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Université de Lille
Ecole Doctorale Sciences de l’Homme et de la Société
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Na vota, cc’eranu due chi av̀ıanu nu saccu de lenticchie de cuntàre.

Unu si disperava e chiang̀ıa :

≪Mamma, ca cumu am’e fhare? ’Un finimme cchiù! Cumu nde nesc̀ımu? ≫

L’atru cce disse:

≪Vue sapire cumu?

Tuni ncigna a cuntàre. Ca pue se vide.≫

— A Chicchina.

v





ACKNOWLEDGMENTS
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personnages, principaux et secondaires, pendant cette aventure digne d’un récit. Je
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appris en travaillant à vos côtés, sur la recherche comme sur moi-même. Je vous
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Docteur Solène Kalénine, pour votre précieux support et vos conseils en tant que
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tiens également à remercier tous les participants ayant accepté de prendre part aux
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de temps. Je te remercie de m’avoir permis de me reconcilier avec l’une des choses les
plus importantes de ma vie, et pour tous les enseignements, techniques et personnels,
que tu m’as transmis.
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ABSTRACT

The peripersonal space (PPS) has been defined as the action space immediately sur-

rounding the body where individuals can easily interact with objects and people. PPS

acts as a perception-action interface that allows a multisensory encoding of nearby

stimuli and plays a crucial role in the organisation and guiding of goal-directed or de-

fensive actions. PPS would be composed by multiple response-fields. Each response-field

consists in a portion of space endowed with a given functional value that determines

the most pertinent action to be potentially executed. Within this context, the aim of

the present thesis was to assess whether and how social and motor factors are inte-

grated when constructing such functional representation of space. Specifically, I tested

the general hypothesis that when motor and social factors are concurrently involved,

social factors modulate the influence of motor factors on the construction of PPS. The

two facets of PPS construction were examined: PPS representation (i.e., the way indi-

vidual represent their near-body space) and PPS exploitation (i.e., the way individuals

act within their near-body space). Five studies were conducted in the present thesis.

Study 1 showed that during a collaborative motor task with a confederate, individuals

extend their PPS representation. However, they tend to avoid exploiting space when

this coincides with the confederate’s PPS, even when associated to a higher possibility

to obtain a reward following a motor action. Study 2 showed that this effect is modu-

lated by individuals’ motor involvement in the task (i.e., acting vs. observing). Study

3, 4 and 5 focused specifically on PPS exploitation and showed respectively that the

use of space during social interaction is modulated by the features of the final spatial

target of the motor action, the availability of gaze and the sharing of a physical space.

Therefore, while Study 1 and 2 showed that social factors modulate the effect of mo-

tor factors, Study 3, 4 and 5 suggested that the reverse effect is also possible. These

findings suggest that social and motor factors are hierarchically taken into account

when representing and exploiting peri-personal space (PPS), determining whether and

how they prioritise a given portion of space during their interactions with the environ-

ment. In light of the present findings and in order to offer an integrative view of PPS

construction, the present thesis proposes a functional model of PPS, including three

interconnected and mutually influencing layers (a perceptual priority map, a motor

priority map and an action execution stage). From a wider perspective, the present

thesis defends the idea that PPS construction is not stable, but computed in a specific

instant as a function of the task demands, stimuli features and the physical and social

context.

Keywords: Peripersonal space, Action, Social intention, Reward prospects, Interac-

tion
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RÉSUMÉ

L’espace péripersonnel (PPS) a été défini comme l’espace d’action entourant le corps

où les individus peuvent facilement interagir avec les objets et les individus. Le PPS

agit comme une interface entre perception et action qui permet un encodage multisen-

soriel des stimuli à proximité et joue un rôle crucial dans l’organisation et l’exécution

d’actions visant la protection du corps ou l’interaction avec des objets. Le PPS serait

composé de plusieurs champs de réponse, à savoir des portions d’espace dotées d’une

valeur fonctionnelle déterminant l’action la plus pertinente à exécuter. Dans ce con-

texte, l’objectif de la présente thèse était d’évaluer si et comment les facteurs sociaux

et moteurs sont intégrés lors de la construction d’une telle représentation fonctionnelle

de l’espace. Plus précisément, j’ai testé l’hypothèse selon laquelle, lorsque des facteurs

moteurs et sociaux sont simultanément impliqués, les facteurs sociaux moduleraient

l’influence des facteurs moteurs sur la construction du PPS. Les deux facettes de la

construction des PPS ont été examinées : la représentation du PPS (i.e., la façon dont

les individus se représentent l’ espace autour de leur corps) et l’exploitation du PPS

(i.e., la façon dont les individus agissent dans cet espace). Cinq études ont été menées

dans le cadre de la présente thèse. L’étude 1 a montré que lors d’une tâche motrice

en collaboration avec autrui, les individus étendent leur représentation du PPS. Cepen-

dant, ils ont tendance à éviter d’exploiter l’espace lorsque celui-ci cöıncide avec le

PPS d’autrui, même lorsqu’il est associé à une plus grande probabilité d’obtenir une

récompense suite à une action motrice. L’étude 2 a montré que cet effet est modulé

par l’implication des individus dans la tâche (i.e., agir vs. observer). Les études 3, 4

et 5 ont examiné spécifiquement l’exploitation du PPS et ont montré respectivement

qu’en situation d’interaction sociale, l’utilisation de l’espace est modulée par les car-

actéristiques de la cible spatiale à atteindre à la fin de l’action, la présence du regard

d’autrui et le partage d’un espace physique. Par conséquent, alors que les études 1 et

2 ont montré que les facteurs sociaux modulent l’effet des facteurs moteurs, les études

3, 4 et 5 ont suggéré que l’effet inverse est également possible. Ces résultats suggèrent

donc que les facteurs sociaux et moteurs sont pris en compte de façon hierarchique

lorsque les individus se représentent et exploitent leur PPS, attribuant une priorité

donnée à une portion d’espace donnée durant leurs interactions avec l’environnement.

A la lumière de ces résultats et afin d’offrir une vision intégrative de la construction

du PPS, la présente thèse propose un modèle fonctionnel du PPS, comprenant trois

niveaux inter-connectés et s’influençant mutuellement (une carte des priorités percep-

tives, une carte des priorités motrices et une étape d’exécution de l’action). Dans une

perspective plus large, la présente thèse défend l’idée que la construction du PPS n’est

pas stable, mais qu’elle est déterminée à un instant précis par les exigences de la tâche,

les caractéristiques des stimuli et le contexte physique et social.
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Part I

THEORETICAL FRAMEWORK





1
THE SPACE AROUND THE BODY

1.1 a fragmented representation of space

Interacting with the surrounding environment is a complex process, which relies on

a series of computations performed by the brain. Such computations aim at identify-

ing the nature of the ambient stimuli, localizing them with respect to the body, and

determining the current state of the body-parts in order to prepare the appropriate

motor response and properly interact with a given stimulus. Among that series of

computations, the distinction between closeness and distance plays a central role. In-

deed, although the environment in which we are embedded is visually and auditory

perceived as being homogeneous and continuous, this is not the case at the cognitive

and neuronal level.

Over the last two decades, numerous neurophysiological, neuroimaging and behav-

ioural studies have identified and described distinct cerebral networks specialised in

the coding of stimuli depending on their distance in space from the body (for a re-

view, see Cléry et al., 2015; Serino, 2019). One of the early evidence of a dissociation

between the processing of far and near space was provided by Brain (1941) during a

multiple-case study of brain-injured patients. The author observed that some patients

presented deficits in localizing, pointing to and grasping objects within hand reach

when located in the hemi-space opposite to the damaged brain hemisphere. Some pa-

tients displayed the opposite pattern, with difficulties in localizing objects when placed

at a greater distance from the body but no deficits in processing objects when located

within a reachable distance. Such selective impairment of stimuli processing depending

on their location in space led the authors to conclude on the existence of a dissociation

between a “grasping distance” and a “walking distance”, which was later confirmed by

behavioural, neuropsychological and neuroimaging studies conducted in primates (e.g.,

Rizzolatti et al., 1983; Rizzolatti et al., 1981) and humans (e.g., Halligan et al., 2003;

Ortigue et al., 2006).

On the basis of these findings, several models have been proposed to describe and

define the segmented representation of space (e.g., Cardinali et al., 2009a; Cléry et al.,

2015; Goodale & Milner, 1992; Previc, 1998; Rizzolatti et al., 1981). Beyond some slight

differences among the proposed conceptions, there is common agreement to distinguish

at least three sub-spaces (Cardinali et al., 2009a; Cléry et al., 2015; Serino, 2019):

(a) the personal space, corresponding to the space occupied by the body, which is

coded in proprioceptive, interoceptive and tactile terms; (b) the space immediately
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surrounding it (named peri-personal space), which is coded in tactile, proprioceptive

auditory and visual terms and that is directly implicated in the interaction with objects

and people; and finally, (c) the space far from the body (named extra-personal space),

coded in visual and auditory terms, which does not allows direct motor interactions

but subserves locomotion, orientation and visual search (Cardinali et al., 2009a; Craig,

2003; Previc, 1998; Rizzolatti et al., 1981).

In the context of the present research work I will only focus on the notion of PPS as

it is the portion of space where individuals interact with objects and people (Coello &

Cartaud, 2021; de Vignemont & Iannetti, 2015; di Pellegrino & Làdavas, 2015). The

representation of such space results from the integration of multiple information stem-

ming from the visual, auditory, tactile, vestibular, proprioceptive and somatosensory

systems (Makin et al., 2007; Previc, 1998; Van Der Stoep et al., 2015; Van Der Stoep

et al., 2016). Moreover, such representation would be composed of multiple fields, each

one associated with a specific value and relevance for the execution of defensive or pur-

poseful actions (Bufacchi & Iannetti, 2018). Because of its relevance for the interaction

with the environment, PPS representation is characterised by a high degree of plastic-

ity and a sensitivity to the effect of several factors. In the following sections we will

describe the brain correlates of PPS representation, illustrate the factors modulating it

and outline its principal function.

1.2 neurophysiological origins of the peripersonal space no-

tion

The term peripersonal space was first introduced by Rizzolatti et al. (1981) to define

a specific population of neurons identified in the macaques’ peri-arcuate cortex dur-

ing a single-cell electrophysiological study. The population identified by the authors

implied a group of bimodal neurons (i.e., neurons exhibiting suprathreshold responses

for stimuli stemming from more than one sensory modality) that fired when a tactile

and a visual stimuli were concurrently presented in the space in proximity to the ani-

mal’s body or directly on its skin. Two classes of such bimodal neurons were observed:

the peri-cutaneous neurons, which discharged for visual and tactile stimuli occurring

simultaneously few centimetres from the skin, and the distant peri-personal neurons,

whose activation was registered for bimodal stimuli presented under approximately 30

centimeters from the macaque’s hand, arm or head.

Following in the footsteps of Rizzolatti and colleagues’ works, further researches iden-

tified additional populations of visuo-tactile neurons in other brain regions (see Section

2.1; Avillac et al., 2007; Duhamel et al., 1998; Leinonen et al., 1979; Leinonen, 1980),

as well as other class of bimodal neurons responding to the concurrent presentation of a

tactile and an auditory stimulus (Graziano et al., 1999). Some other studies discovered

also the existence of trimodal, visuo-audio-tactile neurons (Graziano & Gandhi, 2000;

Graziano et al., 1999), which showed a sensitivity to the concomitant presentation

of stimuli stemming from three sensory modalities (i.e., visual, tactile and auditory).



1.3 the physiological and structural features of peripersonal neurons 5

The capability of these neurons to integrate multisensory inputs derives from their

physiological structure: the presence of multiple receptive fields.

1.3 the physiological and structural features of peripersonal

neurons

The mean feature of multisensory neurons are their overlapping double or triple re-

ceptive fields: They are endowed with a tactile receptive field, which covers the skin

of a body part, and with a visual or/and an auditory receptive field, which extends

to and encloses the space around this same body part (see Figure 1.1A). Due to the

spatial overlap between the tactile and the visual (or auditory) receptive fields, PPS-

related bimodal neurons are able to synthesise inputs stemming from different sensory

modalities, on the condition that they are presented synchronously and in a congru-

ent spatial location (Avillac et al., 2005). Although there are very few studies showing

that PPS neurons perform actively multisensory integration (Avillac et al., 2007), it has

been observed that PPS coding often coincides with multisensory integration processes

(Bernasconi et al., 2018; Cléry & Ben Hamed, 2018).

One of the peculiarities of the multiple receptive fields of PPS neurons is that their

size is highly variable according to the body part they cover (see Figure 1.1B). For

some visuo-tactile neurons, the tactile receptive field covers the face or the hand, while

the visual receptive field encompasses a tiny portion of space around it less than 10

cm (e.g., Gentilucci et al., 1988; Rizzolatti et al., 1981). For some others, the double

receptive field covers the whole arm and the space 10–60 cm around it (Bremmer et al.,

2001; Fogassi et al., 1992; Graziano & Gandhi, 2000; Graziano & Cooke, 2006; Graziano

et al., 1997; Rizzolatti et al., 1981). For even others, the visuo-tactile field covers the

trunk surface and extends to the space within reach (Fogassi et al., 1996); some others

cover one side of the body or even the whole body (Leinonen et al., 1979), thereby

extending out beyond reaching distance. Overall, for 95% of neurons, the multisensory

integration mechanism applies to the space within reach. For the remaining 5%, such

mechanism covers also the space few meters distant from the body (Graziano, 2018).

In light of theses observations, Graziano (2018) suggested that PPS mechanisms would

not be limited to the space near the body. Rather, PPS mechanism “greatly empathizes

the space near the body, but processes distant space as well” (Graziano, 2018, p. 50).

Another peculiarity of the PPS neurons’ receptive fields is that they are anchored to

the body part they cover (Graziano et al., 1994). Indeed, research has shown that if

the body-part is displaced in space, the overlapping receptive field shifts and follows

the body part (Fogassi et al., 1996; Graziano et al., 1997). A similar multisensory

processing of bi-modal stimuli occurring in the vicinity of a specific body-part and

anchored to it was also observed in humans by behavioural (e.g., Bernasconi et al., 2018;

Schicke et al., 2008; Serino et al., 2015; Teneggi et al., 2013; Zanini et al., 2021) and

neuropsychological studies (e.g., di Pellegrino et al., 1997; Farne et al., 2005; Làdavas

et al., 1998; Scandola et al., 2016; Spence et al., 2001). In light of these findings, it was
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Figure 1.1
The Modular Nature of PPS Representation

Note. A. Illustration of the tactile (grey area) and visual (black outlined solids) spatially
overlapping receptive fields of bimodal neurons in area F4. Each receptive field codes
selectively for a given limb of the monkey’s body (inspired from Fogassi et al., 1996).
B. Schematic illustration of the overlapping receptive fields of different peripersonal
neurons. Some neurons specifically encode the space nearby the body-parts. Some other
encompass a wider portion of space within reaching distance or extending beyond it
(inspired from Graziano, 2018).

therefore suggested that PPS should not only be considered as a unique representation

constructed around the whole body, but also, and rather, as the ensemble of multiple

body-part centred representations, such as hand PPS, face PPS, trunk PPS or feet PPS

(Serino, 2019).

Multisensory integration is a fundamental process that is primarily involved in the

perception of body frontiers and in the feeling of body ownership (Ehrsson, 2012). Mul-

tisensory integration contributes to the perceived location of the self in space (Holmes

& Spence, 2004; Noel et al., 2015b) and interacts with the construction of the body

schema (i.e., the multisensory representation of body structure and its parts’ metrics

and position in relation to the body; Cardinali et al., 2009a; Maravita et al., 2003).

In fact, PPS and body schema representations have been found to share some com-

mon brain correlates, such as the anterior intra-parietal sulcus (aIPS), that is mainly

responsible for the integration of proprioceptive and tactile information (Makin et al.,

2007). Interestingly, the disruption of the integration of visual, proprioceptive, vestibu-

lar and tactile information was found to perturb the distinction between personal and

extra-personal space. This perturbation generates the so-called “out of body experi-

ences”, a feeling of excorporation frequently reported by healthy individuals but also

by schizophrenic patients (Blanke et al., 2004).

Apart from contributing to the perception of body integrity, multisensory integration

has also been found to serve other functions, such as the perception of stimuli in space in

relation to the body. Some authors have proposed that the main role of multisensory

neurons would be to situate the stimulus in the space by predicting its impact on

the body (Cléry & Ben Hamed, 2018), through the “anticipatory activation” of the
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overlapping multisensory receptive fields (Hyvärinen & Poranen, 1974). This principle

is at the core of studies focusing on looming stimuli, showing that stimuli approaching

the body are perceived differently from receding stimuli. In addition, the velocity of

the looming stimulus was found to induce an expansion of the visual receptive field

(Fogassi et al., 1996), allowing an earlier and more efficient detection of the stimulus

position and movement in relation to the body (Bremmer et al., 2013; Colby et al.,

1993).

The empirical findings reported in the scientific literature showed that PPS repre-

sentation is a complex, multi-faced construct, that relies on a specific physiological

organisation and is underpinned by a specific mechanism (i.e., the multisensory inte-

gration of static and dynamic stimuli occurring in the near-body space). Nevertheless,

what is the exact role of such multisensory processing of information? What is its rel-

evance for the organisation of the individuals’ behaviours? The next Chapter will aim

at elucidating these questions.





2
A SPACE FOR ACTION

Multisensory integration refers to the phenomenon by which two stimuli presented

simultaneously elicit a neuronal activation significantly greater (or smaller) than the

activation generated by two stimuli presented individually (Avillac et al., 2007; Stein

& Stanford, 2008). Multisensory integration constitutes therefore an enhanced (or a

reduced) treatment of stimuli, which applies in the case of PPS neurons to events oc-

curring in the near-body space. As a direct consequence, it has been suggested that

multisensory integration specific to PPS neurons would be a crucial mechanism that

gives “a greater perceptual salience to visual events occurring in the vicinity of the

body” (Brozzoli et al., 2012, p. 450), that can potentially constitute the target of a

motor action. In the present Chapter, I will present several neurophysiological, neu-

roimaging, neuropsychological and behavioural studies conducted in both primates and

humans showing that stimuli occurring occurring within PPS benefit from an enhanced

treatment. These studies will also evidence the association between PPS processing and

the organisation of upcoming motor actions.

2.1 a shared brain circuitry

Several studies have observed structural similarities between the brain circuit under-

lying PPS-coding and the one supporting motor performance. As a matter of fact, re-

search has shown that multisensory neurons, ensuring the perception of stimuli, were

localised in high-level associative areas that are part of a fronto-parietal network, which

is involved in motor planning and execution. In monkeys’ brain, this fronto-parietal

network includes: the ventral premotor cortex (vPMC, areas 6 and F4; Fogassi et al.,

1992; Fogassi et al., 1996; Graziano et al., 1997; Rizzolatti et al., 1981), the posterior

parietal cortex (PPC, areas 7a and 7b; Leinonen et al., 1979), the ventral intraparietal

area (VIP; Avillac et al., 2007; Colby et al., 1993; Duhamel et al., 1998), the poste-

rior part of the superior temporal sulcus (STS; Bruce et al., 1981) and the putamen

(Graziano & Gross, 1993).

A homologuous network has also been identified in the human brain (Bremmer et al.,

2001; Brozzoli et al., 2011; Gentile et al., 2011; Grivaz et al., 2017), with several studies

confirming the contribution of the vPMC (Bremmer et al., 2001; Ferri et al., 2015), the

PPC (Bernasconi et al., 2018) and the VIP area (Avillac et al., 2005; Guipponi et al.,

2013) along with the intraparietal sulcus (IPS; Makin et al., 2007), dorsal parieto-

occipital sulcus (dPOS, Quinlan & Culham, 2007), superior parieto-occipital cortex

9
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(SPOC, Gallivan et al., 2009), and cerebellum (Bartolo et al., 2014). As a whole, these

findings suggest that the brain correlates of PPS representation overlap with the ones

subtending motor preparation.

2.2 pps representation subserves action preparation

2.2.1 The multisensory integration induces motor response facilitation

The interrelation between PPS representation integration and motor preparation was

further evidenced by human behavioural studies exploiting the multisensory integra-

tion task. The multisensory integration task consists in detecting the presence of a

tactile stimulation while a visual (e.g., a luminous source; Serino et al., 2011) or an

auditory stimulation (a sound; e.g., Canzoneri et al., 2012) is delivered synchronously

or asynchronously either in the near-body or in the far-from-the body space of partic-

ipants. The concomitant visual or auditory stimulus can be static (e.g., Serino et al.,

2011) or dynamic (e.g., Ferri et al., 2015; Huang et al., 2018), receding from or ap-

proaching the participants’ body (e.g., Kandula et al., 2015; Serino et al., 2015). The

typical pattern of results observed using this task consists in faster reaction times in

response to the tactile stimulation when the concomitant visual (or auditory) stimu-

lus is presented synchronously and in the near space. No effect emerges instead when

the concomitant stimulus is delivered asynchronously and in the participant’s body

far space. Such faster motor response is referred to as cross-modal congruency facili-

tation, and is usually explained by a mobilisation of the motor system induced by the

multisensory processing of the two stimuli (Finisguerra et al., 2015).

In support of this explanation, Serino et al. (2011) impaired the functional connection

between the multisensory integration underlying PPS coding and motor preparation.

More precisely, the authors administered to participants a multisensory audio-tactile

integration task while temporarily impairing two areas involved in PPS representation

(i.e., vPMC and PPC) through transcranial magnetic stimulation (TMS). Interestingly,

results showed that the temporary inhibition of these brain areas nullified the cross-

modal congruency facilitation induced by the concurrent presentation of the auditory

stimulus. This finding serves to confirm that PPS representation and motor preparation

are tightly related.

Going one step further, Avenanti et al. (2012) observed analogous results at the

electrophysiological level. Using a similar paradigm to Serino et al. (2011), the authors

inhibited temporarily the vPMC, implied in PPS representation. Nevertheless, instead

of recording participants’ reaction times as a proxy of motor preparation processes,

they measured the amplitude of motor evoked potentials (MEPs) at the level of the

hand through electromyography. Since MEPs at the level of the hand are controlled by

the primary motor cortex (M1), the authors were able to test whether altering one of

the brain region coding for PPS (i.e, vPMC) the would result in the perturbation of the

area involved directly in motor execution (i.e., M1). When no transcranical magnetic
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stimulation was applied to vPMC, authors observed that the amplitude of MEPs at the

level of the hand in response to a tactile stimulation was higher when the concomitant

auditory signal was presented in participants’ near space than in the far space, con-

firming the facilitatory role of multisensory integration on motor preparation. On the

contrary, following the temporary inhibition of vPMC, the amplitude of MEPs recorded

at the level the hand did not differ as a function of the space where the concomitant

stimulus was presented during the audio-tactile integration task. As interpretation, the

authors considered that the absence of difference in MEPs reflected the alteration of the

hand representation excitability in the primary motor cortex. Taken together, these

results suggest that altering the functioning of brain areas coding for PPS causes in

return a perturbation of motor preparation processes.

2.2.2 Stimuli within PPS are coded in motor terms

In the previous sections, I have essentially evoked studies focusing on the multisensory

mechanism and the processing of stimuli occurring within PPS, which facilitate the

activation of motor system. Nevertheless, there exists other evidence of the connection

between PPS representation and motor preparation. Such evidence stems from another

corpus of studies which has addressed the question of PPS representation from a dif-

ferent point of view. Specifically, in these studies, PPS was not considered as a space

where stimuli benefit from a multisensory integration, but rather as the space were

stimuli are judged as being at a reachable distance and as potential targets of a motor

action1. These studies classically measure PPS representation through a more explicit

task: the reachability-judgment task (see Coello et al., 2012). The task requires partic-

ipants to judge whether a stimulus presented at several distances from the trunk can

be manually reached by imaging to extend the arm. The maximum distance judged

as reachable is referred to as the “reachability threshold”, and is considered as the

perceived boundary of PPS representation. By means of this task, it was observed that

PPS representation depends on an ensemble of parameters related to the agent, such

as participants’ arm length, the postural stability (Carello et al., 1989) and the degree

of freedom of articulations (Rochat & Wraga, 1997), which are at the core of action

execution.

In addition, it was also found that objects presented within PPS representation are

coded in motor terms, provided that their physical and functional characteristics afford

the execution of an action (e.g., Coello et al., 2008; Quinlan & Culham, 2007; Wamain

et al., 2016). Accordinlgy, Culham et al. (2008) observed that the presentation of

1 A recent study conducted by Zanini et al. (2021) suggested that PPS should not be assimilated to the
arm reaching space. Such conclusion was based on the observation that stimuli multisensory integration
occurred selectively in the space closely surrounding the hand, while arm reaching space was found to
encompass a larger portion of space. However, a recent study conducted in our lab (see Geers et al.,
in prep) found the opposite result, namely that multisensory integration occurs at a grater distance
when compared to the arm reaching limit. Such a divergence might be explained by the body-part
used to assess multisensory integration (i.e., the hand in Zanini et al. (2021), and the trunk in Geers
et al., in prep.) and indicate that further empirical evidence is needed to clarify the issue of a potential
dissociation between PPS and arm reaching space
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manipulable objects within participants’ near space activated the superior parieto-

occipital cortex (SPOC), an area belonging to the dorsal stream of visual system and

implicated in reaching acts.

In the same vein, in an electroencephalography (EEG) study, Wamain et al. (2016)

observed a significant desynchronization of µ rhythm over the centro-parietal area, a

brain oscillation detected during the execution or the observation of an action (Cochin,

1999; Llanos et al., 2013). The µ rhythm desynchronization was observed in the pres-

ence of manipulable well-defined objects, but not non-manipulable, scrambled ones,

and only when the object was presented in participants’ PPS. Moreover, the amplitude

of µ rhythm desynchronization decreased progressively from reachable to unreachable

stimuli, suggesting a gradual transition from the PPS to extrapersonal space (Bufacchi

& Iannetti, 2018).

µ rhythm desynchronization over the centro-parietal region was also found to be

stronger when the characteristics of the presented objects relates to the execution of

only one type of action, compared to when they evoked multiple potential actions

(Kalénine et al., 2016). This perturbation indicate that in PPS, objects are essentially

coded in motor terms to prepare the system to the most appropriate action toward the

object. Finally, stimulating the left M1 through TMS induced increased MEPs when ob-

serving object presented within participants’ PPS. Importantly, this effect was observed

only when the objects appeared as being manipulable (Cardellicchio et al., 2011). Simi-

larly, the temporary impairment of M1 perturbed also participants’ performance at the

reachability-judgment task, inducing an increase of reaction times but only when esti-

mating the reachability of stimuli occurring within PPS. Overall, these studies echoes

the ones by Serino et al. (2011) and Avenanti et al. (2012), and provide support for the

existence of a link between PPS representation and the planning of voluntary motor

actions (Coello & Iachini, 2016).

2.3 the other way round: action shapes pps representation

The studies presented above showed that PPS representation and the processing of

object occurring within it influence motor preparation. In the current section, I will

present complementary data approaching the association between PPS coding and mo-

tor preparation from the opposite perspective, namely by showing that action planning

and execution reshape PPS representation.

2.3.1 The effect of action execution

The first direct evidence of action planning and execution effects on PPS processing

was provided by Brozzoli et al. (2009). The authors assessed participant’s detection

time of a tactile stimulation delivered on either the index or thumb finger. In the same

time, a luminous stimulus was presented on either the top or the bottom parts of a

cylinder placed in front of participants, being thereby in a congruent or incongruent
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spatial position with respect to the tactile stimulation applied to the hand. The nov-

elty of the study was that visuo-tactile integration was assessed either before, at the

beginning of or during the execution of a grasping movement towards the cylinder.

Results showed that detection times were faster for congruent vs. incongruent visuo-

tactile stimulations. Moreover, this cross-modal congruency effect was greater when

visuo-tactile stimulation occurred at the beginning of the movement when compared

to before and even greater when occurring during action execution. These results were

replicated by further studies and showed that multisensory integration is triggered by

the action onset and enhanced on-line during the execution of object-directed actions

(e.g., Brozzoli et al., 2010; Patané et al., 2019; Senna et al., 2019).

2.3.2 The effect of sensori-motor processing impairment

Other evidence supporting the effect of motor processing on PPS representation stems

from studies altering the sensori-motor system. A reduction of PPS representation was

found following damage to the sensory-motor cortex (Bartolo et al., 2014). A similar

effect was found after the use of arm splint for 24 hours (Toussaint et al., 2018), which

induced motor immobilization and functional temporary impairment of the excitability

of the sensorimotor neurons dedicated to limb control (Avanzino et al., 2011; Huber

et al., 2006).

On the contrary, an expansion of PPS representation was found following the active

use of a tool (e.g., Canzoneri et al., 2013; Holmes, 2012; Witt et al., 2005). Accordingly,

it was observed that using a long tool (70 cm), but not a short one (10 cm), induced an

increase of the space where multisensory integration occurred (Maravita et al., 2002)

as well as an increase of the maximum distance perceived as reachable (Bourgeois et

al., 2014). Such extension was explained by an incorporation of the tool to the body

schema (Cardinali et al., 2009b; Cardinali et al., 2021; Iriki et al., 1996) leading to a

longer arm representation (Miller et al., 2019). Such change in the body schema would

result from the alteration of sensori-motor couplings during the active use of the tool

(Cardinali et al., 2016). Therefore, due to the functional opportunities offered by the

tool, the far space initially perceived as out of reach became perceived as being within

reach. Interestingly, although lasting temporarily in healthy individuals, the effect tool

use was found to be permanent in blind individuals using regularly a cane (Serino et al.,

2011) and in tennis players (Biggio et al., 2017).

As a whole, these findings highlight the implication of sensori-motor processes in

PPS representation. More importantly, they also suggest that the integration of current

sensori-motor inputs play a crucial role in the perception of action possibilities within

the PPS.
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2.3.3 The effect of action possibilities and action rewards

A study conducted by Iachini et al. (2014b) provided evidence for the influence of sim-

ulating action possibilities on the construction of PPS representation. In line with the

literature, the authors found that participants provided faster and more accurate judg-

ments about objects location when objects were presented in the near, peri-personal

space compared to the far, extra-personal space. Nevertheless, this motor facilitation

effect observed within PPS was stronger when participants had both arms free to move,

but weaker when the dominant hand was blocked behind their back. These results

suggest that near-space perception eventually overlaps with the perception of action

possibilities towards the objects occurring in this space, through the simulation of an

action and its potential consequences.

This anticipatory process would result from previous motor experiences and the in-

tegration of feedbacks received from past actions. Corroborating this hypothesis, Bour-

geois and Coello (2012) found that altering the sensori-motor anticipatory processes

resulted into an alteration of PPS representation. In their study, they provided partici-

pants false visual feedbacks about movement end point during a pointing motor task,

generating a mismatch between the initial and the actual spatial location targeted

by the pointing movement. By providing such false sensori-motor feedbacks, authors

induced a visuo-motor re-calibration that was found to impact participants’ PPS pro-

cessing. Specifically, during the first phase of the visuo-motor calibration, PPS was

found to constrict, indicating that the perturbation of internal models induced uncer-

tainity that blurred PPS frontiers. During the following phases, PPS representation was

found to progressively constrict when the provided sensori-motor feedbacks were shifted

towards the participants’ body, and to progressively expand when they were shifted

away from participant’s body. On the basis of such results, we can conclude therefore

that near-body space processing is highly dependent on the accuracy of sensori-motor

inputs and the effectiveness of internal motor anticipation models.

A last piece of evidence suggesting that PPS representation depends on sensori-

motor anticipation and prediction of action outcomes arises from the study of Coello

et al. (2018). In their study, the authors assessed PPS representation by means of

a reachability-judgment task, performed before and after the execution of a stimuli-

selection task on a horizontal touch screen table. The stimuli-selection task consisted in

selecting 10 stimuli out of 32 presented on the screen, which, once selected, could either

turn to green and yield a reward, or turn to red and yield no reward. According to the

condition, the probability to select a reward-yielding stimulus was biased in space, be-

ing either 75% in participant’s distal or proximal space, or 50% in both spaces. Results

revealed that participants selected more stimuli in the space associated with a higher

probability to obtain a reward (see Figure 2.1A). Although not noticed, the biased

distribution of reward-yielding stimuli in the stimuli-selection task influenced also the

performance at the reachability-judgment task. Specifically, PPS boundary was found

to (a) extend when reward-yielding stimuli were mainly located in participant’s distal
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Figure 2.1
Participants’ Exploration Strategy and PPS Representation as a Function of Action Rewards
Distribution in Space

Note. Reproduced from Coello et al. (2018). A. Participants’ performance in the stimuli-
selection task. Heat maps illustrate the frequency of choice of a spatial location (red:
frequently chosen location; blue: rarely chosen location). Participants tended to explore
the area of space associated with the higher proportion of reward-yielding stimuli. B.
Participants’ performance in the reachability-judgment task. The task was executed
before (pretest) and after (posttest) the stimuli-selection task. Histograms represent
posttest–pretest group and individual differences in PPS boundary. PPS boundary was
found to extend when reward-yielding stimuli were mainly located in participant’s
distal space, to restrict when located in their proximal space and to remain unchanged
when they were randomly distributed in both spaces.

space, (b) restrict when located in their proximal space and (c) remain unchanged

when they were randomly distributed in both spaces. These results revealed that the

perception of the nearby reachable space depends on objects’ value and action rewards

prospects, suggesting therefore that PPS representation is constructed as a function of

the features of the hic et nunc body–objects interactions (Bufacchi & Iannetti, 2018,

2019).

2.4 the functions of pps

Since the seminal studies by Rizzolatti et al. (1981), numerous experimental works

have investigated the neural and behavioural correlates of PPS perception and explored

the factors modulating its representation (for reviews see Cléry & Ben Hamed, 2018;

Cléry et al., 2015; Coello & Cartaud, 2021; di Pellegrino & Làdavas, 2015; Hunley

& Lourenco, 2018; Makin et al., 2008). Notably, these studies showed that stimuli

occurring within PPS undergo a enhanced perceptual and motor treatment; this allows

to localize stimuli with respect to the body parts, monitor the direction and speed

when stimuli are dynamic, but also fastly evaluate the stimuli features (e.g., identity,
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Figure 2.2
In-Out Binary Versus Continuous, Graded Response-Field Representation of PPS

Note. Inspired from Bufacchi and Iannetti (2018). A. In-Out binary versus Continu-
ous, graded response-fields representation of PPS in relation to the response pattern
displayed by PPS neurons in monkeys. B. In-Out binary versus Continuous, graded
response field representation of PPS in relation to reaction times to multimodal stimu-
lation in humans.

manipulability and value). Considering these findings, it has been suggested that PPS

would serve as an highly dynamic and plastic interface between perception and action,

subserving two main functions (de Vignemont & Iannetti, 2015; Hunley & Lourenco,

2018).

