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Abstract

This thesis focuses on the present and past deformation along the active strike-slip
Magallanes-Fagnano Fault (MFF), accommodating the relative motion between South-
American and Scotia plates in Tierra del Fuego. At the southern edge of South America, the long-
lasting left-lateral deformation and the successive massive glaciations sculpted sharp disrupted
morphologies and vast straits and fjords, whose imprints are tightly intertwined. | take advantage
of this unique setting to explore tectonic and climate interaction and improve our understanding
of the fault activity over several time-scales: the historical period, Holocene, and Late
Pleistocene. Detailed mapping and dendroseismological investigation of the 1879 and 1949
shocks demonstrate their magnitude exceed Mw = 7.5, with a minimal rupture length of 200 km,
suggesting the modern largest seismicity is directly triggered by the South American — Scotia
plates relative movement. | describe scarps, ridges, pop-ups, flower structures, and Riedel
fractures both in Chile and Argentina, which reveal that most of the post-glacial strike-slip activity
concentrated along the master fault. Based on paleoseismic trench investigations, | present a
newly-developed paleo-earthquake catalog with at least seven major events of Mw > ~ 7 during
the Holocene. Back-slip restorations of cumulated sinistral offset combined with *°Be dating
gives the first quantification of Quaternary slip-rate in Argentina. Our results yield a geomorphic
slip-rate of 6.4 + 0.9 mm.yr? since 18 + 2 ka, which is lined-up with geodetic velocity models,
indicating stable behavior for the last twenty thousand years. Our results indicate irregular time
of intervals between the Holocene major earthquakes in the eastern Magallanes-Fagnano Fault.
Two recurrence times of ~ 1000 years and ~ 70 years suggests we may not expect a predictable
interval between major earthquake in Tierra del Fuego. In Chile, at the Cordillera Darwin foothill,
new glacial polish *°Be datings, paleoseismic trenching, and back-slip restoration of river
channels evidence an exceptionally rapid post-LGM slip-rate of 19.5 + 4.2 mm.yr* These results
suggest a pronounced E-W velocity gradient. This substantial velocity discrepancy coincides
geometrically with the unequal distribution of the Pleistocene ice-sheet, voluminous and
extensive in the west, and limited in the east. Thus, | propose to evaluate how the ice masses
acted as a surface load producing a long-lasting viscoelastic deformation of the Earth’s crust and
interfered with the regional tectonic field. Using an analytical approach and then a 3D-finite
element numerical modeling, | show how material rheologies, load history, and icecap
orientation control the fault response. Both approaches model a decrease fault velocity at
loading and a post-glacial seismic burst. However, the predicted post-glacial slip-rate increment
remains insufficient, and explain no more than ~4-15 % of the velocity discrepancy along the
Magallanes-Fagnano Fault. It notably stresses the importance to better constrain the glacial
isostasy adjustment contribution from the neotectonic uplift process along the southernmost
Fuegian Andes.
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Résumé

Cette these est dediée a I'étude de la faille active décrochante Magellan-Fagnano (MFF),
accommodant le déplacement relatif des plaques Sud-Ameéricaine et Scotia. L'extréme sud du
continent ameéricain a été sculpté par les activités conjointes du décrochement sénestre et des
grandes glaciations patagoniennes, incisant de proéminents escarpements de faille et faconnant
d'immenses détroits et fjords, lesquelles sont étroitement entrecroisés. Dans ces travaux, nous
appuyons sur la configuration exceptionnelle de la Terre de Feu, pour étudier I'interaction entre
tectonique et climat, ainsi que pour quantifier le comportement de la faille MFF sur plusieurs
échelles de temps : sur la période historique d’'une part (au cours des deux derniers siecles), et
depuis la fin de la derniere glaciation d'autre part (depuis 20 0oo ans). Au Chili et en Argentine,
I'étude de tranchées paléosismologiques, la cartographie des escarpements, et l'analyse
dendroseismologique ont permis pour la premiere fois de cartographier les surfaces de rupture
des séismes de 1879 et 1949 et de mesurer les déplacements cosismique associés. Nos données
suggerent des longueurs de rupture minimales = 200 km et une magnitude en 1879 de Mw > 7.5
pour chacun de séismes. Les déformations postglaciaires (rides allongées, dépressions fermées,
pop-ups, structures en fleur, failles en échelon) témoignent d'une activité Quaternaire
particulierement localisée sur la section principale du systeme de failles. L'interprétation
paléosismologique de tranchée réalisée dans le secteur argentin permet, en particulier grace ala
datation *#C de niveaux stratigraphiques, d'établir un premier catalogue de séismes majeurs
anciens, incluant un minimum de sept événements survenus au cours de I'Holocene. En outre, la
datation par cosmonucleide *°Be d'un marqueur postglaciaire fossile décalé par la faille et sa
retrodéformation, indiquent un taux de glissement moyen en Argentine a 6.4 + 0.9 mm/a depuis
18 + 2 ka BP. Ces vitesses correspondent aux vitesses actuelles déduites des mesures GPS, et
indiquent un comportement stable du secteur argentin depuis les derniers vingt-mille ans. Par
ailleurs, les écarts temporels variables entre les séismes majeurs depuis I'Holocéne, révélent deux
periodes de récurrences moyennes de 1000 et 70 ans, montrant ainsi que la faille de Magellan-
Fagnano a un comportement irrégulier dans le temps.  Au Chili, sur le versant nord de la
Cordillere Darwin, nous mesurons le decalage horizontal cumulé d'un reseau hydrographique
dont la mise en place date de la derniére déglaciation. Ce décalage met en evidence un taux de
glissement exceptionnellement rapide de 19.5 + 4.2 mm/an. Ces résultats indiquent une forte
différence de vitesse entre le secteur Ouest de la Terre de Feu, autrefois recouvert par une calotte
glaciaire épaisse, et le secteur oriental ou la couverture glaciaire a €té limitée, voire absente. C'est
pourquoi nous explorons comment ces variations de chargement glaciaire interferent avec les
contraintes tectoniques régionales et peuvent affecter le glissement sur la faille. Nous adoptons
une premiere approche analytique simplifiée, puis une modeélisation 3D par éléments finis, afin
d'étudier comment la rhéologie de la lithosphere, I'évolution de la charge glaciaire, et son
orientation par rapport a celle de |a faille, influencent I'activité de la faille. Dans la configuration
de la faille de Magellan-Fagnano, les deux approches montrent un ralentissement de I'activite de
la faille lors d'une glaciation, suivie d'une augmentation lors de la déglaciation. Néanmoins,
I'augmentation du taux de glissement lors du déchargement glaciaire reste faible, et ne peux
expliquer seulement 4 a 15% du gradient de vitesse observé. Cela souligne notamment
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I'importance de mieux contraindre la contribution relative de I'ajustement glaciaire isostatique
de celle d'un processus néotectonique de soulevement le long de la Cordillere des Andes
Fuégiennes.
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LIST OF ABBREVIATIONS

AD: Anno Domini
Be: Beryllium

cal. ka BP: calibrated thousands of years

before present
DEM: Digital Elevation Model
DSM: Digital Surface Model
FSM: fault stability margin
FTB: Fold and Thrust Belt
GIA: glacial isostatic adjustment

GIE: glacially induced earthquake which

include syn-post and late glacial earthquake

GIF: glacially induced fault whichinclude

syn-post and late glacial fault grow.
gLGM: global Last Glacial Maximum
ka: thousands of years

GPS: Global Positioning System
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GPG: Great Patagonian Glaciations
ILGM: local Last Glacial Maximum
LGM: Last Glacial Maximum

Ma: 10° years, million years

m asl: meters above sea level

m bsl: meters below sea level

MFF : Magallanes-Fagnano Fault
MIS : Marine Isotope Stage

MM : Mercalli intensity scale

Mw : moment magnitude

PIS : Patagonian Ice Sheet

PGF : post-glacial fault

TDF : Isla Grande de Tierra Del Fuego
SPI: Southern Patagonian Ice Sheet

SfM: Structure from Motion
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<— The Chilean artist Elby Huerta does us the honor of sketching small touches of art within this
doctoral thesis. Elby explores sensitively the overwhelming landscapes of Tierra del Fuego and
the myths carried by its native peoples. Her works are on watercolors jointly with azurite mineral
pigment.
L'artiste Chilienne Elby Huerta, nous fait 'honneur d'esquisser de petites touches dart au sein
de cette these. Ses travaux a l'aquarelle et au pigment minéral d'azurite, représentent de maniére

sensible les paysages bouleversant de la Terre de Feu et les mythes portés par ses peuples natifs

CHAPTER I: General Introduction

.1 Objectives and scientific questioning

Earth’s landscape can be thought to be the result of the natural competition among the
tectonic endogenic Earth’s processes and exogenic climatic processes. At the southern edge of
South America, the struggle is fierce between a highly active plate boundary against the extreme
climatic conditions. The connection between the South American and the Scotia plates defines
the narrow Magallanes-Fagnano Fault system, accommodating their relative left-lateral sliding.
This strike-slip fault is capable of producing major earthquakes, as illustrated by the last seismic
events that occurred the 17 December 1949 with two successive shocks of Mwy.75. In addition to
tremendous seismicity, this austral region underwent colossal glaciations since the Americas
detached from the Antarctic Peninsula. In the Magallanes region and in Tierra del Fuego, these
processes sculpted sharp faulting morphologies and vast glacial straits and fjords. The strike-slip
deformation and the glacial erosion left tightly intertwined imprints as anywhere else in the
world. Thereby, the Austral Patagonia offers an extraordinary territory to explore tectonic and
climate interactions. In this thesis, the leading objective is to improve our understanding of the

Quaternary faulting and its interactions with climate-driven changes.
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The general objectives of the thesis are the following:
e To characterise the Magallanes-Fagnano Fault’s activity in the last centuries;

e To identify ancient ruptures in paleoseismological trenches and establish a paleo-

seismic calendar as large as possible;

e To quantify deformation velocities over several seismic cycles by measuring and

dating interpreted glacial and post-glacial Quaternary landforms shifted by the fault;

e To assess the roles of the Eastern and the Western sections in greatest Holocene

earthquake genesis;

e To model the effect of climate-driven ice-mass changes above strike-slip fault, and
evaluate the extent to which Patagonian’s glaciers and glaciations might have

affected the fault behavior.

The thesis is presented in six chapters. Chapter | describes the regional geological setting,
presents a state-of-the-art of the Patagonian glaciations, and introduces our research based on
the glacial and tectonic interactions. To close this introductive chapter, we offer a short

digression about the Fuegian Natives, for those interested by the southernmost humanity history.

Chapter Il and Chapter IIl are dedicated to the results obtained in the Argentinian part of
Magallanes-Fagnano Fault. Despite the remarkably prominent scarps from the two 1949
earthquakes of magnitude 7.8 and 7.5, the quantification of this rupture remained limited and
poorly documented. Besides, the Quaternary cover was strikingly disrupted along a unique
spectacular E-W scarp. We take advantages of this particular setting to answer the following

questions:

- Whatis the rupture length associated with the 1949's event? (Chapter II)
- Are there consistent patterns of co-seismic offset along fault, and how to define the

eastern end of the 1949's ruptures? (Chapter Il)
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- Do the Quaternary drainage incisions have recorded the deformation, and could we use
them as reliable tectonic markers? (Chapter )

- Is the geomorphic slip rate of the eastern MFF in agreement with the present-day
geodetic motion between South America and Scotia plates? (Chapter Il)

- Whatisthe characteristic recurrence interval of major earthquakes (M>7)? (Chapter Il and
).

- What isthe paleoearthquake chronology, and does it agree with the recurrence interval?

(Chapterll)

Chapter IV is devoted to our results in Chile, where the fault follows the same sea-passages
that the last-glaciations have carved. Little is known about the kinematics of the western part of
the MFF strike-slip system, and only seldom inshore sites expose the Magallanes Faults. After a

complete review of the Chilean fault geometry, we present new insights into the problematic:
- Did the Chilean sections rupture in 19497
- Whatis the paleo-earthquake chronology?

- In this formerly glaciated region, how the strike-slip morphologies and glaciation’s
landforms are intertwined, and which information can we extract from this

interaction?

- What is the Western Holocene slip-rate? Is the long-term deformation temporally

and spatially variable along the Magallanes-Fagnano Fault?

The penultimate chapter V proposes to investigate the impact of the glaciations on the
temporal and spatial variation of the slip rates along the fault. We first establish the scientific
context surrounding the actual questioning about glacial (un)loading and faults interactions. We
present a worldwide overview of past and present open-questions about Fennoscandia and
Laurentide fault-(re)activation potential. Conversely to the well-documented effects on normal
and reverse faults, there is no investigation on strike-slip configuration. Through this chapter, we
tackle the problem, first with basic analytical approach, and then with a more sophisticated finite
element numerical modeling of strike-slip fault’s response to glacial loading. We propose

preliminary findings to these questions:
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- How strike-slip and ice stress fields interact?
- What are the primary parameters governing the fault’s response?

- Istheicecap effect significant enough to explain part of the observed Holocene slip-

rate discrepancy between the Western MFF and the Eastern section?

Chapter VI concludes the thesis with a discussion of the role played by both climatic change
and by tectonic factors on the strike-slip fault system of Magallanes-Fagnano. The main

conclusions are presented and directions for further research suggested.

At the time of thesis completion, one paper is published (Chapter Il — Terra Nova), and two

are in preparation (Chapter lll, and IV).

To study the MFF's behavior at variable timescales, from the Late-Pleistocene Quaternary
(11700 — 50 000) to the modern activity (10 - 200 yrs), we combine the following approaches:

tectonic geomorphology, paleoseismology, dendroseismology, and numerical modeling.

Tectonic geomorphology investigates the past and modern landsystem evolutions by
characterizing the interaction between tectonic (faulting, crust uplift, subsidence or folding) and
Earth’s surface processes (glacial erosion, denudation, incision, transportation, deposition). Since
the pioneer’s works applied on active faulting (Solonenko, 1973; Wallace, 1977, Matsuda et al.,
1978; Philip and Meghraoui, 1983), the morphometry and the dating methods have radically

improved, refining the spatial and temporal resolution of the results.

| detect and measure the MFF's fault trace using Pleiades optical images to generate High
Resolution digital surface models (DSM). The Pleiades images are suitable for
tristereogrammetry and geometric evaluation of terrestrial morphologies (Berthier et al., 2014;
Stumpfetal, 2014; Poliet al, 2015; Lacroix et al, 2020). The images acquired in December 2017
and March 2018 coverthe Magallanes Fagnano Fault from the Atlantic coast to the Almirantazgo

Sound with a 20-km imaging-swath. | process the photos with the NASA’s open-source
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Automated Stereogrammetry Software Ames Stereo Pipeline (ASP 2.6.0) and the MicMac
photogrammetric suite developed by the IGN (French National Geographic Institute) and ENSG
(French national school for geographic sciences). | auto-correlate triplets and build DSM with a
horizontal and vertical resolution of 5 and 10 meters/pixel, respectively (Appendix AMS quick
start) (Shean et al,, 2016). Locally, and where the region was uncovered by trees, which is seldom
the case in Tierra del Fuego, we collect overlapping aerial photographs from unmanned aerial
vehicle. I build the digital elevation models (DEM) using topographic point correlation (Structure
from Motion) with Agisoft PhotoScan software. Combining Pleiades-DSM, local SfM-DEM, Bing
Satellite maps, historical aerial photographs (1/10 coo — 1/ 50 000), and extensive field surveys
(2/1—1/100), lidentify and measure subtle rupturing surfaces, terraces, colluvial and alluvial fans,

subglacial morphologies, and past and existing hydrological networks.

Based on this ultra-fine mapping, we target suitable sites for paleoseismological work. Ideal
configuration requires: exposing rupture-record associated with several seismic cycles and
unambiguous and datable offset onset timing (Sieh, 1981; Wallace, 1981; McCalpin, 1996). Only
then, it allows quantifying the active tectonic of a fault across a longer timescale than is possible

from the short instrumental record.

We carry out two complementary investigations: long-term offset measurements and
trenching. We focus on post-glacial fluvial incisions that developed normal to fault strike and
recorded the horizontally offset by repeated surface-rupturing earthquakes. The cosmonucleide
°Be dating method allows determining the exposure age of the fossil surface youngest
sediments on a timescale from o to 100 ka (Lal, 1988; Nishiizumi et al, 1989). The in situ **Be
analysis is performed along depth profiles or at surface on quartz samples, which are reasonably
present in Tierra del Fuego alluvial terraces and glacial polishes. The *°Be concentration
represents the exposure time to cosmic rays depending on latitude, altitude and depth (Lal, 19973
Gosse and Phillips, 2001). | prepared most of the samples at ISTerre GeoThermoChronology
platform, supervised by J. Carcaillet. The preparation steps include the quartz extraction, quartz
decontamination, atmospheric *°Be removal, spiking 9Be, sample dissolution (hydrofluoric acid),

blank preparation, evaporations/dry-downs (perchloric & hydrochloric acids), exchange columns
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with dowex resins (anion exchanges for separation of Be from Iron & Manganese; cations

exchanges for separation of Be from Boron), precipitations/washes, pH8 rinses and transfer
. 9B
samples to quartz crucibles. Measurements ofﬁ were completed at the accelerator mass

spectrometry facility ASTER (Aix-en-Provence, France).

In fluvial setting, this method estimates the age of the marker abandonment, and determines
the onset of the subsequent tectonic deformation (Bierman et al, 1995; Ritz et al, 1995). Knowing
the amount of offset, it provides the rates of slip averaged over the Quaternary (Scholz, 2002).
Time and spatial fault behavior variations are identified when comparing the Quaternary rate to
additional regional and time-scale velocities (Geodetic velocity, Late-Holocene slip-rate). Since
the first studies applied this principle to active deformation, this technique has become a
fundamental tool to characterize the long-term motion of hundreds of worldwide active faults

(Vassallo et al,, 2005; Ritz et al, 2006; Nissen et al., 2009; Chevalier et al., 2016).

The cross-fault excavation completes this approach and refines the rupture history (Swan et
al., 1980; Schwartz and Coppersmith, 1984). We favor sites that are likely to present a continuous
sedimentary archive. We maximize the chance to find the complete record of the last seismic
events by selecting sites on the principal scarp in which most of the past deformation is localised.
Using radiocarbon dating on peat and charcoals (Libby, 1955; Stuiver, 1970), stratigraphy and
structural markers interpretations (McCalpin, 2009), and trench retrodeformation analysis, this

method can document the successive deformations back to several ten of thousand years.

Toimprove knowledge of the 1949 (M7.8) ruptures in Tierra Del Fuego, we combine extensive
mapping of the coseismic markers and tree-ring analyses. Giant earthquakes (M>7.5) can
devastate a region and cause widespread damages that, even decades after the shock, remain

visible in the landscape and the tree stems (Figure 1.1).
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(a)

Figure 1.1: (a) Neodani Fault in 1891, Japan. The Mino—Owari earthquake struck in 1891, M 8.o.
Photo from (Koto, 1893), with left-lateral offset up to 8 m, and vertical slip in the range of 2-5 m. (b)
Neodani Fault in 2007. Notice the vegetation that colonized and protected the scarp from rainfall
erosion during a century. (c) The "Woodchester wall” scarps from the Waiau fault (Leader Fault) in
2016, New Zealand, after the Kaikoura earthquake of M7.8. (d) Waiau fault in 2017 (photos Kate
Pedley, Canterbury University). Note the rapid colluvial wedge and pond formations along the scarp

in less than 1 year since the rupture.

The dendrochronology relies in the analysis of the radial tree growth (narrow or wide annual
rings), the cell anomalies (reaction wood, modification of cell structure), and the tree-ring
morphology (scarps, tilting) (Astrade et al., 2012). The application of these principles to injured
or tilted trees, following coseismic topographic disturbance, is widely used since the ‘8o-'gos, and
defined the dendroseismology (Jacoby and Ulan, 1983; Jacoby et al, 1988; Yamaguchi and
Hoblitt, 1995; Yamaquchi et al, 1997, McCalpin, 2009). Here, we combine instrumental record

with the tree-ring analysis to extend the modern earthquake chronology back to 1850.
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To study the strike-slip fault’s response to ice-mass changes, we use the 3D finite element
software ADELI. We choose this approach as it enables various Earth’s material configurations
(crust, lithospheric mantle, asthenosphere) in which we can set a strike-slip fault geometry, and
model its behavior under different glaciation scenarios (load temporal evolution and spatial
distribution). The ADELI code (Hassani et al., 1997) considers the temporal evolution of boundary
conditions (pressure, velocity) applied on the external borders of the modeled earth’s material.
The output consists of a single file (grid of displacements and velocities) that can be visualized at
different time steps (Paraview, GMT), and in various cross-sections. We use SPYDER, the
scientific Python Development Environment within the ANACONDA open-source console, to

perform graphical outputs.

.2 Tectonic setting of the Southernmost Andes

At the continental scale, the most distinctive feature of Southern Patagonia is the
southernmost curvature of its mountainous spinal column: The Andes. In this region, the Austral
Andes bend of about g9o° from a N-S trend in the Santa Cruz Province (50°S) to an E-W
orientation in Tierra del Fuego (55°S) (Figure 1.2). This section of the Cordillera is also named the

Fuegian Andes, relating to the indigenous people “Tierra del Los Fueguinos”. In this section, we
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present a simplified literature synthesis, reviewing the main debates about the Patagonian bend

and the onset of the Magallanes-Fagnano Fault.

Figure 1.2: Southernmost America on March 28, 2003 (image from the Terra-MODIS Moderate

Resolution Imaging Spectroradiometer, NASA, GSFC, Image courtesy Jefferey Schmaltz).
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In "The Origin of Continents and Oceans," 1929, Alfred Wegner proposed this arc-shape was
linked to South America's relative western motion. A century later, its origin remains contested
between an orocline bend (orogenesis. i.e., rotation during the mountain creation) (Carey, 1958)

or an inherited feature (Ghiglione and Cristallini, 2007).

The debate involves data from a margin basin, the Rocas Verdes (Figure 1.3). The Rocas
Verdes (Verdes for the green color of its ophiolites complex) is a back-arc basin that opened
(Figure 1.43,b) and filled up in the Middle to Late Jurassic time (Pankhurst, 2000). It constitutes
the main geological feature of the region (Figure 1.3). It was associated to the oceanic subduction
under the west American active margin. Authors show the basin opening was coeval to regional
crustal extension which occurred before the Gondwana breakup (Dalziel and Cortés, 1972;
Suarez, 1979; Dalziel, 1981). Besides, the Basin appeared to result also from the slimming of the
continental plate before the south Atlantic Ocean irreversibly divided the America from the
Africa. In Tierra del Fuego, Dalziel (1981) concluded that the basin was at least 100 km-wide. In
our study area, the Late Jurassic syn-rift rocks outcrop in the Sierra Dientes del Dragon and

correspond to marine mudstones and volcaniclastic rocks (Rojas and Mpodozis, 2006).

The paleomagnetic data from the Rocas Verdes basin are interpreted in two ways. Some
authors analyze the Patagonia Bend related to the basin closure and subsequent uplift (Dalziel et
al., 1973; Burns et al,, 1980; Cunningham et al,, 1991). In contrast, researcher suggest with analog
sandbox models and tectonic analysis, that the structural pattern could be anterior to the
orogeny. Their model meets the present-day curve with analog oceanic plate subducting
beneath a pristine continental corner in L-shape (Diraison et al., 2000; Ghiglione and Cristallini,

2007).
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Figure 1.3: Simplified regional geologic map of Tierra del Fuego and Patagonian Andes. Geologic
layers from (Hervé et al, 1984, Sudrez et al, 1985, SERNAGEOMIN, 2003; Olivero and Malumidn,

2008; Klepeis, 2010). Deformation phases from (Rojas and Mpodozis, 2006; Fosdick et al, 2011
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Mpodozis et al, 2011; Ghiglione, 2016). Abbreviations: ACC: Antarctic Circumpolar Current; ANT:
Antarctic plate; CFB: Cenozoic Foreland Basin; D.P: Drake Passage; FTB: Fold and Thrust Belt; L:
Lower (ie, Early), LF: Lake Fagnano; MFF: Magallanes-Fagnano Fault; PB: Patagonian Batholith;
RVB: Rocas Verdes Basin; SAM: South American Plate; TG: Tasmanian Gateway; U: Upper (i.e., Late);
W.A.S.M: Western Arm Strait of Magellan.

In the end of Early Cretaceous (<100 Ma), the south Atlantic Ocean spreading accelerated
(Figure 1.4b), increasing the subduction rate along the Pacific margin, initiating the westward
motion of South America, and causing the Patagonian extension phase to wane (Rabinowitz and
LaBrecque, 1979; Dalziel, 1986; Ramos, 198g). These two processes are thought to initiate the
transition from extension to compression phase and close the Rocas Verdes (Bruhn and Dalziel,
1977; Hervé et al,, 2007). The Rocas Verdes Basin began to close during Late-Cretaceous and was
lately associated with magmatism that build up the Patagonian Batholith (Herve et al., 1984).
Batholith rocks now exposed along the southern Cordillera Darwin, experienced metamorphism
in Late Cretaceous (amphibolite facies), and constitute today the Darwin metamorphic complex
(Hervé et al, 1984). New paleomagnetic data (Poblete et al.,, 2016; Poblete et al., 2014) show a
counterclockwise rotation of the Southern Patagonia during the obduction of the Rocas Verdes
basin. However, it would have trigger no more than ~30-50° of the curve shape (Poblete et al,
2016). Therefore, part of the arch-shape was acquired before, and the authors concluded that it

is mainly an inherited shape (Poblete et al., 2014).

Shortening is proposed to have continued in the Paleocene, coeval to the exhumation of the
Darwin Cordillera (crystalline massif), and the NE advance of the compressional front into the
foreland basin (Alvarez-Marron et al., 1993; Klepeis, 1993). This compression was associated with
a flexural loading, folding, and thrusting belt (FTB) which migrated northward (Fildani and
Hessler, 2005; Fosdick et al., 2011) and resulted in the formation of the early Cenozoic foreland
basin (CFB) (Alvarez-Marron et al., 1993; Mpodozis et al., 2011) (Figure 1.3). The overall NE-SW
shortening is > 100 km and continued in Tierra del Fuego with successive thrust episodes until the
Oligo-Miocene (Alvarez-Marron et al., 1993; Torres-Carbonell et al., 2008; Rojas and Mpodozis,

2006; Torres Carbonell et al., 2014; Ghiglione et al., 2014).
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To precise the geodynamic context, it is generally accepted this period is divided in four
steps: 72-47 Ma, 47- 24 Ma, 24-18 Ma and 18 — o Ma. In the first step (72-47 Ma), the Farallon plate
in the north and the Aluk plate (either called Phoenix) in Tierra del Fuego, subducted along the
Peru/Chile trench (South American Plate SAM). The associated junction Farallon/Aluk migrated
southward (Cande and Leslie, 1986) (Figure 1.4¢, d). In the second step (47-24 Ma), Farallon
plunged roughly in @ NNW direction beneath SAM plate and broke by ~24 Ma in the two plates
Cocos and Nazca. In the third step (24-18 Ma), the Nazca plunged in an eastward direction
beneath SAM Plate (Somoza and Ghidella de Hurtis, 2005) (Figure 1.4€). At 18 Ma (41" step), the
triple junction of Nazca/Aluk/Antarctic started to plunged under the South American ocean ridge,
creating a unique setting of quadruple junction until 16 Ma (Breitsprecher and Thorkelson, 2009),
initiating the subduction of the Antarctic plate (Figure 1.4f). Finally, the contractional phase end
is marked by the deposition of fluvial pebbles (Santa Cruz Formation) capping the foreland after
18 Ma (Malumian and Caramés, 1997; Malumian, 1999; Malumianetal., 2000; Blisniuk et al, 2005;

Guillaume et al., 2009; Fosdick et al., 2011)

The subduction direction change of Faralldn/Nazca plate from NNW to E (24 Ma) is coeval to
observed strike-slip fabrics in Punta Gruesa (Peninsula Mitre) (Ghiglione and Cristallini, 2007).
This Miocene clastic dikes of Punta Gruesa, are interpreted linked to strike-slip phase between
26to 14 Ma, and intruded the FTB sequence (Ghiglione and Ramos, 2005). Therefore the authors
distinguish the strike-slip initiation separated from the thrust event, and conclude the sinistral
deformation overprinted the thrust fabrics since the Oligocene < =30 Ma (Klepeis, 1994; Klepeis
and Austin, 1997; Lodolo et al.,, 2003; Ghiglione and Ramos, 2005). Recently, authors proposed a
younger age of 7-11 Ma for the strike-slip inception (Torres Carbonell et al.,, 2014) based on a left-
lateral offset of ~5o km in the foreland FTB (Torres-Carbonell et al, 2008). The authors
constrained the measured offset with the present-day geodetic velocity ~4.4 to 6.6 mm/ yr

(Smalley et al., 2003; Mendoza et al,, 2011).
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Figure 1.4: Tectonic reconstruction from (Cande and Leslie, 1986; Guillaume, 2008; Dalziel et al.,
2013). (@) 182 Ma. The Gondwana supercontinent in a paleomagnetic reference frame (Van der
Voo 1993). Patagonia is shown in yellow. Abbreviations: K, Kalahari craton; M, Madagascar;
P,Pensacola Mountains; Pt, Patagonia; RP, Rio de la Plata craton; SV, Sierra de la Ventana.
Numbering is (1) Maurice Ewing Bank, (2) Falkland/Malvinas microplate, (3) Ellsworth-Whitmore
block, (4) Berkner Island, (5) Antarctic Peninsula, (6) Thurston Island—Eights block, (7) Eastern
Marie Byrd Land block, (8) Western Marie Byrd Land block, and (9) Zealandig; (b) 135-120 Ma:
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Two-plate separation of East and West Gondwana. The blue region south of Patagonia is the
opening of the Rocas Verdes basin. The orange regions are contemporaneous opening of Weddell
Sea floor and Central Scotia Sea floor. The green region is the opening of the South Atlantic
Ocean. (c and d) 52 Ma to 42 Ma Southward migration of junction Aluk/Farallon. (e andf) 20 Ma
to 16 Ma. The triple junction of Nazca/Aluk/Antarctic plunged under the South American ocean
ridge, initiating the subduction of the Antarctic plate. Abbreviations are : ANT : Antarctica plate;

FAR: Farallon; K: Kalaharicraton; Pt : Patagonia; Rp : Rio de la Plata craton : Sv: Sierra Ventana

In term of paleoclimate, this period is fundamental as the subduction direction change is
coeval to the Drake Passage opening, whose formation resulted from the continuous Scotia plate
spreading since ~50 Ma. The opening of this strait separating Antarctica from Tierra del Fuego,
and the opening of the Tasmanian Gateway around 35 Ma (subsidence of Tasmanian land bridge
separating Antarctic from Tasmania) were synchronic with an abrupt global climate cooling
(Eagles, 2004; Livermore et al,, 2005; Livermore et al., 2007). These sea passages initiated the
free transfer of oceanic water masses, establishing the Antarctic Circumpolar Current (ACC), and
cutting Antarctica off warm currents flowing from the tropics (Lagabrielle et al, 2009). Using
neodymium isotopes in fossil fish teeth from central Atlantic Ocean core (ODP site 1090, Figure
1.3 inset), authors suggested an influx of shallow Pacific seawater approximately ~41 Ma in the

Atlantic (Scher and Martin, 2006).

To conclude, the exact timings of MFF strike-slip onset remain controversial. However, the
MFF may have gained its predominant strike slip function around 7 Ma, by accommodating the
relative motion between Scotia and South America Plate (Lodolo et al, 2003). With a very
simplistic view of the southern tip of South America, the region can be divided in a four units: The
Patagonian batholith (PB), the Rocas Verdes basin (RVB), the Magallanes Fold and Thrust Belt
(FTB), and the Cenozoic Magallanes foreland basin (CFB).

The Magallanes Fagnano Fault system (MFF) is the inland transform boundary between
South American (SAM) and Scotia plates (SCO). Its eastern continuation is the North-Scotia ridge
(Figure 1.5). In Tierra del Fuego, the GPS network is scarce, and even more in the Chilean territory,

with none GPS campaigns, and a single IGS permanent station in Punta Arenas. The remote
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Southern Chilean territories is less monitored, primarily due to the limited access (by sea or off-
road), and the lack of suitable station anchor (recovered by thick unconsolidated peat deposit).
The current geodetic motion is therefore poorly constrained in the Chilean Tierra del Fuego
while, in Argentina, a few GPS-campaigns enable to estimate the present-day geodetic relative

motion between SAM and SCO at 5.9+ 0.2 mm/yr (Smalley et al,, 2003; Mendoza et al., 2015).

Figure 1.5: Tectonic setting of southernmost Andes with plate boundary velocities (mm.yr?) (from
(Barker, 2001; Thomas et al, 2003; Ghiglione et al, 2010; Dalziel et al, 2013), superimposed on
greyscale topography and bathymetry (Sandwell and Smith, 1997). Relative strike-slip motion of MFF
from (Mendoza et al, 2015). Red lines are active structures; black lines are extinct tectonic features.
ANT: Antarctic plate; BB: Burdwood Bank; FPH: Former Phoenix plate; HFZ: Hero Fracture Zone; Is.
M: Islas Malvinas; MFF: Magallanes-Fagnano Fault; MAFZ: Malvinas-Agulhas Fracture Zone; SAM:
South America plate; SCO: Scotia plate; SFZ: Shackleton Fracture Zone; SSH: South Shetland plate;
SSW: South Sandwich plate; TdF: Isla Grande de Tierra del Fuego.

As illustrated with the global plate models Nuvel 1A and Morvel 2010 (Figure 1.6), the Scotia
plate motion relative to a fixed SAM plate remains poorly constrained (DeMets et al, 1990;
DeMets et al, 1994; DeMets et al., 2010). These models suggest contrastive velocities from 5.24
to 9.85 mm/yr, and compute different rotation pole locations distanced from each other, and far

from Tierra del Fuego (Pelayo and Wiens, 1989; DeMets et al, 1994, Thomas et al, 2003;
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UNAVCO). Necessarily, it implies the relative motion of SCO and SAM is accommodated by
transtensional /transpressionnal regions, and/or internal deformation in the plates' inner part. At
a larger scale, the global plate models indicate 15-18 mm/yr of SAM'’s relative sinistral motion
with respect to Antarctica plate (DeMets et al, 1990). Therefore, the global movement is
partitioned between transform faults along the MFF, North Scotia Ridge, the Shackleton Fracture

Zone, and the South Scotia Ridge (Smalley et al., 2003).

. o s e SN

Velocities of Scotia plate relative to &7
fixed SAM plate (mm/yr) .

SCO/SAM
otation poles

Figure 1.6: Global plate models Morvel 2010 (DeMets et al.,, 2010) and Nuvel 1A (DeMets et al.,

1994) showing the relative velocities of Scotia (SCO) plates to a fixed South American plates (SAM).
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Blue and yellow triangles are the rotation poles of Morvel 2010 and Nuvel 1A, respectively. Red line

indicates MFF fault. ANT: Antarctic plate.

The MFF extends from the Chile Triple Junction to the Atlantic coast, running in a WNW-ESE
trend in the Strait of Magellan’s western arm, and in E-W direction in Tierra del Fuego (Figure
1.3). The MFF divides the Tierra del Fuego into two blocks with geomorphological expressionin a
series of lineaments (scarp, ridge, shutter ridge, truncated vegetation) and depressions (lake,

pull-apart, sea passages) (Figure 1.7).

Figure 1.7: Southern Isla Grande de Tierra del Fuego from the International Space Station (ISS)
NASA taken the 14 February 2014. Available: NASA's Earth Observatory web site Photo ID: 1SS038-

E-47389.

The Magallanes Fagnano Fault can produce major earthquakes up to magnitude 7to 8. The
historical record of past earthquakes is particularity short in Tierra del Fuego, and the location
and the extent of the penultimate earthquakes are poorly characterized (Figure 1.8). Most of
significant modern seismicity M>7 (events 1879, 1949, 1970) are directly triggered by the South
American — Scotia plates relative motion, predominantly accommodated along the Magallanes-

Fagnano Fault. Furthermore, recently localised crustal earthquakes (from 1.9 < ML < 5.3) show a
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good correlation with the presence of the Magallanes- Fagnano Fault (Ammirati et al., 2020).
However, shallow seismic events distributed under the Cordillera Darwin would be mostly
associated with isostatic rebound following the retreat of the Patagonian Ice sheet (Ammirati et
al., 2020). The Tierra del Fuegois a sparsely instrumented region as the permanent seismological
stations where installed only after 2011 (Barrientos, 2018; Ammirati et al, 2020), which implies a

large epicentral uncertainty on smaller magnitude pre-2011 events.
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Figure 1.8: Tectonic setting and instrumental records of earthquakes superimposed on World map
ESRI. We reported historical 1949 earthquakes epicentre locations proposed by (a) Castano (1977); (b)
Jaschek et al, (1982); (c) Lomnitz (1970); (d) Pelayo and Wiens (1989); (e) U.S Geological Survey
(2017); Red and grey shaded ellipses refer to the most consistent region for epicentre location of the
two main 1949 shocks. Focal mechanisms of the 1970 earthquakes are from (Forsyth, 1975). Catalog
of earthquakes are from (Pelayo and Wiens, 1989; Febrer et al,, 2000; Buffoni et al, 2009; Flores
Veliz, 2017). GPS-station locations from (Mendoza et al,, 2015). SAM: South American plate; SCO:

Scotia Plate.

22|Page




|.2Tectonic setting of the Southernmost Andes

The analysis of GPS data predicts a fault dipping 66° + 4° southward in Eastern Tierra del
Fuego, and a locking depth of 11 + 5§ km (Mendoza et al,, 2015) in Eastern Tierra del Fuego.
Geodetic data evidence the MFF is a narrow deformation belt of ~30-km-wide (Figure 1.9).
Global earth model and analysis of gravity data predicted a Moho depth of 26 + 5 km (Bassin,
2000; Reguzzoni et al, 2013). Also, 1—2 mm/year of relative plate motion may be diffusely
distributed from 50° to 56°. It might be accommodated through secondary sub-parallel faults,
such as in the Beagle channel, the Carbajal valley, and the Deseado catchment (Smalley et al,

2003; Menichetti et al, 2008).
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Figure 1.9: GPS results from Mendoza et al. 2015. (a) Regional GNSS network. (b) Observed
interseismic velocities in GNSS sites, referred to the terrestrial reference frame 1GSo8. (c) Same
observed velocities referred to the IGS tracking station Rio Grande (RIOG). (d) Near-fault surface
deformation was obtained by inverting observed interseismic velocity. Color code is the magnitude of

the second invariant of the strain rate.
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.3 Glaciers and glaciations in the Fuegian Andes

The Patagonian glaciations have greatly contributed to carve the present-day Southernmost
American shape. From the previous chapter, we know that the tectonic evolution can drastically
impact the climate, as illustrated by the Drake passage opening and the concomitant global
climate cooling. The other way around, climate can trigger tectonic modifications that remain
visible in the landscape. In some cases, changes are perceptible in the crustal motion. For
instance, geodetic studies in the Southern Patagonian reveal high uplift rates, which are inherited
from the large ice-losses since the Late-Holocene (Dietrich et al, 2010; Lange et al.,, 2014; Richter
et al, 2016; Richter et al, 2019). Therefore, in this intensely formerly glaciated region, the
understanding of glaciers and glaciations is fundamental to study the tectonic strike-slip

evolution.

In Southernmost Patagonia, the fjords often correspond to weaker geological structures that
have been widened during successive glaciations (Glasser and Ghiglione, 2009). The
paleoglaciers have deepened the pre-existing structures such as the geological contacts, the over
folded terranes, and the plate boundaries (Figure 1.10). The MFF has been activated since the
Miocene-Oligocene times and is responsible for the presence of faulting structures lined up in
the same orientation than the glacial lineations. Because of the great extent of Late Cenozoic to
Quaternary glacial processes in South America, the study of Magallanes-Fagnano strike-slip

cannot be separated from the glacial evolution.
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Figure 1.10: Patagonian Ice-sheet (PIS) at 35 ka corresponding to the global Last Glacial
Maximum (gLGM) (Davies et al,, 2020) above the simplified Magallanes-Fagnano Fault system (MFF,
red lines). Abbreviations as follow: AR: Argenting; CL: Chile; D: Puerto Deseado; DP: Drake Passage;
E: Esquél; G: Rio Gallegos; G.C.N.I: Gran Campo Navedo Ice-sheet; LF: Lago Fagnano; NPI: Northern
Patagonian Ice-sheet; P: Punta Arenas; NZ: Nazca plate; R: Rio Grande; RAMSAC: Argentine Network
for Continuous Satellite Monitoring; R.M: Rio Mayer; R.E.G: Refugio Eduardo Garcia; SAM: South
American plate; SCO: Scotia plate; SPI: Southern Patagonian Ice-sheet; U: Ushuaig; Y: Coyhaique; W-
Rawson. The base map is general bathymetric chart of the oceans (SHOA Chilean Navy, 1998 and
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GEBCO 2014; National Centers for Environmental Information NCEI, NOAA). with 100 meters

interval below sea level).

