

)
+ ~Fi

(
~ri(t+ ∆t)

)
2matom

i

∆t+O(∆t3)

(35)

with ~ri(t) and ~ri(t+∆t) the initial and updated positions of atom i respectively. Such dynamical simulations
are performed at a given temperature T adding thermal energy to atoms of a system previously relaxed with
a molecular statics relaxation at 0K. The NVE ensemble, i.e. constant number of particles N volume V and
energy E, is used to integrate the equations of motion in molecular dynamics simulations with a time step
∆t = 2 fs, and initializing the temperature of the system twice higher than its target value, without the use
of a thermostat, which is then equilibrated with an initial thermalization stage.

3. Atomistic modeling of dislocations and plasticity of body-centered cubic metals

We now detail the modeling of dislocations using the energetic models introduced in the previous section,
with a focus on ab initio DFT calculations and interatomic potentials.

3.1. Ab initio modeling of dislocations
To accurately account for the fine atomistic properties of dislocations, one needs to rely on a precise

description of the interatomic forces, allowing for the description of the core structure and mobility of
dislocations in a crystal. Modeling of dislocations using ab initio calculations relies on DFT calculations,
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which are computationally costly and can therefore reasonably handle systems of a few hundreds of atoms
at most. In this respect, ab initio calculations have been mainly restricted to the study of straight infinite
dislocations, minimizing the length of the simulation cell in its line direction. In the plane orthogonal to
the line direction, dislocations are responsible of an elastic strain field which needs to be handled carefully
given that this field varies as the logarithm of the distance to the line position, and therefore does not
fade out at the short distances handled in ab initio calculations. Additionally, it is not possible to model a
single isolated dislocation in simulation cells with full periodic boundary conditions for topological reasons,
since the displacement discontinuity induced by the dislocation needs to be closed by another defect. To
overcome this constraint, different approaches have been developed, among which the dipolar arrangement,
where dislocations are introduced pairwise in the simulation cell, with opposite Burgers vectors, therefore
allowing for the use of full periodic boundary conditions, resulting in an infinite periodic array of dislocations
[19, 64]. Such ab initio calculations of dislocations have uncovered some of their properties linked to the
macroscopic plastic behavior of bcc metals, which are detailed in the following.

3.1.1. Simulation setup for dislocation modeling
Simulation cells used for modeling 1/2〈111〉 screw dislocations using a dipolar arrangement have Cartesian

directions chosen so that the {110} glide plane of the dislocations is oriented with its normal along Y ‖ ~u2 =
[101], the glide direction is along X ‖ ~u1 = [121], and the dislocation line is along the Z ‖ ~u3 = [111] axis.

~p1

~p2

+~b −~b

~A

d

~p1

~p2

X

Y

Z

Figure 5: Simulation cell used to model a 1/2[111] screw dislocation dipole in bcc metals, with periodicity vectors ~p1 and ~p2 in
the (111) plane orthogonal to the dislocation line. The cell contains a periodic array of opposite sign screw dislocations with
quadrupolar arrangement, separated from each other by a distance d and a cut vector ~A showing the discontinuity surface
indicated by double black lines. The atomic structure of the dislocation is represented using differential displacement and Nye
tensor maps. Atoms are represented by different colors depending on their height along the [111] direction in the perfect crystal.
Arrows between atoms are proportional to the differential displacement between them due to the presence of the dislocation.
The color map is a measure of the dislocation density ρb normalized by the lattice parameter a (reproduced from Ref. [45]).
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In this Cartesian basis, the periodicity vectors (~p1, ~p2, ~p3) of the simulation cell are expressed as:

~p1 = λ1~u1 − λ2~u2 + λ3~u3
~p2 = λ1~u1 + λ2~u2 + λ3~u3
~p3 = n3~u3

(36)

with the λi parameters defining the geometry of the simulation cell, given in Tab. 5 for different cell sizes.
The smallest simulation cell contains 135 atoms per unit b length in the direction Z of the dislocation line,
which is represented in Fig. 5. According to linear elasticity theory, the energy variation associated with
a homogeneous strain ¯̄ε in the periodic simulation cell is given by the following when the core field of the
dislocation is neglected:

∆E(¯̄ε) =
1

2
S Cijkl εij εkl + Cijkl biAjεkl, (37)

with Cijkl the elastic constants of the perfect crystal, and S the surface of the simulation cell in the plane
orthogonal to the dislocation line, oriented by vector ~l . The resulting stress σij generated in the simulation
cell is obtained through derivation of the above expression with respect to the strain εij [75]:

σij(¯̄ε) =
1

S

∂∆E

∂εij
= Cijkl(εkl − ε0kl) (38)

where the plastic strain ε0kl is given by the following:

ε0kl = −bkAl + blAk
2S

(39)

Let ~d be the vector joining the two +~b and −~b dislocations of the dipole, one can then define the cut vector
of the surface sheared by the dislocation dipole as ~A = ~d ∧ ~l, thus related to the relative position of the
two dislocations. All notations are presented in Fig. 5 [45]. Dislocations are introduced in the simulation
cell using anisotropic elasticity theory and taking full account of periodicity in all three Cartesian directions
using the Babel package [165], and applying an homogeneous strain to the periodicity vectors of the cell
to cancel the plastic strain generated by the dislocation dipole given by Eq. 39 [19, 64]. According to the
same relation, one also sees that if the relative positions of the dislocations varies, i.e. if the cut vector ~A
varies, this would generate a stress in the simulation cell containing the dipole, whose ab initio evaluation
can be used to extract the relative position of the dislocations, which is detailed in the next section.

Simulation cells have periodic boundary conditions in all three Cartesian directions, and the dislocation
dipoles are arranged in quadrupolar arrays in order to minimize the elastic interactions with their periodic
images [19, 64] (see Fig. 5). In this setup, the two dislocations of a dipole are separated from each other by
a vector (~p1 + ~p2)/2 when aligned horizontally along the X ‖ [121] axis, and (~p1− ~p2)/2 when aligned verti-
cally along the Y ‖ [101] axis. These two setups are geometrically equivalent and both assure the maximum
separation distance between dislocations and their periodic images permitted in such tri-periodic ab initio
simulation cells. Periodicity vectors of the simulation cells are kept fixed during all atomic relaxations. The
k-points grid used for the 135-atom per b simulation cell (see Fig. 5) is 3 × 3 × 28, roughly corresponding

Table 5: Parameters λi defining the periodicity vectors of the supercells used for the study of the 1/2〈111〉 screw dislocation
(Eq. 36) corresponding to a number of atoms N for a 1b-high simulation cell.

N λ1 λ2 λ3
135 5/2 9/2 0
187 17/6 11/2 2/3
209 19/6 11/2 1/3
273 7/2 13/2 0
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to a density of 24 k-points in each Cartesian direction.

Through ab initio calculation on such simulation cells, one can access the excess energy associated with
the dislocation dipole introduced in the cell. This excess energy can be decomposed in the following partition:

∆E = Etot − Ebulk = 2Ecore(rC) + Eelas(θ, rC) + Einter

= 2Ecore(rC) +
biKij(θ)bj

4π
ln

(
d

rC

)
+ Einter,

(40)

with Ebulk the energy of the perfect crystal without dislocations, Ecore the core energy of the dislocation,
counted twice since dislocations are introduced in dipoles. The core region is defined by a radius rC , inside
which the energy of the dislocation is entirely described by Ecore. Outside the core region, the energy of
the dipole is accounted for by elasticity theory, with Eelas the elastic energy of the dipole, and Einter the
interaction energy of the dipole with its periodic images. These two contributions can be evaluated exactly
using anisotropic elasticity theory, allowing to extract the core energy Ecore of the dislocations, and most
importantly its variation with the position of the dislocation, which describes the lattice friction experienced
by the dislocation and thus governs its mobility. The ab initio evaluation of this lattice friction, or Peierls
potential, in bcc transition metals is the focus of the next section.

3.1.2. Peierls potential and mobility of dislocations
Calculation of the Peierls energy barrier consists in finding the saddle point energy and configuration

of the dislocation core along the path joining two adjacent equilibrium configurations. Minimum energy
path between two stable dislocation configurations are found using the nudged elastic band (NEB) method
[166] as implemented in Vasp in simulation cells with fixed periodicity vectors, using 5 intermediate images
between the initial and final states and a spring constant of 5 eV/Å between them. Such calculations yield
the variation of the energy of the system upon crossing the Peierls energy barrier ∆E as a function of the
reaction coordinate ξ, a measure of the position of the different images along the path. A sketch of the
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Figure 6: (a) Dislocation setup used for the calculation of the ab initio Peierls potential of 1/2〈111〉 screw dislocations using
the 135 atom supercell. Initial and final positions of the dipole are shown in red and green respectively, and the position of the
quadrupolar arrangement indicated by dashed blue lines. (b) Peierls energy barrier ∆E and potential VP in bcc tungsten as a
function of the reaction coordinate ξ along the NEB path between the red and green configurations shown in (a). The present
setup will be referenced in the following as "both".
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setup used for this calculation in the case of the 1/2[111] screw dislocation is presented in Fig. 6a, with
the typical shape of the resulting Peierls potential VP (ξ) shown in b for bcc tungsten. In this setup, both
dislocations of the dipole are displaced simultaneously and in the same direction from one Peierls valley to
the next nearest, i.e. from the red to the green positions in Fig. 6a, keeping a constant distance between
them along the whole NEB path. Since the elastic energy of the dipole is a function of the distance between
the two dislocations, no variation of the elastic contribution is produced using this setup for calculation of
the Peierls potential VP . Both initial and final configurations of the dipole are equivalent due to periodic
boundary conditions, resulting in the energy variation ∆E(ξ) = VP (ξ) presented in Fig. 6b. The present
setup will be referenced in the following as "both".

3.1.3. Dislocation core dilatation field and eigenstrain model
To fully quantify the core properties and mobility of dislocations in their glide plane, key quantities are

its trajectory and variations of its relaxation volume upon crossing of the Peierls barrier. All three can be
extracted from the same ab initio calculation [79], using the dislocation setup presented in Fig. 7a, which is
detailed in the following. As introduced in the Literature review, dislocations are responsible for an added
deformation in the plane orthogonal to their lines due to the local dilatation induced in the vicinity of their
cores [44]. The contribution of the core field, modeled as an Eshelby inclusion of relaxation volume ¯̄Ω [79],
modifies relation 37 into:

∆E(¯̄ε) =
1

2
S Cijkl εij εkl + Cijkl(biAj − 2Ωij)εkl, (41)

and results in the following stress in the periodic simulation cell containing the dislocation dipole:

σij(¯̄ε) = Cijkl

(
εkl +

bkAl − 2Ωkl
S

)
(42)
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Figure 7: (a) Dislocation setup used for ab initio calculation of the Peierls potential VP , trajectory and relaxation volume ¯̄Ω
of the 1/2〈111〉 screw dislocation in bcc metals. The position of the quadrupolar arrangement, located halfway between initial
and final configurations, is indicated by dashed blue lines. (b) Peierls energy barrier ∆E, variation of the elastic energy of
the dipole ∆Eelas, and Peierls potential VP = ∆E −∆Eelas as a function of the reaction coordinate ξ in bcc tungsten. The
present setup will be referenced in the following as "stress". The height of the barrier of Fig. 6b obtained using the setup both
is indicated by a grey cross at ξ = 0.5 in (b).
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One sees from Eqs. 41 and 42 that if the cut vector ~A of the dipole, i.e. in the relative position of the
two dislocations of the dipole, or the relaxation volume of the dislocation core changes, stress variations are
generated in the simulation cell. These variations are recorded along a NEB path between configurations
where both dislocations of the dipole move in opposite direction in a simulation cell with fixed periodicity
vectors, sketched in Fig. 7a. There are two main differences between the present setup, called stress, and
the setup both presented in Fig. 6: the two dislocations move in opposite directions, thus yielding stress
variations and a change in the elastic energy of the dipole; the initial and final positions of the dipole do
not match a quadrupolar arrangement, which instead is located halfway between the initial and final states
of the path (dashed blue vertical lines in Fig. 7a). These stress variations ∆¯̄σ are expressed as [79]:

∆σij(ξ) =
Cijkl
hS

[
bk∆Al(ξ)− 2h∆Ωkl(ξ)

]
, (43)

with ξ the reaction coordinate along the NEB path, ¯̄C the elastic constant tensor, ~b = a0
√

3/2~ez the
Burgers vector of the dislocations, S the projected surface of the simulation cell in the {111} plane, h the
corresponding cell height along the [111] direction, ∆¯̄Ω the variation of the dislocation relaxation volume
tensor, and ∆ ~A is the variation of the dipole cut vector. If the trajectory of the +~b dislocation is defined by
the displacement vector ~r(ξ) = (x(ξ), y(ξ), 0) with x(0) = 0 and y(0) = 0, then ∆ ~A(ξ) = 2b (y(ξ), −x(ξ), 0),
where ~r(ξ) = (x(ξ), y(ξ), 0) is the displacement vector of the +~b dislocation. Knowing, from ab initio NEB
calculation, the stress variation along the minimum energy path, one thus obtains the dislocation trajectory
and the variation of its relaxation volume along this path. Using the form of the elastic constant tensor in
the frame of the 1/2〈111〉 dislocation then gives:

∆σ11
∆σ22
∆σ33
∆σ32
∆σ31
∆σ12

 =
2

hS


C11 C12 C13 0 C15 0
C12 C11 C13 0 −C15 0
C13 C13 C33 0 0 0
0 0 0 C44 0 −C15

C15 −C15 0 0 C44 0
0 0 0 −C15 0 C66




−∆Ω11

−∆Ω22

−∆Ω33

+2b2x
−2b2y
−2∆Ω12

 , (44)

which gives the following set of 6 equations:

hS∆σ11(ξ) = −2C11∆Ω11(ξ)− 2C12∆Ω22(ξ)− 2C13∆Ω33 − 4C15b
2y(ξ)

hS∆σ22(ξ) = −2C12∆Ω11(ξ)− 2C11∆Ω22(ξ)− 2C13∆Ω33(ξ) + 4C15b
2y(ξ)

hS∆σ33(ξ) = −2C13

(
∆Ω11(ξ) + ∆Ω22(ξ)

)
− 2C33∆Ω33(ξ)

hS∆σ32(ξ) = +4C44b
2x(ξ) + 4C15∆Ω12(ξ)

hS∆σ31(ξ) = −2C15

(
∆Ω11(ξ)−∆Ω22(ξ)

)
− 4C44b

2y(ξ)

hS∆σ12(ξ) = −4C15b
2x(ξ)− 4C66∆Ω12(ξ)

(45)

We now only consider the two equations of the system involving the dislocation position x(ξ). Given that
dislocations have glided across one Peierls valley in their final positions, i.e. x(ξ = 1) = λP , and since
both initial and final configurations of the NEB path correspond to the dislocation ground state easy core
configuration and are equivalent, one expects ∆Ωij(ξ = 1) = 0. As a result, one should thus have:{

+4C44b
2λP = hS∆σ32(ξ = 1)

−4C15b
2λP = hS∆σ12(ξ = 1)

(46)

When extracting the dislocation trajectory and relaxation volume with Eq. 43 from the stress variations
recorded along the stress NEB path (Fig. 7a), we found that these quantities are very sensitive to the values
of the elastic constants. Using the elastic constants calculated in the perfect crystal, the symmetry of the
trajectory and relaxation volume along the path are not fully respected. Indeed, the initial x(ξ = 0) and
final x(ξ = 1) positions of the dislocations do not fall exactly in the bottom of a Peierls valley, i.e. the easy
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core configuration, and some components of the relaxation volume are not symmetrical with respect to the
middle of the trajectory. This inconsistency can be fixed by slightly adjusting the elastic constants, which
appears legitimate since the shearing of the crystal by the dislocation dipole induces a change of elastic
constants because of anharmonicity. The elastic constants C44 and C15 are modified to enforce relation 46,
using the stress differences ∆σ32(ξ = 1) and ∆σ12(ξ = 1) between the initial and final configurations given
by ab initio calculations. Results of this adjustment are presented in Appendix D.

To obtain the Peierls potential VP , the energy barrier ∆E(ξ) obtained from the NEB calculation pre-
sented in Fig. 7 needs to be corrected for the variation in the elastic energy of the dipole ∆Eelas caused by
the change in the distance between dislocations upon crossing of the Peierls barrier. The elastic energy of
the dipole is evaluated using anisotropic elasticity theory along the trajectory (x(ξ), y(ξ)) of the dislocation
in the plane orthogonal to its line, extracted from the stress variations recorded along the NEB path with
the reaction coordinate ξ. The elastic energy of the dipole is evaluated using the modified elastic constants
obtained after performing the adjustment described above to enforce the symmetry of the path. This energy
variation is substracted from the NEB energy barrier to obtain the Peierls potential as VP = ∆E −∆Eelas.
The height of the barrier obtained using setup both is reported on Fig. 7b, i.e. with a negligible variation in
elastic energy, which is in perfect agreement with the corrected barrier using setup stress. This proves the
validity of the method for evaluation of the elastic energy and effective correction of the Peierls energy barrier.

Using the variations of the relaxation volume ∆¯̄Ω and the trajectory (x, y) of the dislocation extracted
from ab initio calculations, it is then possible to model the effect of an applied stress ¯̄Σ on the 2D energy
landscape given by the Peierls potential VP , following the model of Kraych et al. [79]. Two assumptions are
made for such modeling. The effect of the applied stress on VP is modeled assuming this stress only tilts the
Peierls potential by the amount of work produced by the Peach-Koehler force on the moving dislocation, but
does not affect the potential itself. The validity of this first assumption was tested in the case of tungsten
[45, 79] by evaluating the Peierls enthalpy barrier ∆HP (τ) opposing 1/2〈111〉 screw dislocation glide under an
applied stress τ . Once the contribution of the Peach-Koehler force was removed from the obtained enthalpy
barriers, the Peierls potential is retrieved, showing it is indeed independent of the applied stress. This result
was also reported in other bcc transition metals using ab initio calculations [69] with a similar definition
of the dislocation position, extracted from stress variations recorded along the NEB path. This gives the
following expression of the 2D enthalpy barrier ∆H2D

P of the dislocation [45, 79]:

∆H2D
P (x, y, ¯̄Σ) = V 2D

P (x, y)− Σyz b x( ¯̄Σ) + Σxz b y( ¯̄Σ)−
∑
ij

Σij ∆Ω2D
ij (x, y, ¯̄Σ), (47)

with x and y the position of the dislocation in directions parallel and orthogonal to the glide plane respectively
(i.e. x ‖ [121] and y ‖ [101] in the case of the 1/2[111] screw dislocation gliding in the (101) plane presented
in Fig. 7a). The two Σxz and Σyz are the components of the applied stress that produces a Peach-Koehler
force on the dislocation. The other assumption is that both the trajectory (x, y) and the variations of the
relaxation volume tensor ∆¯̄Ω of the dislocation are also independent of the applied stress ¯̄Σ, which has been
demonstrated by ab initio calculations in tungsten [79]. Using this result, one can reduce the 2D enthalpy
of Eq. 47 to a 1D function of the dislocation position x as:

∆H2D
P (x, y, ¯̄Σ) = ∆H1D

P (x, ȳ(x), ¯̄Σ)

= V 1D
P (x)− Σyz b x+ Σxz b ȳ(x)−

∑
ij

Σij ∆Ω1D
ij (x), (48)

with ȳ(x) the trajectory of the dislocation in the plane orthogonal to its line. The Peierls potential under
zero applied stress V 1D

P (x) = V 2D
P (x, ȳ(x)) is presented in Fig. 7b in the case of a 1/2〈111〉 screw dislocation

gliding in a {110} plane in tungsten. The yield stress is then defined as the stress at which the energy of the
saddle point of the enthalpy barrier given by Eq. 48 vanishes, thus allowing the dislocation to move freely
since no energy barrier opposes its motion. This method can be applied to any mechanical loading of stress
tensor ¯̄Σ, to predict the yield stress as a function of the orientation of the loading axis.
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3.2. Interatomic potentials and molecular dynamics simulation of dislocations
As discussed above in section 1.4, the use of semi-empirical interatomic potentials allows for consider-

ing systems containing a larger number of atoms than ab initio calculations. Studying dislocation-based
plasticity using such methods allows to account for more complex mechanisms than the straight infinite dis-
locations ab initio calculations are limited to, such as interaction between different dislocations having more
complex shapes, e.g. dislocation loops for instance. For these simulations too, a dislocation microstructure
is introduced in a simulation cell using anisotropic elasticity theory. The obtained system is then relaxed at
zero temperature with a molecular statics step, and dynamic conditions can then be applied to the system
(e.g. temperature, stress, strain). An example of a dynamic straining simulation to study glide of a 1/2[111]
screw dislocation is presented in Fig. 8.

~b = 1/2[111]

τyz

−τyz

X ‖ [12̄1]

Y ‖ [111]

Z ‖ [1̄01]

Figure 8: Sketch of the simulation setup used for the study of 1/2[111] screw dislocation glide under a resolved shear stress τyz
in straining molecular dynamics simulations with flexible boundary conditions [167] and periodicity in X and Y directions.

Using the flexible boundary conditions introduced by Rodney [167], the application of a stress necessi-
tates free surfaces, whose average displacement or force is controlled to induce a strain or a stress to the
system. In this respect, dynamic straining conditions are applied by constraining the positions of atoms
located in the top and bottom layers of the simulation cells along a direction with non-periodic boundary
conditions, represented in grey on Fig. 8. These atoms are either forced to follow a constant strain rate ε̇
by displacing their center of gravity by a controlled amount at each time step of the molecular dynamics
simulation, or a constant stress τxz by constraining the average forces applied on these two layers. In Fig.
8, periodic boundary conditions are applied along the X and Y Cartesian directions of the simulation cell,
with free surfaces in the Z direction. In this case, if a force is applied on atoms of the top and bottom layers
along the X (respectively Y ) direction, the resulting stress has a component τxz (respectively τyz). A strain
develops in the simulation cell as a result of the applied stress, which is evaluated at each time step through
the average displacement of atoms located in the top and bottom layers. Now considering constant strain
rate conditions, an average displacement imposed on the two layers oriented by Z along the X (respectively
Y ) direction results in a strain εxz (respectively εyz). Since a displacement is imposed at each time step
∆t of the simulation, the corresponding strain rate is then ε̇ = ε(t + ∆t) − ε(t)/∆t. This controlled strain
induces a stress on the system which is evaluated at each time step from the average force generated on the
top and bottom layers of the simulation cell.

Due to the limited time scale accessible to molecular dynamics simulations, of the order of a few nanosec-
onds at a reasonable computational cost, simulated strain rates ε̇ are several orders of magnitude higher
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than experimental conditions (see Literature review, section 2.2). In this work, straining simulations are
performed under constant strain rate conditions, imposed by controlling the average displacement of atoms
located in the upper and lower layers of the simulation cell, with flexible boundary conditions [167]. The
geometry of the cell, indicating periodic and non-periodic directions, dislocation setup, and simulation pa-
rameters used for molecular statics or dynamics simulations will be detailed before each calculation presented
in the following as they strongly depend on the system of interest.

Summary of the Methods:

• Ab initio calculations allow for an accurate description of a many-body system in the frame of density
functional theory, which will be used to study bulk properties of bcc Cr (elastic, magnetic), and straight
infinite dislocations in bcc transition metals.

• The tight-binding method reduces computational costs with respect to DFT, keeping an explicit in-
clusion of electrons in calculations. This allows for an accurate evaluation of the properties of bulk Cr
and the study of more complex properties linked to its magnetic properties and plasticity.

• Effective interaction models parametrized on ab initio calculations allow for exploration of magnetic
configurations on a fixed lattice through a Metropolis Monte Carlo sampling, which will be used to
study finite temperature magnetic excitations in bcc Cr and their effect on its plasticity.

• Ab initio modeling of dislocations, which is limited to infinite straight lines due to the high compu-
tational cost of such calculations, has helped uncover some of the key properties of 1/2〈111〉 screw
dislocations in bcc transition metals, which can be linked to their macroscopic mechanical behavior.

• To overcome the limited system sizes accessible to ab initio calculations, interatomic potentials can
be used, allowing for the study of multiple dislocation processes, or performing dynamic straining
simulations at finite temperature, but neglecting all electronic effects, including magnetic contributions.
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Among the seven bcc transition metals, Cr is the only one with a magnetic ground state close to antiferro-
magnetism at low temperature. It is therefore of importance to have a good understanding of its different
magnetic phases before moving on to the study of plasticity in bcc Cr. Indeed, the interplay between mag-
netism and defects controlling plastic deformation can have an impact on the mechanical properties of Cr.
The focus of this chapter is to quantify the impact of magnetism on the bulk properties of bcc Cr, in terms
of the relative stability of its different magnetic phases, and their elastic behaviors. Generalized stacking
faults are then presented, as an introductory step towards the study of dislocations.

1. Magnetic phases

1.1. Stability of the different magnetic phases
In our ab initio modeling of bulk bcc Cr, we considered the three non-magnetic (NM), antiferromagnetic

(AF), and SDW phases. Before getting into the detailed competition between ordered magnetic phases, it
is worth noting that the NM phase, i.e. where all magnetic moments are zero, is found to have the highest
energy among the three considered magnetic phases (see Tab. 1). However, as discussed in the Literature
review (see section 3.1.2), DFT calculations fail to reproduce the experimental SDW magnetic ground state
of Cr [112–115, 142], and invariably predict the AF phase to have a lower energy at 0K. This was reported
in various theoretical works using different exchange and correlation functionals and DFT approximations.
Indeed, all Vanhoof et al. [114] using LDA + U, Soulairol et al. [113] using both LDA, GGA, and mixed
LDA-GGA functionals, and Cottenier et al. [112] using the FLAPW method with GGA functional, found
the SDW to have a higher energy than the AF phase.
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Figure 1: (a) Structure of a spin-density wave of period n = 20 a0 along a 〈100〉 crystal axis, i.e. amplitude of the magnetic
moments mi along the propagation direction. (b) Energy difference between the SDW and AF phases ∆ESDW−AF as function
of the reduced wave vector Q = 1− 1/n of the SDW with ~q = Q× 2π/a0〈100〉.

Through neutron and coherent X-ray diffraction experiments, no evidence of the occurrence of bulk
non-collinear magnetic structures have been found. These observations also confirmed the collinearity of the
SDW magnetic ground state of bcc Cr at low temperature [6, 95]. Hence, all three considered bulk magnetic
phases are modeled within the collinear magnetism approximation, the SDW corresponding to a modulation
of the magnitude of the spins with a locally AF order. However, we found that stable non-collinear magnetic
structures can arise from thermal excitations, which will be evaluated ab initio and discussed in a following
chapter focused on the study of magnetism at finite temperature. Due to the finite size limitation of DFT
simulation cells, we were not able to consider the incommensurate state of the SDW, but instead modeled
commensurate structures of period na0, equal to an integer n multiple of the lattice parameter a0 in a 〈100〉
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direction of the lattice. The wave-vector of such waves is defined as ~q = 2π/a0 × [1− 1/n, 0, 0]. To be able
to distinguish between the longitudinal and transverse polarizations of the SDW, spin-orbit coupling, and
hence non-collinear magnetism, are needed. However, Soulairol et al. [113, 142] showed that the energy
difference between the two polarizations of the wave is not relevant within the accuracy of standard DFT
calculations, motivating our choice to neglect these different polarizations and to use collinear magnetism
approximation. The energy difference between the SDW and AF phases is presented in Fig. 1b as a function
of the wave-vector and period of the wave.

Our calculations lead to a higher energy for the SDW than the AF phase for any period n of the wave, in
good agreement with previous ab initio studies, but in contradiction with experiments. Its excess energy per
atom ∆E varies linearly with the magnitude of the wave-vector 1/n. This discrepancy with experiments is
often attributed to the inner limitations of DFT calculations [115], in particular its inability to give a good
reproduction of the Fermi surface of Cr. However, Vanhoof et al. [114] offer another possible explanation
in the form of a nodon model. Their approach to the problem suggests that the stabilization of the SDW
comes from the perturbation of the AF order by the introduction of nodes along 〈100〉 lattice directions,
corresponding to locally zero magnetic moments, and their associated entropy. The linear variation of the
energy difference between the SDW and AF phases as a function of ~q corresponds to a nodon excitation
energy of 140meV/nodon, very close to the value of 152meV/nodon reported by the authors [114]. However,
this energy can only be defined for a surface unit of {100} planes perpendicular to the propagation of the
SDW. Therefore, a more accurate representation of the nodon would be as a fault energy expressed in surface
unit, resulting in γ = ∆E/a20 = 17.1meV/Å2, with ∆E = 140meV/nodon and a20 the surface of a {100}
plane. As the nodon energy actually depends on the surface perpendicular to the propagation of the wave,
this excitation energy of a nodon is not bounded, and the contribution of its entropy cannot account for the
stabilization of the SDW through the mechanism proposed by Vanhoof et al. [114].

Table 1: Bulk properties of the three NM, AF and SDW phases: lattice parameter a0, bulk modulus B, shear moduli C′ =
(C11 − C12)/2 and C44, elastic anisotropy ratio A = C44/C′, energy difference ∆E with respect to the AF ground state,
and bulk magnetic moment m0. Experimental data presented in the last row are taken from Palmer and Lee [109] and were
measured at a temperature of 4.2K, corresponding to an incommensurate SDW magnetic ground state.

Magnetic phase a0 (Å) B (GPa) C ′ (GPa) C44 (GPa) A ∆E (meV/atom) m0 (µB)
NM 2.847 262 166 98 0.59 12.5 0
AF 2.865 186 185 96 0.52 0 1.10
SDW (n = 20 a0) 2.857 198 187 101 0.54 6.4 1.05
Experiments 2.884 190 153 104 0.68 / 0.50

The variation of the magnetic moments mi of atoms located at positions ~Ri along the 〈100〉 propagation
direction of the SDW takes the form of a Fourier series with only two harmonics [6]:

mi = M1 sin (~q . ~Ri) +M3 sin (3~q . ~Ri), (1)

withM1 andM3 the amplitudes of these two harmonics, the ratioM3/M1 determining the shape of the wave.
For a SDW of period n = 20 a0, we found M1 = 1.18µB and M3 = 0.15µB , resulting in M3/M1 = 0.12,
comparing very well to other DFT studies [113, 114], but poorly with the experimental value of 0.02 measured
for the incommensurate wave at low temperature [6, 168]. The magnetic moment modulation induced by
a SDW of different periods with the shape parameter M3/M1 are presented in Fig. 2b, showing very little
variation upon increasing the period n of the wave. This gives a peak amplitude of 1.05µB , which is very
close to the 1.1µB found in the AF phase. However, these values are drastically overestimated with respect
to the experimental value of 0.5µB measured at 4.2K [6]. This discrepancy is a well-known artefact of the
GGA-PBE exchange and correlation functional, also reported in previous theoretical works [113–115]. The
equilibrium bulk lattice parameters a0 of the three magnetic phases is found lower than the experimental
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value of 2.884Å at 4.2K, with however a better agreement found for the AF and SDW than the NM
phase (Tab. 1). A better agreement with the experimental bulk magnetic moment is found using the LDA
functional, at the cost of a less accurate evaluation of the lattice parameter [113].
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Figure 2: (a) Strain wave along the propagation of a SDW in the first half of its period 20 a0. Atoms are represented by shaded
and full circles in their initial and relaxed positions respectively, with displacements magnified by a factor 25. (b) Shapes of
the SDW (left panel) and strain wave (right panel) for different periods of the SDW. The amplitudes of the Fourier series
coefficient are displayed in the center panel as a function of the reduced wave vector QSDW = 1− 1/n of the SDW.

As introduced in the Literature review (see section 3.1.1), the SDW comes with a charge modulation, or
charge-density wave (CDW), and a perturbation of the atomic positions in the {100} planes orthogonal to
the propagation of the SDW, or strain wave [6, 169]. These two additional waves share half the periodicity
and wave vector of the SDW, and can also be described using different Fourier series. However, as reported
by Soulairol et al. [113] using various ab initio methods, the amplitude of the CDW is too small compared
to the precision of the calculations, which we also report regardless of the SDW period. As for the strain
wave, it is described with the following Fourier series using the first two harmonics:

xi = x0i +A2 sin (2~q. ~Ri) +A4 sin (4~q. ~Ri), (2)

where xi and x0i are the relaxed and bulk positions of atom i respectively, located at ~Ri along the propagation
of the SDW of wave vector ~q. The strain wave then generates atomic displacements given by:

xi − x0i
a0

=
A2

a0
sin (2~q. ~Ri) +

A4

a0
sin (4~q. ~Ri), (3)

whose amplitude can be measured experimentally [6]. The existence of such perturbation waves has been
reported in various experimental works using both neutron and coherent X-ray diffraction techniques, re-
sulting in an experimental value for A2/a0 ranging from −0.10 to −0.35% [168–172]. This compares well
with the −0.57% we find for a SDW of period 20 a0, close to the experimental periodicity of the SDW (see



Chapter 1 - Bulk properties of bcc chromium Page 61

vertical line in the middle panel of Fig. 2). We also plot on Fig. 2 the profiles of both magnetic moments
mi and atomic displacements xi − x0i for different periods of the SDW ranging between 18 and 30 a0. As
the period of the SDW increases, the modulation of magnetic moments along the wave tends to a profile
close to a magnetic domain wall, confirming our description of the nodon as a surface fault. Now looking at
the strain wave, the peak amplitude of the perturbation increases with the period of the SDW, maintaining
a similar shape. In the first theoretical works on the stability of the SDW using ab initio calculations, it
was thought that the strain wave would stabilize the SDW, reversing the energy difference with the AF
ground state [111, 173]. However, Soulairol et al. [113] later reported a very small energy gain induced
by the presence of the strain wave along the SDW of −0.5meV/atom, or approximately 4% of the energy
difference between the SDW and AF phases, therefore invalidating this hypothesis. In our study, we find an
even smaller energy gain of −0.12meV/atom, regardless of the period of the SDW, confirming these results.

1.2. Elastic properties of the magnetic phases
The elastic properties of the three considered NM, AF and SDW phases are then evaluated, and results

are presented in Tab. 1. To do so, three different deformations are applied to a crystal unit-cell correspond-
ing to a hydrostatic pressure, a tetragonal and a trigonal perturbation, and the resulting energy variations
fitted to a polynomial equation of state [174]. The SDW structure has a tetragonal symmetry, correspond-
ing to 6 independent elastic constants, while the NM and AF phases have a cubic symmetry, and thus 3
independent constants. However, the anisotropy of the SDW is very small, with a maximum discrepancy of
6GPa between C11 and C22. The presented results in cubic symmetry are obtained by averaging over the
three [100], [010] and [001] possible wave directions of the SDW with periodicity n = 20 a0. We note that
the obtained values for the AF and SDW phases are closer to experimental data at 4.2K of Palmer and Lee
[109] than the NM phase, in particular regarding the bulk modulus B. This is a consequence of the high
sensitivity of magnetism to volume variation, highlighting its significant impact on the elastic properties of
bcc Cr at low temperature.

The elastic properties of the SDW and AF phases are very close, the discrepancy with experiments com-
ing from an overestimation of C ′. Most importantly, both C ′ and C44 shear moduli of these two magnetic
phases are identical within DFT accuracy. This is also true of the elastic anisotropy A, which have an influ-
ence on some important elastic properties of dislocations, such as the formation of junctions or the relative
stability between different Burgers vectors, which will be discussed in the following. Both observations are
of upmost importance in our case as screw dislocations do not induce a variation of volume, and their elastic
behaviors is governed by these two shear moduli, a priori resulting in similar elastic properties of screw
dislocations in these two magnetic phases.

In the following, the AF phase will be used as an approximate of the experimental SDW ground state
of bcc Cr, based on their close magnetic order and elastic properties. This choice is motivated by the
impossibility to introduce both a SDW and structural defects relevant in the plastic deformation of Cr, such
as a stacking fault or a dislocation, in a simulation cell containing a reasonable number of atoms. Besides, as
shown in Fig. 18 of the Literature review, both Bacon and Cowlam [100] and Williams and Street [101] have
observed that the AF phase may be stabilized above 200K in strained samples containing dislocations, with
an increased Néel temperature of 450K. It appears therefore fully legitimate to study the plastic deformation
of bcc Cr in this approximate AF phase.

2. Generalized stacking faults

As an introductory step before studying dislocations in a crystal, calculations of generalized stacking faults
(GSF) [175] may give useful information on the relative ease to shear a given crystal in different planes (i.e.
glide plane), and along different directions (i.e. Burgers vector). A GSF maps the excess energy γGSF (per
surface unit) associated with the rigid shearing of an initially perfect crystal in two halves by a fault vector
~f laying in the crystallographic fault plane, also called a γ-surface.
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2.1. Simulation setup
Simulation cells for the study of the GSFs contain a periodic stacking of the crystallographic planes of

interest. To maximize the separation distance dfault between two periodic images of the fault, the rigid shear
displacement vector ~f is also applied to the periodicity vector normal to the fault plane ~u3, as sketched in
Fig. 3. This way, only one fault is contained per simulation cell and free surfaces are avoided. The atoms
are then allowed to relax only in the direction perpendicular to the fault plane to maintain the fault during
relaxation [64]. The GSF energy γGSF per unit surface is given by:

γGSF(~f) =
Efault(~f)− Ebulk

SGSF
, (4)

where Ebulk = Efault(~f = ~0) is the energy of the perfect bulk crystal (Fig. 3a), and Efault is the energy of
the crystal sheared by a vector ~f in a plane of surface SGSF (Fig. 3c).

~u3

~u1

~u2

(a)

~f

~u3

(b)

~f

~u3 + ~f

(c)

Figure 3: Sketch of the simulation setup used for the calculation of GSF energies showing (a) the bulk structure, and the
crystal sheared by a fault vector ~f using (b) free surfaces, and (c) periodic boundary conditions.

As detailed in the Literature review, dislocations in Cr have a Burgers vector corresponding to the
smallest periodicity vectors of the bcc lattice, namely 1/2〈111〉 or 〈100〉. As to get insights on the ease to
shear a given glide plane by one of these Burgers vectors, they need to be contained in the fault plane.
These dislocations mainly move in {110} planes across the temperature range where the Peierls mechanism
prevails, but also occasionally in {112} and {123} planes [176], which has also been observed in Cr [13, 122].
As {110} is the main glide plane family, the whole γ-surface is calculated only for these planes in both the
NM and AF phases of bcc Cr, and only in the NM phase for {112} and {123} planes. As dislocations with
〈100〉 Burgers vectors can theoretically glide in {100} planes, although it is not observed experimentally,

Table 2: Geometry of the simulation cells used for the calculation of the {110}, {112}, {123} and {100} γ-surfaces: periodicity
vectors ( ~X, ~Y , ~Z), number of stacked planes nZ and distance dGSF between two periodic images of the faults.

Fault plane ~X ~Y ~Z nZ dfault

{110} [112] [111] [110] 12 6a0
√

2

{112} [110] [111] [112] 24 4a0
√

6

{123} [541] [111] [123] 28 2a0
√

14
{100} [100] [010] [001] 40 20a0
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the {100} γ-surface is also studied in the NM phase. Projections of the γ-surfaces along the 1/2〈111〉 or
〈100〉 lines, or γ-lines, are calculated in both magnetic phases as they represent the most useful quantity.
The convergence of the GSF with respect to the number of stacked planes was checked, which is assured by
the geometry of the cells given in Tab. 2. A grid of 10 fault vectors ~f per direction and a Fourier series
interpolation is then used for the construction of the γ-surfaces.

2.2. Complete γ-surfaces in the NM phase
Dislocations with 1/2〈111〉 Burgers vectors in bcc metals glide preferentially in one of the three families

of crystallographic planes with the largest interplanar distance, namely {110}, {112}, and {123} by order of
increasing distance, with a prevalence for {110} planes [176], which has also been observed experimentally
in bcc Cr [13, 34, 123, 124]. The γ-surface in all four {110}, {112}, {123} and {100} planes in the NM
phase of bcc Cr are presented in Fig. 4. The three {112}, {123} and {100} γ-surfaces show very high
extrema compared to {110} planes (Fig. 4a), with a pronounced twinning/antitwinning (T/AT) asymmetry
in {112} and {123} planes, which will be discussed later. Overall, no stable energy minimum is found in
all 4 presented γ-surfaces, except for the unfaulted crystal recovered upon shearing by a periodicity vector
of the lattice. The minimum energy paths for ~b = 1/2〈111〉 shear correspond to a fault vector ~f always
collinear to the Burgers vector ~b in all three {110}, {112} and {123} planes. No edge component is thus
expected to develop from the possible spreading of the 1/2〈111〉 screw dislocation core. This is also the case
for a ~b = 〈100〉 Burgers vector shearing a {100} plane (see the green arrow in Fig. 4d), but not for a {110}

(a) {110} γ-surface (b) {112} γ-surface

(c) {123} γ-surface (d) {100} γ-surface

Figure 4: Generalized stacking fault energy γGSF in the NM phase of bcc chromium over (a) {110} (b) {112}, (c) {123}, and
(d) {100} fault planes. The orange in (a), (b) and (c), and green arrows in (a) and (d) show a 1/2〈111〉 and 〈100〉 Burgers
vector respectively.
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plane. Indeed, the path for which the fault vector stays collinear to the Burgers vector upon shearing of the
lattice (green arrow in Fig. 4a) corresponds to a maximum energy path of the {110} γ-surface. A possible
edge component may therefore develop when a 〈100〉 screw dislocation starts shearing the crystal, with the
associated spreading of its core. We will discuss in the following the core structure of this 〈100〉 dislocation
in bcc transition metals, and how this possible spreading was discarded using both ab initio calculations and
semi-empirical interatomic potentials. We also note that shear is easier along a 〈111〉 than a 〈100〉 direction
in {110} planes, indicating an a priori easier glide of 1/2〈111〉 dislocations than 〈100〉 in these planes.

2.3. 〈111〉 slip mode in the NM and AF phases
The complete {110} γ-surface in the AF phase is presented in Fig. 5. The shape of the two γ-surfaces is

almost identical in the two NM and AF phases (see Fig. 4a for comparison), except for the introduction of
a stable fault for a vector ~f = ~b = 1/2〈111〉 in the AF phase (orange arrow in Figs. 4a and 5). This vector
corresponds to the smallest periodicity vector of the bcc lattice, hence there is no excess fault energy in the
NM phase as the perfect crystal is recovered upon shearing by ~b = 1/2〈111〉. However, this vector breaks the
AF order of bcc Cr, thus leading to the generation of a fault in the AF phase. This fault corresponds to a
local minimum in the GSF energy, which is better visualized on the 〈111〉 γ-line, defined as the projection
of the γ-surface in the 〈111〉 direction, presented in Fig. 6a. Are also presented the 〈111〉 γ-lines for the
{112} and {123} fault planes in both the NM and AF phases (Fig. 6b and c respectively).

~b = 1/2〈111〉

~b = 〈100〉
[100]

[010]

[001]

Figure 5: Generalized stacking fault energy γGSF over a {110} plane, or {110} γ-surface, in the AF phase of bcc Cr. The
orange and green arrows show a 1/2〈111〉 and 〈100〉 Burgers vector respectively. The γ-surface in the AF phase shows a stable
magnetic fault at the Burgers vector ~b = 1/2〈111〉 (orange arrow).

To rationalize all presented GSF energy profiles and surfaces, we evaluate the shear stress τGSF associated
with the rigid shearing of the crystal by a fault vector 〈hkl〉 in a given plane as:

τGSF = max
f∈γ〈hkl〉

[
∂γGSF(f)

∂f

]
(5)

All extracted quantities are presented in Tab. 3 for the 〈111〉 slip mode in the NM and AF phases of bcc
Cr. The two 〈111〉 γ-lines in {112} and {123} planes exhibit the well-known twinning/antitwinning (T/AT)
asymmetry, showing an easier shearing sense along the same displacement vector [64]. This corresponds to
a lower maximal slope of the 〈111〉 γ-line in the twinning direction (indicated by a black arrow in Fig. 6b)
than the antitwinning direction for {112} and {123} planes (see Tab. 3). Due to the magnetic fault located
at the middle of the three γ-lines for the fault vector ~f = ~b = 1/2〈111〉, the two extrema in the slope of the
GSF energy profiles differ in the two ~f ∈ [0, 1/2〈111〉[ and ~f ∈ ]1/2〈111〉, 〈111〉] halves, yielding two different
values for the stress necessary to shear the lattice. The shear stress is lower starting from ~f = 1/2〈111〉
towards the perfect crystal at ~f = ~0 or 〈111〉, i.e. after the magnetic fault has already been generated by
a first 1/2〈111〉 shear displacement, than starting from ~f = ~0 or 〈111〉 towards the position of the magnetic
fault. This is due to the added stress needed to introduce the magnetic fault in the crystal.
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Figure 6: Generalized stacking fault energy along a 〈111〉 direction, or 〈111〉 γ-line, in a (a) {110}, (b) {112}, and (c) {123}
fault plane in the NM (blue squares) and AF (red circles) phases. Orange arrows show the Burgers vector ~b = 1/2〈111〉 for
which a magnetic fault of energy γ is created. Symbols are ab initio results and lines their interpolations with Fourier series.

Table 3: Height γGSF (meV/Å2) of the different 〈111〉 γ-lines presented in Fig. 6, and the resulting shear stress τGSF (GPa) for
the twinning/antitwinning sense in the NM and AF phases of bcc Cr. Values in the AF phase indicated in italic are obtained
for a shearing of the lattice starting from a magnetic fault already present in the crystal after shearing by 1/2〈111〉.

Fault plane γGSF τGSF
NM AF NM AF

{110} 98 111 0.81 / 0.81 0.88 (0.81 ) / 0.88 (0.81 )
{112} 100 113 0.85 / 1.04 0.94 (0.80 ) / 1.14 (1.00 )
{123} 101 115 0.88 / 1.01 0.97 (0.81 ) / 1.08 (0.97 )

These magnetic faults are introduced in the crystal upon shearing by a fault vector equal to ~b = 1/2〈111〉,
with very close energies per unit surface γ{110} = 16.2, γ{112} = 16.4 and γ{123} = 16.7meV/Å2 in the
three planes. These energies are obtained after full relaxation is all three Cartesian direction to check the
stability of the fault. The shearing of the crystal by a 1/2〈111〉 Burgers vector results in two parallel mag-
netic moments forced to face each other, leading to a magnetic frustration partially resolved by reducing the
amplitude of the magnetic moments in the vicinity of the fault plane. This is equivalent to the creation of a
magnetic domain wall separating two half crystals of reverse magnetization. These magnetic fault energies
are very close to the {100} nodon surface energy of 17.1meV/Å2 found in the previous section, indicating
the same process is involved in both cases. The structure of these magnetic faults are presented in Fig. 7 for
all three {110}, {112} and {123} planes. We also evaluated the convergence of the magnetic fault surface
energy with respect to the separation distance between periodic images of the fault for {110} and {112}
planes. We report a very good convergence of the resulting fault energies with respect to the size of the
simulation cell for the values of Tab. 2. However, we chose to present in Fig. 7 the structure of the magnetic
faults in the two {110} and {112} planes obtained using larger cells, with 20 {110} and 60 {112} stacked
planes respectively, to better visualize its magnetic structure.

The obtained profiles of the magnetic moments along the direction orthogonal to the fault plane is fitted
to a standard domain wall profile of the form:

m(z) = m0 tanh

(
z − z0
w/2

)
(6)
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Figure 7: Structure of the stable collinear magnetic faults generated by a fault vector ~f = ~b = 1/2〈111〉 in a (a) {110}, (b)
{112}, and (c) {123} plane projected in the [111] plane. Atoms are represented in different colors depending on their height
along the [111] direction in the initial perfect crystal, with a size proportional to their magnetic moments. (d) Profiles of the
magnetic domain walls created by the fault in the three {110}, {112} and {123} planes. The width of the walls are shaded.

where m0 = 1.1µB is the bulk magnetic moment, z0 is the position of the fault plane, and w is the width of
the domain wall. Results are shown on Fig. 7d in all three planes. We find an almost identical domain width
in all three fault planes, more precisely w{110} = 9.9Å, w{112} = 10.5Å and w{123} = 9.2Å, indicating the
structure of the magnetic fault does not depend on the crystallographic plane. This correlates well with the
identical magnetic fault energy per unit surface γ found on Fig. 6. Another possibility to partially resolve
such magnetic frustration would have been to induce a disorientation of magnetic moments while conserving
their bulk amplitude. We checked that this possibility could not arise naturally from the relaxation of the
same magnetic structure by including both non-collinear magnetism and spin-orbit coupling. The magnetic
moments were all initialized along the X direction of the simulation cell (perpendicular to the normal of
the fault plane Z), except for the two closest planes from the fault plane, where magnetic moments were
initialized along Z to introduce a non-collinear perturbation. This initially non-collinear perturbation was
found to relax to the identical structure as in the collinear case. However, when studying magnetic exci-
tations at finite temperatures in Chapter 3, we will show that stable non-collinear magnetic structures do
indeed exist. But to be able to stabilize them in ab initio calculations, one needs to initialize the system
with a magnetic configuration close to its equilibrium configuration, which will be allowed later with the
generalized Heisenberg model developed for the study of finite temperature magnetic excitations.

Another possibility would be that the SDW order does not allow for the presence of such magnetic faults.
Depending on the relative position between the location of the fault plane and the node of the wave, the
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situation might indeed differ. If the structure is sheared in the {100} plane where all magnetic moments
are zero, i.e. in a node, then the magnetic fault would have zero energy since a fault cannot be defined
given that the AF order is not broken. However, this is not possible since the Burgers vector 1/2〈111〉 does
not belong to {100} planes, thus the SDW magnetic order will necessarily be disrupted in the same way
as the AF order, responsible for the generation of similar magnetic faults. This further comforts us in the
approximation of the experimental SDW ground state by the AF phase.

Except for the excess energy associated with the creation of the magnetic fault at the center of the
presented γ-lines of Fig. 6, their shapes are very similar in the NM and AF phases of bcc Cr, in all three
considered fault planes. This indicates a small impact of magnetism on the relative ease to shear the three
{110}, {112} and {123} planes. Moreover, regardless of the magnetic phase, the height and slope of the
〈111〉 γ-line are similar in all three planes, with a shear stress of 0.81, 0.85 and 0.88GPa respectively in
the easiest shearing direction for all three planes in the NM phase (see Tab. 3). Hence, no particular slip
system appears to be easier to activate than any other, and most particularly, {110} does not seem to be
the easiest one to shear even if it is the main experimental slip plane. This shows that a fine atomistic
description of the structure and mobility of dislocations is probably required to get a good understanding
of the mechanisms involved in the plastic deformation of bcc Cr.

