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Professor, Télécom Paris, Institut Polytechnique de Paris Directeur de thèse
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Resumé de la thèse en français

Les ordinateurs quantiques ont été conceptualisés pour la première fois par Richard Feynman, qui
dresse le constat suivant : un ordinateur classique ne peut pas simuler de manière efficace un système
quantique. La raison sous-jacente est que le nombre de bits nécessaires pour décrire un système
quantique augmente de manière exponentielle avec le nombre d’états quantiques du système, et ce à
cause du principe de superposition. D’après Feynman, seul un ordinateur quantique dont les éléments
de bases, les qubits, sont eux aussi quantiques, peut permettre de décrire de tels systèmes.

Les ordinateurs quantiques peuvent, par leur nature quantique, permettre de réaliser certaines
taches au-dessus des capacités des ordinateurs classiques. Par exemple, il à été démontré que certains
problèmes mathématiques, tels que la factorisation en nombres premiers ou le problème du logarithme
discret, seraient solvables en un temps polynomial par l’ordinateur quantique. Or, ces problèmes
mathématiques servent de fondations à la cryptographie à clé asymétrique. Il est donc impossible de
garantir la sécurité de nos communications dans un avenir ou l’ordinateur quantique est omniprésent.

Les ordinateurs quantiques renferment donc de grandes promesses d’avancées technologiques, mais
ils représentent aussi une menace pour la sécurité de nos systèmes de communications actuels. Face
à ce problème, une solution est développée qui est appelée cryptographie post-quantique. Ce domaine
cherche à construire des algorithmes de chiffrements basés sur des problèmes mathématiques pour
lesquels l’ordinateur quantique ne présente pas, à priori, d’avantage significatif sur un ordinateur
classique. Une deuxième approche, plus originale, à également vu le jour pour pallier au problème de
l’ordinateur quantique. Cette dernière s’appelle la distribution quantique de clé (QKD) et est l’objet
principal de cette thèse.

Les protocoles de distribution de clé quantique (QKD) permettent de construire des canaux de
communications sensibles à l’espionage grace aux propriétés quantiques fondamentales de la lumière.
Ces protocoles ont déjà été validés en laboratoire et même sur le terrain. Cependant l’un des principaux
défis à surpasser pour déployer de tels protocoles à grande échelle est le coût de déploiement de la
technologie, lié à l’installation de toute l’infrastructure nécessaire pour générer, transmettre et mesurer
les états quantiques. Une solution attrayante en ce sens serait d’exploiter l’infrastructure de fibre
optique déjà existante pour executer mettre en oeuvre de tels protocoles.

Cela implique cependant de faire coexister des signaux quantiques avec des signaux télécoms
classiques, déjà présents sur cette infrastructure. Cette coexistence peut être un défi technique à
cause de la sensibilité des états quantiques aux perturbations extérieures. Dans cette thèse, nous nous
intéressons plus particulièrement aux protocoles de distribution de clé quantique à variables continues
(CV-QKD), car leur proximité avec les communications cohérentes classiques indiquent qu’ils sont de
bons candidats pour coexister sur une même fibre.

En partant du principe que les protocoles CV-QKD sont destinés, à terme, à être déployés de
manière conjointe avec des protocoles de communication classique, la question qui se pose est la
suivante. Cette coexistence avec des signaux classiques est-elle forcément un désavantage pour la CV-
QKD ? Nous articulons notre réponse en deux projets distincts et nous montrons qu’en construisant
de façon conjointe des protocoles de communication quantique et classique, la coexistence avec des
signaux classiques peut présenter des avantages exploitables pour la CV-QKD.

Notre premier travail est une démonstration expérimentale dans laquelle nous montrons que le
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signal classique peut servir, dans certains cas, de signal pilote au signal quantique. Cette construction
permet notamment de s’affranchir de signaux pilotes auxiliaires généralement nécessaires en CV-QKD
et d’effectuer des communications classiques et quantiques de manière conjointe.

Dans un second travail, nous montrons que le bruit généré par des canaux classiques peut servir
à dissimuler le signal quantique. La communication quantique peut alors être réalisée de façon in-
détectable, ou « covert », ce qui, combiné à une échange de clé par QKD permet d’envisager des
garanties de sécurité extrêmement élevées. Nous analysons les conditions nécessaires, à la faisabilité
du déploiement covert de la CV-QKD et proposons des modèles pertinents à l’études de tels pro-
tocoles. Les conclusions tirées de ce travail de doctorat sont que, dans un contexte de coexistence
classique/quantique, la construction des protocoles de communication de manière conjointe peut-être
bénéfique à la fois aux communications quantiques et aux communications quantiques.
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Introduction

From quantum mechanics to quantum technologies.

Our journey begins with the inception of quantum mechanics at the beginning of the 20th century.
At the time classical physics used to describe macroscopic systems were though to be absolute and
to apply to all physical systems. Then, German physicist Max Planck introduced energy quanta and
showed that this enables a complete description of blackbody radiation at thermal equilibrium, a
challenge scientists were unable to tackle using classical physics. I personally find it amazing that he
introduced his quantification reluctantly because of how absurd this concept was at the time, and how
by doing so he initiated a series of pioneering works which led to the formalism of quantum mechanics
used today.

Towards the middle of the 20th century, two other major scientific fields were born which play a
central role today. On the one hand the field of information theory, whose founding father is arguably
the American scientist Claude Shannon, formally defines the notion of information and derives the
amount that can be shared over a channel. Information theory is a cornerstone of modern digital
communications. On the other hand the field of computer science, which owes a great deal to British
scientist Alan Turing, revolutionized our society by providing mankind with one of the most powerful
tools we’ve ever had : the computer.

Later, exciting interconnections started to develop between these fields. Questions about the
quantity of classical information contained in quantum systems led to the development of the quantum
counterpart of classical information theory: quantum information theory. An interesting result here is
that when considering a communication protocol where the information is encoded in quantum states,
the amount of information leaked during the transmission can be bounded thanks to fundamental
quantum properties. Based on this idea, the first proposal of a quantum key distribution (QKD)
protocol was submitted by Charles Bennett and Gilles Brassard in 1984 [1]. The goal of QKD protocols
is to share a secret –the key– between distant parties in an adversarial setting, which has potential
applications in the field of cryptography. The revolutionary aspect of QKD is that it constitutes a
challenge to the security of classical key distribution techniques because the security of QKD does
not involve any assumptions on the computing power of the adversary and hence permits to share a
secret key with so-called information-theoretic security.

In the meantime, in 1981, Richard Feynman asked during a conference presentation [2] the question
of how to simulate quantum systems and came to the conclusion that classical computers were not
adequate to the task, because there is no succinct way to describe classically a quantum state of many
particles. He then proposed to use a quantum computer to do this. Instead of functioning with bits,
the quantum computer should perform operations on qubits which can be entangled with other qubits
or in superposition of several states. Harnessing these properties, the amount of resources needed for
the quantum computer to simulate quantum systems scales linearly with the size of the system to
simulate, as opposed to exponentially for a classical computer. Feynman’s talk undoubtedly played
an important role in launching the field of quantum computing since it naturally spurred interest in
the other tasks for which a quantum computer could outperform a classical computer.

In 1994, Peter Shor exhibited two problems for which a quantum computer had a significant ad-
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vantage over a classical computer [3]. These are the factoring into prime numbers problem and the
discrete-log problem. Since they are known to quickly become intractable for classical computers,
these are currently used as the foundation for secure key distribution protocols in modern communi-
cations. Shor’s results meant that current key distribution algorithms have an expiration date, and
led cryptographers to refer to the creation of a quantum computer as the quantum apocalypse.

What about now ?

Thirty years later, building a large scale quantum computer still constitutes a remarkable challenge
[4]. The core of the problem is that qubits collapse to classical states as they interact with the
environment, hence quantum computers need to be strongly isolated from random interactions. At
the same time though, we need to be able to interact with the qubits from the outside, in order to
prepare the system in the desired state, apply quantum gates to the qubits to perform the quantum
computation and then to read out the qubits so we can find the result of our computation. Building
a quantum computer with all the desired features is a very difficult task.

Nonetheless considerable progress has been seen in the field, and today several large companies have
developed quantum processors [5, 6, 7]. Even if these are still limited to a number of qubits around
200, this is sufficient for cryptographers to ring the alarm [8]. They typically need cryptographic
algorithms to be safe for at least several years, sometimes several decades depending on the usage.
This cannot be the case if a quantum computer that can implement Shor’s algorithm is created in
the next 10 or 20 years, because entities could potentially store encrypted communications today to
break them then. Hence increasing attention is given to shifting vulnerable cryptographic primitives
to quantum-safe primitives i.e. primitives for which a quantum computer should not in principle
provide a considerable advantage over classical computers.

In particular it is the key distribution algorithms which are vulnerable to quantum computers and
as such they are the primitives which require quantum-safe alternatives. Two are currently being
developed in research teams. The first is to replace the vulnerable key distribution protocols by new
protocols based on problems which remain difficult to solve even for quantum computers [9]. This field
is called post-quantum cryptography and follows in the traditional way of considering cryptography
in which the security of the protocol assumes that the adversary has limited classical and quantum
resources. The second alternative is QKD, which regroups a wide range of protocols harnessing quan-
tum mechanics to provide information-theoretic security on the shared key. As opposed to classical
cryptographic algorithms, the security of QKD protocols is derived without any assumption on the
computing power of the adversaries and therefore constitute future-proof key distribution protocols.

Focus on quantum key distribution.

The first conceptualisations of QKD, such as BB84, relied on single photons as the fundamental
communication units. A photon is an elementary particle that is a quantum of the electromagnetic
field and as such exhibits fundamental quantum properties enabling QKD. The information can be
typically encoded in the polarisation or time-of-arrival of the photon. The main component of the
detection apparatus in this case is the single-photon detector (SPD), which produces a "click" when
one or several photons are successfully converted into a current. These protocols are referred to as
"Discrete-Variable" (DV) QKD because of the discrete set of measurement results.

Later, it was also shown that QKD could be performed by encoding the information on the
quadratures of weak coherent states [10]. This is particularly interesting because this is typically
how information is transmitted in the field of classical telecommunications, therefore the hardware
necessary to control and measure the quadratures of the electromagnetic field is well understood
and readily available. These protocols are called "Continuous-Variable" (CV) QKD because of the
continuous range of values that can be taken by the quadratures of the light.
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The strong security guarantees of QKD are very exciting therefore the technology has received
increasing sources of funding and has been experimentally deployed in many metropolitan fiber-
networks [11, 12, 13, 14, 15]. However many challenges remain to be overcome before large scale
implementation of QKD is possible. The main challenges are the point-to-point distance over which
a secret key can be shared –since quantum states cannot be amplified– and the overall deployment
costs of the technology.

Focusing on the latter, the by-far dominant cost of fiber-based communications is the deployment of
the fiber-network infrastructure. Therefore if QKD could be deployed over the existing infrastructure
used for classical communications, this would drastically cut the implementation costs and constitute
a considerable step towards large-scale deployment. For this to be possible, the coexistence of the
quantum states and the classical signal must be carefully orchestrated or else the fine measurement
process required to detect quantum states will suffer from perturbations due to the classical signal,
which will in turn jeopardize the ability of the QKD protocol to yield a secret key. Between DV- and
CV-QKD, the latter is arguably better suited for this task because the coherent detection process used
to measure the quadratures is spectrally selective, hence coherent receivers are less sensitive to Raman
noise photons than SPDs. This constitutes an important practical advantage since Raman-induced
noise is the dominant source of noise for QKD in wavelength multiplexed classical and quantum
communication schemes[16].

Contributions and outline of the thesis.

In this thesis we investigated the question of the coexistence of CV-QKD with classical channels. Our
approach was to study in what ways the coexistence could be beneficial for the CV-QKD protocol,
rather than only detrimental because of the additional noise induced by the classical channels. Our
work is divided in two projects.

Our first project is an experimental demonstration of a CV-QKD implementation where the phase
and frequency recovery is performed on a classical channel which is multiplexed in polarisation and
digitally frequency shifted relative to the quantum states. While this problem is traditionally ad-
dressed using pilot tones [17], our work shows that when designing hybrid quantum and classical
communication systems, we can relax the need for pilot tones and perform the carrier recovery di-
rectly on a classical channel. We display positive key rates with two discrete modulation formats,
one with 4 different quantum states, and one with 64 quantum states and a Gaussian-like probability
distribution. In the asymptotic regime, our results are compatible with positive secret key rate over
40 km with reliable classical communication for the classical channel. Hence our work takes one step
forward in the direction of hybrid communication systems.

In our second project we investigate how the noise generated by the classical channels can be
harnessed to provide an interesting new kind of physical layer security, called covertness, to a CV-
QKD protocol. The goal of covert communications is for the transmission between the legitimate
parties to be indistinguishable from background noise for the adversary. This is achieved by reducing
the power of the state transmitted over the channel below some threshold which scales as the inverse
of the square-root of the total number of quantum states sent over the channel, due to the so-called
"square-root law". We argue that covert CV-QKD is essentially impractical because of the square-root
law and we propose to make some additional assumptions, which can be verified in a practical setting,
in order to relax the square-root law and enable practical covert CV-QKD.

The rest of this manuscript is organised as follows.

Part I : From quantum theory to quantum key distribution

The objective of this first part is to define and understand CV-QKD, but also to position it with
respect to the more general context of quantum-safe cryptography.
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Chapter 1 : Quantum theory

In this chapter we give the formalism of quantum mechanics which will be the main language used to
describe quantum systems in the rest of this work. We also give some important properties of quantum
systems such as the no-cloning theorem and the uncertainty principle which are the foundations of
quantum key distribution and therefore particularly relevant in this work. Then we will revisit the
quantification of the electromagnetic field in order to derive the ladder operators which will then
be used to define the quadrature operators. We continue by defining Gaussian states and Gaussian
transformations from their covariance matrix. These play a central role in quantum information
theory analogously to the Gaussian distribution in classical information theory. Finally, we describe
the quantum mechanical effect of homodyne and heterodyne measurement on the covariance matrix
of the quantum state

Chapter 2 : Classical and quantum information theory

We move on in the second chapter to study the most relevant quantity of communication systems:
information. We define the notions of entropy and mutual information and give their quantum mechan-
ical equivalent. Finally, we give Holevo’s bound on the accessible classical information in a quantum
system which will play a key role in the security proofs of CV-QKD.

Chapter 3 : Cryptography

This third chapter is meant to give some insight into the world of cryptography. We distinguish
the computational and information-theoretic security models and then give an overview of important
cryptographic primitives which are hashing functions, symmetric encryption throught AES and public-
key encryption through RSA. Then we discuss in more detail the quantum apocalypse discussed above.
We finish the chapter by detailing the outline of a generic QKD protocol, which we illustrate with
BB84, and briefly review the different types of QKD protocols.

Chapter 4 : Quantum Key Distribution with Continuous-Variables

In the last chapter of the first part of this work, we focus on CV-QKD. We begin by giving some
example of protocols, and give the expression of the secret key rate through the well-known Devetak-
Winter formula. Then we show how to compute the key rate in several cases : when Alice employs
a Gaussian modulation on the quadratures, when Alice employs a discrete modulation, when the
receiver noise is considered "trusted" and in the finite-size regime. We finish this chapter with a
comparison of DV- and CV-QKD solutions in term of key rate, achievable distance and potential for
coexistence with classical channels.

Part II : Convergence of classical and quantum coherent communications.

In the second part of this manuscript we present the contributions that have been achieved during
the course of this thesis.

Chapter 5 : Quantum and classical coherent communications

We begin with a general chapter on coherent communications which is necessary to understand the
experimental implementations of coherent communications. We successively address the signal gener-
ation at Alice, the signal distortions during transmission, and signal measurement at Bob in coherent
communications. Then we discuss how the sampled signal is processed to retrieve the information
encoded in the field quadratures. Finally, we discuss some important challenges of quantum coherent
communications and position the rest of our work.
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Chapter 6 : Joint Classical and quantum coherent communications

We present here our experimental demonstration of CV-QKD and classical communications performed
jointly where the quantum carrier recovery is performed on the classical channel. We begin by de-
scribing our experimental setup. Then we discuss the calibration in shot-noise units. We show our
receiver is operated in the linear regime, where the shot-noise scales linearly with the LO power, and
we discuss our precision in the shot-noise estimation. The following section focuses on the digital
signal processing routine we used. In the final section, we discuss how we optimised our experimental
parameters and give our results before discussing improvement perspectives and concluding this part
of our work.

Chapter 7 : Covert quantum key distribution

Our second project is described in this chapter. We begin by giving a general introduction to covert
communications and formally define covertness. Then we move on to deriving a threshold power for
the quantum channel under which the quantum communication is covert. We show that without
additional assumptions this bound makes covert CV-QKD essentially impractical because a negligible
amount of covert and secret bits can be shared using the protocol because of the square-root law
mentioned earlier. We move on to examining how a shared secret resource between Alice and Bob
can be used to improve the performance on the protocol through a process we call block-coherent
encoding but show that covert CV-QKD is still limited because of the square-root law. Then we
derive two practical models in which we can relax the square-root scaling of the signal power which
enables practical covert CV-QKD. We conclude this chapter with a discussion on covert CV-QKD.

Perspectives

We conclude this work in this final part. We attempt to give a general view of QKD in its current
state, the challenges facing the technology and the contributions we made to the field.
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Chapter 1

Quantum theory
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Giving a precise description of quantum systems can be challenging at first, since interesting
phenomena appear in this regime which seem counter-intuitive by classical physics standards, that is
based on what we can see. For example, the fact that the measurement result of a quantum particle
is described by some set of probabilities is particularly odd compared to our macroscopic world where
objects are well defined. Also quantum systems can be entangled, which means that by measuring
one particle we can modify the measurement outcome probabilities of another. This was puzzling
scientists at first since it goes against the principle of locality which states that an object is influenced
only by its immediate surroundings. Thankfully, we have developed a mathematical formalism which
permits describing such systems and exhibiting their unique properties. In this section we cover this
formalism which will be needed to describe the QKD quantum states and their evolution during the
QKD protocol.

1.1 Formalism of quantum mechanics

Let us begin with the mathematical formalism of quantum mechanics which we give below. These
results constitute a brief overview and the interested reader is referred to [18] for a more thorough
description.
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1.1.1 The postulates of quantum mechanics

Quantum mechanics are built on a set of 6 postulates which enable an efficient description of quantum
systems and their unique properties.

Postulate 1 (State space). The state of an isolated physical system at time t is represented by a state
vector | i belonging to a Hilbert space H called the state space.

Basically the first postulate lets us write quantum states as complex vectors –sometimes infinite
dimensional– which are called kets in the Dirac formalism. It is convenient to normalise the state
vectors since we will see later that they are closely linked to probability distributions. A consequence
of the first postulate is that all vectors of the Hilbert space are quantum states. Therefore if | i and
|�i are two possible states of the state space H, then |'i = ↵ | i + � |�i, with |↵|2 + |�|2 = 1 for
normalisation, is also a possible state. This is known as the superposition principle because |'i is is
a superposition of states | i and |�i. The superposition principle is the fundamental resource behind
the quantum advantage in computation.

All states that can be written in ket notation, such as |'i, | i and |�i, are called pure states and
are part of the possible physical states of the system. Now suppose we need to describe a system that
is a statistical mix –not a superposition– of several states. For example suppose we create and send
quantum state | i over a quantum channel with probability half, and state |�i the rest of the time.
The average state sent on the channel is not a superposition of | i and |�i and cannot be written as
|'i. To descibe this statistical mix, we have to generalise the notion of state vector using the state
density matrix. Any pure quantum system defined on H can also be defined by a density matrix ⇢̂ as:

⇢̂pure = | i h | . (1.1)

If we need to describe a statistical mix of n states {| ki}nk=1 with the corresponding probabilities
{pk}

n
k=1, the quantum state is called a mixed state and is described by

⇢̂mixed =

n
X

k=1

pk | ki h k| . (1.2)

The density matrix obeys the following properties :

Tr(⇢̂) = 1, (1.3)

Tr(⇢̂2)  1, (1.4)

with equality in the second line if and only if ⇢̂ is pure.
The next series of postulates define the formalism of measuring a quantum state.

Postulate 2 (Observable). Every measurable physical quantity A is described by a Hermitian operator
Â acting in the state space H. The operator Â is called an observable and its eigenvalues form a basis
for the state space H.

The second postulate provides the way to address the physical quantities in a quantum system.
Valid quantities for A are for example the position, momentum or energy of a quantum state.

Postulate 3 (Quantization). The only possible outcomes of the measurement of A are the eigenvalues
of the operator Â.

According to postulate 3 the outcomes of a measurement result are necessary discrete, which
introduces the notion of quantization. This is for example the case for the energy of a quantum
system, for which only discrete energy levels are possible.
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Postulate 4 (Probability of a measurement outcome). When the physical quantity A is measured, the
probability P(�i) of obtaining eigenvalue �i is given by the norm of the projection of the state vector
| i onto the corresponding eigenvector |�ii

P(�i) = | h�i| i |2. (1.5)

If the spectrum is degenerate, then P(�i) is given by the norm of the projection of | i onto the
eigensubspace P�i

associated with �i

P(�i) =
X

�k
i 2P�i

| h�ki | i |2, (1.6)

where the �ki for an orthonormal basis of P�i
.

Thanks to the formalism of postulate 4, we can express the mean value of the observable Â which
is noted hÂi and is given by

hÂi = h |Â| i . (1.7)

Also the variance of Â can be expressed as :

(∆Â)2 = h |Â2| i � h |Â| i2 . (1.8)

Similarly, the measurement outcome probabilities can be computed from the density matrix rep-
resentation. Let ⇢̂ be the density matrix of the quantum state. Then we have :

P(�i) = Tr(|�ii h�i| ⇢̂) (1.9)

and the mean value of operator Â is given by :

hÂi = Tr(Â⇢̂). (1.10)

Postulate 5 (Effect of measurement). If the measurement of A on state vector | i gives result �i,
then the state of the system after the measurement is the normalized projection of | i on eigensubspace
P�i

associated with eigenvalue �i

| i Measurement��������!
�i

P

�k
i 2P�i

h�ki | i | i
p

P(�i)
. (1.11)

Postulate 5 explains that measurements affect the quantum state by projecting the state on the
eigensubspace corresponding to the measurement result. Therefore measurements in quantum me-
chanics are projective, and modify the state.

Postulate 6 (Time evolution of a system). The time evolution of state vector | (t)i obeys the
Schrödinger equation

i~
d

dt
| (t)i = H(t) | (t)i , (1.12)

where H(t) is the observable associated with the total energy of the system and is called the Hamiltonian
of the system.
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1.1.2 Description of composed systems

Quantum systems can be more complex than just a quantum particle in a Hilbert space. Often, we
will need to describe quantum systems shared by several parties, with each party holding a quantum
state that is part of the full quantum system. Such system are described using the tensor product
representation. Let {| ii}ni=1 be n quantum states represented in their respective state space {Hi}

n
i=1.

The state space describing the quantum state composed of the n particles is given by the tensor product
of the individual state spaces H = ⌦n

i=1Hi.
Notice that the state space defined by SepH = {(| 1i , ..., | ni) 2 H1 ⇥ ... ⇥Hn} is of dimension

dsep = dim(H1)+...+dim(Hn) while the dimension of the tensor product space H is d = Π
n
i=1dim(Hi).

Therefore it is impossible to describe composed systems using only quantum states in SepH. Systems
that can be described as such are called separable. On the other hands states in H\SepH cannot be
defined by describing the individual states of the n particles but instead must be defined as a whole.
Such systems are called entangled.

Example of entanglement. A maximally entangled two mode state is called a Bell state and

is given by |Φ+iAB =
|0iA|0iB+|1iA|1iBp

2
where states |0i and |1i represent for example the polarisation

state of a photon. Now consider the polarisation of subsystem A is measured. The result will give
either |0Ai or |1Ai each with probability half. Suppose the result is |0Ai, then according to postulate
5 the bipartite state is projected onto the subspace |0Ai h0A| and becomes :

| ABi =
(h0A| h0B |) |Φ+i

1/
p
2

|0Ai |0Bi+
(h0A| h1B |) |Φ+i

1/
p
2

|0Ai |1Bi (1.13)

| ABi = |0Ai |0Bi (1.14)

Therefore particle B is projected onto polarisation state |0iB as a result of the polarisation mea-
surement of particle A. The particles A and B are entangled. Entanglement is a fundamental quantum
resource which can be harnessed for quantum communications, and it is at the core of the security
proofs of quantum key distribution protocols which we will discuss further in this manuscript.

Description of subsystems of a pure state. Consider a bipartite pure state | iAB =
P

i,j µi,j |aii |bij described over the Hilbert space HA ⌦ HB . The density matrix of the composed
system is given by :

⇢̂AB =
X

i,j,k,l

µi,jµ
⇤
k,l |aii hak|⌦ |bji hbl| . (1.15)

Then we can give a description of the subsystem A (or B) by tracing out the other in the density
matrix expression above. The resulting state will be the mixed state given by

⇢̂A = TrB(⇢̂AB) (1.16)

= TrB

✓

X

i,j,k,l

µi,jµ
⇤
k,l |aii hak|⌦ |bji hbl|

◆

(1.17)

=
X

i,j,k,l

µi,jµ
⇤
k,l |aii hak| if hbl|bji = �i,j (1.18)

Purification. An important result of the formalism of quantum mechanics states that any mixed
state can be expressed as a pure state in a larger Hilbert space. Let us formalise this result here.
Consider for example ⇢̂A the density matrix of a pure state described in Hilbert space HA. Let | i
be a pure state in Hilbert space H⌦HB .
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Definition 1 (Purification). We say that | i purifies ⇢̂A if

⇢̂A = TrB
�

| i h |
�

. (1.19)

Theorem 1. For all mixed state described by density matrix ⇢̂A in some Hilbert space HA, there
exists some Hilbert space HB such that dimHB � dimHA and such that there exists a pure state
| i 2 HA ⌦HB which purifies ⇢̂A

The notion of purification is particularly useful in QKD since we can express the bipartite mixed
states exchanged by Alice and Bob as a pure tripartite state. The third party in this case is the
eavesdropper, and purification results make it possible to compute the information leaked to the third
party. However this is the object of another chapter and we leave this for later.

1.1.3 Quantum no-cloning theorem

The mathematical Hilbert space formalism of quantum mechanics comes with the crucial notion of
orthogonality. As opposed to classical states, quantum states can be non orthogonal. When this is
the case it is impossible to perfectly discriminate the states since they have some overlap. A direct
consequence is the no cloning theorem :

Theorem 2 (No cloning theorem). It is impossible to create an independant and identical copy of an
arbitrary unknown quantum state. Let H be a Hilbert space. The no cloning theorem translates as the
following. There is no unitary U acting on H⌦H such that for all | i 2 H and for any ancilla state
|0i 2 H :

U | i |0i = | i | i (1.20)

Proof. We reason by contradiction. Suppose such a unitary exists. Then for any two states (| i , |�i) 2
H2 we have :

U | i |0i = | i | i (1.21)

U |�i |0i = |�i |�i (1.22)

Then we can write :

h0| h |U†U |�i |0i = h | h | |�i |�i (1.23)

thus h |�i = h |�i2 (1.24)

Necessarily h |�i = 0 or h |�i = 1. Since the states are normalized, this means that either | i
and |�i are orthogonal, or we have some ↵ 2 [0, 2⇡] such that | i = ei↵ |�i. In any case this is in
contradiction with the assumption that the states | i and |�i are chosen arbitrarily, which concludes
the proof.

The quantum no cloning theorem also play an important part in the security of quantum key
distribution systems. As long as the communication quantum states are non-orthogonal, the adversary
is prevented from creating replicate states to perform his measurement.

1.1.4 The Heisenberg uncertainty principle

Yet another principle of quantum mechanics is the Heisenberg uncertainty principle. It states that it is
impossible to perfectly measure complementary physical quantities A and B of the same quantum state
such as the position and momentum of a particle. The complementarity of two physical quantities is
defined mathematically by the commutation relation of their respective observables.
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Definition 2. Measurable physical quantities A and B are complementary if and only if their ob-
servables Â and B̂ do not commute, that is :

[Â, B̂] = ÂB̂ � B̂Â 6= 0. (1.25)

Follows from definition 2 the mathematical formalism of Heisenberg’s uncertainty principle ex-
pressed as :

∆Â·∆B̂ � 1

2

�

� h[Â, B̂]i
�

�. (1.26)

The principle can be interpreted as follows. Let Â and B̂ be two observables such that [Â, B̂] =
k 6= 0. Suppose state | i is an eigenstate of Â and B̂ with eigenvalues a and b. Then we would have
the two following equalities :

[Â, B̂] | i = k | i , (1.27)

and [Â, B̂] | i = (ab� ba) | i = 0, (1.28)

which is impossible. Therefore no quantum state | i can be an eigenstate of both observables
Â and B̂. Necessarily | i is a linear combination of eigenstates of either Â or B̂ which implies by
postulate 3 that it cannot be exactly determined.

1.2 Quantization of the electromagnetic field

Now that we have given the formalism used to define our quantum systems and given a few key
properties stemming from said formalism, we dive into the key components of the quantum theory of
light which will be useful for CV-QKD. Here we begin by defining the ladder operators which are then
used to define the quadrature operators of the quantum states. For further reading, see for example
[19].

1.2.1 The ladder operators

Consider the position and momentum operators, which are linked to the quantum harmonic oscillator
Hamiltonian by

Ĥ =
p̂2m
2m

+
1

2
!2x̂2, (1.29)

where p̂m and x̂ and the momentum and position operators. Since they are conjugate variables,
they obey the canonical commutation relation :

[x̂, p̂m] = i~. (1.30)

Definition of the ladder operators. In quantum mechanics, the dimensionless creation â† and
annihilation â operators are conveniently used to express the Hamiltonian. They are also referred to
as the ladder operators and they are defined as

â =
1p

2m~!
(m!x̂+ ip̂m), (1.31)

â† =
1p

2m~!
(m!x̂� ip̂m), (1.32)
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such that the position and momentum operators are :

x̂ =

r

~

2m!
(â† + â), (1.33)

p̂m = i

r

m~!

2
(â† � â). (1.34)

It follows from equations 1.31 and 1.32 that

ââ† =
1

2m~!
(m2!2x̂2 + p̂2m + im!(p̂mx̂� x̂p̂m)), (1.35)

=
1

~!
(Ĥ +

1

2
~!), (1.36)

â†â =
1

~!
(Ĥ � 1

2
~!). (1.37)

Therefore the Hamiltonian can be written as :

Ĥ = ~!(â†â+
1

2
), (1.38)

and the operators â and â† obey the commutation relation

[â, â†] = 1. (1.39)

Effect on energy eigenstates. Consider the energy eigenstates of the quantum system,
which form an orthonormal basis of the Hilbert space called the Fock basis. We denote by |ni the
energy eigenstate with eigenvalue En. By definition we have Ĥ |ni = En |ni and by multiplying both
expressions by â† via the left hand side we obtain

â†Ĥ |ni = Enâ
† |ni . (1.40)

Using expression 1.38 and commutation relation 1.39 we find that 1.40 becomes

Ĥâ† |ni = (En + ~!)â† |ni . (1.41)

Proceeding similarly with the operator â we find that

Ĥâ |ni = (En � ~!)â |ni . (1.42)

Therefore â† |ni and â |ni are also eigenstates of the Hamiltonian. The operators â† and â are
called the creation and annihilation operators because they can be seen as increasing or decreasing
the energy level of a quantum state by one energy increment ~!. Note they do not correspond to
measurable quantities since they are not Hermitian and therefore do not satisfy the condition to be
observables. We use the notation

En+1 = En + ~! (1.43)

En�1 = En � ~!, (1.44)

to designate the n+1 and n� 1 energy levels. If we now consider the ground state of the system,
noted |0i, we have that â |0i is also an eigenstate of the Hamiltonian of energy E0 � ~!. Since there
is by definition no state with lower energy than the ground state, necessarily we have
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â |0i = 0. (1.45)

Then we can find the energy of the ground state by computing Ĥ |0i = ~!
2 |0i = E0 |0i which gives

the energy levels of the system

E0 =
1

2
~! (1.46)

En = (n+
1

2
)~!. (1.47)

Since Ĥ |ni = En |ni we can deduce that

â†â |ni = n |ni . (1.48)

We note n̂ = â†â the number operator. The energy eigenstates are also eigenstates or the number
operator. Let us denote by |n+ 1i and |n� 1i the eigenstates corresponding to the energy levels n+1
and n�1. We showed that the ladder operators applied to |ni are proportional to |n+ 1i and |n� 1i.
Thus there exists complex numbers An and Cn such that

â† |ni = Cn |n+ 1i (1.49)

â |ni = An |n� 1i . (1.50)

We prefer using normalised states therefore we find the values An and Cn such that the states |ni
are of orthonormal. We have

hn|ââ†|ni = |Cn|
2 hn+ 1|n+ 1i = |Cn|

2 (1.51)

hn|â†â|ni = |An|
2 hn� 1|n� 1i = |An|

2. (1.52)

Equation 1.48 gives that An =
p
n and using the commutation relation 1.39 we find that Cn =p

n+ 1 such that

â† |ni =
p
n+ 1 |n+ 1i (1.53)

â |ni =
p
n |n� 1i . (1.54)

1.2.2 The quadrature operators

In particular for this work in which we focus on quantum key distribution protocols, the quantization
is considered at the level of the photon. Then the number operator n̂ has for eigenvalues the mean
number of photons of the quantum state. Any optical quantum state ⇢̂ can be represented in the Fock
basis, using the density matrix formalism :

⇢̂ =
X

n,m

⇢̂n,m |ni hm| . (1.55)

The Fock basis is infinite-dimensional which can make it difficult to represent states in this basis.
For example coherent states, which we will discuss in the next section, are difficult to represent in
the Fock basis because they are superpositions of all the number states. Therefore it is convenient
to introduce the quadrature operators p̂ and q̂ to represent the quantum states in phase space. We
define them as
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p̂ =
1

2
(â† + â) (1.56)

q̂ =
i

2
(â† � â), (1.57)

such as the ladder operators are

â =
1

2
(p̂+ iq̂) (1.58)

â† =
1

2
(p̂� iq̂) (1.59)

The quadrature operators are Hermitian since p̂† = p̂ and q̂† = q̂ therefore they satisfy the condition
for observable quantities of the quantum system. The commutation relation can be computed as

[p̂, q̂] =
i

2
, (1.60)

therefore we can deduce the Heisenberg uncertainty relation on the quadrature operators

∆p̂·∆q̂ � 1

4
. (1.61)

1.3 Gaussian states

An important category of quantum states is the group of Gaussian states. These have nice properties,
especially from an information theory point of view. In addition, they are easy to describe since they
are uniquely defined from their first and second moments. We define these states here and discuss
their properties.