Patagonian’s oldest glacial archive was recorded at 47°S in a 30-m till deposits interbedded
with basalt lava-flows, and dated between ~7 and ~5 Ma (Ton-That et al, 1999) . Between 7 Ma

up to 2 Ma, ice-caps extended 30 km east of the mountain front (Thomson, 2002).

Studies, based on lava flow dating above and below paleoglacigenic deposits, evidence
glaciation between 3.0-2.25 Ma and 2.13-1.43 Ma (Mercer, 1983, Wenzens 2000). A minimum of
seven glaciations have been recognized, which would have taken place between 3-1.43 Ma (Ton-

That, 1997; Ton-That et al,, 1999).

The most extensive glaciation occurred during the lower Pleistocene at ~ 1.1 Ma (K/Ar dating,
Mercer, 1983). This event is either named Llanquihue glaciation (Coronato et al., 2002a), Greatest
Patagonian Glaciation (GPG) (Mercer, 1983), or ‘Initioglacial’ (Caldenius, 1932). This pre-
Quaternary glaciation extended farther than the Last Glacial Maximum (LGM) and most likely,
included more than one glacial advance (Rabassa et al., 2000). During the GPG, the ice tongues
would have rimmed the Atlantic coast north of the Magellan Straits. However, the exact
easternmost ice position remains unclear, and some authors propose the ice front was located
about 200 km east of the present coast. Massive ice-lobes, such as the Magellan and the Bahia

Inutil-San Sebastian lobes, would have carved the main fjords during successive advances

(Meglioli, 1993).
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The mostimportant ‘fjord-carving event’ occurred soon after the GPG (Rabassa et al,, 2000),

during whatis called post-GPG 1and 2 (Coronato et al.,, 2002a). It corresponds to the ‘Daniglacial’

(1.01t0 0.76 Ma) and “Gotiglacial” according to Caldenius, (1932) classification (Figure 1.11).
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Figure 1.11: Paleo-glacial limits of Tierra del Fuego and Southern Patagonian Andes. Compilation

of limits from (Caldenius, 1932; Clapperton et al, 1995; Bujalesky et al, 1997, Mcculloch and
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Bentley, 1998; Rabassa et al, 2000; Rabassa, 2011; Coronato et al, 20023; Bentley et al,, 200¢;
McCulloch et al,, 2005; Waldmann, 2008; Boyd et al.,, 2008; Coronato et al,, 2008; Coronato et al.,
2009; Waldmannetal, 2010; Fernandez et al, 2011; Hall et al, 2013; Fernandez et al,, 2013; Peltier
etal, 2016; Fernandez et al,, 2017; Hall et al, 2017; Lozano et al, 2018; Hall et al., 2019; Soteres et
al., 2020). Abbreviations: ACC: Antarctic Circumpolar Current; ANT: Antarctic plate; A.P: Ainsworth
Peninsula; A.T lobe: Alpine Tributaries lobe; CM: Caleta Maria; CW: Channel Whiteside; LF: Lake
Fagnano; Last Glacial Maximum MFF: Magallanes-Fagnano Fault; PA: Punta Arenas; SAM: South
American Plate; SCO: Scotia plate; RG: Rio Grande, Argenting; RP1,2,3: Recessional phases;
W.A.S.M: Western Arm Strait of Magellan;

In Patagonia, the Last Glacial period corresponds to all the glacial deposits occurring post-
Last Interglacial MIS 5 (125 ka). This period was defined as the ‘Finiglacial’ by Caldenius (1932).
Five stages of advances have been recognized, and called stage A to E, from the outermost to
the innermost margins with respect to the Andes (Clapperton et al.,, 1995; McCulloch et al., 2005)
(Figure 1.11). The first ice-expansion was stage A (MIS 4) which has been recently dated between

70.6 to 56.3 ka along the western side of Magellan Strait (Peltier et al, 2016; Soteres et al., 2020).

The interglacial MIS 3 remains a controversial phase. Chronologies based on radiocarbon
dates propose the MIS 3 was a recessional phase (Mercer, 1976; Laugenie, 1984; Rabassa and
Clapperton, 1990; Clapperton et al, 1995; Lowell et al,, 1995; Denton et al., 1999; Porter, 2020).
Along the Lake Fagnano southern shore, this phase is identified in proglacial delta deposits with
interbedded peats dated at 39 cal ka BP and >50 cal ka BP. Authors suggest the delta was formed
in a moderate recessional phase after MIS 4 (Bujalesky et al, 1997) with proximal ice-contact.
Using dated charcoals from the Peninsula Ainsworth in the Almirantazgo Sound, we will show in
Chapter IV, that the recessional phase would have been more intense in this western region. On
the other hand, Darvill et al. (2015) propose an extensive regional advance in the San Sebastian
lobes between 45.6 ka (+139.9/-14.3) up to 30.1 ka (+45.6/-23.1). However, these ages afford
dates ranging from MIS 6 to MIS 2. These hypotheses are not necessarily conflicting and can

agree with a rapid retreat Early in MIS 3, followed by glacial advance during Late MIS-3.
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Stage B (late MIS 3to MIS 2) is recognized as the Last Glacial Maximum (LGM). Despite near
a century of scientific investigation about the Patagonian glaciations, the LGM limits remain
poorly constrained in most of its extension. It is accepted that the Patagonian Ice sheet may
approximately be grounded on the Pacific continental shelf edge and extended 350 km toward
the east (Davies et al,, 2020). It was an ice band of 2090 km long, from 40°S to 56°S, unifying
several ice fields: Isla de Chiloé ice-sheet, the Archipelago de Los Chonos, the Northern and the
Southern Ice-sheets, the Grand Campo Nevado Ice-sheet and the Cordillera Darwin Ice-sheet
(Figure 1.10). Along such a long latitude range, the LGM ice limits were reached at different times

in Patagonia's different regions (Rabassa, 2011; Coronato et al, 2004b; Davies et al., 2020).

The global LGM (gLGM 38°- 48°S) stands between 33-28 ka (Davies et al,, 2020). The decay
of the ice started about ~ 25 ka and stabilized soon after between ~ 21-18 ka. After 18 ka, the ice-
lobes disintegrated rapidly and irreversibly and was lastly interrupted by five stages of glacial
advances: 14 to 13 ka, 11 ka, 6 to 5 ka, 2 to 1 ka, and 0.5 ka. The LGM in the Magallanic region

slightly differs from the north-central global Patagonian timing (gLGM).

The local LGM in Tierra del Fuego (ILGM) initiated at ~ 31.2 (McCulloch et al,, 2005; Kaplan
et al, 2008), or earlier (our study, Chapter IV), and culminated at ~25-23 ka. In the strait of
Magellan, stages C, D, and E depict successive less extensive advancing fronts (Figure 1.11) at
21.7-20.4 cal ka BP, 18-17 cal ka BP and 12.5-11.7 ka BP, respectively. Ultra-local variations are
described in the Almirantazgo Sound by Boyd et al. (2008) and Hall et al (2013). They suggest the
ice rapidly retreated in Brooks and Marinelli innermost fjords by 15-17 cal ka BP, without former
evidences of readvance E. Fernandez et al,, (2011, 2017) propose that the speed-retreat in these
fjords could be mainly bathymetric-driven. In Eastern Tierra del Fuego, the LGM culminated at
>25.7 ka in the Fuego lobes (Coronato et al., 2009) and started to recess at ~20-18 ka (Roy et al.,
2020). All the final recessional morphologies are described in the Lake Fagnano as RP 1, 2, and 3,
and account for progressive retreat in the Darwin Cordillera by 11.7 ka (Figure 1.12) (Waldmann
et al, 2010). However, because the final episode of retreat in the Darwin Cordillera was
demonstrated in the Almirantazgo Sound to occur between 15-17 ka, the Fagnano lobe final

retreat might have occurred earlier than the proposed age (before 11.7 ka).
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The local LGM (ILGM) partially covered the Magallanes-Fagnano fault system. This period is
associated with a sea-level fall of 150 m below the present-day level (Guilderson et al, 2000).
Accordingly, at the latitude of the eastern MFF (-54.5°), the land emerged farther east, extending
the inland fault of about 170 km east of the actual coastline (Figure 1.10). While the eastern
Magallanes-Fagnano fault remained free of ice, the western and central MFF was covered by
large ice-lobes. Along the Cordillera Darwin northern flank, ice lobes were thicker than those in
eastern Tierra del Fuego. Trimlines in Almirantazgo Sound evidence the highest imprint of the
ice lobes standing about 600 — 800 m.a.s.|. Besides, the Almirantazgo Sound bathymetry
(Fernandez et al., 2017) demonstrates the ice was grounded along the seafloor during LGM. The
actual seafloor depth is - 100 to -300 m (SHOA Chilean Navy, 1998) and may include glacial
sediment units, then it suggesting a minimal ice mass thickness of > 700 -1100 m within the
western MFF. Inthe mountains ranges Dientes del Dragdn, Beauvoir and Valdivieso the trimlines

in demonstrate maximum ice-mass > 600 m which rapidly decreases toward the east.

(Next Page) Figure 1.12: Compilation of dated samples and their respective methods used to
constrain the retreats of the Fuegian glaciers. Colour bars indicate the dating methods. Ages are
calibrated radiocarbon and indices show the associated reference. Sources are: (Clapperton et al.,
1995; Bujalesky et al, 1997; Mcculloch and Bentley, 1998; Rabassa et al, 2000; Coronato et al,
20023; McCulloch et al,, 2005; Coronato et al, 2008b; Coronato et al,, 2004b; Boyd et al., 2008;
Stern, 2008; Coronato et al., 2009; Waldmann et al,, 2010; Hall et al, 2013; Menounos et al,, 2013;

Roy et al, 2020). For the glacial limits extent colours see Figure 1.9.
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.4 Twelve thousand years of fire in the Fuegian Andes

As a geologist, when | investigate for the first time an area, | am not only interested in the
rocks and in the landscape morphology but also in the inhabitants and their history, who are part
of the whole regional painting. Furthermore, when questioning about the paleoearthquakes in
Tierra del Fuego, | cannot avoid wondering who was there, to feel, and to endure these

tremendous quakes for the last 13 0oo years.

The native groups, have migrated south, passing Monte Verde around 15 000 -14 000 yrs,
and then the Strait of Magellan before its opening at g coo yrs (Miotti and Salemme, 2004;
Salemme and Miotti, 2008; Legoupil, 2011). The oldest radiocarbon dates for human occupation
available in Tierra del Fuego are located at Tres Arroyos site (Figure 1.11), and expose multiple
evidences of occupation since 12 0oo yrs (Massone, 1987, 1988, 2004). This cause a paradigm
shift in archaeological thinking: the occupation at Monte Verde unequivocally demonstrates that
the South America was colonized before the Clovis culture (Dillehay, 2000, 2003, 1999). Either it
means an extremely rapid dispersal of humans from Bearings to South America, or that humans
did enter the Americas long before 14 500 yrs and migrated more slowly toward the South
(Dennell, 2015). At present, these possibilities remain two candidates, as there are still many
substantial geographic gaps to fill (Dillehay, 1999). Heusser, (1994) suggested a hypothesized
early occupation in South America, and notably near Monte Verde, based on paleofire charcoal
layers at 33 000 yrs. Authors interpreted the absence of charcoal between 25 000 to 15 000 yrs
due to human'’s migration stepping back to higher latitudes to shun the inhospitable austral lands

and the Holocene glacial advances.

Figure 1.13: (a) The first settlements of the America and hypothesized routes. (b) Location map of
the Native groups of Tierra del Fuego and Southern Patagonia, archaeological sites (white dots) and
location of modern tepee in figure 1.13b (green dot). Sources: (Massone, 2004; Miotti and Salemme,
2004, Salemme and Miottj, 2008 Legoupil, 2009; Legoupil, 2011; Raff and Bolnick, 2014; Dennell,
2015). Base map is shaded mosaic relief image of the Southernmost Andes from SRTM ALOS Word
3D-30m (©JAXA).
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These groups underwent giant earthquakes since their southward migration in the Fuegian
archipelago at the end of Pleistocene, from 13 to 10.5 ka (Miotti and Salemme, 2004; Massone,
2004; Salemme and Miotti, 2008). Unfortunately, the European colonization irrevocably
exterminated all of these groups, jointly with their knowledge of ancient temblors (Gusinde, 1953;
Chapman, 1989; Penaloza, 2015). The unique reference to an antique event originated from a
Yagana tale mentioned by E.L. Bridges, son of Rev. T. Bridges, a first Salesian settler at Estancia

Haberton, at the Beagle Channel northern coast:

34|Page



l.4Twelve thousand years of fire in the Fuegian Andes

«Along time ago the moon fell into the sea, [...] it rose in great tumult, just as the water rises
from a bucket when a great stone falls inside. The only survivors of the flood were the fortunate
inhabitants of Isla Gable [...]. The surrounding mountains soon submerged, and the people [...],

looking around, saw nothing but the ocean to the edge of the horizon [...] ».
Bridges, (1952) p166-167.

Seemingly, the flood would have occurred over the Isla Gable and could be related to a
meteorite falling or either to a tsunami from the adjacent fault in the Beagle Channel

(Cunningham, 1993).

Four native groups lived in the Isla Grande de Tierra del Fuego and the fjords: The Selk'nam
(incorrectly call Onas), the Yagan (Yamanas english), the Haush, and the Alakalufes (Figure 1.14).
The Selk'nam and the Haush were terrestrial seminomads, while the Alakalufes (or Kaweskar)

and the Yamana were sea seminomads (Chapman, 1989; Gusinde, 1951).

We owe our knowledge on Native inhabitants mainly through the prodigious works of
Thomas Bridges (1842-1898, Anglican missionary), Martin Gusinde (1886-1969, Austrian priest
and ethnologist), and Anne Chapman (1922 — 2010, French ethnologist and anthropologist). They
lived decades with the natives, abandoned their own trends and religion, to investigate the
indigenous culture, languages, beliefs, habits, and interactions. As they respectively lived with

Selk’'nam and Haush, only little is known on the Alakalufes and Yamana.

In 1880, the Selk’nam peoples were around 3000 to 4000 persons, and in 1930 there was only
one hundred Selk'nam (Chapman, 1989). Individual counts were conducted in central Tierra del
Fuego, thatis why very few testimonies account for the decline of other groups. Each community
formed smaller groups named Haruwen, which were either family and sometimes polygynous

(Brides, 1879). They lived in a wood hut or tepees (Figure 1.12 a, b).
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Figure 1.14: (a) Selk'nam 1910-1920 (Alvarado et al. 2007, photo Agostini). (b) Modern tepee
photographed in 2017 during thesis fieldwork in the remote easternmost land between Cabo
Malengiena and the Irigoyen river (location green dot figure 1.11). (c) Men’s dance in the Hain
ceremonial tepee (Choza), photo Gusinde 1923. (d) Ulen spirit, Hain ceremonial Selk'nam in 1923,
photo Gusinde (e) left to right: Selk'nams Elek, Angela Loij (center), Imshuta, prepare for the Kewanix
dances in honour of Tanu spirit. Hain ceremonial in 1923, photo Gusinde. (f) 1914, Honte (Woman of

the Haush group, mother of Luis Garibaldi Honte), unknown photographer, source Chapman 2002.

Each Haruwen had a vast territory passed on their descendants, in which they moved
depending on the prey availability. They hunted with arch for guanaco, fox, rodents and multiple
birds. For the costal Haruwen, they sometimes hunt for sea lion, seal or sea elephant. For
terrestrial groups, they lived mostly on guanaco, in which they used all the parts (bones, tendons,

leather) for crafting, tools, clothes and daily consumption items (Figure 1.14a).

These groups endured the Austral cold since generations, and would have developed
significantly higher metabolisms than average humans. However, their veritable asset to fight
the cold, was to cover their bodies with thick guanaco grease layer. During winters, they wrapped
their foot in large piece of guanaco leather, whose woolly side enabled easy snowwalk with fair

load-bearing capacity.

The Selk'nam and the Haush did not know the writing, and passed down their knowledge
orally, with intergenerational discussion and numerous chants. In each generation, existed one

“father of the word”, who was the wise guard of the ancestral traditions.

Some Selk’nam words:

Haru, Earth | Jauje, fuego | Chowh, water | Shinka, sea waves
Huen, to laugh | Aska, family | Naa, woman | Chon, man
IHain, father | Mam, Madre [Yowen, guanaco.

Each Haruwen had a Chaman (named Xo' on), a healer who communicated with Nature
(Brides, 1879). The Xo'on had a leading role in Hain ceremonies, in which the young adolescent

gain access to the man status (Figure 1.14¢) by numerous trials and wrestling. Based on oral
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traditions, thereupon a time name Hoowin where women lead the Selk'nam, and the young girls
were at the heart of the Hain ceremony (Chapman, 1989). Days before the Hain, the group
prepared the costumesand painted their entire bodies with red and white clays and greases. Each

person had well-determined role and embodied one of the ancient spirits (Figure 1.14d, e).

The 28 November 1520, almost 500 years ago, Magellan (and Pigaffeta) sailed through the
Tierra del Fuego on behalf of King Charles | of Spain. As they noticed numerous smokes all over
the coast, their name it "Tierra de Humos", successively amended by the King "Tierra del Los
Fuegos" and later shortened Tierra del Fuego (Da Mosto and Allegri, 1894). The European settler
groups were more and more to navigate through the Tierra del Fuego: 1616 Le Maire and
Schouten (Dutch), 1624 Jacques I'Hermite (Dutch), 1699 Gouin and Beauchéne (French), 1774
Cook (British), 1787 Byron, Wallis and Carteret (British), 1828 Stoke, Skyring, Otway and Fitzroy
(British HMS Beagle n°1), 1834 Fitzroy and Darwin (British HMS Beagle n°2), 1837 Dumont
D'Urville (French). From the settlers account, we can perceive the general level of understanding,

of curiosity, and empathy for the native Americans:

"Bearded, ugly and naked man with fire in each canoe to warm up themselves. So dirty to

spoil any man appetite for Christmas dinner.” J. Cook 23 December 1774 from (Cook, 1777)

"People try to steel the ship's auxiliary from HMS [...] we decided to take the family, and come

back with them in England [1830]". Fitzroy, 1828 from (Fitzroy and King, 2018)

"The Fuegians are in a more miserable state of barbarism than | had expected ever to have
seen a human being. [...] He who has seen a savage in his native land will not feel much shame, if
forcedto acknowledge that the blood of some more humble creature flows in his veins. [...] These

were the most abject and miserable creatures | anywhere beheld”. (Darwin, 1840, 1875)

The commerce and trade started soon after 1700 when the first Spanish settled in the Buenos
Aires region. In Tierra del Fuego and Magallanic regions, the settlements occurred later in 1840.
Various church missionaries often accompanied the expeditions and collectively converted,

enforced European trends, and recruited the most resigned natives for wool or logging industries,
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and gold quest (1880-1890) (Garcia, 2013; Garcia O, 2015; Casali and Manzi, 2017). In Tierra del
Fuego, coastal gold-bearing alluvial deposits were exploited by the notorious J. Popper (Figure
123,b), who had lead extermination campaigns in 1886 (Lothrop, 1928; Legoupil, 2009; Chapman,
2010). Besides, the replacement of the guanaco by the sheep breeding led to conflicting situation
between Europeans and native hunters with a near eradication of terrestrial hunters in Tierra del
Fuego by 1890 (Alvarado et al, 2007; Legoupil, 2009). These missions predated the industrial

capitalism and cumulated enormous capital gains on humans' back reduced to slavery or

extermination.
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Figure 1.15: (a) Official photography of J. Popper gold quest and extermination campaigns in 1886
near Bahia San Sebastian (Alvarado et al, 2007). (b) J. Popper after assault. (c) 1886, foreground
Popper. Paris, 1889 Exposition Universelle. (d) Alakalufes or Yamanas compelled to wear European
clothes in 1909. Notice in the legend, the author mistakes Onas from the genuine name Selk’nam, and

most probably ignores that only the Alakalufes and the Yamanas are sea nomads.

Contrary to what is often taught about the mythologized Columbus, Marco Polo, Magellan,

and Darwin voyages, these European arrivals were before any Naturalist purposes, expansionist
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and capitalist governmental missions. The Americas conquest is proposed to be the onset of the
Anthropocene (Haraway et al, 2016; Ferdinand, 2019). Although this epoch has not been
officially approved yet as a recognized subdivision of geologic time, researchers have
demonstrated the radical environmental changes in South America since the 15th century
(Haraway et al, 2016; Koch et al, 2019). The European imprint has triggered significant
epidemics, the continents’ fauna and flora reunification, and land-use changes (Bonneuil and
Fressoz, 2013). Koch et al. (2019) review pre-and post-1429 population loss and land-use, and
they model the associated global carbon impact compared to natural carbon decline. They
estimate the European epidemics removed 90% of the indigenous population over the 16th
century representing 56 000 0oo persons. The subsequent abandonment of 56 Mha of lands
confined a large carbon amount, equivalent to 3.5 ppm decline, which triggered 47-67% of the
global atmospheric decline between 1520 CE and 1600 CE (observed in Antarctic ice core
records). It demonstrates that even centuries before the Industrial Revolution, human actions had
global impacts on the Earth system. Interestingly, the European Colonialism that caused a
relative carbon decrease, enabled to cumulated enormous capital gains, founding the modern
capitalist societies. These same societies that are responsible of the exponential atmospheric

carbon increase since the Industrial revolution.
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Abstract

Across the extreme south of Patagonia, the Magallanes-Fagnano Fault (MFF)
accommodates the left-lateral relative motion between South America and Scotia plates. In this
paper, we present an updated view of the geometry of the eastern portion of the MFF
outcropping in Tierra del Fuego. We subdivide the MFF in eight segments on the basis of their
deformation styles, using field mapping and interpretation of high-resolution imagery. We
quantify coseismic ruptures of the strongest recorded 1949, M7.5 earthquake, and determine its
eastern termination. We recognize several co-seismic offsets in man-made features showing a
sinistral shift up to 6.5 m, greater than previously estimated. Using *°Be cosmogenic nuclides
depth profiles, we date a cumulated offset in post-glacial morphologies and estimate the long-
term slip rate of the eastern MFF. We quantify a 6.4 + 0.9 mm.yrleft-lateral fault slip rate, which

overlaps geodetic velocity and suggests stable fault behaviour since Pleistocene.

KEYWORDS: strike-slip fault, slip-rate, coseismic deformation, Tierra del Fuego, Magallanes-

Fagnano Fault
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.2 Introduction

The Magallanes-Fagnano Fault (MFF) accommodates the sinistral motion between the
Scotia and South America plates along a 600 km fault system that crosses the Isla Grande de
Tierra del Fuego from the western channel of the Magellan Strait to the Atlantic coast (Figure
2.1a). This active transform boundary continues eastward along the North Scotia Ridge toward
South Georgia (Klepeis, 1994; Dalziel et al., 2013; Betka et al., 2016; Esteban et al.,, 2018). In Tierra
del Fuego, GNSS data indicate that active deformations are localized on the MFF, and that
present-day fault velocity ranges between ~ 5.9 + 0.2 mm.yr* (Mendoza et al., 2015) and ~ 6.6 +
1.3mm.yr*(Smalley et al., 2003). The locking depth of the eastern MFF is estimated at about 11

+5 km (Mendoza et al,, 2015).

70° 60°W 50°W 40°W 30°W 20°W

60°S|:

65°s|

Figure 2.1 (a): Tectonic setting of southernmost Andes with plate boundary velocities (mm/yr)
(from: Barker (2001); Ghiglione et al, (2010); Dalziel et al, (2013); Thomas et al, (2003)),
superimposed on greyscale topography and bathymetry (Sandwell and Smith, 1997). Relative strike-
slip motion of MFF from (Mendoza et al, 2015). Red lines are active structures; black lines are extinct
tectonic features. ANT: Antarctic plate; BB: Burdwood Bank; FPH: Former Phoenix plate; HFZ: Hero

Fracture Zone; Is. M: Islas Malvinas; MFF: Magallanes-Fagnano Fault; MAFZ: Malvinas-Agulhas
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Fracture Zone; SAM: South America plate; SCO: Scotia plate; SFZ: Shackleton Fracture Zone; SSH:
South Shetland plate; SSW: South Sandwich plate; TdF: Isla Grande de Tierra del Fuego.

In this work, we focus on the Eastern MFF between the Fagnano Lake and the Atlantic coast
in Tierra del Fuego (Figure 2.1b). Two major seismic events occurred in 1879 and 1949. On the 1st
February 1879, several European settlements reported an earthquake of intensity VII Modified
Mercalli Scale (MMS) near Punta Arenas and VIIl MMS in Tierra del Fuego (Cisternas and Vera,
2008), that was later estimated having magnitude 7-7.5 (Lomnitz, 1970). In 1949, two main
earthquakes occurred on December 17 at 6:53 (GMT) (Mwy7.75), and at 15:07 (GMT) (Mw7.5),
followed by several aftershocks of unknown magnitude (Jaschek et al., 1982; Febrer et al,, 2000).
We report in Figure 2.1b the position of 1949 epicentres according to different authors. Co-
seismic surface ruptures (Figure 2.2a) were described at Fagnano and Udaeta Lakes shoreline
and in the Estancia La Correntina (Lodolo et al, 2003; Costa et al, 2006; Pedrera et al., 2014). The
maximum horizontal component associated with the 1949 ruptures was estimated up to 4 m

(Costa et al., 2006).

Intertwined with the tectonic activity, the landscape of Tierra del Fuego was shaped by the
alternating advance and retreat of the Fuegian Patagonian ice-sheet (Waldmann, 2008; Glasser
and Ghiglione, 2009; Coronato et al, 2009; Waldmann et al,, 2010). A major glacial lobe flowed
eastward from the Darwin Cordillera (Figure 2.1b) and carved a deep valley now partly occupied
by the Fagnano Lake, while east of the lake, smaller tributary glaciers flowed northward above
the fault, and eroded part of the pre-glacial strike-slip morphologies (Coronato et al., 2004b).
Consequently, the reconstruction of the last deglaciation timing and the related deposit locations
are crucial to understand when and where post-glacial strike-slip faulting were recorded. In our
work, we built high resolution digital elevation model from Pleiades images combined with
extensive field work to study the remarkable imprint of the tectonic activity left in the glaciofluvial

deposits and analyse the geometry and kinematics of the fault ruptures.
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Figure 2.1 (b): Faults and seismicity of Tierra del Fuego. The trace of the MFF is shown with a red
dotted line, and the major fold-thrust belt (from Glasser and Ghiglione, (2009) are shown with black
lines. We reported historical 1949 earthquakes epicentre locations proposed by a-Castano, (1977); b-
Jaschek et al., (1982); c- Lomnitz, (1970); d- Pelayo and Wiens, (1989); e- U.S. Geological Survey; Red
and grey shaded ellipses refer to the most consistent region for epicentre location of the two main 1949
shocks. Catalog of earthquakes are from (Buffoni et al, 2009; Febrer et al, 2000; Flores Véliz, 2017;

Pelayo and Wiens, 1989). Locations of GPS sites measured in Mendoza et al., (2015).

The Holocene activity of the MFF has been studied at some specific sites by Costa et al.

(2006), Waldmann et al. (2011), Esteban et al. (2014), Onorato et al. (2016) . In this paper, we
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present a detailed description of the 65-km long onshore part of the fault located east of Fagnano
Lake, including the previously unstudied 30 km-long segments located east of Udaeta Lake. We
describe the 1949 rupture, and reassess the horizontal offset and the coseismic rupture length
with new observations of unprecedented described features. Finally, we describe the

geomorphic cumulated offset to constrain the average MFF long-term slip rate since the Late-

Pleistocene.
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Figure 2.2 (a): Structural map of the eastern MFF. The 1949 surface ruptures are shown as red
lines, and the segments with evidences of long-term slip are shown as brown lines. The red cross
symbolizes the eastern termination of the 1949 surface rupture. Reported coseismic surface
deformations: (a) sag pond and vertical scarp (~0.5—1 m) in Fagnano gravel bar (Lodolo et al, 2003);
(b) liquefaction and truncated-tree line features (Onorato et al.,, 2016; Pedrera et al, 2014); (c) and (d)
respectively 'San Pablo” and 'Oliva * disrupted fences mentioned by (Costa et al, 2006). (e) and (f)
show two previous reported offsets by eyewitnesses without exact locations (Costa et al,, 2006). The
base map is DEM SRTM ALOS Word 3D-30m (© JAXA). (b) 1949 sinistral horizontal offsets along the

eastern MFF. Red dots and their associated error bars correspond to measurements from this studly.
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Previous reported offset using green triangles and green shaded rectangles showing the range of

possible locations. The 1949 surface rupture continues westward through the Fagnano Lake.

.2 Eastern Magallanes-Fagnano Fault Geometry

East of Fagnano Lake, the MFF strike is Ngo°-g5°, i.e. sub-parallel to the Paleogene
structures that conform the Fuegian thin-skinned fold and thrust belt (Klepeis and Austin, 1997;
Ghiglione and Ramos, 2005). We subdivide the fault into 8 segments with their singular
geomorphic expressions (Figure 2.2). All segments are characterized by a main strike-slip
kinematics, however a moderate dip-slip component results in the relative uplift of either the
southern or northern block. The deformation style varies along the 65 km length of the fault and
exposes both localized and more distributed patterns. We observe on most of the segments
Riedel faults (Figure 2.3a) with a minor vertical component. Orientations indicate R-shear

synthetic fractures ranging N7o-75° (Figure 2.3).

(a) Riedel shear (b)

Southern block
&

Northern block

Figure 2.3: Deformation style of the segment 5. (a) Block diagram of Riedel faults with a long-term

dip-slip component. (b) Field photography of the Riedel faults.

In other segments, the tectonic deformation is distributed off fault in a sheared zone. At the
northern foothill of Sierra Irigoyen along segment 6, we identify a 3-km-long alignment of
hectometres pop-up structures (Figure 2.4a). They consist in asymmetric 2-6 meters-high
rhomboidal hills, elongated in their ENE, WSW axis. The inner part exposes N8o°-striking Riedel
faults (Figure 2.4b, d). On pop-ups, trees trunks of hundred years old are progressively tilted

toward the external border, evidencing that the elevation of these structures amplified during the
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last earthquake (Figure 2.4¢, e). This particular expression of surface deformation, distributed on
transpressive structures, is located in an active flood plain. The presence of unconsolidated sand

material and water may favor this deformation style.

(e) Northern block
Pop-ups segment
D . o> b c d)
< . eye P()S\L\%

Southern block

Figure 2.4: Geometry and style of the pop-up structures along segment 6. (a) General view of the
pop-ups alignment (green forested patches). (b) Detailed structural sketch of one pop-up showing
Riedel faults. (c) pop-up structure with fan shaped tilted trees. (d) Riedel fault within a pop-up; (e) pop-

up structure with tilted tree.

.3 The 1949 co-seismic rupture

Costa et al. (2006) interviewed several eyewitnesses of the 1949 earthquakes and concluded
that the horizontal offset did not exceed 4 m. Some witnesses however reported lateral offsets
as large as 6 m. Unfortunately, these observations are not supported by field measurements and
their precise location is missing. A more exhaustive and accurate offsets estimation is therefore

fundamental to improve earthquake scaling behaviour for this fault.
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We observe many preserved markers of the co-seismic ruptures from the last earthquake
sequence, some of them giving information on the 1949 sinistral offset. Two offsets have been
measured (Figure 2.5) in sheep fences corresponding to the Argentinean land registers of the
early XXth century (Casali and Manzi, 2017). These limits correspond to several tens of kilometres
N-S straight wired connected fences which can easily be mapped from satellite images (Figure
2.53). In segments 5 and 6, fence offsets evidence a 4 + 0.2 m and a 6.5 + 0.5 m sinistral shift,
respectively (Figure 2.5b, c). However, it is not possible discriminating whether the offset
originated from one or from the sum of the two successive shocks. No evidence of creeping has

been noticed since the new fences replaced the pre-1949 ones (Figure 2.5d).

Another offset is measured at the segment 7 (Figure 2.2), where N75° lineament have been
previously noticed (Ghiglione, 2003). The fault is crossed by a stream flowing southward which
undergoes a sharp sinistral offset of 5 m + 0.5 m. Besides, in the segment 2 a 6.2 + 1 m sinistral
offsetis also visible in the foundations of an abandoned broken bridge that spanned over the fault
line. These field measurements evidence the horizontal component of the rupture on different
segments and show that largest offsets are up to 6-6.5 m. This value is higher than previously

measured (4 m) and is consistent with observations noticed by eyewitnesses of the 1949 event.

The easternmost offset measured is localized within the segment 7. Eastward, no
geomorphic evidence of the rupture could be observed in pre-1949 river terraces, suggesting that
the surface rupture did not propagate farther east (Figure 2.2b). Along the segment 8, the fault
trace is visible in a continuous 5 m-high scarp. However, this scarp is much more degraded than
in the western segments. These characteristics are consistent with the occurrence of older
ruptures along this segment. We did not observe any strike-slip evidence between the Colorado

and MalengUefa Capes.
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Figure 2.5: (a) Pléiade image above the fault segments 5 and 6 showing the location of offset
fences. (b) and (c) GPS points along fences superimposed on Pléiade images respectively at segment
5 and segment 6. Note: on the figure (b) the NS scale of the lower graph has been compressed 10
times. White arrow in (c) highlight the trace of the fences away from the coseismic rupture zone. (d)
Photography of measured sinistral offset along the segment 6, showing some of the disrupted fence

abandoned poles.

Our observations show that 1949 co-seismic rupture zone ended at 5o km east of the Lake
Fagnano shoreline. Westward of our study zone, the rupture continues across the Fagnano Lake

parallel to its EW elongate geometry. It could die out somewhere along the 100 km of the lake or
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continue further west in the Magellan Strait. Nevertheless, the lack of observation on the western

part of the MFF prevent to identify the 1949 surface ruptures termination.

Il.4  Post-glacial slip rate

Here, we use the changes in the hydrological network following the Fuegian glaciers retreat

to assess the post-glacial long-term slip rate.

The segment 2 crosscuts four well-defined geomorphic markers within a 2 km-long zone
(Figure 2.2a): a dead valley, its associated meander, one topographic depression, and one ridge
(Figure 6a). We use the respective edges of the geomorphic markers (Figure 2.6b) to assess the
left-lateral offset using the back-slip restoration technique (e.g. McGill and Sieh, 1991; Klinger et
al., 2005). The piercing points all match with the best correlation at 115 + 5§ m displacement

(Figure 2.60).

This restoration shows that these various markers are synchronous and probably related to a
main landscape formation phase corresponding to the ice retreat. After restoration, the dead-
valley recovers its characteristic shape before the abandonment. This valley was carved by
meltwater streams following the retreat of tributary glaciers. Such glaciers have also been
described further to the west in JeuJepen hill (Figure 2.2a) (Coronato et al., 2002b). Glacial and
Glaciofluvial erosion erased previous strike-slip offset. Such markers fix the beginning of the

tectonic surface deformation record in this segment, providing a relative slip chronometer.

By dating the exposure of the youngest sediments of the fossil drainage system, we date the
abandonment of the valley and the onset of the subsequent tectonic deformation record.
Sampling took place respectively near the Estancia Don Matias and the Puesto La Quesaria
(Figure 2.2a) with established procedures (Braucher et al., 2003; Ritz et al., 2006). We sampled
quartz cobbles for cosmic ray exposure (CRE) dating using *°Be along two vertical profiles.
Surfaces are flat and underwent negligible erosion, thus we assume a zero denudation rate for
age calculations. We use the least-square inversion to model theoretical curves on both profiles

for °Be concentration measurements.
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igh-resolution
e

115 +5m

Figure 2.6: Back-slip deformation of post-glacial morphologies along segment 2. (a) High
resolution DSM showing the dead valley drainage system. (b) Markers superimposed on DSM with
strike-slip (red lines), and offsets in geomorphic markers (black lines): abandoned valley with associated
truncated meander (blue cover), hanging valley (green cover) and a hill’s ridge (single black line). Lines
are used as piercing point crossing the fault trace. We projected each flank of the abandoned valley on
the fault plane to identify piercing points. (c) Back slip deformation of markers, the piercing points

match for 115+5m cumulated offset.

Estancia Don Matias's terrace stratigraphic log presents four facies of well-sorted sandy
gravel matrix with gradational contacts resulting from glaciofluvial depositions (Figure 2.7). The
predominance of subangularand subrounded clastsin the two lower levels (unit 3and 4) indicates
a short glaciofluvial transport. The concentrations distribution does not decrease exponentially
with depth, evidencing that sample may have two exposure sources: the common post-
depositional cosmogenic nuclide production and their own pre-depositional production, which is
responsible for an intrinsic *°Be inheritance value. Based on these hypotheses, we apply the

profile rejuvenation methodology (Le Dortz et al., 2012). We select the sample (DMs) with the
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minimum *°Be concentration normalized by depth. It has the lowest inherited concentration
among all the profile samples. Its apparent exposure age is, therefore, the closest to the true post-
depositional age of the valley. The *°Be concentration of sample DMg yields a maximum age of
valley abandonment at ~18 + 2 ka. This age fixes the beginning of the tectonic deformation
record. In the same area, age based on *C of basal peat bog grown on top of moraine deposits

confirm that ice retreat in this region started before ~14 ka (Coronato et al., 2009).

Site: Ea. Don Matias
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Figure 2.7: *°Be depth profiles with respective stratigraphic log and pit view of site Estancia Don
Matias and Puesto La Quesaria (see Figure 2.2 for location).*°Be production rate has been calibrated
for local latitudes and elevations (Stone, 2000), using the modified functions of (Lal 1991), which
stands in quartz production of 4.92 +0.43 at/g/yr at sea level and high latitude. Calculations were

performed using attenuation lengths of 150, 1500 and 5300 g.cm? with associated relative
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contributions of 97.85%, 1. 50% and 0.65% (Braucher et al,, 2003). We employ the currently accepted
°Be half-life value of 1.387 + 0.012 10° yrs (Chmeleff et al,, 2010; Korschinek et al, 2010; Nishiizumi
etal, 2007). Measurements were completed at the accelerator mass spectrometry facility ASTER (Aix-
en-Provence, France) after preparation at the ISTerre GeoThermoChronology platform (Grenoble,

France).

At Puesto La Quesaria, we sampled the highest preserved alluvial terrace, whose formation
is supposed to be synchronous of regional glacial retreat. The profile exposes pebble to gravel
clasts in a sandy matrix characteristic of meltwater channel environment (Figure 2.7). Here, the
distribution of *°Be concentrations decreases exponentially with depth following the theoretical
curve of *°Be production (Brown et al., 1991; Dunai, 2010), suggesting that inherited cosmogenic
concentrations are negligible compared to post-depositional concentrations. These
concentrations yield a terrace exposure age of 20.2 + 1.5 ka, overlapping the maximum age

obtained near the Estancia Don Matias.

These ages characterize the main recession phase during which the tributaries glaciers
retreated above the Southern Hills (Coronato et al.,, 2009; Waldmann et al.,, 2010; Rabassa et al,,
2011). The abandonment of the glaciofluvial valleys resulting from ice retreat fossilized the
associated drainage system allowing the preservation of fault activity in the landscape since 18-
20 ka. The cumulated offset observed in the valley near by the Estancia Don Matias since this

period yields a geomorphic slip-rate of 6.4 £ 0.g mm.yr™

.5 Discussion and conclusions

We explore the main post-glacial deformations recorded along the eastern sector of the MFF
from Lake Fagnano to the Atlantic coast and integrated previously documented geometries.
Newly described strike-slip structures, pop-ups, and Riedel fractures are mapped with the relative
vertical motion of blocks. The analysis of high-resolution topographic models and satellite
images does not show any significant deformation on secondary structures, confirming that
strike-slip motion concentrates along the master fault as already suggested by GPS data

inversion (Mendoza et al., 2011).
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We chart the 1949 surface primary ruptures and measured related sinistral slips. We
document horizontal offsets up to 6.5 + 0.5 m. Surface rupture can be followed along 50 km from
the Fagnano Lake shoreline to the tip of the segment 7. According to the main shocks magnitudes
the 1949 surface rupture probably continued beneath Fagnano Lake, but the lack of direct access

to the western part of the MFF prevent to identify the 1949 western surface ruptures termination.

Back-slip restoration of offset glaciofluvial markers combined with *°Be dating allow the first
quantification of the geomorphic slip rate for this fault. The offset started to accumulate when
the local glacial catchment source vanished and associated drainage system was abandoned ~18
+ 2 ka ago. Our results yield a left-lateral Late Pleistocene slip rate of 6.4 + 0.9 mm.yr™*over this
period. This value overlaps the present-day velocity estimated using geodetic data. The
unchanged fault slip rate over the different timescale suggests a stable fault behaviour since

glaciers retreat.