2.4. 〈100〉 slip mode in the NM and AF phases
Since there is experimental evidence of the mobility of dislocations with 〈100〉 Burgers vector in Cr, it

is also of interest to calculate the γ-surfaces of planes containing 〈100〉 slip directions, which are {110} and
{100} planes. Projections of the 〈100〉 γ-line in these two planes are presented in Fig. 8 in the NM and
AF phases, and in the SDW phase only for {100} planes as the fault plane is orthogonal to its propagation
vector. In the SDW phase, as the magnetic moments of atoms laying in a given {100} plane depend on its
position along the propagation of the SDW (see Fig. 1a), the perturbation induced along the 〈100〉 γ-line a
priori depends on the location of the fault plane with respect to the nodes of the SDW. In this respect, the
GSF energies were calculated for a fault plane matching both a zero and maximum magnetic moment {100}
plane. We find that both magnetic and atomic relaxed configurations are identical in these two cases, the
node remaining in its initial plane and with the same GSF energy along the 〈100〉 γ-line. Results presented
for the SDW phase in Fig. 8b are plotted for a fault plane located on a node of the wave. The resulting
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Figure 8: Generalized stacking fault energy along a 〈100〉 direction, or 〈100〉 γ-line, in a (a) {110}, and (b) {100} fault plane
in the NM (blue squares), AF (red circles), and SDW (orange circles only in b) phases. For the SDW phase, the fault plane is
located at a node of the wave (i.e. where the local magnetic moment is zero). The green arrows represent the Burgers vector
~b = 〈100〉. Symbols are ab initio results and lines their interpolations with Fourier series.
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γ-line in the {110} plane has a lowest energy maximum than in {100} planes in both the NM and AF phases,
indicating an a priori easier glide of 〈100〉 dislocations in {110} planes, which is also observed experimentally
[13]. Also, no magnetic fault is generated upon shearing by a 〈100〉 Burgers vector, as could be expected
from the AF order of bcc Cr. However, as was also observed along 〈111〉 directions (Fig. 6), shearing by
any fault vector induces a minor frustration of the magnetic moments of the atoms, resulting in higher fault
energies in the AF than in the NM phase. The quantities extracted from the 〈100〉 γ-lines of Fig. 8 are
presented in Tab. 4, showing a close but still higher stress is required for 〈100〉 than for 1/2〈111〉 shear, with
close values in both magnetic phases.

Table 4: Height γGSF (meV/Å2) of the different 〈100〉 γ-lines presented in Fig. 8, and the resulting shear stress τGSF (GPa)
for the twinning/antitwinning sense in the NM, AF and SDW phases of bcc Cr.

Fault plane γGSF τGSF
NM AF SDW NM AF SDW

{110} 163 173 / 1.17 / 1.17 1.23 / 1.23 /
{100} 189 192 184 1.36 / 1.36 1.39 / 1.39 1.33 / 1.33

Conclusions of Chapter 1:

• The magnetically ordered AF and SDW phases are more stable than the NM phase, with properties
closer to experimental data.

• The DFT magnetic ground state is found to be the AF phase, in contradiction with the experimentally
observed SDW. The energy difference between the two phases decreases linearly with the wave-vector
of the SDW.

• Computed elastic properties show that the AF and SDW phases share almost identical elastic behav-
iors. Adding their close magnetic order, the AF phase appears as a legitimate approximate of the true
magnetic ground state of bcc Cr at low temperature.

• The study of the GSFs along 〈111〉 crystal directions show the generation of a stable magnetic fault
due to the breaking of the AF order by the fault vector ~f = ~b = 1/2〈111〉 in the three close-packed
{110}, {112} and {123} planes. The structure and energy of this collinear fault is identical in the
three investigated planes, with the partial recovery of the magnetic frustration leading to a structure
similar to a magnetic domain wall.

• Apart from this magnetic fault, the γ-surfaces are very similar in the NM and AF phases.

• The 〈100〉 slip mode shows a lower maximum fault energy in {110} than in {100} planes, indicating
an a priori easier glide of 〈100〉 dislocations in {110} planes.





Chapter 2: Dislocations and plasticity in bcc chromium

Now that we have a good understanding of the bulk magnetic properties of Cr, we can study the properties
of dislocations in the crystal, the linear defect controlling the plastic deformation of bcc transition metals.
As stressed at the end of the previous chapter, generalized stacking faults are only a first step towards
rationalizing the plastic behavior of bcc Cr, particularly regarding the preferred slip system. To get an
accurate representation of the atomistic mechanisms at stake, one needs to account for a fine description of
the core structure and mobility of dislocations in the crystal. This is the focus of the present chapter using
the ab initio modeling of Cr presented in the Methods section, including the influence of magnetism detailed
in the previous chapter.

1. Core properties of the 1/2〈111〉 screw dislocation

1.1. Impact of magnetism on the core structure of the 1/2〈111〉 screw dislocation
The core structure of the 1/2〈111〉 screw dislocation obtained after atomic relaxation can be visualized

using differential displacement maps along the 〈111〉 direction (i.e. parallel to the dislocation line) as pro-
posed by Vitek [46]. The relaxed dislocation core is presented in Fig. 1 for the NM phase of bcc Cr. The
core is presented in two configurations, the ground state easy core (Fig. 1a), and the unstable maximum
hard core (Fig. 1b), located at the same position but with an opposite Burgers vector. Differential displace-
ment maps presented in the upper row show a compact core structure for both configurations, as reported
in all other bcc transition metals using ab initio DFT calculations [64]. The easy core shows reversed
helicity in the three 〈111〉 atomic columns in the vicinity of the dislocation core, whereas the hard core
constrains these same three columns to the same height, since it induces the opposite displacement along
[111] due to its opposite Burgers vector. The later corresponds to an unstable maximum in the configu-
ration space of the 1/2〈111〉 screw dislocation core. To be able to relax the hard core configuration, the
three mentioned atomic columns are constrained in the Z direction, while other atoms are allowed to relax

z = 0

z = b/3

z = 2b/3[1̄21̄]

[1̄01]

[111]

(a) Easy core (b) Hard core

Figure 1: (Upper row) Differential displacement map showing the core structure of the ~b = 1/2〈111〉 screw dislocation in the
NM phase of bcc Cr in its (a) easy and (b) hard configurations. An arrow joining two atoms corresponds to a differential
displacement of b/3 along [111]. (Lower row) Absolute displacement in the (111) plane after substraction of the Volterra elastic
field (magnified by a factor 35). Atoms are represented in different colors according to their height along the [111] direction.



Chapter 2 - Dislocations and plasticity in bcc chromium Page 71
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[1̄21̄]
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Figure 2: Differential displacement map along the [111] direction showing the core structure of the~b = 1/2〈111〉 screw dislocation
in the AF phase of bcc Cr with a magnetic fault lying in the (101) plane in its (a) easy and (b) hard configurations, and in
the (121) plane in its (c) easy and (d) hard configurations for the up triangles; (e) and (f) for the down triangles. Atoms are
represented with a diameter proportional to their magnetic moments. Two touching circles corresponds to the bulk value of
1.1µB , and the smallest circles correspond to zero magnetic moment.

in all three Cartesian directions. As shown in the lower panels of Fig. 1, the screw dislocation induces
a dilatation field of the crystal in the vicinity of its core, here visualized in absolute displacements in the
(111) plane orthogonal to the dislocation line, which has also been reported for all bcc transition metals [44].

Differential displacement maps of the two easy and hard core configurations of the 1/2〈111〉 screw dislo-
cation core in the AF phase are presented in Fig. 2. The core structure of the 1/2〈111〉 screw dislocation
is identical in the two NM and AF phases, in both its easy and hard configurations. The only notable
difference between the two phases is the presence of a magnetic fault bounded by the two dislocations of a
same dipole. This is due to their Burgers vector not being a periodicity vector of the AF order of bcc Cr.
This fault is located in the region of the initially perfect bulk crystal which has been sheared by the Burgers
vector to create the dislocation dipole. This shearing introduces a magnetic frustration in the system by
forcing two same-sign spins to face each other in the two planes located above and below the cut surface of
the dislocation dipole. This frustration is partially resolved upon relaxation by reducing the magnitude of
the magnetic moments of atoms near the sheared region. To better visualize the structure of this magnetic
fault, the same representation as for the infinite magnetic fault is adopted (see Fig. 7 in Chapter 1), with
a diameter proportional to their magnetic moments, and the differential displacement map is superimposed
on top of it (Fig. 2). The calculation has been performed for a magnetic fault located in both a {110} and
a {112} plane, depending on the initial choice for the vector joining the two dislocations of the dipole, i.e.
(~p1 +~p2)/2 and (~p1−~p2)/2 respectively, in the same simulation cell containing 135 atom per b (see Methods,
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section 3.1.1 for more details about the simulation setup).

The center of a 1/2〈111〉 screw dislocation core, whether in its easy or hard configuration, is located at
the center of gravity of triangles formed by three adjacent atomic columns along a 〈111〉 direction (Fig.
1). Dislocations with +~b Burgers vector in their easy configuration are located at the center of triangles
pointing down, and −~b dislocations of triangles pointing up. As a result, the length of the vector joining
two dislocation cores varies by a small amount ±δ = a0

√
2/6 if it links two triangles pointing up and down

or down and up, and also on the core configuration (i.e. easy or hard). This is not relevant in the NM
and AF phases when the fault lies in a {110} plane, but it slightly changes the structure and length of the
magnetic fault when located in a {112} plane (Fig. 2c-f). As can be seen by comparing these faults with the
ones obtained at the local minima of the 〈111〉 γ-lines of Fig. 7 in Chapter 1, the structure of the infinite
fault is identical as the one observed for a dislocation dipole laying in a {110} plane, but slightly differs for
a {112} plane. In the GSF, the magnetic fault lays between two adjacent {112} planes, hence no magnetic
moment is strictly zero. In the two configurations of the {112} dislocation dipole (up and down triangles),
the fault is located on a {112} atomic plane, reducing the magnetic moments of atoms in that plane to
exactly zero. Besides this effect, the structure of the magnetic fault is almost identical for both the easy and
hard core configurations, regardless of the orientation of its plane or the dislocation setup. We now focus
on quantifying the energetics of the dislocation core in the following section.

1.2. Core energy of the 1/2〈111〉 screw dislocation
The total energy Etot of a simulation cell containing a dislocation dipole can be partitioned as:

Etot = Ebulk + Eelas + 2Ec + Efault (1)

where Ebulk is the energy of the perfect crystal without dislocations, Eelas is the elastic energy of the dis-
location dipole containing the self energy of dislocations and interactions between dislocations and their
periodic images, Ec is the core energy, and Efault is the energy of the magnetic fault. All contributions
to the total energy are normalized by the length of the simulation cell along the Z axis to account for the
different heights of the cells in the NM and AF phases. The elastic energy Eelas of the dipole is evaluated
with anisotropic elasticity using the Babel package [165] with a core radius rc = a0

√
3/2.

As shown in Eq. 1, the energy of the magnetic fault generated in the AF phase needs to be substracted
before being able to correctly evaluate the core energy of the dislocations in the simulation cell. The

d
(0)
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ddislo

[1̄21̄]

[1̄01]

[111]

(a) Reference quadrupole

−λP

(b) −~b displaced on the left (1)

+λP

(c) −~b displaced on the right (2)

Figure 3: Sketch of the dislocation arrangement used for the evaluation of the magnetic fault energy separating two 1/2〈111〉
screw dislocations of the same dipole: the −~b dislocation is moved by the distance λP = a0

√
2/3 between two Peierls valleys

on the left in position (1), and on the right in position (2), keeping the same distance in both position with the +~b dislocation.



Chapter 2 - Dislocations and plasticity in bcc chromium Page 73

fault is assumed to have an energy proportional to the distance d between the two dislocations of the dipole,
Efault = γd with γ its energy per surface unit. The energy of the magnetic fault bounded by two dislocations
should be the same as the one generated by the rigid shearing of the crystal in the fault plane shown in
the GSFs of Chapter 1, which we propose to check with the method sketched in Fig. 3. Upon moving one
of the two dislocations of the dipole on the left or the right by a distance λP = a0

√
2/3 separating two

adjacent Peierls valleys starting from the quadrupolar dislocation setup and keeping the other fixed, the
elastic energy of the dipole is equal in these two positions (Figs. 3b and c) as the distance between periodic
images of the dislocations stays the same. As the core energy also stays the same, the energy difference
between configurations (1) and (2) is therefore only due to the change in length of the magnetic fault, i.e.
±λP with respect to the quadrupolar arrangement. The surface energy γ of the magnetic fault bounded by
the two 1/2〈111〉 screw dislocations can then be obtained directly as:

γ =
Etot

(1) − Etot
(2)

4bλP
(2)

This calculation is done for a magnetic fault laying in a {110} plane only, as the surface energy of the infinite
fault found with the GSFs was independent of the plane. This leads to γ = 16.3meV/Å2, in perfect agree-
ment with the γ{110} = 16.2meV/Å2 found in the GSF, the small difference between the two probably due
to boundary effects near the dislocation cores. This result shows that whether the magnetic fault arises from
a rigid shearing of the crystal or by the introduction of dislocations, the same phenomenon is involved, at
least in {110} fault planes. As almost identical values of the fault energy were also found in {112} and {123}
planes, we can reasonably assume that this result can be extended to all three planes, and γ = 16.3meV/Å2

will be used in the following for a dislocation dipole in Eq. 1 regardless of the fault plane.

We then check the convergence of the dislocation core energies with respect to the size of the simulation
cell, i.e. the distance between two dislocations of a same dipole and between their periodic images, using
the geometries given in Tab. 5 of the Methods. The results are presented in Fig. 4 for the NM and AF
phases, with a magnetic fault lying in both a {110} and a {112} plane. We stress that in the absence of the
magnetic fault, the dislocation setup is the same in both magnetic phases. We found that the calculated
core energies are almost independent of the cell size in both magnetic phases, showing the convergence of
the presented results with the geometry, and of the fault plane in the AF phase. This shows the relevance
of the energy partition of Eq. 1, with a good evaluation of the elastic and magnetic contributions, leading
to a core energy almost independent on dislocation environment. Like in other bcc transition metals [44],
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Figure 4: Convergence of the 1/2〈111〉 screw dislocation core energy Ec with respect to the size of the simulation cell in (a) its
easy configuration, and (b) the energy difference between the hard and easy configurations, in both NM and AF phases.
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the energy of the hard core configuration is higher than that of the easy core in both magnetic phases. This
energy difference shows larger variations in the AF phase when the magnetic fault lies in a {112} plane,
also depending on the dislocation position located in either up or down triangles (Fig. 4b). Since the elastic
energy of the dipole is the same in its easy and hard core configurations, this perturbation necessarily arises
from the approximate evaluation of the magnetic fault contribution. This is further confirmed by our obser-
vation that the structure of the {112} magnetic fault when bounded by dislocations slightly differs from the
infinite fault obtained in the GSF (see Chapter 1, Fig. 7b). Therefore, the dislocation setup with the mag-
netic fault laying in a {110} plane will be preferred in following calculations such as the Peierls energy barrier.

When comparing the core properties of the 1/2〈111〉 screw dislocation, i.e. both structure and energetics,
obtained in the NM and AF phases, one sees that once the contribution of the magnetic fault in the AF phase
has been removed, magnetism has only a marginal impact. Indeed, the structure of the core is identical in
the two magnetic phases, in both configurations, with close core energies except a slightly smaller difference
between hard and easy configurations in the AF than in the NM phase, 35 instead of 43meV/Å.

1.3. Consequence of the magnetic fault in the AF phase
Considering the previous results on the core structure and energy of 1/2〈111〉 screw dislocations, the main

impact of magnetism on their properties is the generation of a magnetic fault in the glide plane. This fault
necessarily exerts a force on the dislocation, resulting in a back-stress given by τ = γ/b ' 1GPa, too high
to allow for the existence of isolated 1/2〈111〉 dislocations carrying magnetic faults in the AF phase. No
such magnetic fault has been observed in bcc Cr strained under its Néel temperature [13, 122], possibly in
agreement with its high energy cost. Such magnetic faults bounded by one or two dislocations have been
observed at room temperature both ending up at a {100} surface [127, 128] (see Fig. 22 in the Literature
review). When studying magnetic excitations at finite temperatures in the next chapter, a different structure
for these magnetic faults is found including non-collinear magnetism, which however cannot be considered
as a fault since its energy does not converge with the separation distance between faults.

This magnetic fault therefore needs to be closed by another topological defect, e.g. another 1/2〈111〉
dislocation, possibly constraining them to coexist and move pairwise and thus leading to a superdislocation
of total 〈111〉 Burgers vector dissociated in two 1/2〈111〉 dislocations separated by a magnetic fault. This
follows the reaction 1/2[111] + MF + 1/2[111] → [111], with MF the magnetic fault, where the dissociated
configuration is energetically more favorable than the single 〈111〉 dislocation. If there was no magnetic fault
as in the NM and disordered PM magnetic phases, the two partial dislocations would glide apart at an infinite
equilibrium distance, whereas the magnetic fault in the AF phase prevents this infinite separation. The
equilibrium dissociation distance between two 1/2〈111〉 partial dislocations can be evaluated using elasticity
theory, with the following expression for the energy variation arising from the dissociation:

∆Ediss(d) = −b(1)i Kijb
(2)
j ln

(
d

rc

)
+ γd, (3)

where d is the dissociation distance between the two partial dislocations ~b(1) = ~b(2) = 1/2〈111〉, K is the
Stroh tensor in the reference frame of the 〈111〉 dislocation, and rc is the core radius. The equilibrium
dissociation distance deq is found by minimizing the above Eq. 3 with respect to d, and using the analytical
expression of the Stroh tensor for the 〈111〉 screw orientation [177, 178]:

deq =
b
(1)
i Kijb

(2)
j

γ
=
b2
√
C ′C44

2πγ
, (4)

with b = a0
√

3/2 the norm of the partial Burgers vectors. With the elastic constants of the AF phase
calculated at 0K presented in Tab. 1 of Chapter 1 and γ = 16.3meV/Å2, we find deq = 55Å as the equilib-
rium dissociation distance of the 〈111〉 screw superdislocation. Depending on the dislocation character, this
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distance ranges from 54 to 59Å, a small variation due to the strong elastic anisotropy of Cr.

This dissociation distance is small, thus potentially explaining why no TEM observation has reported
the presence of such 〈111〉 dislocations at low temperature. Also, identification of Burgers vectors in TEM
observations usually relies on an extinction criterion, i.e. with ~g.~b = 0 contrast, based on the orientation
of the Burgers vectors, which therefore cannot help distinguish between 1/2〈111〉 and 〈111〉 dislocations.
Marcinkowski and Lipsitt [126] proposed that as a result of 1/2〈111〉 dislocations dragging magnetic faults
when gliding, an antiferromagnetic strengthening should occur, the amplitude of which is proportional to the
surface energy of the fault. However, they report no evidence for such a strengthening in the temperature
range they investigated, near the Néel temperature close to ambient, a priori owing to the weak energy
of the fault at these temperatures. Holzer et al. [34] observed dislocation networks formed by intersecting
dislocations with two different 1/2〈111〉 Burgers vectors, whose sum results in the formation of 〈100〉 junctions.
If these reacting segments had a 〈111〉 Burgers vector instead, the resulting junction would be 〈200〉, which
is highly unstable and would dissociate, which is not observed, thus confirming the 1/2〈111〉 Burgers vectors
of these dislocations. It is worth mentioning that in the TEM observations of Holzer et al., these 1/2〈111〉
dislocations possibly appear by pairs with equal Burgers vector. In this respect, the measured dissociation
distance between two dislocations would be roughly 200 nm, much larger than calculated at 0K, which would
indicate a much lower magnetic fault energy at temperatures as low as 77K. Results of a more detailed study
on the consequences of this fault on the motion of dislocations at finite temperatures are presented in the
next chapter, also considering the disordered PM phase.

1.4. Peierls potential and lattice friction
We now evaluate the Peierls energy barrier opposing 1/2〈111〉 screw dislocation glide in {110} planes,

i.e. the variation of its core energy across the path between two adjacent easy configurations or Peierls
valleys. Two different dislocation setups to calculate the Peierls barrier are used in this study. First using
setup both presented in section 3.1.2 of the Methods, where the two dislocations of the dipole are moved
in the same direction along X from their initial ground state easy core configuration to the next nearest,
the dipole keeping a quadrupolar arrangement. This way, the elastic and magnetic fault energies remains
constant upon crossing of the barrier as the distance between the two dislocations of the dipole is unchanged.
However, we are also interested in evaluating the dislocation trajectory and variations of its relaxation vol-
ume, which requires a different setup where the stress variations caused by the moving dislocations can be
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Figure 5: Peierls energy barrier opposing 1/2〈111〉 screw dislocation glide in a {110} plane obtained in the NM phase with
the dislocation setup where (a) both dislocations glide in the same direction, and (b) in opposite directions. We show in (b)
the NEB energy barrier ∆E (dashed line), the variation of the elastic energy ∆Eelas (dotted line), and the corrected Peierls
potential VP = ∆E−∆Eelas (solid line) as a function of the reaction coordinate ξ. The grey cross at ξ = 0.5 shows the height
of the Peierls barrier obtained in (a). (c) and (d) show the dislocation position along the X and Y axis respectively.
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recorded, referred to as stress (see Methods, section 3.1.3 for details about the setup). The calculation is
performed using the 135-atom simulation cell of height 1b and 2b in the NM and AF phases respectively,
with a magnetic fault located in the {110} glide plane as explained in the previous section. Results using
both setups are presented in Figs. 5 and 8 in the NM and AF phases respectively.

The obtained Peierls barrier using the dislocation setup both is presented in Fig. 5a in the NM phase, in
the 135 and 187-atom simulation cell, for which we note a very satisfactory convergence with the size of the
simulation cell. Differential and absolute displacements maps showing the core structure of the dislocation
at the saddle point of the Peierls barrier are presented in Fig. 6 in the NM phase. This configuration differs
from the hard core presented in Fig. 1b. Indeed, the dislocation drifts away from the center of gravity of
the triangle corresponding to the hard core when crossing the barrier, hence the saddle energy of the Peierls
barrier (25meV/Å in the NM phase) is lower than the energy difference between the easy and hard core
configurations (43meV/Å in the NM phase).

[1̄21̄]

[1̄01]

[111]

(a) (b)

Figure 6: Saddle point configuration of the 1/2[111] screw dislocation in the NM phase shown through (a) differential displace-
ments along the [111] direction, and (b) absolute displacements in the (111) plane (magnified by a factor 35).

Using the stress dislocation setup, where the two dislocations glide in opposite directions, the NEB en-
ergy barrier ∆E needs to be corrected from the variation of elastic energy ∆Eelas caused by the change in
the distance between the two dislocations of the dipole along the path. This process is illustrated in Fig. 5b
in the NM phase. Using the dislocation position (x, y) (Fig. 5c and d) extracted from the stress variations
recorded along the path, the elastic energy variation is evaluated with anisotropic elasticity theory (dotted
line in Fig. 5b). This energy variation ∆Eelas is symmetrical with respect to the saddle point, as expected
from the symmetrical dislocation setup used, and accounts for about one fifth of the total energy barrier
observed in the NEB calculation. The Peierls potential VP (solid line) is then obtained after correcting the
NEB barrier by this change in elastic energy. We find a very good agreement in the height of the Peierls
barrier with setup both (Fig. 5a), where both dislocations glide in the same direction, illustrating the cor-
rectness of the elastic energy calculation and the ability of the approach to lead to a good evaluation of the
Peierls potential, despite these energy variations. The main benefit of these NEB calculations is that they
allowed for the determination of the dislocation position upon crossing of the Peierls barrier. Fig. 5c shows
that the position x differs from a simple proportionality relation x = ξλP with the reaction coordinate ξ.
Most importantly, with a position y > 0 in the glide plane, the 1/2〈111〉 screw dislocation deviates from its
macroscopic {110} glide plane, one of the features responsible for non-Schmid effects in bcc metals [69] and
observed here in Cr, at least in the NM phase.

The results in the AF phase using setup both is presented in Fig. 8a in the 135-atom supercell. We note
that the Peierls energy barrier has the same shape as in the NM phase, with a lower maximum in the AF
phase (23.1 and 26.1meV/Å in the AF and NM phases respectively). The dislocation core has the same
structure in both phases along the minimum energy path, indicating that the magnetic fault a priori does
not disrupt its structure upon crossing of the Peierls barrier. However, due to the magnetic fault, the energy
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[1̄21̄]

[1̄01]

[111]

(a)

(b)

(c)

Figure 7: Differential displacement maps showing the dislocation dipole in the AF phase with a fault laying in the (101) plane
in the (a) initial and (b) final configurations for the calculation of the Peierls potential. The colored rectangles show the range
of the magnetic fault bounded by the two dislocations of the dipole. The saddle configuration located in the middle is shown in
(c). Atoms are represented with different colors and diameters according to their heights and magnetic moments respectively.

of the initial and final states of the NEB calculation differs using setup stress in the AF phase, leading
to a negative slope on the energy barrier (curve I → F on Fig. 8b) as the dislocations erase part of the
magnetic fault when gliding (Fig. 7). With a surface energy γ = 16.3meV/Å2 for the magnetic fault, one
thus expects an energy variation ∆Emag = λP γ = 38.1meV/Å per unit length of dislocation line between
I and F states. Direct ab initio calculations lead to an energy difference in good agreement (Fig. 8b),
only slightly smaller due to the perturbation of the magnetic fault by the dislocation core. To remove this
magnetic contribution from the energy barrier, we consider the same NEB calculation, but read along the
reversed path F → I where the width of the fault is increased by dislocation glide, leading to a positive
slope on the energy barrier (curve F → I on Fig. 8b). Because of the symmetry of the bcc lattice and of
the simulation setup with the quadrupolar position located at the middle of the path, the two paths I → F
and F → I lead to the same variation of both the Peierls (i.e. core) and elastic energies. The average of the
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Figure 8: (a) Peierls energy barrier of the 1/2〈111〉 screw dislocation gliding in a {110} plane in the AF phase using setup both
(b) Energy barriers following the two paths I → F and F → I, with the change in the magnetic fault energy ∆Emag = γx(ξ)
as a function of the reaction coordinate ξ when dislocations glide in opposite directions. (c) Peierls potential VP obtained after
averaging the paths I → F and F → I. The grey cross at ξ = 0.5 shows the height of the Peierls barrier obtained in (a). (d)
and (e) show the position of the dislocation projected along the X and Y axis respectively.
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two energy barriers [∆E(ξ) + ∆E(1− ξ)] /2 therefore cancels the contribution of the magnetic fault while
keeping unchanged all other energy contributions. The same symmetrization procedure, which is sketched
on Fig. 7, is also applied to the stress variations to extract the dislocation position along the path. The
elastic energy variation is then removed from the averaged energy barrier to obtain the Peierls potential VP
(Fig. 8c) following the same method as in the NM phase. A very good agreement between the height of the
Peierls barriers obtained with the two dislocation setups is found (grey cross and solid red line in Fig. 8c).

1.5. Dislocation trajectory and relaxation volume
From the NEB calculation of the Peierls potential using setup stress, where both dislocations glide in

opposite directions, the stress variations recorded along the path give the dislocation position (x, y) in its
glide plane, and also the variations of its relaxation volume tensor ∆Ωij when gliding [45, 79]. These two
quantities obtained in both NM and AF phases are compared in Fig. 9. As previously reported in all other
bcc transition metals [69], the 1/2〈111〉 screw dislocation does not have a straight trajectory gliding from one
Peierls valley to the next nearest in a {110} plane. As presented on Fig. 9b, the screw dislocation leaves
its average macroscopic (101) glide plane to move towards the split core configuration [44], located on the
black atom at the middle of its trajectory. This can be described by a deviation angle α∗, defined by the
tangent to the dislocation trajectory at the position x∗ corresponding to the maximum slope of the Peierls
potential VP (x) shown in Fig. 9a. This gives a deviation angle α∗ of −13.5◦ and −7.0◦ in the NM and
AF phases of bcc Cr respectively, therefore more pronounced in the NM phase in which one thus expects
the twinning/antitwinning (T/AT) asymmetry to be more important in this NM phase. This point will be
exemplified later when comparing the predicted yield properties in both magnetic phases.
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Figure 9: (a) Peierls potential VP in the NM (blue) and AF (red) magnetic phases of bcc Cr as a function of the dislocation
position along X ‖ [121]. (b) Trajectory of the 1/2[111] screw dislocation in its (111) glide plane as extracted from the stress
variations recorded along the stress NEB path. Variations of the non-zero components of the relaxation volume tensor of the
1/2[111] screw dislocation, sketched in the (111) plane in (b), are presented in the (c) NM and (d) AF phases.
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Now that the position of the 1/2〈111〉 screw dislocation is precisely known, we can effectively evaluate
the Peierls stress τP necessary to overcome the energy barriers presented in Fig. 9a, given by:

τP =
1

b
max
x

[
∂VP (x)

∂x

]
, (5)

with b = a0
√

3/2 the norm of the 1/2〈111〉 Burgers vector. We obtain a Peierls stress of 2.3 and 2.0GPa for
1/2〈111〉 screw dislocation glide in {110} planes in the NM and AF phases respectively, indicating an easier
glide in the AF phase. The other important quantity extracted from the presented NEB calculation is the
variation of the relaxation volume tensor of the 1/2〈111〉 screw dislocation in its {111} glide plane, i.e. the
variations of the dilatation field induced by the dislocation in the vicinity of its core. In the frame of the
simulation cell, this tensor has the following form [79]:

¯̄Ω1/2〈111〉 =

Ω11 Ω12 0
Ω12 Ω22 0
0 0 Ω33

 , (6)

where the Ω32 and Ω13 are negligible compared to the other components of the tensor. There is no symmetry
argument imposing the nullity of these components, but as reported in the case of bcc tungsten [45, 79],
post-processing of the two I → F and F → I paths show that this is the case also in both magnetic
phases of bcc Cr. The variations of this relaxation volume tensor as extracted from the stress variations
along the path are presented in Fig. 9c and d as a function of the dislocation position x in the NM and
AF phases respectively. Both the dislocation trajectory and variations of its relaxation volume are obtained
after performing an adjustment of the elastic constants to enforce the symmetry of the dislocation trajectory,
as introduced in the Methods (see section 3.1.3 and Appendix D), with the elastic constants presented in
Tab. 1. This adjustment appears legitimate, given that the shearing of the crystal by the dislocation dipole
induces a change in elastic constants due to anharmonic effects. To check the validity of this approach, the
elastic constants of a dislocated cell were calculated ab initio and compared to the values obtained for the
perfect bulk crystal. Calculations were performed only for the NM phase, and the results are also presented
in Tab. 1, with the adjusted elastic constants chosen to assure the screw dislocation is at the bottom of a
Peierls valley in both its initial and final positions. These elastic constants slightly differ from the one of the
bulk crystal, and the difference is of the same order as the values obtained through the fitting procedure to
enforce the symmetry of the dislocation trajectory.

Table 1: Elastic constants of Cr (in GPa) for the perfect bcc unit cell rotated in the frame of the 1/2〈111〉 screw dislocation
(Perfect crystal), of the simulation cell containing the dislocation dipole (Dislocated crystal), and the adjusted values used to
extract the screw dislocation trajectory and variations of the relaxation volume (Fit).

NM phase C11 C12 C13 C15 C33 C44 C66

Perfect crystal 420 164 191 38 394 155 128
Dislocated crystal 416 174 195 33 382 135 118
Fit 420 164 191 32 394 138 128
AF phase C11 C12 C13 C15 C33 C44 C66

Perfect crystal 338 86 117 45 306 157 126
Fit 338 86 117 35 306 140 126

As also reported in tungsten [45, 79], the dilatation field induced by the 1/2〈111〉 screw dislocation core
does not remain isotropic upon crossing of the Peierls barrier, but develops an elliptical shape. This shape
is defined by its ellipticity ∆Ωe = ∆Ω22 − ∆Ω11, and the tilt of the core deformation 2∆Ω12. The core
dilatation field has a similar tilt component in both magnetic phases (red lines in Fig. 9c and d), but
the ellipticity ∆Ωe (purple lines) is higher in the AF than in the NM phase, indicating a priori a more
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pronounced tension/compression asymmetry in this AF phase. Another important feature of this dilatation
field is carried by the non-negligible trace of the tensor ∆ΩP = ∆Ω11 + ∆Ω22 + ∆Ω33 (grey lines), which
represents the coupling between the dislocation core and an applied pressure. As a consequence of this
last point, the yield stress will become sensitive to applied pressure, which is not the case in bcc tungsten.
Another major difference from what was reported in tungsten is the non-negligible ∆Ω33 component of the
tensor, which should result in a coupling between the core and stresses applied parallel to the dislocation line.

Now that we have a precise knowledge of the dislocation trajectory and variations of its relaxation volume
tensor upon crossing of the Peierls barrier in {110} planes, it becomes possible to study in more details the
yield properties of bcc Cr mediated by 1/2〈111〉 screw dislocation glide, taking full account of the well-known
non-Schmid effects observed experimentally in all bcc transition metals, including Cr [34].

2. Non-Schmid effects and 〈111〉{110} slip activity

2.1. Derivation of a yield criterion for uniaxial loading
With all core properties extracted from ab initio calculations, one can now write the Peierls enthalpy of

the screw dislocation gliding under an applied stress ¯̄Σ as:

∆HP (x) = VP (x)− Σyz b x+ Σxz b y(x)−
∑
ij

Σij ∆Ωij(x), (7)

where y(x) and ∆¯̄Ω(x) are parameterizations of the dislocation trajectory and of its relaxation volume along
the minimum energy path for {110} glide given in the previous section. The yield stress at 0K for any
mechanical loading is defined as the stress at which the function ∆HP (x) ceases to have a saddle point.
In this section, we illustrate the approach by considering a uniaxial mechanical loading, i.e. a tension or
compression test, and develop an analytical generalized yield criterion based on the ab initio data obtained
in the previous section using the method of Kraych et al. [79] detailed in Methods, section 3.1.3. The choice
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Figure 10: (a) Schematic representation of a single crystal under uniaxial loading along an axis ~t, showing the (101) glide plane
of the 1/2[111] screw dislocation and the MRSSP, defining the angles ζ and χ. (b) Angles ζ and χ defining the orientation
of ~t represented in the irreducible region of the stereographic projection for the [111](101) slip system with ζ ∈ [0, 90◦] and
χ ∈ [−30◦,+30◦]. The thick black triangle delimited by [001], [011] and [111] corner axis is the standard stereographic triangle
where the [111](101) slip system has the highest Schmid factor. (c) Projection of the MRSSP in the frame of the 1/2[111]
screw dislocation gliding in the (101) plane. The trajectory of the dislocation in the NM phase is represented by an orange line
between two neighboring easy configurations, showing the deviation angle α∗.
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to focus on a uniaxial mechanical loading is motivated by the variety of experimental data available at low
temperature for all bcc transition metals, and hence the possibility to compare the results of the yield crite-
rion with experiments. However, we stress that the model described here can be applied to any other loading.

Under a uniaxial mechanical loading of magnitude σ applied along an axis ~t, the stress tensor ¯̄Σ is given
by the following, with the tensile axis expressed in the frame of the gliding dislocation [79, 179]:

¯̄Σ(σ, ζ, χ) = σ(~t⊗~t) = σ

sin2 ζ sin2 χ 1/2 sin2 ζ sin 2χ 1/2 sin 2ζ sinχ
sin2 ζ cos2 χ 1/2 sin 2ζ cosχ

cos2 ζ

 , (8)

with ζ the angle between the slip direction (or Burgers vector ~b) of the gliding dislocation and ~t, and χ the
angle between the normal ~n to the glide plane and the plane of maximum resolved shear stress (MRSSP).
A sketch of a sample subjected to a uniaxial loading, showing the angles ζ and χ, with the corresponding
projection in both stereographic space and in the frame of the gliding 1/2[111] screw dislocation is presented
in Fig. 10. As written in Eq. 7, two distinct contributions of the stress tensor appear in the enthalpy barrier
except from the Peierls potential VP . These contributions originate from the coupling between components
Σyz and Σxz with the dislocation trajectory (x, y(x)) in its glide plane, producing a Peach-Koehler force on
the moving dislocation, and non-glide stresses Σij , i.e. which do not produce a net force on the dislocation,
with the variations of its relaxation volume tensor ∆Ωij . To have a physical understanding of the contribution
of the relaxation volumes to the yield stress, it is helpful to define the quantities [45, 79, 180, 181]

∆ΩP = Tr∆¯̄Ω = ∆Ω11 + ∆Ω22 + ∆Ω33

∆Ωe = ∆Ω22 −∆Ω11
(9)

where ∆ΩP represents the coupling with pressure, and ∆Ωe is the ellipticity of the dislocation core field.
Injecting the stress tensor 8 in Eq. 7 the dislocation enthalpy ∆HP per unit length can be written as:

∆HP (x) = VP (x)− 1

2
σb sin (2ζ) [−y(x) sin (χ) + x cos (χ)]

− 1

2
σ sin2 (ζ)

[
∆ΩP (x) + ∆Ωe(x) cos (2χ) + 2∆Ω12(x) sin (2χ)

]
+

1

2
σ
[
1− 3 cos2 (ζ)

]
∆Ω33(x)

(10)

The yield stress σY necessary to overcome the above Peierls enthalpy barrier ∆HP is found at the unstable
position x∗ of the dislocation meeting the following conditions:

∂∆HP

∂x

∣∣∣∣
x∗

= 0 and
∂2∆HP

∂x2

∣∣∣∣
x∗

= 0, (11)

corresponding to the inflexion point of ∆HP (x), assuming both the dislocation trajectory and variations of
its relaxation volume tensor is unchanged upon application of a stress [79] (see Methods, section 3.1.3 for
more details). The following expression for the yield stress σTY under uniaxial tension is then found:

σTY (ζ, χ) =
2τP

sin (2ζ)
cos (χ− α∗)

cos (α∗)
+ β(ζ, χ)

(12)

In the above criterion, β is a function of the angles ζ and χ incorporating all the contributions of the core
dilatation. It only depends on the derivatives of the variations of the relaxation volume with respect to the
position x at the inflexion point x∗ of the Peierls potential as follows:

β(ζ, χ) = sin2 (ζ)

[
∆Ω

′∗
e

b
cos (2χ) +

2∆Ω
′∗
12

b
sin (2χ) +

∆Ω
′∗
P

b

]
−
[
1− 3 cos2 (ζ)

] ∆Ω
′∗
33

b
(13)
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Superscripts ′ and ∗ indicate the first derivative with respect to x and its value at x∗ respectively. Parameters
of the yield criterion in tension are listed in Tab. 2 for the NM and AF phases of bcc Cr. The yield criterion
for compression is found by substituting χ → −χ, α∗ → −α∗ and β → −β in Eq. 12, resulting in the
following expression:

σCY (ζ, χ) =
2τP

sin (2ζ)
cos (χ+ α∗)

cos (α∗)
− β(ζ, χ)

(14)

Comparing Eqs. 12 and 14, when the effect of the relaxation volume is neglected, i.e. β(ζ, χ) = 0, the
difference between tensile and compressive yield stresses is carried by the changing sign of the deviation
angle α∗, reversing the "soft" twinning sense upon changing the sign of the applied stress σ. This effect is
captured by the modified Schmid law introduced by Dezerald et al. [69], having the following expression:

σmSchmid
Y (χ) =

2τP cos (α)

cos (χ− α)
, (15)

where α is the angle between the tangent to the dislocation trajectory at the bottom of a Peierls valley and
the {110} glide plane. As a consequence of this deviation angle, the yield stress is lower when the MRSSP
comes tangent to the dislocation trajectory instead of the {110} glide plane of the 1/2〈111〉 screw dislocation,
resulting in a lower yield stress for negative χ orientation of the loading axis, or the twinning region. The
complex dependence of the β function on ζ and χ makes it more difficult to compare qualitatively the two
criteria, which will be discussed in the following section. It is also of interest to consider the absence of
non-Schmid effects, i.e. considering both the dislocation trajectory to be straight between two adjacent
Peierls valleys (y(x) = 0 and thus α∗ = 0) and the relaxation volume to be constant along this trajectory
(∆Ωij = 0 and thus β(ζ, χ) = 0). The yield criterion in either tension or compression is then:

σSchmid
Y (ζ, χ) =

2τP
sin (2ζ) cos (χ)

=
τP

SF(ζ, χ)
, (16)

where SF(ζ, χ) = sin (2ζ) cos (χ)/2 is the Schmid factor of the slip system. This expression results in the
Schmid law, and is equivalent to Eqs. 12 and 14 with α∗ = 0 and β(ζ, χ) = 0.

Table 2: Parameters of the yield criterion for 〈111〉{110} slip in the NM and AF phases of bcc Cr: Peierls stress τP (GPa),
position x∗ of the inflexion point of the Peierls potential normalized by the distance λP between Peierls valleys, deviation angle
α∗ (◦) of the dislocation trajectory at x∗, and derivatives ∆Ω

′∗
ij of the relaxation volume with respect to x at x∗.

τP x∗/λP α∗ ∆Ω
′∗
11 ∆Ω

′∗
22 ∆Ω

′∗
33 ∆Ω

′∗
12 ∆Ω

′∗
P ∆Ω

′∗
e

NM phase 2.32 0.153 −13.5 +0.025 +0.050 −0.034 +0.067 +0.041 +0.025
AF phase 1.98 0.099 −7.0 −0.013 +0.116 +0.041 +0.119 +0.171 +0.103

The proposed generalized yield criterion differs from that first introduced by Vitek and co-authors [182–
188] and used in various simulation works [189, 190]. As previously discussed [79], Vitek’s criterion considers
a mechanical loading made of a superposition of a shear stress τ in the MRSSP and a non-glide tensile or
compressive stress σ normal to the dislocation line, leading to:

¯̄Σ(σ, τ, χ) =

−σ cos (2χ) −σ sin (2χ) τ sin (χ)
σ cos (2χ) −τ cos (χ)

0

 , (17)

where the two stresses τ and σ are independent. Using this stress tensor in Eq. 7, the obtained criterion
is equivalent to the one presented here in Eqs. 12 and 14, only when the components ∆Ω33 and ∆ΩP of
the relaxation volume can be neglected [79]. As shown in the previous section, such an approximation is
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however not valid for bcc Cr. This is also the case for other bcc transition metals as will be discussed in
Chapter 4, thus motivating the use of more general criteria incorporating all contributions.

With the inclusion of non-Schmid effects, we are now able to consider all possible 〈111〉{110} slip systems
in the evaluation of the yield stress as a function of the orientation of the loading axis. All twelve 〈111〉{110}
slip systems, defined by four different 〈111〉 slip directions, and three {110} glide planes, are presented on a
stereographic projection of the bcc lattice in Fig. 11. In each region delimited by a 〈100〉, 〈110〉 and 〈111〉
orientation, a single 〈111〉{110} slip system has a maximum Schmid factor, and hence necessitates the lowest
yield stress according to the Schmid law (Eq. 16). This defines the standard stereographic triangle for this
system, which are represented in different colors on Fig. 11, showing the projection of the loading axis ~t in
stereographic projection. We will see in the following how the inclusion of non-Schmid effects changes the
predicted slip activity and the distribution of the yield stress among all slip systems.
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Figure 11: Stereographic projection of the bcc lattice showing in different colors the regions where each individual 〈111〉{110}
slip system has the highest Schmid factor. The thick black dashed triangle corresponds to the minimum irreducible zone of the
[111](101) slip system (orange), with ζ ∈ [0, 90◦] and χ ∈ [−30◦,+30◦] as presented in Fig. 10b.

2.2. Deviations from the Schmid law
As presented in Fig. 11, 8 different 〈111〉{110} slip systems are equivalent for a tension or compression

axis corresponding to any 〈100〉 orientation (blue squares), 4 for a 〈110〉 axis (red circles), and 6 for a 〈111〉
axis (green diamonds). Among these equivalent slip systems at each corner orientation, all make the same
angle ζ with the loading axis, but only half share the same positive χ angle, while the other half share
the negative −χ. Therefore, only half of them are sheared in the twinning sense, and the other half in the
antitwinning sense. This is of no consequence considering the symmetrical variation of the Schmid law with
the orientation χ of the MRSSP with respect to the {110} glide plane (Eq. 16), but with the deviation
angle α∗, positive and negative χ are no longer equivalent and systems with χ < 0 (χ > 0) are easier to
activate in tension (compression). This results in a splitting of the slip systems in a twinned and antitwinned
group. Therefore, an accurate picture of the orientation dependence of the yield stress cannot be obtained
considering only a single slip system, but needs to account for all possible slip systems. This also results in
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a reduction of the minimum symmetry-equivalent region of the stereographic space from 1/48 of the whole
sphere, i.e. a single triangle, like predicted by the Schmid law, to 1/24 of the sphere, i.e. two adjacent
triangles. The distribution of the primary 〈111〉{110} slip system, i.e. requiring the lowest yield stress, is
presented in the first rows of Figs. 12 and 13 for the NM and AF phases of bcc Cr respectively, with the
corresponding variations of the yield stress across the stereographic projection of Fig. 10b presented in the
second row. This is done both according to the Schmid law, and including non-Schmid effects in tension
and compression using Eqs. 12 and 14.
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Figure 12: Primary 〈111〉{110} slip systems (first row) and corresponding yield stress σY (second row) for the NM phase of
bcc Cr under uniaxial loading at 0K as a function of the orientation of the loading axis in the stereographic projection: (a)
according to the Schmid law, and the yield criterion of Eqs. 12 and 14 in (b) tension and (c) compression respectively.

According to the Schmid law, only a single primary slip system dominates in each stereographic triangle,
and the variations of the yield stress follow the distribution of its Schmid factor, i.e. with a lower yield
stress near the [001]-[011] edge and the χ = 0 line, and maximum yield stress near the [111] axis. Hence,
the predicted slip activity is identical in the NM and AF phases, with a lower yield stress in the AF phase
due to the lower Peierls stress τP in this phase. Now including non-Schmid effects, multiple primary slip
systems appear within the [001]-[011]-[111] standard stereographic triangle, with different distributions in
tension and compression, and in the two magnetic phases. The region where the expected [111](101) primary
slip system is activated (orange) is shifted towards χ < 0 in tension, and χ > 0 in compression, respon-
sible for the emergence of other primary slip systems close to the edges of the standard triangle, namely
[111](110) (sky blue) in tension and [111](101) (purple) in tension. The predicted slip activity differs in the
two magnetic phases, following the same trends. Indeed, the T/AT asymmetry in the yield stress is more
pronounced in the NM phase, caused by a deviation angle α∗ twice higher than in the AF phase, whereas the
tension/compression asymmetry is more pronounced in the AF phase due to the higher ellipticity component
of ∆¯̄Ω in this phase.

Competition between the different 〈111〉{110} slip systems is better visualized in Fig. 14, showing pro-
files of the yield stress for all systems with the angle χ between the MRSSP and the {110} glide plane for
a fixed ζ angle between the tensile axis and the 〈111〉 slip direction. To emphasize on the sensitivity of the
yield stress on the angle ζ, the σY = f(χ) curves are plotted for three different values of 48, 51 and 54◦. To
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Figure 13: Primary 〈111〉{110} slip systems (first row) and corresponding yield stress σY (second row) for the AF phase of
bcc Cr under uniaxial loading at 0K as a function of the orientation of the loading axis in the stereographic projection: (a)
according to the Schmid law, and the yield criterion of Eqs. 12 and 14 in (b) tension and (c) compression respectively.

relate to the experimental measurement of slip activity, ψ = f(χ) plots for these three ζ angles are presented
in the second row of Fig. 14. Slip activity, or active glide planes, is determined experimentally through
the identification of slip traces dislocations leave on the surfaces of a deformed sample, making an angle ψ
with the expected (101) plane according to the Schmid law. The yield stress profiles highlight the departure
from the Schmid law, each slip system showing a clear T/AT asymmetry in both tension and compression,
and the competition between slip systems. Apart from the primary slip systems, which are reported in the
second row of Fig. 14, the competition between slip systems requiring a higher yield stress also show strong
deviations from the Schmid law, with a change in the difference between their yield stresses. According to
the Schmid law, only the expected [111](101) slip system is predicted in the range of loading orientations
comprised in the standard stereographic triangle, resulting in ψ(χ) = 0 for all χ angles. This is almost the
case in tension in both magnetic phases, except near χ = +30◦ in the NM phase where the [111](110) slip
system, with ψ = +60◦, is predicted to require a lower yield stress. The ψ = f(χ) curves under compression
are almost identical in both magnetic phases, showing a wide range of negative χ angles where the [111](101)
slip system having ψ = +90◦ is predicted.

Non-Schmid effects also manifest themselves through a strong asymmetry between tension and compres-
sion, both in terms of slip activity and yield stress variations, as exemplified in Figs. 12, 13 and 14. The
tension/compression (T/C) asymmetry in yield stresses is best studied as a function of the loading axis in
terms of a strength differential (SD) introduced by Gröger et al. [183, 184]:

SD =
σT − σC

(σT + σC)/2
, (18)

with σT and σC the absolute values of the yield stress in tension and compression given by Eqs. 12 and 14
respectively, for the same orientation of the loading axis. Level plots of the SD are presented in Fig. 15,
considering only the primary expected slip system [111](101) in the left column, and the primary slip system
among all 〈111〉{110} slip systems in the right column, in order to stress the importance of accounting for
all systems when describing the T/C asymmetry [181]. When only the expected [111](101) slip system is
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Figure 14: (Middle row) Normalized yield stress σY /2τP under uniaxial tension and compression for each 〈111〉{110} slip
system as a function of the angle χ in the (a) NM and (b) AF phases of bcc Cr along the ζ ∈ {48◦, 51◦, 54◦} lines shown in
black in the stereographic triangles of the upper row. (Lower row) Corresponding angle ψ between the (101) and the predicted
primary {110} slip plane. Profiles for the three ζ-lines are shifted up and down for clarity.

considered, a non-negligible range of loading orientations show a lower yield stress in compression than in
tension in the NM phase, i.e. SD > 0 in red. This is a direct consequence of the T/AT asymmetry of the
[111](101) slip system, showing a reversing of the easier twinning sense from χ < 0 in tension to χ > 0 in
compression. The yield stress is therefore lower in compression near the [011]-[111] edge of the standard
stereographic triangle, and the opposite near the [001] corner axis. This effect is more pronounced in favor
of compression in the NM phase, and of tension in the AF phase. However, this reasoning is too simplistic as
active slip systems differ inside the standard stereographic triangle when non-Schmid effects are taken into
account, as shown in Figs. 12 and 13. For this reason, it is necessary to consider all possible 〈111〉{110} slip
systems to have a correct representation of the T/C asymmetry. Also, two adjacent triangles are plotted to
account for the reduction of the minimum symmetry-equivalent region of the stereographic projection caused
by the inclusion of non-Schmid effects. When all possible slip systems are accounted for, the distribution of
the SD changes, showing a larger range of orientations where compression is easier than tension in the NM
phase, and the opposite in the AF phase. In this AF phase, the predicted yield stress is lower in tension than
in compression for any orientation of the loading axis, whereas a large part of the stereographic projection
shows a lower compressive yield stress in the NM phase.
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(a) Only [111](101)

NM phase

(b) All slip systems

AF phase

Figure 15: Level plots of the strength differential (SD) of Eq. 18 for single crystals of bcc Cr in the NM (first row) and AF
(second row) magnetic phases under uniaxial loading considering (a) only the [111](101) slip system, and (b) all 〈111〉{110}
slip systems. Levels are indicated by dark lines every 0.1 step.

