Nicolas Jeannerod 
  
Keywords: Veri cation of Shell Scripts Performing File Hierarchy Transformations POSIX Shell, Unix Filesystems, Unix Utilities, Modelisation, Feature Tree Logics, Decidability of First-Order Logic, E cient Constraints liblockfile -simple -perl , rancid , perl : any 9 Suggests : apache2 | httpd -cgi

HAL is

U P É D 386 -S M P C I R I F V S S
The main part of the thesis then focuses on decidability of formulas of FTS. The goal is to be able to detect traces of execution of Shell scripts that cannot happen and to check properties on the Shell scripts, such as "if the script fails, then it must not have performed any transformation". A rst, theoretical, part aims at showing that the full rst-order theory of FTS is decidable. This goes by rst reasoning only on Σ 1formulas of FTS and de ning a system of rules R 1 that transforms Σ 1 -formulas. We show that we can use R 1 to decide the satis ability of Σ 1 -formulas as well as some other properties. We then extend the reasoning from Σ 1 -formulas to rst-order formulas of FTS using properties of R 1 and weak quanti er eliminations. We conclude by stating that the rst-order theory of FTS is indeed decidable. A second, more practical, part aims at designing e cient decision procedures for a subset of FTS rich enough to express the semantics of Unix utilities and Shell scripts. This goes by focusing on conjunctive formulas and improving on R 1 . This results in a system R 2 which is more e cient on conjunctive formulas but would not have the required properties to prove decidability of the rst-order. We then show how R 2 can be implemented e ciently and that it can be extended without loss of e ciency to support speci c forms of Σ 1 -formulas.

Finally, this thesis describes the applications of the theoretical work to the implementation of a toolchain able to analyse all software packages in the Debian distribution and report on them. We describe our analysis and the bugs that we have found during the whole project. This thesis takes place within the CoLiS project, ANR-15-CE25-0001, taking place from October 2015 to March 2021. Cette thèse vise à appliquer des techniques de véri cation déductive de programmes et d'analyse de transformations d'arbres au problème de l'analyse de scripts Shell. En particulier, nous visons à analyser les scripts Shell utilisés pendant l'installation de logiciels de la distribution Debian GNU/Linux. Le but nal est de démontrer la faisabilité de notre analyse en développant un outil capable de lire des paquets Debian -le format dans lequel Debian distribue des logiciels -et de fournir un rapport sur leur qualité et sur les bogues potentiels qu'on pourrait y trouver.

Résumé

Shell est un langage de script qui fournit des structures de contrôle autour d'appels d'utilitaires Unix. Les utilitaires Unix sont des objets qui peuvent e ectuer toutes sortes de transformations sur des systèmes de chiers Unix. Nous modélisons les systèmes de chiers Unix à l'aide d'arbre de traits et les transformations de tels systèmes de chiers à l'aide de formules dans une logique d'arbres de traits nommée FTS. Nous décrivons ces modélisations en détails et discutons leurs validité. Les structures de contrôle des scripts Shell sont converties en des structures de contrôle d'un langage intermédiaire avec une sémantique clairement dé nie. Cela implique la dé nition du langage intermédiaire en question et le développement d'un parseur statique pour les scripts Shell et d'une conversion qui respecte les sémantiques des deux langages. La sémantique d'un script Shell est ensuite calculée par exécution symbolique sur le langage intermédiaire susmentionné en utilisant une base de spéci cations des utilitaires Unix comme des formules de FTS. Pour chaque trace d'exécution d'un script Shell, le résultat est une formule de FTS décrivant la transformation de système de chiers qu'e ectue cette trace.

La partie principale de cette thèse s'intéresse à la décidabilité de formules de FTS. L'objectif est d'être capable de détecter des traces d'exécution de scripts Shell qui ne peuvent pas arriver et de véri er des propriétés sur les scripts Shell, comme par exemple le fait que « si le script échoue, alors il ne doit pas avoir e ectué de transformation. » Une première approche théorique vise à montrer que la théorie du premier ordre de FTS est décidable. Cela se fait par un raisonnement sur les formules Σ 1 de FTS et par la dé nition d'un système de règles R 1 qui transforme les formules Σ 1 . Nous montrons que nous pouvons utiliser R 1 pour décider de la satis abilité de formules Σ 1 , parmi d'autres propriétés. Nous étendons ensuite le raisonnement des formules Σ 1 vers les formules du premier ordre de FTS à l'aide de propriétés de R 1 et d'éliminations faible des quanti cateurs. Nous concluons en disant que la théorie du premier ordre de FTS est bien décidable. Une seconde approche, plus pratique, vise à créer des procédures de décision e caces pour un sous-ensemble de FTS assez riche pour exprimer les sémantiques des utilitaires Unix et des scripts Shell. Nous faisons cela en nous intéressant en particulier aux formules conjonctives et en améliorant R 1 . Le résultat est un système R 2 qui est plus e cace sur les formules conjonctives mais qui n'a pas les propriétés nécessaires pour prouver la décidabilité du premier ordre. Nous montrons ensuite comment R 2 peut être implémenté e cacement et comment il peut être étendu pour supporter des formes spéci ques de formules de Σ 1 sans pertes d'e cacité.

En n, cette thèse décrit les applications de ce travail théorique à l'implémentation d'un groupe d'outils capable d'analyser tous les paquets logiciels de la distribution Debian et de fournir un rapport. Nous décrivons notre analyse et les bogues que nous avons trouvé au long du projet. Cette thèse s'inscrit dans le projet CoLiS, ANR-15-CE25-0001, se déroulant entre octobre 2015 et mars 2021. Humankind has built and used devices to aid computation for thousands of years. It is only in the 20th century, however, that modern computers got invented. Contrary to most previous devices, modern computers store programs in their memory. A person who would want to modify the behaviour of such a computer would then only need to update its memory, and not rebuild a whole machine. The idea of a general-purpose computer whose behaviour is speci ed by its memory goes back to 1837 and Charles Babbage and Ada Lovelace's Analytical Engine [START_REF]cmigrep: broken emacsen-install script[END_REF] . The idea of stored programs in the modern sense was introduced a century later by Alan Turing [Turing 1937] and the rst digital computer running such stored programs was the Manchester Baby2 which ran for the rst time in 1948.

This idea of stored programs makes modern computers very versatile objects capable of solving a wide range of problems, as long as one or several programmers take the time to update the program. In the beginning, computers were monolithic devices only operated by experts and programs were short. Quickly, however, as computers became more powerful, there was a huge increase in the complexity of the problems that they could solve. The size of programs followed and easily reached thousands of lines. For instance, the code of the guidance computer for the command module of Apollo 11, which was developed in the 1960s and helped to safely land a human on the moon in 1969, contains a bit over 25,000 lines of code. 3 Bigger code and more lines of code meant more problems, which people started to be aware of. By 1968, the term software crisis 4 was coined. It encompasses all the problems related to the di culty of writing good quality computer programs in the required time. This covers problems with project, time and budget management but also problems of e ciency and quality of software: an awareness for quality assurance was born.

Coincidingly -starting in the early 1960s 5 -, in order to speed up processing, operating systems were developed. They are programs that manage resources -and, in particular, time -for other programs to live together.

One family of operating systems will be of particular interest to us. Derived from the original AT&T Unix, whose development started in the 1970s, Unix operating systems inherently support multitasking and multiusers. This means that a unique computer with one operating system could support several users doing several di erent tasks at the same time. 6 With the rise of a ordable personal computers 7 from the mid-1970s onwards, the model of operating systems changed from a few big computers with several users and an expert team of system administrators to a lot of microcomputers with one user each. This was a big change as it meant that operating systems, programs and their updates had to be distributed to a lot of non-expert users. The expertise of installation, updating, etc. could not rely on such users and therefore had to move from the system administrators to the software providers, under the form of automated setup scripts.

During the late 1980s and the early 1990s, several things happened that are of relevance for this story. Firstly, Internet 8 became more and more widespread in academia in particular and, because of its commercialisation in the early 1990s, everywhere. Secondly, the GNU project 9 took o and the development of the Linux kernel 10 started. Together, they form one of the most widespread basis for Linux distributions.

Finally, the Debian GNU/Linux 11 distribution, one of the biggest and oldest operating systems based on the Linux kernel, launched its rst release in September 1993. [START_REF] Braakman | checkbashisms[END_REF] Linux distributions are a way for users to have access to a rich and consistent ecosystem of programs from which they can pick those that are of interest to them. In order to eliminate the need for manual installations and updates, distributions often feature a package manager [START_REF]CoLiS -ANR project[END_REF] . These are software tools that automate the process of installing, upgrading, con guring, or removing programs on an operating system.

The package manager at the base of the package management system of Debian -and its numerous derivatives -is named dpkg [START_REF]Debian Developers Reference[END_REF] .

Package managers handle packages as a way to distribute software as well as the instructions for the package manager to install, update, remove, etc. the software in question. A Debian package is made of several elements [22, Chapter 3], some of which are detailed in the following list.

• The package contains metadata about the software, its version, its dependencies -the packages that need to be installed rst [START_REF]Install script does rm -rf /usr for ubuntu[END_REF] -, etc. Figure 1.1 shows an excerpt of a le containing such metadata for the package rancid-cgi.

• The package must also contain the static content of the software: an archive of les to be placed on the target machine when installing the package. These are the les of the software itself: its binaries -the executable part -, its con guration les, etc.

HISTORY & MOTIVATION

• Finally, the package may come with a number of so-called maintainer scripts which are executed when installing, upgrading, or removing the package. The name of maintainer scripts comes from the fact that these scripts are not given by the provider of the software, but by the maintainer of the package, which is the person (or team) in charge of the package in Debian.

For the sake of the example, Figure 1.2 shows how an installation of rancid-cgi could look like in Debian.

There are various ways to install software in Debian, via the command-line, terminal user interface (TUI), or graphical user interface (GUI). We chose here to show a way which we believe to be widespread among system administrators. This is the installation of rancid-cgi using the apt utility [START_REF] Greenberg | Smoosh, the Symbolic, Mechanized, Observable, Operational SHell: an executable formalization of the POSIX shell standard[END_REF] in a terminal. apt is a meta package manager. It handles resolution of dependencies and downloading of packages but leaves the actual operations on packages to dpkg, the only real package manager of Debian. Let us now detail all the steps of installation.

1. Line 1 shows the prompt root@debian~#, which is simply the system awaiting a command, as well as the command apt install rancid-cgi asking the utility apt to install the package rancidcgi. All the following lines are then written by the apt utility.

2. Lines 2 to 9 show the resolution of dependencies. This phase aims at deciding which packages need to be installed before or at the same time as the requested package.

3. Lines 10 to 15 show the downloading of the actual packages. Since there are 60,000 packages in Debian, having them all on one's computer would be a waste of space. [START_REF] Vidar Holen | shellcheck: A shell script static analysis tool[END_REF] The packages are therefore kept on an external storage medium or even the network and downloaded from an archive when required. [START_REF]The Open Group Base Speci cations Issue 7[END_REF] 4. Lines 16 to 18 show the pre-con guration phase. The goal of this phase is to prepare the system to receive the software. This can mean cleaning up previous versions, or checking that certain les are stored at the right location, etc. The instructions are described by the preinst maintainer script.

5. Lines 19 to 23 show the unpacking phase. This is the part where the static content of the package is actually put on the system.

6. Lines 24 to 25 show the con guration phase. This can mean launching utilities to register the software in databases, running con guration scripts that adapt the behaviour of the software to this speci c machine, etc. The instructions are described by the postinst maintainer script.

7. Line 26 shows the processing of a trigger. This is a phase of con guration of other packages to take into account the arrival of the new package. In our example, the trigger is for man-db which is a package handling the user manuals of all the installed packages.

8. Line 27 shows the return of the prompt, which simply means that the command is done running and that the system awaits for further commands.

The interesting steps for us are Steps 4, 5 and 6. In particular, Steps 4 and 6 require running the preinst and postinst maintainer scripts with full privileges on the machine. This is potentially problematic as this means trusting that such scripts will not contain bugs or malicious code.

The problem becomes increasingly complex when the number of packages grow bigger. Of course, more users means more di erent needs and therefore more software, packages and maintainer scripts. As of October 6, 2019, the Debian distribution [START_REF]The Open Group base Speci cations Issue 7, 2018 edition[END_REF] contains 28,814 maintainer scripts in 12,592 di erent packages (out of a total of 60,000), 9,771 of which are completely or partially written by hand. Moreover, the big user base of Debian brings about a big number of di erent devices, architectures, installed combinations of software, etc. It is therefore impossible for the package maintainers to plan everything in advance and it is inevitable to meet corner cases that will behave di erently than expected.

The consequences of a faulty script can go from mild -eg. the package fails to install -to critical -eg. the system does not start anymore, or user data are lost. For instance, Figure 1.3 shows a bug report [1]. Lines 3 to 6 contain metadata about the bug, namely the package and version it applies to (here, cmigrep in version 1.3-1), the severity of the bug (here, critical) and a short description of the bug. Lines 8 to 12 contain an excerpt of the longer, more detailed description of the bug. In this case, the installation or upgrade of the package cmigrep breaks other software, which can happen in the middle of a global update of the system, without the user noticing before they actually try to use the other broken software.

The bug in question came from a change in the package that the maintainer carried without noticing that it would imply the removal of les belonging to -and necessary for the proper functioning ofother packages. Since they may have to perform any kind of action on the target machine, the maintainer scripts are almost exclusively written in POSIX Shell, a general-purpose scripting language that allows for invoking any Unix command. Unfortunately, this language is full of pitfalls that make it easy for anyone -including package maintainers that are used to it -to make tiny mistakes leading to grave consequences.

The situation is therefore the following. The critical process of installing, upgrading and removing software in Debian -and many other distributions -relies on thousands of scripts written by voluntary package maintainers in a language in which it is easy to make mistakes. Hence, there is a cruel need of work on quality assurance of those packages.

Approaches & Feature Tree Logics 1.2.1 Other Approaches -Related Works

When facing such a problem of quality assurance, many approaches are possible and the Debian community did not wait for the third millennium to try and improve the quality of Debian packages on a global scale. There is even a team of Debian specialised in the quality assurance of packages. [START_REF]The Open Group base Speci cations Issue 7[END_REF] One product of the work to improve the quality of Debian packages is the Debian Policy [22]. It is a document, written in natural language, that aims to normalise important technical aspects of packages. It prescribes the control ow of the di erent stages of the package installation process, including attempts of error recovery and de nes how dpkg invokes maintainer scripts. It also states requirements on the syntax and on the execution behaviour of scripts.

Some automation of the checking of such properties -and therefore of the quality of Debian packageshas been added to Debian over the years. Lintian [START_REF]The Open Group base Speci cations Issue 7[END_REF] , for instance, automatically checks syntactic properties of the packages of the Debian distribution -and not only in their scripts but also in the other les that compose a package. Another tool, the piuparts suite [START_REF] Jackson | Debian Policy Manual[END_REF] , checks if packages can be installed, upgraded and removed successfully in a clean environment. The piuparts suite does not check whether the installed software is actually usable. Package maintainers are however encouraged to provide such tests in their packages via the autopkgtest facility. [START_REF] Jeannerod | colis-batch, a tool to run colis-language on packages and corpuses of packages[END_REF] The continuous integration [START_REF] Jeannerod | Morsmall, a concise AST for POSIX shell[END_REF] of Debian runs these tests systematically on all the packages of the Debian archive. Finally, the process of acceptance of packages in the Debian distribution is trying to give time to voluntary users to stumble upon bugs before they reach more critical users by providing an unstable distribution -named sid -receiving all the updates and a stable distribution receiving the updates only after they have been validated by the users of sid.

No solution is ever perfect, and we believe that a lot of formal veri cation techniques can apply to this problem and provide ways to check more properties, or new ways to check the same properties. Some work has already been done in this line, most notably by the EDOS and Mancoosi projects [START_REF] Jeannerod | shstats, a statistical analyzer for corpora of shell scripts[END_REF] [Mancinelli et al. 2006; Abate et al. 2012] which aimed at checking properties of the dependencies of packages and at providing e cient solvers for those dependencies. The content of maintainer scripts was however never their concern.

None of these approaches would have found the aforementioned bug in cmigrep, version 1.3-1. Indeed, this bug only occurs during the installation of cmigrep on a machine that already has other related packages installed -in that case, packages belonging to the Emacs ecosystem. In a real-world use case, this will happen easily because users are susceptible to indeed have these other packages. In the testing performed by the piuparts suite, packages are installed and removed in a clean environment, in which the bug would therefore not occur.

Our Approach

In the CoLiS [START_REF] Pottier | Visitors: an OCaml syntax extension which generates object-oriented visitors for traversing and transforming data structures[END_REF] project, we believe that we can contribute to the quality assessment of Debian packages by applying already existing formal method techniques to maintainer scripts. Such techniques could allow to verify properties and nd bugs that tools like Lintian or the piuparts suite cannot uncover. The bugs in Debian maintainer scripts that we attempt to nd may come at di erent levels: simple syntax errors (which may very well go unnoticed due to the unsafe design of the POSIX Shell language), non-compliance with the requirements of the Debian Policy, usage of uno cial or undocumented features, or failure of a script in a situation where it is supposed to succeed.

In this context, the Debian Policy [22] is a very useful tool for us as it speci es all the properties that can be expected from maintainer scripts. This document has been extensively enriched over the years by the very users and maintainers of the packages. We therefore do not need to de ne the problem nor what it is we aim at verifying. There is however a necessary phase of formalisation of the problem from the 1.2. APPROACHES & FEATURE TREE LOGICS explanations of the Debian Policy, as it is written in an informal natural language, leading to ambiguities and incompleteness.

To the information given by the Debian Policy, we add a information of what appears in the maintainer scripts which we obtain by running statistical analysis on the corpus of all maintainer scripts. This analysis allows us to highlight what needs to be handled in priority, what can be postponed and what can be ignored. This analysis is described in Section 7.1.

Our project is oriented towards nding bugs and not fully certifying that scripts respect all the requirements they are supposed to. This allows us to do as many approximations as necessary in the process of nding such bugs, as long as we can report clearly on the bugs and can show that they actually happen. Of course, these approximations are not random and are guided by the aforementioned statistical analysis.

The particular setting of Debian packages and the freedom to approximate when required are two key elements that made this analysis even possible.

We are still facing two important challenges. The rst one lies in the language used for these maintainer scripts we are interested in. The Debian Policy states that the standard Shell interpreter is POSIX Shell, with the consequence that 99% of all maintainer scripts are written in this language. This language has a surprising speci cation, is full of pitfalls, highly dynamic and recalcitrant to static analysis, both on a syntactic and semantic level. The modelisation of POSIX Shell is the topic of Chapter 6.

The second challenge comes from the nature of Unix systems on which the maintainer scripts are run. A Unix lesystem implementation contains many features that are di cult to model, eg. ownership, permissions, timestamps, symbolic links, and multiple hard links to regular les. There is an immense variety of Unix utilities that may be invoked from scripts, all of which have to be modelled in order to be treated by our tools. To address properties of scripts required by the Debian Policy, we need to capture the transformation done by the script on a lesystem hierarchy. For this, we need some kind of logic that is expressive enough, and still allows for automated reasoning methods. In this work, we use feature tree logics.

Feature Tree Logics

Although we contributed to all the parts of the toolchain described in Section 1.3, our main contribution -and the main topic of this thesis -is the design of decision procedures for feature tree logics. This leads to theoretical decidability results for such logics and to the design of an e cient backend for the symbolic execution engine mentioned in Section 1.3.1.

Feature trees are trees where nodes have an unbounded number of children, and where edges from nodes to their children carry names -called features -such that no node has two di erent outgoing edges with the same name. Hence, the names on the edges can be used to select the di erent children of a node. Feature trees have been used in constraint-based formalisms in the eld of computational linguistics [Smolka 1992] and constrained logic programming [Aït- Kaci et al. 1994; Smolka & Treinen 1994]. The work presented in this thesis is motivated by a di erent application of feature trees: we nd them to be a quite accurate model of Unix lesystems. We will discuss this in Section 3.1 and discuss why abstracting Unix lesystems as feature trees makes sense in this work.

Feature tree logics have at their core basic constraints like x[f ]y, expressing that y is a subtree of x accessible from the root of x via a feature f and x[f ]↑, expressing that the tree x does not have a feature f at its root node. This is already su cient to describe some tree languages that are useful in our context. For instance, the command mkdir /etc/rancid/apache.conf which creates the directory /etc/rancid/apache.conf (mkdir stands for make directory), succeeds on a tree that satis es Formula 1.1.

∃x, y, z • (r [etc]x ∧ x[rancid]y ∧ y[apache.conf]↑) (1.1) Formula 1.1 expresses that etc is a subdirectory of the root r represented by the variable x, which has itself a subdirectory rancid represented by the variable y, which itself does not have a subdirectory apache.conf. We ignore here the di erence between directories and regular les, as well as le permissions.

In order to express the relation between the input and output trees of this example, we need more expressivity. A rst idea is to introduce an update predicate y = x{f → z}, which states that the tree y is obtained from the tree x by changing the child reachable through f to z, and creating the child when it does not exist. Using this, the semantics of mkdir /etc/rancid/lg.conf could be described by Formula 1.2, of the input root r and output root r .

∃x, y, z, x , y

•   r[etc]x ∧ x[rancid]y ∧ y[apache.conf]↑ ∧ r = r{etc → x } ∧ x = x{rancid → y } ∧ y = y{apache.conf → z } ∧ z [ ]↑   (1.2)
Here, z [ ]↑ expresses that all features ( ) are absent from z , which means that z is an empty directory.

Note that this formula, by virtue of the update constraint, expresses that any existing le under etc different from rancid is not touched. Similarly, any existing le under rancid di erent from apache.conf is not touched.

The di culty in solving such update predicates stems from the fact that they involve three trees: the original tree, the nal tree and the sub-tree that gets grafted onto the original tree. There are no symmetries between these three arguments, and a conjunction of several update predicates may become quite involved. Our approach to handle this rather complex predicate is to replace it by a more elementary predicate system based on the classical x[f ]y and a new similarity predicate x = F y, where F is a set of features. The latter expresses that x and y have the same children (or absence of children) in all the names of F . In particular, applied to a feature f , the predicate x =c {f } y -where c F is the complement of Fexpresses that x and y are the same everywhere, except possibly in f where they may di er.

The similarity predicates of the form x =c {f } y have the same expressive power as the update predicates since, on the one hand, x = x{f → y} is equivalent to x =c {f } x ∧ x [f ]y and, on the other hand, x =c {f } x is equivalent to ∃y, z • (z = x{f → y} ∧ z = x {f → y}). Moreover, for each set of features F , similarity predicates = F are equivalence relations, which is very useful when designing simpli cation rules, and these relations have useful properties, such as

(x = F y ∧ x = G y) ↔ x = F ∪G y and (x = F y ∧ y = G z) → x = F ∩G z.
The feature tree logic augmented with this similarity predicate, named FTS, is presented in Section 3.2. This thesis then presents two directions of work on FTS. The rst line of work establishes theoretical decidability results for the full rst-order theory. The case of a feature tree logic with update constraints was open up to now. This line of work is described in details in Chapter 4. In a second line of work, we aim at designing e cient decision procedures for a restricted set of formulas with implementation in mind. It is described in detail in Chapter 5.

Overview of the Toolchain

Let us take the package rancid-cgi [32] as a running example. It comes with only two maintainer scripts: preinst and postinst. The goal of the CoLiS project is to build a toolchain able to take this 

First Layer -One Script

Since this work focuses on the Shell scripts present in packages, a rst layer of our toolchain will need to comprise tools to read Shell scripts, reason about them and compute their semantics in some formalism. The rst layer of our toolchain, colis-language [11], analyses one Shell script and computes its semantics. It is summarised in Figure 1.4.

As we have said, the huge majority of maintainer scripts is written in Shell. Shell is a scripting language that provides control ow structures around calls to Unix utilities. As an example, let us consider the preinst script of rancid-cgi, presented in Figure 1.5. It contains four utility calls, the rst one being [ -h /etc/rancid/lg.conf ]. The script reads as follows: if the symbolic link /etc/rancid/lg.conf exists then it is removed; if the le /etc/rancid/apache.conf exists, no matter its type, it is also removed. Both removal operations use the POSIX utility rm which, without options, cannot remove directories. Hence, if /etc/rancid/apache.conf is a directory, this script fails while trying to remove it.

The Shell scripts are rst being parsed using Morbig and Morsmall. These two tools have been developed as part of the CoLiS project. The former, Morbig, is a static parser for POSIX Shell providing concrete syntax trees for Shell scripts. The latter, Morsmall, is a wrapper around Morbig that provides abstract The Shell scripts are then converted to an intermediary language named "CoLiS". The CoLiS version of this preinst script of rancid-cgi is shown in Figure 1.6. The Shell and CoLiS versions of the script look very similar, which comes from the fact that CoLiS aims at being the target of an automated conversion from Shell. However, some key pitfalls of Shell have been dealt with and eliminated from CoLiS. In the example of Figures 1.5 and 1.6, one can for instance see that the CoLiS language features more structure than Shell, and contains for instance delimiters of strings.

The semantics of CoLiS scripts is then computed by symbolic execution. Basically, this explores all the possible traces of execution of the scripts in terms of success and error of the utility calls they contain. For instance, for the script of Figure 1.6, the traces would be that of Figure 1.7. This script has a total of seven traces, four of which lead to a successful exit (S1, S2, S3 and S4) and three of which lead to an error exit (E1, E2 and E3).

For each of these traces, we want to compute on which lesystems they may happen and what transformation they perform in that case. For instance, the trace leading to S4 performs no transformation and happens when /etc/rancid/lg.conf is not a symbolic link (or does not exist) and /etc/rancid/apache.conf does not exist.

By computing on which lesystems the trace can happen, we can also hope to detect traces that are not reachable. In the example, for instance, the trace leading to E2 is not reachable because rm [ '/ etc/rancid/lg.conf' ] cannot fail if we know for sure that /etc/rancid/lg.conf is a symbolic link, which we do because we are in a success case of test [ '-h'; '/etc/rancid/lg.conf' ]. The detection of unreachable traces can also be done on the y in order to stop exploring them as soon as possible.

In order to do that, we need three ingredients. Firstly, we need a formalism in which to express transfor-Package colis-package Static Content sh sh sh sh φ φ φ φ colis-language

•

Scenarios

Properties to check Report Figure 1.8: colis-package: toolchain for the analysis of a Debian package mations of trees. This will be FTS, the logic of feature trees mentioned in Section 1.2.3. [START_REF] Pottier | Menhir: An LR(1) parser generator for OCaml[END_REF] Secondly, we need a database of the transformations that are associated to every success of error cases of a command. Thirdly, we need a solver able to take a list of transformations associated to commands and to compute if the composed transformation can actually happen.

The parsing phase is described in details in Section 6.1. The CoLiS language and the conversion are described in details in Section 6.2. The symbolic execution engine is detailed in Section 7.2. The model used to represent trees is de ned in Section 3.1 and FTS is de ned in Section 3.2. The modelisation of utilities is described in Section 3.3 and their speci cation is developed in Section 3.4. The constraint solving is the main topic of this thesis and is developed in Chapter 4 for the theoretical aspect and Chapter 5 for e ciency considerations.

Second Layer -One Package

Once we are able to compute the semantics of a Shell script, we can extend that to computing the semantics of various scenarios -installation, update, removal, purge, etc. -for a given package. The second layer of our toolchain is based on the rst one and is able to analyse packages and report on them. It is summarised in Figure 1.8.

In Debian, the installation of a package [START_REF] Régis | lintshell, a user-extensible lint for POSIX shell[END_REF] is handled by the dpkg utility. Roughly speaking, for installation, dpkg calls the preinst script, then unpacks the static content, and nally calls the postinst scripts. [START_REF] Régis-Gianas | Morbig, A Static Parser for POSIX Shell[END_REF] The precise sequence of script invocations and the actual script parameters are de ned formally in the Debian Policy and described informally by owcharts [22, Appendix 9]. The owchart for the installation of a package is shown in Figure 1.9.

The tool colis-package [23] uses colis-language on the maintainer scripts and then composes their semantics to determine in which conditions the scenarios outputs can be reached and what transformation is performed on the lesystem in that case. In each of these possible output states, colis-package can Figure 1.9: Flowchart for the installation of a package. Published in the Debian Policy [22, Appendix 9] then check that the requirements given by the Debian Policy [22, Chapters 6 and 10] are satis ed. Finally, colis-package outputs a report on the given package.

The results of colis-package running scenarios are presented as a set of HTML pages, including an index page giving data on the execution of the toolchain as well as a summary of all scenarios and a quick access to execution paths, a page for each maintainer script presenting its original Shell version and its converted CoLiS version if parsing and conversion were successful and a page for each execution path of each scenario, presenting the constraint corresponding to that path as well as debug traces to help us follow the execution path in the Shell or CoLiS script.

Let us go back to our running example. The HTML page reporting on rancid-cgi contains metadata about the time of the analysis (less than 1 second for such a simple package), the parsing status of maintainer scripts (two maintainer scripts, preinst and posting, the latter rejected by conversion because it uses an unsupported feature of the utility exec) and the list of scenarios as well as a quick access to their execution paths. A screenshot is available in Figure 1.10.

For the installation scenario, the HTML page includes the owchart of Figure 1.9 with extra information about our speci c package. We can read that the execution of the preinst script returned 6 states comprising 4 successes and 2 errors. The analysis of the 4 success states stops rapidly as the postinst script could not be converted and can therefore not be analysed. Since there is no postrm script, the 2 error cases go directly to the "Not-Installed" output state.

Reaching this "Not-Installed" output state is not per se a bug: it can be reasonable for a preinst script to cancel the installation before it takes place if some precondition is not satis ed. In such a case, the script should report on the error and, of course, leave the lesystem untouched.

In this case, one of the "Not-Installed" output state corresponds to the screenshot presented in Figure 1.11.

The diagram represents the constraints on the input lesystem on the left and the resulting output lesystem on the right. We can read that this case happens when /etc/rancid/lg.conf exists in the input lesystem and is a symbolic link and /etc/rancid/apache.conf exists in the input lesystem and is a directory. In this case, the output lesystem is similar to the input one except for /etc/rancid/lg.conf that does not exist. All the rest, including /etc/rancid/apache.conf, remains the same. This error happens because the rm utility cannot remove directories if its -r argument is not speci ed. It is important to notice, here that, although we reach the "Not-Installed" case, there has been a modi cation of the lesystem. This can therefore be considered to be a bug. This bug has been reported to Debian in October 

Third Layer -Several Packages

As of October 6, 2019, there are 12,592 packages that contain at least one maintainer script. Analysing them all by hand is therefore unreasonable and we need a tool helping us here. This is where the third layer of our toolchain, colis-batch [23], comes to play. It runs colis-package on several packages in parallel and outputs a report containing all the individual reports of the packages as well as a summary report. It is summarised in Figure 1.12. An example report is publicly available as a Zenodo archive [30].

The main page of the report contains information about the time taken for the full analysis, statistics about the number of scripts and their status with respect to the conversion, statistics about the number of scenarios ran in total and how many could be run without issues. The report then contains one page per scenario listing the packages that can reach each of the possible outcomes. A screenshot is shown in Figure 1.13. For instance, the page for the installation scenario of a corpus containing our example package rancid-cgi would say that at least one package reaches the "Not-Installed" state. A screenshot is shown in Figure 1.14. rancid-cgi would then show up in the list of non-installed packages and a link would lead to its individual report, described in Section 1.3.2.

Contributions & Plan of the Thesis

The main contributions of this thesis can be stated in the following list. The thesis itself is broadly organised according to these contributions.

• Our rst contribution lies in the modelisation of Unix systems. This includes the modelisation of Unix lesystems as feature trees and transformation of Unix lesystems as formulas in FTS. This also includes the modelisation of Unix utilities as objects performing transformations of Unix lesystems using FTS. This modelisation is common work with other members of the CoLiS projects, but we contributed by providing the format as well as the speci cation of some utilities. This is described in Chapter 3.

• The main contribution of this thesis lies in decision procedures for FTS. This includes a theoretical dimension and more practical considerations. The theoretical approach results in a decision procedure for the rst-order theory of FTS. The decidability of a feature tree logic with update constraints was open up to now. This decision procedure gives a result on the decidability of formulas of FTS, but its prohibitive complexity makes it unusable in practice. This theoretical dimension is the subject of Chapter 4. The practical considerations focus on designing a solver able to reason e ciently about a chosen restricted subset of formulas of FTS which are necessary for the rest of the project. This is described in Chapter 5.

• Another contribution lies in the modelisation of the Shell language. This results in the introduction of an intermediary language whose semantics is close to that of Shell but which avoids a lot of its pitfalls. This language comes with an automated conversion from a subset of Shell. This is described in Chapter 6.

• Finally, our contributions are scattered in a lot of places in the CoLiS project. They range from a formal interpretation of the POSIX standard [18] to contributions to the implementation of the toolchain mentioned in Section 1.3, while also spending time on ensuring quality on the software in the toolchain. This is described in Chapter 7.

We conclude with a word on the perspectives that remain open after this work in Chapter 8. 

Notations

This chapter describes the notations that we use in the whole document.

Sets

The empty set is noted ∅. If the universe is obvious from context, then we use to represent the full set containing all the elements of the universe.

If A and B are two sets, then A ∪ B represents their union and A ∩ B their intersection.

If A is a nite set of sets, then A represents the nite union of all the sets of A and A their nite intersection. If A is empty, then A = ∅ and A = .

If constr is an element and A is a set, we note constr(A) the set {(constr, e) | e ∈ A}.

Lists & Stacks

We use lists and stacks with the same notations. Lists are typically named l while stacks are typically named π.

For presentation purposes, we alternatively use lists from the left and from the right. Either way, the empty list is noted ε. If x is an element and l is a list, then x l (resp. l x) represents the list containing all the elements of l in the same order and starting (resp. ending) by x. For instance, if l is a list from the right containing the elements 1, 2 and 3, 1 being at the head of the list, we have l = ε 3 2 1. If l 1 and l 2 are two lists, then l 1 l 2 (resp. l 2 l 1 ) represents the list containing all the elements of l 1 in the same order followed (resp. preceded) by all the elements of l 2 in the same order.

If A is a set, then A + (resp. A * ) represents non-empty (resp. potentially empty) lists of elements of A.

Functions

The domain of a function f is noted dom(f ).

If A and B are sets, A → B represents the set of functions from A to B, that is the set of functions whose domain is A and whose image is included in B. A B represents the set of partial functions from A to B, that is the set of functions from a subset of A to B. The subset in question can be in nite. 

If x 1 , x 2 , v 1 , v 2 , etc. are elements, then [x 1 → v 1 , x 2 → v 2 , . . . ] represents the function whose domain is {x 1 , x 2 , . . . } and that associates v 1 to x 1 , v 2 to x 2 , etc. f [x 1 → v 1 , x 2 → v 2 , . . . ] represents the function whose domain is dom(f ) ∪ {x 1 , x 2 , . . . } and that associates v 1 to x 1 , v 2 to x 2 , etc. and f (x) to every x that is not x 1 , x 2 , etc.
Two functions f and g are equal, noted f = g, if dom(f ) = dom(g) and for all x ∈ dom(f ), f (x) = g(x). Two functions f and g are equal on a set

A, noted f = A g, if dom(f ) ∩ A = dom(g) ∩ A and for all x ∈ dom(f ) ∩ A, f (x) = g(x).

Pseudo Code

We often present code as a way to support an explanation or describe an algorithm. For this purpose, we use pseudo-code presenting a functional language strongly in uenced by OCaml. An example can be found Figure 2.1. Our pseudo code features:

• functions, including mutually recursive functions (Line 1), • types (Line 1), including option types of the form type or ⊥, • pattern-matching (Line 2), • let bindings (Line 5), although we avoid the use of shadowing, • and conditional statements (Line 12).

We use syntax colouring as a way to make our code more readable. In no way is this colouring necessary for the understanding of the semantics of our programs.

• keywords are red, • functions are blue, • types are green. [START_REF]cmigrep: broken emacsen-install script[END_REF] We sometimes show programs in other (existing) languages. They share the same syntax colouring except they do not feature types. They sometimes show strings in green and variables in gold.

Chapter 3

Modelisation of Unix Filesystems and Utilities

Let us dive into the modelisation of Unix lesystems and utilities. In Section 3.1, we rst describe Unix lesystems and feature trees and explain how and why we can model the former using the latter. We then introduce, in Section 3.2, the logic FTS which allows us to represent relations between these feature trees, and therefore model lesystem transformations. In Section 3.3, we describe Unix utilities and how we can see them as objects performing lesystem transformations, and therefore how we can model them using FTS. Finally, in Section 3.4, we discuss some properties that we can expect from the formal speci cations of Unix utilities and state what we need from decision procedures in order to reason about such speci cations.

Modelisation of Filesystems

Let us start by describing Unix lesystems and how we model them in this work. In Section 3.1.1, we describe various aspects Unix lesystems. In Section 3.1.2, we explain which aspects can be abstracted away in our work, and why. Finally, in Section 3.1.3, we de ne feature trees and discuss their pertinence as models of lesystems.

Filesystems

A lesystem is a hierarchical structure used to store and nd data e ciently. Filesystems can be found in storage devices: hard disk drives, solid-state drives, magnetic tapes, optical discs, USB sticks, etc. Some can also be found outside of permanent storage devices. This is in particular the case of the temporary lesystems stored directly in the computer's main memory (RAM) or of the ones accessible via a network protocol. In this work, we are interested in Unix lesystems and we will only describe these in the rest of this subsection.

In such lesystems, everything is a le1 . The most common kind of les are called regular les. They are used to store all kind of permanent data. There are many other kinds of les: pipes, sockets, block and character device les, symbolic links, etc. All of these are stored inside directories2 that are also considered to be les. A whole lesystem is thus one root directory containing other directories and les recursively.

Although hierarchical, a lesystem is not necessarily a tree but rather a directed acyclic graph. This will be explained in details later.

From a directory, one accesses other les by their le name. File names can be any string that does not contain / and that is neither . or ... We will note by F the set of allowed le names. One dot, ., denotes the current directory itself. Two dots, .., denotes the parent directory, that is the directory that contains the current directory. The parent of the root is the root itself.

The list of le names that lead to a le is called the path of that le. Paths can also include the current directory and the parent directory. They can be absolute and relative. Absolute paths are interpreted from the root of the lesystem. Relative paths are interpreted relatively to a current working directory.

De nition 3.1 (Abstract Syntax Path). Given a set F of allowed le names, the set of path components is PC = F ∪ {., ..}. The two path kinds are abs and rel. The set of paths is de ned as

P = abs(PC * ) ∪ rel(PC + )
where PC + is a non-empty list of path components and PC * is a possibly empty list of path components.

A path is absolute if it is in abs(PC * ). A path is relative if it is in rel(PC + ). A path is linear if it does not contain . or ... A path is normal if it is absolute and linear.

Note that relative paths cannot be empty while absolute paths can. The empty absolute path represents the root. Paths are written as the list of their path components separated by /. Absolute paths start with /, relative paths do not. For instance, the normal path of the le ocaml in the directory lib in the directory usr at the root is noted /usr/lib/ocaml. The absolute path /usr/../usr/lib/./ocaml would point to the same le. The relative path ../lib/ocaml, when considered from the directory /usr/share, would also point to the same le.

As we mentioned earlier, lesystems are not Herbrand-style trees. This comes from two reasons. Firstly, the le names belong to the directory that contains the les and not to the les themselves. In other words, they are on the edges of the lesystem and not on the nodes. This means that the same le can be present with di erent names in the same directory. It can also be present in a di erent directory anywhere else in the lesystem. This introduces sharing in lesystem structures: the same le can have several normal paths. Such alternative accesses for the same le are called hard links. They are forbidden on directories so as to avoid creating cycles. 3 Secondly, lesystems can contain symbolic links. They are les that contain a path, absolute or relative. One can then access a symbolic link and must follow the path it contains to get to the le it refers to. For instance, if /usr/local/lib is a symbolic link containing ../lib, then /usr/local/lib/ocaml would point to the same le as /usr/lib/ocaml. These symbolic links di er from hard links in that they may point to directories, thus creating cycles. They may also point to non-existing les: nothing guarantees that the path they contain is valid in the lesystem.

In order to better understand the notion of path and its interpretation, let us consider Figure 3.1. It contains a pseudo-code version of the resolution of a path in a lesystem, for explanatory purposes. It de nes a function resolve, Line 24, which takes a lesystem fs, a normal path containing the current directory cwd and a path p to resolve. It returns either a normal path corresponding to the resource p points to, or an error if the path is not valid. resolve only matches on the given path p to get its list of path components q 3.1. MODELISATION OF FILESYSTEMS function file-kind ( fs : filesystem , cwd : normal path , f : file name ) function resolve-pc ( fs : filesystem , cwd : normal path , q : list of path components ) : normal path or error match q

| ε -> return cwd | . q -> return resolve-pc(fs, cwd, q ) | .. q -> match cwd | / -> return resolve-pc(fs, /, q ) | cwd' _ -> return resolve-pc(fs, cwd, q ) | f q -> match file-kind ( fs , cwd , f ) | directory -> return resolve-pc(fs, cwd f, q )
| symlink to abs (q ) -> return resolve-pc(fs, /, q q ) | symlink to rel (q ) -> return resolve-pc(fs, cwd, q q ) | other kind -> match q

| ε -> return cwd f | _ -> return error
| no such file -> return error function resolve ( fs : filesystem , cwd : normal path , p : path ) : normal path or error match p | abs (q) -> return resolve-pc(fs, /, q)

| rel (q) -> return resolve-pc(fs, cwd, q) Figure 3.1: Resolution of a path in a lesystem and to know whether resolution should start from the root -if p is absolute -or from the current directory -if p is relative. In both cases, the core of the resolution is left to resolve-pc. resolve-pc, Line 3 takes a lesystem fs, a current directory cwd and a list of path components q and returns a normal path or an error. It works as follows:

• If the given list of path components q is empty (Line 7), there is nothing to resolve and the current directory cwd is the resource we have been resolving. Otherwise, we consider the rst path component of the list. The rest of the list will be named q .

• If the rst path component of q is . (Line 8), we do not move and we continue resolving the rest of the path from the same directory.

• If the rst path component of q is .. (Line 9), we have to remove the last path component of cwd. If cwd is the root, there is nothing to remove and we continue resolving from the same place (Line 11). Otherwise, we remove the last path component and continue resolving from there (Line 12).

• Otherwise, if the rst path component of q is a le name f (Line 13), we query the lesystem to see what is to be found in cwd at the le name f . For that, we assume the existence of a function file-kind that returns the kind of our le if it exists. 4 We leave the function file-kind unspeci ed in this example.

• If the le in question exists and is a directory (Line 15), we can continue resolving from this directory: the name f is added at the end of cwd.

• If the le exists and is a symbolic link (Lines 16 and 17), we append its path components q in front of the list of path components that remain to be resolved q . We start the new resolution from the root or the current directory depending on whether the link is symbolic or not.

• If the le exists but is another kind of le (Line 18), we have two possibilities. If there does not remain anything to resolve after this, then the le in question is the resource we have been resolving and we can return cwd to which we add the le name (Line 20).

• If the le exists but there remains things to resolve, or if the le does not exist, then the resolution fails (Lines 21 and 22).

Finally, all les carry additional metadata. In other words, the nodes of a lesystem carry various bookkeeping information. The minimal information that must be carried by a node in a POSIX lesystem [19, 13. Headers, <sys/stat.h>] is the following:

• the user and group owning the le;

• the mode, containing the permissions stating who can read, write or execute the les;

• the inode and the device id containing the le;

• three timestamps describing when they have been accessed or modi ed last, or when their status has been changed last; • in case of regular les, the size: the number of bits they occupy on the storage medium; • the number of hard links -incoming edges -to them; Some extensions are already described in the POSIX standard and, technically, any other is possible.

Abstracting Away from the Filesystem

Filesystems contain a lot of information. However, we are not necessarily interested in modelling all of them for our work. As mentioned in Section 1.2, we are guided in our modelisation by (with increasing order of importance:

• the POSIX standard [18], a document that describes what can be expected from Unix systems in general and lesystems and Shell in particular;

• the Debian Policy [22], a document that describes what can be expected on Debian systems in general and what should and should not be in maintainer scripts in particular;

• and a statistical analysis that we did ourselves (see Section 7.1), that allows us to measure what is actually used in Debian maintainer scripts.

The Debian Policy, for instance, states that maintainer scripts will be executed as the root user with maximum privileges. This level of privileges allows to ignore information of owner, group and permissions. We can thus safely abstract away from these in our model. Our statistical analysis [25; Jeannerod et al. 2017b] shows us that the other metadata -the timestamps 5 , the le size, etc. -are not used in maintainer scripts. It is thus safe to remove them too from our abstraction.

For similar reasons, we do not consider the content of regular les. This restriction allows us in particular to ignore any problem related to sharing -i.e. to les being reachable from di erent places in the lesystem -and therefore to ignore hard links. Indeed, hard links only matter because the modi cation of a le will a ect all the places in the lesystem where it is located. Since we do not model the content of les, this problem goes away and we are allowed to see lesystems as trees.

The statistical analysis also shows that the le kind does not matter: we are only interested in the difference between directories and other kind of les. In fact, handling several le kinds does not add any complexity to the modelisation. For presentation purposes, in all the rest of this chapter as well as in Chapters 4 and 5, we will ignore le kinds altogether, as if all les were directories.

Finally, the handling of symbolic links is known to be a complicated problem. There exists research focusing on this topic [Ntzik & Gardner 2015]. Fortunately for us, they are rarely present in maintainer scripts. We have thus decided to ignore in order to put our focus on other aspects of the modelisation of lesystem relations. Technically, this means that there are some scripts that are going to be modelled incorrectly; the potential bugs we nd therefore can only be false positives and have to be validated a posteriori. The fact that they are rarely present in maintainer scripts means that we will only encounter a low number of such false positives.

Feature Trees

Feature trees are trees of unbounded depth where nodes have an unbounded number of children and where edges from nodes to their children carry names such that no node has two di erent outgoing edges with the same name. Hence, the names on the edges can be used to select the di erent children of a node.

In an abstraction like ours where a lesystem can be seen as a tree, feature trees happen to be adequate representations of such trees.

We assume given an in nite set of features F. It is used to model the allowed le names in a lesystem.

In the rest of this document, we use the letters f , g, h to denote features. We can now give the de nition of feature trees in De nition 3.2. 

t 1 : • • • lib share t 2 : • • • • • bin usr lib share t 3 : • • •
FT ∞ = F FT ∞
A nite feature tree is an inhabitant of FT ∞ that is nite. We will note by FT the set of nite feature trees. In other words, it is inductively de ned as:

FT = F FT
where all the partial functions have nite domain. Here, the case of a partial function with empty domain serves as base case of the induction.

Note that if all the trees in FT are nite, their depths and their widths are unbounded 6 . In this work, we are going to consider most of the time nite feature trees. Unless explicitly mentioned, all the feature trees in the rest of this document are nite, that is unless explicitly mentioned, we place ourselves in the model FT .

Figure 3.2 shows examples of feature trees. t 1 is a tree whose root has two outgoing edges lib and share both leading to a tree whose root has no outgoing edges. Formally, t 1 is a partial function of domain {lib, share} and such that t 1 (lib) = t 1 (share) = t 4 , where t 4 is the empty feature tree. One can notice that t 1 = t 2 (usr), that t 2 (usr) = t 3 (usr) and that t 1 (usr) = t 47 .

Feature trees have been used previously in constraint-based formalisms in the eld of computational linguistics [Smolka 1992]. 

Logic Over Feature Trees -FTS

We now have a model of lesystems as feature trees. What we do want to describe in this work, however, is lesystem transformations, as they are what Unix utilities and Shell scripts perform. We thus need a formalism able to describe transformations of feature trees. In particular, we need to be able to describe an update from one tree to another one and to express facts resembling "y is an update of x where f now leads to an empty directory". Feature tree logics have been studied before and seem quite appropriate to describe the trees we are interested in; they just need to be extended to express updates of trees.

In this section, we de ne a feature tree logic FTS8 that corresponds to these needs. In Section 3.2.1, we de ne the syntax of the formulas of FTS and give examples. In Section 3.2.2, we give the semantic interpretation of these formulas and de ne basic semantic notions. In Section 3.2.3, we discuss the expressivity of FTS in comparison to related works. Finally, in Section 3.2.4, we de ne classes of formulas that will be used in this document.

Syntax of FTS

We assume given an algebra of sets over F, noted FS. This is a subset of P(F) containing the empty set, all the singletons of features, and stable by union, intersection and complement. It thus contains all the nite and co nite9 sets of features, including F itself. We will note for the full set, that is F. We require a test of membership (∈) and a test of inclusion (⊆). In particular, we can test whether a set F is empty (F ⊆ ∅), or full ( ⊆ F ). Typically, we could restrict ourselves to only nite and co nite sets, but we could also consider regular languages of features, for instance.

We consider a rst-order logic over feature trees. We assume given an in nite supply V of variables all distinct from features of F. We will use x, y, z to denote these variables. Let us give the syntax of logic formulas of FTS in De nition 3.3.

De nition 3.3 (Syntax of FTS)

. The logical formulas φ, ψ, etc. are de ned inductively as: φ, ψ, . . .

::= x[f ]y -Feature f from x to y | x[F ]↑ -Absence of F from x | x = F y -Similarity of x and y on F | -True | ⊥ -False | ¬φ -Negation of φ | φ ∧ ψ -Conjunction of φ and ψ | φ ∨ ψ -Disjunction of φ and ψ | ∃x • φ -Existential quanti cation of x in φ | ∀x • φ -Universal quanti cation of x in φ
where f is a feature from F and F is a feature set from FS.

We consider the similarity predicate to be symmetrical: we identify x = F y with y = F x. We consider conjunction to be associative and commutative. Associativity means that we identify φ ∧ (ψ 1 ∧ ψ 2 ) with (φ ∧ ψ 1 ) ∧ ψ 2 and we write φ ∧ ψ 1 ∧ ψ 2 in that case. Commutativity means that we identify φ ∧ ψ with ψ ∧ φ. Similarly, we consider disjunction to be associative and commutative. We consider existential quanti cation to be commutative: we identify ∃x • ∃y • φ with ∃y • ∃x • φ and we write ∃x, y • φ. Similarly, we consider universal quanti cation to be commutative.

We write x[f 1 . . . f n ]↑ for x[{f 1 . . . f n }]↑ and x = {f 1 ...fn} y for x = {f 1 ...fn} y. We write x = F y for ¬(x = F y). We use the shortcuts φ → ψ for ¬φ ∨ ψ, and φ ↔ ψ for (φ → ψ) ∧ (ψ → φ).

x De nition 3.4 (Free Variables of a Formula). The free variables of a formula φ, noted V(φ) are de ned as follows:

[lib]y ∧ y[ ]↑ (3.1) ∃y • (x = {usr,var} y ∧ x[etc]↑ ∧ ¬y[etc]↑) (3.2) ∀x • ((x = F y ∧ x[G]↑) → y[F ∩ G]↑) (3.3) ∃x, y • ∀z • (z = F x ∨ z = F y) (3.
V : formulas → sets of variables

, ⊥ → ∅ x[F ]↑ → {x} x[f ]y, x = F y → {x, y} ¬φ → V(φ) φ ∧ ψ, φ ∨ ψ → V(φ) ∪ V(ψ) ∃x • φ, ∀x • φ → V(φ)\{x}
A formula φ that has no free variables (that is such that V(φ) = ∅) is said to be closed.

Any formula can be closed by adding as many existential or universal quanti ers as necessary. These closures are de ned in De nition 3.5. Note that closed formulas are syntactically equal to both their existential and universal closures.

De nition 3.5 (Existential and Universal Closures). The existential closure of a formula φ, written ∃ • φ, is the formula ∃V(φ) • φ. The universal closure of a formula φ, written ∀ • φ, is the formula ∀V(φ) • φ. • Formula 3.1 states that there is a feature lib from x to y and that everything is absent from y (in other words, y is empty).

• Formula 3.2 states that there exists a y such that x and y are similar in {usr, var}, and that etc is absent from x and not absent from y (in other words, etc is present in y).

• Formula 3.3 states that, for all x, if x and y are similar in F , and all the features of G are absent from x, then all the features of F ∩ G are absent from y.

• Formula 3.4 states that there exists x and y such that for all z, either x and z are not similar in F , or y and z are not similar in F (in other words, z cannot be similar in F with both x and y).

The formalisation of the meaning of these formulas is the subject of Section 3.2.2.

Semantics of FTS

Let us now de ne what meaning to give to a formula of FTS de ned in Section 3.2.1. We rst need to de ne models in De nition 3.6 and valuations to models in De nition 3.7.