Previous indirect attempts of major MFF earthquake recurrence estimations are divergent
and possibly biased by the method used. The shorter proposed recurrence interval is about 350-
850 years (Waldmann et al,, 2011) while the longer is 3000-4500 years (Costa et al. 2006). The
former study uses as a proxy the mass-wasting events in Fagnano Lake, which may integrate
events triggered on other structures, while the latter is based on a single paleoseismological
trench, in which sedimentary and tectonic record are not complete and some events may not be
registered. Considering the 1949 co-seismic offsets in the area around the long-term slip-rate
measurement, we obtained an average offset of 6 + 0.5m. With a geomorphic slip rate of 6.4 +
0.9mm.yr*, and based onthe average co-seismic offset of 1949, we propose a frequency of large

earthquakes event about 1000 + 215 yrs,
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Key Points

- New records of five paleoearthquakes in the eastern Magallanes Fagnano Fault.
- New evidence of the last 3 major ruptures since 2 ka agree with a recurrence interval

of 1000 yrs.
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Abstract

The Magallanes-Fagnano fault (MFF) is an active sinistral strike-slip fault that cuts across Isla
Grande de Tierra del Fuego, forming the plate boundary between South-American and Scotia
plates. To improve Holocene earthquake’s characterization of the MFF system, we conducted
extensive fieldwork and neotectonic mapping. We excavated a paleoseismic trench across an 11-
m-high fault scarp along the La Blanca segment. Using a scarp-derived colluvial wedge, cross-
cutting relation, and 28-radiocarbon samples, we document evidences of five paleoearthquakes
during the last 11 ka BP. The events are E5 at 1949 and/or 1879 AD, E4 at ~ 788 + 122 cal yrs BP,
E3 at ~ 2165 + 155 cal yrs BP and two events E2, E1 older than 10 776 cal yrs BP. Results yield an
interseismic recurrence of ~ 1000 yrs in the last 2ka. We correlate and discuss our results with
previous paleoseismic investigations. These findings improve the understanding of Tierra del
Fuego's paleoearthquakes and provide a new frame for seismic hazard assessment at the South

America — Scotia boundary.

KEYWOFdS Paleoearthquake records, Magallanes-Fagnano Fault,  Strike-slip,

Paleoseismology.
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.2 Introduction

Paleoseismic investigation allows analysis of a more extended history of major earthquakes
thanis possible from the historical record (Wallace, 1981). Surface fault geometries and disrupted
stratigraphy constitute primary evidences and determining relics resulting directly from ancient
seismic shocks (Sieh, 1981, McCalpin, 1996; Obermeier, 1996). In southernmost Patagonia (52°5),
these archives are fundamental, especially as historical and instrumental records are scarce in

this remote and highly tectonically active region.

Since the Early Miocene, the austral tip of South America has been affected by the left-lateral
strike-slip Magallanes-Fagnano Faults (MFF) system cutting through the continent from the
Pacific to the Atlantic (Winslow, 1982; Klepeis, 1994; Ghiglione, 2002; Lodolo et al., 2003; Torres-
Carbonell et al., 2008; Tassone et al., 2005; 2008). The Tierra del Fuego represents the largest
on-shore section of this boundary between the South American and the Scotia plates (Figure
3.1a). The Tierra del Fuego's recent tectonic history is closely intertwined with its glacial heritage,
which offers an exceptional area for paleoseismic investigations (Figure 3.1b). The MFF disrupts
the Pleistocene to Holocene surficial deposits transported by the last glacial and periglacial
processes (Winslow, 1982; Klepeis, 1994; Lodolo et al.,, 2003; Costa et al., 2006; Waldmann et al.,

2011; Onorato, 2018, 2020; Roy et al,, 2020; Sandoval and De Pascale, 2020).

This paper offers new evidences of the MFF Late-Holocene activity using trench
paleoseismological analysis and fault scarps geomorphology. Recently, studies have attempted
to reconstruct 19 mass-wasting events over the last 11 ka using the lake sediment archives
(Waldmann et al, 2011), and four paleoearthquakes from trench analysis in the eastern MFF
(Costa et al., 2006). Our results improve the knowledge of paleoearthquake ages, magnitudes,
and recurrence. This paper aims to integrate our data within previous paleorupture catalog,

proposing a reviewed chronology of paleoearthquakes in Tierra del Fuego.
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Figure 3.1 (a) Tectonic setting, previous paleoseismic studies, and instrumental records of Mz7
earthquakes of the Magallanes-Fagnano Fault. Focal mechanisms are from (Forsyth, 1975) and

relative strike-slip geodetic-velocity from Mendoza et al. (2015) superimposed on World map ESRI.
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References are (a) Castano, (1977); (b) Jaschek et al., (1982); (c) Lomnitz, (1970); (d) Pelayo and Wiens,
(1989); (e) U.S Geological Survey (2017); (f) Waldmann, (2008) and (2011); (g) Costa et al., (2006); (h)
Bonorino et al, (2012); SAM: South American plate; SCO: Scotia Plate.  (b) Regional
geomorphological map of the study area. The red lines refer to the fault scarps with cross-checked
evidence of faulting in Pleistocene to Holocene surficial deposits. The red dashed lines show the
inferred fault traces from satellite observations after (Onorato, 2018 Onorato et al, 2020; Torres-
Carbonell et al, 2008). Background digital elevation model (DEM) generated from 2018-Pleiades
images to topographic map 1 px = 2 m, with MicMac software from IGN French National Geograp hic

Institute, and ENSG French national school for geographic sciences.

ll.2 Historical Large Earthquakes

In 1879, the 1st February, several inhabitants and navigators reported a succession of shocks
of great magnitude (Serrano, 1880; Simpson and Chaigneau, 1880; Montessus de Ballore, 1912;
Bustos, 1931; Dublé Almeida, 1938; Briggen, 1943; Martinic, 1988; Bridges and Canclini, 2001;
Martinic, 2008; Cisternas and Vera, 2008; Palacios R, 2013). Based on these observations, the
intensity was estimated at VIl using the Modified Mercalli scale (Lomnitz, 1970). They isno reliable
location, but the collected testimonies define a broad impacted zone from 50° to 54.5°S

(Martinic, 2008).

Along the onshore MFF, the last instrumentally recorded event occurred in 1949. At 6:53
(GMT), on the 17 December, a magnitude Mw 7.75 earthquake struck off, soon followed by a
second quake at 15:07 (GMT) of Mw 7.5 and several aftershocks of undetermined magnitude
(Jaschek et al., 1982; Pelayo and Wiens, 1989; Febrer et al., 2000). Despite the attempts to
establish the exact quake locations, these epicenters remain unclear. Indeed, substantial
uncertainties are expressed (Jaschek et al., 1982; Adaros et al., 1999; Febrer et al., 2000), and to
date, they are located in the region of the Karukinka natural park (Figure 3.1a). These shocks were
widely felt across the entire Tierra del Fuego archipelago and in southern Santa Cruz Province
(La Prensa Austral, 1949; Lomnitz, 1970; Isla and Bujalesky, 2004; Perucca et al., 2016; INPRES,

2004).

On the 14 of June 1970, an earthquake of Ms 7 (surface wave magnitude) occurred north of

the Strait of Magellan’s western arm (Figure 3.1a). A few hours afterward, an earthquake Ms 7.2
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was recorded in the Atlantic offshore continuation of the MFF (Figure 3.1a), 54.476°S 64.499°W
(Pelayo and Wiens, 1989). According to its size, the surface rupture unlikely reached the central
Tierra del Fuego, or eventually, it would have affected the Atlantic coast ~ 150 km from the

epicenter (Wells and Coppersmith, 1994).

1.3 Study site

Our study area is located 40 km east of the Lake Fagnano. The La Blanca section is the
eastern prolongation of the Northern Udaeta Fault, which bonds the active pull-apart basin
Udaeta (Onorato et al., 2017). Our trench site (54°33'32.35" S, 66°37'17.32" W) is located 5 km east
of the Lake Udaeta in the central part of the La Blanca section (Figure 3.1b). The study region
accommodates most of the deformation along a single segment. However, several authors
suggested the presence of sub-parallel lineaments east of Udaeta Lake (Torres-Carbonell et al.,
2008; Onorato et al., 2020). Authors identified these structures on satellite images, describing
them as discontinuous and inferred traces (Figure 3.1b). Due to the limited extension, and the lack
of disrupted markers, we consider no or negligeable Quaternary deformation accommodated on

these sections.

Our study site, located along the main fault scarp, favors a possible long record of faulting in
the subsurface. First of all, the site targets a paleo terrace level, whose sediments can record the
ruptures since its abandonment. Secondly, the area experienced highly active deformation (Roy
et al,, 2020) indicated by remarkably preserved linear landform and offset fences attributed to
the ultimate earthquake (Figure 3.23, 3.2b). Finally, the nearby aligned pop-up structures (Roy et
al., 2020), two aligned ridges, one pull-apart and several sag ponds (see annexe) show the imprint
of the long-term seismic activity of the Magallanes Fagnano Fault in this region. Regarding this
tectonic setting, the configuration favors a possible long record of faulting in the subsurface,
making this site particularly relevant to the paleoseismic investigation (Burbank and Anderson,

2009).

This site cumulates left-lateral movement, along with a minor shortening component, that

had uplifted the southern block relative to the northern block (Figure 3.2¢). It had built a
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continuous scarp in between them. In the trench site, this elevation gap forms a north-facing
slope with moderate steepness of about ~ 20-30° and 11-m high. The two trenches were
excavated perpendicular to the ridge (Figure 3.2 d, e). The excavated fault trace has noticeable
surface expressions preserved in the topography. Among them, the surface shows four Riedel
fractures labelled A, B, C, and D (Figure 3.2b). The three lowest Riedels (B, C, D) cross the trench

n°1, and the Riedel A crosses the trench n°2. Orientation indicates R-shear synthetic fault

ranging from N7o-75°. In the Riedel, the topography is slightly concave of about 10 -15 cm deep.
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Figure 3.2: (@) Location map with Pleiades image. (b) Aerial photography of the study region. The
photograph assemblage may distort the horizon and be responsible for the apparent bending of the
fault trace. The red signs pinpoint the relative elevation changes between the blocks. The red lines refer
to the fault scarps with evidence of faulting. The red dashed lines show the inferred fault traces with
ambiguous faulting morphologies partially eroded by the floodplain. The lightened area indicates the
Irigoyen paleo-floodplain and the actual meanders. We locate the near-by pop-up morphology and
offset fences from (Roy et al.,, 2020). (c) Aerial photograph of the trench site. The black polygon marks
out the trench n®1 edges. The white line demarcates the natural incision in which the trench n°2 was
excavated. The red lines indicate the Riedels. (d) Photograph of the trench n°1. () Picture of the trench
n°2 with persons for scale on the top of the ridge. The red arrows pinpoint the main fault of this trench

FT2.

We map the fault scarps related to the MFF using Pléiade pictures, aerial photographs from
unmanned aerial vehicle (UAV), high-resolution-DEM, and cross-checks these observations in

the field. Figure 3.2a shows a synthesis of our observations along the La Blanca fault section.

The trench n°1is located at mid-high of the scarp, and its northern end reaches the lowest
part of the slope (Figure 3.2d). This trench is g-m long and 1.50 m deep. The trench pattern is a

single downslope slot with an additional westward enlargement of 8o-cm wide and along 3-m.

The trench n®2 which is 13-m long 4.5-m deep, was dug into a natural incision in the southern
block. The incision is associated with a massive colluvium fan that had facilitated the benched
excavation of this trench on the upper part of the ridge (Figure 3.2e). A single fault crosses the
scarp in the mid-slope dipping sub-vertically. It reinforced the assumption of a considerably
localized deformation from the mid-slope to the ridge base. Unfortunately, the lack of datable

terrestrial material in this trench does not allow quantitative paleoseismic study.

The trenches were gridded into 1 x 1-m squares. We pinpointed remarkable units and
charcoals with flags to enable detailed and scale logging of structures, fault terminations,
wedges, and stratigraphy. Each sample was selected in recognized units and originates from

single charcoal.
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Radiocarbon measurements were made at the Laboratoire de Mesures du Carbon 14 (CEA
Saclay). The ages are calibrated using Oxcal version 4.3 (Ramsey, 2009; Ramsey, 2017) with
southern hemisphere calibrating curve SHCAL13 (Hogg et al., 2013). The raw *C ages (yrs BP)
and the calibrated ages (cal yrs BP) are available in Table 3.1 and registered online with the
International Geo Sample Numbers (IGSN) at System for Earth Sample Registration (SESAR,

http://geosamples.org).

The paleoseismic analyses are based on field log, macro photographs, high-resolution 3D
models of the trench walls, and orthophoto mosaics. We determine the earthquake-relate
structure age using the radiocarbon ages from the deformed and undeformed layers.
Alternatively, we analyze the rupture geometry, the stratigraphy, and the spatial distribution of
dated coals to bracket the rupture ages. To correlate the ruptures with surface fault scarp we use

the DEM and the 3D-models of trench walls (built with Agisoft PhotoScan).
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Wass spectrometry measurements (ages |Calibrated ages (cal Table 3.1
and error indicated in yrs_BP) yrs BP)
Sample [ N SacA IGSN Nature | Mg C|Delta C13| pMC Age | Err| From To Unit
c1* | 57475 | iEROY0001 | Charcoal | 1.42 | -31.30 | 88,32+0,24 | 995 | 30 964 708 Mass

c2* | 57476 | IERoY0002 | Charcoal | 1.26 | -29.00 | 68,35+ 0,21 |3055|30 | 3356 | 3180
3 [ 57477 | rmovooos | charcoal [ 1,07 -28,10 [ 30,88+ 0,16 [9440[40 | 10776 | 10565 | ¢ |
ca® | 57478 | IEROY0004 | Charcoal | 1,71 | -2870 | 88,15+ 0,22 |1015|30| 979 | 802 Measurements

Spectrometry

C5 | 57479 | 1EROY000S | Charcoal | 1,55 | -24,80 | 75,99+0,21 |2205|30| 2319 | 2145 | ¢

C6 | 57480 | IEROY0006 | Charcoal | 1,67 | -29,10 | 76,71+ 0,21 |2130|30| 2299 | 2001 | C Of

C7 | 57481 | IEROY0007 | Charcoal | 1,41 | -24,50 | 75,97+ 0,21 |2205|30| 2319 | 2145 | d Radiocarbon
€28 | 57482 | 1EROY0008 | Charcoal | 1,56 | -22,70 | 76,504 0,22 |2150| 30| 2305 | 2010 | d

C3 | 57483 | IEROY0009 | Charcoal | 1,32 | -30,40 | 76,88+ 0,22 |2110{30| 2153 | 1995 | ¢ S amp/ es.

C10 | 57484 | IEROYooDA | Charcoal | 1,51 | -28,80 | 77,01+ 0,22 |2100| 30 | 2147 1996 | c*

Cl11 | 57485 | IEROY00OB | Charcoal | 1,41 | -23,0 | 76,83+ 0,21 |2120(30 | 2294 | 1999 | ¢*

C12 | 57486 | IEROYOOOC | Charcoal | 1,34 | -27,30 | 75,96+ 0,21 [2210| 30| 2320 | 2148 | c*

C13 | 57487 | IEROYDOOD | Charcoal | 1,38 | -26,20 | 76,74+ 0,22 (212530 | 2207 | 2001 | c*

C14 | 57488 | IEROYOOOE | Charcoal | 0,63 | -31,50 | 76,56+ 0,22 |2145|30 | 2304 | 2007

C15 | 57489 | IEROYO0OF | Charcoal | 1,53 | -23,70 | 89,53+ 0,23 | 890 | 30 910 733
Clg | 57490 Charcoal | 0,96 | -26,80 10648 0,25 Date out of range
C17 | 57491 | IEROY0DOG | Charcoal | 0,29 | -20,20 | 34,54 £ 0,21 | 8540| 50 | 9595 9 460
C18" | 57492 | IEROYO0OH | Charcoal | 0,38 | -30,60 | 78,41+ 0,22 | 1955|30 | 1987 1827

C20 | 57493 no coal
€217 | 57494 | IEROY00O! | Charcoal | 0,33 | -28,50 | 31,89+ 0,17 |9180| 45 [ 10490 | 10240
c22% | 57495 | IEROY000) | Charcoal | 0,84 | -28,10 | 31,98+ 0,16 [9160| 40 | 10478 | 10233
c23 57499 | IEROY00OK | Charcoal | 0,18 | -20,90 | 36,63+ 0,24 |8070|50 | 9130 8768
c24 57500 | IEROYOOOL | Charcoal | 0,13 | -22,90 | 45,21+ (0,29 |6380|50 | 7424 7180
C25 57501 | IEROY00OM | Charcoal | 1,47 | -27,00 | 76,25+ 0,21 |2180| 30 | 2310 2117
C26 | 57502 | IEROYOOON | Charcoal | 1,32 | -26,00 | 76,67+ 0,22 | 2135|30 | 2300 2004
C27 | 57503 | IEROYOODO | Charcoal | 1,34 | -20,30 | 76,63+ 0,22 | 2140| 30 | 2302 2 006
c28 57504 | IEROY0OOP | Charcoal | 1,62 | -21,00 78,3310,21 (217030 | 2309 2065
€25 | 57505 | IEROYD0OQ | Charcoal | 1,26 | -23,10 | 76,57+ 0,21 | 2145(30 | 2304 2007
C30 | 57506 | IEROY0OOOR | Charcoal | 0,88 | -29,70 | 75,82+ 0,22 |2225|30 | 2329 2152
31 57507 | IEROYOOOS | Charcoal | 1,39 | -22,30 | 76,68+ 0,21 |2135|30 | 2300 2004

L]

%

%

L]

%

*

[T Ee el R Kal e

#Radiocarbons out of stratigraphic order
Note: Measurements made at LMC14, CEA Saclay, France using the accelerator mass spectrometry (AMS)
ARTEMIS, following preparation protocols {Dumoulin et al., 2017, Moreau et al. 2013). Radiccarbon ages are

calculated using Mook and Van der Plicht {1993).
The ages are calibrated using Oxcal version 4.3 (Bronk Ramsey, C. 2003, Ramsey, C. 2017) with atmospheric

curve SHCall3 (Hogg et al., 2013). N*SacA: lab number; IGSN: International Geo Sample Numbers; Mg C: amount
of carbon in mg ; Delta *°C: percent of isotope *°C; pMC: percent Modern Carbon.
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ll.4 Paleoseismic investigations

We identify 12 stratigraphic units labelled from the youngest unit-a to the oldest unit-j. A grey
modern soil horizon labeled 's' caps the whole trench. The oldest exposed units-h, -i, and -] have
the same composition but show entirely different structures. Generally, unit-j indicates the
aggradation of river channels. Its coarse clasts size, the significant stratification, and the rounded
cobbles evidence high energy transportation of material distal from its source. Conversely, the
verticalized cobbles in-unit h and unit-i suggest they are reworked unit originating from the unit-
j. These units are covered by unit-g, which contains charcoals with a maximum age range from
10 776 to 10 565 cal yrs BP (C3) (Figure 3.3). The natural incision (trench n°2) exposed identical
material to the fluvial unit-j, suggesting the southern block is a paleo-fluviatile terrace which is

most probably older than 10 776 cal yrs BP.

NORTH Eastern wall of La Blanca trench SOUTH

EI/EQ/E.‘%/ES:S

‘5356—3 180

-802|
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Ill.4Paleoseismic investigations

Figure 3.3: (a) Interpretation and (b) photogrammetry mosaic of the eastern wall of the La Blanca
trench. Small black rectangles show the locations of radiocarbon samples, labeled by sample numbers
and their corresponding calibrated radiocarbon ages (cal yrs BP). Seismic events (E), associated faults

(F) and faulting movements (arrows) are shown in red. (See annexe for wider version).

The unit-g, -f and -e makes an angular unconformity with lateral onlaps on to unit-i which
suggest an erosive phase before unit-g (Figures 3.3 .and 3.4). The above units-e and -f are rich in
silt and clay comparatively to the whole sequence. A change in environment transportation
necessarily occurred post-unit-g and before unit-d to enable these fine sediments to settle down.
Additionally, these two layers mark out the last water-transported alluvium materials. Indeed, the
above material structure suggests a gravity-transportation. This environmental change is poorly
constrained by radiocarbon ages and might have taken place after the deposition of unit-f

~7 4,24-7 180 cal yrs BP (C24) and previous to unit-d 2 319-2 145 cal yrs BP ((7).

NORTH' o g Western wall SOUTH

o0\ Hho-0es |
\\ '\‘ '\" /
\ N .

N\
\

Y corner u(}"‘-;»,... S

i R
- %AQOJ.QZAG
e 10478-10233)

1 meter

Figure 3.4: (a) Interpretation and (b) photogrammetry mosaic of the west wall of the La Blanca
trench. The western trench wall is not flat, the perspective of the cutting is shown with dashed line

grid and angles indicated in degree. (See annexe for wider version).
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Ill.4Paleoseismic investigations

The lower unit-d age is poorly constrained because most of the charcoals are located in the
upper unit-d orin the unit-c and -c* (Figure 3.3 and 3.4). Unit c* is very rich in thick charcoal and
has a concave-shape recognizable on both side. According to the average age of the charcoals,
it suggests a local fire event that took place ~ 2 ka. The oldest and the youngest radiocarbons of
the unit-d, -cand —c* indicates a maximum age of ~2319-2145 (C7), and a minimum age of ~2153-
1995 (Co) (Figure 3.4). In addition, the radiocarbons sampled in the upper unit-c (Cs, C14) are in
agreement with this age range. The whole sequence and the ages of various units have been

constrained through *C analyses and are summarized in Figure 3.5.

= Age range
= Srom charcoal environment
(cal yrs BP)

B tmtmzomy

Description of units

o ootlet [S | <290 01 paleosoil EE greyislll modern soil, with rootlets and medilum to‘ coarse peb‘bles . )
a : grey in-filled of open-crack (from tectonic activity) matrix-supported of fine-
14 E4 > 738 medium sand, clast-rich, strongly normal graded bedding of rounded gravel against
ot lateral faults, and bottom of fissure, rare sub-angular cobble, Unit composed of
b ”ﬁfflr:;:‘;:sll‘(ﬁﬂn <9} reworked material from proximal units.
from 2319 (max ¢10) b : brown-grey compacted matrix supported of fine light brown sand, rich in
t0 1 996 (¢10) rounded unsorted coarse gravel, rarely downslope imbricated, rare rounded cobble
from 2 529 (¢50) . s
oot colluvial | (3-5em) ‘ .
fﬁ;ﬁ‘.’fggﬁ?&q material ¢ : grey-compacted matlj]x-su]‘npnrted (?f fine sar.\d, dast—rlch', well-rounded,
nitnimal age unsorted, coarse gravels. Discontinucus unit only localised above unit c¥;
c* grey-black concave matrix-supported of fine-medium sand, 5-10 cm thick,
charcoal-riched, origin ambiguous : roots, natural or anthropogenic fire?”
T 7180 (c21). d (upper): light brown unconsolidated matrix-supported of fine sand layer, some
Lo 9 2o (c1} subrounded sorted coarse gravel.
10478 - 10 £33 (c2x) d (lower): light brown unconsolidated matrix-supported of fine clayish-silt with fine
fluvial medium sands, stiffness laterally variable.
material e : orange (iron oxides) convolutes and folded shapes (liquefaction) of matrix
supported stiff' silty-clay, minor fine sand, rare rootlets, thickness laterally variable,
10 776 - 10 565 (c5) rare medium pebble poclets injected in and above the unit.
>1_u_m;,; (C3) f : dark brown matrix-supported of silty-clay, with rare gravel, thickness laterally
mmRas age variable.

g : brown-light grey clast-supported medium to coarse rounded gravels (no graded
bedding), minor hard fine sandy matrix, lenticulars pocket of gravel and silty-sand.
h and i: same unit as J, clast-supported, with tectonized structures: disorganized
orientation, verticalized cobbles along faults, broken cobble.

) : compacted clast-supported, abundante organized rounded cobble-pebble, large
cross-bedded stratification, normal graded bedding, lenticular medium pebbles
pockets, imbricated cobbles, with variable flow direction E and NE, slightly gravelly

fluvial
material

3
lithology

and sandy.

Sine sand | fine gravel

*| coarse sand | T

clay

Figure 3.5: Synthetic log, associated facies and environments of the La Blanca trench. Only unit j
is shown in the log as the unit h and i are colluvial wedges originally from unit j. The unit j evidences
the pristine structure of the floodplain and/or point bar deposits. We use the modified Udden—

Wentworth grain-size scale (Blair and McPherson, 1999).
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lIl.4Paleoseismic investigations

The disrupted structures are exposed on both walls of the trench n®1. Most of the faults are
paired with their equivalent geometry on the opposite wall. The trench exposes nineteen ruptures
truncating partially or entirely the section. They are grouped and interpreted in 5 seismic events.
Figure 3.6 shows the chronological reconstruction of the tectonic and sedimentary episodes in
this trench. The initial context is shown in stage A, and the actual state of the La Blanca trench is

shown in stage H.

The faults F8, Fg on the east wall, and its counterparts F1o and F11 on the west wall cross-cut
the fluvial unit-j. F8 is the downward extension of Fg, like F11 is the extension of F1o. This oldest
event E1 is associated with the collapse of a first colluvial wedge (unit-i). A relatively younger
event E2 might have reactivated the fault Fg and F1o and buried the unit-i under a secondary
colluvial wedge (unit-h). Moreover, F8 and Fg are horizontally shifted downslope over 8o cm, as
well as their counterparts F10 and F11 of ~1 m, which indicates a substantial amount of extension
during the rupture E2. The multiple verticalized cobbles leaning against these faults and the
disorganized structures confirm their tectonic origin. These two oldest events might have hit the

Isla Grande de Tierra del Fuego before 10 776 cal yrs BP.

The third event E3 has markedly slashed both walls with numerous faults. This rupture is
associated with multiple faults F3, F4, F5 in the eastern wall, and F13 to F18 on the other side. On
the southern tips of the two walls, the unit-d forms a small wedge in which the clasts are
disorganized with variable orientations. We suggest it corresponds to a colluvial wedge resulting
from the re-activation of Fg and F1o during E3. On both walls, we log the cuts, the folds, and the
irregular thickness of the dark brown unit-e, adjoining with the above flame-like structures of
unit-f (Figure 3.7a). These two deformed horizons are richer in clay and silt than other units and
are prone to liquefaction phenomenon. We recognize these convoluted features (Figure 3.7ab)
as seismically-induced soft-sediment deformations structures (SSDS). These SSDS are typical
water-escape structures due to shaking and subsequent liquefaction from the soft sediment
horizon (Ojala et al., 2019). On the western wall, we notice that F14 and F15 are associated with
a vertical uplift of 20-cm of the lower unit-g and possibly unit-i. It might indicate a slight reverse

component associated with event E3.
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lIl.4Paleoseismic investigations

Figure 3.6: Reconstruction of tectonic activity recorded by deposits in the La Blanca trench and

description of stratigraphic indices of faulting. Tectonic events and faults numbering are written in red.

Specific attention is drawn to the fault F5 rooted in unit-g. Injection of medium pebbles along
the fault F5 crosses the unit-e and -f and deformed the unit-d (Figure 3.7¢). The pebble
orientations follow the upward movement in what appears as a sub-horizontal clastic-sill. The
termination of the sill is a centimetric pebble-filled bowl-shaped intrusion. This clast-material is
allochthonous, and may probably originate from unit-g at a distance of 1 meter from its present
position. Interestingly, the SSDS drapes the pebble injection and follows the same convoluted
shapes, indicating these two phenomena are coeval. The overlying undisrupted unit-b post-dates
the intrusion. Consequently, the rupture might have taken place syn-deposition of unit-d. The
age of the upper part of unit-d is constrained by the C7/C8 charcoals; therefore, it advocates an
age from 2319 (C7) to 2010 (C8) cal yrs BP (Figure 3.6). Previous evidences of SSDS, convolute
laminations, load structures and clastic dykes are exposed in the nearby Southern Udaeta section
(Onorato et al,, 2016), and along the Lake Fagnano (Onorato, 2018). These seismites did not
affect the modern soil, suggesting they are older than the two historical earthquakes.
Unfortunately, these structures are not timely-constrained, which prevent to corroborate them

to any of our events.
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Figure3.7: (a) Flame-like structure within the unit-e from the eastern trench wall. (b) Same features
in the western wall (c) Sub-horizontal pebble-filled sill from the eastern trench wall. Black rectangle

letters refer to units. Note the lower unit d is deformed by the convolutes and the sill.

The following event E4 produced the opening of a 70-cm wide and 1.30-m deep crack (unit-
a) outlined by the faults F6 and F7. The charcoals ages and the disorganized structure suggest the
open-crack was filled by the surrounding material at the time of the rupture. Large cobbles and
smaller pebbles might have fallen first inside the fissure (Figure 3.3). Then the finning-up graded
bedding against the inner fault sidewall is a characteristic feature of a sudden gravitational
collapse. Three young charcoals from 979 up to 733 cal yrs BP are buried under very different
depth from 0.3 m up to 1.20 m, supporting the chaotic nature of the deposit. The small soil
deposit above the fissure remains undamaged and exposes pristine modern soil structure with
rootlets and horizontal pebbles (Figure 3.3, see annexe for zoom-in). On the west wall, this event

appears to be related to fault F12 since the modern soil cap remains undamaged (Figure 3.4). The
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rupture E4 implies a vertical slip of about 10-20 cm along fault F12, which had offset unit -g, -e, -
f, -dand -b. Since the modern soil is not disrupted, the earthquake E4 might have occurs before
the last two historical earthquakes (1879 AD and 1949 AD) (Figure 3.6). We highlight three
arguments in favour of constraining the event E4 with the charcoal Cas: (1) The charcoal Casis
located on the highest part of the stratigraphic filling; (2) Very few materials overlie the charcoal
C1s, which suggests it is the youngest age of the material; (3) The presence of two additional
charcoals (C1, C4) of almost the same age in various depth suggests this material was the most
available unit by the time of the rupture, i.e., most available at the surface. On the other hand,
this material could have been already available since a certain amount of time before the event
and remobilized during event E4. Thus one interpretation is that the youngest charcoal age

represents the maximum paleoearthquake age of E4 = 910-733 cal yrs BP.

Lastly, the youngest rupture geometry Eg is exposed symmetrically on both walls and
impacts the entire ridge width. At the toe of the scarp, several reverse faults disrupt the entire
section (F1, F2, F19) and buried modern soil wedges. Along F1 and Fig a very small amount of
sub-horizontal slip is measured ~ 5-10 cm. Along the sub-vertical reverse fault F2, the
downthrown side was drag down of around 25 cm. The modern soil is clearly truncated also
along the fault Fg and F10, which might have been re-activated (Figure 3.6). Furthermore, in the
trench n®2, the fault FT2 disrupts the surface and damages the modern soil (Figure 3.2€). In
trenches, the geometries of the faults are consistent with what is observed in the surface
morphology. The Riedels A, B, C, and D, crosscut the trench n°1 and n°2, and correspond
respectively to the main fault FT2 in trench n®2, and to the pair of faults Fg/F10 (not apparent on
western wall) and F1/Fig in trench n°1. Also, they are well-preserved on the topography which
implies necessarily that they are relatively young morphologies. Accordingly, the event E5 might

be referred to the historical earthquakes in 1879 AD and/or 1949 AD.

To sum-up, the paleoseismicinvestigationsin La Blanca section evidences five events (Figure
3.8) including the historical earthquakes 1879 and/or 1949. The two oldest events E1 and E2 are
older than 10 776 cal yrs BP. The third event E3 might have taken place between 2319 to 2010 cal
yrs BP. The following rupture E4 might have disrupted the La Blanca section after g10-733 cal yrs

BP and before the historical earthquakes.
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Figure 3.8: Histograms of ages model for samples in this study (the higher the histogram the more
likely that age is). The rupture events are shown with red dashed lines. The possible age of the event
is determined from the radiocarbon ages with red histograms. Age model are calculated for charcoals
using OxCal v4.3.2 (Ramsey, 2009) and the Southern Hemisphere calibration curve SHCal13 (Hogg
etal, 2013). Under the histogram, the black bars indicate the age range reported in table 3.1. Colored
zones indicates the unit at which the charcoal belongs to. The ages of the units have been constrained
through the youngest and the oldest charcoal ages belonging to the unit. Time is shown in calendar

years before present (present refers to 1950). The double black bars in timescale are shorten time-cuts.
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lIl.5 Discussion

Comparing rupture histories in different areas several kilometers apart enable usto correlate
the regional imprint of significant paleoearthquakes. We correlate our results in the La Blanca
trenches with the paleoseismic investigations (Figure 3.9a) in the San Pablo section (Costa et al.,
2006) and the chronology of mass-wasting events in Lake Fagnano (Figure 3.9b) associated with

major paleoearthquakes in the Tierra del Fuego (Waldmann et al,, 2011).

Costa et al. (2006) identified four seismic events in a trench excavated 24-km west of our
study site. For comparison, we formulate its ages in cal yrs BP after recalibration using the
calibration curve (SHCAL13). To avoid confusion in the rupture numbering, we label the events

from Costa et al., (2006) Ea to Ed (oldest to youngest).

Waldmann et al. (2011) identified nineteen megaturbidites within the cores from Fagnano
eastern sub-basin (Figure 3.9b). The dated buried materials should be treated as maximum ages
for their corresponding unit. Indeed, slope destabilization can remobilize terrestrial material
within the mass-wasting deposit, and dated material might be older than the seismic event. Using
terrestrial materials and mass-wasting deposit thicknesses, the authors proposed an age model
of sedimentation rate during Holocene and estimated the event chronology. Interestingly, in
2011, the authors preferentially used a constant sedimentation rate (Waldmann et al., 2011) even
though substantial rate changes are expected resulting from the Holocene Fuegian glaciers
retreat (Coronato et al, 2009; Waldmann et al., 2010). Consequently, this method extensively

rejuvenated the rupture ages previously proposed by Waldmann in (2008).
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Figure 3.9 (a) San Pablo Trench from Costa et al. 2006. Sample locations are show with black
rectangles, and radiocarbon ages are recalibrated using SHcal13 (Oxcal version 4.3). (b) Mass-wasting
events stratigraphy (grey shade) and correlation among sedimentary cores, from Waldmann et al.
2003. Radiocarbon dating samples (macro terrestrial, pollen, wood and tephra) are shown with black

arrow.

The region was stroke by the last historical earthquakes, the 1 February 1879 and/or the 17
December 1949. The brief period between the two historical ruptures unable to discriminate the
events with paleoseismic investigations. Nevertheless, south of the Lake Udaeta and only 6-km

from our trench site, the work of Pedrera et al,, (2014) shows the impacts of the two recent
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earthquakes in the tree-rings. Therefore, it is more likely that the youngest rupture geometries

observed in the La Blanca trench are resulting from the two last earthquakes.

We show that one rupture had opened a wide fissure filled with material of same age (unit
a). The three charcoals in the fissure have ages ~ 910-733 cal yrs BP, and are widely distributed

over the fissure depth. This age is therefore a maximum age for the event E4.

Costa et al. (2006) used the ages (PE-5a, PE-5b) of a disrupted unit and a modern peat bog
to constrainthisevent (Ec, in Figure 3.9a). It is worth noting an undamaged layer, unit Cas located
under the dated peat deposit, that suggests this paleoearthquake might be older than previously
proposed (Costa et al., 2006). The authors showed the fault termination disrupted a unit called
C14, dated from 1 059-922 cal yrs BP to 781-666 cal yrs BP. However, it remains unclear where
the fault termination stops due to the severe asymmetry of the stratigraphy (Figure 3.9a).
Importantly, the authors identified this events in the west wall, but collected the constraining
radiocarbons in the east wall which lacks of clear evidence of this event. The interpretation is

therefore delicate, and this rupture could have occurred during the layering of unit C14.

The sedimentary core LFog-GC2 (Waldmann et al,, 2011) show a thick megaturbidite layer
located right below dated pollen at ~937+23 cal yrs BP (Figure 3.9b), which should be used as a

maximum age for this event.

Based on our maximum age of the open-crack in the La Blanca section and considering the
minimum age of unit C14 in the trench of San Pablo, we proposed to bracket E4 after 910-733 cal

yrs BP and before 781-666 cal yrs BP, being 788+122 cal yrs BP (Figure 3.10).

We identify the event E3 ~2164 + 155 cal yrs BP, that can be correlated to the mass-wasting
event C21 associated with the third youngest paleoearthquake recorded (Waldmann, 2008;
Waldmann et al., 2011) (Figure 3.10). The thick megaturbidites of event C21 has recovered two

radiocarbons of ~2 762-2 734 cal yrs BP and 2 742-2 576yr BP (Figure 3.9b). These radiocarbon
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ages are maximum ages, pre-dating the E3 paleo-rupture, and are consistent with our result of

one event E3 that occurred post-2700 BP.

We evidence E2 and E1 events, which are earthquakes before 10 670 + 106 cal yrs BP, but that
are not correlated to another record yet. These events are not identified in Costa et al., (2006)
study, whose trench investigation took place on a secondary trace, and implied part of the
deformation was possibly lacking. Two additional isolated events (Ea, Eb) were previously
recognized in the San Pablo Trench (Costa et al., 2006). Ea and Eb are ruptures confirmed by
direct and unambiguous geometries but not recognized in our trench. Isolated events do not
account for smaller temblors. Indeed, it is common for strike-slip faults to splay into several
branches as they reach the surface, sometimes tens or hundreds of meters apart (Burbank and

Anderson, 2009).

Our results precise the timing of the last three major paleo-earthquakes Es, E4, E3. The
chronology includes additional events E2, Ex and previously described ruptures Ea and Eb, which

are reported respectively to 6697+1646 cal yrs BP, and 4924+353 cal yrs BP (Figure 3.10).

We compare the chronology with the mass-wasting events from the Lake Fagnano before
and after rejuvenation (Waldmann, 2008; Waldmann et al,, 2011). We highlight the seven thickest
events which may represent the major paleoearthquakes, and that are supported by dated units
bracketing the ages. For these reasons, we proposed the corrected chronology for the most

recent earthquakes in Eastern Tierra del Fuego shown on Figure 3.10.
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Figure 3.10: Correlation of the paleoearthquakes during the late Holocene in eastern Tierra del
Fuego. Colors bars show the reported events according to several studies. Costa et al. (2006) refer to
earthquakes constrained by paleoseismological trench at San Pablo section; Events from Waldmann
et al (2008) and (2011) indicate significant mass-wasting deposits in the eastern sub-basin of Lake
Fagnano. Note in these studies (1) in 2008 the study is based on a model age with variable
sedimentation rates over time; (2) in 2011, the study takes into consideration the Hudson Hi tephra
radiocarbon ages and a fixed background sedimentation rate of o. 54mm/yr which had rejuvenated the
mass-wasting events; (3) Associated errors of the event are not available. Black bars and black
diamonds indicate radiocarbon ages. We recalibrate the radiocarbon ages from Costa et al. (2006)
using OxCal v4.3.2 and calibration curve SHCal13. Time is in calendar years before the present (present

refers to 1950).

Our results are compatible with the previous chronology of mass-wasting events (Waldmann
etal, 2011), only if it is assumed that the Lake Fagnano underwent a variable sedimentation rate
during the Holocene (Waldmann, 2008). The paleoseismic investigations in Tierra del Fuego,
including ours, present multiple evidences of the three major events occurring in the last two
thousand years (Figure 3.10). Our data determined a recurrence interval of ~1000 yrsin the Late
Holocene that agrees with previous estimates (Waldmann et al,

2011). Furthermore, this

recurrence intervalis consistent with the number of high magnitude earthquakes required to lead
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geomorphic slip-rates of 6.4 + 0.9 mm/yr up to 7.8 + 1.3 mm/yr along the study area (Roy et al.,

2020; Sandoval and De Pascale, 2020).

Our results evidence five seismic events with clear faulting imprinted at surface and
subsurface. Such events may account for one or several events cluster in time. In the case of two
overlapping earthquakes in less than a century, it is hardly possible to distinguish them in a
paleoseismic trench. Forinstance, in our trench, the two major earthquakes of 1879 and the 1949

events appear as one single event (Eg).

However, as we previously estimated both the average recurrence interval ( ~ 1000 yrs) and
the Holocene minimal slip-rate (~ 6.4 mm/yr) (Roy et al. 2020), it requires on average 6.4 meters
of slip per event. Thereby, using Wells & Coppersmith’s scaling relations, the associated
paleoearthquake magnitudes reveal to be equivalent to earthquakes of around Mw 7.6 (Wells and

Coppersmith, 1994).

In addition, the Lake Fagnano mass-flow event archive does not pinpoint the extent of the
paleoearthquake surface ruptures, and it only indicates the associated slope destabilization. The
authors suggest a magnitude of Mw=~7 is required to generate such megaturbites and dominate

the shallow sedimentary record (Waldmann et al., 2011), which would agree with our estimation.

Our work strengthens the knowledge of the paleoearthquakes in Tierra del Fuego. We

summarize the results from this study in the following points:

The stratigraphic sequence recorded five earthquakes constrained by AMS *C dating: E5 at
1949 and/or 1879 AD, E4 at ~ 788 + 122 cal yrs BP, E3 at ~ 2165 + 155 cal yrs BP and two events E2,
E1older than 10 776 cal yrs BP. The three youngest events suggest a recurrence interval of 1000

yrs for major earthquakes along the Magallanes-Fagnano strike-slip fault.
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Our study puts in evidence one more event in the last ~2 ka in comparison with Costa et al.
(2006), and allows to better constrain the earthquake ages for the Lake Fagnano record in

Waldmann et al (2011).