Due to a lack of experimental data on bcc Cr to compare the predictions of the presented yield criterion
to, the ability of the model to reproduce the experimental features of non-Schmid effects will be tested
in Chapter 4 considering the other bcc transition metals, for which more experimental data are available.
Inclusion of temperature effects through ab initio calculations is now the focus of the following section.

3. Thermal activation and mobility law

As detailed in the Literature review (see section 1.2), a line tension model is able to capture the physics of
dislocation glide through nucleation of kink-pairs along its line, the mechanism responsible for the thermally
activated motion of dislocations at finite temperature. Parameters of such a line tension model can be
extracted from direct ab initio calculations using the methodology introduced in Refs. [85, 191], allowing for
evaluation of the effect of temperature on the yield stress of bcc metals using a multiscale approach, rather
than large supercells containing a kinked dislocation, out of the reach of DFT calculations.

3.1. Line tension model for kink-pair mechanism
In the frame of the line tension (LT) approximation, a dislocation is modeled as an elastic line, whose ease

to bend is quantified by its line tension Γ. The shape of the dislocation is represented by a one dimensional
function x(z), defining its position x in the glide plane as a function of the coordinate z along its line. The
dislocation enthalpy HLT under an applied stress ¯̄Σ in its continuous formulation is given by [85]:

HLT[x(z), ¯̄Σ] =

∫
dz

[
∆HP [x(z), ¯̄Σ] +

Γ

2

(
δx

δz

)2
]
, (19)

with ∆HP the enthalpy of the straight dislocation under a stress ¯̄Σ, given by Eq. 10 whether non-Schmid
effects are included or not. The line tension Γ is assumed to be isotropic, i.e. identical regardless of the
direction of the bowing of the line, and independent of the applied stress. Γ can be extracted with direct ab
initio calculations using the approach of Proville et al. [85, 191], emulating the bow out of the dislocation
line in a simulation cell only 2b-high, which is sketched in Fig. 16. Upon crossing of the Peierls barrier
by the 1/2[111] screw dislocation, only the three [111] atomic columns represented in colors on Fig. 16a
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Figure 16: (a) Trajectory of the 1/2[111] screw dislocation in the NM and AF phases showing in colors the three most displaced
atomic columns in the [111] direction. (b) Displacement δuz of the three [111] atomic columns shown in (a) along [111] as a
function of the dislocation position x projected along the [121] direction. (c) Total energy difference ∆E (brown), change in
Peierls energy 2bVP (grey), and resulting line tension energy HLT (orange) of a kinked 1/2[111] screw dislocation in the NM
(dashed squares) and AF (solid circles) phases as a function of its position x.

move along the z ‖ [111] direction to let the dislocation glide in the (101) plane. Starting from a relaxed
dislocation dipole in a quadrupolar arrangement, a bow out of the line is induced by constraining the height
of these three columns to mimic their displacements as recorded upon crossing of the Peierls barrier only
in the top 1b-high layer of the cell, while keeping the other layer fixed, with the dislocation located at the
bottom of its Peierls valley. To avoid variation of the elastic energy of the dipole, both dislocations are
displaced synchronously in the same direction, with the magnetic fault in the AF phase located in the (101)
glide plane. According to the LT model, the energy of such a kinked dislocation dipole is given by [65, 191]:

HLT(X1, X2) = 2b[VP (X1) + VP (X2)] +
2Γ

b
(X2 −X1)

2
, (20)

where X1 and X2 are the positions of the two 1b-long segments of the line contained in the simulation cell,
in their glide plane. Given that the dislocation lays at the bottom of a Peierls valley in the bottom layer,
i.e. VP (X1) = 0, the energy difference ∆E with respect to the straight relaxed dislocation dipole is:

∆E − 2bVP (X2) =
2Γ

b
(X2 −X1)

2
, (21)

which can be fitted to a quadratic function of the difference in the dislocation positions X2 −X1 to extract
the line tension Γ. The fitted curves to the ab initio data are presented in Fig. 16c, resulting in a line tension
Γ of 1.26 and 3.01 eV/Å in the NM and AF phases of bcc Cr. Now that the two parameters entering the
LT model (the line tension Γ and the Peierls enthalpy ∆HP ) have been computed ab initio, the kink-pair
nucleation enthalpy is found by searching for the critical profile x(z) of the dislocation line crossing one
Peierls valley as the saddle point of Eq. 19. The critical profiles normalized by the distance λP between
Peierls valleys obtained for different magnitudes of the applied stress σ are presented in Fig. 17a, with
the corresponding nucleation enthalpies ∆Hkp in Fig. 17b in the NM and AF phases of bcc Cr. Results
presented in Fig. 17 were obtained using a simple Peierls potential without including non-Schmid effects,
i.e. with y(x) = 0 and ∆Ωij = 0 in Eq. 10, hence only the glide stress Σyz needs to be accounted for.
Non-Schmid effects will be incorporated later, and their impact discussed.
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Figure 17: Results of the line tension model adjusted on ab initio calculations in the NM and AF phases of bcc Cr: (a) line
profiles of a 1/2〈111〉 screw dislocation with a critical kink-pair at different applied stresses σ; (b) kink-pair nucleation enthalpy
∆Hkp as a function of the applied stress σ (symbols) fitted to a Kocks’ law (solid lines); (c) yield stress σY as a function of
the temperature T considering a strain rate ε̇ = 1× 10−5 s−1 and different dislocation densities ρD ∈ {106, 109, 1012}m−2.

The line tension can also be evaluated in the frame of elasticity theory as [12]:

Γelas = T elas(θ = 0) =

[
e+

∂2e

∂θ2

]∣∣∣∣
θ=0

ln

(
wkp

rC

)
, (22)

where e is the prelogarithmic factor to the elastic energy of a straight infinite dislocation of character θ,
wkp is the kink-pair width, and rC is the core cutoff radius, set to the norm a0

√
3/2 of the Burgers vector.

The prelogarithmic factors to the anisotropic elastic energy e and line tension t of a 1/2〈111〉 dislocation
computed numerically with the Babel package [75–77] and the ab initio elastic constants of the two NM
and AF phases are presented in Fig. 18a as a function of the dislocation character θ. The width wkp of
the kink-pair is evaluated under a small but non-zero stress σ = 40MPa, a typical value of the athermal
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Figure 18: (a) Logarithmic prefactor to the anisotropic elastic energy e (solid lines) and line tension t (dashed lines) of the
1/2〈111〉 dislocation in the NM and AF phases of bcc Cr as a function of its character θ. (b) Profiles of the dislocation line
with a critical kink-pair at a stress σyz = 40MPa computed with the LT model in the NM and AF phases using a line tension
Γ of 1.26 and 3.01 eV/Å respectively in the two phases as obtained with ab initio calculations.
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stress [191], resulting in widths wNM
kp = 20.9Å = 8.5 b and wAF

kp = 34.6Å = 14.0 b in the two magnetic
phases. Using Eq. 22 with an equal kink-pair width wkp = 10 b in both magnetic phases, we obtain a line
tension Γelas of 2.03 and 1.55 eV/Å in the NM and AF phases respectively. These close values obtained with
elasticity theory originate from the similar elastic properties of the NM and AF phases of bcc Cr. However,
the LT model with ab initio parameterization gives a much larger line tension in the AF than in the NM
phase, showing a fine atomistic description of the dislocation core and mobility is needed to account for
these effects, which was also reported systematically among all bcc metals by Dezerald et al. [191]. This
difference between the two magnetic phases of Cr, despite their close elastic properties, may be due to the
magnetic fault bounded by the two 1/2〈111〉 screw dislocations, possibly impeding the formation of a kink
along the line due to the added back stress. In the following, we use the ab initio line tensions Γ in all
simulations, starting from the nucleation enthalpy of a kink under an applied stress.

The resulting nucleation enthalpy ∆Hkp as a function of the magnitude σ of the applied stress can then
be fitted to a Kocks’ law of the form [192] (see Fig. 17b):

∆Hkp(σ) = ∆Ekp

[
1−

(
σ

2τP

)p]q
, (23)

with ∆Ekp the kink-pair formation energy under zero stress, τP the Peierls stress in {110} planes, and p and
q are adjustable parameters defining the shape of the stress variation of ∆Hkp. We obtain a formation energy
∆Ekp of 0.80 and 1.27 eV for a pair of two isolated kinks in the NM and AF phases respectively. It has been
proposed that this formation energy can be approximated by ∆Ekp = 4

√
2/π× λP

√
ΓV act

P [191], with V act
P

the height of the Peierls potential. This results in 0.73 and 1.12 eV in the NM and AF phases respectively, in
very good agreement with the values obtained by minimization of Eq. 19, showing ∆Ekp is equally sensitive
to both the line tension and the Peierls potential. All extracted quantities entering the LT model are listed
in Tab. 3, with values of p and q obtained for the simple Peierls enthalpy ∆HP (x) = VP (x). Non-Schmid
effects can then be included using the full Peierls enthalpy of Eq. 10 in Eq. 19, and the resulting kink-pair
nucleation enthalpy can still be fitted to a Kocks’ law, whose parameters now depend on the mechanical
loading under consideration. This results in the following for a uniaxial loading:

∆Hkp(σ, ζ, χ) = ∆Ekp

[
1−

(
σ

σ0
Y (ζ, χ)

)p(ζ,χ)]q(ζ,χ)
, (24)

with the dependence of the yield stress σ0
Y on the orientation of the loading axis (ζ, χ) under a uniaxial

tension or compression given by the yield criteria of Eqs. 12 or 14. This will be used in the following section
to construct a mobility law for 1/2〈111〉 screw dislocations gliding in {110} planes including both non-Schmid
effects and the influence of temperature in the NM and AF phases of bcc Cr.

Table 3: Parameters of the mobility law for the NM and AF phases of bcc Cr: Peierls stress τP (GPa), line tension Γ (eV/Å),
kink-pair formation energy ∆Ekp (eV), and parameters p and q of the Kocks’ law in Eq. 23.

τP Γ ∆Ekp p q
NM phase 2.32 1.26 0.80 0.88 1.39
AF phase 1.98 3.01 1.27 0.89 1.33

3.2. Flow stress at finite temperature and mobility law
Assuming dislocation glide is governed by nucleation of kinks along its line, the dislocation velocity vgl

is then given by the following thermally activated law:

vgl = νD
lD
b
λP exp

[
−∆Gkp

kBT

]
. (25)
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Figure 19: Yield stress σY of the [111](101) slip system in the NM phase at different temperatures as a function of the angle χ
for ζ = 45◦ (a) according to the Schmid law, and including non-Schmid effects in (b) tension, and (c) compression. Parameters
of the model are the same as in Fig. 17. The athermal temperature Tath predicted from Eq. 30 is presented as a function of
(d) dislocation density ρD, and (e) strain rate ε̇. Vertical lines indicate the parameters used in (a)-(c) and Fig. 17.

In the above expression 25, νD is an attempt frequency for the nucleation event of a kink, ultimately leading
to the motion of the dislocation, and taken equal to the Debye frequency (νD = 82THz for Cr [174]). The
ratio lD/b between the length of the dislocation line lD and the norm of its Burgers vector b is the number
of possible nucleation sites for the kink pair. The characteristic length of the line chosen for the model is
estimated by lD = 1/

√
ρD, with ρD the dislocation density [45], a measure of the average distance between

dislocations contained in the microstructure. As expressed in Eq. 25, thermal fluctuations are not taken into
account. After nucleating, a kink-pair has a non-negligible probability to cancel out instead of migrating
along the dislocation line, which lowers the dislocation velocity. This effect can be described in the frame
of classical nucleation theory through the introduction of the Zeldovitch factor Z in the above expression,
accounting for this non-zero probability for kink-pair cancellation. This factor can be evaluated numerically
using the LT model as formulated here, which is done in the work of Hachet et al. on bcc tungsten [193],
or approximated using the kink diffusive glide mechanism introduced by Hirth and Lothe [9]. Fluctuations
are neglected in the present work, but yield lower dislocation velocities than with Eq. 25.
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The kink-pair formation free energy ∆Gkp = ∆Hkp − TSkp has both an enthalpic contribution given by
Eq. 24, and an entropic contribution, which is unknown. Computational methods to evaluate the entropic
contribution, either based on a harmonic approximation [65] or using thermodynamical integration [194], are
however too expensive using ab initio calculations. To study the potential effect of this entropic contribution,
a simple Meyer-Neldel compensation rule [195] is used, assuming the nucleation entropy Skp proportional to
the nucleation enthalpy, i.e. Skp = ∆Hkp/Tm. The parameter Tm is homogeneous to a temperature, which
is observed experimentally to be close to the melting point of the material, set to Tm = 2 180K for Cr [174].
Under this approximation, neglecting entropic contributions is equivalent to considering the Tm →∞ limit,
which will be considered first in the following.
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Figure 20: Yield stress σY of the [111](101) slip system in the AF phase at different temperatures as a function of the angle χ
for ζ = 45◦ (a) according to the Schmid law, and including non-Schmid effects in (b) tension, and (c) compression. Parameters
of the model are the same as in Fig. 17. The athermal temperature Tath predicted from Eq. 30 is presented as a function of
(d) dislocation density ρD, and (e) strain rate ε̇. Vertical lines indicate the parameters used in (a)-(c) and Fig. 17.

Entering the expression for the nucleation enthalpy ∆Hkp incorporating non-Schmid effects, and using
the Meyer-Neldel compensation rule to evaluate the entropic contribution, the nucleation free energy is then:
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∆Gkp(σ, ζ, χ, T ) = ∆Ekp

[
1−

(
σ

σ0
Y (ζ, χ)

)p(ζ,χ)]q(ζ,χ)(
1− T

Tm

)
(26)

From the dislocation velocity vgl given by Eq. 25, one can deduce the rate of plastic deformation ε̇ associated
to a density ρD of mobile dislocations using Orowan’s law, stating:

ε̇ = ρDbvgl, (27)

which can be inverted to obtain an expression of the yield stress σY necessary to activate a slip system at a
given temperature and strain rate. Considering the case of a uniaxial loading, one can use the yield criteria
developed at 0K of Eqs. 12 and 14, which results in the following mobility law in tension:

σY (T, ζ, χ) = σ0
Y (ζ, χ)

(
1−

[
kBT

∆Ekp

Tm

T − Tm
ln

(
ε̇

νDλP
√
ρD

)]1/q(ζ,χ))1/p(ζ,χ)

=

2τP

(
1−

[
kBT

∆Ekp

Tm

T − Tm
ln

(
ε̇

νDλP
√
ρD

)]1/q(ζ,χ))1/p(ζ,χ)

sin (2ζ)
cos (χ− α∗)

cos (α∗)
+ β(ζ, χ)

,

(28)

and in compression by applying the transformations χ → −χ, α∗ → −α∗ and β → −β, resulting in a
similar form to the 0K yield criterion. Neglecting entropic effects, the athermal temperature of the Peierls
mechanism Tath at which the yield stress given by the above law vanishes, is given by:

T 0
ath =

∆Ekp

kB ln

[
νDλP

√
ρD

ε̇

] , (29)

while incorporating entropic effects through the Meyer-Neldel compensation rule gives:

Tath =
T 0

ath

1 +
T 0

ath
Tm

=
Tm∆Ekp

∆Ekp + TmkB ln

[
νDλP

√
ρD

ε̇

] , (30)

equivalent to Eq. 29 in the limit Tm →∞. Entropic effects yield lower energy barriers for kink nucleation,
hence allowing for easier dislocation glide at finite temperature, with a lower athermal temperature Tath. It
is important to note that, regardless of the entropic effects, this critical temperature neither depends on the
orientation of the loading axis nor on the considered slip system, defining the athermal limit above which
dislocation glide is no longer a thermally activated process. The temperature dependence of the yield stress
for 〈111〉{110} slip in the NM and AF phases of bcc Cr are presented in Fig. 17c without the inclusion
of non-Schmid effects, with the corresponding athermal temperatures for different dislocation densities at
a fixed strain rate. Given that the kink-pair formation energy ∆Ekp is higher in the AF than in the NM
phase (Tab. 3), the athermal temperature under the same conditions (ρD, ε̇) is higher in the AF than in the
NM phase. As the 0K Peierls stress is higher in the NM phase, this results in a crossing of the yield stress
temperature variation at which 〈111〉{110} slip becomes more difficult in the AF phase, before fading out
first in the NM phase.

Apart from the parameters derived from ab initio calculations, the choice is left regarding the dislocation
density ρD and the strain rate ε̇. For the choice of ρD, we rely on the model developed by Williams et al.
[101, 102], based on the dislocation density present in a given sample to account for both the shift in the
Néel temperature and the domains of coexistence between the different magnetic phases of bcc Cr they
observed. Using this model, the authors evaluated a dislocation density ρD in annealed samples ranging
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from 108 to 1011 m−2, depending on the annealing temperature and time. As for the strain rate, the value
ε̇ = 1 × 10−5 s−1 was chosen to match experiments of both Holzer et al. [34] for compression tests on
monocrystalline samples at 77K, and Marcinkowski and Lipsitt [126] for tensile tests on a polycrystal of
pure Cr at various temperatures. Now including non-Schmid effects according to the mobility law of Eq.
28, with ρD = 1010 m−2 and ε̇ = 10−5 s−1, the yield stress for the [111](101) slip system as a function of
the orientation χ of the MRSSP at ζ = 45◦ is plotted at different temperatures ranging from 0K to the
critical athermal temperature in the NM and AF phases of bcc Cr in Figs. 19 and 20 respectively. The
dependence of the athermal temperature on the dislocation density ρD and the strain rate ε̇, both neglecting
and incorporating entropic effects, are presented in d and e respectively on both figures for the NM and
AF phases. We note that Tath is only sensitive to these two parameters, as given by Eq. 30, and does not
depend on the considered slip system or the inclusion of non-Schmid effects. A notable feature of the tem-
perature dependence of the yield stress as presented in Figs. 19 and 20 is that deviations from the Schmid
law, both in terms of T/AT and tension/compression asymmetries, become less pronounced with increasing
temperature. The strong deviations reported at 0K in section 2.2 progressively fade out as the temperature
approaches the critical athermal temperature of the Peierls mechanism, where the Schmid law is recovered.
Such a conclusion was also reported using a model 2D Peierls potential coupled with a LT model in the
work of Edagawa et al. [67, 68]. The temperature dependence of non-Schmid effects has been observed
experimentally in other bcc metals, in particular in molybdenum [41], but has not been characterized in Cr.

Marcinkowski and Lipsitt [126] measured an athermal temperature Tath ' 420K in polycrystalline
sample at a strain rate ε̇ ' 10−5 s−1. Under the same conditions, we find Tath ranging from 393 and 359K
in the AF phase, and 265 and 241K in the NM phase for a dislocation density comprised between 108 to
1011 m−2. A better agreement is found considering the AF phase, due to the higher kink-pair formation
energy ∆Ekp. The sensitivity of this critical temperature on the Meyer-Neldel parameter Tm shows the
strong impact of entropic contributions on the yield stress of bcc metals at high temperatures. Accounting
for the vibrational entropy in kink-pair nucleation appears therefore necessary both at low temperatures, to
resolve the discrepancy between experimental and theoretical Peierls stresses [65], and high temperatures
with the need for precise approaches for the evaluation of the vibrational entropy based on thermodynamical
integration [194]. In the particular case of Cr, one needs to keep in mind that the athermal limit of the
Peierls mechanism is close to the Néel temperature TN , ranging from 300 to 450K [6, 100, 101], where
long-range magnetic order vanishes, hence raising the question of the influence of magnetism on its plastic
deformation in the high temperature disordered PM phase, prominent above TN .

Conclusions of Chapter 2:

• The 1/2〈111〉 screw dislocation has an identical compact core structure in both the NM and AF phases
of chromium, like reported in all other bcc transition metals using ab initio calculations.

• The magnetic fault bounded by two 1/2〈111〉 dislocations has the same structure as the infinite fault
obtained in the GSF calculations, with exactly the same surface energy γ = 16.3meV/Å2. Due to its
high energy, the magnetic fault a priori constrains 1/2〈111〉 dislocations to coexist and move pairwise,
creating 〈111〉 superdislocations dissociated in two partial dislocations separated by a magnetic fault
with an equilibrium length of approximately 6 nm at 0K.

• Apart from the magnetic fault, the core structure of the 1/2〈111〉 screw dislocation is identical in both
magnetic phases, with similar Peierls energy barriers and stresses.

• The trajectory of the 1/2〈111〉 screw dislocation in a {110} glide plane deviates towards the split core
position upon crossing of the Peierls barrier, with a deviation more pronounced in the NM phase.
Variations of the screw dislocation relaxation volume show the same trends in both magnetic phases,
with a more pronounced tension/compression asymmetry in the AF phase.

• Using the properties of the 1/2〈111〉 screw dislocations evaluated ab initio, a yield criterion incorpo-
rating non-Schmid effects is derived and applied to the case of a uniaxial mechanical loading. The
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model reproduces the experimental features of the deviations from the Schmid law observed in bcc
metals, namely a twinning/antitwinning and tension/compression asymmetry, with similar qualitative
behaviors in both magnetic phases of bcc Cr.

• Through a line tension model describing the kink-pair nucleation mechanism, with parameters ex-
tracted from ab initio calculations, the thermally activated glide of screw dislocations is accounted
for in the generalized yield criterion and applied to uniaxial loading of bcc Cr. Non-Schmid effects
at finite temperature show the same characteristic features as at 0K, before progressively vanishing
when the temperature approaches the athermal temperature of the Peierls mechanism.

• All these results a priori indicate that 1/2〈111〉 screw dislocations in Cr have a behavior similar to all
other bcc transition metals, except for the presence of a magnetic fault in the AF phase.



Chapter 3: Magnetic excitations and plasticity of chromium

From bulk properties of the different magnetic phases of bcc Cr below its Néel temperature to the study of
1/2〈111〉 screw dislocations in the NM and AF phases, we showed in the two previous chapters that the main
impact of magnetism is the generation of a magnetic fault due to the disruption of the magnetic order by
the Burgers vector of these dislocations. The influence of such a magnetic fault, and generally the impact of
magnetism of the plasticity of bcc Cr has been discussed at zero temperature in the two previous chapters,
which is extended to finite temperatures in the present chapter, in an attempt to qualify the influence of
magnetism on the plasticity of bcc Cr above and below its Néel temperature.

1. Finite temperature and magnetic excitations

Three different energetic models are considered for the study of the magnetic properties of bcc Cr, all detailed
in Methods: spin-polarized ab initio DFT calculations, a tight-binding (TB) model developed for transition
metals [141] and tested previously on bcc Cr [113, 196], and a magnetic interaction model in the frame of
a generalized Heisenberg model, or Heisenberg-Landau model (HL). We now focus on finite temperature
effects on the magnetic properties of bcc Cr, which is performed using the HL model. To ensure both a
good evaluation of the zero temperature properties, which was checked using ab initio calculations in the
two previous chapters, and a satisfactory agreement with experimental data at higher temperature, a careful
fitting procedure of the HL model is required, which is detailed in the following.

1.1. Parametrization of a generalized Heisenberg model for chromium

Let us consider a magnetic system of N atoms located at fixed positions ~Ri, each site having a magnetic
moment ~mi. The Hamiltonian of the system in the frame of the HL model has the following form [144]:

Emag({~mi}) =

N∑
i=1

A||~mi||2 +B||~mi||4 +
∑

j∈1NN(i)

J1 ~mi.~mj +
∑

j∈2NN(i)

J2 ~mi.~mj

 (1)

In the above Hamiltonian, A and B are the Landau parameters, controlling longitudinal magnetic excita-
tions, i.e. the magnitude of the magnetic moments. J1 and J2 are the Heisenberg exchange parameters,
controlling transverse excitations, i.e. the relative orientations of magnetic moments. These exchange pa-
rameters are defined for a shell of nearest neighbors (NN), namely J1 couples first NN (1NN) and J2 second
NN (2NN) atomic sites, as sketched in Fig. 1a for the bcc lattice having an AF order. As written in Eq. 1,
such a Hamiltonian includes up to 2NN interactions. The phase diagram of the Ising model, equivalent to

J1

J2

a0

(a)
(b)

Figure 1: (a) Sketch of the bcc lattice showing the exchange coupling Ji up to second nearest neighbor interactions. (b) Phase
diagram of the Ising model including up to second nearest neighbor (2NN) interactions [197].
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the HL model assuming constant magnitude for all magnetic moments and only collinear phases, is presented
in Fig. 1b in the (J1, J2) plane. In this approximation, the 2NN model has three possible collinear magnetic
ground states, depending on the exchange parameters: ferromagnetic (FM), antiferromagnetic (AF) and
B32 order [197]. The relative stability of these three phases thus depends on the amplitudes and signs
of the exchange parameters of the model. In this respect, positive exchange coupling corresponds to FM
interactions, and negative exchange to AF interactions between neighboring sites.

We know that bcc Cr has an AF magnetic ground state at 0K according to ab initio calculations, which
is also predicted by the TB model [113]. Therefore, the parameters (A,B, J1, J2) of the HL model must
be chosen as to ensure the AF order has the lowest energy among the three phases appearing on Fig. 1b.
To ensure a good reproduction of the 0K ab initio properties, these parameters are extracted from a fit
of Eq. 1 to reference DFT energies of these three possible collinear ground states of the model to ensure
the correct hierarchy between them. As collinear phases, the only variables are the lattice parameter a0,
defining distances between neighboring atoms, and the magnetic moment m0. The results of the fit to DFT
data at three different values of a0 are presented in Fig. 2 for the AF, FM and B32 phases as a function of
m0, which are all considered in the fit since they represent three possible collinear ground states of the 2NN
HL model (see Fig. 1b). Inclusion of the B32 phase necessitates the use a 2× 2× 2 bcc unit cell. One sees
that apart from the AF phase, neither the FM or B32 phase is stable according to ab initio calculations, re-
gardless of the lattice parameter or magnetic moment, which was also reported in previous studies [110]. To
construct the DFT database including these highly unstable phases, we thus used constrained spin-polarized
calculations, which are detailed in Methods (see section 1.1.7). Different lattice parameters were included in
the fit to evaluate the distance dependence of the parameters of the model. This is motivated by the interest
in computing the energy of simulation cells containing dislocations, which induce a local distortion of the
lattice in the vicinity of their cores, and thus non homogeneous distances between atoms. The resulting
parameters (A,B, J1, J2) of the model as obtained from the fitted curves of Fig. 2 are presented in Fig. 3a
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Figure 2: (a) AF, (b) FM, and (c) B32 magnetic phases included in the fitting procedure of the HL model, with corresponding
magnetic energy Emag obtained with ab initio DFT (circles) and the HL model (solid lines) as a function of the magnetic
moment m0 at three different lattice parameters a0. Atoms in red (blue) have a positive (negative) magnetic moment.
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as a function of the lattice parameter a0.
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Figure 3: (a) Variations of the parameters (A,B, J1, J2) of the HL model with the lattice parameter a0 adjusted to the DFT
energies of the three collinear phases of Fig. 2. (b) Global exchange coupling parameter J appearing in Eq. 2 as a function of
the distance r between neighboring atoms. The values of J1 and J2 are reported using circles.

The variation with the lattice parameter a0 of the Landau parameters A and B, and the Heisenberg
exchange couplings J1 and J2 for 1NN and 2NN interactions are presented in Fig. 3a. We note that both
A and B have the same value over the whole range of a0 included in the fit, whereas the amplitude of the
exchange parameters J1 and J2 decrease with increasing lattice parameters, with positive values across the
whole range. However, in the AF phase, 1NN interactions occur between two opposite sign spins, resulting in
a negative AF coupling between them, and 2NN interactions couple magnetic moments pointing in the same
direction, resulting in a positive FM coupling between them. The constant values for A and B result from
a choice in the fitting procedure to impose this constraint. Indeed, this is motivated by the fact that these
Landau parameters control the on-site magnetic energy, which is assumed to be independent on the lattice
parameter a0. The inclusion of the distance dependence of the exchange coupling allows for considering a
system of N atoms located at positions ~Ri, which can now differ from the perfect crystal. The Hamiltonian
of the HL model of Eq. 1 thus becomes:

E({~mi}, {~Rij}) =

N∑
i=1

A||~mi||2 +B||~mi||4 +
∑

j∈NN(i)

(
J(||~Rij ||) ~mi.~mj

)
with J(||~Rij ||) =

3∑
n=0

jn × ||~Rij ||
n

(2)

where the exchange parameters (J1, J2) are replaced by a global function J of the distance ||~Rij || between
the two neighboring atomic sites i and j. This function encapsulates both 1NN and 2NN interactions, and
allows to include a distance dependence of the exchange coupling. A polynomial function of the interatomic
distance is chosen for J , which we checked gives the best agreement with the parameters obtained from the
fit to the energy of the three AF, FM and B32 phases as a function of both the lattice parameter a0 and
the magnetic moment m0. However, a range of distances r is not covered by the fit (between the orange
and green shaded zones in Fig. 3b), in which the variation of the exchange parameter J with r is a direct
consequence of the polynomial form chosen. A more physical expression can be obtained in the frame of the
RKKY theory [198], for which indirect exchange coupling is expressed as:

JRKKY(r) = J0 ×
2kr cos (2kr)− sin (2kr)

rα
, (3)
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where k is the Fermi wave-vector, J0 defines the amplitude of the exchange coupling, and the exponent α its
decay with increasing distance r. Results obtained from a fit to the RKKY relation 3 are plotted with dashed
lines on Fig. 4e, for which a less satisfactory agreement is found with respect to DFT data, however offering
a physical meaning for the choice of the function. Nevertheless, we note that this formulation also yields a
decay in the magnitude of the exchange parameter J , in agreement with the polynomial form in the range of
distances not covered by the DFT data. A polynomial function was thus chosen for all following presented
results. This choice is also motivated by the good agreement found with ab initio calculations in terms of
the excess magnetic energy obtained along the 〈111〉 γ-line in {110} and {112} planes, detailed in section 1.3.
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Figure 4: Fitting of the Set2 parameters of the HL model on the DFT energies of the (a) AF, (b) FM, and (c) B32 magnetic
phases. (d) Variation of the parameters (A,B, J1, J2) with the lattice parameter a0. (e) Global exchange coupling J with
respect to the interatomic distance r using Set1 and Set2 parameters. Results of a fit to Eq. 3 are plotted in dashed lines.

The aim of the developed HL model is to study finite temperature magnetic excitations. In this respect, a
good reproduction of the Néel temperature TN of bcc Cr must be ensured by the model. Its evaluation is the
focus of section 1.4, with details about the simulation and algorithm for the Monte Carlo simulations given
in Methods (see section 2.1.1). As obtained from a fit to DFT data, ensuring a good reproduction of the 0K
magnetic properties (Fig. 2), a Néel temperature TN = 1 050K is predicted by the model, overestimated
with respect to experiments reporting TN between 300 and 450K depending on the sample [6, 100, 101].
To lower the predicted TN , we deteriorated the agreement for the two high-energy FM and B32 phases
included in the fit by lowering by the same factor the energies predicted by the model compared to reference
DFT values. Otherwise, the same DFT database as in Fig. 2 is used, without degrading the properties
of the AF phase, the ground state of the model. The resulting fitted energy and parameters obtained for
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this new set of parameters are presented in Fig. 4. These parameters will be referred to as "Set2" in the
following, the original parameters being referred to as "Set1". Lowering the energy of the unstable FM and
B32 phases results in a lower energy barrier associated with the loss of long-range magnetic order, i.e. when
transitioning to the high-temperature paramagnetic (PM) phase above TN . These new Set2 parameters
result in a lower predicted TN = 384K, in the range of experimental values. However, such readjustment
degrades properties of the model associated with the high-energy FM phase and some magnetic excitation
modes, which will be discussed in the following section.

The energies of the three collinear AF, FM and B32 phases predicted by these new Set2 parameters (Fig.
4a-c) show a perfect agreement for the AF ground state of the model, and lower energies than Set1 for the
two unstable FM and B32 phases, whose energies were lowered by a factor 1/4 with respect to DFT data to
reduce the predicted TN as discussed above. The values for the two sets of parameters of the HL model are
presented in Tab. 1 at the equilibrium 0K ab initio lattice parameter a0 = 2.865Å of the AF phase. We
note that Set1 parameters have higher amplitudes than Set2, a consequence of the fitting procedure adopted
for Set2, except for B which is the same for both sets. The variation of the exchange coupling J for the two
sets (Fig. 4e) shows a different variation across the range of 1NN, 2NN and the blank region in between.
The ability of these models to reproduce predicted 0K ab initio properties is discussed in section 1.3.

Table 1: Values of the two Set1 and Set2 parameters of the HL model for a0 = 2.865Å, the 0K equilibrium lattice parameter
of the AF phase obtained from ab initio calculations. The experimental Néel temperature TN is 311K [6].

A B J1 J2 j0 j1 j2 j3 TN
HL (Set1) 209.0 9.4 38.0 11.8 −1.75 1.94 −0.67 0.07 1 050
HL (Set2) 53.3 9.4 11.7 2.7 −1.63 1.71 −0.58 0.06 384

At finite temperature, magnetic excitations allow for the exploration of higher energy magnetic structures,
whether operating through modulation of the amplitude of magnetic moments, referred to as longitudinal
excitations, or by inducing a disorientation of the spins with respect to each other. The latter corresponds
to transverse excitations described by the Heisenberg exchange coupling parameter J , operating through
the exploration of non-collinear magnetic structures defined by a disorientation of the spins called magnons
(see section 2.1.3 in Methods), discussed in the next section.

1.2. Spin spirals and transverse magnetic excitations
At finite temperature, magnetic fluctuations operate through excitation modes of the spin structure in

the form of elementary spin spiral called magnons. A spin-spiral of wave-vector ~q defines the angle Φ the
magnetic moment of an atom located at the position ~Ri makes in the plane orthogonal to the propagation
of the spiral, in the following form:

Φ(~Ri) = Φ0 + ~q. ~Ri (4)

As introduced in Methods (section 2.1.3), the magnitude of the spins along the propagation of these spirals
remains constant. In bulk bcc Cr, these non-collinear structures are known to be highly unstable for any
wave vector [110, 113]. A direct ab initio evaluation of their energy over the whole Brillouin zone would
thus be very costly, since one needs to account for both non-collinear magnetism and spin-orbit coupling, in
constrained magnetism calculations. A few ab initio points were however evaluated for small disorientation
of the AF order. Such constrained calculations are less costly in the TB formalism [141], thus allowing for
direct evaluation of the magnon spectrum, i.e. the energy of spirals of wave-vectors ~q spanning the entire
Brillouin zone. Given the very good agreement of the TB model with ab initio data (see Methods, section
1.2), the TB magnon spectrum will serve as a reference to test the validity of the HL model in the following.
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Using the HL model, the energy E(~q,m0) of a spin spiral of wave-vector ~q and a constant magnetic moment
m0 has an analytical expression [199], given by:

E(~q,m0) = Am2
0 +Bm4

0 +
∑
k∈iNN

∑
j∈kNN

J
(
||~Rk − ~Rj ||

)
m2

0

[
1− ei~q.(~Rk−~Rj)

]
, (5)

corresponding to a sum over the shells of nearest neighbor interactions (NN) included in the model (Eq. 1).
This results in the following expression considering the two 1NN and 2NN nearest neighboring shells:

E(~q,m0) = Am2
0 +Bm4

0 − 8J1m
2
0

(
1− cos

(a0qx
2

)
× cos

(a0qx
2

)
× cos

(a0qx
2

))
− 2J2m

2
0

(
[1− cos (a0qx)] + [1− cos (a0qy)] + [1− cos (a0qz)]

) (6)

The magnon spectrum of bcc Cr across the Brillouin zone is presented in Fig. 5a at the equilibrium ab
initio lattice parameter a0 = 2.865Å and magnetic moment m0 = 1.1µB , obtained with Eq. 6 for the HL
model and compared to TB calculations and a few DFT data. The special points Γ and H of the Brillouin
zone correspond to the FM and AF phases respectively, which are the two extrema of the magnon spectrum.
The magnon density of states (mDOS) g(E), shown in b, is obtained through integration of the spectrum
over the entire Brillouin zone. The magnon energies are plotted with respect to the AF ground state of the
model, i.e. E(~q,m0)− Emag

AF (m0), to highlight the excitation energy they represent.
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Figure 5: (a) Magnon spectrum of bcc Cr E(~q,m0)−Emag
AF (m0) obtained with constrained ab initio DFT calculations (orange

dots), the TB model (thick grey lines), and with Eq. 6 for the HL model with Set1 (blue) and Set2 (red). Energies are obtained
at the equilibrium ab initio lattice parameter a0 = 2.865Å and magnetic moment m0 = 1.1µB of the AF phase, along the
high-symmetry path Γ − H − P − Γ − N − P − N − Γ of the Brillouin zone (see inset [162]), with Γ = (0, 0, 0) (FM phase),
H = (1,−1, 1) (AF phase), P = (1/2, 1/2, 1/2) and N = (0, 0, 1). (b) Magnon density of states (mDOS) g(E) of the HL model
with Set1 and Set2 parameters.

The TB spectrum shows a very good agreement with the few ab initio data calculated near the H-point,
showing spirals having intermediate energies located between Γ and H. The results of the HL model using
Set1 (blue) are in good agreement with the TB calculation, which is very satisfactory since the parameters
of the HL model were adjusted on energetics of collinear magnetic phases only. Only the cusp near P is not
obtained in the TB spectrum. The second set of parameters, Set2 (red), predicts a lower energy for these
non-collinear magnetic excitations, with however the same variation with ~q as obtained with Set1. Since the
paramagnetic (PM) phase of bcc Cr above the Néel temperature is mostly characterized by an orientational
disorder between magnetic moments (see Literature review, section 3.1.1), an accurate picture of these
spirals is required to have a good description of magnetic excitations occurring at finite temperatures.
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1.3. Validation of the HL models
Before moving on to magnetic properties at finite temperatures, we test in the present section the ability

of the HL models to reproduce the 0K magnetic properties of bcc Cr obtained using ab initio calculations.
The surface energy of infinite {110} and {112} magnetic faults, obtained by shearing the crystal by a fault
vector 1/2〈111〉 in these two planes are presented in Tab. 2 obtained with DFT and the HL model with the
two sets of parameters. We find a very good agreement of the magnetic fault energy γ between ab initio
calculations and Set1 parameters of the HL model, and a less satisfactory agreement with parameters Set2,
a direct consequence of the fitting procedure used to construct it. Indeed, such magnetic faults originates
from a ferromagnetic frustration in the two planes located in the direct vicinity of the fault plane, where
spins of the same direction are forced to face each other. Since the energy of this highly unstable FM phase
has been lowered in the fitting of Set2 parameters, the energy of the magnetic fault is thus lower.

Table 2: Computed properties of the HL model compared to DFT: bulk magnetic moment m0, energy of the NM and SDW
(of period 20 a0) phases with respect to the AF phase, surface energy γ of the magnetic fault in {110} and {112} planes,

DFT HL (Set1) HL (Set2)
m0 (µB) 1.10 1.14 1.14

∆ENM (meV/atom) 12.5 12.5 12.5
∆ESDW (meV/atom) 10.4 8.6 4.8
γ{110} (meV/Å2) 16.2 15.1 8.7
γ{112} (meV/Å2) 16.4 15.1 8.7

To test the validity of the polynomial function chosen to interpolate the distance variation of the exchange
coupling J(r) of the HL model (see Fig. 4e), we also considered the variation of the GSF magnetic energy
γmag
GSF along the 〈111〉 γ-lines in the two {110} and {112} planes, presented in Fig. 6. This magnetic energy

is defined as the total excess energy of the system in the AF phase, at its equilibrium lattice parameter
a0 = 2.865Å, from which the energy of the identical structure in the NM phase is substracted without
relaxing the system. For a 1/2〈111〉 fault vector, the perfect crystal is recovered, and the GSF magnetic
energy corresponds to the surface energy of the infinite magnetic fault also presented in Tab. 2. Between
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Figure 6: Magnetic contribution to the GSF energy γmag
GSF along the first half of the 〈111〉 γ-line in a (a) {110}, and (b) {112}

plane in the AF phase obtained with ab initio DFT calculations (solid circles), and the HL model with Set1 (dashed squares)
and Set2 (dotted squares) at the equilibrium lattice parameter a0 = 2.865Å of the AF phase.
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the two perfect crystals at 0 and 1/2〈111〉, the rigid shearing along the two γ-lines yields positions which do
not correspond to bulk atomic sites, thus allowing to test the validity of the interpolated J(r) function. We
see that the magnetic GSF profiles in both {110} and {112} planes obtained with Set1 of the HL model
is in good agreement with DFT data, with similar variations but lower energies obtained using Set2. Now
that the predictions of the model are validated with respect to 0K ab initio calculations, we can move on
to magnetic properties at finite temperatures using these HL models, starting with bulk thermodynamical
properties and energetics in the following section.

1.4. Thermodynamical magnetic properties of bulk bcc chromium
Evaluation of the equilibrium magnetic properties of bulk bcc Cr with temperature is the focus of the

present section. Thermodynamical quantities are obtained as detailed in Methods (section 2.1.2) upon sam-
pling of the magnetic energy of the system with temperature using a Metropolis Monte Carlo algorithm.
This method gives access to the average of the magnetic energy Emag of the system with temperature,
from which other properties can then be derived. When the Boltzmann statistics is used in the Metropolis
algorithm, i.e. with a scaling factor η(T ) = kBT used in the acceptance probability p(E) = exp [−E/η(T )],
the magnetic heat capacity Cmag

P does not converge to zero at temperatures near 0K, resulting in a non-zero
magnetic entropy at zero temperature. To overcome this issue, quantum statistics must be included at low
temperature using a Bose-Einstein distribution, which is done following the approximation of Woo et al.
[161, 163]. The resulting scaling factor is presented as a function of temperature in Fig. 7 for the two sets
of parameters of the HL model. This quantum statistics encapsulates the quantization of magnetic excita-
tions at low temperature, operating through excitation of magnons (see the magnon spectrum in Fig. 5b).
The scaling factor η is evaluated through integration of the magnon DOS (mDOS) at a given temperature
following the method of Woo et al. [163], which consists in a temperature dependent rescaling of the upper
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limit in energy of the mDOS. The resulting mDOS are presented on the left column of Fig. 7 at different
temperatures below TN (see Methods, section 2.1.3 for more details about the approximation). This yields
a zero scaling factor η close to 0K, and the recovery of a classical Boltzmann distribution above TN .

A first step to construct such an appropriate quantum statistics is to evaluate the Néel temperature TN
predicted by the HL model, in order to perform integration of the mDOS up to TN (see Methods, section
2.1.3). Since both classical and quantum statistics converge at TN , its value does not depend on the statistics,
and can be evaluated properly using a classical Boltzmann distribution. The value of TN is defined as the
temperature from which long-range magnetic order vanishes completely. The magnitude of this long-range
order is measured using an order parameter O defined as the sum of the average magnetizations over the
two sub-lattices S1 and S2 of the AF order, i.e. with spins ↑ and ↓ respectively, as:

O =
1

m0

[ ||∑i∈S1
~mi||

N/2
+
||∑j∈S2

~mj ||
N/2

]
, (7)

with m0 the 0K bulk magnetic moment of the AF phase, and N the number of atoms contained in the
simulation cell. When the system is in its AF ground state, the order parameter is equal to 1, with all mag-
netic moments of magnitude m0 and opposite signs on each sub-lattice. The temperature evolution of the
order parameter obtained using the classical and quantum statistics is presented in Fig. 7 for the two Set1
and Set2 parameters of the HL model, and compared with experimental data [6], with Néel temperatures
TN of 1 050 and 384K respectively (see section 1.1). As a reference, the experimental TN measured on a
perfect single crystal of bcc Cr is 311K [6]. We note that the temperature dependence of the long range
magnetic order (right on Fig. 7) obtained using the classical Boltzmann distribution is not in agreement
with experiments, rapidly decreasing at temperatures close to 0K. Indeed, as the thermal energy given to
the system is non-zero close to 0K, the magnetization of the system falls at temperatures where quantum
effects should prevent the system to evolve. This quantization effect results in the small decrease slope close
to 0K reported experimentally, which is well reproduced using the quantum scaling factor in the Metropolis
algorithm. The magnetic energy Emag, free energy Fmag, entropy Smag and heat capacity Cmag

P of bulk bcc
Cr as a function of temperature obtained with the two statistics are presented in Fig. 8, highlighting the
importance of including quantum effects to correctly evaluate the magnetic properties with temperature,
most particularly for the magnetic heat capacity Cmag

P , entropy Smag and free energy Fmag.

As presented in Fig. 7, the order parameter O (Eq. 7) falls to zero at the Néel temperature TN . This
parameter is a measure of long range magnetic order, which vanishes completely at TN , with a temperature
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evolution in very good agreement with experimental data using quantum statistics. Some experimental
works qualify the magnetic disorder of the PM phase as an orientational disorder rather than a collapse
of the magnitude of atomic magnetic moments [105]. The temperature variation of the average magnetic
moment obtained with the HL model (Set2) is presented in Fig. 9a, showing its decrease from its 0K value
m0 up to TN , and which starts increasing above. To fully qualify the magnetic properties of the PM phase,
another important quantity is the remaining magnetic short range order (MSRO), which is measured as the
average correlations between magnetic moments of neighboring atoms:

MSROnNN = 〈~mi.~mj〉 =
1

m0
2

 1

N

N∑
i=1

1

Zn

∑
j∈nNN(i)

~mi.~mj

 (8)

where nNN is the nth shell of nearest neighbors containing Zn sites. The correlation between two magnetic
moments is calculated as the scalar product between them. The temperature variation of the average MSRO
between first nearest (1NN) and second nearest (2NN) neighbors are presented in Fig. 9b with the long
range order parameter O. As discussed in the Literature review (see section 3.1.1), remaining MSRO has
been observed experimentally up to approximately 11 bcc unit-cells at 700K (i.e. 2.25 × TN ) by Grier et
al. [98]. Other references, using similar neutron scattering experiments, showed persistence of magnetic
order in the PM phase up to lower temperatures of approximately 500K (i.e. 1.6 × TN ) [99, 200]. Results
presented in Fig. 9b show the disappearance of long range order at TN , with a remaining MSRO above TN ,
in qualitative agreement with experiments, with a stronger correlation between 1NN than 2NN neighbors.
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Figure 9: (a) Average magnetic moment 〈||~mi||〉 as a function of temperature. (b) Magnetic correlations measured using the
order parameter of Eq. 7 (grey), and the average magnetic short range order (MSRO) between first (MSRO1NN) and second
(MSRO2NN) nearest neighbors. All presented results are obtained using Set2 parameters for the HL model.

2. Magnetism and plasticity of chromium at finite temperature

At zero temperature, both generalized stacking fault (GSF) calculations and the study of 1/2〈111〉 screw
dislocations revealed the generation of magnetic faults when the crystal is sheared by the Burgers vector of
dislocations in the AF phase. From these results, this magnetic fault appears as the only major impact of
magnetism on the plasticity of bcc Cr, its energy being the main controlling parameter. In the present section,
the temperature evolution of the magnetic fault generated by 1/2〈111〉 shear is studied using the HL model.
As discussed above, the two Set1 and Set2 parameters are suited for studying different properties: Set1 gives
better 0K energies with respect to ab initio calculations, while Set2 gives a satisfactory reproduction of the
experimental value of TN , with less satisfactory 0K properties. The next section focuses on the study of
the magnetic fault generated upon shearing by 1/2〈111〉 at finite temperatures using the statistics presented
here. All results are obtained using Set2 for the HL model unless otherwise specified.
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2.1. Infinite magnetic faults
As presented in Chapter 1, the rigid shearing of the crystal by a fault vector equal to the 1/2〈111〉 Burgers

vector results in the generation of magnetic faults, with a surface energy γ = 16.3meV/Å2 at 0K, regardless
of the fault plane (see Appendix B for a more extended study of the orientation dependence of the fault
energy using the TB model). The structure and energy of this magnetic fault is the same when generated
by the introduction of 1/2〈111〉 dislocations in the crystal. A discussed possible consequence of this magnetic
fault on the plasticity of bcc Cr is the pairing of 1/2〈111〉 dislocations, resulting in 〈111〉 superdislocations
dissociated in two partials separated by a magnetic fault. This phenomenon was predicted by Marcinkowski
and Lipsitt [126], which should be responsible for a magnetic strengthening below the Néel temperature,
the magnitude of this effect being controlled by the energy of the fault. The authors reported no evidence
of such strengthening close to the Néel temperature, therefore indicating the weak energy of the fault near
the disappearance of long-range magnetic order. However, from the magnetic fault energy calculated at
0K, we reported an equilibrium dissociation distance of about 6 nm, which should bear consequences on the
plasticity of bcc Cr, assuming a non-negligible energy up to the Néel temperature. We now focus on the
temperature evolution of such faults, to check if the results obtained at 0K hold with temperature.

At finite temperature, one needs to account for the entropic contribution Smag to the total energy of the
system, which is described by its free energy Fmag = Emag−TSmag, with Emag the internal energy. We only
focus on the magnetic part of such free energy calculations since it is the only accessible quantity through the
HL model. The free energy of a magnetic fault ∆Fmag is evaluated through a thermodynamical integration
over the temperature range where the magnetic energy ∆Emag of the fault is sampled. To do so, the value
at a reference point needs to be known, which we checked is the case above the Néel temperature TN in
the PM phase, at approximately 5TN/4, where the energy of the fault is zero since long-range magnetic
order has vanished. More details about the evaluation of ∆Fmag are given in Methods, section 2.1.2. The
magnetic energy of the infinite fault is evaluated as the excess energy of the crystal when sheared by a fault
vector 1/2〈111〉 contained in the fault plane with respect to the perfect crystal, in the same way as the 0K
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GSF presented in Chapter 1. The crystal is sheared by a vector 1/2〈111〉 in the fault plane, which is also
applied to the periodicity vectors of the simulation cell to maximize the distance between periodic images of
the fault (see Chapter 1, section 2.1). The resulting magnetic fault internal and free energies of an infinite
magnetic fault contained in a {110} and a {112} plane are presented in Fig. 10. The heat cycle is shown in
a, where temperature is increased starting from 0K and initializing all magnetic moments to the AF ground
state of the model in all three Cartesian directions, i.e. mx

i = my
i = mz

i = m0/
√

3, where m0 is the 0K bulk
magnetic moment. Similarly, the cooling cycle is presented in Fig. 10b, where the system is initialized in
its disordered PM phase at temperature 5TN/4 before being gradually cooled down to 0K. The simulation
cell has periodicity vectors corresponding to X = 8× [121], Y = 11× [111] and Z = 13× [101] for the {110}
magnetic fault (shown in red), and reversing X and Z for the {112} magnetic fault (shown in green).

