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Abstract 
Brain-computer interfaces (BCIs) transform neural signals into commands for effectors. They are 

mainly used as tools for functional compensation of impaired functions in disabled subjects. The 

Clinatec clinical trial “BCI and tetraplegia” aims at providing a proof of concept of long-term functional 

compensation of upper and lower limb motor deficits in tetraplegics using a BCI (motor BCI). The 

clinical trial showed promising results for compensation of motor functions. However, the BCI’s 

usability remains to be improved. The decoder used to estimate the user’s intention from the 

processed neural signal (control decoder) must be fitted before the BCI can be used. This is done during 

dedicated training sessions, during which the user is directed to perform specific motor imagery tasks. 

Training sessions are downtime for the end-goal of the BCI, as the user does not freely decide which 

actions to perform. Generally, training sessions have to be held regularly in order to update or retrain 

the control decoder due to degradation of performance over time. In the scope of improving usability 

of BCIs, this PhD research proposes to limit the negative impact of training sessions. In this work, the 

control decoder is trained and updated using inferred labels instead of labels acquired during a 

dedicated training session. The labels are inferred using the output of the control decoder and neural 

correlates of task performance (i.e., how well the effector’s actions match the user’s intentions). We 

call such a BCI an “auto-adaptive BCI”. Although the decoder responsible for the detection of these 

neural correlates of task performance is trained during a dedicated training session, it can still provide 

a net improvement in usability, depending on the complexity of the control decoder trained and the 

relative stability in time and across tasks of the task performance decoder. However, in order to be 

usable for state-of-the-art motor BCIs the adaptation process must be possible for control decoders 

with multiple discrete or continuous outputs. We argue that adaptation of a control decoder with 

multiple continuous outputs is best done using neural correlates of task performance that can be 

decoded continuously in time. Additionally, in order to be usable with current state-of-the-art motor 

BCI, these neural correlates should be detected in the sensorimotor cortex due to the position of the 

implanted neural acquisition system. Using multiple datasets from a tetraplegic enrolled in the Clinatec 

BCI clinical trial, we first show that it is possible to detect such continuous in time neural correlates of 

task performance from the sensorimotor cortex. We then show that control decoder labels can be 

inferred using these neural correlates. Finally, we perform an offline simulation of online use to 

demonstrate that the auto-adaptive BCI can be used to successfully train decoders for discrete or 

continuous control. 

This new approach was tested on ECoG datasets from a tetraplegic enrolled in the Clinatec BCI clinical 

trial. The subject used motor imagery to control a binary avatar (Runner MI dataset), a virtual 

exoskeleton with four discrete motor states (Exo dataset) or a hand-shaped cursor on a two-

dimensional screen (Cursor dataset). In five-fold cross-validations, the mean and standard deviation of 

the area under the receiver operating characteristic curve (AUC of the ROC) for the decoder of neural 

correlates of task performance were 0.6225±0.0429 in the Runner MI dataset, 0.5677±0.0427 in the 

Exo dataset and 0.6570±0.0188 in the Cursor dataset. In a pseudo three-fold cross-validation 

simulating online use, the accuracy of the estimated labels was 64.9% in the Runner dataset and 64.5% 

in the Exo dataset. In the Cursor dataset, 63.3% of the estimated labels were less than 60° away from 

the actual labels. The AUC of the ROC of the control decoder was 0.6360±0.0958 in the Runner MI 

dataset when trained auto-adaptively compared to 0.8958±0.0153 when trained in a classical 

supervised manner, and a chance level of 0.5007±0.0691. The multiclass generalization of the AUC of 

the ROC of the control decoder was 0.7595±0.0278 in the Exo dataset when trained auto-adaptively 

compared to 0.8177±0.0301 when trained in a classical supervised manner, and a chance level of 
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0.5163±0.0580. In the Cursor dataset, the cosine similarity between the output of control decoder and 

the ideal trajectory was 0.1589±0.0668 when trained auto-adaptively compared to 0.2107±0.0664 

when trained in a classical supervised manner, and a chance level of -0.0231±0.0327. 

These results first show that continuous in time neural correlates of task performance are detectable 

in ECoG recordings of the sensorimotor cortex, and then that it is possible to use them to train auto-

adaptively control decoders that have multiple discrete or continuous outputs, with performances 

significantly better than chance levels. Although these findings are promising for the future of adaptive 

complex motor BCIs, they should first be replicated outside of this case study and during online use of 

the BCI. Perspective future study also includes evaluation of the robustness in time and to tasks of the 

task performance decoder, as well as adaptation of even more complex motor BCIs. 
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Résumé en français 
Adaptation d’Interfaces Cerveau-Machines discrètes et continues grâce à des 

corrélats neuronaux de performance de tâche détectés continuellement dans 

le cortex sensorimoteur d’un tétraplégique. 

Chapitre 1 : Introduction aux Interfaces Cerveau-Machines (ICMs) 

Cette thèse porte sur les interfaces cerveau machines. Les interfaces cerveau machines (ICMs) sont 

des dispositifs qui utilisent des signaux cérébraux afin de décoder les intentions de leur utilisateur. Ces 

ICMs sont principalement développées pour des individus ayant des déficits moteur, tels que des 

lésions de la colonne vertébrale, la sclérose amyotrophique latérale ou des accidents vasculaires 

cérébraux (Lebedev and Nicolelis, 2017). Pour ces personnes, les ICMs peuvent remplacer 

partiellement les fonctions motrices perdues, telles que la communication, la locomotion, ou la 

préhension. En raison de leur complexité, les ICMs ne peuvent détecter qu’un nombre limité de 

commandes présélectionnées. Ces commandes sont générées en effectuant des tâches mentales qui 

génèrent des signaux cérébraux spécifiques. Certains signaux cérébraux sont régulièrement utilisés 

dans le domaine des ICMs : 

- Les rythmes sensorimoteurs sont des variations dans l’amplitude des oscillations neuronales 

dans certaines bandes de fréquences, générées par des mouvements exécutés, imaginés ou 

tentés (par exemple si l’utilisateur est handicapé) et sont principalement utilisés dans les ICMs 

qui ont pour but de restaurer les fonctions motrices. 

- Le P300 est un potentiel électrique élicité environ 300ms après qu’un stimulus ait été détecté 

(Nicolas-Alonso and Gomez-Gil, 2012). Il est principalement utilisé dans les ICMs qui visent à 

restaurer la communication chez leur utilisateur.  

- Les potentiels évoqués stables sont des modulations fréquentielles dans les signaux cérébraux 

élicitées par un stimulus présenté à une fréquence constante, qu’il soit visuel, auditif ou tactile. 

- Les potentiels liés aux erreurs (ErrP) sont des potentiels qui apparaissent dans les signaux 

cérébraux après que l’utilisateur ait commis ou observé un agent commettre une erreur.   

Chacun de ces signaux a des avantages et inconvénients, et le signal utilisé pour contrôler une ICM doit 

être choisi en prenant en compte l’application de l’ICM ainsi que les préférences de l’utilisateur. 

Les interfaces cerveau-machine sont composées de trois blocs principaux : un système d’acquisition, 

un traducteur et un ou plusieurs effecteurs. Le système d’acquisition échantillonne, amplifie et 

digitalise l’activité cérébrale de l’utilisateur. Le traducteur transforme les signaux cérébraux acquis en 

une estimation de l’intention de l’utilisateur. Les effecteurs réalisent les actions estimées voulues par 

l’utilisateur. Les différents systèmes d’acquisition les plus utilisés dans le domaine des ICMs sont 

l’électroencéphalographie (EEG), l’électrocorticographie (ECoG), les grilles de micro-éléctrodes 

(MEAs), la magnétoencéphalographie (MEG), l’imagerie spectroscopique proche infra-rouge 

fonctionnelle (fNIRS) et l’imagerie par résonance magnétique fonctionnelle (fMRI). Les ICMs qui 

visent à restaurer la motricité (ICM motrices) chez les handicapés utilisent souvent des systèmes 

d’acquisition invasifs (MEA et ECoG) (Benabid et al., 2019; Willett et al., 2021; Wodlinger et al., 2014) 

en raison de leur meilleure qualité de signal. Les ICMs visant des individus sains reposent 

principalement sur l’EEG en raison de son faible coût et de sa portabilité. Une grande diversité 

d’effecteurs existe pour les ICMs. Pour les ICMs motrices, il est par exemple possible d’utiliser un bras 

robotique, un exosquelette (Benabid et al., 2019) ou même de la stimulation électrique fonctionnel 
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pour activer les membres du patient. Pour les ICMs de communication l’effecteur le plus courant est 

un ordinateur qui affiche les caractères choisis afin d’écrire. Le traducteur est au cœur de l’ICM de par 

sa fonction de traduction des signaux cérébraux en commande. Plusieurs étapes existent dans le bloc 

du traducteur : le pré-traitement, l’extraction de caractéristiques, le décodage et le post-traitement. 

Le pré-traitement améliore la qualité du signal fourni par le système d’acquisition. L’extraction de 

caractéristiques transforme le signal pré-traité en information considérée optimale pour le décodage 

de l’intention de l’utilisateur. Les caractéristiques extraites sont transformées en prédiction de 

l’intention de l’utilisateur par un décodeur (décodeur de contrôle). Le décodage est généralement 

effectué au moyen d’un décodeur (décodeur de contrôle) dont. Les paramètres du décodeur sont 

généralement estimés grâce à l’apprentissage machine supervisé. L’apprentissage machine supervisé 

requiert des données d’entrainement labélisées, c’est-à-dire des données cérébrales pour lesquels on 

connait l’intention de l’utilisateur. Ces données labélisées sont obtenues lors de sessions 

d’entrainement, durant lesquelles l’utilisateur de l’ICM doit effectuer des tâches spécifiques. Le post-

traitement est une étape optionnelle appliquée à la sortie du décodeur pour améliorer la qualité des 

prédictions.  

Les ICMs pour la compensation fonctionnelle de déficits moteurs devraient idéalement avoir les 

caractéristiques suivantes (Wolpaw and Wolpaw, 2012): 

- Sans danger pour l’utilisateur. 

- Activable et utilisable à tout moment par l’utilisateur sans assistance de la part d’aide de soin, 

technicien ou scientifique. 

- Utilisable en dehors des laboratoires. 

- Offre une compensation fonctionnelle équivalente aux capacités des individus sains. 

- Ne demande pas plus d’effort à utiliser que la capacité compensée demanderait à un individu 

sain.  

- Peut être utilisé de manière chronique, ne demandant que peu de modifications au fil des ans. 

- Bon marché et transportable facilement. 

- Esthétiquement acceptable ou invisible. 

Une majeure partie de ces propriétés reste non atteintes ou partiellement atteintes par les ICMs 

actuelles. En fonction de chaque ICM, le bon choix de système d’acquisition, traducteur et effecteur 

doit être fait pour maximiser la satisfaction de leur utilisateur et effectuer un compromis entre les 

différentes propriétés désirables décrites ci-dessus.  

Chapitre 2 : Contexte scientifique et objectifs 

Cette thèse s’inscrit dans le contexte d’un essai clinique d’ICM chronique. L’essai clinique « BCI et 

tétraplégie » se déroule à Clinatec et a été accepté par l’Agence nationale de sécurité du médicament 

et des produits de santé (numéro 2015-A00650-49) et le Comité de Protection des personnes (15-

CHUG-19). Le but de cet essai clinique est la réalisation d’une preuve de concept que des patients 

tétraplégiques peuvent contrôler des effecteurs moteurs très complexes, tel qu’un exosquelette 4 

membres, afin de promouvoir une restauration fonctionnelle des capacités motrices des patients 

tétraplégiques de façon chronique. L’électrocorticographie (ECoG) est utilisé comme système 

d'acquisition malgré le fait qu’il soit invasif, en raison de la qualité de signal supérieure aux méthodes 

non invasives. Un implant ECoG a été développé spécifiquement pour cet essai clinique (Mestais et al., 

2015). L’implant ECoG WIMAGINE possède 64 électrodes et enregistre avec une fréquence 

d’échantillonnage de 585Hz, fonctionne sans fil, et est adapté à une utilisation chronique dans le 

domaine médical. Cependant, l’implant est actuellement en mesure de transmettre des données de 

34 électrodes à la fois seulement. Un exosquelette quatre membres a aussi été développé pour 
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permettre la restauration de la mobilité. D’autres effecteurs sont aussi utilisés dans le cadre de cet 

essai clinique, tel qu’un fauteuil roulant motorisé, ainsi que des effecteurs virtuels affichés sur écran 

d’ordinateur. Ces effecteurs virtuels ont l’avantage d’être utilisables facilement chez leurs utilisateurs 

ainsi que d’être moins complexes à créer, permettant d’avoir plus facilement un panel d’effecteurs de 

niveau de difficultés de contrôle variés. Les décodeurs de contrôle utilisés dans cet essai clinique sont 

entraînés grâce à l’algorithme REW-NPLS avec validation récursive des hyperparamètres (Eliseyev et 

al., 2017). Un modèle de Markov caché est aussi utilisé pour stabiliser les différents états moteurs 

activable de l’exosquelette (par exemple le mouvement du bras droit vs le mouvement du bras gauche) 

(Schaeffer and Aksenova, 2016). 

Jusqu’à présent, trois patients ont été inclus dans l’essai clinique. Les implants du premier patient ont 

cessé de fonctionner rapidement après leur implantation. Les implants ont été explantés et le patient 

a été retiré de l’essai clinique. Le second patient a été implanté en Juin 2017, et a participé à l’essai 

clinique jusqu’à mi 2021. Un troisième patient a été implanté en Novembre 2019 et est actuellement 

toujours inclus dans l’essai clinique. Chaque patient a été implanté avec deux implants WIMAGINE, un 

au-dessus de chaque cortex sensorimoteur (droit et gauche). Le sujet dans cette thèse est le deuxième 

patient inclus dans l’essai clinique « BCI et tétraplégie ». C’est un homme de 28 ans qui est 

tétraplégique en raison d’une lésion de la colonne vertébrale au niveau C4-C5. 

Les résultats publiés de l’essai clinique sont prometteurs, avec la possibilité pour l’un des patients de 

contrôler l’exosquelette en 8 dimensions continues (positions des deux mains en 3D et 

pronosupination des deux poignets) après un entrainement progressif. Bien que le patient ait pu 

contrôler l’exosquelette sur une période de plusieurs mois sans nécessiter de mise a jour du décodeur 

de contrôle, une légère baisse de performance a pu être observée avec le temps. L’entrainement de 

ce décodeur a nécessité six sessions d’entrainement, reparties sur deux semaines, pour un total de 

trois heures et demi de donnés dans le set d’entrainement. 

L’objectif de cette thèse est d’améliorer les ICMs en général en limitant la nécessité des sessions 

d’entrainements pour l’entraînement du décodeur de contrôle. Les sessions d’entrainement sont un 

temps mort dans l’utilisation libre de l’ICM, et doivent de plus être effectuées régulièrement afin de 

garder à jour le décodeur de contrôle. Le but est ici d’obtenir des données labelisées en dehors des 

sessions d’entraînement. Pour ce faire, il est proposé dans cette thèse d’estimer les labels en se basant 

sur les données neuronales acquises pendant le contrôle de l’ICM. Plus précisément, les labels sont 

estimés grâce à des corrélats neuronaux de performance de tâche motrice (MTP). Ces signaux 

neuronaux reflètent l’adéquation entre les actions effectuées par l’ICM et les intentions de l’utilisateur. 

Le but de cette thèse est d’effectuer une preuve de concept montrant que des corrélats neuronaux 

de MTP peuvent être détectés dans le cortex sensorimoteur et utilisés afin de permettre l’adaptation 

en temps réel du décodeur de contrôle d’une ICM motrice complexe (contrôlant au moins deux 

degrés de liberté de manière continue).  

Chapitre 3 : Les ICMs auto-adaptatives en tant que solution pour réduire les entraînements de 

décodeurs de contrôle  

Utiliser des signaux cérébraux afin d’estimer les labels nécessaires à l’entraînement ou à la mise à jour 

du décodeur de contrôle a déjà été fait par le passé. La stratégie la plus répandue actuellement 

consiste à considérer que la sortie du décodeur de contrôle est correcte et à l’utiliser en tant que label. 

Ce type d’entraînement du décodeur de contrôle est usuellement appelé entrainement non-supervisé             

dans le domaine des ICMs. Parmi les études utilisant cette stratégie, on citera celles de Shenoy et al. 

(2006), Vidaurre et al. (2011b, 2011a), Gu et al. (2013), Kindermans et al. (2014) et Li et al. (2011). 

Chacune de ces études rapporte une amélioration des performances des décodeurs de contrôle mis à 
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jour de manière non-supervisée comparé aux décodeurs de contrôle non mis à jour. Cependant, nous 

estimons que la mise à jour non supervisée de décodeurs de contrôle n’est pas optimale pour des ICMs 

à usage chronique. En effet, un cercle vicieux peut s’enclencher si les performances du décodeur de 

contrôle venaient à baisser car les labels estimés sont basés sur la sortie du décodeur de contrôle. Les 

labels estimés seraient alors moins corrects, ce qui pourraient encore détériorer les performances du 

décodeur de contrôle après sa mise à jour suivante. Pour cette même raison, l’entrainement non-

supervisé est difficilement utilisable avec des décodeurs de contrôle initialisés de manière aléatoire. 

Enfin, l’adaptation non-supervisée n’est probablement pas optimale pour suivre les variations de 

concept brusques dans les données d’entrée du décodeur de contrôle car ces variations pourraient 

être trop rapide pour qu’une adaptation puisse se faire avant que les performances du décodeur de 

contrôle n’aient baissé de manière critique. Pour ces raisons, nous suggérons que l’estimation des 

labels pour le décodeur de contrôle doit être indépendante des performances du décodeur de 

contrôle.  

L’idée d’utiliser des corrélats neuronaux de performance de tâche est aussi présente dans la littérature 

(Buttfield et al., 2006). Jusqu’à présent, toutes les études utilisant des corrélats neuronaux de 

performances de tâche pour l'adaptation de décodeurs de contrôle ont soit utilisé des Potentiels Liés 

aux Erreurs (ErrP) soit des signaux simulés (Artusi, 2012; Artusi et al., 2011; Blumberg et al., 2007; 

Buttfield et al., 2006; Gürel and Mehring, 2012; Llera et al., 2012, 2011; Spüler et al., 2012; Zeyl and 

Chau, 2014). A l’exception de l’étude de Gürel et Mehring (2012), toutes ces études sont limitées à 

l’adaptation de décodeur de contrôle pour la classification. Cependant, les ICMs motrices complexes 

peuvent contrôler plusieurs degrés de libertés continus simultanément (Benabid et al., 2019; Willett 

et al., 2021; Wodlinger et al., 2014). Nous supposons que cette limitation vient de la façon dont sont 

générés les ErrPs. Ceux-ci sont induits par des événements erronés discrets dans le temps. Dans cette 

thèse, on appellera ce type de corrélats neuronaux des corrélats de performance de tâche motrice 

liés à un évènement (eMTP). Le contrôle d’un effecteur à plusieurs dégrées de liberté continue peut 

effectivement générer des événements erronés discrets. Cependant, lors de ce type de contrôle, 

certaines erreurs ne sont pas des événements discrets. C’est par exemple le cas lorsqu’une trajectoire 

2D dévie graduellement de la trajectoire idéale. Il n’y a alors pas un événement erroné discret mais 

une multitude de petits déplacements, qui deviennent graduellement de plus en plus erronés. Un 

corrélat neuronal qui serait émis à tout instant et pas seulement lors d’événements discrets pourrait 

être plus approprié pour effectuer l’adaptation d’ICMs motrices complexes. Cette hypothèse est 

corroborée par l’étude de Gürel et Mehring (2012), qui est la seule à utiliser un tel signal (bien que 

simulé) et qui est aussi la seule à faire l’adaptation d’un décodeur de contrôle avec plusieurs sorties 

continues. De nombreuses études ont étudié la détection de corrélats d’erreurs lors de tâches de 

contrôle continu (Kreilinger et al., 2009; Lopes Dias et al., 2018; Lopes-Dias et al., 2019; Milekovic et 

al., 2013, 2012; Omedes et al., 2015; Spüler and Niethammer, 2015; Wilson et al., 2019). Cependant, 

une partie des tâches est effectuée lors de contrôle continu unidimensionnel. Or une erreur dans ce 

cas reviendrait à un changement de direction, ce qui peut être considéré comme un événement 

discret. Les autres études s’intéressent à des tâches de contrôle continu multi-dimensionnel. 

Cependant, dans chacune d’entre elles les erreurs étudiées sont introduites artificiellement de 

manière discrète. Actuellement, il n’existe pas d’étude faisant état de la détectabilité d'erreurs non 

discrètes en utilisant des signaux neuronaux. 

En plus de devoir détecter un nouveau type de corrélats de performance de tâche motrice continus 

dans le temps (cMTP) cette étude fait face à une seconde difficulté. Comme dans la plupart des essais 

clinique d’ICMs motrices, les implants utilisés dans cette étude enregistrent l’activité du cortex 

sensorimoteur. Or la majeure partie des études de détection de corrélats neuronaux de performance 

de tâche utilisent des données cérébrales acquises en dehors du cortex sensorimoteur (tel que les 
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ErrPs). Un nombre limité d’étude porte sur la détection de corrélats neuronaux de performance de 

tâche dans le cortex sensorimoteur (Koelewijn et al., 2008; Milekovic et al., 2013, 2012; Schie et al., 

2004; Völker et al., 2018; Wilson et al., 2019). Ces études rapportent que des corrélats neuronaux 

d’eMTP sont détectables après des événements erronés discrets dans le cortex sensorimoteur. Les 

corrélats neuronaux décrits sont principalement dans le domaine fréquentiel (contrairement aux 

ErrPs). 

Dans cette thèse, le processus d’auto-adaptation développé ajoute un module auto-adaptatif à la 

boucle fermée classique des ICMs (Figure 8). Des corrélats neuronaux de cMTP sont détectés grâce à 

un décodeur entraîné spécifiquement pour cette tâche (décodeur de cMTP). Les sorties des décodeurs 

de contrôle et de cMTP sont ensuite combinées pour produire une estimation des labels du décodeur 

de contrôle. Ces labels estimés sont finalement utilisés pour entraîner ou mettre à jour le décodeur de 

contrôle en temps réel, ce qui reste possible durant l’utilisation libre de l’ICM par l’utilisateur. 

Chapitre 4 : Design expérimental 

Plusieurs paradigmes de contrôle de BCI sont utilisés dans cette thèse, avec des effecteurs de 

complexité croissante. Dans le premier paradigme, le patient contrôlait un avatar humain affiché sur 

un écran d’ordinateur. Cet avatar humain pouvait soit être immobile debout soit marcher tout droit à 

vitesse constante. Le patient utilisait de l’imagerie motrice des jambes pour faire avancer l’avatar, et 

pas d’imagerie motrice pour l’arrêter. Un panneau d’instruction était aussi affiché pour indiquer au 

patient quel état l’avatar devrait avoir. Trois jeux de données ont été enregistrés avec différentes 

configuration d’électrodes utilisées pour enregistrer les données (32 électrodes parmi 64 peuvent 

transmettre des données par implant). La première configuration est celle qui maximise la détection 

de l’imagerie motrice et est celle utilisée lors des enregistrements effectués avant le début de cette 

thèse. Le jeu de données correspondant est appelé Runner MI central. Ensuite deux jeux de données 

ont été enregistrés pour maximiser la surface d’enregistrement afin de détecter des corrélats 

neuronaux de performance de tâche. Le jeu de données avec le plus grand nombre d'expériences est 

nommé Runner MI, l’autre étant appelé Runner MI inverted. Dans le quatrième et dernier jeu de 

données enregistré avec ce paradigme, le patient n’avait aucun contrôle sur l’effecteur. Les 

mouvements de l’avatar étaient contrôlés par l’ordinateur, et des périodes d’erreurs étaient 

introduites automatiquement. Ce jeu de données est appelé Runner no_MI. 

Dans le deuxième paradigme le patient contrôlait un exosquelette virtuel affiché sur un écran 

d’ordinateur. L’exosquelette pouvait soit être immobile, soit être dans l’un des quatre états moteurs 

suivant : mouvement du bras droit, mouvement du bras gauche, rotation du poignet droit ou rotation 

du poignet gauche. Le patient effectuait de l’imagerie motrice directe afin d’activer les différents états 

moteurs. Des instructions étaient affichées, et le patient avait pour consigne d’activer les états moteur 

demandés sans considération pour les mouvements effectuées à l’intérieur de chaque état. Le jeu de 

données correspondant est appelé Exo.  

Dans le troisième paradigme, le patient contrôlait un curseur en forme de main affiché sur écran 

d’ordinateur. Le curseur pouvait se déplacer librement et en deux dimensions continues dans un 

espace carré. A tout instant, une cible était affichée et le patient devait faire de l’imagerie motrice pour 

déplacer le curseur. Lorsqu’une cible était atteinte, la position du curseur était réinitialisée au centre 

de l’espace et une nouvelle cible était affichée. Le jeu de données correspondant est appelé Cursor. 

Chapitre 5 : Détection de corrélats neuronaux de performance de tâche 

Dans ce chapitre nous étudions la détectabilité de corrélats neuronaux d’eMTP et de cMTP dans nos 

différents jeux de données. La détection d’eMTP est faite pour les jeux de données Runner MI, Runner 
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no_MI et Runner MI inverted. La détection de cMTP est faite pour les jeux de données Runner MI, 

Runner no_MI, Exo et Cursor.  

Dans les deux cas, l’extraction de caractéristiques d’entrée pour le décodeur de MTP est basée sur la 

littérature la plus proche, c’est-à-dire l’extraction d’informations temps-fréquence. Pour chaque epoch 

d’une seconde, les informations temps fréquences sont extraites de 10 à 150Hz, tous les 10Hz. Dans le 

domaine temporel, l’information est moyennée en dix points par epoch. Les epochs successifs ont un 

recouvrement temporel de 90%. Les labels sont créés différemment pour la détection d’eMTPs et de 

cMTPs. Dans les deux cas, les labels sont binaires : si un epoch est labélisé, il peut être correct ou 

erroné. De plus, un équilibrage des quantités de données dans les deux classes est effectué afin de 

minimiser les risques de confusion de détection de corrélats d’imagerie motrice au lieu de corrélats de 

MTP par le décodeur de MTP : un sur-échantillonnage des epochs de chaque classe motrice est 

effectué à l’intérieur de chaque classe MTP (erroné ou correct). Plusieurs algorithmes d’apprentissage 

machine ont été testés pour l’entraînement du décodeur d’eMTP discrets : SVM, régression logistique, 

NPLS, MLP et CNN. Les performances de chaque décodeur sont évaluées en utilisant l’aire sous la 

courbe (AUC) ROC moyenne dans un validation croisée à 5 blocs.  

Les résultats de détection de corrélats neuronaux d’eMTP montrent des différences non significatives 

entre les performances des différents décodeurs testés sur les jeux de données Runner MI et Runner 

no_MI (Runner MI AUC moyenne : NPLS 0.601, régression logistique 0.605, SVM 0.623, MLP 0.626, 

CNN 0.580. Test de Friedman, p-valeur 0.08 ; Runner no_MI AUC moyenne : NPLS 0.653, régression 

logistique 0.662, SVM 0.645, MLP 0.680, CNN 0.630. Test de Friedman, p-valeur 0.13). Pour le reste de 

la thèse, la NPLS a été utilisée pour entraîner les décodeurs de MTP. On note que la détection de 

corrélats de MTP est supérieure dans le jeu de données Runner no_MI que dans le jeu de données 

Runner MI. Ceci était attendu car les signaux d’imagerie motrice générés pour contrôler l’avatar dans 

le jeu de données Runner MI peuvent être considérés comme du bruit pour la détection de corrélats 

de MTP. 

Les résultats de détection de corrélats neuronaux de cMTP donnent une AUC de 0.623 pour le jeu de 

données Runner MI, 0.678 pour le jeu de données Runner no_MI, 0.568 pour le jeu de données Exo et 

0.657 pour le jeu de données Cursor. Ces résultats montrent que la détection de corrélats de cMTP 

dans des signaux neuronaux acquis depuis le cortex sensorimoteur est possible, ce qui est un point clé 

pour l’implémentation de l’ICM auto-adaptative élaboré dans cette thèse. Une étude des 

performances des décodeurs de cMTP en fonction du nombre de facteurs utilisés dans la NPLS montre 

qu’un nombre assez faible de facteurs permet d’atteindre un plateau de performance (entre 4 et 20 

en fonction des jeux de données). Il peut aussi être noté que les paramètres des décodeurs de cMTP 

varient fortement entre les différents jeux de données. Cela ne permet cependant pas de conclure 

quant à la stabilité potentielle d’un décodeur de cMTP utilisé pour différentes tâches motrices et des 

études plus approfondies doivent être effectuées à ce sujet. La stabilité temporelle des décodeurs de 

cMTP n’est pas non plus démontrée, mais la façon dont la validation croisée a été effectuée (chaque 

bloc contient des sessions d’enregistrement distinctes, parfois enregistrées avec plusieurs jours 

d’écart) semble indiquer qu’une certaine stabilité temporelle existe.  

Chapitre 6 : ICM auto-adaptative 

Dans ce chapitre, l’interface cerveau-machine auto-adaptative est implémentée et testée dans une 

simulation d’utilisation en ligne. Dans cette simulation, chaque jeu de données est séparé en trois. Une 

partie est utilisée pour entraîner le décodeur de cMTP, une partie est utilisée pour entraîner le 

décodeur de contrôle de manière auto-adaptative et une partie est utilisée pour tester les 

performances dudit décodeur de contrôle.   



Résumé en français 

XI 

Afin de minimiser le bruit dans les labels estimés, seule une partie des epochs est utilisée. Dans les 

données d’entraînement, la sortie du décodeur de cMTP pour chaque classe (erroné ou correct) est 

modélisée par une gaussienne. Les paramètres de ces gaussiennes (moyenne et déviation standard) 

sont utilisés pour définir deux seuils qui permettent de n’utiliser que les epochs pour lesquels la sortie 

du décodeur de cMTP est estimée avec assez de confiance. Pour ces epochs, un label (pour 

l’entraînement du décodeur de contrôle) est ensuite estimé à l’aide d’une fonction de re-labélisation. 

Lorsqu’un epoch est détecté correct, la sortie des fonctions de re-labélisation correspond à la 

prédiction effectuée par le décodeur de contrôle. Lorsqu’un epoch est détecté erroné, la sortie des 

fonctions de re-labélisation est soit la deuxième classe la plus probable estimée par le décodeur de 

contrôle (paradigmes de contrôle binaire et multi-classes, i.e. jeux de données Runner MI et Exo), soit 

les erreurs ne sont pas utilisées pour mettre à jour le décodeur de contrôle (paradigme de contrôle 

continu bidirectionnel, i.e. jeu de données Cursor). Dans cette simulation, le décodeur de contrôle est 

entrainé en utilisant la REW-NPLS comme les autres décodeurs de contrôle entraînés dans cet essai 

clinique. En plus du décodeur de contrôle entraîné de manière auto-adaptative, deux autres décodeurs 

de contrôle sont entrainés pour chaque jeu de données à des fins de comparaison. Le premier est 

entraîné de façon supervisée, en utilisant les vrais labels. Le second est entraîné de façon auto-

adaptive, mais en mélangeant la sortie du décodeur de cMTP de façon aléatoire afin de représenter le 

niveau de chance. Les performances des décodeurs de contrôle sont évaluées différemment pour 

chaque paradigme. Pour le paradigme de contrôle binaire (jeux de données Runner MI), les 

performances sont évaluées en utilisant l’aire sous la courbe ROC. Pour le paradigme de contrôle multi-

classes (jeu de données Exo), les performances sont évaluées en utilisant une généralisation multi-

classe de l’aire sous la courbe ROC (Hand and Till, 2001). Pour le paradigme de contrôle bidimensionnel 

continu (jeu de données Cursor), les performances sont évaluées à l’aide de la similarité cosinus.  

Les résultats principaux de cette étude concernent la précision des labels estimés à l’aide du processus 

auto-adaptif ainsi que les performances des décodeurs de contrôle entraînés de façon auto-

adaptative. La précision des labels estimés était de 64.9% pour le paradigme de contrôle binaire (jeu 

de données Runner MI) et 64.5% pour le paradigme de contrôle multi-classes (jeu de données Exo). 

Pour le paradigme de contrôle bidimensionnel continu (jeu de données Cursor), 63% des labels estimés 

étaient à moins de 60° d’écart des vrai labels, 11.4% entre 60° et 90° d’écart et 25.3% à plus de 90° 

d’écart. Dans le paradigme de contrôle binaire , l’AUC du décodeur de contrôle entraîné de façon auto-

adaptative était de 0.636 comparé à 0.896 lorsqu’il était entraîné de façon supervisée et à un niveau 

de chance de 0.501. Dans le paradigme de contrôle multi-classes, l’AUC du décodeur de contrôle 

entrainé de façon auto-adaptative était de 0.760 comparé à 0.818 lorsqu’il était entrainé de façon 

supervisée et à un niveau de chance de 0.516. Dans le paradigme de contrôle bidimensionnel continu, 

la similarité cosinus du décodeur de contrôle entraîné de façon auto-adaptative était de 0.159 

comparé à 0.211 lorsqu’il était entrainé de façon supervisée et à un niveau de chance de -0.023. Pour 

les trois jeux de données, il y avait un effet significatif de la méthode d’entraînement du décodeur de 

contrôle sur les performances (tests de Friedman, p-valeur paradigme binaire MI 0.0009, multi-classes 

0.0009, bidimensionnel continu 0.002). Ces résultats valident la preuve de concept d’ICM motrice 

complexe auto-adaptive. Les performances des décodeurs de contrôle entraînés de manière auto-

adaptative sont inférieures à celles des décodeurs entrainés de manière supervisée. Cela était attendu 

étant donné que les labels estimés sont moins précis que les labels obtenus de manière supervisée, et 

que la taille des jeux de données d’entrainement est plus petite pour l’entrainement auto-adaptatif 

que pour l’entrainement supervisé étant donné que tous les epochs ne sont pas labelisés. Cependant, 

dans le long terme cette différence de taille de jeu de données d’entrainement est vouée à s’inverser 

étant donné que les ICMs auto-adaptative peuvent labeliser des données durant l’utilisation libre de 

l’ICM par son utilisateur. De plus, les décodeurs entraînés de façon supervisée peuvent voir leur 
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performance diminuer avec le temps en raison de dérives de concept par exemple. On peut donc 

s’attendre à ce que lors d’utilisation long terme l’écart entre entraînement auto-adaptatif et supervisé 

soit réduit ou même inversé. 