On the one side, PPS representation would allow the perception of body frontiers and

protection of body integrity from approaching hazards (Cléry & Ben Hamed, 2018).

In line with this notion, the stimulation of multisensory neurons was found to elicit

stereotypical defensive behaviours in monkeys (Iriki et al., 1996). In humans, dangerous

stimuli (e.g., spiders or snakes, or sharp tools) were found to be integrated at a greater

distance from the body (Vagnoni et al., 2012), but perceived as being nearer when

compared to non dangerous stimuli (Coello et al., 2012).

On the other side, PPS representation would play a crucial role in the organisation

and guiding of voluntary goal-directed actions towards the objects of the environment.

Indeed, PPS representation was found to depend on the features of the objects occur-

ring within this space, and especially on the action possibilities they can afford (e.g.,

Kalénine et al., 2016; Wamain et al., 2016). Furthermore, PPS representation was found

to adjust to the sensori-motor inputs, internal motor anticipation models and reward

prospects in space (Bourgeois & Coello, 2012; Coello et al., 2018; Iachini et al., 2014b)

as well as during the execution of a motor action and as a function of its final aim

(Brozzoli et al., 2010; Brozzoli et al., 2009; Senna et al., 2019).
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In light of all the findings presented above, an original and more integrative model has

been recently proposed by Bufacchi and Iannetti (2018) to define PPS. In their Action

Field Theory of Peripersonal Space (Bufacchi & Iannetti, 2018, 2019), the authors

highlighted the risk of a biased interpretation of PPS due to the characteristics of

the employed measures. As a consequence, they proposed to abandon the vision of

PPS a single, binary in-or-out zone based on the near-distant dichotomy. Alternatively,

they suggested to consider PPS representation as the resultant of “the integration of

a set of graded fields describing behavioural relevance of actions aiming to create

or avoid contact between objects and the body” (Bufacchi & Iannetti, 2018, p. 1).

According to Bufacchi and Iannetti’s theory, PPS representation would be thereby

a sum of multiple motor response-fields, characterised by graded instead of clear and

sharp margins (which is more in accordance with the continuous and gradual responses

observed in PPS neurons, e.g., Fogassi et al., 1996; Graziano et al., 1994, see Figure

2.2). Such fields would be associated with a specific functional value and behavioural

relevance. Said differently, each field would be associated with a certain value that will

determine the actions to be executed. Such value would not be permanent but rather

computed instantaneously as a function of the constraints of the ongoing task and the

environmental circumstances, and this for a specific portion of space in a specific time

(Bufacchi & Iannetti, 2019). Therefore, such multiple action-field conceptualisation

of PPS would allow the selection of the most pertinent action, whether it aims to

create or avoid contact with a given stimulus. The vision of Bufacchi and Iannetti

(2018) is also in line with the empirical evidence provided by Coello et al. (2018)

(see Section 2.3.3), which showed that associating a certain reward to a portion of

space modified action selection and concurrently individuals’ PPS representation. Such

multiple, instantaneously determined response-fields construction of PPS will be at the

core of the present thesis.





3
A SPACE FOR SOCIAL INTERACTIONS

In the previous chapter, I described the physiological and sensori-motor mechanisms

underlying the perception of the space immediately surrounding the body. I further

talked about how, by influencing these mechanisms through various factors, it is pos-

sible to induce a modification of PPS boundaries. I concluded stating that PPS can be

considered as a perception–action interface allowing the individual to interact with its

immediate environment, subserving approach-driven, goal-directed behaviours towards

non threatening stimuli as well as avoidance-driven, defensive behaviours against po-

tentially harmful stimuli (Coello et al., 2012; Coello & Cartaud, 2021; de Vignemont

& Iannetti, 2015; di Pellegrino & Làdavas, 2015; Graziano & Cooke, 2006; Hunley &

Lourenco, 2018).

Nevertheless, during their interactions with the environment, individuals rarely be-

have as independent agents. Indeed, most of our daily actions occur while other agents

are actively or passively present in our environment, and with whom we might engage

in interaction to manipulate an object of common interest (e.g., a cup). Two main

consequences arise from this consideration. First, the presence of a confederate in the

nearby space constitutes a stimulus of the environment that has to be taken into ac-

count, as it might represent a potential danger for one’s body integrity or an obstacle

to action execution. Second, being sensitive to others’ presence necessarily implies tak-

ing into account their action possibilities, in order to understand what they are doing,

why and where they are doing a given action, and what they are going to do next.

3.1 pps as a safety buffer zone for avoiding invasion

The effect of the presence of a confederate on the space perception has been the ob-

ject of several studies. Taking root from the notion of proxemics1, and personal space

(Hall, 1966; Sommer, 1959), some of these studies aimed at defining how humans use

and organise space during social interactions, focusing notably on how they optimally

adjust the distances between them in order to communicate efficacy while avoiding

discomfort and space intrusion (Hayduk, 1983; Kennedy et al., 2009; Lloyd, 2009). In

that respect, interpersonal distance regulation was found to depend on people char-

acteristics, with preferred distance varying as a function of the confederates’ age and

gender (Hecht et al., 2019; Iachini et al., 2014a; Iachini et al., 2016; Uzzell & Horne,

1 Proxemics refers to the study of space and how individuals uses it during social interactions. The term
was coined by the cultural anthropologist Edward Twitchell Hall in 1966 (Hall, 1966)
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2006), the positive or negative valence of their emotional facial expressions (Cartaud et

al., 2020; Ruggiero et al., 2017) and the aggressive content of a conversation (Vagnoni

et al., 2018). Furthermore, the regulation of interpersonal distance was found to rely on

higher-order social factors. For instance, greater distances were preferred when facing

a confederate described as being immoral (Iachini et al., 2015a; Pellencin et al., 2018).

Another example entails social affiliation feeling, with shorter interpersonal distance

preferred in front of in-group members compared to out-group members (Fini et al.,

2020).

Moving one step further, some other studies have suggested that interpersonal dis-

tance regulation might also be rooted in motor representations, being therefore intrin-

sically related to PPS representation (Coello & Cartaud, 2021). Empirical evidence

showed indeed that distance adjustment in social context depends on individuals’

height and arm length (Hayduk, 1983; Pazhoohi et al., 2019). Consequently, extend-

ing PPS representation through tool use was found to induce an increase of the in-

terpersonal distance judged as comfortable when another individual enters one’s PPS

(Quesque et al., 2017). Nevertheless, this last result is still controversial as other re-

searches have found no effect of tool use on interpersonal distance (Patané et al., 2017).

These diverging results could be explained on the one side by the different nature of

the social stimuli employed by the authors (human-like point-light display by Quesque

et al. (2017), and real confederate in Patané et al. (2017) and on the other, by the

active (i.e., the participant approaches the confederate; Patané et al., 2017) or passive

(i.e., the confederate approaches the participant Quesque et al., 2017) attitude adopted

during the interpersonal distance task used, which was already observed to modulate

interpersonal distance regulation (Iachini et al., 2014a).

More interestingly, human behavioural studies found that the presence of others al-

tered the multisensory integration processes at the basis of PPS representation (Heed

et al., 2010), inducing a constriction of the space where stimuli benefitted from mul-

tisensory integration (Teneggi et al., 2013). Such effect was found to be specific to

human beings, as the presence of a human-like mannequin did not induce any change

(Teneggi et al., 2013). Moreover, it was observed that modulating the social context

can also lead to an expansion of PPS boundaries, for instance following the execution

of a task with a cooperative confederate (Pellencin et al., 2018; Teneggi et al., 2013)

or after sharing synchronous somatosensory experiences on the body surface with a

confederate (Maister et al., 2015).

Taken as a whole, these findings suggest that in the presence of others, individuals

calibrate both their interpersonal distances and action space in order to maintain a

certain private safety area. However, these results also suggest that PPS representation

can be adjusted according to the characteristics of a given social context, so that

to facilitate the interaction. Along with the aforementioned studies, another research

branch has approached the impact of social context on PPS representation from a

different perspective. These studies posit that space processing is functionally related

to the planning and execution of actions performed individually or in collaboration with
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other individuals. Therefore, two factors play a key role in this context: being sensitive

to the events occurring in others’ PPS and anticipating others’ action possibilities within

that space. These issues will be the topic of the next section.

3.2 detecting events occurring in others’ pps

The capability to be sensitive to events occurring in others’ PPS has been observed by

several neurophysiological and neuroimaging studies. Accordingly, Ishida et al. (2010)

identified a group of bimodal neurons in monkeys’ parietal areas 7b and ventral intra-

parietal area (VIP) (both belonging to PPS coding network) capable of integrating

visual and tactile stimuli presented within 30 cm from the animal body-parts, but

also from the experimenter’s ones. Thus, these neurons where proved to be sensitive

not only to events occurring in the animal’s PPS but also in others’ PPS. A similar

overlapping activation pattern in response to stimuli occurring in both one’s own and

others’ peri-hand PPS was observed in human’s left ventral pre-motor cortex (vPMC)

by Brozzoli et al. (2013). In addition, the authors also found a greater activation of

the anterior cingulate cortex (ACC) for events occurring in others’ PPS. These findings

were extended to the execution of object-directed actions by Livi et al. (2019), who

observed that visuo-motor neurons in pre-supplementary motor area F6 fired when

the action was executed by the monkey, another agent or simultaneously by both of

them. Interestingly, the response elicited by these mirror-like neurons was observed

only when the object of the action was located within the monkey’s PPS. These results

were interpreted as the involvement of an object-mirroring mechanism that recruits

self-motor representations to predict others actions and provided empirical evidence

for a sensitivity to what happens in the space proximal to others’ body.

3.3 anticipating others’ action possibilities within their pps

Extending the findings presented above, several other studies showed that the brain

in capable to detect not only what is currently happening in others’ PPS, but also

to predict others’ action possibilities and integrate the outcomes of their actions. For

instance, in a immersive virtual reality study, Iachini and Ruggiero (2021) asked par-

ticipants to locate a glass with respect to the body of a human avatar (third-person

judgment), which was presented while having either its arm free or blocked. Results

showed that localization time was longer when the avatar was presented with a blocked

arm than a free arm. Authors interpreted such increase as the resultant of a simulation

of the avatar’s movements by the participants. These findings suggest that individuals

take into account others’ action possibilities when emitting judgments about objects

location with respect to their body. Furthermore, the effect of motor anticipation of

others’ action possibilities was observed when the avatar was located within a shared

space with the participants, but not when it appeared in participants’ extrapersonal
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space. These findings reveal once again the specificity of such mirroring processes to

the PPS.

Going one step further, Coello et al. (2018) suggested that, in addition to others’

possibilities, individuals are also sensitive to the outcomes of others actions. Similarly

to self-generated actions, others’ actions can indeed be taken into account to remap

PPS. Indeed, Coello et al. (2018) observed that participants’ PPS boundary increased

after the performance of a stimuli-selection task in collaboration with a confederate.

This effect was not observed when facing a passive confederate. In addition, results

showed that during the execution of the stimuli-selection task, participants and their

confederates tended naturally to split the action space in two, by selecting the stimuli

within their own near space, suggesting a tendency to avoid others’ space invasion

(Coello & Iachini, 2016; Fujii et al., 2009; Szpak et al., 2015; Teneggi et al., 2013).

Despite this tendency to exploit a reduced portion of space (to avoid the invasion

of others’ space), participants’ PPS representation was found to extend following the

execution of the collaborative action. As a whole, these findings suggest that during the

execution of a collaborative action, people extend their PPS representation to include

others’ near-body space and create a common action space, where both the outcomes

of self-generated and others-generated actions are taken into account.

Finally, it is important to note that for this shared space processing to take place,

the existence of a common interest towards an object seems crucial. Indeed, a recent

study by Patané et al. (2020) revealed that visuo-tactile integration was greater when

individuals grasped their own object (I grasp an object belonging to me) or when

observing another agent grasping his own object (he grasps an object belonging to him).

Such visuo-tactile facilitation did not occur when participants grasped (or observed to

grasp) an object that did not belong to the agent of the action (I grasp an object

belonging to you/ you grasp an object belonging to me). Nevertheless, it was observed

when executing (or observing) a grasping action towards an object belonging to both

members of the dyad.

3.4 the space as co-constructed interface framing social in-

teractions

When sharing a same workspace, a series of mirroring mechanisms are recruited to

built a representation of others’ PPS and predict their actions towards an object of

potential common interest (Fujii et al., 2007; Patané et al., 2020; Pezzulo & Dindo,

2011; Pezzulo et al., 2013). The findings evoked in the previous section suggested that

in social context, the sensori-motor and multisensory integration processes underlying

PPS perception would undergo a social re-calibration, which would consequently result

in the merging of the co-agents space representations to generate a “Shared Action

Space” (SAS; Pezzulo et al., 2013).

At this stage of the discussion, one question arises naturally: What are the implica-

tions of creating a shared representation of space and taking into account others’ space
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and actions? It has been proposed that this co-constructed shared spatial representa-

tion would allow individuals who engage into an interaction to function following a

“we mode” (Gallotti & Frith, 2013). This would support the execution of joint or col-

laborative actions (Pezzulo et al., 2013; Sebanz & Knoblich, 2009) and more generally,

facilitate the interactions with the embedding environment. By understanding what

others are doing, when and where they are acting and what they will be doing next,

individuals would therefore be capable to access other people’s internal motivations,

intentions and goals. The next section will focus on these aspects.

3.5 expressing and inferring intentions through motor actions

3.5.1 The Paradox of Dr. Jeckyll and Mr Hyde

For several years, researchers considered that the execution of object-directed motor

actions depended on the physical features of the manipulated objects (e.g., size, texture,

distance from the body; Eastough & Edwards, 2007; Gentilucci et al., 1991; Paulun

et al., 2016) or on the final motor goal of the action chain (e.g., grasping an object to

displace it or throw it; Ansuini et al., 2006; Marteniuk et al., 1987). The movement

could therefore be subjected to fine motor adjustments in order to adapt to objects’

characteristics and to comply with the final goal of the task. More interestingly, it was

found that these fine motor variations could be perceived by an observer, who could

consequently access relevant information about other agents’ motor interactions with

surrounding objects (e.g., Cavallo et al., 2016; Elsner et al., 2012; Méary et al., 2005).

Nevertheless, a debate has been going on for several years about the impossibility

for an observer to access the higher-order goal subtending the execution of others’

actions. Such debate was resumed by the Paradox of Doctor Jekyll and Mister Hyde

(Jacob & Jeannerod, 2005). The Doctor Jekyll is the protagonist of the Robert Louis

Stevenson’s Gothic novel “The Strange Case of Dr Jekyll and Mr Hyde” (1886), who

struggle with his second evil personality, embodied by the figure of Mister Hyde. Doctor

Jekyll is a respected and devoted doctor, while Mister Hyde is a remorseless, sadistic

and repugnant man owing his fame to his violent murders. The paradox resides in

the fact that when Doctor Jekyll operates a patient, it is impossible for the person

being operated to know whether the man in front of him is using the surgical tool

with the intention to heal him (reflecting the good intentions of Dr Jekyll) or rather to

induce pain (reflecting rather the evil intentions and sadistic pleasure of Mister Hyde).

Therefore, despite the action is executed in a similar way (e.g., grasping the scalpel,

making an incision), it is impossible to access the truly intentions and motivations

underlying the gesture of Doctor Jekyll/Mister Hyde.
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3.5.2 The effect of social intention on the execution of object-directed actions

In the last decades, several studies contradicted the assumption that accessing others

truly intentions and motivation is not possible. These studies showed indeed that high-

order intentions can actually be expressed through movement execution and that they

influence the kinematic features of the movement in a very subtle manner (for a review,

see Becchio et al., 2012; Egmose & Køppe, 2017; Krishnan-barman et al., 2017). The

studies conducted focused notably on the notion of social intention, which refers to

the desire to include another person in the interaction (Jacob & Jeannerod, 2005).

Strong empirical evidence showed that when people execute an object-directed action

in order for a second person to interact with the same object, the executed movement is

characterised by a longer duration and higher amplitude on the vertical plane (Becchio

et al., 2008b; Ferri et al., 2011; Manera et al., 2011; Quesque & Coello, 2014; Quesque et

al., 2016; Quesque et al., 2013; Sartori et al., 2009a). Some other studies reported also

a different amplitude of finger-thumb aperture and grip opening for gestures executed

with a social intention compared to a personal one, being either faster or slower as a

function of the task (e.g., Becchio et al., 2008b; Innocenti et al., 2012).

Interestingly, it has been shown that despite the small scale characterising these mo-

tor deviants, observers are unconsciously capable of detecting them, using them as a

cue to understand and infer others’ goals, and responding with an adapted behaviour

(Ansuini et al., 2014; Lewkowicz et al., 2013; Rocca & Cavallo, 2020). More specifically,

Quesque et al. (2016) showed that the anticipation of social-related motor deviants re-

sulted in a faster reaction of the observer when engaging in the interaction. In their

experiment, the authors asked participants to realise a grasp-to-place action, consisting

in moving an object from an initial to a final position, in order for either themselves

(personal intention) or their confederate (social intention) to realise a second grasp-to

place action, consisting in moving the object to a side location. An auditory signal

indicated whether the second grasp-to-place action had to be performed by the partic-

ipant (high pitch) or the confederate (low pitch). The crucial detail of the study was

that the participant was informed in advance about whom would had to execute the

second-grasp-to place action. This was done by presenting to the participants, trough

a pair of headphones, an auditory cue spelling either “You”, “Him” or “Ready” (as

control trials) before the first grasp-to-place action. On the contrary, confederates were

heard all the time the “Ready” signal, therefore receiving no cues about the execution

of the following action.

When analysing the kinematic profile of the first grasp-to-place action, results

showed that movements were characterised by a longer reaction time and greater tra-

jectory height when participants knew that the following action would be performed

by the confederates, than when knowing that it would have been performed by them-

selves or when they received neutral information. Interestingly, in that same condition,

confederates grasped the object faster compared to the other two conditions, despite

having received no prior informative cues. These results were in line with the findings
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of studies in which participants were proved to be capable of inferring other’s social or

personal intention from the observation of videos illustrating the execution of object-

directed actions (e.g., Lewkowicz et al., 2015). Taken together, these results show that

motor deviants due to social intention are automatically perceived during collaborative

task and used as cues facilitating the emission of an appropriate motor response by

the observers.

In conclusion, the studies presented above indicate that the execution of object-

directed action within PPS in social context is the source of informative cues facilitating

and rendering the interaction more fluid ans spontaneous. Such cues would consist

into a spatio-temporal amplification of the kinematic parameters of the movement. To

explain this effect, several authors have evoked the function of rendering such gestures

more communicative and to attract the observers’ intention. On the basis of such

findings, several studies have focused on the factors modulating the understanding of

intention through the observation of actions. Nevertheless, to date, several other issues

remains open. Indeed, social interaction are complex situations where a multitude of

cues co-occur and during which several constraints linked to the interaction itself, the

ongoing task and the environment need to be taken into account. In the next chapters,

I will describe in more details the unresolved issues and the cues whose effect on the

execution of object-directed actions still need to be clarified.





4
RATIONALE OF THE THES I S

In the previous Chapters, I described the neurophysiological and behavioural correlates

of PPS coding. In Chapters 1 and 2, I demonstrated that stimuli occurring within this

particular space benefit from a multisensory treatment. Such multisensory treatment

would allow the anticipation of the moment of contact between the body and the

object, and facilitate the execution of purposeful and defensive motor actions. At the

end of Chapter 2, I introduced the conceptualisation of PPS as a multiple response-

fields representation sensitive to the stimuli value and subtending action selection. In

Chapter 3, I showed how PPS is influenced by the presence of other agents, and how the

mechanisms underlying the coding of one’s own space can also ensure the processing

of others’ PPS and the actions they perform within it. Furthermore, I also showed how,

in a social context, the brain creates a common and shared action space between two

individuals engaging in the interaction. Such representation of a common space would

be underlain by the sensitiveness to events occurring in others’ space and to attribution

of a greater salience to objects of common interest. Finally, I mentioned the findings

issued from motion-capture studies, showing that when interacting with other agents

in a shared space, the intention of an individual to include them in the interaction

modifies the spatial and temporal features of the performed motor actions.

In the current Chapter, I will introduce the theoretical assumptions at the basis of my

scientific reasoning. I will then expose the rationale of the present thesis, accompanying

it by some methodological considerations about the employed paradigms. Finally, I will

present the five experimental studies I implemented and offer a general overview of the

main objectives pursued in each one of them.

4.1 theoretical assumptions

The first theoretical assumption at the basis of the present thesis concerns the choice

to focus on the action-related function of PPS, ensuring the guidance of voluntary

goal-directed actions towards the objects of interest (de Vignemont & Iannetti, 2015;

Hunley & Lourenco, 2018). Therefore, the defensive function ensured by PPS, allowing

the maintenance of a buffer safety zone to preserve body’s integrity against approaching

hazards, will not be considered exhaustively in the present research work. As it recruits

specific emotional and physiological mechanisms (e.g., Cartaud et al., 2018; Vieira et

al., 2019; Vieira et al., 2017), the defensive function of PPS strays away from the main

focus of the current research work.

27
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The second theoretical assumption consists in the conceptualisation of PPS proposed

by Bufacchi and Iannetti in their Action Field Theory of Peripersonal Space (Bufacchi

& Iannetti, 2018, 2019) and by Coello and Cartaud (2021, presented in Section 2.4).

According to this conceptualisation, PPS representation would be the resultant of “the

integration of a set of [multiple] graded fields describing behavioural relevance of actions

aiming to create or avoid contact between objects and the body” (Bufacchi & Iannetti,

2018, p. 1). Additionnally, PPS representation would ensure “the organization of goal-

directed behaviours towards stimuli endowed with the highest reward value” (Coello

& Cartaud, 2021, p. 1). The very fundamental reasoning at the roots of the present

thesis relies on such multi-field, graded representation of PPS, whose construction is

determined by the demands of the ongoing action and stimuli value in a given space

and time.

Specifically, three main points deriving from this conceptualisation inspired the rea-

soning at the basis of the current thesis. The first point is the definition of PPS as

an area composed of multiple response-fields, instead of a unitary construction. The

fields composing PPS correspond to specific portions of space where individuals might

execute a given action towards a given stimulus. The second point concerns the hy-

pothesis that PPS would underlie the selection and organisation of motor actions in a

given portion of space. According to this more integrative view, PPS would therefore

be not only the space where stimuli benefit from an enhanced coding, but also the

space where specific motor actions are selected and executed. Finally, the third impor-

tant point concerns the notion of value attributed to a stimulus of interest, and by

extension, to the portion of space occupied by that stimulus. Bufacchi and Iannetti

(2019) and Coello and Cartaud (2021) suggested that the value attributed to a given

stimulus and a given portion of space in relation to a potential action depends on the

influence of several factors, such as the demands of the ongoing motor task and the

social context.

4.2 the present research questions

In light of these theoretical assumptions, the aim of the present thesis was to assess how

motor and social factors contribute to the construction of PPS. Specifically, I wanted

to test the general hypothesis that when motor and social factors are concurrently

involved, social factors modulate the influence of motor factors on the construction of

PPS.

4.3 methodological considerations

To achieve that purpose and in line with the aforementioned theoretical assumptions,

I decided to assessed two main constructs. On the one hand, I assessed PPS represen-

tation, that I define as the way individuals create a perceptual map of the near-body

space. On the other hand, I assessed PPS exploitation, that I define as the way individ-
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uals use their near-body space during their interactions with objects and confederates.

PPS exploitation refers therefore to individuals’ behaviour in their near-body space,

and more specifically, to the action selection process within PPS.

Through five studies, I assessed PPS representation and exploitation as a function

of several motor and social factors. All the five studies required the execution of a

motor task in collaboration with another participant. The motor factors consisted in

(a) the prospects of rewards when executing an action in a given space, and (b) the

physical features of the final spatial target of the motor action. The social factors

consisted in (a) the execution of a collaborative action, (b) the degree of involvement

into a collaborative task (observing vs. co-acting), (c) the intention to include another

person in the interaction, and (d) the influence of communicative cues offered by gaze.

In the fifth study, the effect of sharing a physical space during a collaborative motor

task was also assessed.

Study 1 and 2 focused on the (a) impact of rewards prospects and the social context,

namely (b) the execution of a collaborative task and (c) individuals’ involvement degree

in the task, on PPS representation and exploitation. In these studies, I employed a

paradigm inspired by the one used by Coello et al. (2018), which included the execution

of a reachability-judgment task before and after the performance of a stimuli-selection

task. The reachability-judgment task was used to estimate the perceived boundary

of PPS representation, while the stimuli-selection task offered an easily manipulable

setting to quantify and qualify PPS exploitation.

As a complement, Study 3, 4 and 5 were conducted in order to investigate in greater

depth the role of motor and social factors on the exploitation of PPS, by analysing the

execution of object-directed actions. In that optic, I adopted a motion capture system

to analyse the kinematic profile of manual object-directed actions while considering the

impact of social intention, namely the intention to include another agent in the interac-

tion with an object of common interest. The effect of social intention was analysed in

combination with the effect of (a) the features of the final spatial target of the motor

action, (b) the role of eye gaze cues availability and (c) the effect of physically sharing

an action space during a collaborative task.

4.4 overview of the studies conducted

Table 4.1 offers a general overview of the five studies composing the present PhD thesis.

Each study will be exposed in a separate chapter of the Experimental Contribution

part.

In Chapter 5 I asked whether, during a collaborative task, the presence of a co-

active confederate modulated participants’ tendency to exploit the space associ-

ated with a higher probability to obtain a reward along with participants’ PPS

representation.
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In Chapter 6 I explored whether the effect of action rewards and social context on

PPS representation and exploitation was modulated by the degree of involvement

of individuals in a collaborative task. Specifically, the effect of these two factors

was assessed during a collaborative task requiring one participant to act and the

other to observe, in order to successively perform the task.

In Chapter 7 I intended to explore in greater depth the mutual influence of motor

and social factors on motor performances within PPS. Specifically, I assessed the

combined effects of the physical features of the spatial target and the intention

to include another agent in the interaction when concurrently involved in the

execution of an object-directed motor task.

In Chapter 8 I examined the role of social cues provided by eye gaze on the expres-

sion and identification of the intention to include another agent in the execution

of object-directed actions.

Finally, in Chapter 9 I attempted to explore whether the effect of social intention

observed in face-to-face interactions, where individuals are embedded in a phys-

ically shared space, persisted in a situation of co-action mediated by a video-

conference system, creating a virtually shared space.

Table 4.1
Overview and Relevant Details of the Five Studies Conducted in the Present Thesis

Study In chapter Task Sample size

1. Peripersonal space in social context is modu-

lated by action reward, but differently in males and

females

5 Reachability-

judgment and

stimuli-

selection task

40 (20 dyads)

2. Paying attention to the outcome of others’ ac-

tions has dissociated effects on observer’s periper-

sonal space representation and exploration

6 Reachability-

judgment and

stimuli-

selection task

156 (78 dyads)

3. The combined effects of motor and social goals

on the kinematics of object-directed motor action

7 Object-

directed action

execution

28

4. The contribution of eye gaze and movement

kinematics to the expression and the identification

of social intention in object-directed motor actions

8 Object-

directed action

execution

56 (28 dyads)

5. “Screens make us less social”: The effect of so-

cial intention on action kinematics is intrinsically

related to the sharing of a same physical space

9 Object-

directed action

execution

20
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5
THE EFFECT OF ACTION REWARDS AND

SOCIAL CONTEXT ON PPS CONSTRUCTION

5.1 rationale of study 1

The studies presented in previous Chapters showed that the construction of the PPS

stems from the integration of different factors. Amongst them, the rewarding out-

comes of self-generated and others-generated actions as well as the social context were

found to play a crucial role. In this respect, a study conducted by Coello et al. (2018)

suggested that realising a task in a shared space in collaboration with a confederate

induced a modification of both the representation and exploitation of PPS. Specifically,

the study showed that when sharing a common workspace, individuals tend naturally

to avoid stimuli located in others’ PPS. Despite such avoidance behaviour, PPS repre-

sentation was found to extend, possibly to encompass the space near the confederate’s

body. In light of these results, we questioned whether the presence of appealing, reward-

ing stimuli located in others’ PPS would generate a conflict situation where stimuli

value and social context prompt different behaviours. The hypothesis tested in this

study was the constraints related to the social context would modulate the effect of

action rewards on PPS representation and exploitation.

In order to test this hypothesis, we adapted the paradigm of Coello et al. (2018) to

concurrently explore the effect of action rewards in space and the constrains related

to the social context. Results revealed that participants prioritized the stimuli located

in the space associated with higher probability to obtain a reward, but that this effect

was modulated by the constrains related to social context. Specifically, the selection of

reward-yielding stimuli in the distal space was delayed when it required to invade others’

PPS. Furthermore, the distribution of reward-yielding stimuli extended PPS boundaries

when biased towards the participants’ distal space, but it did not induce a constriction

of PPS when biased towards participants’ proximal space. From a wider perspective,

the present results revealed that the tendency to act towards attractive stimuli in the

nearby environment is modulated by the constrains related to the social context (i.e.,

the preservation of self and other’s private space), as well as the integration of others’

action outcomes (leading to the creation of a shared action space).

Note. The second main outcome of Study 1 was also the effect of gender participants’

performance. This results was stressed in the title of the article as well as in the

conclusions of the study. Moreover, the original paper took into account the impact of

33
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high-order social factors, such as pro-social and cooperative behaviour, and empathy

skills. Nevertheless, these results will not be discussed in depth in the present thesis

for two reasons. First, such a discussion deviates too much from the main objective

of the present research work. Second, gender roles and characteristics have been the

focus of recent debates showing that they are a deeply complex issue, influenced by

multiple co-occurring factors. Moreover, the studies on gender effect conducted until

now are relatively old (most of them date back to 70’s and 80’s), which means that

there are great chances that they are no longer representative of the actual context.

In support of this, the study was conducted on a relatively younger population (18–35

years old), for which gender stereotypes and role differences were found to be more

and more smother (e.g., Bhatia & Bhatia, 2021).
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Peripersonal space in social context is modulated by action reward,

but differently in males and females1

Gigliotti, M.F., Soares Cohelo, P., Coutinho, J., & Coello, Y.

(Published in 2019, Issue date 2021)

Psychological Research, 85, 181–194. https://doi.org/10.1007/s00426-019-01242-x

Published work

5.2 abstract

PPS is a multisensory representation of the near-body region of space where objects

appear at hand. It also represents a buffer zone protecting the body from external

threats and, in consequence, it contributes to the organisation of social interactions.

However, how the combination of embodied objects processing and constraints inherent

to social interactions contributes to PPS representation remains an open issue. By using

a cooperative task where two male (N= 22) or female (N= 18) participants, sharing the

same action space, were requested to select a number of stimuli on a touch-screen table,

we investigated the effect of non-uniform distribution of reward-yielding stimuli on the

selection strategy and perceptual judgments of reachability, used as a proxy of PPS

representation. The probability to select a reward-yielding stimulus (50% of the stimuli)

was 75% in the proximal space of one of the two confederates. Results showed that

participants initially prioritized stimuli in their proximal space but were progressively

influenced by the spatial distribution of reward-yielding stimuli, thus invading their

confederate’s action space when associated with higher probability of reward. The

distribution of reward-yielding stimuli led to an increase of reachability threshold, but

only when biased towards the participants’ distal space. Although the invasion of others’

PPS was more pronounced in male participants, the biased distribution of reward-

yielding stimuli altered the reachability threshold similarly in males and females. As a

whole, the data showed that reward expectations in relation to motor actions influence

both PPS exploitation and representation in social context, but differently among males

and females.

1 It is worth noting that the original title of the article (and the conclusion of the Study) stressed the
effect of gender on PPS representation and exploitation, rather than the modulatory role of social
context on the effect of action rewards. As indicated in Section 5.1, in the present thesis I will only
focus on the finding of a modulatory role of social context on the effect of action rewards when assessing
PPS representation and exploitation.
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5.3 introduction

In everyday life, the way humans interact with their environment relies on a series of

computations performed by the brain, based on the integration of information related

to the body and the space in which it is embedded. This implies that the brain retains

a functional representation of the environment, which depends on the current sensori-

motor state as well as the outcome of previous interactions with the physical and social

context (Grüsser, 1983; Hall, 1966; Previc, 1998). Within this functional representation,

the peripersonal space (PPS) specifies the limited space around the body dedicated to

the interaction with objects located at hand-reachable distance (Bufacchi & Iannetti,

2018; Coello & Iachini, 2016; de Vignemont & Iannetti, 2015; di Pellegrino & Làdavas,

2015; Rizzolatti et al., 1981). In relation to the linkage between PPS and action, object

processing in PPS involves multisensory integration supported by a large subcortical

and cortical brain fronto-parietal network implying the motor system (Brozzoli et al.,

2011; Cléry et al., 2015; Graziano et al., 1994; Holmes & Spence, 2004; Makin et al.,

2007; Serino et al., 2011). In line with this view, Graziano (2018) described multimodal

neurons in the premotor cortex that discharge predominantly not only for stimuli near

the body, but also for more distant stimuli. Overall, 95% of these neurons code the space

within reaching distance (see also di Pellegrino & Làdavas, 2015). Taking advantage

of the motor nature of PPS, object perception (Costantini et al., 2010; Spence et al.,

2004) and categorization (Blini et al., 2018; Iachini et al., 2017) are facilitated when

they are located in PPS.

A number of studies reported that alteration or temporary inhibition of the motor

system produces shrinkage of PPS representation (Bartolo et al., 2014; Bassolino et al.,

2015; Finisguerra et al., 2015; Toussaint et al., 2018). Furthermore, PPS shrinks when

dangerous objects (Coello et al., 2012) or unfamiliar confederates (Teneggi et al., 2013)

are located at close distance. In contrast, extending motor abilities through tool-use was

found to produce an increase in PPS representation (Bourgeois et al., 2014; Canzoneri

et al., 2013; Cardinali et al., 2011; Farne et al., 2005; Iriki et al., 1996; Maravita et

al., 2001; Maravita et al., 2002). PPS representation also extends in the presence of

appealing stimuli located nearby (Coello et al., 2018) or following positive interaction

with a confederate (Coello et al., 2018; Teneggi et al., 2013). Considered as a whole,

these data suggest that PPS operates as an interface between perception and action

underlying two complementary functions: it subserves goal-directed behaviours towards

non-threatening stimuli, and it supports defensive behaviours against threatening and

potentially harmful stimuli (Coello et al., 2012; de Vignemont & Iannetti, 2015; di

Pellegrino & Làdavas, 2015; Graziano & Cooke, 2006; Hunley & Lourenco, 2018).

