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Résumé:Les polaritons d'excitons sont des particules

mixtes lumière-matière émergeant du couplage fort entre

photons de cavité et excitations électroniques dans des mi-

crocavités semi-conductrices. Ces quasi-particules héritent

des propriétés de leurs deux constituants élémentaires : la

composante électronique leur confère une non-linéarité Kerr

géante, tandis que la partie photonique rend le système in-

trinsèquement dissipatif et permet de con�ner les polari-

tons dans des microstructures obtenues en gravant la cav-

ité. Cette thèse présente l'étude des propriétés non-linéaires

de réseaux de microcavités optiques présentant la symétrie

chirale. La première partie de l'étude est consacrée à des

chaînes topologiques unidimensionnelles émulant le mod-

èle de Su-Schrie�er-Heeger. Dans le régime non-linéaire, le

pompage cohérent du système en utilisant un laser conduit

à la formation de solitons de gap dans le réseau massif ainsi

qu'aux bords du réseau. Ces solitons possèdent des pro-

priétés de symétrie qui les rendent robustes face à certains

types défauts. D'autre part, en structurant la phase du laser

de pompe, de nouvelles solutions non-linéaires apparaissent,

qui sont spéci�ques à la physique des systèmes ouverts. En

présence d'un tel état stationnaire, l'analyse détaillée du

spectre des excitations permet de mettre en évidence une

transition de phase topologique induite par les interactions.

Dans un second temps, l'étude de l'interaction entre deux

solitons a permis de montrer que le signe de cette interac-

tion est étroitement lié à la structure du réseau sous-jacent.

Ces travaux ont mis en évidence la présence d'une brisure

spontanée de symmétrie entre les deux solitons. Au voisi-

nage de cette phase, un nouvel e�et de multi-stabilité a

été découvert, qui permet d'induire de la chiralité dans la

réponse du système en fonction du protocole de pompage.

Nous dénomons cet e�et �bistabilité hélicoïdale�. Cet e�et

très général peut être obtenu dans un simple système de

deux résonateurs non-linéaires couplés, et relié ainsi à la

physique d'une particule de spin demi-entier. Ces réultats

sont étayés à la fois par des simulations numériques détail-

lées ainsi que par des expériences. Cette thèse illustre ainsi

comment symétries et nonlinéarités permettent d'enrichir

considérablement la physique des systèmes photoniques.

Title: Non-linear physics associated to chiral symmetry in driven dissipative polariton lattices.

Keywords: Cavity polaritons, Fluids of light, Nonlinear optics, Microstructures, Optical spectroscopy

Abstract:Microcavity polaritons originate from the

strong coupling between cavity photons and electronic ex-

citations of a semiconductor microcavity. These quasi-

particles inherit properties from both constituents: the

electronic component is responsible for giant Kerr non-

linearities while the photonic part makes the system inher-

ently dissipative and allows con�ning polaritons in micro-

structures obtained via etching of the cavity. This thesis

presents the study of the non-linear properties of micro-

cavity arrays with chiral symmetry. The �rst part of the

work is dedicated to one-dimensional topological lattices

emulating the Su-Schrie�er-Heeger model. In the non-

linear regime, driving the system coherently using a laser

leads to the formation of gap solitons at the edges and in

the bulk of the structure. We evidenced that such solitons

present symmetry properties making them robust against

certain types of defects. In addition, we unveiled that a

careful engineering of the drive allows observing novel non-

linear solutions which are speci�c to open systems. We

analyzed the systems excitations spectrum in presence of

such stationnary state and demonstrate the possibility to

realize a topological phase transition induce by the interac-

tions. In the second part, we explored the properties of the

interaction between two gap solitons and showed that the

interaction sign is strongly linked to the underlying struc-

ture of the lattice. This work showed the presence of a

spontaneous symmetry breaking. The study of the systems

non-linear response in the vicinity of such phase allows us

to discover a novel e�ect of bistability allowing to induce

chirality in the system depending on the drive protocol. We

called this e�ect �helical bistability�. The helical bistability

is a very general e�ect that can be observed in a simple set

of two coupled Kerr resonators and is linked to the physics

of a particle with spin one half. These results are supported

both by numerical simulations and experiments. This thesis

illustrates how symmetries and non-linearities enriches the

physics of photonic systems in a driven-dissipative context.



Résumé

Les polaritons d’excitons sont des particules mixtes lumière-matière émergeant du
couplage fort entre photons de cavité et excitations électroniques dans des micro-
cavités semi-conductrices. Ces quasi-particules héritent des propriétés de leurs deux
constituants élémentaires : la composante électronique leur confère une non-linéarité
Kerr géante, tandis que la partie photonique rend le système intrinsèquement dissi-
patif et permet de confiner les polaritons dans des microstructures obtenues en gra-
vant la cavité. Cette thèse présente l’étude des propriétés non-linéaires de réseaux
de microcavités optiques présentant la symétrie chirale.

Les deux premiers chapitres de cette thèse constituent une introduction à la
physique des polaritons de microcavités à semi-conducteur. Le premier chapitre
aborde la physique linéaire et non-linéaire des polaritons dans une cavité planaire
en commençant par la description des deux constituants élémentaires du polariton:
l’exciton de puit quantique et le photon piégé dans une cavité de miroirs multi-
couches. Ce chapitre introduit également les méthodes expérimentales permettant
d’étudier les polaritons en collectant les photons émis par l’échantillon. Le second
chapitre présente la physique des polaritons dans les réseaux de microcavités. Nous
commençons par introduire les différentes méthodes utilisées pour confiner les po-
laritons dans les réseaux puis présentons deux approches considérées pour décrire
et modéliser la physique des polaritons dans ces réseaux. Nous présentons notam-
ment les méthodes numériques utilisées dans le reste du manuscrit pour simuler et
comprendre la physique non-linéaire des réseaux à polaritons.

Le troisième chapitre est dédié à l’exploration des propriétés non-linéaire d’un
réseau SSH, qui est un précurseur à l’étude de réseaux non-linéaires présentant des
propriétés de topologie. Nous détaillons la formation de solitons de gap (bande in-
terdite) dans le gap topologique du réseaux SSH et analysons leur profile de densité
en terme de pseudo-spin de sous-réseau. Nous commençons par créer un soliton
au niveau d’un défaut d’interface topologique et explorons ensuite la réponse du
matériau massif. Nous montrons ainsi que les solitons créés dans le massif présen-
tent des propriétés liées à la symétrie chirale du réseau SSH, qui ont d’importantes
conséquences sur l’interaction d’un soliton avec un défaut. La texture de pseudo-
spin des queues exponentielles du soliton est associée à une robustesse du soliton
face à des défauts localisés sur un sous-réseau.

Enfin, en réalisant une ingénierie du champ d’excitation, nous démontrons l’existence
de nouvelles solutions solitoniques qui n’existent pas dans les systèmes conservatifs.
Nous créons des solitons avec un pseudo-spin total non nul et analysons l’effet d’un
tel soliton sur le réseau. Nous prédisons que cette nouvelle solution se comporte
comme une interface non-triviale pour le spectre des excitations.
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Le quatrième chapitre présente l’étude de l’interaction entre deux solitons générés
dans le gap topologique du réseau SSH. Nous mettons en évidence la présence d’une
brisure de symétrie et explorons la réponse non-linéaire du système au voisinage de
ce régime critique.

En réalisant une ingénierie du protocole d’excitation, nous avons découvert un
nouvel effet de multi-stabilité en phase qui permet d’obtenir une réponse chirale du
système. D’autre part, le système n’explore pas les mêmes solutions non-linéaires
dépendamment du sens de scan de la phase (horaire ou trigonométrique). Nous
appelons ce nouvel effet "bistabilité hélicoïdale" et montrons que l’addition de degrés
de liberté permet d’enrichir la physique observées. Nous comparons nos résultats
expérimentaux à des simulations numériques qui mettent en évidence un possible
lien entre la symétrie chirale du réseau et la bistabilité hélicoïdale.

Enfin, dans le cinquième chapitre, nous explorons numériquement la bistabilité
hélicoïdale en se concentrant sur l’un des systèmes les plus simples présentant la
symétrie chirale: deux résonateurs Kerr couplés. Nous démontrons numériquement
que ce système élémentaire, qui est aussi sujet à une brisure de symétrie, peut faire
apparaitre le phénomène de bistabilité hélicoïdale. En faisant une analogie entre
ce système est un spin demi-entier, nous représentons les trajectoires du système
sur la sphère de Poincaré et détaillons les différents régimes observés. Nous confir-
mons expérimentalement ces résultats en utilisant deux solitons dans le réseau SSH.
Par des méthodes interférométriques, nous sommes capables de réaliser la tomogra-
phie du champ de polaritons et de représenter les trajectoires expérimentales sur la
sphère de Poincaré. Ces résultats constituent la première observation numérique et
expérimentale de la bistabilité hélicoïdale dans sa forme la plus simple.

Les résultats présentés dans ce manuscrit démontrent que l’ingénierie du champ
d’excitation est une ressource particulièrement importante pour stabiliser de nou-
velles solutions non-linéaires qui ont le potentiel de modifier la topologie du système.
Nous démontrons également l’importance de cette méthode pour induire une réponse
chirale dans les systèmes non-linéaires. Dans la dernière partie du manuscrit, nous
proposons différentes perspectives à cette thèse pour l’extension de ces idées aux
réseaux bidimensionnels ou pour la réalisation de pompes topologiques à solitons.
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Introduction

Topology is a field of mathematics which aims at the classification of geometrical ob-
jects based on global properties that are unaffected under continuous deformations.
The quantities that characterize the topology of an object are called topological in-
variants. The mathematical field of topology was recently found to be useful to get
deeper insight into fundamental physical effects. For instance, in the Quantum Hall
Effect [1], the fact that the Hall conductance is a multiple of e2/h can be explained
by the existence of a topological invariant associated to each Landau level [2].

Topological photonics is a research field which aims at the implementation of
topological phases (discovered in condensed matter) with photons [3,4]. The idea is
to endow light states with novel properties which can for example lead to symmetry
protection. It appears very promising in view of developing devices protected from
fabrication defects or unaffected by environmental perturbations. Photonic plat-
forms have allowed pushing the exploration of topological phases of matter beyond
the realm accessible to conservative systems, for example through the engineering of
P-T symmetric phases [5,6]. Nowadays, particular attention is devoted to the explo-
ration of non-linear topological photonics [7]. Reaching regimes where inter-particle
interactions play a significant role is expected, for instance, to trigger topological
phase transitions. Extending the fascinating properties of linear topological phases,
it is also expected to induce symmetry protection and robustness properties for the
many-body system.

A plethora of different platforms can be considered to explore topological phases
of matter in presence of non-linearities: superconducting circuits, cold atoms, trapped
ions, vacancy defects, photonic systems, opto-mechanical and mechanical resonators
or gyromagnetic materials to cite a few. Each system, depending on its nature, has
specificities that makes it useful to address peculiar problems: for example, the
dissipative nature of certain photonic platforms allows to address problems whose
resolution is inaccessible to closed systems. However, since photons show particu-
larly weak inter-particle interactions in vacuum, the emulation of non-linear sets of
equations using photons requires to use hybrid platforms where they are forced to
interact via light-matter interaction.

Micro-cavity exciton polaritons have recently emerged as a powerful platform to
study non-linear photonics. The strong coupling between cavity photons and exci-
tons in a semiconductor quantum well leads to the formation of mixed states of light
and matter. These composite quasi-particles inherit properties from both compo-
nents: for example, the excitonic part is responsible for a significant inter-particle
interaction and the photonic component endow polaritons with a low effective mass
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which allows to observe the discretization of polaritons modes in microscopic struc-
tures. Driven-dissipative platforms such as polariton are particularly suited to ex-
plore regimes where non-Hermiticity, non-linearities and topology are combined. By
playing with gain and loss of the system, the non-Hermiticity enables the explo-
ration of non-linear P-T symmetric phases but, in addition, the engineering of the
drive can be used to stabilize novel non-linear solutions, and to modify the topology
of the underlying excitation spectrum [8].

This thesis work fits in the context of the emerging field of non-linear topological
photonics. The works described in this manuscript contribute to the exploration of
the interplay between symmetries and non-linearities in a driven-dissipative con-
text. In particular, we study the properties of a one-dimensional polariton lattice
emulating the Su-Schrieffer-Heeger model which is a toy model to start exploring
topological phases of matter. We probe the non-linear response of the system and
investigate the physics of gap solitons. Taking advantage of the versatility of our
photonic platform, we show that engineering of the drive enables acting on the
physics of the system to induce novel physical effects.

The present manuscript is organized as follows.
In the first chapter, we introduce the key ingredient at the basis of experiments

with polaritons. We present the two basic constituents of a polariton, the photon
trapped in a cavity and the exciton in a semiconductor quantum well. We discuss
the conditions for strong coupling between them. This strong coupling leads to the
formation of mixed particles of light and matter: exciton-polaritons. We discuss
the linear physics of polaritons in planar samples, we provide information about
sample structures and present the experimental setup and methods employed for
their characterization. We finally introduce the polariton-polariton interaction and
the current state of the art of experiments involving non-linear fluids of polaritons
in planar cavities.

In the second chapter, we describe the physics of polariton lattices. We present
the different methods used to confine polaritons and especially focus on the etching
technique used at C2N to process samples and obtain polariton cavities with a
patterned geometry. We introduce the models we use to describe and numerically
simulate the physics of polariton in tailored structures. We present two approaches
considered to design samples and interpret experimental results: the continuous or
nearly-free model and the tight-binding approach. We finally discuss experimental
realizations involving polariton-polariton interactions in lattices and low dimensional
structures and we introduce the numerical tools we use to simulate and understand
the physics of non-linear polariton fluids.

The third chapter is dedicated to the exploration of non-linear optics in a SSH
lattice, which is a precursor to start the exploration between topology and non-
linearities in a driven-dissipative context. We detail the formation of solitons in
the topological gap of the SSH lattice and analyze there density profile in terms of
sub-lattice pseudo-spin. We first create a soliton at a non-trivial interface of the
SSH model and we then explore the lattice bulk. We show that gap solitons created
far from lattice edges show signatures of the underlying chiral symmetry. Solitons
created in the bulk of the lattice present exponentially decaying tails with opposite
non-zero pseudo-spin, such that the overall soliton spin remains equal to zero. We
then study the interaction of a soliton with a defect. We demonstrate that their
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spin-texture is responsible for robustness of the solitons against defects located on
one sub-lattice. Finally, engineering the drive enables us to access a new family
of gap solitons which has no counterpart in conservative systems. We generate
fully spin-polarized solitons in the bulk of the lattice and analyze their effect on the
underlying excitation spectrum. We predict that they effectively create a non-trivial
interface in the lattice thus inducing a interface state in the gap of the excitation
spectrum.

The fourth chapter is dedicated to the interaction between two gap solitons
with spin-polarized tails. We show that the interaction between gap solitons strongly
depends on the lattice structure. We evidence the presence of a symmetry breaking
and explore the non-linear behavior of the system in the vicinity of this critical
regime. By engineering of the drive protocol, we discover a new kind of phase multi-
stability which allows inducing chirality in the system response. The system does
not explore the same non-linear solutions whether we scan clockwise or anticlockwise
a phase difference in the driving field. We call this effect “Helical bistability" and
show that additional degrees of freedom can be used to enrich its physics. We
compare our experimental results to numerical simulations and evidence a possible
link between the chiral symmetry of the lattice and the helical bistability.

In the fifth chapter, we numerically explore the Helical bistability effect by
concentrating on one of the simplest system presenting the chiral symmetry: two
coupled Kerr resonators. We numerically demonstrate that this elementary system,
also subjected to a symmetry breaking, can exhibit helical bistability. Mapping
the two coupled resonators to a classical spin 1

2 , we represent the system trajectory
on the Bloch sphere and present the different non-linear regimes we observe. We
experimentally confirm our numerical predictions using gap solitons in the SSH
lattice. We show that a system of two interacting solitons can be mapped to two
coupled resonators. Using interferometry, we are able to perform the polariton
field tomography and to represent experimental trajectories on the Bloch sphere.
These results constitute the first numerical and experimental observations of helical
bistability in its simplest form.

Our results demonstrate that drive engineering is a powerful tool to stabilize
novel non linear solutions that can potentially modify the topology of the system.
We also demonstrate that chiral or helical driving protocols can induce a chiral
response of the systems. This novel approach to non-linear topological photonics,
that we name driven topology, is just at its infancy. In the last part of the manuscript
we describe some perspectives extending these ideas to 2D lattices or to topological
pump protocols.
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Chapter 1

Introduction to micro-cavity
exciton-polaritons

In the first chapter we introduce the physics of micro-cavity exciton-polaritons. Po-
laritons are bosonic quasi-particles arising from the strong coupling between photons
confined in a cavity and excitons trapped in a quantum well. These hybrid light-
matter particles inherit physical properties from both photonic and excitonic com-
ponents. Their photonic nature allows confining them at micron scale via tailoring
of the cavity and endows them with a relatively low effective mass. Their excitonic
nature allows polaritons to interact via a Kerr-like term, which is much stronger
than the one conventionally obtained with most non-linear crystals. We start by
separately introducing the two key ingredients of the formation of polaritons, de-
scribing first the exciton (Sect. 1.1). Second, we show how to confine light in a cavity
composed of distributed Bragg reflectors (Sect. 1.2). We then proceed with the de-
scription of light-matter strong coupling between those two elements resulting in the
creation of exciton-polaritons (Sect. 1.3). Section 1.4 is dedicated to the description
of linear physics with 2D cavity polaritons. We will also present the experimental
setup and the methods used to characterize polariton planar micro-cavities. Finally,
the non-linear and collective behaviors of polaritons will be discussed in Sec. 1.5.
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1.1. Quantum well excitons

1.1 Quantum well excitons
Semiconductor materials are crystalline materials whose ground state consists in a
completely occupied valence band and an empty conduction band separated by a
gap. In the general case, the first excited state of a semiconductor is obtained by
promoting an electron from the top of the valence band to the bottom of the con-
duction band. To describe the dynamics of electrons in the system, is it convenient
to describe the valence band lacking a single negative charge as a positively charge
quasi-particle that is called a hole. The electron and the hole are delocalized over the
crystal and the two carrier wavefunctions are usually uncorrelated: the probability
of presence of the electron at a given position is independent of the position of the
hole. This excited state is called an electron-hole pair. Yet, it does not constitute
the lowest possible excited state of the semiconductor: the Coulomb interaction be-
tween the electron and the hole can lead to the formation of a bound state. This
quasi-particle is called an exciton [9].

1.1.1 Excitons in the bulk
To describe the exciton, we consider the system composed of two charged massive
particles, an electron and a hole respectively of effective masses m∗e and m∗h. They
carry opposite charges qe = −e and qh = +e. In the vicinity of k = 0, the conduction
and valence bands of a direct gap semiconductor can be approximated by parabolas.
The conduction band electron is therefore described as a free particle with a positive
effective mass and, the electrons in the valence band having a negative effective mass,
the hole is also described as a free particle of positive effective mass. Their energy
dispersions read:

Ee(k) = Eg + ~2k2

2m∗e

Eh(k) = −~2k2

2m∗h

(1.1)

where Eg represents the amplitude of the energy gap of the material and k is the
norm of wavevector k. Electron and hole wavefunctions are described by Bloch
functions, respectively:

φk
e (r) = eik.rue(r) and φk

h (r) = eik.ruh(r) (1.2)

where ue and uh are periodic functions over the crystalline lattice. This description
is not anymore valid if we consider the electron-hole Coulomb interaction. In this
case the system is governed by the following Hamiltonian:

Heh = Eg + p2
e

2m∗e
+ p2

h

2m∗h
− e2

4πκ||re − rh||
(1.3)

with re and pe (respectively rh and ph) being the position and momentum of the
electron (the hole). κ is the dielectric constant of the medium. The interaction term
couples the electron and hole positions which are therefore not independent. It is
more convenient to described the resulting quasi-particle, called an exciton, in the
center of mass frame.
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CHAPTER 1. Introduction to micro-cavity exciton-polaritons

We consider the coordinates ρρρ = re − rh and R = m∗ere+m∗hrh
M

, which corresponds
to the relative and center of mass position of the coupled system, as well as the
reduced and total masses µ = m∗em

∗
h

M
and M = m∗e + m∗h. The associated momenta

read p = −i~∇ρρρ and P = −i~∇R. Under this formalism, the Hamiltonian is
separable:

HX = HCM +HRel

HCM = Eg + P 2

2M∗ and HRel = p2

2µ −
e2

κρ

(1.4)

highlighting the internal and external dynamics of the exciton which are respectively
described byHRel andHCM. As these two Hamiltonians commute, the corresponding
dynamics are independent and one can search for eigenstate that are product of
solution of HRel and HCM. HRel is an hydrogenoid Hamiltonian, its eigenstates are
the well-known orbitals of an hydrogenoid atom (labeled φn with n={1s, 2s, 2px, ...}
the principal quantum number) whereas HCM describes the motion of a free particle
and its solution is given by plane waves. The general expression of the solutions of
HX reads:

ΨX
K,n (R, ρρρ) = eiK.Rφn(ρρρ) (1.5)

and the energy dispersion for a bulk exciton with principal quantum number n
yields:

EX,n (K) = Eg + ~2K2

2M − R∗

n2 (1.6)

where R∗ = ~2/2µa2
B is the Rydberg energy of the exciton, which corresponds to

its binding energy. aB is the Bohr-radius of the exciton which is given by aB =
4πκ~2/µe2.

1.1.2 Excitons in quantum wells
We now consider a semiconductor quantum well, a hetero-structure consisting in
a quasi-2D semiconductor layer of size Lx x Ly x Lz with Lz ∼ aB, embedded
between layers of semiconductor materials possessing a higher energy gap. These
surrounding layers therefore act as a potential barrier. In this hetero-structure,
illustrated in Fig. 1.1, the excitons are confined along the z spatial direction and are
free to propagate in the (Oxy) plane. The potential barriers induce a modification
of the Hamiltonian given in equation 1.3 which consists in additional terms acting
on ze and zh, the electron and hole position along the z direction. It yields:

Heh = Eg + p2
e

2m∗e
+ p2

h

2m∗h
− e2

κ||re − rh||
+ Ve(ze) + Vh(zh) (1.7)

where Ve (Vh) is the amplitude of the potential barriers acting on the electron (the
hole).

This Hamiltonian cannot be separated in center of mass and relative motion, it
is only possible when the in plane motion can be decoupled from the motion along
the z direction i.e. when the Coulomb interaction depends only on the in plane
position. This is valid when the electron and hole wavefunctions are confined in a
quantum well whose thickness is on the order of the Bohr radius aB [9]. In that case
the wavefunction of the exciton can be searched in the form:

ΨX
K,n (R, ρρρ, z) = eiK.Rχh(z)χe(z)φn(ρρρ) (1.8)
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1.1. Quantum well excitons

QWBarrier Barrier
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χh(z)
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Figure 1.1: Scheme of the quantum well embedded between two higher energy gap
semiconductors. Electron and hole envelope wavefunctions χe and χh are depicted,
as well as potential barriers represented by black solid lines.

where K,R and ρρρ now represent the wave vector and position of the center of mass
and relative position of the electron hole pair in the (Oxy) plane. φn is a the solution
of the 2D hydrogenoid equation. χe (z) (χh (z)) is the ground-state solution of the
1D Schrödinger equation for an electron (a hole) in a potential Ve(z) (Vh(z)) with
an associated energy noted ∆Ee (∆Eh). The energy dispersion of the exciton reads:

EX,n (K) = Eg + ∆Ee + ∆Eh + ~2K2

2M − R∗

(n− 1
2)2 (1.9)

In addition to an increase of the energy due to the electron and hole confinement,
the main evolution with respect to the bulk dispersion is the modification of the
binding energy which now depends on n − 1

2 due to the reduced dimensionality
of the exciton. In a purely 2D case, the binding energy of the n = 1s exciton is
therefore four times bigger than its bulk binding energy. A theoretical prediction of
the dependence of the binding energy as a function of the size of the quantum well
can be found in Ref. [10].

In the works reported in this manuscript, we will consider shallow InxGa1−xAs
quantum wells in which the electron and hole wavefunctions spread outside of the
quantum well. The binding energy of the exciton is thus close to the bulk one: it is
on the order of a few milli-electronvolts (R∗eff ∼ 5 meV). These excitons can therefore
only be observed at cryogenic temperature (in the limit R∗ � kBT ).

1.1.3 Exciton radiative recombination
Let us now describe the coupling between an exciton and the electromagnetic field:
the absorption of a photon can lead to the formation of a bound electron-hole pair
and this pair can radiatively recombine. To describe the radiative recombination of
the exciton, we consider the interaction of the electron with the electromagnetic field.
In the dipolar approximation and under the Coulomb gauge, it is approximated to:

Hint ≈ −
e

m∗e
p.A (1.10)
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CHAPTER 1. Introduction to micro-cavity exciton-polaritons

where A is the vector potential associated to the electromagnetic field and p is the
momentum of an electron of charge −e and mass m∗e.

The exciton can couple to a continuum of photon states, the probability to
absorb a photon to form an exciton is thus given by the Fermi golden rule and is
proportional to the matrix element 〈K|p.A|0〉 where |0〉 is the ground state of the
quantum well and |K〉 is the excitonic state of wave vector K. Radiative excitonic
transitions are characterized by an oscillator strength fosc associated to the exciton
radiative lifetime Γ0:

fosc = 2
m∗e∆E

|〈K|p.A|0〉|2 and Γ0 = e2

2εlm∗ec
fosc
S

(1.11)

with ∆E the energy associated to the transition and εl is the dielectric constant.
fosc/S is the oscillator strength per unit surface [11]:

fosc
S

= 2
m∗e∆E

|φ(0)|2|〈ue|ε.p|uh〉|2
∣∣∣∣∣
∫
χh(z)χ∗e(z)dz

∣∣∣∣∣
2

(1.12)

with φ(0) the Fourier transform of the envelope function of the exciton, 〈ue|ε.p|uh〉
is an element of the Kane matrix characteristic of the material where ε represents
the polarization of the electromagnetic field and

∣∣∣ ∫ χh(z)χ∗e(z)dz
∣∣∣2 is the overlap

integral between the electron and hole envelope functions along z.
The matrix element 〈K|p.A|0〉 is non-zero in specific cases, corresponding to

several selection rules to be satisfied for an allowed optical transition. Firstly, the
transition must satisfy the angular momentum conservation. As a consequence,
only excitons with angular momentum Jz,X = ±1 or Jz,X = 0 can couple to the
electromagnetic field. The excitonic angular momentum is given by the sum of
electron and hole angular momenta, in the conduction band the electron angular
momentum projection along z is Jz,e = ±1

2 while the case of a hole in the valence
band is a bit more subtle: there exist two types of holes called heavy-holes (hh) and
light-hole (lh) in reference to their respective masses (mhh > mlh). They possess
angular momentum projections Jz,hh = ±3

2 and Jz,lh = ±1
2 . Light-holes are less

confined in the structure due to their lower effective mass and in the following we will
consider the heavy-hole excitons only. There exists two types of heavy-hole excitons,
those with total angular momentum projection Jz,X = ±1 which can couple to light
and those with Jz,X = ±2 that do not radiate and are thus called dark excitons.

Secondly, due to the translation invariance along x and y, the projection of
the wave vector in the (Oxy) plane must be conserved: k� = K, where k is the
electromagnetic field wavevector. Note that no conservation rule applies to kz as the
translation invariance of the semiconductor material is broken, which is not the case
when considering bulk excitons. Neglecting the radiative linewidth and equating the
energy of a photon propagating inside the quantum well (Eph = ~ck/n, defining the
so-called light-cone) to the one of the exciton with the same in-plane momentum
sets an upper bound to K that we label krad. krad is given by the following relation:

~ckrad
ns

= EX(K = ~0) + ~2k2
rad

2M (1.13)

Exciton states with in-plane momentum K > krad are therefore non-radiative. This
model accounts for the spontaneous emission of the QW which is coupled to a
continuum and radiates in all directions.
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Figure 1.2: a, Schematic representation of a Fabry-Pérot cavity. b Transmission
spectrum of the Fabry-Pérot cavity as a function of frequency for R1 = R2 = 0.9
(solid blue line) and for R1 = R2 = 0.4 (dashed orange line).

1.2 The optical cavity
To reach the strong coupling regime between the exciton and the electromagnetic
field, is it necessary to strongly confine the latter in a cavity where the quantum
well will also be embedded. In this way, we quantize the accessible photon momenta
along z and break the continuum of photon states. The strong coupling is reached
when the exciton state can couple to a single photon state. At C2N we use cavities
with a high quality factor. We need an optical cavity composed of mirrors with a
high reflectivity, to limit the radiative linewidth associated to photons escaping the
cavity. Interferential mirrors made of semiconductor materials are particularly suited
in this regard as distributed Bragg reflectors (DBR) allow reaching high reflectivity
(RDBR > 99%). They also have the advantage to be grown by the same technique
used to grow our quantum wells: molecular beam epitaxy. The main characteristics
of these semiconductor micro-cavities can be understood via those of a Fabry-Pérot
cavity that we will first introduce. We will then discuss semiconductor mirrors and
present the properties of a cavity formed by two of these mirrors.

1.2.1 The Fabry-Pérot cavity
The simplest Fabry-Pérot cavity is composed of two parallel planar mirrors separated
by a media of index ncav, the length of the cavity is noted Lcav while the field
reflection and transmission coefficients of the mirrors are respectively labeled ri
and ti with i={1, 2} referring to the two mirrors forming the cavity (Ri and Ti are
intensity coefficients). A scheme of such a cavity is presented in Fig. 1.2.

Let us consider a plane wave with complex amplitude Ei and wavelength λ0 in
vacuum, incident on the Fabry-Pérot cavity. This plane wave initially propagates
in a homogeneous medium of refractive index next with an incidence angle θext with
respect to z, the normal to the Fabry-Pérot cavity. The field is partially transmitted
through the first mirror (M1) and oscillates back and forth between M1 and M2
with an incidence angle θc given by Snell-Descartes law: next sin(θext) = ncav sin(θc).
The total intensity reflection (R(λ)) and transmission (T (λ)) of such a cavity results
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from an interference process involving the multiple reflections of the incident field
between the two mirrors. The total transmitted field reads:

Et = Eit1t2e
iφc/2

∞∑
`=0

(r1r2e
iφc)` = Eit1t2e

iφc/2

1− r1r2eiφc
with φc = 2π2Lcav cos(θc)ncav

λ0
(1.14)

where φc is the phase accumulated per round-trip in the cavity.
Neglecting absorption, the intensity transmission and reflection coefficients are

given by:

Tc(λ0) =
∣∣∣∣∣EtEi

∣∣∣∣∣
2

= (t1t2)2

1 + (r1r2)2 − 2r1r2 cos(φc)
and Rc = 1− Tc (1.15)

Transmission maxima are obtained when the multiply reflected fields interfere con-
structively: in this case the phase accumulated over a round-trip in the cavity is
a multiple of 2π. In spectral regions where the cavity components can be approx-
imated as non-dispersive (∂ncav

∂λ0
≈ 0, ∂ri

∂λ0
≈ 0, ...) one can observe equally spaced

resonances in the reflection and transmission energy spectra: the field is confined in
the z direction and discrete modes appear inside the cavity. The frequency differ-
ence between each of these resonances defines the free spectral range (FSR) of the
cavity which is the inverse of the time per round-trip τRT . It yields:

∆νFSR = 1
τRT

= c

2ncavLcav
(1.16)

Resonant frequencies can thus be written as νq = q∆νFSR, q ∈ N. We can thus
write the energy dispersion of a photon in the cavity. Writing k its wave vector
whose norm is given by k =

√
k2
z + k2

� with kz = 2πcncavνq = qπ
Lcav

, it yields:

EC,q (k) = ~c
ncav

√√√√( qπ

Lcav

)2

+ k2
�

kz�k�
≈ EC,q (0) +

~2k2
�

2mph
(1.17)

where EC,q (0) = q~πc/ncavLcav and mph is the effective mass of the photon in the
cavity, with

mph = q
~πncav
cLcav

(1.18)

In absence of loss, we obtain Lorentzian resonances with full width at half max-
imum (FWHM) given by [12]:

∆νq = 2
π

∆νFSR sin−1

1−
√
R1R2

2 4
√
R1R2

 {R1,R2}∼1
≈ ∆νFSR

π

1−
√
R1R2

4
√
R1R2

(1.19)

The ratio between the FSR and FWHM is called the finesse F of the cavity,
which represents the average number of round-trips traveled by a photon before it
escapes the cavity:

F = ∆νFSR
∆νq

≈ π
4
√
R1R2

1−
√
R1R2

(1.20)
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Figure 1.3: a, Scheme of the Bragg mirror structure. b Reflectivity spectrum
of the DBR as a function of wavelength for various number of layer pairs with
λBragg = 850 nm, n1 = 2.9 and n2 = 3.5.

1.2.2 The distributed Bragg reflector
Multi-layer mirrors constitute an solution to obtain high reflectivities: if one designs
a set of L layers such that the field reflected on layer ` + 1 destructively interferes
with the field transmitted from layer `− 1 to layer `, one can obtained a multi-layer
mirror whose reflectivity is RML = 1− ε with limL→∞ ε = 0.

A distributed Bragg reflector (DBR) is a periodic multi-layered structure (see
Fig.1.3)composed of two different media of refractive indices n1 and n2. The thick-
ness of each layer is defined such that the optical paths are equal: n1L1 = n2L2 =
λBragg/4 with λBragg the central wavelength at which we desire a high reflectivity.
In this condition, interferences are destructive for multi-reflected waves while they
are constructive for transmitted ones. Under normal incidence the DBR reflectivity
at λBragg can be obtained via transfer matrix computation [13] which consists in
a matrix representation of Fresnel law of refraction. The propagating and contra-
propagating electric fields after the interface between layers ` and ` + 1 are related
to those after the interface between layers `− 1 and ` via the matrix M`:

M` (λ) =
[

exp(i2πL`/λ) r`,`+1 exp(i2πL`/λ)
r`,`+1 exp(−i2πL`/λ) exp(−i2πL`/λ)

]
with r`,`+1 = n` − n`+1

n` + n`+1
(1.21)

The matrices associated to each layer can then be composed to relate the field at the
surface of the mirror to the one at its ouput and the obtain the mirror reflectivity:
Mmirror = ...M`+1,`+2M`,`+1...M1,2Mext,1.

Applying this method to the case of a DBR yields:

RDBR (λBragg) =

1− nsub
next

(
n1
n2

)2Lpairs

1 + nsub
next

(
n1
n2

)2Lpairs


2
Lpairs�1
≈ 1− 4 nsub

next

(
n1

n2

)2Lpairs

(1.22)

where nsub is the refractive index of the substrate on which the mirror is placed and
n1 < n2. The reflectivity bandwidth of the DBR, also called the stop-band, is given
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Figure 1.4: a, Reflectivity spectrum of a cavity composed of two DBRs. DBR
parameters correspond to those used in fig. 1.3, Lcav is adjusted for the first cavity
resonance to match λBragg. b, Zoom of (a) around the cavity resonance.

by:
∆νBragg
νBragg

= 4
π

sin−1
(
n2 − n1

n2 + n1

)
n2∼n1≈ 4

π

(
n2 − n1

n2 + n1

)
(1.23)

Increasing the number of pairs thus increases the reflectivity of the mirror but leaves
its stop-band unchanged (see Fig.1.3).

1.2.3 The Bragg mirror cavity
To form a Fabry-Pérot cavity with two DBRs we need to approximate each DBR to
a thin layer. To do so we consider the characteristic penetration depth of the field
in the mirror LBragg and compute the associated dephasing, φr, undergone by the
field at each reflection on the mirror:

φBragg (ν) = 2πnext
c

LBragg (ν − νBragg) with LBragg = c

2νBragg
n1

next (n2 − n1)
(1.24)

Note that LBragg is defined as the photon path length inside the mirror, the field thus
only penetrate up to LBragg/2.

We now consider a Fabry-Pérot cavity formed of two DBRs, the cavity length is
selected such that the cavity resonance is matched to the mirror central wavelength
Lcav,q = qλBragg/2ncav. The photon energy dispersion in the cavity yields:

EC,q (k�) =

√√√√EC,q (k� = 0)2 +
(
~c
neff

k�

)2

with n2
eff =

∫
ϕ(z)∗εl(z)ϕ(z)dz

(1.25)
neff being the effective index of the cavity [14], εl the dielectric constant that now
varies over the structure and ϕ is a longitudinal mode of the cavity, normalized such
that

∫
|ϕ|2dz = 1.

In the vicinity of λ = λBragg, the cavity transmission coefficient can be approx-
imated by a modified version of equation 1.15 where φc as to be replaced by a
dephasing φt taking the mirror dephasing into account: φt = φc + 2φBragg. In other
words, it means that the cavity length is modified due to the field penetration inside
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1.3. Exciton-photon hybrid quasi-particles

de mirrors resulting in an effective cavity length Leff = Lcav,q + LBragg. Figure 1.4
shows the reflection spectrum obtained for such a cavity calculated using transfer
matrices. One can observe a reflectivity dip centered on λBragg = λq=2. A zoom
around the cavity resonance is presented in Fig. 1.4 (b), showing how the number
of pairs affects the spectral linewidth: the more we add pairs, the smaller is the
mode linewidth. Note that, as the FSR is bigger than the mirror stop-band, a single
cavity resonance is observed over the cavity stop-band1.

1.3 Exciton-photon hybrid quasi-particles
Now that we introduced the two building blocks of polariton micro-cavities, we can
turn to the description of the strong coupling regime between quantum well excitons
and cavity photons obtained by embedding the quantum well inside a high finesse
cavity. This strong light-matter coupling leads to the emergence of hybrid eigen-
states that are mixed states of photons and excitons called polaritons. Polaritons
will be shown to inherit physical properties from both components, which makes
the polaritonic platform particularly appealing for the exploration of a plethora of
physical effects: polaritons exhibiting a low mass compared to the one of the elec-
tron, they are able to propagate on long distances while their excitonic nature is
responsible for a strong polariton-polariton interaction enabling the observation of
highly non-linear phenomena such as superfluidity.

1.3.1 Light-matter strong coupling
Let us now consider the case where the quantum well is inserted inside a photonic
cavity. Upon recombination of the exciton, a photon is emitted inside the cavity. If
the cavity resonance is matched to the photon energy, this photon will remain inside
the cavity for a time equal to Q/2π optical periods, with Q the quality factor of the
considered mode. The photon can thus be reabsorbed inside the QW to re-excite the
exciton. Considering a high finesse cavity, this absorption-remission process occurs
multiple times before the photon escapes the cavity. This coherent transfer of an
excitation between two coupled harmonic oscillators is called Rabi oscillation and
leads to the redefinition of the system’s eigenstates due to the Rabi splitting. In this
strong coupling regime, the excitation can neither be considered as a cavity photon
nor as a quantum well exciton, it is a superposition called a polariton and which
has an energy dispersion differing from the bare exciton and cavity ones.

As a first approach to describe the transition between weak and strong light-
matter coupling, one can use a semi-classical representation of the excitonic and
photonic transitions as two coupled Lorentz oscillators [11, 16] with same bare en-
ergies EX = EC = E0 and different damping rates γX and γph. γX represents
the non-radiative decay channels of the excitonic states and γph = h∆νq the cavity

1Note concerning the polarization of light: the model presented above is scalar and does
not consider the vectorial nature of light. Yet multi-layered mirrors reflections are often subject to
birefringence and the cavity characteristics may therefore depend on polarization. In the case of a
centered cavity (λBragg = λq) these effects are negligible [15]
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Figure 1.5: Evolution of the Hopfield coefficient amplitudes as a function of the
cavity-exciton detuning δ(k) normalized to the Rabi splitting ΩR.

losses. The coherent coupling between the two oscillators reads:

g0 =
√

2cΓ0

ncavLeff
∝
√
fosc
Leff

(1.26)

where Γ0 is the bare exciton radiative decay rate. To maximize the coupling ampli-
tude, one has to maximize the overlap between the photon and exciton wavefunc-
tions: the quantum well is thus centered on a maximum of the intra-cavity electric
field distribution. Note that the coupling can be further increased by inserting more
than a single quantum well inside the cavity (g0 scalling as

√
N with N the number

of QWs). On the other hand, one has to minimize the electric-field mode volume,
Lcav,q is thus chosen to be the smallest value verifying the resonance condition with a
maximum of the field in the cavity center (q = 2). The eigenenergies of the coupled
system read:

E± = E0 ± ΩR/2 = E0 ±
√
g2

0 −
(γX − γph)2

4 (1.27)

for g0 < |γX − γph|/4, ΩR is purely imaginary and the real part of the eigenenergies
stay degenerate while the decay rates of each modes are modified. It corresponds
to the weak coupling regime where a excitation in the system is rapidly dissipated
and no coherence is built between the exciton and the cavity field. On the contrary,
in the case g0 > |γX − γph|/4, ΩR is real and thus the real part of the eigenenergies
are splitted. In the experimental results discussed in this manuscript, the energy
splitting is bigger than both exciton and photon linewidth (g0 > {γX , γph}) and the
Rabi splitting is approximated to ΩR ≈ 2g0.

In solid state systems the first theoretical discussion of the strong coupling regime
was realized by John Joseph Hopfield in 1958 [17]. Its first observation in 2D semi-
conductor micro-cavities with embedded QW was done by the group of Claude
Weisbuch and Yasuhiko Arakawa in 1992 [18].

1.3.2 Quantum description of polaritons
The description of polaritons can be done under the second quantization formalism
where creation and annihilation operators for photons and excitons are respectively
written a†k, ak and b†k, bk with k the in-plane wave-vector of the considered particle.
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1.3. Exciton-photon hybrid quasi-particles

Those operators obey bosonic commutation relations: [ak, a
†
k’] = δk,k’ and [bk, b

†
k’] =

δk,k’. The Hamiltonian describing the coupled system reads:

H =
∑

k
Hk =

∑
k
EC(k)a†kak + EX(k)b†kbk + ΩR

2 (a†kbk + b†kak) (1.28)

This system can be diagonalized by introducing the polaritonic operators p†k, q
†
k

obtained from photonic and excitonic operators via the Hopfield coefficients Ck and
Xk through the unitary transformation:[

p†k
q†k

]
=
[
Ck Xk

−Xk Ck

] [
a†k
b†k

]
(1.29)

Ck and Xk are real and positive that verify |Ck|2 + |Xk|2 = 1 and their respective
amplitudes are given by:

|Ck|2 = 1
2

1− δ(k)√
δ(k)2 + Ω2

R


|Xk|2 = 1

2

1 + δ(k)√
δ(k)2 + Ω2

R

 (1.30)

where δ(k) = EC(k) − EX(k) is the detuning between the photon and the exciton.
|Ck|2 and |Xk|2 respectively correspond to the photonic and excitonic (respectively
excitonic and photonic) fractions of the eigenstate associated to pk and p†k (respec-
tively qk and q†k). The evolution of the Hopfield coefficients as a function of the
detuning is presented in Fig. 1.5. For δ(k)/ΩR � 0 the eigenstate associated to
pk, p

†
k (qk, q

†
k) can be considered as purely photonic (excitonic) whereas it can be

considered as purely excitonic (photonic) in the limit δ(k)/ΩR � 0. In the regime
where δ(k) ∼ ΩR the eigenstates are mixed states of photons and excitons, the
excitonic and photonic fractions being equal for δ(k) = 0.

In the new basis described by p†k, q
†
k, the Hamiltonian writes:

H =
∑

k
ELP (k)p†kpk + EUP (k)q†kqk (1.31)

where ELP and EUP are the dispersion relations for the lower and upper polariton
branches, respectively, which read:

EUP
LP

(k) = 1
2

(
EC(k) + EX(k)±

√
δ(k)2 + Ω2

R

)
(1.32)

the terminology “upper" and “lower" referring to the energy hierarchy between the
two branches (EUP (k) > ELP (k)).