De nition 3.6 (Model). A model is a set of feature trees, that is a subset of FT ∞ .

De nition 3.7 (Valuation to a model). Given a model M , a valuation to M is a partial function from variables to M . We use ρ to denote such functions. The set of all valuations to M will be noted R M .

We can then de ne the interpretation of a formula φ in a model M in De nition 3.8. The interpretation of φ in M is a set of valuations to M -that is a subset of R M -thanks to which the formula makes sense. We de ne this in any model although we will place ourselves in the speci c model FT most of the time.

De nition 3.8 (Interpretation of a formula in a model). The interpretation of a formula φ in a model M , noted I M (φ), is:

I M : formulas → P(R M ) x[f ]y → {ρ ∈ R M | x, y ∈ dom(ρ), f ∈ dom(ρ(x)), ρ(x)(f ) = ρ(y)} x[F ]↑ → {ρ ∈ R M | x ∈ dom(ρ), dom(ρ)(x) ∩ F = ∅} x = F y → {ρ ∈ R M | x, y ∈ dom(ρ), ρ(x) = F ρ(y)} → R M ⊥ → ∅ ¬φ → R M \I M (φ) φ ∧ ψ → I M (φ) ∩ I M (ψ) φ ∨ ψ → I M (φ) ∪ I M (ψ) ∃x • φ → {ρ ∈ R M | ∃t • ρ[x → t] ∈ I M (φ)} ∀x • φ → {ρ ∈ R M | ∀t • ρ[x → t] ∈ I M (φ)}
We note ρ |= M φ when ρ ∈ I M (φ). We say that ρ satis es the formula φ in the model M . We note ρ |= φ when ρ satis es φ in all models.

Depending on whether I M (φ) contains zero, more or all of the valuations of R M , we say that φ is unsatis able, satis able or valid respectively. The formal de nition of these terms is given in De nition 3.9.

De nition 3.9 (Satis ability). A formula φ is unsatis able in a model M if there does not exist any val-

uation ρ ∈ R M such that ρ |= M φ. A formula φ is satis able in a model M if there exists a valuation ρ ∈ R M such that ρ |= M φ. A formula φ is valid in a model M if, for all valuation ρ ∈ R M , ρ |= M φ.
Note that a valid formula is also satis able. Note also that, for closed formulas, the valuations do not matter. In other words, if one valuation satis es a closed formula, then all the other valuations do too. Note also that these notions of satis ability and validity di er from the standard ones in that there is here only one model being considered. The satis ability is about the existence of a valuation that satis es the formula in that one model. The validity is about the fact that all valuations satisfy the given formula in that one model.

Finally, let us de ne implication and equivalence of formulas in De nitions 3.10 and 3.11. Although these de nitions are generic with respect to the model, all our work is placed in the one model of all feature trees FT . We will thus simply say that a valuation satis es a formula, leaving the model of feature trees implicit. Similarly, we will say for instance that two formulas are equivalent, leaving the model of feature trees implicit. On the other hand, when required, we will make it explicit if we do not talk only of FT .

De nition 3.10 (Implication

Let us now interpret (in FT ) the formulas of Figure 3.3 by using the trees of Figure 3.2:

• Formula 3.1 is a formula with two free variables x and y. It is clearly not valid. Indeed, the valuation [x → t 4 , y → t 4 ] that gives the empty treet 4 -to both x and y does not satisfy it. It is however satis able. Indeed, the valuation [x → t 1 , y → t 4 ] that to gives t 1 to x and t 4 to y satis es it.

• Formula 3.2 has one free variable xy being bound by an existential quanti er. It is not a valid formula as any valuation ρ such that x ∈ dom(ρ) and etc ∈ dom(ρ(x)) is not in its interpretation. It is however satis able by the valuation [x → t 2 , y → t 3 ]. Indeed, t 2 and t 3 are similar on {usr, var} as they are equal in the former and do not have the latter. t 2 indeed does not have etc in its domain, but t 3 does.

• Formula 3.3 has one free variable yx being bound by a universal quanti er. It is a valid formula. Indeed, let us take any valuation ρ. Let us take any t and consider µ = ρ[x → t]10 . If µ does not satisfy the left-hand side of the implication, then it satis es the whole formula. If µ does satisfy the left-hand side, then x, y ∈ dom(µ), µ(x) = F µ(y) [START_REF] Becker | colis-language: a symbolic analyser for shell scripts[END_REF] and dom(µ(x)) ∩ G = ∅. That does indeed imply that dom(µ(y))∩F ∩G = ∅, and thus µ satis es the right-hand side and the whole formula. [START_REF] Braakman | checkbashisms[END_REF] • Formula 3.4 is a closed formula as all its three variables are bound. Its validity depends on F . If F is the empty set, then both negated similarity atoms are false no matter which value is given to their variables. If F is not empty, however, and one considers ρ that gives to x and y trees that are not equal in F , then it is true that for any tree t, it is either di erent from ρ(x) or from ρ(y) in F .

Expressivity of FTS in Comparison to Related Work

FTS is strictly more expressive than FT [Aït- Kaci et al. 1994], the rst rst-order feature tree logic that has been introduced. FT comprises the predicates x[f ]y and x[f ]↑ -the absence of one feature only. Of course, these two can be encoded in our logic.

x = y x = y x[f ]y x[f ]y x[f ]↑ x[{f }]↑ x[F ] x[ c F ]↑ x ∼ F y
x =c F y Figure 3.4: Conversion from FT extended with fence and similarity to the logic presented in this work

x[f ]y x[f ]y x[F ]↑ (F nite) f ∈F x[f ]↑ x[F ]↑ (F co nite) x[ c F ] x = F y (F nite) f ∈F (x[f ]↑ ∧ y[f ]↑) ∨(∃z • x[f ]z ∧ y[f ]z) x = F y (F co nite)
x ∼c F y Figure 3.5: Conversion from the logic presented in this work with the algebra of nite and co nite sets to FT extended with fence and similarity.

FT was later extended to CFT [Smolka & Treinen 1994] that adds an arity predicate x[F ] for any nite set of features F . This arity predicate states that the root has precisely the features that appear in F . In other words, it is satis ed by any valuation ρ such that dom(ρ) = F . Since we can express the absence of a co nite set of features and the presence of features [START_REF]CoLiS -ANR project[END_REF] , we can encode it in FTS as

x[ c F ]↑ ∧ f ∈F ¬x[f ]↑.
This formula rst states that the complement of F is absent from x. In other words, that the only features that are allowed are that of F . The formula then lists all the features in f , using the negation of the absence atom to state that they have to be present.

More recently, we extended FT to add a fence predicate x[F ] and a similarity predicate x ∼ F y, for any nite set of features F [Jeannerod & Treinen 2018]. The similarity atom states that the two variables may not di er outside F : it is satis ed by any valuation ρ such that ρ(x) =c F ρ(y). The fence atom di ers from the arity atom in that it is an upper bound on the domain of the valuation: it is satis ed by any valuation ρ such that dom(ρ) ⊆ F . The reason behind that choice is that the interactions of the similarity atom with the fence atom are easier to manipulate than with the arity atom. Figures 3.4 and 3.5 sketch the relationship between FTS and FT with fence and similarity atoms: Figure 3.4 shows that FTS is at least as expressive as FT with fence and similarity predicates. Figure 3.5 shows that, if we take for FS exactly the nite and co nite sets, then the two logics have exactly the same expressivity.

Finally, our previous work [Jeannerod & Treinen 2018] studied the interaction between FT with fence and similarity predicates -inherently stating properties on the edges of feature trees -with a logic of so-called decorations. In that case, the model of feature trees is extended to carry an information of decorations on the nodes. The full logic that was considered was then FT with fence and similarity predicates parametrised by a logic on decorations. The decorations were thoughts to be useful for the modelisation of the le metadata described in Section 3.1.1. Since then, we realised that such metadata could simply be abstracted away. Moreover, our previous work showed that introducing decorations did not add complexity. We therefore decided to leave them away in this thesis.

FT has also been extended by adding quanti cation over features [Treinen 1993]. The result of this work, however, is that such logics are undecidable. Later work [Treinen 1997] has shown that decidability can be recovered if one restricts the use of feature variables to express existence of features only. Quanti cation over features did not seem relevant for our use, but it does suggest that FTS could be extended in such a way as well, while keeping decidability results.

Finally, FTS indeed allows us to express update of trees. If we consider again the example "y is an update of x where f now leads to an empty directory", it can be expressed in our logic with Formula 3.5.

y =c {f } x ∧ ∃z • (y[f ]z ∧ z[ ]↑) (3.5)
In general, the update predicate of the form "y is an update of x where f now leads to z" is expressible with the formula y =c {f } x∧y[f ]z. This way, we cut the notion of update in two parts, one of which is the feature atom, which has been studied numerous times before. The other part is the similarity predicate that happens to be rather exible. For instance, for any F , = F is an equivalence relation:

• It is re exive as, for all x and F , x = F x is valid.

• It is symmetric as, for all x, y and F , x = F y and y = F x are equivalent.

• It is transitive as, for all x, y, z and F , x = F y ∧ y = F z implies x = F z.

In fact, the transitivity can be made more general by recognising that for all x, y, z, F and G, x = F y ∧ y = G z implies x = F ∩G z. This idea of introducing a similarity predicate as something easier to manipulate than an update predicate can actually be found in other lines of work, and in particular in theory of arrays [Stump et al. 2001] when one wants to express updates of arrays.

Classes of Formulas

This subsection introduces the nomenclature of various classes of formulas that we are going to manipulate in this document. We will start with the simplest formulas: atoms in De nition 3.12 and literals in De nition 3.13.

De nition 3.12 (Atom). An atom -or predicate -is a formula that does not have a proper sub-formula.

In our logic, it is x[f ]y, x[F ]↑ or x = F y for any x, y, f and F .

De nition 3.13 (Literal). A literal is a formula that is either an atom or the negation of an atom. An atom is said to be a positive literal. A negated atom is said to be a negative literal.

Most of the formulas that we will manipulate in this work will be under the form of a disjunction of existentially-quanti ed conjuntions. We are thus going to de ne constraints in De nition 3.14, existential constraints in De nition 3.15 and disjunctions of existential constraints in De nition 3.16.

De nition 3.14 (Constraint). A constraint is either or of the form

l 1 ∧ • • • ∧ l n (n ≥ 1)
where, for all i, l i is a literal. It can be seen as a -possibly empty -set of literals, the empty set being .

De nition 3.15 (Existential Constraint). A x-constraint, short for existential constraint is of the form ∃X •c where c is a constraint.

De nition 3.16 (Disjunction of Existential Constraints

). A DXC -short for disjunction of x-constraints - is either ⊥ or of the form c 1 ∨ • • • ∨ c m (m ≥ 1)
where, for all j, c j is an x-constraint. It can be seen as a -possibly empty -set of x-constraints, the empty set being ⊥.

DXC are a very particular form of formulas with existential quanti ers. It is not true that any formula built without ∀ is logically equivalent to a DXC, that is equivalent to every model. [START_REF]Debian Developers Reference[END_REF] It is true, however, if one restricts where such quanti ers can occur. Let us de ne what it means for a quanti er to be in a positive or negative occurrence, in De nition 3.17.

x y f x y f x ⊥ f x •[F ]↑ x ¬ • [F ]↑ x y = F x y = F ∃x Figure 3
.6: Base predicates of FTS De nition 3.17 (Positive and Negative Occurrence of a Quanti er). In a formula φ, an occurrence of a quanti er ∃ or ∀ is said to be positive if it appears under an even number of negations ¬. Other occurrences are said to be negative.

For instance, in ∃x • ¬((∀y • φ) ∨ (∃z • ψ) ∧ ¬(∀w • χ)), ∃x and ∀w are positive occurrences and ∀y and ∃z are negative occurrences. Some classes of formulas can be de ned by restrictions on the occurrences of quanti ers. This is the case of Σ 1 -and Π 1 -formulas. These will be de ned in De nition 3.18 and De nition 3.19 respectively. We will then state in Lemma 3.2 that, for every Σ 1 -formula, there exists an equivalent DXC. We will assume the existence of a function DXC that yields an equivalent DXC for any Σ 1 -formula.

De nition 3.18 (Σ 1 -formula). A Σ 1 -formula is a formula in which all existential quanti ers appear in positive occurrence and all universal quanti ers appear in negative occurrence.

De nition 3.19 (Π 1 -formula). A Π 1 -formula is a formula in which all universal quanti ers appear in positive occurrence and all existential quanti ers appear in negative occurrence. Lemma 3.2 (Existence of DXC for Σ 1 -formulas). For all Σ 1 -formula, there exists an equivalent DXC.

DXC allow us to manipulate very limited formulas. Although most of this work will focus on such formulas, we will need to sometimes talk about any formula of our logic. In order to manipulate these, we introduce in De nition 3.21 what it means for formulas to be in prenex normal form. We state in Lemma 3.3 that any formula has a prenex normal form. We describe more precisely in Lemma 3.4 the shape of this prenex normal form for Π 1 -formulas. We will assume the existence of a function PNF that takes a formula and returns one of its prenex normal forms.

De nition 3.20 (Quanti er-free Formula). A formula is quanti er-free if it does not contain ∃ or ∀.

De nition 3.21 (Prenex Normal Form). A formula φ is in PNF -short for prenex normal form -if there exists Q a string of quanti cations and ψ a quanti er-free formula such that φ = Q • ψ. Lemma 3.3 (Existence of PNF for any Formula). For any formula φ, there exists a formula in prenex normal form that is equivalent to φ in every model. In other words, for any formula φ, there exists Q a string of quanti cations and ψ a quanti er-free formula such that:

|= ∀ • (φ ↔ Q • ψ).
We say that ψ is a prenex normal form of φ or that φ has the prenex normal form ψ. Lemma 3.4 (Shape of PNF for Π 1 -formulas). For any Π 1 -formula φ, there exists a prenex normal form with only universal quanti ers that is equivalent to φ in every model. In other words, for any Π 1 -formula φ, there exists X a set of variables and ψ a quanti er-free formula such that |= ∀ • (φ ↔ ∀X • ψ). Let us take as example the formulas of Figure 3.3. Formula 3.1 is a constraint of two positive literals. It is also a x-constraint (with an empty quanti er block), a DXC and a PNF. Formula 3.2 is an x-constraint of two positive and one negative literals. It is also a DXC and a PNF. Formulas 3.3 and 3.4 are in PNF. In this work, we will focus particularly on DXC. For these formulas, we introduce a graphical representation of the base predicates in Figure 3.6. X-Constraints are simply represented by the presence of multiple base predicates in the same gure. Existential quanti cation is represented using the ∃ symbol near a variable. DXC are represented using multiple gures. The graphical representation of an x-constraint can be seen as an oriented graph whose vertices are variables. A feature x[f ]y is represented by an edge from x to y carrying the feature f . By convention, features will always be top to bottom and will not carry an arrow. [START_REF]Install script does rm -rf /usr for ubuntu[END_REF] A negated feature atom ¬x[f ]y is represented by a dashed edge carrying the feature f from x to y. The whole edge is striked through. An absence x[f ]↑ is represented by a dashed edge carrying the feature f from the variable x to a ⊥ node. The feature f is striked through. An absence x[F ]↑ is either represented by several absences x[f ]↑ if F is nite or by the annotation •[F ]↑ under the variable it concerns. A negated absence ¬x[F ]↑ is represented by the annotation ¬ • [F ]↑ under the variable it concerns. A similarity atom x = F y and a negated similarity atom x = F y are both represented by a dotted edge from x to y carrying = F and = F respectively. Finally, a variable that is existentially quanti ed upon in the x-constraint will be preceded by the ∃ symbol. 

Modelisation of Utilities

Section 3.1 de ned feature trees as models for lesystems. Section 3.2 de ned FTS, a logic over feature trees which comprises, in particular, a similarity predicate allowing to express the update. We can therefore use formulas of FTS to model transformations of lesystems. We will see in this section how we use them to model Unix utilities. In Section 3.3.1, we de ne utilities and describe what we want to model in them. In Section 3.3.2, we show how we use FTS to model one call to a utility. In Section 3.3.3, we de ne a set of macros that help us extend such utilities to schemes that cover all similarly looking utility calls. Finally, in Section 3.3.4, we show how we model utilities.

Utilities

A utility [20, Section 4] is a program that takes as input a (potentially empty) list of arguments and a string. It produces as output a number and two strings. It can also read and perform modi cations of the lesystem of the computer as side-e ect. The strings as input and outputs are called standard input, standard output and standard error. The number is called return code. It is used to represent the status of the utility -success or error. Utilities are also often called command but we will avoid that name as, in the context of Shell, it can be misleading. Some utilities do not have any e ect on the lesystem. They can be used for various tasks, for instance 1 rm / etc / rancid / lg . conf 2 rm -R / etc / rancid / lg . conf 3 rm -R -i / etc / rancid / lg . conf 4 rm -Ri / etc / rancid / lg . conf 5 rm -Ri / etc / rancid / lg . conf / usr / lib / ocaml Figure 3.9: Five example calls to the utility rm giving the date (date) or modifying an input text (sed) [START_REF] Greenberg | Smoosh, the Symbolic, Mechanized, Observable, Operational SHell: an executable formalization of the POSIX shell standard[END_REF] . Some do not perform modi cations but do read the lesystem. They can for instance be used to test the state of a le (test, aka. the bracket [), or to list the contents of a directory (ls). Finally, some utilities do perform modi cations of the lesystem. They create directories (mkdir), move les (mv), write to les, etc. Utilities do not have to perform only simple tasks. Some are very rich and complex pieces of software that can range from text editors (nano) to web browsers (links) and e-mail clients (mutt). Technically, bigger, graphical programs are also considered to be utilities.

In this work, we will only look into utilities that appear in maintainer scripts. They are usually simple. Also -but it really varies from one utility to another -, utilities that do not depend on the lesystem are meant to provide useful outputs for a user, and utilities that do perform modi cations of the lesystem do not provide outputs except to report errors.

A utility call is the description of a utility name and its arguments. We will not encounter the case of utilities that take a string on its standard input in this part of the work. A utility call will typically be represented as in Figure 3.9, by analogy with Shell commands: they always start with the name of the utility (in this example, rm, that can remove les) and are followed by a space-separated list of arguments. The utility call on Line 5, for instance, has for arguments the three strings "-Ri", "/etc/rancid/lg.conf" and "/usr/lib/ocaml".

Technically, utilities arguments are not restrained to speci c syntactic conventions. Most of the ones we will encounter in this work follow the XBD Utility Syntax Guidelines [19, Section 12.2] and expect their arguments to be one-character options starting by a dash (-) character (-R, -i, etc.) followed by operands. Multiple options can be merged together without changing the meaning of the command (eg. -Ri). Since we are interested here in utilities that perform modi cations of the le system, these operands will often be paths (eg. /etc/rancid/lg.conf).

Options can radically change the behaviour of a utility. Let us consider the ve di erent ways in which the utility rm is called in Figure 3.9:

1. Without options, rm removes the given le if it is not a directory. It fails on directories.

2. The -R options makes rm remove the target recursively. This only makes a di erence if the target is a directory, in which case the directory and all of its content is removed.

3. The -i options makes rm ask for con rmation to the user before removing anything.

4. The -R and -i options can be merged together and written as -Ri. This does not change in any way the behaviour of the utility.

5. Several operands can be provided and rm will simply treat them one after the other. There is here a subtlety in case the handling of one of the arguments go wrong. This is described in Section 3.3.4.

Utilities that we are interested in typically work in two phases. In a rst phase, they read their arguments, run sanity checks on them and decide what modi cation of the lesystem they will perform. In a second phase, they actually perform that modi cation if it is possible in the current state of the lesystem. Similarly, we will abstract utilities as programs that rst read their arguments, run sanity checks and decide what modi cation of the lesystem they will try to perform, and then instantiate a speci cation -that is a logical formula representing this modi cation in our logic -for this particular case.

Two points need to be noted. Firstly, the standard input and output and the return codes will not be part of the speci cations, that is they do not belong to the logical formalism. They are however still present in the model. Secondly, in our abstraction, we collapse all the 127 error return codes that a utility may return and only consider that a utility may succeed or fail. This is justi ed as that control structures of Shell only di erentiate between these two cases and as none of maintainer scripts of Debian only seldom inspect the value of return codes.

Speci cations of One Utility Call

Using FTS, we can give speci cations to utility calls. A utility call can be seen as a transformation from an input tree to an output tree. We can specify such objects with relations between trees, which can themselves be represented by a formula of two free variables: the input and the output lesystems. Such formulas will be called speci cations. Although formulas of two free variables represent relations, we will see in Section 3.4 that, the huge majority of the time, we write speci cations as functions. For this reason, we allow ourselves the use of the word transformation to describe the formula represented by a speci cation.

In fact, speci cations have to be split between several speci cation cases describing the transformations that are performed when the utility succeeds and when the utility fails. For readability of such formulas by human readers, we sometimes provide several cases for success or error. For instance, if we consider the utility call rm /etc/rancid/lg.conf, it can fail when the path /etc/rancid/lg.conf does not exist but also when it exists and points to a directory.

Each speci cation case is written in two parts. The rst part is a formula of the input tree only. It describes a precondition. The second part is a formula describing the transformation which is performed when the precondition is met. The speci cation case is the conjunction of the two parts.

Although this suggests that speci cations are written under the form of a DXC, they are not. Speci cation cases are conjunctions of two parts. These parts can contain existential quanti ers and also disjunctions. We are however going to make sure that our speci cations can be transformed into DXC as this is what our solvers can handle e ciently (see Chapter 4). We thus need to force ourselves to write Σ 1 -formulas only. By Lemma 3.2, this is su cient.

Let us take the utility call rm -R /etc/rancid/lg.conf as an example. The -R option means that rm removes the path /etc/rancid/lg.conf as long as it exists, whether it is a directory or not. It makes for a simpler speci cation and avoids handling le kinds. Let us write the speci cation case of its success, that is two formulas φ 1 (r, r ), where r and r represent the input and output trees respectively. For this utility call to succeed, the path /etc/rancid/lg.conf has to exist in the input tree r. The output tree r is then very similar except in this path. In the output tree, the path /etc/rancid/lg.conf does not exist anymore. As a complete formula, and quantifying over the intermediary variables, this gives us 

φ 1 (p) (r) = ∃x, y, z • (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]z) φ 1 (t) (r, r ) = ∃x, y, x , y •   r =c {etc} r ∧ x =c {rancid} x ∧ y =c {lg.conf} y ∧ r[etc]x ∧ x[rancid]y ∧ r [etc]x ∧ x [rancid]y ∧ y [lg.conf]↑   φ 1 (r, r ) = φ 1 (p) (r) ∧ φ 1 (t) (r, r ) (3.6) 
This does not cover all the possibilities as this utility call can also fail. We also need to take into account this possible failure and the transformation that is performed then. In this case, the utility call simply does nothing and the output tree is the same as the input one. This can be described with a precondition that simply negates that of Formula 3.6 and a transformation being φ (t) 2 (r, r ) = r = r . Such a precondition is given in Formula 3.7.

φ 2 (p) (r) = ¬∃x, y, z • (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]z) (3.7)
Formula 3.7, however, is a Π 1 -formula as it involves a negative occurrence of an existential quanti er. This is forbidden because -as discussed at the beginning of this subsection -we want to restrict ourselves to formulas that admit a DXC. We thus prefer an alternative version that circumvents this problem by enumerating the various reasons why a path could not exist: etc may not exist; if it exists, then rancid may not exist; if it exists, then lg.conf does not. This is shown in Formula 3.8. A graphical representation can be found in Figure 3.11.

φ 2 (p) (r) = ∃x, y • r[etc]↑ ∨ (r[etc]x ∧ x[rancid]↑) ∨ (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]↑) (3.8)
Formula 3.8 is equivalent to Formula 3.7 in the model FT , but contrary to Formula 3.7, Formula 3.8 does admit a DXC. We will show in Chapter 5 that we have an e cient way to avoid generating explicitly such a disjunction.

The full speci cation of rm -R /etc/rancid/lg.conf is then the list of all its speci cation cases. In this example, there are only two: the speci cation case for the successφ 1 (r, r ) -and the speci cation case for the errorφ 2 (r, r ). If we solely consider the transformation performed by the utility, then we are only interested in the disjunction of all the speci cation cases. It is important, however, for the purpose of symbolic execution, to be able to separate success and error cases.

1 function resolve (x : variable , q : list of features , z : variable ) 3.12: Success case of rm -R p/f Section 3.3.2 presents the speci cation of one utility call. Of course, we do not specify all the utility calls by hand -there is an in nity of possible path arguments. Instead, we generalise the speci cation given in Section 3.3.2 so that it covers all the similar utility calls.

2 : x-constraint 3 match q 4 | ε -> return x = z 5 | f q -> return ∃y • (x[f ]y ∧ resolve(y, q , z))
As an example, let us give a speci cation for rm -R p/f , where p/f is any path ending with a feature f . Figure 3.12 presents an informal graphical representation of both the precondition and transformation of rm -R p/f . In this graphical representation, the zigzags labelled by p represents a chain of feature and similarity atoms following the path p.

We need to de ne functions that formalise these zigzags labels, that is functions that build formulas expressing the existence of a path, the similarity of two trees along a path and the non-existence of a path.

Let us start with the existence of a path. We simply have to de ne a function that chains feature atoms for the whole given path. We could for instance de ne a function resolve(x, q, z) which chains feature atoms from x to z following the list of features q. The de nition of such a function can be found in Figure 3.13, Line 1. It works as follows. If q is empty, then x and z have to be equal and we therefore return x = z (Line 4). If q is not empty, then it is of the form f /q where f is a feature. The chain of feature atoms has to start with a feature x[f ]y for some fresh variable y and there remains q to crawl from y (Line 5).

The state of a airs is actually more complex as the paths can be absolute or relative, and can contain . and ... As described in Section 3.1.1, absolute paths are resolved from the root of the lesystem and relative paths are resolved from the current working directory. Our functions will thus take that current working directory as an argument, named cwd.

Let us now de ne the actual function resolve(r, cwd, p, z) that builds the resolution in the root r of a path p from the current directory cwd and to z. Similarly to that of Figure 3.13, it will create a new feature atom for each path component that is not . or ... All occurrences of . will be ignored. On occurrences of .., our function nds the parent variable (or the current one if it is the root) and starts again from there. In order to do that, we actually use an auxiliary function resolve-s(x, π, q, z) which keeps a stack π of parent variables, thanks to which it is able to interpret ... The de nitions of resolve and resolve-s can be found in Figure 3.14, Lines 12 and 1 respectively. We believe that the code is similar to that of Figure 3.1, except that we do not need to care about di erent le kinds. De ning a function similar for the similarity of two trees along a path brings di erent issues. With respect to parent directories in particular, one would be tempted to de ne it in the same way resolve is function resolve-s (x : variable , π : stack of variables , q : list of path components , z : variable ) : x-constraint match q

| ε -> return x = z | f q -> return ∃y • (x[f ]y ∧ resolve-s(y, π x, q, z))
| . q -> return resolve-s(x, π, q , z)

| .. q -> match π | ε -> return resolve-s(x, ε, q , z)
| π y -> return resolve-s(y, π , q , z) function resolve (r : variable , cwd : normal path , p : path , z : variable ) : x-constraint match p | abs (q) -> return resolve-s(r, ε, q, z)

| rel (q) -> return resolve-s(r, ε, cwd/q, z) q : list of features , z : variable , z : variable ) : x-constraint

3 match q 4 | ε -> return x = z ∧ x = z 5 | f q -> return ∃y, y • (x[f ]y ∧ x [f ]y ∧ x =c {f }
x ∧ similar-n(y, y , q , z, z ))

Figure 3.18: Function similar-n for a normalised path 1 function normalise ( cwd : normal path , q : list of path components )

2

: normal path | abs (q) -> return similar-n(r, r , normalise( /, q), z, z )

3 match q 4 | ε -> return cwd 5 | f q -> return normalise(cwd f, q ) 6 | . q -> return normalise(cwd, q ) 7 | .. q -> 8 match cwd 9 | / ->

16

| rel (q) -> return similar-n(r, r , normalise(cwd, q), z, z ) The main problem here is that the pairs of variables that are visited several times by the function receive several similarity predicates. In the example, the two variables x and x are said to be both similar outside {f } and outside {g}. If f and g are distinct, this means that x and x are similar in everything, which is clearly not what we want.

Our solution is to rst normalise the path syntactically, erasing all occurrences of f /.., and then to build a chain of similarity atoms on the normalised path with a function similar-n. It is to be noted that the existence of the normalised version of a path does not imply the existence of the path itself. This means that the obtained function similar-n only makes sense when used in conjunction with resolve. An example of what similar-n produces is given in Figure 3.17. The de nition of similar-n on normalised path is given in Figure 3.18.

The de nition of the similarity of any path, similar, can then be given in term of the path normalisation normalise and the similarity on normalised path similar-n. It can be found in Figure 3.19.

Finally, there remains to de ne the non-existence of a path. As mentioned in Section 3.3.2, and because we want our speci cations to be DXC formulas only, we cannot de ne the failure to resolve a path p as in Formula 3.9 as this is a Π 1 -formula.

¬∃z • resolve(r, cwd, p, z) (3.9)

Instead, we have to give a de nition that lists all the possible cases of non-existence. Such a de nition can be found in Figure 3.20.

Finally, let us give the scheme of speci cations for rm -R p/f without options. The success and error 1 function noresolve-s (x : variable , π : variable stack , q : path ) | abs (q) -> return noresolve-s (r, ε, q)

2 : Σ 1 -formula 3 match q 4 | / -> return ⊥ 5 | f /q -> return x[f ]↑ ∨ ∃y • (x[f ]y ∧ noresolve-s(y, π x, q )) 6 | ./q -> return noresolve-s (x, π, q ) 7 | ../q -> 8 match π 9 | ε -> return noresolve-s (x, ε, q ) 10 | π y ->
16 | rel (q) -> return noresolve-s (r, ε, cwd/q) Figure 3.20: Function noresolve for any path cases can be found in Formulas 3.10 and 3.11 respectively.

φ 1 (p) (r) = ∃z • resolve(r, cwd, p/f, z) φ 1 (t) (r, r ) = ∃y, y • similar(r, r , cwd, p, y, y ) ∧ y =c {f } y ∧ y [f ]↑ φ 1 (r, r ) = φ 1 (p) (r) ∧ φ 1 (t) (r, r ) (3.10) 
φ 2 (p) (r) = noresolve(r, cwd, p/f ) φ 2 (t) (r, r ) = r = r φ 2 (r, r ) = φ 2 (p) (r) ∧ φ 2 (t) (r, r ) (3.11) 
One of our contributions as part of the CoLiS projects is a technical report containing such speci cations for the schemes of utility calls that are most widely used in Debian maintainer scripts [Jeannerod et al. 2019].

Modelisation of Utilities

Once we have given speci cations to the various utility call schemes, as described in Section 3.3.3, we can give an implementation to our modelled utility. This is a program that takes command line arguments as input and generates a speci cation as output. This program has to handle the options to decide which speci cation has to be generated from the given paths. It will also have to handle iteration through a list of paths if several paths are given as argument.

The program has to behave concretely and according to the standard [20, Section 4] on its arguments. In the example of rm, this means the following.

• If the last component of the path given to rm is . or .., or if the path resolves to the root directory, rm fails and skips this path.

• If the option -R (or -r) is not given, then rm fails if the path resolves to a directory. If the option is given, rm succeeds and remove the directory and all of its content.

• When several paths are given, rm iterates through all of them even if a path triggers one of the two aforementioned errors. The utility succeeds if all paths were removed successfully and fails otherwise. The utility rm is modelled by a function rm-model (Line 19). This function takes as argument the standard input stdin -in the case of rm, this is ignored -, the current working directory cwd and a list of arguments args. It returns a speci cation. The function rm-model basically only handles the parsing of the arguments. In this case, it checks whether the list of arguments starts by "-R" or not. The rest of the computation is left to three auxiliary functions, iterate-spec, rm-spec and rm-R-spec, Lines 16, 14 and 1 respectively.

• iterate-spec (Line 16) is a helper function that iterates a speci cation generator -that is rm-spec or rm-R-spec -on all the paths given as argument, composes the obtained speci cation and returns a speci cation of two cases. The success case comprises all the success cases of all the given paths.

The error case comprises all the combinations that contain at least one error case.

• rm-spec (Line 14) will not be detailed. It is very similar to rm-R-spec except that its success case requires that the given path is not a directory and that it has one extra error cases corresponding the when the given path is a directory.

• rm-R-spec (Line 1) generates the speci cation for one path given to rm -R. If analyses the path that has been given to it. If the path is the root, . or .. (Lines 3 to 5), the returned speci cation is the trivial speci cation containing only one cases that is an error and no transformation. If the path is not one of these (Line 6), the returned speci cation corresponds to the scheme described in Section 3.3.3.

Speci cations

Although we have described in details how we write the speci cation of a utility call, we have not taken time to discuss these objects in details. This is the topic of this section. In Section 3.4.1, we discuss properties of the speci cations that we write for Unix utilities. Finally, in Section 3.4.2, we explain how such speci cations are to be composed -as iterate-specs would do in Section 3.3.4 -and we discuss the requirements that this imposes on the solvers that we will design in subsequent chapters.

Properties of Speci cations

Let us rst note that, when writing the speci cation of rm -R /etc/rancid/lg.conf in Section 3.3.2, we have paid attention to the fact that the preconditions covered all the possible input trees. In a sense, this means that our speci cation was complete, as de ned in De nition 3.22.

De nition 3.22 (Completeness of a Speci cation). A speci cation φ is complete if the preconditions of its cases -success or error -cover all the possible input trees, that is if:

|= F T ∀r • i φ (p) i (r)
Completeness is important for us because it ensures that we do not miss behaviours from a utility. In our approach where we try to nd bugs, that means that there are no bugs missed by the speci cations. [START_REF] Vidar Holen | shellcheck: A shell script static analysis tool[END_REF] This is in fact not exact as it is possible to have a complete speci cation φ and an input tree t such that [r → t] does not satisfy ∃r • φ(r, r ). This comes from our way to write speci cation cases as the conjunction of a precondition and a transformation. It does not matter that the preconditions cover all the input trees if the transformations are unsatis able. This is something we pay attention to when writing speci cations, and which we call the coherence of a speci cation. This is de ned in De nition 3.23.

De nition 3.23 (Coherence of a Speci cation). A speci cation case φ i is coherent if its precondition implies the satis ability of its associated transformation, that is if:

|= F T ∀r • (φ (p) i (r) → ∃r • φ (t) i (r, r ))
A speci cation is coherent if all its speci cation cases are coherent.

Completeness and coherence together imply that a speci cation is total, that is that the relation it represents covers all the possible input trees. This is de ned in De nition 3.24. The relation between completeness, coherence and totality is stated in Lemma 3.5.

De nition 3.24 (Totality of a Speci cation). A speci cation φ is total if it has, for each input, at least one output tree, that is if:

|= F T ∀r • ∃r • φ(r, r )
Lemma 3.5 (Relation Between Completeness, Coherence and Totality). Any speci cation that is total is also complete. Any speci cation that is both complete and coherent is also total.

Proof. Let us take a speci cation φ that is total. Let us show that it is then also complete. To achieve that, let us take t any feature tree. We have that [r → t] |= F T ∃r • φ(r, r ). We have thus that

[r → t] |= F T i (φ (p) i (r) ∧ ∃r • φ (t)
i (r, r )). If we consider the conjunctive normal form of this disjunction, it contains a lot of disjunctive clauses among which we nd i φ (p) i (r). In other words, there exists ψ a formula such that i (φ

(p) i (r) ∧ ∃r • φ (t) i (r, r )) is equivalent to ( i φ (p) i (r)) ∧ ψ. We thus have that [r → t] is a model of i φ (p) i (r) -φ is complete.
Let us now take a speci cation φ that is complete and coherent and let us show that it is total. To achieve that, let us take t any feature tree. We are going to show that there exists t such that [r → t, r → t ] |= F T φ(r, r ).

Since φ is complete, we have that [r → t] |= F T i φ (p) i (r). There is thus a i 0 such that [r → t] |= F T φ (p)
i 0 (r). Since all of φ's cases are coherent, the i 0 -th in particular is coherent. From which it follows that

[r → t] |= F T ∃r • φ (t) i 0 (r, r ). There exists thus a t such that [r → t, r → t ] |= F T φ (t) i 0 (r, r ). [r → t, r → t ] is then a model of φ (t) i 0 (r, r ) but also of φ (p) i 0 (r, r ).
It is thus also a model of φ i 0 (r, r ) and of the whole speci cation φ(r, r ).

Completeness, coherence and totality have to do with covering all the possible cases for the input tree. They ensure that we do not loose traces of executions -and therefore bugs -in our speci cations. They do not, however, carry information on the precision of the speci cations. In particular, they do not guarantee that we will not get false positives, that is bugs that are not actually reachable. The properties that carry such information are the determinism and the functionality of a speci cation. Determinism is de ned in De nition 3.25.

De nition 3.25 (Determinism of a Speci cation). A speci cation φ is deterministic if there is no pair of preconditions that cover the same possible input tree, that is if, for all i = j:

|= F T ¬∃r • (φ (p) i (r) ∧ φ (p) j (r))
Determinism is particularly important between preconditions of di erent status -success or error -because it ultimately ensures that we do not explore wrong traces of execution in our symbolic engine. It is in fact a weaker form of functionality. Functionality is de ned in De nition 3.26.

De nition 3.26 (Functionality of a Speci cation). A speci cation -or a speci cation caseφ is functional if every input tree is related to at most one output tree, that is if:

|= F T ∀r, r 1 , r 2 • ((φ(r, r 1 ) ∧ φ(r, r 2 )) → r 1 = r 2 )
Determinism is weaker than functionality in the sense that it does not ensure that, inside one speci cation case, the same input tree can be related to two output trees. Of course, if one takes a speci cation that is deterministic and such that all its cases are functional, then it is a functional speci cation. This is stated in Lemma 3.6. Lemma 3.6 (Relation Between Determinism and Functionality). Any speci cation that is functional is also deterministic. Any speci cation that is both deterministic and with all its cases being functional is also functional.

In this work, all our speci cations are written to be complete and coherent. Most of them are also functional. However, for some of them, our logics is not expressive enough to express exactly what the utility call does. This is for instance the case of the utility cp. In one particular case, cp produces as output a (potentially partial) interleaving of two input trees, that is a (potentially strict) subset of the union of the two input trees, which our logic can simply not express. In that case, our speci cation over-approximates the behaviour of the utility, allowing one input tree to lead to several output trees, giving up on functionality in the process.

An alternative way to write the same speci cations could have been in an implicative style. In such a style, speci cation cases φ i are written of the form φ

(p) i (r) → φ (t)
i (r, r ) and the speci cation is the conjunction -and not the disjunction -of its cases, as in Formula 3.12.

φ → (r, r ) = i (φ (p) i (r) → φ (t) i (r, r )) (3.12)
The two representations of speci cations are in fact very close. Provided some properties of this subsection are veri ed, they are actually equivalent, as stated in the following lemma.

Lemma 3.7 (Equivalence of Speci cations and their Implicative Form). If a speci cation φ is complete, then it is implied by its implicative version φ → . If a speci cation φ is deterministic, then it implies its implicative version φ → .

Proof. Let φ be a speci cation that is complete. Let us take ρ a model of its implicative variant φ → . Since φ is complete, then there exists

i 0 such that ρ |= F T φ (p) i 0 (r).
Since ρ is a model of the implicative variant, then it models all the parts of its conjunction and in particular the i 0 -th. From which we can conclude that ρ |= F T φ (t) i 0 (r, r ) and thus that ρ |= F T φ i 0 (r, r ) and that ρ |= F T φ(r, r ). In the other direction, let φ be a speci cation that is deterministic. Let us take ρ a model of φ.

There is i 0 such that ρ |= F T φ (p) i 0 (r) and ρ |= F T φ (t)
i 0 (r, r ). Since φ is deterministic, ρ cannot be a model of any other precondition: for any j = i 0 , ρ |= F T ¬φ (p) j (r). Hence, for any j, ρ

|= F T φ (p) j (r) → φ (t) j (r, r ). Finally, ρ |= F T φ → (r, r ).

Composing Speci cations

Each speci cation describes a transformation -ie. a formula mapping an input tree to an output tree. In this work, we are interested in composing transformations along the traces of execution of a script. We therefore need a way to obtain the speci cation of the composed transformations. It is here easy as the speci cation of the composition is nothing else than the composition -using simple logical constructions -of the speci cations. For instance, if we have two speci cations φ and φ , then the composition of these two speci cations is ψ in Formula 3.13.

ψ(r, r ) = ∃r t • (φ(r, r t ) ∧ φ (r t , r )) (3.13)
As we have mentioned in Section 3.3.2, although speci cations are not written this way, they are transformed immediately into DXC and processed that way. Another way to see the composition is to say that, if the rst speci cation is a DXC of k x-constraints φ 1 to φ k and the second speci cation is a DXC of l x-constraints φ 1 to φ l , then the composition is a DXC of k × l x-constraints ψ 1,1 to ψ k,l where, for all 1 ≤ i ≤ k and 1 ≤ j ≤ l: This second formulation makes explicit the fact that speci cations are DXC and that composing two speci cations creates a quadratic explosion of the number of x-constraints. This is not visible per se in the rst formulation.

18 ψ i,j (r, r ) = ∃r t • (φ i (r, r t ) ∧ φ j (r t , t )) (3.
1 touch / etc / rancid / lg . conf 2 rm / etc / rancid / lg . conf Composing speci cations leads to an explosion of cases because of the fact that we do not know how to manipulate formulas that are not under the form of a DXC. When the two speci cations are not independent, however, a lot of cases of the composition are in fact unsatis able and can be removed.

As an example, consider the script in Figure 3.22. The touch utility creates the le if it does not exist and leaves it untouched [START_REF]The Open Group base Speci cations Issue 7, 2018 edition[END_REF] if it already exists. It fails when the pre x does not exist. A graphical representation of the speci cation for this utility call can be found in Figures 3. 23 The two utility calls in this script have both a speci cation that is a DXC of four x-constraints. Their composition should thus give us sixteen x-constraints. A third utility call would multiply again the number of cases. Computing the semantics of whole scripts would then lead to an exponential blowup in cases and to unusability in practice.

However, not all the x-constraint of the speci cation make sense and some are actually impossible to encounter. For instance, if touch /etc/rancid/lg.conf fails for non-existence of /etc/rancid, for instance, then rm /etc/rancid/lg.conf can obviously not succeed. In fact, in our example script, the composition has only four x-constraints. The two success cases are described in Figure 3.25. The two error cases are very similar to that of Figure 3.24.

Let us revisit Formula 3.14 that de nes the composition of two speci cations φ and φ :

ψ(r, r ) = i,j ∃r t • (φ i (r, r t ) ∧ φ j (r t , r )) (3.14 revisited)
We can see here that all the x-constraints of φ have been duplicated in the formula as many times as there are x-constraints in φ . Similarly, if we compose the whole with a third speci cation φ , we obtain Formula 3.15.

ψ (r, r ) = i,j,k ∃r t , r t • (φ i (r, r t ) ∧ φ j (r t , r t ) ∧ φ (r t , r )) (3.15)
we duplicate again all the composed x-constraints. We have said however that some of these x-constraints might be unsatis able. In the case of our example, it was even a large majority of x-constraints: among them, twelve are unsatis able while only four are satis able. In order to speedup the process, we would want to detect unsatis ability as soon as possible, ideally right after adding a new speci cation to the composition. In our example, that would mean adding a third speci cation to four x-constraints instead of sixteen.

Doing that has however an important drawback. If an x-constraint φ i of the rst utility call is decided to be satis able, we will then ask ourselves for all j if the x-constraints φ i (r, r t ) ∧ φ j (r t , r ) are also satis able.

If they are, we will then ask ourselves for all k if the x-constraints φ i (r, r t ) ∧ φ j (r t , r t ) ∧ φ (r t , r ). Every time, when adding a new speci cation, we would thus compute again the satis ability of all the previous x-constraints. In order to mitigate that, we do not only want a test of unsatis ability. We want that it is done in an incremental way, meaning that, in case of satis ability, we get another, simpler formula on which it is easier to restart computation.

An incremental satis ability procedure will be introduced in Chapter 4. We will also extend it to show that the full rst-order of our logic is decidable. Chapter 5 will then come back to the procedure, focusing on e ciency considerations. There, we will rework the procedure. We will also discuss improvements that can be included in the logic to reduce the number of disjunctions that are initially introduced in speci cations.

Chapter 4

Decidability of the Theory of FT

This chapter dives into the subject of expressivity of FTS and of the design of decision procedures for this logic. It also sets up the foundations for further work -in Chapter 5 -on e ciency of these procedures.

The main result is a decision procedure for any closed rst-order formula. This result is stated in Theorem 4.3. In all this chapter and the next, unless said otherwise, we consider ourselves in the model FT of nite feature trees.

The rst decidability result of a full rst-order theory of trees is due to Malc'ev [Malcev 1971] and concerned Herbrand trees (ie. based on equations Note that in these logics one can only quantify over trees, not over feature symbols. The generalization to a two-sorted logic which allows for quanti cation over features is undecidable [Treinen 1993], but decidability can be recovered if one restricts the use of feature variables to talk about existence of features only [Treinen 1997]. All these decidable logics of trees have a non-elementary lower bound [Vorobyov 1996]. This chapter will start in Section 4.1 by describing transformation procedures for DXC (De nition 3.16). These transformations allow to decide the satis ability of DXC. More importantly, they prepare the ground for quanti er elimination of decidability of the rst-order theory. They will later on be improved upon so as to be usable in practice in a symbolic engine. See Chapter 5 for the improvement and Section 7.2 for their use.

x = f (x 1 , . . . , x n )).
In Section 4.2, we extend on this work to handle any formula of FTS. This relies heavily on results of Section 4.1 and on weak quanti er elimination [Malcev 1971]. Finally, in Section 4.3, we discuss various considerations, ranging from decidability in other models than FT to complexity and e ciency considerations.

Transforming DXC

In a rst part, let us restrict ourselves to DXC only. In Section 4.1.1, we de ne a way to transform DXC following equivalences in our model FT . These transformations allow us to detect unsatis ability of formulas. They also yield formulas on which we have more control. The properties of yield formulas are discussed in Section 4.1.2. Finally, in Section 4.1.3, we mechanise these transformations.

Transformation Rules for Constraints -The System R 1

Before we start, we need to set up a few preliminaries. Let us start to de ne what it means for a variable and a similarity atom to be solved. These will be de ned in De nitions 4.1 and 4.2 respectively.

De nition 4.1 (Solved Variables). A variable is said to be solved in a constraint c if it only occurs in a full similarity atom in c, that is: x is solved in c if there exists y and c such that c is of the form x = y ∧ c with x / ∈ V(c ). We will denote by V s (c) the set of solved variables of c.

De nition 4.2 (Solved Similarity Atom). A similarity atom is solved in a constraint c if one of its variables is solved in c.

x

[ ]↑ x y z f =c {f } = Figure 4.1: For- mula 4.1
Note that the fact for a similarity atom to contain a solved variable implies that this variable appears only in this similarity atom and that this similarity atom carries the full set . As an example, consider Formula 4.1. A graphical representation can be found in Figure 4.1.

x

[ ]↑ ∧ x =c {f } x ∧ x [f ]z ∧ y = z (4.1)
None of the variables x, x and z are solved because they appear in other literals, namely x[ ]↑ and x [f ]z. The variable y, however, is solved as it only occurs in one full similarity atom y = z. The similarity atom x =c {f } x is not solved because neither of its variables is, while y = z is.

We also need to de ne a notion of subsumption of a literal by a constraint. This is done in De nition 4.3. Subsumption is a weak, syntactic, form of implication: if a literal is subsumed by a constraint, then it is also implied by it. This is stated in Lemma 4.1.

De nition 4.3 (Subsumption).

A literal l is said to be subsumed by a constraint c, written l c, if l ∈ c or if

• l is an absence atom x[F ]↑ with F ⊆ x[H]↑∈c H, • or l is a similarity atom x = F y with F ⊆ x= H y∈c H, • or l is a negated absence atom ¬x[F ]↑ and there exists ¬x[H]↑ ∈ c with H ⊆ F ,
• or l is a negated similarity atom x = F y and there exists

x = H y ∈ c with H ⊆ F . Lemma 4.1 (Implication of Subsumed Literals). If a literal l is subsumed by a constraint c, then c implies l. In other words, if l c, then |= F T ∀ • (c → l).
For instance, if we consider the constraint c de ned as x[f, g]↑∧y = {f,g} z∧y = {h,k} z∧¬z[g]↑∧y = k,l z, then it subsumes x[f ]↑, y = {f,g,h} z and ¬z[g, h]↑. c thus also implies these literals. Although c also implies y = {l} z, it does not subsume it.

Let us now dive into the main topic of this subsection and de ne transformation rules of the form

pattern ⇒ replacement (condition)
The patterns are constraints that contain meta-variables, meta-features and meta-feature sets. We show later how we lift these rules to DXC. A rule applies to a constraint c when Clash Rules The side-condition -if there is one -is respected. Most of the side-conditions are present to ensure that rules are equivalences but some of them ensure the termination of our system of rules. Some side-conditions state that a literal to be introduced should not be subsumed by the whole constraint. Roughly speaking, this means that the literal does actually bring new non-trivial knowledge.

C C x[f ]y ∧ n-1 i=0 z i [f i ]z i+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn) C F A x[f ]y ∧ x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) C NA E ¬x[∅]↑ ∧ c ⇒ ⊥ C NS R x = F x ∧ c ⇒ ⊥ C NS E x = ∅ y ∧ c ⇒ ⊥
A constraint to which no rule applies is said to be irreducible.

Transformation rules yield other formulas that are not necessarily constraints: they can contain disjunctions and existential quanti cation. They can also simply be ⊥. Thus, we cannot immediately apply another rule on them. However, these output formulas are always Σ 1 -formulas. The idea basically consists in putting the output formula back into DXC and to continue on all the resulting constraints. This is explained in detail in Section 4.1.2.

Let us rst de ne the clash rules that detect unsatis ability in formulas. Consider the 5 transformation rules of Figure 4.2.

Some of them simply state that a literal is trivially false -or that its negation is trivially true. This is for instance the case of C NA E which simply states that x[∅]↑ is valid. The rule C F A detects contradictory information, namely that a feature is both present and absent in the same tree. The rule C C is necessary because our model does not allow for in nite trees. [START_REF]cmigrep: broken emacsen-install script[END_REF] To these clash rules, let us add 5 transformation rules on positive literals. They are shown in Figure 4.3. This introduces three kinds of rules:

• Deduction rules (D ) are rules that create a new literal out of others of a di erent kind. The rule D F , for instance, uses the unicity of features in the node of a feature tree to deduce full similarity of variables.

• Propagation rules (P ) are rules that are speci c to the similarity literal. Since this literal implies that two variables behave the same, a lot of information can propagate from one to the other, allowing to later detect clashes.

• Global rules (G ) are rules that potentially modify and unbounded number of literals in the constraint. This is the case of G S F that rewrites one variable into another, changing as many literals as necessary. 

D F x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]y ∧ x[f ]z ∧ c (y = z, y = z c) Propagation Rules P F S x[f ]y ∧ x = G z ∧ c ⇒ z[f ]y ∧ x[f ]y ∧ x = G z ∧ c (f ∈ G, z[f ]y c) P A S x[F ]↑ ∧ x = G z ∧ c ⇒ z[F ∩ G]↑ ∧ x[F ]↑ ∧ x = G z ∧ c (z[F ∩ G]↑ c) P S x = F y ∧ x = G z ∧ c ⇒ y = F ∩G z ∧ x = F y ∧ x = G z ∧ c (y =F ∩G z c) Global Rules G S F x = y ∧ c ⇒ x = y ∧ c{x → y} (x, y ∈ V(c))
(0) r[f ]x ∧ x[g]z ∧ r[f ]y ∧ y[g, h]↑ (1) 
D F ⇒ r[f ]x ∧ x[g]z ∧ r[f ]y ∧ y[g, h]↑ ∧ x = y
(2) As an example, let us consider Formula 4.2. A graphical representation can be found in Figure 4.4.

P A S ⇒ r[f ]x ∧ x[g]z ∧ r[f ]y ∧ y[g, h]↑ ∧ x = y ∧ x[g, h]↑ (3) 
C F A ⇒ ⊥
r[f ]x ∧ x[g]z ∧ r[f ]y ∧ y[g, h]↑ (4.2)
It states that the root r admits two children with the name fx and y. The child x itself has a child via g, z. The child y, on the other hand, does not have children in either g or h. In fact, since x and y have the same name from r, they have to be identi ed together. Moreover, since x has a child in g but y is known to not have one, the whole formula is unsatis able. We can expect our system of transformation rules to detect this. Let us thus describe one possible transformation chain involving rules of Figures 4.2 (1) Rewrite the constraint using D F . This adds a new literal x = y and creates the pattern y[g, h]↑∧ x = y, meaning that the rule P A S can apply. In fact, we could also notice the pattern x[g]z ∧ x = y, meaning that P F S can apply. We will stay with the former for this example.