1.3.1 Wigner’s function

The Wigner function is typically used to represent the probability distribution of the quadratures of
a quantum state. It is defined in the general case from the density matrix of the quantum state by

W (p, q) =
1

⇡~

Z 1

�1
e�i qp0

~ hp+ p0|⇢̂|p� p0i dp0. (1.62)

Since the quadratures are conjugate variables, the Heisenberg uncertainty principle prevents us
from precisely defining the joint probability distribution Pr(p, q). However it is possible to define
the marginal distributions Pr(p) and Pr(q). The Wigner function is a good probability distribution
approximation for quantum states since it gives the marginal probability distributions as :

Pr(p0) =

Z 1

�1
W (p0, q)dq. (1.63)

The Wigner function is called a quasiprobability density function because it can take some negative
values in small regions for quantum states which have no classical representation.
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1.3.2 Gaussian states

Gaussian states are quantum states for which the Wigner function is a Gaussian such that each
marginal probability distribution is also Gaussian. The probability distribution of the quadrature
operators of a Gaussian state can be written as

p̂ ⇠ N (µp,�
2
p), (1.64)

q̂ ⇠ N (µq,�
2
q ). (1.65)

This definition can be extended to an n mode Gaussian state which is entirely defined by its first
and second moments. The first moment of an n mode quantum state is the displacement vector ~d
given by the mean values of the quadratures in each mode

~d = (hp̂1i , hq̂1i , ..., hp̂ni , hq̂ni). (1.66)

The second moment is given by the covariance matrix Γ with the matrix coefficients

Γi,j =
1

2
{∆ĉi,∆ĉj}, (1.67)

where ĉ = (x̂1, p̂1, ..., x̂n, p̂n) and {, } is the anti-commutator defined by {x̂, p̂} = x̂p̂+p̂x̂ . Therefore
the covariance matrix is in the form of

Γ =

0

B

B

@

(∆p̂1)
2 1

2{∆p̂1,∆q̂1} ... 1
2{∆p̂1,∆q̂n}

1
2{∆q̂1,∆p̂1} (∆p̂1)

2 ... 1
2{∆q̂1,∆q̂n}

... ... ...
1
2{∆q̂n,∆p̂1}

1
2{∆q̂n,∆p̂2} ... (∆q̂n)

2

1

C

C

A

, (1.68)

and is a real valued symmetric matrix. The covariance matrix will later play a central role when
considering the informational quantities in joint quantum systems.

Coherent states. The most important class of Gaussian states for this work are called coherent
states. They are the quantum representation of the light emitted by a laser source such as those
employed in our continuous-variable quantum key distribution experiment. They are referred to by a
complex number ↵ and are defined as the eigenstates of the annihilation operator such that coherent
state |↵i obeys

â |↵i = ↵ |↵i . (1.69)

Coherent states can be decomposed over the Fock basis as a superposition of all Fock states with
decreasing probability at higher energy levels. In particular, the number of photons in a coherent
state follows a Poisson distribution as

|↵i = e
�|↵|2

2

1
X

n=0

↵n

p
n!

|ni . (1.70)

We can easily check that the coherent states are unitary i.e. h↵|↵i = 1 and are also non orthogonal
since for all (↵,�) 2 C2,

h↵|�i = e�
1
2 (|↵|

2+|�|2�2↵�̄) 6= 0. (1.71)

A consequence of this non-orthogonality is that is it impossible to perfectly discriminate between
coherent states, which is fundamental for the security of quantum key distribution. Moving on we give
some properties of coherent states. The mean value of the quadrature operators for coherent state |↵i
is
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hp̂i = 1

2
h↵|â† + â|↵i ,

=
1

2
(h↵|â†|↵i+ h↵|â|↵i),

=
1

2
(↵+ ↵⇤),

= Re(↵), (1.72)

and similarly

hq̂i = Im(↵). (1.73)

The quadratures of the coherent state |↵i are the real and imaginary part of the complex ampli-
tude, thus coherent states are sometimes defined with respect to their quadratures as |p+ iqi. The
quadrature operators variances are computed as

(∆p̂)2 = h↵|p̂2|↵i � h↵|p̂|↵i2 ,

=
1

4
h↵|â†2 + â†â+ ââ† + â2|↵i � Re(↵)2,

=
1

4
((↵⇤)2 + |↵2|+ |↵|2 + 1 + ↵2)� Re(↵)2,

=
1

4
(4Re(↵) + 1)� Re(↵),

=
1

4
, (1.74)

and proceeding similarly on the q̂ quadrature gives

(∆q̂)2 =
1

4
. (1.75)

Therefore the coherent states minimise the Heisenberg uncertainty relation in equation 1.61. Fi-
nally the number operator applied to |↵i gives

hn̂i = h↵|â†â|↵i (1.76)

= |↵|2 (1.77)

We say that coherent state |↵i has mean photon number |↵|2.

Two-mode squeezed Gaussian states. Two-mode Gaussian states are of particular interest for
the security proofs of quantum key distribution. In this picture one mode is measured by Alice and
the other is sent through the quantum channel to Bob for him to measure. Among two mode Gaussian
states, an important class of states are the two-mode squeezed states for which the quadratures in each
mode are perfectly correlated. The covariance matrix of two-mode squeezed states is of the form

ΓTMSV =

✓

cosh 2r12 sinh 2r�z
sinh 2r�z cosh 2r12

◆

, (1.78)

where we have

�z =

✓

1 0
0 �1

◆

. (1.79)
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A two-mode squeezed state is a pure state which is the continuous-variable counterpart to the
maximally entangled Bell state in the discrete-variable picture. Therefore these states are called EPR
states. They are represented in the Fock basis as

|TMSVi = 1

cosh r

1
X

n=0

tanhn r |n, ni , (1.80)

1.3.3 Gaussian transformations

The set of Gaussian transformations is the set of unitary transformations which transform a Gaussian
state into another Gaussian state. They will often be the transformations that affect the quantum
states transitioning over the quantum channel during the QKD protocol.

Symplectic transformations. An important subset of Gaussian transformations called the
symplectic transformations group. It is the set of transformations that are linear in the creation and
annihilation operators and preserves their commutation relations. For an n mode Gaussian state, the
symplectic transformations are defined by a 2n⇥ 2n symplectic matrix S such that :

SΩST = Ω, where Ω =
n
M

i=1

✓

0 1
�1 0

◆

, (1.81)

where the direct sum is defined on matrices A and B by

A
M

B =

✓

A 0
0 B

◆

. (1.82)

A symplectic transformation on a Gaussian state is entirely defined by its effect on the first and
second moments as

~dout = S ~din (1.83)

Γout = SΓinS
T . (1.84)

In particular for continuous-variable quantum key distribution we will consider Gaussian states
with zero mean. Then the first moment is zero and the full description of the state is given by its
covariance matrix.

Theorem 3 (Williamson’s theorem). Every positive-definite real matrix of even dimension can be
put in diagonal form by a symplectic transformation. In particular this can be applied to an n mode
Gaussian state covariance matrix Γ where for some symplectic matrix S, the following holds

Γ

L

= SΓST , with Γ

L

=

n
M

i=1

✓

⌫i 0
0 ⌫i

◆

. (1.85)

The n coefficients ⌫i are called the symplectic eigenvalues of Γ and are the eigenvalues of the matrix
�ΩΓΩΓ

Williamson’s theorem is a powerful tool to analyse Gaussian states and plays a central part in
quantum information theory on with these states.

Examples of symplectic transformations We give here some of the most common symplectic
transformations on optical modes which we will use in further analyses.

Phase rotation : a phase rotation by an angle ✓ of a single mode state is described by the symplectic
matrix R✓ given by
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Figure 1.1: Representation of the beamsplitter with two input spatial modes â and b̂ and two output
spatial modes ĉ and d̂

R✓ =

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

(1.86)

Beamsplitter : the beamsplitter with transmissivity ⌘ is described on the creation and annihilation
operators of two input modes (â, b̂) and two output modes ĉ, d̂ such that

ĉ =
p
⌘â+

p

1� ⌘b̂, (1.87)

d̂ = �
p

1� ⌘â+
p
⌘b̂. (1.88)

Then the relation between the four input quadratures and the four output quadratures is

0

B

B

@

p̂c
q̂c
p̂d
q̂d

1

C

C

A

=

0

B

B

@

p
⌘ 0

p
1� ⌘ 0

0
p
⌘ 0

p
1� ⌘

�p
1� ⌘ 0

p
⌘ 0

0 �p
1� ⌘ 0

p
⌘

1

C

C

A

0

B

B

@

p̂a
q̂a
p̂b
q̂b

1

C

C

A

(1.89)

We refer to the matrix representation of the beamsplitter of transmittance ⌘ applied to modes A
and B as BAB(⌘). The covariance matrix of a two mode Gaussian state after the beamsplitter is

Γout = BAB(⌘)ΓinB
T
AB(⌘) (1.90)

The beamsplitter is very convenient to model channel losses as a unitary process in quantum key
distribution protocols. The first input mode â is the signal mode at Alice while b̂ is taken as the
vacuum state of the environment. The output mode ĉ is the signal mode at Bob’s and mode d̂ is the
environment mode after transmission. We will discuss this more in section 4.3 when computing the
Holevo information leaked to the environment during the quantum key distribution protocol.

1.4 Measurement of the quantum states

In a continuous-variable quantum key distribution protocol the information is encoded on the quadra-
tures of coherent states. The quadrature operators are observables, meaning they correspond to a
physical quantity we can estimate. In particular for CV-QKD, we will need to express the post-
measurement state shared between Alice and Bob. Hence we develop here the formalism of the
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Figure 1.2: Homodyne detection scheme. The signal mode is mixed with a strong laser called the Local
Oscillator on a 50/50 beamsplitter. The intensity on both outputs of the beamsplitter is measured
and subtracted to constitute the homodyne measurement.

quadrature measurement process. This is called coherent detection since it involves mixing the signal
state with a strong reference signal called local oscillator (LO) on a balanced beamsplitter. The mea-
surement result then depends on the relative phase between the signal and LO. Coherent detection
can be divided into homodyne detection and heterodyne detection depending on whether a single or
both quadratures are measured. Note that these terms used by the QKD community have a different
meaning for the telecom industry, so we make clear that the terms used here are taken in the sense of
the QKD community.

1.4.1 Homodyne detection

Homodyne detection permits the measurement of one quadrature of the light, as opposed to heterodyne
detection for which both quadratures are measured.

Quadrature measurement.The homodyne detection scheme is represented in the figure 1.2. The
signal mode, denoted by S, is mixed with the LO on a 50/50 beamsplitter. Two detectors placed at
the + and � outputs of the beamsplitter produce photocurrents I+ and I� proportional to the mean
photon number in the corresponding mode. The quadrature measurement is given by subtracting the
I+ and I� currents. According to the beamsplitter model we can write the photon number operators
in each mode as

n̂+ = â†+â+ =
1

2
(â†S + â†LO)(âS + âLO), (1.91)

n̂� = â†�â� =
1

2
(�â†S + â†LO)(�âS + âLO). (1.92)

The operator for the difference in photocurrents Î∆ is proportional to

Î∆ / n̂+ � n̂�

/ â†S âLO + â†LOâS , (1.93)

where the proportionality factor depends on the characteristics of the photodectectors. Since the
local oscillator is a classical field with energy levels much larger than one quantum unit, hence we can
assume that applying the creation and annihilation operators does not change the state. Therefore
we can use the classical field assumption and replace âLO and â†LO by the classical field amplitude
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Figure 1.3: The homodyne detection amounts to computing the amplitude of the projection of the
quantum state |↵Si on the vector defined by the local oscillator amplitude and phase.

ELOe
±i✓LO with ✓LO the phase of the local oscillator. Then the mean value of operator Î∆ when the

signal state is coherent state |↵Si = ||↵|ei✓S i is

hÎ∆i / h↵S |â
†
S âLO + â†LOâS |↵Si

/ ELO(↵
⇤
Se

i✓LO + ↵Se
�i✓LO )

/ 2ELO Re(↵Se
�i✓LO )

/ 2ELO|↵| cos(✓S � ✓LO), (1.94)

which is the quadrature of the coherent state |↵Si in phase with the local oscillator. By shifting
the local oscillator phase by ⇡/2 we have that

Î
⇡/2
∆

/ 2ELO|↵| sin(✓S � ✓LO), (1.95)

which is the quadrature of |↵Si in quadrature with the local oscillator. Therefore by controlling
the phase of the local oscillator we can chose to measure an arbitrary quadrature of the signal.
Equivalently homodyne detection can be seen as a projection of the signal on the quadrature of the
local oscillator as is depicted in figure 1.3

Shot-noise. Consider the variance of the quadrature measurement. It is given by

(∆Î∆)
2 = hÎ2∆i � hÎ∆i

2
, (1.96)

where the first term is

hÎ2∆i / E2
LO h↵S |(â

†
S)

2ei2✓LO + â2Se
�i2✓LO + â†S âS + âS â

†
S |↵Si (1.97)

/ E2
LO((↵

⇤
S)

2ei2✓LO + (↵S)
2e�i2✓LO + 2|↵|2 + 1) (1.98)

/ E2
LO

�

2|↵|2(2 cos2(✓S � ✓LO)� 1
�

+ 2|↵|2 + 1), (1.99)

/ 4E2
LO|↵|

2 cos2(✓S � ✓LO) + E2
LO (1.100)

and we have
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Figure 1.4: For heterodyne detection, the signal is mixed with vacuum when split on a 50/50 beam-
splitter

hÎ∆i
2 / 4E2

LO|↵|
2 cos2(✓S � ✓LO) (1.101)

We used the commutation relation of the ladder operators to go from 1.97 to 1.98 and a trigono-
metric formula of the cosine to go from 1.98 to 1.99. Since the proportionality factors are the same

in the expressions of hÎ2
∆
i and hÎ∆i

2
we can write the variance of the observable as

(∆Î∆)
2 = N0 / E2

LO. (1.102)

The variance of the homodyne measurement comes from the quantum commutation relation be-
tween the ladder observables and is proportional the local oscillator intensity. This variance is called
the shot-noise and is noted N0 in this manuscript. It plays a significant role in quantum key distri-
bution protocol because it is a normalisation value which is used to calibrate experiments. We will
discuss this further in the next chapter.

Heterodyne detection. Both p̂ and q̂ quadratures of a coherent state |↵Si can be measured by
splitting the signal on a 50/50 beamsplitter and performing a double homodyne measurement, one on
each branch. In that case it is called a heterodyne measurement. The splitting of the signal in mode
S in the two modes Sp and Sq induces an additional vacuum contribution because splitting the signal
on a beamsplitter mixes the state with vacuum. Thus we have

âSp,q =
1p
2
(âS ± v̂),

where v̂ is the annihilation operator of the vacuum. By substituting this expression to âS in the
case of homodyne detection, we find that

hÎ∆ihet =
1p
2
hÎ∆ihom . (1.103)

However the variance of the operator is given by

h∆Î∆i
2

het = 2 h∆Î∆i
2

hom (1.104)

because there is the additional commutation relation of the vacuum ladder operators in equation
1.97.
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1.4.2 Effect of homodyne detection on the covariance matrix

Since Gaussian states are uniquely defined by their first and second moments, it is sufficient to know
how transformations affect these moments to define the transformed state. In particular it will be
interesting to know the effect of a homodyne or heterodyne measurement of one mode on the covariance
matrix of the bipartite state. The interested reader can refer to reference [20] for more details.

Homodyne detection. Consider the two-mode state defined by the covariance matrix

Γ =

✓

�A �C
�TC �B

◆

(1.105)

where all matrices �i are in R2 and A, B denote the covariance matrices of the modes A and
B while C is the correlations between modes A and B. A homodyne measurement on mode B will
destroy the mode and transform mode A depending on the quadrature that is measured. This is
described on the covariance matrix �A|B of mode A after measurement by

�A|B = �A � �C(Πp,q�BΠq,p)
�1�TC , (1.106)

where Πp,q is the projector on the p or q quadrature of mode B and is given by

Πp =

✓

1 0
0 0

◆

and Πq =

✓

0 0
0 1

◆

(1.107)

The matrix �C(Πp,q�BΠq,p)
�1�TC is not invertible, but it is diagonal. The notation �1 denotes the

Moore-Penrose pseudoinverse, which is the corresponding matrix where all non-negative eigenvalues
are inverted. The expression in 1.106 simplifies as

�hom
A|B = �A � 1

(∆p̂, q̂)2
�CΠp,q�

T
C (1.108)

Heterodyne detection.In the case of heterodyne detection the mode B is first split on a balanced
beamsplitter which mixes the mode with a vacuum state and is described on the covariance matrix
by

Γ = BB,v(1/2)

0

@

�A �C 0
�TC �B 0
0 0 12

1

ABB,v(1/2)
T , (1.109)

where

BB,v(1/2) =

0

@

12 0 0
0 1p

2
12

1p
2
12

0 � 1p
2
12

1p
2
12

1

A . (1.110)

We compute the covariance matrix after a heterodyne measurement which is a homodyne mea-
surement on the p quadrature of one mode and q measurement of the other. The result yields

�het
A|B = �A � �c(�B + 12)

�1�TC . (1.111)

This concludes our first chapter. Here we introduced the Hilbert space formalism which permits
to describe quantum states and reviewed some important quantum mechanical properties in the no-
cloning theorem and the uncertainty principle. We also defined the quadrature operators and the class
of coherent states which will be used in the rest of this manuscript. Finally, we described the effect
of heterodyne or homodyne detection on the quantum states which will be useful to compute the post-
measurement information of the adversary during the QKD protocol. To do this, we first need to
define information and give some insights on how to compute it. We do this in the next chapter.
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Chapter 2

Classical and quantum information

theory
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In this chapter, we define and study the information that is contained in classical variables and
in quantum states. We aim to give the tools to define and quantify the information shared between
Alice and Bob during a communication protocol –such as QKD– as well as the information leaked to
Eve.

2.1 Classical information theory

The founding father of modern information theory is undoubtedly the American engineer Claude
Shannon with his article published in 1948 A Mathematical Theory of Communications. We will
review in this section the core principles of Shannon’s information theory.

2.1.1 Introduction to information theory

Definition 3. A random variable X is defined by a set of possible outcomes X and a set of cor-
responding probabilities {pX(x)|x 2 X}. The outcomes X can be discrete or continuous and the
following relations hold :

8x 2 X , pX(x) 2 [0, 1], (2.1)

if X is discrete,
X

x2X

pX(x) = 1, (2.2)

if X is continuous,

Z

X

pX(x)dx = 1. (2.3)

35
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When X is continuous, pX is called the probability density function. In the rest of this section we
will consider X is discrete. Note the results hold in the continuous case by substituting integrals to
the sums.

The mean value of the random variable X, noted hXi, and its variance noted var(X), are given by

hXi =
X

x2X

pX(x)·x, (2.4)

var(X) = hX2i � hXi2 . (2.5)

A fundamental question answered by Shannon is how much information is contained in a realisation
of X. Conceptually, if the result of X is certain i.e. p(X = x) = 1, then the realisation of X does
not provide any information since we can predict with certainty the result. On the contrary a very
improbable realisation of X carries a lot of information, since the result was nearly unpredictable.
Thus the information provided by the realisation of a random variable depends on the probability of
the realisation. With this in mind a natural candidate to quantify information is the � log function
since when the result is certain � log(1) = 0 and this quantity increases as the result becomes less
probable.

Definition 4. The information gained by the realisation x of a random variable X is given by :

I(x) = � log2 pX(x), (2.6)

where the logarithm is taken in base 2 and therefore the information is expressed in bits. The
average information provided by the random variable X is called entropy and is defined as follows.

Definition 5. The entropy of a random variable X quantifies the average information provided by
X. It is noted H(X) and equal to :

H(X) = �
X

x2X

pX(x) log2 pX(x). (2.7)

Notice the entropy does not consider the realisations of the random variable but only their proba-
bilities. The joint entropy of two random variables X and Y quantifies the average information gained
by the joint realisations of X and Y . It is computed over the set of outcomes X and Y as :

H(X,Y ) = �
X

x2X ,y2Y

p(x, y) log2 p(x, y). (2.8)

The joint entropy can be generalised to any number of random variables by considering the joint
probability distribution of all variables. In general the joint entropy of X and Y is not equal to the
sum of the entropies. This is because when they are considered jointly, X and Y can have some
information that is redundant. We characterise the remaining uncertainty on variable Y (X) when X
(Y ) is known with the conditional entropy :

H(Y |X) = H(X,Y )�H(X), (2.9)

= �
X

x2X ,y2Y

p(x, y) log2 p(y|x), (2.10)

and H(X|Y ) = H(X,Y )�H(Y ), (2.11)

= �
X

x2X ,y2Y

p(x, y) log2 p(x|y). (2.12)

(2.13)

The entropy obeys the following relations :
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• H(X) � 0 : a random variable X carries information greater or equal to 0, with equality if and
only if X is deterministic.

• H(X)  log2 |X | : the maximum of the entropy of random variable X is log2 |X | with equality
if and only if X is uniformly distributed over X i.e. 8x 2 X , pX(x) = 1

|X | .

• H(X,Y )  H(X) + H(Y ) with equality if and only if the random variables are independant
such that p(y|x) = p(y) and p(x|y) = pX(x) thus H(Y |X) = H(Y ) and H(X|Y ) = H(X).

Finally an important measure in the field of communications is the mutual information IX,Y shared
between two random variables X and Y .

Definition 6. The mutual information IX,Y between random variables X and Y is a measure of the
common information in both variables. It is given by :

IX,Y = H(X) +H(Y )�H(X,Y ),

= H(X)�H(X|Y ),

= H(Y )�H(Y |X). (2.14)

The mutual information plays a central role in communications since it quantifies how many bits
X and Y have in common. Therefore if distant parties hold random variable X on one hand and Y
on the other, such as when X is a random variable corresponding to the state sent by Alice and Y is
be Bob’s measurement result, they can extract IX,Y shared bits.

2.1.2 Information theory with Gaussian variables

An important category of random variables for is Gaussian random variables, that is when X and
Y follow a Gaussian distribution. Such distributions hold a central role in classical communications
since they maximise the amount of information that can be shared. We discuss the information theory
quantities in this case here.

A Gaussian random variable X ⇠ N (µ,�2) is entirely defined on the set of real number R by its
first two moments, that is its mean value µ and variance �2. The density probability of the random
variable X is given by :

pX(x) =
1p
2⇡�2

· e�
(x�µ)2

2�2 . (2.15)

The entropy of a Gaussian random variable X ⇠ N (µ,�2) is

H(X) = �
Z

R

pX(x) log2 pX(x)dx, (2.16)

=
1

2
· log2(2⇡e�

2). (2.17)

Note that for a given variance �2, the Gaussian distribution is the distribution which maximises
the entropy. We can further define the joint probability distribution of Gaussian random variables
X ⇠ N (µX ,�2

X) and Y ⇠ N (µY ,�
2
Y ) as :

pX,Y (x, y) =
1

2⇡
q

�2
X�

2
Y � hXY i2

· exp



x2�2
Y + y2�2

X � 2xy hXY i
2(�2

X�
2
Y � hXY i2)

�

. (2.18)

Similarly than for a single Gaussian variable, a joint distribution of Gaussian variables X and Y
is entirely defined by its first two moments hXY i, �2

X and �2
Y . Therefore for centered variables, the

covariance matrix KXY defined by
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Figure 2.1: Channel representation

KXY =



�2
X hXY i

hXY i �2
Y

�

, (2.19)

is sufficient to describe the joint distribution of the two Gaussian random variables X and Y .
In addition, the entropy and mutual information quantities can be computed from the covariance
matrix as we show below. The joint and conditional entropies of X and Y are found by plugging the
appropriate density functions in equations 2.8 and 2.9:

H(X,Y ) =
1

2
log2

�

(2⇡e)2· detKXY

�

, (2.20)

H(Y |X) =
1

2
log2

✓

2⇡e·
detKXY

�2
X

◆

, (2.21)

and the mutual information is given by :

IXY =
1

2
log2

✓

�2
X�

2
Y

detKXY

◆

. (2.22)

2.1.3 Communication over a noisy channel

The information theory quantities we’ve discussed above are used to describe communication protocols
over noisy channels. In such protocols the transmitter, Alice, sends a realisation x 2 X of X to the
receiver, Bob, who receives realisation y 2 Y of Y . The goal of the communication is for Alice and
Bob to share information -or bits- via the protocol, which is given by the mutual information IXY

between the random variables X and Y . The channel model is represented in figure 2.1.
Note the channel is entirely defined by the transition probabilities p(y|x) between random variables

X and Y . Then an important subcategory of channels is the memoryless channels, for which p(y|x)
does not depend on previous events. The maximal amount of bits that can be shared by sending
one symbol for memoryless channels is called the channel capacity and is given by Shannon’s second
theorem.

Theorem 4 (Channel coding theorem). Let a sender, Alice, send realisation x of random variable
X over a memoryless channel to the receiver, Bob, who measures realisation y of random variable Y .
The maximal amount of bits that can be shared by this scheme is called the channel capacity and is
given by :

C = max
{pX(x)}

IX,Y . (2.23)

Essentially Shannon’s channel coding theorem states that there is some distribution of X which
enables Alice to send an average of C bits per symbol to Bob without errors. Reversely if Alice tries
to send more than C bits per symbol the transmission will contain errors.
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The AWGN channel. The main channel model for classical communications and quantum key
distribution protocols with continuous variables is the additive white Gaussian noise (AWGN) channel.
It is defined by the following relation between variables X and Y :

Y = X + Z, (2.24)

where Z ⇠ N (0,�2
Z). Z is called noise because it is added to the signal X and contains no

information. It is obviously additive and we say it is white because it is assumed to be the same for
each frequency. The opposite of a white noise is a colored noise which is not equal over all frequencies.
The transition probabilities of AWGN channels are Gaussian density probabilities given by

p(y|x) =
1

p

2⇡�2
Z

· e
� (y�x)2

2�2
Z . (2.25)

Theorem 5 (Capacity of the AWGN channel). The capacity of the AWGN channel is given by :

CAWGN =
1

2
· log2

✓

1 +
�2
X

�2
Z

◆

, (2.26)

where �2
X is the variance of the random variable X.

Proof. We have :

IX,Y = H(Y )�H(Y |X), (2.27)

= H(Y )�H(X + Z|X), (2.28)

= H(Y )�H(Z), (2.29)

= H(Y )� 1

2
· log2

�

2⇡e�2
Z

�

. (2.30)

For a fixed variance �2
Y , H(Y ) is maximal when Y is Gaussian i.e. when X is Gaussian. In this case

we have �2
Y = �2

X + �2
Z and H(Y ) = 1

2 · log2
�

2⇡e�2
Y

�

. Substituting H(Y ) in the mutual information
expression above gives the capacity CAWGN which concludes the proof.

The fraction
�2
X

�2
Z

is called the signal-to-noise ratio, or SNR, and represents the signal power relative

to the noise power. The capacity of the AWGN channel is sometimes noted CAWGN = 1
2 · log2

�

1+SNR
�

2.2 Quantum information theory

The information-related quantities defined in the first section can be extended, thanks to the quantum
formalism, to the quantum domain. This is particularly interesting since it becomes possible to bound
the information accessible to an eavesdropper during a quantum communication.

2.2.1 The Von Neumann Entropy

The extension of the notion of entropy to quantum states is called the Von Neumann entropy.

Definition 7 (Von Neumann Entropy). Any mixed or pure quantum state ⇢̂ can be written as
⇢̂ =

P

i �i |�ii h�i| where the |�ii are orthonormal vectors and
P

i |�i|
2 = 1. The Von Neumann

entropy of ⇢̂ is the generalisation of the notion of entropy to quantum state ⇢̂. It is noted S(⇢̂) and is
defined by

S(⇢̂) = �
X

i

�i log2 �i. (2.31)
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To not have to write the explicit eigenvalues of ⇢̂ the Von Neumann entropy is more conveniently
noted :

S(⇢̂) = �Tr
⇥

⇢̂ log2 ⇢̂
⇤

. (2.32)

The Von Neumann entropy quantifies the average information that can be obtained by a measure-
ment of state ⇢̂. It has properties similar to the classical entropy :

• For all ⇢̂, S(⇢̂) � 0 with equality if and only if ⇢̂ is a pure state, which would be the classical
equivalent of a deterministic state.

• If ⇢̂ is a quantum state in a Hilbert space of dimension d, S(⇢̂) is bounded by S(⇢̂)  log2 d with
equality if and only if ⇢̂ = I/d.

• If ⇢̂AB is the density matrix of a composed system that is a pure state, then the Von Neumann
entropy of each subsystem is equal i.e. S(⇢̂A) = S(⇢̂B) where ⇢̂A and ⇢̂B are the density matrices
obtained by tracing out subsystem B and A respectively.

• S(⇢̂) is constant under any unitary transformation i.e. for any unitary U , S(U ⇢̂U†) = S(⇢̂) .

For a system composed of subsystems A and B we can also define the following entropy values :

• The conditional entropy : S(A|B) = S(AB)� S(B).

• The quantum mutual information : it is the quantum counterpart to the mutual information
and is given by I(A,B) = S(A) + S(B)� S(AB).

Von Neumann entropy of Gaussian states
When ⇢̂ is an n-mode Gaussian state, the Von Neumann entropy can be computed from the

symplectic eigenvalues of the state covariance matrix as

S(⇢̂) =

n
X

i=1

G

✓

�i � 1

2

◆

, (2.33)

where the symplectic eigenvalues are defined in 1.85 and the function G is given by G(x) =
(x+ 1) log2(x+ 1)� x log2(x).

2.2.2 Accessible information

Suppose a setting where Alice communicates classical information with Bob using quantum states,
which is the case during our QKD experiment. Similarly to classical communications, Alice holds a
random variable X which can take for example n values {0, ..., n} with probabilities {p1, .., pn}. Based
on the realisation of X, Alice prepares quantum state ⇢̂X chosen from a set {⇢̂1, ..., ⇢̂n} and gives
the state to Bob. By performing a measurement M on the state ⇢̂X , Bob obtains a classical random
variable YM which depends on X and the measurement.

Definition 8 (Accessible information). The accessible information is the maximal amount of classical
information that can be extracted from a quantum system when the information is encoded using a
particular ensemble of quantum states, and is given by

IaccX,⇢̂ = max
M

IX,YM
. (2.34)

Therefore the accessible information computes the maximum of IX,YM
optimized over the set of

all possible measurements performed by Bob. We do not have an explicit formula to the accessible
information in this case, but it is possible to give an upper-bound.
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Theorem 6 (Holevo’s bound). In the setting described above, the accessible information on variable
X from the quantum state ⇢̂ is

IaccX,⇢̂  S(⇢̂)�
n
X

i=1

piS(⇢̂i), (2.35)

where ⇢̂ =
Pn

i=1 pi⇢̂i is the mixed state sent to Bob. The right hand side of the inequality is called
the Holevo information of state ⇢̂ and is noted �(⇢̂, X)

The Holevo bound is tight if ⇢̂ = I/n, that is if the {⇢̂i} form an orthonormal basis of the n
dimensional Hilbert space and are equiprobable, i.e. pi = 1/n 8i. Then we can write the state ⇢̂ in
the form :

⇢̂ =
1

n

n
X

i=1

|ii hi| , (2.36)

where hi|ji = �i,j . Since the quantum states sent by Alice are orthogonal, Bob can discriminate
between the n quantum states with probability 1 by applying the projective measurements {Ei =
|ii hi|}ni=1. Then we have Y = X and we can compute the mutual information between X and Y :

IX,Y = log2 n. (2.37)

which is also the Holevo information since the ⇢̂i are pure states S(⇢̂i) = 0 and S(⇢̂) = log2 n.

This concludes this relatively short chapter where we covered the very basics on information theory.
We refer the interested reader to [21] for further exploration of the field. Here, we introduced the
notion of information for classical and quantum variables and gave some interesting behaviors of the
information quantities. The important results for this work moving forward are how to compute the
Von Neumann entropy of Gaussian states from the symplectic eigenvalues as in equation 2.33 and
Holevo’s bound. These will play a central role during the CV-QKD protocol, which we will discuss
further in chapter 4. Before this however, we cast aside the quantum world –just for a bit– in the next
chapter to discuss some basic notions of cryptography.
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Cryptography
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In this thesis we focus on quantum key distribution (QKD), protocols which enable two distant
parties to share a secret key which is guaranteed secure by the laws of physics. But before we can
discuss these protocols and our contributions to the field, it is crucial to understand the stakes of
key sharing between distant parties and why QKD is an interesting protocol to achieve this goal.
The answers to these questions require understanding of the cryptographic world. We provide an
introduction to the field in this chapter and discuss the paradigm shift induced by a potential future
quantum computer.

3.1 Principle of cryptography

Cryptography is an ancient science -dating back to antiquity- which initially aims at securing the
contents of a message such that only the intended receiver can retrieve its original content. In our
digital era, insuring confidential communications is paramount for user privacy and safeguarding of
sensitive data, but other security guarantees are also desirable. We discuss in this section the different
security guarantees required for modern communications, and the security models available.

3.1.1 Secure communication

The context in which we analyse secure communications is one where a transmitter wants to send a
message M 2 {0, 1}n, also called plaintext, to a receiver without revealing its contents if it were to fall

43
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Figure 3.1: The setting is the following. Alice needs to send M to Bob over a communication channel,
but Eve can intercept the message and Alice must insure that she does not learn the contents of M .