Chapitre 7 : Limitations et perspectives 

La principale limitation de cette étude est le fait qu’elle soit limitée à un seul sujet. Cependant, un total 

de cinq patients est prévu pour cet essai clinique, qui pourraient être ajoutés à cette étude. D’autres 

essais cliniques, comme celui récemment lancé conjointement par l’EPFL et Clinatec (STIMO-BSI), 

pourraient aussi être utilisés pour augmenter le nombre de participants à cette étude. Quoi qu’il en 

soit, il est critique de répliquer les résultats décrits dans cette thèse avec d’autres sujets afin de 

confirmer l’usabilité de l’ICM auto-adaptative proposée.  

Une seconde limitation de cette étude est qu’elle n’a pas été effectuée en ligne, mais dans une 

simulation d’utilisation en ligne. Cependant, cette simulation a été créée de façon à être aussi proche 

que possible d’une utilisation en ligne, et peut être utilisée telle quelle pour effectuer des expériences 

en ligne. Ces expériences ont d’ailleurs été initialisées durant cette thèse (mais fortement retardées 

en raison de la situation sanitaire mondiale), et pourraient être poursuivies dans le futur.   

La stabilité du décodeur de cMTP dans le temps et vis-à-vis des variations de tâche est désirable pour 

les ICMs auto-adaptatives. La stabilité temporelle signifie que le décodeur de cMTP a besoin d’être mis 

à jour moins fréquemment, et la stabilité aux variations de tâche permet d’utiliser un unique décodeur 

pour entraîner n’importe quel décodeur de contrôle. Étant donné que les décodeurs d’ErrPs (un autre 

type de corrélats de performance de tâche) sont relativement stables dans le temps et aux variations 

de tâche, il est possible que ce soit aussi le cas des corrélats de cMTP détectés dans cette thèse. Bien 

que ces deux thèmes aient été abordés dans cette thèse, des expériences supplémentaires devraient 

être effectuées pour permettre une conclusion appropriée. 

Les ICMs utilisées dans cette thèse restent relativement simples comparées à l’état de l’art des ICMs 

motrices complexes. Bien que théoriquement utilisable pour des décodeurs avec n’importe quel 

nombre de sorties continues, cela reste à confirmer en pratique. De plus, ce paradigme d’ICM auto-

adaptatif devra probablement être adapté pour fonctionner avec certaines ICMs plus complexes, telle 

qu’une ICM avec plusieurs états moteurs, chacun avec plusieurs degrés de liberté continus.  

Le paradigme d’ICM auto-adaptative utilisé peut encore être amélioré de nombreuses manières. Le 

pré-traitement et l’extraction de caractéristiques utilisés ici pour la détection de corrélats de cMTP 

n’est qu’une première ébauche et son optimisation pourrait améliorer les performances. De même, 

de nombreux hyper-paramètres utilisés pourraient être optimisés, bien que cela requerrait une 

quantité plus importante de données. Lors de la labélisation des epochs, ceux-ci sont actuellement 

inclus ou écartés grâce à deux seuils. Il serait possible d’utiliser des poids pour tous les epochs plutôt 

que des seuils durs. Les fonctions de re-labélisation pourraient aussi être raffinées, par exemple en ne 

se limitant pas à un seul epoch mais en utilisant les sorties des décodeurs de contrôle et de cMTP sur 

plusieurs epoch pour prédire chaque label.  

Finalement, la preuve de concept réalisée dans cette thèse est prometteuse pour le futur des ICMs 

auto-adaptative, particulièrement lorsqu’elles contrôlent plusieurs degrés de liberté continus. 

Cependant, de nombreuses limitations et améliorations potentielles ont été décrites dans ce chapitre, 

mettant en avant la nécessité de raffiner les ICMs auto-adaptatives avant de pouvoir les utiliser en 

situations réelles.  
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Chapter 1: Introduction to Brain-Computer 
Interfaces (BCIs) 

Brain-computer interfaces (BCIs) are systems that convert signals recorded from the brain of a user 

into commands for effectors. Various effectors are possible, allowing BCIs to be used for diverse 

purposes. Examples of applications include neurorehabilitation, motor deficit compensation, mental 

state monitoring or computer gaming (Lebedev and Nicolelis, 2017). Nevertheless, up to now BCIs 

were mainly designed for individuals with motor disabilities as a solution to restore missing or 

damaged neural pathways between their brain and a bodily effector. In such cases, effector can be 

communication devices, robotic devices or computers. Motor dysfunctions can be caused by various 

conditions, such as brain strokes, amyotrophic lateral sclerosis or cerebral palsy or spinal cord injuries. 

As a technology, BCIs are in a development stage. However, the combined ongoing progress in artificial 

intelligence, improvements in brain-implantable devices and increasing computational power 

available are promising for the growing field of BCIs. 

I. Neural signals for BCI systems 
BCIs use recordings of brain activity in order to estimate their user’s intentions. The brain signals 

recorded are mostly generated by the activity of neurons. In a simplistic explanation, neurons are made 

of three main parts: dendrites, which are links to other neurons in charge of receiving information; an 

axon, which is used to send information to other neurons; and a main body, which integrates incoming 

information and decides whether it should send some information through its axon (Figure 1) (Reece, 

2011). Neurons communicate with each other by generating action potentials in the main body and 

sending it through its axon. This action potential is propagated through the axon to the cellular 

junctions with other neurons, called synapses. Upon reaching a synapse, an action potential triggers 

the release of neurotransmitters in the synapse, where they can be taken in by the dendrites of the 

adjacent neuron. Action potentials are brief all-or-nothing localized changes in the axon’s 

transmembrane potential, which are propagated in one way from the neuron’s main body to the 

axon’s terminations. This neuronal activity, or its consequences, are the brain signals used as input to 

BCI systems. 

Figure 1 Schematic of inter-neuronal communication. Figure extracted from the Campbell Biology (Reece, 2011). 
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Due to the complexity of neural activity, BCIs may only detect a few preselected mental commands. 

These mental commands are carefully chosen in order to elicit neural signals as easy to distinguish 

from noise as possible. In order to be practical for BCI use, the neural signals generated by mental 

commands should be detectable reliably at the single-trial level. Due to these constraints, some neural 

signals are commonly used in the BCI field. 

Sensorimotor rhythms are variations in the amplitude of neural oscillations in specific frequency bands 

that are generated by executed, attempted or imagined movements. These sensorimotor rhythms 

modulations can mainly be recorded from the sensorimotor cortex, mainly in the mu (8Hz – 13Hz), 

beta (14Hz – 30 to 35Hz) (Nicolas-Alonso and Gomez-Gil, 2012) and gamma (>60Hz) frequency bands 

(Degenhart et al., 2018). Several characteristics of sensorimotor rhythms are appealing for BCIs. They 

can be generated spontaneously by the user, which means BCI usage is not tied to an external stimulus. 

When used for restoration of movements of disabled individuals, the mental command is closer to the 

one used by healthy individuals than for other mental tasks. Additionally, it was shown that there is 

somatotopic mapping in the sensorimotor cortex during executed, attempted or imagined movement 

(Stippich et al., 2002). This means that executed, attempted or imagined movements of different body 

parts will lead to different spatial patterns in the sensorimotor cortex and can therefore be used as 

different mental commands for a BCI. 

The P300 is a positive peak of the electrical potential that is elicited approximately 300ms after an 

infrequent stimulus is detected (Nicolas-Alonso and Gomez-Gil, 2012). Contrary to sensorimotor 

rhythms, P300 cannot be elicited voluntarily by the user, which makes BCI usage timings dependent 

on the interface. However, P300 can be used as a control signal without any user training. P300 is 

mainly used as a control signal in BCIs that restore patient communication, which are often called 

P300-spellers (Daucé et al., 2015; Donchin et al., 2000; Mattout et al., 2015). In P300 spellers, 

characters (or lines/rows) of characters flashes successively. Since characters are written one by one, 

during each flashing cycle only one character will correspond to the one the user wishes to write. 

Flashing of this target character is less frequent than flashing of any non-target character, and 

therefore elicits a P300 signal. The target character can then be determined since P300 appearance is 

time-locked to approximately 300ms after the infrequent stimulus. 

Steady-state evoked potentials are frequency modulations in the brain signals that are elicited by a 

stimulus presented at a constant frequency (Rezeika et al., 2018). There is an increase of the amplitude 

of the neural signal in the same frequency band as the stimulus, with stronger increase for attended 

stimulus than non-attended stimulus. Although steady-state evoked potentials are generally elicited 

using visual stimulus (Zhu et al., 2010), it was shown that they can also be generated with other 

modalities, such as audio (Kim et al., 2011) or tactile (Ahn et al., 2015) stimuli. Similarly to P300, steady-

state-evoked potentials can be detected without user training, but is not generated autonomously by 

the user. BCIs that use steady-state evoked potentials inherently depend on an external system that 

generates the stimuli. Furthermore, these BCIs are gaze-dependent when the stimulus used is visual, 

which can be problematic for some patients or can be tiring in the long run (Treder et al., 2011). Finally, 

the risks of epileptic seizure due to the rapid visual oscillations have not been quantified yet (Zhu et 

al., 2010). 

Other neural signals are also used, although less frequently, to control BCIs. Among them, one could 

mention neural correlates of covert attention (Andersson et al., 2013) or error-related potentials 

(Chavarriaga et al., 2016). 

None of these neural signals is strictly superior to the other for BCI operation. As mentioned, each of 

them has its respective advantages and drawbacks. For instance, P300 is well-suited for spellers, as 
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one control signal is enough to operate them. It is however, not ideal for the control of complex motor 

BCIs, as a binary control signal can hardly be used effectively to control multiple degrees of freedom 

continuously. Such BCIs are mainly controlled using motor imagery, since each imagined movement 

can be used as a different control signal as long as they can be distinguished from one another.  

II. Components of BCI systems 
Brain computer interfaces are composed of three main components: an acquisition system, a 

transducer and one or more effectors (Figure 2). The acquisition system samples, amplify and digitize 

the brain activity of the user (Wolpaw and Wolpaw, 2012). The transducer translates the digitized brain 

signals into an estimation of the intention of the user. Finally, the intention estimation is converted 

into command for the BCI effector. The user receives feedback from the effector’s actions, most often 

through visual feedback. 

 

II.1. Acquisition systems 
As mentioned by Wolpaw and Wolpaw (2012), some characteristics are especially desirable for 

acquisition systems used in brain-computer interfaces: 

• Good spatial resolution 

• The ability to record from a large area 

• Temporal stability of recordings 

• Low recording latency 

• High temporal resolution 

• Good frequential resolution 

• Portability 

• Affordability 

• Minimal risk. 

Numerous acquisition systems exist in order to record brain activity. They can directly record 

electrophysiological signals generated by neuronal activity, like electroencephalography (EEG), 

electrocorticography (ECoG), micro-electrode arrays (MEA) and magnetoencephalography (MEG) 

(Stieglitz et al., 2009) or rely on indirect recording of neuronal activity, like functional near-infrared 

spectroscopy (fNIRS) or functional magnetic resonance imaging (fMRI) (Cohen et al., 2014; Gunasekera 

et al., 2015; Hämäläinen et al., 1993; Naseer and Hong, 2015; Stieglitz et al., 2009). Each of these 

acquisition systems has associated advantages and disadvantages.  

Figure 2 Architecture of a brain-computer interface. The main components are the acquisition system, that digitize brain 
signals; the effector, in charge of performing actions; and the transducer, that translates the digitized brain signals into 
commands for the effector.  
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Micro-electrode arrays (MEAs) are intracortical acquisition system that are implanted directly into the 

cortex. They can allow recording of single-unit activity, multi-unit activity or local field potentials 

(Wolpaw and Wolpaw, 2012). Single or multi-unit activity reflects the spiking activity of one or a few 

neurons located near the electrodes’ tips. Local field potentials aggregate the activity of a larger 

population of neurons (tens of thousands) (Lebedev and Nicolelis, 2017). Due to the proximity of the 

electrodes to the neurons, MEA is the only acquisition system that is able to record spiking activity of 

neurons. Other acquisition systems record the activity of large neural populations. Individual neuronal 

patterns are lost due to the spatial averaging (Wolpaw and Wolpaw, 2012). MEA have very high spatial 

and temporal resolution, but spatial information is limited to the close vicinity of the electrodes (Figure 

3). Thanks to the high information content in MEA signals, it can be used for the control of complex 

BCIs with a large number of degrees of freedom. Disabled subjects were able to control a robotic arm 

(Hochberg et al., 2012), or an upper limb prosthesis with up to ten degree of freedom (Collinger et al., 

2013; Wodlinger et al., 2014). However, there is high variations in MEA signals in between and during 

days (Perge et al., 2013), and the decoders used in these studies had to be retrained frequently. 

Furthermore, MEA has an additional drawback in the immune reaction induced by the intracortical 

implantation of electrodes. The immune reaction leads to the formation of glial scar tissue around the 

electrodes. Glial encapsulation of the electrodes may significantly degrade the quality of the recorded 

signal over time (Gunasekera et al., 2015). Another drawback of MEA is its current limitation to wired 

acquisition systems due to the high data transfer rates. Wired systems are associated to increased 

medical risks, such as increased possibility of infection (Lee et al., 2000). Finally, MEAs have good 

spatial, temporal and frequential resolution, have low recording latency, and most of all can detect 

single neuron activity. However, MEAs carries risks and are not portable due to the wires, have very 

limited recording area on the cortex and have low temporal stability of recordings. Therefore, MEAs 

provide the most informative signals but its drawbacks currently make it unsuited for chronic BCI 

usage. 

Electrocorticographic arrays (ECoG) are also invasive acquisition systems but they do not affect the 

brain’s integrity. They are usually placed below the skull and either above or under the dura matter. 

Due to electrodes positioning and sizes, ECoG recordings are limited to population recordings of the 

superficial neurons of the cortex. The reduced invasiveness leads to more benign surgery procedure 

and to long-term stability of the neural signals acquired (Larzabal et al., 2021). To date, the ECoG grids 

used in most of the ECoG BCI studies were fitted for other purposes than BCI, such as localization of 

epileptic foci. Localization of electrodes arrays, as well as electrode spacing and number in the arrays 

was not optimized for BCI, and this should be taken into account when reviewing the performance of 

ECoG-based BCI studies. ECoG arrays provide good temporal and spatial resolution, although lower 

than MEA (Figure 3). Subjects implanted with ECoG grids were able to control up to three degrees of 

freedom of a computer cursor (Degenhart et al., 2018), or more recently long-term control of up to 

eight degrees of freedom of an exoskeleton (Benabid et al., 2019). ECoG arrays are safer than MEA but 

they remain an invasive procedure. Contrary to MEA, some wireless ECoG implants were successfully 

developed and used in BCI human clinical trials in the past years (Benabid et al., 2019; Vansteensel et 

al., 2016). Finally, ECoG has good temporal and frequential resolution, low recording latency, can be 

portable (wireless versions) and recordings are stable in time. However, ECoG has medium spatial 

resolution, can record medium sized cortical areas, and is not completely risk free as it involves a 

craniotomy. For disabled users ECoG strikes a good balance between safety and control possibilities. 

Electroencephalography (EEG) is a non-invasive acquisition system that is highly portable with a 

relatively low cost. Electrodes are placed on the surface of the scalp, allowing high spatial coverage. 

Like ECoG, EEG cannot record spiking activity of neurons. Additionally, it is limited to low-passed 

neuronal activity. This is due to the amplitude of electrophysiological signals depending on the inverse 
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of the distance between the neural source and the electrodes (Buzsáki et al., 2012), and to the neural 

sources producing current amplitude inversely proportional to their frequency (Leuthardt et al., 2006). 

EEG has relatively good temporal resolution, but suffers from poor spatial resolution, which restricts 

the possibilities of separating activation of nearby cortical areas (Figure 3). Finally, EEG is strongly 

sensitive to artifacts, which are easily generated by ocular movements, muscular activity or 

movements of the electrodes (Nicolas-Alonso and Gomez-Gil, 2012). Nevertheless, EEG has been 

successfully used in a large number of BCI studies (Lebedev and Nicolelis, 2017; Lotte et al., 2018) due 

to its practicality, wide-spread availability and relatively low cost. Finally, EEG has good temporal 

resolution, can record from a wide cortical area, has a low recording latency, is highly portable and has 

neglectable risks. However, EEG has poor spatial and frequential resolution and medium temporal 

stability of recordings. 

Magnetoencephalography (MEG) measures the magnetic field induced by neural activity. MEG has 

better spatial and frequential resolution than EEG and is not invasive either (Buzsáki et al., 2012; 

Hämäläinen et al., 1993). However, MEG recording systems are expensive, very bulky and require the 

subject to be immobile, which is impractical for most BCI applications.   

Functional near-infrared spectroscopy (fNIRS) is based on the indirect recording of neural activity. It 

records the brain’s blood oxygenation level, which is increased locally with neural activity (Wolpaw 

and Wolpaw, 2012). fNIRS detects cortical activity with better spatial resolution than EEG, but lower 

temporal resolution (~100ms). To the temporal resolution of the acquisition system must be added a 

physiological delay of (several seconds), which corresponds to the delay between neural activity and 

blood oxygenation changes. BCI experiments where successfully performed using fNIRS (Coyle et al., 

2007; Khan et al., 2018; Naseer and Hong, 2015). fNIRS is a relatively recent acquisition system in the 

field of BCI (Coyle et al., 2004), but it is gaining in popularity because it is relatively inexpensive, 

portable and can even be combined with EEG in bi-modal acquisition (Sirpal et al., 2019), which could 

improve BCI performances. 

Figure 3 Comparison of the characteristics of EEG, ECoG and MEA acquisition systems. Figure extracted from Stieglitz et al. 
(2009). Scoring: 0 = low; 10 = high. 
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Functional magnetic resonance imaging (fMRI) is also based on indirect recording of neural activity. 

Similarly to fNIRS, fMRI detects changes in the blood oxygenation levels (Wolpaw and Wolpaw, 2012). 

In addition to the hemodynamic delay, fMRI suffers from a low temporal resolution (one to two 

seconds). The main draw of fMRI is its high spatial resolution - usually around a few millimeters 

depending on the voxel size used - of the whole brain (Weiskopf, 2012). However, the temporal delay 

and low resolution makes fMRI more suited to BCIs for neurorehabilitation than for functional 

compensation (Lebedev and Nicolelis, 2017). Furthermore, fMRI recording systems are expensive and 

very bulky, which makes them even more impractical for many BCI applications. 

Similarly to neural signals, each acquisition technique has its own advantages and drawbacks. 

Depending on the BCI application, some acquisition system can be preferred. Non-disabled users have 

no incentive to use invasive BCIs, even if the associated risks have been decreasing. Conversely, long-

term users (such as locked-in patients) benefit from the increased signal quality and reduced setup 

time of invasive acquisition systems. Complex motor BCIs, which require near real-time control 

(Shanechi et al., 2017) and multiple control signals, are better achieved with ECoG or MEAs than fMRI 

or fNIRS. Proper acquisition system selection is crucial in order to optimize the potential of a BCI.  

II.2. Effectors 
A wide variety of effectors are possible for brain computer interfaces. However, most BCIs are targeted 

toward disabled individuals which is reflected in the effector choices. Effectors in the BCI field are often 

designed to be used for functional compensation of communication or movement. For 

communication, effectors are usually spellers on computer screens, which can be a simple grid of 

characters or use more complex designs (Treder and Blankertz, 2010). For movement, a wide range of 

effectors can be used such as robotic arms, electric wheelchairs, prostheses or exoskeletons (Benabid 

et al., 2019; Hochberg et al., 2012; Tanaka et al., 2005; Wodlinger et al., 2014). Effectors that produce 

movements must however remain safe and harmless at all time, especially since disabled user may not 

react to protect themselves. Therefore, many studies replace real effectors by virtual equivalents on 

computer screens, providing safer and cheaper alternatives for BCI research (Cunningham et al., 2011; 

Leuthardt et al., 2006; Schalk et al., 2008). 

An important secondary role of effectors is to provide feedback to the user. Feedback has been shown 

to have a strong impact on BCI performances (Cunningham et al., 2011; Jarosiewicz et al., 2013; 

Shanechi et al., 2017). It is one of the mechanisms responsible for user training (McFarland and 

Wolpaw, 2018; Perdikis and Millan, 2020), creating a double learning paradigm in BCIs (although 

decoders are trained only when labels are known, whereas user training can occur at any time). In 

most studies, feedback is only visual. Indeed, visual feedback is easy to create with both real and virtual 

effectors, and it can be used with tetraplegic patients. However, completely locked-in individuals may 

not have control over their eyes, which may render visual feedback unusable. Some studies 

investigated the use of other sensitive modalities (alone or combined with vision) to provide feedback, 

such as tactile stimulation (Tidoni et al., 2014) or audio cues (Tidoni et al., 2014). 

II.3. Transducers 
The transducer in a BCI is in charge of transforming the digitized neural activity into a command for 

the effector. This is usually done in a serial process of several steps, including signal pre-processing, 

feature extraction, decoding and post-processing. The transducer can be considered to be at the core 

of the BCI system, due to its effective role as a bridge between neural signals and actions. The 

transducer directly impacts the decoding accuracy of the overall system, through its ability to reliably 

extract information from neural signals and interpret it. The design of each part of the transducer is 

highly dependent on the rest of the BCI system: the acquisition system and effectors used, the desired 
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application or the neural commands used to control the BCI. Generally, the design of the transducer is 

kept constant between users in a study, with parameters fitted to each user. 

Pre-processing improves the signal quality provided by the acquisition system before performing any 

other action (Bashashati et al., 2007). Pre-processing can include a wide range of operations, such as 

artifact removal, re-sampling operations, spatial filtering, anti-aliasing filtering or other temporal filters 

more specific to the BCI system considered.  

Feature extraction transforms the pre-processed neural signals into information that is thought to be 

optimal for the decoding of the user’s intention. Compared to pre-processing, where the goal is to 

maximize the signal-to-noise ratio of brain signals in general, feature extraction aims at extracting from 

these neural signals the most relevant part for intention decoding. The feature extraction step is highly 

dependent on the neural command used to control the BCI. For instance, when using neural population 

recordings, temporal, frequential or a combination of both is often used (Wolpaw and Wolpaw, 2012). 

The decoding of imagined movements is mainly done with information located in specific bands in the 

frequential domain (Müller-Putz et al., 2016), whereas the decoding of errors is most often done in the 

temporal domain (Chavarriaga et al., 2014). When using neural data from MEAs, feature extraction 

can be done for the detection of individual neurons spike counts over short time bins.  

The neural data available for the training of control decoder is often limited, while the dimension of 

the input space can be high. Thus, an important additional component of feature extraction is 

dimensionality reduction of the input space. Several dimensionality reduction methods exist, mainly 

divided between methods that project the feature space to a subspace of lower dimension (such as 

Principal Component Analysis or Independent Component Analysis) or methods that simply select a 

number of features to create a subspace (such as wrapper methods) (Schaeffer, 2018).  

Decoding in BCIs is generally done with a decoder that is fitted to the problem at hand using machine 

learning algorithms. The decoder parameters are generally patient-specific and data-driven. Many 

decoder types exist, but a strong distinction in complexity can be made between decoders that have 

to predict discrete states of the user’s intention (such as “move” vs “don’t move” commands) and 

decoders that have to predict continuous variables (such as the direction of movements of a classic 

cursor on a computer screen). Regardless of their type, decoders have to be trained e.g., fitted to the 

problem in order to provide accurate estimation of the user’s intention using the neural features 

previously extracted. Decoder training (also called “calibration” or “learning”) is commonly done using 

supervised machine learning algorithms. Supervised training algorithms require a training data set 

which includes both the input data (neural data) and the output data (the user’s intention, also called 

labels). The decoder parameters are then fitted by minimizing a loss function, which formalize the cost 

of erroneous predictions. The training data is often collected during specific sessions, which we call 

“training session” from here on. During these training sessions, the user is instructed to perform 

specific mental tasks. The instructions given to the user during these training sessions can be 

considered as the user’s intention for the sake of labelling neural data. The labeled data collected 

during training sessions is then used to train the decoder before the user can control the BCI freely in 

subsequent sessions. Decoder training should be done in conditions as close as possible to free use of 

the BCI in order to maximize the performance of the system (Shenoy et al., 2006). In the literature, 

decoders are also referred to as “models”. For consistency, we use “decoder” throughout this thesis, 

although the two terms are interchangeable.  

Compared to other fields that use machine learning, the BCI field has to deal with a large number of 

constraints at the same time. The data in BCI has high dimension, training datasets are relatively small, 

the signal-to-noise ratio in the input data is low, labels are imperfect, and the problem that is fitted is 
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constantly changing due to user training effects, neural plasticity and other sources of non-stability of 

the signals.  

Post-processing is sometimes applied to the output of the decoder in order to improve the quality of 

the predictions, such as smoothing predictions or preventing rapid back and forth switches between 

states, or to take into account a priory knowledge that is not available to the decoder, such as effectors 

limitations (i.e., a robotic arm may not be able to perform some movements or reach some 

destinations)  (Schaeffer and Aksenova, 2018).  

III. BCIs for functional compensation 
Ideally, BCIs aimed at disabled individuals should ideally have the following characteristics (Wolpaw 

and Wolpaw, 2012): 

• Safe, BCIs should not pose any risk to their user. 

• Activable and usable at will by the user at all times. 

• Do not require the assistance of a caregiver, technician or scientist. 

• Robust to out-of-the-lab environments. 

• Provide functional compensation equivalent to the capacities of healthy individuals. Motor 

BCIs should restore real-time, multi-dimensional, dexterous control of one’s own limbs or 

provide control of prosthetic limbs. Communication BCIs should provide communication rates 

as high as vocal communication.  

• Require no more concentration than the same functions do for an able-bodied person. 

• Chronically reliable, lasting several years between battery changes and hardware/software 

upgrades. 

• Affordable & and easily transportable. 

• Esthetically acceptable or invisible. 

Most of these properties remain unattained or partially attained by today’s state-of-the-art BCIs. 

Progress was made in the past years regarding the level of functional compensation offered by state-

of-the-art communication and motor BCIs. A state-of-the-art communication BCI achieved a typing 

rate of 90 characters per minute with 94.1% accuracy (Willett et al., 2021). The MEA-based BCI allowed 

a tetraplegic to use attempted handwriting in order to write characters. The writing rate is impressively 

close to the average typing rate of healthy individuals of the same age on mobile devices (115 

characters per minute). Regarding motor BCIs, an invasive MEA-based BCI (Wodlinger et al., 2014) 

enabled 10 degrees of freedom control of a robotic arm (3D translation, 3D orientation and four hand 

shapes) by a tetraplegic. Although current state-of-the-art motor and communication BCIs cannot yet 

compensate deficits to the level of healthy individuals, these results are promising and showcase the 

potential of BCIs for disabled users. However, long-term usability of MEA BCIs is still up to debate. 

More generally, wired connections are detrimental to the safety and social acceptability of the BCI. 

ECoG implants, which can be fully implanted and transmit data wirelessly, are safer, designed-for long 

term use and more esthetic, at the cost of some performance decrease. Similarly, non-invasive 

acquisition systems have even lower performances, and may suffer from repetitive set up time or non-

portability. As mentioned previously, control signals have different properties and not all control 

signals are optimal for all BCIs. BCIs for motor functional compensation are more likely to use internally 

generated signals in order to provide self-paced activation and control than BCIs for communication. 

Transducer design is dependent on the type of neural signals used and the type of control desired over 

the effector.  
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The selection of an acquisition system, control signal, transducer and effector are a series of trade-

offs. The balance between risks, performance and usability should only be made with the target user 

and desired application in mind. 
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Chapter 2: Scientific context and 
Objectives 

I. Scientific context: the Clinatec BCI project 

I.1. Clinical trial goals 
As discussed in Chapter 1, the design of a BCI system is based on the target population and the desired 

application. The Clinatec BCI clinical trial “BCI and tetraplegia” was initiated with the goal of providing 

a proof of concept of long-term functional motor compensation for tetraplegic users. In order to 

perform efficient functional restoration of mobility, several properties are either desirable or required 

from the BCI system components: 

- A suitable recording system. The recording system used must have a high enough temporal 

resolution to detect change in control commands at a high pace (Shanechi et al., 2017). It should 

have enough spatial coverage over the motor cortex to enable motor imagery detection from 

different limbs, and enough spatial resolution to enable detection of fine movements from each 

limb. The recording system used must also be suited for chronic use, since the end goal is to 

provide functional restoration of mobility to tetraplegic users. For this clinical trial, it was 

estimated necessary to use a recording system that would still be usable by the user for several 

years, without significant loss of signal quality. Finally, the recording system must be safe for the 

patient, even in the context of chronic use.  

- Effectors designed for functional compensation of motor deficits. Motor functional compensation 

requires effectors capable of performing the motor actions desired by the user for him. For 

compensation of precise and advanced motor functions (such as upper limb motricity), effectors 

with a high number of degrees of freedom are needed. It also requires effectors that are practical 

for the gradual training of both the user and the BCI system. These effectors must be safe to use. 

For tetraplegic subjects, the inability of the user to feel potentially damaging actions performed by 

the effector must be taken into account. 

- A decoder suitable for control of motor effectors with multiple degrees of freedom. As this thesis 

focuses on the decoding aspect of BCI, we expand on several specific points regarding the desired 

properties of the decoder used to control the BCI: 

o The control decoder must be usable in real-time. Precise motor control requires low latency 

between the instruction sent by the user and the action being performed by the effector. This 

restricts the pre-processing and feature extraction to methods with low computational cost. 

o The decoder must work in an asynchronous manner. Since the goal of the BCI is the functional 

restoration of movement, the BCI should be usable at any time. Synchronous BCI systems, 

which can only be used during specific time periods or conditions, are not well-suited to real-

life use of BCIs for motor deficit compensation. 

o The control decoder must be able to control effectors with a large number of degrees of 

freedom. For the functional compensation of basic lower limbs mobility, such as activating a 

walking switch, this may not be needed. However, functional compensation of upper limb 

mobility is more complex because upper limb actions are less prone to binary tasks. In order 

to control the position of the hands of the exoskeleton, the control decoder must accurately 
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decode six continuous degrees of freedom. More complex tasks may require grasping or 

rotation of specific joints, which could require even more complex decoding. 

o The control decoder performance should be stable in time. It can be frustrating for the user if 

his control over the BCI changes noticeably from session to session or over time. If performance 

decrease too much, the control decoder will have to be updated or even retrained from 

scratch. Additionally, the complexity of the output of the control decoder is correlated to the 

amount of data required to train the model and therefore to the time required to acquire this 

training data. The stability in time of the performance of the decoder is thus even more 

important for complex control decoders, as these decoders take more time to train. 

o Adaptive online training of the decoder is desirable. During supervised open-loop training the 

user does not have control over the BCI. However, performance drop-offs between training 

and online use have been reported with open-loop training. In addition, adaptive online 

training has several other advantages. It can be more engaging for users as they can directly 

see the effect of their mental commands on the effectors, and may visualize the progressive 

effect of both decoder and user-training. Adaptive online training can also help optimize the 

amount of training data required. In open-loop training, the decoder is usually trained offline 

after the training session. If its performances are not good enough, succussive open-loop 

training sessions can be made. In adaptive online training however, it would be possible to 

check some aspects of the control decoder while it’s being trained (such as convergence of the 

parameters or control performances) and take advantage of it, e.g. to know if enough data has 

been acquired.  

I.2. Recording system of the Clinatec clinical trial: the WIMAGINE ECoG 

implant 
The requirements for the recording system that were described above cannot be simultaneously all 

optimized. For all the existing recording techniques for brain signals, there exists a trade-off between 

several desired properties such as safety, signal quality or portability. Currently, stability of recording 

over several years is best achieved using ECoG recordings techniques. Non-invasive techniques are 

either not robust enough, have too much latency, are not portable or are too susceptible to noise and 

artifacts. Invasive techniques are less-safe and can also have some issues with stabilities due to 

biological reaction to the implant. Indeed, reactive tissue formation next to the implant can slowly 

decrease the quality of the signal acquired over time. Epidural ECoG recording strikes a good balance 

between safety, signal quality and chronic usability because it does not suffer from the issues of non-

invasive techniques, it’s relatively safe as it does not go under the dura matter, and it produces less 

reactive tissue formation than more invasive techniques (Chapter 1).  

The WIMAGINE implant, for Wireless implantable Multi-channel Acquisition system for Generic 

Interface with Neurons (Mestais et al., 2015), was developed at CLINATEC for the purpose of safe and 

stable chronic brain signal recording for complex brain computer interfaces. The WIMAGINE implant 

was designed for epidural ECoG recording. The main body of the WIMAGINE implant hosts the 

recording device, including the recording electrodes and the electronics. Two flexible antennas 

integrated in a biocompatible silicone rubber are attached to the main body for wireless inductive 

powering and data communication. The main body of the implant is a 50mm-wide cylinder. Its base is 

flat and hosts 64 2.3mm-wide data recording electrodes, spaced by 4mm in one dimension and 4.5mm 

in the other (Figure 4). The top is pseudo-spherical to match as well as possible the average human 

skull curvature. 

The WIMAGINE implants filter the data with a bandpass filter between 0.5Hz and 300Hz and transmit 

it wirelessly to a helmet worn by the patient. The helmet also hosts radio frequency (13.56MHz) 
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antennas to power the implants inductively. The helmet is connected to a base station in charge of 

generating the high frequency field used to power the implants and transmitting neural data to a 

computer in the MICS band (402-405MHz). 

I.3. Effectors of the Clinatec BCI clinical trial 
This clinical trial is performed with the objective of providing motor functional compensation to 

tetraplegic patients with the use of a several effectors. Thus, the main effector is a full body 

exoskeleton. However, subjects should first learn to use BCIs to control effectors with low complexity 

and then gradually work their way to more complex effectors. Therefore, a large set of effectors was 

used in this clinical trial to allow progressive BCI training, from binary control to high dimensional 

continuous control (Figure 5). The Enhancing MobilitY (EMY) exoskeleton was designed for this clinical 

trial, taking into account the additional requirements of being usable by the target population: the 

exoskeleton must be extremely safe because tetraplegics may not feel if they are damaging themselves 

with it, and it must be able to safely carry the weight of its users because they are unable to do so. In 

addition to the exoskeleton, other real effectors are used in the clinical trial. An electronic wheelchair 

was used as a BCI effector to demonstrate the capabilities of the BCI system when compensating for 

locomotion only. A commercial robotic arm (JACO from Kinova Robotics) was also used in the clinical 

trial for 2D and 3D hand movements.  