(2) Rewrite the constraint using P A S . This adds a new literal x[g, h]↑ and creates the pattern x[g]z ∧ x[g, h]↑, meaning that the rule C F A can apply.

(3) Rewrite the constraint using C F A . This leads to ⊥ which is not matched by any pattern.

Note at this point that all the transformations that appeared in that chain were in fact equivalences. This means that Formula 4.2 is equivalent to ⊥ in our model of feature trees. In other words, it is unsatis able.

Deduction Rules

D NF ¬x[f ]y ∧ c ⇒ (x[f ]↑ ∨ ∃z • (x[f ]z ∧ y = z)) ∧ c D NS F x = {f } y ∧ x[f ]z ∧ c ⇒ ¬y[f ]z ∧ x[f ]z ∧ c D NS A x = F y ∧ x[G]↑ ∧ c ⇒ ¬y[F ]↑ ∧ x[G]↑ ∧ c (F ⊆ G)
Propagation Rules Several things deserve to be noted here. Firstly, rules do not necessarily yield constraints. D NF , for instance, introduces a disjunction and also a new existentially-quanti ed variable. Secondly, and contrary to the rules of Figure 4.3, the new propagation rules have an extra side-condition that requires the set of the negated absence or similarity atoms to be included in the set of of the similarity atom. This means in particular that not all negated atoms can propagate through a similarity atom. Finally, these new rules show two new kinds of rules:

P NA S ¬x[F ]↑ ∧ x = G z ∧ c ⇒ ¬z[F ]↑ ∧ ¬x[F ]↑ ∧ x = G z ∧ c (F ⊆ G, ¬z[F ]↑ c) P NS S x = F y ∧ x = G z ∧ c ⇒ z = F y ∧ x = F y ∧ x = G z ∧ c (F ⊆ G, z =F y c) Re nement Rules R NA A ¬x[F ]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F \G]↑ ∧ x[G]↑ ∧ c Splitting Rules S NA S ¬x[F ]↑ ∧ x = G z ∧ c ⇒ (¬x[F ∩ G]↑ ∨ ¬x[F \G]↑) ∧ x = G z ∧ c (F ⊆ G, F ⊆ c G) S NS F x = F y ∧ x[f ]z ∧ c ⇒ (x = {f } y ∨ x = F \{f } y) ∧ x[f ]z ∧ c (F nite, f ∈ F, F = {f }) S NS A x = F y ∧ x[G]↑ ∧ c ⇒ (x = F ∩G y ∨ x = F \G y) ∧ x[G]↑ ∧ c (F ⊆ G, F ⊆ c G) S NS S x = F y ∧ x = G z ∧ c ⇒ (x = F ∩G y ∨ x = F \G y) ∧ x = G z ∧ c (F ⊆ G, F ⊆ c G)
• Re nement rules (R ) are rules that modify a literal towards something more precise. They are used here to transform the size of sets in negated absence and similarity literals. This can allow us in turn to detect clash with C NA E or C NS E if the set turns out to be empty.

• Splitting rules (S ) are a form of re nement rules that introduce disjunctions by splitting one predicate into two more re ned versions. Re nement rules can quite often be seen as degenerated cases of split rules. These splitting rules are necessary to break down negated absence and similarity literals, allowing them in turn to be propagated.

Clash Rules

C C x[f ]y ∧ n-1 i=0 z i [f i ]z i+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn) C F A x[f ]y ∧ x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) C NA E ¬x[∅]↑ ∧ c ⇒ ⊥ C NS R x = F x ∧ c ⇒ ⊥ C NS E x = ∅ y ∧ c ⇒ ⊥ Deduction Rules D F x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]y ∧ x[f ]z ∧ c (y = z, y = z c) D NF ¬x[f ]y ∧ c ⇒ (x[f ]↑ ∨ ∃z • (x[f ]z ∧ y = z)) ∧ c D NS F x = {f } y ∧ x[f ]z ∧ c ⇒ ¬y[f ]z ∧ x[f ]z ∧ c D NS A x = F y ∧ x[G]↑ ∧ c ⇒ ¬y[F ]↑ ∧ x[G]↑ ∧ c (F ⊆ G)
Propagation Rules As an example, let us consider Formula 4.3.

P F S x[f ]y ∧ x = G z ∧ c ⇒ z[f ]y ∧ x[f ]y ∧ x = G z ∧ c (f ∈ G, z[f ]y c) P A S x[F ]↑ ∧ x = G z ∧ c ⇒ z[F ∩ G]↑ ∧ x[F ]↑ ∧ x = G z ∧ c (z[F ∩ G]↑ c) P NA S ¬x[F ]↑ ∧ x = G z ∧ c ⇒ ¬z[F ]↑ ∧ ¬x[F ]↑ ∧ x = G z ∧ c (F ⊆ G, ¬z[F ]↑ c) P S x = F y ∧ x = G z ∧ c ⇒ y = F ∩G z ∧ x = F y ∧ x = G z ∧ c (y =F ∩G z c) P NS S x = F y ∧ x = G z ∧ c ⇒ z = F y ∧ x = F y ∧ x = G z ∧ c (F ⊆ G, z =F y c) Re nement Rules R NA A ¬x[F ]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F \G]↑ ∧ x[G]↑ ∧ c Splitting Rules S NA S ¬x[F ]↑ ∧ x = G z ∧ c ⇒ (¬x[F ∩ G]↑ ∨ ¬x[F \G]↑) ∧ x = G z ∧ c (F ⊆ G, F ⊆ c G) S NS F x = F y ∧ x[f ]z ∧ c ⇒ (x = {f } y ∨ x = F \{f } y) ∧ x[f ]z ∧ c (F nite, f ∈ F, F = {f }) S NS A x = F y ∧ x[G]↑ ∧ c ⇒ (x = F ∩G y ∨ x = F \G y) ∧ x[G]↑ ∧ c (F ⊆ G, F ⊆ c G) S NS S x = F y ∧ x = G z ∧ c ⇒ (x = F ∩G y ∨ x = F \G y) ∧ x = G z ∧ c (F ⊆ G, F ⊆ c G) Global Rules G S F x = y ∧ c ⇒ x = y ∧ c{x → y} (x, y ∈ V(c)) Figure 4.7: System R 1 of Transformation Rules (0) x = {f,g,h} y ∧ x[f, g]↑ ∧ y[g, h]↑ (1) 
S NS A ⇒ (x = {f,g} y ∧ x[f, g]↑ ∧ y[g, h]↑) ∨ (x = {h} y ∧ x[f, g]↑ ∧ y[g, h]↑) (2) S NS A ⇒ (x = {f } y ∧ x[f, g]↑ ∧ y[g, h]↑) ∨ (x = {g} y ∧ x[f, g]↑ ∧ y[g, h]↑) ∨ (x = {h} y ∧ x[f, g]↑ ∧ y[g, h]↑) (3) D NS A 3 ⇒ (¬y[f ]↑ ∧ x[f, g]↑ ∧ y[g, h]↑) ∨ (¬y[g]↑ ∧ x[f, g]↑ ∧ y[g, h]↑) ∨ (¬x[h]↑ ∧ x[f, g]↑ ∧ y[g, h]↑) (4) R NA A + C NA E ⇒ (¬y[f ]↑ ∧ x[f, g]↑ ∧ y[g, h]↑) ∨ (¬x[h]↑ ∧ x[f, g]↑ ∧ y[g, h]↑)
x = {f,g,h} y ∧ x[f, g]↑ ∧ y[g, h]↑ (4.3) 
It expresses that the two variables x and y must have a di erence somewhere in the names f , g or h. This is not so easy as both x and y are constrained: x cannot use the names f and g while y cannot use the names g and h. We can expect this formula to be satis able as long as x has a feature in h and/or y has a feature in f . Let us describe one possible transformation chain involving rules of R 1 . The intermediary constraints can be found in Figure 4.8.

(0) Start from the example constraint. Notice the pattern x = {f,g,h} y ∧ x[f, g]↑. The rule S NS A can apply.

(1) Rewrite the constraint using S NS A . This splits the negated similarity atom x = {f,g,h} y into (x = {f,g} y ∨ x = {h} y. In DXC, this gives us two constraints. Notice the pattern x = {f,g} y ∧ y[g, h]↑. The rule S NS A can apply again.

(2) Rewrite the constraint using S NS A . This splits the negated similarity atom x = {f,g} y into (x = {f } y ∨ x = {g} y. This gives us three constraints in total that only di er on the set carried by the negated similarity atom -{f }, {g} or {h}. Notice the pattern

x = {f } y ∧ x[f, g]↑.
In fact, similar patterns are present in all three constraints. The rule D NS A can apply in all of them.

( This disjunction expresses exactly what we had foreseen: the formula implies that either x has the feature h or y has the feature f . As for the other example, note that all the transformations that appeared in that chain were equivalences. This is a property of all the rules of R 1 , which is stated in Lemma 4.2. 

⇒ φ via R 1 , then |= F T ∀ • (c ↔ φ).
There are natural questions that arise when considering such a system: does this system of rules terminate? is it complete -for some de nition of complete? is it con uent? The quick answers are: yes, the system of rules terminates; yes, it is complete; and, as a matter of fact, it is con uent, but this really does not matter in our situation because all rules perform equivalence. All theses properties will be discussed in Section 4.1.2.

Despite their presentation, the rules of R 1 -G S F aside -are local in the sense that one does not need to explore the whole constraint to decide whether they are applicable or not. To be exact, given a valuation from meta variables to variables, one does not need to explore the whole constraint to decide which rules are applicable. This is the case even if the subsumption (De nition 4.3) gives the impression to talk about the whole formula. In fact, it is local because it only requires to consider literals that share the same variables as the literal to be subsumed. This is stated in Lemma 4.3.

Lemma 4.3 (Locality of Subsumption).

A literal is subsumed by a constraint if and only if it is subsumed by the part of the constraints that mentions strictly its variables. In other words, for any literal l and constraint c, l c if and only if l Gc V(l) (c).

Subsumption is also local in the sense that adding new literals does not change the literals subsumed by a constraint. If anything, the constraint only gets stronger and subsumes more literals. This is stated in Lemma 4.4.

Lemma 4.4 (Monotony of Subsumption).

If a literal is subsumed by a constraint, then it is also subsumed by any extension of this constraint. In other words, for any literal l and constraints c and c , if l c then l c ∧ c .

Properties of Irreducible Constraints of R 1

This system of rules is interesting in that it allows to detect unsatis ability of constraints. It is in fact stronger than that as it has the property of garbage collection. This property states that existentiallyquanti ed variables that are not reachable from free variables carry only redundant information and can thus safely be removed. To state it formally, let us rst de ne in De nition 4.4 what it means for a set to be ancestor-closed.

De nition 4.4 (Ancestor-Closedness

). A set of variables X is ancestor-closed with respect to a constraint c if for all feature literals x[f ]y ∈ c, if y ∈ X then x ∈ X.
When the constraint is obvious from context, it will be omitted and we will simply talk about an ancestorclosed set of variables. As an example, let us consider Formula 4.4. A graphical representation is given in Figure 4.9.

∃r x ∃y[ c {h, i}]↑ ∃z w f g h i =c {f,g,i} = {f,g}
∃r, y, z • r[f ]x ∧ r[g]y ∧ y[h]z ∧ w[i]z ∧ r =c {f,g,i} w ∧ y[ c {h, i}]↑ ∧ x = {f,h} z (4.4)
In this constraint, the sets {r}, {r, x}, {r, y}, and {r, w} are all ancestorclosed. The sets {r, y, z} and {x, w} are not, because z is accessible from w and x is accessible from r.

Let us now explain in De nition 4.5 how to split syntactically a constraint with respect to a set of variables, putting literals that mention variables in that set on one local side and literals that do not mention such variables on one global side.

De nition 4.5 (Global and Local Parts). For any constraint c and any set of variables X, the local part of c with respect to X, written L X (c), contains the literals of c that mention at least a variable of X and the global part of c with respect to X, written G X (c), contains all the others. In other words:

L X (c) = {l | V(l) ∩ X = ∅, l ∈ c} G X (c) = {l | V(l) ∩ X = ∅, l ∈ c}
If we take Formula 4.4 again, and name its constraint c, we have for instance: 

L {r} (c) = r[f ]x ∧ r[g]y ∧ r =c {f,g,i} w G {r} (c) = y[h]z ∧ w[i]z ∧ y[ c {h, i}]↑ ∧ x = {f,h} z L {r,y} (c) = r[f ]x ∧ r[g]y ∧ y[h]z ∧ r =c {f,g,i} w ∧ y[ c {h, i}]↑ G {r,y} (c) = w[i]z ∧ x = {f,
L X (c) ∧ G X (c) = c L ∅ (c) = ∅ = G ∅ (c) = c L X (L Y (c)) = L X∩Y (c) G X (G Y (c)) = G X∪Y (c) L X (c) ⊆ L Y (c) if X ⊆ Y G Y (c) ⊆ G X (c) if X ⊆ Y Lemma 4.6. If c is irreducible with respect to R 1 , then for any set X, G X (c) is irreducible with respect to R 1 .
Proof. Let us take c a constraint irreducible with respect to R 1 and X a set of variables of c. We are going to prove that G X (c) is irreducible with respect to P NS S . All the other cases are similar.

Assume there is a pattern in G X (c) for the rule P NS S . That means there is

x = F y and x = G z in G X (c) with F ⊆ G. Of course, G X (c) ⊆ c
so the pattern is in c as well. Since c is irreducible with respect to P NS S , this means that the side-condition is not respected in c and therefore that z = F y c.

By Lemma 4.3, z = F y Gc {y,z} (c). Obviously, y, z ∈ V(G X (c))
which implies that y, z / ∈ X and, subsequently, X ⊆ c {y, z}. By Lemma 4.5, Gc {y,z} (c) ⊆ G X (c). By Lemma 4.4, z = F y ⊆ G X (c) and, therefore, P NS S cannot apply with this pattern.

The key arguments are basically that taking the global part of a constraint is a global operation that concerns all the literals with the same variables, while the subsumption is local and monotonous. This means that either taking the global part of a constraint removes both the subsumers and the subsumee at the same time, or none of them.

Finally, let us state the property of garbage collection in Theorem 4.1.

Theorem 4.1 (Garbage Collection of Irreducible Constraints).

Let c be a constraint2 that is irreducible with respect to R 1 . Let X be a set of variables of c that is ancestor-closed. Then ∃X • c is equivalent to the global part of c with respect to X. In other words:

|= F T ∀ • ((∃X • c) ↔ G X (c))
Our example Formula 4.4 contains a constraint that is irreducible with respect to R 1 . We can thus apply Theorem 4.1 on any set of variables that is ancestor-closed. If we consider {r, y}, for instance, we get that ∃r, y • c is equivalent to G {r,y} (c), from which we can conclude that:

∃r, y, z • r[f ]x ∧ r[g]y ∧ y[h]z ∧ w[i]z ∧ r =c {f,g,i} w ∧ y[ c {h, i}]↑ ∧ x = {f,h} z ↔ ∃z • (w[i]z ∧ x = {f,h} z)
Proof of Theorem 4.1. The implication from left to right is easy to prove, has nothing to do with ancestorclosedness of sets of variables or irreducibility with respect to any system, and comes directly from Denition 4.5. Indeed, for any set of variables X and constraint c:

∃X • c = ∃X • (G X (c) ∧ L X (c)) ↔ G X (c) ∧ (∃X • L X (c)) → G X (c)
which gives us, for any set of variables X:

|= F T ∀ • ((∃X • c) → G X (c)).
The proof of the other direction goes by rst proving Theorem 4.1 on only one variable, and then generalising to any set by induction for sets of any size. Lemma 4.7 states the garbage collection for one variable.

Lemma 4.7 (Garbage Collection of one Variable in an Irreducible Constraint). Let c be a constraint that is irreducible with respect to R 1 . Let x be a variable of c such that there is no y[f ]x in c for any y and f . Then the global part of c with respect to {x} implies ∃x • c. In other words:

|= F T ∀ • (G {x} (c) → (∃x • c))
Proof of Theorem 4.1 (continued). Let us assume Lemma 4.7 for a moment and show Theorem 4.1 by induction on the size of the set X. The property of course holds for empty sets. Let us now assume that it holds for sets of size n and take X a set of variables of size n + 1. Let us take c any constraint such that X is ancestor-closed in c and such that c is irreducible with respect to R 1 .

Since there are no cycles (because of C C ), there is a variable x ∈ X such that there is no feature atom pointing towards x, ie. no y and f such that y[f ]x ∈ c. {x} is thus an ancestor-closed set of variables of c. We can thus apply Lemma 4.7 and we get:

|= F T ∀ • (G {x} (c) → ∃x • c) G {x} (c) is a formula that is irreducible with respect to R 1 , by Lemma 4.6. Y = X\{x} is a set of variables of size n that is ancestor-closed in G {x} (c).
We can thus apply our induction hypothesis and we get:

|= F T ∀ • (G Y (G {x} (c)) → ∃Y • G {x} (c)) Finally, Y ∪ {x} = X and G Y (G x (c)) = G Y ∪{x} (c
) and thus:

|= F T ∀ • (G X (c) → ∃X • c)
Proof of Lemma 4.7 (sketch). The proof of Lemma 4.7 will only be sketched here. The complete proof can be found in Section 4.A. The proof goes by taking µ that satis es G {x} (c) and showing that it can be extended on x to ρ that satis es c. The extension goes by taking ρ(y) = µ(y) for all y = x, and:

ρ(x)(f ) =      µ(y) if x[f ]y ∈ c (4.8) µ(y)(f ) if x = F y ∈ c with x = y, f ∈ F , and f ∈ dom(µ(y)) (4.9) fresh(f ) otherwise (4.10)
where D is a set of features that contains at least a feature for each negated absence and negated similarity atoms, and fresh is a feature tree that is di erent from all trees in the image of µ. In other words, we extend µ to ρ in such a way that ρ(x) respects all the feature atoms from x to another variable (case 4.8) and all the similarity atoms (case 4.9). In the remaining space, we add fresh features so that negated absence and similarity atoms are respected.

It remains to show that ρ is well de ned (in particular, the cases 4.8 and 4.9 are not disjoint) and that it satis es all the literals of c.

From Theorem 4.1 follows directly Theorem 4.2 as a corollary, stating that irreducible constraints are satis able.

Theorem 4.2 (Satis ability of Irreducible Constraints).

A constraint3 c that is irreducible with respect to R 1 is satis able.

Proof. Take X = V(c). This is a trivial ancestor-closed set of variables of c. Moreover, G X (c) is empty. This gives us

|= F T ∀ • ((∃X • c) ↔ ) and thus |= F T ∃ • c.

Deciding the Satis ability of DXC

Note that Theorems 4.1 and 4.2 only apply to irreducible constraints. We are now going to extend that to DXC. We are going to build a function that, from any given DXC, yields an equivalent one that is either empty -ie. ⊥ -or satis able.

Consider the functions choose-rule-1, transform-1-xc and transform-1 de ned in Figure 4.10. transform-1-xc takes an x-constraint as input, transforms it using rules of R 1 , following a strategy de ned by choose-rule-1, and outputs a DXC. transform-1 takes a DXC and applies transform-1-xc on all x-constraints in the DXC. It returns another DXC. transform-1-xc works as follows:

• It rst checks (Line 11) if the given constraint is reducible with respect to R 1 . If it is not, the x-constraint is returned as is (Line 17).

• If the given constraint is reducible, transform-1-xc nds a rule of R 1 (Line 12) according to a strategy described in choose-rule-1 and applies it to c (Line 13). The obtained formula is named φ.

• The formula φ is put back in DXC (Line 14). The resulting DXC is named d. It is possible to apply DXC on φ because it only contains positive occurrences of existential quanti ers. Since φ was possibly ⊥, d is possibly the empty DXC. This function terminates on all inputs, as stated in Lemma 4.8. It returns an equivalent DXC such that all its constraints are irreducible with respect to R 1 . This is stated in Lemma 4.9. A direct corollary is that the output DXC is either empty or satis able. This is stated in Lemma 4.10.

20 let i ∃X i • c i = d 21 return i transform-1-xc (∃X i • c i )
Lemma 4.8 (Termination of transform-1). The function transform-1 terminates on all inputs.

Proof of Lemma 4.8 (sketch). The proof of Lemma 4.8 turns out to be highly non-trivial. It will therefore only be sketched here. The complete proof can be found in Section 4.B.

The function transform-1, when called on a non-empty DXC, includes one or several calls to the function transform-1-xc (Line 21). The function transform-1-xc, when called on a reducible constraint, includes a call back to transform-1 (Line 15). Depending on the rule r that transform-1-xc chooses via choose-rule-1 (Line 12), the DXC that will be passed to a subsequent call to transform-1 will contain zero (for a clash rule), one (for most other rules) or more (for rules introducing a disjunction) x-constraints, and thus as many calls to transform-1-xc.

We focus on the x-constraints that are taken as argument by transform-1-xc. We show that if transform-1-xc is called on an x-constraint c, then any subsequent recursive call to transform-1-xc will be given an x-constraint that is "smaller" than c. We need to de ne what it means for an x-constraint to be "smaller" than another one. Moreover, we have to show that it is not possible for x-constraints to become smaller and smaller inde nitely, that is there is no in nite chain of constraints c 0 , c 1 , etc. such that c i+1 is smaller than c i for all i.

In a rst part of the proof (Section 4.B.1), we simplify the problem by remarking several things.

• Firstly, we can always assume that the constraints are clash-free. Indeed, clash rules have the priority in choose-rule-1 and, therefore, any constraint that is not clash-free will be transformed to ⊥ in the next step and is therefore not a threat to termination.

• Secondly, the system of priority of choose-rule-1 means that transform-1 basically runs in three phases.

-In a rst phase, only the rules G S F and D NF are used.

-In a second phase, almost all the rules of R 1 are used. This excepts P NA S and rule30. Moreover, whenever a pattern for G S F or D NF appears, these rules are applied immediately. They can therefore be inlined in the rules that create the pattern. The second phase can therefore be seen as an alternative system of rules, which we will name R trunc 1 and which leaves constraints irreducible with respect to the rst phase.

-Finally, in a third phase, the rules rule28 and rule30 are added. These rules turn out to respect the irreducibility with respect to the rst and second phase. The termination of this third phase will therefore not be an issue.

Even with these simpli cations, there remains quite a lot of di culties, detailed in Section 4.B.2. Mostly, there are two major di culties.

• The rst di culty comes from R NA A and from all the splitting rules (S NA S , S NS F , S NS A and S NS S ). Indeed, these transform a negated atom (absence or similarity) into a negated atom of the same kind carrying a strictly smaller set. There is however no guarantee that these sets cannot get smaller and smaller inde nitely as they can, of course, be in nite. We will however remark that even if these sets can be in nite, there is only a nite number of sets that can appear in a transformation from a nite constraint. We can leverage this fact to consider not the set themselves by their height in the nite lattice of possible sets. This is discussed in Section 4.B.3.

• The second di culty comes from the interaction between the rules D NS F and D NF . The former removes a negated similarity atom, replacing it by a negated feature atom. The latter removes a negated feature atom, replacing it by a disjunction that includes a new variable and a negated similarity atom. This process can repeat several times. In fact, it can repeat at least a number of times linear in the number of initial variables in the constraint. We can however remark several facts:

-In order for a negated feature atom to transform into negated similarity atom and then back into negated feature atom, the presence of an absence or a similarity atom is required.

-Except in some speci c cases, these absence and similarity atoms can only appear on variables that were present in the constraint initially, that is not on new variables introduced by D NF .

-The newly introduced variables cannot lead to "initial" variables. Since there is a nite number of such "initial" variables and since they cannot form cycles (because the constraints are clashfree), this gives us a notion of "depth" in constraints.

-For a negated similarity atom to transform into negated feature atom and back, it has to increase its depth. Since there is only a nite depth of "initial" variables, the process has to stop eventually. This is discussed in details in Section 4.B.4.

Tackling these two di culties allows us to then de ne a well-founded decreasing lexicographic measure on constraints from which we can conclude that transform-1 terminates. This is discussed in Proof. This comes from the fact that DXC and apply-rule-1 both return equivalent formulas, the former by de nition, and the latter by Lemma 4.2.

Lemma 4.10. The function transform-1 yields DXC that are either empty or satis able.

In other words, transform-1 meets exactly the goals that we gave ourselves. Firstly, it can be used as an unsatis ability check. In fact, it is a complete unsatis ability check in the sense that it detects unsatis ability if and only if the DXC is indeed unsatis able. Secondly, it is incremental by nature. Since the input and output DXC are equivalent, the input DXC can be thrown away to keep only the output one. If one later adds other literals to the DXC, all the computation that has been done previously is still valid and only the computation that has to do with the new literals will take place.

Finally, we can clean up the result of transform-1 by leveraging Theorem 4.1. Consider the function garbage-collect-1 de ned in Figure 4.11. garbage-collect-1 takes an x-constraint ∃X • c and removes the biggest subset of its quanti er block X that is ancestor-closed. The existence of such a biggest subset comes from the fact that the union of two ancestor-closed sets is also ancestor-closed.

Intuitively, one can see an x-constraint as a graph whose entry points are the free variables. Intuitively, garbage-collect-1-xc removes all the variables of an x-constraint that are not reachable. Let us rst de ne reachability properly in De nition 4.6.

De nition 4.6 (Reachability of a variable in an x-constraint). A variable x is reachable from y in a constraint c if there exists a chain of feature atoms that leads from y to x.

A variable x is reachable in an x-constraint ∃X • c if it is reachable from a free variable of ∃X • c.
Note that the notion of reachability is strongly tied to that of ancestor-closedness. Indeed, in an xconstraint ∃X • c, a variable x is non-reachable if and only if there exists a subset X of X that is ancestorclosed in c.

We can now state in Lemma 4.11 that garbage-collect-1 only leaves non-reachable variables in a DXC. This property justi es the name of the function, but it will also prove to be very important in the next section to build a function that decides rst-order formulas.

Lemma 4.11. Given a DXC d whose constraints are irreducible with respect to R 1 , garbage-collect-1 yields a DXC d that is equivalent to d and such that, in all its x-constraints, all the local variables are reachable.

Proof. The fact that d is equivalent to d follows directly from Theorem 4.1. The property of reachability in an x-constraint ∃X• comes from the fact that a variable x is reachable if and only if there is a subset of X that contains x and that is ancestor-closed. By de nition of garbage-collect-1-xc however, we applied Theorem 4.1 on the biggest ancestor-closed subset. Since ancestor-closedness is a notion that is table by union, that means that the only ancestor-closed subset of X that remains is the empty one. Therefore, all the variables of X are reachable.

First-Order Formulas

We have de ned in Section 4.1.3 the function transform-1 that takes any DXC and yields an equivalent DXC that is either empty or such that all of its constraints are irreducible with respect to R 1 . We have then de ned the function garbage-collect-1 that can apply on such DXC and that removes all nonreachable variables. We are going to show that this can be extended to a function deciding satis ability of closed rst-order formulas.

Our theory of feature trees does not have the property of quanti er elimination in the strict sense [Hodges 1993], that is it is not true that any formula has an equivalent quanti er-free formula. This is already the case without the similarity literals, as we can see in the following example:

∃x • (y[f ]x ∧ x[g]↑)
. This formula means that there is a tree denoted by x such that y points to x through the feature f , and that x does not have the feature g. A quanti er elimination procedure would have to conserve this information about the global variable y.

This situation is not unusual when designing decision procedures. There are basically two possible remedies. The rst one is to extend the logical language by new predicates which express properties which otherwise would need existential quanti ers to express. This approach of achieving the property of quanti er elimination by extension of the logical language is well-known from Presburger arithmetic, it was also successfully used for feature tree logics in the past [Backofen & Smolka 1995; Backofen 1995]. However, in the case of feature tree logics, the needed extension of the language is substantial and requires the introduction of path constraints. For instance, the above formula would be equivalent to the path constraint y[f ][g]↑ stating that the variable y has a feature f pointing towards a tree where there is no feature g. Unfortunately, this extension entails the need of quite complex simpli cation rules for these new predicates.

The alternative solution is to our knowledge due to Mal'cev [Malcev 1971] and consists in exploiting the fact that certain predicates of the logic behave like functions. This solution was also used by Comon and Lescanne [Comon & Lescanne 1989] for Herbrand trees. When switching to feature trees, this solution becomes quite elegant [Treinen 1997]. The above formula would be replaced by ¬y

[f ]↑ ∧ ∀x • (y[f ]x → x[g]↑)
stating that y has a feature f (by ¬y[f ]↑) and that for each variable x such that y points towards x via f (in fact, there is only one), x has no feature g. The price is that existential quanti ers are not completely eliminated but switched for universal ones. This is, however, su cient, since one can now apply this transformation to any PNF, and successively reduce the number of quanti er eliminations.

We show in Section 4.2.1 a way to switch existential quanti ers for universal quanti ers in formulas of FTS. We then use that in Section 4.2.2 to build a complete decision procedure for the rst-order theory of FT .

Switching Existential Quanti ers from DXC

Let us start by showing how to switch a block of existential quanti ers from an x-constraint in which all the variables are reachable. This goes by iteratively applying the rule G E F de ned as follows: 

1 function switch-xc (c : x-constraint ) : Π 1 -formula 2 match c 3 | ∃y, Z • (x[f ]y ∧ c ) where x, y / ∈ Z -> 4 return ¬x[f ]↑ ∧ ∀y • (x[f ]y → (switch-xc (∃Z • c ))) 5 | _ -> return c
G E F ∃y, Z • (x[f ]y ∧ c) ⇒ ¬x[f ]↑ ∧ ∀y • (x[f ]y → ∃Z • c) (x, y / ∈ Z, x = y)
This rule leverages the fact that features are functional in our model: a tree can not have two edges leaving the root with the same feature. The fact that it performs an equivalence is stated in Lemma 4.12.

The fact that all the variables of Z remain reachable in ∃Z • c in stated in Lemma 4.13. This will allow us to reiterate the process until there is no existential quanti cation anymore and it has been replaced by universal quanti cation, as stated in Lemma 4.14.

Lemma 4.12. The formula yield by G E F is always equivalent to the given x-constraint.

Proof. This is shown by the following chain of equivalences: Proof. Let us take z ∈ Z that is reachable in ∃y, Z • (x[f ]y ∧ c). That means that there is a chain of feature atoms from a variable of c Z to z. If that chain of feature mentions y, then the part that goes from y to z is still present in c. Since y is not existentially quanti ed in ∃Z • φ, z is reachable there. If the chain of feature does not mention y, then it is fully included in c and is still present there. to switch every existential quanti er of a DXC into a universal one. For instance, when given Formula 4.5, the function switch returns Formula 4.6. A graphical representation of Formula 4.5 can be found in Figure 4. 13.

∃y, Z • (x[f ]y ∧ c) ↔ ∃y • (x[f ]y ∧ ∃Z • c) since x, y / ∈ Z ↔ ¬x[f ]↑ ∧ ∀y • (x[f ]y → ∃Z • c) since features are functional
∃y, z • (x[f ]y ∧ y[g]z ∧ z[g]↑ ∧ z[h]w ∧ x = w) (4.5) ¬x[f ]↑ ∧ ∀y • (x[f ]y → (¬y[g]↑ ∧ ∀z • (y[g]z → (z[g]↑ ∧ z[h]w ∧ x = w)))) (4.6)
Similarly to the other functions in this section, the function switch performs equivalences. Moreover, it indeed returns a P i 1 -formula when called on the right inputs. This is stated in Lemma 4.14.

Lemma 4.14. Given a DXC d such that all its variables are reachable, the function switch terminates and yields a Π 1 -formula φ that is equivalent to d. Proof. This comes directly from Lemma 4.12.

Deciding the First-Order Theory of FT

Finally, consider the function decide de ned in Figure 4.14, Line 1. It accepts any formula φ and returns a boolean.It works as follows:

• The input formula φ is immediately transformed into prenex normal form -PNF -and matched upon (Line 2). In the rest of this explanation, we talk about φ and its PNF interchangeably.

• If φ is simply a Σ 1 -formula, that is if it is of the form ∃X • ψ where ψ is quanti er-free (Line 3), we return true if φ is satis able and false otherwise, which is done using transform-1 on the DXC of φ (Line 4). The algorithm is done.

• Otherwise, if φ is not a Σ 1 -formula but its last block of quanti ers is existential, that is if φ is of the form Q • ∃X • ψ where ψ is quanti er-free and Q does not end in ∃ (Line 8), we are exactly in the case that we described how to handle in Sections 4.1.3 and 4.2.1.

-We rst put the formula ∃X ψ in DXC and apply transform-1 on it (Line 9). This returns an equivalent DXC d whose constraints are irreducible with respect to R 1 .

-We can then apply the garbage collection via garbage-collect-1 on d (Line 10). This returns an equivalent DXC d which has all its variables reachable.

-This is exactly the right context to switch the remaining existential quanti ers using switch in d (Line 11). This returns an equivalent Π 1 -formula χ.

-We can then call decide recursively on Q • χ (Line 12). Note that, since χ is a Π 1 -formula, the number of quanti er alternations in Q • χ is strictly smaller than that of Q • ∃X • ψ.

• Otherwise, if φ is not a Σ 1 -formula and its last block of quanti ers is not existential, then it is of the form Q • ψ where ψ is quanti er-free (Line 14), we simply fall back on the previous case, which we know how to handle, by applying decide recursively on the negation of φ taking the negation of the result4 (Line 15). The negation of Q • ψ is computed syntactically and is the formula 

Q • ¬ψ, (0) decide(∀x • ((x = F y ∧ x[G]↑) → y[F ∩ G]↑))) (1) ⇒ not(decide(∃x • ¬((x = F y ∧ x[G]↑) → y[F ∩ G]↑))) (2) ⇒ • • • • • • transform-1(∃x • (x = F y ∧ x[G]↑ ∧ ¬y[F ∩ G]↑)) (3) ⇒ not(false) ⇒ true
(0) decide(∃x, y • ∀z • (z = F x ∨ z = F y)) (1) ⇒ not(decide(∀x, y • ∃z • ¬(z = F x ∨ z = F y))) (2) ⇒ • • • • • • transform-1(∃z • (z = F x ∧ z = F y)) (3) ⇒ • • • • • • garbage-collect-1(∃z • (z = F x ∧ z = F y ∧ x = F y)) (4) ⇒ • • • • • • switch(x = F y) (5) ⇒ not(decide(∀x, y • x = F y)) (6) ⇒ not(not(decide(∃x, y • x = F y))) (7) ⇒ • • • • • • transform-1(∃x, y • x = F y) (8) 
⇒ not(not(false)) or not(not(true)) depending on F (0) Start from Formula 3.3.

(1) The last block of quanti cation is universal. decide (Line 15) proceed thus recursively on the negation of this formula.

(2) Inside this call, decide receives a Σ 1 -formula. It will therefore put it in DXC and call transform-1 on it (Line 4). The steps of execution of transform-1 are not detailed. In this case, transform-1 will propagate the absence atom through the similarity atom, and then detect a clash between these two, leading to replacing the whole formula by ⊥.

(3) decide therefore returns false, which gets negated and the whole call returns true. In this case, it means that Formula 3.3, even if it is not a closed formula, is valid. This will be explained later.

As a second example, let us describe the steps of execution of decide on Formula 3.4. The intermediary steps are represented Figure 4.16.

(0) Start from Formula 3.4.

(1) The last block of quanti cation is universal. decide thus proceeds recursively on the negation of implementation. We do believe, however, that this makes the presentation heavier and will not be doing that in this thesis.

the formula (Line 15).

(2) Inside this call, decide puts the formula in DXC and calls transform-1 (Line 9) on it. The steps of transform-1 are not detailed. In this case, transform-1 will propagate the similarity atoms and reach an irreducible form immediately.

(3) decide proceeds to call garbage-collect-1 (Line 10) which cleans up the ∃z that has become irrelevant, leaving only x = F y.

(4) decide then calls switch (Line 11) on x = F y. This formula has no quanti ers and thus it remains unchanged.

(5) This step of execution is done, and decide continues recursively (Line 12).

(6) The last block of quanti cation is universal again. decide thus proceeds recursively on the negation of the formula (Line 15).

(7) Inside this call, decide receives a Σ 1 -formula. It calls transform-1 (Line 4) on it. The result here depends heavily on F . If F = ∅, then transform-1 will detect a clash and return ⊥. Otherwise, transform-1 will return the constraint unchanged as it is irreducible with respect to R 1 .

(8) Depending on F , decide will then proceed to return either falseor true. That result is then negated twice. Formula 3.4 is thus valid if and only if F is not empty. However, the recursive call Line 12 is on a formula with strictly less quanti er alternations. Indeed, on that line, Q is both non-empty and does not terminate on ∃. It must therefore terminate on ∀. Since ψ is the result of switch, it contains only universal quanti ers, and none of them are under a negation. The PNF of Q • ψ will thus have as many quanti er alternations as Q, which is one less than Q • ∃X on Line 8.

The recursive call Line 15 is on a formula with the same number of quanti er alternations. However, subsequent calls to decide will enter one of the cases Lines 3 and 8 which will, in turn, either return immediately or decrease the number of quanti er alternations.

The function decide deserves its name as, if given a closed formula, it returns trueif and only if the formula is satis able. This will be stated in Lemma 4. 16. decide is thus a complete decision procedure for the rst-order theory of FT . This is stated in Theorem 4. 

Discussions

There are several topics from this chapter that deserve discussion. In Section 4. 

Alternative Models

In this whole chapter, we have been considering FT , the model of nite feature trees of unbounded width and unbounded depth. We have shown that the rst-order theory of FT is decidable. One might wonder if alternative models than FT also enjoy such a property. In particular, one might wonder if they could have the same rst-order theory.

Firstly, since any nite feature tree can be described exactly by a nite formula, then any model that does not include all of FT has to have a di erent rst order theory. This is in particular the case of all the feature trees of bounded depth, or of bounded width if the bound is strictly smaller than the size of the set of features F. Indeed, it su ces to choose a tree t that is in FT and not in the alternative model. We can then choose a formula φ that has only one free variable x and that describes explicitly t in FT , and only t. That is such that [x → t] |= F T φ and such that there is no t with [x → t ] |= F T φ. Since t is not in the alternative model, that means that φ is not satis able in that model, while it clearly is in FT .

Let us now consider extensions of FT with in nite feature trees. The model FT ∞ of all possible feature trees (De nition 3.2) does not have the same rst-order theory as FT . Indeed, the formula x[f ]x, for instance, is not satis able in FT but clearly is in FT ∞ . In general, it is necessary for a model to not include trees that are subtrees of themselves ifwe are hoping to have the same rst order theory as FT .

Three fairly natural models that one might want to consider are thus:

1. all the feature trees of potentially in nite width but nite depth; 2. all the feature trees of nite width but potentially in nite depth as long as they have no cycles; In fact, these three models have the exact same rst-order theory as FT as decide is a decision function in all of these models. Since the validity of decide as a decision function relies on the fact that all its steps are equivalences, let us list all the functions that transform formulas and hint at why they are also performing equivalences in these models.

• DXC and PNF perform an equivalence in any rst-order logic. Similarly, the syntactic negation of a formula Q • φ as Q • ¬φ is equivalent to the negation of Q • φ in any rst-order logic.

• switch performs an equivalence in any feature tree logic as it relies only on G E F that relies only on the functionality of features.

• transform-1 performs an equivalence in the three aforementioned models as well as in FT . This comes from the fact that all the transformation rules of R 1 perform equivalences in all these models. In other words, Lemma 4.2 also holds in these alternative models.

• Finally, garbage-collect-1 performs an equivalence in the three aforementioned models as well as in FT . This comes from the fact that Theorem 4.1 also holds in these alternative models. This will not be proven formally but is discussed shortly at the end of Section 4.A.

Table 4.1 presents a summarised version of everything discussed in this subsection.

Complexity Considerations

We have de ned two functions: transform-1, which can decide the satis ability of a DXC, and decide, which can decide rst-order formulas. One may wonder what complexity these functions have and if they are usable in practice.

The complexity of decide of course depends on that of transform-1. In any case, we know that it runs in non elementary time [Vorobyov 1996]. This comes from the interaction between the fact that we periodically negate formulas (in de nition of decide, Line 15) and that we then put them back in DXC (Line 9). In general, putting a formula in DXC can be as long as exponential in the size of the formula. The negation of a DXC is the worst possible case and reaches precisely this exponential complexity. Since we do that for each quanti er alternation, the complexity of decide admits as a lower bound a tower of exponential of size the number of quanti er alternations.

The function transform-1 has a proof of termination (Lemma 4.8) that gives a decreasing measure on the constraints that it considers. One could thus expect such a measure to give us a useful bound on the complexity of transform-1. This is however not the case, for three reasons 7 .

Firstly, the way the proof of termination works is by showing that transform-1-xc applies on constraints that strictly decrease according to a measure. However, transform-1-xc may introduce disjunctions, in which case it gets called recursively on all the introduced constraints. This is not a problem for the proof of termination, but it does mean that the bound on the number of executions of transform-1-xc would be huge in comparison to that obtained from the measure.

Indeed, for each execution of transform-1-xc, we can build a tree of constraints such that each constraints has as children the zero, one or more constraints that are introduced by the application of the rule chosen by choose-rule-1. The proof of termination proves that this tree has bounded depth. Since the tree has bounded width (the rules of R 1 introduce at most one disjunction and thus two constraints), we can deduce that it is nite. We get an over-approximation of its size as an exponential of its depth.

We can exhibit formulas on which transform-1-xc has to call recursively an exponential number of times. Take n any natural numbers. Take as set of features the set of all natural numbers between 0 and 2 n -1. De ne, for all 0 ≤ i < n, the set S i that contain the natural numbers whose i-th digit in the binary representation is 1. With intersections and set di erences of such sets, one can select precisely a number or another. Consider now the formula:

¬x[ ]↑ ∧ 0≤i<n x = S i y i (4.7)
This formula will trigger S NA S , which will re ne the negated absence atom as long as its set is not either included or excluded from all of the S i . In other words, for as long as it does not contain only one number. This will create a DXC of as many branches as there are numbers in our set of features, that is 2 n -1. We thus have a formula of size n + 1 that leads to an exponential explosion of the number of constraints in the working DXC.

Secondly, even without the introduction of disjunctions (that is if there is only one chain of constraints), the measure given by the proof of termination is a huge overapproximation of the actual behaviour of the function. The approximation is so unprecise that it could not possibly give us anything useful.

Thirdly and nally, this measure only counts the number of rule applications. It does not take into account the complexity of operations such as deciding whether a constraint is reducible or not, or nding a rule that applies to it. Since application of rules works by matching patterns on constraints, we can expect this to be at least polynomial in the size of the constraints, the exponent being the size of the patterns.

Limitations of transform-1 and R 1

We can list three main limitations of transform-1. Two of them come directly from the fact that transform-1 is based on the system R 1 .

1. Firstly, R 1 introduces disjunctions and new variables systematically when in contact with negated atoms. This leads to an explosion of constraints to handle in order to decide satis ability. Moreover, since the goal is to use transform-1 incrementally and to compose its output with more speci cations, this would easily lead to an explosion of cases there.

2. Secondly, R 1 works by matching patterns in sets of literals. It also requires to test subsumption of literals by full constraints. These two operations are not guaranteed to be e cient. In particular, pattern can occur anywhere in a constraint.

3. On DXC, transform-1 has to handle every included x-constraint separately. Even if we change R 1 to not introduce disjunction, some of them come directly from speci cations. It would improve greatly the handling of speci cation if transform-1 was able to work on more expressive formulas. One could then write speci cations without disjunctions. This would in particular be useful in the de nition of noresolve (Figure 3.20).

We come back on Limitations 1, 2 and 3 in Chapter 5 and tackle them one by one.

Appendix 4.A Proof of Lemma 4.7

This appendix contains the full proof of Lemma 4.7. For convenience, Lemma 4.7 is repeated here:

Lemma 4.7 (Garbage Collection of one Variable in an Irreducible Constraint). Let c be a constraint that is irreducible with respect to R 1 . Let x be a variable of c such that there is no y[f ]x in c for any y and f . Then the global part of c with respect to {x} implies ∃x • c. In other words:

|= F T ∀ • (G {x} (c) → (∃x • c))
Introduction. Let c be a constraint that is irreducible with respect to R 1 . Take any variable x such that there is no y[f ]x in c for any y and f . Take any µ such that µ |= F T G x (c). We are going to extend µ to ρ such that ρ |= F T c, hence showing that µ |= F T ∃x • c and proving Lemma 4.7.

Since c is irreducible with respect to R 1 , none of the rules of R 1 can apply to c. This gives us 20 hypotheses of non-applicability on the shape of c. As a reminder, R 1 can be found in Figure 4.7.

The idea is to de ne ρ(x) by analysing the literals in the constraint.

• Feature atoms of the form x[f ]y impose that ρ respects the equation ρ(x)(f ) = ρ(y).

• Similarity atoms of the form x = F y impose that ρ respects, for all f ∈ F , either f / ∈ dom(ρ(x)) and f / ∈ dom(ρ(y)), or ρ(x)(f ) = ρ(y)(f ).

• Negated absence atoms of the form ¬x[F ]↑ impose that there is an f ∈ F such that f is in the domain of ρ(x).

• Negated similarity atoms of the form x = F y impose that there is an f ∈ F such that ρ(x) is di erent from ρ(y) in f .

De nition of D. The two rst points in this list can be immediately integrated into the de nition of ρ(x), as we will see later. The two last points, however, mention the existence of a feature in a certain set -the one carried by negated absence and similarity atoms. This means that there are potentially several valid choices for ρ(x). Let us de ne a set of features D that implement this choice. D will contain one feature for each negated absence or similarity atom. These features will be part of the domain of ρ(x).

Let us rst de ne a set D 0 :

1. For each ¬x[F ]↑ ∈ c, choose f ∈ F and add it to D 0 . Note that this is always possible because F cannot be empty, by non-applicability of C NA E .

2. For each x = F y ∈ c, choose f ∈ F such that there is no z with x[f ]z or y[f ]z in c, and add it to D 0 . Note that this is always possible because F cannot be empty, by non-applicability of C NS E , and because if F is nite, then it does not include any feature from a feature atom on x. This comes from non-applicability of S NS F which implies that either F does not include any feature from a feature atom on x or it is a singleton. If F is a singleton, then, by non-applicability of D NS F , it does not include a feature from a feature atom on x. If F is in nite, since the constraint c contains only a nite number of feature atoms, there always exists such an f . The de nition of D 0 might still contain features that are also covered by similarity atoms in c. We want to avoid that and to make sure that D has no intersection with features in feature atoms and sets of features in similarity atoms. We thus de ne D as: De nition of fresh trees. For each feature f , we de ne a fresh tree for f with respect to c and µ by choosing a nite feature tree that is not in {µ(y)(f ) | y ∈ V(c), y = x}. Since this set is nite and since the set of nite feature trees is in nite, such free trees always exist. We will denote by fresh(f ) a fresh tree for f .

D = D 0 \ x= F y∈c x =y F For instance, in the constraint x[f, g]↑ ∧ ¬x[h]↑ ∧ ¬x[ c {f, g}]↑ ∧ x = {h} y ∧ x = {g} z, the
Extension of µ to ρ. We de ne ρ by extending µ to x. That is, we take ρ(y) = µ(y) for all y ∈ dom(µ) di erent from x. For x, we de ne ρ(x) on the domain:

dom(ρ(x)) = {f | x[f ]y ∈ c} ∪ D ∪ x= F y∈c x =y (dom(µ(y)) ∩ F )
For all f ∈ dom(ρ(x)), let us de ne

ρ(x)(f ) =      µ(y) if x[f ]y ∈ c (4.8) µ(y)(f ) if x = F y ∈ c with x = y, f ∈ F , and f ∈ dom(µ(y)) (4.9) fresh(f ) otherwise (4.10)
Veri cation that ρ is well-de ned. Firstly, in the rst two cases, µ(y) is indeed de ned. This comes from the fact that, in both cases, y is di erent from x, either by non-applicability of C C (case 4.8) or by de nition (case 4.9). Secondly, even though the rst two cases are not disjoint, this still de nes a function. Indeed, if several cases apply, they can be:

• Twice case 4.8. In that case, we have x[f ]y and x[f ]z in c with y = z. In that case, by nonapplicability of D F , there is y = z in c. Because of non-applicability of C C , y and z are both distinct from x. Since µ |= F T G x (c), then it satis es this full similarity atom and µ(y) and µ(z) are equal in all points, and thus equal.

• One of case 4.8 and one of case 4.9. In that case, we have x[f ]y and x = G z in c with f ∈ G, x = y and x = z. In that case, by non-applicability of P F S , there is z[f ]y ∈ c, and even in G x (c) since

x = z. Since µ |= F T G x (c), µ(y) = µ(z)(f ).
• Twice case 4.9. In that case, we have x = F y and x = G z in c with f ∈ F , f ∈ G, x = y and x = z.

In that case, by non-applicability of P S and the fact that it cannot yield a formula that would be subsumed by c, f

∈ F ∩ G ⊆ y= H z∈c H. There is thus a y = H z in c such that f ∈ H. It is even in G x (c) because both x = y and x = z. Since µ |= F T G x (c), µ(y)(f ) = µ(z)(f ).
Thirdly, ρ is indeed a valuation. That is, all the trees in its image are nite. This is true for all ρ(y) with y = x as µ was already a valuation. It is also the case for ρ(x). Indeed, the constraint is nite and thus there is only a nite number of feature atoms, of negated absence and similarity atoms and of variables. This makes {f | x[f ]y ∈ c} nite, D nite, and the union of all variables distinct from x nite too. Since all the trees in µ are of nite width, all dom(µ(y)) are nite.

Veri cation that ρ satis es c. By de nition of ρ, ρ is equal to µ on all variables that are not x. It thus satis es G x (c). We only need to show that it also satis es L x (c), that is all literals that mention x. We reason by exhaustive analysis over all literal forms. This gives us six cases: feature atom (1), negated feature atom (2), absence atom (3), negated absence atom (4), similarity atom (5), and negated similarity atom (6).

Since feature and similarity atoms and their negations are binary, there will be sub-cases depending on whether both their variables are x or only one.

1. Firstly, let us consider feature atoms. We have three sub-cases, as such atoms can be x We will show by contradiction that it is impossible that f ∈ dom(ρ(x)). Assume it is the case. By de nition of ρ, ρ(x)(f ) is

[f ]x (1a), x[f ]y with x = y (1b), or y[f ]x with x = y (1c).
• either (case 4.8) equal to ρ(z) for some z if there is x[f ]z in c. Such a case cannot happen, however, because that would contradict the non-applicability of C F A .

• or (case 4.9) equal to ρ(z)(f ) for some z = x if there is x = G z in c with f ∈ G and f ∈ dom(µ(z)). By non-applicability of P A S , there is then

i z[H i ]↑ in c with F ∩ G ⊆ i H i .
Since f ∈ F ∩ G, then there exists i 0 such that f ∈ H i 0 . The fact that µ satis es z[H i 0 ]↑ contradicts the fact that f ∈ dom(µ(z)).

• or (case 4.10) fresh. In that case, we know that f ∈ D. Since D ⊆ D 0 , by de nition of D 0 , there exists either a negated absence atom ¬x[G]↑ such that f ∈ G. In that case, by non-applicability of R NA A , F ∩ G = ∅, which enters in contradiction with the fact that f ∈ F and f ∈ G.

or a negated similarity atom x = G z with z = x and such that f ∈ G. In that case, by nonapplicability of S NS A , either G ⊆ F or G ⊆ c F . The former enters in contradiction with the non-applicability of D NS A . The latter enters in contradiction with the fact that f ∈ F and f ∈ G.

4. Fourthly, let us consider negated absence atoms. They are of the form ¬x[F ]↑. By de nition of D 0 , case 1, there is f ∈ D 0 ∩ F . We will show that there is a feature of F in dom(ρ(x)). This will not necessarily be f . Of course, if f ∈ dom(ρ(x)), then ρ indeed satis es ¬x[F ]↑.

If f / ∈ dom(ρ(x)), however, that means that f / ∈ D. In that case, by de nition of D, there is a similarity atom x = G z for some G and z with z = x and f ∈ G. By non-applicability of S NA S , either F ⊆ c G or F ⊆ G. Since f ∈ F and f ∈ G, the former cannot happen. By non-applicability of P NA S , there is then ¬z[F ]↑. µ satis es this literal, so there is g ∈ F ∩ dom(µ(z)). We then have that g ∈ dom(ρ(z)).