Figure 3.2: Depiction of the encryption of the plaintext and decryption of the ciphertext using the
keys KA and KB .

in the hands of a malevolent adversary. It is customary in the cryptographic world to give names to
the different roles played during the communication process. We will respect these conventions here
and denote the transmitter, the receiver and the adversary by Alice, Bob and Eve respectively. We
depict the setting of the further analysis in the figure 3.1.

Confidentiality. The security service sought by Alice and Bob is called confidentiality. To insure
this, Alice performs a reversible transformation of M before sending it to Bob. The transformation
process is indexed by a secret KA held by Alice. It is called encryption and denoted EKA

. The
encrypted plaintext is called the ciphertext and is denoted C = EKA

(M). Bob can retrieve the
plaintext from the ciphertext because he has a secret KB which provides the inverse transformation,
called decryption and noted DKB

such that DKB
(C) = M . The security of the encryption lies in the

fact that it is not possible to perform the decryption process without knowledge of KB . The secrets
KA and KB are called the keys. The encryption and decryption process is depicted in the figure 3.2.

We will discuss further in this chapter the two big families of cryptographic primitives which are
symmetric and asymmetric cryptography. In the first, KA = KB = K and the keys must remain
unknown to all but Alice and Bob. In the latter KA 6= KB and only KB must remain secret, KA can
be public which enables anyone to encrypt messages for Bob.

Security primitives beyond confidentiality. If confidentiality is crucial to insure secure com-
munication over public channels, it is not sufficient in itself to guarantee secure communications.
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Three other security primitives are also necessary and play a central part in modern communications
:

• Authentication. Alice and to Bob must be given guarantees that they are communicating with
each other and not with Eve, or else Eve could perform a so-called Man-in-the-middle attack
where she impersonates Alice to Bob and Bob to Alice.

• Integrity. The message received by Bob must be guaranteed unaltered by Eve.

• Non-repudiation. Individuals should not be able to deny actions such as signing a contract
online.

In the next section we will see how modern cryptographic primitives insure the four security services
discussed above, but first we discuss different security models for cryptosystems.

3.1.2 Security model : information-theoretic vs computational

There are different security models associated with encryption processes. These provide guarantees
with different levels of strength, but also different levels of complexity.

Information-theoretic security. This type of security, also called perfect secrecy, is achieved if
the a priori probability of the message p(M) and the a posteriori probability of the message conditioned
on the knowledge of the ciphertext p(M |C) coincide from Eve’s perspective.

An example of perfect secrecy is the One-time pad (OTP) scheme. It is a symmetric encryption
protocol for which the ciphertext is obtained by performing the XOR operation between the message
and the key of the same length than the message. Importantly, the key must be chosen at random
such that for all K we have p(K) = 2�n. The encryption and decryption give

C = EK(M) = M �K, (3.1)

M = DK(C) = C �K. (3.2)

We can prove the OTP scheme has perfect secrecy using Bayes rule. For all M and K we have

p(M |C) =
p(M)p(C|M)

p(C)
, (3.3)

and we have that p(C|M) = p(K) and p(C) = p(K) which proves the point.
An important implication of perfect secrecy is that the key must be of the same length than the

message which can be difficult to implement in practice. Also the secret key cannot be re-used, or Eve
can guess information on the secret key and perfect secrecy is lost. To see this, consider two messages
M1 and M2 giving ciphertexts C1 and C2. Then we have that

C1 � C2 = M1 �M2, (3.4)

Eve can therefore obtain the bitwise parity of the messages. Because of the difficulty of sharing a
unique key of the same length than the message for each communication, usual cryptosystems do not
employ perfect secrecy but rely on a relaxed security assumption : computational security

Computational security. In this security model the key is generally of (much) smaller size than
the message to be encrypted. Hence for a given ciphertext the number of possible messages -which
matches the number of possible keys- is greatly reduced compared to the perfect secrecy model. The
security in this view lies in the fact that the adversary has bounded computing capabilities, therefore
he cannot crack the encryption scheme in a reasonable amount of time. This concept relates to how
long it takes a computer to perform a task and is quantified in the average number of operations for
completing the task. Therefore the security in this view is dependant on :
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• The current relation between computing power and cost. The security is defined against a
certain level of computing power which has to be estimated based on current technology and
foreseeable advances. As technology progresses and computing power becomes more readily
available, encryption conventions can evolve by imposing longer keys and more resilient encoding
algorithms.

• The best known attacks to crack the encryption. Although unlikely, it is always possible some-
one finds a flaw in an encryption algorithms which can be exploited to reduce the number of
operations required to crack the code.

Obviously using cryptography in a computational security model is much easier than for an
information-theoretic security model since one key of fixed length can be used to encode arbitrary
messages and also be used more than once without decreasing the security. This is why modern
cryptography is designed to provide security in this security model. In the next section we review
the relevant cryptographic protocols used today in order to discuss in the following section how a
quantum computer can impose a paradigm shift on some current cryptosystems.

3.2 Modern cryptography

Modern cryptography is built on a set of cryptographic primitives, basic building blocks which are
used in more complex protocols to provide the desired security service. Three important kind of
primitives are hashing functions, symmetric cryptography and asymmetric cryptography. Together
they can provide the set of security services discussed in subsection 3.1.1.

3.2.1 Hashing functions

A hashing function h is a function which maps data M 2 {{0, 1}n}1n=1 of an arbitrary size n to
fixed-size values h(M) 2 {0, 1}k which are called hash values. Since the cardinality of inputs is much
larger than the cardinality of outputs, there are necessarily collisions : two (or more) inputs M1 and
M2 can give the same output by h. A good hashing function is a function for which these collisions
are very difficult to find.

Interesting hash functions are key-based hash functions. They are basically hash functions indexed
by a secret key which determines the behavior of the hash function. Hash functions and key-based
hash functions play a central role in communications because the hash values are a fingerprint of the
message which can be used to provide authentication and integrity. We illustrate this in an example
below.

Application example. Consider the previous context in which Alice encodes her message M into
the ciphertext C before sending it to Bob. However this time she wants to guarantee that she sent the
message and that it was not altered, i.e. guarantee authentication and the integrity of her message.
To do this she also computes the hash value of C using a key based hash function and outputs hK(C),
also called a keyed-hash message authentication code (HMAC). She sends C and hK(C) to Bob who
computes the HMAC of the ciphertext he received. If his value coincides with hK(C), he is assured
of the authenticity and integrity of the message.

3.2.2 Symmetric cryptography

In symmetric cryptography the encryption and decryption key are the same and must be kept secret.
Until 2001 the standard encryption algorithm was DES -for Data Encryption Standard- functioning
with 58 bits keys. Labelled as too weak because of the short size of the key, DES has been replaced
with AES -the Advanced Encryption Standard- with keys of length 128, 192 or 256 bits.
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AES. The AES encryption is a block cipher algorithm. This means that the plaintext is divided
into block of equal length, 128 bits here, and each block is independently encrypted by the algorithm
using the secret key. The principle is as follows. The 128 bits plaintext is written in the shape of a 4⇥4
byte matrix, then a series of transformations is iterated on the matrix to provide encryption. Each
iteration requires a different secret key to determine the specific transformations of that iteration.
To do this, a set of subkeys are first generated from the symmetric key using a deterministic key
expansion algorithm. We give the different steps of AES encryption below.

1. Generate subkeys from the symmetric key K

2. XOR plaintext M and symmetric key K

3. Iterate N times operations below :

(a) SubBytes : permutation of the matrix bytes based on the Rijndael S-box (permutation
table).

(b) ShiftRows : circular shift of the rows of the 4 ⇥ 4 matrix by respectively 0, 1, 2 and 3
increments to the right.

(c) MixColumns : each byte is transformed into a linear combination of the bytes in the same
column.

(d) AddRoundKey : XOR resulting matrix with the corresponding subkey.

4. Final iteration, the MixColumns step is skipped : SubBytes, ShiftRows, AddRoundKey.

The number of iterations N depends on the length of the secret key. For keys of length 128, 192
and 256 bits we have N equal to 9, 11 and 13 respectively. To this day, the best known attack on
AES encryption requires testing an average of 2124.9 keys. It is estimated this would take longer than
the age of the universe for the most advanced supercomputers in the world.

Usage. Symmetric cryptography such as AES are used to provide confidentiality. They are
particularly well suited to encode large volumes of data since there is no limit to the length of the
input message. We can freely increase or decrease the length of the message which will only result in
more or less blocks to be encoded for the block cipher algorithm.

An important prerequisite for symmetric cryptography is for Alice and Bob to share a secret key
before starting the protocol. This is know as the key distribution problem and can be solved using
the other family of cryptographic protocols : asymmetric cryptography.

3.2.3 Asymmetric cryptography

Contrary to symmetric cryptography, in asymmetric cryptography the encryption and decryption keys
are different. Such protocols are also referred to as public-key cryptography because the encryption
key is public while the decryption key -or private key- is kept secret. Then each user in a network can
have their own set of public/private keys allowing all members of the network to encrypt messages
intended to them.

RSA. The RSA encryption scheme, named after its inventors Rivest, Shamir and Adleman, is
an asymmetric encryption scheme based on algebraic properties. Each user (e.g. Alice) of the RSA
encryption scheme has a public key composed of two integers (e, n) and a private key d. These must
obey specific rules in order for the encryption/decryption to function :

1. Alice chooses two large prime integers p and q to compute n = pq.

2. Alice computes Euler’s totient function of n which is in this case �(n) = z = (p� 1)(q � 1).
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3. Alice chooses an integer e smaller than n such that e is relatively prime with z.

4. Alice computes d = e�1 mod(z) such that de = 1 mod(z). The value e exists by construction of
z and d thanks to algebraic properties we do not develop further in this work.

Arithmetic theorems give that if 4. holds, then for all a 2 Z/nZ, aed = amod(n). Using this we
can construct asymmetric encryption and decryption schemes using e and d :

C = Me mod(n) (3.5)

M = Cd mod(n) (3.6)

Since (e, n) is public, anyone can encrypt data to send to Alice. On the other hand she is the only
person who knows d therefore she is the only one who can decipher those messages.

The security of the RSA encryption scheme is based on the fact that it is very difficult, given
(e, n), to compute the private key d. Actually the only way to do this is to find p and q from n. This
is called the factoring problem and no efficient way of achieving this has been found yet using classical
computing methods.

Usage. By nature RSA cannot be used on messages of arbitrary length since the space of possible
messages of cardinality n. In addition since the encryption and decryption processes are slow due to
the operations on large numbers, it is not suited to encrypt large volumes of data. However public-key
cryptography is particularly useful for other reasons :

• Sharing symmetric keys. A key interest in public key cryptography is that it can enable two
parties to share a secret key, which would later allow them to use symmetric cryptography to
encode large quantities of data between them.

• Digital signature. An interesting feature of public-key cryptography is that one can also sign
messages. This is achieved by «encrypting» the message with the private key : the user is the only
one able to do this since he is the only one with knowledge of his private key. However anyone
can verify the signature using the public key. The digital signature provides authentication,
integrity and non-repudiation.

3.3 Cryptography in a quantum world

For the last 40 years or so, starting from Feynman’s 1981 conference talk [2], research efforts were
directed towards harnessing quantum mechanical systems for computing purposes. The holy grail of
the field is to build a universal quantum computer using qubits as basic building blocks. As opposed
to classical bits, qubits must be described by quantum mechanics and as such can be in superposition
of different states. Harnessing this, quantum computers can perform some tasks much faster than
classical computers, which is an exiting idea for many applications but can pose security threats if
the hard problems at the core of cryptographic primitives become tractable. This forces us to review
our cryptographic landscape in this new context.

3.3.1 Threats to cryptography posed by the quantum computer

Quantum algorithms -running on a quantum computer- are interesting when they can solve a particular
task faster than a classical computer. Relevant examples of such algorithms are Shor’s and Grover’s
algorithms, named after their discoverers.

• Shor’s algorithm. Solves the factoring and discrete logarithm problem in polynomial time as
opposed to super polynomial time for the best classical algorithm. Can be used to break RSA
encryption rendering this cryptographic primitive obsolete in a quantum world.
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Algorithm Key length Security level Security level
for classical computer for quantum computer

RSA-1024 1024 80 bits ⇠0 bits
RSA-2048 2048 112 bits ⇠0 bits
AES-128 128 128 bits ⇠64 bits
AES-256 256 256 bits ⇠128 bits

Table 3.1: Comparison of the security levels provided by RSA and AES against a classical and quantum
computer. Table taken from [22].

Figure 3.3: Encrypted data should be guaranteed safe during a reasonable period of time x. Until we
have completed the migration towards quantum-safe solutions, at time y, encryption will be performed
using quantum-vulnerable solutions. Thus if the collapse time z when a quantum computer becomes
available is smaller than x+ y, we cannot guarantee the security shelf-life x.

• Grover’s algorithm. Searches an unstructured database with N entries for a specific entry
with complexity O(

p
N) compared to O(N) for the best classical algorithm. Can be used to

speedup the search for symmetric keys to break AES encryption, thus larger key sizes will be
necessary in a quantum world.

To illustrate the impact of these algorithms we represent in the table 3.1 the effective key lengths
of commonly used RSA and AES encryptions for a quantum computer. The cryptographic primitives
harshly impacted by the future quantum computer are the public-key cryptography solutions such as
RSA, which are crucial to share symmetric keys.

Action must be taken now. A question that is raised by the possibility of a quantum computer
is the following : when do we adapt our cryptographic systems to this new context ? Since the
quantum computer is still in early stages of development, this question is legitimate.

To answer this question, one must consider three quantities defined in [8] which are the following :

• Security shelf-life. How long we need our encryptions to remain secure. Let us denote this
duration by x.

• Migration time. How long we need to transpose all cryptographic primitives to quantum-safe
solutions. Let us denote this duration by y.

• Collapse time. How long until we can expect a large-scale quantum computer capable of cracking
current encryption. Let us denote this duration by z.

A «theorem» discussed is [8] answers the question above : « If x + y > z, then worry ! ». The
idea is that until we have transitioned the full infrastructure towards quantum-safe solutions, soon-
to-be obsolete cryptographic primitives will continue to be used, hence an adversary could perform a
« store-now, decrypt later » attack and wait for the development of the quantum computer.

With the development of the quantum computer picking up the pace, it is absolutely necessary to
begin the transition as soon as possible. We discuss the solutions explored in the next subsection.
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3.3.2 Quantum-safe cryptography

Quantum-safe cryptography seeks to develop cryptographic primitives which are safe even if an at-
tacker has access to a quantum computer. The field is divided in the two complementary fields of
post-quantum cryptography (PQC) and quantum key distribution (QKD).

Post-quantum cryptography. The first solution consists in developing cryptographic primitives
based on problems for which a quantum computer does not provide a sensible advantage over a
classical computer. Quantum-safe cryptography research is mainly focused on public-key cryptography
because, as far as we know, these are the primitives which we know will become obsolete against an
adversary owning a quantum computer.

Let us provide some examples of PQC algorithms which are investigated to replace current public-
key algorithms. Some interesting candidates for post-quantum public key cryptography are for exam-
ple code-based cryptography [23], multivariate cryptography [24], lattice-based cryptography [25] and
supersingular elliptic curve isogenies [26].

PQC is a solution applied to the software level, hence is easily implementable on current machines.
These solutions will follow in the approach of modern cryptography in the sense that they will be
secure on the condition the attacker has limited computing power, and that no algorithm will be
found to crack the encryption with a considerable speedup. Moreover, PQC algorithms will need to
be adapted if the available computing power increases drastically, as was the case when we migrated
from DES to AES.

Quantum key distribution. QKD is a type of key distribution protocol. It is based on the
exchange of quantum states over a communication channel during a communication phase. Then, by
harnessing the no-cloning theorem and the effect of projective measurements, QKD enables Alice and
Bob to quantify the information leaked to Eve during a post-processing phase. Ultimately a QKD
protocol produces a secret key shared by Alice and Bob with the guarantee that any adversary has
no information on the key.

Compared to PQC, QKD requires an implementation on the physical layer which supposes suit-
able communication channels and the necessary hardware. The compensation for the experimental
challenges of QKD -which will be discussed in the rest of this manuscript- lies with the strong security
guarantee on the key. The fact that the adversary has no information on the secret key means that his
best strategy is a random guess, which is independant from future developments of computing power
or of algorithm performance. We review QKD more specifically in the next section.

3.4 Quantum key distribution

In this section we discuss the principles of quantum key distribution and give an example of protocol.
Then we review the different types of QKD existing today.

3.4.1 Principle

A generic QKD protocol is built on the assumption that two requirements are met. We begin by
discussing these requirements, then move on to giving the main steps of the generic QKD protocol.

Prerequisites. The setting for a generic QKD protocol is represented in the figure 3.4. There
are two prerequisites for any QKD protocol which must be verified.

The first is the basic assumption that Alice and Bob are connected by an untrusted quantum
channel in order to exchange quantum states. The quantum channel is said to be untrusted because
it is assumed to be Eve in the sense that she can intercept all the quantum states output from Alice’s
lab and that all distortions taking place on the channel are her doing.
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Figure 3.4: Setup of a generic QKD protocol. The two prerequisites are that Alice and Bob are con-
nected via 1) an untrusted quantum channel which is assumed to be Eve and 2) a public authenticated
classical channel.

The second assumption is that Alice and Bob are also linked by a public authenticated channel
to perform the post-processing. The authentication of the classical channel is crucial to prevent any
man-in-the-middle attack which would result in the loss of any security provided by the protocol. In
this attack Alice and Bob think they are performing a QKD protocol with each other while in fact
they are both talking to Eve, hence Eve generates a secret key shared between her and Alice and
between her and Bob, and can always decipher messages from one to the other before encrypting
them again with her second key to go unnoticed.

Contrarily to the first assumption the authentication between Alice and Bob is not trivial to realise
and it must be done carefully. Importantly, it cannot be achieved via public key algorithms since the
interest of QKD lies in the scenario where the adversary has a quantum computer and these algorithms
are not secure anymore. Therefore the authentication must be performed using quantum resistant
algorithm such as key-based hash functions described in subsection 3.2.1. Since these require Alice
and Bob share a secret key, QKD is technically a key expansion protocol rather than a key distribution
protocol, but the term QKD is well established and we will continue to use it in the rest of this work
for clarity.

Before moving on let us briefly discuss the impact of the authentication on the global security
of the protocol. The question is legitimate since we will use a computationally safe algorithm to
authenticate Alice and Bob, therefore what about the unconditional security of QKD ? Well, consider
that it is irrelevant for Eve to break the authentication scheme after the QKD protocol has taken place
since it will be too late to perform the man-in-the-middle attack. Therefore she must do so during the
protocol which will be very challenging. Ultimately this means that she cannot use future computing
power to jeopardize the security of the protocol, but that some limited computational assumption
must be made on her current computing power for the authentication to be secure.

The phases of a generic QKD protocol. A QKD protocol is composed of different steps
followed by Alice and Bob which we review here.

1. Quantum communication. They exchange and measure quantum states sent over the quantum
channel. After this phase, the rest of the communication occurs on the public classical channel.

2. Sifting. They agree on a subset of measurements they keep, and discard the rest.

3. Parameter estimation. They reveal some of their measurement results to estimate relevant
parameters to quantify the action of the eavesdropper. These are determined by the type of
QKD protocol employed.

4. Keymap. If their results during the parameter estimation phase are compatible with sharing a
secret key, they map their measurement results to a bit string. At this stage, this bit string can
be different for Alice and Bob.
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5. Error correction. They perform error correction so they agree on the same bit string called the
raw key. Eve potentially has some information on the raw key.

6. Privacy amplification. They apply the same random hash function to the raw key. The strength
of the hash function, quantified by the reduction of length of the raw key, is determined by
the results of the parameter estimation phase. Information theory guarantees that Eve knows
nothing of the resulting key shared between them.

3.4.2 An example of protocol : BB84

In order to illustrate the QKD principles discussed above let us review the functioning of perhaps the
most famous QKD protocol, named BB84 after its inventors -Benett and Brassard- and the year of
the publication detailing said protocol -1984. This particular example will help understand how the
security of QKD protocols is captured.

Quantum communication. During a run of the BB84 protocol, Alice encodes a sequence of
classical bits on the polarisation of single-photons. For this she uses one of two bases, either the
vertical-horizontal (! and ") basis or the diagonal-antidiagonal (% and -) basis, mapping bits 0 and
1 to the states (!,%) and (",-) respectively.

Bob measures the state of polarisation by splitting the incoming photons on a polarising beam
splitter (PBS) and placing a single photon detector (SPD) on each path. The inclination of the PBS
determines Bob’s measurement basis. Quantum measurement theory stipulates that if Bob chooses
the same basis as the one used by Alice, he will perfectly separate quantum states encoding bits 0
and bits 1. In the case where he chooses the other basis, the quantum states will be routed to a
random SPD with probability half. The vertical-horizontal and diagonal-antidiagonal bases are called
mutually unbiased bases because measurement in one basis does not give any information on a state
encoded in the other.

Sifting. After all the quantum states have been exchanged Alice and Bob publicly reveal their
measurement bases. They discard any measurement result for which Alice and Bob did not use the
same basis, as the results in those bases would be random.

Parameter estimation. Alice reveals a subset of the bit string she sent to Bob and he reveals the
corresponding bit sequence he measured. They aim to quantify the quantum binary error rate (QBER)
from their data, which is the number of quantum states which yielded an erroneous measurement result
at Bob’s over the total number of transmitted quantum states. The data shared by Alice and Bob at
this stage is is represented in the figure 3.5.

The QBER is a useful metric which quantifies the actions of Eve during the communication of the
quantum states. To see this, consider the goal of Eve is to gain knowledge of the secret key and the only
way she can do this is through the quantum states since she does not have access to Alice and Bob’s
laboratories. Thanks to the no-cloning theorem 2 she cannot replicate the non-orthogonal quantum
states and therefore can only measure the quantum states transiting over the quantum channel to
gain knowledge. By doing so, she will necessarily introduce errors between Alice and Bob according
to the measurement postulate 5. Consider for example a basic intercept-resend attack, depicted in the
figure 3.6. The attack consists in Eve measuring each quantum state exiting Alice’s lab and sending
to Bob a quantum state polarised according to her result. On average Eve will measure Alice’s states
in the wrong basis half of the time, and when she does she will introduce a bit flip half of the time.
Hence an intercept-resend attack will asymptotically generate a QBER of 0.25.

Error correction and privacy amplification. Alice and Bob perform error correction to agree
on a raw key, then use the same random hash function to insure Eve is completely uncorrelated from
their resulting key.
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Figure 3.5: Representation of the successive states sent by Alice and the measurement performed by
Bob during a BB84 protocol. For the columns in green Alice and Bob used the same basis and conserve
their data for this state. For the columns in red, Alice and Bob used a different basis therefore they
discard that measurement. The color of the arrows represents the bit associated to that symbol, red
for 1 and blue for 0. Even when Bob chooses the correct basis, errors can occur. Alice and Bob
estimate the error rate during the parameter estimation phase.

Figure 3.6: Depiction of an explicit intercept-resend attack by Eve.
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3.4.3 Types of protocols

Since its inception by Charles Bennett and Gilles Brassard in 1984, QKD has come a long way and
a multiplicity of different protocols has been developed. Today QKD protocols can be categorized by
the techniques used to encode and measure the quantum states and by the assumptions made on the
devices during the protocol. We review these here.

Discrete-variables and continuous-variables. QKD protocols can be divided by the technique
used to detect the quantum states. The first type of protocol relies on single photon detectors (SPDs)
to measure the phase or polarisation of quantum states. Since the measurement result produced is a
detector "click" the outcome can only take a discrete set of values, hence these protocols are referred
to as discrete-variable (DV)-QKD. The second type of protocol is called continuous-variable (CV)
QKD and uses coherent detection to detect the quadratures of the electromagnetic field. This time
the measurement result can take a continuous set of values hence the name of the type of protocol.

Fundamental differences between CV- and DV-QKD will be discussed in ??.

Entanglement-Based and Prepare-and-Measure. In order to generate a secret key Alice
and Bob need to first share correlations during the quantum communication phase of the protocol.
In general, QKD protocols can be fundamentally differentiated by whether Alice generates a bimodal
entangled state and measures her particle or if she simply encodes classical information on a quantum
state. In the first case the protocol is called entanglement-based (EB) and prepare-and-measure (PM)
in the other. They are described in the following manner

• Entanglement based. Alice generates in her lab a two-mode entangled state |ΦiAA0 . She keeps
the particle denoted by register A and sends the other particle to Bob over the quantum channel,
which can be defined by the map NA0!B , such that the state shared by Alice and Bob is written

⇢̂AB = NA0!B

�

|Φi hΦ|AA0

�

. (3.7)

• Prepare and measure. Alice prepares a quantum state | ki with a probability pk, where the
indexes k can range over a discrete or infinite set of values. The state generated by Alice is
represented by the density matrix ⇢̂A =

P

k pk⇢̂k where ⇢̂k = | ki h k|. After transition on the
quantum channel, the state received by Bob is written

⇢̂B = NA!B

�

⇢̂A
�

. (3.8)

Device independent QKD. The security proofs of QKD bounding the information leaked to
Eve rely on the implicit assumption that Alice and Bob’s devices function correctly and according to
a given model. This can create security loopholes known as side-channel attacks when an attacker can
exploit some component which is not accounted for in the security proof in order to gain an advantage.

Multiple side-channel attacks have been detected and patched for both DV- [27, 28, 29] and CV-
QKD [30, 31, 32] systems, but it is not possible to claim new attacks will not be discovered in the
future. In an attempt to escape this hack-and-patch cycle, a new type of protocol was developed which
does not make any assumptions on the type of devices used during the experiment. These protocols
are known as device-independent (DI) QKD.

In order to understand DI-QKD we need to introduce the notion of Bell inequalities. These were
first introduced in the paper by John Bell [33] answering the Einstein-Podolsky-Rosen (EPR) paradox
paper [34] claiming that quantum-mechanics were necessarily incomplete since it is not possible to
predict with certainty the outcome of a quantum system. For Einstein, Podolsky and Rosen there
were necessarily some hidden variables which would make quantum systems deterministic if accounted
for. In his paper, Bell shows that this is not the case by repeating an experiment multiple times and
considering the statistics of the measurement outcomes. He shows that if the hidden-variable theory
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were true, some inequality can be derived from the statistics. Since this inequality can be violated for
entangled quantum states, the hidden variable theory is false and some quantum systems are naturally
unpredictable.

DI-QKD harnesses this concept to generate a secret key. Alice generates an entangled pair of
photons and sends one pair to Bob. They measure their respective photons either in a random basis
from a given set or in a predetermined basis. The measurements in the random bases are used to verify
that their measurement statistics violate Bell inequalities and therefore that they share entanglement
and randomness. Since this is the case, their measurements in the predetermined basis are perfectly
correlated and they use these to distill a secret key.

Measurement-device independant QKD. DI-QKD is particularly interesting from a theoret-
ical point of view because it requires no assumptions on the devices used during the experiment. The
downside is that is necessitates sharing entanglement over large distances in order to violate Bell in-
equalities, which is experimentally challenging and at the moment the reported key rates of DI-QKD
systems are very limited.

A more practical version of DI-QKD is measurement-device independant (MDI) QKD [35, 36]
which makes no assumption on the detection apparatus but assumes Alice and Bob can generate their
desired quantum states perfectly. Typically during an MDI-QKD protocol Alice and Bob encode bits
on orthogonal quantum states in one of two bases. Then they send their state to a central receiver,
possibly Eve, who performs a Bell measurement and outputs the result. When they used the same
basis, they know based on the measurement announced if they sent the same state or not, hence they
can deduce the bit encoded by the other party.

Beyond the increased security provided by MDI-QKD, it is interesting because the measurement
is performed outside of Alice and Bob’s laboratory. In particular this makes MDI-QKD a promising
candidate for QKD networks where all users can be connected to a central measurement node, while
no security assumptions must be made on said node.

Satellite QKD. Satellite QKD is particularly interesting because it can potentially achieve QKD
over larger distances that fiber-based protocols. The reason behind this is that the losses in the
fiber are the main limitation for QKD protocols, and the losses in space are zero. Hence satellite
based quantum-communications can reach ground stations thousands of km apart and the only losses
affecting the quantum signal will be those of the ⇠ 10 km of atmosphere between the satellite and the
ground station. We refer the interested reader to reference [37] for a review of satellite-based QKD.

Fundamental limit to any QKD protocol. It is interesting to investigate if there is a funda-
mental limit to the secret key rate that can be shared using QKD. This quantity is the two-way secret
key capacity, noted C(T ), and depends on T , the channel transmittance. This question was tackled
in reference [38], where the authors derived C(T ) regardless of the type of QKD protocol considered.
The authors find that the following relation holds :

C(T ) = � log2(1� T ), (3.9)

which is known as the PLOB bound, named after the authors.

We conclude this chapter here. We have given some insight to the functioning of current cryp-
tographic systems used for secure communications and have highlighted the need for quantum-safe
cryptography. One of these solutions, QKD, is based on the fundamental properties of quantum states
and produces a shared key with information-theoretic security. As we have discussed above, many
different kinds of QKD protocols exist, but in this work we will focus specifically on CV-QKD. In the
next section we take a closer look to this particular type of QKD protocol.
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In the last chapter we discussed the role of QKD in the current cryptographic landscape and we
illustrated the outline of a generic QKD protocol through the famous BB84 protocol. Then we gave
different types of QKD protocols. In our work we focus on CV-QKD protocols, hence we provide a
more detailed analysis of these protocols in this chapter. We begin in the first section by describing
relevant CV-QKD protocols and how some protocols can be shown to be equivalent to each other for
anyone outside Alice’s lab. This will prove convenient to extend the security analysis from theoretical
to implementation-friendly protocols. In the second section we discuss the different attack models for
Eve and give the corresponding secret key rate. We will also provide tools to adapt the key rate to the
practical setting. First we discuss how realistic assumptions can reduce the power of the eavesdropper
and second we consider the impact of imperfect parameter estimation and privacy amplification due
to the finite-size effects. The third section is dedicated to the explicit derivations of the key rate based
on the protocol and protocol parameters. In the last section, we compare CV- and DV-QKD protocols
to understand the strengths and challenges for each technology.
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4.1 CV-QKD protocols

4.1.1 Examples of protocols

We begin this chapter by giving a few examples of CV-QKD protocols, 1 EB protocol and 2 PM
protocols. From an experimental point of view it is much easier to implement PM protocols since in
this case the quantum state generation closely resembles the symbol generation of classical telecom-
munications. In comparison, it is difficult to generate entangled states since this involves taking other
steps which are not useful in telecom systems, hence are less widely used.

Unfortunately the security proofs for quantum key distribution are built on the EB picture of
protocols, as we will see in the next section. It is however possible to transition from one picture to
the other to extend the security proofs in the EB picture to PM protocols, as is shown for example in
[39]. Although this is not always trivial, it works particularly well for the GG02 protocol described in
the following. In that case we can show that from Bob and Eve’s perspective, the PM version of the
protocol is indistinguishable from an EB protocol in which Alice generates two-mode squeezed states
and measures one mode before sending the other over the channel.

That being said lets describe 3 relevant CV-QKD protocols for this rest of this work.

EPR states. The first propositions for CV-QKD [40, 41] were EB protocols using the continuous
variable equivalent of EPR states. They consisted in Alice generating the two-mode squeezed vacuum
states described by

|TMSViAA0 =
1

cosh r

1
X

n=0

tanhn r |niA |niA0 . (4.1)

Note that considering only particle A0 by tracing out subsystem A we obtain a thermal state such
that

⇢̂A0 = TrA

✓

|TMSVi hTMSV|AA0

◆

,

=
1

cosh2(r)

1
X

n=0

tanh2n(r) |ni hn| . (4.2)

The mean photon number of this thermal state is given by n̄ = sinh2(r).

GG02. The GG02 protocol [10], named after its founders Grosshans and Grangier, was the first
protocol to make use of weak coherent states. For the state generation, in this protocol Alice generates
coherent state |↵i according to a complex Gaussian distribution where each quadrature has variance
VA. The probability of sending each state in this case depends only on the state amplitude and is given

by p↵ = 1
2⇡VA

e
� |↵|2

2VA . On the detection side, Bob randomly chooses to measure the p or q quadrature
using homodyne detection. Later this protocol was improved into a so-called no-switching protocol
[42, 43] where Bob performs a heterodyne detection of both quadratures.

At first the GG02 protocol suffered from a 3-dB limit for the channel losses. This was because
beyond this limit Eve would systematically have more information than Bob on the quantum state.
This problem was later solved by introducing reverse-reconciliation [44] where Alice would map her
raw key to Bob’s.

What is particularly interesting in the GG02 protocol is that the average state sent by Alice is
described by the mixture of coherent states

⇢̂A =

Z

↵2C

p↵ |↵i h↵| d↵, (4.3)
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Figure 4.1: Schematic representation in phase space of the quantum states sent by Alice during a
CV-QKD protocol. On the left we represent the Gaussian modulation, where each quadrature has a
centered Gaussian probability distribution. On the right we represent the discrete Quadrature Phase-
Shift Keying (QPSK) modulation. Each point has a thickness due to the shot-noise.

which can be shown to be the thermal state with mean photon number n̄ = VA

2 . Hence the
statistical description of the state exiting Alice’s lab is the same in the GG02 protocol than for the
EPR states protocol. Therefore it is impossible for anyone but Alice to distinguish between the two
protocols, and we can implement the PM version while analysing the security of the EB protocol.

Discrete modulated coherent states. Generating a Gaussian modulation for Alice can be
experimentally challenging because she needs a true random number generator to determine the
quadrature value to be encoded on the light. In addition, the keymap can be quite involved for
Gaussian variables compared to DV-QKD or classical telecom using a finite set of states to encode
bits. For this reason it is desirable to perform QKD using some finite set of states, as in classical
telecommunications. In this work we have used both the four state protocol as well as a normalized
random walk distribution with 64 states. The state preparation in each case is described below.

• Four state protocol. Here Alice chooses at random coherent state |↵ki = ||↵|ei
(2k+1)⇡

4 i for
k 2 {1, 2, 3, 4}. It is the quantum equivalent of the Quadrature Phase-Shift Keying (QPSK)
modulation used in classical telecommunications.