In addition to these real effectors, virtual effectors were designed for this clinical trial. Virtual effectors 

are more convenient than real effectors in order to perform experiments from subjects’ homes. 

Indeed, transporting or duplicating complex effectors such as a full body exoskeleton individually fitted 

to a tetraplegic is not a straightforward task. Additionally, virtual effectors are less complex to design, 

which makes it easier to have several virtual effectors with varying complexity level. However, virtual 

effectors do not provide actual motor capabilities. Actual motor function can be a major engagement 

factor for tetraplegics during experiments, which could make virtual effectors less engaging than real 

effectors. Nevertheless, virtual effectors can be made engaging through gamification of the tasks. 

The real and virtual effectors designed for the clinical trial cover a wide range of motor complexity, 

and allow both in-lab and at-home training. 

Figure 4 Bottom and top view of the WIMAGINE implant used in the clinical trial to record ECoG data from the enrolled 
subjects. Each implant has 5 reference electrodes and 64 electrodes used to record cortical brain activity. The implants are 
hermetically packaged in biocompatible materials in order to ensure the subject’s safety and long-term reliability. 
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I.4. Software chain 
Multiple software pieces are used to transform the neural signals acquired by the recording system 

into movement commands for the effectors of the BCI (Figure 6). The neural signals are sent from the 

base station of the recording system to a computer. These digitized signals are received by the Wireless 

Implant Software Control Interface (WISCI) which makes them available for real-time batch processing 

by the next software. The ECoG signals are transmitted to the Adaptive Brain Signal Decoder (ABSD) 

software, which is in charge of performing signal processing for motor imagery decoding, training of 

decoders used to control the BCI and using them to estimate the patient’s movement intentions. The 

commands generated by ABSD are then treated differently depending on the effector. For the EMY 

exoskeleton, the commands generated are treated by the EMY Motion Manager (EMM) and EMY 

Motion Controller (EMC) in order to generate the correct motor commands for the exoskeleton. For 

virtual effectors, the commands generated are treated through a dedicated portal software in order 

to generate the appropriate movements of the virtual effectors.  

In the scope of this thesis, we focus on the component of the software chain in charge of the training 

and usage of the control decoder. As mentioned earlier in this chapter, several properties are required 

from the control decoder in order to control motor effectors with multiple degrees of freedom. For 

Figure 5 Example of real and virtual effectors used in the scope of the clinical trial. Real effectors included a full-body 
exoskeleton and an electronic wheelchair. Several virtual effectors were used, including the ones described here from left to 
right and top to bottom: a human avatar in a forest environment, which can either stand still or walk forward at a fixed speed 
(binary control); a platform that can be moved left or right in order to catch falling objects (one dimensional continuous 
control); a hand-shaped cursor that can be moved to reach targets in a center-out task (bi-dimensional continuous control); a 
virtual racing car on a track (bi-dimensional continuous control); and a replica of the full-body exoskeleton, seen here in third-
person and first-person views (from binary control to potential full control of the exoskeleton, depending on the task designed 
and degrees of freedom made available for control to the user). 
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Figure 6 Diagram of the place of the software chain in the BCI. The software chain is made of several pieces of software, each 
with its dedicated purpose. 
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this clinical trial, a new algorithm was developed specifically to address these requirements. The 

Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) with recursive validation 

of hyperparameters algorithm (Eliseyev et al., 2017) fits the requirement aforementioned. The REW-

NPLS can be used to train the control decoder online in real-time. The algorithm is compatible with 

BCIs that have a large number of degrees of freedom, it is well-suited to high dimensional data and 

can take advantage of the tensor form of input data. Additionally, the REW-NPLS is quite resistant to 

noise (Eliseyev et al., 2017; Eliseyev and Aksenova, 2013). 

In addition to the REW-NPLS, a Hidden Markov Model (HMM) is used in order to stabilize the different 

motor states activated in each effector (Moly et al., 2022). For instance, when controlling the EMY 

exoskeleton only one motor state (e.g., movement of the right arm, grasping of the left hand, walking, 

etc.) can be activated at any given time. The movements performed in each motor state (e.g., 

trajectory of the right hand, grasping state, walking state, etc.) are controlled each by a different 

decoder trained with the REW-NPLS. The transition between states is handled by the HMM. This 

separation of motor states removes parasitic movements related to motor states different from the 

one the user intended to activate. Indeed, if the user tried to move his right hand the output of the 

decoder in charge of the movement of the left hand will not be exactly zero. Without the HMM, this 

non-zero output would result in small parasitic movements of the left hand. This also enables a true 

idle state to be created when the user tries not to move (Schaeffer and Aksenova, 2016).  

II. Clinical trial progress 
The “BCI and Tetraplegia” clinical trial (ClinicalTrials.gov identifier: NCT02550522) was approved by 

French authorities: Agence nationale de sécurité du médicament et des produits de santé (ANSM) with 

the registration Number: 2015-A00650-49 and the ethical committee (Comité de Protection des 

Personnes - CPP) with the Registration number: 15-CHUG-19. 

II.1. Inclusion criteria and subjects enrolled 
In order to be eligible for inclusion in the clinical trial, participants must be between 18 and 45-years-

old and fluent in French. Patients had to be in need for additional mobility and their neurological deficit 

had to have stabilized. They had to sign informed consent and be registered with the French social 

security. Exclusion criteria were contraindications to EEG, MEG or MRI, previous brain surgeries, 

current use of anticoagulant treatments or substance dependence, depression or neuropsychological 

sequelae. 

To this date, three patients were included in the clinical trial. A first patient was implanted in May 2016 

with WIMAGINE ECoG implants. Due to technological issues, the implants stopped working rapidly 

after the implantation and were explanted. Subsequently, the patient was excluded from the clinical 

trial. A second subject was implanted in June 2017 after the technological issues from the first patient 

were solved. The second patient participated in the clinical trial until mid-2021. A third subject was 

implanted in November 2019 and is currently actively taking part in the clinical trial. 

II.2. Implantation  
Prior to surgery, patients included in the clinical trial performed motor imagery for the movement of 

each limb under fMRI and MEG in order to localize the relevant areas of the sensorimotor cortex. They 

then underwent bilateral implantation of two ECoG-recording wireless devices. Implantations were 

performed under general anesthesia with Image Guided Functional NeuroSurgery. The recording 

devices were implanted into the skull within a 25mm radius craniotomy. The contact between the 

devices and the dura mater was made at the level of the previously selected optimal area of the 

sensorimotor cortex. 
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II.3. Progressive training of subjects enrolled in the clinical trial 
Subjects enrolled in the clinical trial underwent training to control the various effectors available. At 

first, the effectors controlled were limited to low numbers of degrees of freedom. The number of 

degrees of freedom was increased when subjects achieved good control over the BCI. The decoders 

used were trained in an online adaptive manner, which means the actions performed by the effectors 

were determined by the output of the control decoder, even during decoder training sessions. 

Therefore, the subject had feedback on his control during training. This training method is better than 

classical open-loop training as it reduces the difference between the training dataset and the data 

acquired during actual use of the BCI (Shenoy et al., 2006). 

The results that were published from the clinical trial are promising. The quality of the signal recorded 

with the WIMAGINE implants stayed stable over multiple years (Larzabal et al., 2021). Control of a 

complex motor BCI was achieved: the second subject implanted managed to control 8 continuous 

degrees of freedom of the EMY exoskeleton and its virtual counterpart (Benabid et al., 2019; Moly et 

al., 2022). These included position of the right hand (3 DoF), position of the left hand (3 DoF), prono-

supination of the right hand (1 DoF) and prono-supination of the left hand (1 DoF). In addition to these 

motor states, the subject was also able to trigger at will the idle state. The decoding models used to 

control the BCI were usable for several months without needing daily updates. There was, however, a 

slow and gradual decrease of performance over time when using these fixed models. Additionally, a 

substantial amount of labeled training data was required in order to train the models. For instance, 

the decoder used to control the EMY exoskeleton was trained during 6 recording sessions over the 

span of 2 weeks and approximately three and a half hours of data were used for its calibration. The 

third subject’s training was perturbed by the COVID-19 pandemic, and his training results are not yet 

published. 

III. Objectives of the thesis 
In this thesis, we propose a potential improvement for BCIs. It is developed in the scope of the BCIs 

used in the Clinatec clinical trial, but without loss of generality for any other BCIs. This thesis stems 

from the realization that an important number of flaws of BCIs can be linked to the cost of acquiring 

labeled data during training sessions. Lack of labeled data can be a source of non-optimal decoder 

accuracy (for instance when overfitting the data). Lack of labeled data is also one of the reasons why 

concept drifts have a strong impact on BCI decoders’ performances. Indeed, if labeled data can be 

acquired after concept drifts occur, decoders could be updated using this new data in order to 

minimize the impact of the drift. Therefore, labeled data acquisition is necessary in order for most BCIs 

to function. However, acquisition of labeled data is costly: it requires a controlled environment, most 

often supervision by experienced researchers and a substantial amount of time from both the user and 

the research team (as was the case in this clinical trial). Additionally, during labeled data acquisition 

the user is constrained to perform specific actions in order to be able to train the decoder of the BCI, 

and therefore cannot freely use the BCI.  The time and material cost of labeled data acquisition also 

increases with the complexity of the BCI. For instance, a specific platform was built during the clinical 

trial in order to enable proper training. A training table was designed with LEDs at known positions. 

The lighting states of the LEDs could indicate which LED had to be reached, or if wrist rotation was 

required (Figure 7). The position of the LEDs relatively to the exoskeleton must be known with as much 

precision as possible in order to ensure that the labels used to train the decoder are accurate. This cost 
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of label acquisition is also one of the barriers to long-term use of BCIs at home. Indeed, due to concept 

drifts, the decoders of the BCI must be updated regularly. However, the requirements for labeled data 

acquisition make it hard to perform updates at home, especially for complex motor BCIs. BCIs could 

therefore strongly benefit from methods that either reduce the cost of labeled data acquisition or do 

not use labeled data.  

Several strategies could potentially be used in order to label data, with different associated costs: 

• Labels can come from an agent external to the user or the BCI. This is the case in classical training 

paradigm, where the user is instructed to perform a task either by a researcher or by a cue in the 

training environment (Lotte et al., 2018). Depending on the type of BCI, labels can also be obtained 

using other external agents such as eye-trackers, cameras or other sensors (Allison et al., 2012; 

Yong et al., 2012). For instance, eye-trackers could be used in some cases to acquire labeled data 

for communication BCIs, such as P300 spellers, and cameras could be used in motor BCIs to identify 

objects and estimate which one a user may try to reach or grasp. However, subjects that are in 

need for communication BCIs may not be able to have precise control over their eye movements 

(Birbaumer, 2006; Hinterberger et al., 2003), which impairs the usability of eye-trackers to label 

data. Cameras can identify objects, but they would not allow data labeling when a user performs 

a movement that is not directed at an object. 

• Alternatively, labels could be derived from internal agents, such as signals generated by the user. 

These signals could be generated either consciously or unconsciously by the user. For instance, the 

user could regularly say a predetermined word or sentence (e.g., ‘correct BCI control’) when the 

output of the BCI is consistently correct. This would mean that the output of the decoder of the 

BCI was close enough to the actual labels, and therefore these outputs of the control decoder 

could be used as labels. However, consciously generated labels (i.e., the user provides vocal 

feedback on the BCI’s action) may impose a strong strain on the user and are not optimal for 

chronic BCI use. Alternatively, unconscious user-generated signals could be used to determine the 

correctness of actions performed by the BCI. Some signals such as heart rate, skin conductance 

response or pupillometry may contain such information (Wheeler, 2019). However, the time 

constant of variations in heart rate and skin conductance response is most likely too high to 

accurately reflect correctness of complex motor BCIs, which may control their effectors several 

times per second as is the case in the Clinatec clinical trial. Although pupillometry is known to 

change rapidly, it currently requires external equipment in order to be recorded accurately.  

Finally, labels could also be derived from neural data (Lotte et al., 2018). We chose to derive estimated 

labels using neural data in this thesis. Additionally, deriving control labels using neural data acquired 

Figure 7 Environment used for the training of the decoders used to move the hands of the exoskeleton in 3D. At any time, one 
LED was turned on and the subject had to try to reach the LED using motor imagery. 
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from the sensorimotor cortex is the method with the lowest additional material cost, as patients 

enrolled in the clinical trial are implanted with ECoG-recording implants over the sensorimotor cortex. 

Therefore, no additional hardware was needed, and test could be performed using data recorded prior 

to this study. We use neural signals correlated to the perceived performance of the BCI by the user in 

order to estimate control labels. These neural signals reflect whether the actions performed by the BCI 

match the intention of the user. We call such signals neural correlates of BCI task performance. More 

specifically, in this thesis we use neural correlates of motor task performance (MTP), in order to 

estimate labels for the control decoder. The goal of the thesis is to perform a proof of concept that 

neural correlates of MTP detected from the sensorimotor cortex can be used to perform real-time 

adaptation of the control decoder of a complex motor BCI, e.g. a BCI that controls more than 1 

continuous degree of freedom. In order to achieve this, several building bricks are needed: 

- A detection system. Neural correlates of MTP must be detected at the single trial level and in real-

time. It is also beneficial to detect them from the sensorimotor cortex. In this clinical trial, as is 

typically case in motor BCIs clinical trial, implants are positioned over the sensorimotor cortex only. 

Detection of neural correlates of MTP from the sensorimotor cortex makes this adaptive process 

easier to use for motor BCI clinical trials. Additionally, these neural correlates of MTP should be 

detectable even when state of the art motor BCIs are used (i.e., BCIs that have multiple continuous 

outputs). 

- A labeling system. A way to derive labels for the control decoder using the output of the MTP 

decoder is need.  

- A control decoder that can be updated online in real-time. This last point does not need additional 

development, as the control decoder used in the Clinatec clinical trial can already be trained online 

in real-time. 
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Chapter 3: Auto-adaptive BCIs as solution 
to reduce BCI decoder training 

Retraining BCI control decoders regularly due to concept drifts comes at large costs in terms of 

usability. Training sessions most often require specific training environments and researcher 

supervisions, which cannot be made at the user’s home. Additionally, during these training sessions 

the user must perform specific tasks instead of freely using the BCI for his personal use. One of the 

solutions developed in the BCI field is the use of adaptive BCIs. As their name suggest, adaptive BCIs 

are BCIs that use decoders that can be adapted during online use. We distinguish between two kinds 

of adaptive BCIs: adaptive BCIs that must adapt their control decoder during dedicated training 

sessions and adaptive BCIs that can adapt their control decoder during free use. The goal of the first 

kind is to provide control feedback to the user during training, enabling co-adaptation (Vidaurre et al., 

2011b) and reducing the potential differences in neural signals between training and testing data 

(Shenoy et al., 2006). To distinguish between these and adaptive BCIs that can adapt their control 

decoder during free use, we refer to the latter as ‘auto-adaptive BCIs’ (or aaBCIs). Auto-adaptive BCIs 

do not rely on classical training sessions in order to obtain labeled data and update their control 

decoder. Instead, two main strategies are used to obtain labeled data: either the output of the control 

decoder is used as ground truth and is used as labels, or the labels are inferred using another source. 

The first strategy is usually referred to as ‘unsupervised’ adaptation (even though it often relies on 

supervised machine learning algorithms).  

I. Auto-adaptive BCIs based on unsupervised adaptation of 

control decoders 
The most straightforward way to perform adaptation of control decoders without access to real labels 

is to use the output of the control decoder as labels. This strategy is based on the assumption that the 

output of the control decoder is mostly correct.  

In a study by Shenoy et al. (2006), subjects performed a binary motor imagery task that was detected 

by an EEG-based BCI. After a preliminary training session, a Linear Discriminant Analysis (LDA) decoder 

was trained to differentiate between two different motor imagery tasks (Bishop, 2006). Additionally, 

they combine the LDA decoder with a Common Spatial Pattern feature extraction step (Guger et al., 

2000). They compare three different unsupervised adaptation strategies. For each of them, the output 

of the LDA is considered as correct and used as labels for adaptation. In the first strategy, the decoder 

is retrained completely. In the second strategy, they only perform adaptation of the bias of the 

decoder, and in the third strategy they recompute the Common Spatial Patterns only. All three 

adaptive methods performed better than the original fixed classifier that was used to acquire the 

dataset. In a similar vein, Vidaurre et al. (2011b, 2011a) performed unsupervised adaptation of binary 

LDA classifiers for motor-imagery-based BCIs using EEG. Offline and online results, on simulated neural 

data or real EEG data, confirm the performance gains obtained from adaptation that were described 

by Shenoy et al. 

In an online EEG study, Gu et al. (2013) performed a short (1min) training of least-squares support 

vector machine for a P300 BCI speller. Although control performances were initially low, the decoder 

was adapted online in order to reach above 90% spelling accuracy for each of the eight subjects. They 
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provide an upgraded algorithm for online training that reduces computational cost. However, this 

improvement does not completely remove the dependency of the computational cost on the number 

of labeled datapoints. Finally, their approach can be suited to shorten training of BCIs by performing 

part of the training during self-directed use. It cannot be used for lifelong learning, or to follow concept 

drifts as the computational costs will explode at some point. 

In a similar vein, Kindermans et al. (2014) performed an online study on unsupervised learning in an 

auditory event-related potential BCI paradigm. They use a LDA decoder for the binary distinction 

between target and non-target audio stimuli, enabling writing letters sequentially. Their decoder is 

initialized randomly, and updated during usage to distinguish between the two classes. Similarly to 

other adaptation based on LDA decoders, the mean and bias of the classes distributions are updated 

using the Expectation Maximization algorithm (Dempster et al., 1977). Although this unsupervised 

adaptation technique can separate the two classes, it does not provide knowledge on which class is 

the target class and which class is the non-target class. They rely on the binary aspect of the decoding 

task in order to solve this issue. Finally, their unsupervised decoder can perform comparably to a classic 

supervised decoder on this task, but is unlikely generalizable to more complex BCIs. 

In an online study with a monkey implanted with intracortical electrodes, Li et al. (2011) used a 

modified Bayesian linear regression model (Bishop, 2006) and smoothed its output with an unscented 

Kalman filter (Li et al., 2009) in order to control a cursor in two dimensions during various tasks. They 

performed unsupervised adaptation of the Bayesian model in batch updates using the output of the 

Kalman filter as labels. Their results show that their adaptation provided control over 29 days with a 

small decrease of performance in time, compared to the performance decrease of a fixed decoder. 

However, it should be noted that during control of the BCI, the monkey had to have his hand on a 

joystick that could move freely, and that he had used in previous experiments in order to control the 

same cursor instead of using the BCI. Therefore, it is highly likely that the control decoder uses neural 

correlates of motor execution in order to predict cursor movements. Using neural correlates of 

attempted movement or imagined movement could decrease the performance of the control decoder 

in a comparable study. Lower control decoder performances would lead to more uncertainty in the 

labels used for unsupervised adaptation, which could compromise the reported performances gain of 

this unsupervised adaption strategy. 

The results of all these studies on unsupervised adaptation of the control decoders of BCIs are 

promising. Indeed, each of them report improvement over static decoders. However, unsupervised 

adaptation has yet to be performed during human control of a BCI that control multiple continuous 

degrees of freedom, or any other BCI comparable to state-of-the-art motor BCIs. In some of the studies 

discussed above, unsupervised adaptation was performed successfully with binary decoders that had 

initially random performance or were initialized randomly. However, this was only possible because of 

specific properties of the BCI paradigms used, and would not be possible for most BCIs. Using outputs 

of a random control decoder for adaptation seems less likely if said decoder had multiple continuous 

outputs. Furthermore, we suggest that long-term unsupervised adaptation of control decoders with 

multiple continuous outputs is not optimal, even when their performances are initially far from 

random. Similarly to the study performed by Li et al., control decoders updated unsupervisedly may 

still have a slow decrease of performances with time. Decreasing performances of the control decoder 

will lead to less accuracy in the labels used for unsupervised adaption, which can further decrease the 

performance of the updated control decoder. In addition, unsupervised adaptation is most likely not 

well suited to strong concept drifts because a sharp decrease in the performance of the control 

decoder may occur too fast for proper adaptation to take place. For these reasons, we suggest that 
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adaptation is optimal if labels can be estimated independently of the performance of the control 

decoder. 

II. Auto-adaptive BCIs based on weakly supervised 

adaptation of control decoders using neural correlates of 

task performance 
In unsupervised adaptation, the output of the control decoder during self-directed control of the BCI 

is used as label for adaptation of the control decoder. Alternatively, labels can be inferred without 

relying solely on the output of the control decoder. We distinguish between labels that are estimated 

using neural data only and labels that are estimated using information external to the BCI system. 

Deriving labels from external sources during free-use of the BCI is possible, as was done by Yong et al. 

using an eye-tracker (2012). However, using an external source to estimate labels comes with 

additional constraints, that may restrict the use of the BCI. For instance, using an eye-tracker requires 

the user to have proper eye-movement control, and restricts BCI usage to environments where an 

accurately calibrated eye-tracker is available. To our knowledge, the study by Yong et al. is the only 

one deriving labels from an external source in order to perform adaptation of a BCI that would also be 

usable during self-directed use of the BCI. On the other hand, adaptation of control decoders using 

labels estimated using neural data (excluding unsupervised adaptation) is a hot topic in the BCI field. 

More specifically, the idea of using neural correlates of task performance for adaptation of control 

decoders was already discussed more than a decade ago (Buttfield et al., 2006). We use ‘task 

performance’ to refer to the difference between the actions performed by the BCI and the actions the 

user intended to perform. Neural correlates of task performance are neural patterns that contain 

information on the user’s conscious or unconscious estimation of how well the BCI performed the 

actions he desired. To date, every implementation of an auto-adaptive BCI using labels inferred thanks 

to correlates of task performance used Error Related Potentials or a simulated task performance signal 

(Artusi, 2012; Artusi et al., 2011; Blumberg et al., 2007; Buttfield et al., 2006; Gürel and Mehring, 2012; 

Llera et al., 2012, 2011; Spüler et al., 2012; Zeyl and Chau, 2014). 

II.1. The Error-related Potential (ErrP) 
The Error-related Potential, or ErrP, was first described by Falkenstein et al. (1991). It is a waveform 

that is elicited in the EEG recordings of a subject after they perform an erroneous discrete action.  The 

waveform is composed of several components (Falkenstein et al., 2000), the main ones being a 

negative deflection of the potential acquired over the fronto-central scalp area, roughly 50 to 100ms 

after the event that induced it, followed by a centro-parietal positive deflection of the potential 

(Chavarriaga et al., 2014). ErrPs can be detected at the single trial level (Parra et al., 2003), even when 

the erroneous actions is performed by a third party that the user observes or controls, such as a BCI 

effector (Ferrez, 2007; Ferrez and del R. Millan, 2008; Schalk et al., 2000).  

Additionally, several studies suggest that ErrPs are relatively stable in time (Ferrez and del R. Millan, 

2008; Olvet and Hajcak, 2009), with decoders being able to detect ErrPs at the single trial in EEG data 

more than 600 days after the training of the decoder (Chavarriaga and Millan, 2010). A study by Iwane 

et al. (2016) showed that ErrPs can be detected reliably not only across sessions, but also across 

different task conditions. They trained a decoder to detect ErrPs occurring when a user monitored a 

computer-controlled cursor making erroneous movements in a discrete 2D space. Their decoder was 

able to detect ErrPs at the single-trial level across different movement speed of the cursor. Finally, 

there is mostly evidence in favor of ErrPs being stable to variations in the tasks performed (Omedes et 
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al., 2013; Riesel et al., 2013). However, a study by Volker et al. (2018) reported poor generalization 

across tasks and good generalization across subjects. 

Stability in time and across tasks is a valuable property of the ErrP for auto-adaptive BCI. Robustness 

of ErrP decoders across tasks means a single ErrP decoder can be used for auto-adaptive training of 

various control decoders of a BCI. Robustness of the ErrP decoder to time may be even more valuable. 

The goal of the aaBCI is to limit the drawbacks of supervised training session. If the decoder for neural 

correlates of task performances is not robust to time, it will have to be updated in a dedicated training 

session, mitigating part of the advantages of the aaBCI concept. The stability of the ErrP in time and 

across tasks makes it a well-suited correlate of neural performance for the purpose of aaBCIs.  

Finally, the fact that ErrPs can be detected using EEG with good single trial accuracy explains why it is 

the neural correlate of task performance most used in the BCI field, not only in auto-adaptive BCIs, but 

also as a mental commands for BCIs (Chavarriaga et al., 2016) or for error correction during BCI 

operation (Even-Chen et al., 2018; Parra et al., 2003). 

II.2. ErrP based auto-adaptation 
The first implementation of auto-adaptive BCIs were performed with simulated detection of neural 

correlates of task performance. Blumberg et al. (2007) performed an offline study of auto-adaptation 

of a binary motor imagery decoder on EEG data from the BCI competition III. They simulated an ErrP 

decoder with either perfect or 80% accuracy. They show that auto-adaptation of their ALDA decoder 

makes it outperform the fixed decoder, and reaches performances close to the one obtained if the 

decoder had been updated supervisedly. Similarly, Llera et al. (2012, 2011) used a simulated ErrP 

decoder and showed that auto-adaptation of control decoder are possible in both a MEG binary covert 

attention-based BCI and an EEG binary motor imagery-based BCI.  

Artusi et al. (2011) also performed a simulation of an EEG-based aaBCI using ErrPs. In their experiment, 

subjects performed motor imagery (MI) of fast or slow right arm flexion and received fake feedback of 

the MI decoder output. They used the accuracies of ErrP detection of this binary BCI in a simulation of 

an aaBCI that has three discrete classes. They use only ‘correct’ data, i.e. data for which their ErrP 

decoder would not detect an ErrP and add it to a training dataset for their control decoder. They show 

that their simulated aaBCI can follow drift in their input feature space relatively well. In follow up 

studies, Artusi (2012) implemented a double threshold strategy on the output of the ErrP decoder 

when labeling trials as correct or erroneous, with the goal of reducing the number of mistakes made 

by the ErrP decoder. Although they use this double thresholding strategy in the context of a BCI that 

corrects mistakes instead of an aaBCI, this thresholding strategy could also be used for aaBCIs. 

Zeyl and Chau (2014) performed adaptation of linear binary decoders using the output of a simulated 

ErrP decoder with accuracy similar to the one reported in the literature. They used EEG data from the 

BCI competition III, in which participants performed right-hand or left-hand motor imagery in order to 

control the horizontal position of a ball falling vertically on a computer screen. Interestingly, they 

compared two different learning strategy. With the first strategy, only data detected as erroneous was 

used to update the control decoder. Samples that are estimated erroneous are labeled with the other 

motor class and used for supervised update of the decoder. The second strategy is to use both correct 

and erroneous data to update the control decoder. The first strategy was based on the assumption 

that mistakes are made by the control decoder when there is concept drift and that these samples are 

most important to follow concept drifts. This strategy is compared to the more intuitive strategy of 

using every sample for adaptation. Their results indicate that it is generally better to use both 

erroneous and correct samples for adaptation, especially when the label estimator (the simulated ErrP 

decoder in their case) is imperfect.  
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Although less frequent, some aaBCIs were implemented using actual ErrP decoding and real neural 

data. For instance, Spüler et al. (2012) performed online adaptation of a decoder using ErrPs. In their 

work, the user controlled an EEG-based communication BCI using code-modulated visual evoked 

potentials. They performed time-lock single-trial detection of ErrPs after selection of each target. Only 

when no ErrP was detected, the data was used for adaptation of the one-class SVM decoder (Schölkopf 

et al., 2001). 

Although the idea of auto-adaptation of control decoders using neural correlates of task performance 

has been in the BCI field for more than a decade, for now, neural correlates of task performance are 

mostly used in order to correct mistakes online (Cruz et al., 2018; Even-Chen et al., 2017; Kreilinger et 

al., 2009; Parra et al., 2003; Yousefi et al., 2019) rather than perform decoder adaptation. 

II.3. Auto-adaptation of control decoders with multiple continuous 

outputs 
All the auto-adaptive studies using ErrPs discussed above are limited to control decoders for 

classification, and mostly binary classification. State-of-the-art motor BCIs can control several 

continuous degrees of freedom (Benabid et al., 2019; Willett et al., 2021; Wodlinger et al., 2014). The 

main issue with ErrP based auto-adaptation is that ErrPs are known to be elicited by erroneous discrete 

events. Although continuous control can elicit discrete erroneous events, errors during multi-

dimensional continuous control are not limited to discrete events. State-of-the-art motor BCIs control 

effectors with multiple continuous degrees of freedom with a high control rate (Shanechi et al., 2017), 

therefore trajectories can be modified slightly every few milliseconds. Errors during trajectory control 

in two or three dimensions are most likely to occur as gradual deviations from the desired trajectory 

rather than jumping from a perfect trajectory to a strictly erroneous one.  

Neural correlates of TP during control of continuous degrees of freedom 
Nevertheless, several studies investigated detection of neural correlates of task performance, 

including ErrPs, during continuous tasks. Although there are some studies that investigate ErrPs in one 

dimensional continuous task (Kreilinger et al., 2009; Milekovic et al., 2013, 2012; Wilson et al., 2019), 

we do not detail them here. Errors in a continuous one-dimensional task are basically discrete. Either 

the controlled effector is going toward the target or away from it. We focus instead on studies that 

investigated the existence of neural correlates of task performance during task with more than one 

continuous degree of freedom. 

Lopes-Dias et al. (2018) performed detection of ErrPs during 2D control of a cursor using a joystick. 

They even perform asynchronous detection of erroneous trials. However, their error trials were 

created artificially by adding sudden changes in the trajectory of the cursor by 90 degrees and 

removing control of the cursor from the user. Additionally, the users were instructed to stop trying to 

use the joystick to direct the cursor to the target as soon as they noticed such an erroneous event 

occurred. This strategy has two flaws. The erroneous events created are ‘discrete’ erroneous events in 

the sense that a very large error is suddenly introduced in an otherwise easy to control paradigm. As 

mentioned previously, during continuous control of multiple degrees of freedom errors are not 

necessarily sudden, but can also occur gradually. Although the detection of sudden errors during 

continuous 2D control performed in Lopes-Dias et al. (2018) is interesting, it is not sufficient for proper 

detection of errors of all types in multidimensional control. The second flaw is due to the user stopping 

its intent of performing the task when he realizes he has lost control over the cursor. There is no way 

to ensure that the decoder detects actual error onsets and not disengagement of the user in the task, 

or even simply the end of the motor action responsible for cursor control (joystick displacement).  
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In a following study, Lopes-Dias et al. (2019) managed to perform online asynchronous detection of 

erroneous events during 2D control of a robotic arm using hand movements. However, the errors were 

again introduced artificially as loss of control over the robotic arm. Therefore, the main contribution 

from this study resides in the ability to detect online and asynchronously ErrPs and not in the detection 

of neural correlates of task performance during continuous multi-dimensional control of the robotic 

arm, since it is limited to discrete erroneous events.  

Spüler and Niethammer (2015) designed a study on a variation of a protocol used by Milekovic et al. 

(2013, 2012). In their experiments, subjects controlled a cursor in 2D using a joystick and had to avoid 

blocks falling from the top of the screen. However, execution errors were introduced artificially as 

sudden deviations of the cursor by 45°, 90° or 180°. They were able to perform single-trial, 

asynchronous detection of ErrPs after execution errors with EEG. Although execution errors occurred 

during continuous control of a cursor in 2D, these errors were again sudden errors and not gradual 

deviations. 

A study by Omedes et al. (2015) investigated detection of errors in EEG signals during monitoring of a 

reaching task in a 2D plane. They designed two types of errors: one similar to previously discussed 

studies, in which at one point the cursor suddenly and sharply deviated from the correct trajectory, 

and another one in which the trajectory gradually deviated from the correct one. They were able to 

detect asynchronously errors of the first kind. However, the decoder they trained to detect the second 

kind of errors was not able to perform better than chance level. Interestingly, they report that a 

decoder trained to detect the first kind of errors performed slightly better than chance level for the 

detection of errors of the second kind. This ability to detect gradually occurring errors is what is needed 

for error detection in state-of-the-art motor BCIs. However, it should be noted that gradual errors were 

made by deviating the trajectory toward one of the non-selected targets. Therefore, the trajectory of 

the cursor was 2D but only 3 different trajectories were possible, and subjects knew at which point the 

trajectories started being different. In state-of-the-art motor BCIs, unlimited number of trajectories 

are possible and trajectory deviations are possible at any given point.  

To date, the only neural correlates of task performance that were reported during continuous control 

of multi-dimensional effectors are linked to discrete errors in these continuous control task. Such 

neural correlates could be sufficient to label some data as erroneous. However, it does not ensure that 

data for which such neural correlates are not detected is correct. Indeed, slow deviations could occur 

without eliciting such discrete neural correlates of task performance. For the purpose of the aaBCI, it 

would mean that it is not possible to label data as correct, and that the data labeled as erroneous 

represents only a portion of all the erroneous data. We thus consider that ErrPs are not optimal neural 

correlates of task performance for the purpose of enabling auto-adaptation in state-of-the-art motor 

BCIs. Similarly, any neural correlates of task performance that is event-locked to a discrete correct or 

erroneous event would not be suitable for aaBCIs. In contrast to these neural correlates of Event-

locked Motor Task Performance, or eMTP, we consider the existence of neural correlates of continuous 

in time Motor Task Performance, or cMTP. By continuous in time, we mean neural correlates that do 

not require a discrete event to be elicited, but are correlated to the instantaneous task performance 

of the BCI system perceived by the user.  

Interestingly, Gürel and Mehring (2012) performed a simulation study of an auto-adaptive BCI that 

would use such a cMTP signal. They are able to perform auto-adaptive update of a control decoder 

used to control a cursor in two dimensions in a reaching task. In this simulation, they simulate both 

the user control (i.e., the user is simulated) and a ‘binary neuronal error-signal’. Compared to the 

previous studies with simulated neural decoder of task performance, they did not mimic a neural 

decoder of ErrPs as their task performance neural decoder provides an estimation of the performance 
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of the control decoder at each time step and does not require discrete events to do so. More 

specifically, they simulate a task performance decoder that detects deviation in the ideal trajectory 

that are superior to 20 degrees. They also studied the impact of the reliability of the cMTP signal (from 

0 to 80%), and show that adaptation is possible as soon as the reliability of the task performance 

decoder is above 50%. 

Although the existence of such neural correlates of cMTP has not been reported yet, in this thesis we 

investigate their existence and usability in the context of aaBCIs. 