The event E3 ~ 2165 + 155 cal yrs BP is associated with soft-sediment deformation structures.
The recognition of the seismites in the La Blanca trench demonstrates the fluvial material is
prone to liquefaction. We highlight the necessity of absolute dating of that secondary
paleoseismic evidences, which are widely outcropping in Tierra del Fuego (Borrello, 1962;
Schmitt, 1991; Ghiglione, 2002; Perucca and Bastias, 2008; Onorato et al.,, 2016; Onorato, 2018).
Marine mass-wasting archives and new paleoseismological records in the Magallanes Regions

could yield efficient Holocene rupture cross-correlation across southernmost Patagonia.
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Key Points

- Tree-rings analysis shows 1879 and 1949 Mw>7earthquakes in Ainsworth Peninsula, Chile.

- Primary evidence of post-LGM deviated drainages of 315 + 15 m in Almirantazgo Sound,

Chile.

- Fast western Magallanes-Fagnano strike-slip fault up of 19.5 + 4.2 mm/yr.
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Abstract

We present results of extensive field surveys, paleoseismological trenching, *°Be dating, and
dendroseismology study that investigate the western Magallanes-Fagnano Fault at the foothill
of the Darwin Cordillera. We review and map the remarkable terrestrial record of strike-slip in
the Chilean territory. In the south of Almirantazgo Sound, we identify multiple deviated
postglacial drainages in the remote Peninsula Ainsworth. Using high-resolution Pléiade imagery,
we propose their back-slip restoration and determine a maximum sinistral offset of 315 + 15 m.
Based on our *°Be dating, we find that the Peninsula irreversibly deglaciated ~ 16.7 + 2.8 ka BP.
Combining glacial and tectonic cross-cut relations and trench investigation, we suggest the
sinistral displacement began to cumulate after the last glacial maximum, which implies a post-
LGM slip-rate of 19.5 + 4.2 mm/yr. Based on primary faulting evidences we characterize the
Quaternary and the modern activity of the western MFF. Old Nothofagus Pumilio trees growing
on the Ainsworth section recorded the effects of two major earthquakes in 1879 and 1949 in their
annual ring-width patterns. Our results and previous paleoseismic data in Tierra de Fuego

demonstrate the 17 December 1949 Mw7.5 earthquake's rupture length exceeded 200 km.

Keyvvo rds: Andes, Strike-slip, Dendroseismology, Ruptures, Glacial retreat, Cordillera

Darwin.
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V.1 Introduction

In the southernmost Andes, the glacial and tectonic imprints are tightly intertwined. The
Magallanes-Fagnano strike-slip Fault (MFF) is located in a tectonically complex region, where the
South American, Scotia, and Antarctic plates meet. Global Positioning System (GPS)
measurements, concentrated on the Argentinian Tierra Del Fuego, provide a relative South
American - Scotia plates motion of 6.6 + 1.3 mm/yr with a near-vertical fault locked at 15 km depth
(Smalley et al, 2003). In western Tierra del Fuego, and in the Magallanes fjords, sites are
extremely remote, and mostly recovered with saturated unconsolidated glacial deposits or peat,
which considerably limits geodetic studies and Interferometric synthetic aperture radar
monitoring (INSAR). Scarce GPS-network does not allow to constrain the motion in Chile, and
fails to resolve second-order deformation associated to the MFF curvature (Smalley et al., 2003;

Mendoza et al., 2011; Mendoza et al,, 2015).

The major MFF intersects the Chile Trench at 51°30'S, and bends along the Patagonian
Orocline, crossing the Fuegian Batholith. The main MFF structures change from a NW-SE trend
in southern Patagonia to a W-E in Tierra del Fuego (Figure 4.1). In the Magallanes regions,
numerous fjords and seaways follow the strike-slip lineaments and ice-carved valleys. During the
Last Glacial Maximum (LGM), the multiple massive ice-lobes originating from the Darwin
Cordillera reached the Strait of Magellan up to 52°45'S (Caldenius, 1932) (Figure 4.1). Studies
from erratic boulder fields and lateral moraine systems evidence five stages of retreat from A to
E, i.e., outer to inner with respect to the Andes (Clapperton et al,, 1995; Mcculloch and Bentley,
1998; Bentley et al, 2005; McCulloch et al,, 2005; Sugden et al,, 2005). Stage B (MIS 2) represents
the local LGM, which appeared less extensive than the pre-LGM limit A (MIS 4) (Peltier et al,,
2016). Last glacial-interglacial transition timing from Marine Oxygen Isotope (MIS) 4 to 2 remains
under debates in Southern Patagonia. Considering the large uncertainties of stage A cosmogenic
depth-profiles dating (Darvill et al, 2015b), this limit could have been deposited during a late MIS
3 glaciation and more likely prior (Soteres et al, 2020). In the Strait of Magellan, the LGM onset
sometimes after 31,2 ka BP and culminated at c. 25,2—23,1 ka BP (Clapperton et al, 1995;
McCulloch et al., 2005; Kaplan et al, 2008; Rabassa, 2011). Marine and terrestrial sediment cores
from Almirantazgo Sound indicates a rapid, irreversible retreat in the Cordillera between 17 to

15.5 ka (Boyd et al, 2008; Hall et al, 2013; Fernandez et al, 2017; Hall et al, 2017; Hall et al., 2019).
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Recognition of strike-slip faults is made difficult by the near parallelism between glacial
lineations, lithological strikes, and fault trends. Strike-slip Quaternary evidences are now well-
documented in the region of Peninsula Brunswick, western Fagnano Lake, and in Chilean Tierra
del Fuego (Winslow, 1982; Cunningham, 1993; Klepeis, 1994; Klepeis and Austin, 1997; Lodolo et
al., 2003; Betka et al,, 2016; Asenjo Fernandoy, 2020; Sandoval and De Pascale, 2020). However,
in the central Almirantazgo Sound, in the Azopardo and Jackson valleys, many lineaments are
suspected to be active but have only been little ground-studied, and limited to secondary faulting

evidences.

The oldest historical seismic activity occurred in the 1st February 1879, and was reported from
50° down to 54°30'S (Serrano, 1880; Simpson and Chaigneau, 1880; Montessus de Ballore, 1912;
Bustos, 1931; Dublé Almeida, 1938; Briggen, 1943; Martinic, 1988; Bridges and Canclini, 2001;
Cisternas and Vera, 2008; Martinic, 2008; Palacios R, 2013). The intensity was estimated at VII
using the Modified Mercalli scale (Lomnitz, 1970). Earthquake instrumental records on the same
day two major earthquakes of Mw 7.75 and Mw 7.5 the 17 December 1949 (Jaschek et al.,, 1982;
Pelayo and Wiens, 1989). These epicenters remain unclear and are located in the Karukinka
natural park (Figure 4.1) (Adaros et al,, 1999; Febrer et al, 2000; Jaschek et al, 1982). In 1950, one
foreshock was recorded south of Punta Arenas of Mw 6.8. In the 14 and 15 June of 1970, two
shocks of magnitude Mw 7 occurred, respectively located in the MFF Atlantic continuation
(52°1'22,8" S, 74°4'12" W), and north of the Magellan Strait western arm (54°18' S, 63°36' W). In
our study area, three proximal earthquakes of moderate magnitude Mw 4.6 to 4.9 were recorded
in 1977, 2006 and 2009 (Figure 4.1). Modern seismicity shows a cluster of epicenters which related
to the strike-slip faulting zone, with a seismicity found suggesting a rather continuous release of
energy in low magnitude events (Febrer et al,, 2000). Recent study along the Patagonian Andes
suggests the present moderate seismicity would be mostly due to isostatic rebound following the

retreat of the Patagonian Ice (Ammirati et al,, 2020).

Understanding the Quaternary fault activity should be determined through intrinsic
characteristics like the cumulated displacement and major earthquakes dating (Wood and
Mallard, 1992). Moreover, the fault activity may be determined over time that includes several
earthquake cycles (Machette, 2000). The main purpose of this work is to acquired strike-slip

faulting at surface due to relative plate motion deformation. Here we review observations and
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evidence for strike-slip in the Western MFF from Lake Fagnano to the western arm of the
Magellan Strait. We present the first mapping of glacial and strike-slip morphologies where the
cumulated deformation onshore shows the best expression. Using extensive field work, high-
resolution imagery, dendroseismology analysis, *°Be and *C dating, we assess the strike-slip
displacement in this area. Our motivation is to identify the successive imprints of glacial shaping
and tectonic deformation to characterise the Quaternary and present-day MFF behaviour in

Chile.

(Next page) Figure 4.1: Structural map of the Chilean MFF system with the major glacial limits and
ice advance chronology. Black rectangle shows the location of the study area. The red lines indicate
the recognized fault sections, and the dashed red lines indicate the interpolated traces after (\Winslow,
1982; Cunningham, 1993; Klepeis, 1994; Klepeis and Austin, 1997; Fernandez et al, 2011; Lodolo
et al, 2003; Smalley et al, 2003; Fernandez et al, 2013; Esteban et al, 2014; Betka et al, 2016;
Fernandez et al, 2017; Sandoval and De Pascale, 2020; Asenjo Fernandoy, 2020). Historical
earthquakes are shown with red dots. Earthquake locations from (Jaschek et al., 1982; Febrer et al,
2000) The glacial limits are shown with coloured lines. The grey line indicates the pacific coastline at
Last Glacial Maximum (LGM). Abbreviations as follows: ACR: Antarctic Cold Reversal: A.S:
Almirantazgo Sound: C.M: Caleta Maria; C.W: Channel Whiteside; D: drift; SAM: South American; P.A:
Peninsula Ainsworth; W.A.S.M: Western Arm Strait of Magellan. The base map is shaded mosaic relief
image of the Southernmost Andes from SRTM ALOS Word 3D-30m (©JAXA).
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IV.2 Western Magallanes-Fagnano Fault Geometry

Here, we review the MFF geometry from the east to west, starting at the Northern Fagnano
section and ending at the Chile Tripe Junction. We recap observations of markers associated with
Quaternary to Late Cretaceous deformations. The modern markers will be discussed in the

following section.

The Magallanes fault zone between the western Lake Fagnano and the eastern Almirantazgo
Sound is divided into a series of narrow strike-slip faults and fault splays that bound the Sierra de

Beauvoir and the Sierra Dientes del Dragdn (Figure 4.2a).

All the strike-slip related deformation mapped within this region is superimposed on
contractional structures from the Magallanes foreland fold and thrust belt (FTB). For instance, in
Sierra Dientes del Dragon, the Cerro Verde anticlinal is dissected on its northern side by the MFF
parallel to fold axis. The authors described a thrust contact between the Upper Jurassic
volcaniclastic rocks and the Upper Jurassic to Lower Cretaceous tuffs (Figure 4.2a), which
accommodated 6-km sinistral displacement and several hundred-meter vertical uplift (Klepeis,
1993; Klepeis, 1994). The rocks evidence here intense cataclasis and brecciation (Klepeis, 1994).
Esteban et al,, (2014) propose the eastern continuation of this section along the Sierra Beauvoir

(Figure 4.2a).

Recent active faulting structure have been mapped North of Sierra Beauvoir. Authors
identified the Deseado fault (DF) thanks to truncated vegetation and disrupted the alluvial

Quaternary cover (Klepeis, 1994; Perucca and Bastias, 2008; Sandoval and De Pascale, 2020).
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Figure 4.2: (a) Structural map of the central MFF. The exact locations of field surveyed faults are
shown in red line, and associated studies are cited in the legend. The inferred faults are indicated in
dashed red lines. The geology of Sierra Dientes del Dragdn is shown to evidence the sinistral 6 km offset
(Klepeis, 1994, Rojas and Mpodozis, 2006). References are as follow: B: Betka et al, 2016, C
Cunningham, 1993; E: Esteban et al,, 2014; K: Klepeis, 1994, Klepeis and Austin, 1997; L: Lodolo et al,
2003; R: Roy et al,, (this study); S: Sandoval and De Pascale, 2020; W- Winslow, 1982. The base map
is the shaded DEM SRTM ALOS Word 3D0-30m (©JAXA). Bathymetry of Almirantazgo Sound with a
5o-m contourinterval is the Esriy GEBCO, NOAA (2014) grid. Bathymetry of Lake Fagnano with a 25-
m contour interval is from Lodolo et al, (2003). (b) Detailed structural map of the central Magallanes-

Fagnano Fault near the western outlet of Fagnano Lake. The base map is satellite Bing™ Maps.
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We carry out extensive field survey on the Fagnano Lake northern bank, from the
Argentinian/Chilean border to the Azopardo river. This area was alternatively shaped by faulting
and the action of Almirantazgo-Fagnano ice lobe. The last subglacial environment deposited
multiple elongated lateral moraines N110-N115° disrupted by several ridges N°g5-98 (Figure

4.2D).

We map at least four sub-parallel scarps up to 7-km long (Figure 4.33, b). Locally, several
scarps take the form of ridges, that several shallow grabens separate. Often, the graben’ bottom
is disrupted by meters-scale ridges. The southernmost ridge is visible in the proximal under-water
morphology (Figure 4.3¢). The easternmost fault location beneath the lake is unclear. Still, the
alignment of these ridges combined with the central Fagnano (68°W) faulted zone interpreted in
the seismic line (Waldmann et al., 2011), suggests that the main fault splays are located along the
northern Fagnano shore. The western continuation of these ridges run toward the Azopardo river

(Fagnano outlet).

In this region, we notice there is not relative elevation changes between the northern and the
southern blocks. However, along these ridges, we measure prominent local vertical components
up to 10 m (figure 4.3d, e). At the kilometers scale, these moderate topographic uplifts and
subsidences may appear as restraining bends resulting from the local fault geometry. Besides,
profuse tilted trees and uprooted trees evidence the recent severe motion of the ground surface

(Figure 4.3b, ¢, d).
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Figure 4.3: (a) Panorama of one scarp of several hundred meters long. (b) Tilted and uprooted trees
along the ridge. (c) Underwater ridge in the northern shore of Lake Fagnano. (d) Highest fault scarp
with tilted trees on its slope. (e) Well-defined ridge of 1-meter high. (f) Location of faulting structure on

satellite Bing™ base map.
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At the western end of Fagnano Lake (68°51'W), the MFF splits into two fault zones north and
south of the Sierra Dientes del Dragon, named the Azopardo fault and the Jackson fault (Figure
4.4). This mountain range is the northern flank of the Cerro Verde anticlinal with Upper Jurassic
volcanoclastic rock (Thomas, 1949; Rojas and Mpodozis, 2006). Early geostructural studies
described the two fault zones arranged in an extensive graben system with orientation N108°
(Winslow, 1982; Klepeis, 1994). None of these valley floors exposed clear sinistral strike-slip

morphology likely due to the reworking of their respective watercourse.
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Figure 4.4: Detailed structural map of the western MFF. The base map is satellite Bing™ Maps.

However, along the Azopardo northern flank, we observe four failure zones. We examine two
cataclastic areas up to 70 m wide south of Mt Corno and Mt Hope (Figure 4.4). We identified the
easternmost cataclasite, located in a failure zone with Ng7° orientation (Figure 4.5a). This
lineament results from the northern Fagnano shore ridge. The western cataclasite and two other
failure zones trend N79-N84° (Figure 4.5b) and correspond to the Riedel orientation. In these two
zones, the Upper Jurassic silicic volcanic rock (Tobifera formation) breaks down to cataclasites
and has been pulverized in situ (Figure 4.5 a, b). From the western outlet of Lake Fagnano, the

MFF bends of ~ 30° from an E-W trending in Tierra del Fuego to a WNW-ESE trending
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Magallanes regions. Consequently, in these two adjacent valleys, the fault scarps have been

obscured, and are confounded with parallel glacial landforms (Figure 4.5¢).

Caleta Maria Almirantazgo
el Sound

SIERRA DIENTES DEL DRAGON

¢ W Glacier Veer Mt. Hope 813m E
Co, Muela 1588 ! :
Yy

1 4~2|4/m

e S 2 2 ol - Az 0pardo

Ea.Caleta Maria rever mouth

Figure 4.5: Photographs in the Azopardo valley. (a) Cataclasite below the Mt Corno. Yellow start
indicates the subsided area subsequent to the 1949 earthquakes. (b) Cataclasite zone below the Mt
Hope. Yellow start marks the 1949 crushed bridge over the Azopardo river. (c) View of the riedels fault
zones (brown dashed lines) on the Sierra Dientes del Dragon from the Caleta Maria. The white dashed

line evidence the roches moutonnées.

Seemingly, the Jackson valley does not expose unequivocal faulting morphology on its floor.

The northern Jackson catchments comprise several well-preserved lateral moraines from the
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Veer glacier and the adjacent valleys (Figure 4.4). We conduct field mapping along the Veer
moraines, which are westward bent (Figure 4.63, b). These bends indicate not only the pastice-
direction, also the moraines were not affected by recent strike-slip after their deposition. All the
moraines are not recently horizontally disrupted, but they partially fill up a spectacular uphill-
facing scarps 20-m wide (Figure 4.6b, ¢, d) that seems to be markedly old. The antiscarp creates
a large depression of 4-km-long elongated in N°108 direction, and divides the mountain flank
into two parts. The lowest rock mass is sagging; we identify this geomorphic feature as the

Jackson sackung (i.e., sackungen, or deep-seated gravitational slope deformation DSGSD).

(Next page) Figure 4.6: Photographs of the Jackson Valley. (a) Location maps on an aerial
photograph of the Bahia Jackson and Cordillera La Paciencia (photographer @ GuyWenborne). The
white arrows indicate the sackung scarp and possible fault plane. (b) Aerial photograph of the Veer
moraine. The white line delineates the right-hand moraine, and the black arrows indicate the sackung
scarp. (c) Aerial shot of the Jackson valley toward the Fagnano Lake. The white arrows show the uphill-
facing scarp with a pond in the counterscarp. The red line indicates the possible trace of Jackson fault.
(d) Satellite image of the Veer glacier and the Veer river catchments. The green lines indicate the
preserved moraines that are slightly deformed by the sackung scarp. The white arrows indicate the

sackung and a possible lateral glacial notch from the last glacial maximum. (next page)
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Two kilometers west of the Jackson sackung, we identify a mega-debris cone originating
from a 1-thousand meters high sub-vertical rockwall (Figure 4.7a, b). We measure the main
discontinuity plane (N°108/67°S, strike/dip), which corresponds to the same orientation of the
Jackson sackung (Figure 4.7b, ¢). The debris deposit spread over the steep coastline of the

Almirantazgo Sound with approximately 1.5 km width and 60 m high. The deposit represents a
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spectacular volume of about ~ 3.109 m3, which is a minimal approximation because it does not

consider the rock volume underwater.
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Figure 4.7: Photographs of spectacular rockslides. (a) Rockslides at Jackson Valley. Blue dashed
lines indicate trimline and the maximum thickness of the paleo-Almirantazgo-Fagnano lobe and the
blue arrows show the paleo-flow directions. The white line indicates glacial lineation and glacial
notches. Note the rockslide on the northern flank of Sierra Dientes del Dragon marked with the orange
line. (b) Rockslide of Cordillera La Paciencia. The red areas indicate the same fault plane orientation.
The orange line indicates the debris cone. Blue arrows show the paleo-flow directions of the
Almirantazgo-Fagnano paleo-lobe, which flowed from west to east, and split into two lobes in the
Jackson Valley and the Azopardo valley. (c) The same rockslide with a detailed view of the fault plane

and the orange lines indicates the debris cone.
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The Ainsworth section is located at the Cordillera Darwin’s foothill between the Fjord Parry
and the Ainsworth Bay. A previous study based on swath bathymetry localized the Jackson fault's
western continuation describing one submarine ridge north of the Peninsula Ainsworth (Asenjo
Fernandoy, 2020) . Thus, the author proposed the Ainsworth section is the continuation of the

Azopardo fault.
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Figure 4.8: (a) Detailed map of the Ainsworth section. The red lines indicate the surveyed fault
trace. The red dashed lines indicate the interpolation of the fault trace. The star shows the
dendrochronology and paleoseismology sites (this study) with damaged trees in 1879 and 1949
earthquakes. The bathymetry is from Hallet (2016), with raw ship-based multibeam sonar data
acquired during R/V Nathaniel B. Palmer expedition NBPosos (2005) (http://www.marine-geo.org)
and data processing (MB-system) is from (Fernandez et al.,, 2011). The base map is satellite Bing™
Maps. (b) Ainsworth segment geometry. The base map is satellite Bing™ Maps with 2 x exaggerated
relief.

We identify the Ainsworth segment consisting of one single scarp that crosses the entire
Peninsula along a N112 trend (Figure 4.8a). A continuous scarp stretches over 10 km, disrupts the
last glacial moraine deposits and deviates the drainages. The drainage system of Cerro Sefioret
catchment flow downhill orthogonally to the scarp, and incise the Quaternary cover (Figure 4.8b).
At the scarp horizon, these channels make a double right angle (bayonet-shaped), exhibit
significant offsets. The fault sharply left-laterally deviates the whole network (Figure 4.8b). Near
the coast, the rivers bypass the glacial polishes and flow into the Almirantazgo Sound. We map
the scarps' exact location, deviated rivers, disrupted vegetation, and tilted trees (Figure 4.8b). We
sample trees for dendrochronology study and the glacial polishes for *°Be dating’s (Figure 4.8b).
The scarp offsets the principal river channel in a spectacularly sinistral displacement of ~315 m
(Figure 4.9a). Along the shutter ridge, the southern block is relatively higher than the northern
block, which has enclosed sag ponds and peat bog. The fault disrupts eskers and Quaternary
cover. We develop the dendrochronology results, trenching, and drainage offsets respectively in

section lll and IV.
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Figure 4.9: (a) Aerial view of the stunning sinistral offset on the Peninsula Ainsworth. The red line
indicates the kilometric scarp. Black arrows target the main sinistral bayonet deflection of one post-
glacial river. Red arrows indicate the fault trace. The distance between the two indicators is ~300
meters. In the right lower corner, note the field of eskers. (b) Aerial view of the western continuation of

the Ainsworth section toward the Isla Dawson.

We interpolate the western continuation of the Ainsworth section through the Ainsworth
Bay. The Ainsworth bay corresponds to the medial basin of the Marinelli glacier (Figure 4.8a).
Previous seismic investigations were conducted in this area (Koppes et al,, 2009; Fernandez et al.,
2011; Hallet, 2016) and across the fault (Figure 4.8a). Figure 4.10a shows the 17 km long seismic
line along the thalweg from Marinelli medial basin (left) to the ice front outer basin (right)
(Fernandez et al,, 2011). The authors define three sediments units (Figure 4.10b), the basal unit
GFU (gravity flow unit), the middle unit (GMU, glacimarine unit), and the youngest unit (HPU,
hemipelagic unit). The first two units are estimated around the age of the Marinelli glacier retreat
from the outer basin to the medial basin around 12.5 ka (Boyd et al,, 2008). The modern unit HPU

has ages from 364 cal yrs BP to the present.
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Figure 4.10: (a) Seismic line 33. The profile AB is from Marinelli medial basin (left) to the outer basin
in Almirantazgo Sound (right). Data is from (Ferndndez et al,, 2011; Hallet, 2016) acquired during R/V
Nathaniel B. Palmer expedition NBPoso5 (2005). (b) Interpretation of seismic line 33 from (Ferndndez
et al, 2011). Red lines indicate the fault splays after (Ferndndez et al, 2011). F1 and F2 are the faults
reported in Figure 4.8. Abbreviations as follow: GFU: gravity flow unit; GMU: glacimarine unit; HPU:

hemipelagic unit.

The GFU and GMU (115m thick) are disrupted by fault splays (Figure 4.10b). The lowest part
of the modern unit exposes disrupted reflectors. We interpreted these fault splays asthe western
continuation of the Ainsworth segment (Figure 4.8a). This interpretation disagrees with the

previously fault geometry of the Ainsworth Bay proposed by Asenjo Fernandoy, (2020). Using
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the bathymetry of Ainsworth Bay, this author suggests the lineament circumvents the medial
basin toward Punta Haycock and through the Islotes Macey and Corkhill. Additionally, previous
studies defined this morphology as the medial basin excavated during the last glacial advance of
the Marinelli frontal moraine between 12.5-15.5 ka BP (Boyd et al.,, 2008; Izagirre et al., 2018). As
the inland fault morphology is a sharp strait trace, we do not believe the offshore continuation

suddenly curves out to the north, passing the coastline.

In the literature, the main MFF was described in Almirantazgo Sound, crossing the Isla
Dawson and bending toward the Indio Bay (Winslow, 1982; Cunningham, 1993; Klepeis, 1994;
Klepeis and Austin, 1997; Lodolo et al., 2003; Betka et al,, 2016). In the Brunswick Peninsula, two
sub-parallel segments crosscut or reactivates reverse faults and folds of the Late-Cretaceous-
Eocene Fold and Thrust Belt (FTB) (Betka et al., 2016). Therefore, authors proposed the strike-

slip deformations postdate the FTB.

We note the alignment between this lineament and the fault crossing the Peninsula
Ainsworth. We suggest there are both parts of one single main MFF fault (Figure 4.11). Recent
characterisation of glacial and strike-slip morphologies in the Strait of Magellan, in the Whiteside
Channel, and the Almirantazgo Sound recognized faults in seismic lines (Fernandez et al., 2017;
Asenjo Fernandoy, 2020). They demonstrated the offshore continuations of the Karukinka fault,
the Deseado Fault, and two fault splays in the western Almirantazgo Sounds (Figure 4.11).
Authors proposed these faults splays separated several pull-apart basins localised east and west
of the Isla Dawson (Lodolo et al, 2003; Betka et al, 2016; Fernandez et al, 2017; Asenjo
Fernandoy, 2020). The fault splays reactivated the pre-Jurassic suture zone between basement
Fuegian foreland terranes of Tierra del Fuego and the Cordillera Darwin metamorphic complex

(Hervé et al., 2010).
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Figure 4.11: Detailed map of the Western Magallanes Fagnano Fault system. White dashed line

delimits the Karukinka Natural Park. Abbreviations as follow: A.B: Almirantazgo Bay; B.A: Bahia del

Aquila; B.I: Bahia del Indio; B.S.N: Bahia San Nicolds; S.J: San Juan (Rio); MFF: Magallanes-Fagnano

Fault; The base map is satellite Bing™ Maps. References of cited literature are shown in the figure.

IV.3 Fault rupture over the past two centuries

In the Peninsula Ainsworth, we carry out a dendroseismological study to characterise MFF's

recent activity. The MFF scarp crosses the entire Peninsula in a N112 direction, with a southern

block continuously higher than the northern block (Figure 4.12a). This ridge defines a north-
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facing slope up to 10-m high. The topography comprises several local ridge adjoining the

prominent fault scarp (Figure 4.12 b).

Evaluation of active faulting using dendrochronological indices can provide crucial
quantitative data for evaluating seismic hazards (Fritts, 1976). Pioneer investigators in
dendroseismology have successfully used trees to study earthquakes (Page, 1970; Meisling and
Sieh, 1980; Jacoby and Ulan, 1983). Indeed, a site's disturbance by rupturing faults can injure or
tilt a tree stem and may cause changes visible in the tree-rings (Jacoby et al., 1988; Yamaguchi
and Hoblitt, 1995; Yamaguchi et al, 1997; McCalpin, 2009). The subsequent trauma in the cell
structure is called reaction wood. Past events are dated with yearly precision by analyzing the
radial growth of trees (narrow or wide annual rings), the cell anomalies (reaction wood,
modification of cell structure) and the tree-ring morphology (scarps, tilting) (Astrade et al., 2012).
The damaged trees by large earthquakes are a criterion for assigning shaking intensity above VIli
(Mercalliintensity Scale) and usually limited within a few kilometers of the seismic source (Jacoby

etal,1988).

(Next page) Figure 4.12: (a) Location of sites and numbers of trees sampled per sites. The red line
indicates the Magallanes-Fagnano Fault. (b) Site 1. The red lines indicate the MFF ridges. (c) Group of
trees in site 1. The red arrows show the two characteristic opposite curves. (d) View of site 4 showing
the several northward tipped tree-trunks. (e) N. pumilio slice from site 1. The profile AB indicates the
reaction wood orientation (rings squeezed in the tilt direction) in response to the northward tilt coeval
to the 1949 earthquake. Notice the color change (lighter) after 1950 and the two scars that cross the
heartwood, including the 1950 ring. (f) Steps development of the two opposite curves: (1) Normal
vertical growth; (2) 1st earthquake, formation of the primary shutter ridge, and northward tilt of the
tree. (3) The tree tends to grow vertical and makes the 1st curve. (4) 2nd earthquake with coeval
faulting, and formation of a secondary ridge. The tree tilts southward; (5) Vertical growth making the

2nd curve in the opposite direction.
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We sampled trees in four sites along the Magallanes-Fagnano fault in the Peninsula
Ainsworth (Figure 4.12a). We collected cores and slices from 22 tilted living-trees located on the
fault scarp and four reference trees located away from the fault. The comparison with control-

trees allows us to differentiate the climatic signal from the faulting disturbances. We collected
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slices and cores of the species Nothofagus pumilio, an endemic winter-deciduous tree of the
Southern Andes, which has a characteristic vertical axis (Puntieri et al, 1999; Puntieri et al, 2003).

Sampling always took place at the tree base or trunk curvatures.

Numerous trees located at sites 1 and 4 expose a specific morphology with two opposite
curves (Figure 4.12 ¢, d). These double opposite curves may have originated from the successive
vertical recoveries by phototropism following two events (Lopez Saez and Corona, 2015). Various
circumstances can cause such changes in the morphology: adjustment of the drainage,
landslides, crawling, avalanche, rockfall, torrential flow, and disrupted topography during
earthquakes (Lopez Saez and Corona, 2015). In this configuration, the trees may have tilt
northward during a first event along the prominent fault scarp (Figure 4.12e). During a second
event, part of the scarp may have slipped or been disrupted, creating a secondary ridge and tilting
the tree on the counter side (Figure 4.12e). Alternatively, the second curve could originate from
a new growing bough, from a second tilt due to local topographic and drainage adjustment

(gravitational instability, pond).

For this angiosperm trees, a tilt produces an asymmetric tree-ring growth with a
compression wood in the sloping side A and broader rings on the opposite side B (Figure 4.12 f)
(Kaennel and Schweingruber, 1995; Lopez Saez and Corona, 2015). The compression wood has
thicker cell walls than the surrounding tissue, resulting in darker colouring (Shroder and Butler,
1986; Stoffel et al,, 2010). Cores and Slices were sanded, sharply cut, and analysed at the Edytem
Laboratory. We examine both the cells (reaction wood color, ring scarp) and the growth curve

data.
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Figure 4.13: Dendrochronological synthesis. The red lines indicate the major historical

earthquakes, and the black lines indicate local moderate earthquakes. (@) Numbers of trees in function

of their year of germination. (b) The number of trees showing reaction wood in function of the reaction

wood ring age (asymmetrical growth, colored ring, scar). The total number of tree (grey curve) does

not include the four control-trees. (c) Percentage of trees with asymmetric growth versus time. (d) The

number of trees showing a sustained period of growth drop.
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We determine past disruptive events using the number of trees affected in a particular year.
We report the percentage of trees affected using the number of trees alive at that time (It) (index
number Shroder, (1978)). The germination ages range from 1956 back to 1789 (tree on fault
scarp), and reference trees ages range from 1939 to 1831 (Figure 4.13a). We use the colored
reaction-wood, which is manifest and narrow changes in the tree-ring sequences. This method
allows to unequivocally date the event's year (Lopez Saez and Corona, 2015). We identify two
events (Figure 4.13b red bars) that impacted the rings in 1879 (3 trees out of g alive, It 33%), in
1949 (8 trees out of 15 alive, It 53%). We associate these events to the two major historical

earthquakes. We exclude one event marked in a single tree in 1944 (It < 5%).

The examination of tree-ring eccentricity is mandatory to reinforce the results from reaction
wood coloration analysis. This characteristic remains indiscernible on the cores. Because several
trunks were only cored, we may miss the eccentricity changes and underestimate the true
number of impacted trees. We identify groups with a span onset of asymmetric growth, which
defines 5 phases from [1877-1885], [1916-1930], [1949-1969], [1970-1995], and [2007-2014]. Two
of the control-trees show broader tree-rings associated with the phase 1919 to 1933, suggesting
this phase might be triggered by global climate-driven change in the area (Figure 4.13b).

Therefore, we can exclude this event from our paleoseismic record.

We focus on the distribution of the impacted tree number (asymmetry). We notice that for
the 1879's event the maximum number of trees damaged occurred in the year 1879 (Figure 4.13b
yellow histogram). Interestingly, the highest number of impacted tree does not necessarily
match the other event's date. There are nine trees (/t 42%) with asymmetric growth in 1949, and
up to 62 % show an eccentricity growth in the two decades following the 1949 earthquakes. We
observe a delay in the eccentricity growth onset up to 20 years following the 1949 quake (Figure
4.13¢). The numerous historical aftershocks (Jaschek et al, 1982) justified perhaps co-seismic
topographic changes until late in 1950. Variable parameters can explain the extended phase of
eccentricity onset: post-event topographic adjustment, or topographic changes caused by the

drainage system adaptation newly disrupted morphology (Astrade et al,, 2012).

From 1970 to 1995, we identify 27% to 59% of the trees with asymmetric growth and note

two peaks in 1982 and 1984-1985. In addition to asymmetric growth, we observe cracks in the
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three N. pumilio stems on the ring 1982 (Figure 4.13b). The cracks are radial splitting which are
quickly recovered by tissue after one years. Importantly, there are not associated with colored
reaction wood, which implying that this event was not necessarily accompanied by wood-cell
compression. The trees affected are spread over the four sites, and the crack is absent on the
control-trees. Therefore, itinvalidates a hypothetic dryness or cold episode causing respectively
drought cracks or frost cracks (Kaennel and Schweingruber, 1995). Besides, it implies this event
might have affected only trees on the fault scarp. Most likely, these cracks may have formed by
the impact of one tree falling over another trunk. From these informations, it is not possible to
conclude about the 1982's cracks origins. Trees fell over either caused by a wind storm or ground-
shaking. However, there is not earthquake by that time near the Peninsula. The interpretation of
this event is not straightforward, especially as the number of tree with asymmetric growth is
distributed over 1970 to 1995. We exclude the major earthquakes in the 8o’s that occurred along
the Shackleton Fracture Zone and the West Scotia Ridge as they were extremely distal (>400 to
800 km) and pertained to different tectonic setting. In 1970, there are two major earthquakes: the
14 June (-52.035°,-74.097°; distance from site 400 km) of magnitude Mwy, and the 15 June (-54.3°,
-63.6°; distance from site 300km) of magnitude Mwy.2 (Pelayo and Wiens, 1989; Febrer et al,,
2000; U.S. Geological Survey). They are both far from the Peninsula Ainsworth to potentially
disrupt the local morphology. The 15 October 1977 occurred a moderate quake of Mw 4.9 with an
epicenter located in the Isla Dawson (-53.973°, -70.515°). It is unlikely that such magnitude would
cause surface rupture at 60 km away from the epicenter (Hanks and Kanamori, 1979; Wells and

Coppersmith, 1994).

The most recent phase of impacted trees occurred between 2007 and 2014, with 18 to 27%
the trees damaged. At that time, only two proximal earthquakes occurred in 2006 (0g January; -
54.292°, -69.274° ~15 km) and 2009 (06 November; -54.083° -69.534° ~ 30km). According to
their respective magnitude, Mw 4.6 and 4.5, their mean rupture lengths are estimated << 3 km
(Hanks and Kanamori, 1979; Wells and Coppersmith, 1994), thus it is improbable these events

affected the Peninsula.

Curiously, four trees (It 40%) show an early asymmetric growth in 1877, 1878. Seemingly,
previous the 1949 earthquakes, four trees in 1947 (It 19%) start to create eccentric tree-rings.

Uncertainties in tree-rings analysis might be introduced by a ring suppression (lack of growth

116 |Page



IV.3Fault rupture over the past two centuries

after damaged), miscount, unfavorable climate, or restricted lighting early in the life of the tree
(competition) (Shroder, 1978). Here, the control-trees do not evidence a significant period of
growth drops or climatic changes during these phases (Figure 4.13d). Moreover, damaged trees
are present in all sites, which prevents the effect of a possible individual artefact. Because their It
percentage are high, further investigations must discriminate the methodological uncertainty
against the potential low magnitude foreshocks. Additional study of the regional climatic signals
may contribute to understand the sustain growth drop since 1990 (Figure 4.13d), but this is

beyond the thesis questions.

The dendrochronological study leaves no doubt that the MFF ruptured along the Peninsula
Ainsworth in 1879 and 1949. Perhaps, this section ruptured as well in 1950. One additional event
in 1982 is not consistent with the instrumental seismic record. Further investigations are required
to infer the disturbance mechanism triggering the 1982’s cracks and 2007 to 2014 eccentricity

growth.

Knowledge of a region’s seismicity is a crucial key to estimate the earthquake hazards. To
investigate the regional seismicity McCalpin (2009) further distinguishes primary and secondary
evidence of recent fault activities, with secondary being landslides, tsunami, or liquefactions. In
Chile, the recent earthquake secondary evidences are extensive and well expressed. Following
the 17 December 1949 earthquakes, numerous testimonies were reported all around the
Southern Chile. Several inhabitants described a 5o-cm tsunami over the Estancia Lago Fagnano
land (personal discussion German Genskowski) (Figures 4.2) and mentioned the sea that
suddenly drained away in Caleta Maria (Figure 4.4). In Gabriel Channel, in Porvenir and
Almirantazgo Bay, several navigators observed abnormal strong tidal wave. South of Punta
Arenas in the San Nicolas Bay, jets of salt-water squiring from the ground were noted (Figure
4.11) (La Prensa Austral, 1949; Lomnitz, 1970; Isla and Bujalesky, 2004; INPRES, 2004, Perucca et
al., 2006; Martinic, 2008). Two specular examples are the subsided delta along the Fagnano's
southern bank (Figure 4.14a), and the historical photographs of the destroyed pier in Caleta Maria

before (Figure 4.14b) and after (Figure 4.14¢) the 1949 earthquakes. However, the timing and the
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localisations of the former scarp remains ambiguous from these secondary ground-shaking

evidence.

Figure 4.14: (@) Lake Fagnano’s southern bank was subsided near the Betbeder river mouth coeval
to the 1949 earthquakes with numerous half-submerged tree trunks. (b) The 1945 pier of Caleta Maria
sawmill, from Garcia, (2013), a photograph of Lucio Genskowski.P. Note the Islote Albatros in the
background for reference point. (c) The pier after the 17 December 1949 earthquake. Note the same

background reference point and the debris cone, from Garcig, (2013), photo Lucio Genskowski.P.
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IV.4Quaternary activity along Peninsula Ainsworth

Sharp surface fault geometries, paleoseismological trenches, and disrupted trees constitute
hard data and primary evidence to understand the most recent fault activity (McCalpin, 1996;
Obermeier, 1996; Sieh, 1981). In southernmost Patagonia, these archives are fundamental,
especially as historical and instrumental records are scarce. In the study area of Azopardo and
Jackson faults, there is not hard data yet to support whether they are, or are not, active in the last
century. Contrarily to the recent conclusions (Sandoval and De Pascale, 2020), we propose these
two faults are two potential candidates to be two master faults along with their northern

counterpart, the Deseado Fault.

IV.4 Quaternary activity along Peninsula Ainsworth

Here, we use the changes in the hydrological network of the Peninsula Ainsworth catchment
to assess the long-term slip. We investigate a twelve rivers, including ten active channels and two
fossil channels (Figure 4.15). They are all characterized by a linear flow toward the NE, sharp
offset by the fault scarp, and 9o° to 80° of obliquity angle between channel orientation with
respect to the fault trace. This configuration represents a highly reliable quality geomorphic

measurement site (McCalpin, 2009; Salisbury et al, 2012; Madden et al,, 2013; Zielke et al,, 2015).
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Figure 4.15: Three offset measurements. (a) the Site’s view without interpretation. The base map
is satellite Bing™ Maps. (b) Displaced river channels (dark blue line), fossil channel (white line) and

idealized fault plane (red line) on 2m grid resolution Pleiades DSM data set. The distance
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measurements are projected onto an idealized planar fault (indicted by dashed line with dot on the

fault planes). Contour plots with 10-m above sea level interval.

The sinistral displacement is particularly well-expressed in three river channels (Figure 4.15a).
We used aerial photographs with a high-resolution digital surface model (DSM) from Pleiades
images using MicMac (free, open-source photogrammetric suite, IGN, ENSG). We identify the
channel heads and their associated channel tails, with their respective unique match. We
projected the linear drainage heads and tails on to the fault plane. We measure the respective

maximal offset of River 1, 2 and 3 of about 315 M + 15 M, 245 + 10 M, and 105 + 10 M.