5. Fifthly, let us consider similarity atoms. We have two sub-cases, as such atoms can be x = F x (5a) or x = F y with x = y (5b). 8 (a) The similarity atoms x = F x are trivially satis ed by any valuation.

(b) Let us consider similarity atoms of the form x = F y with y = x. Let us take any f ∈ F . If f ∈ dom(µ(y)), then, by de nition of ρ, case 4.9, f ∈ dom(ρ(x)) and ρ(x)(f ) = µ(y)(f ). Let us now assume that f / ∈ dom(µ(y)) and show by contradiction that it is not possible to have f ∈ dom(ρ(x)). Assume it is the case. By de nition of ρ, ρ(x)(f ) is • either (case 4.8) equal to ρ(z) for some z if there is x[f ]z in c. By non-applicability of P F S , there is y[f ]z in c. Since µ satis es this literal, f ∈ dom(µ(y)) which is a contradiction.

• or (case 4.9) equal to ρ(z)(f ) for some z = x if there is x = G z in c with f ∈ G and f ∈ dom(µ(z)). By non-applicability of P S , there is i y

= H i z in c with F ∩ G ⊆ i H i . Since f ∈ F ∩ G, there is i 0 such that f ∈ H i 0 .
µ satis es this literal and, therefore, f ∈ dom(µ(y)) which is a contradiction.

• or (case 4.10) fresh. In that case, we know that f ∈ D. By de nition of D, that enters in contradiction with the existence of our similarity atom x = F y with f ∈ F .

6. Sixthly and lastly, let us consider negated similarity atoms. We have two sub-cases, as such atoms can be x = F x (6a) or x = F y with x = y (6b). 9 (a) It is impossible to have a negated similarity atom x = F x in c because of non-applicability of C NS R .

(b) Let us now consider negated similarity atoms x = F y with x = y. By de nition of D 0 , case 2, there is f ∈ D 0 ∩ F . We will show that there is a feature of F on which ρ(x) and ρ(y) are di erent. This will not necessarily be f .

If f / ∈ dom(ρ(x)), that means that f / ∈ D. In that case, by de nition of D, there is a similarity atom x = G z for some G and z with z = x and f ∈ G. By non-applicability of S NS S , either F ⊆ c G or F ⊆ G. Since f ∈ F and f ∈ G, the former cannot happen. By non-applicability of P NS S , there is then y = F z in c. µ satis es this literal, so there is g ∈ F such that µ(y) and µ(z) are di erent in g. g belongs also to G, and therefore f / ∈ dom(µ(z)). That means that f ∈ dom(µ(y)) and thus that ρ(x) and ρ(y) are di erent in g.

If f ∈ dom(ρ(x)) then, by de nition of ρ, ρ(x)(f ) is
• either (case 4.8) equal to ρ(z) for some z if there is x[f ]z in c. This case is however impossible, by de nition of D 0 , case 2.

• or (case 4.9) equal to ρ(z)(f ) for some z = x if there is x = G z in c. In that case, by non-applicability of S NS S , and since f ∈ F ∩ G, then F ⊆ G. By non-applicability of P NS S , there is then y = F z in c. (Note at this point that, by non-applicability C NS R , this implies that y = z, and thus that this case cannot happen). µ satis es this literal, so there is g ∈ F such that ρ(y)(g) = ρ(z)(g) = ρ(x)(g).

• or (case 4.10) fresh. In that case, by de nition of fresh trees, it is di erent from ρ(y)(f ).

Note on unused rules. G S F is in R 1 but is in fact not used anywhere in this proof. It is in fact non-necessary for the good work of the system, as long as one has P S . It does, however, simplify the proof of termination of transform-1. We believe it is a su cient reason to keep it in R 1 .

About other models. Section 4.3.1 discusses alternative models that could be considered in place of FT . It mentions in particular the fact that the width and depth of feature trees can be taken to be unbounded as long as there are no cycles. The rst order theory then remains the same. It relies in particular in the fact that garbage collection holds in these alternative models.

The majority of this proof holds independently from these considerations. The only part that does not hold is the proof that ρ(x) is a nite feature tree, because it relies on the hypotheses that the trees in µ are also nite. The argument can however easily adapt to other models:

• If all the trees in µ have nite width, then ρ(x) has nite width.

• If all the trees in µ have nite depth, then ρ(x) has nite depth.

• If all the trees in µ are cycle-free, then ρ(x) is cycle-free.

These three facts come directly from the construction of ρ, as it only uses trees of µ, or fresh trees that are all nite. The function transform-1, when called on a non-empty DXC, includes one or several calls to the function transform-1-xc (Line 21). The function transform-1-xc, when called on a reducible constraint, includes a call back to transform-1 (Line 15). Depending on the rule r that transform-1-xc chooses via choose-rule-1 (Line 12), the DXC that will be passed to a subsequent call to transform-1 will contain zero (for a clash rule), one (for most other rules) or more (for rules introducing a disjunction) x-constraints, and thus as many calls to transform-1-xc.

We focus on the x-constraints that are taken as argument by transform-1-xc. We show that if transform-1-xc is called on an x-constraint c, then any subsequent recursive call to transform-1-xc will be given an x-constraint that is "smaller" than c. We need to de ne what it means for an x-constraint to be "smaller" than another one. Moreover, we have to show that it is not possible for x-constraints to become smaller and smaller inde nitely, that is there is no in nite chain of constraints c 0 , c 1 , etc. such that c i+1 is smaller than c i for all i.

We denote by c ⇒ c and say that c transforms into c , where c and c are both constraints, when c and c are the constraints in two subsequent calls to transform-1-xc. Note in that case that there must be a rule r given by choose-rule-1 that applies to c and such that c is a constraint in the DXC of the result.

For instance, we could say that ¬x[f ]y transforms into x[f ]z ∧ y = z via D NF . We use ⇒ to denote the re exive and transitive closure of ⇒.

4.B.1 Simplifying the Problem

Firstly, when writing that c ⇒ c , we always know that c is clash-free. Indeed, if it was not, then transform-1-xc, via choose-rule-1, would have chosen to apply a clash rule to c. The result would then be the empty DXC and there would be no subsequent call to transform-1-xc and thus no c . Moreover, we can always assume that c is clash-free too, because if it is not, then we know that the call to transform-1-xc will be the last one, and we have no termination issue. This means that, in all the forthcoming proof, we only consider clash-free constraints. This comes in handy as, in particular, there are no cycles of features in any constraint, allowing us to de ne a notion of depth of variables.

Secondly, since the rules G S F and D NF are chosen in priority, that means that, in a rst phase, transform-1 applies only these two rules -in addition to clash rules -until they are not applicable anymore. This phase terminates because each step reduces strictly either the number of unsolved variables or the number of negated feature atoms. After that, transform-1 starts applying other rules of R 1 . It is possible that R 1 introduces a full similarity atom (via D F ) or a negated feature atom (via D NS F ). These literals will then be immediately removed by either G S F or D NF . We can thus slightly change the rules and consider the two following ones instead:

D NS F ' x = {f } y ∧ x[f ]z ∧ c ⇒ (y[f ]↑ ∨ ∃z • (y[f ]z ∧ z = z )) ∧ x[f ]z ∧ c D F ' x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]z ∧ c{y → z} (y = z)
The two rules are obtained by gluing together D NS F and G S F for D NS F ' and D F and D NF for D F '. They include both the introduction and the elimination of the full similarity and the negated feature atoms. We end up with an equivalent system of rules, R trunc 1 , that never introduces negated feature atoms or full similarity atoms on unsolved variables. R trunc 1 is shown in Figure 4.17. For convenience, the rules of R 1 that are not clash rules and not in R trunc 1 are shown in Figure 4.18. We have to prove that transform-1, when applying rules of this system, terminates.

D F '

x

[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]z ∧ c{y → z} (y = z) D NS F ' x = {f } y ∧ x[f ]z ∧ c ⇒ (y[f ]↑ ∨ ∃z • (y[f ]z ∧ z = z )) ∧ x[f ]z ∧ c D NS A x = F y ∧ x[G]↑ ∧ c ⇒ ¬y[F ]↑ ∧ x[G]↑ ∧ c (F ⊆ G)
Propagation Rules

P F S x[f ]y ∧ x = G z ∧ c ⇒ z[f ]y ∧ x[f ]y ∧ x = G z ∧ c (f ∈ G, z[f ]y c) P A S x[F ]↑ ∧ x = G z ∧ c ⇒ z[F ∩ G]↑ ∧ x[F ]↑ ∧ x = G z ∧ c (z[F ∩ G]↑ c) P S x = F y ∧ x = G z ∧ c ⇒ y = F ∩G z ∧ x = F y ∧ x = G z ∧ c (y =F ∩G z c) Re nement Rules R NA A ¬x[F ]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F \G]↑ ∧ x[G]↑ ∧ c Splitting Rules S NA S ¬x[F ]↑ ∧ x = G z ∧ c ⇒ (¬x[F ∩ G]↑ ∨ ¬x[F \G]↑) ∧ x = G z ∧ c (F ⊆ G, F ⊆ c G) S NS F x = F y ∧ x[f ]z ∧ c ⇒ (x = {f } y ∨ x = F \{f } y) ∧ x[f ]z ∧ c (F nite, f ∈ F, F = {f }) S NS A x = F y ∧ x[G]↑ ∧ c ⇒ (x = F ∩G y ∨ x = F \G y) ∧ x[G]↑ ∧ c (F ⊆ G, F ⊆ c G) S NS S x = F y ∧ x = G z ∧ c ⇒ (x = F ∩G y ∨ x = F \G y) ∧ x = G z ∧ c (F ⊆ G, F ⊆ c G) Figure 4.17: System R trunc 1 of transformation rules Deduction Rules D F x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]y ∧ x[f ]z ∧ c (y = z, y = z c) D NF ¬x[f ]y ∧ c ⇒ (x[f ]↑ ∨ ∃z • (x[f ]z ∧ y = z)) ∧ c D NS F x = {f } y ∧ x[f ]z ∧ c ⇒ ¬y[f ]z ∧ x[f ]z ∧ c
Propagation Rules , it starts applying the rules P NA S or P NS S in a nal phase. Luckily, these rules do not change irreducibility with respect to other rules. This is stated in Lemma 4.17. Knowing that, it becomes fairly easy to see that this nal phase also terminates. Lemma 4.17. If c ⇒ c via P NA S or P NS S and c is irreducible with respect to R 1 = R 1 \{P NA S , P NS S }, then c is also irreducible with respect to R 1 .

P NA S ¬x[F ]↑ ∧ x = G z ∧ c ⇒ ¬z[F ]↑ ∧ ¬x[F ]↑ ∧ x = G z ∧ c (F ⊆ G, ¬z[F ]↑ c) P NS S x = F y ∧ x = G z ∧ c ⇒ z = F y ∧ x = F y ∧ x = G z ∧ c (F ⊆ G, z =F y c) Global Rules G S F x = y ∧ c ⇒ x = y ∧ c{x → y} (x, y ∈ V(c))
Proof. Let us thus take c and c such that c is irreducible with respect to R 1 . Assume that c ⇒ c , where the transformation is performed by P NS S . Let us show that c is irreducible with respect to R 1 . Let us prove the case that S NS A cannot apply. The other cases are similar and are not detailed.

For S NS A to apply, one needs the interaction of a negated similarity atom with an absence atom. Since c is irreducible with respect to R 1 , S NS A cannot apply on interactions that come directly from c. The interesting case is when the new negated similarity atom, propagated by P NS S , meets an absence atom. In that case, we have

x = F y ∧ x = G z ∧ z[H]↑ in c, with F ⊆ G, and y = F z in c .
We need to prove that F cannot be a subset of H or of c H. The former comes directly from nonapplicability of D NS A in c. Let us prove the latter.

By non-applicability of P A S in c, we know that H ∩ G ⊆ x[I]↑∈c I. By non-applicability of S NS A and D NS A in c, we know that F does not intersect any of these x[I]↑ ∈ c. Indeed, if there is a nonempty intersection and not an inclusion between these two sets, S NS A can apply. If there is an inclusion between these two sets, D NS A can apply. This means in particular that I ⊆ c F for all

x[I]↑ ∈ c, which leads to x[I]↑∈c I ⊆ c F and thus to H ∩ G ⊆ c F .
Because F ⊆ G, we can also say that H\G ⊆ c F , and thus that H = (H ∩ G) ∪ (H\G) ⊆ c F and F ⊆ c H. From this follows that S NS A cannot apply.

This proof works for all the other cases.

There only remains to show that transform-1 cannot apply rules of R trunc 1 forever. In order to do that, we de ne a measure on constraints such that if c ⇒ c via R trunc 1 , then the measure of c is smaller than the measure of c. We then have to show that such measures cannot get smaller and smaller forever.

4.B.2 Overview of the Remaining Di culties

The proof of termination of transform-1 on R trunc 1 is not so direct. This is due to the fact that R trunc 1 has two tendencies that are a priori ghting each other. Let us consider the rules of R trunc 1 one by one.

• D F ' strictly decreases the number of unsolved variables. It also potentially decreases the number of literals in the constraint.

• D NS A replaces a negated similarity atom by a negated absence atom, which is a priori simpler to handle as it is a unary predicate.

• Propagation rules (P F S , P A S and P S ) add a new literal to the constraint. For instance, P F S adds a new feature atom. There has to be a guarantee that it is not possible to add literals inde nitely. In particular, one has to make sure that it is not possible for a literal to be propagated, then transformed or removed, and then propagated again. This is the reason why P NS S has a lower priority than D NS A in choose-rule-1: that way, it cannot re-propagate a negated similarity atom that would then meet an absence atom.

• R NA A and all the splitting rules (S NA S , S NS F , S NS A and S NS S ) transform a negated atom (absence or similarity) into a negated atom of the same kind with a (strictly) smaller set. In splitting rules, the set is guaranteed to be strictly smaller thanks to the side conditions.

Intuitively, a smaller set for such negated atoms is "better": if F ⊆ G, then, for any x and y, ¬x[F ]↑ implies ¬x[G]↑ and x = F y implies x = G y. How does one quantify what it means for such negated atoms to be "better"? And since these sets are nite, is it not possible for them to get "better" inde nitely? This is the rst major di culty of this proof. It is discussed in Section 4.B.3.

• Finally, D NS F ' introduces a new variable and transforms a nite negated similarity atom into an in nite negated similarity atom. There is however no trivial guarantee that the in nite negated similarity atom is better than the nite one. In particular, nothing prevents the former to be transformed (via S NS A or S NS S ) back into a nite negated similarity atom.

Intuitively, two things happen here. Firstly, the new negated similarity atom is "lower" than the old one: if the old one is x = {f } y, then the new one is on variables that are children of x and y. Secondly, the new negated similarity atom can be transformed back into a nite one, but that requires the presence of either an absence or a similarity atom. If we can show that these cannot "descend" in the constraint, we ensure that the rule D NS F ' cannot apply inde nitely. We give a formal meaning to "lower" and "descend" and we discuss this di culty in Section 4.B.4.

4.B.3 Quantifying Set Quality

Intuitively, a set (in a negated absence or similarity atom) is of "better quality" than another one if it is smaller. This is however tricky to de ne as such sets can be in nite. A priori, there can be in nite chains of sets that keep getting of better quality.

The idea is however that there is only a nite number of sets of features in a constraint and that all the transformations are computed from these sets using only union, intersection and complement. This implies in particular that such in nite chains of sets cannot exist, and thus that we can de ne a good notion of "quality" for our proof.

Let us rst de ne the set of feature sets in a constraint in De nition 4.7 and the set of possible feature sets of a constraint in De nition 4.8.

De nition 4.7 (Feature Sets of a Constraint). The feature sets of a constraint c, noted FS(c), are all the feature sets that appear in all literals of a constraint. In other words, it is:

FS(c) = {{f } | ∃x, y • x[f ]y ∈ c} ∪ {{f } | ∃x, y • ¬x[f ]y ∈ c} ∪ {F | ∃x • x[F ]↑ ∈ c} ∪ {F | ∃x • ¬x[F ]↑ ∈ c} ∪ {F | ∃x, y • x = F y ∈ c} ∪ {F | ∃x, y • x = F y ∈ c}
De nition 4.8 (Possible Feature Sets of a Constraint). The possible feature sets of a constraint c, noted FS (c), is the set FS(c) augmented with and closed by union, intersection, and complement.

As an example, consider the constraint

c = ¬x[f, g]↑ ∧ x[g]↑ which can be transformed, by R NA A , into c = ¬x[f ]↑ ∧ x[g]↑.
We have FS(c) = {{g}, {f, g}} and FS(c ) = {{f }, {g}}. We also have:

FS (c) = FS (c ) = {∅, {f }, {g}, {f, g}, c {f, g}, c {g}, c {f }, }
The idea behind the word "possible" is that, no matter what happens in a transformation, only the possible sets of a constraint can be reached. In other words, for any transformation c ⇒ c , FS(c ) ⊆ FS (c). This comes in fact from a much stronger property stated in Lemma 4.18. Moreover, there is only a nite number of possible feature sets. This is stated in Lemma 4.19. Proof. The proof goes by induction on the number of steps of ⇒ . For one step, let us take R NA A as an example. Assume c ⇒ c via R NA A . The only di erence is that, where FS(c) contained an F , FS(c ) now contains a F \G. However, both FS(c) and FS(c ) contain also G. Therefore, anything in FS (c) that would be obtained using F is also in FS (c ) using (F \G) ∪ G, and, conversely, anything in FS (c ) that would be obtained using F \G is also in FS (c) using F ∩ c G. The same method applies to every other rule. Proof. For any constraint c, FS(c) is nite. This comes directly from the fact that c, as any constraint, is nite.

Sets and their usual operations (union, intersection and complement) form a Boolean algebra. Therefore, since the sets of FS (c) are obtained using only these operations, they can all be written as a disjunctive normal form of sets of FS(c). There is only a nite number of such DNF and, therefore,

FS (c) is nite [Davey & Priestley 2002].
We can now de ne the quality of a set in a constraint. This is a positive integer measure that decreases when the set gets smaller. The formal de nition can be found in De nition 4.9.

De nition 4.9 (Quality of a Set in a Constraint). In a constraint c, the quality of a set F ∈ FS(c), noted q c (F ), is de ned as:

q c (F ) = 1 + max{q c (G) | G F, G ∈ FS (c)}
where max(∅) = 0.

This de nition is valid because ⊆ is a partial order. This is in fact approximately the height of F in FS (c), seen as a nite lattice for inclusion, intersection and union. We could have taken any other monotone function for the inclusion, that is such that q c (G) < q c (F ) if G F .

In the rest of the proof, we consider the quality of all negated absence atoms of a constraint:

¬x[F ]↑∈c q c (F )
Such a number decreases strictly with R NA A , as this transformation rule either replaces a negated absence atom by one with a strictly smaller set (and thus one of strictly smaller quality) or removes the atom altogether (and thus removes one positive element of the sum).

4.B.4 Controlling Negated Similarity Atoms

(0)

x 0 = y 0 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 (1) 
S NS A ⇒ (x 0 =c {f 0 } y 0 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 ) ∨ (x 0 = {f 0 } y 0 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 )
(2)

D NS F ⇒ ¬y 0 [f 0 ]x 1 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 (3) 
D NF ⇒ (y 0 [f 0 ]↑ ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 ) ∨ ∃y 1 • (x 1 = y 1 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 ∧ y 0 [f 0 ]y 1 )
Figure 4.20: Transformation of Formula 4.11 into Formula 4.12 using R 1 Let us start by observing the mechanism of negated similarity atoms being rewritten into themselves. Consider Formula 4.11.

x 0 [ c {f 0 }]↑ x 1 y 0 f 0 = x 0 [ c {f 0 }]↑ x 1 y 0 y 1 f 0 f 0 =
x 0 = y 0 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 (4.11)
We are going to see how it can transform into Formula 4.12.

x 1 = y 1 ∧ x 0 [ c {f 0 }]↑ ∧ x 0 [f 0 ]x 1 ∧ y 0 [f 0 ]y 1 (4.12)
Graphical representations for Formula 4.11 and Formula 4.12 can be found in Figure 4.19.

Let us now describe the steps that lead from Formula 4.11 to Formula 4.12.

In order to decompose a bit more, we are going to separate D NS F and D NF . Of course, in R trunc 1 , they are glued together. Intermediary steps can be found in Figure 4.20.

(0) Start from Formula 4.11. Notice the pattern x 0 = y 0 ∧ x 0 [ c {f 0 }]↑.

(1) Rewrite the constraint using S NS A . A disjunction is introduced. The constraint that contains

x 0 =c {f 0 } y 0 is still reducible (by D NS A ), but is not interesting for our example. Let us focus on the other constraint, which contains the pattern

x 0 = f 0 y 0 ∧ x 0 [f 0 ]x 1 .
(2) Rewrite the constraint using D NS F . A negated feature atom appears.

(3) Rewrite the constraint using D NF . A disjunction is introduced. The constraint that contains y 0 [f 0 ]↑ is irreducible and uninteresting for our example. The other constraint contains a new freshly introduced negated similarity atom as well as a new freshly introduced variable!

This example shows that some constraints with negated similarity atoms can be rewritten into other formulas with other negated similarity atoms. Moreover, such transformations can introduce a number of new variables linear in the size of the initial formula. Indeed, we can see how Formula 4.11 can be plugged with itself to repeat the process. For any number n, we can extend it to Formula 4.13, which can be rewritten into Formula 4.14. Graphical representations can be found in Figure 4.21.

x 0 = y 0 ∧ 0≤i<n (x i [ c {f i }]↑ ∧ x i [f i ]x i+1 ) (4.13) x n = y n ∧ 0≤i<n (x i [ c {f i }]↑ ∧ x i [f i ]x i+1 ∧ y i [f i ]y i+1 ) (4.14)
Such a transformation starts with a formula of size 2n + 1 with n + 2 variables and ends with a formula of size 3n + 1 with 2n + 2 variables, e ectively introducing a number of variables linear in the size of the initially given constraint. Moreover, it did not get rid of the negated similarity atom.

x

0 [ c {f 0 }]↑ x 1 [ c {f 1 }]↑ x n y 0 f 0 f 1 = x 0 [ c {f 0 }]↑ x 1 [ c {f 1 }]↑ x n y 0 y 1 f 0 f 1 f 0 = x 0 [ c {f 0 }]↑ x 1 [ c {f 1 }]↑ x n y 0 y 1 y n f 0 f 1 f 0 f 1 = Figure 4
.21: Formula 4.13, Formula 4.14, and one intermediary step

The good news here is that, for a variable to be introduced, one needs the interaction of a nite negated similarity atom with a feature atom. In that case, a variable is introduced as well as an in nite negated similarity atom. Finally, for nite negated similarity atoms to be introduced, one needs one of the rules P NS S , S NS A or S NS S . All these rules require the presence of an absence or a similarity atom. Absence and similarity atoms thus behave as "fuel" that is necessary for the replication of negated similarity atoms, and we prove in the rest of this subsection that this fuel will eventually run out.

To do that, we rst de ne a notion of active variables. By opposition, other variables are passive. Active variables are the only ones allowed to carry "fuel", that is absence and similarity atoms. They are basically the variables that were "not introduced". In order to give a formal de nition to this, the active variables of a constraint c is de ned with respect to an original constraint c 0 such that c 0 ⇒ c. The formal de nition can be found in De nition 4.10.

De nition 4.10 (Active and Passive Variables). The active variables of constraint c in a transformation c 0 ⇒ c, noted V a (c 0 ⇒ c), are de ned inductively on the transformation from c 0 to c. Originally, V a (c 0 ⇒ 0 c 0 ) = V(c 0 ). Otherwise, if c 0 ⇒ c ⇒ c , where the last step is performed by a rule r, then:

• if r = D F ', where y has been rewritten into z and y ∈ V a (c 0 ⇒ c), then

V a (c 0 ⇒ c ⇒ c ) = V a (c 0 ⇒ c) ∪ {z}\{y} • if r = D NS F '
and c is the left-hand side of the introduced disjunction, then

V a (c 0 ⇒ c ⇒ c ) = V(c ) • otherwise, V a (c 0 ⇒ c ⇒ c ) = V a (c 0 ⇒ c).
The variables of V a (c 0 ⇒ c) are active in the constraint c in the transformation c 0 ⇒ c. The other variables of c are passive in the constraint c in the transformation c 0 ⇒ c.

The active variables are basically de ned as the variables of the original constraint. However, because of G S F , we can have variables exchanging their active and passive status. Worse, because of D NS F ', there needs sometimes to be a "full reset" of the de nition of active variables. We abuse notation and write V a (c) when the transformation c 0 ⇒ c is obvious from context.

As an example, consider the transformations of Figure 4.20. The origin of the transformation is at step (0) and, at this stage, the active variables are {x 0 , x 1 , y 0 }. Steps (1) and (2) are carried out by rules that do not change the de nition of active variables. Step (3) is interesting for two reasons. On the left-hand side of the introduced disjunction, the de nition of active variables is reset and includes all variables. In this case, this leaves the set of active variables unchanged. This will not always be the case; in general, the set of active variables may change. On the right-hand side of the introduced disjunction, the set of active variables is unchanged even if a new variable y 1 appears. This variable is thus passive, at this stage.

Let us now formalise right away in Lemma 4.20 our claim that only active variables can have absence and similarity atoms. Proof. We prove this property by induction on the transformation c 0 ⇒ c. The property holds for the empty transformation as then all variables are active and c = c 0 . Assume now that c 0 ⇒ c ⇒ c , and that the property is true on c 0 ⇒ c. Let us consider any absence and any similarity atom of c and show that their variables are active. This is trivial if the atom being considered is already in c and if active variables have not been modi ed between c and c . We thus have to consider rules that might introduce an absence atom (D F ', D NS F ' and P A S ), introduce a similarity atom (D F ' and P S ) and change the de nition of active variables (D F ' and D NS F '). D F ' is listed every time because it rewrites literals and can therefore "introduce" new ones (although, when doing that, it also removes other ones).

• D F ' introduces a solved similarity atom and rewrites literals. The solved similarity atom is not a problem. Let us consider any other literal of c . If it has not been rewritten, then, by De nition 4.10, its active variables remain active. If anything, and if it contains z, then it has received a newly active variable which is not a problem. If it has been rewritten, then, by De nition 4.10, it cannot have lost an active variable. Indeed, if the disappearing variable is active in c, then the appearing variable is active in c . Since, by induction hypothesis, all absence and unsolved similarity atoms have all their variables active in c, they still have all their variables active in c .

• D NS F ' introduces, in the left-hand side of the disjunction, an absence atom. This is however precisely the case in which the de nition of active variables is reset. All variables of c are therefore active and the property holds.

• P A S and P S introduce an absence and a similarity atom respectively. In order to be applied, they require the presence of similarity atoms in c. By induction hypothesis, the two variables of these similarity atoms are active in c. Since these two rules do not change the de nition of active variables, all the mentioned variables are therefore active in c .

Seen as a down-oriented graph, the shape of a constraint is the following. All the active variables are found at the top. They can form pretty much any graph, as long as it is acyclic. The passive variables are all found at the bottom of the graph, forming only strings. An informal drawing can be found in Figure 4.22. In this drawing, the downward direction corresponds to feature atoms, that is when x[f ]y is in the constraint, then y is below x. In order to formalise that, we will de ne the notion of parents of a variable in De nition 4.11. We will then show in Lemma 4.21 that active variables admit only active parents and that passive variables admit only one parent, unless its parents are all active.

De nition 4.11 (Parents of a Variable). The parents of a variable y in a constraint c, noted parents c (y), are de ned as follows: 

parents c (y) = {x | x[f ]y ∈ c}
∈ V(c), if parents c (y) ∩ V a (c) = ∅, then parents c (y) ⊆ V a (c).
Proof of Lemmas 4.21 and 4.22. We prove these properties simultaneously by induction on the transformation c 0 ⇒ c. The property holds for the empty transformation as then all variables are active and c = c 0 . Assume now that c 0 ⇒ c ⇒ c and that the property holds for c 0 ⇒ c. We need to consider all the rules that can either change parents or active variables. For the former, we need to consider all the rules that modify, remove or introduce feature atoms. These are D • D NS F ', applied on a constraint c that contains x = f y ∧ x[f ]y, removes the negated similarity atom and replaces it to obtain c .

-On the left-hand side of the disjunction, the negated similarity atom is replaced by an absence atom y[f ]↑ in c . This does not change parents: parents c (u) = parents c (u) for all u. The active variables changes, however. In c , all variables are active: V a (c ) = V(c ). The property therefore holds, because parents c (u) ⊆ V a (c ) for all u.

-On the right-hand side of the disjunction, the negated similarity atom is replaced by y

[f ]z ∧ z = z in c
, where z is a newly-introduced variable. The active variables remains the same: V a (c ) = V a (c). parents also remains unchanged, except that it is extended to z . We have:

parents c (z ) = {y} parents c (u) = parents c (u) for all u = z By induction hypothesis, for all u = z , parents c (u) = parents c (u) ⊆ V a (c) = V a (c ).
Moreover, #parents c (z ) = 1. • D F ', applied to a constraint of the form

• P F S , applied to a constraint c that contains x[f ]y ∧ x = G z,
x[f ]y ∧ x[f ]z ∧ c, gives y = z ∧ x[f ]z ∧ c{y → z}.
The application of this rule both changes the active variables and parents. We have:

V a (c ) = V a (c) ∪ {z}\{y} if y ∈ V a (c) V a (c) otherwise 
and:

parents c (y) = ∅ parents c (z) = parents c (y) ∪ parents c (z) parents c (u) = parents c (u) ∪ {z}\{y} for all u = y, z, if y ∈ parents c (u) parents c (u) = parents c (u)
otherwise, for all u = y, z

Technically, in parents c (z), we should be careful and handle the case where y is in either parents c (y) or parents c (z). However, since we consider all constraints to be clash-free, this cannot happen as it would mean that C C is applicable to either c or c .

Let us now prove the property for all variable u. We consider the four sub-cases given by the aforementioned parents c .

parents c (y) is empty and thus the property holds for y

-parents c (z) is parents c (y) ∪ parents c (z).
In c, x is a common parent of y and z. We consider two sub-cases depending on whether at least one of y and z is in V a (c). * If at least one of y and z is in V a (c), then, by induction hypothesis, x ∈ V a (c). parents c (u) is parents c (u) ∪ {z}\{y} for any u = y, z when y ∈ parents c (u). We consider two sub-cases depending on whether y ∈ V a (c). * If y ∈ V a (c), then, by induction hypothesis (under the form of Lemma 4.22), parents c (u) ⊆ V a (c). We can thus remove y and add z on both side and we get parents

c (u) = parents c (u) ∪ {z}\{y} ⊆ V a (c) ∪ {z}\{y} = V a (c ).
The property holds for u. * If y / ∈ V a (c), then, by induction hypothesis, u / ∈ V a (c) and parents c (u) = {y}. We now have that u / ∈ V a (c ) and that parents c (u) = {z}. The property holds for u.

parents c (u) is parents c (u) for any u = y, z otherwise. We distinguish two sub-cases depending on whether parents c (u) ⊆ V a (c).

Now that we have control over the shape of constraints, we can prove the key argument. We will introduce in De nition 4.12 a notion of depth of a variable in a constraint. We will then use it in De nition 4.13 to de ne the depth of a negated similarity atom in a constraint. We will then prove that the depth of negated similarity atoms is bounded by the depth of active variables, which is itself bounded by their number. Since this number is mostly constant (that is, except when using D NS F '), this will give us a tool to explain how "lower" negated similarity atoms are "better" and how then cannot get inde nitely better. The bound on the depth of active variables is stated in Lemma 4.23. The bound on the depth of negated similarity atoms is stated in Lemma 4.24 for nite ones and Lemma 4.25 for the general case.

De nition 4.12 (Depth of Variables). The depth of a variable x in a constraint c, noted d c (x) is de ned as:

d c (x) = max{1 + d c (y) | y[f ]x ∈ c}
This de nition is valid because we only consider clash-free constraints. Because of the clash rule C C , that means that we only consider constraints that do not have cycles in the oriented graph formed by feature atoms. Since a lot depends on the de nition of the depth, one can see that the fact that constraints are clash-free is not only here for convenience, but it is also a key argument for termination.

De nition 4.13 (Depth of Negated Similarity Atoms). The depth of a negated similarity atom x = F y in a constraint c, noted d c (x = F y), is de ned as the minimum of the depth of its variables. In other words:

d c (x = F y) = min(d c (x), d c (y))
An alternative de nition could have been obtained by using max instead of min. However, for such an alternative de nition, the forthcoming Lemmas 4.24 and 4.25 do not hold.10 Proof. This follows from Lemma 4.21 and the absence of cycles.

Lemma 4.24 (Depth of Negated Finite Similarity Atom). For all x = F y ∈ c with F nite,

d c (x = F y) < #V a (c).
Proof. This goes by showing that one of the two variables in a negated nite similarity atom has to be active. One can then conclude with Lemma 4.23. We prove this once again by induction on the transformation c 0 ⇒ c. The property holds for the empty transformation as then all variables are active and c = c 0 . Assume now that c 0 ⇒ c ⇒ c and that the property holds for c 0 ⇒ c.

We need to consider the rules that can either change the de nition of active variables or modify, remove or introduce new negated nite similarity atoms. For the former, we need to consider D F ' and D NS F '.

For the latter, we need to consider D F ', S NS F , S NS A and S NS S . 11

• D F ', applied to a constraint of the form

x[f ]y ∧ x[f ]z ∧ c, gives y = z ∧ x[f ]z ∧ c{y → z}.
The application of this rule both changes the de nition of active variables and rewrites some negated similarity atoms. Consider a nite negated similarity atom of c . We distinguish two sub-cases depending on whether it is in c or not.

-If it is in c, then, by induction hypothesis, one of its variables is active in c. Whether this variable is z or not [START_REF] Braakman | checkbashisms[END_REF] , then, by De nition 4.10, it is still active in c.

-If it is not in c, then it must be of the form z = H u13 and there is y = H u in c. By induction hypothesis, one of u or y is active in c. If it is u, then, by De nition 4.10, it is still active in c . If it is y, then z is active in c . In both cases, the property holds.

• D NS F ', applied to a constraint c that contains x = f y ∧ x[f ]y, removes the negated similarity atom and replaces it to obtain c .

-On the left-hand side of the disjunction, the negated similarity atom is replaced by an absence atom y[f ]↑ in c . This changes the de nition of active variables. In c , all variables are active:

V a (c ) = V(c ).
The property therefore holds.

-On the right-hand side of the disjunction, the negated similarity atom is replaced by y

[f ]z ∧ z = z in c
, where z is a newly-introduced variable. The de nition of active variables remains the same: V a (c ) = V a (c). The introduced negated similarity atom z = z carries an in nite set [START_REF]Debian Developers Reference[END_REF] and, hence, this atom does not pose any problem. For any other negated similarity atom u = H u in c, it is also in c . If H is nite, then, by induction hypothesis, one of u and u is active in c. Since active variables did not change, it is also active in c and the property holds. Proof. This is already true for nite negated similarity atoms, by Lemma 4.24. We only have to take care of in nite negated similarity atoms. We show by induction that every negated similarity atom has either one of its variables or one of the parents of its variables being active.

We show that by induction on the transformation c 0 ⇒ c. The property holds for the empty transformation as then all variables are active and c = c 0 . Assume now that c 0 ⇒ c ⇒ c and that the property holds for c 0 ⇒ c.

We need to consider the rules that can either change the de nition of active variables or modify, remove or introduce new negated similarity atoms. For the former, we need to consider D F ' and D NS F '.

For the latter, we need to consider D F ', S NS A and S NS S . [START_REF]Install script does rm -rf /usr for ubuntu[END_REF] • D F ', applied to a constraint of the form x

[f ]y ∧ x[f ]z ∧ c, gives y = z ∧ x[f ]z ∧ c{y → z}.
This case is exactly the same as in the proof of Lemma 4.24.

• D NS F ', applied to a constraint c that contains x = f y ∧ x[f ]y, removes the negated similarity atom and replaces it to obtain c .

-On the left-hand side of the disjunction, the negated similarity atom is replaced by an absence atom y[f ]↑ in c . This changes the de nition of active variables. In c , all variables are active: V a (c ) = V(c ). The property therefore holds.

-On the right-hand side of the disjunction, the negated similarity atom is replaced by y

[f ]z ∧ z = z in c
, where z is a newly-introduced variable. The de nition of active variables remains the same: V a (c ) = V a (c). By Lemma 4.24, since {f } is nite, one of x or y is active in c and c . Since these two variables are parents of z and z respectively, the property holds. If a negated similarity atom has one variable that is active, then its depth is bounded strictly by #V a (c).

If it does not, then one of its variables has an active parent. By Lemma 4.22, all the parents of this variable are active. By De nition 4.12, the depth of this variable is thus bounded by #V a (c).

Since we prefer nonnegative decreasing objects -because they make obvious the fact that there are no in nitely decreasing chains -, we will consider the height rather than the depth. The height of a negated similarity atom is de ned in De nition 4.14.

De nition 4.14 (Height of a Negated Similarity Atom). The height of a negated similarity atom x = F y in a constraint c, noted h c (x = F y), is de ned as:

h c (x = F y) = #V a (c) -d c (x = F y)

4.B.5 Decreasing Measure

Let us now de ne a measure over constraints that strictly decreases with each transformation step. It is a tuple of 8 integer measures on which we consider the natural lexicographic order. The 8 measures are de ned as follows:

1. #{x = F y ∈ c}, the number of negated similarity atoms in c.

2.

x = F y∈c h c (x = F y), the total height of negated similarity atoms. 3. #{x | x ∈ V(c), x / ∈ V s (c)}, the number of unsolved variables.

4.

x = F y∈c q c (F ), the total quality of feature sets in negated similarity atoms.

5.

¬x[F ]↑∈c q c (F ), the total quality of feature sets in negated absence atoms.

6. #{x[f ]y | x, y ∈ V(c), f ∈ F(c), x[f ]y /
∈ c}, the number of spare feature atoms.

#{x

[F ]↑ | x ∈ V(c), F ∈ F S (c), x[F ]↑
c}, the number of spare and non-subsumed absence atoms. 

↓ D NS F ' ∨ l ↓ ∨r = ↓ D F ' ↓= ↓= ↓ S NS F ↓= ↓= = ↓ S NS A ↓= ↓= = ↓ S NS S ↓= ↓= = ↓ S NA S • • • • ↓ R NA A • • • • ↓ P F S • • • • • ↓ P A S • • • • • • ↓ P S • • • • • • • ↓ 8. #{x = F y | x, y ∈ V(c), F ∈ FS (c), x = y, x = F y
c}, the number of spare, non-re exive and non-subsumed similarity atoms.

All measures are positive integers. For Measures 1, 3, 6, 7 and 8, it is due to the fact that they are de ned as cardinals of nite sets. The sets are nite because the constraints are always nite, which implies that they have a nite number of literals, and that the sets V(c), F(c) and (by Lemma 4.19) FS (c) are nite. For Measures 2, 4 and 5, it is due to the fact that they are nite sums of nite integers. The sums are nite because the constraints are always nite. Moreover, the height (De nition 4.14) and the quality (De nition 4.9) of a set are always nite.

Let us now discuss the behaviour of this measure with respect to the transformation rules of R trunc 1 . That is, let us take c and c two constraints such that c ⇒ c and investigate the relation between the measure of c and the measure of c . In particular, we are going to show that, no matter which rule performed the transformation, the measure is smaller on c than it is on c. Table 4.2 contains a summary of how this measure behaves with each step of transformation.

• D NS A makes Measure 1 decrease (noted "↓" in Table 4.2), obviously. Since it removes a negated similarity atom to replace it by a negated absence atom, it decreases strictly the number of negated similarity atoms in the formula.

• D NS F ' has two sub-cases depending on whether c is a product of the left-hand side (∨ l in the table) or right-hand side (∨ r ) of the disjunction:

-On the left-hand side, a negated similarity atom is removed and replaced by an absence atom. Once again, this trivially reduces the number of negated similarity atoms in the constraint (Measure 1).

-On the right-hand side, the number of negated similarity atoms is left unchanged (noted "=" in Table 4.2) as a new one is introduced to replace the old one. Measure 1 thus does not change. Measure 2, however, decreases as the newly introduced negated similarity atom has higher depth and thus lower height (De nition 4.14).

Note in that case that most of the other measures (Measures 3, 6, 7 and 8) increase a lot because we introduced a new variable. This does not represent an issue, however, as we only consider a lexicographic order over the measures.

• D F ' does not add any literal except a full similarity atom. If anything, it may remove some literals if they get rewritten into a literal already present in the constraint. D F ' thus leaves unchanged or decreases (noted "↓=" in Table 4.2) the number and the total height of negated similarity atoms (Measures 1 and 2). It then decreases strictly the number of unsolved variables (Measure 3).

• S NS F , S NS A and S NS S replace a negated similarity atom by another one between the same two variables. This change cannot increase the number of such atoms, their total height or the number of unsolved variables (Measures 1, 2 and 3). If anything, it might decrease the rst two measures if it introduces an already existing negated similarity atom. These three rules decrease the quality of sets in negated similarity atoms (Measure 4) as it replaces the sets of negated similarity atoms by a strictly smaller one and thus of strictly smaller quality.

• S NA S and R NA A replace a negated absence atom by another one on the same variable. They obviously cannot impact the number, the height or the quality of negated similarity atoms (Measures 1, 2 and 4). They also cannot increase the number of unsolved variables (Measure 3). They do however decrease the quality of sets in absence atoms (Measure 5) for similar reasons as the previous point.

• P F S , P A S and P S introduce a new feature, absence or similarity atom respectively. They obviously cannot impact the number, the height or the quality of sets of negated similarity atoms (Measures 1, 2 and 4). They also cannot impact the number of unsolved variables or the quality of sets in negated absence atoms (Measures 3 and 5). They do however decrease the number of spare feature, absence or similarity atoms respectively (Measures 6, 7 and 8).

Chapter 5

E cient Solving of Feature Tree Constraints

This chapter develops an e cient algorithm to decide satis ability of Σ 1 -formulas. Contrary to the one of Chapter 4, the new algorithm cannot be extended to decide the complete rst-order theory. In particular, it does not have the property of garbage collection. It is however more e cient as a test of satis ability. We consider the three big limitations of the system described in the previous chapter (as discussed in Section 4.3.3) and we address them one by one.

In a rst part, Section 5.1, we tackle Limitation 1 by introducing the new system R 2 that does not introduce disjunctions or new variables. We discuss its strengths and limitations compared to R 1 .

In a second part, Section 5.2, we deal with Limitation 2 by introducing a variant of R 2 that makes explicit an e cient way to recognise patterns. This is the formal link between R 2 and our implementation.

In a third and last part, Section 5.3, we discuss Limitation 3. We then extend R 2 to make it able to handle more expressive formulas. We then use this extra expressivity to rewrite speci cations in a more e cient way.

A System Without Disjunctions

The system R 1 introduces disjunctions and new variables when handling negated atoms. This can make reasoning on constraints via R 1 fairly ine cient as it increases -exponentially -the number of constraints to be processed by the system. In this section, we tackle Limitation 1.

In Section 5.1.1, we introduce a new system of transformation rules, R 2 , that does not need to introduce any disjunction or variable to handle constraints. In Section 5.1.2, we discuss properties of this system, and in particular how it can be used to decide the satis ability of constraints. Finally, in Section 5.1.3, we introduce a function transform-2 which decides satis ability of constraints. We then discuss it in Section 5.1.4.

Transformation Rules for Constraints -The System R 2

Let us introduce an alternative system of transformation rules, named R 2 . The goal of R 2 is to avoid introducing disjunctions and new variables altogether, that is, the application of a rule of R 2 on a constraint yields another constraint, and not a Σ 1 -formula.

Clash Rules

C C x[f ]y ∧ n-1 i=0 z i [f i ]z i+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn) C F A x[f ]y ∧ x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) C NA E ¬x[∅]↑ ∧ c ⇒ ⊥ C NS R x = F x ∧ c ⇒ ⊥ C NS E x = ∅ y ∧ c ⇒ ⊥ Figure 5.1: Clash rules in system R 2 Deduction Rules D F x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]y ∧ x[f ]z ∧ c (y = z, y = z c)
Propagation Rules The notions of subsumption of a literal by a constraint, application of a rule, irreducibility, etc. remain the same. Moreover, R 2 presents the same kind of rules as R 1 :

P F S x[f ]y ∧ x = G z ∧ c ⇒ z[f ]y ∧ x[f ]y ∧ x = G z ∧ c (f ∈ G, z[f ]y c) P A S x[F ]↑ ∧ x = G z ∧ c ⇒ z[F ∩ G]↑ ∧ x[F ]↑ ∧ x = G z ∧ c (z[F ∩ G]↑ c) P S x = F y ∧ x = G z ∧ c ⇒ y = F ∩G z ∧ x = F y ∧ x = G z ∧ c (y =F ∩G z c) Global Rules G S F x = y ∧ c ⇒ x = y ∧ c{x → y} (x, y ∈ V(c))
• clash rules that detect unsatis ability in formulas,

• deduction rules that create new literals out of others of a di erent kind,

• propagation rules that transfer information from one side of a similarity to another,

• re nement rules that modify literals to make them more precise,

• and global rules that modify the whole formula.

The key idea behind R 2 is that it is complicated to handle negated atoms in a clean way -in R 1 , they are the source of a lot of complications, including the introduction of disjunctions and variables. Contrary to what is done in R 1 , in R 2 , instead of writing rules for negated atoms, we write more rules about their positive counterpart. These extra rules give us more guarantees on irreducible constraints with respect to R 2 . We then use these guarantees to recover a check of unsatis ability.

The rules that allow R 2 to handle negated literals are presented in Figure 5.3. For convenience, the full system is presented in Figure 5.4. Let us now describe how this system works.

Firstly, one can stop propagating negated atoms. Indeed, even if it is important that atoms and their

A SYSTEM WITHOUT DISJUNCTIONS

Deduction Rules negations meet so as to detect unsatis ability, it can be done by only propagating atoms and not their negations.

D NF F ¬x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]z ∧ c D F E S x[f ]z ∧ y[f ]z ∧ S(x, y) ∧ c ⇒ x = {f } y ∧ x[f ]z ∧ y[f ]z ∧ c (x = {f } y c) D F S x[f ]z ∧ y[f ]z ∧ S(x, y) ∧ c ⇒ S(z, z ) ∧ x[f ]z ∧ y[f ]z ∧ S(x, y) ∧ c (z = z , S(z, z ) c) D A S x[F ]↑ ∧ y[G]↑ ∧ S(x, y) ∧ c ⇒ x = F ∩G y ∧ x[F ]↑ ∧ y[G]↑ ∧ c (x =F ∩G y c) D NS x = F y ∧ c ⇒ S(x, y) ∧ x = F y ∧ c (S(x, y) c)

Re nement Rules

R NA A ¬x[F ]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F \G]↑ ∧ x[G]↑ ∧ c R S x = F y ∧ x = G y ∧ c ⇒ x = F ∪G y ∧ c R NS S x = F y ∧ x = G y ∧ c ⇒ x = F \G y ∧ x = G y ∧ c
Secondly, in the case of the negated similarity atom, we have to make sure that the two variables that it relates are not forced to be equal by other means than a similarity atom. For instance, the formula

x = {f } y ∧ x[f ]z ∧ y[f ]z
is not satis able because the negated similarity atom requires a di erence in f while the rest speci es that both x and y point to z through f and are thus equal there. The solution to this problem is to explicitly introduce similarity atoms when we detect such equalities. Through rules like R NS S , they then push away negated similarity atoms and detect unsatis ability. In the aforementioned example, one can deduce the similarity atom x = {f } y. With R NS S , the negated similarity atom x = {f } y is replaced by x = ∅ y which triggers a clash.

This requires a priori to consider all the pairs of variables of the formula, in case one can detect a similarity, which might appear expensive. Moreover, this introduces rules that need to consider the whole formula. It is in fact not necessary to consider all pairs of variables but only those that might have an impact on negated similarity atoms. This means the pairs of variables that appear together in a negated similarity atom of course, but also all the pairs of their children. In order to do that, we de ne separated pairs of variables in a constraint in De nition 5.1. The rules that deduce similarity atoms from any two variables -D F E S and D A S -will only be triggered if they mention separated pairs of variables De nition 5.1 (Separated Pairs of Variables). A pair of variables (x, y) is separated in the constraint c if:

• there is a negated similarity atom x = F y in c for some F ;

• or there are feature atoms x [f ]x and y [f ]y in c for some f where x and y are separated in c.

The set of separated pairs of variables of c is noted S(c).

This de nition is not local in the sense that, in order to decide whether a pair of variables is separated, one might have to follow a potentially long chain of features. In order to circumvent this problem, we explicitly add separation information to constraints. We thus consider extended constraints as de ned in De nition 5.2.

Clash Rules

C C x[f ]y ∧ n-1 i=0 z i [f i ]z i+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn) C F A x[f ]y ∧ x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) C NA E ¬x[∅]↑ ∧ c ⇒ ⊥ C NS R x = F x ∧ c ⇒ ⊥ C NS E x = ∅ y ∧ c ⇒ ⊥ Deduction Rules D F x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]y ∧ x[f ]z ∧ c (y = z, y = z c) D NF F ¬x[f ]y ∧ x[f ]z ∧ c ⇒ y = z ∧ x[f ]z ∧ c D F E S x[f ]z ∧ y[f ]z ∧ S(x, y) ∧ c ⇒ x = {f } y ∧ x[f ]z ∧ y[f ]z ∧ c (x = {f } y c) D F S x[f ]z ∧ y[f ]z ∧ S(x, y) ∧ c ⇒ S(z, z ) ∧ x[f ]z ∧ y[f ]z ∧ S(x, y) ∧ c (z = z , S(z, z ) c) D A S x[F ]↑ ∧ y[G]↑ ∧ S(x, y) ∧ c ⇒ x = F ∩G y ∧ x[F ]↑ ∧ y[G]↑ ∧ c (x =F ∩G y c) D NS x = F y ∧ c ⇒ S(x, y) ∧ x = F y ∧ c (S(x, y) c)
Propagation Rules 

P F S x[f ]y ∧ x = G z ∧ c ⇒ z[f ]y ∧ x[f ]y ∧ x = G z ∧ c (f ∈ G, z[f ]y c) P A S x[F ]↑ ∧ x = G z ∧ c ⇒ z[F ∩ G]↑ ∧ x[F ]↑ ∧ x = G z ∧ c (z[F ∩ G]↑ c) P S x = F y ∧ x = G z ∧ c ⇒ y = F ∩G z ∧ x = F y ∧ x = G z ∧ c (y =F ∩G z c) Re nement Rules R NA A ¬x[F ]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F \G]↑ ∧ x[G]↑ ∧ c R S x = F y ∧ x = G y ∧ c ⇒ x = F ∪G y ∧ c R NS S x = F y ∧ x = G y ∧ c ⇒ x = F \G y ∧ x = G y ∧ c Global Rules G S F x = y ∧ c ⇒ x = y ∧ c{x → y} (x, y ∈ V(c)) Figure 5.4: System R 2 of Transformation Rules (0) r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ r [f ]x ∧ x [g]y ∧ x [ c {g}]↑ ∧ r = {f,h} r (1) 
D NS + D F S ⇒ r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ S(r, r ) ∧ S(x, x ) ∧ r [f ]x ∧ x [g]y ∧ x [ c {g}]↑ ∧ r = {f,h} r (2) 
D F E S + D A S ⇒ r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ S(r, r ) ∧ S(x, x ) ∧ r [f ]x ∧ x [g]y ∧ x [ c {g}]↑ ∧ r = {f,h} r ∧ x = {g} x ∧ x =c {g} x (3) R S + G S F ⇒ r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ S(r, r ) ∧ S(x, x) ∧ r [f ]x ∧ r = {f,h} r ∧ x = { } x (4) 
D F S ⇒ r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ S(r, r ) ∧ S(x, x) ∧ r [f ]x ∧ r = {f,h} r ∧ r = {f } r ∧ x = { } x (5) R NS S ⇒ r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ S(r, r ) ∧ S(x, x) ∧ r [f ]x ∧ r = {h} r ∧ r = {f } r ∧ x = { } x

De nition 5.2 (Extended Literal and Constraint

). An extended literal1 is either a literal or an information of separation of the form S(x, y).

An extended constraint2 is either or of the form

l e 1 ∧ • • • ∧ l e n (n ≥ 1)
where, for all i, l e i is an extended literal. Extended constraints can be seen as a possibly empty sets of extended literals, the empty set being .