In practice the exciton effective mass is much bigger than the photon one and
can be assumed as infinite (EX(k) = EX). A calculation of the polariton dispersion
under this assumption for different values of δ(k = 0) is presented in Fig. 1.6,
together with the corresponding photonic and excitonic fractions given by |Ck|2 and
|Xk|2 for the lower polariton branch. An avoided crossing is observed in the vicinity
of δ(k) = 0, associated with a minimum of the energy splitting between the two
branches corresponding to ∆EUP-LP = ΩR. This avoided crossing is characteristic
of the strong coupling regime.
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Figure 1.6: Left panels: Simulated dispersions for upper and lower polariton
branches (solid lines) as well as for the cavity photon and quantum well exciton
(dashed lines). Right panels: Amplitudes of the Hopfield coefficients associated to
left. The three sets of figures correspond to different values of the cavity-exciton
detuning:

(a)-(b) δ(0) = + ΩR, (c)-(d) δ(0) = 0 and (e)-(f) δ(0) = - ΩR
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1.3. Exciton-photon hybrid quasi-particles

1.3.3 Polaritons characteristics
Polaritons being a weighted superposition of photons and excitons, they inherit
characteristics from these two constituents. In the following paragraphs, we discuss
the single particle polariton properties. We address the non-linear properties, in-
duced by polariton-polariton interaction mediated via the excitonic part, later on
in Sec. 1.5.

Firstly, quantum well excitons and cavity photons were both previously described
as massive free particles, their dispersion being thus approximately parabolic. To
some extent this approximation can also be done for polaritons: in the vicinity of
k = 0, the polariton dispersions can be approximated by parabolic branches with
effective masses:

1
m∗LP

= |Xk|2

M
+ |Ck|

2

m∗ph

M�m∗ph≈ |Ck|2

m∗ph

1
m∗UP

= |Ck|
2

M
+ |Xk|2

m∗ph

M�m∗ph≈ |Xk|2

m∗ph

(1.33)

In all cases discussed in this manuscript, we focus on the lower polariton branch
with negative cavity-exciton detuning. The considered polaritons thus present an
effective mass relatively close to the one of cavity photons m∗LP ∼ 10−5me, me being
the electron mass. These polaritons can thus propagate on long distances typically
of the order D ∼ 200 µm [19].

Secondly, even though the Rabi splitting can be approximated to ΩR ≈ 2g0
by neglecting contributions from exciton and photon linewidths, polaritonic states
remains inherently dissipative. To account for their finite lifetime we can consider
complex energies for the photon and the exciton E∗X(k) = EX(k)−iγX and E∗ph(k) =
Eph (k) − iγph, the polariton eigenenergies thus become complex. Their real parts
correspond to the previously calculated energy dispersions, ELP and EUP, while their
imaginary parts correspond to the polariton linewidth, γLP and γUP. It yields:

γUP = |Ck|2γX + |Xk|2γph
γLP = |Xk|2γX + |Ck|2γph

(1.34)

Note that the k dependence of γph is a priori non-trivial as it accounts for cavity
losses due to its finite finesse F but also to the residual absorption of light in the cav-
ity. Same goes for γX which accounts for all possible non-radiative decay channels
of the exciton (phonon and trap mediated recombination, Auger process,...). In our
samples, an important contribution to the exciton linewidth comes from the inho-
mogeneous broadening which is known to also impact the polariton linewidth [20].
Photo-luminescence measurements of 17nm In0.04Ga0.96As QWs lead to measured
values γX ∼ 0.4-0.7 meV which is much larger than the expected exciton radiative
lifetime γX,rad ≈ 0.04 meV.

Finally, we previously established that a radiative recombination event is only
accessible to excitons with angular momentum projection Jz = ±1, resulting into the
emission of a circularly polarized photon. As a consequence, the angular momentum
projection of polaritons is also bound to Jz = ±1 and, in absence of any mechanism
coupling these two pseudo-spin states, the associated dispersions are degenerate.
The polaritons behave as particles with 1/2 pseudo-spin which can be represented
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Figure 1.7: Schematic representation of the sample structure with nominal values
considered for its growth.

on the Poincaré sphere and the measure of this pseudo-spin can be done by realizing
the polarization tomography of photons escaping the cavity.

1.4 Experimental observation
This section is dedicated to the description of samples and experimental methods
employed to study them. We first focus on the general description of the micro-
cavity structure considered in experiments reported in this thesis and introduce the
experimental setup used to characterize it.

1.4.1 Sample structure
In this manuscript we mostly focused on a single type of sample dedicated to study
non-linear phenomena. As it will be detailed later in Sec. 1.5, these experiments
are done considering a quasi-resonant excitation and it is therefore convenient to
operate measurements in a transmission geometry. Indeed, by collecting the light
propagating through the cavity, we avoid being blinded by the intense field that is
reflected by the top of the first cavity mirror. To operate in transmission, the energy
of the polaritons thus needs to be lower than the gap of the sample substrate which
consist in 300 µm of GaAs. The quantum well is thus doped with indium (In)2

The samples considered in this thesis were grown by Aristide Lemaître and
Martina Morassi in the clean-room facilities of C2N. It consists in a single 15 nm
In0.05Ga0.95As quantum well, corresponding to an exciton transition atEX = 1.455 eV
(λX = 852 nm) with a linewidth of typically 0.5 meV, embedded in a λ GaAs
cavity. We use two DBRs with 28 (top mirror) and 32 (bottom mirror) pairs of

2This doping results in alloy fluctuations which induce an inhomogeneous broadening of the
exciton. In practice a compromise as to be found between the residual absorption in the cavity
mirrors and inhomogeneous broadening of the exciton.
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Ga0.9Al0.1As/Ga0.05Al0.95As yielding a nominal finesse of about F = 1400003. By
design, the quantum well position coincides with the maximum of the cavity mode
electric field (itself in the center of the cavity for Lcav = λ0/nGaAs). A sketch of the
structure is presented in Fig. 1.7.

To increase the range of parameters accessible on a single sample, a wedge in the
spacer thickness is introduced during the growth procedure. It results in a spatial
gradient of the cavity mode energy in the (Oxy) plane. Probing different regions of
such 2D structure thus allows varying the cavity-exciton detuning δ(k=0).

1.4.2 Experimental setup
The samples are cooled down to cryogenic temperatures using closed-cycle cryosta-
tions. Non-linear experiments and associated linear characterizations were realized
with a sample cooled down and stabilized to 4 K.

Note that some spectroscopy measurements only involving the linear behavior of
polaritons were done in a continuous-flow cryostation. In such equipment liquid
helium is continuously injected and its flow is manually controlled to set the cold
finger temperature to about 7-10 K.

All characterizations and experiments reported in this work were done optically,
under a continuous wave excitation produced by a monomode Ti:Sapphire laser.
Its wavelength can be tuned over a range covering the 750-880 nm spectrum and its
linewidth is below 10 MHz (40 neV). To filter the spatial mode of the laser, its output
beam is coupled into a polarization maintaining fiber. The fiber output produces a
spatially gaussian beam with 2 mm waist.

The excitation path contains a power control stage followed by a polarization
filtering stage. A coarse modification of the optical power is done using neutral
density filters (ND) and a finer control is realized using a half-wave plate (HWP)
followed by a polarizing beam-splitter (PBS). The latter allows to realize continuous
scans of the power by rotating the HWP. Measurements of the optical power are
realized using a beam-splitter placed just before the cryostation. The polarization
state, which is already filtered by the PBS, can be tuned to any point of the Poincaré
sphere using a quarter-wave plate (QWP) followed by a HWP. Depending on the
accessibility to the sample, given by the considered cryostation, the light is focused
on the cavity surface either using a microscope objective with magnification 50x
and long working distance (∼ cm), mounted outside the cryostation, or using an
aspherical lens with short focal length (f ′ = 4.51 mm) that is placed inside the
cryostation and moved using nanopositioners. In both cases the numerical aperture
is NA = 0.55.

Photons transmitted through the cavity are collected using a microscope ob-
jective or an aspherical lens, and focused on the entrance split of a spectrometer.
The entrance plane of the spectrometer is imaged onto a CCD camera with a 1x
magnification. Depending on the measurement, we either collect the zeroth or first

3Higher finesses could theoretically be reached by increasing the number of pairs (F ∼ 2× 106

for Lpairs ∼ 40). However experimental observations show that the residual absorption in the
cavity is already limiting the linewidth to F ∼ 65000 for Lpairs ∼ 30 and a higher reflectivity of
the mirrors would thus simply lead to a weaker output signal.
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Figure 1.8: a, Schematic representation of the experimental setup. The two pos-
sible configurations for the imaging system are presented in the two bottom panels,
green solid lines display the optical paths. b, Real-space imaging configuration: the
front focal plane (sample plane) of the collection optic is imaged on the camera.
c, Fourier-space imaging configuration: the back focal plane of the collection op-
tic (Fourier plane) is imaged on the camera, the sample output angle θout is thus
mapped to a position on the camera.
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Figure 1.9: Spectrally resolved photoluminescence intensity as a function of the
in-plane momentum k� measured under non-resonant excitation, on two different
regions of the same planar cavity sample. Dashed lines plotted on the left of each
panel correspond to fits of the different dispersions.

diffraction order of the spectrometer, removing the selection slit in the first case.
We thus obtain an image which respectively corresponds to the 2D profile of the
intensity distribution in the entrance plane of the spectrometer, or to the 1D spatial
profile filtered by the entrance slit which is spectrally resolved along the orthogo-
nal direction. We can realize various optical pre-processing of the light transmitted
through the cavity including polarization selection using a QWP followed by a HWP
and a PBS, but also spatial or angular filtering using slits or apertures in the focal
plane of telescopes.

Moreover, as illustrated in Fig. 1.8, we can either chose to image the front focal
plane of the collection lens, thus obtaining an intensity distribution in the entrance
plane of the spectrometer corresponding to the spatial distribution of polariton
in the structure, or the back focal plane (or Fourier plane) of the collection lens
to get an intensity profile corresponding to the angular distribution of the cavity
transmission. In the latter case, the momentum conservation gives a one to one
mapping of the polariton momentum to the collection angle of the photon resulting
from the polariton deexcitation. Imaging the Fourier plane of the collection lens
allows directly accessing the momentum dispersion of polaritons inside the cavity
(Fourier space or momentum-space imaging).

1.4.3 Characterization of a planar sample
To characterize a planar micro-cavity sample, we use probe the photo-luminescence
(PL) of the cavity under non-resonant excitation. To do so, we tune the laser energy
to one of the transmission dips above the cavity stop-band (typically λ ≈ 780 nm).
This non-resonant excitation generates electron-hole pairs that relax toward the 1s
exciton energy and the polariton branches via emission of phonons. Note that only
a fraction of the electron-hole pairs generated at high energy lead to the formation
of a radiative state that enters the strong coupling. Most of these pairs lead to the
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formation of a reservoir of long-lived excitons that can interact with polaritons (see
Sec. 1.5). To avoid any excitation-induced modification of the polariton dynamics,
measurements are realized considering a weak optical pump: P ∼ 0.5 µW are
typically focused on a S = 10 µm2 surface and the signal received on the camera is
integrated over Tint ∼ 30 s.

The photons escaping the cavity are collected using the experimental setup in-
troduced in the previous section. Due to the translation invariance of the cavity, the
in-plane momentum of polaritons k� is conserved and can be related to the angle
with which photons are collected outside the cavity via: |k�| = E sin(θout)/~c where
E is the energy of the photon. Using the spectrometer combined with the Fourier-
space imaging scheme, we obtain images corresponding to the angularly and spec-
trally resolved emission of polaritons [21]. Examples of such images are presented
in Fig. 1.9 where we observe the two polariton branches. For each vertical array of
pixel, associated to an average value of |k�|, one can observe two intensity peaks cor-
responding to the upper and lower polariton branches at energies corresponding to
EUP (k) and ELP (k). Tracking the position of the two peaks as a function of k, one
can extract the experimental values of the main parameters characterizing the dis-
persions: ΩR, δ0 = EC(k� = 0)−EX and m∗ph. From equations 1.3.2 and in presence
of an anti-crossing, the minimum of EUP (k0)−ELP (k0) =

√
δ(k0)2 + Ω2

R is obtained
for k0 = kmin such that δ(kmin) = 0. We thus obtain ΩR = EUP (kmin)−ELP (kmin).
Moreover, considering δ(kmin) = 0 =⇒ EC(kmin) = EX we deduce the value of the
exciton energy EX = EUP (kmin)+ELP (kmin). The two remaining parameters are ob-
tained via a parabolic fit: EC(k0) = EUP (k0)+ELP (k0)−EX = EC(0)+~2k2

0/2m∗ph.
Dashed lines corresponding to fits of the cavity, exciton and polaritons dispersions
in Fig. 1.9 where obtained using such a procedure, yielding ΩR = 3.3 meV, EX =
1.455 eV, m∗ph = 3.5 x 10−5me and δ0 = −0.6 meV for panel (a) and δ0 = −8.0 meV
for panel (b).

Both spectra of Fig. 1.9 where obtained on two regions of the same piece of
sample: due to the cavity wedge we are able to access different values of the cavity-
exciton detuning and thus measure polariton branches with different excitonic and
photonic fraction for a given k�. Note that a gradient of the exciton energy is also
present but much smaller than the cavity mode gradient, which is typically on the
order of 6.5 meV/µm4.

1.5 Polariton fluids
Up to now we restricted ourselves to the description of micro-cavity polaritons lin-
ear physics. However, one of the key assets of the polariton platform resides in
the strongly non-linear behavior observed in experiments and which justifies the
terminology of polariton “fluids". In this section, we address the different collec-
tive behaviors that polariton fluids can exhibit: polaritons being quasi-bosons, they
can undergo bosonic condensation and additionally, two polaritons can interact via a

4Note that in this planar sample, no lift of the degeneracy between polarization state was
realized: the measured dispersion do not depend on the filtered polarization. It is however possible
to realize a TE-TM splitting of the cavity polarization modes [15] which considerably enriches the
physics of polaritons: the couplings between pseudo-spin states, acting as an effective spin-orbit
coupling, led to the emulation of an optical equivalent of the spin Hall effect [22–25].
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1.5. Polariton fluids

contact interaction due to their matter component. The dynamics of dense polariton
fluids is therefore not captured by the single particle Hamiltonian previously consid-
ered. We will first introduce the exciton many-body Hamiltonian and then discuss
the consequences for polariton fluids. We will discuss two different approaches for
polaritons injection: a non-resonant excitation scheme where the polariton states
are populated via coupling to an exciton reservoir, and a quasi-resonant excitation
approach where polaritons are coherently injected inside the cavity via direct cou-
pling to the electromagnetic field. An exhaustive description of the polariton fluids
physics can be found in [26].

1.5.1 The polariton-polariton interaction
One of the strong interest for the polaritonic platform is its capability to explore
strongly non-linear dynamics in engineered potentials for relatively weak pumping
powers with typical polariton densities as low as nP ∼ 100 µm−2. The interaction
originates from polaritons excitonic component and corresponds to a Kerr-like (χ3)
interaction. We will here detail the interaction mechanism and explain how the
polariton fluid dynamics can be described by a non-linear Schrödinger equation
with Kerr non-linearity, which is also called the Gross-Pitaevskii equation.

1.5.1.1 Exciton-exciton interaction

The model introduced to describe excitons in Sec. 1.1 only accounts for the linear
regime where the dynamics can be described by the single exciton Hamiltonian.
Excitons are quasi-particles composed of two fermions, they are thus quasi-bosons.
This bosonic behavior is observable at low exciton density only, in the limit of
negligible screening of the Coulomb interaction and low filling of the electron-hole
fermionic states [27–29]. Above this limit, excitons are dissociated into a plasma of
electron-hole pairs. The transition between these two regimes occurs for an exciton
density nx ∼ 1× 1011 cm−2 [30], in this thesis all experimental results where obtained
for excitonic densities bellow this limit. In this mesoscopic density range, the many-
body dynamics can be described in the excitonic basis with bosonic operators [28,
31,32]. The dominant term of the interaction comes from carriers exchange between
excitons: two scattering excitons can simultaneously exchange electrons or holes
of each bound pairs. Other smaller contributions come from the direct Coulomb
interaction between two excitons as well as for the simultaneous exchange of both
electrons and holes.

The Hamiltonian describing the interaction between two excitons reads:

HXX = 1
2

∫ d2k
(2π)2

∫ d2k′

(2π)2

∫ d2q
(2π)2

∑
σ,σ′

Vσ,σ′(k,k′,q) b†k−q,σ b
†
k′+q,σ′ bk′,σ′bk,σ (1.35)

where q is the momentum exchange between exciton via the scattering process, σ
and σ′ represent the excitons spins and Vσ,σ′ is the interaction potential.

For the case of the polariton-polariton interaction, the effective mass of the
exciton being much greater than the photon one, the momentum dependence of
the exciton interaction can be neglected: Vσ,σ′ (k,k′,q) ≈ Vσ,σ′ (0, 0, 0). We thus
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CHAPTER 1. Introduction to micro-cavity exciton-polaritons

consider the following contact interaction:

HXX = 1
2

∫
d2r

∑
σ,σ′

V 0
σ,σ′ b

†
r,σ b

†
r,σ′ br,σ′ br,σ (1.36)

where br is the Fourier conjugate of bk. Note that the rotational invariance of the
contact interaction imposes the total conservation of the spin and the two equalities
V 0
σ+,σ+ = V 0

σ−,σ− and V 0
σ+,σ− = V 0

σ−,σ+.
The exciton interaction Hamiltonian contains a second term, corresponding to a

saturation of the exciton oscillator strength [28, 31–34]. This term accounts for the
fermionic nature of the exciton leading to a phase-space filling: two excitons with
the same spin cannot be generated at a distance less than their Bohr radius aB. It
yields:

Hsat = 1
2

∫
d2r

∑
σ,σ′

V sat
σ,σ′ b

†
r,σ b

†
r,σ′ br,σ′ ar,σ (1.37)

where a is the annihilation operator associated to photons. This term becomes
relevant for polariton density n ∝ 1/a2

B, which is at least one order of magnitude
above the polariton densities we will consider in the experiments described in this
thesis. This contribution will thus be neglected.

1.5.1.2 Estimation of the polariton interaction constant

As hybrid particles of photon and excitons, polaritons experience a polariton-polariton
interaction mediated by their excitonic component. The interaction amplitude de-
pends on the excitonic fraction of the considered polaritons. For the lower polariton
branch, it yields:

HLP-LP = 1
2

∫
d2r

∑
σ,σ′

V LP
σ,σ′ p

†
σ(r) p†σ′(r) pσ′(r) pσ(r) (1.38)

with p and p† the annihilation and creation operators associated to the lower po-
lariton branch and

V LP
σ,σ′ = |X(k�)|4V 0

σ,σ′ + 2|X(k�)|2X(k�)C(k�)V sat
σ,σ′ (1.39)

X(k�) and C(k�) being the Hopfield coefficients introduced in Sec. 1.3.2.
As previously stated the saturation of the exciton oscillator strength will be

neglected in the rest of the manuscript and solely V 0
σ,σ′ terms are considered. The

strongest contribution comes from the scattering of excitons possessing the same
spins. The amplitude hierarchy between same spin and opposite spin interaction
originates from the nature of the interaction: the interaction between polariton
with the same spin involves a virtual state with |J | = 1 excitons, it is thus a
resonant interaction, whereas the interaction between polaritons of opposite spin
involves a virtual state with dark excitons(|J | = 2), it is thus non-resonant. The
same spin interaction is repulsive while the interaction of excitons with opposite
spins is found to be attractive [35]. An estimation of the repulsive interaction term
was realized in [31, 32] yielding: V XX

σ=σ = 6e2aB/εl where aB is the 2D exciton Bohr
radius and εl is the dielectric constant of the material. For the type of samples
considered in this thesis, it yields a repulsive exciton-exciton interaction constant
V XX
σ=σ ∼ 5− 10 µeV.µm2.
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The experimental measured values of the interaction are subject to discussion:
the constant is often computed from dense polariton fluids and the precise determi-
nation of the polariton density being complex, it leads to a consequent uncertainty
on the extracted value. Moreover the determination often relies on the measure
of the blueshift induced by the interaction and one has to be very careful to the
possible presence of an exciton reservoir which would also interact with the polari-
ton fluid via exciton-polariton scattering. A first idea developed in Ref. [36] was
to spatially separate the reservoir from the polariton fluids. A similar approach
was implemented in Ref. [37] but a counter experiment done on the same sample
showed that the interaction with the exciton reservoir could not be neglected [38].
The estimation often considered in the literature is V XX

σ=σ ∼ 10 µeV µm2 [36,39–42],
which is in agreement with theoretical estimations.

In our case the precise determination of the interaction constant is not crucial
as the relevant term will be the induced blueshift. A lower or higher value of the
interaction constant simply leads to an higher or lower polariton density required
to observe the effects we will discuss. In the following the exciton-exciton and
polariton-polariton interaction constant will respectively be labeled gX and g.

1.5.1.3 Mean-field description

The interaction energy between two polaritons depends on the area S on which they
are confined Eint = g/S and as we will explain in Chap. 2, the minimal area that we
can experimentally consider is restricted due to the increase of the exciton linewidth
by surface recombination events. The typical radius of a micro-pillar cannot go
below 1 µm with an associated linewidth on the order of 25 µeV. It means that in
the samples that we consider, the typical interaction energy between two polaritons
is at least one order of magnitude smaller than the linewidth which does not enable
observing strong quantum effects as theoretically proposed [43].

In our samples, strong non-linear regimes can be reached for densities nLP ∼
102 µm−2. For such relatively high densities, the effects associated to quantum fluc-
tuations can be neglected and we can consider a mean-field approach where the
quantum field and associated operators are replaced by classical quantities corre-
sponding to their mean expectation values [26]. The spatio-temporal evolution of
the wavefunction ΨLP (r, t) is described by the following non-linear Schrödinger
equation:

i~ ∂tΨ(r, t) =
(
− ~2

2m∗∇
2 + V (r) + g|Ψ(r, t)|2

)
Ψ(r, t) (1.40)

where V (r) represents an external potential (cavity gradient, etc...). This equation
also called the Gross-Pitaevskii equation [44,45] was initially introduced to describe
vortices in Bose gases and is used to study the dynamics of dilute gases of interacting
bosons in conservative systems, notably in the case of χ3 non-linearities in optical
media. Polariton micro-cavities are intrinsically dissipative and consequently a non-
Hermitian term, accounting for losses, has to be added to the equation to fully
describe polariton fluids dynamics. The problem is treated considering a dissipative
equivalent of the Gross-Pitaevskii equation [46, 47]. Additionally, as we previously
explained, the dissipative nature of the system allows us to inject particles in the
system via resonant or non-resonant optical excitation: these two excitation schemes
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CHAPTER 1. Introduction to micro-cavity exciton-polaritons

have to be treated differently as they rely on different mechanisms for the injection
of polaritons.

1.5.2 Non-resonant excitation
In the non-resonant excitation scheme, the optical pumping consists in injecting
particles at an energy above the stop-band. In our case the laser-cavity detuning
is typically ∆L−C ∼ 100 meV. Being well above the semiconductor band gap, the
optical excitation leads to the formation of free electron-hole pairs that relax to-
ward polariton branches via scattering and emission of phonons. The vast majority
of electron-hole pairs give rise to the formation of a reservoir of excitons. Those
excitons can also relax and populate the lower polariton branch. When photo-
luminescence measurements are realized at sufficiently low input power, polariton
branches are unaffected by the presence of the exciton reservoir. In that case the
polariton occupation in each state is much smaller than one polariton per lifetime.
When considering a higher pumping amplitude, stimulated relaxation from the reser-
voir toward the lower polariton branch can occur: the QW acts as a gain medium
for lower polariton states. In that case the description of the system can be done by
considering two coupled non-linear equations, the Gross-Pitaevskii equation where
the injection of polaritons is given by an homogeneous term assimilated to a gain
(neglecting spontaneous relaxation), coupled to a rate equation governing the evo-
lution of the reservoir density [48]:

i~ ∂tΨ(r, t) =
(
− ~2

2m∗∇
2+V (r)+g|Ψ(r, t)|2+2gRnR(r, t)−i~2 (γ−RnR(r, t))

)
Ψ(r, t)

(1.41)
∂tnR(r, t) = P (r, t)− (γR +R|Ψ(r, t)|2) nR(r, t) (1.42)

where P (r, t) is the pumping rate from the laser to the reservoir, nR is the exciton
density in the reservoir, R is the relaxation rate from the reservoir toward the lower
polariton branch and γR accounts for losses in the exciton reservoir. As previously
explained, the exciton reservoir interacts with the polariton fluid via polariton-
exciton interactions. This interaction is described by the term 2gRnR(r, t) with
gR = |X|2gX > g. Note that the nR is much larger than |Ψ(r, t)|2, as a consequence,
the polariton-polariton interaction term is often negligible.

1.5.2.1 Polariton condensation

If the relaxation rate exceeds the decay rate, the polariton occupation for a given
state can exceed one polariton per lifetime and we observe a macroscopic occupancy
of a given state (see Fig. 1.10 (a-b)) which is referred to as polariton condensate
or polariton laser [51]. Unlike Bose-Einstein condensates such as those observed
in cold-atoms experiments, polariton condensates can be out of thermodynamic
equilibrium [52, 53]. The first observation of polariton condensation was realized
in the groups of B. Deveaud and D. Le Si Dang using cadmium telluride (CdTe)
micro-cavities [49]. Polariton condensation has been reported by many groups ever
since (see Ref. [26, 54, 55] for a review) and was also observed in lattices [56, 57].
The formation of vortices [58] and other density patterns has been reported by the
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(a)

(b)

(c)

(d)

Figure 1.10: a, quasi-3D representation of the Fourier-space emission of the pla-
nar microcavity under non-resonant excitation resolved along kx and ky, the quasi-
vertical axis represents the emission intensity. b, Energy resolved emission along
ky associated to (a). One can observe that above Pthr, the cavity emission mostly
comes from k� = 0, evidencing the macroscopic occupancy of the ground state.
Images taken from Ref. [49]. c, Interferogram of a condensate, the pitch-fork bi-
furcation encircled in red evidences the presence of a vortex. d, Real-space phase
profile calculated from (c), the red circle encloses the vortex. Images taken from
Ref. [50].
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group of B.Deveaud [50,59,60] (see Fig. 1.10 (c-d)). This group also reported on the
synchronization between condensates [61] which offers perspectives on the emulation
of XY models [62]. The non-resonant injection of vortices has now been reported
by other research groups [63–65] with realization of all optical spin switching of a
vortex triggered by a probe pulse [66]. The formation of vortex lattices was reported
by the group of J.Baumberg [67] by spatially shaping the off resonant drive and is
still a very active research field [68].

The condensation of polaritons has been achieved up to room temperature us-
ing GaN [69, 70] and ZnO [71, 72] based microcavities, organic materials [73, 74],
transition metal dichalcogenides [75,76] or Perovskites [77–79] for example.

In the case of too large nR and |Ψ(r, t)|2, the phase-space filling and Coulomb
interaction screening induce a dissociation of the bound electron-hole pairs, which
corresponds to a bleaching of the strong coupling. In such case a regime of lasing
in weak-coupling is reached which is equivalent to a standard photon laser [80–82].
A difference between weak and strong coupling regimes can notably be observed
through the response to a strong magnetic field: a reduction of the Zeeman splitting,
originating from the exciton component, is observed at the transition from strong
to weak coupling [83,84].

Note that experimental evidences show that the relaxation of the electron-hole
pairs can transfer some information from the non-resonant input laser to the polari-
ton fluid: the σ+ or σ− polarization of the laser can be partially transferred to the
reservoir and can be used to induce lasing in one polarization or the other [85].

1.5.3 Resonant excitation
Another possible excitation scheme is the coherent injection of particles inside the
cavity via resonant excitation. This allows us probing polariton many-body physics
where the polariton-polariton interaction plays a crucial role. This excitation scheme
is the one which was considered for all experimental results described in this thesis.

1.5.3.1 Coherently-driven dissipative Gross-Pitaevskii equation

In the case of a resonant or quasi-resonant drive, the laser energy is directly tuned
to be in resonance or in the vicinity of the polariton resonance. Consequently, a first
approximation leads to neglecting the presence of an exciton reservoir as excitations
are directly injected in the polariton modes without involving any relaxation pro-
cesses. The polariton-polariton interaction can therefore play a predominant role
as they are not screened by interaction with the exciton reservoir. To capture the
polariton fluid dynamics under such excitation scheme, we consider a dissipative
Gross-Pitaevskii equation with coherent drive [46]. It reads:

i~ ∂tΨ(r, t) =
(
− ~2

2m∗∇
2 +V (r)+g|Ψ(r, t)|2− i~γ2

)
Ψ(r, t)+ iF (r, t)e−i(ωpt) (1.43)

where we include the source term as an inhomogeneous coherent term of amplitude
F (r, t) oscillating at the laser pulsation ωp.

As we already explained, the polariton-polariton interaction is equivalent to a
Kerr (χ3) non-linearity which allows us reaching strongly non-linear regime for rea-
sonable densities (nLP ∼ 100 µm−2). Such polariton populations can be injected
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with relatively small pump power (I ∼ 0.1 mW µm−2) and experiments can be run
using continuous wave excitation. The energy conservation associated to this res-
onant excitation process fixes the energy of the polariton fluid to the one of the
pump. In that case it is convenient to rewrite equation 1.43 in the rotating frame
of the pump using the ansatz Ψ(r, t) = Ψ0(r, t)e−i(~ωpt). It yields:

i~ ∂tΨ0(r, t) =
(
− ~2

2m∗∇
2+V (r)−~ωp+g|Ψ0(r, t)|2−i~γ2

)
Ψ0(r, t)+iF (r, t) (1.44)

In addition to its energy, the phase and polarization of the polariton field are
directly linked to those of the laser beam through this resonant excitation process.
More constraints can thus be applied to the fluid by tuning the polarization, phase
and amplitude spatial distributions of the pump laser. A considerable theoretical
study of the relation between the pump polarization and the injected polariton fluids
was developed by N.Gippius and the groups of G.Malpuech and A.Kavokin [86]:
the spin anisotropy of the polariton-polariton interaction was predicted to induce
polarization multi-stability of the fluid [87] and spin-polarized solitons (called half-
solitons) where extensively studied [88–91].

Very rich phenomena were also theoretically studied in the scalar model including
parametric scattering and bistability [92] or pioneering propositions for the observa-
tion of a polariton superfluid by I. Carusotto and C. Ciuti [47]. In a dense polariton
fluid, interactions induce a renormalization of the excitation spectrum (also called
Bogoliubov spectrum) and the dispersion becomes linear in the vicinity of the fluid
energy. This allows for the definition of a speed of sound cs =

√
~gn/m∗. Moreover,

tilting the excitation beam allows to inject polaritons with a well defined momentum
which forms a fluid flowing at speed vf = ~kp/2m∗. If this flow speed is lower than
the sound velocity in the fluid, a superfluid regime is reached in the sense of the Lan-
dau criterion [93]. It was proposed to observe the transition toward superfluidity via
the suppression of Rayleigh scattering of the polariton fluid flowing across a defect:
in the regime cs > |vf |, the renormalization of the excitation spectrum induced by
the interactions is such that no states are available for polaritons to scatter.

1.5.3.2 Non-linear fluids in planar cavities

The presence of polariton-polariton interactions widely enriches the range of ob-
servable phenomena in micro-cavities. Already in planar samples, a considerable
variety of effects originating from inter-particle interactions has been reported. We
here propose an overview of experimental results obtained in 2D polariton micro-
cavities.

One of the most characteristic phenomenon, directly linked to the nature of the
interaction (χ3), is the parametric scattering of polaritons (OPO process). In this
four wave mixing process, polaritons injected at the energy of the pump Ep with
a momentum kp scatter to generate signal and idler polaritons. This process has
to conserve energy and momentum, the signal and idler are thus generated with
energies Es = Ep − δE and Ei = Ep + δE associated to momenta ks = kp − δk
and ki = kp + δk. Early demonstrations by the group of J.J. Baumberg showed
that pumping close to the inflection point of the lower polariton branch ensures
conservation of both quantities through a resonant scattering process [94,96,97]. In
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(a) (b)

A

Pdown Pup

Figure 1.11: a, Scheme of the optical parametric amplification process where
polaritons generated by the weak probe (empty circle) stimulate scattering from
polaritons injected by the pump (filled circles) toward the bottom of the lower
polariton branch. Image taken from Ref. [94]. b, Analytical calculation of the
hysteresis cycle observe in the polariton population as a function of the input power.
Point A corresponds to the unstable point where the laser is resonantly injecting
the polariton mode. Image taken from Ref. [95].

addition, stimulated scattering of the signal toward the bottom of the dispersion
was observed when increasing the pump power [96] or was triggered using a weak
resonant probe [94] to realize parametric amplification (OPA, see Fig. 1.11 (a)).
This parametric process was demonstrated to be efficient up to T = 120 K in GaAs
micro-cavities [98] and a reduction of the linewidth of polariton states (associated to
Goldstone modes) was measured in the vicinity of the signal energy [99]. Different
scattering schemes have then been reported which do not need pumping at the
inflection point of the lower polariton branch. A resonant scattering process where
signal and idler polariton fields possess different energies but the same momentum
(ks = ki = kp = 0) was realized in a structure containing three coupled cavities [100].
Complementarily, a scheme where the idler and the signal are generated at the
energy of the pump was demonstrated through a non degenerate four wave mixing
process where two pumps are injected with opposed wave vectors kp′ = −kp [101].
At low pumping powers, idler and signal are uniformly generated on the elastic
circle such that ks = −ki and |ks| = |kp| whereas increasing the pumping power
leads to stimulated scattering along a preferential crystalline axis. Note that, being
resonant, this scattering processes are particularly efficient compared to what is
commonly achieved with standard non-linear crystals: OPO and OPA processes can
be obtained for low pump powers with possibilities to observe squeezing or quantum
correlations [102,103].

Another well know non-linear effect observable with polariton micro-cavities,
originating from both the non-linear and driven-dissipative nature of the system, is
the optical bistability. Considering a quasi-resonant excitation blue-detuned from
the cavity resonance by δ0, polaritons can be injected in the system via the energy
tail of the mode. The repulsive interaction results in a blueshift of the polariton
resonance which reduces the effective detuning between the laser and this resonance.
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The interaction thus favors the injection of polaritons in the system. When increas-
ing the pumping power, this positive feedback leads to a sharp jump of the polariton
density when the non-linear blueshift approaches the bare laser-cavity detuning δ0,
the laser being brought to resonance with the cavity mode. Above this power thresh-
old Pup, an optical saturation regime is observed as the laser is now red-detuned with
respect to the cavity resonance. Interestingly, decreasing the pump power after the
jump, the high polariton density is preserved as long as the injection is strong enough
to compensate for the system losses: as long as gn > δ0, corresponding to a second
power threshold Pdown. The balance between drive, dissipation and non-linearities
leads to the opening of a hysteresis cycle when ramping the power up and down,
which is illustrated in Fig. 1.11 (b). An observation was reported in Ref. [95] using
the cavity gradient to probe the detuning dependence of the effect. The vicinity
of bistability thresholds were shown to allow for noise squeezing [104]. The spatial
distribution of the high density fluid was later studied in Ref. [105] and it was shown
that, depending on the detuning and incident power, the upper bistability branch
can correspond to dark or bright solitonic solutions.

Beyond the scalar model, using the spin degree of freedom and the spin anisotropy
of the interaction, it was possible to demonstrate spin multi-stability of polaritons
with and without the action of a strong magnetic field [106,107]: the Zeeman split-
ting allows to lift the degeneracy between the circularly polarized branches. In
Ref. [108], the polarization of the pump was shown to strongly affect the transmis-
sion of the sample and the formation of polarized spatial patterns was reported.
Spin switching of a large area triggered by a small circularly polarized probe was
realized in Ref. [109]. Using a linearly polarized beam, a large area is pumped with
Pdown < P < Pup, such that the system initially remains in the lower stable branch
of the hysteresis cycle and that none of the two circular polarizations is favored. A
circularly polarized probe is then used to locally bring the injected power above Pup
for one of the two circularly polarized states only. As a consequence, a high polariton
population is injected which is co-polarized with the probe. The high spin-polarized
polariton density was shown to not only covers the vicinity of the probe but the
whole area pumped above Pdown. This effect highlights the spin-anisotropy of the
polariton-polariton interaction. Finally, the group of B.Deveaud demonstrated a
competition between attractive and repulsive contributions of the spin dependent
exciton-exciton interactions with the observation of a Feshbach resonance in pres-
ence of a biexciton [110,111].

Among all effects originating from the renormalization of the polariton disper-
sions occurring through the hysteresis cycle, one of the most remarkable is superflu-
idity. This hydrodynamic effect is only observable thanks to the strong polariton-
polariton interaction and highlight the “fluid" character of polaritons. The first
experimental realization was done by the group of A. Bramati, demonstrating the
suppression of resonant Rayleigh scattering of a polariton fluid on a defect [112]. The
suppression of elastic scattering as well as a calculated excitation spectrum is pre-
sented in Fig. 1.12. Additionally, if the fluid flow speed exceeds the speed of sound,
a Čerenkov radiation cone is instead observed in the wake of the defect encountered
by the supersonic flow. The superfluid behavior of polaritons was further demon-
strated by the group of D.Sanvitto which evidenced the stabilization of quantized
vortices [113] theoretically predicted in a superfluid [114]. More recently, superflu-
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(a)

(b)

Figure 1.12: a, Simulated excitation spectrum (left panels) and reciprocal space
distribution of the polariton resonant Rayleigh scattering (right) in cases where the
speed of the polariton fluid exceeds the sound speed (top panels) and in the super-
fluid regime (bottom panels). On left panels, solid lines correspond to the normal
branches of the Bogoliubov spectrum while dashed lines correspond to the so called
“ghost branches’. Both cases correspond to the operating point A of the bistability
cycle presented in Fig. 1.11 (b). b, Experimental images and theoretical calculations
of the polariton fluid density (top sub-panels) and of the k-space distribution of the
fluid (bottom sub-panels) corresponding to a low density (left), superfluid (middle)
and supersonic regimes (right). In the superfluid regime, density fluctuations due to
polariton scattering are suppressed while a cone characteristic of Čerenkov radiation
is observed in the supersonic regime. Images are respectively taken from Ref. [47]
and Ref. [112]
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idity was observed up to room temperature by the same group [115]. Vortices being
non-trivial topological defects, a huge interest was devoted to their study in the
groups of B.Deveaud [116,117], D.Sanvitto [113,118,119] and A.Bramati [120,121].
The resonant pump imposing the phase of the fluid, different solutions have been em-
ployed to form vortices with direct injection of angular momentum using a Laguerre-
Gauss beam [113,119,120] or spatial arrangement of pump spots [121]. Interestingly
the spontaneous nucleation of vortices was observed at the wake of a defect using
a pulsed excitation [116]: the formation of vortices is observed when the polariton
fluid is at the breakdown of superfluidity: |vf | = cs. Techniques were developed to
enhance their stability as vortices propagate away from the strongly pumped region:
a low power pump is used to main the system above the lower bistability threshold
Pdown [122,123].

Observations of the excitation spectrum on top of a non-linear fluid, also called
Bogoliubov spectrum, have been reported in the case of polariton fluids at rest
(pumped in k = 0 → |vf | = 0) [124–127]. The excitation spectrum and its renor-
malization induced by non-linearities have attracted a particular interest in the
context of polariton analog gravity emulation where polariton fluids are used to
study cosmological problems [128–132].

1.5.4 Solitons in polariton fluids
Solitons are among the fundamental non-linear stable solutions of the Gross-Pitaevskii
equation which are observed in polariton fluids. Historically, the first report on the
observation of a soliton is attributed to John Scott Russell [133] who followed for
several kilometers a solitary wave propagating upstream in a canal. Using a water
tank, he reproduced the phenomenon which he called “Wave of Translation" (see
Fig. 1.13 (a)). The first modelization of the hydrodynamic effect was done in 1972
by Joseph Boussinesq [134] but the extensive exploration of non-linear waves fol-
lowed the very first numerical experiment in 1955: the Fermi-Pasta-Ulam-Tsingou
experiment [135]. This simulation demonstrated that a system of coupled harmonic
oscillators can become non ergodic as soon as a small anharmonicity is introduced.
At long times after an excitation, the system does not exhibit any sign of thermal-
ization: no equipartition of the energy over the vibrational modes is observed and
a quasi periodic behavior of the wave packet was observed. A plethora of theoret-
ical and experimental developments followed this discovery in order to frame the
physics of non-linear waves. Several paradigmatic non-linear equations are worth
mentioning: The Korteweg-de Vries (KdV) equation (and its generalization, gKdV)
is a continuum limit of the equations governing the dynamics of a string with a
quadratic force term, shallow-water waves or collisionless plasma:

KdV: ∂tΨ + ∂x(∂2
xΨ + Ψ2) = 0

gKdV: ∂tΨ + ∂x(∂2
xΨ + Ψp) = 0

(1.45)

The sine-Gordon which is a continuum limit of the Frenkel-Kontorova model from
crystalline materials:

∂2
t Ψ− ∂2

xΨ + sin(Ψ) = 0 (1.46)
and the non-linear Schrödinger equation with cubic non-linearity which we call
Gross-Pitaevskii equation and is also referred to as Lugiato-Lefever equation.
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Figure 1.13: a, Schematic representation of the observation realized by J.S.Russell
in a water tank. Image extracted from Ref. [133]. b, Calculated profile of a bright
soliton. c, Calculated profile of a dark soliton.

Besides their relevance for many physical systems, these equations were exten-
sively studied due to the existence of stable solutions in the form of solitary-waves
or solitons which present a particle-like behavior [136]. The term soliton was intro-
duced in 1965 by N.J. Zabusky and M.D. Kruskal in a computational study of the
KdV equation [137]. In this pioneering paper, interactions between solitons were
already discussed. Such solutions have now been observed in many systems and
solitons have been considered for use in optical telecommunication as they allow
reducing the number of required repeaters [138, 139]. The case of solitonic solu-
tions on lattices has also broadly been studied. The reader can refer to [140] for an
exhaustive introduction to the field.

Initially, solitons were defined as non-linear solutions which remain unperturbed
through the interaction with other solitons, however the notion has now broadened
to also include the so called near-solitons which are not preserved via soliton-soliton
interactions. Solitons are localized wave-packets which are self-sustained and prop-
agate without deformation. Their existence originates from a balance between non-
linearities and the dispersion relation of the material. In the Gross-Pitaevskii equa-
tion, different types of solitons can be observed. Spatial solitons are wave-packets
spatially confined by the competition between inter-particle interactions and spatial
dispersion of the medium: for example, in the case of optics, this dispersion can
correspond to a spatial variations of the refractive index n(r). A spatial soliton can
be composed of a monochromatic wave-packet and thus be delocalized in the time
domain. Equivalently, temporal solitons are temporally localized wave-packets: in
optics, the spatial confinement of the electromagnetic field in optical fibers allows the
observation of solitons which originate from the competition between non-linearities
and the energy dispersion of the refractive index n(λ) (light pulses, poly-chromatic).
Additionally, depending on the relative sign of the interaction and dispersion terms,
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(a) (b)

Figure 1.14: a, Density and phase of the polariton fluid presenting an odd number
of dark solitons channels. Each density dip (top images) is associated to the presence
of a π phase jump of the fluid (bottom images). Image extracted from Ref. [142].
b, Time resolved propagation of a bright soliton along the x axis. 2D profiles were
measured with a streak camera. The vertical axis represents the measured intensity.
Image taken from Ref. [143].

one can observe the formation of bright or dark solitons [141]. Let us consider
the case of the conservative Gross-Pitaevskii equation describing the dynamics of
massive particles with m∗ > 0 in a 1D infinite channel:

i~ ∂tΨ = − ~2

2m∗∂
2
xΨ + g|Ψ|2Ψ (1.47)

In the case of an attractive interaction (g < 0) particles tends to coalesce and
form dense wave-packets which correspond to bright solitons. On the contrary, for
repulsive interactions (g > 0), particles tend to separate as much as possible. In the
presence of dense ensemble of particle, the strong repulsion between constituents
can be accommodated via the formation of a local density dip which corresponds to
a dark soliton. This dip is associated with a π jump of the field phase. In both cases
the general solution takes the form of an hyperbolic secant Ψ ∝ 1/ cosh([x− x0]/a)
(see Fig. 1.13 (b-c)) where a represents the width of the soliton which depends on
m∗ and g.

The polariton platform is particularly suited for the observation of dark soli-
tons as polaritons present a low effective mass and interact via strongly repulsive
inter-particle interactions [144,145]. Similarly to vortices, pairs of spatial dark soli-
tons were observed in planar samples at the wake of a defect [117, 146–148] or
via engineering of the drive [142, 149, 150]. Interestingly, this latter scheme allows
for the generation of odd numbers of dark solitons (including single solitons, see
Fig. 1.14 (a)). The formation of half-solitons with circular polarization was demon-
strated in Ref. [147]. The resonant beam was linearly polarized along the flow
direction of the polariton fluid, polarization resolved measurement revealed that the
two solitons of the pair are orthogonally and circularly polarized [147]. The sta-
bilization of dark solitons is an active topic [122, 142] and theoretical propositions
have been made using the soliton pair instability to solve maze problems [151]. Ad-
ditional propositions were made for the observation of temporal dark solitons via
resonant [152] or non-resonant excitation [153].