(NEXT PAGE) Figure 4.16: Retro-deformed landscape by the determined offset amount to assess
reconstruction reliability and offset range. The colored lines indicate the active streams. Note that each
stream keeps its original color corresponding to its activation, which facilitates the displacement
monitoring. The white lines show the inactive channels (not yet incised). We mention the stream state:
active, abandoned, or disconnected. Retro deformation is developed in 5-steps (A) to (E). Step A is the
initial setting with river R1 in its pristine form with a straight channel. Step E is the final configuration
that matches the existing hydrological network. We specify the additional offset increment and the
amount of cumulated slip since the deformation begins. (F) Same step as step E (actual configuration)

without interpreted lines.
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IV.4Quaternary activity along Peninsula Ainsworth

These measurements suggest the three rivers have recorded a different amount of sinistral
displacements, which correspond to a differential beginning of their hydrological development.
The deepest and largest river bed R1 records the maximum shift. We interpret R1 as the oldest
hydrological network capable of recording the earliest deformation while deepening its active
channel. The rivers R2 and R3 are narrower and shallower. They may have developed later and
recorded less amount of sinistral movement. We use the whole hydrological catchment to
understand the backslip along the scarp (Figure 4.16). In step 1, we restore the initial
configuration based on the hypothesis that the oldest river, R1, was linear and undisrupted at that
time (Figure 4.16a). In this configuration, three western head streams match with three tail
streams. The other streams are not yet developed by that time. In step 2, we applied a 30-m left-
lateral increment (Figure 4.16b). The previously activated streams remain connected (Figure
4.16b). Because one new tributary matches with one tail stream, we consider this river is activated

at that time. We apply the same reasoning for the entire restoration.

In step 3, the cumulated sinistral displacement of 70 m shifts the river R2 matching with its
former tail (Figure 4.16¢). The river R2 starts to incise and acts as a ‘chronometer’ of the
deformation. Note that in fine, in step 5, the river R2 has cumulated a total amount of ~245 m
corresponding to the maximal distance R2max. In step 4, we increment 140 m of the sinistral slip,

which results in the alignment of R3's head and tail (Figure 4.16d).

In step 5, the fault has offset the R1, R2, and R3 rivers of their respective maximal sinistral
displacement R1 ~ 315 m, R2 ~245 m, and R3~105 m (Figure 16e). The cumulated sinistral
displacement to reconnect all the actual rivers is 315 + 15 m, and it constitutes the largest offset

of Peninsula Ainsworth across the moraine deposit.

We excavated a trench (54.375606°S, 69.449923°W) across the 4-m fault scarp, in a single
slot of 6-m long and 2.5 m deep. We collected five samples in the Ainsworth Trench. Each piece
was selected in recognized units and originates from single charcoal. Radiocarbon
measurements were made at Laboratoire de Mesures du Carbon 14 (LMCag4, CEA Saclay,
France). The ages are calibrated using Oxcal version 4.4 (Ramsey, 2017; Ramsey, 2009) with the

southern hemisphere calibrating curve SHCAL20 (Hogg et al., 2020). The raw *C ages (yrs BP)
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and the calibrated ages (cal yrs BP) are available in Table 4.1. Specific attention was drawn onto
samples C1 (N°SacA 60318) and C2 (N°SacA 61164). These sample activities (pMC) are close to
the background activity, meaning that they are at the limit of datable *C method. However,
sample C1can be dated because its activity is higher than twice the standard deviation o (Stuiver
and Polach, 1977). Besides, the activity of C2 differs from the background between 1 and 2 o.
Therefore, the LMC14 laboratory reported this age as “apparent” (Mook and Plicht, 1999; Stuiver
and Polach, 1977). This apparent age is a minimum age. The C2's apparent age is reported in yrs

BP as the calibration method is not applicable in this case.

Mass spectrometry measurements (ages and |Calibrated ages (cal

error indicated in yrs BP) yrs BP)
Sample| N°SacA| IGSN Nature | Mg C|Delta **c pMC “cage | Err | From To |Unit
c1 | 60318 | iErov000T | Charcoal| 1,66 | -22,10 | 0,567 0,141 | 41600 | 2000 | 51139 | 42276 | U5
c2* 61164 | IEROYOOOU | Charcoal| 0,96 | -18,30 <0,41094 * |>44100] NA NA NA U5

C4 60319 | IEROYOOOV | Charcoal| 0,89 | -33,60 |68,168+0,232| 3080 30 3370 3212 (U2

c5 | 60320 |iErRovo0OW| Charcoal| 1,29 | -24,30 |62,078 +0,209] 3830 | 30 | 4402 | 4097 |U1
c6 | 60321 | 1EROY00OX | Charcoal| 1,35 | -26,20 |64,336 +0,213] 3545 | 30 | 3959 | 3718 | U1

*Apparent age close to background : 10 < measured sample activity < 20. Error on*c age, and calibration not
applicable (NA).

Note: Measurements made at LMC14, CEA Saclay, France using the accelerator mass spectrometry (AMS) ARTEMIS,
following preparation protocols (Dumoulin et al., 2017, Moreau et al. 2013). Radiocarbon ages are calculated using
Mook and Van der Plicht (1999).

The ages are calibrated using Oxcal version 4.4 (Bronk Ramsey, C. 2009, Ramsey, C. 2017) with atmospheric curve

SHCal20 (Hogg et al., 2020). N°, field name; SacA: lab number; IGSN: International Geo Sample Numbers; Mg C:

amount of carbon in mg ; Delta *C: percent of isotope >C; pMC: percent Modern Carbon.

Table 4.1: Mass Spectrometry Measurements of Radiocarbon Samples.

The trench walls expose a clear stratigraphic record of successive lake, glacier and peat bog
deposits. A progradation sequence with unlithified sediments (unit 8to unit 3) is capped by recent
peat bog (unitz and 2) (Figure 4.17). The lowest unit 8 (not apparent on the mosaic) is a massive
blue clay covered by fine clay-silt bottomsets (Unit 7). These units could be deposited in a
paleolake in paraglacial environment. The alternating light-coloured, coarse-grained and dark-
coloured, fine-grained suggested they could represent rhythmites (Figure 4.18a) (Ashley, 1975;
Menzies, 1996, O'Sullivan, 1983). Figure 4.18a shows climbing ripples above wavy laminations,
which indicates not only anincrease in bed sediment load (Jopling and Walker, 1968) but also the

current direction toward the north. The gradational contact between units 8, 7,and 6, joined with
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the increasing grain size, expresses the energy increase due progressive progradation of river or

ice advance into the paleolake (Figure 18 b, ¢).

a |N195° AINSWORTH TRENCH - WEST WALL NO15°
sinistral strikg—slip N9o°

N \
NN

. 1 meter

|3.37 - 391 cal ka BP |

3

I4.40 ~ 4.09 cal ka BP|

Events 3

* C2 "apparent" age close to background : 10 < measured sample activity < 20 0
Stratigraphic log / facies E‘?‘:\’I’ 1 meter

[ U1: modern soil and dried vegetation Elements
B U2: peat horizon /.l/main faults and associated fault splays
[ Us: pebbles-rich and angular cobbles in coarse sandy-matrix / colluvion *inferred faults

P v angular pebbles-rich in fine grained matrix of silt and clay / morain = faulted, folded, tilted laminae

g I Us: coarse sandy foresets and trough cross bedding / (glacio?) delta lens of yellow clay

é _ | U6: subhorizontal laminae of fine sand / (glacio?) lacustrine ~ horizon of iron-oxide

2 " U7: alternance of clay-silt and fine sand laminae (varvite?)/ (glacio?) lacustrine (e rooting of peat and modern vegetation

é M us (not apparent on mosaic): massive blue clay / (glacio?) lacustrine %= lens of sand and gravel

<" pebbles and cobbles

Figure 4.17: Mosaic views of the trench's (-54.375606, -69.449923) western wall across the
Ainsworth section (a) photographic mosaic; (b) with interpretative logs and sample locations. Details
on *C samples are given in Table 4.1 (all the ages are calibrated, excepting the sample C2). The ages
are calibrated using Oxcal version 4.4 (Ramsey, 2017, Ramsey, 2009) with southern hemisphere

calibrating curve SHcal2o (Hogg et al, 2020). We use the modified Udden—Wentworth grain-size
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scale (Benn and Evans, 2014; Blair and McPherson, 1999). The units U8 to U4 show the gradual

facies shifts during period of ice advance

This vertical profile is a typical of progradation into a paraglacial lake (Benn and Evans, 2014;
Brodzikowski and Loon, 1990; Menzies, 1996). The lack of transition between units 6 and g
suggests part of the sequence may have been eroded. This sharp erosional contact and the
coarse grain size of unit 5, suggest a substantial (meltwater?) energy increase (Figure 4.19 b, ).
The upper units evidence an environmental change from ice-distal to ice-contact system. The
rapid ice-advance is shown by the succession of a sandy-gravely foresets (unit 5 delta) covered
by clast-supported diamict (unit 4 moraine ice-contact). Samples C1and C2 were collected in
the terminoglacial unit 5. A lacustrine environment, probably associated with a paraglacial
context, was therefore present at this place between 42 and 51 ka. Considering the lithofacies
mentioned above, we propose that units 8 to 5 correspond to the last interglacial, and unit 4 is

associated to the last MIS 2 glacial advance.
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Figure 4.18: (@) Zoom in the unit 8 to 6 in the lower western wall Note the sequence with

succession of wavy laminations, climbing ripples, and upward increase in sand content. (b, ¢) Zoom in

the lower western wall showing the sharp erosional contact between units 6 and 5.

Brittles structures cut this unlithified sequence. Faults 1 to 7 have disrupted the unit 8 to 2,
and opened cracks, which were fed by peat bog dated to 3 290 + 80 yrs (Figure 4.19). These faults
are associated with the most recent ruptures event 3. The fault F8 ends in the colluvium layer unit
3andis related to a rupture E2 younger than units 5and 4. The most ancient rupture identified is
event 1, and is associated with the fault Fg. Fg stops in unit 6 and is eroded by unit 5. In addition
to faulting, the units 8to 6 are affected by a 40° tilt that occurred prior to the deposition of unit 5
(Figure 4.18). Therefore, event 1 might have triggered severe uplift and faulting with a minimum

age > 42.3cal ka BP.
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Figure 4.19: Zoom in the eastern wall showing the brittle faults in unlithified sediments connected

to sub-surface open-cracks.

All the faults are rooted probably deeper than unit 8 (Figure 4.20 a, b). The dipping of these
faults suggests they converge at depth. We suppose the trench’s faults are comprised in a flower
structure (Figure 4.21). The cumulated vertical movement along these faults is relatively small
compared to the scarp morphology. Due to the trench limited extents limits, determined by the
presence of water in the sediments, we may miss several splays north and south of the trench.
These major fault splays may explain the cumulated vertical displacement. The flower structure
defined here the kilometric scarp, a linear antiform, that is bounded longitudinally along its flanks

by the upward and outward diverging strands (Harding, 1985) (Figure 4.21).
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Figure 4.20: (g b) Zoom in the bottom of the trench showing the fault 9 in the western wall (Fow)

and in the eastern wall (Fge) that connect at depth, and disrupt the lowest unit 8.

Figure 4.21: Interpretation of the trench site as a flower structure. Black triangles point the trench.

To identify the potential complexities between glacial and tectonic deformations, we map
the glacial morphologies and the rupture traces (Figure 4.22a). We report our dated samples,
datings available in literature, and associated dating methods. This provides a reliable framework
for assessing velocity from offset values (Zielke et al, 2015). In the peninsula, the systematic
smooth western stoss-end and the sharp eastern lee-side of the roches moutonnées suggest a
paleoice-flow toward the east (Figure 4.22b). [timplies that the ice-sheet that covered the entire
Peninsula was mostly fed by the paleo-glaciers Cerro Seforet, Marinelliand Ainsworth grounded
on the Darwin Cordillera northern flank. On the peninsula Ainsworth the glacier merged in the

Almirantazgo lobe in an eastward motion.
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Figure 4.22: (a) Glacial and strike-slip geomorphology map of Ainsworth Peninsula. Inset shows
the location regional dating available. (b) A roche moutonnées hillock on the Cordillera Darwin
northern foothill, on which smallest scale roches moutonnées are shown. These features differ from
bedrock glacially polish due to their asymmetric shape related to the ice-action. On side is moulded

(stoss-side) and the other is steepened (lee-side) (Sugden and John, 1976).

We sampled two roches moutonnées and two glacial polishes in Peninsula Ainsworth. We
collected an additional sample of Cordillera La Paciencia’s foothill (see table 2 for locations).
Samples were prepared at ISTerre following the chemical procedures described by Brown et al.
(1991). The Laboratoire National des Nucleide Cosmogeénique (LNNC, Cerege, Aix-en-Provence,
France) performed the *°Be analyses. We detail in Table 4.1 the methods used for calculating of
the production rate and the shielding factors. With this method we date the time by which the
rock became exposed to cosmic rays starting the cosmogenic nuclide production (Dunai, 2010;
Nishiizumi et al, 1989). Regarding the smooth shape sampled surfaces, it leaves only little doubt
that the last ice—bedrock interface was erosive, and erased the cosmogenic memory of eroded
bedrock surfaces. Such surface found on glacially over-ridden bedrock usually provide reliable

deglaciation ages (Briner et al., 2006; Dunai, 2010; Fabel et al, 2002).

Err. prod.
it 10, 1 210 L 3 Al
Sample | Lat(°S) | Long(°W) Nature I'::: :::; ( f/e) Er(r,t / I)Be P(rott; ;a“; rate Shielding‘ (yff) (5::)
. a a a r
= s Sk (at/g/yr)
polished
CPO1 | 54,42522 ] 69,01570 - 41 56 972 3039 4,50 0,39 0,929809 | 12815| 1786
Roche
toto-1 | 54,36083 | 69,47073 , 121 86 488 7 266 5;25 0,45 0,998799 | 16715| 2 817
moutonnée
toto-2 | 54,36493 | 69,45719 Rache , 74 77 489 6016 5,01 0,43 0,998799 | 15685| 2547
moutonnée
polished
toto-3 | 54,36978 | 69,43087 e 40 74 765 2698 4,84 0,42 0,999604 | 15613| 1912
Roche
toto-4 | 54,36924 | 69,42814 p 23 101718 6 646 4,75 0,41 0,999161 |21697| 3272
moutonnée

"Measurements made at Laboratoire National des Nucleide Cosmogénique LNMC (Cerege, Aix-en-Provence, France) using the
accelerator 5 MV ASTER and following procedure Braucher et al. , (2015).

2Uncertainty includes: measure (number of count), standard (certification), average standard measures (machine), systematic error
(machine external error 0.5% Arnold et al ., (2010).

3production rate have been calculated following Stone et al ., (2000) using modified scaling function Lal et al ., (1991).

“*Topographic shielding calculator Stoneage.ice-d.org Version 2 http://stoneage.ice-d.org/math/skyline/skyline_in.html

Table 4.2 *°Be measurements

Excepting the toto4 sample, discussed later, our data set describes age-equivalent around 16

ka BP which agrees with literature datings available in the area. Indeed, in Punta Haycock, Hall et
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al. (2013) dated organic materials in cores originating from peatbog above glacial sediments,
ranging from 17.1 + 0.2 to 15.5 + 0.2 cal ka BP. In Punta Esperanza and Gruesa, the same method
was used to date the Ainsworth Fjord deglaciation from 16.4 + 0.5 to 13.8 + 0.5 cal ka BP, and
Brook Fjord deglaciation 17.2 + 0.2 to 16.1 + 0.2 yr BP (Hall et al, 2019). Furthermore, Boyd et al.,
2008 cored marines sediments in the Almirantazgo Sound evidencing a major transition from
ice-proximal to ice-distal facies between 15.5to 12.5 ka BP. Therefore, based on our results and
previous contributions, we can reasonably propose a minimal limiting deglaciation age of the

Ainsworth Peninsula at 16.7 + 2.8 ka BP (toto1).

Despite the samples totds4 and toto3 are distant of <200 m, they belong to two distinct
hillocks. The age uncertainty of totd4, makes it slightly older than the other samples. This sample
could have undergone less glacial erosion, which could have preserved inherited cosmogenic
component from previous exposures. According to the local data set, we cannot use this sample

to constrain the ice recession in this area.

This result evidences the Almirantazgo lobe irreversibly retreated in the Darwin Cordillera by
16.7 + 2.8 ka. In contrast, at the same period in the eastern region, authors suggest that the
Fagnano lobe was standing near the limit RP2 (Figure 1.10). (Coronato et al., 2009; Waldmann et
al., 2010), with a final retreat occurring about 11.7 ka (Waldmann et al., 2011). Because the
Fagnano and the Almirantazgo lobes were both fed mainly by the Darwin Cordillera ice-sheet
(secondary fed by alpine glaciers), itis difficult to explain how their respective final retreats would
have occurred at such different times. Our result strongly suggest the final retreat of Fagnano

Lobe occurred earlier than the proposed age.

IV.5 Discussion and Conclusion

Our study evidences the modern activity along the Ainsworth fault section and identifies the
two last major ruptures in 1879 and 1949 using tree-ring and trenching analyses. The 1879 and
1949 ruptures have been recorded in tree-rings 170 km further east in Tierra del Fuego (Pedrera
et al, 2014). Paleoseismic trench investigation evidences one or two of these ruptures disrupted
the La Blanca section 190 km farther east (Roy et al. 2020, Chapter 3). Also, the 1949 rupture was
identified in disrupted fences 195 km east of Ainsworth Peninsula, and survey in the morphology

suggested this rupture ends 10 km before the Atlantic coastline (Roy et al, 2020). Consequently,
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based on these primary evidences, our results demonstrate a minimal subsurface rupture length
(RLD) of = 170 km in 1879, and of =200 km in 1949. It implies two giant earthquakes in less than

one century in Tierra del Fuego.

Following the empirical relationships between RLD and magnitude, and using the regression
coefficient for strike-slip configuration (Wells and Coppersmith, 1994), we estimate the moment
magnitude of 1879 Mw =7.66 + 0.24 and 1949 Mw >7.76 + 0.24. Our estimate of 1949’s magnitude
is consistent with the instrumental record Mw 7.75 (Lomnitz, 1970) and with a coseismic

horizontal offset of 6.5 meters in Argentina (Roy et al,, 2020).

On one hand, our result on 1879’s earthquake propose the first direct estimate of its
magnitude and rupture length, which agree with previous intensity value MM VIl (Lomnitz, 1970).
On the other hand, our results imply that two giant earthquakes occurred in less than a century
in Tierra del Fuego. It disagrees with the accepted recurrence interval of major earthquake ~700
to 1000 years (Costa et al., 2006; Roy et al., 2020, and this thesis Chapter Ill; Waldmann et al.,

2011).

The peaks of tree-ring eccentricity between 1970 to 1995, and 2007 to 2014, remain not
understood, and uncorrelated with significant earthquakes. Also, if moderate earthquakes or
wind-storms can disturb the trees environment, impacting tree-rings, then it necessarily
challenges the dendroseismological method. To overcome this unknown, it is mandatory to
study climate-driven events on this time-scale, and to sample additional trees localized off- and

on-fault.

Using high-resolution imagery, field mapping, **Be and *C dating, we measure the long-
term offset, and propose two hypotheses for the displacement onset. The deviated rivers incise
the Quaternary cover, consisting of eskers field and roches moutonnées from the last glacial
maximum. [t is unlikely that the eastward paleo-ice-sheet carved channels with an orthogonal
flow direction. Indeed, under subglacial conditions, only ice-directed meltwater channels are
likely to incise parallel to ice-movement or sub-parallel to its ice margins (Sugden and John, 1976;
Menzies, 1996). Contrary to the measured rivers, a meltwater channel is usually characterized by
an abruptinception and termination in bedrock (Sugden and John, 1976; Walder and Hallet, 1979;

Bennett and Glasser, 2011). These rivers crosscut the Quaternary cover, which were formed in
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an outwash plain by retreating glaciers. Thus, we postulate that these rivers are developed during
the deglaciation following the local LGM. Furthermore, our *°Be ages and previous contributions,
in the Peninsula Ainsworth indicate a minimum limiting age for irreversible ice retreated at 16.7
+ 2.8 ka BP. Considering a 315 + 15 m sinistral offset, it implies a postglacial slip-rate of 19.5 £ 4.2

mm/yr.

A less likely hypothesis is that the rivers were carved during the last interglacial phase,
implying that the drainage may have remained activated under the LGM ice-sheet. Based on our
radiocarbon dating, the last interglacial maximal age in the Peninsula is > 46.7 + 4.4 cal ka BP,
which results in a minimal long-term slip-rate of > 6.8 + 0.8 mm/yr. At first glance, this rate is akin
to the Argentinian MFF geomorphic slip-rate of 6.4 + 0.9 mm/yr (Roy et al., 2020). However, two
significant inconsistencies remain. Firstly, the drainage system cuts both the last interglacial
sequence and the LGM moraine deposit observed in our trench. Therefore, the cross-cutting
relation suggests these rivers cannot be older or coeval to the ultimate interglacial. Finally, the
hypothetical river preservation under LGM ice-sheet conflicts with contemporary orthogonal
polishing of extensive bedrock surfaces. The conservation of these depressions is especially
unusual under one 1-km thick LGM ice lobe running on the Darwin Cordillera northern flank

(Hultonetal, 2002).

Our data suggest that the glacial and tectonic imprints are tightly intertwined in the
Peninsula Ainsworth. Based on our analysis, the Western MFF long-term slip-rate is considerably
faster than its eastern counterpart in Tierra del Fuego. Interestingly, the postglacial slip-rate is
moderate to the east, whose LGM-ice-sheet was thinner and less extensive (Rabassa et al., 2000;
Coronato et al, 2008; Coronato et al, 2009; Waldmann et al, 2010; Rabassa, 2011). These
findings suggest that the Magallanes Region of Chile's strike-slip fault is broadly active since the
Last Glacial Maximum. The intriguing coincidence between the onset of fast slip accumulation
on the Magallanic strike-slip fault and the end of the last ice age strongly suggests an external
forcing. Future efforts should evaluate postglacial unloading as a potential cause for increased

strike-slip-rate in the Chilean Territory.
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CHAPTER V:
Numerical modeling of strike-slip fault during icecap
growth and melting

Abstract

This chapter is dedicated to the modeling of strike-slip faults response to climate-driven
changes in ice volumes on Earth'’s surface. We first introduce the history of the glacial isostatic
concept and the birth of subsequent scientific questioning on glacially induced seismic activity. A
complete review of recent modeling approaches is formulated and their implications on the
understanding of the Quaternary seismic activity of Fennoscandia, Northern America, Basin-
and-Range, and the Polar regions. The Magallanes-Fagnano fault is an exceptional object for
studying glacial unload and pulse of tectonic activity. Indeed, at Last Glacial Maximum, the
Chilean part of the fault was under 1-km thick ice-sheet, contrary to the eastern Argentinian
section, which was almost free of ice. The comparison of the long-term slip rate of these regions
suggests that the western MFF moved significantly faster than the eastern section since the
glacier retreat. Here, we use analytical and finite element models to investigate the fault
response to glacial (un)loading. Several earth models and glaciation scenarios are experimented.
We explore the effect of (1) the obliquity of the ice-sheet comparatively to the fault position (2)
duration of glacial period (3) retreating velocity of the ice and (4) the influence of plate velocities.
Our results show the loads applied on Earth surface exert a significant control on the rate of strain
accumulation on strike-slip fault. The Earth material rheologies, the load history and the obliquity
of the fault with respect to the icecap, are the primary parameters which govern the fault
response. Glaciation favors fault locking and mutes the fault’s rupture, and the deglaciation
implies aslip pulse. However, the predicted cumulated slip delayed is negligeable compare to the

observed slip-rate contrast between east and west Magallanes-Fagnano Fault.
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V.1 State-of-the-Art

Glacio-seismotectonics refers to the past and continuing effects of ice sheets and glaciers
(Stewart et al, 2000) on contemporary crustal deformation and seismicity. It primarily implies

the glacial isostatic adjustment (GIA) and subglacial erosion.

The oldest questioning on GIA dates from 1491, in the Swedish town of Osthammar, when it
has been noticed that harbor was no longer possible to reach by the fishing-boats. Although the
profusion of the Swedish investigations about land uplift — looked upon as a water decrease
during the 16th and 17th centuries, itis only in 1865 that the Scottish geologist Thomas Jamieson

first formulated:

“ltis worthy of remark that in Scandinavia and North America, as well asin Scotland, we have
evidence of a depression of the land following close upon the presence of the great ice-covering
[...] It has occurred to me that the enormous weight of ice thrown upon the land may have had
something to do with this depression. [...] Then the melting of the ice would account for the rising

of the land, which seems to have followed upon the decrease of the glaciers.” (Jamieson, 1865)

Later, T. Jamieson described the uplift as a crustal rebound due to the ice covers unloading,
i.e., he suggested the crust having an elastic behavior (Jamieson, 1882). Without proof of the
upper crust's elasticity and the lack of significant local earthquake at this epoch, the idea
defended by Jamieson did not receive any support until the 18g0s. The first map of Fennoscandia
uplift (De Geer, 1890) stated that firstly, the phenomenon was not latitude-dependant. A massive

uplift could not be explained by regional water decrease but only by a land uplift.

“The immense loading of the ice gradually caused a local depression of the Earth’s crust
which is supposed to be in a fairly sensitive state of equilibrium, and that the area after the
deglaciation slowly raised again although it has scarcely succeeded in fully reaching its original

level.” (De Geer, 1890)

This view was later reinforced by De Geer and his colleagues (De Geer, 1940), who produced

a master chronology of varves* series in Sweden, which presented clear evidence of glacial
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adjustment depression and subsequent uplift of Fennoscandia. Moreover, De Geer hinted at the
possibility of deglaciation associated with large earthquakes that fractured the bedrock and
shattered the ice, which resulted in breaking the sub-surface to very bouldery seismic moraines

(De Geer 1940, p. 113-132).

"It seems as if the symbiosis between boulder-producing earthquakes and moraine-building
oscillating ice-boulders commenced about at the year —1050 before the end of the Ice Age, or

9640 years before A.D. 1900". [p158]

"But now we find indications of such more intense earthquakes at the very end of the Ice Age.
At exactly the same epoch, it is well-known that especially the central parts of Scandinavia have

been subjected to a very considerable upheaval of land”. [p177](De Geer, 1940)

or readers with historical interest in understanding glacial isostatic adjustment, we refer to
the excellent papers (Bergsten, 1954; Ekman, 1991; Ekman, 2013; Whitehouse, 2009; Morner,

2014) and other references cited thereinafter.

Afterward, the northern Scandinavia was the classical region for glacial isostatic adjustment
studies. The key point of this part of the world lies in the existence of multiple large superficial
faults in a stable continental craton (Kinck et al, 1993). Consequently, earthquakes with large
magnitudes are generally not expected in these areas. This paradox yielded to introduce a new
aspect: the possible linkage of seismic activity with changes in stress during glacial isostatic
adjustment (Morner, 1969; Morner, 1972). Soon after, intense faulting and fracturing were
documented in Finnish Lapland (Kujansuur, 1964), southern Norway (Feyling-Hanssen, 1966),
Swedish Lapland (Lundqvist and Lagerback, 1976), and southern Sweden (Lagerlund, 1977),

mostly on normal and reverse faults.

The recognitions of postglacial fault scarps and glacially induced earthquakes infiltrate into
the mainstream with the Parve fault studies. The Pdrve fault is an imposing example of a 150 km

long thrust, which disrupts the Late Weichselian (25 ka) glacial markers, including eskers,
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drumlins, meltwater channels outwash plains (Figure 5.1). It delineates a vertical displacement of
up to ~30 meters. Seismic activity is interpreted as a result of decreased normal stresses which
migrated from northeast to southwest as the deglaciation proceeded (Lundqvist and Lagerback,
1976). Forthe authors, it appears indubitably that the rapid post-glacial rebound may in itself be
the reason for sudden breaks. Thereby, the supposed inactive segments are described as active
contemporaneous to the maximum glacial isostatic uplift at 9 ooo — 8 500 years old (Morner,
1978). If the Parve fault segments are interpreted as a single post-glacial fault, in that case, a
single major event of moment magnitude Mw ~8 may have shaped the entire fault scarp

(Arvidsson, 1996).
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Figure 5.1: Photographs of the Pdrve Fault, Sweden. (a) The Pdrve fault cross-cuts an esker
abruptly north of Lake Langasthe (lake in the background). Fault is the steep vertical scarp of several
meters high, located from the lower-left to the upper-right corner. The esker is the small light-grey line
offset in the picture center. Photograph by K. Lagerback (1975) from (Lundgvist and Lagerbdck, 1976).
(b) The central Pdrve by Bjorn Lund (Lindblom et al,, 2015)

Several authors agree with Arvidsson’s hypothesis that glacial isostatic adjustment in this
region plays a significant role in triggering earthquakes of moment magnitude Mw ~6-8 (Muir-
Wood, 1989; Stanfors and Ericsson, 1993; Lambeck et al,, 1998; Ojala et al,, 2019). In Scandinavia,
the off-loading stress field is dominating over the stress from the plate tectonics during
deglaciation (Muir-Wood, 1989; Gregersen, 2002). The ruptures have been interpreted due to
decreased normal stresses on steeply dipping reverse faults (Wu et al, 1999; Turpeinen et al,
2008) during glacial, post-glacial, and late-glacial periods, and have been called glacially-induced
faults. Since then, glacially induced faults are widely investigated in northern Scandinavia (Dehls
et al., 2000; Gregersen, 2002; Lagerback and Sundh, 2008; Kukkonen et al., 2010; Palmu et al,
2015; Ojala et al,, 2019) in central Sweden and Finland (Figure 5.2) (Smith et al,, 2014; Malehmir
etal., 2016; Ojala et al, 2019), as well as outside the formerly glaciated area in southern Sweden
(Jakobsson et al, 2014), and in the southwest Baltic region (Al Hseinat and Hibscher, 2014;

Brandeset al, 2018).
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Figure 5.2: LIDAR-based digital elevation model of the Suasselkd post-glacial fault complex,
Finland. Re-activated fault cross-cuts (a) a lateral drainage channels, and (b) a paleo proglacial lake

shorelines (c) trench site of the study (Ojala et al., 2019).

Nowadays, the Weichselian Fennoscandia Ice Sheet is well known. It represented at its
maximum of ~2 — 3 km ice thick (Patton et al, 2016). The Fennoscandia, Celtic Sea, and the
Barents Sea Ice Sheets formed the Eurasian Ice Sheet Complex. The rebound of the earth's crust
in response to ice sheet disintegration depends on the mantle's viscosity. Usually, the total
rebound's magnitude is taken as about a third the ice thickness, so that a 2 - 3 km ice thickness
load would produce a ~ 0.7 - 1 km vertical crustal response (Domack and Powell, 2018). During
the Late Weichselian from 13000 to 9 ooo years BP, the slow warming period induced

progressive melting of the ice sheets and yielded about 500 m of regional uplift (Aber and Ber

2007). In 9 500 - 8 000 ka, the rapid temperature climb caused a fast retreat. Since g 0oo years
BP, another 300 m of rebound took place in Scandinavia (Aber and Ber, 2007). Currently, the
Scandinavia region is still experiencing crustal uplift with @ maximum apparent rate about 8
mm.yr?(Dehlsetal, 2000; Fjeldskaaretal,, 2000) located in the central region of Sweden (Figure

5-3)-
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Figure 5.3: Influence of deglaciation on the deformation of Fennoscandia. Major faults are
mentioned in red. The red lines indicate the location of late- or postglacial faults (PGF) and reactivated
faults, and red squares show possible PGFs (Al Hseinat and Hibscher, 2014, Brandes et al, 2018;
Muir-Wood, 1989; Lagerbdck and Sundh, 2008). The Late Weichselian (LGM) extension of the
Fennoscandia Ice Sheet is shown as a blue cover (Patton et al,, 2017). The blue dashed lines indicate
ice-thickness at 20 ka in meter from interpolated ANU-ICE (Craig et al., 2016). The black contours show
the cumulated rebound and subsidence since the LGM in meter (Gregersen and Voss, 2010; Mérner,
1979). The light and dark green zones indicate patterns of maximum current uplift rates, respectively
of 8mm.yr* and 9 mm.yr* from present-day GPS data (Craig et al, 2016; Dehls et al,, 2000; Kierulf
etal, 2014). Seismicity records are from (Dehls et al,, 2000; Gregersen and Voss, 2010; Lagerbdck and

Sundh, 2008). Record of Mw>5 since 1977 are from http://www.globalcmt.org).
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V.1.2.2  The North American craton

The occurrence of glacially induced faults in stable intraplate interiors has requested interest
in northern Europe and eastern Canada and northern U.S (Shilts et al, 1992; Wu and Johnston,
2000; Steffen et al,, 2012). Though the early investigations focused on tiny faults in the Canadian
Shield and the northern Appalachians, a similar concept emerged about the glacially induced
faults. Small throws were first recognized in 1894 (Figure 5.4) in the striated glacial pavement in

Saint John, New Brunswick (Matthew, 1894).

Figure 5.4: Small offsets in the striated glacial pavement from Saint John, New Brunswick
photograph taken in 1890. Glacial striae are the thin lineaments intersected by the prominent offset,
which crosses the picture from lower left to centre-right. Multiple small offsets are visible parallel to
the main offset. Photograph by Geological Survey of Canada photograph GSC-204595 (1894) from
(Adams, 1989; Aber and Ber, 2007).

The striae in bedrock are attributed to the last flow direction of the Laurentide ice sheet's
southern margin at the end of the Wisconsin glaciation (Broster and Burke, 1990). The offset in
these striae formed very soon after the Laurentide ice sheet retreated (Adams, 1989), with a few
of them rounded which formed earlier contemporaneous with the glaciation (Broster and Burke,
1990). Authors concluded that it seems unlikely these small individual reverse faults were strongly

seismogenic and represent only the response from stress release and flexural deformation of the
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upper crust due to glacial loading and unloading. On the other hand (Shilts et al., 1992; Broster et
al., 1994) presented considerable evidence for post-and Late-glacial paleoseismic events in the
region like massive boulder rock-avalanche deposits, along with disturbed sediments and mass-
flow deposits in local lakes. Taken these diverse features together, only earthquakes could

produce these structures within southeast Canada (Aber and Ber, 2007).

The maximum extent of the Laurentide ice sheet covered North America from the 40°
latitude up to Greenland (Figure 5.5), and the grounded ice occupied part of the Atlantic
continental shelf (Stokes, 2017). The maximum ice limits were reach at different times in different
regions of the Laurentide (Dyke, 2004; Clark et al, 2009; Stokes, 2017). Nevertheless, it is
generally admitted that the Laurentide attained its maximum position around 26-25 ka (MIS 2)
and remained in this position until 18 ka (Stokes, 2017; Margold et al,, 2018). At that period, ice
thickness varied from 50 m up to 3.4 - 3.6 km in the west of Hudson Bay (Simon et al., 2016).
Depending on the region, the rebound associated with this load would produce a vertical uplift
ranging from 16 m up to 1 200 m (Domack and Powell, 2018). The average ice thickness was
about 2.5 km (i.e., associated vertical stress was ~ 25 MPa), and the flexural stresses exceeded 5o
MPa (Wu and Hasegawa, 1996). Authors conclude that depending on the rate of relaxation, the
rebound induced stresses that can trigger seismic activity in these regions (Wu and Hasegawa,
1996). Ice-cores recorded in Greenland indicate progressive warming from 18 ka to 14.5 ka
(Johnsen et al, 1992; Dyke, 2004), which initiated a slow retreat of the north-eastern Laurentide
(Clark et al, 2009). Rapid deglaciation occurred around 12-10 ka, and melting was almost
completed by 8 ka (Clark et al, 2009). Today, the uplift rate of cm/year is still ongoing near the

Hudson Bay, where the greatest ice thickness was located (Domack and Powell, 2018).
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Figure 5. 5: Relative location of the Laurentide Ice-sheet at Last Glacial Maximum with possible re-

activated basement fault. The dashed red lines indicate seismotectonic zones in the North America
craton from (Wu, 1998; Steffen et al, 2012) BA: Bell Arch; B:Baffin Bay; BU: Boothia Uplift; GB:
Grand Bank;, LS: Labrador Seq; OBG: Ottawa Bonnechere Graben; SLV: St. Lawrence Valley; S
Snowbird; WFZ: Wasatch Fault Zone. The extend of the Last Glacial Maximum is from (Patton et al.,
2016; Margold et al, 2018). The black contours indicate the cumulated rebound and since the LGM in
meters. The color bar suggests that Canada's uplift rates from CBN regional solutions are consistent
with the post-glacial rebound signal (Henton et al, 2006). Record of earthquakes are: M > 6 from
USGS; 6<M<4.5 from (Wu, 1998); 4.5<M<3 from (Hunt and Malin, 1998; Wu, 1998; Steffen et al,,

2012).

Northeast America is supposedly a stable continental region. However, it contains several
intense seismicity zones with large intraplate earthquakes of Mw 7-8 within the craton. Three
examples of events occurred in 1811 in New Madrid Mw 7.2-8.2, in 1929 on Grand Banks Mw 7.2,
in 1933 on Baffin Bay Mw 7.7, affecting the eastern margin of the continent. Looking at the event
locations (Figure 5.5), while the New Madrid event is located in a region outside the Laurentide

ice sheets, the last two sites are in areas that were right beneath the ice-load. According to
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(Walcott, 1970) and (Stein et al., 1979)'s model, the last two events mentioned above are related
to Pleistocene deglaciation reactivating of basement faults. These faults are remnants of the
Labrador Sea opening. Regarding the New Madrid event, Wu and Johnston (2000) show that the
postglacial stress is too small to trigger a severe earthquake in this area because rebound stress
decays rapidly away from the ice margin. Authors conclude that crustal failure may preferentially

occur in a zone several hundred kilometers inside the maximum ice margin.

While deep tectonic processes are usually considered the primary cause of earthquakes in
active margins, investigations highlight the impact of nontectonic processes such as ice-load,

erosion rate, and water-level fluctuation in the last decade.

Surface processes like the erosion rate may directly modulate tectonic deformation (Stewart
et al, 2000; Steer et al., 2014). Along the Pacific plate boundary of central Alaska, the effect of
unloading due to bedrock glacial denudation is superimposed on to the uplift mechanism from
glaciers wastage (Meigs and Sauber, 2000; Stewart et al., 2000; Sauber and Molnia, 2004). In
glaciated mountainous terrains, the glacial erosion that resets the orogenic topography provides
an additional compensatory uplift mechanism and may impact the Earth’s response (Stewart et

al,, 2000).

Southcentral Alaskan glaciers experience massive retreats and thinning at a rate of 1 to 5
m/yr. Models predict an associated vertical uplift about o to 5o mm.yr* and horizontal
displacements of 0-10 mm at variable orientations (Sauber and Molnia, 2004). The horizontal
velocity of southern Alaska relative to stable North America is 10 to 40 mm.yr™* (Meigs and
Sauber, 2000; Sauber et al, 2000). Even though tectonics forces are the primary forces
responsible for major earthquakes, ice-wastage forces are now considered an essential aspect
forinterpreting geodetic results (Sauber and Molnia, 2004). The same authors show the number
and size of earthquakes increased in regions where glaciers retreated quickly between 1993 and

1995, in the eastern Chugach Mountains.
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These observations are also supported by the Lauri6 model (Simon et al., 2016) of long-term
glacioisostasy of the central and northern Laurentide Ice Sheet. The vertical land motion rates
may contain a significant component attributable to the lithosphere's elastic responses to
changes in present-day regional ice cover. In Greenland, for instance, the current post-glacial
reboundissmall ~ 3.4 mm.yr*. Compared to central Canada ~ 12 mm.yr™, the estimated present-

day mass loss effect is unusually large with 2.9 mm yr-1 (Simon et al., 2016).

In the Basin and Range Province (West U.S.), the active east-west extension is responsible for
forming normal faults. The most prominent example is the Wasatch Fault zone (Figure 5.5). Late
Pleistocene/Early Holocene paleoseismological records of the Wasatch fault show an increase in
the slip-rate (McCalpin and Nishenko, 1996; McCalpin, 2002). A causal relationship is suggested
with the synchronous regressions of Lake Bonneville and Lake Lahontan nearby the Wasatch
fault (Hetzel and Hampel, 2005; Hampel and Hetzel, 2006). This desiccation removed 100-
meters of water from the Wasatch fault zone's hanging wall over the time window 10 to 16.5 cal

ka (McCalpinand Forman, 2002).

The effects of fluctuation in the water reservoir above active faults are documented in Dead
Sea strike-slip Fault (Bartov et al,, 2002; Bartov and Sagy, 2004; Kagan et al,, 2011). Prediction of
stress due to water volume changes superimposed on the pre-existing Dead Sea fault tectonic
stress field show that water-level variations could have triggered changes in the paleoseismic

rates (Belferman et al, 2018).