• Normalized random walk distribution. The coherent states |↵k,`i of the normalized random walk
distribution with m2 states are defined by the amplitude
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and the set of probabilities
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4.2 Security of CV-QKD

The security proofs for QKD protocols in general aim to bound the amount of information that has
potentially been leaked to Eve during the protocol. For this, we must make some assumptions which
will condition the security of the protocol on their veracity. We discuss this below.

4.2.1 Security assumption

Any kind of security is based on some basic assumptions. A trivial example is that we must assume
Eve is not in Alice’s or Bob’s laboratory during the QKD protocol, or she could simply read out the
secret key on their devices. Here we are interested in the assumptions which allow us to bound the
information leaked to Eve during the protocol.

Attacks. The first relevant assumption relates to the power of the attacker. We consider three
types of attacks Eve can perform to obtain information on the quantum states transiting on the
quantum channel.

1. Individual attacks. Individual attacks are the less powerful type of attack a quantum adversary
can perform. Here Eve is permitted to probe the quantum states transmitted on the channel
one by one and store them in an individual quantum memory. She is restricted to measurements
on the individual states, but she can chose to perform her measurement after learning of the full
information communicated on the public channel.

2. Collective attacks. Collective attacks are similar to individual attacks except for the measure-
ment performed by Eve. Here she is allowed to perform a collective measurement on all the
quantum states stored in her memory. The measurement operator is therefore described on the
Hilbert spanned by the tensor product of all the quantum states.

3. Coherent attacks. Coherent attacks are the most general type of attack performed by Eve. Here
she can probe the entirety of the quantum communication using an ancilla state in a large Hilbert
space. She can then perform a measurement on the full state. The state cannot in general be
written as n copies of the same state.

Ideally we would like to bound Eve’s information in the general case of coherent attacks. However
this is a particularly difficult problem and we only know how to derive a bound in the regime of
collective attacks. However in some cases we can extend the security in this regime to the case of
general attacks. We discuss this further in the following.

Asymptotic regime or finite-size regime. In order to compute the secure key rate, it is conve-
nient to suppose we are in the asymptotic regime where Alice and Bob communicate an infinite number
of quantum states. This allows us to a) neglect the states discarded during parameter estimation and
also b) suppose we can compute perfect estimators because of the infinite amount of samples.

Of course this is not the case in reality where necessarily the number of states sent over the channel
are finite. We will see how to derive the impact of the finite-size effects on the asymptotic key rate in
the dedicated subsection 4.3.4.

Trusted versus untrusted receiver model. The transformation of the state between Alice
and Bob’s laboratory are used to quantify the action of Eve. However some effects occur in Bob’s
laboratory and as such cannot contribute to the information gained by Eve since she is assumed to
only operate on the channel. This assumption is called the trusted receiver model and is particularly
interesting since it considerably increases the performances of CV-QKD protocols. This model will
be discussed further in the dedicated subsection 4.3.3.

This work. In this work we will focus on protocols using a discrete modulation because of their
experimental simplicity. We will derive the security of our protocol against collective attacks in the
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asymptotic regime. Also, we will focus on protocols using heterodyne detection, and consider we are
in the trusted receiver model.

Unfortunately, security proofs do not yet permit to derive the security against coherent attacks
or in the finite-size regime. For other protocols however, such as BB84 and GG02, we have been
able to derive security in the general case by using a similar approach. In both cases, the security
was first derived against collective attacks, following which a de Finetti reduction [45, 46] shows that
this implies security against general attacks with a reasonable loss and that this is compatible with
finite-size effects. We will discuss this further in subsection 4.3.4. It remains to be shown that this is
also possible for protocols with discrete modulation, but this issue is outside the scope of this thesis.
Hence we will limit ourselves to collective attacks and deal with the finite-size effects with a simple
approach by computing the worst-case estimator for the excess noise.

4.2.2 Secret key rate

The secret key rate is given by the formula

K = f ⇥ r, (4.6)

where f is the symbol rate and r is the secret fraction i.e. the number of secret bits per symbol.
The secret fraction in the case of collective attacks is given by a modified version of the Devetak-Winter
formula [47] given by

r = �I(X,Y )� sup
NA0!B

�(E, Y ), (4.7)

where I(X,Y ) is the mutual information between the classical variables X and Y resulting from
Alice and Bob’s measurements. �(E, Y ) is the Holevo information between Eve’s subsystem and Bob’s
result and the supremum is taken over all possible channels from Alice to Bob compatible with the
data observed by Alice and Bob. The prefactor � represents the imperfect reconciliation between
Alice and Bob and is typically taken equal to 0.95 [48].

Mutual information. The mutual information term depends on the distributions of X and Y .
In the GG02 no-switching protocol these both follow a complex Gaussian distributions such that the
mutual information is given by

I(X,Y ) = log2(1 + SNR). (4.8)

Here the term SNR is the signal-to-noise ratio given by SNR = TVA

2(1+⇠tot)
, where VA is the modu-

lation variance used by Alice on her quadratures, T is the channel transmittance and ⇠tot is the total
noise above the shot-noise. Note this expression is normalized by the value of the shot-noise, which
explains the presence of the unity contribution in the denominator.

For protocols using a discrete set of states, the mutual information is different. However in the
low SNR regime, which is the case for quantum communications, the Gaussian mutual information is
a good approximation. Hence we will use this expression for the mutual information in our protocol.

Holevo information. To compute the Holevo information term, it is convenient to assume that
Eve holds a purification of the state ⇢̂AB shared by Alice and Bob. Eve’s register is introduced by the
isometric representation of the quantum channel UA0!BE in the EB scenario such that we can write
the tripartite state ⇢̂ABE shared between Alice Bob and Eve as

⇢̂ABE =
�

idA ⌦ UA0!BE

��

|Ψi hΨ|AA0

�

. (4.9)

Then we use a very useful tool known as the extremality property of Gaussian states [49] which
states that the supremum in equation 4.7 is upper bounded by the Holevo information computed for
the Gaussian state ⇢̂GABE with the same covariance matrix then the state ⇢̂ABE . We note �G(E, Y )
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this value. Since Eve holds an arbitrary purification of ⇢̂AB , this means that Holevo information we
want to compute is bounded by a function of the covariance matrix of the bipartite state ⇢̂AB .

We compute the Holevo information using a universal purification analysis which stems from the
fact that since Eve holds a purification of ⇢̂AB , the Von Neumann entropy of her subsystem matches
the Von Neumann entropy of Alice and Bob’s subsystem (see properties of the Von Neumann entropy
in chapter 2). Hence we can write that

S(⇢̂E) = S(⇢̂AB), (4.10)

S(⇢̂E|Y ) = S(⇢̂A|Y ).

In the next section, we derive the Holevo information for the GG02 protocol and for discrete
modulations using this second technique. The first technique will come in use later when we will
discuss the trusted noise model.

4.3 Derivation of the Holevo information

The Holevo information only depends on the covariance matrix of the state ⇢̂AB in the EB version
of the protocol. Since we implement the PM version experimentally, we need to find the covariance
matrix Γ

EB
AB from the measured covariance matrix Γ

PM
AB . We know how to do this easily in the case

of the GG02 protocol, since it is indistinguishable from the EB protocol using two-mode squeezed
vacuum states. However, we will see that this problem is more involved for discrete modulations.

4.3.1 The GG02 protocol

A nice property of the GG02 protocol is that Gaussian attacks are optimal for Eve [50]. This implies
that the channel NA0!B can be taken as the Gaussian channel, here with transmittance T and noise
⇠tot. This allows us to explicitly compute the covariance matrix of Alice and Bob which is given in
the PM scenario with heterodyne detection by

Γ
PM
AB =

0

B

@

VA12

q

T
2 VA12

q

T
2 VA12

✓

T
2 VA + 1 + ⇠tot

2

◆

12

1

C

A
. (4.11)

On the other hand the covariance matrix of the equivalent EB protocol where Alice prepares a
two-mode squeezed vacuum state is

Γ
EB
AB =

0

@

V 12

p
T
p
V 2 � 1�z

p
T
p
V 2 � 1�z

✓

T (V � 1) + 1 + ⇠tot

◆

12

1

A =

✓

a12 c�z
c�z b12

◆

, (4.12)

where V = VA+1. The components of ΓPM
AB are computed during the parameter estimation phase

of the GG02 protocol following what the covariance matrix Γ
EB
AB is inferred. Then S(⇢̂AB) can be

computed from equation 2.33 and the symplectic eigenvalues Γ
EB
AB given by

�1,2 =
1

2
[
p

(a+ b)2 � 4c2 ± (b� a)]. (4.13)

The second term of the Holevo information S(⇢̂A|Y ) is computed from the covariance matrix of the
state held by Alice conditioned by Bob’s measurement. We note this matrix ΓA|Y which we compute
using equation 1.111 in the case of heterodyne detection. In this case the post-measurement covariance
matrix is given by
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ΓA|Y = a12 �
c2

b+ 1
12. (4.14)

The symplectic eigenvalue of this matrix is

�3 = a� c2

b+ 1
. (4.15)

Finally the Holevo information can be computed as

�G(E, Y ) = G

✓

�1 � 1

2

◆

+G

✓

�2 � 1

2

◆

�G

✓

�3 � 1

2

◆

. (4.16)

4.3.2 Discrete modulations

Discussion. The GG02 protocol is very convenient because it is easy to link the prepare-and-measure
version of the protocol to an equivalent entanglement-based version used to derive the security of the
protocol. In addition the optimality of Gaussian attacks allows us to suppose that NA0!B is the
Gaussian channel allowing us to explicit the covariance matrix Γ

EB
AB . Unfortunately transitioning

from the PM to the EB picture for protocols using a discrete modulation is more difficult, and since
Gaussian attacks are not known to be optimal we cannot in general write the covariance matrix Γ

EB
AB

and bound the key rate.
New security proofs have solved this issue by formulating the problem as a semidefinite program

(SDP) [51, 52], where some convex function is minimized over the set of all possible quantum states
compatible with the observations made in the PM protocol. Such numerical methods can provide
reliable bounds on the key rate at the cost of intensive computations which scale with the number of
discrete states used in Alice’s modulation. Hence computing key rates when using 64 states in the
random walk distribution seems complicated.

Recently, the work in [48] has developed an analysis of their semidefinite program to provide an
analytical bound to the numerical optimisation problem, circumventing the need for the numerical
optimisation and therefore providing bounds to the keyrate for any modulation format.

A question remains in the case of the four state protocol of why the explicit rate derived in [48]
is much more pessimistic than the numerical results of [52]. Surely the differences in the objective
functions used in the respective SDPs plays a role, and perhaps the explicit bound in reference [48] is
not tight in this case. Nonetheless the authors argue that the explicit bound converges towards the
Gaussian key rate as the number of states in the random walk distribution increases, and provides
the Gaussian key rate when Alice employs a Gaussian modulation, hence their explicit formula is
necessarily tight for higher order modulations.

Our approach. In this work we will present two protocols implementing respectively the four
state protocol and the protocol with 64 states in the random walk distribution. We began with the
four-state protocol based on the results of [52] which yielded positive key rates in our case. Following
this the work of [48] showed the advantage on the key rate of using higher order modulations and gave
an explicit bound to compute it. Unfortunately their pessimistic results for the four-state protocol
meant the key rate in our protocol collapsed to 0 using their proof.

Since we have two ways of deriving the key rate in the case of the four state protocol, we will be
picky and use the results of [52] which is advantageous compared to [48]. However we will use the
explicit key rate formula of [48] when scaling up to the random walk distribution. In the following, we
will transpose the results of reference [48] to derive the explicit key rate, and we will briefly compare
the results of both references for the four state protocol.

Explicit key rate for discrete modulation formats. The approach of [48] is to consider the
covariance matrix of the bipartite state after transmission over the channel as
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ΓAB =

✓

V 12 Z�z
Z�z [T (V � 1) + 1 + ⇠tot]12

◆

, (4.17)

where the covariance term Z is not known in general. Since the Holevo information is inversely
proportional to Z, we can bound the Holevo information by minimizing Z. Before we give the result
derived in [48], a few quantities need to be defined, which we do in the following.

We begin by writing the density matrix of the state generated by Alice, rebranded to ⌧ from ⇢̂A
to stick with the notations of [48]. Hence we have

⌧ =
M
X

k=1

pk |↵ki h↵k| . (4.18)

where M = m2 is the number of states in the modulation, equal to 64 for us. Then a purification
of the state ⌧ is given by

|ΦiAA0 =
M
X

k=1

p
pk | ki |↵ki , (4.19)

where the states | ki are defined by

| ki =
p
pk ⌧̄

�1/2 |↵̄ki . (4.20)

Here ⌧̄�1/2 denotes the square-root of the Moore-Penrose pseudo-inverse of ⌧̄ . One can check that
the | ki form an orthonormal basis and that tracing out Alice subsystem in |ΦiAA0 collapses the state
to ⌧ . Finally we define an operator a⌧ which will be useful in the following and is given by

a⌧ = ⌧1/2â⌧�1/2 (4.21)

Lower bound on Z. We now state the main result of [48]. A lower bound to Z, denoted Z⇤, is given
by

Z⇤ = 2c1 � 2

s

w

✓

nB � c22
hni

◆

, (4.22)

where the two terms w and hni are defined by modulation used by Alice and c1, c2 and nB are
determined by Bob’s measurement results. These parameters are defined by

w =

M
X

k=1

pk

✓

h↵k|a
†
⌧a

⌧ |↵ki � | h↵k|a⌧ |↵ki |2
◆

, (4.23)

hni =
M
X

k=1

pk|↵k|
2, (4.24)

nB = Tr[⇢̂AB b̂
†b̂], (4.25)

c1 =
1

2
Tr



⇢̂AB

�

M
X

k=1

¯h↵k|a⌧ |↵ki | ki h k|⌦ b̂+ h.c.
�

�

, (4.26)

c2 =
1

2
Tr



⇢̂AB

�

M
X

k=1

↵̄k | ki h k ⌦ b̂|+ h.c.
�

�

, (4.27)
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Figure 4.2: Secret key rates versus the distance for the four state protocol. (left) Results taken
from [52] where the authors solve the SDP they define numerically. (right) Key rates obtained using
the explicit lower bound to the covariance term defined in [48]. For both plots the value of ↵ was
optimized.

where the term h.c. in the last two expressions denotes the hermitian conjugate. Let us discuss
these values. First w only depends on the state prepared by Alice in the PM version of the protocol.
The mean value hni is the mean photon number sent by Alice. The third term nB is the variance of
Bob’s state. Finally, the terms c1 and c2 are linked to the first moment of the state measured by Bob.
The values nB , c1 and c2 can be determined experimentally in the following way.

During the protocol, for each state |↵ki sent by Alice, Bob measures N complex values �k,i for
i 2 {1, .., N}. Let us note �k the first moment of Bob’s state defined by

�k = Tr[⇢̂k b̂], (4.28)

where ⇢̂k = NA0!B(|↵ki h↵k|). Bob builds the estimators for �k and nB as

�̂k =
1

N

N
X

i=1

�k,i, n̂B =
1

N

X

k,i

pk|�k,i|
2 � 1. (4.29)

In the limit of large N , we have that �̂k ����!
N!1

�k and n̂B ����!
N!1

nB . Finally the values c1 and

c2 are given by

c1 = Re

 

M
X

k=1

pkh↵k |a⌧ |↵ki�k
!

, (4.30)

c2 = Re

 

M
X

k=1

pk↵̄k�k

!

. (4.31)

and can be computed using the estimator �̂k instead of �k. Once the 5 values have been computed
and Z⇤ determined, we bound the Holevo information by computing �G(E, Y ) in the same way than
for the GG02 protocol.

Comparison of the key rates in references [52] and [48]. In the figure 4.2, we show on the
left plot the key rates obtained numerically via the SDP defined in reference [52]. On the right we
plot the key rates obtained using the method of [48] described above and with the same parameters.

Note that the excess noise parameter ⇠ is defined at the channel input rather than at the channel
output, hence the value ⇠tot we used in our analysis is related to the parameter ⇠ as ⇠tot = T ⇠ where
T is the channel transmittance.
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Figure 4.3: Trusted receiver model. The detection losses and noise are modelled by mixing an EPR
states with Bob’s mode in his laboratory.

It is clear from the comparison that the key rates obtained in [52] are more advantageous : a
positive key rate over 50 km is possible with ⇠ = 0.04 while using the explicit bound method the
maximal distance is about 7 km when ⇠ = 0.015. Hence we will use their results for our four state
protocol implementation.

4.3.3 Trusted receiver model

The Holevo information leaked to Eve increases as the excess noise increases and as the transmittance
of the channel decreases. This can be intuitively understood as the fact that the excess noise quantifies
the interaction of the eavesdropper on the quantum states, and that all the losses are given to Eve so
that she can gain information.

In a real experiment however, there are some constant noise sources and losses that occur in Bob’s
lab and therefore cannot be caused by Eve. This is the case for the losses in Bob’s detection apparatus
and the electronic noise in Bob’s detectors. In addition the electronic noise is the dominant excess
noise contribution and greatly deprecates the key rate when assumed to be caused by the actions of
Eve.

Therefore it is interesting to define a model taking into account the fact that Eve cannot have
induced the receiver losses and noise. In this scenario we want to rewrite the excess noise and the
transmittance as :

T = Tch⌘, (4.32)

⇠tot = ⌘⇠ch + ⌫el, (4.33)

where Tch and ⇠ch are the transmittance and excess noise of the channel, i.e. caused by Eve, and
⌘ and ⌫el are the the transmittance and noise of the receiver. We call this the trusted receiver model
and explain how to compute the Holevo information in this new setting.

Universal purification analysis In the trusted receiver scenario the receiver noise and losses
are not due to Eve, hence do not contribute to the Von Neumann entropy S(⇢̂E) of Eve’s subsystem
in the pure tripartite state after the channel transmission ⇢̂AB1E . They will however impact Bob’s
measurement result and therefore Eve’s Von Neumann entropy S(⇢̂E|Y ) conditioned on Bob’s result.
We model this by attributing the receiver noise and losses to the mixing of one mode of an EPR state
of variance Wrec with the mode B1 incoming to Bob’s laboratory on a beamsplitter of transmissivity ⌘.
This is depicted in figure 4.3. We denote by ⇢̂F 0G the EPR state in Bob’s lab modelling receiver noise
and ⇢̂AB1

the state shared by Alice and Bob after transmission and before Bob’s detection apparatus.
The total state at this point can be written as a tensor product of two states

⇢̂AB1F 0G0 = ⇢̂AB1
⌦ ⇢̂F 0G, (4.34)
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Figure 4.4: We compare the key rates obtained in the trusted receiver scenario compared to the
"paranoid" model for the GG02 protocol. (left) key rate versus distance with ⇠ch = 0.01. (right) key
rate versus ⇠ch at 5 km. Other parameters were taken equal to : VA = 5, ⌫el = 0.1, ⌘ = 0.9.

and the total covariance matrix is given by the direct sum Γtot = ΓAB1 � ΓF 0G. Since Eve hold a
purification of ⇢̂AB1

we have that S(⇢̂E) = S(⇢̂AB1
which is computed from the covariance matrix of

Alice and Bob’s subsystem given by

ΓAB1
=

 

V 12
Zp
⌘
�z

Zp
⌘
�z [Tch(V � 1) + 1 + ⇠ch]12

!

, (4.35)

where the symplectic eigenvalues are computed following equation 4.13. In Bob’s detection appa-
ratus his mode B1 is mixed on a beamsplitter BB1F 0(⌘) of transmissivity ⌘ with the mode F 0 of the
EPR state modelling the receiver noise. The covariance matrix of the resulting state ⇢̂ABFG is given
by

ΓABFG =
�

idA �BB1F 0(⌘)� idG

�

ΓAB1F 0G

�

idA �BT
B1F 0(⌘)� idG

�

. (4.36)

We will omit writing explicitly the covariance matrix since it is rather bulky. Looking at the
variance VB of Bob’s mode we find the value of Wrec compatible with the receiver losses ⌘ and noise
⌫el given by

Wrec =
⌫el

1� ⌘
+ 1. (4.37)

In order to derive the post-measurement covariance matrix, we rearrange ΓABFG so that Bob’s
mode is on the bottom right which gives a matrix of the form

ΓAFGB =

✓

ΓAFG ΓC

Γ
T
C VB

◆

. (4.38)

Then the post heterodyne measurement covariance matrix is given by equation 1.111 as

ΓAFG|Y = ΓAFG � 1

VB + 1
ΓCΓ

T
C . (4.39)

The term S(⇢̂E|Y ) is given by the symplectic eigenvalues of this covariance matrix following equa-
tion 2.33. In figure 4.4 we compare the key rates obtained in the paranoid model where the receiver
is not trusted and in the case where the receiver is trusted. These plots illustrate how the trusted
receiver model can greatly increase the performances of the protocols, and is almost systematically
considered valid in CV-QKD experiments.
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4.3.4 Finite-size effects

To discuss the finite-size regime, we must first define the notion of composable security.

Composable security. The notion of composable-security was introduced in the field of QKD by
Renner [53] based on the framework developed by Canetti [54] for classical cryptography. The idea is
view the protocol as completely-positive trace-preserving map taking as input state an arbitrary input
state ⇢̂ANBN composed of N quantum systems and outputting a state ⇢̂SASBE composed of Alice and
Bob’s final key and of Eve’s subsystem. Then the security of the protocol is derived by quantifying
the security of the protocol by the distance of the real protocol to the ideal protocol. This term is
denoted ✏ and in the context of QKD is taken as the trace distance between the two protocols. Then
the protocol is said to have ✏-security. Note the security in this framework is said to be composable
because if two protocols with security parameters ✏1 and ✏2 are used together, the resulting protocol
will have security ✏  ✏1 + ✏2.

In our case, the ideal protocol can be seen as the state ⌧̂ ⌦ ⇢̂E where ⌧ = 1
2`

P

s2{0,1}` |s, si hs, s|AB

describes a uniformly chosen secret key of length ` shared by Alice and Bob and the tensor product
shows that Eve is completely decorrelated from Alice and Bob’s system. Then the security parameter
of the protocol is given by bounding the trace distance

1

2
||⇢̂SASBE � ⌧̂SS ⌦ ⇢̂E || = ✏, (4.40)

for any input state ⇢̂ANBN . Composable security is particularly relevant when considering finite-
size effects because the security definition takes into account the number N of states exchanged by
Alice and Bob. The approach to prove the finite-size security of QKD is to compare three key rates
which are

• r✏(N) : the secret key rate of the protocol with ✏-security against general attacks, i.e. for an
arbitrary input state ⇢̂ANBN .

• rcoll
✏ (N) : the secret key rate of the protocol with ✏-security against collective attacks, i.e. for

an input states of the form ⇢̂⌦N
AB .

• r : the secret key rate computed with the Devetak-Winter formula, which we used for the GG02
protocol and the discrete modulation format protocol. This amounts to computing the key rate
for collective attacks in the asymptotic regime.

The idea behind the security proofs of CV-QKD in the finite-size setting is to first compute r,
then show that we have r✏0(N) ⇡ rcoll

✏ (N) ⇡ r for some reasonable value of N and some security
parameters ✏ and ✏0. This has been done for the GG02 protocol in reference [46].

Simple approach to finite-size effects. Here we will adopt the approach derived in reference
[55] to deal with the finite-size effects in the case of the GG02 protocol. We begin by defining the
security parameter

✏ = ✏PE + ✏EC + ✏PA + ✏̄, (4.41)

which is the sum of the security parameters of the different steps of the protocol. Here PE refers
to the parameter estimation, EC to the error correction, and ✏PA + ✏̄ are virtual parameters linked to
the privacy amplification. The key rate in the finite-size regime is given by

rcoll
✏ (N) =

n

N

�

�IAB � �G
✏PE

(E, Y )�∆(n)
�

. (4.42)

The terms in this expression are the following. N is the total number of states exchanged during
the protocol and n is number of states used to derive the key, �G

✏PE
(E, Y ) is the maximum of the

Holevo information compatible with the data except for probability ✏PE and ∆(n) is the penalty from
the privacy amplification step. These two last terms are computed as follows.
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• �G
✏PE

(E, Y ) is computed by using the worst case estimator for the excess noise ⇠tot. To derive
this term we must consider how the excess noise is estimated during the protocol. Consider
Var(PB , QB) is the variance of Bob’s P or Q quadrature which can be written as

Var(PB , QB) =
T

2
VA + 1 + ⇠tot. (4.43)

Taking the conditional variance of Bob’s data given the state sent by Alice we obtain

Var(PB , QB |(PA, QA)) = 1 + ⇠tot = �2. (4.44)

During the protocol we build an estimator �̂2 for �2 the precision of which depends on the
number of states m = N � n used in the parameter estimation phase. We can compute the
worst case estimator for �2, except with probability ✏PE, from the estimator �̂2 as

�2
max ⇡ �̂2 + z✏PE/2

�̂2
p
2p

m
, (4.45)

where z✏PE/2
obeys the relation 1� erf

�

z✏PE/2/
p
2
�

/2 = ✏PE/2 and the erf function is given by

erf(x) =
2p
⇡

Z x

0

e�t2dt. (4.46)

The worst case estimator for the excess noise is ⇠̂tot,max is computed as �2
max�1, and is increased

by a factor ∆⇠ = z✏PE/2

�̂2
p
2p

m
compared to the excess noise estimator ⇠̂tot.

• The penalty term ∆(n) is given by

∆(n) = 7

r

log2(2/✏̄)

n
+

2

n
log2 (1/✏PA) , (4.47)

where ✏̄ and ✏PA should be optimized but still satisfy equations (4.41) and (4.47). In the limit
of large n we see that the penalty is dominated by the square-root term, thus

∆n ⇡ 7

r

log2(2/✏̄)

n
. (4.48)

4.4 Comparison with DV-QKD

In this section we discussed in depth CV-QKD protocols. We derived their secret key rate in the
asymptotic limit against collective attacks, and gave some insight as to how the security in a realistic
setting again general attacks could be derived. A question that remains is to know how does this
technology compare to DV-QKD. We discuss the relevant comparison points in this section in order
to shed light on the respective strengths of DV- and CV-QKD.
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4.4.1 Security proof

In comparison with CV-QKD, DV-QKD protocol have more mature security proofs. For CV-QKD,
we can only prove the full security in the general setting of the GG02 no-switching protocol. Other
PM protocols, such as those using discrete modulation formats, do not yet have a security proof in
the full setting and this remains an open question in the field. On the other hand full security proofs
for DV-QKD protocols have been found for a while now [56, 45].

Moreover, even when considering the GG02 protocol, the correction term giving the key rate r✏(N)
from r is lower for DV-QKD protocols. Therefore they occur less penalty than CV-QKD protocols in
the finite-size regime. This is because the correction term is greatly correlated to the security proof
used to extend the security to the general setting, and a more mature security proof is available for
DV-QKD. Note however that we can observe similar trends in both CV- and DV-QKD as is explained
in reference [48]. In DV-QKD the first security proofs for the general setting were first based on a de
Finetti theorem [56], then on a de Finetti reduction [45], then on the entropic uncertainty principle [57]
and finally on the entropy accumulation theorem [58]. The security proofs of the GG02 no-switching
protocols have followed a similar trend where first a de Finetti theorem was found [59] then a de Finetti
reduction [46]. It is therefore tempting to believe that the CV-QKD security proofs will continue to
improve and that they will apply to discrete modulation formats.

4.4.2 Rate versus distance

DV-QKD protocols champion the point-to-point communication distance, where secure key rates have
been obtained over the incredible distance of 421 km [60] using ultralow-loss fiber, and other works
have consistently demonstrated positive key rates beyond 250km [61, 62, 63] using regular fiber. On
the other hand CV-QKD protocols have been shown to provide secret keys up to a record distance of
202 km [64] using ultralow-loss fiber, doubling the previous record of 100 km [65].

This is partly explained because the key rate expression for DV-QKD protocols depends only on
the QBER. Mostly errors in DV protocols are caused by the combination of a photon loss and a
dark count in the SPDs, but these are typically reduced by cooling the detectors to low temperatures
ranging from -30°C for avalanche photodiode (APD) SPDs [61] to 4 K for superconducting nanowire
(SN) SPDs[66, 62], which enables long distance key distillation. On the other hand the losses in CV-
QKD protocols directly contribute to Eve’s information as can be intuitively seen from the entangling
cloner attack, for which higher channel losses amount to a more aggressive probing of the quantum
states by Eve.

Concerning the secret key rate, the main limitations for DV-QKD is detector dead time, the time
after detection of a photon during which the detector cannot detect another. State of the art dead
time is found in SNSPDs cooled to cryogenic temperatures which can achieve a ⇠ 10 ns dead time
corresponding to a maximal detection rate of 100 MHz. On the other hand the electronics of CV-
QKD systems closely resembles the technology used for classical telecommunications for which symbol
rates of over 50 Gbaud can be detected. The main challenge for receivers designed for CV-QKD is to
allow for high rates while having enough gain to detect the weak coherent states and sufficiently small
receiver noise. At the moment, CV-QKD experiments have already been demonstrated with symbol
rates of 1 Gbaud [67] and recently shot-noise limited balanced receivers with 20 GHz bandwidth have
been built [68]. Therefore it is certain that over short-distances CV-QKD protocols will outperform
DV-QKD protocols.

Choosing DV- or CV-QKD solutions should be done as to maximise the secret key rate for the
desired application which greatly depends on the distance of communication. A rule of thumb consid-
ering the current state of the art is that CV-QKD protocols will be preferred over shorter distances
(<25 km) while DV-QKD protocol will perform over longer distances where CV protocols cannot.
However the field of QKD is constantly improving and it will be interesting to monitor how CV- and
DV-QKD overcome their respective limitations.
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4.4.3 Cost

For QKD technology to be deployed in real world applications it is necessary to design cost-effective
systems. In this scope CV-QKD hardware is typically cheaper because it can be operated at room
temperature.

Other efforts in this direction have led to investigating the coexistence of QKD systems with
classical channels. The reason behind this is because dark fiber that can be dedicated to QKD is
scarce and very expensive. On the other hand, the classical telecom network composed of lit fibers is
readily available as most metropolitan homes enjoy internet access via optical fibers and data centers
a typically linked by optical fibers.

An review of experimental QKD systems deployed over classical wavelength division multiplexing
(WDM) channels is given in [16]. By nature, CV-QKD protocols are more resilient to adjacent
classical channels because of the coherent detection process, which is spectrally selective [69]. Hence
CV-QKD has been shown to tolerate more noise than DV-QKD systems [70] and to coexist with
up to 100 classical channels carrying data a rate 18.3 Tbit/s [71] although only over 10 km. In
comparison DV-QKD systems are more sensitive to classical channels because the SPDs can produce
random clicks -and generate errors- because of the noise photons from the classical channels. DV-QKD
systems therefore require strong filtering techniques in order to coexist with WDM channels and for
the moment this has, to the best of our knowledge, only been done with a launch power below the
nominal launch power of 0 dBm for classical systems [72].

It remains an interesting engineering challenge to enable QKD systems over a distance equivalent
to the typical optical fiber span, i.e. 80 km, alongside classical channels at nominal launch power.
Positive results would greatly contribute to large scale deployment of QKD.

This marks the end of this chapter and also of the first part of this manuscript. Here we gave here
an in-depth view of CV-QKD protocols. We covered the security proofs of the GG02 protocol as well
as the more recent results for discrete modulation formats, which will be used later for our CV-QKD
protocol implementation. We also discussed the different security assumptions when the receiver noise
is trusted and when only a finite number of quantum states are exchanged between Alice and Bob. In
the second part of this work we will begin with a general chapter on coherent communications before
diving into the core of the work accomplished during this thesis.
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We begin the second part of this manuscript with a general chapter on the topic of coherent
communications in practice. We will covert the experimental aspects of signal generation, propagation
and detection. Then we will discuss the digital signal processing routine which translates the sampled
signal into the set of measured symbols. In general the notions developed in this chapter apply
to both classical and quantum coherent communications. In the last section, we will discuss some
implementation challenges facing specifically quantum coherent communications and position our work
relative to the issues raised here.

5.1 Symbol generation

The first part of any coherent communication protocol is to be able to generate the desired signal at
the transmitter. We describe how this is done here.
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Figure 5.1: Temporal representation of the OOK modulation. The bits 0 and 1 are encoded by the
absence or the presence of light. The duration of a symbol is noted ⌧s

5.1.1 Mapping bits to symbols

The principle of a communication protocol is to transfer a sequence of bits B = {bi}
Nbits
i=1 from an

transmitter, Alice, to a receiver, Bob. For this the sequence B is mapped to a sequence of symbols

S = {↵k}
Nsymb

k=1 that will be transmitted over the channel. The symbols in S are drawn from an
ensemble C whose cardinality determines the number of bits that are encoded in one symbol. This
number is given by log2 |C|, therefore we have Nsymb = Nbits/ log2 |C|. The symbols are encoded on
a carrier, a sine wave, which is the light emitted by a laser in the context of optical communications.
The process of encoding the symbols on the carrier is called the modulation.

Example : On-Off Keying. The most basic form of modulation is On-Off Keying (OOK),
where the bit 1 and 0 are encoded by the presence or absence of light respectively. A temporal
representation of an OOK modulation is represented in the figure 5.1. The “light” and “no light”
events are respectively mapped to the bits 1 and 0.

Using the phase to encode more bits per symbol. We can increase the number of bits per
symbol, and thus the data rate, by using more complex modulation formats where the information is
encoded on the amplitude and the phase, or equivalently on both quadratures, of the electromagnetic
field. Such modulation formats are called Quadrature Amplitude Modulation (QAM). Compared to
the OOK modulation format where a simple photodetector is enough to detect the signal, a coherent
receiver is needed in the case of QAM modulation in order to recover both quadratures.

Typically the QAM modulations refer to the number of unique symbols in the ensemble C, such
as 4-QAM (also called Quadrature Phase-Shift Keying or QPSK), 16-QAM or 64-QAM. For these
modulation formats, the ensemble C is called the constellation. We represent different QAM constel-
lations in the figure 5.2. We adopt in this section the notations of classical communications where the
quadratures are noted I and Q for the in-phase and quadrature components respectively.

