
HAL Id: tel-03917971
https://theses.hal.science/tel-03917971

Submitted on 2 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Shell scripts performing file hierarchy
transformations

Nicolas Jeannerod

To cite this version:
Nicolas Jeannerod. Verification of Shell scripts performing file hierarchy transformations. Compu-
tation and Language [cs.CL]. Université Paris Cité, 2021. English. �NNT : 2021UNIP7178�. �tel-
03917971�

https://theses.hal.science/tel-03917971
https://hal.archives-ouvertes.fr

Université de Paris
École Doctorale 386 – Sciences Mathématiqes de Paris Centre

Institut de Recherche en Informatiqe Fondamentale

Verification of Shell Scripts
Performing File Hierarchy Transformations

Thèse de doctorat en informatique

Présentée et soutenue par

Nicolas Jeannerod

le 30 mars 2021

devant le jury composé de

Directeur de thèse Ralf Treinen Professeur Université de Paris
Directeur de thèse Yann Régis-Gianas Maître de Conférences Université de Paris
Rapporteur Andreas Podelski Professor University of Freiburg
Rapporteur Stéphane Demri Directeur de Recherche CNRS
Examinatrice Julia Lawall Directrice de Recherche Inria
Examinateur Roberto Di Cosmo Professeur Université de Paris
Examinateur Greenberg Assistant Professor Pomona College

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

Abstract

Title: Veri�cation of Shell Scripts Performing File Hierarchy Transformations

Keywords: POSIX Shell · Unix Filesystems · Unix Utilities · Modelisation · Feature Tree Logics ·
Decidability of First-Order Logic · E�cient Constraints Solving · Debian · Software Quality Assurance
· Software Package Installation

This thesis aims at applying techniques from deductive program veri�cation and analysis of tree trans-
formations to the problem of analysing Shell scripts. In particular, we aim at analysing Shell scripts that
are used in software installation in the Debian GNU/Linux distribution. The �nal goal is to build a proof-
of-concept tool able to read Debian packages – the way Debian has to distribute software – and report on
their quality and on the potential bugs they might have.

Shell is a scripting language providing control structures around Unix utility calls. Unix utilities are
objects that can perform all kind of transformation on Unix �lesystems. We model Unix �lesystems using
feature trees and transformations of Unix �lesystems using formulas in a feature tree logic named FTS. We
describe these modelisations extensively and discuss their validity. The control structures of Shell scripts
are converted to control structures in an intermediary language that has clearly de�ned semantics. This
involves the de�nition of this intermediary language, the design of a static parser for Shell scripts and of a
conversion that respects the semantics of both languages. The semantics of Shell scripts is then computed
using symbolic execution of the aforementioned intermediary language, using a database of speci�cations
of Unix utility calls as formulas of FTS. The result is, for each potential trace of execution of a Shell script,
a formula of FTS describing the �lesystem transformation this trace performs.

The main part of the thesis then focuses on decidability of formulas of FTS. The goal is to be able to detect
traces of execution of Shell scripts that cannot happen and to check properties on the Shell scripts, such
as “if the script fails, then it must not have performed any transformation”. A �rst, theoretical, part aims
at showing that the full �rst-order theory of FTS is decidable. This goes by �rst reasoning only on Σ1-
formulas of FTS and de�ning a system of rules R1 that transforms Σ1-formulas. We show that we can
use R1 to decide the satis�ability of Σ1-formulas as well as some other properties. We then extend the
reasoning from Σ1-formulas to �rst-order formulas of FTS using properties of R1 and weak quanti�er
eliminations. We conclude by stating that the �rst-order theory of FTS is indeed decidable. A second,
more practical, part aims at designing e�cient decision procedures for a subset of FTS rich enough to
express the semantics of Unix utilities and Shell scripts. This goes by focusing on conjunctive formulas
and improving on R1. This results in a system R2 which is more e�cient on conjunctive formulas but
would not have the required properties to prove decidability of the �rst-order. We then show howR2 can
be implemented e�ciently and that it can be extended without loss of e�ciency to support speci�c forms

3

of Σ1-formulas.

Finally, this thesis describes the applications of the theoretical work to the implementation of a toolchain
able to analyse all software packages in the Debian distribution and report on them. We describe our
analysis and the bugs that we have found during the whole project. This thesis takes place within the
CoLiS project, ANR-15-CE25-0001, taking place from October 2015 to March 2021.

Résumé

Titre : Véri�cation de scripts Shell e�ectuant des transformations de système de �chiers hiérarchiques

Mots-clefs : POSIX Shell · Système de �chiers · Utilitaires Unix · Modélisation · Logiques d’arbres
de traits · Décidabilité d’une logique du premier ordre · Résolution e�cace de contraintes · Debian ·
Qualité du logiciel · Installation de paquet logiciel

Cette thèse vise à appliquer des techniques de véri�cation déductive de programmes et d’analyse de trans-
formations d’arbres au problème de l’analyse de scripts Shell. En particulier, nous visons à analyser les
scripts Shell utilisés pendant l’installation de logiciels de la distribution Debian GNU/Linux. Le but �nal
est de démontrer la faisabilité de notre analyse en développant un outil capable de lire des paquets Debian
– le format dans lequel Debian distribue des logiciels – et de fournir un rapport sur leur qualité et sur les
bogues potentiels qu’on pourrait y trouver.

Shell est un langage de script qui fournit des structures de contrôle autour d’appels d’utilitaires Unix. Les
utilitaires Unix sont des objets qui peuvent e�ectuer toutes sortes de transformations sur des systèmes
de �chiers Unix. Nous modélisons les systèmes de �chiers Unix à l’aide d’arbre de traits et les trans-
formations de tels systèmes de �chiers à l’aide de formules dans une logique d’arbres de traits nommée
FTS. Nous décrivons ces modélisations en détails et discutons leurs validité. Les structures de contrôle des
scripts Shell sont converties en des structures de contrôle d’un langage intermédiaire avec une sémantique
clairement dé�nie. Cela implique la dé�nition du langage intermédiaire en question et le développement
d’un parseur statique pour les scripts Shell et d’une conversion qui respecte les sémantiques des deux
langages. La sémantique d’un script Shell est ensuite calculée par exécution symbolique sur le langage in-
termédiaire susmentionné en utilisant une base de spéci�cations des utilitaires Unix comme des formules
de FTS. Pour chaque trace d’exécution d’un script Shell, le résultat est une formule de FTS décrivant la
transformation de système de �chiers qu’e�ectue cette trace.

La partie principale de cette thèse s’intéresse à la décidabilité de formules de FTS. L’objectif est d’être
capable de détecter des traces d’exécution de scripts Shell qui ne peuvent pas arriver et de véri�er des
propriétés sur les scripts Shell, comme par exemple le fait que « si le script échoue, alors il ne doit pas

4

avoir e�ectué de transformation. » Une première approche théorique vise à montrer que la théorie du
premier ordre de FTS est décidable. Cela se fait par un raisonnement sur les formules Σ1 de FTS et par la
dé�nition d’un système de règles R1 qui transforme les formules Σ1. Nous montrons que nous pouvons
utiliser R1 pour décider de la satis�abilité de formules Σ1, parmi d’autres propriétés. Nous étendons
ensuite le raisonnement des formules Σ1 vers les formules du premier ordre de FTS à l’aide de propriétés
de R1 et d’éliminations faible des quanti�cateurs. Nous concluons en disant que la théorie du premier
ordre de FTS est bien décidable. Une seconde approche, plus pratique, vise à créer des procédures de
décision e�caces pour un sous-ensemble de FTS assez riche pour exprimer les sémantiques des utilitaires
Unix et des scripts Shell. Nous faisons cela en nous intéressant en particulier aux formules conjonctives
et en améliorant R1. Le résultat est un système R2 qui est plus e�cace sur les formules conjonctives
mais qui n’a pas les propriétés nécessaires pour prouver la décidabilité du premier ordre. Nous montrons
ensuite comment R2 peut être implémenté e�cacement et comment il peut être étendu pour supporter
des formes spéci�ques de formules de Σ1 sans pertes d’e�cacité.

En�n, cette thèse décrit les applications de ce travail théorique à l’implémentation d’un groupe d’outils
capable d’analyser tous les paquets logiciels de la distribution Debian et de fournir un rapport. Nous
décrivons notre analyse et les bogues que nous avons trouvé au long du projet. Cette thèse s’inscrit dans
le projet CoLiS, ANR-15-CE25-0001, se déroulant entre octobre 2015 et mars 2021.

5

Contents

Page

Prelude 3
Abstract . 3
Résumé . 4
Contents . 5

1 Introduction 11
1.1 History & Motivation . 11
1.2 Approaches & Feature Tree Logics . 15

1.2.1 Other Approaches – Related Works . 15
1.2.2 Our Approach . 16
1.2.3 Feature Tree Logics . 17

1.3 Overview of the Toolchain . 18
1.3.1 First Layer – One Script . 19
1.3.2 Second Layer – One Package . 21
1.3.3 Third Layer – Several Packages . 24

1.4 Contributions & Plan of the Thesis . 24

2 Notations 29

3 Modelisation of Unix Filesystems and Utilities 31
3.1 Modelisation of Filesystems . 31

3.1.1 Filesystems . 31
3.1.2 Abstracting Away from the Filesystem . 35
3.1.3 Feature Trees . 35

3.2 Logic Over Feature Trees – FTS . 36
3.2.1 Syntax of FTS . 37
3.2.2 Semantics of FTS . 39
3.2.3 Expressivity of FTS in Comparison to Related Work 40
3.2.4 Classes of Formulas . 42

3.3 Modelisation of Utilities . 44
3.3.1 Utilities . 44
3.3.2 Speci�cations of One Utility Call . 46
3.3.3 Speci�cations of Utility Call Schemes . 48
3.3.4 Modelisation of Utilities . 51

3.4 Speci�cations . 53
3.4.1 Properties of Speci�cations . 53

7

CONTENTS

3.4.2 Composing Speci�cations . 55

4 Decidability of the Theory of FT 59
4.1 Transforming DXC . 59

4.1.1 Transformation Rules for Constraints – The SystemR1 60
4.1.2 Properties of Irreducible Constraints ofR1 . 66
4.1.3 Deciding the Satis�ability of DXC . 69

4.2 First-Order Formulas . 73
4.2.1 Switching Existential Quanti�ers from DXC . 73
4.2.2 Deciding the First-Order Theory of FT . 75

4.3 Discussions . 78
4.3.1 Alternative Models . 78
4.3.2 Complexity Considerations . 79
4.3.3 Limitations of transform-1 andR1 . 80

Appendix 4.A Proof of Lemma 4.7 . 81
Appendix 4.B Proof of Lemma 4.8 . 85

5 E�cient Solving of Feature Tree Constraints 101
5.1 A System Without Disjunctions . 101

5.1.1 Transformation Rules for Constraints – The SystemR2 101
5.1.2 Properties of Irreducible Constraints ofR2 . 106
5.1.3 Deciding the Satis�ability of Constraints . 108
5.1.4 Discussions . 110

5.2 A System With E�cient Pattern Recognition . 112
5.2.1 Pointed Constraints and Transformation Rules – The SystemR•2 112
5.2.2 Links BetweenR•2 andR2 . 117
5.2.3 Deciding the Satis�ability of Constraints . 120
5.2.4 Discussions . 121

5.3 Threaded Constraints . 122
5.3.1 Entailment and Threaded Constraints . 124
5.3.2 Properties of Threaded Constraints . 128
5.3.3 Implementation of Threaded Constraints . 131
5.3.4 Discussions . 135

Appendix 5.A Proof of Theorem 5.1 . 137

6 Modelisation of POSIX Shell 147
6.1 Syntactic Aspects . 148

6.1.1 Horrors in the Syntax of Shell . 149
6.1.2 Morbig, A Static Parser for Shell . 151
6.1.3 Validation . 154

6.2 Semantic Aspects . 155
6.2.1 Horrors in the Semantics of Shell . 155
6.2.2 The CoLiS Language . 157
6.2.3 A Concrete Interpreter for the CoLiS Language . 160

8

CONTENTS

7 Applications & Results 163
7.1 Statistic Analysis of Corpuses of Maintainer Scripts . 163

7.1.1 Writing Analysers for Corpuses of Shell Scripts . 163
7.1.2 Gallery of Analyses . 165

7.2 Symbolic Interpretation of Shell Scripts . 167
7.2.1 Symbolic Interpretation of Shell Scripts . 167
7.2.2 An Example . 169

7.3 Analysing Installation Scenario of Corpuses of Debian Packages 173
7.3.1 Coverage of the case study . 173
7.3.2 Bugs found . 173

8 Conclusion 175
8.1 Contributions . 175
8.2 Limitations & Perspectives . 175

8.2.1 About a Solver for (Threaded) Constraints of FTS 175
8.2.2 About a Solver for First-Order Formulas of FTS . 176
8.2.3 About the Expressivity of FTS . 176
8.2.4 About Speci�cations . 177
8.2.5 About the Coverage of our Toolchain . 177
8.2.6 About Finding More Bugs with our Toolchain . 177
8.2.7 About Finding Less Bugs with our Toolchain . 178
8.2.8 About the Accessibility of our Toolchain . 178
8.2.9 About the Generalisation of our Toolchain . 179

Appendices 181
References . 181
References – Miscellaneous . 185
List of Figures . 188
List of Tables . 191
List of De�nitions . 191
List of Lemmas . 192
List of Theorems . 193
Index of Concepts . 193

9

Chapter 1

Introduction

1.1 History & Motivation

Humankind has built and used devices to aid computation for thousands of years. It is only in the 20th
century, however, that modern computers got invented. Contrary to most previous devices, modern com-
puters store programs in their memory. A person who would want to modify the behaviour of such a
computer would then only need to update its memory, and not rebuild a whole machine. The idea of a
general-purpose computer whose behaviour is speci�ed by its memory goes back to 1837 and Charles
Babbage and Ada Lovelace’s Analytical Engine1. The idea of stored programs in the modern sense was in-
troduced a century later by Alan Turing [Turing 1937] and the �rst digital computer running such stored

programs was the Manchester Baby2 which ran for the �rst time in 1948.

This idea of stored programs makes modern computers very versatile objects capable of solving a wide
range of problems, as long as one or several programmers take the time to update the program. In the be-
ginning, computers were monolithic devices only operated by experts and programs were short. Quickly,
however, as computers became more powerful, there was a huge increase in the complexity of the prob-
lems that they could solve. The size of programs followed and easily reached thousands of lines. For
instance, the code of the guidance computer for the command module of Apollo 11, which was developed
in the 1960s and helped to safely land a human on the moon in 1969, contains a bit over 25,000 lines of
code.3

Bigger code and more lines of code meant more problems, which people started to be aware of. By 1968,
the term software crisis

4 was coined. It encompasses all the problems related to the di�culty of writing
good quality computer programs in the required time. This covers problems with project, time and budget
management but also problems of e�ciency and quality of software: an awareness for quality assurance
was born.

Coincidingly – starting in the early 1960s5 –, in order to speed up processing, operating systems were
1See https://en.wikipedia.org/wiki/Analytical_Engine.
2Or “Small-Scale Experimental Machine”. See https://en.wikipedia.org/wiki/Manchester_Baby.
3For the Apollo guidance computer, see https://en.wikipedia.org/wiki/Apollo_Guidance_Computer. For its pro-

gram, see https://github.com/chrislgarry/Apollo-11/. That same repository also contains the code of the lunar module,
which also counts a bit more than 25,000 lines of code.

4See https://en.wikipedia.org/wiki/Software_crisis.
5In the 1950s, some basic operating system features such as resident monitor functions were developed. Such functions could

automatically run several programs one after the other in order to save time. The modern form of operating systems only came
in the early 1960s and therefore we chose to keep that date.

11

https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Manchester_Baby
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
https://github.com/chrislgarry/Apollo-11/
https://en.wikipedia.org/wiki/Software_crisis

CHAPTER 1. INTRODUCTION

developed. They are programs that manage resources – and, in particular, time – for other programs to
live together.

One family of operating systems will be of particular interest to us. Derived from the original AT&T Unix,
whose development started in the 1970s, Unix operating systems inherently support multitasking and
multiusers. This means that a unique computer with one operating system could support several users
doing several di�erent tasks at the same time.6

With the rise of a�ordable personal computers7 from the mid-1970s onwards, the model of operating
systems changed from a few big computers with several users and an expert team of system administrators
to a lot of microcomputers with one user each. This was a big change as it meant that operating systems,
programs and their updates had to be distributed to a lot of non-expert users. The expertise of installation,
updating, etc. could not rely on such users and therefore had to move from the system administrators to
the software providers, under the form of automated setup scripts.

During the late 1980s and the early 1990s, several things happened that are of relevance for this story.
Firstly, Internet8 became more and more widespread in academia in particular and, because of its com-
mercialisation in the early 1990s, everywhere. Secondly, the GNU project

9 took o� and the development
of the Linux kernel10 started. Together, they form one of the most widespread basis for Linux distributions.
Finally, the Debian GNU/Linux

11 distribution, one of the biggest and oldest operating systems based on
the Linux kernel, launched its �rst release in September 1993.12

Linux distributions are a way for users to have access to a rich and consistent ecosystem of programs
from which they can pick those that are of interest to them. In order to eliminate the need for manual
installations and updates, distributions often feature a package manager

13. These are software tools that
automate the process of installing, upgrading, con�guring, or removing programs on an operating system.
The package manager at the base of the package management system of Debian – and its numerous
derivatives – is named dpkg14.

Package managers handle packages as a way to distribute software as well as the instructions for the
package manager to install, update, remove, etc. the software in question. A Debian package is made of
several elements [22, Chapter 3], some of which are detailed in the following list.

• The package contains metadata about the software, its version, its dependencies – the packages that
need to be installed �rst15 –, etc. Figure 1.1 shows an excerpt of a �le containing such metadata for
the package rancid-cgi.

• The package must also contain the static content of the software: an archive of �les to be placed
on the target machine when installing the package. These are the �les of the software itself: its
binaries – the executable part –, its con�guration �les, etc.

6For instance, one user could compute things while editing a document and, at the same time, another user could read another
document while sending it to a printer.

7See https://en.wikipedia.org/wiki/Personal_computer.
8See https://en.wikipedia.org/wiki/Internet.
9See https://en.wikipedia.org/wiki/GNU.

10See https://en.wikipedia.org/wiki/Linux.
11See https://en.wikipedia.org/wiki/Debian.
12My big brother by a few months!
13See https://en.wikipedia.org/wiki/Package_manager.
14Debian Package. See https://en.wikipedia.org/wiki/Dpkg.
15Actually, these would be the pre-dependencies. The pre-dependencies are necessary at the time of installation of the package;

they must therefore be installed before the package itself. The dependencies are only necessary when the software contained
in the package is used. Technically, they can be installed at any time before the use of the software, and that can be after its
installation.

12

https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/GNU
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Dpkg

1.1. HISTORY & MOTIVATION

• Finally, the package may come with a number of so-called maintainer scripts which are executed
when installing, upgrading, or removing the package. The name of maintainer scripts comes from
the fact that these scripts are not given by the provider of the software, but by the maintainer of
the package, which is the person (or team) in charge of the package in Debian.

For the sake of the example, Figure 1.2 shows how an installation of rancid-cgi could look like in Debian.
There are various ways to install software in Debian, via the command-line, terminal user interface (TUI),
or graphical user interface (GUI). We chose here to show a way which we believe to be widespread among
system administrators. This is the installation of rancid-cgi using the apt utility16 in a terminal. apt is
a meta package manager. It handles resolution of dependencies and downloading of packages but leaves
the actual operations on packages to dpkg, the only real package manager of Debian. Let us now detail
all the steps of installation.

1. Line 1 shows the prompt root@debian~#, which is simply the system awaiting a command, as well
as the command apt install rancid-cgi asking the utility apt to install the package rancid-
cgi. All the following lines are then written by the apt utility.

2. Lines 2 to 9 show the resolution of dependencies. This phase aims at deciding which packages need
to be installed before or at the same time as the requested package.

3. Lines 10 to 15 show the downloading of the actual packages. Since there are 60,000 packages in
Debian, having them all on one’s computer would be a waste of space.17 The packages are therefore
kept on an external storage medium or even the network and downloaded from an archive when
required.18

4. Lines 16 to 18 show the pre-con�guration phase. The goal of this phase is to prepare the system to
receive the software. This can mean cleaning up previous versions, or checking that certain �les are
stored at the right location, etc. The instructions are described by the preinst maintainer script.

5. Lines 19 to 23 show the unpacking phase. This is the part where the static content of the package
is actually put on the system.

6. Lines 24 to 25 show the con�guration phase. This can mean launching utilities to register the
software in databases, running con�guration scripts that adapt the behaviour of the software to
this speci�c machine, etc. The instructions are described by the postinst maintainer script.

7. Line 26 shows the processing of a trigger. This is a phase of con�guration of other packages to take
into account the arrival of the new package. In our example, the trigger is for man-db which is a
package handling the user manuals of all the installed packages.

8. Line 27 shows the return of the prompt, which simply means that the command is done running
and that the system awaits for further commands.

The interesting steps for us are Steps 4, 5 and 6. In particular, Steps 4 and 6 require running the preinst
and postinst maintainer scripts with full privileges on the machine. This is potentially problematic as
this means trusting that such scripts will not contain bugs or malicious code.

The problem becomes increasingly complex when the number of packages grow bigger. Of course, more
users means more di�erent needs and therefore more software, packages and maintainer scripts. As of

16Advanced Package Tool. See https://en.wikipedia.org/wiki/APT_(software).
17Moreover, some of them would be incompatible. There exists some research on the co-installability of packages but this is

o�-topic here.
18Of course, this is fairly simple now that most people have a reasonable internet connection, which has not always been the

case and is still not the case for everyone on the planet.

13

https://en.wikipedia.org/wiki/APT_(software)

CHAPTER 1. INTRODUCTION

1 Package: rancid -cgi
2 Version: 3.9-1
3 Priority: optional
4 Section: net
5 Source: rancid
6 Maintainer: [...]
7 Installed -Size: 152 kB
8 Depends: liblockfile -simple -perl , rancid , perl:any
9 Suggests: apache2 | httpd -cgi

10 Homepage: https ://www.shrubbery.net/rancid/
11 Tag: implemented -in::perl , interface ::web , role::program , scope ::utility ,
12 use::monitor , web::cgi
13 Download -Size: 76.6 kB
14 APT -Sources: http :// debian.mirrors.ovh.net/debian buster/main amd64 Packages
15 Description: looking glass CGI based on rancid tools
16 The looking glass is a web interface for [...]

Figure 1.1: Metadata of the rancid-cgi package (excerpt)

1 root@debian :~# apt install rancid -cgi
2 Reading package lists ...
3 Building dependency tree ...
4 Reading state information ...
5 The following additional packages will be installed:
6 rancid
7 The following NEW packages will be installed:
8 rancid rancid -cgi
9 0 upgraded , 2 newly installed , 0 to remove and 0 not upgraded.

10 Need to get 311 kB of archives.
11 After this operation , 2,103 kB of additional disk space will be used.
12 Do you want to continue? [Y/n] y
13 Get:1 http :// debian.mirrors.ovh.net/debian buster/main amd64 rancid amd64

3.9-1 [234 kB]
14 Get:2 http :// debian.mirrors.ovh.net/debian buster/main amd64 rancid -cgi all

3.9-1 [76.6 kB]
15 Fetched 311 kB in 0s (6 ,601 kB/s)
16 Preconfiguring packages ...
17 Preparing to unpack .../ rancid_3 .9-1 _amd64.deb ...
18 Preparing to unpack .../ rancid -cgi_3.9-1_all.deb ...
19 Selecting previously unselected package rancid.
20 (Reading database ... 123451 files and directories currently installed .)
21 Unpacking rancid (3.9 -1) ...
22 Selecting previously unselected package rancid -cgi.
23 Unpacking rancid -cgi (3.9 -1) ...
24 Setting up rancid (3.9 -1) ...
25 Setting up rancid -cgi (3.9 -1) ...
26 Processing triggers for man -db (2.8.5 -2) ...
27 root@debian :~#

Figure 1.2: Installation of rancid-cgi with APT on Debian (excerpt)

14

1.2. APPROACHES & FEATURE TREE LOGICS

1 [...]
2
3 Package: cmigrep
4 Version: 1.3-1
5 Severity: critical
6 Justification: breaks unrelated software
7
8 cmigrep 's emacsen -install script is overzealous; specifically , it
9 inappropriately attempts to compile all .el files in

10 /usr/share/emacs/site -lisp even if they don 't work with the current
11 emacsen flavor (for instance , remembrance -agent 's remem.el
12 vs. xemacs), and compounds the problem by removing [...]

Figure 1.3: A bug report on the package cmigrep (excerpt)

October 6, 2019, the Debian distribution19 contains 28,814 maintainer scripts in 12,592 di�erent packages
(out of a total of 60,000), 9,771 of which are completely or partially written by hand. Moreover, the big
user base of Debian brings about a big number of di�erent devices, architectures, installed combinations
of software, etc. It is therefore impossible for the package maintainers to plan everything in advance and
it is inevitable to meet corner cases that will behave di�erently than expected.

The consequences of a faulty script can go from mild – eg. the package fails to install – to critical – eg.
the system does not start anymore, or user data are lost. For instance, Figure 1.3 shows a bug report [1].
Lines 3 to 6 contain metadata about the bug, namely the package and version it applies to (here, cmigrep
in version 1.3-1), the severity of the bug (here, critical) and a short description of the bug. Lines 8
to 12 contain an excerpt of the longer, more detailed description of the bug. In this case, the installation
or upgrade of the package cmigrep breaks other software, which can happen in the middle of a global
update of the system, without the user noticing before they actually try to use the other broken software.

The bug in question came from a change in the package that the maintainer carried without noticing
that it would imply the removal of �les belonging to – and necessary for the proper functioning of –
other packages. Since they may have to perform any kind of action on the target machine, the maintainer
scripts are almost exclusively written in POSIX Shell, a general-purpose scripting language that allows for
invoking any Unix command. Unfortunately, this language is full of pitfalls that make it easy for anyone
– including package maintainers that are used to it – to make tiny mistakes leading to grave consequences.

The situation is therefore the following. The critical process of installing, upgrading and removing soft-
ware in Debian – and many other distributions – relies on thousands of scripts written by voluntary
package maintainers in a language in which it is easy to make mistakes. Hence, there is a cruel need of
work on quality assurance of those packages.

1.2 Approaches & Feature Tree Logics

1.2.1 Other Approaches – Related Works

When facing such a problem of quality assurance, many approaches are possible and the Debian commu-
nity did not wait for the third millennium to try and improve the quality of Debian packages on a global
scale. There is even a team of Debian specialised in the quality assurance of packages.20

One product of the work to improve the quality of Debian packages is the Debian Policy [22]. It is a
19And, more exactly, sid for amd64, including contrib and non-free.
20Named... the Debian Quality Assurance Team! See https://qa.debian.org/.

15

https://qa.debian.org/

CHAPTER 1. INTRODUCTION

document, written in natural language, that aims to normalise important technical aspects of packages. It
prescribes the control �ow of the di�erent stages of the package installation process, including attempts
of error recovery and de�nes how dpkg invokes maintainer scripts. It also states requirements on the
syntax and on the execution behaviour of scripts.

Some automation of the checking of such properties – and therefore of the quality of Debian packages –
has been added to Debian over the years. Lintian21, for instance, automatically checks syntactic properties
of the packages of the Debian distribution – and not only in their scripts but also in the other �les that
compose a package. Another tool, the piuparts suite22, checks if packages can be installed, upgraded
and removed successfully in a clean environment. The piuparts suite does not check whether the in-
stalled software is actually usable. Package maintainers are however encouraged to provide such tests in
their packages via the autopkgtest facility.23 The continuous integration24 of Debian runs these tests
systematically on all the packages of the Debian archive. Finally, the process of acceptance of packages in
the Debian distribution is trying to give time to voluntary users to stumble upon bugs before they reach
more critical users by providing an unstable distribution – named sid – receiving all the updates and a
stable distribution receiving the updates only after they have been validated by the users of sid.

No solution is ever perfect, and we believe that a lot of formal veri�cation techniques can apply to this
problem and provide ways to check more properties, or new ways to check the same properties. Some
work has already been done in this line, most notably by the EDOS and Mancoosi projects25 [Mancinelli
et al. 2006; Abate et al. 2012] which aimed at checking properties of the dependencies of packages and at
providing e�cient solvers for those dependencies. The content of maintainer scripts was however never
their concern.

None of these approaches would have found the aforementioned bug in cmigrep, version 1.3-1. Indeed,
this bug only occurs during the installation of cmigrep on a machine that already has other related
packages installed – in that case, packages belonging to the Emacs ecosystem. In a real-world use case,
this will happen easily because users are susceptible to indeed have these other packages. In the testing
performed by the piuparts suite, packages are installed and removed in a clean environment, in which
the bug would therefore not occur.

1.2.2 Our Approach

In the CoLiS26 project, we believe that we can contribute to the quality assessment of Debian packages by
applying already existing formal method techniques to maintainer scripts. Such techniques could allow
to verify properties and �nd bugs that tools like Lintian or the piuparts suite cannot uncover. The bugs
in Debian maintainer scripts that we attempt to �nd may come at di�erent levels: simple syntax errors
(which may very well go unnoticed due to the unsafe design of the POSIX Shell language), non-compliance
with the requirements of the Debian Policy, usage of uno�cial or undocumented features, or failure of a
script in a situation where it is supposed to succeed.

In this context, the Debian Policy [22] is a very useful tool for us as it speci�es all the properties that can
be expected from maintainer scripts. This document has been extensively enriched over the years by the
very users and maintainers of the packages. We therefore do not need to de�ne the problem nor what
it is we aim at verifying. There is however a necessary phase of formalisation of the problem from the

21A linter for Debian. See https://lintian.debian.org/.
22Package installation, upgrading and removal testing suite. See https://piuparts.debian.org/.
23See https://salsa.debian.org/ci-team/autopkgtest/raw/master/doc/README.package-tests.rst.
24See https://ci.debian.net/doc/.
25See https://www.mancoosi.org/ and https://www.mancoosi.org/edos/ – the EDOS website seems to be dead now.
26CoLiS stands for Correctness of Linux Scripts.

16

https://lintian.debian.org/
https://piuparts.debian.org/
https://salsa.debian.org/ci-team/autopkgtest/raw/master/doc/README.package-tests.rst
https://ci.debian.net/doc/
https://www.mancoosi.org/
https://www.mancoosi.org/edos/

1.2. APPROACHES & FEATURE TREE LOGICS

explanations of the Debian Policy, as it is written in an informal natural language, leading to ambiguities
and incompleteness.

To the information given by the Debian Policy, we add a information of what appears in the maintainer
scripts which we obtain by running statistical analysis on the corpus of all maintainer scripts. This analysis
allows us to highlight what needs to be handled in priority, what can be postponed and what can be
ignored. This analysis is described in Section 7.1.

Our project is oriented towards �nding bugs and not fully certifying that scripts respect all the require-
ments they are supposed to. This allows us to do as many approximations as necessary in the process of
�nding such bugs, as long as we can report clearly on the bugs and can show that they actually happen. Of
course, these approximations are not random and are guided by the aforementioned statistical analysis.

The particular setting of Debian packages and the freedom to approximate when required are two key
elements that made this analysis even possible.

We are still facing two important challenges. The �rst one lies in the language used for these maintainer
scripts we are interested in. The Debian Policy states that the standard Shell interpreter is POSIX Shell,
with the consequence that 99% of all maintainer scripts are written in this language. This language has
a surprising speci�cation, is full of pitfalls, highly dynamic and recalcitrant to static analysis, both on a
syntactic and semantic level. The modelisation of POSIX Shell is the topic of Chapter 6.

The second challenge comes from the nature of Unix systems on which the maintainer scripts are run. A
Unix �lesystem implementation contains many features that are di�cult to model, eg. ownership, permis-
sions, timestamps, symbolic links, and multiple hard links to regular �les. There is an immense variety of
Unix utilities that may be invoked from scripts, all of which have to be modelled in order to be treated by
our tools. To address properties of scripts required by the Debian Policy, we need to capture the transfor-
mation done by the script on a �lesystem hierarchy. For this, we need some kind of logic that is expressive
enough, and still allows for automated reasoning methods. In this work, we use feature tree logics.

1.2.3 Feature Tree Logics

Although we contributed to all the parts of the toolchain described in Section 1.3, our main contribution
– and the main topic of this thesis – is the design of decision procedures for feature tree logics. This leads
to theoretical decidability results for such logics and to the design of an e�cient backend for the symbolic
execution engine mentioned in Section 1.3.1.

Feature trees are trees where nodes have an unbounded number of children, and where edges from nodes
to their children carry names – called features – such that no node has two di�erent outgoing edges with
the same name. Hence, the names on the edges can be used to select the di�erent children of a node. Fea-
ture trees have been used in constraint-based formalisms in the �eld of computational linguistics [Smolka
1992] and constrained logic programming [Aït-Kaci et al. 1994; Smolka & Treinen 1994]. The work pre-
sented in this thesis is motivated by a di�erent application of feature trees: we �nd them to be a quite
accurate model of Unix �lesystems. We will discuss this in Section 3.1 and discuss why abstracting Unix
�lesystems as feature trees makes sense in this work.

Feature tree logics have at their core basic constraints like x[f]y, expressing that y is a subtree of x
accessible from the root of x via a feature f and x[f]↑, expressing that the tree x does not have a feature f
at its root node.

This is already su�cient to describe some tree languages that are useful in our context. For instance, the
command mkdir /etc/rancid/apache.conf which creates the directory /etc/rancid/apache.conf

17

CHAPTER 1. INTRODUCTION

(mkdir stands for make directory), succeeds on a tree that satis�es Formula 1.1.

∃x, y, z · (r[etc]x ∧ x[rancid]y ∧ y[apache.conf]↑) (1.1)

Formula 1.1 expresses that etc is a subdirectory of the root r represented by the variable x, which has
itself a subdirectory rancid represented by the variable y, which itself does not have a subdirectory
apache.conf. We ignore here the di�erence between directories and regular �les, as well as �le per-
missions.

In order to express the relation between the input and output trees of this example, we need more ex-
pressivity. A �rst idea is to introduce an update predicate y = x{f 7→ z}, which states that the tree y
is obtained from the tree x by changing the child reachable through f to z, and creating the child when
it does not exist. Using this, the semantics of mkdir /etc/rancid/lg.conf could be described by For-
mula 1.2, of the input root r and output root r′.

∃x, y, z, x′, y′ ·

 r[etc]x ∧ x[rancid]y ∧ y[apache.conf]↑
∧ r′ = r{etc 7→ x′} ∧ x′ = x{rancid 7→ y′}
∧ y′ = y{apache.conf 7→ z′} ∧ z′[?]↑

 (1.2)

Here, z′[?]↑ expresses that all features (?) are absent from z′, which means that z′ is an empty directory.
Note that this formula, by virtue of the update constraint, expresses that any existing �le under etc dif-
ferent from rancid is not touched. Similarly, any existing �le under rancid di�erent from apache.conf
is not touched.

The di�culty in solving such update predicates stems from the fact that they involve three trees: the
original tree, the �nal tree and the sub-tree that gets grafted onto the original tree. There are no symme-
tries between these three arguments, and a conjunction of several update predicates may become quite
involved. Our approach to handle this rather complex predicate is to replace it by a more elementary
predicate system based on the classical x[f]y and a new similarity predicate x =F y, where F is a set of
features. The latter expresses that x and y have the same children (or absence of children) in all the names
of F . In particular, applied to a feature f , the predicate x =c{f} y – where cF is the complement of F –
expresses that x and y are the same everywhere, except possibly in f where they may di�er.

The similarity predicates of the form x =c{f} y have the same expressive power as the update predicates
since, on the one hand, x′ = x{f 7→ y} is equivalent to x =c{f} x

′ ∧ x′[f]y and, on the other hand,
x =c{f} x

′ is equivalent to ∃y, z · (z = x{f 7→ y} ∧ z = x′{f 7→ y}). Moreover, for each set of features
F , similarity predicates =F are equivalence relations, which is very useful when designing simpli�cation
rules, and these relations have useful properties, such as (x =F y ∧ x =G y) ↔ x =F∪G y and (x =F

y ∧ y =G z)→ x =F∩G z.

The feature tree logic augmented with this similarity predicate, named FTS, is presented in Section 3.2.
This thesis then presents two directions of work on FTS. The �rst line of work establishes theoretical
decidability results for the full �rst-order theory. The case of a feature tree logic with update constraints
was open up to now. This line of work is described in details in Chapter 4. In a second line of work,
we aim at designing e�cient decision procedures for a restricted set of formulas with implementation in
mind. It is described in detail in Chapter 5.

1.3 Overview of the Toolchain

Let us take the package rancid-cgi [32] as a running example. It comes with only two maintainer
scripts: preinst and postinst. The goal of the CoLiS project is to build a toolchain able to take this

18

1.3. OVERVIEW OF THE TOOLCHAIN

colis-language

Shell
Script

Shell
CST

Shell
AST

CoLiS
AST

Symbolic
Execution

Utilities
Speci�cations

Constraint
Solving

Semantics

Morbig

Morsmall

conversion

Figure 1.4: colis-language: toolchain for the analysis of one Shell script

1 if [-h /etc/rancid/lg.conf]; then
2 rm /etc/rancid/lg.conf
3 fi
4 if [-e /etc/rancid/apache.conf]; then
5 rm /etc/rancid/apache.conf
6 fi

Figure 1.5: preinst script of the rancid-cgi package

package as input and to automatically compute and output a report explaining the status of this package
and potentially showing the presence of bugs.

1.3.1 First Layer – One Script

Since this work focuses on the Shell scripts present in packages, a �rst layer of our toolchain will need
to comprise tools to read Shell scripts, reason about them and compute their semantics in some formal-
ism. The �rst layer of our toolchain, colis-language [11], analyses one Shell script and computes its
semantics. It is summarised in Figure 1.4.

As we have said, the huge majority of maintainer scripts is written in Shell. Shell is a scripting language
that provides control �ow structures around calls to Unix utilities. As an example, let us consider the pre-
inst script of rancid-cgi, presented in Figure 1.5. It contains four utility calls, the �rst one being [-h
/etc/rancid/lg.conf]. The script reads as follows: if the symbolic link /etc/rancid/lg.conf exists
then it is removed; if the �le /etc/rancid/apache.conf exists, no matter its type, it is also removed.
Both removal operations use the POSIX utility rm which, without options, cannot remove directories.
Hence, if /etc/rancid/apache.conf is a directory, this script fails while trying to remove it.

The Shell scripts are �rst being parsed using Morbig and Morsmall. These two tools have been developed
as part of the CoLiS project. The former, Morbig, is a static parser for POSIX Shell providing concrete

syntax trees for Shell scripts. The latter, Morsmall, is a wrapper around Morbig that provides abstract

19

CHAPTER 1. INTRODUCTION

1 if test ['-h'; '/etc/rancid/lg.conf'] then
2 rm ['/etc/rancid/lg.conf']
3 fi
4 if test ['-e'; '/etc/rancid/apache.conf'] then
5 rm ['/etc/rancid/apache.conf']
6 fi

Figure 1.6: preinst script of the rancid-cgi package in CoLiS

test ['-h'; '/etc/rancid/lg.conf']

rm ['/etc/rancid/lg.conf']

test ['-e'; '/etc/rancid/apache.conf']

rm ['/etc/rancid/apache.conf']

test ['-e'; '/etc/rancid/apache.conf']

rm ['/etc/rancid/apache.conf']

S1 E1

S2

E2

S3 E3

S4

Success Error

Success Error

Success Error

Success Error

Success Error

Success Error

Figure 1.7: Traces of execution of the preinst script of the rancid-cgi package

syntax trees for Shell scripts. They are described in Chapter 6.

The Shell scripts are then converted to an intermediary language named “CoLiS”. The CoLiS version of
this preinst script of rancid-cgi is shown in Figure 1.6. The Shell and CoLiS versions of the script look
very similar, which comes from the fact that CoLiS aims at being the target of an automated conversion
from Shell. However, some key pitfalls of Shell have been dealt with and eliminated from CoLiS. In the
example of Figures 1.5 and 1.6, one can for instance see that the CoLiS language features more structure
than Shell, and contains for instance delimiters of strings.

The semantics of CoLiS scripts is then computed by symbolic execution. Basically, this explores all the
possible traces of execution of the scripts in terms of success and error of the utility calls they contain.
For instance, for the script of Figure 1.6, the traces would be that of Figure 1.7. This script has a total of
seven traces, four of which lead to a successful exit (S1, S2, S3 and S4) and three of which lead to an error
exit (E1, E2 and E3).

For each of these traces, we want to compute on which �lesystems they may happen and what transforma-
tion they perform in that case. For instance, the trace leading to S4 performs no transformation and hap-
pens when /etc/rancid/lg.conf is not a symbolic link (or does not exist) and /etc/rancid/apache.conf
does not exist.

By computing on which �lesystems the trace can happen, we can also hope to detect traces that are
not reachable. In the example, for instance, the trace leading to E2 is not reachable because rm ['/
etc/rancid/lg.conf'] cannot fail if we know for sure that /etc/rancid/lg.conf is a symbolic link,
which we do because we are in a success case of test ['-h'; '/etc/rancid/lg.conf']. The detection
of unreachable traces can also be done on the �y in order to stop exploring them as soon as possible.

In order to do that, we need three ingredients. Firstly, we need a formalism in which to express transfor-

20

1.3. OVERVIEW OF THE TOOLCHAIN

Package

colis-package

Static
Contentsh sh sh sh

φ φ φ φ

colis-language

•

Scenarios Properties
to check

Report

Figure 1.8: colis-package: toolchain for the analysis of a Debian package

mations of trees. This will be FTS, the logic of feature trees mentioned in Section 1.2.3.27 Secondly, we
need a database of the transformations that are associated to every success of error cases of a command.
Thirdly, we need a solver able to take a list of transformations associated to commands and to compute if
the composed transformation can actually happen.

The parsing phase is described in details in Section 6.1. The CoLiS language and the conversion are
described in details in Section 6.2. The symbolic execution engine is detailed in Section 7.2. The model used
to represent trees is de�ned in Section 3.1 and FTS is de�ned in Section 3.2. The modelisation of utilities
is described in Section 3.3 and their speci�cation is developed in Section 3.4. The constraint solving is
the main topic of this thesis and is developed in Chapter 4 for the theoretical aspect and Chapter 5 for
e�ciency considerations.

1.3.2 Second Layer – One Package

Once we are able to compute the semantics of a Shell script, we can extend that to computing the semantics
of various scenarios – installation, update, removal, purge, etc. – for a given package. The second layer of
our toolchain is based on the �rst one and is able to analyse packages and report on them. It is summarised
in Figure 1.8.

In Debian, the installation of a package28 is handled by the dpkg utility. Roughly speaking, for installation,
dpkg calls the preinst script, then unpacks the static content, and �nally calls the postinst scripts.29

The precise sequence of script invocations and the actual script parameters are de�ned formally in the
Debian Policy and described informally by �owcharts [22, Appendix 9]. The �owchart for the installation
of a package is shown in Figure 1.9.

The tool colis-package [23] uses colis-language on the maintainer scripts and then composes their
semantics to determine in which conditions the scenarios outputs can be reached and what transformation
is performed on the �lesystem in that case. In each of these possible output states, colis-package can

27An other team in the CoLiS project explores the use of tree transducers to provide this same formalism. We did not contribute
to this line of work and it is therefore not going to be presented in this thesis.

28As well as all the other common operations: update, removal, purge, etc.
29For removal of a package, dpkg calls the prerm script, then removes the static content and �nally calls the postrm script.

21

CHAPTER 1. INTRODUCTION

Figure 1.9: Flowchart for the installation of a package. Published in the Debian Policy [22, Appendix 9]

then check that the requirements given by the Debian Policy [22, Chapters 6 and 10] are satis�ed. Finally,
colis-package outputs a report on the given package.

The results of colis-package running scenarios are presented as a set of HTML pages, including an
index page giving data on the execution of the toolchain as well as a summary of all scenarios and a quick
access to execution paths, a page for each maintainer script presenting its original Shell version and its
converted CoLiS version if parsing and conversion were successful and a page for each execution path
of each scenario, presenting the constraint corresponding to that path as well as debug traces to help us
follow the execution path in the Shell or CoLiS script.

Let us go back to our running example. The HTML page reporting on rancid-cgi contains metadata
about the time of the analysis (less than 1 second for such a simple package), the parsing status of main-
tainer scripts (two maintainer scripts, preinst and posting, the latter rejected by conversion because it
uses an unsupported feature of the utility exec) and the list of scenarios as well as a quick access to their
execution paths. A screenshot is available in Figure 1.10.

For the installation scenario, the HTML page includes the �owchart of Figure 1.9 with extra information
about our speci�c package. We can read that the execution of the preinst script returned 6 states com-
prising 4 successes and 2 errors. The analysis of the 4 success states stops rapidly as the postinst script
could not be converted and can therefore not be analysed. Since there is no postrm script, the 2 error
cases go directly to the “Not-Installed” output state.

Reaching this “Not-Installed” output state is not per se a bug: it can be reasonable for a preinst script to
cancel the installation before it takes place if some precondition is not satis�ed. In such a case, the script
should report on the error and, of course, leave the �lesystem untouched.

In this case, one of the “Not-Installed” output state corresponds to the screenshot presented in Figure 1.11.
The diagram represents the constraints on the input �lesystem on the left and the resulting output �lesys-
tem on the right. We can read that this case happens when /etc/rancid/lg.conf exists in the input
�lesystem and is a symbolic link and /etc/rancid/apache.conf exists in the input �lesystem and is a
directory. In this case, the output �lesystem is similar to the input one except for /etc/rancid/lg.conf
that does not exist. All the rest, including /etc/rancid/apache.conf, remains the same. This error
happens because the rm utility cannot remove directories if its -r argument is not speci�ed. It is impor-
tant to notice, here that, although we reach the “Not-Installed” case, there has been a modi�cation of the
�lesystem. This can therefore be considered to be a bug. This bug has been reported to Debian in October

22

1.3. OVERVIEW OF THE TOOLCHAIN

Figure
1.10:Reportof

colis-package
on

rancid-cgi
–

Index

23

CHAPTER 1. INTRODUCTION

Figure 1.11: Report of colis-package on rancid-cgi – One output state

2019 [9] and, since then, �xed.

1.3.3 Third Layer – Several Packages

As of October 6, 2019, there are 12,592 packages that contain at least one maintainer script. Analysing
them all by hand is therefore unreasonable and we need a tool helping us here. This is where the third
layer of our toolchain, colis-batch [23], comes to play. It runs colis-package on several packages in
parallel and outputs a report containing all the individual reports of the packages as well as a summary
report. It is summarised in Figure 1.12. An example report is publicly available as a Zenodo archive [30].

The main page of the report contains information about the time taken for the full analysis, statistics
about the number of scripts and their status with respect to the conversion, statistics about the number
of scenarios ran in total and how many could be run without issues. The report then contains one page
per scenario listing the packages that can reach each of the possible outcomes. A screenshot is shown
in Figure 1.13. For instance, the page for the installation scenario of a corpus containing our example
package rancid-cgi would say that at least one package reaches the “Not-Installed” state. A screenshot
is shown in Figure 1.14. rancid-cgi would then show up in the list of non-installed packages and a link
would lead to its individual report, described in Section 1.3.2.

1.4 Contributions & Plan of the Thesis

The main contributions of this thesis can be stated in the following list. The thesis itself is broadly organ-
ised according to these contributions.

• Our �rst contribution lies in the modelisation of Unix systems. This includes the modelisation of
Unix �lesystems as feature trees and transformation of Unix �lesystems as formulas in FTS. This also
includes the modelisation of Unix utilities as objects performing transformations of Unix �lesystems
using FTS. This modelisation is common work with other members of the CoLiS projects, but we

24

1.4. CONTRIBUTIONS & PLAN OF THE THESIS

Corpus

Full Report

colis-batch

Package Package · · · Package

Report Report · · · Report

colis-package

•

Summary

Figure 1.12: colis-batch: toolchain for the analysis of several Debian packages

contributed by providing the format as well as the speci�cation of some utilities. This is described
in Chapter 3.

• The main contribution of this thesis lies in decision procedures for FTS. This includes a theoretical
dimension and more practical considerations. The theoretical approach results in a decision proce-
dure for the �rst-order theory of FTS. The decidability of a feature tree logic with update constraints
was open up to now. This decision procedure gives a result on the decidability of formulas of FTS,
but its prohibitive complexity makes it unusable in practice. This theoretical dimension is the sub-
ject of Chapter 4. The practical considerations focus on designing a solver able to reason e�ciently
about a chosen restricted subset of formulas of FTS which are necessary for the rest of the project.
This is described in Chapter 5.

• Another contribution lies in the modelisation of the Shell language. This results in the introduction
of an intermediary language whose semantics is close to that of Shell but which avoids a lot of its
pitfalls. This language comes with an automated conversion from a subset of Shell. This is described
in Chapter 6.

• Finally, our contributions are scattered in a lot of places in the CoLiS project. They range from
a formal interpretation of the POSIX standard [18] to contributions to the implementation of the
toolchain mentioned in Section 1.3, while also spending time on ensuring quality on the software
in the toolchain. This is described in Chapter 7.

We conclude with a word on the perspectives that remain open after this work in Chapter 8.

25

CHAPTER 1. INTRODUCTION

Figure
1.13:Sum

m
ary

reportby
colis-batch

–
Index

26

1.4. CONTRIBUTIONS & PLAN OF THE THESIS

Figure
1.14:Sum

m
ary

reportby
colis-batch

–
Page

ofthe
installation

scenario

27

Chapter 2

Notations

This chapter describes the notations that we use in the whole document.

Sets

The empty set is noted ∅. If the universe is obvious from context, then we use ? to represent the full set
containing all the elements of the universe.

If A and B are two sets, then A ∪B represents their union and A ∩B their intersection.

If A is a �nite set of sets, then
⋃
A represents the �nite union of all the sets of A and

⋂
A their �nite

intersection. If A is empty, then
⋃
A = ∅ and

⋂
A = ?.

If constr is an element and A is a set, we note constr(A) the set {(constr, e) | e ∈ A}.

Lists & Stacks

We use lists and stacks with the same notations. Lists are typically named l while stacks are typically
named π.

For presentation purposes, we alternatively use lists from the left and from the right. Either way, the
empty list is noted ε. If x is an element and l is a list, then x 〉 l (resp. l 〈 x) represents the list containing
all the elements of l in the same order and starting (resp. ending) by x. For instance, if l is a list from the
right containing the elements 1, 2 and 3, 1 being at the head of the list, we have l = ε 〈 3 〈 2 〈 1. If l1 and
l2 are two lists, then l1 〉〉 l2 (resp. l2 〈〈 l1) represents the list containing all the elements of l1 in the same
order followed (resp. preceded) by all the elements of l2 in the same order.

If A is a set, then A+ (resp. A∗) represents non-empty (resp. potentially empty) lists of elements of A.

Functions

The domain of a function f is noted dom(f).

IfA andB are sets, A→ B represents the set of functions fromA toB, that is the set of functions whose
domain is A and whose image is included in B. A B represents the set of partial functions from A to
B, that is the set of functions from a subset of A to B. The subset in question can be in�nite.

29

CHAPTER 2. NOTATIONS

1 function sort(l : list of integers) : list of integers
2 match l
3 | ε -> return ε
4 | x 〉 l′ ->
5 let l′′ = sort(l′)
6 return insert(x, l′′)
7
8 function insert(x : integer , l : list of integers) : list of integers
9 match l

10 | ε -> return x 〉 ε
11 | x′ 〉 l′ ->
12 if x < x′

13 return x 〉 x′ 〉 l′

14 else
15 return x′〉 insert(x, l′)

Figure 2.1: An example program in pseudo code

If x1, x2, v1, v2, etc. are elements, then [x1 7→ v1, x2 7→ v2, . . .] represents the function whose domain is
{x1, x2, . . . } and that associates v1 to x1, v2 to x2, etc. f [x1 7→ v1, x2 7→ v2, . . .] represents the function
whose domain is dom(f) ∪ {x1, x2, . . . } and that associates v1 to x1, v2 to x2, etc. and f(x) to every x
that is not x1, x2, etc.

Two functions f and g are equal, noted f = g, if dom(f) = dom(g) and for all x ∈ dom(f), f(x) = g(x).
Two functions f and g are equal on a set A, noted f =A g, if dom(f) ∩ A = dom(g) ∩ A and for all
x ∈ dom(f) ∩A, f(x) = g(x).

Pseudo Code

We often present code as a way to support an explanation or describe an algorithm. For this purpose,
we use pseudo-code presenting a functional language strongly in�uenced by OCaml. An example can be
found Figure 2.1. Our pseudo code features:

• functions, including mutually recursive functions (Line 1),
• types (Line 1), including option types of the form type or ⊥,
• pattern-matching (Line 2),
• let bindings (Line 5), although we avoid the use of shadowing,
• and conditional statements (Line 12).

We use syntax colouring as a way to make our code more readable. In no way is this colouring necessary
for the understanding of the semantics of our programs.

• keywords are red,
• functions are blue,
• types are green.1

We sometimes show programs in other (existing) languages. They share the same syntax colouring except
they do not feature types. They sometimes show strings in green and variables in gold.

1...and so should you? [31]

30

Chapter 3

Modelisation of Unix Filesystems and
Utilities

Let us dive into the modelisation of Unix �lesystems and utilities. In Section 3.1, we �rst describe Unix
�lesystems and feature trees and explain how and why we can model the former using the latter. We
then introduce, in Section 3.2, the logic FTS which allows us to represent relations between these feature
trees, and therefore model �lesystem transformations. In Section 3.3, we describe Unix utilities and how
we can see them as objects performing �lesystem transformations, and therefore how we can model
them using FTS. Finally, in Section 3.4, we discuss some properties that we can expect from the formal
speci�cations of Unix utilities and state what we need from decision procedures in order to reason about
such speci�cations.

3.1 Modelisation of Filesystems

Let us start by describing Unix �lesystems and how we model them in this work. In Section 3.1.1, we
describe various aspects Unix �lesystems. In Section 3.1.2, we explain which aspects can be abstracted
away in our work, and why. Finally, in Section 3.1.3, we de�ne feature trees and discuss their pertinence
as models of �lesystems.

3.1.1 Filesystems

A �lesystem is a hierarchical structure used to store and �nd data e�ciently. Filesystems can be found in
storage devices: hard disk drives, solid-state drives, magnetic tapes, optical discs, USB sticks, etc. Some
can also be found outside of permanent storage devices. This is in particular the case of the temporary
�lesystems stored directly in the computer’s main memory (RAM) or of the ones accessible via a network
protocol. In this work, we are interested in Unix �lesystems and we will only describe these in the rest of
this subsection.

In such �lesystems, everything is a �le
1. The most common kind of �les are called regular �les. They are

used to store all kind of permanent data. There are many other kinds of �les: pipes, sockets, block and
character device �les, symbolic links, etc. All of these are stored inside directories2 that are also considered
to be �les. A whole �lesystem is thus one root directory containing other directories and �les recursively.

1See https://en.wikipedia.org/wiki/Everything_is_a_file for the “everything is a �le” quote.
2Directories are also often called folders. We will only use the former.

31

https://en.wikipedia.org/wiki/Everything_is_a_file

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

Although hierarchical, a �lesystem is not necessarily a tree but rather a directed acyclic graph. This will
be explained in details later.

From a directory, one accesses other �les by their �le name. File names can be any string that does not
contain / and that is neither . or ... We will note by F the set of allowed �le names. One dot, ., denotes
the current directory itself. Two dots, .., denotes the parent directory, that is the directory that contains
the current directory. The parent of the root is the root itself.

The list of �le names that lead to a �le is called the path of that �le. Paths can also include the current
directory and the parent directory. They can be absolute and relative. Absolute paths are interpreted from
the root of the �lesystem. Relative paths are interpreted relatively to a current working directory.

De�nition 3.1 (Abstract Syntax Path). Given a set F of allowed �le names, the set of path components is
PC = F ∪ {., ..}. The two path kinds are abs and rel. The set of paths is de�ned as

P = abs(PC∗) ∪ rel(PC+)

where PC+ is a non-empty list of path components and PC∗ is a possibly empty list of path components.

A path is absolute if it is in abs(PC∗). A path is relative if it is in rel(PC+). A path is linear if it does not
contain . or ... A path is normal if it is absolute and linear.

Note that relative paths cannot be empty while absolute paths can. The empty absolute path represents
the root. Paths are written as the list of their path components separated by /. Absolute paths start with /,
relative paths do not. For instance, the normal path of the �le ocaml in the directory lib in the directory
usr at the root is noted /usr/lib/ocaml. The absolute path /usr/../usr/lib/./ocaml would point to
the same �le. The relative path ../lib/ocaml, when considered from the directory /usr/share, would
also point to the same �le.

As we mentioned earlier, �lesystems are not Herbrand-style trees. This comes from two reasons. Firstly,
the �le names belong to the directory that contains the �les and not to the �les themselves. In other words,
they are on the edges of the �lesystem and not on the nodes. This means that the same �le can be present
with di�erent names in the same directory. It can also be present in a di�erent directory anywhere else
in the �lesystem. This introduces sharing in �lesystem structures: the same �le can have several normal
paths. Such alternative accesses for the same �le are called hard links. They are forbidden on directories
so as to avoid creating cycles.3

Secondly, �lesystems can contain symbolic links. They are �les that contain a path, absolute or relative.
One can then access a symbolic link and must follow the path it contains to get to the �le it refers to. For
instance, if /usr/local/lib is a symbolic link containing ../lib, then /usr/local/lib/ocaml would
point to the same �le as /usr/lib/ocaml. These symbolic links di�er from hard links in that they may
point to directories, thus creating cycles. They may also point to non-existing �les: nothing guarantees
that the path they contain is valid in the �lesystem.

In order to better understand the notion of path and its interpretation, let us consider Figure 3.1. It contains
a pseudo-code version of the resolution of a path in a �lesystem, for explanatory purposes. It de�nes a
function resolve, Line 24, which takes a �lesystem fs, a normal path containing the current directory
cwd and a path p to resolve. It returns either a normal path corresponding to the resource p points to, or an
error if the path is not valid. resolve only matches on the given path p to get its list of path components q

3Historically, some systems have tried allowing hard linking to directories. This has been abandoned in most current systems
to prevent loops in �lesystems and to keep the interpretation of the parent directory consistent. It still has some infrequent uses,
for instance in Mac OSX’s Time Machine backup mechanism.

32

3.1. MODELISATION OF FILESYSTEMS

1 function file-kind (fs : filesystem , cwd : normal path, f : file name)
2
3 function resolve-pc
4 (fs : filesystem , cwd : normal path,
5 q : list of path components) : normal path or error
6 match q
7 | ε -> return cwd
8 | . 〉 q′ -> return resolve-pc(fs, cwd, q′)
9 | .. 〉 q′ ->

10 match cwd
11 | / -> return resolve-pc(fs, /, q′)
12 | cwd’ 〈 _ -> return resolve-pc(fs, cwd, q′)
13 | f 〉 q′ ->
14 match file-kind(fs, cwd , f)
15 | directory -> return resolve-pc(fs, cwd 〈 f, q′)
16 | symlink to abs(q′′) -> return resolve-pc(fs, /, q′′ 〉〉 q′)
17 | symlink to rel(q′′) -> return resolve-pc(fs, cwd, q′′ 〉〉 q′)
18 | other kind ->
19 match q′

20 | ε -> return cwd 〈 f
21 | _ -> return error
22 | no such file -> return error
23
24 function resolve (fs : filesystem , cwd : normal path, p : path)
25 : normal path or error
26 match p
27 | abs(q) -> return resolve-pc(fs, /, q)
28 | rel(q) -> return resolve-pc(fs, cwd, q)

Figure 3.1: Resolution of a path in a �lesystem

33

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

and to know whether resolution should start from the root – if p is absolute – or from the current directory
– if p is relative. In both cases, the core of the resolution is left to resolve-pc. resolve-pc, Line 3 takes
a �lesystem fs, a current directory cwd and a list of path components q and returns a normal path or an
error. It works as follows:

• If the given list of path components q is empty (Line 7), there is nothing to resolve and the cur-
rent directory cwd is the resource we have been resolving. Otherwise, we consider the �rst path
component of the list. The rest of the list will be named q′.

• If the �rst path component of q is . (Line 8), we do not move and we continue resolving the rest of
the path from the same directory.

• If the �rst path component of q is .. (Line 9), we have to remove the last path component of cwd. If
cwd is the root, there is nothing to remove and we continue resolving from the same place (Line 11).
Otherwise, we remove the last path component and continue resolving from there (Line 12).

• Otherwise, if the �rst path component of q is a �le name f (Line 13), we query the �lesystem to
see what is to be found in cwd at the �le name f . For that, we assume the existence of a func-
tion file-kind that returns the kind of our �le if it exists.4 We leave the function file-kind
unspeci�ed in this example.

• If the �le in question exists and is a directory (Line 15), we can continue resolving from this direc-
tory: the name f is added at the end of cwd.

• If the �le exists and is a symbolic link (Lines 16 and 17), we append its path components q′′ in front
of the list of path components that remain to be resolved q′. We start the new resolution from the
root or the current directory depending on whether the link is symbolic or not.

• If the �le exists but is another kind of �le (Line 18), we have two possibilities. If there does not remain
anything to resolve after this, then the �le in question is the resource we have been resolving and
we can return cwd to which we add the �le name (Line 20).

• If the �le exists but there remains things to resolve, or if the �le does not exist, then the resolution
fails (Lines 21 and 22).

Finally, all �les carry additional metadata. In other words, the nodes of a �lesystem carry various book-
keeping information. The minimal information that must be carried by a node in a POSIX �lesystem [19,
13. Headers, <sys/stat.h>] is the following:

• the user and group owning the �le;
• the mode, containing the permissions stating who can read, write or execute the �les;
• the inode and the device id containing the �le;
• three timestamps describing when they have been accessed or modi�ed last, or when their status

has been changed last;
• in case of regular �les, the size: the number of bits they occupy on the storage medium;
• the number of hard links – incoming edges – to them;

Some extensions are already described in the POSIX standard and, technically, any other is possible.

4This function is not present in that way in Unix. A similar functionality is provided by the stat() system call [21, 3. System
Interfaces, stat()].

34

3.1. MODELISATION OF FILESYSTEMS

3.1.2 Abstracting Away from the Filesystem

Filesystems contain a lot of information. However, we are not necessarily interested in modelling all of
them for our work. As mentioned in Section 1.2, we are guided in our modelisation by (with increasing
order of importance:

• the POSIX standard [18], a document that describes what can be expected from Unix systems in
general and �lesystems and Shell in particular;

• the Debian Policy [22], a document that describes what can be expected on Debian systems in
general and what should and should not be in maintainer scripts in particular;

• and a statistical analysis that we did ourselves (see Section 7.1), that allows us to measure what is
actually used in Debian maintainer scripts.

The Debian Policy, for instance, states that maintainer scripts will be executed as the root user with max-
imum privileges. This level of privileges allows to ignore information of owner, group and permissions.
We can thus safely abstract away from these in our model. Our statistical analysis [25; Jeannerod et al.
2017b] shows us that the other metadata – the timestamps5, the �le size, etc. – are not used in maintainer
scripts. It is thus safe to remove them too from our abstraction.

For similar reasons, we do not consider the content of regular �les. This restriction allows us in particular
to ignore any problem related to sharing – i.e. to �les being reachable from di�erent places in the �lesys-
tem – and therefore to ignore hard links. Indeed, hard links only matter because the modi�cation of a �le
will a�ect all the places in the �lesystem where it is located. Since we do not model the content of �les,
this problem goes away and we are allowed to see �lesystems as trees.

The statistical analysis also shows that the �le kind does not matter: we are only interested in the dif-
ference between directories and other kind of �les. In fact, handling several �le kinds does not add any
complexity to the modelisation. For presentation purposes, in all the rest of this chapter as well as in
Chapters 4 and 5, we will ignore �le kinds altogether, as if all �les were directories.

Finally, the handling of symbolic links is known to be a complicated problem. There exists research
focusing on this topic [Ntzik & Gardner 2015]. Fortunately for us, they are rarely present in maintainer
scripts. We have thus decided to ignore in order to put our focus on other aspects of the modelisation
of �lesystem relations. Technically, this means that there are some scripts that are going to be modelled
incorrectly; the potential bugs we �nd therefore can only be false positives and have to be validated a
posteriori. The fact that they are rarely present in maintainer scripts means that we will only encounter
a low number of such false positives.

3.1.3 Feature Trees

Feature trees are trees of unbounded depth where nodes have an unbounded number of children and where
edges from nodes to their children carry names such that no node has two di�erent outgoing edges with
the same name. Hence, the names on the edges can be used to select the di�erent children of a node.
In an abstraction like ours where a �lesystem can be seen as a tree, feature trees happen to be adequate
representations of such trees.

We assume given an in�nite set of features F . It is used to model the allowed �le names in a �lesystem.
In the rest of this document, we use the letters f , g, h to denote features. We can now give the de�nition
of feature trees in De�nition 3.2.

5Besides, on a lot of current systems, the default is to disable the update of the access time of �les. Some others update it but
not systematically.