The growth in our understanding of icecap effects has been driven by the emergence of
tectonic modeling constrained by new field observations. The stress changes due to surface
(un)loading have been analyzed using Mohr diagrams and numerical models (Johnston, 1987;

Johnston, 1989; Wu and Hasegawa, 1996; Wu et al., 1999; Sauber and Molnia, 2004).

Authors agree that ice-sheet loading generally tends to reduce faults activity during

glaciation because normal stresses on fault planes increase. For instance, the current seismicity
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of Antarctica and Greenland are shadowed by their respective ice sheets, which reduce the
differential stress 01-03, and result that faulting is inhibited (Johnston, 1987, Wu and Hasegawa,

1996; Turpeinen et al.,, 2008).

In Antarctica, this stress shadowing is amplified by a thick elastic lithosphere of the order of
150—240 km. It creates an extended lagged stress response from the glacial isostatic adjustment.
This process may cause present-day earthquakes many hundreds of kilometers seaward of the
former Last Glacial Maximum grounding line (lvins et al, 2003). As suggested by (Wu, 1998,
Hampel and Hetzel, 2006), the time lag between the changes in loading and the fault's reaction

is determined by the viscosity.

In recent years, models of fault slip underneath icecap have shown that during glaciation, the
locked lithosphere gradually accumulates elastic deformation and stores plate-tectonic stress.
Removal of the ice mass allows this stored stress to be released and superimposed on the
isostatic stress (Gregersen, 2002). Deglaciation periods promote earthquakes within and outside
the formerly glaciated regions (Wu, 1998; Wu and Mazzotti, 2007). Nevertheless, these model

setups do not include faults.

Development of finite element models, including discrete fault planes in the upper crust,
allow the prediction of slip-rate evolution through time (Hetzel and Hampel, 2005; Hampel and
Hetzel, 2006, Hampel et al, 2007; Turpeinen et al, 2008). Three-dimension modeling quantifies
the response of isolated fault underneath and outside the load during a glacial-interglacial cycle.
Authors suggest that the rate of load removal, fault strength, and the lithosphere's thickness
plays a minor role in controlling fault response (Hampel and Hetzel, 2006). These experiments
are restricted to extensional and compressional settings but do not evaluate the transform

tectonic setting's response.
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Figure 5.6: Results of normal and thrust fault experiments from Hampel et al, (2009). (a) Faults
beneath icecap. (b) Faults outside icecap, and load on the footwalls. (c) Faults outside icecap, and load
on the hanging walls. (d) Faults outside icecap, and load on fault’s tips (i.e., loading both hanging and
foot walls). The experiments are carried out with fault dips of 30 45° and 60° The grey polygon
indicates the load's temporal evolution (loading o-13ka, stable load 13-17, unloading 17-19, post-

loading >19ka).

In the last decade, model predictions compared to paleoseismological records established a
clear link between Fennoscandia Ice-sheet melting and the slip evolution of normal and thrust
faults in Scandinavia (Hetzel and Hampel, 2005; Hampel and Hetzel, 2006; Hampel et al, 2007).
Concerning the fault right beneath the ice-sheet (Figure 5.6 a), a general analysis states that
when ice-sheet grows, it generates a period of seismic quiescence, while during ice-sheet melting
it yields to a period of seismic burst (Hetzel and Hampel, 2005, Hampel and Hetzel, 2006). The
magnitude of the weight is the primary factor controlling the timing of fault response.
Asthenosphere's viscosity determines the delay between loading and fault reactions (Hampel
and Hetzel, 2006). For faults outside the formerly glaciated area, the behavioris controlled by the
ice-load location relative to the fault. With a load on either the footwall or the hanging wall,
normal and thrust fault slip-rates have same pattern: an increase at loading, a decrease at
unloading (Figure 5.6 b, ¢). Conversely, with a load on the fault tip, patterns of slip-rate are the
opposite (Figure 5.6 d). At loading, the normal fault is almost ‘locked’ while the thrust fault slips

at a faster rate than before loading (Hampel et al.,, 2009).

The recognition that post-glacial crustal deformation and tectonic strains are potentially
intertwined have not been considered outside the Antarctica, Eurasia, Greenland, or North
American regions. Very few studies investigate the interaction between icecap stress fields and

a strike-slip configuration.

Muir-Wood (2000) described these interferences for post-glacial rebound in a compressive

(strike-slip and reverse fault) tectonic field using the Fault Stability Margin (FSM) approach. In
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the Mohr-Coulomb diagram, the FSM defines the distance of the semi-circular arc joining the
maximum and the minimum principal stresses from the failure envelope. The tectonic stresses
orientations relative to the rebound stresses determine the interference. For deglaciation of a
circular icecap Muir-wood determined quadrants where the interference is constructive and
reduces FSM (closer to rupture = seismic), or destructive and increases FSM (away from rupture
= aseismic) (Figure 5.7a). In the unloaded region, the two quadrants which favor earthquake
nucleation are located perpendicular to the maximal principal tectonic stress. Conversely, in the
two other quadrants, seismicity is “muted” because the rebound stress orientation is the opposite
of maximal principal stress (destructive interference). Outside the unloaded region, i.e, in the
forebulge, the seismogenic quadrants are in the opposite configuration. Note that the whole
quadrant is impacted only when the rebound stress overwhelms the tectonic stress. Otherwise,
when the rebound stress is comparable to tectonic stress, for instance, in the Laurentide region,
the area of interference is reduced to the quadrant's central patches (Figure 5.7b). In the
northeast American craton, the predominant cause of intraplate deformation is the glacial
isostatic adjustment. Around the Laurentide, the contractional belt of the Laurentide forebulge
induces a 1-2 mm.yr* far-field horizontal motion directed toward the ice sheet (Kreemer et al,
2018). The constructive patches mentioned by (Muir-Wood, 2000) in the Laurentide forebulge
(Figure 5.7b) fit most of the potentially post-glacially reactivated zone of the Baffin Bay and
Labrador Sea region. However, elsewhere it is difficult to define where these quadrants should
be localized, as they are not consistent with the observed seismicity (Grand Banks, Wasatch

Fault).
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Figure 5.7: (a) The constructive (+) and destructive (-) interferences between the maximal principal
stress and post-glacial rebound and forebulge (blue and red arrows) from (Muir-Wood, 2000). Only
the horizontal maximal principal stress o1 is represented to include both compressive, and strike-slip
configuration. (b) Comparison between interference patches locations from (Muir-Wood, 2000) and
predicted vertical/ horizontal velocities, and observed seismicity of the Laurentide rebound dome. Color
barindicates vertical uplift rate and vectors are horizontal velocities predicted by the ICE-6G_C (VM5a)
model (Kreemer et al., 2018). The red lines indicate seismotectonic zones from (Steffen et al.,, 2012;
Wu, 1998). Record of earthquakes are M>6 (USGS); 6<M<4. 5 from (Wu, 1998); 4. 5<M<3 from (Steffen
et al, 2012; Hunt and Malin, 1998 Wu, 1998), Abbreviations are: BA: Bell Arch; BB: Baffin Bay; BU-:
Boothia Uplift; GB: Grand Bank, HL: Hebgen Lake; LS: Labrador Sea; NM: New Madrid; OBG: Ottawa
Bonnechere Graben; SLV- Saint Lawrence Valley; S: Snowbird: WFZ: Wasatch Fault Zone.

This Chapter evaluates the postglacial unloading as a potential cause for increased strike-

slip-rate in the Chilean Territory. As developed in Chapters 2 and 4, the Magallanes Fagnano
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Faultlong-termslip-rate is considerably faster in the western region. In the Argentinian Tierra del
Fuego, the long-term slip-rate is estimated at 6.4 + 0.9 mm/yr (Roy et al., 2020) up t0 7.8 £ 1.3
mm/yr (Sandoval and De Pascale, 2020) since 18 + 2 ka (Figure 5.8). The postglacial slip-rate is
assessed in the Chilean MFF, ranging from 12.41 mm/yr up to 23.36 mm/yr (Roy et al. 2020,
chapter 4, this study). The western sinistral offset was identified in a post-LGM drainage system

about 15.6 + 1.9 cal ka BP.
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Figure 5.8 Maps of the Patagonian Ice-sheet (PIS) at 35 ka (Davies et al, 2020) above the
Magallanes-Fagnano Fault system (MFF). Major faults are mentioned in red. The colored zones with
dashed contours indicate the predicted present-day uplift due to ice-mass changes in mm/yr. This data
are from (Dietrich et al,, 2010) for the SPI, and from (Ivins and James, 2004) for the TDF. Abbreviations

as follow: AR: Argenting; CL: Chile; D: Puerto Deseado; E: Esquél; G: Rio Gallegos; G.C.N.I: Gran
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Campo Navedo Ice-sheet; LF: Lago Fagnano; M: Malwinas Islands; NPI: Northern Patagonian Ice-
sheet; P: Punta Arenas; NZ: Nazca plate; R: Rio Grande; RAMSAC: Argentine Network for Continuous
Satellite Monitoring; R.M: Rio Mayer; R.E.G: Refugio Eduardo Garcia; SAM: South American plate;
SCO: Scotia plate; SPI: Southern Patagonian Ice-sheet; U: Ushuaia; Y: Coyhaique; W: Rawson. The
base map is general bathymetric chart of the oceans (GEBCO 2014; National Centers for

Environmental Information NCEIl, NOAA). with 100 meters’interval below sea level).

One of the Fuegian Andes singularity lies in the uneven LGM-ice extents, which was massive
along the west's MFF and limited in the east (Figure 5.8). The southernmost tips of the
Patagonian Ice-sheet partially covered the MFF system (Figure 5.8). The LGM was associated
with a sea-level fall of 150 m (Guilderson et al, 2000). Accordingly, the land emerged farther east
of the MFF, extending the inland fault of about ~170 km (Figure 5.8). At the LGM, while the
eastern MFF remained free of ice, the western and central regions were covered by large ice-
lobes. After the LGM, the sea level rises progressively of 100 m relatively to the LGM coastline
and irreversibly loaded the eastern MFF. This eastern marine transgression (loading) and the
coeval massive western ice-wastage (unloading) are to stress changes that may have affected

the strike-slip motion.

The ice-sheet changesinvolved inthe last glacial events are poorly constrained, and even less
in the western fjord margins. The eastern and southernmost sides are better mapped and dated.
However, there are very few age controls available (Bujalesky et al, 1997; Rabassa et al., 2000;
Coronato et al, 2002b; Coronato et al, 2008; Coronato et al, 2009, Waldmann et al, 2010;
Rabassa, 2011; Roy et al, 2020). Most of the north-western limits are inferred from studies of
dated glacial moraines and glacial deposits (Figure 5.8) (Clapperton, 1993; Peltier, 2004; Bentley
et al., 2005; McCulloch et al, 2005; Sugden et al, 2005; Boyd et al, 2008; Kaplan et al, 2008;

Fernandez et al,, 2011; Fernandez et al., 2017; Hall et al,, 2019).

Dynamicice sheet modeling suggests the Fuegian Andes-Tierra del Fuego LMG ice thickness
was ~ 800-1200 m (Hulton et al, 2002). The trimlines in Almirantazgo Sound (Figure 5.9 3, b, ¢),
Caleta Maria, and Jackson Bay (Figure 5.9 d, e) evidence the highest imprint of the ice lobes
standing about 600 — 800 m.a.s.l. Besides, the Almirantazgo Sound bathymetry (Fernandez et

al., 2017) demonstrates the ice was grounded along the seafloor during LGM. The actual seafloor
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depthis - 100 to -300 m (SHOA Chilean Navy, 1998), suggesting the ice mass was ~ 700 -1100 M
thick within the central MFF. In Sierra Dientes del Dragon, Sierra Beauvoir, and Sierra Valdivieso,
the trimlines demonstrate a maximum ice-mass of 700 m, which rapidly decreases toward the

east (Figure 5.9 f, g).
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Figure 5.9: Overview of the trimlines from studied sites, shown with dashed blue lines. White

arrows indicate ice flow direction. Glacial morphologies, such as drumlins, kettles, kames, back whales,

roches moutonnées, are enhanced with dashed white lines. Red lines mark MFF faults that we
surveyed, while red dashed lines show the suggested traces. (a) View from Peninsula Ainsworth of the
central arm of the Strait of Magellan along the Almirantazgo Sound. Photographer is facing north. (b)
Same location, but photographer is facing south. (c) View of the eastern Almirantazgo Sound

Photographer is on the east peninsula cap. (d) View from Caleta Maria of the northern catchment of
Azopardo valley. (e) View of Jackson Bay and Sierra Dientes del Dragdn taken from Veer moraine. (f)

Western Fagnano Lake. (g) View of the southern bank of Fagnano Lake.
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Geodetic studies of the Southern Patagonia Icefield (SPI) evidence the largest glacial
isostatic rate ever recorded inthe world (Dietrich et al,, 2010; Lange et al., 2014). The dome-shape
uplift center is located in the Viedma glacier's Nunatak and shows a vertical velocity
measurement up to 39 mm/yr at Refugio Eduardo Garcia station (Figure 5.8). In Tierra del Fuego,
models evidence a smaller, disconnected rebound dome centered in the Cordillera Darwin (lvins
and James, 2004). Predicted uplift rates for the center, varies between 12 up to 22 mm.yr?,
depending on the model’s asthenospheric thickness (Figure 5.10). A smoother uplift decay
toward the central Lake Fagnano is expected to be ~6-9 mm/yr. This E-W uplift gradient is visible
in GPS measurements, but the predicted rate is twice as the observed one ~3.1 + 0.4 mm/yr
(Mendoza et al, 2010; Mendoza et al, 2011). lvins et al. (2004) assumed a particularly low
asthenosphere viscosity over Patagonia, caused by the underlying subducted slab windows,
which is a fair assumption for the Northern region, but perhaps not as realistic for the Tierra del
Fuego. Also, the study evidences significant tectonic shortening in the western Fagnano Lake,
therefore additional analysis is required to quantify the neotectonic contribution from a regional
GIA process (Mendoza et al., 2011). In the Atlantic coast and the Beagle Channel, dated shells
obtained from elevated beaches indicate a post-glacial isostatic rebound calculated rates about

0.09and 2.9 mm/yr (Gordillo et al., 1992; Bujalesky et al., 1997).
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Figure 5.10: Present-day predicted uplift for two asthenospheric thicknesses and with a low

viscosity = 1x10*® Pa s, and elastic lithosphere thickness 35 km from (Ivins and James, 2004). (a)

Asthenosphere thickness of 100 km. (b) Asthenosphere thickness of 200 km.

The intriguing coincidence between the fast slip accumulation on the Magallanic strike-slip
faultand the end of the last ice age strongly suggests an external forcing. This Chapter is the first

study to evaluate the icecap effects above a strike-slip fault configuration. Using basic analytical

model and a finite-element model, we aim to assess the slip proportion related to the ice-mass

changes in the Chilean Territory.
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V.2 Analytical evaluation of the glacial loading effect on strike-slip fault

Here, we set down an elementary 2D bending problem to evaluate the lithosphere behavior
under a linear load representing the glacier that grew above the Southern Andes. We wish to
determine roughly the effect of the obliquity of the load above a strike-slip fault. Note that the
following demonstrations are deliberately simplified to focus only on the first order. Thus we

assume several strong approximations.

Firstly, we estimate the maximum deflection of the lithosphere under a line-load. Then we
calculate the plate curvature, and evaluate the corresponding stress change under the load.
Lastly, we determine at first order the effect of the position of the load relative to a strike-slip
fault. This section offers a basic first-order approximation of expected results in section with 3D

finite element modeling.

Stress can be resolved into two components: normal stress (6n) and shear stress (61). The
total stress can also be subdivided into three orthogonal components labeled 6,, 6, and 6,
corresponding to the maximum, intermediate, and minimum principal stresses. When, 6, =6, =
6., it means, horizontal stresses and vertical stress are equal, it is called lithostatic state of stress.
Conversely, when 6, # 6, # b5 the stresses generally involve faulting, and are named deviatoric
stress AB. The deviatoric stress can cause strain (g, deformation) of the rock, such as dilatation or
distortion. Tectonic processes are continually straining the Earth’s surface, and typical values for
deviatoric stresses in the continents are of the order of 10 to 100 MPa. The strain can directly be
measured in rocks or on Earth’s surface by geodetic techniques like Global Positioning Systems
(GPS) or Short Aperture Radar interferometry (INSAR), while the amount of stress can only be
inferred from the strain (Burbank and Anderson, 2009). Strike-slip faulting occurs in a triaxial

stress field with the principal stresses define such as 61> 62 > 63 with 61and 63 horizontal (Figure

5.11).
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Figure 5.11: Map view of the strain and stress ellipsoid for a sinistral strike-slip fault. The principal

stresses are 61 (horizontal) > 62 > 63 (horizontal).

Here, we assume an elastic lithosphere infinitely long in the x and y directions, of height H,
characterized by its density (p), Young modulus (E), and Poisson’s ratio (v) (Figure 5.12). Young's

modulus of rocks varies from about 10 to 100 GPa, and Poisson’s ratio varies between o.1and 0.4

X
.._LL

Hl/w\ HE
—

(Turcotte and Schubert, 2014).

Figure 5.12: Sketch illustrating the two-dimensional bending of the lithosphere by the icecap.
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The lithosphere contains a brittle upper crust of height Hf. The downward force of the gravity
accelerationisg=9.82 m.s2 The load is an icecap of high hg, it has an infinite length (Lg = o) in
the y-direction, Iq is the icecap width along the x-axis, and pgq its density. We assume the icecap
width is relative small, and thus we consider the icecap load is a line load V. applied at x= 0. The

plate bends under the line load. The line load is:
Vo= pg.g. lg.hg

To describe the bending, we use the flexural parameter a defined as:

= (53

(see Turcotte and Schubert, 2014 eq [3.127])

1/4

with D, the flexural rigidity (stiffness) in N.m of the plate as:

b E. H3
12 (1—v?)

The plate deflection is W(x) in meters and is negative downwards. In this configuration, the

deflexion W(x) forx = o is:

Vo. 3
8D

X X

X .
.e /“. [COS-+SII’1-
(04 (06

Equation (1) W) = —

(see Turcotte and Schubert, 2014 eq [3.130])

The maximum deflexion located in the center of the load, at x=0, is given by:

Vo.o3
8D

w(0) = —

Taking a lithosphere of H = 100 km, p = 3300 kg/m3, v = 0.25, E = 5.10%° Pa, and the ice load
of pg = 920 kg/m3, Ig = 100 km, hg = 2000 m, we find from Equation (1) that o ~ 153 km; D ~ 4.44

102 N.m; Vo =9.2.10" N.m ; and maximal deflexion is W(0) ~ - 91 m.
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Figure 5.13: Cross section of curved elastic lithosphere. Arrows shows the normal stresses. The

curvature of the plate is exaggerated.

To relate curvature with the strain of the lithosphere, we proceed as follows. The plate is

deflected downward (Figure 5.13), and its radius of curvature is r such as:

l — a_ZZ — (Vo- a) e_x/a I:Cosf_ Slnfjl
r 9x> \4D /) ° ' a a

The upper half of the plate is shortened along the x-axis, and the lower half is extended. The
associated longitudinal strain is a contraction in the upper half and is an extension in the lower
half. We assume that there is no strain &« in the middle of the plate, which is the neutral

unstrained surface located at H/2 (Turcotte and Schubert, 2014).

Generally, the nucleation of earthquakes is confined to the shallowest brittle crust. Usually,
this seismogenic layer is no deeper than 15-20 km in the case of a strike-slip fault. In Tierra del
Fuego, the regional model suggests the fault is locked at 11 km % 5 km (Mendoza et al, 2015).
Thus, we focus on the nucleation surface strains and stresses located in the middle of the brittle

crust at Hf/2. The distance Z between the neutral unstrained surface and the nucleation surface

164 |Page



V.2Analytical evaluation of the glacial loading effect on strike-slip fault

isZ = H_THf (Figure 5.13). The deformed length L of the plate along the nucleation surface can

be expressed in function of its initial length Lo and in function of the plate curvature radius r such

as:

R

The strain €« of the nucleation surface can be expressed as:

H—Hf
_L—LO_LOX<1_ o7 )‘LO_H—Hf
==T0 - L0 2
(H—-Hf)Voa x X
Fi L. = —x/ S e
inally the strain is, € 8D e a[cosa sma]

Giventhe same numerical application than inthe previous section, and taking Hf = 30 km), the
line-load triggers a surface of nucleation shortening of €. The maximum deformation of the
nucleation surface is located right under the load. On the nucleation surface, and right under the
load in x = 0 the deformation is € (0) = 2,72.10%. At 50 km away from the line-load, in x = 5o km,
the deformation is smaller and is €. (50) = 1.23.107%. Notice that the deformation magnitude at
the icecap border (x=50km) corresponds to ~45 % of the maximum deformation €.« (0). At 120

km away from the line-load, in x =120 km, €« is almost null.

This crustal contraction under the icecap is accompanied by outward mantle flow from
beneath the icecap. Outside the former icecap, the extension and the uplift lead to creating a
budge shape of the lithosphere, called forebulge. Indeed, far away from the line load, after x >

120 km, the strain €. has the opposite sign.
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We wish to determine the stress evolution in the x direction 4, and in the y direction 4ay.

£x IS calculated above. €y, = 0 since deformations under a linear load is 2D. And Aoz= pg . g. hq
We can apply the Hooke’s Law:

E.gx = Ao-x _UAO—\/_UAO—Z
E.ey = Aoy —vdox— vdo, =0
E.e; = Ao, —vdo.— vdoy

E.& = Ao (1 —v?) + Ao,(—v? —v) [1]
Aoy, = v(do,+ Ao)
E.&. = Ao, (1 —v?) + Ao (—v — v?)

we obtain:

E. &

1
Ao, = —AO'z(U2+U) + m

(1-v?)
Consequently, the stress Aay can be divided into two components. The first component is
controlled by the term Ao, which represents the stress due to loading. The second component is

governed by the term &, which describes the strain due to the bending of the lithosphere.

_ 1 E.&
C1-vl14v
Aoy = v [do+ Ao;]

Aoy

+ U.Aaz]

with Ao, = component due to bending + component due to loading

We take the same numerical application than the previous section, and obtain:
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(A6,(0) = 14.5 MPa (bending) + 3 MPa(loading)
=17.5 MPa
Principal stresses at x = 0 are 1 and
Ac,(0) = v.40+ v.40;
~ 6.6 MPa
\ Ao, (0) = 9.03 MPa

Now let's consider a fault plane located under the icecap. We wish to express the stress
changesinthe Mohr-Coulomb representation. We consider a fault with a local coordinate system
(11, 7). This orthogonal system is defined by 7 the unit vector perpendicular to the fault plane, and
7 the horizontal tangential unit vector (Figure 5.14 a). The fault is a sinistral strike-slip fault. The
fault can have an angle O relative to the (€,€,) coordinate system. In other words, the fault can
be oblique relative to the ice-load axis. Ice-load remains fixed along the y-axis. If the angle 6 = 0°,
then the fault is parallel to the icecap, and the local coordinate system (7, 7) has the same

orientation as the coordinate system (éy,€,).

T
\ Ao‘v\.l,y
S Ice load
<
\4‘ /m
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Aty 4
a | do ﬁ AN b ’

Figure 5.14: (a) Map view of the orientation of the fault relative to the ice load. (b) lllustration of
the Mohr diagram with R is the Mohr’s circle radius, M the Mohr’s circle center, Aox and Aoy

correspond respectively to the maximal principal stress and the minimal principal stress.

Because in a strike-slip fault, the principal stresses 61 and 63 are horizontal, we will see that
the angle 6 has primary importance in controlling the failure. Indeed, under a load, the
lithosphere ‘s induced cylindrical curvature will favor or prevent slip to occur depending on the

orientation of the associated horizontal stresses to the fault.
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The coordinate system (71, T) is defined such as :
n = cos(@).e.+sin(0).e,
7= —sin(@).é: + cos(h).é,

Rotation of an angle 8 in the coordinate system (€,,€,) corresponds to a rotation of - 26 along
the Mohr circle. The circle, which has a radius R, represents the evolution of the normal and
tangential components of the stress in function of the angle 8. The center and radius of Mohr
circle are defined by:

AM = (Aax-;—Aay) and AR = (Aax;Aay)

In our problem, instead of considering the intrinsic tectonic stress of the fault (i.e., o and 1),
we focus onthe changes in stress which occur during loading. Therefore, we use (AoG) and (ATG)

corresponding to the changes in normal and tangential stresses on the fault plane, such as:

{AO’G = AM + AR .cos(20)
Atc = — AR .sin(28)

The Mohr circle enables the visualization of the relationships between the normal (abscissa)
and shear (ordinate) stresses and allows the determination of rupture planes' orientation. There
are two domains controlled by the Coulomb's criterion: failure and a stable domain. A slip occurs
when the Mohr's circle reaches the Coulomb's criterion, that is when Mohr's circle intersects the

straight line of Coulomb's criterion. The Coulomb's
T Resolved shear stress on the

criterion defines the shear stress T required to  faylt

o, Normal stress on the fault
Co: coefficient of friction

@ Friction angle

(re)activate failure as:
T =Co+ o, tan(e)

Let's consider an active sinistral strike-slip fault, which at time t, is close a failure condition.
The tectonic conditions applied on the fault correspond almost to the stresses required for a
rupture (Figure 5.15 a). At this time to, we consider the point Fo of the Mohr’s circle that almost
intersects the failure envelope. At time t,, we assume the icecap loads instantaneously the fault
(Figure 5.15 b). The vertical load increases the horizontal stresses. Point F, generally moves away

from the failure envelope to the new position F.. The load makes it harder for the rupture to occur,
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which prevents earthquakes from happening. The new position F. is determined by the changes
in stresses on the fault plane (Aog) and (Atg) due to the ice load (Figure 5.15 b).

AO-G - AO-X

For a fault parallel to the load 6 = 0° { Aee = 0
G =

Numerical application inx = o:

AM = 12.1 MPa; AR = 5.4 MPa

Aoc = 17.5 MPa

with6 = 0°{ o MPa

The distance between the failure envelope and the point F1, is known as the ‘fault stability
margin’ (FSM), which translate the fault ability to rupture or to be stable. An increase of FSM
reduces the potential for earthquake generation, while a decrease of FSM favors failure. During
the existence of the ice sheet, the FSM increases due to vertical loading. Meanwhile, the
permanent tectonic stresses will reduce this distance; the longer the ice sheet is in existence
(Muir-Wood, 1989). Therefore, after a certain amount of time, the tectonic stresses bring the
fault close to failure conditions (FSM decreases), and the rupture occurs at time t2 (Figure 5.15
). This period (t1 to t2) can be compared to the interseismic phase, in which surface slip
accumulates away from the fault plane. We propose to determine this amount of stress required
to induce failure of the fault. Accordingly, we define the AR' the distance from F, to the new
position of potential rupture F.. If the circle radius AR grows of + AR ', the Mohr’s circle reaches

the rupture, and the fault slips. We can define the stresses change as follow:
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Figure 5.15: Mohr’s circle (a) at time to before loading, (b) at time t1 during loading, (c) at time t2

when the fault is reactivated

AR' = Ao .sin( @) — At.cos(p)

AR' = AM .sin(@) + AR [cos(26).sin(¢p) — sin(26) . cos(¢)]
AR' = AM .sin(@) + AR .sin(@ — 260)

with ¢ the friction angle, and 6 the obliquity of the fault.

We can estimate the cumulated slip d required to increase the Mohr's circle of AR, i.e, to
reach failure conditions. During the interseismic phase, while the fault plane is locked, the
tectonic movement's stress continues to apply, and the lithosphere accumulates strain away

from the fault plane. The distance at which the maximum displacement is cumulated away from
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the fault is the locked distance | (Figure 5.16). The cumulated displacement d (Figure 5.16) is the
relative movement between the two plates required to cause a rupture. When the cumulated
strain dis reached, it exceeds the frictional and cementing forces opposing motion along the fault
plane, driving slip to occurs instantaneously (Kearey et al,, 2009). The locked distance to the

Magallanes-Fagnano Fault (Figure 5.17) at which the maximum rate of deformation is located is

| ~ 30 km (Mendoza et al,, 2015).

Just after rupture
tl

Interseismic strain
cumulated t1 to t2

coselsmic strain
released at t2

Long term slip

d

Distance to the fault (km)
o

Jau

[t plane

Figure 5.16: Model of deformation during the interseismic phase from time ti1 to t2. The locked

horizontal displacement Ux (m)

distance is [ The displacement between the two blocks required to start a rupture is d.

l
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&
T
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V.2Analytical evaluation of the glacial loading effect on strike-slip fault

Figure 5.17: Three profiles of the Argentinian MFF interseismic velocities from Mendoza et al.
(2015) compared to the fault distance. The profiles integrate the observed regional GNSS velocities

and the predicted interseismic fault parallel velocities with respect to the reference frame 1GSo8

We propose to estimate the displacement d:

In the interseismic phase, the faultis locked : d(y) = %arctan (Hlf)
d 1
The strain is &y (y) - X
y (y) T Hf [(1+(Hlf)2)]
d
On the fault y=0: &xy(0)- —
A E _ E xd
P T T (1 +v)rHf
When the fault ruptures, at t, we have:
, AR
"7 cos(p)
And cumulated displacementisd = Qrv)mxH X AR
Excos(¢p)
Numerical
v = 0.25 A (0) = 17.5 MPa I{ H = 100 km
with E = 5.10% Pa AO'\/(O) = 6.6 MPa P = 3300 kg/m3
D ~44410“N.m AM =12.1 MPa 4 lg =100 km;hg =1000m
a~ 153 km AR = 5.4 MPa Ikpg = 920 kg/m3

applicationinx = o:
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Orientation will favor ice-cap | Orientation: fault parallel to Orientation will reduce ice-cap
Friction | effect which locks the fault ice cap effect which unlocks the fault
angle ¢
(degree) Bmax |[AR'-max|Cumulated 6 AR' [ Cumulated Bmin (degree) AR'-min [ Cumulated
(degree)| (MPa) | slipd(m) | (degree)| (MPa) | slipd(m) (MPa) | slipd(m)
30° -30° 11,43 31,10 0° 8,72 23,73 60° 0,60 1,64
10° -40° 7,50 17,95 0° 3,03 7,25 50° -3,32 -7,95
0,1° -44,95° 5,43 12,81 0° 0,03 0,07 45,05° -5,39 -12,71

Here we use v=0,25 ; E = 5,10" Pa; D~ 4,44 10* N.m ; a ~ 153 km ; Ac,(0) = 17,5 Mpa ; Ac,(0) = 6,6 MPa ;
AM =12,1 MPa; AR =5,4 MPa; H =100 km ; p = 3300 kg/mj; ; Ilg = 100 km : hg = 1000 m ; pg = 920 kg/m3

Table 5.1 Stress and displacement required to reactivate the strike slip fault

[1] Theicecap makes the faulting harder to occur.

[2] The tectonic stress orientations relative to the icecap deflexion determine the
interference. The icecap's orientation relative to the fault primarily controls this quiescence

effect's amplitude, as shown in Table 5.1.

[3] During glaciation, the quiescence effect is maximal for 'well'-orientation, which favors
locking the fault and prevents earthquake nucleation. In this case, the interference is destructive
and increases the stability of the fault. This configuration is similar to the interseismic phase in
which the strike-slip faulting carries on way longer before reaching the rupture condition. The
plates can ‘store’ and cumulate a large amount of slip away from the fault before rupture. Then
when a rupture occurs, the fault releases the cumulated slip in one or several events. The

maximum slip pulse is estimated from ~23 m up to ~31 m in orientations that favor icecap effect.

[4] The quiescence effect is minimized for the antithetical orientation, and the icecap does
not efficiently prevent the fault from rupturing. In this configuration, the tectonic stresses
orientations relative to the icecap deflexion stresses have constructive interference, reduce the

fault stability.

[5] In situ stress measurement consistent with measured stress states in the upper crust are
frequently found to be approximately equal to those predicted by Coulomb frictional failure

theory review by Townend and Zoback (2000), using laboratory derived coefficients of friction of
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0.6—1.0 (i.e., angle of friction 30-45°) (Byerlee, 1978). Realistic value of friction angle for the upper
crust ranges from 30° to 45°. With a friction angle of 30°, the icecap quiescence effect is maximal
forafault with anangle of -30° relative to the icecap. In this configuration, during the interseismic
phase, the maximum cumulated displacement before rupture is ~ 31 m. The locking effect is
almost non-existent when the icecap has angle of +60° relative to the fault. Using a friction angle
of 10°, the icecap quiescence effect is maximal for a fault with -40° angle relative to icecap. Under
the load, the fault is locked, and cumulates a maximum displacement of ~ 17.95 m (Table 5.1). If
these slips are released in one event, the associated earthquake magnitude may exceed Mw8
(Wells and Coppersmith, 1994). If the icecap has an antithetic angle of + 50°, then the icecap
favors the rupture. Even the fault is loaded, the rupture can occur with a cumulated slip of ~ 7.95

m.

[6] This analytical experiment enables to evaluate roughly the amount of extra displacement
cumulated slip under an icecap before to reach the rupture. The results show a slip-delay, which
depends only on the initial ice-mass. As a reminder, the regional difference of cumulated slip
since the glacier retreat is ~ 200 m, between the eastern (115 m) and the western MFF segment
(315 M) MFF segments. The analytical approach shows the maximum slip-delay (31 m) represents
no more than <~ 15 % of the difference. However, the experiment has a simplistic set-up, which
includes an elastic lithosphere. It implies the slip-delay is time-independent, whatever is the
glaciation duration. This method allows for targeting the effect of the rheological properties of
the lithosphere on the fault behavior beneath anicecap. it is an oversimplified approach, and in
nature, the slip-delay is depending on the deglaciation rate and on the underlying complex

Earth’s rheology.
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V.3 Setup of the 3D-finite element model

Based on the analytical results, we proposed here a refine experiment in which various Earth'’s
material rheology can be incorporated. To investigate the response of a major strike-slip fault
such as the Magallanes Fagnano Fault system to glacial loading and subsequent unloading, we
perform numerical modeling using the code ADELI (Hassani et al., 1997; Chéry et al,, 2001) in the
three-dimensional edition. ADELI is a finite element software developed in FORTRAN 77. Space
is discretized using linear tetrahedrons elements (Figure 5.18). ADELI uses a dynamic relaxation
method for time discretization (Underwood, 1983; Belytschko, 1983; Cundall and Board, 1988,
Poliakov et al, 1993).

[ 4.3e+00

-2

|
o
vitesses_(mm/an) Y

Figure 5.18: 3D view of the model mesh. Edges of tetrahedron elements are in white. Color bar
correspond to velocities of the blocks in the case of a left-lateral strike-slip fault with a slip-rate of 8

mm. yr-1

To improve our knowledge of strike-slip fault behavior during loading and unloading phases,

we investigate the following questions:
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1.How does horizontal fault velocity evolve through time during glacial loading and

subsequent unloading?
2.What is the effect of the position of the fault relative to the icecap?

3.Does the duration and the intensity of the loading phase control the post-unloading slip

size?

4.Does the fault velocity control the magnitude of the fault response to glacial unloading?

ADELI enables to study the strain and the stress field induced by a finite fault embedded into
the continental crust. Following this approach, Grosset et al., 2019 use ADELIto modela 5o-km-
long fault, representing the Belledonne fault (Alps, France) as a finite dextral strike-slip fault
located outside a formerly glaciated area. However, in our study, we model a transform plate
boundary of a thousand of kilometers long, which separates the Scotia Plate and the South
American Plate. Consequently, instead of using a finite fault, we assume a fault zone with a
specific width, which cross-cuts from end to end the model. In this way, the Magallanes-Fagnano
Fault (MFF) is modeled as a shear zone embedded in the Earth’s crust with its proper rheology

parameters different from the nearby Earth’s crust materials.

The model simplifies the natural setup of the Magallanes-Fagnano Fault. The Earth is
modeled as a portion of flat-earth of 600 x 600-km width and 300-km depth, divided into two
blocks from end to end by a 30-km-wide fault zone. The code models a maximum of 200 000
tetrahedron elements with an element edge size of 5o km. The top face of the model is the
Earth’s surface, and the origin of the reference frame is located on the center of this surface. The
x-y plane is horizontal, and z (upward) increases when elevation increases. The %, y, and z-
directions correspond to north, west, and zenith. In this way, the fault zone is orientated in the
east-west axe, and separates the northern block (South American plate) from the southern block

(Scotia plate).

Our model loads the strike-slip fault with a rectangular icecap of 150 x 5oo km. The model's

surface holds the pressure of the glacial load of 10 MPa, equivalent to 1080 m of ice with a density
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of 930 kg.m-3. Experiments test three orientations of the fault positions relative to the icecap. In
all experiments, the icecap remains centered in the model. We change the model mesh to

implement three fault positions: centered fault, asymmetric fault, and oblique fault (Figure 5.19).

b
da N ky C y
<« 30 km > 30 km 30 l\mr‘
X X
origin (0,0,0 origin (0,0,0) origin (0,0,0) \
Z (upward) Z (upward) Z (upward)
o o &

Figure 5.19: Map views of the three fault orientations. (a) Centered fault. (b) Asymmetric fault. (c)

Oblique fault

There are two sets of experiments: 2-layers and 3-layers earth model (Figure 5.20). The 2-
layers setup is composed of the 100-km-thick elastic lithosphere on top of the 200-km-thick
viscoelastic asthenosphere. The 3-layers setup is divided into 30 km-thick lithospheric crust, 70
km thick lithospheric mantle, and 200 km thick asthenosphere. Each layer is homogeneous and
isotropic, except along the fault zone whose mechanical properties differ. Four rheologies are

used to mimic Earth’s rheologies: linear elastic, Maxwell viscoelastic, and time-independent

elastoplastic.
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Figure 5.20: 3D sketch of the Earth models. (a) The 2-layers model: green layer is the crust (100
km); Orange layer is the asthenosphere (200km); Red layer is the fault zone (30 km-wide), which is
embedded in the lithosphere. (b) The 3-layers model. Green layer is the crust (30 km thick); Purple layer
is the lithospheric mantle (70 km thick); Orange layer is the asthenosphere (200 km thick); The fault
zone is 100 —km thick and 30 km wide. The fault zone is divided into two volumes of different rheology.
The dark orange volume is the fault embedded in the lithospheric crust; the dark purple volume is the

fault in the lithospheric mantle

The lithosphere is considered purely elastic, except in the fault zone whose rheology is
elastoplastic. Consequently, this means the rigid lithosphere bends under the icecap weights and
acquires a reversible flexure. The elastic bending of the lithosphere yields to regional vertical
movements of uplift and subsidence. It is a simplified setup, as it is generally valid only for the
first ~30-km of the Earth’s crust. The elastic materials follow constitutive Hooke's law. The
lithosphere of the 2-layers model has a density of p = 2 800 kg.m=. This value is plausible for the
continental crust (depth 3-24.4km) (Dziewonski and Anderson, 1981). However, for 2-layers
model, which was to set a simple Earth model, we assume the same density for the whole
lithosphere (100 km thick). The 3-layers model takes into account this complexity with a 30 km-
thick crust with a density p = 2 800 kg.m3 and with a lithospheric mantle of 70 km thick with a
density of p=3300 kg.m-3. Inall experiments, the Poisson’s ratiou =0.25 (Turcotte and Schubert,
2014). The Young modulus is E = 1.0 x 10™ Pa in the 2-layers experiment and is E = 0.6.10™ Pa in
the 3-layers model. These values are realistic earth’s crust properties (Turcotte and Schubert,

2014).

The fault zone of the 2-layers model is strictly located in the lithosphere and corresponds to
one single volume. While in the 3-layers model, there are the fault zone in the lithospheric crust
and the lower fault zone in the lithospheric mantle. For fault in the lithosphere (2-layers), and
faultin the lithospheric crust (3-layers), we assumed an elastoplastic behavior. Thus, beyond the

elastic domain, these zones are characterized by a pressure-dependent law. Slip initiation on the
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fault is governed by the Drucker-Prager criterion defined as Equation 2 (Desai and Siriwardane,
1984, Hassani et al, 1997). Therefore, at the beginning of each experiment, this material has
elastic behavior and gradually reaches the plasticity threshold to evolve in fully plastic behavior.
We assume a weak zone with an E = 5.10° Pa, u=0.25, and a cohesion C of 1.10° Pa. We first take
a friction angle ¢ of 1°inthe simplistic 2-layers experiment, and then of 10° in the 3-layers model.

Smaller friction angle allows reaching faster the fully plastic behavior in the fault zone, thus it

3
J'-(0) the second invariant of the deviator stress = [(E) s: s] Y2
with:

J1(o) the mean pressure = %0 [Pa]

enables to initiate earlier the strike-slip faulting.

Equation (2) F(o) =]'"2(0) + (M)]l(a) - (36Sin® ) X ( : )

3 —sin® — sin® tan®

Viscoelastic asthenosphere

The asthenospheric mantle is assumed to be viscoelastic, as defined in equation 3. When the
elastic limit is exceeded, the material either deforms plastically or rupture and causes a

permanent change in shape.