The defensive role of PPS makes it thus an important support in the control of

social interactions. As evidence, Quesque et al. (2017) demonstrated that tool-use

induces not only an enlargement of PPS (Bourgeois et al., 2014), but also an increase

of the minimum comfort distance tolerated in dyadic social interactions. Furthermore,

physiological responses associated with PPS invasion (Kennedy et al., 2009) were found
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to be robust predictors of preferred comfort distance in social contexts (Cartaud et al.,

2018). As a consequence, individuals with enlarged self-representation of PPS reported

a higher rate of social anxiety (Iachini et al., 2015b) and phobia (Lourenco et al.,

2011). These results are, therefore, consistent with not only a motor function but also

a defensive function of PPS (Cooke & Graziano, 2004), the latter contributing to the

organisation of object-directed actions as well as the regulation of the social life (Coello

& Iachini, 2016).

In line with the defensive role of PPS, it was found that when performing a cooper-

ative task in a shared workspace, people prioritized stimuli located in their proximal

space, avoiding thus to invade others’ PPS (Coello et al., 2018). However, despite the

division of the workspace in the cooperative task, people showed an expansion of their

PPS that was not observed when they performed the task alone or in the presence

of a passive confederate. These findings suggest that PPS representation depends on

the outcome of both self-executed and observed motor actions in a cooperative, social

context. They also reveal that sharing a common workspace induced a natural ten-

dency to favour stimuli located in the proximal space, avoiding thus those located in

others’ proximal space. Thus, we may surmise that the presence of appealing stimuli

in others’ PPS represents a conflict situation, where stimuli and space prompt different

behaviours.

To investigate this issue, in the present study we tested whether spatially biasing the

distribution of reward-yielding stimuli towards one confederate in a dyadic cooperative

task induced an invasion of the confederate’s PPS. Furthermore, we tested whether such

biased distribution of reward-yielding stimuli alters differently PPS representation in

the two confederates. Finally, the adjustment of social space was found to be influenced

by gender with shorter interpersonal distance usually judged as more comfortable in

both males and females when interacting with females as compared to males (Iachini

et al., 2014a; Iachini et al., 2016). Accordingly, we compared the effects of biasing the

distribution of reward-yielding stimuli towards one of the confederates in both male

and female dyads.

5.4 method

5.4.1 Participants

Forty healthy participants voluntarily took part in the experiment (22 males and 18

females, 18–35 years old, M = 22.53 years, SD = 3.40 years). Participants were re-

cruited in pairs and were not acquainted with their confederate. Each dyad was made

up of two male or female participants in order to avoid any possible effect of gen-

der difference in the cooperative task (Iachini et al., 2016). They all had normal or

corrected-to-normal visual acuity and were right-handed, as assessed by the Edinburgh

Handedness Inventory (Oldfield, 1971, mean laterality quotient = 0.81, SD = 0.26).

They had no prior detailed information about the hypothesis of the study and gave
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their informed consent prior to the beginning of the experiment. The protocol received

approval by the Institutional Ethics Committee (Ref. Number 2017-7-S52) and was

conducted according to the ethical principles of the Declaration of Helsinki (World

Medical Association, 2013).

5.4.2 Apparatus and stimuli

Experimental material, paradigm and procedure were the same as used by Coello et al.

(2018). Figure 5.1A provides a schematic illustration of the experimental apparatus.

Two participants sat facing each other at opposite sides of a 40” touch-screen table

(Samsung SUR40, 109.5 × 70.74 cm). The touch-screen table was placed in the middle

of a steel structure, that supported a 30 cm × 100 cm movable rectangular mirror

placed 34 cm above the touch-screen table, and a 200 × 150 cm horizontal translucent

screen placed 34 cm above the mirror. A video projector (Infocus 3926D) mounted on

the ceiling and connected to a computer (Dell 7010) projected a 161 × 118 cm image

on the mirror, through the translucent screen located 79 cm below the video projector.

Depending on the task, participants were requested to process the stimuli projected

on the mirror (reachability-judgment task), or directly displayed by the touch-screen

table (stimuli-selection task).

In the reachability-judgment task, 51 grey stimuli (1 cm-diameter dots), ranging from

0 cm to 100 cm away from the head position of the participants (mean inter-target

distance of 2 cm), were projected at the level of the touch-screen table, by the way

of the optical projection of the image displayed on the mirror through the translucent

screen (Figure 5.1B). The stimuli were randomly displayed for 250 ms and presented

four times each, for thus a total of 204 trials (51 distances × 4 repetitions). While

performing the task, a black sheet covered the touch-screen table in order to avoid any

luminous source that could interfere with the perception of the visual stimuli.

In the stimuli-selection task, 32 grey stimuli (2.7 cm-diameter dots) were randomly

displayed on the black background of the 40” (1920 × 1080 px) touch-screen table

(active area of 88.56 × 49.81 cm) according to a non-visible distribution grid (Fig-

ure 5.1C). The grid was composed of 42 non-visible cells (6 rows × 7 columns) that

covered the whole touch-screen table. When positioned at the centre of the cells, the

inter-stimuli distance was 12.65 cm (274 px) along the x axis and 8.30 cm (180 px)

along the y axis. In each block of stimuli selection, the 32 grey stimuli were displayed

at random locations (from 0 to 60 pixels from the centre in the [x, y ] directions) in ran-

domly selected cells, thus leaving 10 cells empty. The configuration of the set of stimuli

changed in each block, which gave the feeling of a sequence of random distributions.

Participants selected each stimulus by touching it on the screen with the right index

finger, resulting in a stimulus colour change. If the stimulus turned to green (50% of

the stimuli), a sound of clinking coins was played and participants gained one point

(reward-yielding stimulus). If the stimulus turned to red (50% of the stimuli), a buzzing

sound was played and participants gained no point (no reward-yielding stimulus). The
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probability to select a green reward-yielding stimulus was differently distributed ac-

cording to the location of the participants in the dyads. For 50% of the participants

(Gnear), the probability of selecting a reward-yielding stimulus was 75% in the near

space (rows 1, 2 and 3) and 25% in the far space (rows 4, 5 and 6). For the other 50%

of the participants (G f ar), the probability of selecting a reward-yielding stimulus was

75% in the far space (rows 4, 5 and 6) and 25% in the near space (rows 1, 2 and 3; see

Figure 5.1C). Participants belonging to the Gnear or G f ar group were randomly placed

in either side of the touch-screen table. Each dyad performed 34 blocks of stimuli se-

lection, each block including 12 selections of stimuli (6 per participant, alternating at

each selection). Two digital counters were displayed along the proximal edge of the

touch-screen table, in the middle, so that each participant of the dyads could check for

the score accumulated throughout the task.

5.4.3 Procedure

To begin with, participants of each dyad completed the written consent and the Edin-

burgh Handedness Inventory (Oldfield, 1971). The two participants were then seated

in a dark room at opposite sides of the touch-screen table (inter-head distance of 1

m) and received the instructions relating to the two tasks. The experimental session

was composed of three subsequent phases: (a) A pretest phase in which participants

performed the reachability-judgment task; (b) a test phase in which participants per-

formed the stimuli-selection task; (c) a posttest phase in which participants performed

the reachability judgment task again. The whole experimental session lasted about one

hour.

In the reachability-judgment task (pretest and posttest phases), the two participants

of the dyads were requested to estimate if the stimulus presented could be reached

or not with the right hand, but without performing any actual movement. The two

participants saw the same stimulus but performed the task individually, providing thus

simultaneously reachable/unreachable responses on different keyboards with their left

index and middle fingers. Following a short practice session (5 stimuli), each participant

judged the reachability of 204 stimuli in both sessions (pretest and posttest). Inter-

stimuli interval lasted 1.5 s, during which participants provided their responses. A

short break period of 60 s was provided halfway in each session.

In the stimuli-selection task, the mirror, the two keyboards and the black sheet cover-

ing the touch-screen table were removed. In order to highlight the cooperative aspect of

the stimuli-selection task, the latter was presented to participants as a game that had

to be played together. The aim was to get a maximum score by cooperatively cumulat-

ing as many points as possible by finding as many green (reward-yielding) stimuli as

possible. For this purpose, they alternatively selected with their right finger 12 stimuli

out of the 32 displayed on the screen. Participants in the Gnear group always performed

the first selection in order to standardize the procedure. Overall, each participant se-

lected a total of 204 stimuli leading to a total of 408 stimuli per dyad (2 participants



40 the effect of action rewards and social context on pps construction

Figure 5.1
Schematic Illustration of the Experimental Apparatus (A), and Stimuli Used in the
Reachability-Judgment (B) and Stimuli-Selection (C) Tasks

Note. According to the group, the probability of selecting a (green) reward-yielding stimulus
was 75% in the participant’s or their confederate’s proximal space.

× 6 stimuli × 34 blocks of trials). Participants had no right to verbally or visually

communicate during the whole experiment. At the end of the experiment, participants

responded to two individual social characteristics questionnaires. First, the Interper-

sonal Reactivity Index (IRI, French version by Guttman Laporte, 2000; see Appendix

??), assessing through four subscales cognitive empathy (Perspective Taking, Fantasy)

and affective empathy (Empathic Concern, Personal distress). Second, the Social Value

Orientation Slider Measure (SVO-Slider Measure, French version; Murphy et al., 2011,

see Appendix ??), assessing people’s prosocial tendency, which has been found to in-

fluence the propensity to cooperate (Zeelenberg et al., 2008). Finally, we checked in a

post-experiment debriefing that none of the participants were aware of the hypotheses

tested, which was the case.
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5.4.4 Data and statistical analysis

Matlab software (R2017a) was used for the implementation of the tasks as well as

for data collection and analysis. Statistical analyses were carried out with R version

3.3.2 (R Core Team, 2017) and R Studio version 1.0.136. Concerning the reachability-

judgment task, the perceived boundary of PPS (reachability threshold) was determined

using the maximum likelihood fit procedure based on second-order derivatives (quasi-

Newton method) to obtain the logit regression model that best fitted the dichotomous

responses (reachable/ unreachable) provided by participants for each of the 51 distances

of stimuli (Bourgeois & Coello, 2012). The logit regression model was obtained by

employing the following equation:

Y =
exp(α+β∗X)

1 + exp(α+β∗X)
(5.1)

In this model, X relates to the distance at which the stimulus appeared, while Y cor-

responds to the answer given by the participants. Reachability threshold corresponds

to - α/β, which defines the critical value of X marking the transition between the

response “reachable” and “unreachable” (i.e., the boundary of PPS). Individual reach-

ability thresholds were corrected according to the actual arm length by subtracting

arm length (cm) to the critical value of X. Reachability thresholds were computed

separately for pretest and posttest. A reachability threshold in the posttest similar to

that in the pretest (posttest-pretest difference = 0) indicated no change of PPS repre-

sentation. A higher reachability threshold in the posttest (posttest-pretest difference

> 0) indicated a shift of reachability threshold away from the participant (i.e., ex-

tension of PPS representation), while a lower reachability threshold (posttest-pretest

difference < 0) denoted a shift of reachability threshold towards the participant (i.e.,

shrinkage of PPS representation). We analysed the perceived change of reachability

thresholds (posttest-pretest difference) through a Session (Pretest, Posttest) × Group

(Gnear, G f ar) × Gender (Male, Female) analysis of variance (ANOVA), with Group and

Gender as between-subject factors. The goodness of fit of the logistic regression was

estimated through McFadden’s pseudo-R squared.

Concerning the stimulus-selection task, we computed the number of stimuli selected

in the distal space (rows 4–6 for Gnear and G f ar) for each participant and for each

block. For the data analyses described hereafter, non-parametric statistical tests were

used as the number of comparisons did not allow the validation of the necessary as-

sumptions (normality, homoscedasticity) to use parametric tests. Specifically, we ap-

plied permutation-based ANOVA following Manly’s method (Manly, 2018), setting the

number of permutations at 99,999. Post-hoc comparisons were assessed through per-

mutation tests based on 9999 Monte-Carlo resampling, using the independence test

function of the “coin” package implemented on R (Hothorn et al., 2008).

First, we calculated the average number of distal stimuli selected, all blocks con-

sidered together, in order to assess the general tendency to invade the confederate’s

space. Statistical analyses were carried out using a permutation-based ANOVA with



42 the effect of action rewards and social context on pps construction

Group (Gnear, G f ar) and Gender (Female, Male) as between-subject variables. Second,

we compared the average number of distal stimuli selected in the first and last three

blocks to account for an eventual change in selection strategy during the selection task.

We applied permutation-based ANOVA with Block (First, Last) as within-subject vari-

able, and Group (Gnear, G f ar) and Gender (Male, Female) as between-subject variables.

Third, in order to assess the precise moment at which a change in the participants’ strat-

egy occurred, we compared the number of distal stimuli selected across all blocks in

Gnear and G f ar, taking gender into account. We performed permutation-based multiple

comparisons for each block of trials, comparing first Gnear vs. G f ar performances, and

males’ vs. females’ performances separately for Gnear and G f ar. We further conducted

linear regression analysis and applied F test to test the overall significance of the model,

in order to account for any global change in the performance across blocks, depending

on the gender.

Furthermore, in line with Coello et al. (2018)’s analysis, we calculated for each

participant (a) the difference between posttest and pretest reachability estimates, (b)

the average amplitude of selection actions toward the stimuli across all blocks and (c)

the number of rewards obtained in the distal space. Correlations between the two latter

variables and the individual posttest–pretest difference in reachability threshold were

tested (Spearman’s rank correlation coefficient), considering gender and group together,

in order to evaluate whether the reported change of PPS representation was related to

the amount of rewards obtained rather than to the amplitude of motor performances.

In addition, we applied a z test to compare the observed percentage of reward-yielding

stimuli selected in Gnear and G f ar to the percentage that participants would have

obtained if they had only selected stimuli located in their respective proximal space.

Finally, in order to analyse the results at the IRI scale, we computed the score

obtained by the participant at each of the four subscales of the questionnaire: the Per-

spective Taking and Fantasy subscales (relating to cognitive component of empathy)

and the Empathic Concern and Personal Distress subscales (accounting for the affec-

tive component of empathy). The Perspective Taking subscale evaluates the ability to

adopt other people’s psychological point of view. The Fantasy subscale measures the

inclination to get involved in fictional situations and identify with fictional characters

in books, play or movies. The Empathic Concern subscale refers to the propensity to

be concerned and feel compassion for other people. The Personal distress subscale mea-

sures the tendency to experience distress or discomfort in response to others’ emotional

distress. As regards the SVO-Slider Measure, we analysed the first six primary items

(discarding the nine secondary items as being less essential according to our hypotheses

and not calculable for every participant). The score at the SVO-Slider Measure is pro-

vided in angle expressed in degrees: An angle less than -12.04° indicates the tendency to

be competitive; between -12.04° and 22.45° the propensity to be individualist; between

22.45° and 57.15° the tendency to be prosocial; and greater than 57.15° the propen-

sity to be altruistic. In order to test the differences in individual social characteristics

between females and males, we statistically compared the scores at the four IRI sub-
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scales and at the Primary Items using the Mann–Whitney U test for two independent

samples, with Gender (Female, Male) as between-subject factor.

For parametric ANOVA designs, the normality assumption was verified using the

Shapiro–Wilk test and checking the skewness and kurtosis values of the distributions.

The homogeneity of the variance–covariance matrix was verified using the Box’s M test

and the sphericity assumption was verified using Mauchly’s sphericity test. Effect sizes

were indexed using partial eta-squared (η2
p). Post-hoc comparisons were performed

using Tukey’s HSD test. Significance threshold was set at α = .050 for all statistical

tests and at α = .010 for tests validating the assumptions necessary to the application of

parametric tests (normality, sphericity, homogeneity of variance–covariance matrices).

5.5 results

5.5.1 Reachability-judgment task

As regards the goodness of fit in logistic regressions, Mac-Fadden’s pseudo-R squared

was on average .62 (SD = 0.16). In the pre-test, participants overestimated their actual

reachability threshold on average by 1.28 cm (SD = 6.70), which corresponded to an

overestimation of arm-length of 2% (M = 72.50 cm, SD = 5.00). Statistical analysis

revealed a significant Session × Group interaction (F(1,36) = 5.19, p = .029, η2
p = 0.13;

see Figure 5.2A). Pairwise comparisons showed that reachability threshold increased

in the posttest relative to the pretest in G f ar (pretest: M = 1.21 cm, SD = 7.74 and

posttest: M = 6.37 cm, SD = 9.40, p = .003) but not in Gnear (pretest: M = 0.45 cm,

SD = 6.77 and posttest: M = 1.45 cm, SD = 8.97, p = .878, see Figure 5.2B). Neither

the Gender principal effect (F(1,36) = 0.52, p = .475) nor the interaction effects Gender

× Group (F(1,36) = 1.32, p = .258), Session × Gender (F(1,36) = 1.16, p = .288) and

Gender × Group × Session (F(1,36) = 1.94, p = .172) were significant. These results

suggest that the reachability threshold was not statistically different between females

and males in Gnear (females: M = -0.78 cm, SD = 5.81 and M = -2.37 cm, SD =

8.75 for pretest and postest, respectively; males: M = 1.45 cm, SD = 7.59 cm and

M = 4.58 cm, SD = 8.22 for pretest and postest, respectively) as well as in G f ar

(females: M = 1.62 cm, SD = 6.47 and M = 7.11 cm, SD = 8.30, for pretest and

postest, respectively; males: M = 0.87 cm, SD = 8.95 and M = 5.76 cm, SD = 10.57,

for pretest and postest, respectively). Figure 5.2C shows individual posttest–pretest

reachability threshold differences as function of gender and group.

5.5.2 Stimuli-selection task

For a descriptive purpose, we calculated the frequency of stimuli selected at each

location, by dividing the number of times each cell with a stimulus was selected on the

touch-screen table by the number of times this cell contained a stimulus. Figure 5.3A

and B shows the frequency of stimuli selected at each location according to the group
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Figure 5.2
Results of the Reachability-Judgment Task

Note. A) Mean relative pretest and posttest reachability threshold according to arm length
(cm) as a function of the Group (Gnear, G f ar). Error bars represent standard errors. Stars
indicate significant differences between groups in the posttest–pretest reachability threshold
change (*p < .050). B) Group logit ft as function of Group (Gnear, G f ar) and Session (Pretest,
Posttest). Dots represent individual answers for both female and male participants. C) Individ-
ual posttest–pretest differences of reachability threshold (cm) as a function of the Group (Gnear,
G f ar). Positive and negative signs indicate, an expansion and shrinkage of PPS representation
respectively.
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Table 5.1
Total Number of Stimuli Selected during the Stimuli-Selection Task in Each Row as a
Function of Group (Gnear, G f ar) and Gender (Female, Male), and Percentage of Stimuli
Selected as a function of the Area (Proximal, Central, Distal)

Group Gender Row

1 2 3 4 5 6

Gnear Female 488 615 487 176 50 20

60 % 36 % 4 %

Male 751 690 476 192 91 44

64 % 30 % 6 %

G f ar Female 278 431 529 351 173 74

39 % 48 % 13 %

Male 258 347 470 493 419 266

27 % 43 % 30 %

Note. Proximal Area: rows 1–2; Central Area: rows 3–4; Distal Area: rows 5–6. The percentages

are calculated in relation to the total number of stimuli selected, equal to 1836 for females (6

stimuli × 34 blocks × 9 participants) and to 2244 for males (6 stimuli × 34 blocks × 11

participants).

and gender and offers a visualization of the touch-screen table areas where participants

acted predominantly. Table 5.1 shows the number of stimuli selected by females and

males, in both Gnear and G f ar, as well as their percentage relative to the total number

of stimuli selected, after pooling rows 1–2 (proximal area), rows 3–4 (central area) and

5–6 (distal area).

In order to better account for the invasive behaviour characterising the participants,

we contrasted the number of distal stimuli (localised beyond the middle of the table)

selected in Gnear and G f ar, taking into account the gender. Permutation-based ANOVA

revealed a significant Group (p < .001) principal effect. Post-hoc comparisons showed

that as a whole, the number of distal stimuli selected in G f ar (M = 86.25, SD =

40.76) was broader than the number of distal stimuli selected in Gnear (M = 28.65,

SD = 16.84, z = -4.30, p < .001). The Gender principal effect was also significant

(p = .011), as well as the Group × Gender interaction (p = .023; see Figure 5.4A).

Post-hoc comparisons relating to the interaction revealed that in Gnear, no statistically

significant difference emerged between males and females (M = 29.73, SD = 14.24 and

M = 27.33, SD = 20.41, respectively; z = -0.31, p = .763), the former crossing the

middle line 15% of the time and the latter 13%. In G f ar, male participants selected on

average more distal stimuli than female participants (M = 106.27, SD = 34.91 and

M = 61.78, SD = 34.62, respectively; z = - 2.43, p = .012), crossing the middle of

the screen and invading their confederate’s space 52% of the time compared to 30% in

females.

Regarding the change of selection performance between the beginning and the end

of the stimuli-selection task, statistical analysis showed a significant Block × Group

interaction (p = .001). As revealed by post-hoc comparisons, the number of distal

stimuli selected was, on average, statistically higher in the last blocks compared to the

first blocks in G f ar (M = 3.30, SD = 1.73 and M = 1.78, SD =1.63, respectively; z

= -2.62, p = .004), but not in Gnear (M = 0.06, SD = 0.78 and M = 1.08, SD =
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Figure 5.3
Density Maps of the Targets Selected by Participants in the Stimuli-Selection Task

Note. A) Density maps of the targets selected by the participants in Gnear and G f ar in the
stimuli-selection task. The rectangles represent the distribution grid composed of 42 cells. The
frequency of selection of a given stimulus location is associated with a colour bar ranging from
blue (rare selection) to red (frequent selection). The plots represent participants’ performances
according to their position on the touch-screen table: rows 1, 2 and 3 correspond to Gnear’s
proximal space and rows 4, 5, 6 to G f ar’s proximal space. B) Density maps of the stimuli selected
by male and female participants in Gnear and G f ar. The red bar indicates the participants’
location.
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0.92, respectively; z = 0.19, p = .445). Furthermore, statistical analysis revealed a

gender principal effect (p = .021), with males globally selecting more distal stimuli

than females (M = 2.19, SD = 1.73 and M = 1.32, SD = 1.23, respectively, z = -2.42,

p = .017). This effect was modulated by neither the Group nor the Block (Gender ×
Group × Block: p = .593; Gender × Group: p = .057; Gender × Block: p = .456).

When analysing the change of selection performance across all the blocks, permuta-

tion tests showed that Gnear and G f ar’s strategy diverged consistently from the 12th

block (see Figure 5.4B). Concerning the gender effect (see Figure 5.4C), in Gnear re-

gression analysis revealed that male participants selected progressively more proximal

stimuli across the blocks (R = -.75, F(1,32) = 41.73, p < .001), which was not ob-

served in female participants (R = -.13, F(1,32) = 0.53, p = .473). However, no specific

pattern in the change of strategy across block emerged from permutation tests when

contrasting males and females. Within G f ar, regression analysis showed that both fe-

male and male participants selected more distal stimuli across blocks (respectively, R

= .78, F(1,32) = 51.77, p < .001 and R = .82, F(1,32) = 65.15, p < .001), although

only male participants consistently selected an average of more than 50% of the stim-

uli in the distal space (see Figure 5.4C). In line with these results, permutation tests

revealed that male participants’ strategy statistically differed from the female partici-

pants’ one from the third block on and repeatedly all along the blocks. This suggested

a tendency for male participants to invade their confederate’s space sooner and more

consistently than female participants. All Z and p values for each block permutation

test are reported in Table 5.2.

In agreement with the design of the experiment, and participants’ natural preference

for proximal space, results showed that the number of reward-yielding stimuli obtained

depended on the group, with Gnear obtaining 2840 (70%) and G f ar 2095 (51%) reward-

yielding stimuli. This distribution was statistically different from the theoretical distri-

bution (75% for Gnear and 25% for G f ar) that would result if participants had selected

stimuli only in their proximal space (z = -7.38, p < .001 for Gnear, z = 26.85, p < .001

for G f ar).

5.5.3 Relation between change in reachability threshold, reaching actions’ amplitude

and amount of rewards obtained

Correlation analysis indicated that the reported change of PPS representation was

related to the amount of rewards obtained rather than to the change in the charac-

teristics of the motor activity. Indeed, when correlating the posttest–pretest difference

of reachability threshold to the number of rewards obtained by each participant, gen-

der and group considered together, Spearman’s correlation coefficient between the two

variables was 0.33 (p = .039) when considering the rewards obtained after selecting

stimuli in the distal space. In contrast, when correlating the posttest–pretest difference

in reachability threshold to the average amplitude of the selection actions, the Spear-
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Figure 5.4
Number and Percentage of Distal Stimuli Selected on Average by All Participants During the
Stimuli-Selection Task

Note. a) Number of distal stimuli selected on average by males and females in G f ar and Gnear.
Error bars represent standard errors. Stars indicate significant differences (p < .050). b) Per-
centage of distal stimuli selected across the 34 blocks in G f ar and Gnear. The two groups
diverged consistently from the 12th block on. c) Percentage of distal stimuli selected across
the 34 blocks by male and female participants in G f ar and Gnear. For G f ar and Gnear. The
regression equations express the linear relationship between the blocks and the percentage of
distal stimuli selection is displayed. Stars indicate significant differences revealed by permuta-
tion tests. The grey area in the graph represents the proximal area on the touch-screen table,
and the horizontal red dotted line indicates when the stimuli are equivalently selected in the
proximal space and in the distal space
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Table 5.2
Detailed Results of Multiple Comparisons Based on Permutation Tests (z, p, % of distal
stimuli) for G f ar vs. Gnear, Females vs. Males in G f ar, Females vs. Males in G f ar

Gfar vs. Gnear Females vs. Males - Gfar Females vs. Males – Gnear

Distal stimuli (%) Distal stimuli (%) Distal stimuli (%)

Block z p Gfar Gnear z p Females Males z p Females Males

1 0.47 .711 24.17 20.00 -1.14 .276 14.81 31.82 -0.58 .648 16.67 22.73

2 1.39 .203 29.17 17.50 -1.35 .201 18.52 37.88 -1.35 .246 11.11 22.73

3 2.42 .017 35.83 16.67 -2.18 .033 20.37 48.48 -0.93 .495 12.96 19.70

4 2.18 .033 38.33 20.00 -1.31 .214 27.78 46.97 -1.91 .078 12.96 25.76

5 1.12 .328 20.83 13.33 -2.44 .015 5.56 33.33 -1.51 .162 7.41 18.18

6 1.21 .287 23.33 15.00 -2.13 .036 9.26 34.85 -0.54 .636 12.96 16.67

7 1.90 .071 28.33 14.17 -2.10 .043 12.96 40.91 -2.81 .004 5.56 21.21

8 0.79 .493 30.00 23.33 -2.17 .027 12.96 43.94 -0.95 .380 18.52 27.27

9 2.94 .004 41.67 17.50 -1.72 .110 29.63 51.52 0.25 .830 18.52 16.67

10 1.75 .097 35.00 20.00 -2.49 .013 14.81 51.52 -0.34 .835 18.52 21.21

11 1.16 .299 31.67 22.50 -1.80 .070 18.52 42.42 -0.06 1.000 22.22 22.73

12 2.09 .042 30.83 14.17 -1.34 .202 22.22 37.88 0.46 .740 16.67 12.12

13 2.16 .038 40.83 21.67 -1.45 .157 29.63 50.00 -0.96 .383 16.67 25.76

14 2.65 .008 40.00 15.83 -2.24 .027 22.22 54.55 -0.22 .854 14.81 16.67

15 2.81 .004 35.83 11.67 -1.77 .095 22.22 46.97 -0.15 1.000 11.11 12.12

16 2.93 .004 41.67 13.33 -1.47 .176 29.63 51.52 0.30 .860 14.81 12.12

17 3.08 .001 40.83 9.17 -1.20 .239 29.63 50.00 -1.50 .208 3.70 13.64

18 3.98 .000 54.17 12.50 -1.08 .308 46.30 60.61 -1.30 .259 5.56 18.18

19 4.35 .000 54.17 10.00 -1.78 .081 40.74 65.15 0.95 .381 12.96 7.58

20 3.52 .000 51.67 18.33 -2.26 .028 35.19 65.15 1.20 .256 24.07 13.64

21 3.63 .000 50.00 10.83 -1.82 .086 33.33 63.64 0.08 1.000 11.11 10.61

22 3.98 .000 52.50 10.00 -0.96 .385 44.44 59.09 2.20 .023 18.52 3.03

23 3.59 .000 48.33 15.83 -0.83 .443 42.59 53.03 0.59 .693 18.52 13.64

24 3.84 .000 44.17 5.00 -1.03 .344 35.19 51.52 1.02 .459 7.41 3.03

25 3.63 .000 49.17 12.50 -0.55 .608 44.44 53.03 0.71 .578 14.81 10.61

26 4.26 .000 55.83 11.67 -1.06 .320 48.15 62.12 -0.13 1.000 11.11 12.12

27 3.12 .002 45.00 14.17 -1.64 .114 31.48 56.06 0.13 1.000 14.81 13.64

28 3.72 .000 49.17 13.33 -2.32 .021 31.48 63.64 0.36 .854 14.81 12.12

29 4.18 .000 46.67 9.17 -0.88 .423 40.74 51.52 -0.56 .771 7.41 10.61

30 4.46 .000 53.33 8.33 -2.02 .051 38.89 65.15 1.36 .301 12.96 4.55

31 4.12 .000 50.00 10.00 -1.01 .377 42.59 56.06 -0.20 1.000 9.26 10.61

32 4.28 .000 53.33 8.33 -0.44 .715 50.00 56.06 1.66 .184 14.81 3.03

33 4.70 .000 60.00 8.33 -1.61 .133 48.15 69.70 0.82 .611 11.11 6.06

34 3.62 .000 51.67 13.33 -1.95 .060 35.19 65.15 -0.47 .713 11.11 15.15

man’s correlation coefficient between the two variables was 0.29 and not significant (p

= .067).

5.5.4 Individual social characteristics measures

As regards the results in the IRI scale, statistical analysis did not show any significant

difference between female and male participants at the Perspective Taking subscale (U

= 710, p = .214; M = 25.7, SD = 4.07 for females and M = 25.1, SD = 4.20 for males),

Fantasy subscale (U = 718, p = .238; M = 26.8, SD = 5.37 for females and M = 26.2,

SD = 5.64 for males) and Empathic Concern subscale (U = 774, p = .433; M = 26.0,

SD = 4.17 for females and M = 26.0, SD = 3.55 for males). On the contrary, statistical
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analysis showed a significant gender difference at the Personal Distress subscale (U =

234, p < .001), with females reporting a higher score than males (M = 25.2, SD =

4.22 and M = 18.6, SD = 4.79, respectively).

As regards the results at SVO-Slider Measure, four participants (3 females and 1

male) resulted individualistic (angle comprised between -12.04° and 22.45°), while the

rest of participants resulted prosocial (angle comprised between 22.45° and 57.15°).
Furthermore, males showed higher angles than females (M = 35.0, SD = 7.37 and M

= 31.1, SD = 9.92, respectively), resulting statistically more prosocial than females

(U = 610, p = .037).

5.6 discussion

The aims of the present study were to investigate (a) how two face-to-face confeder-

ates actively explore a shared space when the constraints related to actions’ outcome

prompt the invasion of one of the confederate’s space; (b) how does such behaviour alter

participants’ PPS representation; and (c) whether the observed experimental effects are

modulated by the participants’ gender. For this purpose, we probed participants’ PPS

representation through a reachability-judgment task before and after taking part in a

stimuli-selection task performed cooperatively with a confederate. The experimental

manipulation consisted in increasing for one participant and decreasing for the other

participant of a dyad the probability to select a reward-yielding stimulus when acting

in the proximal space.

The first important result obtained in the present study concerns the impact of

the biased spatial distribution of the reward-yielding stimuli on the exploration of the

shared action space. Initially, participants spontaneously selected stimuli in their re-

spective proximal space, confirming previous experimental observations (e.g., Coello

et al., 2018). Afterwards, the selection behaviour changed across the blocks of tri-

als: Without being aware of it, participants were attracted by the area in which the

probability of selecting a reward-yielding stimulus was higher. Specifically, they pro-

gressively acted more distally when the probability to select a reward-yielding stimulus

was higher in the distal space, and more proximally when the probability to select a

reward-yielding stimulus was higher in the proximal space. As already discussed before

(Coello et al., 2018) and supported by the correlation analysis, this indicates that par-

ticipants were sensitive to the probability of performing a successful action in relation

to the distribution of reward-yielding stimuli, reflecting thus non-conscious learning of

environmental regularities. Accordingly, these results expand the findings of previous

studies on reward effect on attention (Anderson et al., 2013; Chelazzi et al., 2013; Jiang

et al., 2013; Jiang et al., 2015) and ocular control (Camara et al., 2013; Hickey & Van

Zoest, 2012) to object-oriented manual actions.

Another outcome of the present study was that participants invaded the space of

their confederate when the probability of succeeding an action was higher in the con-

federate’s proximal space. Such invading behaviour was not fully expected. Indeed, it
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was not observed in our previous study (Coello et al., 2018), where the probability

to select a reward-yielding stimulus was equally spread across the whole action space.

This observation was in line with the assumption that in a social context, for a de-

fensive purpose, people tend to adjust the representation of their own PPS so as to

avoid interfering with others’ PPS (Coello & Iachini, 2016; Fujii et al., 2009; Szpak

et al., 2015; Teneggi et al., 2013), except when the confederate has a passive attitude

(Coello et al., 2018). Moreover, Coello et al. (2018) showed that when participants

performed the stimuli-selection task alone, the behavioural adaptation leading them

to act in the distal space (when associated with more reward-yielding stimuli) occurred

rapidly (i.e., within the first 20 stimuli selections). In the present study, the change

of strategy occurred instead following approximately 85 stimuli selections. The fact

that behavioural adaptation required more action repetition indicated that the so-

cial context interfered with the optimisation of stimuli selection strategy. Specifically,

the propensity to avoid others’ PPS appeared here to be in conflict with the natural

spatial exploration for reward search in the cooperative stimuli-selection task. As a

consequence, selecting reward-yielding stimuli in the distal space was delayed when it

required invading others’ PPS. In the same vein, previous studies in monkeys showed

that the brain regions involved in motor-related visual processing (i.e., pre-frontal and

parietal cortices) adapted their response properties according to the social context:

Neuronal activity depended on whether the location of two monkeys enabled them

to reach for the same food item, and was also modulated by the social status of the

monkeys, by discarding the stimuli near the more dominant monkey (Fujii et al., 2007;

Fujii et al., 2009). This suggests that the same object can be included or not in the

PPS, depending on its value and the social context.