The formation of bright solitons was also demonstrated using polaritons in pla-
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nar microcavities, by pumping above the inflection point of the lower polariton
branch [39,143,154]: in that particular region the lower polariton branch presents a
negative mass dispersion which is required to form bright solitons of particles with
repulsive interactions. These bright solitons were shown to be spatially and tempo-
rally localized (see Fig. 1.14 (b)) and the generation of a bright soliton train was
triggered via pulsed excitation [155].

Another method to observe the formation of bright solitons in polariton micro-
cavity samples relies on the confinement of polaritons in lattices: one can engineer
bands with a negative mass. Interestingly, one can also observe the formation of
bright gap solitons in the mini-gaps open by periodic modulation of the energy land-
scape. These solitons are stabilized by a self-trapping mechanism which originates
from the balance between interactions and the presence of the energy gap: even
thought they strongly repel each other, particles forming the soliton cannot scatter
to any other state and the wave-packet remains spatially localized. The confine-
ment of polaritons in an engineered potential and the description of the associated
non-linear equation is the subject of the next chapter.

1.6 Summary
In this chapter we introduced the basic concepts of micro-cavity exciton-polaritons
physics. Polaritons are quasi-particles arising from the strong coupling between
the electromagnetic field confined in a high quality cavity and excitons confined in
a semiconductor quantum well. These hybrid light-matter quasi-particles inherit
properties from both photonic and excitonic component which makes polaritons
particularly suited for the exploration of non-linear physics. Their excitonic part
is responsible for giant Kerr non-linearities. Particularly interesting characteristics
of polaritons originate form their photonic component: it endows them with a low
effective mass, allowing for their propagation on long distances and renders the
system intrinsically dissipative which enables to monitor the state of the system by
collecting photons escaping the micro-cavity.

A last important advantage brought up by the photonic component of polaritons
lies in the possibility to confine polaritons at micron scale by tailoring the micro-
cavity structure. At C2N, the employed technique consists in deep-etching the
structure enabling us to engineer Hamiltonians with nearest neighbor coupling as
will be presented in the next chapter.
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Chapter 2

Polaritons in lattices

This chapter is dedicated to the confinement of polaritons in tailored structures.
We describe the linear and non-linear behaviors of these quasi-particles in patterned
micro-cavity samples. In addition, we present the numerical methods employed
throughout the manuscript to describe and interpret our experimental findings.

Changing the polariton band structure requires to master the propagation of
particles by tailoring the energy landscape of the micro-cavity. To do so, different
approaches have been considered. These methods rely on the confinement of po-
laritons by acting either on their excitonic or photonic components. In Sec. 2.1,
we start by describing the different approaches employed to confine polaritons and
especially describe the deep-etching technique used at C2N. Section 2.2 is dedicated
to the description of the two main approaches considered to design and to model po-
lariton micro-structures. The nearly-free or continuous model provides an accurate
description of polaritons dynamics in etched structures and is often considered for
the case of modulated wires. The tight-binding approach simplifies the description
of structures composed of coupled micro-pillars. In each case we present the numer-
ical methods employed for the linear description of polariton states in engineered
structures. Numerical simulations not only allows us to reproduce experimental re-
sults as well as to predict the distribution of polaritons states in a given structure
in order to engineer our samples. Finally, in Sec. 2.3, we address the quasi-resonant
excitation of polaritons in tailored structures and the numerical methods used to
describe the non-linear dynamics of these confined quasi-particles.
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2.1 Engineering an energy landscape for Polari-
tons

The confinement of polaritons can be done in two different manners, confining ei-
ther the excitonic or photonic component of the quasi-particles. In both cases the
confinement technique has to preserve, as much as possible, the quantum well and
cavity qualities. A description of the various techniques employed in the literature
can be found in [156], hereafter we briefly introduce some of these techniques and
especially the deep-etching technique used at C2N.

2.1.1 Potential acting on the excitonic component
In order to preserve the sample quality, engineering of a potential for excitons cannot
rely on a reduction of the quantum well dimension in the (x, y) plane via etching
of the structure: increasing the surface to volume ratio would lead to an increased
probability for surface recombination events and thus to a broader exciton linewidth.
Consequently, the methods used to confine the exciton wavefunction rely on its
sensitivity to strain, electric field control or on using the exciton-exciton interaction,
for example.

The strain-induced confinement consists in a local modification of the semicon-
ductor band-gap. Indeed, the band-gap strongly depends on the inter-atomic dis-
tance between lattice neighbors of the crystalline structure. Inducing a local defor-
mation of the crystal leads to a local variation of the semiconductor band-gap that
can play the role of a trap or a barrier. A first technique involving the use of strain
consists in the application of mechanical pressure on the substrate surface with a
pin tip, see Fig. 2.1 (a). This method developed by the group of D. Snoke creates
a local decrease of the exciton energy at the pin position and can be used to trap
polaritons. It was for example used to trigger polariton condensation away from
the exciton reservoir by displacing the pump spot from the position of the tip [157]:
polaritons injected at the laser location flow and relax toward the potential energy
minimum induced by the strain. The main disadvantage of this technique is its lack
of scalability as it hardly enables the engineering of more complex geometries. A
second technique, which offers the possibility to engineer lattices, was developed by
the group of P. Santos and relies on the use of surface acoustic waves (SAWs). A
surface acoustic wave creates a periodic variation of the inter-atomic displacement
with respect to the crystalline structure at rest. This resulting strain pattern prop-
agates with the SAW and so do the associated effective traps for polaritons. By
superimposing several SAW patterns, one can achieve the engineering of 1D or 2D
potentials for the exciton and so the emulation of lattices (see Fig. 2.1 (b)). Us-
ing this technique, the condensation of polaritons has been reported in 1D and 2D
lattices [158, 160, 161]. Note that, technically speaking, the strain also affects the
photonic component via a modification of the refractive index and the thicknesses
of cavity layers but the effect is weaker than the one observed on the excitonic
component.

A second approach is to use polariton interactions with a locally injected exciton
reservoir. As seen in Chap. 1.5.1, the exciton-exciton interaction is repulsive and
the presence of an exciton reservoir thus induces a local blueshift of the exciton
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Figure 2.1: Illustration of the methods employed to create potentials confining
the excitonic component of polaritons. a, Pressure induced traps with a scheme
of the setup (top) and measured luminescence from the sample showing trapping
of polaritons at the position of the pin (bottom). Image taken from Ref. [157].
b, Surface Acoustic Waves with a representation of the SAW (top) and a dispersion
obtained via resolved PL measurements (bottom) showing the opening of energy
gaps. Image taken from Ref. [158]. c, Optically pumped exciton reservoir. Top
panel shows the luminescence generated by the trapping laser (control). Middle
panel shows the luminescence pattern of a polariton fluid flowing in the direction
of the yellow arrow (probe). Finally, bottom panel shows the scattering pattern
obtained when the polariton fluid encounters the trap generated by the exciton
reservoir. Image taken from Ref. [159].
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energy, acting as a potential barrier for polaritons. Harnessing the possibility to use
the optical beam to confine or control the flow of polariton being quite versatile,
this technique has been employed in many groups [63, 67, 118, 162, 163]. One of the
first realization was done by the group of A. Bramati, reporting the observation
of a polariton fluid scattering on a defect constituted by an exciton reservoir [159]
as illustrated in Fig. 2.1 (c). This all-optical technique also enables to imprint
2D lattices [62, 164] as the beam geometry can be tailored at will using spatial
light modulators (SLM) . There is however one inconvenience: the non-resonant
excitation incoherently injects particles in all polariton states with a spatial profile
correlated to the one of the pump beam. This puts some limitations on the effects
that one could study.

2.1.2 Potential acting on the photonic component
The confinement of polariton modes via the photonic part of the polaritons is based
on the 3D design of the dielectric constant εl(x, y, z). The methods employed in the
literature are illustrated in Fig. 2.2.

The first technique, developed by the group of Y. Yamamoto, consists in the
deposition of a patterned thin metallic layer (typically AuTi) on top of the cavity.
If the number of Bragg layer pairs in the top mirror is small enough, the change
between boundary conditions for the electromagnetic field at a metal/semiconduc-
tor versus a vacuum/semiconductor interface leads to a change of the cavity mode
energy. As it is external to the cavity, this patterning of the dielectric constant
only induces a shift of the optical resonance on the order of ∼ 0.1-1 meV. This is
yet sufficient to induce an effective potential for polariton and engineer 1D or 2D
lattices [56, 165–167].

A second technique, developed in the group of B. Deveaud, relies on a shift
of the cavity mode energy induced by a modification of the cavity thickness. Such
effect is obtained by an etch-and-overgrowth method: the cavity spacer is selectively
etched before growing the top DBR 1. This procedure leads to the formation of
structures called mesas in which the polariton modes are confined, see illustration
in Fig. 2.2 (b). Being a direct modification of the cavity structure, it allows applying
a confinement with characteristic energies on the order of a few meV. The mesas
were initially used to create 0D traps [168,170,171]. The group of S. Höfling recently
demonstrated the possibility to hybridize polaritonic modes from different mesas and
the realization of lattices [172–174].

The technique used at C2N, which was developed in parallel in the group of
J. Bloch [175] and M. Bayer [176], consist in etching of the cavity sample from
the top mirror down to the substrate after its growth. Due to the high refractive
index contrast between the vacuum (n = 1) and the cavity (n ∼ 3.3), the photonic
mode is strongly confined in the resulting structures. This methods allows designing
architectures with variable geometries, from 0D to 2D, with a precise tailoring of the
polariton band structure. A large diversity of architectures have been realized in our
group and in the groups of M.Bayer [169, 177] and S.Höfling [83, 178]. A limitation

1Note that only the top part of the cavity spacer is partially etched to preserve the quantum
well and avoid any degradation of the exciton optical properties.
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Figure 2.2: Illustration of the methods employed to create potentials confining
the photonic component of polaritons. a, Patterned metal deposition with a scheme
of the structure (left) and measured emission from a polariton condensate in the
real space (middle) and the reciprocal space (right). Image taken from Ref. [165].
b, Growth of a mesa with scheme of its structure (left) and real space photolumines-
cence of a circular mesa (10 µm diameter) along with a space tomography of the two
lowest energy states (right). Image taken from Ref. [168]. c, Deep-etching: Scan-
ning Electron Microscope image of periodic 1D structures (left) with the associated
energy dispersion of one structure along the longitudinal direction (right). Image
taken from Ref. [169].

of this technique resides in the minimal size of the structure one can etch without
observing a degradation of the exciton linewidth due to surface recombinations. To
circumvent this issue, some groups envisaged etching of the top mirror only, in order
to preserve the quantum well [179–183].

All methods presented above involve cavities made of two distributed Bragg
reflectors. An alternative approach is given by hybrid cavities where the top mirror
is replaced by an alternative reflective item which can be a photonic crystal [184,185]
or the tip of an optical fiber where a DBR is deposited. In the latter case, the fiber tip
can be preprocessed in order to realize a non-planar DBR which can be concave [186]
or present a more elaborated structure to engineer coupled traps [187].

2.1.3 Etching the planar cavity
After the growth of the planar cavity and its characterization, we select a wafer
portion of about 0.5 cm x 1.5 cm with a cavity-exciton detuning accessible range
which depends on the experimental problematic we want to tackle. The etching
process start with the deposition of a layer (2 µm) of silicon nitride (Si3N4) by vapor
deposition (PECVD), followed by of a layer of polymethyl methacrylate (PMMA)
via spin-coating. The micro-structure pattern is then imprinted on the polymer layer
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2 µm

(b)(a) (c)

Figure 2.3: Scanning electron microscope images of different structures produced
in the C2N clean-room facilities. a, Circular micro-pillars of various radii. b, Sam-
ple patch presenting a rectangular planar cavity, micro-pillars and 1D structures.
c, Portion of a sample presenting 2D structures.

via electron-beam (e-beam) lithography. A selective chemical development allows
removing the insolated regions of the PMMA. This step is followed by a deposition
of 60 nm of nickel. Nickel is only left in the masked region of the e-beam mask after
lift-off of the remaining PMMA. Finally, the etching is realized with inductively-
coupled plasma (ICP), to etch out the regions that are not protected by the nickel
layer.

Figure 2.3 presents examples of structures realized using this procedure in the
C2N clean-room facilities. The images were obtained using a scanning electron
microscope (SEM). The processing of the sample used in this thesis was realized by
Luc le Gratiet, Abdelmounaim Harouri and Isabelle Sagnes.

2.2 Modeling polaritons in deeply etched lattices
This section is dedicated to the description of the different approaches used to model
polariton modes and band structures. The strong confinement of the electric-field
due to the DBRs allows us to separate the z dependence of the electromagnetic
field and consider that polaritons are confined in 2D potential wells in the (Oxy)
plane. Given the strong refractive index contrast between the cavity and vacuum,
the associated potential barriers are considered to be infinite which is equivalent to
imposing a zero of the polariton wavefunctions at the structure edges.

We first focus on a continuous description of the effective energy potential im-
posed by the structure to the polariton fluid: polaritons are treated as free particles
propagating in the QW plane and edges of the structure are treated as boundaries
of the box potential V (r). This description allows fully reproducing the energy dis-
persion of polariton states observed experimentally. However the full treatment of
the 2D structure can become numerically heavy, especially when it comes to the
simulation of quasi-periodic structures. It is therefore convenient to reduce the di-
mensionality of the problem when possible: for structures with dimensions Lx x Ly
such that Lx � Ly, we usually consider a transverse approximation of the confine-
ment potential and treat the 1D effective problem.

The second approach that we use is dedicated to modeling arrays or lattices of
coupled micro-pillars. Such structures can be particularly well described by a tight-
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(a)

V (x, y) = 0

(b)
V (x, y)→∞

Figure 2.4: a, Scanning electron microscope image of a polariton trap created by
modulating a wire. b, 2D description of the structure (top) and associated effective
1D potential (bottom).

binding approximation. In this approach, micro-pillars are assimilated to discrete
sites of a tight-binding lattice and thus as photonic like atoms. This description is
valid for the first lowest eigenstates of micro-pillars with radii on the order of the
micron and allows the emulation of small structures like benzene molecules but also
1D or 2D models such as graphene.

2.2.1 The nearly-free model to describe 1D and 2D struc-
tures

Let us start with the continuous description of cavity structures. The linear eigen-
states and associated eigenenergies of a given structure S are solutions of the 2D
Schrödinger equation:

EΨ(x, y) = − ~2

2m∗∇
2Ψ(x, y) + V (x, y)Ψ(x, y)

V = 0 ∀(x, y) ∈ S and V →∞ ∀(x, y) /∈ S

(2.1)

m∗ is the polariton effective mass and V (x, y) is a 2D box potential representing
the polariton confinement due to the refractive index contrast between the structure
and vacuum. In the case of 2D structures this equation can be numerically solved
without further approximations 2.

For quasi-1D structures such as the one presented in Fig. 2.2 (c), it is often
convenient to reduce the problem dimensionality by considering a transverse ap-
proximation of the potential. Let us consider the case of a simple wire: the struc-
ture has a finite width w along y and, for simplicity, the wire is considered infinite
along the x direction (x, y) ∈ S ∀ |y| ≤ w/2. The wavefunction is thus separable
Ψ(x, y) = ψ(x)ϕ(y) and, as for the case of a planar cavity, the solutions along the

2Note that for periodic structures, according to Bloch theorem, the problem can be numerically
simplified by considering the description of a single unit-cell. The associated 2D Schrödinger
equation with periodic boundary conditions is then solved as a function of momentum k which
dictates the phase picked up at the boundaries.

45



2.2. Modeling polaritons in deeply etched lattices

x direction are plane waves. In the y direction, the problem is the one of a free
particle in an infinite square potential well. The solutions of the problem thus read:

ϕn(y) = cos(ky,ny) with ky,n = nπ

w
(2.2)

with n the integer describing the quantization of the wave-vector along y. The
associated eigenenergies correspond to a set of 1D parabolic dispersions:

En(kx) = ~2π2

2m∗w2n
2 + ~2

2m∗k
2
x (2.3)

where n is playing the role of subband index.
The approach introduced here consists in considering the different sub-bands

independently and treating the 1D Schrödinger problem associated to the effective
potential Vn:

EΨ(x) = − ~2

2m∗ ∂
2
xΨ(x) + VnΨ(x)

Vn = ~2π2

2m∗w2n
2

(2.4)

This treatment becomes particularly interesting when considering wires with a mod-
ulated width w(x): the solutions which are no longer separable in x and y are ap-
proximated to Ψ(x, y) = ψ(x) cos(ky,n (x)y) with ky,n (x) = nπ/w(x). Plugging this
ansatz in the 2D Schrödinger equation, it yields:

EΨ(x, y) = − ~2

2m∗
[

cos
( nπ

w(x)y
)
∂2
xψ(x)+ψ(x) ∂2

x cos
( nπ

w(x)y
)
+ψ(x) ∂2

y cos
( nπ

w(x)y
)]

(2.5)
Neglecting the spatial derivative of w(x) we obtain the effective 1D potential:

Vn(x) = ~2π2

2m∗w(x)n
2 (2.6)

An experimental illustration of this method, extracted from Ref. [188], is presented
in Fig. 2.4. The authors consider the case of a localized rectangular modulation
of a wire to engineer a diode. Using an exciton reservoir to tune the energy of the
eigenstates localized in the island structure, it is possible to control the transmission
of the total structure. Treating the effective 1D problem was here sufficient to
capture the behavior of the system. Several works have been realized in the group
considering quasi-1D structures [162, 189–191]. Treating the effective 1D model
appeared to be a powerful tool, especially when considering quasi-periodic structures
which requires simulating a significant length of the structure to capture the physics.

Note that, when necessary, more complicated ansatz functions can be considered
for the effective 1D potential: for example, the spatial derivative of w(x) can be
treated by a Taylor expansion. This treatment was done for example in Ref. [192]
(see supplementary materials for demonstration), where neglecting the spatial vari-
ations of w(x) did not allow to capture all minimal ingredients necessary to describe
the physics of polaritons in Fibonacci quasi-periodic structures.
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Figure 2.5: a, Evolution of the energy of a circular well lowest eigenstates as a
function of the well radius. b, Squared moduli of the wavefunctions for the circular
well lowest eigenstates. For ` 6= 0 modes a representation in the Cartesian basis
is also provided, evidencing the px and py character of the (n = 1, ` = ±1) states.
c, Real space photoluminescence of a 4 µm diameter micro-pillar.

2.2.2 Micropillars as artificial atoms
In the view of emulating Hamiltonians described by a tight-binding formalism, the
simplest way to engineer the equivalent of a tight-binding site (atom) with polaritons
is to consider a circular micro-pillar. The photonic modes associated to a circular
pillar with radius R are given by the solution of 2D Maxwell equations describing a
free particle trapped in an infinite circular potential well. Note that, as the struc-
ture preserves the cylindrical symmetry, there is no lift of the degeneracy between
polarization states. As a result, we can simply solve the scalar problem considering
that the real eigenstates consist in a degenerate doublet, with orthogonal polariza-
tions, of the obtained solutions. The spatial profiles of the circular potential well
eigenstates are given by Bessel functions of the first kind denoted J`(r), where ` is
the order of the Bessel functions. The associated eigenenergies read:

En,` = ~2

2m∗R2 j
2
n,` (2.7)

where jn,` is the n-th zero of the Bessel J function of order `. Note that for |`| 6= 0
two degenerate solutions are obtained, corresponding to ` = ±|`| and representing
the two possible circulations for the phase gradient of the wavefunction (clockwise or
counter-clockwise). Figure 2.5 shows the simulated profiles of the first eigenstates
of a circular well and the evolution of the associated eigenenergies as a function
of the well radius. These results where obtained via numerical resolution of the
2D Schrödinger equation, as described in the previous section. The first eigenstate
{n = 1, l = 0} can be assimilated to the ‘s’ orbital of an artificial atom while we
can select the description basis of the two degenerated eigenstates {n = 1, l = 1}
and {n = 1, l = −1} so that they correspond to px and py atomic orbitals ({n =
1, l = ±1} = px ± ipy). The measured photoluminescence of a R = 2 µm pillar
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2.2. Modeling polaritons in deeply etched lattices

showing these first eigenstates is presented in Fig. 2.5 (c). Since the spectrometer
slit is centered on the pillar, a zero of amplitude is observed in the middle of the
(n = 0, l = ±1) state: the intensity distribution is equivalent to the px orbital
longitudinal profile.

Restricting ourselves to the lowest eigenstates of the structure, we can therefore
assimilate circular micro-pillars to artificial atoms whose eigenenergies can be varied
by choosing the pillar radius. Similarly to molecular bonding, coupling micro-pillars
leads to the formation of artificial molecules whose eigenstates result from hybridiza-
tion of micro-pillars ones. In first approximation, this hybridization is described as
a linear combination.

2.2.3 Coupling micropillars to build photonic molecules
Let us consider two pillars, labeled A and B, with radii R separated by a distance
d. In the case d < 2R the two pillars overlap and the solution of the associated 2D
Schrödinger problem is not analytical. Yet the solution can be numerically com-
puted or it can be approximated by linear combinations of the two pillar individual
eigenstates: |Ψ′j〉 = ∑

n,` αj,n,`|Ψn,`,A〉 + βj,n,`|Ψn,`,B〉. To restrict ourselves to the
simple hybridization of ‘s’ orbitals, we consider the case where the energy splitting
between ‘s’ and ‘p’ states is infinite. The two ‘s’ states described by |Ψs,A〉 and
|Ψs,B〉 hybridize to form two new eigenstates given by the symmetric (bonding) and
anti-symmetric (anti-bonding) combination of the bare pillar states:

Ψ± = |Ψs,A〉 ± |Ψs,B〉√
2

(2.8)

The associated eigenenergies are given by E± = E0 ∓ J where J represents the
coupling (hopping) strength between the two bare eigenstates. J can be related to
the overlap integral S =

∫
〈Ψs,B|Ψs,A〉. The coupling strength can thus be tuned by

varying the distance between pillars.
Simply put, this coupled system is described by the tight-binding Hamiltonian:

H0 =
[
E0 −J
−J E0

]
(2.9)

The 2D Schrödinger problem, restricted to the two lowest eigenstates, is mapped to
the 0D Schrödinger equationH0|Ψ〉 = E|Ψ〉 in the basis of ‘s’ modes {|Ψs,A〉, |Ψs,B〉}
abbreviated {|A〉, |B〉}. This mapping can also be separately applied to px and py
states. Indeed, the overlap between px and py modes of two different micro-pillars
is equal to zero. A 2D simulation of the energy diagram along with mode profiles
of two coupled pillars is presented in Fig. 2.6. Due to the stronger overlap of the
wavefunctions, the energy splitting between px bonding and anti-bonding states is
higher than the one observed between hybridized py states [193].

One can notice that the two states resulting from the hybridization of smodes are
not symmetrically split in energy with respect to the bare s mode of a single micro-
pillar contrary to what is expected from the tight-binding mapping. It originates
from the non-orthogonality of the description basis which was analyzed in Ref. [194].
As we consider a spatial overlap between single pillar states |m,n, `〉, these states
do not constitute an orthogonal basis contrarily to what is assumed in the tight-
binding description. The small spatial overlap of the s mode of a micropillar with

48



CHAPTER 2. Polaritons in lattices

s

s bonding

s anti-bonding

2J

py anti-bonding

px anti-bonding

px

En
er
gy

py py bonding

px bonding

Figure 2.6: Calculated energy diagram of the hybridization between eigenstates
of two micro-pillars. Energy diagrams associated to the two bare micro-pillars are
represented on the left and right of the one of the hybridized structure. We here
restricted our description to the three lowest energy-states of the single micro-pillar
(s and p modes). Under each structure, presented on top, black solid lines mark the
calculated energy position of the associated eigen-modes. 2D density probability
profiles associated to each mode are plotted as insets. Simulations were realized for
R = 2 µm and d = 2.85 µm.

the px mode of its first neighbors results in a small deviation from the tight-binding
calculation.

The tight binding description remains valid as long as we can consider that the
contribution of each pillar comes from a single energy state which is equivalent to
saying that the coupling is treated as a perturbation to the onsite energies. Other-
wise, deviations due the non-orthogonal nature of the basis complicates the use of
a tight-binding description: more parameters have to be included and adjusted.

Note concerning the sign of J: The notation considered in this manuscript
is such that a coupling strength is positive when the symmetric coupled state is
stabilized: the bonding mode is the lowest energy one.

Coupling more pillars, the lowest eigenstates of the resulting micro-pillar array
can be approximated as the hybridization of the ‘s’ orbitals of all the individual
pillars. Under this approximation, eigenstates are approximated by solutions of a
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Figure 2.7: Scanning electron microscope images and Fourier-space spectra of
coupled micro-pillar structures described by a tight-binding Hamiltonian: a, benzene
molecule b, 1D SSH lattice for p orbitals (“zigzag") and c, 2D honeycomb lattice
(graphene).

tight-binding Hamiltonian:

H =
∑
m

Em|Ψm〉〈Ψm| −
∑
m,m′

(Jm,m′ |Ψm′〉〈Ψm|+ h.c.) (2.10)

where |Ψm〉 is the wavefunction of the mth pillar s state, Em is the onsite energy of
the mth pillar and Jm,m′ represents the hopping strength from the mth pillar to the
m′-th one. The eigenstates of H and their associated eigenenergies are obtained by
diagonalization of the matrix associated to H. When it is meaningful, the Fourier
transform of eigenstates can be computed to access the band dispersion 3.

Multiple realizations of tight-binding polariton lattices have been realized in
our group 4 such as the emulation of the 1D Su-Schrieffer-Heeger (SSH) model for
p orbitals with the first demonstration of a topological laser [197] or 2D lattices
such as analog graphene [198]. In this latter case the polariton platform enables
the observation of p-bands of the model or to emulate strained sheets of graphene.
Interestingly, one can emulate strain amplitudes beyond what would be physically
realizable with real graphene, which enabled the observation of merging and tilting

3Note that the model can also be slightly complexified by considering the two possible polar-
ization states of each micro-pillars. Applying this procedure to a ring of six coupled micro-pillars
allowed capturing the polarization fine-structure of this analog benzene molecule [195]. It can
be viewed as resulting from an effective spin-orbit coupling. Selective lasing on one of these fine-
structure eigenstates was demonstrated and lead to the generation of a micro-laser emitting photons
carrying an orbital angular momentum [85,196].

4Note that tight-binding Hamiltonians can be mapped to a lattice of coupled micro-pillars as
long as it is allowed by the geometrical limitation linked to the etching and the sample struc-
ture. For example, the coupling being given by pillar overlap, only short range hoppings can be
considered.
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CHAPTER 2. Polaritons in lattices

of Dirac cones [199]. SEM images of the corresponding structures as well as their
measured band structures are presented in Fig. 2.7.

Note that the engineered coupling are a priori restricted to be positive. Yet,
considering hybridization of orbitals with different symmetries, it could be possible
to increase the versatility of hopping engineering [200,201].

The structures studied during this thesis are formed by coupled micro-pillars.
The tight-binding description will thus be considered most of the time. A nearly-
free description of polaritons will only be considered when necessary to reproduce
the experimental findings.

2.3 Interacting non-linear polariton fluids in lat-
tices

We now turn to the description of non-linear behaviors of polaritons fluids under
quasi-resonant excitation of tailored structures. In this thesis we only consider the
case of non-linear behaviors originating from the polariton-polariton interaction and
effects such as lasing will not be discussed. Confining polaritons, and thus decreas-
ing their mode volume, eases the observation of non-linear effects. Additionally,
the interplay between non-linearities and the energy distribution of polariton states
is responsible for an enriched diversity of observable effects. Here, we start with
a short presentation of the various phenomena observed with fluids of light in tai-
lored structures, from micro-pillars to 2D lattices. We then introduce the numerical
methods used during this thesis to reproduce experimental results and gain insight
into the physics of non-linear polariton fluids.

2.3.1 Experimental realizations
We have seen that confining polaritons inside tailored structures allows emulating
complex Hamiltonians. So far most studies of polariton fluids in extended (1D, 2D)
polariton lattices have focused on linear physics. To date, experimental explorations
of polariton lattices in the nonlinear regime remain relatively marginal: most realiza-
tions in engineered structures were done in single or couples of micro-pillars despite
the existence of theoretical proposals dealing with non-linear fluids in 1D [202,203]
or 2D lattices [8, 204–207].

2.3.1.1 Single pillar:

Contrary to the planar case, where quasi-resonant excitation and non-linearity lead
to a bistable behavior (see Chap. 1.5), a single polariton micropillar already offer
many extra degrees of freedom that enrich to physics. Indeed, each of the spa-
tial modes described in Fig. 2.5 that are below the pump energy can experience a
blueshift due to the interaction, and are thus susceptible to cross the pump energy,
leading to a non-linear jump. Such observation was first realized in a mesa by the
group of B. Deveaud [208]. The authors showed that each stable branch of the multi-
stability diagram is associated to a polariton spatial distribution that resembles the
linear eigenstates ones. An illustration is presented in Fig. 2.8 (a).
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2.3. Interacting non-linear polariton fluids in lattices

Harnessing the polariton spin degree of freedom, this group also demonstrated
a multi-stability diagram involving several branches corresponding to different po-
larization states [209]. The exploration of the stability diagram was realized by
ramping up and down the pump power but also tuning the excitation beam polar-
ization. More recently the anisotropy of the interaction was used to demonstrate an
effective Zeeman splitting [210]: a lift of the degeneracy between circular polarization
was realized without the application of a magnetic field.

A resonant scattering process mediated by two different modes of a micro-pillar
was demonstrated [211]. Considering solely the s state of a single pillar, the noise
squeezing of the reflected light was demonstrated by the group of A. Bramati [212]
and a dynamical study of the bistability was realized in our group [213]. Ramping the
pump power up and down across the hysteresis region over a time τ0, the evolution
of the hysteresis area was monitored. This experiment unveiled a dissipative phase
transition evidenced by two different power scaling laws at large and short τ0.

2.3.1.2 Two coupled micro-pillars:

A system of two coupled micro-pillars already represents a complex non-linear prob-
lem as, restricting ourselves to the description of the hybridized s orbitals only,
up to nine stable branches can be obtained for a given operating point. Several
realizations in such structures were done by our group considering pulsed and con-
tinuous wave excitation. Under pulsed excitation, a transition between Josephson
oscillations and interaction induced self-trapping was observed when increasing the
number of injected polaritons [216]. The exploration of the multi-stability diagram
revealed that pumping only one of the two pillars leads to the appearance of a
stable branch where the polariton population is mostly localized in the undriven
cavity [217]. This phenomenon is due to a destructive interference between polari-
tons directly injected by the pump and those hopping back from the undriven cavity
to the driven one. A parametric oscillation process was also demonstrated between
the s bonding and anti-bonding states [214]. Driving the system at the energy of the
anti-bonding state and increasing the pump power, interactions induce a blueshift
of both states. When the polariton density is such that the blueshift is equal to the
coupling strength between the two pillars, the laser energy is exactly at the center
between the two resonances and a scattering process can occur (see Fig. 2.8 (b)).
Imaging the transmitted light from the cavity using a spectrometer, the obtained
spectra revealed the presence of side pics spectrally equally spaced with respect to
the laser energy.

2.3.1.3 1D lattices:

In quasi one dimensional structures two realizations were done by our group in wires,
the first one considering the hydrodynamics of a polariton superfluid encountering
a defect resulting in the formation of an analog black-hole horizon for acoustic
waves [130] as predicted in Ref. [128, 129]. The second realization demonstrated
the control of a dark soliton train via modulation of the pump phase [215], as was
originally proposed by M. Petrov et al. in Ref. [218]. Two laser beams are used
to inject contra-propagating non-linear fluids. In the nonlinear regime, intensity
dips can be observed at the interface between the two fluids (see Fig. 2.8 (c))) each
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(a) (b)

(c) (d)

Figure 2.8: a, Multi-stability diagram of a circular mesa. Each stable branch
presents a profile given by a Bessel J function, inherited from one of the eigenstates.
Image taken from Ref. [208]. b, Resonant polariton parametric scattering between
hybridized s states of two coupled micro-pillars. A scheme of the process is presented
on top and the evolution of the emission spectrum as a function of the incident
power is presented in the bottom left panel. Bottom right panel corresponds to the
emission resolved in energy and position at the input power indicated by a dashed
line. The emission profile confirms the bonding and anti-bonding nature of signal
and idler. Images adapted from Ref. [214] c,Measured (top) and calculated (bottom)
intensity profiles of the merging of two contra-propagating non-linear fluids: a dark
soliton train is observed. Scanning the phase difference between pump spots up (left)
and down (right), phase hysteresis is observed between two branches presenting a
different number of dark solitons. d, Power dependence of the dark soliton train
bistability. More dark solitons are observed when the power is increased and, for
a given input power, tuning the phase allows switching a dark soliton on and off.
Images taken from Ref. [215].
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2.3. Interacting non-linear polariton fluids in lattices

of them corresponding to a dark soliton. Tuning the pump power and the relative
phase difference between the two beams was shown to enable controlling the number
of dark solitons in the train (see Fig. 2.8 (c-d)). Finally, a third realization was made
in a periodic structure of coupled micro-pillars emulating a 1D Lieb lattice [219].
The unit cell of this lattice is composed of three sites and the lattice spectrum is
therefore composed of three bands. The particularity of the Lieb lattice is that,
due to a phase frustration, the middle sub-band of the model is flat. In this band,
particles can be described as having an infinite effective mass. Injecting a non-
linear polariton fluid in this frustrated band resulted in the formation of bright gap
solitons presenting abrupt edges, that can be assimilated to compactons [220]. The
exploration of the multi-stability diagram via scans of the pump power revealed a
complex structure where each non-linear jump is associated to lighting or extinction
of a discrete number of unit cells as predicted in Ref. [221]. The large non-linear
structures observed in this work, which are formed of contiguous ensembles of gap
solitons and present abrupt edges have also been named Truncated Bloch Waves
(TBW).

The term of Truncated Bloch Wave was introduced by the group of Y. S. Kivshar
to describe the formation of gap solitons clusters which take the form non-linear
Bloch waves truncated to a discrete number of unit cells [222, 224, 225]. In a band,
particles at the edge of the soliton can propagate outside of the dense region with
a velocity given by the local band curvature and the soliton profile thus exhibits a
smoothed decay into the surrounding material. In a gap, on the contrary, no states
are available for particles to propagate outside of the dense region. This lack of
spatial decay channels leads to the formation of a self-trapped wave-packet present-
ing abrupt edges. Particles are trapped in between these edges and the fluid profile
in the dense region is the one of a non-linear Bloch wave as illustrated in Fig. 2.9.
These TBWs have been experimentally observed in cold atoms experiments [226],
coupled waveguides [227] or also fiber loops [223]. An illustration of the latter is
presented in Fig. 2.9 (b).

2.3.1.4 2D lattices:

In the case of 2D lattices, a single realization was made using surface acoustic wave
confinement of polaritons where a parametric injection lead to the formation of
bright gap solitons [161].

During this thesis, we pursued the exploration of polariton fluids confined in
lattices and especially studied the non-linear behavior of polariton fluids injected in
a 1D topological lattice. In parallel of our experimental realizations, we performed
numerical calculations which reproduced and sometimes predicted the behavior of
polaritons in our samples. The next section introduces the employed methods.

2.3.2 The discrete Gross-Pitaevskii equation
In Chap. 1.5.3 we introduced the quasi-resonant excitation of polaritons in planar
cavities and the driven-dissipative Gross-Pitaevskii equation governing the evolution
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(a) (b) (c)

0
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Figure 2.9: a, Band diagram of a 1D periodic lattice. C and D black dots mark
the operating points considered for the injection of Truncated Bloch Wave presented
in panels (b) and (c). b-c, Simulated profiles of TBW respectively generated at
the center and edge of the Brillouin zone. d-e, Experimental observation of a TBW
in fiber loops. In the linear regime (d), the wave-packet is shown to diffract while
propagating whereas the stable propagation of a TWB is observed in the non-linear
regime (e). Images taken from [222] and [223].
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of the system. We recall that in the rotating frame of the pump this equation reads:

i~ ∂tΨ0(r, t) =
(
− ~2

2m∗∇
2+V (r)−~ωp+g|Ψ0(r, t)|2−i~γ2

)
Ψ0(r, t)+iF (r, t) (2.11)

The dynamics of polariton fluids confined in deep-etched structures can be cap-
tured by the very same equation once the sample structure is included in the poten-
tial V (r). Most generally, numerical simulations of the 2D Gross-Pitaevskii equation
can be considered. However they are very heavy so that whenever possible, we will
resort to a description in lower dimensions using a transverse approximation of V (r)
for quasi-1D structures or a tight-binding approximation. In the latter case, we
consider the discrete driven-dissipative Gross-Pitaevskii equation:

i~ ∂tΨ =
(
H− (~ωp + i

~γ
2 )1

)
Ψ + g

[
|Ψm|2Ψm

]
M

+ iF (2.12)

where Ψ and F are column vectors respectively representing the amplitude of the
polariton fluid and of the driving field in each pillar of the lattice. The amplitude
of the polariton fluid and of the driving field in the mth pillar of the lattice will
respectively be written Ψm and Fm. H is a tight-binding Hamiltonian which general
form was introduced in equation 2.10 and 1 is the identity. We use the notation[
|Ψm|2Ψm

]
M

to represent the vector column withM elements where |Ψm|2Ψm is the
mth element.
For a lattice of M coupled pillars this vector equation can be rewritten as a set of
coupled equations:

∀ m such that 1 ≤ m ≤M :

i~∂tΨm =
(
Em − ~ωp − i

~γ
2 + g|Ψm|2

)
Ψm −

M∑
m′=1

Jm,m′Ψm′ + iFm

(2.13)

All measurements performed during this thesis were realized under slow varia-
tions of the drive parameters and using a CCD camera with an integration time
(∼ 0.1− 1 s) much longer than the polariton lifetime (∼ 10− 100 ps). Here, we only
focus on the steady-state of the set of equations 2.13 which already represents a
challenge: for a set of M coupled equations, the number of steady-state solutions is
up to M3. For small systems (single pillars or two coupled pillars), we can perform
the direct calculation of all possible steady-state solutions. For larger lattices, we
resort to a time evolution of the set of equations 2.13, starting from Ψ = 0 and
F = 0. F is then adiabatically ramped following the protocol considered in the
experiment.

We consider a split-operator method where interactions and drive are treated in
perturbation 5 (assuming Ψ to be constant over a time step dt). The steps of the
iteration loop are presented below, where we define H̃ = H− (~ωp + i~γ2 )1 and dF
corresponds to the variation of the drive amplitude during the time step:

5In the case of the continuous model we apply the equivalent Fourier method: ∇2 is applied
after Fourier transform of Ψ(r) as applying the Laplacian is a linear operation in the reciprocal
space.
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Figure 2.10: a, Numerical bistability experiment: we considered a single site
with g = 0.1 µeV, γ = 25 µeV and we simulated a ramp up and down of the input
power |F |2 while monitoring the field in the system. The pump energy was set to
~ωp = E1s + 100 µeV. Plotting the particle density n as a function of the input
power |F |2, we observe the existence of an hysteresis cycle. Gray arrows indicate
the direction of the density jumps. A sketch of the system is displayed in inset. b,
Reproduction of the OPO process presented in Fig. 2.8. We considered two sites,
with same parameters as in (a), coupled with a hopping strength J = 100 µeV.
Top: evolution of the total particle density in the system. A sketch of the system
is displayed in inset. Bottom: spectrum of the fluid obtain by Fourier transform of
the temporal evolution of the system.

• 1st step, we apply the temporal propagator for half a time step:
Ψ = exp (−i H̃~

dt
2 )Ψ

• 2nd step, the interaction term is treated in perturbation:
Ψ =

[
exp (−ig|Ψm|2~ dt)Ψm

]
M

• 3rd step, we treat the drive term:
Ψ = Ψ + (F + dF)dt/~

• 4th step, we apply the temporal propagator for half a time step:
Ψ = exp (−i H̃~

dt
2 )Ψ

To ensure adiabaticity of the simulation and avoid calculation errors, the parame-
ters have to fulfill several criterion. The time step dt has to be smaller than any other
characteristic time scale of the simulation such as the polariton lifetime dt � 1/γ.
Also, one has to also be careful with the time scale associated to the interaction term,
which can play a predominant role at density jumps for example. Additionally, the
particle injection rate must not exceed the losses: ∀m, |dFm|/dt < γ 6.

To illustrate the method, we first simulated the hysteresis cycle obtained when
driving a single pillar at an energy slightly blue-detuned with respect to the mi-
cropillar s mode (Fig. 2.10 (a)). As a second illustration, we reproduced the OPO

6The employed numerical methods do not represent a state of the art procedure. More involved
numerical methods could be used to efficiently compute the temporal evolution of the system:
adaptative methods such as Runge-Kutta-Fehlberg (RKF45) or multi-step ones such as Adams-
Bashforth.
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process illustrated in Fig. 2.8 (b) which was observed in Ref. [214] with two coupled
resonators (Fig. 2.10 (b-c)).

• In Fig. 2.10 (a) we considered a pillar with g = 0.1 µeV, γ = 25 µeV and drove
the system 100 µeV above the pillar onsite energy. We then ramped F up
and down while monitoring the polariton density n. The evolution of n as a
function of the input power |F |2 is presented in Fig. 2.10 (a), which exhibit a
clear hysteresis cycle.

• In Fig. 2.10 (b) we considered two of these pillars coupled with a hopping
strength J = 100 µeV and reproduced the driving protocol considered in
Ref. [214]: only one of the two resonators is driven at the energy of the anti-
bonding s state ~ωp = EAB = E1s + J . The evolution of the total density
nTot = |Ψ1|2 + |Ψ2|2 is presented in Fig. 2.10 (b). No density jump is observed
when ramping F as the pump is resonant with the anti-bonding mode: at
low power (|F |2 < 1) we observe a rapid increase of n which then saturates
and corresponds to an optical limiter regime. Interestingly, we observe strong
fluctuations of nTot above |F |2 = 5.3. For each value of |F |2, we computed
the temporal evolution of the system and observed periodic fluctuations of
nTot above |F |2 = 5.3. Calculating the Fourier transform of the temporal
evolution of the field, we obtained the energy spectrum which is presented in
Fig. 2.10 (c). Above |F |2 = 5.3 we observe the appearance of equally spaced
side peaks close to ~ωp±J and ~ωp±2J . In Ref. [214] this phenomenon was at-
tributed to a scattering process onto the blueshifted bonding and anti-bonding
states of the system, as illustrated in the bottom right panel of Fig. 2.8 (b).
The OPO process is enabled when the blueshift is such that the two reso-
nances are equally spaced with respect to the laser energy. To determine the
energy position of the blueshifted bonding and anti-bonding states, we have
to compute the excitation spectrum of the system.

2.3.3 Bogoliubov theory
The excitation spectrum is a particularly useful tool to characterize the state of the
system in presence of a non-linear fluid. For example, the superfluidity of polariton
fluids was explained as a result of the renormalization of the excitation spectrum
induced by inter-particle interactions [47] (see Chap. 1.5.3). To compute this spec-
trum, we use the Bogoliubov method [228, 229] which consists in a linearization
of the Gross-Pitaevskii equation around the steady-state. Assuming the system to
have reached its steady-state ΨS, the set of equations 2.13 reads:

∀ m such that 1 ≤ m ≤M :(
Em − ~ωp − i

~γ
2 + g|ΨS

m|2
)

ΨS
m −

M∑
m′=1

Jm,m′ΨS
m′ + iFm = 0

(2.14)

We now consider a small perturbation around the steady-state using the ansatz
Ψ(t) = ΨS+δΨ(t) and inject it in equations 2.13. After linearization of the equations
(we discard terms of second and third order in δΨ), it yields:
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∀ m such that 1 ≤ m ≤M :

i~∂tδΨm =
(
Em − ~ωp − i

~γ
2

)
δΨm + 2g|ΨS

m|2δΨm + g(ΨS
m)2δΨ∗m −

M∑
m′=1

Jm,m′δΨm′

(2.15)

where δΨ∗m is the complex conjugate of δΨm. This set of equations governs the
dynamics of small density and phase fluctuations on top of the non-linear fluid
described by ΨS. To solve this problem which couples the field δΨ to its complex
conjugate, we look for solutions in the form of plane waves: δΨ = U exp(−iEt/~) +
V∗ exp(iE∗t/~). U and V are the amplitudes which only depend on position and E
is their associated energy which is a priori complex due to the dissipative nature of
the system. Replacing this ansatz in equations 2.15 and identifying terms with the
same temporal evolution, it yields two sets of equations on U and V 7:
∀ m such that 1 ≤ m ≤M :

EUm =
(
Em − ~ωp − i

~γ
2

)
Um + 2g|ΨS

m|2Um + g(ΨS
m)2Vm −

M∑
m′=1

Jm,m′Um′

EVm =
(
−Em + ~ωp − i

~γ
2

)
Vm − 2g∗|ΨS

m|2Vm − g∗(ΨS∗
m )2Um +

M∑
m′=1

J∗m,m′Vm′

(2.16)

These two sets of equations can be written in the form MBΨ = EΨ where

Ψ =
[
U
V

]
and MB is the Bogoliubov matrix which reads:

MB =
[
A B
−B∗ −A∗

]
with

A = H̃ + diag
(
2g
[
|ΨS

m|2
]
M

)
B = diag

(
g
[
(ΨS

m)2
]
M

) (2.17)

where diag (Ψ) is a diagonal matrix whose mth diagonal element corresponds to the
mth element of the vector Ψ.