Upon heating the system, the energy of the magnetic fault (upper panel in Fig. 10a) starts at the 0K
value reported in Tab. 1 for the two {110} (red) and {112} (green) planes, before starting decreasing up
to approximately 140K, from which the energy of both faults stays constant, with a smaller fault energy,
before ultimately vanishing at the Néel temperature TN ' 380K, where the disappearance of long-range
magnetic order do not allow for a magnetic fault to exist anymore. The situation is slightly different when
the system is cooled starting from temperatures above TN , showing a constant magnetic energy as soon as
magnetic order is recovered, down to 0K. The energy of this structure arising at TN is equal to the one
found upon heating the same system in the temperature range between 140K (i.e. ' TN/3) and TN , lower
than the collinear fault found below 140K upon heating the system from the AF structure. However, the
atomic structure of the system is identical in the faulted and the perfect crystal. Such a magnetic structure
with non-zero excess energy with respect to the AF ground state is thus stabilized upon cooling the system
due to the constrain imposed by the periodicity vectors of the simulation cell, which are sheared by the
same amount as the fault plane, thus forcing two spins with the same sign to face each other. We will dis-
cuss below the structure of the two different configurations of the magnetic structures evidenced from Fig. 10.

The free energy ∆Fmag of the faults is given by Eq. 9, obtained through integration of their magnetic
energies ∆Emag, whose detailed derivation is given in Methods (see section 2.1.2):

∆Fmag(β) =
1

β

∫ β

β′=βref

∆Emag(β′)dβ′, (9)

with β = 1/kBT the inverse temperature. In the above equation, the reference is taken at 5TN/4 to ensure
both the magnetic energy ∆Emag and free energy ∆Fmag of the fault are equal to zero (see Fig. 10). If one
considers the free energy of a magnetic fault whose energy is constant up to the Néel temperature TN , its
integration using Eq. 9 gives a linearly decreasing free energy with temperature, like reported in Fig. 10:

∆Emag(T ) = cte→ ∆Fmag(T ) = cte×
(

1− T

TN

)
, (10)

assuming the fault energy vanishes at TN . Details about this model variation and other free energy profiles
for different model temperature evolution of the magnetic fault energy are presented in Appendix C. The
resulting magnetic fault free energy in both {110} and {112} planes are presented in the two lower panels
of Fig. 10. Upon cooling the system, the magnetic free energies show this characteristic linearly decreasing
temperature evolution, as soon as magnetic order is retrieved at TN with the non-collinear structure of the
system, before vanishing at TN . When the system is heated starting from 0K, the transition between the
two structures yields a change in the shape of the free energy, starting with a steep decrease before 140K,
and a linear decrease in 1− T/TN above, matching the cooling cycle. We now describe these two magnetic
structures evidenced by the HL model in the thermal cycles of Fig. 10, presented in Fig. 11.

We first consider the collinear structure (upper row in Fig. 11), which corresponds to the configuration
of the fault found below 140K upon heating. The variation of the magnetic moments ~mi along the direction
orthogonal to the fault plane shows all three Cartesian components of the spins decrease down to zero in
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Figure 11: Structures of the collinear and non-collinear configurations of the (a) {110}, and (b) {112} magnetic faults obtained
after relaxation using ab initio calculations, with the profiles of the three Cartesian components of the spins along the normal
to the fault plane. The relaxed magnetic structures obtained with the HL model are identical.

the vicinity of the fault for both {110} and {112} planes (indicated by black vertical dashed lines), with
mx
i = my

i = mz
i . The fault is thus confined in the vicinity of the sheared plane, with an identical structure

up to approximately 140K, when heating the system. Now considering the configuration found above 140K
to TN upon heating, or below TN upon cooling, one sees it shows a non-collinear structure (lower panels in
Fig. 11). Instead of a localized magnetic fault, characterized by a reduction in the magnitude of the spins,
a structure similar to a spin spiral arises. In this configuration, the perturbation spreads over the entire
simulation cell, with a spiral of periodicity dictated by the separation distance dcell. With the inclusion
of non-collinear magnetism, another possibility to resolve the magnetic frustration is indeed to induce a
disorientation of magnetic moments, keeping a constant magnitude, in the direction orthogonal to the fault
plane, keeping a local AF order in each stacked {110}, or {112}, plane. The energy cost associated with
such disorientational perturbation is less than a local reduction of the amplitude of the magnetic moments
due to the ferromagnetic frustration of the magnetic moments in the vicinity of the fault plane, which thus
corresponds to the true magnetic ground state of the system. Another indication of the properties of this
non-collinear structure is the multiplicity of possible spiral-like profiles having the same energy but different
magnetic structures, two of which are presented in Fig. 12 for both {110} and {112} infinite faults. Similar
to a propagating wave, the nodes of the spiral are not bounded to any topological defect, nor are stabilized
by the 1/2〈111〉 fault vector since these structures arised upon cooling the system starting from a random
initial configuration in the PM phase, above TN . They are thus allowed to take any orientation in the
volume of the simulation cell, all energetically equivalent, with a relative disorientation between adjacent
planes defined by the separation distance dcell.

The stability and relative energy of the two collinear and non-collinear configurations of this magnetic
structure evidenced using the HL model is evaluated with ab initio calculations. In this respect, non-collinear
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Figure 12: Two different equal energy configurations of the non-collinear structure arising from a rigid shearing by a 1/2〈111〉
vector in (a) {110} and (b) {112} planes located at the middle of the cell, obtained by minimization of the HL model (Set1)
starting with an initially random structure. The definition of the axis is the same as in Fig. 11.

magnetism needs to be included, along with spin-orbit coupling to also incorporate the dependence of the
magnetic moments on crystallographic directions. We initialized the calculations with the relaxed structures
obtained with the HL model. The ab initio relaxed structures are presented in Fig. 11 for the two infinite
{110} and {112} magnetic faults, both found identical to the predictions of the HL model. The two simula-
tion cells contain 28 stacked {110} and 24 {112} planes respectively, which correspond to a separation dis-
tance between periodic images of the fault d{110}cell = 28×a0

√
2/2 ' 56.7Å and d{112}cell = 24×a0

√
6/6 ' 28.1Å.

We now study the energy of both collinear and non-collinear magnetic structures arising from the rigid
1/2〈111〉 shearing with respect to the separation distance dcell at 0K, for the two {110} and {112} planes,
using the HL model with parameters Set1, and compared to ab initio data. The results of this convergence
study are presented in Fig. 13. As opposed to the collinear fault, whose energy γfault converges to a constant
non-zero value equal in both fault planes, the surface energy of the non-collinear structure tends to zero
for an infinite separation distance between periodic images of the fault, in both {110} and {112} planes.
The slope of this decreasing excess energy is the same in both planes, equal to 221meV/Å using the HL
model, indicating a similar phenomenon takes place in both cases, as for the collinear structure. Hence, a
description of this non-collinear structure as a fault does not hold since convergence of its energy cannot
be achieved by increasing the separation distance dcell. These non-collinear structures are similar to a spin
spiral as presented in Fig. 5, defined by a relative disorientation of the magnetic moments keeping a constant
magnitude along the propagation direction of the spiral. When the fault planes are spaced from each other
by an infinite distance, this relative disorientation between magnetic moments tends to zero, where the AF
order is retrieved, and the energy of this structure thus falls to zero.

A more accurate description of this non-collinear structure would be similar to an elastic perturbation,
which is not located in a defined region but instead spreads over the entire volume of the cell, and whose
energy therefore decreases with increasing separation distance, since a larger volume is available to accom-
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Figure 13: Energy γfault of the (a) collinear, and (b) non-collinear structures as a function of the separation distance dcell
between {110} (red) and {112} (green) fault planes obtained with ab initio (circles) and the HL model with Set1 (squares).

modate the perturbation. In this respect, the temperature evolution of the excess energy contained in the
crystal after a rigid 1/2〈111〉 shearing, presented in Fig. 10 reveals that the magnetic fault vanishes below the
Néel temperature TN . Indeed, as demonstrated at 0K on Fig. 13, the energy of the non-collinear structure
arising after this transition temperature depends on the separation distance dcell between periodic images of
the fault, and therefore the size of the simulation cell. Another important consequence of this structure is
that upon cooling the system from the disordered PM phase down to lower temperatures, no magnetic fault
can be retrieved. This was to be expected since the structure of the faulted crystal is identical to the bulk.

2.2. Magnetic fault bounded by two 1/2〈111〉 screw dislocations
We now study the temperature evolution of the magnetic fault when generated by a 1/2〈111〉 screw dislo-

cation dipole. Quantification of its energy will be the focus of the next section when studying the magnetic
contribution to the core energy of these dislocations. When studying the magnetic fault generated by the
introduction of 1/2〈111〉 dislocations at 0K in the previous chapter, we found that both its structure and
energy are very similar to the case of the infinite fault, in both {110} and {112} planes. This observation
has been further enforced by the TB study presented in Appendix B considering any possible orientation of
the habit plane of the magnetic fault. However, both these ab initio and TB calculations were performed in
the collinear magnetism approximation. These collinear calculations thus not allow the system to develop
a non-collinear structure as an alternative possibility to the creation of a magnetic fault, and which was
found to arise in the previous section 2.1, and whose structure is however not compatible with a fault. We
now focus on the finite temperature properties of such magnetic faults when generated by 1/2〈111〉 screw
dislocations, in a similar way as the 0K calculations presented in the previous chapter.

The simulation cell used for this study is similar to supercells used in ab initio calculations and pre-
sented in the Methods, with periodicity vectors ~p1 = 21/2 [121] − 39/2 [101], ~p2 = 21/2 [121] + 39/2 [101],
and ~p3 = 6× 1/2[111], containing 14 742 atoms. As in the 0K calculations presented in the previous chapter,
the 1/2〈111〉 screw dislocation dipole is introduced in a quadrupolar arrangement using anisotropic elasticity
theory, with the magnetic fault bounded by the two dislocations laying in the (101) plane, which in the
present simulation cell results in a distance d = 73.7Å between the two dislocations. We chose to use a
6b-high supercell (n3 = 6), which is sufficiently large to allow for magnetic fluctuations in each direction
of the cell without periodic boundary effects. The structure of the magnetic fault bounded by the two
1/2[111] screw dislocations of the dipole is presented in Fig. 14 at three different temperatures, recorded
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Figure 14: Evolution of the magnetic fault bounded by two 1/2[111] screw dislocations (black dots) upon heating from the 0K
collinear configuration in (a) to (b) 150K (' 2TN/5) and (c) 200K (' TN/2). The colors correspond to the projections mx

i ,
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i , and m
z
i of the magnetic moments along the x, y, and z axis respectively, according to the legend in the upper left of (a).

upon heating the system starting from 0K and initializing all magnetic moments to their AF configurations,
with mx

i = my
i = mz

i = m0/
√

3 to better visualize the different variations of the three Cartesian components
of the spins recorded upon heating and cooling the system. All configurations are presented in the plane
orthogonal to the direction Z of the dislocation line at z = h/2, with h the height of the simulation cell.
The magnetic structure of the system is however identical in each 1b-slice along Z.

The collinear structure of the magnetic fault in the (101) plane at 0K (Fig. 14a) is the same as obtained
in ab initio calculations, with a reduction of the magnitude of the magnetic moments in the vicinity of the
fault plane in the region bounded by the two 1/2[111] dislocations to accommodate the magnetic frustra-
tion. As the temperature is increased (Fig. 14b), this linear fault starts to fluctuate in space, developing
different components along the three Cartesian directions. Through magnetic excitations, the fault caused
by the dislocations is allowed to take a non-collinear structure where the frustration is partially resolved by
inducing a disorientation of the spins in the region bounded by the two 1/2[111] screw dislocations, similar
to the case of the infinite fault presented in the previous section. In this configuration, the magnitude of
the spins is constant over the whole simulation cell, except in the direct vicinity of the dislocation cores
where the strong lattice distortion causes a local reduction of the magnetic moments. The non-collinear
magnetic structure obtained upon cooling the system from the high-temperature PM phase above TN down
to 0K is presented in Fig. 15. Profiles of the magnetic moments along the thick black dashed lines reveal
the structure of the fault in directions orthogonal and contained in the plane defined by the two 1/2[111]
screw dislocations of the dipole, showing a similar but more complex structure as obtained for the infinite
structures in the previous section. Indeed, the three components of the spins in the infinite non-collinear
structure show a sinusoidal modulation in the direction orthogonal to the fault plane (see Fig. 11), which
does not hold for the bounded magnetic fault presented here, especially for the mz

i component as shown in
the upper panel of Fig. 15c. Another important feature of this structure, which is better visualized on the
spin maps of Fig. 15a and b, is that this non-collinear structure is not contained in the plane defined by the
relative positions of the two dislocations, contrary to the collinear fault, but instead spreads over the entire
simulation cell. The stability and energy of this configuration was not checked using ab initio calculations
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Figure 15: Non-collinear structure bounded by two 1/2[111] screw dislocations (black dots) projected along (a) ~y and (b) ~z. (c)
Profile of the magnetic moments along the x and y dashed lines in (a) and (b). The structure is presented at 0K, obtained
upon cooling the system starting from initially random spins in the PM phase.

since the computational cost needed to include both non-collinear magnetism and spin-orbit coupling in a
simulation cell containing at least 270 atoms would be drastically high. We are still confident in the validity
of the presented results using the HL model, since it has proven its ability to predict correct energetics in
the case of the infinite magnetic structures.

The magnetic structure obtained upon cooling from the high-temperature PM phase to 0K are presented
in Fig. 16 for two different distances d between the two bounding 1/2[111] screw dislocations of the dipole, in
the same simulation cell as in Figs. 14 and 15. These two non-collinear structures are almost identical, also
similar to the one of Fig. 15 obtained with a larger distance d = 73.7Å, except the magnetic fault covers
a narrower region. As the distance d is reduced, the structure of the fault between the two dislocations
tends to the form of a domain wall, with a modulation of magnetic moments showing a sharper transition
near their positions (indicated by black dots). Similar to the case of the infinite faults in the previous
section, the magnetic structure bounded by two 1/2〈111〉 screw dislocations has a collinear structure below
a temperature of approximately 150K in the simulations presented in this section. Above 150K and up to
TN upon heating the system, a non-collinear structure is stabilized, which is also found upon cooling from
the PM phase above TN when long range magnetic order is retrieved. We will focus in the next section on
quantifying the energetics of the magnetic structure contained in the dislocated simulation cell, in particular
regarding the nature of the non-collinear perturbation arising upon cooling.



Chapter 3 - Magnetic excitations and plasticity of chromium Page 113

-0.75µB 0 +0.75µB

mx
i

(a) T = 0K, d = 45.6Å

y

x
z

my
i

mz
i

−100 0 100
Position along y ‖ [1̄01] (Å)
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Figure 16: Structure of the non-collinear magnetic fault at 0K bounded by two 1/2[111] screw dislocations separated by a
distance (a) d = 45.6 and (b) d = 26.9Å projected along the three Cartesian directions. The profiles of the magnetic moments
along the constant x and y black dashed lines shown on the each spin map is presented below.
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Experimentally, signatures of the existence of magnetic faults have been reported in the works of Ravlić et
al. [127], Lagoute et al. [201] and Kleiber et al. [128, 202] using spin-polarized STM at {100} surfaces at room
temperature. The authors observe the emergence of pairs of 1/2〈111〉 screw dislocations at {100} surfaces,
responsible for monoatomic steps of height a0/2 (i.e. the projection of ~b = 1/2〈111〉 along a 〈100〉 direction),
with a0 the lattice parameter. Magnetic contrast imaged in the region close to these dislocations show the
presence of magnetic domain walls bounded by two dislocations, of width of a few hundred nanometers.
When going through all experimental works mentioned above, it appears that depending on the sample and
observation conditions, the fault is not necessary visible through the magnetic contrast. Since spin-polarized
STM is only sensitive to the projection of the surface magnetization onto the tip magnetization, it may be
a consequence of the non-collinear configuration of the magnetic structure bounded by 1/2〈111〉 dislocations
shown in Fig. 15. Indeed, different contrasts can be obtained depending on the relative orientation between
the direction resolved in the spin images and the direction of the non-collinear perturbation. To properly
model these systems in similar conditions, we would need to introduce 1/2〈111〉 dislocations going through
surfaces, after evaluating the ability of the HL model to give an accurate description of surface magnetism,
which was not checked in this work. Occurrence of AF magnetic domains a few micrometers large were also
observed with X-ray diffraction in bulk single crystals at temperatures near the spin-flip transition Tsf by
Evans et al. [203]. However, upon cooling the sample through Tsf, the authors reported that these domains
disappear below Tsf, where the magnetic order of Cr changes from transverse to longitudinal SDW.

2.3. Magnetic energy of the 1/2〈111〉 screw dislocation core
We now study the evolution of the magnetic contribution to the core energy of 1/2〈111〉 screw dislocations

with temperature. In a similar way as the total energy of a simulation cell containing a dislocation dipole
was partitioned in the previous chapter to evaluate the core energy at 0K, the total magnetic energy of a
simulation cell containing a dislocation dipole is partitioned as:

Emag
tot = Emag

bulk + Emag
fault + 2Emag

core + Emag
elas , (11)

where the magnetic elastic energy Emag
elas is not considered, given the magnetic contribution to the elastic

constants in the frame of a HL model is negligible [118, 204] and atomic relaxation is not allowed here.
Assuming the magnetic fault energy to be proportional to its surface S = d × h, with h the height of the
simulation cell in the 〈111〉 direction and d the distance between the two dislocations of the dipole, we have
Emag

fault = Sγfault. The total excess magnetic energy contained in the simulation cell at temperature T is:

∆Emag(d, T ) = Emag
tot − Emag

bulk

= d× γfault(T ) + 2Emag
core (T ),

(12)

with all energies normalized by the height h of the simulation cell in the Z direction parallel to the dislo-
cation line. The magnetic energy of the bulk Emag

bulk is evaluated in the same simulation cell as presented in
Figs. 14 and 15, before introducing the 1/2〈111〉 screw dislocation dipole. The above partition of the excess
magnetic energy ∆Emag is expressed as a linear function of the distance d between the two dislocations of
the dipole, with a slope corresponding to the surface energy of the fault γfault. Taking advantage of Eq. 12
using the same simulation cell as in the previous section 2.2, the distance d is varied to reduce the range of
the magnetic fault, allowing for the evaluation of the magnetic energy of the system as a function of both d
and the temperature T . All dislocated simulation cells are constructed using anisotropic elasticity theory,
similar to the other calculations presented. The variation of the excess energy ∆Emag as a function of the
distance d at various temperatures is presented in Fig. 17a and b upon heating and cooling the system
respectively. A fit of the energies ∆Emag of these different systems to Eq. 12 at a given temperature T then
allows to simultaneously extract the magnetic contribution to the core energy of the dislocations Emag

core , and
the magnetic fault energy γfault at this temperature T . The linear fits are very satisfactory above a certain
distance marked by a vertical black dashed line, below which the excess magnetic energy does not behave
linearly, probably due to finite size effects for short separation distances. The magnetic energies of interest
are therefore obtained from fitting to the excess energies obtained for larger distances d. This demonstrates
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Figure 17: Excess magnetic energy ∆Emag of the simulation cell containing a 1/2〈111〉 screw dislocation dipole as a function
of the distance d between the two dislocations at various temperatures recorded upon (a) heating, and (b) cooling the system.

the validity of the proposed decomposition of the total energy of the system, at least up to temperatures
close to TN where fluctuations deteriorate this linear variation. This allows for a separate definition of the
contributions of the fault and dislocation cores to the total energy of the system, verifying the magnetic con-
tribution to the core energy of the dislocations is independent on their environment (see Fig. 18). When the
system is heated starting from 0K, the slope of the linear variations of the excess magnetic energy decreases
up to approximately 150K, from which it stays relatively constant up to the Néel temperature TN (384K),
before finally vanishing above. Across the temperature range where magnetic order prevails, the value at
the origin remains almost constant, which according to the energy partition of Eq. 12 is a measure of the
magnetic contribution to the core energy of the dislocations. Now considering the cooling cycle (Fig. 17b),
we see that below TN , the linear variation of ∆Emag is almost independent of the temperature, showing
some fluctuations as the temperature increases, indicating a constant excess energy, which suddenly drops
to zero at TN where long-range magnetic order vanishes.

The slope and value for d = 0 obtained from Fig. 17b at each temperature T gives the energy γfault
of the magnetic fault, and the magnetic core energy Emag

core respectively, which are presented in Fig. 18 as
a function of T , upon both heating and cooling the system. The magnetic energy and free energy of the
fault (second column in Fig. 18) show a similar temperature dependence as the infinite fault presented
in the previous section. Upon heating the system starting from 0K, a collinear magnetic fault is found
between the two dislocations contained in the simulation cell, whose structure is presented in Fig. 14a. This
structure is stable up to approximately 180K, with a linearly decreasing energy with temperature. From
180K to the Néel temperature, the non-collinear magnetic structure is stabilized by thermal fluctuations,
with a constant energy lower than the collinear fault. This non-collinear perturbation spread over the entire
simulation cell thus represents the true magnetic ground state of the system. However, similarly to the case
of the infinite fault presented in the previous section, this structure may not be considered as a fault if its
energy depends on the volume of the simulation cell. To check this possibility, the same calculations need
to performed for different cell sizes, which was not done at this point. This non-collinear structure also
arises spontaneously upon cooling the system, with a constant magnetic energy across the whole range of
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Figure 18: (Left) Magnetic energy (triangles) and free energy (circles) of a 1/2〈111〉 screw dislocation core as a function of
temperature. (Middle) Surface fault energy (squares) and free energy (circles) of the magnetic fault separating the two 1/2〈111〉
screw dislocations as a function of temperature. (Right) Dissociation distance ddiss of the 〈111〉 screw superdislocation as a
function of temperature. Simulations are performed with parameters Set2, upon (a) heating, and (b) cooling the system.

temperatures scanned except near the Néel temperature TN where fluctuations in the energy do not allow
for a proper separation of the two contributions to the magnetic energy. Upon cooling through TN , the slope
of the total excess magnetic energy of the system given by Eq. 12 shows a sudden increase, before falling
and then remaining constant down to 0K with the same value as found upon heating the system between
180K and TN . Similar magnetic energy profiles with temperature, showing an increased energy near the
disappearance of long-range magnetic order has been previously reported in the case of domain walls in
different systems [205]. Considering the magnetic contribution to the 1/2〈111〉 screw dislocation core (first
column in Fig. 18), similar temperature variations are found upon heating and cooling the system, with
almost constant energy across the whole range of temperature below TN , except near 0K upon the heat
cycle where this contribution falls. Due to the steep decrease of the magnetic fault energy, separation of the
two contributions is difficult in this temperature range, yielding the decrease of the magnetic core energy to
the 1/2〈111〉 screw dislocation. This similar temperature dependence found whether heating or cooling shows
that contrary to the fault, the core energy of the dislocations does not depend on the magnetic structure of
the system. Similarly to the fault, the magnetic contribution to the core energy vanishes when long-range
magnetic order disappears at TN . This yields a linearly decreasing free energy with increasing temperature.

We stress that, similarly to the case of infinite magnetic faults of the previous section, the presented
magnetic energy and free energy of the fault obtained upon cooling the system may also depend on the size
of the simulation cell since the cooling cycle yields the non-collinear structure presented in Figs. 15 and 16.
To check if a non-collinear fault can be defined when bounded by two 1/2〈111〉 dislocations, contrary to the
infinite structure, the same calculation must be performed in simulation cells with different sizes. This is to
check that the magnetic energy of the fault and of the dislocation core are identical for the same separation
distance d between the two 1/2〈111〉 screw dislocations, but contained in a simulation cell of different size.
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This study is not completed at the time, but preliminary results tend to show the situation is the same as
in the case of the infinite magnetic fault, i.e. convergence of the magnetic fault energy cannot be achieved
by increasing the size of the simulation cell. Thus, across the temperature range where the non-collinear
structure arises, i.e. upon the whole cooling cycle and above a given temperature below TN (' 180K in the
present simulations) upon heating the system (black shaded regions in Fig. 18), a magnetic fault cannot
be defined properly. Further discussion about the dissociation of possible 〈111〉 superdislocations, which
require the existence of such faults, are therefore only valid upon heating up to a temperature below TN ,
which is approximately 180K in the presented calculations.

Using the free energy γfault of the magnetic fault bounded by the two 1/2〈111〉 screw dislocations (Fig.
18), the equilibrium dissociation distance of the 〈111〉 screw superdislocation is evaluated with anisotropic
elasticity theory using the 0K elastic constants, similar to the evaluation at 0K presented in Chapter 1:

ddiss(T ) =
b
(1)
i Kijb

(2)
j

γfault(T )
=

b2
√
C ′C44

2πγfault(T )
, (13)

which is presented in the third column of Fig. 18 as a function of the temperature T upon heating the
system up to 180K, since heating above this temperature stabilizes the non-collinear structure which a
priori cannot be defined as a fault. Such dissociation distance cannot be neither properly defined across the
whole cooling cycle since no magnetic fault exist. Considering only the heating cycle, up to approximately
180K (or TN/2) where a magnetic fault can be properly defined, its decreasing free energy with temperature
yields a dissociation distance ddiss rapidly increasing up to a few hundreds of nanometers. In the temperature
range between 180K and TN , since the magnetic fault has already vanished, the two 1/2〈111〉 dislocations
are free to move without a magnetic fault forcing them to coexist and move pairwise. This holds across the
whole cooling cycle, where the non-collinear magnetic structure is stabilized as soon as long range magnetic
order is retrieved at TN , down to 0K. In this case, the two dislocations are also free to move independently,
nevertheless bounding a non-collinear magnetic structure as shown in Fig. 15.

500 nm

500 nm

(a) Holzer et al. [34] (b) Lagoute et al. [201]

(c) Ravlić et al. [127] (d) Kleiber et al. [128] (e) Kleiber et al. [202]

Figure 19: Experimental observations of the possible signature of a magnetic fault bounded by two 1/2〈111〉 dislocations: (a)
TEM image of Holzer et al. [34] showing two pairs of screw dislocations intersecting to form 〈100〉 junctions in a single crystal
compressed at 77K; (b) to (e) spin-polarized STM magnetic contrast images of various experimental works [127, 128, 201, 202]
showing a magnetic fault bounded by two 1/2〈111〉 screw dislocations emerging from {100} surfaces at room temperature.
Horizontal thick black lines in all figures correspond to 500 nm. Arrows show the positions of the dislocations at the surface.
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All existing experimental evidence of such a magnetic fault are presented in Fig. 19. In the TEM
observation of Holzer et al. [34] at 77K shown in (a), two pairs of 1/2〈111〉 screw dislocations with the same
Burgers vector intersect to form a network of 〈100〉 junctions, such dislocations being spaced from each
other from an approximate distance of 200 nm, which could be due to dissociated pairs of these dislocations.
However, even if the sample was deformed at 77K, which is below the temperature of disappearance of the
magnetic fault (' TN/2), the analysis and imaging were performed at room temperature in the electron
microscope. It is therefore probable that the magnetic structure is arranged in the non-collinear structure
where the two dislocations are then free to move independently. Spin-polarized STM magnetic contrast
images recorded at {100} surfaces of Lagoute et al. [201], Ravlić et al. [127] and Kleiber et al. [128, 202] at
room temperature (Fig. 19b to e) show the magnetic structure bounded by two 1/2〈111〉 screw dislocations
with opposite Burgers vectors emerging at the {100} surface of the sample, and separated by a distance
ranging from 250 nm to 1µm. The variation in the magnetic contrast clearly shows signature of a magnetic
frustration between the two dislocations, extending over an approximate domain size of the order of a few
hundreds of nanometers. These experimental observations were recorded at room temperature, which is
very close to the Néel temperature TN . However, our results show that the magnetic fault generated by
1/2〈111〉 dislocations has must probably already disappeared at this temperature. In this respect, since
there is still evidence of a modulation of magnetic moments in the region between the two dislocations, the
recorded magnetic contrast are possibly imaging the non-collinear structure of Fig. 15, in a temperature
range where the two bounding dislocations are already free to move. If the existence of these dissociated
〈111〉 superdislocations is to be confirmed, a careful experimental procedure is required to ensure they are
visible. In the light of the presented results, post mortem imaging at room temperature of the dislocation
microstructure present in a deformed sample should not allow for their observation. To do so, in situ TEM
straining observations of samples deformed below TN/2 is required, e.g. at 77K, to ensure dislocation
sources have emitted paired dislocations separated by a magnetic fault of finite energy.

Conclusions of Chapter 3:

• Through formulation of the magnetic energy of in the frame of a Heisenberg-Landau model parametrized
for bcc Cr, a Metropolis Monte Carlo algorithm allows for the exploration of different types of magnetic
structures when thermal energy is given to the system operating through longitudinal (amplitude) and
transverse (orientation) magnetic excitations.

• Two sets of parameters are determined for the Heisenberg-Landau model through a fit to DFT data.
This model yields a satisfactory picture of the 0K properties of bcc Cr, with better energetics using
Set1, and a good estimate of the Néel temperature TN using Set2. The bulk thermodynamical prop-
erties obtained using the quantum statistics gives a good agreement with experimental magnetization
curve of bcc Cr up to the Néel temperature where long-range magnetic order vanishes in the PM phase.

• The energy of the magnetic fault caused by shearing of a 1/2〈111〉 vector decreases upon heating the
system to a temperature below TN , where its structure takes a non-collinear configuration to partially
accommodate the magnetic frustration caused by the fault vector.

• Upon cooling a crystal rigidly sheared by a 1/2〈111〉 vector, a non-collinear magnetic structure similar
to a spin spiral with a lower energy than the magnetic fault appears. With an energy reaching zero for
infinite separation distance between fault planes, this structure cannot be considered as a fault, but is
the true magnetic ground state of the system. Magnetic faults caused by 1/2〈111〉 shear therefore only
exist in a collinear structure found upon heating, with a free energy falling to zero before TN .

• Upon heating the system in the temperature range where the magnetic fault still exists, the dissociation
distance of possible 〈111〉 superdislocations rapidly stretches up to a few hundreds of nanometers.
Both the magnetic fault and the dislocation core internal and free energies decrease with increasing
temperature. These magnetic faults vanish below TN , and a non-collinear spiral-like structure bounded
by two 1/2〈111〉 dislocations is stabilized.
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• These results showed the magnetic internal and free energies of both the fault and the dislocation core
vanish at the Néel temperature TN , which enforces the conclusion that above TN , 1/2〈111〉 dislocations
should glide freely without dragging magnetic faults behind them. As a result, the study of plasticity
in the disordered PM phase of bcc Cr can be reasonably approximated by the NM phase.



Chapter 4 - Non-Schmid effects across bcc transition metals

We now extend the generalized yield criterion presented in Chapter 2 for bcc Cr to all bcc transition metals,
based on ab initio evaluation of the properties of the 1/2〈111〉 screw dislocation gliding in {110} planes.
Such a systematic study across bcc transition metals allows quantifying similarities and differences between
different metals, and in particular to conclude on whether Cr shows a similar yield behavior compared to
other bcc metals. We also test the ability of the presented model to predict the plastic behavior of these
metals by directly comparing the results of this "ab initio" yield criterion to experiments.

1. Core properties and mobility of 1/2〈111〉 screw dislocations

We present in this section the core properties of the 1/2〈111〉 screw dislocation gliding in a {110} plane in all
bcc transition metals. The following results are obtained using the stress dislocation setup (see Methods,
section 3.1.3, Fig. 7) for the simultaneous evaluation of the Peierls potential VP , dislocation trajectory (x, y)

and variations of its relaxation volume tensor ∆¯̄Ω in the {111} plane orthogonal to the dislocation line. The
simulation cell is the same as for the NM phase of Cr presented in Chapter 2, with 135 atoms per b in
the direction of the line. The 1/2〈111〉 screw dislocation dipole is introduced in the cell using anisotropic
elasticity theory using the 0K ab initio elastic constants presented in Tab. D.1 of Appendix D.

1.1. Peierls potential
The Peierls potentials VP after elastic correction are presented in Fig. 1 as a function of the dislocation

position x along the glide direction [121]. The height of the barriers obtained using setup both (see Methods,
Fig. 6) where both dislocations of the dipole glide in the same direction, hence with negligible elastic energy
variation, are indicated by grey crosses at x = λP /2. We note a very good agreement between both setups,
highlighting the validity of the elastic correction, necessary for the setup stress. The obtained potentials
are smooth with respect to the dislocation position and allow for the determination of the Peierls stress τP
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Figure 1: Peierls potential VP of the 1/2〈111〉 screw dislocation gliding in a {110} plane as a function of its position x for all
bcc transition metals obtained after performing the elastic energy correction using the setup stress. Grey crosses located at
x = λP /2 indicate the heights of the Peierls barriers obtained using the dislocation setup both. Vertical dashed lines indicate
the position of the inflexion point x∗/λP of the Peierls potential.
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necessary to overcome the Peierls barrier VP (x), with:

τP =
1

b
max
x

∂VP
∂x

∣∣∣∣
x

(1)

The values of τP are presented in Tab. 1, which compare very well with previous studies using different
ab initio parameters, dislocation setup and definition of the dislocation position [191]. In particular, the
same hierarchy of the Peierls stresses between different bcc transition metals is found. We also note that
all Peierls potentials are sharp close to the bottom of the Peierls valleys, i.e. near x = 0 and λP , and form
cusps, in contrast with the sinusoidal shape assumed in simple models [206].

1.2. Dislocation trajectory and relaxation volume
The trajectory of a 1/2[111] screw dislocation in the (111) plane is presented in Fig. 2. They display the

same distinctive departure from their macroscopic (101) glide plane, as previously reported by Dezerald et
al. [44, 69] in all bcc transition metals using ab initio calculations, and also reported in Cr considering both
its NM and AF phases in Chapter 2 [180]. The deviation is quantified by the angle α∗ that the trajectory
makes with the (101) plane at the inflexion point x∗ of the Peierls potential [45, 180] (see Tab. 1). It can be
directly linked to the twinning/antitwinning (T/AT) asymmetry characteristic of bcc metals [69]. A good
agreement is again found with previous calculations, with the same hierarchy between bcc metals, except for
Ta which was previously found to have a less deviated trajectory [69]. Among all bcc transition metals, Nb
has the most deviated trajectory, causing the most pronounced T/AT asymmetry, a feature also reported
experimentally [36]. The less deviated trajectory, with almost zero deviation angle α∗, is found for Fe, which
yields an almost negligible T/AT asymmetry, also observed in experiments [35]. Comparison with available
experimental data on the yield properties of bcc metals will be presented in a following section.
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Figure 2: Trajectory of the 1/2[111] screw dislocation when gliding in the (101) plane in all bcc transition metals extracted
from the stress variations recorded along the NEB path using the dislocation setup stress. Symbols are ab initio data after
post-processing, and solid lines are quadratic splines.

From the same NEB calculations, the stress variations recorded along the path allow to extract the vari-
ations of the relaxation volume tensor ∆¯̄Ω of the screw dislocation core field (see section 3.1.3 in Methods).
These variations have the following form for a 1/2〈111〉 screw dislocation gliding in a {110} plane:

∆¯̄Ω1/2〈111〉 =

∆Ω11 ∆Ω12 0
∆Ω12 ∆Ω22 0

0 0 ∆Ω33

 , (2)
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where the components ∆Ω13 and ∆Ω23, are zero, as previously reported for W [45, 79] and Cr [180]. The
validity of this assumption was checked for all bcc metals following the method described by Kraych et al.
[79], based on the symmetries between two NEB paths, from initial to final position, and from final to initial
position. The non-zero components of the variation of the relaxation volume tensor are presented in Fig. 3
as a function of the dislocation position x for all bcc metals. Are also plotted the trace ∆ΩP , which reflects
coupling with pressure, and ellipticity ∆Ωe = ∆Ω22 − ∆Ω11 of the relaxation volume, linked to the T/C
asymmetry [45, 79].
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Figure 3: Variations of the relaxation volume ∆Ωij of the 1/2〈111〉 screw dislocation (sketched in the lower right panel) as
a function of its position x in the {110} glide plane for all bcc transition metals. Squares are ab initio results and lines are
quadratic splines. The trace and ellipticity of the tensor are also plotted. Different scales are used depending on the metal for
clarity. Vertical dotted lines indicate the position of the inflexion point x∗/λP of the Peierls potential.

As reported in the case of Cr in Chapter 2, the dislocation trajectory and relaxation volume extracted
using the stress variations along the NEB path are very sensitive to the values of the elastic constants. In
particular, the symmetry of the trajectory and relaxation volume are not fully respected when using elastic
constants of the perfect crystal. As presented in Appendix D, this can be fixed by slightly adjusting the
elastic constants in order to enforce the expected symmetries. The validity of this approach was checked by
calculating for W [45], Cr [180] and Mo the elastic constants of a simulation cell containing a 1/2〈111〉 screw
dislocation dipole. The elastic constants slightly differ from the perfect crystal (up to 13% for the C15 and
C44 components and less than 6% for all other constants in Cr, 18% and 15% for C15 and C44 respectively
and less than 4% for all other components in Mo, and 6 and 7% for C15 and C44 respectively with less than
3% variation on all other elastic constants in W). Most importantly, the difference is of the same order as
with the elastic constants obtained through the fitting procedure to enforce symmetry of the trajectory.

Variations of the relaxation volume (Fig. 3) show a large variety of different behaviors among bcc metals.
No group tendency can be observed: in a same column of the periodic table, V, Nb, Ta on the one hand, Cr,
Mo, W on the other hand, the same component of the relaxation volume can have different signs (see for
instance ∆Ω12). This makes the variations of the relaxation volume a strongly metal-dependent property.
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Table 1: Parameters of the yield criterion for 〈111〉{110} slip: Peierls stress τP (GPa), position x∗ of the inflexion point of the
Peierls potential (normalized by the distance λP between Peierls valleys), angle α∗ (◦) made by the dislocation trajectory at
this position, and derivatives ∆Ω

′∗
ij (Å) of the relaxation volume with respect to the position x at the inflexion point x∗.

Element τP x∗/λP α∗ ∆Ω
′∗
11 ∆Ω

′∗
22 ∆Ω

′∗
33 ∆Ω

′∗
12 ∆Ω

′∗
P ∆Ω

′∗
e

V 1.03 0.093 −14.4 −0.101 −0.096 +0.222 −0.068 +0.026 +0.004
Nb 0.79 0.047 −17.4 −0.011 −0.354 +0.423 +0.343 +0.057 −0.343
Ta 0.87 0.083 −16.2 −0.288 +0.210 +0.131 −0.095 +0.053 +0.498
Cr (NM) 2.32 0.153 −13.5 +0.025 +0.050 −0.034 +0.067 +0.041 +0.025
Cr (AF) 1.98 0.099 −7.0 −0.013 +0.116 +0.041 +0.119 +0.171 +0.103
Mo 1.40 0.114 −13.9 −0.084 +0.113 −0.008 +0.078 +0.021 +0.198
W 2.36 0.129 −14.4 −0.168 +0.239 −0.042 +0.058 +0.029 +0.406
Fe 1.65 0.143 −0.5 −0.130 +0.117 −0.029 −0.042 −0.043 +0.247

No correlation can neither be found with elastic anisotropy characterized by the ratio A = C44/C
′ of shear

moduli. We also note that the magnitude of the different ∆Ωij components strongly depend on the metal,
with weak variations in Cr, Mo and Fe, and high amplitudes in all others, the consequence of which on
the predicted yield behavior will be discussed later. A striking feature of the variations of the relaxation
volume is that both its trace ∆ΩP and component ∆Ω33 along the dislocation line are non-negligible for
some metals. The non-zero ∆Ω33 components in V, Nb, Ta and Cr imply a non-negligible effect of an applied
stress σ33 along the dislocation line. Also, the effect of pressure, carried by ∆ΩP , should be important in Cr,
and small but non-negligible in Nb, Ta and Mo. It is thus not possible to neglect the effect of hydrostatic
pressure, nor of a tensile stress along the dislocation line when describing non-Schmid effects, contrary to
yield criteria usually used for bcc metals [187]. This motivates the use of generalized yield criteria involving
all stress components to properly account for these core properties of the screw dislocation [186, 207, 208].

1.3. Peierls enthalpy barrier under applied stress
With all core properties extracted from ab initio calculations, one can now write the Peierls enthalpy

∆HP (x) of the screw dislocation gliding under an applied stress ¯̄Σ as [79] (Eq. 7 in Chapter 2):

∆HP (x) = VP (x)− Σyz b x+ Σxz b y(x)−
∑
ij

Σij ∆Ωij(x), (3)

where y(x) and ∆¯̄Ω(x) are parameterizations of the dislocation trajectory and relaxation volume along the
minimum energy path for {110} glide. An important consequence of the relaxation volume ∆¯̄Ω on the yield
properties of bcc metals is carried by its ellipticity ∆Ωe = ∆Ω22−∆Ω11, linked to the change in the Peierls
enthalpy barrier ∆HP experienced by the screw dislocation when its glide plane is subjected to a normal
stress [79] (Eq. 7). With a positive ellipticity, a glide plane subjected to a tensile stress results in a lowering
of ∆HP and thus of the yield stress. This is the case for W, as presented in Fig. 4a, an effect which
was validated in W using direct ab initio calculations by Kraych et al. [79]. This behavior matches the
T/C asymmetry generally observed in bcc metals, with easier plastic yield in tension than in compression.
Surprisingly, Nb and V seem to deviate from this general behavior as ∆Ωe is negative in Nb and almost
zero in V. In particular in Nb, one expects an increase of the Peierls enthalpy ∆HP for a glide plane in
tension. We checked this prediction by performing ab initio calculations in Nb of the dislocation Peierls
enthalpy for a non-null stress component normal to the dislocation glide plane. The results are presented
in Fig. 4b, where a stress σ22 is applied to the system, resulting, as predicted, in a lower barrier when
the glide plane is in compression. Results of the model (dashed lines) are in good agreement with direct
ab initio NEB calculations, in particular regarding the slope of the enthalpy barriers, defining the yield
stress. Consequences of this peculiarity of Nb on its yield properties will be discussed in more details when
comparing to experimental data in following sections.
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Figure 4: Peierls enthalpy barrier ∆HP (x) of a 1/2〈111〉 screw dislocation gliding in a {110} plane which is subjected to a
tensile and compression non-glide stress Σ22 of magnitude σ22 in (a) W, and (b) Nb. Results of direct ab initio calculations in
Nb are reported by solid lines and color circles, with the predictions of the model shown with dashed lines.

2. Uniaxial mechanical loading

The yield stress for any mechanical loading is defined as the stress state for which ∆HP (x) (Eq. 7) ceases to
have a saddle point. We illustrate in this section the approach by considering a uniaxial mechanical loading,
i.e. a tension or compression test, and develop an analytical yield criterion based on the ab initio data
obtained in the previous section. Full derivation of the model is given in more details in previous works
[45, 79, 180] and in Chapter 2, with all assumptions given in Methods. The choice to focus on uniaxial loading
is motivated by the availability of experimental data at low temperature for all bcc transition metals, and
hence the possibility to compare the results of the presented yield criterion with experiments. However, we
stress that the approach described here can be applied to any other mechanical loading.

2.1. Generalized yield criterion
We now extend the yield criterion presented in Chapter 2 for Cr to all other bcc transition metals using

the core properties of the 1/2〈111〉 screw dislocation presented in the previous sections and listed in Tab. 1.
Methods and details about the parameterization of the generalized yield criterion for uniaxial loading are
given in Chapter 2, section 2.1. We recall the expression obtained for the yield stress in tension [180], which
corresponds to Eq. 12 in Chapter 2:

σTY (ζ, χ) =
2τP

sin (2ζ)
cos (χ− α∗)

cos (α∗)
+ β(ζ, χ)

, (4)

with the corresponding criterion for compression obtained by substituting χ → −χ, α → −α and β → −β
in Eq. 4, resulting in the following expression:

σCY (ζ, χ) =
2τP

sin (2ζ)
cos (χ+ α∗)

cos (α∗)
− β(ζ, χ)

, (5)

and where β is a function of angles ζ and χ and components ∆Ωij (Eq. 13 in Chapter 2):

β(ζ, χ) = sin2 ζ

[
∆Ω

′∗
e

b
cos (2χ) +

2∆Ω
′∗
12

b
sin (2χ) +

∆Ω
′∗
P

b

]
− (1− 3 cos2 ζ)

∆Ω
′∗
33

b
. (6)
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Parameters for the 0K yield criterion are given in Tab. 1 for all bcc transition metals, which we now discuss
the predictions in the following sections.

2.2. Variations among bcc transition metals
To better visualize the difference between tension and compression, the predicted slip activity, i.e. the

distribution of primary slip system as a function of the orientation of the loading axis, is presented in Fig.
5 under both tensile and compressive mechanical loadings for all bcc transition metals. These stereographic
projections show the slip system with the lowest yield stress according to Eq. 4 in tension (Eq. 5 in
compression) among the twelve 〈111〉{110} possible systems, similar to previously reported using different
yield criteria [184, 185, 188]. The corresponding stereographic maps for bcc Cr were presented in Figs. 12
and 13 in Chapter 2 for the two NM and AF phases.
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Figure 5: Predicted distribution of primary 〈111〉{110} slip systems for all bcc transition metals at 0K according to the yield
criteria of Eqs. 4 and 5 under uniaxial (a) tension and (b) compression respectively. Results for Cr are presented for the non-
magnetic (NM) phase. The distribution of primary slip systems predicted by the Schmid law, in either tension or compression,
is shown in (c), which is common to all bcc transition metals.

As shown in Fig. 5a and b, the predicted slip activity deviates from the predictions of the Schmid law,
shown in c, according to which the same single 〈111〉{110} slip system should have the lowest yield stress in
both tension and compression in any stereographic triangle delimited by axis 〈100〉-〈110〉-〈111〉, and should
show the same distribution in all bcc transition metals. When non-Schmid effects are included, this simple
distribution changes, with various coexisting primary slip systems in a same triangle, and a change of the
minimum symmetry-equivalent region of the stereographic space from a single triangle, as obtained with the
Schmid law, to two adjacent triangles.

Looking at the predicted slip activity, all bcc metals show a similar distribution, except Fe and Nb. In-
deed, Fe is the only metal for which a marginal deviation from the Schmid law is predicted, due to its small
deviation angle and also limited variation of its relaxation volume. On the contrary, tensile and compressive
slip activities in Nb show major deviations with respect to the Schmid law and also to all other metals.
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Most particularly, regions of the standard triangle are predicted to favor an anomalous slip system in tension
([111](011) in blue) and compression ([111](011) in grey). This is a consequence of both a high deviation
angle α∗ and a large magnitude of ∆Ωij , with a negative ellipticity. Although Ta has also a high deviation
angle, it does not appear as different from other metals as Nb. This difference between Nb and Ta lies in the
high magnitude of the ∆Ω33 component of the relaxation volume in Nb. Due to this component, yield stress
in Nb is sensitive to a normal stress acting along the dislocation line. This coupling in Nb is responsible
for the region in the central triangle of the stereographic projection where the [111](101) (in purple) and
[111](011) (in grey) are predicted as primary slip systems in tension and compression respectively. The four
other metals, namely V, Ta, Mo and W, display similar slip activity in both tension and compression. The
main features are the activity of both the expected [111](101) (orange) slip system with [111](110) (sky blue)
in tension and [111](101) (purple) in compression over the standard stereographic triangle.

When we compare the predicted slip activity for Cr to all other bcc transition metals, we report a similar
yield behavior to Ta, Mo and W both under uniaxial tension and compression. As can be seen in Tab. 1, the
parameters of the yield criterion for both magnetic phases of bcc Cr are similar to these three other metals,
except for the weaker magnitude of the variation of the relaxation volume tensor of the screw dislocation.
Given the presented results, one can expect the plastic behavior of Cr to be similar to that of all other bcc
metals, with similar qualitative features such as the T/AT and T/C asymmetries under uniaxial loading.

3. Comparison to experiments at low temperature

As presented in the previous sections, the yield criterion proposed in this work, based on ab initio calcu-
lations of the screw dislocation properties, gives a good qualitative reproduction of known features of the
yield behavior of bcc transition metals under uniaxial loading, namely the T/AT and tension/compression
asymmetries. We now compare the predictions of the model at 0K with low temperature experimental data
in terms of the variation of the yield stress and slip activity with the orientation of the loading axis.

3.1. Yield stress and slip activity
The ab initio yield stresses are presented in Fig. 6 for all bcc transition metals, with experimental

data measured at 77K for different loading orientations taken from various references (see Appendix A).
To effectively compare the predictions of the yield criterion to experiments, it is necessary to account for
the variations of the yield stress with the crystal orientation as non-Schmid effects make it impossible to
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Figure 6: Comparison between the yield stress σY predicted by the ab initio yield criterion and experimental data taken from
various references at 77K (see Appendix A for values and references). Experimental yield stresses range from their minimum
to maximum over the whole stereographic space in both tension and compression. Ab initio data are plotted both according
to the Schmid law (Schmid, center bar), in tension (T, left bar), and compression (C, right bar).
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define a single experimental value. We therefore report for each element the range of yield stresses measured
for different orientations of the loading axis and compare with the range predicted by the model over the
whole stereographic space, accounting for all possible slip systems, from which the minimum and maximum
predicted yield stresses are shown. The ab initio data are reported both according to the Schmid law and
including non-Schmid effects in tension and compression to highlight the different ranges covered by the
different predicted yield stresses. We observe that deviations from the Schmid law tend to narrow the width
of the yield stress distributions, with lower stresses in tension than in compression except in Nb due to the
negative ellipticity discussed above.

As already largely discussed in the literature [44, 65, 209], depending on the metal, atomistic calculations
using either interatomic potentials or ab initio calculations overestimate the yield stress by a factor 2 to
4 with respect to experiments. This effect is not corrected by accounting for non-Schmid effects in the
evaluation of the yield stress, as seen on Fig. 6, which was proposed as a possible explanation for such
a discrepancy with experiments in previous works [210, 211]. Despite this scaling effect, we note that the
model reproduces the hierarchy of yield stresses between metals, except for Fe which is found experimentally
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Figure 7: (Middle row) Normalized yield stress σY /σ0
Y under uniaxial tension for each 〈111〉{110} slip system as a function of

the angle χ for (a) Nb, (b) Mo, and (c) Fe along the ζ ∈ {45◦; 48◦; 51◦} lines shown in black in the stereographic triangles of
the upper row. (Lower row) Corresponding angle ψ between the observed and the expected (101) slip plane. Profiles for the
three ζ-lines are shifted up and down for clarity. Experimental data in tension (open circles) were measured for ζ ' 47◦ at
4.2K for Nb [36], Mo [30] and Fe [35]. Experimental σY are normalized by 570MPa, 1 100MPa and 740MPa for Nb, Mo and
Fe respectively, and predicted σY by 2τP (see Tab. 1), which is the lowest value predicted by the Schmid law.