Probability constellation shaping. We discussed in chapter 4 the specific modulation for-
mat referred to as the random walk distribution. This type of format is inspired from probability
constellation shaping QAM modulation formats (PCS-QAM) used in classical communications. The
bit-to-symbol mapping in this case is not trivial since we want to be able to communicate any bit
sequence using this format and it seems like the probability distribution of each symbol will affect the
probability of given bit sequences associated to that symbol. Actually PCS-QAM modulations use a
so-called distribution matcher which maps a long sequence of bits into a sequence of QAM symbols
with the desired probability distribution. However this is outside the scope of this thesis and we will
simply generate a QAM constellation with the desired probability distribution when we use these
formats. We provide a representation of the probability distribution of the symbols in a PCS 64-QAM
format with the random walk distribution in figure 5.3.

Choice of modulation format for classical and quantum coherent communications. In



5.1. SYMBOL GENERATION 77

Figure 5.2: Different QAM constellations with the corresponding bit encoding for QPSK and 16-QAM

Figure 5.3: Representation of the probability of occurence of the symbols in a PCS 64-QAM format
with a random walk distribution

classical coherent communications the choice of modulation format depends on the power that can
be transmitted from Alice to Bob. Since higher order QAM modulation formats require more power
to distinguish the symbols, QPSK modulation will be preferred for long-haul transmissions in the
undersea cables while 64-QAM will be used over shorter distances such as WiFi applications. The
OOK modulation is used for its simplicity on the optical fiber available to the public for internet
connection.

For CV-QKD, the objective is to maximize the secret key rate and therefore to chose the modulation
format which yields the highest key rate. This is then put in perspective with the implementation
challenges of each format, and based on recent results the PCS-QAM format seems like a promising
candidate for high key rates and simple processing.

5.1.2 The I/Q modulator

Once the mapping of bits to symbol is determined the next step is to physically modify the quadratures
of the electromagnetic field to generate the desired symbol sequence. This is achieved by converting
electrical signals generated on a device called an arbitrary waveform generator (AWG) into a modifica-
tion of the light field using devices exploiting the Pockels effect. This effect appears in crystals lacking
inversion symmetry such as lithium niobate (LiNbO3) and gallium arsenide (GaAs) and consists in
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Figure 5.4: (a) The Pockels effect permits to modify the phase of the light by a factor ✓V1 proportionally
to the voltage V1 applied to the medium. (b) The Mach-Zehnder modulator is an inteferometer for
which the amplitude of the output signal can be piloted by applying a voltage to the device.

the modification of the refractive index of a medium proportional to the electric field applied to the
medium, therefore the phase of the output signal can be piloted by the voltage applied. We illustrate
in figure 5.4.a how the Pockels effect modifies the phase of the signal by a phase ✓V1

proportional to
the voltage V1 applied to the medium.

Based on this the Mach-Zehnder modulator (MZM), depicted in figure 5.4.b, enables amplitude
modulation of the input signal. In the MZM, the input signal is split on a 3-dB coupler and voltage
±V1 is applied to each branch. The signals in each branch interferes when they are recombined such
that the output field Eout is related to the input field Ein by Eout = Ein cos(✓V1). It is common to
denote by V⇡ the voltage difference between the two branches of the MZM for which the signal in each
branch is dephased by a factor ⇡. Then the input-output relation of the MZM is

Eout = Ein cos

✓

⇡

2

V1

V⇡

◆

, (5.1)

where we clearly see how tuning V1 will modify the amplitude of the output signal.

Controlling the I and Q components of the light is done in the IQ modulator (IQM) depicted in
figure 5.5.a. The input signal is split in two branches fed into two MZM with applied voltages V1 and
V2. The signal on the second branch is shifted by a phase of ⇡/2 such that the output of the IQM is
given by

Eout =
Ein

2

✓

cos
�⇡

2

V1

V⇡

�

+ i cos
�⇡

2

V2

V⇡

�

◆

. (5.2)

Generally, we can write that V1/2 = Vdc + Vmod,I/Q where Vdc is a voltage bias applied to the IQ
modulator and Vmod,I/Q is the voltage generated by the AWG on the I and Q optical paths. The
voltage bias is set to V⇡ such that we have

Eout =
Ein

2

✓

sin
�⇡

2

Vmod,I

V⇡

�

+ i sin
�⇡

2

Vmod,Q

V⇡

�

◆

. (5.3)

For small Vmod,I/Q compared to V⇡, we have that

Eout /
Ein

2
(Vmod,I + iVmod,Q), (5.4)

such that the quadratures of the output field are proportionnal to the applied voltage on their
corresponding optical path.

Finally, dual-polarisation IQ modulator (DP-IQM) depicted in figure 5.5.b allows to pilot the I
and Q components of the X and Y polarisation of the input light.
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Figure 5.5: (a) The IQ modulator controls the amplitude of the real and imaginary parts of the light.
The signal is split in two branches each fed to a MZM controlling the amplitude of the corresponding
quadrature. The phase in the second path is shifted by ⇡

2 to constitute the Q component. (b) A
dual polarisation IQM first splits the incoming signal on a polarising beam splitter (PBS), then each
polarisation is fed to an IQM.

5.1.3 Pulse shaping

Pulse shaping refers to the modification of the temporal and spectral distribution of the generated
symbols in order to optimise the transmission over the channel. To see how this can be useful, let us
consider the temporal signal corresponding the sequence S which can be written as

s(tn) =

1
X

k=1

↵kΠ

✓

tn � kTs

Ts

◆

, (5.5)

where Ts is the duration of one symbol and Π is the door function defined by

Π(tn) =

8

>

<

>

:

0, if |tn| >
1
2

1
2 , if |tn| =

1
2

1, if |tn| <
1
2

. (5.6)

The spectral representation of the signal is given by the Fourier transform of s(tn) and is given by

the function S(f) = sinc(fTs) =
sin(⇡fTs)

⇡fTs
. The spectrum is represented in figure 5.6.

Notice the signal in this case spans over an infinite bandwidth which presents a couple drawbacks
:

• The signal is not bandwidth efficient, and signals propagating at different frequencies will overlap.
This can generate additional noise when signals are multiplexed in frequency.

• The detectors have a finite bandwidth therefore part of the signal will not be retrieved. Ad-
ditionally the detection process will apply a spectral filter to the signal which can introduce
inter-symbol interference (ISI).

Therefore it is desirable to apply some filter to the signal to reduce its bandwidth. By doing so, we will
modify the time-domain representation of the signal thus one must verify that we do not introduce
ISI. ISI occurs when several symbols overlap in the time domain and introduces noise. The criteria
for mitigating ISI is the Nyquist criterion.

Definition 9 (Nyquist ISI criterion). If the channel impulse response of the channel is h(tn), then
the condition for mitigating ISI is :
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Figure 5.6: Power spectral density of QAM signals. The power spectral density is normalised by its
maximum value in this plot.

h(nTs) =

(

1, if n = 0,

0 if n 6= 0
. (5.7)

where n is an integer and Ts is the symbol period. In the frequency domain the Nyquist criterion
is equivalent to the condition

1

Ts

+1
X

k=�1
H

✓

f � k

Ts

◆

= 1 8f, (5.8)

where H(f) is the Fourier transform of h(tn).

When designing spectral filters for the signal, we should keep in mind the Nyquist ISI criterion.

Raised cosine filter. The raised cosine filter is described in the frequency domain by the transfer
function

H(f) =

8

>

>

<

>

>

:

1, |f |  1��
2Ts

1
2

h

1 + cos
⇣

⇡Ts

�

h

|f |� 1��
2Ts

i⌘i

, 1��
2Ts

< |f |  1+�
2Ts

0, otherwise

, (5.9)

where � is the roll-off factor, a parameter ranging from 0 to 1 controlling the shape of the filter.
The time-domain response of the raised cosine filter is

h(tn) =

8

>

<

>

:

⇡
4Ts

sinc
⇣

1
2�

⌘

, tn = ±Ts

2�

1
Ts

sinc
⇣

tn
Ts

⌘

cos(⇡�tn
Ts

)
1�( 2�tn

Ts
)
2 , otherwise

. (5.10)

One can check that the raised cosine filter satisfies the Nyquist ISI criterion. We represent the
time and frequency response of the filter in the figure 5.7

Root raised cosine filter. In practical communications the optimal filter which maximises the
SNR in presence of stochastic noise is the matched filter, where the same filter is applied at the
transmitter and the receiver. Therefore, while the raised cosine filter is a suitable spectral filter, we
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Figure 5.7: Time (left) and frequency (right) response of the raised cosine filter for different roll-off
factors.

will prefer the root raised cosine filter (RRC) applied at Alice and at Bob’s. The frequency response
of the RRC filter is

HRRC(f) =
p

H(f) (5.11)

5.2 Signal distortions on the fiber

During propagation over the optical fiber, both classical and quantum signals undergo similar distor-
tions which we review in this section. In the next section we will discuss how to compensate these
using digital signal processing.

5.2.1 Structure of the fiber and losses

The fiber on which the light travels is depicted in figure 5.8. It is constituted of a core and a cladding,
two waveguides built in silica, with the cladding having a refractive index slightly higher than the core.
Around the cladding is a protective layer to protect the waveguides. Fibers can be categorized in two
categories namely multi-mode fibers (MMF) and single-mode fibers (SMF). Based on the diameter
of the core, the fiber can allow either several modes to propagate or only one, thus defining the fiber
type as MMF or SMF. MMF fibers have a core that is typically ⇠ 50 � 62.5µm while SMF have a
core diameter of 9µm. In this work we use SMF fibers.

Losses. The losses ↵ in the fiber are often described in terms of dB/km and depends on the
wavelength of the carrier wave. The output power is then written as

Pout = Pin ⇥ 10�
↵L
10 , (5.12)

where Pin is the input power and L is the length of the fiber in km. In silica-based fibers,
the minimal losses are reached when the laser wavelength is around 1550 nm and are of about 0.2
dB/km. In fact, wavelengths are categorised in different bands with the Conventionnal Band, or
C-band, ranging from 1530-1565 nm. The C-band corresponds to the minimal absorption by the silica
fiber but also the maximal gain from erbium doped fiber amplifiers, making the C-band the perfect
wavelength for optical fiber communications.
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Figure 5.8: Representation of the optical fiber with the core, the cladding and the surrounding pro-
tection.

5.2.2 Polarisation rotation

Optical fibers are materials with an optical property called birefringence. This means that the refrac-
tive index of the material depends on the polarisation (and propagation direction) of light. The causes
for this birefringence can be explained due to the slight asymmetry in the fiber core cross-section along
the length. In addition, stress on the fiber -such as bending- will also create birefringence. In general
the stress related birefringence dominates the geometrical one.

The effect of the birefringence is that the polarisation state at a given point in the fiber can be
decomposed in a slow and a fast axis based on the local refractive index. As the light propagates
over the fiber, the random rotation of the slow and fast axes will cause the polarisation of the light
to rotate. For coherent communications, two independent signals are often multiplexed on orthogonal
polarisation axes. Therefore polarisation rotation is a phenomenon that must be dealt with before
retrieving the signals. Usually this can be done digitally using an adaptive equalizer, which we will
discuss further in section 5.4. Note there also are physical components which allow us to control the
polarisation state of the light.

• Polarisation controller. The polarisation controller permits manual tuning of the state of po-
larisation of light. It is constituted of a succession of three rotable waveplates in cascade: a
quarterwave plate, a halfwave plate, a second quarterwave plate. We control the polarisation by
rotating the waveplates.

• Polarisation maintaining fiber. The optical fiber can be built to intentionally generate stress
along a specific axis of the fiber core, such that the fast and the slow axes are constant over the
length of the fiber. Even under mild bends the axes should remain stable and therefore maintain
the polarisation state. Several designs exist to build polarisation maintaining fiber which are
represented in figure 5.9.

5.2.3 Perturbations from other channels

Several channels are often multiplexed in classical coherent communication links. This means that
they co-propagate without interfering with each other "too much". This way several communication
channels can coexist on a single fiber, increasing the total information throughput. Typically the mul-
tiplexing consists in attributing different central wavelengths to each channel and the communication
link is called a wavelength division multiplexed (WDM) link. Unfortunately there is never a per-
fect isolation between multiplexed channels, therefore unavoidable perturbations from other channels
occur in multiplexed communication channels. We review those which are relevant to this work here.
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Figure 5.9: Cross-section of 3 different designs of polarisation maintaining fiber. Rods of a different
material are built in the fiber cladding such that the stress applied on the core maintains the orientation
of the slow and fast axis in the fiber. The rods are represented in darker tones of grey. The fiber core
is in purple.

Cross-talk. The cross-talk is induced by channels in adjacent frequency slots which are never
perfectly demultiplexed. Therefore there is always a fraction of the power in the adjacent channels
which is transmitted.

Non linear effects. When the optical power in the fiber becomes to high, the response of the
fiber becomes nonlinear. Such nonlinearities can be induced by the Kerr effect, causing the refractive
index in the fiber to fluctuate as the square of the electric field. These result in several distortions
such as self-phase modulation, cross-phase modulation and four-wave mixing. Other nonlinearities
are induced by Raman scattering, where photons exchange energy with matter. The result is that the
signal is scattered over several wavelengths. The nonlinear effects are the main limitation to the data
rates achievable over long distance communications since they limit the optical input power.

5.2.4 Other effects

We discuss here other transformations light undergoes during propagation on the fiber. Specifically
for our experiment over short distances, these do not play a role. However we mention them for the
sake of completeness.

Chromatic dispersion. In the fiber, different wavelengths travel at different speeds. This
phenomenon, referred to as chromatic dispersion, leads to pulse broadening and can create inter-
symbol interference. Chromatic dispersion is quantified by the dispersion parameter expressed in
ps/nm/km :

D = �2⇡c

�2
d2�

d!2
=

2⇡c

v2g�
2

dvg
d!

(5.13)

where c is the speed of light in vacuum, � is the propagation constant, � the wavelength and vg is
the group velocity of the pulse. Compensation of chromatic dispersion in fiber communications can
be achieved by propagating the signal in a dispersion compensating fiber or to pre-compensate the
signal to account for chromatic dispersion.

Polarisation dependent loss and polarisation mode dispersion. The slow and fast axes of
the fiber can undergo different losses resulting in polarisation dependent loss (PDL). PDL is defined by
transmitting linearly polarised light and taking the ratio of the maximum transmitted power over the
minimum transmitted power. Also, the birefringence in the fiber causes dispersion called polarisation
mode dispersion (PMD).
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Figure 5.10: Schematic representation of the phase diversity hybrid. The detectors are not part of the
hybrid but are represented here nonetheless.

5.3 Receiver architecture

After the generation and propagation of the symbols over the fiber, let us examine the receiver
architecture allowing for coherent detection of the quadratures of the electromagnetic field.

5.3.1 Optical hybrids

The coherent detection process requires mixing the incoming signal with the local oscillator. This is
done using a component called an optical hybrid.

Phase diversity hybrid. The phase diversity hybrid, or 90° hybrid, is the component which
allows to measure both I and Q quadratures of the electromagnetic field. It takes the signal beam and
the local oscillator as input and splits both beams in half. Then, one half of the signal is mixed with
half of the local oscillator to detect the I quadrature and the other signal half is mixed with a ⇡/2
dephased half of the local oscillator to detect the Q quadrature. The setup is represented in figure
5.10

Polarisation 90° diversity hybrid. The polarisation 90° hybrid allows the detection of the I
and Q components of both polarisations. The signal is split on a polarising beamsplitter and each
output is fed into a phase diversity hybrid. The LO is split in half and one half is transferred to each
phase diversity hybrids. The Polarisation 90° optical hybrid is depicted in figure 5.11.

5.3.2 Detectors

Each quadrature is measured by a balanced receiver which is depicted in figure 5.12. It is constituted
of two photodiodes generating a current based on the incoming optical power. The current generated
by both photodiodes is substracted and then converted to a voltage on a transimpendence amplifier
(TIA). Let us discuss the relevant characteristics which defined a balanced receiver.

Bandwidth. The bandwidth of the detector must be chosen according to the desired use. Typ-
ically detectors used for classical communications have a larger bandwidth than the detectors used
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Figure 5.11: Schematic representation of the polarisation diversity hybrid.

Figure 5.12: The balanced receiver subtracts the photocurrent generated by the photodectectors to
retrieve the I or Q quadrature. TIA is the transimpedence amplifier which converts the current output
by the photodiodes into a voltage.
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for quantum communications. This is because high bandwidth detectors display a higher NEP (see
below), a measure of the thermal noise of the receiver, which must be as low as possible for quantum
communications.

Noise equivalent power (NEP). The NEP is a measure of the minimal input power to obtain
an output SNR of 1. It is a measure of the noise floor of a detector as well as its sensibility. For QKD,
it is crucial to choose detectors with low NEP to reduce the electronic noise.

Wavelength range. The photodiodes convert optical power into a current. Depending on the
materials used in the construction of the photodiodes, they are sensitive to different optical wave-
lengths. For fiber based communications, one usually prefers photodiodes operating around the 1550
nm wavelengths.

Responsivity. The photodiode responsivity R� at wavelength � measures the ratio of electrical
current generated over the optical power on the photodiodes. It is expressed in A/W and quantifies
the efficiency of the detection. The quantum efficiency Q� is a value used to quantify the number of
electrons converted from photons in a photodiode. It is linked to the responsivity by

Q� =
R�

�
⇥ hc

e
⇡ R�

�
⇥ (1240 W.nm/A), (5.14)

where h is Planck’s constant, c is the speed of light in vacuum and e is the elementary charge. In
particular for QKD detectors, it is desirable to have a quantum efficiency as close as possible to 1 in
order to limit as much as possible the losses in the receiver.

Common mode rejection ratio (CMMR): In a perfect balanced receiver, we want the output
voltage to be a function of the voltages output by each photodiode such that

Vout = G(V+ � V�). (5.15)

In practice, imperfections lead to a small amplification of the sum of the output voltages as well such
that

Vout = G(V+ � V�) +Gcm(V+ + V�). (5.16)

The common mode rejection ration is defined as the ratio of both gains and is a measure of how well
the detector performs a balanced detection. It is usually expressed in dB as

CMRR = 20 log10

✓

G

Gcm

◆

. (5.17)

5.4 Digital signal processing

In order to retrieve the information encoded on the electromagnetic field, the electrical signal generated
by the detectors is sampled. Then, the samples are processed to recreate the symbols originally sent.
This process is called digital signal processing and is a cornerstone of modern coherent communications.
Let us describe some of the powerful tools at our disposal to translate our set of samples into the
correct set of symbols.

5.4.1 Equalizer

In classical coherent communications, the adaptive equalizer is one of the most powerful tools of digital
signal processing. It can compensate most channel impairments, filter noise, and can find the optimal
sampling instant. It is based on finite-impulse-response (FIR) filters and algorithms for filter-tap
adaptation. We discuss these below.
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Figure 5.13: A FIR filter with k taps performs a linear combination of samples xn to xn�k+1 using
coefficients c0 to ck�1 to output the symbol y(n)

FIR filter. The FIR filter is determined by a number of taps k and by tap coefficients �!c =
[c0, ..., ck�1]. The nth run of the FIR filter has input a sequence of samples �!x (n) = [xn, xn�1, ..., xn�k+1]
and output the nth symbol given by

y(n) = �!c ·�!x (n) (5.18)

y(n) =
k�1
X

j=0

cjxn�j (5.19)

The schematic representation of the FIR filter is depicted in figure 5.13. In fact, when the signal
power is sufficiently low such that the channel response is linear, the frequency response of the received
complex amplitude of a dual polarisation signal can be written in the form [73] :

✓

Ex(!)
Ey(!)

◆

= H(!)

✓

Ein
x (!)

Ein
y (!)

◆

(5.20)

Therefore the transfer function of the equalizer should be as close as possible to

Heq(!) = H
�1 (5.21)

=



hxx(!) hxy(!)
hyx(!) hyy(!)

�

(5.22)

With a sufficient number of taps and by choosing carefully the tap coefficients in the time domain,
one can pilot the frequency response of the FIR filter to realize each element of the matrix Heq. Then
the equalizer response can be realized using 2 ⇥ 2 butterfly-structured FIR filters as is depicted in
figure 5.14. The consequence is that the FIR filter can separate the X and Y components of a signal
with an arbitrarily varying polarisation, as well as compensate channel impairments such as GVD,
PMD and PDL.

Filter-tap adaptation algorithm At the beginning of the equalisation the filter-tap coefficients
are initialised to a given value, for instance all tap coefficients are set to 0 except the central one set
to 1. Then the filter-tap coefficients are updated after each run based on some error function which
depends on the modulation. For QPSK modulation we exploit the fact that the signal has constant
amplitude. This is used as our criteria for the error function. When the signal amplitude is normalised
to 1, the error function we use is :
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Figure 5.14: The 2⇥ 2 butterfly structured FIR filters. The
�!
h ij are the FIR filters Heq(!).

ex(n) = (1� |Eout
x (n)|2)Eout

x (n), (5.23)

ey(n) = (1� |Eout
y (n)|2)Eout

y (n). (5.24)

Then the filter-tap coefficients are updated from one run to the other as

�!
h ij(n+ 1) :=

�!
h ij(n) + µei(n)E

out
j , (5.25)

where (i, j) 2 {x, y}2 and µ determines the speed of convergence of the filter. If µ is too large the
filter might has too little resolution to perform correctly and if µ is too small it will take too long to
converge. This filter-tap adaptation algorithm is named Constant Modulus Algorithm (CMA).

Clock timing recovery. Another unique function of adaptive FIR filters is to implement a
variable time delay on the waveform with a much higher resolution than the sampling time interval.
Therefore, as long as there is a sufficient number of taps, the adaptive FIR filter can retrieve the
optimal sampling instant as is illustrated in the figure 5.15 taken from reference [73].

5.4.2 Carrier recovery

The phase of the signal laser is crucial to determine which symbol has been sent. For instance for
the QPSK modulation format, the four symbols of the constellation have the same amplitude and are
uniquely described by their phase. The homodyne and heterodyne detection discussed in chapter 1,
together with the result of the measurement derived in equation (1.94), show that the measurement
result provides a complex signal with a phase equal to ✓s � ✓LO the difference between the phase of
signal and LO. In order to determine ✓s, we must first estimate ✓LO.

In chapter 1, we omitted for simplicity the fact that the signal and LO are time varying light
waves, and as such have angular frequencies !s and !LO. As a result the measured current is actually
proportional to

∆I(tn) / 2EsELO cos(!IF tn + ✓s � ✓LO), (5.26)

where tn is the sampling time and !IF = !s�!LO is the beating angular frequency between signal
and LO. Therefore in our quest to retrieve ✓s we must also compensate the time dependant phase shift
induced by !IF tn. The estimation and compensation of !IF and ✓s is called carrier recovery. We
discuss how to do this here in the case where the signal is modulated according to a QPSK modulation
since we will use these techniques in our experiment.
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Figure 5.15: Figure taken from [73]. (a) The waveform is sampled at 2 samples per symbol. (b) After
the adaptive FIR filter, the algorithm outputs the samples taken at the optimal instant for symbol
decision.

Figure 5.16: Raising the QPSK signal to the 4th power cuts the fluctuations due to the modulation
and concentrates the psd at a single frequency : the frequency offset.
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Particularities of the QPSK modulation. A key component of carrier recovery in the case of
QPSK modulation is the knowledge that ✓s 2 {⇡

4 ,
3⇡
4 , 5⇡

4 , 7⇡
4 }. The complex signal reconstituted from

the measured sample Rx = I + jQ can be written as :

Rx(tn) = A exp(i[!IF tn + ✓s � ✓LO]), (5.27)

where A is the signal amplitude. Raising Rx to the power 4 cuts the phase changes due to the
modulation since for all ✓s we have 4✓s = ⇡[2⇡]. Thus we have

Rx(tn)
4 = �A4 exp(i[4!IF tn + 4✓LO]) (5.28)

Frequency recovery.‘The beating frequency is determined from the 4th power signal very easily
by shifting to the frequency domain and considering the maximum of the signal psd. Indeed most of
the psd will be concentrated in a single peak located at frequency fmax ⇡ 4!IF /2⇡ as is represented
in the figure 5.16. We obtain the estimator for the beating frequency !̂IF = 2⇡fmax

4 . Then the signal
is corrected by compensating the rotation due to the beating frequency :

Rx(tn) := Rx(tn)⇥ exp(�i!̂IF tn). (5.29)

In most cases the estimator !̂IF will not be exactly equal to !IF and therefore the time-dependant
rotation of the constellation not entirely corrected at this stage. However this residual beating fre-
quency after correction can be treated as additional LO phase and be compensated in the phase
recovery stage. Therefore we suppose here that !̂IF = !IF

Phase recovery. We proceed in a similar fashion to retrieve the LO phase. First we raise the
frequency compensated signal to the 4th power and obtain :

Rx(tn)
4 = �A4 exp(i4✓LO). (5.30)

Then the LO phase can be estimated as

✓̂LO =
arg(Rx(tn)

4)

4
+ ⇡. (5.31)

Note that the LO phase actually varies with time according to a Wiener process characterized
by the laser linewidth ∆⌫ 1. However phase fluctuations are very small over a symbol period, such
that a better way to estimate ✓LO is to average the phase over multiple symbols such that the phase
estimator of the nth symbol is given by

✓̂LO(n) =
1

4
arg(

n+k
X

i=n�k

RCFE
x (ti)

4). (5.32)

The length of the averaging window is here 2k + 1 and must be carefully chosen based on the
system considered.

5.5 Challenges for coherent quantum communications.

Compared to classical coherent communications, quantum coherent communications are operated with
a signal comprising only a few photons per symbol. In this regime of low SNR the DSP algorithms
discussed above perform poorly and cannot be executed as such. New solutions are therefore nec-
essary to downsample the signal and perform carrier recovery. In addition to this, quantum signals

1The Wiener process characterizes the quantity ∆θLO(t) = θLO(t + δt) − θLO(t) as a zero mean Gaussian random

variable with variance V = 2π∆νδt
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Figure 5.17: Example of a CV-QKD protocol with the TLO design. In this example the TLO is
multiplexed with the signal using the polarisation degree of freedom. PBS : polarising beam splitter.
AM : amplitude modulator. PM : phase modulator.

are naturally more sensitive to cross-talk from other channels since even one stray photon can gener-
ate considerable perturbations on the data, hence systems involving the coexistence of classical and
quantum channels must be carefully designed. These issues must be correctly addressed if we hope to
design efficient systems. The object of this section is to discuss these challenges in order to derive a
relevant approach to our work.

5.5.1 Carrier recovery at low SNR

In the quantum regime the carrier recovery algorithms, such as the Viterbi & Viterbi algorithms for a
QPSK modulation format, perform poorly. CV-QKD systems have evolved over the years to address
this issue.

Transmitted local oscillator. First iterations of CV-QKD protocols solved this problem by
deriving the local oscillator from the signal laser at Alice’s side. The LO was then sent alongside the
signal over the untrusted quantum channel to Bob and used to detect the quantum states. Examples
of protocols using this design can be found in references [74, 65, 75, 76]. In this case the signal and
LO have the same frequency and their phase fluctuations are minimal, which reduces the excess noise
induced by imperfect carrier recovery compared to the case where the LO is a free-running laser with
no fixed relation to the quantum states. This technique is sometimes referred to as the "Transmitted
Local Oscillator" or TLO.

In reality, the TLO design presents security loopholes and performance flaws that are hard to
overcome in practice. These lead to potential side-channel attacks which are detrimental to protocol
security. The security flaws stem from the fact that the shot-noise calibration plays a crucial role in the
estimation of the information leaked to Eve. The TLO design gives extra power to the eavesdropper
since she can also manipulate the LO and therefore influence the shot-noise calibration procedure.
Several attacks have been investigated in the case of a TLO protocol, such as a wavelength attack
[32], a calibration attack [30] or a fluctuation attack [31]. While it is maybe possible to monitor
the TLO design to insure that a given attack is not occurring, this would drastically increase the
complexity of CV-QKD protocols and only provide security against known side-channel attacks.

In addition to the security loopholes, the TLO design also limits the system performance. First, the
LO can generate crosstalk on the quantum channel during propagation. Second, CV-QKD protocols
require the detection be made in the shot-noise limited regime, where the electronic noise is at least one
order of magnitude below the shot-noise. To this end the LO at Bob’s is required to have sufficient
power, with typically ⇠ 108 photons per pulse. However as the distance between Alice and Bob
increases, the LO power at Alice must also increase to satisfy the shot-noise limited detection criteria.
This becomes harder to achieve in practical experiments since fiber nonlinearities arise when too much
power is injected in the single mode fiber and cross-talk between the signal and LO will also deprecate
the key rate.
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Figure 5.18: Example of the "LLO" design. The LO is generated at Bob’s and does not propagate
over the channel, thus Eve does not have access to it. The signal is multiplexed with pilot signals to
provide phase and frequency information. In this example, the pilot and signal pulses are multiplexed
in time. AM : amplitude modulator. PM : phase modulator. LO : local oscillator

"Local" local oscillator. Since the TLO design cannot be used, this means quantum coherent
communication systems have to perform carrier recovery with a "local" LO (LLO) as in typical
coherent communication. The common solution in this case is to rely on pilot signals multiplexed
with the quantum states. The idea is to derive the pilot signals from the same laser used to generate
the quantum states, such that pilot and quantum signals have a fixed phase and frequency relation.
Then the carrier recovery algorithms can be applied to the pilot signal and the quantum states can
be corrected during the DSP step based on the phase and frequency estimators computed on the pilot
signals.

Examples of protocols using pilot signals can be found for example in references [17, 77, 78, 79].
The pilot signals are multiplexed with the quantum states using the time [78, 79], frequency [17]
and/or polarisation [77, 17] degrees of freedom in order to reduce the pilot cross-talk on the quantum
measurement.

5.5.2 Coexistence with classical channels

Our conclusion in subsection 4.4.3 was that the ability to coexist with classical channels was one
advantage of CV-QKD compared to other solutions, but this does not mean it is trivial. The holy
grail for quantum coherent communications would be for these protocols to be compatible with optical
backbone links, covering a distance of about 80 km together with 100 classical channels at nominal
input power. This would give them access to a large infrastructure and provide many opportunities
for commercial applications.

This objective remains however out of our reach for the moment. The main challenge in this
setting is the Raman noise generated by the classical channels at the quantum signal wavelength,
which becomes the dominant noise source. Ideas for system designs involve choosing the quantum
channel wavelength at a lower wavelength than the classical channels since Raman noise is less probable
[70, 80] or to operate the system with reduced power of the classical channels [71]. Another hope for
quantum coherent communications resides in the development of new DSP techniques which would
enable equalizing the signal in the low SNR regime, therefore filtering the Raman noise affecting
the channel. New DSP methods based on machine learning techniques have already been proven to
perform better carrier recovery [81, 82], hence this is certainly an interesting direction to pursue.

5.5.3 Positioning of our work

A cost-based approach for CV-QKD involves deploying systems over the current fiber infrastructure,
but based on the current state of the art this is difficult without modifying classical systems to
reduce their impact on the quantum channel. In order to extract the best out of joint classical and
quantum communications over the same fiber, we should look to design systems working on the current
infrastructure but that are optimized for both the quantum and the classical channels.
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An interesting question when we think of joint systems is whether the classical channels will only
be detrimental to the CV-QKD performance or if they can be used to gain some sort of advantage
compared to QKD operated on a dark fiber. This question is at the core of the research conducted
during this PhD thesis and we chose to address it in two ways described below.

• Symbiotic operation of quantum and classical communications. Our first proposal is
an experimental demonstration of a CV-QKD experiment multiplexed with a classical channel
in which we demonstrate that carrier recovery can be performed from a classical channel. Our
objective is to show that when designing joint systems, we can relax the need for pilot tones
which add to the overall complexity and do not carry classical information.

In addition, when the quantum channel is used for CV-QKD, the key retrieved can also be used
to encode part of the classical data transmitted. Hence the quantum and classical channels are
mutually beneficial and are operated in a symbiotic fashion.

Our work constitutes a proof-of-concept and paves the way towards efficient designs of joint
systems which look to exploit the most out of their coexistence. We show a comparison of
our results with the current state of the art in CV-QKD in the figure 5.19 and discuss our
implementation further in chapter 6.

• Covert QKD. Our second proposal is a theoretical research project in which we investigate
how to harness channel noise -for example due to classical channels- to provide a new security
primitive, called covertness, to the QKD protocol. The idea behind covert communications is
that the signal transmitted over the channel is indistinguishable from background noise for any
quantum adversary. This can be a desirable security feature for QKD since even if the distilled
key is provably secure, Eve still has knowledge that Alice and Bob performed the protocol and
can use this to her advantage. We discuss this further in chapter 7 and provide our results.
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Reference Modulation Phase reference Local Oscillator Security proof Symbol

[74] Gaussian TLO Transmitted LO finite-size

[65] Gaussian TLO Transmitted LO asymptotic regime

[75] Gaussian TLO Transmitted LO asymptotic regime
[77] PCS-256QAM pilot signals Local LO asymptotic regime
[78] PCS-64QAM pilot signals Local LO finite-size

[76] Gaussian TLO Transmitted LO finite-size
[79] Gaussian pilot signals Local LO finite-size

OFC2022 QPSK classical channel Local LO asymptotic regime

SPIE2022 PCS-64QAM classical channel Local LO finite-size

Figure 5.19: Plot of the key rate versus distance for different CV-QKD protocols in the literature.
The different protocols are represented by different symbols according to their implementation choices.
Modulation : Gaussian = circle, PCS = diamond, QPSK = pentagram. LO : TLO = crossed symbol,
LLO = not crossed symbol. Security proof : finite-size = full symbol, asymptotic regime = hollow
symbol. The table shows all references ploted in the graph as well as their characteristics and their
symbol representation.
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In this chapter we detail our experimental implementation of joint classical communications with
CV-QKD without the use of pilot tones.