The diagonalization yields eigenstates and eigenenergies which corresponds to
the excitation spectrum of the system in presence of the non-linear fluid described
by ΨS. These excitations, which are often called Bogolons, present energies which
are defined with respect to those of the driving field (rotating frame). Note that for
a lattice with M sites, the associated Bogoliubov matrix is 2M x 2M . We obtain

2M eigenstates which present the particle-hole symmetry: if Ψ0 =
[
u
v

]
is eigenstate

of MB for the energy E0, then Ψ′0 =
[
v∗
u∗

]
is eigenstate for the energy -E∗0 :

MBΨ0 = E0Ψ0 →

Au +Bv = E0u
−B∗u− A∗v = E0u

MBΨ′0 =
[

Av∗ +Bu∗
−B∗v∗ − A∗u∗

]
=
[
−(−A∗v−B∗u)∗
−(Bv + Au)∗

]
=
[
−E∗0v∗
−E∗0u∗

]
= −E∗0 Ψ′0

(2.18)

7Note that we consider the possibility for the interaction to be complex: as we will see later in
Chap. 3 it is sometimes necessary to consider non-linear losses which are introduced as a complex
term in g.
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In the linear regime we can consider |ΨS|2 ≈ 0 which yields B to be the Zero
matrix of size M by M (0M,M). As a result, the eigenstates of MB with a non-zero
U correspond to the eigenstates of H̃ and MB eigenstates with zero U and non-zero
V components represent their particle-hole symmetric. Consequently, we refer to U
(V) as the particle (hole) component of MB eigenstates.

In the non-linear regime, B 6= 0M,M and eigenstates of MB are thus mixed
states of particles and holes. Among them, those originating from the linear particle
states are often called “normal" or “+" modes while their particle-hole symmetric are
referred to as “ghost" or “-" modes. Dispersion of the excitation spectrum displayed
in the following will always correspond to the U component of the 2M Bogolons
states. The spectrum associated to V is obtained by a mirror symmetry in energy
and momentum with respect to those of the pump.

Writing the Bogoliubov method in a quantized formalism consists in looking for
excitations described by creation and annihilation operators β and β†. These opera-
tors are linear combinations of p and p†, the creation and annihilation operators of
the lower polariton. It reads: β†=ukp†k + vkp−k.

The particle and hole nature of U and V is much clearer in this case as they
appear as eigenstates of the creation and annihilation operators. Note that in our
case Bogolons are bosons which implies [pk, p†k′ ] = δk,k′ and yields the normalization
|uk|2 − |vk|2 = 1.

As a simple illustration, we computed the Bogoliubov spectrum associated to the
numerical experiment presented in Fig. 2.10 (b-c) and which aimed at reproducing
the OPO process reported in Ref. [214], see Fig. 2.8 (b). For each value of F ,
we diagonalized the Bogoliubov matrix associated to the steady-state ΨS(F ). The
evolution of the real part of the four eigenenergies as a function of |F |2 is presented
in the bottom panel of Fig. 2.11 (a). At low power, the pump is resonant with the
anti-bonding state (and its “ghost" mode) while the bonding state lies at E =-2J .
When |F |2 is increased between |F |2 = 0 and |F |2 = 5.3, the two “normal" modes
(in solid lines) blueshift while the associated “ghost" modes redshift. As expected,
parametric instabilities develop when the two blueshifted states reach the vicinity of
E = ±J . The steady-state ΨS is not defined in presence of density fluctuations and
consequently, the calculation of the excitation spectrum via the presented method
is not possible above |F |2 = 5.3.

As a second illustration, we reproduced the energy spectrum associated to su-
perfluidity presented in Fig. 1.12 (a). To do so we considered a linear chain of
M = 400 coupled sites with a constant hopping J = 100 µeV and periodic boundary
conditions, the resulting band structure is presented in Fig. 2.11 (b). We drove the
system at ~ωp =-J/2 and using an homogeneous pump (∀ m, |Fm| = F0) with a mo-
mentum kp ≈ π/7 (see Fig. 2.11 (b)). Ramping the power up and down, we observe
the opening of a hysteresis cycle in the total density nTot = |Ψ|2 = ∑400

m=1 |Ψm|2, see
Fig. 2.11 (c). Computing the energy spectrum for the working point A, just before
the lower bistability threshold, we obtained the dispersion presented in Fig. 2.11 (d).
Above Re(E = 0) we observe the renormalized “normal branch" of the spectrum.
The “ghost branch", which appears below Re(E = 0), presents a much weaker inten-
sity. No other state is available with Re(E = 0) for polaritons to elastically scatter,
which is characteristic from the superfluid regime. Additionally, we recover the lin-
ear dispersion expected in the vicinity of Re(E = 0) where Bogolons thus behave as
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Figure 2.11: a, Top: Fig. 2.10 (b) is reproduced for comparison. Bottom: spec-
trum of excitations as a function of the input power |F |2 corresponding to the simula-
tion presented in Fig. 2.10 (b-c), we only plot the real part of the four eigenenergies.
Blue (red) curves correspond to eigenstates with bonding (anti-bonding) symmetry.
Solid and dashed lines respectively represent “normal" and “ghost" modes. Gray re-
gion signals the presence of parametric instabilities. In this region the steady-state
ΨS is not defined and the calculation is thus meaningless. b, Calculated dispersion
of a chain of 400 coupled pillars. c, Bistability diagram obtained ramping the power
using a pump with energy and momentum indicated by the red dot in (b). A sketch
of the system is displayed on top of panel (b). Gray arrows indicate the direction of
the jumps. d, U component of the Bogoliubov spectrum computed for the working
point A marked with a black dot in (c).
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2.4. Summary

phonons, with a well-defined speed of sound.

2.4 Summary
In this chapter we presented the various methods employed to confine polaritons,
which can be done via the photonic or the excitonic components of the quasi-
particles. We introduced the deep-etching technique used at C2N which results
in a confinement due to the strong variation of the refractive index in the (Oxy)
plane. Two different approaches can be considered to tailor the polariton band struc-
ture: we either design the lateral profile of a quasi-1D wire or consider a mapping to
a tight-binding model using coupled micro-pillars. We then presented the different
experimental realizations studying interacting fluids of polaritons in lattices and in-
troduced the numerical methods that we use to model and reproduce experimental
data.

In the next chapters, we pursue the exploration of non-linear polariton fluids in
lattices and we especially focus on the formation and control of gap solitons in the
topological gap of a Su-Schrieffer-Heeger (SSH) lattice.
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Chapter 3

Gap solitons in a 1D topological
lattice

The discovery of topological insulators [230, 231] demonstrated the pertinence and
importance of the mathematical field of topology to describe the physical properties
of matter. Topological insulators are a class of materials that possess a bulk band
gap, as regular insulators, but yet exhibit a non-zero conductance due to the pres-
ence of conducting edge states at their surface [2]. The existence of these states is
imposed by the non-trivial topological nature of the bulk material [232] and, as a
consequence, no deformation of the surface can alter the conduction properties of
the object (see Sec. 3.1). Moreover, inter-particle interactions appeared to further
enrich the phenomenology of topological insulators as quasi-particle with fractional
elementary charge were unveiled [233, 234]. The development of such materials is
thus extremely appealing and, as it has often been done, transferring these ideas
to photonic platforms promised considerably important applications such as the de-
velopment of integrated non-reciprocal devices, conduction lines for photons or the
generation of robust correlated photon states. Beyond the development of applica-
tions, the high versatility of photonic platforms allowed pushing the fundamental
exploration of topological matter with the development of Floquet physics [235] or
high-dimension insulators using synthetic dimensions [236]. The field of non-linear
topological photonics aims at unraveling the consequences of inter-particle inter-
actions on topological properties: for example, topological phase transitions can
be induced and novel non-linear structures are expected to benefit from symmetry
protection (see Sec. 3.2).

The polariton platform belongs to a particular class of non-Hermitian system as
drive and dissipation play a crucial role in the dynamics of the quasi-particles. To
explore the interplay between inter-particle interaction and topology in presence of
drive and dissipation we will focus on one of the simplest model exhibiting edge states
possessing a topological origin, the Su-Schrieffer-Heeger(SSH) model. In this chapter
we describe the specificity of bright gap solitons generated in the topological gap of
the SSH lattice. In Sec. 3.3 we show that the solitons generated in the topological
gap of an SSH lattice present a profile specific from the topological gap and which is
dictated by the symmetry of the Hamiltonian. In Sec. 3.4 we probe the robustness
of these solitons and show that the profile symmetry is responsible for the protection
of gap solitons against certain types of defects. Finally, in Sec. 3.5, we demonstrate
the importance of coherent driving in the case of open systems: engineering of the
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driving field allows stabilizing novel solutions, akin to a topological edge state and
that solely exist due to the driven-dissipative nature of the system. Interestingly, the
density profile of the such driven-dissipative soliton is responsible for the emergence
of a localized state in the topological gap of the excitation spectrum. The analysis
of the calculated Bogoliubov spectra shows that harnessing the driven-dissipative
nature of the polariton platform enables to realize a topological phase transition.
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CHAPTER 3. Gap solitons in a 1D topological lattice

G = 0 G = 1 G = 3

Figure 3.1: Six different objects that can be grouped into three couples as they
present identical genus numbers G and are thus equivalent in the sense of topology.

3.1 Introduction to topology

3.1.1 The mathematical field of topology
Topology is a field of mathematics aiming at classifying geometrical objects based
on global properties that are preserved under continuous deformations as twisting
or stretching. Contrary to geometrical considerations where one would care about
the metric and local organization of the object, thus making a distinction between
spheres and cubes for example, a topological description will address more funda-
mental properties of the object and, extending the example, treat spheres and cubes
as identical entities as they can be transformed into one another by smooth deforma-
tions: without cutting or pasting parts of the object. The field of topology emerged
in the middle of the 16th century with L. Euler’s answer to the Königsberg bridge
problem, which is considered as the beginning of graph theory. This was followed
by his discovery of the polyhedron formula, which states that for regular polyhedra:
V −E+F = 2 with V the number of vertices (corners), E the number of edges and
F the number of faces of the polyhedron. This formula exhibits a crucial concept
in topology, the notion of topological invariant: a global property that is conserved
under continuous deformations. The most common example of topological invariant
given as an introduction to topology is a generalization of this formula for orientable
surfaces: the genus number G which counts the number of holes in the surface. Cre-
ating or removing a hole in a structure is not allowed since it would require to cut or
paste part of the object. As a consequence, spheres are topologically distinct from
tori as their genus numbers differ by 1(see Fig. 3.1). Holes can be displaced across
the structure but as long as one only considers continuous deformations, the genus
number of the object will be conserved. Note that G is a global property of the
object which can be computed via integration of a local quantity, the curvature K:
1−G = 1/4π

∫
SKdA. To better understand the interest of an approach considering

only global properties of objects, the reader can for example refer to the elegant
answer to the “Inscribed Rectangle Problem" brought by topology [237,238].

Topological considerations have important consequences in various scientific do-
mains, not only in mathematics but also, for example, in biology [239] to understand
the structural stability of living beings through morphogenesis [240] or to describe
proteins folding [241–243]. In this introduction we will focus on the importance of
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3.1. Introduction to topology

topology in the case of condensed matter physics where topological invariants can
be used to distinguish phases of matter described by band theory.

3.1.2 A new phase of matter: topological insulators
In the 1920s, the development of band theory of solids allowed explaining the in-
sulator or conductor nature of crystalline materials. In a crystal, electrons occupy
eigenstates corresponding to the hybridization of the different atomic orbitals which
form bands separated by energy gaps. The conductive nature of a crystal can be
inferred by the electronic filling of its energy bands: an insulator exhibits only com-
pletely filled bands and the energy gap between the highest fully occupied band and
the lowest fully unoccupied band represents the energetic cost required to set an
electron into motion.

The discovery of the Quantum Hall Effect (QHE) in 1980 by K. von Klitz-
ing [1] demonstrated that a separation between metals and insulators solely based
on bulk band fillings is not sufficient to completely describe electronic motion. The
first demonstration of the QHE was realized using a 2D electron gas in a MOS-
FET (metal-oxide-semiconductor field-effect transistor) at cryogenic temperature.
Despite electrons being confined in the bulk of the material, a finite number of
unidirectionally propagating states emerged at the surface of the sample under a
strong magnetic field (15 T). The sample was thus strikingly shown to be an insu-
lator in the bulk with a quantized surface conductance with direct consequence for
metrological applications. The effect of the magnetic field was analyzed in terms
of Landau levels and the number of chiral conductive edge states was shown to be
related to a topological invariant of energy bands, the Chern number [2] which is
also referred to as the TKNN invariant in reference to the authors of the demonstra-
tion: D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs. Soon after,
the experimental evidence of fractional quantized conductance [233] demonstrated
the importance of many-body interactions [234], unveiling the quantized transport
of quasi-particles carrying a fractional elementary charge. This effect is called the
Fractional Quantum Hall Effect (FQHE). A blossoming theoretical and experimen-
tal development followed the discovery of QHE, especially with F. D. M. Haldane
demonstrating that a global magnetic field breaking the time reversal symmetry is
not necessary to induce the formation of unidirectional conducting edge states and
that the crucial ingredient is the non-trivial topology of energy bands [244]. An
extension of this model preserving the time reversal symmetry was then proposed
by C. L. Kane and E. J. Mele [245, 246] demonstrating the Quantum Spin Hall
Effect (QSHE) associated to a Z2 topological invariant. In this case both spin com-
ponents realize a Chern insulator with opposed invariants, edge states appear as
contra-propagating spin-polarized pairs resulting in a spin current without charge
current, an effect which was experimentally observed two years later [247].

Classification of topological insulators were realized [248–250], characterizing
observable effects in a given material based on symmetry classes. The considerable
enthusiasm caused by the discovery of edges states at the surface of topological
insulators comes from the fact that their existence is directly linked to the topology of
the bulk material. Consequently, any local modification of the interface or of the bulk
induced by disorder does not invalidate the existence of the edge state. Removing
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CHAPTER 3. Gap solitons in a 1D topological lattice

a topological edge state requires a strong restructuring of the bulk material: the
energy gap has to be closed.

The origin of a band topology can be understood as the presence of a non-
vanishing geometric phase integrated over the Brillouin zone. Introduced in 1984
by M. V. Berry [251] the geometric phase or Berry phase, analogous to the Pan-
charatnam phase introduced in the case of optics [252], represents the non-dynamical
phase acquired by a state |Ψλ〉 under adiabatic evolution of a parameter λ of the
system’s Hamiltonian Hλ(t). At each point of time, the system is supposed to verify
the Schrödinger equation:

Hλ(t)|Ψλ(t)〉 = Eλ(t)|Ψλ(t)〉 (3.1)

Under adiabatic evolution the system is expected to remain in the initial state and
at a time t′, the state of the system can be approximated as:

|Ψλ (t′)〉 ≈ eiφTot (t′)|Ψλ (0)〉 (3.2)

where the acquired phase φTot (t′) is the sum of two contribution:

the dynamical phase φd(t′) = −1
~

∫ t′

0
Eλ(τ)dτ

the geometric phase φgeo (t′) = i
∫ t′

0
〈ψλ(τ)|∂τψλ(τ)〉dτ

(3.3)

Introducing the Berry connection Aλ = i〈ψλ|∂λψλ〉, the geometric phase acquired on
a closed loop can be written as an integral of the Berry flux Ωλ = ~rot (Aλ) through
the enclosed surface.

According to Bloch theorem, eigen-states of a system composed of a particle of
mass m in a periodic potential V (x) can be decomposed in plane waves multiplied
by a periodic envelope function uk. uk is eigen-state of the periodic Hamiltonian
Hk = (p̂+~k)2/2m+V (x) with p̂ the momentum operator. On a band, the geometric
phase acquired on an adiabatic close loop of k across the first Brillouin zone reads
φgeo = i

∫ 2π
0 〈uk|∂kuk〉dk. The periodicity of uk imposes the geometric phase to be

φgeo,BZ = 2πC with C an integer: the Chern number. Changing the Chern number
of a band can only be done by a non-continuous deformation of this band, breaking
the adiabatic approximation: it requires to close and reopen an energy gap. Note
that in analogy between the Chern number and the genus number, the Berry flux is
also called Berry curvature.

The presence of topological edge states at the interface between two materials is
explained by the bulk-edge correspondence argument [253–255] which states that the
number of topological edge states existing at an interface between two materials is
equal to the variation of topological invariants across this interface. If the topological
invariant changes through the interface, it can only happen by a closing an reopening
of the energy gap, the interface therefore host states crossing the gap whose existence
is imposed by the bulk topology of the surrounding materials. Note that vacuum
is trivial. The number of topological edge states observed at the interface between a
material and vacuum is thus equal to the topological invariant of this material bands.
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3.1.3 Experimental realizations of topological phases with
photonic platforms

Considerable efforts have been put in the experimental realization of 2D and 3D
electronic topological insulators, the integer QHE was notably observed up to room
temperature in graphene [256]. An exhaustive overview of these works is presented in
Ref. [230,231,257,258]. More recently, the realization of topological insulators based
on transition metal dichalcogenides attracted interest as these materials exhibit a
strong spin-orbit interaction allowing to open a topological energy gap on the order
of a few tens of milli-electronvolts and thus to observe the QSHE at relatively high
temperatures T ∼100 K [259]. The emulation of the QHE and QSHE with photons
represents quite a challenge as, contrarily to electrons, photons are neutral particles.
Synthetic materials have thus been developed to mimic the physics of electrons in
topological insulator. Various systems where shown to reproduce not only the QHE
and QSHE physics but also other topological effects such as topological pumping.
An exhaustive description of these results can be found in Ref. [3, 4].

A first emulation of the analog Quantum Hall Effect for photons was done with
microwaves using gyromagnetic photonic crystals [260]. Unidirectional transport
was observed on the edge of the material while its bulk was shown to be insulating.
To probe the robustness of the chiral edge state, a metal slab was placed between the
two antennas used to inject and probe microwaves. No back-scattering was observed
while the forward transmission showed no significant perturbation, highlighting the
topological robustness of the edge state: its existence is preserved under local per-
turbation and it follows the surface of the material edge no matter its shape as
illustrated in Fig. 3.2 (a). A demonstration of the 2D analog QHE was also demon-
strated using coupled waveguides [235], circuit-QED [201] or exciton-polaritons [182]
for example. In each case, careful engineering of the bands and breaking of the time-
reversal symmetry led to the observation of unidirectional transport along the edge.
The case of coupled waveguides is particular as the 2D insulator is a mapping of
a 3D structure: the wave propagation direction is considered as an effective time
dimension and the system is described as a 2D Floquet Hamiltonian, this particular
class of insulators are thus referred to as Floquet topological insulators. In Ref. [235],
the authors engineered a honeycomb lattice of coupled waveguides where the time
reversal symmetry breaking required to observe chiral edge modes was obtained by
carving helical waveguides (see Fig. 3.2 (b)).

The observation of the analog QSHE for photons was done in coupled ring res-
onators [261], followed by implementations with meta-crystals [262], RF-circuits [263]
or also twisted cavities [264]. In those experiments the time reversal symmetry is
preserved while an effective magnetic field is induced: the two spin states experience
an effective magnetic field with opposite sign. Consequently, each of the two associ-
ated spin components present topological bands emulating the QHE with opposed
Chern numbers and thus opposed chirality. These states are referred to as helical
edge states which benefit from a weaker protection against perturbations as a spin
flipping interaction with a defect would induce back scattering. In Ref. [261], an
asymmetry is introduced in the ring resonators which induces a different path length
for clockwise and counterclockwise propagating modes (see Fig. 3.2 (c)) which thus
pick an opposite effective phase when hopping from a lattice site to another one.
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(a) (b)

(c)

Figure 3.2: a, Scheme of the gyromagnetic photonic crystal (top) and simulation
of the propagation of electromagnetic waves injected in the chiral edge mode via
antenna A (bottom). Light propagates around the defect represented by the grey
rectangle and no back-scattering or scattering in the bulk is observed. Images taken
from Ref. [260]. b, Schematic representation of the helical coupled waveguide array
(top) and experimental measurement of the output field as a function of the injection
spot position represented by a yellow ellipse (bottom). Images taken from Ref. [235].
c, Representation of the coupled ring resonator unit cell (top left) and of the resulting
array (top right). Red arrows highlight the path followed by light cycling clockwise
in the lattice sites. The length asymmetry introduced in link resonator between sites
1-2 and 3-4 results in an phase picked up over a unit cell round trip. The bottom
panel shows the experimental and numerical results obtained when injecting light
in the resulting helical edge mode: propagation around a defect without scattering
is observed. Images taken from Ref. [261]
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As a result this structure corresponds to two realizations of the Harper-Hofstadter
model. The Harper-Hofstadter model [265] is a tight-binding equivalent of the Lan-
dau levels problem, the well-known Harper-Hofstadter butterfly describing the en-
ergy spectrum of a periodic lattice as a function the applied magnetic field.

Interestingly, the versatility of photonic platforms allowed pushing the explo-
ration of topological phases beyond the two 2D paradigmatic effects (QHE and
QSHE) and observing various topologically induced phenomena. Coupled waveg-
uides demonstrated anomalous Floquet topological insulators where the non-trivial
topology originates from a periodic modulation of the Hamiltonian in time [266,267]
and is associated to the existence of non-trivial winding numbers. Measurement of
the Berry curvature was done using a fiber loop architecture [268] and direct mea-
surement of a topological invariant was done with micro-waves [269]. Photonic
artificial graphene enabled observing the zero-energy edge modes of the gapless
model [270–272] which originate from the winding of the Berry Phase around Dirac
cones. A mapping with the 1D Su-Schrieffer-Heeger (SSH) model allowed to di-
rectly measure the topological invariant associated to this winding [273]. Higher
order topological insulator (HOTI) states were observed in a Kagome lattice [274],
demonstrating topological states with a dimension differing from the bulk one by
more than 1: here the authors report on the existence of 0D states localized in
the corners of the 2D structure. 3D topological structures where also demonstrated
with for example the engineering of Weyl points [275] which are the 3D equiva-
lent of Dirac cones, or also the realization of 3D topological insulators [276, 277].
Topological structures of even higher dimensions where also probed using synthetic
dimensions with the observation of the edge states of the 4D Quantum Hall Effect
via topological pumping [236].

In this chapter we address the non-linear behavior of the paradigmatic model for
topology in 1D, which is the Su-Schrieffer-Heeger model. Note that other 1D model
exist, most of them consisting in the implementation of quasi-crystalline lattices.
Their implementation allowed the observation and study of the topological edge
states of these exotic structures [278, 279] and to realize topological pumping [278,
280].

3.1.4 The SSH model: notion of chiral symmetry
The Su-Schrieffer-Heeger (SSH) model is one of the simplest models to highlight the
importance of the geometric phase. It is a one dimensional lattice that was first
introduced by W. P. Su, J. R. Schrieffer and A. J. Heeger to describe the electronic
properties of the poly-acetylene [281]. The topological properties of the SSH model
originate from the chiral symmetry which leads to the appearance of edge states at
the center of an energy gap [282]. The SSH model is a paradigmatic example of the
formation of topological edge states and is useful to explain the physics of several
higher dimensional lattices [273, 274]. Studying the non-linear response of the SSH
model therefore appears as a first important step for the exploration of many-body
topological physics.
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3.1.4.1 Chiral symmetry of the SSH Hamiltonian

The SSH model describes particles on a one-dimensional bipartite lattice with stag-
gered hopping amplitudes and constant on-site energies. Each unit cell of the lattice
is therefore composed of two sites that we label A and B. The single particle Hamil-
tonian describing a chain of M unit cells reads:

ĤSSH = −J
M∑
m=1

(|m,B〉〈m,A|+ h.c.)− J ′
+∞∑
−∞

(|m+ 1, A〉〈m,B|+ h.c.) (3.4)

where |m,A〉 (|m,B〉) describes the amplitude of the particle wavefunction on site
A(B) of the mth unit cell, J is the intra-cell hopping constant, it couples elements
of the mth unit cell only and J ′ is the inter-cell hopping constant. The onsite energy
was here arbitrarily chosen to be equal to zero. Note that J and J ′ can be assumed
to be real and positive as any phase could be gauged away by redefining the state
basis. A sketch illustrating the architecture of the SSH lattice forM = 5 is presented
in Fig. 3.3 (a).

The chiral symmetry of the model can be highlighted by emphasizing the spinor
nature of the internal degree of freedom (sub-lattice index) of the Hamiltonian.
Using the Pauli matrices:

σ̂0 = 1̂2, σ̂x =
[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
and σ̂z =

[
1 0
0 −1

]
(3.5)

Rewriting |m,A〉 = |m〉⊗
[
1
0

]
and |m,B〉 = |n〉⊗

[
0
1

]
, we can write the Hamiltonian

in a form where internal and external degrees of freedom are clearly decoupled:

ĤSSH = −J
M∑
m=1
|m〉〈m| ⊗ σ̂x − J ′

+∞∑
−∞

(
|m+ 1〉〈m| ⊗ σ̂x + iσ̂y

2 + h.c.

)
(3.6)

An Hamiltonian Ĥ is said to possess the chiral symmetry if there exists an oper-
ator Γ̂ that is unitary, Hermitian, local (does not couple a unit cell to another one)
and that anti-commutes with Ĥ (Γ̂ Ĥ = −ĤΓ̂ ). In the case of the SSH Hamiltonian
it is straightforward to verify that the operator Γ̂ = 1 ⊗ σ̂z satisfies all of these
conditions 1.

The chiral symmetry has direct consequences not only on the spectrum but
also on the wavefunction of the eigenstates. The chiral operator Γ̂ highlights the
existence of two independent sub-lattices defined by the projectors P̂± = 1

2 (1± Γ̂ ).
In the case of the SSH model, it corresponds to projectors on A and B sites of
each unit cell. The chiral symmetry also imposes the spectrum to be symmetric
with respect to the zero energy, if |Ψl〉 is an eigenstate for the energy El then
Γ̂ |Ψl〉 = |Ψ−l〉 is an eigenstate for −El:

Γ̂ Ĥ|Ψl〉 = Γ̂El|Ψl〉 =⇒ −ĤΓ̂ |Ψl〉 = ElΓ̂ |Ψl〉 (3.7)
1Note that, as it is usually the case (especially in chemistry), the chiral symmetry defined here

is as a mirror symmetry. In the present case it operates on the B sublattice of the model.
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This imposes the wavefunction of non-zero energy state to present an equally dis-
tributed intensity on both sub-lattices:

〈Ψl|Ψ−l〉 = 0 = 〈Ψl|Γ̂ |Ψl〉 =⇒ 〈Ψl|P̂+|Ψl〉 − 〈Ψl|P̂−|Ψl〉 = 0 (3.8)

Conversely the chiral symmetry imposes zero energy states to be localized on a single
sub-lattice:

ĤΓ̂ |Ψl〉 = 0 = Ĥ|Ψl〉 =⇒ Γ̂ |Ψl〉 = ±|Ψl〉 =⇒ P̂+|Ψl〉 = 0 or P̂−|Ψl〉 = 0 (3.9)

The chiral operator actually allows the definition of a pseudo-spin associated to
projectors. In the case of SSH, it is the sub-lattice pseudo-spin S̃:

S̃ = 〈Ψ|P̂+|Ψ〉 − 〈Ψ|P̂−|Ψ〉
〈Ψ|P̂+|Ψ〉+ 〈Ψ|P̂−|Ψ〉

= 〈Ψ|Γ̂ |Ψ〉
〈Ψ|Ψ〉 =

∑
m |Ψm,A|2 − |Ψm,B|2∑
m |Ψm,A|2 + |Ψm,B|2

(3.10)

where |Ψm,A|2 (|Ψm,B|2) represents the probability density of |Ψ〉 on the A (B) sub-
lattice on the mth unit cell. S̃ measures the intensity imbalance of the wavefunction
|Ψ〉 with respect to the A/B sub-lattices and takes values between 1 and −1. S̃ = 0
for non-zero energy eigenstates and S̃ = ±1 for zero energy eigenstates which are
localized on a single sub-lattice.

Note that the chiral formalism is a very powerful tool to engineer flat bands as
the energy symmetry imposes their existence at zero energy for any chiral system
with an odd number of sites per unit cell [283], common examples being the 1D and
2D Lieb lattices or the 2D Kagome lattice.

3.1.4.2 Topology of the SSH gap

To describe in more detail the bulk properties of the SSH model and to show how
its chiral symmetry leads to topological properties, we consider an infinite chain
(M → ∞) and use the reciprocal space (or momentum space) description of the
Hamiltonian. The translation invariance of the bulk allows applying Bloch Theorem
and writing the bulk reciprocal space Hamiltonian and its decomposition on Pauli
matrices:

H̃SSH (k) = −
[

0 J + J ′e−ika

J + J ′eika 0

]
= −

∑
j=0,x,y,z

dl(k)σ̂l

d0(k) = 0, dx(k) = J + J ′ cos(ka), dy(k) = J ′ sin(ka) and dz(k) = 0
(3.11)

where a is the length of the unit cell and the momentum k is scalar and takes values
in the first Brillouin zone (|k| ≤ π

a
).

Solving the Schrödinger equation we find the dispersion relation E± (k) and the
corresponding eigensates |Ψ± (k)〉 of the system:

E± (k) = ±
√
J2 + J ′2 + 2JJ ′ cos(ka) and |Ψ± (k)〉 = 1√

2

[
1

±eiφ(k)

]

with φ(k) = tan−1
(

J ′ sin(ka)
J + J ′ cos(ka)

) (3.12)

Figure 3.3 (b) shows the energy dispersion for different values of the couple
{J, J ′} along with, Fig. 3.3 (c), the close path described by d (k) in the (dx,dy)
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Figure 3.3: a, Schematic representation of the finite SSH chain for M = 5, the
unit cell is highlighted using a black dashed box. b, Band structure of the SSH
model for three sets of {J, J ′}, characteristic of the different phases of the model.
c, Corresponding closed trajectory of d (k) when k is scanned across the Brillouin
zone. When J < J ′ this trajectory circles around the origin, evidencing the non-
trivial phase of the model with a winding number w = 1.
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plane when the momentum k is scanned across the first Brillouin (k : −π
a
→ π

a
).

Note that the trajectory of the vector d (k) is confined to this plane as long as the
chiral symmetry holds (dz = 0).

The energy spectrum of the system is gaped as long as J 6= J ′ which is equivalent
to a trajectory of d (k) avoiding the origin of the (dx,dy) plane. This gap of amplitude
∆gap = 2(|J − J ′|) is the topological gap of the SSH model, it is characterized by
an invariant called the winding number w. A visual representation of the winding
number is given by the trajectory of d (k) as w is the number of times that the vector
d (k) circles (winds around) the origin when k is scanned across the first Brillouin
zone. The winding number can also be obtained by computing the geometric phase
(in this case called the Zak phase [284]) acquired across the Brillouin zone:

w = i

π

∮
BZ
〈Ψ±|∇k|Ψ±〉dk = 1

2π

∫ π/a

−π/a
∂kφ(k)dk (3.13)

A non-zero value is obtained for J ′ > J due to the presence of a pole in the expression
of tan(φ(k)). Note that this pole coincides with the trajectory of d (k) crossing the
dy axis of the plane.

As long as the chiral symmetry is preserved, a change of w can only occur by
closing the topological gap: the number of times that the trajectory of d (k) circles
the origin can only be increased or decreased by having this trajectory to cross the
origin. In the canonical form of the SSH model, this invariant can take only two
different values: w = 0 when J > J ′ and w = 1 when J < J ′. It is yet possible
to access other values by introducing long range hopping terms that couple sites of
different sub-lattice (dz = 0) [285–287].

The description of the bulk SSH topological phases is ambiguous since it relies
on the definition of the unit cell: swapping A and B labels leads to exchanging the
role of J and J ′ and thus to attributing winding numbers w = 0 and w = 1 to the
same lattice. This description makes sense when considering semi-infinite lattices
as the edge unequivocally defines the unit cell and thus the associated winding.
In that case, one can refer to the bulk-edge correspondence [288] to explain the
existence of an edge state at the end of lattice presenting a winding number of
w = 1. Due to chiral symmetry, this edge state is localized at the center of the gap
and presents a sub-lattice pseudo-spin S = ±1 (see Fig. 3.4 (a)). The wavefunction
of the state presented in Fig. 3.4 (a) is given by |m,A〉 = −(J ′/J)m|0, A〉 and
|m,B〉 = 0 ∀m. Mid-gap states originating from the lattice topology can also be
observed at the interface between the non-trivial lattice and any material presenting
a different winding of the Zak phase. The simplest way to engineer such states is to
couple a SSH chain of winding w = 1 to a chain of winding w = 0 through a bound
Jlink. In this case the structure of the interface states depends on the amplitude of
the coupling between lattices but the symmetry protection of the lattice imposes
the resulting state to be localized at the center of the gap and to present a sub-
lattice pseudo spin as illustrated in Fig. 3.4 (b). The interface state presents spin-
polarized exponentially decaying tails on each side of the interface with |m,A〉 =
−(J ′/J)m|0, A〉 ∀m > 0, |m,A〉 = −(J ′/J)m| − 1, A〉 ∀m < −1 and |m,B〉 = 0 ∀m.
The evolution of the modulus amplitude of |0, A〉 and | − 1, A〉 as a function of
the amplitude of the link coupling the two semi-infinite lattices in presented in
Fig. 3.4 (c).
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Figure 3.4: a, Spatial distribution of the topological edge state wavefunction. A
schematic representation of the topologically non-trivial semi-infinite SSH chain is
presented on top and dashed vertical lines indicate the sites positions. Two coupling
constant are considered: the strong (weak) coupling Jstrong (Jweak) is represented
by a double (simple) bond. b, Spatial distribution of the topological interface state
wavefunction for three different values of the coupling link Jlink between trivial (left)
and non-trivial SSH lattices (right). A sketch of the lattices is depicted on top. In
all cases, the wavefunction is fully localized on the A sub-lattice, corresponding to
a pseudo-spin S̃ = +1. c, Evolution of the wavefunction absolute value on first A
pillar of each lattice as a function of the link amplitude Jlink. Purple and orange
curves respectively correspond to trivial and topological emulations of the chain,
associated pillars are filled with corresponding color on schematic representation of
panel (b). Depending of the link coupling amplitude, the state can be localized on
either one or both lattices.
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3.2. An emerging field: non-linear topological photonics

A plethora of photonic realizations of the SSH lattice have been reported, evi-
dencing the topological mid-gap states characteristic of the model. The first photonic
emulation of the lattice was realized with photonic superlattices [289] without es-
tablishing the link with the topological model. A stack of waveguides was produced,
pairs of waveguides being alternatively separated by high and low refractive index
layers. Depending on the superlattice termination, the authors demonstrated that
light injected in the last waveguide could be trapped at the surface of the sample,
evidencing the presence of the localized topological edge state of the SSH model.
Due to is relative simplicity this model has now extensively been implemented on
various platforms and a polariton emulation of the SSH model was notably used to
demonstrate the first topological laser [197]. Another important aspect of photonic
platforms is the ease with which engineering of losses and gain can be done in most
of systems. Photonics platform are thus extremely pertinent for the exploration of
the interplay between non-Hermiticity and topology [290]. Tailoring gain and losses
in photonic systems, it was possible to engineer topological phases [5, 291, 292] in
P-T symmetric emulation of the SSH model.

In this chapter we aim at exploring the properties of the SSH model in the pres-
ence of non-negligible inter-particle interactions. The exploration of the interplay
between non-linearities and topology is an emerging field which promises the real-
ization of robust active devices. In this regard, photonic platforms are particularly
appealing due to their high versatility in the implementation of topological struc-
tures but also to the ease to observe significant non-linearities by injecting extremely
dense wave-packets thanks to pulsed lasers. The polariton platform can play a par-
ticular role in the exploration of non-linear photonics as the strong Kerr non-linearity
allows the generation of strongly non-linear fluids of light using a relatively lower
pump power. Additionally, the driven-dissipative character of the system is a strong
asset of polariton lattices since it gives us the ability to coherently and continuously
drive the system with on demand engineering of the excitation field. These are the
tools we will use to generate gap solitons in a SSH polariton lattice.

3.2 An emerging field: non-linear topological pho-
tonics

The discovery of the Fractional Quantum Hall Effect [233, 234] demonstrated that
topological phases of matter become even richer when inter-particle interactions are
considered. non-linear topological photonics is an emerging field aiming at extend-
ing the fascinating properties of topological states and phases of matter to the realm
where interactions between the system constituents cannot be neglected. The mod-
ifications induced by interactions especially raises the question of the need for an
expression of the Berry phase taking non-linear effect into account [293, 294]. Here
we will describe some of the important research axes opened by the interplay between
topology and non-linearities. An overview of the recent developments regarding this
field can be found in Ref. [295].
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(a) (b)

Figure 3.5: a, Energy dispersions of polariton modes in the bulk and at the edge of
the structure, measured by non-resonant spectroscopy (top): the edge state localized
in the middle on the “p” bands gap is highlighted by ellipses. Real space energy
distribution of polaritons at the edge of the structure below (bottom left) and above
lasing threshold (bottom right). Above the lasing threshold the light is emitted from
the gap state, which is shown to be localized on the edge pillar (inset). Image taken
from [197]. b, Top view SEM image of the sample (top), one can see an interface
between two photonic crystals presenting different geometries. In the lasing regime,
the light is shown to be confined at the interface between the two materials (bottom).
Image taken from [298].

3.2.1 Topological lasers
One of the most striking phenomenon originating from the non-Hermitian nature
of photonic platform is the possibility to realize topological lasers. The topological
origin of edge states endows them with a robustness against local disorder which
is inherent to fabrication processes, aging of the materials or simply due to am-
bient fluctuations. Consequently, the generation of topological edge state lasers is
very promising as the resulting laser would benefit from these robustness properties.
Despite not being at the origin of the lasing effect, the influence of inter-particle
interactions can be predominant: in standard lasers, the high intra-cavity particle
density above the lasing threshold is known to induce a rich diversity of phenom-
ena such as instabilities, chaotic behavior [296], or also self focusing which is used
for mode-locking [297]. One can thus wonder whether topological lasers would be
subjected to the same phenomena or if new dynamics could be observed in such
structures.

The first realization of a topological laser was realized by our group in a polariton
1D lattice emulating the SSH model [197]. Lasing on the edge states engineered with
“p” orbitals was reported as illustrated in Fig. 3.5 (a) and the robustness of such laser
was discussed. The system was shown to spontaneously lase on the topological edge
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3.2. An emerging field: non-linear topological photonics

state, which is significantly advantaged in the mode competition for lasing due to
its spatial localization. In addition, this topological edge state was shown to remain
strongly localized at the edge as long as perturbations do not exceed the amplitude
of the gap. Further exploration of the SSH topological polariton laser was done
by the group of S. Höfling [299]. Other implementations of lasing on a topological
edge state of the SSH model where reported in coupled-ring resonators [300,301], in
photonic crystals [302], vertical-cavity surface-emitting laser (VCSEL) array [303]
and recently up to room temperature using organic materials [304].

The first lasing effect in a 1D edge state of a 2D topological lattice was reported
using photonic crystals [298] on a yttrium iron garnet substrate (see Fig. 3.5 (b))
implementing a Chern insulator, the time reversal symmetry being broken via the
magneto-optic effect. A relatively small topological gap was opened (42 pm) but is
was yet sufficient to observe unidirectional lasing on the chiral edge state localized
at the surface of the sample when pumping the whole sample. This unexpected
behavior is still under study as a uniform pumping should have led to multi-mode
lasing of bulk modes [305]. 1D topological lasers have also been implemented using
ring resonators [306] and polariton lattices [182] while more recently, lasing in corner
states of a 2D photonic crystal lattice was reported at room temperature [307].
Note that the polariton platform appears to be very appealing for the generation of
topological lasers which could be realized via electric injection [308].

In addition to their robustness to disorder in terms of energy and spatial local-
ization, a recent theoretical development demonstrated the advantage of topological
lasers in terms of temporal and spatial coherence [309]. These results comfort the
importance of topologically protected states in the view of developing robust active
devices.

3.2.2 Non-linear phase transitions and wave-mixing
Considering the richness of non-linear phenomena in trivial materials, the explo-
ration of the interplay between non-linearity and topology promises the discovery
of exotic behaviors in addition to the stabilization and protection of already known
effects.

In the case of wave-mixing, the generation of correlated photon pairs mediated
by topologically protected states have been reported in a 2D ring resonator lat-
tice [310]. The authors demonstrated the robustness of the signal energy by probing
seven different realizations of the topological insulator and comparing it to a third
harmonic generation process in a trivial 1D channel. Triggering a third harmonic
generation (THG) process on the edge state of a 2D topological insulator was shown
to enable realizing correlated photon pairs with a well defined energy, whereas dis-
order induced fluctuations are detrimental in absence of topological protection (see
Fig. 3.6 (a)). A similar result was obtained by the group of Y. S. Kivshar [311]
where the THG process was mediated by the edge state of a 1D SSH lattice made
of dielectric nano-particles. The author observed that, under small perturbations
of the lattice, the THG process remains significantly localized on the edge of the
lattice.

Topological phase transitions are expected to appear when the energy associated
to the non-linear interaction becomes comparable to other characteristic energy
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Figure 3.6: a, Spectral correlation maps between signal and pump photons in a
1D topologically protected (top) and trivial channel (bottom). In each row, the
last image represents the mean value computed over seven realizations. Images
taken from Ref. [310]. b, Calculated energy spectra of the many body system
(left) and measured occupancy of the bulk and edge sites (right) in the case of a
trivial (top) and a topological lattice (bottom). Image taken from Ref. [312]. c,
Output intensity distribution as a function of the non-linearity amplitude for a SSH
waveguide array pumped at the defect position (yellow arrow). Two cases are here
illustrated with: a linear P-T symmetric device (left) and a non-P-T symmetric
array (right) presenting a central waveguide with a gain excess. Images taken from
Ref. [6].
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scales of the system. In the strongly interacting case of hard-core bosons, a new
topological symmetry-protected phase of the SSH model has been reported using
Rydberg atoms [312]. In case of a non-trivial termination of the SSH chain the
ground state is four time degenerate, whereas in the case of the trivial lattice, a
unique ground state corresponding to a half-filling of the lattice sites is observed. In
the non-trivial case, a sharp transition between zero and full occupancy of the edge
sites was observed as a function of the number of particles stored in the lattice (see
Fig. 3.6 (b)).

A photonic implementation of the FQHE physics as been realized in the group of
J. Simon [313] using Rydberg polaritons formed by the strong coupling between Ry-
dberg atoms and photons confined in a twisted cavity. The twisted cavity supports
photonic modes carrying angular momentum which are analogous to the lowest Lan-
dau levels of electron under a strong magnetic field. Additionally the strong interac-
tion between Rydberg atoms, enabling to observe a polariton blockade, is equivalent
to the repulsive Coulomb interaction between electrons. When the |l = 3〉, |l = 6〉
and |l = 9〉 cavity modes are brought to resonance, the polariton blockade is frus-
trated as a photonic equivalent of a Laughlin state is formed in resonance with the
laser energy.