Moreover, we need rules to compute separated pairs of variable. This is the sense of the rules D F S and D NS . Let us give an example of this mechanism applied to a constraint containing a negated similarity, where a positive similarity is deduced in the process. Consider Formula 5.1. A graphical representation is given in Figure 5.5.

r[f ]x ∧ x[g]y ∧ x[ c {g}]↑ ∧ r [f ]x ∧ x [g]y ∧ x [ c {g}]↑ ∧ r = {f,h} r (5.1)
This constraint contains a negated similarity atom r = {f,h} r . If r and r were forced to be equal in both f and h, then the whole formula would be unsatis able. In this example, there are no other atoms mentioning the feature h and we can thus expect the full constraint to be satis able -or at least the negated similarity atom to not pose problem. Let us now describe the steps of transformation from Formula 5.1 in R 2 . Intermediary steps can be found in Figure 5.6.

(0) Start from Formula 5.1. Notice the negated similarity atom r = {f,h} r .

(1) Rewrite the constraint using D NS . This introduces the separation literal S(r, r ) and the pattern r[f ]x ∧ r [f ]x ∧ S(r, r ). Rewrite the constraint again using D F S . This introduces the separation literal S(x, x ). The system R 2 has determined the set of separated pairs of variables. This introduces the patterns x

[g]y ∧ x [g]y ∧ S(x, x ) and x[ c {g}]↑ ∧ x [ c {g}]↑ ∧ S(x, x ).
(2) Rewrite the constraint using D F E S and D A S . This introduces the similarity atoms x = {g}

x and x =c {g} x . These two similarity atoms together form a pattern.

(3) Rewrite the constraint using R NS S . This merges the two similarity atoms into a full similarity atom x = x . The system R 2 has deduced that the separated pair of variables x and x were similar in every feature. This can then trigger the rule G S F . which rewrites the whole formula, replacing x by x. Some literals then disappear. More importantly, the pattern r[f ]x ∧ r [f ]x ∧ S(r, r ) appears (4) Rewrite the constraint using D F E S . This deduces the similarity atom r = {f } r and introduces the pattern r = {f,h} r ∧ r = {f } r .

(5) Rewrite the constraint using R NS S . This transforms the negated similarity atom into r = {h} r .

We reach an irreducible form and the whole formula was thus satis able. In particular, the negated similarity atom is satis able as one can realise a di erence between r and r in h. Had the initial negated similarity atom been r = {f } r , this step would have discovered r = ∅ r which would have led to a clash.

Properties of Irreducible Constraints of R 2

Irreducible constraints of R 2 do not have the property of garbage collection. This is directly related to the fact that negated atoms do not travel through similarity atoms in R 2 . There is thus information that is not duplicated among all variables, which means that some variables cannot be removed without losing such information. For instance, the constraint c

= x[f ]↑ ∧ x = {f } y is irreducible but it is not true that ∃x • c is equivalent to as it implies that y has to have a feature f , that is ∃x • c implies ¬y[f ]↑.
The irreducible constraints of R 2 are however still always satis able. This is stated in Theorem 5.1. In fact, R 2 admits weaker versions of garbage collection. For instance, we can recover the property of garbage collection by forbidding the use of negated atoms. This is stated in Lemma 5.1. We can be more subtle by authorising negated atoms in the global part of a constraint. This is stated in Lemma 5.2. Finally, we conjecture that we can be even more subtle and authorise negated atoms also in the local part of a constraint as long as they are on variables that do not share a similarity atom with a global variable. This is stated in Conjecture 5.1.

Theorem 5.1 (Satis ability of Irreducible Constraints).

A constraint that is irreducible with respect to R 2 is satis able.

Proof of Theorem 5.1 (idea). This proof is quite similar to that of Theorem 4.1, except that the system R 2 does not give as strong guarantees on its irreducible constraints as R 1 . This is in particular because it does not have access to the splitting rules, as they introduce disjunctions. The absence of these rules is at the heart of the fact that R 2 does not enjoy the property of garbage collection. Consider for instance Formula 5.2. ∃x

• (¬x[ ]↑ ∧ x = G y ∧ x =c G z) (5.2)
It expresses the fact that the local variable x must have a feature and must be similar to y in G and to z in c G. The information that this carries on the global variables y and z is that "either y has a feature in G or z has a feature in c G". This fact is easily expressible but requires dis junction -¬y[G]↑ ∨ ¬z[ c G]↑. The system R 1 , since it is allowed to introduce disjunctions, will be able to deduce that fact and to eliminate the variable x. The system R 2 , since it cannot introduce disjunctions, will never be able to remove x.

Let us dig a bit this example and show how both R 1 and R 2 handle such a constraint. Name the constraint in Formula 5.2. We will put it in irreducible form with respect to both R 1 and R 2 and assume we have a valuation µ satisfying the global part of the resulting constraint/s. We will then imagine that we are trying to de ne ρ satisfying the whole constraint.

• The constraint of Formula 5.2 is not irreducible with respect to R 1 . This is because of the splitting rule S NA S which requires us to split

¬x[ ]↑ into ¬x[G]↑ ∨ ¬x[ c G]↑.
In each of the obtained constraint, P NA S requires us to propagate the negated absence atoms to y and z respectively. We obtain two constraints that are irreducible with respect to R 1 :

∃x • (¬x[G]↑ ∧ x = G y ∧ x =c G z) ∧ ¬y[G]↑ and ∃x • (¬x[ c G]↑ ∧ x = G y ∧ x =c G z) ∧ ¬z[ c G]↑
If a valuation µ satis es the global parts of the former (resp. the latter), then it satis es ¬y[G]↑ (resp. ¬z[ c G]↑), which we can leverage to show that if ρ satis es x = G y (resp. x =c G z), then it satis es ¬x[ ]↑ automatically. This reasoning works on any valuation µ and therefore we can conclude that x has become irrelevant and that Formula 5.2 is equivalent to ¬y

[G]↑ ∨ ¬z[ c G]↑.
• The constraint of Formula 5.2 is irreducible with respect to R 2 , however, because R 2 does not contain such splitting rules. It is not true that any valuation µ that satis es the global part of this constraint can be extended to ρ that satis es the whole constraint. Indeed, if we take t the empty feature tree and µ = [y → t, z → t], the two similarity atoms impose that ρ(x) = G t and ρ(x) =c G t and therefore that ρ(x) = t, which contradicts ρ |= F T ¬x[ ]↑.

If we have control on the valuation µ that we take for the global part, then we can ensure that there is g ∈ G (or resp. g ∈ c G) such that g ∈ dom(µ(y)) (resp. g ∈ dom(µ(z))). Any valuation µ that satis es this will then be extendable to x. Since this reasoning works on some valuations µ, we cannot conclude that x has become irrelevant, but we can conclude that the formula is satis able.

In the general case, this means that the proof of Theorem 5.1 cannot be as simple as that of Theorem 4.1.

In particular, we will not be able to build an induction around a simple lemma as Lemma 4.7. We will still prove Theorem 5.1 by induction on the variables of the constraint, but the induction hypothesis will have to be much stronger to compensate for the information that the splitting rules would otherwise provide.

For the de nition of the induction hypothesis and for the full proof, see Section 5.A.

Lemma 5.1 (Garbage Collection of Irreducible Positive Constraints).

Let c be a constraint that only contains atoms and that is irreducible with respect to R 2 . Let X be a set of variables of c that is ancestor-closed.

Then ∃X • c is equivalent to the global part of c with respect to X. In other words:

|= F T ∀ • ((∃X • c) ↔ G X (c))
Proof. A constraint that is irreducible with respect to R 2 and contains only atoms is in fact also irreducible with respect to R 1 . Such constraints thus indeed have the property of garbage collection, as stated in Theorem 4.1.

Lemma 5.2 (Garbage Collection of Irreducible Constraints With Positive Local Part).

Let c be a constraint that is irreducible with respect to R 2 . Let X be a set of variables of c that is ancestor-closed and such that L X (c) only contains atoms. Then ∃X • c is equivalent to the global part of c with respect to X.

Proof. If L X (c) only contains atoms and is irreducible with respect to R 2 , then it is also irreducible with respect to R 1 . By Theorem 4.1, Let c be a constraint that is irreducible with respect to R 2 ∪ {P NF S , P NA S , P NS S }. Let X be a set of variables of c that is ancestor-closed and such that there are no negated atoms in L X (c) that shares a variable with a similarity atom in L X (c) ∩ Lc X (c). Then ∃X • c is equivalent to the global part of c with respect to X.

∃X • L X (c) is then equivalent to . Therefore, G X (c) ∧ ∃X • L X (c) -which is exactly ∃X • c -is equivalent to G X (c).
Proof idea. The proof of Theorem 4.1 in fact does not inspect the global part of the constraint, except the variables that share a similarity with the outside. For the rest, we only assume the existence of a valuation that satis es them. On the contrary, the proof of Theorem 5.1 does inspect the whole constraint because it needs to ensure that its invariants are satis ed from the beginning. We believe however that it is possible to start not from the beginning -similarly as for Theorem 4.1 -as long as the separation between local and global parts is "clean enough" to ensure the validity of the proof invariants.

Deciding the Satis ability of Constraints

Let us now de ne in Figure 5.7 a function transform-2 which decides the satis ability of constraints. This simply goes by applying rules of R 2 in any order until we get either ⊥ or an irreducible constraint. Since all the rules of R 2 are equivalences, the input constraint is equivalent to either ⊥ of a satis able constraint.

In fact, transform-2 is the same as transform-1 -if it was using choose-rule-2 -except that the former can be de ned in a simpler way because it does not involve rules that might introduce a new variable or a disjunction. Formally, if one takes c a constraint and feeds it to both transform-1 and transform-23 that, in both cases, use the same function choose-rule-2, we get the same output constraint c .

Of course, transform-2 terminates on all its inputs, as stated in Lemma 5.3. Proof. This proof is similar to that of Lemma 4.8 except much simpler. We will de ne a measure on clashfree constraints that decreases at each step of transformation. This measure associates a tuple of 9 integer measures to a constraint c. The measures are de ned as follows:

1. #{x | x ∈ V(c), x / ∈ V s (c)}, the unsolved variables. 

P F S = ↓ P A S = • ↓ P S = • • ↓ D F = = • ↓ D F E S = = • ↓ D A S = = = ↓ D F S = = • • ↓ D NS = • • • ↓ D NF F = = • • ↓ R NA A = • = • • ↓ R NS S = • • = • • ↓ R S = • • = • • • ↓ 2. #{x[f ]y | x, y ∈ V(c), f ∈ F(c), x[f ]y / ∈ c}, the number of spare feature atoms. 3. #{x[F ]↑ | x ∈ V(c), F ∈ F S (c), x[F ]↑
c}, the number of spare and non-subsumed absence atoms.

#{x =

F y | x, y ∈ V(c), F ∈ FS (c), x = y, x = F y
c}, the number of spare, non-re exive and non-subsumed similarity atoms.

#{S(x, y) | x, y ∈ V(c), S(x, y) /

∈ c}, the number of spare separation literals.

6. #{¬x[f ]y ∈ c}, the number of negated feature atoms in c.

7.

¬x[F ]↑∈c q c (F ), the total quality of feature sets in negated absence atoms. 8.

x = F y∈c q c (F ), the total quality of feature sets in negated similarity atoms. 9. #c, the number of literals in c.

All measures are positive integers. This comes from the niteness of the constraint, which implies that there is only a nite number of literals in it and that all the sets V(c), F(c) and FS (c) are all nite. Table 5.1 contains a summary of how this measure behaves with each step of transformation.

• G S F solves a variable and thus decreases the number of unsolved variables (Measure 1).

• P F S , P A S and P S introduce a new feature, absence or similarity atom respectively if it is not subsumed by the rest of the constraint. This decreases the number of spare feature, absence or similarity atoms (Measures 2, 3 and 4). This cannot increase the number of unsolved variables (Measure 1).

• D F , D F E S and D A S introduce a new similarity atom if it is not subsumed by the rest of the constraint. Similarly to P S , this decreases the number of spare similarity atoms (Measure 4). This cannot increase the number of unsolved variables (Measure 1) or the number of spare feature or absence atoms (Measures 2 and 3).

• D F S and D NS introduce a new separation literal if it is not present in the rest of the constraint.

This decreases the number of spare separated literals (Measure 5). This cannot increase the number of unsolved variables (Measure 1) or the number of spare feature, absence or similarity atoms (Measures 2, 3 and 4).

• D NF F removes a negated feature atom from the constraint and thus decreases their number (Measure 6). This does not impact the number of unsolved variables (Measure 1) or the number of spare feature, absence or similarity atoms or separation literals (Measures 2, 3, 4 and 5).

• R NA A and R NS S replace a negated absence or similarity atom by another one on the same variable/s. This improves the total quality of feature sets in negated absence or similarity atoms (Measures 7 and 8). This does not impact the number of unsolved variables (Measure 1), the number of spare feature, absence or similarity atoms or separation literals (Measures 2, 3, 4 and 5), or the number of negated feature atoms (Measure 6).

• Finally, R S replaces two similarity atoms by one, thus reducing the total number of literals of the constraint (Measure 9). This does not impact the number of unsolved variables (Measure 1), the number of spare feature, absence or similarity atoms or separation literals (Measures 2, 3, 4 and 5), the number of negated feature atoms (Measure 6), or the quality of feature sets in negated absence or similarity atoms (Measures 7 and 8). In particular, this does not decrease the number of spare similarity atoms because this leaves the union of all feature sets in similarity atoms unchanged.

Discussions

The function transform-2 can be used as an unsatis ability check. Similarly to transform-1, it is in fact complete in the sense that it detects unsatis ability if and only if the constraint is indeed unsatis able. Moreover, it is incremental by nature: since the output constraint is equivalent to the input one, we can throw away the input constraint and keep only the output one. If one later adds other literals to the constraint, all the computation that has been done previously is still valid and only the computation that has to do with the new literals will take place.

The main di erence in transform-2 with transform-1 is that the new version takes constraints as inputs and returns constraints. This is much more e cient as it avoids the explosion of disjunctions that can happen with transform-1, as discussed in the complexity considerations in Section 4.3.2.

As a counterpart, transform-2 does not have the property of garbage collection that transform-1 enjoys. transform-2 does enjoy weaker forms of garbage collection, as discussed in Section 5.1.2. Depending of the context in which transform-2 is meant to be used, the lack of garbage collection can be an issue. Note however that the situations that defeat even the results partial garbage collection of Lemma 5.2 and Conjecture 5.1 are situations that involve negated literals. These are precisely the situations leading to an explosion of cases in transform-1. The bottom line is that these situations are problematic and show limitations of FTS itself.

In the context of the CoLiS project, the occurrences of negated literals are rare as they do not occur naturally in speci cations of utilities. An exception would be the utility rmdir which succeeds when a directory is empty (expressible with an absence atom) and fails when a directory is not empty (expressible with a negated absence atom). It is not such a problem in that its use is marginal in the corpus of Debian packages. Moreover, if negated literals are problematic, the negated absence atom remains the simplest one to handle as it is a unary predicate. It is in particular likely to behave well with respect to partial garbage collections like that of Conjecture 5.1.

Let us now discuss the notion of separated variables. The limitation of the rules D F E S and D A S to only separated variables does not bring any improvement in term of theoretical complexity. In practice, Let us observe, as an example, the speci cation case for the success of rm -R /etc/rancid/lg.conf. It is shown in Figure 3.10, restated here for convenience. Such a case is typically built from a path coming from a Shell script. If the path is of size n, the speci cation cases will contain two strings of feature atoms of size n and about as many variables. These 2n variables will appear in about n similarity atoms. At this point, there are two remarks that can be done.

Tidying Up Rules

T NF A ¬x[f ]y ∧ x[F ]↑ ∧ c ⇒ x[F ]↑ ∧ c (f ∈ F ) T A E x[∅]↑ ∧ c ⇒ c T NA F ¬x[F ]↑ ∧ x[f ]y ∧ c ⇒ x[f ]y ∧ c (f ∈ F ) T NA NA ¬x[F ]↑ ∧ ¬x[G]↑ ∧ c ⇒ ¬x[F ]↑ ∧ c (F ⊆ G) T S R x = F x ∧ c ⇒ c T S E x = ∅ y ∧ c ⇒ c T NS NS x = F y ∧ x = G y ∧ c ⇒ x = F y ∧ c (F ⊆ G) T S R S(x, x) ∧ c ⇒ c Re nement Rules R A x[F ]↑ ∧ x[G]↑ ∧ c ⇒ x[F ∪ G]↑ ∧ c
• Firstly, in formulas of such shapes, there is usually a clear "depth" of variables corresponding to the distance from the root in each lesystem. If separation literals appear, that will then be on variables of same depth. The separation literals will then propagate at every level, linearly in n. This makes a big di erence when compared to the total number of pairs of variables, quadratic in n. In our example, there are three pairs of separated variables -(r, r ), (x, x ) and (y, y ) -while there are 21 pairs of variables in total.

• Secondly, in such a speci cation, all the similarity atoms are already maximal in the sense that they could not be made bigger by D F E S or D A S . This comes from the fact that we try to write our speci cations as functions. This property of maximality of similarity atoms in speci cations could be added to the list of properties that we aim at having on speci cations, as described in Section 3.4.

Finally, note that there are many natural transformation rules that one might want to add to R 2 in an actual implementation, especially rules that would allow tidying up the formula by removing useless atoms. Figure 5.8 present a few of such rules. We believe they make the presentation and the proofs heavier. They are therefore not included in this document.

A System With E cient Pattern Recognition

The system R 2 is better than R 1 in that it does not share its Limitation 1 and introduce no disjunctions at all, especially when it handles negated literals. The two systems, however, have Limitation 2 in common: they consider constraints as sets of literals in which they nd patterns. This process is fairly ine cient as patterns could occur anywhere in the formula.

Moreover, it makes the use of our solvers not so incremental. Indeed, assume you have a constraint c that is irreducible with respect to R 2 and you want to consider c ∧ c where c is any other constraint, not necessarily irreducible with respect to R 2 . This operation of adding literals to an irreducible constraint happens all the time in a symbolic engine as the one we use in the CoLiS project. The functions transform-1 and transform-2 presented up to here would only allow us to consider the whole constraint c ∧ c , which completely looses the information that c is already irreducible with respect to R 1 or R 2 .

These two problems have the same solution. The idea is to only introduce literals of given constraints one by one. Every time we introduce a new literal we apply R 2 until an irreducible form is obtained. Only then can we consider introducing the next literal. This way, the place where the interactions take place is clear: they lie between the newly introduced literal and the rest of the constraint.

This section formalises this. In Section 5.2.1, we introduce pointed constraints and a system of transformations R • 2 on such constraints. These de nitions formalise respectively these constraints with one freshly introduced literal, and the rules that can apply in such situations. In Section 5.2.2, we study the relationship between R • 2 and R 2 and we show that R • 2 is a sound strategy of application of rules of R 2 . This will in particular allow us to lift the results of R 2 to R • 2 , most notably the proof of satis ability of irreducible constraints. Finally, in Section 5.2.3, we introduce a function transform-2-pointed that decides satis ability of constraints. We then discuss the approach of this section in Section 5.2.4.

Pointed Constraints and Transformation Rules

-The System R • 2
The system R 2 , presented in Section 5.1, works by matching patterns in a set of literals. Even by sorting the literals in a clever way, we would still need to explore most of the set to nd matching patterns, as we have no way to know where the next pattern is going to occur.

To circumvent this problem, we introduce pointed constraints. A pointed constraint π c is the pair of a todo-stack π and a store c. These pointed constraints make the pattern matching more e cient by forcing the patterns to only occur between the literal at the peek of the stack -called the pointed literal -and the store. We can then adapt R 2 to deal with such pointed constraints. Let us de ne pointed constraint in De nition 5.3.

De nition 5.3 (Pointed Constraint).

A pointed constraint is a pair π c of a todo-stack π of extended literals and an extended constraint c4 , called store.

The forthcoming rule G S F • will enjoy a speci c treatment. In order to make it e cient and sound, we need to split a constraint into a part only made of equalities (that is full similarity atoms) and the Pointed Clash Rules 

C C • π x[f ]y n-1 i=0 z i [f i ]z i+1 ∧ c ⇒ ⊥ (n ≥ 0, y = z0, x = zn) C F • A π x[f ]y x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) C F A • π x[F ]↑ x[f ]y ∧ c ⇒ ⊥ (f ∈ F ) C NA E • π ¬x[∅]↑ c ⇒ ⊥ C NS R • π x = F x c ⇒ ⊥ C NS E • π x = ∅ y c ⇒ ⊥
E(c) = {x = y ∈ c} Ē(c) = c\E(c) L Ē X (c) = L X ( Ē(c)) G Ē X (c) = G X ( Ē(c))
We can now derive transformation rules for pointed constraints from the rules of R 2 . Since there is now a pointed literal, which stands out, we break the symmetry of the rules and thus, some rules need to be duplicated. For instance, the clash rule C F A :

C F A x[f ]y ∧ x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) gives birth to the two rules C F • A and C F A • : C F • A π x[f ]y x[F ]↑ ∧ c ⇒ ⊥ (f ∈ F ) C F A • π x[F ]↑ x[f ]y ∧ c ⇒ ⊥ (f ∈ F )
depending on whether the feature or the absence atom is pointed. By applying that process on all the 18 rules of R 2 , we obtain 27 rules in R • 2 . The clash rules, rules for positive literals and rules for negated literals are presented in Figures 5.9, 5.10 and 5.11 respectively. By lack of space, we cannot provide a single gure containing all the rules. Table 5.2 presents the increase in number of rules between R 2 and R • 2 . There are already a few things to note at this point. A natural question, for instance, is whether the todo-stack is actually a stack, or if it is a queue, and if there is a logic to the order in which the literals appear in the todo-stack. In fact, because of the fact that rules apply if there is no subsumption of the Note also that the patterns of pointed rules always consider the todo-stack to be non-empty, that is they require the presence of a pointed literal. This means that a pointed constraint with an empty todo-stack is trivially irreducible with respect to R • 2 . Finally, some patterns of R 2 are symmetric. This is for instance the case of D F whose pattern has two feature atoms x[f ]y and x[f ]z where the variables y and z have a symmetrical role. Such rules require only one pointed version -in this example, D F • .

D F • π x[f ]y x[f ]z ∧ c ⇒ π x[f ]y y = z x[f ]z ∧ c (y = z, y = z π c ) Pointed Propagation Rules P F • S π x[f ]y x = G z ∧ c ⇒ π z[f ]y x[f ]y x = G z ∧ c (f ∈ G, z[f ]y π c ) P F S • π x = G z x[f ]y ∧ c ⇒ π z[f ]y x = G z x[f ]y ∧ c (f ∈ G, z[f ]y π c ) P A • S π x[F ]↑ x = G z ∧ c ⇒ π z[F ∩ G]↑ x[F ]↑ x = G z ∧ c (z[F ∩ G]↑ π c ) P A S • π x = G z x[F ]↑ ∧ c ⇒ π z[F ∩ G]↑ x = G z x[F ]↑ ∧ c (z[F ∩ G]↑ π c ) P S • π x = F y x = G z ∧ c ⇒ π y = F ∩G z x = F y x = G z ∧ c (y =F ∩G z π c ) Pointed Global Rules G S F • π x = y c ⇒ (π L Ē x (c)){x → y} x = y G Ē x (c) ∧ E(c){x → y} (x, y ∈ V(c))
The rule G S F • deserves a word as it can be hard to read. This rule handles the case where the pointed literal is a full similarity atom. In this case, one of the two variables must disappear from all the literalsexcept the full similarity atom -by being rewritten into the other variable. Such a rewriting can however create new patterns in the constraint. This is not a problem for literals that are already in the todo-stack. Rewritten literals from the store, however, have to be extracted and put back into the todo-stack. It is not necessary to do this for solved similarity atoms of the store 5 . As an example, consider the pointed constraint of Formula 5.3.

ε x[g]↑ x = y x[f ]z ∧ y[f ]z ∧ w = x (5.3)
Its pointed literal is x = y. Say we decide to rewrite x into y. There are two occurrences of x in the store, namely in the literals x[f ]z and w = x. The latter is a solved similarity which we simply want to update to note now that w is a copy of y and not x. The former can simply not remain in the store. Indeed, it will be rewritten into y[f ]z which forms a pattern with y[f ]z . On such a constraint, G S F • has to extract x[f ]z from the store, rewrite it and place it in the todo-stack. The todo-stack has to be rewritten as well. 

Pointed Deduction Rules

D NF • F π ¬x[f ]y x[f ]z ∧ c ⇒ π y = z x[f ]z ∧ c D NF F • π x[f ]z ¬x[f ]y ∧ c ⇒ π x[f ]z y = z c D F • S π x[f ]z y[f ]z ∧ S(x, y) ∧ c ⇒ π x[f ]z S(z, z ) y[f ]z ∧ S(x, y) ∧ c (z = z , S(z, z ) π c ) D F S • π S(x, y) x[f ]z ∧ y[f ]z ∧ c ⇒ π S(x, y) S(z, z ) x[f ]z ∧ y[f ]z ∧ c (z = z , S(z, z ) π c ) D F E • S π x[f ]z y[f ]z ∧ S(x, y) ∧ c ⇒ π x[f ]z x = {f } y y[f ]z ∧ S(x, y) ∧ c (x = {f } y π c ) D F E S • π S(x, y) x[f ]z ∧ y[f ]z ∧ c ⇒ π S(x, y) x = {f } y x[f ]z ∧ y[f ]z ∧ c (x = {f } y π c ) D A • S π x[F ]↑ y[G]↑ ∧ S(x, y) ∧ c ⇒ π x[F ]↑ x = F ∩G y y[G]↑ ∧ S(x, y) ∧ c (x = {F ∩G} y π c ) D A S • π S(x, y) x[F ]↑ ∧ y[G]↑ ∧ c ⇒ π S(x, y) x = F ∩G y x[F ]↑ ∧ y[G]↑ ∧ c (x = {F ∩G} y π c ) D NS • π x = F y c ⇒ π x = F y S(x, y) c (S(x, y) π c ) Pointed Re nement Rules R NA • A π ¬x[F ]↑ x[G]↑ ∧ c ⇒ π ¬x[F \G]↑ x[G]↑ ∧ c R NA A • π x[G]↑ ¬x[F ]↑ ∧ c ⇒ π x[G]↑ ¬x[F \G]↑ ∧ c R S • π x = F y x = G y ∧ c ⇒ π x = F ∪G y c R NS • S π x = F y x = G y ∧ c ⇒ π x = F \G y x = G y ∧ c R NS S • π x = G y x = F y ∧ c ⇒ π x = G y x = F \G y ∧ c
(0) x = {f,g} y x[f ]z ∧ ¬y[f ]z ∧ z[ ]↑ ∧ z [ ]↑ (1) 
P F S • ⇒ x = {f,g} y y[f ]z x[f ]z ∧ ¬y[f ]z ∧ z[ ]↑ ∧ z [ ]↑
(2) The result of this application of G S F • is shown in Formula 5.4.

D NF F • ⇒ x = {f,g} y y[f ]z z = z x[f ]z ∧ z[ ]↑ ∧ z [ ]↑ (3) 
D NS • ⇒ x = {f,g} y y[f ]z z = z S(z, z ) x[f ]z ∧ z[ ]↑ ∧ z [ ]↑ (4) D A S • ⇒ x = {f,g} y y[f ]z z = z S(z, z ) z = z x[f ]z ∧ z[ ]↑ ∧ z [ ]↑ (5) G S F • ⇒ x = {f,g} y y[f ]z z = z S(z, z) z[ ]↑ z = z x[f ]z ∧ z[ ]↑ (6) 
M • 3 ⇒ x = {f,g} y y[f ]z z = z S(z, z) ∧ z = z ∧ x[f ]z ∧ z[ ]↑ (7) C NS R • ⇒ ⊥
ε y[g]↑ y[f ]z x = y y[f ]z ∧ w = y (5.4)
After this, no other rule can apply as the full similarity atom is solved. This literal should then be moved to the store. In fact, the rules of R • 2 do not show how this process of integrating a literal from the todo-stack into the store. In that regard, there lacks one important rule which applies only when no other rule can apply. This rule, M • , is the following:

M • π l c ⇒ π l ∧ c
The fact that M • only applies when no other rule can will be enforced in the implementation described in Section 5.2.3. Let us now give an example of the transformation of a pointed constraint by R • 2 . Consider Formula 5.5. A graphical representation is given in Figure 5.12. Graphical representations of pointed constraints are the same as if they were simply constraints: we represent all the included literals.

x y z[ ]↑ z [ ]↑ f f = {f,g}
x = {f,g} y x[f ]z ∧ ¬y[f ]z ∧ z[ ]↑ ∧ z [ ]↑ (5.5)
Let us now describe the steps of transformation from Formula 5.5 in R • 2 . Intermediary steps can be found in Figure 5.13. Some steps represent the action of several rules when we believe it is not important for the reader to have them made fully explicit.

(0) Start from Formula 5.5. Notice the pattern x = {f,g} y x[f ]z.

(1) Rewrite the pointed constraint using P F • S . This introduces the feature atom y[f ]z. Since this atom might trigger changes in the store, we do not introduce it in there just yet. Notice now the pattern y[f ]z ¬y[f ]z .

(2) Rewrite the pointed constraint using D NF F • . This removes the literal ¬y[f ]z from the store and introduces the literal z = z . Since this literal might trigger changes in the store, we do not introduce it in there just yet. Indeed, De nition 5.1 requires that a pair of variables between which there is a negated similarity atom be considered separated. In R • 2 , this translates to the applicability of the rule D NS • .

(3) Rewrite the pointed constraint using D NS • . This introduces the extended literal S(z, z ) which creates the pattern S(z,

z ) z[ ]↑ ∧ z [ ]↑.
(4) Rewrite the pointed constraint using D A S • . This introduces the atom z = z and creates the pattern π z = z c.

(5) Rewrite the pointed constraint using G S F • . Both z and z could be rewritten into the other and, for simplicity, we will choose to rewrite z into z. The literals of c rewritten by application of G S F • (here, there is only z [ ]↑) might trigger other patterns. They can therefore not be left in the store and are scheduled to be added again later. The solved similarity atom z = z cannot trigger any subsequent rule and can therefore be merged. Similarly, the two literals z[ ]↑ and S(z, z ) cannot trigger any rule and can be merged.

(6) Rewrite the pointed constraint twice using M • . Since there is already z[ ]↑ in the store, this simply removes the duplicate one. The next literal is the negated similarity atom z = z.

(7) Rewrite the pointed constraint using C NS R • . This detects an inconsistency -the re exive negated similarity atom -and replaces the whole pointed constraint by ⊥.

Notice that, in this example, one can see π c as "π ∧ c" and apply rules of R 2 to it. This shows a strong relationship between R • 2 and R 2 . This is exactly the topic of the next subsection which will formalise this remark.

Links Between R •

2 and R 2

The rules of R • 2 simulate rules of R 2 . In order to formalise that, we introduce the semantics of a pointed constraint in De nition 5.5. We then show that if a rule of R • 2 applies to a pointed constraint p, then a rule of R 2 applies to the semantics of p. Moreover, we show that M • , applied to a pointed constraint, leaves its semantics unchanged. These two properties will be described later in Lemmas 5.6 and 5.7.

De nition 5.5 (Semantics of Pointed Constraints

). The semantics of a pointed constraint p, written p , is the constraints made of all the literals that occur in p. Formally:

ε = -Empty stack π l = π ∧ l -Non-empty stack π c = π ∧ c -Pointed constraint
In order to link the applicability of a regular transformation rule on the semantics and the applicability of a pointed transformation rule on the pointed constraint, we need to de ne what it means for a rule to be applicable in a context. This is the topic of De nition 5.6.

De nition 5.6 (Applicability of a Rule in a Context

). Given two constraints c and c , a transformation rule is said to be applicable to c in the context c if it is applicable 6 to c ∧ c with its pattern fully contained in c.

Informally, a rule is applicable to c on the context c if it is applicable to c in the usual sense, but the side-conditions -and the conditions of subsumption in particular -also consider the literals of c . This is stronger than the usual applicability. In particular, if a rule is applicable to a constraint c in any context, then it is applicable to c. The contrary is not always true. For instance, the rule P A S is applicable to 1. All full similarity atoms of the store c are solved inside p, that is for all x = y ∈ c:

x[F ]↑ ∧ x = G y but it is not applicable to x[F ]↑ ∧ x = G y in the context of y[F ]↑.
V s ( p ) ∩ {x, y} = ∅ 2.
The store c is irreducible with respect to R 2 in the context π.

The rest of this section will go as follows. We will rst state and prove that all the rules of R • 2 as well as M

• are written so as to respect well-formedness in Lemmas 5.4 and 5.5. We will then proceed to show in Lemma 5.6 that rules of R • 2 simulate rules of R 2 , that is if a rule of R • 2 applies to a pointed constraint p, then a rule of R 2 applies to p . We will then show in Lemma 5.7 that M • leaves the semantics of pointed constraints unchanged. This will allow us to conclude that R • 2 is a sound and complete strategy for R 2 and proceed to give a new implementation of transform-2 in Section 5.2.3.

Lemma 5.4 (R •

2 conserves well-formedness). If p is well-formed and p ⇒ p via R • 2 , then p is well-formed.

Proof. Consider p ⇒ p via R • 2 . Let us discuss the rules of R • 2 and discuss why they all respect wellformedness.

• Clash rules 7 respect well-formedness trivially because ⊥ does not contain any full similarity atom (Point 1) and no rule of R 2 can apply to ⊥ (Point 2).

• Most other rules 8 (eg. P S • ) do not modify the story. They only introduce a literal into the todostack. Moreover, this literal only contains variables that were present in other unsolved literals. This means that Point 1 holds because the set of full similarity atoms of the store is unchanged and because it is not possible that the rule introduced a literal about a previously-solved variable. This also means that Point 2 holds because the store did not change while the todo-stack grew, making the subsumption only stronger (Lemma 4.4).

• Some remaining rules 9 do remove or modify a literal from the story or the todo-stack. However:

-D NF • F and D NF F • remove a negated feature atom. These do not have any impact on the subsumption.

-R NA • A and R NS • S re ne a negated absence or similarity atom in the todo-stack. This only makes subsumption stronger but does not change anything about solved variables or patterns present in the store. 7 

C C • , C F • A , C F A • , C NA E • , C NS R • and C NS E • . 8 D F • , P F • S , P F S • , P A • S , P A S • , P S • , D F • S , D F S • , D F E • S , D F E S • , D A • S , D A S • and D NS • . 9 D NF • F , D NF F • , R NA • A , R NA A • , R S • , R NS • S and R NS S • .
-R NA A • and R NS S • re ne a negated absence or similarity atom in the store. This cannot create a new pattern for any rule of R 2 . Moreover, as for R NA • A and R NS • S , this only makes subsumption stronger.

-R S • removes similarity atoms both from the todo-stack and the store and introduce a stronger similarity atom in the todo-stack. This only removes patterns from the store while making the subsumption stronger.

• Finally, G S F • does not make the full similarity atoms of the store unsolved. Moreover, if c is irreducible with respect to R 2 in the context π, then G x (c) is too, and G Ē x (c) also (Lemma 4.6).

Lemma 5.5 (M • conserves well-formedness). If p is well-formed and irreducible with respect to R • 2 and p ⇒ p via M • , then p is well-formed.

Proof. Consider two pointed constraints p and p such that p is well-formed and irreducible with respect to R • 2 and p ⇒ p via M • . There exists π, l and c such that:

p = π l c p = π l ∧ c
Let us show that p is well-formed. We need to show that the points in De nition 5.8 hold.

• For Point 1, let us take any full similarity atom in l ∧ c. If it is l then, because p is irreducible with respect to G S F • , it is solved in p. Otherwise, it is in c and was solved in p before, and therefore in π, l and c and therefore in p .

• For Point 2, notice that the notion of subsumption has not changed between p and p since their semantics are equal. In general, that means that the side-conditions that held in p still hold in p . This means that any rule whose pattern is fully in c was not applicable in p and is still not applicable in p . Moreover, any rule whose pattern is in l ∧ c and contains l would have a pointed counterpart in R • 2 applicable in p, which contradicts the fact that p is irreducible with respect to R • 2 . Let us now show that if a rule of R • 2 applies to a pointed constraint p, then a rule of R 2 applies to the semantics of p. This is stated in Lemma 5.6. An illustration is shown in Figure 5.14.

p p p p • • R • 2 R 2

Lemma 5.6 (R •

2 simulates a strategy for R 2 ). For any pointed constraints p and p such that p is well-formed and p ⇒ p via R • 2 , then p ⇒ p via R 2 .

Proof. Let us take p and p two pointed constraints such that p ⇒ p via R • 2 and p is well-formed. Assume for instance that p ⇒ p via P A • S . In this situation, we have:

p = π x[F ]↑ x = G z ∧ c p = π z[F ∩ G]↑ x[F ]↑ x = G z ∧ c p = π ∧ x[F ]↑ ∧ x = G z ∧ c p = π ∧ z[F ∩ G]↑ ∧ x[F ]↑ ∧ x = G z ∧ c with z[F ∩ G]↑ π c .
Let us show that p ⇒ p via P A S . Clearly, the pattern for this rule,

x[F ]↑ ∧ x = G z is present in p . Moreover, the side-condition is respected because z[F ∩ G]↑ π c is exactly the same as z[F ∩ G]↑
π ∧ c. P A S can therefore indeed apply on p and yields p .

p 0 p 0 • p 1 p 1 • (R • 2 ) n 0 (R 2 ) n 0 p 1 • M • (R • 2 ) n 1 (R 2 ) n 1 • • • • • • • • • p k p k • • M • ε c = c = = ε c = c Figure 5.16: Illustration of R • 2 ∪ {M • } as a full strategy for R 2
All the other cases are similar.

Note that well-formedness explains that R • 2 is a complete strategy for R 2 as it means that if π l c is irreducible with respect to R • 2 , then l ∧ c is irreducible with respect to R 2 in the context π. The additional rule, M • , has no impact on the semantics. In that sense, it is only a logistical rule of R • 2 . This is stated in Lemma 5.7. An illustration is shown in Figure 5.15. 2 as a strategy for R 2 . The wellformedness allows to conclude that pointed constraints that are irreducible with respect to both R • 2 and M • are of the form ε c with c irreducible with respect to R 2 . Lemmas 5.4 and 5.5 explain that well-formedness is respected by R • 2 and M • . All these results are the bricks to build a new decision procedure for the satis ability of constraints. This is the topic of the next subsection.

Deciding the Satis ability of Constraints

The previous subsection built the tools to justify that we can use R • 2 ∪ {M • } as a full strategy of evaluation for R 2 . Indeed, say one wants to apply R 2 fully on a constraint c.

1. We start by de ning a pointed constraint p 0 = ε c . p 0 is trivially well-formed. Moreover, p 0 = c.

One can then apply R •

2 on p 0 for as many times as it is possible -call that number n 0 . This yields a pointed constraint p 1 . By Lemma 5.6, there are n 0 steps of R 2 that allow to transform p 0 into p 1 . By Lemma 5.4, p 1 is well-formed.

One can then apply M

• on p 1 . This yields a pointed constraint p 1 . By Lemma 5.7, p 1 = p 1 .

By Lemma 5.5, and since p 1 is irreducible with respect to R • 2 , p 1 is well-formed. 4. We can repeat the steps 2 and 3 as many times as necessary until we reach a pointed constraint p k to which neither R • 2 nor M • can apply. p k is well-formed and there is a chain a transformations of R 2 from p 0 to p k . Since M • is not applicable to p k , p k must be of the form ε c . Since p k is well-formed, c is irreducible with respect to R 2 . Moreover, p k = c . This whole process is illustrated in Figure 5.16. This is particularly useful to decide the satis ability of a constraint incrementally. Say one wants to decide whether c ∧ c is satis able, knowing that c is irreducible with respect to R 2 . In R 2 , the only solution is to call the whole function transform-2 on c ∧ c . Using R • 2 , we can leverage the fact that c is already irreducible with respect to R 2 to avoid trying to nd patterns in it. Consider Figure 5.18. In this gure, we rede ne transform-2 as a simpler wrapper around transform-2-pointed. We also de ne a function add-transform-2 that applies R 2 on c ∧ c when c is irreducible with respect to R 2 . This basically consists in considering ε c c . However, the pointed constraint given to transform-2-pointed must be well-formed. Therefore, we need to make sure rst that all the full similarity constraints of c are solved. This goes by rewriting c using the rule G • S F :

G • S F π x = y ∧ c ⇒ π{x → y} x = y ∧ c (x ∈ V(π), x / ∈ V(c))

Discussions

The technique developed in this section is not speci c to R 2 in any way. It can very easily be adapted to other systems such as R 1 or R 2 extended with all the extra rules mentioned in Section 5.1.4.

One natural considerations with these pointed rules is whether it makes a di erence to insert the new literals in the todo-stack under the pointed literal or above it -at the top of the stack. Consider for instance the rule P F S • .

P F S • π x = G z x[f ]y ∧ c ⇒ π z[f ]y x = G z x[f ]y ∧ c (f ∈ G, z[f ]y π c )
Is there a di erence between this formulation or a formulation in which the added literal z[f ]y appeared on top of the stack, as in the example below? The short answer is that, because most of our rules have side-conditions about subsumption, there is no di erence at all in term of correction of the algorithm. In fact, because of this very reason, the order of literals in the stack does not really matter for correction of the algorithm.

P F S • ( ) π x = G z x[f ]y ∧ c ⇒ π x = G z z[f ]y x[f ]y ∧ c (f ∈ G, z[f ]y π c )
There remains considerations of complexity. In that regard, we believe the way to improve e ciency is to write rules in a way that increases the chances to nd a clash. For instance, when introducing a similarity, it might be interesting to do so on the top of the stack. Indeed, these literals can bring huge changes to the store, including possibly by rewriting one variable into the other. Such a computation is more likely to detect a clash between several literals. We do not know of formal arguments supporting one order of the other. In an actual implementation, the right way to proceed is therefore to check such intuitions by testing and benchmarking di erent solutions.

It might seem unsatisfactory that the test of subsumption needs to consider the todo-stack as well as the store. Indeed, this means that a lot of rules need to crawl the whole todo-stack to decide whether they are applicable, which seem to defeat the very locality provided by pointed constraints. As mentioned in Section 4.1, the test of subsumption is local in the sense that we only need to check the literals that use exactly the same variables as the literal we are considering. In an actual implementation, that means that we want to organise both the store and the todo-stack so as to have an easy way to access the literals by the variables they contain.

Threaded Constraints

Section 5.1 has presented a system of rules R 2 that do not introduce disjunctions in its handling of constraints and Section 5.2 has presented an e cient and incremental way to test satis ability of these constraints. This system and its decision procedure are an important step towards computing faster on speci cations. However, they do not solve the problem of disjunctions coming from the speci cations themselves, and in particular the ones coming from the function noresolve, presented in Figure 3.20 and restated in this section for convenience.

Unfortunately, our constraints are not rich enough to express the non-resolution of a path. We envision two solutions to this problem. The rst approach is to extended the logical language by introducing new predicates which express properties on paths. This has been done for feature tree logics in the past [Backofen & Smolka 1995; Backofen 1995] as a way to obtain the property of quanti er elimination 1 function noresolve-s (x : variable , π : variable stack , q : path )

2 : Σ 1 -formula 3 match q 4 | / -> return ⊥ 5 | f /q -> return x[f ]↑ ∨ ∃y • (x[f ]y ∧ noresolve-s(y, π x, q )) 6 
| ./q -> return noresolve-s (x, π, q ) in the strict sense. We refer the reader to the introduction of Section 4.2 for this aspect. In the case of feature tree logics, the needed extension of the language is however substantial, and that is already the case without a similarity predicate.

For instance, if q is a list of features, what can be said of ∃x • (x[q]↑ ∧ x[f ]y)? What does it imply on y?

In this case, it depends whether q starts with f or not. If it does, that is if q = f q , then this implies y[q ]↑. If it does not, then this does not imply anything on y. This example shows that the handling of path constraints requires new rules that will inspect paths and potentially propagate path information from variables to others.

This rst approach is also speci c to path constraints. It does allow us to reimplement resolve as one path atom and noresolve as one negated path atom. Although resolve is the main reason why we are considering this issue, we would also enjoy it if it could be more general. Consider the utility call mkdir -p /usr/lib/foo for example. mkdir -p creates the given directories recursively if they do not exist already: if /usr does not exist, it is created, then if /usr/lib does not exist, it is created, and nally, if /usr/lib/foo does not exist, it is created. The speci cation for this call comprises four cases depending on the status of /usr/lib/foo. They are represented in Figure 5.19. This speci cation requires disjunctions as it is out of reach of constraints, even extended with path atoms.

A second approach, presented in this section, is to extend the expressivity of constraints so that they can hide certain forms of disjunctions. We use our test of satis ability as a test of entailment which we can then use to build a decision procedure for such richer constraints called threaded. These threaded constraints are the pair of a main constraint and a list of threads. Threads are basically of the form l → t where l is a literal and t is another threaded constraint. They are used to postpone computation until we reach a situation where we know for sure that l holds, which is when l is entailed by the main constraint.

This approach is quite similar to the notion of residuation used in constraint logic programming as a strategy to mitigate combinatorial explosions by delaying computation [Smolka 1993]. This is used in the Oz programming model to implement task synchronisation [Smolka 1995]. The term of residuation itself comes from previous work on logics and functional programming also introducing mechanisms to delay computation [Aït- Kaci & Nasr 1989]. These notions of having a main constraint from which we can ask entailment questions and tell new facts also reminds of the work of Saraswat and Rinard on concurrent constraint programming [Saraswat & Rinard 1990].

We introduce such threaded constraints in Section 5.3.1 and show how they allow us to rede ne noresolve.

We discuss properties of such constraints in Section 5.3.2. Finally, we show how to build functions to reason about such constraints Section 5.3.3 and we discuss them in Section 5.3.4.

Entailment and Threaded Constraints

Let us rst de ne the notion of entailment of a formula by another one in De nition 5.9 and state its relationship to satis ability in Lemma 5.8.

De nition 5.9 (Entailment). A formula φ entails a formula ψ,

written φ |= ψ if φ implies ψ in any valuation, that is if |= F T ∀ • (φ → ψ).
A formula φ disentails a formula ψ if φ entails ¬ψ. [START_REF]ndiswrapper: when "postrm purge[END_REF] Lemma 5.8 (Entailment and Satis ability). φ entails ψ if and only if the conjunction of φ and the negation of ψ is unsati able. Formally, φ |= ψ if and only if

|= F T ¬ ∃ • (φ ∧ ¬ψ).
Proof. For any formulas φ and ψ, φ → ψ is de ned as ¬φ ∨ ψ and the following chain of equivalences holds:

∀ • (¬φ ∨ ψ) ↔ ¬¬ ∀ • (¬φ ∨ ψ) ↔ ¬ ∃ • ¬(¬φ ∨ ψ) ↔ ¬ ∃ • (φ ∧ ¬ψ)
Therefore, φ |= ψ if and only if we do not have

|= F T ∃ • (φ ∧ ¬ψ).
Lemma 5.8 shows that the notion of entailment is close to that of satis ability. We can therefore leverage our results on the satis ability from previous sections to handle this new notion.

We already know how to handle constraints incrementally and decide their satis ability. We are going to build a solver able to handle threaded constraints. They are composed of a main constraint to which we add threads. Each thread is an implication whose left-hand side is a literal called guard and whose righthand side is another threaded constraint. The formal de nition of threaded constraints can be found in De nition 5.10.

THREADED CONSTRAINTS

De nition 5.10 (Threaded Constraints). A threaded constraint t is a formula of the form

t = c ∧ n i=1 (l i → t i )
where c is a constraint, n ≥ 0 and for all i, l i is a literal and t i is a threaded constraint. This de nition is taken to be inductive, that is we consider only nite formulas. The base case for the induction occurs when n = 0. c is the main constraint of t. Each l i → t i is a thread of t. Each l i is the guard of the thread l i → t i . We typically use τ to represent the part of the threaded constraint consisting of only threads.

Basically, we are going to use the current solver as before on the main constraint. The threads will remain inactive until the guard is entailed by the main constraint, in which case the threads will be activated and their threaded constraints merged with the main constraint. This is a way to postpone some computation until the moment when we are sure that it does matter. In term of worst-case complexity, this strategy does not bring any improvement. We will see, however, that in a lot of real-world situations, postponing is useful and important.

Such threaded constraints can be used to express non-resolution of a path. As an example, recall Formula 3.8 that speci es the preconditions of the error cases of rm /etc/rancid/lg.conf:

φ 2 (p) (r) = ∃x, y • r[etc]↑ ∨ (r[etc]x ∧ x[rancid]↑) ∨ (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]↑) (3.8)
These are in fact the result of the unfolding of the noresolve macro, de ned in Figure 3.20. We can however unify [START_REF] Becker | colis-language: a symbolic analyser for shell scripts[END_REF] these speci cation cases in one thread by keeping the disjunctions inside of the formula:

φ (p) 2 (r) = ∃x, y • (¬r[etc]↑ → (r[etc]x ∧ (¬x[rancid]↑ → (x[rancid]y ∧ y[lg.conf]↑)))) (5.6) 
This presentation can be seen as a lazy form of the non-resolution of the path /etc/rancid/lg.conf.

The macro noresolve can thus be slightly rewritten to produce a similar thread instead of a disjunction.

The new formulation can be found in Figure 5.20.

These threaded constraints can also be used to merge several speci cation cases into one. Let us consider the speci cation of rmdir /usr/lib. It has one success case (Formula 5.7) and two error cases (Formulas 5.8 and 5.9). Graphical representations can be found in Figures 5.21 and 5.22.

φ 1 (p) (r) = ∃x, y, z • (r[usr]x ∧ x[lib]y ∧ y[ ]↑) φ 1 (t) (r, r ) = ∃x, x • (r =c {usr} r ∧ x =c {lib} x ∧ r [usr]x ∧ x [lib]↑) φ 1 (r, r ) = φ 1 (p) (r) ∧ φ 1 (t) (r, r ) (5.7) 
φ 2 (p) (r) = ∃x • (¬r[usr]↑ → (r[usr]x ∧ x[lib]↑)) φ 2 (t) (r, r ) = r = r φ 2 (r, r ) = φ 2 (p) (r) ∧ φ 2 (t) (r, r ) (5.8) 
φ 3 (p) (r) = ∃x, y • (r[usr]x ∧ x[lib]y ∧ ¬y[ ]↑) φ 3 (t) (r, r ) = r = r φ 3 (r, r ) = φ 3 (p) (r) ∧ φ 3 (t) (r, r )
(5.9) [START_REF] Becker | colis-language: a symbolic analyser for shell scripts[END_REF] Using the fact that A ∨ B is equivalent to ¬A → B by de nition.

1 function noresolve-s (x : variable , π : variable stack , q : path )

2 : Σ 1 -formula 3 match q 4 | / -> return ⊥ 5 | f -> return x[f ]↑ 6 | f /q -> return ¬x[f ]↑ → ∃y • (x[f ]y ∧ noresolve-s(y, π x, q )) 7 | ./q -> return noresolve-s (x, π, q ) 8 | ../q -> 9 match π 10 | ε -> return noresolve-s (x, ε, q ) 11
| π y -> return noresolve-s (y, π , q ) | abs (q) -> return noresolve-s (

-> return noresolve-s (r, ε, cwd/q) 1 function ifresolve-s (x : variable , π : variable stack , q : path ,

2 F : variable -> Σ 1 -formula ) : Σ 1 -formula 3 match q 4 | / -> return F (x) 5 | f /q -> return ¬x[f ]↑ → ∃y • (x[f ]y ∧ ifresolve-s(y, π x, q , F)) 6 
| ./q -> return ifresolve-s (x, π, q , F)

7 | ../q -> 8 match π 9 | ε -> return ifresolve-s (x, ε, q , F) 10
| π y -> return ifresolve-s (y, π , q , F) | abs (q) -> return ifresolve-s (r, ε, q , F )

16

| rel (q) -> return ifresolve-s (r, ε, cwd/q , F ) We can remove disjunctions from the error cases, not only by using the new form of noresolve, but also by merging the preconditions of the error cases together, as shown in Formula 5.10.

φ (p) 2-3 (r) = ∃x, y, z • (¬r[usr]↑ → (r[usr]x ∧ (¬x[lib]↑ → (x[lib]y ∧ ¬y[ ]↑)))) (5.10) 
Which can be read as: if the path /usr/lib resolves, then it points to something that is not empty. [START_REF] Braakman | checkbashisms[END_REF] This suggests the introduction of a macro ifresolve that would take as argument the input root, the current working directory, the path to resolve, and a function taking a variable as input and returning a threaded constraint on this variable. The de nition of such a macro can be found in Figure 5.23. We can then give the precondition of the error cases of a generic rmdir q/f in Formula 5.11.