35

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

t1: ·

· ·
lib share

t2: ·

· ·

· ·

bin usr

lib share

t3: ·

·

·

· ·

·

· ·

etc usr

rancid

apache.conf lg.conf

sharelib

t4: ·

Figure 3.2: Examples of feature trees

De�nition 3.2 (Feature Trees). The set FT ∞ of feature trees is coinductively de�ned as:

FT ∞ = F FT ∞

A �nite feature tree is an inhabitant of FT ∞ that is �nite. We will note by FT the set of �nite feature
trees. In other words, it is inductively de�ned as:

FT = F FT

where all the partial functions have �nite domain. Here, the case of a partial function with empty domain
serves as base case of the induction.

Note that if all the trees in FT are �nite, their depths and their widths are unbounded6. In this work,
we are going to consider most of the time �nite feature trees. Unless explicitly mentioned, all the feature
trees in the rest of this document are �nite, that is unless explicitly mentioned, we place ourselves in the
model FT .

Figure 3.2 shows examples of feature trees. t1 is a tree whose root has two outgoing edges lib and share
both leading to a tree whose root has no outgoing edges. Formally, t1 is a partial function of domain
{lib, share} and such that t1(lib) = t1(share) = t4, where t4 is the empty feature tree. One can
notice that t1 = t2(usr), that t2(usr) = t3(usr) and that t1(usr) = t4

7.

Feature trees have been used previously in constraint-based formalisms in the �eld of computational
linguistics [Smolka 1992]. They have then been introduced as record-like data structures in constraint
logic programming [Aït-Kaci et al. 1994; Smolka & Treinen 1994] The use of record-like structures in logic
programming languages, under the form of ψ-terms [Aït-Kaci 1986], was introduced by the languages
LOGIN [Aït-Kaci & Nasr 1986] and LIFE [Aït-Kaci & Podelski 1993]. Shortly later, the language Oz [Smolka
et al. 1993; Smolka 1995] used a feature constraint system whose semantics was directly based on feature
trees.

3.2 Logic Over Feature Trees – FTS

We now have a model of �lesystems as feature trees. What we do want to describe in this work, however,
is �lesystem transformations, as they are what Unix utilities and Shell scripts perform. We thus need a

6If F is a �nite set, then the width of trees in FT is of course trivially bounded.
7Among plenty other seemingly interesting facts, but our goal here is not to list them all.

36

3.2. LOGIC OVER FEATURE TREES – FTS

formalism able to describe transformations of feature trees. In particular, we need to be able to describe
an update from one tree to another one and to express facts resembling “y is an update of x where f now
leads to an empty directory”. Feature tree logics have been studied before and seem quite appropriate to
describe the trees we are interested in; they just need to be extended to express updates of trees.

In this section, we de�ne a feature tree logic FTS8 that corresponds to these needs. In Section 3.2.1, we
de�ne the syntax of the formulas of FTS and give examples. In Section 3.2.2, we give the semantic inter-
pretation of these formulas and de�ne basic semantic notions. In Section 3.2.3, we discuss the expressivity
of FTS in comparison to related works. Finally, in Section 3.2.4, we de�ne classes of formulas that will be
used in this document.

3.2.1 Syntax of FTS

We assume given an algebra of sets over F , noted FS . This is a subset of P(F) containing the empty
set, all the singletons of features, and stable by union, intersection and complement. It thus contains all
the �nite and co�nite9 sets of features, including F itself. We will note ? for the full set, that is F . We
require a test of membership (∈) and a test of inclusion (⊆). In particular, we can test whether a set F is
empty (F ⊆ ∅), or full (? ⊆ F). Typically, we could restrict ourselves to only �nite and co�nite sets, but
we could also consider regular languages of features, for instance.

We consider a �rst-order logic over feature trees. We assume given an in�nite supply V of variables all
distinct from features of F . We will use x, y, z to denote these variables. Let us give the syntax of logic
formulas of FTS in De�nition 3.3.

De�nition 3.3 (Syntax of FTS). The logical formulas φ, ψ, etc. are de�ned inductively as:

φ, ψ, . . . ::= x[f]y — Feature f from x to y
| x[F]↑ — Absence of F from x
| x =F y — Similarity of x and y on F
| > — True
| ⊥ — False
| ¬φ — Negation of φ
| φ ∧ ψ — Conjunction of φ and ψ
| φ ∨ ψ — Disjunction of φ and ψ
| ∃x · φ — Existential quanti�cation of x in φ
| ∀x · φ — Universal quanti�cation of x in φ

where f is a feature from F and F is a feature set from FS .

We consider the similarity predicate to be symmetrical: we identify x =F y with y =F x. We consider
conjunction to be associative and commutative. Associativity means that we identify φ ∧ (ψ1 ∧ ψ2) with
(φ ∧ ψ1) ∧ ψ2 and we write φ ∧ ψ1 ∧ ψ2 in that case. Commutativity means that we identify φ ∧ ψ with
ψ ∧ φ. Similarly, we consider disjunction to be associative and commutative. We consider existential
quanti�cation to be commutative: we identify ∃x · ∃y ·φ with ∃y · ∃x ·φ and we write ∃x, y ·φ. Similarly,
we consider universal quanti�cation to be commutative.

We write x[f1 . . . fn]↑ for x[{f1 . . . fn}]↑ and x ={f1...fn} y for x ={f1...fn} y. We write x 6=F y for
¬(x =F y). We use the shortcuts φ→ ψ for ¬φ ∨ ψ, and φ↔ ψ for (φ→ ψ) ∧ (ψ → φ).

8When I checked on the Internet whether the initials “FTS” were already in use, I discovered that they were... by a company
named FrenchTouchSeduction.com. That is when I knew I had made the good choice.

9If F is �nite, then every subset of F is both trivially �nite and co�nite.

37

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

x[lib]y ∧ y[?]↑ (3.1)
∃y · (x ={usr,var} y ∧ x[etc]↑ ∧ ¬y[etc]↑) (3.2)
∀x · ((x =F y ∧ x[G]↑)→ y[F ∩G]↑) (3.3)
∃x, y · ∀z · (z 6=F x ∨ z 6=F y) (3.4)

Figure 3.3: Examples of formulas

Note that FTS only has quanti�cation over variables. It does not, in particular, allow quanti�cation over
features or sets of features. Variables that appear in an existential or universal quanti�er are said to be
bound. The others are called free variables. We de�ne free variables in De�nition 3.4.

De�nition 3.4 (Free Variables of a Formula). The free variables of a formula φ, noted V(φ) are de�ned as
follows:

V : formulas → sets of variables
>, ⊥ 7→ ∅
x[F]↑ 7→ {x}

x[f]y, x =F y 7→ {x, y}
¬φ 7→ V(φ)

φ ∧ ψ, φ ∨ ψ 7→ V(φ) ∪ V(ψ)

∃x · φ, ∀x · φ 7→ V(φ)\{x}

A formula φ that has no free variables (that is such that V(φ) = ∅) is said to be closed.

Any formula can be closed by adding as many existential or universal quanti�ers as necessary. These
closures are de�ned in De�nition 3.5. Note that closed formulas are syntactically equal to both their
existential and universal closures.

De�nition 3.5 (Existential and Universal Closures). The existential closure of a formula φ, written ∃̃ · φ,
is the formula ∃V(φ) · φ. The universal closure of a formula φ, written ∀̃ · φ, is the formula ∀V(φ) · φ.

Figure 3.3 shows example formulas in FTS. Let us describe informally their meaning in natural language.

• Formula 3.1 states that there is a feature lib from x to y and that everything is absent from y (in
other words, y is empty).

• Formula 3.2 states that there exists a y such that x and y are similar in {usr, var}, and that etc is
absent from x and not absent from y (in other words, etc is present in y).

• Formula 3.3 states that, for all x, if x and y are similar in F , and all the features of G are absent
from x, then all the features of F ∩G are absent from y.

• Formula 3.4 states that there exists x and y such that for all z, either x and z are not similar in F ,
or y and z are not similar in F (in other words, z cannot be similar in F with both x and y).

The formalisation of the meaning of these formulas is the subject of Section 3.2.2.

38

3.2. LOGIC OVER FEATURE TREES – FTS

3.2.2 Semantics of FTS

Let us now de�ne what meaning to give to a formula of FTS de�ned in Section 3.2.1. We �rst need to
de�ne models in De�nition 3.6 and valuations to models in De�nition 3.7.

De�nition 3.6 (Model). A model is a set of feature trees, that is a subset of FT ∞.

De�nition 3.7 (Valuation to a model). Given a model M , a valuation to M is a partial function from
variables to M . We use ρ to denote such functions. The set of all valuations to M will be noted RM .

We can then de�ne the interpretation of a formula φ in a model M in De�nition 3.8. The interpretation
of φ inM is a set of valuations toM – that is a subset ofRM – thanks to which the formula makes sense.
We de�ne this in any model although we will place ourselves in the speci�c model FT most of the time.

De�nition 3.8 (Interpretation of a formula in a model). The interpretation of a formula φ in a model M ,
noted IM (φ), is:

IM : formulas → P(RM)

x[f]y 7→ {ρ ∈ RM | x, y ∈ dom(ρ), f ∈ dom(ρ(x)), ρ(x)(f) = ρ(y)}
x[F]↑ 7→ {ρ ∈ RM | x ∈ dom(ρ), dom(ρ)(x) ∩ F = ∅}

x =F y 7→ {ρ ∈ RM | x, y ∈ dom(ρ), ρ(x) =F ρ(y)}
> 7→ RM

⊥ 7→ ∅
¬φ 7→ RM\IM (φ)

φ ∧ ψ 7→ IM (φ) ∩ IM (ψ)

φ ∨ ψ 7→ IM (φ) ∪ IM (ψ)

∃x · φ 7→ {ρ ∈ RM | ∃t · ρ[x 7→ t] ∈ IM (φ)}
∀x · φ 7→ {ρ ∈ RM | ∀t · ρ[x 7→ t] ∈ IM (φ)}

We note ρ |=M φwhen ρ ∈ IM (φ). We say that ρ satis�es the formula φ in the modelM . We note ρ |= φ
when ρ satis�es φ in all models.

Depending on whether IM (φ) contains zero, more or all of the valuations of RM , we say that φ is unsat-
is�able, satis�able or valid respectively. The formal de�nition of these terms is given in De�nition 3.9.

De�nition 3.9 (Satis�ability). A formula φ is unsatis�able in a model M if there does not exist any val-
uation ρ ∈ RM such that ρ |=M φ. A formula φ is satis�able in a model M if there exists a valuation
ρ ∈ RM such that ρ |=M φ. A formula φ is valid in a model M if, for all valuation ρ ∈ RM , ρ |=M φ.

Note that a valid formula is also satis�able. Note also that, for closed formulas, the valuations do not
matter. In other words, if one valuation satis�es a closed formula, then all the other valuations do too.
Satis�ability and validity are then the same. If φ is a closed formula, we write |=M φ and |= φ if φ is
satis�able/valid inM and all models respectively. Satis�ability and validity have a close relationship with
existential and universal closures, as stated in Lemma 3.1.

Lemma 3.1 (Satis�ability and Validity and Existential and Universal Closures). A formula φ is satis�able

in a model M if and only if its existential closure is satis�able/valid in M . In other words, φ is satis�able

in M if and only if |=M ∃̃ · φ. A formula φ is valid in a model M if and only if its universal closure is

satis�able/valid inM . In other words, φ is valid inM if and only if |=M ∀̃ · φ.

39

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

Note also that these notions of satis�ability and validity di�er from the standard ones in that there is here
only one model being considered. The satis�ability is about the existence of a valuation that satis�es the
formula in that one model. The validity is about the fact that all valuations satisfy the given formula in

that one model.

Finally, let us de�ne implication and equivalence of formulas in De�nitions 3.10 and 3.11.

De�nition 3.10 (Implication). A formula φ implies ψ in a model M if |=M ∀̃ · (φ→ ψ). In other words,
φ implies ψ if, for all valuation ρ, if ρ |=M φ, then ρ |=M ψ.

De�nition 3.11 (Equivalence). Two formulas φ and ψ are equivalent in a model M if |=M ∀̃ · (φ ↔ ψ).
In other words, φ and ψ are equivalent if, for all valuation ρ, ρ |=M φ if and only if ρ |=M ψ. To put it yet
another way, φ and ψ are equivalent if φ implies ψ and ψ implies φ.

Although these de�nitions are generic with respect to the model, all our work is placed in the one model
of all feature trees FT . We will thus simply say that a valuation satis�es a formula, leaving the model
of feature trees implicit. Similarly, we will say for instance that two formulas are equivalent, leaving the
model of feature trees implicit. On the other hand, when required, we will make it explicit if we do not
talk only of FT .

Let us now interpret (in FT) the formulas of Figure 3.3 by using the trees of Figure 3.2:

• Formula 3.1 is a formula with two free variables x and y. It is clearly not valid. Indeed, the valuation
[x 7→ t4, y 7→ t4] that gives the empty tree – t4 – to both x and y does not satisfy it. It is however
satis�able. Indeed, the valuation [x 7→ t1, y 7→ t4] that to gives t1 to x and t4 to y satis�es it.

• Formula 3.2 has one free variable x – y being bound by an existential quanti�er. It is not a valid
formula as any valuation ρ such that x ∈ dom(ρ) and etc ∈ dom(ρ(x)) is not in its interpretation. It
is however satis�able by the valuation [x 7→ t2, y 7→ t3]. Indeed, t2 and t3 are similar on {usr, var}
as they are equal in the former and do not have the latter. t2 indeed does not have etc in its domain,
but t3 does.

• Formula 3.3 has one free variable y – x being bound by a universal quanti�er. It is a valid formula.
Indeed, let us take any valuation ρ. Let us take any t and consider µ = ρ[x 7→ t]10. If µ does not
satisfy the left-hand side of the implication, then it satis�es the whole formula. If µ does satisfy the
left-hand side, then x, y ∈ dom(µ), µ(x) =F µ(y)11 and dom(µ(x)) ∩ G = ∅. That does indeed
imply that dom(µ(y))∩F ∩G = ∅, and thus µ satis�es the right-hand side and the whole formula.12

• Formula 3.4 is a closed formula as all its three variables are bound. Its validity depends on F . If F is
the empty set, then both negated similarity atoms are false no matter which value is given to their
variables. If F is not empty, however, and one considers ρ that gives to x and y trees that are not
equal in F , then it is true that for any tree t, it is either di�erent from ρ(x) or from ρ(y) in F .

3.2.3 Expressivity of FTS in Comparison to Related Work

FTS is strictly more expressive than FT [Aït-Kaci et al. 1994], the �rst �rst-order feature tree logic that
has been introduced. FT comprises the predicates x[f]y and x[f]↑ – the absence of one feature only. Of
course, these two can be encoded in our logic.

10Note that this is the same as taking any valuation µ. We try however to follow the syntax of the formula in our proof.
11Note that this is correct as the symbol =F is both used for the similarity predicate and for the partial equality of functions.

See Chapter 2 for the latter.
12Note that F ∩G can be empty, in which case this formula is not so interesting. It is valid nonetheless. It will later be known

as the propagation of the absence through the similarity.

40

3.2. LOGIC OVER FEATURE TREES – FTS

x =̇ y x =? y
x[f]y x[f]y
x[f]↑ x[{f}]↑
x[F] x[cF]↑

x ∼F y x =cF y

Figure 3.4: Conversion from FT
extended with fence and simi-
larity to the logic presented in
this work

x[f]y x[f]y
x[F]↑ (F �nite)

∧
f∈F x[f]↑

x[F]↑ (F co�nite) x[cF]

x =F y (F �nite)
∧

f∈F

(
(x[f]↑ ∧ y[f]↑)

∨(∃z · x[f]z ∧ y[f]z)

)
x =F y (F co�nite) x ∼cF y

Figure 3.5: Conversion from the logic presented in this work with
the algebra of �nite and co�nite sets to FT extended with fence and
similarity.

FT was later extended to CFT [Smolka & Treinen 1994] that adds an arity predicate x[F] for any �nite
set of features F . This arity predicate states that the root has precisely the features that appear in F . In
other words, it is satis�ed by any valuation ρ such that dom(ρ) = F . Since we can express the absence of
a co�nite set of features and the presence of features13, we can encode it in FTS as x[cF]↑∧

∧
f∈F ¬x[f]↑.

This formula �rst states that the complement of F is absent from x. In other words, that the only features
that are allowed are that of F . The formula then lists all the features in f , using the negation of the
absence atom to state that they have to be present.

More recently, we extended FT to add a fence predicate x[F] and a similarity predicate x ∼F y, for any
�nite set of features F [Jeannerod & Treinen 2018]. The similarity atom states that the two variables may
not di�er outside F : it is satis�ed by any valuation ρ such that ρ(x) =cF ρ(y). The fence atom di�ers
from the arity atom in that it is an upper bound on the domain of the valuation: it is satis�ed by any
valuation ρ such that dom(ρ) ⊆ F . The reason behind that choice is that the interactions of the similarity
atom with the fence atom are easier to manipulate than with the arity atom. Figures 3.4 and 3.5 sketch the
relationship between FTS and FT with fence and similarity atoms: Figure 3.4 shows that FTS is at least as
expressive as FT with fence and similarity predicates. Figure 3.5 shows that, if we take for FS exactly the
�nite and co�nite sets, then the two logics have exactly the same expressivity.

Finally, our previous work [Jeannerod & Treinen 2018] studied the interaction between FT with fence
and similarity predicates – inherently stating properties on the edges of feature trees – with a logic of
so-called decorations. In that case, the model of feature trees is extended to carry an information of deco-
rations on the nodes. The full logic that was considered was then FT with fence and similarity predicates
parametrised by a logic on decorations. The decorations were thoughts to be useful for the modelisation
of the �le metadata described in Section 3.1.1. Since then, we realised that such metadata could sim-
ply be abstracted away. Moreover, our previous work showed that introducing decorations did not add
complexity. We therefore decided to leave them away in this thesis.

FT has also been extended by adding quanti�cation over features [Treinen 1993]. The result of this work,
however, is that such logics are undecidable. Later work [Treinen 1997] has shown that decidability can be
recovered if one restricts the use of feature variables to express existence of features only. Quanti�cation
over features did not seem relevant for our use, but it does suggest that FTS could be extended in such a
way as well, while keeping decidability results.

Finally, FTS indeed allows us to express update of trees. If we consider again the example “y is an update

13Actually, we can also express the absence of a �nite set of features and the presence of a feature inside a �nite or co�nite
set, but this is not relevant for this precise point.

41

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

of x where f now leads to an empty directory”, it can be expressed in our logic with Formula 3.5.

y =c{f} x ∧ ∃z · (y[f]z ∧ z[?]↑) (3.5)

In general, the update predicate of the form “y is an update of x where f now leads to z” is expressible
with the formula y =c{f} x∧y[f]z. This way, we cut the notion of update in two parts, one of which is the
feature atom, which has been studied numerous times before. The other part is the similarity predicate
that happens to be rather �exible. For instance, for any F , =F is an equivalence relation:

• It is re�exive as, for all x and F , x =F x is valid.
• It is symmetric as, for all x, y and F , x =F y and y =F x are equivalent.
• It is transitive as, for all x, y, z and F , x =F y ∧ y =F z implies x =F z.

In fact, the transitivity can be made more general by recognising that for all x, y, z, F and G, x =F

y ∧ y =G z implies x =F∩G z. This idea of introducing a similarity predicate as something easier to
manipulate than an update predicate can actually be found in other lines of work, and in particular in
theory of arrays [Stump et al. 2001] when one wants to express updates of arrays.

3.2.4 Classes of Formulas

This subsection introduces the nomenclature of various classes of formulas that we are going to manip-
ulate in this document. We will start with the simplest formulas: atoms in De�nition 3.12 and literals in
De�nition 3.13.

De�nition 3.12 (Atom). An atom – or predicate – is a formula that does not have a proper sub-formula.
In our logic, it is x[f]y, x[F]↑ or x =F y for any x, y, f and F .

De�nition 3.13 (Literal). A literal is a formula that is either an atom or the negation of an atom. An atom
is said to be a positive literal. A negated atom is said to be a negative literal.

Most of the formulas that we will manipulate in this work will be under the form of a disjunction of
existentially-quanti�ed conjuntions. We are thus going to de�ne constraints in De�nition 3.14, existential
constraints in De�nition 3.15 and disjunctions of existential constraints in De�nition 3.16.

De�nition 3.14 (Constraint). A constraint is either > or of the form l1 ∧ · · · ∧ ln (n ≥ 1) where, for all i,
li is a literal. It can be seen as a – possibly empty – set of literals, the empty set being >.

De�nition 3.15 (Existential Constraint). A x-constraint, short for existential constraint is of the form ∃X ·c
where c is a constraint.

De�nition 3.16 (Disjunction of Existential Constraints). A DXC – short for disjunction of x-constraints –
is either ⊥ or of the form c1 ∨ · · · ∨ cm (m ≥ 1) where, for all j, cj is an x-constraint. It can be seen as a
– possibly empty – set of x-constraints, the empty set being ⊥.

DXC are a very particular form of formulas with existential quanti�ers. It is not true that any formula
built without ∀ is logically equivalent to a DXC, that is equivalent to every model.14 It is true, however,
if one restricts where such quanti�ers can occur. Let us de�ne what it means for a quanti�er to be in a
positive or negative occurrence, in De�nition 3.17.

14The whole Chapter 4 will show that it is true in FT .

42

3.2. LOGIC OVER FEATURE TREES – FTS

x

y
f

x

y
f

x

⊥
f

x
◦[F]↑

x
¬ ◦ [F]↑

x y=F

x y6=F

∃x

Figure 3.6: Base predicates of FTS

De�nition 3.17 (Positive and Negative Occurrence of a Quanti�er). In a formula φ, an occurrence of a
quanti�er ∃ or ∀ is said to be positive if it appears under an even number of negations¬. Other occurrences
are said to be negative.

For instance, in ∃x · ¬((∀y ·φ)∨ (∃z ·ψ)∧¬(∀w ·χ)), ∃x and ∀w are positive occurrences and ∀y and ∃z
are negative occurrences.

Some classes of formulas can be de�ned by restrictions on the occurrences of quanti�ers. This is the case
of Σ1- and Π1-formulas. These will be de�ned in De�nition 3.18 and De�nition 3.19 respectively. We will
then state in Lemma 3.2 that, for every Σ1-formula, there exists an equivalent DXC. We will assume the
existence of a function DXC that yields an equivalent DXC for any Σ1-formula.

De�nition 3.18 (Σ1-formula). A Σ1-formula is a formula in which all existential quanti�ers appear in
positive occurrence and all universal quanti�ers appear in negative occurrence.

De�nition 3.19 (Π1-formula). A Π1-formula is a formula in which all universal quanti�ers appear in
positive occurrence and all existential quanti�ers appear in negative occurrence.

Lemma 3.2 (Existence of DXC for Σ1-formulas). For all Σ1-formula, there exists an equivalent DXC.

DXC allow us to manipulate very limited formulas. Although most of this work will focus on such for-
mulas, we will need to sometimes talk about any formula of our logic. In order to manipulate these, we
introduce in De�nition 3.21 what it means for formulas to be in prenex normal form. We state in Lemma 3.3
that any formula has a prenex normal form. We describe more precisely in Lemma 3.4 the shape of this
prenex normal form for Π1-formulas. We will assume the existence of a function PNF that takes a formula
and returns one of its prenex normal forms.

De�nition 3.20 (Quanti�er-free Formula). A formula is quanti�er-free if it does not contain ∃ or ∀.

De�nition 3.21 (Prenex Normal Form). A formula φ is in PNF – short for prenex normal form – if there
exists Q a string of quanti�cations and ψ a quanti�er-free formula such that φ = Q · ψ.

Lemma 3.3 (Existence of PNF for any Formula). For any formula φ, there exists a formula in prenex normal

form that is equivalent to φ in every model. In other words, for any formula φ, there exists Q a string of

quanti�cations and ψ a quanti�er-free formula such that: |= ∀̃ · (φ ↔ Q · ψ). We say that ψ is a prenex

normal form of φ or that φ has the prenex normal form ψ.

Lemma 3.4 (Shape of PNF for Π1-formulas). For any Π1-formula φ, there exists a prenex normal form with

only universal quanti�ers that is equivalent to φ in every model. In other words, for any Π1-formula φ, there
exists X a set of variables and ψ a quanti�er-free formula such that |= ∀̃ · (φ↔ ∀X · ψ).

Let us take as example the formulas of Figure 3.3. Formula 3.1 is a constraint of two positive literals. It is
also a x-constraint (with an empty quanti�er block), a DXC and a PNF. Formula 3.2 is an x-constraint of
two positive and one negative literals. It is also a DXC and a PNF. Formulas 3.3 and 3.4 are in PNF.

43

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

x

y
◦[?]↑

lib

Figure 3.7: Formula 3.1

x

⊥
etc

∃y
¬ ◦ [etc]↑

={usr,var}

Figure 3.8: Formula 3.2

In this work, we will focus particularly on DXC. For these formulas, we introduce a graphical representa-
tion of the base predicates in Figure 3.6. X-Constraints are simply represented by the presence of multiple
base predicates in the same �gure. Existential quanti�cation is represented using the ∃ symbol near a
variable. DXC are represented using multiple �gures. The graphical representation of an x-constraint can
be seen as an oriented graph whose vertices are variables. A feature x[f]y is represented by an edge from
x to y carrying the feature f . By convention, features will always be top to bottom and will not carry an
arrow.15 A negated feature atom ¬x[f]y is represented by a dashed edge carrying the feature f from x
to y. The whole edge is striked through. An absence x[f]↑ is represented by a dashed edge carrying the
feature f from the variable x to a ⊥ node. The feature f is striked through. An absence x[F]↑ is either
represented by several absences x[f]↑ if F is �nite or by the annotation ◦[F]↑ under the variable it con-
cerns. A negated absence ¬x[F]↑ is represented by the annotation ¬◦ [F]↑ under the variable it concerns.
A similarity atom x =F y and a negated similarity atom x 6=F y are both represented by a dotted edge
from x to y carrying =F and 6=F respectively. Finally, a variable that is existentially quanti�ed upon in
the x-constraint will be preceded by the ∃ symbol.

Figures 3.7 and 3.8 show the graphical representations of Formulas 3.1 and 3.2. Formulas 3.3 and 3.4 do not
have a graphical representation because they both contain universal quanti�ers and are thus not DXC.

3.3 Modelisation of Utilities

Section 3.1 de�ned feature trees as models for �lesystems. Section 3.2 de�ned FTS, a logic over feature
trees which comprises, in particular, a similarity predicate allowing to express the update. We can there-
fore use formulas of FTS to model transformations of �lesystems. We will see in this section how we use
them to model Unix utilities.

In Section 3.3.1, we de�ne utilities and describe what we want to model in them. In Section 3.3.2, we show
how we use FTS to model one call to a utility. In Section 3.3.3, we de�ne a set of macros that help us
extend such utilities to schemes that cover all similarly looking utility calls. Finally, in Section 3.3.4, we
show how we model utilities.

3.3.1 Utilities

A utility [20, Section 4] is a program that takes as input a (potentially empty) list of arguments and a
string. It produces as output a number and two strings. It can also read and perform modi�cations of
the �lesystem of the computer as side-e�ect. The strings as input and outputs are called standard input,
standard output and standard error. The number is called return code. It is used to represent the status of
the utility – success or error. Utilities are also often called command but we will avoid that name as, in the
context of Shell, it can be misleading.

Some utilities do not have any e�ect on the �lesystem. They can be used for various tasks, for instance
15This makes sense most of the time as we mostly consider the modelFT of �nite feature trees. A formula containing a cycle

of features is always trivially false in this model and is therefore not so interesting to consider and represent graphically.

44

3.3. MODELISATION OF UTILITIES

1 rm /etc/rancid/lg.conf
2 rm -R /etc/rancid/lg.conf
3 rm -R -i /etc/rancid/lg.conf
4 rm -Ri /etc/rancid/lg.conf
5 rm -Ri /etc/rancid/lg.conf /usr/lib/ocaml

Figure 3.9: Five example calls to the utility rm

giving the date (date) or modifying an input text (sed)16. Some do not perform modi�cations but do read
the �lesystem. They can for instance be used to test the state of a �le (test, aka. the bracket [), or to list
the contents of a directory (ls). Finally, some utilities do perform modi�cations of the �lesystem. They
create directories (mkdir), move �les (mv), write to �les, etc. Utilities do not have to perform only simple
tasks. Some are very rich and complex pieces of software that can range from text editors (nano) to web
browsers (links) and e-mail clients (mutt). Technically, bigger, graphical programs are also considered
to be utilities.

In this work, we will only look into utilities that appear in maintainer scripts. They are usually simple.
Also – but it really varies from one utility to another –, utilities that do not depend on the �lesystem are
meant to provide useful outputs for a user, and utilities that do perform modi�cations of the �lesystem
do not provide outputs except to report errors.

A utility call is the description of a utility name and its arguments. We will not encounter the case of
utilities that take a string on its standard input in this part of the work. A utility call will typically be
represented as in Figure 3.9, by analogy with Shell commands: they always start with the name of the
utility (in this example, rm, that can remove �les) and are followed by a space-separated list of arguments.
The utility call on Line 5, for instance, has for arguments the three strings “-Ri”, “/etc/rancid/lg.conf”
and “/usr/lib/ocaml”.

Technically, utilities arguments are not restrained to speci�c syntactic conventions. Most of the ones we
will encounter in this work follow the XBD Utility Syntax Guidelines [19, Section 12.2] and expect their
arguments to be one-character options starting by a dash (-) character (-R, -i, etc.) followed by operands.
Multiple options can be merged together without changing the meaning of the command (eg. -Ri). Since
we are interested here in utilities that perform modi�cations of the �le system, these operands will often
be paths (eg. /etc/rancid/lg.conf).

Options can radically change the behaviour of a utility. Let us consider the �ve di�erent ways in which
the utility rm is called in Figure 3.9:

1. Without options, rm removes the given �le if it is not a directory. It fails on directories.

2. The -R options makes rm remove the target recursively. This only makes a di�erence if the target
is a directory, in which case the directory and all of its content is removed.

3. The -i options makes rm ask for con�rmation to the user before removing anything.

4. The -R and -i options can be merged together and written as -Ri. This does not change in any
way the behaviour of the utility.

5. Several operands can be provided and rm will simply treat them one after the other. There is here a
subtlety in case the handling of one of the arguments go wrong. This is described in Section 3.3.4.

16Yes, sed can also modify the �lesystem, but not actually the version in POSIX standard, and we will explain later that utilities
can be extremely versatile and change completely their behaviour depending on their argument.

45

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

Utilities that we are interested in typically work in two phases. In a �rst phase, they read their arguments,
run sanity checks on them and decide what modi�cation of the �lesystem they will perform. In a second
phase, they actually perform that modi�cation if it is possible in the current state of the �lesystem. Sim-
ilarly, we will abstract utilities as programs that �rst read their arguments, run sanity checks and decide
what modi�cation of the �lesystem they will try to perform, and then instantiate a speci�cation – that is
a logical formula representing this modi�cation in our logic – for this particular case.

Two points need to be noted. Firstly, the standard input and output and the return codes will not be part
of the speci�cations, that is they do not belong to the logical formalism. They are however still present
in the model. Secondly, in our abstraction, we collapse all the 127 error return codes that a utility may
return and only consider that a utility may succeed or fail. This is justi�ed as that control structures of
Shell only di�erentiate between these two cases and as none of maintainer scripts of Debian only seldom
inspect the value of return codes.

3.3.2 Speci�cations of One Utility Call

Using FTS, we can give speci�cations to utility calls. A utility call can be seen as a transformation from
an input tree to an output tree. We can specify such objects with relations between trees, which can
themselves be represented by a formula of two free variables: the input and the output �lesystems. Such
formulas will be called speci�cations. Although formulas of two free variables represent relations, we
will see in Section 3.4 that, the huge majority of the time, we write speci�cations as functions. For this
reason, we allow ourselves the use of the word transformation to describe the formula represented by a
speci�cation.

In fact, speci�cations have to be split between several speci�cation cases describing the transformations
that are performed when the utility succeeds and when the utility fails. For readability of such formulas
by human readers, we sometimes provide several cases for success or error. For instance, if we consider
the utility call rm /etc/rancid/lg.conf, it can fail when the path /etc/rancid/lg.conf does not
exist but also when it exists and points to a directory.

Each speci�cation case is written in two parts. The �rst part is a formula of the input tree only. It describes
a precondition. The second part is a formula describing the transformation which is performed when the
precondition is met. The speci�cation case is the conjunction of the two parts.

Although this suggests that speci�cations are written under the form of a DXC, they are not. Speci�cation
cases are conjunctions of two parts. These parts can contain existential quanti�ers and also disjunctions.
We are however going to make sure that our speci�cations can be transformed into DXC as this is what
our solvers can handle e�ciently (see Chapter 4). We thus need to force ourselves to write Σ1-formulas
only. By Lemma 3.2, this is su�cient.

Let us take the utility call rm -R /etc/rancid/lg.conf as an example. The -R option means that rm
removes the path /etc/rancid/lg.conf as long as it exists, whether it is a directory or not. It makes for
a simpler speci�cation and avoids handling �le kinds. Let us write the speci�cation case of its success, that
is two formulas φ(p)

1 (r) and φ(t)
1 (r, r′), where r and r′ represent the input and output trees respectively.

For this utility call to succeed, the path /etc/rancid/lg.conf has to exist in the input tree r. The output
tree r′ is then very similar except in this path. In the output tree, the path /etc/rancid/lg.conf does
not exist anymore. As a complete formula, and quantifying over the intermediary variables, this gives us

46

3.3. MODELISATION OF UTILITIES

r

∃x

∃y

∃z

etc

rancid

lg.conf

r′

∃x′

∃y′

⊥

etc

rancid

lg.conf

=c{etc}

=c{rancid}

=c{lg.conf}

Figure 3.10: Speci�cation of success case for rm
-R /etc/rancid/lg.conf

r =? r
′

⊥
etc

r =? r
′

∃x

⊥

etc

rancid

r =? r
′

∃x

∃y

⊥

etc

rancid

lg.conf

Figure 3.11: Speci�cation of error cases for rm
-R /etc/rancid/lg.conf

Formula 3.6. A graphical representation can be found in Figure 3.10.

φ1
(p)(r) = ∃x, y, z · (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]z)

φ1
(t) (r, r′) = ∃x, y, x′, y′ ·

r =c{etc} r
′ ∧ x =c{rancid} x

′ ∧ y =c{lg.conf} y
′

∧ r[etc]x ∧ x[rancid]y ∧ r′[etc]x′ ∧ x′[rancid]y′

∧ y′[lg.conf]↑


φ1 (r, r′) = φ1

(p)(r) ∧ φ1
(t)(r, r′)

(3.6)

This does not cover all the possibilities as this utility call can also fail. We also need to take into account
this possible failure and the transformation that is performed then. In this case, the utility call simply does
nothing and the output tree is the same as the input one. This can be described with a precondition that
simply negates that of Formula 3.6 and a transformation being φ(t)

2 (r, r′) = r =? r
′. Such a precondition

is given in Formula 3.7.

φ2
(p)(r) = ¬∃x, y, z · (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]z) (3.7)

Formula 3.7, however, is a Π1-formula as it involves a negative occurrence of an existential quanti�er. This
is forbidden because – as discussed at the beginning of this subsection – we want to restrict ourselves
to formulas that admit a DXC. We thus prefer an alternative version that circumvents this problem by
enumerating the various reasons why a path could not exist: etc may not exist; if it exists, then rancid
may not exist; if it exists, then lg.conf does not. This is shown in Formula 3.8. A graphical representation
can be found in Figure 3.11.

φ2
(p)(r) = ∃x, y ·

r[etc]↑
∨ (r[etc]x ∧ x[rancid]↑)
∨ (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]↑)

(3.8)

Formula 3.8 is equivalent to Formula 3.7 in the model FT , but contrary to Formula 3.7, Formula 3.8 does
admit a DXC. We will show in Chapter 5 that we have an e�cient way to avoid generating explicitly such
a disjunction.

The full speci�cation of rm -R /etc/rancid/lg.conf is then the list of all its speci�cation cases. In this
example, there are only two: the speci�cation case for the success – φ1(r, r′) – and the speci�cation case
for the error – φ2(r, r′). If we solely consider the transformation performed by the utility, then we are
only interested in the disjunction of all the speci�cation cases. It is important, however, for the purpose
of symbolic execution, to be able to separate success and error cases.

47

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

1 function resolve(x : variable , q : list of features , z : variable)
2 : x-constraint
3 match q
4 | ε -> return x =? z
5 | f 〉 q′ -> return ∃y · (x[f]y ∧ resolve(y, q′, z))

Figure 3.13: Function resolve on normal paths

3.3.3 Speci�cations of Utility Call Schemes

r

∃x

∃y

p

f

(a) Precondition

r

∃x

p

r′

∃x′

⊥

p

f

=c{p}

=c{f}

(b) Transformation

Figure 3.12: Success case of rm -R
p/f

Section 3.3.2 presents the speci�cation of one utility call. Of course,
we do not specify all the utility calls by hand – there is an in�nity
of possible path arguments. Instead, we generalise the speci�cation
given in Section 3.3.2 so that it covers all the similar utility calls.

As an example, let us give a speci�cation for rm -R p/f , where p/f
is any path ending with a feature f . Figure 3.12 presents an informal
graphical representation of both the precondition and transformation
of rm -R p/f . In this graphical representation, the zigzags labelled
by p represents a chain of feature and similarity atoms following the
path p.

We need to de�ne functions that formalise these zigzags labels, that
is functions that build formulas expressing the existence of a path,
the similarity of two trees along a path and the non-existence of a

path.

Let us start with the existence of a path. We simply have to de�ne a function that chains feature atoms
for the whole given path. We could for instance de�ne a function resolve(x, q, z) which chains feature
atoms from x to z following the list of features q. The de�nition of such a function can be found in
Figure 3.13, Line 1. It works as follows. If q is empty, then x and z have to be equal and we therefore
return x =? z (Line 4). If q is not empty, then it is of the form f/q′ where f is a feature. The chain of
feature atoms has to start with a feature x[f]y for some fresh variable y and there remains q′ to crawl
from y (Line 5).

The state of a�airs is actually more complex as the paths can be absolute or relative, and can contain . and
... As described in Section 3.1.1, absolute paths are resolved from the root of the �lesystem and relative
paths are resolved from the current working directory. Our functions will thus take that current working
directory as an argument, named cwd.

Let us now de�ne the actual function resolve(r, cwd, p, z) that builds the resolution in the root r of a
path p from the current directory cwd and to z. Similarly to that of Figure 3.13, it will create a new feature
atom for each path component that is not . or ... All occurrences of . will be ignored. On occurrences of
.., our function �nds the parent variable (or the current one if it is the root) and starts again from there.
In order to do that, we actually use an auxiliary function resolve-s(x, π, q, z) which keeps a stack π of
parent variables, thanks to which it is able to interpret ... The de�nitions of resolve and resolve-s
can be found in Figure 3.14, Lines 12 and 1 respectively. We believe that the code is similar to that of
Figure 3.1, except that we do not need to care about di�erent �le kinds. Figure 3.15 presents an example
of a formula generated by resolve.

De�ning a function similar for the similarity of two trees along a path brings di�erent issues. With
respect to parent directories in particular, one would be tempted to de�ne it in the same way resolve is

48

3.3. MODELISATION OF UTILITIES

1 function resolve-s(x : variable , π : stack of variables ,
2 q : list of path components , z : variable) : x-constraint
3 match q
4 | ε -> return x =? z
5 | f 〉 q′ -> return ∃y · (x[f]y ∧ resolve-s(y, π 〈 x, q, z))
6 | . 〉 q′ -> return resolve-s(x, π, q′, z)
7 | .. 〉 q′ ->
8 match π
9 | ε -> return resolve-s(x, ε, q′, z)

10 | π′ 〈 y -> return resolve-s(y, π′, q′, z)
11
12 function resolve(r : variable , cwd : normal path,
13 p : path, z : variable) : x-constraint
14 match p
15 | abs(q) -> return resolve-s(r, ε, q, z)
16 | rel(q) -> return resolve-s(r, ε, cwd/q, z)

Figure 3.14: Function resolve for any path

x

∃y

f

z

g

Figure 3.15:
resolve(x, f, ../../g, z)

x

∃y

f

z

g

x′

∃y′
f

z′

g

=c{f}
=c{g}

Figure 3.16:
similar(x, x′, f/../../g, z, z′)
Naive version

x

z

g

x′

z′

g

=c{g}

Figure 3.17:
similar(x, x′, f/../../g, z, z′)
After normalising the path

49

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

1 function similar-n(x : variable , x′ : variable ,
2 q : list of features , z : variable , z′ : variable) : x-constraint
3 match q
4 | ε -> return x =? z ∧ x′ =? z

′

5 | f 〉 q′ -> return ∃y, y′ · (x[f]y ∧ x′[f]y′ ∧ x =c{f} x
′ ∧ similar-n(y, y′, q′, z, z′))

Figure 3.18: Function similar-n for a normalised path

1 function normalise(cwd : normal path, q : list of path components)
2 : normal path
3 match q
4 | ε -> return cwd
5 | f 〉 q′ -> return normalise(cwd 〈 f, q′)
6 | . 〉 q′ -> return normalise(cwd, q′)
7 | .. 〉 q′ ->
8 match cwd
9 | / -> return normalise(/, q′)

10 | cwd’ 〈 _ -> return normalise(cwd’, q′)
11
12 function similar(r : variable , r′ : variable , cwd : normal path,
13 p : path, z : variable , z′ : variable) : x-constraint
14 match p
15 | abs(q) -> return similar-n(r, r′, normalise(/, q), z, z′)
16 | rel(q) -> return similar-n(r, r′, normalise(cwd, q), z, z′)

Figure 3.19: Functions normalise and similar for any path

de�ned. Figure 3.16 gives an example of the formula that such a naive version could produce. The main
problem here is that the pairs of variables that are visited several times by the function receive several
similarity predicates. In the example, the two variables x and x′ are said to be both similar outside {f}
and outside {g}. If f and g are distinct, this means that x and x′ are similar in everything, which is clearly
not what we want.

Our solution is to �rst normalise the path syntactically, erasing all occurrences of f/.., and then to build
a chain of similarity atoms on the normalised path with a function similar-n. It is to be noted that the
existence of the normalised version of a path does not imply the existence of the path itself. This means
that the obtained function similar-n only makes sense when used in conjunction with resolve. An
example of what similar-n produces is given in Figure 3.17. The de�nition of similar-n on normalised
path is given in Figure 3.18.

The de�nition of the similarity of any path, similar, can then be given in term of the path normalisation
normalise and the similarity on normalised path similar-n. It can be found in Figure 3.19.

Finally, there remains to de�ne the non-existence of a path. As mentioned in Section 3.3.2, and because
we want our speci�cations to be DXC formulas only, we cannot de�ne the failure to resolve a path p as
in Formula 3.9 as this is a Π1-formula.

¬∃z · resolve(r, cwd, p, z) (3.9)

Instead, we have to give a de�nition that lists all the possible cases of non-existence. Such a de�nition
can be found in Figure 3.20.

Finally, let us give the scheme of speci�cations for rm -R p/f without options. The success and error

50

3.3. MODELISATION OF UTILITIES

1 function noresolve-s(x : variable , π : variable stack , q : path)
2 : Σ1-formula
3 match q
4 | / -> return ⊥
5 | f /q′ -> return x[f]↑ ∨ ∃y · (x[f]y ∧ noresolve-s(y, π 〈 x, q′))
6 | ./q′ -> return noresolve-s(x, π, q′)
7 | ../q′ ->
8 match π
9 | ε -> return noresolve-s(x, ε, q′)

10 | π′ 〈 y -> return noresolve-s(y, π′, q′)
11
12 function noresolve(r : variable , cwd : path, p : path)
13 : Σ1-formula
14 match p
15 | abs(q) -> return noresolve-s(r, ε, q)
16 | rel(q) -> return noresolve-s(r, ε, cwd/q)

Figure 3.20: Function noresolve for any path

cases can be found in Formulas 3.10 and 3.11 respectively.

φ1
(p)(r) = ∃z · resolve(r, cwd, p/f, z)

φ1
(t) (r, r′) = ∃y, y′ · similar(r, r′, cwd, p, y, y′) ∧ y =c{f} y

′ ∧ y′[f]↑
φ1 (r, r′) = φ1

(p)(r) ∧ φ1
(t)(r, r′)

(3.10)

φ2
(p)(r) = noresolve(r, cwd, p/f)

φ2
(t) (r, r′) = r =? r

′

φ2 (r, r′) = φ2
(p)(r) ∧ φ2

(t)(r, r′)

(3.11)

One of our contributions as part of the CoLiS projects is a technical report containing such speci�cations
for the schemes of utility calls that are most widely used in Debian maintainer scripts [Jeannerod et al.
2019].

3.3.4 Modelisation of Utilities

Once we have given speci�cations to the various utility call schemes, as described in Section 3.3.3, we can
give an implementation to our modelled utility. This is a program that takes command line arguments as
input and generates a speci�cation as output. This program has to handle the options to decide which
speci�cation has to be generated from the given paths. It will also have to handle iteration through a list
of paths if several paths are given as argument.

The program has to behave concretely and according to the standard [20, Section 4] on its arguments. In
the example of rm, this means the following.

• If the last component of the path given to rm is . or .., or if the path resolves to the root directory,
rm fails and skips this path.

• If the option -R (or -r) is not given, then rm fails if the path resolves to a directory. If the option is
given, rm succeeds and remove the directory and all of its content.

• When several paths are given, rm iterates through all of them even if a path triggers one of the
two aforementioned errors. The utility succeeds if all paths were removed successfully and fails
otherwise.

51

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

1 function rm-R-spec(cwd : normal path, path : path) : specification
2 match path
3 | / -> return ((Error , r =? r

′) 〉 ε)
4 | _ 〈 . -> return ((Error , r =? r

′) 〉 ε)
5 | _ 〈 .. -> return ((Error , r =? r

′) 〉 ε)
6 | p 〈 f ->
7 return (
8 (Success , ∃y, y′, z · (resolve(r, cwd, path, z)
9 ∧ similar(r, r′, cwd, p, y, y′) ∧ y =c{f} y

′ ∧ y′[f]↑))
10 〉 (Error , (noresolve(r, cwd, path) ∧ r =? r

′)) ;
11 〉 ε
12)
13
14 function rm-spec(cwd : normal path, p : path) : specification
15
16 function iterate-spec(spec : (normal path , path) -> specification ,
17 cwd : normal path, paths : list of paths) : specification
18
19 function rm-model(stdin : string , cwd : normal path,
20 args : list of strings) : specification
21 match args
22 | "-R" 〉 args’ -> return iterate-spec(rm-R-spec , cwd , args ')
23 | _ -> return iterate-spec(rm-spec , cwd , args)

Figure 3.21: Implementation of a modelled rm utility (excerpt; simpli�ed)

Figure 3.21 gives an idea of what the implementation of such a modelled utility would look like. This
�gure purposefully leaves a lot of details aside and is therefore very approximate.

The utility rm is modelled by a function rm-model (Line 19). This function takes as argument the stan-
dard input stdin – in the case of rm, this is ignored –, the current working directory cwd and a list of
arguments args. It returns a speci�cation. The function rm-model basically only handles the parsing of
the arguments. In this case, it checks whether the list of arguments starts by "-R" or not. The rest of the
computation is left to three auxiliary functions, iterate-spec, rm-spec and rm-R-spec, Lines 16, 14
and 1 respectively.

• iterate-spec (Line 16) is a helper function that iterates a speci�cation generator – that is rm-spec
or rm-R-spec – on all the paths given as argument, composes the obtained speci�cation and returns
a speci�cation of two cases. The success case comprises all the success cases of all the given paths.
The error case comprises all the combinations that contain at least one error case.

• rm-spec (Line 14) will not be detailed. It is very similar to rm-R-spec except that its success case
requires that the given path is not a directory and that it has one extra error cases corresponding
the when the given path is a directory.

• rm-R-spec (Line 1) generates the speci�cation for one path given to rm -R. If analyses the path
that has been given to it. If the path is the root, . or .. (Lines 3 to 5), the returned speci�cation
is the trivial speci�cation containing only one cases that is an error and no transformation. If the
path is not one of these (Line 6), the returned speci�cation corresponds to the scheme described in
Section 3.3.3.

52

3.4. SPECIFICATIONS

3.4 Speci�cations

Although we have described in details how we write the speci�cation of a utility call, we have not taken
time to discuss these objects in details. This is the topic of this section. In Section 3.4.1, we discuss
properties of the speci�cations that we write for Unix utilities. Finally, in Section 3.4.2, we explain how
such speci�cations are to be composed – as iterate-specs would do in Section 3.3.4 – and we discuss
the requirements that this imposes on the solvers that we will design in subsequent chapters.

3.4.1 Properties of Speci�cations

Let us �rst note that, when writing the speci�cation of rm -R /etc/rancid/lg.conf in Section 3.3.2,
we have paid attention to the fact that the preconditions covered all the possible input trees. In a sense,
this means that our speci�cation was complete, as de�ned in De�nition 3.22.

De�nition 3.22 (Completeness of a Speci�cation). A speci�cation φ is complete if the preconditions of its
cases – success or error – cover all the possible input trees, that is if:

|=FT ∀r ·
∨
i

φ
(p)
i (r)

Completeness is important for us because it ensures that we do not miss behaviours from a utility. In our
approach where we try to �nd bugs, that means that there are no bugs missed by the speci�cations.17

This is in fact not exact as it is possible to have a complete speci�cation φ and an input tree t such
that [r 7→ t] does not satisfy ∃r′ · φ(r, r′). This comes from our way to write speci�cation cases as the
conjunction of a precondition and a transformation. It does not matter that the preconditions cover all the
input trees if the transformations are unsatis�able. This is something we pay attention to when writing
speci�cations, and which we call the coherence of a speci�cation. This is de�ned in De�nition 3.23.

De�nition 3.23 (Coherence of a Speci�cation). A speci�cation case φi is coherent if its precondition im-
plies the satis�ability of its associated transformation, that is if:

|=FT ∀r · (φ
(p)
i (r)→ ∃r′ · φ(t)

i (r, r′))

A speci�cation is coherent if all its speci�cation cases are coherent.

Completeness and coherence together imply that a speci�cation is total, that is that the relation it rep-
resents covers all the possible input trees. This is de�ned in De�nition 3.24. The relation between com-
pleteness, coherence and totality is stated in Lemma 3.5.

De�nition 3.24 (Totality of a Speci�cation). A speci�cation φ is total if it has, for each input, at least one
output tree, that is if:

|=FT ∀r · ∃r
′ · φ(r, r′)

Lemma 3.5 (Relation Between Completeness, Coherence and Totality). Any speci�cation that is total is

also complete. Any speci�cation that is both complete and coherent is also total.

17Of course, there might be plenty of bugs missed in the modelisation phase. Completeness does however guarantee that we
do not miss anything in the models that we are considering.

53

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

Proof. Let us take a speci�cation φ that is total. Let us show that it is then also complete. To achieve that,
let us take t any feature tree. We have that [r 7→ t] |=FT ∃r′ · φ(r, r′). We have thus that [r 7→ t] |=FT∨

i(φ
(p)
i (r)∧∃r′ ·φ(t)

i (r, r′)). If we consider the conjunctive normal form of this disjunction, it contains a
lot of disjunctive clauses among which we �nd

∨
i φ

(p)
i (r). In other words, there exists ψ a formula such

that
∨

i(φ
(p)
i (r) ∧ ∃r′ · φ(t)

i (r, r′)) is equivalent to (
∨

i φ
(p)
i (r)) ∧ ψ. We thus have that [r 7→ t] is a model

of
∨

i φ
(p)
i (r) – φ is complete.

Let us now take a speci�cation φ that is complete and coherent and let us show that it is total. To achieve
that, let us take t any feature tree. We are going to show that there exists t′ such that [r 7→ t, r′ 7→ t′] |=FT
φ(r, r′).

Since φ is complete, we have that [r 7→ t] |=FT
∨

i φ
(p)
i (r). There is thus a i0 such that [r 7→ t] |=FT

φ
(p)
i0

(r). Since all of φ’s cases are coherent, the i0-th in particular is coherent. From which it follows
that [r 7→ t] |=FT ∃r′ · φ

(t)
i0

(r, r′). There exists thus a t′ such that [r 7→ t, r′ 7→ t′] |=FT φ
(t)
i0

(r, r′).
[r 7→ t, r′ 7→ t′] is then a model of φ(t)

i0
(r, r′) but also of φ(p)

i0
(r, r′). It is thus also a model of φi0(r, r′) and

of the whole speci�cation φ(r, r′).

Completeness, coherence and totality have to do with covering all the possible cases for the input tree.
They ensure that we do not loose traces of executions – and therefore bugs – in our speci�cations. They do
not, however, carry information on the precision of the speci�cations. In particular, they do not guarantee
that we will not get false positives, that is bugs that are not actually reachable. The properties that carry
such information are the determinism and the functionality of a speci�cation. Determinism is de�ned in
De�nition 3.25.

De�nition 3.25 (Determinism of a Speci�cation). A speci�cation φ is deterministic if there is no pair of
preconditions that cover the same possible input tree, that is if, for all i 6= j:

|=FT ¬∃r · (φ
(p)
i (r) ∧ φ(p)

j (r))

Determinism is particularly important between preconditions of di�erent status – success or error – be-
cause it ultimately ensures that we do not explore wrong traces of execution in our symbolic engine. It is
in fact a weaker form of functionality. Functionality is de�ned in De�nition 3.26.

De�nition 3.26 (Functionality of a Speci�cation). A speci�cation – or a speci�cation case – φ is functional
if every input tree is related to at most one output tree, that is if:

|=FT ∀r, r
′
1, r
′
2 · ((φ(r, r′1) ∧ φ(r, r′2))→ r′1 =? r

′
2)

Determinism is weaker than functionality in the sense that it does not ensure that, inside one speci�cation
case, the same input tree can be related to two output trees. Of course, if one takes a speci�cation that is
deterministic and such that all its cases are functional, then it is a functional speci�cation. This is stated
in Lemma 3.6.

Lemma 3.6 (Relation Between Determinism and Functionality). Any speci�cation that is functional is

also deterministic. Any speci�cation that is both deterministic and with all its cases being functional is also

functional.

In this work, all our speci�cations are written to be complete and coherent. Most of them are also func-
tional. However, for some of them, our logics is not expressive enough to express exactly what the utility

54

3.4. SPECIFICATIONS

call does. This is for instance the case of the utility cp. In one particular case, cp produces as output a (po-
tentially partial) interleaving of two input trees, that is a (potentially strict) subset of the union of the two
input trees, which our logic can simply not express. In that case, our speci�cation over-approximates the
behaviour of the utility, allowing one input tree to lead to several output trees, giving up on functionality
in the process.

An alternative way to write the same speci�cations could have been in an implicative style. In such a style,
speci�cation cases φi are written of the form φ

(p)
i (r)→ φ

(t)
i (r, r′) and the speci�cation is the conjunction

– and not the disjunction – of its cases, as in Formula 3.12.

φ→(r, r′) =
∧
i

(φ
(p)
i (r)→ φ

(t)
i (r, r′)) (3.12)

The two representations of speci�cations are in fact very close. Provided some properties of this subsec-
tion are veri�ed, they are actually equivalent, as stated in the following lemma.

Lemma 3.7 (Equivalence of Speci�cations and their Implicative Form). If a speci�cation φ is complete, then

it is implied by its implicative version φ→. If a speci�cation φ is deterministic, then it implies its implicative

version φ→.

Proof. Let φ be a speci�cation that is complete. Let us take ρ a model of its implicative variant φ→. Since φ
is complete, then there exists i0 such that ρ |=FT φ

(p)
i0

(r). Since ρ is a model of the implicative variant,
then it models all the parts of its conjunction and in particular the i0-th. From which we can conclude
that ρ |=FT φ

(t)
i0

(r, r′) and thus that ρ |=FT φi0(r, r′) and that ρ |=FT φ(r, r′).

In the other direction, let φ be a speci�cation that is deterministic. Let us take ρ a model of φ. There is i0
such that ρ |=FT φ

(p)
i0

(r) and ρ |=FT φ
(t)
i0

(r, r′). Since φ is deterministic, ρ cannot be a model of any other
precondition: for any j 6= i0, ρ |=FT ¬φ

(p)
j (r). Hence, for any j, ρ |=FT φ

(p)
j (r) → φ

(t)
j (r, r′). Finally,

ρ |=FT φ→(r, r′).

3.4.2 Composing Speci�cations

Each speci�cation describes a transformation – ie. a formula mapping an input tree to an output tree. In
this work, we are interested in composing transformations along the traces of execution of a script. We
therefore need a way to obtain the speci�cation of the composed transformations. It is here easy as the
speci�cation of the composition is nothing else than the composition – using simple logical construc-
tions – of the speci�cations. For instance, if we have two speci�cations φ and φ′, then the composition of
these two speci�cations is ψ in Formula 3.13.

ψ(r, r′) = ∃rt · (φ(r, rt) ∧ φ′(rt, r′)) (3.13)

As we have mentioned in Section 3.3.2, although speci�cations are not written this way, they are trans-
formed immediately into DXC and processed that way. Another way to see the composition is to say
that, if the �rst speci�cation is a DXC of k x-constraints φ1 to φk and the second speci�cation is a DXC
of l x-constraints φ′1 to φ′l, then the composition is a DXC of k × l x-constraints ψ1,1 to ψk,l where, for
all 1 ≤ i ≤ k and 1 ≤ j ≤ l:18

ψi,j(r, r
′) = ∃rt · (φi(r, rt) ∧ φ′j(rt, t′)) (3.14)

18In that case, ψi,j(r, r
′) in Formula 3.14 is not exactly an x-constraint. It is however really close and it su�ces to switch the

existential quanti�ers with the conjunction.

55

CHAPTER 3. MODELISATION OF UNIX FILESYSTEMS AND UTILITIES

r

∃x

∃y

⊥

etc

rancid

lg.conf

r′

∃x′

∃y′

∃z′

etc

rancid

lg.conf

=c{etc}

=c{rancid}

=c{lg.conf}

r =? r
′

∃x

∃y

∃z

etc

rancid

lg.conf

Figure 3.23: Speci�cation of success cases for touch
/etc/rancid/lg.conf

r =? r
′

⊥
etc

r =? r
′

∃x

⊥

etc

rancid

Figure 3.24: Speci�cation
of error cases for touch
/etc/rancid/lg.conf

r = ∃rt

∃x

∃y

∃z

etc

rancid

lg.conf

r′

∃x′

∃y′

⊥

etc

rancid

lg.conf

=c{etc}

=c{rancid}

=c{lg.conf}

r

∃x

∃y

⊥

etc

rancid

lg.conf

∃rt

∃xt

∃yt

∃zt

=c{etc}

=c{rancid}

=c{lg.conf}

r′

∃x′

∃y′

⊥

etc

rancid

lg.conf

=c{etc}

=c{rancid}

=c{lg.conf}

Figure 3.25: Speci�cation of the script: touch /etc/rancid/lg.conf; rm /etc/rancid/lg.conf. In
the right representation, the some edges are left unmarked for readability. They are of course etc, rancid,
and lg.conf.

This second formulation makes explicit the fact that speci�cations are DXC and that composing two
speci�cations creates a quadratic explosion of the number of x-constraints. This is not visible per se in
the �rst formulation.

1 touch /etc/rancid/lg.conf
2 rm /etc/rancid/lg.conf

Figure 3.22: Example script that uses touch and rm

Composing speci�cations leads to an explosion of
cases because of the fact that we do not know how
to manipulate formulas that are not under the form
of a DXC. When the two speci�cations are not inde-
pendent, however, a lot of cases of the composition
are in fact unsatis�able and can be removed.

As an example, consider the script in Figure 3.22. The touch utility creates the �le if it does not exist and
leaves it untouched19 if it already exists. It fails when the pre�x does not exist. A graphical representation
of the speci�cation for this utility call can be found in Figures 3.23 and 3.24.

The two utility calls in this script have both a speci�cation that is a DXC of four x-constraints. Their
composition should thus give us sixteen x-constraints. A third utility call would multiply again the number
of cases. Computing the semantics of whole scripts would then lead to an exponential blowup in cases
and to unusability in practice.

However, not all the x-constraint of the speci�cation make sense and some are actually impossible to
encounter. For instance, if touch /etc/rancid/lg.conf fails for non-existence of /etc/rancid, for
instance, then rm /etc/rancid/lg.conf can obviously not succeed. In fact, in our example script, the
composition has only four x-constraints. The two success cases are described in Figure 3.25. The two
error cases are very similar to that of Figure 3.24.

19In fact, it updates the access time, but this is abstracted away in this work.

56

3.4. SPECIFICATIONS

Let us revisit Formula 3.14 that de�nes the composition of two speci�cations φ and φ′:

ψ(r, r′) =
∨
i,j

∃rt · (φi(r, rt) ∧ φ′j(rt, r′)) (3.14 revisited)

We can see here that all the x-constraints of φ have been duplicated in the formula as many times as
there are x-constraints in φ′. Similarly, if we compose the whole with a third speci�cation φ′′, we obtain
Formula 3.15.

ψ′(r, r′) =
∨
i,j,k

∃rt, r′t · (φi(r, rt) ∧ φ′j(rt, r′t) ∧ φ′′(r′t, r′)) (3.15)

we duplicate again all the composed x-constraints. We have said however that some of these x-constraints
might be unsatis�able. In the case of our example, it was even a large majority of x-constraints: among
them, twelve are unsatis�able while only four are satis�able. In order to speedup the process, we would
want to detect unsatis�ability as soon as possible, ideally right after adding a new speci�cation to the
composition. In our example, that would mean adding a third speci�cation to four x-constraints instead
of sixteen.

Doing that has however an important drawback. If an x-constraint φi of the �rst utility call is decided to be
satis�able, we will then ask ourselves for all j if the x-constraints φi(r, rt)∧φ′j(rt, r′′) are also satis�able.
If they are, we will then ask ourselves for all k if the x-constraints φi(r, rt)∧φ′j(rt, r′t)∧φ′′(r′t, r′). Every
time, when adding a new speci�cation, we would thus compute again the satis�ability of all the previous
x-constraints. In order to mitigate that, we do not only want a test of unsatis�ability. We want that it is
done in an incremental way, meaning that, in case of satis�ability, we get another, simpler formula on
which it is easier to restart computation.

An incremental satis�ability procedure will be introduced in Chapter 4. We will also extend it to show
that the full �rst-order of our logic is decidable. Chapter 5 will then come back to the procedure, focusing
on e�ciency considerations. There, we will rework the procedure. We will also discuss improvements
that can be included in the logic to reduce the number of disjunctions that are initially introduced in
speci�cations.

57

Chapter 4

Decidability of the Theory of FT

This chapter dives into the subject of expressivity of FTS and of the design of decision procedures for this
logic. It also sets up the foundations for further work – in Chapter 5 – on e�ciency of these procedures.
The main result is a decision procedure for any closed �rst-order formula. This result is stated in Theo-
rem 4.3. In all this chapter and the next, unless said otherwise, we consider ourselves in the model FT of
�nite feature trees.

The �rst decidability result of a full �rst-order theory of trees is due to Malc’ev [Malcev 1971] and con-
cerned Herbrand trees (ie. based on equations x = f(x1, . . . , xn)). This result was later extended by
Maher, Comon and Lescanne [Maher 1988; Comon & Lescanne 1989]. A �rst decidability result for the
�rst-order theory of feature trees was given for the logic FT [Aït-Kaci et al. 1994] which comprises only the
predicates x[f]y and x[f]↑ [Backofen & Smolka 1995]. This was later extended to the logic CFT [Smolka
& Treinen 1994], which in addition to FT has an arity predicate x[F] for any �nite set F of feature sym-
bols, expressing that the root of x has precisely the features F [Backofen 1995; Backofen & Treinen 1998].
Note that in these logics one can only quantify over trees, not over feature symbols. The generalization
to a two-sorted logic which allows for quanti�cation over features is undecidable [Treinen 1993], but de-
cidability can be recovered if one restricts the use of feature variables to talk about existence of features
only [Treinen 1997]. All these decidable logics of trees have a non-elementary lower bound [Vorobyov
1996].

This chapter will start in Section 4.1 by describing transformation procedures for DXC (De�nition 3.16).
These transformations allow to decide the satis�ability of DXC. More importantly, they prepare the
ground for quanti�er elimination of decidability of the �rst-order theory. They will later on be improved
upon so as to be usable in practice in a symbolic engine. See Chapter 5 for the improvement and Section 7.2
for their use.

In Section 4.2, we extend on this work to handle any formula of FTS. This relies heavily on results of
Section 4.1 and on weak quanti�er elimination [Malcev 1971]. Finally, in Section 4.3, we discuss various
considerations, ranging from decidability in other models than FT to complexity and e�ciency consid-
erations.

4.1 Transforming DXC

In a �rst part, let us restrict ourselves to DXC only. In Section 4.1.1, we de�ne a way to transform DXC
following equivalences in our model FT . These transformations allow us to detect unsatis�ability of

59

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

formulas. They also yield formulas on which we have more control. The properties of yield formulas are
discussed in Section 4.1.2. Finally, in Section 4.1.3, we mechanise these transformations.