In the case of weakly interacting particles, interaction induced energy-shift of
the topological edge state of an SSH lattice has been reported [314], demonstrating
the interactions as a potential knob to tune the properties of topologically protected
states. Experimental evidence of topological phase transitions of the SSH model have
been reported in coupled LC resonators [315] and waveguides [316] where a renor-
malization of the hopping constants is induced by interactions. In Ref. [315] the non-
linearity induced modification of coupling strengths led to a global phase transition
from the trivial to the topological phase of the SSH model while in Ref. [316] a local
injection at the edge of a trivial SSH chain is demonstrated to become self-trapped
in the edge waveguide when the input power is increased. Several mechanisms for
topological phase transitions in a P-T symmetric configuration have been reported
in Ref. [6]. In this work, the self-focusing and self-defocusing non-linearity is used
as a mean to control the losses of the waveguides: in the case of self-focusing the
reduction of diffraction and leakage provides an effective gain in the material while
on the contrary, the self-defocusing interaction enhances the losses experienced by
photonic modes. Probing the existence of an edge state, the authors demonstrated
the destruction of a preexisting P-T symmetric topological phase via either self-
focusing or self-defocusing non-linearity (see Fig. 3.6 (c)) and the transition of a
lossy (gainy) non-P-T symmetric chain to a P-T symmetric topological phase via
self-focusing (self-defocusing) interaction.

In the case of 2D lattices, the group of A. Szameit recently realized a trivial
lattice supporting topologically protected non-linear edge states [317]. The authors
engineered a trivial band-gap supporting no single particle edge state but yet present
a many-body chiral edge state. In presence of a strong photon density, the Kerr non-
linearity induces a renormalization of the couplings between waveguides which leads
to the presence of a non zero winding of the phase. non-linear injection of light
on the edge of the lattice was shown to generate a wave-packet unidirectionally
propagating along the edge of the structure.

A theoretical proposal for an all-optical (no external magnetic field) polariton
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non-linear 2D insulator was proposed by the group of G. Malpuech [318] where
the spin-anisotropy of the interaction is used to induce an effective magnetic field
breaking the time reversal symmetry. As a consequence, the bands associated to
Bogolons present a non zero Chern number similarly to the one induced for linear
eigenstates in Ref. [182,319] under the action of a true magnetic field.

3.2.3 Topological solitons
Localized non-linear defects such as solitons constitute a strong perturbation to the
energy landscape of a lattice. The generation of such non-linear defects, breaking
the translation invariance, may for example offer the possibility to induce domain
walls in topological lattices or to form solitons or vortices with a non-trivial structure
which could be protected by symmetries of the underlying model. Reference [317]
is a good example showing that localized dense wave-packets can be subjected to a
non-trivial many-body dynamics. The formation of solitons in a photonic topological
bandgap has recently been reported by the group of M.Rechtsman using a Floquet
topological insulator [320]. Exciting the bulk of a topological square lattice with a
light pulse, the formation of a localized wave-packet was measured by scanning the
input power injected in one of the waveguides and a cyclotron-like motion of the
corresponding soliton was observed. The same group very recently reported on the
observation of Floquet solitons with edge-state like propagation [321] and on the
Thouless pumping of a soliton [322].

Numerous theoretical works explored solitonic solutions emerging in topologi-
cal bandgaps [202, 205, 323, 324] or bands [325] and in Floquet systems [326, 327].
The interaction between gap solitons and topological edge states was studied in
Refs. [203,328]. Interestingly, novel solitonic solutions with a ring shape are expected
to emerge in hexagonal boron nitride (hBN), a gaped analogue of graphene where
the two unit cell sites present different onsite energies [206]. The Chern number of
bands was recently discussed as strongly affecting the dynamics of solitons [329,330].

In the following, we will investigate the driven-dissipative counterpart of the
physics discussed in Refs. [202,203]: i.e driven-dissipative gap solitons generated in
the topological of the SSH model. The theoretical study of gap solitons in the SSH
model has been reported in Refs. [202, 203] for conservative systems. These works
unveiled the existence of topological gap solitons presenting an intensity distribution
reflecting the symmetry of the underlying Hamiltonian: they possess chiral expo-
nentially decaying tails. This particular distribution of the soliton wavefunction
strongly affects their interaction with defects: depending on the defect localization,
the topological gap soliton dynamics was shown to evidence an interaction that
can be either attractive or repulsive. In the next section we explore the dissipative
counterpart of these solitons in the gap of a polariton SSH lattice.

3.3 Non-linearities in the topological gap of SSH:
formation of topological gap solitons

The exciton-polariton platform appears to be extremely suited for the exploration
of non-linear topological photonics: not only the high versatility of the confinement
engineering enables implementing almost arbitrary geometries and thus topological
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phases of matter [182, 197, 319] but the strong polariton-polariton interactions are
responsible for the observation of non-linear behavior of the system even under
continuous excitation [217,219].

Taking advantage of the strong inter-particle interaction, we will discuss the con-
tinuous injection of solitons in topological band-gaps in the bulk and at a topological
interface of the SSH model. A robustness of solitons due to their chiral symmetry
will be demonstrated against defect localized on one sub-lattice.

Interestingly, we will show that the manipulations of the non-linear fluid enabled
by the driven-dissipative nature of the system allows reaching and stabilizing steady-
state solutions with a profile strongly reminiscent of the one of a topological edge
state. To the best of our knowledge, these solutions have never been experimen-
tally observed nor discussed theoretically. These new solitons will be shown to be
inaccessible to conservative systems as they require to maintain a phase frustration
which is made possible by the inhomogeneous nature of the driving field. Reach-
ing non-linear steady states is predicted, under careful engineering of the drive, to
lead to the appearance of topologically non-trivial excitation spectra [8, 318, 331].
Numerically reproducing the obtained experimental results, we will calculate the ex-
citation spectrum on top of bulk gap solitons and show that the onset of the phase
frustration leads to the appearance of a localized state in the topological band-gap
which is akin to an non-trivial edge state.

3.3.1 Emulating the SSH model with “s” modes
Previous implementations of the Su-Schrieffer-Heeger model with polaritons relied
on the hybridization of “p” orbitals of coupled micro-pillars in a “zigzag" chain [197].
The advantage of this initial implementation is that px and py orbitals are orthogonal
and separately emulate the two different phases of the model: if the px orbital chain
ends with a strong coupling, thus emulating the trivial phase, the coupling between
associated py orbitals is weak and it corresponds to a non-trivial end of the lattice
hosting an edge state. The band structure thus consists in a set of degenerate bands
associated to each possible winding number of the canonical SSH Hamiltonian.

In the present work we engineered a chain of coupled micro-pillars where the
emulation of the SSH model relies on the hybridization of the lowest eigenstates
(s-states) of each micro-pillar. The etched structure consists in a periodic chain
of micro-pillars with a diameter of D = 3 µm with alternated short (ds = 2.2 µm)
and long (dl = 2.75 µm) center to center distances, which results in a respectively
strong and weak coupling between the pillars “s” modes. An SEM image of a lattice
portion is presented in Fig. 3.7 (a) along with the measured energy distribution of
the polariton eigenstates resolved in momentum (Fig. 3.7 (b)) obtained by spec-
troscopy under non-resonant excitation at 4 K. A fit obtained by solving the 2D
Schrödinger equation for this structure is superimposed to the Fourier space disper-
sion. Fig. 3.7 (c) corresponds to a zoom on the lowest energy bands of the spectrum,
which are the ones of interest in this chapter, and Fig.e 3.7 (d) corresponds to the
spectral density of polariton modes resolved in position. A polarization filtering
was applied to only collect the component aligned with the transverse direction of
the lattice. The strong spatial asymmetry due to the quasi-1D nature of the lattice
leads to a lift of the degeneracy between polarization components and the horizontal
and vertical directions of the linear basis aligned with the lattice axes are a good
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Figure 3.7: a, Scanning electron microscope image of the SSH polariton lattice.
Some of the micro-pillars are highlighted with yellow circles. b, Spectrally resolved
photoluminescence intensity measured as a function of momentum k. Superimposed
dashed lines correspond to a fit realized by solving the 2D Schrödinger equation
governing the structure. c, Zoom of (b) around the lowest bands emulating the
SSH model. Superimposed grey dashed lines correspond to a fit of the “s” band by
a tight binding approximation. d, Spectrally resolved photoluminescence intensity
measured as a function of position x along the lattice and corresponding to the
energy range of (c). The red circles in the sketch on top of (d) represent the non-
resonantly pumped sites.

85



3.3. Non-linearities in the topological gap of SSH: formation of topological gap
solitons

0

1

B
A

A
B J’

J’

J

3 µm

(a)

A

E
-1

44
3.

5
(m

eV
)

x (µm)

0

2

-1

1

0 20-20-40 40
k (µm−1)

-1 10

(b) (c)
5µm

0 1

Figure 3.8: a, Scanning electron microscope image of the interface between SSH
polariton lattice, the weakly coupled pillar is highlighted by a green circle. b, Spec-
trally resolved photoluminescence intensity measured as a function of momentum
k. c, Spectrally resolved photoluminescence intensity measured as a function of
position x. The inset presents the 2D spatial distribution of the state localized in
the gap. Dark solid (dashed) circles delimit the A (B) pillars.

description basis: both components can be considered independently in the linear
regime.

The two lowest energy bands observed on Fig. 3.7 (b-c) correspond to the gaped
energy bands of the SSH model formed by the hybridization of the “s” modes while
higher energy bands originate from the hybridization of “p” orbitals. Looking at the
eigenstate distribution in real space (Fig. 3.7 (d)), the bonding and anti-bonding
character of, respectively, the lower and upper “s” bands can be identified: the lower
band wavefunctions present a maximum in between strongly bound pillars while the
intensity distribution exhibits a clear zero in the case of the upper band. Each sub-
band can be interpreted as resulting from the hybridization of dimerized orbitals and
this feature is clearly observable in the real space intensity distribution of the upper
band. The lowest energy part of the sub-band exhibits a non-vanishing intensity
between coupled dimers which gradually becomes a clear zero as the energy increases
and reaches the top of the band: the bottom (top) of the band correspond to a
bonding (anti-bonding) hybridization of anti-symmetric dimer states. We measure
a width Egap = 450 µeV of the topological gap between these “s”-bands.

A small asymmetry between the two bands is observed. This deviation originates
from a residual coupling between the “s” and “p” orbitals of neighboring pillars. In
a tight-binding description of these bands, this phenomenon can be produced by
phenomenologically including a next nearest neighbor coupling. This adds a coupling
between pillars belonging to the same sub-lattice and constitutes a perturbation to
the chiral symmetry giving rise to an asymmetry between the upper and lower “s”
bands. A numerical fit of the energy bands (superimposed on Fig. 3.7 (c)) allowed
estimating the different hopping energies involved in the structure. We obtain a
strong coupling J = 0.49 meV and a weak coupling J ′ = 0.20 meV which are one
order of magnitude higher than the sub-lattice effective coupling Js = −0.04 meV.
In the following we neglect this perturbation.

To illustrate the topological nature of the engineered lattice, we design a defect
in the lattice periodicity: the alternation between strong and weak couplings is
locally broken by introducing a pillar weakly coupled to both its neighbors (see

86



CHAPTER 3. Gap solitons in a 1D topological lattice

(a)

(d)

(b)

(c)

E
-2
.1

2
(m

eV
)

0

2

-1

1

k (µm−1)
-1 10

x (µm)

y

Po
te
nt
ia
l(

m
eV

)

-1.5
1.5

0
0

5

10

15

20

10 20 30 40 50

Figure 3.9: Numerical simulations: a, 2D description of a SSH lattice with 10
unit cells (top) and associated 1D potential calculated by transverse approximation
(bottom). b, Square potential model developed by D. Solnyshkov. The height and
width of the barriers were optimized to reproduce experimental results. c, Calcu-
lated band structure of the 1D continuous SSH model described by the potential
of panel (a). d, Calculated band structure of the 1D continuous SSH model de-
scribed by the potential of panel (b). Panels (b) and (d) where taken from the
supplementary materials from Ref. [332].

SEM image in Fig. 3.8 (a)). This defect is equivalent to an interface between the
two different phases of the SSH model (as described in Fig. 3.4 (b) top sub-panel) and
one thus expects the formation of a topologically protected localized state inside the
topological gap. By performing the same non-resonant spectroscopy measurement
on the chain of pillars presenting an interface defect, we obtain the momentum and
position resolved energy distributions of polariton modes presented in Fig. 3.8 (b-
c). A localized mode is clearly observed inside of the gap at the interface, which
presents the spatial intensity distribution of a topological state: its wavefunction
is only localized on the A sub-lattice corresponding to a positive total sub-lattice
pseudo spin S̃ = 1 (see inset of Fig. 3.8).

All experimental results are reproduced by numerical simulations. For the sake
of simplicity, a tight-binding approach, restricting ourselves to “s” bands only, will
be considered to focus on the essential physics of the SSH model. When discrepan-
cies between the tight-binding mapping and experimental results cannot be solved
by simple means, 1D continuous simulations of the lattice can be realized. These
simulations can either be ran considering a transverse approximation of the confine-
ment potential for polariton, leading to the energy potential presented in Fig. 3.9 (a)
which is directly obtained from the 2D structure of the micro-pillar lattice (see top
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panel of Fig. 3.9 (a)), or using a square potential model (see Fig. 3.9 (b)) developed
by Dmitry Solnyshkov and Guillaume Malpuech, the two theoreticians who con-
tributed to the development and analysis of these results. This latter model is very
close to the tight-binding approach: each site is represented by a square potential
well and the coupling strength from site to site can be chosen by tuning the high
and width of the energy barriers. In Fig. 3.9 (c-d) we display the calculated band
structure obtained via both methods: in both case, careful tuning of the 1D poten-
tial parameters enables reproducing the energy dispersion measured experimentally.
Note that the asymmetry between the two “s” bands, which originate from a cou-
pling between “s” and “p” modes of neighboring sites, is well captured by these two
models.

3.3.2 Bistability of a topological interface state: a topolog-
ical soliton

To start our exploration of the interplay between topology and non-linearities in
driven-dissipative systems, we begin by probing the non-linear response of the topo-
logical interface state via the optical bistability. The discrete Gross-Pitaevskii equa-
tion governing the system can be written as a set of coupled non-linear equations
which yields:

∀ m < 0 :

i~∂tΨA,m = −JΨB,m − J ′ΨB,m−1 − (∆E + i
γ0

2 )ΨA,m + g|ΨA,m|2ΨA,m + iFA,m

i~∂tΨB,m = −JΨA,m − J ′ΨA,m+1 − (∆E + i
γ0

2 )ΨB,m + g|ΨB,m|2ΨB,m + iFB,m

∀ m > 0 :

i~∂tΨA,m = −JΨB,m−1 − J ′ΨB,m − (∆E + i
γ0

2 )ΨA,m + g|ΨA,m|2ΨA,m + iFA,m

i~∂tΨB,m = −JΨA,m+1 − J ′ΨA,m − (∆E + i
γ0

2 )ΨB,m + g|ΨB,m|2ΨB,m + iFB,m

for m = 0 :

i~∂tΨA,0 = −J ′ΨB,−1 − J ′ΨB,0 − (∆E + i
γ0

2 )ΨA,0 + g|ΨA,0|2ΨA,0 + iFA,0

i~∂tΨB,0 = −J ′ΨA,1 − J ′ΨA,0 − (∆E + i
γ0

2 )ΨB,0 + g|ΨB,0|2ΨB,0 + iFB,0

(3.14)

where ΨA,m (ΨB,m) and FA,m (FB,m) respectively represent the amplitude of the
polariton and pump field on the A (B) pillar of the mth unit cell. In the present
case only FA,0 is non-zero as we focus the laser on the interface pillar. ∆E represents
the detuning between the drive energy and the center of the topological gap. We
here consider a SSH lattice with a −7.0 meV detuning between the topological state
and the exciton, thus corresponding to an excitonic fraction |X|2 ≈ 4.7% and to an
effective non-linearity per site g ∼ 0.01 µeV.

We optimize the injection efficiency by resonantly exciting the topological edge
state: we focus a linearly polarized cw laser on the interface pillar and tune its
energy to be resonant with the topological state. Photons escaping the lattice are
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Figure 3.10: a, Transmitted intensity as a function of the input power. Blue
and orange points respectively correspond to the upward and downward scans. A
hysteresis cycle is observed and blue and orange arrows indicate the direction of the
non-linear jumps. Typical 2D profiles of the intensity pattern on each stable branch
are plotted as insets. b, Integrated intensity profile of the non-linear fluid on the
upper branch (black solid line) and of the edge state (grey solid line). A sketch of
the lattice is displayed on top with a purple arrow indicating the position of the
pump. For each unit cell, a vertical dashed line indicates pillars presenting a high
polariton density, which here correspond to the A sub-lattice.

collected in transmission and the obtained real space image is monitored while we
tuned the excitation beam parameters. Maximizing the injection efficiency relies on
two knobs: on the one hand we optimize the spatial overlap with the topological
edge state wavefunction by moving the laser spot towards the center of the weakly
bound pillar. On the other hand we rotate the incident beam polarization direction
to match the edge state one: in the linear regime a post selection of the polarization
is sufficient to monitor the dynamics of one set of modes independently from the
other, whereas when inter-particle interaction starts to play a predominant role,
the particles density in one of the linearly polarized modes directly influences the
dynamics of polaritons with an orthogonal polarization via polariton-polariton cross
interaction. To minimize the injection of polaritons in cross-polarized states and
thus be able to consider the scalar model described by the set of equations 3.14, a
particular care has to be given to the polarization purity of the excitation beam: an
additional thin film polarizer is thus placed just before the cryostation.

Since polariton-polariton interactions are repulsive, the laser energy has to be
blue detuned with respect to the polariton state to observe the opening of an hys-
teresis cycle when the injection power is ramped up and down. Observing an optical
bistability phenomenon with an isolated pillar requires a minimal laser detuning of
δLM =

√
3γ0, with γ0 the polariton mode linewidth (a demonstration can be found

in Ref. [95]). A Lorentzian fit of a spectrum obtained by resonant spectroscopy of
the topological state yields a linewidth of 75 µeV. The laser energy is tuned such
that the detuning with the mode is δ = 206 µeV ≈ 2.7γ0 and the input power is
then slowly ramped up and down. The measured evolution of the total transmitted
intensity as a function of the input power is presented in Fig. 3.10 (a): a hystere-
sis cycle is clearly observed with two distinct power thresholds Pup = 6.1 mW and
Pdown = 2.5 mW.
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Figure 3.11: a, Simulated evolution of the total polariton density in the lattice
as a function of the driving power. Blue and red curve respectively correspond to
upward and downward power scans. b, Calculated effective detuning between the
interface state resonance and the pump. c, Calculated density profile of the non-
linear fluid on the upper bistability branch. The corresponding operating point is
marked bay a black dot in panel (a). A and B sub-lattices are respectively colored
in red and blue. Purple arrow indicates the pump position.

Typical 2D intensity emission patterns associated to each stable bistability branch
is plotted in inset of the diagram. The intensity distribution on the upper bistability
branch is found to be very similar to the profile of the topological interface state
with a clear localization on the A sub-lattice and a maximum on the weakly coupled
pillar. To compare the non-linear fluid distribution with the one of the interface
state, we integrate the intensity along the transverse direction of the lattice and
obtain the 1D profiles presented in Fig. 3.10 (b). The profile of the non-linear fluid
on the upper bistability branch presents the same 1D profile as the topological in-
terface state with intensity maxima localized on A pillars and minima on B pillars.
The sub-lattice pseudo spin of the non-linear fluid can be measured by separately
integrating the number of counts on the A and B sub-lattice and computing the
mean field equivalent of the pseudo spin defined in equation 3.1.4.1. Restricting
ourselves to the 5 central unit cells where the signal is significantly larger than the
noise, we integrate the intensity in regions of interest (ROIs) centered on each pillar
and compute the resulting pseudo-spin. It yields S̃ = 0.88± 0.09. The uncertainty
level is given by the precision of pillars positions and corresponds to three standard
deviations calculated over values of S̃ computed by tuning the size and position of
the ROIs.

To numerically reproduce these results, we can solve the set of equations 3.14.
Computing the steady state at each point of a power ramp allows reproducing the
opening of a hysteresis cycle which is presented in Fig. 3.11 (a). A calculation of the
excitation spectrum allows tracking the effective detuning between the blueshifted
resonance and the pump: as expected, power thresholds coincide with resonances be-
tween the pump and the blueshifted state. Above F 2

A,0 ≈ 9, the localized state mixes
with the upper band of the model and the definition of the detuning becomes irrel-
evant, the corresponding area has thus been hatched. The profile of the non-linear
fluid on the upper stability branch is presented in Fig. 3.11 (b) and corroborates the
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localization of polaritons on the A sub-lattice: the computed sub-lattice pseudo-spin
yields S̃ = 0.92.

The gap soliton discussed in this section is the driven-dissipative counterpart
of the topological edge soliton described in conservative systems. Since it bifur-
cates from the topological interface state, this non-linear steady state is called
a dissipative topological gap soliton.

3.3.3 Generation of gap solitons in the bulk
We now turn to the exploration of the non-linear response of the bulk of the lattice,
in which D. Solnyshkov et al. predicted, in Ref. [202], the formation of bright gap
solitons in the case of conservative systems. These gap solitons have a particular spa-
tial profile: they exhibit exponentially decaying tails with a sub-lattice localization,
similarly to a topological edge state. To observe the driven-dissipative counterpart
of these solitons, we consider a structure where polariton interactions are sufficient
to induce a significant blueshift (g|ψ|2 ∼ Egap/2) of the lower band eigen-states. We
select a SSH lattice with a δ = −4.9 meV detuning between the bottom of the lower
“s” band and the exciton, corresponding to an excitonic fraction of |X|2 ≈ 8%. The
associated dispersions were presented in Fig. 3.7.

The localized laser spot is now focused in the center of a strongly coupled dimer
in order to maximize the overlap of the driving field with states of the lower band
(bonding symmetry). The laser energy is tuned to be in the center of the topological
gap (∆E = 0) and we monitor the transmission of the structure as we perform a
power ramp. In this case the set of discrete Gross-Pitaevskii equations governing
the system can be written:

∀ m :

i~∂tΨA,m = −JΨB,m − J ′ΨB,m−1 − (∆E + i
γ0

2 )ΨA,m + g|ΨA,m|2ΨA,m + iFA,m

i~∂tΨB,m = −JΨA,m − J ′ΨA,m+1 − (∆E + i
γ0

2 )ΨB,m + g|ΨB,m|2ΨB,m + iFB,m

(3.15)

where FX,m is here a Gaussian distribution centered on the unit cell m = 0. One
can also simply set ∀m 6= 0, FA,m = FB,m = 0 and FA,0 = FB,0 = F0. A better
agreement is obtained between experimental and numerical results by considering
the true Gaussian nature of the pump spot.

The evolution of the measured transmitted intensity as a function of the input
power is presented in Fig. 3.12 (a). The opening of two consecutive hysteresis cycles
is evidenced with four distinct power thresholds, two for the upward scan labeled
P1,u ≈ 9.3 mW and P2,u ≈ 62 mW and two for the downward scan P1,d ≈ 4.0 mW
and P2,d ≈ 54 mW. For each upper stable branch, a typical 2D intensity profile
is presented in inset. In both cases we observe the formation of bright domains
showing a strong polariton density: after the first non-linear threshold the polariton
fluid is localized on both pillars of the pump dimer and symmetrically expands to
the two neighboring dimers above P2,u. This localized structure is typical from
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discrete bright gap solitons [333,334]. In the present case, the dissipative nature of
the system and driving conditions imposes the solitons to be pinned to the vicinity
of the pump which breaks the lattice translation invariance.

By integration of the intensity in the direction transverse to the SSH chain, we
obtain 1D profiles which are presented in Fig. 3.12 (b-c) and respectively correspond
to operating points just above P2,u and P1,u. The evolution of the profile of the
non-linear fluid as a function of the input power is presented in panel (d) and (e)
for the upward and downward scans. A correspondence between power thresholds
and expansion or reduction of the high density domain is clearly evidenced: each
upward (downward) non-linear jump is accompanied by the growth (contraction) of
the bright domain by a discrete number of unit cells, similarly to what has been
reported in the case of the 1D Lieb lattice in Ref. [219]. Each non-linear jump
occurs when the local polariton density is such that the resulting interaction energy
is equal to the spectral detuning between the top of the lower “s” band and the
pump (gn ∼ (J − J ′)).

Analyzing in more detail the profiles presented in panels (c-d), three different
regions can be delimited corresponding to the central high density region and the
two exponentially decaying tails on each side of the soliton core. The influence of the
underlying chiral symmetry is evidenced: in the dense region, polaritons are evenly
spread on both sub-lattices whereas the fluid shows a net sub-lattice polarization in
the exponentially decaying tails. On the left of the bright domain, polaritons are
mostly localized on A pillars while they are localized on the B sub-lattice on the
right. This sub-lattice polarization of the soliton tails is a direct consequence of the
chiral symmetry of the SSH model which imposes zero-energy states to be localized
on a single sub-lattice: due to the low polariton density in the exponential tails, the
associated interaction energy is locally negligible compared to other energy scale
of the system and the dynamics of polariton is thus governed by the underlying
linear model. Each side of the bright domain can be viewed as setting the boundary
condition for the decaying field: on the left (right), the last intense pillar is a A (B)
pillar, which corresponds to the sub-lattice localization of the associated exponential
tail. Again restricting ourselves to the unit cells where the signal is significantly
larger than the noise, we can independently compute the pseudo-spin of each tail.
The measured pseudo-spins are presented on corresponding profiles in Fig. 3.12:
S̃L and S̃R respectively correspond to the pseudo-spin restricted to the left and
right exponential tails. Due to the inversion symmetry of the lattice, left and right
tails present pseudo-spin of opposite sign and roughly equal absolute amplitudes.
Consequently, the pseudo-spin computed over the entire profile of solitons is almost
vanishing with S̃Tot =-0.10± 0.06 after P1,u and S̃Tot = 0.09± 0.04 after P2,u.

As described in conservative systems, the gap solitons generated in the bulk
of the SSH lattice present a peculiar spatial profile. Due to the chiral symmetry
of the SSH Hamiltonian, the exponentially decaying tails of the solitons are
localized on a single sub-lattice: one sub-lattice on the left and the other on
the right. As the quasi-resonant excitation power is scanned up and down, the
soliton can laterally grow by a discrete number of unit cells.
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Figure 3.12: a, Transmitted intensity as a function of the input power. Blue and
orange points respectively correspond to the upward and downward scans. Blue
and orange arrows indicate the scan direction at the non-linear jumps. Typical 2D
profiles of the intensity pattern are plotted as insets for each upper stable branch.
b-c, Integrated intensity profiles of the non-linear fluid on, respectively, the second
and first upper branches (corresponding to Pb = 70 mW and Pc = 15 mW). A sketch
of the lattice is displayed on top with a purple arrow indicating the position of the
pump. For each unit cell, a vertical dashed line indicates pillars presenting a high
polariton density and a gray area highlight the soliton core. d-e, Evolution of the
1D intensity profile as a function of the input power respectively for the upward
and downward scans. A copy of the hysteresis diagram is presented to highlight the
correspondence between power thresholds and the expansion or contraction of the
non-linear domain.
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3.3.4 Numerical simulations: Gap solitons as Truncated Bloch
Waves

Our results can numerically be reproduced by simulating the temporal evolution
of the set of tight-binding equations 3.15. The resulting hysteresis diagram and
associated profiles of the solitons obtained for ∆E = 0 are presented in Fig. 3.13.
Note that to reproduce the system of disjoint hysteresis cycles it is numerically nec-
essary to introduce a term of non-linear losses, otherwise a different multi-stability
diagram is observed (see inset in Fig. 3.13 (a)). This additional loss term was in-
troduced in the form of an imaginary part of g (g = g0 + iγ′ with γ′ ∼ 10−4γ0).
The necessity to add non-linear losses has already been discussed by Paraïso et al.,
in Ref. [209], where the authors observed a multi-stability diagram involving the
different polarization modes of a circular mesa. The non-linear loss term was intro-
duced as a cross polarization term: the density of σ+ polaritons is increasing the
losses experienced by cross-polarized polaritons. The presence of this non-linear loss
term was attributed to the existence of a bi-exciton line and spin-flip scattering with
dark excitons. In the present case the driving field only couples to a single linear
polarization mode, which decomposes as a superposition of σ+ and σ− states. We
measured the amplitude of the fluid injected in the cross polarized direction which
showed that polaritons were purely injected in the desired state and no rotation of
the fluid polarization could be measured. This tends to invalidate this mechanism as
in case of a circular polarization mode experiencing additional losses, our polariton
fluid would become elliptically polarized. Another plausible explanation which does
not rely on polariton scattering towards other excitonic states is a local increase of
the lattice temperature: the laser intensity focused on the structure and the higher
polariton density in the presence of a three dimer soliton are such that the material
could locally be heating. As a result, the GaAs semiconductor gap would decrease,
red-shifting and broadening the exciton line and thus the polariton one. Answering
this question would require to perform a polarization resolved pump-probe spec-
troscopy of the polariton modes to observe the possible broadening as the pump
power is scanned up and down.

Note that a wide hysteresis cycle, equivalent to the one in inset of Fig. 3.13 (a),
is obtained considering simulations of the nearly-free model. The issue does not
originate from the simplification of our model.

Calculated density profiles of the solitons corresponding to the first and second
upper bistability branches are presented in Fig. 3.13 (b-c). The square amplitude
on A and B sub-lattices are respectively represented by red and blue bars. Comple-
mentarily, the associated evolution of the unit cell pseudo-spin as a function of the
position is displayed in Fig. 3.13 (e-f). To understand these spatial profiles, let us
step back and start by considering the case of a continuous system. As discussed in
Chap. 1.5.4, the solitonic solutions of an homogeneous potential are known to take
the form of an inverse hyperbolic cosine (hyperbolic secant): Ψ(x) ∝ 1/ cosh(x/a0)
with a0 the width of the soliton. In order to described topological gap solitons of
the continuous SSH model, D. Solnyshkov et al. proposed an ansatz in Ref. [202],
which consists in considering two hyperbolic secant functions, each of them being
associated to a different sub-lattice:

Ψ(m) =
[
ΨA,xm ∝ 1/ cosh([xm − x0])/a0)
ΨB,xm ∝ 1/ cosh([xm + x0])/a0)

]
(3.16)
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Figure 3.13: a, Simulated evolution of the total polariton density in the lattice
as a function of the driving power when including non-linear losses. Blue and red
curve respectively correspond to upward and downward power scans and colored
arrows indicate the direction of the non-linear jumps. Black dots mark the operat-
ing points corresponding to panels (b) and (c). Inset in the bottom corresponds
to the multi-stability diagram obtained without additional loss term. b-c, Calcu-
lated density profile of the non-linear fluid respectively on the upper and middle
bistability branches. A and B sub-lattices are respectively colored in red and blue.
Purple arrow indicate the center of the pump. Green dashed line is a fit by a sum of
two hyperbolic secant. d, Calculated density profiles of solitons presenting a wider
non-linear domain with respectively 11 and 5 bright uni-cells for top and bottom.
e-f, Evolution of the sub-lattice pseudo-spin as a function of the position, respec-
tively corresponding to profiles in (b) and (c). In the latter, the green dashed line
correspond to a fit by a hyperbolic tangent. Color of the bullet points indicate the
sign of S̃ (m).
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where x0 is a parameter quantifying the displacement of each sub-lattice component
with respect to the center of mass. The use of such ansatz allows to reproduce the
envelope of the tight-binding driven-dissipative soliton profile (green dashed curve in
Fig. 3.13 (b)). The main interest of this ansatz resides in the prediction of the spatial
evolution of the pseudo spin. It yields an hyperbolic tangent behavior with a sign
transition inside the soliton core (see Fig. 3.13 (f)). The soliton is thus analogous to
a wall between two opposite spin polarized domains. The analytical derivation of the
pseudo-spin texture yields S̃ (m) = tanh(b/a0) tanh(m/a0) with b a fixed parameter
conditioning the amplitude of the pseudo-spin for m→∞, this parameter will later
be shown to depend on the laser detuning. In Fig. 3.13 (f), the green dashed line
corresponds to a fit of the soliton pseudo-spin texture by the hyperbolic tangent
ansatz which yields a0 = 0.87. Consequently, the pseudo-spin polarization of the
soliton tails reaches S̃ = ±0.99 at the unit cell m = ±2 (calculated from Taylor
expansion). It means that in these tight-binding simulations, the core of the soliton
spreads on unit cells m = ±1. The results that we will present in the next section
show that it does not seem to be the case in the experiments.

Beyond the first non-linear stable branch, the pseudo-spin texture deviates from
a hyperbolic tangent: the whole non-linear domain shows an almost vanishing spin,
which is imposed by the lower band symmetry. However the local pseudo-spin
exhibit a small dependence on position: it is negative in unit cell m =-1 and positive
in unit cell m = +1 which is opposite to the spin of the associated tails. This
phenomenon originate from the competition between bonding symmetry of the non-
linear domain, decay and spatial profile of the pump. To evidence it, larger non-
linear domains can be formed by pushing further the increase of the input power or by
increasing the size of the pump spot (see Fig. 3.13 (d)). The soliton growth occurs
via consecutive displacement of the non-linear domain wall, associated to sudden
jumps of the total particle density. The displacement of the domain walls is always
given by an integer of unit cells. Similarly to the gap solitons observed in Ref. [219],
these large non-linear structures which are formed of contiguous ensembles of gap
solitons and present abrupt edges can be interpreted as Truncated Bloch Waves
(TBW).

In the present case and as in Ref. [219], we are investigating the driven-dissipative
counterpart of this family of non-linear solutions. One can notice a consequence of
the open nature of the system on the fluid amplitude in the dense region: we do not
observe a flat top profile characteristic from conservative systems, but a seemingly
Gaussian profile since it results from the interplay between a spatially Gaussian drive
and homogeneous loss. The specificity of the case of gap solitons in the topological
gap of the SSH model is the inherited chiral symmetry properties of the wavefunction
which is reflected in the sub-lattice polarization of the exponential tails of the TBW.

3.3.5 Spin polarized tails, a specificity of the topological gap
Let us now discuss the pseudo-spin properties of the soliton tails. We studied de-
pendence of the tails pseudo-spin as a function of the energy detuning between the
laser energy and the center of the “s” band gap ∆E (see Fig. 3.14 (a)). Generating
gap solitons by tuning the energy of the laser in the energy gap, we can probe the
evolution of the tails sub-lattice polarization as a function of the soliton position
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in the gap. A set of measured intensity profiles in presented in Fig. 3.14 (b). To
obtain the value of the spin, we integrated the intensity profiles in regions of interest
centered on each pillar, the resulting graphs associated to Fig. 3.14 (b) are presented
in Fig. 3.14 (c). Finally, the evolution of the spin as a function of ∆E is presented in
Fig. 3.14 (d). One observes that the pseudo-spin amplitude is maximum at the cen-
ter of the gap and eventually vanishes when the laser energy enters the lower band.
As the soliton becomes closer to the band, the spectral overlap of the soliton tails
and the lower “s” bands becomes stronger. As a result, the slope of the tails becomes
shallower and their intensity distribution tend to inherit the bonding symmetry of
the lower “s” band (see profiles in Fig. 3.14 (b)). In a nearly-free description of
the structure, it is equivalent to say that the kinetic energy term associated to the
amplitude of the band becomes more and more relevant compared to the detuning
between the soliton energy and the band.

To demonstrate that this sub-lattice polarization is specific to the topological
gap, we injected gap solitons in the trivial gap above the upper “s” band (∆E =
1.0 meV). To efficiently inject polaritons, is it necessary to focus the laser spot
on a single pillar to maximize the spatial overlap with the upper “s” band modes
which present an anti-bonding profile. The intensity profile of the resulting soliton
is presented in Fig. 3.15 (a). The soliton profile presents a vanishing amplitude at
the center of the central unit cell thus witnessing the anti-symmetric nature of the
mode from which it bifurcates. The same anti-bonding profile is observed in the
soliton tails, with both sub-lattice showing a non-negligible polariton density. Yet a
sub-lattice polarization can be measured which corresponds to the exponential decay
of the tails. Subtracting this exponential decay for this profile and the one presented
in Fig. 3.12 (c), we obtained the corrected profiles presented in Fig. 3.15 (b). A clear
sub-lattice polarization is only observed for the soliton generated in the center of
the topological gap. The measurement of corrected pseudo-spins yields S̃L = 0.75
and S̃R = -0.77 for the soliton generated in the topological gap and S̃L = 0.09 and
S̃R = -0.06 for the soliton in the upper gap between “s” and “p” bands.

The upper part of the topological gap could not experimentally be probed due
to the too high pump power required to reach the non-linear regime. However we
realized numerical simulations to extend the analysis to the upper part of the gap
which shows the same behavior: the pseudo-spin of the tails vanishes as the laser
energy enters the upper band (solid line in Fig. 3.14 (d)).

The calculated spatial evolution of the spin is presented in panel Fig. 3.15 (c-
d) for, respectively, ∆E ≤ 0 and ∆E > 0. One observes that the hyperbolic
tangent behavior is only valid for ∆E < 0: a peaked non-vanishing value of the spin,
highlighted by green arrows, is observed in the vicinity of the soliton when the pump
energy approaches and enters the upper “s” band. The symmetric phase profile of
the fluid imposed by the drive is in phase opposition with the anti-symmetric phase
profile of the underlying band. The field picks up a sub-lattice polarization to
accommodate the phase twist between the linear domain far from the pump and the
non-linear domain which here is restricted to the pumped unit cell.

Note that the tight-binding calculation yields a sub-lattice pseudo-spin reaching
S̃Tails ≈ ±0.9 in the center of the gap while the measured value does not exceed
S̃ = 0.7. This discrepancy is partially due to stray light polluting the profile and
to a limitation of the tight-binding approximation of the experimental lattice: the
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intensity experimentally measured on the sub-lattice presenting a vanishing am-
plitude mostly comes from leakage of neighboring bright pillars. To reproduce this
phenomenon and plot the solid curve presented in Fig. 3.14 (d), a smoothing was ap-
plied to the tight-binding soliton distribution using a Gaussian profile whose FWHM
is adjusted to fit the experimental curve. The optimal FWHM is found to be slightly
smaller than the one of a D = 3 µm micro-pillar “s” orbital.

We observed the discrete formation of gap solitons in a driven-dissipative
emulation of the SSH model. As predicted for conservative systems, solitons
generated in the topological gap of the lattice present sub-lattice spin-polarized
exponentially decaying tails. The driven-dissipative solitons are found to be
very similar to conservative ones except for their bistability and small details
of the TBW profiles. Tuning the energy of the pump laser, we evidenced the
spin-polarized tails to be specific to solitons generated in the topological gap.
More specifically, the pseudo-spin is found to be maximum in the center of the
topological which correspond to the chiral symmetry axis of the SSH spectrum.

3.4 Robustness of a topological gap solitons

3.4.1 The case of conservative systems
Due to the localization properties of the field in the tails of the topological gap
solitons, one can expect them to exhibit particular interactions with their environ-
ment. A first theoretical exploration of the interaction between these gap solitons
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Topological gap
soliton

Trivial gap
soliton

Figure 3.16: Simulated trajectories for topological (top) and trivial (bottom) gap
solitons in the conservative case. In both cases two different initial positions are
considered with respect to the defect, which is highlighted by an horizontal white
line. Images taken from Ref. [202].

and localized defects was realized in conservative systems by Solnyshkov et al. in
Ref. [202]. The authors probed the interaction of solitons generated in the topologi-
cal and trivial gaps of the SSH model with a defect localized on a single sub-lattice.

The energy of both types of solutions was analytically derived as a function of
the initial distance to the defect by a perturbative approach: the soliton energy is
thus proportional to the overlap of the soliton distribution with the defect one. In
this work the authors restricted their demonstration to a defect acting as a local
blueshift of the energy landscape. This defect should behave as an attractor for gap
solitons originating from a repulsive interaction (g > 0) since it allows minimizing
their interaction energy.

Due to its pseudo-spin texture, the soliton generated in the topological gap
presents an asymmetric response to the attractive defect: its energy depends on the
initial relative position of the soliton. On the contrary, a soliton generated in the
upper trivial gap is shown to present a symmetric response to the defect: the trivial
gap soliton does not present any sub-lattice pseudo-spin and, as a consequence,
no matter its relative position or the defect sub-lattice localization, the overlap of
the soliton wavefunction with the defect only depends on the absolute value of the
distance between the two objects.

Figure 3.16 presents numerical simulations of the soliton trajectories. The topo-
logical gap soliton is either attracted towards the defect, and presents an oscillatory
trajectory or propagate away from it, whereas the trivial gap soliton is shown to be
always attracted towards the defect.

A second important theoretical contribution to the description of topological gap

100



CHAPTER 3. Gap solitons in a 1D topological lattice

(b)(a)

Figure 3.17: a, Top: numerical calculation of the scattering efficiency η as a
function of the soliton velocity v and frequency difference ω, which is defined with
respect to the topological edge state energy. Bottom: horizontal cut of top panel
for v = 0.75. b, Left: tight-binding simulation of the propagation of a topological
gap soliton on a SSH lattice with a trivial edge on the left and a non-trivial edge
on the right. Right: zoom on the topological edge of the lattice, encircled portion
of left panel. Images taken from Ref. [203].

solitons was done by Smirnova et al. in Ref. [203] who realized the analytical de-
scription of moving gap solitons. Importantly the authors studied the interaction of
a topological gap soliton with a topological edge state and showed that a popula-
tion transfer was possible between the soliton and the protected edge state. Using
numerical simulations, the authors established that the conversion efficiency was
optimal for a given velocity of the soliton. Additionally, the energy dependence of
the conversion efficiency, they showed that the population transfer was maximized
when the soliton frequency is resonant with the edge state. These results are sum-
marized in Fig. 3.17 (a) which presents the evolution of the conversion efficiency
as a function of the soliton velocity and frequency. A horizontal cut of top panel
is presented in the bottom one for v = 0.75. The optimum of population transfer
is observed for ω = 0 which corresponds to the resonance between the soliton and
edge state frequency. Finally, Fig. 3.17 (b) presents a tight-binding simulation of the
scattering of a topological gap soliton on a non trivial edge of the lattice. A zoom
on the edge is displayed on the right sub-panel where the sub-lattice localization
of the intensity clearly evidences a population transfer occurring from the soliton
towards the topological edge state. The authors extended their study to the case
of a 2D lattice of hBN: bulk solitons could be used to excite 1D edge states at the
interface between two hBN lattices with opposite onsite energies.

In the following, based on the theoretical proposal of D.Solnyshkov et al., we
report on the interaction between driven-dissipative solitons and a defect localized
on a single sub-lattice.

3.4.2 All optical engineering of a non-Hermitian defect
In the driven-dissipative case, a dynamical study of the interaction between a soliton
and a localized defect is relatively complicated since the soliton is pinned to the
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Figure 3.18: a, Evolution of the interaction induced blueshift as a function of
the incident non-resonant power Po. The black box delimits the zoom presented
in panel (b). Sketch of the experiment is displayed in inset. b, Evolution of the
blueshift in the range relevant for the experimental results presented in Sec. 3.4.3.
(c) Evolution of the emitted intensity collected in transmission as a function of the
incident non-resonant power. A vertical dotted line mark the position of the lasing
threshold.

vicinity of the pump: it results from the competition between a localized drive and
dissipation. Stabilizing the soliton on the whole lattice would require to consider a
pump and support scheme such as the one developed by the group of A. Bramati
to stabilize dark solitons in 2D planar samples [122, 123]. However, it is possible
to study the interaction of a static soliton with a localized defect as the amplitude
of the interaction can be probed by monitoring the non-linear threshold value as a
function of the defect amplitude. This defect will be induced optically.

To experimentally realize a localized defect, we used a second non-resonant cw
laser and injected a reservoir of excitons. As stated in Chap. 2.1.1, a reservoir of
excitons can be used to tailor the confinement potential for polaritons. Due to
the repulsive exciton-polariton interaction, the presence of an exciton density in-
duces a blueshift of the polariton resonances. Moreover, as it has been discussed
in Chap. 1.5.2, the excitonic reservoir is known to provide gain for polaritons via
stimulated relaxation which is the mechanism responsible for polariton lasing and
condensation. The optical defect can thus be included in the model as a com-
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plex term which locally modifies the pillar onsite energy (real part) and polariton
linewidth (imaginary part).