6.1 Experimental setup

The experimental setup is displayed in the figure 6.1 and the list of components used are summarized
in the table 6.1

6.1.1 Transmitter : signal generation

The transmitter side corresponds to Alice’s lab in the QKD protocol. The light is generated by a
low-linewidth laser which is fed into the dual polarisation I/Q modulator. Two AWGs control the X-

95
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Figure 6.1: Experimental setup. AWG : arbitrary waveform generator. OSA : optical spectrum
analyser. LO : local oscillator.

Device Reference

Laser and LO NKT Koheras Adjustik
Dual-Pol IQ modulator Fujitsu FTM7977HQA

AWG1 Keysight M8195A
AWG2 Tektronix AWG7122B

PBS/PBC General photonics PB-15-P1-FC/APC
Powermeter Ando AQ2140
Attenuator 1 HP 8156A
Attenuator 2 Oz optics BB-100-11-1550-8/125-P60-3A3A-3-1

Dual-pol 90° hybrid Kylia COH28-X
Balanced receivers Ix/Qx Finisar BPDV21x0R
Balanced receivers Iy/Qy Exalos EBR370005-02

Oscilloscope DSOZ504A

Table 6.1: This table gives the references of the components used in the experiment for the interested
reader.
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and Y-polarisation of the field corresponding to the classical (AWG1) and quantum (AWG2) signal.
At the exit of the modulator, a 10% fraction of the signal is directed towards an optical spectrum
analyser to monitor the output of the modulator and to verify the voltage biases are set correctly.

Classical signal generation. The sequence of samples fed to the AWG1 is generated from a
pseudo-random bit sequence which is then mapped to a corresponding sequence of QPSK symbols. The
samples are then generated from the symbols thanks to a built-in interpolation function in MATLAB.

The spectral shaping of the classical signal is operated directly at the sample level. We limit its
spectral width using a RRC filter, described in chapter 5, with a sharp roll-off factor of 0.1. Then
the signal is frequency shifted by fshift,c = 4 GHz by multiplying the samples by a time dependant
complex exponential. The representation of the classical signal spectrum before the RRC, after the
RRC and after the frequency shift can be found in figure 6.2.

Quantum signal generation. The QPSK modulation for the quantum channel was generated
similarly to the classical signal by adapting the symbol rate and the RRC roll-off factor to 0.4.
Generating the PCS-64QAM constellation was less direct since we do not have a distribution matcher
to map bits to symbols. Therefore we proceeded differently, first generating the symbols according
to the desired probability distribution and then mapping them to the corresponding bits in a typical
64QAM constellation.

The quantum signal spectrum was shifted by fshift,q = 1 GHz in order to reduce noise generated
by the residual carrier. The spectrum the joint classical and quantum signal before attenuation of the
quantum channel is represented in figure 6.3.

Power leveling of quantum and classical signals. The desired number of photons per symbol
on the quantum channel is obtained by attenuating the quantum signal relative to the classical signal.
A first leveling can be achieved in the modulator by controlling the amplitude of the electrical signal
generated by the AWGs. Electrical amplifiers placed at the output of the AWG1 increase the output
power of the classical channel relative to the quantum channel.

However this leveling is not sufficient, hence we also use a series of components to attenuate
the quantum channel specifically using the polarisation degree of freedom. To do this we begin by
separating classical and quantum signals on a polarising beam splitter (PBS). A polarisation controller
(PC) before the PBS is used to align the polarisations in the fiber with the axes of the PBS. The path
corresponding to the classical signal is untouched and fed into the first input of a polarising beam
combiner (PBC). The quantum signal is attenuated and fed into the second input of the PBC. Before
it is recombined, part of the quantum signal is split on a 50/50 beamsplitter and directed towards
an optical power meter to monitor the power on the quantum channel. The power meter is useful to
manually set the PC. Since the quantum signal is less powerful than the classical signal at the exit of
the I/Q modulator, we set the PC to minimize the power on the power meter. All the components
and fiber used between the two PBS are polarisation maintaining.

Synchronisation of both channels. Since Alice and Bob need to compare their data during
the QKD protocol, we need to share a reference frame for the beginning and the end of the data
sequence. In a real system, Alice will send a finite sequence of symbols which Bob will measure,
process and store. Then Alice decides to reveal a subset of the quantum states she sent which are
easily identifiable at Bob’s by their position in the detected sequence. In our experiment however,
the sequence of quantum states is repeated continuously at Alice and the acquisition begins during a
random symbol in the sequence. Therefore we need some method to generate the sequence at Alice
based on Bob’s measurement window.

This is achieved via synchronisation of classical and quantum data streams such that we can
identify the beginning of the repeating quantum sequence from the classical data. To synchronise
both channels we begin by providing AWG1 and AWG2 with a common clock reference. Then a
arbitrary function generator (AFG) with the same clock reference generates a trigger signal so that
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Figure 6.2: Classical signal spectrum (left) before the RRC, (middle) after the RRC, (right) after the
RRC and frequency shift.

Figure 6.3: Spectrum of the signal at the exit of the I/Q modulator.

both AWG1 and AWG2 start emitting at the same time.

6.1.2 Receiver : signal detection

The receiver side plays the role of Bob in the QKD protocol. The coherent detection process is based
on mixing the signal with the LO in the polarisation and phase diversity hybrid. Before the hybrid we
use a PC to manually align the polarisation of the incoming signal with the axes of the PBS located
in hybrid, such that the classical and quantum signals are optically routed towards the classical and
quantum detectors respectively. The data is acquired by the oscilloscope piloted from the MATLAB
session on the laboratory computer. Finally, the samples acquired are processed during the digital
signal processing step.

Losses. It is crucial to quantify the losses at Bob’s to apply the trusted receiver security proofs.
Here we have 2 dB of losses due to the polarisation controller and the 90° hybrid.

Sensitivity to polarisation drifts. The PC is set manually during the CV-QKD experiment.
However over time the state of polarisation (SOP) of the incoming field rotates and the setting of the
PC must be adapted. Even a slight misalignment of the polarisation can lead to a significant increase
in the excess noise measured during the experiment as is represented in the figure 6.6. Therefore the
protocol performance is closely related to our ability to track the SOP over time and to correctly set
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Figure 6.4: With only 2000 symbols, the PCS-64QAM constellation can only approach the theoretical
occurrence probabilities for each symbol. We generate the constellation by generating the first 64
unique QAM symbols, and draw the rest randomly according to the desired probability distribution.

the PC.

Classical detectors. The balanced detectors used for the classical signal have a 43 GHz band-
width in order to correctly detect the full classical signal. We placed electrical amplifiers after the
detectors so that the noise floor of the oscilloscope was well below the noise floor of the detectors.

Quantum detectors. The quantum balanced detectors have a tunable bandwidth between 80
and 350 MHz. We chose to set the bandwidth at its maximum in order to have some margin in the
signal-LO frequency offset for the detection of the 250 MBd quantum signal. These receivers have
built-in low-noise electrical amplifiers, thus we do not need to add any amplifying device and we
connect them directly to the oscilloscope.

Local oscillator. The LO is tuned such that the LO central frequency is close to the quantum
signal central frequency. Actually, the combination of the LO central frequency fLO and the bandwidth
of the detectors Belec determine a "spectral window", represented in figure 6.5, of the optical signals
that can be measured. Typically we want to set the LO central frequency such that the quantum
and classical signals are in the spectral windows defined by the quantum and classical detector’s
bandwidths respectively. Looking to the spectrum in figure 6.3, we also want the strong classical
signal as far as possible from the quantum detectors spectral window in order to mitigate the excess
noise induced by the classical channel. Therefore it is best to choose a LO central frequency below
the quantum signal central frequency.

Oscilloscope. The oscilloscope sampling rate must be carefully chosen based on the symbol rate
of the detected signals. We discussed above the LO central frequency would be chosen below the
quantum signal central frequency. Therefore the frequency offset between the higher frequencies of
the classical spectrum and the LO will be around 6 GHz. In order to satisfy the 2 times oversampling
criterion [83], we need to sample the classical signal at least at a sample rate of 12 Gsa/s. Since the
oscilloscope only offers the possibility to sample the signal at 10 Gsa/s or 20 Gsa/s (or more), we
chose to operate the oscilloscope at sampling rate 20 Gsa/s.
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Figure 6.5: The LO central frequency as well as the detector bandwidth define a spectral window
of the signals that can be detected. In this schematic representation, fLO is chosen such that the
quantum signal spectrum is in the spectral window and the classical signal is not.

Figure 6.6: In this graph we show the sensitivity to polarisation of the excess noise measurement
during the protocol. We acquire data from the oscilloscope over 1 hour with an interruption every 10
minutes. During the pause we set the PC in the best way possible by hand. The results of the hour
of measurement are then plotted and divided into 6 measurements denoted by "Mes 1-6". We clearly
see the excess noise over time increases until the polarisation is realigned. We can also observe the
mean noise level increases in measurements 5 and 6 which is due to the drifts in the settings of the
IQ modulator. We discuss these drifts in more detail in the subsection 6.4.4.
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Figure 6.7: Shot-noise plus electronic noise variance as a function of the LO power. The blue circles
are measurements and the dashed red line is a linear interpolation of the linear regime. We observe
a linear dependence until the LO power is above 110 mW, at which point the detectors respond in a
non-linear fashion.

6.2 Calibration

The precise calibration of the shot-noise is central to the CV-QKD experiment. Since the action of the
eavesdropper is quantified by the excess noise -the noise above the shot-noise threshold- it is crucial
that the shot-noise is well known. Underestimating the shot-noise would lead to an overestimation
the excess noise and would therefore cause the protocol to extract less secret key than what it could.
Even worse, overestimating the shot-noise would lead to an underestimation of the excess noise and
potential security flaws in the protocol. The object of this section is to discuss and describe our
shot-noise calibration.

6.2.1 Receiver linearity

The electronic noise ⌫el is expressed in SNU as

⌫SNU
el =

⌫V
2

el

N0
, (6.1)

where the superscripts SNU and V 2 refer to the unit and N0 is the shot-noise variance. The value
⌫V

2

el is stable and only depends on the noise floor of the low-noise receivers and of the oscilloscope.
Hence ⌫SNU

el is inversely proportional to the shot-noise value N0 which is itself proportional to the LO
power. Therefore it is interesting to operate the experiment with high LO power in order to minimise
⌫SNU
el . The ratio ⌫V

2

el /N0 is called the clearance and is usually expressed in dB. It gives the value of
the electronic noise in SNU.

However we cannot simply set the LO to the strongest output power (200 mW or 23 dBm) because
above a certain threshold the receivers do not respond linearly to their input, which induces noise.
Therefore we must make sure we set the LO power such that the balanced receivers are operated in
the linear regime. We show in figure 6.7 a plot of the shot-noise value in V 2 versus the LO launch
power. We clearly observe a linear dependency of the shot-noise to the LO power until the LO reaches
approximately 110 mW, after which the receiver response is outside of the linear regime. We chose
the LO launch power to be 100 mW and display the clearance in the figure 6.8
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Figure 6.8: Power spectral density output of the balanced receivers with and without the LO turned
on.

6.2.2 Shot-noise estimation

We describe our shot-noise estimation procedure here.

Building the shot-noise estimator. We estimate the shot-noise experimentally by the following
procedure. First, when the signal and LO are turned off, the data observed on the oscilloscope
corresponds to the fluctuations induced by the electronic noise of the detectors. We record from
the oscilloscope a set of samples {Xi

el}
n
i=1 which are centered before we compute the electronic noise

estimator expressed in V 2 as :

⌫̂V
2

el =
1

n

n
X

i=1

�

Xi
el

�2
(6.2)

Then the LO is turned on, generating shot-noise on the samples read by the oscilloscope. We
perform a second measurement to obtain a set of samples {Xi

N0
}ni=1. These samples are centered and

we compute the shot-noise estimator as :

N̂0 =
1

n

n
X

i=1

�

Xi
N0

�2 � ⌫̂V
2

el (6.3)

Electronic noise variations. In theory for every shot-noise estimation we should also estimate
⌫V

2

el . In practice however this value of the electronic noise can be considered constant at the scale of a

day of experimental work. We show this in figure 6.9 by computing successive estimators for ⌫V
2

el over

more than 7 hours. In the plot we normalised our values by a typical value of N̂0 to put the electronic
noise variations in perspective compared to the shot-noise. We find that the standard deviation of the
electronic noise measurement is of the order of 5 ⇥ 10�4 SNU. Since this value is much smaller than
other fluctuating terms we can consider it is constant during the experiment.

Shot-noise variations. The shot-noise value fluctuates over time, for example because of fluc-
tuations in the LO power or vibrations in the lab. We found that a particular cause of instability
was temperature variations in the lab. We illustrate this in the figure 6.10 where we can observe the
correlations between temperature and shot-noise variations.
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Figure 6.9: Electronic noise, in SNU, evolution over time. We observe the electronic noise variations
are of the order of 10�4 SNU, which is negligible compared to other system fluctuations.

Figure 6.10: Evolution of N̂0(t) over time, plotted in blue. We also plot the temperature fluctuations
in the lab in orange.

Because of this the shot-noise fluctuations must be tracked during the experiment, which we achieve
by performing a shot-noise estimation before each data acquisition. Since there is a delay �t between
the shot-noise acquisition and the data acquisition, it is interesting to investigate how the shot-noise
behaves during this time interval in particular because these fluctuations will also affect our excess
noise estimation. For this we take a high estimation of �t = 7.5s and study the quantity

∆N̂0(t) =
N̂0(t+ �t)� N̂0(t)

N̂0(t+ �t)
. (6.4)

The standard deviation of this estimator quantifies the average fluctuation of the shot-noise be-
tween a shot-noise estimation block (at time t) and a data acquisition block (at time t + �t). The
results are displayed in the figure 6.11 and show that the standard deviation of ∆N̂0(t) is approxi-
mately 2⇥ 10�3 SNU, which is also the minimal precision on the excess noise we can hope to achieve.

Data acquisition procedure. According to our results we define the following acquisition pro-
cedure to estimate successive blocks of quantum and classical data. We begin by estimating once and
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Figure 6.11: We plot ∆N̂0(t) over time and estimate, in SNU, how much the shot-noise fluctuates
between the shot-noise estimation and the data measurement.

Figure 6.12: The acquisition loop for our CV-QKD protocol. We estimate the electronic noise once
and for all. Then we alternate shot-noise estimation blocks with data blocks in order to track the
shot-noise fluctuations.
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for all the electronic noise and do not track its fluctuations for the rest of the experiment. Then, we
alternate between one measurement dedicated to the shot-noise estimation with the signal off and one
measurement dedicated to the key distillation with the signal on. This is represented in the figure
6.12.

6.2.3 Improving the statistical precision of the shot-noise

The standard deviation of ∆N̂0(t) derived in the previous subsection should be minimized to improve
the precision of the excess noise estimation. This can be achieved by different ways, for example by
reducing the delay �t or by stabilizing the temperature in the laboratory. Unfortunately at our level
we do not have much control over these : �t is fixed by the wait time due to the synchronisation of
the AWGs and the temperature regulation system is not under our control. Hence we attempt to
leverage a third solution which we can control : the statistical precision of our estimators. This will
be the focus of this subsection, but note the concepts developed here will also be useful to predict the
precision on the excess noise estimator.

Statistical precision and number of points. Statistical effects are directly related to the
number of points used to compute the estimators as a consequence of the central limit theorem. To
see this let us consider the shot-noise estimator N̂0 is computed from the set of i.i.d. random variables
{Xi

N0
}ni=1 where for all i, Xi

N0
⇠ N (0, N0 + ⌫el). We can compute the mean and variance of the

random variable (Xi
N0

)2 as

E[(Xi
N0

)2] = N0 + ⌫el, (6.5)

Var[(Xi
N0

)2] = 2(N0 + ⌫el)
2. (6.6)

Note the second equality is obtained by looking at the moment of XN0
. The central limit theorem

states that in the limit of large numbers, the sum of i.i.d. random variables converges towards a
Gaussian random variable with mean and variance the sum of the means and the sum of the variances
of the i.i.d. random variables. Therefore we have that

1

n

n
X

i=1

�

Xi
N0

�2 ⇠
n!1

N (N0 + ⌫el,
2

n
(N0 + ⌫el)

2) (6.7)

Let us put aside the estimation of ⌫el for the moment and let us consider that ⌫̂el = ⌫el. In the
limit of a large number of samples, we can write that

N̂0 ⇠ N (N0,
2

n
(N0 + ⌫el)

2). (6.8)

Hence the estimator N̂0 follows a Gaussian probability distribution and has standard deviation

�N̂0
=

r

2

n
(N0 + ⌫el) ⇡

SNU

1.56p
n
, (6.9)

where we obtained the value in SNU by replacing ⌫el by our experimental value of 0.1 SNU. Looking
at equation 6.9 we obtain a rule of thumb for the statistical precision of N̂0 which scales as 1p

n
.

Importance of the i.i.d. hypothesis. A key hypothesis in the central limit theorem is that
the shot-noise sample points {Xi

N0
}ni=1 are all i.i.d. Therefore it is not sufficient to consider only the

number of sample points used to compute N̂0 but one must consider the number of i.i.d. sample
points retrieved from the oscilloscope. This can be seen in the figure 6.13 where we plot ∆N̂0(t) in
the two cases where the oscilloscope samples the points at 1 GHz and at 20 GHz. In both cases the
same number of points are used to compute N̂0, however they are spread over a longer time window
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Figure 6.13: We plot ∆N̂0(t) for two different oscilloscope sampling rates and show the importance
of the i.i.d. hypothesis in the central limit theorem.

when the oscilloscope runs at 1 GHz compared to the case where it runs at 20 GHz. From the figure,
we observe the measurement at 1 GHz is much more stable than the measurement at 20 GHz. This
is explained by the fact that there are more i.i.d. samples in this case, therefore it is interesting to
understand how many i.i.d. samples we have in our acquisition.

Considering that the detectors have a bandwidth Belec, the minimal time between two samples
Xi

N0
and Xi+1

N0
for them to be independant is given by

T iid
samp =

1

Belec
. (6.10)

Hence for the target value n of i.i.d. sample points, the acquisition {Xi
N0

}ni=1 must span at least a

time Tacq = n⇥T iid
samp. In practice the oscilloscope samples at rate facq faster than 350 MHz, therefore

we will obtain a total number of samples ntot > n which are not i.i.d., as we illustrated in figure 6.13.
The number of sample points ntot required to have n i.i.d. points is given by

ntot = Tacq ⇥ facq, (6.11)

= n⇥ facq
Belec

. (6.12)

Equivalently, we can find the number of i.i.d. samples from the the total number of samples and
the sampling rate :

n = ntot ⇥
Belec

facq
(6.13)

Statistical precision in our experiment. Based on what was said above, the best option to
precisely estimate the shot-noise is to use a slower sampling rate to cover a larger time window. Given
that the maximum number of points that can be retrieved from the oscilloscope is around 50 Mpts,
we can compare the theoretical statistical precision of the estimation at facq = 1 GHz and facq = 20
GHz. We begin by computing the number of i.i.d samples in both cases :

n1GHz = 17.5⇥ 106,

n20GHz = 0.875⇥ 106, (6.14)
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which then provides the standard deviations due to statistical effects

�1GHz

N̂0
= 3.7⇥ 10�4,

�20GHz

N̂0
= 1.7⇥ 10�3, (6.15)

For a Gaussian random variable, we can bound the probability that the shot-noise value N0 is
contained in an interval Ik� of length 2k�N̂0

centered on N̂0 by 68.27%, 95.45% and 99.73% for k = 1,

2 and 3 respectively. Hence we will define the confidence in our estimator N̂0 by considering the
length of the confidence interval pk� = |Ik�|. Lets examine the statistical precision of our estimation
for k = 2 and k = 3. We have

p1GHz
2� = 1.5⇥ 10�3, p1GHz

3� = 2.2⇥ 10�3,

p20GHz
2� = 6.8⇥ 10�3, p20GHz

3� = 1⇥ 10�2. (6.16)

The results displayed above confirm that we must estimate the shot-noise at sampling frequency
1 GHz if we hope to precisely estimate excess noise values of the order of 0.01 SNU and additionally
provide the statistical precision of about 0.002 SNU in our estimation while doing so.

Naturally these results only concern the statistical precision and do not account for the temporal
variations of the shot-noise. The standard deviations displayed in the figure 6.13 account for both
effects and can be used to estimate the global precision of the shot-noise estimator. We find that at
sampling rate 1 GHz we obtain a precision of

p1GHz
2� = 7⇥ 10�3

p1GHz
3� = 1⇥ 10�2. (6.17)

Difference in electrical gain based on the oscilloscope sampling frequency. We high-
lighted the necessity to estimate the shot-noise with the oscilloscope running at 1 GHz. However we
noticed that the sampling rate also affects the electrical gain of the oscilloscope, therefore the shot-
noise estimation performed at 1 GHz is not centered on the same value than the shot-noise estimation
performed at 20 GHz. We illustrate this in the left plot in figure 6.14 where we can clearly see the
difference in not only the fluctuations, but also for the mean value of the estimation between 1 GHz
and 20 GHz sampling rate.

To solve this issue we performed several shot-noise measurements by alternating the sampling
frequency of the oscilloscope. Then we computed the ratio between the estimation at 20 GHz and the
estimation at 1 GHz and obtained the value

R20/1 =
N̂20GHz

0 (t)

N̂1GHz
0 (t)

. (6.18)

Then the shot-noise estimator at 20 GHz is computed from the estimator at 1 GHz as

N̂20GHz
0 = R20/1 ⇥ N̂1GHz

0 (t). (6.19)

The value of R20/1 is different for both quadratures and is stable as long as the electric cables
linking the detectors to the oscilloscope do not move. Every one or two weeks we re-estimate this
parameter to verify the value has not shifted.
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Figure 6.14: (left) We perform shot-noise estimations over night by alternating the oscilloscope sam-
pling frequency between 1 GHz and 20 GHz. We observe that the mean values of the shot-noise
estimation in both cases is not the same because the electrical gain of the oscilloscope depends on the
sampling frequency. (right) In this plot we show the ratio of the shot-noise estimator at 20 GHz and
at 1 GHz. This ratio is relatively stable, but can change if we touch the electrical cables linked to the
oscilloscope.

6.3 Digital signal processing

During the DSP stage our aim is to reconstruct the sequence of classical and quantum symbols. The
classical symbols will then be demodulated into a bit sequence while we will use the quantum symbols
to estimate the excess noise of our transmission. In a real-life implementation the quantum data
should also be mapped to a bit sequence to form the raw key, but this is outside the scope of this
work where we focus on a proof of concept of joint classical and quantum communications.

We begin the DSP stage after the acquisition of the data retrieved from the oscilloscope, which
provides a list of complex samples {c(n)}

nacq

n=1 for the classical data and {q(n)}
nacq

n=1 for the quantum
data. We process the classical data first in order to extract the synchronisation information as well
as the phase and frequency estimators used to correct the quantum data.

6.3.1 Classical channel

The DSP applied to the classical channel is for the most part composed of the DSP algorithms
discussed in chapter 5. We give the recap of the different transformations here.

Backshifting the classical signal. The first step is to spectrally shift the classical data in order
to correct the frequency shift between classical and quantum channels we induced at emission. The
frequency shift is given by ∆fshift = fshift,c � fshift,q = 3 GHz, hence multiply the classical samples as

c(n) := c(n)⇥ exp

✓

�j2⇡n
∆fshift

facq

◆

(6.20)

RRC filter. We then apply the matched RRC filter directly on the samples such that

c(n) := F�1

✓

F
�

{c(n)}
nacq

n=1

�

⇥ HRRC(f)

◆

(6.21)

where F stands for the Fourier transform and HRRC is the RRC filter described in chapter 5.
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CMA. The CMA corrects many channel impairments and also finds the optimal sampling time
for the symbol. As opposed to the 2x2 butterfly FIR filter described in 5.4.1, we do not use the CMA
to compensate the polarisation rotations in the fiber since we perform the polarisation separation
manually. Here the CMA is operated in "single-input single-output" (SISO) mode and only considers
one polarisation.

The number of samples per symbol nsa for the classical data is given by the ratio nsa = facq/fc
and is equal to 5 in our case. The CMA makes the transition from the set of samples {c(n)}

nacq

n=1 to
the set of symbols {c̃(k)}

nsymb

k=1 using the filter-tap coefficients {h(i)}W�1
i=0 as

c̃(k) =
W�1
X

i=0

h(i)⇥ c

✓

nsak � bW
2
c+ i

◆

. (6.22)

Recall the CMA is an adaptive equalizer, meaning that the filter-tap coefficients are updated with
an error function feedback. As the algorithm runs over the set of samples, the filter-tap coefficients
converge towards a constant value and the algorithm is stationary. We use 10 000 symbols to train
the algorithm until the filter converges, therefore we simply drop the 10 000 first symbols and only
work with remaining ones. For simplicity we conserve the same notation for the number of classical
symbols nsymb.

Carrier recovery. The next step is the carrier recovery. We first perform the frequency offset
estimation and correction using the 4th-power Viterbi and Viterbi algorithm described in 5.4.2. This
produces the frequency offset estimator f̂∆ which is then used to correct the data :

c̃(k) := c̃(k)⇥ exp

✓

�j2k⇡
f̂∆
fc

◆

(6.23)

Following this, we perform the phase estimation using the 4th-power Viterbi and Viterbi algorithm
averaged over a large window of 91 symbols. We made the choice of the large window to improve the
phase estimation precision because we have ultra-low linewidth lasers, therefore the phase is relatively
constant over the averaging window. The algorithm produces a sequence of phases {�k}

nsymb

k=1 which
are then used to correct the data :

c̃(k) := c̃(k)⇥ exp(�j�k) (6.24)

BER estimation and sequence beginning. Finally the sequence of symbols is mapped to
a sequence of measured bits following the QPSK symbol-to-bits map. With our knowledge of the
sequence of bits sent by Alice, we search for correlations between that sequence and the sequence at
Bob’s. The correlation is maximal when Alice’s sequence matches Bob’s sequence, thus we find the
index kstart and the symbol c̃(kstart) in Bob’s data corresponding to the beginning of the sequence
sent by Alice. From the index kstart and the number of symbols at Bob’s, we can generate the full
bit string that was sent by Alice. We compare this bit string with the one at Bob’s and measure the
BER as the ratio of errors over the total number of bits. After this step, we begin the quantum data
DSP.

6.3.2 Down sampling

The first step in the quantum data processing is transposing our set of samples {q(n)}
nacq

n=1 in a set of
symbols. Since we want to use the phase and frequency estimators derived on the classical channel to
correct the quantum data, we must make sure to preserve an equivalence between the two channels.
Recall we discarded 10 000 symbols -initially 50 000 samples since we have 5 samples per symbol- on
the classical channel corresponding to the CMA training sequence. In order to preserve the equivalence
between the data streams, we must also discard 50 000 samples on the quantum channel. However
we conserve the notation nacq for simplicity here.
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Figure 6.15: Schematic representation of the guided down sampling method. From the beginning of
the classical sequence, we find the sample corresponding to the beginning of the quantum sequence.
The optimal sample choice for the first quantum symbol is located at constant distance �samp of this
sample. We can then sample the full quantum sequence starting from the first symbol.
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We down sample the signal from facq/fq = nsa,q = 80 samples per symbol to 1 sample per symbol.
Since we clearly oversample the quantum channel, our approach is to select the one sample closest to
the optimal sampling instant. For this we have different methods discussed below.

Guided down sampling. Assuming the synchronisation between both channel holds, the begin-
ning of the quantum sequence matches the beginning of the classical sequence. Hence the position of
the optimal sample for the first quantum symbol should be the same relative to the first classical symbol
over multiple acquisitions. We illustrate this idea in figure 6.15 and describe the process here. First we
know the index kstart corresponding to the beginning of the classical data sequence. Therefore we know
that the first sample of the quantum sequence is q(nsa ⇥ kstart). Since the channels are synchronised,
the optimal sample for the beginning of the quantum sequence is q̃(sstart) = q(nsa ⇥ kstart + �samp)
where the optimal shift �samp is constant over multiple acquisitions. We can then create the set of
quantum symbols by taking every nsa,q sample forward and backwards to generate the set of quantum
symbols {q̃(s)}

nsymb,q

s=1 .
The question remains on how to gain knowledge of �samp. To do this we run the protocol once

operating the quantum signal in the classical regime. When the classical DSP is finished, we try all
possible values for �samp 2 {0, nsa,q�1} and select the value which minimizes our error function. Said
error function is inspired from the CMA in classical coherent communications as we look to minimize
the intra-symbol variance of the signal modulus. When Alice employs a QPSK modulation this is easy
: since all the symbols of the constellation have the same modulus, we simply select the sample which
minimizes the variance of the signal modulus. When the PCS-64QAM constellation is employed, we
must first group the sequence of symbols at Bob’s depending on which symbol was sent by Alice.
Then we take the value of �samp which minimizes the average variance of the modulus of all symbols
in the sequence corresponding to the same 64-QAM symbol sent by Alice.

Pulses. The second way to down sample the signal is to carve pulses on the quantum signal
instead of operating the channel with continuous-wave light. This way, we can simply select the one
out of nsa,q possible samplings which maximize the detected power.

Exhaustive search. The final downsampling approach is simply to test all downsampling pos-
sibilities (among nsa,q = 80) and select the one which provides the best excess noise measurements.
While computationally intensive, this method is useful to verify whether the system behaves as we
expect.

During the course of this work we first modulated the quantum states according to a QPSK modu-
lation, and then scaled up the constellation to a PCS-64QAM. In the case of the QPSK modulation we
used exclusively the guided down sampling method. This method functions regardless of the quantum
signal power thus it can effectively down sample a very low-intensity signal, as is required for the secu-
rity of QKD using a QPSK modulation. When we shifted to the PCS-64QAM, we continued using the
guided down sampling but also verified our results with the exhaustive search. The implementation
of pulses is ongoing at the time this is written.

6.3.3 Frequency and phase correction

Following downsampling, we use the frequency and phase estimators computed on the classical channel
to correct the quantum data. First the frequency offset is corrected as

q̃(s) := q̃(s)⇥ exp

✓

� j2s⇡
f̂∆
fq

◆

. (6.25)

Then we proceed to the phase correction. Given the set of classical symbol phases {�k}
nsymb

k=1 , we
average the �k over groups of length fc/fq = 16 in order to produce the set of quantum symbol phases
{✓s}

nsymb,q

s=1 . We then correct the quantum data phases :
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Figure 6.16: (left) Phase evolution of the classical and quantum signals over time after compensation

of the frequency offset f̂∆. We observe there remains a frequency offset between both channels which
induces a rotation of the constellation points showed in inset. (right) We show the same graph after
using our residual frequency offset compensation algorithm. It efficiently compensates the residual
offset therefore correcting the constellation rotation such that we can clearly observe the 4 QPSK
symbols.

q̃(s) := q̃(s)⇥ exp(�j✓s). (6.26)

Ideally the carrier recovery for the quantum signal would end here. However we observe that there
remains a residual frequency offset in the quantum data which causes a rotation of the constellation
and considerably increases the excess noise estimation. To see this consider the left graph of figure
6.16. Here we operate both channels in the classical regime and we perform the full DSP of the
classical channel. Then we down sample the quantum signal and correct the frequency offset with the
estimator computed on the classical channel. Since both channels are operated in the classical regime,
we can use the Viterbi & Viterbi phase estimation algorithm on both channels to compare their phase
evolution over time. We see that there is a time-dependant linear offset between the phases on the
quantum channel and on the classical channel, which corresponds to the residual frequency offset we
mentioned. The inset shows the QPSK constellation we obtain after the DSP step of equation 6.26,
illustrating the rotation of the constellation points.

Cause behind the residual frequency offset. We can understand this phenomenon by return-
ing to the beginning of the classical DSP. We start by backshifting the classical channel by 3 GHz
such that the central frequency of classical and quantum data matches, this way the frequency offset
estimator computed on the classical channel will also be the frequency offset for the quantum signal.
However this assumes that the difference in the central frequency of the quantum and classical spectra
is exactly 3 GHz. In reality the AWGs do not have a common clock reference with the oscilloscope
used for the measurement, therefore what is 3 GHz for the clock reference at Alice can appear to be
different with the clock reference at Bob’s.

Besides the reference clock difference, another cause to the residual frequency offset is caused by
the clock jitter in Alice’s system. The stability of clocks in electronic devices, which is never perfect,
is usually expressed in parts per million or ppm. This quantifies the average difference of the number
of samples the device outputs compared to the ideal case over a million samples. Our reference clock
at Alice has a precision of 1 ppm, which means that our output signal has a frequency precision of
10�6. Therefore we achieve our target frequency shift of 3 GHz with a precision of 3 kHz.
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Figure 6.17: The residual frequency offset compensation algorithm exploits the parameter estimation
phase of the QKD protocol. Bob performs a +5 Hz and a -5 Hz incremental rotation of his data
until he reaches a local minimum for the excess noise estimator. When he does, the total frequency
correction performed on his data is the residual frequency offset.

Correcting the residual frequency offset. This problem is unavoidable in all architectures
for which the quantum carrier frequency is estimated from a frequency multiplexed signal. To solve
this, we found in the literature [84] a method consisting in sending two pilot tones instead of one.
By estimating the frequency offset between both pilots the authors track the clock fluctuations and
correct the frequency offset term. However we propose a new approach to this problem without the
need to engineer additional reference signals. We exploit the parameter estimation phase of the QKD
protocol. Instead of revealing his symbols at the same time than Alice, Bob uses the information
disclosed by Alice to correct the frequency offset in his data. He does this by implementing a ±�f
incremental frequency shifts to his constellation, looking to minimize the excess noise estimator. While
the excess noise estimator decreases he continues rotating his data until he reaches a local minimum.
For our work we chose �f = 5 Hz since we did not notice any particular advantage when increasing
the granularity of the search. This algorithm is represented in figure 6.17. The right graph in figure
6.16 shows the phase evolution of classical and quantum signals after correction by our algorithm. We
observe it matches for both channels, and efficiently corrects the distortion of the constellation, which
is showed in inset.

Residual phase offset. After all impairments have been corrected, there remains a phase offset
on the quantum constellation. This is easily corrected using a method similar to the residual frequency
offset compensation algorithm. We rotate all quantum symbols by an incremental phase shift until
the excess noise estimator is minimal.