4.1.1 Transformation Rules for Constraints – The SystemR1

Before we start, we need to set up a few preliminaries. Let us start to de�ne what it means for a variable
and a similarity atom to be solved. These will be de�ned in De�nitions 4.1 and 4.2 respectively.

De�nition 4.1 (Solved Variables). A variable is said to be solved in a constraint c if it only occurs in a full
similarity atom in c, that is: x is solved in c if there exists y and c′ such that c is of the form x =? y ∧ c′
with x /∈ V(c′). We will denote by Vs(c) the set of solved variables of c.

De�nition 4.2 (Solved Similarity Atom). A similarity atom is solved in a constraint c if one of its variables
is solved in c.

x[?]↑ x′

y z

f

=c{f}

=?

Figure 4.1: For-
mula 4.1

Note that the fact for a similarity atom to contain a solved variable implies that this
variable appears only in this similarity atom and that this similarity atom carries
the full set ?. As an example, consider Formula 4.1. A graphical representation can
be found in Figure 4.1.

x[?]↑ ∧ x =c{f} x
′ ∧ x′[f]z ∧ y =? z (4.1)

None of the variables x, x′ and z are solved because they appear in other literals,
namely x[?]↑ and x′[f]z. The variable y, however, is solved as it only occurs in one

full similarity atom y =? z. The similarity atom x =c{f} x
′ is not solved because neither of its variables

is, while y =? z is.

We also need to de�ne a notion of subsumption of a literal by a constraint. This is done in De�nition 4.3.
Subsumption is a weak, syntactic, form of implication: if a literal is subsumed by a constraint, then it is
also implied by it. This is stated in Lemma 4.1.

De�nition 4.3 (Subsumption). A literal l is said to be subsumed by a constraint c, written l � c, if l ∈ c
or if

• l is an absence atom x[F]↑ with F ⊆
⋃

x[H]↑∈cH ,

• or l is a similarity atom x =F y with F ⊆
⋃

x=Hy∈cH ,

• or l is a negated absence atom ¬x[F]↑ and there exists ¬x[H]↑ ∈ c with H ⊆ F ,

• or l is a negated similarity atom x 6=F y and there exists x 6=H y ∈ c with H ⊆ F .

Lemma 4.1 (Implication of Subsumed Literals). If a literal l is subsumed by a constraint c, then c implies l.
In other words, if l � c, then |=FT ∀̃ · (c→ l).

For instance, if we consider the constraint c de�ned as x[f, g]↑∧y ={f,g} z∧y ={h,k} z∧¬z[g]↑∧y 6=k,l z,
then it subsumes x[f]↑, y ={f,g,h} z and ¬z[g, h]↑. c thus also implies these literals. Although c also
implies y 6={l} z, it does not subsume it.

Let us now dive into the main topic of this subsection and de�ne transformation rules of the form

name pattern ⇒ replacement (condition)

The patterns are constraints that contain meta-variables, meta-features and meta-feature sets. We show
later how we lift these rules to DXC. A rule applies to a constraint c when

60

4.1. TRANSFORMING DXC

Clash Rules

C-Cycle x[f]y ∧
∧n−1

i=0 zi[fi]zi+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn)

C-Feat-Abs x[f]y ∧ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

C-NAbsEmpty ¬x[∅]↑ ∧ c ⇒ ⊥
C-NSimRefl x 6=F x ∧ c ⇒ ⊥
C-NSimEmpty x 6=∅ y ∧ c ⇒ ⊥

Figure 4.2: Clash rules in systemR1

(a) Its pattern matches the whole constraint c and does not mention any solved variable of c. The
matching of pattern is considered modulo commutativity and associativity of ∧. (In other words,
we see constraints as sets of literals.)

(b) The side-condition – if there is one – is respected. Most of the side-conditions are present to ensure
that rules are equivalences but some of them ensure the termination of our system of rules. Some
side-conditions state that a literal to be introduced should not be subsumed by the whole constraint.
Roughly speaking, this means that the literal does actually bring new non-trivial knowledge.

A constraint to which no rule applies is said to be irreducible.

Transformation rules yield other formulas that are not necessarily constraints: they can contain disjunc-
tions and existential quanti�cation. They can also simply be ⊥. Thus, we cannot immediately apply
another rule on them. However, these output formulas are always Σ1-formulas. The idea basically con-
sists in putting the output formula back into DXC and to continue on all the resulting constraints. This is
explained in detail in Section 4.1.2.

Let us �rst de�ne the clash rules that detect unsatis�ability in formulas. Consider the 5 transformation
rules of Figure 4.2.

Some of them simply state that a literal is trivially false – or that its negation is trivially true. This is
for instance the case of C-NAbsEmpty which simply states that x[∅]↑ is valid. The rule C-Feat-Abs detects
contradictory information, namely that a feature is both present and absent in the same tree. The rule
C-Cycle is necessary because our model does not allow for in�nite trees.1

To these clash rules, let us add 5 transformation rules on positive literals. They are shown in Figure 4.3.
This introduces three kinds of rules:

• Deduction rules (D-) are rules that create a new literal out of others of a di�erent kind. The rule D-
Feats, for instance, uses the unicity of features in the node of a feature tree to deduce full similarity
of variables.

• Propagation rules (P-) are rules that are speci�c to the similarity literal. Since this literal implies that
two variables behave the same, a lot of information can propagate from one to the other, allowing
to later detect clashes.

• Global rules (G-) are rules that potentially modify and unbounded number of literals in the constraint.
This is the case of G-SimFull that rewrites one variable into another, changing as many literals as
necessary.

1This shows that the model of all of �nite feature trees – that is the one we consider here – and the model of in�nite feature
trees do not share the same theory: x[f]x is a clash in the former and satis�able in the latter.

61

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

Deduction Rules

D-Feats x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]y ∧ x[f]z ∧ c (y 6= z, y =? z � c)

Propagation Rules

P-Feat-Sim x[f]y ∧ x =G z ∧ c ⇒ z[f]y ∧ x[f]y ∧ x =G z ∧ c (f ∈ G, z[f]y � c)

P-Abs-Sim x[F]↑ ∧ x =G z ∧ c ⇒ z[F ∩G]↑ ∧ x[F]↑ ∧ x =G z ∧ c (z[F ∩G]↑ � c)
P-Sims x =F y ∧ x =G z ∧ c ⇒ y =F∩G z ∧ x =F y ∧ x =G z ∧ c

(y =F∩G z � c)

Global Rules

G-SimFull x =? y ∧ c ⇒ x =? y ∧ c{x 7→ y} (x, y ∈ V(c))

Figure 4.3: Transformation rules for positive literals in systemR1

(0) r[f]x ∧ x[g]z ∧ r[f]y ∧ y[g, h]↑

(1) D-Feats ⇒ r[f]x ∧ x[g]z ∧ r[f]y ∧ y[g, h]↑ ∧ x =? y

(2) P-Abs-Sim ⇒ r[f]x ∧ x[g]z ∧ r[f]y ∧ y[g, h]↑ ∧ x =? y ∧ x[g, h]↑

(3) C-Feat-Abs ⇒ ⊥

Figure 4.5: Transformation of Formula 4.2 usingR1

r

x y[g, h]↑

z

f f

g

Figure 4.4: Formula 4.2

As an example, let us consider Formula 4.2. A graphical representation can be
found in Figure 4.4.

r[f]x ∧ x[g]z ∧ r[f]y ∧ y[g, h]↑ (4.2)

It states that the root r admits two children with the name f – x and y. The child
x itself has a child via g, z. The child y, on the other hand, does not have children
in either g or h. In fact, since x and y have the same name from r, they have to be

identi�ed together. Moreover, since x has a child in g but y is known to not have one, the whole formula
is unsatis�able. We can expect our system of transformation rules to detect this. Let us thus describe one
possible transformation chain involving rules of Figures 4.2 and 4.3. The intermediary constraints can be
found in Figure 4.5.

(0) Start from the example constraint. Notice the pattern r[f]x ∧ r[f]y. The rule D-Feats can apply.

(1) Rewrite the constraint using D-Feats. This adds a new literal x =? y and creates the pattern y[g, h]↑∧
x =? y, meaning that the rule P-Abs-Sim can apply. In fact, we could also notice the pattern x[g]z ∧
x =? y, meaning that P-Feat-Sim can apply. We will stay with the former for this example.

(2) Rewrite the constraint using P-Abs-Sim. This adds a new literal x[g, h]↑ and creates the pattern x[g]z∧
x[g, h]↑, meaning that the rule C-Feat-Abs can apply.

(3) Rewrite the constraint using C-Feat-Abs. This leads to ⊥ which is not matched by any pattern.

Note at this point that all the transformations that appeared in that chain were in fact equivalences. This
means that Formula 4.2 is equivalent to⊥ in our model of feature trees. In other words, it is unsatis�able.

62

4.1. TRANSFORMING DXC

Deduction Rules

D-NFeat ¬x[f]y ∧ c ⇒ (x[f]↑ ∨ ∃z · (x[f]z ∧ y 6=? z)) ∧ c
D-NSim-Feat x 6={f} y ∧ x[f]z ∧ c ⇒ ¬y[f]z ∧ x[f]z ∧ c
D-NSim-Abs x 6=F y ∧ x[G]↑ ∧ c ⇒ ¬y[F]↑ ∧ x[G]↑ ∧ c (F ⊆ G)

Propagation Rules

P-NAbs-Sim ¬x[F]↑ ∧ x =G z ∧ c ⇒ ¬z[F]↑ ∧ ¬x[F]↑ ∧ x =G z ∧ c
(F ⊆ G,¬z[F]↑ � c)

P-NSim-Sim x 6=F y ∧ x =G z ∧ c ⇒ z 6=F y ∧ x 6=F y ∧ x =G z ∧ c
(F ⊆ G, z 6=F y � c)

Re�nement Rules

R-NAbs-Abs ¬x[F]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F\G]↑ ∧ x[G]↑ ∧ c

Splitting Rules

S-NAbs-Sim ¬x[F]↑ ∧ x =G z ∧ c ⇒ (¬x[F ∩G]↑ ∨ ¬x[F\G]↑) ∧ x =G z ∧ c
(F 6⊆ G,F 6⊆ cG)

S-NSim-Feat x 6=F y ∧ x[f]z ∧ c ⇒ (x 6={f} y ∨ x 6=F\{f} y) ∧ x[f]z ∧ c
(F �nite, f ∈ F, F 6= {f})

S-NSim-Abs x 6=F y ∧ x[G]↑ ∧ c ⇒ (x 6=F∩G y ∨ x 6=F\G y) ∧ x[G]↑ ∧ c
(F 6⊆ G,F 6⊆ cG)

S-NSim-Sim x 6=F y ∧ x =G z ∧ c ⇒ (x 6=F∩G y ∨ x 6=F\G y) ∧ x =G z ∧ c
(F 6⊆ G,F 6⊆ cG)

Figure 4.6: Transformation rules for positive and negative literals in systemR1

Finally, let us add 10 transformation rules for negative literals. They can be found in Figure 4.6. All the
rules of Figures 4.2, 4.3 and 4.6 together form the system of transformation rules R1. For practicality all
the rules ofR1 can be found Figure 4.7.

Several things deserve to be noted here. Firstly, rules do not necessarily yield constraints. D-NFeat, for
instance, introduces a disjunction and also a new existentially-quanti�ed variable. Secondly, and contrary
to the rules of Figure 4.3, the new propagation rules have an extra side-condition that requires the set of
the negated absence or similarity atoms to be included in the set of of the similarity atom. This means
in particular that not all negated atoms can propagate through a similarity atom. Finally, these new rules
show two new kinds of rules:

• Re�nement rules (R-) are rules that modify a literal towards something more precise. They are used
here to transform the size of sets in negated absence and similarity literals. This can allow us in
turn to detect clash with C-NAbsEmpty or C-NSimEmpty if the set turns out to be empty.

• Splitting rules (S-) are a form of re�nement rules that introduce disjunctions by splitting one predi-
cate into two more re�ned versions. Re�nement rules can quite often be seen as degenerated cases
of split rules. These splitting rules are necessary to break down negated absence and similarity
literals, allowing them in turn to be propagated.

63

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

Clash Rules

C-Cycle x[f]y ∧
∧n−1

i=0 zi[fi]zi+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn)

C-Feat-Abs x[f]y ∧ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

C-NAbsEmpty ¬x[∅]↑ ∧ c ⇒ ⊥
C-NSimRefl x 6=F x ∧ c ⇒ ⊥
C-NSimEmpty x 6=∅ y ∧ c ⇒ ⊥

Deduction Rules

D-Feats x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]y ∧ x[f]z ∧ c (y 6= z, y =? z � c)

D-NFeat ¬x[f]y ∧ c ⇒ (x[f]↑ ∨ ∃z · (x[f]z ∧ y 6=? z)) ∧ c
D-NSim-Feat x 6={f} y ∧ x[f]z ∧ c ⇒ ¬y[f]z ∧ x[f]z ∧ c
D-NSim-Abs x 6=F y ∧ x[G]↑ ∧ c ⇒ ¬y[F]↑ ∧ x[G]↑ ∧ c (F ⊆ G)

Propagation Rules

P-Feat-Sim x[f]y ∧ x =G z ∧ c ⇒ z[f]y ∧ x[f]y ∧ x =G z ∧ c (f ∈ G, z[f]y � c)

P-Abs-Sim x[F]↑ ∧ x =G z ∧ c ⇒ z[F ∩G]↑ ∧ x[F]↑ ∧ x =G z ∧ c (z[F ∩G]↑ � c)
P-NAbs-Sim ¬x[F]↑ ∧ x =G z ∧ c ⇒ ¬z[F]↑ ∧ ¬x[F]↑ ∧ x =G z ∧ c

(F ⊆ G,¬z[F]↑ � c)
P-Sims x =F y ∧ x =G z ∧ c ⇒ y =F∩G z ∧ x =F y ∧ x =G z ∧ c

(y =F∩G z � c)
P-NSim-Sim x 6=F y ∧ x =G z ∧ c ⇒ z 6=F y ∧ x 6=F y ∧ x =G z ∧ c

(F ⊆ G, z 6=F y � c)

Re�nement Rules

R-NAbs-Abs ¬x[F]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F\G]↑ ∧ x[G]↑ ∧ c

Splitting Rules

S-NAbs-Sim ¬x[F]↑ ∧ x =G z ∧ c ⇒ (¬x[F ∩G]↑ ∨ ¬x[F\G]↑) ∧ x =G z ∧ c
(F 6⊆ G,F 6⊆ cG)

S-NSim-Feat x 6=F y ∧ x[f]z ∧ c ⇒ (x 6={f} y ∨ x 6=F\{f} y) ∧ x[f]z ∧ c
(F �nite, f ∈ F, F 6= {f})

S-NSim-Abs x 6=F y ∧ x[G]↑ ∧ c ⇒ (x 6=F∩G y ∨ x 6=F\G y) ∧ x[G]↑ ∧ c
(F 6⊆ G,F 6⊆ cG)

S-NSim-Sim x 6=F y ∧ x =G z ∧ c ⇒ (x 6=F∩G y ∨ x 6=F\G y) ∧ x =G z ∧ c
(F 6⊆ G,F 6⊆ cG)

Global Rules

G-SimFull x =? y ∧ c ⇒ x =? y ∧ c{x 7→ y} (x, y ∈ V(c))

Figure 4.7: SystemR1 of Transformation Rules

64

4.1. TRANSFORMING DXC

(0) x 6={f,g,h} y ∧ x[f, g]↑ ∧ y[g, h]↑

(1) S-NSim-Abs ⇒ (x 6={f,g} y ∧ x[f, g]↑ ∧ y[g, h]↑)
∨ (x 6={h} y ∧ x[f, g]↑ ∧ y[g, h]↑)

(2) S-NSim-Abs ⇒
(x 6={f} y ∧ x[f, g]↑ ∧ y[g, h]↑)
∨ (x 6={g} y ∧ x[f, g]↑ ∧ y[g, h]↑)
∨ (x 6={h} y ∧ x[f, g]↑ ∧ y[g, h]↑)

(3) D-NSim-Abs3 ⇒
(¬y[f]↑ ∧ x[f, g]↑ ∧ y[g, h]↑)
∨ (¬y[g]↑ ∧ x[f, g]↑ ∧ y[g, h]↑)
∨ (¬x[h]↑ ∧ x[f, g]↑ ∧ y[g, h]↑)

(4)
R-NAbs-Abs

+ C-NAbsEmpty
⇒ (¬y[f]↑ ∧ x[f, g]↑ ∧ y[g, h]↑)

∨ (¬x[h]↑ ∧ x[f, g]↑ ∧ y[g, h]↑)

Figure 4.8: Transformation of Formula 4.3 usingR1

As an example, let us consider Formula 4.3.

x 6={f,g,h} y ∧ x[f, g]↑ ∧ y[g, h]↑ (4.3)

It expresses that the two variables x and y must have a di�erence somewhere in the names f , g or h. This
is not so easy as both x and y are constrained: x cannot use the names f and g while y cannot use the
names g and h. We can expect this formula to be satis�able as long as x has a feature in h and/or y has a
feature in f . Let us describe one possible transformation chain involving rules of R1. The intermediary
constraints can be found in Figure 4.8.

(0) Start from the example constraint. Notice the pattern x 6={f,g,h} y∧x[f, g]↑. The rule S-NSim-Abs can
apply.

(1) Rewrite the constraint using S-NSim-Abs. This splits the negated similarity atom x 6={f,g,h} y into
(x 6={f,g} y ∨ x 6={h} y. In DXC, this gives us two constraints. Notice the pattern x 6={f,g}
y ∧ y[g, h]↑. The rule S-NSim-Abs can apply again.

(2) Rewrite the constraint using S-NSim-Abs. This splits the negated similarity atom x 6={f,g} y into
(x 6={f} y ∨ x 6={g} y. This gives us three constraints in total that only di�er on the set carried
by the negated similarity atom – {f}, {g} or {h}. Notice the pattern x 6={f} y ∧ x[f, g]↑. In fact,
similar patterns are present in all three constraints. The rule D-NSim-Abs can apply in all of them.

(3) Rewrite each constraint using D-NSim-Abs. This replaces the negated similarity atoms by negated
absence atoms ¬y[f]↑, ¬y[g]↑ and ¬x[h]↑. The �rst and third ones belong to now irreducible con-
straints. The second one, ¬y[g]↑ forms a pattern with y[g, h]↑: R-NAbs-Abs can apply.

(4) Rewrite this constraint using R-NAbs-Abs. This replaces ¬y[g]↑ by ¬y[∅]↑ which can trigger the
clash C-NAbsEmpty. The resulting DXC contains two constraints. These constraints share the part
x[f, g]↑ ∧ y[g, h]↑ but di�er on the negated absence atom that they carry, either ¬y[f]↑ or ¬x[h]↑.
This disjunction expresses exactly what we had foreseen: the formula implies that either x has the
feature h or y has the feature f .

As for the other example, note that all the transformations that appeared in that chain were equivalences.
This is a property of all the rules ofR1, which is stated in Lemma 4.2.

65

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

Lemma 4.2 (Rules ofR1 perform equivalences). For any constraint c, if c transforms to φ via a rule ofR1,

then c and φ are equivalent. In other words, if c⇒ φ viaR1, then |=FT ∀̃ · (c↔ φ).

There are natural questions that arise when considering such a system: does this system of rules termi-
nate? is it complete – for some de�nition of complete? is it con�uent? The quick answers are: yes, the
system of rules terminates; yes, it is complete; and, as a matter of fact, it is con�uent, but this really does
not matter in our situation because all rules perform equivalence. All theses properties will be discussed
in Section 4.1.2.

Despite their presentation, the rules of R1 – G-SimFull aside – are local in the sense that one does not
need to explore the whole constraint to decide whether they are applicable or not. To be exact, given a
valuation from meta variables to variables, one does not need to explore the whole constraint to decide
which rules are applicable. This is the case even if the subsumption (De�nition 4.3) gives the impression
to talk about the whole formula. In fact, it is local because it only requires to consider literals that share
the same variables as the literal to be subsumed. This is stated in Lemma 4.3.

Lemma 4.3 (Locality of Subsumption). A literal is subsumed by a constraint if and only if it is subsumed by

the part of the constraints that mentions strictly its variables. In other words, for any literal l and constraint c,
l � c if and only if l � GcV(l)(c).

Subsumption is also local in the sense that adding new literals does not change the literals subsumed by
a constraint. If anything, the constraint only gets stronger and subsumes more literals. This is stated in
Lemma 4.4.

Lemma 4.4 (Monotony of Subsumption). If a literal is subsumed by a constraint, then it is also subsumed

by any extension of this constraint. In other words, for any literal l and constraints c and c′, if l � c then
l � c ∧ c′.

4.1.2 Properties of Irreducible Constraints ofR1

This system of rules is interesting in that it allows to detect unsatis�ability of constraints. It is in fact
stronger than that as it has the property of garbage collection. This property states that existentially-
quanti�ed variables that are not reachable from free variables carry only redundant information and can
thus safely be removed. To state it formally, let us �rst de�ne in De�nition 4.4 what it means for a set to
be ancestor-closed.

De�nition 4.4 (Ancestor-Closedness). A set of variablesX is ancestor-closed with respect to a constraint c
if for all feature literals x[f]y ∈ c, if y ∈ X then x ∈ X .

When the constraint is obvious from context, it will be omitted and we will simply talk about an ancestor-

closed set of variables.

∃r

x ∃y[c{h, i}]↑

∃z

w

f g

h

i

=c{f,g,i}

6={f,g}

Figure 4.9: Formula 4.4

As an example, let us consider Formula 4.4. A graphical representation is
given in Figure 4.9.

∃r, y, z ·
(

r[f]x ∧ r[g]y ∧ y[h]z ∧ w[i]z
∧ r =c{f,g,i} w ∧ y[c{h, i}]↑ ∧ x 6={f,h} z

)
(4.4)

In this constraint, the sets {r}, {r, x}, {r, y}, and {r, w} are all ancestor-
closed. The sets {r, y, z} and {x,w} are not, because z is accessible fromw
and x is accessible from r.

66

4.1. TRANSFORMING DXC

Let us now explain in De�nition 4.5 how to split syntactically a constraint
with respect to a set of variables, putting literals that mention variables in that set on one local side and
literals that do not mention such variables on one global side.

De�nition 4.5 (Global and Local Parts). For any constraint c and any set of variables X , the local part
of c with respect to X , written LX(c), contains the literals of c that mention at least a variable of X and
the global part of c with respect to X , written GX(c), contains all the others. In other words:

LX(c) = {l | V(l) ∩X 6= ∅, l ∈ c}
GX(c) = {l | V(l) ∩X = ∅, l ∈ c}

If we take Formula 4.4 again, and name its constraint c, we have for instance:

L{r}(c) = r[f]x ∧ r[g]y ∧ r =c{f,g,i} w

G{r}(c) = y[h]z ∧ w[i]z ∧ y[c{h, i}]↑ ∧ x 6={f,h} z
L{r,y}(c) = r[f]x ∧ r[g]y ∧ y[h]z ∧ r =c{f,g,i} w ∧ y[c{h, i}]↑
G{r,y}(c) = w[i]z ∧ x 6={f,h} z

Lemma 4.5 describes general properties of such global and local parts.

Lemma 4.5 (Properties of Global and Local Parts). For all constraint c, sets of variables X and Y :

LX(c) ∧ GX(c) = c

L∅(c) = ∅ = >
G∅(c) = c

LX(LY (c)) = LX∩Y (c)

GX(GY (c)) = GX∪Y (c)

LX(c) ⊆ LY (c) if X ⊆ Y
GY (c) ⊆ GX(c) if X ⊆ Y

Lemma 4.6. If c is irreducible with respect toR1, then for any setX , GX(c) is irreducible with respect toR1.

Proof. Let us take c a constraint irreducible with respect toR1 andX a set of variables of c. We are going
to prove that GX(c) is irreducible with respect to P-NSim-Sim. All the other cases are similar.

Assume there is a pattern in GX(c) for the rule P-NSim-Sim. That means there is x 6=F y and x =G z in
GX(c) with F ⊆ G. Of course, GX(c) ⊆ c so the pattern is in c as well. Since c is irreducible with respect
to P-NSim-Sim, this means that the side-condition is not respected in c and therefore that z 6=F y � c.

By Lemma 4.3, z 6=F y � Gc{y,z}(c). Obviously, y, z ∈ V(GX(c)) which implies that y, z /∈ X and,
subsequently, X ⊆ c{y, z}. By Lemma 4.5, Gc{y,z}(c) ⊆ GX(c). By Lemma 4.4, z 6=F y ⊆ GX(c) and,
therefore, P-NSim-Sim cannot apply with this pattern.

The key arguments are basically that taking the global part of a constraint is a global operation that
concerns all the literals with the same variables, while the subsumption is local and monotonous. This
means that either taking the global part of a constraint removes both the subsumers and the subsumee at
the same time, or none of them.

Finally, let us state the property of garbage collection in Theorem 4.1.

67

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

Theorem 4.1 (Garbage Collection of Irreducible Constraints). Let c be a constraint2 that is irreducible with
respect toR1. Let X be a set of variables of c that is ancestor-closed. Then ∃X · c is equivalent to the global
part of c with respect to X . In other words:

|=FT ∀̃ · ((∃X · c)↔ GX(c))

Our example Formula 4.4 contains a constraint that is irreducible with respect to R1. We can thus apply
Theorem 4.1 on any set of variables that is ancestor-closed. If we consider {r, y}, for instance, we get
that ∃r, y · c is equivalent to G{r,y}(c), from which we can conclude that:

∃r, y, z ·
(

r[f]x ∧ r[g]y ∧ y[h]z ∧ w[i]z
∧ r =c{f,g,i} w ∧ y[c{h, i}]↑ ∧ x 6={f,h} z

)
↔ ∃z · (w[i]z ∧ x 6={f,h} z)

Proof of Theorem 4.1. The implication from left to right is easy to prove, has nothing to do with ancestor-
closedness of sets of variables or irreducibility with respect to any system, and comes directly from De�-
nition 4.5. Indeed, for any set of variables X and constraint c:

∃X · c = ∃X · (GX(c) ∧ LX(c))

↔ GX(c) ∧ (∃X · LX(c))

→ GX(c)

which gives us, for any set of variables X : |=FT ∀̃ · ((∃X · c)→ GX(c)).

The proof of the other direction goes by �rst proving Theorem 4.1 on only one variable, and then gen-
eralising to any set by induction for sets of any size. Lemma 4.7 states the garbage collection for one
variable.

Lemma 4.7 (Garbage Collection of one Variable in an Irreducible Constraint). Let c be a constraint that is
irreducible with respect toR1. Let x be a variable of c such that there is no y[f]x in c for any y and f . Then
the global part of c with respect to {x} implies ∃x · c. In other words:

|=FT ∀̃ · (G{x}(c)→ (∃x · c))

Proof of Theorem 4.1 (continued). Let us assume Lemma 4.7 for a moment and show Theorem 4.1 by in-
duction on the size of the set X . The property of course holds for empty sets. Let us now assume that it
holds for sets of size n and takeX a set of variables of size n+ 1. Let us take c any constraint such thatX
is ancestor-closed in c and such that c is irreducible with respect toR1.

Since there are no cycles (because of C-Cycle), there is a variable x ∈ X such that there is no feature atom
pointing towards x, ie. no y and f such that y[f]x ∈ c. {x} is thus an ancestor-closed set of variables
of c. We can thus apply Lemma 4.7 and we get:

|=FT ∀̃ · (G{x}(c)→ ∃x · c)

G{x}(c) is a formula that is irreducible with respect toR1, by Lemma 4.6. Y = X\{x} is a set of variables
of size n that is ancestor-closed in G{x}(c). We can thus apply our induction hypothesis and we get:

|=FT ∀̃ · (GY (G{x}(c))→ ∃Y · G{x}(c))
2Remember that constraints cannot be ⊥ as they are de�ned as sets of literals.

68

4.1. TRANSFORMING DXC

Finally, Y ∪ {x} = X and GY (Gx(c)) = GY ∪{x}(c) and thus:

|=FT ∀̃ · (GX(c)→ ∃X · c)

Proof of Lemma 4.7 (sketch). The proof of Lemma 4.7 will only be sketched here. The complete proof can
be found in Section 4.A. The proof goes by taking µ that satis�es G{x}(c) and showing that it can be
extended on x to ρ that satis�es c. The extension goes by taking ρ(y) = µ(y) for all y 6= x, and:

ρ(x)(f) =


µ(y) if x[f]y ∈ c (4.8)
µ(y)(f) if x =F y ∈ c with x 6= y, f ∈ F , and f ∈ dom(µ(y)) (4.9)
fresh(f) otherwise (4.10)

whereD is a set of features that contains at least a feature for each negated absence and negated similarity
atoms, and fresh is a feature tree that is di�erent from all trees in the image of µ. In other words, we
extend µ to ρ in such a way that ρ(x) respects all the feature atoms from x to another variable (case 4.8)
and all the similarity atoms (case 4.9). In the remaining space, we add fresh features so that negated
absence and similarity atoms are respected.

It remains to show that ρ is well de�ned (in particular, the cases 4.8 and 4.9 are not disjoint) and that it
satis�es all the literals of c.

From Theorem 4.1 follows directly Theorem 4.2 as a corollary, stating that irreducible constraints are
satis�able.

Theorem 4.2 (Satis�ability of Irreducible Constraints). A constraint
3c that is irreducible with respect toR1

is satis�able.

Proof. Take X = V(c). This is a trivial ancestor-closed set of variables of c. Moreover, GX(c) is empty.
This gives us |=FT ∀̃ · ((∃X · c)↔ >) and thus |=FT ∃̃ · c.

4.1.3 Deciding the Satis�ability of DXC

Note that Theorems 4.1 and 4.2 only apply to irreducible constraints. We are now going to extend that to
DXC. We are going to build a function that, from any given DXC, yields an equivalent one that is either
empty – ie. ⊥ – or satis�able.

Consider the functions choose-rule-1, transform-1-xc and transform-1 de�ned in Figure 4.10. trans-
form-1-xc takes an x-constraint as input, transforms it using rules of R1, following a strategy de�ned
by choose-rule-1, and outputs a DXC. transform-1 takes a DXC and applies transform-1-xc on all
x-constraints in the DXC. It returns another DXC. transform-1-xc works as follows:

• It �rst checks (Line 11) if the given constraint is reducible with respect to R1. If it is not, the
x-constraint is returned as is (Line 17).

• If the given constraint is reducible, transform-1-xc �nds a rule of R1 (Line 12) according to a
strategy described in choose-rule-1 and applies it to c (Line 13). The obtained formula is named φ.

• The formulaφ is put back in DXC (Line 14). The resulting DXC is named d. It is possible to apply DXC
on φ because it only contains positive occurrences of existential quanti�ers. Since φwas possibly⊥,
d is possibly the empty DXC.

3See footnote 2.

69

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

1 function apply-rule-1 (rule, constraint) : Σ1-formula
2
3 function choose-rule-1 (c : constraint) : rule
4 return the first rule of R1 applicable to c of
5 - all clash rules
6 - G-SimFull or D-NFeat
7 - all other rules of R1 but P-NAbs-Sim and P-NSim-Sim
8 - P-NAbs-Sim or P-NSim-Sim
9

10 function transform-1-xc (∃X · c : x-constraint) : DXC
11 if c is reducible in R1

12 let r = choose-rule-1(c)
13 let φ = apply-rule-1(r, c)
14 let d = DXC(∃X · φ)
15 return transform-1(d)
16 else
17 return ∃X · c
18
19 function transform-1 (d : DXC) : DXC
20 let

∨
i ∃Xi · ci = d

21 return
∨

i transform-1-xc(∃Xi · ci)

Figure 4.10: Function transform-1

• transform-1-xc then proceeds by calling transform-1 on the DXC d (Line 15). If d is empty,
transform-1 will directly return the empty DXC. Otherwise, it will call transform-1-xc on all
the x-constraints in d.

This function terminates on all inputs, as stated in Lemma 4.8. It returns an equivalent DXC such that all
its constraints are irreducible with respect to R1. This is stated in Lemma 4.9. A direct corollary is that
the output DXC is either empty or satis�able. This is stated in Lemma 4.10.

Lemma 4.8 (Termination of transform-1). The function transform-1 terminates on all inputs.

Proof of Lemma 4.8 (sketch). The proof of Lemma 4.8 turns out to be highly non-trivial. It will therefore
only be sketched here. The complete proof can be found in Section 4.B.

The function transform-1, when called on a non-empty DXC, includes one or several calls to the func-
tion transform-1-xc (Line 21). The function transform-1-xc, when called on a reducible constraint,
includes a call back to transform-1 (Line 15). Depending on the rule r that transform-1-xc chooses via
choose-rule-1 (Line 12), the DXC that will be passed to a subsequent call to transform-1 will contain
zero (for a clash rule), one (for most other rules) or more (for rules introducing a disjunction) x-constraints,
and thus as many calls to transform-1-xc.

We focus on the x-constraints that are taken as argument by transform-1-xc. We show that if trans-
form-1-xc is called on an x-constraint c, then any subsequent recursive call to transform-1-xc will be
given an x-constraint that is “smaller” than c. We need to de�ne what it means for an x-constraint to be
“smaller” than another one. Moreover, we have to show that it is not possible for x-constraints to become
smaller and smaller inde�nitely, that is there is no in�nite chain of constraints c0, c1, etc. such that ci+1

is smaller than ci for all i.

In a �rst part of the proof (Section 4.B.1), we simplify the problem by remarking several things.

70

4.1. TRANSFORMING DXC

• Firstly, we can always assume that the constraints are clash-free. Indeed, clash rules have the pri-
ority in choose-rule-1 and, therefore, any constraint that is not clash-free will be transformed to
⊥ in the next step and is therefore not a threat to termination.

• Secondly, the system of priority of choose-rule-1means that transform-1 basically runs in three
phases.

– In a �rst phase, only the rules G-SimFull and D-NFeat are used.

– In a second phase, almost all the rules ofR1 are used. This excepts P-NAbs-Sim and rule30. More-
over, whenever a pattern for G-SimFull or D-NFeat appears, these rules are applied immediately.
They can therefore be inlined in the rules that create the pattern. The second phase can there-
fore be seen as an alternative system of rules, which we will name Rtrunc

1 and which leaves
constraints irreducible with respect to the �rst phase.

– Finally, in a third phase, the rules rule28 and rule30 are added. These rules turn out to respect
the irreducibility with respect to the �rst and second phase. The termination of this third
phase will therefore not be an issue.

Even with these simpli�cations, there remains quite a lot of di�culties, detailed in Section 4.B.2. Mostly,
there are two major di�culties.

• The �rst di�culty comes from R-NAbs-Abs and from all the splitting rules (S-NAbs-Sim, S-NSim-Feat, S-NSim-
Abs and S-NSim-Sim). Indeed, these transform a negated atom (absence or similarity) into a negated
atom of the same kind carrying a strictly smaller set. There is however no guarantee that these
sets cannot get smaller and smaller inde�nitely as they can, of course, be in�nite. We will however
remark that even if these sets can be in�nite, there is only a �nite number of sets that can appear in a
transformation from a �nite constraint. We can leverage this fact to consider not the set themselves
by their height in the �nite lattice of possible sets. This is discussed in Section 4.B.3.

• The second di�culty comes from the interaction between the rules D-NSim-Feat and D-NFeat. The for-
mer removes a negated similarity atom, replacing it by a negated feature atom. The latter removes
a negated feature atom, replacing it by a disjunction that includes a new variable and a negated
similarity atom. This process can repeat several times. In fact, it can repeat at least a number of
times linear in the number of initial variables in the constraint. We can however remark several
facts:

– In order for a negated feature atom to transform into negated similarity atom and then back
into negated feature atom, the presence of an absence or a similarity atom is required.

– Except in some speci�c cases, these absence and similarity atoms can only appear on variables
that were present in the constraint initially, that is not on new variables introduced by D-NFeat.

– The newly introduced variables cannot lead to “initial” variables. Since there is a �nite number
of such “initial” variables and since they cannot form cycles (because the constraints are clash-
free), this gives us a notion of “depth” in constraints.

– For a negated similarity atom to transform into negated feature atom and back, it has to in-
crease its depth. Since there is only a �nite depth of “initial” variables, the process has to stop
eventually.

This is discussed in details in Section 4.B.4.

Tackling these two di�culties allows us to then de�ne a well-founded decreasing lexicographic mea-
sure on constraints from which we can conclude that transform-1 terminates. This is discussed in

71

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

1 function garbage-collect-1-xc (∃X · c : x-constraint) : x-constraint
2 let Y = biggest subset of X ancestor-closed in c
3 return ∃X\Y · GY (c)
4
5 function garbage-collect-1 (d : DXC) : DXC
6 let

∨
i ∃Xi · ci = d

7 return
∨

i garbage-collect-1-xc(∃Xi · ci)

Figure 4.11: Functions garbage-collect-1-xc and garbage-collect-1

Section 4.B.5.

Lemma 4.9. Given a DXC d, transform-1 yields a DXC d′ that is equivalent to d and such that all the

constraints of d′ are irreducible with respect toR1.

Proof. This comes from the fact that DXC and apply-rule-1 both return equivalent formulas, the former
by de�nition, and the latter by Lemma 4.2.

Lemma 4.10. The function transform-1 yields DXC that are either empty or satis�able.

In other words, transform-1 meets exactly the goals that we gave ourselves. Firstly, it can be used
as an unsatis�ability check. In fact, it is a complete unsatis�ability check in the sense that it detects
unsatis�ability if and only if the DXC is indeed unsatis�able. Secondly, it is incremental by nature. Since
the input and output DXC are equivalent, the input DXC can be thrown away to keep only the output
one. If one later adds other literals to the DXC, all the computation that has been done previously is still
valid and only the computation that has to do with the new literals will take place.

Finally, we can clean up the result of transform-1 by leveraging Theorem 4.1. Consider the function gar-
bage-collect-1 de�ned in Figure 4.11. garbage-collect-1 takes an x-constraint ∃X · c and removes
the biggest subset of its quanti�er block X that is ancestor-closed. The existence of such a biggest subset
comes from the fact that the union of two ancestor-closed sets is also ancestor-closed.

Intuitively, one can see an x-constraint as a graph whose entry points are the free variables. Intuitively,
garbage-collect-1-xc removes all the variables of an x-constraint that are not reachable. Let us �rst
de�ne reachability properly in De�nition 4.6.

De�nition 4.6 (Reachability of a variable in an x-constraint). A variable x is reachable from y in a con-

straint c if there exists a chain of feature atoms that leads from y to x. A variable x is reachable in an

x-constraint ∃X · c if it is reachable from a free variable of ∃X · c.

Note that the notion of reachability is strongly tied to that of ancestor-closedness. Indeed, in an x-
constraint ∃X ·c, a variable x is non-reachable if and only if there exists a subsetX ′ ofX that is ancestor-
closed in c.

We can now state in Lemma 4.11 that garbage-collect-1 only leaves non-reachable variables in a DXC.
This property justi�es the name of the function, but it will also prove to be very important in the next
section to build a function that decides �rst-order formulas.

Lemma 4.11. Given a DXC d whose constraints are irreducible with respect to R1, garbage-collect-
1 yields a DXC d′ that is equivalent to d and such that, in all its x-constraints, all the local variables are

reachable.

72

4.2. FIRST-ORDER FORMULAS

Proof. The fact that d′ is equivalent to d follows directly from Theorem 4.1. The property of reachability
in an x-constraint ∃X· comes from the fact that a variable x is reachable if and only if there is a subset
of X that contains x and that is ancestor-closed. By de�nition of garbage-collect-1-xc however, we
applied Theorem 4.1 on the biggest ancestor-closed subset. Since ancestor-closedness is a notion that
is table by union, that means that the only ancestor-closed subset of X that remains is the empty one.
Therefore, all the variables of X are reachable.

4.2 First-Order Formulas

We have de�ned in Section 4.1.3 the function transform-1 that takes any DXC and yields an equivalent
DXC that is either empty or such that all of its constraints are irreducible with respect to R1. We have
then de�ned the function garbage-collect-1 that can apply on such DXC and that removes all non-
reachable variables. We are going to show that this can be extended to a function deciding satis�ability
of closed �rst-order formulas.

Our theory of feature trees does not have the property of quanti�er elimination in the strict sense [Hodges
1993], that is it is not true that any formula has an equivalent quanti�er-free formula. This is already the
case without the similarity literals, as we can see in the following example: ∃x · (y[f]x ∧ x[g]↑). This
formula means that there is a tree denoted by x such that y points to x through the feature f , and that x
does not have the feature g. A quanti�er elimination procedure would have to conserve this information
about the global variable y.

This situation is not unusual when designing decision procedures. There are basically two possible reme-
dies. The �rst one is to extend the logical language by new predicates which express properties which
otherwise would need existential quanti�ers to express. This approach of achieving the property of quan-
ti�er elimination by extension of the logical language is well-known from Presburger arithmetic, it was
also successfully used for feature tree logics in the past [Backofen & Smolka 1995; Backofen 1995]. How-
ever, in the case of feature tree logics, the needed extension of the language is substantial and requires
the introduction of path constraints. For instance, the above formula would be equivalent to the path
constraint y[f][g]↑ stating that the variable y has a feature f pointing towards a tree where there is no
feature g. Unfortunately, this extension entails the need of quite complex simpli�cation rules for these
new predicates.

The alternative solution is to our knowledge due to Mal’cev [Malcev 1971] and consists in exploiting the
fact that certain predicates of the logic behave like functions. This solution was also used by Comon and
Lescanne [Comon & Lescanne 1989] for Herbrand trees. When switching to feature trees, this solution
becomes quite elegant [Treinen 1997]. The above formula would be replaced by ¬y[f]↑ ∧ ∀x · (y[f]x→
x[g]↑) stating that y has a feature f (by ¬y[f]↑) and that for each variable x such that y points towards x
via f (in fact, there is only one), x has no feature g. The price is that existential quanti�ers are not
completely eliminated but switched for universal ones. This is, however, su�cient, since one can now
apply this transformation to any PNF, and successively reduce the number of quanti�er eliminations.

We show in Section 4.2.1 a way to switch existential quanti�ers for universal quanti�ers in formulas of
FTS. We then use that in Section 4.2.2 to build a complete decision procedure for the �rst-order theory of
FT .

4.2.1 Switching Existential Quanti�ers from DXC

Let us start by showing how to switch a block of existential quanti�ers from an x-constraint in which all
the variables are reachable. This goes by iteratively applying the rule G-Exists-Feat de�ned as follows:

73

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

1 function switch-xc (c : x-constraint) : Π1-formula
2 match c
3 | ∃y, Z · (x[f]y ∧ c′) where x, y /∈ Z ->
4 return ¬x[f]↑ ∧ ∀y · (x[f]y → (switch-xc(∃Z · c′)))
5 | _ -> return c
6
7 function switch (d : DXC) : Π1-formula
8 let

∨
i ci = d where (ci : x-constraint) for all i

9 return
∨

i switch-xc(ci)

Figure 4.12: Functions switch-xc and switch

G-Exists-Feat ∃y, Z · (x[f]y ∧ c) ⇒ ¬x[f]↑ ∧ ∀y · (x[f]y → ∃Z · c)
(x, y /∈ Z, x 6= y)

This rule leverages the fact that features are functional in our model: a tree can not have two edges
leaving the root with the same feature. The fact that it performs an equivalence is stated in Lemma 4.12.
The fact that all the variables of Z remain reachable in ∃Z · c in stated in Lemma 4.13. This will allow
us to reiterate the process until there is no existential quanti�cation anymore and it has been replaced by
universal quanti�cation, as stated in Lemma 4.14.

Lemma 4.12. The formula yield by G-Exists-Feat is always equivalent to the given x-constraint.

Proof. This is shown by the following chain of equivalences:

∃y, Z · (x[f]y ∧ c)

↔ ∃y · (x[f]y ∧ ∃Z · c) since x, y /∈ Z
↔ ¬x[f]↑ ∧ ∀y · (x[f]y → ∃Z · c) since features are functional

Lemma 4.13. If all the variables of Z are reachable in ∃y, Z · (x[f]y∧ c), then they are reachable in ∃Z · c.

Proof. Let us take z ∈ Z that is reachable in ∃y, Z · (x[f]y∧c). That means that there is a chain of feature
atoms from a variable of cZ to z. If that chain of feature mentions y, then the part that goes from y to z
is still present in c. Since y is not existentially quanti�ed in ∃Z · φ, z is reachable there. If the chain of
feature does not mention y, then it is fully included in c and is still present there.

x

∃y

∃z

⊥ w

f

g

hg

=?

Figure 4.13:
Formula 4.5

Consider the function switch in Figure 4.12. It uses the rule G-Exists-Feat to switch every
existential quanti�er of a DXC into a universal one. For instance, when given Formula 4.5,
the function switch returns Formula 4.6. A graphical representation of Formula 4.5 can
be found in Figure 4.13.

∃y, z · (x[f]y ∧ y[g]z ∧ z[g]↑ ∧ z[h]w ∧ x =? w) (4.5)
¬x[f]↑ ∧ ∀y · (x[f]y → (¬y[g]↑ ∧ ∀z · (y[g]z → (z[g]↑ ∧ z[h]w ∧ x =? w)))) (4.6)

Similarly to the other functions in this section, the function switch performs equiva-
lences. Moreover, it indeed returns a Pi1-formula when called on the right inputs. This
is stated in Lemma 4.14.

Lemma 4.14. Given a DXC d such that all its variables are reachable, the function switch
terminates and yields a Π1-formula φ that is equivalent to d.

74

4.2. FIRST-ORDER FORMULAS

1 function decide (φ : formula) : boolean
2 match PNF(φ)
3 | ∃X · ψ where ψ is quantifier-free ->
4 match transform-1(DXC(∃X · ψ))
5 | ⊥ -> return false
6 | _ -> return true
7
8 | Q · ∃X · ψ where ψ is quantifier-free , Q does not end in ∃ ->
9 let d = transform-1(DXC(∃X · ψ))

10 let d′ = garbage-collect-1(d)
11 let χ = switch(d′)
12 return decide(Q · χ)
13
14 | Q · ψ where ψ is quantifier-free ->
15 return not(decide(Q · ¬ψ))

Figure 4.14: Function decide

Proof. This comes directly from Lemma 4.12.

4.2.2 Deciding the First-Order Theory of FT

Finally, consider the function decide de�ned in Figure 4.14, Line 1. It accepts any formula φ and returns
a boolean.It works as follows:

• The input formula φ is immediately transformed into prenex normal form – PNF – and matched
upon (Line 2). In the rest of this explanation, we talk about φ and its PNF interchangeably.

• If φ is simply a Σ1-formula, that is if it is of the form ∃X ·ψ where ψ is quanti�er-free (Line 3), we
return true if φ is satis�able and false otherwise, which is done using transform-1 on the DXC
of φ (Line 4). The algorithm is done.

• Otherwise, if φ is not a Σ1-formula but its last block of quanti�ers is existential, that is if φ is of the
form Q · ∃X · ψ where ψ is quanti�er-free and Q does not end in ∃ (Line 8), we are exactly in the
case that we described how to handle in Sections 4.1.3 and 4.2.1.

– We �rst put the formula ∃Xψ̇ in DXC and apply transform-1 on it (Line 9). This returns an
equivalent DXC d whose constraints are irreducible with respect toR1.

– We can then apply the garbage collection via garbage-collect-1 on d (Line 10). This returns
an equivalent DXC d′ which has all its variables reachable.

– This is exactly the right context to switch the remaining existential quanti�ers using switch
in d′ (Line 11). This returns an equivalent Π1-formula χ.

– We can then call decide recursively onQ ·χ (Line 12). Note that, since χ is a Π1-formula, the
number of quanti�er alternations in Q · χ is strictly smaller than that of Q · ∃X · ψ.

• Otherwise, if φ is not a Σ1-formula and its last block of quanti�ers is not existential, then it is of
the form Q ·ψ where ψ is quanti�er-free (Line 14), we simply fall back on the previous case, which
we know how to handle, by applying decide recursively on the negation of φ taking the negation
of the result4 (Line 15). The negation of Q · ψ is computed syntactically and is the formula Q · ¬ψ,

4Of course, such a recursive call can very easily be made tail-recursive and should be made tail-recursive in a real-world

75

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

(0) decide(∀x · ((x =F y ∧ x[G]↑)→ y[F ∩G]↑)))

(1) ⇒ not(decide(∃x · ¬((x =F y ∧ x[G]↑)→ y[F ∩G]↑)))

(2) ⇒ · · · · · · transform-1(∃x · (x =F y ∧ x[G]↑ ∧ ¬y[F ∩G]↑))

(3) ⇒ not(false) ⇒ true

Figure 4.15: Internal steps of execution of decide on Formula 3.3

(0) decide(∃x, y · ∀z · (z 6=F x ∨ z 6=F y))

(1) ⇒ not(decide(∀x, y · ∃z · ¬(z 6=F x ∨ z 6=F y)))

(2) ⇒ · · · · · · transform-1(∃z · (z =F x ∧ z =F y))

(3) ⇒ · · · · · · garbage-collect-1(∃z · (z =F x ∧ z =F y ∧ x =F y))

(4) ⇒ · · · · · · switch(x =F y)

(5) ⇒ not(decide(∀x, y · x =F y))

(6) ⇒ not(not(decide(∃x, y · x 6=F y)))

(7) ⇒ · · · · · · transform-1(∃x, y · x 6=F y)

(8) ⇒ not(not(false)) or not(not(true)) depending on F

Figure 4.16: Application of decide on Formula 3.4

whereQ inverts the quanti�ers. For instance, ∀x · ∃y · ∀z ·ψ = ∃x · ∀y · ∃z ·ψ. Q ·¬ψ is equivalent
to ¬φ, has as many quanti�er alternations as φ, but its last block of quanti�ers is now existential.

Let us �rst describe the execution of decide on two examples. As a �rst example, let us consider For-
mula 3.3. The intermediary steps are represented in Figure 4.15. Internal steps of execution are represented
by the use of “· · · · · ·”.

(0) Start from Formula 3.3.

(1) The last block of quanti�cation is universal. decide (Line 15) proceed thus recursively on the
negation of this formula.

(2) Inside this call, decide receives a Σ1-formula. It will therefore put it in DXC and call transform-
1 on it (Line 4). The steps of execution of transform-1 are not detailed. In this case, transform-1
will propagate the absence atom through the similarity atom, and then detect a clash between these
two, leading to replacing the whole formula by ⊥.

(3) decide therefore returns false, which gets negated and the whole call returns true. In this case,
it means that Formula 3.3, even if it is not a closed formula, is valid. This will be explained later.

As a second example, let us describe the steps of execution of decide on Formula 3.4. The intermediary
steps are represented Figure 4.16.

(0) Start from Formula 3.4.

(1) The last block of quanti�cation is universal. decide thus proceeds recursively on the negation of

implementation. We do believe, however, that this makes the presentation heavier and will not be doing that in this thesis.

76

4.2. FIRST-ORDER FORMULAS

the formula (Line 15).

(2) Inside this call, decide puts the formula in DXC and calls transform-1 (Line 9) on it. The steps of
transform-1 are not detailed. In this case, transform-1 will propagate the similarity atoms and
reach an irreducible form immediately.

(3) decide proceeds to call garbage-collect-1 (Line 10) which cleans up the ∃z that has become
irrelevant, leaving only x =F y.

(4) decide then calls switch (Line 11) on x =F y. This formula has no quanti�ers and thus it remains
unchanged.

(5) This step of execution is done, and decide continues recursively (Line 12).

(6) The last block of quanti�cation is universal again. decide thus proceeds recursively on the negation
of the formula (Line 15).

(7) Inside this call, decide receives a Σ1-formula. It calls transform-1 (Line 4) on it. The result here
depends heavily on F . If F = ∅, then transform-1 will detect a clash and return ⊥. Otherwise,
transform-1 will return the constraint unchanged as it is irreducible with respect toR1.

(8) Depending on F , decide will then proceed to return either falseor true. That result is then
negated twice. Formula 3.4 is thus valid if and only if F is not empty.

Lemma 4.15. The function decide terminates on all inputs.

Proof. All the calls from decide to other functions are safe: PNF, DXC, transform-1 (Lemma 4.8), gar-
bage-collect-1 and switch (Lemma 4.14) all terminate. The only problem comes from the recursive
calls of decide.

However, the recursive call Line 12 is on a formula with strictly less quanti�er alternations. Indeed, on
that line, Q is both non-empty and does not terminate on ∃. It must therefore terminate on ∀. Since ψ is
the result of switch, it contains only universal quanti�ers, and none of them are under a negation. The
PNF ofQ ·ψ will thus have as many quanti�er alternations asQ, which is one less thanQ · ∃X on Line 8.

The recursive call Line 15 is on a formula with the same number of quanti�er alternations. However,
subsequent calls to decide will enter one of the cases Lines 3 and 8 which will, in turn, either return
immediately or decrease the number of quanti�er alternations.

The function decide deserves its name as, if given a closed formula, it returns trueif and only if the
formula is satis�able. This will be stated in Lemma 4.16. decide is thus a complete decision procedure
for the �rst-order theory of FT . This is stated in Theorem 4.3.

Lemma 4.16. Given a closed formula φ, decide returns true if and only if φ is satis�able.

Proof. The function decide has three return statements that may return true, Lines 6, 12 and 15. Let
us show by induction on the number of recursive calls that, for each formula φ, there is a status, either
satis�able or valid, such that decide(φ) is true if and only if φ has that status.

• On Line 6, decide returns true if and only if the given formula φ is satis�able. This comes from the
fact that PNF, DXC and transform-1 return equivalent formulas. Moreover, the result of trans-
form-1 is not ⊥ if and only if it is satis�able (Theorem 4.2).

• On Line 12, decide(φ) is true if and only if decide(Q · χ) is true. This comes from the fact
that PNF, DXC, transform-1, garbage-collect-1 and switch, called in these contexts, return

77

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

equivalent formulas. By induction hypothesis, there is a status – satis�able or valid – such that
decide(Q · χ) – and thus decide(φ) – is true if and only if Q · χ – and thus φ – has that status.

• On Line 15, decide(φ) is true if and only if decide(Q · ¬ψ) if false. By induction hypothesis,
there is a status, either satis�able or valid, such that decide(Q · ¬ψ) is true if and only if Q · ¬ψ
has that status. This means that decide(φ) is true if and only ifQ ·¬ψ and thus ¬φ does not have
that status. We can conclude by adding that φ is satis�able if and only if ¬φ is not valid, and φ is
valid if and only if ¬φ is not satis�able.

For any closed formula φ now, validity and satis�ability are the same. Therefore, decide(φ) is true if
and only if φ is satis�able.56

Theorem 4.3. The �rst order theory of FT is decidable.

4.3 Discussions

There are several topics from this chapter that deserve discussion. In Section 4.3.1, we discuss alternative
models that could be considered in spite of FT . Typically, this will answer the question: what about in�-
nite trees? In Section 4.3.2, we bring in complexity considerations. Finally, in Section 4.3.3, we enumerate
limitations of transform-1 and R1 which make them unsuitable for our concrete use within the CoLiS
project. This motivates the work of Chapter 5.

4.3.1 Alternative Models

In this whole chapter, we have been consideringFT , the model of �nite feature trees of unbounded width
and unbounded depth. We have shown that the �rst-order theory of FT is decidable. One might wonder
if alternative models than FT also enjoy such a property. In particular, one might wonder if they could
have the same �rst-order theory.

Firstly, since any �nite feature tree can be described exactly by a �nite formula, then any model that does
not include all of FT has to have a di�erent �rst order theory. This is in particular the case of all the
feature trees of bounded depth, or of bounded width if the bound is strictly smaller than the size of the
set of features F . Indeed, it su�ces to choose a tree t that is in FT and not in the alternative model. We
can then choose a formula φ that has only one free variable x and that describes explicitly t in FT , and
only t. That is such that [x 7→ t] |=FT φ and such that there is no t′ with [x 7→ t′] |=FT φ. Since t is not
in the alternative model, that means that φ is not satis�able in that model, while it clearly is in FT .

Let us now consider extensions of FT with in�nite feature trees. The model FT ∞ of all possible feature
trees (De�nition 3.2) does not have the same �rst-order theory as FT . Indeed, the formula x[f]x, for
instance, is not satis�able in FT but clearly is in FT ∞. In general, it is necessary for a model to not
include trees that are subtrees of themselves ifwe are hoping to have the same �rst order theory as FT .

Three fairly natural models that one might want to consider are thus:

1. all the feature trees of potentially in�nite width but �nite depth;
2. all the feature trees of �nite width but potentially in�nite depth as long as they have no cycles;
5An other way to prove Lemma 4.16 would have been to show that, if the given formula φ is closed, then the last DXC d′

returned by transform-1 is closed too. In that case, satis�ability and validity are the same for d′ and we can conclude imme-
diately. This is of course true here as nothing in decide changes the free variables of a formula. This requires extra lemmas
however to state this property on the rules ofR1, transform-1, garbage-collect-1 and switch.

6Note that corollaries of this proof is that, on any formula, if decide returns true, then the given formula is satis�able and
if decide returns false, then the given formula is not valid.

78

4.3. DISCUSSIONS

Name Include FT In�nite width In�nite depth Cycles
Same �rst-order
theory as FT

FT obviously no no obviously not obviously
no irrelevant irrelevant irrelevant no
yes yes no obviously not yes
yes no yes no yes
yes no yes yes no
yes yes yes no yes

FT ∞ yes yes yes yes no

Table 4.1: Various models and if their �rst order theory is the same as that of FT

3. all the feature trees of potentially in�nite width, and potentially in�nite depth as long as they have
no cycles.

In fact, these three models have the exact same �rst-order theory as FT as decide is a decision function
in all of these models. Since the validity of decide as a decision function relies on the fact that all its
steps are equivalences, let us list all the functions that transform formulas and hint at why they are also
performing equivalences in these models.

• DXC and PNF perform an equivalence in any �rst-order logic. Similarly, the syntactic negation of a
formula Q · φ as Q · ¬φ is equivalent to the negation of Q · φ in any �rst-order logic.

• switch performs an equivalence in any feature tree logic as it relies only on G-Exists-Feat that relies
only on the functionality of features.

• transform-1 performs an equivalence in the three aforementioned models as well as in FT . This
comes from the fact that all the transformation rules ofR1 perform equivalences in all these models.
In other words, Lemma 4.2 also holds in these alternative models.

• Finally, garbage-collect-1 performs an equivalence in the three aforementioned models as well
as in FT . This comes from the fact that Theorem 4.1 also holds in these alternative models. This
will not be proven formally but is discussed shortly at the end of Section 4.A.

Table 4.1 presents a summarised version of everything discussed in this subsection.

4.3.2 Complexity Considerations

We have de�ned two functions: transform-1, which can decide the satis�ability of a DXC, and decide,
which can decide �rst-order formulas. One may wonder what complexity these functions have and if they
are usable in practice.

The complexity of decide of course depends on that of transform-1. In any case, we know that it
runs in non elementary time [Vorobyov 1996]. This comes from the interaction between the fact that
we periodically negate formulas (in de�nition of decide, Line 15) and that we then put them back in
DXC (Line 9). In general, putting a formula in DXC can be as long as exponential in the size of the formula.
The negation of a DXC is the worst possible case and reaches precisely this exponential complexity. Since
we do that for each quanti�er alternation, the complexity of decide admits as a lower bound a tower of
exponential of size the number of quanti�er alternations.

The function transform-1 has a proof of termination (Lemma 4.8) that gives a decreasing measure on
the constraints that it considers. One could thus expect such a measure to give us a useful bound on the

79

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

complexity of transform-1. This is however not the case, for three reasons7.

Firstly, the way the proof of termination works is by showing that transform-1-xc applies on constraints
that strictly decrease according to a measure. However, transform-1-xc may introduce disjunctions, in
which case it gets called recursively on all the introduced constraints. This is not a problem for the proof
of termination, but it does mean that the bound on the number of executions of transform-1-xc would
be huge in comparison to that obtained from the measure.

Indeed, for each execution of transform-1-xc, we can build a tree of constraints such that each con-
straints has as children the zero, one or more constraints that are introduced by the application of the rule
chosen by choose-rule-1. The proof of termination proves that this tree has bounded depth. Since the
tree has bounded width (the rules ofR1 introduce at most one disjunction and thus two constraints), we
can deduce that it is �nite. We get an over-approximation of its size as an exponential of its depth.

We can exhibit formulas on which transform-1-xc has to call recursively an exponential number of
times. Take n any natural numbers. Take as set of features the set of all natural numbers between 0
and 2n − 1. De�ne, for all 0 ≤ i < n, the set Si that contain the natural numbers whose i-th digit in the
binary representation is 1. With intersections and set di�erences of such sets, one can select precisely a
number or another. Consider now the formula:

¬x[?]↑ ∧
∧

0≤i<n

x =Si yi (4.7)

This formula will trigger S-NAbs-Sim, which will re�ne the negated absence atom as long as its set is not
either included or excluded from all of the Si. In other words, for as long as it does not contain only one
number. This will create a DXC of as many branches as there are numbers in our set of features, that
is 2n − 1. We thus have a formula of size n + 1 that leads to an exponential explosion of the number of
constraints in the working DXC.

Secondly, even without the introduction of disjunctions (that is if there is only one chain of constraints),
the measure given by the proof of termination is a huge overapproximation of the actual behaviour of the
function. The approximation is so unprecise that it could not possibly give us anything useful.

Thirdly and �nally, this measure only counts the number of rule applications. It does not take into account
the complexity of operations such as deciding whether a constraint is reducible or not, or �nding a rule
that applies to it. Since application of rules works by matching patterns on constraints, we can expect this
to be at least polynomial in the size of the constraints, the exponent being the size of the patterns.

4.3.3 Limitations of transform-1 andR1

We can list three main limitations of transform-1. Two of them come directly from the fact that trans-
form-1 is based on the systemR1.

1. Firstly,R1 introduces disjunctions and new variables systematically when in contact with negated
atoms. This leads to an explosion of constraints to handle in order to decide satis�ability. More-
over, since the goal is to use transform-1 incrementally and to compose its output with more
speci�cations, this would easily lead to an explosion of cases there.

2. Secondly, R1 works by matching patterns in sets of literals. It also requires to test subsumption of
literals by full constraints. These two operations are not guaranteed to be e�cient. In particular,
pattern can occur anywhere in a constraint.

7I cannot write that without thinking of Paul Taylor’s “What The Fuck France” series.

80

4.A. PROOF OF Lemma 4.7

3. On DXC, transform-1 has to handle every included x-constraint separately. Even if we changeR1

to not introduce disjunction, some of them come directly from speci�cations. It would improve
greatly the handling of speci�cation if transform-1was able to work on more expressive formulas.
One could then write speci�cations without disjunctions. This would in particular be useful in the
de�nition of noresolve (Figure 3.20).

We come back on Limitations 1, 2 and 3 in Chapter 5 and tackle them one by one.

Appendix 4.A Proof of Lemma 4.7

This appendix contains the full proof of Lemma 4.7. For convenience, Lemma 4.7 is repeated here:

Lemma 4.7 (Garbage Collection of one Variable in an Irreducible Constraint). Let c be a constraint that is
irreducible with respect toR1. Let x be a variable of c such that there is no y[f]x in c for any y and f . Then
the global part of c with respect to {x} implies ∃x · c. In other words:

|=FT ∀̃ · (G{x}(c)→ (∃x · c))

Introduction. Let c be a constraint that is irreducible with respect toR1. Take any variable x such that
there is no y[f]x in c for any y and f . Take any µ such that µ |=FT Gx(c). We are going to extend µ to ρ
such that ρ |=FT c, hence showing that µ |=FT ∃x · c and proving Lemma 4.7.

Since c is irreducible with respect toR1, none of the rules ofR1 can apply to c. This gives us 20 hypotheses
of non-applicability on the shape of c. As a reminder,R1 can be found in Figure 4.7.

The idea is to de�ne ρ(x) by analysing the literals in the constraint.

• Feature atoms of the form x[f]y impose that ρ respects the equation ρ(x)(f) = ρ(y).

• Similarity atoms of the form x =F y impose that ρ respects, for all f ∈ F , either f /∈ dom(ρ(x))
and f /∈ dom(ρ(y)), or ρ(x)(f) = ρ(y)(f).

• Negated absence atoms of the form ¬x[F]↑ impose that there is an f ∈ F such that f is in the
domain of ρ(x).

• Negated similarity atoms of the form x 6=F y impose that there is an f ∈ F such that ρ(x) is
di�erent from ρ(y) in f .

De�nition of D. The two �rst points in this list can be immediately integrated into the de�nition of
ρ(x), as we will see later. The two last points, however, mention the existence of a feature in a certain set
– the one carried by negated absence and similarity atoms. This means that there are potentially several
valid choices for ρ(x). Let us de�ne a set of features D that implement this choice. D will contain one
feature for each negated absence or similarity atom. These features will be part of the domain of ρ(x).
Let us �rst de�ne a set D0:

1. For each ¬x[F]↑ ∈ c, choose f ∈ F and add it to D0. Note that this is always possible because
F cannot be empty, by non-applicability of C-NAbsEmpty.