φ (p) 2-3 (r) = ifresolve(r, cwd, p, (fun z -> ¬z[ ]↑)) (5.11) 
Moreover, we can simply rewrite noresolve(r, cwd, p) as ifresolve(r, cwd, p, ⊥).

Let us now show how to reason with such threaded constraints. We add the rule T G E that describes how to activate a thread:

T G E c ∧ (l → t) ∧ τ ⇒ c ∧ t ∧ τ (c |= l)
This rule takes a constraint c and a thread l → t and activates the thread -that is, adds t to c -when c entails its guard l. If c does not entail l, the thread is said to be inactive. These two notions are de ned in De nitions 5.11 and 5.12.

De nition 5.11 (Activation of a Thread). In a threaded constraint c ∧ (l → t) ∧ τ where c is a constraint, τ is a list of threads and c |= l, activating the thread l → t means returning c ∧ t ∧ τ .

De nition 5.12 (Inactive Thread). In a threaded constraint c ∧ (l → t) ∧ τ where c is a constraint and τ is a list of threads, the thread l → t is inactive if c does not entail l.

Testing whether c |= l is easy because, by Lemma 5.8, it is equivalent to test that c ∧ ¬l is unsati able.

Here, c ∧ ¬l is a constraint and we can test their satis ability using transform-2. In the case where c is

(0) r[f ]z ∧ z[ ]↑ ∧ (¬r[f ]↑ → (r[f ]x ∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑)))) (1) 
T

G E ⇒ r[f ]z ∧ z[ ]↑ ∧ r[f ]x ∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑)) (2) (R 2 ) ⇒ r[f ]x ∧ x[ ]↑ ∧ z = x ∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑))
Figure 5.24: Transformation of Formula 5.12 already known to be irreducible with respect to R 2 , we can use the incrementality of add-transform-2 to make this test of entailment almost trivial.

Let us consider Formula 5.12 as an example. It combines a thread similar to that of Formula 5.6 in conjunction to the main constraint r

[f ]z ∧ z[ ]↑. r[f ]z ∧ z[ ]↑ ∧ (¬r[f ]↑ → (r[f ]x ∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑)))) (5.12) 
Let us now describe the steps of transformation from Formula 5.12 using R 2 and our new rule T G E . Intermediary steps can be found in Figure 5.24.

(0) Start from Formula 5.12. Notice that the main constraint is irreducible with respect to R 2 and that it entails the guard ¬r

[f ]↑. Indeed, r[f ]z ∧z[ ]↑∧¬¬r[f ]↑ leads to a clash between r[f ]z and r[f ]↑.
(1) Rewrite the threaded constraint using T G E . This activates the thread and adds r

[f ]x ∧ (¬x[g]↑ → (x[f ]y ∧ y[h]↑))
to the main constraint. The left-hand side of this conjunction joins the main constraint while the right-hand side joins the list of threads.

(2) Rewrite the main constraint using R 2 . The steps are not detailed. Notice now that the main constraint is irreducible with respect to R 2 and that it does not entail the guard ¬x[g]↑: the thread is inactive. [START_REF]CoLiS -ANR project[END_REF] In this example, the obtained formula is satis able. Unfortunately, we cannot always use R 2 and T G E to decide satis ability easily. This is the topic of the next subsection.

Properties of Threaded Constraints

Let us rst state in Lemma 5.9 that these two newly added rules behave nicely.

Lemma 5.9 (T G E is an Equivalence). T G E performs an equivalence, that is if t ⇒ t via T G E , then |= F T ∀ • (t ↔ t ).
Now comes the question of deciding the satis ability of threaded constraints. The satis ability of a threaded constraint with just one thread comes easily from the side-condition of the rule T G E .

Lemma 5.10 (Satis ability of Threaded Constraints With One Inactive Thread). A threaded constraint with only one inactive thread is satis able. That is, for all threaded constraint

t = c ∧ (l → t ) where c is a constraint, if l → t is inactive in t, then |= F T ∃ • t. Proof. If c ∧ (l → t ) is irreducible with respect to T G E
, then c does not entail l. By Lemma 5.8, c ∧ ¬l is satis able. And c ∧ ¬l implies c ∧ (l → t ).

As soon as one considers a constraint with several inactive threads, the satis ability is not guaranteed. Consider Formula 5.13 as an example of this.14 

∧ (x[f ]↑ → ⊥) ∧ (¬x[f ]↑ → ⊥) (5.13) 
Formula 5.13 is clearly unsati able although the two threads are inactive (because does not entail

x[f ]↑ nor ¬x[f ]↑).
In the context of the CoLiS project, the huge majority of our threads have a guard that is negated absence atom on a singleton. Sadly, even for such limited guards, the inactivity of threads does not imply that the whole threaded constraint is satis able. Consider Formula 5.14 as an example of this.

¬x[f, g]↑ ∧ (¬x[f ]↑ → ⊥) ∧ (¬x[g]↑ → ⊥) (5.14) 
Formula 5.14 is also unsati able although its two threads are inactive (because ¬x[f, g]↑ does not entail ¬x[f ]↑ nor ¬x[g]↑). If we restrict threaded to only use negated absence atoms in guards and to not use any negated atom in the main constraint, then we nally have the result that we want. This is stated in Lemma 5.11. 

= c ∧ i (¬x i [F i ]↑ → t i ),
where c is a constraint with only positive literals and for all i, x i is a variable, F i is a set of features and t i is a threaded constraint, if for all i, the thread ¬x i [F i ]↑ → t i is inactive, then t is satis able.

Proof. In fact, when there are no negated atoms in a satis able constraint, then it enjoys an minimal valuation, that is a valuation that is constructed from the feature atoms only, not adding any other feature.

For each variable x in such a constraint c enjoying such a minimal valuation ρ, dom(ρ [START_REF]Install script does rm -rf /usr for ubuntu[END_REF] If such a constraint c happens to not entail several negated absence atoms of the form ¬x i [F i ]↑, it means that c ∧ x i [F i ]↑ is satis able. One can in fact notice that it is satis able by the minimal valuation that satis es c. The same valuation therefore satis es all the c ∧ x i [F i ]↑, which means that it also satis es

(x)) = {f | ∃y • x[f ]y ∈ c}.
c ∧ i x i [F i ]↑ and therefore c ∧ i (¬x i [F i ]↑ → t i ).
Within the CoLiS project, we nd ourselves in this situation most of the time, although not always. Of course, there is always the possibility to unfold the threads by replacing l → t by the disjunction of ¬l and the unfolding of t. However, for n threads, this creates a DNF of at least 2 n constraints [START_REF] Greenberg | Smoosh, the Symbolic, Mechanized, Observable, Operational SHell: an executable formalization of the POSIX shell standard[END_REF] . We will show in Section 5.3.3 how this unfolding is done. We will see that, in practice, this is an e cient way of doing things.

In fact, the problem of deciding the satis ability of threaded constraints is actually quite easily shown to be NP-complete, even if one allows only negated absence atoms in the guards, as it is the case in the CoLiS project. In fact, it is also NP-complete if we only allow threads of the restricted form ¬x[f ]↑ → x[f ]y using which we can still write noresolve. These three facts are stated in Lemma 5.12.

Lemma 5.12 (NP-Completeness of Satis ability of Threaded Constraints). The problem of deciding the satis ability of threaded constraints is NP-complete 1. in general, 2. on threaded constraints where guards only contain negated absence atoms, 3. on threaded constraints where threads are always of the form ¬x[f ]↑ → x[f ]y for some x, y and f .

Proof. Point 1 is of course a consequence of Point 2 or Point 3. For the proof of the last two points, we rst introduce an intermediary satis ability problem LIMSAT in De nition 5.13 and show that it is NPcomplete in Lemma 5.13. We then come back to threaded constraints and show that we can encode any LIMSAT instance in a threaded constraint.

De nition 5.13 (LIMSAT). LIMSAT [START_REF] Vidar Holen | shellcheck: A shell script static analysis tool[END_REF] is a Boolean satis ability problem that focuses on Boolean formulas under the form of a conjunction of disjunctions. Each disjunction can be of the form: ] and consider the disjunctions that do not belong to LIMSAT directly. They are the 3-disjunctions containing at least two positive variables. Name those x 1 and x 2 , name the third literal l, take two fresh variables a and b and apply then the following transformation everywhere in the formula:

ȳ1 ∨ • • • ∨ ȳn - only negative variables x ∨ ȳ1 ∨ • • • ∨ ȳn - one
x 1 ∨ x 2 ∨ l (x 1 ∨ a) ∧ (x 2 ∨ b) ∧ (l ∨ ā ∨ b)
The transformation is polynomial (it multiplies the size of the formula by at most 3) and the initial and resulting formulas are equisatis able. Moreover, it is a LIMSAT formula. [START_REF]The Open Group Base Speci cations Issue 7[END_REF] Since 3-SAT is NP-complete, then so is LIMSAT. The technique in this proof comes directly from the technique used to prove NPcompleteness of 3-SAT.

Proof of Lemma 5.12, Point 2. Take any LIMSAT formula. Using its boolean variables as features, and only one tree variable r, transform all disjunctions from the LIMSAT problem using the following:

ȳ1 ∨ • • • ∨ ȳn ¬r[y 1 , . . . , y n ]↑ x ∨ ȳ1 ∨ • • • ∨ ȳn ¬r[x ]↑ → ¬r[y 1 , . . . , y n ]↑ x 1 ∨ x 2 ¬r[x 1 ]↑ → r[x 2 ]↑
The transformation is polynomial and yields indeed a threaded constraint where threads use only absence atoms. The threaded constraint is satis able in FT if and only if the LIMSAT instance is satis able.

Proof of Lemma 5.12, Point 3. It is to be noted that the same result can be obtained even when restraining the form of threaded constraints to ¬r[x]↑ → r[x]v, form which is absolutely required in CoLiS.

x y ¬z[G]↑ =c {f } (a) Left-hand side x y ¬z[G]↑ f f =c {f } (b) Right-hand side
Figure 5.25: Formula 5.17 Consider Formula 5.15 and assume f / ∈ G [START_REF]The Open Group base Speci cations Issue 7, 2018 edition[END_REF] .

¬x[f ]↑ → ¬x[G]↑ (5.15) 
It is equivalent to Formula 5.16 and its unfolded version Formula 5.17. A graphical representation of the latter can be found in Figure 5.25.

∃y, z • (¬x[f ]↑ → x[f ]y) ∧ (¬x[f ]↑ → x[f ]z) ∧ x =c {f } y ∧ ¬z[G]↑ (5.16) ∃y, z • (x[f ]↑ ∧ x =c {f } y ∧ ¬z[G]↑) ∨ ∃y, z • (x[f ]y ∧ x[f ]z ∧ x =c {f } y ∧ ¬z[G]↑) (5.17) 
The idea behind such a formula is the following: we want to only allow feature atoms in the right-handside of a thread. The two feature atoms on the same variable and feature cover hide then an equality which can later be discovered through D F . We can thus use that to hide the literal we need on the variable z and, if the thread activates, then the literal will apply to the other variable too. However, we cannot directly link z and x that way because the feature atoms must come from x, and cycles are forbidden. We can use a similarity atom to link x and y on anything but f (otherwise, there would be a cycle). Since we assumed that f / ∈ G, this last bit is not a limitation.

This result does not make threaded constraints useless. It simply means that, in the general case, we will have no other choice but to unfold the threaded constraint into an exponentially bigger DNF. This means that these threaded constraints bring no improvement to the worst-case situation. There are two important points to be noted however. Firstly, as mentioned previously, in the CoLiS project, we often nd ourselves in the situation where all guards are negated absence atoms and there are no negated atoms in the main constraint. In this case, by Lemma 5.11, the satis ability is guaranteed. Secondly, and more importantly, the unfolding does not have to be done in one go. It is possible to test all the possible unfoldings in a lazy manner also. It is then su cient to stop as soon as we have found a satis able unfolding. In practice, and in the CoLiS project in particular, the rst unfolding (consisting of the negation of all the guards) is satis able. This will be described in Section 5.3.3.

Implementation of Threaded Constraints

In this subsection, let us implement a solver for threaded constraints. It is a fairly simple task: we use the solvers for constraints on the main constraint and once we reach an irreducible form, we check whether it entails the guards. The threads whose guard is entailed are activated and their threaded constraint merged with the main constraint. We keep doing that until all the remaining threads are inactive. Let us start in Figure 5.26 by de ning two helpers: add-transform-2-main-constraint (Line 1) and entails (Line 8). The former is a simple wrapper around add-transform-2: it takes two threaded constraints, applies add-transform-2 on their main constraints and merges their threads.

The latter takes a threaded constraint c ∧ τ and a literal l and tests whether c entails l. This is done by checking whether c ∧ ¬l is unsatis able. Note that this test of entailment is correct because if c |= l then c ∧ τ |= l. It is not complete in the sense that it is possible to have a threaded constraint t and a literal l such that t |= l but entails(t, l) = false. This comes from the fact that we only consider threads once they have been activated. This is not a problem as we are already incomplete as discussed in the previous subsection.

Consider now Figure 5.27. It de nes the main function of this solver: activate-threads. This function takes a constraint and a list of threads and tries to activate all the threads. It returns a threaded constraint in which all threads are inactive. It works as follows:

• activate-threads (Line 21) is in fact a thin wrapper around activate-threads-loop (Line 1).

The loop is started with a constraint, a list of threads and false. The constraint is generalised to a threaded constraint t so that it can contain threads that have already been processed [START_REF]The Open Group base Speci cations Issue 7[END_REF] . The list of threads τ is the same. The boolean activated indicates whether a thread has been activated on this round of the loop. If so, it is necessary to do one more round because the activation can change the main constraint and make some previously inactive threads active.

• activate-threads-loop starts by pattern matching on the threads τ (Line 5). If there are no threads (Line 6), we are at the end of a round of the loop. If one thread has been activated, we start again recursively (Line 9). Otherwise, we are done (Line 11): the main constraint of t is irreducible and all its threads are inactive.

• If there are threads (Line 13), we consider one of them, l → t , and name the others τ . We check whether t entails the guard l (Line 14).

• If it does, we activate the thread (Line 15) and add t to t. The result can be ⊥ if we detect an unsatis ability. In that case, we return ⊥ immediately (Line 16). Otherwise, we continue looping through the threads after having marked the activated boolean as true (Line 17).

• If it does not (Line 18), the thread is inactive. We add it to t and loop on the other threads (Line 19). [START_REF]The Open Group base Speci cations Issue 7[END_REF] And detected as inactive, for instance. and add-transform-2-threaded. These are simple wrappers around activate-threads. add-transform-2-threaded takes two threaded constraint t and t , where t has its main constraint irreducible, and computes t ∧ t . This is simply done by calling add-transform-2 on the main constraints of t and t and by then trying to activate all the threads of both t and t . transform-2-threaded is a simple wrapper around add-transform-2-threaded where the second constraint is .

| (l → t ) ∧ τ -> if entails (t, l) match a d d -t r a n s f o r m -2 -m a i n -c o n s t r a i n t (t , t) | ⊥ -> return ⊥ | t -> return a c t i v a t e -t h
These functions make a heavy use of the incrementality of R 2 and R • 2 , provided by add-transform-2: In activate-threads-loop, we keep the main constraint of the threaded constraint irreducible which allows to use add-transform-2 for the activation of threads and to therefore only compute on the patterns that are added by the activated thread.

The functions transform-2-threaded and add-transform-2-threaded show how easy it is to compute on threaded constraint once we have an incremental solver for constraints. These two functions return either ⊥ or a threaded constraint whose main constraint is irreducible and whose threads are inactive. As discussed in the previous subsection, this is not su cient to guarantee that the whole threaded constraint is satis able. The only way to know for sure that is to unfold all the implications as disjunctions and to check that the resulting DNF is indeed satis able. We are however going to show that this can be done in a lazy manner. Consider Figure 5.29. It de nes a function check-sat-threaded which takes a threaded constraint whose main constraint is irreducible and checks whether it is satis able. This is done lazily by enumerating all possible unfolding but stopping as soon as a satis able one has been found. Of course, the complexity is still exponential in the number of threads of the constraint in the worst case. check-sat-threaded works as follows:

• check-sat-threaded (Line 18) is in fact a wrapper around add-check-sat-threaded (Line 1).

This function takes two threaded constraints c ∧ τ and c ∧ τ , where c is an irreducible constraint, and checks whether c ∧ c ∧ τ ∧ τ is satis able. This function is necessary for technical reasons, in order to ensure the invariant that c is always irreducible and that, therefore, we can use the e cient and incremental solver add-transform-2.

• add-check-sat-threaded starts by computing the irreducible form of the conjunction of two main constraints c ∧ c (Line 4). If the result is ⊥, then we can return false right away (Line 5).

• If the result is not false, it is a satis able constraint c . We then consider the given threads, τ ∧ τ (Line 7). If there are none, then c ∧ c ∧ τ ∧ τ is equivalent to c which is satis able: we can return true (Line 8).

• If there are threads, we pick one, l → t and we name the others τ (Line 9). We need to check whether at least one of the unfoldings of l → t is satis able, that is if one of c ∧ ¬l ∧ τ or c ∧ t ∧ τ is satis able. We start by computing the irreducible form of c ∧ ¬l (Line 10).

• If the computation returns a constraint, we name it c . c is irreducible and therefore satis able. We proceed by checking whether c ∧ τ is satis able (Line 12). If the result is true, we return right away (Line 13).

• If this check fails or if the irreducible form of c ∧ ¬l is ⊥, then we can give up on this unfolding. We thus proceed to check whether c ∧ t ∧ τ is satis able and this is done with a simple recursive call (Lines 15 and 16).

Discussions

The three functions transform-2-threaded, add-transform-2-threaded and check-sat-threaded give us a ne-grained control over computation on threaded constraints. The two former can be seen as fast but imprecise while the latter is slow and precise. In CoLiS, that means we use the fast ones as a backend for symbolic execution engine (see Section 7.2) and the precise one only at the very end to remove unsatis able traces whose unsatis ability was not detected on the y. This brings a huge improvement. Moreover, since we only use very speci c threads, we will only seldom keep an unsatis able threaded constraint in the engine. Moreover, in the huge majority of cases, the very rst unfolding will be satis able, making the nal check very fast.

In practice, the symbolic engine from colis includes a very ad hoc implementation of these threaded constraints as it only supports threads of the form ¬x[f ]↑ → x[f ]y, which we call maybe atoms. Since they are so speci c, we can include the handling of maybe atoms directly in the solver and not externally as done in this section for the general case. These maybe atoms are su cient to remove some disjunctions of noresolve and ifresolve -that is the same disjunctions as we have removed in Section 5.3.1. They are however not general enough to remove disjunctions coming from le kinds. Indeed, additional cases of non-resolution come from the fact that paths may exist but not be directories, which we cannot express only with our maybe atoms and without disjunctions.

We ran our analysis on the 12,592 packages of Debian that contain maintainer scripts for a total of 28,814. We ran it three times with the same version of colis-batch [23, Commit 66704e] and only slightly di erent versions of colis-language.

1. The rst run includes colis-language [11, Commit 74e73d5] in the version used in all the other presented material of this thesis. This includes the handling of maybe atoms in the solver and their use in noresolve and ifresolve.

2. The second run includes colis-language [11, Commit 74e73d5] from which we have rewritten noresolve and ifresolve to not use maybe atoms. They are still present in the solver but no use is made of them. These three runs share the same con guration of colis-batch. They are ran on a machine equipped with 40 hyperthreaded Intel Xeon CPU @ 2.20GHz, and 750GB of RAM. To obtain a reasonable execution time, we limit the processing of one script to 60 seconds and 8GB of RAM. This means that, in order to compare the performances of the three runs, we do not only need to consider the time spent on the analysis but also the number of scripts that reached a timeout.

The two last runs present no signi cant di erence, which means that adding support for threaded constraint in the solver does not include a slowdown on the regular constraints. The rst run terminates in less than half an hour when the two other take more than ve hours. The implementation of threaded constraints therefore brings us a speedup of at least an order of magnitude.

Let us go back to threaded constraints as described in this section. One could imagine some extra rules about threads. The rst one is a rule of cleanup, T G D , which discards a threads when we know that the main constraint disentails its guard.

T G D c ∧ (l → t) ∧ τ ⇒ c ∧ τ (c |= ¬l)
This rule has been omitted from the presentation for consistency -as we have never included optional rules that would only cleanup so far -but it really easy to add to the implementation of transform-2threaded and add-transform-2-threaded.

One can then imagine two rules about the entailment or disentailment of the threaded constraint in a thread -that is the t in l → t. These are the rules T T E and T T D .

T

T E c ∧ (l → t) ∧ τ ⇒ c ∧ τ (c |= t) T T D c ∧ (l → t) ∧ τ ⇒ c ∧ ¬l ∧ τ (c |= ¬t)
These two rules are very similar to T G E and T G D . They introduce however a lot of di culties as threaded constraints are rich objects -contrary to the guards that are limited to literalson which it is complicated to test entailment.

Finally, let us come back on the example of mkdir -p /usr/lib/foo mentioned in the introduction. The speci cation of mkdir -p /usr/lib/foo is presented in Figure 5.19, restated here for convenience. Such a speci cation can in fact be written as one single speci cation cases containing only one threaded It expresses the fact that the local variable x must have a feature and must be similar to y in G and to z in c G. The information that this carries on the global variables y and z is that "either y has a feature in G or z has a feature in c G". This fact is easily expressible but requires dis junction -¬y[G]↑ ∨ ¬z[ c G]↑. The system R 1 , since it is allowed to introduce disjunctions, will be able to deduce that fact and to eliminate the variable x. The system R 2 , since it cannot introduce disjunctions, will never be able to remove x.

Let us dig a bit this example and show how both R 1 and R 2 handle such a constraint. Name the constraint in Formula 5.2. We will put it in irreducible form with respect to both R 1 and R 2 and assume we have a valuation µ satisfying the global part of the resulting constraint/s. We will then imagine that we are trying to de ne ρ satisfying the whole constraint.

• The constraint of Formula 5.2 is not irreducible with respect to R 1 . This is because of the splitting rule S NA S which requires us to split

¬x[ ]↑ into ¬x[G]↑ ∨ ¬x[ c G]↑.
In each of the obtained constraint, P NA S requires us to propagate the negated absence atoms to y and z respectively. We obtain two constraints that are irreducible with respect to R 1 :

∃x • (¬x[G]↑ ∧ x = G y ∧ x =c G z) ∧ ¬y[G]↑ and ∃x • (¬x[ c G]↑ ∧ x = G y ∧ x =c G z) ∧ ¬z[ c G]↑
If a valuation µ satis es the global parts of the former (resp. the latter), then it satis es ¬y[G]↑ (resp. ¬z[ c G]↑), which we can leverage to show that if ρ satis es x = G y (resp. x =c G z), then it satis es ¬x[ ]↑ automatically. This reasoning works on any valuation µ and therefore we can conclude that x has become irrelevant and that Formula 5.2 is equivalent to ¬y

[G]↑ ∨ ¬z[ c G]↑.
• The constraint of Formula 5.2 is irreducible with respect to R 2 , however, because R 2 does not contain such splitting rules. It is not true that any valuation µ that satis es the global part of this constraint can be extended to ρ that satis es the whole constraint. Indeed, if we take t the empty feature tree and µ = [y → t, z → t], the two similarity atoms impose that ρ(x) = G t and ρ(x) =c G t and therefore that ρ(x) = t, which contradicts ρ |= F T ¬x[ ]↑.

If we have control on the valuation µ that we take for the global part, then we can ensure that there is g ∈ G (or resp. g ∈ c G) such that g ∈ dom(µ(y)) (resp. g ∈ dom(µ(z))). Any valuation µ that satis es this will then be extendable to x. Since this reasoning works on some valuations µ, we cannot conclude that x has become irrelevant, but we can conclude that the formula is satis able.

In the general case, this means that the proof of Theorem 5.1 cannot be as simple as that of Theorem 4.1.

In particular, we will not be able to build an induction around a simple lemma as Lemma 4.7. We will still prove Theorem 5.1 by induction on the variables of the constraint, but the induction hypothesis will have to be much stronger to compensate for the information that the splitting rules would otherwise provide.

Let us take now take c, a constraint that is irreducible with respect to R 2 . Note that, as any constraint, it is di erent from ⊥ by de nition. Let us show that c is satis able. In order to do that, we are going to build a valuation ρ that satis es c, by induction on the variables of c. We will make sure to de ne "lower" variables before "higher" ones, that is we will make sure that, when there is x[f ]y ∈ c, ρ(y) is de ned before ρ(x).

Let us take < a total order on the variables of c that respects y < x if x[f ]y ∈ c. Such an order exists, by non-applicability of C C . We are going to de ne ρ by induction on the variables in increasing order (for <). For any variable x, we use the notations:

c <x = {l | l ∈ c, ∀y ∈ V(l), y < x} c ≤x = {l | l ∈ c, ∀y ∈ V(l), y ≤ x}
to talk about the parts of the constraints containing only variables smaller than x.

De nition of D. How can we ensure that we will never nd ourselves in the situation of the example, where we consider the constraint of Formula 5.2 and have already de ned µ = [y → t, z → t] which makes it impossible to de ne ρ, an extension of µ to x that satis es the whole constraint?

Our solution is to pick a set of features that covers all the negated absence atoms and to ensure (in the induction hypothesis) that, for each variable, if possible, the valuation is de ned on these features. In the aforementioned example, that means we would pick f ∈ -that is any f -and require in the induction hypothesis that, if possible, f ∈ dom(µ(y)) and f ∈ dom(µ(z)). In this example, this is possible because there are no other constraints on either y and z. It will therefore be possible to choose ρ(x

)(f ) = ρ(y)(f ) or ρ(x)(f ) = ρ(z)(f ) depending on whether f ∈ G which will satisfy both ¬x[ ]↑, x = G y and x =c G z.
In fact, we will use the same set of features to cover all the negated similarity atoms for similar reasons. Additionally, we will add a feature for each separated pair of variables in order to ensure that the values given to them are indeed di erent.

The set containing all these chosen features is named D. It is de ned as follows.

1. For each ¬x[F ]↑ ∈ c, take f ∈ F and add it to D. This is possible because F is never empty, thanks to C NA E .

2. For each x = F y ∈ c, take f ∈ F and add it to D. This is possible because F is never empty, thanks to C NS E .

3. For each S(x, y) ∈ c with x = y, take f such that there is no x = F y ∈ c with f ∈ F and add it to D. This is always possible, because there cannot be more that one similarity for x and y (by non-applicability of R S ) and that one similarity cannot be full (by x = y and non-applicability of G S F ).

Of course, all the variables cannot necessarily be de ned on all these features. For each variable x, we thus de ne D x by removing all the features of D that appear in a feature atom from x, in an absence atom for x or in a similarity atom linking x to a lower variable. The formal de nition is:

D x = D\{f | ∃y • x[f ]y ∈ c} \{f | ∃F • x[F ]↑ ∈ c, f ∈ F } \{f | ∃y, F • y < x, x = F y ∈ c, f ∈ F }
Note that D and, for all x, D x are nite as there is a nite number of literals in the constraint. Note also that, for all x, D x ⊆ D.

Fresh trees. These sets D x will be useful to satisfy negated absence atoms but also negated similarity atoms and to ensure separation between variables. For the former, it is not important which tree will be chosen to be put under the feature of D x . For the two latter, however, it is. Indeed, how does one make sure that the tree chosen in the de nition of a variable will not happen to be exactly the wrong tree? Consider Formula 5.19 as an example.

x

[f ]y ∧ x = {f } z (5.19)
Assume we have z < y < x. Assume we have µ de ned on z and y. There is f ∈ D and f ∈ D z and therefore f ∈ dom(µ(z)). If we have no control over it, what prevents µ(z)(f ) from being equal to µ(y)?

Our solution to this problem will be to de ne fresh trees. We will ensure during all the induction that the fresh trees are di erent from one another and di erent from any value given to a variable. The former is easy: we will have an in nite supply of fresh trees from which we will only use a nite number. We will therefore have all the freedom to choose di erent fresh trees every time. For the latter, we are going to take a special feature f 0 that does not appear in any feature atom or negated feature atom of c and that does not appear in D.

Formally, take:

f 0 / ∈ {f | ∃x, y • x[f ]y ∈ c} ∪ {f | ∃x, y • ¬x[f ]y ∈ c} ∪ D
This is always possible if the set of features F is in nite. [START_REF]The Open Group base Speci cations Issue 7[END_REF] A fresh tree is any tree t such that f 0 ∈ dom(t).

There is an in nity of such trees. In this proof, we are going to ensure that no value given to a variable is ever fresh.

Induction hypothesis. For all x ∈ V(c), there exists ρ ≤x a valuation over the variables smaller or equal to x such that:

1. ρ ≤x satis es the part of the formula containing only variables smaller or equal to x. In other words, ρ ≤x |= F T c ≤x .

2. For all y ≤ x, ρ ≤x (y) is de ned on all the features of D unless there is an absence atom covering them. In other words, for all f ∈ D, either there exists y[F ]↑ ∈ c ≤x with f ∈ F or f ∈ dom(ρ ≤x (y)).

Note that we are talking about D here, not D y .

3. For all S(y, z) ∈ c ≤x with y = z, ρ ≤x (y) and ρ ≤x (z) are di erent on all the features of D unless there is a similarity atom covering them. In other words, for all f ∈ D, either there exists y = F z ∈ c ≤x with f ∈ F or ρ ≤x (y) and ρ ≤x (z) are di erent in f : either f ∈ dom(ρ ≤x (y)) but f / ∈ dom(ρ ≤x (z)), or the contrary, or f ∈ dom(ρ ≤x (y)) and f ∈ dom(ρ ≤x (z)) but ρ ≤x (y)(f ) = ρ ≤x (z)(f ).

4. For all y ≤ x, ρ ≤x (y) is not a fresh tree, that is f 0 / ∈ dom(ρ ≤x (y)).

5. For all y ≤ x, for all f ∈ dom(ρ ≤x (y)), either there is a feature atom y[f ]z ∈ c ≤x or ρ ≤x (y)(f ) is a fresh tree.

6. For all y, z ≤ x, y = zfor all f ∈ dom(ρ ≤x (y)) ∩ dom(ρ ≤x (z)), if ρ ≤x (y)(f ) and ρ ≤x (z)(f ) are both fresh trees, then either there is a similarity atom y

= F z ∈ c ≤x such that f ∈ F or ρ ≤x (y)(f ) = ρ ≤x (z)(f ).
Point 1 is the target of the proof. When given the biggest variable x, it simply states that ρ ≤x |= F T c. Points 2 and 3 state exactly what we have been building D for. The former states that we try our best to have all the features of D present in the tree associated with each variables. The only situation in which we cannot is when there exists an absence atom. This point will be used to handle negated absence atoms. The latter states that we try out best to realise a di erence in all the features of D between each pair of separated variables. The only situation in which we cannot is when there exists a similarity atom. This point will be used to handle negated similarity atoms. The three remaining points, points 4, 5 and 6, are technical points necessary to ensure that the so-called fresh trees respect the properties that we expect from them, that is that they are di erent from any value that is de ned in other places.

Beginning of the induction. Let us show induction hypothesis by induction on the variables of c, following <. For any variable x, we will assume that the property holds for ρ <x and c <x and we will show that it also holds for ρ ≤x and c ≤x .

Note that, for all variable x, since c is irreducible with respect to R 2 , both c <x and c ≤x are also irreducible with respect to R 2 . This is because Lemma 4.6 holds here, as c <x and c ≤x can be seen as global parts of c for some sets:

c <x = G {y|y≥x} (c) c ≤x = G {y|y>x} (c)
If the proof by induction holds, then the property holds for all x ∈ V(c). The smallest and the biggest variables are particularly interesting for us.

• If x is a minimal element, then the property trivially holds as there are no variable smaller than x, ρ <x is the valuation of empty domain and c <x is empty. This will serve as base case for the induction.

• If x is a maximal element, then the induction hypothesis implies that there exists ρ ≤x such that ρ ≤x |= F T c ≤x . Since c ≤x = c in this situation, then c is satis able.

Extension of ρ <x to ρ ≤x . We de ne ρ ≤x by extending ρ <x to x. That is, we take ρ ≤x (y) = ρ <x (y) for all y < x. For x, we de ne ρ ≤x (x) on the domain:

dom(ρ ≤x (x)) = D x ∪ {f | ∃y • x[f ]y ∈ c} ∪ x= F y∈c y<x (dom(ρ <x (y)) ∩ F )
For each f ∈ D x , take fresh f a fresh tree not included in {ρ(y)(f ) | y < x, f ∈ dom(ρ(y))}. This is possible as there are only a nite number of y < x but an in nite number of fresh trees.

ρ ≤x (x) is de ned on all f in the aforementioned domain as follows:

ρ ≤x (x)(f ) =      ρ <x (y) if x[f ]y ∈ c ≤x (5.20) ρ <x (y)(f ) if x = F y ∈ c ≤x with y < x, f ∈ F and f ∈ dom(ρ <x (y)) (5.21) fresh f if f ∈ D x (5.22)
This de nition indeed de nes a correct valuation. The proof is exactly the same as in Section 4.A. By de nition of D x , case 5.22 is disjoint from the cases 5.20 and 5.21. These two cases are not disjoint but, by non-applicability of C C , D F , P F S and P S , they are consistent nonetheless.

Order of the proof. The proofs of the various points of the induction hypothesis on ρ ≤x and c ≤x use of course the induction hypothesis that give them results on ρ <x and c <x . However, some points also use the fact that other points have already been shown to be true on ρ ≤x and c ≤x . This is not a problem as long as there is no circular dependency between the points. This poses a problem for the presentation of this proof because it means that the three technical points, Points 4, 5 and 6, have to be proven before Points 2 and 3 which, themselves, have to be proven before Point 1. We believe this makes the proof complicated to read as one does not understand the necessity of these technicalities. We will therefore present the proofs of all six points in order in which they appear in the induction hypothesis. We will clearly make the di erent in the text between the use of "point 4" and "induction hypothesis, point 4". The former is a use of the result of point 4 on ρ ≤x . The latter is a use of the induction hypothesis on ρ <x .

Proof of point 1. Let us proceed to the heart of the proof and show that ρ ≤x satis es c ≤x . By induction hypothesis, point 1, ρ <x |= F T c <x . Since ρ ≤x (y) = ρ <x (y) for all y < x, there only remains to show that ρ ≤x satis es the literals of c ≤x that actually mention x. We reason by exhaustive analysis over all literal forms. This gives us six cases: feature atom (1), negated feature atom (2), absence atom (3), negated absence atom (4), similarity atom (5) and negated similarity atom (6). Since feature and similarity atoms are binary predicates, there will be sub-cases depending on whether both their variables are x or only one.

1. Firstly, let us consider feature atoms. We have three sub-cases, as such atoms can be x[f ]x (1a),

x[f ]y with y < x (1b) or y[f ]x with y < x (1c). (c) f is not in any dom(ρ <x (y)) ∩ G for any x = G y in c ≤x with y < x. Indeed, assume the existence of such a similarity atom x = G y with f ∈ G. By non-applicability of P A S , there is be i y[H i ]↑ ∈ c ≤x such that F ∩G ⊆ i H i . Since f ∈ F ∩G, that implies the existence of an i 0 such that f ∈ H i 0 . By induction hypothesis, point 1, ρ <x satis es y[H i 0 ]↑ and therefore f / ∈ dom(ρ <x (y)).

4. Fourthly, let us consider negated absence atoms ¬x[F ]↑ in c ≤x . By de nition of D, there is a feature f ∈ F ∩ D. By point 2, either there exists x[G]↑ ∈ c ≤x with f ∈ G or f ∈ dom(ρ ≤x (x)). The former is not possible because of non-applicability of R NA A . The latter implies that our literal is satis ed.

5. Fifthly, let us consider similarity atoms. We have two sub-cases, as such atoms can be x = F x (5a) or x = F y with y < x (5b). [START_REF] Jackson | Debian Policy Manual[END_REF] (a) The re exive similarity atoms are trivially satis ed.

(b) The similarity atoms x = F y in c ≤x with y < x are satis ed by de nition of ρ, case 5.21.

6. Sixthly and lastly, let us consider negated similarity atoms. We have two sub-cases, as such atoms can be x = F x (6a) or x = F y with y < x (6b). [START_REF] Jeannerod | colis-batch, a tool to run colis-language on packages and corpuses of packages[END_REF] (a) It is impossible to have a negated similarity atom x = F x in c ≤x by non-applicability of C NS R .

(b) Consider a negated similarity atom x = F y in c ≤x with y < x. By de nition of D, there is a feature f ∈ F ∩ D. By non-applicability of D NS , there is S(x, y) ∈ c ≤x . By point 3, either there exists x = F y ∈ c ≤x with f ∈ F or ρ ≤x (x) and ρ ≤x (y) di er in f . The former is not possible because of non-applicability of R NS S . The latter implies that our literal is satis ed.

Proof of point 2. By induction hypothesis, point 2, for all y < x and for all f ∈ D, either there is an absence atom y[F ]↑ ∈ c <x with f ∈ F or f ∈ dom(ρ <x (y)). Since ρ ≤x is an extension of ρ <x , this is also true for ρ ≤x . There remains to show that for all f ∈ D, either there is an absence atom

x[F ]↑ ∈ c ≤x with f ∈ F or f ∈ dom(ρ ≤x (x)).
By de nition of ρ, case 5.22, if f is not only in D but also in D x , then f ∈ dom(ρ ≤x (x)). If f is not in D x then, by de nition of D, it must be in {f | ∃y

• x[f ]y ∈ c} (1), {f | ∃F • x[F ]↑ ∈ c, f ∈ F } (2) or {f | ∃y, F • y < x, x = F y ∈ c, f ∈ F } (3)
. Let us analyse these three cases separately.

1. If f is in {f | ∃y•x[f ]y ∈ c}, then there exists a feature atom x[f ]y ∈ c. By de nition of the order <, y < x and this feature atom is therefore also in c ≤x . By de nition of ρ, case 5.20, f ∈ dom(ρ ≤x (x)). 

2. If f is in {f | ∃F • x[F ]↑ ∈ c, f ∈ F },
i x[H i ]↑ ∈ c with F ∩ G ⊆ i H i . Since f ∈ F ∩ G, there exists an i 0 such that f ∈ H i 0 .
(b) If f ∈ dom(ρ <x (y)) then, by de nition of ρ, case 5.21, f ∈ dom(ρ ≤x (x)).

Proof of point 3. By induction hypothesis, point 3, for all S(y, z) in c <x with y = z, and for all f ∈ D, either there exists y = F z ∈ c <x with f ∈ F or ρ <x (y) and ρ <x (z) are di erent in f . Since ρ ≤x is an extension of ρ <x , then the point holds for ρ ≤x too. There remains to prove that, for all S(x, y) with y < x, and for all f ∈ D, either there exists x = F y ∈ c ≤x with f ∈ F of ρ ≤x (x) and ρ ≤x (y) are di erent in f .

Assume thus the existence of S(x, y) ∈ c ≤x . Take any f ∈ D. We are going to show that either there exists x = F y with f ∈ F or ρ ≤x (x) and ρ ≤x (y) are di erent in f . Let us distinguish immediately 9 cases depending on how ρ ≤x (x) and ρ ≤x (y) are in f . These 9 cases come from 3 cases for x and 3 cases for y. The 3 cases for x are the following: either f / ∈ dom(ρ ≤x (x)) or ρ ≤x (x)(f ) is a fresh tree or ρ ≤x (x)(f ) is not a fresh tree. The 3 cases for y are similar. In fact, out of these 9 cases, 6 can trivially be removed. Indeed, if one of ρ ≤x (x) and ρ ≤x (y) is unde ned in f but not the other, then they di er trivially. This removes 4 cases. If they are both de ned but one is fresh and not the other, then they di er trivially again. This removes 2 more cases. Basically, the only 3 interesting cases are when ρ ≤x (x) and ρ ≤x (x) have the same status in f . We will thus consider these 3 cases: either f / ∈ dom(ρ ≤x (x)) and f / ∈ dom(ρ ≤x (x)) (1) or ρ ≤x (x)(f ) and ρ ≤x (y)(f ) are both fresh trees (2) or they are both not fresh trees (3).

If f /

∈ dom(ρ ≤x (x)) and f / ∈ dom(ρ ≤x (y)) then, by point 2, there are two absence atoms x[F ]↑ and y[G]↑ in c with f ∈ F and f ∈ G. By non-applicability of D A S , there is then i x = H i y in c such that F ∩ G ⊆ i H i . [START_REF] Jeannerod | Morsmall, a concise AST for POSIX shell[END_REF] Since f ∈ F ∩ G, there is an i 0 such that f ∈ H i 0 .

2. If ρ ≤x (x)(f ) and ρ ≤x (y)(f ) are both fresh trees then, by point 6, either there is x = F y in c with f ∈ F or ρ ≤x (x)(f ) = ρ ≤x (y)(f ).

3. If ρ ≤x (x)(f ) and ρ ≤x (y)(f ) are both not fresh trees then, by point 5, there are feature atoms x[f ]z and y[f ]z in c ≤x . We distinguish two sub-cases depending on whether z = z (3a) or not (3b).

(a) If z = z then, by non-applicability of D F E S , there is i x = H i y in c ≤x such that f ∈ i H i . [START_REF] Jeannerod | shstats, a statistical analyzer for corpora of shell scripts[END_REF] There is therefore an i 0 such that f ∈ H i 0 .

(b) If z = z then, by non-applicability of D F S , there is S(z, z ) in c ≤x . By de nition of the order <, z < x and z < x so S(z, z ) is also in c <x . We can thus use induction hypothesis, point 3, which tells us that for all g ∈ D, either there is a similarity z = G z ∈ c <x with g ∈ G or there is a di erence between ρ <x (z) and ρ <x (z ) in g. By non-applicability of R S , there exists at most one similarity atom between z and z . By non-applicability of G S F , if there is one similarity atom, then it is not full. by de nition of D, there is therefore g ∈ D that is not covered by this similarity. There is therefore a di erence between ρ <x (z) and ρ <x (z ) in g and:

ρ ≤x (x)(f ) = ρ <x (z) = ρ <x (z ) = ρ ≤x (y)(f ).
Proof of point 4. By induction hypothesis, point 4, for all y < x, ρ <x (y) is not a fresh tree. Since ρ ≤x is an extension of ρ <x , the for all y < x, ρ ≤x (y) is not a fresh tree. There remains to show that ρ ≤x (x) is not a fresh tree either.

The fact that ρ ≤x (x) is not a fresh tree comes directly from its de nition. Indeed:

dom(ρ ≤x (x)) = D x ∪ {f | ∃y • x[f ]y ∈ c} ∪ x= F y∈c y<x (dom(ρ <x (y)) ∩ F )
By de nition of fresh trees,

f 0 / ∈ D x ∪ {f | ∃y • x[f ]y ∈ c}.
By induction hypothesis, point 4, for all y < x, f 0 / ∈ dom(ρ <x (y)). Therefore, f 0 / ∈ dom(ρ ≤x (x)) and ρ ≤x (x) is not a fresh tree.

Proof of point 5. By induction hypothesis, point 5, for all y < x, if f ∈ dom(ρ <x (y)), either there is a feature atom y[f ]z ∈ c <x or ρ <x (y)(f ) is a fresh tree. Since ρ ≤x is an extension of ρ <x , then this is also true of ρ ≤x (y) for all y < x. There remains to show that it is also true for ρ ≤x (x).

Let us thus take f ∈ dom(ρ ≤x (x)) and show that either there is a feature atom x[f ]y ∈ c ≤x or ρ ≤x (x)(f ) is a fresh tree. Let us consider the three cases of the de nition of ρ.

• case 5.20 implies precisely that there exists x[f ]y ∈ c ≤x .

• case 5.22 de nes precisely ρ ≤x (x)(f ) as a fresh tree.

• case 5.21 implies the existence of a similarity atom x = F z in c ≤x with z < x, f ∈ F and f ∈ dom(ρ <x (z)). By induction hypothesis, point 5, either there is a feature atom z[f ]y in c <x or ρ <x (z)(f ) is a fresh tree. In the rst case, by non-applicability of P F S , there is a feature atom x[f ]y in c ≤x . In the second case, since

ρ ≤x (x)(f ) = ρ <x (z)(f ), then ρ ≤x (x)(f ) is fresh.
Proof of point 6. By induction hypothesis, point 6, for all y, z < x, y = z, and for all f ∈ dom(ρ <x (y))∩ dom(ρ <x (z)), if ρ <x (y)(f ) and ρ <x (z)(f ) are both fresh trees, then either there is a similarity atom y = F z in c <x such that f ∈ F or ρ <x (y)(f ) = ρ <x (z)(f ). Since ρ ≤x is an extension of ρ <x , this is also true for ρ ≤x . There remains to show that for all y < x, and for all f ∈ dom(ρ ≤x (x)) ∩ dom(ρ ≤x (y)), if ρ ≤x (x)(f ) and ρ ≤x (y)(f ) are both fresh trees, then either there is a similarity atom x = F y in c ≤x such that f ∈ F or ρ ≤x (x)(f ) = ρ ≤x (y)(f ).

Let us thus take y < x and f ∈ dom(ρ ≤x (x)) ∩ dom(ρ ≤x (y)). Let us consider the three cases of the de nition of ρ.

• case 5.20 implies that there exists x[f ]z ∈ c ≤x , with ρ ≤x (x)(f ) = ρ ≤x (z). By point 4, however, ρ ≤x (z) cannot be fresh, making this case impossible.

• case 5.22 de nes ρ ≤x (x)(f ) as a fresh tree that is di erent from all the ρ ≤x (z)(f ) with z < x. In particular, we have ρ ≤x (x)(f ) = ρ ≤x (y)(f ).

• case 5.21 implies the existence of a similarity atom x = F z in c ≤x with z < x, f ∈ F and f ∈ dom(ρ <x (z)). Since ρ ≤x (x)(f ) = ρ ≤x (z)(f ), the latter is also fresh. Induction hypothesis, point 6, applied to y and z, tells us that either there is a similarity y = G z in c <x with f ∈ G or ρ <x (y)(f ) = ρ <x (z)(f ). In the rst case, by non-applicability of P S , there is

i x = H i y in c ≤x such that F ∩ G ⊆ i H i . Since f ∈ F ∩ G, there is i 0 such that f ∈ H i 0 . In the second case, ρ ≤x (x)(f ) = ρ ≤x (z)(f ) = ρ ≤x (y)(f ).
Chapter 6

Modelisation of POSIX Shell

"Using a console without a proper shell; it is not going to be safe!"1 -The Doctor, Doctor Who (2005), season 6 episode 4

Disclaimer: The work presented in this chapter is joint with Benedikt Becker, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu and Ralf Treinen. Since we have participated in each aspect of this work, we believe its presentation does belong here.

In our work, we need to model the maintainer scripts of Debian. Three things guide us in this modelisation. Firstly, the Debian Policy [22] describes what can be expected of maintainer scripts. In particular, it states that one can always assume the Shell of a Debian system to be that of POSIX [20]. Incidentaly, the huge majority -99% -of maintainer scripts are written in this language. Secondly, and following this remark, the POSIX standard [20] describes extensively the POSIX Shell language. We will see in this chapter, however, that this standard is hard to understand and implement correctly. Thirdly, and most importantly, we are guided in our modelisation by the actual use that is made of these scripts. Indeed, we only need to model the subset of Shell that is used in these maintainer scripts.

Following these remarks, we get to choose between a complete generic modelisation of Shell or a speci c modelisation of a subset of Shell. The former brings genericity and ensures that we can treat all Shell scripts. The latter, although ad hoc, has the advantage that we only need to handle a small part of what can be found in Shell scripts. It however requires us to be able to de ne what subset of Shell is necessary to model and what can be left out. Whatever decision we take, there will remain a crucial question: how can we be sure that this modelisation is correct with respect to Shell? That is, how can we ensure that we handle correctly the syntax and the semantics of Shell in our tool?

There have been few attempts to formalize the Shell. The work behind Abash [Mazurak & Zdancewic 2007] contains a formalisation of the part of the semantics concerned with variable expansion and word splitting. The Abash tool itself performs abstract interpretation to analyse possible arguments passed by bash scripts to Unix commands, and thus to identify security vulnerabilities in bash scripts. It is however limited to this particular point of bash scripts.

Several other tools can spot certain kinds of errors in Shell scripts. The checkbashisms [12] script detects usage of bash-speci c syntax in Shell scripts, it is based on matching Perl regular expressions against a normalised Shell script text. It does not include a parser for any variant of Shell. This tool is currently used in Debian as part of the lintian package analysing suite.

The tool shellcheck [17] detects error-prone usage of the Shell language. This tool is written in Haskell with the parser combinator library Parsec. Therefore, there is no YACC grammar in the source code to help us determine how far from the POSIX standard the language recognised by shellcheck is. Besides, the tool does not produce intermediate concrete syntax trees which forces the analyses to be done on the y during parsing itself. This approach lacks modularity since the integration of any new analysis requires the modi cation of the parser source code. Nevertheless, as it is hand-crafted, the parser of shellcheck can keep a ne control on the parsing context: this allows for the generation of very precise and helpful error messages.

More recently, Greenberg has started a line of work on the formalisation of the semantics of Shell [Greenberg 2017; Greenberg 2018a; Greenberg 2018b]. The main result of this line of work is Smoosh [16; Greenberg & Blatt 2019], an executable formal semantics for Shell. It is heavily tested to show that it conforms to the POSIX standard. This makes it a canonical implementation and a reference semantics for Shell. The development of Smoosh led to the discovery of numerous bugs in widely used implementations of Shell as well as in the POSIX standard and its test suite. For the syntactic analysis, Smoosh still relies on external parsers and mainly the one provided with dash through libdash, although there exists work to integrate it with Morbig. This chapter is organised in two sections. Syntactic aspects of the modelisation of Shell are discussed in Section 6.1 and semantic aspects in Section 6.2. The rst phase is that of lexical analysis -aka. lexing -which synthesises a stream of tokens from a stream of input characters by recognising tokens as meaningful character sequences and by ignoring insigni cant character sequences such as layout. The second phase is that of parsing which synthesises a parse tree from the stream of tokens according to some formal grammar.

Syntactic Aspects

For many languages, these two phases are described in a document that contains speci cations for the lexer and the parser under the form of LEX-and YACC-like formats. It is then easy for anyone aiming at writing a new compiler or interpreter for this language to take the standard, feed these speci cations to tools similar to LEX and YACC. The result is a program dealing with the syntactic analysis of the language in question. A representation of this process can be found in Figure 6.1. This approach has several advantages. The LEX/YACC input is a high-level formal description of the target language. It is then easy to compare the one given in the standard to the one given in the implementation and check that they indeed match. Moreover, these two formats being fairly universal, it is easy for any programmer that has used them to apprehend the new language. The LEX/YACC code generators produce low-level e cient code using well-understood computational devices, such as nite-state transducers for lexical analysis and pushdown automata for parsing.

Unfortunately, nothing of this usual way of doing things is applicable for Shell. The POSIX standard does not provide but a low-level description of the lexical analysis. It does provide a high-level YACCstyle grammar but this grammar is annotated by several rules that change the behaviour of the parser -and even of the lexer. POSIX standard aside, the Shell language itself is hard (and actually impossible in general) to parse using the standard decomposition described above, and more generally using the standard parsing tools and techniques. These di culties not only raise a challenge in terms of programming but also in terms of trustworthiness. In Section 6.1.1, we describe why the usual approach cannot work for Shell. In Section 6.1.2, we describe our implementation and how we nonetheless managed to maintain an important part of generated code in our implementation. We then discuss our attempts to guarantee the quality of our implementation in Section 6.1.3.