To quantify both contributions, we first created this defect on a single pillar with
the same diameter as those forming the SSH lattice (D = 3 µm). The calibration of
the blueshift is obtain by monitoring the energy of the micro-pillar “s” mode as a
function of the non-resonant incident power, while the imaginary part is obtained
by measuring the micro-pillar lasing threshold. The resulting calibration curves
are presented in Fig. 3.18. Figure 3.18 (a) present the evolution of the blueshift
as a function of the non-resonant input power. A zoom on the blueshift range
which is relevant for the experiments we will consider in Sec. 3.4.3 is presented in
Fig. 3.18 (b). It corresponds to induced blueshifts smaller than half the energy gap
amplitude. The evolution of the emitted intensity as a function of the incident non-
resonant power is presented in Fig. 3.18 (c), a rupture of slope characteristic from
the lasing threshold is observed for Pth ≈ 600 µW.

It is common to consider a system of two coupled equations to describe polaritons
dynamics in presence of an excitonic reservoir. In the present case we assume the
non depletion of the excitonic reservoir even in presence of a high polariton density
and treat the equation governing the fluid density only. The gain is included as a
local perturbation of the polariton linewidth γ(Po) = γ0 + γ′(Po) with γ′(Po) given
by the ratio between the non-resonant power Po and the lasing threshold Pth: at the
lasing threshold the gain provided by the reservoir compensates the losses and we
thus use the ansatz γ′(Po) ∼ γ0Po/Pth.

The injection of an excitonic reservoir in the polariton platforms thus enables
the engineering of non-Hermitian defects in the sense that this reservoir not only
impacts the real part of the confinement potential but also its imaginary part. In
the next section we will show that taking this imaginary term into account is crucial
to fully reproduce experimental observations.

3.4.3 Sub-lattice robustness of a driven-dissipative soliton
We now turn to the study of the interaction between the topological gap soliton
and a spatially localized defect. The non-Hermitian defect is created on the m = 1
unit cell which is the first unit cell on the right of the pumped one (see sketch on
Fig. 3.19 (a)). We perform power ramps of the quasi-resonant pump controlling the
injection of the soliton for various amplitudes of the non-resonant power. The defect
was either injected on the A or B pillar of the considered unit cell. For each power
scan, we integrate the collected intensity in the direction transverse to the chain.
Figure 3.19 (b) presents the evolution of solitons intensity profiles as a function
of the incident power for various power amplitude of the non-resonant laser beam.
The first image (b1) is a reference scan without any defect (Po,1 = 0). The next
three scans (b2-b4) correspond to a defect positioned on the B pillar and the last
image (b5) was obtained for a defect positioned on the A pillar with a pump power
equivalent to the one used for image (b4).

For a defect localized on the B pillar, the expansion of the soliton domain walls
is dissymmetrized as we measure a clear reduction of the threshold for the expansion
towards the right, where the defect is located. We label P ∗2 the modified value of the
power threshold in presence of a defect, the reference value obtained in absence of
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Figure 3.19: a, Schematic representation of the lattice with the quasi-resonant
(purple) and non-resonant (red) pumps. b, Evolution of the soliton spatial profile as
a function of the quasi-resonant pump power for various amplitudes of the localized
defect. The power amplitude and position of the non-resonant beam is displayed
in a sketch on top of each image. Horizontal dashed lines mark the position of the
power threshold for the expansion of the soliton domain wall towards the right.

the defect is labeled P2. As expected, the soliton is attracted toward the blueshifted
region and the stronger the pump amplitude the lower is P ∗2 . The soliton exhibits a
striking sensitivity to the presence of the exciton reservoir localized on the B pillar:
for Po = 90 µW which corresponds to a blueshift on the order of half the mode
linewidth (δE ≈ 30 µeV ∼ γ0/2), the power threshold P ∗2 is reduced by a factor of 4
with respect to P2. On the contrary when a defect of the same strength is created
on the A pillar, where the amplitude of the soliton vanishes, the power threshold
P ∗2 remains unaffected and the growth of the soliton occurs simultaneously towards
the left and the right.

Note that in the case of Fig. 3.19 (b4-b5), a decrease of the first power threshold
is observed with a stronger effect in the case of panel b5. This reduction indicates
that the defect is not purely localized on the non-resonantly pumped pillar but that
the exciton reservoir also spreads under the resonant pump, the effect on the first
threshold becoming non negligible as Po is increased. The profiles obtained when
further increasing the defect amplitude are presented in Fig. 3.20. In the case of a
defect localized on B the power threshold saturates around P ∗2 ≈ 11 mW while the
first threshold reduces with the increase of Po. Note that in this case P ∗2 corresponds
to a threshold for which the soliton hops towards the right instead of growing to a
two dimer width and, despite tremendous efforts to enrich the model, this feature
was never captured by numerical calculations up to now. We have no explanation
for this phenomenon. In the case of a defect localized on A for Po = 135 µW (see
image 6), the growth of the soliton starts to present a small dissymmetry which is yet
much smaller than the one observed in the case of a Po = 37 µW defect localized on
the B pillar. This dissymmetry could be attributed to the spreading of the exciton
reservoir onto the B pillar.

The experimental measurement of the evolution of P ∗2 as a function of the defect
amplitude and location is summarized in Fig. 3.21 as well as 1D numerical simula-
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Figure 3.21: Evolution of the power threshold P ∗2 as a function of the blueshift
induced by the non-resonant pump. Red and blue dashed curves corresponds to
numerical simulations for non-Hermitian defects respectively localized on the A and
B pillar of the unit cell m = 1. Dashed gray line is a numerical simulation obtained
for a Hermitian defect localized on the B sub-lattice: only the blueshift contribution
of the defect is taken into accounts.
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tions realized by D. Solnyshkov which allow demonstrating the importance of the
non-Hermitian nature of the engineered defect. Numerical simulations based on the
experimental calibrations of the defect reproduced experimental results (see blue
and red dashed lines in Fig. 3.21). The soliton is insensitive to the presence of a
defect localized on the sub-lattice where it shows a vanishing amplitude (here the A
sub-lattice). To reproduce the threshold reduction observed in the case of a defect
whose distribution is strongly overlapping with the soliton tails, it was necessary to
take the non-Hermitian nature of the defect into account (blue curve). The gray
dotted curve corresponds to the case of defect in the form of a pure blueshift: only
a perturbation of the real part of the potential is taken into account. We observe
a reduction of P ∗2 which is yet not sufficient to reproduce experimental observation.
Its it thus crucial to include an imaginary contribution of the defect in the form of
gain.

We explored the interaction of a driven-dissipative gap soliton with defects
localized on a single sub-lattice. The pseudo-spin polarization of the soliton
tails are responsible for an asymmetric response to the defect: the gap soliton
is robust against defects localized on the sub-lattice where its wavefunction
vanishes. This is the first demonstration of the robustness of solitons in a
topological gap.

Interestingly, experimental results could only be reproduced by taking the
non-Hermitian nature of the optical defect into account. The defect not only
induces a blueshift but also strongly affects the local effective lifetime of po-
laritons by providing a gain up to a third of the nominal mode linewidth. It
constitutes a powerful resource of the polariton platform for the exploration of
non-Hermitian physics.
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3.5 Novel solutions: spin-polarized topological gap
solitons

Up to this point, driven-dissipative gap solitons only departed from their conserva-
tive counterpart by the presence of bistability. In this section we demonstrate that
engineering of the phase of the drive allows to depart from this family of symmet-
ric solutions. We unveil spin-polarized solitons in the bulk of the lattice which are
inaccessible in the bulk of conservative systems as these new solutions require to be
stabilized by the drive.

3.5.1 Experimental setup
The set of non-linear equations governing the system (3.15) is unchanged but the
drive distribution is now written FA,0 = F0, FB,0 = F0e

−i∆ϕ and FA/B,m = 0 ∀m 6= 0.
We experimentally consider a two pump excitation scheme where the quasi-resonant
beam path is split into two and each of the resulting beams are focused on a different
pillar of the same unit cell. The two pumps are thus at the same energy which is
tuned to the center of the topological gap (∆E = 0). The relative phase difference
between the two pumps ∆ϕ is tuned by changing the relative path length between
the two optical paths by shifting a mirror mounted on a piezoelectric actuator.
The employed delay line scheme is presented in Fig. 3.22: a HWP followed by a
polarization beam splitter are used to ensure the amplitude balance between the
two beams and a second HWP is used to correct the polarization direction of the
delayed beam 2.

2In the experimental setup with a delay line, the displacement of the mirror by the piezoelectric
actuator lengthens the optical path followed by the reflected beam but also induces a shift of the
associated optical axis. However the beams are recombined such that both cross at the center of
the entrance pupil of the excitation lens and thus, no displacement of the resulting spot is observed
on the sample. The optical axis displacement could at most induce a variation of the transmitted
intensity and coupling into the structure but due to the small amplitude of the axis shift (∼ µm)
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3.5.2 A soliton with spin-polarized core
The cumulative incident power of reference and modulated beams is set to be higher
than the second power threshold (PTot ∼ 80 mW > P2), the profile observed for
∆ϕ = 0 thus corresponds to a non-linear domain spreading on three unit cells. We
then perform relative phase scan for this fixed input power.

We start from a configuration where the two beams are incident with the same
phase on the sample, which is evidenced in reflection by the presence of a bright
fringe in between the two pump spots. We then proceed by scanning the phase over
a full period. The resulting evolution of the intensity distribution along the lattice
is presented in Fig. 3.23 (a). As the phase is scanned towards ∆ϕ = 2π, a cascade of
abrupt intensity jumps is observed, which is associated to the formation of non-linear
domains spreading on a varying number of pillars. Starting from ∆ϕ = 0, we observe
successive transitions from three bright dimers all the way to the linear regime as
we approach ∆ϕ = π. As the phase difference approaches π, the driving field
becomes orthogonal to the Bloch modes in the lowest band thus strongly reducing
light injection in the lattice. As a result, the total polariton density in the lattice
decays from a non-linear regime, with a soliton core spreading on three unit cells
∆ϕ = 0, all the way down to the linear regime for ∆ϕ = π.

The phase twist imposed by the two pumps does not only decouple the driving
field from the lattice, it is also responsible for a controlled localization of the fluid
profile. Remarkably, as the phase difference departs from 0 up to a complete extinc-
tion of the soliton, the high-intensity part of the profile tends to localize towards one
side of the pumped unit cell: the polariton fluid tends to localize towards the left
of the pumped unit cell for ∆ϕ < π and towards its right for ∆ϕ > π and different
phase thresholds are observed for the extinction/formation of the bright domains on
unit cells m = 1 and m = −1.

Interestingly, before the reaching the linear regime, the soliton is strikingly found
to be localized on a single pillar of the central unit cell: the other pumped pillar
experiences destructive interference. This localization of the polariton fluid results
in a total non-zero sub-lattice pseudo-spin measured over the intensity pattern.
The evolution of the measured total pseudo-spin as well as the result of numerical
simulations realized by D. Solnyshkov are shown in Fig. 3.23 (b). The total pseudo-
spin clearly departs from S̃Tot = 0 as the phase difference approaches ∆ϕ = π with
a maximum value close to |S̃Tot| = 0.7. Figure 3.23 (c) presents the intensity profile
of the soliton measured for ∆ϕ = 1.13π. Interestingly, the fluid distribution is akin
to the one of a topological edge state: polaritons are mostly localized on the right
single pillar of the pumped unit cell with an exponentially decaying tail on unit cells
with m > 0, whereas the left pillar of the pumped unit cell undergoes a destructive
interference and no signal is observed for unit cells with m < 0. As illustrated by
the profile in gray, 1D numerical simulations confirm the suppression of intensity
on one of the two pillars and the associated exponential tail. Profiles obtained in
tight-binding simulations present a spin up to |S̃Tot| ∼ 99.9% which is improved
when decreasing polariton linewidth.

This localization phenomenon is induced by the phase gradient imposed by the
pump: the driving field does not only break the translation invariance of the lattice
these effects are negligible.
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Figure 3.23: a, Evolution of the transmitted intensity profile as a function of the
phase difference ∆ϕ imposed between the two pumps. Vertical black line marks the
center of the pumped unit cell. Horizontal dashed line presents the position of the
profile presented in (c). b, Evolution of the sub-lattice pseudo-spin of the polariton
fluid as a function of the phase difference. c, Intensity profile of the polariton fluid
for ∆ϕ = 1.13π (black solid line) as well as the equivalent profile obtained via 1D
numerical calculations (gray dashed line).

but also induces of flux of polaritons and breaks the inversion symmetry of the
system. As a result we observe the formation of solutions which present a given
chirality, which is evidenced by the sub-lattice total pseudo-spin of the soliton.

3.5.3 The spin-polarized bulk soliton, a solution stabilized
by the drive

Spin-polarized solitons can be observed in conservative systems but their existence
is pinned to non-trivial edges of the SSH lattice: they rely on the preexistence of a
pseudo-spin polarized edge state. In the present case, we can trigger the formation of
a spin-polarized soliton anywhere in the bulk of the lattice as its location is defined
by the pump position. Actually, we can show that the possibility to observe spin-
polarized solitons in the bulk of the SSH lattice is exclusive to driven-dissipative
systems: spin-polarized solitons are not stable in the topological gap of a bulk
conservative SSH lattice. We consider the set of equations given by 3.15 in absence
of drive and losses (F = 0 and γ0 = 0):
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∀ m :

i~∂tΨA,m = −JΨB,m − J ′ΨB,m−1 + g|ΨA,m|2ΨA,m (3.17)
i~∂tΨB,m = −JΨA,m − J ′ΨA,m+1 + g|ΨB,m|2ΨB,m (3.18)

We look for a steady state solution with a maximum localized on them = 0 unit cell,
presenting a strong sub-lattice imbalance such that |ΨB,0| � |ΨA,0| and exhibiting
chiral exponentially decaying tails: ΨA,m ∼ −(J ′/J)mΨA,0, |ΨB,m| ≈ 0 ∀m < 0 and
ΨB,m ∼ −(J ′/J)mΨB,0, |ΨA,m| ≈ 0 ∀m > 0. Injecting this ansatz in Eq. 3.18 for
m = 0 directly leads to an inconsistency since it yields |ΨB,0| ∼ 0. In absence of an
additional ingredient breaking the inversion symmetry, a spin polarized gap soliton
with chiral tails cannot exist in the bulk of a conservative SSH lattice.

To evidence this difference, D. Solnyshkov realized time dependent simulations
evidencing that such a spin-polarized solution is not stable in the bulk of conserva-
tive lattices. The spin-polarized soliton was injected in the presence of drive and
dissipation, the drive and losses were then suddenly turned off at a time called t = 0.
A reference numerical experiment was conducted by applying the same process to
a gap soliton with vanishing total spin which is known to be a stable solution in
conservative systems. The result of these simulations is presented in Fig. 3.24. Be-
fore t = 0 the steady state solution is reached for both cases. For t > 0, the sudden
change of parameters induces a strong perturbation of the system. The symmetric
soliton is observed to conserve its localization (see Fig. 3.24 (b)), with a slow oscil-
lation due to the relaxation from the driven-dissipative solution to the conservative
one. In the case of the spin-polarized soliton (see Fig. 3.24 (a)), the fluid pattern
is shown to rapidly delocalize: the evolution of the intensity profile evidences a
diffractive propagation of the polariton fluid.
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Figure 3.24: a, Simulated temporal evolution of a sub-lattice spin polarized soliton
as the losses and drive are quenched at t = 0. b, Simulation equivalent to (a) in
the case of symmetric soliton.

3.5.4 Bogoliubov spectrum in presence of a spin-polarized
soliton

Here we discuss the spin-polarized gap solitons in terms of a non-trivial interface
for excitations on top of the non-linear fluid (Bogolons). We propose to consider
the renormalization of the potential induced by the presence of the different solitons
considered in this work. To first approximation the interaction term can simply be
interpreted as a local blueshift affecting pillars where the soliton is located. In this
regard, all solutions observed previously locally create potential barriers localized on
pillars presenting a high polariton density. An intuitive picture consists in consider-
ing that blueshifted pillars are decoupled from the lattice and do not participate to
the band structure for the Bogolons: the soliton thus effectively breaks the lattice
and creates an interface whose nature is dictated by the wavefunction of the non-
linear steady state. Schematic representations of the different situations discussed
in this chapter are presented in Fig. 3.25 (a), in each case we display the effective
winding number of the resulting lattices based on the termination of the considered
lattice. Interestingly, in the case of a spin-polarized soliton generated in the bulk
of the lattice, the chain connected to the pumped pillar experiencing destructive
interferences is terminated by a weak link and thus presents a winding of w = 1.
The spin-polarized soliton creates a non-trivial interface which should host an edge
state localized in the energy gap.

In our driven-dissipative platform, bringing a localized state at the center of the
energy gap simply requires to drive the system with ∆E > 0 and to increase the local
polariton density via the input power. As illustrated in Sec. 3.3.2, a jump towards
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Figure 3.25: a, Top: Schematic description of the considered SSH lattice in the
linear regime with a topological interface (left) and the bulk of the chain (right).
Bottom: Schematic representation of the same lattices in presence of a non-linear
fluid of polariton taking the form of a spin polarized soliton at an interface (left),
a symmetric soliton in the bulk (middle) and a spin-polarized soliton in the bulk
(right). b, Bogoliubov spectra resolved in position associated to the different situa-
tions described in (a). In each case the energy zero corresponds to the energy of the
pump Ep. The bulk spin-polarized soliton (right panel) corresponds to ∆ϕ = 1.13π.
A zoom of the localized state observed in the gap is presented in inset.

an upper bistability branch occurs when a blueshifted state comes to resonance with
the pump energy. Pumping the system at ∆E > 0, the blueshifted state will cross
the E = 0 line. At this point the corresponding Bogoliubov state would present
exponentially decaying tails with a clear sub-lattice polarization. However, one has
to be careful when classifying states localized in the SSH topological gap in presence
of a dense polariton fluid. Indeed, the definition of the winding number, and thus
the topological nature of a localized gap state, requires the lattice sites to present
no onsite energy (see Sec. 3.1.4). Consequently, one has to check, a posteriori, that
the mid-gap state is localized on a pillar showing vanishing polariton density.

To confirm the model discussed above, we computed the spectrum of excita-
tions on top of each type of solitons using the Bogoliubov method in a tight-binding
context, as introduced in Chap. 2.3.3. The calculated spectra are presented in
Fig. 3.25 (b). Away from the pumped region, solitons present a negligible amplitude
and the excitation spectra correspond to the linear bands of the SSH model. Re-
markably, in the case of the bulk spin-polarized soliton, a localized state is observed
in the gap of the excitation spectrum. This state is mostly localized on the pumped
pillar presenting a vanishing amplitude (labeled as pillar 0), the local polariton den-
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Figure 3.26: a, Bogoliubov spectrum calculated in presence of a spin-polarized
gap soliton injected in the upper gap of the SSH model for ∆E = 1.25 meV and
∆ϕ ≈ 1.45π. b, Profile of the gap soliton consider for the calculation of the spectrum
presented in (a). c, Profile of the localized state appearing in the topological gap
of the excitation presented in (a). d-e, Corresponding profiles of the spin-polarized
soliton and localized state considered in the calculation of the Bogoliubov spectrum
presented in Fig. 3.25 (b) for ∆E = 0 meV and ∆ϕ = 1.13π

sity induces a blueshift g|ΨA,0|2 = 4.2 µeV which is negligible compared to all energy
scales of the system. Moreover, since it is localized inside the topological energy gap,
it presents exponential tails with a sub-lattice localization. In the two other cases
presented here, no states are observed in the energy gap of the excitation spectrum,
which is in agreement with the previous analysis yielding winding numbers w = 0
for all effective lattices. In all cases, a significant decrease of the wavefunctions of
blueshifted pillars is observed at the energy of the lower band, confirming that the
presence of a dense polariton fluid tends to decouple these pillars from the rest of
the lattice.

The generation of a bulk spin-polarized soliton presenting a wavefunction akin to
the one of a topological edge state is accompanied with the appearance of a localized
state in the gap of the excitation spectrum which also exhibit features reminiscent
of a topological edge state. However, one has to note some discrepancies with
respect to the case of a linear SSH edge state at an interface with vacuum. The
localized state, appearing via the generation of a spin polarized soliton, presents a
non negligible amplitude on the other side of the interface and does not lie at the
center of the energy gap. These differences originate from the finite amplitude of
the polariton density on the bright pillar. In the present case the pillar 1 is brought
to an energy which presents a detuning comparable to the bands amplitude. The
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associated localized state can be seen around E≈ 1.1 meV on the spectrum presented
in the rightmost panel of Fig. 3.25 (b). As the blueshifted state possesses an energy
detuning which is not significantly greater than the band amplitude (given by the
coupling strength J ′), the pillar 1 remains slightly coupled to the bands. This
phenomenon is similar to the decrease of the spin-polarization and slope of the
soliton tails observed in Sec. 3.3.5 when the drive energy was brought to resonance
with “s" bands. As a consequence, the wavefunction of the mode localized on pillar
1 spreads over several pillars on both sides of the interface. Conversely, this means
that other eigenstates of the spectrum present a non vanishing amplitude on this
pillar: the pillar is still hybridized to the rest of the lattice and especially to the
pillar 0. A perfect correspondence between the state localized on pillar 0 and a
topological edge state could be obtained in case of sufficient number of polaritons
localized on pillar 1, the pillar 1 would in this case be completely decoupled from
the rest of the lattice.

A quick analysis of the set of equations 3.15 leads to conclude that reaching a
steady state with g|ΨB,0|2 � {J, J ′} and |ΨA,0| ∼ 0 requires to consider a energy
detuning ∆E � {J, J ′}. One simple way to obtain a dense spin-polarized soliton
thus consists in increasing the energy at which this soliton is injected: the polariton
density required to generate the soliton will increase accordingly. This imposes to
inject polariton in the upper trivial gap of the model. To confirm these quick calcu-
lations, we realized tight-binding simulations aiming at generating a spin-polarized
soliton in the upper gap of the SSH model: we performed power ramps for various
energy detuning of the pump and relative phase difference ∆ϕ. This procedure al-
lowed us to observe spin-polarized solitons in the upper gap of the model and to
optimize the extinction of one pumped pillar while increasing the polariton density
on the second one. The most promising results are summarized in Fig. 3.26.

Injecting polaritons at an energy ∆E = 1.25 meV and for ∆ϕ ≈ −π/2, we
observed the formation of a spin polarized soliton whose profile is presented in
Fig. 3.26 (b) and yields a total pseudo-spin S̃ = −0.98. Computing the excitation
spectrum on top of this non-linear steady state, we obtained the image displayed
in Fig. 3.26 (a). In these driving conditions, the blueshifted pillar is brought to an
energy E-Ep = 0.78 meV, which corresponds to a detuning ∆E = 2.03 meV ∼ 10J
with respect to the center of the gap. The blueshifted pillar can here be considered as
decoupled from the lattice. As a result, a localized state presenting the distribution
of a topological edge state is observed at the exact center of the topological gap
(g|ΨA,0|2 = 3.7 µeV ≈ 0). The profile of this state is shown in Fig. 3.26 (c). The
computation of the total pseudo-spin yields S̃Tot = 0.98, which is very close to the
value obtained for a topological edge state (S̃Tot = 1). The profiles of the soliton and
gap state obtained in the case considered in Fig. 3.25 are provided for comparison
(see Fig. 3.26 (d-e)). In this case, the computation of the pseudo-spin of the state
localized in the topological gap yields S̃Tot = 0.54. Compared to the soliton with
chiral tails, the soliton generated in the trivial gap presents a much higher density
on pillar 1 and steeper exponential tails. As predicted, it results in a significant
increase of the pseudo-spin of the Bogoliubov mid-gap state.

These results allow us to draw a clear distinction between the different character-
istics considered here for solitons. The tail pseudo-spin, which endows solitons and
topological edge-states with robustness properties against defects, originates from
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the chiral symmetry and is a feature specific to the topological gap. On the contrary,
the spin polarization of the soliton core originates from a destructive interference
mechanism within the pumped sites. This driven-dissipative phenomenon can even
be triggered in the upper trivial gap of the model and leads to the generation of a
non-trivial interface for Bogolons.

Due to the driven-dissipative character of the polariton platform, the engi-
neering of the driving field allows to impose frustration to the non-linear fluid.
We here demonstrated the generation of a soliton with spin-polarized core in
the bulk of the SSH lattice, which is unstable in conservative systems.

Interestingly, we showed that the presence of such soliton induces a non-
trivial interface which hosts a spin-polarized localized state inside the topological
gap of the excitation spectrum. We showed that to observe an interface state
localized at the center of the gap, the blueshift induced by the soliton has to be
significantly greater than the coupling strength J . A better agreement between
the Bogoliubov state and a topological edge state is obtained by injecting a
spin-polarized soliton in the upper trivial gap of the lattice.

A summary of the results presented in this chapter can be found in the chart below:

Spin-polarized

Possible
not centered

tails

Spin-polarized
core

Topological state
in the

Bogoliubov spectrum

Gap solitons in a driven-dissipative SSH lattice

Topological gap Trivial gap

Possible
Max for ∆ϕ ≈ π Max for ∆ϕ ≈ ±π/2

Possible
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3.6 Perspectives

3.6.0.1 Summary

In this chapter we explored the solitonic solutions in the topological gap of the SSH
model. We observed the formation of solitons presenting particular sub-lattice spin
textures located at a topological interface of the model but also in the bulk of the
lattice. Leveraging on the versatility of polariton micro-cavities, we showed that this
sub-lattice localization of the soliton tails leads to robustness properties against non-
Hermitian defects localized on a given sub-lattice. Finally we demonstrated that, by
engineering the external driving field, it is possible to trigger the formation of new
solutions presenting a non-zero sub-lattice pseudo-spin in the bulk of the lattice.
These solutions where shown to be exclusive of open system as they required to
be stabilized by an external drive. Interestingly, the novel solitonic solutions we
discovered act as nontrivial interfaces for the Bogolons. We demonstrate that the
engineering of the driving field can be used to modify the topology of the Bogoliubov
spectrum.

3.6.0.2 Non-linear interfaces and the excitation spectrum

These latter results are an ongoing work and we plan to realize pump-probe ex-
periments aiming at measuring the Bogoliubov spectrum in a polariton SSH lattice
to directly evidence the appearance of spin-polarized states localized at interfaces
induced by the formation of gap soliton.

This work opens the door to the exploration of the driven-dissipative topology
in more complex geometries. The case of the SSH model is not a general example
as a complete restructuring of the bulk of the lattice is not necessary to induce a
phase transition: simply removing an edge pillar allows transitioning between the
two possible phase of the model. As proposed by Bardyn et al. in Ref. [8], the next
step could consists in the observation of a topological phase transition with a 2D
lattice.

3.6.0.3 Probing interactions between topological solitons

Another thread to pull is the exploration of the interaction between solitons present-
ing sub-lattice spin polarized tails. As we showed in this chapter, those solitons are
not affected by defects localized on the sub-lattice where they show a vanishing am-
plitude. Interestingly, one can remark that two spin-polarized solitons approaching
each other would present opposed sub-lattice localization as the left soliton would
be localized on the B sub-lattice while the right soliton would present a significant
density on the A sub-lattice only. One can thus expect those solitons to behave
differently than solitons exhibiting unpolarized exponential tails. The exploration
of the consequences of the chiral symmetry on the interaction between gap solitons
is the subject of the next chapter.
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Chapter 4

Interaction between gap solitons
on a driven-dissipative SSH lattice

In this fourth chapter we address the importance of the chiral symmetry to un-
derstand the interaction between two driven-dissipative solitons generated in the
topological gap of the SSH model. As evidenced in the previous chapter, the chiral
symmetry of the SSH model endows the solitons generated in the topological gap
of the lattice with a chiral profile. Both exponential tails of those non-linear stable
solutions indeed present sub-lattice localization with opposite chirality. Two distinct
solitons would therefore necessarily approach each other by overlapping exponential
tails with an opposed chirality. The tails chirality was shown to be of crucial im-
portance for the description of the interaction between a soliton and a defect and
one can thus expect it to affect the interaction between two solitons. We will start
by a general description of the interaction between solitons and especially study the
case of Kerr solitons on a conservative lattice. In this situation the phase profile
of the soliton, which is related to the underlying band structure, will be shown to
have strong consequences on the behavior of two interacting solitons. We will then
study this problem in the context of a driven-dissipative SSH lattice. We first show
a parallel between the case of open and closed systems where no clear impact of
the chiral symmetry is observed. Interestingly, we unveil the existence of a sym-
metry breaking in the power dependent formation of solitons. Taking advantage
of the dissipative nature of the system and of our ability to engineer the drive, we
demonstrate a novel counter-intuitive effect of phase multi-stability in the vicinity
of this broken symmetry phase. The chirality of the system response will be shown
to depend on the helicity of the drive protocol (clockwise or counterclockwise phase
scan): we thus call it “Helical bistability".
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Figure 4.1: a, Numerical simulations showing the intensity profiles resulting
from the interaction between two spatial solitons as they propagate along the z
direction of a waveguide. Top and bottom panels respectively correspond to an
in-phase and anti-phase relation between solitons. b, Experimental measurement
of the interaction between two spatial solitons in a waveguide given by the spatial
distribution of light at (i) the waveguide input, (ii) the output of the waveguide
in the case where no temporal overlap is realized between the soliton and (iii-iv)
the waveguide output in case of, respectively, an anti-phase and in-phase relation
between solitons. c, Auto-correlation traces of temporal solitons injected in an
optical fiber with the auto-correlation of: (i) the input signal constituted of two
light pulses and (ii-iii) the output signal in the case of, respectively, in-phase and
anti-phase light pulses. Images adapted from [339] and [340].

4.1 Introduction

4.1.1 General overview
The question of the interaction between solitons is a vast research field that has
widely and actively been explored for more than three decades. Restricting ourselves
to optics, the exploration of the interaction between solitons unveiled an incredible
diversity of phenomena such as energy transfer between collisional partners, fusion,
splitting and annihilation of solitons [335,336], or soliton explosions [337,338].

A generality of the phase dependence of the interaction between two solitons
has been evidenced, which had early been predicted for solitons of the sine-Gordon
and cubic non-linear Schrödinger equations [341–343]: the relative phase between
solitons controls the sign of the short range force applied by a soliton on another
one. Experimental demonstrations of the control of soliton-soliton interactions were
realized for temporal [340] and spatial [339, 344] solitons respectively using optical
fibers, cells containing carbon disulfide and planar waveguides. All these realizations
confirmed the theoretically predicted behavior: two in-phase neighboring solitons
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(i) (ii) (iii)

Figure 4.2: Numerical simulations of interaction between two spatial solitons on a
photonic lattice. Top, middle and bottom panels respectively correspond to a phase
difference of 0, π/4 and π between the solitons. The different columns present the
evolution observed for a growing optical power of the pump beam b1 and b2.

attract each other while a repulsive interaction is observed between solitons in phase
opposition. Additionally, the strength of the interaction decreases with the distance
between the two objects. These results are illustrated in Fig. 4.1. This interaction
of two solitons can be guessed from the overlap between tails of the two objects: two
solitons in phase opposition exhibit destructive interference between their decaying
tails which disfavors a merging of the two objects while the opposite effect occurs
for in-phase solitons.

This description is yet only valid for solitons in an homogeneous landscape and
the presence of an additional potential changes the soliton profile and may results
in a modification of the interaction between two solitons.

4.1.2 Interaction between gap solitons on a lattice: role of
the band symmetry

The question of the interaction between solitons on lattices has stimulated a lot
of interest for the last two decades with, for example, the stabilization and inter-
action of soliton trains [345–347]. A plethora of works report on the study of the
interaction between two elementary solitons either on lattices of homogeneously cou-
pled waveguides [348–350] and optically induced sinusoidal potentials [351–354] or
in modulated lattices [355]. These realizations confirmed the phase dependence of
the interaction between solitons and some of them demonstrated a self-localization
mechanism for high optical powers with an oscillatory behavior in the intermediate
power range (an example of such behavior is illustrated in Fig. 4.2).

Interestingly, a deviation from this paradigmatic behavior was observed by Liu
et al. in Ref. [352]: two solitons were shown to attract each other when generated in
phase opposition. In this work, the authors realized an optically induced sinusoidal
lattice using a photo-refractive crystal. In this configuration the light experiences
an alternatively low and high refractive index as it propagates along the lattice,
represented by light and dark regions on Fig. 4.3 (a). A band gap is observed in
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Figure 4.3: a, Schematic representation of the photonic lattice. b, Calculated
band structure of the lattice. c, Calculated profile of symmetric and anti-symmetric
solitons respectively bifurcating form the upper and lower band of panel (a). Dark
arrows were added to highlight the interfaces where the soliton tails amplitude van-
ishes. d, Superimposed amplitude and phase profiles of two in-phase anti-symmetric
solitons with a center to center distance of, respectively, one and two unit cells length
d for top and bottom panels. Images taken from [352].

the energy spectrum of the structure (Fig. 4.3 (b)) and the authors studied the
interaction between two solitons generated in its center. Note that in the present
case the authors can play with the sign of the interaction term, light experiencing
either a self-focusing or self-defocusing non-linearity. Consequently, they can trigger
the formation of two types of solitons with either a symmetric or anti-symmetric
profile as illustrated in Fig. 4.3 (c).

In this work the crucial ingredient resides in the staggered phase profile of the
soliton: as it bifurcates from states formed at the edge of the Brillouin zone (see
Fig. 4.3 (b)), the amplitude of the soliton wavefunction switches sign from one unit
cell to the next one. Two solitons injected by in-phase pulses can thus effectively be
in-phase or in anti-phase depending on the relative distance between their centers,
this dependence is illustrated in Fig. 4.3 (d). The top panel of Fig. 4.3 (d) illustrates
two solitons injected in phase on two neighboring unit cells (D = d): in each unit
cell of the lattice, their wavefunctions are found to be in phase opposition. On the
contrary, the soliton wavefunctions are found to be in phase if these two solitons are
injected on disjoint unit cells separated by one unit cell (D = 2d), which is shown in
the bottom panel of Fig. 4.3 (d). As a result, one can expect the interaction between
solitons to depend on the phase difference ∆ϕ and distance D between the two
injected beams. Numerical simulations carried by Liu et al., in Ref. [352], confirmed
this analysis showing that, for a given phase difference, the attractive and repulsive
nature of the interaction depends on the parity of the number of unit cells separating
the two beams. These numerical results are summarized in Fig. 4.4. The authors
experimentally confirmed these numerical results by observing the trajectories of two
in-phase solitons for distance D = d, 2d, 3d and 4d which revealed an alternatively
repulsive or attractive nature of the interaction between the non-linear objects.

This work demonstrates the crucial importance of the soliton phase profile on
the way two of those non-linear objects will interact. The profile of the soliton being
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D = 3d

D = 4d

D = 5d

D = 6d

∆ϕ = 0 ∆ϕ = π/2 ∆ϕ = π

Figure 4.4: Simulated trajectories of two interacting solitons initially separated
by D = 3d, 4d, 5d and 6d for, respectively, (a-d). Each column corresponds to
a given value of the input phase difference with ∆ϕ = 0, π/2 and π for the first,
second and third columns. Images taken from [352].

strongly correlated to the one of the state from which it bifurcates, it clearly appears
that engineering of the lattice band structure provides one with the ability to tailor
the effective interaction between solitons.

In the present chapter we will show how the Chiral symmetry of the SSH model
strongly influences the interaction between two gap solitons.

4.2 A symmetry breaking revealed in the interac-
tion phase diagram

In the driven-dissipative framework of our study, gap solitons cannot freely propa-
gate on the lattice: they are pinned to the vicinity of the pump and, consequently,
the study of the interaction between solitons cannot be done by looking at their
propagation versus time. However, as demonstrated in the previous chapter, the
nature of the interaction of a soliton with another object can be inferred from the
spatial growth of the soliton as the pump power is ramped up. A first approach
we employed here thus consist in probing the formation of non-linear domains as
a function of the driving field distribution: we used two pump spots and varied
their relative distance. Doing so we unveiled the existence of a symmetry breaking
occurring for a phase difference of ∆ϕ = 0 or ∆ϕ = π depending on the distance
between pump spots.

4.2.1 Phase frustration in the solitons tails
To start our study of the interaction between gap solitons via chiral tails, we used
the same experimental setup as described in Chap. 3.5 and performed power ramps
for the two paradigmatic values of the phase difference (∆ϕ = 0 and ∆ϕ = π) and
various distances between pump beams: the pump spots were focused at the center
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Figure 4.5: Evolution of the intensity profile in two pumps experiments as a
function of the total pump power. We here displayed the intensity normalized to its
maximum in logarithmic scale. Vertical axes are normalized to the power threshold
for the formation of independent solitons. (a-c) respectively correspond to D = 2a,
3a and 4a. In each case the left sub-panel corresponds to a phase difference of
∆ϕ = 0, whereas the right one corresponds to ∆ϕ = π. A scheme of the lattice and
excitation setup is depicted on top of each image.

of two distinct dimers (D = 2a, 3a, 4a). Note that when exciting a single dimer, the
threshold P1 is found to be subject to fluctuations on the order of ∆P1 ∼ 1 mW. This
phenomenon is due to a local disorder of the onsite energy on the order of a fraction
of the polariton linewidth (∆E0 ∼ 10 µeV). To compensate for these fluctuations, a
slight power imbalance is introduced between the two arms of the excitation setup
such that the incident power is normalized to the non-linear threshold of each dimer.
In the two pump experiments, P/Pth is the same for both pumped dimers. In the
following, the two arms of the excitation setup will be called “arm-L" and “arm-R"
for the reference and delayed path respectively. In all representations, the pumped
dimer displayed on the left (right) will always correspond to the one pumped by the
beam passing through arm-L (arm-R).

The results of the two pumps experiments are summarized in Fig. 4.5. In these
images, the solitons appear as dark blue regions and their spin-polarized tails can
be observed on the left and right of each panel. One can observe that the system
response strongly depends on the relative distance D and relative phase ∆ϕ between
the two pumps. Especially, one can notice that the formation of solitons occurs either
simultaneously at both pumps positions (see Fig. 4.5 (a) for ∆ϕ = π) or in only one
of the two pumped dimers for P < Pth, a second soliton being formed at the other
pump position for P > Pth (see Fig. 4.5 (a) for ∆ϕ = 0). This phenomenon will be
discussed in the next section.

Let us first focus on the intensity distributions obtained for high pump power.
In all cases, a bright soliton is observed under each of the pump spots and, for each
value of the distance D, two different configurations are noticeable: the region in
between the two pumps either presents a weak intensity or contains one or more
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Figure 4.6: a-c, Simulated evolution of the intensity profile in two pumps ex-
periments as a function of the total pump power. Vertical axis are normalized to
the power threshold for the formation of independent solitons. (a-c) respectively
correspond to D = 2a, 3a and 4a. In each case the left sub-panel corresponds to a
phase difference of ∆ϕ = 0, whereas the right one corresponds to ∆ϕ = π.

solitons. Solitons are observed in the central region for ∆ϕ = 0 in the cases D = 2a
andD = 4a, and for ∆ϕ = π in the caseD = 3a. A weak intensity is measured in the
complementary cases. The interaction between two solitons seems to depends on the
phase difference between the two injection pumps and on the parity of D/a. These
trends are well reproduced by numerical simulations in a tight-binding framework 1,
as shown in Fig. 4.6 (a-c).

A parallel can be drawn with the results obtained for conservative systems: dis-
tributions presenting additional solitons in between the two pumps are a driven-
dissipative counterpart of attractive trajectories observed in absence of dissipation
(fig. 4.4), whereas repulsive trajectories are replaced by distribution showing a weak
central intensity originating from a phase frustration between solitons. However,
this parallel works only in a certain limit: the two solitons considered in our exper-
iments do not strictly interfere as it was the case in Ref. [352]. Indeed, the solitons
considered here present opposite sub-lattice spin-polarization and thus almost no
spatial overlap. To understand this merging or frustration between the two solitons,
one needs to pay attention to the phase profile of a soliton and the resulting overlap
with eigenstates of the lower s band. As described in the previous chapter, the
exponential tails of a state localized in the center of the topological gap are local-
ized on one sub-lattice s with the recurrence relation Ψs,m =

(
− J ′/J

)m
Ψs,0. The

same equation applies to the solitons tails as the polariton density is weak enough
to consider g|ΨA/B,m|2 ∼ 0, ∀m 6= 0. In the context of our polaritonic emulation of
the SSH lattice, the two coupling constants J and J ′ are real positive quantities and
the phase of the soliton tails (φ) thus alternates from a unit cell to the next one (see
schematic representation in Fig. 4.7 (a)). As a consequence, two solitons injected
with a phase difference ∆ϕ = 0 can locally (inside a unit cell) be in-phase or in anti-
phase depending on the relative distance between the two pump spots, as pictured
in Fig. 4.7 (b-c). When the two pumps present the same phase on a given unit cell,
the resulting field spectrally couples to the lower s band with a bonding profile. As

1Note that we here simply aimed at confirming the distance and phase relation to the field
profile at high power. Exactly reproducing the evolution of the profiles measured experimentally
would require a fine tuning of the simulation parameters which is beyond what we intend to discuss
here.
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Figure 4.7: a, Density (top) and phase (bottom) profiles of a gap soliton in the
SSH model with J > 0 and J ′ > 0. Data points of the phase profile are displayed only
where the soliton presents a significant density. b-c, Schematic representation of
the overlap between two solitons for ∆ϕ = 0. Bottom panels show the superposition
of solitons phase profiles for (b): D = 4a and (c): D = 3a. Black dotted ellipses
evidence each unit cell of the central region. Density profiles of each soliton are
presented on top in green and orange bar histograms.

the power is ramped up, the non-linear term induces a blueshift of the bands which
favors the injection of particles in the system as the lower band gets closer to the
drive energy. On the contrary, two solitons presenting an opposed phase profile on
each unit cell couples to the upper s band which has an anti-bonding profile. As the
power is ramped up, the blueshift of the bands tends to decouple the driving field
from the band as upper-band modes are pushed away from the pump energy.

To confirm the importance of the lower band symmetry in the interaction between
solitons, we performed numerical simulations considering negative hopping constants
which enable us to tune the phase profile of the lower band mode and thus the one
of the soliton. The results of these calculations are presented in Fig. 4.8 (a-e) for
J > 0 and J ′ < 0 and in Fig. 4.8 (f-j) for J < 0 and J ′ > 0. In each case, we display
the calculated band structure with the real space profile of eigenstates at the top
and bottom of each sub-band. We present the profile of the soliton obtained in the
corresponding topological gap as well as evolution of the density profile of two of
these solitons as a function of the power for different relative phases and distances
between pumps (D = 2a, 3a and 4a from left to right panels).

Firstly, let us consider the case J > 0 and J ′ < 0: the obtained lower band
results from the hybridization of bonding dimer states as J > 0 but due to the
negative amplitude of J ′, the energy distribution of hybridized modes is reversed.
The lowest and highest energy state of the band respectively results from the anti-
symmetric and symmetric hybridization of dimerized states, these two characteristic
eigenstates are depicted in Fig. 4.8 (a). The soliton bifurcating from the top of the
band, it presents a density profile equivalent to the one previously studied and the
soliton wavefunction thus only differs in its phase profile. The phase of the soliton
tails does not flip from one unit cell to the next one (see Fig. 4.8 (b)). Consequently,
two solitons injected with ∆ϕ = 0 remain in-phase no matter their relative distance:
their interaction thus does not depends on D/a as observed in Fig. 4.8 (c-e): the
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Figure 4.8: a, Calculated dispersion of the SSH lattice for J > 0 and J ′ < 0.
Phase profiles of the characteristic eigenstates at the top and bottom of each energy
sub-bands are presented on the right. b, Density (top) and phase (bottom) profiles
of a gap soliton in the SSH model with J > 0 and J ′ < 0. Data points of the
phase profile are displayed only where the soliton presents a significant density. c-e,
Simulated evolution of the intensity profile in two pumps experiments as a function
of the total pump power. Vertical axis are normalized to the power threshold for
the formation of independent solitons. (c-e) respectively correspond to D = 2a, 3a
and 4a. In each case the left sub-panel corresponds to a phase difference of ∆ϕ = 0,
whereas the right one corresponds to ∆ϕ = π. f-j, present data equivalent to (a-e)
in the case J < 0 and J ′ > 0.
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4.2. A symmetry breaking revealed in the interaction phase diagram

two solitons always merge when they are in phase (∆ϕ = 0).
Secondly, to show that this interaction is mediated by the bands and not by

the in-phase relation between soliton tails we then considered the case J < 0 and
J ′ > 0. In this configuration the lower band presents an anti-bonding profile and
the upper band a bonding one as J < 0. Lowest and highest energy states of the
lower band are depicted in Fig. 4.8 (f). The density and phase profiles of the soliton
are presented in Fig. 4.8 (g): the soliton core presents a strong intensity on both
sub-lattices with an anti-phase relation between the two pillars, signature of the
anti-bonding nature of the lower band. As in the previous case, the phase of the
tails does not alternates from one unit cell to the next one, however, due to the
phase twist inside of the soliton core the two tails are in phase opposition. Once
again the nature of the interaction does not depend on the relative distance between
soliton cores but this time the frustration is observed when soliton tails are in-phase
(see Fig. 4.8 (h-j)). The injection of particles and thus the formation of additional
solitons in between the two source terms is favored when the field profile efficiently
couples to the lower energy modes which have an anti-bonding symmetry.