2. For each x 6=F y ∈ c, choose f ∈ F such that there is no z with x[f]z or y[f]z in c, and add it toD0.
Note that this is always possible because F cannot be empty, by non-applicability of C-NSimEmpty, and
because if F is �nite, then it does not include any feature from a feature atom on x. This comes
from non-applicability of S-NSim-Feat which implies that either F does not include any feature from a
feature atom on x or it is a singleton. If F is a singleton, then, by non-applicability of D-NSim-Feat, it

81

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

does not include a feature from a feature atom on x. If F is in�nite, since the constraint c contains
only a �nite number of feature atoms, there always exists such an f .

The de�nition ofD0 might still contain features that are also covered by similarity atoms in c. We want to
avoid that and to make sure thatD has no intersection with features in feature atoms and sets of features
in similarity atoms. We thus de�ne D as:

D = D0\
⋃

x=F y∈c
x 6=y

F

For instance, in the constraint x[f, g]↑ ∧ ¬x[h]↑ ∧ ¬x[c{f, g}]↑ ∧ x ={h} y ∧ x 6={g} z, the set {g, h} is a
valid choice for D0 as it intersects {h}, c{f, g} and {g}. The corresponding set D is then simply {g}.

De�nition of fresh trees. For each feature f , we de�ne a fresh tree for f with respect to c and µ by
choosing a �nite feature tree that is not in {µ(y)(f) | y ∈ V(c), y 6= x}. Since this set is �nite and since
the set of �nite feature trees is in�nite, such free trees always exist. We will denote by fresh(f) a fresh
tree for f .

Extension of µ to ρ. We de�ne ρ by extending µ to x. That is, we take ρ(y) = µ(y) for all y ∈ dom(µ)
di�erent from x. For x, we de�ne ρ(x) on the domain:

dom(ρ(x)) = {f | x[f]y ∈ c} ∪D ∪
⋃

x=F y∈c
x6=y

(dom(µ(y)) ∩ F)

For all f ∈ dom(ρ(x)), let us de�ne

ρ(x)(f) =


µ(y) if x[f]y ∈ c (4.8)
µ(y)(f) if x =F y ∈ c with x 6= y, f ∈ F , and f ∈ dom(µ(y)) (4.9)
fresh(f) otherwise (4.10)

Veri�cation that ρ is well-de�ned. Firstly, in the �rst two cases, µ(y) is indeed de�ned. This comes
from the fact that, in both cases, y is di�erent from x, either by non-applicability of C-Cycle (case 4.8) or by
de�nition (case 4.9).

Secondly, even though the �rst two cases are not disjoint, this still de�nes a function. Indeed, if several
cases apply, they can be:

• Twice case 4.8. In that case, we have x[f]y and x[f]z in c with y 6= z. In that case, by non-
applicability of D-Feats, there is y =? z in c. Because of non-applicability of C-Cycle, y and z are both
distinct from x. Since µ |=FT Gx(c), then it satis�es this full similarity atom and µ(y) and µ(z) are
equal in all points, and thus equal.

• One of case 4.8 and one of case 4.9. In that case, we have x[f]y and x =G z in c with f ∈ G, x 6= y
and x 6= z. In that case, by non-applicability of P-Feat-Sim, there is z[f]y ∈ c, and even in Gx(c) since
x 6= z. Since µ |=FT Gx(c), µ(y) = µ(z)(f).

• Twice case 4.9. In that case, we have x =F y and x =G z in cwith f ∈ F , f ∈ G, x 6= y and x 6= z.
In that case, by non-applicability of P-Sims and the fact that it cannot yield a formula that would be
subsumed by c, f ∈ F ∩G ⊆

⋃
y=Hz∈cH . There is thus a y =H z in c such that f ∈ H . It is even

in Gx(c) because both x 6= y and x 6= z. Since µ |=FT Gx(c), µ(y)(f) = µ(z)(f).

82

4.A. PROOF OF Lemma 4.7

Thirdly, ρ is indeed a valuation. That is, all the trees in its image are �nite. This is true for all ρ(y) with
y 6= x as µ was already a valuation. It is also the case for ρ(x). Indeed, the constraint is �nite and thus
there is only a �nite number of feature atoms, of negated absence and similarity atoms and of variables.
This makes {f | x[f]y ∈ c} �nite, D �nite, and the union of all variables distinct from x �nite too. Since
all the trees in µ are of �nite width, all dom(µ(y)) are �nite.

Veri�cation that ρ satis�es c. By de�nition of ρ, ρ is equal to µ on all variables that are not x. It thus
satis�es Gx(c). We only need to show that it also satis�es Lx(c), that is all literals that mention x. We rea-
son by exhaustive analysis over all literal forms. This gives us six cases: feature atom (1), negated feature
atom (2), absence atom (3), negated absence atom (4), similarity atom (5), and negated similarity atom (6).
Since feature and similarity atoms and their negations are binary, there will be sub-cases depending on
whether both their variables are x or only one.

1. Firstly, let us consider feature atoms. We have three sub-cases, as such atoms can be x[f]x (1a),
x[f]y with x 6= y (1b), or y[f]x with x 6= y (1c).

(a) It is impossible to have a literal x[f]x in c by non-applicability of C-Cycle.

(b) The literals x[f]y with x 6= y are satis�ed by de�nition of ρ, case 4.8.

(c) It is impossible to have a literal y[f]x with x 6= y in c, because they are ruled out by the
hypothesis that Lemma 4.7 makes on x.

2. Secondly, let us consider negated feature atoms. It is however impossible to have such atoms in c,
by non-applicability of D-NFeat.

3. Thirdly, let us consider absence atoms. They are of the form x[F]↑. If F is empty, then x[F]↑ is
trivially satis�ed by any valuation. Let us assume that F is not empty and consider any f ∈ F .
We will show by contradiction that it is impossible that f ∈ dom(ρ(x)). Assume it is the case. By
de�nition of ρ, ρ(x)(f) is

• either (case 4.8) equal to ρ(z) for some z if there is x[f]z in c. Such a case cannot happen,
however, because that would contradict the non-applicability of C-Feat-Abs.

• or (case 4.9) equal to ρ(z)(f) for some z 6= x if there is x =G z in c with f ∈ G and f ∈
dom(µ(z)). By non-applicability of P-Abs-Sim, there is then

∧
i z[Hi]↑ in c with F ∩G ⊆

⋃
iHi.

Since f ∈ F ∩ G, then there exists i0 such that f ∈ Hi0 . The fact that µ satis�es z[Hi0]↑
contradicts the fact that f ∈ dom(µ(z)).

• or (case 4.10) fresh. In that case, we know that f ∈ D. Since D ⊆ D0, by de�nition of D0,
there exists

– either a negated absence atom ¬x[G]↑ such that f ∈ G. In that case, by non-applicability
of R-NAbs-Abs, F ∩ G = ∅, which enters in contradiction with the fact that f ∈ F and
f ∈ G.

– or a negated similarity atom x 6=G zwith z 6= x and such that f ∈ G. In that case, by non-
applicability of S-NSim-Abs, either G ⊆ F or G ⊆ cF . The former enters in contradiction
with the non-applicability of D-NSim-Abs. The latter enters in contradiction with the fact
that f ∈ F and f ∈ G.

4. Fourthly, let us consider negated absence atoms. They are of the form ¬x[F]↑. By de�nition of D0,
case 1, there is f ∈ D0 ∩ F . We will show that there is a feature of F in dom(ρ(x)). This will not
necessarily be f . Of course, if f ∈ dom(ρ(x)), then ρ indeed satis�es ¬x[F]↑.

83

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

If f /∈ dom(ρ(x)), however, that means that f /∈ D. In that case, by de�nition of D, there is a
similarity atom x =G z for some G and z with z 6= x and f ∈ G. By non-applicability of S-NAbs-Sim,
either F ⊆ cG or F ⊆ G. Since f ∈ F and f ∈ G, the former cannot happen. By non-applicability
of P-NAbs-Sim, there is then ¬z[F]↑. µ satis�es this literal, so there is g ∈ F ∩ dom(µ(z)). We then
have that g ∈ dom(ρ(z)).

5. Fifthly, let us consider similarity atoms. We have two sub-cases, as such atoms can be x =F x (5a)
or x =F y with x 6= y (5b).8

(a) The similarity atoms x =F x are trivially satis�ed by any valuation.

(b) Let us consider similarity atoms of the form x =F y with y 6= x. Let us take any f ∈ F . If
f ∈ dom(µ(y)), then, by de�nition of ρ, case 4.9, f ∈ dom(ρ(x)) and ρ(x)(f) = µ(y)(f). Let
us now assume that f /∈ dom(µ(y)) and show by contradiction that it is not possible to have
f ∈ dom(ρ(x)). Assume it is the case. By de�nition of ρ, ρ(x)(f) is

• either (case 4.8) equal to ρ(z) for some z if there is x[f]z in c. By non-applicability of P-Feat-
Sim, there is y[f]z in c. Since µ satis�es this literal, f ∈ dom(µ(y)) which is a contradiction.

• or (case 4.9) equal to ρ(z)(f) for some z 6= x if there is x =G z in c with f ∈ G and f ∈
dom(µ(z)). By non-applicability of P-Sims, there is

∧
i y =Hi z in c with F ∩ G ⊆

⋃
iHi.

Since f ∈ F ∩ G, there is i0 such that f ∈ Hi0 . µ satis�es this literal and, therefore,
f ∈ dom(µ(y)) which is a contradiction.

• or (case 4.10) fresh. In that case, we know that f ∈ D. By de�nition of D, that enters in
contradiction with the existence of our similarity atom x =F y with f ∈ F .

6. Sixthly and lastly, let us consider negated similarity atoms. We have two sub-cases, as such atoms
can be x 6=F x (6a) or x 6=F y with x 6= y (6b).9

(a) It is impossible to have a negated similarity atom x 6=F x in c because of non-applicability of
C-NSimRefl.

(b) Let us now consider negated similarity atoms x 6=F y with x 6= y. By de�nition of D0, case 2,
there is f ∈ D0 ∩ F . We will show that there is a feature of F on which ρ(x) and ρ(y) are
di�erent. This will not necessarily be f .

If f /∈ dom(ρ(x)), that means that f /∈ D. In that case, by de�nition of D, there is a similarity
atom x =G z for someG and z with z 6= x and f ∈ G. By non-applicability of S-NSim-Sim, either
F ⊆ cG or F ⊆ G. Since f ∈ F and f ∈ G, the former cannot happen. By non-applicability
of P-NSim-Sim, there is then y 6=F z in c. µ satis�es this literal, so there is g ∈ F such that µ(y)
and µ(z) are di�erent in g. g belongs also to G, and therefore f /∈ dom(µ(z)). That means
that f ∈ dom(µ(y)) and thus that ρ(x) and ρ(y) are di�erent in g.

If f ∈ dom(ρ(x)) then, by de�nition of ρ, ρ(x)(f) is

• either (case 4.8) equal to ρ(z) for some z if there is x[f]z in c. This case is however
impossible, by de�nition of D0, case 2.

• or (case 4.9) equal to ρ(z)(f) for some z 6= x if there is x =G z in c. In that case, by
non-applicability of S-NSim-Sim, and since f ∈ F ∩G, then F ⊆ G. By non-applicability of
P-NSim-Sim, there is then y 6=F z in c. (Note at this point that, by non-applicability C-NSimRefl,

8There is no third sub-case for y =F x as similarity atoms are seen as symmetric.
9There is no third sub-case for y 6=F x as negated similarity atoms are seen as symmetric.

84

4.B. PROOF OF Lemma 4.8

1 function apply-rule-1 (rule, constraint) : Σ1-formula
2
3 function choose-rule-1 (c : constraint) : rule
4 return the first rule of R1 applicable to c of
5 - all clash rules
6 - G-SimFull or D-NFeat
7 - all other rules of R1 but P-NAbs-Sim and P-NSim-Sim
8 - P-NAbs-Sim or P-NSim-Sim
9

10 function transform-1-xc (∃X · c : x-constraint) : DXC
11 if c is reducible in R1

12 let r = choose-rule-1(c)
13 let φ = apply-rule-1(r, c)
14 let d = DXC(∃X · φ)
15 return transform-1(d)
16 else
17 return ∃X · c
18
19 function transform-1 (d : DXC) : DXC
20 let

∨
i ∃Xi · ci = d

21 return
∨

i transform-1-xc(∃Xi · ci)

Figure 4.10: Function transform-1

this implies that y 6= z, and thus that this case cannot happen). µ satis�es this literal, so
there is g ∈ F such that ρ(y)(g) 6= ρ(z)(g) = ρ(x)(g).

• or (case 4.10) fresh. In that case, by de�nition of fresh trees, it is di�erent from ρ(y)(f).

Note on unused rules. G-SimFull is in R1 but is in fact not used anywhere in this proof. It is in fact
non-necessary for the good work of the system, as long as one has P-Sims. It does, however, simplify the
proof of termination of transform-1. We believe it is a su�cient reason to keep it inR1.

About other models. Section 4.3.1 discusses alternative models that could be considered in place of
FT . It mentions in particular the fact that the width and depth of feature trees can be taken to be un-
bounded as long as there are no cycles. The �rst order theory then remains the same. It relies in particular
in the fact that garbage collection holds in these alternative models.

The majority of this proof holds independently from these considerations. The only part that does not
hold is the proof that ρ(x) is a �nite feature tree, because it relies on the hypotheses that the trees in µ
are also �nite. The argument can however easily adapt to other models:

• If all the trees in µ have �nite width, then ρ(x) has �nite width.
• If all the trees in µ have �nite depth, then ρ(x) has �nite depth.
• If all the trees in µ are cycle-free, then ρ(x) is cycle-free.

These three facts come directly from the construction of ρ, as it only uses trees of µ, or fresh trees that
are all �nite.

Appendix 4.B Proof of Lemma 4.8

85

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

This appendix contains the proof of Lemma 4.8. The de�nition of transform-1 is given in Figure 4.10.
Both Figure 4.10 and Lemma 4.8 are restated here for convenience.

Lemma 4.8 (Termination of transform-1). The function transform-1 terminates on all inputs.

The function transform-1, when called on a non-empty DXC, includes one or several calls to the func-
tion transform-1-xc (Line 21). The function transform-1-xc, when called on a reducible constraint,
includes a call back to transform-1 (Line 15). Depending on the rule r that transform-1-xc chooses via
choose-rule-1 (Line 12), the DXC that will be passed to a subsequent call to transform-1 will contain
zero (for a clash rule), one (for most other rules) or more (for rules introducing a disjunction) x-constraints,
and thus as many calls to transform-1-xc.

We focus on the x-constraints that are taken as argument by transform-1-xc. We show that if trans-
form-1-xc is called on an x-constraint c, then any subsequent recursive call to transform-1-xc will be
given an x-constraint that is “smaller” than c. We need to de�ne what it means for an x-constraint to be
“smaller” than another one. Moreover, we have to show that it is not possible for x-constraints to become
smaller and smaller inde�nitely, that is there is no in�nite chain of constraints c0, c1, etc. such that ci+1

is smaller than ci for all i.

We denote by c⇒ c′ and say that c transforms into c′, where c and c′ are both constraints, when c and c′
are the constraints in two subsequent calls to transform-1-xc. Note in that case that there must be a
rule r given by choose-rule-1 that applies to c and such that c′ is a constraint in the DXC of the result.
For instance, we could say that ¬x[f]y transforms into x[f]z ∧ y 6=? z via D-NFeat. We use⇒? to denote
the re�exive and transitive closure of⇒.

4.B.1 Simplifying the Problem

Firstly, when writing that c⇒ c′, we always know that c is clash-free. Indeed, if it was not, then trans-
form-1-xc, via choose-rule-1, would have chosen to apply a clash rule to c. The result would then be
the empty DXC and there would be no subsequent call to transform-1-xc and thus no c′. Moreover, we
can always assume that c′ is clash-free too, because if it is not, then we know that the call to transform-
1-xc will be the last one, and we have no termination issue. This means that, in all the forthcoming
proof, we only consider clash-free constraints. This comes in handy as, in particular, there are no cycles
of features in any constraint, allowing us to de�ne a notion of depth of variables.

Secondly, since the rules G-SimFull and D-NFeat are chosen in priority, that means that, in a �rst phase,
transform-1 applies only these two rules – in addition to clash rules – until they are not applicable
anymore. This phase terminates because each step reduces strictly either the number of unsolved variables
or the number of negated feature atoms. After that, transform-1 starts applying other rules ofR1. It is
possible that R1 introduces a full similarity atom (via D-Feats) or a negated feature atom (via D-NSim-Feat).
These literals will then be immediately removed by either G-SimFull or D-NFeat. We can thus slightly change
the rules and consider the two following ones instead:

D-NSim-Feat’ x 6={f} y ∧ x[f]z ∧ c ⇒ (y[f]↑ ∨ ∃z′ · (y[f]z′ ∧ z 6=? z
′)) ∧ x[f]z ∧ c

D-Feats’ x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]z ∧ c{y 7→ z} (y 6= z)

The two rules are obtained by gluing together D-NSim-Feat and G-SimFull for D-NSim-Feat’ and D-Feats and D-NFeat
for D-Feats’. They include both the introduction and the elimination of the full similarity and the negated
feature atoms. We end up with an equivalent system of rules,Rtrunc

1 , that never introduces negated feature
atoms or full similarity atoms on unsolved variables. Rtrunc

1 is shown in Figure 4.17. For convenience, the
rules of R1 that are not clash rules and not in Rtrunc

1 are shown in Figure 4.18. We have to prove that
transform-1, when applying rules of this system, terminates.

86

4.B. PROOF OF Lemma 4.8

Deduction Rules

D-Feats’ x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]z ∧ c{y 7→ z} (y 6= z)

D-NSim-Feat’ x 6={f} y ∧ x[f]z ∧ c ⇒ (y[f]↑ ∨ ∃z′ · (y[f]z′ ∧ z 6=? z
′)) ∧ x[f]z ∧ c

D-NSim-Abs x 6=F y ∧ x[G]↑ ∧ c ⇒ ¬y[F]↑ ∧ x[G]↑ ∧ c (F ⊆ G)

Propagation Rules

P-Feat-Sim x[f]y ∧ x =G z ∧ c ⇒ z[f]y ∧ x[f]y ∧ x =G z ∧ c (f ∈ G, z[f]y � c)

P-Abs-Sim x[F]↑ ∧ x =G z ∧ c ⇒ z[F ∩G]↑ ∧ x[F]↑ ∧ x =G z ∧ c (z[F ∩G]↑ � c)
P-Sims x =F y ∧ x =G z ∧ c ⇒ y =F∩G z ∧ x =F y ∧ x =G z ∧ c

(y =F∩G z � c)

Re�nement Rules

R-NAbs-Abs ¬x[F]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F\G]↑ ∧ x[G]↑ ∧ c

Splitting Rules

S-NAbs-Sim ¬x[F]↑ ∧ x =G z ∧ c ⇒ (¬x[F ∩G]↑ ∨ ¬x[F\G]↑) ∧ x =G z ∧ c
(F 6⊆ G,F 6⊆ cG)

S-NSim-Feat x 6=F y ∧ x[f]z ∧ c ⇒ (x 6={f} y ∨ x 6=F\{f} y) ∧ x[f]z ∧ c
(F �nite, f ∈ F, F 6= {f})

S-NSim-Abs x 6=F y ∧ x[G]↑ ∧ c ⇒ (x 6=F∩G y ∨ x 6=F\G y) ∧ x[G]↑ ∧ c
(F 6⊆ G,F 6⊆ cG)

S-NSim-Sim x 6=F y ∧ x =G z ∧ c ⇒ (x 6=F∩G y ∨ x 6=F\G y) ∧ x =G z ∧ c
(F 6⊆ G,F 6⊆ cG)

Figure 4.17: SystemRtrunc
1 of transformation rules

Deduction Rules

D-Feats x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]y ∧ x[f]z ∧ c (y 6= z, y =? z � c)

D-NFeat ¬x[f]y ∧ c ⇒ (x[f]↑ ∨ ∃z · (x[f]z ∧ y 6=? z)) ∧ c
D-NSim-Feat x 6={f} y ∧ x[f]z ∧ c ⇒ ¬y[f]z ∧ x[f]z ∧ c

Propagation Rules

P-NAbs-Sim ¬x[F]↑ ∧ x =G z ∧ c ⇒ ¬z[F]↑ ∧ ¬x[F]↑ ∧ x =G z ∧ c
(F ⊆ G,¬z[F]↑ � c)

P-NSim-Sim x 6=F y ∧ x =G z ∧ c ⇒ z 6=F y ∧ x 6=F y ∧ x =G z ∧ c
(F ⊆ G, z 6=F y � c)

Global Rules

G-SimFull x =? y ∧ c ⇒ x =? y ∧ c{x 7→ y} (x, y ∈ V(c))

Figure 4.18: Rules ofR1 that are not clash rules and not inRtrunc
1

87

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

Finally, after transform-1 has terminated on Rtrunc
1 , it starts applying the rules P-NAbs-Sim or P-NSim-Sim in

a �nal phase. Luckily, these rules do not change irreducibility with respect to other rules. This is stated
in Lemma 4.17. Knowing that, it becomes fairly easy to see that this �nal phase also terminates.

Lemma4.17. If c⇒ c′ via P-NAbs-Sim or P-NSim-Sim and c is irreducible with respect toR′1 = R1\{P-NAbs-Sim, P-NSim-Sim},
then c′ is also irreducible with respect toR′1.

Proof. Let us thus take c and c′ such that c is irreducible with respect to R′1. Assume that c ⇒ c′, where
the transformation is performed by P-NSim-Sim. Let us show that c′ is irreducible with respect toR′1. Let us
prove the case that S-NSim-Abs cannot apply. The other cases are similar and are not detailed.

For S-NSim-Abs to apply, one needs the interaction of a negated similarity atom with an absence atom. Since
c is irreducible with respect toR′1, S-NSim-Abs cannot apply on interactions that come directly from c. The
interesting case is when the new negated similarity atom, propagated by P-NSim-Sim, meets an absence atom.
In that case, we have x 6=F y ∧ x =G z ∧ z[H]↑ in c, with F ⊆ G, and y 6=F z in c′.

We need to prove that F cannot be a subset of H or of cH . The former comes directly from non-
applicability of D-NSim-Abs in c. Let us prove the latter.

By non-applicability of P-Abs-Sim in c, we know that H ∩ G ⊆
⋃

x[I]↑∈c I . By non-applicability of S-NSim-
Abs and D-NSim-Abs in c, we know that F does not intersect any of these x[I]↑ ∈ c. Indeed, if there is
a nonempty intersection and not an inclusion between these two sets, S-NSim-Abs can apply. If there is
an inclusion between these two sets, D-NSim-Abs can apply. This means in particular that I ⊆ cF for all
x[I]↑ ∈ c, which leads to

⋃
x[I]↑∈c I ⊆ cF and thus to H ∩G ⊆ cF .

Because F ⊆ G, we can also say that H\G ⊆ cF , and thus that H = (H ∩ G) ∪ (H\G) ⊆ cF and
F ⊆ cH . From this follows that S-NSim-Abs cannot apply.

This proof works for all the other cases.

There only remains to show that transform-1 cannot apply rules of Rtrunc
1 forever. In order to do that,

we de�ne a measure on constraints such that if c ⇒ c′ via Rtrunc
1 , then the measure of c′ is smaller than

the measure of c. We then have to show that such measures cannot get smaller and smaller forever.

4.B.2 Overview of the Remaining Di�culties

The proof of termination of transform-1 onRtrunc
1 is not so direct. This is due to the fact thatRtrunc

1 has
two tendencies that are a priori �ghting each other. Let us consider the rules ofRtrunc

1 one by one.

• D-Feats’ strictly decreases the number of unsolved variables. It also potentially decreases the number
of literals in the constraint.

• D-NSim-Abs replaces a negated similarity atom by a negated absence atom, which is a priori simpler
to handle as it is a unary predicate.

• Propagation rules (P-Feat-Sim, P-Abs-Sim and P-Sims) add a new literal to the constraint. For instance,
P-Feat-Sim adds a new feature atom. There has to be a guarantee that it is not possible to add literals
inde�nitely. In particular, one has to make sure that it is not possible for a literal to be propagated,
then transformed or removed, and then propagated again.

This is the reason why P-NSim-Sim has a lower priority than D-NSim-Abs in choose-rule-1: that way,
it cannot re-propagate a negated similarity atom that would then meet an absence atom.

88

4.B. PROOF OF Lemma 4.8

• R-NAbs-Abs and all the splitting rules (S-NAbs-Sim, S-NSim-Feat, S-NSim-Abs and S-NSim-Sim) transform a negated
atom (absence or similarity) into a negated atom of the same kind with a (strictly) smaller set. In
splitting rules, the set is guaranteed to be strictly smaller thanks to the side conditions.

Intuitively, a smaller set for such negated atoms is “better”: if F ⊆ G, then, for any x and y,
¬x[F]↑ implies ¬x[G]↑ and x 6=F y implies x 6=G y. How does one quantify what it means for
such negated atoms to be “better”? And since these sets are �nite, is it not possible for them to get
“better” inde�nitely? This is the �rst major di�culty of this proof. It is discussed in Section 4.B.3.

• Finally, D-NSim-Feat’ introduces a new variable and transforms a �nite negated similarity atom into
an in�nite negated similarity atom. There is however no trivial guarantee that the in�nite negated
similarity atom is better than the �nite one. In particular, nothing prevents the former to be trans-
formed (via S-NSim-Abs or S-NSim-Sim) back into a �nite negated similarity atom.

Intuitively, two things happen here. Firstly, the new negated similarity atom is “lower” than the old
one: if the old one is x 6={f} y, then the new one is on variables that are children of x and y. Sec-
ondly, the new negated similarity atom can be transformed back into a �nite one, but that requires
the presence of either an absence or a similarity atom. If we can show that these cannot “descend”
in the constraint, we ensure that the rule D-NSim-Feat’ cannot apply inde�nitely. We give a formal
meaning to “lower” and “descend” and we discuss this di�culty in Section 4.B.4.

4.B.3 Quantifying Set Quality

Intuitively, a set (in a negated absence or similarity atom) is of “better quality” than another one if it is
smaller. This is however tricky to de�ne as such sets can be in�nite. A priori, there can be in�nite chains
of sets that keep getting of better quality.

The idea is however that there is only a �nite number of sets of features in a constraint and that all
the transformations are computed from these sets using only union, intersection and complement. This
implies in particular that such in�nite chains of sets cannot exist, and thus that we can de�ne a good
notion of “quality” for our proof.

Let us �rst de�ne the set of feature sets in a constraint in De�nition 4.7 and the set of possible feature sets
of a constraint in De�nition 4.8.

De�nition 4.7 (Feature Sets of a Constraint). The feature sets of a constraint c, noted FS(c), are all the
feature sets that appear in all literals of a constraint. In other words, it is:

FS(c) = {{f} | ∃x, y · x[f]y ∈ c}
∪ {{f} | ∃x, y · ¬x[f]y ∈ c}
∪ {F | ∃x · x[F]↑ ∈ c}
∪ {F | ∃x · ¬x[F]↑ ∈ c}
∪ {F | ∃x, y · x =F y ∈ c}
∪ {F | ∃x, y · x 6=F y ∈ c}

De�nition 4.8 (Possible Feature Sets of a Constraint). The possible feature sets of a constraint c, noted
FS?(c), is the set FS(c) augmented with ? and closed by union, intersection, and complement.

As an example, consider the constraint c = ¬x[f, g]↑ ∧ x[g]↑ which can be transformed, by R-NAbs-Abs,
into c′ = ¬x[f]↑ ∧ x[g]↑. We have FS(c) = {{g}, {f, g}} and FS(c′) = {{f}, {g}}. We also have:

FS?(c) = FS?(c′) = {∅, {f}, {g}, {f, g}, c{f, g}, c{g}, c{f}, ?}

89

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

The idea behind the word “possible” is that, no matter what happens in a transformation, only the possible
sets of a constraint can be reached. In other words, for any transformation c ⇒? c′, FS(c′) ⊆ FS?(c).
This comes in fact from a much stronger property stated in Lemma 4.18. Moreover, there is only a �nite
number of possible feature sets. This is stated in Lemma 4.19.

Lemma 4.18 (Stability of Possible Feature Sets By Transformation). For any two constraints c and c′, if
c⇒? c′ viaRtrunc

1 , then FS?(c′) = FS?(c).

Proof. The proof goes by induction on the number of steps of⇒?. For one step, let us take R-NAbs-Abs as
an example. Assume c ⇒ c′ via R-NAbs-Abs. The only di�erence is that, where FS(c) contained an F ,
FS(c′) now contains a F\G. However, both FS(c) and FS(c′) contain also G. Therefore, anything in
FS?(c) that would be obtained using F is also in FS?(c′) using (F\G) ∪ G, and, conversely, anything
in FS?(c′) that would be obtained using F\G is also in FS?(c) using F ∩ cG. The same method applies
to every other rule.

Lemma 4.19 (Finiteness of Possible Feature Sets By Transformation). For any constraint c, FS?(c) is

�nite.

Proof. For any constraint c, FS(c) is �nite. This comes directly from the fact that c, as any constraint, is
�nite.

Sets and their usual operations (union, intersection and complement) form a Boolean algebra. Therefore,
since the sets of FS?(c) are obtained using only these operations, they can all be written as a disjunctive
normal form of sets of FS(c). There is only a �nite number of such DNF and, therefore, FS?(c) is
�nite [Davey & Priestley 2002].

We can now de�ne the quality of a set in a constraint. This is a positive integer measure that decreases
when the set gets smaller. The formal de�nition can be found in De�nition 4.9.

De�nition 4.9 (Quality of a Set in a Constraint). In a constraint c, the quality of a set F ∈ FS(c),
noted qc(F), is de�ned as:

qc(F) = 1 + max{qc(G) | G (F,G ∈ FS?(c)}

where max(∅) = 0.

This de�nition is valid because⊆ is a partial order. This is in fact approximately the height ofF inFS?(c),
seen as a �nite lattice for inclusion, intersection and union. We could have taken any other monotone
function for the inclusion, that is such that qc(G) < qc(F) if G (F .

In the rest of the proof, we consider the quality of all negated absence atoms of a constraint:∑
¬x[F]↑∈c

qc(F)

Such a number decreases strictly with R-NAbs-Abs, as this transformation rule either replaces a negated
absence atom by one with a strictly smaller set (and thus one of strictly smaller quality) or removes the
atom altogether (and thus removes one positive element of the sum).

4.B.4 Controlling Negated Similarity Atoms

90

4.B. PROOF OF Lemma 4.8

(0) x0 6=? y0 ∧ x0[c{f0}]↑ ∧ x0[f0]x1

(1) S-NSim-Abs ⇒ (x0 6=c{f0} y0 ∧ x0[c{f0}]↑ ∧ x0[f0]x1)

∨ (x0 6={f0} y0 ∧ x0[c{f0}]↑ ∧ x0[f0]x1)

(2) D-NSim-Feat ⇒ ¬y0[f0]x1 ∧ x0[c{f0}]↑ ∧ x0[f0]x1

(3) D-NFeat ⇒ (y0[f0]↑ ∧ x0[c{f0}]↑ ∧ x0[f0]x1)
∨ ∃y1 · (x1 6=? y1 ∧ x0[c{f0}]↑ ∧ x0[f0]x1 ∧ y0[f0]y1)

Figure 4.20: Transformation of Formula 4.11 into Formula 4.12 usingR1

x0[c{f0}]↑

x1

y0

f0

6=?

x0[c{f0}]↑

x1

y0

y1

f0 f0

6=?

Figure 4.19: Formulas 4.11
and 4.12

Let us start by observing the mechanism of negated similarity atoms being
rewritten into themselves. Consider Formula 4.11.

x0 6=? y0 ∧ x0[c{f0}]↑ ∧ x0[f0]x1 (4.11)

We are going to see how it can transform into Formula 4.12.

x1 6=? y1 ∧ x0[c{f0}]↑ ∧ x0[f0]x1 ∧ y0[f0]y1 (4.12)

Graphical representations for Formula 4.11 and Formula 4.12 can be found
in Figure 4.19.

Let us now describe the steps that lead from Formula 4.11 to Formula 4.12.
In order to decompose a bit more, we are going to separate D-NSim-Feat and D-NFeat. Of course, in Rtrunc

1 ,
they are glued together. Intermediary steps can be found in Figure 4.20.

(0) Start from Formula 4.11. Notice the pattern x0 6=? y0 ∧ x0[c{f0}]↑.

(1) Rewrite the constraint using S-NSim-Abs. A disjunction is introduced. The constraint that contains
x0 6=c{f0} y0 is still reducible (by D-NSim-Abs), but is not interesting for our example. Let us focus on
the other constraint, which contains the pattern x0 6=f0 y0 ∧ x0[f0]x1.

(2) Rewrite the constraint using D-NSim-Feat. A negated feature atom appears.

(3) Rewrite the constraint using D-NFeat. A disjunction is introduced. The constraint that contains
y0[f0]↑ is irreducible and uninteresting for our example. The other constraint contains a new freshly
introduced negated similarity atom as well as a new freshly introduced variable!

This example shows that some constraints with negated similarity atoms can be rewritten into other
formulas with other negated similarity atoms. Moreover, such transformations can introduce a number
of new variables linear in the size of the initial formula. Indeed, we can see how Formula 4.11 can be
plugged with itself to repeat the process. For any number n, we can extend it to Formula 4.13, which can
be rewritten into Formula 4.14. Graphical representations can be found in Figure 4.21.

x0 6=? y0 ∧
∧

0≤i<n

(xi[
c{fi}]↑ ∧ xi[fi]xi+1) (4.13)

xn 6=? yn ∧
∧

0≤i<n

(xi[
c{fi}]↑ ∧ xi[fi]xi+1 ∧ yi[fi]yi+1) (4.14)

Such a transformation starts with a formula of size 2n+ 1 with n+ 2 variables and ends with a formula
of size 3n+ 1 with 2n+ 2 variables, e�ectively introducing a number of variables linear in the size of the
initially given constraint. Moreover, it did not get rid of the negated similarity atom.

91

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

x0[c{f0}]↑

x1[c{f1}]↑

xn

y0

f0

f1

6=? x0[c{f0}]↑

x1[c{f1}]↑

xn

y0

y1

f0

f1

f0

6=?

x0[c{f0}]↑

x1[c{f1}]↑

xn

y0

y1

yn

f0

f1

f0

f1

6=?

Figure 4.21: Formula 4.13, Formula 4.14, and one intermediary step

The good news here is that, for a variable to be introduced, one needs the interaction of a �nite negated
similarity atom with a feature atom. In that case, a variable is introduced as well as an in�nite negated
similarity atom. Finally, for �nite negated similarity atoms to be introduced, one needs one of the rules
P-NSim-Sim, S-NSim-Abs or S-NSim-Sim. All these rules require the presence of an absence or a similarity atom. Ab-
sence and similarity atoms thus behave as “fuel” that is necessary for the replication of negated similarity
atoms, and we prove in the rest of this subsection that this fuel will eventually run out.

To do that, we �rst de�ne a notion of active variables. By opposition, other variables are passive. Active
variables are the only ones allowed to carry “fuel”, that is absence and similarity atoms. They are basically
the variables that were “not introduced”. In order to give a formal de�nition to this, the active variables of
a constraint c is de�ned with respect to an original constraint c0 such that c0 ⇒? c. The formal de�nition
can be found in De�nition 4.10.

De�nition 4.10 (Active and Passive Variables). The active variables of constraint c in a transforma-
tion c0 ⇒? c, noted Va(c0 ⇒? c), are de�ned inductively on the transformation from c0 to c. Originally,
Va(c0 ⇒0 c0) = V(c0). Otherwise, if c0 ⇒? c⇒ c′, where the last step is performed by a rule r, then:

• if r = D-Feats’, where y has been rewritten into z and y ∈ Va(c0 ⇒? c), then

Va(c0 ⇒? c⇒ c′) = Va(c0 ⇒? c) ∪ {z}\{y}

• if r = D-NSim-Feat’ and c′ is the left-hand side of the introduced disjunction, then

Va(c0 ⇒? c⇒ c′) = V(c′)

• otherwise, Va(c0 ⇒? c⇒ c′) = Va(c0 ⇒? c).

The variables of Va(c0 ⇒? c) are active in the constraint c in the transformation c0 ⇒? c. The other
variables of c are passive in the constraint c in the transformation c0 ⇒? c.

The active variables are basically de�ned as the variables of the original constraint. However, because of
G-SimFull, we can have variables exchanging their active and passive status. Worse, because of D-NSim-Feat’,
there needs sometimes to be a “full reset” of the de�nition of active variables. We abuse notation and
write Va(c) when the transformation c0 ⇒? c is obvious from context.

As an example, consider the transformations of Figure 4.20. The origin of the transformation is at step (0)
and, at this stage, the active variables are {x0, x1, y0}. Steps (1) and (2) are carried out by rules that do
not change the de�nition of active variables. Step (3) is interesting for two reasons. On the left-hand side
of the introduced disjunction, the de�nition of active variables is reset and includes all variables. In this
case, this leaves the set of active variables unchanged. This will not always be the case; in general, the

92

4.B. PROOF OF Lemma 4.8

set of active variables may change. On the right-hand side of the introduced disjunction, the set of active
variables is unchanged even if a new variable y1 appears. This variable is thus passive, at this stage.

Let us now formalise right away in Lemma 4.20 our claim that only active variables can have absence and
similarity atoms.

Lemma 4.20 (Control of Absence and Similarity Constraints). In a transformation c0 ⇒? c, if x[F]↑ ∈ c,
then x is active in c and if x =F y ∈ c is not solved, then x and y are active in c.

Proof. We prove this property by induction on the transformation c0 ⇒? c. The property holds for the
empty transformation as then all variables are active and c = c0. Assume now that c0 ⇒? c ⇒ c′, and
that the property is true on c0 ⇒? c. Let us consider any absence and any similarity atom of c′ and
show that their variables are active. This is trivial if the atom being considered is already in c and if active
variables have not been modi�ed between c and c′. We thus have to consider rules that might introduce an
absence atom (D-Feats’, D-NSim-Feat’ and P-Abs-Sim), introduce a similarity atom (D-Feats’ and P-Sims) and change
the de�nition of active variables (D-Feats’ and D-NSim-Feat’). D-Feats’ is listed every time because it rewrites
literals and can therefore “introduce” new ones (although, when doing that, it also removes other ones).

• D-Feats’ introduces a solved similarity atom and rewrites literals. The solved similarity atom is not a
problem. Let us consider any other literal of c′. If it has not been rewritten, then, by De�nition 4.10,
its active variables remain active. If anything, and if it contains z, then it has received a newly active
variable which is not a problem. If it has been rewritten, then, by De�nition 4.10, it cannot have lost
an active variable. Indeed, if the disappearing variable is active in c, then the appearing variable is
active in c′. Since, by induction hypothesis, all absence and unsolved similarity atoms have all their
variables active in c, they still have all their variables active in c′.

• D-NSim-Feat’ introduces, in the left-hand side of the disjunction, an absence atom. This is however
precisely the case in which the de�nition of active variables is reset. All variables of c′ are therefore
active and the property holds.

• P-Abs-Sim and P-Sims introduce an absence and a similarity atom respectively. In order to be applied,
they require the presence of similarity atoms in c. By induction hypothesis, the two variables of
these similarity atoms are active in c. Since these two rules do not change the de�nition of active
variables, all the mentioned variables are therefore active in c′.

Seen as a down-oriented graph, the shape of a constraint is the following. All the active variables are
found at the top. They can form pretty much any graph, as long as it is acyclic. The passive variables
are all found at the bottom of the graph, forming only strings. An informal drawing can be found in
Figure 4.22. In this drawing, the downward direction corresponds to feature atoms, that is when x[f]y
is in the constraint, then y is below x. In order to formalise that, we will de�ne the notion of parents of
a variable in De�nition 4.11. We will then show in Lemma 4.21 that active variables admit only active
parents and that passive variables admit only one parent, unless its parents are all active.

De�nition 4.11 (Parents of a Variable). The parents of a variable y in a constraint c, noted parentsc(y),
are de�ned as follows:

parentsc(y) = {x | x[f]y ∈ c}

Lemma 4.21 (Parents of Variables). Active variables admit only active parents. Passive variables with more

than one parent have only active parents. In other words, for all y ∈ Va(c), parentsc(y) ⊆ Va(c), and for

all y /∈ Va(c), if #parentsc(y) > 1, then parentsc(y) ⊆ Va(c).

93

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

active variables

strings of
passive variables

Figure 4.22: Informal drawing of the shape of
constraints and their active and passive vari-
ables

This property implies Lemma 4.22. This is mainly
this (weaker) formulation that we use in the forth-
coming proofs, including in the forthcoming proof
of Lemma 4.21. Using Lemma 4.22 in the proof of
Lemma 4.21 might seem like doing a circular reasoning.
This is however �ne as we are proving both of them by
induction.

Lemma 4.22 (Active Parents of Variables). Any variable
that has one active parent admits only active parents. In

other words, for any y ∈ V(c), if parentsc(y)∩ Va(c) 6=
∅, then parentsc(y) ⊆ Va(c).

Proof of Lemmas 4.21 and 4.22. We prove these proper-
ties simultaneously by induction on the transformation
c0 ⇒? c. The property holds for the empty transforma-
tion as then all variables are active and c = c0. Assume
now that c0 ⇒? c ⇒ c′ and that the property holds for

c0 ⇒? c. We need to consider all the rules that can either change parents or active variables. For the
former, we need to consider all the rules that modify, remove or introduce feature atoms. These are D-
Feats’, D-NSim-Feat’ and P-Feat-Sim. For the latter, we also need to consider D-Feats’ and D-NSim-Feat’. D-Feats’ is a
delicate matter and we will keep it for the end.

• D-NSim-Feat’, applied on a constraint c that contains x 6=f y ∧ x[f]y, removes the negated similarity
atom and replaces it to obtain c′.

– On the left-hand side of the disjunction, the negated similarity atom is replaced by an absence
atom y[f]↑ in c′. This does not change parents: parentsc′(u) = parentsc(u) for all u. The
active variables changes, however. In c′, all variables are active: Va(c′) = V(c′). The property
therefore holds, because parentsc′(u) ⊆ Va(c′) for all u.

– On the right-hand side of the disjunction, the negated similarity atom is replaced by y[f]z′ ∧
z 6=? z

′ in c′, where z′ is a newly-introduced variable. The active variables remains the same:
Va(c′) = Va(c). parents also remains unchanged, except that it is extended to z′. We have:

parentsc′(z
′) = {y}

parentsc′(u) = parentsc(u) for all u 6= z′

By induction hypothesis, for all u 6= z′, parentsc′(u) = parentsc(u) ⊆ Va(c) = Va(c′).
Moreover, #parentsc′(z

′) = 1.

• P-Feat-Sim, applied to a constraint c that contains x[f]y ∧ x =G z, introduces a new feature atom
z[f]y to obtain c′. The active variables do not change, that is Va(c′) = Va(c). parents remains
unchanged, except for y. We have:

parentsc′(y) = parentsc(y) ∪ {z}
parentsc′(u) = parentsc(u) for all u 6= y

By induction hypothesis, for all u 6= y, parentsc′(u) = parentsc(u) ⊆ Va(c) = Va(c′). Moreover,
by Lemma 4.20, x, z ∈ Va(c). Since x ∈ parentsc(y), then, by induction hypothesis (under the
form of Lemma 4.22), parentsc(y) ⊆ Va(c). Therefore, parentsc′(y) ⊆ Va(c) = Va(c′).

94

4.B. PROOF OF Lemma 4.8

• D-Feats’, applied to a constraint of the form x[f]y ∧x[f]z ∧ c, gives y =? z ∧x[f]z ∧ c{y 7→ z}. The
application of this rule both changes the active variables and parents. We have:

Va(c′) =

{
Va(c) ∪ {z}\{y} if y ∈ Va(c)

Va(c) otherwise

and:

parentsc′(y) = ∅
parentsc′(z) = parentsc(y) ∪ parentsc(z)
parentsc′(u) = parentsc(u) ∪ {z}\{y} for all u 6= y, z, if y ∈ parentsc(u)

parentsc′(u) = parentsc(u) otherwise, for all u 6= y, z

Technically, in parentsc′(z), we should be careful and handle the case where y is in either parentsc(y)
or parentsc(z). However, since we consider all constraints to be clash-free, this cannot happen as
it would mean that C-Cycle is applicable to either c or c′.

Let us now prove the property for all variable u. We consider the four sub-cases given by the
aforementioned parentsc′ .

– parentsc′(y) is empty and thus the property holds for y

– parentsc′(z) is parentsc(y) ∪ parentsc(z). In c, x is a common parent of y and z. We
consider two sub-cases depending on whether at least one of y and z is in Va(c).

∗ If at least one of y and z is in Va(c), then, by induction hypothesis, x ∈ Va(c). By
induction hypothesis again (under the form of Lemma 4.22), we have parentsc(y) ⊆
Va(c) and parentsc(z) ⊆ Va(c). Since neither y nor z belong to these sets, we have
parentsc′(z) = parentsc(y)∪parentsc(z) ⊆ Va(c)\{y, z} = Va(c′)\{y, z} ⊆ Va(c′).
The property holds for z.

∗ If neither y nor z is in Va(c), then, by induction hypothesis, they have only one parent.
Therefore, parentsc′(z) = parentsc(y)∪parentsc(z) = {x}∪{x} = {x}. Moreover,
since y /∈ Va(c), then Va(c′) = Va(c) and z /∈ Va(c′). The property holds for z.

– parentsc′(u) is parentsc(u) ∪ {z}\{y} for any u 6= y, z when y ∈ parentsc(u). We
consider two sub-cases depending on whether y ∈ Va(c).

∗ If y ∈ Va(c), then, by induction hypothesis (under the form of Lemma 4.22), parentsc(u) ⊆
Va(c). We can thus remove y and add z on both side and we get parentsc′(u) =
parentsc(u) ∪ {z}\{y} ⊆ Va(c) ∪ {z}\{y} = Va(c′). The property holds for u.

∗ If y /∈ Va(c), then, by induction hypothesis, u /∈ Va(c) and parentsc(u) = {y}. We now
have that u /∈ Va(c′) and that parentsc(u) = {z}. The property holds for u.

– parentsc′(u) is parentsc(u) for any u 6= y, z otherwise. We distinguish two sub-cases
depending on whether parentsc(u) ⊆ Va(c).

∗ If parentsc(u) ⊆ Va(c), then, since, y /∈ parentsc(u), parentsc(u) ⊆ parentsc(u) ∪
{z}\{y}. We therefore get that parentsc(′)u ⊆ Va(c) and parentsc′(u) ⊆ Va(c) ∪
{z}\{y}. In both cases, parentsc′(u) ⊆ Va(c′). The property holds for u.

∗ Otherwise, by induction hypothesis, u /∈ Va(c) and #parentsc(u) = 1. Since u 6= y, z,
u /∈ Va(c′) and #parentsc(u) = 1. The property holds for u.

95

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

Now that we have control over the shape of constraints, we can prove the key argument. We will introduce
in De�nition 4.12 a notion of depth of a variable in a constraint. We will then use it in De�nition 4.13 to
de�ne the depth of a negated similarity atom in a constraint. We will then prove that the depth of negated
similarity atoms is bounded by the depth of active variables, which is itself bounded by their number.
Since this number is mostly constant (that is, except when using D-NSim-Feat’), this will give us a tool to
explain how “lower” negated similarity atoms are “better” and how then cannot get inde�nitely better.
The bound on the depth of active variables is stated in Lemma 4.23. The bound on the depth of negated
similarity atoms is stated in Lemma 4.24 for �nite ones and Lemma 4.25 for the general case.

De�nition 4.12 (Depth of Variables). The depth of a variable x in a constraint c, noted dc(x) is de�ned as:

dc(x) = max{1 + dc(y) | y[f]x ∈ c}

This de�nition is valid because we only consider clash-free constraints. Because of the clash rule C-Cycle,
that means that we only consider constraints that do not have cycles in the oriented graph formed by
feature atoms. Since a lot depends on the de�nition of the depth, one can see that the fact that constraints
are clash-free is not only here for convenience, but it is also a key argument for termination.

De�nition 4.13 (Depth of Negated Similarity Atoms). The depth of a negated similarity atom x 6=F y in

a constraint c, noted dc(x 6=F y), is de�ned as the minimum of the depth of its variables. In other words:

dc(x 6=F y) = min(dc(x), dc(y))

An alternative de�nition could have been obtained by using max instead of min. However, for such an
alternative de�nition, the forthcoming Lemmas 4.24 and 4.25 do not hold.10

Lemma 4.23 (Depth of Active Variables). If x ∈ Va(c), then dc(x) < #Va(c).

Proof. This follows from Lemma 4.21 and the absence of cycles.

Lemma 4.24 (Depth of Negated Finite Similarity Atom). For all x 6=F y ∈ c with F �nite, dc(x 6=F y) <
#Va(c).

Proof. This goes by showing that one of the two variables in a negated �nite similarity atom has to be
active. One can then conclude with Lemma 4.23. We prove this once again by induction on the transfor-
mation c0 ⇒? c. The property holds for the empty transformation as then all variables are active and
c = c0. Assume now that c0 ⇒? c⇒ c′ and that the property holds for c0 ⇒? c.

We need to consider the rules that can either change the de�nition of active variables or modify, remove or
introduce new negated �nite similarity atoms. For the former, we need to consider D-Feats’ and D-NSim-Feat’.
For the latter, we need to consider D-Feats’, S-NSim-Feat, S-NSim-Abs and S-NSim-Sim.11

• D-Feats’, applied to a constraint of the form x[f]y ∧x[f]z ∧ c, gives y =? z ∧x[f]z ∧ c{y 7→ z}. The
application of this rule both changes the de�nition of active variables and rewrites some negated
similarity atoms. Consider a �nite negated similarity atom of c′. We distinguish two sub-cases
depending on whether it is in c or not.

10It is maybe possible to �nd an alternative formulation of these properties to reach the same goal, but we do not know.
11We are not considering P-NSim-Sim because we only consider rules ofRtrunc

1 currently.

96

4.B. PROOF OF Lemma 4.8

– If it is in c, then, by induction hypothesis, one of its variables is active in c. Whether this
variable is z or not12, then, by De�nition 4.10, it is still active in c.

– If it is not in c, then it must be of the form z 6=H u13 and there is y 6=H u in c. By induction
hypothesis, one of u or y is active in c. If it is u, then, by De�nition 4.10, it is still active in c′.
If it is y, then z is active in c′. In both cases, the property holds.

• D-NSim-Feat’, applied to a constraint c that contains x 6=f y ∧ x[f]y, removes the negated similarity
atom and replaces it to obtain c′.

– On the left-hand side of the disjunction, the negated similarity atom is replaced by an absence
atom y[f]↑ in c′. This changes the de�nition of active variables. In c′, all variables are active:
Va(c′) = V(c′). The property therefore holds.

– On the right-hand side of the disjunction, the negated similarity atom is replaced by y[f]z′ ∧
z 6=? z′ in c′, where z′ is a newly-introduced variable. The de�nition of active variables
remains the same: Va(c′) = Va(c). The introduced negated similarity atom z 6=? z

′ carries
an in�nite set14 and, hence, this atom does not pose any problem. For any other negated
similarity atom u 6=H u′ in c, it is also in c′. If H is �nite, then, by induction hypothesis, one
of u and u′ is active in c. Since active variables did not change, it is also active in c′ and the
property holds.

• S-NSim-Feat, applied to a constraint c that contains x 6=F y ∧ x[f]z where F is �nite, removes the
negated similarity atom and replaces it by either x 6=f y or x 6=F\{f} y to obtain c′. The active
variables and all the other negated similarity atoms are left unchanged. The new negated similarity
atom in c′ (x 6=f y or x 6=F\{f} y) has the same variables as x 6=F y in c. Since F is �nite, then by
induction hypothesis, one of x or y is active in c and thus in c′. The property holds.

• S-NSim-Abs and S-NSim-Sim, similarly, remove a negated similarity atom x 6=F y from c and replace it
by either x 6=F∩G y or x 6=F\G y to obtain c′. G comes from an absence atom x[G]↑ or a similarity
atom x =G z. The active variables and all the other negated similarity atoms are left unchanged.
The new similarity in c′ shares a variable x with an absence or a similarity atom. By Lemma 4.20,
x is active in c′. The property holds.

Lemma 4.25 (Depth of Negated Similarity Atom). If x 6=F y ∈ c, then dc(x 6=F y) ≤ #Va(c).

Proof. This is already true for �nite negated similarity atoms, by Lemma 4.24. We only have to take care
of in�nite negated similarity atoms. We show by induction that every negated similarity atom has either
one of its variables or one of the parents of its variables being active.

We show that by induction on the transformation c0 ⇒? c. The property holds for the empty transfor-
mation as then all variables are active and c = c0. Assume now that c0 ⇒? c⇒ c′ and that the property
holds for c0 ⇒? c.

We need to consider the rules that can either change the de�nition of active variables or modify, remove
or introduce new negated similarity atoms. For the former, we need to consider D-Feats’ and D-NSim-Feat’.
For the latter, we need to consider D-Feats’, S-NSim-Abs and S-NSim-Sim.15

12It cannot be y as this variable is not present in any literal of c′ but one solved similarity.
13u 6= z here because constraints are clash-free.
14Because F is in�nite.
15We do not need to consider S-NSim-Feat as it only introduce �nite negated similarity atoms.

97

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

• D-Feats’, applied to a constraint of the form x[f]y∧x[f]z∧ c, gives y =? z∧x[f]z∧ c{y 7→ z}. This
case is exactly the same as in the proof of Lemma 4.24.

• D-NSim-Feat’, applied to a constraint c that contains x 6=f y ∧ x[f]y, removes the negated similarity
atom and replaces it to obtain c′.

– On the left-hand side of the disjunction, the negated similarity atom is replaced by an absence
atom y[f]↑ in c′. This changes the de�nition of active variables. In c′, all variables are active:
Va(c′) = V(c′). The property therefore holds.

– On the right-hand side of the disjunction, the negated similarity atom is replaced by y[f]z′ ∧
z 6=? z′ in c′, where z′ is a newly-introduced variable. The de�nition of active variables
remains the same: Va(c′) = Va(c). By Lemma 4.24, since {f} is �nite, one of x or y is active
in c and c′. Since these two variables are parents of z and z′ respectively, the property holds.

• S-NSim-Abs and S-NSim-Sim remove a negated similarity atom x 6=F y from c and replace it by either
x 6=F∩G y or x 6=F\G y to obtain c′. G comes from an absence atom x[G]↑ or a similarity atom
x =G z. The active variables and all the other negated similarity atoms are left unchanged. The
new similarity in c′ shares a variable x with an absence or a similarity atom. By Lemma 4.20, x is
active in c′. The property holds.

If a negated similarity atom has one variable that is active, then its depth is bounded strictly by #Va(c).
If it does not, then one of its variables has an active parent. By Lemma 4.22, all the parents of this variable
are active. By De�nition 4.12, the depth of this variable is thus bounded by #Va(c).

Since we prefer nonnegative decreasing objects – because they make obvious the fact that there are no
in�nitely decreasing chains –, we will consider the height rather than the depth. The height of a negated
similarity atom is de�ned in De�nition 4.14.

De�nition 4.14 (Height of a Negated Similarity Atom). The height of a negated similarity atom x 6=F y
in a constraint c, noted hc(x 6=F y), is de�ned as:

hc(x 6=F y) = #Va(c)− dc(x 6=F y)

4.B.5 Decreasing Measure

Let us now de�ne a measure over constraints that strictly decreases with each transformation step. It is
a tuple of 8 integer measures on which we consider the natural lexicographic order. The 8 measures are
de�ned as follows:

1. #{x 6=F y ∈ c}, the number of negated similarity atoms in c.

2.
∑

x 6=F y∈c hc(x 6=F y), the total height of negated similarity atoms.

3. #{x | x ∈ V(c), x /∈ Vs(c)}, the number of unsolved variables.

4.
∑

x 6=F y∈c qc(F), the total quality of feature sets in negated similarity atoms.

5.
∑
¬x[F]↑∈c qc(F), the total quality of feature sets in negated absence atoms.

6. #{x[f]y | x, y ∈ V(c), f ∈ F(c), x[f]y /∈ c}, the number of spare feature atoms.

7. #{x[F]↑ | x ∈ V(c), F ∈ FS?(c), x[F]↑ � c}, the number of spare and non-subsumed absence
atoms.

98

4.B. PROOF OF Lemma 4.8

Table 4.2: Decreasing lexicographic measure over constraints in transformation rules

1 2 3 4 5 6 7 8
D-NSim-Abs ↓

D-NSim-Feat’
∨l ↓
∨r = ↓

D-Feats’ ↓= ↓= ↓
S-NSim-Feat ↓= ↓= = ↓
S-NSim-Abs ↓= ↓= = ↓
S-NSim-Sim ↓= ↓= = ↓
S-NAbs-Sim · · · · ↓
R-NAbs-Abs · · · · ↓
P-Feat-Sim · · · · · ↓
P-Abs-Sim · · · · · · ↓
P-Sims · · · · · · · ↓

8. #{x =F y | x, y ∈ V(c), F ∈ FS?(c), x 6= y, x =F y � c}, the number of spare, non-re�exive
and non-subsumed similarity atoms.

All measures are positive integers. For Measures 1, 3, 6, 7 and 8, it is due to the fact that they are de�ned
as cardinals of �nite sets. The sets are �nite because the constraints are always �nite, which implies
that they have a �nite number of literals, and that the sets V(c), F(c) and (by Lemma 4.19) FS?(c)
are �nite. For Measures 2, 4 and 5, it is due to the fact that they are �nite sums of �nite integers. The
sums are �nite because the constraints are always �nite. Moreover, the height (De�nition 4.14) and the
quality (De�nition 4.9) of a set are always �nite.

Let us now discuss the behaviour of this measure with respect to the transformation rules ofRtrunc
1 . That

is, let us take c and c′ two constraints such that c⇒ c′ and investigate the relation between the measure
of c and the measure of c′. In particular, we are going to show that, no matter which rule performed the
transformation, the measure is smaller on c′ than it is on c. Table 4.2 contains a summary of how this
measure behaves with each step of transformation.

• D-NSim-Abs makes Measure 1 decrease (noted “↓” in Table 4.2), obviously. Since it removes a negated
similarity atom to replace it by a negated absence atom, it decreases strictly the number of negated
similarity atoms in the formula.

• D-NSim-Feat’ has two sub-cases depending on whether c′ is a product of the left-hand side (∨l in the
table) or right-hand side (∨r) of the disjunction:

– On the left-hand side, a negated similarity atom is removed and replaced by an absence atom.
Once again, this trivially reduces the number of negated similarity atoms in the constraint
(Measure 1).

– On the right-hand side, the number of negated similarity atoms is left unchanged (noted “=” in
Table 4.2) as a new one is introduced to replace the old one. Measure 1 thus does not change.
Measure 2, however, decreases as the newly introduced negated similarity atom has higher
depth and thus lower height (De�nition 4.14).

Note in that case that most of the other measures (Measures 3, 6, 7 and 8) increase a lot because
we introduced a new variable. This does not represent an issue, however, as we only consider
a lexicographic order over the measures.

99

CHAPTER 4. DECIDABILITY OF THE THEORY OF FT

• D-Feats’ does not add any literal except a full similarity atom. If anything, it may remove some literals
if they get rewritten into a literal already present in the constraint. D-Feats’ thus leaves unchanged
or decreases (noted “↓=” in Table 4.2) the number and the total height of negated similarity atoms
(Measures 1 and 2). It then decreases strictly the number of unsolved variables (Measure 3).

• S-NSim-Feat, S-NSim-Abs and S-NSim-Sim replace a negated similarity atom by another one between the
same two variables. This change cannot increase the number of such atoms, their total height or
the number of unsolved variables (Measures 1, 2 and 3). If anything, it might decrease the �rst two
measures if it introduces an already existing negated similarity atom. These three rules decrease the
quality of sets in negated similarity atoms (Measure 4) as it replaces the sets of negated similarity
atoms by a strictly smaller one and thus of strictly smaller quality.

• S-NAbs-Sim and R-NAbs-Abs replace a negated absence atom by another one on the same variable. They
obviously cannot impact the number, the height or the quality of negated similarity atoms (Mea-
sures 1, 2 and 4). They also cannot increase the number of unsolved variables (Measure 3). They
do however decrease the quality of sets in absence atoms (Measure 5) for similar reasons as the
previous point.

• P-Feat-Sim, P-Abs-Sim and P-Sims introduce a new feature, absence or similarity atom respectively. They
obviously cannot impact the number, the height or the quality of sets of negated similarity atoms
(Measures 1, 2 and 4). They also cannot impact the number of unsolved variables or the quality of
sets in negated absence atoms (Measures 3 and 5). They do however decrease the number of spare
feature, absence or similarity atoms respectively (Measures 6, 7 and 8).

100

Chapter 5

E�cient Solving of Feature Tree
Constraints

This chapter develops an e�cient algorithm to decide satis�ability of Σ1-formulas. Contrary to the one of
Chapter 4, the new algorithm cannot be extended to decide the complete �rst-order theory. In particular,
it does not have the property of garbage collection. It is however more e�cient as a test of satis�ability.
We consider the three big limitations of the system described in the previous chapter (as discussed in
Section 4.3.3) and we address them one by one.

In a �rst part, Section 5.1, we tackle Limitation 1 by introducing the new systemR2 that does not introduce
disjunctions or new variables. We discuss its strengths and limitations compared toR1.

In a second part, Section 5.2, we deal with Limitation 2 by introducing a variant ofR2 that makes explicit
an e�cient way to recognise patterns. This is the formal link betweenR2 and our implementation.

In a third and last part, Section 5.3, we discuss Limitation 3. We then extendR2 to make it able to handle
more expressive formulas. We then use this extra expressivity to rewrite speci�cations in a more e�cient
way.

5.1 A SystemWithout Disjunctions

The systemR1 introduces disjunctions and new variables when handling negated atoms. This can make
reasoning on constraints via R1 fairly ine�cient as it increases – exponentially – the number of con-
straints to be processed by the system. In this section, we tackle Limitation 1.

In Section 5.1.1, we introduce a new system of transformation rules, R2, that does not need to introduce
any disjunction or variable to handle constraints. In Section 5.1.2, we discuss properties of this system,
and in particular how it can be used to decide the satis�ability of constraints. Finally, in Section 5.1.3,
we introduce a function transform-2 which decides satis�ability of constraints. We then discuss it in
Section 5.1.4.

5.1.1 Transformation Rules for Constraints – The SystemR2

Let us introduce an alternative system of transformation rules, namedR2. The goal ofR2 is to avoid in-
troducing disjunctions and new variables altogether, that is, the application of a rule ofR2 on a constraint
yields another constraint, and not a Σ1-formula.

101

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

Clash Rules

C-Cycle x[f]y ∧
∧n−1

i=0 zi[fi]zi+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn)

C-Feat-Abs x[f]y ∧ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

C-NAbsEmpty ¬x[∅]↑ ∧ c ⇒ ⊥
C-NSimRefl x 6=F x ∧ c ⇒ ⊥
C-NSimEmpty x 6=∅ y ∧ c ⇒ ⊥

Figure 5.1: Clash rules in systemR2

Deduction Rules

D-Feats x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]y ∧ x[f]z ∧ c (y 6= z, y =? z � c)

Propagation Rules

P-Feat-Sim x[f]y ∧ x =G z ∧ c ⇒ z[f]y ∧ x[f]y ∧ x =G z ∧ c (f ∈ G, z[f]y � c)

P-Abs-Sim x[F]↑ ∧ x =G z ∧ c ⇒ z[F ∩G]↑ ∧ x[F]↑ ∧ x =G z ∧ c (z[F ∩G]↑ � c)
P-Sims x =F y ∧ x =G z ∧ c ⇒ y =F∩G z ∧ x =F y ∧ x =G z ∧ c

(y =F∩G z � c)

Global Rules

G-SimFull x =? y ∧ c ⇒ x =? y ∧ c{x 7→ y} (x, y ∈ V(c))

Figure 5.2: Transformation rules for positive literals in systemR2

The introduction of disjunctions and new variables occurs only in the handling of negated literals. This is
what R2 achieves in a di�erent way than R1. In particular, that means that the clash rules and the rules
for positive literals should remain the same. Let us recall them in Figures 5.1 and 5.2 respectively. These
two �gures are exactly the same as Figures 4.2 and 4.3.

The notions of subsumption of a literal by a constraint, application of a rule, irreducibility, etc. remain
the same. Moreover,R2 presents the same kind of rules asR1:

• clash rules that detect unsatis�ability in formulas,
• deduction rules that create new literals out of others of a di�erent kind,
• propagation rules that transfer information from one side of a similarity to another,
• re�nement rules that modify literals to make them more precise,
• and global rules that modify the whole formula.

The key idea behindR2 is that it is complicated to handle negated atoms in a clean way – inR1, they are
the source of a lot of complications, including the introduction of disjunctions and variables. Contrary to
what is done in R1, in R2, instead of writing rules for negated atoms, we write more rules about their
positive counterpart. These extra rules give us more guarantees on irreducible constraints with respect
toR2. We then use these guarantees to recover a check of unsatis�ability.

The rules that allow R2 to handle negated literals are presented in Figure 5.3. For convenience, the full
system is presented in Figure 5.4. Let us now describe how this system works.