Horrors in the Syntax of Shell

This section does not aim at being a comprehensive list of pitfalls that one can encounter while considering the problem of syntactic analysis of Shell. For more information on this topic, we invite the reader to refer to our previous work [Jeannerod et As explained before, in usual programming languages, most of the categories of tokens are speci ed by means of regular expressions. Lexer generators (eg. LEX) conveniently turn such high-level speci cations into e cient nite state transducers, which makes the resulting implementation both reliable and e cient. The token recognition process for the Shell language is described in the POSIX standard [20, Section 2.3], unfortunately without using any regular expressions. While other languages use regular expressions with a longest-match strategy to delimit the next lexeme in the input, the speci cation of the Shell language uses a low-level state machine which explains instead how tokens must be delimited in the input and how the delimited chunks of input must be classi ed into two categories: words and operators. BAR = ' foo '" ba " r X =0 echo x$BAR " " $ ( echo $ ( date ) ) By the lexical conventions of most programming languages, the rst line would be decomposed as ve distinct tokens (namely BAR, =, 'foo', "ba" and r) while the lexical conventions of the Shell language considers the entire line BAR='foo'"ba"r as a single token, classi ed into the category of words. On the second line, the input is split into the tokens X=0, echo and x$BAR" "$(echo $(date)). Notice that the third token contains subshells, that is nested quotations of the form $(• • •$(• • •)) which themselves can contain any piece of Shell code, including complex control structures. From the lexical point of view, a subshell invocation is simply a word. Delimiting these subshell invocations is hardly reducible to regular expression matching. Indeed, to determine the end of a subshell invocation, it is necessary to recursively call the Shell command parser so that it consumes the rest of the input until a complete command is parsed. Consider Figure 6.3 as an example. On this command, determining if the right parenthesis is ending the subshell requires deciding if the parenthesis is escaped or not. However, as explained in the for do in for do in echo done; do echo $do; done While the recognition of tokens is independent from the parsing context, their classi cation into words, operators, newlines and end-of-le markers must be re ned further to obtain the tokens actually used in the formal grammar speci ed by the standard. While chunks categorised as operators are easily transformed into a more speci c token, inputs chunk categorised as words can be promoted to reserved words or to assignment words only under speci c, ad hoc conditions; otherwise the word is not promoted and stays a regular word. This means that the lexical analysis has to depend on the state of the parser. CC = gcc make make CC = cc "./ X "=1 echo The promotion of a word to an assignment depends both on the position of this word in the input and on the string representing that word. The string must be of the form w=u where the substring w must be a valid name. Consider Figure 6.4. On the rst line, the word CC=gcc is recognised as a word assignment of gcc to CC because CC is a valid name for a variable, and because CC=gcc is written just before the command name of the simple command make. On the second line, the word CC=cc is not promoted to a word assignment because it appears after the command name of a simple command. On the last line, since "./X" is not a valid name for a Shell variable, the word "./X=1" is not promoted to a word assignment and is interpreted as the command name of a simple command.

The rst side-rule of the Shell grammar given in the POSIX standard [20, Section 2.10.2] requires that a word is promoted to a reserved word if the parser state is expecting this reserved word at the current point of the input. If a word that is a potential reserved word is located where a reserved word is not expected, it is not promoted and interpreted as any other word. Consider Figure 6.5 as an example. In that example, the rst occurrence of do as well as the words between the rst occurrence of in and the rst semicolon are not promoted to reserved words while the other occurrences of for, do, in and done are. There are exceptions to this rule as some reserved words can never appear in the position of a command. This is for instance the case of else. If the word else occurs in the position of a command, it will be promoted to reserved word but the parser will later reject such an input if there is no matching if.

The semantic value of a word can be complex since it can be made of subshell invocations, variables and literals. The script in Figure 6.6 is a single word read as an assignment word by the grammar. The right-hand-side of this assignment is a sequence starting with a so-called "tilde-pre x", followed by a double-quoted sequence followed by a literal. The double-quoted sequence is itself composed of a subshell invocation represented by the concrete syntax tree of its command, followed by a variable that uses the default value bar when expanded. The double-quoted word is completed with a literal baz, a bracket range expression and pattern-matching operator matching all words.

In fact, the lexical analysis also depends on the evaluation of the Shell script. Indeed, the alias builtin command of the Shell amounts to the dynamic de nition of macros that are expanded just before lexical analysis. Therefore, even the lexical analysis of a Shell script cannot be done without executing it, that is, lexical analysis of unrestricted Shell scripts is undecidable. To decide if for in the last line is a reserved word, a lexer must be able to know the success of an arbitrary program ./foo, which is impossible to do statically. Hence, the lexer must wait for the evaluation of the rst command before parsing the second one. Moreover, Shell comprises the builtin eval which allows for execution of arbitrary code built from a string. The use of such a builtin therefore makes the lexical analysis undecidable without executing code on-the-y.

Morbig, A Static Parser for Shell

We introduce Morbig [29], a static parser for a subset of the Shell language. It constructs a concrete syntax tree of a complete script without evaluating constructs of the language. The only limitations of Morbig are that it cannot handle Shell constructs that are inherently dynamic in nature: the eval builtin, unrestricted use of the alias builtin and premature termination of a script by an exit with trailing garbage in the le. These restrictions are justi ed by the static nature of our parser.

Morbig is designed for a variety of applications, including statistical analysis of the concrete syntax of scripts (see Section 7.1). Therefore, contrary to parsers typically found in compilers or interpreters, Morbig does not produce an abstract syntax tree from a syntactically correct source but a parse tree instead. A parse tree -or concrete syntax tree -is a tree whose nodes are grammar rule applications. See Figure 6.8 for an example parse tree for CC=gcc make all | grep 'error'. Because we need concrete syntax trees and because we want high assurance about the compliance of the parser with respect to the POSIX standard, reusing an existing parser implementation such as that of libdash was not an option. Our research project required the reimplementation of a static parser from scratch.

Before giving more details about the implementation choices, let us sum up a list of the main requirements that are implied by the technical di culties explained in Section 6.1.1. 2 1. The lexical analysis must be de ned in terms of token delimitations, not in terms of token (regular)

Prelexer

Spec.

Parser Spec. 2. The lexical analysis must be aware of the parsing context and of some contextual information like the nesting of double quotes and subshell invocations.

Prelexer

3. The parser must be reentrant, that is we must be able to intertwine runs of the main parser for the whole script and of sub-parsers for portions of the script. These sub-parsers are used by the lexical analysis to determine the end of words that involve subshells.

4. For the same reason, the syntactic analysis must be able to return the longest syntactically valid pre x of the input.

5. The parser must forbid certain speci c applications of the grammar production rules. This point comes from the annotations of the grammar one can nd in the POSIX standard which, in certain situations, prevent a speci c grammar rule from applying.

In addition to these technical requirements, there is an extra methodological one: the mapping between the POSIX speci cation and the source code must be as direct as possible.

The tight interaction between the lexer and the parser prevents us from writing our syntactic analyser following the traditional design found in most textbooks [Aho et al. 2006; Levine et al. 1992], that is a pipeline of a lexer followed by a parser. Hence, we cannot use either the standard interfaces of code generated by LEX and YACC, because these interfaces have been designed to t this traditional design.

There exist alternative parsing technologies 3 , that could have o ered elegant answers to many of the requirements enumerated previously, but we believe that none of them ful ls our requirements [Régis-Gianas et al. 2020].

In this situation, one could give up using code generators and fall back to the implementation of a handwritten character-level parser. This is done in dash for instance: the parser of dash 0.5.7 is made of 1569 hand-crafted lines of C code. This parser is hard to understand because it is implemented by lowlevel mechanisms that are di cult to relate to the high-level speci cation of the POSIX standard: for example, lexing functions are implemented by means of gotos and complex character-level manipulations; the parsing state is encoded using activation and deactivation of bit elds in one global variable; some speculative parsing is done by allowing the parser to read the input tokens several times, etc.

Our main design choice is not to give up on modularity. As shown in Figure 6.9, the architecture of our syntactic analyser is similar to the common architecture found in textbooks as we clearly separate the lexing phase and the parsing phase in two distinct modules with clear interfaces. Let us now describe the original aspects of this architecture.

As suggested by the illustration, we decompose lexing into two distinct sub-phases. The rst phase, called prelexing is implementing the token recognition process of the POSIX standard. This parsing-independent step classi es the input characters into three categories of pretokens: operators, words and potentially signi cant layout characters (newline characters and end-of-input markers). This module is implemented using OCamlLex [37, Chapter 13], a lexer generator distributed with the OCaml language.

The second phase of lexing is parsing-dependent. As a consequence, a bidirectional communication between the lexer and the parser is needed. On one side, the parser is waiting for a stream of tokens to reconstruct a parse tree. On the other side, the lexer needs some parsing context to promote words to keywords or to assignment words, etc. We manage to implement all these ad hoc behaviours using speculative parsing, which is easily implemented thanks to the incremental and purely functional interface produced by the parser generator Menhir [27].

OCamlLex is the lexer generator of the OCaml programming language. It extends the speci cation language of LEX with many features, two of which are exploited in our implementation. Firstly, a lexer of OCamlLex can be de ned by a set of mutually recursive entry points, which allows it to de ne concatenation of distinct sub-languages in a modular and readable way. Thanks to this organisation of the lexical rules, we were able to separate the lexer into a set of entry points where each entry point refers to a speci c part of the POSIX standard. This structure of the source code eases documentation and code reviewing and hence increases its reliability. Secondly, the entry points of an OCamlLex lexer can be parameterised by arguments. These arguments are typically used to have the lexer track contextual information along the recognition process. Combined with recursion, these arguments provide extra expressive power, which allows our lexer to parse nested structures (eg. parenthesised quotations) even if they are not regular languages. In addition, the parameters of the lexer entry points make it possible for several lexical rules to be factorised out in a single entry point.

Menhir [27] is parser generator for the OCaml programming language. While usual YACC-generated parsers either produce a semantic value or fail if a syntax error is detected, Menhir provides an incremental interface which allows the lexer to read the state of the parser between execution steps and, thanks to functionality of the interface, to backtrack to a previous state if necessary. The lexer can then simply perform some speculative parsing to determine whether a token is compatible with the current parsing state. This is particularly useful to deal with the promotion of words to reserved words. The implementation of this feature basically consists in running the parser a rst time with the word promoted to reserved word. If this results in a syntax error, we run the parser again without promoting the word.

From the programming point of view, backtracking is as cheap as declaring a variable to hold the state to recover it if a speculative parsing goes wrong. From the computational point of view, thanks to sharing, the overhead in terms of space is negligible and the overhead in terms of time is reasonable since we never transmit more than one input token to the parser when we perform such speculative parsing.

Another essential advantage of the functionality of the interface of Morbig is the fact that the parsers generated by Menhir are then reentrant by construction, which means the multiple instances of our parser can be running simultaneously. This property is needed in our case because the prelexer can trigger new instances of the parser to deal with subshell invocations. As it is very hard to delimit correctly subshell invocation without parsing their content, these sub-parser are given the entire input su x and are responsible for nding the end of this subshell invocation by themselves.

Morbig [29] is Free Software, published under the GPL3 license. On a i7-4600U CPU @ 2.10GHz with 4 cores, an SSD hard drive and 8GB of RAM, it takes 7.38s to parse the 31,330 POSIX Shell scripts among the 31,582 maintainer scripts in the Debian GNU/Linux distribution and to serialise the corresponding concrete syntax trees on the disk. Our parser fails on only one script which uses indeed a bash-speci c extension of the syntax. The average time to parse a script from the corpus of Debian maintainer scripts is We compared Morbig to dash on the whole archive of Shell scripts from Software Heritage, containing 7,436,215 scripts in total (see Section 6.1.3 for details). We used a machine with an Intel Xeon Processor E5-4640 v2 @ 2.20GHz with 40 cores and 756GB of RAM, where all the scripts were loaded in a tmpfs in RAM. It takes 400s to dash and 3400s to Morbig to parse all these scripts. This means respectively 19,000 and 2200 scripts per second. Although dash is faster, the di erence is less than an order of magnitude.

Validation

What makes us believe that our approach to implement the POSIX standard will lead to a parser that can be trusted? Actually, as the speci cation is informal, it is impossible to prove our code formally correct. We actually do not even claim the absence of bugs in our implementation.

To improve our chance to converge to a trustworthy implementation, the development of Morbig follows four guidelines. Firstly, the source code of Morbig contains almost 20% of comments. We tried to quote the POSIX speci cation related to each code fragment so that a code reviewer can evaluate the adequacy between the implementation and its interpretation of the speci cation. We also document every implementation choice we make and we explain the programming technique used to ease the understanding of the unorthodox parts of the program, typically the speculative parsing.

Secondly, we commit ourselves to not modifying the o cial BNF of the grammar despite its incompleteness or the exotic nine side rules described earlier. BNF is the most declarative and formal part of the speci cation, knowing that our generated parser recognises the same language as this BNF argues in favour of trusting our implementation.

Thirdly, Morbig comes with a test suite which follows the same structure as the speci cation: for every section of the POSIX standard, we have a directory containing the tests related to that section. At this time, the test suite is relatively small since it contains just 185 tests. A code reviewer may still be interested by this test suite to quickly know if some corner case of the speci cation has been tested and, if not, to contribute to the test suite by the addition of a test for this corner case.

Fourthly, and in order to disambiguate several paragraphs of the standard, we have checked that the behaviour of Morbig coincides with the behaviour of Shell implementation which are believed to be POSIXcompliant, typically dash and bash (in POSIX mode).

As an additional guarantee, we ran both Morbig and dash on all the les detected as Shell scripts in the Out of the scripts accepted by dash and rejected by Morbig the majority (350,259, ie. 94% and 4.7% of the total) contains bash-speci c constructs in words. dash, in parse-only mode, separates words but does not look into them, hence it will only refuse them when executing the script. Morbig, on the other hand, does parse words and rejects such scripts. This is neither a bug in dash nor in Morbig as the POSIX standard does not specify whether such invalid words must be rejected during parsing or during execution. The remaining 23,464 (0.3% of the corpus) that are accepted by dash and rejected by Morbig are due to remaining bugs in Morbig or in dash.

There are only 0.03% of scripts which are accepted by Morbig and refused by dash. These are either due to bugs in Morbig, or in dash, or to the fact that the standard is ambiguous.

Semantic Aspects

The syntax of Shell is convoluted, and semantics is not any better. It can be treacherous for both the developers and the analysis tools. Based on Morbig, the parser for POSIX Shell described in Section 6.1, we have designed a statistical4 analyser for the corpus of Shell scripts we are interested in. This statistical analyser is described in Section 7.1. We used this statistical analyser in order to know which features of Shell are mostly used in our corpus, and which features we may safely ignore. Based on this, we developed an intermediate language for Shell scripts, called CoLiS, which we will brie y describe in this section.

Since the CoLiS language is meant to be at the base of analysis and veri cation tools, its design has been guided by the following principles:

• CoLiS must be cleaner than Shell: we ignore the dangerous structures (like eval allowing to execute arbitrary code given as a string) and we make more explicit the dangerous constructions that we cannot eliminate.

• CoLiS must have clear syntax and semantics. The goal is to help in the writing of analysis tool so that one can easily be convinced of the soundness of these tools without having to care about the pitfalls of the syntax or the semantics of the underlying language.

• An automated conversion from Shell to CoLiS must be possible. Moreover, this conversion must not be "too clever" because it has to be trusted that it is correct with respect to the semantics of Shell and CoLiS. For this reason, the CoLiS language cannot be fundamentally di erent from Shell.

CoLiS is not conceived as a replacement of Shell in the software packages. If that was our goal, we would have designed a declarative language as a replacement, similar to how systemd has nowadays mostly replaced System-V init scripts.

In Section 6.2.1, we describe semantic features of Shell that make it hard to deal with for our analysis tool. In Section 6.2.2, we quickly present our intermediary language, CoLiS, the improvements it brings compared to Shell and the automated conversion from Shell. In Section 6.2.3, we describe the implementation of an interpreter for CoLiS and discuss the validation of CoLiS, its semantics and its conversion.

Horrors in the Semantics of Shell

The Shell language includes features that are well-known from other imperative programming languages, like variable assignments, conditional branching, loops -both for and while. Shell scripts may call Unix utilities which in particular may operate on the lesystem, but these utilities are not part of the Shell f=~niols/"$(echo foo)${x:=bar}"'$baz'[a-b]* Figure 6.6: A word can have many components language itself, and not in the scope of the present chapter -they have been handled in Chapter 3. Without going into the details of the Shell language, there are some peculiarities which are of importance for the design of the CoLiS language.

The evaluation of expressions in Shell is done using a really expressive expansion mechanism. Consider Figure 6.6 for instance, restated here for convenience. Figure 6.6 is only one word containing:

• unquoted literals f=,

• tildes ~niols/ expansing to the home of the user niols if they exist,

• quoted parts "$(echo foo)${x:-bar}" in which expansion still happens,

• subshell invocations $(echo foo) which can evaluate arbitrary commands and may even contain control structures (eg. for loops), • complex parameters ${x:=bar} which expand to various things depending on the state of the variable it concerns (in this example, if $x is unset or set to the empty string, then it is assigned the value bar), • quoted literals '$baz' that are not expansed even if they contain any of the above, • and globs [a-b] and * which are basically regular expressions that change the expansion of the whole word depending on the contents of the lesystem that they match.

The expansion might fail (eg. if a subshell invocation fails) which may a ect the behaviour of the whole script around the word in question. Variables are not declared, and there is no static type discipline. In principle, values are just strings, but it is common practice in Shell scripts to abuse these strings in order to represent other kind of data structures. The most common example would be to abuse strings in order to represent lists of strings, by assuming that the elements of a list are separated by the so-called internal eld separator (usually the blank symbol). Consider Figure 6.10 as an example. In this example, the variable $path is thought of as a string -and even a pathwhich is rst set to contain /home and then extended to contain /home/niols. The variable $args, on the other hand, is thought of as a list -of commandline arguments -which is rst set to contain the two elements -l and -a and then extended to contain -l, -a and -h. The last command is then a call to the utility ls with four arguments: -l, -a, -h and /home/niols. This pattern is quite common and quite resistant to static analysis. In particular, how can one make the di erence between a misuse of a string5 or a correct use of a list? Functions may access non-local variables. However, this is done according to the chronological order of the variables on the execution stack (dynamic scoping), not according to the syntactic order in the script (lexical scoping). Consider Figure 6.11 as an example. We rst de ne two functions. f only calls another function g and g only updates a variable $a so that it contains bar. We then de ne the variable $a to contain foo and call f. This whole script is perfectly valid, and the result is a variable $a that contains bar. Note that, although the function g is de ned after f, it is not a problem for f to be calling g. Note also that at the moment when f is de ned, there is no way telling whether the call to g will fail, or be a call to an external utility or be a call to a function. The semantics of Shell can be modi ed during the execution. This can be done by modifying the internal eld separator or by calling the set builtin utility. The internal eld separator is a variable, $IFS, which speci es which characters count as separator within values, and therefore where the Shell should cut values in the execution. Consider Figure 6.12 as an example. In this example, we rst set a variable $file to /sys-custom which we plan to remove. However, if a modi cation of the IFS occurs in the meantime and changes the IFS to -, we will end up removing /sys and custom which is most likely not what we intended. The set utility allows a script to set or unset ags that change the behaviour of Shell. These ags can be: 6 • -a, which make every assignment become an export, • -C, which prevents the Shell from overwriting existing les by default,

• -e, which makes Shell exit immediately when a command fails, except when this failure is caught, • -f, which disables pathnames, that is interpretation of globs and tilde prexes, • -u, which the Shell fail when expanding parameters that are unset.

The -e ag is particularly interesting for us as it is made mandatory in maintainer scripts by the Debian Policy. 7 It brings a form of of mechanism of exceptions to the Shell. This mechanism can however be pretty surprising. Consider Figure 6.13 as an example. The rst line activates the -e ag of set. We then have three instances of echo intertwined with various commands that may fail. ! true fails because true always succeeds and ! inverts return code of its command. The whole command however does not kill the Shell and the script continues, printing foo. false && true always fails because false and && fails if its rst command fails. The whole command however does not kill the Shell and the script continues, printing bar. false always fails and, this time, the command does kill the Shell, stopping the script and therefore never printing baz. This example shows that, in this mode of Shell, ! true, false && true and false do not have the same semantics.

The CoLiS Language

The CoLiS language was rst presented in 2017 [Jeannerod et al. 2017a]. Its design aimed at avoiding some pitfalls of the Shell, and at making explicit the dangerous constructions which we cannot eliminate. It was later improved upon [Becker et al. 2019; Becker et al. 2020] to increase the number of Debian maintainer scripts that could be analysed by adding more constructs and to align the previous semantics to the one of the Shell. 8 CoLiS has a clear syntax and a formally de ned semantics. We provide an automated and direct conversion from Shell. The correctness of the conversion from Shell to CoLiS cannot be proven formally but must be trusted based on testing and manual review of its code. They are restated here for convenience. For longer scripts that include other control structures, variables and richer words, we refer the reader to Figures 6.14 and 6.15 which show the Shell and CoLiS versions of the postinst script of the ocaml-base-nox package. From these scripts, we can already note quite a few di erences between Shell and CoLiS.

• The syntax of CoLiS requires mandatory usage of delimiters for string arguments and for lists of arguments. Generally speaking, the syntax of CoLiS is designed so as to remove potential ambiguities.

• The Shell utility call set -e is translated to true in CoLiS. This is because we avoid modelling set in CoLiS and we enforce at conversion time that scripts start by a call to set -e, in line with what the Debian Policy requires.

• The redirection 2> /dev/null disappears completely in CoLiS. This is because it a ects only the error output of the Shell, which usually has no impact on the semantics of a script. The conversion ensures that this hypothesis is respected throughout the whole script by keeping track of redirections and rejects scripts where the error output is redirected to standard output or to les.

• The Shell word $i/ld.conf, containing a variable, is converted to the CoLiS expression split i '/ld.conf'. We can note the presence of the keyword split that makes explicit the fact that the value of the variable $i will go through a phase where it will be split at its blank characters. As a comparison, the quoted Shell word "$i/ld.conf" is converted to the CoLiS expression i '/ld.conf' where the splitting will not take place. This is an example of our policy of making peculiarities of Shell more explicit in CoLiS. [Becker et al. 2019] that encodes a standard, big-step operational semantics. The semantic rules cover the contents of variables and input/output bu ers used during the evaluation of a CoLiS script, but they do not specify the contents of the lesystem and the behaviour of Unix utilities. The judgements and rules are parameterised by bounds on the number of loop iterations and the number of (recursively) nested function calls to allow for formalising the correctness of the symbolic interpreter. The symbolic interpreter will be described in Section 7.2.

The conversion from Shell to CoLiS is done automatically, but is not formally proven. Indeed, a formal semantics of Shell was missing until very recently [Greenberg & Blatt 2019]. For the control ow constructs, the AST of the Shell script is converted into the AST of CoLiS. For the strings (words in Shell), the translation generates either a string CoLiS expression or a list of CoLiS expressions depending on the content of the Shell string. This conversion makes explicit the string evaluation in Shell, in particular the implicit string splitting. At the present time, the converter rejects 23% of Shell scripts, either because it does not cover the full constructs of the Shell or because the CoLiS language is not rich enough to encode them (eg. usage of globs, variables with parameters, and advanced uses of redirections).

A Concrete Interpreter for the CoLiS Language

A concrete interpreter for the CoLiS language is implemented in Why3 [11]. Its formal speci cations (preconditions and post-conditions) state the soundness of the interpreter, ie. that any result corresponds to the formal semantics with unbounded number of loop iterations and unbounded nested function calls. The speci cations are checked using automated theorem provers [Jeannerod et al. 2017a].

The conformance of the semantics of CoLiS with that of Shell is not proven formally but tested by manual review and some automatic testing. For the latter, we developed a tool that automatically compares the results of the CoLiS interpreter on the CoLiS script with the results of the Debian default Shell (dash) on the original Shell script. This tool uses a test suite of Shell scripts built to cover the whole constructs of the CoLiS language. Its functioning is fairly simple. It is illustrated in Figure 6.16. The tool takes as input hand written Shell scripts that cover various features of the CoLiS language. These scripts do not use complex utilities but just enough to show corner cases of the semantics of constructs of Shell. They are evaluated with a Shell interpreter -usually dash -on one hand and converted to CoLiS and evaluated with the interpreter for CoLiS on the other hand. The output is then compared. When the outputs di er, this indicates a bug:

• either in the parsing and conversion,

• or in the semantics of CoLiS,

• or in the implementation of the Shell interpreter.

The bug cannot be in the semantics of Shell as it is our reference. It can also not be in the interpreter of CoLiS because it is proven to be sound with respect to the semantics. This test suite allowed us to x the conversion and the formal semantics of CoLiS. As an additional outcome, it revealed a lack of conformance between dash and the POSIX standard. 9 Since our approach in the CoLiS project is bug-oriented, this also means that it is not crucial for the semantics of CoLiS to be corresponding to that of Shell. A bug in the semantics of CoLiS would simply lead to a report containing an unreproducible bug, which we would then track down back to the semantics of CoLiS.

Chapter 7

Applications & Results

Disclaimer: The work presented in this chapter is joint with Benedikt Becker, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu and Ralf Treinen. Since we have participated in each aspect of this work, we believe its presentation does belong here.

This chapter describes applications of all the material presented in this thesis. In Section 7.1, we present the statistic analysis we ran on the corpus of maintainer scripts from Debian packages as well as some results. In Section 7.2, we present the symbolic execution of Shell scripts. Finally, in Section 7.3, we present the results that we obtained by running our toolchain on all Debian packages.

Statistic Analysis of Corpuses of Maintainer Scripts

Writing Analysers for Corpuses of Shell Scripts

One of the rst question which we have investigated in the CoLiS project is which features of the Shell, which Unix utilities and which options to these utilities are used and at which frequency. Such knowledge was meant to guide us in the design of our intermediary language CoLiS, described in Section 6.2. First analyses were done with simple grep scripts. These allowed rough estimates of the number of constructs (eg. if, while, case) used in the corpus, for instance. As clever as these regular expressions might have been [START_REF]cmigrep: broken emacsen-install script[END_REF] , they quickly showed severe limitations, due to the di culties of lexical analysis.

The development of the Morbig parser, described in Section 6.1, allowed us to move these analyses to another level. Indeed, since Morbig provides concrete syntax trees for Shell scripts, this allows us to de ne rich analysers of such syntax trees. These can easily replace complex regular expressions. Since they can be written in general-purpose programming languages, they also can provide much richer analyses.

The di culty of writing such analysers lies in the number of di erent syntactic constructions of a realistic language like shell: the concrete syntax trees have 108 distinct kinds of node. Even if most of the time a single analysis focuses on a limited number of kinds of nodes, the analyser must at least traverse the other kinds of node to reach the interesting ones. Even once on analyser is written, it is not easy to write a variation of it quickly. Indeed, we use OCaml which has a lexical scoping. It is therefore not possible to rede ne a small portion of the traversal functions without have to rede ne them all. • number_of_for takes the concrete syntax tree of a Shell script as argument, named program.

• Line 2, we initialise a reference count which will contain the number of for-loop in the script.

• Line 3, we de ne an object visitor which inherits from the iter class (Line 4). iter is an class of objet that traverse the whole concrete syntax tree of a Shell script while doing nothing. It is generated from the type of the concrete syntax tree using Visitors [26].

• Line 6, we override the only method of interest to us, visit_for_clause. This method is called whenever there is a node of type for_clause in a concrete syntax tree. It receives as argument a value for_clause which describes the contents of the for clause in question.

• Line 7, our implementation of visit_for_clause simply increments the counter and then falls back on the behaviour of visit_for_clause in the iter2 class (Line 8), which will keep exploring the concrete syntax tree.

• Line 11, once this visitor is de ned, we only need to pass it the whole concrete syntax tree. Once the iteration is done, count (Line 12) contains the number of nodes of type for_clause in the concrete syntax tree, and thus the number of for-loops in the Shell script.

This design patterns allows us to easily write functions that traverse concrete syntax tree to compute various analyses on the shell scripts to which they correspond. We can then easily write functions that consider not one script but a corpus of scripts, iterate over them all and computes statistics over the use of various features, utilities, etc. 3

Gallery of Analyses

Let us quickly list some results of various analyses that we ran on the corpus of all Shell scripts in Debian packages.

Table 7.1 summarises the occurrences of Shell builtins which may render syntactic analysis impossible, as explained in Section 6.1. The alias builtin appears only twice in our corpus, and both occurrences are at the top level. There are 42 occurrences of eval in 30 scripts.

The occurrences of the di erent sequential utility structures of the Shell are given in Table 7.2. Constructs related to process creation and communication are given in Table 7.3. This table shows that the use of &, which creates an asynchronous execution, is very rare in maintainer scripts. This observation, together with the fact that dpkg does not allow for concurrent execution of maintainer scripts, justi es our decision to ignore concurrency in the modelisation of Shell scripts. The ve most frequent simple Shell builtins are listed in Table 7.4. The dot symbol, which is used to include another le in the Shell script, has almost 5,000 occurrences and hence must be handled in our treatment of Shell scripts. It is handled by the conversion mechanism which inlines the included Shell script into the other one.

The construction of the concrete syntax trees allows us to go further than just simple counting of occurrences of reserved words, and do a more structural analysis of Shell scripts. For instance, a signi cant portion of the variables de ned in maintainer scripts are in fact constants: We found that in 1,295 out of 3 An other use case for these visitors can be found in our tool lintshell [28]. Lintshell is a linter which uses this design pattern to de ne syntactic checks on Shell scripts. Function de nitions are quite frequently used in maintainer scripts: we found 3,455 function de nitions in 1,500 les. Only one single function de nition is recursive 4 . We also found nine maintainer scripts which contain multiple de nitions of the same function, four scripts which de ne the same function di erently in the two branches of an if-then-else and one script containing two slightly di erent de nitions for the same function, which could be improved by factorising the large common part of the two de nitions.

Our tool provides statistics on the number of occurrences of each possible combination of options. Table 7.6, for example, yields the combination of options observed for the ln utility, together with their number of occurrences. One important conclusion for us is that 596 out of the 605 invocations of ln create symbolic links instead of hard links. The possibility of multiple hard links in a le system are a problem for any formal model of le systems since it means that one has to use acyclic directed graphs as a model, instead of the much simpler trees. The fact that the creation of multiple hard links (ln without the -s option) is rather rare justi es our decision to consider le systems as trees, at least in a rst approach.

Table 7.7 yields the 5 most frequently used Debian-speci c utilities in our corpus. These utilities are much harder to model than the standard Unix utilities since they typically manipulate the contents of les. The statistics on utility usage help us to focus on the most important ones among these complex utilities.

Finally, the frequency of the di erent Unix utilities in the corpus also allows us to estimate how many scripts we would have to discard from our analysis if we restricted ourselves to scripts using only frequently used utilities or, conversely, how many more scripts we would support by supporting more utilities. We de ne, for any natural number i, an exotic utility of level i to be a utility that is not found in more than i scripts. For given levels of exotism, we count the number of utilities that are exotic of this level and, more importantly, the number of scripts that do not use any of these utilities. Table 7.8 tells how many scripts use exotic utilities. For instance, 1,794 scripts use at least one utility that occurs in at most 10 scripts.

Symbolic Interpretation of Shell Scripts

Symbolic Interpretation of Shell Scripts

In addition to the concrete interpreter, described in Section 6.2.3, we designed and implemented a symbolic interpreter for the CoLiS language, also in Why3 [Becker et al. 2020]. Guided by a proof-of-concept symbolic interpreter for a simple IMP language [Becker & Marché 2020], the main design choices for the symbolic interpreter of CoLiS are:

• Variables are not interpreted abstractly: when executing an installation script, the concrete values of the variables are known. On the other hand, the state of the lesystem is not known precisely, and it is represented symbolically using constraints. 5 • The symbolic engine is generic with respect to the utilities: their speci cations in terms of symbolic input/output relations are taken as parameters.

• The number of loop iterations and the number of (recursively) nested function calls is bounded a priori, the bound is given by a global parameter set at the interpreter call.

The Why3 code for the symbolic interpreter is annotated with post-conditions to express that it computes an over-approximation [Becker & Marché 2020] of the concrete states that are reachable without exceeding the given bound on loop iterations. This means that any concrete trace of execution that can be described by the semantics -and ran by the concrete interpreter 6 -will be present in the symbolic traces. More formally, let us take any feature tree t. The concrete execution of a script on t returns an output tree t . Now let us take S a set of symbolic states, that is basically a set of threaded constraints on one variable r. Assume one of these constraints is c such that [r → t] |= F T c. The symbolic execution of the same script on S returns an output set of symbolic states S . The property of over-approximation guarantees that there is a state c ∈ S such that [r → t ] |= F T c . This property is formally proven using automated provers. The OCaml code is automatically extracted from Why3, and provides an executable symbolic interpreter with strong guarantees of soundness with respect to the concrete formal semantics.

Notice that our symbolic engine neither supports parallel executions, nor le permissions or le timestamps. This is another source of over-approximation, but also under-approximation, meaning that our approach can miss bugs whose triggering relies on the former features.

The symbolic interpreter provides a symbolic semantics for the given script: given an initial symbolic state that represents the possible initial shape of the lesystem, it returns a triple of sets of symbolic input/output relations, respectively for normal result, error result (corresponding to non-zero exit code) and result when a loop limit is reached.

Let us consider a toy implementation of this symbolic engine, given in Figure 7.2.

• The main function of the interpreter, interp, is given Line 35. takes a command cmd in CoLiS and a list of states states and returns a pair of list of states, representing the success and the errors of the execution. The type for states is de ned Line 6. It is simply a threaded constraint with two variables representing the input and the output roots.

• The interpretation of control structures is not very surprising. As an example, the interpretation of if cmd1 then cmd2 else cmd3 is given Line 43. It simply consists in interpreting cmd1 in states. This returns two lists of states, success1 and errors1 in which one can then interpret cmd2 and cmd3, obtaining four lists of states, success2 and errors2 on one hand and success3 and errors3 on the other hand. The interpretation of the whole structure is then the concatenation of success2 and success3 for success cases and the concatenation of errors2 and errors3 for error cases.

• The interpretation of utility calls is where we get to see the interaction between the symbolic engine and the solvers for FTS. From the point of view of interp, the interpretation of utility calls is fairly simple. It consists in calling a function spec-utility-call generating the speci cation of the particular utility call. It is then only a matter of applying the success and error speci cation cases to states, which generates two lists of states, success and error respectively.

• Each speci cation case returned by spec-utility-call is in fact a function from a pair of variables to a threaded constraint. The type of a case is de ned Line 1. This is a way to allow the client code to decide on which root variables to generate the speci cation cases. The generation of speci cation cases is described in Section 3.3.

• There are several things to note on the application of speci cation cases to states. First of all, one applies a list of speci cation cases to a list of states. This is done by applying each speci cation case to each state, producing a quadratic explosion. This explosion was mentioned in Section 3.4 and is particularly visible in the example code of the two iteration functions apply-cases-to-states and apply-cases-to-state, de ned Lines 27 and 17 respectively. The former takes a list of cases and a list of states and iterates apply-cases-to-state on each given state. The latter takes a list of cases and one state and iterates apply-case-to-state on each given case. We can already note at this point that apply-case-to-state can fail and return ⊥, in which case the result is simply dropped. This mechanism is in fact very important as this is the place where unsatis able states are eliminated.

• Finally, apply-case-to-state, de ned Line 10, takes a speci cation case and a state and tries applying the former to the latter. Let us consider that the state is composed of a threaded constraint t and two root variables r and r and that the speci cation case is named case. r represents the root at the beginning of the execution of the script. r represents the root before the execution of the utility call. Applying case to (t, r, r ) consists rst in generating a new root variable, Line 12, which will represent the root after the execution of the utility call. This is done by calling a function fresh-variable that is part of the interface of the FTS solver. It generates a fresh variable, that is a variable that has never been previously encountered in the whole execution. In this case, the utility call "happens" between r and r . We can therefore instantiate the speci cation case on these variables by calling case(r , r ). This gives us a threaded constraint which can be added to the current one, t by calling add-transform-2-threaded. The underlying work of add-transform-2-threaded is discussed in Section 5.3. The result of this call can detect an unsatis ability by returning ⊥. Such a result means that the given speci cation case and state are not consistent and that their application should be discarded. If the call does not fail, it returns a new threaded constraint t equivalent to case(r , r ) ∧ t -but more e cient as it is already the result of some computation by the solver -which can be returned.

An Example

Let us develop this execution by hand on the beginning of the postinst script of the ocaml-basenox package shown in Figure 6.14. Of course, the symbolic interpreter does not run on the Shell script itself but on the CoLiS script obtained by parsing and conversion, as described in Chapter 6. The CoLiS corresponding to the postinst Shell script of the ocaml-base-nox package is shown in Figure 6.14. This gure is restated here for convenience. Let us thus develop, by hand, the symbolic execution on this script. The rst complex command (Lines 4 to 11) comprises the traces of execution given in Figure 7.3. We simply need to call interp on this script with a list of states as argument. This list of states must represent the transformation that was performed before the execution of the script start. Of course, no transformation was actually performed, and we could then provide one single state containing (r 0 = r 1 , r 0 , r 1 ). This however leads to the detection of a lot of potential bugs that have to do with the non-existence of usual directories, like /usr. Luckily, the Debian Policy speci es that one can always expect a Debian system to respect the lesystem hierarchy standard -or FHS for short [36]. This standard requires the existence of numerous directories. The only one of interest for our example is /usr/local/lib. Let us therefore call interp on the postinst script of the ocaml-base-nox package with initial state Formula 7.1;

((r 0 = r 1 ∧ r 1 [usr]x 1 ∧ x 1 [local]y 1 ∧ y 1 [lib]z 1 ), r 0 , r 1 ) (7.1)

The rst utility call that gets interpreted is that of test [ '!'; '-e'; '/usr/local/lib/ocaml' ]. This call succeeds when /usr/local/lib/ocaml does not exist and fails otherwise. The interpreter then gets the semantics of this call from the speci cations database and applies it to the one state of Formula 7.1. This gives the two states of Formulas 7.2 and 7.3. Graphical representations can be found in Figure 7.4. The existential quanti ers are left out for readability; every variable except r 0 and r 2 is existentially quanti ed. 

(r 0 = r 1 ∧ r 1 [usr]x 1 ∧ x 1 [local]y 1 ∧ y 1 [lib]z 1 ) ∧ (r 1 = r 2 ∧ r 2 [usr]x 2 ∧ x 2 [local]y 2 ∧ y 2 [lib]z 2 ∧ z 2 [ocaml]u 2 ) (7.3)
It is already possible for the solver to make these formulas more compact, which gives in the end the two states of Formulas 7.4 and 7.5. applies it to the one state of Formula 7.4. This gives the two states of Formulas 7.6 and 7.7. Graphical representations can be found in Figure 7.5. Again, the existential quanti ers are left out for readability; every variable except r 0 and r 3 is existentially quanti ed. 

r 0 = r 2 ∧ r 2 [usr]x 2 ∧ x 2 [local]y 2 ∧ y 2 [lib]z 2 ∧ z 2 [ocaml]↑ ∧ r 2 [usr]x 2 ∧ x 2 [local]y 2 ∧ y 2 [lib]z 2 ∧ z 2 [ocaml]↑ ∧ r 2 =c {usr}
The solver can make these formulas more compact. In fact, while doing so, it will detect that the error case, leading to a successful end of the inner if construct (S2 in Figure 7.3), is simply unsatis able. In the end, only the success state of Formula 7.8 remains Of course, since we come from the success case of mkdir [ '/usr/local/lib/ocaml' ], both these calls will succeed. Their success case will not change anything to Formula 7.8 and their error case/s, leading to errored end of the if constructs (E1 and E2 in Figure 7.3), will turn out to be unsatis able.

The result of the interpretation of this rst part of the script is that only S1 and S3 are reachable -all the other traces are not. Moreover, the interpreter only carries one state for each of these traces, far from the worst-case exponential explosion. The symbolic execution bene ts from the intertwining of steps of execution of the solver. Indeed, without that, unreachable traces would still be explored, leading to a loss of time in the execution. In this script, for instance, the trace ending in S2 would otherwise carry its execution in the rest of the script, leading to the exploration of dozen useless traces. Of course, this is only a gain of speed if running the solver again after every step only takes a short amount of time. This is where the incrementallity of our solver plays a crucial role. The main experimental result of our thesis and of the CoLiS project is the analysis of full corpuses of Debian packages. We execute the analysis on a machine equipped with 40 hyperthreaded Intel Xeon CPU @ 2.20GHz, and 750GB of RAM. To obtain a reasonable execution time, we limit the processing of one script to 60 seconds and 8GB of RAM. The time limit might seem low, but the experience shows that the few scripts (in 30 packages) that exceed this limit actually require hours of processing because they make a heavy use of dpkg-maintscript-helper. On our corpus of 12,592 packages with 28,814 scripts, the analysis runs in about half an hour.

All of those scripts that are syntactically correct with respect to the POSIX standard (99.9%) are parsed successfully by our parser. The conversion of the parsed scripts into our intermediary language CoLiS succeeds for 77% of them; the translation fails mainly because of the use of globs, variables with parameters and advanced uses of redirections.

Our toolchain then attempts to run 113,328 scenarios (12,592 packages with scripts, 9 scenarios per package). Out of those, 45,456 scenarios (40%) are run completely and 13,149 (12%) partially. This is because scenarios have several branches and although a branch might encounter failure, we try to get some information on execution of other branches. For the same reason, one scenario might encounter several failures. In total, we encounter 67,873 failures. The origins of failures are multiple, but the two main ones are:

• trying to execute a scenario that includes a script that we cannot convert (28% of failures),

• or the scripts might use utilities unsupported by our tools, or unsupported features of supported utilities (71% of failures).

Among the scenarios that we manage to execute at least partially, 19 reach an unexpected end state. These are potential bugs. We have examined them manually to remove false positives due to approximations done by our methodology or the toolchain. We discuss in Section 7.3.2 the main classes of true bugs revealed by this process.

Bugs found

We ran our toolchain [29; 24; 11; 23] on several snapshots of the Debian sid distribution taken between 2016 and 2019, the latest one being October 6, 2019. We reported over this period a total of 151 bugs to the Debian Bug Tracking System [35]. Some of them have immediately been con rmed by the package maintainer (for instance, [9]), and 92 of them have already been resolved. Table 7.9 summarises the main categories of bugs we reported. Simple lexical analysis already detects 95 violations of the Debian Policy, for instance scripts that do not specify the interpreter to be used, or that do not use the -e mode [3]. The Shell parser (Section 6.1) detects 3 scripts that use Shell constructs not allowed by the POSIX standard, or in a context where the POSIX standard states that the behaviour is unde ned [7]. There are also 3 miscellaneous bugs, like using unsafe Shell constructs. The mining tool (Section 7.1) detects 5 scripts that invoke Unix utilities with wrong options and 29 scripts that mix up redirection of standard-output and standard-error. The conversion from the Shell to the CoLiS language (Section 6.2) detects 9 scripts with wrong test expressions [4]. These may stay unnoticed during super cial testing since the Shell confuses, when evaluating the condition of an if-then-else, an error exception with the Boolean value False.

Inspection of the symbolic semantics extracted by the symbolic execution nds 5 scripts with semantic errors. Among these is the bug [9] of the package rancid-cgi already explained in Section 1.3.

We found 3 bugs during the formalisation of Debian tools. These include in particular a bug [6] in the dpkg-maintscript-helper function which is used 10,306 times in our corpus of maintainer scripts, and was xed in the meantime.

We found that identifying bugs in maintainer scripts always requires human examination. Automated tools allow to point out potential problems in a large corpus, but deciding whether such a problem actually deserves a bug report, and of what severity level, requires some experience with the Debian processes. This is most visible with semantic bugs in scripts, since an error exit code does not imply that there is a bug. Indeed, if a script detects a situation it cannot handle then it must signal an error and produce a useful error message. Deciding whether a detected error case is justi ed or accidental requires human judgement.

Filling bug reports demands some caution, and observance of rules and common practices in the community. For instance, the Debian Developers Reference [14] requires approval by the community before so-called mass bug lling. Consequently, we always sought for advice before sending batches of bugs, either on the Debian developers mailing list, or during Debian conferences.

Chapter 8

Conclusion 8.1 Contributions

Throughout this thesis, we presented work revolving around the case study of bringing formal program analysis techniques to the quality assurance of Debian packages, and their maintainer scripts in particular. This includes various aspects, ranging from theoretical research to more concrete implementation and testing considerations, not forgetting interpretation and modelisation of standards written in natural language.

Our main contribution lies in our work on decision procedures for FTS. This comprises the design of a decision procedure for rst-order formula and a result of decidability of the rst-order theory of FTS which was an open problem before this work took place. This also covers more practical considerations as the goal is to use FTS -or a chosen subset -in our tool. These considerations include work on an e cient way to handle the negated similarity predicates, a way to formalise an intermediary step between systems of transformation rules and an implementation and support for threaded constraints.

Another important part of our work lies in the modelisation of Unix lesystems and utilities and of POSIX Shell. This comprises the interpretation of informal standards in natural language -POSIX and the Debian Policy -and re ection on the abstractions that make sense. The latter includes a statistic analysis of packages to discover common uses within the maintainer scripts of Debian.

Finally, our work comprises concrete contributions to the implementation of a toolchain able to analyse Debian packages. This encompasses the implementation of a parser and conversion chain from Shell to our intermediary language as well as the implementation of the aforementioned solver for a subset of FTS. This comprises questions of validation of these tools and the establishment of testing procedures for the various unformalised components of the toolchain (eg. by comparing Morbig to dash and CoLiS to Shell). Finally, this includes work to scale our analysis to thousands of packages in a reasonable time, and work to return human readable reports. The result is the discovering and report of a total of 151 bugs to the Debian Bug Tracking System A rst and most obvious limitation lies in the actual implementation of a solver for FTS. The toolchain of our project includes an implementation close to that described in Chapter 5. Its support of FTS is however partial, in particular in the handling of negative literals. The implementation of threaded constraints is also partial and only the speci c threads required by CoLiS are supported (see Section 5.3.4).

One of our short term goals would be to write an implementation for the solver that follows exactly what is described Chapter 5, with full support for FTS, pointed constraints and threaded constraints. This implementation would allow us to measure the e ciency of the various optimisations presented in this thesis. We could for instance try to assess the improvement brought by:

• the use of R 2 instead of R 1 ,

• the extension of R 2 with extra cleanup rules (see Section 5.1.4),

• di erent orders in which pointed constraints handle their literals (see Section 5.2.4),

• the use of threaded constraints in the solver (see Section 5.3),

• di erent formulations of the same formulas using di erent threads -eg. noresolve as described in Section 5.3.1 or as currently implemented in colis-language (see Section 5.3.4).

This requires the de nition of a corpus of test formulas, covering all the aspects of FTS, on which to compare e ciency and run benchmarks. Of course, a particularly interesting (for us) subset of formulas will be the one generated by symbolic execution of Shell scripts in our toolchain.

About a Solver for First-Order Formulas of FTS

There is currently no implementation of a solver for formulas of FTS that are not Σ 1 . It would be easy to add support -although a very ine cient one -for any rst-order formulas by simply following the implementation described in Chapter 4. This would already allow us to check automatically a lot of properties as long as they can be expressed as formulas with only few quanti er alternations (see for instance Section 8.2.4).

Longer term research could involve the development of more e cient algorithm for deciding rst-order formulas, or at least interesting subsets of such formulas. It could be interesting to investigate algorithms for deciding entailment of any Σ 1 -formulas, for instance. [START_REF]cmigrep: broken emacsen-install script[END_REF] 

About the Expressivity of FTS

Some future work could involve increasing the expressivity of FTS to support more features of Unix utilities. This includes the handling of utility arguments, standard inputs and outputs, return codes, etc. directly in the logic instead of concretely in the symbolic engine.

This also includes the handling of more complex transformations like that of find or like the interleavings of trees as created by cp -R. Expressing properties about this interleaving requires to be able to handle predicates that mention the union of two feature trees and the inclusion of a feature tree in and other one (see Section 3.4.1).

FTS could also be extended by supporting features as rst class objects. Although the rst-order theory of such logics is not decidable, it can be possible to recover decidability by limiting the quanti cation over features. One can thus hope that it is possible to decide the satis ability of Σ 1 -formulas at least. In turn, and by adding limited constraints over strings, this could for instance allow to model the use of globs -as in the command rm *.tex which removes all the les whose name ends in .tex from the current working.

FTS could also be extended to support paths. This change would in particular allow us to compare the performances brought by such an extension with the performances of threaded constraints to express the same formulas (see Section 5.3).

Finally, FTS could be extended to support paths as rst class objects. This could be an important step towards the modelisation of symbolic links in the logic. Indeed, the resolution of a path /usr from a variable r can then succeed either if there exists a variable x such that r[usr]x, or if there exists a path p such that usr is a symbolic link in r pointing to p.

About Speci cations

Although we have been careful while writing them, there is no guarantee that the speci cations we gave to Unix utilities are correct models of what they are actually doing. We see two directions which we could follow in order to improve the quality of these speci cations.

• Firstly, we documented some properties -under the form of formulas of FTS -which we expect from speci cations in Section 3.4.1. Some of them can be checked by a solver for any Σ 1 -formulas (completeness, determinism, functionality) and some require at least a solver for Π 2 -formulas (coherence, totality). With such solvers (which we do not currently have; see Sections 8.2.1 and 8.2.2), we could automatically check and report on utilities whose speci cation does not respect these properties. This would increase our con dence in the fact that our speci cations are correct.

• Secondly, we could also compare our modelled utilities with the actual ones from GNU by generating tests based on the speci cations. This would allow us to check whether our speci cations matches with actual used implementations. In a second step, that would also allow us to generate test batteries to check whether a given implementation is POSIX-compliant.

About the Coverage of our Toolchain

The current state of our toolchain has a number of limitations. The most visible limitation lies in the number of maintainer scripts that are accepted by our toolchain and the number of scenarios that our tool manages to run. As of October 6, 2019, 77% of maintainer scripts get successfully converted to the intermediary language CoLiS and 40% of scenarios are ran completely -that is without problems -and 12% partially. Most of the problems met during the execution of scenarios come from utilities that are unsupported by our tool (70% of problems) and scripts that have not been converted (28% of problems).

In order to increase the coverage of our analysis, there are several points which we can improve.

• Firstly, our tool can support more Shell scripts. This can be achieved by improving the conversion to handle speci c expressions in an ad hoc and subtle way. This can also be done by extending the CoLiS language so that it supports other aspects of the Shell that are used in maintainer scripts.

• Secondly, our tool should support more Unix utilities or more aspects of the currently supported utilities. For some of them, this is only a matter of time spent reading their description and writing their speci cation. For some others, the current expressivity of FTS is not enough (see Section 8.2.3).

• Thirdly and nally, our model could be extended to cover more features of Unix lesystems, such as permissions, le contents, hard and symbolic links, etc.

About Finding More Bugs with our Toolchain

Currently, the semantic bugs that we nd only have to do with exit statuses in scenarios. For instance, in the case of our running example, rancid-cgi, we found a bug because the installation of this package could reach the "Not-Installed" state of dpkg.

We however aim at nding bugs that occur even when the exit status of dpkg is legit. For instance:

• the installation of a package should never modify the home of the users,

• maintainer script should be idempotent -that is running it twice should give the same result as running it once2 -, • installing and removing a package should leave the lesystem unchanged3 , • updating a package should leave the lesystem in the same state as if the new version was installed from scratch, • etc.

For instance, the fact that the semantics for the installation of a package does not modify the home of the users can be expressed as a simple entailment. The semantics of an installation being a Σ 1 -formula φ(r, r ), the entailment φ(r, r ) |= r = {home} r indeed expresses that /home is untouched.

As another example, the idempotency of the semantics of a maintainer script -which is also a Σ 1 -formula φ(r, r ) -can be expressed as the Π 2 -formula ∀r, r , r • ((φ(r, r ) ∧ φ(r , r )) ↔ φ(r, r )) 4 . A weaker form can be expressed as the entailment (φ(r, r ) ∧ φ(r , r )) |= r = r .

As in Section 8.2.4, checking these properties therefore requires the existence of solvers for the entailment of Σ 1 -formulas or even for the validity of Π 2 , which we do not currently have (see Sections 8.2.1 and 8.2.2).

About Finding Less Bugs with our Toolchain

If our tool allows to pinpoint problems, it still requires an important human intervention to decide whether they are reasonable or whether they should be considered to be bugs. These limitations in the automation can be mitigated by letting the tool automatically run some checks on the potential bugs.

• Firstly, we can hope that checking the properties on the semantics of maintainer scripts described in Section 8.2.6 would make our summary report better at showing likely bugs. In our running example rancid-cgi, for instance, we found a bug where the installation of this package could reach the "Not-Installed" state in dpkg while having modi ed the lesystem. This bug was however buried under other packages that would reach the "Not-Installed" state without performing any transformation. Such false positives could easily be automatically detected by asking to a solver whether their semantics implies that the input and the output are equal or not. Such a check would then increase the con dence in the fact that reported problems are bugs by ltering out false positives.

• Secondly, we could automatically extract from the semantics of maintainer scripts steps to reproduce the potential problems that are reached. This would allow for better and more understandable bug reporting. This would also allow for an automatic reproduction of bugs in real condition in order to remove false positives.

About the Accessibility of our Toolchain

We strongly believe in making tools like our toolchain available to anyone in order to actually make them useful. All our tools are open source and can be easily found online [13]. We do not consider that enough and we would therefore want to let our toolchain run regularly on all the Debian packages, to make the reports available easily, or even to ll in bug reports automatically.

We would also want to make this tool easy to use, so that anyone can check their own packages before upload, either on their own machine or sending their package to website and getting a report 5 .