Equation (3) gy + %(au, éakk&]) = A& b+ 2ué;

With: oij and €ij are the stress and strain tensors

6 the identity matrix written here as the Kronecker delta notation
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The lower fault zone embedded in the lithospheric mantle (3-layers model) is either Drucker-
Prager elastoplastic, either a Maxwell viscoelastic material according to the current stress state.

The rheological parameters of the different materials are defined in Table 5.2.

Table 2a : 2-layers model parameters

Lithosphere Asthenosphere Faultin lithosphere

N° volumes 1,3 4,56 2
rheology elastic viscoelastic elastoplastic
Young modulus (Pa)  1,0E+11 1,0E+11 5,0E+10
Poisson coefficient 0,25 0,25 0,25
density (kg.m™) 2800 3300 2800
Viscosity (Pa.s) 5,0E+19
na na
power law exponent 1
cohesion (Pa) 1,0E+06
na na
friction angle (°) 0,1
Table 2b : 3-layers model parameters
Lithospheric Faultin  Fault in mantle
Crust Asthenosphere .
mantle crust lithosphere
N° volumes 1,3 4,6 7,8,9 2 5
visco-
rheology elastic viscoelastic viscoelastic elastoplastic .
elastoplastic
Young modulus (Pa) 6,0E+10 1,5E+11 1,1E+11 5,0E+10 1,5E+11
Poisson coefficient 0,25 0,25 0,25 0,25 0,25
density [kg.m'g} 2 800 3300 3300 2 800 3300
Viscosity (Pa.s) na 1,0E+23 1,0E+19 na 1,0E+23
power law exponent 1 1 1
cohesion (Pa) 1,0E+06 1,0E+06
na na na
friction angle (°) 10 10

Table 5.2a Parameters used in model with 2 layers and 5.2b Parameters used in model with 3

layers.

Velocity boundary conditions are enforced on the outer face of the mesh. During the first
thousand years, the velocity increases linearly to its maximum value. After 1 coo years, the
maximal speed is applied until the end of the experiment. Using a velocity boundary conditions

to the model faces in the xz-plane toward +y for the northern block, respectively toward —y for
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the southern block, the model mimes the left-lateral strike-slip movement in the lithosphere of

the MFF (Figure 5.21).

v o 4 iiﬂ iR

v *# v * « X

Figure 5.21: Map views of the velocity boundary conditions for the experiments with: (a) centered

fault, (b) asymmetric fault and (c) oblique fault.

In the 2-layers model, the velocity boundary conditions are only applied to the lithosphere
(Figure 5.22a). In the 3-layers model, these conditions are applied to the lithospheric crust and
lithospheric mantle. Note that the velocity boundary conditions are not applied to the
asthenosphere mantle (Figure 5.22b). The model sides in the yz plane are fixed in the x-direction

and move freely in the y and z —directions. The bottom of the model is fixed in the z-direction.

The other sides are free to move in the x, y, and z-directions.
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Figure 5.22: 3D sketch of the velocity boundary conditions (a) in the 2-layers mode and (b) in the

3-layers model

The velocity boundary conditions along the xz face of the fault zone are defined by a
parametric variation along the x-axis to induce a smooth transition between the two blocks. It
means the velocity changes gradually inthe fault zone. At the southern fault limit, the movement

is toward the east, whereas in the northern boundary the motion is toward the west.

We imposed the pressure boundary conditions on the mesh outer faces. The model is
submitted to a constant gravity field, included as a body force of 10 m.s-2. We applied the
lithostatic pressure on the asthenospheric mantle xz-sides. The model's surface holds the
pressure of the glacial load. To model the icecap, we apply a pressure of 10 MPa on the top faces,
which is equivalent to 1080 m of ice with a density of 930 kg.m-3. The icecap has a rectangular
shape of 150 x 5oo km. Even though the ice body is simple, the proportions are conformed at 1°
order with the local LGM (36.1-25 ka) of the Cordillera Darwin ice-sheet, which was ~125-200 km
wide ~600 km long for anice elevation about ~700-1100 m. This shape does not attempt to model

the LGM Fuegian ice-sheets spatial complexity neither its thickness variations.
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Figure 5.23: Map views of the relative position of the fault and the icecap for the experiments with:
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(a) centered fault, (b) asymmetric fault and (c) oblique fault.

Depending on the considered zone, the LGM Fuegian ice-sheet has variable orientations

relative to the MFF. Indeed, the Fagnano lobe flowed parallel to the MFF system. Whereas in the
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Almirantazgo Sound, most of the LGM ice was located on the Cordillera Darwin and in the
Magellan Strait lobe. It was an asymmetrical load configuration, overloading the Scotia plate
comparatively to South American plate. Along the Magellan Strait western entrance, the MFF is
oblique relative to the Grand Campo Nevado ice field. These 3 configurations are processed in
different experiments: centered, asymmetric and oblique (Figure 5.23a b ¢). With ADELI, it is
convenient to modify the fault zone position by editing the mesh structure instead of changing
spatial pressure conditions. That is the reason why the icecap pressure remains always fixed and
centered. During experiment, the velocity and the pressure boundary conditions are applied, as

illustrated in Figure 24. The same pressure conditions are applied in model 2-layers and 3-layers

(Figure 5.253a, b).

¥ R
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Figure 5.24: Map views of the pressure and the velocity boundary conditions for the experiments

with (a) centered fault, (b) asymmetric fault and (c) oblique fault.
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Figure 5.25: (a) 3D sketch of the pressure and the velocity boundary conditions in the 2-layers

model; (b) 3D sketch of the pressure and the velocity boundary conditions in the 3-layers model.

Experiments of reference are set without glaciation. Their respective numbering inside the
list of experiments includes a letter 'R". Each reference experiment has identical rheological
parameters as the experiment of which it refers. In the following analysis, experiment and its

reference are compared to pinpoint the effects of an icecap.

All scenarios are characterized by 5-time steps (Figure 5.26): initial step without load, rising
loading, constant loading, unloading and relaxation. The glacial cycle includes the 3-steps
ascending loading, constant loading, unloading. During glaciation, the ice volume grows, and the
load magnitude increases linearly to its maximum value, thereby from o to 10 MPa (loading).
Then, the load remains stable for a couple of thousand years (stable load). During deglaciation,
the ice volume collapse, and the load decreases linearly to zero (unloading) in a defined amount

of time. Finally, after deglaciation, the load remains null until the end; this is the relaxation phase.
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Figure 5.26: Temporal evolution of the load
short (b)
Glaciation type short (a) | (even | Bestfit| long
nbrs)
Loading (from 0 to 10 Mpa)| 13 ka 14 ka 14 ka | 40 ka
Stable load (10 Mpa)| 4ka 4 ka 6ka | 20ka
Unloading (from 10 MPa to 0) 2 ka 2 ka 18 ka | 10 ka
Total duration (ka) 19 20 38 70
Table 5.3: Type of glaciation cycles.
Simplified Ice Sheet evolution: ~local LGM
— Patagonian .S ' ' ~gLGM
— Fagnano/Darwin .S

scenario lenght:
short 19 ka
long 70 ka

— best fit 38 ka

-90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30

y

-25

time before present (ka)

(%) peor

-20 -15 -10 -5
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Figure 5.27: Comparison with local LGM, global LGM and the 3 model’s load histories.

Our study uses 3 glacial cycle durations 19 ka, 38 ka, and 70 ka (Table 5.3). To investigate the
effect of the length of a glacial phase on fault behavior, we set a long glacial cycle (70 ka) and a
short glacial cycle (19 ka). The quick process is set to facilitate comparison with substantial work
on normal and reverse faults behavior under the Fennoscandia Ice-sheet (Hampel et al.,, 2010).
The Loading, the stand-still, the unloading durations are 13ka, 4 ka, and 2 ka, respectively (Figure
5.26). However, the Last Glacial phase in the southern hemisphere is characterized by its unique
temporal evolution (Figure 5.27). Local LGM (ILGM) of the Magallanes Fault slightly differs from
global Patagonian LGM (gLGM) (Figure 5.27). To mimic the advance and retreat of the ice above
the Magallanes-Fagnano fault, we set an intermediate glacial cycle of duration 38 ka. This
scenario simplifies the temporal evolution of the Patagonian Ice Sheet from Davies et al. (2020).
Between 47-33 ka before present (BP), the load increases during 14 ka (i.e., the icecap grows), and
then remains constant for 4 ka (stable load). At 28 ka BP, ice starts to disintegrate, and
deglaciation lasts 18 ka. The ice completely vanishes at 11 ka. The long glaciation scenario (7oka)
is divided into 40 ka loading, 20 ka stabilization of the load, and 10 ka progressive unloading
(Figure 5.27). Importantly, we acknowledge that the last glacial history of Isla Grande de Tierra
del Fuego differs from these simplified scenarios. Our experiments do not account for the

Fuegian lobes readvances of the Late-Pleistocene.

We can discriminate the glaciation effects thanks to comparing the experiment with and
without glaciation. In this way, we can identify the slip-rate evolution due to loading relative to a

normal amount of slip without loading.

The fault velocity, either named fault slip-rate, is the ratio between relative displacement
between fault sides and this movement's duration. To plot the slip-rate evolution in the following
figures, we use a cross-profile. In all the experiments, the cross-profile is perpendicular to the fault
and centered in the model (Figure 5.283, b, ¢). Two points of reference enable us to compute the
relative block motion. These two points are located along the cross-profile and are symmetrical
to the fault zone. There are 16 km away from the frame origin and enable us to visualize the two

blocks' behavior near the fault.
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Figure 5.28: Map view of the model surface showing the position of the fault zone relative to the

cross-profile and reference points. (a) Model with centered fault zone. (b) Model with asymmetric fault

zone. (c) Model with oblique fault zone.
All experiments are summarized in Table 5.4. We investigate the following parameters:
- The thickness of elastic lithosphere (2-layers versus 3-layers model)
- The position of the fault relative to the icecap
- Thefault velocity, i.e., tectonic background

- Length of glaciation phase
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Experiment caracteristics Fault geometry Glaciation
durati nbr of lotn* tlmn:stetp fault trike-slio ti ¢ fin-rat & | Start g
uration IBVEI’S Xplotp O;Jyrl:].,l position strike-slip timestep slip-rate rheolog\( [k‘f:‘ scenario
G0001 2 Centred
60002 100 k 2 0,05 5000 Assym. A Typed 10 |
G0003 2 ‘ Oblique 8 mm.yr one
G0004 3 Centred Type 2
G0005 0,01 10 000 910 long
GOOR6 ) NA NA
G0006 0-}0 000 yrs progressive a mmlvr.j 910  short (a)
slip-rate then > 10 000 ]
GEQ06 Centered the full slip-rate is 810 short(a)
GOLO6 imposed until the end of 910  long
GSOR6 1 Ma experiment NA NA
GS006 1000 4mmyr? 910 short (a)
GSLO6 910 long
GOR23 NA NA
Assym.
Goo23 e 4 910 short (a)
GOR33 _ e NA NA
Oblique
G0033 0.001 910 short (a)
GOOR7| 10Ma 3 ! centered ammyr-1| Type2 | NA NA
GOOR8 NA NA
G00oos 1500 Bestfit
centered
GONOD8 910 short (a)
910 hort (b
Pt NA NA
A . .
60009 2 Ma 2000 ssym progressive, then.*;- 3 1500 Best fit
GOR10 - 1000 yrs the ]CL.‘I::| sllpl— 2 mm.yr NA NA
ique is i i
G0010 q rate is imposed unti 1500 Best fit
s the end of experiment e i
Oblique -30
G0011 1500 Best fit
Ghisé ) 910 short (b)
1Ma 0,001 1000 Centred
GbiR6 NA NA

* Xplotp defines the normalized time interval for creating an output file , fe: timestep output = duration * xplop.
& see table 2a, 2b for complete overview of rheology parameters
£ :see table 3 for description of glaciation scenario

Table 5.4: List of experiments and respective characteristics.

Despite the velocity conditions are applied in the first thousand years, the relative motion of
the two-blocks is not wholly reached instantaneously (Figure 5.29a, b). There is a delay required
to achieve a stable strike-slip movement before proceeding to the loading phase. In the
beginning, the whole fault zone has an elastic behavior (Figure 5.30a). Gradually, the fault’s
material reaches the plasticity threshold (Figure 5.30b). In the end, the entire fault zone may have

a plastic behavior (Figure 5.30c). This process requires time to achieve a state of steady fault slip-

rate.
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Figure 5.29: (a) Temporal evolution of slip-rate from experiment GooR7 (no loading) over 10 million

years. (b) Zoom from o to 2 Ma. (c) Zoom from 1.5 Ma to 2Ma. It is the ideal steady-state duration. (d)

Zoom from 9oo ka to 1 000 ka, this is the alternative steady-state duration.
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(2) fault zone (b)

Figure 5.30: Evolution of the strain in the fault zone with 3D view of the model (3-layers
experiment) Blue color shows material with elastic behavior. The red color indicates the material that
has reached the plastic threshold. (a) Step 1 all the fault zone has elastic behavior. (b) Step 2 shows
part of the fault zone has reached plastic threshold. (c) Step 3 shows that all the fault zone has the

plastic behavior.

To evaluate the best duration of ‘Time to fault steady-state’, we experiment a single scenario
with an overall length of 10 Ma called GooR7. With a velocity of 4 mm.yr*imposed on each block,
we expected a full strike-slip fault velocity of 8 mm.yr* (Figure 5.29a). This velocity is reached at

~1.5 Ma (Figure 5.29b). It is the ideal duration of the initial phase before loading (Figure 5.29c).

However, the 10 Ma experiment required about 24 hours to be achieved. In order to multiply
the experiments, we opt for a less-time consuming modeling with a shorter time to steady state
at 910 ka and acknowledges our experiments are set with a fault velocity of 7 mm.yr? The
following comparison between the two experiments shows that thisapproach yields a reasonable

error of ~10%.

This alternative scenario allows approaching a steady-state at 910 ka, at which the fault slip-
rate is about ~7 mm.yr™* (Figure 5.29d). Because the velocity is smaller of 129, we compare the
slip-rates changes resulting from loading at 910 ka vs 1.5 Ma (Figure 5.31 & 5.32). The two
experiments have the same slip-rate patterns during loading and subsequent unloading (figure
5.31). Figure 5.31b evidences only a difference of amplitude resulting from the difference of slip-
rates before loading (Figure 5.31b). Associated cumulated slip is therefore slightly smaller for
experiment GoNs8. The loading phases (loading and stable ice) mutes the faults and avoid slip
to occur. These cumulated slips delayed are about ~ 5, 44 m for loading at 910 ka, and about ~

6.03 m for loading at 1.5 Ma (Figure 5.32b).
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Figure 5.31: Comparison of slip-rates between two experiments which have different initial phase
durations. The time to steady-state of GoNs8 is 910 ka (blue curve), whereas for GONbS is 1. 5Ma
(magenta curve). (@) Temporal evolution of cumulated slip over 2 Ma. (b) Decrease (-) or increase (+) of

slip-rates relative to experiment without loading. The time is shown since the onset of loading for

comparison.
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Figure 5.32: (a) Difference of slip cumulated over time between loading experiments (GoNbS§,
GoNs8) and the experiment without loading. The time to steady-state of GoNs8 is 910 ka (blue curve),
whereas GoNb8 is 1. sMa (magenta curve). The negative difference shows the amount of slip delayed
during each phase when the fault decelerates compared to no-load experiment. A positive difference

indicates a slip-pulse when the fault accelerates. (b) Zoom-in the same figure with time since the

onsets of loading for comparison.
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V.4 Model Results

In this section, we consider the experiment with a short initial phase during 910 ka.

Here, we focus on experiment Gooob in which the two blocks accommodate the left lateral
movement with a rate of ~ 7 mm.yr* (Figure 5.33a) along a centered fault. At 910 ka, the faultis
progressively loaded during 13 ka (Figure 5.33b). Under the load, the lithosphere is deflected with
rate Vz = g mm.yr™. During the following 4 ka, the load remains stable. The unload occurs
progressively in two thousand years and triggers a rebound dome with maximal vertical velocity

Vz =60 mm.yr*(Figure 5.33b).
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Figure 5.33: Temporal evolution of horizontal (a) and vertical (b) velocities of experiment Gooob
(centered fault). Velocities are shown along the cross profile perpendicular to the fault. Distances are

shown from the fault center with a fault zone width of 30km. Colored curves show the time step in ka.

We compare the behavior of experiment Gooo6 and experiment without load (Figure 5.34b).
During loading and subsequent unloading, two different slip patterns can be determined.
Loading triggers slip-rate decrease, while unloading leads instantly to a slip-rate pulse (Figure
5.34b). During the primary phase of loading, between o ka to 13 ka, the slip-rate decelerates in
average of about - 0.38 mm.yr* (Figure 5.34b). Then, when the load is constant between 13 and
17 ka, the slip-rate drops with a slower rate than during the previous phase, the fault velocity slows
down about ~ - 0.122 mm.yr™. This decreasing velocity results in a slip-delay that increases during

the glaciation episode. Because this slip is not released, we consider it is stored and delayed. We
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compute the cumulated slip-delay comparing with the experiment without loading, in function
of the temporal load evolution (Figure 5.35a). Accordingly, the cumulated slip delays throughout
progressive glaciation (0-13 ka) and stable load (13-17 ka) are respectively about ~4.9 meters and

~0.5m (Figure 5.35b). Thereby, the glaciated period avoids a total slip of ~5.4 meters (Table 5.5).

a
experiment G0O006
8 -
B,
2 o
£
]
= 41
T
B
% 5
O -
0 200 400 600 800 1000
time since experiments start (ka)
95 7 b
9.0 —— experiment G0006
— - - -no loading experiment
=
g 8.5 . unloadingj
z s.table ice 2 ka
‘5’8.0 1 a Ang fgmpomléevolution
= \o of the loand
775 13 ka . 4 ka
=l i
175}
70
6.5 . P
905 910 915 920 925 930 935

time since onset of loading (ka)

Figure 5.34: Slip-rates of experiment with centered fault (Gooob), which after an initiation of 9120
ka, underdoes a short glaciation cycle of 19 ka. (a) Temporal evolution of slip-rates over 1 Ma. (b) Zoom

in same figure since the onset of glacial loading. Grey triangle shows the temporal evolution of the

load

Interestingly, this cumulated slip-delay is not fully recovered by the subsequent slip-rate

pulse. After 17 ka, the fault is unloaded, which triggers a drastic velocity increase reaching about
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9.5 mm.yr*(Figure 5.34b). This pulse occurs immediately when the unloading starts, even though
the unloading should be progressive, reducing from 10 MPa to zero in two thousand years. In
average over the deglaciation period (17-19 ka) the slip-rate increases about 2.2 mm.yr™ which
correspond to ~ 4.2 meters of cumulated slip. Consequently, the difference between the delayed

slip and the released slip is ~ 1.3 meters (Figure 5.35b) at the end of deglaciation.

0 -
= —1000 /
E
£+ ~2000 -
_§ —— experiment GO006
Es: —3000 +
=
=
3 —4000 -
—5000 +
a
0 200 400 600 800 1000
time (ka)
0
—1000 A
£
E —2000- i ,
= stable ice [iunloading
_; —3000 - \oﬂd.““ temporalevolution
8 the lopd
~
= —4000-
=
< —5000 1
-60001 b
905 910 915 920 925 930 935

time since onset of loading (ka)

Figure 5.35: (a) Cumulated difference of slip between loading experiment (Gooo6) and the
experiment without loading. Negative difference shows the slip delay in each phase when the fault
decelerates compared to the no-load experiment. A positive difference indicates slip pulse when the

fault accelerates. (b) Zoom-in the same figure.
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After the unloading phase, we see a brief decrease of velocity with value dropping to ~7
mm.yr?, and followed soon after by a second minorincrease of up to ~7.2 mm.yr™. The relaxation
phase (until the end) lasts 71 ka. In this phase, the slip-rate increases in average about 0.01 mm.yr
* comparatively with a no-glaciation experiment. It is associated with ~0.8 meters of cumulated
slip. Even at the end, the slip amount that was ‘mute’ during glaciation is not fully recovered, and

leaves ~0.43 meters of unrecovered slip.

A B C D E B+C A+B+C+D+E
Initial phase Post- Loading + Ice-
P Loading Ice-stable Unloading . & Time total
(no load) unloading stable
duration (ka) 910 13 4 2 71 17 1000
cumulated slip (mm)
(-) is delayed, (+) is 0 -4876 -490 4127 206 -5366 -433
regained
Mean slip-rate
0 -0,38 -0,12 2,06 0,01 -0,32 -4,33E-04
(mm/yr)

Table 5.5: Mean slip rate difference of Gooob with respect to reference experiment GRooé.

Here, we investigate the effect of the strike-slip rate. We compare experiments Gooo6 and
GSo006, in which only the horizontal slip-rate varies, respectively, with 8 mm.yr*and 4 mm.yr™.
Both investigations are carried out using the centered fault geometry and same type of glaciation
cycle (19 ka). The fastest experiment, Gooo6, is previously described, and refers to the centered
fault with a horizontal velocity of 7 mm.yr™ In GSoo06, the velocity accommodated by the fault

after g1o kais ~3 mm.yr* (Figure 5.36).
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Figure 5.36: Temporal evolution of horizontal (a) and vertical (b) velocities in experiment GSo06.
Velocities are shown along the cross profile perpendicular to the fault. Distances are shown from the

fault center with a fault zone width of 30km. Colored curves show the time step in ka.

The slip-rate evolution patterns are the same in both cases and are governed by the load
timing (Figure 5.37a). As the slip-rate of GS006 is slower than Gooo6, the slip-rate evolution
pattern has a lower amplitude (Figure 5.37b). We compare the reference experiment and the
GSoo06 experiment in terms of cumulated slip (Figure 5.38). In the GSoo6 model (slow slip-rate),
the cumulated slip muted throughout glaciation (0-17 ka) is 3.6 meters. The subsequent slip-rate
pulses do not fully recover this cumulated slip (table 5.6). Compared to the reference experiment,
the amount of slip regained at unloading is ~2.9 meters. At the end of experiment, 7o ka later, it

remains ~0.1 meters of slip muted from the glaciation phase.
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Figure 5.37: (a) Temporal evolution of slip-rates of experiments GSoo6 (red curve) and Goooéb (blue

curve). (b) Zoom in same figure since the onset of loading. Grey triangle shows temporal evolution of

the load. The dashed curves show slip-rate of experiments without loading GSoR6 (red dashed curve)
and GooR6 (blue dashed curve).
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Figure 5.38: (a) Difference of slip between loading experiments GSoo6 and the experiment without
loading GSoR6. (red curves) cumulated over time. Same results are shown for experiment Goooé (fast
velocity) in blue curve. The negative difference shows the slip amount delayed during each phase when
the fault decelerates compared to no-load experiment. A positive difference indicates slip pulse when

the fault accelerates. (b) Zoom-in the same figure.
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A B C D E B+C A+B+C+D+E
Initial phase Post- Loading +
P Loading Ice-stable | Unloading ) 5 Time total
(no load) unloading Ice-stable
Phase duration (ka) 910 13 4 2 71 17 1000
cumulated slip (mm)
(-) is delayed, (+) is 0 3327 274 2922 172 3601 507
regained
Mean slip-rate ) )
0 -0,26 -0,07 1,46 0,00 -0,21 -5,07E-04
(mm/yr)

Table 5.6 Mean slip rate difference of GSoo6 with respect to reference experiment GRooé6.

We compare here experiments Gooo6 and GLoo6, in which only the glaciation scenario
differs. Both experiments are carried out using the centered fault geometry and identical slip
rates of ~7 mm.yr The two glaciations begin simultaneously, but the GLoo6 glaciation lasts 71
ka whereas the Gooob lasts 19 ka. The GLoo6 glaciation cycle refers to the type long glaciation
(Figure 5.39), with progressive icecap onset from o0-40 ka, followed by a stable load during 20 ka,
and by rapid deglaciation in 10 ka. This glaciation refers to a hypothetical longer Fuegian LGM
than previously mentioned in literature: a glaciation beginning in MIS4, ending in MIS2, without

any MIS 3 recession episode.

Pata.l.S —
short —
ong
0 10 20 30 40 50 60 70
time (ka)

201|Page



V.4Model Results

Figure 5.39: Temporal evolution of load for each glaciation type. Pata I.S: glaciation scenario for
Patagonian ice sheet has described by (Davies et al., 2020). Short and long glaciation scenarios are

with orange and yellow curves.

Because the overall experiments last 1 Ma, and we use the same steady-state duration of g10
ka, the post-loading relaxation of GLoo6 only lasts 20 ka while the Gooo6 relaxation lasts 71 ka.
Due to this significant difference, we miss part of the GLoo6 fault response, and avoid

comparison of post-glacial cumulated slip.
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Figure 5.40: (a) Temporal evolution of slip-rates of experiments GLoo6 with long glaciation (Yellow

curve) and Gooob with short glaciation (blue curve). (b) Zoom in same figure since the onset of loading.
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Grey triangle shows temporal evolution of the load. The dashed blue curve show slip-rate of

experiments without loading GooR6 (same reference experiment).

We compare the slip-rates evolutions of the two experiments. The general slip-rate patterns
are very similar and primarily controlled by the load's temporal evolution (Figure 5.40a). The slip-
rate variation of fault in experiment GLoo6 shows a lower amplitude than in experiment Gooob.
Despite the identical ice weight imposed in both cases, the loading and subsequent unloading in

GLoob trigger lesser effects.

The progressive loading during 40 ka induces a decrease in slip-rate of -0.126 mm.yr™ (Figure
5.40b). The velocity reduction avoids a cumulative slip of 6.3 meters, compared to the reference
experiment GooR6 (Figure 5.41). These two phases together induce 8.2 meters of cumulated slip
delayed over 60 ka of loading. The subsequent deglaciation causes a rapid slip rate increase of

slip rate of +0.41 mm.yr . It leads to 4.1 meters of cumulated slip pulse (Table 5.7).
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Figure 5.41: (a) Difference of slip cumulated over time between loading experiments GLoo6 (yellow
curve) and its experiment of reference without loading GooR6. The same results are shown for
experiment Gooob (short glaciation) in blue curve. The negative difference shows the slip delayed
during each phase, when the fault decelerates compared to the no-load experiment. The positive

difference indicates slip pulse when the fault accelerates. (b) Zoom-in the same figure.
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A B C D E B+C A+B+C+D+E
Initial phase Post- Loading + Ice:
P Loading | Ice-stable Unloading ) g Time total
(no load) unloading stable
Phase duration (ka) 911 40 20 10 19 60 1000
cumulated slip (mm)
(-) is delayed, (+) is 0 -6335 -1909 4110 662 -8244 -3472
regained
Mean slip-rate ) )
0 0,16 0,10 0,41 0,03 0,14 3,47E-03
(mm/yr)

Table 5.7: Mean slip rate difference of GLoob6 with respect to reference experiment GRooé.

We note the transition is smoother at the end of the unloading phase than in the short

glaciation experiment. Thus, we suspected these oscillations are derived from numerical noises

during abrupt transitions.

In this asymmetric configuration, the fault is close to one of the ice cap border. Horizontal

velocity along the perpendicular cross profile (Figure 5.42a) evidences the fault positionislocated

slightly right-shifted relative to the center of the model.

Like for centered fault, the slip evolution shows the two fundamental patterns of a slip drop

atloadingand a slip pulse at unloading. During the progressive loading and stable phase, the slip-

rate decelerates in average of about - 0.34 mm.yr* and - 0.10 mm.yr™, respectively. Associated

cumulated slip delayed over these periods is -4.46 meters (0-13 ka) and -0.39 meters (13-17 ka).

The glaciation prevents the fault from slipping of ~ 4.85 meters (Table 5.8).
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Figure 5.42: Temporal evolution of horizontal (a) and vertical (b) velocities of the asymmetric fault
experiment Goo23. Rates are shown along the cross profile orthogonal to the fault. Distances are from

the Y-axis. Colored curves show the time step in ka (103 yrs).
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Figure 5.43: Slip-rates of experiments with asymmetric fault Goo23 (green curves) and centered
fault Gooob (blue curves). Both investigations are conducted simultaneously to steady-state 910 ka

and the same short glaciation cycle of 19 ka. (a) Temporal evolution of slip-rates over 1 Ma. (b) Zoom
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in same figure since the onset of loading.
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Figure 5.44: (a) Difference of slip between experiments Goo23 and its reference experiment
without loading GoR23 (green curves) cumulated over time. Goo23 and GoR23 are set with
asymmetric fault. Same results are shown for experiment Gooob and GooR6 (centered fault) in blue
curve. The negative difference shows the slip amount delayed during each phase when the fault
decelerates compared to no-load experiment. The positive difference indicates slip pulse when the fault

accelerates. (b) Zoom-in the same figure.

During deglaciation (17-19 ka), the slip-rate increases about +1.81 mm.yr™, representing an
additional slip of ~+3.6 meters. (Figure 5.43). During model relaxation (19 ka — until the end), the

slip-rate increases in average about +0.01 mm.yr™, resulting in ~+0.64 meters of cumulated slip
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(Figure 5.44).

A B C D E B+C A+B+C+D+E
Initial phase Post- Loading + Ice:
: Loading Ice-stable | Unloading ) . Time total
(no load) unloading stable
Phase duration (ka) 911 13 4 _ 2 _ 70 17 1000
cumulated slip (mm)
(-) is delayed, (+) is 0 -4457 -389 3623 637 4846 586
regained
Mean slip-rate . ; -
0 0,34 0,10 1,81 0,01 0,29 5,86E-04
(mm/yr)

Table 5.8: Mean slip rate difference of Goo23 with respect to reference experiment GRo23.

The following experiment is a fault that has an angle O relative to the icecap. Icecap is always
centered on the y-axis (Figure 5.45a). The type of glaciation here is the short glaciation cycle (19
ka). To model a sinistral slip fault on an oblique fault, we apply on the model borders a horizontal
velocity divided in two components Vx and Vy. To mime the sinistral motion, we apply a negative
Vx on the northern block external border and a positive Vx on the southern block borders (Figure
5.45b). Likewise, the component Vy is applied positively on the northern block and negatively on
the southern. The resultant of these components projected onto the fault plane is the velocity

parallel to the fault:

VparaHe\to the fault = Vy X cosB — Vx X sin®

In this work, we choose a simple geometry to build the model layers with points A, B, C, and
D defining the fault zone with respective coordinates of (-125,300), (-95,300), (125, -300), and (95,
-300) (Figure 5.45a). In this configuration, the angle 8 is ~20,14°. As shown in section 3, we
expected the fault to rupture even under the load. If B is 60°, we expect the icecap impact to be
completely muted. Conversely, with an angle 8 of -30° (not tested in this work), we expect the

effect to be increased.
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Figure 5.45: (@) Map view of the oblique fault orientations with cross-profile used to illustrate the
horizontal velocity evolution. Points of reference are shown on the cross-profile and are used to
implement fault slip-rate. (b) Map view of the velocity boundary conditions for the experiments with
oblique fault. Red and blue arrows indicate the resultant of the horizontal velocities Vix and Vly for each

block

The model loading leads to subsequent lithosphere bending. Deep under the icecap, the
material flows outward of the load. At the surface, where the cross-profile is implemented, the
lithosphere is contracted under the ice load. The lithosphere bends and material is shortened in
the x-direction. The horizontal velocity Vx indicates a material shortening (Figure 5.46a). We see
that the shortening direction is constructive with the Vx direction (strike-slip motion). The Vy

component is less affected by the lithosphere bending.
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Figure 5.46: Temporal evolution of horizontal velocities of the oblique fault. (a) Vx is the velocity

The horizontal velocities Vx and Vy are projected onto the fault plane Vx.sinB, and Vy.cosB

In this configuration with 6 ~20°, the slip-rate pattern (Figure 5.47) is opposite to the centered
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magenta curves).

e

component in the x-axis. (b) Vx*sin(theta) is Vx projected onto the fault plane strike (20.14°) of the
sinistral-slip fault. (c) Viy is the velocity component in the y-axis. (d) Viy*cos(theta) is Vly projected on
the fault plane. (e) The resultant horizontal velocity projected onto the fault plane is Vy*cos(theta) -

Vix*sin(theta). Distances are indicated from the fault, and colored curves show the time step in ka.

(Figure 5.46 ¢, d). The horizontal velocity parallel to the fault is the resultant of these two

components (Figure 5.46e). This resultant is called hereafter the fault velocity (Figure 5.47,

fault behavior. The fault slip increases at loading (+0.04 mm/yr) and decreases with stable load (-
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0.02 mm/yr) (Table 5.9). This slight acceleration of the fault at loading triggers a cumulated slip

of 0.57 meters. It means during glaciation slip occurs and is of ~ 0.57 m.

Slip-rate (mm.yr™)

el

Z

g

= — ;

Y \oail"“g’ __— Emporalievolution
_ = the load s

i 2 ——1ska 7 ""4ka

'(:,_‘;“ H

905 910 915 920 925 930 935
time since onset of loading (ka)

—— Centered fault

—— Oblique fault Vycos - Vxsin
— Oblique fault Vx

_ Oblique fault Vx*sin

_ Oblique fault Vy

— Oblique fault Vy*cos

Figure 5.47: Slip-rates of experiment with oblique fault (Goo33) and centered fault (Gooo6) (a)

Temporal evolution of slip-rates over 1 Ma. (b) Zoom in same figure since the onset of loading.
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Figure 5.48: (Zoom-in figure 4.15) Slip-rates of fault in experiment with oblique fault compared to

experiment with centered fault (blue curve).

At unloading, the fault drops in average of -0.35 mm/yr in two thousand years. Compared to
the experiment without loading, there is a cumulated slip delayed of ~0.71 meters (figure 5.48,

table 5.9).

The centered and the oblique experiments have opposite behavior patterns (Figure 5.49). To
simplify, the two fundamental slip patterns during loading and subsequent unloading are (a) slip-
drop/slip-pulse for centered experiment, and (b) slip-pulse / slip-drop for oblique experiment. In
the oblique experiment the slip drops during deglaciation of ~ - 0.7 m. Whereas in the centered

experiment, the slip pulses during deglaciation of ~+ 3 m.

213|Page



V.4Model Results

—1000 ~

—2000 +

—3000

Cumulated slip (mm)

—40004  —— Centred fault
—— Oblique fault

—5000

a

o 200 400 600 800 1000
time (ka)

| |
] =
(=] =]
o =]
o o
1 1

Stli_‘léle unloading

\0,&6‘1 temporalievolution i
—3000 of the logd :

—4000 -

Cumulated slip (mm)

—5000 ~ b

905 910 915 920 925 930 955
time since onset of loading (ka)
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Gooob) and their respective experiments without loading (GoR33, GooR6) cumulated over time. The
negative difference shows the slip delayed during each phase compared to a no-load experiment. The

positive difference indicates slip-pulse. (b) Zoom-in the same figure.
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A B | ¢ D E B+C A+B+C+D+E
Initial phase Post- Loading + Ice
P Loading | Ice-stable Unloading . g Time total
(no load) unloading stable
Phase duration (ka) 911 13 4 2 70 17 1000
cumulated slip (mm)
(-) is delayed, (+) is 0 574 92 -709 354 483 127
regained
Mean slip-rate
0 0,04 -0,02 -0,35 0,01 0,03 1,27E-04
(mm/yr)

Table 5.9: Mean slip rate difference of Goo33 with respect to reference experiment GRo33

V.5 Discussions and Conclusion

This work shows that a strike-slip fault located right beneath the icecap and parallel to it
should partially cease to slip during the glaciation phase. Because there is less slip on the fault, it
would correspond to a period of relative seismic quiescence in nature. Conversely, when the
icecap melts, the fault should experience relative intense faulting that corresponds to a seismic

phase. Post-unloading, the fault then returns to its pristine level of steady slip-rates.

Our analytical and finite element modeling results show that the following parameters

primarily control the icecap effect:

(1) The icecap orientation relative to the strike-slip fault controls the slip pattern. The fault
response is spatially and temporally correlated with the deflexion and the lithosphere's rebound
due to glacial loading and unloading. The ice-load stress field is superimposed onto the tectonic
background stress field. These interferences can favor or mute the icecap effect, depending on
their respective stress orientations. Two fundamentally slip patterns can be identified during
loading/unloading phase: (a) drop/pulse or (b) pulse/drop. The pattern (a) is identified when the
icecap is parallel, shifted relative to the fault, and oblique to the fault with synthetic orientation (-
45°t0 0°). When the icecap has antithetic orientation relative to strike-slip, the slip-rate increases

during loading and drops at unloading (pattern b).

(2) The load history, which controls the temporal slip-rate evolution. The slip-rate varies in

phase with the loading history. The Adeli experiments show the glaciation and deglaciation rates
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governthe amount of slip delayed because the material's rheologies depend on the applied stress
rate. This effect was notvisible in our analytical experiment, as we assumed an elastic lithosphere.

For the glaciations of 19 ka and 40 ka, the respective slip pulses are ~+5m and ~+8m.

(3) The initial strike-slip velocity (tectonic stress) governs the duration and the amplitude of

the slip-rate variations. The higher is the slip-rate of the fault, the more slip delay is cumulated.

Our Adeli experiment uses a fault zone friction angle of 0.1 to 10° to keep an optimal
computational time. It allows the fault to reach earlier a fully plastic behavior. Therefore, in these
Adeli experiments, we did not completely study this parameter. It would require further modeling

to evaluate the effect of higher friction angle with ADELI.

For the same reason, we set-up a short initiation phase before glacial loading, the steady-
state is not fully completed when the glaciation occurs. Therefore, the fault slip-rate continues to
increase through time while the glaciation is occurring. Consequently, a small part of the
glaciation effect is removed. An experiment with steady-state of 1.5 Ma could solve this issue.
Besides, performing experiment of at least 2 Ma would allow better studying the fault's long-term

relaxation after the unloading phase.

In our ADELIapproach, we focused on the elementary fault orientation relative to the icecap.
However, it is essential to model the other directions, especially the orientation that may favor
the icecap's effect. As seen in section 2, an orientation of angle 8 = - 60° may promote locking

the fault at loading.

In this thesis work, we modeled the ultimate glaciation phase effects. However, the
Magallanes-Fagnano Fault was successively covered by multiple large ice lobes’ advances since
the MIS 12. Dating of erratic boulder field in the Strait of Magellan banks have evidence the
penultimate glaciation (MIS 4) was more extensive than the LGM. Future work may integrate the
entire regional glacial history since the MFF strike-slip onset to improve our understanding on

ice-load interaction with the MFF strike-slip.
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Finally, at the LGM, the MFF was synchronously ice-free in the east and recovered by a
thousand meters-thick ice lobes in the west. We did not take into account this complex
configuration. Furthermore, the Atlantic’s progressive marine transgression over the eastern
MFF may have muted part of the deformation. The western deglaciation may have favor the
rupture, while the eastern marine transgression may have muted the MFF. These coeval
processes may have contributed to increase the long-term slip rate difference between the two
regions. All the above points constitute line of improvement for future investigation with ADELI

software.

To conclude, we show that one glacial-interglacial phase can affect the slip-rate of a strike-
slip fault. The Adeli experiment with a 3-layers Earth model, with an icecap parallel to the fault,
and with friction angle of 10°, shows a post-glacial slip pulse of ~ 5.3 m. In comparison, the
analytical approach with icecap parallel to the fault and 10° of friction angle, evidences ~7 m of
post-glacial slip pulse. The analytical and the finite element approaches suggest very similar slip

increase triggered by deglaciation of the strike-slip fault.

However, both approaches evidence that the predicted post-glacial slip pulse is too low to
explain the Magallanes-Fagnano slip-rate discrepancy between the Western Magallanes region
and the Eastern Tierra del Fuego. Indeed, the cumulated slip difference since the LGM is about ~
200 m, between the eastern (sinistral offset 115 m) and the western MFF segment (sinistral offset
315 M) MFF segments. The slip amount that could be released by the deglaciation is about ~5 to
7 m, which represents no more than 4 % of the observed slip discrepancy. Even with the most
favourable setup, with oblique icecap relative to the fault (-30°), and with an internal friction angle

of 30°, the predicted slip does not exceed 15 % of the observed slip difference.
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CHAPTER VI:
Conclusions and Perspectives

This thesis focuses on the Magallanes-Fagnano Fault, which accommodates the relative
motion between South-American and Scotia plates. The thesis work carried out in Tierra del
Fuego characterizes the Magallanes-Fagnano-Fault behavior over several time-scales: during
the Holocene, including the historical period (0-11 700 yrs), and up to the end of the Pleistocene
(11 700 — 20 000 yrs). This work was achieved from the 70°W up to 66°W (200 km), from the
Almirantazgo Sound to the Atlantic coast representing a third of the entire Magallanes-Fagnano

Fault (Figure 6.12).