Firstly, one can stop propagating negated atoms. Indeed, even if it is important that atoms and their

102

5.1. A SYSTEM WITHOUT DISJUNCTIONS

Deduction Rules

D-NFeat-Feat ¬x[f]y ∧ x[f]z ∧ c ⇒ y 6=? z ∧ x[f]z ∧ c
D-FeatsEq-Sep x[f]z ∧ y[f]z ∧ S(x, y) ∧ c ⇒ x ={f} y ∧ x[f]z ∧ y[f]z ∧ c (x ={f} y � c)

D-Feats-Sep x[f]z ∧ y[f]z′ ∧ S(x, y) ∧ c ⇒ S(z, z′) ∧ x[f]z ∧ y[f]z′ ∧ S(x, y) ∧ c
(z 6= z′, S(z, z′) � c)

D-Abs-Sep x[F]↑ ∧ y[G]↑ ∧ S(x, y) ∧ c ⇒ x =F∩G y ∧ x[F]↑ ∧ y[G]↑ ∧ c (x =F∩G y � c)

D-NSim x 6=F y ∧ c ⇒ S(x, y) ∧ x 6=F y ∧ c (S(x, y) � c)

Re�nement Rules

R-NAbs-Abs ¬x[F]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F\G]↑ ∧ x[G]↑ ∧ c
R-Sims x =F y ∧ x =G y ∧ c ⇒ x =F∪G y ∧ c
R-NSim-Sim x 6=F y ∧ x =G y ∧ c ⇒ x 6=F\G y ∧ x =G y ∧ c

Figure 5.3: Transformation rules for positive and negative literals in systemR2

negations meet so as to detect unsatis�ability, it can be done by only propagating atoms and not their
negations.

Secondly, in the case of the negated similarity atom, we have to make sure that the two variables that
it relates are not forced to be equal by other means than a similarity atom. For instance, the formula
x 6={f} y ∧ x[f]z ∧ y[f]z is not satis�able because the negated similarity atom requires a di�erence in f
while the rest speci�es that both x and y point to z through f and are thus equal there. The solution to this
problem is to explicitly introduce similarity atoms when we detect such equalities. Through rules like R-
NSim-Sim, they then push away negated similarity atoms and detect unsatis�ability. In the aforementioned
example, one can deduce the similarity atom x ={f} y. With R-NSim-Sim, the negated similarity atom
x 6={f} y is replaced by x 6=∅ y which triggers a clash.

This requires a priori to consider all the pairs of variables of the formula, in case one can detect a similarity,
which might appear expensive. Moreover, this introduces rules that need to consider the whole formula.
It is in fact not necessary to consider all pairs of variables but only those that might have an impact on
negated similarity atoms. This means the pairs of variables that appear together in a negated similarity
atom of course, but also all the pairs of their children. In order to do that, we de�ne separated pairs of
variables in a constraint in De�nition 5.1. The rules that deduce similarity atoms from any two variables
– D-FeatsEq-Sep and D-Abs-Sep – will only be triggered if they mention separated pairs of variables

De�nition 5.1 (Separated Pairs of Variables). A pair of variables (x, y) is separated in the constraint c if:

• there is a negated similarity atom x 6=F y in c for some F ;
• or there are feature atoms x′[f]x and y′[f]y in c for some f where x′ and y′ are separated in c.

The set of separated pairs of variables of c is noted S(c).

This de�nition is not local in the sense that, in order to decide whether a pair of variables is separated,
one might have to follow a potentially long chain of features. In order to circumvent this problem, we
explicitly add separation information to constraints. We thus consider extended constraints as de�ned in
De�nition 5.2.

103

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

Clash Rules

C-Cycle x[f]y ∧
∧n−1

i=0 zi[fi]zi+1 ∧ c ⇒ ⊥ (n ≥ 1, y = z0, x = zn)

C-Feat-Abs x[f]y ∧ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

C-NAbsEmpty ¬x[∅]↑ ∧ c ⇒ ⊥
C-NSimRefl x 6=F x ∧ c ⇒ ⊥
C-NSimEmpty x 6=∅ y ∧ c ⇒ ⊥

Deduction Rules

D-Feats x[f]y ∧ x[f]z ∧ c ⇒ y =? z ∧ x[f]y ∧ x[f]z ∧ c (y 6= z, y =? z � c)

D-NFeat-Feat ¬x[f]y ∧ x[f]z ∧ c ⇒ y 6=? z ∧ x[f]z ∧ c
D-FeatsEq-Sep x[f]z ∧ y[f]z ∧ S(x, y) ∧ c ⇒ x ={f} y ∧ x[f]z ∧ y[f]z ∧ c (x ={f} y � c)

D-Feats-Sep x[f]z ∧ y[f]z′ ∧ S(x, y) ∧ c ⇒ S(z, z′) ∧ x[f]z ∧ y[f]z′ ∧ S(x, y) ∧ c
(z 6= z′, S(z, z′) � c)

D-Abs-Sep x[F]↑ ∧ y[G]↑ ∧ S(x, y) ∧ c ⇒ x =F∩G y ∧ x[F]↑ ∧ y[G]↑ ∧ c (x =F∩G y � c)

D-NSim x 6=F y ∧ c ⇒ S(x, y) ∧ x 6=F y ∧ c (S(x, y) � c)

Propagation Rules

P-Feat-Sim x[f]y ∧ x =G z ∧ c ⇒ z[f]y ∧ x[f]y ∧ x =G z ∧ c (f ∈ G, z[f]y � c)

P-Abs-Sim x[F]↑ ∧ x =G z ∧ c ⇒ z[F ∩G]↑ ∧ x[F]↑ ∧ x =G z ∧ c (z[F ∩G]↑ � c)
P-Sims x =F y ∧ x =G z ∧ c ⇒ y =F∩G z ∧ x =F y ∧ x =G z ∧ c

(y =F∩G z � c)

Re�nement Rules

R-NAbs-Abs ¬x[F]↑ ∧ x[G]↑ ∧ c ⇒ ¬x[F\G]↑ ∧ x[G]↑ ∧ c
R-Sims x =F y ∧ x =G y ∧ c ⇒ x =F∪G y ∧ c
R-NSim-Sim x 6=F y ∧ x =G y ∧ c ⇒ x 6=F\G y ∧ x =G y ∧ c

Global Rules

G-SimFull x =? y ∧ c ⇒ x =? y ∧ c{x 7→ y} (x, y ∈ V(c))

Figure 5.4: SystemR2 of Transformation Rules

104

5.1. A SYSTEM WITHOUT DISJUNCTIONS

(0)
r[f]x ∧ x[g]y ∧ x[c{g}]↑
∧ r′[f]x′ ∧ x′[g]y ∧ x′[c{g}]↑ ∧ r 6={f,h} r′

(1) D-NSim
+ D-Feats-Sep ⇒ r[f]x ∧ x[g]y ∧ x[c{g}]↑ ∧ S(r, r′) ∧ S(x, x′)

∧ r′[f]x′ ∧ x′[g]y ∧ x′[c{g}]↑ ∧ r 6={f,h} r′

(2) D-FeatsEq-Sep
+ D-Abs-Sep ⇒ r[f]x ∧ x[g]y ∧ x[c{g}]↑ ∧ S(r, r′) ∧ S(x, x′)

∧ r′[f]x′ ∧ x′[g]y ∧ x′[c{g}]↑ ∧ r 6={f,h} r′ ∧ x ={g} x
′ ∧ x =c{g} x

′

(3) R-Sims
+ G-SimFull ⇒ r[f]x ∧ x[g]y ∧ x[c{g}]↑ ∧ S(r, r′) ∧ S(x, x)

∧ r′[f]x ∧ r 6={f,h} r′ ∧ x ={?} x
′

(4) D-Feats-Sep ⇒ r[f]x ∧ x[g]y ∧ x[c{g}]↑ ∧ S(r, r′) ∧ S(x, x)
∧ r′[f]x ∧ r 6={f,h} r′ ∧ r ={f} r

′ ∧ x ={?} x
′

(5) R-NSim-Sim ⇒ r[f]x ∧ x[g]y ∧ x[c{g}]↑ ∧ S(r, r′) ∧ S(x, x)
∧ r′[f]x ∧ r 6={h} r′ ∧ r ={f} r

′ ∧ x ={?} x
′

Figure 5.6: Transformation of Formula 5.1.

De�nition 5.2 (Extended Literal and Constraint). An extended literal
1 is either a literal or an information

of separation of the form S(x, y).

An extended constraint
2 is either > or of the form le1 ∧ · · · ∧ len (n ≥ 1) where, for all i, lei is an extended

literal. Extended constraints can be seen as a possibly empty sets of extended literals, the empty set
being >.

Moreover, we need rules to compute separated pairs of variable. This is the sense of the rules D-Feats-Sep
and D-NSim.

r r′

x[c{g}]↑ x′[c{g}]↑

y

f f

g g

6={f,h}

Figure 5.5: Formula 5.1

Let us give an example of this mechanism applied to a constraint con-
taining a negated similarity, where a positive similarity is deduced in the
process. Consider Formula 5.1. A graphical representation is given in
Figure 5.5.

r[f]x∧x[g]y∧x[c{g}]↑∧r′[f]x′∧x′[g]y∧x′[c{g}]↑∧r 6={f,h} r′ (5.1)

This constraint contains a negated similarity atom r 6={f,h} r′. If r and r′
were forced to be equal in both f and h, then the whole formula would be
unsatis�able. In this example, there are no other atoms mentioning the
feature h and we can thus expect the full constraint to be satis�able – or at least the negated similarity
atom to not pose problem. Let us now describe the steps of transformation from Formula 5.1 in R2.
Intermediary steps can be found in Figure 5.6.

(0) Start from Formula 5.1. Notice the negated similarity atom r 6={f,h} r′.

(1) Rewrite the constraint using D-NSim. This introduces the separation literal S(r, r′) and the pattern
r[f]x ∧ r′[f]x′ ∧ S(r, r′). Rewrite the constraint again using D-Feats-Sep. This introduces the sepa-
ration literal S(x, x′). The system R2 has determined the set of separated pairs of variables. This
introduces the patterns x[g]y ∧ x′[g]y ∧ S(x, x′) and x[c{g}]↑ ∧ x′[c{g}]↑ ∧ S(x, x′).

1Literals are de�ned in De�nition 3.13.
2Constraints are de�ned in De�nition 3.14.

105

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

(2) Rewrite the constraint using D-FeatsEq-Sep and D-Abs-Sep. This introduces the similarity atoms x ={g}
x′ and x =c{g} x

′. These two similarity atoms together form a pattern.

(3) Rewrite the constraint using R-NSim-Sim. This merges the two similarity atoms into a full similarity
atom x =? x

′. The systemR2 has deduced that the separated pair of variables x and x′ were similar
in every feature. This can then trigger the rule G-SimFull. which rewrites the whole formula, replacing
x′ by x. Some literals then disappear. More importantly, the pattern r[f]x∧r′[f]x∧S(r, r′) appears

(4) Rewrite the constraint using D-FeatsEq-Sep. This deduces the similarity atom r ={f} r
′ and introduces

the pattern r 6={f,h} r′ ∧ r ={f} r
′.

(5) Rewrite the constraint using R-NSim-Sim. This transforms the negated similarity atom into r 6={h} r′.
We reach an irreducible form and the whole formula was thus satis�able. In particular, the negated
similarity atom is satis�able as one can realise a di�erence between r and r′ in h. Had the initial
negated similarity atom been r 6={f} r′, this step would have discovered r 6=∅ r′ which would have
led to a clash.

5.1.2 Properties of Irreducible Constraints ofR2

Irreducible constraints ofR2 do not have the property of garbage collection. This is directly related to the
fact that negated atoms do not travel through similarity atoms in R2. There is thus information that is
not duplicated among all variables, which means that some variables cannot be removed without losing
such information. For instance, the constraint c = x[f]↑ ∧ x 6={f} y is irreducible but it is not true that
∃x · c is equivalent to > as it implies that y has to have a feature f , that is ∃x · c implies ¬y[f]↑.

The irreducible constraints ofR2 are however still always satis�able. This is stated in Theorem 5.1. In fact,
R2 admits weaker versions of garbage collection. For instance, we can recover the property of garbage
collection by forbidding the use of negated atoms. This is stated in Lemma 5.1. We can be more subtle
by authorising negated atoms in the global part of a constraint. This is stated in Lemma 5.2. Finally,
we conjecture that we can be even more subtle and authorise negated atoms also in the local part of a
constraint as long as they are on variables that do not share a similarity atom with a global variable. This
is stated in Conjecture 5.1.

Theorem 5.1 (Satis�ability of Irreducible Constraints). A constraint that is irreducible with respect toR2

is satis�able.

Proof of Theorem 5.1 (idea). This proof is quite similar to that of Theorem 4.1, except that the system R2

does not give as strong guarantees on its irreducible constraints as R1. This is in particular because it
does not have access to the splitting rules, as they introduce disjunctions. The absence of these rules is
at the heart of the fact that R2 does not enjoy the property of garbage collection. Consider for instance
Formula 5.2.

∃x · (¬x[?]↑ ∧ x =G y ∧ x =cG z) (5.2)

It expresses the fact that the local variable x must have a feature and must be similar to y in G and to z in
cG. The information that this carries on the global variables y and z is that “either y has a feature in G or
z has a feature in cG”. This fact is easily expressible but requires dis junction – ¬y[G]↑ ∨ ¬z[cG]↑. The
system R1, since it is allowed to introduce disjunctions, will be able to deduce that fact and to eliminate
the variable x. The systemR2, since it cannot introduce disjunctions, will never be able to remove x.

Let us dig a bit this example and show how bothR1 andR2 handle such a constraint. Name the constraint
in Formula 5.2. We will put it in irreducible form with respect to both R1 and R2 and assume we have

106

5.1. A SYSTEM WITHOUT DISJUNCTIONS

a valuation µ satisfying the global part of the resulting constraint/s. We will then imagine that we are
trying to de�ne ρ satisfying the whole constraint.

• The constraint of Formula 5.2 is not irreducible with respect toR1. This is because of the splitting
rule S-NAbs-Sim which requires us to split ¬x[?]↑ into ¬x[G]↑ ∨ ¬x[cG]↑. In each of the obtained
constraint, P-NAbs-Sim requires us to propagate the negated absence atoms to y and z respectively.
We obtain two constraints that are irreducible with respect toR1:

∃x · (¬x[G]↑ ∧ x =G y ∧ x =cG z) ∧ ¬y[G]↑

and
∃x · (¬x[cG]↑ ∧ x =G y ∧ x =cG z) ∧ ¬z[cG]↑

If a valuation µ satis�es the global parts of the former (resp. the latter), then it satis�es ¬y[G]↑
(resp. ¬z[cG]↑), which we can leverage to show that if ρ satis�es x =G y (resp. x =cG z), then
it satis�es ¬x[?]↑ automatically. This reasoning works on any valuation µ and therefore we can
conclude that x has become irrelevant and that Formula 5.2 is equivalent to ¬y[G]↑ ∨ ¬z[cG]↑.

• The constraint of Formula 5.2 is irreducible with respect to R2, however, because R2 does not
contain such splitting rules. It is not true that any valuation µ that satis�es the global part of this
constraint can be extended to ρ that satis�es the whole constraint. Indeed, if we take t the empty
feature tree andµ = [y 7→ t, z 7→ t], the two similarity atoms impose that ρ(x) =G t and ρ(x) =cG t
and therefore that ρ(x) = t, which contradicts ρ |=FT ¬x[?]↑.

If we have control on the valuation µ that we take for the global part, then we can ensure that there
is g ∈ G (or resp. g ∈ cG) such that g ∈ dom(µ(y)) (resp. g ∈ dom(µ(z))). Any valuation µ that
satis�es this will then be extendable to x. Since this reasoning works on some valuations µ, we
cannot conclude that x has become irrelevant, but we can conclude that the formula is satis�able.

In the general case, this means that the proof of Theorem 5.1 cannot be as simple as that of Theorem 4.1.
In particular, we will not be able to build an induction around a simple lemma as Lemma 4.7. We will still
prove Theorem 5.1 by induction on the variables of the constraint, but the induction hypothesis will have
to be much stronger to compensate for the information that the splitting rules would otherwise provide.

For the de�nition of the induction hypothesis and for the full proof, see Section 5.A.

Lemma 5.1 (Garbage Collection of Irreducible Positive Constraints). Let c be a constraint that only con-

tains atoms and that is irreducible with respect toR2. LetX be a set of variables of c that is ancestor-closed.
Then ∃X · c is equivalent to the global part of c with respect to X . In other words:

|=FT ∀̃ · ((∃X · c)↔ GX(c))

Proof. A constraint that is irreducible with respect toR2 and contains only atoms is in fact also irreducible
with respect to R1. Such constraints thus indeed have the property of garbage collection, as stated in
Theorem 4.1.

Lemma 5.2 (Garbage Collection of Irreducible Constraints With Positive Local Part). Let c be a constraint
that is irreducible with respect to R2. Let X be a set of variables of c that is ancestor-closed and such that

LX(c) only contains atoms. Then ∃X · c is equivalent to the global part of c with respect to X .

Proof. If LX(c) only contains atoms and is irreducible with respect toR2, then it is also irreducible with
respect to R1. By Theorem 4.1, ∃X · LX(c) is then equivalent to >. Therefore, GX(c) ∧ ∃X · LX(c)
– which is exactly ∃X · c – is equivalent to GX(c).

107

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1 function apply-rule-2 (rule, constraint) : constraint or ⊥
2
3 function choose-rule-2 (c : constraint) : rule
4 return any rule of R2 applicable to c
5
6 function transform-2 (c : constraint) : constraint or ⊥
7 if c is reducible in R2

8 let r = choose-rule-2(c)
9 match apply-rule-2(r, c)

10 | ⊥ -> return ⊥
11 | c′ -> return transform-2(c′)
12 else
13 return c

Figure 5.7: Function transform-2

Conjecture 5.1 (Garbage Collection of Irreducible Constraints With Positive Border). Let c be a constraint
that is irreducible with respect to R2 ∪ {P-NFeat-Sim, P-NAbs-Sim, P-NSim-Sim}. Let X be a set of variables of c that
is ancestor-closed and such that there are no negated atoms in LX(c) that shares a variable with a similarity

atom in LX(c) ∩ LcX(c). Then ∃X · c is equivalent to the global part of c with respect to X .

Proof idea. The proof of Theorem 4.1 in fact does not inspect the global part of the constraint, except the
variables that share a similarity with the outside. For the rest, we only assume the existence of a valuation
that satis�es them. On the contrary, the proof of Theorem 5.1 does inspect the whole constraint because it
needs to ensure that its invariants are satis�ed from the beginning. We believe however that it is possible
to start not from the beginning – similarly as for Theorem 4.1 – as long as the separation between local
and global parts is “clean enough” to ensure the validity of the proof invariants.

5.1.3 Deciding the Satis�ability of Constraints

Let us now de�ne in Figure 5.7 a function transform-2 which decides the satis�ability of constraints.
This simply goes by applying rules ofR2 in any order until we get either ⊥ or an irreducible constraint.
Since all the rules of R2 are equivalences, the input constraint is equivalent to either ⊥ of a satis�able
constraint.

In fact, transform-2 is the same as transform-1 – if it was using choose-rule-2 – except that the for-
mer can be de�ned in a simpler way because it does not involve rules that might introduce a new variable
or a disjunction. Formally, if one takes c a constraint and feeds it to both transform-1 and transform-
23 that, in both cases, use the same function choose-rule-2, we get the same output constraint c′.

Of course, transform-2 terminates on all its inputs, as stated in Lemma 5.3.

Lemma 5.3 (Termination of transform-2). The function transform-2 terminates on all inputs.

Proof. This proof is similar to that of Lemma 4.8 except much simpler. We will de�ne a measure on clash-
free constraints that decreases at each step of transformation. This measure associates a tuple of 9 integer
measures to a constraint c. The measures are de�ned as follows:

1. #{x | x ∈ V(c), x /∈ Vs(c)}, the unsolved variables.
3A constraint can be seen as a DXC with only one x-constraint with an empty quanti�er block. Therefore, we can feed a

constraint to the function transform-1.

108

5.1. A SYSTEM WITHOUT DISJUNCTIONS

Table 5.1: Decreasing lexicographic measure over constraints in transformation rules

1 2 3 4 5 6 7 8 9
G-SimFull ↓
P-Feat-Sim = ↓
P-Abs-Sim = · ↓
P-Sims = · · ↓
D-Feats = = · ↓
D-FeatsEq-Sep = = · ↓
D-Abs-Sep = = = ↓
D-Feats-Sep = = · · ↓
D-NSim = · · · ↓
D-NFeat-Feat = = · · ↓
R-NAbs-Abs = · = · · ↓
R-NSim-Sim = · · = · · ↓
R-Sims = · · = · · · ↓

2. #{x[f]y | x, y ∈ V(c), f ∈ F(c), x[f]y /∈ c}, the number of spare feature atoms.

3. #{x[F]↑ | x ∈ V(c), F ∈ FS?(c), x[F]↑ � c}, the number of spare and non-subsumed absence
atoms.

4. #{x =F y | x, y ∈ V(c), F ∈ FS?(c), x 6= y, x =F y � c}, the number of spare, non-re�exive
and non-subsumed similarity atoms.

5. #{S(x, y) | x, y ∈ V(c), S(x, y) /∈ c}, the number of spare separation literals.

6. #{¬x[f]y ∈ c}, the number of negated feature atoms in c.

7.
∑
¬x[F]↑∈c qc(F), the total quality of feature sets in negated absence atoms.

8.
∑

x 6=F y∈c qc(F), the total quality of feature sets in negated similarity atoms.

9. #c, the number of literals in c.

All measures are positive integers. This comes from the �niteness of the constraint, which implies that
there is only a �nite number of literals in it and that all the sets V(c), F(c) and FS?(c) are all �nite.

Table 5.1 contains a summary of how this measure behaves with each step of transformation.

• G-SimFull solves a variable and thus decreases the number of unsolved variables (Measure 1).

• P-Feat-Sim, P-Abs-Sim and P-Sims introduce a new feature, absence or similarity atom respectively if it is
not subsumed by the rest of the constraint. This decreases the number of spare feature, absence
or similarity atoms (Measures 2, 3 and 4). This cannot increase the number of unsolved variables
(Measure 1).

• D-Feats, D-FeatsEq-Sep and D-Abs-Sep introduce a new similarity atom if it is not subsumed by the rest of
the constraint. Similarly to P-Sims, this decreases the number of spare similarity atoms (Measure 4).
This cannot increase the number of unsolved variables (Measure 1) or the number of spare feature
or absence atoms (Measures 2 and 3).

• D-Feats-Sep and D-NSimintroduce a new separation literal if it is not present in the rest of the constraint.

109

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

This decreases the number of spare separated literals (Measure 5). This cannot increase the num-
ber of unsolved variables (Measure 1) or the number of spare feature, absence or similarity atoms
(Measures 2, 3 and 4).

• D-NFeat-Feat removes a negated feature atom from the constraint and thus decreases their number
(Measure 6). This does not impact the number of unsolved variables (Measure 1) or the number of
spare feature, absence or similarity atoms or separation literals (Measures 2, 3, 4 and 5).

• R-NAbs-Abs and R-NSim-Sim replace a negated absence or similarity atom by another one on the same
variable/s. This improves the total quality of feature sets in negated absence or similarity atoms
(Measures 7 and 8). This does not impact the number of unsolved variables (Measure 1), the number
of spare feature, absence or similarity atoms or separation literals (Measures 2, 3, 4 and 5), or the
number of negated feature atoms (Measure 6).

• Finally, R-Sims replaces two similarity atoms by one, thus reducing the total number of literals of the
constraint (Measure 9). This does not impact the number of unsolved variables (Measure 1), the
number of spare feature, absence or similarity atoms or separation literals (Measures 2, 3, 4 and 5),
the number of negated feature atoms (Measure 6), or the quality of feature sets in negated absence
or similarity atoms (Measures 7 and 8). In particular, this does not decrease the number of spare
similarity atoms because this leaves the union of all feature sets in similarity atoms unchanged.

5.1.4 Discussions

The function transform-2 can be used as an unsatis�ability check. Similarly to transform-1, it is in
fact complete in the sense that it detects unsatis�ability if and only if the constraint is indeed unsatis�able.
Moreover, it is incremental by nature: since the output constraint is equivalent to the input one, we can
throw away the input constraint and keep only the output one. If one later adds other literals to the
constraint, all the computation that has been done previously is still valid and only the computation that
has to do with the new literals will take place.

The main di�erence in transform-2 with transform-1 is that the new version takes constraints as
inputs and returns constraints. This is much more e�cient as it avoids the explosion of disjunctions that
can happen with transform-1, as discussed in the complexity considerations in Section 4.3.2.

As a counterpart, transform-2 does not have the property of garbage collection that transform-1 en-
joys. transform-2 does enjoy weaker forms of garbage collection, as discussed in Section 5.1.2. Depend-
ing of the context in which transform-2 is meant to be used, the lack of garbage collection can be an
issue. Note however that the situations that defeat even the results partial garbage collection of Lemma 5.2
and Conjecture 5.1 are situations that involve negated literals. These are precisely the situations leading
to an explosion of cases in transform-1. The bottom line is that these situations are problematic and
show limitations of FTS itself.

In the context of the CoLiS project, the occurrences of negated literals are rare as they do not occur
naturally in speci�cations of utilities. An exception would be the utility rmdir which succeeds when a
directory is empty (expressible with an absence atom) and fails when a directory is not empty (expressible
with a negated absence atom). It is not such a problem in that its use is marginal in the corpus of Debian
packages. Moreover, if negated literals are problematic, the negated absence atom remains the simplest
one to handle as it is a unary predicate. It is in particular likely to behave well with respect to partial
garbage collections like that of Conjecture 5.1.

Let us now discuss the notion of separated variables. The limitation of the rules D-FeatsEq-Sep and D-Abs-Sep
to only separated variables does not bring any improvement in term of theoretical complexity. In practice,

110

5.1. A SYSTEM WITHOUT DISJUNCTIONS

r

∃x

∃y

∃z

etc

rancid

lg.conf

r′

∃x′

∃y′

⊥

etc

rancid

lg.conf

=c{etc}

=c{rancid}

=c{lg.conf}

Figure 3.10: Speci�cation of success case for rm -R /etc/rancid/lg.conf

Tidying Up Rules

T-NFeat-Abs ¬x[f]y ∧ x[F]↑ ∧ c ⇒ x[F]↑ ∧ c (f ∈ F)

T-AbsEmpty x[∅]↑ ∧ c ⇒ c

T-NAbs-Feat ¬x[F]↑ ∧ x[f]y ∧ c ⇒ x[f]y ∧ c (f ∈ F)

T-NAbs-NAbs ¬x[F]↑ ∧ ¬x[G]↑ ∧ c ⇒ ¬x[F]↑ ∧ c (F ⊆ G)

T-SimRefl x =F x ∧ c ⇒ c

T-SimEmpty x =∅ y ∧ c ⇒ c

T-NSim-NSim x 6=F y ∧ x 6=G y ∧ c ⇒ x 6=F y ∧ c (F ⊆ G)

T-SepRefl S(x, x) ∧ c ⇒ c

Re�nement Rules

R-Abs x[F]↑ ∧ x[G]↑ ∧ c ⇒ x[F ∪G]↑ ∧ c

Figure 5.8: Extra Transformation Rules for SystemR2

however, and in the CoLiS project in particular, it does bring a huge di�erence.

Let us observe, as an example, the speci�cation case for the success of rm -R /etc/rancid/lg.conf. It
is shown in Figure 3.10, restated here for convenience. Such a case is typically built from a path coming
from a Shell script. If the path is of size n, the speci�cation cases will contain two strings of feature atoms
of size n and about as many variables. These 2n variables will appear in about n similarity atoms. At this
point, there are two remarks that can be done.

• Firstly, in formulas of such shapes, there is usually a clear “depth” of variables corresponding to the
distance from the root in each �lesystem. If separation literals appear, that will then be on variables
of same depth. The separation literals will then propagate at every level, linearly in n. This makes
a big di�erence when compared to the total number of pairs of variables, quadratic in n. In our
example, there are three pairs of separated variables – (r, r′), (x, x′) and (y, y′) – while there are
21 pairs of variables in total.

• Secondly, in such a speci�cation, all the similarity atoms are already maximal in the sense that they
could not be made bigger by D-FeatsEq-Sep or D-Abs-Sep. This comes from the fact that we try to write
our speci�cations as functions. This property of maximality of similarity atoms in speci�cations
could be added to the list of properties that we aim at having on speci�cations, as described in
Section 3.4.

Finally, note that there are many natural transformation rules that one might want to add to R2 in an

111

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

actual implementation, especially rules that would allow tidying up the formula by removing useless
atoms. Figure 5.8 present a few of such rules. We believe they make the presentation and the proofs
heavier. They are therefore not included in this document.

5.2 A SystemWith E�cient Pattern Recognition

The systemR2 is better thanR1 in that it does not share its Limitation 1 and introduce no disjunctions at
all, especially when it handles negated literals. The two systems, however, have Limitation 2 in common:
they consider constraints as sets of literals in which they �nd patterns. This process is fairly ine�cient as
patterns could occur anywhere in the formula.

Moreover, it makes the use of our solvers not so incremental. Indeed, assume you have a constraint c that
is irreducible with respect to R2 and you want to consider c ∧ c′ where c′ is any other constraint, not
necessarily irreducible with respect to R2. This operation of adding literals to an irreducible constraint
happens all the time in a symbolic engine as the one we use in the CoLiS project. The functions trans-
form-1 and transform-2 presented up to here would only allow us to consider the whole constraint
c ∧ c′, which completely looses the information that c is already irreducible with respect toR1 orR2.

These two problems have the same solution. The idea is to only introduce literals of given constraints one
by one. Every time we introduce a new literal we apply R2 until an irreducible form is obtained. Only
then can we consider introducing the next literal. This way, the place where the interactions take place
is clear: they lie between the newly introduced literal and the rest of the constraint.

This section formalises this. In Section 5.2.1, we introduce pointed constraints and a system of transforma-
tionsR•2 on such constraints. These de�nitions formalise respectively these constraints with one freshly
introduced literal, and the rules that can apply in such situations. In Section 5.2.2, we study the relation-
ship between R•2 and R2 and we show that R•2 is a sound strategy of application of rules of R2. This
will in particular allow us to lift the results of R2 to R•2, most notably the proof of satis�ability of irre-
ducible constraints. Finally, in Section 5.2.3, we introduce a function transform-2-pointed that decides
satis�ability of constraints. We then discuss the approach of this section in Section 5.2.4.

5.2.1 Pointed Constraints and Transformation Rules – The SystemR•2
The systemR2, presented in Section 5.1, works by matching patterns in a set of literals. Even by sorting
the literals in a clever way, we would still need to explore most of the set to �nd matching patterns, as we
have no way to know where the next pattern is going to occur.

To circumvent this problem, we introduce pointed constraints. A pointed constraint
〈
π
∣∣ c〉 is the pair of a

todo-stack π and a store c. These pointed constraints make the pattern matching more e�cient by forcing
the patterns to only occur between the literal at the peek of the stack – called the pointed literal – and the
store. We can then adapt R2 to deal with such pointed constraints. Let us de�ne pointed constraint in
De�nition 5.3.

De�nition 5.3 (Pointed Constraint). A pointed constraint is a pair
〈
π
∣∣ c〉 of a todo-stack π of extended

literals and an extended constraint c4, called store.

The forthcoming rule G-SimFull• will enjoy a speci�c treatment. In order to make it e�cient and sound,
we need to split a constraint into a part only made of equalities (that is full similarity atoms) and the

4Extended literals and constraints are de�ned in De�nition 5.2.

112

5.2. A SYSTEM WITH EFFICIENT PATTERN RECOGNITION

Table 5.2: Number of rules inR2 andR•2 and corresponding �gures

Clash Positive Negated Total
R2 5 Fig. 5.1 5 Fig. 5.2 8 Fig. 5.3 18 Fig. 5.4
R•2 6 Fig. 5.9 7 Fig. 5.10 14 Fig. 5.11 27 n/a

Pointed Clash Rules

C-Cycle• π 〈 x[f]y
∣∣ ∧n−1

i=0 zi[fi]zi+1 ∧ c ⇒ ⊥ (n ≥ 0, y = z0, x = zn)

C-Feat•-Abs π 〈 x[f]y
∣∣ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

C-Feat-Abs• π 〈 x[F]↑
∣∣ x[f]y ∧ c ⇒ ⊥ (f ∈ F)

C-NAbsEmpty• π 〈 ¬x[∅]↑
∣∣ c ⇒ ⊥

C-NSimRefl• π 〈 x 6=F x
∣∣ c ⇒ ⊥

C-NSimEmpty• π 〈 x 6=∅ y
∣∣ c ⇒ ⊥

Figure 5.9: SystemR•2 of Transformation Rules – Clash Rules

remaining part. Moreover, we need to consider the local and global parts of the latter. All these are
de�ned in De�nition 5.4.

De�nition 5.4 (Equalities of a Constraint). The equalities of a constraint c, noted E(c), are all the full
similarity atoms in the constraint c. We introduce notations for the remaining part of c and for the local
and global parts of the latter:

E(c) = {x =? y ∈ c}
Ē(c) = c\E(c)

LĒX(c) = LX(Ē(c))

GĒX(c) = GX(Ē(c))

We can now derive transformation rules for pointed constraints from the rules ofR2. Since there is now
a pointed literal, which stands out, we break the symmetry of the rules and thus, some rules need to be
duplicated. For instance, the clash rule C-Feat-Abs:

C-Feat-Abs x[f]y ∧ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

gives birth to the two rules C-Feat•-Abs and C-Feat-Abs•:
C-Feat•-Abs π 〈 x[f]y

∣∣ x[F]↑ ∧ c ⇒ ⊥ (f ∈ F)

C-Feat-Abs• π 〈 x[F]↑
∣∣ x[f]y ∧ c ⇒ ⊥ (f ∈ F)

depending on whether the feature or the absence atom is pointed. By applying that process on all the
18 rules of R2, we obtain 27 rules in R•2. The clash rules, rules for positive literals and rules for negated
literals are presented in Figures 5.9, 5.10 and 5.11 respectively. By lack of space, we cannot provide a single
�gure containing all the rules. Table 5.2 presents the increase in number of rules betweenR2 andR•2.

There are already a few things to note at this point. A natural question, for instance, is whether the
todo-stack is actually a stack, or if it is a queue, and if there is a logic to the order in which the literals
appear in the todo-stack. In fact, because of the fact that rules apply if there is no subsumption of the

113

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

Pointed Deduction Rules
D-Feats• π 〈 x[f]y

∣∣ x[f]z ∧ c ⇒ π 〈 x[f]y 〈 y =? z
∣∣ x[f]z ∧ c

(y 6= z, y =? z �
〈
π
∣∣ c〉)

Pointed Propagation Rules

P-Feat•-Sim π 〈 x[f]y
∣∣ x =G z ∧ c ⇒ π 〈 z[f]y 〈 x[f]y

∣∣ x =G z ∧ c
(f ∈ G, z[f]y �

〈
π
∣∣ c〉)

P-Feat-Sim• π 〈 x =G z
∣∣ x[f]y ∧ c ⇒ π 〈 z[f]y 〈 x =G z

∣∣ x[f]y ∧ c
(f ∈ G, z[f]y �

〈
π
∣∣ c〉)

P-Abs•-Sim π 〈 x[F]↑
∣∣ x =G z ∧ c ⇒ π 〈 z[F ∩G]↑ 〈 x[F]↑

∣∣ x =G z ∧ c
(z[F ∩G]↑ �

〈
π
∣∣ c〉)

P-Abs-Sim• π 〈 x =G z
∣∣ x[F]↑ ∧ c ⇒ π 〈 z[F ∩G]↑ 〈 x =G z

∣∣ x[F]↑ ∧ c
(z[F ∩G]↑ �

〈
π
∣∣ c〉)

P-Sims• π 〈 x =F y
∣∣ x =G z ∧ c ⇒ π 〈 y =F∩G z 〈 x =F y

∣∣ x =G z ∧ c
(y =F∩G z �

〈
π
∣∣ c〉)

Pointed Global Rules

G-SimFull• π 〈 x =? y
∣∣ c ⇒ (π 〈〈 LĒx(c)){x 7→ y} 〈 x =? y

∣∣ GĒx (c) ∧ E(c){x 7→ y}
(x, y ∈ V(c))

Figure 5.10: SystemR•2 of Transformation Rules – Rules for positive literals

introduced literal, the order does not matter for correctness. It might matter for e�ciency of the algorithm
or cleanliness of the presentation.

Note also that the patterns of pointed rules always consider the todo-stack to be non-empty, that is they
require the presence of a pointed literal. This means that a pointed constraint with an empty todo-stack
is trivially irreducible with respect toR•2. Finally, some patterns ofR2 are symmetric. This is for instance
the case of D-Feats whose pattern has two feature atoms x[f]y and x[f]z where the variables y and z have
a symmetrical role. Such rules require only one pointed version – in this example, D-Feats•.

The rule G-SimFull• deserves a word as it can be hard to read. This rule handles the case where the pointed
literal is a full similarity atom. In this case, one of the two variables must disappear from all the literals –
except the full similarity atom – by being rewritten into the other variable. Such a rewriting can however
create new patterns in the constraint. This is not a problem for literals that are already in the todo-stack.
Rewritten literals from the store, however, have to be extracted and put back into the todo-stack. It is
not necessary to do this for solved similarity atoms of the store5. As an example, consider the pointed
constraint of Formula 5.3. 〈

ε 〈 x[g]↑ 〈 x =? y
∣∣ x[f]z ∧ y[f]z′ ∧ w =? x

〉
(5.3)

Its pointed literal is x =? y. Say we decide to rewrite x into y. There are two occurrences of x in the store,
namely in the literals x[f]z and w =? x. The latter is a solved similarity which we simply want to update
to note now that w is a copy of y and not x. The former can simply not remain in the store. Indeed, it will
be rewritten into y[f]z which forms a pattern with y[f]z′. On such a constraint, G-SimFull• has to extract
x[f]z from the store, rewrite it and place it in the todo-stack. The todo-stack has to be rewritten as well.

5Actually, it is important not to do it if we hope to have our system to terminate.

114

5.2. A SYSTEM WITH EFFICIENT PATTERN RECOGNITION

Pointed Deduction Rules

D-NFeat•-Feat π 〈 ¬x[f]y
∣∣ x[f]z ∧ c ⇒ π 〈 y 6=? z

∣∣ x[f]z ∧ c
D-NFeat-Feat• π 〈 x[f]z

∣∣ ¬x[f]y ∧ c ⇒ π 〈 x[f]z 〈 y 6=? z
∣∣ c

D-Feats•-Sep π 〈 x[f]z
∣∣ y[f]z′ ∧ S(x, y) ∧ c ⇒ π 〈 x[f]z 〈 S(z, z′)

∣∣ y[f]z′ ∧ S(x, y) ∧ c
(z 6= z′, S(z, z′) �

〈
π
∣∣ c〉)

D-Feats-Sep• π 〈 S(x, y)
∣∣ x[f]z ∧ y[f]z′ ∧ c ⇒ π 〈 S(x, y) 〈 S(z, z′)

∣∣ x[f]z ∧ y[f]z′ ∧ c
(z 6= z′, S(z, z′) �

〈
π
∣∣ c〉)

D-FeatsEq•-Sep π 〈 x[f]z
∣∣ y[f]z ∧ S(x, y) ∧ c ⇒ π 〈 x[f]z 〈 x ={f} y

∣∣ y[f]z ∧ S(x, y) ∧ c
(x ={f} y �

〈
π
∣∣ c〉)

D-FeatsEq-Sep• π 〈 S(x, y)
∣∣ x[f]z ∧ y[f]z ∧ c ⇒ π 〈 S(x, y) 〈 x ={f} y

∣∣ x[f]z ∧ y[f]z ∧ c
(x ={f} y �

〈
π
∣∣ c〉)

D-Abs•-Sep π 〈 x[F]↑
∣∣ y[G]↑ ∧ S(x, y) ∧ c ⇒ π 〈 x[F]↑ 〈 x =F∩G y

∣∣ y[G]↑ ∧ S(x, y) ∧ c
(x ={F∩G} y �

〈
π
∣∣ c〉)

D-Abs-Sep• π 〈 S(x, y)
∣∣ x[F]↑ ∧ y[G]↑ ∧ c ⇒ π 〈 S(x, y) 〈 x =F∩G y

∣∣ x[F]↑ ∧ y[G]↑ ∧ c
(x ={F∩G} y �

〈
π
∣∣ c〉)

D-NSim• π 〈 x 6=F y
∣∣ c ⇒ π 〈 x 6=F y 〈 S(x, y)

∣∣ c (S(x, y) �
〈
π
∣∣ c〉)

Pointed Re�nement Rules

R-NAbs•-Abs π 〈 ¬x[F]↑
∣∣ x[G]↑ ∧ c ⇒ π 〈 ¬x[F\G]↑

∣∣ x[G]↑ ∧ c
R-NAbs-Abs• π 〈 x[G]↑

∣∣ ¬x[F]↑ ∧ c ⇒ π 〈 x[G]↑
∣∣ ¬x[F\G]↑ ∧ c

R-Sims• π 〈 x =F y
∣∣ x =G y ∧ c ⇒ π 〈 x =F∪G y

∣∣ c
R-NSim•-Sim π 〈 x 6=F y

∣∣ x =G y ∧ c ⇒ π 〈 x 6=F\G y
∣∣ x =G y ∧ c

R-NSim-Sim• π 〈 x =G y
∣∣ x 6=F y ∧ c ⇒ π 〈 x =G y

∣∣ x 6=F\G y ∧ c

Figure 5.11: SystemR•2 of Transformation Rules – Rules for negative literals

115

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

(0) x ={f,g} y
∣∣ x[f]z ∧ ¬y[f]z′ ∧ z[?]↑ ∧ z′[?]↑

(1) P-Feat-Sim• ⇒ x ={f,g} y 〈 y[f]z
∣∣ x[f]z ∧ ¬y[f]z′ ∧ z[?]↑ ∧ z′[?]↑

(2) D-NFeat-Feat• ⇒ x ={f,g} y 〈 y[f]z 〈 z 6=? z
′ ∣∣ x[f]z ∧ z[?]↑ ∧ z′[?]↑

(3) D-NSim• ⇒ x ={f,g} y 〈 y[f]z 〈 z 6=? z
′ 〈 S(z, z′)

∣∣ x[f]z ∧ z[?]↑ ∧ z′[?]↑

(4) D-Abs-Sep• ⇒ x ={f,g} y 〈 y[f]z 〈 z 6=? z
′ 〈 S(z, z′) 〈 z =? z

′ ∣∣ x[f]z ∧ z[?]↑ ∧ z′[?]↑

(5) G-SimFull• ⇒ x ={f,g} y 〈 y[f]z 〈 z 6=? z 〈 S(z, z) 〈 z[?]↑ 〈 z =? z
′ ∣∣ x[f]z ∧ z[?]↑

(6) Merge•3 ⇒ x ={f,g} y 〈 y[f]z 〈 z 6=? z
∣∣ S(z, z) ∧ z =? z

′ ∧ x[f]z ∧ z[?]↑

(7) C-NSimRefl• ⇒ ⊥

Figure 5.13: Transformation of Formula 5.5 byR•2

The result of this application of G-SimFull• is shown in Formula 5.4.〈
ε 〈 y[g]↑ 〈 y[f]z 〈 x =? y

∣∣ y[f]z′ ∧ w =? y
〉

(5.4)

After this, no other rule can apply as the full similarity atom is solved. This literal should then be moved to
the store. In fact, the rules ofR•2 do not show how this process of integrating a literal from the todo-stack
into the store. In that regard, there lacks one important rule which applies only when no other rule can
apply. This rule, Merge•, is the following:

Merge• π 〈 l
∣∣ c ⇒ π

∣∣ l ∧ c
The fact that Merge• only applies when no other rule can will be enforced in the implementation described
in Section 5.2.3.

x y

z[?]↑ z′[?]↑

f f

={f,g}

Figure 5.12: For-
mula 5.5

Let us now give an example of the transformation of a pointed constraint by R•2.
Consider Formula 5.5. A graphical representation is given in Figure 5.12. Graphical
representations of pointed constraints are the same as if they were simply con-
straints: we represent all the included literals.

x ={f,g} y
∣∣ x[f]z ∧ ¬y[f]z′ ∧ z[?]↑ ∧ z′[?]↑ (5.5)

Let us now describe the steps of transformation from Formula 5.5 in R•2. Interme-
diary steps can be found in Figure 5.13. Some steps represent the action of several
rules when we believe it is not important for the reader to have them made fully

explicit.

(0) Start from Formula 5.5. Notice the pattern x ={f,g} y
∣∣ x[f]z.

(1) Rewrite the pointed constraint using P-Feat•-Sim. This introduces the feature atom y[f]z. Since this
atom might trigger changes in the store, we do not introduce it in there just yet. Notice now the
pattern y[f]z

∣∣ ¬y[f]z′.

(2) Rewrite the pointed constraint using D-NFeat-Feat•. This removes the literal ¬y[f]z′ from the store
and introduces the literal z 6=? z

′. Since this literal might trigger changes in the store, we do not
introduce it in there just yet. Indeed, De�nition 5.1 requires that a pair of variables between which
there is a negated similarity atom be considered separated. InR•2, this translates to the applicability
of the rule D-NSim•.

116

5.2. A SYSTEM WITH EFFICIENT PATTERN RECOGNITION

(3) Rewrite the pointed constraint using D-NSim•. This introduces the extended literal S(z, z′) which
creates the pattern S(z, z′)

∣∣ z[?]↑ ∧ z′[?]↑.
(4) Rewrite the pointed constraint using D-Abs-Sep•. This introduces the atom z =? z

′ and creates the
pattern π 〈 z =? z

′ ∣∣ c.
(5) Rewrite the pointed constraint using G-SimFull•. Both z and z′ could be rewritten into the other and,

for simplicity, we will choose to rewrite z′ into z. The literals of c rewritten by application of G-
SimFull• (here, there is only z′[?]↑) might trigger other patterns. They can therefore not be left in the
store and are scheduled to be added again later. The solved similarity atom z =? z

′ cannot trigger
any subsequent rule and can therefore be merged. Similarly, the two literals z[?]↑ and S(z, z′)
cannot trigger any rule and can be merged.

(6) Rewrite the pointed constraint twice using Merge•. Since there is already z[?]↑ in the store, this
simply removes the duplicate one. The next literal is the negated similarity atom z 6=? z.

(7) Rewrite the pointed constraint using C-NSimRefl•. This detects an inconsistency – the re�exive
negated similarity atom – and replaces the whole pointed constraint by ⊥.

Notice that, in this example, one can see π
∣∣ c as “π ∧ c” and apply rules ofR2 to it. This shows a strong

relationship betweenR•2 andR2. This is exactly the topic of the next subsection which will formalise this
remark.

5.2.2 Links BetweenR•2 andR2

The rules of R•2 simulate rules of R2. In order to formalise that, we introduce the semantics of a pointed

constraint in De�nition 5.5. We then show that if a rule of R•2 applies to a pointed constraint p, then a
rule of R2 applies to the semantics of p. Moreover, we show that Merge•, applied to a pointed constraint,
leaves its semantics unchanged. These two properties will be described later in Lemmas 5.6 and 5.7.

De�nition 5.5 (Semantics of Pointed Constraints). The semantics of a pointed constraint p, written JpK, is
the constraints made of all the literals that occur in p. Formally:

JεK = > — Empty stack
Jπ 〈 lK = JπK ∧ l — Non-empty stackq〈
π
∣∣ c〉y = JπK ∧ c — Pointed constraint

In order to link the applicability of a regular transformation rule on the semantics and the applicability of
a pointed transformation rule on the pointed constraint, we need to de�ne what it means for a rule to be
applicable in a context. This is the topic of De�nition 5.6.

De�nition 5.6 (Applicability of a Rule in a Context). Given two constraints c and c′, a transformation
rule is said to be applicable to c in the context c′ if it is applicable6 to c∧ c′ with its pattern fully contained
in c.

Informally, a rule is applicable to c on the context c′ if it is applicable to c in the usual sense, but the
side-conditions – and the conditions of subsumption in particular – also consider the literals of c′. This is
stronger than the usual applicability. In particular, if a rule is applicable to a constraint c in any context,
then it is applicable to c. The contrary is not always true. For instance, the rule P-Abs-Sim is applicable
to x[F]↑ ∧ x =G y but it is not applicable to x[F]↑ ∧ x =G y in the context of y[F]↑.

6The applicability of a rule is de�ned in Section 4.1.1.

117

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

The notion of irreducibility of a constraint with respect to rules in a context is fairly natural. It can be found
in De�nition 5.7.

De�nition 5.7 (Irreducibility of a Constraint With Respect to a Rule in a Context). A constraint c is
irreducible with respect to a set of rulesR in a context c′ if non of the rules ofR applies to c in the context c′.

With this notion of irreducibility in a context, we can formalise what it means for a pointed constraint to
be well-formed in De�nition 5.8.

De�nition 5.8 (Well-Formedness). A pointed constraint p =
〈
π
∣∣ c〉 is well-formed if the following hold:

1. All full similarity atoms of the store c are solved inside p, that is for all x =? y ∈ c:

Vs(JpK) ∩ {x, y} 6= ∅

2. The store c is irreducible with respect toR2 in the context π.

The rest of this section will go as follows. We will �rst state and prove that all the rules of R•2 as well as
Merge• are written so as to respect well-formedness in Lemmas 5.4 and 5.5. We will then proceed to show
in Lemma 5.6 that rules ofR•2 simulate rules ofR2, that is if a rule ofR•2 applies to a pointed constraint p,
then a rule of R2 applies to JpK. We will then show in Lemma 5.7 that Merge• leaves the semantics of
pointed constraints unchanged. This will allow us to conclude that R•2 is a sound and complete strategy
forR2 and proceed to give a new implementation of transform-2 in Section 5.2.3.

Lemma 5.4 (R•2 conserves well-formedness). If p is well-formed and p⇒ p′ viaR•2, then p′ is well-formed.

Proof. Consider p ⇒ p′ via R•2. Let us discuss the rules of R•2 and discuss why they all respect well-
formedness.

• Clash rules7 respect well-formedness trivially because ⊥ does not contain any full similarity atom
(Point 1) and no rule ofR2 can apply to ⊥ (Point 2).

• Most other rules8 (eg. P-Sims•) do not modify the story. They only introduce a literal into the todo-
stack. Moreover, this literal only contains variables that were present in other unsolved literals.
This means that Point 1 holds because the set of full similarity atoms of the store is unchanged and
because it is not possible that the rule introduced a literal about a previously-solved variable. This
also means that Point 2 holds because the store did not change while the todo-stack grew, making
the subsumption only stronger (Lemma 4.4).

• Some remaining rules9 do remove or modify a literal from the story or the todo-stack. However:

– D-NFeat•-Feat and D-NFeat-Feat• remove a negated feature atom. These do not have any impact
on the subsumption.

– R-NAbs•-Abs and R-NSim•-Sim re�ne a negated absence or similarity atom in the todo-stack. This
only makes subsumption stronger but does not change anything about solved variables or
patterns present in the store.

7C-Cycle•, C-Feat•-Abs, C-Feat-Abs•, C-NAbsEmpty•, C-NSimRefl• and C-NSimEmpty•.
8D-Feats•, P-Feat•-Sim, P-Feat-Sim•, P-Abs•-Sim, P-Abs-Sim•, P-Sims•, D-Feats•-Sep, D-Feats-Sep•, D-FeatsEq•-Sep, D-FeatsEq-

Sep•, D-Abs•-Sep, D-Abs-Sep• and D-NSim•.
9D-NFeat•-Feat, D-NFeat-Feat•, R-NAbs•-Abs, R-NAbs-Abs•, R-Sims•, R-NSim•-Sim and R-NSim-Sim•.

118

5.2. A SYSTEM WITH EFFICIENT PATTERN RECOGNITION

– R-NAbs-Abs• and R-NSim-Sim• re�ne a negated absence or similarity atom in the store. This cannot
create a new pattern for any rule of R2. Moreover, as for R-NAbs•-Abs and R-NSim•-Sim, this only
makes subsumption stronger.

– R-Sims• removes similarity atoms both from the todo-stack and the store and introduce a stronger
similarity atom in the todo-stack. This only removes patterns from the store while making the
subsumption stronger.

• Finally, G-SimFull• does not make the full similarity atoms of the store unsolved. Moreover, if c is
irreducible with respect toR2 in the context π, then Gx(c) is too, and GĒx (c) also (Lemma 4.6).

Lemma 5.5 (Merge• conserves well-formedness). If p is well-formed and irreducible with respect toR•2 and
p⇒ p′ via Merge

•
, then p′ is well-formed.

Proof. Consider two pointed constraints p and p′ such that p is well-formed and irreducible with respect
toR•2 and p⇒ p′ via Merge•. There exists π, l and c such that:

p =
〈
π 〈 l

∣∣ c〉 p′ =
〈
π
∣∣ l ∧ c〉

Let us show that p′ is well-formed. We need to show that the points in De�nition 5.8 hold.

• For Point 1, let us take any full similarity atom in l ∧ c. If it is l then, because p is irreducible with
respect to G-SimFull•, it is solved in p. Otherwise, it is in c and was solved in p before, and therefore
in π, l and c and therefore in p′.

• For Point 2, notice that the notion of subsumption has not changed between p and p′ since their
semantics are equal. In general, that means that the side-conditions that held in p still hold in p′. This
means that any rule whose pattern is fully in cwas not applicable in JpK and is still not applicable in
Jp′K. Moreover, any rule whose pattern is in l ∧ c and contains l would have a pointed counterpart
inR•2 applicable in p, which contradicts the fact that p is irreducible with respect toR•2.

p p′

JpK Jp′K

J·K J·K

R•2

R2

Figure 5.14: Commuta-
tive diagram to illustrate
Lemma 5.6

Let us now show that if a rule of R•2 applies to a pointed constraint p, then
a rule of R2 applies to the semantics of p. This is stated in Lemma 5.6. An
illustration is shown in Figure 5.14.

Lemma 5.6 (R•2 simulates a strategy for R2). For any pointed constraints

p and p′ such that p is well-formed and p⇒ p′ viaR•2, then JpK ⇒ Jp′K viaR2.

Proof. Let us take p and p′ two pointed constraints such that p ⇒ p′ via R•2
and p is well-formed. Assume for instance that p ⇒ p′ via P-Abs•-Sim. In this
situation, we have:

p =
〈
π 〈 x[F]↑

∣∣ x =G z ∧ c
〉

p′ =
〈
π 〈 z[F ∩G]↑ 〈 x[F]↑

∣∣ x =G z ∧ c
〉

JpK = JπK ∧ x[F]↑ ∧ x =G z ∧ c
q
p′

y
= JπK ∧ z[F ∩G]↑ ∧ x[F]↑ ∧ x =G z ∧ c

with z[F ∩G]↑ �
〈
π
∣∣ c〉.

Let us show that JpK ⇒ Jp′K via P-Abs-Sim. Clearly, the pattern for this rule, x[F]↑ ∧ x =G z is present
in JpK. Moreover, the side-condition is respected because z[F ∩ G]↑ �

〈
π
∣∣ c〉 is exactly the same as

z[F ∩G]↑ � JπK ∧ c. P-Abs-Sim can therefore indeed apply on JpK and yields Jp′K.

119

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

p0

Jp0K

J·K

p1

Jp1K

J·K

(R•2)n0

(R2)n0

p′1

J·K

Merge• (R•2)n1

(R2)n1

· · ·

· · · · · ·

pk

JpkK

J·K J·K

Merge•〈
ε 〈〈 c

∣∣ >〉 =

c =

=
〈
ε
∣∣ c′〉

= c′

Figure 5.16: Illustration ofR•2 ∪ {Merge•} as a full strategy forR2

All the other cases are similar.

Note that well-formedness explains that R•2 is a complete strategy for R2 as it means that if
〈
π 〈 l

∣∣ c〉 is
irreducible with respect toR•2, then l ∧ c is irreducible with respect toR2 in the context π.

p p′

JpK

J·K J·K

Merge•

Figure 5.15: Commuta-
tive diagram to illustrate
Lemma 5.7

The additional rule, Merge•, has no impact on the semantics. In that sense, it
is only a logistical rule of R•2. This is stated in Lemma 5.7. An illustration is
shown in Figure 5.15.

Lemma 5.7 (Merge• leaves the semantics unchanged). If p⇒ p′ via Merge
•
, then

Jp′K = JpK.

Lemmas 5.6 and 5.7 allow us to see R•2 as a strategy for R2. The well-
formedness allows to conclude that pointed constraints that are irreducible
with respect to both R•2 and Merge• are of the form

〈
ε
∣∣ c〉 with c irreducible

with respect to R2. Lemmas 5.4 and 5.5 explain that well-formedness is re-
spected byR•2 and Merge•. All these results are the bricks to build a new deci-
sion procedure for the satis�ability of constraints. This is the topic of the next

subsection.

5.2.3 Deciding the Satis�ability of Constraints

The previous subsection built the tools to justify that we can use R•2 ∪ {Merge•} as a full strategy of
evaluation forR2. Indeed, say one wants to applyR2 fully on a constraint c.

1. We start by de�ning a pointed constraint p0 =
〈
ε 〈〈 c

∣∣ >〉. p0 is trivially well-formed. Moreover,
Jp0K = c.

2. One can then apply R•2 on p0 for as many times as it is possible – call that number n0. This yields
a pointed constraint p1. By Lemma 5.6, there are n0 steps of R2 that allow to transform Jp0K into
Jp1K. By Lemma 5.4, p1 is well-formed.

3. One can then apply Merge• on p1. This yields a pointed constraint p′1. By Lemma 5.7, Jp′1K = Jp1K.
By Lemma 5.5, and since p1 is irreducible with respect toR•2, p′1 is well-formed.

4. We can repeat the steps 2 and 3 as many times as necessary until we reach a pointed constraint pk
to which neitherR•2 nor Merge• can apply. pk is well-formed and there is a chain a transformations
of R2 from Jp0K to JpkK. Since Merge• is not applicable to pk, pk must be of the form

〈
ε
∣∣ c′〉. Since

pk is well-formed, c′ is irreducible with respect toR2. Moreover, JpkK = c′.

This whole process is illustrated in Figure 5.16.

Figure 5.17 introduces a function transform-2-pointed which does exactly what we have described
in this example. It assumes given a well-formed pointed constraint. Instead of using transform-2(c)
from Section 5.1.3, one can thus use transform-2-pointed(

〈
ε 〈〈 c

∣∣ >〉). This is basically doing the

120

5.2. A SYSTEM WITH EFFICIENT PATTERN RECOGNITION

1 function apply-rule-2-pointed (rule, pointed-constraint)
2 : pointed-constraint or ⊥
3
4 function choose-rule-2-pointed (p : pointed-constraint) : rule
5 return any rule of R•2 applicable to p
6
7 function transform-2-pointed (p : pointed-constraint)
8 : constraint or ⊥
9 if p is reducible in R•2

10 let r = choose-rule-2-pointed(p)
11 match apply-rule-2-pointed(r, p)
12 | ⊥ -> return ⊥
13 | p′ -> return transform-2-pointed(p′)
14 else
15 match p

16 |
〈
ε
∣∣ c〉 -> return c

17 |
〈
π 〈 l

∣∣ c〉 -> return transform-2-pointed(
〈
π
∣∣ l ∧ c〉)

Figure 5.17: Function transform-2-pointed

same thing except that transform-2-pointed does not su�er the issue of transform-2 which requires
matching patterns anywhere in a constraint.

This is particularly useful to decide the satis�ability of a constraint incrementally. Say one wants to decide
whether c ∧ c′ is satis�able, knowing that c′ is irreducible with respect toR2. InR2, the only solution is
to call the whole function transform-2 on c ∧ c′. Using R•2, we can leverage the fact that c′ is already
irreducible with respect toR2 to avoid trying to �nd patterns in it.

Consider Figure 5.18. In this �gure, we rede�ne transform-2 as a simpler wrapper around transform-
2-pointed. We also de�ne a function add-transform-2 that appliesR2 on c∧ c′ when c′ is irreducible
with respect to R2. This basically consists in considering

〈
ε 〈〈 c

∣∣ c′〉. However, the pointed constraint
given to transform-2-pointed must be well-formed. Therefore, we need to make sure �rst that all the
full similarity constraints of c′ are solved. This goes by rewriting c using the rule G•-SimFull:

G•-SimFull π
∣∣ x =? y ∧ c ⇒ π{x 7→ y}

∣∣ x =? y ∧ c (x ∈ V(π), x /∈ V(c))

5.2.4 Discussions

The technique developed in this section is not speci�c toR2 in any way. It can very easily be adapted to
other systems such asR1 orR2 extended with all the extra rules mentioned in Section 5.1.4.

One natural considerations with these pointed rules is whether it makes a di�erence to insert the new
literals in the todo-stack under the pointed literal or above it – at the top of the stack. Consider for instance
the rule P-Feat-Sim•.

P-Feat-Sim• π 〈 x =G z
∣∣ x[f]y ∧ c ⇒ π 〈 z[f]y 〈 x =G z

∣∣ x[f]y ∧ c
(f ∈ G, z[f]y �

〈
π
∣∣ c〉)

Is there a di�erence between this formulation or a formulation in which the added literal z[f]y appeared
on top of the stack, as in the example below?

P-Feat-Sim•(alt) π 〈 x =G z
∣∣ x[f]y ∧ c ⇒ π 〈 x =G z 〈 z[f]y

∣∣ x[f]y ∧ c
(f ∈ G, z[f]y �

〈
π
∣∣ c〉)

121

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1 function replace-in-todo-stack (p : pointed-constraint)
2 : pointed-constraint
3 if G•-SimFull is applicable to p
4 return replace-in-todo-stack(apply-rule-2(G•-SimFull, p))
5 else
6 return p
7
8 function add-transform-2 (c : constraint , c′ : constraint)
9 : constraint or ⊥

10 let p =
〈
ε 〈〈 c

∣∣ c′〉
11 let p′ = replace-in-todo-stack(p)
12 return transform-2-pointed(p′)
13
14 function transform-2 (c : constraint) : constraint or ⊥
15 return add-transform-2-pointed(c, >)

Figure 5.18: Functions transform-2 and add-transform-2

The short answer is that, because most of our rules have side-conditions about subsumption, there is no
di�erence at all in term of correction of the algorithm. In fact, because of this very reason, the order of
literals in the stack does not really matter for correction of the algorithm.

There remains considerations of complexity. In that regard, we believe the way to improve e�ciency is to
write rules in a way that increases the chances to �nd a clash. For instance, when introducing a similarity,
it might be interesting to do so on the top of the stack. Indeed, these literals can bring huge changes to
the store, including possibly by rewriting one variable into the other. Such a computation is more likely
to detect a clash between several literals. We do not know of formal arguments supporting one order of
the other. In an actual implementation, the right way to proceed is therefore to check such intuitions by
testing and benchmarking di�erent solutions.

It might seem unsatisfactory that the test of subsumption needs to consider the todo-stack as well as the
store. Indeed, this means that a lot of rules need to crawl the whole todo-stack to decide whether they
are applicable, which seem to defeat the very locality provided by pointed constraints. As mentioned in
Section 4.1, the test of subsumption is local in the sense that we only need to check the literals that use
exactly the same variables as the literal we are considering. In an actual implementation, that means that
we want to organise both the store and the todo-stack so as to have an easy way to access the literals by
the variables they contain.

5.3 Threaded Constraints

Section 5.1 has presented a system of rules R2 that do not introduce disjunctions in its handling of
constraints and Section 5.2 has presented an e�cient and incremental way to test satis�ability of these
constraints. This system and its decision procedure are an important step towards computing faster on
speci�cations. However, they do not solve the problem of disjunctions coming from the speci�cations
themselves, and in particular the ones coming from the function noresolve, presented in Figure 3.20 and
restated in this section for convenience.

Unfortunately, our constraints are not rich enough to express the non-resolution of a path. We envision
two solutions to this problem. The �rst approach is to extended the logical language by introducing
new predicates which express properties on paths. This has been done for feature tree logics in the
past [Backofen & Smolka 1995; Backofen 1995] as a way to obtain the property of quanti�er elimination

122

5.3. THREADED CONSTRAINTS

1 function noresolve-s(x : variable , π : variable stack , q : path)
2 : Σ1-formula
3 match q
4 | / -> return ⊥
5 | f /q′ -> return x[f]↑ ∨ ∃y · (x[f]y ∧ noresolve-s(y, π 〈 x, q′))
6 | ./q′ -> return noresolve-s(x, π, q′)
7 | ../q′ ->
8 match π
9 | ε -> return noresolve-s(x, ε, q′)

10 | π′ 〈 y -> return noresolve-s(y, π′, q′)
11
12 function noresolve(r : variable , cwd : path, p : path)
13 : Σ1-formula
14 match p
15 | abs(q) -> return noresolve-s(r, ε, q)
16 | rel(q) -> return noresolve-s(r, ε, cwd/q)

Figure 3.20: Function noresolve for any path

r

⊥
usr

r′

x′[c{lib}]↑

y′[c{foo}]↑

z′[?]↑

usr

lib

foo

=c{usr} r

x

⊥

usr

lib

r′

x′

y′[c{foo}]↑

z′[?]↑

usr

lib

foo

=c{usr}

=c{lib}

r

x

y

⊥

usr

lib

foo

r′

x′

y′

z′[?]↑

usr

lib

foo

=c{usr}

=c{lib}

=c{foo}

r =? r
′

x

y

z

usr

lib

foo

Figure 5.19: Speci�cation cases of mkdir -p /usr/lib/foo

in the strict sense. We refer the reader to the introduction of Section 4.2 for this aspect. In the case of
feature tree logics, the needed extension of the language is however substantial, and that is already the
case without a similarity predicate.