Chapter 4 - Non-Schmid effects across bcc transition metals Page 128

to have a narrower range of variations and, on average, a lower yield stress than all other metals, a specificity
which is not captured by our model. In the following, yield stresses are rescaled to focus on their relative
variations with respect to the loading axis rather than their absolute values.

We first compare the results of our model with experimental data in terms of the dependence of the yield
stress and slip activity on the angle χ between the {110} glide plane and the MRSSP. Only data measured
at low enough temperature are relevant for the comparison since non-Schmid effects fade out when the
temperature is increased up to the athermal temperature of the Peierls mechanism Tath, where lattice
friction becomes negligible [25, 45, 212]. Slip activity, i.e. active glide planes, is determined experimentally
through the identification of slip traces left by dislocations on the surfaces of the deformed samples. The
planes where the dislocations have slipped can then be defined by the angle ψ between the observed slip plane
and the expected (101) plane. Comparison between the yield criterion in tension (Eq. 4) and experiments
is presented in Fig. 7 for a constant ζ angle, i.e. a constant angle between the tensile axis ~t and the slip
direction ~b, as a function of the angle χ. Experimental data were measured at 4.2K with ζ ' 47◦ for Nb [36],
Mo [30] and Fe [35]. Results for V and Ta under uniaxial tension with ζ ' 50◦ are presented in Fig. 8 and
compared with experimental data measured at 77K taken from Bressers et al. [213] for V, and Nawaz and
Mordike [33] for Ta. To emphasize on the sensitivity of the results on ζ, three different angles are plotted
for the theoretical yield stresses: 45, 48, and 51◦ in Fig. 7 for Nb, Mo and Fe, and 48, 51, and 54◦ in Fig. 8
for V and Ta. The ψ = f(χ) plots in the lower row of Figs. 7 and 8 show the primary slip systems.
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Figure 8: Normalized yield stress and angle ψ for V and Ta under uniaxial tension, with the same notations as in Fig. 7.
Experimental data were measured at 77K for ζ ' 50◦ for both V [213] and Ta [33]. Experimental yield stresses are normalized
by 500 and 510MPa for V and Ta respectively.

The presented yield stress profiles highlight the departure from the Schmid law, characterized by the
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T/AT asymmetry and a strong competition between slip systems. According to the Schmid law, only the
[111](101) system (orange) is expected over the range of orientations contained in the standard stereographic
triangle delimited by axis [001]-[011]-[111], resulting in ψ(χ) = 0 for all χ angles. This is the case for Fe
only (Fig. 7c), for which non-Schmid effects have a marginal impact. In the range of ζ angles considered
here, we report a very good agreement with experimental data for Mo and Fe (Fig. 7b and c) in terms of
both relative variation of the yield stress and active slip systems. The agreement for Nb is less satisfactory,
especially regarding the yield stress for χ < 0, where anomalous slip was reported experimentally [36], as-
sociated with a steep decrease of the yield stress not reproduced by the model. As will be detailed in the
following Chapter 5, using TEM observations and atomistic simulations we proposed a new mechanism ex-
plaining such anomalous slip, which involves highly mobile multi-junctions between screw dislocations [214].
This effect can therefore not be understood from the glide properties of single dislocations, as considered
in the present model. Regarding the predicted slip activity in Nb, the experimental [111](011) (blue, with
ψ = −60◦) system is also predicted by the model for χ < 0. In the χ > 0 range, the authors report activity
of the expected [111](101) slip system (orange, with ψ = 0), while the model predicts the [111](101) (purple,
with ψ = 90◦) to require a lower yield stress. In terms of the yield stress, very few experimental values were
reported by the authors for χ > 0, not allowing for a proper comparison with the model.

Experimental slip activity measured for single crystals of V [213] and Ta [33, 215, 216] under uniaxial
tension and compression at 77K revealed wavy slip lines in a wide range of orientations tested by the au-
thors, for which a precise identification of the active slip system was not possible at temperatures as low as
77K (or Tath/5 for both V and Ta). For this reason, only experimental data for which a precise slip system
was determined are presented on Fig. 8. This temperature effect at 77K on the measured slip activity
does not however impact measurement of the yield stress, for which a precise definition holds up to the
athermal temperature. A good agreement between predictions of the model and experiments is found for V,
both in terms of yield stress and slip activity, except for χ > 20◦ where the observed [111](110) slip system
(sky blue, with ψ = +30◦) is predicted to require a lower yield stress than observed experimentally. The
same applies for Ta, for which the predicted slip activity in tension is similar to V, showing a satisfactory
agreement in terms of the predicted relative variations of the yield stress. Very few experimental points are
available in terms of slip activity in the same reference, caused by the temperature effect discussed above.
Still, the predicted [111](101) slip system (orange, with ψ = 0) for χ > 0 is also observed experimentally,
and is predicted over the entire range of χ angles, except for χ > +15◦ where the [111](110) (in sky blue,
with ψ = +30◦) is predicted by the model, similar to V and Mo.

We now compare in Fig. 9 the predicted yield stress at 0K with experimental data measured at 77K for
single crystals oriented along the edges of the standard stereographic triangle delimited by [001]-[011]-[111]
for W [217] under uniaxial tension in a, and Ta [218] in b and c under uniaxial tension and compression
respectively. All yield stresses are normalized by the minimum yield stress 2τP predicted by the Schmid
law, as for results presented above, to focus only on its variations with orientation. A direct comparison
with predictions at 0K is legitimate since the 77K temperature at which the reported experiments were
conducted is sufficiently low compared to the athermal temperature of the Peierls mechanism for both W and
Ta, of approximately 800 [29] and 400K [216] respectively. As will be discussed in the following, dependence
of the yield stress on the orientation of the loading axis is almost unchanged in this temperature range.
Considering the case of W, the predicted yield stress is effectively lower for [001] than [111] orientation,
which is also predicted by the Schmid law and is common to all bcc metals (see inset in Fig. 9a), but the
yield criterion fails to reproduce the strong increase of the yield stress near [011]. Along the [001]-[011] edge
of the triangle, the criterion predicts almost a flat variation of the minimum yield stress (thick black dashed
line) because of the competition between the two [111](101) (orange) and [111](101) (purple), instead of the
steep increase near [011] observed experimentally. This discrepancy with experiments highlight the missing
ingredients of the model for this particular region of the stereographic triangle close to [011] in W, where glide
of 1/2〈111〉 screw dislocations in {112} planes instead of {110} has been reported experimentally [20, 26]. No
precise atomistic mechanism has been proposed accounting for activity of 〈111〉{112} slip systems up to date.
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Figure 9: Variation of the predicted yield stress σY at 0K, normalized by σ0
Y = 2τP , for 〈111〉{110} slip systems along the

path defined by the [001]-[011]-[111] edges of the standard stereographic triangle shown in the lower left for (a) W in tension,
and Ta in (b) tension and (c) compression. Experimental data measured at 77K are indicated by empty circles, and were taken
from Bearmore and Hull [217] for W under uniaxial tension, normalized by 850MPa, and from Byron and Hull [218] for Ta
under uniaxial tension and compression, normalized by 550MPa.

Now considering Ta, the predicted variations of the yield stress are in better agreement with experiments,
in particular under compression (Fig. 9c), where the [111](101) slip system expected from the Schmid law
(orange) dominates across almost the whole range of orientations. The steep increase of the yield stress
observed between [011] and [111] axis is well reproduced by the criterion in compression, and shows notable
differences along the two other edges of the standard stereographic triangle with the experimental data in
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Figure 10: Comparison between the predictions of the Schmid law and experimental data of the yield stress of Ta single crystals
under uniaxial tension along the edges of the standard [001]-[011]-[111] stereographic triangle measured at a temperature of
273K [218]. Experimental yield stresses are normalized by 160MPa.
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tension. The agreement with tensile data is less satisfactory, especially along the [011]-[111] edge where the
[111](110) system (sky blue) is predicted to require a lower yield stress. The predicted lower bound of the
profile has a similar shape to W, while the yield stress for the [111](101) system is predicted with a much
steeper increase near [111]. Byron and Hull [218] also studied the profile of the tensile yield stress along the
edges of the standard stereographic triangle at a temperature of 273K, closer to the athermal temperature
Tath ' 400K of the Peierls mechanism. The reported profiles in both tension and compression show a very
good agreement with the predictions of the Schmid law, as presented in Fig. 10. This shows non-Schmid
effects become less pronounced as the temperature is increased, up to Tath where they ultimately vanish. A
more detailed study of the temperature evolution of these effects is the focus of a following section.

3.2. Tension/compression asymmetry
We now focus on the asymmetry between tension and compression, comparing again predictions of the

model with experimental data. A tension/compression (T/C) asymmetry has been observed experimentally
in all bcc metals under uniaxial loading, over a wide range of crystal orientations [25, 42, 43]. In particular,
the yield stress of bcc metals is generally lower in tension than in compression considering the same loading
axis. This T/C asymmetry is analyzed as a function of the loading axis using the strength differential (SD)
introduced by Gröger et al. [183, 184], expressed as:

SD =
σT − σC

(σT + σC)/2
, (7)

where σT and σC are the absolute values of the yield stress in tension and compression respectively. Level
plots of SD are presented in Fig. 11 for Nb, Ta, Mo, and W. Only these four metals are considered here
for comparison to experiments, since data at low enough temperature is not available for other metals. The
yield stress for Nb, Mo and Ta were mostly measured at 77K, which is below the athermal temperature Tath
of the Peierls mechanism (between 300 and 400K), and at 293K for W, also below Tath (around 800K).
Experimental values for Tath are summarized in Appendix A. Other experimental data comparing tensile
and compressive behaviors are available for Fe, Nb, Mo, Ta, and V but were however measured at least at
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Figure 11: Strength differential (Eq. 7) of Nb, Ta, Mo, and W single crystals under uniaxial loading of (a) only the [111](101)
slip system, and (b) all 〈111〉{110} slip systems. Experimental data at 77K are indicated by colored squares (for Nb [13, 219],
Ta [33, 220] and Mo [41, 221]), at 123K by diamonds (for Mo [222]), at 158K by upwards triangle (for Nb [223]), at 228K by
downwards triangles (for Nb [219]), and at 293K by circles (for W [224]). Levels are indicated by dark lines every 0.1 step.
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room temperature, which is too close to Tath for these metals. Results for V and Fe, for which experimental
data are missing, are presented in Fig. 12. All presented results are plotted considering only the primary
expected slip system [111](101) in the left column, and all 〈111〉{110} slip systems in the right column, in
order to stress the importance of accounting for all possible systems when describing the T/C asymmetry.
Results for bcc Cr were presented in Chapter 2, Fig. 15, considering its two NM and AF phases.
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Figure 12: Strength differential of V and Fe single crystals under uniaxial loading considering (a) only the [111](101) slip system
predicted by the Schmid law, and (b) all 〈111〉{110} slip systems. Notations and colors are identical as in Fig. 11.

When only the [111](101) slip system is considered, all bcc metals presented in Figs. 11 and 12 show
a non-negligible range of loading orientations for which compression activates slip more easily than tension
(i.e. SD > 0, in red), except Fe for which the tensile yield stress is always lower. This a direct consequence
of the T/AT asymmetry of the [111](101) slip system. Upon changing the sign of the applied stress (i.e.
from σ > 0 in tension to σ < 0 in compression), the twinning region is reversed from χ < 0 in tension, to
χ > 0 in compression. Hence, the yield stress is lower in compression than in tension near the [011]-[111]
edge of the standard stereographic triangle, and the opposite near the [001] axis. In Mo and Ta, a small
region where compression is easier than tension is predicted only in the part where χ > 0. The location of
this region is in qualitative agreement with experiments. However, this reasoning is too simplistic as active
slip systems may differ inside the standard triangle when non-Schmid effects are accounted for. Hence, it is
necessary to take all 〈111〉{110} slip systems into account to have a correct representation of the T/C asym-
metry and to compare with experiments. Two adjacent triangles are then plotted to describe the minimum
symmetry-equivalent region of the stereographic projection.

When all slip systems are considered, the range of orientations where compression is easier than tension
gets narrowed for Ta and W, while a similarly large or even wider range is observed for Nb and Mo. For Ta,
the predicted yield stress is lower in tension than in compression for all orientations of the loading axis, in
good agreement with experimental data [33, 216, 220], except near the [011]-[111] edge. In this region, the
authors report a lower compressive yield stress, not predicted by the model. Ta has the most pronounced
T/C asymmetry in favor of tension among the four metals in Fig. 11, a consequence of the high positive
magnitude of the ellipticity component ∆Ωe of its relaxation volume (see Tab. 1 and Fig. 3). The reverse
effect is observed for Nb, and in V (see Fig. 12) to a lesser extent, for which the T/C asymmetry is predicted
to be the most pronounced in favor of compression. A striking feature of this asymmetry in Nb is the lower
compressive stress found for orientations near the center of the standard stereographic triangle, however
comparing poorly with experimental data in this region. A large range of orientations close to the [111] and
[001] corner orientations show a lower compressive yield stress, comparing well with experimental data close
to [111], but poorly near [001]. In this last region, i.e. χ < 0, all authors reported anomalous slip for Nb
samples deformed in either tension and compression, which cannot be captured by the presented model.
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3.3. Tension/compression asymmetry at finite temperature
We now discuss the temperature evolution of the yield stress and tension/compression asymmetry through

comparison with experimental data. As detailed in Chapter 2 section 3.2 in the case of Cr, the 0K yield
criterion can be extended to include finite temperature effects through a line tension model, whose parame-
ters can be directly extracted from ab initio calculations [85, 191]. The expression of this finite temperature
mobility law is given in Eq. 28 of Chapter 2. As discussed for Cr, this criterion qualitatively reproduces the
progressive fade out of the yield stress and non-Schmid effects when the temperature approaches the ather-
mal temperature Tath of the Peierls mechanism, like presented in Figs. 19 and 20 for the T/AT asymmetry in
the two NM and AF phases of bcc Cr. Similar behaviors can be obtained for all other bcc transition metals,
as reported for W in Ref. [45], which are thus not presented here. The comparison between predictions of
the model and experimental data in terms of the temperature evolution of the yield stress for W and Mo is
instead presented in Appendix E.

The following results presented for Mo were obtained using the ab initio line tension ΓMo = 2.86 eV/Å
reported in the work of Dezerald et al. [191], where the line tension was calculated ab initio for all bcc
transition metals except Cr. Evaluation of the line tension was performed again for W only in the present
work, using the ab initio parameters and dislocation setup presented in the Methods, to ensure the con-
sistency between the different properties extracted from our modeling. Using the method of Proville [85],
we obtain a line tension ΓW = 3.41 eV/Å, very close to the 3.89 eV/Å reported by Dezerald et al. for W
[191], also comforting us in using previously published values for Mo. Comparison with experiments in
terms of temperature evolution of the yield stress are presented in Fig. 13 for Mo single crystals of various
orientations, tested under both uniaxial tension and compression [41]. Entropic contributions to kink-pair
nucleation (see Chapter 2, section 3.2) are taken into account using Tm = Tmelt = 2 895K in the predictions
of the model, which are presented for the primary slip system only throughout the whole temperature range
in both tension (solid lines) and compression (dashed lines).

0 200 400
Temperature T (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

yi
el

d
st

re
ss
σ
Y
/2
τ P

Expt. (T)

Model (T)

Expt. (C)

Model (C)

0 200 400
Temperature T (K)

0 200 400
Temperature T (K)

0 200 400
Temperature T (K)

[1̄11]

[011][001]

Mo, tension, Tm = 2 895K, ε̇ = 8.6× 10−4 s−1, ρD = 2× 106 m−2

Figure 13: Comparison between experimental [41] and predicted normalized yield stresses in tension (solid lines) and compres-
sion (dashed lines). Predicted and experimental yield stresses are normalized by 2.8 and 1.8GPa respectively.

We note that the sign of the T/C asymmetry predicted by the model, in the sense of the strength
differential of Eq. 7, is in very good agreement for all four orientations, as also presented for Mo in Fig.
11 at 0K. Variations of the yield stress with temperature has a similar shape for all four orientations, in
either tension or compression. Apart from a scaling factor of approximately 1.6 between experiments and
predictions, variations of both tensile and compressive predicted yield stresses are in good agreement with
experiments, showing a pronounced T/AT asymmetry near 0K. A strong T/C asymmetry is also reported
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by the authors, especially for the red orientation, and almost identical tensile and compressive yield stresses
for the green orientation, which are both reproduced by the model. The agreement is less satisfactory for
the blue orientation, where the strong T/C asymmetry observed experimentally is not predicted. The two
T/AT and T/C asymmetries both hold across the whole range of temperature, but become less pronounced
near Tath, where the yield stress falls to zero regardless of the orientation and sign of the applied stress, in
agreement with the presented experimental data from Liu et al. [41], and the work of Seeger and Hollang
[222], where Mo single crystals of three different orientations were subjected to cyclic tension/compression
deformation in the temperature range from 123 to 460K.

Conclusions of Chapter 4:

• Predictions of the model reproduce the known features of non-Schmid effects in the yield behavior of
bcc transition metals under uniaxial loading. The T/AT asymmetry is predicted in all seven metals,
whose amplitude only is metal dependent, linked to the deviation angle of the 1/2〈111〉 screw dislocation
trajectory in {110} planes. The variations of its relaxation volume tensor, responsible for the T/C
asymmetry, show on the other hand much diverse behaviors among bcc metals, also indicating a non-
negligible coupling with applied pressure or stresses resolved along the dislocation line for some metals.
Consideration of all stress components is thus required when developing a yield criterion.

• The criterion accurately predicts active 〈111〉{110} slip system and the distribution of the T/C asym-
metry observed experimentally in low temperature tension and compression tests.

• Variations of the yield stress with the orientation of the loading axis are in qualitative agreement with
experiments at low temperature, despite the overestimation of the Peierls stress, inherent to atomistic
simulations and which is not resolved by accounting for non-Schmid effects, as proposed previously.
There are still some discrepancies between experiments and the model, which includes glide properties
of single dislocations only, notably on the edges of the standard stereographic triangle, and in the χ < 0
region for Nb where anomalous slip is reported. Accounting for these effects require new mechanisms
to be included in the yield criterion, which are the focus of the following two chapters.

• As presented for Cr in Chapter 2, and extended to W in Ref. [45] and Mo here, the inclusion of the
thermally activated glide of 1/2〈111〉 screw dislocations using a line tension model allows for prediction
of the temperature dependence of the yield stress. The predicted decreasing yield stress and progressive
fade out of non-Schmid effects with increasing temperature are in agreement with experiments.





Chapter 5 - Anomalous slip in bcc transition metals

Results of the yield criterion presented for 〈111〉{110} slip across all bcc transition metals in the previous
Chapter 4 show discrepancies with experimental data particularly for Nb, where anomalous slip is reported.
Such anomalous slip is observed in all bcc metals, except Fe, with slip activity in non expected {110} planes,
where the required yield stress to activate such 〈111〉{110} slip system is high, and cannot be accounted
for when only considering motion of isolated dislocations. We present in this chapter a new mechanism
to explain the occurrence of anomalous slip in all bcc transition metals at low temperature based on in
situ TEM observations, realized by Daniel Caillard at CEMES (CNRS, Toulouse), coupled with atomistic
simulations in Nb, which are also presented in details in Ref. [214].

1. Experimental literature review

We begin this chapter by a short review of experimental references reporting occurrence of anomalous slip in
bcc transition metals. Experimental observation of anomalous slip has first been reported in Nb [225], and
was since then extensively studied in different bcc transition metals. It is characterized by the occurrence
of long and straight slip bands in non-expected {110} planes with low resolved shear stresses, i.e. in planes
where 1/2〈111〉 dislocations are subjected to quite low driving forces, e.g. about twice lower than for the
primary activated slip system. This is clearly at variance with the usual behavior of bcc metals, where
wavy and non-crystallographic slip bands correspond to the most activated slip systems (Literature review,
section 1.2), which is also observed in bcc transition metals besides of anomalous slip.

Experimentally, anomalous slip exhibits several characteristic features giving precious indications about
its possible origin. First, slip bands are very planar, and without so-called “dead bands”: when observed
around samples with rounded section, the slip band contrast only decreases along a direction, which is
intermediate between the two 1/2〈111〉 shear directions contained in the anomalous {110} slip plane, and
does not vanish, as expected when the shear direction is locally parallel to the surface. Anomalous slip thus
corresponds to the cooperative motion of dislocations with two different 1/2〈111〉 Burgers vectors, which both
belong to the anomalous {110} slip plane. Second, anomalous slip is observed under uniaxial mechanical
loading in both tension and compression, which rules out interpretations based on the role of non-glide
stresses, e.g. stresses normal to the slip plane, on dislocation mobility [42, 226]. In particular, even if the
slip activity differs at low temperature from the predictions of the Schmid law in almost all bcc metals (see
Chapter 4, section 2.2), activity of single slip systems is insufficient to account for the absence of dead-bands
in the experimental observations. It is also prominent for directions of tensile or compressive axis between
the center of the standard stereographic triangle delimited by axis [001]-[011]-[111] and its [001] corner.
Third, anomalous slip takes place only at low temperature, i.e. below the athermal temperature Tath of
the Peierls mechanism. In this temperature range, dislocations align along the direction parallel to their
Burgers vector because of the high lattice friction experienced by this screw orientation. Occurrence of
anomalous slip therefore appears as a consequence of the reduced mobility of 1/2〈111〉 screw dislocations at
low temperature. TEM observations in Nb and Mo also show that straight screws are most often arranged
in networks parallel to the anomalous slip bands [37–39, 227, 228]. These planar networks contain the two
screw families activated in the bands, which react to form junctions with 〈100〉 Burgers vectors according to
the reaction 1/2[111]+ 1/2[111]→ [010]. Finally, it is observed in high purity materials only, with suppression
of anomalous slip with additional substitutional elements (e.g. rhenium in Ta [33]) or interstitial impurities
(e.g. oxygen in V [229], or nitrogen in Nb [230] and Ta [231]). Anomalous slip is not observed in Fe across
the wide range of orientations, conditions and temperatures tested in numerous experimental references,
contrary to all other bcc metals. Experimental evidences of anomalous slip in all bcc metals, except Fe, are
listed in Tab. 1.

Proposed models of anomalous slip are either based on surface effects easing glide of dislocations in the
anomalous planes [38, 40, 227], or on the presence of the above-mentioned planar networks. As pointed
by Taylor [42], surface effects fail to account for all characteristics of anomalous slip, in particular the
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Table 1: Experimental observations of anomalous slip in pure bcc transition metals: deformation mode in tension, compression,
or both with experimental reference; temperature range where anomalous slip is reported by the authors, the most relevant
range is indicated in red and the range of temperature investigated in brackets; evidence of the occurrence of anomalous
slip in the reported dislocation activity of two different dislocation families by TEM ("two b’s"), of through slip line analysis
showing absence of dead bands ("no db"); orientation of the loading axis in the standard stereographic triangle with corner
axis [001]-[011]-[111]; athermal temperature of the Peierls mechanism Tath.

Metal Deformation Temperature range Dislocation Orientation of
Tathmode (T/C) of anomalous slip activity the loading axis

V
Compression [31] 77-173K (77-295K) No db Center - near [001] 300 -
Tension [213] 77K (77-298K) / / 450K
Tension [232] 77K (77K) No db Between center and [001] [233, 234]

Nb

Tension - [235] 77K (77K) / /Compression
275 -Tension [36] 4.2-77K (4.2-77K) / Between center and [001]
375KTension [37] 50K Two b’s Near [001]

Tension [236] 77K (77K) No db Center - near [001] [237]
Tension - [39] Below 200K No db - Between center and [001]Compression (77-473K) two b’s

Ta

Tension - [39] 77K (77-500K) No db Center -
Compression between center and [001] 400 -Tension - [216] 4.2-77K (4.2-450K) / Near [001] 450KCompression [238]Tension - [33] 77K (77-293K) / Center - near [001]
Compression in tension

Cr Compression [34] 77K (77K) / Center 400K
[126]

Mo
Tension [239] 300K (300K) Two b’s Center 400 -
Compression [228] 300K (300K) Two b’s Center 450K
Tension [38] 77K (77K) Two b’s / [240]

W
Tension [239] 300K (300K) / Center 600 -

Compression [40] 300K (300K) / Center, [1 5 10]
800K

[29, 241]

activation of two dislocation families. In models based on planar networks, the two dislocation families
composing the network are assumed to move cooperatively in the anomalous plane, at a lower applied stress
than isolated dislocations thanks to the easier nucleation of kinks on screw dislocations at the network nodes
[34, 74, 242, 243]. In situ straining experiments in a TEM have shown that such a cooperative motion of
dislocations inside the network do exist [37, 227]. However, the networks observed in TEM are so imperfect
that it is difficult to imagine how they could glide as a whole over long distances. One thus still does not
fully understand the exact origin of anomalous slip in bcc metals.

2. In situ straining experiments

In 2021, we have been contacted by Daniel Caillard, who realized in situ TEM straining experiments in
single crystals of bcc Nb at low temperature, and proposed a new mechanism for explaining anomalous slip
in bcc metals. In this respect, we performed atomistic simulations to help investigate this mechanism, which
we now present the experimental part. All results are presented in extended data of Ref. [214].
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2.1. Experimental methods
Experiments have been carried out in a high-purity (5N) Nb single crystal bought at Goodfellow contain-

ing less than 1 ppm of O, C, N, and Si, and less than 0.1 ppm of other elements. Nb microsamples have been
cut in a (501) plane with a tensile loading direction ~t = [105], which is thus always vertical in the images.
The horizontal direction is accordingly along the [010] axis. Referring to the stereographic projection in Fig.
4 (see upper right panel), the four dislocations of Burgers vectors ~b1 = 1/2[111], ~b2 = 1/2[111], ~b3 = 1/2[111]

and ~b4 = 1/2[111] are activated in planes P12 = (101), P34 = (101) and P23 = (011). Nb microsamples are
strained in the Gatan low-temperature straining holder working at 95K. Samples are observed in a JEOL
2010-HC TEM operating at 200 kV.

2.2. Glide of isolated 1/2〈111〉 screw dislocations and networks in niobium
Observation of isolated 1/2〈111〉 screw dislocations gliding in Nb under strain, recorded in situ in TEM

at different times, are presented in Fig. 1. Frames a) and b) follow the motion of the same dislocations at
two different times, while frame c) is obtained by taking the difference between these two images, showing
the dislocation motion in the time interval with initial and final positions appearing in black and white
contrast respectively. The motion of this dislocation of Burgers vector ~b4 = 1/2[111] is sketched in d), with
initial and final positions represented by solid and dashed lines respectively. The slip traces left on the
thin foil surface by the gliding dislocations, noted ‘tr’, correspond to non-crystallographic slip planes. The
four dislocation families appearing in Fig. 1, with different Burgers vectors ~b1, ~b2, ~b3, and ~b4, are identified
and can be distinguished in the images thanks to their different directions and lengths in projection. The
dislocations straighten along their screw orientation when gliding, with a slow and steady motion at an
average velocity of the order of 5 nm/s, consistent with a conventional motion of screw dislocations at low
temperature, controlled by the nucleation of kink-pairs.

Figure 1: In situ TEM images recorded at different times, showing glide of isolated 1/2〈111〉 screw dislocations in Nb at 95K.

Dislocation networks are also identified, with a motion imaged on Fig. 2. These networks are made
of two interacting 1/2〈111〉 screw dislocation families with Burgers vectors ~b1 = 1/2[111] and ~b2 = 1/2[111],
and which form junctions with Burgers vector ~bJR = [010]. These networks glide in the P12 = (101) plane,
containing the three dislocation families, at a velocity of about 15 nm/s for the fastest nodes, therefore only
slightly higher than neighboring isolated screw dislocations. Networks are thus not much more mobile than
individual dislocations. The often-proposed mechanism, with easy kink nucleation at the nodes leading to
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Figure 2: Glide of a network in Nb made of two interacting screw dislocation families with Burgers vectors ~b1 = 1/2[111] and
~b2 = 1/2[111], forming horizontal junctions with Burgers vector [010] through the reaction 1/2[111]+1/2[111] = [010]. Diffraction
vectors are ~g1 = (010) (for which all dislocations are in contrast), ~g2 = (011), and ~g3 = (011).

fast glide of the network in the anomalous {110} slip plane [74], is thus inoperative in real situations where
dislocation networks are not perfectly planar. Similar observation of the motion of dislocation networks have
been reported by Holzer et al. [34] in Cr at 77K under compression, which was attributed by the authors to
the occurrence of anomalous slip. However, as demonstrated here for Nb, such mechanism fails to account
for all characteristic features of anomalous slip listed in section 1.

2.3. Rapid motion of multi-junctions in niobium
During the same in situ TEM straining experiments, it was observed in the same experiments a com-

pletely different and new behavior: a very fast motion of a group of four straight screw dislocations connected
at a single node (Fig. 3). These dislocations glide cooperatively over large distances at a velocity higher
than 50µm/s, thus several orders of magnitude higher than individual dislocations (' 5 nm/s on Fig. 1)
or dislocation networks (' 15 nm/s on Fig. 2). This fast motion is generally issued from a dense region
containing tangles of two or more dislocation families and leaves two sets of horizontal traces at the two
foil surfaces corresponding to the two orthogonal glide planes P12 = (101) and P34 = (101). Twenty similar
events have been recorded in different Nb samples, three of which are presented in Fig. 3, showing that
such a motion is not unusual. The four screw dislocations connected at the node have necessarily different
Burgers vectors that sum up to zero, explaining why no dislocation is left behind after the node has glided.

We see in the TEM images the cooperative glide of the four screw dislocations over a large distance in
less than 40ms, and have created two sets of slip traces on the two foil surfaces corresponding to planes
P12 = (101) and P34 = (101), clearly visible as horizontal lines with a white contrast in the image differences
(iii). The node can only glide along the [010] direction defined by the intersection of the two {110} planes,
thus constraining~b1 and~b2 on the one hand, and~b3 and~b4 dislocations on the other hand, to glide respectively
in P12 and P34 planes. As this [010] direction lies in the foil plane, this makes it possible to observe the fast
motion of the four-dislocation node along this direction. Otherwise, the node would have rapidly disappeared
at a surface. Since the four dislocations glide cooperatively at an abnormal high velocity in planes P12 and
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(i)

(ii)

(iii)

Figure 3: Three different events showing four 1/2〈111〉 screw dislocations connected to a node which glide cooperatively in two
different planes over a large distance in less than 40ms. The sets of slip traces left of the two foil surfaces correspond to planes
P12 = (101) and P34 = (101). The node is forced to glide along [010], defined by the intersection of these two planes.

P34 where the driving resolved shear stress is not the highest (see Tab. 2), we believe that such a highly
surprising behavior is the true origin of anomalous slip. The maximum Schmid factors are obtained for
dislocations ~b3 and ~b4 gliding respectively in P23 and P14, thus defining the primary slip systems (in red).
In situ TEM tensile experiments (Fig. 3) show that the same ~b3 and ~b4 dislocations glide in P34, despite the
lower Schmid factor (indicated by a *) and that ~b1 and ~b2 dislocations glide in P12 (also indicated by a *).

Table 2: Schmid factors (SF) of the 12 different 〈111〉{110} slip systems considering a [105] tensile axis

Slip direction Glide plane SF Slip direction Glide plane SF
~b1 = 1/2[111] P13 = (110) 0.063 ~b1 = 1/2[111] P12 = (101) 0.377∗

~b3 = 1/2[111] P13 = (110) 0.094 ~b2 = 1/2[111] P12 = (101) 0.377∗

~b2 = 1/2[111] P24 = (110) 0.063 ~b1 = 1/2[111] P14 = (011) 0.314
~b4 = 1/2[111] P24 = (110) 0.094 ~b4 = 1/2[111] P14 = (011) 0.471
~b3 = 1/2[111] P34 = (101) 0.377∗ ~b2 = 1/2[111] P23 = (011) 0.314
~b4 = 1/2[111] P34 = (101) 0.377∗ ~b3 = 1/2[111] P23 = (011) 0.471

The detailed mechanism observed in the presented TEM observations is sketched in Fig. 4, with the
corresponding TEM images. The observed time sequence a)-d) and its schematic description f)-k) show the
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formation of a node connecting four 1/2〈111〉 screw dislocations and its rapid glide out of the observation zone.
The starting configuration in a) is made of two 1/2〈111〉 screw dislocations ~b1 = 1/2[111] and ~b2 = 1/2[111]

reacting to form a junction JR of Burgers vector ~bJR = [010]. The three dislocations are contained in their
common slip plane P12 = (101). Another screw dislocation ~b3 = 1/2[111] glides to the bottom left in its
slip plane P23 = (011) and intersects in b) the junction reaction JR. In the next frame c), separated from
the previous one by only 40ms, the investigated process has already occurred, with the creation of four
slip traces corresponding to glide planes P12 = (101) and P34 = (101) and the disappearance of several
dislocation segments. The image difference e) allows connecting these slip traces to the glide of the three
previous screw dislocations and an additional dislocation ~b4 = 1/2[111], which results from the reaction
between ~b3 and the junction reaction JR, as sketched in h). This fourth dislocation extends and form in the
plane P34 a screw dipole in i) which emerges at the bottom surface in j). The whole configuration is then
divided in two parts, a group of four screw dislocations connected to a node which rapidly glides to the left
out of the observation zone and a remaining tangle on the right (see k)), where the screw segment 4 has
shortened its length by cross-slip. The last image d) shows the subsequent evolution of the short segment 4
forming another screw dipole which is used to check that dislocation 4 has the expected Burgers vector ~b4.

Figure 4: TEM images and sketch of the mechanism for the formation and glide of four-dislocation nodes observed in Nb.

3. Atomistic simulations and elastic model

We present in this section atomistic simulations performed in order to gain a better understanding of the
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different steps of the mechanism proposed for anomalous slip presented in Fig. 4 in the previous section.
All atomistic simulations presented here were performed using the Lammps code [157] with the interatomic
potentials presented in section 1.4 in Methods. These atomistic simulations are coupled with simple elastic
models, whose ingredients helped get insights on the energetic mechanisms at stake.

3.1. Relaxation of a four-dislocation node
We begin this section with molecular static relaxation of the node in Nb at 0K, presented in the sketch

of the mechanism in Fig. 4, to investigate the origin of the driving force explaining the fast motion of the
four-dislocation node observed experimentally (less than 40ms). The simulation cell used for the relaxation
of the four-dislocation node, imaged experimentally in Fig. 3, is defined by the three vectors X = 120×[010],
Y = 80× [001] and Z = 80× [100], with free surfaces in all three Cartesian directions. Four screw dislocation
segments with Burgers vectors ~b1 = 1/2[111], ~b2 = 1/2[111], ~b3 = 1/2[111] and ~b4 = 1/2[111] are introduced so
as to intersect on a node located in the simulation cell at the two thirds of the cell height, in the X ‖ [010]
direction. The four screw dislocation segments come out of the simulation cell on each external [010] edge.
The structure is then relaxed using molecular statics at zero temperature with the EAM potential of Fellinger
et al. [158]. The initial configuration of the system is shown in dashed lines in Fig. 5, with the relaxed
positions of atoms belonging to the dislocation cores after relaxation of the system represented by spheres.

P34

P12
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~b2

~b3

~b4

∆X

L0

~b1 = 1/2[1̄11̄]

~b2 = 1/2[111]

~b3 = 1/2[11̄1̄]

~b4 = 1/2[1̄1̄1]

[001]

[100]

[010]

Figure 5: Molecular statics relaxation of the node connecting four screw dislocations with different Burgers vectors in Nb, each
of an initial length L0. Colored spheres correspond to atoms belonging to the relaxed dislocation cores.

We note that relaxing such a node connecting four screw dislocations with Burgers vectors ~b1 = 1/2[111],
~b2 = 1/2[111], ~b3 = 1/2[111] and ~b4 = −~b1 − ~b2 − ~b3 = 1/2[111], one sees that the node prevents the dislo-
cations from conserving their screw orientation, which glides along the [010] direction over a distance ∆X.
Dislocations instead relax to a mixed orientation in their P12 and P34 glide planes, with the node producing
the kinks necessary to the dislocation motion. Further analysis with anisotropic elasticity theory, presented
below, shows that the line tension exerted by the dislocations on the node is responsible for this relaxation
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of the dislocations from a screw to a mixed orientation and that this behavior is generic to bcc metals.
Once the dislocations have lost their screw character, they can glide without experiencing any noticeable
lattice friction under a small applied stress, leading to the fast and long-distance motion observed in TEM.
The four dislocations will then recover their screw character when they stop at an extrinsic obstacle (e.g.
impurity, surface, grain boundary or another dislocation).

We now detail the formalism for the development of line energy model to study the elastic driving force
for the displacement of the node. The elastic energy per unit length of a straight infinite dislocation line of
Burgers vector ~b and character θ is given by the following according to elasticity theory:

E(θ) =
bi [Kij(θ)] bj

4π
ln

(
R∞
rC

)
= e(θ) ln

(
R∞
rC

)
, (1)

where b is the norm of the Burgers vector, R∞ is the outer cutoff radius for elastic interactions, rC is the
core cutoff radius where the long-range elastic interactions fade out, and ¯̄K is the Stroh tensor, function of
the elastic constants of the material and the orientation of the dislocation line θ with respect to its Burgers
vector. An analytical evaluation of the Stroh tensor in the frame of anisotropic elasticity theory is not
possible for all character θ of the line, hence it is evaluated numerically using the Babel package [165] with
experimental elastic constants measured at 4.2K (see Tab. 2 in the Literature review). The anisotropic
elastic energies of 1/2〈111〉 dislocations are presented in Fig. 2 in the Literature review as a function of their
character θ. Then, the elastic energy of a dislocation microstructure composed of several interconnected
dislocation segments is described in the frame of the line-tension approximation, neglecting interactions
between dislocation segments, with a total energy:

Eelas({Xi}) =

[∑
i

e(θi, i+1)× Li, i+1

]
ln

(
R∞
rC

)
, (2)

where θi, i+1 and Li, i+1 are respectively the character and length of the segment joining nodes i and i + 1
located at positions Xi and Xi+1. We stress that in such elastic model, all contributions due to interaction
between dislocations and their cores are neglected.

We now use this line energy model to study the relaxation of the quadri-junction (QJ) formed by four
intersecting 1/2〈111〉 screw dislocation segments connected at a node N, where the condition on the Burgers
vectors ~b1 +~b2 +~b3 +~b4 = ~0 is satisfied. The system is composed of the four dislocation segments, which
all intersect at the node N, and are linked to fixed points at their other ends (see the sketch of the system
in Fig. 6). The dislocations, in their screw orientation, have an initial length L0. In the frame of the line
energy model, the total elastic energy of the quadri-junction is:

Eelas
QJ (θ) = 4e(θ)

L0 cos (ψ0)

cos (ψ0 − θ)
ln

(
R∞
rC

)
, (3)

where θ is the character of the four 1/2〈111〉 dislocations connected at the node N. As observed in atomistic
simulations, relaxation of the quadri-junction leads to glide of the node along the direction [010] defined
by the intersection of the slip planes of the four dislocations. After such a glide motion, each dislocation
segment acquires the same character θ and has a length L0 cos (ψ0)/ cos (ψ0 − θ), where ψ0 is the angle
between the initial screw orientation of the segments and the (010) plane normal to the glide direction of
the node. By minimizing the above Eq. 3 with respect to the character θ and replacing the cosines of the
angle with its numerical values, we obtain the following equilibrium condition on the character minimizing
the elastic energy of the quadri-junction:

e′(θN)

e(θN)
= tan (ψ0 − θN) =

1−
√

2 tan (θN)√
2 + tan (θN)

, (4)
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Figure 6: Definition of the notations introduced for the formulation of the line energy model of the four-dislocation node, with
projection onto the P12 = (101) plane, showing the displacement of the node ∆X along the [010] direction and character θ of
the four 1/2〈111〉 dislocation segments of initial length L0.

which has to be solved numerically. The displacement of the node ∆X is then determined geometrically
from the value of the equilibrium character θN, solution of Eq. 4, given by:

∆X

L0
= sin (ψ0)− cos (ψ0) tan (ψ0 − θN) =

√
3

3

[
1−
√

2
e′(θN)

e(θN)

]
, (5)

showing the displacement ∆X of the node is proportional to the initial length L0 of the dislocation segments.
The results obtained using the line energy model are presented in Tab. 3 for all bcc transition metals,
considering anisotropic elasticity theory with experimental elastic constants. In all bcc transition metals,
relaxation of the quadri-junction forces the four dislocation segments to leave their screw orientation, with a
mixed equilibrium character θN varying between 10 and 30◦, depending on the elastic anisotropy ratio A of
the bcc metal. The line tension exerted by the four dislocations on the node thus prevents the dislocations
from keeping their screw orientation, as observed in our atomistic simulations in Nb presented in Fig. 5,
thus allowing for easy glide of these four dislocations connected to the node.

Table 3: Elastic anisotropy ratio A, equilibrium character θN of the four dislocation segments, and displacement ∆X of the
node normalized by the initial length L0 of the dislocation segments obtained after relaxation of the four-dislocation node.

Metal A θN ∆X/L0

Nb 0.50 25.7◦ 0.44
Cr 0.68 29.3◦ 0.49
Mo 0.77 24.8◦ 0.45
V 0.78 21.1◦ 0.37
W 1.00 21.2◦ 0.37
Ta 1.56 13.0◦ 0.24
Fe 2.38 10.0◦ 0.19

To validate the results of the line energy model, we compare its predictions with results of molecular
statics relaxation of a four-dislocation node in both Nb and W, using the EAM potential of Fellinger et al.
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[158] and the MEAM potential of Park et al. [89] for the two metals respectively. A qualitative agreement
is found for both metals, as presented in Fig. 7. Like predicted by the model, the displacement ∆X of the
node is proportional to the initial length L0 of the dislocation segments, as ∆X(L0) = aL0. The line energy
model predicts a lower slope in W than in Nb, in agreement with the results of atomistic simulations. In
both metals, the slope a observed in atomistic simulations is lower than the one predicted by the model.
This difference may be the consequences of atomic effects in the dislocation core or of the elastic interactions
between the different dislocation segments which are both neglected in the model.
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Figure 7: (a) Equilibrium character θN of the four segments, and (b) displacement of the node ∆X along the [010] axis as a
function of the initial length L0 of the screw segments. Predictions of the line energy model (solid lines) are compared to results
of molecular statics relaxations in Nb and W (filled squares and dashed lines) and of DD simulations in W (open squares).

To better understand this difference between predictions of the line energy model and results of atomistic
simulations, we perform additional simulations in W. As the elastic response of tungsten is close to isotropy,
one can use isotropic dislocation dynamics (DD) simulations [244] to relax the four-dislocation node. These
simulations only consider elasticity and neglect any core contributions, but, contrary to our simple line en-
ergy model, they take full account of elastic interactions between the different dislocation segments. These
simulations are performed with the DDLab code developed by Wei Cai [245], using a Poisson’s ratio ν = 0.27
for W. Relaxation of a four-dislocation node with the isotropic DD code leads to ∆X/L0 = 0.38 (see Fig.
7b), in very good agreement with the value ∆X/L0 = 0.37 given by our line energy model. One can thus
conclude that elastic interactions between segments have a negligible impact on the relaxation of the four-
dislocation node, with dislocation line energies being the main driving force of this relaxation. The neglect
of these elastic interactions in our line energy model is not the reason for the highest slope ∆X/L0 predicted
by the model compared to atomistic simulations. The only contribution left to explain this difference is
then the dislocation core energy. In bcc metals, the screw orientation of the 1/2〈111〉 dislocation gliding in
a {110} plane is a minimum of the core energy and corresponds to a marked cusp [246]. Hence, as the four
intersecting segments change their characters to trigger the displacement of the node, the core energy, per
unit of length, of the four dislocation segments increases. The force resulting from this core contribution
tends to maintain the 1/2〈111〉 dislocation in their screw orientations, partly counterbalancing elastic effects.
The neglect of this core contribution in our line energy model could thus be the reason why the model
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overestimates the slope ∆X/L0 when compared to atomistic simulations.

Despite this difference on the slope ∆X/L0 with results of atomistic simulations, the line energy model
allows rationalizing the driving forces for the relaxation of the four-dislocation node, showing that the
minimization of the dislocation line energy is the main contribution preventing the dislocations to keep their
screw orientations when they intersect at such a node. This displacement of the node proportional to the
initial length of the four screw dislocation segments corresponds to the situation where no stress is applied to
the dislocations. With an applied stress leading to a driving force on the dislocations, as the dislocations are
not aligned anymore along their screw orientations, they will easily glide, thus leading to the long distance
glide of the four dislocation node observed experimentally.

3.2. Formation of a four-dislocation node
Now that the mechanism leading to the fast motion of the node has been investigated, showing the spon-

taneous nucleation of kinks at the node driven by the line tension exerted by the four 1/2〈111〉 dislocations,
we investigate the mechanism leading to its formation using atomistic simulations. The formation of the
four-dislocation node in Nb is modeled in a simulation cell defined by the three vectors X = 120 × [010],
Y = 120× [101] and Z = 40× [101], with free surfaces in all Cartesian directions, presented in Fig. 8.
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Figure 8: (a) A ~b3 = 1/2[111] screw dislocation reacts with a ~bJR = [010] junction formed by the intersection between two screw
dislocations ~b1 = 1/2[111] and ~b2 = 1/2[111]. Upon relaxation by molecular statics, a mixed ~b4 = 1/2[111] dislocation is formed,
leading to two nodes connecting four different 1/2〈111〉 dislocations. (b) Upon straining in molecular dynamic simulations, the
mixed ~b4 dislocation bows out and tends to its screw orientation (dashed lines) close to the node, which starts to glide.

The starting configuration is made of two screw dislocations ~b1 = 1/2[111] and ~b2 = 1/2[111] which have
reacted to form a screw junction with Burgers vector ~bJR = 1/2[111] + 1/2[111] = [010], introduced piecewise
in the center of the simulation cell (see upper panel in Fig. 8a). The [010] junction has a length of 20 a0,
with a0 the lattice parameter. Atomistic simulations and anisotropic elasticity, both presented in the next
section 3.3, show that such a reaction is energetically favorable in Nb. All dislocations, the two ~b1 and ~b2
screw dislocations and the ~bJR junction reaction, are contained in their common P12 = (101) slip plane.
After relaxation of the junction, a third screw dislocation with Burgers vector ~b3 = 1/2[111] is introduced,
and intersects the [010] junction in its middle. Upon relaxation, the [010] junction unzips, leading to the
creation of a mixed dislocation with the fourth Burger vector ~b4 = −~bJR − ~b3 = 1/2[111] and a length of
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20 a0 located where the junction laid before its intersection (lower panel in Fig. 8a). Molecular dynamics
simulations of the bowing of this ~b4 dislocation are presented in Fig. 8b, performed in the same simulation
cell as the static relaxations just described in Fig. 8a, but for an initial length of 80 a0 of this ~b4 dislocation.
The temperature is set to T = 200K and the strain rate ε̇xz = 5.6× 107 s−1 (see Methods, section 2.2).

As the ~b4 segment bows out under the applied stress, a screw dipole starts to expand in the P34 plane.
As soon as it reaches its screw orientation (indicated by dashed lines in Fig. 8b), a four-dislocation node is
created. The whole configuration is then divided in two parts, also observed in TEM: a group of four screw
dislocations connected to a node, which rapidly glide to the left, and a remaining dislocation tangle on the
right (see TEM images presented in Fig. 3). The detailed mechanism proposed based on TEM observations
presented in section 1 is thus confirmed by atomistic simulations, which allowed for determining both the
driving force for the fast motion of the four-dislocation node, and its formation under dynamic conditions,
where experiments did not allow for imaging the whole process. This new mechanism to explain anomalous
slip thus occurs in four steps: (1) a 〈100〉 junction forms from two intersecting 1/2〈111〉 screw dislocations;
(2) a third~b3 screw dislocation intersects the junction to create a mixed~b4 segment; (3) as the~b4 dislocation
bows out to create a screw dipole, a four-dislocation node connecting the four segments is created; (4) "free"
nucleation of kinks at the node allows for the fast motion over long distances of the four dislocations in the
two orthogonal P12 and P34 planes, as observed in TEM.

3.3. Formation of 〈100〉 junctions
These 〈100〉 junctions, resulting from the intersection between two 1/2〈111〉 screw dislocations, appear as

an essential ingredient for the occurrence of anomalous slip at low temperature since they are necessary for
the creation of glissile multi-junctions. We stress that since anomalous slip occurs only at low temperature,
1/2〈111〉 dislocations are aligned along their screw orientations due to the high lattice friction they experience.
Therefore, we only consider formation of 〈100〉 junctions from two intersecting 1/2〈111〉 screw dislocations.
At higher temperature, above the athermal temperature Tath of the Peierls mechanism where lattice friction
opposing dislocation glide vanishes (see experimental values in Tab. 1 for all bcc transition metals), 1/2〈111〉
dislocations can take any orientation of mixed character, facilitating formation of 〈100〉 junctions as detailed
in Appendix F. We study in this section their spontaneous formation resulting from the intersection between
two 1/2〈111〉 screw dislocations, using both molecular statics relaxations and a line energy model developed
in the same formalism as presented in the previous section 3.1 for the relaxation of the four-dislocation node.

~b1

~b2

Nb (A = 0.5)

(a)
~b1

~b2

W (A = 1)

(b) L0 LR

lJR

π/2− ψ0θ

~b2

~b1

[010]

[101]

[101̄]

(c)

Figure 9: Superposition of the relaxed configuration obtained after molecular statics relaxation (colored spheres) and the
predictions of the line energy model (solid lines) for two initially screw 1/2〈111〉 dislocations intersecting to form a 〈100〉 screw
junction in (a) Nb and (b) W. (c) Sketch of the formation of a [010] screw junction reaction of length lJR resulting from the
intersection of two initially screw dislocations of Burgers vectors ~b1 = 1/2[111] and ~b2 = 1/2[111].
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For molecular statics relaxations, the geometry of the simulation cell is defined by the three vectors
X = 80 × [010], Y = 40 × [101] and Z = 20 × [101], with periodic boundary conditions along X, and
free surfaces in the Y and Z directions. Two 1/2〈111〉 screw dislocations having Burgers vectors ~b1 and ~b2,
satisfying ~b1 +~b2 = ~bJR = [010], are introduced in the cell, and cross each other at its center. The relaxed
structures are presented in Fig. 9a and b in Nb and W respectively, where only atoms belonging to the
dislocation cores are shown, and the starting configuration is represented by dashed grey lines.