About the Generalisation of our Toolchain

Finally, it is tempting to generalise the work of the CoLiS project. We see three ways to generalise, of increasing complexity.

• Firstly, we could generalise our analysis to other packages than that of Debian. Debian being the base of a lot of derived distribution (eg. the Ubuntu family), there is a huge amount of packages that are not supported by Debian but that are installable with dpkg. It would be interesting to run our tool on such corpuses of packages.

• Secondly, we could generalise our analysis to other package managers than dpkg. A lot of package managers indeed rely on mechanisms that are similar. Shell scripts often have a preponderant position in such tools, in similar environment and similar bugs are therefore to be expected.

• Thirdly, we could generalise our analysis to any Shell script. This seems like a much more complex work as we would loose the whole (convenient) context of Debian. This means that we should expect a lot more linguistic features used in Shell scripts than what we currently have to deal with.

[34] Software Heritage archive.

: https://archive.softwareheritage.org/.

[35] The Debian Project. Bugs tagged colis.

: https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users= treinen@debian.org.

[36] The Linux Foundation. Filesystem Hierarchy Standard, version 3.0. June 3, 2015.

: https://refspecs.linuxfoundation.org/fhs.shtml.

[37] The OCaml system release 4.11 -Documentation and user's manual. August 19, 2020. : http://caml.inria.fr/pub/docs/manual-ocaml/.

List of Figures 

Titre:

  Véri cation de scripts Shell e ectuant des transformations de système de chiers hiérarchiques Mots-clefs : POSIX Shell • Système de chiers • Utilitaires Unix • Modélisation • Logiques d'arbres de traits • Décidabilité d'une logique du premier ordre • Résolution e cace de contraintes • Debian • Qualité du logiciel • Installation de paquet logiciel

Introduction 11 1 . 1

 11 History & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Approaches & Feature Tree Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.1 Other Approaches -Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.3 Feature Tree Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3 Overview of the Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 First Layer -One Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 Second Layer -One Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.3 Third Layer -Several Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4 Contributions & Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Notations 29 Modelisation of Unix Filesystems and Utilities 31 3.1 Modelisation of Filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 Abstracting Away from the Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Feature Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Logic Over Feature Trees -FTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Syntax of FTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Semantics of FTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 Expressivity of FTS in Comparison to Related Work . . . . . . . . . . . . . . . . . . 40 3.2.4 Classes of Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Modelisation of Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 Speci cations of One Utility Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.3 Speci cations of Utility Call Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.4 Modelisation of Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Speci cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Properties of Speci cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Introduction 1.1 History & Motivation

Figure 1 . 2 :Figure 1 . 3 :

 1213 Figure 1.2: Installation of rancid-cgi with APT on Debian (excerpt)

Figure 1 . 4 :Figure 1 . 5 :

 1415 Figure 1.4: colis-language: toolchain for the analysis of one Shell script

Figure 1 . 7 :

 17 Figure 1.7: Traces of execution of the preinst script of the rancid-cgi package

Figure 1 . 10 :Figure 1 . 11 :

 110111 Figure 1.10: Report of colis-package on rancid-cgi -Index

Figure 1 . 12 :

 112 Figure 1.12: colis-batch: toolchain for the analysis of several Debian packages

Figure 1 . 13 :Figure 1 . 14 :

 113114 Figure 1.13: Summary report by colis-batch -Index

1match l 3 | ε -> return ε 4 |

 34 function sort (l : list of integers ) : list of integers 2 x l -> 5 let l = sort (l ) 6 return insert (x, l )

7 8 9 match l 10 | ε -> return x ε 11 | x l -> 12 if x < x 13 return x x l 14 else 15 return

 79101112131415 Figure 2.1: An example program in pseudo code

4 )Figure 3 . 3 :

 433 Figure 3.3: Examples of formulas

Figure 3 .

 3 Figure 3.3 shows example formulas in FTS. Let us describe informally their meaning in natural language.

  Figure 3.7: Formula 3.1

Figure 3 . 8 :

 38 Figure 3.8: Formula 3.2

Figures 3 .

 3 Figures 3.7 and 3.8 show the graphical representations of Formulas 3.1 and 3.2. Formulas 3.3 and 3.4 do not have a graphical representation because they both contain universal quanti ers and are thus not DXC.

Figure 3 . 10 :

 310 Figure 3.10: Speci cation of success case for rm -R /etc/rancid/lg.conf

Figure 3 . 11 :

 311 Figure 3.11: Speci cation of error cases for rm -R /etc/rancid/lg.conf

Figure 3 . 13 :

 313 Figure 3.13: Function resolve on normal paths

Figure

  Figure 3.12: Success case of rm -R p/f

Figure 3 .

 3 15 presents an example of a formula generated by resolve.

Figure 3 . 14 :Figure 3 . 16 :Figure 3 . 17 :

 314316317 Figure 3.14: Function resolve for any path

Figure 3 . 19 :

 319 Figure 3.19: Functions normalise and similar for any path

Figure 3 . 21 :Figure 3 .

 3213 Figure 3.21: Implementation of a modelled rm utility (excerpt; simpli ed)

Figure 3 . 23 :

 323 Figure 3.23: Speci cation of success cases for touch /etc/rancid/lg.conf

Figure 3 . 25 :

 325 Figure3.25: Speci cation of the script: touch /etc/rancid/lg.conf; rm /etc/rancid/lg.conf. In the right representation, the some edges are left unmarked for readability. They are of course etc, rancid, and lg.conf.

Figure 3 . 22 :

 322 Figure 3.22: Example script that uses touch and rm

  and 3.24.

  This result was later extended by Maher, Comon and Lescanne [Maher 1988; Comon & Lescanne 1989]. A rst decidability result for the rst-order theory of feature trees was given for the logic FT [Aït-Kaci et al. 1994] which comprises only the predicates x[f ]y and x[f ]↑ [Backofen & Smolka 1995]. This was later extended to the logic CFT [Smolka & Treinen 1994], which in addition to FT has an arity predicate x[F ] for any nite set F of feature symbols, expressing that the root of x has precisely the features F [Backofen 1995; Backofen & Treinen 1998].

Figure 4 . 2 :

 42 Figure 4.2: Clash rules in system R 1

Figure 4 . 3 :

 43 Figure 4.3: Transformation rules for positive literals in system R 1

Figure 4 . 5 :Figure 4 . 4 :

 4544 Figure 4.5: Transformation of Formula 4.2 using R 1

and 4. 3 .

 3 The intermediary constraints can be found in Figure 4.5. (0) Start from the example constraint. Notice the pattern r[f ]x ∧ r[f ]y. The rule D F can apply.

Figure 4 . 6 :

 46 Figure 4.6: Transformation rules for positive and negative literals in system R 1

Figure 4 . 8 :

 48 Figure 4.8: Transformation of Formula 4.3 using R 1

)( 4 )

 4 Rewrite each constraint using D NS A . This replaces the negated similarity atoms by negated absence atoms ¬y[f ]↑, ¬y[g]↑ and ¬x[h]↑. The rst and third ones belong to now irreducible constraints. The second one, ¬y[g]↑ forms a pattern with y[g, h]↑: R NA A can apply. Rewrite this constraint using R NA A . This replaces ¬y[g]↑ by ¬y[∅]↑ which can trigger the clash C NA E . The resulting DXC contains two constraints. These constraints share the part x[f, g]↑ ∧ y[g, h]↑ but di er on the negated absence atom that they carry, either ¬y[f ]↑ or ¬x[h]↑.

Lemma 4 . 2 (

 42 Rules of R 1 perform equivalences). For any constraint c, if c transforms to φ via a rule of R 1 , then c and φ are equivalent. In other words, if c

Figure 4 . 9 :

 49 Figure 4.9: Formula 4.4

  h} z Lemma 4.5 describes general properties of such global and local parts.

Lemma 4 . 5 (

 45 Properties of Global and Local Parts). For all constraint c, sets of variables X and Y :

1 4 return the first rule of R 1 applicable to c of 5 -all clash rules 6 -G S F or D NF 7 - 8 - 9 10 11 if c is reducible in R 1 12 17 return ∃X • c 18 19

 4567891111718 function apply-rule-1 ( rule , constraint ) : Σ 1 -formula 2 3 function choose-rule-1 (c : constraint ) : rule all other rules of R 1 but P NA S and P NS S P NA S or P NS S function transform-1-xc (∃X • c : x-constraint ) : DXC let r = choose-rule-1 ( c ) 13 let φ = apply-rule-1 (r, c) 14 let d = DXC (∃X • φ) function transform-1 (d : DXC ) : DXC

Figure 4 . 10 : 1 •

 4101 Figure 4.10: Function transform-1

1 4 5Figure 4 . 11 : 1 Section 4 .B. 5 . 4 . 9 .

 441114549 Figure 4.11: Functions garbage-collect-1-xc and garbage-collect-1

6 7Figure 4 . 12 :

 6412 Figure 4.12: Functions switch-xc and switch

Lemma 4 . 13 .

 413 If all the variables of Z are reachable in ∃y, Z • (x[f ]y ∧ c), then they are reachable in ∃Z • c.

Figure 4

 4 Figure 4.13: Formula 4.5

1 3 | 5 | ⊥ -> return false 6 | _ -> return true 7 8 | 14 |

 356814 Figure 4.14: Function decide

Figure 4 . 15 :

 415 Figure 4.15: Internal steps of execution of decide on Formula 3.3

Figure 4 . 16 :

 416 Figure 4.16: Application of decide on Formula 3.4

Lemma 4 . 15 .

 415 The function decide terminates on all inputs.Proof. All the calls from decide to other functions are safe: PNF, DXC, transform-1 (Lemma 4.8), garbage-collect-1 and switch (Lemma 4.14) all terminate. The only problem comes from the recursive calls of decide.

  set {g, h} is a valid choice for D 0 as it intersects {h}, c {f, g} and {g}. The corresponding set D is then simply {g}.

  (a) It is impossible to have a literal x[f ]x in c by non-applicability of C C . (b) The literals x[f ]y with x = y are satis ed by de nition of ρ, case 4.8. (c) It is impossible to have a literal y[f ]x with x = y in c, because they are ruled out by the hypothesis that Lemma 4.7 makes on x. 2. Secondly, let us consider negated feature atoms. It is however impossible to have such atoms in c, by non-applicability of D NF . 3. Thirdly, let us consider absence atoms. They are of the form x[F ]↑. If F is empty, then x[F ]↑ is trivially satis ed by any valuation. Let us assume that F is not empty and consider any f ∈ F .

1 4 return the first rule of R 1 applicable to c of 5 -all clash rules 6 -G S F or D NF 7 - 8 - 9 10 11 if c is reducible in R 1 12 17 return ∃X • c 18 19Figure 4 . 10 :

 4567891111718410 Figure 4.10: Function transform-1

Appendix 4 .Lemma 4 . 8 (

 448 B Proof of Lemma 4.8 This appendix contains the proof of Lemma 4.8. The de nition of transform-1 is given in Figure 4.10. Both Figure 4.10 and Lemma 4.8 are restated here for convenience. Termination of transform-1). The function transform-1 terminates on all inputs.

Figure 4 . 18 : 1 Finally, after transform- 1

 41811 Figure 4.18: Rules of R 1 that are not clash rules and not in R trunc 1

Lemma 4 . 18 ( 1 ,

 4181 Stability of Possible Feature Sets By Transformation). For any two constraints c and c , if c ⇒ c via R trunc then FS (c ) = FS (c).

Lemma 4 . 19 (

 419 Finiteness of Possible Feature Sets By Transformation). For any constraint c, FS (c) is nite.

Figure 4 . 19 :

 419 Figure 4.19: Formulas 4.11 and 4.12

Lemma 4 . 20 (

 420 Control of Absence and Similarity Constraints). In a transformation c 0 ⇒ c, if x[F ]↑ ∈ c, then x is active in c and if x = F y ∈ c is not solved, then x and y are active in c.

Lemma 4 . 21 (

 421 Parents of Variables). Active variables admit only active parents. Passive variables with more than one parent have only active parents. In other words, for all y ∈ V a (c), parents c (y) ⊆ V a (c), and for all y / ∈ V a (c), if #parents c (y) > 1, then parents c (y) ⊆ V a (c).

  introduces a new feature atom z[f ]y to obtain c . The active variables do not change, that is V a (c ) = V a (c). parents remains unchanged, except for y. We have:parents c (y) = parents c (y) ∪ {z} parents c (u) = parents c (u)for all u = y By induction hypothesis, for all u = y, parents c (u) = parents c (u) ⊆ V a (c) = V a (c ). Moreover, by Lemma 4.20, x, z ∈ V a (c). Since x ∈ parents c (y), then, by induction hypothesis (under the form of Lemma 4.22), parents c (y) ⊆ V a (c). Therefore, parents c (y) ⊆ V a (c) = V a (c ).

  By induction hypothesis again (under the form of Lemma 4.22), we have parents c (y) ⊆ V a (c) and parents c (z) ⊆ V a (c). Since neither y nor z belong to these sets, we have parents c (z) = parents c (y) ∪ parents c (z) ⊆ V a (c)\{y, z} = V a (c )\{y, z} ⊆ V a (c ). The property holds for z. * If neither y nor z is in V a (c), then, by induction hypothesis, they have only one parent. Therefore, parents c (z) = parents c (y) ∪ parents c (z) = {x} ∪ {x} = {x}. Moreover, since y / ∈ V a (c), then V a (c ) = V a (c) and z / ∈ V a (c ). The property holds for z.

Lemma 4 . 23 (

 423 Depth of Active Variables). If x ∈ V a (c), then d c (x) < #V a (c).

•

  S NS F , applied to a constraint c that contains x = F y ∧ x[f ]z where F is nite, removes the negated similarity atom and replaces it by either x = f y or x = F \{f } y to obtain c . The active variables and all the other negated similarity atoms are left unchanged. The new negated similarity atom in c (x = f y or x = F \{f } y) has the same variables as x = F y in c. Since F is nite, then by induction hypothesis, one of x or y is active in c and thus in c . The property holds. • S NS A and S NS S , similarly, remove a negated similarity atom x = F y from c and replace it by either x = F ∩G y or x = F \G y to obtain c . G comes from an absence atom x[G]↑ or a similarity atom x = G z. The active variables and all the other negated similarity atoms are left unchanged. The new similarity in c shares a variable x with an absence or a similarity atom. By Lemma 4.20, x is active in c . The property holds. Lemma 4.25 (Depth of Negated Similarity Atom). If x = F y ∈ c, then d c (x = F y) ≤ #V a (c).

•

  S NS A and S NS S remove a negated similarity atom x = F y from c and replace it by either x = F ∩G y or x = F \G y to obtain c . G comes from an absence atom x[G]↑ or a similarity atom x = G z. The active variables and all the other negated similarity atoms are left unchanged. The new similarity in c shares a variable x with an absence or a similarity atom. By Lemma 4.20, x is active in c . The property holds.

Figure 5 . 2 :

 52 Figure 5.2: Transformation rules for positive literals in system R 2

Figure 5 . 3 :

 53 Figure 5.3: Transformation rules for positive and negative literals in system R 2

Figure 5 . 6 :

 56 Figure 5.6: Transformation of Formula 5.1.

Figure 5 . 5 :

 55 Figure 5.5: Formula 5.1

1 4 return any rule of R 2 applicable to c 5 6 7 if c is reducible in R 2 8 let 10 | ⊥ -> return ⊥ 11 |Figure 5 . 7 :

 4578101157 Figure 5.7: Function transform-2

Lemma 5 . 3 (

 53 Termination of transform-2). The function transform-2 terminates on all inputs.

Figure 3 . 10 :

 310 Figure 3.10: Speci cation of success case for rm -R /etc/rancid/lg.conf

Figure 5 . 8 :

 58 Figure 5.8: Extra Transformation Rules for System R 2

Table 5 . 2 :

 52 Number of rules in R 2 and R • 2

Figure 5 . 9 : 4 .

 594 Figure 5.9: System R • 2 of Transformation Rules -Clash Rules

Figure 5 . 10 :

 510 Figure 5.10: System R • 2 of Transformation Rules -Rules for positive literals

Figure 5 . 11 :

 511 Figure 5.11: System R • 2 of Transformation Rules -Rules for negative literals

Figure 5 . 13 :

 513 Figure 5.13: Transformation of Formula 5.5 by R • 2

Figure 5 .

 5 Figure 5.12: Formula 5.5

Figure 5 .

 5 Figure 5.14: Commutative diagram to illustrate Lemma 5.6

  Figure 5.15: Commutative diagram to illustrate Lemma 5.7

Lemma 5 . 7

 57 (M • leaves the semantics unchanged). If p ⇒ p via M • , then p = p . Lemmas 5.6 and 5.7 allow us to see R •

Figure 5 . 3 4 5 return any rule of R • 2 applicable to p 6 7 8 : constraint or ⊥ 9 if p is reducible in R • 2 10 let 12 | ⊥ -> return ⊥ 13 | 15 match p 16 | ε c -> return c 17 |Figure 5 . 17 :

 535689101213151617517 Figure 5.17 introduces a function transform-2-pointed which does exactly what we have described in this example. It assumes given a well-formed pointed constraint. Instead of using transform-2(c) from Section 5.1.3, one can thus use transform-2-pointed( ε c). This is basically doing the

1 3 if G • S F is applicable to p 4 return r e 5 else 6 return p 7 8 9 : constraint or ⊥ 10 let p = ε c c 11 letFigure 5 . 18 :

 3456791011518 Figure 5.18: Functions transform-2 and add-transform-2

7 | 9 | 10 | 13 : Σ 1 -formula 14 match p 15 | 16 |Figure 3 . 20 :Figure 5 . 19 :

 79101311516320519 Figure 3.20: Function noresolve for any path

12 13 14 : Σ 1 -formula 15 match p 16

 1214116 function noresolve (r : variable , cwd : path , p : path )

Figure 5 . 20 :Figure 5 . 21 :Figure 5 . 22 :

 520521522 Figure 5.20: Function noresolve, threaded

11 12 13 F

 1113 function ifresolve (r : variable , cwd : path , p : path , : variable -> Σ 1 -formula ) : Σ 1 -formula 14 match p 15

Figure 5 .

 5 Figure 5.23: Function ifresolve

Lemma 5 . 11 (

 511 Satis ability of Threaded Constraints With Only Positive Literals in Main Constraint and Only Negated Absence Atoms in Guards). For all threaded constraint t

  positive variable and then only negative variablesx 1 ∨ x 2 -twopositive variables Lemma 5.13 (NP-Completeness of LIMSAT). LIMSAT is NP-complete. Proof. Any instance of LIMSAT is obviously an instance of SAT [Cook 1971; Garey & Johnson 1979]. Take now an instance of 3-SAT [Cook 1971; Garey & Johnson 1979

1 3 c 5 | 6 | 7 8 10 | ⊥ -> return true 11 | _ -> return false 12 Figure 5 . 26 :

 3567101112526 Figure 5.26: Helper functions for activate-threads

function a c t

  i v a t e -t h r e a d s -l o o p (t : t h re a de d -c o n st r ai n t , τ : list of threads activated : boolean ) : t hr e ad e d-c o ns t ra i n t or ⊥ c ∧ τ = t return a c t i v a t e -t h r e a d s -l o o p (c, τ , false ) else return t

Figure 5 . 27 :Figure 5 . 28 : 3 c 5 | ⊥ -> return false 6 | c -> 7 match τ ∧ τ 8 | -> return true 9 | 11 | c -> 12 if c he 16 |Figure 5 . 29 :

 527528356789111216529 Figure 5.27: Function activate-threads, key element to transform-2-threaded and add-transform-2-threaded

Figure 5 . 19 :

 519 Figure 5.19: Speci cation cases of mkdir -p /usr/lib/foo

Figure 5 .

 5 Figure 5.30 shows a graph of dependencies of the points between themselves. An arrow from a point a to a point b means that the proof of point a uses the result of the proof of point b.

Figure 5 .

 5 Figure 5.30: Dependencies of the proofs of the six points of the induction hypothesis

  (a) It is impossible to have a feature atom x[f ]x in c ≤x by non-applicability of C C . (b) The feature atoms x[f ]y in c ≤x with y < x are satis ed by de nition of ρ, case 5.20.(c) It is impossible to have a feature atom y[f ]x in c ≤x with y < x by de nition of the order <.2. Secondly, let us consider negated feature atoms. We have three sub-cases, as such atoms can be ¬x[f ]x (2a), ¬x[f ]y with y < x (2b) or ¬y[f ]x with y < x (2c).(a) The negated feature atoms ¬x[f ]x in c ≤x are trivially satis ed in our model of nite feature trees.(b) Consider a negated feature atom ¬x[f ]y in c ≤x with y < x. If f / ∈ dom(ρ ≤x (x)), then this literal is satis ed. Assume now that f ∈ dom(ρ ≤x (x)). By point 5, either there exists a feature atom x[f ]z ∈ c ≤x or ρ ≤x (x)(f ) is a fresh tree. The former is impossible, by non-applicability of D NF F . By point 4, ρ ≤x (y) is not a fresh tree. Therefore ρ ≤x (x)(f ) = ρ ≤x (y) and our literal is satis ed.(c) See 2b.3. Thirdly, let us consider absence atoms x[F ]↑ in c ≤x . Let us take any f ∈ F and show that f / ∈ dom(ρ ≤x (x)). By de nition of ρ, this amounts to show that f is not in D x (3a) nor in {f | ∃y•x[f ]y ∈ c} (3b) nor in any dom(ρ <x (y)) ∩ G for any x = G y in c ≤x with y < x (3c).

  (a) f is not in D x because, by de nition of D, D x does not contain any feature coming from an absence atom onx in c, which is precisely what f is. (b) f is not in {f | ∃y • x[f ]y ∈ c}as that would imply the existence of a y such that x[f ]y ∈ c. By de nition of the order <, y < x so x[f ]y is would also be in c ≤x . Finally, by non-applicability of C F A , and because we have an absence atom x[F ]↑ ∈ c ≤x , this is not possible.

  then there exists an absence atom x[F ]↑ in c -and thus in c ≤x -with f ∈ F .3. If f is in {f | ∃y, F • y < x, x = F y ∈ c, f ∈ F },then there exists a similarity atom x = F y ∈ c with y < x with f ∈ F . By induction hypothesis, point 2, applied on y, either there exists y[G]↑ ∈ c with f ∈ G (3a) or f ∈ dom(ρ <x (y)) (3b). (a) If there exists y[G]↑ ∈ c with f ∈ G then, by non-applicability of P A S , there is

Figure 6 . 1 :

 61 Figure 6.1: Standard pipeline of lexing and parsing commonly found in compilers and interpreters

  al. 2017b; Régis-Gianas et al. 2020] or to other documents detailing such pitfalls [20; Gar nkel et al. 1994; Greenberg & Blatt 2019].

Figure 6 .

 6 Figure 6.2: Example words Consider Figure 6.2 as an example.By the lexical conventions of most programming languages, the rst line would be decomposed as ve distinct tokens (namely BAR, =, 'foo', "ba" and r) while the lexical conventions of the Shell language considers the entire line BAR='foo'"ba"r as a single token, classi ed into the category of words. On the second line, the input is split into the tokens X=0, echo and x$BAR" "$(echo $(date)). Notice that the third token contains subshells, that is nested quotations of the form $(• • •$(• • •)) which themselves can contain any piece of Shell code, including complex control structures.

Figure 6 . 3 :

 63 Figure 6.3: Nested subshells

Figure 6 . 5 :Figure 6 . 6 :

 6566 Figure 6.5: Promotion of a word to a reserved word f=~niols/"$(echo foo)${x:=bar}"'$baz'[a-b]* Figure 6.6: A word can have many components

Figure 6 . 4 :

 64 Figure 6.4: Promotion of a word to an assignment

Figure 6 . 8 :

 68 Figure 6.8: Parse tree for CC=gcc make all | grep 'error'

Figure 6 . 7 :

 67 Figure 6.7: Lexical analysis is undecidable

Figure 6 . 9 :

 69 Figure 6.9: Architecture of Morbig

Figure 6

 6 Figure 6.10: Strings and lists of strings

Figure 6 .

 6 Figure 6.12: Example script modifying $IFS

Figure 6 .

 6 Figure 6.13: Example of surprising semantics with set -e

Figure 6 . 15 :

 615 Figure 6.15: postinst script of the ocaml-base-nox package in CoLiS (excerpt; cleaned up)

Figure 7 . 1 :

 71 Figure 7.1: Function counting the number of for loops in a Shell script using a visitor

Figure 7 . 2 :

 72 Figure 7.2: Example code for the symbolic interpreter

Figure 6 . 15 :

 615 Figure 6.15: postinst script of the ocaml-base-nox package in CoLiS (excerpt; cleaned up)

Figure 7 . 4 :

 74 Figure 7.4: Formulas 7.2 and 7.3

(r 0

 0 = r 1 ∧ r 1 [usr]x 1 ∧ x 1 [local]y 1 ∧ y 1 [lib]z 1 ) ∧ (r 1 = r 2 ∧ (¬r 2 [usr]↑ → (r 2 [usr]x 2 ∧ (¬x 2 [local]↑ → (x 2 [local]y 2 ∧ (¬y 2 [lib]↑ → (y 2 [lib]z 2 ∧ z 2 [ocaml]↑)))))))(7.2)

r 0 =Figure 7 . 5 :

 075 Figure 7.5: Formulas 7.6 and 7.7

r 3 ∧

 3 x 2 =c {local} x 3 ∧ y 2 =c {lib} y 3 ∧ z 2 =c {ocaml} z 3 ∧ r 3 [usr]x 3 ∧ x 3 [local]y 3 ∧ y 3 [lib]z 3 ∧ z 3 [ocaml]u 3 ∧ u 3 [ ]↑ (7.6) (r 0 = r 2 ∧ r 2 [usr]x 2 ∧ x 2 [local]y 2 ∧ y 2 [lib]z 2 ) ∧ (r 2 = r 3 ∧ (¬r 3 [usr]↑ → (r 3 [usr]x 3 ∧ (¬x 3 [local]↑ → (x 3 [local]y 3 ∧ (¬y 3 [lib]↑ → (y 3 [lib]z 3 ∧ z 3 [ocaml]u 3 )))))))

r 0

 0 [usr]x 0 ∧ x 0 [local]y 0 ∧ y 0 [lib]z 0 ∧ z 0 [ocaml]↑ ∧ r 0 =c {usr} r 3 ∧ x 0 =c {local} x 3 ∧ y 0 =c {lib} y 3 ∧ z 0 =c {ocaml} z 3 ∧ r 3 [usr]x 3 ∧ x 3 [local]y 3 ∧ y 3 [lib]z 3 ∧ z 3 [ocaml]u 3 ∧ u 3 [ ]↑ (7.8)The interpretation will then proceed with chown [ 'root:staff'; '/usr/local/lib/ocaml' ] and chmod [ '2775'; '/usr/local/lib/ocaml' ]. Since users, groups and permissions are abstracted away in our model, these two utility calls are equivalent to a test of existence of /usr/local/lib/ocaml.

7. 3 .

 3 ANALYSING INSTALLATION SCENARIO OF CORPUSES OF DEBIAN PACKAGES

8. 2

 2 Limitations & Perspectives 8.2.1 About a Solver for (Threaded) Constraints of FTS

1. 1

 1 Metadata of the rancid-cgi package (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Installation of rancid-cgi with APT on Debian (excerpt) . . . . . . . . . . . . . . . . . . 1.3 A bug report on the package cmigrep (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . 1.4 colis-language: toolchain for the analysis of one Shell script . . . . . . . . . . . . . . . . 1.5 preinst script of the rancid-cgi package . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 preinst script of the rancid-cgi package in CoLiS . . . . . . . . . . . . . . . . . . . . . 1.7 Traces of execution of the preinst script of the rancid-cgi package . . . . . . . . . . . . 1.8 colis-package: toolchain for the analysis of a Debian package . . . . . . . . . . . . . . . 1.9 Flowchart for the installation of a package . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 Report of colis-package on rancid-cgi -Index . . . . . . . . . . . . . . . . . . . . . . 1.11 Report of colis-package on rancid-cgi -One output state . . . . . . . . . . . . . . . . 1.12 colis-batch: toolchain for the analysis of several Debian packages . . . . . . . . . . . . . 1.13 Summary report by colis-batch -Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 Summary report by colis-batch -Page of the installation scenario . . . . . . . . . . . . 2.1 An example program in pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Resolution of a path in a lesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Examples of feature trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Examples of formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Conversion from FT extended with fence and similarity to the logic presented in this work 3.5 Conversion from the logic presented in this work with the algebra of nite and co nite sets to FT extended with fence and similarity. . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Base predicates of FTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Formula 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Formula 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Five example calls to the utility rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Speci cation of success case for rm -R /etc/rancid/lg.conf . . . . . . . . . . . . . . . 3.11 Speci cation of error cases for rm -R /etc/rancid/lg.conf . . . . . . . . . . . . . . . . 3.13 Function resolve on normal paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12 Success case of rm -R p/f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14 Function resolve for any path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 resolve(x, f, ../../g, z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16 similar(x, x , f /../../g, z, z ) -Naive version . . . . . . . . . . . . . . . . . . . . . . . 3.17 similar(x, x , f /../../g, z, z ) -After normalising the path . . . . . . . . . . . . . . . .

  

  

  

  1 if test [ ' -h '; '/ etc / rancid / lg . conf ' ] then 2 rm [ '/ etc / rancid / lg . conf ' ] 3 fi 4 if test [ ' -e '; '/ etc / rancid / apache . conf ' ] then

	5	rm [ '/ etc / rancid / apache . conf ' ]
	6 fi	
		Figure 1.6: preinst script of the rancid-cgi package in CoLiS
		test [ '-h'; '/etc/rancid/lg.conf' ]
		rm [ '/etc/rancid/lg.conf' ]	test [ '-e'; '/etc/rancid/apache.conf' ]
	test [ '-e'; '/etc/rancid/apache.conf' ]	rm [ '/etc/rancid/apache.conf' ]
	rm [ '/etc/rancid/apache.conf' ]

  Satis ability and validity are then the same. If φ is a closed formula, we write |= M φ and |= φ if φ is satis able/valid in M and all models respectively. Satis ability and validity have a close relationship with existential and universal closures, as stated in Lemma 3.1.

Lemma 3.1 (Satis ability and Validity and Existential and Universal Closures). A formula φ is satis able in a model M if and only if its existential closure is satis able/valid in M . In other words, φ is satis able in M if and only if |= M ∃ • φ. A formula φ is valid in a model M if and only if its universal closure is satis able/valid in M . In other words, φ is valid in M if and only if |= M ∀ • φ.

  De nition 3.11(Equivalence). Two formulas φ and ψ are equivalent in a modelM if |= M ∀ • (φ ↔ ψ).In other words, φ and ψ are equivalent if, for all valuation ρ, ρ |= M φ if and only if ρ |= M ψ. To put it yet another way, φ and ψ are equivalent if φ implies ψ and ψ implies φ.

). A formula φ implies ψ in a model M if |= M ∀ • (φ → ψ).

In other words, φ implies ψ if, for all valuation ρ, if ρ |= M φ, then ρ |= M ψ.

  The function decide has three return statements that may return true, Lines 6, 12 and 15. Let us show by induction on the number of recursive calls that, for each formula φ, there is a status, either satis able or valid, such that decide(φ) is true if and only if φ has that status. By induction hypothesis, there is a status -satis able or valid -such that decide(Q • χ) -and thus decide(φ) -is true if and only if Q • χ -and thus φ -has that status. • On Line 15, decide(φ) is true if and only if decide(Q • ¬ψ) if false. By induction hypothesis, there is a status, either satis able or valid, such that decide(Q • ¬ψ) is true if and only if Q • ¬ψ has that status. This means that decide(φ) is true if and only if Q • ¬ψ and thus ¬φ does not have that status. We can conclude by adding that φ is satis able if and only if ¬φ is not valid, and φ is valid if and only if ¬φ is not satis able. For any closed formula φ now, validity and satis ability are the same. Therefore, decide(φ) is true if and only if φ is satis able. 56 Theorem 4.3. The rst order theory of FT is decidable.

3.

Lemma 4.

16

. Given a closed formula φ, decide returns true if and only if φ is satis able. Proof.

• On Line 6, decide returns true if and only if the given formula φ is satis able. This comes from the fact that PNF, DXC and transform-1 return equivalent formulas. Moreover, the result of transform-1 is not ⊥ if and only if it is satis able (Theorem 4.2).

• On Line 12, decide(φ) is true if and only if decide(Q • χ) is true. This comes from the fact that PNF, DXC, transform-1, garbage-collect-1 and switch, called in these contexts, return equivalent formulas.

Table 4 .

 4 1: Various models and if their rst order theory is the same as that of FT 3. all the feature trees of potentially in nite width, and potentially in nite depth as long as they have no cycles.

	4.3. DISCUSSIONS

  This property impliesLemma 4.22. This is mainly this (weaker) formulation that we use in the forthcoming proofs, including in the forthcoming proof of Lemma 4.21. Using Lemma 4.22 in the proof of Lemma 4.21 might seem like doing a circular reasoning. This is however ne as we are proving both of them by induction.Lemma 4.22 (Active Parents of Variables). Any variable that has one active parent admits only active parents. In other words, for any y

	active variables
	strings of
	passive variables
	Figure 4.22: Informal drawing of the shape of
	constraints and their active and passive vari-
	ables

Table 4 .

 4 

	2: Decreasing lexicographic measure over constraints in transformation rules
	1	2	3 4 5 6 7 8
	D NS A		

Table 5 .

 5 

	1: Decreasing lexicographic measure over constraints in transformation rules
		1 2 3 4 5 6 7 8 9
	G S F	↓

  The notion of irreducibility of a constraint with respect to rules in a context is fairly natural. It can be found in De nition 5.7.De nition 5.7 (Irreducibility of a Constraint With Respect to a Rule in a Context). A constraint c is irreducible with respect to a set of rules R in a context c if non of the rules of R applies to c in the context c . With this notion of irreducibility in a context, we can formalise what it means for a pointed constraint to be well-formed in De nition 5.8. De nition 5.8 (Well-Formedness). A pointed constraint p = π c is well-formed if the following hold:

Table 6 .

 6 1: Comparison of Morbig and dash on the whole corpus from Software Heritage. The percentages are in function of the total number of scripts.

	Morbig	dash	All	Accepted	Rejected
	All		7,436,215 (100%) 5,981,054 (80%) 1,455,161 (20%)
	Accepted	5,609,366 (75%) 5,607,331 (75%)	2,035 (<1%)
	Rejected	1,826,849 (25%)	373,723 (5%) 1,453,126 (20%)
	therefore 0.2ms (with a standard deviation which is less than 1% of this duration). The maximum parsing
	time is 70ms, reached for the prerm script of package w3c-sgml-lib_1.3-1_all which is 1121 lines long.

  It is interesting to consider the cases where they disagree, because this is where one can nd bugs in one parser or the other.

Software Heritage archive

[33; 34; Abramatic et al. 2018

]. This archive contains all the Shell scripts in GitHub, and more, for a total of 7,436,215 les. Table

6

.1 shows general numbers about what both parsers accept or reject in this archive. On most scripts (95%), Morbig and dash do agree.

  Figure 1.6: preinst script of the rancid-cgi package in CoLiS

		6.2. SEMANTIC ASPECTS
	begin	
	true ;	
	if [ -h / etc / rancid / lg . conf ]; then if test [ '! '; ' -e '; '/ usr / local / lib / ocaml ' ] then rm / etc / rancid / lg . conf if mkdir [ '/ usr / local / lib / ocaml ' ] then fi begin if [ -e / etc / rancid / apache . conf ]; then chown [ ' root : staff '; '/ usr / local / lib / ocaml ' ]; rm / etc / rancid / apache . conf chmod [ ' 2775 '; '/ usr / local / lib / ocaml ' ] fi end
	fi fi ;	Figure 1.5: preinst script of the rancid-cgi package
	[...]	
	for i in [ '/ usr / lib / ocaml /3.06 '; '/ etc / ocaml '; '/ var / lib / ocaml ' ]
	do	
	if test [ ' -e '; split i '/ ld . conf ' ] then if test [ ' -h '; '/ etc / rancid / lg . conf ' ] then begin rm [ '/ etc / rancid / lg . conf ' ] echo [ ' Removing leftover ' i '/ ld . conf ' ] ; fi rm [ ' -f '; split i '/ ld . conf ' ] ; if test [ ' -e '; '/ etc / rancid / apache . conf ' ] then rmdir [ ' --ignore -fail -on -non -empty '; split i ] rm [ '/ etc / rancid / apache . conf ' ] end fi fi
	done	
	end	
	#!/bin/sh	
	set -e	
	if [ ! -e / usr / local / lib / ocaml ]; then
	if mkdir / usr / local / lib / ocaml 2 >/ dev / null ; then
	chown root : staff / usr / local / lib / ocaml
	chmod 2775 / usr / local / lib / ocaml
	fi	
	fi	
	[...]	
	for i in / usr / lib / ocaml /3.06 / etc / ocaml / var / lib / ocaml
	do	
	if [ -e $i / ld . conf ]; then
	echo " Removing leftover $i / ld . conf "
	rm -f $i / ld . conf
	rmdir --ignore -fail -on -non -empty $i
	fi	
	done	
	Figure 6.14: postinst script of the ocaml-base-nox package (excerpt; cleaned up)

  Validating the semantics of CoLiS with respect to that of ShellThe toolchain for analysing CoLiS scripts is designed with formal veri cation in mind: the syntax, semantics, and interpreters of CoLiS are implemented using the Why3 environment [Bobot et al. 2015] for formal veri cation. More precisely, the syntax of CoLiS is de ned abstractly (as abstract syntax trees, AST for short) by an algebraic datatype in Why3. Then the semantics is de ned by a set of inductive predicates

				Shell		
					Parsing	
					& Conversion
					CoLiS	
	Semantics of Shell	Usage	sh		Interpreter	Proof	Semantics of CoLiS
			Output	=?	Output	
	Figure 6.16:				

Table 7 .

 7 

			1: Builtins which may render analysis impossible
			Builtin Occ. Files	
			alias	2	2	
			eval	42	30	
	Table 7.2: Sequential control structures		Table 7.3: Process creation and communication.
	Structure	Occ.	Files		Construct	Occ. Files
	if	56,643 27,122		subshell	431	356
	while	4,045	3,929		|	12,225 6,154
	until	1	1		trap	32	28
	for	3,564	2,400		kill	39	35
	case	6,227	5,296		&	8	7

Table 7 .

 7 

	4: Simple Shell builtins	Table 7.5: The ten most used Unix utilities acting on the le system
	Builtin	Occ.	Files	Utility	Occ.	Utility Occ.
	set	30,817 30,579	[	47,633	find	2,144
	exit	13,915	8,685	which 12,669	xargs 1,907
	echo	10,770	5,010	rm	10,383	test	1,594
	true	10,740	3,966	grep	5,138	chmod 1,562
	.	4,922	2,900	read	3,896	chown 1,504

Table 7 .

 7 6: Options of ln Shell variable is assigned to only once in a script, and this assignment occurs at top level.

						Table 7.7: Top 5 Debian-speci c utilities
	Options	Occ.	Options	Occ.	Utility	Occ. Files
	-s	333	(none)		5	dpkg-maintscript-helper 9,992 3,889
	-f -s	210	-f		4	dpkg	6,862 6,518
	-r -s	31	-S -b -s	4	deb-systemd-helper	4,530 1,029
	-f -n -s	10	-b -f -s	3	update-alternatives	3,616 2,350
	-s -v	5	total		605	update-menus	3,363 3,336
			Table 7.8: Number of scripts using exotic utilities
			Level Number	%	Level Number	%
			1	693 2.20%	50	3,286 10.44%
			2	1,032 3.28%	100	4,058 12.89%
			5	1,459 4.63%	200	5,232 16.62%
			10	1,794 5.70%	500	8,095 25.71%
			25	2,364 7.51%	
	2,841 cases (33%), a				

Table 7 .

 7 9: Bugs found between 2016 and 2019 in Debian sid distributions Analysing Installation Scenario of Corpuses of Debian Packages 7.3.1 Coverage of the case study

	Bugs Closed Detected by	Reports Examples
	95	56 parser	[3]	not using -e mode
	6	4 parser & manual	[7]	unsafe or non-POSIX constructs
	34	24 corpus mining	[2; 5]	wrong options, mixed redirections
	9	7 conversion	[4]	wrong test expressions
	5	2 symbolic execution [7; 8; 10] try to remove a directory with rm
	3	3 formalisation	[6]	bug in dpkg-maintscript-helper
	151	92		
	7.3			

See https://en.wikipedia.org/wiki/Analytical_Engine.

Or "Small-Scale Experimental Machine". See https://en.wikipedia.org/wiki/Manchester_Baby.

For the Apollo guidance computer, see https://en.wikipedia.org/wiki/Apollo_Guidance_Computer. For its program, see https://github.com/chrislgarry/Apollo-11/. That same repository also contains the code of the lunar module, which also counts a bit more than 25,000 lines of code.

 4 See https://en.wikipedia.org/wiki/

Software_crisis.5 In the 1950s, some basic operating system features such as resident monitor functions were developed. Such functions could automatically run several programs one after the other in order to save time. The modern form of operating systems only came in the early 1960s and therefore we chose to keep that date.

For instance, one user could compute things while editing a document and, at the same time, another user could read another document while sending it to a printer.

Actually, these would be the pre-dependencies. The pre-dependencies are necessary at the time of installation of the package; they must therefore be installed before the package itself. The dependencies are only necessary when the software contained in the package is used. Technically, they can be installed at any time before the use of the software, and that can be after its installation.

Advanced Package Tool. See https://en.wikipedia.org/wiki/APT_(software).

Moreover, some of them would be incompatible. There exists some research on the co-installability of packages but this is o -topic here.

Of course, this is fairly simple now that most people have a reasonable internet connection, which has not always been the case and is still not the case for everyone on the planet.

And, more exactly, sid for amd64, including contrib and non-free.

Named... the Debian Quality Assurance Team! See https://qa.debian.org/.

A linter for Debian. See https://lintian.debian.org/.

Package installation, upgrading and removal testing suite. See https://piuparts.debian.org/.

See https://salsa.debian.org/ci-team/autopkgtest/raw/master/doc/README.package-tests.rst.

See https://ci.debian.net/doc/.

See https://www.mancoosi.org/ and https://www.mancoosi.org/edos/ -the EDOS website seems to be dead now.

CoLiS stands for Correctness of Linux Scripts.

An other team in the CoLiS project explores the use of tree transducers to provide this same formalism. We did not contribute to this line of work and it is therefore not going to be presented in this thesis.

As well as all the other common operations: update, removal, purge, etc.

For removal of a package, dpkg calls the prerm script, then removes the static content and nally calls the postrm script.

...and so should you?[START_REF] Ritson | Gammer Gurton's Garland or The Nursery Parnassus: A Choice Collection of Pretty Songs and Verses for the Amusement of all Little Good Children who can neither read nor run[END_REF] 

See https://en.wikipedia.org/wiki/Everything_is_a_file for the "everything is a le" quote.

Directories are also often called folders. We will only use the former.

Historically, some systems have tried allowing hard linking to directories. This has been abandoned in most current systems to prevent loops in lesystems and to keep the interpretation of the parent directory consistent. It still has some infrequent uses, for instance in Mac OSX's Time Machine backup mechanism.

This function is not present in that way in Unix. A similar functionality is provided by the stat() system call[21, 3. System Interfaces, stat()].

Besides, on a lot of current systems, the default is to disable the update of the access time of les. Some others update it but not systematically.

If F is a nite set, then the width of trees in FT is of course trivially bounded.

Among plenty other seemingly interesting facts, but our goal here is not to list them all.

When I checked on the Internet whether the initials "FTS" were already in use, I discovered that they were... by a company named FrenchTouchSeduction.com. That is when I knew I had made the good choice.

If F is nite, then every subset of F is both trivially nite and co nite.

Note that this is the same as taking any valuation µ. We try however to follow the syntax of the formula in our proof.

Note that this is correct as the symbol =F is both used for the similarity predicate and for the partial equality of functions. See Chapter 2 for the latter.

Note that F ∩ G can be empty, in which case this formula is not so interesting. It is valid nonetheless. It will later be known as the propagation of the absence through the similarity.

Actually, we can also express the absence of a nite set of features and the presence of a feature inside a nite or co nite set, but this is not relevant for this precise point.

The whole Chapter 4 will show that it is true in FT .

This makes sense most of the time as we mostly consider the model FT of nite feature trees. A formula containing a cycle of features is always trivially false in this model and is therefore not so interesting to consider and represent graphically.

Yes, sed can also modify the lesystem, but not actually the version in POSIX standard, and we will explain later that utilities can be extremely versatile and change completely their behaviour depending on their argument.

Of course, there might be plenty of bugs missed in the modelisation phase. Completeness does however guarantee that we do not miss anything in the models that we are considering.

In that case, ψi,j(r, r ) in Formula 3.14 is not exactly an x-constraint. It is however really close and it su ces to switch the existential quanti ers with the conjunction.

In fact, it updates the access time, but this is abstracted away in this work.

This shows that the model of all of nite feature trees -that is the one we consider here -and the model of in nite feature trees do not share the same theory: x[f ]x is a clash in the former and satis able in the latter.

Remember that constraints cannot be ⊥ as they are de ned as sets of literals.

See footnote 2.

Of course, such a recursive call can very easily be made tail-recursive and should be made tail-recursive in a real-world

An other way to prove Lemma 4.16 would have been to show that, if the given formula φ is closed, then the last DXC d returned by transform-1 is closed too. In that case, satis ability and validity are the same for d and we can conclude immediately. This is of course true here as nothing in decide changes the free variables of a formula. This requires extra lemmas however to state this property on the rules of R1, transform-1, garbage-collect-1 and switch.

 6 Note that corollaries of this proof is that, on any formula, if decide returns true, then the given formula is satis able and if decide returns false, then the given formula is not valid.

I cannot write that without thinking of Paul Taylor's "What The Fuck France" series.

There is no third sub-case for y =F x as similarity atoms are seen as symmetric.

There is no third sub-case for y =F x as negated similarity atoms are seen as symmetric.

It is maybe possible to nd an alternative formulation of these properties to reach the same goal, but we do not know.

currently.

It cannot be y as this variable is not present in any literal of c but one solved similarity.

u = z here because constraints are clash-free.

Because F is in nite.

We do not need to consider S NS F as it only introduce nite negated similarity atoms.

Literals are de ned in De nition 3.13.

Constraints are de ned in De nition

3.14. 

A constraint can be seen as a DXC with only one x-constraint with an empty quanti er block. Therefore, we can feed a constraint to the function transform-1.

Extended literals and constraints are de ned in De nition

5.2. 

Actually, it is important not to do it if we hope to have our system to terminate.

The applicability of a rule is de ned in Section 4.1.1.

Note that disentailing is di erent from not entailing.

If we handle le types, this would be: if the path /usr/lib resolves, then if it is a directory, then it is empty.

We can in fact see here that the main constraint disentails the guard, that is entails its negation x[g]↑. This means that the thread can never be activated and could be discarded from the threaded constraint.

Of course, such a formula might seem silly. It is susceptible to appear in real-world situation, although not with ⊥ directly but with, in each thread, a constraint that is inconsistent with the main constraint.

This shows in the proof of Theorem 5.1 by the fact that, where there are no negated atoms, then D is empty.

And potentially much more depending on the complexity of the threads in this threaded constraint.

We could not nd any reference to the LIMSAT problem in literature. This is however just "yet another boolean satis ability problem".

It is also a formula of 3-LIMSAT, where 3-LIMSAT is LIMSAT except all constraints have at most three literals, thus proving that 3-LIMSAT is also NP-complete. Not that this is a useful comment though.

This is not a limitation as we can preprocess the LIMSAT instance to remove any disjunctive clause that contains both a variable and its negation.

This hypothesis of in nity of F, only used here, can be avoided by de ning fresh trees as trees containing a speci c pattern that we then carefully avoid reproducing in the other trees. This adds technicalities to the proof and we do not think that the result is worth the extra technical points in this presentation.

There is no third sub-case for y =F x as similarity atoms are seen as symmetric.

There is no third sub-case for y =F x as negated similarity atoms are seen as symmetric.

In fact, by non-applicability of R S , there is only one such similarity.

In fact, by non-applicability of R S , there is only one such similarity.

I wanted to write a quote on Shell, but I did not know whether I should use ', ", ' or $(.

There are in fact other requirements related to technical di culties that we have chosen not to describe in Section 6.1.1. We refer an interested reader to more complete articles on the topic[START_REF] Régis-Gianas | [END_REF]].

For instance scannerless generalised LR parsers or topdown general parsing combinators

Statistical, not static! Well also static, but not only static.

A tiny space in a string in a maintainer script can cause really impressive damage[START_REF]Install script does rm -rf /usr for ubuntu[END_REF].

Reading this list actually makes you wonder why all these options are disabled by default. We personally systematically start our Shell scripts with set -euC.

Not exactly, but close: "every script should use set -e or check the exit status of every command"[START_REF] Jackson | Debian Policy Manual[END_REF] Section 10.4].

In other words, to x bugs in our semantics.

See https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html.

And believe us when we say we spent some time tuning them and making them more and more clever.

In fact, for such a simple thing as counting for-loop, a reduce visitor would be more appropriate.

The function run_utility in the postinst script of the package rt4-extension-assettracker, version 3.0.0-1

The implementation of the symbolic interpreter is modular and accepts any backend -not only FTS -that has the right properties. A sub-group of the CoLiS project is working on providing a backend for symbolic execution based on tree transducers.

As long as this is feasible while respecting the bound on the loop iterations.

Section 5.3 uses the satis ability of Σ1-formulas to obtain a test of entailment φ |= ψ by checking for unsatis ability of φ ∧ ¬ψ. This means it can currently only check the entailment of a Π1-formula ψ by a Σ1-formula φ, and probably not in such an e cient way.

In fact, the idempotency in maintainer scripts means that if the rst run is successful, then the second run should just ensure that everything is the way it ought to be, and if the rst run failed, then the second call should merely do the things that were left undone the rst time[START_REF] Jackson | Debian Policy Manual[END_REF] Section 6.2].

Actually, this would be installing and purging a package. The removal of a package may leave con guration les in /etc.

Actually, as said in footnote 2, the problem of idempotency is more complex than that. This would however be a nice rst approximation.

One of our dreams would be for the tool to run easily in the browser, which is not so complicated with js_of_ocaml for instance.

APT -Sources : http :// debian . mirrors . ovh . net / debian buster / main amd64 Packages // debian . mirrors . ovh . net / debian buster / main amd64 rancid http :// debian . mirrors . ovh . net

constraint. Consider Formula 5.18 ∃x, y, x , y , z

(5. 18) It works as follows.

• The main constraint, r [usr]x ∧x [lib]y ∧y [foo]z ∧r =c {usr} r contains the part of the formula that is common to all the speci cation cases. There are then two threads, depending on whether usr exists in r.

• If usr does not exist in r, that is if the main constraint entails r[usr]↑, then we are in the rst case of Figure 5.19 and we need to add the three absence atoms on x , y and z .

• If usr does exist in r, that is if the main constraint entails ¬r[usr]↑, then we are in the three other cases of Figure 5. 19. We can then add r[usr]x ∧ x =c {lib} x to the main constraint and ready two new guards depending on whether lib exists in x.

• If lib does not exist in x, that is if the main constraint entails x[lib]↑, then we are in the second case of Figure 5. 19 and we need to add the two absence atoms on y and z .

• If lib does exist in x, that is if the main constraint entails ¬x[lib]↑, then we are in two last cases of Figure 5. 19. We can then add x[lib]y ∧ y =c {foo} y to the main constraint and ready two new guards depending on whether foo exists in y.

• If foo does not exist in y, that is if the main constraint entails y[foo]↑, then we are in the third case of Figure 5.19 and we need to add the absence atom on z .

• Finally, if foo does exist in y, that is if the main constraint entails ¬y[foo]↑, then we are in the last cases of Figure 5.19. Of course, we have built two chains of feature and similarity atoms starting from r and r and following /usr/lib/foo. We however need to ensure that /usr/lib/foo exists in r and r and that r and r are equal. We can do this by adding either y[foo]z ∧ r = r or simply y[foo]z to the main constraint.

The same process of course works for paths of any length. In any case, it encodes the speci cation of mkdir -p p as one speci cation case. This is an example of the expressivity provided by threaded constraints.

Appendix 5.A Proof of Theorem 5.1

Introduction. This proof is quite similar to that of Theorem 4.1, except that the system R 2 does not give as strong guarantees on its irreducible constraints as R 1 . This is in particular because it does not have access to the splitting rules, as they introduce disjunctions. The absence of these rules is at the heart of the fact that R 2 does not enjoy the property of garbage collection. Consider for instance Formula 5.2, restated here.