For instance, if q is a list of features, what can be said of ∃x · (x[q]↑ ∧ x[f]y)? What does it imply on y?
In this case, it depends whether q starts with f or not. If it does, that is if q = f 〉 q′, then this implies
y[q′]↑. If it does not, then this does not imply anything on y. This example shows that the handling of
path constraints requires new rules that will inspect paths and potentially propagate path information
from variables to others.

This �rst approach is also speci�c to path constraints. It does allow us to reimplement resolve as one
path atom and noresolve as one negated path atom. Although resolve is the main reason why we
are considering this issue, we would also enjoy it if it could be more general. Consider the utility call
mkdir -p /usr/lib/foo for example. mkdir -p creates the given directories recursively if they do
not exist already: if /usr does not exist, it is created, then if /usr/lib does not exist, it is created,
and �nally, if /usr/lib/foo does not exist, it is created. The speci�cation for this call comprises four
cases depending on the status of /usr/lib/foo. They are represented in Figure 5.19. This speci�cation
requires disjunctions as it is out of reach of constraints, even extended with path atoms.

A second approach, presented in this section, is to extend the expressivity of constraints so that they
can hide certain forms of disjunctions. We use our test of satis�ability as a test of entailment which we
can then use to build a decision procedure for such richer constraints called threaded. These threaded

123

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

constraints are the pair of a main constraint and a list of threads. Threads are basically of the form l→ t
where l is a literal and t is another threaded constraint. They are used to postpone computation until we
reach a situation where we know for sure that l holds, which is when l is entailed by the main constraint.

This approach is quite similar to the notion of residuation used in constraint logic programming as a
strategy to mitigate combinatorial explosions by delaying computation [Smolka 1993]. This is used in the
Oz programming model to implement task synchronisation [Smolka 1995]. The term of residuation itself
comes from previous work on logics and functional programming also introducing mechanisms to delay
computation [Aït-Kaci & Nasr 1989]. These notions of having a main constraint from which we can ask

entailment questions and tell new facts also reminds of the work of Saraswat and Rinard on concurrent
constraint programming [Saraswat & Rinard 1990].

We introduce such threaded constraints in Section 5.3.1 and show how they allow us to rede�ne noresolve.
We discuss properties of such constraints in Section 5.3.2. Finally, we show how to build functions to rea-
son about such constraints Section 5.3.3 and we discuss them in Section 5.3.4.

5.3.1 Entailment and Threaded Constraints

Let us �rst de�ne the notion of entailment of a formula by another one in De�nition 5.9 and state its
relationship to satis�ability in Lemma 5.8.

De�nition 5.9 (Entailment). A formula φ entails a formula ψ, written φ |= ψ if φ implies ψ in any
valuation, that is if |=FT ∀̃ · (φ→ ψ).

A formula φ disentails a formula ψ if φ entails ¬ψ.10

Lemma 5.8 (Entailment and Satis�ability). φ entails ψ if and only if the conjunction of φ and the negation

of ψ is unsati�able. Formally, φ |= ψ if and only if |=FT ¬∃̃ · (φ ∧ ¬ψ).

Proof. For any formulas φ and ψ, φ → ψ is de�ned as ¬φ ∨ ψ and the following chain of equivalences
holds:

∀̃ · (¬φ ∨ ψ)

↔ ¬¬∀̃ · (¬φ ∨ ψ)

↔ ¬∃̃ · ¬(¬φ ∨ ψ)

↔ ¬∃̃ · (φ ∧ ¬ψ)

Therefore, φ |= ψ if and only if we do not have |=FT ∃̃ · (φ ∧ ¬ψ).

Lemma 5.8 shows that the notion of entailment is close to that of satis�ability. We can therefore leverage
our results on the satis�ability from previous sections to handle this new notion.

We already know how to handle constraints incrementally and decide their satis�ability. We are going to
build a solver able to handle threaded constraints. They are composed of a main constraint to which we
add threads. Each thread is an implication whose left-hand side is a literal called guard and whose right-
hand side is another threaded constraint. The formal de�nition of threaded constraints can be found in
De�nition 5.10.

10Note that disentailing is di�erent from not entailing.

124

5.3. THREADED CONSTRAINTS

De�nition 5.10 (Threaded Constraints). A threaded constraint t is a formula of the form

t = c ∧
n∧

i=1

(li → ti)

where c is a constraint, n ≥ 0 and for all i, li is a literal and ti is a threaded constraint. This de�nition
is taken to be inductive, that is we consider only �nite formulas. The base case for the induction occurs
when n = 0. c is the main constraint of t. Each li → ti is a thread of t. Each li is the guard of the thread
li → ti. We typically use τ to represent the part of the threaded constraint consisting of only threads.

Basically, we are going to use the current solver as before on the main constraint. The threads will remain
inactive until the guard is entailed by the main constraint, in which case the threads will be activated and
their threaded constraints merged with the main constraint. This is a way to postpone some computation
until the moment when we are sure that it does matter. In term of worst-case complexity, this strategy
does not bring any improvement. We will see, however, that in a lot of real-world situations, postponing
is useful and important.

Such threaded constraints can be used to express non-resolution of a path. As an example, recall For-
mula 3.8 that speci�es the preconditions of the error cases of rm /etc/rancid/lg.conf:

φ2
(p)(r) = ∃x, y ·

r[etc]↑
∨ (r[etc]x ∧ x[rancid]↑)
∨ (r[etc]x ∧ x[rancid]y ∧ y[lg.conf]↑)

(3.8)

These are in fact the result of the unfolding of the noresolve macro, de�ned in Figure 3.20. We can
however unify11 these speci�cation cases in one thread by keeping the disjunctions inside of the formula:

φ
(p)
2 (r) = ∃x, y · (¬r[etc]↑ → (r[etc]x ∧ (¬x[rancid]↑ → (x[rancid]y ∧ y[lg.conf]↑)))) (5.6)

This presentation can be seen as a lazy form of the non-resolution of the path /etc/rancid/lg.conf.
The macro noresolve can thus be slightly rewritten to produce a similar thread instead of a disjunction.
The new formulation can be found in Figure 5.20.

These threaded constraints can also be used to merge several speci�cation cases into one. Let us con-
sider the speci�cation of rmdir /usr/lib. It has one success case (Formula 5.7) and two error cases
(Formulas 5.8 and 5.9). Graphical representations can be found in Figures 5.21 and 5.22.

φ1
(p)(r) = ∃x, y, z · (r[usr]x ∧ x[lib]y ∧ y[?]↑)

φ1
(t) (r, r′) = ∃x, x′ · (r =c{usr} r

′ ∧ x =c{lib} x
′ ∧ r′[usr]x′ ∧ x′[lib]↑)

φ1 (r, r′) = φ1
(p)(r) ∧ φ1

(t)(r, r′)

(5.7)

φ2
(p)(r) = ∃x · (¬r[usr]↑ → (r[usr]x ∧ x[lib]↑))

φ2
(t) (r, r′) = r =? r

′

φ2 (r, r′) = φ2
(p)(r) ∧ φ2

(t)(r, r′)

(5.8)

φ3
(p)(r) = ∃x, y · (r[usr]x ∧ x[lib]y ∧ ¬y[?]↑)

φ3
(t) (r, r′) = r =? r

′

φ3 (r, r′) = φ3
(p)(r) ∧ φ3

(t)(r, r′)

(5.9)

11Using the fact that A ∨B is equivalent to ¬A→ B by de�nition.

125

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1 function noresolve-s(x : variable , π : variable stack , q : path)
2 : Σ1-formula
3 match q
4 | / -> return ⊥
5 | f -> return x[f]↑
6 | f /q′ -> return ¬x[f]↑ → ∃y · (x[f]y ∧ noresolve-s(y, π 〈 x, q′))
7 | ./q′ -> return noresolve-s(x, π, q′)
8 | ../q′ ->
9 match π

10 | ε -> return noresolve-s(x, ε, q′)
11 | π′ 〈 y -> return noresolve-s(y, π′, q′)
12
13 function noresolve(r : variable , cwd : path, p : path)
14 : Σ1-formula
15 match p
16 | abs(q) -> return noresolve-s(r, ε, q)
17 | rel(q) -> return noresolve-s(r, ε, cwd/q)

Figure 5.20: Function noresolve, threaded

r

∃x

∃y[?]↑

usr

lib

r′

∃x′

⊥

usr

lib

=c{usr}

=c{lib}

Figure 5.21: Speci�cation of success cases
for rmdir /usr/lib

r =? r
′

⊥
usr

r =? r
′

∃x

⊥

usr

lib

r =? r
′

∃x

∃¬y[?]↑

usr

lib

Figure 5.22: Speci�cation of error cases for rmdir
/usr/lib

126

5.3. THREADED CONSTRAINTS

1 function ifresolve-s(x : variable , π : variable stack , q : path,
2 F : variable -> Σ1-formula) : Σ1-formula
3 match q
4 | / -> return F(x)
5 | f /q′ -> return ¬x[f]↑ → ∃y · (x[f]y ∧ ifresolve-s(y, π 〈 x, q′, F))
6 | ./q′ -> return ifresolve-s(x, π, q′, F)
7 | ../q′ ->
8 match π
9 | ε -> return ifresolve-s(x, ε, q′, F)

10 | π′ 〈 y -> return ifresolve-s(y, π′, q′, F)
11
12 function ifresolve(r : variable , cwd : path, p : path,
13 F : variable -> Σ1-formula) : Σ1-formula
14 match p
15 | abs(q) -> return ifresolve-s(r, ε, q, F)
16 | rel(q) -> return ifresolve-s(r, ε, cwd/q, F)

Figure 5.23: Function ifresolve

We can remove disjunctions from the error cases, not only by using the new form of noresolve, but also
by merging the preconditions of the error cases together, as shown in Formula 5.10.

φ
(p)
2−3(r) = ∃x, y, z · (¬r[usr]↑ → (r[usr]x ∧ (¬x[lib]↑ → (x[lib]y ∧ ¬y[?]↑)))) (5.10)

Which can be read as: if the path /usr/lib resolves, then it points to something that is not empty.12 This
suggests the introduction of a macro ifresolve that would take as argument the input root, the current
working directory, the path to resolve, and a function taking a variable as input and returning a threaded
constraint on this variable. The de�nition of such a macro can be found in Figure 5.23. We can then give
the precondition of the error cases of a generic rmdir q/f in Formula 5.11.

φ
(p)
2−3(r) = ifresolve(r, cwd, p, (fun z -> ¬z[?]↑)) (5.11)

Moreover, we can simply rewrite noresolve(r, cwd, p) as ifresolve(r, cwd, p,⊥).

Let us now show how to reason with such threaded constraints. We add the rule T-GuardEntailed that
describes how to activate a thread:

T-GuardEntailed c ∧ (l→ t) ∧ τ ⇒ c ∧ t ∧ τ (c |= l)

This rule takes a constraint c and a thread l → t and activates the thread – that is, adds t to c – when c
entails its guard l. If c does not entail l, the thread is said to be inactive. These two notions are de�ned in
De�nitions 5.11 and 5.12.

De�nition 5.11 (Activation of a Thread). In a threaded constraint c∧ (l→ t)∧ τ where c is a constraint,
τ is a list of threads and c |= l, activating the thread l→ t means returning c ∧ t ∧ τ .

De�nition 5.12 (Inactive Thread). In a threaded constraint c ∧ (l→ t) ∧ τ where c is a constraint and τ
is a list of threads, the thread l→ t is inactive if c does not entail l.

Testing whether c |= l is easy because, by Lemma 5.8, it is equivalent to test that c ∧ ¬l is unsati�able.
Here, c ∧ ¬l is a constraint and we can test their satis�ability using transform-2. In the case where c is

12If we handle �le types, this would be: if the path /usr/lib resolves, then if it is a directory, then it is empty.

127

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

(0)
r[f]z ∧ z[?]↑
∧ (¬r[f]↑ → (r[f]x ∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑))))

(1) T-GuardEntailed ⇒ r[f]z ∧ z[?]↑ ∧ r[f]x
∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑))

(2) (R2)? ⇒ r[f]x ∧ x[?]↑ ∧ z =? x
∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑))

Figure 5.24: Transformation of Formula 5.12

already known to be irreducible with respect toR2, we can use the incrementality of add-transform-2
to make this test of entailment almost trivial.

Let us consider Formula 5.12 as an example. It combines a thread similar to that of Formula 5.6 in con-
junction to the main constraint r[f]z ∧ z[?]↑.

r[f]z ∧ z[?]↑
∧ (¬r[f]↑ → (r[f]x

∧ (¬x[g]↑ → (x[g]y ∧ y[h]↑))))
(5.12)

Let us now describe the steps of transformation from Formula 5.12 usingR2 and our new rule T-GuardEntailed.
Intermediary steps can be found in Figure 5.24.

(0) Start from Formula 5.12. Notice that the main constraint is irreducible with respect toR2 and that
it entails the guard ¬r[f]↑. Indeed, r[f]z∧z[?]↑∧¬¬r[f]↑ leads to a clash between r[f]z and r[f]↑.

(1) Rewrite the threaded constraint using T-GuardEntailed. This activates the thread and adds r[f]x ∧
(¬x[g]↑ → (x[f]y ∧ y[h]↑)) to the main constraint. The left-hand side of this conjunction joins the
main constraint while the right-hand side joins the list of threads.

(2) Rewrite the main constraint using R2. The steps are not detailed. Notice now that the main con-
straint is irreducible with respect to R2 and that it does not entail the guard ¬x[g]↑: the thread is
inactive.13

In this example, the obtained formula is satis�able. Unfortunately, we cannot always use R2 and T-
GuardEntailed to decide satis�ability easily. This is the topic of the next subsection.

5.3.2 Properties of Threaded Constraints

Let us �rst state in Lemma 5.9 that these two newly added rules behave nicely.

Lemma 5.9 (T-GuardEntailed is an Equivalence). T-GuardEntailed performs an equivalence, that is if t⇒ t′ via
T-GuardEntailed, then |=FT ∀̃ · (t↔ t′).

Now comes the question of deciding the satis�ability of threaded constraints. The satis�ability of a
threaded constraint with just one thread comes easily from the side-condition of the rule T-GuardEntailed.

Lemma 5.10 (Satis�ability of Threaded Constraints With One Inactive Thread). A threaded constraint

with only one inactive thread is satis�able. That is, for all threaded constraint t = c ∧ (l → t′) where c is a
constraint, if l→ t′ is inactive in t, then |=FT ∃̃ · t.

13We can in fact see here that the main constraint disentails the guard, that is entails its negation x[g]↑. This means that the
thread can never be activated and could be discarded from the threaded constraint.

128

5.3. THREADED CONSTRAINTS

Proof. If c ∧ (l → t′) is irreducible with respect to T-GuardEntailed, then c does not entail l. By Lemma 5.8,
c ∧ ¬l is satis�able. And c ∧ ¬l implies c ∧ (l→ t′).

As soon as one considers a constraint with several inactive threads, the satis�ability is not guaranteed.
Consider Formula 5.13 as an example of this. 14

> ∧ (x[f]↑ → ⊥) ∧ (¬x[f]↑ → ⊥) (5.13)

Formula 5.13 is clearly unsati�able although the two threads are inactive (because> does not entail x[f]↑
nor ¬x[f]↑). In the context of the CoLiS project, the huge majority of our threads have a guard that is
negated absence atom on a singleton. Sadly, even for such limited guards, the inactivity of threads does
not imply that the whole threaded constraint is satis�able. Consider Formula 5.14 as an example of this.

¬x[f, g]↑ ∧ (¬x[f]↑ → ⊥) ∧ (¬x[g]↑ → ⊥) (5.14)

Formula 5.14 is also unsati�able although its two threads are inactive (because ¬x[f, g]↑ does not entail
¬x[f]↑ nor ¬x[g]↑). If we restrict threaded to only use negated absence atoms in guards and to not use
any negated atom in the main constraint, then we �nally have the result that we want. This is stated in
Lemma 5.11.

Lemma 5.11 (Satis�ability of Threaded Constraints With Only Positive Literals in Main Constraint and
Only Negated Absence Atoms in Guards). For all threaded constraint t = c ∧

∧
i(¬xi[Fi]↑ → ti), where

c is a constraint with only positive literals and for all i, xi is a variable, Fi is a set of features and ti is a
threaded constraint, if for all i, the thread ¬xi[Fi]↑ → ti is inactive, then t is satis�able.

Proof. In fact, when there are no negated atoms in a satis�able constraint, then it enjoys an minimal

valuation, that is a valuation that is constructed from the feature atoms only, not adding any other feature.
For each variable x in such a constraint c enjoying such a minimal valuation ρ, dom(ρ(x)) = {f | ∃y ·
x[f]y ∈ c}.15

If such a constraint c happens to not entail several negated absence atoms of the form ¬xi[Fi]↑, it means
that c ∧ xi[Fi]↑ is satis�able. One can in fact notice that it is satis�able by the minimal valuation that
satis�es c. The same valuation therefore satis�es all the c ∧ xi[Fi]↑, which means that it also satis�es
c ∧
∧

i xi[Fi]↑ and therefore c ∧
∧

i(¬xi[Fi]↑ → ti).

Within the CoLiS project, we �nd ourselves in this situation most of the time, although not always. Of
course, there is always the possibility to unfold the threads by replacing l → t by the disjunction of ¬l
and the unfolding of t. However, for n threads, this creates a DNF of at least 2n constraints16. We will
show in Section 5.3.3 how this unfolding is done. We will see that, in practice, this is an e�cient way of
doing things.

In fact, the problem of deciding the satis�ability of threaded constraints is actually quite easily shown to
be NP-complete, even if one allows only negated absence atoms in the guards, as it is the case in the CoLiS
project. In fact, it is also NP-complete if we only allow threads of the restricted form ¬x[f]↑ → x[f]y
using which we can still write noresolve. These three facts are stated in Lemma 5.12.

Lemma 5.12 (NP-Completeness of Satis�ability of Threaded Constraints). The problem of deciding the

satis�ability of threaded constraints is NP-complete

14Of course, such a formula might seem silly. It is susceptible to appear in real-world situation, although not with ⊥ directly
but with, in each thread, a constraint that is inconsistent with the main constraint.

15This shows in the proof of Theorem 5.1 by the fact that, where there are no negated atoms, then D is empty.
16And potentially much more depending on the complexity of the threads in this threaded constraint.

129

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1. in general,

2. on threaded constraints where guards only contain negated absence atoms,

3. on threaded constraints where threads are always of the form ¬x[f]↑ → x[f]y for some x, y and f .

Proof. Point 1 is of course a consequence of Point 2 or Point 3. For the proof of the last two points, we
�rst introduce an intermediary satis�ability problem LIMSAT in De�nition 5.13 and show that it is NP-
complete in Lemma 5.13. We then come back to threaded constraints and show that we can encode any
LIMSAT instance in a threaded constraint.

De�nition 5.13 (LIMSAT). LIMSAT17 is a Boolean satis�ability problem that focuses on Boolean formulas
under the form of a conjunction of disjunctions. Each disjunction can be of the form:

ȳ1 ∨ · · · ∨ ȳn — only negative variables
x ∨ ȳ1 ∨ · · · ∨ ȳn — one positive variable and then only negative variables
x1 ∨ x2 — two positive variables

Lemma 5.13 (NP-Completeness of LIMSAT). LIMSAT is NP-complete.

Proof. Any instance of LIMSAT is obviously an instance of SAT [Cook 1971; Garey & Johnson 1979]. Take
now an instance of 3-SAT [Cook 1971; Garey & Johnson 1979] and consider the disjunctions that do not
belong to LIMSAT directly. They are the 3-disjunctions containing at least two positive variables. Name
those x1 and x2, name the third literal l, take two fresh variables a and b and apply then the following
transformation everywhere in the formula:

x1 ∨ x2 ∨ l (x1 ∨ a) ∧ (x2 ∨ b) ∧ (l ∨ ā ∨ b̄)

The transformation is polynomial (it multiplies the size of the formula by at most 3) and the initial and
resulting formulas are equisatis�able. Moreover, it is a LIMSAT formula.18Since 3-SAT is NP-complete,
then so is LIMSAT. The technique in this proof comes directly from the technique used to prove NP-
completeness of 3-SAT.

Proof of Lemma 5.12, Point 2. Take any LIMSAT formula. Using its boolean variables as features, and only
one tree variable r, transform all disjunctions from the LIMSAT problem using the following:

ȳ1 ∨ · · · ∨ ȳn ¬r[y1, . . . , yn]↑
x ∨ ȳ1 ∨ · · · ∨ ȳn ¬r[x]↑ → ¬r[y1, . . . , yn]↑
x1 ∨ x2 ¬r[x1]↑ → r[x2]↑

The transformation is polynomial and yields indeed a threaded constraint where threads use only absence
atoms. The threaded constraint is satis�able in FT if and only if the LIMSAT instance is satis�able.

Proof of Lemma 5.12, Point 3. It is to be noted that the same result can be obtained even when restraining
the form of threaded constraints to ¬r[x]↑ → r[x]v, form which is absolutely required in CoLiS.

17We could not �nd any reference to the LIMSAT problem in literature. This is however just “yet another boolean satis�ability
problem”.

18It is also a formula of 3-LIMSAT, where 3-LIMSAT is LIMSAT except all constraints have at most three literals, thus proving
that 3-LIMSAT is also NP-complete. Not that this is a useful comment though.

130

5.3. THREADED CONSTRAINTS

x

y ¬z[G]↑

=c{f}

(a) Left-hand side

x

y ¬z[G]↑

f f
=c{f}

(b) Right-hand side

Figure 5.25: Formula 5.17

Consider Formula 5.15 and assume f /∈ G19.

¬x[f]↑ → ¬x[G]↑ (5.15)

It is equivalent to Formula 5.16 and its unfolded version Formula 5.17. A graphical representation of the
latter can be found in Figure 5.25.

∃y, z · (¬x[f]↑ → x[f]y) ∧ (¬x[f]↑ → x[f]z) ∧ x =c{f} y ∧ ¬z[G]↑ (5.16)

∃y, z · (x[f]↑ ∧ x =c{f} y ∧ ¬z[G]↑)
∨ ∃y, z · (x[f]y ∧ x[f]z ∧ x =c{f} y ∧ ¬z[G]↑) (5.17)

The idea behind such a formula is the following: we want to only allow feature atoms in the right-hand-
side of a thread. The two feature atoms on the same variable and feature cover hide then an equality which
can later be discovered through D-Feats. We can thus use that to hide the literal we need on the variable
z and, if the thread activates, then the literal will apply to the other variable too. However, we cannot
directly link z and x that way because the feature atoms must come from x, and cycles are forbidden. We
can use a similarity atom to link x and y on anything but f (otherwise, there would be a cycle). Since we
assumed that f /∈ G, this last bit is not a limitation.

This result does not make threaded constraints useless. It simply means that, in the general case, we
will have no other choice but to unfold the threaded constraint into an exponentially bigger DNF. This
means that these threaded constraints bring no improvement to the worst-case situation. There are two
important points to be noted however. Firstly, as mentioned previously, in the CoLiS project, we often
�nd ourselves in the situation where all guards are negated absence atoms and there are no negated
atoms in the main constraint. In this case, by Lemma 5.11, the satis�ability is guaranteed. Secondly,
and more importantly, the unfolding does not have to be done in one go. It is possible to test all the
possible unfoldings in a lazy manner also. It is then su�cient to stop as soon as we have found a satis�able
unfolding. In practice, and in the CoLiS project in particular, the �rst unfolding (consisting of the negation
of all the guards) is satis�able. This will be described in Section 5.3.3.

5.3.3 Implementation of Threaded Constraints

In this subsection, let us implement a solver for threaded constraints. It is a fairly simple task: we use the
solvers for constraints on the main constraint and once we reach an irreducible form, we check whether it
entails the guards. The threads whose guard is entailed are activated and their threaded constraint merged
with the main constraint. We keep doing that until all the remaining threads are inactive.

19This is not a limitation as we can preprocess the LIMSAT instance to remove any disjunctive clause that contains both a
variable and its negation.

131

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1 function add-transform-2-main-constraint
2 (c ∧ τ : threaded-constraint ,
3 c′ ∧ τ ′ : threaded-constraint) : threaded-constraint or ⊥
4 match add-transform-2(c, c′)
5 | ⊥ -> return ⊥
6 | c′′ -> return c′′ ∧ τ ∧ τ ′
7
8 function entails(c ∧ τ : threaded-constraint , l : literal) : boolean
9 match add-transform-2(¬l, c)

10 | ⊥ -> return true
11 | _ -> return false
12

Figure 5.26: Helper functions for activate-threads

Let us start in Figure 5.26 by de�ning two helpers: add-transform-2-main-constraint (Line 1) and
entails (Line 8). The former is a simple wrapper around add-transform-2: it takes two threaded
constraints, applies add-transform-2 on their main constraints and merges their threads.

The latter takes a threaded constraint c ∧ τ and a literal l and tests whether c entails l. This is done by
checking whether c ∧ ¬l is unsatis�able. Note that this test of entailment is correct because if c |= l then
c ∧ τ |= l. It is not complete in the sense that it is possible to have a threaded constraint t and a literal l
such that t |= l but entails(t, l) = false. This comes from the fact that we only consider threads
once they have been activated. This is not a problem as we are already incomplete as discussed in the
previous subsection.

Consider now Figure 5.27. It de�nes the main function of this solver: activate-threads. This function
takes a constraint and a list of threads and tries to activate all the threads. It returns a threaded constraint
in which all threads are inactive. It works as follows:

• activate-threads (Line 21) is in fact a thin wrapper around activate-threads-loop (Line 1).
The loop is started with a constraint, a list of threads and false. The constraint is generalised to
a threaded constraint t so that it can contain threads that have already been processed20. The list
of threads τ is the same. The boolean activated indicates whether a thread has been activated on
this round of the loop. If so, it is necessary to do one more round because the activation can change
the main constraint and make some previously inactive threads active.

• activate-threads-loop starts by pattern matching on the threads τ (Line 5). If there are no
threads (Line 6), we are at the end of a round of the loop. If one thread has been activated,
we start again recursively (Line 9). Otherwise, we are done (Line 11): the main constraint of t is
irreducible and all its threads are inactive.

• If there are threads (Line 13), we consider one of them, l → t′, and name the others τ ′. We check
whether t entails the guard l (Line 14).

• If it does, we activate the thread (Line 15) and add t′ to t. The result can be ⊥ if we detect an
unsatis�ability. In that case, we return ⊥ immediately (Line 16). Otherwise, we continue looping
through the threads after having marked the activated boolean as true (Line 17).

• If it does not (Line 18), the thread is inactive. We add it to t and loop on the other threads (Line 19).

20And detected as inactive, for instance.

132

5.3. THREADED CONSTRAINTS

1 function activate-threads-loop
2 (t : threaded-constraint , τ : list of threads
3 activated : boolean) : threaded-constraint or ⊥
4
5 match τ
6 | > ->
7 if activated
8 let c ∧ τ ′ = t
9 return activate-threads-loop(c, τ ′, false)

10 else
11 return t
12
13 | (l→ t′) ∧ τ ′ ->
14 if entails(t, l)
15 match add-transform-2-main-constraint(t′, t)
16 | ⊥ -> return ⊥
17 | t′′ -> return activate-threads-loop(t′′, τ ′, true)
18 else
19 return activate-threads-loop(t ∧ (l→ t′), τ ′, activated)
20
21 function activate-threads
22 (c : constraint , τ : list of threads)
23 : threaded-constraint or ⊥
24 return activate-threads-loop(c, τ , false)

Figure 5.27: Function activate-threads, key element to transform-2-threaded and add-trans-
form-2-threaded

1 function add-transform-2-threaded
2 (c ∧ τ : threaded-constraint ,
3 c′ ∧ τ ′ : threaded-constraint) : threaded-constraint or ⊥
4 match add-transform-2(c, c′)
5 | ⊥ -> return ⊥
6 | c′′ -> return activate-threads(c′′, τ ∧ τ ′)
7
8 function transform-2-threaded (t : threaded-constraint)
9 : threaded-constraint or ⊥

10 return add-transform-2-threaded(t, >)

Figure 5.28: Functions transform-2-threaded and add-transform-2-threaded

133

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1 function add-check-sat-threaded
2 (c ∧ τ : threaded constraint ,
3 c′ ∧ τ ′ : threaded constraint) : boolean
4 match add-transform-2(c, c′)
5 | ⊥ -> return false
6 | c′′ ->
7 match τ ∧ τ ′
8 | > -> return true
9 | (l→ t) ∧ τ ′′ ->

10 match add-transform-2(¬l, c′′)
11 | c′′′ ->
12 if check-sat-threaded(c′′′ ∧ τ ′′)
13 return true
14 else
15 return add-check-sat-threaded(t, c′′ ∧ τ ′′)
16 | ⊥ -> return add-check-sat-threaded(t, c′′ ∧ τ ′′)
17
18 function check-sat-threaded(t : threaded-constraint) : boolean
19 return add-check-sat-threaded(t, >)

Figure 5.29: Function check-sat-threaded

Consider �nally Figure 5.28. It gives the implementation for the two functions transform-2-threaded
and add-transform-2-threaded. These are simple wrappers around activate-threads. add-trans-
form-2-threaded takes two threaded constraint t and t′, where t′ has its main constraint irreducible, and
computes t∧ t′. This is simply done by calling add-transform-2 on the main constraints of t and t′ and
by then trying to activate all the threads of both t and t′. transform-2-threaded is a simple wrapper
around add-transform-2-threaded where the second constraint is >.

These functions make a heavy use of the incrementality ofR2 andR•2, provided by add-transform-2: In
activate-threads-loop, we keep the main constraint of the threaded constraint irreducible which al-
lows to use add-transform-2 for the activation of threads and to therefore only compute on the patterns
that are added by the activated thread.

The functions transform-2-threaded and add-transform-2-threaded show how easy it is to com-
pute on threaded constraint once we have an incremental solver for constraints. These two functions
return either ⊥ or a threaded constraint whose main constraint is irreducible and whose threads are in-
active. As discussed in the previous subsection, this is not su�cient to guarantee that the whole threaded
constraint is satis�able. The only way to know for sure that is to unfold all the implications as disjunctions
and to check that the resulting DNF is indeed satis�able. We are however going to show that this can be
done in a lazy manner.

Consider Figure 5.29. It de�nes a function check-sat-threadedwhich takes a threaded constraint whose
main constraint is irreducible and checks whether it is satis�able. This is done lazily by enumerating all
possible unfolding but stopping as soon as a satis�able one has been found. Of course, the complexity
is still exponential in the number of threads of the constraint in the worst case. check-sat-threaded
works as follows:

• check-sat-threaded (Line 18) is in fact a wrapper around add-check-sat-threaded (Line 1).
This function takes two threaded constraints c∧ τ and c′ ∧ τ ′, where c′ is an irreducible constraint,
and checks whether c ∧ c′ ∧ τ ∧ τ ′ is satis�able. This function is necessary for technical reasons,
in order to ensure the invariant that c′ is always irreducible and that, therefore, we can use the

134

5.3. THREADED CONSTRAINTS

e�cient and incremental solver add-transform-2.

• add-check-sat-threaded starts by computing the irreducible form of the conjunction of two
main constraints c ∧ c′ (Line 4). If the result is ⊥, then we can return false right away (Line 5).

• If the result is not false, it is a satis�able constraint c′′. We then consider the given threads, τ ∧ τ ′
(Line 7). If there are none, then c∧ c′ ∧ τ ∧ τ ′ is equivalent to c′′ which is satis�able: we can return
true (Line 8).

• If there are threads, we pick one, l → t and we name the others τ ′′ (Line 9). We need to check
whether at least one of the unfoldings of l → t is satis�able, that is if one of c′′ ∧ ¬l ∧ τ ′′ or
c′′ ∧ t ∧ τ ′′ is satis�able. We start by computing the irreducible form of c′′ ∧ ¬l (Line 10).

• If the computation returns a constraint, we name it c′′′. c′′′ is irreducible and therefore satis�able.
We proceed by checking whether c′′′ ∧ τ ′′ is satis�able (Line 12). If the result is true, we return
right away (Line 13).

• If this check fails or if the irreducible form of c′′ ∧ ¬l is ⊥, then we can give up on this unfolding.
We thus proceed to check whether c′′ ∧ t∧ τ ′′ is satis�able and this is done with a simple recursive
call (Lines 15 and 16).

5.3.4 Discussions

The three functions transform-2-threaded, add-transform-2-threaded and check-sat-threaded
give us a �ne-grained control over computation on threaded constraints. The two former can be seen
as fast but imprecise while the latter is slow and precise. In CoLiS, that means we use the fast ones as a
backend for symbolic execution engine (see Section 7.2) and the precise one only at the very end to remove
unsatis�able traces whose unsatis�ability was not detected on the �y. This brings a huge improvement.
Moreover, since we only use very speci�c threads, we will only seldom keep an unsatis�able threaded
constraint in the engine. Moreover, in the huge majority of cases, the very �rst unfolding will be satis�able,
making the �nal check very fast.

In practice, the symbolic engine from colis includes a very ad hoc implementation of these threaded
constraints as it only supports threads of the form ¬x[f]↑ → x[f]y, which we call maybe atoms. Since
they are so speci�c, we can include the handling of maybe atoms directly in the solver and not externally
as done in this section for the general case. These maybe atoms are su�cient to remove some disjunctions
of noresolve and ifresolve – that is the same disjunctions as we have removed in Section 5.3.1. They
are however not general enough to remove disjunctions coming from �le kinds. Indeed, additional cases
of non-resolution come from the fact that paths may exist but not be directories, which we cannot express
only with our maybe atoms and without disjunctions.

We ran our analysis on the 12,592 packages of Debian that contain maintainer scripts for a total of 28,814.
We ran it three times with the same version of colis-batch [23, Commit 66704e] and only slightly
di�erent versions of colis-language.

1. The �rst run includes colis-language [11, Commit 74e73d5] in the version used in all the other
presented material of this thesis. This includes the handling of maybe atoms in the solver and their
use in noresolve and ifresolve.

2. The second run includes colis-language [11, Commit 74e73d5] from which we have rewritten
noresolve and ifresolve to not use maybe atoms. They are still present in the solver but no use
is made of them.

135

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

r

⊥
usr

r′

x′[c{lib}]↑

y′[c{foo}]↑

z′[?]↑

usr

lib

foo

=c{usr} r

x

⊥

usr

lib

r′

x′

y′[c{foo}]↑

z′[?]↑

usr

lib

foo

=c{usr}

=c{lib}

r

x

y

⊥

usr

lib

foo

r′

x′

y′

z′[?]↑

usr

lib

foo

=c{usr}

=c{lib}

=c{foo}

r =? r
′

x

y

z

usr

lib

foo

Figure 5.19: Speci�cation cases of mkdir -p /usr/lib/foo

3. The third run includes colis-language [11, Commit 74e73d5] from which we have rewritten
noresolve and ifresolve and eliminated the handling of maybe atoms in the solver.

These three runs share the same con�guration of colis-batch. They are ran on a machine equipped
with 40 hyperthreaded Intel Xeon CPU @ 2.20GHz, and 750GB of RAM. To obtain a reasonable execution
time, we limit the processing of one script to 60 seconds and 8GB of RAM. This means that, in order
to compare the performances of the three runs, we do not only need to consider the time spent on the
analysis but also the number of scripts that reached a timeout.

The two last runs present no signi�cant di�erence, which means that adding support for threaded con-
straint in the solver does not include a slowdown on the regular constraints. The �rst run terminates in
less than half an hour when the two other take more than �ve hours. The implementation of threaded
constraints therefore brings us a speedup of at least an order of magnitude.

Let us go back to threaded constraints as described in this section. One could imagine some extra rules
about threads. The �rst one is a rule of cleanup, T-GuardDisentailed, which discards a threads when we know
that the main constraint disentails its guard.

T-GuardDisentailed c ∧ (l→ t) ∧ τ ⇒ c ∧ τ (c |= ¬l)

This rule has been omitted from the presentation for consistency – as we have never included optional
rules that would only cleanup so far – but it really easy to add to the implementation of transform-2-
threaded and add-transform-2-threaded.

One can then imagine two rules about the entailment or disentailment of the threaded constraint in a
thread – that is the t in l→ t. These are the rules T-ThreadedEntailed and T-ThreadedDisentailed.

T-ThreadedEntailed c ∧ (l→ t) ∧ τ ⇒ c ∧ τ (c |= t)

T-ThreadedDisentailed c ∧ (l→ t) ∧ τ ⇒ c ∧ ¬l ∧ τ (c |= ¬t)

These two rules are very similar to T-GuardEntailed and T-GuardDisentailed. They introduce however a lot of
di�culties as threaded constraints are rich objects – contrary to the guards that are limited to literals –
on which it is complicated to test entailment.

Finally, let us come back on the example of mkdir -p /usr/lib/foo mentioned in the introduction.
The speci�cation of mkdir -p /usr/lib/foo is presented in Figure 5.19, restated here for convenience.
Such a speci�cation can in fact be written as one single speci�cation cases containing only one threaded

136

5.A. PROOF OF Theorem 5.1

constraint. Consider Formula 5.18

∃x, y, x′, y′, z′ · (r′[usr]x′ ∧ x′[lib]y′ ∧ y′[foo]z′ ∧ r =c{usr} r
′

∧ (r[usr]↑ → (x′[c{lib}]↑ ∧ y′[c{foo}]↑ ∧ z′[?]↑))
∧ (¬r[usr]↑ → (r[usr]x ∧ x =c{lib} x

′

∧ (x[lib]↑ → (y′[c{foo}]↑ ∧ z′[?]↑))
∧ (¬x[lib]↑ → (x[lib]y ∧ y =c{foo} y

′

∧ (y[foo]↑ → z′[?]↑)
∧ (¬y[foo]↑ → y[foo]z′))))))

(5.18)

It works as follows.

• The main constraint, r′[usr]x′∧x′[lib]y′∧y′[foo]z′∧r =c{usr} r
′ contains the part of the formula

that is common to all the speci�cation cases. There are then two threads, depending on whether
usr exists in r.

• If usr does not exist in r, that is if the main constraint entails r[usr]↑, then we are in the �rst case
of Figure 5.19 and we need to add the three absence atoms on x′, y′ and z′.

• If usr does exist in r, that is if the main constraint entails ¬r[usr]↑, then we are in the three other
cases of Figure 5.19. We can then add r[usr]x ∧ x =c{lib} x

′ to the main constraint and ready two
new guards depending on whether lib exists in x.

• If lib does not exist in x, that is if the main constraint entails x[lib]↑, then we are in the second
case of Figure 5.19 and we need to add the two absence atoms on y′ and z′.

• If lib does exist in x, that is if the main constraint entails ¬x[lib]↑, then we are in two last cases
of Figure 5.19. We can then add x[lib]y ∧ y =c{foo} y

′ to the main constraint and ready two new
guards depending on whether foo exists in y.

• If foo does not exist in y, that is if the main constraint entails y[foo]↑, then we are in the third case
of Figure 5.19 and we need to add the absence atom on z′.

• Finally, if foo does exist in y, that is if the main constraint entails ¬y[foo]↑, then we are in the last
cases of Figure 5.19. Of course, we have built two chains of feature and similarity atoms starting
from r and r′ and following /usr/lib/foo. We however need to ensure that /usr/lib/foo exists
in r and r′ and that r and r′ are equal. We can do this by adding either y[foo]z ∧ r =? r

′ or simply
y[foo]z′ to the main constraint.

The same process of course works for paths of any length. In any case, it encodes the speci�cation of
mkdir -p p as one speci�cation case. This is an example of the expressivity provided by threaded con-
straints.

Appendix 5.A Proof of Theorem 5.1

Introduction. This proof is quite similar to that of Theorem 4.1, except that the system R2 does not
give as strong guarantees on its irreducible constraints as R1. This is in particular because it does not
have access to the splitting rules, as they introduce disjunctions. The absence of these rules is at the heart
of the fact that R2 does not enjoy the property of garbage collection. Consider for instance Formula 5.2,
restated here.

∃x · (¬x[?]↑ ∧ x =G y ∧ x =cG z) (5.2)

137

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

It expresses the fact that the local variable x must have a feature and must be similar to y in G and to z in
cG. The information that this carries on the global variables y and z is that “either y has a feature in G or
z has a feature in cG”. This fact is easily expressible but requires dis junction – ¬y[G]↑ ∨ ¬z[cG]↑. The
system R1, since it is allowed to introduce disjunctions, will be able to deduce that fact and to eliminate
the variable x. The systemR2, since it cannot introduce disjunctions, will never be able to remove x.

Let us dig a bit this example and show how bothR1 andR2 handle such a constraint. Name the constraint
in Formula 5.2. We will put it in irreducible form with respect to both R1 and R2 and assume we have
a valuation µ satisfying the global part of the resulting constraint/s. We will then imagine that we are
trying to de�ne ρ satisfying the whole constraint.

• The constraint of Formula 5.2 is not irreducible with respect toR1. This is because of the splitting
rule S-NAbs-Sim which requires us to split ¬x[?]↑ into ¬x[G]↑ ∨ ¬x[cG]↑. In each of the obtained
constraint, P-NAbs-Sim requires us to propagate the negated absence atoms to y and z respectively.
We obtain two constraints that are irreducible with respect toR1:

∃x · (¬x[G]↑ ∧ x =G y ∧ x =cG z) ∧ ¬y[G]↑

and
∃x · (¬x[cG]↑ ∧ x =G y ∧ x =cG z) ∧ ¬z[cG]↑

If a valuation µ satis�es the global parts of the former (resp. the latter), then it satis�es ¬y[G]↑
(resp. ¬z[cG]↑), which we can leverage to show that if ρ satis�es x =G y (resp. x =cG z), then
it satis�es ¬x[?]↑ automatically. This reasoning works on any valuation µ and therefore we can
conclude that x has become irrelevant and that Formula 5.2 is equivalent to ¬y[G]↑ ∨ ¬z[cG]↑.

• The constraint of Formula 5.2 is irreducible with respect to R2, however, because R2 does not
contain such splitting rules. It is not true that any valuation µ that satis�es the global part of this
constraint can be extended to ρ that satis�es the whole constraint. Indeed, if we take t the empty
feature tree andµ = [y 7→ t, z 7→ t], the two similarity atoms impose that ρ(x) =G t and ρ(x) =cG t
and therefore that ρ(x) = t, which contradicts ρ |=FT ¬x[?]↑.

If we have control on the valuation µ that we take for the global part, then we can ensure that there
is g ∈ G (or resp. g ∈ cG) such that g ∈ dom(µ(y)) (resp. g ∈ dom(µ(z))). Any valuation µ that
satis�es this will then be extendable to x. Since this reasoning works on some valuations µ, we
cannot conclude that x has become irrelevant, but we can conclude that the formula is satis�able.

In the general case, this means that the proof of Theorem 5.1 cannot be as simple as that of Theorem 4.1.
In particular, we will not be able to build an induction around a simple lemma as Lemma 4.7. We will still
prove Theorem 5.1 by induction on the variables of the constraint, but the induction hypothesis will have
to be much stronger to compensate for the information that the splitting rules would otherwise provide.

Let us take now take c, a constraint that is irreducible with respect to R2. Note that, as any constraint,
it is di�erent from ⊥ by de�nition. Let us show that c is satis�able. In order to do that, we are going to
build a valuation ρ that satis�es c, by induction on the variables of c. We will make sure to de�ne “lower”
variables before “higher” ones, that is we will make sure that, when there is x[f]y ∈ c, ρ(y) is de�ned
before ρ(x).

Let us take < a total order on the variables of c that respects y < x if x[f]y ∈ c. Such an order exists,
by non-applicability of C-Cycle. We are going to de�ne ρ by induction on the variables in increasing order
(for <). For any variable x, we use the notations:

c<x = {l | l ∈ c,∀y ∈ V(l), y < x}
c≤x = {l | l ∈ c,∀y ∈ V(l), y ≤ x}

138

5.A. PROOF OF Theorem 5.1

to talk about the parts of the constraints containing only variables smaller than x.

De�nition of D. How can we ensure that we will never �nd ourselves in the situation of the example,
where we consider the constraint of Formula 5.2 and have already de�ned µ = [y 7→ t, z 7→ t] which
makes it impossible to de�ne ρ, an extension of µ to x that satis�es the whole constraint?

Our solution is to pick a set of features that covers all the negated absence atoms and to ensure (in the
induction hypothesis) that, for each variable, if possible, the valuation is de�ned on these features. In the
aforementioned example, that means we would pick f ∈ ? – that is any f – and require in the induction
hypothesis that, if possible, f ∈ dom(µ(y)) and f ∈ dom(µ(z)). In this example, this is possible because
there are no other constraints on either y and z. It will therefore be possible to choose ρ(x)(f) = ρ(y)(f)
or ρ(x)(f) = ρ(z)(f) depending on whether f ∈ Gwhich will satisfy both ¬x[?]↑, x =G y and x =cG z.

In fact, we will use the same set of features to cover all the negated similarity atoms for similar reasons.
Additionally, we will add a feature for each separated pair of variables in order to ensure that the values
given to them are indeed di�erent.

The set containing all these chosen features is named D. It is de�ned as follows.

1. For each ¬x[F]↑ ∈ c, take f ∈ F and add it toD. This is possible because F is never empty, thanks
to C-NAbsEmpty.

2. For each x 6=F y ∈ c, take f ∈ F and add it toD. This is possible because F is never empty, thanks
to C-NSimEmpty.

3. For each S(x, y) ∈ c with x 6= y, take f such that there is no x =F y ∈ c with f ∈ F and add
it to D. This is always possible, because there cannot be more that one similarity for x and y (by
non-applicability of R-Sims) and that one similarity cannot be full (by x 6= y and non-applicability of
G-SimFull).

Of course, all the variables cannot necessarily be de�ned on all these features. For each variable x, we
thus de�neDx by removing all the features ofD that appear in a feature atom from x, in an absence atom
for x or in a similarity atom linking x to a lower variable. The formal de�nition is:

Dx = D\{f | ∃y · x[f]y ∈ c}
\{f | ∃F · x[F]↑ ∈ c, f ∈ F}
\{f | ∃y, F · y < x, x =F y ∈ c, f ∈ F}

Note that D and, for all x, Dx are �nite as there is a �nite number of literals in the constraint. Note also
that, for all x, Dx ⊆ D.

Fresh trees. These sets Dx will be useful to satisfy negated absence atoms but also negated similarity
atoms and to ensure separation between variables. For the former, it is not important which tree will be
chosen to be put under the feature of Dx. For the two latter, however, it is. Indeed, how does one make
sure that the tree chosen in the de�nition of a variable will not happen to be exactly the wrong tree?
Consider Formula 5.19 as an example.

x[f]y ∧ x 6={f} z (5.19)
Assume we have z < y < x. Assume we have µ de�ned on z and y. There is f ∈ D and f ∈ Dz and
therefore f ∈ dom(µ(z)). If we have no control over it, what prevents µ(z)(f) from being equal to µ(y)?

Our solution to this problem will be to de�ne fresh trees. We will ensure during all the induction that the
fresh trees are di�erent from one another and di�erent from any value given to a variable. The former is

139

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

easy: we will have an in�nite supply of fresh trees from which we will only use a �nite number. We will
therefore have all the freedom to choose di�erent fresh trees every time. For the latter, we are going to
take a special feature f0 that does not appear in any feature atom or negated feature atom of c and that
does not appear in D.

Formally, take:
f0 /∈ {f | ∃x, y · x[f]y ∈ c} ∪ {f | ∃x, y · ¬x[f]y ∈ c} ∪ D

This is always possible if the set of features F is in�nite.21 A fresh tree is any tree t such that f0 ∈ dom(t).
There is an in�nity of such trees. In this proof, we are going to ensure that no value given to a variable is
ever fresh.

Induction hypothesis. For all x ∈ V(c), there exists ρ≤x a valuation over the variables smaller or
equal to x such that:

1. ρ≤x satis�es the part of the formula containing only variables smaller or equal to x. In other words,
ρ≤x |=FT c≤x.

2. For all y ≤ x, ρ≤x(y) is de�ned on all the features of D unless there is an absence atom covering
them. In other words, for all f ∈ D, either there exists y[F]↑ ∈ c≤x with f ∈ F or f ∈ dom(ρ≤x(y)).
Note that we are talking about D here, not Dy .

3. For all S(y, z) ∈ c≤x with y 6= z, ρ≤x(y) and ρ≤x(z) are di�erent on all the features ofD unless there
is a similarity atom covering them. In other words, for all f ∈ D, either there exists y =F z ∈ c≤x
with f ∈ F or ρ≤x(y) and ρ≤x(z) are di�erent in f : either f ∈ dom(ρ≤x(y)) but f /∈ dom(ρ≤x(z)),
or the contrary, or f ∈ dom(ρ≤x(y)) and f ∈ dom(ρ≤x(z)) but ρ≤x(y)(f) 6= ρ≤x(z)(f).

4. For all y ≤ x, ρ≤x(y) is not a fresh tree, that is f0 /∈ dom(ρ≤x(y)).

5. For all y ≤ x, for all f ∈ dom(ρ≤x(y)), either there is a feature atom y[f]z ∈ c≤x or ρ≤x(y)(f) is a
fresh tree.

6. For all y, z ≤ x, y 6= zfor all f ∈ dom(ρ≤x(y))∩dom(ρ≤x(z)), if ρ≤x(y)(f) and ρ≤x(z)(f) are both
fresh trees, then either there is a similarity atom y =F z ∈ c≤x such that f ∈ F or ρ≤x(y)(f) 6=
ρ≤x(z)(f).

Point 1 is the target of the proof. When given the biggest variable x, it simply states that ρ≤x |=FT c.
Points 2 and 3 state exactly what we have been building D for. The former states that we try our best to
have all the features of D present in the tree associated with each variables. The only situation in which
we cannot is when there exists an absence atom. This point will be used to handle negated absence atoms.
The latter states that we try out best to realise a di�erence in all the features of D between each pair of
separated variables. The only situation in which we cannot is when there exists a similarity atom. This
point will be used to handle negated similarity atoms. The three remaining points, points 4, 5 and 6, are
technical points necessary to ensure that the so-called fresh trees respect the properties that we expect
from them, that is that they are di�erent from any value that is de�ned in other places.

Beginning of the induction. Let us show induction hypothesis by induction on the variables of c,
following <. For any variable x, we will assume that the property holds for ρ<x and c<x and we will
show that it also holds for ρ≤x and c≤x.

21This hypothesis of in�nity of F , only used here, can be avoided by de�ning fresh trees as trees containing a speci�c pattern
that we then carefully avoid reproducing in the other trees. This adds technicalities to the proof and we do not think that the
result is worth the extra technical points in this presentation.

140

5.A. PROOF OF Theorem 5.1

Note that, for all variable x, since c is irreducible with respect toR2, both c<x and c≤x are also irreducible
with respect to R2. This is because Lemma 4.6 holds here, as c<x and c≤x can be seen as global parts of
c for some sets:

c<x = G{y|y≥x}(c) c≤x = G{y|y>x}(c)

If the proof by induction holds, then the property holds for all x ∈ V(c). The smallest and the biggest
variables are particularly interesting for us.

• If x is a minimal element, then the property trivially holds as there are no variable smaller than
x, ρ<x is the valuation of empty domain and c<x is empty. This will serve as base case for the
induction.

• If x is a maximal element, then the induction hypothesis implies that there exists ρ≤x such that
ρ≤x |=FT c≤x. Since c≤x = c in this situation, then c is satis�able.

Extension of ρ<x to ρ≤x. We de�ne ρ≤x by extending ρ<x to x. That is, we take ρ≤x(y) = ρ<x(y) for
all y < x. For x, we de�ne ρ≤x(x) on the domain:

dom(ρ≤x(x)) = Dx ∪ {f | ∃y · x[f]y ∈ c} ∪
⋃

x=F y∈c
y<x

(dom(ρ<x(y)) ∩ F)

For each f ∈ Dx, take freshf a fresh tree not included in {ρ(y)(f) | y < x, f ∈ dom(ρ(y))}. This is
possible as there are only a �nite number of y < x but an in�nite number of fresh trees.

ρ≤x(x) is de�ned on all f in the aforementioned domain as follows:

ρ≤x(x)(f) =


ρ<x(y) if x[f]y ∈ c≤x (5.20)
ρ<x(y)(f) if x =F y ∈ c≤x with y < x, f ∈ F and f ∈ dom(ρ<x(y)) (5.21)
freshf if f ∈ Dx (5.22)

This de�nition indeed de�nes a correct valuation. The proof is exactly the same as in Section 4.A. By
de�nition ofDx, case 5.22 is disjoint from the cases 5.20 and 5.21. These two cases are not disjoint but, by
non-applicability of C-Cycle, D-Feats, P-Feat-Sim and P-Sims, they are consistent nonetheless.

Order of the proof. The proofs of the various points of the induction hypothesis on ρ≤x and c≤x use
of course the induction hypothesis that give them results on ρ<x and c<x. However, some points also use
the fact that other points have already been shown to be true on ρ≤x and c≤x. This is not a problem as
long as there is no circular dependency between the points.

Figure 5.30 shows a graph of dependencies of the points between themselves. An arrow from a point a to
a point b means that the proof of point a uses the result of the proof of point b.

This poses a problem for the presentation of this proof because it means that the three technical points,
Points 4, 5 and 6, have to be proven before Points 2 and 3 which, themselves, have to be proven before
Point 1. We believe this makes the proof complicated to read as one does not understand the necessity of
these technicalities.

141

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

1 2

3

45

6

Figure 5.30: Dependen-
cies of the proofs of the
six points of the induc-
tion hypothesis

We will therefore present the proofs of all six points in order in which they
appear in the induction hypothesis. We will clearly make the di�erent in the text
between the use of “point 4” and “induction hypothesis, point 4”. The former is a
use of the result of point 4 on ρ≤x. The latter is a use of the induction hypothesis
on ρ<x.

Proof of point 1. Let us proceed to the heart of the proof and show that ρ≤x
satis�es c≤x. By induction hypothesis, point 1, ρ<x |=FT c<x. Since ρ≤x(y) =
ρ<x(y) for all y < x, there only remains to show that ρ≤x satis�es the literals
of c≤x that actually mention x. We reason by exhaustive analysis over all literal
forms. This gives us six cases: feature atom (1), negated feature atom (2), absence
atom (3), negated absence atom (4), similarity atom (5) and negated similarity
atom (6). Since feature and similarity atoms are binary predicates, there will be
sub-cases depending on whether both their variables are x or only one.

1. Firstly, let us consider feature atoms. We have three sub-cases, as such atoms can be x[f]x (1a),
x[f]y with y < x (1b) or y[f]x with y < x (1c).

(a) It is impossible to have a feature atom x[f]x in c≤x by non-applicability of C-Cycle.

(b) The feature atoms x[f]y in c≤x with y < x are satis�ed by de�nition of ρ, case 5.20.

(c) It is impossible to have a feature atom y[f]x in c≤x with y < x by de�nition of the order <.

2. Secondly, let us consider negated feature atoms. We have three sub-cases, as such atoms can be
¬x[f]x (2a), ¬x[f]y with y < x (2b) or ¬y[f]x with y < x (2c).

(a) The negated feature atoms ¬x[f]x in c≤x are trivially satis�ed in our model of �nite feature
trees.

(b) Consider a negated feature atom ¬x[f]y in c≤x with y < x. If f /∈ dom(ρ≤x(x)), then this
literal is satis�ed. Assume now that f ∈ dom(ρ≤x(x)). By point 5, either there exists a feature
atom x[f]z ∈ c≤x or ρ≤x(x)(f) is a fresh tree. The former is impossible, by non-applicability
of D-NFeat-Feat. By point 4, ρ≤x(y) is not a fresh tree. Therefore ρ≤x(x)(f) 6= ρ≤x(y) and our
literal is satis�ed.

(c) See 2b.

3. Thirdly, let us consider absence atoms x[F]↑ in c≤x. Let us take any f ∈ F and show that f /∈
dom(ρ≤x(x)). By de�nition of ρ, this amounts to show that f is not inDx (3a) nor in {f | ∃y·x[f]y ∈
c} (3b) nor in any dom(ρ<x(y)) ∩G for any x =G y in c≤x with y < x (3c).

(a) f is not in Dx because, by de�nition of D, Dx does not contain any feature coming from an
absence atom on x in c, which is precisely what f is.

(b) f is not in {f | ∃y ·x[f]y ∈ c} as that would imply the existence of a y such that x[f]y ∈ c. By
de�nition of the order <, y < x so x[f]y is would also be in c≤x. Finally, by non-applicability
of C-Feat-Abs, and because we have an absence atom x[F]↑ ∈ c≤x, this is not possible.

(c) f is not in any dom(ρ<x(y)) ∩ G for any x =G y in c≤x with y < x. Indeed, assume the
existence of such a similarity atom x =G y with f ∈ G. By non-applicability of P-Abs-Sim, there
is be

∧
i y[Hi]↑ ∈ c≤x such that F ∩G ⊆

⋃
iHi. Since f ∈ F ∩G, that implies the existence of

an i0 such that f ∈ Hi0 . By induction hypothesis, point 1, ρ<x satis�es y[Hi0]↑ and therefore
f /∈ dom(ρ<x(y)).

142

5.A. PROOF OF Theorem 5.1

4. Fourthly, let us consider negated absence atoms¬x[F]↑ in c≤x. By de�nition ofD, there is a feature
f ∈ F ∩ D. By point 2, either there exists x[G]↑ ∈ c≤x with f ∈ G or f ∈ dom(ρ≤x(x)). The
former is not possible because of non-applicability of R-NAbs-Abs. The latter implies that our literal
is satis�ed.

5. Fifthly, let us consider similarity atoms. We have two sub-cases, as such atoms can be x =F x (5a)
or x =F y with y < x (5b).22

(a) The re�exive similarity atoms are trivially satis�ed.

(b) The similarity atoms x =F y in c≤x with y < x are satis�ed by de�nition of ρ, case 5.21.

6. Sixthly and lastly, let us consider negated similarity atoms. We have two sub-cases, as such atoms
can be x 6=F x (6a) or x 6=F y with y < x (6b).23

(a) It is impossible to have a negated similarity atom x 6=F x in c≤x by non-applicability of
C-NSimRefl.

(b) Consider a negated similarity atom x 6=F y in c≤x with y < x. By de�nition of D, there is a
feature f ∈ F ∩ D. By non-applicability of D-NSim, there is S(x, y) ∈ c≤x. By point 3, either
there exists x =F y ∈ c≤x with f ∈ F or ρ≤x(x) and ρ≤x(y) di�er in f . The former is not
possible because of non-applicability of R-NSim-Sim. The latter implies that our literal is satis�ed.

Proof of point 2. By induction hypothesis, point 2, for all y < x and for all f ∈ D, either there is an
absence atom y[F]↑ ∈ c<x with f ∈ F or f ∈ dom(ρ<x(y)). Since ρ≤x is an extension of ρ<x, this is also
true for ρ≤x. There remains to show that for all f ∈ D, either there is an absence atom x[F]↑ ∈ c≤x with
f ∈ F or f ∈ dom(ρ≤x(x)).

By de�nition of ρ, case 5.22, if f is not only in D but also in Dx, then f ∈ dom(ρ≤x(x)). If f is not in
Dx then, by de�nition of D, it must be in {f | ∃y · x[f]y ∈ c} (1), {f | ∃F · x[F]↑ ∈ c, f ∈ F} (2) or
{f | ∃y, F · y < x, x =F y ∈ c, f ∈ F} (3). Let us analyse these three cases separately.

1. If f is in {f | ∃y ·x[f]y ∈ c}, then there exists a feature atom x[f]y ∈ c. By de�nition of the order<,
y < x and this feature atom is therefore also in c≤x. By de�nition of ρ, case 5.20, f ∈ dom(ρ≤x(x)).

2. If f is in {f | ∃F · x[F]↑ ∈ c, f ∈ F}, then there exists an absence atom x[F]↑ in c – and thus in
c≤x – with f ∈ F .

3. If f is in {f | ∃y, F · y < x, x =F y ∈ c, f ∈ F}, then there exists a similarity atom x =F y ∈ c
with y < xwith f ∈ F . By induction hypothesis, point 2, applied on y, either there exists y[G]↑ ∈ c
with f ∈ G (3a) or f ∈ dom(ρ<x(y)) (3b).

(a) If there exists y[G]↑ ∈ cwith f ∈ G then, by non-applicability of P-Abs-Sim, there is
∧

i x[Hi]↑ ∈
c with F ∩G ⊆

⋃
iHi. Since f ∈ F ∩G, there exists an i0 such that f ∈ Hi0 .

(b) If f ∈ dom(ρ<x(y)) then, by de�nition of ρ, case 5.21, f ∈ dom(ρ≤x(x)).

Proof of point 3. By induction hypothesis, point 3, for all S(y, z) in c<x with y 6= z, and for all f ∈ D,
either there exists y =F z ∈ c<x with f ∈ F or ρ<x(y) and ρ<x(z) are di�erent in f . Since ρ≤x is an
extension of ρ<x, then the point holds for ρ≤x too. There remains to prove that, for all S(x, y) with y < x,
and for all f ∈ D, either there exists x =F y ∈ c≤x with f ∈ F of ρ≤x(x) and ρ≤x(y) are di�erent in f .

22There is no third sub-case for y =F x as similarity atoms are seen as symmetric.
23There is no third sub-case for y 6=F x as negated similarity atoms are seen as symmetric.

143

CHAPTER 5. EFFICIENT SOLVING OF FEATURE TREE CONSTRAINTS

Assume thus the existence of S(x, y) ∈ c≤x. Take any f ∈ D. We are going to show that either there
exists x =F y with f ∈ F or ρ≤x(x) and ρ≤x(y) are di�erent in f . Let us distinguish immediately 9 cases
depending on how ρ≤x(x) and ρ≤x(y) are in f . These 9 cases come from 3 cases for x and 3 cases for y.
The 3 cases for x are the following: either f /∈ dom(ρ≤x(x)) or ρ≤x(x)(f) is a fresh tree or ρ≤x(x)(f)
is not a fresh tree. The 3 cases for y are similar. In fact, out of these 9 cases, 6 can trivially be removed.
Indeed, if one of ρ≤x(x) and ρ≤x(y) is unde�ned in f but not the other, then they di�er trivially. This
removes 4 cases. If they are both de�ned but one is fresh and not the other, then they di�er trivially again.
This removes 2 more cases. Basically, the only 3 interesting cases are when ρ≤x(x) and ρ≤x(x) have the
same status in f . We will thus consider these 3 cases: either f /∈ dom(ρ≤x(x)) and f /∈ dom(ρ≤x(x)) (1)
or ρ≤x(x)(f) and ρ≤x(y)(f) are both fresh trees (2) or they are both not fresh trees (3).

1. If f /∈ dom(ρ≤x(x)) and f /∈ dom(ρ≤x(y)) then, by point 2, there are two absence atoms x[F]↑ and
y[G]↑ in c with f ∈ F and f ∈ G. By non-applicability of D-Abs-Sep, there is then

∧
i x =Hi y in c

such that F ∩G ⊆
⋃

iHi.24 Since f ∈ F ∩G, there is an i0 such that f ∈ Hi0 .

2. If ρ≤x(x)(f) and ρ≤x(y)(f) are both fresh trees then, by point 6, either there is x =F y in c with
f ∈ F or ρ≤x(x)(f) 6= ρ≤x(y)(f).

3. If ρ≤x(x)(f) and ρ≤x(y)(f) are both not fresh trees then, by point 5, there are feature atoms x[f]z
and y[f]z′ in c≤x. We distinguish two sub-cases depending on whether z = z′ (3a) or not (3b).

(a) If z = z′ then, by non-applicability of D-FeatsEq-Sep, there is
∧

i x =Hi y in c≤x such that
f ∈

⋃
iHi.25 There is therefore an i0 such that f ∈ Hi0 .

(b) If z 6= z′ then, by non-applicability of D-Feats-Sep, there is S(z, z′) in c≤x. By de�nition of the
order <, z < x and z′ < x so S(z, z′) is also in c<x. We can thus use induction hypothesis,
point 3, which tells us that for all g ∈ D, either there is a similarity z =G z′ ∈ c<x with g ∈ G
or there is a di�erence between ρ<x(z) and ρ<x(z′) in g. By non-applicability of R-Sims, there
exists at most one similarity atom between z and z′. By non-applicability of G-SimFull, if there
is one similarity atom, then it is not full. by de�nition of D, there is therefore g ∈ D that is
not covered by this similarity. There is therefore a di�erence between ρ<x(z) and ρ<x(z′) in
g and: ρ≤x(x)(f) = ρ<x(z) 6= ρ<x(z′) = ρ≤x(y)(f).

Proof of point 4. By induction hypothesis, point 4, for all y < x, ρ<x(y) is not a fresh tree. Since ρ≤x
is an extension of ρ<x, the for all y < x, ρ≤x(y) is not a fresh tree. There remains to show that ρ≤x(x) is
not a fresh tree either.