The importance of the lower band structure is twofold: 1- the soliton profile is
dictated by the eigenstate from which it bifurcates which is the top of the lower
band in our case as the interaction is repulsive; 2- the lower band symmetry dictates
whether the solitons growth is favored when the two solitons are locally in-phase or
in anti-phase.

Those results highlight the importance of the lower band structure to understand
the interaction between two solitons. We especially demonstrated that a particular
attention has to be given to the mode from which the soliton bifurcate (the top of
the lower band in this case) as it strongly affects the soliton wavefunction. These
first results are very similar from those obtained in conservative systems for solitons
without sub-lattice localization and the notion of Chiral symmetry thus does not
seem to play an important role in the description of the interaction between gap
solitons with chiral tails. We will now turn to a more detailed description of the
formation of coupled solitons, to explain the transition from the linear to the highly
non-linear regime and try to observe whether the underlying Chiral symmetry has
any influence on the system.

4.2.2 A symmetry breaking induced by a phase frustration
between the driving field and renormalized states

A noticeable feature we can observe on the experimental data presented in Fig. 4.5
is that under certain conditions (for instance in Fig. 4.5 (a) for ∆ϕ = 0), only one
soliton is injected in the system and is located under one of the two pumps. This
phenomenon is quite counter intuitive as one would expect the system response to
preserve the symmetries of the lattice and of the excitation field: we would thus
expect to observe the simultaneous formation of a soliton under each pump spot.
This asymmetric feature which signals the presence of a symmetry breaking is also
observed in simulations as it is shown in Fig. 4.6 (b) for ∆ϕ = π. A question that
arises is how does the system chooses where to form the first soliton, is it stochastic?

We performed repeatability experiments for D = 2a and ∆ϕ = 0 to verify
whether the first non-linear jump always corresponds to the formation of a single
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Figure 4.9: Chronographs of the excitation power (top) and of the polariton den-
sity in the two pumped unit cells (bottom) with the red and blue lines respectively
corresponding to the left and right dimers (respectively associated to arm-L and
arm-R) for ∆ϕ = 0 and D = 2a.

soliton and if this soliton can be formed under each of the pump spots in a nonde-
terministic fashion. We thus performed experiments in which the input power was
continuously ramped up and down between P = 0 and P > Pth while we continu-
ously monitored the emission from the two pumped unit cells and the central one.
To avoid any perturbation due to long time drifts of the setup alignment and to
ease the collection of data we slightly modified the experimental setup: each of the
considered unit cells was imaged on a different photodiode and the HWP controlling
the excitation power was mounted on a homemade fast rotating motor. These mod-
ifications accelerate the collection of data by a factor of one thousand (at the cost
of some loss of spatial resolution in the distribution of polaritons). A portion of the
measured signals is presented in Fig. 4.9 where the blue (red) curve correspond to
the polariton density measured in the dimer pumped by the beam passing through
arm-L (arm-R). One clearly observe the signatures of a symmetry breaking: only
one soliton is formed during each power ramp and the non-linear jump of the po-
lariton density can occur under each of the pump spots. Note that this latter result
is extremely sensitive to the value of the phase difference imposed between the two
pump beams: introducing a small phase difference leads to significantly favoring the
formation of the soliton on one dimer or the other depending on the sign of ∆ϕ.

Fortunately, due to the improvement on the speed with which we collect data
and the stability of the setup, we were able to observe a consequent number of
events before a significant drift of the alignment which occurs on a timescale τdrift ∼
3 min. As a result, we can perform some statistics on this symmetry breaking
process and check its stochasticity. To do so we used a shutter to rapidly switch
the laser on and off at P = 1.2 Pth. We then treated each time interval where
the laser was on as a distinct event and extracted two binarized signals D1 and
D2 associated to each pumped dimer: if a soliton was formed on a dimer i = 1
or 2 during the nth interval, then Di(n) = 1 and Di(n) = 0 otherwise. In case of
a spontaneous symmetry breaking one expects no correlation between D1(n) and
D2(n) and between Di(n) and Di(n′). The correlation product of two signals S1(n)
and S2(n) is noted S1(n)⊗ S2(−n).

The obtained results are summarized in Fig. 4.10. The auto-correlations of D1
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(green).

and D2 presented in panel (a) are clearly peaked around 0 and show plateaus at
values close to 0.5 2. The amplitude difference between the two plateaus is due to
the too small number of acquired events and highlights their non-equipartition: 46%
of the non-linear jumps occurred under the reference spot for a total of 7675 events.
The cross-correlation of D1 and D2 presents the same characteristics with a peaked
feature around 0 attesting that the formation of solitons always occurred under a
single of the two pump spots at each event (see panel (b)). Finally Fig. 4.10 (c)
presents the absolute value of the Fourier transform of D1, which is equal to the
one of D2 (one gets D2(n) = 1 − D1(n) from the value of the cross correlation for
∆n = 0). We observe no clear evidence of a periodicity in the signals and the Fourier
transform of a random sequence of 0 and 1 is provided for comparison. Proving this
symmetry breaking process to be spontaneous would require measuring all possible
sources of noise in the setup, which is beyond the scope of this study. We can at
least say that the mechanism triggering the asymmetric formation of the soliton
appears to be stochastic.

A spontaneous symmetry breaking between two negatively coupled cavities as
already been reported by the group of A.Giacomotti using a non-resonant [356] or
resonant excitation of the system [357]. This spatial symmetry breaking between two
coupled Kerr resonators can be observed regardless of the hopping sign, by adjusting
the relative phase imposed by the driving field. As described in Ref [358], observing
the symmetry breaking requires to pump both pillars of a positively (negatively)
coupled dimer in anti-phase (phase) and at an energy lower than the anti-bonding
(bonding) mode. The symmetry breaking occurs when the effective blueshift is
such that the lower eigen-state is brought to resonance using a strong driving field
presenting the opposite symmetry. Note that, in this sense, the asymmetric solitons
presented in Chap. 3.5 of this manuscript could be obtained by power ramps for a
given phase difference instead of a phase scan at a given power.

We now need to verify whether our experiments can be interpreted in terms of
anti-symmetrically pumped resonance. To do so it is insightful to consider that the
injection of polaritons under each pump induces a local blueshift β of the bonding

2The correlation function defined in MATLAB is not normalized and decays due to the finite
size of data. In the present case, the signals were periodized to compute correlations. This explains
why we observe plateaus and not a linear decay of the results.

130



CHAPTER 4. Interaction between gap solitons on a driven-dissipative SSH lattice

(a)

(b)

∼
t′ < 0

β + t
Energy Energy1

Ψ

Ψ

Ψ

1

1

-1

-1

-1

β

0
−t

D = 2a (c)

(d)

∼
t′ > 0

β + t
1
Ψ

Ψ
1
-1

-1

β

0
−t

D = 3a
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system described by M(D = 2a) b, Energy and real space distribution of the eigen-
states of the reduced system for D = 2a. c-d, same as (a-b) for D = 3a. In (d),
spatial distributions are represented for the two highest eigenstates only.

resonances and to analyze the eigenstates of the reduced system composed of the
two pumped unit cells and the central undriven ones. To be more specific, we
approximate each unit cell to a single resonator and diagonalize the matrix M(D)
associated to the reduced system which in the case of D = 2a yields:

M(D = 2a) =

 β −t 0
−t 0 −t
0 −t β

 (4.1)

where t is the effective hopping from one unit cell to the next one which can be
approximated by t ≈ J ′ and just before the non-linear jump the effective onsite
energy of the driven dimers can be approximated by β ≈ J . The diagonalization of
the resulting matrix yields three eigenstates presented in Fig. 4.11. The two highest
energy ones present a strong amplitude on the blueshifted sites while the lowest
energy one is mostly located on the central site: as long as β � t we can forget
about the central dimer to describe the physics of the pumped dimers. We hereby
assimilate our system to two coupled Kerr resonators.

The sign of the effective hopping is given by the hierarchy between the two highest
eigenstates of the system: in the caseD = 2a the highest energy state corresponds to
the bonding hybridization of the two blueshifted sites while the central mode presents
the anti-bonding symmetry. In the limit where the energy difference between the
lowest eigenstate and the two higher ones is significantly greater than the linewidth,
the system can be approximated by two coupled resonators with an effective negative
hopping constant. In this framework, when the blueshift brings the first eigenstate
in resonance with the pump, the efficient injection of polaritons rapidly brings the
second one to resonance which presents a symmetry opposed to the driving field and
thus leads to a symmetry breaking. Calculating the eigenstates ofM for D = 3a and
D = 4a, we find that the sign of the effective hopping between pumped unit cells is
given by the parity of D/a: it is positive for D/a = 3 and negative for D/a = 4.
This simple analysis is corroborated by our experimental results as we observed a
symmetry breaking for ∆ϕ = π with D = 3a and ∆ϕ = 0 with D = 4a. In the next
chapter we will address the symmetry breaking observed between two neighboring

131



4.2. A symmetry breaking revealed in the interaction phase diagram

(a) (b) (c)

0 1ñ
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Figure 4.12: Phase-Power diagrams of the normalized polariton density ñ on
the three central unit cells for D = 2a. (a-c) were obtained for upward scans of
the input power starting from the linear regime and respectively correspond to the
evolution of the polariton density on the left, undriven and right unit cells. (d-f)
are equivalent to (a-c) for downward scans of the input power starting from the
highest power presented in (a-c).

dimers (D = a) for ∆ϕ = π.

4.2.3 Phase diagram of coupled solitons formation for D =
2a

Up to now we restricted our discussion to the two cases ∆ϕ = 0 and ∆ϕ = π. To
extend our study, we performed power ramp experiments for many different values
of ∆ϕ within the range [−π, π] and for pump spots separated by D = 2a. We used a
frequency generator to synchronously control the excitation power and the relative
phase by externally driving the power control device and the piezoelectric actua-
tor. We slowly scan the phase difference ∆ϕ introduced between the two pumping
beams (f0 = 10 mHz) while the input power P is rapidly modulated (f0 = 10 Hz).
By collecting the signal emitted by each considered unit cell with photodiodes, we
can reconstruct the emission pattern as a function of power and phase. Figure 4.12
presents the diagrams obtained by performing up and down power ramps as a func-
tion of a fixed phase difference ∆ϕ = ϕL − ϕR imposed between the two pumps.

Let us first focus at panels (a-c) of Fig. 4.12 which corresponds to upward scans
of the excitation power. We clearly observe the signature of the spatial symmetry
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breaking around ∆ϕ = 0 with a single soliton forming on the left dimer for ∆ϕ ∼
[0, π2 ] and on the right one for ∆ϕ ∼ [−π

2 , 0]. At higher powers (P/Pth > 2.5) the
non-linear domains spreads on three unit cells. In the vicinity of ∆ϕ = ±π, two
solitons are simultaneously formed under each of the pump spots and the central
unit cell remains dark up to the maximum accessible input power. Note that a
general residual asymmetry is observed in the diagram: the symmetry breaking
here occurs slightly above ∆ϕ = 0 and we clearly do not observe a mirror symmetry
between Fig. 4.12 (a) and (c), respectively associated to the unit cells pumped by
beams passing through arm-L and arm-R. This asymmetry can be attributed to a
residual misalignment in the setup or to a weak local disorder on the onsite energies
or couplings whose effect is exacerbated by the non-linear nature of our experiments.

The same phase dependence of the polariton distribution is observed on Fig. 4.12 (d-
f) which correspond to downward scans of the pump power starting from the highest
accessible value. However, due to the hysteretic behavior of the system, the tran-
sitions between bistability branches occur at lower power thresholds compared to
Fig. 4.12 (a-c). In the vicinity of ∆ϕ = 0, as the input power decreases, we observe
that the soliton core initially spreading over three unit cells undergoes a non-linear
cascade leading to the presence of a single soliton either on the left or right dimer
depending on the sign of ∆ϕ. Remarkably, a stable solution corresponding to hav-
ing a soliton localized on the undriven dimer only is obtained in the downward scan
only, for ∆ϕ ≈ 0 and P ∼ Pth.

In the vicinity of ∆ϕ = ±π a single stable branch is encountered as the power
is scanned down which corresponds to the existence of a soliton at the location of
both pump spots.

To better highlight the different stable solutions observed during these experi-
ments, we can superimpose these individual diagrams. To do so we took advantage
of the ternary nature of our data by associating each unit-cell to a given color of the
RGB code. In this way, we generate false color images, where red color represents a
soliton localized on the left dimer, blue color corresponds to a soliton localized on
the right dimer, while green regions are related to a soliton localized on the center
dimer. In the phase diagram, the color representing solitons localized on two or three
dimers is obtained by simple additive color synthesis, as illustrated in Fig. 4.13. In
this figure we binarized the images presented in Fig. 4.12 (a-c) and used each of
them as a given color layer of the new image.

Figure 4.14 (a-b) present the obtained RGB images for the upward and downward
power scans. Seven different solutions are observed over the two images. In particu-
lar, the blue and red regions are characteristic from the spatial symmetry breaking
and correspond to the localization of a single soliton on one of the two pumped
dimers. The schematic representation of the fluid density (white and gray circles)
clearly highlights the chirality (left or right localization) of these two solutions which
are enantiomorphs: they are mirror images of each other. In the downward scan
(Fig. 4.14 (b)), we observe the presence of a green region, which corresponds to a
single soliton localized on the undriven unit cell, whereas no green region is found
in the upward scan (Fig. 4.14 (a)). This is a strong indication of the presence of
multi-stability in the system. Note that an asymmetry is clearly observed via the
presence of a cyan region associated to a soliton spreading on the two rightmost
unit cells: one would expect to observe its mirror symmetric counterpart (a yellow
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4.2. A symmetry breaking revealed in the interaction phase diagram
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Figure 4.13: a, Phase-Power diagrams of the normalized polariton density pre-
sented in Fig. 4.12 (a-c). b Binarized diagram with red, green and blue areas
indicating the Phase-Power regions where a soliton was present on the left, central
(undriven) and right unit cell respectively. c RGB image obtained superimposition
of the three binarized images presented in (b). The additive color synthesis scheme
is displayed on top.
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Figure 4.14: RGB images obtained by additive color synthesis of diagrams pre-
sented in Fig. 4.12 with (a): synthesis of the three upward scans and (b): synthesis
of the three downward power scans. The power scan direction is indicated by an
arrow at the right of each panel. Schematic representation of the polariton fluid
density is represented in each colored region: a strong (weak) intensity in a dimer
is represented by a gray (white) circle.

region) where the soliton would be located on the two leftmost unit cells.

4.3 Helical bistability
Due to the hysteretic behavior of the system, all trajectories between two points of
the P -∆ϕ phase space are not always equivalent. In this section we take profit of a
knob which has rarely been considered in open systems: the possibility to implement
continuous scans of the relative phase ∆ϕ. Doing so, we demonstrate that the chiral
symmetry of gap solitons has striking consequences on their interaction: we unveil
a novel effect of phase multi-stability in the vicinity of the symmetry breaking. The
helicity of the phase scan (clockwise or counterclockwise) will be shown to control
the chirality of the solution (left or right localization of the soliton) encountered
across the broken symmetry region. We compare these results to the case of the AB
lattice and we demonstrate this effect to be specific to gap solitons presenting the
chiral symmetry.

4.3.1 Scanning the phase to navigate through the stability
diagram

We now turn to the exploration of the stability diagram of our system of coupled
solitons by performing scans of ∆ϕ for fixed values of P . Note that due to the hys-
teretic behavior associated to the competition between non-linearity and dissipation,
the clockwise and counterclockwise phase scans are different and we thus present
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both in all figures. The RGB images associated to relative phase scans as a function
of the input power are presented in Fig. 4.15. We here provided the phase scans in
the case of upward and downward power scans. Note that, since the ∆ϕ scans are
performed at fixed values of the power, the system does not “remember" the way
the power is varied (increased or decreased) after each ∆ϕ scan. As a result, the
only main difference between panels (a) and (b) ((c) and (d)) lies in the initializa-
tion of the system: the system remains empty (no soliton) up to P/Pth ≈ 0.7 when
increasing the power from P/Pth = 0 ((a) and (c)), while a soliton is observed down
to P/Pth ≈ 0.35 when decreasing the power from P/Pth = 3.2.
Let us start with a general description of the images.

• Firstly, as a result of the hysteretic tendency of the system, one can notice
that the stability regions of most solutions extend in the scan direction of ∆ϕ.
Consequently, no mirror symmetry of the images is observed with respect
to ∆ϕ =. Exception made for the magenta area, the different solutions are
observed on the leftmost (rightmost) part of the phase interval for clockwise
(counterclockwise) scans of ∆ϕ.

• Secondly, one can note that the asymmetry of the system is still observed
through the presence of a cyan region while no yellow region is observed.

• Finally, three main different power ranges can be identified:

– The high input power range (P/Pth > 1.5) where one observes a phase
hysteresis between the magenta and white solutions. It corresponds to
the presence of a soliton under each pump spot while a third soliton can
be formed (∆ϕ→ 0) or extinguished (∆ϕ→ ±π) in the central unit cell.

– The low power range where no soliton can subsist in the system (P/Pth <
0.35).

– The middle input power range (0.35 < P/Pth < 1.5) where different
solutions are observed depending whether the phase is scanned in the
clockwise or counterclockwise direction.

We will focus on the middle range of power and more precisely on the power
range 0.35 < P/Pth < 1 in the case of a downward scan of power. The corresponding
zooms of Fig. 4.15 (b,d) are presented in Fig. 4.16. In this power range we observe
two solutions which are spatially symmetric with respect to the central unit cell
(magenta and green areas) and the two chiral solutions associated to the symmetry
breaking (red and blue areas). Interestingly, while several solutions are encountered
at a given power value above P/Pth = 0.5, only one of the two chiral solutions
is encountered at every phase scan. Strikingly, one observes that the helicity of
the scan of ∆ϕ (clockwise or counterclockwise) seems to be associated to a given
chirality (left or right localization) of the system response. In the following sections
we will separately discuss the three power ranges labeled “R1", “R2" and “R3" in
Fig. 4.16 3. In those power ranges, the system exhibit different interesting behaviors:

3Note that in ranges R1 and R2, a non-linear steady state can only be reached by decreasing
the power. Otherwise no soliton is formed in these power ranges.
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Figure 4.15: RGB images summarizing the results obtained by performing phase
scans as a function of the input power. a-b, Counterclockwise scans of ∆ϕ (∂t∆ϕ >
0) for the upward and downward power scan respectively. c-d, Same as (a-b) for a
clockwise scans of the phase difference (∂t∆ϕ < 0).
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Figure 4.16: Zoom of Fig. 4.15 (b,d) in the power range 0.25 < P/Pth < 1.

• R2: For 0.5 < P/Pth < 0.6, the system mainly jumps between two possible
solutions: a symmetric solution where a soliton in present under each pump
spot (magenta) and one of the two chiral solutions where the soliton is localized
under one of the two pumps (red or blue). The soliton localizes on the right
for clockwise phase scans and on the left for counterclockwise ones.

• R3: For 0.6 < P/Pth < 1, the system still switches between symmetric and
one chiral solutions. However, before reaching the chiral solution, the system
reaches the symmetric case where a single soliton is localized on the undriven
unit cell (green area). Interestingly, when comparing to the system behavior
in the range R2, we observe a change of the chirality of the system response
with the phase gradient: the soliton localizes on the left (right) during the
clockwise (counterclockwise) scan.

• R1: For 0.35 < P/Pth < 0.5, a single solution is observed (blue region): the
soliton is trapped in one of the two chiral solutions. Note that depending on
the realization, the soliton can be localized either on the left or right unit cell.

4.3.2 Chiral response to the phase gradient
Let us first focus on the power range R2 where the system switches between the
symmetric solution (magenta) and the two chiral solutions encountered through the
symmetry breaking. To get a better insight on the state of the system we again
monitor the polariton distribution using the CCD camera, the evolution of the den-
sity profile (integrated transversely to the lattice) of the polariton fluid as a function
of the phase difference is presented in Fig. 4.17 for P/Pth = 0.57. We observe the
behavior unveiled by photodiode measurements: the intensity profile switches be-
tween a symmetric and asymmetric distribution of the polariton density. In the
vicinity of ∆ϕ = ±π the polariton fluid is constituted of two solitons located under
each of the pump spots. As ∆ϕ departs from ±π and reaches 0, the density tends
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Figure 4.17: a-b, Evolution of the density profile of the polariton fluid as a
function of the phase difference for P/Pth = 0.57 with (a) and (b) respectively
corresponding to a counterclockwise and clockwise scan of ∆ϕ. A sketch of the
clockwise P -∆ϕ diagram is displayed at bottom right of the figure. The horizontal
white line indicates the input power considered in the experiment.

to spatially dissymetrize and we ultimately observe a transition to an asymmetric
situation where a single soliton is present under one of the two pumps: in the case of
the counterclockwise (clockwise) scan, the soliton localizes on the left (right) dimer.
Due to the weak polariton density measured in the central unit cell for all values
of ∆ϕ, we can restrict our analysis to the left and right dimers and compute the
density imbalance between these two by defining:

ILR = nL − nR
nL + nR

(4.2)

with nL (nR) the number of polaritons in the left (right) unit cell. An imbalance
close to +1 (−1) thus corresponds to a soliton localized on the left (right) dimer
and the symmetric solution is associated to ILR ≈ 0. The results of such procedure
is displayed in Fig. 4.18. One can observe the presence of three different branches 4
associated to:

• The symmetric solution (magenta) with an imbalance ILR ≈ 0.

• Each of the two chiral solutions (red and blue) with an imbalance ILR ≈ ±0.8.

During the counterclockwise (clockwise) scan, the system only explores the upper
(lower) half of the graph 5. This representation highlights the relation between the
helicity of the phase scan and the spatial imbalance of the system response:

∂t∆ϕ > 0 =⇒ ILR > 0 and ∂t∆ϕ < 0 =⇒ ILR < 0 (4.3)
4We here only consider solutions presenting at least one soliton on the lattice.
5Note that the location of the chiral solutions on the ∆ϕ axis matches with their position on

the diagrams measured with power scans (see Fig. 4.14)
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Figure 4.18: Evolution of the density imbalance between the two driven unit cells
as a function of ∆ϕ. Data for the counterclockwise (a) and clockwise (b) scans are
represented by green diamonds and orange circles. Dashed and solid colored arrows
indicate the direction of the scans and jumps. Sketches of the density distribution
are depicted next to each stable branch.
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Figure 4.19: Evolution of the density imbalance between the two driven unit cells
as a function of ∆ϕ for P/Pth = 0.57 ∈ R2. Data for counterclockwise and clockwise
scans are represented by diamonds and circles. Green and orange symbols represent
data points obtained for continuous counterclockwise and clockwise scans. Purple
symbols show data points obtained by switching the direction of the scan when the
system is in a chiral solution. Dashed and solid colored arrows indicate the direction
of the scans and jumps.

We want to emphasize that this multi-stability diagram is particularly intriguing.
The directionality the scan of ∆ϕ controls the symmetry of the solution encountered
across the broken symmetry region. Even though ∆ϕ is bound to a compact, if one
would perform continuous scan of ∆ϕ in a given direction, one of the two chiral
solutions would never be observed.

To complete the exploration of the stability diagram of the system, we performed
more elaborated scans of the relative phase and especially changed the direction of
the phase scan when the system is in a chiral solution: in this way we probe the
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whole stability range of each solution. The diagram obtained by performing such
scans of ∆ϕ is presented in Fig. 4.19. One can notice that the two chiral solutions are
stable on a very large range which almost covers the interval [−π, π]. Remarkably,
no direct channel links these two solutions: the system has to be brought to the
symmetric state to enable switching between the two stability branches associated
to chiral solutions. In addition, the only way to access a chiral solution relies on
scanning the phase difference across ∆ϕ = 0, which is the symmetry breaking point
unveiled with power scans. The chirality of the reached solution only depends on
the way the driving field reaches ∆ϕ = 0: a positive (negative) phase gradient leads
to approaching the breaking point from ∆ϕ < 0 (∆ϕ > 0) and results in a jump
toward the ILR ≈ +0.8 (ILR ≈ −0.8) stability branch. Interestingly, this means that
the state of the system contains information concerning the history of the phase
scan.

The wide stability range of the two asymmetric solutions is counter-intuitive as
a clear separation between the two red and blue areas was observed on the stability
diagram built via scans of P (see Fig. 4.14). One could expect to observe a transition
from one asymmetric solution to the other as the driving field crosses the axis
∆ϕ = 0. Indeed, intuitively we could consider that imposing a phase difference ∆ϕ
between the two pumps induces a flux of polariton from one driven unit cell to the
other which would explain why particle tend to localize on one side of the pumped
region. In this regard crossing the axis ∆ϕ = 0 would be equivalent to reversing the
phase gradient and thus the flux. We could therefore expect a transfer of polaritons
on the other side of the pumped region. We observe that such transition does not
exist and that the system is easily stabilized in any of these two chiral solutions
regardless of the sign of ∆ϕ 6.

In this section we unveiled a new effect of multi-stability in the vicinity of
a spatial symmetry breaking. We experimentally demonstrated that the
helicity of the scan of ∆ϕ (its directionality) controls the chirality of the
solution (left or right localization of the soliton) encountered across the
broken symmetry region. As a consequence we decided to call this effect a
“Helical bistability". In the vicinity of the spatial symmetry breaking, the
state of the system contains information about the history of the phase
scan.

6Note that the stability range of the upper branch (red solution) is centered on ∆ϕ < 0 whereas
this solution is only observed on the right side (∆ϕ > 0) of the symmetry breaking in diagrams
obtained by scans of P (see Fig. 4.12, the same remark also applies to blue solution with mirror
symmetry).
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Figure 4.20: Evolution of the density profile of the polariton fluid as a function
of the phase difference for P/Pth = 0.92 with (a): the counterclockwise and (b):
the clockwise scans of ∆ϕ. A sketch of the clockwise P -∆ϕ diagram is displayed
at bottom right of the figure. The horizontal white line indicates the input power
considered in the experiment.

4.3.3 Power dependence of the helical bistability
We now turn to the description of the system of interacting solitons in the power
range R3. In this range the system can be found in four different solutions: two
symmetric solutions (magenta and green) and the two chiral solutions.

Similarly to what was observed at lower power, the system switches between
mirror-symmetric and mirror-asymmetric solutions. Once again, only one of the
two chiral solution is reached for a given direction of the phase scan. The evolution
of the density profile of the polariton fluid as a function of the phase difference
is presented in Fig. 4.20 (a-b) for unidirectional phase scans at P/Pth = 0.92. In
the vicinity of ∆ϕ = ±π two solitons are again observed, each under one of the
two pump spots (magenta area). Before reaching ∆ϕ = 0, the system jumps to
another symmetric solution where a single soliton is localized on the undriven unit
cell (green). Then, as the phase scan progresses, we observe a transition to a mirror-
asymmetric situation where a single soliton is present on the left or right dimer: in
the case of the counterclockwise (clockwise) scan the soliton localizes on the right
(left) unit cell. Note that this relation between the sign of ∆ϕ and the position of
the soliton is opposite to what we observed before, in the power range R2. Pursuing
the analysis developed in Sec. 4.2.2, this change of directionality is associated to
a change of the effective hopping between the two pumped unit cells and so to a
reversion of the particle flux between driven unit-cells. A soliton has formed on the
central unit cell, in this case the matrix M describing the system now reads

M(D = 2a) =

 0 −t 0
−t β −t
0 −t 0

 (4.4)
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Figure 4.21: Evolution of the density imbalance between the two driven unit
cells as a function of ∆ϕ. Data for (a) the counterclockwise and (b) the clockwise
scans are represented by green diamonds and orange circles. Dashed and solid
colored arrows indicate the direction of the scans and jumps. Sketches of the density
distribution are depicted next to each stable branch.

In the limit β >> t the effective coupling between the left and right dimers is now
given by the symmetry of the two lowest eigenstates. The lowest eigenstate present a
bonding symmetry while the middle energy one present an anti-bonding symmetry:
the effective hopping is now positive, which coincides with the change of relationship
between the localization of polaritons and the sign of ∆ϕ.

In the continuity of the representation developed previously, we can again plot
the density imbalance between the two driven dimers as a function of ∆ϕ. The
resulting curve is presented in Fig. 4.20 (c). One can observe the presence of four
different branches 7 associated to:

• The symmetric solution where a soliton is located on each pumped unit cell
(magenta), with an imbalance ILR ≈ 0.

• The symmetric solution where a single soliton is located on the central unit
cell (green). In this representation, the branch is oblique with an imbalance
ILR < 0 for ∆ϕ > 0 and ILR > 0 for ∆ϕ < 0.

• Each of the two chiral solutions (red and blue) with an imbalance ILR ≈ ±0.8.

Those graphs exhibit a certain similarity with the ones presented in Fig. 4.18,
exception made of the oblique central branch associated to the soliton localized in
the undriven unit cell. Note that this single diagram does not represent a complete
representation of the state of the system as it ignores variations of the polariton
density in the central unit cell, which have now become significant.

To explore the whole stability diagram, we have then performed more elaborated
scans of ∆ϕ. The result of this procedure is presented in Fig. 4.22. We observe the
same features noticed in the power range R2: no direct channel exists between the
two chiral solutions and they can only be reached by selecting a specific direction
of the phase scan. However, the directionality of the phase scan here only matters
once the system as reached the central solution (corresponding to the green (VI)
region on RGB diagrams). Changing the scan direction when reaching the central
branch changes the asymmetric solution reached after the next jump: each of the

7We here only consider solutions presenting at least one soliton on the lattice.
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Figure 4.22: Evolution of the density imbalance between the two driven unit cells
as a function of ∆ϕ at P/Pth = 0.92 ∈ R3. Data for counterclockwise and clockwise
scans are represented by diamonds and circles. Green and orange symbols represent
data points obtained for continuously counterclockwise and clockwise scans. Purple
symbols show data points obtained by switching the scan direction when the system
is in a chiral solution. Dashed and solid colored arrows indicate the direction of the
scans and jumps.

asymmetric solution can be reached from the solution where a single soliton is local-
ized on the central unit cell. Starting from ∆ϕ = ±π and the case where a soliton
is located under each pump spot (II), the same central branch will be reached for
both scan directions and one can then tune ∆ϕ to reach the desired asymmetric
solution. Note that no channel exists from the branch associated to the green region
to the branch associated to the magenta region: the system needs to be brought to
a chiral solution before going back to solution where two soliton are simultaneously
localized on the left and right dimers. Finally, one can observe that the stability
range of the two asymmetric solution is much smaller than at high power as one can
also see in the shape of the red and blue regions on Fig. 4.14 (b).

In the power range R3, the multi-stability diagram of the system is very
similar to the one measured in the range R2. We observe the presence of
a helical bistability. Comparing to the observations made at low power,
the effect presents an opposite relation between the sign of ∂t∆ϕ and the
chirality of the system response. The transition between the two helical
bistability effect is due the presence of a additional multi-stability branch
at high power. This branch evidences the possibility to stabilize a single
soliton in the central unit cell, which is facilitated by the increase of the
input power. The presence of the soliton in the central unit cell can
be interpreted as flipping the sign of the effective hopping between the
pumped dimers which induces the aforementioned transition.
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4.3.4 Soliton trapping
Let us finally discuss the lowest input power range R1. When decreasing the power
from the range R2, only a single soliton can be observed in the system and no
transition is possible towards any other solution. On the graphs presented up to
now in Fig. 4.16, the system is shown to only exhibit a single soliton localized on
the right dimer (blue area). However this solution is not the only one that can
be observed in this power range as, from one realization to another, the soliton
can indeed be localized on any of the driven dimers depending on the history of
the phase scan. To highlight this particular regime, we performed a phase scan
during which we changed the input power: when P/Pth ∈ R1, polaritons localize
under one of the pump spots and remain trapped in this position. To displace
the soliton, one as to increase the input power back to P/Pth ∈ R2. The result
of such procedure is presented in Fig 4.23. The chronographs of ∆ϕ and P/Pth
are presented in Fig 4.23 (a) and the evolution of the fluid profile is displayed in
Fig 4.23 (a). The experiment starts with a soliton localized on the left dimer (here
placed at the bottom of the image) for P/Pth = 0.42 ∈ R1 and ∆ϕ ≈ π. ∆ϕ was
scanned over 4π in both directions: we observe that the soliton remains localized
on the left dimer. The input power was then brought to P/Pth = 0.58 ∈ R2 and
∆ϕ was scanned in the clockwise direction: we use the helical bistability effect to
localize a single soliton on the right dimer (at the top of the image). The power
was then brought back to P/Pth = 0.42 ∈ R1 and scanning ∆ϕ in both directions
demonstrated that the soliton was trapped soliton on the right dimer.

Figure 4.24 presents the density imbalance between the two driven dimers as a
function of ∆ϕ in the power range R1. Two cases are represented depending on the
initial state of the system: the soliton is either localized on the left or right dimer.
A single stability branch is observed in both cases with an imbalance ILR ≈ ±0.8.
We observe an oscillation of the density imbalance between ILR = ±0.88 for ∆ϕ = 0
and ILR = ±0.62 for ∆ϕ = ±π: as the phase difference approaches ∆ϕ = ±π, the
polariton density in the empty driven unit cell (without soliton) tend to increase
(see Fig 4.23 (b)).

In the range R1, the input power is enough to maintain a soliton in a single of the
two driven unit cells. Howerver, the blueshift induced by the weak polariton density
in the second driven unit cell is not sufficient to bring the associated eigenmode
in resonance with the laser. As a consequence the soliton remains in an energy
gap whatever the value of ∆ϕ and the system response is bound to one of the two
possible chiral solutions. Note that the trapping mechanism is similar to the self-
trapping usually observed in coupled waveguides when the self-focusing interaction
overcomes hopping constants: here the trapping of the soliton occurs when the
maximum accessible blueshift on the second driven unit cell remains smaller than
the detuning between the band and the laser (which is roughly given by the hopping
J).
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Figure 4.23: Demonstration of the on demand trapping of a soliton. a, Chrono-
graphs of the phase difference ∆ϕ (green) and of input power P/Pth (orange). Ver-
tical dotted lines delimit the clockwise and counterclockwise intervals of the phase
scan. The horizontal dotted line delimits the separation between the power ranges
R1 and R2. b, Evolution of the density profile as a function of time. The left and
right dimers are respectively displayed at the bottom and top of the image. A sketch
of the lattice and drive architecture is displayed on the left.

In the power range R1, only two non-linear multi-stability branches are ac-
cessible to the system, which represent the two chiral solutions associated
to the symmetry breaking. No channel allows switching from one solution
to the other and as a consequence, both chiral solutions are robust to any
perturbation on the phase of the drive: the system remains trapped in the
state in which it is prepared.

In Fig. 4.25 we provide a sketch summarizing the power dependence of the system
response observed through clockwise and counterclockwise phase scans.

146



CHAPTER 4. Interaction between gap solitons on a driven-dissipative SSH lattice

(b)(a)

E
xp

er
im

en
ts

0 π
2-π2 π-π

∆ϕ

-0.5

-1

0

0.5

1

I L
R

0 π
2-π2 π-π

∆ϕ

-0.5

-1

0

0.5

1

Initial state

Initial state

I L
R

Figure 4.24: Evolution of the density profile of the polariton fluid as a function
of the phase difference in the case of soliton trapped in the left dimer (a) and in the
right dimer (b). In both cases, the clockwise (counter-clockwise) scan is represented
with orange (green) symbols.

Clockwise

0 π
2-π2 π

∆ϕ

R3

R2

R1

R3

R2

R1

Counterclockwise

P
/P

th

-π0 π
2-π2 π

∆ϕ
-π

Phase scan summary:

Figure 4.25: Power dependence of phase scans. Double arrows indicate one-way
transitions.

147



4.3. Helical bistability

0 π
2-π2 π-π

∆ϕ

-0.5

-1

0

0.5

1

I L
R

Si
m
ul
at
io
ns

(a) (b)

0 π
2-π2 π-π

∆ϕ

-0.5

-1

0

0.5

1
I L

R

Figure 4.26: a, Evolution of the density imbalance between the two driven unit
cells as a function of ∆ϕ for P/Pth = 0.69 in the case of the SSH model. b, Same
as (a) for the AB model and P/Pth = 0.59. In both cases, green and orange sym-
bols represent data points obtained for continuously counterclockwise and clockwise
phase scans. Purple symbols show data points obtained by switching the direction
of the scans. Colored arrows indicate the direction of the jumps.

4.3.5 The helical bistability: an effect specific from lattices
with chiral symmetry

In this chapter we experimentally unveiled a phase multi-stability effect in which the
system expresses a spatially chiral response to a helical driving protocol. We did not
consider any system but the topological gap of the SSH lattice which is protected by
the chiral symmetry. The observation of this chiral phenomenon raises an evident
question: is it linked to the chiral symmetry of the SSH model? To answer this
question, we propose to numerically study the case of a lattice with staggered onsite
energies that we call the AB lattice and which do not possess the chiral symmetry.

A comparison between the SSH and AB models is presented in appendix A. We
address the profile of solitons generated in the gap of the AB model and present the
diagrams obtained via power and phase scans in the case of two pumps separated
by D = 2a. We show that now clear discrepancies is observed between the two
models when considering power scans. On the contrary, phase scans reveals that
the helical bistability is not observed in the case of the AB model. To summarize
the results of these numerical calculations, we here present the simulated multi-
stability diagrams of the SSH and AB models. We performed elaborated scans of
∆ϕ to explore the stability range of each solutions. The results of this procedure is
presented in Fig. 4.26.

In the case of the SSH model (see Fig. 4.26 (a)), we qualitatively retrieve the
structure unveiled experimentally: the upper and lower branches associated to chiral
solutions are only accessible from the symmetric solution and for a specific direction
of the phase scan. The soliton localizes on the left (right) dimer during the coun-
terclockwise (clockwise) phase scan and no direct channel exists between the two
chiral solutions.

The result of simulation conducted in case of the AB lattice are presented in
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Fig. 4.26 (b). One observes branches with a positioning and stability range compa-
rable to the results obtained in the case of SSH gap solitons. However, the paths
followed by the system as ∆ϕ is scanned in the clockwise or counterclockwise di-
rections are clearly different from what we observed in Fig. 4.26 (a). In the case of
the AB model, the two branches associated to chiral solution are linked by direct
channels. When the soliton is localized on the left (right) dimer, scanning the phase
in the counterclockwise (clockwise) direction leads to the transfer of the soliton on
the right (left) dimer for ∆ϕ ≈ π/3.5 (∆ϕ ≈ - π/3.5). Both chiral solutions are
reached during a counterclockwise or clockwise scan of ∆ϕ. As a result, the state of
the system cannot be unequivocally related to the directionality of the phase scan:
no information is kept about the history of the phase scan

We would like to stress on one particular observation. In the case of SSH, the
system always jumps from a chiral solution to the symmetric one (magenta). On
the contrary, in the AB case the system jumps from one chiral solution to the
other one, even though the branch associated to the symmetric solution is stable
at the position of the jumps (here ∆ϕ = ±π/3.5). Up to now we have not found
an explanation to this phenomenon but the similarities between the two models
lead us to believe that it originates from the unit cell distribution of the soliton
wavefunctions. Interestingly, even though no evident relation exist between the
different mirror operations involved in the effect (to our current knowledge), we
notice that the helical bistability is only observed with the model presenting the
chiral symmetry as defined for Hamiltonians.
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4.4 Conclusion and perspectives

4.4.0.1 Summary

In this chapter we explored the interaction between gap solitons created in the
topological gap of the SSH lattice. Our first results confirmed the results of previous
works on soliton interaction: controlling the relative phase engineered in the drive
between the two pumping spots enables to tune the effective interaction of two
solitons. Numerical calculations demonstrated that engineering the band structure
by tuning the sign of hopping constants enables to tailor the phase dependence of
the interaction between two solitons. We then deepened the exploration of the case
where the two pump spots are focused at the center of two dimers separated by one
unit cell (D = 2a). Performing systematic ramps of the input power as a function
of the phase difference imposed between the two pumps (∆ϕ), we demonstrated the
existence of a symmetry breaking around ∆ϕ = 0. This symmetry breaking leads
to a chiral response of the system with the formation of a single soliton on either
the left or right driven unit cell. Interestingly, performing systematic scans of ∆ϕ
as a function of the input power, we unveiled a phase multi-stability effect occurring
in the vicinity of the broken symmetry region. The chirality of the system response
is directly related to the directionality of the phase scan: a given chiral solution is
observed during the clockwise scan of ∆ϕ while its mirror-symmetric was reached
during the counterclockwise scan. Finally, numerically comparing the case of the
SSH model to the one of a lattice with staggered onsite energy (AB lattice), we
evidenced an apparent relation between this helical bistability effect and the chiral
symmetry of the SSH Hamiltonian.

4.4.0.2 Generalization of the Helical bistability and observation in higher
dimensions

This work raises many questions. On the one hand it would be interesting to extend
these ideas to solitons in higher dimensions, using 2D lattices exhibiting the chiral
symmetry such as the honeycomb or 2D Lieb lattices. On the other hand it is stimu-
lating to deepen our understanding of the effect. What are the minimal ingredients
required to observe the “Helical bistability" and is it possible to develop a more
analytical description of this effect? In particular, the role of the chiral symmetry
of the Hamiltonian in the non-linear transitions undergone by the system remains
to be explained. Finding a smaller system exhibiting the same behavior would help
to get more insight on the underlying physics. In the next chapter, we demonstrate
the helical bistability effect to be a general phenomenon which can be observed in
a system of two coupled Kerr resonator.
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Chapter 5

Chiral symmetry breaking at the
heart of the Helical bistability

This last chapter is dedicated to a deeper exploration of the helical bistability effect
described in chapter 4. The chiral symmetry of the SSH model (sub-lattice sym-
metry with respect to the σZ operator) was shown to play a particular role and we
propose to study the simplest model exhibiting such symmetry. We here address
the general case of two coupled Kerr resonators, which is sometimes called “Bose-
Hubbard dimer" in the literature. We show that this simple system can be subjected
to a chiral symmetry breaking and exhibit the helical bistability effect. We start
by a general description based on two coupled driven-dissipative Gross-Pitaevskii
equations, map this system to a classical pseudo-spin 1/2 and represent it using
a Bloch sphere. Using this representation, we give an intuitive explanation of the
effect. The helical bistability effect is thus found to be very general and we discuss
different possibilities for its experimental observation. We report on the observation
of the Helical bistability using solitons in two coupled dimers of the SSH lattice. In-
deed, we show a complete equivalence of this configuration with a set of two coupled
resonators.
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5.1 Helical bistability in two coupled Kerr res-
onators

The helical bistability effect consists in inducing chirality in the response of a sym-
metric system using the external drive. Observing this effect thus presupposes the
existence of symmetry broken phases in the system. In this section, we turn to the
simplest system exhibiting a spontaneous symmetry breaking: two coupled driven-
dissipative resonators with a Kerr non-linearity. We show that in the vicinity of
this symmetry breaking, it is possible to observe the effect of helical bistability. The
representation of the system response on the Bloch sphere is particularly insightful
as it helps highlighting the self-trapping mechanism at the origin of the bistability
effect.

5.1.1 Phase bistability of two coupled Kerr resonators
We consider a system of two coupled resonators that we label L and R with a
repulsive onsite Kerr non-linearity (g > 0, similar results are obtained for g < 0).
The system dynamics is described by the following set of non-linear equations:

i~∂tΨL =
(
EL − ~ωp − i

~γ
2 + g|ΨL|2

)
ΨL − JLRΨR + iFL

i~∂tΨR =
(
ER − ~ωp − i

~γ
2 + g|ΨR|2

)
ΨR − JRLΨL + iFR

(5.1)

To observe a spontaneous symmetry breaking induced by the onsite interactions,
the system has to be invariant by exchange of the two resonators: JLR = JRL = J0
and EL = ER = E0. Note that the system thus possess the chiral symmetry with
respect to the σZ operator, which is precisely the operator involved in the chiral
symmetry of the SSH model.