The second important result of the present study concerns the gender difference that

emerged in relation to the invasion behaviour, with males invading their confederate’s

space more often than females. One possible explanation could rely on the difference in

arm length between males and females, the former having longer arms than the latter.

However, this interpretation can be ruled out, because our analysis was based on the

number of times participants acted beyond the middle of the touch-screen table, which

corresponded to 25 cm, a distance that was largely within an arm’s reach for both

males and females. The gender effect might thus rely on other variables, such as higher

order social factors. Previous research highlighted indeed differences in the regulation

of social distance depending on gender (Fisher & Byrne, 1975; Iachini et al., 2016).

For instance, when assessing comfortable interpersonal distance between males and

females, it was found that male–male pairs prefer larger inter-personal distances than

female–female pairs (Bailey et al., 1972; Iachini et al., 2016). This was supposed to

be in relation with the females’ tendency to be more affiliative (Uzzell & Horne, 2006)

and empathic (Christov-Moore et al., 2014), and more sensitive to non-verbal behav-

iour (Sokolov et al., 2011), resulting in shorter interpersonal distances (liebman1970;

Bailenson et al., 2001; Baxter, 1970; Hartnett et al., 1970).
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Moreover, studies in social psychology showed that whereas females are more inter-

personally oriented, males are more group-oriented (Baumeister & Sommer, 1997;

Gabriel & Gardner, 1999), and engage more frequently in competitive between-group

interactions than females (Pemberton et al., 1996; Vugt et al., 2007). These differences

could provide a possible interpretative framework to account for the gender effect ob-

served in the present study. We can indeed speculate that females would invade less

their confederate’s space because they are potentially more sensitive to PPS intrusion’s

consequences, which is in line with females’ higher Personal Distress score obtained

in the IRI scale. In contrast, males would neglect this aspect and invade other’s PPS

because this constitutes a more appropriate cooperative strategy to get a higher score.

This is in line with males’ higher prosocial tendency revealed by the SVO-Slider Mea-

sure test. Furthermore, differences were reported in previous studies concerning reward

sensitivity in males and females, with females outperforming males in tasks associated

with immediate compared to delayed rewards (e.g., Byrne & Worthy, 2015). This sug-

gests that males’ behaviour in the present study cannot be simply explained by a better

environmental learning than females. Considering these results, it would be interesting

to analyse in a further study how male and female participants would behave in a

situation where dyads have to compete instead of cooperate.

Finally, a third important result concerns the change of PPS representation following

the stimuli-selection task performed in a shared space. Participants for whom the

probability of obtaining a reward was higher in the distal space showed an increase

of their PPS representation. On the contrary, participants for whom the probability

of obtaining a reward was higher in their proximal space did not show any specific

change of PPS representation. This indicates that PPS representation depends not only

on the body state and action system, but also on action outcomes, confirming thus

previous empirical findings (Coello et al., 2012; Coello et al., 2018). Indeed, in Coello et

al. (2018), participants who had a 75% chance of selecting a reward-yielding stimulus

in their proximal or distal space showed instead a decrease (-2.49 cm) and increase

(+2.35 cm) of PPS, respectively. An increase of PPS was also observed in a cooperation

context when the distribution of reward-yielding stimuli was unbiased (+3.19 cm). In

the present study, we found a broader effect of cooperation context on PPS when reward-

yielding stimuli were biased towards the distal (+5.16 cm) rather than the proximal

space (+1.01 cm). It is worth noting that the change of PPS was related to the amount

of reward obtained and not the change in movement amplitude in the stimuli-selection

task.

Taken as a whole, these results suggest that the information drawn from observ-

ing successful actions of conspecifics combined with the biased distribution of reward-

yielding stimuli modulated the effect of sharing action space with confederates on PPS

representation. More specifically, participants having 75% of reward-yielding stimuli lo-

cated in their distal space would show a higher increase of PPS representation because

the effect of the reward distribution and of sharing an action space with someone

else would add up. On the contrary, for participants having 75% of reward-yielding
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stimuli located in their proximal space, these two effects would have combined and

canceled. Thus, the decrease of PPS representation induced by the presence of more

reward-yielding stimuli in the near space would have been counterbalanced by the

social context. Assuming that this interpretation is correct, this would confirm that

PPS representation depends on the outcome of both self-generated and observed motor

actions as suggested in a previous study (Coello et al., 2018). Finally, no statistically

significant difference emerged between males and females, even though they appeared

to behave differently in the stimuli-selection task. Further studies could enrich these

results by analysing, for instance, a situation where one participant is observing while

the other is acting in a reward-biased action space.

5.7 conclusion

In conclusion, the present study showed that (a) expected rewards in the environment

in relation to motor actions combine with social interaction context; (b) these factors

influence both PPS representation and exploitation, prompting people to invade others’

space, and (c) this interaction would work differently between males and females. Taken

as a whole, our results enrich the theoretical debate on PPS representation, providing

evidence in favour of the idea that PPS representation stems from the integration of

multiple factors including the agent with their physical characteristics and possibilities

to act in the environment, the stimuli’s value and the interaction with other individuals

within a shared space. Furthermore, the findings of the present study pave the way

for new research avenues in relation to gender differences in acting within PPS and

adjusting its representation in social interaction contexts.





6
THE EFFECT OF OTHERS ’ ACT ION OUTCOMES

ON PPS CONSTRUCTION

6.1 rationale of study 2

The results exposed in Chapter 5 enriched the findings of Coello et al. (2018) by showing

that the social context modulates the effect of action rewards on PPS representation and

exploitation. Furthermore, these findings suggested also that others’ action outcomes

participate to the remapping of one’s own PPS representation. It was speculated that

this effect would be due to the integration of others’ action rewards in space, observed

by the individual during the execution a collaborative task.

Nevertheless, no empirical evidence has been proposed in support of such hypoth-

esis. Indeed, despite previous findings showed that observing others’ actions recruits

the same sensori-motor processes implied in the execution of self-generated actions, it

is still not clear to what extent observing other’s actions influences PPS representation

and the further selection of actions within it. The present study aimed at clarifying

this issue. Specifically, the main purpose was to assess whether the combined effect of

action rewards and social context (observed in Study 1) on PPS representation and ex-

ploitation was modulated by the individuals’ degree of involvement in the collaborative

task. For this purpose, differently from Study 1 (in which the social context consisted

in a situation of co-action), the collaborative task employed in Study 2 required one

participant to act and the other to observe.

More specifically, participants (observers) performed a reachability-judgment task

(assessing PPS representation) before and after having observed a confederate (actors)

performing a stimuli-selection task on a touch-screen table. In the stimuli-selection

task, the distribution of reward-yielding stimuli could be biased or not towards either

participants’ proximal or distal space, as in Coello et al. (2018) and Study 1. Observers

were finally required to perform at their turn the stimulus-selection task, which allowed

to assess the effect of observing others’ action outcomes on one’s own further PPS

exploitation. The distribution of reward-yielding stimuli was not biased at this moment

of the task.

Two major findings emerged from Study 2: one concerning the actors’ performance

and one the observers’ performance. The original article focused mainly on the ob-

servers’ performance. In the present thesis, I focused on and discussed both the actors’

and observers performances, in order to properly examine the effect of individuals in-
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volvement degree in a motor task in PPS representation and exploitation. As regards

the actors’ performance, results showed that when facing a passive confederate, individ-

uals start to exploit others’ PPS much later than when facing an active confederate (as

shown by Study 1). Moreover, PPS representation was found to extend or remain stable,

but never to constrict, not even when rewards were located in the near space. This

result suggested therefore that PPS representation remaps in the presence of another

individual, but that others’ actions are not crucial for such a remapping to occur. As re-

gards the observers’ performances, the original result was that observing the outcomes

of others’ actions affects separately PPS representation and exploitation. Specifically,

observing others’ action rewards in space modify PPS representation, but this is not

sufficient to influence PPS exploitation (i.e., the selection of actions to be performed

within).
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Paying attention to the outcome of others’ actions has dissociated effects

on observer’s peripersonal space representation and exploitation

Gigliotti, M.F., Bartolo, A., & Coello, Y.

Submitted work

6.2 abstract

Peripersonal space representation and exploitation (i.e., the selection of motor actions

within this particular space) are influenced by action outcomes and by reward prospects.

The present study tested whether observing the outcomes of others’ actions modulates

the observer’s PPS representation and exploitation. Participants (observers) performed

a reachability-judgement task (assessing PPS representation) before and after having

observed a confederate (actors) performing a stimuli-selection task on a touch-screen

table. In the stimuli-selection task, the stimuli selected could either yield a reward

or not (50%), but the probability to select a reward-yielding stimulus was biased in

space, being either 50%, 25% or 75% in the actor’s proximal or distal space. After

the observation phase, participants performed the stimuli-selection task (assessing PPS

exploitation), but with no spatial bias in the distribution of reward-yielding stimuli.

Results revealed an effect of actors’ actions outcome on observers’ PPS representation,

which changed according to the distribution of the reward-yielding stimuli in the actors’

proximal and distal space. However, no significant effect of actors’ action outcomes was

found on observers’ PPS exploitation. As a whole, the results suggest dissociated effects

of observing the outcome of others’ actions on PPS representation and exploitation.

6.3 introduction

Performing object-directed motor actions requires to precisely represent the space

where these motor actions will take place, which refers to the notion of peripersonal

space (Bufacchi & Iannetti, 2018; Coello & Cartaud, 2021; de Vignemont & Iannetti,

2015; di Pellegrino & Làdavas, 2015; Rizzolatti et al., 1981). The peripersonal space

(PPS hereafter) acts as an interface between the body and the environment by allowing

the selection of the objects that receive particular attention in relation to intentional

motor purposes (Belardinelli et al., 2018; Brozzoli et al., 2012). The particular feature

of this interface is that objects located in the PPS are coded through multisensory and

sensorimotor integrative processes, two mechanisms which operate in the space near

single body parts (e.g., peri-hand, peri-head, peri-trunk and peri-feet PPS; Serino et
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al., 2015; Stone et al., 2018; Zanini et al., 2021), as well as in the space around the

whole body (Noel et al., 2015a).

As highlighted by single-unit electrophysiological studies in macaque monkeys

(Graziano & Gross, 1993; Rizzolatti et al., 1981), human behavioural studies (Avenanti

et al., 2012; Serino et al., 2011), neuroimaging and neurophysiological studies (Makin

et al., 2007; Wamain et al., 2016), and studies in brain-damaged patients (Bartolo et al.,

2014; Farne et al., 2005), such mechanisms allow an enhanced multisensory treatment

of nearby stimuli, which prepares the motor systems to interact with these stimuli

(Belardinelli et al., 2018). Based on this sensorimotor processing, PPS representation

serves two essential functions: (a) selecting potential actions towards incentive objects

and (b) protecting the body from approaching hazards (Coello & Cartaud, 2021; Dosey

& Meisels, 1969; Graziano & Cooke, 2006).

In order to fulfil this dual function, PPS representation constantly adjusts to the

situations encountered and can thereby be modulated by several factors. First, PPS

representation is highly sensitive to transient or permanent alterations of the sensori-

motor system. As evidence, several studies have shown that the use of a tool can induce

an extension of PPS representation (Berti & Frassinetti, 2000; Witt et al., 2005). For

instance, Bourgeois et al. (2014) demonstrated that the distance at which an object is

perceived to be within arm reach extended in space after tool use, providing that the

tool induces a functional extension of the arm. This extension was interpreted as the

consequence of the incorporation of the tool functional aspects into the users’ body

schema (Cardinali et al., 2021; Iriki et al., 1996; Maravita et al., 2002; Witt et al.,

2005). Such incorporation would be induced by a change in body metrics across the so-

matosensory cortex (Cardinali et al., 2011; Cardinali et al., 2009b; Miller et al., 2019),

that would result in a longer arm internal representation (Grüsser, 1983; Sposito et al.,

2012).

Contrasting with the effect of tool use, damage to the sensorimotor cortex was

found to impair the sensorimotor abilities on the contralateral side of the body and

to induce a reduction of PPS representation, irrespectively of the body side considered

(Bartolo et al., 2014). A similar reduction of the PPS representation was observed after

restricting arm movements by an arm-splint for 24 hours (Toussaint et al., 2018), which

is known to affect cortical excitability of the sensorimotor neurons dedicated to limb

control (Avanzino et al., 2011; Facchini et al., 2002; Huber et al., 2006), resulting in

reduced movement accuracy (Huber et al., 2006) and coordination (Moisello et al.,

2008). In the same vein, Leclere et al. (2021) and Leclere et al. (2019) reported that

changing the usual gravito-inertial force field during the performance of an object-

directed motor task also produced a shrinking of PPS representation. As a whole, these

findings underlined that PPS representation is highly dependent on the accuracy of

inputs coming from the body and of sensori-motor internal models (Bourgeois & Coello,

2012), with the consequence that the reduction in their effectiveness generally leads to

a reduction in the representation of PPS.
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In addition to the factors inherent to an individual (i.e., sensorimotor representations,

internal models and accuracy of body-related inputs), the valence assigned to external

stimuli has also been identified to affect PPS representation. Indeed, a reduction of

PPS representation was observed when potentially dangerous objects were presented

within reaching distance, provided that the object’s threatening part (e.g., the needle

of a syringe) was directed towards participants’ body (Coello et al., 2012). This result

was explained by an anticipation of the potential positive/negative consequences of act-

ing towards a dangerous object, leading to the recruitment of an approach/avoidance

behavioural strategy and to a consequent adjustment of PPS representation.

In line with this view, Coello et al. (2018) went one step further by showing that the

expectation of motor actions rewarding outcomes could also induce a modification of

PPS representation (see also Gigliotti et al., 2021). The authors asked participants to

manually select a set of visual stimuli presented on a touch-screen table. Once selected,

the stimuli could either yield a reward or not. Furthermore, the distribution of reward-

yielding stimuli could be equal in the whole workspace or biased towards either the

distal or the proximal portion of the workspace. Results showed that, after several man-

ual selections, participants tended to select predominantly the stimuli located in the

area of the workspace associated with a higher proportion of reward-yielding stimuli,

although this was entirely outside the scope of consciousness. These results extended

to manual motor actions the effect previously observed on visual attention. Indeed,

visual attention ws found to be preferentially oriented towards the most rewarding

stimuli and conversely, deviated from stimuli associated with no reward (Akrami et al.,

2018; Desimone & Duncan, 1995). Moreover, the results by Coello et al. (2018) high-

lighted that PPS representation seems to rely not only on the sensori-motor properties

of the body, but also on reward prospects related to the motor actions performed in

the environment.

Beyond the findings summarised above, recent studies addressed the issue of watch-

ing someone performing an action on the observer’s PPS representation. For instance,

Costantini et al. (2011) showed that PPS representation extended after observing a

confederate using a tool, although only when the perceiver held a functionally and

structurally similar tool. The authors concluded that PPS remapping through action

observation is modulated by the observer’s possibility to perform compatible actions.

By contrast, Galigani et al. (2020) did not find any effect of tool-use observation on the

multisensory processing of stimuli within PPS, advocating the importance of integrat-

ing sensorimotor feedback to actually induce a remapping of PPS representation. Given

the divergent results of these studies, the effect of observing the outcomes of others’

actions on the perceiver’s PPS construction remains an open issue. More specifically,

it is not known yet whether others’ action outcomes remap the observer’s PPS repre-

sentation and PPS exploitation. We define here PPS exploitation as the participants’

behaviour, and more specifically the action selection process, within their near-body

action space.
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Building on our previous research (Coello et al., 2018; Gigliotti et al., 2021), we

investigated in the present study whether observing the outcomes of others’ actions,

whose goal was to find reward-yielding stimuli in a shared action space, altered the

observer’s PPS representation and exploitation. For that purpose, we recruited same-

sex dyads of participants and asked them to perform four tasks (see Figure 6.1A).

First, we assessed participants’ PPS representation using a reachability-judgment task

(pretest). In this task, participants were requested to estimate whether a set of visual

stimuli (1 cm diameter grey dots) randomly presented across 51 distances (0 to 100 cm

from the trunk) appeared reachable when imaging to stretch the right arm. Second,

participants were randomly assigned the role of actor or observer. The actors were

requested to perform the stimuli-selection task, which consisted in selecting with the

right-index finger 12 out of 32 stimuli (2.7 cm diameter grey dots) randomly presented

on a touch-screen table. Once selected, the stimuli changed their colour from grey to

either red (not reward-yielding stimuli) or green (reward-yielding stimuli). The aim of

the task for the actor was to find, across the blocks of trials, as many green, reward-

yielding stimuli as possible.

The probability of finding a reward-yielding stimulus was manipulated so that it

depended on the stimulus location on the touch-screen table (see Figure 6.1B). In the

Control group, the probability to select a reward-yielding stimulus was 50% in the

space near the actor (i.e., rows 1, 2 and 3 on the touch-screen table) and in the space

near the observer (i.e., rows 4, 5 and 6). In the Towards Actor group, it was 75% in

the space near the actor and 25% in the space near the observer. On the contrary,

in the Towards Observer group, it was 75% in the space near the observer and 25%

in the space near the actor. Participants performed 17 blocks of 12 stimuli selections

(resulting in a total of 204 trials). Meanwhile, the observers were requested to observe

the performance of the actor (observation phase), and were informed that afterwards,

they would have had to perform the task themselves, contributing thus to the final

score obtained by the dyad.

Third, we reassessed the PPS representation (posttest) to test whether the stimuli-

selection task performed by the actors had an effect on PPS representation in both the

actors and observers. Finally, we asked the observers to perform the stimuli-selection

task through 17 supplementary blocks of trials (action phase), to test whether the

observation of actors’ performance had an impact on observers’ PPS exploitation. In

this last task, the probability to select a reward-yielding stimulus was 50% in the

spaces near both the actor and the observer for all participants, regardless of the

group assigned during the observation phase. In this way, we expected observers to

base their exploration strategy on the observation of actors’ performances rather than

on the detection of a biased distribution of reward-yielding stimuli.

We formulated two hypotheses. First, observing the outcomes of actors’ actions in

the stimuli-selection task should have an effect on the observers’ PPS representation.

Precisely, observers should extend or reduce their PPS representation as a function of

the area of the workspace associated with more reward-yielding stimuli. Second, the
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performances of the actors in the stimuli-selection task should have an effect on the

observers’ PPS exploitation. According to our rationale, when observers were to apply

a stimuli selection strategy, they should select more stimuli in the space associated

with the largest number of reward-yielding stimuli at the time the stimuli-selection

task was performed by the actors.

6.4 results

The data for 78 same-sex dyads of participants (N = 26 in all groups) were collected

and analysed. Following outliers’ analysis (see Methods section for further details), 75

participants were retained for both the actors and the observers’ datasets analysis.

First, we analysed the actor’s performance in order to confirm previous findings about

the effect of biasing rewards distribution on the exploitation and representation of PPS

(see Coello et al., 2018). Then, we focused on the observer’s performance in order to

test our research hypotheses.

6.4.1 Actor performance

6.4.1.1 Effect of the biased distribution of reward-yielding stimuli on the actor’s PPS

exploitation

As regards the stimuli-selection task, actors selected overall more stimuli in the area

of the touch-screen table associated with the higher number of reward-yielding stimuli.

Figure 6.2A illustrates the frequency at which each location of the touch-screen table

was selected when it contained a stimulus during all the 17 blocks To analyse actors’

performances in the stimuli-selection task, we pooled rows 1-2-3 to delimit the space

near the actors, and rows 4-5-6 to delimit the space near the observers. As the two

spaces were complementary, statistical analyses were performed only on the stimuli

selected in the space near the observers, which constituted, for the actors, also an

indicator of the tendency to invade others’ PPS. Mean, standard deviation and 95%

confidence interval values for each variable measured in the stimuli-selection task are

presented in Table 6.1.

First, we assessed whether actors explored the space associated with a higher number

of reward-yielding stimuli depending on the group. For this purpose, we computed,

for each participant in each group, the mean number of stimuli selected across all

blocks in the space near the observers (i.e., actors’ distal space). The three groups

were compared using a Kruskal-Wallis test with the Group (Control, Towards Actor,

Towards Observer) as between-subjects factor. Statistical analysis revealed a significant

effect of the Group (H(2,75) = 24.68, p < .001, ϵ2
H = .31). Dunn’s test for pairwise

comparisons showed that the Towards Observer group selected more stimuli (M =

6.42, SD = 1.97) in the space near the observer than the Towards Actor group (M

= 3.68, SD = 1.73; Z = -4.90, p < .001), but not than the Control group (M =
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Figure 6.1
Illustration of Stimuli and Tasks Order

Note. A) Sequential order of the tasks. First, participants performed the reachability-judgment
task. Second, the actor performed the stimuli-selection task, while the observer observed pas-
sively the confederate’s performance. Third, participants realised the reachability-judgment
task for a second time. Finally, participants performed again the stimuli-selection task, but
switching their roles: The observer realised the stimuli-selection task, while the actor observed
passively. B) Distribution of the reward-yielding stimuli as function of the group. In the Con-
trol group, the probability to select a reward-yielding stimulus was 50% in the space near the
actor (rows 1, 2 and 3 of the grid) and in the space near the observer (rows 4, 5 and 6). In
the Towards Actor group, the probability to select a reward-yielding stimulus was 75% in the
space near the actor and 25% in the space near the observer. On the contrary, in the Towards
Observer group, it was 75% in the space near the observer and 25% in the space near the actor.
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5.68, SD = 1.28; Z = 1.68, p = .092). On its turn, the Control group selected more

stimuli in the space near the observer than the Towards Actor group (Z = -3.27, p =

.002, see Table 6.1). As a consequence, the three groups obtained a different number

of reward-yielding stimuli in the space near the observer. This was confirmed by a one-

way Welch’s ANOVA showing a significant effect of the Group on the mean number

of reward-yielding stimuli obtained in the space near the observer (F(2,75) = 86.04, p

< .001). More specifically, Games Howell post-hoc tests revealed that the Towards

Observer group obtained more reward-yielding stimuli in the space near the observer

(M = 80.12, SD = 25.49, 95% CI = [69.82, 90.41]), than both the Towards Actor group

(M = 19.65, SD = 9.91, 95% CI = [15.37, 23.94]; t(33.17) = 11.18, p < .001) and the

Control group (M = 49.69, SD = 11.88, 95% CI = [44.89, 54.49]; t(35.37) = 5.52, p

< .001). On its turn, the Control group obtained more reward-yielding stimuli in the

space near the observer than the Towards Actor group (t(46.85) = 9.65, p < .001; see

Figure 6.2C). These results confirmed the validity of our experimental design.

Second, we analysed how actors’ exploration strategy changed at the end when com-

pared to the beginning of the task depending on the group. For that purpose, we

computed, for each participant, the difference between the mean number of stimuli

selected in the space near the observer in the last 3 and first 3 blocks of stimuli selec-

tions. The three groups were compared by the means of a one-way Welch’s ANOVA,

with the Group (Control, Towards Actor, Towards Observer) as between-subjects fac-

tor. Results revealed a significant effect of Group (F(2,75) = 16.5, p < .001). Wilcoxon

signed-rank test for paired samples showed that the Towards Observer group selected

statistically more stimuli in the space near the observer at the end compared to the

beginning of the task (Z = 65, p = .009, r = .50). By contrast, no significant change

was observed for the Towards Actor group (Z = 143, p = .603, r = .11), nor for the

Control group (Z = 145, p = .647, r = .09; see Table 6.1).

Third, we wanted to identify the precise moment at which the change in the explo-

ration strategy occurred. For that purpose, we computed, for each participant in each

group, the mean number of stimuli selected in the space near the observer in each

of the 17 blocks. When considering all the 17 blocks, regression analysis revealed a

progressive increase of the number of stimuli selected in the space near the observer

in the Towards Observer group (R = .74, F(1,15) = 18.21, p < .001). On the contrary,

no significant change in the exploration strategy was found in the Towards Actor (R

= .30, F(1,15) = 1.53, p = .234) and Control groups (R = .45, F(1,15) = 3.78, p =

.071; see Figure 6.3A). When looking at the precise moment at which the change in

the exploration strategy became significant, permutation-based multiple comparisons

revealed that the Towards Observer group’s strategy started to diverge from the one

of the Control group from the 14th block on (see Figure 6.3B). By contrast, no change

in the exploration strategy for the Towards Actor group emerged when contrasted to

the Control group, the two groups following a stable and consistent strategy all along

the task (see Figure 6.3B). All mean, Z and p values in relation to permutation-based

multiple comparisons are reported in Table 6.2.
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Figure 6.2
Density Maps of the Frequency at which Each Table Location was Chosen When Containing a
Stimulus

Note. The rectangles represent the distribution grid composed of 42 cells (6 rows × 7 columns).
The colour bar ranges from blue (rare selection) to red (frequent selection). The human sil-
houette above or below each density map represents participants’ position during the task. A)
Actor’s performance during the stimuli-selection task. The Control group tended to explore
the whole surface. The Towards Actor group explored mainly the space near themselves, while
the Towards Observer group explored the whole surface tending slightly towards the space
near the observer. B) Observer’s performance during the stimuli-selection task (first 3 blocks
only). The three groups did not show any particular trend in their early exploration strategy.
C) Mean number of reward-yielding stimuli obtained in the distal space (near the observer) by
the actor. Histograms represent the mean number of rewards-yielding targets obtained. Dots
represent individual data and error bars 95% confidence intervals. Percentage values represent
the proportion of rewards-yielding targets obtained in the distal space with respect to the total
amount of rewards-yielding targets obtained. ***p < .001.
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Table 6.1
Means, Standard Deviations and 95% Confidence Intervals for the Stimuli-Selection Task and
the Reachability-Judgment Task as a Function of the Group (Control, Towards Observer,
Towards Actor) and the Role (Actor, Observer)

Group N Stimuli-Selection task Reachability-judgment task

All 17 Blocks First 3 Blocks Last 3 Blocks Pretest Posttest

M M M M M

SD SD SD SD SD

95 % CI 95 % CI 95 % CI 95 % CI 95 % CI

Actor

Control 26 5.68 5.42 5.68 0.59 cm -0.06 cm

1.28 1.84 1.32 9.35 9.05

[5.16, 6.19] [4.68, 6.16] [5.15, 6.21] [-3.71, 3.60] [-3.71, 3.60]

Towards Actor 23 3.68 3.87 3.55 -0.64 cm -0.88 cm

1.73 2.18 1.90 0.67 10.95

[2.93, 4.52] [2.93, 4.81] [2.73, 4.73] [-4.83, 3.54] [-5.62, 3.85]

Towards Observer 26 6.42 5.62 7.31 1.36 cm -4.6 cm

1.97 1.93 2.27 8.89 9.26

[5.62, 7.22] [4.84, 6.39] [6.39, 8.23] [-2.27, 4.98] [0.92, 8.40]

Observer

Control 25 5.43 5.25 5.40 0.18 cm -1.62 cm

1.42 1.95 1.74 7.48 7.72

[4.84, 6.01] [4.45, 6.06] [4.68, 6.12 ] [-2.90, 3.27] [-4.81, 1.56]

Towards Actor 25 5.17 4.92 4.92 0.313 cm 2.67 cm

1.27 1.69 1.95 10.55 12.17

[4.65, 5.69] [4.22, 5.62] [4.12, 5.72] [-4.04, 4.67] [-2.35, 7.70]

Towards Observer 25 5.52 5.79 5.76 2.65 cm 2.83 cm

1.15 1.69 1.47 12.34 13.06

[5.05, 6.00] [5.09, 6.48] [5.15, 6.37] [-2.44, 7.74] [-2.56, 8.22]

Note. In the stimuli-selection tasks, values refer to the mean number of stimuli selected by
participants. In the reachability-judgment task, values refer to the reachability threshold (cm)
reported by participants. N indicates the number of participants in each group.

6.4.1.2 Effect of the biased distribution of reward-yielding stimuli on the actor’s PPS

representation

As regards the reachability-judgment task, mean, standard deviation and 95% confi-

dence interval values for the reachability thresholds (relative values according to arm-

length) obtained in the pretest and posttest sessions for the three groups are presented

in Table 6.1. In the pretest, actors’ mean reachability threshold was 0.48 cm (SD =

9.23) on average, which corresponded to an overestimation of 0.67% of participants’

mean actual arm length (M = 71.12 cm, SD = 4.63). In the pretest, the mean reach-

ability threshold was not statistically different in the three groups (Control, Towards

Actor, Towards Observer), which were thus homogeneous at the beginning of the task

(Control vs. Towards Actor: t(47) = 0.45, p = 1.000; Control vs. Towards Observer: t(50)

= -0.30, p = 1.000; Towards Observer vs. Towards Actor: t(47) = 0.75, p = 1.000).

Reachability thresholds were statistically compared using a two-way Session ×
Group mixed ANOVA, with the Session (Pretest, Posttest) as within-subjects factor

and the Group (Control, Towards Actor, Towards Observer) as between-subjects fac-

tor. Statistical analysis showed no significant effect of Group (F(2,72) = 1.12, p = .330,
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Table 6.2
Mean Percentage of Stimuli Selected by Each Group in the Space Near the Observer (for the
Actor) and in the Space Near the Actor (for the Observer), z and p Values Returned by
Permutation-Based Multiple Comparisons

Block MCT vs. MTA z p MCT vs. MTO z p

Actor

1 45.51 30.80 2.24 .026 * 45.51 41.03 0.79 .463

2 45.19 33.70 2.08 .039 * 45.19 48.08 -0.56 .620

3 44.87 32.25 2.45 .013 * 44.87 51.28 -1.20 .255

4 46.79 32.25 2.28 .021 * 46.79 45.83 0.16 .917

5 41.67 35.51 1.00 .321 41.67 51.60 -1.61 .119

6 46.47 32.61 2.31 .018 * 46.47 58.65 -2.02 .049 *

7 43.59 28.62 2.42 .017 * 43.59 52.24 -1.59 .131

8 50.96 26.45 3.49 .000 *** 50.96 58.65 -1.22 .243

9 48.40 28.26 3.58 .000 *** 48.40 53.53 -0.88 .418

10 53.53 32.61 3.34 .000 *** 53.53 52.88 0.10 .959

11 46.47 31.16 2.77 .006 ** 46.47 53.85 -1.32 .215

12 48.08 25.72 3.35 .001 ** 48.08 49.04 -0.14 .923

13 52.56 25.72 4.00 .000 *** 52.56 51.92 0.10 .963

14 48.40 36.23 2.23 .027 * 48.40 58.33 -2.09 .039 *

15 47.76 7.15 3.13 .001 ** 47.76 59.62 -2.03 .046 *

16 46.47 7.27 2.52 .011 * 46.47 60.58 -2.62 .009 **

17 47.76 7.50 4.03 .000 *** 47.76 62.50 -2.89 .004 **

Observer

1 39.33 36.00 0.63 .578 39.33 45.33 -1.07 .309

2 46.67 46.33 0.06 1.000 46.67 52.00 -0.91 .402

3 45.33 40.67 1.04 .339 45.33 47.33 -0.48 .698

4 40.00 40.00 0.00 1.000 40.00 43.00 -0.60 .600

5 44.67 45.67 -0.21 .889 44.67 50.67 -1.29 .227

6 48.00 48.33 -0.09 1.000 48.00 41.00 1.62 .126

7 44.33 42.00 0.40 .740 44.33 47.00 -0.40 .732

8 46.33 51.00 -0.87 .429 46.33 39.33 1.15 .271

9 45.67 39.67 1.32 .221 45.67 47.00 -0.36 .787

10 47.33 48.00 -0.15 .942 47.33 46.33 0.26 .859

11 46.33 41.33 1.02 .350 46.33 42.00 0.88 .417

12 45.67 45.67 0.00 1.000 45.67 47.33 -0.28 .835

13 47.00 44.67 0.40 .735 47.00 43.67 0.57 .610

14 47.33 40.33 1.07 .309 47.33 46.33 0.16 .917

15 44.33 43.67 0.13 .947 44.33 44.33 0.00 1.000

16 46.33 39.33 1.03 .334 46.33 50.00 -0.57 .609

17 44.33 40.00 0.77 .478 44.33 49.67 -1.10 .309

Note. MCT: Mean percentage of stimuli selected by the Control group. MTA: Mean percentage
of stimuli selected by the Towards Actor group. MTO: Mean percentage of stimuli selected by
the Towards Observer group.
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Figure 6.3
Mean Percentage of Stimuli Selected in the Space Near the Observer (for the Actor) or Near
the Actor (for the Observer), as Function of the Group (Control, Towards Actor, Towards
Observer) and the Role (Actor, Observer)

Note. A) Mean percentage of stimuli selected by the actor in the space near the observer across
the 17 blocks, as function of the group. As shown by the linear regressions, only the Towards
Observer group changed its exploration strategy during the task, selecting progressively more
stimuli in the space near the observer, which was associated, for this group, to a higher prob-
ability of obtaining a reward-yielding stimulus. B) Results of the permutation-based multiple
comparisons tests for the actor. The Towards Actor and Control groups showed different explo-
ration strategies from the 1st block on, and throughout all the task. By contrast, the Towards
Observer group showed a different strategy from the Control group from the 14th block on. C)
Mean percentage of stimuli selected by the observer in the space near the actor across the 17
blocks, as function of the group. As shown by linear regressions, the selection strategy adopted
by the three groups did not change across the task. D) Results of the permutation-based multi-
ple comparisons for the observer. Any difference did not emerge between the three groups. *p
< .050.

η2
p = .03) or Session (F(1,72) = 1.87, p = .175, η2

p = .25). On the contrary, it revealed

a significant Session × Group interaction (F(2,72) = 4.65, SD = .013, η2
p = .11). More

specifically, pairwise comparisons showed that the reachability threshold increased sig-

nificantly in the posttest compared to the pretest in the Towards Observer group (M

= 3.31 cm, SD = 6.23, 95% CI = [0.79, 5.82]; t(25) = 2.71, SD = .012), but that it did

not change neither in the Towards Actor group (M = -0.24 cm, SD = 4.95, 95% CI =

[-2.38, 1.90], t(22) = -0.23, SD = .818) nor in the Control group (M = -0.64 cm, SD =

3.84, 95% CI = [-2.19, 0.91], t(25) = -0.85, SD = .402; see Figure 5.2A).
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Figure 6.4
Posttest-Pretest Difference in Reachability Threshold as Function of the Group (Control,
Towards Actor, Towards Observer) and the Role (Actor, Observer)

Note. A) Actor’s posttest-pretest differences in reachability threshold. Only the Towards Ob-
server group showed a significant change in reachability threshold, which increased in the
posttest compared to the pretest (posttest-pretest difference > 0). No significant change was
observed for the other two groups. B) Observer’s posttest-pretest differences in reachability
threshold. The Towards Actor Group showed a significant change in reachability threshold,
which increased in the posttest compared to the pretest (posttest-pretest difference > 0). The
Control group showed also a significant change in reachability threshold, which decreased in
the posttest compared to the pretest (posttest-pretest difference < 0). No significant change
was observed for the Towards Observer group. Histograms represent the mean posttest-pretest
difference in reachability threshold. Dots represent individual posttest-pretest differences. Error
bars represent 95% confidence intervals. *p < .050, **p < .010.