The fact that ρ≤x(x) is not a fresh tree comes directly from its de�nition. Indeed:

dom(ρ≤x(x)) = Dx ∪ {f | ∃y · x[f]y ∈ c} ∪
⋃

x=F y∈c
y<x

(dom(ρ<x(y)) ∩ F)

By de�nition of fresh trees, f0 /∈ Dx ∪ {f | ∃y · x[f]y ∈ c}. By induction hypothesis, point 4, for all
y < x, f0 /∈ dom(ρ<x(y)). Therefore, f0 /∈ dom(ρ≤x(x)) and ρ≤x(x) is not a fresh tree.

Proof of point 5. By induction hypothesis, point 5, for all y < x, if f ∈ dom(ρ<x(y)), either there is a
feature atom y[f]z ∈ c<x or ρ<x(y)(f) is a fresh tree. Since ρ≤x is an extension of ρ<x, then this is also
true of ρ≤x(y) for all y < x. There remains to show that it is also true for ρ≤x(x).

24In fact, by non-applicability of R-Sims, there is only one such similarity.
25In fact, by non-applicability of R-Sims, there is only one such similarity.

144

5.A. PROOF OF Theorem 5.1

Let us thus take f ∈ dom(ρ≤x(x)) and show that either there is a feature atom x[f]y ∈ c≤x or ρ≤x(x)(f)
is a fresh tree. Let us consider the three cases of the de�nition of ρ.

• case 5.20 implies precisely that there exists x[f]y ∈ c≤x.

• case 5.22 de�nes precisely ρ≤x(x)(f) as a fresh tree.

• case 5.21 implies the existence of a similarity atom x =F z in c≤x with z < x, f ∈ F and
f ∈ dom(ρ<x(z)). By induction hypothesis, point 5, either there is a feature atom z[f]y in c<x

or ρ<x(z)(f) is a fresh tree. In the �rst case, by non-applicability of P-Feat-Sim, there is a feature
atom x[f]y in c≤x. In the second case, since ρ≤x(x)(f) = ρ<x(z)(f), then ρ≤x(x)(f) is fresh.

Proof of point 6. By induction hypothesis, point 6, for all y, z < x, y 6= z, and for all f ∈ dom(ρ<x(y))∩
dom(ρ<x(z)), if ρ<x(y)(f) and ρ<x(z)(f) are both fresh trees, then either there is a similarity atom y =F z
in c<x such that f ∈ F or ρ<x(y)(f) 6= ρ<x(z)(f). Since ρ≤x is an extension of ρ<x, this is also true for
ρ≤x. There remains to show that for all y < x, and for all f ∈ dom(ρ≤x(x)) ∩ dom(ρ≤x(y)), if ρ≤x(x)(f)
and ρ≤x(y)(f) are both fresh trees, then either there is a similarity atom x =F y in c≤x such that f ∈ F
or ρ≤x(x)(f) 6= ρ≤x(y)(f).

Let us thus take y < x and f ∈ dom(ρ≤x(x)) ∩ dom(ρ≤x(y)). Let us consider the three cases of the
de�nition of ρ.

• case 5.20 implies that there exists x[f]z ∈ c≤x, with ρ≤x(x)(f) = ρ≤x(z). By point 4, however,
ρ≤x(z) cannot be fresh, making this case impossible.

• case 5.22 de�nes ρ≤x(x)(f) as a fresh tree that is di�erent from all the ρ≤x(z)(f) with z < x. In
particular, we have ρ≤x(x)(f) 6= ρ≤x(y)(f).

• case 5.21 implies the existence of a similarity atom x =F z in c≤x with z < x, f ∈ F and f ∈
dom(ρ<x(z)). Since ρ≤x(x)(f) = ρ≤x(z)(f), the latter is also fresh. Induction hypothesis, point 6,
applied to y and z, tells us that either there is a similarity y =G z in c<x with f ∈ G or ρ<x(y)(f) 6=
ρ<x(z)(f). In the �rst case, by non-applicability of P-Sims, there is

∧
i x =Hi y in c≤x such that

F ∩G ⊆
⋃

iHi. Since f ∈ F ∩G, there is i0 such that f ∈ Hi0 . In the second case, ρ≤x(x)(f) =
ρ≤x(z)(f) 6= ρ≤x(y)(f).

145

Chapter 6

Modelisation of POSIX Shell

“Using a console without a proper shell; it is not going to be safe!”
1

— The Doctor, Doctor Who (2005), season 6 episode 4

Disclaimer: The work presented in this chapter is joint with Benedikt Becker, Claude Marché, Yann
Régis-Gianas, Mihaela Sighireanu and Ralf Treinen. Since we have participated in each aspect of this
work, we believe its presentation does belong here.

In our work, we need to model the maintainer scripts of Debian. Three things guide us in this modelisation.
Firstly, the Debian Policy [22] describes what can be expected of maintainer scripts. In particular, it states
that one can always assume the Shell of a Debian system to be that of POSIX [20]. Incidentaly, the huge
majority – 99% – of maintainer scripts are written in this language. Secondly, and following this remark,
the POSIX standard [20] describes extensively the POSIX Shell language. We will see in this chapter,
however, that this standard is hard to understand and implement correctly. Thirdly, and most importantly,
we are guided in our modelisation by the actual use that is made of these scripts. Indeed, we only need to
model the subset of Shell that is used in these maintainer scripts.

Following these remarks, we get to choose between a complete generic modelisation of Shell or a speci�c
modelisation of a subset of Shell. The former brings genericity and ensures that we can treat all Shell
scripts. The latter, although ad hoc, has the advantage that we only need to handle a small part of what
can be found in Shell scripts. It however requires us to be able to de�ne what subset of Shell is necessary
to model and what can be left out. Whatever decision we take, there will remain a crucial question: how
can we be sure that this modelisation is correct with respect to Shell? That is, how can we ensure that we
handle correctly the syntax and the semantics of Shell in our tool?

There have been few attempts to formalize the Shell. The work behind Abash [Mazurak & Zdancewic
2007] contains a formalisation of the part of the semantics concerned with variable expansion and word
splitting. The Abash tool itself performs abstract interpretation to analyse possible arguments passed by

1I wanted to write a quote on Shell, but I did not know whether I should use ’, ", ‘ or $(.

147

CHAPTER 6. MODELISATION OF POSIX SHELL

bash scripts to Unix commands, and thus to identify security vulnerabilities in bash scripts. It is however
limited to this particular point of bash scripts.

Several other tools can spot certain kinds of errors in Shell scripts. The checkbashisms [12] script detects
usage of bash-speci�c syntax in Shell scripts, it is based on matching Perl regular expressions against a
normalised Shell script text. It does not include a parser for any variant of Shell. This tool is currently
used in Debian as part of the lintian package analysing suite.

The tool shellcheck [17] detects error-prone usage of the Shell language. This tool is written in Haskell
with the parser combinator library Parsec. Therefore, there is no YACC grammar in the source code to
help us determine how far from the POSIX standard the language recognised by shellcheck is. Besides,
the tool does not produce intermediate concrete syntax trees which forces the analyses to be done on the
�y during parsing itself. This approach lacks modularity since the integration of any new analysis requires
the modi�cation of the parser source code. Nevertheless, as it is hand-crafted, the parser of shellcheck
can keep a �ne control on the parsing context: this allows for the generation of very precise and helpful
error messages.

More recently, Greenberg has started a line of work on the formalisation of the semantics of Shell [Green-
berg 2017; Greenberg 2018a; Greenberg 2018b]. The main result of this line of work is Smoosh [16; Green-
berg & Blatt 2019], an executable formal semantics for Shell. It is heavily tested to show that it conforms
to the POSIX standard. This makes it a canonical implementation and a reference semantics for Shell.
The development of Smoosh led to the discovery of numerous bugs in widely used implementations of
Shell as well as in the POSIX standard and its test suite. For the syntactic analysis, Smoosh still relies on
external parsers and mainly the one provided with dash through libdash, although there exists work to
integrate it with Morbig.

This chapter is organised in two sections. Syntactic aspects of the modelisation of Shell are discussed in
Section 6.1 and semantic aspects in Section 6.2.

6.1 Syntactic Aspects

Lexer
Spec.

Parser
Spec.

Lexer Parser

LEX YACC

Text Tokens

Figure 6.1: Standard pipeline of lexing
and parsing commonly found in compil-
ers and interpreters

Syntactic analysis is most often decomposed into two distinct
phases [Aho et al. 1986; Levine et al. 1992]. The �rst phase
is that of lexical analysis – aka. lexing – which synthesises a
stream of tokens from a stream of input characters by recognis-
ing tokens as meaningful character sequences and by ignoring
insigni�cant character sequences such as layout. The second
phase is that of parsing which synthesises a parse tree from the
stream of tokens according to some formal grammar.

For many languages, these two phases are described in a doc-
ument that contains speci�cations for the lexer and the parser
under the form of LEX- and YACC-like formats. It is then easy
for anyone aiming at writing a new compiler or interpreter for
this language to take the standard, feed these speci�cations to

tools similar to LEX and YACC. The result is a program dealing with the syntactic analysis of the language
in question. A representation of this process can be found in Figure 6.1.

This approach has several advantages. The LEX/YACC input is a high-level formal description of the target
language. It is then easy to compare the one given in the standard to the one given in the implementation
and check that they indeed match. Moreover, these two formats being fairly universal, it is easy for any

148

6.1. SYNTACTIC ASPECTS

programmer that has used them to apprehend the new language. The LEX/YACC code generators produce
low-level e�cient code using well-understood computational devices, such as �nite-state transducers for
lexical analysis and pushdown automata for parsing.

Unfortunately, nothing of this usual way of doing things is applicable for Shell. The POSIX standard
does not provide but a low-level description of the lexical analysis. It does provide a high-level YACC-
style grammar but this grammar is annotated by several rules that change the behaviour of the parser
– and even of the lexer. POSIX standard aside, the Shell language itself is hard (and actually impossible
in general) to parse using the standard decomposition described above, and more generally using the
standard parsing tools and techniques.

These di�culties not only raise a challenge in terms of programming but also in terms of trustworthiness.
In Section 6.1.1, we describe why the usual approach cannot work for Shell. In Section 6.1.2, we describe
our implementation and how we nonetheless managed to maintain an important part of generated code
in our implementation. We then discuss our attempts to guarantee the quality of our implementation in
Section 6.1.3.

6.1.1 Horrors in the Syntax of Shell

This section does not aim at being a comprehensive list of pitfalls that one can encounter while considering
the problem of syntactic analysis of Shell. For more information on this topic, we invite the reader to refer
to our previous work [Jeannerod et al. 2017b; Régis-Gianas et al. 2020] or to other documents detailing
such pitfalls [20; Gar�nkel et al. 1994; Greenberg & Blatt 2019].

As explained before, in usual programming languages, most of the categories of tokens are speci�ed by
means of regular expressions. Lexer generators (eg. LEX) conveniently turn such high-level speci�cations
into e�cient �nite state transducers, which makes the resulting implementation both reliable and e�cient.
The token recognition process for the Shell language is described in the POSIX standard [20, Section 2.3],
unfortunately without using any regular expressions. While other languages use regular expressions with
a longest-match strategy to delimit the next lexeme in the input, the speci�cation of the Shell language
uses a low-level state machine which explains instead how tokens must be delimited in the input and how
the delimited chunks of input must be classi�ed into two categories: words and operators.

BAR='foo '"ba"r
X=0 echo x$BAR" "$(echo $(date))

Figure 6.2: Example words

Consider Figure 6.2 as an example. By the lexical con-
ventions of most programming languages, the �rst line
would be decomposed as �ve distinct tokens (namely BAR,
=, ’foo’, "ba" and r) while the lexical conventions of the
Shell language considers the entire line BAR=’foo’"ba"r
as a single token, classi�ed into the category of words. On
the second line, the input is split into the tokens X=0, echo and x$BAR" "$(echo $(date)). Notice that
the third token contains subshells, that is nested quotations of the form $(· · ·$(· · ·)) which themselves
can contain any piece of Shell code, including complex control structures.

echo `echo \`echo $(echo foo \\\\\\)\``

Figure 6.3: Nested subshells

From the lexical point of view, a subshell invoca-
tion is simply a word. Delimiting these subshell
invocations is hardly reducible to regular expres-
sion matching. Indeed, to determine the end of a
subshell invocation, it is necessary to recursively
call the Shell command parser so that it consumes the rest of the input until a complete command is
parsed. Consider Figure 6.3 as an example. On this command, determining if the right parenthesis is
ending the subshell requires deciding if the parenthesis is escaped or not. However, as explained in the

149

CHAPTER 6. MODELISATION OF POSIX SHELL

for do in for do in echo done; do echo $do; done

Figure 6.5: Promotion of a word to a reserved word

f=~niols/"$(echo foo)${x:=bar}"’$baz’[a-b]*

Figure 6.6: A word can have many components

previous section, this analysis is non trivial and more or less requires to perform a full syntactical analysis
of the input.

While the recognition of tokens is independent from the parsing context, their classi�cation into words,
operators, newlines and end-of-�le markers must be re�ned further to obtain the tokens actually used in
the formal grammar speci�ed by the standard. While chunks categorised as operators are easily trans-
formed into a more speci�c token, inputs chunk categorised as words can be promoted to reserved words
or to assignment words only under speci�c, ad hoc conditions; otherwise the word is not promoted and
stays a regular word. This means that the lexical analysis has to depend on the state of the parser.

CC=gcc make
make CC=cc
"./X"=1 echo

Figure 6.4: Promotion of a word to
an assignment

The promotion of a word to an assignment depends both on the posi-
tion of this word in the input and on the string representing that word.
The string must be of the form w=u where the substring w must be a
valid name. Consider Figure 6.4. On the �rst line, the word CC=gcc
is recognised as a word assignment of gcc to CC because CC is a valid
name for a variable, and because CC=gcc is written just before the
command name of the simple command make. On the second line,
the word CC=cc is not promoted to a word assignment because it ap-

pears after the command name of a simple command. On the last line, since "./X" is not a valid name
for a Shell variable, the word "./X=1" is not promoted to a word assignment and is interpreted as the
command name of a simple command.

The �rst side-rule of the Shell grammar given in the POSIX standard [20, Section 2.10.2] requires that a
word is promoted to a reserved word if the parser state is expecting this reserved word at the current point
of the input. If a word that is a potential reserved word is located where a reserved word is not expected,
it is not promoted and interpreted as any other word. Consider Figure 6.5 as an example. In that example,
the �rst occurrence of do as well as the words between the �rst occurrence of in and the �rst semicolon
are not promoted to reserved words while the other occurrences of for, do, in and done are. There are
exceptions to this rule as some reserved words can never appear in the position of a command. This is for
instance the case of else. If the word else occurs in the position of a command, it will be promoted to
reserved word but the parser will later reject such an input if there is no matching if.

The semantic value of a word can be complex since it can be made of subshell invocations, variables
and literals. The script in Figure 6.6 is a single word read as an assignment word by the grammar. The
right-hand-side of this assignment is a sequence starting with a so-called “tilde-pre�x”, followed by a
double-quoted sequence followed by a literal. The double-quoted sequence is itself composed of a subshell
invocation represented by the concrete syntax tree of its command, followed by a variable that uses the
default value bar when expanded. The double-quoted word is completed with a literal baz, a bracket
range expression and pattern-matching operator matching all words.

In fact, the lexical analysis also depends on the evaluation of the Shell script. Indeed, the alias builtin
command of the Shell amounts to the dynamic de�nition of macros that are expanded just before lexical
analysis. Therefore, even the lexical analysis of a Shell script cannot be done without executing it, that is,
lexical analysis of unrestricted Shell scripts is undecidable.

150

6.1. SYNTACTIC ASPECTS

program

linebreak complete_commands

complete_command

list

and_or

pipeline

pipesequence

pipe_sequence

command

simple_command

cmd_pre�x

CC=gcc

cmd_word

make

cmd_su�x

all

| linebreak command

simple_command

cmd_word

grep

cmd_su�x

’error’

linebreak

Figure 6.8: Parse tree for CC=gcc make all | grep 'error'

if ./foo; then
alias x="ls"

else
alias x=""

fi
x for i in a b; do

echo $i
done

Figure 6.7: Lexical analy-
sis is undecidable

Consider Figure 6.7 as an example. To decide if for in the last line is a reserved
word, a lexer must be able to know the success of an arbitrary program ./foo,
which is impossible to do statically. Hence, the lexer must wait for the eval-
uation of the �rst command before parsing the second one. Moreover, Shell
comprises the builtin eval which allows for execution of arbitrary code built
from a string. The use of such a builtin therefore makes the lexical analysis
undecidable without executing code on-the-�y.

6.1.2 Morbig, A Static Parser for Shell

We introduce Morbig [29], a static parser for a subset of the Shell language.
It constructs a concrete syntax tree of a complete script without evaluating
constructs of the language. The only limitations of Morbig are that it can-
not handle Shell constructs that are inherently dynamic in nature: the eval
builtin, unrestricted use of the alias builtin and premature termination of a script by an exit with trail-
ing garbage in the �le. These restrictions are justi�ed by the static nature of our parser.

Morbig is designed for a variety of applications, including statistical analysis of the concrete syntax of
scripts (see Section 7.1). Therefore, contrary to parsers typically found in compilers or interpreters, Morbig
does not produce an abstract syntax tree from a syntactically correct source but a parse tree instead. A
parse tree – or concrete syntax tree – is a tree whose nodes are grammar rule applications. See Figure 6.8
for an example parse tree for CC=gcc make all | grep ’error’. Because we need concrete syntax
trees and because we want high assurance about the compliance of the parser with respect to the POSIX
standard, reusing an existing parser implementation such as that of libdash was not an option. Our
research project required the reimplementation of a static parser from scratch.

Before giving more details about the implementation choices, let us sum up a list of the main requirements
that are implied by the technical di�culties explained in Section 6.1.1.2

1. The lexical analysis must be de�ned in terms of token delimitations, not in terms of token (regular)
2There are in fact other requirements related to technical di�culties that we have chosen not to describe in Section 6.1.1. We

refer an interested reader to more complete articles on the topic [Régis-Gianas et al. 2020].

151

CHAPTER 6. MODELISATION OF POSIX SHELL

Prelexer
Spec.

Parser
Spec.

Prelexer Lexer Parser

LEX YACC

Text Pretokens
Tokens

State

Figure 6.9: Architecture of Morbig

languages recognition.

2. The lexical analysis must be aware of the parsing context and of some contextual information like
the nesting of double quotes and subshell invocations.

3. The parser must be reentrant, that is we must be able to intertwine runs of the main parser for the
whole script and of sub-parsers for portions of the script. These sub-parsers are used by the lexical
analysis to determine the end of words that involve subshells.

4. For the same reason, the syntactic analysis must be able to return the longest syntactically valid
pre�x of the input.

5. The parser must forbid certain speci�c applications of the grammar production rules. This point
comes from the annotations of the grammar one can �nd in the POSIX standard which, in certain
situations, prevent a speci�c grammar rule from applying.

In addition to these technical requirements, there is an extra methodological one: the mapping between
the POSIX speci�cation and the source code must be as direct as possible.

The tight interaction between the lexer and the parser prevents us from writing our syntactic analyser
following the traditional design found in most textbooks [Aho et al. 2006; Levine et al. 1992], that is
a pipeline of a lexer followed by a parser. Hence, we cannot use either the standard interfaces of code
generated by LEX and YACC, because these interfaces have been designed to �t this traditional design.
There exist alternative parsing technologies3, that could have o�ered elegant answers to many of the
requirements enumerated previously, but we believe that none of them ful�ls our requirements [Régis-
Gianas et al. 2020].

In this situation, one could give up using code generators and fall back to the implementation of a hand-
written character-level parser. This is done in dash for instance: the parser of dash 0.5.7 is made of
1569 hand-crafted lines of C code. This parser is hard to understand because it is implemented by low-
level mechanisms that are di�cult to relate to the high-level speci�cation of the POSIX standard: for
example, lexing functions are implemented by means of gotos and complex character-level manipulations;
the parsing state is encoded using activation and deactivation of bit �elds in one global variable; some
speculative parsing is done by allowing the parser to read the input tokens several times, etc.

Our main design choice is not to give up on modularity. As shown in Figure 6.9, the architecture of our
syntactic analyser is similar to the common architecture found in textbooks as we clearly separate the
lexing phase and the parsing phase in two distinct modules with clear interfaces. Let us now describe the
original aspects of this architecture.

As suggested by the illustration, we decompose lexing into two distinct sub-phases. The �rst phase, called
3For instance scannerless generalised LR parsers or topdown general parsing combinators

152

6.1. SYNTACTIC ASPECTS

prelexing is implementing the token recognition process of the POSIX standard. This parsing-independent
step classi�es the input characters into three categories of pretokens: operators, words and potentially
signi�cant layout characters (newline characters and end-of-input markers). This module is implemented
using OCamlLex [37, Chapter 13], a lexer generator distributed with the OCaml language.

The second phase of lexing is parsing-dependent. As a consequence, a bidirectional communication be-
tween the lexer and the parser is needed. On one side, the parser is waiting for a stream of tokens to
reconstruct a parse tree. On the other side, the lexer needs some parsing context to promote words to
keywords or to assignment words, etc. We manage to implement all these ad hoc behaviours using spec-
ulative parsing, which is easily implemented thanks to the incremental and purely functional interface
produced by the parser generator Menhir [27].

OCamlLex is the lexer generator of the OCaml programming language. It extends the speci�cation lan-
guage of LEX with many features, two of which are exploited in our implementation. Firstly, a lexer of
OCamlLex can be de�ned by a set of mutually recursive entry points, which allows it to de�ne concate-
nation of distinct sub-languages in a modular and readable way. Thanks to this organisation of the lexical
rules, we were able to separate the lexer into a set of entry points where each entry point refers to a speci�c
part of the POSIX standard. This structure of the source code eases documentation and code reviewing and
hence increases its reliability. Secondly, the entry points of an OCamlLex lexer can be parameterised by
arguments. These arguments are typically used to have the lexer track contextual information along the
recognition process. Combined with recursion, these arguments provide extra expressive power, which
allows our lexer to parse nested structures (eg. parenthesised quotations) even if they are not regular
languages. In addition, the parameters of the lexer entry points make it possible for several lexical rules
to be factorised out in a single entry point.

Menhir [27] is parser generator for the OCaml programming language. While usual YACC-generated
parsers either produce a semantic value or fail if a syntax error is detected, Menhir provides an incremen-
tal interface which allows the lexer to read the state of the parser between execution steps and, thanks to
functionality of the interface, to backtrack to a previous state if necessary. The lexer can then simply per-
form some speculative parsing to determine whether a token is compatible with the current parsing state.
This is particularly useful to deal with the promotion of words to reserved words. The implementation of
this feature basically consists in running the parser a �rst time with the word promoted to reserved word.
If this results in a syntax error, we run the parser again without promoting the word.

From the programming point of view, backtracking is as cheap as declaring a variable to hold the state to
recover it if a speculative parsing goes wrong. From the computational point of view, thanks to sharing,
the overhead in terms of space is negligible and the overhead in terms of time is reasonable since we never
transmit more than one input token to the parser when we perform such speculative parsing.

Another essential advantage of the functionality of the interface of Morbig is the fact that the parsers
generated by Menhir are then reentrant by construction, which means the multiple instances of our parser
can be running simultaneously. This property is needed in our case because the prelexer can trigger
new instances of the parser to deal with subshell invocations. As it is very hard to delimit correctly
subshell invocation without parsing their content, these sub-parser are given the entire input su�x and
are responsible for �nding the end of this subshell invocation by themselves.

Morbig [29] is Free Software, published under the GPL3 license. On a i7-4600U CPU @ 2.10GHz with 4
cores, an SSD hard drive and 8GB of RAM, it takes 7.38s to parse the 31,330 POSIX Shell scripts among
the 31,582 maintainer scripts in the Debian GNU/Linux distribution and to serialise the corresponding
concrete syntax trees on the disk. Our parser fails on only one script which uses indeed a bash-speci�c
extension of the syntax. The average time to parse a script from the corpus of Debian maintainer scripts is

153

CHAPTER 6. MODELISATION OF POSIX SHELL

Table 6.1: Comparison of Morbig and dash on the whole corpus from Software Heritage. The percentages
are in function of the total number of scripts.

Morbig
dash All Accepted Rejected

All 7,436,215 (100%) 5,981,054 (80%) 1,455,161 (20%)

Accepted 5,609,366 (75%) 5,607,331 (75%) 2,035 (<1%)

Rejected 1,826,849 (25%) 373,723 (5%) 1,453,126 (20%)

therefore 0.2ms (with a standard deviation which is less than 1% of this duration). The maximum parsing
time is 70ms, reached for the prerm script of package w3c-sgml-lib_1.3-1_allwhich is 1121 lines long.
We compared Morbig to dash on the whole archive of Shell scripts from Software Heritage, containing
7,436,215 scripts in total (see Section 6.1.3 for details). We used a machine with an Intel Xeon Processor
E5-4640 v2 @ 2.20GHz with 40 cores and 756GB of RAM, where all the scripts were loaded in a tmpfs in
RAM. It takes 400s to dash and 3400s to Morbig to parse all these scripts. This means respectively 19,000
and 2200 scripts per second. Although dash is faster, the di�erence is less than an order of magnitude.

6.1.3 Validation

What makes us believe that our approach to implement the POSIX standard will lead to a parser that can
be trusted? Actually, as the speci�cation is informal, it is impossible to prove our code formally correct.
We actually do not even claim the absence of bugs in our implementation.

To improve our chance to converge to a trustworthy implementation, the development of Morbig follows
four guidelines. Firstly, the source code of Morbig contains almost 20% of comments. We tried to quote
the POSIX speci�cation related to each code fragment so that a code reviewer can evaluate the adequacy
between the implementation and its interpretation of the speci�cation. We also document every imple-
mentation choice we make and we explain the programming technique used to ease the understanding of
the unorthodox parts of the program, typically the speculative parsing.

Secondly, we commit ourselves to not modifying the o�cial BNF of the grammar despite its incomplete-
ness or the exotic nine side rules described earlier. BNF is the most declarative and formal part of the
speci�cation, knowing that our generated parser recognises the same language as this BNF argues in
favour of trusting our implementation.

Thirdly, Morbig comes with a test suite which follows the same structure as the speci�cation: for every
section of the POSIX standard, we have a directory containing the tests related to that section. At this
time, the test suite is relatively small since it contains just 185 tests. A code reviewer may still be interested
by this test suite to quickly know if some corner case of the speci�cation has been tested and, if not, to
contribute to the test suite by the addition of a test for this corner case.

Fourthly, and in order to disambiguate several paragraphs of the standard, we have checked that the be-
haviour of Morbig coincides with the behaviour of Shell implementation which are believed to be POSIX-
compliant, typically dash and bash (in POSIX mode).

As an additional guarantee, we ran both Morbig and dash on all the �les detected as Shell scripts in the
Software Heritage archive [33; 34; Abramatic et al. 2018]. This archive contains all the Shell scripts in
GitHub, and more, for a total of 7,436,215 �les. Table 6.1 shows general numbers about what both parsers
accept or reject in this archive. On most scripts (95%), Morbig and dash do agree. It is interesting to

154

6.2. SEMANTIC ASPECTS

consider the cases where they disagree, because this is where one can �nd bugs in one parser or the other.

Out of the scripts accepted by dash and rejected by Morbig the majority (350,259, ie. 94% and 4.7% of
the total) contains bash-speci�c constructs in words. dash, in parse-only mode, separates words but
does not look into them, hence it will only refuse them when executing the script. Morbig, on the other
hand, does parse words and rejects such scripts. This is neither a bug in dash nor in Morbig as the
POSIX standard does not specify whether such invalid words must be rejected during parsing or during
execution. The remaining 23,464 (0.3% of the corpus) that are accepted by dash and rejected by Morbig
are due to remaining bugs in Morbig or in dash.

There are only 0.03% of scripts which are accepted by Morbig and refused by dash. These are either due
to bugs in Morbig, or in dash, or to the fact that the standard is ambiguous.

6.2 Semantic Aspects

The syntax of Shell is convoluted, and semantics is not any better. It can be treacherous for both the
developers and the analysis tools. Based on Morbig, the parser for POSIX Shell described in Section 6.1,
we have designed a statistical4 analyser for the corpus of Shell scripts we are interested in. This statistical
analyser is described in Section 7.1. We used this statistical analyser in order to know which features of
Shell are mostly used in our corpus, and which features we may safely ignore. Based on this, we developed
an intermediate language for Shell scripts, called CoLiS, which we will brie�y describe in this section.

Since the CoLiS language is meant to be at the base of analysis and veri�cation tools, its design has been
guided by the following principles:

• CoLiS must be cleaner than Shell: we ignore the dangerous structures (like eval allowing to execute
arbitrary code given as a string) and we make more explicit the dangerous constructions that we
cannot eliminate.

• CoLiS must have clear syntax and semantics. The goal is to help in the writing of analysis tool so
that one can easily be convinced of the soundness of these tools without having to care about the
pitfalls of the syntax or the semantics of the underlying language.

• An automated conversion from Shell to CoLiS must be possible. Moreover, this conversion must
not be “too clever” because it has to be trusted that it is correct with respect to the semantics of
Shell and CoLiS. For this reason, the CoLiS language cannot be fundamentally di�erent from Shell.

CoLiS is not conceived as a replacement of Shell in the software packages. If that was our goal, we would
have designed a declarative language as a replacement, similar to how systemd has nowadays mostly
replaced System-V init scripts.

In Section 6.2.1, we describe semantic features of Shell that make it hard to deal with for our analysis tool.
In Section 6.2.2, we quickly present our intermediary language, CoLiS, the improvements it brings com-
pared to Shell and the automated conversion from Shell. In Section 6.2.3, we describe the implementation
of an interpreter for CoLiS and discuss the validation of CoLiS, its semantics and its conversion.

6.2.1 Horrors in the Semantics of Shell

The Shell language includes features that are well-known from other imperative programming languages,
like variable assignments, conditional branching, loops – both for and while. Shell scripts may call Unix
utilities which in particular may operate on the �lesystem, but these utilities are not part of the Shell

4
Statistical, not static! Well also static, but not only static.

155

CHAPTER 6. MODELISATION OF POSIX SHELL

f=~niols/"$(echo foo)${x:=bar}"’$baz’[a-b]*

Figure 6.6: A word can have many components

language itself, and not in the scope of the present chapter – they have been handled in Chapter 3. Without
going into the details of the Shell language, there are some peculiarities which are of importance for the
design of the CoLiS language.

The evaluation of expressions in Shell is done using a really expressive expansion mechanism. Consider
Figure 6.6 for instance, restated here for convenience. Figure 6.6 is only one word containing:

• unquoted literals f=,
• tildes ~niols/ expansing to the home of the user niols if they exist,
• quoted parts "$(echo foo)${x:-bar}" in which expansion still happens,
• subshell invocations $(echo foo) which can evaluate arbitrary commands and may even contain

control structures (eg. for loops),
• complex parameters ${x:=bar} which expand to various things depending on the state of the vari-

able it concerns (in this example, if $x is unset or set to the empty string, then it is assigned the
value bar),

• quoted literals ’$baz’ that are not expansed even if they contain any of the above,
• and globs [a-b] and * which are basically regular expressions that change the expansion of the

whole word depending on the contents of the �lesystem that they match.

The expansion might fail (eg. if a subshell invocation fails) which may a�ect the behaviour of the whole
script around the word in question.

path='/home '
path="$path/niols"
args='-l -a'
args="$args -h"
ls $args $path

Figure 6.10: Strings and
lists of strings

f () { g; }
g () { a=bar; }
a=foo
f
echo $a

Figure 6.11: Fully-
dynamic scoping

Variables are not declared, and there is no static type discipline. In principle,
values are just strings, but it is common practice in Shell scripts to abuse these
strings in order to represent other kind of data structures. The most common
example would be to abuse strings in order to represent lists of strings, by
assuming that the elements of a list are separated by the so-called internal �eld

separator (usually the blank symbol). Consider Figure 6.10 as an example. In
this example, the variable $path is thought of as a string – and even a path –
which is �rst set to contain /home and then extended to contain /home/niols.
The variable $args, on the other hand, is thought of as a list – of command-
line arguments – which is �rst set to contain the two elements -l and -a and
then extended to contain -l, -a and -h. The last command is then a call to
the utility ls with four arguments: -l, -a, -h and /home/niols. This pattern
is quite common and quite resistant to static analysis. In particular, how can
one make the di�erence between a misuse of a string5 or a correct use of a
list?

Functions may access non-local variables. However, this is done according
to the chronological order of the variables on the execution stack (dynamic
scoping), not according to the syntactic order in the script (lexical scoping).
Consider Figure 6.11 as an example. We �rst de�ne two functions. f only calls

another function g and g only updates a variable $a so that it contains bar. We then de�ne the variable $a
to contain foo and call f. This whole script is perfectly valid, and the result is a variable $a that contains
bar. Note that, although the function g is de�ned after f, it is not a problem for f to be calling g. Note

5A tiny space in a string in a maintainer script can cause really impressive damage [15].

156

6.2. SEMANTIC ASPECTS

also that at the moment when f is de�ned, there is no way telling whether the call to g will fail, or be a
call to an external utility or be a call to a function.

file=/sys -custom
IFS=-
rm -r $file

Figure 6.12: Example
script modifying $IFS

The semantics of Shell can be modi�ed during the execution. This can be done by
modifying the internal �eld separator or by calling the set builtin utility. The in-
ternal �eld separator is a variable, $IFS, which speci�es which characters count
as separator within values, and therefore where the Shell should cut values in
the execution. Consider Figure 6.12 as an example. In this example, we �rst set
a variable $file to /sys-custom which we plan to remove. However, if a mod-
i�cation of the IFS occurs in the meantime and changes the IFS to -, we will end
up removing /sys and custom which is most likely not what we intended.

set -e
! true
echo foo
false && true
echo bar
false
echo baz

Figure 6.13: Example
of surprising seman-
tics with set -e

The set utility allows a script to set or unset �ags that change the behaviour of
Shell. These �ags can be:6

• -a, which make every assignment become an export,
• -C, which prevents the Shell from overwriting existing �les by default,
• -e, which makes Shell exit immediately when a command fails, except

when this failure is caught,
• -f, which disables pathnames, that is interpretation of globs and tilde pre-

�xes,
• -u, which the Shell fail when expanding parameters that are unset.

The -e �ag is particularly interesting for us as it is made mandatory in main-
tainer scripts by the Debian Policy.7 It brings a form of of mechanism of excep-
tions to the Shell. This mechanism can however be pretty surprising. Consider
Figure 6.13 as an example. The �rst line activates the -e �ag of set. We then
have three instances of echo intertwined with various commands that may fail. ! true fails because
true always succeeds and ! inverts return code of its command. The whole command however does
not kill the Shell and the script continues, printing foo. false && true always fails because false and
&& fails if its �rst command fails. The whole command however does not kill the Shell and the script
continues, printing bar. false always fails and, this time, the command does kill the Shell, stopping the
script and therefore never printing baz. This example shows that, in this mode of Shell, ! true, false
&& true and false do not have the same semantics.

6.2.2 The CoLiS Language

The CoLiS language was �rst presented in 2017 [Jeannerod et al. 2017a]. Its design aimed at avoiding
some pitfalls of the Shell, and at making explicit the dangerous constructions which we cannot eliminate.
It was later improved upon [Becker et al. 2019; Becker et al. 2020] to increase the number of Debian
maintainer scripts that could be analysed by adding more constructs and to align the previous semantics
to the one of the Shell.8

CoLiS has a clear syntax and a formally de�ned semantics. We provide an automated and direct conversion
from Shell. The correctness of the conversion from Shell to CoLiS cannot be proven formally but must be
trusted based on testing and manual review of its code.

6Reading this list actually makes you wonder why all these options are disabled by default. We personally systematically
start our Shell scripts with set -euC.

7Not exactly, but close: “every script should use set -e or check the exit status of every command” [22, Section 10.4].
8In other words, to �x bugs in our semantics.

157

CHAPTER 6. MODELISATION OF POSIX SHELL

1 if [-h /etc/rancid/lg.conf]; then
2 rm /etc/rancid/lg.conf
3 fi
4 if [-e /etc/rancid/apache.conf]; then
5 rm /etc/rancid/apache.conf
6 fi

Figure 1.5: preinst script of the rancid-cgi package

1 if test ['-h'; '/etc/rancid/lg.conf'] then
2 rm ['/etc/rancid/lg.conf']
3 fi
4 if test ['-e'; '/etc/rancid/apache.conf'] then
5 rm ['/etc/rancid/apache.conf']
6 fi

Figure 1.6: preinst script of the rancid-cgi package in CoLiS

1 #!/bin/sh
2 set -e
3
4 if [! -e /usr/local/lib/ocaml]; then
5 if mkdir /usr/local/lib/ocaml 2>/dev/null; then
6 chown root:staff /usr/local/lib/ocaml
7 chmod 2775 /usr/local/lib/ocaml
8 fi
9 fi

10
11 [...]
12
13 for i in /usr/lib/ocaml /3.06 /etc/ocaml /var/lib/ocaml
14 do
15 if [-e $i/ld.conf]; then
16 echo "Removing leftover $i/ld.conf"
17 rm -f $i/ld.conf
18 rmdir --ignore -fail -on -non -empty $i
19 fi
20 done

Figure 6.14: postinst script of the ocaml-base-nox package (excerpt; cleaned up)

158

6.2. SEMANTIC ASPECTS

1 begin
2 true;
3
4 if test ['!'; '-e'; '/usr/local/lib/ocaml '] then
5 if mkdir ['/usr/local/lib/ocaml '] then
6 begin
7 chown ['root:staff '; '/usr/local/lib/ocaml '];
8 chmod ['2775'; '/usr/local/lib/ocaml ']
9 end

10 fi
11 fi;
12
13 [...]
14
15 for i in ['/usr/lib/ocaml /3.06 '; '/etc/ocaml'; '/var/lib/ocaml ']
16 do
17 if test ['-e'; split i '/ld.conf'] then
18 begin
19 echo ['Removing leftover ' i '/ld.conf'] ;
20 rm ['-f'; split i '/ld.conf'] ;
21 rmdir ['--ignore -fail -on -non -empty '; split i]
22 end
23 fi
24 done
25 end

Figure 6.15: postinst script of the ocaml-base-nox package in CoLiS (excerpt; cleaned up)

Figures 1.5 and 1.6 show the Shell and CoLiS versions of the preinst script of the rancid-cgi package.
They are restated here for convenience. For longer scripts that include other control structures, variables
and richer words, we refer the reader to Figures 6.14 and 6.15 which show the Shell and CoLiS versions
of the postinst script of the ocaml-base-nox package. From these scripts, we can already note quite a
few di�erences between Shell and CoLiS.

• The syntax of CoLiS requires mandatory usage of delimiters for string arguments and for lists of
arguments. Generally speaking, the syntax of CoLiS is designed so as to remove potential ambigu-
ities.

• The Shell utility call set -e is translated to true in CoLiS. This is because we avoid modelling set
in CoLiS and we enforce at conversion time that scripts start by a call to set -e, in line with what
the Debian Policy requires.

• The redirection 2> /dev/null disappears completely in CoLiS. This is because it a�ects only the
error output of the Shell, which usually has no impact on the semantics of a script. The conversion
ensures that this hypothesis is respected throughout the whole script by keeping track of redirec-
tions and rejects scripts where the error output is redirected to standard output or to �les.

• The Shell word $i/ld.conf, containing a variable, is converted to the CoLiS expression split i
’/ld.conf’. We can note the presence of the keyword split that makes explicit the fact that
the value of the variable $i will go through a phase where it will be split at its blank characters.
As a comparison, the quoted Shell word "$i/ld.conf" is converted to the CoLiS expression i
’/ld.conf’ where the splitting will not take place. This is an example of our policy of making
peculiarities of Shell more explicit in CoLiS.

159

CHAPTER 6. MODELISATION OF POSIX SHELL

Shell

CoLiS

sh InterpreterSemantics
of Shell

Semantics
of CoLiS

Output Output

Parsing
& Conversion

Usage Proof

=?

Figure 6.16: Validating the semantics of CoLiS with respect to that of Shell

The toolchain for analysing CoLiS scripts is designed with formal veri�cation in mind: the syntax, se-
mantics, and interpreters of CoLiS are implemented using the Why3 environment [Bobot et al. 2015] for
formal veri�cation. More precisely, the syntax of CoLiS is de�ned abstractly (as abstract syntax trees, AST
for short) by an algebraic datatype in Why3. Then the semantics is de�ned by a set of inductive pred-
icates [Becker et al. 2019] that encodes a standard, big-step operational semantics. The semantic rules
cover the contents of variables and input/output bu�ers used during the evaluation of a CoLiS script, but
they do not specify the contents of the �lesystem and the behaviour of Unix utilities. The judgements
and rules are parameterised by bounds on the number of loop iterations and the number of (recursively)
nested function calls to allow for formalising the correctness of the symbolic interpreter. The symbolic
interpreter will be described in Section 7.2.

The conversion from Shell to CoLiS is done automatically, but is not formally proven. Indeed, a formal
semantics of Shell was missing until very recently [Greenberg & Blatt 2019]. For the control �ow con-
structs, the AST of the Shell script is converted into the AST of CoLiS. For the strings (words in Shell),
the translation generates either a string CoLiS expression or a list of CoLiS expressions depending on the
content of the Shell string. This conversion makes explicit the string evaluation in Shell, in particular the
implicit string splitting. At the present time, the converter rejects 23% of Shell scripts, either because it
does not cover the full constructs of the Shell or because the CoLiS language is not rich enough to encode
them (eg. usage of globs, variables with parameters, and advanced uses of redirections).

6.2.3 A Concrete Interpreter for the CoLiS Language

A concrete interpreter for the CoLiS language is implemented in Why3 [11]. Its formal speci�cations
(preconditions and post-conditions) state the soundness of the interpreter, ie. that any result corresponds
to the formal semantics with unbounded number of loop iterations and unbounded nested function calls.
The speci�cations are checked using automated theorem provers [Jeannerod et al. 2017a].

The conformance of the semantics of CoLiS with that of Shell is not proven formally but tested by manual
review and some automatic testing. For the latter, we developed a tool that automatically compares the
results of the CoLiS interpreter on the CoLiS script with the results of the Debian default Shell (dash) on
the original Shell script. This tool uses a test suite of Shell scripts built to cover the whole constructs of
the CoLiS language. Its functioning is fairly simple. It is illustrated in Figure 6.16. The tool takes as input
hand written Shell scripts that cover various features of the CoLiS language. These scripts do not use
complex utilities but just enough to show corner cases of the semantics of constructs of Shell. They are
evaluated with a Shell interpreter – usually dash – on one hand and converted to CoLiS and evaluated

160

6.2. SEMANTIC ASPECTS

with the interpreter for CoLiS on the other hand. The output is then compared. When the outputs di�er,
this indicates a bug:

• either in the parsing and conversion,
• or in the semantics of CoLiS,
• or in the implementation of the Shell interpreter.

The bug cannot be in the semantics of Shell as it is our reference. It can also not be in the interpreter of
CoLiS because it is proven to be sound with respect to the semantics. This test suite allowed us to �x the
conversion and the formal semantics of CoLiS. As an additional outcome, it revealed a lack of conformance
between dash and the POSIX standard.9

Since our approach in the CoLiS project is bug-oriented, this also means that it is not crucial for the
semantics of CoLiS to be corresponding to that of Shell. A bug in the semantics of CoLiS would simply
lead to a report containing an unreproducible bug, which we would then track down back to the semantics
of CoLiS.

9See https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html.

161

https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html

Chapter 7

Applications & Results

Disclaimer: The work presented in this chapter is joint with Benedikt Becker, Claude Marché, Yann
Régis-Gianas, Mihaela Sighireanu and Ralf Treinen. Since we have participated in each aspect of this
work, we believe its presentation does belong here.

This chapter describes applications of all the material presented in this thesis. In Section 7.1, we present
the statistic analysis we ran on the corpus of maintainer scripts from Debian packages as well as some
results. In Section 7.2, we present the symbolic execution of Shell scripts. Finally, in Section 7.3, we
present the results that we obtained by running our toolchain on all Debian packages.

7.1 Statistic Analysis of Corpuses of Maintainer Scripts

7.1.1 Writing Analysers for Corpuses of Shell Scripts

One of the �rst question which we have investigated in the CoLiS project is which features of the Shell,
which Unix utilities and which options to these utilities are used and at which frequency. Such knowledge
was meant to guide us in the design of our intermediary language CoLiS, described in Section 6.2. First
analyses were done with simple grep scripts. These allowed rough estimates of the number of constructs
(eg. if, while, case) used in the corpus, for instance. As clever as these regular expressions might have
been1, they quickly showed severe limitations, due to the di�culties of lexical analysis.

The development of the Morbig parser, described in Section 6.1, allowed us to move these analyses to
another level. Indeed, since Morbig provides concrete syntax trees for Shell scripts, this allows us to de�ne
rich analysers of such syntax trees. These can easily replace complex regular expressions. Since they can
be written in general-purpose programming languages, they also can provide much richer analyses.

The di�culty of writing such analysers lies in the number of di�erent syntactic constructions of a realistic
language like shell: the concrete syntax trees have 108 distinct kinds of node. Even if most of the time
a single analysis focuses on a limited number of kinds of nodes, the analyser must at least traverse the
other kinds of node to reach the interesting ones. Even once on analyser is written, it is not easy to write
a variation of it quickly. Indeed, we use OCaml which has a lexical scoping. It is therefore not possible to
rede�ne a small portion of the traversal functions without have to rede�ne them all.

1And believe us when we say we spent some time tuning them and making them more and more clever.

163

CHAPTER 7. APPLICATIONS & RESULTS

1 let number_of_for program =
2 let count = ref 0 in
3 let visitor = object (self)
4 inherit [_] iter as super
5
6 method! visit_for_clause () for_clause =
7 incr count;
8 super#visit_for_clause () for_clause
9 end

10 in
11 visitor#visit_program () program;
12 !count

Figure 7.1: Function counting the number of for loops in a Shell script using a visitor

This problem is well-known in software engineering and it enjoys a well-known solution as well: the visi-
tor design pattern [Gamma 1995]. We follow a slightly modi�ed version of this design pattern [Jeannerod
et al. 2017b]. We use the OCaml extension Visitors [26; Pottier 2017] to generate basic visitors that traverse
concrete syntax trees without doing anything. These visitors are objects with a method for each kind of
nodes of the CST. These methods expect as arguments the children of the nodes they handle. Writing
a custom visitor then simply consists in inheriting from the basic visitors and overriding the methods
corresponding to the few syntactic constructs that we are interested in. Writing an analyser consists in
writing a visitor that gathers data by traversing the CST of all the scripts and writing a report function
that uses these data to highlight the information we are looking for.

Consider Figure 7.1 as an example use for a visitor. It de�nes an OCaml function number_of_for, Line 1.
It works as follows.

• number_of_for takes the concrete syntax tree of a Shell script as argument, named program.

• Line 2, we initialise a reference count which will contain the number of for-loop in the script.

• Line 3, we de�ne an object visitor which inherits from the iter class (Line 4). iter is an class
of objet that traverse the whole concrete syntax tree of a Shell script while doing nothing. It is
generated from the type of the concrete syntax tree using Visitors [26].

• Line 6, we override the only method of interest to us, visit_for_clause. This method is called
whenever there is a node of type for_clause in a concrete syntax tree. It receives as argument a
value for_clause which describes the contents of the for clause in question.

• Line 7, our implementation of visit_for_clause simply increments the counter and then falls
back on the behaviour of visit_for_clause in the iter2 class (Line 8), which will keep exploring
the concrete syntax tree.

• Line 11, once this visitor is de�ned, we only need to pass it the whole concrete syntax tree. Once the
iteration is done, count (Line 12) contains the number of nodes of type for_clause in the concrete
syntax tree, and thus the number of for-loops in the Shell script.

This design patterns allows us to easily write functions that traverse concrete syntax tree to compute
various analyses on the shell scripts to which they correspond. We can then easily write functions that
consider not one script but a corpus of scripts, iterate over them all and computes statistics over the use

2In fact, for such a simple thing as counting for-loop, a reduce visitor would be more appropriate.

164

7.1. STATISTIC ANALYSIS OF CORPUSES OF MAINTAINER SCRIPTS

Table 7.1: Builtins which may render analysis impossible

Builtin Occ. Files
alias 2 2
eval 42 30

Table 7.2: Sequential control structures

Structure Occ. Files
if 56,643 27,122
while 4,045 3,929
until 1 1
for 3,564 2,400
case 6,227 5,296

Table 7.3: Process creation and communication.

Construct Occ. Files
subshell 431 356
| 12,225 6,154
trap 32 28
kill 39 35
& 8 7

of various features, utilities, etc.3

7.1.2 Gallery of Analyses

Let us quickly list some results of various analyses that we ran on the corpus of all Shell scripts in Debian
packages.

Table 7.1 summarises the occurrences of Shell builtins which may render syntactic analysis impossible,
as explained in Section 6.1. The alias builtin appears only twice in our corpus, and both occurrences are
at the top level. There are 42 occurrences of eval in 30 scripts.

The occurrences of the di�erent sequential utility structures of the Shell are given in Table 7.2. Constructs
related to process creation and communication are given in Table 7.3. This table shows that the use of &,
which creates an asynchronous execution, is very rare in maintainer scripts. This observation, together
with the fact that dpkg does not allow for concurrent execution of maintainer scripts, justi�es our decision
to ignore concurrency in the modelisation of Shell scripts. The �ve most frequent simple Shell builtins are
listed in Table 7.4. The dot symbol, which is used to include another �le in the Shell script, has almost 5,000
occurrences and hence must be handled in our treatment of Shell scripts. It is handled by the conversion
mechanism which inlines the included Shell script into the other one.

The construction of the concrete syntax trees allows us to go further than just simple counting of occur-
rences of reserved words, and do a more structural analysis of Shell scripts. For instance, a signi�cant
portion of the variables de�ned in maintainer scripts are in fact constants: We found that in 1,295 out of

3An other use case for these visitors can be found in our tool lintshell [28]. Lintshell is a linter which uses this design pattern
to de�ne syntactic checks on Shell scripts.

Table 7.4: Simple Shell builtins

Builtin Occ. Files
set 30,817 30,579
exit 13,915 8,685
echo 10,770 5,010
true 10,740 3,966
. 4,922 2,900

Table 7.5: The ten most used Unix utilities acting on the �le system

Utility Occ. Utility Occ.
[47,633 find 2,144
which 12,669 xargs 1,907
rm 10,383 test 1,594
grep 5,138 chmod 1,562
read 3,896 chown 1,504

165

CHAPTER 7. APPLICATIONS & RESULTS

Table 7.6: Options of ln

Options Occ. Options Occ.
-s 333 (none) 5
-f -s 210 -f 4
-r -s 31 -S -b -s 4
-f -n -s 10 -b -f -s 3
-s -v 5 total 605

Table 7.7: Top 5 Debian-speci�c utilities

Utility Occ. Files
dpkg-maintscript-helper 9,992 3,889
dpkg 6,862 6,518
deb-systemd-helper 4,530 1,029
update-alternatives 3,616 2,350
update-menus 3,363 3,336

Table 7.8: Number of scripts using exotic utilities

Level Number % Level Number %
1 693 2.20% 50 3,286 10.44%
2 1,032 3.28% 100 4,058 12.89%
5 1,459 4.63% 200 5,232 16.62%

10 1,794 5.70% 500 8,095 25.71%
25 2,364 7.51%

2,841 cases (33%), a Shell variable is assigned to only once in a script, and this assignment occurs at top
level.

Function de�nitions are quite frequently used in maintainer scripts: we found 3,455 function de�nitions in
1,500 �les. Only one single function de�nition is recursive4. We also found nine maintainer scripts which
contain multiple de�nitions of the same function, four scripts which de�ne the same function di�erently
in the two branches of an if-then-else and one script containing two slightly di�erent de�nitions for
the same function, which could be improved by factorising the large common part of the two de�nitions.

Our tool provides statistics on the number of occurrences of each possible combination of options. Ta-
ble 7.6, for example, yields the combination of options observed for the ln utility, together with their
number of occurrences. One important conclusion for us is that 596 out of the 605 invocations of ln
create symbolic links instead of hard links. The possibility of multiple hard links in a �le system are a
problem for any formal model of �le systems since it means that one has to use acyclic directed graphs as a
model, instead of the much simpler trees. The fact that the creation of multiple hard links (ln without the
-s option) is rather rare justi�es our decision to consider �le systems as trees, at least in a �rst approach.

Table 7.7 yields the 5 most frequently used Debian-speci�c utilities in our corpus. These utilities are much
harder to model than the standard Unix utilities since they typically manipulate the contents of �les. The
statistics on utility usage help us to focus on the most important ones among these complex utilities.

Finally, the frequency of the di�erent Unix utilities in the corpus also allows us to estimate how many
scripts we would have to discard from our analysis if we restricted ourselves to scripts using only fre-
quently used utilities or, conversely, how many more scripts we would support by supporting more utili-
ties. We de�ne, for any natural number i, an exotic utility of level i to be a utility that is not found in more
than i scripts. For given levels of exotism, we count the number of utilities that are exotic of this level
and, more importantly, the number of scripts that do not use any of these utilities. Table 7.8 tells how
many scripts use exotic utilities. For instance, 1,794 scripts use at least one utility that occurs in at most
10 scripts.

4The function run_utility in the postinst script of the package rt4-extension-assettracker, version 3.0.0-1

166

7.2. SYMBOLIC INTERPRETATION OF SHELL SCRIPTS

7.2 Symbolic Interpretation of Shell Scripts

7.2.1 Symbolic Interpretation of Shell Scripts

In addition to the concrete interpreter, described in Section 6.2.3, we designed and implemented a symbolic
interpreter for the CoLiS language, also in Why3 [Becker et al. 2020]. Guided by a proof-of-concept
symbolic interpreter for a simple IMP language [Becker & Marché 2020], the main design choices for the
symbolic interpreter of CoLiS are:

• Variables are not interpreted abstractly: when executing an installation script, the concrete values
of the variables are known. On the other hand, the state of the �lesystem is not known precisely,
and it is represented symbolically using constraints.5

• The symbolic engine is generic with respect to the utilities: their speci�cations in terms of symbolic
input/output relations are taken as parameters.

• The number of loop iterations and the number of (recursively) nested function calls is bounded a

priori, the bound is given by a global parameter set at the interpreter call.

The Why3 code for the symbolic interpreter is annotated with post-conditions to express that it computes
an over-approximation [Becker & Marché 2020] of the concrete states that are reachable without exceeding
the given bound on loop iterations. This means that any concrete trace of execution that can be described
by the semantics – and ran by the concrete interpreter6 – will be present in the symbolic traces. More
formally, let us take any feature tree t. The concrete execution of a script on t returns an output tree t′.
Now let us take S a set of symbolic states, that is basically a set of threaded constraints on one variable r.
Assume one of these constraints is c such that [r 7→ t] |=FT c. The symbolic execution of the same script
on S returns an output set of symbolic states S′. The property of over-approximation guarantees that
there is a state c′ ∈ S′ such that [r 7→ t′] |=FT c′. This property is formally proven using automated
provers. The OCaml code is automatically extracted from Why3, and provides an executable symbolic
interpreter with strong guarantees of soundness with respect to the concrete formal semantics.

Notice that our symbolic engine neither supports parallel executions, nor �le permissions or �le times-
tamps. This is another source of over-approximation, but also under-approximation, meaning that our
approach can miss bugs whose triggering relies on the former features.

The symbolic interpreter provides a symbolic semantics for the given script: given an initial symbolic
state that represents the possible initial shape of the �lesystem, it returns a triple of sets of symbolic
input/output relations, respectively for normal result, error result (corresponding to non-zero exit code)
and result when a loop limit is reached.

Let us consider a toy implementation of this symbolic engine, given in Figure 7.2.

• The main function of the interpreter, interp, is given Line 35. takes a command cmd in CoLiS and
a list of states states and returns a pair of list of states, representing the success and the errors
of the execution. The type for states is de�ned Line 6. It is simply a threaded constraint with two
variables representing the input and the output roots.

• The interpretation of control structures is not very surprising. As an example, the interpretation
of if cmd1 then cmd2 else cmd3 is given Line 43. It simply consists in interpreting cmd1 in
states. This returns two lists of states, success1 and errors1 in which one can then interpret

5The implementation of the symbolic interpreter is modular and accepts any backend – not only FTS – that has the right
properties. A sub-group of the CoLiS project is working on providing a backend for symbolic execution based on tree transducers.

6As long as this is feasible while respecting the bound on the loop iterations.

167

CHAPTER 7. APPLICATIONS & RESULTS

1 type case = (variable × variable) -> threaded-constraint
2
3 function spec-utility-call(name : string , args : list of strings)
4 : list of cases × list of cases
5
6 type state = threaded-constraint × variable × variable
7
8 function fresh-variable () : variable
9

10 function apply-case-to-state(case : case, state : state) : state or ⊥
11 let (t, r, r′) = state
12 let r′′ = fresh-variable ()
13 match add-transform-2-threaded(case(r′, r′′), t)
14 | ⊥ -> return ⊥
15 | t′ -> return (t, r, r′′)
16
17 function apply-cases-to-state(cases : list of cases , state : state)
18 : list of states
19 match cases
20 | ε -> return ε
21 | case 〉 cases’ ->
22 let states ' = apply-cases-to-state(cases ', state)
23 match apply-case-to-state(case , state)
24 | ⊥ -> return states
25 | state ' -> return state’ 〉 states’
26
27 function apply-cases-to-states(cases : list of cases ,
28 states : list of states) : list of states
29 match states
30 | ε -> return ε
31 | state 〉 states’ ->
32 return apply-cases-to-state(cases , state)
33 〉〉 apply-cases-to-states(cases , states ')
34
35 function interp(cmd : colis, states : list of states)
36 : list of states × list of states
37 match cmd
38 | UtilityCall(name , args) ->
39 let (success , errors) = spec-utility-call(name , args)
40 return (apply-cases-to-states(success , states),
41 apply-cases-to-states(errors , states))
42
43 | IfThenElse(cmd1 , cmd2 , cmd3) ->
44 let (success1 , errors1) = interp(cmd1 , states)
45 let (success2 , errors2) = interp(cmd2 , success1)
46 let (success3 , errors3) = interp(cmd3 , errors1)
47 return (success2 〉〉 success3, errors2 〉〉 errors3)
48
49 [...]

Figure 7.2: Example code for the symbolic interpreter

168

7.2. SYMBOLIC INTERPRETATION OF SHELL SCRIPTS

cmd2 and cmd3, obtaining four lists of states, success2 and errors2 on one hand and success3
and errors3 on the other hand. The interpretation of the whole structure is then the concatenation
of success2 and success3 for success cases and the concatenation of errors2 and errors3 for
error cases.

• The interpretation of utility calls is where we get to see the interaction between the symbolic engine
and the solvers for FTS. From the point of view of interp, the interpretation of utility calls is fairly
simple. It consists in calling a function spec-utility-call generating the speci�cation of the
particular utility call. It is then only a matter of applying the success and error speci�cation cases
to states, which generates two lists of states, success and error respectively.

• Each speci�cation case returned by spec-utility-call is in fact a function from a pair of variables
to a threaded constraint. The type of a case is de�ned Line 1. This is a way to allow the client code to
decide on which root variables to generate the speci�cation cases. The generation of speci�cation
cases is described in Section 3.3.

• There are several things to note on the application of speci�cation cases to states. First of all, one
applies a list of speci�cation cases to a list of states. This is done by applying each speci�cation case
to each state, producing a quadratic explosion. This explosion was mentioned in Section 3.4 and
is particularly visible in the example code of the two iteration functions apply-cases-to-states
and apply-cases-to-state, de�ned Lines 27 and 17 respectively. The former takes a list of cases
and a list of states and iterates apply-cases-to-state on each given state. The latter takes a list
of cases and one state and iterates apply-case-to-state on each given case. We can already note
at this point that apply-case-to-state can fail and return ⊥, in which case the result is simply
dropped. This mechanism is in fact very important as this is the place where unsatis�able states
are eliminated.

• Finally, apply-case-to-state, de�ned Line 10, takes a speci�cation case and a state and tries
applying the former to the latter. Let us consider that the state is composed of a threaded constraint t
and two root variables r and r′ and that the speci�cation case is named case. r represents the root
at the beginning of the execution of the script. r′ represents the root before the execution of the
utility call. Applying case to (t, r, r′) consists �rst in generating a new root variable, Line 12,
which will represent the root after the execution of the utility call. This is done by calling a function
fresh-variable that is part of the interface of the FTS solver. It generates a fresh variable, that
is a variable that has never been previously encountered in the whole execution. In this case, the
utility call “happens” between r′ and r′′. We can therefore instantiate the speci�cation case on
these variables by calling case(r′, r′′). This gives us a threaded constraint which can be added to
the current one, t by calling add-transform-2-threaded. The underlying work of add-trans-
form-2-threaded is discussed in Section 5.3. The result of this call can detect an unsatis�ability
by returning ⊥. Such a result means that the given speci�cation case and state are not consistent
and that their application should be discarded. If the call does not fail, it returns a new threaded
constraint t′ equivalent to case(r′, r′′) ∧ t – but more e�cient as it is already the result of some
computation by the solver – which can be returned.

7.2.2 An Example

Let us develop this execution by hand on the beginning of the postinst script of the ocaml-base-
nox package shown in Figure 6.14. Of course, the symbolic interpreter does not run on the Shell script
itself but on the CoLiS script obtained by parsing and conversion, as described in Chapter 6. The CoLiS
corresponding to the postinst Shell script of the ocaml-base-nox package is shown in Figure 6.14. This
�gure is restated here for convenience.

169

CHAPTER 7. APPLICATIONS & RESULTS

1 begin
2 true;
3
4 if test ['!'; '-e'; '/usr/local/lib/ocaml '] then
5 if mkdir ['/usr/local/lib/ocaml '] then
6 begin
7 chown ['root:staff '; '/usr/local/lib/ocaml '];
8 chmod ['2775'; '/usr/local/lib/ocaml ']
9 end

10 fi
11 fi;
12
13 [...]
14
15 for i in ['/usr/lib/ocaml /3.06 '; '/etc/ocaml'; '/var/lib/ocaml ']
16 do
17 if test ['-e'; split i '/ld.conf'] then
18 begin
19 echo ['Removing leftover ' i '/ld.conf'] ;
20 rm ['-f'; split i '/ld.conf'] ;
21 rmdir ['--ignore -fail -on -non -empty '; split i]
22 end
23 fi
24 done
25 end

Figure 6.15: postinst script of the ocaml-base-nox package in CoLiS (excerpt; cleaned up)

test ['!'; '-e'; '/usr/local/lib/ocaml']

mkdir ['/usr/local/lib/ocaml']

chown ['root:staff'; '/usr/local/lib/ocaml']

chmod ['2775'; '/usr/local/lib/ocaml']

S1 E1

E2

S2

S3

Success Error

Success Error

Success Error

Success Error

Figure 7.3: Traces of execution of the �rst command in the postinst script of the ocaml-base-nox
package

170

7.2. SYMBOLIC INTERPRETATION OF SHELL SCRIPTS

r0 =? r1

x1

y1

z1

usr

local

lib

∧ (r1 =? r2

⊥
usr

∨ r1 =? r2

x2

⊥

usr

local

∨ r1 =? r2

x2

y2

⊥

usr

local

lib

∨ r1 =? r2)

x2

y2

z2

⊥

usr

local

lib

ocaml

(a) Success state/s (the threaded constraint is unfolded)

r0 =? r1

x1

y1

z1

usr

local

lib

∧ r1 =? r2

x2

y2

z2

u2

usr

local

lib

ocaml

(b) Error state

Figure 7.4: Formulas 7.2 and 7.3

Let us thus develop, by hand, the symbolic execution on this script. The �rst complex command (Lines 4
to 11) comprises the traces of execution given in Figure 7.3. We simply need to call interp on this script
with a list of states as argument. This list of states must represent the transformation that was performed
before the execution of the script start. Of course, no transformation was actually performed, and we
could then provide one single state containing (r0 =? r1, r0, r1). This however leads to the detection
of a lot of potential bugs that have to do with the non-existence of usual directories, like /usr. Luckily,
the Debian Policy speci�es that one can always expect a Debian system to respect the �lesystem hierarchy

standard – or FHS for short [36]. This standard requires the existence of numerous directories. The only
one of interest for our example is /usr/local/lib. Let us therefore call interp on the postinst script
of the ocaml-base-nox package with initial state Formula 7.1;

((r0 =? r1 ∧ r1[usr]x1 ∧ x1[local]y1 ∧ y1[lib]z1), r0, r1) (7.1)

The �rst utility call that gets interpreted is that of test [’!’; ’-e’; ’/usr/local/lib/ocaml’].
This call succeeds when /usr/local/lib/ocaml does not exist and fails otherwise. The interpreter then
gets the semantics of this call from the speci�cations database and applies it to the one state of Formula 7.1.
This gives the two states of Formulas 7.2 and 7.3. Graphical representations can be found in Figure 7.4. The
existential quanti�ers are left out for readability; every variable except r0 and r2 is existentially quanti�ed.

