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VI.1 Materials

Abstract

The aim of this work is to develop materials based on polyethylene chemically cross-linked by siloxane bonds in order to meet various applications. The first one aims at developing PE vitrimers that are able to relax via siloxane bond exchanges. The second application relates to the improvement of the mechanical properties of aerogels based on polyethylenes. In both cases, a preliminary study has first allowed to introduce reactive functions to polyethylene while maintaining its intrinsic property of semi-crystalline polymer. For this purpose, the use of coordinative chain transfer polymerization was used in this work in order to obtain polymers of controlled molar masses with high functionalization rates. Thus, telechelic polyethylenes (bearing vinyl and/or trimethoxysilyl functions) and semi-crystalline copolymers of ethylene with butadiene, bearing lateral vinyl functions, have been synthesized. By combining this type of polymerization, in which C2P2 has acquired expertise over the past 20 years, with organic chemical reactions such as thiol-ene or hydrolysis-condensation, functional polyethylenes with different architectures (linear, brush, star) could be obtained. These polymers have been valorised by their use in the fields of dynamic and porous materials. The strategy chosen for the first one aims at inducing dynamic covalent exchanges within cross-linked materials. For this purpose, the dynamic exchange reactions of siloxanes were studied in three different systems: small model molecules based on disiloxanes, a network cross-linked by hydrosilylation based on polydimethylsiloxane and a network based on polyethylenes. The latter was obtained by condensation of trimethoxysilyl-functions by basic route and the thermal, rheological (crosslinking, stress-relaxations…) properties of these materials were analyzed. In addition, polyethylenes functionalized at the both chain-ends by vinyl functions were involved in hydrosilylation reactions in a very dilute medium in the presence of a platinum-based complex in order to create a covalent network. The original use of a solvent crystallizable at room temperature and easily sublimable, allowed the porous structure of the aerogel to be controlled and a structure-property relationship (thermal and mechanical) was established.
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