II.4. Detection of neural correlates of TP in the sensorimotor cortex 
In addition to the issue described above, ErrPs are also ill-suited for auto-adaptation of state-of-the-

art motor BCIs due to the brain structure they can be recorded from. State-of-the-art motor BCIs use 

motor imagery or attempted motor execution as neural signals to control the BCI. They also often rely 

on invasive recording techniques, with micro-electrode arrays or ECoG grids located over the 

sensorimotor cortex (Benabid et al., 2019; Wodlinger et al., 2014). As ErrPs are generally not recorded 

from the sensorimotor cortex, they are ill-suited for the auto-adaptation of current state-of-the-art 

motor BCIs. We realize that this issue could be resolved in future clinical trial for motor BCIs by 

changing the location of the recording system, or by implanting additional acquisition systems. 

However, for current state-of-the-art motor BCIs, including the one used in the Clinatec BCI clinical 

trial, invasive neural signal acquisition can only be done from the sensorimotor cortex. Therefore, 

single trial detection of neural correlates of task performance from the sensorimotor cortex is 

required. We thus investigated the existing literature on neural correlates of task performance in the 

sensorimotor cortex. 

The brain network in charge of error processing has been shown to not be limited to the regions ErrPs 

originate from (Gueguen et al., 2021; Jung et al., 2010; Miltner et al., 1997; Wilson et al., 2019). More 

specifically, several studies report the existence of neural correlates of task performance in the 

sensorimotor cortex. 

Van Schie et al. (2004) demonstrated the existence of EEG error correlates in the motor cortex by 

showcasing the variability of the lateralized readiness potential between correct and erroneous 

response in an Eriksen flanker task. In a MEG study, Koelewijn et al. (2008) reported a stronger beta 

(15-35 Hz) rebound after an outcome error than after a correct task outcome, both when observing or 

performing a motor task.  

In two successive studies, Milekovic et al. (2013, 2012) performed detection of neural correlates of TP 

from the sensorimotor cortex. The subjects in these studies were implanted with large ECoG grids 

covering part of the primary and pre-motor cortex for the sake of pre-neurosurgical epilepsy diagnosis. 

They used a joystick to control the horizontal movements of a space ship in a video game, in order to 

avoid blocks falling from the top of the screen. In this setup, two kinds of errors occurred: outcome 

error, when the spaceship collided with one of the blocks, and execution errors, when the movement 

direction of the spaceship was artificially changed to the opposite of the one imputed by the joystick. 

They managed to detect asynchronously both outcome and execution errors at the single-trial level, 

using a combination of temporal and time-frequency features. The averaged normalized spectrograms 

of neural responses to outcome and execution errors show a strong response in the gamma band (at 

> 90Hz).   

A study by Völker et al. (2018) investigated error-processing dynamics over the scalp using non-invasive 

or ECoG during an Eriksen flanker task. They found that error correlates were mainly located in low 

frequency bands (<30Hz) and in the high-gamma frequency band (60-90 Hz) for ECoG and EEG. 
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Additionally, they report that such neural correlates could be recorded using both modality from the 

sensorimotor cortex (among other areas). However, they did not perform single-trial detection of 

these error correlates. Similarly, Wilson et al. (2019) studied the cortical repartition of high frequency 

components (70-100 Hz) of neural correlates of task performance during control of an ECoG and motor 

imagery-based BCI with one continuous output. The neural correlates they report are also detectable 

from the sensorimotor cortex. 

Interestingly, the MTP correlates reported in all these studies were largely in the time-frequency 

domain rather than in the temporal domain like ErrPs. More importantly, all these studies reported 

neural correlates of eMTP. To our knowledge, to date no study reported the existence of cMTP 

correlates in the sensorimotor cortex.  

III. Proposed mechanism of auto-adaptation for state-of-

the-art BCIs 
As described in this chapter, most of the auto-adaptive BCIs implemented or simulated use either 

unsupervised adaptation, or adaptation using labels inferred thanks to a signal correlated to task 

performance, such as the ErrP neural correlate. We suggest that the latter is better suited for long-

term adaptation. We also suggested that auto-adaptive BCIs should use neural correlates of 

continuous in time Motor Task Performance (cMTP) in order to allow adaptation of decoders with 

multiple continuous outputs.  

In the auto-adaptive BCI framework developed in this thesis, an auto-adaptive module is added to the 

BCI online training loop (Figure 8). Neural correlates of cMTP are detected using a decoder trained for 

this task. The output of the cMTP decoder is combined with the output of the control decoder in order 

to produce estimated labels for the control decoder. These estimated labels are then used to train or 

update the control decoder of the BCI in an online and adaptive manner. The aaBCI framework aims 

at enabling auto-adaptation of any BCI during free control by the user.  

Figure 8 Diagram of the auto-adaptive BCI framework. An auto-adaptive BCI module is added to the classic BCI loop. The aaBCI 
module is responsible for the detection of neural correlates of continuous in time task performance (cMTP), as well as the 
estimation of labels for the control decoder (𝒚𝑡

𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) based on the output of the cMTP decoder (𝑦ො𝑡

𝑐𝑀𝑇𝑃
) and the output of 

the control decoder (𝒚ෝ𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

). 
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Chapter 4: Experimental design 

I. Data acquisition 
The subject in this thesis was the second patient included in the clinical trial. He is 28-year-old male 

who had tetraplegia following a C4-C5 spinal cord injury (Figure 9). The subject had some residual 

motor control over his upper limbs: biceps could be contracted (American Spinal Injury Association 

Impairment [ASIA] scores: 4 right, 5 left) as well as extensors of the wrist (0 right, 3 left). All other 

muscles below were scored 0 on the ASIA scale (Benabid et al., 2019). The subject was implanted with 

two WIMAGINE (Mestais et al., 2015) ECoG implants in June 2017 as a participant in the clinical trial 

“BCI and Tetraplegia”. The goal of this clinical trial is the control of various motor effectors, which is 

commonly performed using motor imagery (Lebedev and Nicolelis, 2017) and using neural data from 

sensorimotor cortices. Therefore, implants were positioned over the left and right sensorimotor cortex 

(Figure 10). Each WIMAGINE implant transmitted neural data at a sampling rate of 586Hz from 32 out 

of its 64 electrodes because of limited data transfer rates. The data treatment software used in the 

clinical trial transmitted data by blocks of 59 points, which corresponds to approximately 0.101s (we 

consider it to be 0.1s for the remainder of the thesis). Time steps 𝑡 in this thesis refer to each time a 

new block of 59 points is received. 

 

 

Figure 9 (A) Representation of the patient’s sensorimotor state. The patient had no sensitivity nor motor control below the 
metameric level represented by the red line. (B) MRI and radiography of the patient’s spinal cord at the level of the lesion. 
Figure taken from Benabid et al. (2019) 
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Figure 10 Reconstruction of the subject’s brain from MRI data, with the estimated position of the electrodes of the two ECoG-recording implants. The yellow electrodes are the reference electrodes of 
the implants and the blue electrodes are the electrodes that can be used for data recording. Each implant features 64 recording electrodes (8x8 grid), but data can only be acquired from 32 electrodes 
at a time per implant due to currently limited data transfer rates. Data was acquired at 586Hz 



Chapter 4: Experimental design 

29 

II. Datasets 
The goal of the aaBCI is to be able to train or update control decoders during free use of the BCI. 

However, the first step in the development of such aaBCI was to test its feasibility and capabilities 

offline. The datasets used to perform these offline tests made use of control decoder that were not 

trained using the aaBCI framework. This means these control decoders were trained supervisedly while 

the subject was instructed to perform specific tasks. The datasets used were either previously recorded 

during the clinical trial or in newly designed experiments. These datasets contained data from BCI 

paradigms with various levels of complexity. Four datasets were acquired using a binary discrete 

effector. One dataset was acquired using a multi-class discrete effector. One dataset was acquired 

using a bi-dimensional continuous effector. In this section, we describe the experimental tasks 

performed in each of these datasets. Every dataset and their characteristics are listed in Table 1. 

 

Table 1 List of datasets used 

Experimental 
paradigm 

Dataset name Acquisition dates 
Number of 

sessions 
Average  

session length 
Electrode set 

 

Runner no_MI 
06.06.2019 

- 
28.02.2020  

268 days 19 11 minutes 

Chess 

 

Runner no_MI 
inverted 

07.06.2019 
- 

26.06.2019  
20 days 3 12 minutes 

Second chess layout

 

Runner MI 
central 

22.06.2017 
- 

04.09.2017  
90 days 18 8.5 minutes 

Central layout

 

Runner MI 
06.09.2019 

- 
24.01.2020  

141 days 13 11 minutes 

First chess layout 

 

 

Exo 
31.10.2019 

- 
24.01.2020  

86 days 10 20 minutes 

Chess 

 

 

Cursor 
21.08.2017 

- 
06.10.2017  

47 days 19 16 minutes 

Chess 
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II.1. Datasets using a binary discrete effector 
In the first group of datasets used, the subject controlled a binary effector using a BCI. This BCI 

paradigm is from here on referred to as the Runner. The effector was a human avatar on a computer 

screen, represented from a third person perspective (Figure 11). This human avatar had two possible 

states: a walking state and an idle state. In the idle state, the avatar was standing still. In the walking 

state, the avatar walked forward at a fixed speed in an empty, infinite environment. In addition to the 

avatar, an instruction panel was also displayed on the computer screen. This instruction panel also had 

two possible states. In one state, the instruction panel was a blue circle with a white arrow pointing 

forward in it. In the other state, the instruction was a red hexagon with STOP written on it. To better 

explore the detectability of MTP in the sensorimotor cortex, two conditions were designed. The first 

one, called no_MI, was designed to detect neural correlates of task performance without the neural 

noise induced by motor imagery. This ensured that the BCI-task-performance correlates found in the 

sensorimotor cortex were not motor imagery confounds. The second one, called the MI condition, was 

designed to be as close as possible as real case uses, and ensure that neural correlates of task 

performance can be detected from the sensorimotor cortex even when the user is controlling the BCI 

using motor imagery (which is noise for the purpose of task performance detection independently of 

the command sent). 

Instruction panel 

Human avatar 

GO STOP 

Walking Idle 

Figure 11 Example of the experimental setup for the binary discrete effector (Runner). A human avatar is displayed from a third 
person perspective in an empty environment on a computer screen. The avatar can take two exclusive states: either walking 
forward at a fixed speed or idle standing still. In addition to the human avatar, an instruction panel is also displayed. The 
instruction panel also has two possible states: either a blue circle with a white arrow within (GO instruction) or a red hexagon 
with STOP written within (STOP instruction).  
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Figure 13 Schematic of the WIMAGINE implants with the different electrode groups used for data acquisition. The acquisition 
system is currently limited to receiving data from only 32 electrodes per implant (out of 64). The central electrodes recording 
layout was used in recordings performed to maximize the control of an effector controlled using motor imagery (Runner MI 
central). Electrode were grouped in chess patterns in order to maximize the recording surfaces when looking for correlates of 
task performance. The first chess electrode group was used in most experiments (Runner no_MI dataset, Runner dataset, Exo 
dataset, Cursor dataset), whereas the second chess electrode group was only used for an electrode selection study (Runner 
no_MI inverted dataset) 
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Figure 12 Electrode naming convention used in the thesis. The letter indicates which implant the electrode belong to, the first 
number indicates the vertical position of the electrode on the grid and the second number indicates the horizontal position of 
the electrode on the grid. 
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No_MI condition 
In the no_MI condition, the subject had no control on the movement of the avatar. The movements of 

the avatar were controlled by the computer. The subject was instructed to expect the avatar to behave 

has if he was controlling it while trying to follow the instructions displayed on the instruction panel. 

The subject was also instructed not to perform MI. The instruction panel state changed every five to 

fifteen seconds. The avatar state followed the instruction panel with a random delay between 0.2s and 

0.5s to mimic human reaction time plus the latency of a BCI controlled binary effector. The avatar was 

also programmed to perform mistakes during its actuation. Error periods were introduced at random 

with the following constraints: 

- Error periods had to occur in between instruction panel state changes. 

- Error periods lasted a random time between two and three seconds. 

- The error period rate was approximately two and a half error period per minute. 

At first, two different electrode sets were used to record data in this condition. The two electrodes set 

were in chess patterns over all the possible recording electrodes (Figure 12 Figure 13). After a 

preliminary electrode selection study, data was acquired with only one of these electrode sets (see 

“Supplementary data: I. Electrode”). With the first electrode setup, nineteen sessions of approximate 

duration of eleven minutes were performed over 268 days. This dataset is called the ‘Runner no_MI’ 

dataset. With the second electrode setup, three recording sessions of approximate duration of twelve 

minutes were performed over 20 days. This dataset is called the ‘Runner no_MI inverted’.  

MI condition 
In the MI condition the subject controlled the avatar using leg motor imagery. The user was instructed 

to perform leg motor imagery when the instruction panel displayed GO and not to perform any motor 

imagery when the instruction panel displayed STOP. Two different datasets were recorded in the MI 

condition. The first one was recorded before the beginning of the thesis. These recordings were 

performed with motor control in mind, the subject using leg motor imagery to activate the walking 

state of the avatar. The goal was to maximize the control of the effector by the subject. The leg region 

of the sensorimotor cortex is more in the central area of the motor cortex. Considering the position of 

the implants, the electrodes used in these experiments were the central half of each electrode grid 

(Figure 13 and Figure 14). This dataset consisted of 18 recording sessions acquired over two and a half 

months. This dataset is referred to as the ‘Runner MI central’ dataset.  

Figure 14. Position of the WIMAGINE implants relatively to motor areas. Figure taken from Benabid et al. (2019) 
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The second dataset was acquired roughly at the same time as the no_MI dataset, with the recording 

electrodes arranged in a chess pattern to maximize the chance of detection of neural correlates of 

motor task performance. This second dataset is referred to as the Runner MI dataset, as it is the main 

dataset for this effector. At the time of collection of the second dataset, the subject was able to control 

complex BCIs (up to 10 degrees of freedom) and was proficient in the control of simple BCIs such as 

the Runner. In order to study the detection of task performance correlates, it is necessary to have both 

periods of good performance and periods of poor performance. In order to ensure that both 

performances levels occurred, the control decoder used to acquire data in this second Runner MI 

dataset was purposely trained using a very low amount of data. Apart from this purposely not optimal 

control decoder, there were no external influence on the control of the BCI by the subject. Thirteen 

sessions of approximate duration of eleven minutes were performed over 141 days.  

II.2. Dataset using a multi-class discrete effector 
In one of the datasets used, the subject controlled a virtual exoskeleton using motor imagery. The 

exoskeleton had four possible movement states in addition to its idle state. The movement states 

were: movement of the right hand, movement of the left hand, rotation of the right wrist and rotation 

of the left wrist. The subject performed direct motor imagery to activate each of the motor states. This 

means the subject tried to move his right hand in order to move the right hand of the exoskeleton, to 

rotate his right wrist in order to rotate the right wrist of the exoskeleton and so on for the left hand 

and wrist. When one of the states was activated, the exoskeleton would perform actions 

A B 

C D 

Figure 15 Images of the environment displayed on the computer screen during the recording of the Exo dataset. The subject 
controls an exoskeleton with four mutually exclusive movement states: movement of the left hand (A), movement of the right 
hand (B), rotation of the left wrist (C) and rotation of the right wrist (D). Instructions were displayed in the form of targets 
close to the hand to move (A&B) or angular deviations close to the wrist to move (C&D). 
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corresponding to the activated state, i.e. up or down movement of the hand and pronation or 

supination of the wrist. The subject was asked to focus on activating and maintaining each motor state 

without regards for the actions performed by the exoskeleton inside the active motor state. The virtual 

exoskeleton was displayed on a computer screen, with a human avatar being placed in it. The view was 

displayed from a first-person perspective of the human avatar.  Instructions were displayed on the 

computer screen. Targets appeared in the virtual environment close to one arm when the instruction 

was to move the corresponding hand (Figure 15 A&B). Similarly, angles were displayed close to wrist 

that had to be activated (Figure 15 C&D). Ten sessions of approximate duration of twenty minutes 

were performed over 86 days. The data was acquired using the first chess electrode recording layout 

(Figure 13). We refer to this dataset as the Exo dataset. 

II.3. Dataset using a bi-dimensional continuous effector 
In one of the datasets used, the subject controlled a hand-shaped cursor on a computer screen (Figure 

16). The cursor could move in a square environment (25𝑐𝑚 × 25𝑐𝑚) displayed at the center of the 

screen. The subject used motor imagery in order to control the direction and the speed of the cursor 

in two continuous dimensions. The goal given to the subject was to perform center-out tasks. This 

means that recording sessions were made of successive trials, and that at the beginning of each trial 

the position of the hand-shaped cursor was reset to the center of the environment and a new target 

was chosen. There were eight possible targets for this center-out task. Although the user controlled 

the speed and direction of the cursor, the speed was controlled up to a ceiling value of 2𝑐𝑚. 𝑠−1. 

Nineteen sessions of average duration of 16 minutes were performed over 47 days. The data was 

acquired using the first chess electrode recording layout (Figure 13). We refer to this dataset as the 

Cursor dataset. 

III. Decoder training for data acquisition 
For each of the dataset where the effector was controlled by the subject (all datasets except the 

Runner no_MI and Runner no_MI inverted datasets), the control decoder was trained online using the 

Recursive Exponentially Weighted N-way Partial Least Squares algorithm (REW-NPLS) (Eliseyev et al., 

Currently active 
target 

Non-active target 
locations 

Starting position 

Hand-shaped 
cursor 

Figure 16 Environment used to record the Cursor dataset. The subject performed center-out tasks in a 25𝑐𝑚 × 25𝑐𝑚 square 
using a hand-shaped cursor controlled through motor imagery. There were eight possible target positions, with a new target 
being selected at the beginning of each trial. 
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2017), similarly to other control decoders trained in the scope of this clinical trial (Benabid et al., 2019). 

These decoders were trained in a supervised manner using labeled data. Labels where available, as the 

subject had to follow the instructions that were given to him. As the effectors were controlled using 

motor imagery, the input features to the decoders were based on time-frequency decompositions of 

the ECoG signals. Time-frequency information was extracted using the continuous complex wavelet 

transform with fifteen Morlet wavelets with central frequencies ten hertz apart, from 10Hz to 150Hz. 

Data was acquired at 585Hz and at each time step 𝑡, the processing software received data by chunks 

of 59 points (approximately every 0.1s). The CCWT was applied to the last 177 points acquired (three 

time steps), and only the middle 59 points were kept to minimize edge effects. Epochs of one second 

were considered at each time step 𝑡, with the epoch acquired at time step 𝑡 being referred to as epoch 

𝑡. Successive epochs had a 90% overlap. For each epoch, electrode and frequency band, the modulus 

of the extracted time-frequency information was averaged in ten temporal points over windows of 

approximately 0.1s. The corresponding label for each epoch 𝑡 is noted 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

. For the datasets 

where the effector controlled had discrete outputs, 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 was a vector containing a dummy 

encoding of the desired state of the BCI at the end time of the epoch. In the Cursor dataset, the output 

label 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 for each epoch 𝑡 contained the 𝑥 and 𝑦 directed Cartesian distance from the cursor to 

the target. The matrix of all real control decoder input labels is noted 𝒀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = ( 

𝒚1
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

, … , 𝒚𝑁
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

)𝑇 with 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∈ ℝ𝑚 and 𝑚 the number of possible classes (Runner and Exo) 

or the number of degrees of freedom (Cursor). 
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Chapter 5: Detection of neural correlates 
of task performance 

Erroneous events and correct events are known to produce different neural responses in specific areas 

of the cortex. The most studied of these neural responses is the Error Related Potential (ErrP) with its 

frontocentral and centroparietal components. Other event-locked neural correlates of task 

performance were studied to a lesser extent. Such neural correlates were recorded in various regions 

of the brain, including the sensorimotor cortex as described by Milekovic et al. (2013, 2012), Völker et 

al. (2018) or Wilson et al. (2019). All these neural responses to correct or erroneous events can be 

visualized through averages in the temporal or frequential domain, and were sometimes detected at 

the single trial level. 

In this chapter, we investigate different methods to detect neural correlates of task performance. 

More specifically, to detect neural correlates of task performance in ECoG recordings of the 

sensorimotor cortex (due to the position of the implants). We aim to detect neural correlates of task 

performance regarding the actions performed by motor BCIs (as described in Chapter 4: Experimental 

design), which are most often controlled using motor imagery. We detect correlates of task 

performances in two manners. In an event-locked manner as is classically done in the literature for the 

Runner MI, Runner no_MI and Runner no_MI inverted datasets. And in a novel, continuous in time 

manner for the Runner MI, Runner no_MI, Exo and Cursor datasets. 

I. Methods 

I.1. Neural feature extraction for single-trial detection of neural correlates 

of MTP 
Time-frequency information is known to be suited to motor imagery tasks with most of the information 

being in the 0+Hz-200Hz frequency band in the motor cortex (Waldert et al., 2009). Temporal 

information is known to be well suited for the detection of ErrPs over the frontocentral to 

centroparietal cortex (Chavarriaga et al., 2014). On the other hand, there is little known regarding 

neural feature extraction for single-trial detection of task performance correlates in the sensorimotor 

cortex due to comparatively low number of studies conducted. In the existing studies, time-frequency 

information was used to detect event-locked neural correlates of errors, with relatively high 

frequencies being the most relevant (Milekovic et al., 2013, 2012; Völker et al., 2018; Wilson et al., 

2019). Although there is no widely accepted consensus yet, the best features for the single-trial 

detection of event-locked neural correlates of MTP from the sensorimotor cortex thus seem to be 

time-frequency decompositions. We therefore used time-frequency features as input to the eMTP 

decoders. Similarly, to our knowledge there is no state-of-the-art regarding the detection of 

continuous in time neural correlates of task performance. Since time-frequency features were 

successfully used to detect neural correlates of task performance in ECoG recordings of the 

sensorimotor cortex (although these were event-locked neural correlates), we also used time-

frequency information for the detection of cMTP neural correlates.  

Similarly to existing studies, we used continuous complex wavelet transform with Morlet wavelet to 

extract time-frequency information (Benabid et al., 2019). We used fifteen Morlet wavelets with 
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central frequencies ten hertz apart, from 10Hz to 150Hz. The feature extraction was made compatible 

with real-time predictions for the task performance decoders. At each time step 𝑡, the processing 

software received 59 new datapoints. The CCWT was applied to the last 177 points acquired (three 

time steps), and only the middle 59 points were kept to minimize edge effects. The logarithm of one 

plus the modulus of the CCWT was taken. Epochs of one second were considered at each time step 𝑡, 

with the epoch acquired at time step 𝑡 being referred to as epoch 𝑡. Successive epochs had a 90% 

overlap. For each epoch, electrode and frequency band, the processed time-frequency information 

was averaged in ten temporal points over windows of approximately 0.1s. We note the resulting neural 

feature tensors as 𝑿𝑡 ∈ ℝ𝜏×𝑓×𝑠, with 𝜏 = 10, 𝑓 = 15 the number of analyzed frequencies and 𝑠 = 64 

the number of recording electrodes. The data tensor of all samples is noted 𝑿 ∈ ℝ𝑁×𝜏×𝑓×𝑠, with 𝑁 the 

total number of epochs for a given series of experiments.  

I.2. Data labeling 
The classical way to label data for the detection of neural correlates of task performance is to define 

events and label them as correct or erroneous. This ‘event-locked’ labeling is only possible if the actions 

performed by the BCI can easily be defined as events. For BCIs with discrete outputs, events occur each 

time the output of the BCI changes. As the possible outputs are discrete, a change in the output creates 

a distinguishable change and can therefore be called an event. For BCIs with continuous outputs, a 

change in the output of the BCI may not always create a variation strong enough to be called an event. 

As an example, let’s consider the case of a BCI with a one-dimensional output, such as a cursor on a 

line that is controlled in speed. Changes in the output of this BCI can be separated in two groups. 

Changes that reverse the direction of the cursor’s movement and changes that modify the speed of 

the cursor without reversing its direction. If the change in the output of the BCI reverses the direction 

of movement of the cursor, it can be considered as an event since the reversing of the direction of the 

cursor is easily distinguishable. If the change in the output of the BCI does not change the direction of 

the cursor but only changes its speed slightly, it is not possible to call this an event. This difficulty of 

labeling neural data for the detection of neural correlates of task performance is increased for BCIs 

with more than one continuous output. Let us consider the previous BCI, modified to control a cursor 

in two dimensions instead of one, with control over its speed and direction (in 2D). Neither change in 

the cursor’s speed or direction are guaranteed to produce an event if the variations are small. 

Therefore, event-locked labeling is not suitable for BCIs multi-dimensional continuous outputs. In the 

literature, there has been studies on the detection of neural correlates of task performance during 

continuous control of effectors (through BCIs or not). However, most of these studies had one-

dimensional continuous effectors (Kreilinger et al., 2012; Milekovic et al., 2013, 2012; Wilson et al., 

2019). As explained, errors with one-dimensional effectors can be seen as discrete events as the 

controlled effector is either going directly toward the desired outcome or directly away. In the few 

studies where effectors with multiple degrees of freedom were controlled, either these degrees of 

freedom where not controlled continuously, or artificial strategies were set up in order to create 

erroneous events (Lopes Dias et al., 2018; Lopes-Dias et al., 2019; Omedes et al., 2015; Spüler and 

Niethammer, 2015). Therefore, all these studies can be assimilated to event-locked labeling. 

In this section we first describe how we performed event-locked labeling similarly to existing literature. 

This labeling is performed for the detection of event-locked motor task performance, or eMTP. Then 

we describe how we labeled data in a novel, ‘continuous in time’ manner. The continuous in time 

labeling refers to how we label each data point instead of labeling events only. Since it does not require 

events for labeling, it is compatible with BCIs that have continuous outputs. This labeling is performed 

for the detection of continuous in time motor task performance, or cMTP. 
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Event-locked labeling 
We performed event-locked labeling for the Runner MI, Runner no_MI and Runner no_MI inverted 

datasets. For each epoch 𝑡, the output variable noted 𝑦𝑡𝑒𝑀𝑇𝑃 could be equal to 0, to 1 or be undefined. 

It was equal to 1 when epochs were labeled as correct, to 0 when epochs were labeled as erroneous 

and undefined when epochs were unlabeled or rejected. 

In our event-locked labeling, the first six full epochs after an event were labeled according to the event 

type. Epochs were one second long, therefore the first epoch labeled after an event was acquired one 

second after the event, and contained temporal data from the event onset to one second after the 

event. The last such epoch was acquired one and a half second after the event and contained temporal 

data from half a second after the event to one and half second after the event (Figure 17). Six epochs 

were labeled per events in order to mitigate two issues. The first one is the synchronization of events 

and their neural correlates. Indeed, the timing of brain responses to erroneous events is known to vary 

depending on various conditions such as workload, attention level or tiredness of the subject (Kumar 

et al., 2019). The second issue is due to effectors having inertia in their movement state. For instance, 

in the Runner the dataset, the avatar had some jitter in its reaction time to changes in the commands 

received from the BCI. Indeed, the avatar could instantly start moving when transitioning from the idle 

state to the walking state, but it had to finish its current stepping motion before being able to stop 

when transitioning from the walking state to the idle state. This jitter was estimated to be up to 0.3s. 

Adding six epoch for each event increased the probability of having the desired neural correlates in 

one of them, at the cost of some label uncertainty. 

Additionally, we rejected some epochs that were too close to more than one event. Epochs acquired 

from an event onset to 0.9s after the event, as well as from 1.6s to 2.2s after the event were excluded 

from the analysis. This exclusion criterion was used to prevent epochs from containing neural 

correlates from more than one event. The number of events and the resulting number of epochs 

obtained with this labeling strategy in the Runner MI and Runner no_MI datasets are presented in 

Tables 2,3 and 4. 

  

Error 
event 

First epoch span 

Figure 17 Example of event-locked epoch labeling in the Runner no_MI dataset following an erroneous event where the 
avatar started walking when the instruction panel displayed the STOP sign. 
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Continuous in time labeling 
We performed continuous in time labeling for the Runner MI, Runner no_MI, Exo and Cursor datasets. 

For each epoch 𝑡, the output variable noted 𝑦𝑡𝑐𝑀𝑇𝑃 could be equal to 0, to 1 or be undefined. It was 

equal to 1 when epochs were labeled as correct, to 0 when epochs were labeled as erroneous and 

undefined when epochs were unlabeled or rejected. 

The detection of continuous in time neural correlates of task performance is not a common study. 

There is no prior knowledge on labeling for this purpose. We decided to label and use only epochs for 

which their correctness or erroneousness was certain. The labeling of the data was thus performed in 

a way that maximize the accuracy of the labels.  

For datasets where the effector performed discrete tasks (Runner MI, Runner no_MI and Exo), we took 

advantage of events in order to label data. Events were defined by changes in the state of the 

controlled effector. After a correct event, the effector of the BCI should be in the state required until 

the next event or next change of instruction. Similarly, after an erroneous event the effector of the BCI 

would stay in an incorrect state until the next event or change in instruction. In order to prevent neural 

data from one cMTP class to leak into the other, the fifteen first epochs following an event were 

discarded from the analysis. Epochs are one second long and are spaced by 0.1s, therefore the first ten 

Table 2 Repartition of error and correct events in each 
fold for the Runner MI dataset. 

 
Event 
type 

Fold 
1 

Fold 
2 

Fold 
3 

Fold 
4 

Fold 
5 

Train 
correct 633 554 558 590 609 
error 519 457 464 469 483 

Test 
correct 103 182 178 146 127 
error 79 141 134 129 115 

 

Table 3 Repartition of error and correct events in each fold 
for the Runner no_MI dataset. 

 
Event 
type 

Fold 
1 

Fold 
2 

Fold 
3 

Fold 
4 

Fold 
5 

Train 
correct 1006 992 985 981 1072 
error 283 308 316 317 332 

Test 
correct 253 267 274 278 187 
error 106 81 73 72 57 

 

Table 2 Repartition of error and correct events in the Runner MI 
and Runner no_MI dataset. 

 Epoch type Runner no_MI  Runner MI 

Number 
of epochs 

Correct 7539 4412 
Error 2307 3580 

 
 

Figure 18 Example of continuous in time epoch labeling in the Runner no_MI dataset following an erroneous event where the 
avatar started walking when the instruction panel displayed the STOP sign. 

Error 
event 

First epoch span 
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epochs after an event contain neural data from before the event. Additionally, there is both a reaction 

time needed for the user’s brain to process the event, and some jitter in the timing of the actions of 

the effectors due to the necessity to finish its current action before being able to change state. We 

thus excluded epochs that contained neural data from up to 0.5s after the event. This led to the first 

fifteen epochs after each event not being labeled (Figure 18). 

For datasets where the effector performs non-discrete tasks (Cursor), a different labeling strategy must 

be used since there are no events. Correctness must be estimated every time a new command was 

sent to the effector, i.e. for each epoch. We did it in the following way for the Cursor dataset, but 

without loss of generality regarding the number of continuous degrees of freedom of the effector. If 

we note as 𝑑𝑡 ∈ ℝ the Euclidean distance between the hand-shaped cursor and the target for epoch 𝑡 

and 𝑑𝑠𝑎𝑡 as the saturated maximum displacement of the cursor at each time step, we define the 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑡  of the command performed at time 𝑡 as: 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑡 =

{
 
 

 
 𝑑𝑡−1 − 𝑑𝑡

𝑑𝑠𝑎𝑡  
, 𝑖𝑓 𝑑𝑡−1 > 𝑑𝑠𝑎𝑡

𝑠𝑖𝑔𝑛(𝑑𝑡−1 − 𝑑𝑡) 𝑚𝑎𝑥 (1,
𝑎𝑏𝑠(𝑑𝑡−1 − 𝑑𝑡)

𝑑𝑡−1
), 𝑖𝑓 𝑑𝑡−1 < 𝑑𝑠𝑎𝑡

 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑡 is equal to 1 when the movement performed at time 𝑡 was the best possible, i.e. directly 

toward the target at max speed when the target is further away than 𝑑𝑠𝑎𝑡 or on the target when the 

target is closer than 𝑑𝑠𝑎𝑡. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠
𝑡 is equal to 0 when the distance between the target and the 

cursor stays constant, and 𝑐𝑜𝑟𝑟𝑒𝑐𝑛𝑒𝑠𝑠𝑡 goes down to −1 as the movement performed brings the 

cursor away from the target. However, this evaluation of correctness is instantaneous and may 

therefore not reflect what the user perceives as correct or incorrect. We expect the neural data in a 

given epoch to reflect how good the control over the BCI was over a past window of time. We therefore 

use a smoothed-in-time correctness in order to label epochs. This smoothed-in-time correctness, 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑡, was obtained using a sliding window averaging with a uniform window of five epochs 

(500ms). 

Finally, the label 𝑦𝑡𝑐𝑀𝑇𝑃 of epoch 𝑡 for the cMTP decoder is derived as: 

𝑦𝑡𝑐𝑀𝑇𝑃 = {
 1, 𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑡 > 𝜃𝑐𝑜𝑟𝑟
0, 𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑡 < 𝜃𝑒𝑟𝑟

 

Concretely, this means labeling was performed by thresholding the average correctness over the latest 

five epochs. We used 𝜃𝑐𝑜𝑟𝑟 = 0.5 and 𝜃𝑒𝑟𝑟 = −0.1. The relation between the deviation angle (the 

angle between the cursor trajectory and the direction toward the target) and the correctness value 

used here depends on the distance to the target and the size of the movement. However, a correctness 

of 0.5 or more can only be obtained if the angular deviation is less than 60°. Inversely, a deviation 

angle above 90° cannot provide a correctness value above 0. Unless the target is very close to the 

cursor, a correctness value of -0.1 can only be obtained if the angular deviation is more than 90. These 

angles (60° and 90°) matched the ones mentioned when discussing with the user what kind of cursor 

trajectory he would consciously evaluate as erroneous or correct. Finally, the first fifteen epochs after 

the end of a trial where not labeled as the target position had just been reset. 

I.3. Data balance 
In BCIs, confounds are a preeminent concern due to the very low signal to noise ratio. In the case of 

the auto-adaptive BCI, this signal to noise ratio may be even lowered. Indeed, the BCI is controlled 

using mental tasks that elicit specific neural correlates in the recording area. However, these neural 

correlates of the mental task performed are noise for the task of detecting neural correlates of task 
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performance. In our recording setup, the implants are positioned over the sensorimotor cortex. The 

sensorimotor cortex is known to produce strong neural correlates for the mental task used to control 

the BCI (motor imagery). As discussed extensively previously (Chapter 3:II.4 Detection of neural 

correlates of TP in the sensorimotor cortex), there are neural correlates of task performance in the 

sensorimotor cortex, but it is not widely regarded as the optimal area. Therefore, the noise created by 

motor imagery mental tasks may be strong compared to the neural correlates of task performance. 