6.4.2 Observer performance

6.4.2.1 Effect of the biased distribution of reward-yielding stimuli on the observer’s

PPS representation

As regards the reachability-judgment task, mean, standard deviation and 95% confi-

dence interval values for the observers’ reachability thresholds obtained in the pretest

and posttest sessions for the three groups appear in Table 6.1. In the pretest, observers’

mean reachability threshold was 1.05 cm (SD = 10.20) on average, which corresponded

to an overestimation of 1.46% of participants’ mean actual arm length (M = 71.73 cm,

SD = 4.63). The mean reachability threshold obtained in the pretest was not statisti-

cally different in the three groups (Control, Towards Actor, Towards Observer), which

were thus homogeneous at the beginning of the task (Control vs. Towards Actor: t(48)

= -0.05, p = 1.000; Control vs. Towards Observer: t(48) = -0.85, p = 1.000; Towards

Observer vs. Towards Actor: t(48) = 0.72, p = 1.000).

Reachability thresholds were statistically compared using a two-way Session ×
Group mixed ANOVA, with the Session (Pretest, Posttest) as within-subjects fac-
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tor and the Group (Control, Towards Actor, Towards Observer) as between-subjects

factor. Statistical analysis showed no significant effect of Group (F(2,72) = 0.68, p =

.511, η2
p = .02) or Session (F(1,72) = 3.34, p = .562, η2

p = .01). On the contrary, it

revealed a significant Session × Group interaction (F(2,72) = 8.33, p < .001, η2
p = .19).

More precisely, pairwise comparisons showed that the reachability threshold decreased

significantly in the posttest compared to the pretest in the Control group (M = -1.81

cm, SD = 2.78, 95% CI = [-2.96, -0.66]; t(24) = -3.25, p = .003), and increased signifi-

cantly in the Towards Actor group (M = 2.36 cm, SD = 4.25, 95% CI = [0.60, 4.11];

t(24) = 2.77, p = .010). No significant difference between the pretest and the posttest

was observed in the Towards Observer group (M = 0.18 cm, SD = 3.65, 95% CI =

[-1.33, 1.69]; t(24) = 0.24, p = .810; see Figure 5.2B).

Taken as a whole, these results show a symmetric effect of reward-yielding stimuli on

PPS representation for the actor and the observer: For both of them, reward-yielding

stimuli induced an increase of PPS representation only when they were located in the

distal space (i.e., in the space near the observer for the actor, and in the space near

the actor for the observer).

6.4.2.2 Effect of the biased distribution of reward-yielding stimuli on the observer’s

PPS exploitation

To analyse the observers’ performance at the stimuli-selection task, as for the actor,

we pooled rows 1-2-3 to define the space near the actor, and rows 4-5-6 to delimit the

space near the observer. However, statistical analyses of the observers’ performances

were conducted on the stimuli selected in the space near the actor.

First, we assessed whether the observers, depending on the group, explored prefer-

entially the space that was associated with a higher number of reward-yielding stimuli

when the actor performed the task. For that purpose, we computed, for each partici-

pant in each group, the mean number of stimuli selected across all blocks in the space

near the actor. The three groups were compared through a one-way ANOVA with the

Group (Control, Towards Actor, Towards Observer) as between-subjects factor. Sta-

tistical analysis revealed no significant effect of the Group (F(2,72) = 0.50, p = .609, η2
p

= .01), the three groups not differing in the mean number of stimuli selected in the

space near the actor (5.37 stimuli per block on average; see Table 6.1).

Second, we tested whether the observers, depending on the group, changed their

exploration strategy at the end compared to the beginning of the task. Therefore, we

computed, for each participant, the difference between the mean number of stimuli

selected in the space near the actors in the last 3 blocks and in the first 3 blocks

of trials. We compared the three groups using a two-way Session × Group mixed

ANOVA, with the Block (First, Last) as within-subjects factor and the Group (Control,

Towards Actor, Towards Observer) as between-subjects factor. Statistical analysis did

not reveal a significant effect neither of the Group (F(2,72) = 2.03, p = .138, η2
p = .05),

nor of the Block (F(1,72) = 0.04, p = .851, η2
p = < .01), nor of the Block × Group

interaction (F(2,72) = 0.06, p < .937, η2
p = < .01). These results were corroborated
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by regression analysis, which did not show any particular change in the observer’s

exploration strategy across the task neither in the Control group (R = .39, F(1,15) =

2.75, p = .118), nor in the Towards Actor group (R = .04, F(1,15) = 0.03, p = .871),

nor in the Towards Observer group (R = .03, F(1,15) = 0.01, p = .921).

Third, we compared the three groups only in the first 3 blocks, in order to test

whether it was possible to find evidence for an early influence of actors’ performance

on the observers’ exploration behaviour. Indeed, repeating the task over 17 blocks

could have neutralized this effect as, for all the three groups, the probability to select a

reward-yielding target was set at 50% in both the near and far space (as in the Control

group). Figure 6.2B illustrates the frequency at which each location of the touch-screen

table was selected when it contained a stimulus during the first 3 blocks. We conducted

a one-way ANOVA on the mean number of stimuli selected in the space near the actor

during the first 3 blocks, using the Group (Control, Towards Actor, Towards Observer)

as between-subject factor. Again, results did not reveal any significant effect of the

Group (F(2,72) = 1.51, p = .228, η2
p = .04), ruling out the hypothesis of an early effect

of actors’ performance on the observers’ exploration behaviour.

6.5 discussion

The aim of the present study was to test whether observing the outcome of others’

actions influenced the observers’ PPS representation and exploitation. The study was

inspired by the ones by Coello et al. (2018) and Gigliotti et al. (2021), with dyads

of participants performing a reachability-judgment task (to assess PPS representation)

and a stimuli-selection task (to assess PPS exploitation). The novelty of the present

study was that, in the stimuli-selection task, participants were assigned either the role

of the actor or that of the observer. The observer was asked to perform the stimuli-

selection task after observing the actor performing it.

6.5.1 Actor performance

As regards the actors’ performances, results replicated previous findings about the

effect of the spatial distribution of reward-yielding stimuli on both PPS representa-

tion and exploitation. Concerning actor’s PPS exploitation, results showed that in the

stimuli-selection task participants selected more stimuli in the space associated with

a higher number of reward-yielding stimuli. Indeed, results showed that the selection

strategy adopted by the Towards Actor (i.e., reward-yielding stimuli in the space near

the actor) and Towards Observer groups (i.e., reward-yielding stimuli in the space far

from the actor and near the observer) differed from the one adopted by the Control

Group (i.e., reward-yielding stimuli randomly distributed in both spaces). As shown by

plots and statistical analyses, the Towards Actor Group explored mainly its near space,

by selecting, at the end of the task, 70.51% of the stimuli in this space (compared to

67.41% at the beginning of the task), for a total of 69.37% of proximal stimuli selected
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all along the task. Instead, at the end of the task, the Towards Observer Group selected

60.90% of stimuli in the space near the observer (i.e., in the actor’s distal space; against

46.80% at the beginning of the task), for a total of 53.51% of distal stimuli selected all

along the task. This effect can be explained by a statistical learning of reward-yielding

stimuli location (Chelazzi et al., 2014; Jiang et al., 2013) achieved through repeated

motor interactions with the workspace.

Statistical learning is associated with attentional mechanisms and it is known to

alter stimulus priority within the spatial map of action space (Zelinsky & Bisley, 2015)

and to guide further search behaviour (Fecteau & Munoz, 2006; Walthew & Gilchrist,

2006). However, the effect of reward distribution on the exploration strategy took

place at different moments for the two groups. It was present from the first block in

the Towards Actor Group, while it occurred late in the task for the Towards Observer

Group (from the 14th block on). These results can be explained by the presence of a

social context effect, which has already been reported in the literature (Gigliotti et al.,

2021): Actors tended to split the space in two and to act predominantly in their own

proximal space in order not to invade the space of the observer. As further evidence for

this interpretation, we can evoke the results found by Coello et al. (2018), who observed

that participants started to explore systematically more the distal space quite early in

the task (from the 3rd block on) when they had to perform the task alone.

Concerning actor’s PPS representation, results of the reachability-judgment task

showed an extension of PPS representation when the distribution of reward-yielding

stimuli was biased towards the actor’s distal space, but no change when the distribu-

tion of reward-yielding stimuli was biased towards the actor’ proximal space, or when

it was random across both spaces. These findings are in agreement with what was

reported in previous studies (Coello et al., 2018; Gigliotti et al., 2021), and corrobo-

rate the effect of reward-distribution statistical learning on PPS representation. They

also confirm that the effect of rewards is modulated by the effect of the presence of

another person implied in the task on PPS representation (Teneggi et al., 2013), the

latter effect counterbalancing the former when rewards distribution is biased towards

others’ proximal space (Gigliotti et al., 2021).

6.5.2 Observer performance

As regards the observer’s performances, the main finding of the present study was

the presence of dissociated effects of actors’ rewards on the observer’s representation

and exploitation of PPS. Concerning observers’ PPS representation, results showed an

extension of PPS representation after having observed an actor getting more rewards

in their proximal space (i.e., the distal space for the observer). No significant change in

PPS representation was observed after having observed an actor getting more rewards in

their distal space (i.e., the proximal space of the observer). It is worth noting that these

results are symmetrical with the pattern observed for the actor and can be explained

in the same way; that is, by an implicit statistical learning of visual regularities (here
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consisting in rewards’ location) altering the spatial priority map (Chelazzi et al., 2014;

Fecteau & Munoz, 2006; Klink et al., 2014). In the case of the observers, statistical

regularities are learnt from the outcomes of others’ actions instead of their own actions.

Overall, these results echo previous findings showing that the PPS representation can

be altered by the observation of conspecifics’ motor performances (Costantini et al.,

2011).

Surprisingly, we found a constriction of PPS representation for the observers in the

Control group, for whom rewards were equally distributed in distal and proximal spaces.

This effect could be due to the fact that when rewards were equally distributed in

space, actors explored the whole action space, which could have been experienced by

the observers as a violation of their own PPS. Alternatively, in such a situation, we

could have expected an increase of observers’ PPS following the rewards obtained by

the actor across the whole action space. Such a result was indeed observed by Coello et

al. (2018), where both participants actively performed the task. Nevertheless, since we

observed a reduction instead of an increase, we might conclude that when the individual

is passively involved in a motor task, protecting oneself from social invasion becomes a

prominent factor bypassing the effect of others’ rewards. Taken as a whole, the present

findings suggest that others’ rewards spatial distribution can be taken into account to

adjust one’s own PPS representation, but that the implications of a co-action versus

a cooperative social context must be more thoroughly studied in future researches in

order to precisely disentangle their respective impact.

Finally, the other important result of the present study was the non-significant ef-

fect of actors’ action outcomes on the observers’ exploration strategy, and thus, PPS

exploitation. A potential explanation for this non-significant effect could be that some

participants switched their viewing perspective (Iachini & Ruggiero, 2021). That is to

say, if reward-yielding stimuli were mainly situated in the proximal space of the actor,

participants could have thought that, symmetrically, rewards were located in the space

near themselves.

However, if this argument was correct, we should have observed, on the one hand, a

different within-group variability in the Towards Actor and Towards Observer groups

compared to the Control group. On the other hand, we should have observed no effect

on PPS representation. Yet, this was not the case. Therefore, this indicates that this

explanation can be ruled out. A second explanation could be related to a potential

decay of the statistical learning in the observers at the moment of acting. Although no

study has been conducted on the exact same paradigm as the one used in the present

study, evidence from the literature does not support this explanation either. Indeed,

statistical learning seems a very stable and robust mechanism which proved to last at

least 30 minutes (Arciuli & Simpson, 2012) and even up to 24 hours (Kim et al., 2009).

Since the delay between the observation and the performance of the stimuli-selection

task was on average inferior to 15 minutes, the hypothesis of a decay of implicit learning

can thus be dismissed, although the temporal aspect of this decay would have to be

studied in the future.
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Finally, the non-significant effect of others’ action rewards on the observers’ PPS

exploitation could be due to the fact that, although implicit learning rewards distribu-

tion from others’ actions affects the observer’s attention and spatial maps of the visual

workspace, motor experience is needed to fully embody this learning and its outcomes,

and consistently orient the observer’s exploration strategy. That is to say, we could

speculate that observing others’ rewarded actions would modify PPS representation

(altering the perceptual priority map of space), but this effect would be insufficient

to generalise to the organisation of motor experience within PPS (altering the motor

priority map of space). Although the present study provide new insights into PPS con-

struction, further studies are needed to better the relation between PPS representation

and exploitation along with the factors that could influence it.

6.6 conclusion

The present study showed that observing others’ action rewards in space has a dissoci-

ated effect on the observers’ PPS representation and exploitation. Action observation

contributes to spatially localising reward-yielding stimuli in relation to the body, in

order to build a suitable representation of one’s own PPS. However, subsequent PPS

exploitation, and therefore action selection, would rather require a personal motor

experience of PPS space. In conclusion, observing others’ rewarded actions would dif-

ferently alter PPS representation (specifying the perceptual priority map of space) and

PPS exploitation (specifying the motor priority map of space), a new framework that

would require further empirical validations.

6.7 method

6.7.1 Participants

156 healthy and right-handed (mean laterality quotient = .85, SD = .18; Oldfield, 1971)

participants (age range = 18–35 years,M = 21.34, SD = 2.53; 100 females), took part in

the experiment in exchange of course credits. They were recruited from the Psychology

Department of the University of Lille (France), declared having no perceptual or motor

troubles and had normal or corrected-to-normal visual acuity. Participants gave their

consent after receiving an information letter about the experiment. The experimental

protocol was conducted in accordance with the ethical principles of the Declaration

of Helsinki (World Medical Association, 2013) and was approved by the University of

Lille Institutional Ethics Committee (Ref. Number 2019-374-S77).

6.7.2 Justification of the chosen sample size

The necessary sample size was calculated a priori using the G*Power software (3.1.9.4).

For this purpose, we chose the ANOVA repeated measures, within-between interaction
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module, which was the most suited to our experimental design including the Session

(Pretest, Posttest) as within-subjects factor and the Group (Control, Towards Actor,

Towards Observer) as between-subjects factor. Cohen’s F desired effect size was chosen

on the basis of the effect size found by Coello et al. (2018) of η2
p = 0.20, corresponding

to a Cohen’s F = 0.50.

First, we ran a power analysis taking into consideration a power of 80% (and α = .05).

This first analysis indicated that a sample of 15 participants per each condition would

be required. However, since the present paradigm was not exactly the same as the one

by Coello et al. (2018) and since we suspected weaker effects due to the situation of

observation, we decided to run an additional power analysis considering a higher power

of 95% (α = .05). This second analysis indicated that a sample of 21 participants per

condition would be preferable. Therefore, we decided to recruit 25 participants (i.e., 25

pairs of participants) per each condition in order to reach the minimal required sample

size even after the removal of potential outliers.

6.7.3 Apparatus and stimuli

Experimental setting, paradigm and procedure were based on Coello et al., 2018 and

Gigliotti et al., 2021’s studies. The experimental apparatus (see Figure 6.5) consisted

in a 40 touch-screen table (Samsung SUR40, 109.5 × 70.74 cm), placed in the mid-

dle of a steel structure supporting a 30 cm × 100 cm horizontal rectangular mirror

and a 200 × 150 cm horizontal translucent screen. In each experimental session, two

participants sat face to face on each side of the touch-screen table. They performed

a reachability-judgment task and a stimuli-selection task. Depending on the task, the

stimuli were displayed by the touch-screen table (stimuli-selection task) or by a video-

projector (reachability-judgment task) on the mirror, which displayed the stimuli as

if they were located on the touch-screen table. The tasks were implemented using

MATLAB software (R2017a).

6.7.3.1 Reachability-judgment task

In the reachability-judgment task, the stimuli consisted of 51 grey dots (1 cm diam-

eter) on a black background projected on the mirror by the video-projector (Infocus

3926D) and through the translucent screen. Stimuli were presented one by one in a

random order (inter-stimuli interval of 1.5 s), at a distance ranging between 0 and 100

cm according to the head of participants (inter-target distance of 2 cm). Accordingly,

a target presented at 10 cm from the head of one participant corresponded to a target

located at 90 cm from the head of the other participant. Each stimulus was displayed

four times for a duration of 250 ms, providing a total of 204 trials (51 distances ×
4 repetitions). During the task, the touch-screen table was covered by a black sheet

in order to eliminate the effect of luminous sources on stimuli presentation. A short

training session (5 trials) was performed at the beginning of the task and a short rest

of 60 s was given halfway through the task. The two participants provided reachabil-
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Figure 6.5
Schematic Representation of the Experimental Setting

Note. A) During the reachability-judgment task, the video-projector projected an image on
the mirror, through a translucent screen (which improved the sharpness of the image). This
generated an optical projection effect, increasing the depth of the visual field and making
the stimuli appear at the level of the touch-screen table. B) Participants’ posture during the
reachability-judgment task. The mirror hid participants’ hands and the keyboards used to
provide the answers. During the task, the touch-screen table was covered by a black sheet, in
order to avoid any interference from external luminous sources. Once the reachability-judgment
task was completed, the mirror and the keyboards were displaced on the side, and the black
sheet covering the touch-screen table removed.

ity estimates for each stimulus by pressing the left-arrow (reachable) and right-arrow

(unreachable) keys of a keyboard with their left and middle fingers. Answer keys were

counterbalanced across participants.

6.7.3.2 Stimuli-selection task

In the stimuli-selection task, the stimuli consisted of 32 grey dots (2.7 cm diameter)

displayed on a black background by the touch-screen table (1920 × 1080 px, active

area: 88.56 × 49.81 cm). The stimuli were displayed following a non-visible distribution

grid composed of 42 cells (6 rows × 7 columns; see Figure 6.1A). For each block of

stimuli selections, 32 cells out of the 42 were randomly selected to contain the stimuli,

which appeared at random positions according to the centre of the cell (varying from 0

to 60 pixels in the x, y directions). This allowed us to obtain a different pseudo-random

stimuli configuration in each block. The task was presented as a game that had to be

played together with their confederate.

The stimuli were selected by touching them one by one with the right index finger.

Once selected, stimuli changed colour from grey to either red or green (both colours had

50% of chances to occur). When the stimulus became green, a sound of clinking coins

was played and participants obtained one point (reward-yielding stimulus). When it

became red, a buzzing sound was played and participants obtained no point (no reward-

yielding stimuli). Two digital counters located on the middle of the two proximal edges
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of the screen displayed the total number of points obtained and updated after each

stimulus selection.

Finally, following the group assignment, the probability of finding a green, reward-

yielding target was manipulated so that it depended on the stimulus location on the

touch-screen table (see Figure 6.1B). In the Control group, it was 50% both in the

space near the actor (rows 1, 2 and 3 of the grid) and in the space near the observer

(rows 4, 5 and 6). In the Towards Actor group, it was 75% in the space near the actor

and 25% in the space near the observer. In reverse, in the Towards Observer group, it

was 75% in the space near the observer but 25% in the space near the actor. Finally,

during the whole task, the actor and the observer had no right to communicate either

verbally or non-verbally.

6.7.4 Procedure

Participants were invited to sit around the table. Prior to the beginning of the ex-

periment, the experimenter measured participants’ right arm length (i.e., the distance

between the acromion bone and the tip of the middle finger) and adjusted the height

of their chair so that their chin was 3 cm above the edge of the mirror. Following

that, participants were randomly assigned either the role of the actor or the role of the

observer. The task began with a first reachability-judgment task (pretest), performed

by both the actors and the observers. During this task, the stimuli were presented on

the mirror placed in between participants (see Figure 5), which hid their arms from

their view. The touch-screen table was covered by an opaque cloth to avoid that light

sources could interfere with the execution of the task. Then, actors executed the stimuli-

selection task, while observers were instructed to observe them. During this phase, the

mirror was moved to the side and the black cloth covering the table was removed, so as

to allow participants to see the stimuli on the touch-screen table and their arms. Next,

both the actors and the observers performed a second time the reachability-judgment

task (the mirror and the black cloth were put back in place). Finally, the observer

executed the stimuli-selection task, while the actor remained still.

During the reachability-judgment task, the actors and the observers received the

same following instructions: “A series of luminous dots will be successively presented

very briefly on the table in front of you. For each point displayed, you will have to

estimate whether it seems attainable (or not) by imagining to extend your right arm,

but without turning your shoulders or moving your body forward. You will have to use

your left index and middle fingers to provide your answer on the keyboard. You will

have to press - “Left” (or right, following the counterbalancement condition) when the

luminous point seems reachable and “Right” (or left) if it does not seem reachable. Just

to remind you: the points are presented for a very short delay. Therefore, try to answer

as fast as possible, but trying to make as less errors as possible. Your answer should

be as instinctive as possible. Finally, I ask you not to move your head (forwards or

backwards) during the whole task.”



6.7 method 77

The stimuli-selection task was presented to the actors and the observers as a game

that had to be played together. They received the following instructions: “During this

game, a set of stimuli will be randomly distributed on the touch-screen table in front

of you. When selected, a stimulus will change its colour: if it turns green, you win 1

point, if it turns red, you win no point. When you select 12 stimuli, a new game round,

that is, a new set of stimuli, will be displayed. During this game, each one of you

will have a specific objective: (Instructions given to the actor): As regards you, your

task will be to select 12 consecutive stimuli during each game round. Your objective

will be to try to find as many green stimuli as possible. To select a stimulus, you will

have to click on it by using your right index finger. You will have to use only your

right arm. (Instructions given to the observer): In the meanwhile, your task will be

to observe your partner’s performance. At the end, it will be your turn to play: you

will have the possibility to make 17 supplementary game rounds, in order obtain more

points and increase the final score of the dyad. The aim of this game is to find as many

green stimuli as possible, in order to obtain the highest score in collaboration with your

partner! Try to beat the other dyads by achieving the highest score together! The dyad

that will achieve the highest will be rewarded with a surprise prize! Be careful, there is

only one rule: during the whole game, you will not be allowed to communicate, neither

verbally nor by gestures. Now it is time to play!”

6.7.5 Data analysis

6.7.5.1 Reachability-judgment task

As regards the reachability-judgment task, we computed participants’ reachability

thresholds (used as a proxy of PPS representation) by applying logistic regression.

We used a maximum likelihood fit procedure based on second-order derivatives (quasi-

Newton method) to find the logit model that best fitted the distribution of dichotomous

responses (reachable/unreachable) provided by the participant to each of the 51 stimuli

distances (Bourgeois & Coello, 2012). The logit model was obtained through Equation

5.1:

Y =
exp(α+β∗X)

1 + exp(α+β∗X)

In the above equation, Y is reachable/unreachable answer provided by the partici-

pant, X the distance at which each one of the stimuli was presented, and (- α/β) the in-

flection point of the curve, denoting the critical value of X at which the transition from

“reachable” to “unreachable” responses occurred. Therefore, - α/β corresponds to the

reachability threshold. Individual reachability thresholds were subsequently corrected

by subtracting participant’s arm length to the - α/β value. Reachability thresholds

were computed separately for the pretest and the posttest sessions.
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6.7.5.2 Stimuli-selection task

As regards the stimuli-selection task, we assessed participants’ selection strategy (as a

proxy of PPS exploitation) by computing:

1. The mean number of stimuli selected across all blocks in the space near the

observer (when analysing actor’s performance) or in the space near the actor

(when analysing observer’s performance), in order to assess groups’ tendency to

explore the space associated with higher number of reward-yielding stimuli.

2. The mean number of stimuli selected in the first three and last three blocks only,

in the spaces near the observer or near the actor, in order to test whether the

groups changed their exploration strategy during the task.

3. The mean number of stimuli selected in each block, in the spaces near the ob-

server or near the actor, to identify the precise moment at which the change in

exploration strategy occurred.

4. The mean number of reward-yielding stimuli obtained in the spaces near the

observer or near the actor, to check the validity of the experimental design.

6.7.6 Statistical analyses

Statistical analyses were carried out on R version 3.6.1 (R Core Team, 2019) and

R Studio version 1.1.456. Prior to the main statistical analysis, we checked for the

presence of outliers using the median absolute deviation (MAD) method (cut-off set

at 2.75; Leys et al., 2013). Outliers’ analysis was conducted only in the reachability-

judgment task, as it is more sensitive to extreme values, and on the posttest-pretest

difference in reachability threshold, as it is at the core of our research hypothesis.

Outliers’ analysis was carried out separately for the actor and the observer datasets,

and separately for each group. We removed 2 outliers in the actor dataset and 2 in the

observer one. Two additional participants (1 in each dataset) were also excluded, as

they did not correctly execute the task, providing no exploitable responses.

All parametric one-way and two-way ANOVAs were carried out using the function

anova test. Following ANOVA, parametric simple effect tests as well as post-hoc mul-

tiple comparisons were performed using the function pairwise t test. In case of viola-

tion of the homoscedasticity assumption, we carried out a one-way Welch’s ANOVA

for independent groups using the function welch anova test. In this case, simple ef-

fects were tested through the Wilcoxon signed-rank test, performed with the functions

wilcox test and wilcox effsize for effect size computation, and post-hoc multiple com-

parisons through the Games-Howell test, using the function games howell test. In case

of heteroscedasticity and major violation of the normality assumption, we performed a

Kruskal-Wallis test, a non-parametric equivalent of one-way ANOVA for independent

groups designs, by using the functions kruskal test and kruskal effsize to obtain effect

sizes. Post-hoc multiple comparisons were then performed by the means of the Dunn’s

test, using the function dunn test. All the functions beforementioned were part of the

package “rstatix” version 0.7.0 (Kassambara, 2021).
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In the stimuli-selection task, the performances of the Towards Actor and the To-

wards Observer Groups were compared to the Control Group for each block of trials

by means of permutation-based multiple comparisons (based on 9999 Monte-Carlo re-

sampling). Comparisons were run using the independence test function of the package

“coin” version 1.4-2 (Hothorn et al., 2008). Being a resampling technique, permutation-

based multiple comparisons allow the control for Type-I error and for the occurrence of

false positives (Camargo et al., 2008). Therefore, no correction of p-values was applied

as it was not needed.

For parametric tests, the normality assumption was assessed by checking Q-Q

plots, the homoscedasticity with the Levene’s test, the homogeneity of the variance-

covariance matrix with the Box’sM test, and the sphericity assumption with Mauchly’s

test. Significance threshold was set at α = .050, except for the tests verifying the as-

sumptions of homoscedasticity and homogeneity of the variance-covariance matrix (for

which α = .100), for the Mauchly’s sphericity test (for which α = .001) and for the post-

hoc multiple comparisons, for which “-values were adjusted using Holm’s correction

method.





7
THE HIERARCHICAL EFFECTS OF MOTOR

AND SOCIAL GOALS ON OBJECT -D IRECTED

ACTIONS

7.1 rationale of study 3

In Chapters 5 and 6, I investigated the effect of action reward prospects in space

(whether they are associated with self- or other-generated motor actions) and the

constraints related to the social context on PPS representation and exploitation. I

showed notably that PPS representation and exploitation depends on the combination

of motor- and social-related factors. In the present Chapter, I aimed at investigating

in greater depth the mutual influence of these factors but focusing specifically on PPS

exploitation.

For this purpose, I exploited a different paradigm and adopted a motion capture

technique to analyse the kinematic features of object-directed motor actions. Partic-

ipants were required to grasp an object and displace it with either a personal (for

a further personal use) or social intention (for a confederate’s further use, including

thereby another individual in the interaction). In addition, the object could either be

placed on a small or a large target. By means of such paradigm, I was able to assess

the combined effect of social intention (referred to as social goal in the original article)

and the features of the final spatial target of the motor action (i.e., the task-related

motor constraints; referred to as motor goal in the original article) on the execution of

object-directed actions in PPS.

The kinematic analysis of participants’ motor performances revealed that the decel-

eration time was specifically impacted by the motor goal, while the peak velocity was

exclusively influenced by the social goal. Movement duration and trajectory height

were instead modulated by both the motor and social goals, the effect of the social

goal being attenuated by the effect of the motor goal. Taken as whole, these results

suggested that motor and social factors have a combined and hierarchical effect on the

execution of object-oriented actions. Specifically, the features of the final spatial target

of the motor action (i.e., the task-related motor constraints) modulate the effect of

social intention on action kinematics, modifying therefore the way individual exploit

space during social interactions.
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The combined effects of motor and social goals on the kinematics

of object-directed motor action

Gigliotti, M.F., Sampaio, A., Bartolo, A., & Coello, Y. (2019)

Scientific Reports, 10 (1), 1-10. https://doi.org/10.1038/s41598-020-63314-y

Published work

7.2 abstract

Voluntary actions towards manipulable objects are usually performed with a particular

motor goal (i.e., a task-specific object–target–effector interaction) and in a particular

social context (i.e., who would benefit from these actions). Yet, but the mutual influence

of these two constraints has not yet been properly studied. For this purpose, we asked

participants to grasp an object and place it on either a small or large target in relation

to Fitts’ law (motor goal). This first action prepared them for a second grasp-to-place

action which was performed under temporal constraints, either by the participants

themselves or by a confederate (social goal). Kinematic analysis of the first preparatory

grasp-to-place action showed that, while deceleration time was impacted by the motor

goal, peak velocity was influenced by the social goal. Movement duration and trajectory

height were modulated by both goals, the effect of the social goal being attenuated by

the effect of the motor goal. Overall, these results suggest that both motor and social

constraints influence the characteristics of object-oriented actions, with effects that

combine in a hierarchical way.

7.3 introduction

The planning and monitoring of an object-directed motor action (also referred to as

transitive action) depend on the processing of various factors, related to both the

object and the agent of the motor action. These include the intrinsic characteristics of

the object such as its shape, size, weight or texture (Cuijpers et al., 2004; Eastough

& Edwards, 2007; Fikes et al., 2015; Gentilucci, 2002; Santello & Soechting, 1998),

its extrinsic features, such as its spatial location, orientation and distance from the

agent’s body (Gentilucci et al., 1991; Paulignan et al., 1991; Paulun et al., 2016), and

the final posture of the limb used for the motor action (i.e., the end-state comfort

effect; Rosenbaum et al., 1992). These factors influence various features of the ongoing

motor action, including the kinematics of the approach movement and the grasping of

the object. For instance, object size and distance modulate arm velocity and aperture
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of the grip, and they also shape the posture of the hand and fingers on the object, thus

allowing for a correct grasp (Ansuini et al., 2008; Sartori et al., 2012; Sartori et al.,

2013b; Schettino et al., 2003; Weir et al., 2015).

In addition to the physical characteristics of manipulable objects, the motor goal

of the action (i.e., the task-specific object–target–effector interaction) also influences

the kinematic features of an object-directed motor action. This has been well docu-

mented in tasks modifying the physical characteristics of the motor target (intended

as the final spatial location), such as its distance or size (Fitt’s law; Fitts, 1954). In

this respect, the main finding is that movement duration concurrently increases with

the reduction in target size or the increase in target distance (in relation to the result-

ing index of difficulty; Fitts, 1954). Furthermore, the pioneering work by Marteniuk

et al. (1987) revealed that what people intend to do with the object after having

grasped it (e.g., grasp-to-throw or grasp-to-place) influences the kinematic pattern of

the grasping action. The effect of the motor goal on the spatio-temporal features of

motor performance was later confirmed in different grasping tasks (Ansuini et al., 2008;

Ansuini et al., 2006; Naish et al., 2013; Sartori et al., 2011), and extended to pointing

(Chary et al., 2004), writing (Orliaguet et al., 1997) and even communicative gesturing

(Pennel et al., 2003; Sartori et al., 2009b). It was further shown that observing an

object-directed motor action provides the means to anticipate the underlying motor

goal through spatio-temporal variations in task execution, well before the action is

fully completed, so that its effects can be anticipated (Méary et al., 2005; Sartori et al.,

2013a).

More recently, the social goal of an object-directed motor action was also found to

influence movement kinematics (for reviews see Becchio et al., 2012; Becchio et al., 2010;

Egmose & Køppe, 2017; Krishnan-barman et al., 2017; Quesque & Coello, 2015). A

number of studies have indeed revealed that an object-oriented motor action performed

with a social goal, (i.e. intending to influence the behaviour of another person; Jacob

& Jeannerod, 2005) is characterized by a slower velocity and a higher arm trajectory

(Becchio et al., 2008b; Georgiou et al., 2007; Quesque et al., 2016; Quesque et al., 2013;

Vesper et al., 2016). It was suggested that such spatio-temporal deviants render the

movement more salient and more likely to capture the eye-gaze and attention of the

confederate involved in the interaction (Ferri et al., 2011; Quesque & Coello, 2014).

For instance, using a cooperative motor task, Quesque et al. (2013) reported that the

spatial amplification of a grasp-to-place motor action was broader, resulting in a higher

arm trajectory, when the partner’s eye-level was set at a higher position. This result

is in line with the key role of the gaze in the process of action understanding in social

contexts (Costantini et al., 2012; De Stefani et al., 2013; Innocenti et al., 2012; Quesque

et al., 2019; Scorolli et al., 2014).

Because of their social value, the spatio-temporal variations of object-directed motor

actions are also thought to serve as crucial cues for an observer to identify the agent’s

social goal (Ansuini et al., 2014; Cavallo et al., 2016; Lewkowicz et al., 2013). The per-

ception of such spatio-temporal deviants induced by the social context would allow an
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observer to prepare appropriate motor responses, thus contributing to the achievement

of a shared objective (Becchio et al., 2008a; Quesque et al., 2013) and the improvement

of social interactions (Meulenbroek et al., 2007; Quesque et al., 2016). However, it was

found that the detection of a social goal from motor deviants also depends on the

observer’s cognitive social abilities (Lewkowicz et al., 2015) and is facilitated by the

presence of contextual environmental cues (Stapel et al., 2012).