Part of this thesis work is dedicated to the historical ruptures, and provides unprecedented
paleoseismological and dendroseismological data. The new map of the 1879 and 1949 faulting
morphologies evidences their respective surface rupture lengths, measuring at least 170 and 200
km, respectively (Figure 6.1). These two major earthquakes disrupted the Ainsworth Peninsula in
the Almirantazgo Sound (Chile), continued beneath the Lake Fagnano, and ruptured most of the
Argentinian segments. Our dendroseismologic study allows correlating historical ruptures in
Argentina and Chile, which considerably increases the estimate of the fault length that broke
both in 1879 and in 1949. Besides, our 1949's coseismic displacement measurements
demonstrate a maximum sinistral movement of 6.5 + 0.5 min the central Tierra del Fuego. These
results show that the most significant modern seismicity (M>7) is directly triggered by the South
American — Scotia plates relative motion, predominantly accommodated along the Magallanes-
Fagnano Fault. Furthermore, recently localised crustal earthquakes (from 1.9 < ML < 5.3) show a
good correlation with the presence of the Magallanes- Fagnano Fault (Ammirati et al.,, 2020).
The authors suggest higher magnitude events are located closer to the fault, whereas moderate
magnitude events are rather found in the north, on the Foreland Fold and Thrust Belt (FTB). It
leaves little doubt that the MFF is the principal mechanism of modern crustal deformation, which

releases the more seismic moment.

Considering the two Mw >7 earthquakesin less thana century, the Magallanes-Fagnano Fault

represents a substantial seismic hazard for the region. The associated risk grows as the
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population increases rapidly and worsen by extensive urban development on soft glacial and
alluvial substrates. For Instance, in 1949, the Tierra del Fuego Province represents ~ 5 000
inhabitants, and today it booms up ~238 000, to whom is added ~ 443 000 tourists each year

(INDEC, 2016; INFUETUR, 2019).

In the central Ainsworth Peninsula, the thesis work shows charcoals dated in the trench at
51.1-42.3 cal yr BP and > 44.1 ka BP (apparent age not calibrated). These ages imply the
vegetation was present at that period, suggesting the last interglacial MIS 3 was a remarkably
pronounced recessional phase in the Almirantazgo Sound. This result reinforces previous
chronologies which proposed the MIS 3 as a possible recessional phase (Mercer, 1976; Laugenie,
1984; Rabassa and Clapperton, 1990; Clapperton et al, 1995; Lowell et al, 1995; Denton et al,
1999; Porter, 2020). During stage MIS 3, the paleoclimate would have induced a moderate glacial
recession in the Eastern Tierra del Fuego, and a significant retreat in the Western Magellan

region, at the foothill of the Cordillera Darwin.

We establish a paleo-seismic calendar with at least seven major paleo-ruptures during the
Holocene in Tierra del Fuego (Figure 6.1). Because these paleoearthquakes have ruptured the
surface, their respective magnitude is at least Mw 6.5. The last pre-1879 ruptures, in 788 + 122 and
2165 + 155 cal yr BP are well correlated with the previous paleoseismic and mass-wasting events
studies nearby Tolhuin and in the Lake Fagnano. Two ancient events occurred earlier than 10 776
cal yr BP. West of our trench, authors observed two paleoruptures in dated strata from 4 701 +
13010 5072 + 205, and 5 245 + 195 to 8 260 + 84. Even though they are not observed in our trench,

it perhaps signifies that they primarily ruptured the western territories.

The present-day paleoseismic archives predominantly focus on the Argentinian territory,
exhibiting only half of the entire picture. In Chile, our trench is the first attempt to characterize
the paleoseismicity on the western part of MFF. We put in evidence at least three events, but
insufficient datable material prevents bracketing the age of observed faulted strata. Additional
inter-disciplinary works are required to quantify the western fault behavior during Holocene.
Future research, combining marine mass-wasting study in Almirantazgo Sound with

paleoseismological trench in the Chilean Fjords should yield reliable archives.
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Figure 6.1: Spatial distributions of the Magallanes-Fagnano Fault activity estimated on several
time scales: historical activity (last two centuries), Holocene activity (paleo-earthquake records
Mwz=~7) and Late-Pleistocene activity (long-term geomorphic offsets). Abbreviations mention the
reference to previous works: C: Costa et al, 2006; F: Fernandez et al,, 2011; O: Onorato et al. 2016;

Pedrera et al., 2014; W- Waldmann 2010.

Our resultsindicate different time of intervals between major earthquakes over the Holocene
in the eastern Magallanes-Fagnano Fault. Indeed, the two pre-1879 ruptures and the 1879
earthquake, shows a recurrence interval from 717 up to 1377 yrs, while the last two earthquakes
are associated with a recurrence time < 100 years. Do these results translate a chaotic activity or

an exceptional activity over the last two centuries in Tierra del Fuego?

Newly described scarps, ridges, pop-ups, flower structures, and Riedel fractures confirm that

the post-glacial strike-slip motion concentrated along the master fault. In Chilean segments, very
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little vertical cumulated displacements are observed. In Argentina, from the Lake Fagnano
eastern shore to the Atlantic coast, the MFF deformation has a dominant strike-slip displacement

associated with alternating northern or southern block uplift.

Back-slip restorations of cumulated sinistral offset combined with *°Be dating allow the first
quantification of the Argentinean and Chilean MFF geomorphic slip rates. In Argentina, several
landforms with 115 + 5 m offset in 18 + 2 ka, yields a left-lateral Late Pleistocene slip rate of 6.4 +
0.9 mm.yr. Given that this value is lined-up with ~6 mm.yr* GPS velocity models across the
MFFS (Mendoza et al, 2015), the master fault should accommodate almost completely the
relative Pleistocene motion between South America and Scotia plates. Besides, the unchanged
rates over the different time-scales suggest a stable fault behaviour for the last twenty thousand

years in Argentina.

In the Magallanes region, the back-slip restoration of a dozen river channels, that incise
glacial deposits, evidences a maximum sinistral offset of 315 + 15 m. In the area, post-glacial peat
bog ages (Boyd etal,, 2008; Hall et al, 2019) and new glacial polish *°Be datings (this study), show
the ice had already retreated in the Cordillera Darwin by 16.7 + 2.8 ka BP. Considering that these
river channels formed after the glacial retreat implies an exceptionally rapid post-LGM slip-rate

of 19.5 £ 4.2 mm/yr.

These results imply a significant long-term E-W fault slip-rate gradient. This gradient
coincides geometrically with the unequal distribution of the Pleistocene ice-sheet, voluminous
and extensive in the west, and limited in the east. Such ice masses act as a surface load producing
a long-lasting viscoelastic deformation of the earth crust, which interfere with the regional
tectonic field. We quantify by mechanical models the impact of the glaciation on the MFF to
understand if it can explain the totality or part of the slip rate gradient observed. Using an
analytical approach and a 3D-finite element numerical modeling, we show preliminary results on

glacial isostatic adjustment interaction with strike-slip behavior.

These two approaches show that Earth’s material rheologies, load history, and ice sheet
orientation primarily control the glaciation effect. With anicecap parallel to the fault, one glacial-
interglacial phase can produce a seismic quiescence at loading (slip decrease or stop), and a

subsequent seismic burst at unloading (slip pulse). The analytical and the finite element
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approaches suggest very similar slipincrease. Foranicecap parallel tothe fault, and with a friction
angle of 10°, the predicted post-glacial slip pulse is of ~ 5 m (Adeli model) up to 7 m (analytical
approach). The finite-element approach uses a more sophisticated Earth’s material setting, and
shows that with a 1000 m-thick rectangular icecap centered above a sinistral strike-slip, the
glacial load decreases the sinistral slip-rate of ~ - 0.4 mm.yr? and the subsequent deglaciation
increases the slip-rate of +2 mm.yr*. However, this slip pulse represents no more than 4 % of the
observed slip discrepancy between the Western Magallanes region and the Eastern Tierra del
Fuego. Indeed, the cumulated slip difference since the LGM is about ~ 200 m, between the
eastern (sinistral offset 115 m) and the western MFF segment (sinistral offset 315 m). Even with
the most favourable setup, with oblique icecap relative to the fault (-30°), and with an internal
friction angle of 30°, the predicted slip does not exceed 15 % of the observed slip difference
(analytical approach). Therefore, the climate-driven ice-mass changes only partially explain the

slip-rate variation observed in the Magallanes-Fagnano region.

To better constrain postglacial deformation in Chile, new direct and repeatable dating of
Pleistocene offsets are crucial. Future investigations on the Almirantazgo Sound paleo-ice-sheet
timing and extent during the last glacial/postglacial phase would yield a more precise limit for
calculating slip rates. More complex configurations might be tested, and constitute lines of

improvement for future investigation with finite element model:

(1) Toextend the experiment duration, which could enable pre-stressing the fault up to near-
failure equilibrium with realistic friction angle value;

(2) To set an unequal spatial ice distribution above the fault, with one-half ice-free and the
other half loaded;

(3) To consider the Magallanes-Fagnano Fault curvature.

(4) To take into account the progressive marine transgression coeval to the deglaciation,
which in the case of the Magallanes-Fagnano Fault may have muted the faulting on the
eastern side;

Other hypotheses have to be proposed, and one of them is that we may have underestimated
the Chilean offset age. Firstly, it would imply the rivers were carved earlier, during the last
interglacial phase, dated in our trench at > 46.7 + 4.4 cal ka BP. Secondly, these rivers necessarily
must have remained active under the LGM ice-sheet. Therefore, it yields several open-questions:

how can the drainage system be preserved under a 1-km LGM ice cover flowing orthogonally to
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the rivers? Is the LGM Almirantazgo-Fagnano lobe large enough to cover the entire Ainsworth

Peninsula?

An alternative explanation may consist that we miss part of the eastern Pleistocene
deformationin Tierra del Fuego. Smalley et al. (2003) observed an additional 1—2 mm.yr* relative
plate motion that may be diffusely distributed across the northern Tierra del Fuego. The GPS
stations of northern San Sebastian Bay and southern Santa Cruz Province are moving northward
of 1 mm.yr* with respect to stable South America. The authors proposed that this deformation
is localized along a pre-supposed Magellan rift system (Diraison et al, 2000; Ghiglione et al,
2013). They suggest that this deformation accommodate the Patagonian orocline continuous
development or may be associated with the northward continental drift around the south-west

corner of South America (Diraison et al., 2000; Smalley et al,, 2003; Ghiglione et al,, 2013).

In Chile, we urge the need for GPS station densification to compare the present-day strike-
slip behaviour of the Magallanes fault from the Eastern Tierra del Fuego. Furthermore, GPS-
measurements in Magallanes region are compulsory to better discriminate the origin of vertical
movement between a glacial isostasy adjustment contribution and the neotectonic uplift process

along the southernmost Fuegian Andes.
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Abstract

Across the extreme south of Patagonia, the Magallanes-Fagnano Fault (MFF) ac-
commodates the left-lateral relative motion between South America and Scotia
plates. In this paper, we present an updated view of the geometry of the eastern
portion of the MFF outcropping in Tierra del Fuego. We subdivide the MFF in eight
segments on the basis of their deformation styles, using field mapping and interpre-
tation of high-resolution imagery. We quantify coseismic ruptures of the strongest
recorded 1949, M 7.5 earthquake, and determine its eastern termination. We rec-
ognize several co-seismic offsets in man-made features showing a sinistral shift up
to 6.5 m, greater than previously estimated. Using 1°Be cosmogenic nuclides depth
profiles, we date a cumulated offset in post-glacial morphologies and estimate the
long-term slip rate of the eastern MFF. We quantify a 6.4 = 0.9 mnva left-lateral
fault slip rate, which overlaps geodetic velocity and suggests stable fault behaviour

Technologique, Grant/Award Number: PhD
Scholarship Sandrine ROY; Argentinian-
French ECOS-SUD, Grant/Award Number:
A15U02

since Pleistocene.

1 | INTRODUCTION

The Magallanes-Fagnano Fault (MFF) accommodates the sinis-
tral motion between the Scotia and South America plates along a
600 kmfault systemthat crosses the Isla Grande de Tierra del Fuego
from the western channel of the Magellan Strait to the Atlantic
coast (Figure 1a). This active transform boundary continues east-
ward along the North Scotia Ridge towards South Georgia (Betka,
Klepeis, & Mosher, 2016; Dalziel, Lawver, Norton, & Gahagan, 2013;
Esteban, Tassone, Isola, Lodolo, & Menichetti, 2018; Klepeis, 1994).
In Tierra del Fuego, GNSS data indicate that active deformations are
localized on the MFF, and that present-day fault velocity ranges be-
tween ~5.9 +£0.2 mmya (Mendoza et al., 2015) and ~6.6 +1.3 mnya
(Smalley et al., 2003). The locking depth of the eastern MFF is esti-
mated at about 11 +5 km (Mendoza et al., 2015).

In this work, we focus on the Eastern MFF between the Fagnano
Lake and the Atlantic coast in Tierra del Fuego (Figure 1b). Two major
seismic events occurred in 1879 and 1949. On the 1 February 1879,

several European settlements reported an earthquake of intensity VII
Modified Mercalli Scale (MMS) near Punta Arenas and VIIl MMS in
Tierra del Fuego (Cisternas & Vera, 2008), that was later estimated
having magnitude 7-7.5 (Lomnitz, 1970). In 1949, two main earth-
quakes occurred on December 17 at 6:53 (GMT) (M,,7.75), and at
15:07 (GMT) (M, 7.5), followed by several aftershocks of unknown
magnitude (Febrer, Plasencia, & Sabbione, 2000; J aschek, Sabbione, &
Sierra, 1982). We report in Figure 1b the position of 1949 epicentres
according to different authors. Co-seismic surface ruptures (Figure 2a)
were described at Fagnano and Udaeta Lakes shoreline and in the
Estancia La Correntina (Costa et al., 2006; Lodolo et al., 2003; Pedrera
et al., 2014). The maximum horizontal component associated with the
1949 ruptures was estimated up to 4 m(Costa et al., 2006).
Intertwined with the tectonic activity, the landscape of Tierra del
Fuego has been shaped by the alternating advance and retreat of the
Fuegian Patagonian ice-sheet (Coronato, Seppala, Ponce, & Rabassa,
2009; Glasser & Ghiglione, 2009; Waldmann, 2008; Waldmann,
Ariztegui, Anselmetti, Coronato, & Austin, 2010). A major glacial lobe
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FIGURE 1 (a)Tectonic setting of southernmost Andes with plate boundary velocities (mnva) (from: Barker, 2001; Dalziel et al., 2013;
Ghiglione et al., 2010; Thomas, Livermore, & Pollitz, 2003), superimposed on greyscale topography and bathymetry (Sandwell & Smith,
1997). Relative strike-slip motion of MFF from (Mendoza et al., 2015). Red lines are active structures; black lines are extinct tectonic
features. ANT, Antarctic plate; BB, Burdwood Bank; FPH, Former Phoenix plate; HFZ, Hero Fracture Zone; Is. M, Islas Malvinas; MFF,

M agallanes-Fagnano Fault; MAFZ, Malvinas-Agulhas Fracture Zone; SAM, South America plate; SCO, Scotia plate; SFZ, Shackleton Fracture
Zone; SSH, South Shetland plate; SSW, South Sandwich plate, TdF, Isla Grande de Tierra del Fuego. (b) Faults and seismicity of Tierra del
Fuego. The trace of the MFF is shown with a red dotted line, and the major fold-thrust belt (from Glasser & Ghiglione, 2009) are shown with
black lines. We reported historical 1949 earthquakes epicentre locations proposed by (a) Castano (1977); (b) ] aschek et al. (1982); (c) Lomnitz
(1970); (d) Pelayo and Wiens (1989); (e) U.S. Geological Survey (2017); Red and grey shaded ellipses refer to the most consistent region

for epicentre location of the two main 1949 shocks. Catalogue of earthquakes are from (Buffoni, Sabbione, Connon, & Ormaechea, 2009;
Febrer et al., 2000; Flores Véliz, 2017; Pelayo & Wiens, 1989). Locations of GPS sites measured in Mendoza et al. (2015) [Colour figure can
be viewed at wileyonlinelibrary.com]

N

|
; | | $ New measurements
m_e__é_“_ i } e t Previous measurements
EP | i
4§ 4 5.0 EO.Sm
5 |
P older surface rupture
5 f Eastern extension of the 1949 rupture
= A
B -2 [ M o P O G
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Along fault position from Fagnano shoreline (km)
1 Turbio segment 1949 rupture along master fault Older strike slip geometry ALOS SRTM 30 m
25an Pablo segment* 427 1949 rupture 27 Major strike-slip fault .7Dﬂma.s.l
3 Lower Udaeta segment - Inferred === Inferred strike-slio faul
& Upper Udaeta segment - Inferred 1949 rupture nferred strike-slip fault e
5 La Blanca segment* o—*® New coseismic offset measurements - New °Be dating
6 Pop-up segment* 4 Reported coseismic deformation @ Uplifted block
7Ir|goyeq_segment* X X N(_)t faulted p‘re-1949 river terrace © subsided block
8*Ma|enguena segment without coseismic deformation 5 ) ) )
Our study # No strike slip deformation

\‘5\,\’ Cadaster's fences
FIGURE 2 (a) Structural map of the eastern MFF. The 1949 surface ruptures are shown as red lines, and the segments with evidences of
long-term slip are shown as brown lines. The red cross symbolizes the eastern termination of the 1949 surface rupture. Reported coseismic
surface deformations: (a) sag pond and vertical scarp (~0.5 to 1 m) in Fagnano gravel bar (Lodolo et al., 2003); (b) liquefaction and truncated-
tree line features (Onorato et al., 2016; Pedrera et al., 2014); (c) and (d), respectively, ‘San Pablo’ and ‘Oliva’ disrupted fences mentioned by
(Costaet al., 2006). (e) and (f) show two previous reported offsets by eyewitnesses without exact locations (Costa et al., 2006). The relative
uplifted blocks are shown with a circled plus sign. The base map is DEM SRTM ALOS Word 3D-30m (© J AXA). (b) 1949 sinistral horizontal
offsets along the eastern MFF. Red dots and their associated error bars correspond to measurements from this study. Previous reported
offset using green triangles and green shaded rectangles showing the range of possible locations. The 1949 surface rupture continues
westward through the Fagnano lake [Colour figure can be viewed at wileyonlinelibrary.com]

flowed eastward from the Darwin Cordillera (Figure 1b) and carved a and eroded part of the pre-glacial strike-slip morphologies (Coronato,
deep valley now partly occupied by the Fagnano Lake, while east of Meglioli, & Rabassa, 2004). Consequently, the reconstruction of the
the lake, smaller tributary glaciers flowed northward above the fault, last deglaciation timing and the related deposit locations are crucial
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to understand when and where post-glacial strike-slip faulting were
recorded. In our work, we built high resolution digital elevation model
from Pléiades images combined with extensive field work to study the
remarkable imprint of the tectonic activity left in the glaciofluvial de-
posits and analyse the geometry and kinematics of the fault ruptures.

The Holocene activity of the MFF has been studied at some spe-
cific sites by Costa et al. (2006), Waldmann et al. (2011), Esteban et
al. (2014), Onorato, Perucca, Coronato, Rabassa, and Lépez (2016),
Perucca, Alvarado, and Saez (2016). In this paper, we present a detailed
description of the 65-km long onshore part of the fault located east
of Fagnano Lake, including the previously unstudied 30 kmlong seg-
ments located east of Udaeta lake. We describe the 1949 rupture, and
reassess the horizontal offset and the coseismic rupture length with
new observations of unprecedented described features. Finally, we de-
scribe the geomorphic cumulated offset to constrain the average MFF
long-termslip rate since the Late-Pleistocene.

2 | EASTERN MFF GEOMETRY

East of Fagnano Lake, the MFF strike is N90°-95°, i.e. sub-parallel
to the Palaeogene structures that conformthe Fuegian thin-skinned

(a) (b)

fold and thrust belt (Ghiglione & Ramos, 2005; Klepeis & Austin,
1997). We subdivide the fault into eight segments with their sin-
gular geomorphic expressions. All segments are characterized by a
main strike-slip kinematics, however, a moderate dip-slip compo-
nent results in the relative uplift of either the southern or northern
block (Figure 2). The deformation style varies along the 65 kmlength
of the fault and exposes both localized and more distributed pat-
terns. We observe on most of the segments Riedel faults (Figure 3a)
with a minor vertical component. Orientations indicate R-shear syn-
thetic fractures ranging N70-75° (Figure 3).

In other segments, the tectonic deformation is distributed off
fault in a sheared zone. At the northern foothill of Sierra Irigoyen
along segment 6, we identify a 3-km-long alignment of hectometric
pop-up structures (Figure 4a). They consist in asymmetric 2-6 m-high
rhomboidal hills, elongated in their ENE, WSW axis. The inner part
exposes N80°-striking Riedel faults (Figure 4b,d). On pop-ups, trees
trunks of 100 years old are progressively tilted towards the external
border, evidencing that the elevation of these structures amplified
during the last earthquake (Figure 4c,e). This particular expression
of surface deformation, distributed on transpressive structures, is
located in an active flood plain. The presence of unconsolidated sand
material and water may favour this deformation style.

Riedel shear

——

(e). Northern block
3 10%, b c.d)
&ye pns\gz

Southern block

Southern block

Northern blook

FIGURE 3 Deformation style of

the segment 5 (a) Block diagram of

Riedel faults with a long-term dip-slip
component; (b) Field photography of the
Riedel faults [Colour figure can be viewed
at wileyonlinelibrary.com]

Pop-ups segment

FIGURE 4 Geometry and style of the
pop-up structures along segment 6 (a)
General view of the pop-ups alignment
(green forested patches); (b) detailed
structural sketch of one pop-up showing
Riedel faults; (c) pop-up structure with
fan shaped tilted trees; (d) Riedel fault
within a pop-up; (e) pop-up structure with
tilted tree [Colour figure can be viewed at
wileyonlinelibrary.com]



ROY et al.

3 | THE 1949 CO-SEISMIC RUPTURE

Costa et al. (2006) interviewed several eyewitnesses of the 1949
earthquakes and concluded that the horizontal offset did not exceed
4 m. Some witnesses however reported lateral offsets as large as
6 m. Unfortunately, these observations are not supported by field
measurements and their precise location is missing. A more exhaus-
tive and accurate offsets estimation is therefore fundamental to im-
prove earthquake scaling behaviour for this fault.

We observe many preserved markers of the co-seismic ruptures
from the last earthquake sequence, some of them giving informa-
tion on the 1949 sinistral offset. Two offsets have been measured
(Figure 5) in sheep fences corresponding to the Argentinean land
registers of the early 20th century (Casali & Manzi, 2017). These
limits correspond to several tens of kilometres N-S straight wired
connected fences which can easily be mapped from satellite images
(Figure 5a). In segments 5 and 6, fence offsets evidencea4 £0.2 m
and a 6.5 +0.5 msinistral shift, respectively (Figure 5b,c). However,
it is not possible discriminating whether the offset originated from
one or fromthe sum of the two successive shocks. Also, no evidence
of creeping has been noticed since the new fences replaced the
pre-1949 ones (Figure 5d).

Another offset is measured at the segment 7 (Figure 2), where
N75° lineament have been previously noticed (Ghiglione, 2003).

FIGURE 5 (a)Pléiade image above
the fault segments 5 and 6 showing the
location of offset fences. (b) and (c) GPS
points along fences superimposed on
Pléiade images, respectively, at segments
5 and 6. Note: on the figure (b) the

NS scale of the lower graph has been
compressed 10 times. W hite arrow in (c)
highlight the trace of the fencesaway =~
fromthe coseismic rupture zone. (d)

Photography of measured sinistral offset

along the segment 6, showing some of the

disrupted fence abandoned poles [Colour

figure can be viewed at wileyonlinelibrary.

com]
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Linear regressions

The fault is crossed by a stream flowing southward which under-
goes a sharp sinistral offset of 5 m £0.5 m. Besides, in the seg-
ment 2 a 6.2 =1 msinistral offset is also visible in the foundations
of an abandoned broken bridge that spanned over the fault line.
These field measurements evidence the horizontal component of
the rupture on different segments and show that largest offsets
are up to 6-6.5 m. This value is higher than previously measured
(4 m) and is consistent with observations noticed by eyewitnesses
of the 1949 event.

The easternmost offset measured is localized within the seg-
ment 7. Eastward, no geomorphic evidence of the rupture could
be observed in pre-1949 river terraces, suggesting that the sur-
face rupture did not propagate farther east (Figure 2b). Along the
segment 8, the fault trace is visible in a continuous 5 m-high scarp.
However, this scarp is much more degraded than in the western
segments. These characteristics are consistent with the occur-
rence of older ruptures along this segment. We did not observe
any strike-slip evidence between the Colorado and Malengtiefa
Capes.

Our observations show that 1949 co-seismic rupture zone
ended at 50 km east of the Lake Fagnano shoreline. Westward
of our study zone, the rupture continues across the Fagnano
lake parallel to its EW elongate geometry. It could die out some-
where along the 100 km of the lake or continue further west in

rthern
lock

15! distance (m)
B off-fault
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the Magellan Strait. Nevertheless, the lack of observation on the
western part of the MFF prevent to identify the 1949 surface rup-
tures termination.

4 | POST-GLACIAL SLIP RATE

Here, we use the changes in the hydrological network following the
Fuegian glaciers retreat to assess the post-glacial long-termslip rate.

The segment 2 crosscuts four well-defined geomorphic markers
within a 2 kmrlong zone (Figure 2a): a dead valley, its associated me-
ander, one topographic depression and one ridge (Figure 6a). We use
the respective edges of the geomorphic markers (Figure 6b) to as-
sess the left-lateral offset using the back-slip restoration technique
(e.0.Klinger et al., 2005; McGill & Sieh, 1991). The piercing points all
match with the best correlation at 115 +5 mdisplacement (Figure 6c).

This restoration shows that these various markers are synchro-
nous and probably related to a main landscape formation phase

[I5+5m

corresponding to the ice retreat. After restoration, the dead-val-
ley recovers its characteristic shape before the abandonment.
This valley was carved by meltwater streams following the re-
treat of tributary glaciers. Such glaciers have also been described
further to the west in Jeu) epen hill (Figure 2a; Coronato, Roig,
& Mir, 2002). Glacial and Glaciofluvial erosion erased previous
strike-slip offset. Such markers fix the beginning of the tectonic
surface deformation record in this segment, providing a relative
slip chronometer.

By dating the exposure of the youngest sediments of the fossil
drainage system, we date the abandonment of the valley and the
onset of the subsequent tectonic deformation record. Sampling took
place respectively near the Estancia Don Matias and the Puesto La
Quesaria (Figure 2a) with established procedures (Braucher, Brown,
Bourlés, & Colin, 2003; Ritz et al., 2006). We sampled quartz cobbles
for cosmic ray exposure dating using *°Be along two vertical profiles.
Surfaces are flat and underwent negligible erosion, thus we assume
a zero denudation rate for age calculations. We use the least-square

FIGURE 6 Back-slip deformation of post-glacial morphologies along segment 2. (a) High resolution DSM showing the dead valley drainage
system, (b) markers superimposed on DSM with strike-slip (red lines), and offsets in geomorphic markers (black lines): abandoned valley

with associated truncated meander (blue cover), hanging valley (green cover) and a hill's ridge (single black line). Lines are used as piercing
point crossing the fault trace. We projected each flank of the abandoned valley on the fault plane to identify piercing points. (c) Back slip
deformation of markers, the piercing points match for 115 +5 m cumulated offset [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 °Bedepth profiles with respective stratigraphic log and pit view of site Estancia Don Matias and Puesto La Quesaria (see
Figure 2 for location). 1°Be production rate has been calibrated for local latitudes and elevations (Stone, 2000), using the modified functions
of (Lal, 1991), which stands in quartz production of 4.92 +0.43 at g™ a™ at sea level and high latitude. Calculations were performed using
attenuation lengths of 150, 1,500 and 5,300 g/cm? with associated relative contributions of 97.85%, 1.50% and 0.65% (Braucher et al.,
2003). We employ the currently accepted 1°Be half-life value of 1.387 +0.012 106 years (Chmeleff, Blanckenburg, Kossert, & ) akob, 2010;
Korschinek et al., 2010; Nishiizumi et al., 2007). M easurements were completed at the accelerator mass spectrometry facility ASTER (Aix-
en-Provence, France) after preparation at the ISTerre GeoThermoChronology platform (Grenoble, France) [Colour figure can be viewed at

wileyonlinelibrary.com]
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inversion to model theoretical curves on both profiles for 1°Be con-
centration measurements.

Estancia Don Matias' terrace stratigraphic log presents four
faciés of well-sorted sandy gravel matrix with gradational contacts
resulting fromglaciofluvial depositions (Figure 7). The predominance
of subangular and subrounded clasts in the two lower levels (unit
3 and 4) indicates a short glaciofluvial transport. The concentra-
tions distribution does not decrease exponentially with depth, ev-
idencing that sample may have two exposure sources: the common
post-depositional cosmogenic nuclide production and their own
pre-depositional production, which is responsible for an intrinsic
10Be inheritance value. Based on these hypotheses, we apply the
profile rejuvenation methodology (Le Dortz et al., 2012). We select
the sample (DM5) with the minimum °Be concentration normalized
by depth. It has the lowest inherited concentration among all the
profile samples. Its apparent exposure age is, therefore, the closest
to the true post-depositional age of the valley. The *°Be concentra-
tion of sample DM 5 yields a maximum age of valley abandonment at
~18 +2 ka. This age fixes the beginning of the tectonic deformation
record. In the same area, age based on **C of basal peat bog grown
on top of moraine deposits confirm that ice retreat in this region
started before ~14 ka (Coronato et al., 2009).

At Puesto La Quesaria, we sampled the highest preserved alluvial
terrace, whose formation is supposed to be synchronous of regional
glacial retreat. The profile exposes pebble to gravel clastsin asandy ma-
trix characteristic of meltwater channel environment (Figure 7). Here,
the distribution of 1°Be concentrations decreases exponentially with
depth following the theoretical curve of 1°Be production (Brown et
al., 1991; Dunai, 2010), suggesting that inherited cosmogenic concen-
trations are negligible compared to post-depositional concentrations.
These concentrations yield a terrace exposure age of 20.2 1.5 ka,
overlapping the maximum age obtained near the Estancia Don Matias.

These ages characterize the main recession phase during which
the tributaries glaciers retreated above the Southern Hills (Coronato
et al., 2009; Rabassa, Coronato, & Martinez, 2011; Waldmann et al.,
2010). The abandonment of the glaciofluvial valleys resulting fromice
retreat fossilized the associated drainage system allowing the pres-
ervation of fault activity in the landscape since 18-20 ka. The cumu-
lated offset observed in the valley near by the Estancia Don Matias
since this period yields a geomorphic slip-rate of 6.4 £0.9 mnva.

5 | DISCUSSION AND CONCLUSIONS

We explore the main post-glacial deformations recorded along
the eastern sector of the MFF from Lake Fagnano to the Atlantic
coast and integrated previously documented geometries. Newly
described strike-slip structures, pop-ups, and Riedel fractures are
mapped with the relative vertical motion of blocks. The analysis of
high-resolution topographic models and satellite images does not
show any significant deformation on secondary structures, confirm-
ing that strike-slip motion concentrates along the master fault as
already suggested by GPS data inversion (Mendoza et al., 2011).
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We chart the 1949 surface primary ruptures and measured related
sinistral slips. Wedocument horizontal offsetsupto 6.5 0.5 m. Surface
rupture can be followed along 50 kmfrom the Fagnano Lake shoreline
to the tip of the segment 7. According to the main shocks magnitudes
the 1949 surface rupture probably continued beneath Fagnano Lake,
but the lack of direct access to the western part of the M FF prevent to
identify the 1949 western surface ruptures termination.

Back-slip restoration of offset glaciofluvial markers combined
with 1°Be dating allow the first quantification of the geomorphic slip
rate for this fault. The offset started to accumulate when the local
glacial catchment source vanished and associated drainage system
was abandoned ~18 + 2 ka ago. Our results yield a left-lateral Late
Pleistocene slip rate of 6.4 +0.9 mmya over this period. This value
overlaps the present-day velocity estimated using geodetic data.
The unchanged fault slip rate over the different time-scale suggests
a stable fault behaviour since glaciers retreat.

Previous indirect attempts of major MFF earthquake recurrence
estimations are divergent and possibly biased by the method used.
The shorter proposed recurrence interval is about 350-850 years
(Waldmann et al., 2011) while the longer is 3,000-4,500 years
(Costaet al., 2006). The former study uses as a proxy the mass-wast-
ing events in Fagnano Lake, which may integrate events triggered
on other structures, while the latter is based on a single palaeoseis-
mological trench, in which sedimentary and tectonic record are not
complete and some events may not be registered. Considering the
1949 co-seismic offsets in the area around the long-term slip-rate
measurement, we obtained an average offset of 6 £0.5 m. With a
geomorphic slip rate of 6.4 +£0.9 mnVa, and based on the average co-
seismic offset of 1949, we propose a frequency of large earthquakes
event about 1,000 £215 years.
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ANNEXE B - Chapter Il - Coordinates and photographs
of the two trenches ; Photographs of trenches

samples.

Trench near Estancia Don Matias : -54.55021° -66.47161°

Photo 2: Trench near Estancia Don Matias -54. 55021 -66.47161
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Photo 3: Samples from the trench near Estancia Don Matias -54. 55021 -66.47161
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Trench near Puesto |.a Quesaria -54.52300 -67.04391

Photo 4 Trench near Puesto La Quesaria -54.52300 -67.04391

Photo 5 Trench near Puesto La Quesaria -54.52300 -67.04391
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Photo 6: Samples from the trench Puesto La Quesaria -54.52300 -67.04391
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ANNEXE C - CHAPTER IIl - Morphotectonics: La Blanca

segment

New remarkable tectonic geomorphologies are documented in the La Blanca segment,
including sag ponds, pull-apart, and shutter ridges. Exceptionally preserved Riedels arranged in
positive flower structure between the Scotia Plate and the South American plates indicate a local
reverse strike-slip movement during Late-Holocene. Our study area is located 40 km east of the
Lake Fagnano. The La Blanca segment is the eastern prolongation of the Northern Udaeta Faul,

which bonds the active pull-apart basin Udaeta (Onorato et al, 2017).

However, the connexion between these segments is not recognizable in satellite images
(Figureib). The La Blanca’s geometry exposes a remarkably distinct and continuous elongated
shutter ridges with several sag-ponds and one small pull-apart (Figure 2a). The ridge is 10-20
meters wide, and the height varies along several kilometers from 1 up to 11 meters high. The
average ridge’s trend is Ngo®. The eastern end of these morphologies is identified within the
actual Irigoyen river, which crosses the fault scarp and the western tip at 54°33'29,55" S,
66.39'0.66” W. Pronounced faulting geomorphic features are identified such as several
topographic depressions (Figure2b). They may not directly result from tectonic activity, but they
are the hydrological response to the ridge uplift, and most probably act as a water gap. These
sag ponds are typically 10 to 60 m long for 5-10 meters wide and very shallow. The dried surfaces

with desiccation cracks indicate that rainfall may seasonally fill these landforms.

Toward the segment eastern end, the leading ridge vanished in a left step-over of 30 m
toward the north and of 8o m-long (Figure2c). A decametre-scale shutter ridge about 4 m high
follows this step-over (Figure2d). The geometry controls extensional deformation according to
the sinistral slip and left-stepping direction of the two sub-sections. We identified several
imbricated vertical faults, each of them exposed significant vertical displacement ~0.5-1 m

(Figure2c). They are arranged in a rhomboidal asymmetric shape and enclose a small graben
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about ~ 5 m deep. These features' structural style is almost identical to that observed in the pull-
apart development elastic dislocation theory model (Mann et al., 1983) and analog model in
sandbox (Woodcock and Fischer, 1986; McClay and Bonora, 2001). They indicate a hard-linkage
between the two sub-sections that accommodate local volume change along a discrete pull-

apart.

(Next page) Figure annexe B: (a) location map with Pleiades image; (b) sag-pond; (c) pull-apart
resulting from the left-stepping arrangement between the shutter ridge (foreground) and the

continuation of the fault scarp in the forest (background); (d) shutter ridge; (standing person for scale).
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ANNEXE D — CHAPTER Il - 3D analysis of Riedel in trench
site La Blanca

The trench site shows four main Riedel fractures A, B, C and D with orientation N75° to N70°
(Figure 2). In trenches, the geometries of the faults are consistent with what is observed in the
surface morphology. These Riedels crosscut the trench n°1and n®2, and correspond respectively
tothe mainfault FT2 in trench n®2, and to the pair of faults Fg/F10 (not apparent on western wall)
and F1/F1gintrench n®1 (Figure 10). As previously shown, these reverse dip-slip faults disrupt the
soil horizon and reached the surface with a vertical displacement about 10-20 cm. They are
associated with the last ruptures either 1879 and/or 1949. They are well-preserved on the
topography which implied necessarily that they are relatively young morphologies. Even though
the left-lateral movement is predominant along the MFF, these microfaults show a shortening
component. The principal shortening components is NS oriented, almost orthogonally with
respect to the tectonic boundary. These reverse dip slip faults are responsible for a local uplift of
paleosoil and arranged in a positive flower structure (Figure 10). The inward-dipping fault splays
have profiles ranging from steep upthrust (FT2, Fg/F10) to shallow-dipping thrust (F1/F19).
However, it is not possible to verify if the faults merge at depth, as suggested by worldwide

example of strike-slip contractional block (Harding, 1985).

Regionally, it seems the deformation style alternate along a single yet complex strike-slip
zone, including the Udaeta pull apart (Onorato et al,, 2017), La Blanca positive flower ridge, La
Blanca small pull-apart and aligned pop-up structures (Roy et al, 2020). As suggested by
theoretical studies of strike-slip, these regions may indicate the motion of adjacent crustal blocks,
which induced localized crustal extension and shortening (Chinnery, 1965; Christie-Blick and

Biddle, 1985; Bilham and King, 1989).

This architectural complexity is widely recognized in worldwide transcurrent intracontinental
fault, like the Kunlun Tibetan fault, the Central Anatolian fault and the San Andrea fault
(Umhoefer et al, 2007; Whitney et al., 2008; Duvall et al, 2013) and is known as 'porpoising

structure' (Crowell, 1974) or 'yoyo structure' (Umhoefer et al., 2007).

Since the youngest deposits are affected by multiple reverse faults with vertical uplift, it can

be interpreted that since the Late Holocene, this segment is experiencing significant shortening.
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The cumulated vertical displacement is ~+11 m (La Blanca ridge). One the other hand, the same
deposit seems to be affected by a local graben with ~-5 m of subsidence (La Blanca pull-apart).

Further investigation is required to determine if these secondary contractional and extensional

bends are coeval.

Figure Annexe C: (a) Photography and (b) block diagram showing the relationship between

topographic Riedels and reverse faults from the trench analysis. They form a positive flower
structure. The sinistral movement is shown with exaggerated offset between the uplifted blocks
of the structure. The Riedels are listed A, B, C, and D. Note that in figure g9(a) the trench n°1is not

fully excavated and it does not show the final extend of the trench.
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ANNEXE E - CHAPTER Il - Multiple deviated rivers in the
Sierra Irigoyen

Figure Annexe D: Measurements of long-term offsets following methods of chapter 4 (Zielke

etal, 2015).

54°35'S

Sierra Irigoyen offset n°1 (I1)

Sierra Irigoyen offset n°2 (12)

66/34'W__

R0

N
3, RO

1)

66°33'30"W

‘ N

T S.06,16

S, 08, 6k

<
N

o

282| P a

Sierra La Blanca offset n°1 (B1)

® s6x5m @ 60+5m 1 87+5m

@ 7stsm @ 46+5m 9 89+5m
111+10m@+@ 106+ 10m 142 126+10m

Sierra La Blanca offset n°2 (B2)

@ 365+20m

@ 349+20m

371+20m

ge

® 2144+20m @ 267+10m 152410m | @ 23145m @ 228+5m 21445m ® 557+25m @ 584+25m 616+25m
” d e
2 a '
kS
ﬂ Y
o .
<+
i)
S
o
S
2
[4p] { -TF 2 b
> ¥ E ]
3 okl I F 50 /
g [ 4T g
6 24 ) W *,—
F ’/ (v # L A r
¥ 3 AV (%33
- 5 & ; 3 .Po
e j #"‘ B SR s “ - IS
L O LT AT f72 s
S BT # ot —liss
.f.‘ ‘-,7‘3' h = A D C/S
O 21200/ 4005 o s L0 400 Ay d
X = Ay e - . [
~ A T s
66°35'30"W 66°35"W 66°34"W 66°33'30"|W



283|Page



ANNEXE F — CHAPTER IV, Trench Chile Eastern Wall

a | NO15°

EAST WALL
senestral strike-slip N90°
N

N195°

fig21

1 meter )

Figure Annexe E: Mosaic views of the trench's eastern wall across the Ainsworth fault section (a)

photographic mosaic; (b) with interpretative logs.
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ANNEXE G — CHAPTER 1V, Bel0 sample sites Cordillera
Paciencia and Puerto Toto.

Sample CPO1 (Cordillera La Paciencia)
-54,42522°, - 69,0157°
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N Sample TOTO1
- 54,36083°, - 69,47073°
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ANNEXE H — CHAPTER IV — Modern landslides in
Almirantazgo Sound

Punta Amarilla

Figure Annexe F: (a) Multiples landslides on the Punta Amarilla. (b) Landslides along the Caleta

Maria Southern banks.
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