Additionally, this noise can be correlated to the actual label of the MTP. If one of the mental tasks is 

much more often erroneous than correct (or the opposite), this can easily lead to a MTP decoder 

detecting neural correlates of the mental task instead of neural correlates of task performance.  

One solution to solve this issue would have been to modify the output of the control decoder in real-

time during the acquisition of the data used to train the MTP decoders in order to have as many 

erroneous and correct epochs for each mental task (or for each desired direction in the Cursor dataset). 

However, in most of the datasets we used, the user controlled the BCI without artificial interference 

on the output of the control decoder. This choice was done to have data as close as possible to out-of-

the-lab conditions. Instead, this issue was solved post data acquisition for datasets with discrete 

outputs of the control decoder. It was done by artificially creating a balance between error and correct 

epochs for each mental task. The largest sub-class was downsampled to have the same number of 

epochs as the second largest sub-class, and the other sub-classes were oversampled to have the same 

number of epochs as the second largest sub-class. Oversampling was performed by repetition of the 

epochs. Oversampling and downsampling were only performed on the training data. For datasets with 

continuous outputs of the control decoder, there is no similar solution as there are no well-divided 

motor class to oversample or downsample. However, the distributions of the direction of desired 

movements in the correct and error class were quite similar, as can be seen in Figure 19. Therefore, no 

additional step was performed to minimize confounds. 

I.4. Decoders for the detection of neural correlates of task performance 
The neural feature space has a high dimensionality. Indeed, the time-frequency features have ten 

temporal dimensions, fifteen frequential dimensions and sixty-four spatial dimensions. The input 

feature space has a total of 9600 features. Compared to other fields where machine learning is 

extensively used, BCI problems usually have a relatively low amount of labeled data and a low signal 

to noise ratio. This is also the case for our datasets. Due to the combination of high dimensionality, 

low signal to noise ratio and small size of the datasets, we had to use decoders with relatively low 

𝑥 

𝑦 

Figure 19 Distribution of direction of cursor displacement for the correct and error classes in the training dataset (for one fold). 
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complexity. We tried using a large panel of state-of-the-art decoders (Lotte et al., 2018). The decoders 

used were support vector machine (SVM), logistic regression, N-way partial least squares (NPLS), 

multilayer perceptron (MLP) and convolutional neural networks (CNN).  

Support Vector Machine & Logistic Regression 
Support Vector Machines (SVM) and logistic regression are considered as state-of-the-art methods for 

binary classification. Both methods are often used in combination with kernels, which can act as 

nonlinear projections of the input data into high dimensional spaces with the benefit of not having to 

specify the transformed input data. We tested commonly used kernels (Gaussian and polynomial) in 

preliminary test, but they tended to strongly overfit the training datasets, even with strong 

regularization parameters and low Gaussian kernel scale (<10-5) or low polynomial kernel order (order 

of 2 or 3). We therefore did not use kernels with SVM or logistic regression in the results presented in 

this study. 

Since we had a high number of input features compared to the number of samples in our training 

datasets (more features than sample points), regularization was used for both SVM and logistic 

regression. For both methods, ridge regularization was applied. After preliminary tests, lambda was 

set to one.  

Multi-layer perceptron 
The multi-layer perceptron (MLP) is a fully connected feedforward artificial neural network. It can be 

interpreted as a logistic regression model that is preceded by a nonlinear transformation which 

increases predictive power of the model. The MLP model used in this study consisted of one hidden 

layer with 100 neurons (with learnable weights) followed by a ReLU activation. As all neurons are 

connected to each input component and produce linear combination of input features, there is an 

important number of parameters to optimize. Considering the size of the dataset and number of 

parameters, we regularized the model by applying batch normalization, dropout with probability of a 

neuron being zeroed 0.5 and L2 regularization on the model’s weights with lambda equal 0.1 and early 

stopping on the validation set.   

Convolutional neural network 
Convolutional Neural Networks (CNNs) can take advantage of data structure. Due to their design, they 

are able to capture invariant patterns that occur in different parts of the signal. They have less trainable 

parameters than an equivalent MLP because of filters weight sharing, i.e. the same set of small filters 

is applied all over the data. We decided to use a CNN as there is a shift in error correlates 

synchronization inside epochs (Chapter 5:I.2 Data labeling, Event-locked labeling). By sliding 

convolutional filter over the signal in the time domain we expected the network to recognize error 

correlates (which we expect to be relatively time invariant) occurring at different moments in different 

epochs with the same filter. This resulted in a lower number of parameters and an expected higher 

performance in detecting time invariant patterns. The proposed CNN used 128 filters of shape 5×15×64 

respectively in the time, frequency and spatial dimensions. Each filter was slid only over the time 

dimension with stride equal to one. We applied the same regularization methods and parameters as 

for the MLP. 

N-way partial least squares 
NPLS is a lesser-used algorithm in the BCI field although it is well suited to high dimensional, tensor-

shaped data (Bro, 1996). This algorithm projects the tensor decomposition of the input and output 

variables into a latent space where their covariance is maximized. The NPLS has the advantage of being 

robust to irrelevant or correlated input variables. It also has relatively low computational cost. Finally, 

the final model produced can be used to interpret the relative importance of each input feature for 
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the prediction of the output variables. The NPLS algorithm has a hyperparameter in the dimension of 

the latent space on which the input and output variables are projected. Test studies showed that 

twenty factors provided good performances or was even sometimes more than necessary for optimal 

performances. We did not perform optimization of this hyperparameter, but instead provide 

performance results for factor numbers between one and twenty. 

All these decoders were tested when the labeling was performed in an event-locked manner. Since 

there was no significant difference between the decoders (see below, Chapter 5:II.2.Detection of 

event-locked neural correlates of motor task performance) for the detection of eMTP, we only used 

the NPLS for the detection of cMTP. The NPLS was chosen due to its high robustness to noise in the 

labels, which is a strong possibility when using the cMTP decoder for the aaBCI (see Chapter 6). The 

NPLS algorithm models a multi-linear relationship between the tensor input and the tensor output. In 

our case, we note as 𝜷 ∈ ℝ𝜏×𝑓×𝑠×𝑚 the tensor of parameters of the decoder, 𝜷0 ∈ ℝ
𝑚 the matrix of 

biases of the decoder, 𝑿𝑡 ∈ ℝ𝜏×𝑓×𝑠 the input tensor for epoch 𝑡 and  𝒚𝑡 ∈ ℝ𝑚 the output vector for 

epoch 𝑡. We have 𝒚𝑡 = 𝜷(4)
𝑡 𝒙(4)

𝑡 +𝜷0, with 𝜷(4)
𝑡 ∈ ℝ𝑚×𝜏𝑓𝑠 the notation for the tensor 𝜷 unfolded 

along the fourth dimension, and 𝒙(4)
𝑡 ∈ ℝ𝜏𝑓𝑠 the notation for the tensor 𝑿𝑡 unfolded along the fourth 

dimension. The parameters of the decoder can be used to study the relative importance of the input 

features. In order to do so, we use normalized versions of the decoders’ parameters. To simplify 

visualization, we study the decoders’ parameters for each modality, by averaging the absolute value 

of the parameter tensor over the other modalities: 

𝜷𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = ( ∑ ∑
|𝛽𝑖,𝑗,𝑘|

𝑓𝑠
𝑘=1..𝑠𝑗=1..𝑓

)

𝑖=1..𝜏

 

𝜷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 = (∑ ∑
|𝛽𝑖,𝑗,𝑘|

𝜏𝑠
𝑘=1..𝑠𝒊=1..𝜏

)

𝑗=1..𝑓

 

𝜷𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = (∑ ∑
|𝛽𝑖,𝑗,𝑘|

𝜏𝑓
𝑗=1..𝑓𝑖=1..𝜏

)

𝑘=1..𝑠

 

I.5. Performance measure for single trial detection of neural correlates of 

MTP 
When labeling was performed in an event-locked manner, the goal was the detection of correct and 

erroneous events. As described in the data labeling section (Chapter 5:I.2 Data labeling), up to six 

epochs were considered for each event. An event was considered erroneous as soon as one of its 

associated epochs was classified as an error. When the labeling was performed in a continuous in time 

manner, the goal was the detection of correct and erroneous epochs directly.  

Performances of the MTP decoders were evaluated in five-fold cross-validations. Two types of cross-

validation were used: a ‘full-session’ five-fold cross-validation and a ‘split-session’ five-fold cross 

validation. In full-session cross-validations, each split of the data contained the same number of full 

sessions (up to a one-session difference). In split-session cross-validations, each session was separated 

in five consecutives in time chunks. For a given session, each of these chunks contained approximately 

the same number of labeled epochs. The data from the first chunk of each session was put together to 

form one split, and the same was done for the other four chunks of each session. The full-session cross-

validation scheme provides information on how well MTP decoders perform when they are used on 
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different recording sessions than the one trained on. On the other hand, the split-session cross-

validation provides information on how well MTP decoders perform when trained in optimal 

conditions, that is to say trained and used in the same session. 

For both cross-validation schemes, each split was used as a test split once, with the other four split 

being used to train the MTP decoder. This provided five MTP decoders for each cross-validation 

performed. The performance criterion we used to measure the performances of MTP decoders was 

the area under the curve (AUC) of the receiver operating characteristic curve (ROC curve). The ROC 

curve plots the true positive rate versus the false positive rate for a binary classification based on a 

continuous variable (e.g., the output of the decoder). Each point of the curve corresponds to one 

possible threshold of the decision variable, and has an associated true positive rate and false positive 

rate. The AUC of the ROC curve is commonly used as an indicator of performance for binary 

classification (Hastie et al., 2009), even in the field of BCIs. We note the AUC of the ROC curve as AUC 

for simplification purpose, as no other area under curves are considered in our work. The final 

performance of the MTP decoders was given by the mean and standard deviation of the AUC over the 

test folds.  

I.6. Population response to erroneous and correct events 
We tried to visualize the neural response to both type of events, as well as their differences. These 

visualizations were performed in the temporal and time-frequency domains, using the Runner MI 

central dataset.  

We defined events as changes in the state of the avatar. Either these events were correct (after the 

event the avatar state was the one demanded) or erroneous (after the event the avatar state was not 

the one demanded). Changes in the instruction panel state were not considered as events as their 

labeling and timing would be uncertain. Indeed, the user may not consider an instruction change as 

erroneous or correct per se. Instruction changes which result in the avatar and instruction panel states 

being similar could potentially be labeled as correct events, event thought that would be debatable. 

Instruction changes that result in different avatar and instruction panel states would not be 

immediately considered as erroneous or correct by the user. The user would consider there is an error 

only if he did not manage to change the avatar state to the requested one after a certain period. The 

duration of this period is unknown and likely to vary between events. Thus, changes in the state of the 

instruction panel were not considered as events. Epochs of 2.6 seconds were considered in this 

visualization study. Epochs started 600ms before an event and ended 1500ms after. Only epochs that 

had no other event or instruction between 1.4s before and 1s after their associated event were used 

for this visualization study. There were 282 correct and 146 error epochs in this preliminary 

visualization study. For the visualization in the temporal domain, the data from each recording session 

was filtered before epoch extraction with a 4th order IIR bandpass filter with cut-off frequencies of 

0.2Hz and 7Hz. Each epoch was baselined by removing the average filtered signal over the 400ms 

preceding its event. For the visualization in the time-frequency domain, time-frequency information 

was extracted from the raw ECoG epochs with the short-time Fourier transform, using 100ms Hanning 

windows with 80% overlap. The Fourier coefficient were computed for frequencies from 1Hz to 200Hz 

with a step size of 0.5Hz. The log of these coefficients was taken. They were then normalized per 

frequency using their median and median absolute deviation over the 400ms preceding the event. 
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II. Results 

II.1. Visualization of population response to correct and erroneous events 
The visualization of the median waveform after correct or erroneous events can be seen in Figure 21. 

The visualization in the time-frequency domain can be seen in Figure 22 for the difference between 

erroneous and correct events, and in Figure 23 for the patterns after erroneous events. 

In the temporal domain, the strongest differences between correct and error epochs were seen in the 

fronto-central part of the left implant (L01, L10, L11, L00). On the right implant, differences were 

smaller than on the left implant, but less constrained to a single area. In the time-frequency domain, 

differences were mainly in the frequencies lower than 50Hz. The spatial pattern of the differences in 

the time-frequency domain was close to the one in the temporal domain. Although there were some 

differences between the correct and error epochs in the temporal domain and the time-frequency 

domain, these differences were relatively small when compared to the corresponding deviation 

measures (Figure 20). 

 

Figure 20 Filtered median waveform after correct (blue line) or erroneous (red line) events in a motor BCI with control over 
two discrete states recorded from ECoG electrode L52 over the sensorimotor cortex. The black line represents the difference 
between the correct and erroneous waveforms, and the blue and red patches represent the median absolute deviations of the 
correct and erroneous waveforms respectively. Electrode 52 is one of the electrodes with the most disjointed blue and red 
patches. 

Electrode L52 



 

 

C
h

ap
te

r 5
: D

etectio
n

 o
f n

eu
ral co

rrelate
s o

f task p
erfo

rm
an

ce
 

4
7 

Figure 21 Median waveforms following erroneous or correct events after filtering the neural data between 0.2Hz and 7Hz in the Runner MI central dataset. Each graph 
represents one of the 64 recording electrodes. The blue line represents the median waveform following correct events, the red line represents the median waveform 
following erroneous events and the red line is the difference between the two (error minus correct).  
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Figure 22 Median of the difference between erroneous and correct events in the time-frequency domain for the Runner MI central dataset. The electrodes used to record 
the data were the 32 most central ones on each implant (central electrode recording layout). Black lines show the baseline used to normalize the data (per frequency, 
using median and median absolute deviation). 
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Figure 23 Median response after erroneous events in the time-frequency domain for the Runner MI central dataset. The electrodes used to record the data were the 
32 most central ones on each implant (central electrode recording layout). Black lines show the baseline used to normalize data (per frequency, using median and 
median absolute deviation). 
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II.2. Detection of event-locked neural correlates of motor task 

performance 
We performed detection of event-locked neural correlates of MTP on the Runner MI and Runner 

no_MI datasets using full-session cross-validation. The results for each decoder (SVM, logistic 

regression, MLP, CNN and NPLS) are summarized in Table 3 and Figure 24. A Friedman test was 

performed to compare model performances within each dataset group. No significant differences were 

found between models in the Runner no_MI dataset (Friedman test, p-value = 0.13) or between 

models in the Runner MI dataset (Friedman test, p-value = 0.08).  

The results of this study show that the MLP decoder achieved the best performance in both the Runner 

no_MI and MI datasets. CNN and MLP were the two models that allowed for the most complex 

representations, such as nonlinear relationships. Taking into account that regularization would limit 

the drawbacks associated to their high number of parameters, we expected these models to perform 

the best out of all the models tested. CNN had less parameters than MLP and was also more adapted 

to the task of re-synchronizing error correlates. However, the performances of CNN models were 

unexpectedly the worst across all decoders. A possible explanation for this is that both neural network 

architectures (and neural networks in general) had a high number of hyperparameters and we did not 

perform an exhaustive search of these hyperparameter spaces (e.g., learning rate, number of filters, 

regularization weight). 

Table 3 Mean and standard deviation over five test folds of the area under the curve of the receiver operating characteristic 
curve for the classification of error vs correct events. 

Runner no_MI NPLS Logistic SVM MLP CNN 

AUC mean 0.653 0.662 0.645 0.680 0.630 
AUC std 0.096 0.106 0.119 0.131 0.124 

      
Runner MI NPLS Logistic SVM MLP CNN 

AUC mean 0.601 0.605 0.623 0.626 0.580 
AUC std 0.037 0.040 0.027 0.014 0.022 
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Figure 24 Mean area under the curve of the receiver operating characteristic curve on the cross-validation test folds, of each 
decoder tested, for the detection of event-locked neural correlates of MTP. Error bars on the left and right of the mean each 
represent one time the standard deviation on the test folds. 
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In both the Runner MI and Runner no_MI datasets, the three other decoders performed similarly, with 

small variabilities demonstrating better performances for logistic regression in the first dataset and for 

SVM in the second dataset. NPLS always performed slightly worse than SVM and logistic regression 

and up to 3.7% lower than MLP. However, NPLS has the technical advantage of being the method used 

in the context of the clinical trial. It is also trainable online. Although the MTP decoder does not have 

to be created in an online manner, it enables to have a model ready directly after the data was 

recorded instead of training more complex decoders in an offline manner. For these reasons, we used 

NPLS for the training of MTP decoders in the remainder of this thesis.  

Performance across different folds was represented by the standard deviation of the AUC (ROC curves 

per fold can be seen in Figure 25). Since cross-validation was performed with the full-session scheme, 

this standard deviation can be used to predict the generalization capabilities of each model over 

different datasets. In the Runner no_MI dataset, the standard deviations of the AUC for each decoder 

were close to one another, with NPLS having the lowest. In the MI dataset MLP had the lowest standard 

deviation, close to twice lower than the standard deviation of other decoders. 

On average, the AUC of the decoders were 6.8% lower in the Runner MI dataset than in the Runner 

no_MI dataset. This was expected since the motor imagery signals used to control the BCI in the MI 

dataset can be regarded as noise for the classification of error and correct events. However, the 

standard deviation of the AUC was up to ten times larger in the no_MI dataset than in the MI dataset. 

We suggest that the higher variability in the no_MI dataset was due to a higher variability in the 

attention level of the subject than in the MI dataset. Indeed, in the Runner MI dataset the subject was 

more engaged in the task since he had active control over the avatar’s actions. In the Runner no_MI 

dataset, the subject was more vulnerable to distractions due to the lack of interaction required by the 

experimental task. We hypothesize that the attention level modulated the strength of the error 

correlates in the motor cortex, similarly to how it modulates classical ErrPs (Yeung, Holroyd, & Cohen, 

2005).  

  

Figure 25 Receiver operating characteristic (ROC) curve for the single trial detection of neural correlates of correct or 
erroneous events (eMTP). Each curve represents the ROC on one of the test folds of the five-fold full-session cross validation.  

Runner no_MI Runner MI 
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II.3. Detection of continuous in time neural correlates of motor task 

performance 
Runner Dataset. In the full-session cross-validation, the mean and standard deviation of the AUC of 

the ROC over the test splits were 0.6780±0.1165 in the no_MI dataset and 0.6225±0.0429 in the MI 

dataset. In the split-session cross-validation, the mean and standard deviation of the AUC of the ROC 

were 0.7198±0.0287 in the no_MI dataset and 0.6554±0.0228 in the MI dataset.  

Exo dataset. In the full-session cross-validation, the mean and standard deviation of the AUC of the 

ROC over the test splits were 0.5677±0.0427. In the split-session cross-validation, the mean and 

standard deviation of the AUC of the ROC were 0.5782±0.0252. 

Cursor dataset. In the full-session cross-validation, the mean and standard deviation of the AUC of the 

ROC over the test splits were 0.6570±0.0188. In the split-session cross-validation, the mean and 

standard deviation of the AUC of the ROC were 0.6838±0.0133Figure 26. 

These results are summarized in Table 4 for readability. The average ROC curves as well as the ROC 

curves for each fold are shown in Figure 26. 

 

Table 4 Performances of the cMTP decoder on the Runner no_MI, Runner MI, Exo and Cursor datasets, depending on 
the cross-validation type. Performance is reported as the mean AUC of the ROC curve over the test folds. Standard 
deviations are reported in brackets.  

 Runner no_MI Runner MI Exo Cursor 

Full-session 0.6780 (±0.1165) 0.6225 (±0.0429) 0.5677 (±0.0427) 0.6570 (±0.0188) 

Split-session 0.7198 (±0.0287) 0.6554 (±0.0228) 0.5782 (±0.0252) 0.6838 (±0.0133) 
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Figure 26 Receiver operating characteristic curves for the detection of epochs labeled as ‘errors’ for the cMTP decoder for each experimental paradigm and both types of cross-validation. 
Performances on the training sets are displayed in blue, while performances on the testing set are displayed in red. Each dotted line represents one of the five cross-validation folds, while the full 
lines represent the interpolated mean ROC over the five folds. 
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II.4. Impact of NPLS factor numbers on the performance of detection of 

neural correlates of cMTP 
The NPLS algorithm has a hyperparameter in the number of factors used. As mentioned previously, we 

did not optimize this hyperparameter through nested cross-validation due to dataset sizes. However, 

during training the NPLS algorithm computes the decoders for each factor number under the final one. 

We used 20 factors for the NPLS computation and therefore have access to the decoders with 1 to 20 

factors. We show in Figure 27 (Runner MI & Runner no_MI), Figure 28 (Exo) and Figure 29 (Cursor) the 

evolution of the AUC of the MTP decoders for each experimental paradigm and both cross-validation 

schemes. For each decoder, the performances on the test data are at their lowest for low numbers of 

factors (1-7) after which they increase and then reach a plateau at higher numbers of factors (10-20). 

The number of factors needed to reach the plateau varies between datasets, with the Cursor dataset 

needing the least (~4 factors), the Exo dataset needing the most, and the two Runner datasets in 

between.  

Number of NPLS factors 

Number of NPLS factors Number of NPLS factors 

Number of NPLS factors 

Runner no_MI dataset 

Full-session cross-validation 

Runner no_MI dataset 

Split-session cross-validation 

Runner MI dataset 

Full-session cross-validation 

Runner MI dataset 

Split-session cross-validation 

Figure 27 Performance measure (mean AUC of the ROC) for the detection of cMTP neural correlates in the Runner task (no_MI and MI 
datasets), depending on the number of factors kept in the NPLS algorithm and on the type of cross-validation used. Performances on the 
training sets are displayed in blue, while performances on the testing set are displayed in red. Each dotted line represents one of the five cross-
validation folds, while the full lines represent the mean AUC over the five folds.  



Chapter 5: Detection of neural correlates of task performance 

55 

II.5. Relative feature importance 
Decoders obtained using the NPLS algorithm can be used to evaluate the relative importance of input 

features. This provides insight into which features are the most relevant for the decoding of cMTP 

neural correlates. We investigated the eMTP and cMTP decoding models per feature axis (temporal, 

frequential or spatial) for each experimental paradigm (Figure 31, Figure 30, Figure 32 and Figure 33).  

For the eMTP decoders, in the Runner no_MI dataset the temporal parameters at the end of the 

temporal window were more relevant than the ones at the beginning of the window. In the runner MI 

dataset, the very first temporal parameters were the most relevant along with the second half of the 

temporal window. In the Runner no_MI dataset, the 10Hz to 30Hz frequency band was the most 

Figure 29 Performance measure (mean AUC of the ROC) for the detection of cMTP neural correlates in the bi-dimensional continuous 
task, depending on the number of factors kept in the NPLS algorithm and on the type of cross-validation used. Performances on the 
training sets are displayed in blue, while performances on the testing set are displayed in red. Each dotted line represents one of the five 
cross-validation folds, while the full lines represent the mean AUC over the five folds. (A) Full-session cross-validation. (B) Split-session 
cross-validation. 

A B Cursor dataset 

Split-session cross-validation 

Cursor dataset 

Full-session cross-validation 

Figure 28 Performance measure (mean AUC of the ROC) for the detection of cMTP neural correlates in the multi-class discrete task, 
depending on the number of factors kept in the NPLS algorithm and on the type of cross-validation used. Performances on the training sets 
are displayed in blue, while performances on the testing set are displayed in red. Each dotted line represents one of the five cross-validation 
folds, while the full lines represent the mean AUC over the five folds. (A) Full-session cross-validation. (B) Split-session cross-validation. 

A B 
Exo dataset 

Full-session cross-validation 

Exo dataset 

Split-session cross-validation 
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relevant, followed by the 80Hz to 150Hz band. On the other hand, in the Runner MI dataset the 50Hz 

to 90Hz frequency band was the most relevant, followed by a peak in the 20Hz band. 

For the cMTP decoders, the 𝜷𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 have the same pattern for the Runner MI, Runner no_MI and 

Exo datasets. For these three datasets, the temporal parameters on the edge of the temporal windows 

were lower than the temporal parameters closer to the center of the temporal window. For the Cursor 

dataset however, the temporal parameters at the beginning of the temporal window were the lowest 

and increased to reach a maximum at the end of the temporal window. The 𝜷𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 and 𝜷𝑠𝑝𝑎𝑡𝑖𝑎𝑙 

were non-constant between the different datasets.  
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Figure 31 Relative importance of the spatial parameters of the eMTP decoders. These figures were obtained by averaging over 
the two non-visualized modalities. 
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Figure 30 Parameters of the eMTP decoders along the temporal or frequential modalities. These figures were obtained by 
averaging over the two non-visualized modalities. Dotted lines are betas obtained for individual test folds, while plain lines 
are the average betas across each test fold. 
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Figure 32 Parameters of the cMTP decoders along the temporal or frequential modalities. These figures were obtained by 
averaging over the two non-visualized modalities. Dotted lines are betas obtained for individual test folds, while plain lines 
are the average betas across each test fold. 
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Figure 33 Relative importance of the spatial parameters of the cMTP decoders for each dataset. These figures were obtained 
by averaging over the two non-visualized modalities. 
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III. Discussion  
In this chapter, we investigated different methods to detect neural correlates of MTP from the 

sensorimotor cortex, during control or observation of a binary BCI or control of a multi-class BCI and a 

bi-dimensional BCI with continuous outputs. We first showed that we could detect neural correlates 

of event-locked MTP at the single trial level in the binary BCI. We also proposed a novel strategy for 

the detection of MTP, which is suitable for BCI that have multiple continuous outputs. We were able 

to detect these novel cMTP neural correlates at the single-trial level for different all 3 types of BCI 

types. Notably, detection of execution errors during control of a BCI with multiple continuous outputs 

was never achieved prior to this study. Less importantly, this study is also the first one to report single-

trial detection of neural correlates of task performance in the sensorimotor cortex of a tetraplegic 

subject. Finally, the detection of MTP at the single trial-level from the sensorimotor cortex, during 

control of the BCI with motor imagery and with better accuracy for cMTP detection than chance level 

was a mandatory first step for the proof of concept of the aaBCI for complex motor BCIs. Nevertheless, 

several points are up to discussion regarding our results. 

III.1. Event-locked population response to correct and erroneous events 
The average time-frequency response to errors can be compared to the ones described by Milekovic 

et al. (2012) (Figure 34) or Wilson et al. (2019) (Figure 35). In the study by Milekovic et al., sharp 

increases in the amplitude of the time-frequency responses were observed for each subject. These 

changes took place in the 80Hz-100Hz frequency band (apart for one type of error for one subject), 

around 500ms after the erroneous event. However, these neural correlates of eMTP were not 

Figure 34 Average normalized spectrogram after two types of errors in the study by Milekovic et al. (2012). Red dots in the 
lower pictures show the location of the electrodes used to display the response to erroneous task outcome (Collision). Green 
dots show the location of electrodes used to display the response to errors during the task (erroneous change of direction of 
a one dimensional continuously controlled cursor). Figure taken from Milekovic et al. (2012). 
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consistently localized in the sensorimotor cortex. In the study by Wilson et al., they report significant 

differences in the high-gamma band (70Hz-100Hz) between neural responses to correct and erroneous 

events in several brain regions, including the sensorimotor cortex. Comparatively, in our study the 

strongest changes in the amplitude of the time-frequency responses after erroneous events were seen 

in frequencies bellow 50Hz, as well as the strongest differences between responses to correct and 

erroneous events. However, in both the studies by Milekovic et al. and Wilson et al., the localization 

where the high frequency modulations were observed varied strongly between subjects. In our study, 

the recording area covers a much narrower surface of the cortex, although with a higher spatial 

resolution. Since only one subject was included in our study and our recording area over the cortex 

was limited, the results obtained in the two studies discussed are not incompatible with ours. Indeed, 

in both studies, some subject did not have high-frequency modulations in the sensorimotor cortex 

after erroneous events. Nonetheless, the result of future visualization studies for the next subjects 

should be compared to the results discussed here. 

Figure 35 (A) Averaged normalized response to erroneous events (red curves) and correct events (blue curves) in the study by 
Wilson et al. (2019). (B) Difference in high gamma band power (HBP, 70Hz-100Hz) between correct and erroneous events in 
the same study. Figure adapted from Wilson et al. (2019). 

A 

B 

Ta
sk

 



Chapter 5: Detection of neural correlates of task performance 

62 

III.2. Relative detectability of event-locked versus continuous-in-time 

neural correlates of MTP 
As discussed previously, event-locked neural correlates of task performance are ill-suited for the auto-

adaptation of complex motor BCIs. However, if a large performance gap existed between the detection 

of neural correlates of cMTP and eMTP it may have been better to work with the limitations of eMTP 

instead of using cMTP. We tested the performance of both the eMTP and cMTP decoders for the 

Runner MI and Runner no_MI datasets. In both datasets, the performances of the cMTP decoder were 

higher than the performances of the eMTP decoders, with an average increase of the AUC of 3.7%. 

Therefore, the single trial detection of correlates of motor task performances is both more desirable 

and more efficient with cMTP than eMTP. As mentioned above however, it may be the case that future 

subjects will have stronger responses in the sensorimotor cortex to erroneous events than the subject 

included in this study. Therefore, the difference in decoding capabilities of neural correlates of cMTP 

and eMTP should be investigated for future subjects, in order to confirm that cMTP detection is always 

more efficient, or at least as efficient, as eMTP detection. 

We hypothesize that one of the reasons for the relatively low detectability of neural correlates of eMTP 

may be that the eMTP correlates are modulated by the length of correct or error periods prior to an 

event. Although the duration of these periods, or latency before each event, was partly controlled in 

the Runner no_MI dataset, there was no inclusion or exclusion criterion based on it in the Runner MI 

dataset. We suggest that this latency may influence the brain response to events. For example, correct 

events after a long erroneous period may elicit a stronger brain response than after a short erroneous 

period. Due to the relatively small dataset acquired in this experiment, separating the events based on 

latency was not possible, but larger studies should take it into account when possible. 

III.3. Neural correlates of task performance during BCI observation or BCI 

control with motor imagery 
As mentioned earlier, we record the cMTP neural correlates and the motor imagery neural correlates 

from the same brain regions. This situation could lead to confounds in the signals detected by the MTP 

decoders. We took care to minimize the possibility of confounds with motor imagery signals (Chapter 

5:I.3.Data balance). Nevertheless, we also designed an experimental paradigm in which the subject did 

not perform motor imagery and only expected the effector to move according to the instructions. 

Being able to detect neural correlates of MTP even when no motor imagery is performed provides 

additional proof that the neural patterns detected by the MTP decoders are not by-products of the 

motor imagery tasks. Additionally, it also provides some insight on how the presence of motor imagery 

related neural patterns in the brain signals can influence the detection of neural correlates of MTP.  

Our results show that the single-trial detection of neural correlates of eMTP or cMTP is more efficient 

when no motor imagery is performed. This is consistent with expectations since motor imagery signals 

can be considered as noise for the detection of MTP. An unforeseen result was however that the cMTP 

and eMTP decoders performed more consistently when motor imagery was performed. Indeed, higher 

standard deviations of the AUC over test folds were reported in the Runner no_MI than in the Runner 

MI dataset, for both the eMTP and cMTP decoders. We suggest that this variation is due to a difference 

in the level of engagement. The existing literature on ErrPs (which are a specific eMTP) have them 

influenced by the engagement level of the user (Yeung et al., 2005), which may also be the case for 

other MTPs such as cMTP neural correlates recorded from the sensorimotor cortex. The level of 

engagement varied between the Runner MI and the Runner no_MI datasets. In the Runner MI dataset, 

the subject may have been more engaged since he had active control over the avatar’s actions. 

Comparatively, in the Runner no_MI dataset the subject simply observed the avatar move. 
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Additionally, in the Runner no_MI dataset we did not have any way of controlling whether the subject 

was properly doing the task (watch the avatar and expect it to move as if he was controlling it and 

followed the instructions). Therefore, the engagement level may have been further reduced by the 

subject not always properly doing the task requested. 

III.4. Relative feature importance 

Comparison of eMTP decoder parameters between the Runner no_MI and Runner MI datasets 
As to continue from the previous point, there are differences in the eMTP decoder parameters’ relative 

importance between the Runner MI and Runner no_MI datasets. Firstly, the main frequential 

parameters in the Runner no_MI dataset are the sub 50Hz frequencies, whereas the influence of these 

parameters in the Runner MI dataset is comparatively lower. At the same time, a control decoder 

trained on the same epochs has its main frequential parameters in the 10Hz-50Hz frequency band (see 

“Supplementary data: Motor imagery decoders trained on the same epochs as the MTP decoders”). 

We suggest that the discriminatory information found in the 10Hz-50Hz band for the control decoder 

could have a negative influence on the ability of the eMTP decoder when neural correlates of motor 

imagery are found in the data. However, this theory does not explain the difference in temporal 

parameters of the eMTP decoders between the Runner MI and the Runner no_MI datasets. The MI 

based control decoder has relatively uniform importance of the temporal features, with a slight 

emphasis on the early parameters. Therefore, the stronger discrimination power of late temporal 

parameters in the Runner no_MI dataset than in the Runner MI dataset was not expected. Although 

unlikely, we suggest that the difference in user engagement between the two datasets (MI vs no_MI) 

could impact the user’s latency of neural correlates of eMTP after events. This difference in latency of 

neural correlates would in turn explain the difference in relative importance of temporal parameters 

between the Runner MI and Runner no_MI datasets. The spatial parameters differ between the two 

datasets, but the same general spatial patterns can be observed. The top right-hand quadrant of the 

right implant (i.e., electrode R25) as well as the top left-hand quadrant of the left implant (i.e., 

electrode L07) both remain among the most discriminative between the two datasets. We suggest the 

variations between the two groups of spatial parameters remain in the scope of what can be expected 

for decoders that are not trained using the same data, independently of the presence of neural 

correlates of motor imagery. 

Comparison of decoder parameters between cMTP decoders and control decoders 
One of the reasons for the creation of the Runner no_MI dataset was to ensure that neural correlates 

of cMTP do exist and we’re not mistakenly detecting neural correlates of motor imagery instead of 

neural correlates of cMTP. In order to provide an additional safeguard to this issue, we compared the 

decoder parameters between the cMTP decoders and control decoders trained offline on the same 

epochs as the cMTP decoders see “Supplementary data: Motor imagery decoders trained on the same 

epochs as the MTP decoders”). 