Despite the wealth of studies that have highlighted the key role of motor and social

goals in motor performances, no study has yet examined the effect of concurrently

manipulating these two independent goals in an object-directed motor task. Moreover,

the way in which the social goal was manipulated in previous studies did not help to

easily dissociate its contribution to motor actions from that of the motor goal. This was

for example the case when the social goal consisted in grasping an object and placing

it in the hand of a confederate instead of a physical container (Ansuini et al., 2008;

Becchio et al., 2008b; Di Bono et al., 2017; Sartori et al., 2009a). Although using the

partner’s hand as a target for the motor action altered the kinematics of the placing

phase of a grasp-to-place action, suggesting an influence of social intention, the effects

observed in such a situation could be the result of either the social nature of the task

(social goal) or the modification of the physical characteristics of the target (motor

goal).

Therefore, the combined effects of motor and social goals on the kinematics of a

voluntary motor action remain an open issue. In the present study, we tackled this

issue by developing a paradigm for assessing the specific effects of motor and social

goals on the execution of an object-directed motor action. We designed a task involving

a dyad of participants, which consisted in performing two successive grasp-to-place

actions. The first action (named “preparatory action”) was always performed by the

same participant and consisted in grasping a wooden object in order to place it on

either a small or large circle used as a spatial target (motor goal), and located in the

middle of the workspace. This first action prepared participants for the second action,

which could be performed by either the same participant or the confederate (social

goal). This second action (named “main action”) consisted in grasping and placing

the same wooden object on a sideway spatial target (either a small or large circle)

under temporal constraint and with feedback about motor performances. Hence, we

manipulated (a) the motor goal of the task by modifying the size of the target in

accordance with Fitts’ law15 (index of difficulty of 2 vs. 3 bits), and (b) the social

goal of the task by changing the agent performing the second grasp-to-place action

(main action), in accordance with the paradigm developed by Quesque et al. (2013).

By combining the motor and social goals in such a way, we were able to probe their

respective contribution as well as their interaction in an object-directed motor task.

For the purpose of the present study, we focused our analysis on the variation in

the temporal and kinematic parameters of the preparatory action only. Indeed, the

main action served mainly to create a cooperative context for the task, as well as

to orient the participants’ attention on this part of the task, so that they behaved
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Table 7.1
Mean Values (and Standard Deviations) of Each Kinematic Parameter as a Function of the
Phase, the Motor Goal and and the Social Goal

Kinematic Parameter

Condition N Movement time (ms)
Percentage of

deceleration time (%)

Peak

wrist velocity (mm.ms−1)

Peak

wrist elevation (mm)

Grasping phase

Personal-Small 525 408.65 (79.67) 49.33 (8.65) 494.08 (97.37) 46.64 (10.34)

Social-Small 496 435.29 (84.09) 49.41 (8.29) 475.50 (102.06) 49.56 (10.74)

Personal-Large 519 427.24 (81.61) 49.50 (8.10) 488.43 (104.31) 47.05 (10.08)

Social-Large 484 439.32 (83.44) 49.00 (8.63) 473.17 (105.32) 48.20 (9.17)

Placing phase

Personal-Small 525 523.44 (91.10) 59.37 (5.55) 702.29 (96.06) 52.07 (12.07)

Social-Small 496 542.43 (86.72) 59.60 (5.44) 675.25 (81.22) 53.31 (12.26)

Personal-Large 519 517.10 (92.81) 57.60 (5.91) 690.09 (91.84) 52.75 (11.99)

Social-Large 484 516.33 (87.79) 57.81 (5.55) 664.92 (79.99) 52.90 (11.58)

Note. N indicates the number of movements in each condition.

spontaneously in the preparatory action, which was at the core of the study. More

specifically, we analysed the movement duration, peak wrist velocity, percentage of time

taken by the deceleration phase and peak wrist elevation (as an index of the height

of the trajectory). These analyses were performed for both the object grasping and

placing phases constituting the preparatory action. In line with the above-mentioned

literature, our main expectations for both the grasping and placing phases were that

(a) movement time as well as trajectory height should increase and movement velocity

should decrease when the preparatory action fulfils a social goal; (b) movement time

and deceleration phase should increase when the motor goal of the preparatory action

decreases in size; (c) the effect of the social goal on motor kinematics should interact

with the effect of the motor goal, but only in the placing phase.

7.4 results

The temporal and kinematic parameters were computed and analysed separately for

the grasping and placing phases of the preparatory action. Mean values and standard

deviations for each parameter are reported in Table 7.1 as a function of the experi-

mental condition and action phase. In addition, Figure 7.1 shows mean velocity and

trajectory height profiles of the preparatory action (including both the placing and the

grasping phases) as a function of the experimental conditions.

7.4.1 Movement time

Concerning the grasping phase, the conditional coefficient of determination of the

model (normal distribution; see Table 7.2) was .62. Statistical analysis showed no

effect of Motor goal (estimate = -10.430, SE = 6.14, χ2
1 = 2.88, p = .089), but an
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Table 7.2
Family Distribution, Link Function, Fixed Effects and Random Effects Specified in the Model
as a Function of the Kinematic Parameter analysed

Kinematic parameter Family distribution Link function Fixed effects Random effects

Grasping movement

Movement Time Gaussian Identity*

Social goal +

Motor goal +

Social goal * Motor goal

Social goal +

Motor goal

| Participant

Percentage of deceleration time Gaussian Identity*

Peak wrist velocity Gaussian Identity*

Peak wrist elevation Gaussian Log

Placing movement

Movement Time Gaussian Log

Percentage of deceleration time Gaussian Identity*

Peak wrist velocity Gaussian Identity*

Peak wrist elevation Gaussian Log

Note. The family distribution refers to the distribution of the dependent variable. The link

function consists in the mathematical function characterizing the relationship between the

fixed factors and the dependent variable. The elements before and after ( | ) refer to the

random slopes and random intercepts respectively. *“Glmer” function used with a Gaussian

distribution and a link “identity” corresponds to a linear mixed-effects model.

Figure 7.1
Mean Velocity (a) and Trajectory Height (b) Profiles as a Function of Social (Personal
Action, Social Action) and Motor (Small Target, Large Target) Goals

effect of the Social goal (estimate = -22.329, SE = 5.67, χ2
1 = 15.48, p < .001), with a

longer movement time characterizing the social compared to the personal action. The

Motor goal × Social goal interaction was also significant (estimate = -16.315, SE =

4.61, χ2
1 = 12.51, p < .001), with the difference in movement time between the social

and personal action being greater with the small target than with the large one. Mul-

tiple comparison analysis revealed that movement time was longer for social compared

to personal action when acting towards both the large (estimate = 14.20, SE = 6.14,

t.ratio = 2.31, p = .013) and the small target (estimate = 30.50, SE = 6.11, t.ratio =

4.98, p < .001).
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Regarding the placing phase, the conditional coefficient of determination of the

model (log-normal distribution; see Table 7.2) was .02. The effect of Motor goal was

significant (estimate = 0.035, SE = 0.01, χ2
1 = 7.52, p = .006), with longer movement

time for the small than the large target, but the effect of Social goal was not (estimate

= -0.026, SE = 0.01, χ2
1 = 3.60, p = .058). The Motor goal × Social goal interaction

was significant (estimate = -0.041, SE = 0.01, χ2
1 = 15.66, p < .001), due to longer

movement time for the social compared to the personal action in the presence of the

small (estimate = 0.044, SE = 0.01, z.ratio = 3.12, p < .001) but not the large target

(estimate = 0.004, SE = 0.01, z.ratio = 0.27, p = .395).

7.4.2 Percentage of deceleration time

Concerning the grasping phase, the conditional coefficient of determination of the

model (normal distribution; see Table 7.2) was .34. The effect of Motor goal was not

significant (estimate = 0.0002, SE = 0.005, χ2
1 = 0.001, p = .972), nor was the effect of

the Social goal (estimate = 0.0005, SE = 0.005, χ2
1 = 0.011, p = .916). The Motor goal

× Social goal interaction was not significant either (estimate = -0.005, SE = 0.006, χ2
1

= 0.780, p = .377).

As regards the placing phase, the conditional coefficient of determination of the

model (normal distribution; see Table 7.2) was .30. In contrast with the grasping phase,

the effect of Motor goal was significant (estimate = 0.017, SE = 0.004, χ2
1 = 15.34,

p < .001), with a longer deceleration phase for actions towards the small target than

towards the large one. The effect of Social goal was not significant (estimate = -0.004,

SE = 0.003, χ2
1 = 1.15, p = .283), nor was the Motor goal × Social goal interaction

(estimate = 0.001, SE = 0.004, χ2
1 = 0.08, p = .771).

7.4.3 Peak wrist velocity

Concerning the grasping phase, the conditional coefficient of determination of the

model (normal distribution, see Table 7.2) was .67. The effect of Motor goal was not

significant (estimate = 2.930, SE = 7.17, χ2
1 = 0.17, p = .683), while the effect of

Social goal was (estimate = 17.437, SE = 6.93, χ2
1 = 6.33, p = .012), with the personal

action being performed with a higher velocity than the social action. This effect was

not modulated by the Motor goal, as the Motor goal × Social goal interaction was not

significant (estimate = 4.092, SE = 5.30, χ2
1 = 0.59, p = .440).

As regards the placing phase, the conditional coefficient of determination of the

model (normal distribution; see Table 7.2) was .61. As for the grasping phase, the

effect of Motor goal was not significant (estimate = 10.465, SE = 7.55, χ2
1 = 1.92, p =

.166), while the effect of Social goal was significant (estimate = 28.377, SE = 5.92, χ2
1

= 22.99, p < .001), with the personal action reaching a higher velocity than the social

action. Again, the Motor goal × Social goal interaction was not significant (estimate

= 4.093, SE = 5.05, χ2
1 = 0.66, p = .417).
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7.4.4 Peak wrist elevation

Regarding the height of the trajectory during the grasping phase, the conditional

coefficient of determination of the model (log-normal distribution; see Table 7.2) was

.03. The effect of Motor goal was not significant (estimate = 0.010, SE = 0.01, χ2
1 =

0.67, p = .413), while the effect of Social goal was (estimate = -0.040, SE = 0.006,

χ2
1 = 51.13, p < .001), the social action being characterized by a higher trajectory

than the personal action. This effect was modulated by the Motor goal, as revealed by

the significant Motor goal × Social goal interaction (estimate = -0.04, SE = 0.01, χ2
1

= 17.76, p < .001). In fact, the difference in wrist elevation between the social and

personal action was greater with the small target than with the large one. Multiple

comparisons showed that the increased wrist elevation characterizing the social action

compared to the personal action was significant with both the small target (estimate

= 0.06, SE = 0.007, z.ratio = 8.22, p < .001) and the large one (estimate = 0.02, SE

= 0.007, z.ratio = 2.603, p = .005).

As regards the placing phase, the conditional coefficient of determination of the

model (log-normal distribution; see Table 7.2) was .03. The effect of Motor goal was

not significant (estimate = -0.003, SE = 0.01, χ2
1 = 0.05, p = .816), nor was the effect

of Social goal (estimate = -0.01, SE = 0.01, χ2
1 = 0.62, p = .431), contrasting with

the grasping phase. However, the Motor goal × Social goal interaction was significant

(estimate = -0.025, SE = 0.009, χ2
1 = 6.89, p = .009), owing to a greater difference in

peak wrist elevation between the social and personal action with the small target than

with the large one. Multiple comparisons showed that the increase in wrist elevation

in the social action compared to personal action was significant with the small target

(estimate = 0.02, SE = 0.01, z.ratio = 1.66, p = .048) but not with the large one

(estimate = -0.002, SE = 0.01, z.ratio = -0.18, p = .572).

7.5 discussion

Previous studies on object-directed motor action have shown that motor performances

are influenced by either the motor goal of the action (i.e., the constraints associated

with the object-target-effector system) or the social goal of the action (i.e., the person

who would benefit from this particular object-directed motor action; Ansuini et al.,

2008; Marteniuk et al., 1987; Paulun et al., 2016; Quesque et al., 2016; Quesque et al.,

2013; Weir et al., 2015). Within this context, the aim and the novelty of the present

study was to examine the combined effects of motor and social goals when concurrently

involved in an object-directed motor task. By analysing the temporal and kinematic

features of object grasping and placing phases, we observed that motor and social

goals have dissociated effects on the spatio-temporal features of object-directed motor

actions, which are summarised and discussed below.

The first important finding was that the analysis of trajectory height and movement

duration revealed an interaction between the effects of motor and social goals. Con-
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firming previous reports (Becchio et al., 2008a, 2008b; Georgiou et al., 2007; Quesque

& Coello, 2014; Quesque et al., 2016; Quesque et al., 2013), we found that object-

directed actions performed with a social purpose were characterized by a slightly more

curved path (on average 1 and 2 mm higher in the grasping and placing phases, respec-

tively) and longer duration (on average 22 and 9 ms in the grasping and placing phases

respectively) compared to object-directed actions performed with a personal purpose.

However, the novel finding was that, in both the grasping and placing phases, the effect

of the social goal on trajectory height and movement duration was modulated by the

motor goal. More specifically, the difference in trajectory height caused by the social

goal of the task was greater when the grasp-to-place action involved a small target,

while it was smaller (grasping phase) or even absent (placing phase) when it involved

a large target. This original result underlines that the effect of the social goal on an

object-directed motor action, reported in previous studies (see Becchio et al., 2008a,

2008b; Quesque & Coello, 2014; Quesque et al., 2016; Quesque et al., 2013), depends

on the constraints associated with the object–target–effector system, and therefore on

the motor goal of the action.

In our study, the reduced effect of the social goal observed in the presence of the large

target could be related to the low-level constraints associated with Fitts’ law (Fitts,

1954). More specifically, the increase in target size induced a decrease in the index of

difficulty (from 3 to 2 in our task for small and large targets, respectively), resulting

in the performance of faster movements (i.e., characterized by a shorter duration). As

a consequence, the faster the movement, the less time participants have to adapt the

height of their arm trajectory in relation to the social goal of the task. This interference

effect was particularly visible in the placing phase in which, owing to the characteristics

of the experimental paradigm used, both the motor and social goals affected the motor

performance. In contrast, this interference was less notable in the grasping phase, where

only the social goal could directly influence the motor performance. A similar pattern of

results emerged from the analysis of movement duration. Data showed that motor and

social goals interacted, with a larger increase in movement duration for the social action

in the presence of the small target than the large one. Again, in the presence of the large

target, the difference in movement duration between the social and personal action was

smaller in the grasping phase and absent in the placing phase. Taken as a whole, the

interaction effects that emerged from the analysis of temporal and spatial features of

the grasp-to-place action showed a modulatory effect of the motor goal on the influence

of the social goal. This suggests that the features of the physical target, and more

likely the constraints associated with the object–target–effector system, prevail over

the social constraints of the task when both a motor and a social goals concurrently

determine the spatio-temporal characteristics of the object-directed motor action.

The second important finding of the present study was the observation of differential

effects of motor and social goals on the kinematic parameters of movements. Surpris-

ingly, although the variation in movement duration was induced by both the motor and

social goals, we did not observe any effect of the motor goal on the maximum velocity
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reached during the grasp-to-place action. As a possible explanation, we speculate that

Fitts’ law did not alter movement acceleration as much as the deceleration phase, for

which we found an effect of target size. This observation fits well with previous stud-

ies which reported that target size mainly impacts the deceleration phase of a motor

action, the latter lasting longer when the motor action is directed towards a small

target (Elliott et al., 1991; Langolf et al., 1976; Mackenzie et al., 1987). By contrast,

and in line with the existing literature (Becchio et al., 2008a; Georgiou et al., 2007;

Quesque et al., 2013; Sartori et al., 2009b), we found an effect of the social goal on the

maximum velocity, with the personal action being performed faster when compared to

the social action (on average 17 and 28 mm.s−1-1 in the grasping and placing phases,

respectively).

However, when analysing the deceleration phase, we found no effect of the social goal

on either the grasping or the placing phase. This absence of effect contradicts previous

findings that showed that motor actions performed with a social goal are characterized

by a longer deceleration phase when compared to motor actions performed with a

personal goal (Ferri et al., 2011; Georgiou et al., 2007; Sartori et al., 2009b). This

discrepancy between the present and previous results may stem from the combined

effect of motor and social goals (when concurrently involved). In contrast to other

studies, the present paradigm was conceived to dissociate the effects of motor and

social goals. Thus, we tested the effect of the social goal while keeping constant the

constraints associated with the object–target–effector system (i.e., using a small or a

large target for either the personal or the social action). Therefore, the effect of the

social goal on the deceleration phase found in previous studies could have resulted

from the fact that the final motor target used to trigger the grasping action was not

kept uniform across the conditions, opposing for instance the hand of a confederate to

a physical support (Ansuini et al., 2008; Becchio et al., 2008b; Di Bono et al., 2017;

Sartori et al., 2009a). To confirm this interpretation, future studies should replicate

and extend the present findings using different paradigms based on ecological social

tasks implying different kinds of movement synchronization.

7.6 conclusion

To our knowledge, the present study represents the first experimental work investigat-

ing the combined effects of motor and social goals on the execution of object-directed

motor action. The results showed that social and motor goals have an impact on spe-

cific kinematic parameters of the object-directed motor action (i.e., deceleration phase

is affected only by the motor goal, while peak velocity is affected only by the social

goal), as well as combined effects on other kinematic parameters (i.e., trajectory height

and movement duration). More importantly, these combined effects reflect a reduction

in the effect of the social goal in relation to the motor goal. These original findings sug-

gest the existence of a hierarchy between motor and social constraints, the first taking

precedence over the second. However, more investigation using different paradigms and
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social tasks would be required in order to confirm and extend the present findings. Fur-

thermore, the present study suggests that the effects of motor and social goals might

be sensitive to the paradigm used, and cautions against potential biases that could

emerge from a lack of consideration in experimental tasks. Finally, the present findings

pave the way for further research on object-directed motor actions performed in social

contexts for the study of interactions, both in natural conditions and in environments

involving artificial agents.

7.7 method

7.7.1 Participants

Twenty-eight healthy participants voluntarily took part in the experiment (twenty-four

females, 18–35 years old, M = 23.36 years, SD = 6.60 years). They were right-handed,

as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971, mean laterality

quotient = 0.86, SD = 0.17, ), and declared having normal or corrected-to-normal

visual acuity and no perceptual or motor deficit. They had no prior information about

the hypotheses tested in the study and gave their written informed consent prior to

the beginning of the experiment. The protocol was approved by the ethical committee

in behavioural sciences of the University of Lille (Ref. Number 2019–363-S75) and

was conducted in conformity with the ethical principles of the Declaration of Helsinki

(World Medical Association, 2013).

7.7.2 Confederates

Three female confederates of the experimenter (right-handed, aged 24, 25 and 27 years

old) took part in the experiment, performing the task in cooperation with the partici-

pants and behaving as naive participants.

7.7.3 Stimuli

The experimental setup (see Figure 7.2) involved a 120 × 80 cm table covered by a

120 × 80 cm black, non-reflecting cloth. The task consisted in grasping and placing

a wooden object (diameter 1.7 cm, thickness 1 cm) from landmark A to landmark B

(preparatory action), then from landmark B to landmark C (main action). Landmarks

were represented on the covering cloth by black circles. Landmark A served as the

initial position for the object, while landmarks B and C served as targets for the task.

The diameter of landmark A was 1.7 cm. The diameter of landmarks B and C were

either 5 cm (small targets) or 10 cm (large targets). These two target sizes were chosen

according to Fitts’ law (Fitts, 1954), using formula:



92 the hierarchical effects of motor and social goals on object-directed actions

Figure 7.2
Representation of the Experimental Setup

Note. The two dotted circles for targets B and C represent small and large targets.

ID = log2

(
2D
W

)
(7.1)

where ID stands for “index of difficulty” (in bits), D indicates the distance to the

center of the target (20 cm in the present study) and W the width (size) of the target

(5 or 10 cm of diameter in the present study). The index of difficulty was 3 bits for

the small target and 2 bits for the large target. All inter-target distances were 20

cm. Small and large targets were presented using two different covering cloths, which

were alternately fixed on the table. In addition to landmarks A, B and C, two white

rectangular landmarks located on the opposite edges of the table were used to indicate

the participant’s hand starting position.

7.7.4 Procedure

The task was derived from the paradigm developed by Quesque et al. (2013). During the

experiment, the participant sat on one side of the table in front of a confederate. The

latter was randomly chosen between one of the three accomplices of the experimenter

but pretended to be a naive participant. In order to avoid an effect of confederate’s

eye-level (see Quesque & Coello, 2014), the chair where the confederate sat was ad-

justed so that the eye-levels of confederates and participants were similar. In each trial,

the participant was required to move the wooden object from one target to another

following a specific sequence of three grasp-to-place actions: the preparatory action,

the main action and the repositioning action (see Figure 7.3). The preparatory action
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Figure 7.3
Sequential Order of the Three Grasp-to-Place Motor Actions Composing the Task

Note. At the end of each action (preparatory, main and repositioning), participants repositioned
their hand at the starting position (dotted arrows).

was always performed by the participant and consisted in moving the wooden object

from its initial position A to target B. The main action was presented to participants

as the core action of the task; it could be performed by the participant or the confed-

erate and involved moving the wooden object from target B to target C. We used the

term main action as we wanted the participants to maintain their attention on this

part of the task and not the preparatory action, so that the latter would be performed

in a spontaneous way. Finally, the repositioning action was always performed by the

participant, and consisted in moving the wooden object from target C to the initial

position A, in order to get ready for the following trial. At the end of each action in

the sequence, the participant and the confederate placed their hands in the starting

position, with their thumb and index finger pinched together.

During the preparatory and the main actions, the participant was asked to place

the wooden object within the circumference of the targets as precisely as possible.

The error margin was established by subtracting the diameter of the wooden object

from the radius of the target. As a consequence, the wooden object was considered as

correctly placed when the difference between the center of the wooden object and the

center of the target was not greater than 0.8 cm for the small targets and 3 cm for

the large targets. During the main action only, the participant was requested to move

the wooden object as fast as possible, moving the wrist at a velocity greater than 1040

mm.s−1 when grasping the wooden object. This velocity threshold corresponded to 80

% of 1300 mm.s−1, which was the median velocity for both the small and large targets

registered in a pilot study including 10 participants.

Each grasp-to-place action was triggered by an auditory cue and the participant

had 2 s to perform the required action (preparatory, main or repositioning). When

the accuracy and velocity constraints were met, the participant obtained one point
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and a sound of clinking coins was provided. Otherwise, an error sound was emitted,

indicating that no points had been obtained. The clinking coins and error sounds also

triggered the repositioning action. The delays separating each action and each trial were

randomized in order to prevent participants from adopting anticipatory strategies. The

delay separating the end of the preparatory action and the auditory cue for the main

action varied randomly between 1.5 and 2 s. The delay between the end of the main

action and the auditory cue for the repositioning action was set at 2 s. The inter-trial

delay varied randomly between 3 and 3.5 s.

Participants performed the task in four conditions, resulting from the combination

of two experimental factors: Social goal (Personal action, Social action) and Motor

goal (Small target, Large target). The Motor goal factor referred to the size (Small

target, Large target) of B and C targets. The Social goal factor referred to whom the

preparatory action was executed for, that is, moving the wooden object from target

A to target B for a subsequent personal (Personal action) or confederate’s use (Social

action) in the main action. The four resulting conditions were thus: Personal-Small,

Social-Small, Personal-Large and Social-Large. Each condition was performed in a

separated experimental block. The order of presentation of the four blocks was pseudo-

randomized: the experiment could start by either the small or the large target and by

either the personal or the social action. Participants switched to the other target only

once they had performed both the social and the personal actions for one target.

The experimental session started with a training phase of 10 trials (10 sequences of

the three grasp-to-place actions). The main action was performed by the participant

during the first five trials and by the confederate during the last five trials. Then,

the experimental phase involved the above-mentioned four blocks of trials. Each block

ended when participants had won 20 points, i.e., when having performed 20 correct tri-

als satisfying both the temporal and precision constraints of the main action. To check

the validity of the experimental design, we calculated the number of incorrect trials

depending on the motor goal (Small target, Large target), irrespective of the social goal

(Personal action, Social action). As expected and in line with Fitts’ law, participants’

performances were characterized by more errors with the small (378 errors) than with

the large target (183 errors).

7.7.5 Data recording

Participants’ motor performances were recorded using the Qualisys motion analysis

system, through three Oqus infrared cameras (sampling rate 200 Hz). During each

movement, the three cameras tracked the Cartesian coordinates in space (x, y, z ) of

five passive markers placed on the participant’s right hand, and more specifically on

the index tip, the index base, the thumb tip and the scaphoid and pisiform bones of

the wrist. No markers were placed on the hand of the confederate. A sixth marker was

placed on the top of the wooden object in order to analyse its position in relation to

the targets and check for precision. The cameras were calibrated at the beginning of
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each experimental session. A calibration was considered satisfactory when the system

reached a standard deviation accuracy below 0.2 mm. Finally, each time the covering

cloth was changed (to switch from small to large targets and vice versa), the x, y,

z coordinates of the center of targets B and C were detected and calibrated, in or-

der to obtain stable spatial references when evaluating the compliance with precision

constraints.

7.7.6 Data processing and statistical analysis

Motor performances recorded by the Qualisys system were processed by an in-house

script adapted from the RTMocap toolbox for Matlab (Lewkowicz & Delevoye-Turrell,

2015). In line with the existing literature (Quesque & Coello, 2014; Quesque et al.,

2016; Quesque et al., 2013), we analysed only the trajectory of the wrist marker placed

at the level of the scaphoid, which expresses arm movements without including wrist

rotation. Each action was composed of two phases: the grasping phase and the placing

phase. Action onset was considered as the first moment when the wrist marker reached

20; Action end corresponded to the moment when the wrist marker reached 20 mm.s−1

following peak velocity (Quesque et al., 2013). In the event that this threshold was not

reached, the local minima following peak velocity was considered as the action end. For

the purpose of the current study, only the parameters recorded during the preparatory

action were considered. For both the grasping and the placing phases of the preparatory

action, the analyses were carried out on the following kinematic parameters:

1. Movement time (ms): time elapsed between movement onset and movement end.

2. Percentage of deceleration time (%): difference between movement time and time

elapsed between movement onset and peak velocity, divided by movement time

and multiplied by 100.

3. Peak wrist velocity (mm.ms−1): maximum velocity reached by wrist in grasping

and placing phases.

4. Peak wrist elevation (mm): trajectory height corresponding to the maximum z

(vertical) coordinate of wrist in grasping and placing phases.

These temporal and kinematic parameters were computed but excluded from further

analysis if the movement was not correctly executed (i.e., impossibility to detect at least

two local minima and/or two local maxima in the trajectory analysis), or if the reaction

time was below 180 ms or above 2.5 standard deviations from the mean. Among the

initial 2140 movements, 116 were removed from the data set, resulting in a loss of

5.42% of the data.

Statistical analyses and plots were performed with R version 3.5.1 (R Core Team

2018) and R Studio version 1.1.456. Each parameter of interest was analysed as a

function of the Motor goal (Small target, Large target) and Social goal (Personal

action, Social action) using a mixed effects model approach. Mixed effects models are

used to study the effect of experimental factors (called fixed effects parameters) on the
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variable of interest, while taking into account the possible influence of other sources

(referred as random effects parameters; e.g., inter-individual differences in sensitivity

to the variables). Mixed effects models are particularly relevant for repeated measures

experimental plans, as they can handle missing data and provide parameter estimates

with acceptable type-I and type-II errors (Barr et al., 2013; Judd et al., 2012). In the

present study, we specifically fitted each parameter dataset with a generalized linear

mixed effects model, using the glmer function of the “lme 4 1.1–21” package (Bates

et al., 2015b).

For each of the kinematic parameters mentioned above, we applied a model incorpo-

rating Motor goal (Small target, Large target) and Social goal (Personal action, Social

action) as fixed effects, including both main effects and the interaction effect. As ran-

dom effects, our model included a by-subject random intercept and by-subject random

slopes for the effect of Motor and Social goals. A by-confederate random intercept was

not added in the final random structure of the model, as its specification did not sta-

tistically improve the model. Therefore, such a random effects structure was chosen on

the basis of a compromise between the most complete random effect structure (Barr

et al., 2013) and the optimal random effect structure supported by the data (Bates

et al., 2015a; Matuschek et al., 2017), in order to avoid model over-parametrization.

In addition to the fixed and random effects, glmer requires users to specify the type

of error distribution. For this purpose, we analysed the distribution followed by the

response variable and residuals (separately for each kinematic parameter), by comput-

ing kurtosis and skewness and visually analysing the distribution through histograms

and Q-Q plots. Specifically, we fitted a Gaussian distribution to the peak wrist velocity

and the percentage of deceleration time datasets for both grasping and placing phases,

and to the movement time dataset for the grasping phase only. We fitted a log-normal

distribution to the peak wrist elevation datasets for both grasping and placing phases,

and to the movement time dataset for the placing phase only (see Table 7.2).

The model parameters (relating to fixed effects and random effects) were estimated

by Laplace approximation and statistically tested with Wald’s χ2. The conditional

coefficient of determination R2 (R GLMM(c
2
)) quantifying the proportion of variance

explained by the model (including both random and fixed effects; see Nakagawa et al.,

2017) was calculated using the function r.squaredGLMM of the “MuMIn” package ver-

sion 1.46.6 (Barton, 2019). We reported the conditional coefficient of determination R2

obtained from generalized mixed models although their use and interpretation are con-

sidered controversial (Ng & Cribbie, 2017). Finally, we performed one-tailed pairwise

multiple comparisons (applying a Bonferroni correction) using the functions emmeans,

contrast and test of the “emmeans” package version 1.3.5.1 (Lenth et al., 2019).



8
THE ROLE OF EYE GAZE IN

OBJECT -D IRECTED ACTIONS

8.1 rationale of study 4

In Chapter 7, I showed that motor and social factors exert a combined and hierarchi-

cal effect on the execution of object-oriented actions PPS. In the present Chapter, I

will explore the influence of another key factor pertaining to social interactions: the

availability of eye gaze cues. Some sparse empirical evidence from previous studies

highlighted that accessing other’s eye gaze modulated the trajectory of object-directed

actions, and that the eye-level height of a confederate induced a spatial amplification

of the trajectories. Nevertheless, the exact role of eye gaze on the expression and un-

derstanding of social intention in object-directed actions was never properly assessed.

To shed light on this issue, I employed the paradigm used in Chapter 7 and pre-

vious studies (Quesque & Coello, 2014, 2015; Quesque et al., 2013). As a novelty, I

applied some modifications to the paradigm in order to render the task more ecologi-

cal and assess at the same time the contribution of eye gaze to the expression and the

understanding of social intention through action kinematics. Specifically, participants

were required to displace a dummy glass to a new position with either a personal

(serve themselves some water) or a social intention (being served by a confederate).

Differently from previous studies (e.g., Quesque et al., 2016), confederates’ reaction

to participant’s action did not depend on an auditory signal, but they were required

to serve only when they were able to identify the participant’s social intention in the

observed motor action. The task was performed while the eye gaze of the confederate

was available or not to the participant.

In line with previous literature, results confirmed the presence of a social intention

effect on motor performance, with actions performed with a social intention being char-

acterised by a greater trajectory height and longer movement duration than actions

performed with a personal intention. Interestingly, the difference in kinematic profile

between social and personal actions was smaller when the confederates’ eye gaze was

not available. Furthermore, confederates’ ability to identify the social intention in mo-

tor deviants was reduced when eye gaze was not available. Overall, the results showed

that eye gaze cues act as a spatial attractor, modulating the way individual exploit

PPS during social interaction. As a consequence, eye gaze facilitate the expression and

understanding of social intentions in the kinematics of object-directed manual actions.

97
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The contribution of eye gaze and movement kinematics to the expression

and the identification of social intention in object-directed motor actions

Gigliotti, M.F., Ott, L., Bartolo, A., & Coello, Y.

In preparation

8.2 abstract

The intention to include another person into an interaction (i.e., social intention) was

found to influence the spatio-temporal characteristics of motor performance. Neverthe-

less, the role of social cues provided by eye gaze in such a context was never properly

assessed. In the present study, we tested whether limiting the access to eye gaze altered

the motor-related effect of social intention on motor performances. The task was to

displace manually a dummy glass to a new position in order to be virtually filled by

either the participants themselves (personal intention) or a confederate facing them

(social intention). The confederates performed their action only when they were able

to identify the participant’s social intention in the observed motor action. The task

was performed while the eye gaze of the confederates was available or not, through

the manipulation of an occluder. Results showed an effect of social intention on mo-

tor performance that was characterised, as previously reported, by an amplification of

the kinematic spatio-temporal parameters, although to a lesser extent when the con-

federates’ eye gaze was not available. In the latter condition, the identification of the

social intention by the confederates through motor deviants was reduced. Altogether,

the results revealed that the presence of eye gaze cues contributes significantly to the

success of social interaction, by facilitating the expression and the understanding of

social intentions in the kinematics of object-directed manual actions.

8.3 introduction

During social interactions, individuals communicate their intentions and emotions

through a multitude of verbal and non-verbal cues. Among the non-verbal behavioural

cues, gestures, facial expressions and eye gaze participate significantly in the convey-

ing of information at the core of the initiation and success of social interactions. As

regards gestures, different classes have been identified according to the type of infor-

mation they can convey. For instance, co-speech gestures (i.e., hand movements that

accompany speech and which are semantically related to its content) are known to im-

prove the quality of communication (Corballis, 2003; Dargue & Sweller, 2020; Dargue
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et al., 2019; Goldin-Meadow, 1999; Hostetter, 2011) and help speech comprehension

in a noisy context (e.g., Drijvers & Özyüreka, 2017; Drijvers et al., 2019). Intransi-

tive gestures (i.e. meaningful gestures that do not involve objects) can directly bring

people into relationship with others (Bartolo et al., 2019; Gallagher & Frith, 2004),

by automatically conveying a message (e.g., waving “Goodbye” gesture), expressing

an internal state of the speaker (e.g., “I am hot” gesture) or inducing a modification

of the interlocutor’s behaviour (e.g., “Let’s go” gesture). Finally, transitive gestures

(i.e. meaningful gestures involving an object, henceforth called object-directed actions),

have also proved to be involved in social interactions. Longly thought to be only in-

fluenced by object features (e.g., size, texture, distance; Sartori et al., 2013a; Sartori

et al., 2013b) or low-level motor intentions (e.g., grasping an object to displace or to

throw it; Gigliotti et al., 2020; Marteniuk et al., 1987), the execution of object-directed

actions is known today to be modulated also by higher-order social intentions, that

is, by the desire to include another person in the interaction (Becchio et al., 2008b;

Ferri et al., 2011; Gigliotti et al., 2020; Manera et al., 2011; Quesque & Coello, 2014;

Quesque et al., 2016; Quesque et al., 2013; Sartori et al., 2009a).