Upon relaxation, we see the spontaneous formation of a 〈100〉 junction in Nb, but not in W. We also
note that the two 1/2〈111〉 dislocations leave their initial screw character upon formation of the junction,
taking a mixed orientation of character θ. To rationalize the driving force leading to the formation of these
〈100〉 junctions in bcc transition metals, in particular why it spontaneously forms in Nb and not W, we
now consider the same system using a line energy model, based on the formalism introduced in section 3.1,
sketched in Fig. 9c. For the formation of the 〈100〉 junction to be energetically favorable, the elastic energy
needs to decrease upon its formation. The energy variation associated with the junction formation is:

∆Eelas(lJR) = 4LRE
〈111〉(θ) + lJRE

〈100〉
screw − 4L0E

〈111〉
screw, (6)

with L0 and LR the initial and relaxed lengths of the 1/2〈111〉 dislocation segments intersecting at the node,
and lJR the junction length (see sketch in Fig. 9c for notations). The 1/2〈111〉 dislocations are initially
in screw orientation and have a character θ after formation of the junction, with the corresponding linear
energy E〈111〉screw and E〈111〉(θ). E〈100〉screw is the linear energy of the junction reaction, which is of screw character
here, but can also have other orientation as detailed in Appendix F and section 1.2 of the next chapter. The
length of the junction reaction is found by minimizing Eq. 6. To do so, we need first to express the length
LR of the relaxed 1/2〈111〉 dislocation segments and their character θ as functions of lJR. Simple geometry
leads to the expression:

LR = L0

√
1− 2 sin (ψ0)

lJR

2L0
+

(
lJR

2L0

)2

= L0

√
1−
√

3

3

lJR

L0
+

1

4

(
lJR

L0

)2

(7)

A good approximate of the above expression 7 is found considering a Taylor series expansion to the second
order in lJR/L0, resulting in the following:

LR
L0

= 1−
√

3

6

lJR

L0
+

1

12

(
lJR

2

L0
2

)
+O

(
lJR

3

L0
3

)
(8)

For the line energy E〈111〉(θ), we take advantage of the fact that, in the absence of junction reaction (i.e.
lJR = 0), the two 1/2〈111〉 dislocations are in screw orientation (i.e. θ = 0) and the energy is minimal for
the screw dislocation. Thus, we have:

E〈111〉(θ) = E〈111〉screw +
1

2

∂2E〈111〉

∂θ2

∣∣∣∣
θ=0

θ2 +O(θ3) (9)

Then, the character θ of the two intersecting 1/2〈111〉 is linked to the length lJR of the junction reaction
through the following relation:

sin (ψ0 − θ) = sin (ψ0)− lJR

2L0
(10)

A Taylor series expansion of this relation for small characters θ leads to:

θ2 =
1

cos2 (ψ0)
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)
, (11)

and then to:

E〈111〉(θ) = E〈111〉screw +
3

16

∂2E〈111〉

∂θ2

∣∣∣∣
θ=0

lJR
2
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2 +O

(
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3

L0
3

)
(12)
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Injecting the two Taylor series expansions of Eqs. 8 and 12 in the expression 6 for the variation of the elastic
energy, we finally obtain:

∆Eelas(lJR) = lJR

(
E〈100〉screw − 2

√
3

3
E〈111〉screw +

[
1

3
E〈111〉screw +

3

2

∂2E〈111〉

∂θ2

∣∣∣∣
θ=0

]
lJR

L0
+O

(
lJR

2

L0
2

))
(13)

This function has a minimum for positive length lJR of the junction only if the linear term is negative, thus
resulting in the following condition:

E〈100〉screw − 2

√
3

3
E〈111〉screw ≤ 0 → αelas

JR =

√
3

2

E
〈100〉
screw

E
〈111〉
screw

≤ 1 (14)

In the frame of isotropic elasticity theory, the ratio between the elastic energies of the two 1/2〈111〉 and 〈100〉
screw dislocations is equal to the ratio between the square of the norm of their Burgers vectors, resulting
in αelas

JR = 2/
√

3 ' 1.15. Hence, according to isotropic elasticity, no 〈100〉 screw junction should form spon-
taneously when two 1/2〈111〉 screw dislocations intersect. As shown in Fig. 9b, this result is confirmed by
atomistic simulations performed in W, which is elastically isotropic (i.e. A = 1).

Now considering anisotropic elasticity, an analytical expression for the elastic energy of a screw dislocation
is available for 1/2〈111〉 and 〈100〉 Burgers vectors [177, 178], for which the logarithmic prefactors are:

e〈111〉screw =
3a0

2C44

8π

√
9 + (1 +mB)(2 +A)

(1 + 2A)[1 +A(3 +mB)]
and e〈100〉screw =

a0
2C44

2π
, (15)

where A = 2C44/(C11−C12) is the elastic anisotropy ratio, andmB = (C11+2C12)/C44 is a modified bulk to
shear moduli ratio. Their values are given in Tab. 1 for all bcc transition metals, derived from experimental
elastic constants measured at 4.2K. The ratio αelas

JR then has an analytical expression:

αelas
JR =

2√
3

√
(1 + 2A)[1 +A(3 +mB)]

9 + (1 +mB)(2 +A)
(16)

Taking A = 1 in the above expression of αelas
JR gives the previous result of isotropic elasticity theory, αelas

JR =
2/
√

3 ' 1.15. Considering elastic anisotropy, one obtains the values presented in Tab. 4 for all bcc transition
metals. The condition for the 〈100〉 screw junction reaction to form is met by all metals satisfying A ≤ 0.8
(i.e. V, Nb, Cr and Mo), almost independently of the value of mB . Indeed, the elastic energy ratio αelas

JR
can be approximated as a unique function of the elastic anisotropy A given that mB � A (see Tab. 1):

αelas
JR '

2√
3

√
A(1 + 2A)

2 +A
(17)

The condition for the stability of the junction αelas
JR ≤ 1 is then 8A2 + A − 6 ≤ 0, which is satisfied for

A ≤ (−1 +
√

193)/16, i.e. for an elastic anisotropy ratio A smaller than 0.8. For metals in which this
condition is met, and thus the 〈100〉 screw junction reaction stable, the equilibrium length of the junction
is the minimum of the function ∆Eelas(lJR) given by Eq. 13, leading to:

lJR

L0
=

2
√

3E
〈111〉
screw − 3E

〈100〉
screw

2E
〈111〉
screw +

9

2

∂2E〈111〉

∂θ2
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θ=0

=

√
3

1 +
9

4E
〈111〉
screw

∂2E〈111〉

∂θ2

∣∣∣∣
θ=0

(1− αelas
JR ) (18)

We note that the length of the junction is proportional to the elastic coefficient (1 − αelas
JR ). Nb, followed

by Cr, have the smallest elastic ratios αelas
JR , indicating that two intersecting 1/2〈111〉 screw dislocations can

easily and spontaneously form long 〈100〉 screw junctions in these two metals (see Tab. 4). Since the length
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of these 〈100〉 junctions is maximum in these two metals, its probability to be intercepted by a third screw
dislocation of Burgers vector ~b3 is thus maximized. This leads to easier formation of four-dislocation nodes
following the process of Fig. 8, further responsible for the development of anomalous slip. This is consistent
with experiments, mostly in Nb where anomalous slip is reported most often in experimental works, but also
in Cr where Holzer et al. [34] recently reported such event on samples compressed at 77K. In V and Mo, this
αelas

JR coefficient is close to 1, but still smaller, thus resulting in stable 〈100〉 screw junctions, but of a small
length. Finally, in W, Ta and Fe, this coefficient is larger than 1, and these junctions are thus unstable.
According to the presented model, the stability of the 〈100〉 screw junction reaction directly follows the
variations of the elastic anisotropy ratio A, with an increasing stability for small value of A.

Table 4: Elastic anisotropy A = 2C44/(C11 − C12), logarithmic prefactors e〈111〉screw and e〈100〉screw of the elastic energy of 1/2〈111〉
and 〈100〉 screw dislocations (eV/Å), second derivative of the elastic energy of 1/2〈111〉 dislocation at the screw orientation
(eV/Å), elastic ratio αelas

JR defining the stability of the junction, normalized length lJR/L0 of the screw 〈100〉 junction, and
corresponding character θ1/2〈111〉 (◦) of the two 1/2〈111〉 dislocations after the formation of the junction.

Metal A e
〈111〉
screw e

〈100〉
screw

∂2E〈111〉

∂θ2

∣∣∣∣
θ=0

αelas
JR lJR/L0 θ1/2〈111〉

Nb 0.50 0.36 0.31 0.05 0.74 0.35 9.0◦

Cr 0.68 0.82 0.85 0.06 0.90 0.15 3.6◦

Mo 0.77 0.97 1.09 0.38 0.97 0.01 0.3◦

V 0.78 0.35 0.39 0.23 0.98 0.01 0.3◦

W 1.00 1.17 1.56 0.83 1.15 0 0◦

Ta 1.56 0.50 0.89 1.01 1.56 0 0◦

Fe 2.38 0.39 0.95 1.16 2.08 0 0◦

These 〈100〉 junctions are observed in all bcc transition metals at low temperature [34, 37, 38, 247–249],
having different lengths depending on the metal, as predicted by the presented atomistic simulations and
line energy model. This agrees with the observation that activity of anomalous slip in bcc metals correlates
with the elastic anisotropy ratio A, and is more prominent for small values, like in Nb (A = 0.50) [37, 250–
252]. This is also the case for Cr (A = 0.68), where these 〈100〉 junctions are often reported experimentally
[13, 34, 122, 123], and anomalous slip reported for orientations of the loading axis near the center of the
standard stereographic triangle [34], where activity on anomalous slip planes is the most striking.

According to the line energy model, 〈100〉 screw junctions should form spontaneously from the interaction
of two 1/2〈111〉 screw dislocations in bcc metals having A < 0.8. Looking at the relaxed configurations of the
junction at 0K presented in in Fig. 9 for two metals having different elastic anisotropy ratios, namely Nb
and W with A = 0.5 < 0.8 and A = 1 > 0.8 respectively, we find a good agreement between the two models
for both metals, with predictions of the line energy model shown with solid colored lines. We now further test
the predictions of the line energy model in terms of the correlation between A and the stability of the 〈100〉
screw junction, and most particularly regarding the proportional relation predicted between the length lJR of
the junction and the initial length L0 of the two intersecting 1/2〈111〉 screw dislocations. For this purpose, a
similar setup is adopted, where two 1/2〈111〉 screw dislocations intersect in their middle, and are then relaxed
at 0K with molecular statics. We then vary their initial length L0 and record the length of the junction
lJR. Results are presented in Fig. 10 in Nb and W, using the same interatomic potentials as previously cited.

Atomistic simulations confirm the creation of a 〈100〉 junction of screw character in Nb, with a length lJR
of the junction reaction varying linearly with the length L0 of the two intersecting 1/2〈111〉 screw dislocations:

lJR(L0) = aL0 + l0JR, (19)
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Figure 10: Length lJR of the junction reaction produced by the intersection of two 1/2〈111〉 screw dislocations of length L0.
Predictions of the line energy model (solid lines) are compared to results of molecular statics simulations (filled symbols and
dashed lines) for Nb (blue) and W (green), and to results of DD simulations for W (open symbols).

where l0JR is a small offset appearing in atomistic simulations, arising from the uncertainty associated with
the measure of the junction length for small junctions. Like for the relaxation of the four-dislocation node,
the slope a deduced from atomistic simulations is lower than the one predicted by the line energy model.
Here also, one can suppose that this difference is caused by the neglect of the core contributions in the line
energy model. 〈100〉 dislocations have indeed a higher core energy than 1/2〈111〉 dislocations. For the screw
orientation, empirical interatomic potentials used in the present work lead to a core energy equal to 0.48
and 0.25 eV/Å respectively for 〈100〉 and 1/2〈111〉 screw dislocations in Nb (0.93 and 0.52 eV/Å in W) for
the same core radius rC = b1/2〈111〉 = a0

√
3/2. The higher core energy of the 〈100〉 screw dislocation adds a

penalty for the spontaneous formation of 〈100〉 screw junctions, which is not considered in the line energy
model developed here. It thus appears normal that this model overestimates the length of the junction
compared to atomistic simulations accounting for every contributions. This model, which thus appears
semi-quantitative, allows nevertheless to rationalize the impact of the elastic anisotropy on the creation of
〈100〉 junctions, showing that such junctions are spontaneously created when two 1/2〈111〉 screw dislocations
intersect in bcc transition metals with an elastic anisotropy ratio A smaller than ' 0.8, and is further
stabilized by a decreasing anisotropy ratio. Elasticity also predicts that formation of 〈100〉 screw junctions
becomes unfavorable in metals where this ratio A is larger than ' 0.8. In particular, in the isotropic case
of W (A = 1), atomistic simulations confirm that the interaction of two 1/2〈111〉 screw dislocations do not
spontaneously lead to the creation of a 〈100〉 screw junction (see Fig. 9b).

3.3.1. Formation of 〈100〉 screw junctions under dynamic conditions
According to the results presented in the previous section, 〈100〉 screw junctions formed by two inter-

secting 1/2〈111〉 screw dislocations are not energetically favorable for metals with elastic anisotropy A > 0.8,
which are an essential ingredient for the occurrence of anomalous slip in bcc metals. This appears in con-
tradiction with the experimental observation of anomalous slip in W and Ta (see Tab. 1), for which A ≥ 1.
This apparent paradox finds a solution in the possibility for such 〈100〉 junctions to form under dynamic
conditions from two intersecting 1/2〈111〉 screw dislocations, observed in W at 373K during in situ straining
experiments in TEM by Daniel Caillard, presented in Fig. 11a.

Despite the energy cost of these screw junctions in W, TEM observations reveal that the two interacting
1/2〈111〉 screw dislocations, of Burgers vectors ~b1 = 1/2[111] and ~b2 = 1/2[111] thus satisfying ~b1 +~b2 = [010],
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Figure 11: (a) Formation of a [010] junction observed in tungsten by TEM with in situ straining experiments at 373K. Two
intersecting screw dislocations with different 1/2〈111〉 Burgers vector are observed at two different times. The difference image
between the two frames shows that the right parts of the screw dislocations noted 1a and 2a have glided to the right while their
left parts 1b and 2b remain fixed, leading to the creation of the JR. (b) Molecular dynamics simulations show the dynamical
creation of a [010] junction in tungsten operating through the nucleation of kinks at the node on the right dislocation segments.

glide under an applied stress only on one side of their contact point (1a and 2a dislocation segments in Fig.
11a), and remain immobile on the other side (1b and 2b dislocation segments in Fig. 11a). Therefore, a
〈100〉 junction is formed at their intersection, and can then extend under the effect of the applied stress.
Now that the junction is sufficiently long, it can then be intersected by a third screw dislocation of Burgers
vector~b3 to form the multi-junction leading to anomalous slip according to the mechanism sketched in Fig. 4.

The extension of the 〈100〉 screw junction under applied stress is now studied using molecular dynamics
straining simulations in W. The simulation cell used for this calculation is defined by vectors X = 140×[010],
Y = 100× [101] and Z = 30× [101], with periodic boundary conditions along the X direction only, and free
surfaces along Y and Z directions. Two screw dislocations of Burgers vectors ~b1 = 1/2[111] and ~b2 = 1/2[111]
are introduced in the simulation cell, and intersect at its center. The system is then relaxed with a molec-
ular statics step at 0K, resulting in the same relaxed structure as presented in Fig. 9b, with no 〈100〉
junction formed and a longer initial length L0 of the two 1/2〈111〉 screw dislocations. A constant strain rate
ε̇xz = 4.7×107 s−1 is then applied to the dislocations using flexible boundary conditions [167] (see Methods,
section 3.2), resulting in an equal net force on the two 1/2〈111〉 screw dislocations contained in the simulation
cell. The results of this calculation in W are presented in Fig. 11b, performed at 200K.

The simulation starts from the relaxed configuration shown in Fig. 9b, thus without an initial 〈100〉
segment, since intersection between two 1/2〈111〉 screw dislocations do not spontaneously produce a junction
in W. Three further snapshots of the simulation are shown, starting from a moment where the 〈100〉 junction
has already formed, shown on the first presented step. After a short time and increment of strain, two kinks
form on the right side of the junction, which then rapidly migrate along the two dislocation lines. This
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leads to the extension of the 〈100〉 junction by an elementary step of λP = a0
√

6/3, corresponding to the
displacement of the two kinks on the right. Atomistic calculations allow for reconstruction of the proposed
mechanism based on in situ straining experiments, responsible for the creation and elongation of 〈100〉
junctions under applied stress. In particular, atomistic simulations evidenced an easier nucleation of kinks
along the 1/2〈111〉 dislocation lines on the side of the junction oriented in the direction of the applied stress.
According to the proposed mechanism, it then allows for anomalous slip to occur in bcc transition metals
having A > 0.8, in agreement with experiments, with however a lower probability since formation of junctions
is still less favorable, and the 〈100〉 junctions produced are smaller. This also explains why no anomalous
slip is observed in Fe, which has the highest elastic anisotropy ratio A among all bcc transition metals, and
the reverse effect for Nb and Cr, which have the lowest A.

3.4. Discussion
These highly mobile multi-junctions offer a nice explanation to the occurrence of anomalous slip in bcc

metals, starting from a large network of dislocations ~b1 and ~b2, as sketched in Fig. 12. Such networks are
created after activation of dislocations glide in their most favorable planes and result from mutual blocking
of dislocations ~b1 and ~b2 which form arrays in the plane containing them. The formation of large planar
arrays is helped by the associated decrease of the elastic energy, because of a substantial twist component.
Incoming dislocations ~b3, which glide in the primary P23 plane, will form many glissile multi-junctions when
intersecting such networks. This will result in further glide of ~b1 and ~b2 dislocations in the P12 plane and in
deviation of~b3 dislocations from their primary to the P34 slip plane where they will glide with~b4 dislocations.
It is important to note that none of the four dislocations can cross slip during their cooperative glide motion,
which results in a very planar slip in P12 and P34 planes. In this description, ~b3 and ~b4 dislocations glide in
many parallel slip planes, thus producing fine slip traces, hardly visible, at the surface of the sample. On the
other hand, all ~b1 and ~b2 dislocations glide in a single P12 plane, namely the plane of the starting network,
which results in a very coarse and straight slip band characteristic of anomalous slip. This mechanism also
agrees with the average shear direction intermediate between two Burgers vectors directions and with the
absence of dead band usually observed in anomalous slip conditions.

Figure 12: A network formed by ~b1 and ~b2 screw dislocations in P12 plane is intersected by dislocations ~b3, which glide in the
principal slip system. The interaction results in the creation of highly mobile junctions, leading to long-distance glide of ~b1 and
~b2 dislocations in a single P12 plane, and of ~b3 and ~b4 dislocation in many parallel P34 slip planes.

The existence of four-dislocation node in bcc metals has already been discussed by Bulatov et al. [86],
but with dislocations belonging to three different {110} planes intersecting along a 〈111〉 direction, thus
with a mixed 〈100〉 junction reaction of character θJR = 54.7◦ (see Appendix F). These multi-junctions
were reported as strong anchoring points, leading to substantial strain hardening and acting as dislocation
sources. The multi-junctions observed here are different, corresponding to four dislocations belonging to
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two different {110} planes intersecting along a 〈100〉 direction. As a result of their high mobility, they lead
to the reverse effect and are a source of considerable softening, where anomalous slip takes place.

Conclusions of Chapter 5:

• Anomalous slip observed at low temperature in bcc metals arises from the unusual high mobility of
multi-junctions formed by intersection between a 〈100〉 junction and moving 1/2〈111〉 screw disloca-
tions. The proposed mechanism, based on in situ straining experiments in TEM, was investigated
using atomistic simulations coupled with elastic considerations. The fast and cooperative motion of
dislocations over long distances operates through easy nucleation of kinks at the node connecting the
four 1/2〈111〉 dislocations, driven by the line tension exerted by the dislocations on the node.

• Understanding and modeling the formation of these multi-junctions necessitates going beyond usual
simplifications in dislocation theory, with elastic anisotropy being a key ingredient, and the possible
creation in dynamic conditions of junctions otherwise found unstable based solely on energy.

• Both displacement of the four-dislocation node and creation of the 〈100〉 screw junction is favored by a
decreasing elastic anisotropy ratio A, like in Nb or Cr, and less favorable in metals with a large A like
Fe. In particular, longer 〈100〉 junctions are produced in metals with a small A, thus maximizing the
probability for such junction to be further intercepted by another 1/2〈111〉 screw dislocation, leading
to anomalous slip. Such a qualitative criterion based on elasticity thus helps rationalizing occurrences
of anomalous slip across bcc metals, with abundant evidences in Nb, and no observation at all in Fe.





Chapter 6 - 〈100〉 dislocations in bcc transition metals

As discussed in the previous chapter, 〈100〉 dislocations are observed in all bcc transition metals as junctions,
created by two intersecting 1/2〈111〉 dislocations. However, these 〈100〉 dislocations are often not considered
as a possible slip system when rationalizing the plastic deformation of these metals due to their longer
Burgers vector. We discuss in the present chapter possibility for these 〈100〉 dislocations to participate to
the plasticity of bcc transition metals.

1. Elasticity and 〈100〉 dislocations
1.1. Elasticity and relative stability of dislocations having different Burgers vectors

A common argument to discard 〈100〉 dislocations is based on their presumably higher elastic energy,
due to the longer norm of their Burgers vector than 1/2〈111〉 dislocations. Indeed, in the frame of isotropic
elasticity theory, the elastic energy of a dislocation is proportional to the square norm of its Burgers vector,
with a minimum for the screw orientation (see Eq. 2 in the Literature review). Hence, dislocations having
a Burgers vector equal to the smallest periodicity vector of the lattice are the most energetically favorable,
which is 1/2〈111〉 for the bcc lattice. The second smallest periodicity vector of the bcc lattice is 〈100〉, slightly
longer in norm than 1/2〈111〉, namely b1/2〈111〉 = a0

√
3/2 and b〈100〉 = a0 respectively, with a0 the lattice

parameter. According to isotropic elasticity, these 〈100〉 dislocations thus have a higher elastic energy than
1/2〈111〉, by approximately a factor 1.33. However, among all bcc transition metals, only W is elastically
isotropic, i.e. with an elastic anisotropy A = C44/(C11 − C12) = 1. Now considering elastically anisotropic
metals, i.e. A 6= 1, the situation is different. The elastic energy of these two dislocations are presented in
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Figure 1: Pre-logarithmic factors to the elastic energy e (solid lines) and line tension t (dashed lines) of dislocations with Burgers
vectors 1/2〈111〉 (orange) and 〈100〉 (green) as a function of their character θ for all bcc transition metals using experimental
elastic constants at 4.2K (see Tab. 1). Vertical lines indicate the mixed θ = 54.7◦ orientation of the 〈100〉 dislocations.



Chapter 6 - 〈100〉 dislocations in bcc transition metals Page 157

Fig. 1 for all bcc transition metals as a function of their character θ, obtained using anisotropic elasticity
[165], with the 4.2K experimental elastic constants (see Tab. 1 in the Literature review).

Except for the isotropic case of W, which shows the expected hierarchy between the two types of disloca-
tions, i.e. with an elastic energy proportional to the square of the norm of its Burgers vector, all other bcc
metals show different behaviors, a direct consequence of the elastic anisotropy ratio A. Looking at the screw
orientation, which minimizes the elastic energy for the two dislocations, although these 〈100〉 dislocations
have a larger Burgers vector than 1/2〈111〉 dislocations, both have close core and elastic energy [129, 253].
This is true for all bcc metals having A < 1 (Nb, Cr, Mo and V), with the reverse effect for metals with
A ≥ 1 (W, Ta and Fe). Using the analytical expression for the elastic energy of both screw dislocations
[177, 178] (Chapter 5, section 3.3), the ratio between the two screw dislocations is given by:

e
〈100〉
screw

e
1/2〈111〉
screw

=
4

3

√
(1 + 2A)[1 +A(3 +mB)]

9 + (1 +mB)(2 +A)
' 4

3

√
A(1 + 2A)

2 +A
(1)

In particular, for metals having a strong elastic anisotropy defined by A < 0.65, the 〈100〉 screw dislocation
actually has a lower elastic energy than the 1/2〈111〉 screw dislocation, which is the case for Nb (A = 0.5)
and Cr (A = 0.68), as also pointed out by Reid [129]. Therefore, the conventional argument to discard 〈100〉
dislocations in the study of plasticity in bcc metals, based on isotropic elasticity theory, is not sufficient and
one a priori needs to account for these dislocations. Besides, 〈100〉 dislocations do not disrupt the AF order
of bcc Cr and thus do not create magnetic fault at low temperature, giving an additional reason to consider
them in Cr.

The elastic line tension is also plotted on Fig. 1 as a function of the dislocation character for both Burgers
vectors, which characterizes the ease to bend a straight dislocation line as a function of its orientation. We
note that for all metals having A ≤ 1, the minimum of the elastic energy of the 〈100〉 dislocation is found
for the screw orientation, which also shows the maximum for the line tension. As a consequence, the screw
orientation will be the most difficult to bend, further linked to the activation of Frank-Read sources. The
reverse effect is found for metals having A > 1 (Ta and Fe), where a mixed character minimizes the elastic
energy of 〈100〉 dislocations, while also maximizing their line tension.

1.2. Formation of 〈100〉 junctions in bcc metals
In the previous chapter, we discussed the stability of 〈100〉 junctions as part of the mechanism leading

to anomalous slip, which requires formation of junctions from two intersecting 1/2〈111〉 dislocations of screw
character. We now discuss all possible reactions leading to the formation of glissile 〈100〉 junctions, which
can then act as sources for multiplication of 〈100〉 dislocations, for any character and glide plane of the two
reacting 1/2〈111〉 dislocations. The 〈100〉 junction can only glide in a plane where both its Burgers ~bJR and
line ~lJR vectors belong. In the present case, ~bJR is the sum of the Burgers vectors of the two intersecting
1/2〈111〉 dislocations. As for the line orientation ~lJR, it is defined as the intersection between their two
glide planes. Therefore, the resulting junction can either be sessile (i.e. with no possible {110} glide plane
containing both its Burgers ~bJR and line ~lJR vectors), or glissile (i.e. at least one possible {110} glide plane
that contains both ~bJR and ~lJR). All nine possible combinations of two intersecting dislocations ~b1 = 1/2[111]

and ~b2 = 1/2[111] leading to the formation of a junction ~bJR = ~b1 +~b2 = [001] are presented in Fig. 2.

As pointed out by Spitzig and Mitchell [254], there are four types of reactions to consider among these
nine combinations. The first possibility corresponds to the case where the two original habit planes are
orthogonal to each other, which products a completely sessile junction, corresponding to Fig. 2e and i. The
second case occurs when the two reacting 1/2〈111〉 dislocations are both on the same plane, which results in
a completely glissile junction, as shown in Fig. 2a (corresponding to the one involved in the mechanism for
occurrence of anomalous slip). A third possibility results in a 〈100〉 junction glissile in one of the two original
habit planes of the two 1/2〈111〉 dislocations, for which several possible combinations are possible, shown in
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Figure 2: All possible combinations of the two ~b1 = 1/2[111] and ~b2 = 1/2[111] screw dislocations leading to the formation of a
JR of Burgers vector ~bJR = ~b1 +~b2 = [001], depending on their 3 possible {110} glide planes. Combinations between different
1/2〈111〉 dislocations and leading to other Burgers vectors for the JR are equivalent to the ones presented here.

Fig. 2b, c, d and g. Finally, the junction can also be glissile in a different plane than the original habit
planes of the two intersecting dislocations, corresponding to Fig. 2f and h. There are only three different
possible characters for 〈100〉 junctions which are screw, a mixed orientation with θ = 54.7◦ (see vertical line
on Fig. 1) corresponding to a line along a 〈111〉 direction, and an edge character.

Other possibilities than presented in Fig. 2 would have been the formation of 〈110〉 junctions, follow-
ing the reaction ~b1 − ~b2 → [110]. 〈110〉 dislocations are however not observed experimentally in any bcc
metals, and are unstable according to elasticity theory. Indeed, the formation of 〈110〉 dislocations is not
energetically favorable following this reaction, or the other possibility, which is [100]+[010]→ [110]. Further
analysis reveals that they can spontaneously dissociate into two 1/2〈111〉 or 〈100〉 dislocations, depending
on the character of the junction formed. We also studied their stability using atomistic simulations, where
molecular statics relaxation at 0K in Nb, W, Mo and Ta confirmed this spontaneous dissociation.



Chapter 6 - 〈100〉 dislocations in bcc transition metals Page 159

As presented in the previous chapter while discussing occurrence of anomalous {110} slip in bcc tran-
sitions metals, the spontaneous formation of 〈100〉 junctions with a screw character (Fig. 2a) is governed
by the elastic anisotropy of the metal, with an increase stability associated with low elastic anisotropy ratio
A (Chapter 5, section 3.3). At low temperature where 1/2〈111〉 dislocations align along their screw orienta-
tion due to the strong lattice friction they experience, 〈100〉 junctions can only form as the product of the
intersection between two 1/2〈111〉 screw dislocations. As presented in Appendix F, spontaneous formation
of the screw junction from this reaction is energetically favorable only in metals with an elastic anisotropy
A ≤ 0.8, with a length proportional to the length of the two intersecting 1/2〈111〉 dislocations. Formation
of a 〈100〉 junctions having the two other possible characters present in Fig. 2, i.e. mixed θ = 54.7◦ and
edge, is however not energetically favorable from intersection between two 1/2〈111〉 screw dislocations. In-
stead, there is a critical character θJR of the two reacting dislocations above which the reaction leading to
the formation of the mixed and edge 〈100〉 junctions becomes possible. At higher temperature, above the
athermal temperature of the Peierls mechanism, 1/2〈111〉 dislocations can take any character, since the high
lattice friction experienced by the screw orientation has vanished. In these conditions, according to our line
energy model and atomistic simulations presented in Appendix F, 〈100〉 junctions can form more easily,
also in metals with A > 0.8, and for all three possible screw, mixed and edge characters.

Assuming 〈100〉 dislocations to primarily originate from such junctions, they are therefore expected at
low temperature only in metals with a small elastic anisotropy ratio A < 0.8, which is the case for Nb and Cr.
Indeed, one possibility is that such junctions act as sources for 〈100〉 dislocations, which can then multiply
from these active sources. For metals having A > 0.8, two 1/2〈111〉 dislocations of a mixed character needs
to cross to form a 〈100〉 junction of sufficient length to then act as dislocation sources, which is thus possible
only at higher temperature where they do not align preferentially along their screw orientation. Among
the nine combinations presented in Fig. 2, only the glissile reactions can act as sources, and since the two
possibilities leading to a edge 〈100〉 junction are sessile, only junctions having a screw or a mixed θ = 54.7◦

character can then act as sources.

1.3. Experimental observations of 〈100〉 dislocations
Given their close energetics compared to the conventional 1/2〈111〉 dislocations, there appears to be no

valid argument based on elasticity theory to discard these 〈100〉 dislocations in rationalizing plasticity of
bcc transition metals. To participate actively to the plastic deformation, a given slip system needs to be
able to multiply to non-negligible proportion of mobile dislocations. For 〈100〉 dislocations, a possibility
for such multiplication process would be for junctions discussed in the previous section 1.2 to act as active
sources. As will be discussed, motion of these 〈100〉 dislocations have been observed at room temperature in
Cr and Nb, and at higher temperature in other metals. We present in this section a review of experimental
evidences of the presence and mobility of 〈100〉 dislocations across all bcc transition metals.

In Fe, Dingley and Hale [255] reported a large proportion of 〈100〉 dislocations observed in TEM in sam-
ples deformed at temperatures ranging from 156 to 673K, with an approximate ratio of 1 〈100〉 dislocation
for 3 1/2〈111〉. The authors also report constant proportions of the two Burgers vectors with temperature,
showing no significant change of multiplication mechanism in this temperature range. However, the analysis
performed by the authors used a single extinction criterion (i.e. ~g.~b contrast) for determination of the Burg-
ers vectors of dislocations, which was then corrected by Hale and Anderson Brown [123], who demonstrated
the necessity to use at least two different extinction conditions for a precise evaluation of the Burgers vectors
in presence. The authors considered both Fe and Cr for their study, first confirming the previous results in
Fe using a single extinction vector, and a ratio of 3 〈100〉 for 4 1/2〈111〉 dislocations in Cr. However, using
two extinction conditions, the authors reported less 〈100〉 dislocations in Fe, approximately 5%, which is
still a non-negligible proportion, and was further confirmed by France and Loretto [256, 257].

〈100〉 dislocations in bcc metals are most often the junction product resulting from the interaction of two
1/2〈111〉 dislocations, a reaction driven by elasticity [258]. At low temperature, where 1/2〈111〉 dislocations
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are aligned along their screw orientation, according to atomistic simulations and the line energy model pre-
sented in the previous chapter (see section 3.3), the formation of these junctions is energetically favorable
in all bcc metals with an elastic anisotropy ratio A < 0.8. This is the case for Nb (A = 0.5) [250, 259],
Cr (A = 0.67) [34], Mo (A = 0.77) [38] and V (A = 0.78) [247], with a junction of length proportional to
the length of the two intersecting 1/2〈111〉 dislocations, decreasing with increasing anisotropy ratio A. At
higher temperature, above the athermal temperature of the Peierls mechanism, 1/2〈111〉 dislocations can
take any character, and 〈100〉 junctions can form more easily, also in metals with A > 0.8. This agrees with
experimental observations of longer 〈100〉 junction segments in Ta (A = 1.56) [248] at 463K. Apart from
these static observations in all bcc transition metals, evidence of long mobile segments of 〈100〉 dislocations
are very scarce in the experimental literature, which is an essential condition for these dislocations to par-
ticipate actively to the plastic deformation of these bcc metals.

However, in addition to the conventional 〈111〉{110} slip system, experiments [13, 123] in samples of Cr
have also reported glide of 〈100〉 dislocations in {110} planes. Reid and Gilbert [13] observed with TEM
in pure Cr deformed at 300K slip traces corresponding to cross-slip events. As intersections between the
primary and the cross-slipped {110} planes were along 〈100〉 and not 〈111〉 directions, this event clearly
indicates slip activity of 〈100〉 dislocations in bcc Cr, and with an ability to cross-slip at ambient temper-
ature. Junctions with a 〈100〉 Burgers vector, formed by intersection between two 1/2〈111〉 dislocations,
have been observed by TEM in polycrystalline samples by McLaren [122], Garrod and Wain [125], and Reid
and Gilbert [13]. Such a junction has been observed recently by transmission electron microscopy in Cr by
Holzer et al.[34] on compressed single crystals at a temperature of 77K. However, these authors did not
report any activity of the 〈100〉{110} slip system for the different orientations of the compression axis they
investigated. Similar observations in Nb of the activity of 〈100〉 dislocations gliding in {110} planes were
reported by both Reid et al. [251] and Foxall et al. [250], the latter also reporting evidence of long 〈100〉
dislocation segments.

Given the results of anisotropic elasticity theory (see section 1.1), one would expect similar proportions
and activity of the two Burgers vectors. But even in Nb and Cr, in which 〈100〉 dislocations have close elastic
energy compared to 1/2〈111〉, experimental observations systematically report much fewer 〈100〉 dislocations,
and evidences of their activity are very scarce at low temperature (below ambient). Also, it is not clear if
these dislocations are able to glide in other bcc transition metals at low temperature, since no experimental
evidence of their motion is reported. As presented in the previous section 1.2, 〈100〉 junctions can only be
formed at low temperature by two intersecting 1/2〈111〉 dislocations having a screw character. However, at
higher temperature, where the lattice friction opposing 1/2〈111〉 screw dislocations vanishes, 〈100〉 junctions
can form more easily from dislocations with a mixed character, and thus in all bcc transition metals as
detailed in Appendix F. Therefore, one needs an explanation for the rather scarce experimental observations
of the motion of 〈100〉 dislocations at low temperature.

2. Core properties and mobility of 〈100〉 screw dislocations

We study in this section the core properties and mobility of the 〈100〉 screw dislocation, first in the two
NM and AF phases of bcc Cr, and then in all other bcc transition metals, using ab initio calculations. We
focus on its screw orientation, assuming it represents the hindering character, like for 1/2〈111〉, and since it
minimizes its elastic energy (see Fig. 1 in section 1.1).

2.1. 〈100〉 screw dislocations in chromium
The ab initio simulation cell used for the 〈100〉 screw dislocation contains 200 atoms per unit b length in

the direction of the line, with the three periodicity vectors ~p1 = 10× [100], ~p2 = 10× [010], and ~p3 = [001],
and is constructed in a similar way as for 1/2〈111〉 screw dislocations. The crystal is oriented by the glide
direction X ‖ [110], the normal to the glide plane Y ‖ [110], and the dislocation line Z ‖ [001]. The
dislocations are arranged in dipoles in a quadrupolar array. The relaxed core structure of the 〈100〉 screw
dislocation in the NM phase of bcc Cr is presented in Fig. 3.
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Figure 3: (Upper row) Differential displacement map showing the core structure of the ~b = [001] screw dislocation in the NM
phase of bcc Cr in its (a) ground state and (b) saddle configurations. An arrow joining two atoms corresponds to a differential
displacement of b/2 along [001]. (Lower row) Absolute displacement in the (001) plane magnified by a factor 10. Atoms are
represented in different colors according to their height along [001].

We consider two positions for the dislocation in the {100} plane orthogonal to its line: one leads to the
ground state, shown in Fig. 3a, where the dislocation is located at the center of four 〈100〉 atomic columns
along the Z axis; and the other one leads to a configuration of higher energy, shown in Fig. 3b, where the
dislocation is located between two atomic columns along a {110} plane. We will show in the following that
the latter actually coincides with the saddle point configuration when the 〈100〉 screw dislocation is gliding in
a {110} plane. We find a compact core structure for this 〈100〉 screw dislocation, with no spreading. Prior to
the ab initio calculations presented in this section, the stability of dislocations having a 〈100〉 Burgers vector
was checked using anisotropic elasticity theory, to search for possible dissociation into two 1/2〈111〉 partial
dislocations. We find such dissociation to be energetically unfavorable, considering 〈100〉 dislocations of all
character ranging from screw to edge. The core structures in the two considered configurations are identical
in both NM and AF phases, with no magnetic fault introduced in the system as 〈100〉 is a periodicity vector
of the AF order of bcc Cr. The edge component of the dislocation in its two configurations are presented
in the lower row of Fig. 3, showing a slight dilatation of the atoms near the core of the 〈100〉 dislocation
in the plane orthogonal to its line. The core energy of this 〈100〉 screw dislocation in its ground state
configuration (Fig. 3a) is 0.718 and 0.737 eV/Å in the NM and AF phases respectively, using the same core
radius rC = a0

√
3/2 as for 1/2〈111〉 screw dislocations. The energy of the metastable configuration shown in

Fig. 3b, defined with respect to the ground state, is 25 and 20meV/Å respectively in the NM and AF phases.

We then determine the Peierls energy barrier opposing glide of 〈100〉 screw dislocations in {110} planes
using the two both and stress NEB setups (see Methods, section 3). The resulting energy barriers ∆EP and
Peierls potentials VP as a function of the dislocation position x, obtained after substraction of the variation in
the elastic energy of the dipole, are presented in Fig. 4a and b in the NM and AF phases respectively. We did
not consider glide of these dislocations in the other possible planes, which are {100}, since no experimental
observation report glide of any dislocation in these planes. Moreover, 〈100〉 dislocations would have to cross
a 〈100〉 atomic column (see Fig. 3). The obtained Peierls potentials in {110} planes have a similar shape
in both magnetic phases of bcc Cr, with a lower energy maximum in the AF phase. The heights of these
energy barriers are equal in both cases to the energy difference between the metastable configuration of Fig.
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3b and the ground state. The height of the Peierls barrier obtained using setup both for the NEB calculation
between two adjacent ground state configurations are indicated by grey crosses located at ξ = 0.5, showing
an excellent agreement between the two methods, proving again the validity of the elastic correction.
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Figure 4: (a) Peierls potential VP (solid lines) of a 〈100〉 screw dislocation gliding in a {110} plane in (a) the NM, and (b) AF
phases of bcc Cr as a function of the reaction coordinate ξ along the NEB path. The position x of the dislocation, normalized
by the distance λP = a0

√
2/2 between adjacent Peierls valleys, is shown in insets.

In the same way as for 1/2〈111〉 screw dislocations, the trajectory and variations of the relaxation volume
of the dilatation field induced by the core of the 〈100〉 screw dislocation can be extracted from the variations
of the stress recorded along the NEB path using setup stress. In the frame of the simulation cell, the
relaxation volume tensor of the 〈100〉 screw dislocation has the following form along the path:

¯̄Ω〈100〉 =

Ω11 0 0
0 Ω22 0
0 0 Ω33

 (2)

As reported for 1/2〈111〉 screw dislocations, post-processing of the stress variations recorded along the two
I → F and F → I paths [79] show that components Ω13 and Ω32 are zero for the 〈100〉 screw dislocation
gliding in a {110} plane. As for Ω12, the mirror symmetry of the {110} glide plane imposes its nullity. This
is the case for both NM and AF phases. Also, since no magnetic fault is generated by 〈100〉 dislocations
in the AF phase, contrary to 1/2〈111〉, the dislocation trajectory and the variation of its relaxation volume
can be directly extracted from the stress variations recorded along the NEB path using setup stress. The
trajectory followed by the 〈100〉 screw dislocation along its minimum energy path when gliding in a {110}
plane is presented in Fig. 5a in the NM and AF phases, which have been shifted up and down for clarity.
We note that the 〈100〉 screw dislocation, contrary to 1/2〈111〉, follows a straight trajectory between two
adjacent Peierls valleys in a {110} plane, and is almost identical in both magnetic phases. This is also a
consequence of the mirror symmetry of the {110} glide plane. Given that the trajectory of the 〈100〉 screw
dislocation coincides with its macroscopic {110} glide plane, 〈100〉{110} slip systems will not exhibit any
T/AT asymmetry, unlike 〈111〉{110} slip systems. Variations of the relaxation volume as a function of the
dislocation position x are presented in Fig. 5b and c in the NM and AF phases respectively. Although
the relaxation volume remains diagonal upon crossing of the Peierls barrier, the high symmetry of the
core dilatation field is broken along the path, with the development of an elliptic contribution ∆Ωe, and a
non-negligible trace ∆ΩP . As a consequence, the yield stress of 〈100〉 screw dislocations should experience
tension/compression asymmetry, and also be sensitive to an applied pressure. The variation of the relaxation
volume tensor is similar in the NM and AF phases, except the ∆Ω33 component, which is almost negligible
in the AF phase.
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Figure 5: (a) Trajectory of a [001] screw dislocation gliding in the (110) plane in the NM (blue) and AF (red) phases of bcc
Cr. Variations of the non-zero components of the relaxation volume tensor of the [001] screw dislocation are presented in the
(b) NM and (c) AF phases.

2.2. Competition between 1/2〈111〉{110} and 〈100〉{110} slip in chromium
The Peierls potentials VP for both 1/2〈111〉 and 〈100〉 screw dislocations gliding in a {110} plane are

presented in Fig. 6 as a function of the dislocation position x in both NM and AF phases. The Peierls stress
τP necessary to overcome the energy barrier is evaluated as the maximum slope of the Peierls potential VP .
Upon crossing the barrier, 1/2〈111〉 screw dislocations have to travel a longer distance than 〈100〉, namely
a0
√

6/3 and a0
√

2/2. We find a Peierls stress of 2.2 and 1.7GPa for the 〈100〉 screw dislocation gliding in a
{110} plane in the NM and AF phases respectively. For comparison, the Peierls stress for the 1/2〈111〉 screw
dislocation was 2.3 and 2.0GPa in the NM and AF phases. Thus, one sees that the Peierls stresses of the
1/2〈111〉 and 〈100〉 screw dislocations are comparable in both magnetic phases, and that the two 〈111〉{110}
and 〈100〉{110} slip systems should be competitive on the basis of their mobilities. However, as we now know
precisely the trajectory followed by the dislocation along its minimum energy path when gliding in a {110}
plane, and also the variations of its relaxation volume along this path, it is possible to study in more details
the competition between these two slip systems, taking full account of non-Schmid effects. In particular, the
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Figure 6: Peierls potential VP of the 1/2〈111〉 (solid lines) and 〈100〉 (dashed lines) screw dislocations gliding in a {110} plane
in the NM (blue) and AF (red) phases of bcc Cr as a function of the dislocation position x.
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dependence of the yield stress for both 〈111〉{110} and 〈100〉{110} slip systems can be studied as a function
of the orientation of the loading axis taking non-Schmid effects into account, which allows for characterizing
the competition between these different slip systems for all possible orientations of the tensile/compressive
axis at 0K in the NM and AF phases of bcc Cr. With three different 〈100〉 Burgers vectors, and two possible
glide planes for each, there is a total of 6 different 〈100〉{110} slip systems to consider for 〈100〉 dislocations.

Using the yield criteria of Eqs. 12 and 14 presented in section 2.1 of Chapter 2, the yield stress σY
of all slip systems of the 〈111〉{110} and 〈100〉{110} types is evaluated as a function of the orientation of
the tensile axis in the region of the stereographic projection used in previous chapters (see for example
Fig. 5 in Chapter 4). This region encapsulates the whole range of orientations to characterize the plastic
anisotropy of both slip systems. The parameters of the yield criterion for 〈100〉{110} slip system under
uniaxial loading, extracted from the core properties and mobility of 〈100〉 screw dislocations in the previous
section 2.1, are presented in Tab. 1 for the NM and AF phases of bcc Cr. One sees that, contrary to
〈111〉{110} slip, the deviation angle α∗ is zero for 〈100〉 screw dislocations gliding in {110} planes, due to
their straight trajectory along the minimum energy path between two adjacent Peierls valleys. Therefore,
these systems do not exhibit T/AT asymmetry in the angle χ between the MRSSP and the glide plane.
Also, the magnitude of the variations of the relaxation volume for this 〈100〉 screw dislocation is small
compared to 1/2〈111〉, which should yield negligible non-Schmid effects also in terms of tension/compression
asymmetry. Among these different components, the trace ∆ΩP has the highest magnitude in both magnetic
phases, which will be responsible for non-negligible coupling with applied pressure.

Table 1: Parameters of the yield criterion for 〈100〉{110} slip in bcc Cr considering both NM and AF phases: Peierls stress τP
(GPa), position x∗ of the inflexion point of the Peierls potential (normalized by the distance λP between Peierls valleys), and
derivatives ∆Ω

′∗
ij (Å) of the relaxation volume with respect to the position x at the inflexion point x∗.

τP x∗/λP α∗ ∆Ω
′∗
11 ∆Ω

′∗
22 ∆Ω

′∗
33 ∆Ω

′∗
P ∆Ω

′∗
e

NM phase 2.17 0.169 0 +0.069 +0.075 −0.086 +0.058 +0.007
AF phase 1.74 0.183 0 +0.049 +0.064 −0.014 +0.099 +0.015

The distributions of primary slip systems, i.e. whether 〈111〉{110} or 〈100〉{110}, and the corresponding
yield stress σY in the NM phase are presented in Fig. 7 as a function of the loading axis according to
the Schmid law, and including non-Schmid effects in tension and compression. The distribution of primary
slip systems as predicted by the Schmid law is a direct image of the ratio between the Peierls stresses of
1/2〈111〉 and 〈100〉 screw dislocations gliding in {110} planes, weighted by their respective Schmid factors.
The regions colored in green represent the range of loading orientations where a 〈100〉{110} system requires
a lower stress to operate than any 〈111〉{110} system. These regions are close to a 〈111〉 axis, where the
maximum Schmid factor of a 〈111〉{110} system is below 0.3 whereas it concentrates the orientations for
which the Schmid factor of a 〈100〉{110} is maximum, i.e. close to 0.5. According to these results, 〈100〉 slip
should be observed for a large range of loading orientations in both tension and compression. The results in
the AF phase, presented in Fig. 8, show the same qualitative features as in the NM phase. However, as the
ratio between the Peierls stresses of the two 〈100〉 and 1/2〈111〉 screw dislocations gliding in a {110} plane
is slightly lower than in the NM phase (0.89 and 0.94 respectively, see Tab. 1), a larger range of loading
orientations favors 〈100〉{110} slip over 〈111〉{110}. When non-Schmid effects are taken into account, the
region where 〈100〉{110} slip systems are easier to activate is reduced in both tension and compression in
the two NM and AF phases, due to the T/AT asymmetry of 〈111〉{110} systems.

Looking at the distribution of the yield stress, its minimum value is found close to 〈111〉 axis, where a
〈100〉{110} slip system is easier to activate. If these systems were not considered, we would have retrieve
the results presented in Figs. 12 and 13 of Chapter 2 in the NM and AF phases respectively. As the Peierls
stress of both screw dislocations is slightly lower in the AF than in the NM phase, the overall yield stress
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Figure 7: Type of primary slip systems, i.e. 〈111〉{110} or 〈100〉{110} (first row), with the corresponding yield stress σY levels
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Figure 8: Competition between 〈111〉{110} and 〈100〉{110} slip systems in the AF phase of bcc Cr at 0K.

required to activate slip is lower. However, the predicted primary slip systems are the same in the two
magnetic phases, covering a more or less equivalent space in the stereographic projection.

Our ab initio modeling thus predicts 〈100〉{110} slip to occur in a large portion of the standard stere-
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ographic triangle at 0K, mainly near 〈111〉 orientations (see Fig. 7) where slip systems having all three
〈100〉 Burgers vectors have the same Schmid factor. We stress that this conclusion assumes motion of 〈100〉
dislocations to be controlled by its screw orientation like for 1/2〈111〉. However, we will show in the following
another line orientation impedes the motion of 〈100〉 dislocations at low temperature. Taking for instance
a [5 9 11] single crystal tested in compression by Holzer et al. [34] at 77K, strong 〈100〉{110} slip activity
is expected. The predicted yield stress for the slip systems having the 6 highest Schmid factors are pre-
sented in Tab. 2, among which the two most stressed are of the 〈100〉{110} type. For this orientation, the
authors report slip activity on both (101) and (110) planes through the rotation of the sample towards the
corresponding poles of the stereographic projection. They attributed this observation to the activity of a
〈111〉{110} slip system for both observed slip planes. However, according to our yield criterion, the lowest
yield stress for a 〈111〉{110} slip system in compression for (110) slip is 6.95GPa in the AF phase, whereas it
is only 3.68GPa for a 〈100〉{110} system, suggesting slip might have occurred through the operation of the
[001](110) slip system. As for slip on (101) plane, it is probably due to the operation of the highly stressed
[111](101) system, but can also be interpreted as the operation of the [010](101) slip system, which has a
lower predicted yield stress in compression.