Temporal parameters. In the Runner MI dataset and Exo dataset, the temporal parameters were highly 

similar between the cMTP decoders and the control decoders. In the Cursor dataset, the temporal 

parameters are more distinct than for other datasets, but still close between the cMTP and control 

decoders. However, we did not expect significantly large differences between the temporal 

parameters of the cMTP and control decoders. Indeed, in the Runner MI and Exo datasets both the 

detection of cMTP and motor imagery neural correlates have the goal of detecting a state 

(error/correct for cMTP, avatar walking/idle for control decoder in the Runner MI dataset, right 

hand/left hand/right wrist/left wrist in the Exo dataset) that lasts for relatively long periods of time. 

Indeed, the labeling for the cMTP decoder only labeled data which had a correct or incorrect state for 

more than 1500ms, and the control decoders were trained on the same epochs as the cMTP decoder 



Chapter 5: Detection of neural correlates of task performance 

64 

which means the motor state were stable as well. In the Cursor dataset, there is some temporal 

filtering for the cMTP decoder labels since the cMTP labels are based on the averaged correctness over 

500ms. However, in each epoch the neural data at the beginning of the epoch can be of a different 

correct/erroneous state than data at the end of the epoch. Additionally, due to the nature of the task, 

error and correct periods could be expected to last shorter than for classification tasks. Therefore, it 

was expected that the temporal parameters applied to the end of the epoch would be more 

discriminative than temporal parameters applied to the beginning of the epoch for the detection of 

neural correlates of cMTP. For the control decoder in the Cursor dataset, the position of the hand-

shaped cursor changed continuously as the user controlled it. The labels for the control decoder 

changed at a fast pace in the data and the user could update his neural command at an equally fast 

pace to ensure the hand-shaped cursor is moving toward the target. Therefore, it was also expected 

to have temporal parameters applied to the end of the epoch be more discriminative than temporal 

parameters applied to the beginning of the epoch for the detection of neural correlates of motor 

imagery. 

Frequential parameters. In the Runner MI dataset and Exo dataset, the frequential parameters were 

fairly similar between the control decoders and cMTP decoders. In the Cursor dataset however, the 

frequential parameters were more distinct between the cMTP decoder and the control decoder. 

Generally, it would have been desirable to have more differences in the frequential parameters 

between cMTP and control decoders. This would mean that discriminative information for both 

decoders was in different frequency bands and thus be less likely to disrupt one another. 

Spatial parameters. For each dataset, the spatial parameters were largely distinct between the control 

decoders and cMTP decoders. This difference in spatial parameters strongly comforts the idea that the 

cMTP decoder is not detecting neural correlates of motor imagery instead of neural correlates of cMTP.  

Stability of cMTP decoder parameters between datasets 
The cMTP decoder parameters varied strongly between the different datasets, mainly in the 

frequential and spatial modalities. This suggests that the neural correlates of cMTP used in this study 

are not stable across task. Interestingly, ErrPs have been shown to have some stability across tasks 

(Iwane et al., 2016; Riesel et al., 2013). Although ErrPs are different MTPs than the neural correlates 

of cMTP detected in this study, it may be possible these cMTPs are partly robust to task changes. 

However, to date no study investigated specifically the robustness to the cMTP neural correlates to 

task change. Future studies should focus on this point as robustness to task is a desirable property of 

cMTP decoders in the scope of the aaBCI framework. 

III.5. Temporal stability of neural correlates of cMTP in the sensorimotor 

cortex 
It should be noted that the different recording sessions for each dataset were recorded over the course 

of several weeks or months. In the full-session cross validation scheme, the models were partly trained 

on data recorded far away temporally from the data they were tested on. This leads us to suggest that 

the error correlates we report in the motor cortex may exhibit temporal stability, similarly to ErrPs 

(Olvet and Hajcak, 2009). Temporal robustness of cMTP decoders is desired in the aaBCI framework, 

as the cMTP decoder is still trained in a supervised manner. Therefore, temporal robustness ensures 

that the cMTP decoders don’t have to be retrained frequently, or ideally ever. Although that was not 

in the scope of the proof of concept performed in this study, future experiments should compare the 

difference in temporal stability between the cMTP decoder described here and control decoders. In 

order to make full use of the aaBCI framework, the temporal stability of the cMTP decoder needs to 

be non-marginally higher than the temporal stability of the control decoder.
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Chapter 6: Auto-adaptive BCI design using 
neural correlates of task 
performance for real-time 
labeling 

In the previous chapter, we successfully detected neural correlates of cMTP. In this chapter, we use 

these cMTP neural correlates in an auto-adaptive BCI framework. cMTP neural correlates are used to 

estimate labels for the control decoder neural data. These estimated labels are used to train the 

control decoder in real-time during free use of the BCI.   

I. Methods 

I.1. Pseudo-online simulation 
We implemented a pseudo-online simulation in order to test the aaBCI framework. This 

implementation provided conditions as close as possible to online use of the aaBCI. In order to do so, 

the datasets were split into three. One part was used to train the cMTP decoder as it would be required 

prior to use the aaBCI in online conditions. One part was used to train the control decoder using the 

aaBCI framework, i.e. without knowledge of the real labels for the control decoder. In online use, the 

neural data used in this part would be collected during free use of the BCI. In our case, the online 

simulation study was performed on already recorded datasets. Therefore, the subject was still 

instructed to perform specific actions during this period. The control decoder was trained in a pseudo-

online manner. Neural data was fed to the algorithm through a loop mimicking online data acquisition. 

Label estimation and training of the control decoder were performed using the aaBCI every time fifteen 

seconds of labeled data were acquired. However, the new control decoder had no influence on the 

actions of the BCI, as the datasets were pre-recorded. Finally, one part of each dataset was used to 

test the performance of the newly trained control decoder.  

I.2. Formation of datasets for cMTP decoders training 
We trained cMTP decoders in a similar way as in the previous chapter. Data labeling, data balance, 

neural feature extraction and training algorithm were similar to what is described in “Chapter 5: 

Detection of neural correlates of task performance”. For each dataset, the label for the cMTP decoder 

is noted 𝑦𝑡𝑐𝑀𝑇𝑃 ∈ {0 , 1} for each epoch 𝑡. The output of the cMTP decoder for any epoch 𝑡 is noted 

𝑦ො𝑡𝑐𝑀𝑇𝑃 ∈ ℝ.   

I.3. Formation of datasets for the training of control decoders in the auto-

adaptive BCI framework 
In this pseudo-online simulation of online use of the aaBCI, new control decoders are trained using 

labels estimated thanks to the aaBCI framework. These labels are partly derived from the output of 

the cMTP decoder, which cannot be expected to have a perfect accuracy. Therefore, these derived 

control labels cannot be expected to be perfect either. We designate these labels as ‘estimated labels’ 

for the control decoder. For a given epoch 𝑡, these estimated labels are noted 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∈ ℝ𝑚, with 𝑚 
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the dimension of the output of the control decoder (𝑚 = 1 in the Runner MI dataset, 𝑚 = 4 in the 

Exo dataset and 𝑚 = 2 in the Cursor dataset). For classification tasks (Runner and Exo datasets), we 

have 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∈ {0 , 1}𝑚 a dummy encoding of the estimated class, with 𝑚 the number of classes 

controlled. For the regression task (Cursor dataset), we have 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∈ ℝ𝑚 with 𝑚 = 2 the number 

of continuous dimensions controlled. The generation of these estimated labels can be separated in 

two distinct steps. In the first step, we select epochs that can reliably be estimated as correct or 

erroneous. Other samples are discarded. In a second step, we estimate the control decoder labels for 

these epochs. 

Inclusion of data in datasets for the training of control decoder in the aaBCI framework 
As the cMTP decoder is imperfect, there will be some noise in the estimated labels 𝒚𝑡

𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 compared 

to the real labels 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

. To limit the noise in the estimated labels, we discard epochs for which 

there is uncertainty on the task performance estimation obtained from the cMTP decoder. The output 

of the cMTP decoder is a continuous variable. We decided to use two thresholds for classification of 

epochs as correct or erroneous. One threshold is used for the classification of epochs as correct 

(𝑡ℎ𝑐𝑜𝑟𝑟) and the other is used to classify epochs as erroneous (𝑡ℎ𝑒𝑟𝑟).  Epochs for which 𝑦ො𝑡𝑐𝑀𝑇𝑃 >

𝑡ℎ𝑐𝑜𝑟𝑟 were considered correct. Epochs for which 𝑦ො𝑡𝑐𝑀𝑇𝑃 < 𝑡ℎ𝑒𝑟𝑟  were considered erroneous. 

Samples for which 𝑡ℎ𝑒𝑟𝑟 < 𝑦ො
𝑡
𝑐𝑀𝑇𝑃 < 𝑡ℎ𝑐𝑜𝑟𝑟  were not included into the new training sets. The output 

of the cMTP decoder on the training set can be used as an estimation of the probability densities for 

the error and correct class. We model the output of the cMTP decoder 𝒚ෝ𝑐𝑀𝑇𝑃 on the training set as a 

mixture of two Gaussians. Each Gaussian is used to model one of the two classes of the cMTP decoder. 

The correct class Gaussian is noted 𝒩(𝜇𝑐𝑜𝑟𝑟 , 𝜎𝑐𝑜𝑟𝑟
2) and the error class Gaussian is 

noted 𝒩(𝜇𝑒𝑟𝑟 , 𝜎𝑒𝑟𝑟
2). The parameters of the two Gaussians were estimated on the training data as 

the mean and standard deviation over the correct or erroneous samples: 

𝜇𝑒𝑟𝑟 =
1

𝑛𝑒𝑟𝑟
∑ 𝑦ො𝑡𝑐𝑀𝑇𝑃

{𝑡 ∶  𝑦𝑡𝑐𝑀𝑇𝑃=0}

 

𝜇𝑐𝑜𝑟𝑟 =
1

𝑛𝑐𝑜𝑟𝑟
∑ 𝑦ො𝑡𝑐𝑀𝑇𝑃

{𝑡 ∶  𝑦𝑡𝑐𝑀𝑇𝑃=1}

 

𝜎𝑒𝑟𝑟
2 =

1

𝑛𝑒𝑟𝑟 − 1
∑ (𝜇𝑒𝑟𝑟 − 𝑦ො

𝑡
𝑐𝑀𝑇𝑃)

2

{𝑡 ∶  𝑦𝑡𝑐𝑀𝑇𝑃=0}

 

𝜎𝑐𝑜𝑟𝑟
2 =

1

𝑛𝑐𝑜𝑟𝑟 − 1
∑ (𝜇𝑐𝑜𝑟𝑟 − 𝑦ො

𝑡
𝑐𝑀𝑇𝑃)

2

{𝑡 ∶  𝑦𝑡𝑐𝑀𝑇𝑃=1}

 

With 𝑛𝑒𝑟𝑟 and 𝑛𝑐𝑜𝑟𝑟 the number of erroneous and correct samples respectively in the training set. If 

normalized for the number of epochs in each class, these Gaussians would be equivalent to the 

estimated probability densities of having a given cMTP decoder output when an epoch is from the 

correct or error class (𝑃(𝑦ො𝑡𝑐𝑀𝑇𝑃|𝑐𝑜𝑟𝑟) and 𝑃(𝑦ො𝑡𝑐𝑀𝑇𝑃|𝑒𝑟𝑟)). The 𝑡ℎ𝑐𝑜𝑟𝑟 and 𝑡ℎ𝑒𝑟𝑟  disjointed 

thresholds leave some epochs unclassified, which corresponds to epochs for which the estimated 

probability of being correct or erroneous is too close to one another. This solution effectively decreases 

the noise in the estimated labels at the cost of a decrease in the size of the training set for the control 

decoder. 

The thresholds were then defined as 𝑡ℎ𝑐𝑜𝑟𝑟 = 𝜇𝑐𝑜𝑟𝑟 + 𝑎 𝜎𝑐𝑜𝑟𝑟 and 𝑡ℎ𝑐𝑜𝑟𝑟 = 𝜇𝑒𝑟𝑟 − 𝑎 𝜎𝑒𝑟𝑟 with 𝑎 a 

constant 𝑎 that balances the trade-off between the number of samples added to the training set and 
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the confidence of their labeling by the cMTP decoder (Figure 36). This strategy has the advantage of 

not being influenced by the balance of data. We set 𝑎 = 1 in this study. Optimization of this hyper-

parameter could be performed with nested cross-validation, at the cost of setting data aside for this 

purpose. Although we did not optimize 𝑎, we evaluated the impact of 𝑎 on the trade-off between 

amount of data unlabeled and performance of the cMTP decoder on the data used to train the control 

decoder. We report the accuracy of the cMTP decoder, the true positive rate and the false positive 

rate for the detection of errors depending on the proportion of data discarded and 𝑎. In the analysis 

stage, each sample has a corresponding 𝑦ො𝑡𝑐𝑀𝑇𝑃 value. Each sample thus has exactly one corresponding 

𝑎 value for which 𝑦ො𝑡𝑐𝑀𝑇𝑃 = 𝜇𝑐𝑜𝑟𝑟 + 𝑎𝜎𝑐𝑜𝑟𝑟 and one 𝑎 value for which 𝑦ො𝑡𝑐𝑀𝑇𝑃 = 𝜇𝑒𝑟𝑟 − 𝑎𝜎𝑒𝑟𝑟. For 

each of these values of 𝑎 over all the samples in the test dataset there is a corresponding percentage 

of data discarded. For each of the 𝑎 values, we also compute the accuracy of the cMTP decoder, the 

true positive rate and the false positive rate for the detection of errors on the data not discarded.  

Labeling of data in the control decoder training dataset 
Updates of the control decoder were performed every time there was fifteen seconds of labeled data 

available. For an update 𝑢, we note the estimated control labels as �̃�𝑢𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =

(𝒚𝑡1
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

, … , 𝒚𝑡𝑛
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

)𝑇, with (𝑡1, … , 𝑡𝑛) the time points of the epochs that were labeled between 

update 𝑢 − 1 and update 𝑢 (𝑛 = 150). Similarly, we note �̃�𝑢
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∈ ℝ𝑛×𝜏×𝑓×𝑠 the neural features 

for the control decoder that were acquired at times (𝑡1, … , 𝑡𝑛). We define re-labeling functions as 
functions that uses the output of the cMTP decoder and the output of the control decoder to derive 
estimated labels for the control decoder. The automatic creation of a new training set for the auto-
adaptive BCI is defined as: 

𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

=  𝜑(𝑦ො𝑡𝑐𝑀𝑇𝑃, 𝒚ෝ
𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙) 

�̃�𝑢
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

=  𝑿𝑢
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 

We used two re-labeling functions 𝜑1 and 𝜑2 depending on the dataset used.  

𝑦ො𝑐𝑀𝑇𝑃 

Estimated 
correct 

Estimated 
erroneous 

Unused data 

𝑡ℎ𝑐𝑜𝑟𝑟  
(𝑎 = 1) 

𝑡ℎ𝑒𝑟𝑟  
(𝑎 = 1) 

𝜎𝑐𝑜𝑟𝑟 

𝜇𝑐𝑜𝑟𝑟  

𝜎𝑒𝑟𝑟 

𝜇𝑒𝑟𝑟  

𝑦ො𝑐𝑀𝑇𝑃 

𝑡ℎ𝑐𝑜𝑟𝑟  
(𝑎 = 1) 

𝑡ℎ𝑒𝑟𝑟  
(𝑎 = 1) 

Figure 36 Example of histogram of the output of the cMTP decoder on one training fold and its associated test set. The 
thresholds for the inclusion of epochs in the training set of the control decoder are based on a trade-off parameter 𝑎 and the 
means and standard deviations of the Gaussians fitted to the error and correct class on the training set. 
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Runner MI and Exo datasets. For the Runner MI and Exo datasets, we used 𝜑1: ]−∞; 𝑡ℎ𝑒𝑟𝑟 ] ∪

[𝑡ℎ𝑐𝑜𝑟𝑟;∞[ × ℝ
𝑚 ⟼ℝ𝑚, with 𝑚 the number of classes:  

  𝜑1(𝑦ො
𝑡
𝑐𝑀𝑇𝑃 , 𝒚ෝ

𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = {

𝒆𝑐1𝑡

𝒆𝑐2𝑡
  
, 𝑖𝑓 𝑦ො𝑡𝑐𝑀𝑇𝑃 > 𝑡ℎ𝑐𝑜𝑟𝑟 

, 𝑖𝑓 𝑦ො𝑡𝑐𝑀𝑇𝑃 < 𝑡ℎ𝑒𝑟𝑟
 . 

With (𝒆𝑖)𝑖=1,…,𝑚 the notation for the canonical base of ℝ𝑚 and 𝑐𝑘
𝑡  the 𝑘𝑡ℎ most probable class 

estimated by the control decoder for sample 𝑡, defined as: 

𝑘 ∈ {2,… ,𝑚},

𝑐1
𝑡 = argmax

𝑖∈{1,…,𝑚}
  𝑦ො𝑖

𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

,

𝑐𝑘
𝑡 = argmax

𝑖∈{1,…,𝑚}∖{𝑐1
𝑡,… ,𝑐𝑘−1

𝑡 }

  𝑦ො𝑖
𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 . 

The output of the relabeling function 𝜑1 corresponds to the dummy encoding of the estimated class 

label. If a sample was estimated correct (𝑦ො𝑡𝑐𝑀𝑇𝑃 > 𝑡ℎ𝑐𝑜𝑟𝑟), the estimated label is the most probable 

class at time 𝑡, i.e. the one corresponding to the action performed by the BCI at time 𝑡. If a sample was 

estimated erroneous (𝑦ො𝑡𝑐𝑀𝑇𝑃 < 𝑡ℎ𝑒𝑟𝑟), the estimated label was the second most probable class at 

time 𝑡.  

Cursor dataset. For the Cursor dataset, we used 𝜑2: [𝑡ℎ𝑐𝑜𝑟𝑟; ∞[ × ℝ
𝑚 ⟼ℝ𝑚, 𝑚 being the number of 

continuous outputs of the control decoder: 

𝜑2(𝑦ො
𝑡
𝑐𝑀𝑇𝑃, 𝒚ෝ

𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = 𝒚ෝ

𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 . 

The relabeling function 𝜑2 only keeps samples that were estimated corrects, with the label being the 

one estimated by the control decoder.  

I.4. Formation of datasets for the training of control decoders for 

comparison with the aaBCI framework 
The control decoder trained using the aaBCI framework was compared to control decoders trained in 

two other ways. The first one was control decoders trained supervisedly with the labels of each epoch 

known. In the Runner and Exo datasets, the output label 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 for each epoch 𝑡 was a vector 

containing a dummy encoding of the real class label, which was the desired state of the BCI at the end 

time of the epoch. In the Cursor dataset, the output label 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 for each epoch 𝑡 contained the 𝑥𝑡 

and 𝑦𝑡 directed Cartesian distance from the cursor to the target (Figure 37). The matrix of all real 

control decoder input labels is noted 𝒀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = ( 𝒚
1
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

, … , 𝒚𝑁
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

)𝑇 with 𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∈ ℝ𝑚 and 

𝑚 the number of possible classes (Runner and Exo) or the number of degrees of freedom (Cursor). 

Additional control decoders were trained for the purpose of comparison with the aaBCI. These control 

decoders were trained following the aaBCI framework, but with random output of the cMTP decoder. 
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I.5. Algorithm for the training of control decoders in the aaBCI framework  
The main goal of the aaBCI is to enable online training and update of its control decoder during self-

directed use. Therefore, the algorithm used to train the control decoder is required to function online. 

The rate of labeled data acquisition is not necessarily as high as in online-supervised learning, since not 

every epoch is labeled. This provides some more flexibility in the online capacity of the algorithm used, 

depending on the trade-off parameter 𝑎 between the proportion of data labeled and the accuracy of 

the labels. We used the REW-NPLS (Benabid et al., 2019; Eliseyev et al., 2017; Eliseyev and Aksenova, 

2013) as it can be updated online at high rates, is not limited by growing amounts of training data, is 

suited to high-dimensional, tensor-shaped data and is relatively robust to noise. The robustness to 

noise is especially valuable for the aaBCI-training of the control decoder. Indeed, the process of label 

estimation is bound to create some label noise. Compared to supervised training, aaBCI-training 

inherently increases the label noise due to the estimated labels being less accurate than labels acquired 

in dedicated training sessions. 

I.6. Performance evaluation 
To estimate the performances of the auto-adaptive BCI, each dataset was separated in three non-

overlapping splits, each split containing the same number of recording sessions (up to one session 

difference). We performed a pseudo-cross-validation: one split was used to train the cMTP decoder, 

one split was used to train the control decoder and one split was used to test the performances of the 

control decoder. Permuting the roles of each split led to six performance measures for each effector.  

The performance of the control decoder was assessed on test splits. Datasets that featured different 

effectors used different performance criterions. For the Runner MI dataset (binary control decoder), 

performance was evaluated using the AUC of the ROC curve of the control decoder. For the Exo dataset 

(multi-class classification), performance was evaluated using a generalized version of the AUC of the 

ROC curve for multi-class classification (Hand and Till, 2001). The generalized version of the AUC to a 

multiclass problem with 𝑚 classes is defined as follows: 

𝐴𝑈𝐶 =
2

𝑚(𝑚 − 1)
∑ ∑ �̂�(𝑖|𝑗)

𝑗=1..𝑚
𝑖≠𝑗

𝑖=1..𝑚

 

 

𝑥 

𝑦 

𝑦𝑡 

𝑥𝑡 

Figure 37 Illustration of how labels are defined for the supervised training of the control decoder in the Cursor dataset 
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With �̂�(𝑖|𝑗) the estimated probability that a randomly drawn member of class 𝑗 will have a lower 

estimated probability of belonging to class 𝑖 than a randomly drawn member of class 𝑖. �̂�(𝑖|𝑗) is 

obtained by computing the binary test AUC between class 𝑖 and 𝑗 using the scores from class 𝑖, while 

�̂�(𝑗|𝑖) is obtained by computing the binary test AUC between class 𝑖 and 𝑗 using the scores from class 

𝑗. 

For the Cursor dataset (bi-dimensional continuous output of the control decoder), performance was 

evaluated using the cosine similarity between the predicted trajectory and the optimal trajectory to 

reach the current target. If we note as 𝒯 an ensemble of epochs with 𝑇 elements, the cosine similarity 

on 𝒯 is computed as follows: 

𝐶𝑜𝑠𝑆𝑖𝑚(𝒯) =
1

𝑇
∑

𝒚ෝ𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

⋅  𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

‖𝒚ෝ𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙‖ ‖𝒚𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙‖𝑡 ∈ 𝒯

 

The performance of the auto-adaptive BCI for each effector was assessed with the mean of its 

associated performance criterion over each test split. Additionally, we also assessed the performance 

of the cMTP decoder on the split used to train the control decoder. 

II. Results 

II.1. Performance of the cMTP decoders on the full control decoder 

training dataset 
Although we previously evaluated the performances of the cMTP decoders on each dataset in Chapter 

5, it was necessary to perform this evaluation again for the aaBCI study. Indeed, the previous 

evaluation of the cMTP decoders may not properly reflect their performance in the pseudo-online 

aaBCI simulation performed here. Previously, the cMTP decoders were trained using 80% of the data 

in their respective datasets. In pseudo-online aaBCI simulations, part of the data must be set aside to 

train the control decoder and part of the data must be set aside to test the performances of the control 

decoder (in real use-cases of the aaBCI, the cMTP decoder labels would not be known on either of 

these data parts, and therefore cannot be used to train the cMTP decoders). Therefore, in the pseudo-

online aaBCI simulation the cMTP decoders were trained using significantly less data, i.e. 33.3% of the 

data in their respective datasets. As the size of the training datasets could impact the cMTP decoder 

performances, we report here the new performances of the cMTP decoders on the parts of the 

datasets set aside to train the control decoders. 

In the Runner MI dataset, the mean AUC of the ROC curve of the cMTP decoder was 0.5754 ± 0.0321. 

In the Exo dataset, the mean AUC of the ROC was 0.5757 ± 0.0590. In the Cursor dataset, the mean 

AUC of the ROC was 0.6211 ± 0.0120 (Figure 38).  
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II.2. Impact of the trade-off parameter 𝑎 on the cMTP decoder 

performances 
The parameter 𝑎 balanced the trade-off between the amount of data labeled for the training of the 

control decoder and the performance of the cMTP decoder on this data. With 𝑎 = 1, in the Runner MI 

dataset 15.5% of the data was labeled while the accuracy of the cMTP decoder was 65.7%, the true 

positive rate was 0.57 and the false positive rate was 0.33 (Figure 39). In the Exo dataset, 17.5% of the 

data was labeled while the accuracy of the cMTP decoder was 70%, the true positive rate was 0.44 and 

the false positive rate was 0.24 (Figure 39). Finally, in the Cursor dataset 25.7% of the data was labeled 

while the accuracy of the cMTP decoder was 65.6%, the true positive rate was 0.63 and the false 

positive rate was 0.43 (Figure 39).  

  

Exo dataset Runner MI 

dataset 

Cursor dataset 

Figure 38 Performances of the cMTP decoders used in the aaBCI online simulation. Shown are the receiver operating 
characteristic curves of the cMTP decoders for the detection of epochs labeled as ‘errors’. Performances on the training sets 
are displayed in blue, while performances on the testing set are displayed in red. In the aaBCI online simulation, the test set 
of the cMTP decoders and the train set of the control decoders are on the same data split. Each dotted line represents one of 
the six cross-validation folds, while the full lines represent the interpolated mean ROC over the six folds. 



Chapter 6: Auto-adaptive BCI design using neural correlates of task performance for real-time labeling 

72 

  

R
u

n
n

er
 M

I d
at

as
et

 
Ex

o
 d

at
as

et
 

C
u

rs
o

r 
d

at
as

et
 

Figure 39 Impact of the trade-off parameter 𝑎 on the accuracy of the labels provided by the cMTP decoders, the true positive 
and false positive rates, as well as the amount of data not included in the training set of the control decoder. Each dotted line 
represents one of the six cross-validation folds, while the full lines represent the interpolated mean ROC over the six folds. 
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Additionally, it can be noted that as more data gets discarded, the TPR, FPR and accuracy becomes 

more variable. As more data is discarded, these values are computed with less samples and are thus 

less reliable and more prone to variations. Inversely, when less data is discarded, these values are more 

stable, but they also reflect poorer performances due to more samples being mislabeled.   

II.3. Accuracy of estimated labels for the control decoder 
The aaBCI uses estimated labels for the training of the control decoder. The estimated labels have 

noise compared to the real labels. In the Runner dataset, the accuracy of the estimated labels was 

64.9% (Figure 40). In the Exo dataset, the general accuracy of the estimated labels was 64.5%. More 

specifically for each motor class, the accuracy of the estimated label was 54.1% for the right-hand 

movement, 71.1% for the left-hand movement, 64.5% for the right wrist rotation and 68.4% for the 

left wrist rotation. In the Cursor dataset, 63.3% of the estimated labels were less than 60° away from 

the actual labels, 11.4% were in between 60° and 90° and 25.3% were more than 90° away from the 

actual labels.  

 

Figure 40 Performance of the aaBCI framework for the labeling of data. 

90
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II.4. Performance of control decoders trained using the aaBCI 
Finally, the performance of the aaBCI is best measured by the performance of the control decoder 

compared to control decoders trained supervisedly or with random output of the cMTP decoder. In 

the Runner dataset, the mean AUC of the ROC of the control decoder was 0.6360 ± 0.0958 when 

trained auto-adaptively compared to 0.8958 ± 0.0153 when trained supervisedly and 0.5007 ± 0.0691 

when trained with random cMTP decoder outputs. There was a significant effect of training type on 

the performance of the control decoder (Friedman test, p-value = 0.0009). There was a significant 

difference between each pair of training methods: between auto-adaptive training with randomized 

cMTP output and auto-adaptive training (two-sided Wilcoxon-Mann-Whitney test, p=0.0411), 

between the auto-adaptive training with randomized cMTP output and supervised training (two-sided 

Wilcoxon-Mann-Whitney test, p=0.0022) and between supervised training and auto-adaptive training 

(two-sided Wilcoxon-Mann-Whitney test, p=0.0022). 

In the Exo dataset, the mean AUC of the generalized ROC of the control decoder was 0.7595 ± 0.0278 

when trained auto-adaptively compared to 0.8177 ± 0.0301 when trained supervisedly and when 

0.5163 ± 0.0580 trained with random cMTP decoder outputs. There was a significant effect of training 

type on the performance of the control decoder (Friedman test, p-value = 0.0009). There was a 

significant difference between each pair of training methods: between auto-adaptive training with 

randomized cMTP output and auto-adaptive training (two-sided Wilcoxon-Mann-Whitney test, 

p=0.0022), between the auto-adaptive training with randomized cMTP output and supervised training 

(two-sided Wilcoxon-Mann-Whitney test, p=0.0022) and between supervised training and auto-

adaptive training (two-sided Wilcoxon-Mann-Whitney test, p=0.0087).  

In the Cursor dataset, the mean cosine similarity of the control decoder was 0.1589 ± 0.0668 when 

trained auto-adaptively compared to 0.2107 ± 0.0664 when trained supervisedly and -0.0231 ± 0.0327 

when trained with random cMTP decoder outputs. There was a significant effect of training type on 

the performance of the control decoder (Friedman test, p-value = 0.0020). There was a significant 

difference between auto-adaptive training with randomized cMTP output and auto-adaptive training 

(two-sided Wilcoxon-Mann-Whitney test, p=0.0022) and between the auto-adaptive training with 

randomized cMTP output and supervised training (two-sided Wilcoxon-Mann-Whitney test, 

p=0.0022). However, there was no significant difference between supervised training and auto-

adaptive training (two-sided Wilcoxon-Mann-Whitney test, p=0.3095). The performances of the 

control decoders depending on the training method are summarized in Table 5 and Figure 41. 

Table 5 Performances of the control decoders trained using the aaBCI compared to control decoders trained using supervised 
learning or using shuffled outputs of the cMTP decoders. Means and standard deviations over the test folds are reported. 

  Training method of the control decoder 

  

Auto-adaptive 
training with random 
output of the cMTP 

decoder  

Auto-adaptive 
training  

Supervised 
training 

D
at

as
et

 

Runner MI 
(AUC of ROC) 

  0.5007 ± 0.0691 0.6360 ± 0.0958 0.8958 ± 0.0153 

Exo  
(multi-class 
AUC of ROC) 

  0.5163 ± 0.0580 0.7595 ± 0.0278 0.8177 ± 0.0301 

Cursor 
(cosine 

similarity) 
-0.0231 ± 0.0327 0.1589 ± 0.0668 0.2107 ± 0.0664 
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Figure 41 Performances of the control decoders trained using the aaBCI (in green) compared to control decoders trained using 
supervised learning or using shuffled outputs of the cMTP decoders. Stars denote significant differences between training 
methods (two-sided Wilcoxon-Mann-Whitney test, p-value<0.05) 
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III. Discussion 
In this chapter, we performed a proof of concept of the aaBCI for a binary BCI, a multi-class BCI and a 

BCI with two continuous outputs. This proof of concept was performed using the neural correlates of 

cMTP described and detected in Chapter 5, in offline simulations of online use of the BCIs. Using the 

aaBCI framework, we were able to train control decoders from scratch that performed significantly 

better than chance level for all 3 types of BCIs. Nevertheless, several points are up to discussion 

regarding our results. 

III.1. aaBCI performances 

Comparative performances of control decoders trained with the aaBCI  
As mentioned, the control decoders trained using the aaBCI always performed significantly better than 

chance level. This result is significant, as it validates the proof of concept that the aaBCI framework 

developed here can be used to train control decoders, even for complex motor BCIs. Expectedly, the 

control decoders trained using the aaBCI performed worse than the control decoders trained in a 

supervised manner. Indeed, the noise in the labels used to train the control decoder can be supposed 

to be much lower in supervised training than in the aaBCI training. Additionally, there is no discarding 

of data in the supervised training, which means the datasets used to train the control decoders in a 

supervised manner in our experiments were much larger than the ones used to train the control 

decoders with the aaBCI. Therefore, there is no surprise with the result obtained where aaBCI-trained 

control decoders performed worse than supervisedly-trained control decoders. 

On a side note, we remind that the noise in the labels used in supervised training cannot be expected 

to be inexistent either. Indeed, in BCI experiments it is hard to be sure that the subject always 

performed the desired task, especially in complex motor task. Additionally, we performed our 

experiments using virtual effectors, which are less prone to noise. With non-virtual effectors, such as 

an upper-limb exoskeleton, the position of the hand measured by the system is even more prone to 

noise than with virtual effectors as there are more potential sources of error in the measured position 

(e.g., deformation of the materials used in the exoskeleton due to the subject’s weight). 

Impact of the complexity of the motor control task on the accuracy of the estimated labels 
The accuracy of the estimated labels was always above chance level. It can be noted that the accuracy 

of the estimated labels was similar in the Runner MI and Exo datasets (64.9% and 64.5% respectively), 

whereas the chance level was much higher in the Runner MI dataset than in the Exo dataset (50% 

versus 25%). Similarly, even in the complex scenario of estimating labels for a decoder with two 

continuous outputs (in the Cursor dataset), the accuracy of the estimated labels was still reasonably 

high (63.3% of the estimated labels were less than 60° away from the actual labels). In our study, the 

accuracy of the estimated labels was roughly similar for all the datasets. The ability of the cMTP 

decoder to provide labels for the control decoder seem independent from the complexity of the output 

of the control decoder. 

Long term use of the aaBCI 
The results presented in this study compare aaBCI-trained control decoders and supervisedly-trained 

control decoder with the premise that the same total amount of data was available in both cases. 

However, one of the main characteristics of the aaBCI is that it is able to update its control decoder 

during free use of the BCI by its user, which is not possible with classical supervised training. The aaBCI 

is thus able to accumulate labeled data indefinitely, albeit with some noise in the labels. Therefore, in 

the long run the amount of data available for the training of control decoder using the aaBCI is bound 

to surpass the amount of data that would have been available for supervised training. The performance 

reported for the control decoders trained with the aaBCI in our study may therefore be 
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underestimated compared to real use-cases. Additionally, in the long run the performances of 

supervisedly-trained control decoders are expected to decrease due to concept drifts and non-

stationarity in the acquired brain signals (Clerc et al., 2016). The aaBCI framework is theoretically able 

to overcome this weakness as the control decoders are updated continuously. Therefore, although in 

our experiments supervisedly-trained control decoders performed better than aaBCI-trained control 

decoders, we can expect this difference to be lower in actual use-cases of the aaBCI, with the aaBCI 

possibly outperforming supervisedly-trained control decoders in the long run. Long-term experiments 

on aaBCIs should be performed in order to get a definitive conclusion on this topic. 