The modulatory effect of social intentions was initially observed through the analysis

of the kinematic features of object-directed actions. More specifically, previous studies

have reported that the trajectory of object-directed actions was characterized by a

longer duration and higher amplitude when the action was performed with the intention

to include another person in the interaction (e.g., moving an object for future use by

someone else), than when it was performed with a personal intention (e.g., moving an

object for future use by oneself; Becchio et al., 2008a, 2008b; Georgiou et al., 2007;

Gigliotti et al., 2020; Quesque et al., 2016; Quesque et al., 2013; Vesper et al., 2016).

Crucially, the perception of such action-related cues play a primary role in inferring

the intentions of others (Elsner et al., 2012; Lewkowicz et al., 2013; Manera et al.,

2011; Sartori et al., 2009b; Sebanz & Knoblich, 2009; Stapel et al., 2012). Indeed, it

has been shown that, on the basis of these fine kinematic variations (Quesque et al.,

2016) and through a perceptual anticipation process (Orliaguet et al., 1997), naive

observers were able to infer the social intention associated with an object-directed

motor action and to engage more rapidly into the interaction (Ansuini et al., 2008;

Becchio et al., 2012; Cavallo et al., 2016; Lewkowicz et al., 2015). In light of such

effects on observer’s behaviour, it was suggested that the amplification of the spatial

and temporal kinematic features observed in performances driven by social intention

may have the function of making motor actions more communicative (Hostetter, 2011).

Therefore, the kinematic variations characterising the social intention would capture

the attention of the observers and provide them with cues about the actor’s intention

in order to respond appropriately (Gallagher, 2008; Quesque & Coello, 2014; Sartori

et al., 2009a).

Besides movement cues, eye gaze constitutes another fundamental source of informa-

tion in social contexts. Defined as “a window into social cognition” (Shepherd, 2010),

eye gaze influences the perception and the interpretation of others’ behaviour (Cook &
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Smith, 1975) and participates in the regulation of social interactions (Argyle & Dean,

1965). Eye gaze cues seem privileged over other facial cues subtending social interac-

tions, and this from a very early age (Farroni et al., 2002; Haith et al., 1977; Janik

et al., 1978; Morton & Johnson, 1991). Furthermore, eye gaze contacts during face-

to-face interactions are characterised by a specific temporal dynamics (Binetti et al.,

2016) and used to determine speaking turns during a conversation (Ho et al., 2015).

Moreover, speakers’ eye gaze can be averted from or directed to the interlocutor de-

pending on the speech content (Kendrick & Holler, 2017). Eye gaze contacts can also

become more frequent when the speaker seeks approval from their interlocutor (Efran,

1968) or when the listener needs more information and further details to clarify an

ambiguous point in a conversation (Macdonald & Tatler, 2013).

In the context of a physical interaction with objects, the sensitivity to others’ eye gaze

direction and tendency to redirect one’s own gaze to the same object/location play also

a crucial role in a social context (Driver IV et al., 1999; Senju & Hasegawa, 2005). Such

behaviour, known as joint attention (Emery et al., 1997; Shaw et al., 2017), consists into

a “social” coordination of attention towards a particular object, which consequently

becomes a stimulus of common interest between two individuals engaging in a social

interaction. Because of its attractiveness, eye contact with a confederate can interfere

with the production of a motor sequence and influence its spatial trajectory (Ferri et

al., 2011; Innocenti et al., 2012; Quesque & Coello, 2014; Sartori et al., 2009b; Scorolli

et al., 2014). For instance, it was shown that the presence of a confederate looking at

participants while performing a request gesture (i.e., opening the mouth in order to be

fed), induced participants to perform slower object-directed actions, when compared to

a situation of no gaze contact (Ferri et al., 2011). This interference effect was observed

when the confederate looked at the participant both before (Innocenti et al., 2012) and

during (Ferri et al., 2011) the execution of the movement, and even if the latter was

not related to the confederate’s request gesture (e.g., the confederate assuming a “give

me it in the hand” while the participants performed a simple grasp-to-lift action on an

object; Innocenti et al., 2012). In a similar vein, Quesque and Coello (2014) observed

that the trajectory height of an object-directed action performed during a face-to-face

social interaction depended on the eye-level of the confederate. More precisely, the hand

path was higher when the confederate was sitting in a higher chair, independently of

whether the actions were performed with a social or a personal intention. These results

suggested that other’s eye gaze, and in particular eye-level, was taken into account

when performing motor actions in a social context, even if this was not relevant for

the motor performance.

Taken as a whole, previous studies showed that non-verbal social interactions depend

both on the presence of eye gaze and intention-dependent kinematic adjustment of

motor actions. However, the exact interplay between the availability of eye gaze and

intention-related motor adjustments in a face-to-face social interaction remains an

open issue. Indeed, when raising the question of the exact role of eye gaze in the

communication of social intention, two hypotheses can be envisaged. First, eye gaze
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might have a simple communicative role, that is eye gaze can be used directly by

individuals to communicate to a confederate their intention to interact. Accordingly,

when available, eye gaze would be sufficient to communicate social intention, with

no need to further amplify the social-related kinematic features of object-directed

actions. Eye gaze would therefore dominate over motor kinematics in the expression of

social intention. Alternatively, eye gaze might have a modulatory role, that is eye gaze

contributes to the expression of the social intention by emphasising its effect during

the execution of object-directed actions. Accordingly, when available, eye gaze would

serve as a spatial and social reference frame inducing an amplification of the effect of

social intention on motor kinematics.

In order to unravel these two hypotheses, we asked participants (actors) to grasp a

dummy glass from an initial position and to place it on a final position pursuing either

a social intention (having some virtual water poured by a confederate) or a personal

intention (pour themselves some virtual water). The task was executed in collaboration

with a confederate, who had to identify the actor’s intention, without talking, and to

respond accordingly: To pour some virtual water when identifying a social intention

or to stay still when identifying a personal intention. Actors and confederates could

either have access to each other’s gaze or not, through the use of a physical occluder.

We analysed the kinematic performances of the actors depending on social or per-

sonal intention subtending the performance of the motor action, and the proportion of

actions whose intention was correctly identified by the confederates. Based on previous

literature, we first expected that object-directed motor actions should be characterised

by a higher amplitude and a longer duration when performed with a social compared

to a personal intention, whatever the availability of others’ eye gaze (Becchio et al.,

2008b; Ferri et al., 2011; Gigliotti et al., 2020; Manera et al., 2011; Quesque & Coello,

2014; Quesque et al., 2016; Quesque et al., 2013; Sartori et al., 2009a). This corre-

sponds indeed to a natural expression of social intention in motor actions, observed

whatever the eye gaze condition. Second, we expected that the kinematic variations

induced by the social and personal intentions should be either amplified or not, depend-

ing on the role played by eye gaze. More precisely, if eye gaze has a communicative

role, we should observe no effect of eye gaze on the intention-induced motor deviants.

On the contrary, if eye gaze has a modulatory role, we should observe an amplification

of the kinematic variations induced by personal and social intentions when eye gaze

is available. Concurrently with these expected effects, a higher rate of identification

of the intention behind the actors’ object-directed actions should be observed in the

confederates, when compared to when eye gaze is not available.
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8.4 method

8.4.1 Participants

The experiment was conducted on 56 healthy participants (43 females, 18–35 years

old, M = 21.55 years, SD = 2.49). Participants were right-handed, as assessed by the

Edinburgh Handedness Inventory (Oldfield, 1971, mean laterality quotient = 0.84, SD

= 0.20), they declared having no perceptual or motor deficits and having a normal

or corrected-to-normal visual acuity. They received no information about the research

hypotheses and provided their written informed consent before taking part in the ex-

periment. The protocol was approved by the ethical committee in behavioural sciences

of the University of Lille (Ref. Number 2020-437-S86) and complied with the ethical

principles of the Declaration of Helsinki (World Medical Association, 2013).

8.4.2 Sample size calculation

The sample size of the present study was decided on the basis of a simulation-based

power analysis for mixed models (Kumle et al., 2021). Such recently proposed tech-

nique has allowed to estimate the sample size in mixed models, which is not a trivial

issue. Simulation-based power analysis was carried out using the two complementary

packages “mixedpower 0.1.0” (Kumle et al., 2018) and “simr 1.0.5” (Green & Macleod,

2016) on a pilot dataset of five participants and for the two main kinematic parameters

of interest (peak wrist elevation and movement time of the placing phase, see Section

8.4.5). The simulation-based power analysis (1000 simulations) showed that a sample

size of 25 participants performing 20 actions (trials) per condition would be sufficient

to observe an interaction effect between the intention and gaze with a power > 80%.

Therefore we recruited 28 participants, in order to be sure to have enough data even

after outliers exclusion.

8.4.3 Stimuli and material

Figure 8.1 shows a schematic illustration of the experimental setup. The task required

participants to manipulate a dummy glass and a dummy bottle, made out of wood

and painted with a non-reflective black paint. The glass and the bottle were placed in

the space within participants’ reach, on a 120 × 100 cm table serving as workspace

covered by a 120 × 100 cm black opaque cloth. The non-reflective paint and the cloth

prevented the occurrence of light reflections which could interfere with the motion

capture recordings. For the same reason, the experiment took place in a dark box. The

task required one of the two participants (the actor) to move the glass from an initial

position to a final position. Both positions were indicated by landmarks on the table

(see Figure 8.1A). The task was programmed on MATLAB (version 2014a) and run on a

computer Dell 7010. The computer was also equipped with the software Qualisys Track
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Manager (version 2.13). Motor performances were recorded and analysed in real-time

through the software interface QMT Connect for MATLAB. This interface allowed to

plug Mocap data recorded by Qualisys Track Manager directly into MATLAB, which

was used for online motion analysis and running the task.

Figure 8.1
Schematic Illustration of the Experimental Setup

Note. A) Participants sat face to face around a table (100 × 120 cm), covered by a black opaque
cloth (here appearing in white for the sake of clarity and illustration). They both wore a glove
endowed with five markers. The image shows the landmarks used to determine the position of
the bottle, the glass and the actors’ and confederates’ hands. Distances: Glass initial position
from glass final position= 25cm; Glass initial position from actor hand’s initial position: 25cm;
Glass final position from confederate hand’s initial position= 50cm; Glass final position from
Bottle position= 25 cm. B) Visible and Non visible gaze conditions.
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8.4.4 Procedure

The task was based on the paradigm developed by Quesque et al. (2016). Partici-

pants performed the task in mixed-sex dyads and were not acquainted with each other.

Throughout the experiment, participants sat around the table serving as workspace.

They wore a glove endowed with reflective markers on their right hand for the kinematic

analysis and a pair of headphones, used for the presentation of the auditory signals

related to the task. Prior to the onset of the experiment, the height of participants’

chairs was adjusted so that the participants’ eyes were at the same height.

Participants of each dyad were randomly assigned either the role of “actor” or the role

of “confederate”. The actors’ task consisted in grasping the dummy glass from an initial

position and placing it on a final position, following two different intentions: Either

to have some virtual water poured into the dummy glass by the confederate (social

intention) or to pour themselves some virtual water into the dummy glass (personal

intention). Following the actors’ action, the confederates’ task was either to grasp the

bottle and pour some virtual water into the dummy glass or to stay still, depending on

whether they perceived a social or a personal intention in the observed motor action.

The confederates were requested to choose whether to pour some virtual water or not

as soon as the actor placed the dummy glass on the final position. From that moment

on, the confederate had 2 s to react before the trial was over. At the beginning of each

trial, the actors received an auditory signal informing them about the intention with

which they had to grasp and move the dummy glass. They could either hear the signal

“You”, indicating that the dummy glass had to be moved with a personal intention,

or the signal “The other”, indicating that the dummy glass had to be moved with

a social intention. In synchrony with the actors’ signal, the confederates received all

the time the auditory signal “Ready”. In this way, the confederates were prompted

to react on the basis of the non-verbal kinematic cues extrapolated from the actors’

grasp-to-place actions instead of an external auditory signal as used in previous studies

(Quesque & Coello, 2014; Quesque et al., 2016; Quesque et al., 2013). The actors and

the confederates were not informed that the auditory signals received were different

(see Quesque et al., 2016. Thereafter, both the actors and the confederates received an

auditory feedback informing them about the success (sound of clinking coins) or not

(error sound) of the trial.

A trial was considered as successful when the actors moved the dummy glass in

accordance with the intention expressed in the auditory signal and the confederates

reacted by producing an appropriate behavioural response. More precisely, the confed-

erates stayed still when the actors moved the dummy glass with a personal intention

and they poured the dummy glass with some virtual water when the actors moved the

glass with a social intention.

Finally, a bell sound was provided, signalling the actors to grasp the dummy glass

and place it back to the initial position, in order to be ready for the next trial. Figure

8.2 illustrates the temporal unfolding of a trial. At the beginning and end of each
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trial, the participants were requested to place their right hand, with their finger and

thumb pinched together, to the hand’s initial position (see Figure 8.1A). A trial did not

start until the actors and confederates had positioned their hand correctly. The time

elapsed between the moment participants’ returned to the hand’s initial position and

the presentation of the next “You”/“The other”/“Ready” auditory signal corresponded

to the inter-trial interval, whose duration varied randomly between 2 and 3 s.

This sequence of actions (the actors’ grasp-to-place action followed by the confed-

erates’ reaction followed by the dummy glass repositioning action) corresponded to

one trial (see Figure 8.2). A trial was considered as not valid and was reinitialised if

a recording error occurred or if the confederate reacted after a delay of more than 2 s

following the actors’ grasp-to-place action. The task consisted of 2 blocks of 40 trials

(20 Social intention trials and 20 Personal intention trials, presented in a random or-

der). In one block of trials (“Visible Gaze”), participants performed the grasp-to-place

action while having access to the other’s face and eye gaze. In the other block of trials

(“Non visible Gaze” block), a black occluder was placed in between participants, at the

head level, preventing them from seeing the face and eye gaze of the other participant

(see Figure 8.1B). The order of the two blocks was counterbalanced across participants.

A break lasting 5 minutes occurred between the two blocks. When the face was visible,

both the actors and confederates wore a face mask. The mask covered the partici-

pants’ mouths in order to avoid any interference effect of the facial expression cues

during the task. Throughout the experiment, participants were not allowed to verbally

communicate, in order to avoid the influence of verbal cues on task performance.

Figure 8.2
Temporal Unfolding of a Trial

Note. (1) A trial began with the “You!” or “The other!” auditory signal being presented to
actors and the “Ready!” signal to confederates. (2) Actors performed then the grasp-to-place
action with either a social or a personal intention. (3) As soon as actors placed the glass to the
final position, confederates had to decide whether to use the bottle to serve some virtual water
or not. They disposed of a maximum delay of 2 s. (4) Following confederates’ reaction, both
actors’ and confederate’s were informed about the failure or success of the trial by means of an
error/correct auditory feedback. (5) Finally, a bell sound was presented and signalled actors to
grasp the glass and place it back to the initial position in order to start the following trial (1).



106 the role of eye gaze in object-directed actions

8.4.5 Kinematic data recording and processing

Participants’ motor performances were recorded using the Qualisys motion analysis

system, by means of five Oqus infrared cameras (sampling rate = 200 Hz). The five

cameras tracked the 3D coordinates in space (x, y, z ) of 10 passive markers placed on

the gloves worn by the participants. The gloves worn by the actors and confederates

were endowed with five markers each, which were fixed at the level of the index tip,

index base, thumb tip and scaphoid and pisiform bones of the wrist. These five markers

allowed to build a stable model of the hand necessary for motion recording. An 11th

marker was placed on the top of the dummy glass in order to track its position in

relation to the landmark on the workspace and check for precision errors. At the

beginning of each experimental session, the cameras were calibrated (wand method)

so that the system’s standard deviation accuracy was between 0.50 and 0.99 mm.

Motor performances recorded by the Qualisys system were then analysed by an in-

house script adapted from the RTMocap toolbox for Matlab (Lewkowicz & Delevoye-

Turrell, 2015). In accordance with the literature (Gigliotti et al., 2020; Quesque &

Coello, 2014; Quesque et al., 2016; Quesque et al., 2013), only the trajectory of the wrist

marker placed at the level of the scaphoid was analysed, as it expresses arm movements

without the interference of any wrist rotation. Movement onset corresponded to the first

point in time at which the wrist marker reached a velocity of 20 mm.s−1. Movement

end corresponded to the first time point following peak velocity at which the wrist

marker velocity went below 20 mm.s−1 (Quesque et al., 2013). When this threshold

was not reached, the local minima following peak velocity was considered as the action

end. The grasp-to-place actions performed by the participants were composed of two

phases: a grasping and a placing phase. For each phase, four kinematic parameters

were computed and analysed:

• Peak wrist elevation (mm): Maximum z (vertical) coordinate reached by the wrist

marker during a movement phase. It corresponded to the trajectory height. Peak

wrist elevation values were normalised with respect to the initial wrist marker

position.

• Peak wrist velocity (mm.ms−1): Maximum velocity reached by the wrist marker

during a movement phase.

• Movement time (ms): Time elapsed between movement phase onset and move-

ment phase end.

• Percentage of deceleration time (%): Difference between the movement time and

the time elapsed between movement phase onset and peak wrist velocity, divided

by the movement time and multiplied by 100.
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8.4.6 Statistical analysis

Statistical analyses and plots were performed with R version 3.5.1 (R Core Team 2018)

and R Studio version 1.1.456. As regards the analysis of the motor performances, each

kinematic parameter was analysed separately using Linear Mixed-Effects Models. Lin-

ear Mixed-Effects Models were chosen as they allow to study the effect of experimental

factors (referred as fixed-effects parameters, here corresponding to the Intention and

Eye gaze) on a variable of interest (here corresponding to each kinematic parameter),

while taking into account the possible influence of other sources (referred as random-

effects parameters, here consisting in the inter-individual differences in the sensitivity

to the type of intention or eye gaze visibility; Barr et al., 2013; Judd et al., 2012). Fur-

thermore, mixed-effects models allow control for intra-subject variability, being thus

suitable for repeated-measures experimental plans, they can handle missing data and

yield parameter estimation with acceptable type-I and type-II errors (Barr et al., 2013;

Judd et al., 2012). In the present study, the models used included the main effects of

the factors Intention (Social, Personal) and Eye gaze (Visible, Non visible), as well as

their interaction effect. The random effects structure included a by-subject random

intercept and by-subject random slopes for the effect of Intention and Eye gaze (see

Formula 8.1). The use of this random effects structure resulted from a compromise be-

tween the willingness to construct the most complete random effects structure and the

desire to avoid model over-parameterization, by selecting the optimal random-effects

structure supported by the data (Bates et al., 2015a; Matuschek et al., 2017).

Kinematic Parameter o f Interest ∼
Intention + Eye gaze + Intention : Eye gaze+

(1 + Intention + Eye gaze |Participant)

(8.1)

Linear Mixed-Effects Models were computed and applied using the lmer function

of the “lme4 1.1–23” package (Bates et al., 2015b). Model parameters were estimated

using REstricted Maximum Likelihood approach (REML) and were statistically tested

through F test with Satterthwaite approximation for degrees of freedom (Luke, 2017)

by using the function anova of the “lmerTest 3.0-1” package (Kuznetsova et al., 2017).

Sum-to-zero contrasts were specified before model fitting. Normality of model resid-

uals and homoscedasticity were verified graphically. In case of significant interaction

effects, the simple effects of the variable Intention within each level of the variable Eye

gaze were calculated using the function emmeans from the “emmeans 1.7.1-1” package

(Lenth et al., 2019). The estimated marginal means (EMMs), summarising the model,

calculated with the function emmeans are reported in the text, next to the pertinent

statistical tests. ordinary marginal means (OMMs), summarising the data, are reported

in Table 8.1.

As regards the analysis of the confederate’s correct identification rate of the actor’s

intentions, we computed the proportion of actions in response to which the confederates
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reacted with an appropriate behaviour (i.e., they poured some virtual water when

the actor performed the grasp-to-place action with a social intention and stayed still

when the actors performed the grasp-to-place action with a personal intention). The

correct identification rate computed in the Visible Eye gaze condition was statistically

compared to the one computed in the Non visible Eye gaze condition by the means

of a χ2 test for proportion comparison, with continuity correction, using the function

prop.test of the “stats 4.1.1” package. Significant threshold was set at α = 0.05 for all

analyses.

8.5 results

8.5.1 Analysis of actors’ kinematic performances

Grasp-to place actions were excluded from statistical analysis if they were not correctly

executed (i.e., absence of two detectable local minima and/or two local maxima in the

trajectory analysis) and if they resulted in outliers on at least one kinematic parameter

following the absolute deviation from the median method (Leys et al., 2013). In order

to keep the amount of discarded data below 5%, the threshold for outliers’ rejection

was set as the difference from the median +/− 4.5 times the MAD. This method led

to the exclusion of 96 trials from the initial dataset of 2180 movements, resulting in

4.4% of discarded data. Mean values and standard deviations relative to the kinematic

parameters analysed are reported in Table 8.1. Figure 8.3 shows the average movement

time and trajectory height profiles of the grasp-to-place actions performed by the actors

as a function of the Intention (Social, Personal) and the Eye gaze (Visible, Non visible).

8.5.1.1 Peak wrist elevation

In the grasping phase, statistical analyses revealed no significant effect of Intention

(F(1,26.03) = 0.35, p = .562), Eye gaze (F(1,26.09) = 1.79, p = .192), or the Intention ×
Eye gaze interaction (F(1,2003.28) = 0.16, p = .693).

In the placing phase, statistical analyses revealed a significant effect of Intention

(F(1,27.06) = 6.28, p = .018), with actions driven by a social intention being characterised

by a higher peak wrist elevation than actions driven by a personal intention (estimated

mean = 23.50 mm, SE = 2.09 and estimated mean = 18.80 mm, SE = 2.06, for social

and personal intention respectively; t.ratio(27) = 2.51, p = .018). The effect of Eye gaze

was not significant (F(1,26.53) = 0.95, p = .339). However, the Intention × Eye gaze

interaction was significant (F(1,1999.86) = 5.59, p = .018), indicating that the effect of

Intention was modulated by Eye gaze. More specifically, simple effects analyses showed

that peak wrist elevation was significantly higher for actions driven by a social than

personal intention in both eye gaze conditions, but the difference was larger when the

eye gaze was visible (estimated mean = 5.50 mm, SE = 1.90, t.ratio(28.8) = 2.89, p =

.007) when compared to when it was not visible (estimated mean = 3.90 mm, SE =

1.90, t.ratio(28.8)= 2.05, p = .049; see Figure 8.3).
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8.5.1.2 Peak wrist velocity

In the grasping phase, statistical analyses revealed no significant effect of Intention

(F(1,26.71) = 0.31, p = .583), but a significant effect of Eye gaze (F(1,26.68) = 9.67, p =

.004), the actions being characterised by a lower peak wrist velocity when the eye gaze

was visible (estimated mean = 497 mm.s−1, SE = 14.70) when compared to when it

was not visible (estimated mean = 469 , SE = 11.90, t.ratio(26.9) = -3.11, p = .004).

The Intention × Eye gaze interaction was not significant (F(1,2002.48) = 0.76, p = .382).

In the placing phase, statistical analyses revealed no significant effect of Intention

(F(1,26.79)= 2.02, p = .167), Eye gaze (F(1,27.28) = 2.48, p = .127), or the Intention ×
Eye gaze interaction (F(1,2001.53) = 1.18, p = .278).

8.5.1.3 Percentage of deceleration time

In the grasping phase, statistical analyses revealed a significant effect of Intention

(F(1,26.12) = 11.45, p = .002), with actions driven by a social intention being charac-

terised by a longer deceleration period than actions driven by a personal intention

(estimated mean = 53.10 %, SE = 1.20 and estimated mean = 51.20 %, SE = 1.13

for social and personal intention respectively, t.ratio(26.7) = 3.38, p = .002). The effect

of Eye gaze (F(1,26.70) = 0.17, p = .686) and the Intention × Eye gaze interaction

(F(1,2007.21) = 0.01, p = .936) were both not significant.

In the placing phase, statistical analyses revealed a significant effect of Intention

(F(1,27.20) = 29.37, p < .001), with actions driven by a social intention being charac-

terised by a longer deceleration period than actions driven by a personal intention

(estimated mean = 64.20 %, SE = 0.59 and estimated mean = 62.0 %, SE = 0.52

for social and personal intention respectively, t.ratio(26.6) = 5.41, p < .001). They also

revealed a significant effect of Eye gaze (F(1,26.9)= 18.27, p < .001), the actions being

characterised by a longer deceleration period when the gaze was visible (estimated

mean = 63.80 %, SE = 0.58) compared to when it was not visible (estimated mean =

62.4 %, SE = 0.50, t.ratio(26.4) = -4.27, p < .001). The Intention × Eye gaze interaction

was not significant (F(1,2008.40) = 1.61, p = .204).

8.5.1.4 Movement time

In the grasping phase, statistical analyses revealed no significant effect of Intention

(F(1,23.82) = 0.27, p = .607), Gaze (F(1,27.38) = 3.86, p = .060, or the Intention × Eye

gaze interaction (F(1,1999.05) = 0.002, p = .966).

In the placing phase, statistical analyses revealed a significant effect of Intention

(F(1,26.36) = 14.07, p < .001), with actions driven by a social intention being charac-

terised by a longer movement time than that driven by a personal intention (estimated

mean = 764 ms, SE = 22, and estimated mean = 689 ms, SE = 24, for social and

personal intention respectively, t.ratio(27) = 3.75, p = .001). The effect of Eye gaze

was not significant (F(1,26.87)= 1.51, p = .230). However, the Intention × Eye gaze

interaction was significant (F(1,2001.91)= 9.72, p = .002), indicating that the effect of
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Table 8.1
Mean Values (and Standard Deviation) for Each Kinematic Parameter Analysed as a
Function of Phase (Grasping, Placing), Intention (Social, Personal) and Gaze (Visible, Non
visible)

Kinematic Parameter

Gaze Intention N
Peak wrist

elevation (mm)

Peak wrist

velocity (mm.ms−1)

Percentage of

deceleration time (%)

Movement time

(ms)

Grasping phase

Visible Social 522 28.21 (14.14) 492.36 (91.86) 53.10 (9.31) 764.42 (154.16)

Personal 521 28.43 (15.09) 490.89 (92.63) 51.50 (8.97) 754.51 (170.16)

Non visible Social 515 26.19 (15.05) 467.13 (83.78) 53.17 (9.24) 783.48 (143.82)

Personal 526 26.53 (14.83) 462.87 (85.11) 51.26 (9.13) 770.17 (168.07)

Placing phase

Visible Social 522 24.58 (13.67) 369.87 (67.18) 65.12 (6.10) 780.36 (160.66)

Personal 521 18.54 (12.73) 356.68 (80.79) 62.56 (6.48) 690.59 (153.02)

Non visible Social 515 21.60 (13.55) 364.71 (66.54) 63.29 (6.38) 752.31 (150.33)

Personal 526 17.63 (12.26) 348.38 (89.20) 61.38 (6.54) 687.50 (159.70)

Note. N indicates the number of movements in each condition retained in the statistical

analysis after outliers removal.

Intention was modulated by Eye gaze. More specifically, simple effects analysis showed

that actions driven by a social intention had a longer duration than those driven by

a personal intention in both gaze conditions, but this difference was larger when the

gaze was visible (estimated mean = 88.10 ms, SE = 20.4, t.ratio(29.6) = 4.33, p < .001)

when compared to when it was not visible (estimated mean = 61.0 ms, SE = 20.3,

t.ratio(29.6) = 3.00, p = .005; Figure 8.3).

8.5.2 Analysis of confederates’ identification performances

Confederates showed a higher correct identification rate of the intention subtending

the actor’s grasp-to-place actions in the visible gaze condition (86.90% of the intention

subtending the motor actions correctly identified) than in the non visible gaze condition

(76.28% of the intention subtending the motor actions correctly identified; χ2
1 = 40.19,

p < .001; see Figure 8.4).

8.6 discussion

The present study aimed at determining the exact role of eye gaze cues in the expres-

sion and identification of intentions in object-directed actions and, therefore, in the

success of social interactions. Two hypotheses were tested, assuming respectively that

eye gaze can facilitate the expression of social intention by modulating motor kine-

matics (modulatory effect) or rather by dominating the expression of social intention

over motor kinematics (communicative effect). To unravel these two hypotheses, par-

ticipants (actors) were asked to grasp a dummy glass from an initial position and to

place it to a final position, with either a social intention (having some virtual water



8.6 discussion 111

Figure 8.3
Average Movement Time and Trajectory Height of the Grasp-to-place Actions Performed by
Actors, as a Function of Intention (Social, Personal) and Gaze (Visible, Non Visible)

Note. The two bells-shaped curve represents the kinematic profile of the grasp-to-place
actions. The first bell relates to the grasping phase, the second bell to the placing phase.
Object-directed actions performed with a social intention were characterised by a higher
trajectory, longer deceleration phase and longer movement time than personal actions during
the placing phase. The difference between social and personal actions in terms of trajectory
height and movement time was greater when eye gaze was visible compared to when it was
not visible. ∆ symbol indicates the estimated mean difference between social and personal
actions. Ribbons indicate 95% confidence intervals.

poured into the dummy glass by a confederate) or a personal intention (pour themselves

some virtual water into the dummy glass). Confederates had to identify the intention

subtending the grasp-to-place actions performed by the actors and to respond accord-

ingly (i.e., pouring some virtual water or staying still). Participants were asked not

to communicate verbally. The task was executed while having access to each other’s

eye gaze or not. By means of this paradigm, we were able to test our hypotheses by

assessing, on each trial, the impact of other’s eye gaze availability on the execution of

object-directed actions and on the identification of the intention with which they were
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Figure 8.4
Proportion of Actions Correctly Identified by the Confederates as a Function of Intention
(Social, Personal) and Gaze (Visible, Non Visible)

Note. Bars and numerical values indicate the total proportion of actions correctly identified,
all participants considered together. Dots represent individual proportions of actions correctly
identified by each participant.

produced. Overall, the results support the hypothesis of a modulatory role of eye gaze

rather than a communicative one.

The first important outcome of the present study was that, in the absence of social

cues related to eye gaze, the execution of grasp-to-place actions was influenced by

social intention. More specifically, grasp-to-place actions were characterised by a higher

hand trajectory, a longer deceleration phase and a longer movement time during the

placing phase when they were performed with a social intention when compared to a

personal intention. These results confirm previous studies (Becchio et al., 2008a, 2008b;

Georgiou et al., 2007; Gigliotti et al., 2020; Quesque et al., 2016; Quesque et al., 2013;

Vesper et al., 2016) and show that individuals tend to amplify the spatio-temporal

parameters of their movements in order to convey a social intention and invite others

to interact socially (Hostetter, 2011).

The second important outcome of the present study was that the effect of social in-

tention on movement kinematics was amplified when other’s gaze was available. Such

amplification consisted in a wider difference in trajectory height and movement du-

ration (in the placing phase) between social and personal actions in the presence of

other’s eye gaze when compared to its absence. A plausible explanation of this effect

is that such spatial and temporal amplification of motor kinematic features induced
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by eye gaze could have the function of rendering motor actions more visually and so-

cially salient, leading to a more communicative motor performance (Hostetter, 2011).

This interpretation is also supported by the observed effect of eye gaze on temporal

parameters. Indeed, results showed also a higher peak velocity and faster movement

time in the reach phase, but a longer deceleration period in the placing phase when eye

gaze was available compared to when it was not available. Overall, this suggests that

participants reached the object faster but moved it slower and smoothlier to its final

position. Such temporal differences between the reaching and placing phases induced

by the presence of eye gaze is in line with the idea that, in the presence of eye gaze,

motor actions are executed in a more salient manner, contributing thus to rendering

the action more communicative for an observer.

Finally, and coherently with the explanation just reported, the third important out-

come of the present study concerned the effect of eye gaze availability as social cue on

the observer. When analysing the effect of eye gaze cues on the intention identification

by the confederates, results showed that the percentage of actions correctly identified

was higher when others’ eye gaze was visible (86.90%) than when it was not visible

(76.28%). These results confirm therefore that the modulatory effect of eye gaze cues

on social intention-related motor kinematics play a crucial role in the success of social

interactions. However, it is worth noting that when the eye gaze was not visible, the

percentage of action correctly identified was still quite high. This percentage can be

compared to a previous study conducted by Lewkowicz et al. (2015), using a similar

paradigm to the one of the present study. The authors asked participants to watch

a video showing a hand grasping an object and displacing it to a final position, with

either a personal or social intention. Participants’ task was to identify the intention

with which the grasp-to-place actions were performed. In the videos, no other cues

than the actor’s arm and object displacement were available. The authors found that

although participants had the feeling of responding randomly, they were nonetheless

able to correctly identify the intention subtending the grasp-to-place action in 60%

of the cases (i.e., above chance). Taken as a whole, the previous and current results

lead to the conclusion that intention understanding is possible from mere kinematics

observation (Lewkowicz et al., 2015). Nevertheless, real interaction situations consti-

tute a richer and better context than mere video observation and access to eye gaze

significantly improve the quality of social interaction.

The identification of a modulatory role of eye gaze and the better identification

of intentions when eye gaze is available constitute a novelty compared to the existing

literature. Indeed, previous studies have shown that the presence of eye gaze influenced

the movement deceleration phase (Ferri et al., 2011; Innocenti et al., 2012) or that

eye-level impact movement’s trajectory height (Quesque & Coello, 2014). The present

results extended these findings and highlighted for the first time that eye gaze cues do

not only induce a spatial deviation of trajectories, but that it also plays a crucial role in

the success of social interaction, by facilitating the expression and the understanding

of the intention.
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In addition to the main outcomes reported so far, the novelty of the present study

resides also in the approach used to explore the question of the concurrent role of eye

gaze and social intention on grasp-to-place actions execution and observation. Firstly,

most of the previous studies focused on the effect of eye gaze on the execution of actions

produced in reaction to a request expressed by another individual (e.g., Ferri et al.,

2011; Sartori et al., 2009b). On the contrary, the present study assessed the effect of

eye gaze on actions performed purposefully with the aim to convey the intention to

include another person in the motor performance. To our knowledge, only the study

of Quesque and Coello (2014) has addressed a similar question in the past, but using

a less ecological paradigm than the present one.