6.3.4 Parameter estimation

The goal of the parameter estimation is to compute an estimator for the excess noise over the trans-
mission.

Excess noise estimator. Let us denote the sequence of symbols sent by Alice by {ã(s)}
nacq/nsa,q

s=1

where each symbol is the realization of a random variable A with variance VA in SNU. The theoretical
variance of Bob’s data is given from the different experimental parameters as

VB =
T

2
VA + 1 + ⌫el +

⇠

2
. (6.27)

By taking the conditional variance of Bob’s data, we find the following relation to express the
excess noise

⇠ = 2⇥ (VB|A � 1� ⌫el). (6.28)
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Figure 6.18: Evolution of �
⇠̂

as a function of the number of blocks averaged to build ⇠̂. We can
increase precision of the excess noise estimation by concatenating several blocks.

We build the excess noise estimator by replacing the theoretical values above by the corresponding
estimators. We compute V̂B|A by taking the intra-symbol variance of Bob’s data. This amounts to
grouping the quantum symbols based on the symbol sent by Alice to generate the group of symbols
Qa = {q̃(s)/ã(s) = a}. There are therefore 4 groups when we use the QPSK modulation and 64 groups
for the PCS-64QAM modulation. Then we can compute the conditional variance of the quadratures
given symbol a was sent V̂B|A=a = Var(Re[Qa]) = Var(Im[Qa]). Finally we obtain the conditional
variance estimator given by

V̂B|A =
X

a

p(a)VB|A=a, (6.29)

where the p(a) are the experimental probabilities for each symbol equal to 1/4 for the QPSK
modulation format and displayed in figure 6.4 for the PCS-64QAM modulation format.

Precision of the excess noise estimator. The overall precision of our excess noise estimation
depends on the one hand of the statistical effects in the estimation of V̂B|A and on the other hand on
the precision on the shot-noise calibration. We discuss these here.

• Statistical precision of V̂B|A. Similarly to the methodology we detailed for the shot-noise estima-

tion, the estimator of V̂B|A can be approached by a Gaussian random variable with mean value

VB|A and variance 2
nq

V 2
B|A where nq is the number of quantum symbols used for the estimation.

Considering the excess noise is orders of magnitude below the shot-noise, and using our previous
approximation of ⌫el = 0.1 SNU, let us approximate the variance due to statistical effects of
V̂B|A, expressed in SNU2, as :

Var(V̂B|A)stat =
2

nq
⇥ 1.21. (6.30)

• Precision on the shot-noise calibration. Since we are in shot-noise units, subtracting the con-
tribution of the shot-noise to the total noise is achieved by subtracting 1 SNU. This can be
misleading because it looks as if we can always subtract the contribution of the shot-noise when
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in reality the variance in the shot-noise calibration is transferred to the excess noise measure-
ment. This term dominates the precision on the electronic noise measurement such that the
variance of the excess noise estimator due to imperfect calibration is expressed as :

Var(⇠̂)calib = 4⇥Var(∆N̂0), (6.31)

In total, the variance of the excess noise estimation is the sum of the variances induced by the
statistical effect and by the calibration, such that

Var(⇠̂) = 4⇥
�

Var(V̂B|A)stat +Var(∆N̂0)
�

(6.32)

Let us now investigate the precision we can achieve over one acquisition and by averaging multiple
acquisitions. In one acquisition with 10 Mpts we have nq = 124 375 symbols, which yields, according

to 6.30 and to the variance of ∆N̂0 determined experimentally in figure 6.11, the standard deviation
for the excess noise estimator :

�
⇠̂ch

= 0.0095 (6.33)

This value can be improved upon by averaging excess noise estimators over multiple blocks, which
will result in dividing the standard deviation of ⇠̂ by the square root of the number of blocks. We give
the evolution of �

⇠̂
as a function of the number of blocks in the figure 6.18.

6.4 Parameter optimisation and results

Now that we have described how to operate the joint quantum and classical coherent communication
experiment, let us discuss how we chose our experimental parameters for both experiments and the
results obtained

6.4.1 Quantum channel power

The modulation variance VA used on the quantum channel should be chosen as to maximise the
key rate. This value greatly depends on the modulation format employed, but also on the targeted
distance and on the expected excess noise. In figure 6.19 we plot the theoretical key rates for both the
QPSK and PCS-64QAM formats for different distances. The plot for the QPSK modulation, which is
obtained via solving the SDP defined in reference [52], was also taken from this reference. We plotted
the data corresponding to the PCS-64QAM format using code provided by the authors of [48].

QPSK. Using the QPSK modulation the optimal coherent state amplitude is of about ↵ = 0.5
at 20 km corresponding to VA = 2↵2 = 0.5. We will operate our experiment over 15 km, hence the
optimal value of VA is possibly higher. However we observe it does not vary very much which the
distance when looking at the plots for the larger distances of 50, 80 and 100 km. We will assume 0.5
is the optimal modulation variance in our case.

PCS-64QAM. Compared to QPSK, the PCS-64QAM format tolerates larger modulation vari-
ances. It seems the optimal VA in this case is around VA = 5 and does not depends very much on the
distance and on the excess noise in the range of parameters investigated.

6.4.2 Classical channel power

After optimising the quantum channel modulation variance, we investigate the effect of the classical
channel on the performance of the protocol. The power of the classical channel, Pc, has a threefold
impact we discuss below.
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Figure 6.19: (top) Key rate per symbol using the QPSK modulation versus the coherent state am-
plitude. Plot taken from reference [52]. The excess noise at Alice was set at ⇠A = 0.01 SNU, hence
the excess noise at Bob’s is defined by ⇠B = 10�0.02⇥d⇠A where d is the distance. (bottom) Key rate
per symbol using the PCS-64QAM modulation versus the modulation variance for 3 values of excess
noise, defined at Alice.

Leakage on the quantum channel. The classical channel is multiplexed in frequency and
polarisation with the quantum channel. However the components used to polarisation multiplex both
signals, for example the PBS and the dual-polarisation I/Q modulator, have a finite polarisation
extinction ratio (PER). This means there is necessarily some power from the classical channel which
will leak on the quantum channel and generate excess noise. In addition to the finite PER, the
components set manually always suffer from slight misalignment from their optimal position which
generates more leakage from one channel to the other. The frequency offset between both channels
generates additional extinction by shifting the classical data outside of the bandwidth of the quantum
receivers, but unfortunately the classical channel will still generate excess noise on the quantum signal.
We can write the excess noise due to the leakage of the classical channel, noted ⇠leak, in a general way
as

⇠leak = ecqPc (6.34)

where ecq is a parameter representing the total extinction between the channels, which is in general
not constant during the course of the experiment due to shifts in polarisation and the free-running
signal and LO which modifies the frequency offset and hence the extinction obtained via the frequency
degree of freedom.

In the figure 6.20, we plot the value of ⇠leak for different values of Pc by regularly calibrating the
LO frequency offset and the polarisation controllers. This plot highlights the linear relation between
Pc and ⇠leak and gives some insight as to what value of ⇠leak we should expect.

Precision of phase recovery. The phase recovery procedure is performed on the classical data
for both the classical and quantum channels. Its goal is to provide an estimator �̂ for the relative
phase between signal and LO �. The precision of ˆphi depends on the noise on the classical channel
during the Viterbi & Viterbi phase recovery algorithm, �2

c , and on Pc. It can be written as [20]
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Figure 6.20: Excess noise due to the leakage of the classical signal on the quantum data. To plot this
graph we cut the modulation on the quantum channel and compared the noise levels -in SNU- with
and without the classical signal.

∆� =
�2
c

Pc
, (6.35)

where ∆� = Var(� � �̂) is the variance of the residual phase after correction and is inversely
proportional to Pc. In the case of small ∆� this can be translated into a quadrature variance on the
quantum channel as

⇠phase = TVA∆�. (6.36)

Therefore the excess noise due to imperfect phase recovery is inversely proportional to Pc. From
the results obtained in figure 6.20, we can determine an approximately optimal value of Pc based on
the measured excess noise. If the leakage noise is dominant, i.e. the measured ⇠ is approximately
equal to the expected leakage noise, then it means we should reduce the Pc. On the other hand if we
find excess noise values much larger than the expected leakage noise, then we should increase Pc to
reduce the imperfect phase recovery noise.

Classical BER. The BER on the classical channel is directly correlated to Pc. Since we are
designing a joint classical and quantum communication system we must insure that we provide reliable
classical communications. A particularly useful tool for this is forward error correction (FEC) which
consists in introducing some redundancy bits in the communication to correct any errors below a
certain threshold. To be conservative, we assume a raw BER of 10�2 can be corrected with a 20%
overhead on the data. Hence we will assume that if we achieve an experimental BER below this
threshold we have achieved reliable classical communications.

6.4.3 Results

We operated our hybrid classical and quantum communication system during one hour and measured
the classical BER and the excess noise on the quantum channel. The set of parameters, measurement
results and expected key rates are displayed in the table 6.2. The excess noise for each modulation is
taken as the average over all measurements, which are plotted in the figure 6.21.

Discussion. We performed two experimental demonstrations of a joint quantum and classical
transmission over one fiber, using either a PCS-64QAM or a QPSK modulation format on the quantum
channel. We exploited the fixed phase and frequency relation between classical and quantum channels,
due to them originating from the same laser, to perform the DSP on both channels using the estimators
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QPSK PCS-64QAM
VA (SNU) 0.5 5
Pc (dBm) -30 -22

distance (km) 15 10
⇠ (SNU) 0.009 0.0212
⌫el (SNU) 0.09 0.09

BER 1.10�4  1.10�7

Key rate (Mbps) 14 18.5
Security proof [52] [48]

Finite-size effects No Yes

Table 6.2: Comparison of the parameters used and experimental results for both experiments with
different modulation formats on the quantum channel.

Figure 6.21: Excess noise measurement performed during one hour with the PCS-64QAM format (left)
and the QPSK modulation format (right) on the quantum data. Each point is the average excess noise
taken over 3 blocks of 124375 symbols. The statistical error bars at 3 � are displayed.
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computed on the classical channel. Hence, we did not need to generate dedicated pilot tones to solve
the carrier recovery problem on the quantum channel.

With the QPSK modulation, we had to set the quantum channel power to an extremely weak
value of VA = 0.5 in order to stick to the optimal values of the security proof used. In this regime the
phase noise is not as dominant as for higher values of VA therefore it was advantageous to operate the
experiment with a low value of Pc to minimise ⇠leak which we expected would play a significant role
in our total excess noise measurement. With the chosen classical channel launch power of Pc = �30
dBm, the BER is below the FEC threshold therefore reliable classical communication is achievable at
rate 3.2 Gbps assuming a 20% FEC overhead. Our low average excess noise of 0.009 SNU allowed us
to infer our secret key rate of 14 Mbps from the data provided in reference [52], which we transposed
in this manuscript in the figure 4.2 (left). This first experiment yielded encouraging results of a joint
classical and quantum communication system over the same fiber and importantly of the benefits
the classical channel could provide upon the quantum data. Beyond the carrier recovery, important
synchronisation information was also retrieved from the classical data which enabled the sampling of
the very weak quantum signal.

However a few frustrations remained as to the regime of parameters used for the experiment. First,
the very weak value of VA insures that at larger distances the SNR will essentially go to 0 and no
secret key will be obtainable. Also the very high sensitivity of the key rate to the excess noise value
causes the secret key rate to vanish when we take into consideration the worst-case estimator in the
finite-size regime. Finally, the classical channel was operated at a very low power, far from typical
values observed in coherent communication systems. During the course of this thesis, new security
proofs [48] provided tools to easily compute key rates for arbitrary modulations and showed that key
rates approaching the Gaussian modulation could be achieved using the PCS-QAM format with a
limited number of states, starting from 64. Hence we set out improve the range of parameters used
in the experiment with this modulation format.

With the PCS-64QAM format, the optimal value of VA = 5 is 10 times what is was previously. This
means, according to our model 6.36, that the phase noise will play a significant larger role compared
to before. We increase Pc by a factor ⇠ 6 to mitigate the increase in ⇠phase but induce additional
⇠leak by doing so. Therefore we naturally obtain a larger value of ⇠ = 0.0212 SNU in this regime, but
this is tolerated by the security proof. Our experimental data is compatible with a secret key rate of
18.5 Mbps with the worst-case estimator and the privacy amplification penalty due to the finite-size
effects. Although we had to reduce our communication link to 10 km to maintain a positive key rate
in the finite-size regime, our results are compatible with a key rate of 44 Mbps at 15 km and enable
key distillation up to approximately 40 km in the asymptotic regime. These results prove that hybrid
quantum and classical systems can coexist and be designed such that they are beneficial to the QKD
channel. Future designs of joint systems could even use the secret key obtained during the QKD
protocol to encode some of the classical symbols leading to symbiotic operation of joint quantum and
classical communications.

6.4.4 Improvement perspectives

The results presented here constitute an encouraging proof-of-concept of the designs of hybrid com-
munication systems. For future work, we strongly believe these results can be improved on, perhaps
drastically, by exploring a few direction we would like to discuss here.

Polarisation control. A first step towards improving the experiment would involve deploying au-
tomatic polarisation controllers at Alice and Bob’s in order to maintain the SOP at the optimal setting
over the course of the transmission. This is crucial not only for performance, but also for consistent
repeatability of the experiment and efficient optimization of the other experimental parameters.

Synchronisation. We believe the synchronisation of the two AWGs generates instability and
perhaps additional noise. First, the fact that AWG2 emits periodically makes it rather difficult to
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Figure 6.22: To plot this graph we ran several iterations of the acquisition loop. When it came to
down sampling the quantum data, we computed the excess noise for every sample before and after the
optimal sampling instant determined during the guided down sampling. Then we plotted the results
as a function of the sample used for the rest of the DSP. Here each color corresponds to one acquisition.
We centered the optimal sampling instant at 40 samples. We observe that the true optimal sampling
instant -for which the excess noise is minimal- is not consistently at 40 samples, but rather fluctuates
around this value.

adapt the voltage biases to the drifts in the IQ modulator. This is because we tune the biases based
on what is observed on the optical spectrum analyser, therefore if the signal alternates between on and
off it is impossible to achieve a fine tuning. Hence we often perform the experiment with a stronger
residual carrier than what is possible with our modulator, which undoubtedly generates noise on
the quantum channel, especially when it is the Y-polarisation setting that drifts since that is the
polarisation allocated to the quantum data. The effect of the drifts in the optimal voltage biases for
the IQ modulator can be seen in the figure 6.6.

Another effect of the periodic emission of the AWG2 is that this adds a delay between a shot-noise
estimation and a data block estimation, since we must wait for the AWG2 to emit after the shot-
noise block was acquired. This time-delay increases the variance of the shot-noise estimator ∆N̂0 and
therefore increases the fluctuations in the total experiment. Continuous emission and synchronisation
would solve both these problems as we could set the voltage biases during the experiment because
the spectrum would be constant and we could perform the data acquisition, following the shot-noise
estimation, as soon as the oscilloscope is ready to acquire another block.

The second detrimental effect stemming from the synchronisation is that it seems like the optimal
sampling instant for the quantum data relative to the classical channel is not constant over time like
we thought. This is illustrated in the figure 6.22. If perfect synchronisation was achieved at Alice,
it is possible some fluctuation of the optimal sampling instant would remain of the order of a couple
samples, perhaps up to 5 samples corresponding to a classical symbol duration. However we observe
that the optimal sampling instant can vary over more than 3 or 4 classical symbols over successive
acquisitions. We believe this is due to a synchronisation problem and that the it would disappear if
we could operate one AWG with 4 outputs for the I and Q components of both polarisations.

Filtering Also from figure 6.22 we can observe the strong coherence between two successive
samples, since the sampling time (20 GHz) is much higher that the system variations (350 MHz).
Therefore it should be possible to build a filter, in the spirit of a FIR filter discussed in 5.4.1, to build
our quantum symbol from several samples. We believe this could mitigate some noise but the question
of how to design the filter remains open.

DSP. A final point of improvement for this work would be the deployment of DSP routines which
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perform better than the ones employed here. In particular for carrier recovery, machine learning has
been shown to perform better than other methods [85] and has already been applied to improve the
performance of CV-QKD protocols [82].

6.4.5 Conclusion

The experimental work proposed here demonstrates that the design of hybrid communications systems
can be beneficial to the quantum communication since efficient carrier recovery can be performed on
the classical channel. As a bonus, the classical channel also provides all the information needed to
downsample and synchronise the transmitted and received sequence. We strongly believe the results
displayed here can be improved upon significantly by implementing the leads discussed above, which
promises even better results in the future. In general, performing QKD on classical communication
links is challenging, hence building classical and quantum communication systems together can give
more tools to optimize the secret key rate and the classical communication rate.
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Chapter 7

Covert quantum key distribution

Contents
7.1 Introduction to covert communications . . . . . . . . . . . . . . . . . . . 123

7.2 Covert analysis of CV-QKD . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 From QKD parameters to idle and communication states . . . . . . . . . . 125

7.2.2 Condition on VA for δ-covertness . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 A shared secret as a resource for covert CV-QKD . . . . . . . . . . . . 128

7.3.1 Block-coherent encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.2 Implementation for covert CV-QKD . . . . . . . . . . . . . . . . . . . . . . 129

7.3.3 Enabling covert CV-QKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Towards practical covert QKD schemes . . . . . . . . . . . . . . . . . . . 131

7.4.1 Model 1 : Alice controls some of the noise . . . . . . . . . . . . . . . . . . . 133

7.4.2 Model 2 : fluctuating total noise power inducing uncertainty at Eve’s . . . 135

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

In the previous section we demonstrated a proof-of-principle experiment for joint quantum and
classical communications based on exploiting the coexistence to benefit both channels. In particular
we showed that the classical channel can provide good estimators for the quantum phase and frequency
recovery and we also suggested that the secret key obtained via the QKD protocol could be used to
encrypt a fraction, if not all, of the classical symbols.

In this chapter we discuss another way to beneficially harness the coexistence between channels.
In layman terms, we investigate how to "hide" the quantum signals in the noise generated by classical
channels such that it is indistinguishable from background noise for an eavesdropper. This provide an
interesting new security primitive to the quantum communication system : covertness.

7.1 Introduction to covert communications

Covert communications consist in making the communication indistinguishable from background noise
for anyone except the legitimate receiver. The motivation behind this security primitive can stem from
the metadata leaked during a communication protocol that can be security sensitive. Actually there
exists communication scenarios (e.g. in a dictatorship) where the mere fact of communicating between
two parties must be concealed, for security reasons. In particular the realisation of a QKD protocol,
aimed at providing ultra-secure keys for extremely sensitive communications, may attract even more
the attention of the "dictator" than classical communications. In this case the dictator, Eve, could
potentially correlate the realisation of the QKD protocol to the intentions of Alice and Bob. It is

123
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Figure 7.1: Covert communication setup : Alice either communicates or not with equal probability.
The communication is comprised of n states. In both scenarios, thermal channel noise is present and
is outside of Eve’s control. For this reason we represent the thermal noise inside Alice’s lab. Also,
Alice and Bob share a secret K before starting the protocol.

therefore interesting to investigate how we can prevent Eve from knowing that Alice and Bob are
running a QKD protocol, i.e. whether QKD can be run in a covert manner.

Setting for covert communications. A covert communication protocol can be described as
follows. Alice and Bob are linked by a quantum channel over which the average state transiting from
Alice to Bob’s is denoted ⇢̂0. This state is called the idle state and corresponds to the background
noise on the channel. During the communication phase Alice will send a total of n symbols to Bob.
The average state on the channel during the communication is written ⇢̂⌦n

1 . We assume that from
Eve perspective it is equally likely for Alice to communicate or not during a given time interval, hence
for her the states ⇢̂⌦n

0 and ⇢̂⌦n
1 are equally likely. The communication is said to be �-covert, where

� > 0, if we can bound the probability that Eve can distinguish between these two states by

Pe � 1/2� �. (7.1)

The factor � is called the detection bias. We give a depiction of the setting of a covert communi-
cation protocol in the figure 7.1.

Important results of covert communications. The main result in the field is the so-called
"square-root law" which states that the number of covert bits that can be transmitted scales as O(

p
n)

[86]. The intuition behind the square-root law is the mathematics of statistical testing and the central
limit theorem insuring that Eve’s observations will have uncertainty of magnitude 1/

p
n. Covert

communications have been investigated against a classical [87, 88, 89] and even a quantum adversary
[90, 91]. In both cases the square-root law holds. In addition these works have put into light two
prerequisites to any covert communication scheme :

1. There must be some noise outside of adversarial control.

2. Alice and Bob must share some secret K of sufficient length before the protocol.

These two conditions can be well understood intuitively. The first stems from the fact that if all
the noise is due to Eve, then she could suppress the noise and therefore detect the communication
with a basic power test using perfect detectors. This contrasts with the golden standard of QKD
where all noise is attributed to the eavesdropper and we will discuss further how we envision covert
QKD in this context. The second point is necessary for Alice and Bob to retrieve information from
the noise-like signal and we will give an example below of how the shared secret is used.
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Covert QKD. A crucial question for covert QKD protocols is whether a covert QKD protocol
can generate more secret key than the one used by Alice and Bob during the protocol. Previous
works [92, 93] have worked towards designing covert key expansion protocols with �-covertness and
✏-security such that this is the case, but only achieve a limited range of channel parameters which are
not useful in practice.

Another approach was investigated in [94], where the authors modify a discrete-variable BB84
protocol so that the communication is also covert. They achieve this by spreading the communication
states over a large transmission interval and attribute to each time-bin a qubit transmission probability
q << 1. In this case the communication state from Eve’s perspective is the mixed state (q⇢̂1 + (1 �
q)⇢̂0)

⌦n which can be be made arbitrarily close to the idle state by decreasing q. The secret shared
by Alice and Bob designates the time bins containing the signal so Bob can perform his regular QKD
measurement. However the shared secret length necessary to identify the signal time-bins dominates
the amount of covert secret bits that can be produced. The authors therefore rely on a computational
solution to distribute the shared secret, in the form of Pseudo-Random Number Generators (PRNGs).
This leads to a hybrid protocol where the distilled key has the same information-theoretical security
(ITS) than a regular QKD protocol -because the keyrate analysis supposes Eve knows the time-bins
containing QKD states- while its covertness is insured under the two conditions that the shared key
generated via the PRNG is unknown to Eve and that the noise used for covertness is in fact outside
of her control.

We believe this hybrid computational/ITS approach to covert QKD is the most practical approach
towards designing such systems, but has not been investigated in the case of CV-QKD. As we discussed
in section 4.4.3, these protocols are promising candidates for QKD in a WDM environment where
unavoidable Raman noise will hinder the keyrate but could be used to achieve covertness [95]. If
successful our results would provide another way to harness the coexistence between quantum and
classical data and pave the way towards new designs of joint communication systems.

In the next section we begin by deriving a condition on the modulation variance of the quantum
data so that the communication is �-covert. We show that covert CV-QKD without using some shared
secret to give an advantage to Alice and Bob does not allow to share a covert secret key. Hence we
move on in the next sections to derive a way to harness the shared secret resource for CV-QKD
systems, but show that the square-root law still limits the amount of covert and secret bits that can
be transmitted. Then, we propose practical models where the square-root law can be relaxed and
therefore in which covert QKD is easily achievable.

7.2 Covert analysis of CV-QKD

Let us investigate the conditions under which the PM states sent by Alice obey the �-covertness
condition of equation 7.1.

7.2.1 From QKD parameters to idle and communication states

In this work we will focus on the case Alice and Bob use the GG02 protocol, described in 4.1.1, where
Alice uses modulation variance VA and Bob measures excess noise T ⇠A. Compared to our previous
convention to define the excess noise at the channel output, here we will see it is more practical to
define it at the channel input to perform the covert analysis.

We make the additional assumption that the channel noise is due to a thermal state with mean
photon number n̄th. This is convenient for the rest of the analysis since the average state in the GG02
protocol can also be written as a thermal state with mean photon number n̄A. The relation between
QKD parameters and mean photon number is given by [20]
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VA = 2n̄A, (7.2)

⇠ = 2n̄th.

The innocent and communication states are therefore written as :

⇢̂⌦n
0 =

✓ 1
X

i=0

n̄i
th

(1 + n̄th)1+i
|ii hi|

◆⌦n

. (7.3)

⇢̂⌦n
1 =

✓ 1
X

i=0

(n̄th + n̄A)
i

(1 + (n̄th + n̄A))1+i
|ii hi|

◆⌦n

. (7.4)

7.2.2 Condition on VA for δ-covertness

To find the desired condition on VA we look to bound the probability of Eve discriminating between the
innocent and communication states. Her best strategy is to build a binary POVM (Λ̂0, Λ̂1) to perform
her discrimination. She can make two types of errors while doing this. The first is when she raises a
false alarm, also called a type I error in statistical testing. The second is when she misses detection of
the communication state, or type II error. Let PFA and PMD be the respective probabilities of these
events. We can express these quantities as

PFA = Tr
⇥

Λ̂1⇢̂
⌦n
0

⇤

, (7.5)

PMD = Tr
⇥

Λ̂0⇢̂
⌦n
1

⇤

. (7.6)

Since we assumed communication and idle states were equally likely from Eve’s perspective, we
can write the total error probability we are looking to bound as

Pe =
1

2
(PFA + PMD). (7.7)

Combining (7.5) and (7.6) into (7.7) and substituting Λ̂1 = Î � Λ̂0 gives

Pe =
1

2
� 1

2
Tr
⇥

Λ̂0(⇢̂
⌦n
0 � ⇢̂⌦n

1 )
⇤

. (7.8)

The term on the far right can be successively bounded by the trace distance and the quantum
relative entropy 1 [96] which finally gives :

Pe �
1

2
�
r

1

8
D(⇢̂⌦n

0 ||⇢̂⌦n
1 ) (7.9)

A nice property of the quantum relative entropy is that it is additive for tensor product states [96].
Hence given the equation above we find that the condition

D(⇢̂0||⇢̂1) <
8�2

n
(7.10)

Is sufficient to insure the �-covertness condition of equation 7.1. The quantum relative entropy
between these states can be shown to be upper bounded by (for derivation see annex A) :

D(⇢̂0||⇢̂1) 
n̄2
A

2n̄th(1 + n̄th)
(7.11)
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Figure 7.2: Total number of covert and secret bits (n⇥ r) obtained via the covert GG02 protocol with
the constraint in equation 7.12. We run the simulation over both parameters ⇠ and n to show that
there is no good regime allowing a significant amount of bits to be obtained. This plot constitutes
an upper-bound to what can be achieved in practical scenarios since the transmittance was taken
as T = 0.99 and performance decreases with T . Also, the detection bias was set to a high value of
� = 0.1.

Finally, combining (7.10) with (7.11) and replacing the mean photon numbers by the QKD pa-
rameters given by 7.2 gives the threshold value V covert

A under which the communication is �-covert
:

VA 
8�
q

⇠
2 (1 +

⇠
2 )p

n
= V covert

A . (7.12)

It is interesting to understand how the constraint above impacts the performance of the QKD
protocol. Since the number of QKD states plays a role in equation 7.12, instead of the secret key rate
r given in 4.7, we use the total number of covert secret bits transmitted given by

nbits = r ⇥ n (7.13)

as the metric of performance of the protocol.

In the following, we investigate the performance of the protocol by simulating the value of nbits

over a range of parameters. We begin by setting T and � to optimistic values, such that our results
will constitute an upper bound to what is achievable with realistic parameters. Since the secret key
rate decreases with T , we set T = 0.99, a high value corresponding to a transmission distance of
⇠ 200 meters. For the covert parameter �, we chose a high value of � = 0.1 in order to tolerate more
photons on the quantum channel according to 7.12. This detection bias represents an advantage of
20% for Eve compared to a random guess when she is trying to detect the communication. Therefore
this value is arguably high to claim covertness.

With these values of T and �, we plot in figure 7.2 the value of nbits by varying ⇠ and n. Above
a certain value for ⇠ the key rate falls to zero because the excess noise is too high. Similarly, above a
threshold value for n the key rate falls to zero because there are not enough photons per QKD symbol.
Hence the results obtained in the numerical simulation of figure 7.2 constitute an upper bound to the
performances of the covert QKD protocol over all realistic parameters.

1The quantum relative entropy, noted D here, is the quantum equivalent to the Kullback–Leibler divergence, which

is a measure of the distance between two statistical distributions. The quantum relative entropy of state ρ relative to

state σ is given by D(ρ||σ) = Tr
⇥

ρ(log ρ− log σ)
⇤
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We find a maximal value of nbits ⇡ 6.10�3. Therefore we conclude that the constraint 7.12 on VA

is too strong to achieve any kind of useful covert secret key distribution, and that covert CV-QKD is
essentially impractical without some additional resource for Alice and Bob. This was to be expected
since a well-known prerequisite for covert communications is the use of a shared secret between Alice
and Bob, and we did not exploit this resource here. In the next section we discuss how the shared
secret can be used to improve these performances.

7.3 A shared secret as a resource for covert CV-QKD

To the best of our knowledge, all existing studies on covert communications utilize some sort of
secret shared between Alice and Bob. Based on the results displayed in figure 7.2 such a resource is
mandatory for covert CV-QKD. It is therefore crucial to understand how one could use the shared
secret to provide Alice and Bob with an advantage.

In reference [94] the authors spread the signal over a large transmission interval. This should
always provide some way to increase the system performances since the communication state can
be made arbitrarily close to the idle state by decreasing q, the probability to send a QKD state in
each time-bin. What is particularly interesting in this approach is that the shared secret used to
encode the communication time-bins has computational security, yet the QKD security can be fully
guaranteed even if Eve perfectly knows the time-bins containing the quantum states. Hence their
covert QKD protocol is a hybrid protocol from a security perspective, where the covertness is insured
with computational security while the key is guaranteed secure regardless of the covertness.

Another interesting usage of a shared secret resource is as a codebook, as is described in the
supplementary material of reference [90]. In this case k bits are encoded in 2k codewords of length n

symbols, where the set of codewords can be written as {|↵1, ...,↵nij}2
k

j=1. The codebook is constructed
by generating the codewords such that each ↵i is generated along the complex Gaussian distribution
as in the GG02 QKD protocol. From Eve’s perspective the codewords are equivalent to a tensor
product thermal state over the n modes since she does not have access to the codebook. However it
is not clear if in this case we can perform covert CV-QKD in the hybrid security model where the
codebook has computational security. For this we must guarantee that revealing the codebook will
not lead to security loopholes in the QKD protocol, and further investigation over this question is
necessary. However we leave this for future work.

For covert CV-QKD applications, we require a shared secret usage that is compatible with CV-
QKD implementation and does not hinder the security of the underlying key distribution protocol.
We propose a way to do this in the next section.

7.3.1 Block-coherent encoding

Our proposal stems from the observation that the limiting factor in the the covert setting is the SNR.
Therefore, one way to enable covert QKD would be to increase the SNR while maintaining the covert
condition of 7.12. Notice that the square-root law imposes that the number of photons per mode, over
m modes, scales as 1/

p
m. However when we coherently combine photons scattered over m modes

into a unique mode, the power in the resulting mode is m times the average power in each mode.
This suggests that a coherent gain of

p
m on the signal power received by Bob can be obtained by

combining the power of m modes at Bob’s while maintaining covert communications. We precise this
idea below.

Let Alice sends her QKD states over n⇥m modes with mean number of signal photons per mode
of n̄A/m. We denote ⇢̂s the average state in each mode in this case which is the thermal state with
mean photon number n̄0 + n̄A/M . Now suppose Bob has a unitary U acting on ⇢̂⌦nm

s such that

U(⇢̂⌦nm
s ) = ⇢̂⌦n

1 ⌦ ⇢̂
⌦n(m�1)
0 , (7.14)
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where ⇢̂0 and ⇢̂1 are the idle and communication states defined in 7.3 and 7.4. Then Bob can use U
to transform the state ⇢̂s received and perform his QKD measurement on the first n modes ⇢̂⌦n

1 with
an average of n̄A signal photons per mode. In this case the covert analysis must be conducted with
the state transiting on the quantum channel ⇢̂⌦nm

s , hence we find the covert condition by substituting
VA/m to VA and nm to n in equation 7.12 which gives

VA

m


8✏
q

⇠
2 (1 +

⇠
2 )p

nm
=

V covert
Ap
m

. (7.15)

Thus, assuming Alice uses the highest modulation variance possible, when Bob performs his QKD
measurement on ⇢̂⌦n

1 he measures QKD states with modulation variance

VA =
p
mV covert

A . (7.16)

This permits a
p
m increase in the power of the state measured by Bob compared to the case

where the states are directly sent and measured. We refer to the method used by Alice to encode
her QKD states in a way such that U exists as block-coherent encoding of length m. Let us examine
in the next subsection how we could implement block-coherent encoding in a CV-QKD setting and
investigate the impact on the distilled key.

7.3.2 Implementation for covert CV-QKD

One way to generate ⇢̂⌦nm
s and to perform the transformation U is to borrow techniques from spread

spectrum communications [97]. These have been developed decades ago for purposes similar to covert
communications. The objective is to spread the signal over a larger bandwidth such that it is harder
to intercept and to jam by malevolent parties. In this case the legitimate receiver reverts the spreading
before measuring the intended signal.

In particular for this work we focus on direct-sequence spread spectrum. In this case the spreading
is achieved by digitally multiplying the data by a so-called spreading sequence in the time domain
before generating the signal. The spreading sequence is constituted of binary {�1, 1} symbols, called
chips, inducing phase shifts encoded at rate fchips much larger than the symbol rate f . The effect of
this is to increase the signal bandwidth by a spreading ratio defined by the quantity

T =
fchips

f
, (7.17)

See figure 7.3 for a representation of the multiplication of the data by the spreading sequence
and the effect on the signal bandwidth. The number of modes transmitted during a communication
protocol is defined by the time-bandwidth product

n = ⌧ ⇥B, (7.18)

where ⌧ is the communication duration and B is the signal bandwidth. Therefore, controlling the
spreading ratio such that R = m will increase the signal bandwidth by a factor m while maintaining
the same communication duration, which amounts to transmitting the signal over nm modes. To
revert the spreading and reshape the original signal, Bob applies the spreading sequence once more
which cancels the phase shifts induced by the modulation of the spreading sequence.