III.2. Parametrization of the aaBCI 

Impact of the size of the training dataset on the cMTP decoders’ performances 
The amount of data used to train the cMTP decoders in this pseudo-online test of the aaBCI was largely 

inferior to the amount of data used in the study on detectability of neural correlates of cMTP in the 

sensorimotor cortex (one third vs four fifth). The pseudo-cross validation scheme used in the aaBCI 

test corresponds to the full-session cross validation scheme used previously. When compared, there is 

a decrease in performance (AUC of the cMTP decoder) that averages at -3.3% over the Runner MI, Exo 

and Cursor datasets. This means that the single trial-detection of neural correlates of cMTP in the 

sensorimotor cortex requires a substantial amount of data for the training of the decoders. However, 

it also means that the performance of the aaBCI reported in this chapter could potentially be improved 

by increasing the amount of data used to train the cMTP decoders. 

Alternative threshold selection strategies for data inclusion in the training dataset of the control 
decoder 
Several strategies for the selection of the 𝑡ℎ𝑒𝑟𝑟  and 𝑡ℎ𝑐𝑜𝑟𝑟 thresholds are possible. For instance, one 

could fix arbitrary thresholds on the output of the cMTP decoder. However, this method would not 

make use of knowledge gained on the training dataset. Another solution we tested was to set 𝑡ℎ𝑐𝑜𝑟𝑟 

and 𝑡ℎ𝑒𝑟𝑟  in order to have givens true positive and false positive rates on the training dataset. This 

method effectively uses the knowledge acquired on the training dataset. However, these thresholds 

are influenced by the balance between the number of epochs in correct and error class in the training 

set. Although we perform post-processing in order to have balanced training datasets, we felt that it 

would be better to have a threshold selection method that can be independent of the data balance. 

The method used based on the Gaussian modelling of the error and correct class is robust to data 

imbalance and makes use of the knowledge acquired on the training set. It could however be improved 

by having an automatic selection of the trade-off parameter 𝑎, for instance using nested cross-

validation. 

Impact of the trade-off parameter 𝑎 on the aaBCI 
As the distribution of outputs of the cMTP decoders are not well separated between the error and 

correct classes (Figure 36, page 67), the amount of data discarded will be substantial even if 𝑎 = 0. As 

expected, the accuracy of the cMTP decoder output on the labeled data goes up as 𝑎 increases and 

the amount of labeled data goes down. This trade-off between amount of data discarded and accuracy 

of the cMTP decoder on the labeled data directly generates an equivalent trade-off on the trained 

control decoder. If less data is discarded, the control decoder will be updated at a faster rate (as the 

control decoder is updated every time 15s of labeled data is acquired), but with more noise in the 

control decoder labels. Therefore, more general considerations have to be taken into account in order 

to properly balance the trade-off parameter 𝑎. The rate of update may have a lower bound in order to 

be able to properly follow concept drifts. Depending on the motor tasks performed with the aaBCI, the 

control decoder’s performance may also have a lower bound. Finally, this trade-off may be subject-

dependent and subjective as subjects may prefer faster updates to higher accuracy and vice-versa. 
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It can be noted that when the general performance of the cMTP decoder (i.e., on the full data split 

used to train the control decoder, not only on the data included in the control decoder training dataset) 

was low, the amount of data discarded for a given value of 𝑎 was large (Runner dataset: cMTP AUC = 

0.5754, 84.5% data discarded). When the general performance of the cMTP decoder was higher, the 

amount of data discarded was lower (Cursor dataset: cMTP AUC = 0.6211, 74.3% data discarded). 

Increasing the performance of the cMTP decoder should most likely be the focus if one were to try to 

improve the performances of the aaBCI. 

III.3. Label estimation for the control decoder 

Generality of re-labeling functions 
In our auto-adaptive BCI framework, we defined our relabeling functions as 𝒚𝑡

𝑐𝑜𝑛𝑡𝑟𝑜𝑙
=

 𝜑(𝑦ො𝑡𝑐𝑀𝑇𝑃, 𝒚ෝ
𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙). This relationship is defined at the epoch level, which means the estimated 

control label for epoch 𝑡  𝒚𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 is only dependent on the output of the cMTP decoder for epoch 𝑡 

(𝑦ො𝑡𝑐𝑀𝑇𝑃) and the output of the control decoder at epoch 𝑡 (𝒚ෝ𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

). However, a more general 

version of the re-labeling function may be defined as �̃�𝑢𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  Φ(𝒚ෝ𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 , �̂�𝑐𝑜𝑛𝑡𝑟𝑜𝑙). In this 
relabeling function, the estimated label for the control decoder for epoch 𝑡 does not necessarily only 
depend on the output of the cMTP decoder and control decoder at epoch 𝑡, but on the outputs of 
these decoders for any epoch available at the time of the update. A straightforward use of this more 
general relationship would be to smooth the outputs of the cMTP and control decoders and use the 
same re-labeling functions as previously. But other strategies can also be implemented, such as 
deciding that the estimated control label for error epochs should be put to the temporally closest 
control decoder output that was estimated correct. This more general framework may improve the 
robustness of the estimated labels for the control decoder. 

Labeling of epochs when detected erroneous by the cMTP decoder 
However, the main limitation of the re-labeling functions used in this thesis is the handling of epochs 

labeled as errors by the cMTP decoder. For the binary control decoder (Runner MI dataset), if an output 

of the control decoder is estimated as erroneous it can only be estimated as the other class of the 

control decoder. However, that is not the case for the multi-class control decoder (Exo dataset) and 

the bi-dimensional continuous control decoder (Cursor dataset). When an output of the control 

decoder is estimated erroneous, multiple (Exo dataset) or an infinite (Cursor dataset) number of other 

labels are possible for the control decoder. For the Exo dataset, we used the second most probable 

label as estimated by the output of the control decoder. However, if the control decoder is not good 

enough, the second most probable output of the control decoder can also be wrong. This strategy 

could potentially be improved by taking into account the prior probabilities of each class. For the 

Cursor dataset, we did not use the epochs labeled as erroneous. A possible solution would be to use a 

stricter definition for erroneous epochs (e.g., 𝜃𝑐𝑜𝑟𝑟 = 0.5 and 𝜃𝑒𝑟𝑟 = −0.5 instead of 𝜃𝑐𝑜𝑟𝑟 = 0.5 and 

𝜃𝑒𝑟𝑟 = −0.1) and then use the opposite of the output of the control decoder when an epoch is 

estimated erroneous. 

In real use-cases of the aaBCI, it would be highly beneficial to always have a solution to use epochs 

estimated erroneous. Indeed, if the performance of the control decoder were to decrease too sharply, 

the amount of data added to the training dataset of the control decoder would also decrease, as only 

epochs estimated as correct are used. This would lead to a diminution of the update rate of the control 

decoder, as the rate of acquisition of labeled data would be lowered. The worsened update rate could 

diminish the ability of the aaBCI to follow concept drifts, thus decreasing the performance of the 

control decoder over time. This vicious circle can be prevented if the aaBCI is able to estimate labels 

for the control decoder using epochs estimated as erroneous by the cMTP decoder.  
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Alternative cost function 
Finally, alternatives to the use of re-labeling functions may be considered. The concept of re-labeling 

function is based on the idea that it is possible to estimate the correct control decoder label. As 

discussed, the estimation of the correct label is not straightforward. We considered implementing a 

cost function that not only punishes predictions far from labels estimated correct, but also punishes 

predictions too close to labels estimated erroneous (instead of estimating the correct labels for epochs 

detected erroneous). Although it was not tested, we provide here an example of such a cost function 

for clarification purposes: 

𝑐𝑜𝑠𝑡 =  √ ∑ (𝒚𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝒚ෝ
𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

2

𝑡∈{𝑡,   𝑦ො𝑡𝑐𝑀𝑇𝑃>𝑡ℎ𝑐𝑜𝑟𝑟}

+ ∑ 𝑒
−𝛼(𝒚𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝒚ෝ

𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

2

𝑟

𝑡∈{𝑡,   𝑦ො𝑡𝑐𝑀𝑇𝑃<𝑡ℎ𝑒𝑟𝑟}

 

with 𝛼 a constant that balances the relative impact of the part of the cost function associated to 
samples estimated correct and the part of the cost function associated to samples estimated 
erroneous; 𝑟 a constant that modulates how fast the cost decrease as predictions get further away 
from points estimated erroneous. However, such cost function is not convex anymore and is not 
designed to be optimized with the REW-NPLS or other simple algorithm. This would most likely be the 
case for any cost function that punishes predictions close to erroneous control decoder outputs. 
Therefore, these cost functions likely require some computational power in order to be optimized and 
may not be suited for real-time adaptation. Finally, it should be noted that the knowledge gained by 
learning not to predict known an erroneous label (e.g., the right part of the cost function proposed 
here) is higher for control decoder that have few dimensions of output than for control decoders that 
have a high dimensional output. Making such cost functions work with the aaBCI framework would 
require extensive work and was not done in this thesis. 
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Chapter 7: Limitations and perspectives 

The concept of auto-adaptive brain-computer interface (aaBCI) was present in the literature long 

before this thesis. More specifically, aaBCIs were already implemented in online use-cases, by using 

neural correlates of task performance in order to drive adaptation of the decoders used to control BCIs 

(control decoders). However, such auto-adaptive BCIs were limited to non-complex communication 

BCIs such as BCIs with discrete outputs. In this thesis, we argued how the existing aaBCIs are hardly 

usable for adaptation of complex motor BCIs, which have multiple continuous outputs. Indeed, the 

event-locked neural correlates of task performance used in these aaBCIs are ill-suited for the labeling 

of data for decoders with multi-dimensional continuous outputs. Instead, we suggest that continuous-

in-time neural correlates of Motor Task Performance (cMTP) are preferred for auto-adaptation of 

complex motor BCIs. The first main result of this thesis was that such neural correlates of cMTP are 

detectable at the single trial level from the sensorimotor cortex, even when the subject was using 

motor imagery to control the BCI. The second main result of this thesis was that the output of the 

cMTP decoder can be used to estimate labels for the control decoder, and that these estimated labels 

can be used to train control decoders in real-time. Finally, in pseudo-online simulations we managed 

to use this aaBCI framework to train control decoders with binary outputs, multiple discrete outputs 

and even bi-dimensional continuous outputs. The proof of concept performed in this thesis lays the 

foundations of auto-adaptation for complex motor BCIs. However, this proof-of-concept study has 

several limitations. In this chapter, we discuss such limitations as well as future prospective studies 

that should be performed to continue this work. 

The first limitation is that this study was performed with only one subject. However, this clinical trial is 

expected to have a total of 5 subjects, who could later be added to this study. Additionally, another 

clinical trial is being conjointly carried out by EPFL and CEA, for the restoration of walking for people 

with spinal cord injuries using BCI (STIMO-BSI, ClinicalTrials.gov identifier: NCT04632290). This new 

clinical trial has a target of 3 subjects, whose data could also be used to validate the findings of this 

thesis. As the concept of neural correlates of cMTP is not discussed in the literature, it is of prime 

importance to confirm that such neural correlates can be found reliably across subjects.  

A second strong limitation of this study is that the result presented were obtained in a simulation of 

online use rather than online use itself. Offline simulation studies allow greater parameter exploration 

and may not capture the full variability of what can occur in online experiments. Our online simulation 

study was designed to be as close as possible to online use. The cMTP decoders were trained on data 

from different sessions than the aaBCI-trained control decoders, since in future real case uses the 

cMTP decoders will require their own supervised training sessions. The control decoder used in the 

aaBCI tests are compatible with online training. The whole aaBCI test were performed in a way to 

mimic online conditions. Data was fed chunk by chunk to the training algorithm of the control decoder. 

None of the steps in the aaBCI framework when performing any update 𝑢 required data collected after 

update 𝑢. The preprocessing and prediction for both the cMTP decoders and control decoders are 

simple enough to be performed in real time on consumer-grade computers. Strong care was given not 

to over-optimize parameters on the data acquired, as can easily occur in offline studies, in order to not 

artificially boost the results presented. However, convincing experts in the scientific community will 

most likely, and righteously so, require an online proof of concept of the aaBCI using complex motor 

effectors. Online tests were initiated during this thesis. However, due to world-wide sanitary reasons, 
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data collection was strongly impeded. Unfortunately, the amount of data collected to this date was 

not sufficient to conclude the study. The thesis was started late compared to the inclusion date of the 

subject used. Future subject enrolled in the clinical trial should be able to test out the online version 

of the aaBCI. 

Robustness of the cMTP decoders is a very important feature for the aaBCI. Robustness to time is 

necessary as else the cMTP decoder would have to be retrained regularly. In this thesis, no specific 

tests were performed to test the robustness of the cMTP decoder with time. However, as mentioned 

in “Chapter 5:III.5 Temporal stability of neural correlates of cMTP in the sensorimotor cortex” our 

result may suggest that the cMTP decoders trained in this thesis were robust in time. Additionally, 

even if the cMTP decoder is not perfectly robust to time, the aaBCI can still provide some benefits as 

it only requires the training of a binary decoder (the cMTP decoder) instead of whatever complex 

control decoder is used by the aaBCI. However, the robustness and AUC of the cMTP decoder must be 

high enough or else the cMTP decoder may have to be retrained before a significant amount of data 

has been labeled for the control decoder. In this case, the amount of data needed to retrain the cMTP 

decoder may be higher than the amount of data added to the training dataset for the control decoder. 

This point has not been investigated in this thesis, but should be taken into account when designing 

and testing aaBCIs in future study.  

Robustness of the cMTP decoder to change in the BCI paradigm is also desired in the aaBCI framework. 

Indeed, if cMTP decoders are not robust to task changes, then an additional cMTP decoder would need 

to be trained for each different control decoder that a BCI uses (as was done in this thesis). This would 

not prevent the aaBCI framework from being used, but training only one cMTP decoder and being able 

to use it to train or update any control decoder afterwards would be a strong advantage of the aaBCI. 

In this thesis we did not perform any specific study to test the robustness of the cMTP decoders to 

different tasks, like training a cMTP decoder on one of our datasets and testing it on another one, or 

training a global decoder on all the datasets combined. The strong difference in decoder parameters 

between the cMTP decoders trained on different datasets suggest that decoders trained on one 

dataset may not be used as is for cMTP decoding on other datasets. However, the inter-paradigm 

stability of the cMTP decoders should be explored in detail before conclusions can be drawn.  

The proof of concept performed in this thesis was done with relatively simple BCIs. The aaBCI 

framework described here was shown to work for control decoders with discrete or bi-dimensional 

continuous outputs. Theoretically, it could also be used as is with control decoders with any number 

of continuous outputs. Still, experiments are required in order to confirm that the aaBCI framework 

can be used with control decoders that have three continuous outputs or more, as is the case with the 

most complex motor state controlled in the current clinical trial (3D movements of the hand).  

Finally, the aaBCI framework may have to be adapted for more complex motor BCIs paradigms. For 

instance, the case of motor BCIs with several motor states where each motor state requires the control 

of a multi-dimensional effector is not yet possible. The effector controlled in the Exo dataset is close 

to such a case. It would be if the subject tried to control the trajectory of the hands of the exoskeleton 

when the ‘right hand’ or ‘left hand’ motor state was activated. In such a scenario, if the output of the 

cMTP decoder estimates a given epoch as erroneous, it is impossible to know if the error was due to 

the wrong motor state being activated or the hand trajectory being wrong. One saving point is that if 

the motor state activated is incorrect, the trajectory is automatically incorrect. Therefore, the control 

decoders in charge of in-states control can be updated using the aaBCI framework as is. However, it 

may be hard to estimate if the correct motor state was activated or not. In the future, the aaBCI 

framework will have to be modified to follow the increasing complexity of state-of-the-art motor BCIs. 
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It would be beneficial if cMTP neural correlates could be detected from the sensorimotor cortex 

reliably across users. It would improve usability with current state-of-the-art motor BCI (which mainly 

have implants in or over the sensorimotor cortex) by not requiring additional recording systems. There 

is a rational that can support the hypothesis of a reliable presence of MTP neural correlates in the 

sensorimotor cortex. Modern computational models of the basal ganglia treat it as a part of a 

reinforcement-learning network for motor actions: mismatches between predicted movements and 

the reality are encoded in the spiking rate of midbrain dopaminergic neurons (Bergman et al., 2015). 

Furthermore, the basal ganglia projects into the primary motor cortex through the thalamus. The role 

of the basal ganglia in motor adaptation and its projections into the motor cortex could justify the 

presence of MTP neural correlates in the motor cortex.  

Nevertheless, the aaBCI framework developed here could use neural correlates of cMTP regardless of 

the brain region they were acquired from. It could prove highly beneficial to perform a study to 

investigate if neural correlates of cMTP can be decoded from other brain regions with more reliability 

than what was achieved in this thesis. We suggest to try to detect neural correlates of cMTP from the 

frontocentral and centroparietal cortex, as these brain regions are suitable for the detection of the 

most studied neural correlate of eMTP, the ErrP. It could be possible that neural correlates of cMTP 

are also detectable at the single-trial level from these brain regions, and usable for our aaBCI. The 

fastest way to test this would be to use recording techniques that recorded brain signals from wide 

spread points over the cortex, such as EEG or MEG. The drawback from these techniques is that they 

are not well suited to complex motor decoding. As a first approach, it is still possible to try to detect 

neural correlates of cMTP from other brain regions with these recording techniques. However, aaBCI 

testing will most likely require data collected using more powerful recording techniques. 

Unfortunately, ECoG grids that are not implanted specifically for BCI are typically not usable for chronic 

data recording, and subjects may not be able to attain control of complex motor BCIs in the time 

available. Therefore, data collected outside of the scope of state-of-the-art motor BCI clinical trial will 

most likely only be usable for detection of cMTP. Proper validation of the aaBCI framework using neural 

correlates of cMTP acquired from brain regions other than the sensorimotor cortex will likely require 

specific clinical trials. 

The aaBCI framework has room for a lot of improvement since this thesis was designed as a proof-of-

concept study. An avenue for improvement lies in the preprocessing and feature extraction steps of 

the aaBCI. The preprocessing and feature extraction applied to the input data of the cMTP decoder 

was based on the existing literature. However, the existing literature was optimized for a different 

task, which is the detection of neural correlates of eMTP, and either not in the sensorimotor cortex, or 

in the sensorimotor cortex but not at the single trial level during concurrent use of motor imagery. 

Therefore, the preprocessing and feature extraction used in this thesis can most likely be refined to be 

more optimized to the task. It should however be noted that in this study we used the same 

preprocessing and feature extraction for the cMTP decoder and control decoder, which saves some 

computation power on the computer running the aaBCI software. Care should be taken to ensure that 

data processing can still be done in real time when pursuing better preprocessing or feature extraction.  

Similarly, the hyper-parameters used were not optimized in this proof of concept, mainly because 

proper hyper-parameter optimization would require nested cross-validation. Nested cross-validation 

would both diminish the amount of data used for training and take significantly more time. For 

instance, the aaBCI results described here may be improved by optimizing the number of factors used 

in the NPLS when training the cMTP decoder (fixed to 20) or optimizing the data inclusion trade-off 

parameter 𝑎 (fixed to 1). 
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An improvement can also be made to the way data is included in the training dataset for the control 

decoder. The re-labeling function makes use of the dual thresholds in order to exclude data which is 

too uncertain to be estimated as correct or erroneous. This means a lot of data can go unused. 

Additionally, even the data included in the control decoder training dataset does not have an estimated 

probability of erroneousness or correctness of 1. We could use this estimated probability in order to 

weight the data included in the control decoder training dataset. Data for which the estimated 

probabilities of correctness or erroneousness are close to one would weight more than other data, 

with the weight decreasing all the way to 0 when at the data inclusion thresholds. The uncertainty 

could also be used in other probabilistic models instead of simple weighting of samples.  

On another note, it would be desirable to have a better understanding of neural correlates of cMTPs 

from a neuroscientific point of view. As cMTP neural correlates were never described before (to our 

knowledge), there is an inherent interest in understanding their neural basis. Interesting questions 

include and are not limited to: how are they linked to motor learning? Are they modified when the 

user is not conscious that he performed a mistake? Are they related to other metacognitive processes? 

Understanding neural correlates of cMTP may also shine a new light on other brain mechanisms. In 

addition to the pure neuroscientific interest that neural correlates of cMTPs should elicit, their 

understanding could also be beneficial for the field of BCIs. For instance, knowing where in the brain 

these signals are generated and why they are generated would make them easier to use in the aaBCI 

framework. This is especially true for the optimal location for recording neural correlates of cMTP, as 

it could be taken into account in future BCI clinical trials when deciding the optimal locations for 

implants.  

Finally, the aaBCI framework was designed for adaptation of the control decoder. It helps preventing 

future errors from happening. However, neural correlates of task performance can also be used for 

error correction or instantaneous error prevention (Artusi et al., 2011; Even-Chen et al., 2018; 

Kreilinger et al., 2009) in BCIs based on events. We expect both of these applications to be hard to 

implement for decoders with multiple continuous outputs, as strong artificial changes in trajectory 

controls could disturb the user more than it would help him. 

The proof of concept realized in this thesis is promising for the future of aaBCI, particularly for complex 

state-of-the-art motor BCIs. However, in this chapter we outlined several limitations and 

improvements that could be made to the aaBCI framework. It highlighted that more development will 

be required before the aaBCI can be used in real life scenarios.
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Supplementary data 

I. Electrode set selection preliminary study 
 After the visualization study, we tried to spread the recording surface as much as possible over the 

sensorimotor cortex. We decided to perform preliminary recordings using the two chess-like electrode 

groups (Figure 13), before selecting the one that provided the best results for single trial detection of 

eMTPs and cMTPs. This electrode group selection was performed using the first three sessions of the 

Runner no_MI dataset and the Runner no_MI inverted dataset (three sessions as well). We also used 

the split-session cross validation scheme. 

When using event-locked labeling, the mean and standard deviation of the AUC where 0.771 ± 0.055 

for the first chess electrode recording layout and 0.764 ± 0.070 for the second chess electrode 

recording layout. When using continuous in time labeling, the mean and standard deviation of the AUC 

where 0.868 ± 0.056 for the first chess electrode recording layout and 0.813 ± 0.061 for the second 

chess electrode recording layout (Figure 42 and Figure 43). There were no statistically significant 

differences between the two electrode groups regarding the detectability of cMTP neural correlates 

(two-sided Wilcoxon-Mann-Whitney test, p=0.1508) or eMTP neural correlates (two-sided Wilcoxon-

Mann-Whitney test, p=0.8413). Therefore, we arbitrarily decided to use the first electrode layout 

throughout the remainder of the thesis.  

A B 

Figure 42. Performance of the eMTP decoder in a preliminary study for electrode selection ((A) electrode group one, (B) 
electrode group two), performed with the Runner experiment without motor imagery. Dotted lines show the AUC for each test 
(red lines) or train fold (blue lines), while full lines represent their mean. 
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Figure 43 Performances of the eMTP and cMTP decoders for the two different electrode groups in the electrode selection 
study, and for the two labeling strategies. Performances are displayed using the receiver operating characteristic curves for 
the detection of erroneous task performance. Performances on the training sets are displayed in blue, while performances on 
the testing set are displayed in red. Each dotted line represents one of the five cross-validation folds, while the full lines 
represent the interpolated mean ROC over the five folds. 
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II. Motor imagery decoders trained on the same epochs as 

the MTP decoders 
In a supplementary study, we investigated the relative feature importance of control decoders. We 

used the same split-session cross-validation scheme as described in “Chapter 5:I.5.Performance 

measure for single trial detection of neural correlates of MTP”. Control decoders were trained using 

labels acquired in a supervised manner. However, only epochs that fitted the inclusion criteria of the 

eMTP or cMTP decoders were used (but with label for the training of the control decoder). This first 

allowed to study the relative feature importance for the control decoders, but also enabled 

comparing the feature maps of the control decoder and the cMTP decoder without any bias due to 

difference in epochs used for the training sets. This supplementary study was performed for the 

Runner MI, Exo and Cursor dataset. The Runner no_MI dataset was not included since no motor 

imagery was performed during the recording of the dataset. For the Runner MI dataset, we present 

feature maps of control decoders trained using the epochs included in the training sets of either 

eMTP decoders (event-locked labeling) or cMTP decoders (continuous-in-time labeling). For the Exo 

and Cursor datasets, the epochs used were the one included in the training set of the cMTP decoder 

(continuous in time labeling). The decoder parameters were averaged over each modality (temporal, 

frequential or spatial) as described in “Chapter 5:I.4.Decoders for the detection of neural correlates of 

task performance - N-way partial least squares”.  
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Runner MI dataset 
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Figure 44 Relative importance of decoder parameters for control decoders trained supervisedly using only epochs that could 
be included in the training sets of the eMTP decoder (event-locked labeling) or cMTP decoder (continuous-in-time labeling) for 
the Runner MI dataset. 



Supplementary data 

89 

  

Le
ft

 h
an

d
 d

e
co

d
e

r 
R

ig
h

t 
h

an
d

 d
e

co
d

e
r 

Le
ft

 w
ri

st
 d

e
co

d
e

r 
R

ig
h

t 
w

ri
st

 d
e

co
d

e
r 

Exo dataset 

Figure 45 Relative importance of the temporal and frequential decoder parameters for control decoders trained supervisedly 
using only epochs that could be included in the training sets of the cMTP decoder (continuous-in-time labeling) for the Exo 
dataset. The decoder parameters are shown for each of the motor classes in the Exo dataset. 
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Figure 46 Relative importance of the spatial decoder parameters for control decoders trained supervisedly using only epochs 
that could be included in the training sets of the cMTP decoder (continuous-in-time labeling) for the Exo dataset. The decoder 
parameters are shown for each of the motor classes in the Exo dataset. 

Le
ft

 h
an

d
 d

ec
o

d
er

 
R

ig
h

t 
h

an
d

 d
ec

o
d

er
 

Le
ft

 w
ri

st
 d

ec
o

d
er

 
R

ig
h

t 
w

ri
st

 d
ec

o
d

er
 

Exo dataset 



Supplementary data 

91 

Cursor dataset 

Figure 47 Relative importance of the decoder parameters for control decoders trained supervisedly using only epochs that 
could be included in the training sets of the cMTP decoder (continuous-in-time labeling) for the Cursor dataset. The decoder 
parameters shown are the average of the parameters obtained for the two continuous outputs of the control decoder in the 
Cursor dataset. 
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Publications, communications and awards 

This thesis led to several scientific contributions, which are listed below. Due to a combination of the 

communication strategy of the host company (priority on patents) and the worldwide sanitary 

situation (COVID19), the decision was made to publish one large article at the end of the thesis rather 

than multiple small ones continuously.  

Patents 
Rouanne, V., Aksenova, T., 2022. Méthode d’apprentissage auto-adaptatif d’une interface neuronale 

directe utilisant une détection physique d’état mental. FR3118413A1. 
 

Awards 
Rouanne, V., Costecalde, T., Martel, F., Karakas, S., Benabid, A.L., Aksenova, T., 2021. Auto-adaptive 

ECoG-based Brain Machine Interface: training and adaptation during self-directed use. BCI 
awards 2021 (nominee) 

 

Publications 
Rouanne, V., Costecalde, T., Benabid, A.L., Aksenova, T., 2022. Unsupervised adaptation of an ECoG 

based brain-computer interface using neural correlates of task performance. Sci Rep. Under 
review 

Wei, X., Faisal, A.A., Grosse-Wentrup, M., Gramfort, A., Chevallier, S., Jayaram, V., Jeunet, C., Bakas, S., 
Ludwig, S., Barmpas, K., Bahri, M., Panagakis, Y., Laskaris, N., Adamos, D.A., Zafeiriou, S., 
Duong, W.C., Gordon, S.M., Lawhern, V.J., Śliwowski, M., Rouanne, V., Tempczyk, P., 2022. 
2021 BEETL Competition: Advancing Transfer Learning for Subject Independence & 
Heterogenous EEG Data Sets, in: Proceedings of the NeurIPS 2021 Competitions and 
Demonstrations Track. Presented at the NeurIPS 2021 Competitions and Demonstrations 
Track, PMLR, pp. 205–219. 

Rouanne, V., Śliwowski, M., Costecalde, T., Benabid, A., Aksenova, T., 2021. Detection of Error 
Correlates in the Motor Cortex in a Long Term Clinical Trial of ECoG based Brain Computer 
Interface:, in: Proceedings of the 14th International Joint Conference on Biomedical 
Engineering Systems and Technologies. Presented at the 14th International Conference on Bio-
inspired Systems and Signal Processing, SCITEPRESS - Science and Technology Publications, 
Online Streaming, pp. 26–34. https://doi.org/10.5220/0010227800260034 

 

Oral presentations and posters 
Rouanne, V., Costecalde, T., Benabid, A.L., Aksenova, T., 2021. Auto-adaptive BCI using labels inferred 

from an ECoG-based continuous cognitive state signal. 9th International BCI Meeting. 
Rouanne, V., Aksenova, T., 2022. Adaptation of a bi-dimensional continuous BCI using neural correlates 

of task performance in ECoG recordings from the sensorimotor cortex. Cortico 2022 
 

 

 

 



 

93 

Bibliography 

Ahn, S., Kim, K., Jun, S.C., 2015. Steady-State Somatosensory Evoked Potential for Brain-Computer 
Interface-Present and Future. Front Hum Neurosci 9, 716. 
https://doi.org/10.3389/fnhum.2015.00716 

Allison, B.Z., Leeb, R., Brunner, C., Müller-Putz, G.R., Bauernfeind, G., Kelly, J.W., Neuper, C., 2012. 
Toward smarter BCIs: extending BCIs through hybridization and intelligent control. J Neural 
Eng 9, 013001. https://doi.org/10.1088/1741-2560/9/1/013001 

Andersson, P., Pluim, J.P.W., Viergever, M.A., Ramsey, N.F., 2013. Navigation of a Telepresence Robot 
via Covert Visuospatial Attention and Real-Time fMRI. Brain Topogr 26, 177–185. 
https://doi.org/10.1007/s10548-012-0252-z 

Artusi, X., 2012. Interface Cerveau Machine avec adaptation automatique à l’utilisateur. 
Artusi, X., Niazi, I.K., Lucas, M., Farina, D., 2011. Performance of a Simulated Adaptive BCI Based on 

Experimental Classification of Movement-Related and Error Potentials. IEEE Journal on 
Emerging and Selected Topics in Circuits and Systems 1, 480–488. 
https://doi.org/10.1109/JETCAS.2011.2177920 

Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E., 2007. A survey of signal processing algorithms 
in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4, R32–R57. 
https://doi.org/10.1088/1741-2560/4/2/R03 

Benabid, A.L., Costecalde, T., Eliseyev, A., Charvet, G., Verney, A., Karakas, S., Foerster, M., Lambert, 
A., Morinière, B., Abroug, N., Schaeffer, M.-C., Moly, A., Sauter-Starace, F., Ratel, D., Moro, C., 
Torres-Martinez, N., Langar, L., Oddoux, M., Polosan, M., Pezzani, S., Auboiroux, V., Aksenova, 
T., Mestais, C., Chabardes, S., 2019. An exoskeleton controlled by an epidural wireless brain–
machine interface in a tetraplegic patient: a proof-of-concept demonstration. The Lancet 
Neurology. https://doi.org/10.1016/S1474-4422(19)30321-7 

Bergman, H., Katabi, S., Slovik, M., Deffains, M., Arkadir, D., Israel, Z., Eitan, R., 2015. Motor Pathways, 
Basal Ganglia Physiology, and Pathophysiology, in: Brain Stimulation. John Wiley & Sons, Ltd, 
pp. 29–44. https://doi.org/10.1002/9781118568323.ch3 

Birbaumer, N., 2006. Breaking the silence: Brain–computer interfaces (BCI) for communication and 
motor control. Psychophysiology 43, 517–532. https://doi.org/10.1111/j.1469-
8986.2006.00456.x 

Bishop, C., 2006. Pattern Recognition and Machine Learning. 
Blumberg, J., Rickert, J., Waldert, S., Schulze-Bonhage, A., Aertsen, A., Mehring, C., 2007. Adaptive 

Classification for Brain Computer Interfaces, in: 2007 29th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society. Presented at the 2007 29th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2536–
2539. https://doi.org/10.1109/IEMBS.2007.4352845 

Bro, R., 1996. Multiway calibration. Multilinear PLS. Journal of Chemometrics 10, 47–61. 
https://doi.org/10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C 

Buttfield, A., Ferrez, P.W., Del R. Millan, J., 2006. Towards a Robust BCI: Error Potentials and Online 
Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 164–168. 
https://doi.org/10.1109/TNSRE.2006.875555 

Buzsáki, G., Anastassiou, C.A., Koch, C., 2012. The origin of extracellular fields and currents — EEG, 
ECoG, LFP and spikes. Nat Rev Neurosci 13, 407–420. https://doi.org/10.1038/nrn3241 

Chavarriaga, R., Iturrate, I., Millan, J. del R., 2016. Robust, accurate spelling based on error-related 
potentials. 



Bibliography 

94 

Chavarriaga, R., Millan, J. d R., 2010. Learning From EEG Error-Related Potentials in Noninvasive Brain-
Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18, 
381–388. https://doi.org/10.1109/TNSRE.2010.2053387 

Chavarriaga, R., Sobolewski, A., Millan, J. d R., 2014. Errare machinale est: the use of error-related 
potentials in brain-machine interfaces. Front. Neurosci. 8. 
https://doi.org/10.3389/fnins.2014.00208 

Clerc, M., Daucé, E., Mattout, J., 2016. Adaptive Methods in Machine Learning, in: Brain–Computer 
Interfaces 1. John Wiley & Sons, Ltd, pp. 207–232. 
https://doi.org/10.1002/9781119144977.ch10 

Cohen, O., Koppel, M., Malach, R., Friedman, D., 2014. Controlling an avatar by thought using real-time 
fMRI. J Neural Eng 11, 035006. https://doi.org/10.1088/1741-2560/11/3/035006 

Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, 
A.J.C., Velliste, M., Boninger, M.L., Schwartz, A.B., 2013. High-performance neuroprosthetic 
control by an individual with tetraplegia. Lancet 381, 557–564. 
https://doi.org/10.1016/S0140-6736(12)61816-9 

Coyle, S., Ward, T., Markham, C., McDarby, G., 2004. On the suitability of near-infrared (NIR) systems 
for next-generation brain–computer interfaces. Physiol. Meas. 25, 815–822. 
https://doi.org/10.1088/0967-3334/25/4/003 

Coyle, S.M., Ward, T.E., Markham, C.M., 2007. Brain–computer interface using a simplified functional 
near-infrared spectroscopy system. J. Neural Eng. 4, 219–226. https://doi.org/10.1088/1741-
2560/4/3/007 

Cruz, A., Pires, G., Nunes, U.J., 2018. Double ErrP Detection for Automatic Error Correction in an ERP-
Based BCI Speller. IEEE Trans Neural Syst Rehabil Eng 26, 26–36. 
https://doi.org/10.1109/TNSRE.2017.2755018 

Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V., 2011. A closed-loop 
human simulator for investigating the role of feedback control in brain-machine interfaces. J 
Neurophysiol 105, 1932–1949. https://doi.org/10.1152/jn.00503.2010 

Daucé, E., Proix, T., Ralaivola, L., 2015. Reward-based online learning in non-stationary environments: 
Adapting a P300-speller with a “backspace” key, in: 2015 International Joint Conference on 
Neural Networks (IJCNN). Presented at the 2015 International Joint Conference on Neural 
Networks (IJCNN), pp. 1–8. https://doi.org/10.1109/IJCNN.2015.7280686 

Degenhart, A.D., Hiremath, S.V., Yang, Y., Foldes, S., Collinger, J.L., Boninger, M., Tyler-Kabara, E.C., 
Wang, W., 2018. Remapping cortical modulation for electrocorticographic brain-computer 
interfaces: a somatotopy-based approach in individuals with upper-limb paralysis. J Neural Eng 
15, 026021. https://doi.org/10.1088/1741-2552/aa9bfb 

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum Likelihood from Incomplete Data Via the EM 
Algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39, 1–22. 
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x 

Donchin, E., Spencer, K.M., Wijesinghe, R., 2000. The mental prosthesis: assessing the speed of a P300-
based brain-computer interface. IEEE Trans Rehabil Eng 8, 174–179. 