Table 2: Predicted yield stress for Cr single crystal under uniaxial compression along the [5 9 11] axis investigated by Holzer et
al. [34] at 77K. Predicted yield stresses are presented considering the AF phase.

Slip system SF Schmid law Compression
[111](101) 0.432 4.59GPa 4.45GPa
[111](110) 0.378 5.25GPa 6.95GPa
[111](101) 0.270 7.35GPa 8.18GPa
[001](110) 0.480 3.62GPa 3.68GPa
[010](101) 0.449 3.87GPa 3.98GPa
[100](011) 0.312 5.58GPa 5.25GPa

2.3. Thermal activation of 〈100〉 screw dislocations in chromium
We study in the present section if the stiff competition between the two 〈111〉{110} and 〈100〉{110} slip

systems predicted at 0K holds with temperature, accounting for the thermally activated glide of 〈100〉 screw
dislocations through nucleation of kink-pairs. We use the same method as in Chapter 2 to evaluate the line
tension Γ of the 〈100〉 screw dislocation using similar ab initio calculations [85, 191]. The resulting energies
and fit to the model (see Chapter 2, section 3.1) are presented in Fig. 9 for both NM and AF phases, for
which we find a line tension Γ of 2.84 and 2.60 eV/Å respectively.

Table 3: Parameters of the mobility law for the two 1/2〈111〉{110} and 〈100〉{110} slip systems in the NM and AF phases of
bcc Cr: Peierls stress τP (GPa), line tension Γ (eV/Å), kink-pair formation energy ∆Ekp (eV), and parameters p and q of the
Kocks’ law in Eq. 23. The model is presented in details in Chapter 2, section 3.2.

Slip system τP Γ ∆Ekp p q

NM phase
1/2〈111〉{110} 2.32 1.26 0.80 0.88 1.39
〈100〉{110} 2.17 2.84 1.04 0.87 1.35

AF phase
1/2〈111〉{110} 1.98 3.01 1.27 0.89 1.33
〈100〉{110} 1.74 2.60 0.89 0.85 1.31

Contrary to 1/2〈111〉 screw dislocations, the line tension is very close for 〈100〉 in the two magnetic phases
of bcc Cr, since there is no added resistance from the magnetic fault in the AF phase like for 1/2〈111〉. This
results in the parameters of the yield criterion presented in Tab. 3 for the thermally activated term of the
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Figure 9: (a) Trajectory of the [001] screw dislocation in the NM and AF phases showing in colors the two most displaced
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in Peierls energy 2bVP (grey), and resulting line tension energy HLT (orange) of a kinked [001] screw dislocation in the NM
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criterion of Eq. 28, detailed in Chapter 2, section 3.2, which is extended here to 〈100〉{110} slip systems.
The resulting flow stress evolution with temperature τP (T ) for both types of slip systems in the two NM
and AF phases of bcc Cr are presented in Fig. 10, considering an entropic contribution accounted for by
the Meyer-Neldel compensation rule with Tm = Tmelt = 2 180K. Different values are set for the dislocation
density ρD to show the dependence of the athermal temperature Tath on this parameter of the model, with
a density set to the same value for both slip systems, i.e. ρ

1/2〈111〉
D = ρ
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Figure 10: Flow stress τP (T ) as a function of the temperature T for both 1/2〈111〉 (orange) and 〈100〉 (green) screw dislocations
in the (a) NM and (b) AF phases of bcc Cr, considering different values for the dislocation density ρD ranging from 106 to
1014 m−2 at a fixed rate of plastic strain ε̇ = 1× 10−5 s−1.
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At 0K, we retrieve the comparable Peierls stresses of the two slip systems in both magnetic phases of
bcc Cr, as discussed in the previous section. Also, a similar athermal temperature is predicted for both
slip systems, maintaining the competition throughout the whole temperature range up to Tath. Indeed, the
main dislocation dependent quantity entering the expression of the athermal temperature (see Eq. 30) is the
kink-pair formation energy ∆Ekp, which is comparable for both 〈100〉{110} and 〈111〉{110} slip systems (see
Tab. 3). Therefore, one expects the distribution of primary slip systems presented at 0K in the previous
section (see Figs. 7 and 8 for the NM and AF phases respectively) to hold with temperature, up to Tath.
Thus, it appears necessary to account for 〈100〉 screw dislocations to rationalize the plasticity of bcc Cr,
with a competition between with glide of 1/2〈111〉 screw dislocations holding with increasing temperature.
Given the strong competition predicted in Cr, one needs to check if it is the case in other bcc metals.

2.4. 〈100〉 screw dislocations in all bcc transition metals
We present in this section ab initio evaluation of the core properties and mobility of 〈100〉 screw disloca-

tions at 0K in all bcc transition metals, in order to compare to the results presented for Cr in the previous
section. The core of the 〈100〉 screw dislocation obtained after relaxation with ab initio calculations has the
same structure in all bcc transition metals as presented in Fig. 3a for Cr, showing a compact structure with
a slight dilatation of the atoms in the vicinity of the core, whose magnitude depends on the metal. The
configuration presented in Fig. 3b is always found metastable, with a higher energy than the ground state
configuration, and corresponding to the configuration at the saddle point of the Peierls energy barrier in
{110} planes. The core energy of the 〈100〉 screw dislocation in its ground state is presented in Tab. 4 for
all bcc transition metals, and compared to the results obtained for the 1/2〈111〉 screw dislocation.

Table 4: Core energy Ec (eV/Å) of the two 1/2〈111〉 and 〈100〉 screw dislocations in all bcc transition metals obtained using ab
initio calculations and considering a core radius rc = b1/2〈111〉 = a0

√
3/2 for both dislocations.

V Nb Ta Cr (NM) Cr (AF) Mo W Fe
~b = 1/2〈111〉 0.16 0.14 0.19 0.43 0.44 0.42 0.58 0.29
~b = 〈100〉 0.40 0.44 0.59 0.72 0.74 0.79 1.13 0.71

Comparing the results for the two types of screw dislocations, we see that the core energy of the 〈100〉
screw dislocation is higher than for 1/2〈111〉 in all bcc metals, with a ratio of 2 to 3 between the two Burgers
vectors depending on the metal. This higher core energy for 〈100〉 dislocations has also been reported by
Bertin et al. [246] in various bcc transition metals using interatomic potentials. In their work, the authors
also showed that the minimum of the core energy for 〈100〉 dislocations does not correspond to the screw
orientation, but is found instead for a mixed character θ = 54.7◦, which corresponds to a line oriented along
a 〈111〉 direction, whose importance will be shown in the next section.

We now evaluate the Peierls potential of this 〈100〉 screw dislocation gliding in a {110} plane using the
same NEB calculations as performed for Cr in the previous section 2.1, with setups both and stress. The
resulting Peierls potentials VP obtained after correction of the variation of the elastic energy are presented in
Fig. 11 in green as a function of the dislocation position x for all bcc transition metals. Similarly to 1/2〈111〉
dislocations, an adjustment of the elastic constants was needed to enforce the symmetry of trajectory for
the 〈100〉 screw dislocation, which is presented in Appendix D. The Peierls potentials for a 1/2〈111〉 screw
dislocation gliding in a {110} obtained previously (see Chapter 4, Fig. 1) are also plotted in orange for
comparison. We see that, like reported for Cr, the height of the barrier opposing glide of 〈100〉 screw
dislocations in {110} planes is similar to the one of 1/2〈111〉 screw dislocations for almost all bcc transition
metals except V and Nb. In particular, the barrier is lower in Cr, and have very close values for both screw
dislocations in Ta, Mo, W and Fe (within accuracy of ab initio calculations). The resulting Peierls stresses
are presented in Tab. 5, with the values obtained previously for the 1/2〈111〉 screw dislocation also reported.
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Figure 11: Peierls potential VP (meV/Å) of both 1/2〈111〉 (orange) and 〈100〉 (green) screw dislocations gliding in a {110}
plane as a function of their position x for all bcc transition metals. All presented potentials are obtained using the stress setup,
and after performing correction of the variation in elastic energy. Crosses located halfway along the paths indicate the height
of the barrier obtained using the both setup.

Again, the Peierls stresses of the two systems are comparable in the majority of the seven bcc transition
metals, which should result in the same competition as predicted in bcc Cr in the previous section.

Table 5: Parameters of the yield criterion for 〈100〉{110} slip: Peierls stress τP (GPa), with the value for the 1/2〈111〉 screw
dislocation in the left column, position x∗ of the inflexion point of the Peierls potential (normalized by the distance λP between
Peierls valleys), and derivatives ∆Ω

′∗
ij (Å) of the relaxation volume with respect to the position x at the inflexion point x∗.

The deviation angle α∗ is zero in all metals for 〈100〉{110} slip.

1/2〈111〉{110} 〈100〉{110}
Element τP τP x∗/λP ∆Ω

′∗
11 ∆Ω

′∗
22 ∆Ω

′∗
33 ∆Ω

′∗
P ∆Ω

′∗
e

V 1.03 1.61 0.071 +1.080 −1.067 +0.042 +0.055 −2.147
Nb 0.79 1.72 0.056 +1.567 −1.594 +0.084 +0.057 −3.161
Ta 0.87 0.94 0.140 +0.214 −0.171 −0.014 +0.030 −0.385
Cr (NM) 2.32 2.17 0.169 +0.069 +0.075 −0.086 +0.058 +0.007
Cr (AF) 1.98 1.74 0.183 +0.049 +0.064 −0.014 +0.099 +0.015
Mo 1.40 1.57 0.128 −0.034 +0.174 −0.092 +0.047 +0.208
W 2.36 2.09 0.163 +0.057 +0.089 −0.084 +0.062 +0.033
Fe 1.65 1.67 0.178 +0.094 −0.140 −0.033 −0.081 −0.237
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To fully parametrize the yield criterion including 〈100〉{110} slip systems, the trajectory and variations
of the relaxation volume of the 〈100〉 screw dislocation upon crossing the Peierls barrier of Fig. 11 can be
extracted using the setup stress as already done for 1/2〈111〉 in all bcc transition metals in Chapter 4, and
also 〈100〉 screw dislocations in Cr in section 2.1. The variation of the relaxation volume of this 〈100〉 screw
dislocation gliding in a {110} plane is presented in Fig. 12 for all bcc transition metals, with the parameters
of the yield criterion presented in Tab. 5. As reported for 1/2〈111〉, the variation of the relaxation volumes
show a large variety of different behaviors among all bcc transition metals. However, some group tendencies
can be observed for metals belonging to a same column of the periodic table. For V, Nb and Ta (group
V), we find a negligible trace and component ∆Ω33, with a negative ellipticity ∆Ωe of a high magnitude
compared to other metals and results obtained for the 1/2〈111〉 screw dislocation. For Cr, Mo and W (group
VI), a non-negligible trace and component ∆Ω33 is found, with the same sign in the three metals, and also
a positive ellipticity ∆Ωe. Fe show a hybrid behavior between the two previous groups, with a weak mag-
nitude for the variation of all components, but a non-negligible trace and ∆Ω33, and negative ellipticity ∆Ωe.

Using the yield criterion including core properties of this 〈100〉 screw dislocation, we can now study the
competition between 〈111〉{110} and 〈100〉{110} slip in all bcc transition metals. Ranges of the predicted
yield stress at 0K for both slip systems, i.e. minimum to maximum values over the whole range of orienta-
tions and considering all possible slip systems of both types, are presented in Fig. 13 for all bcc transition
metals. Results are shown according to the Schmid law, and including non-Schmid effects in both tension
and compression. For all metals, the predicted distribution of the yield stress resembles the one presented
in the NM phase of Cr in Fig. 7, unless the ratio between the Peierls stresses of the two systems drastically
favors 〈111〉{110} slip, which is the case for Nb, and in a lesser extent for V. In all other metals, the yield
stress show the competition between the two systems, which is most pronounced in Ta, Cr, W and Fe. We
also note that, since the Schmid factor for all 〈100〉{110} slip systems tends to zero for loading axis close to
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a 〈100〉 orientation, the maximum value predicted by the model tends to infinity. As discussed in the case
of Cr, the competition between the two slip systems is expected to be the most pronounced for loading axis
near a 〈111〉 orientation, in both tension and compression.
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Figure 13: Range of yield stresses σY predicted by the yield criterion at 0K for both 〈111〉{110} (orange) and 〈100〉{110}
(green) slip systems according to the Schmid law (middle bars), and including non-Schmid effects in tension (T, left bars) and
compression (C, right bars), for all bcc transition metals. Results for Cr are presented in the NM phase.

Our ab initio results thus indicate that resolved shear stress necessary to activate glide of the 〈100〉
screw dislocations compares to 1/2〈111〉. However, the relative contribution of the different slip systems to
the development of the plastic strain depends not only on the dislocation ease to glide, but also on the
corresponding density of dislocations and their multiplication propensity. As discussed in section 1.3, a non-
negligible proportion of 〈100〉 dislocations is reported experimentally compared to 1/2〈111〉 [123, 256, 257].
〈100〉 dislocations are actually observed as junctions between intersecting 1/2〈111〉 dislocations in all bcc
transition metals. These junctions could therefore act as sources of 〈100〉 dislocations for well oriented
mechanical loadings. This will allow for the increase of 〈100〉 dislocation density, unless another character
has a higher Peierls stress than the screw orientation and impedes the activation of 〈100〉 sources, thus
explaining why motion of these 〈100〉 dislocations is not observed at low temperature in most bcc metals.

3. Larger scale simulations using molecular dynamics and interatomic potentials

We study in this section dislocation loops with both 1/2〈111〉 and 〈100〉 Burgers vectors, to compare their
expansion under an applied stress. We also investigate 〈100〉 dislocation sources made of a junction between
two intersecting 1/2〈111〉 dislocations, to search for a mechanism explaining the scarce experimental obser-
vations of the motion of 〈100〉 dislocations at low temperature, whereas our ab initio modeling predicts glide
of the two screw dislocations in {110} planes to be competitive at 0K in almost all bcc transition metals.

3.1. Dislocation loops with 1/2〈111〉 and 〈100〉 Burgers vectors under strain
For a given slip system to actively participate to the plastic deformation, these dislocations must be

able to effectively multiply to a representative density. Dislocation loops expand when subjected to an
applied stress, with a shape dictated by elasticity at high temperature [260]. At low temperature, where the
Peierls mechanism still holds, the high lattice friction of 1/2〈111〉 screw dislocations in bcc metals leads to
a facetted growth of 1/2〈111〉 loops, with a channeled expansion along the screw direction of the dislocation
line [261], since this screw orientation has the highest Peierls barrier among all characters. In the previous
sections using ab initio calculations, competition between the two 〈111〉{110} and 〈100〉{110} slip systems
was studied assuming motion of both dislocations is governed by the high lattice friction experienced by its
screw orientation. However, we are not sure that this is also the case for 〈100〉 dislocations, thus motivating
the study of these loops under applied stress, to determine the orientation of the line hindering the motion
of these dislocations. We study loops having both 1/2〈111〉 and 〈100〉 Burgers vectors, in W, modeled using
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the MEAM potential of Park et al. [89].

The simulation cell used for the growth of 1/2〈111〉 dislocation loop has a geometry defined by the three
vectors X = 87× [111], Y = 35× [121], and Z = 40× [101], with periodic boundary conditions in the three
Cartesian directions. A circular dislocation loop having a 1/2[111] Burgers vector is introduced in the center
of the simulation cell, and a shear strain εxz is then applied to the system by constraining the periodicity
vectors of the simulation cell, resulting in a stress τxz resolved on the screw orientation. The loop starts to
expand as to equilibrate the applied strain, with a decreasing stress until the loop has reached equilibrium.
The configuration of a 1/2[111] loop after molecular statics relaxation at 0K is presented in Fig. 14 under
two different shear strains εxz, and a corresponding stress τxz = 2.5GPa measured after relaxation in both
presented configurations of the loop.

~b = 1/2[111]
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[111] ‖ x

[1̄21̄] ‖ y
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Figure 14: Molecular statics relaxation at 0K of dislocation loops with 1/2[111] Burgers vector in W under a shear strain εxz .
Atoms belonging to the dislocation core are represented as spheres, whose color depends on the local orientation of the line.

As the strain is increased, the expansion of the 1/2[111] dislocation loop is channeled along the direction of
the screw orientation, due to the high lattice friction it experiences compared to all other line orientations.
This results in a facetted growth of the loop as long as the Peierls stress of the screw orientation is not
reached, with the creation of a 1/2[111] screw dislocation dipole. We also note the presence of small facetted
segments along a mixed orientation, denoted M111 on Fig. 14, and corresponding to a line orientation along
the [111] direction, with a mixed character θ = 70.5◦. This orientation was previously studied by Kang et al.
[261] in Ta using an interatomic potential. The authors reported this M111 orientation to have the second
highest Peierls stress among all line orientations they tested, with similar consequences on the expansion of
1/2〈111〉 dislocation loops as presented here. To quantify the lattice friction experience by these different line
orientations, we now evaluate the height of the Peierls barrier of a 1/2[111] dislocation gliding in the (101)
plane in W, using the MEAM potential of Park et al. [89]. For this purpose, the simulation cell contains
a single dislocation with a line oriented along the periodic Y axis of the cell, and free surfaces in the two
other directions, as sketched in Fig. 8 in Methods. The results are presented in Tab. 6, considering a line
oriented along the four high-symmetry axis of the bcc lattice (i.e. 〈111〉, 〈112〉, 〈110〉 and 〈100〉).

Table 6: Height of the Peierls barrier EP (meV/Å) opposing glide of a 1/2[111] dislocation in the (101) plane for different line
orientations ~l corresponding to a character θ (◦). Results are presented in W modeled with the MEAM potential of Park et al.
[89]. The line orientation with the highest barrier is indicated by a *, which is the screw for 1/2〈111〉 dislocations.

Line orientation ~l [111] [121] [101] [010] [111] [121]

~b = 1/2[111] ∈ (101)
θ 0 19.5◦ 35.3◦ 54.7◦ 70.5◦ 90◦
EP 43.8* 1.3 4.7 13.5 20.6 1.3
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Apart from the screw orientation, which experiences the highest Peierls energy barrier EP , we retrieve
this mixed orientation with θ = 70.5◦, corresponding to a line oriented along a different 〈111〉 direction
than its Burgers vector, with a non-negligible energy barrier as previously reported in other bcc transition
metals, both using interatomic potentials [261] or ab initio calculations [262]. This shows on the shape of
the 1/2〈111〉 loop expanding under an applied strain presented in Fig. 14, where a small facetted segment
with this mixed orientation appears on the left and right of the loop. However the energy barrier for the
screw orientation of 1/2〈111〉 dislocations is at least twice higher using the MEAM potential for W, and also
reported in the work of Romaner et al. [262] using ab initio calculations in various bcc transition metals.
By applying a controlled shear stress to this non-periodic simulation cell until the dislocation glides over at
least 1 nm, we evaluate the Peierls stress of the 1/2〈111〉 screw dislocation in a {110} plane at 4.0GPa in
W. As measured after relaxation of the loop in both configurations presented in Fig. 14, the applied shear
stress τxz = 2.5GPa falls below the Peierls stress τP of this screw dislocation. Thus, the loop can start to
expand before the Peierls stress of the screw orientation is reached, indicating this orientation has indeed the
highest barrier to overcome, and thus controls motion of 1/2〈111〉 dislocations. The study of the expansion
of a dislocation loop therefore gives unbiased information on the orientation hindering the motion of these
dislocations at low temperature.

We now perform identical simulations on a 〈100〉 dislocation loop, in a cell with periodicity vectors
X = 150 × [010], Y = 60 × [101], and Z = 40 × [101], and periodicity along the three directions. Relaxed
configurations of a [010] loop at two different shear strains εxz are presented in Fig. 15, also in W.
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Figure 15: Molecular statics relaxation at 0K of dislocation loops with [010] Burgers vector in W under a shear strain εxz .

The configuration shown on the left is relaxed under a shear strain corresponding to a stress τxz = 3GPa,
which is below the Peierls stress of 3.2GPa found for the 〈100〉 screw dislocation. Thus, the loop does not
expand below the Peierls stress of the 〈100〉 screw dislocation, contrary to 1/2〈111〉, where the loop had
already started to expand before the Peierls stress of the screw orientation was reached through motion of
mixed orientations. This indicates that for 〈100〉 dislocations, another line orientation must require a higher
stress than the screw. This is further confirmed when the applied strain is increased up to a corresponding
stress of 6GPa, with the relaxed configuration presented on the right of Fig. 15. The shear stress is now
above the Peierls stress of the screw orientation, which therefore starts moving in the Y direction. However,
contrary to 1/2〈111〉, for which the hindering orientation is of screw character, the screw segments of the
〈100〉 dislocation start moving before another particular line orientation, matching the two 〈111〉 directions
contained in the habit {110} plane of the loop. Given the symmetry of the bcc lattice, these two [111] and
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[111] hindering orientations (for the [010] loop of Fig. 15) lay at an angle of 70.5◦ between one another,
therefore blocking both the expansion of the loop and the further creation of a dipole when the dislocation
line aligns in one of these two orientations, even if the stress is increased. Indeed, the length of the screw
segment of the loop shortens until this mixed orientation is matched, which we will refer in the following as
the M100 dislocation. We now quantify the lattice friction experienced by different line orientations of this
[010] dislocation in W, using a similar dislocation setup as for the 1/2[111] dislocation in Tab. 6. The results
are presented in Tab. 7 using the MEAM potential for W.

Table 7: Height of the Peierls barrier EP (meV/Å) opposing glide of a [010] dislocation in the (101) plane for different line
orientations ~l corresponding to a character θ (◦). Results are presented in W modeled with the MEAM potential of Park et al.
[89]. The line orientation with the highest barrier is indicated by a *.

Line orientation ~l [010] [121] [111] [101]

~b = [010] ∈ (101)
θ 0 35.3◦ 54.7◦ 90◦
EP 33.2 19.2 195.9* 51.2

As expected from the loop expansion, contrary to 1/2〈111〉 dislocation, the screw orientation of the 〈100〉
dislocation does not show the maximum energy barrier. Instead, the height of the Peierls barrier for the
screw is of the same order as the edge orientation, and are both much lower than for the mixed orientation
with θ = 54.7◦, corresponding a line oriented along a 〈111〉 direction, i.e. the M100 dislocation. To confirm
these results, the height of the Peierls barrier of the M100 dislocation in {110} planes will be evaluated using
ab initio calculations in the next section.

Identical molecular statics relaxations were also performed at 0K in Nb, Mo and Ta (see references for
the interatomic potentials in Methods, Tab. 4) to check for any metal-dependence of the locking mechanism
presented here in W. We found no qualitative difference between these four metals, with a channeled growth
of the 1/2〈111〉 loop, whereas the M100 dislocation impedes the expansion of the 〈100〉 loop. The choice
to present these results in W is also motivated by its isotropic elasticity, for which the equilibrium shape
and expansion of dislocation loops under an applied stress can thus be obtained within isotropic elasticity
theory. In particular, the shape of these loops do not depend on its Burgers vector in the frame of isotropic
elasticity theory, resulting theoretically in identical shapes for both 1/2〈111〉 and 〈100〉 loops in the absence
of lattice friction. At higher temperature, above the athermal temperature Tath, where the lattice friction
experienced by dislocation vanishes, the equilibrium shape of the loop, driven by elasticity only, is an ellipse
for the two Burgers vectors in isotropic W. At low temperature, orientations with the highest lattice friction
dictate the shape of the loops. As evidenced here at 0K, contrary to 1/2〈111〉, the hindering orientation of
the 〈100〉 dislocation is this mixed M100 orientation aligned along 〈111〉 directions.

3.2. 〈100〉 dislocation sources
A common mechanism for dislocation multiplication relies on the activation of Frank-Read sources, emit-

ting several dislocations from a dislocation segment pinned at its two ends by obstacles (e.g. impurities,
interstitial atoms, other dislocations), which bends under an applied stress. Given that 〈100〉 dislocations
are most often observed experimentally as the junction product of two intersecting 1/2〈111〉 dislocations,
we investigate the possibility for these junctions to operate as active dislocation sources, essential for a slip
system to yield a non-negligible participation to the plastic deformation. As discussed in section 1.2, these
〈100〉 junctions are completely glissile when formed by two dislocations having the same habit plane (see
Fig. 2a). Such 〈100〉 junctions have a screw character, and as a result can glide in two different planes,
which are orthogonal to each other given the symmetry of the bcc lattice. Taking the reaction between
~b1 = 1/2[111] and ~b2 = 1/2[111], which result in the formation of a junction ~bJR = ~b1 + ~b2 = [010], such
junction can glide in the two P = (101) and P ′ = (101) planes. When an applied stress is resolved in the
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Figure 16: Molecular dynamics simulation of the bowing of a [010] screw junction in the P ′ = (101) plane, formed by the
interaction between two 1/2〈111〉 screw dislocations in the P = (101) plane in W under stress. The character of the bowing
[010] segment is represented by the color of the atoms. The axis are ~x ‖ [010], ~y ‖ [101] and ~z ‖ [101].

habit plane P of the three dislocations, the network can glide in this plane (see sketch on the left side of
Fig. 16). On the contrary, when the applied stress is resolved orthogonal to the habit plane, in the P ′
plane in this example, the [010] junction can start to bend, and initiate a multiplication process similar to
a Frank-Read source, where the two nodes of the junction act as pinning points for the [010] segment. We
now investigate such a process in W, starting from a 〈100〉 screw junction which has already formed. The
simulation cell is defined by vectors x ‖ [010], y ‖ [101] and z ‖ [101], with a junction oriented along its
screw orientation with a length of 21 nm. We perform a molecular dynamics straining simulation of such a
junction in W, at T = 86K and a strain rate ε̇xz = 2.4 × 108 s−1, thus resolved in the P ′ plane. In these
conditions, the two 1/2〈111〉 dislocations are not subjected to the applied strain, whereas the 〈100〉 junction
is strained to move in the P ′ plane. Three snapshots of the simulations are presented in Fig. 16.

Up to a certain shear stress τxz (approximately 530MPa in the present simulation, corresponding to the
first presented snapshot), the 〈100〉 junction stays aligned along its screw orientation. When the applied
stress gradually increases, the junction starts to bend to expand in the P ′ plane, whereas the two 1/2〈111〉
dislocations, both along their screw orientation, remain immobile. The 〈100〉 junctions then keeps expand-
ing in the P ′ plane with increasing stress, while shortening along its screw orientation, before ultimately
matching a 〈111〉 direction at both of its two ends, where the strong lattice friction of the M100 dislocation
blocks further activation of the source. Therefore, this mixed orientation of 〈100〉 dislocations does not allow
for such multiplication mechanism to actively operate, due to their high lattice friction and the symmetry
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of the bcc lattice, as also observed in the previous section 3.1 considering expansion of the 〈100〉 dislocation
loop. Indeed, since two hindering 〈111〉 orientations lay in a same {110} plane at an angle 70.5◦, further
expansion of 〈100〉 dislocations along any orientation is prevented as soon as the line matches these two 〈111〉
orientations. This geometrical effect does not allow for the creation of a dipole, as would have been possible
for a screw character since the two screw orientations make an angle 180◦ with each other. Further motion
of 〈100〉 dislocations is therefore only possible at stresses above the Peierls stress of the M100 dislocation,
or at higher temperature where lattice friction vanishes.

Given the similar results obtained in the four metals considered in the case of dislocation loops, the high
lattice friction experienced by the M100 dislocation therefore appears as the limiting factor for activity of
〈100〉{110} slip systems at low temperature. Another consequence of this hindering mixed M100 orientation
is the locking of possible sources for 〈100〉 dislocations at low temperature, starting from junctions between
two 1/2〈111〉 dislocations as presented in Fig. 16. The presented results thus explain a possibility for the lack
of experimental observations of the motion of 〈100〉 dislocations in bcc transition metals at low temperature.

3.3. Ab initio calculation of the Peierls barrier of mixed 〈100〉 dislocations
We now evaluate the stability and Peierls energy barrier of the M100 mixed 〈100〉 dislocation, with a line

oriented along 〈111〉, using ab initio calculations. Since dislocations having a non-negligible edge component
(which is the case here with θ = 54.7◦) induce a much larger displacement field in the plane orthogonal to
their line than screw dislocations, a larger simulation cell is required for the calculation. The simulation cell
containing 273 atoms per unit b length in the line direction is used, with a geometry defined by periodicity
vectors ~p1 = 7/2 × [121] − 13/2 × [101], ~p2 = 7/2 × [121] + 13/2 × [101], and ~p3 = 1/2[111] (see Tab. 5
in Methods). Similarly to the two 1/2〈111〉 and 〈100〉 screw dislocations, a dipole of M100 dislocations is
introduced in the cell according to anisotropic elasticity theory. However, since the dislocation has an edge
component, atoms need to be added along the cut surface of the dipole when introduced in the simulation
cell. For the present quadrupolar arrangement and geometry of the cell, it corresponds to a total of 286
atoms after the dipole has been inserted. The relaxed configuration of the core of the mixed M100 dislocation
in W is presented in Fig. 17.

[1̄21̄]

[1̄01]

[111]

(a) Ground state (b) Saddle

Figure 17: Screw component of the differential displacement map showing the core structure of a mixed [100] dislocation (M100)
with line direction [111] in W in (a) its ground state configuration, and (b) at the saddle point upon crossing the Peierls barrier
from the initial (green) to final (red) configurations. An arrow joining two atoms corresponds to a differential displacement of
b/2 = a0/2 along [111]. The trajectory of the dislocation is shown in solid line in (b).

The ground state configuration of the core is found after relaxation starting from the M100 dislocation
positioned at the center of a triangle formed by three [111] atomic columns, with a different shape than in
the perfect crystal, since atoms have been added to the simulation cell. The second configuration presented
corresponds to the saddle point of the Peierls barrier when this M100 dislocation glides in a {110} plane
from the green to the red positions indicated in Fig. 17b. We note that for both configurations, the relaxed
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core of the M100 dislocation is compact, with no spreading in the (111) plane orthogonal to the line direc-
tion. Identical ab initio calculations of this mixed M100 dislocation were also performed in Nb and Cr, for
which experimental evidence of the motion of 〈100〉 dislocations have been reported, and to test possible
metal-dependent effect based on their different electronic structure. In Cr, the calculations were performed
in the NM phase to reduce the computational time needed to account for magnetism, and also motivated
by the previous results indicating the marginal influence of magnetism on the plasticity of Cr. The two
relaxed configurations of the core are found identical to the results presented for W in Fig. 17 in both Cr
and Nb, with a compact structure and no spreading of the core in the (111) plane. We now evaluate the
Peierls energy barrier of the mixed M100 dislocation gliding in a {110} plane using setup stress for the NEB
calculation with 11 intermediate images. The resulting Peierls potentials are presented for Nb, Cr (NM
phase) and W in Fig. 18 after correction of the variation in the elastic energy of the dipole upon crossing
the barrier. Results obtained for the 〈100〉 screw dislocation (see Fig. 11) are reported in red for comparison.
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/Å
) Screw

Mixed

0 0.25 0.50 0.75 1
Dislocation position x/λP

0 0.25 0.50 0.75 1
Dislocation position x/λP

Nb Cr (NM phase) W

Figure 18: Peierls potential VP as a function of the dislocation position x for a screw (red) and a mixed M100 (purple) 〈100〉
dislocation gliding in a {110} plane obtained using ab initio calculations in Nb, Cr (NM phase), and W.

The Peierls potential for the mixed M100 orientation shows a much higher energy barrier in {110} planes
than for the screw orientation of the 〈100〉 dislocation in the three metals considered here, with a ratio of
4.3, 4.2 and 5.7 in Nb, Cr and W respectively. We also note that the shape of the potential is much steeper
near the bottom of Peierls valleys, resulting in a very high Peierls stress of 9.5, 8.9 and 15.0GPa respectively,
to be compared to the much lower values found for the screw orientation presented in Tab. 5. Even if these
simulations appear rough due to the small simulation cells accessible to ab initio calculations, the presented
results constitute a good estimate of the true Peierls potential of this M100 dislocation. Indeed, given that
its core is compact and does not spread in the (111) plane, such a size effect is therefore limited. The strong
deformation induced by its core in the (111) plane could also yield size dependent effects. However, using
the MEAM potential for W [89] in much larger simulation cells, we found a similar ratio of 5.9 between the
height of the barrier of the screw and mixed 〈100〉 dislocation (compared to 5.7 in the ab initio calculations
for W presented in Fig. 18), with fast convergence of the height of the barrier for the M100 dislocation with
respect to the size of the simulation cell. Therefore, it appears that the high lattice friction experienced by
this M100 mixed orientation is the true limiting factor for the multiplication of 〈100〉 dislocations at low
temperature, and which is generic to all bcc transition metals (at least the ones presented here). Indeed,
as presented in the previous sections 3.1 and 3.2, given the geometry of the bcc lattice, with two 〈111〉
orientations making an angle of 70.5◦ with each other, both expansion of 〈100〉 loops and activation of their
Frank-Read sources is hindered by the reduced mobility of the M100 orientation.
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3.4. Discussion
Long segments of mixed 〈100〉 dislocations lying along a 〈111〉 direction have been observed experimen-

tally in Ta deformed at 77K by Welsch et al. [263, 264], indicating the locking mechanism evidenced here
at low temperature by our atomistic simulations. Such 〈100〉 dislocations are also observed in samples of W
and Mo under high-temperature creep conditions (0.5− 0.7Tmelt, with Tmelt the melting point of 2895 and
3695K in Mo and W respectively) [265, 266]. The authors report block boundaries where dislocations with
a 〈100〉 Burgers vector are already present in the sample by the time the networks are formed during these
high-temperature mechanical testing. Large proportion of 〈100〉 dislocations are also observed after rolling
at high temperature (0.5 − 0.7Tmelt) in Mo and W single crystals [267, 268]. Motion of 〈100〉 dislocations
at high temperature was also suspected by Dingley and Hale [255], and Carrington et al. [269] in Fe, and
also observed at room temperature in Cr [13, 122] and Nb [250, 251], as discussed in section 1.3.

In this temperature range, where 1/2〈111〉 dislocations do not align preferentially along their screw
orientation anymore, formation of 〈100〉 junctions are energetically favorable in all bcc transition metals,
resulting from two intersecting mixed 1/2〈111〉 dislocations (see Appendix F). Assuming these reactions are
the principal source for creation of 〈100〉 dislocations, junctions can then act as sources to account for their
multiplication. However, the temperature must be sufficiently high for the M100 dislocation to glide without
experiencing the extreme lattice friction evidenced here. These high-temperature experimental observations
of the motion of 〈100〉 therefore indicate the locking mechanism along 〈111〉 directions vanishes at high
temperatures. At these elevated temperatures, 〈100〉 dislocations are then allowed to actively glide and
multiply, with a presumed non-negligible contribution to the plastic deformation of bcc transition metals.
Therefore, one needs to account for 〈100〉 dislocations when rationalizing plasticity of these metals not only
through formation of junctions responsible for strain hardening, but also through their motion, thus allowing
them to carry plastic deformation at high temperature.

Conclusions of Chapter 6:

• Considering anisotropic elasticity theory, the two 1/2〈111〉 and 〈100〉 dislocations show comparable
energies, especially for metals with an anisotropy ratio A < 1 (V, Nb, Cr and Mo), thus invalidating
the common argument used to discard 〈100〉 dislocations in the study of their plasticity.

• These 〈100〉 dislocations are observed in all bcc transition metals, mostly as junctions formed at the
intersection between two 1/2〈111〉 dislocations. However, experimental evidence of their motion at low
temperature is scarce, only reported in Cr and Nb at room temperature.

• Ab initio modeling of 〈100〉 screw dislocations in bcc Cr showed their activity in {110} planes is
competitive with respect to the conventional 1/2〈111〉, particularly for a loading axis close to a 〈111〉
direction. Including the effect of temperature in the frame of the line tension model also showed this
competition to hold up to the athermal temperature of the Peierls mechanism in Cr.

• A systematic study of the mobility of this 〈100〉 screw dislocation across all bcc transition metals using
ab initio calculations showed that the results obtained in Cr apply to other metals, with a competitive
activity of the two 1/2〈111〉 and 〈100〉 screw dislocations in {110} planes.

• Further investigation on the expansion of dislocation loops under an applied stress showed that, con-
trary to 1/2〈111〉, for which the loop expands to create a screw dipole, the loop with a 〈100〉 Burgers
vector locks in a diamond-like shape as soon as it aligns along one of the two 〈111〉 directions contained
in the habit plane of the loop. This mixed M100 dislocation also hinders activation of possible 〈100〉
dislocation sources, from junctions formed between two 1/2〈111〉 dislocations. Ab initio evaluation of
the Peierls energy barrier opposing their glide confirmed these M100 dislocations are the true limiting
factor to the multiplication of 〈100〉 dislocations at low temperature.

• At high temperature, where the high lattice friction experienced by these M100 dislocations vanishes,
activity of 〈100〉 dislocations in {110} planes is expected, a priori yielding a non-negligible contribution
to the plastic deformation of bcc transition metals, as reported experimentally in W and Mo [265–268].





Conclusions and outlook

Through the atomistic simulations of the core properties and mobility of dislocations presented in this work
across all bcc transition metals, both using ab initio calculations and interatomic potentials, the following
conclusions were drawn:

• At low temperature, magnetism has a marginal impact on the properties of 1/2〈111〉 screw dislocations
in bcc Cr, except for the generation of magnetic faults caused by the disruption of the low-temperature
AF order by their Burgers vector, constraining them to coexist and move pairwise. These collinear
faults however dissappear below the Néel temperature TN of 311K, letting 1/2〈111〉 dislocations free
to move without dragging magnetic faults.

• Parametrization of a generalized yield criterion based on the core properties and mobility of 1/2〈111〉
screw dislocations gliding in {110} planes allows for prediction of slip activity and variations of the
yield stress with the orientation of the loading axis, across all pure bcc transition metals. By comparing
predictions of the model between the different metals, we showed that Cr has a similar yield behavior
to other bcc transition metals. Comparison to experimental data at low temperature in different bcc
metals demonstrated the ability of the criterion to reproduce the T/AT and T/C asymmetries observed
experimentally, with strong metal-dependent behaviors, also allowing to validate predictions made in
Cr for which experimental data is missing.

• This systematic study across all bcc transition metals showed the importance to account for all compo-
nents of the stress tensor to develop a yield criterion, in particular regarding effects of applied pressure
and stresses along the dislocation line. We report unexpected behaviors in terms of T/C asymmetry
in Nb and Mo, for which a wide range of loading orientations show a lower yield stress in compression,
whereas the contrary is expected and observed in other bcc transition metals.

• Accounting for the thermally activated glide of 1/2〈111〉 screw dislocations through nucleation of kink-
pairs, the effect of temperature was included in the yield criterion. With increasing temperature, up
to the athermal limit of the Peierls mechanism, we show a progressive fade out of non-Schmid effects,
both in terms of yield stress variations and predicted slip activity.

• In situ straining experiments of Daniel Caillard (CEMES, CNRS, Toulouse) in TEM, coupled with
atomistic simulations highlighted a new mechanism explaining occurrence of anomalous slip in bcc
transition metals, based on the high mobility of multi-junctions formed by four 1/2〈111〉 screw dislo-
cations. Atomistic simulations show the spontaneous nucleation of kinks at the four-dislocation node,
thus allowing these screw dislocations to glide cooperatively over long distances without experiencing
lattice friction. The observed multi-junctions rely on the prior formation of 〈100〉 junctions from two
intersecting 1/2〈111〉 screw dislocations, thus required for occurrence of anomalous slip. The stability
of these junctions at low temperature, where 1/2〈111〉 dislocations align along their screw orientation,
is linked to the elastic anisotropy of the metal, with a increased stability in metals with an anisotropy
ratio smaller than one. This is the case for Nb and Cr, and correlates well with the profuse occurrence
of anomalous slip observed experimentally in Nb.

• Apart from junctions responsible for hardening, activity of 〈100〉 dislocations was reported in Nb and Cr
at room temperature, raising questions about the conditions under which they can carry deformation
in bcc transition metals. Based on anisotropic elasticity theory, these 〈100〉 dislocations have close
energetics compared to the conventional 1/2〈111〉, despite the higher norm of their Burgers vector.
Further investigation with ab initio calculations showed their stability in all bcc transitions metals,
with a competitive glide of the two 1/2〈111〉 and 〈100〉 screw dislocations in {110} planes. However,
we showed that contrary to 1/2〈111〉, a line orientation other than screw impedes the motion of 〈100〉
dislocations at low temperature, namely a mixed orientation along 〈111〉 directions, showing a Peierls
barrier five times higher than the screw. Due to the symmetry of the bcc lattice, where two 〈111〉
directions lay at an angle 70.5◦, the high lattice friction experienced by this mixed orientation does not
allow for their multiplication at low temperature. With junctions that can act as sources, activity of
〈100〉 dislocations nevertheless needs to be considered as a possibility. However, their motion may only
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be possible at a high enough temperature for the lattice friction experienced by the M100 dislocation
vanishes. Experimental validation is still required for both the low temperature locking mechanism,
and this possible motion of these 〈100〉 dislocations at high temperature, dictated by elasticity.

In addition to these conclusions, several points still need to be addressed. In particular, now that we have
a good understanding of the plasticity of pure bcc Cr, one needs to qualify the influence of impurities and
substitutional elements on the mobility of dislocations. Most particularly, the ductile to brittle transition
temperature of Cr, linked in the first order to the activity of dislocations, strongly depends on the purity
of the sample, which can vary by up to 500◦C depending on alloying elements [5]. Recent studies coupling
ab initio calculations with in situ straining experiments in TEM performed by Daniel Caillard [20, 270],
both Lüthi et al. [271–273] in Fe, and Hachet et al. [193, 274] in W, showed the resurgence of the Peierls
mechanism above its athermal temperature Tath due to carbon atoms impeding the motion of dislocations,
this mechanism holding up to even higher temperatures. Such modeling of the mobility of dislocations in
presence of impurities could help explain the dependence of the brittle to ductile transition temperature
of Cr, with application for the coatings subjected to working conditions in nuclear plants where various
impurities are found (oxygen, hydrogen, nitrogen, sulfur), and also interstitial elements.

Comparison between predictions of the yield criterion for 1/2〈111〉{110} slip and experimental data helped
highlighting some discrepancies. Among those remains the overestimation of the yield stress at 0K, despite
the good agreement found with experiments in terms of its variations with orientation of the loading axis.
This discrepancy, common to all atomistic simulations, is not resolved by accounting for non-Schmid effects,
as discussed in this work. Proville et al. [65] showed a non-negligible contribution of the zero-point energy
to the Peierls energy barrier experienced by 1/2〈111〉 screw dislocations gliding in {110} planes at 0K, with
a substantial lowering of the barrier when entropic contributions are included. Calculations were performed
using an EAM interatomic potential to reduce the computational time required for evaluation of this en-
tropic contribution, which was out of the reach of an ab initio evaluation. With the recent improvement
of computational resources, an ab initio evaluation of the zero-point energy of simulation cells containing
a dislocation dipole becomes accessible, which will help understanding the origin of this overestimation of
the Peierls stress. Such ab initio calculations are nevertheless restricted to the study of straight infinite
dislocations, in 1b-high simulation cells. To study kinked dislocation lines, requiring larger system sizes, one
can rely on recent developments in machine-learning interatomic potentials suited for the study of plasticity
of bcc transition metals [87, 88]. These potentials are adjusted on ab initio data, and allows for a good
reproduction of the fine core properties of screw dislocations when included in the training procedure (e.g.
trajectory in {110} planes, variations of its relaxation volume tensor, Peierls potential), which then allows
for a direct evaluation of the zero-point energy contribution to the Peierls energy barrier of a large simulation
cell containing a kinked dislocation.

In this work, comparison between experiments and predictions of the proposed "ab initio" yield criterion
assumes the macroscopic yield behavior can be derived solely from mobility of isolated dislocations. Such an
assumption a priori holds at low temperature, where plasticity of bcc transition metals is governed by the
slow glide of screw dislocations, impeded by a strong friction with the lattice. There are however conditions
under which this assumption does not hold, for instance at higher temperature where lattice friction has
vanished. We also showed the importance of accounting for multi-dislocation processes in the investigated
mechanism explaining anomalous slip. Such elemental processes involved in the plasticity of bcc transition
metals can be accessed with atomistic simulations, as exemplified in the present work for both possible mo-
tion of 〈100〉 dislocations and the motion of highly mobile multi-junctions. The macroscopic yield behavior
of these metals can then be derived including all relevant mechanisms quantified at the atomic scale, relying
on a multiscale modeling scheme, where each scale informs the next and uses different simulation tools.
Such a multi-scale modeling approach can be achieved using for instance dislocation dynamics as a first step
towards plasticity of the polycrystal, which rely on mobility laws for dislocations that can be derived from
the lower scale. In this respect, the developed yield criterion can be used to test its ability to compare to
the macroscopic yield behavior of bcc transition metals observed experimentally. In particular, our ab initio
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modeling evidenced the importance to account for all components of the applied stress tensor, including
ones that are neglected in most criteria used in large scale simulations. Additionally, now that all physical
ingredients derived from the core properties of the 1/2〈111〉 screw dislocations have been integrated, new
possibilities need to be investigated to explain the remaining discrepancies with experiments. For example,
the yield stress along the edges of the standard stereographic triangle shows variations which are not re-
produced by the proposed yield criterion. For these orientations, activity of multiple slip systems is both
predicted and observed. Possible routes for resolving these discrepancies could thus be the integration of
multi-dislocation processes as both a source of hardening, but also of softening (e.g. anomalous slip), or
through motion of 〈100〉 dislocations. Activity of multiple 1/2〈111〉{110} slip systems is both predicted and
observed in these regions should favor formation of 〈100〉 junctions, since intersection between two 1/2〈111〉
dislocations is more probable. These 〈100〉 junctions can act as a source of hardening at low temperature,
since their motion is impeded by the lattice friction experienced by their mixed 〈111〉 orientation.

Also, mobility of 1/2〈111〉 dislocations in {112} planes is observed experimentally in pure bcc transition
metals [20, 21], for which an explanation still lacks. Several atomistic mechanisms have been proposed but
not confirmed experimentally, including a transition in the core structure of the 1/2〈111〉 screw dislocation
at low temperature [275], or their alternate motion on two {110} planes [28], with an average {112} macro-
scopic glide plane. Arguments based on the symmetry of the compact core structure of the 1/2〈111〉 screw
dislocation allow for rationalizing their glide in {110} planes, in which they do not have to cross an atomic
column during their motion. Possible routes for explaining coexistence of these two different glide planes
would be a difference in the kink-pair nucleation energy of the screw dislocation in these two planes. A
transition in the hierarchy between the two profiles as a function of the applied stress would indeed account
for both glide planes to be active under certain loading conditions.

As presented in the last chapter, mobility of 〈100〉 dislocations is predicted at high enough temperatures,
at which the strong lattice friction experienced by the hindering mixed M100 dislocation vanishes, therefore
allowing for these dislocations to effectively multiply and carry plastic deformation. In particular, a strong
activity of 〈100〉{110} slip systems is predicted for uniaxial tension/compression along a loading axis close
to a 〈111〉 direction, where the Schmid factors of these systems are maximum. To test this assumption
in experimental conditions, a single crystal of ultra-pure Cr with a 〈111〉 axis was ordered, to perform
tensile and compressive in situ experiments in TEM from room temperature to at least 350◦ C. Apart
from these in situ straining tests, a sample of the 〈111〉 single crystal was compressed at 350◦ C to carry
post mortem observations in TEM. These two tests are performed in parallel, in a attempt to correlate the
dynamic motion of dislocations observed under in situ straining conditions to the dislocation microstructures
generated upon application of the strain, also allowing to test possible artefacts associated with in situ tests
(e.g. local heat concentration due to the irradiation of the sample by the electron beam). These tests are
done in collaboration with Estelle Meslin (CEA, SRMP) and Daniel Caillard (CEMES, CNRS, Toulouse).
Depending on the results obtained for Cr, similar experiments in Nb would then be interesting, in search
for the activity of 〈100〉 dislocations as a function of temperature, since activity of 〈100〉 dislocations was
already reported experimentally in these two metals through post mortem observations in TEM [13, 250].
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Le contexte de cette thèse, intitulée "étude à l’échelle atomique de la plasticité du chrome et des autres
métaux de transition cubiques centrés", s’inscrit dans la recherche de solutions pour prévenir à la rupture
de la gaine combustible des réacteurs à eau pressurisée en conditions accidentelles. Dans ces conditions, la
température peut rapidement atteindre des niveaux extrêmes, accélérant l’oxydation de la gaine, et pouvant
entraîner sa rupture. Une solution développée par le CEA pour limiter cette oxydation est l’emploi d’un
revêtement en chrome (Cr), connu pour sa résistance à la corrosion. Ainsi, la couche de Cr doit être en
mesure d’accommoder la déformation qui lui est imposée par la gaine et le combustible en se déformant plas-
tiquement, tout en garantissant l’absence de fissures qui pourraient lui faire perdre ses propriétés protectrices.

Le chrome (Cr) est l’un des sept métaux de transition cubiques centrés (CC) purs, dont la plasticité
opère à basse température par le mouvement de dislocations. Celles-ci sont caractérisées par leur vecteurs
de Burgers ~b, le plus communément égal au plus court vecteur de périodicité du réseau, soit 1/2〈111〉 pour
les métaux CC, et glissant principalement dans les plans {110} à basse température. Dans cette gamme
de température, ces dislocations s’alignent préférentiellement selon leur orientation vis, du fait de la grande
friction de réseau ressentie par cette orientation. Elles doivent ainsi surmonter cette friction pour se dé-
placer, représentée par un potentiel dit de Peierls et ayant la périodicité du réseau. Lorsque la température
augmente, la contrainte nécessaire au déplacement des dislocations diminue progressivement, jusqu’à ce que
la friction de réseau disparaisse, dans le régime athermique de la plasticité où celle-ci est contrôlée par
l’élasticité. Cependant, très peu d’études portant sur la plasticité du Cr sont disponibles, à la fois expéri-
mentalement et théoriquement, contrairement aux autres métaux CC, ne permettant pas de conclure sur
son comportement plastique par rapport à ces autres métaux.