Let us describe the general lines of the covert CV-QKD protocol using this technique to perform
block coherent encoding.

1. Alice generates the complex random variables {↵i}
n
i=1 where the real and imaginary parts of

each ↵i follows a Gaussian distribution with variance VA .
p
mV covert

A

2. Alice uses a spreading sequence S 2 {�1, 1}nm to generate the sequence of quantum states
Q = ⌦n

i=1 ⌦m
j=1 |Sm⇥(i�1)+j↵ii sent over the quantum channel at rate f ⇥m.
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Figure 7.3: Direct Sequence Spread-spectrum consists in multiplying the data by a faster spreading
sequence. The spread-spectrum signal’s bandwidth is increased by the ratio of the spreading sequence
rate and the data rate. The inverse spreading operation consists in the multiplying the spread-
spectrum data by the spreading sequence again.

Figure 7.4: Depiction of the QKD protocol using block coherent encoding. The security of the
distilled key is guaranteed since the keyrate analysis is made on the equivalent channel ẼA⌦n!B⌦n ,
which contains the block coherent encoding process.

3. With the noise photons present on the channel, the average state transiting from Alice to Bob is
⇢̂⌦nm
s . Since the modulation variance of the QKD states obeys equation 7.15 the communication

is covert.

4. Upon reception, Bob reverts the phase shifts induced by the spreading sequence and generates
the sequence of states {⌦n

i=1 ⌦m
j=1 |↵ii} received at symbol rate f ⇥ m which amounts to the

sequence of states Q0 = ⌦n
i=1 |↵ii at rate f . He then performs his measurement of the QKD

states {|↵ii}

5. Alice & Bob distill their secret covert key via classical post-processing.

Importantly, without knowledge of the spreading sequence it is not possible to revert the spreading.
Hence S should be kept secret from Eve, and is the shared secret resource we will assume Alice and
Bob share before the covert QKD protocol.

Before moving on, let us briefly show that the block-coherent encoding we propose can be used with-
out impacting QKD security. This is true because the QKD parameter estimation analysis compares
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the QKD states before block-coherent encoding at Alice with the measured states after block-coherent
decoding at Bob’s. Hence the spreading and de-spreading process are considered to be part of the
channel, i.e under the control of Eve. This is illustrated in the figure 7.4 where the channel from Alice
to Bob, noted EA⌦nm!B⌦nm is completely controlled by Eve. However, the QKD analysis considers a
larger channel ẼA⌦nm!B⌦nm containing the block-coherent encoding and decoding.

7.3.3 Enabling covert CV-QKD

Now that we have derived a way to give some advantage to Alice and Bob through block-coherent
encoding, let us investigate the performances of covert CV-QKD with this new method. To do this,
we use a similar approach to the one used in 7.2.2. However let us begin by giving an upper bound to
the spreading ratio that can be experimentally achieved, which amounts to providing an upper bound
for m when using block-coherent encoding.

The number of modes over which the n QKD states can be spread depends on the speed of the
electronics in the arbitrary waveform generators (AWGs) used by Alice and Bob, which will ultimately
limit the chip rate fchips and therefore the spreading ratio R based on equation 7.17. Here we will
assume a maximal chip rate of 50 GBaud, which is a conservative value considering the achievable
rates by modern AWGs. Then the maximal spreading ratio is entirely defined by the symbol rate,
which is typically of the order of ⇠ 100 MBaud for CV-QKD protocols. However we will consider
lower symbol rates of f = 1 MBaud here to allow for larger block-coherent encoding lengths up to
mmax = 50 000.

We examine in figure 7.5 the increase in the number of covert secret bits that can be distilled by
using block-coherent encoding. Our approach is similar to our previous analysis of figure 7.2 without
the block-coherent encoding. This time we chose to investigate the performances over a distance of
10 km (T = 0.631) and used the same detection bias � = 0.1. Then we varied the values of n and ⇠A
and plotted in each case the value nbits.

Our results show that, thanks to block-coherent encoding, the maximal amount of covert and
secret bits which can be distilled over 10 km is non negligible and could be potentially useful. When
m = 4 ⇥ 104 we find a maximal value nbits = 142 bits. The optimisation over ⇠A shows that the
optimal channel noise over a 10 km link is approximately of ⇠A = 0.01 SNU, which would yield an
excess noise measurement of ⇠B = 0.0063 SNU at the channel output. This value is certainly a low
value from an experimental point of view but by no means unachievable, see for instance reference [98].
Therefore the set of parameters enabling covert CV-QKD with block-coherent encoding are realistic
parameters for a CV-QKD experiment. Note here that we implicitly assumed that the channel noise
dominated QKD system noise sources.

Interestingly, we also observe a linear relation between nbits and m : doubling the block-coherent
encoding length also doubles nbits. By curiosity we also investigated how the detection bias was related
to nbits and found that the relation was quadratic. We plot these results in the figure 7.6. A reason
for the linear and quadratic relations of m and � with nbits can be found from the respective roles of
m and � in the expression 7.15.

7.4 Towards practical covert QKD schemes

Our previous results show that covert CV-QKD is possible thanks to block-coherent encoding, but a
frustration remains because of the limited amount of secret bits that can be distilled covertly. Indeed
as long as the square-root law pilots the power of the quantum states transiting on the channel, there
is necessarily a finite amount of covert and secret bits that can be exchanged because the keyrate
becomes zero above a certain threshold for n. Although some applications can be satisfied with this,
it is interesting to investigate how we can relax this constraint through additional assumptions.

In the following we develop two models which achieve this. In the first we give Alice some control
over the noise. Then she can reduce the noise power when she sends her QKD states to avoid
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Figure 7.5: We plot nbits over a range of values for ⇠A and n for 4 different values of block-coherent
encoding length m. Other parameters were taken as T = 0.631, which corresponds to the losses of a
10 km fiber link with loss 0.2 dB/km, and � = 0.1.

Figure 7.6: Scaling of the maximal value of nbits with respect to m (left) and � (right). In the left
plot � was set to 0.1 and in the right plot m was set to 4⇥ 104.
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Figure 7.7: Alternate covert QKD model in which Alice can choose whether to transmit the full noise
state ⇢̂nv

(case x = 0) or to filter out the noise around the quantum channel wavelength �Q and
substitute her QKD signal instead (case x = 1). In any case an additional constant noise source ⇢̂n̄c

is injected in the channel after Alice’s lab. The resulting state is denoted ⇢̂x and is ⇢̂0 when x = 0
and ⇢̂1 when x = 1.

detection. The second model inspired from [99] supposes there is some source of fluctuating noise on
the channel, generating an uncertainty on the total noise power for Eve and making her discrimination
more difficult.

7.4.1 Model 1 : Alice controls some of the noise

Let us assume Alice has some control over the channel noise. This is represented by writing the noise
photons n̄0 as a sum of a variable n̄v and a constant n̄c amount of noise photons such that

n̄0 = n̄c + �n̄v, (7.19)

where � 2 [0, 1] is controlled by Alice. Assume Alice sets � = �0 when she is idle and � = �1
during the communication phase. Then we can write the idle and communication states as

⇢̂0 =

1
X

i=1

(n̄c + �0n̄v)
i

(1 + n̄c + n̄v)i+1
|i >< i| (7.20)

⇢̂1 =

1
X

i=1

(n̄c + �1n̄v + n̄A)
i

(1 + n̄c + n̄A)i+1
|i >< i| (7.21)

Both states are equal for n̄A = (�0 � �1)n̄v. Logically the best strategy for Alice is to set �0 = 1
and �1 = 0, which amounts to substituting her signal photons to the variable amount of noise photons.

In this case Eve cannot discriminate between ⇢̂⌦n
0 and ⇢̂⌦n

1 , thus for her the best strategy is limited
to a random guess regardless of the number of QKD states transmitted on the channel. In this model
the square-root law is circumvented and an asymptotic number of QKD states can be transmitted.
Hence as long as the keyrate is positive, which can be determined by the values of n̄v, n̄c and T , then
an arbitrary number of covert and secret bits can be distilled.

The question of whether this scenario is realistic in practice is legitimate. For this reason let us
imagine a setting where it could be verified. Consider the case where Alice’s laboratory located inside
a WDM backbone link. Classical channels generate Raman noise before and after Alice’s lab who can
act on the noise generated before her lab using spectral filters. A schematic representation of this
setting is given in the figure 7.7.
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Figure 7.8: We plot the covert secret key rates in our model where Alice can control part of the noise.
We simulated some realistic values of variable and constant excess noise based on a quantum/classical
WDM setting described in reference [80]. (left) Without block-coherent encoding. (right) With block-
coherent encoding of length m = 500. The distance between Alice and Bob is given by LAB = 80�LIA.
The keyrate is given in bits/symbol

In the rest of this subsection we will attempt to roughly simulate the covert secret key rate in
the setting described above. Given a fixed wavelengths for the quantum and classical channels, the
Raman noise is entirely defined by three parameters :

1. The total input power of the classical channels P0

2. The distance between the channel Input and Alice LIA

3. The distance between Alice and Bob LAB

And the relation between these parameters and the Raman noise, defined at the WDM link input,
is given by [80] :

⇠Ram,input = ⇣P0(LAB + LIA), (7.22)

where ⇣ is a parameter which depends on the wavelengths of the classical channels and of the
quantum channel. Note here we have neglected the contribution of the stimulated Raman scattering
since it is expected to be orders of magnitude below the spontaneous Raman scattering [80]. From
⇠Ram,input we can express the Raman noise at Alice’s lab by multiplying this value by the attenuation
on the input-Alice link which is given by exp(�↵L) where ↵ is the attenuation coefficient equal to 0.2
dB/km. Hence we have

⇠Ram,Alice = ⇣P0LIA exp(�↵LIA) + ⇣P0 exp(�↵LIA)LAB,

= ⇠IARam + ⇠AB
Ram, (7.23)

which is the sum of the Raman noise generated on the input-Alice and Alice-Bob links.
In our model where Alice can control part of the noise, ⇠IARam plays the role of the variable noise

term while ⇠AB
Ram is the constant noise term. The only parameter missing to simulate these for different

values of P0, LIA and LAB is the parameter ⇣. Since ⇣ depends on the "layout" of the quantum/classical
WDM channels, we infer this value from an experimental implementation of QKD in a WDM setting.
Here we use reference [80], where the quantum channel is located in the S�band and the classical
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Figure 7.9: In this model the noise is generated by a time-dependant ASE noise source outside of
Eve’s control. The noise has constant power over time interval ti but varies between intervals. The
new mean noise photon number is drawn according to a uniform distribution over [n̄min

j , n̄min
j ].

channels are located towards the longer wavelengths of the C�band corresponding to the "Red WDM"
setting of the paper.

We can now run our covert secret key rate simulation in this setting. For this we will consider
the WDM link is of length LAB + LIA = 80 km and we plot our results for different values of P0

in the figure 7.8. We compared the two cases with and without using block-coherent encoding with
a conservative value of m = 500. Without surprise block-coherent encoding greatly improves the
performances. Note that since the square-root law does not apply in this case, the signal power at
Bob’s scales with m instead of

p
m.

Our results indicate that a covert secret key can be distributed over large distances, up to ⇠ 70 km,
by allowing Alice to control the noise generated before her lab and combining this with block-coherent
encoding. Contrarily to usual quantum and classical coexistence in WDM links, here it is advantageous
to use a higher launch power for the classical channels. The reason behind this is that higher Raman
noise generated before Alice allows for higher modulation variances VA while not contributing to the
excess noise measured at Bob. Hence we have presented a joint quantum and classical architecture
which profits from the coexistence to provide covertness, an interesting and original security primitive.

7.4.2 Model 2 : fluctuating total noise power inducing uncertainty at Eve’s

We investigate here a second model to circumvent the square-root law. Here we use previous works
in wireless covert communications [99, 100] as inspiration to derive our model. In these works, the
authors have considered the case where a jammer randomly modifies the noise distribution and have
shown that we are not limited by the square-root law in this case.

We derive a similar model for fiber-based communications and consider using random amplified
spontaneous emission (ASE) noise source as the jammer. ASE noise is for example generated by
amplifiers in fiber-based optical communications. The model is as follows.

Consider several time intervals ti of length n⌧data corresponding to the duration of the communica-
tion required for Alice to send n quantum states to Bob. The ASE noise source, or jammer, generates
noise with mean photon number n̄j(ti) that depends on the current ti and drawn at random from
[n̄min

j , n̄max
j ] according to the uniform distribution. See figure 7.9 for a representation. The covert

QKD protocol always begins when a new time interval begins. During ti, the number of noise photons
on the channel is n̄A + n̄j(ti) if Alice sends QKD states and is n̄j(ti) if she does nothing. The idle
and communication states over ti are written as n copies of the same thermal state ⇢̂(k) with mean
photon number k and drawn from a uniform density probability distribution. Hence we have
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Figure 7.10: Set of parameters (∆n̄j , n̄
min
j ) for which the keyrate is positive (colored area) at a distance

of 10km with fiber loss coefficient of 0.2 dB/km. Block coherent encoding of minimal length ⇡ 200
is necessary to obtain a positive key rate. Increasing the block coherent encoding length expands the
set of positive keyrate parameters. The dashed green line represents ∆n̄j = n̄min

j and the solid purple
line is the maximal number of noise photons that can tolerated for the GG02 protocol.

⇢̂0 =
1

∆n̄j

Z n̄max
j

n̄min
j

⇢̂(k)⌦ndk,

⇢̂1 =
1

∆n̄j

Z n̄max
j +n̄A

n̄min
j +n̄A

⇢̂(k)⌦ndk,

where ∆n̄j = n̄max
j � n̄min

j . Separating both states into overlapping and non-overlapping mean
photon numbers gives:

⇢̂0 =
n̄A

∆n̄j
⇢̂[n̄min

j ;n̄min
j +n̄A] +

∆n̄j � n̄A

∆n̄j
⇢̂[n̄min

j +n̄A;n̄max
j ]

⇢̂1 =
∆n̄j � n̄A

∆n̄j
⇢̂[n̄min

j +n̄A;n̄max
j ] +

n̄A

∆n̄j
⇢̂[n̄max

j ;n̄max
j +n̄A]

With ⇢̂[n̄1;n̄2] =
1

n̄2�n̄1

R n̄2

n̄1
⇢̂(k)⌦ndk.

The discrimination process between both states, similarly to equation 7.8, requires Eve to build
optimal POVMs (Λ̂0, Λ̂1) acting on the mixed states ⇢̂0 and ⇢̂1. Then Eve’s error probability becomes
:

Pe =
1

2
� n̄A

2∆n̄j
Tr
⇥

Λ̂0(⇢̂[n̄min
j ;n̄min

j +n̄A] � ⇢̂[n̄max
j +n̄A;])

⇤

(7.24)

Coarsely bounding the trace by 1 gives a lower-bound on Pe :
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Pe �
1

2
� n̄A

2∆n̄j
(7.25)

Thus when n̄A = 2�∆n̄j the protocol is covert with detection bias �. Notice the condition on n̄A

does not scale in 1/
p
n, and it stems from the fact Eve can discriminate between communication and

no-communication events only if the resulting states cannot be generated from the conjugate event.
When n ! 1 an arbitrary number of QKD states can be sent. Therefore as long as the keyrate is
positive any desired amount of covert and secret bits can be transmitted. We plot in figure 7.10 the
set of parameters (∆n̄j , n̄

min
j ) allowing for positive covert key rates over metropolitan distances up

to 10km with different block-coherent encoding lengths. Our results show that for reasonable block-
coherent encoding length it is possible to achieve positive covert key rates generally in the regime
where there is more uncertainty on the noise level than fixed noise levels. By increasing the block-
coherent encoding length and the detection bias we can extend to the regime where there is a larger
part of fixed noise.

7.5 Discussion

We presented in this chapter our research on covert QKD, where our motivation is to harness the
coexistence between quantum and classical channels in order to turn a detrimental effect –such as the
Raman noise– into a new security primitive : covertness.

An interrogation we have not yet answered is whether QKD is really necessary when we have
the ability to reliably send covert signals. Indeed, what about sending a secret key directly via the
covert communication channel ? Wouldn’t this circumvent the need for the whole post-processing
phase of the QKD protocol ? In fact for DV-QKD, previous work has shown that ✏-covertness implied
2✏-security in the QKD protocol [101].

We need to keep in mind however that the covert protocol consumes a secret key and more
than it can generate, hence it relies on computational methods to share the key before the covert
protocol begins. Ultimately the covertness holds as long as the shared secret is safe, hence with
computational security. In this picture, covert communications can never replace QKD protocols for
ITS key distribution, and covertness can not be a substitute to QKD but only an addition to the
protocol.

Another way to consider covert-QKD is to look at QKD as a protocol where Alice sends an
unbreakable safe containing a secret key to Bob. Providing covertness to the QKD protocol amounts
to making the safe invisible, in addition of being unbreakable. However, the invisibility only holds if
Eve has some limited amount of computing resources i.e. with computational security.

Circling back to our work, here we have investigated how to use a shared secret –in the form of a
spreading sequence used in spread spectrum communications– to enable covert CV-QKD. We showed
that a limited number of covert secret bits can be obtained even with a very large spreading ratio
because of the square-root law. Our approach was then to study under which conditions covert QKD
would be possible with an asymptotic number of covert secret bits shared between Alice and Bob.

We showed that in two practical models the requirements for covert signaling do not follow the
square-root law and therefore enable any amount of covert secret bits to be transmitted as long as
the assumptions made in the model hold. In the first model we suppose Alice can control some noise,
thus she can substitute her GG02 QKD states to some on the noise. In the second model we allow a
time-dependant noise source on the channel which generates an uncertainty on the total noise power
at Eve’s. We showed that in both cases covert signalling can be achieved with an unlimited number
of signal states, therefore paving the way towards practical covert QKD.

More generally this work shows that careful design of joint quantum and classical systems can be
beneficial for the QKD channel by providing covertness to the quantum communication, which is a
desirable security primitive for ultra-secure applications.
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Perspectives

The quantum computing revolution.

A promising research field today concerns the development of the quantum computer, with the objec-
tive of harnessing the unique physical properties of quantum systems to perform certain calculations
which would be intractable for classical computers. This has the potential to lead to major break-
throughs in many other scientific domains where the tractability of classical simulations is a limiting
factor. Such fields are for example weather forecasting [102], molecular simulation [103], artificial
intelligence [104], particle physics [105] and more.

Another foreseen consequence of quantum computing is also the tractability of currently intractable
mathematical problems such as the factoring problem and the discrete logarithm. These constitute
the cornerstones on which are built public-key cryptographic primitives, vital to the modern crypto-
graphic infrastructure since they are used to distribute the symmetric keys necessary to encrypt data.
Therefore new solutions need to be found to solve the key distribution problem, and fast (see our
discussion in subsection 3.3.1).

Quantum key distribution : a quantum-safe key distribution protocol.

In their seminal paper [1] published in 1984, Charles Bennett and Gilles Brassard proposed a new
method to perform key distribution based on the laws of quantum mechanics : QKD. Contrarily to
current cryptographic primitives QKD provides ITS security on the distributed key, hence QKD is a
future-proof key distribution protocol since no future developments in technology or algorithms can
help an attacker obtain the secret key, not even a quantum computer.

The strong security guarantees of QKD –and perhaps the beautiful theoretical foundations provid-
ing them– have spurred increasing interest of the quantum information community for this technology.
However to this day, several important challenges remain in the field.

Theoretical vs practical security. The strong security guarantees QKD provides on the final
key are only valid in the model used to derive the security proof, which is often an idealized represen-
tation of the real experiment. Unfortunately, there can exist some side-channel attacks which exploit
some factors which are not considered in the security proofs. We discussed in subsection 5.5.1 one
such attack exploiting the TLO design for CV-QKD, but many more examples exist [106].

Note however that security proofs have been consistently refining their model to account for device
imperfections. For example the security proof we used for the PCS-64QAM format [48] showed that
discrete modulation formats could yield positive key rates. This closes a loophole where many CV-
QKD experiments considered Alice employed a Gaussian modulation while in reality we can only
approximate a Gaussian distribution in practice due to the finite resolution of the digital-to-analog
converters. More recently, new security proofs have also accounted for the fact that the detection
process can also only yield a finite number of discrete values [107]. In time and as the technology
develops, more device imperfections will find a way into the formalism of the security proofs.

Reach. QKD protocols suffer from fundamental limitations in terms of point-to-point achievable
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distance. We plotted in subsection 5.5.3 the reach and keyrate of different CV-QKD implementations,
where we observe that the longest reach of a CV-QKD experiment in the LLO regime, to the best
of our knowledge, is of 50 km. Recently a new study has managed a positive key rate at 60 km
[108] with machine learning aided carrier recovery. The record for DV-QKD, which is better suited
than its CV counterpart for long distances, is currently of 421 km [60]. While this constitutes a
considerable technological feat, it is also not sufficient to enable a global QKD without using trusted
relays. Note that a true breakthrough in this area would be the successful demonstration of a quantum
repeater. These (at the moment) theoretical devices act as nodes on a network and are connected via
entanglement swapping [109] which achieves the required long-range entanglement enabling QKD.

Cost. The fact that QKD operates on the physical layer implies that the deployment costs of
the technology is also considerably higher than for classical cryptographic primitives operating at the
software level. Making QKD a more affordable technology is a central concern for the development of
the field.

One approach to solving this problem is to pursue the coexistence of quantum and classical signals.
Since most of the costs of fiber-based communications lie in the optical fiber network itself, integrating
QKD on the current optical fiber infrastructure would drastically cut expenses. For this particular
problem CV-QKD is arguably better suited, and this is a strong argument of the community to
push their technology forwards compared to other QKD solutions. Here the holy grail would be
to demonstrate QKD over a dense WDM backbone link [16], where the typical length of the link
is about 80 km and the classical channels have nominal input power around 0 dBm each. For the
moment coexistence of QKD with classical channels has only been achieved over short distances and
for sub-nominal classical channel power [71, 80].

Work achieved during the course of the thesis.

This thesis was conducted in the context of the European project CiViQ, which aimed at developing
CV-QKD technology and pursuing its integration on emerging optical telecommunication networks
in order to develop cost-effective QKD systems. To this end it regrouped 21 partners involving
major telecoms, integrators and developers of QKD. In the scope of this project, our contributions
were directed towards CV-QKD system design and development, and our approach was to consider
how classical and quantum communication links can be designed jointly in order to enable secret
key distribution and classical communications over the same fiber. Our work can be divided into one
main project where we demonstrated joint classical and quantum communications over the same fiber,
leveraging the classical DSP to correct phase and frequency impairements on the quantum channel,
and a side project where we investigated how to harness channel noise to provide covertness to the
QKD states.

Experimental implementation of a joint quantum and classical communication system.
The large part of our efforts were directed towards the experimental realisation of our joint quantum
and classical communication system described in chapter 6. This proved to be quite the adventure
since it was the first time that quantum communications were performed on the modern high-rate
optical communication platform of Telecom Paris (GTO). We started from an existing single polarisa-
tion classical coherent communication system and added the components we needed to perform QKD
on the other polarisation. The first step was carefully choosing the low-noise detectors for the quan-
tum channel, and characterising their behavior and performance. From there, the roadmap towards
implementing the target system was clear on paper : deploy a second AWG on the Y-polarisation
to generate the quantum data, achieve the desired attenuation on the quantum channel, and use the
phase and frequency estimators of the classical data to perform the quantum channel DSP. I naively
thought this would be solved rather quickly, which highlights how little I knew about experimental
work. In reality, every step forward required long series of troubleshooting, but these became easier
over time as my understanding of the manifestation of different experimental problems developed.
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Unfortunately a couple events out of our control delayed our work. First, in November 2019,
the school moved from Paris to Palaiseau in order to join a large campus of schools which will, in
time, enable exciting collaborations between different areas of expertise. However this also meant we
had to pack our experimental devices and setup in the new location, and this caused a halt in our
experimental work for a couple months. The second event was the global pandemic of coronavirus
which froze the nation for another couple months.

Nonetheless we managed to reach our goal of enabling joint classical and quantum communications,
over the same fiber, using the classical channel phase and frequency estimator to correct the quantum
data. Our experimental work led to the following contributions :

• Poster at OFC2022 : Symbiotic joint operation of quantum and classical coherent commu-
nications. In this contribution we demonstrate our joint quantum and classical communication
system using the QPSK modulation on the quantum channel, and achieve a positive key rate in
the asymptotic regime at 15 km. Our paper submission to OFC was then published by IEEE.

• Conference presentation at SPIE Europe 2022 : Quantum key distribution and classical
communication coherent deployment with shared hardware and joint digital signal processing.
Here we used the novel security proof [48] giving an explicit key rate formula for discrete mod-
ulations and applied it to a PCS-64QAM format on the quantum channel. The higher order
modulation format yielded much better key rates and our results were compatible secret key
distribution and reliable classical communications over 40 km in the asymptotic regime, and 10
km using a finite-size analysis.

• European patent demand : Joint classical and quantum optical communications. Patent
number EP22305158.2 filed on February 11th 2022.

The experiment now works consistently in a regime of low SNR, compatible with positive key rates.
It will be the basis for future investigations of CV-QKD systems undertaken by the next generation
of PhD students, notably to refine our understanding of noise processes and better control them, but
also to test and demonstrate more complex quantum cryptographic protocols than QKD, including
covert quantum communications.

Covert CV-QKD. Our second project, presented in chapter 7, was initially undertaken during
the time where the experiment was inaccessible. In this work we showed that we could design hybrid
quantum and classical systems in which the channel noise –due for example to classical channels–
detrimental to the key rate could also be harnessed to provide an exiting new security primitive
called covertness. Unfortunately because of the "square-root law" covert QKD is essentially limited in
practice. For this reason we explore additional assumptions –which can be verified in some practical
settings– under which covert QKD is practical in the sense that an arbitrary number of covert and
secret bits can be transmitted. This project led to the following contributions :

• Poster at QCrypt 2020 : Covert continuous-variable quantum key distribution. We presented
in this poster our initial results regarding covert CV-QKD.

• Future paper submission : Covert CV-QKD. We plan to submit the work on covert CV-QKD
presented in this thesis to a journal in the near future.

Other work. In addition to my research duties, I had the opportunity to teach classes in cryp-
tography and supervise student lab work on coherent detection. This experience was very enriching
as it helped me develop as a person and as a researcher.
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What future for QKD ?

There is currently a strong and continuous support on the institutional side for the development of
QKD, and therefore research in the field of QKD is bound to continue to thrive in the foreseeable future.
In addition, many QKD companies and startups exist today which contributes to the development of
commercial QKD and brings the technology at the application frontier. The work already achieved
in the field has led to major breakthroughs in our understanding of QKD and more generally in the
related fields of quantum information, quantum communications and quantum computation. Future
work will undoubtedly continue to strengthen our understanding over these questions.

Yet, a the moment, many national cybersecurity agencies reject QKD as a key distribution method
[110, 111, 112, 113] because of the challenges we discussed above. From a classical cryptography per-
spective, post-quantum cryptography primitives are quantum-safe and do not suffer from the imple-
mentation difficulties of QKD. In addition the certification of classical primitives is well understood
hence it is easier to deploy these solutions according to existing classical security models. By compar-
ison, the theoretical versus real security of QKD constitutes a grey zone for classical cryptographers
since the potential side-channel attacks do not resemble to the well known ones targeting classical
primitives.

It is nonetheless undeniable that QKD can offer an advantage over classical methods. Moving
forward, collaborations between teams versed in classical cryptography and in QKD can lead to the
identification on specific cases where QKD –in its current state of cost and performance tradeoff– is
desirable compared to other quantum-safe primitives. Such collaborations have already begun, as for
example can be seen in reference [114] where QKD is used to provide long term security in stored data
in the cloud. Our experimental work could find an application in this aspect, for example if QKD is
deployed on inter-datacenter backbone links.

Another exciting direction to explore is to study how we can reasonably limit Eve’s capabilities
to propose a future-proof key distribution protocol with better performances than QKD and more
practical. The interested reader is referred to the work of [115] where the Quantum Computational
Timelock (QCT) model is developed.

In general, I believe that developing practical QKD and real-life implementation will be beneficial
for QKD in general in two aspects. First, it will bring QKD into practical cryptography, which will
stimulate the assimilation of QKD as a cryptographic primitive by the classical cryptography field.
Second, it will provide an ecosystem for the development of future QKD technologies. What is certain
is that the field has an exciting future.



Appendix A

Upper bound on the differential

entropy

This appendix concerns the derivation of the upper-bound on the differential entropy used in chapter
7. The upper-bound on the differential entropy between idle and communication states D(⇢̂0||⇢̂1)
was taken from the supplementary material of reference [90] and is given here for completeness. To
find the bound, we proceed in two steps. First we find the expression for D(⇢̂0||⇢̂1) and then we use
Taylor’s theorem with remainder to find the upper-bound.

A.1 Expression of the relative entropy D(ρ̂0||ρ̂1)

Let the idle and communication states ⇢̂0 and ⇢̂1 be the thermal states with mean photon number
n̄0 and n̄1 respectively. The relative entropy between these states is given by D(⇢̂0||⇢̂1) = ⇢̂0 ln ⇢̂0 �
⇢̂0 ln ⇢̂1 = �S(⇢̂0)� ⇢̂0 ln ⇢̂1. We have :
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in the above equation, we have :
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We can compute the second term of the relative entropy in a similar fashion :
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The relative entropy D(⇢̂0||⇢̂1) is the sum of these two terms :
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A.2 Upper-bound by expansion in Taylor series

Let n̄1 = n̄0 + x where x is the number of signal photons employed by Alice. The idle and communi-
cation states relative entropy is expressed as :

D(⇢̂0||⇢̂1) = n̄0 ln
n̄0(1 + n̄0 + x)

(n̄0 + x)(1 + n̄0)
+ ln
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(A.8)

We find an upper-bound to this expression when x is close to 0 via a Taylor series expansion. Let
D(⇢̂0||⇢̂1) = f(x) and let us compute the successive derivatives of f :
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When x = 0, the first two terms of the Taylor expansion are zero because f(0) = f 0(0) = 0 and
the fourth term is negative. Therefore we can upper-bound f by the third term which gives :
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By replacing n̄0 and x by n̄th and n̄A respectively we find the bound on the relative entropy valid
when n̄A is close to 0 :

D(⇢̂0||⇢̂1) 
n̄2
A
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(A.15)

Which is the bound ?? given in the main document.
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Titre : Convergence des communications quantique et classique
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Résumé : Les protocoles de distribution de clé quan-

tique (QKD) permettent de construire des canaux de

communications sensibles à l’espionage grace aux

propriétés quantiques fondamentales de la lumière.

L’un des principaux défis à surpasser pour déployer

de tels protocoles à grande échelle est le coût

de déployement de la technologie. Une solution at-

trayante en ce sens serait d’exploiter l’infrastructure

de fibre optique déjà existante pour executer mettre

en oeuvre de tels protocoles.

Cela implique cependant de faire coexister des si-

gnaux quantiques avec des signaux télécoms clas-

siques, ce qui peut être un défi de part la sensibi-

lité des états quantiques aux perturbations. Ici, nous

nous intéressons plus particulièrement aux protocoles

de distribution de clé quantique à variables continues

(CV-QKD), car leur proximité avec les communica-

tions cohérentes classiques indiquent qu’ils sont de

bons candidats pour coexister sur une même fibre.

En partant du principe que les protocoles CV-QKD

sont destinés, à terme, à être déployés de manière

conjointe avec des protocoles de communication clas-

sique, la question qui se pose est la suivante. Cette

coexistence avec des signaux classiques est-elle

forcément un désavantage pour la CV-QKD ? Nous

montrons qu’en construisant de façon conjointe des

protocoles de communication quantique et classique,

alors la coexistence peut présenter des avantages ex-

ploitables pour la CV-QKD.

Dans un premier travail, nous démontrons

expérimentalement que le signal classique peut servir

de signal pilote au signal quantique, ce qui permet no-

tamment de s’affranchir de signaux pilotes auxiliaires

généralement nécessaires en CV-QKD.

Dans un second travail, nous montrons que le bruit

généré par des canaux classiques peut servir à dis-

simuler le signal quantique. La communication quan-

tique peut alors être réalisée de façon indétectable, ou
⌧ covert �, ce qui, combiné à une échange de clé par

QKD permet d’envisager des garanties de sécurité

extrêmement élevées. Nous analysons les conditions

nécessaires, à la faisabilité du déploiement covert de

la CV-QKD.

Title : Convergence of quantum and classical communications

Keywords : quantum, telecommunications, cryptography, qkd

Abstract : Quantum key distribution (QKD) protocols

harness fundamental quantum properties of the light

to construct communication channels sensitive to ea-

vesdropping. In order to develop the technology at

large scale, one of the main challenges to overcome

is the deployment cost of such systems. A significant

step towards reducing deployment costs would be to

use the existing optical fiber infrastructure to perform

QKD, since this would relax the need to use dark (and

expensive !) fiber. However this also means we must

insure QKD protocols can coexist with classical com-

munications, which can be challenging as quantum

states are very sensitive to perturbations. Here, we

focus particularly on continuous-variable (CV) QKD

because their natural proximity to classical coherent

communication systems indicates that they are good

candidates for coexistence over the same fiber.

Assuming CV-QKD is destined to be incorporated in

classical communication links, an interesting question

is whether the coexistence with classical channels will

necessarily be detrimental to the CV-QKD protocol.

We show that in some cases, coexistence can actually

provide an advantage to the CV-QKD protocol.

In a first project, we experimentally demonstrate that

a classical channel can be used as a pilot signal for

the quantum channel. Thus, the need for pilot-tones,

mandatory in a typical CV-QKD protocol, can be re-

laxed.

In a second project, we show that the noise genera-

ted by classical channels can be used to ”hide” the

quantum signal. The quantum communication there-

fore can become covert thanks to the classical chan-

nels. Covert QKD protocols are interesting because

they provide extreme security guarantees. We inves-

tigate the necessary conditions for covert CV-QKD as

well as scenarios for its deployment in a practical set-

ting.
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