Eliseyev, A., Aksenova, T., 2013. Recursive N-Way Partial Least Squares for Brain-Computer Interface, 
in: PloS One. https://doi.org/10.1371/journal.pone.0069962 

Eliseyev, A., Auboiroux, V., Costecalde, T., Langar, L., Charvet, G., Mestais, C., Aksenova, T., Benabid, 
A.-L., 2017. Recursive Exponentially Weighted N-way Partial Least Squares Regression with 
Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications. Sci Rep 7, 
1–15. https://doi.org/10.1038/s41598-017-16579-9 

Even-Chen, N., Stavisky, S.D., Kao, J.C., Ryu, S.I., Shenoy, K.V., 2017. Augmenting intracortical brain-
machine interface with neurally driven error detectors. J. Neural Eng. 14, 066007. 
https://doi.org/10.1088/1741-2552/aa8dc1 

Even-Chen, N., Stavisky, S.D., Pandarinath, C., Nuyujukian, P., Blabe, C.H., Hochberg, L.R., Henderson, 
J.M., Shenoy, K.V., 2018. Feasibility of Automatic Error Detect-and-Undo System in Human 



Bibliography 

95 

Intracortical Brain–Computer Interfaces. IEEE Transactions on Biomedical Engineering 65, 
1771–1784. https://doi.org/10.1109/TBME.2017.2776204 

Falkenstein, M., Hohnsbein, J., Hoormann, J., Blanke, L., 1991. Effects of crossmodal divided attention 
on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography 
and Clinical Neurophysiology 78, 447–455. https://doi.org/10.1016/0013-4694(91)90062-9 

Falkenstein, M., Hoormann, J., Christ, S., Hohnsbein, J., 2000. ERP components on reaction errors and 
their functional significance: a tutorial. Biol Psychol 51, 87–107. 

Ferrez, P., 2007. ERROR-RELATED EEG POTENTIALS IN BRAIN-COMPUTER INTERFACES. 
Ferrez, P.W., del R. Millan, J., 2008. Error-Related EEG Potentials Generated During Simulated Brain–

Computer Interaction. IEEE Trans. Biomed. Eng. 55, 923–929. 
https://doi.org/10.1109/TBME.2007.908083 

Gu, Z., Yu, Z., Shen, Z., Li, Y., 2013. An Online Semi-supervised Brain–Computer Interface. IEEE 
Transactions on Biomedical Engineering 60, 2614–2623. 
https://doi.org/10.1109/TBME.2013.2261994 

Gueguen, M.C.M., Lopez-Persem, A., Billeke, P., Lachaux, J.-P., Rheims, S., Kahane, P., Minotti, L., David, 
O., Pessiglione, M., Bastin, J., 2021. Anatomical dissociation of intracerebral signals for reward 
and punishment prediction errors in humans. Nature Communications 12, 1–12. 
https://doi.org/10.1038/s41467-021-23704-w 

Guger, C., Ramoser, H., Pfurtscheller, G., 2000. Real-time EEG analysis with subject-specific spatial 
patterns for a brain-computer interface (BCI). IEEE Transactions on Rehabilitation Engineering 
8, 447–456. https://doi.org/10.1109/86.895947 

Gunasekera, B., Saxena, T., Bellamkonda, R., Karumbaiah, L., 2015. Intracortical recording interfaces: 
current challenges to chronic recording function. ACS Chem Neurosci 6, 68–83. 
https://doi.org/10.1021/cn5002864 

Gürel, T., Mehring, C., 2012. Unsupervised Adaptation of Brain-Machine Interface Decoders. Front 
Neurosci 6. https://doi.org/10.3389/fnins.2012.00164 

Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. 
Magnetoencephalography---theory, instrumentation, and applications to noninvasive studies 
of the working human brain. Rev. Mod. Phys. 65, 413–497. 
https://doi.org/10.1103/RevModPhys.65.413 

Hand, D.J., Till, R.J., 2001. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class 
Classification Problems. Machine Learning 45, 171–186. 
https://doi.org/10.1023/A:1010920819831 

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, Springer Series in Statistics. Springer, New York, NY. 

Hinterberger, T., Kübler, A., Kaiser, J., Neumann, N., Birbaumer, N., 2003. A brain–computer interface 
(BCI) for the locked-in: comparison of different EEG classifications for the thought translation 
device. Clinical Neurophysiology 114, 416–425. https://doi.org/10.1016/S1388-
2457(02)00411-X 

Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., 
Cash, S.S., van der Smagt, P., Donoghue, J.P., 2012. Reach and grasp by people with tetraplegia 
using a neurally controlled robotic arm. Nature 485, 372–375. 
https://doi.org/10.1038/nature11076 

Iwane, F., Chavarriaga, R., Iturrate, I., Millán, J. del R., 2016. Spatial filters yield stable features for error-
related potentials across conditions, in: 2016 IEEE International Conference on Systems, Man, 
and Cybernetics (SMC). Presented at the 2016 IEEE International Conference on Systems, Man, 
and Cybernetics (SMC), pp. 000661–000666. https://doi.org/10.1109/SMC.2016.7844316 

Jarosiewicz, B., Masse, N.Y., Bacher, D., Cash, S.S., Eskandar, E., Friehs, G., Donoghue, J.P., Hochberg, 
L.R., 2013. Advantages of closed-loop calibration in intracortical brain-computer interfaces for 
people with tetraplegia. J Neural Eng 10, 046012. https://doi.org/10.1088/1741-
2560/10/4/046012 



Bibliography 

96 

Jung, J., Jerbi, K., Ossandon, T., Ryvlin, P., Isnard, J., Bertrand, O., Guénot, M., Mauguière, F., Lachaux, 
J.-P., 2010. Brain responses to success and failure: Direct recordings from human cerebral 
cortex. Hum. Brain Mapp. NA-NA. https://doi.org/10.1002/hbm.20930 

Khan, R.A., Naseer, N., Qureshi, N.K., Noori, F.M., Nazeer, H., Khan, M.U., 2018. fNIRS-based 
Neurorobotic Interface for gait rehabilitation. Journal of NeuroEngineering and Rehabilitation 
15, 7. https://doi.org/10.1186/s12984-018-0346-2 

Kim, D.-W., Cho, J.-H., Hwang, H.-J., Lim, J.-H., Im, C.-H., 2011. A vision-free brain-computer interface 
(BCI) paradigm based on auditory selective attention, in: 2011 Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society. Presented at the 2011 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 
3684–3687. https://doi.org/10.1109/IEMBS.2011.6090623 

Kindermans, P.-J., Schreuder, M., Schrauwen, B., Müller, K.-R., Tangermann, M., 2014. True zero-
training brain-computer interfacing--an online study. PLoS ONE 9, e102504. 
https://doi.org/10.1371/journal.pone.0102504 

Koelewijn, T., van Schie, H.T., Bekkering, H., Oostenveld, R., Jensen, O., 2008. Motor-cortical beta 
oscillations are modulated by correctness of observed action. NeuroImage 40, 767–775. 
https://doi.org/10.1016/j.neuroimage.2007.12.018 

Kreilinger, A., Neuper, C., Müller-Putz, G.R., 2012. Error potential detection during continuous 
movement of an artificial arm controlled by brain–computer interface. Med Biol Eng Comput 
50, 223–230. https://doi.org/10.1007/s11517-011-0858-4 

Kreilinger, A., Neuper, C., Pfurtscheller, G., Müller-Putz, G.R., 2009. Implementation of Error Detection 
into the Graz-Brain-Computer Interface, the Interaction Error Potential. Assistive technology 
research 6. 

Kumar, A., Gao, L., Pirogova, E., Fang, Q., 2019. A Review of Error-Related Potential-Based Brain–
Computer Interfaces for Motor Impaired People. IEEE Access 7, 142451–142466. 
https://doi.org/10.1109/ACCESS.2019.2944067 

Larzabal, C., Bonnet, S., Costecalde, T., Auboiroux, V., Charvet, G., Chabardes, S., Aksenova, T., Sauter-
Starace, F., 2021. Long-term stability of the chronic epidural wireless recorder WIMAGINE in 
tetraplegic patients. J. Neural Eng. 18, 056026. https://doi.org/10.1088/1741-2552/ac2003 

Lebedev, M.A., Nicolelis, M.A.L., 2017. Brain-Machine Interfaces: From Basic Science to 
Neuroprostheses and Neurorehabilitation. Physiological Reviews 97, 767–837. 
https://doi.org/10.1152/physrev.00027.2016 

Lee, W.S., Lee, J.K., Lee, S.A., Kang, J.K., Ko, T.S., 2000. Complications and results of subdural grid 
electrode implantation in epilepsy surgery. Surg Neurol 54, 346–351. 
https://doi.org/10.1016/s0090-3019(00)00324-4 

Leuthardt, E.C., Miller, K.J., Schalk, G., Rao, R.P.N., Ojemann, J.G., 2006. Electrocorticography-based 
brain computer Interface-the seattle experience. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering 14, 194–198. https://doi.org/10.1109/TNSRE.2006.875536 

Li, Z., O’Doherty, J.E., Hanson, T.L., Lebedev, M.A., Henriquez, C.S., Nicolelis, M.A.L., 2009. Unscented 
Kalman Filter for Brain-Machine Interfaces. PLOS ONE 4, e6243. 
https://doi.org/10.1371/journal.pone.0006243 

Li, Z., O’Doherty, J.E., Lebedev, M.A., Nicolelis, M.A.L., 2011. Adaptive Decoding for Brain-Machine 
Interfaces through Bayesian Parameter Updates. Neural Comput 23, 3162–3204. 
https://doi.org/10.1162/NECO_a_00207 

Llera, A., Gómez, V., Kappen, H.J., 2012. Adaptive Classification on Brain-Computer Interfaces Using 
Reinforcement Signals. Neural Computation 24, 2900–2923. 
https://doi.org/10.1162/NECO_a_00348 

Llera, A., van Gerven, M.A.J., Gómez, V., Jensen, O., Kappen, H.J., 2011. On the use of interaction error 
potentials for adaptive brain computer interfaces. Neural Networks 24, 1120–1127. 
https://doi.org/10.1016/j.neunet.2011.05.006 



Bibliography 

97 

Lopes Dias, C., Sburlea, A.I., Müller-Putz, G.R., 2018. Masked and unmasked error-related potentials 
during continuous control and feedback. Journal of Neural Engineering 15. 
https://doi.org/10.1088/1741-2552/aab806 

Lopes-Dias, C., Sburlea, A.I., Müller-Putz, G.R., 2019. Online asynchronous decoding of error-related 
potentials during the continuous control of a robot. Scientific Reports 9, 1–9. 
https://doi.org/10.1038/s41598-019-54109-x 

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F., 2018. A review 
of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal 
of Neural Engineering 15. https://doi.org/10.1088/1741-2552/aab2f2 

Mattout, J., Perrin, M., Bertrand, O., Maby, E., 2015. Improving BCI performance through co-
adaptation: Applications to the P300-speller. Annals of Physical and Rehabilitation Medicine 
58, 23–28. https://doi.org/10.1016/j.rehab.2014.10.006 

McFarland, D.J., Wolpaw, J.R., 2018. Brain–computer interface use is a skill that user and system 
acquire together. PLOS Biology 16, e2006719. https://doi.org/10.1371/journal.pbio.2006719 

Mestais, C.S., Charvet, G., Sauter-Starace, F., Foerster, M., Ratel, D., Benabid, A.L., 2015. WIMAGINE: 
Wireless 64-Channel ECoG Recording Implant for Long Term Clinical Applications. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering 23, 10–21. 
https://doi.org/10.1109/TNSRE.2014.2333541 

Milekovic, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., 2013. Detection of Error Related 
Neuronal Responses Recorded by Electrocorticography in Humans during Continuous 
Movements. PLOS ONE 8, e55235. https://doi.org/10.1371/journal.pone.0055235 

Milekovic, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., 2012. Error-related 
electrocorticographic activity in humans during continuous movements. J. Neural Eng. 9, 
026007. https://doi.org/10.1088/1741-2560/9/2/026007 

Miltner, W.H.R., Braun, C.H., Coles, M.G.H., 1997. Event-Related Brain Potentials Following Incorrect 
Feedback in a Time-Estimation Task: Evidence for a “Generic” Neural System for Error 
Detection. Journal of Cognitive Neuroscience 9, 788–798. 
https://doi.org/10.1162/jocn.1997.9.6.788 

Moly, A., Costecalde, T., Martel, F., Martin, M., Larzabal, C., Karakas, S., Verney, A., Charvet, G., 
Chabardes, S., Benabid, A.L., Aksenova, T., 2022. An adaptive closed-loop ECoG decoder for 
long-term and stable bimanual control of an exoskeleton by a tetraplegic. J. Neural Eng. 19, 
026021. https://doi.org/10.1088/1741-2552/ac59a0 

Müller-Putz, G.R., Schwarz, A., Pereira, J., Ofner, P., 2016. From classic motor imagery to complex 
movement intention decoding: The noninvasive Graz-BCI approach. Prog. Brain Res. 228, 39–
70. https://doi.org/10.1016/bs.pbr.2016.04.017 

Naseer, N., Hong, K.-S., 2015. fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci 9, 
3. https://doi.org/10.3389/fnhum.2015.00003 

Nicolas-Alonso, L.F., Gomez-Gil, J., 2012. Brain computer interfaces, a review. Sensors (Basel) 12, 1211–
1279. https://doi.org/10.3390/s120201211 

Olvet, D.M., Hajcak, G., 2009. Reliability of error-related brain activity. Brain Research 1284, 89–99. 
https://doi.org/10.1016/j.brainres.2009.05.079 

Omedes, J., Iturrate, I., Minguez, J., Montesano, L., 2015. Analysis and asynchronous detection of 
gradually unfolding errors during monitoring tasks. Journal of neural engineering 12, 056001. 
https://doi.org/10.1088/1741-2560/12/5/056001 

Omedes, J., Iturrate, I., Montesano, L., Minguez, J., 2013. Using frequency-domain features for the 
generalization of EEG error-related potentials among different tasks, in: 2013 35th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 
Presented at the 2013 35th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC), pp. 5263–5266. 
https://doi.org/10.1109/EMBC.2013.6610736 

Parra, L.C., Spence, C.D., Gerson, A.D., Sajda, P., 2003. Response error correction-a demonstration of 
improved human-machine performance using real-time EEG monitoring. IEEE Transactions on 



Bibliography 

98 

Neural Systems and Rehabilitation Engineering 11, 173–177. 
https://doi.org/10.1109/TNSRE.2003.814446 

Perdikis, S., Millan, J. del R., 2020. Brain-Machine Interfaces: A Tale of Two Learners. IEEE Systems, 
Man, and Cybernetics Magazine 6, 12–19. https://doi.org/10.1109/MSMC.2019.2958200 

Perge, J.A., Homer, M.L., Malik, W.Q., Cash, S., Eskandar, E., Friehs, G., Donoghue, J.P., Hochberg, L.R., 
2013. Intra-day signal instabilities affect decoding performance in an intracortical neural 
interface system. J Neural Eng 10, 036004. https://doi.org/10.1088/1741-2560/10/3/036004 

Reece, J.B., 2011. Campbell Biology. Benjamin Cummings / Pearson. 
Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., Volosyak, I., 2018. Brain-Computer 

Interface Spellers: A Review. Brain Sci 8. https://doi.org/10.3390/brainsci8040057 
Riesel, A., Weinberg, A., Endrass, T., Meyer, A., Hajcak, G., 2013. The ERN is the ERN is the ERN? 

Convergent validity of error-related brain activity across different tasks. Biological Psychology 
93, 377–385. https://doi.org/10.1016/j.biopsycho.2013.04.007 

Schaeffer, M.-C., 2018. ECoG signal processing for Brain Computer Interface with multiple degrees of 
freedom for clinical application. 

Schaeffer, M.-C., Aksenova, T., 2018. Data-Driven Transducer Design and Identification for Internally-
Paced Motor Brain Computer Interfaces: A Review. Front. Neurosci. 12. 
https://doi.org/10.3389/fnins.2018.00540 

Schaeffer, M.-C., Aksenova, T., 2016. Switching Markov decoders for asynchronous trajectory 
reconstruction from ECoG signals in monkeys for BCI applications. Journal of Physiology-Paris 
110, 348–360. https://doi.org/10.1016/j.jphysparis.2017.03.002 

Schalk, G., Miller, K.J., Anderson, N.R., Wilson, J.A., Smyth, M.D., Ojemann, J.G., Moran, D.W., Wolpaw, 
J.R., Leuthardt, E.C., 2008. Two-dimensional movement control using electrocorticographic 
signals in humans. J. Neural Eng. 5, 75–84. https://doi.org/10.1088/1741-2560/5/1/008 

Schalk, G., Wolpaw, J.R., McFarland, D.J., Pfurtscheller, G., 2000. EEG-based communication: presence 
of an error potential. Clin Neurophysiol 111, 2138–2144. https://doi.org/10.1016/s1388-
2457(00)00457-0 

Schie, H.T. van, Mars, R.B., Coles, M.G.H., Bekkering, H., 2004. Modulation of activity in medial frontal 
and motor cortices during error observation. Nat Neurosci 7, 549–554. 
https://doi.org/10.1038/nn1239 

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C., 2001. Estimating the Support 
of a High-Dimensional Distribution. Neural Computation 13, 1443–1471. 
https://doi.org/10.1162/089976601750264965 

Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M., 2017. Rapid 
control and feedback rates enhance neuroprosthetic control. Nature Communications 8, 1–10. 
https://doi.org/10.1038/ncomms13825 

Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P.N., Müller, K.-R., 2006. Towards adaptive classification 
for BCI. J. Neural Eng. 3, R13–R23. https://doi.org/10.1088/1741-2560/3/1/R02 

Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D.K., Lesage, F., 2019. fNIRS improves seizure detection in 
multimodal EEG-fNIRS recordings. J Biomed Opt 24, 1–9. 
https://doi.org/10.1117/1.JBO.24.5.051408 

Spüler, M., Niethammer, C., 2015. Error-related potentials during continuous feedback: using EEG to 
detect errors of different type and severity. Front. Hum. Neurosci. 9. 
https://doi.org/10.3389/fnhum.2015.00155 

Spüler, M., Rosenstiel, W., Bogdan, M., 2012. Online Adaptation of a c-VEP Brain-Computer 
Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning. PLoS ONE 7, 
e51077. https://doi.org/10.1371/journal.pone.0051077 

Stieglitz, T., Rubehn, B., Henle, C., Kisban, S., Herwik, S., Ruther, P., Schuettler, M., 2009. Brain–
computer interfaces: an overview of the hardware to record neural signals from the cortex, in: 
Verhaagen, J., Hol, E.M., Huitenga, I., Wijnholds, J., Bergen, A.B., Boer, G.J., Swaab, D.F. (Eds.), 
Progress in Brain Research, Neurotherapy: Progress in Restorative Neuroscience and 
Neurology. Elsevier, pp. 297–315. https://doi.org/10.1016/S0079-6123(09)17521-0 



Bibliography 

99 

Stippich, C., Ochmann, H., Sartor, K., 2002. Somatotopic mapping of the human primary sensorimotor 
cortex during motor imagery and motor execution by functional magnetic resonance imaging. 
Neuroscience Letters 331, 50–54. https://doi.org/10.1016/S0304-3940(02)00826-1 

Tanaka, K., Matsunaga, K., Wang, H.O., 2005. Electroencephalogram-based control of an electric 
wheelchair. IEEE Transactions on Robotics 21, 762–766. 
https://doi.org/10.1109/TRO.2004.842350 

Tidoni, E., Gergondet, P., Kheddar, A., Aglioti, S.M., 2014. Audio-visual feedback improves the BCI 
performance in the navigational control of a humanoid robot. Frontiers in Neurorobotics 8. 

Treder, M.S., Blankertz, B., 2010. (C)overt attention and visual speller design in an ERP-based brain-
computer interface. Behav Brain Funct 6, 28. https://doi.org/10.1186/1744-9081-6-28 

Treder, M.S., Schmidt, N.M., Blankertz, B., 2011. Gaze-independent brain-computer interfaces based 
on covert attention and feature attention. J Neural Eng 8, 066003. 
https://doi.org/10.1088/1741-2560/8/6/066003 

Vansteensel, M.J., Pels, E.G.M., Bleichner, M.G., Branco, M.P., Denison, T., Freudenburg, Z.V., 
Gosselaar, P., Leinders, S., Ottens, T.H., Van Den Boom, M.A., Van Rijen, P.C., Aarnoutse, E.J., 
Ramsey, N.F., 2016. Fully Implanted Brain–Computer Interface in a Locked-In Patient with ALS. 
New England Journal of Medicine 375, 2060–2066. https://doi.org/10.1056/NEJMoa1608085 

Vidaurre, C., Kawanabe, M., Bünau, P. von, Blankertz, B., Müller, K.R., 2011a. Toward Unsupervised 
Adaptation of LDA for Brain–Computer Interfaces. IEEE Transactions on Biomedical 
Engineering 58, 587–597. https://doi.org/10.1109/TBME.2010.2093133 

Vidaurre, C., Sannelli, C., Müller, K.-R., Blankertz, B., 2011b. Machine-learning-based coadaptive 
calibration for brain-computer interfaces. Neural Comput 23, 791–816. 
https://doi.org/10.1162/NECO_a_00089 

Völker, M., Fiederer, L.D.J., Berberich, S., Hammer, J., Behncke, J., Kršek, P., Tomášek, M., Marusič, P., 
Reinacher, P.C., Coenen, V.A., Helias, M., Schulze-Bonhage, A., Burgard, W., Ball, T., 2018. The 
dynamics of error processing in the human brain as reflected by high-gamma activity in 
noninvasive and intracranial EEG. NeuroImage 173, 564–579. 
https://doi.org/10.1016/j.neuroimage.2018.01.059 

Volker, M., Schirrmeister, R.T., Fiederer, L.D.J., Burgard, W., Ball, T., 2018. Deep transfer learning for 
error decoding from non-invasive EEG, in: 2018 6th International Conference on Brain-
Computer Interface (BCI). Presented at the 2018 6th International Conference on Brain-
Computer Interface (BCI), IEEE, GangWon, pp. 1–6. https://doi.org/10.1109/IWW-
BCI.2018.8311491 

Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A., Mehring, C., 2009. A review on directional 
information in neural signals for brain-machine interfaces. Journal of Physiology-Paris, 
Neurorobotics 103, 244–254. https://doi.org/10.1016/j.jphysparis.2009.08.007 

Weiskopf, N., 2012. Real-time fMRI and its application to neurofeedback. NeuroImage, 20 YEARS OF 
fMRI 62, 682–692. https://doi.org/10.1016/j.neuroimage.2011.10.009 

Wheeler, J.J., 2019. Co-adaptation for learning and control of devices. US20190370650A1. 
Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., Shenoy, K.V., 2021. High-performance 

brain-to-text communication via handwriting. Nature 593, 249–254. 
https://doi.org/10.1038/s41586-021-03506-2 

Wilson, N.R., Sarma, D., Wander, J.D., Weaver, K.E., Ojemann, J.G., Rao, R.P.N., 2019. Cortical 
Topography of Error-Related High-Frequency Potentials During Erroneous Control in a 
Continuous Control Brain–Computer Interface. Front. Neurosci. 13, 502. 
https://doi.org/10.3389/fnins.2019.00502 

Wodlinger, B., Downey, J.E., Tyler-Kabara, E.C., Schwartz, A.B., Boninger, M.L., Collinger, J.L., 2014. 
Ten-dimensional anthropomorphic arm control in a human brain-machine interface: 
difficulties, solutions, and limitations. J. Neural Eng. 12, 016011. 
https://doi.org/10.1088/1741-2560/12/1/016011 

Wolpaw, J., Wolpaw, E.W., 2012. Brain-Computer Interfaces: Principles and Practice. Oxford University 
Press, USA. 



Bibliography 

100 

Yeung, N., Holroyd, C., Cohen, J., 2005. ERP correlates of feedback and reward processing in the 
presence and absence of response choice [WWW Document]. Cerebral cortex (New York, N.Y. : 
1991). https://doi.org/10.1093/cercor/bhh153 

Yong, X., Fatourechi, M., Ward, R.K., Birch, G.E., 2012. Adaptive classification in a self-paced hybrid 
brain-computer interface system, in: 2012 Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. Presented at the 2012 Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3274–3279. 
https://doi.org/10.1109/EMBC.2012.6346664 

Yousefi, R., Sereshkeh, A.R., Chau, T., 2019. Online detection of error-related potentials in multi-class 
cognitive task-based BCIs. Brain-Computer Interfaces 0, 1–12. 
https://doi.org/10.1080/2326263X.2019.1614770 

Zeyl, T.J., Chau, T., 2014. A case study of linear classifiers adapted using imperfect labels derived from 
human event-related potentials. Pattern Recognition Letters, Partially Supervised Learning for 
Pattern Recognition 37, 54–62. https://doi.org/10.1016/j.patrec.2013.05.020 

Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M., 2010. A survey of stimulation methods used in SSVEP-
based BCIs. Comput Intell Neurosci 702357. https://doi.org/10.1155/2010/702357 

 



 

101 

Adaptation of discrete and continuous intracranial Brain-Computer Interfaces using neural 

correlates of task performance decoded continuously from the sensorimotor cortex of a 

tetraplegic. 

Brain-computer interfaces (BCIs) transform neural signals into commands for effectors. They are 

mainly used as tools for functional compensation of impaired functions in disabled subjects. The 

Clinatec clinical trial “BCI and tetraplegia” aims at providing a proof of concept of long-term functional 

compensation of upper and lower limbs motor deficits in tetraplegics using a BCI. The clinical trial 

showed promising results for compensation of motor functions. However, the BCI’s usability remains 

to be improved. The decoder used to estimate the user’s intention from the processed neural signal 

(control decoder) must be fitted before the BCI can be used. This is done during dedicated training 

sessions, during which the user is directed to perform specific motor imagery tasks. Training sessions 

have to be held regularly in order to update the control decoder due to degradation of performances 

with time. This thesis proposes to limit the negative impact of training sessions. In this work, the 

control decoder is trained and updated using inferred labels instead of labels acquired during a 

dedicated training session. The labels are inferred using the output of the control decoder and neural 

correlates of task performance. In order to be usable in state-of-the-art motor BCIs, the adaptation 

process must be possible for control decoders with multiple discrete or continuous outputs. We argue 

that adaptation of a control decoder with multiple continuous outputs is best done using neural 

correlates of task performance that can be decoded continuously in time. Additionally, these neural 

correlates should be detected in the sensorimotor cortex due to the position of the implanted neural 

acquisition system. Using multiple ECoG datasets from a tetraplegic enrolled in the Clinatec BCI clinical 

trial, we show in this thesis that it is possible to detect such continuous in time neural correlates of 

task performance from the sensorimotor cortex, that control decoder labels can be inferred using 

these neural correlates, and finally that these labels can be used to successfully train decoders for 

discrete or continuous control. The subject used motor imagery to control a binary avatar (Runner MI 

dataset), a virtual exoskeleton with four discrete motor states (Exo dataset) or a hand-shaped cursor 

on a two-dimensional screen (Cursor dataset). In five-fold cross-validations, the mean and standard 

deviation of the area under the receiver operating characteristic curve (AUC of the ROC) for the 

decoder of neural correlates of task performance were 0.6225±0.0429 in the Runner MI dataset, 

0.5677±0.0427 in the Exo dataset and 0.6570±0.0188 in the Cursor dataset. In a pseudo cross-

validation simulating online use, the accuracy of the estimated labels was 64.9% in the Runner dataset 

and 64.5% in the Exo dataset. In the Cursor dataset, 63.3% of the estimated labels were less than 60° 

away from the actual labels. The AUC of the ROC of the control decoder was 0.6360±0.0958 in the 

Runner MI dataset when trained auto-adaptively compared to 0.8958±0.0153 when trained 

supervisedly, and to a chance level of 0.5007±0.0691. The multiclass generalization of the AUC of the 

ROC of the control decoder was 0.7595±0.0278 in the Exo dataset when trained auto-adaptively 

compared to 0.8177±0.0301 when trained supervisedly, and to a chance level of 0.5163±0.0580. In the 

Cursor dataset, the cosine similarity was 0.1589±0.0668 when trained auto-adaptively compared to 

0.2107±0.0664 when trained in a classical supervised manner, and a chance level of -0.0231±0.0327. 

These results are promising for the future of auto-adaptive complex motor BCIs.  

Keywords: Brain Computer interfaces, BCI, ECoG, adaptation, Clinical trial, neural correlates of task 

performance, self-directed use, tetraplegia, machine learning, Brain signal processing.  
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Adaptation d’Interfaces Cerveau-Machines discrètes et continues grâce à des corrélats neuronaux 

de performance de tâche détectés continuellement dans le cortex sensorimoteur d’un 

tétraplégique. 

Les Interfaces cerveau machine (ICMs) transforment les signaux neuronaux en commande pour des 

effecteurs. Elles sont principalement utilisées pour compenser les déficits d’handicapés moteurs. 

L’essai clinique « BCI et tétraplégie » de Clinatec a pour but de fournir une preuve de concept de 

compensation fonctionnelle chronique des déficits moteurs des quatre membres de tétraplégiques au 

moyen d’ICMs. Bien que les résultats obtenus soient prometteurs, l’usabilité des ICMs utilisées reste 

améliorable. Le décodeur utilisé pour transformer les signaux neuronaux en commandes (décodeur de 

contrôle) doit par exemple être entrainé avant de pouvoir utiliser l’ICM. Ceci est fait durant des séances 

d’entrainement spécifiques, durant lesquelles le patient doit effectuer des tâches d’imagerie motrice 

imposées. Ces séances d’entrainement constituent un temps mort et doivent être effectuées 

régulièrement afin de compenser les pertes de performances qui surviennent avec le temps. Cette 

thèse vise à limiter les effets négatifs des séances d’entrainement. Pour cela, le décodeur de contrôle 

est entrainé et mis à jour avec des labels estimés au lieu de labels obtenus lors de séances 

d’entrainement. Les labels sont estimés grâce à la sortie du décodeur de contrôle ainsi qu’un décodeur 

de corrélats neuronaux de performance de tâche. Afin d’être utilisable avec les ICMs motrices les plus 

performantes, l’adaptation doit être faisable pour les décodeurs de contrôle qui ont plusieurs sorties 

continues. Nous suggérons qu’une telle adaptation requiert des corrélats neuronaux de performances 

de tâche acquis de manière continuelle dans le temps. Il est aussi nécessaire de détecter ces corrélats 

dans le cortex sensorimoteur à cause de la position des implants. Dans cette thèse, nous montrons sur 

plusieurs jeux de données ECoG d’un tétraplégique qu’il est possible de détecter continuellement des 

corrélats neuronaux de performance de tâche depuis le cortex sensorimoteur, que les labels des 

décodeurs de contrôle peuvent être estimés grâce à ces corrélats et enfin que ces labels peuvent être 

utilisés pour l’entrainement de décodeurs avec des sorties discrètes ou continues. Le patient a utilisé 

l’imagerie motrice pour contrôler un avatar binaire (jeu de données Runner MI), un exosquelette 

virtuel avec quatre états moteur discrets (jeu de données Exo) ou un curseur en deux dimensions 

continues sur un écran d’ordinateur (jeu de données Cursor). Lors de validations croisées à 5 blocs, la 

moyenne et la déviation standard de l’aire sous la courbe (AUC) ROC du décodeur de corrélats 

neuronaux de performance de tâche était de 0.6225±0.0429, 0.5677±0.0427 et 0.6570±0.0188 pour 

les jeux de données Runner MI, Exo et Cursor respectivement. Dans une simulation d’utilisation en 

ligne de de cette méthode d’adaptation, la précision des labels estimés était de 64.9% et 64.5% pour 

les jeux de données Runner MI et Exo. Pour le jeu de données Cursor, 63% des labels estimés étaient 

à moins de 60° d’écart des vrais labels. Dans cette simulation avec le jeu de données Runner MI, l’AUC 

de la ROC du décodeur de contrôle était de 0.6360±0.0958 quand entrainé de manière auto-

adaptative, comparé à 0.8958±0.0153 pour un entrainement supervisé et à un niveau de chance de 

0.5007±0.0691. Pour le jeu de données Exo, la généralisation multi classe de l’AUC de la ROC était 

0.7595±0.0278 pour un entrainement auto-adaptative, comparé à 0.8177±0.0301 pour un 

entrainement supervisé et à un niveau de chance de 0.5163±0.0580. Pour le jeu de données Cursor, la 

similarité cosinus était 0.1589±0.0668 pour un entrainement auto-adaptative, comparé à 

0.2107±0.0664 pour un entrainement supervisé et à un niveau de chance de -0.0231±0.0327. Ces 

résultats sont prometteurs pour le développement des ICMs motrices complexes auto-adaptatives. 

Mots-clés : Interface cerveau machine, ICM, ECoG, adaptation, corrélats neuronaux de performance 

de tâche, utilisation libre, tétraplégie, apprentissage machine, traitement des signaux cérébraux.
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