Parmi les sept purs métaux CC, le Cr est le seul avec un ordre magnétique proche de l’antiferromagnétisme
(AF) en-dessous de la température ambiante. Plus précisément, il s’agit d’une onde de densité de spins (ou
spin density wave en anglais, SDW), correspondant à une modulation quasi sinusoïdale de l’amplitude des
moments magnétiques selon une direction 〈100〉 du cristal. Cependant, la DFT prédit la phase AF comme la
structure magnétique la plus stable, la SDW ayant toujours une énergie plus haute peu importe sa périodic-
ité, la phase non-magnétique (NM) étant la moins stable. En regardant maintenant les constantes élastiques
de ces différentes phases magnétiques, nous nous apercevons que les structures AF et SDW ont des propriétés
élastiques très proches. Ainsi, puisque nous sommes intéressés dans cette étude aux dislocations, lesquelles
dépendent entre autres des constantes élastiques du métal, la phase SDW sera par la suite approchée par la
phase AF. Ce choix est aussi motivé par l’ordre AF local le long de la propagation de la SDW. Par la suite,
nous avons étudié les fautes d’empilement généralisées, donnant l’énergie nécessaire pour cisailler le cristal
d’un vecteur faute (assimilé au vecteur de Burgers des dislocations) dans un plan de faute (assimilé au plan
de glissement des dislocations). En cisaillant le cristal de Cr dans sa phase AF d’un vecteur 1/2〈111〉 contenu
dans plusieurs plans, nous avons observé la création de fautes magnétiques, causées par la rupture de l’ordre
AF par ces vecteurs. L’amplitude des moments magnétiques diminue à proximité du plan de faute, créant
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Figure 1: Composante vis du cœur de la dislocation vis 1/2〈111〉 dans les phases (a) NM et (b) AF du Cr. Dans la phase
AF, les atomes sont représentés avec un diamètre proportionnel à leur moment magnétique. (c) Potentiel de Peierls VP de la
dislocation vis 1/2〈111〉 glissant dans un plan {110} du Cr.
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une structure similaire à une paroi magnétique, et d’énergie 16meV/Å2.

En étudiant maintenant la structure de cœur des dislocations vis 1/2〈111〉 en calculs ab initio, une faute
magnétique de structure similaire à la faute précédente est aussi générées part le cisaillement induit par les
dislocations (Fig. 1b). Cependant, la structure de cette dislocation vis est identique dans les deux phases
NM et AF. Nous avons ensuite évalué la friction de réseau s’opposant au glissement de ces dislocations vis
dans les plans {110} par calcul ab initio de la barrière de Peierls, de hauteur comparable dans les deux
phases NM et AF du Cr (Fig. 1c). Le seul effet notable du magnétisme est donc la création de fautes
magnétiques, responsable d’une contrainte de rappel d’environ 1GPa à température nulle. Cette contrainte
est donc trop importante pour autoriser les dislocations 1/2〈111〉 à exister seules, la faute devant être fermer
par une autre dislocation. Nous avançons ainsi la possibilité que celles-ci soient contraintes à coexister et à
se déplacer par paires, créant une superdislocation de vecteur de Burgers total 〈111〉 dissociée en deux dislo-
cations 1/2〈111〉 séparées par une faute magnétique, cette hypothèse nécessitant une validation expérimentale.

Ainsi, les résultats précédents obtenus dans le Cr indiquent que la principale conséquence du magnétisme
sur sa plasticité est la génération de fautes magnétiques. Cependant, cette observation n’est faite jusqu’ici
qu’à température nulle, interrogeant donc sur le comportement de ces fautes à température finie. Pour se
faire, un modèle d’interaction de type Heisenberg-Landau a été développé, permettant de reproduire à la fois
les propriétés énergétiques à 0K et la température de Néel TN du Cr, i.e. la température de transition vers
la phase paramagnétique (PM) caractérisée par un désordre magnétique à longue portée. Les paramètres
du modèle ont ensuite été ajustés sur les énergies magnétiques ab initio de diverses phases du Cr. Les con-
figurations d’équilibre atteintes à température finie sont ensuite explorées par le biais d’un échantillonnage
de Metropolis Monte Carlo, uniquement sur les moments magnétiques et gardant les atomes fixes. L’étude
de la transition ordre-désordre, allant de la phase AF à PM, montre la disparition progressive de l’ordre
magnétique à longue distance à mesure que la température augmente, jusqu’à disparaître au-delà de TN .
Dans cette phase PM, le moment magnétique moyen reste cependant non-nul, montrant que le désordre
de cette phase est causé par la désorientation entre les spins, en accord avec l’expérience. Considérant
maintenant la faute magnétique bornée par deux dislocations vis 1/2〈111〉 générée par le cisaillement de leur
vecteur de Burgers, nous avons observé que celle-ci disparaît à une température inférieure à TN , laissant
place à une structure non-colinéaire s’étalant dans l’intégralité du volume de la boîte de simulation. Ainsi,
compte tenu des propriétés similaires des dislocations vis 1/2〈111〉 dans les deux phases NM et AF, puisque
la faute magnétique disparaît à température finie, le magnétisme n’a a priori d’impact sur la plasticité du
Cr qu’à très basse température, et la phase NM constitue au-delà une bonne approximation pour l’étude
de sa plasticité. Cette simplification est utilisée par la suite afin de comparer la plasticité du Cr aux autres
métaux CC, afin notamment d’évaluer s’il présente un comportement similaire.

La plasticité des métaux de transition CC présente des caractéristiques contredisant la loi de Schmid,
obéis par les métaux cubiques à faces centrées notamment. Ces écarts à la loi de Schmid sont observés
dans l’ensemble des métaux CC, principalement à basse température où leur plasticité est contrôlée par le
mouvement des dislocations vis 1/2〈111〉 et dont les propriétés à l’échelle atomique peuvent être reliées au
comportement macroscopique de ces métaux. Expérimentalement, il est observé d’une part une asymétrie
dite de maclage/antimaclage, avec un sens de cisaillement plus "facile" lors d’essais de chargement uniaxial,
et d’autre part un comportement différent selon le signe de la contrainte, en particulier une limite élastique
plus faible en traction qu’en compression. A l’aide de calculs ab initio, il a été démontré précédemment
que ces effets sont dus à deux caractéristiques des dislocations vis 1/2〈111〉 : leur trajectoire déviée dans
les plans {110}, responsable de l’asymétrie maclage/antimaclage; et un champ de dilatation induit par leur
cœur, conduisant à l’asymétrie traction/compression.

En s’appuyant sur les propriétés ab initio de la dislocation vis, il est ainsi possible de développer un critère
d’écoulement plastique dans l’ensemble des sept métaux de transition CC : vanadium (V), niobium (Nb),
tantale (Ta), chrome (Cr), molybdène (Mo), tungstène (W), et fer (Fe). Les résultats de cette étude systéma-
tique sont présentés dans le cas d’un chargement uniaxial (représenté schématiquement Fig. 2a), pour lequel
une grande variété de données expérimentales est disponible, permettant une comparaison aux prédictions du
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Figure 2: (a) Schéma d’un essai de chargement uniaxial montrant le plan de glissement de la dislocation en orange et le plan
de scission résolue maximale en noir. (b) Comparaison entre la limite élastique σY prédite par le critère d’écoulement à 0K
("Ab initio") et des données expérimentales à 77K ("Expts.") pour l’ensemble des métaux de transition CC. (c) Comparaison
à l’expérience en terme de la variation de la limite élastique σY avec l’angle χ dans le Mo. (d) Distribution de l’asymétrie
traction/compression en fonction de l’orientation de l’axe de chargement dans le W.

modèle. Il en ressort que la contrainte nécessaire à l’activation et l’activité des différents systèmes de glisse-
ment, dépendent fortement du métal. Les prédictions sont en bon accord avec l’expérience, reproduisant les
asymétries maclage/antimaclage (Fig. 2c) et traction/compression (Fig. 2d), mais conduisant néanmoins à
des contraintes trop élevées (Fig. 2b), un désaccord communément observé entre simulations atomiques et
expérience. Il est prédit pour certains métaux une contrainte d’activation inférieure en compression qu’en
traction, en accord avec l’expérience. La variation de la contrainte d’écoulement plastique avec l’orientation
du chargement et la température, dont l’effet est intégré par un modèle de tension de ligne, montre que les
écarts à la loi de Schmid disparaissent progressivement à mesure que la température augmente. Ce critère,
dont les paramètres sont issus directement de calculs ab initio, permet une comparaison satisfaisante avec
l’expérience, et constitue un outil pour comparer les différents métaux CC entre eux, ayant notamment
permis de conclure que le Cr présente un comportement plastique similaire.

Plusieurs désaccords sont néanmoins observés entre les résultats du critère ici développé et l’expérience,
et ce en particulier dans le cas du Nb où le glissement anomal est observé. Ce phénomène est caractérisé
par l’observation de l’activité de dislocations 1/2〈111〉 dans des plans {110} où la contrainte résolue est
faible, observé dans l’ensemble des métaux de transition CC purs (excepté le Fe) à basse température. Les
résultats présentés par la suite s’appuient sur des essais de traction in situ sur des échantillons de Nb dans
un microscope électronique à transmission (MET) réalisés par Daniel Caillard (CEMES, CNRS, Toulouse).
Dans ces expériences est observé le mouvement rapide et simultané de quatre dislocations 1/2〈111〉 connectées
à un nœud (Fig. 3a). Ces dislocations laissent des traces de glissement dans deux plans {110} orthogonaux,
l’un d’entre eux correspondant au plan anomal où la force résolue sur les dislocations est faible. Le nœud
est alors contraint de se déplacer selon la direction définie par l’intersection de ces deux plans.

Afin de mieux appréhender le mécanisme à l’origine de ce déplacement rapide, nous avons étudié le nœud
où se joignent les quatre dislocations 1/2〈111〉 à l’aide de simulations atomiques, ici présenté dans le Nb. En
relaxant le système, le nœud empêche les dislocations de rester alignées selon leur orientation vis (pointillés
sur la Fig. 3b), et relaxent vers une orientation mixte. Une fois celle-ci atteinte, les dislocations peuvent
alors glisser dans les deux plans {110} sans ressentir de friction avec le réseau, expliquant le mouvement
rapide observé expérimentalement sur de longues distances. Nous avons aussi montré que la tension de ligne
élastique est la principale force motrice de ce mécanisme, ce qui en fait un mécanisme générique aux métaux
de transition CC. La formation de ces jonctions multiples a ensuite été étudié à l’aide de simulations atom-
iques, à partir du mécanisme observé expérimentalement, et se déroule en quatre étapes : (1) une jonction
vis 〈100〉 est formée par l’intersection entre deux dislocations vis 1/2〈111〉; (2) cette jonction est intersectée
par une troisième dislocations vis 1/2〈111〉 ce qui créer une dislocation 1/2〈111〉 avec le quatrième vecteur de
Burgers là où la jonction se trouvait avant intersection; (3) ce segment se courbe ensuite sous l’application
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Figure 3: (a) Clichés MET d’une même zone de l’échantillon acquis à ∆t = 40ms d’intervalle. L’image différentielle (panneau
du bas) permet de mieux visualiser le glissement rapide du nœud, laissant des traces de glissement correspondant aux quatre
dislocations 1/2〈111〉 dans les deux plans orthogonaux P12 = (101) et P34 = (101). (b) Relaxation en simulation atomique de
ce même nœud, montrant les quatre dislocations 1/2〈111〉 initialement vis relaxant vers une orientation mixte, entraînant ainsi
le mouvement du nœud selon la direction [010].

d’une contrainte et tend ainsi vers son orientation vis; (4) lorsque celle-ci est atteinte, le nœud est formé,
entraînant le glissement rapide selon le mécanisme présenté en Fig. 3b. Ainsi, la formation de jonctions
〈100〉 apparaît comme une condition nécessaire pour que ce mécanisme puisse opérer. Aussi, nous avons
montré que la longueur de celles-ci est liée à l’anisotropie élastique du métal, favorisant ainsi l’activité du
glissement anomal dans les métaux où ces jonctions sont les plus stables, comme le Nb et le Cr par exemple.

Enfin, nous nous sommes intéressés aux propriétés des dislocations de vecteur de Burgers 〈100〉, observées
expérimentalement dans tous les métaux de transition CC sous forme de jonctions entre dislocations 1/2〈111〉,
et nécessaires à l’activité du glissement anomal. Peu d’observations expérimentales mentionnent l’activité
de ces dislocations 〈100〉 à basse température, cependant observées sous forme de longs segments dans une
quantité non négligeable à plus haute température. Néanmoins, ces dislocations 〈100〉 ne sont communément
pas considérées comme un système de glissement possible, pouvant donc générer de la déformation plastique.
Cette simplification est basée sur un résultat de la théorie élastique isotrope, selon laquelle l’énergie élastique
d’une dislocation est proportionnelle à la norme au carré de son vecteur de Burgers, les dislocations 〈100〉
étant donc d’énergie plus élevée que 1/2〈111〉. Prenant en compte l’anisotropie élastique, ces deux dislocations
alignées selon leurs orientations vis ont une énergie élastique comparable dans plusieurs métaux (V, Nb, Cr
et Mo), invalidant ainsi l’argument élastique isotrope utilisé pour ne pas considérer les dislocations 〈100〉.

Afin de savoir si l’activité de ces dislocations est comparable aux conventionnelles 1/2〈111〉, nous avons
évalué par calculs ab initio la barrière de Peierls s’opposant au glissement des dislocations vis 〈100〉 dans les
plans {110}, et ce dans l’ensemble des métaux de transition CC. Dans la plupart de ces métaux, la hauteur
de la barrière comme la contrainte de Peierls est comparable pour les deux systèmes de glissement 〈111〉{110}
et 〈100〉{110}, suggérant donc une activité compétitive. Nous avons ensuite étendu le critère d’écoulement
plastique présenté précédemment aux systèmes 〈100〉{110} de manière à étudier la compétition entre eux en
fonction de l’orientation du chargement mécanique, considérant que leur mobilité à basse température est
pilotée par leurs orientations vis respectives. Ce critère prédit une vaste gamme d’orientations favorisant
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Figure 4: Système de glissement primaire parmi les vis 1/2〈111〉 (orange) et 〈100〉 (vert) glissant dans les plans {110} en fonction
de l’orientation de l’axe de chargement dans le W en (a) traction et (b) compression. (c) Configuration d’équilibre à 0K d’une
boucle de dislocation 〈100〉 soumise à une déformation, la couleur des atomes représentant l’orientation locale de la ligne. (d)
Potentiel de Peierls ab initio VP d’une dislocation 〈100〉 vis (rouge) et mixte (violet) glissant dans un plan {110} dans le W.

l’activité de systèmes 〈100〉{110}, en particulier proche d’un axe 〈111〉 (voir Fig. 4a et b). Ainsi, ce critère
prédit une plus forte activité de dislocations 〈100〉 à basse température qu’observé expérimentalement,
même pour des axes de chargement proches de 〈111〉. Une contradiction apparaît donc, à moins qu’un autre
mécanisme ne s’oppose à leur mouvement à basse température.

Notamment, ce critère est basé sur l’hypothèse que ces dislocations 〈100〉 ressente la plus forte friction
de réseau lorsqu’elles sont alignées selon leur orientation vis, de manière identique aux dislocations 1/2〈111〉.
Pour tester cette hypothèse, nous avons étudié l’expansion d’une boucle de dislocation 〈100〉 sous contrainte,
de manière à sonder les orientations bloquantes de la ligne à basse température. Après relaxation de la
déformation imposée, la forme de la boucle montre que son expansion est bloquée dès que la ligne s’oriente
selon une direction 〈111〉 (Fig. 4c). La très forte friction ressentie par cette orientation mixte a ensuite été
confirmée par calculs ab initio dans plusieurs métaux, montrant une barrière cinq fois plus élevée que pour
l’orientation vis (voir Fig. 4d pour le cas du W). Il apparaît donc que le mouvement des dislocations 〈100〉
est limité à basse température par cette orientation mixte, un phénomène a priori générique à l’ensemble des
métaux de transition CC. Ainsi, il se pourrait que leur activité ne soit possible qu’à plus haute température,
lorsque la friction de réseau disparaît, en accord qualitatif avec les observations expérimentales. Dans
cette gamme de température, les dislocations 〈100〉 seraient alors en mesure de contribuer de manière non
négligeable à la plasticité des métaux de transition CC.
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Appendices

Appendix A. Experimental yield stresses and athermal temperatures

We present in this appendix a summary of the experimental yield stresses σY measured at low tem-
perature across all bcc transition metals under uniaxial mechanical loading in tension and/or compression,
presented in Tab. A.1, with the athermal temperature of the Peierls mechanism Tath and the melting point
Tm. Are indicated under brackets for each presented data the test temperature, experimental strain rate ε̇,
and the orientation of the loading axis defined by angles ζ and χ.

Table A.1: Experimental yield stress σY (MPa) for all bcc transition metals measured at low temperature, and athermal
temperature of the Peierls mechanism Tath (K). Values are taken from various references indicated in each row with details
about the experimental conditions. The melting point Tm (K) is indicated as a reference temperature for each metal.

Yield stress σY (MPa) Tath (K) Tm (K) [174]

V

400 [233] (77K, 6.7× 10−5 s−1, center orientation) 300 [233]
2 200350 [276] (77K, 6.7× 10−4 s−1, center orientation) 450 [234]500 [277] (77K, 1.0× 10−4 s−1, center orientation) 400 [276, 278]750 [278] (77K, 3.3× 10−5 s−1, center orientation)

Nb

900 [43] (4.2K, 8.0× 10−5 s−1, [011]-[111] edge)

300 [43, 279] 2 750
500− 900 [36] (4.2K, 1.7× 10−4 s−1, ζ ' 47◦)

275− 375 [237]600− 1 200 [280] (4.2K, 4.6× 10−4 s−1, center orientation)
270− 600 [36] (77K, 1.7× 10−4 s−1, ζ ' 47◦)
200− 700 [32, 280] (77K, 6× 10−4 s−1, [001]-[011]-[111] triangle)

Ta
700 [281] (4.2K, 1.0× 10−4 s−1, center orientation) 400 [216, 282] 3 290500− 900 [218] (77K, 4.0× 10−4 s−1, edges of triangle)

400− 450 [238]
470− 560 [33] (77K, 6.0× 10−5 cm/min, ζ ' 50◦)

Cr 970 [126] (77K, 8.3× 10−5 s−1, polycrystal) 420 [126] 2 180
780− 1 200 [34] (77K, 1.0× 10−5 s−1, [001]-[011]-[111] triangle)

Mo

1 140− 1 600 [30, 36] (4.2K, 1.7× 10−4 s−1, ζ ' 47◦)
450 [41, 83] 2 8951 620 [283] (4.2K, 8.6× 10−4 s−1, center orientation)
400− 450 [240]440− 740 [41] (77K, 3.3× 10−5 s−1, [001]-[011]-[111] triangle)

500− 940 [30] (77K, 1.7× 10−4 s−1, ζ ' 47◦)

W 1 600 [29] (60K, 8.7× 10−4 s−1, center orientation) 800 [29] 3 695
750− 1 500 [26, 217] (77K, 4.0× 10−4 s−1, edges of triangle) 600 [241]

Fe

720− 850 [35, 36] (4.2K, 1.7× 10−4 s−1, ζ ' 47◦)

300 [284] 1 810
750− 950 [284] (4.2K, 8.0× 10−5 s−1, center and [001]-[011] edge)

400 [285, 286]700 [287] (20.4K, 5.0× 10−4 s−1, center orientation)
450− 550 [288] (60K, 5.0× 10−4 s−1, ζ ' 45◦)
400− 500 [35] (77K, 1.7× 10−4 s−1, ζ ' 47◦)
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Appendix B. Orientation and surface dependence of the energy of the magnetic fault bounded
by two 1/2〈111〉 screw dislocations with the tight binding model

We study in this appendix the impact of the orientation and surface of the fault plane on the energy γ of
the magnetic fault bounded by two 1/2〈111〉 screw dislocations using the TB model presented in Methods,
section 1.2, and which gives a very satisfactory agreement with ab initio calculations in terms of bulk
properties and core energy of the dislocation. The calculation is performed in the 273 atom supercell, with
periodicity vectors ~p1 = 7/2 [121]− 13/2 [101], ~p2 = 7/2 [121] + 13/2 [101], and ~p3 = 2× 1/2[111], where the
total energy contained in the simulation cell is:

Etot = Ebulk + Eelas + 2Ecore + Efault (B.1)

The orientation of the fault plane Θ with respect to the (101) plane is imposed by moving the two dislocations
of the dipole as sketched on Fig. B.1a. As the distance between the two dislocations, and with their periodic
images, varies from one position to another, the elastic contribution to the energy Eelas changes, which is
evaluated for each position using the Babel package [165]. In each calculation, atomic positions are not
relaxed, but are fixed to the predictions of anisotropic elasticity theory. The core energy Ecore of the two
1/2〈111〉 screw dislocations is assumed to be independent on their environment, which was checked in Chapter
2 with respect to the size of the simulation cell (see section 1.2). This core energy is then fixed to the TB
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Figure B.1: Dependence of the magnetic fault surface energy γ (meV/Å2) on the orientation of its habit plane Θ with respect
to the (101) plane, and surface Sfault = h× (d− 2ε) obtained using the TB model in the 273 atom supercell.
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result obtained using the relaxed ab initio structure as input, Ecore = 524meV/Å. Accounting for a region
of radius ε near the core the two dislocations and where the energy of the magnetic fault cannot be properly
defined due to local effects, i.e. neither described by elasticity nor included in the range of the magnetic
fault, the magnetic fault then covers a surface Sfault = h(d − 2ε), with h = 2b the height of the simulation
cell in the direction of the line. Assuming the fault energy Efault to be proportional to its surface, i.e.
Efault = γ × 2b(d− 2ε), leads to the following expression per unit length:

Efault

2b
= γ × (d− 2ε) =

Etot − Ebulk − Eelas − 2Ecore

2b
, (B.2)

which can be fitted to a linear function of the distance d to obtain γ and ε simultaneously. The results for
all scanned positions of the two dislocations are presented in Fig. B.1b. The agreement with the linear fit is
very good, resulting in a fault energy γ = 22.5meV/Å2 and a radius ε = 3.2Å below which the fault energy
does not vary linearly with the distance d between the two dislocations. The magnetic fault energy is also
presented as a function of the orientation of its habit plane Θ with respect to the (101) plane (red in Fig.
B.1a) in Fig. B.1c, with all TB data plotted in different colors according to the distance d covered by the
magnetic fault. This shows that γ does not depend on the relative orientation of the two 1/2〈111〉 bounding
dislocations, nor on the distance between them. If the magnetic fault had shown a preferred orientation,
this would have constrained 1/2〈111〉 dislocations to glide in these planes, in order to reduce the energy of
the fault they drag behind them, which is not the case at 0K according to these results.
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Appendix C. Free energy of model magnetic fault variations with temperature

The object of this appendix is to give analytical expressions of the magnetic free energy of a fault having
different model temperature evolution. Two different magnetic energy profiles are considered here, similar to
the two variations found through the heating and cooling cycles of the infinite magnetic faults presented in
section 2.1 of Chapter 3: a constant energy up to a given temperature T0; and a linearly decreasing energy
up to T0. The magnetic free energy ∆Fmag of a fault with energy ∆Emag is known at zero temperature,
where we have ∆Fmag(T = 0K) = ∆Emag(T = 0K) since the entropic contribution is zero at T = 0K. An
alternative way to evaluate analytically its free energy as a function of temperature is thus:

∆Fmag(β) =
1

β

∫ β

β′=βref

∆Emag(β′)dβ′ ↔ ∆Fmag(T ) = T

∫ Tref

t=T

∆Emag(t)

t2
dt (C.1)

In the case of the magnetic faults presented in Chapter 3, a reference temperature Tref = 5TN/4 is chosen,
above which the magnetic energy of all defects studied here vanish, namely the infinite magnetic fault and
the magnetic contribution to the core energy of 1/2〈111〉 screw dislocations as discussed in section 2.3.

Appendix C.1. Constant magnetic fault energy
Considering a magnetic fault of constant energy γ up to a given temperature T0:

∆Emag(T ) =

{
γ, for T < T0

0, for T ≥ T0
(C.2)

Integration over the temperature range between 0K and Tref gives:

∆Fmag(T ) = T

∫ T0

t=T

γ

t2
dt = γ

(
1− T

T0

)
for T < T0 (C.3)

This model evolution corresponds to the energy of the non-collinear structure found upon cooling a crystal
rigidly sheared by a 1/2〈111〉 vector (see Fig. 10 in section 2.1).

Appendix C.2. Linearly decreasing magnetic fault energy
We now consider a magnetic fault whose energy decreases linearly to zero at T0, similar to the evolution

of the collinear fault energy below TN/2 found upon heating a crystal containing an infinite magnetic fault
(Fig. 10 in section 2.1), or bounded by two 1/2〈111〉 screw dislocations (Fig. 18 in section 2.3). The energy
of such magnetic fault is given by:

∆Emag(T ) =

γ
(

1− T

T0

)
, for T < T0

0, for T ≥ T0
(C.4)

An integration over the temperature range using Eq. 28 results in the following:

∆Fmag(T ) = T

∫ T0

t=T

γ

t2

(
1− t

T0

)
dt = γ

(
1− T

T0

)
− γT

T0
ln

(
T0
T

)
for T < T0 (C.5)
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Appendix D. Adjustment of the elastic constants to ensure the symmetry of the 1/2〈111〉 and
〈100〉 screw dislocations trajectory in {110} planes

As detailed in section 3.1.3 of the Methods, an adjustment of the elastic constants from the values of
the perfect crystal is required to enforce the symmetry of the dislocation trajectory along the NEB path,
notably to ensure x(ξ = 0) = 0 and x(ξ = 1) = λP , which is detailed here for both 1/2〈111〉 and 〈100〉 screw
dislocations, with the correction performed in all bcc transition metals.

Appendix D.1. 1/2〈111〉 screw dislocation
Only the elastic constants C44 and C15 are modified to enforce this relation, using the stress differences

between the initial and final configurations given by ab initio calculations. The values for the rotated bcc
unit-cell and the fitted values necessary to ensure both conditions are satisfied are presented in Tab. D.1.
The elastic constants of a simulation cell containing a 1/2〈111〉 screw dislocation dipole are also evaluated
for W, Mo, and the NM phase of Cr, and are presented in the ’Dislocated crystal’ row. We note that the
elastic constants of the dislocated crystal vary by a similar amount from the bulk values as the fitted values
chosen to ensure the conditions on the dislocation trajectory. These elastic constants, with respect to the
perfect crystal, show a variation up to 13% for the C15 and C44 components and less than 6% for all other
constants in Cr, 18% and 15% for C15 and C44 respectively and less than 4% for all other components in
Mo, and 6 and 7% for C15 and C44 respectively with less than 3% variation on other components in W.

Table D.1: Lattice parameter a0 (Å), and elastic constants Cij (in GPa) rotated in the frame of the 1/2〈111〉 screw dislocation
(’Perfect crystal’), corrected values used to extract the screw dislocation trajectory and relaxation volume (’Fit’), and values
of a cell containing a 1/2〈111〉 screw dislocation dipole (’Dislocated crystal’). Adjusted values (C15 and C44) are in italic.

a0 C11 C12 C13 C15 C33 C44 C66

V 2.998 Perfect crystal 233 163 175 20 221 47 35
Fit 233 163 175 18 221 48 35

Nb 3.308 Perfect crystal 217 151 164 17 204 42 33
Fit 217 151 164 15 204 42 33

Ta 3.322 Perfect crystal 288 154 145 -12 296 59 67
Fit 288 154 145 -9.1 296 55 67

Cr (NM phase) 2.847
Perfect crystal 420 164 191 38 394 155 128
Dislocated crystal 416 174 195 33 382 135 118
Fit 420 164 191 32 394 138 128

Cr (AF phase) 2.865 Perfect crystal 338 86 117 45 306 157 126
Fit 338 86 117 35 306 140 126

Mo 3.159
Perfect crystal 416 175 195 27 396 140 120
Dislocated crystal 413 182 197 22 381 119 115
Fit 416 175 195 21 396 122 120

W 3.186
Perfect crystal 495 207 211 5.1 492 148 144
Dislocated crystal 499 213 210 5.4 487 137 143
Fit 495 207 211 4.5 492 141 144

Fe 2.829 Perfect crystal 320 142 129 -18 333 76 89
Fit 320 142 129 -17 333 71 89
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Appendix D.2. 〈100〉 screw dislocation
In the frame of the 〈100〉 screw dislocation, the elastic tensor is:

¯̄C〈100〉 =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

 , (D.1)

so that only one component of the elastic tensor needs to be adjusted to ensure x(ξ = 1) = λP :

4C44b
2λP = hS∆σ32(ξ = 1) (D.2)

Given that, for the 〈100〉 screw dislocation gliding in a {110} plane, we have h = b = a0 and λP = a0
√

2/2,
the above condition results in the following expression for the C44 elastic constant:

C44 =
hS∆σ32(ξ = 1)

4b2λP
=
S∆σ32(ξ = 1)

2a02
√

2
(D.3)

The elastic constants of the rotated unit-cell (’Perfect crystal’) and the fitted values to enforce the above
condition (’Fit’) are reported in Tab. D.2 for all bcc transition metals. We note that this adjustment is
very small, even compared to the one performed in the previous section for the 1/2〈111〉 screw dislocation,
except in Nb for which this correction corresponds to a variation of −30% with respect to bulk values.

Table D.2: Elastic constants Cij (in GPa) rotated in the frame of the 〈100〉 screw dislocation (’Perfect crystal’), and corrected
values used to extract the screw dislocation trajectory (’Fit’). Adjusted values for C44 are indicated in italic.

C11 C12 C13 C33 C44 C66

V Perfect crystal 233 187 151 269 24 59
Fit 233 187 151 269 24 59

Nb Perfect crystal 216 177 138 255 20 59
Fit 216 177 138 255 14 59

Ta Perfect crystal 296 143 169 270 76 50
Fit 296 143 169 270 69 50

Cr (NM phase) Perfect crystal 415 219 151 483 98 166
Fit 415 219 151 483 102 166

Cr (AF phase) Perfect crystal 343 152 63 432 96 185
Fit 343 152 63 432 97 185

Mo Perfect crystal 428 227 170 485 100 157
Fit 428 227 170 485 99 157

W Perfect crystal 507 226 217 517 141 150
Fit 507 226 217 517 141 150

Fe Perfect crystal 320 116 155 281 102 63
Fit 320 116 155 281 109 63
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Appendix E. Influence of the entropic contribution on the predicted flow stress

Appendix E.1. Comparison with experiments
We compare in this appendix the predicted temperature evolution of the tensile yield stress for single

crystals of W and Mo with center orientation [149], i.e. ζ = 50◦ and χ = 0, with experimental data from
Brunner and Glebovsky [289] and Hollang and Seeger [283] respectively. For a tensile loading axis having
this orientation, the 0K yield criterion in tension (Eq. 12 in Chapter 2) predicts the lowest yield stress for
[111](101) (orange) and [111](101) (purple) slip systems for both W and Mo, which have similar slip activity
at 0K as presented in Chapter 4, Fig. 5. The variation of the yield stress for both slip systems is plotted
as a function of temperature in Fig. E.1 for different dislocation densities ρD ranging from 106 to 1012 m−2,
both neglecting entropic contributions (i.e. Tm → ∞) and using the Meyer-Neldel compensation rule with
the melting point for both materials, 3 695 and 2 895K for W and Mo respectively [174].
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Figure E.1: Predicted and experimental yield stresses σY as a function of temperature for (a) W, and (b) Mo single crystals of
orientation [149] tested under uniaxial tension. Predicted yield stresses are normalized by their value at 0K, 4.1 and 2.4GPa
for W and Mo respectively. Experimental data for W are taken from Brunner and Glebovsky [289] and are normalized by
2.0GPa, and from Hollang and Seeger [283] for Mo, normalized by 1.5GPa.

The strain rate ε̇ is set to the experimental value, indicated above each of the two plots in Fig. E.1.
In these two experimental works, the dislocation density is unknown, thus justifying for the choice of a
range of different possible values in the model. However, in a later experimental study of the temperature
dependence of the yield stress of W single crystal having a similar orientation (ζ = 45.6◦ and χ = 0), the
authors report an estimated dislocation density ρD = 5.5 × 109 m−2 [29]. For similar samples of Mo, no
estimation of ρD is reported in the literature. This value for W is used as a reference to highlight the effect
of the dislocation density on the temperature evolution of the tensile yield stress. All other parameters
of the model are kept fixed, according to experimental conditions for ε̇, and ab initio calculations for all
other parameters of Eq. 28. As expected, and also reported for Cr in Chapter 2, both experimental and
predicted flow stresses decrease with temperature. They show a steep decrease near 0K, before reaching
a more linear variation with temperature, with a similarly convex evolution in both metals and regardless
of entropic effects. Competition between the two primary slip systems is stiff at 0K, but the yield stress
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difference between the two becomes lower with increasing temperature, before ultimately vanishing before
the athermal temperature. The agreement found with experiments is rather satisfactory, keeping in mind
that predicted and experimental stresses do not share the same scale, with a scaling factor of 2.0 and 1.6
for W and Mo respectively. The same scale is however used in temperature, showing the dependence of
the athermal temperature Tath on the dislocation density ρD. A good agreement in terms of Tath with the
experimental values of 800 and 450K in W and Mo is obtained setting ρD to 1010 and 1012 m−2 respectively
when entropic contributions are neglected (i.e. Tm →∞, lower row of Fig. E.1), and 104 and 109 respectively
using the Meyer-Neldel compensation rule with Tm = Tmelt (upper row of Fig. E.1). This is particularly
satisfactory since predictions of the model do not use any fitting parameter. Further study on the sensibility
of the flow stress to entropic contributions in the frame of the Meyer-Neldel compensation rule is presented
in the next section for both W and Mo.

Appendix E.2. Influence of the approximation for the entropic contribution
As discussed in the previous section, the entropic contribution to the kink-pair nucleation free energy

∆Gkp has an impact on the predicted temperature temperature of the yield stress σY = f(T ). The Meyer-
Neldel compensation rule, i.e. assuming this entropic contribution is proportional to the kink-pair nucleation
enthalpy ∆Hkp, is a first step towards a better inclusion of these effects in the kink-pair nucleation process at
finite temperatures. We study in this section the influence of the Meyer-Neldel parameter on the predicted
flow stress in the frame of the Schmid law, since a similar effect holds a priori when non-Schmid effects are
included. The two cases where Tm is taken equal to the melting point of the material Tmelt and infinity, i.e.
where entropic contributions are neglected, are already discussed in section 3.2. The temperature evolution
of the yield stress for W and Mo single crystals under uniaxial tension along a [149] axis are presented in
Fig. E.2 using different values of the Meyer-Neldel temperature, and compared to experiments.
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Figure E.2: Normalized yield stress as a function of temperature for (a) Mo and (b) W single crystals with center orientation
[149] considering Tm = Tmelt in blue, Tm → ∞ in grey, and Tm = −Tmelt in red. Experimental data are taken from Hollang
and Seeger [283] for Mo, and Brunner and Glebovsky [289] for W.

In order to reproduce the experimental athermal temperature Tath, a lower dislocation density ρD is
required when entropic contributions are accounted for using Tm = Tmelt (dark blue) than for Tm →∞ (grey)
in both W and Mo, whose value in the first case is unrealistic for W (ρD = 1×102 m−2, with en experimental
estimated density ρD ' 5×109 m−2). Neglecting entropic contributions also gives a more pronounced cusp in
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the temperature evolution of the yield stress, which is even more accentuated using a negative Meyer-Neldel
temperature Tm = −Tmelt (red curves in Fig. E.2). This cusp in the intermediate temperature range is also
responsible for a steeper increase of the yield stress near 0K, which is in better agreement with experiments
for both W and Mo. Using this negative temperature in the entropic contribution, a higher dislocation
density is required to reproduce the experimental Tath, still remaining in a realistic range.
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Appendix F. Formation of 〈100〉 junctions of different characters from interaction between
mixed 1/2〈111〉 dislocations

We further investigate here formation of 〈100〉 junctions from two intersecting 1/2〈111〉 dislocations. In
Chapter 5, we only focused on the formation of such junctions from two intersecting screw dislocations.
This case is representative of the situation at low temperature, where 1/2〈111〉 align along their screw orien-
tation due to the strong lattice friction they experience. However, at higher temperature, most particularly
above the athermal temperature Tath of the Peierls mechanism where lattice friction vanishes, 1/2〈111〉 dis-
locations do not align preferentially along their screw orientation but can take any character. Since all line
orientations move at the same velocity, this allows for dislocations of mixed character to form 〈100〉 junctions.

Based on the same formulation of the elastic energy as the line model presented in section 3.3 of Chapter
5, we study here the length of the junction reaction lJR as a function of the initial character θ of the two
intersecting 1/2〈111〉 dislocations to stress that the preferred alignment of these dislocations along their screw
orientation at low temperature is a limiting factor in the formation of such 〈100〉 junctions. Three orientations
of the 〈100〉 junction are considered, which are the only possible characters formed upon interaction of the
two 1/2〈111〉 dislocations, depending on their {110} glide planes, following the three reactions:

1/2[111] ∈ (110) + 1/2[111] ∈ (110)→ [001] ‖ [001] (F.1)

1/2[111] ∈ (101) + 1/2[111] ∈ (110)→ [001] ‖ [111] (F.2)

1/2[111] ∈ (101) + 1/2[111] ∈ (101)→ [001] ‖ [010] (F.3)

These three possible character are the screw (θscrew = 0) following F.1, a mixed orientation with θmixed =
54.7◦ corresponding to a line along a 〈111〉 direction following F.2 (which corresponds to the M100 dislocation
studied in Chapter 6, sections 3.2 and 3.3, and having the highest Peierls energy barrier among all possible
line orientations for the 〈100〉 dislocation), and edge (θedge = 90◦) following F.3. As presented in Fig. 2
of Chapter 6, among the nine combinations between the two 1/2〈111〉 dislocation leading to the possible
formation of a junction, only one has a screw character, two are of edge character but however completely
sessile, and the seven others have a mixed M100 orientation, partially glissile. The logarithmic prefactor e
to the elastic energies for these three orientations are listed in Tab. F.1 for all bcc transition metals using
the experimental elastic constants at 4.2K of Tab. 1 in the Literature review.

Table F.1: Elastic anisotropy A = 2C44/(C11 − C12), logarithmic prefactors e〈100〉screw, e
〈100〉
mixed and e〈100〉edge of the elastic energy of

screw, mixed and edge 〈100〉 screw dislocations, and critical character θJR of the two 1/2〈111〉 dislocations from which a 〈100〉
junction of non-zero length is spontaneously formed from the interaction between the two 1/2〈111〉 dislocations.

Metal A e
〈100〉
screw e

〈100〉
mixed e

〈100〉
edge θJR

screw θJR
mixed θJR

edge
Nb 0.50 0.31 0.59 0.69 0◦ 15.3◦ 24.0◦

Cr 0.68 0.85 1.21 1.33 0◦ 11.3◦ 17.0◦

Mo 0.77 1.09 1.56 1.75 0◦ 12.1◦ 18.0◦

V 0.78 0.39 0.60 0.69 0◦ 13.0◦ 19.7◦

W 1.00 1.42 1.88 2.09 2.5◦ 11.9◦ 16.9◦

Ta 1.56 0.89 1.00 1.12 8.0◦ 11.0◦ 15.0◦

Fe 2.38 0.95 0.84 0.92 13.0◦ 9.9◦ 12.0◦

We note that, contrary to the 1/2〈111〉 dislocation, the screw orientation does not systematically minimize
the elastic energy of 〈100〉 dislocations. This elastic effect is more pronounced for metals having A > 1, i.e.
Ta and Fe, as also presented in Fig. 1 of Chapter 6. Thus, depending on the character of the 〈100〉 junction
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formed by the interaction between two 1/2〈111〉 dislocations, different behaviors are expected depending on
the elastic anisotropy. The length of a junction of three different characters resulting from the intersection
between two 1/2〈111〉 dislocations of character θ are presented in Fig. F.1 for all bcc transition metals. In
the presented model, we assume the system to have the same geometry as for the formation of the screw
〈100〉 junction, sketched in Chapter 5 Fig. 9c, regardless of the character of the junction formed, i.e. screw,
mixed or edge. Instead, only the elastic energy E〈100〉 appearing in Eq. 6 is changed to match the character
of the junction of interest.
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Figure F.1: Length lJR predicted by the line energy model for a (a) screw, (b) mixed (θ = 54.7◦), and (c) edge 〈100〉 junction
formed by intersection of two 1/2〈111〉 dislocations of initial character θ, normalized by their initial length L0.

As detailed in section 3.3 of Chapter 5, formation of the 〈100〉 screw junction is favored by a decreasing
elastic anisotropy ratio A. Its spontaneous formation from two intersecting 1/2〈111〉 dislocations of screw
character is predicted for A < 0.8, corresponding to Nb, Cr, Mo and V. From Fig. F.1a, we also note
that longer 〈100〉 screw junctions are also predicted to form in these four metals when the two 1/2〈111〉
dislocations are not aligned along their screw orientation, but for any mixed character θ. This effect of the
anisotropy ratio A reflects in the critical character θJR above which a 〈100〉 junction of non-zero length is
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Figure F.2: (a) Screw [010] junction created upon intersection of two mixed 1/2〈111〉 dislocations~b1 and~b2 of character θ = 19.5◦

obtained after molecular statics relaxation (colored spheres), and with the line energy model (solid lines) in W. (b) Length
lJR/L0 of the screw JR formed upon intersection of two mixed 1/2〈111〉 dislocations in Nb and W obtained with molecular
statics relaxations (filled squares), the line energy model (solid lines), and isotropic DD simulations (open squares, for W only).
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spontaneously produced after intersection between the two 1/2〈111〉 dislocations. For metals with A < 0.8,
this critical character θJR is zero for the screw junction, whereas an increasing θJR is required as A increases,
for instance in W, Ta and Fe by order of increasing A. The existence of this critical character shows that,
at higher temperature, when 1/2〈111〉 dislocations are not preferentially aligned along their screw orienta-
tion, 〈100〉 screw junctions can form in any bcc metal. The produced junctions are nevertheless shorter in
metals having a high anisotropy ratio A. This prediction is in agreement with experimental observations
of long 〈100〉 junctions in all bcc transition metals above the athermal temperature of the Peierls mechanism.

Focusing only on the screw 〈100〉 junction, we now compare the above predictions of the line energy
model with molecular statics relaxations at 0K in Nb and W, presented in Fig. F.2. A satisfactory agree-
ment is found between the two models for both Nb and W, most particularly regarding the existence and
the value of the critical character θJR

screw of the two 1/2〈111〉 dislocations above which a 〈100〉 screw junction
forms spontaneously in W, evaluated at 2.5 and 2.8◦ according to the line energy model and atomistic simu-
lations respectively. The later is confirmed by isotropic DD simulations in W, again in very good agreement
with both models and an identical predicted critical character θJR

screw = 2.8◦. Predictions of the line energy
model for Nb are also in good agreement with results of atomistic simulations, with spontaneous forma-
tion of a 〈100〉 screw junction for all characters θ of the two intersecting dislocations. As also predicted
by the model, and confirmed here by molecular statics relaxations, the length of the junction produced
increases with an increasing character θ of the two 1/2〈111〉 dislocations, for which a good agreement is
found in both Nb and W. As an example, we show in Fig. F.2a the relaxed configuration resulting from
the intersection between two 1/2〈111〉 dislocations of mixed character θ = 19.5◦ in W, corresponding to a
line oriented along a 〈112〉 direction, with the results of the line energy model indicated by solid colored lines.

Now considering the results of the line energy model for the mixed M100 and edge 〈100〉 junctions in
Fig. F.1b and c respectively, we note that the intersection between two 1/2〈111〉 screw dislocations does
not lead to spontaneous formation of the junction in any bcc metal. A mixed critical character θJR is
instead required for the formation of these two junctions to be energetically favorable. Contrary to the
screw 〈100〉 junction, whose formation is favored by a decreasing elastic anisotropy A, the mixed junction
forms preferentially in metals with higher anisotropy ratio A > 1. This is also the case for the edge 〈100〉
junction, whose formation is even more favorable than the screw junction in Fe, which has the highest ratio
A. This is a direct consequence of the lower elastic energy found for the edge than the screw 〈100〉 dislocation
in Fe, as listed in Tab. F.1 for all bcc transition metals. For the two mixed and edge orientations of the
junction, a higher critical character of the two intersecting 1/2〈111〉 dislocations is nevertheless required for
the formation of the junction to be energetically favorable in all metals except for Fe, where this character
is minimum for the edge 〈100〉 junction. For all three of its possible orientations, we note that the length
lJR of the junction always increases with the character θ of the two intersecting 1/2〈111〉 dislocations.
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Résumé: L’objet de cette thèse est d’étudier la plastic-
ité du chrome, envisagé comme revêtement des gaines com-
bustibles en zirconium, et qui dans ces conditions doit être
capable de supporter la déformation qui lui est imposée
sans se fracturer. Le chrome est l’un des sept métaux de
transition purs à structure cubique centrée, étant cepen-
dant l’unique d’entre eux ayant une structure magnétique
proche de l’antiferromagnétisme à température inférieure
à l’ambiante. A l’échelle atomique, la déformation plas-
tique de ces métaux à basse température s’opère principale-
ment par le mouvement des dislocations vis de vecteur de
Burgers 1/2〈111〉, subissant une friction importante avec le
réseau cristallin. Or, la plasticité du chrome soulève en-
core de nombreuses questions (types de dislocations, effet
du magnétisme), et a été l’objet de peu d’étude visant à
caractériser son comportement mécanique. En comparant
le chrome aux autres métaux cubiques centrés, cette étude
a permis de conclure sur les similitudes et différences que
celui-ci présente.

A l’aide de calculs ab initio, les propriétés des disloca-
tions vis 1/2〈111〉 ont été étudiées dans les deux phases non-
magnétique et antiferromagnétique du chrome, de manière
à caractériser l’influence du magnétisme sur sa plasticité à
basse température. Cette étude a révélé que la seule con-
séquence du magnétisme est la génération de fautes mag-
nétiques lorsque les dislocations cisaillent le cristal, puisque
leur vecteur de Burgers ne respecte pas l’ordre magnétique
du chrome à basse température. Ainsi, les dislocations
1/2〈111〉 sont contraintes à se déplacer en traînant derrière
elles une faute. Celle-ci a ensuite été étudiée à température
finie par simulations Monte Carlo couplées à un modèle de
Heisenberg développé pour cette étude, mettant en évidence

leur disparition à une température inférieure à la transition
vers le désordre magnétique, proche de l’ambiante, laissant
les dislocations libres de se déplacer sans traîner de faute. Le
magnétisme n’a donc un impact sur la plasticité du chrome
qu’à très basse température, où ces fautes existent.

Tenant compte des propriétés atomiques des disloca-
tions, ainsi que de leur mouvement thermiquement activé
par germination de doubles décrochements à l’aide d’un
modèle de tension de ligne, nous avons ensuite développé
une loi d’écoulement plastique donnant la limite d’élasticité
en fonction du chargement mécanique et de la température,
jusqu’à la température athermale. Par le biais d’une étude
systématique sur l’ensemble des métaux cubiques centrés,
pour lesquels une grande variété de données expérimen-
tales est disponible, les prédictions du modèle ont pu à la
fois être comparées à l’expérience ainsi qu’entre métaux,
de manière à confirmer que le comportement plastique du
chrome est semblable à l’ensemble de ces métaux. Cette ap-
proche systématique permettant à la fois de mieux compren-
dre la plasticité du chrome et des autres métaux cubiques
centrés s’est ensuite étendue à l’étude d’un nouveau mé-
canisme expliquant le glissement anomal à basse tempéra-
ture observé expérimentalement, s’opérant par un mouve-
ment coopératif de plusieurs dislocations entraînant leur dé-
placement rapide, reproduit par nos simulations atomiques.
Nous nous sommes enfin intéressés aux propriétés de dislo-
cations ayant un vecteur de Burgers 〈100〉, d’énergie proche
des dislocations 1/2〈111〉 et observées dans l’ensemble de
ces métaux, afin d’expliquer dans quelles conditions celles-ci
pourraient participer à la déformation plastique, nos simula-
tions montrant un blocage des mécanismes de multiplication
de ces dislocations.

Title: Atomic scale modeling of plasticity in chromium and other body-centered cubic transition metals
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Abstract: The object of this thesis is to study plasticity of
chromium, considered as a coating layer of zirconium fuel
claddings, and in these conditions needs to be able to ac-
commodate the deformation which is imposed to it without
cracking. Chromium is one of the seven pure body-centered
cubic transition metals, however the only one with a mag-
netic structure close to antiferromagnetism at temperatures
below ambient. At the atomic scale, plastic deformation of
these metals at low temperature is mainly governed by the
motion of screw dislocations with a 1/2〈111〉 Burgers vector,
which experience a strong friction with the crystal lattice.
However, plasticity of chromium still raises numerous ques-
tions (types of dislocations, influence of magnetism), and
has been the focus of a few studies aiming at characterizing
its mechanical behavior. Comparing chromium to the other
body-centered cubic metals, this work helped conclude on
the similarities and differences it presents.

Using ab initio calculations, properties of 1/2〈111〉 screw
dislocations were studied in the two non-magnetic and an-
tiferromagnetic phases of chromium, in order to qualify the
impact of magnetism on its plasticity at low temperature.
This study revealed the only consequence of magnetism is
the generation of magnetic faults when these dislocations
shear the crystal, since their Burgers vector disrupts the
magnetic order of chromium at low temperature. Thus,
1/2〈111〉 dislocations are constrained to move while drag-
ging a magnetic fault behind them. This fault was then
studied at finite temperature using Monte Carlo simula-
tions coupled with a Heisenberg model developed for this
work, evidencing their disappearance at a temperature be-

low the transition to magnetic disorder, close to ambient,
letting dislocations free to move without dragging magnetic
faults. Magnetism therefore has an impact on the plastic-
ity of chromium at very low temperature only, where these
faults exist.

Accounting for the atomic properties of dislocations, as
well as their thermally activated glide through nucleation
of kink pairs using a line tension model, we then developed
a plastic flow law predicting the yield stress as a function
of the mechanical loading and the temperature, until the
athermal temperature. Through a systematic study across
all body-centered cubic metals, for which numerous exper-
imental data are available, predictions of the model were
both compared to experiments and between metals, in order
to confirm the plastic behavior of chromium is comparable
to the other metals. This systematic approach allowing at
the same time for a better understanding of the plasticity
of chromium and the other body-centered cubic metals was
then extended to the study of a new mechanism explain-
ing anomalous slip at low temperature observed experimen-
tally, operating through a cooperative motion of multiple
dislocations leading to their fast motion, reproduced by our
atomistic simulations. We then looked at the properties of
dislocations having a 〈100〉 Burgers vector, with close en-
ergy compared to 1/2〈111〉 and observed in all these metals,
to explain under which conditions they can participate to
the plastic deformation, our atomistic simulations showing
a locking of the multiplication mechanisms of these disloca-
tions.
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