We address the case where the driving field has the same modulus in each res-
onator, |F〉 = [FL, FR]T with FL = F0e

iϕ
L and FR = F0e

iϕ
R , such that the driving

field does not break the system symmetry with respect to σZ (〈F|σZ |F〉 = 0). It
yields:

i~∂tΨL =
(
E0 − ~ωp − i

~γ
2 + g|ΨL|2

)
ΨL − J0ΨR + iF0

i~∂tΨR =
(
E0 − ~ωp − i

~γ
2 + g|ΨR|2

)
ΨR − J0ΨL + iF0e

−i∆ϕ
(5.2)

As seen in the previous chapter, observing a spontaneous symmetry breaking in a
system of two coupled identical resonators requires the system to be driven with a
phase pattern equivalent to the one of the system highest energy mode. Figure 5.1
presents the numerical simulation of this spontaneous symmetry breaking in the case
J0 = 100 µeV, ~γ = J0/3 and g = 0.1 µeV when the system is driven at an energy
~ωp = E0 with an anti-symmetric drive pattern: FR = FL exp(iπ) (see Fig. 5.1 (a)).
Figure 5.1 (b) shows the two possible trajectories followed by the density in each
resonator (ni = |Ψi|2) as a function of the input power in each resonator |F0|2. We
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Figure 5.1: a, Schematic representation of the system. b, Evolution of the density
in each resonator as a function of the input power. Two different solutions can be
obtained which are represented with solid and dashed lines. Red (blue) color is
associated to the left (right) resonator. c, Representation of the symmetry breaking
using the pseudo-spin SZ . The solid and dashed lines correspond to the two different
solutions presented in panel (b). The symmetric and broken-symmetry phases are
respectively labeled S and B.

observe a symmetry breaking with two possible solutions associated to a localiza-
tion of density on the left or right resonator. This feature is better highlighted by
computing the density imbalance between the two resonators, which corresponds to
the pseudo-spin SZ associated to the Pauli matrix and chiral operator σZ :

SZ = 〈Ψ|σZ |Ψ〉
〈Ψ|Ψ〉 = nL − nR

nL + nR
(5.3)

where |Ψ〉 = [ΨL,ΨR]T. The evolution of SZ as a function of the input power is
presented in Fig. 5.1 (c). In the broken symmetry phase (B), one can observe that
the pseudo-spin reaches values up to 0.95, which means that the field density is
almost fully localized on a single resonator.

We then computed scans of the phase difference ∆ϕ = ϕ
L
- ϕ

R
for different values

of the input power: these calculations evidence different regimes among which we
find the helical bistability effect. Figure 5.2 presents the results of these calculations.
At low power (range Z1 and Fig. 5.2 (b)) a single solution is explored which exhibits
a variation of SZ with extrema around ∆ϕ = ±π

2 . To understand this phenomenon,
we recall that a phase gradient of the field |Ψ〉 is responsible for a net density flux
in the gradient direction. Writing ΨL = √nL exp(iφL), ΨR = √nR exp(iφR) and
∆φ = φR - φL, we thus expect a flux from L to R (R to L) for 0 < ∆φ < π

(−π < ∆φ < 0). In the present case, calculations show that the phase difference
imposed by the driving field leads to SZ ∝ sin(∆ϕ) is the limit |F0|2 � 1. In the
range Z2, the resonators energies are renormalized by the interactions, and the linear
branch splits. We observe the appearance of two discontinuities in the evolution of
SZ versus ∆ϕ. We can distinguish two branches, the first one ( 1©) showing a strong
variation of SZ around ∆ϕ = π and exhibiting an increased maximum value for |SZ |
as compared to the one observed in Fig. 5.2 (b) (linear case). The second branch
( 2©) shows less variation of SZ and almost no spin polarization. This correspond to
solutions having significant polariton densities in both resonator: it corresponds to
the upper branch one can observe by performing a bistability experiment with the
bonding mode of the system via input power ramps. For some values of ∆ϕ, both
solutions can be simultaneously stable, leading to a bistable behavior in phase.
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Figure 5.2: a, Reproduction of the symmetry breaking presented in Fig. 5.1 (c).
The power ranges associated to different regimes are highlighted by white and orange
patches. They are labeled Zj with 1 ≤ j ≤ 5. b-f, Evolution of SZ as a function
of ∆ϕ for different values of the input power which are marked with vertical dashed
lines in (a). Orange and green data points indicate bistability regions which are
exclusively explored during the clockwise and counterclockwise phase scans. Colored
arrows indicate the direction of the jumps. The power ranges associated to each
regime are highlighted using light orange patches in (a).

In the ranges Z3 and Z4 (Fig. 5.2 (d-e)), the highly spin-polarized branch splits
into two separated branches with opposite spin |SZ | ≈ ±1, we thus labeled them 1©+
and 1©−. Interestingly, in the range Z4, only one of these branches is reached during
the clockwise and counterclockwise scan of ∆ϕ: during the counterclockwise scan,
the system only explores the branch 1©+ while the branch 1©− is explored during
the clockwise scan of ∆ϕ. This phenomenon is what we call the Helical bistability:
the helicity of the drive protocol induces a given chirality in the system response
(Fig. 5.2 (e)).

In the range Z5, only the branch 2© is observed with almost no variation of
SZ . In addition to these data, the evolution of the total density is presented in
appendix B.1, which shows that above the range Z1, all stability branches are
associated with a non-negligible interaction energy.

5.1.2 Representation on the Bloch Sphere
Interestingly, the elementary system we consider can be represented on a Bloch
sphere: in addition to the pseudo-spin associated to the σZ Pauli matrix, one can
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compute the pseudo-spins associated to σX and σY .

SX = 〈Ψ|σX |Ψ〉
〈Ψ|Ψ〉 = 2√nLnR cos(∆φ)

nL + nR
(5.4)

SY = 〈Ψ|σY |Ψ〉
〈Ψ|Ψ〉 = 2√nLnR sin(∆φ)

nL + nR
(5.5)

Similar mapping to a classical spin 1
2 can be done when considering the driving

field, writing |F 〉 = [FL, FR]T we define:

SX,P = 〈F |σX |F 〉
〈F |F 〉

=
2
√
|FL|2|FR|2 cos(∆ϕ)
|FL|2 + |FR|2

(5.6)

SY,P = 〈F |σY |F 〉
〈F |F 〉

=
2
√
|FL|2|FR|2 sin(−∆ϕ)
|FL|2 + |FR|2

(5.7)

SZ,P = 〈F |σZ |F 〉
〈F |F 〉

= |FL|
2 − |FR|2

|FL|2 + |FR|2
(5.8)

Figure 5.3 presents the result of this mapping to classical spins 1
2 . The scans pro-

tocols are summarized in Fig. 5.3 (a). We represent S̃j,P = Sj,P log10 ((|FL|2 + |FR|2)/2 + 1)
for j = {X, Y, Z} so that the norm of S̃P = [S̃X,P , S̃Y,P , S̃Z,P ]T contains the informa-
tion on |F0|2. As we restrict our two pumps to have the same constant modulus, the
trajectories of the driving field are represented by concentric circles in the equator of
the sphere. Figure 5.3 (b-f) directly corresponds to graphs presented in Fig. 5.2 (b-f).

In the linear regime (Z1, see Fig. 5.3 (b)) the system describes a closed trajectory
in a plan which is tilted with respect to the sphere equator. The linear trajectory
can be derived from the set of equations 5.1 by neglecting non-linear terms. It yields:

SX = cos(∆ϕ), SY = sin(∆ϕ) J
2 − γ2/4
J2 + γ2/4 , SZ = sin(∆ϕ) γJ

J2 + γ2/4 (5.9)

In the linear regime we note that the system response rotates in opposite direction
with respect to the pump: SY,P ∝ sin(−∆ϕ) while SY ∝ sin(∆ϕ). If ∆ϕ is scanned
in the clockwise direction, ∆φ cycles in the counter-clockwise direction. On the
contrary for |F0|2 → ∞, we expect the system to follow the trajectory imposed
by the pump: the steady state of the set of equations 5.1 is dominated by the
non-linear terms and one can do the approximation g|Ψj|2Ψj ≈ - iFj with j =
{L,R}. In that limit, the field in a resonator is fully determined by the driving field
applied to this resonator: φj = ϕj − π

2 and |Ψj|2 = (|Fj|/g)2/3. In the intermediate
regimes Z2 to Z4, we observe a competition between the two effects (Fig. 5.3 (c-
e)). The pump imposes the state of the system on the branch 2© in the vicinity of
S=[SX=1, SY=0, SZ=0] with a range increasing with the input power. The other
branches ( 1©±) correspond to a renormalization of the linear behavior presented in
Fig. 5.2 (b) and this is particularly well observed in Fig. 5.2 (c): the branch crossing
S=[SX=0, SY=−1, SZ=0] is still relatively close to the trajectory followed in the
linear regime. As the input power increases (Fig. 5.2 (d)), the renormalization of the
branch pushes the system toward the north and south poles. This can be explained
by the onsite nature of the considered Kerr interaction (contact polariton-polariton
interaction): a large imbalance between the two resonators induces a spectral shift
that tends to decouple the resonators and the interaction is thus responsible for
self-trapping of field density inside one resonator (see Ref. [216]).
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Figure 5.3: a, Representation of the phase scan protocols using decomposition
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The helical bistability effect is clearly evidenced in Fig. 5.2 (e) as the system only
explores the north (south) hemisphere during the counterclockwise (clockwise) scan
of ∆ϕ. We interpret the helical bistability phenomenon as a competition between the
self-trapping associated to the density and the flux induced by the phase difference
∆φ. The transition between the regimes presented in Fig. 5.2 (d-e) occurs when the
self-trapping mechanism is sufficiently strong (high enough density) to prevent the
density flux to reverse the density imbalance.

In this section we numerically demonstrated that the helical bistability
effect can be predicted in the simplest system presenting a chiral symmetry
breaking. We considered a set of two coupled identical resonators with an
onsite Kerr non-linearity and showed that, in the vicinity of symmetry
broken phase, there exists a power range for which the helicity of the
phase scan is directly related to the chirality of the system response. Due
to the two component structure of the system, we were able to represent
the effect on the Bloch sphere. This representation better evidences the
mechanism at the origin of the effect: a competition between the self
trapping mechanism associated to onsite interactions and the density flux
induced by the phase gradient.

5.2 Observation with gap solitons
To observe the helical bistability in its simplest form, we considered a set of two
coupled pillars but due to technical limitations, principally heating of these small
structures, we have not yet managed to observe the effect in such an elementary
structure 1. We here report on the observation of the helical bistability using gap
solitons of the SSH model in the simplest possible configuration: the two pumps
were placed on neighboring unit cells 2.

5.2.1 The SSH unit cell as a single Kerr resonator
To experimentally reproduce our numerical results, we consider a SSH lattice and
the excitation setup comprising two pump beams. The pump spots are focused onto
the centers of two neighboring dimers and we here propose to show why this system
can be mapped to two coupled Kerr resonators. We recall the set of Gross-Pitaevskii
equations governing the temporal evolution of the polariton field at the middle of

1Our understanding is that 0D structures do not thermalize efficiently compared to 1D struc-
tures.

2The results discussed here are very reminiscent of those presented in Chap. 4. In the previous
chapter, we did not addressed this case as the interaction is not mediated by the chiral tails of
the solitons. In addition, it is unclear whether this system completely falls under the description
of two interacting solitons while it can be interpreted as a large single soliton (Truncated Bloch
Wave).
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the SSH gap:

∀ m :

i~∂tΨA,m = −JΨB,m − J ′ΨB,m−1 − (∆E + i
γ0

2 )ΨA,m + g|ΨA,m|2ΨA,m + iFA,m

i~∂tΨB,m = −JΨA,m − J ′ΨA,m+1 − (∆E + i
γ0

2 )ΨB,m + g|ΨB,m|2ΨB,m + iFB,m

(5.10)

where the drive architecture can be summarized as FA,m = FB,m = 0 ∀m 6= {0, 1},
FA,0 = FB,0 = F0 and FA,1 = FB,1 = F0 exp(−i∆ϕ). We show that the system
reduces to two coupled Kerr resonators, constituted by the bonding mode of each
driven dimer:

1. Both dimers are blueshifted, they are thus decoupled from the rest of the
lattice. From our study of SSH gap soliton, we know that undriven unit cells
do not play a role in the system response for input power P/Pth < 5 3 (see
Chap. 3). In the present study, the input power will always remain far below
this limit.

2. Each pump spot is positioned at the center of a dimer, consequently, there is
no spatial overlap between the driving field and the anti-bonding mode.

3. The drive energy is set at the center of the SSH gap and is thus below the
anti-bonding modes. As a result, the spectral overlap between the driving
field and anti-bonding modes can only decrease due to the blueshift induced
by interactions.

Only the bonding modes of the driven dimers are relevant to describe the system:
it can be approximated to a set of two coupled Kerr resonators with onsite energies
EL = ER = ~ωp − J and coupled with a hopping strength J ′ (see Fig. 5.4).

5.2.2 Phase diagrams and symmetry breaking
To determine the power range corresponding to the symmetry broken phases (B),
we first perform power ramps various values of the phase difference between the
two pumps collecting the emission of each driven unit cells on separated photo-
detectors 4. The result of the procedure is presented in Fig. 5.5 with color encoded
images 5. The diagrams of the normalized density associated to individual unit cells
are provided in appendix B.2.1.

The two diagrams (upward and downward scan of P ) reveal the existence of a
region associated to a broken symmetry (red and blue patches) which is located in
between the linear (black region) and non-linear regime (magenta). The interface
between the red and blue regions is located in the vicinity of ∆ϕ = π, signaling that

3We recall that Pth is the power threshold at which a single soliton is formed in presence of a
single pump spot.

4We recall that the input power of each beam is balanced such that Pth is reached simultaneously
for both resonators.

5These images were obtained following the procedure detailed in Chap. 4. We replaced the
green layer of the RGB image by a blank matrix (Fig. 4.13).
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Figure 5.4: Scheme presenting how driving two unit cells of the SSH lattice can
be mapped to two driven-dissipative coupled Kerr resonators.
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Figure 5.5: Phase diagrams of the non-linear solutions observed by performing
power scans as a function ∆ϕ. a-b, Upward and downward scans of the input power,
the scan direction is indicated by an arrow at the right of each panel. A sketch of
the lattice is displayed on top.

the effective coupling between driven unit cells is positive. Comparing these dia-
grams to the results presented in Chap. 4 where the effective coupling was negative,
we observe the expected exchange between red and blue region with respect to the
interface.
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Figure 5.6: a, Experimental setup for performing the polariton field tomography.
b, Left:Example of fringe pattern obtained by interfering the polariton field with the
reference beam. Right: modulus and phase pattern of the polariton field extracted
by Fourier analysis.

5.2.3 Experimental Helical bistability, representation on the
Bloch sphere

We now turn to the exploration of the system response observed when performing
scans of ∆ϕ for fixed input power. To enable full tomography of the spin state
and represent the system response on the Bloch sphere, we need to measure the
three components of S. We therefore perform the tomography of the polariton
field: while performing scans of ∆ϕ, we monitor the polariton density as well as
the phase relation between the fields in each of the unit cells. To do so, we slightly
modified the experimental setup (see Fig. 5.6 (a)) by adding two beam splitters:
the first one allows to monitor the pump field by collecting photons reflected from
the sample surface while the second one is placed before the delay line and is used
as a phase reference to produce interference with the driving and polariton fields.
The important parameters, nL, nR and ∆φ, are extracted by Fourier analysis of the
measured interferograms. An example is provided in Fig. 5.6 (b).

We performed phase scans for various values of the input power and extracted
the values of SX , SY and SZ associated to the polariton field. The representation
of the polariton field evolution on the Bloch sphere is presented in Fig. 5.7. Experi-
mental results are in very good agreement with numerical predictions. In the linear
regime (Fig. 5.7 (a)) the system follows a closed trajectory tilted with respect to the
equator while this trajectory is pushed toward the equator in the non-linear regime
(Fig. 5.7 (d)). The intermediate regimes are also well captured (Fig. 5.7 (b-c)), the
system can be brought to the north and south poles of the sphere in presence of
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Figure 5.7: Bloch sphere representation of the stability branches covered during
phase scans for fixed input power with a: P/Pth ≈ 0.1, b: P/Pth = 0.77, c: P/Pth =
0.94 and d: P/Pth = 1.85. Orange and green data points indicate bistability regions
which are exclusively explored during the clockwise and counterclockwise phase
scans. Colored arrows indicate the direction of the jumps.

sufficient inter-particle interactions. For P/Pth = 0.94 (panel c), the system can
only be brought to the north (south) pole by a counterclockwise (clockwise) scan of
∆ϕ: this is the helical bistability phenomenon. The corresponding graphs of SZ as
a function of ∆ϕ are provided in appendix B.2.2.

To the best of our knowledge this is the first time such helical bistability is
discussed and observed experimentally.

5.2.3.1 Side note

Note that we can use this representation on the Bloch sphere to revisit the exper-
imental results presented in Chap. 4 where we studied the interaction of two gap
solitons via their chiral tails. We perform similar tomography experiment for pump
spots separated byD = 2a (configuration considered in Chap. 4). In appendix B.2.3,
we provide the Bloch sphere representations of two effects discussed in this configu-
ration: the soliton trapping and the helical bistability unveiled at low input power.
Due to a non negligible density in the central undriven unit cell at higher power,
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the system becomes three component and the representation on the Bloch sphere is
not adequate.

5.2.4 Phase diagrams associated to phase scans
To complement our experimental investigations of the helical bistability effect, we
realized systematic scans of ∆ϕ as a function of P/Pth while collecting the intensity
signal using photo-detectors. In this way, we can identify the power ranges associated
to each bistability regime. Figure. 5.8 presents the color encoded images summa-
rizing the results. As no difference was observed between the two directions of the
power scan, we only present phase scans obtained during the upward scan of the in-
put power. The helical bistability is observed in the power range 0.9 < P/Pth < 1.0
with the soliton localizing on the left (right) unit cell for a counterclockwise (clock-
wise) scan of ∆ϕ. The regime associated to the numerical calculation presented in
Fig. 5.2 (d) is observed in the range 0.6 < P/Pth < 0.8: in the vicinity of ∆ϕ = π

the soliton localizes on one of the two dimers and hops from this dimer to the other,
which corresponds to a pseudo-spin switching from 1 to -1 (-1 to 1) during the coun-
terclockwise (clockwise) scan of ∆ϕ 6. Note that an asymmetry is observed in the
power range 1.0 < P/Pth < 1.12, which we attribute to a slight asymmetry of the
setup alignment.

6Note that the regime associated to the numerical calculation presented in Fig. 5.2 (c) is not
observed experimentally, this discrepancy originates from the energy detuning between the laser
and the eigenmodes. In simulations, tuning the pump energy to ~ωp = E0 + J allows reproducing
experimental conditions.
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5.3 Conclusion and perspectives

5.3.0.1 Summary

We have numerically revealed the helical bistability effect in its simplest form, con-
sidering solely two coupled Kerr resonators. We hereby demonstrated that this ef-
fect, inducing chirality in a symmetric system, is a very general phenomenon emerg-
ing in a set of two coupled non-linear Schrödinger equations. Thanks to the binary
nature of the system, we were able to map it to a classical spin 1

2 and to represent its
trajectory on the Bloch sphere. The helical bistability is interpreted as a competi-
tion between the density flux and the self-trapping mechanism induced by repulsive
interactions. We experimentally observe this novel non-linear effect by pumping
two neighboring unit cells of a SSH lattice. Using interferometry, we realized the
tomography of the polariton field while performing scans of ∆ϕ for fixed values of
P/Pth. In this way we were able to experimentally follow the system trajectory on
the Bloch sphere and to unambiguously reveal the different predicted regimes.

5.3.0.2 Generalizations of the model

Helical bistability occurs in any system described by the two coupled equations
Eq. 5.2. Pivotal to this effect, the dominant interaction term must not couple the
two equations, thus allowing for self-trapping. Since the polariton-polariton inter-
action is anisotropic (Vσ+,σ+ = Vσ−,σ− > Vσ+,σ− = Vσ−,σ+), we can predict a helical
bistability of polaritons in an elliptical or rectangular micro-pillar which would lead
to emission of circularly polarized light. In a rectangular pillar, the cylindrical sym-
metry is broken which leads to a lift of polarization degeneracy between polariton
states: the system presents two s modes at different energies with linear polariza-
tions that we can label H and V . These two states can actually be described as
resulting from the linear coupling between σ+ and σ− polarization states. Neglecting
the cross-polarization interaction Vσ+,σ− = Vσ−,σ+ , the set of equations describing
the system is completely analogous to the one considered in this chapter:

i~∂tΨ+ =
(
E0 − ~ωp − i

~γ
2 + Vσ+,σ+|Ψ+|2

)
Ψ+ − JσΨ− + iF+

i~∂tΨ− =
(
E0 − ~ωp − i

~γ
2 + Vσ−,σ−|Ψ−|2

)
Ψ− − JσΨ+ + iF−

(5.11)

To scan the relative phase between F+ and F− simply corresponds to a rotation
of a linearly polarized light: the driving field follows the equator of the Poincaré
sphere. If the polarization direction is rotated in the counterclockwise (clockwise)
direction, we expect to observe a strong emission of σ+ (σ−) polarized light.

Lattices with chiral symmetry are other natural candidates for Helical bistability
as, by definition, they are constituted by two coupled sub-lattices. Pumping the two
sub-lattice independently with a well define wavevector, we expect to observe Helical
bistability for the pseudo-spin defined by the sub-lattice chiral operator.

The study of the helical bistability is an on going work. Important questions
remain to be answered: what are the most general conditions a system must fulfill
to exhibit helical bistability? How does the effect depend on the nature of the
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inter-particle interaction ? (χ2 versus χ3, amplitude of cross interactions between
resonators, ...). We are discussing a possible interpretation of the helical bistability
linked to the eventual presence of an exceptional point in the system. The reader
can for example refer to Ref. [359–361].
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Conclusion and outlook

In this thesis we investigated the non-linear physics of polaritons in chiral systems.
We especially explored a one-dimensional lattice emulating a driven-dissipative ver-
sion of a non-linear Su-Schrieffer-Heeger model. This lattice is a toy model to start
the exploration of the interplay between non-linearities and topology in a driven-
dissipative context. By engineering the drive phase profile, we discovered solutions
that are specific to dissipative systems: we reported the discovery of novel solitons
which are fully spin-polarized and a new non-linear effect that we name “Helical
bistability".

We explored the formation of solitons in the topological gap of the SSH lattice
under quasi-resonant drive. A first family we found is similar to those already
reported in conservative systems, in our experiments these solitons are obtained
under coherent drive with a homogeneous phase profile. The analysis of their density
profile revealed a pseudo-spin texture induced by the chiral symmetry: the core of
topological gap solitons shows no sub-lattice polarization while their exponentially
decaying tails are localized on one sub-lattice on the left and on the other one on
the right. We optically created non-Hermitian defects and realized the first study of
the robustness properties of these solitons. We demonstrated a robustness inherited
from the chiral symmetry: topological gap solitons are unaffected by defects localized
on the sub-lattice presenting a vanishing amplitude of their wavefunction. Taking
advantage of the driven-dissipative nature of the lattice we engineered the phase
profile of the drive and evidenced the existence of fully spin-polarized solitons. These
novel solutions require to be stabilized by the driving field and are thus specific to
open systems. We numerically analyzed the excitation spectrum of the system in
presence of such a steady state and showed that a fully spin-polarized gap soliton
induces a non-trivial interface for Bogolons: a spin-polarized edge state appears in
the topological gap. These results show how non-linearities induced by gap solitons
can modify the topology of the system.

We then focused on the interaction between two gap solitons with spin-polarized
tails. As for the conservative case, the interaction between solitons depends on
their relative phase difference and relative distance. Also, a spontaneous symmetry
breaking is found for certain values of the phase difference. The novelty brought
by the chiral symmetry is revealed when one performs scans of the relative phase
difference between the driving fields. Such drive protocol allowed us to unravel a
novel non-linear effect which links the helicity of the drive protocol to the chirality
of the system response: the helical bistability. To better understand the effect
we considered the simplest system presenting chiral symmetry that is two coupled
non-linear resonators, and numerically demonstrated that it can exhibit the helical
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bistability effect. We showed that the effect is linked to the presence of a chiral
symmetry breaking induced by anisotropic interactions and that it can be mapped to
a spin one-half particle. To experimentally validate these predictions, we considered
the interactions of two solitons on neighboring unit cells of the SSH lattice and
showed that such system can be mapped to a set of two coupled Kerr resonators.
We performed the polariton field tomography and represented the system trajectory
on the Bloch sphere. These latter results constitute an experimental observation
of the simplest form of the helical bistability, a novel non-linear effect that to our
knowledge had never been observed nor discussed so far. These results illustrate
how chirality considerably enriches the physics in the driven-dissipative context and
opens interesting perspectives that I would like to discuss briefly below.

In the near future, it will be interesting to consider the exploration of chiral lattices
with higher dimensions. The proposition for 2D topological insulator based on
polaritonic graphene [319] is particularly interesting. In this model, the addition of
a Zeeman splitting and spin-orbit coupling enable to open a topological gap at the
energy of the Dirac cones (see Fig. 5.9 (a)). This proposal has been implemented
by S. Klembt et al. in Ref. [182]. The exploration of non-linearities in such lattice
promises the observation of novel phenomena induced by the non-trivial topology of
the model. I would be particularly interesting to study the formation of gap solitons
at the edge of the lattice [323, 325] where one can observe protected chiral edge
states. In the bulk of such topological system the physics of solitons is interestingly
linked to the topics covered in this manuscript: when generated close to the Dirac
energy, solitons with a ring shape could present a sub-lattice localization [206].

In addition, the present work demonstrates the potential of the polariton plat-
form to manipulate non-linear fluids in tailored lattice. The engineering of the
drive offers a lot of possibilities that one could use to induce non-trivial topology
in driven-dissipative platforms. Such proposals are theoretically discussed in the
case of a static configuration of the driving field with the work of C. E. Bardyn in
Ref. [8]. It would also be interesting to consider a periodic evolution of the driving
field to induce a dynamic at a temporal scale given by the drive protocol. This
effective time could be used as a synthetic dimension to study topological invariants
of higher dimensions.

A possible application of Helical bistability is to realize quantized transport (or
geometric pump) of a soliton using a periodic phase protocol of the drive. Pre-
liminary numerical calculations show that the implementation of a periodic drive
protocol in the one-dimensional SSH lattice allows to realize the quantized trans-
port of gap solitons. A simplified scheme of the protocol and its result are presented
in Fig. 5.9 (b). We first got inspired by the helical bistability effect and tried to
develop a pump protocol based on periodic scans of the driving field phase: we
pump the whole lattice with an homogeneous input power and apply a spatially
and temporally periodic modulation of the phase. In this way, we can displace the
soliton toward the left or the right by scanning the phase in the counterclockwise or
clockwise direction: this is a geometric pump for solitons. We are trying to inter-
pret this phenomenon using the Bogoliubov spectrum and to describe the periodic
evolution of the excitation spectrum as a modification of a non-linear potential for
the soliton.
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Figure 5.9: a, Numerical calculation of the polariton graphene band structure in
presence of a magnetic field and TE-TM splitting. Topological edge states of the
model are represented in red and blue. Image taken from Ref. [319]. b, Numerical
simulation of a geometric pump for soliton based on the helical bistability effect. The
effective unit cell contains four sites (see inset) which are driven by pump terms Fj =
F0 exp(iϕj(t)) with ϕj(t) a periodic function of period T and ϕj(t) = ϕ1(t+ j−1

4 T ).
The period of the pump protocol is evidenced by a red doted rectangle. After one
temporal period, the soliton as been displaced by one unit cell (four sites).

We aim at going beyond this protocol and realize the equivalent of a nonlinear
Thouless pump: a pump where the displacement of the soliton is associated to a
non-zero topological invariant [322]. Interestingly, in conservative systems, recent
results show that the motion of solitons can be explained from the band structure
and topology of the underlying lattice [329, 330]. In the driven-dissipative context,
the invariant would have to be measured in the Bogoliubov excitation spectrum
calculated far from the soliton.

The Bogoliubov spectrum is a powerful tool to analyze and understand the be-
havior of non-linear fluids. This work demonstrated that interesting topology can
emerge in the excitation spectrum thanks to drive engineering. It would be of great
interest to probe this spectrum in tailored lattices. To do so, several configuration
can be considered. The first one relies on incoherently populating all Bogoliubov
modes by relaxation of particles from an exciton reservoir. We have performed such
experiments and have very promising preliminary results. In presence of a fully
spin-polarized soliton, we observed the appearance of a topological edge state in
the gap of the SSH lattice. A second approach consist in using a weak resonant
probe to coherently measure the transmission at the energy of Bogoliubov modes.
Recent works by the group of A. Bramati report on the use of this pump and probe
spectroscopy technique to observe the Bogoliubov branches associated to polariton
fluid superfluidity in a planar cavity [127].

Finally, the possibilities offered by the polariton platform to engineer non-linear
lattices opens the door to the observation of driven-dissipative solitons or vortices
in models with symmetries other than the chiral symmetry. I would be particularly
interested in exploring the structure and interaction of gap solitons generated in the
fractal spectrum of quasi-crystalline lattices. For example, the solitons generated
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in the gap of Fibonacci quasi-crystals are expected to present tails with a decay
showing the self-similar profile characteristic from critically localized eigenstates.
This could results in an intriguing spatial dependence of the interaction between
two of these solitons. Moreover, one could explore the evolution of these properties
through the transition toward critically theoretically discovered by O. Zilberberg
and collaborators [362] and experimentally observed in our group [191].
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Chapter A

Interaction between gap solitons:
SSH versus AB lattice

A.1 The AB lattice: gap solitons in a trivial gap
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Figure A.1: a, Top: schematic representation of the SSH lattice. Bottom: Sim-
ulated momentum space dispersion of the SSH lattice. b, Same as (a) for the AB
lattice with EM =

√
E2
A + 4J2

AB. Parameters where chosen for the dispersion to
match the one presented in (a). c, Top: Profile of a soliton generated in the center
of the gap of the AB lattice. Bottom: Profile of a gap soliton of the SSH model
generated in the same conditions. Red and blue bars respectively represent the soli-
ton intensity on the A and B sub-lattice. Schemes on top of each panel depict the
associated lattice. In both cases the soliton was injected in the unit cell m = 0 by
driving the pillar(s) evidenced by a filled circle.

To compare the case of topological gap solitons of the SSH lattice to a trivial case,
we simulated a binary lattice (AB) with staggered onsite energies. The AB chain is
topologically trivial and no interface of the lattice can lead to the appearance of an
edge state. However, the energy dispersion of the AB lattice can be made exactly
similar to the SSH one. The Hamiltonian of the AB model reads:

HAB =
[
EA −t
−t EB

]
(A.1)

Setting EA = −EB = J − J ′ and JA→B = JB→A =
√
J ∗ J ′, the diagonalization of

HAB yields the same eigenenergies obtain in the case of the SSH model with hopping
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J and J ′. Energy bands calculated in the case of tight-binding AB and SSH models
are presented in Fig. A.1 (a-b). Note that the difference observed between the two
panels originate from the distribution of eigenstate inside the unit cell.

The difference in the internal degree of freedom of the AB and SSH eigenstates is
at the core of the comparison we propose. In the case of the AB model, the winding
number (in the sense of the one describing SSH) is not defined as the decomposition
of HAB (k) on Pauli matrices has a non-zero component dz(k): HAB (k) does not
possess the Chiral symmetry associated to Ĉ = 1⊗σ̂z. A quick calculation shows that
an operator ĈAB anti-commuting with HAB (k) has to be non-local: the diagonal
elements of ĈAB depend on k. The AB lattice thus does not possess the chiral
symmetry as defined for Hamiltonians in Chap. 3.1.4.

In this appendix, we will use the similarities between the energy dispersion of SSH
and AB lattices to observe whether the interaction between gap solitons is modified
or not by the chirality of their tails. By construction of the band structure, the
energy detuning between the pump and the lower band is kept the same in both
models as well as the amplitudes and curvature of the bands. As a consequence, the
formation of solitons in the gap of the two different lattices occurs at comparable
power thresholds, these solitons present similar peak densities and both types of
solitons possess evanescent tails with the same exponential decay. The discrepancies
between solitons of both model originate from the eigenstates distribution inside the
unit cell: their tails differ in their sub-lattice distribution. The profiles of both types
of solitons are presented in Fig. A.1 (c): the SSH gap soliton (bottom) presents sub-
lattice localized tails while the AB gap soliton (top) present a regular exponential
decay with no particular sub-lattice texture. Note that to respect the symmetry
and efficiently couple to the lower band of the AB model, one need to only drive
the B pillar of the pumped unit cell. Driving the two pillars of the unit cell m = 0
with equal pump amplitudes leads to the formation of two solitons localized on the
B pillar of unit cells m = 0 and m = −1 (undriven).

A.2 Numerical comparison

A.2.1 Power scans
We start by the reproducing the phase diagrams obtained via power scans and pre-
sented in Sec. 4.2.3. The RGB images obtained by tight-binding simulations of the
SSH lattice are displayed in Fig. A.2 (a-b). They exhibit a global mirror symmetry,
with respect to ∆ϕ = 0, which confirms the presence of a residual asymmetry in
the experimental setup. The experimental data are relatively well reproduced by
tight-binding simulations even though no fine tuning of the simulation parameters
was realized. The structure associated to the symmetry breaking is observed around
∆ϕ = 0 and the magenta and white regions are well captured by the simulation.
Even the small cyan region observed on the downward scan around ∆ϕ = π/2 is
observed in the simulated images, with a mirror symmetric yellow region observed
around ∆ϕ = −π/2. Note that in the simulations, we observed parametric insta-
bilities in the downward scan, which hinders the formation of a clear green region
(soliton localized on the central dimer). Such instabilities were not observed exper-
imentally.
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We repeated these simulations in the case of the AB lattice. The obtained
results are displayed in Fig. A.2 (c-d). We observe a striking similarity between
those diagrams and the ones obtained in the context of the SSH lattice (Fig. A.2 (a-
b)). Even though the shapes and positions of the different colored areas slightly
differ from their counterpart in the SSH model, we recover the blue/red broken
symmetry phase with a very similar power and phase distribution same goes for the
magenta and white regions as well as for the small yellow/cyan areas. These results
corroborate the intuitive picture consisting in treating each unit cell as a simple
resonator.

Note that further exploration of these diagrams can be done by performing back
and forth power ramps to explore the stability power range associated to each so-
lution. Especially, doing so for the cyan and yellow regions reached during the
downward scan, one observe (see Fig A.3) that these areas extend up to P > 2 Pth
in both cases (SSH and AB lattice). Similarly to the red and blue regions observed
at low power, the cyan and yellow areas also represent asymmetric solutions. The
main difference resides in the localization of light with respect to the sign of the
phase difference: at low power (red and blue) the soliton is localized on the right
for ∆ϕ < 0 and left for ∆ϕ > 0). On the contrary, at high power (cyan and yellow)
we observe the opposite relationship, the soliton is localized on the left (right) for
∆ϕ < 0 (> 0). A soliton has formed on the central unit cell and the effective cou-
pling between the left and right dimer is now opposite to its value at lower power.
It coincides with the change of relationship between the localization of polaritons
and the sign of ∆ϕ.

A.2.2 Phase scans
In both AB and SSH models, the diagrams of gap solitons formation obtained via
power scans can be generally described approximating each unit cell to a single
resonator: the notion of chiral symmetry (linked to the unit cell internal spin degree
of freedom) does not play a crucial role in power dependence of solitons formation.
We here show that this general description is not possible when addressing scans
of ∆ϕ and that the unit cell internal degree of freedom plays a crucial role in the
structure of the phase multi-stability diagram.

A.2.2.1 Phase scans in the SSH model

We first performed numerical simulations aiming at qualitatively reproducing the P -
∆ϕ diagrams obtained for the SSH model which were presented in Fig. 4.15. We only
present the diagrams computed for a downward scan of input power as no relevant
additional information is contained in the diagram of the upward power scan. The
RGB images obtained via tight-binding simulations are displayed in Fig. A.4. We
retrieve the general features unveiled experimentally with trapping of the soliton at
low power in a range R1S (0.4 < P/Pth < 0.6) and a phase bistability between white
and magenta solutions at very large power (P/Pth > 1.5).

In the power range R2S (0.6 < P/Pth < 0.7) we observe switching between the
mirror-symmetric solution (magenta) and the two chiral solutions (red and blue re-
gions). We numerically retrieve the helical bistability effect: the soliton localizes on
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Figure A.2: a-b, Simulated RGB images obtained by additive color synthesis of
upward and downward power scan diagrams associated to the polariton density in
the three central unit cells of the SSH lattice for D = 2a. c-d, Same as (a-b) for
tje case of the AB lattice. The power scan direction is indicated by an arrow at the
right of each panel. On all images, a schematic representation of the polariton fluid
density is represented in each colored region: a strong (weak) intensity in a dimer
is represented by a gray (white) circle.
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Figure A.3: a-b, Simulated RGB images obtained by additive color synthesis of
upward and downward power scan diagrams associated to the polariton density in
the three central unit cells of an AB lattice forD = 2a. Parameters of the lattice were
tuned to match the dispersion of the simulated SSH lattice considered in Fig. A.2.
The color code associated to the spatial distribution of polaritons is displayed on
the right. c, Zoom of (b) around the region where parametric instabilities are
observed. d, Upward scan starting from the cyan (III) and yellow (IV) regions of
(b). A darkened copy of (b) was superimposed to aid visualization.

the left dimer during counterclockwise scans of ∆ϕ and on the right dimer during
clockwise phase scans. In the intermediate power range (0.7 < P/Pth < 1.5) we
recognize the general shape of the experimental diagrams but, as in the case of sim-
ulated diagrams realized for power scans, the green region experimentally observed
in the vicinity of ∆ϕ = 0 is replaced by parametric instabilities. As a consequence,
the simulated system does not always reach a chiral solution.

Note that reasonable efforts have been made to try to numerically suppress or at
least damp these instabilities. We considered tuning each of the available parameters
and tried to include phase noise to no avail. Diminishing the simulation time step
or going to the next order of approximation in the split step method did not help
damping the oscillations.

A.2.2.2 Phase scans in the AB model

We now turn to simulated phase scans in the case of the AB model. The diagrams
obtained by counterclockwise and clockwise scans of ∆ϕ are presented in Fig. A.5.
The only similarity between SSH and AB models lies in their behavior at high power
(P/Pth > 1.5): we observe a phase bistability between white and magenta solutions.

In the case of the AB model, only one characteristic behavior is observed between
the high power regime and the linear regime. The medium range 0.5 < P/Pth < 1
exhibit a phase bistability between the symmetric solution (magenta) and the two
chiral solutions (red and blue). Contrary to the case of SSH, both chiral solutions
are reached in the clockwise or counterclockwise phase scans: the helical bistability
effect is not observed in the AB model. The soliton localizes on the left dimer in a
range centered on a value ∆ϕ < 0 and on the right dimer for a phase range centered
on a value ∆ϕ > 0. In addition, no trapping of the soliton is observed at low power.
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Figure A.4: a-b, RGB images of simulated counterclockwise and clockwise scans
of ∆ϕ as a function of the input power P in the case of the SSH lattice. We here only
show the downward scan of power. R1S and R2S correspond to the power ranges
for which simulations reproduce the soliton trapping and the helical bistability.
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Figure A.5: a-b, RGB images of simulated counterclockwise and clockwise scans
of ∆ϕ as a function of the input power P in the case of the AB lattice. We here
only show the downward scan of power.
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Chapter B

Helical bistability of two coupled
Kerr resonators

B.1 Numerical results: particle density versus ∆ϕ

(f)

(c)

g
n
To

t/
J

0

(b)

π 3π
2

π
2 2π0

∆ϕ

0.4

0.3

0.2

0

0.1

π 3π
2

π
2 2π0

∆ϕ

4

3

2

0

1
γ/J0

(e)

π 3π
2

π
2 2π0

∆ϕ

4

3

2

0

1

(d)

π 3π
2

π
2 2π0

∆ϕ

4

3

2

0

1g
n
To

t/
J

0

g
n
To

t/
J

0

γ/J0

g
n
To

t/
J

0

π 3π
2

π
2 2π0

∆ϕ

4

3

2

0

1g
n
To

t/
J

0

(a)
Z1 Z2

Z3 Z4

Z5

b c d e f

|F0|2 + 1 (a.u.)
101100

1

0

-1

0.5

-0.5

SZ

γ/J0γ/J0γ/J0

1©

1©

2©

2© 2©
2©

1©± 1©±

Figure B.1: a, Reproduction of the symmetry breaking presented in Fig. 5.1 (c).
b-f, Evolution of the total density g nTot/J0 as a function of ∆ϕ for different values
of the input power which are marked with vertical dashed lines in (a). Orange
and green data points indicate bistability regions which are exclusively explored
during the clockwise and counterclockwise phase scans. Colored arrows indicate the
direction of the jumps. The power ranges associated to each regime are highlighted
using light orange patches in (a).

In Fig. B.1 we provide the graphs of the particle density nTot = |ΨL|2 + |ΨR|2 as
a function of ∆ϕ, corresponding to the graphs of SZ presented in Fig. 5.2. To give
more meaningful information, we present the evolution of g nTot/J0: the interaction
energy normalized to the hopping constant which represents the detuning between

181



B.2. Experimental results

the laser and the bonding state of the linear model. For reference, the value γ/J0
is indicated by a horizontal doted line. Above the range Z1, all stability branches
present densities associated to an interaction energy on the order of J0 (significantly
non-linear).

B.2 Experimental results

B.2.1 Density diagrams
In Fig. B.2 we provide the graphs of the normalized polariton density in each driven
unit cells as a function of ∆ϕ, corresponding to the color encoded images presented
in Fig. 5.5 (a-b).
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π 3π
2

π
2 2π0

∆ϕ
(d)(c)

π 3π
2

π
2 2π0

∆ϕ

P
/P

th

0.5

1

1.5

2

π 3π
2

π
2 2π0

∆ϕ
Figure B.2: Diagrams of the normalized density in the left and right driven unit
cells for scans of input power as a function of ∆ϕ a-b, Diagrams corresponding to
the upward scan of input power. c-d, Same as (c-d) for the downward scan of input
power.
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B.2.2 Evolution of SZ versus ∆ϕ
In Fig. B.3 we provide the graphs of SZ as a function of ∆ϕ corresponding to the
data presented as Bloch spheres in Fig. 5.7.
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Figure B.3: Evolution of SZ as a function of ∆ϕ for fixed input power with
a: P/Pth ≈ 0.1, b: P/Pth = 0.77, c: P/Pth = 0.94 and d: P/Pth = 1.85. Orange
and green data points indicate bistability regions which are exclusively explored
during the clockwise and counterclockwise phase scans. Colored arrows indicate the
direction of the jumps.
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Figure B.4: Bloch sphere representation of the stability branches covered during
phase scans for fixed input power in the case where the two pumps are separated
by a distance D = 2a. a: Helical bistability between two gap solitons with chiral
tails. Orange and green data points indicate bistability regions which are exclusively
explored during the clockwise and counterclockwise phase scans. Colored arrows
indicate the direction of the jumps. b: Trapping of a single soliton. Depending on
the history of the drive, the soliton can either be locked to the north or south pole
(green or orange data points).

B.2.3 Bloch sphere representation of the helical bistability
and soliton trapping for solitons interacting via chiral
tails

In Fig. B.4 we present the polariton field tomography in the case of phase scans where
the two pumps are separated from D = 2a, this configuration was discussed in a
major part of Chap. 4. Figure B.4 (a) corresponds to the regime of helical bistability
unveiled for 0.6 < P/Pth < 1.0: the north (south) hemisphere is only explored
during the counterclockwise (clockwise) scan of ∆ϕ. Figure B.4 (b) corresponds to
the regime of soliton trapping unveiled for 0.35 < P/Pth < 0.5: the system is locked
to the north or south pole of the sphere depending on the history of the drive. Note
that in the configuration D = 2a, the effective hopping between the two driven
unit cells is negative. As a consequence we decided to change the orientation of
the Bloch sphere with respect to the one chosen in Chap. 5 (the front bottom right
corner corresponds to S = {-1, -1, -1} while it used to be S = {1, 1, -1}).
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