(r0 =? r1 ∧ r1[usr]x1 ∧ x1[local]y1 ∧ y1[lib]z1)
∧ (r1 =? r2 ∧ (¬r2[usr]↑ → (r2[usr]x2 ∧ (¬x2[local]↑ → (x2[local]y2

∧ (¬y2[lib]↑ → (y2[lib]z2 ∧ z2[ocaml]↑)))))))
(7.2)

(r0 =? r1 ∧ r1[usr]x1 ∧ x1[local]y1 ∧ y1[lib]z1)
∧ (r1 =? r2 ∧ r2[usr]x2 ∧ x2[local]y2 ∧ y2[lib]z2 ∧ z2[ocaml]u2)

(7.3)

It is already possible for the solver to make these formulas more compact, which gives in the end the two
states of Formulas 7.4 and 7.5.

r0 =? r2 ∧ r2[usr]x2 ∧ x2[local]y2 ∧ y2[lib]z2 ∧ z2[ocaml]↑ (7.4)
r0 =? r2 ∧ r2[usr]x2 ∧ x2[local]y2 ∧ y2[lib]z2 ∧ z2[ocaml]u2 (7.5)

The error of test leads directly to the successful end of the if construct (S3 in Figure 7.3). The suc-
cess, however, enters the then part and we proceed with the interpretation of the utility call mkdir [
’/usr/local/lib/ocaml’]. The interpreter gets its semantics from the speci�cations database and

171

CHAPTER 7. APPLICATIONS & RESULTS

r0 =? r2

x2

y2

z2

⊥

usr

local

lib

ocaml

∧ r2

x′2

y′2

z′2

⊥

usr

local

lib

ocaml

r3

x3

y3

z3

u3[?]↑

usr

local

lib

ocaml

=c{usr}

=c{local}

=c{lib}

=c{ocaml}

(a) Success state

r0 =? r2

x2

y2

z2

⊥

usr

local

lib

ocaml

∧(r2 =? r3

⊥
usr
∨ r2 =? r3

x3

⊥

usr

local

∨ r2 =? r3

x3

y3

⊥

usr

local

lib

∨r2 =? r3)

x3

y3

z3

u3

usr

local

lib

ocaml

(b) Error state/s (the threaded constraint is unfolded)

Figure 7.5: Formulas 7.6 and 7.7

applies it to the one state of Formula 7.4. This gives the two states of Formulas 7.6 and 7.7. Graphical
representations can be found in Figure 7.5. Again, the existential quanti�ers are left out for readability;
every variable except r0 and r3 is existentially quanti�ed.

r0 =? r2 ∧ r2[usr]x2 ∧ x2[local]y2 ∧ y2[lib]z2 ∧ z2[ocaml]↑
∧ r2[usr]x′2 ∧ x′2[local]y′2 ∧ y′2[lib]z′2 ∧ z′2[ocaml]↑
∧ r2 =c{usr} r3 ∧ x′2 =c{local} x3 ∧ y′2 =c{lib} y3 ∧ z′2 =c{ocaml} z3

∧ r3[usr]x3 ∧ x3[local]y3 ∧ y3[lib]z3 ∧ z3[ocaml]u3 ∧ u3[?]↑

(7.6)

(r0 =? r2 ∧ r2[usr]x2 ∧ x2[local]y2 ∧ y2[lib]z2)
∧ (r2 =? r3 ∧ (¬r3[usr]↑ → (r3[usr]x3 ∧ (¬x3[local]↑ → (x3[local]y3

∧ (¬y3[lib]↑ → (y3[lib]z3 ∧ z3[ocaml]u3)))))))
(7.7)

The solver can make these formulas more compact. In fact, while doing so, it will detect that the error
case, leading to a successful end of the inner if construct (S2 in Figure 7.3), is simply unsatis�able. In the
end, only the success state of Formula 7.8 remains

r0[usr]x0 ∧ x0[local]y0 ∧ y0[lib]z0 ∧ z0[ocaml]↑
∧ r0 =c{usr} r3 ∧ x0 =c{local} x3 ∧ y0 =c{lib} y3 ∧ z0 =c{ocaml} z3

∧ r3[usr]x3 ∧ x3[local]y3 ∧ y3[lib]z3 ∧ z3[ocaml]u3 ∧ u3[?]↑
(7.8)

The interpretation will then proceed with chown [’root:staff’; ’/usr/local/lib/ocaml’] and
chmod [’2775’; ’/usr/local/lib/ocaml’]. Since users, groups and permissions are abstracted
away in our model, these two utility calls are equivalent to a test of existence of /usr/local/lib/ocaml.
Of course, since we come from the success case of mkdir [’/usr/local/lib/ocaml’], both these
calls will succeed. Their success case will not change anything to Formula 7.8 and their error case/s,
leading to errored end of the if constructs (E1 and E2 in Figure 7.3), will turn out to be unsatis�able.

The result of the interpretation of this �rst part of the script is that only S1 and S3 are reachable – all
the other traces are not. Moreover, the interpreter only carries one state for each of these traces, far from
the worst-case exponential explosion. The symbolic execution bene�ts from the intertwining of steps
of execution of the solver. Indeed, without that, unreachable traces would still be explored, leading to a
loss of time in the execution. In this script, for instance, the trace ending in S2 would otherwise carry its
execution in the rest of the script, leading to the exploration of dozen useless traces. Of course, this is
only a gain of speed if running the solver again after every step only takes a short amount of time. This
is where the incrementallity of our solver plays a crucial role.

172

7.3. ANALYSING INSTALLATION SCENARIO OF CORPUSES OF DEBIAN PACKAGES

Table 7.9: Bugs found between 2016 and 2019 in Debian sid distributions

Bugs Closed Detected by Reports Examples
95 56 parser [3] not using -e mode
6 4 parser & manual [7] unsafe or non-POSIX constructs

34 24 corpus mining [2; 5] wrong options, mixed redirections
9 7 conversion [4] wrong test expressions
5 2 symbolic execution [7; 8; 10] try to remove a directory with rm
3 3 formalisation [6] bug in dpkg-maintscript-helper

151 92

7.3 Analysing Installation Scenario of Corpuses of Debian Packages

7.3.1 Coverage of the case study

The main experimental result of our thesis and of the CoLiS project is the analysis of full corpuses of
Debian packages. We execute the analysis on a machine equipped with 40 hyperthreaded Intel Xeon CPU
@ 2.20GHz, and 750GB of RAM. To obtain a reasonable execution time, we limit the processing of one
script to 60 seconds and 8GB of RAM. The time limit might seem low, but the experience shows that the
few scripts (in 30 packages) that exceed this limit actually require hours of processing because they make
a heavy use of dpkg-maintscript-helper. On our corpus of 12,592 packages with 28,814 scripts, the
analysis runs in about half an hour.

All of those scripts that are syntactically correct with respect to the POSIX standard (99.9%) are parsed
successfully by our parser. The conversion of the parsed scripts into our intermediary language CoLiS
succeeds for 77% of them; the translation fails mainly because of the use of globs, variables with parameters
and advanced uses of redirections.

Our toolchain then attempts to run 113,328 scenarios (12,592 packages with scripts, 9 scenarios per pack-
age). Out of those, 45,456 scenarios (40%) are run completely and 13,149 (12%) partially. This is because
scenarios have several branches and although a branch might encounter failure, we try to get some in-
formation on execution of other branches. For the same reason, one scenario might encounter several
failures. In total, we encounter 67,873 failures. The origins of failures are multiple, but the two main ones
are:

• trying to execute a scenario that includes a script that we cannot convert (28% of failures),
• or the scripts might use utilities unsupported by our tools, or unsupported features of supported

utilities (71% of failures).

Among the scenarios that we manage to execute at least partially, 19 reach an unexpected end state. These
are potential bugs. We have examined them manually to remove false positives due to approximations
done by our methodology or the toolchain. We discuss in Section 7.3.2 the main classes of true bugs
revealed by this process.

7.3.2 Bugs found

We ran our toolchain [29; 24; 11; 23] on several snapshots of the Debian sid distribution taken between
2016 and 2019, the latest one being October 6, 2019. We reported over this period a total of 151 bugs to
the Debian Bug Tracking System [35]. Some of them have immediately been con�rmed by the package
maintainer (for instance, [9]), and 92 of them have already been resolved.

173

CHAPTER 7. APPLICATIONS & RESULTS

Table 7.9 summarises the main categories of bugs we reported. Simple lexical analysis already detects 95
violations of the Debian Policy, for instance scripts that do not specify the interpreter to be used, or that
do not use the -e mode [3]. The Shell parser (Section 6.1) detects 3 scripts that use Shell constructs not
allowed by the POSIX standard, or in a context where the POSIX standard states that the behaviour is
unde�ned [7]. There are also 3 miscellaneous bugs, like using unsafe Shell constructs. The mining tool
(Section 7.1) detects 5 scripts that invoke Unix utilities with wrong options and 29 scripts that mix up
redirection of standard-output and standard-error. The conversion from the Shell to the CoLiS language
(Section 6.2) detects 9 scripts with wrong test expressions [4]. These may stay unnoticed during super�cial
testing since the Shell confuses, when evaluating the condition of an if-then-else, an error exception with
the Boolean value False.

Inspection of the symbolic semantics extracted by the symbolic execution �nds 5 scripts with semantic
errors. Among these is the bug [9] of the package rancid-cgi already explained in Section 1.3.

We found 3 bugs during the formalisation of Debian tools. These include in particular a bug [6] in the
dpkg-maintscript-helper function which is used 10,306 times in our corpus of maintainer scripts, and
was �xed in the meantime.

We found that identifying bugs in maintainer scripts always requires human examination. Automated
tools allow to point out potential problems in a large corpus, but deciding whether such a problem actually
deserves a bug report, and of what severity level, requires some experience with the Debian processes.
This is most visible with semantic bugs in scripts, since an error exit code does not imply that there is
a bug. Indeed, if a script detects a situation it cannot handle then it must signal an error and produce a
useful error message. Deciding whether a detected error case is justi�ed or accidental requires human
judgement.

Filling bug reports demands some caution, and observance of rules and common practices in the com-
munity. For instance, the Debian Developers Reference [14] requires approval by the community before
so-called mass bug �lling. Consequently, we always sought for advice before sending batches of bugs,
either on the Debian developers mailing list, or during Debian conferences.

174

Chapter 8

Conclusion

8.1 Contributions

Throughout this thesis, we presented work revolving around the case study of bringing formal program
analysis techniques to the quality assurance of Debian packages, and their maintainer scripts in partic-
ular. This includes various aspects, ranging from theoretical research to more concrete implementation
and testing considerations, not forgetting interpretation and modelisation of standards written in natural
language.

Our main contribution lies in our work on decision procedures for FTS. This comprises the design of
a decision procedure for �rst-order formula and a result of decidability of the �rst-order theory of FTS
which was an open problem before this work took place. This also covers more practical considerations as
the goal is to use FTS – or a chosen subset – in our tool. These considerations include work on an e�cient
way to handle the negated similarity predicates, a way to formalise an intermediary step between systems
of transformation rules and an implementation and support for threaded constraints.

Another important part of our work lies in the modelisation of Unix �lesystems and utilities and of POSIX
Shell. This comprises the interpretation of informal standards in natural language – POSIX and the Debian
Policy – and re�ection on the abstractions that make sense. The latter includes a statistic analysis of
packages to discover common uses within the maintainer scripts of Debian.

Finally, our work comprises concrete contributions to the implementation of a toolchain able to analyse
Debian packages. This encompasses the implementation of a parser and conversion chain from Shell to
our intermediary language as well as the implementation of the aforementioned solver for a subset of
FTS. This comprises questions of validation of these tools and the establishment of testing procedures for
the various unformalised components of the toolchain (eg. by comparing Morbig to dash and CoLiS to
Shell). Finally, this includes work to scale our analysis to thousands of packages in a reasonable time, and
work to return human readable reports. The result is the discovering and report of a total of 151 bugs to
the Debian Bug Tracking System

8.2 Limitations & Perspectives

8.2.1 About a Solver for (Threaded) Constraints of FTS

A �rst and most obvious limitation lies in the actual implementation of a solver for FTS. The toolchain of
our project includes an implementation close to that described in Chapter 5. Its support of FTS is however

175

CHAPTER 8. CONCLUSION

partial, in particular in the handling of negative literals. The implementation of threaded constraints is
also partial and only the speci�c threads required by CoLiS are supported (see Section 5.3.4).

One of our short term goals would be to write an implementation for the solver that follows exactly
what is described Chapter 5, with full support for FTS, pointed constraints and threaded constraints. This
implementation would allow us to measure the e�ciency of the various optimisations presented in this
thesis. We could for instance try to assess the improvement brought by:

• the use ofR2 instead ofR1,
• the extension ofR2 with extra cleanup rules (see Section 5.1.4),
• di�erent orders in which pointed constraints handle their literals (see Section 5.2.4),
• the use of threaded constraints in the solver (see Section 5.3),
• di�erent formulations of the same formulas using di�erent threads – eg. noresolve as described

in Section 5.3.1 or as currently implemented in colis-language (see Section 5.3.4).

This requires the de�nition of a corpus of test formulas, covering all the aspects of FTS, on which to
compare e�ciency and run benchmarks. Of course, a particularly interesting (for us) subset of formulas
will be the one generated by symbolic execution of Shell scripts in our toolchain.

8.2.2 About a Solver for First-Order Formulas of FTS

There is currently no implementation of a solver for formulas of FTS that are not Σ1. It would be easy
to add support – although a very ine�cient one – for any �rst-order formulas by simply following the
implementation described in Chapter 4. This would already allow us to check automatically a lot of
properties as long as they can be expressed as formulas with only few quanti�er alternations (see for
instance Section 8.2.4).

Longer term research could involve the development of more e�cient algorithm for deciding �rst-order
formulas, or at least interesting subsets of such formulas. It could be interesting to investigate algorithms
for deciding entailment of any Σ1-formulas, for instance.1

8.2.3 About the Expressivity of FTS

Some future work could involve increasing the expressivity of FTS to support more features of Unix
utilities. This includes the handling of utility arguments, standard inputs and outputs, return codes, etc.
directly in the logic instead of concretely in the symbolic engine.

This also includes the handling of more complex transformations like that of find or like the interleavings
of trees as created by cp -R. Expressing properties about this interleaving requires to be able to handle
predicates that mention the union of two feature trees and the inclusion of a feature tree in and other one
(see Section 3.4.1).

FTS could also be extended by supporting features as �rst class objects. Although the �rst-order theory
of such logics is not decidable, it can be possible to recover decidability by limiting the quanti�cation over
features. One can thus hope that it is possible to decide the satis�ability of Σ1-formulas at least. In turn,
and by adding limited constraints over strings, this could for instance allow to model the use of globs
– as in the command rm *.tex which removes all the �les whose name ends in .tex from the current
working.

1Section 5.3 uses the satis�ability of Σ1-formulas to obtain a test of entailment φ |= ψ by checking for unsatis�ability of
φ ∧ ¬ψ. This means it can currently only check the entailment of a Π1-formula ψ by a Σ1-formula φ, and probably not in such
an e�cient way.

176

8.2. LIMITATIONS & PERSPECTIVES

FTS could also be extended to support paths. This change would in particular allow us to compare the
performances brought by such an extension with the performances of threaded constraints to express the
same formulas (see Section 5.3).

Finally, FTS could be extended to support paths as �rst class objects. This could be an important step
towards the modelisation of symbolic links in the logic. Indeed, the resolution of a path /usr from a
variable r can then succeed either if there exists a variable x such that r[usr]x, or if there exists a path p
such that usr is a symbolic link in r pointing to p.

8.2.4 About Speci�cations

Although we have been careful while writing them, there is no guarantee that the speci�cations we gave
to Unix utilities are correct models of what they are actually doing. We see two directions which we could
follow in order to improve the quality of these speci�cations.

• Firstly, we documented some properties – under the form of formulas of FTS – which we expect
from speci�cations in Section 3.4.1. Some of them can be checked by a solver for any Σ1-formulas
(completeness, determinism, functionality) and some require at least a solver for Π2-formulas (co-
herence, totality). With such solvers (which we do not currently have; see Sections 8.2.1 and 8.2.2),
we could automatically check and report on utilities whose speci�cation does not respect these
properties. This would increase our con�dence in the fact that our speci�cations are correct.

• Secondly, we could also compare our modelled utilities with the actual ones from GNU by gener-
ating tests based on the speci�cations. This would allow us to check whether our speci�cations
matches with actual used implementations. In a second step, that would also allow us to generate
test batteries to check whether a given implementation is POSIX-compliant.

8.2.5 About the Coverage of our Toolchain

The current state of our toolchain has a number of limitations. The most visible limitation lies in the
number of maintainer scripts that are accepted by our toolchain and the number of scenarios that our
tool manages to run. As of October 6, 2019, 77% of maintainer scripts get successfully converted to the
intermediary language CoLiS and 40% of scenarios are ran completely – that is without problems – and
12% partially. Most of the problems met during the execution of scenarios come from utilities that are
unsupported by our tool (70% of problems) and scripts that have not been converted (28% of problems).
In order to increase the coverage of our analysis, there are several points which we can improve.

• Firstly, our tool can support more Shell scripts. This can be achieved by improving the conversion
to handle speci�c expressions in an ad hoc and subtle way. This can also be done by extending the
CoLiS language so that it supports other aspects of the Shell that are used in maintainer scripts.

• Secondly, our tool should support more Unix utilities or more aspects of the currently supported
utilities. For some of them, this is only a matter of time spent reading their description and writing
their speci�cation. For some others, the current expressivity of FTS is not enough (see Section 8.2.3).

• Thirdly and �nally, our model could be extended to cover more features of Unix �lesystems, such
as permissions, �le contents, hard and symbolic links, etc.

8.2.6 About Finding More Bugs with our Toolchain

Currently, the semantic bugs that we �nd only have to do with exit statuses in scenarios. For instance, in
the case of our running example, rancid-cgi, we found a bug because the installation of this package

177

CHAPTER 8. CONCLUSION

could reach the “Not-Installed” state of dpkg.

We however aim at �nding bugs that occur even when the exit status of dpkg is legit. For instance:

• the installation of a package should never modify the home of the users,
• maintainer script should be idempotent – that is running it twice should give the same result as

running it once2 –,
• installing and removing a package should leave the �lesystem unchanged3,
• updating a package should leave the �lesystem in the same state as if the new version was installed

from scratch,
• etc.

For instance, the fact that the semantics for the installation of a package does not modify the home of
the users can be expressed as a simple entailment. The semantics of an installation being a Σ1-formula
φ(r, r′), the entailment φ(r, r′) |= r ={home} r

′ indeed expresses that /home is untouched.

As another example, the idempotency of the semantics of a maintainer script – which is also a Σ1-formula
φ(r, r′) – can be expressed as the Π2-formula ∀r, r′, r′′ · ((φ(r, r′) ∧ φ(r′, r′′)) ↔ φ(r, r′′))4. A weaker
form can be expressed as the entailment (φ(r, r′) ∧ φ(r′, r′′)) |= r′ =? r

′′.

As in Section 8.2.4, checking these properties therefore requires the existence of solvers for the entailment
of Σ1-formulas or even for the validity of Π2, which we do not currently have (see Sections 8.2.1 and 8.2.2).

8.2.7 About Finding Less Bugs with our Toolchain

If our tool allows to pinpoint problems, it still requires an important human intervention to decide whether
they are reasonable or whether they should be considered to be bugs. These limitations in the automation
can be mitigated by letting the tool automatically run some checks on the potential bugs.

• Firstly, we can hope that checking the properties on the semantics of maintainer scripts described in
Section 8.2.6 would make our summary report better at showing likely bugs. In our running exam-
ple rancid-cgi, for instance, we found a bug where the installation of this package could reach the
“Not-Installed” state in dpkg while having modi�ed the �lesystem. This bug was however buried
under other packages that would reach the “Not-Installed” state without performing any transfor-
mation. Such false positives could easily be automatically detected by asking to a solver whether
their semantics implies that the input and the output are equal or not. Such a check would then
increase the con�dence in the fact that reported problems are bugs by �ltering out false positives.

• Secondly, we could automatically extract from the semantics of maintainer scripts steps to repro-
duce the potential problems that are reached. This would allow for better and more understandable
bug reporting. This would also allow for an automatic reproduction of bugs in real condition in
order to remove false positives.

8.2.8 About the Accessibility of our Toolchain

We strongly believe in making tools like our toolchain available to anyone in order to actually make them
useful. All our tools are open source and can be easily found online [13]. We do not consider that enough

2 In fact, the idempotency in maintainer scripts means that if the �rst run is successful, then the second run should just ensure
that everything is the way it ought to be, and if the �rst run failed, then the second call should merely do the things that were
left undone the �rst time [22, Section 6.2].

3Actually, this would be installing and purging a package. The removal of a package may leave con�guration �les in /etc.
4Actually, as said in footnote 2, the problem of idempotency is more complex than that. This would however be a nice �rst

approximation.

178

8.2. LIMITATIONS & PERSPECTIVES

and we would therefore want to let our toolchain run regularly on all the Debian packages, to make the
reports available easily, or even to �ll in bug reports automatically.

We would also want to make this tool easy to use, so that anyone can check their own packages before
upload, either on their own machine or sending their package to website and getting a report5.

8.2.9 About the Generalisation of our Toolchain

Finally, it is tempting to generalise the work of the CoLiS project. We see three ways to generalise, of
increasing complexity.

• Firstly, we could generalise our analysis to other packages than that of Debian. Debian being the
base of a lot of derived distribution (eg. the Ubuntu family), there is a huge amount of packages that
are not supported by Debian but that are installable with dpkg. It would be interesting to run our
tool on such corpuses of packages.

• Secondly, we could generalise our analysis to other package managers than dpkg. A lot of package
managers indeed rely on mechanisms that are similar. Shell scripts often have a preponderant
position in such tools, in similar environment and similar bugs are therefore to be expected.

• Thirdly, we could generalise our analysis to any Shell script. This seems like a much more complex
work as we would loose the whole (convenient) context of Debian. This means that we should
expect a lot more linguistic features used in Shell scripts than what we currently have to deal with.

5One of our dreams would be for the tool to run easily in the browser, which is not so complicated with js_of_ocaml for
instance.

179

Appendices

References

This bibliography does not contain the miscellaneous elements. See later for these elements.

[Abate et al. 2012] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. “Dependency
solving: A separate concern in component evolution management”. In: Journal of Systems and Soft-

ware, volume 85, issue 10, October 2012, pages 2228–2240.
url: https://doi.org/10.1016/j.jss.2012.02.018.

[Abramatic et al. 2018] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. “Building
the universal archive of source code”. In: Communications of the ACM, volume 61, issue 10, Septem-
ber 2018, pages 29–31.
url: https://doi.org/10.1145/3183558.

[Aho et al. 1986] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley series in computer science / World student series edition. Addison-Wesley,
1986. isbn: 0-201-10088-6.
url: https://www.worldcat.org/oclc/12285707.

[Aho et al. 2006] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2006. isbn: 0321486811.

[Aït-Kaci 1986] Hassan Aït-Kaci. “An algebraic semantics approach to the e�ective resolution of type
equations”. In: Theoretical Computer Science, volume 45, issue, 1986, pages 293–351. issn: 0304-3975.
url: https://doi.org/10.1016/0304-3975(86)90047-2.

[Aït-Kaci et al. 1994] Hassan Aït-Kaci, Andreas Podelski, and Gert Smolka. “A Feature-Based Constraint
System for Logic Programming with Entailment”. In: Theoretical Computer Science, volume 122, issue
1-2, January 3, 1994, pages 263–283.

[Aït-Kaci & Nasr 1986] Hassan Aït-Kaci and Roger Nasr. “LOGIN: A Logic Programming Language with
Built-In Inheritance”. In: Journal of Logic Programming, volume 3, issue 3, October 1986, pages 185–
215.
url: https://doi.org/10.1016/0743-1066(86)90013-0.

[Aït-Kaci & Nasr 1989] Hassan Aït-Kaci and Roger Nasr. “Integrating Logic and Functional Program-
ming”. In: Lisp and Symbolic Computation, volume 2, issue 1, February 1989, pages 51–89.
url: https://doi.org/10.1007/BF01806313.

181

https://doi.org/10.1016/j.jss.2012.02.018
https://doi.org/10.1145/3183558
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1016/0304-3975(86)90047-2
https://doi.org/10.1016/0743-1066(86)90013-0
https://doi.org/10.1007/BF01806313

REFERENCES

[Aït-Kaci & Podelski 1993] Hassan Aït-Kaci and Andreas Podelski. “Towards a Meaning of LIFE”. In: Jour-
nal of Logic Programming, volume 16, issue 3, July–August 1993, pages 195–234.
url: https://doi.org/10.1016/0743-1066(93)90043-G.

[Backofen 1995] Rolf Backofen. “A Complete Axiomatization of a Theory with Feature and Arity Con-
straints”. In: Journal of Logic Programming, volume 24, issue 1-2, July–August 1995, pages 37–71.
url: https://doi.org/10.1016/0743-1066(95)00033-G.

[Backofen & Smolka 1995] Rolf Backofen and Gert Smolka. “A Complete and Recursive Feature Theory”.
In: Theoretical Computer Science, volume 146, issue 1-2, July 24, 1995, pages 243–268.
url: https://doi.org/10.1016/0304-3975(94)00188-O.

[Backofen & Treinen 1998] Rolf Backofen and Ralf Treinen. “How to Win a Game with Features”. In:
Information and Computation, volume 142, issue 1, April 10, 1998, pages 76–101.
url: https://doi.org/10.1006/inco.1997.2691.

[Becker et al. 2019] Benedikt Becker, Claude Marché, Nicolas Jeannerod, and Ralf Treinen. Revision 2 of

CoLiS language: formal syntax, semantics, concrete and symbolic interpreters. Technical Report. HAL
Archives Ouvertes, October 2019.
url: https://hal.inria.fr/hal-02321743.

[Becker et al. 2020] Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela
Sighireanu, and Ralf Treinen. “Analysing installation scenarios of Debian packages”. In: Tools and
Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,

Ireland, April 25-30, 2020, Proceedings, Part II. Edited by Armin Biere and David Parker. Volume 12079.
Lecture Notes in Computer Science. Springer, April 17, 2020, pages 235–253.
url: https://doi.org/10.1007/978-3-030-45237-7_14.

[Becker & Marché 2020] Benedikt Becker and Claude Marché. “Ghost Code in Action: Automated Ver-
i�cation of a Symbolic Interpreter”. In: Veri�ed Software. Theories, Tools, and Experiments - 11th

International Conference, VSTTE 2019, New York City, NY, USA, July 13-14, 2019, Revised Selected Pa-

pers. Edited by Supratik Chakraborty and Jorge A. Navas. Volume 12031. Lecture Notes in Computer
Science. Springer, March 14, 2020, pages 107–123.
url: https://doi.org/10.1007/978-3-030-41600-3_8.

[Bobot et al. 2015] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. “Let’s
verify this with Why3”. In: International Journal on Software Tools for Technology Transfer, volume
17, issue 6, November 2015, pages 709–727.
url: https://doi.org/10.1007/s10009-014-0314-5.

[Comon & Lescanne 1989] Hubert Comon and Pierre Lescanne. “Equational Problems and Disuni�ca-
tion”. In: Journal of Symbolic Computation, volume 7, issue 3-4, March–April 1989, pages 371–425.
url: https://doi.org/10.1016/S0747-7171(89)80017-3.

[Cook 1971] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA.
Edited by Michael A. Harrison, Ranan B. Banerji, and Je�rey D. Ullman. ACM, May 1971, pages 151–
158.
url: https://doi.org/10.1145/800157.805047.

182

https://doi.org/10.1016/0743-1066(93)90043-G
https://doi.org/10.1016/0743-1066(95)00033-G
https://doi.org/10.1016/0304-3975(94)00188-O
https://doi.org/10.1006/inco.1997.2691
https://hal.inria.fr/hal-02321743
https://doi.org/10.1007/978-3-030-45237-7_14
https://doi.org/10.1007/978-3-030-41600-3_8
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1016/S0747-7171(89)80017-3
https://doi.org/10.1145/800157.805047

REFERENCES

[Davey & Priestley 2002] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices andOrder. 2nd edi-
tion. Cambridge University Press, April 18, 2002. isbn: 9780511809088.
url: http://doi.org/10.1017/CBO9780511809088.

[Gamma 1995] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson Edu-
cation India, 1995.

[Garey & Johnson 1979] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7.

[Gar�nkel et al. 1994] Simson Gar�nkel, Daniel Weise, and Steven Strassmann. The UNIX-HATERS Hand-
book. 1994. isbn: 1-56884-203-1.

[Greenberg 2017] Michael Greenberg. “Understanding the POSIX Shell as a Programming Language”. In:
O� the Beaten Track 2017. Paris, France, January 2017.

[Greenberg 2018a] Michael Greenberg. “The POSIX shell is an interactive DSL for concurrency”. In:DSLDI
2018. 2018.

[Greenberg 2018b] Michael Greenberg. “Word Expansion Supports POSIX Shell Interactivity”. In: Confer-
ence Companion of the 2nd International Conference on Art, Science, and Engineering of Programming.
Programming’18 Companion. Nice, France: Association for Computing Machinery, April 2018, pages 153–
160. isbn: 9781450355131.
url: https://doi.org/10.1145/3191697.3214336.

[Greenberg & Blatt 2019] Michael Greenberg and Austin J. Blatt. “Executable Formal Semantics for the
POSIX Shell”. In: Proceedings of the ACM on Programming Languages, volume 4, issue POPL, De-
cember 2019.
url: https://doi.org/10.1145/3371111.

[Hodges 1993] Wilfrid Hodges. Model theory. Volume 42. Encyclopedia of mathematics and its applica-
tions. Cambridge University Press, 1993. isbn: 978-0-521-30442-9.

[Jeannerod et al. 2017a] Nicolas Jeannerod, Claude Marché, and Ralf Treinen. “A Formally Veri�ed In-
terpreter for a Shell-Like Programming Language”. In: Veri�ed Software. Theories, Tools, and Exper-
iments - 9th International Conference, VSTTE 2017, Heidelberg, Germany, July 22-23, 2017, Revised

Selected Papers. Edited by Andrei Paskevich and Thomas Wies. Volume 10712. Lecture Notes in
Computer Science. Springer, December 15, 2017, pages 1–18.
url: https://doi.org/10.1007/978-3-319-72308-2_1.

[Jeannerod et al. 2017b] Nicolas Jeannerod, Yann Régis-Gianas, and Ralf Treinen. Having FunWith 31.521

Shell Scripts. Technical Report. HAL Archives Ouvertes, 2017.
url: https://hal.archives-ouvertes.fr/hal-01513750.

[Jeannerod et al. 2019] Nicolas Jeannerod, Yann Régis-Gianas, Claude Marché, Mihaela Sighireanu, and
Ralf Treinen. Speci�cation of UNIXUtilities. Technical Report. HAL Archives Ouvertes, October 2019.
url: https://hal.inria.fr/hal-02321691.

[Jeannerod & Treinen 2018] Nicolas Jeannerod and Ralf Treinen. “Deciding the First-Order Theory of an
Algebra of Feature Trees with Updates”. In:Automated Reasoning - 9th International Joint Conference,

IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,

Proceedings. Edited by Didier Galmiche, Stephan Schulz, and Roberto Sebastiani. Volume 10900.
Lecture Notes in Computer Science. Springer, June 30, 2018, pages 439–454.
url: https://doi.org/10.1007/978-3-319-94205-6_29.

183

http://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1145/3191697.3214336
https://doi.org/10.1145/3371111
https://doi.org/10.1007/978-3-319-72308-2_1
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.inria.fr/hal-02321691
https://doi.org/10.1007/978-3-319-94205-6_29

REFERENCES

[Levine et al. 1992] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. 1992.

[Maher 1988] Michael J. Maher. “Complete Axiomatizations of the Algebras of Finite, Rational and In�-
nite Trees”. In: Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS ’88),

Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society, 1988, pages 348–357.
url: https://doi.org/10.1109/LICS.1988.5132.

[Malcev 1971] Anatolií Ivanovič Mal’cev. “Axiomatizable Classes of Locally Free Algebras of Various
Types”. In: The Metamathematics of Algebraic Systems. Edited by Anatolií Ivanovič Mal’cev. Vol-
ume 66. Studies in Logic and the Foundations of Mathematics. Elsevier, 1971. Chapter 23, pages 262–
281.
url: https://doi.org/10.1016/S0049-237X(08)70560-3.

[Mancinelli et al. 2006] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Du-
rak, Xavier Leroy, and Ralf Treinen. “Managing the Complexity of Large Free and Open Source
Package-Based Software Distributions”. In: 21st IEEE/ACM International Conference on Automated

Software Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan. IEEE Computer Society, 2006,
pages 199–208.
url: https://doi.org/10.1109/ASE.2006.49.

[Mazurak & Zdancewic 2007] Karl Mazurak and Steve Zdancewic. “Abash: Finding Bugs in Bash Scripts”.
In: Proceedings of the 2007 Workshop on Programming Languages and Analysis for Security. PLAS
’07. San Diego, California, USA: Association for Computing Machinery, 2007, pages 105–114. isbn:
9781595937117.
url: https://doi.org/10.1145/1255329.1255347.

[Ntzik & Gardner 2015] Gian Ntzik and Philippa Gardner. “Reasoning about the POSIX �le system: local
update and global pathnames”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015. Edited by Jonathan Aldrich and Patrick Eugster. ACM,
October 2015, pages 201–220.
url: https://doi.org/10.1145/2814270.2814306.

[Pottier 2017] François Pottier. “Visitors Unchained”. In: Proceedings of the ACM on Programming Lan-

guages, volume 1, issue ICFP, August 2017.
url: https://doi.org/10.1145/3110272.

[Régis-Gianas et al. 2020] Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen. “Morbig: A Static pars-
er for POSIX shell”. In: Journal of Computer Languages, volume 57, issue, April 2020, page 100944.
url: https://doi.org/10.1016/j.cola.2020.100944.

[Saraswat & Rinard 1990] Vijay A. Saraswat and Martin C. Rinard. “Concurrent Constraint Program-
ming”. In: Conference Record of the Seventeenth Annual ACM Symposium on Principles of Program-

ming Languages, San Francisco, California, USA, January 1990. Edited by Frances E. Allen. ACM
Press, 1990, pages 232–245.
url: https://doi.org/10.1145/96709.96733.

[Smolka 1992] Gert Smolka. “Feature-Constraint Logics for Uni�cation Grammars”. In: Journal of Logic
Programming, volume 12, issue 1-2, January 1992, pages 51–87.
url: https://doi.org/10.1016/0743-1066(92)90039-6.

184

https://doi.org/10.1109/LICS.1988.5132
https://doi.org/10.1016/S0049-237X(08)70560-3
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1145/1255329.1255347
https://doi.org/10.1145/2814270.2814306
https://doi.org/10.1145/3110272
https://doi.org/10.1016/j.cola.2020.100944
https://doi.org/10.1145/96709.96733
https://doi.org/10.1016/0743-1066(92)90039-6

REFERENCES – MISCELLANEOUS

[Smolka 1993] Gert Smolka. “Residuation and Guarded Rules for Constraint Logic Programming”. In:
Constraint Logic Programming: Selected Research. Edited by Frédéric Benhamou and Alain Colmer-
auer. The MIT Press, 1993, pages 405–419.

[Smolka et al. 1993] Gert Smolka, Martin Henz, and Jörg Würtz. “Object-Oriented Concurrent Constraint
Programming in Oz”. In: Grundlagen und Anwendungen der Künstlichen Intelligenz, 17. Fachtagung

für Künstliche Intelligenz, Humboldt-Universität zu Berlin, 13.-16. September 1993, Proceedings. Edited
by Otthein Herzog, Thomas Christaller, and Dieter Schütt. Informatik Aktuell. Springer, 1993, pages 44–
59.

[Smolka 1995] Gert Smolka. “The Oz Programming Model”. In: Computer Science Today: Recent Trends

and Developments. Edited by Jan van Leeuwen. Volume 1000. Lecture Notes in Computer Science.
Springer, 1995, pages 324–343.
url: https://doi.org/10.1007/BFb0015252.

[Smolka & Treinen 1994] Gert Smolka and Ralf Treinen. “Records for Logic Programming”. In: Journal of
Logic Programming, volume 18, issue 3, April 1994, pages 229–258.
url: https://doi.org/10.1016/0743-1066(94)90044-2.

[Stump et al. 2001] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. “A Decision Pro-
cedure for an Extensional Theory of Arrays”. In: 16th Annual IEEE Symposium on Logic in Computer

Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society, 2001,
pages 29–37.
url: https://doi.org/10.1109/LICS.2001.932480.

[Treinen 1993] Ralf Treinen. “Feature Constraints with First-Class Features”. In: Mathematical Founda-

tions of Computer Science 1993, 18th International Symposium, MFCS’93, Gdansk, Poland, August 30

- September 3, 1993, Proceedings. Edited by Andrzej M. Borzyszkowski and Stefan Sokolowski. Vol-
ume 711. Lecture Notes in Computer Science. Springer, 1993, pages 734–743.
url: https://doi.org/10.1007/3-540-57182-5_64.

[Treinen 1997] Ralf Treinen. “Feature Trees over Arbitrary Structures”. In: Specifying Syntactic Structures.
Edited by Patrick Blackburn and Maarten de Rijke. CSLI Publications and FoLLI, 1997. Chapter 7,
pages 185–211.

[Turing 1937] Alan M. Turing. “On Computable Numbers, with an Application to the Entscheidungsprob-
lem”. In: Proceedings of the LondonMathematical Society, volume s2-42, issue 1, January 1937, pages 230–
265. issn: 0024-6115.
url: https://doi.org/10.1112/plms/s2-42.1.230.

[Vorobyov 1996] Sergei G. Vorobyov. “An Improved Lower Bound for the Elementary Theories of Trees”.
In: Automated Deduction - CADE-13, 13th International Conference on Automated Deduction, New

Brunswick, NJ, USA, July 30 - August 3, 1996, Proceedings. Edited by Michael A. McRobbie and John
K. Slaney. Volume 1104. Lecture Notes in Computer Science. Springer, 1996, pages 275–287.
url: https://doi.org/10.1007/3-540-61511-3_91.

References – Miscellaneous

[1] Debian Bug #431131. cmigrep: broken emacsen-install script. June 2007.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131.

185

https://doi.org/10.1007/BFb0015252
https://doi.org/10.1016/0743-1066(94)90044-2
https://doi.org/10.1109/LICS.2001.932480
https://doi.org/10.1007/3-540-57182-5_64
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/3-540-61511-3_91
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131

REFERENCES – MISCELLANEOUS

[2] Debian Bug #841934. dibbler-server: postinst contains invalid command. October 2016.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934.

[3] Debian Bug #866249. authbind: maintainer script(s) not using strict mode. June 2017.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249.

[4] Debian Bug #900493. python3-neutron-fwaas-dashboard: incorrect test in postrm. May 2018.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493.

[5] Debian Bug #908189. dict-freedict-all: postinst script has a wrong redirection. September 2018.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189.

[6] Debian Bug #922799. [dpkg-maintscript-helper] bug in �nish_dir_to_symlink. February 2019.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799.

[7] Debian Bug #925006. preinst script not POSIX compliant. March 2019.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006.

[8] Debian Bug #929706. sgml-base: preinst may fail *silently*. May 2019.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706.

[9] Debian Bug #942388. rancid-cgi: preinst may fail and not rollback a change. October 2019.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388.

[10] Debian Bug #942392. ndiswrapper: when "postrm purge" fails it may have deleted some con�g �les.
October 2019.
url: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392.

[11] Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, and
Ralf Treinen. colis-language: a symbolic analyser for shell scripts. GitHub Repository.
url: https://archive.softwareheritage.org/swh:1:dir:5af8ddcd130f0ec7b63cee9686b2e7a394805a88/.

[12] Richard Braakman, Josip Rodin, Julian Gilbey, and Mark Hobley. checkbashisms.
url: https://sourceforge.net/projects/checkbaskisms/.

[13] CoLiS – ANR project ANR-15-CE25-0001. GitHub Organisation.
url: https://github.com/colis-anr.

[14] Developer’s Reference Team. Debian Developers Reference. October 2019.
url: https://www.debian.org/doc/manuals/developers-reference/.

[15] GitHub User ginoputrino. Install script does rm -rf /usr for ubuntu. GitHub Issue MrMEEE/bumblebee
#123. May 2011.
url: https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/issues/123.

[16] Michael Greenberg and Austin J. Blatt. Smoosh, the Symbolic, Mechanized, Observable, Operational

SHell: an executable formalization of the POSIX shell standard. GitHub Repository.
url: https://archive.softwareheritage.org/swh:1:dir:4de38fb893247f0620222d78e80eabf1c830b25d/.

[17] Vidar Holen. shellcheck: A shell script static analysis tool.
url: https://github.com/koalaman/shellcheck.

[18] IEEE and The Open Group. The Open Group Base Speci�cations Issue 7, 2018 edition. 2018.
url: https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/.

186

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392
https://archive.softwareheritage.org/swh:1:dir:5af8ddcd130f0ec7b63cee9686b2e7a394805a88/
https://sourceforge.net/projects/checkbaskisms/
https://github.com/colis-anr
https://www.debian.org/doc/manuals/developers-reference/
https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/issues/123
https://archive.softwareheritage.org/swh:1:dir:4de38fb893247f0620222d78e80eabf1c830b25d/
https://github.com/koalaman/shellcheck
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/

REFERENCES – MISCELLANEOUS

[19] IEEE and The Open Group. The Open Group base Speci�cations Issue 7, 2018 edition. Volume XBD:

Base De�nitions. 2018.
url: https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/.

[20] IEEE and The Open Group. The Open Group base Speci�cations Issue 7, 2018 edition. Volume XCU:

Shell & Utilities. 2018.
url: https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/.

[21] IEEE and The Open Group. The Open Group base Speci�cations Issue 7, 2018 edition. Volume XSH:

System Interfaces. 2018.
url: https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/.

[22] Ian Jackson, Christian Schwarz, Russ Allbery, and Sean Whitton. Debian Policy Manual, version

4.4.1.1. September 2019.
url: https://www.debian.org/doc/debian-policy/.

[23] Nicolas Jeannerod. colis-batch, a tool to run colis-language on packages and corpuses of pack-

ages. GitHub Repository.
url: https://archive.softwareheritage.org/swh:1:dir:2ec3501225000c1df6b12318e421cad59de95799/.

[24] Nicolas Jeannerod. Morsmall, a concise AST for POSIX shell. GitHub Repository.
url: https://archive.softwareheritage.org/swh:1:dir:29da9e4a2314493aa4eadf86c81c8645210057bc/.

[25] Nicolas Jeannerod and Ralf Treinen. shstats, a statistical analyzer for corpora of shell scripts.
GitHub Repository.
url: https://archive.softwareheritage.org/swh:1:dir:c096dc18c53b88342837b28d8386744023c859f8/.

[26] François Pottier. Visitors: an OCaml syntax extension which generates object-oriented visitors for

traversing and transforming data structures.
url: https://archive.softwareheritage.org/swh:1:dir:e16d1eeb404b57f6bb6ed284ae8ea0173b8299bd/.

[27] François Pottier and Yann Régis-Gianas. Menhir: An LR(1) parser generator for OCaml.
url: https://archive.softwareheritage.org/swh:1:dir:48045c3ab0b2be2bbb89079c1e9e49bcf49e3fa0/.

[28] Yann Régis-Gianas and Nicolas Jeannerod. lintshell, a user-extensible lint for POSIX shell. GitHub
Repository.
url: https://archive.softwareheritage.org/swh:1:dir:d45c920801b1ed2f6ac1267b26285e666106c786/.

[29] Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen. Morbig, A Static Parser for POSIX Shell.
GitHub Repository.
url: https://archive.softwareheritage.org/swh:1:dir:9eae6fd10c5a3eedf7c7ddfa3a3546254e52dd4b/.

[30] Report of colis-batch 6a1657c running colis-language 74e73d5 on Debian sid for amd64, includ-

ing contrib and non-free, as of October 6, 2019. Zenodo Archive.
url: https://doi.org/10.5281/zenodo.4471388.

[31] Joseph Ritson. “The Valentine”. In: Gammer Gurton’s Garland or The Nursery Parnassus: A Choice

Collection of Pretty Songs and Verses for the Amusement of all Little Good Children who can neither

read nor run. Edited by R. Christopher. 1784, pages 39–40.

[32] Roland Rosenfeld. rancid-cgi: looking glass CGI based on rancid tools. Debian Package.
url: https://packages.debian.org/en/sid/rancid-cgi.

[33] Software Heritage.
url: https://www.softwareheritage.org/.

187

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://www.debian.org/doc/debian-policy/
https://archive.softwareheritage.org/swh:1:dir:2ec3501225000c1df6b12318e421cad59de95799/
https://archive.softwareheritage.org/swh:1:dir:29da9e4a2314493aa4eadf86c81c8645210057bc/
https://archive.softwareheritage.org/swh:1:dir:c096dc18c53b88342837b28d8386744023c859f8/
https://archive.softwareheritage.org/swh:1:dir:e16d1eeb404b57f6bb6ed284ae8ea0173b8299bd/
https://archive.softwareheritage.org/swh:1:dir:48045c3ab0b2be2bbb89079c1e9e49bcf49e3fa0/
https://archive.softwareheritage.org/swh:1:dir:d45c920801b1ed2f6ac1267b26285e666106c786/
https://archive.softwareheritage.org/swh:1:dir:9eae6fd10c5a3eedf7c7ddfa3a3546254e52dd4b/
https://doi.org/10.5281/zenodo.4471388
https://packages.debian.org/en/sid/rancid-cgi
https://www.softwareheritage.org/

LIST OF FIGURES

[34] Software Heritage archive.
url: https://archive.softwareheritage.org/.

[35] The Debian Project. Bugs tagged colis.
url: https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=
treinen@debian.org.

[36] The Linux Foundation. Filesystem Hierarchy Standard, version 3.0. June 3, 2015.
url: https://refspecs.linuxfoundation.org/fhs.shtml.

[37] The OCaml system release 4.11 – Documentation and user’s manual. August 19, 2020.
url: http://caml.inria.fr/pub/docs/manual-ocaml/.

List of Figures

1.1 Metadata of the rancid-cgi package (excerpt) . 14
1.2 Installation of rancid-cgi with APT on Debian (excerpt) 14
1.3 A bug report on the package cmigrep (excerpt) . 15
1.4 colis-language: toolchain for the analysis of one Shell script 19
1.5 preinst script of the rancid-cgi package . 19
1.6 preinst script of the rancid-cgi package in CoLiS . 20
1.7 Traces of execution of the preinst script of the rancid-cgi package 20
1.8 colis-package: toolchain for the analysis of a Debian package 21
1.9 Flowchart for the installation of a package . 22
1.10 Report of colis-package on rancid-cgi – Index . 23
1.11 Report of colis-package on rancid-cgi – One output state 24
1.12 colis-batch: toolchain for the analysis of several Debian packages 25
1.13 Summary report by colis-batch – Index . 26
1.14 Summary report by colis-batch – Page of the installation scenario 27

2.1 An example program in pseudo code . 30

3.1 Resolution of a path in a �lesystem . 33
3.2 Examples of feature trees . 36
3.3 Examples of formulas . 38
3.4 Conversion from FT extended with fence and similarity to the logic presented in this work 41
3.5 Conversion from the logic presented in this work with the algebra of �nite and co�nite

sets to FT extended with fence and similarity. 41
3.6 Base predicates of FTS . 43
3.7 Formula 3.1 . 44
3.8 Formula 3.2 . 44
3.9 Five example calls to the utility rm . 45
3.10 Speci�cation of success case for rm -R /etc/rancid/lg.conf 47
3.11 Speci�cation of error cases for rm -R /etc/rancid/lg.conf 47
3.13 Function resolve on normal paths . 48
3.12 Success case of rm -R p/f . 48
3.14 Function resolve for any path . 49
3.15 resolve(x, f, ../../g, z) . 49
3.16 similar(x, x′, f/../../g, z, z′) – Naive version . 49
3.17 similar(x, x′, f/../../g, z, z′) – After normalising the path 49

188

https://archive.softwareheritage.org/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://refspecs.linuxfoundation.org/fhs.shtml
http://caml.inria.fr/pub/docs/manual-ocaml/

LIST OF FIGURES

3.18 Function similar-n for a normalised path . 50
3.19 Functions normalise and similar for any path . 50
3.20 Function noresolve for any path . 51
3.21 Implementation of a modelled rm utility (excerpt; simpli�ed) 52
3.23 Speci�cation of success cases for touch /etc/rancid/lg.conf 56
3.24 Speci�cation of error cases for touch /etc/rancid/lg.conf 56
3.25 Speci�cation of the script: touch /etc/rancid/lg.conf; rm /etc/rancid/lg.conf . 56
3.22 Example script that uses touch and rm . 56

4.1 Formula 4.1 . 60
4.2 Clash rules in systemR1 . 61
4.3 Transformation rules for positive literals in systemR1 . 62
4.5 Transformation of Formula 4.2 usingR1 . 62
4.4 Formula 4.2 . 62
4.6 Transformation rules for positive and negative literals in systemR1 63
4.7 SystemR1 of Transformation Rules . 64
4.8 Transformation of Formula 4.3 usingR1 . 65
4.9 Formula 4.4 . 66
4.10 Function transform-1 . 70
4.11 Functions garbage-collect-1-xc and garbage-collect-1 72
4.12 Functions switch-xc and switch . 74
4.13 Formula 4.5 . 74
4.14 Function decide . 75
4.15 Internal steps of execution of decide on Formula 3.3 . 76
4.16 Application of decide on Formula 3.4 . 76
4.10 Function transform-1 . 85
4.17 SystemRtrunc

1 of transformation rules . 87
4.18 Rules ofR1 that are not clash rules and not inRtrunc

1 . 87
4.20 Transformation of Formula 4.11 into Formula 4.12 usingR1 91
4.19 Formulas 4.11 and 4.12 . 91
4.21 Formula 4.13, Formula 4.14, and one intermediary step . 92
4.22 Informal drawing of the shape of constraints and their active and passive variables 94

5.1 Clash rules in systemR2 . 102
5.2 Transformation rules for positive literals in systemR2 . 102
5.3 Transformation rules for positive and negative literals in systemR2 103
5.4 SystemR2 of Transformation Rules . 104
5.6 Transformation of Formula 5.1. 105
5.5 Formula 5.1 . 105
5.7 Function transform-2 . 108
3.10 Speci�cation of success case for rm -R /etc/rancid/lg.conf 111
5.8 Extra Transformation Rules for SystemR2 . 111
5.9 SystemR•2 of Transformation Rules – Clash Rules . 113
5.10 SystemR•2 of Transformation Rules – Rules for positive literals 114
5.11 SystemR•2 of Transformation Rules – Rules for negative literals 115
5.13 Transformation of Formula 5.5 byR•2 . 116
5.12 Formula 5.5 . 116
5.14 Commutative diagram to illustrate Lemma 5.6 . 119
5.16 Illustration ofR•2 ∪ {Merge•} as a full strategy forR2 . 120

189

LIST OF FIGURES

5.15 Commutative diagram to illustrate Lemma 5.7 . 120
5.17 Function transform-2-pointed . 121
5.18 Functions transform-2 and add-transform-2 . 122
3.20 Function noresolve for any path . 123
5.19 Speci�cation cases of mkdir -p /usr/lib/foo . 123
5.20 Function noresolve, threaded . 126
5.21 Speci�cation of success cases for rmdir /usr/lib . 126
5.22 Speci�cation of error cases for rmdir /usr/lib . 126
5.23 Function ifresolve . 127
5.24 Transformation of Formula 5.12 . 128
5.25 Formula 5.17 . 131
5.26 Helper functions for activate-threads . 132
5.27 Function activate-threads . 133
5.28 Functions transform-2-threaded and add-transform-2-threaded 133
5.29 Function check-sat-threaded . 134
5.19 Speci�cation cases of mkdir -p /usr/lib/foo . 136
5.30 Dependencies of the proofs of the six points of the induction hypothesis 142

6.1 Standard pipeline of lexing and parsing commonly found in compilers and interpreters . . 148
6.2 Example words . 149
6.3 Nested subshells . 149
6.5 Promotion of a word to a reserved word . 150
6.6 A word can have many components . 150
6.4 Promotion of a word to an assignment . 150
6.8 Parse tree for CC=gcc make all | grep 'error' . 151
6.7 Lexical analysis is undecidable . 151
6.9 Architecture of Morbig . 152
6.6 A word can have many components . 156
6.10 Strings and lists of strings . 156
6.11 Fully-dynamic scoping . 156
6.12 Example script modifying $IFS . 157
6.13 Example of surprising semantics with set -e . 157
1.5 preinst script of the rancid-cgi package . 158
1.6 preinst script of the rancid-cgi package in CoLiS . 158
6.14 postinst script of the ocaml-base-nox package (excerpt; cleaned up) 158
6.15 postinst script of the ocaml-base-nox package in CoLiS (excerpt; cleaned up) 159
6.16 Validating the semantics of CoLiS with respect to that of Shell 160

7.1 Function counting the number of for loops in a Shell script using a visitor 164
7.2 Example code for the symbolic interpreter . 168
6.15 postinst script of the ocaml-base-nox package in CoLiS (excerpt; cleaned up) 170
7.3 Traces of execution of the �rst command in the postinst script of the ocaml-base-nox

package . 170
7.4 Formulas 7.2 and 7.3 . 171
7.5 Formulas 7.6 and 7.7 . 172

190

LIST OF TABLES

List of Tables

4.1 Various models and if their �rst order theory is the same as that of FT 79
4.2 Decreasing lexicographic measure over constraints in transformation rules 99

5.1 Decreasing lexicographic measure over constraints in transformation rules 109
5.2 Number of rules inR2 andR•2 and corresponding �gures 113

6.1 Comparison of Morbig and dash on the whole corpus from Software Heritage. The per-
centages are in function of the total number of scripts. 154

7.1 Builtins which may render analysis impossible . 165
7.2 Sequential control structures . 165
7.3 Process creation and communication. 165
7.4 Simple Shell builtins . 165
7.5 The ten most used Unix utilities acting on the �le system 165
7.6 Options of ln . 166
7.7 Top 5 Debian-speci�c utilities . 166
7.8 Number of scripts using exotic utilities . 166
7.9 Bugs found between 2016 and 2019 in Debian sid distributions 173

List of De�nitions

3.1 Abstract Syntax Path . 32
3.2 Feature Trees . 36
3.3 Syntax of FTS . 37
3.4 Free Variables of a Formula . 38
3.5 Existential and Universal Closures . 38
3.6 Model . 39
3.7 Valuation to a model . 39
3.8 Interpretation of a formula in a model . 39
3.9 Satis�ability . 39
3.10 Implication . 40
3.11 Equivalence . 40
3.12 Atom . 42
3.13 Literal . 42
3.14 Constraint . 42
3.15 Existential Constraint . 42
3.16 Disjunction of Existential Constraints . 42
3.17 Positive and Negative Occurrence of a Quanti�er . 43
3.18 Σ1-formula . 43
3.19 Π1-formula . 43
3.20 Quanti�er-free Formula . 43
3.21 Prenex Normal Form . 43
3.22 Completeness of a Speci�cation . 53
3.23 Coherence of a Speci�cation . 53
3.24 Totality of a Speci�cation . 53
3.25 Determinism of a Speci�cation . 54

191

LIST OF LEMMAS

3.26 Functionality of a Speci�cation . 54

4.1 Solved Variables . 60
4.2 Solved Similarity Atom . 60
4.3 Subsumption . 60
4.4 Ancestor-Closedness . 66
4.5 Global and Local Parts . 67
4.6 Reachability of a variable in an x-constraint . 72
4.7 Feature Sets of a Constraint . 89
4.8 Possible Feature Sets of a Constraint . 89
4.9 Quality of a Set in a Constraint . 90
4.10 Active and Passive Variables . 92
4.11 Parents of a Variable . 93
4.12 Depth of Variables . 96
4.13 Depth of Negated Similarity Atoms . 96
4.14 Height of a Negated Similarity Atom . 98

5.1 Separated Pairs of Variables . 103
5.2 Extended Literal and Constraint . 103
5.3 Pointed Constraint . 112
5.4 Equalities of a Constraint . 113
5.5 Semantics of Pointed Constraints . 117
5.6 Applicability of a Rule in a Context . 117
5.7 Irreducibility of a Constraint With Respect to a Rule in a Context 118
5.8 Well-Formedness . 118
5.9 Entailment . 124
5.10 Threaded Constraints . 125
5.11 Activation of a Thread . 127
5.12 Inactive Thread . 127
5.13 LIMSAT . 130

List of Lemmas

3.1 Satis�ability and Validity and Existential and Universal Closures 39
3.2 Existence of DXC for Σ1-formulas . 43
3.3 Existence of PNF for any Formula . 43
3.4 Shape of PNF for Π1-formulas . 43
3.5 Relation Between Completeness, Coherence and Totality 53
3.6 Relation Between Determinism and Functionality . 54
3.7 Equivalence of Speci�cations and their Implicative Form 55

4.1 Implication of Subsumed Literals . 60
4.2 Rules ofR1 perform equivalences . 66
4.3 Locality of Subsumption . 66
4.4 Monotony of Subsumption . 66
4.5 Properties of Global and Local Parts . 67
4.6 . 67
4.7 Garbage Collection of one Variable in an Irreducible Constraint 68

192

4.8 Termination of transform-1 . 70
4.9 . 72
4.10 . 72
4.11 . 72
4.12 . 74
4.13 . 74
4.14 . 74
4.15 . 77
4.16 . 77
4.7 Garbage Collection of one Variable in an Irreducible Constraint 81
4.8 Termination of transform-1 . 86
4.17 . 88
4.18 Stability of Possible Feature Sets By Transformation . 90
4.19 Finiteness of Possible Feature Sets By Transformation . 90
4.20 Control of Absence and Similarity Constraints . 93
4.21 Parents of Variables . 93
4.22 Active Parents of Variables . 94
4.23 Depth of Active Variables . 96
4.24 Depth of Negated Finite Similarity Atom . 96
4.25 Depth of Negated Similarity Atom . 97

5.1 Garbage Collection of Irreducible Positive Constraints . 107
5.2 Garbage Collection of Irreducible Constraints With Positive Local Part 107
5.3 Termination of transform-2 . 108
5.4 R•2 conserves well-formedness . 118
5.5 Merge• conserves well-formedness . 119
5.6 R•2 simulates a strategy forR2 . 119
5.7 Merge• leaves the semantics unchanged . 120
5.8 Entailment and Satis�ability . 124
5.9 T-GuardEntailed is an Equivalence . 128
5.10 Satis�ability of Threaded Constraints With One Inactive Thread 128
5.11 Satis�ability of Threaded Constraints With Only Positive Literals in Main Constraint and

Only Negated Absence Atoms in Guards . 129
5.12 NP-Completeness of Satis�ability of Threaded Constraints 129
5.13 NP-Completeness of LIMSAT . 130

List of Theorems

4.1 Garbage Collection of Irreducible Constraints . 68
4.2 Satis�ability of Irreducible Constraints . 69
4.3 . 78

5.1 Satis�ability of Irreducible Constraints . 106

Index of Concepts

193

INDEX OF CONCEPTS

Absence atom, 37
Absolute path, 32
Absolute path, 32
Activation of a thread, 127
Active variable, 92
Active variable, 92
Ancestor-closed set of

variables, 66
Applicable rule, 60
Applicable rule in a context,

117
Applicable rule in a context,

117
Atom, 42
Atomic formula, 42

Bound variable, 38

Clash rule, 61
Closed formula, 38
Coherent speci�cation, 53
Coherent speci�cation case,

53
Complete speci�cation, 53
Conjunction, 37
Constraint, 42
Current working directory,

32, 48

Deduction rule, 61
Depth of a variable in a

constraint, 96
Depth of a negated similarity

atom, 96
Depth of a variable, 96
Deterministic speci�cation,

54
Deterministic speci�cation,

54
Directory, 31
Disentailment, 124, 128
Disjunction, 37
DXC, 42

Entailment, 124
Equality of a constraint, 113
Equivalence of formulas, 40
Existential closure, 38
Existential constraint, 42
Existential quanti�cation, 37

Extended constraint, 105
Extended literal, 105

False, 37
Feature, 35
Feature atom, 37
Feature sets of a constraint,

89
Feature tree, 35, 36
File, 31
File name, 32
File name, 35
Filesystem, 31
Finite feature tree, 36
Formula, 37
Free variable, 38
Fresh tree, 82
Functional speci�cation, 54
Functional speci�cation case,

54

Garbage collection, 66
Global part of a constraint, 67
Global rule, 61
Guard, 125

Hard link, 32
Height of a negated

similarity atom, 98

Implication of formulas, 40
Implicative speci�cation, 55
Inactive thread, 127
Interpretation, 39
Irreducible constraint, 61
Irreducible constraint in a

context, 118

Linear path, 32
Literal, 42
Local part of a constraint, 67

Main constraint, 124
Model, 39

Negation, 37
Negative literal, 42
Negative occurrence of a

quanti�er, 43
Normal path, 32

Original constraint, 92

Π1-formula, 43
Parents of a variable, 93
Parents of a variable, 93
Passive variable, 92
Passive variable, 92
Path, 32
Path component, 32
Path constraint, 73
PNF, 43
Pointed constraint, 112
Pointed constraint, 112
Pointed literal, 112
Positive literal, 42
Positive occurrence of a

quanti�er, 43
Possible feature sets of a

constraint, 89
Precondition, 46
Predicate, 42
Prenex normal form, 43
Propagation rule, 61

Quality of a set in a
constraint, 90

Quanti�er-free formula, 43

Reachable variable from
another variable in a
constraint, 72

Reachable variable in an
x-constraint, 72

Reachable variable in an
x-constraint, 72

Re�nement rule, 63
Regular �le, 31
Relative path, 32
Return code, 44
Root, 31
Root user, 35

Σ1-formula, 43
Satis�able formula, 39
Separated pair of variables,

103
Similarity atom, 37
Solved similarity, 60
Solved similarity atom, 60
Solved variable, 60

194

	Prelude
	Abstract
	Résumé
	Contents

	Introduction
	History & Motivation
	Approaches & Feature Tree Logics
	Other Approaches – Related Works
	Our Approach
	Feature Tree Logics

	Overview of the Toolchain
	First Layer – One Script
	Second Layer – One Package
	Third Layer – Several Packages

	Contributions & Plan of the Thesis

	Notations
	Modelisation of Unix Filesystems and Utilities
	Modelisation of Filesystems
	Filesystems
	Abstracting Away from the Filesystem
	Feature Trees

	Logic Over Feature Trees – FTS
	Syntax of FTS
	Semantics of FTS
	Expressivity of FTS in Comparison to Related Work
	Classes of Formulas

	Modelisation of Utilities
	Utilities
	Specifications of One Utility Call
	Specifications of Utility Call Schemes
	Modelisation of Utilities

	Specifications
	Properties of Specifications
	Composing Specifications

	Decidability of the Theory of FT
	Transforming DXC
	Transformation Rules for Constraints – The System R1
	Properties of Irreducible Constraints of R1
	Deciding the Satisfiability of DXC

	First-Order Formulas
	Switching Existential Quantifiers from DXC
	Deciding the First-Order Theory of FT

	Discussions
	Alternative Models
	Complexity Considerations
	Limitations of bluetransform-1 and R1

	Appendix Proof of Lemma 4.7
	Appendix Proof of Lemma 4.8
	Simplifying the Problem
	Overview of the Remaining Difficulties
	Quantifying Set Quality
	Controlling Negated Similarity Atoms
	Decreasing Measure

	Efficient Solving of Feature Tree Constraints
	A System Without Disjunctions
	Transformation Rules for Constraints – The System R2
	Properties of Irreducible Constraints of R2
	Deciding the Satisfiability of Constraints
	Discussions

	A System With Efficient Pattern Recognition
	Pointed Constraints and Transformation Rules – The System R2
	Links Between R2 and R2
	Deciding the Satisfiability of Constraints
	Discussions

	Threaded Constraints
	Entailment and Threaded Constraints
	Properties of Threaded Constraints
	Implementation of Threaded Constraints
	Discussions

	Appendix Proof of Theorem 5.1

	Modelisation of POSIX Shell
	Syntactic Aspects
	Horrors in the Syntax of Shell
	Morbig, A Static Parser for Shell
	Validation

	Semantic Aspects
	Horrors in the Semantics of Shell
	The CoLiS Language
	A Concrete Interpreter for the CoLiS Language

	Applications & Results
	Statistic Analysis of Corpuses of Maintainer Scripts
	Writing Analysers for Corpuses of Shell Scripts
	Gallery of Analyses

	Symbolic Interpretation of Shell Scripts
	Symbolic Interpretation of Shell Scripts
	An Example

	Analysing Installation Scenario of Corpuses of Debian Packages
	Coverage of the case study
	Bugs found

	Conclusion
	Contributions
	Limitations & Perspectives
	About a Solver for (Threaded) Constraints of FTS
	About a Solver for First-Order Formulas of FTS
	About the Expressivity of FTS
	About Specifications
	About the Coverage of our Toolchain
	About Finding More Bugs with our Toolchain
	About Finding Less Bugs with our Toolchain
	About the Accessibility of our Toolchain
	About the Generalisation of our Toolchain

	Appendices
	References
	References – Miscellaneous
	List of Figures
	List of Tables
	Index of Concepts
	Index of Notations