Moreover, in the present study both actors and confederates were naive participants,

unlike to antecedent paradigms involving dyads where one of the two participants

was always an accomplice of the experimenter (e.g., Ferri et al., 2011; Innocenti et

al., 2012; Quesque & Coello, 2014; Quesque et al., 2013; Scorolli et al., 2014). As a

consequence, these studies investigated either the performance of the actor, or the one

of the confederate, but not the two simultaneously, which represents a key aspect of the

present study. Finally, the confederates had to decide by themselves how to respond,

on the basis of how they interpreted the actor’s kinematic variations induced by the

intention behind the motor action. This constitutes a further novelty with respect

to the literature, where confederates’ responses were usually triggered by an external

auditory signal indicating whether it was up to them or not to perform the following

action (e.g., to use the object; Quesque & Coello, 2014; Quesque et al., 2016; Quesque

et al., 2013). Taken together, these methodological details allowed us to study the

effect of eye gaze and social intention in both actors and confederates, and in a more

ecological and spontaneous context than what has been previously done.

8.7 conclusion

To conclude, the higher percentage of actions correctly identified and the more evident

difference in kinematic variations between grasp-to-place motor actions driven by either

a social or personal intention are in accordance with the hypothesis of a modulatory role

of eye gaze. Eye gaze cues participate in the expression of social intention by interfering

with the execution of object-directed motor actions. The resultant is a richer social

context that facilitates action understanding by an observer, by allowing them to more

easily identify the intention subtending others’ actions and respond in an appropriate

way. In a broader perspective, this interaction between eye gaze and kinematics cues

allowing the expression and understanding of the individuals’ intentions corroborates

the idea that social interactions are multi-cued. Moreover, it supports the idea that

through the co-occurrence bodily, action, gaze, facial and paraverbal cues, sense making

during social interaction is the result of a coordination process and the establishment

of behavioural synchronicity. Further studies would be necessary to understand the

dynamics of gaze contacts and how they correlate with motor kinematic variations.
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Moreover, it would be valuable to conduct future experiments to investigate gaze-

contact dynamics as a function of inter-personal intention and social constraints of

object-oriented motor tasks. Finally, the present findings pave the way for new research

paths in clinical psychology, by raising the question of a potential impairment of the

gaze-kinematic cues interplay in social cognition deficits.





9
THE ROLE OF SHARING A PHYS ICAL SPACE IN

OBJECT -D IRECTED ACTIONS

9.1 rationale of study 5

The results presented in Chapters 7 and 8 (along with previous empirical evidence

presented Chapter 3) demonstrated that the effect of the social intention (i.e., the

intention to include another person in an interaction) on object-directed action execu-

tion in PPS depends also on the features of the final spatial target of the motor action

(i.e., the task-related motor constraints) as well as on others’ eye-gaze cues availabil-

ity. These results suggested therefore that motor factors modulate the effect of social

ones when individuals exploit PPS during social interactions. In Chapter 5 and 6, I

also showed that the way individuals exploit PPS depended on the presence of other

individuals, on their possibility to execute an action and on the rewarding outcomes

resulting from these actions.

In light of these data, a last question arises logically: Are the spatio-temporal amplifi-

cations induced by the social intention directly related to a communicative purpose, or

are they rather intrinsically related to the sharing of a physical co-action space? In or-

der to shed light on that issue, we conducted an experiment in which participants were

required to perform an object-directed action following either a personal or a social

intention, while interacting with another individual through a video-conference system.

In this Chapter, I will present the preliminary results issued from this study, which

suggested that the effect of social intention observed in face-to-face interactions, where

individuals share a physical workspace, disappear when the interaction is mediated by

a visio-conference system, creating thereby a virtually shared space.
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“Screens make us less social”: The effect of social intention on action

kinematics is intrinsically related to the sharing of a same physical space

Gigliotti, M.F., Bartolo, A., & Coello, Y.

In preparation - Preliminary results

9.2 abstract

Previous empirical evidence demonstrated that the execution of object-directed actions

is impacted by the social intention (i.e., the intention to involve another person in the

interaction). This effect was also found to be modulated by the spatial proximity be-

tween the agents involved in the task. However, it is not known yet whether the motor

deviants induced by the social intention derive from the communicative nature of the

interaction, or rather from the sharing of a physical co-action space. To clarify this

issue, we asked participants to displace a glass to pour themselves some water (pursu-

ing a personal intention) or to have some water poured by a confederate (pursuing a

social intention). The novelty was that the confederate sat around a table located in a

different room and interacted with participants through a video-conferencing system.

Results revealed that the amplification of kinematic parameters induced by the social

intention classically observed in face-to-face interactions, where individuals share a

physical workspace, was not observed when the interaction was mediated by an in-

terface, embedding the interaction in a virtually shared space. Overall, these findings

suggest that the execution of object-directed actions in social context depends on the

sharing of a physical space between the two individuals.

9.3 introduction

The execution of object-directed manual actions has been found to be influenced not

only by the features of the manipulated objects (Cuijpers et al., 2004; Eastough &

Edwards, 2007; Fikes et al., 2015; Gentilucci et al., 1991; Gentilucci, 2002; Paulignan

et al., 1991; Paulun et al., 2016; Santello & Soechting, 1998), but also by higher-level

factors, such as the final scope of the action (e.g., grasp-to-throw, grasp-to-use; Ansuini

et al., 2008; Ansuini et al., 2006; Naish et al., 2013; Sartori et al., 2011), motor goal

(i.e., the task-specific spatial target of an action; Gigliotti et al., 2020; Marteniuk et al.,

1987) and more interestingly, social intention, namely the intention to include another

person in the interaction (Gigliotti et al., 2020; Jacob & Jeannerod, 2005).
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The effect of social intention on the execution of object-directed actions was observed

in motion capture studies, which showed that when such actions are executed with the

intention to include another person in the interaction, participants perform slower and

ampler movements than when they realise the same action with a personal intention

(Becchio et al., 2008a, 2008b; Georgiou et al., 2007; Gigliotti et al., 2020; Quesque et

al., 2016; Quesque et al., 2013; Vesper et al., 2016). It was suggested that these spatio-

temporal motor variants would contribute to render the gesture more communicative

(Hostetter, 2011) and salient for an observer eventually involved in the task (Ansuini

et al., 2008; Becchio et al., 2012; Cavallo et al., 2016; Elsner et al., 2012; Lewkowicz

et al., 2013; Lewkowicz et al., 2015; Manera et al., 2011; Quesque et al., 2016; Sartori

et al., 2009b; Sebanz & Knoblich, 2009; Stapel et al., 2012).

Others studies have shown that gaze contact between two individuals impact the

execution of object-directed actions (Ferri et al., 2011; Innocenti et al., 2012; Quesque &

Coello, 2014; Sartori et al., 2009b; Scorolli et al., 2014). For instance, it has been shown

that the motor trajectory height increased when the observer eye-gaze level was set

5 cm higher than the participant’s eye-level (Quesque & Coello, 2014). Moreover, the

kinematic difference between personal and social action was reduced in the absence of

others’ eye-gaze, and the observers showed more difficulties in identifying the intention

underlying the performed action (see Chapter 8).

Finally, by manipulating the vicinity between the two agents of the task, Quesque et

al. (2013) found that the spatio-temporal amplification of actions’ kinematic features

depended on the perception of the possibility to actually interact with another agent.

Indeed, authors observed that object-directed actions were characterised by longer

reaction times (i.e., longer latency before starting the movement) and lower acceleration

peaks when the confederate sat in the participants’ reachable space compared to when

they sat in their extrapersonal space. In addition, these effects were not observed

when the confederate sat within the reachable space, but while assuming a passive

posture (i.e., not taking part to object manipulation task). Finally, no effect of sharing

a reachable space was observed on movement duration nor on movement trajectory

height. To explain these results, authors proposed that the execution of grasping actions

is influenced by spatial proximity only when individuals perceive the possibility to enter

in interaction.

Despite being interesting, the exact nature of the spatio-temporal amplification of

movement kinematics induced by the social intention remains not fully unraveled. In-

deed, it is not known yet whether the effect of social intention on motor performances

is essentially functional to a communicative scope, or if it is grounded in the interac-

tion itself, that is, if it arises from a specific use of space determined by the presence

of another individual. In accordance with such hypothesis, it has been shown that

the presence of other agents modify the way individuals perceive their nearby periper-

sonal space and act within it (e.g., Coello et al., 2018; Gigliotti et al., 2021; Teneggi

et al., 2013). Moreover, these results do not fully clarify whether sharing a physical

space while actually interacting impact the execution of object-directed actions. Such
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question is even more pertinent nowadays, were more and more interactions occur in

virtual spaces. Indeed, one might asks whether the effect of social intention observed in

face-to-face interactions (where individuals share a physical workspace) is still present

when the interaction is mediated by an interface, such as a screen supporting video-

conference, embedding thereby the interaction in a virtually shared space.

In order clarify that issue, we asked participants to grasp a dummy glass from an

initial position and place it to a final position in order to pour themselves some wa-

ter (pursuing a personal intention) or to have some water poured by a confederate

(pursuing a social intention). During the task, the confederates interacted with the

participants by serving some water in response to the socially-driven actions. How-

ever, differently from previous studies, the confederate sat around a table located in a

different room and interacted with participants through a video-conferencing system.

9.4 method

9.4.1 Participants

A total of 20 (12 females) healthy participants took part in the experiment. They were

aged between 18 and 35 years, (M = 23.7 years, SD = 4.67), they were all right-

handed (mean laterality quotient = 0.92, SD = 0.10, assessed through the Edinburgh

Handedness Inventory; Oldfield, 1971), they declared having normal or corrected-to-

normal visual acuity and no perceptual or motor deficit. They had no knowledge about

the research hypotheses and accepted to participate after giving their informed consent.

The protocol was conducted in accordance with the ethical principles stated in the

Declaration of Helsinki (World Medical Association, 2013).

9.4.2 Stimuli and procedure

Participants were required to gasp a dummy glass (diameter = 1.7 cm, thickness =

1 cm) from an initial position and place it to a final position (see Figure 9.1), with

either a personal (to virtually serve themselves some water) or social intention (to be

virtually served some water by a confederate). The confederate was an accomplice of the

experimenter, who behaved as a naive participant. The confederate sat around a table

placed in a separate room and interacted with participants through a screen by a video-

conference system, using the web conferencing platform BigBlueButton. Wired local

area network was used to connect the internet and allowed to obtain a low latency (>

100 ms) between the moment the video was captured and the moment it was displayed

on the viewer’s screen. A second dummy bottle was placed on the confederate’s table.

The screen and camera filming the scene were placed so that to create the illusion that

participants and confederates sat around the same table, within a reachable distance

from each others’ body. Participants placed the glass near the screen and confederates

used the bottle as if they poured some water “through” the screen on the participants’
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Figure 9.1
Representation of the Experimental Setup

Note. The distance between the hand’s initial position and the object initial position was 20
cm. The same distance separated the object initial position from the object final position, and
the object final position from the bottle position. The bottle was placed 3 cm below the level
of the object final position, in order not to hide the marker on the object during the task.

glass. A visual correspondence was then created between the bottle neck end used by

the confederate and the edge of the glass manipulated by the participants.

The height of participants’ chairs was adjusted so that their eye-level was the same

as the confederate’s one, avoiding thereby an interference effect of eye-level on kine-

matic performances (Quesque & Coello, 2014). A trial started by a pre-recorded voice

pronouncing the signals “You” or “Him”. After hearing the signal “You” (personal

intention), participants had to grasp and move the glass to the final position, then use

the bottle placed on the side to pour themselves some water. After hearing the signal

“Him” (social intention), participants had to grasp and move the glass to the final

position in order to be served by the confederate. Participants had 4 s to grasp and

place the glass and 4 s to use the bottle or to wait for the confederate to use it. After

this delay, a beep indicated to participants to grasp the glass and place it back to the

initial position, in order to get ready for the next trial. The delay of inter-trial interval

varied randomly between 2 and 3 s following the beep. At the beginning of each trial,

and at the beginning and the end of each action, participants were requested to pinch

together their thumb and index fingers and place their hand to a fixed starting position

(see Figure 9.1).

Participants performed one block of 50 personal intention trials and one block of

50 social intention trials. The order of blocks was counterbalanced across participants.

The task lasted about 40 mn. A short pause occurred halfway through each block (after

the first 25 trials) and between each block.

9.4.3 Data recording and processing

Participants’ motor performances were recorded using Qualisys Motion Capture Sys-

tem and five Oqus infrared Qualisys cameras (200-Hz sampling rate, spatial resolution

< 0.2 mm) placed on the sides of the table. The cameras were calibrated using the
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wand method prior to each experimental session, in order for the system to reach a

standard deviation between 0.5 and 0.99 mm. The cameras tracked the Cartesian coor-

dinates in space (x, y, z ) of five passive markers fixed on a glove that participants wore

during the task. The five markers were localised at the level of the index tip, index

base, little finger base, thumb tip and scaphoid bone of the wrist. A 6th marker was

placed on the dummy glass to track its position during the task and ensure that it was

correctly placed on the initial and final position.

Motor performances were recorded by means of the interface QMT Connect for

MATLAB installed on a computer Dell 7010. The interface connected Mocap record-

ings by Qualisys Track Manager (version 2.13) to the MATLAB (version 2014a) script

handling the running of the task and the presentation of the auditory signals. Motor

performances were then analysed by means of an in-house MATLAB script adapted

from the RTMocap toolbox (Lewkowicz & Delevoye-Turrell, 2015). In line with pre-

vious literature (Gigliotti et al., 2020; Quesque & Coello, 2014; Quesque et al., 2016;

Quesque et al., 2013), analyses were conducted only on the trajectory of the marker

placed on the wrist, which expresses arm movements without the influence of wrist ro-

tation. The grasp-to-place movements performed by participants were composed of two

phases: a grasping and a placing phase. For each phase, four temporal and kinematic

parameters were extracted: the peak wrist elevation (mm, indicating the maximum

trajectory height), the peak wrist velocity (mm.ms−1), the movement time (ms) and

the percentage of deceleration time (%). For a detailed description of the computation

of each parameter and the movement phase onset and end, see Quesque et al. (2013)

and Gigliotti et al. (2020).

9.4.4 Statistical analysis

Statistical analyses were conducted on R version 3.5.1 (R Core Team 2018) and R

Studio version 1.1.456. Movements were excluded from statistical analysis if they were

not correctly executed (i.e., impossibility to detect at least 2 local minima and/or 2

local maxima in the trajectory analysis) or if they resulted being outliers on at least one

kinematic parameter following the absolute deviation from the median method (Leys

et al., 2013). In order to keep data loss below 5%, the chosen threshold for outliers’

rejection corresponded to the difference from the median +/− 4 times the MAD.

Each kinematic parameter was analysed separately using the Linear Mixed-Effects

Models approach (Barr et al., 2013; Brauer & Curtin, 2018; Judd et al., 2012; Ma-

tuschek et al., 2017). The chosen model (see Formula 9.1) included the Intention (So-

cial, Personal) as repeated measures fixed-effects parameter and a by-subject random

intercept and slope for the effect of the Intention (Bates et al., 2015a; Gigliotti et al.,

2020; Matuschek et al., 2017) as random-effects parameter.

Kinematic Parameter o f Interest ∼
Intention + (1 + Intention |Participant)

(9.1)
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Figure 9.2
Mean Velocity and Trajectory Height Profiles as a Function of the Intention (Social,
Personal)

Note. Ribbons represent 95% confidence intervals.

Linear Mixed-Effects Models were fitted and analysed by means of the lmer func-

tion of the “lme4 1.1–23” (Bates et al., 2015b). The model parameters were estimated

through REstricted Maximum Likelihood approach (REML) and statistically tested

using the F test (degrees of freedom computed using the Satterthwaite approximation;

Luke, 2017) thanks to the function anova of the “lmerTest 3.0-1” package (Kuznetsova

et al., 2017). The normality of model residuals and homoscedasticity were verified

graphically and sum-to-zero contrasts were specified before model fitting. EMMs, sum-

marising the model, were computed with the function emmeans of the “emmeans 1.7.1-

1” package (Lenth et al., 2019) and were reported besides the relevant statistical tests

in the text and in the tables. OMMs, summarising the data, were reported in tables.

9.5 results

Amongst an initial data set of 2000 grasp-to-place actions, 62 movements were excluded

from statistical analysis, leading to a data loss of 3.10%. The temporal and kinematic

parameters were computed and analysed separately for the grasping and placing phases

of the preparatory action. Overall, statistical analyses did not reveal any significant

difference between actions performed with a social or a personal intention, regardless

of the kinematic parameter analysed. Figure 9.2 shows the similar velocity and tra-

jectory height profiles of the grasp-to-place actions observed for social and personal

actions. Table 9.1 reports the mean values and standard deviations for each parameter

as a function of the Intention (Social, personal) and the movement phase (grasping,

placing).
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9.5.1 Peak wrist elevation

Statistical analyses revealed a non significant effect of the Intention during both the

grasping (estimate = 2.18, SE = 1.17, F(1,18.91) = 3.52, p = .076) and the placing phase

(estimate = 4.10, SE = 2.02, F(1,18.95) = 4.11, p = .057), with no statistical difference in

term of trajectory height between actions performed with a social or personal intention.

9.5.2 Peak wrist velocity

Statistical analyses revealed a non significant effect of the Intention during both the

grasping (estimate = 3.72, SE = 7.99, F(1,18.87) = 0.22, p = .646) and the placing phase

(estimate = 12.53, SE = 11.10, F(1,19.01) = 1.27, p = .273), with actions performed with

a social intention not differing from actions performed with a personal intention on

peak wrist velocity.

9.5.3 Percentage of deceleration time

Statistical analyses revealed a non significant effect of the Intention during both the

grasping (estimate = -0.73, SE = 0.56, F(1,19.16) = 1.72, p = .205) and the placing

phase (estimate = 0.15, SE = 0.43, F(1,18.93) = 0.12, p = .736), with actions performed

with a social intention not differing from actions performed with a personal intention

on the percentage of deceleration time.

9.5.4 Movement time

Statistical analyses revealed a non significant effect of the Intention during both the

grasping (estimate = -25.04, SE = 13.71, F(1,18.98) = 3.34, p = .083) and the placing

phase (estimate = -6.08, SE = 14.68, F(1,18.98) = 0.17, p = .683), with actions performed

with a social intention not being characterized by a different movement time than

actions performed with a personal intention.

9.6 discussion

The present study aimed at assessing whether the effect of social intention on the

execution of object-directed actions resulted from a communicative purpose (gestures

are amplified to better communicate) or whether it is intrinsically related to a sensori-

motor processing that occur as a consequence of sharing a same physical action space.

Participants were required to grasp a dummy glass from an initial position and place

it to a final position with either a personal intention (pour themselves some water)

or a social intention (having some water poured by a confederate). The novelty was

that the confederate sat around a table located in a different room and interacted with
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Table 9.1
Mean Values (and Standard Deviations) of Each Kinematic Parameter as a Function of
Phase (Grasping, Placing) and Intention (Social, Personal)

Kinematic Parameter

Intention N
Peak wrist

elevation (mm)

Peak wrist

velocity (mm.ms-1)

Percentage of

deceleration time (%)

Movement time

(ms)

Grasping phase

Social 964 33.87 (13.03) 501.34 (92.82) 51.56 (8.52) 770.47 (124.05)

Personal 974 36.05 (13.42) 503.62 (84.37) 50.79 (8.13) 747.42 (116.12)

Placing phase

Social 964 39.95 (16.72) 576.78 (82.41) 65.10 (5.35) 849.07 (146.00)

Personal 974 43.71 (17.22) 588.95 (68.28) 65.29 (5.86) 844.62 (126.05)

Note. N indicates the number of movements in each condition.

participants through a video-conferencing system. The screen and camera filming the

scene were placed to create the illusion that participants and confederates sat within

a reachable distance from each others’ body.

Preliminary results showed no significant differences between the actions performed

with a social and personal intention on any of the kinematic parameters analysed.

As reported in previous literature, the actions performed with a social intention are

usually characterized by a greater trajectory height, longer movement duration and

longer deceleration phases, which result in a gesture executed in a more amplified and

gentle way (e.g., Becchio et al., 2008a, 2008b; Georgiou et al., 2007; Gigliotti et al.,

2020; Quesque et al., 2016; Quesque et al., 2013; Vesper et al., 2016). Nevertheless,

in the present preliminary study none of these effects was observed. Moreover, when

approaching data analysis from a descriptive angle, the only trend observed concerned

the maximum elevation of the wrist, expressing the trajectory height, which tended

to be higher for personal actions compared to social actions. Such result was only

marginally significant, and by the way, it suggested the presence of an opposite effect

of intention compared to the effect classically observed in the literature.

In light of the present results, several considerations deserve to be highlighted. Firstly,

despite the absence of significant effects yielded by the statistical analysis, we can

not conclude on the absence of effect. In such context, Bayesian statistical approach

would here be appropriate to assess whether there is a truly equivalence between the

kinematic profiles of personal and social actions (i.e., Bayes factor; Lakens et al., 2020).

Secondly, it would also be important to test whether a similar pattern emerges when

using a mixed-trials randomised design, alternating randomly personal and social trials,

instead of a randomised block design. Although the effect of the intention on motor

performances has been observed when using both types of paradigm (e.g., Gigliotti

et al., 2020; Quesque et al., 2016; Quesque et al., 2013), one can not exclude that the

type of design might have had an impact on the obtained results. Indeed, one might

hypothesise that interacting through screen constitutes a less spontaneous and natural

situation when compared to live interactions. Therefore, using a block design could

contribute to render the situation even less ecological.
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Contingent to the realisation of further statistical analysis and methodological verifi-

cation, we can speculate that interacting through a screen lead individuals to differently

use space and non-verbal cues when interacting with others. Virtual interface-mediated

interactions are indeed known to be characterised by a paucity of non-verbal cues and

feedbacks (Walther & Burgoon, 1992). This results in a decreased feeling of social

presence, namely, the feeling of being in the presence of another individual whose emo-

tions and thoughts can be accessed (Biocca et al., 2003). Moreover, gaze exchanges

can be altered during video-conferencing interactions and are strongly influenced by

technical configurations, such as the position of the webcam (Bohannon et al., 2013).

In light of these observations, we might speculate that non-verbal communication in

interface-mediated social interaction relies on a different exploitation of non-verbal

cues, which might depend on the constraint related to the sharing of a physical space.

Indeed, live social situations constitute a specific context, where several behavioural

and physiological adjustments occurs. It has been shown for instance that sharing a

physical proximal space modulates the way attention is allocated to the surrounding

stimuli (e.g., Szpak et al., 2015), and physiological responses (e.g., Bogdanova et al.,

2022; Fossataro et al., 2016; Ioannou et al., 2014). This suggests that when sharing

a space, a series of bodily signals and processes are recruited to adjust homeostasis

and eventually prepare the individual to appropriately react (Coello & Cartaud, 2021).

Finally, if the spatial amplification of motor performances is due to the sharing of

a space, this might question the idea that the social-induced motor deviants are the

consequence a communicative purpose, as previously reported (Hostetter, 2011).

9.7 conclusion

The preliminary results of the current study did not show a significant effect of so-

cial intention on the execution of object-directed actions when interacting through a

screen. Moreover, descriptive analysis of the data showed that kinematic profiles of

object-directed actions performed with a social intention differed from what is classi-

cally observed in literature. Specifically, social actions were characterised by a lower

trajectory height than personal actions. These results might suggest that the spatio-

temporal modulation of motor performances induced by the social intention does not

uniquely serves a communicative purpose, but seems also related to the sharing of a

physical space. Furthermore, these findings suggest that the way individuals exploit

space and execute their actions changes when the interaction take place in a virtual

environment. Further studies are needed to confirm such hypothesis and eventually

determine the impact of screen-mediated interactions on people’s motor during social

interactions.
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10
DISCUSS ION OF THE CONDUCTED STUDIES

10.1 overal summary

The present thesis aimed at examining how motor and social factors influence the

construction of PPS, namely the action space surrounding the body, where individuals

can easily interact with objects and people. In the introduction, I showed that stimuli

occurring within PPS benefit from a multisensory integration and sensori-motor pro-

cessings, which facilitate the programming and execution of purposeful or defensive

actions directed towards these stimuli. Furthermore, I presented evidence for the role

of PPS in social interactions, showing that PPS undergoes plastic and dynamic changes

in the presence of other individuals and during the execution of collaborative tasks.

Such changes would lead to the creation of a “we space”, namely a shared action space

where two (or more) individuals engaging in an interaction would be sensitive to salient

stimuli of common interest and prepare to function in a “we mode” (Gallotti & Frith,

2013; Pezzulo et al., 2013). Finally, I evoked the Action Field Theory of PPS by Bufac-

chi and Iannetti (2018), the theoretical framework that I adopted in the context of the

present thesis and that I combined with the empirical findings by Coello et al. (2018)

to support the hypotheses tested. Within this framework, PPS was conceptualised as

a multiple response-fields zone, where each response-field would consist in a portion

of space associated with a functional value determining the most pertinent action to

perform. Such value would not be constant in time, but rather computed and attrib-

uted instantaneously as a function of the ongoing task demands, stimuli and context

features in a given time and space.

Grounding on this theoretical background, the aim of the present thesis was to

examine the influence of motor and social factors on PPS functional construction when

concurrently involved during the execution of a task. For this purpose, I considered

that since PPS acts as a perception-action interface (see Brozzoli et al., 2012), its

construction involves two dimensions: a perceptual and representational dimension

and a motor dimension. Specifically, I decided to assess PPS representation (i.e., the

representation of the space immediately surrounding the body) and what I defined as

PPS exploitation (i.e., the action selection process within PPS, and thus, individual’s

behavioural responses in such space). To this aim, I employed reachability-judgment

task to assess the extent of PPS representation (in Study 1 and 2). In order to examine

PPS exploitation, I employed a stimuli-selection task (in Study 1 and 2) and a task

requiring the execution of an object-directed action (in Study 3, 4 and 5). In all the

129
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five studies, the task were executed in collaboration with a confederate. The initial

hypothesis was that motor factors would exert an effect on PPS representation and

exploitation, and that this effect would be modulated by social factors.

10.2 overview of the main results obtained

The initial hypothesis supposing that social factors would modulate the effect of motor

factors on PPS representation and exploitation was verified in Study 1 and 2. Never-

theless, Study 3, 4 and 5 focused on PPS exploitation, and showed that the contrary

was also true. More specifically:

Study 1 (Chapter 5) showed that during the execution of a collaborative motor task,

the prospects of obtaining a reward in space influenced individuals’ PPS exploita-

tion and representation. However, this effect appeared to be modulated by the

constraints related to the social context, namely by the will to avoid others’ space

invasion.

Study 2 (Chapter 6) explored whether the effects observed in Study 2 depended on

the degree of involvement of the two individuals in the motor task. For this

purpose, individuals were asked to perform motor actions susceptible to be re-

warded in front of an observer (or to observe a confederate performing the motor

actions). In such situation, results showed that action rewards and the social con-

text modulated PPS representation and exploitation differently than when both

individuals are actively involved in the motor collaborative task.

Study 3 (Chapter 7) showed that during the execution of object-directed actions, the

features of the final spatial target of the motor action (i.e., the task-related motor

constraints) are prioritised over the intention to involve another individual in the

interaction (i.e., the social intention).

Study 4 (Chapter 8) went one step further and showed that the social cues offered by

eye gaze modified the execution of object-directed actions in space and facilitated

the recognition of the intention with which they were executed by an observer.

This result suggested that eye-gaze has not simply a communicative role, but

that it also acts as a spatial attractor influencing the way individuals use space

during the execution of motor actions.

Study 5 (Chapter 9) suggested finally that sharing a physical action space is respon-

sible for the specific way individuals use space to communicate their intention to

interact with other individuals. If the interaction takes place in a virtual space,

the motor pattern characterising object-directed actions is different than the one

classically observed in face to face interactions.

From a wider perspective, two major findings emerged when considering all the five

studies together: (a) Social and motor factors are hierarchically taken into account
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when attributing a certain functional value to PPS and (b) such value attribution

would occur at two different levels: a perceptual-representational level and a motor

level. These two major findings will constitute the two axis structuring the general

discussion. In the following sections, I will combine the results from Study 1 and 2,

and then from Study 3, 4 and 5 in order to provide a more in-depth discussion of the

main aspects highlighted by the current research work.

10.3 the effect of action rewards and social context on pps

construction

Study 1 and 2 allowed to clarify the role of action rewards and social context constraints

on PPS representation and exploitation. In the present section we will discuss in detail

these results. For a sake of clarity and fluid progression of ideas, I will first discuss the

results concerning PPS exploitation and next, the ones concerning PPS representation.

10.3.1 Social context modulates the effect of action rewards on PPS exploitation

As regards PPS exploitation, Study 1 and 2 showed that individuals tended to act

mainly in the portion of space associated with a higher probability to obtain a reward

(Coello et al., 2018). These results indicated thereby that action selection process

depends on reward prospects in space. As a consequence, reward prospects can be

taken into account when computing the action-related value attributed to a given

portion of space. Nevertheless, if this highly-valued portion of space coincides with the

space near a confederate’s body, individuals tend naturally to avoid such space, and

perform quite few actions within it. They rather prioritise their own near space and,

only in a second time, they start acting in confederate’s PPS. As previously stated,

these results suggest that avoidance of others’ space invasion modulates the effect of

action rewards, by delaying the exploitation of space when rewards are located in the

confederate’s PPS.

In addition, the Study 1 and 2 showed that the delay (expressed here in terms of

number of motor actions performed) preceding the exploitation of others’ PPS relies

on the individual’s degree of motor involvement in the interaction. In our early study

(Coello et al., 2018), we observed that, when acting alone in a workspace, participants

began to exploit consistently the space associated with higher reward prospects af-

ter approximately 30 manual reaching actions. Study 1 showed that, when co-acting

with a confederate in a shared workspace, if the space associated to higher rewards

prospects coincided with the confederate’s PPS, participants exploited this space only

after approximately 66 manual reaching actions (see Section 5.5.2). Nevertheless, Study

2 showed that if the confederate was not actively involved in the motor task (e.g., ob-

serving), participants took even more time before exploiting the confederate’s PPS.

Accordingly, this occurred only after approximately 168 manual reaching actions (see

Section 6.4.1.1). Therefore, the exploitation of the space associated with higher re-
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ward prospects occurs rapidly when the individual act alone in the workspace, later

when co-acting with a confederate and even later when acting in front of a passive

confederate.

Taken together, these findings suggest that space exploitation depends not only on

action reward prospects in space, but also on the will to respect others’ personal space

and that the confederate’s passive or active attitude during the task plays an important

role in such process. These results echoes previous findings on PPS regulation as a func-

tion of interpersonal distances and comfort feeling (e.g., Cartaud et al., 2018; Quesque

et al., 2017), and also, they provide support for the hypothesis that other’s action

possibilities are taken into account when constructing PPS (e.g., Iachini & Ruggiero,

2021). More generally, these findings suggest that social context-related factors (e.g.,

respecting others’ personal space, others’ passive or active attitude and action possi-

bilities) would thereby be integrated in the computation of the action value attributed

to a portion of space, in combination with the effect of action rewards.

10.3.2 Social context and action rewards exert a combined effect on PPS representa-

tion

As regards PPS representation, Study 1 and 2 showed that social and motor factors exert

a combined effect. More specifically, results showed that the execution of a motor task

in collaboration with a confederate counterbalance the effect of action rewards on PPS

representation. Indeed, after the execution of the collaborative task, individuals’ PPS

representation was found either to extend or to remain stable, but never to constrict,

not even when action rewards were mainly located in the space close to the individual’s

body. This result is in contradiction with what was previously found by Coello et

al. (2018), who observed a constriction of PPS representation after that individuals

obtained a higher proportion of action rewards in their proximal space. Such extension

effect (and absence of constriction) can be explained by several factors related to the

social context.

First, as advanced in Study 1, PPS extension in a collaborative context might re-

sult from the integration of others’ action outcomes (and rewards) to one’s own PPS

representation. Such explanation would suppose an additive effect of self- and other-

generated motor actions rewards. Therefore, if rewards prospects are higher in the

distal space and action rewards are obtained by both the individuals and their confed-

erate, PPS representation extends, as a result of the sum of self and others-generated

action outcomes. Alternatively, if reward prospects are higher in the individual’s proxi-

mal space, PPS representation does not constrict (as in Coello et al., 2018), suggesting

that the rewarding outcomes of others counterbalance the effect of one’s own rewarding

outcomes.

Nevertheless, this explanation does not seem sufficient to exhaustively explain the

observed effects. Indeed, as shown by Study 2, PPS representation was found to not

constrict when rewards were located in the near space, even when the confederate ob-
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served passively the task and therefore, did not execute any motor action susceptible

to provide rewards. Therefore a second explanation might be that even if the proximal

space is “motorically” salient (i.e., endowed with a high action reward-related value;

Coello & Cartaud, 2021), in a situation of interaction with a near confederate, individ-

uals would not constrict their PPS and preserve a certain personal action space. Such

absence of constriction of PPS representation echoes previous findings on PPS regula-

tion and interpersonal distances, and could be related to the maintenance of a safety

buffer zone (e.g., Cartaud et al., 2020; Cartaud et al., 2018; Graziano & Cooke, 2006).

A third final explanation for the PPS extension in social context could rely on the

fact that in a collaboration context, PPS representation of both individuals would

merge in order to create a unique, shared action space, allowing them to function in

the “we mode”. Such merging would be induced by the demands of the task itself,

which requires individuals to act on, and therefore direct their attention to an object

of common interest. Within such “we space”, individual would thereby easily function

in a “we mode” (Gallotti & Frith, 2013; Pezzulo et al., 2013).

To summarise, in a collaborative social context, individuals would adjust their PPS

representation: (a) Following the integration of other’s action outcomes and/or (b) to

maintain a certain safety zone, or/and (c) to eventually generate a shared action space

serving the social interaction. These three factors related to the social context could

contribute to the attribution of a given value to a portion of space. In light of these

consideration, one question arises logically: What is the nature of PPS adjustment in

social context? Does it consist in a merging of self and other’s PPS, or is it rather

a simple addition of other’s PPS in one’s own PPS, keeping thereby a separation in-

between the two? The following section will discuss these issues.

10.3.3 Merging or extending PPS?

In a situation of social interaction, PPS extension can take different forms as a function

of the type of task and involvement degree of the two individuals. Figure 10.1 shows

such different potential cases. In panel A, an individual sits alone around a table. In

this case, PPS encompasses the space immediately in front of their trunk, and greater

salience is attributed to the space occupied by the objects of interest (i.e., a book and a

cup) and by the body part used (i.e., the right arm). Even greater salience is attributed

to the cup and the hand, as their spatial proximity prompts an easier and faster use.

Panel B shows the case where a confederate would be sitting in front of the individual,

and acting on an object of their own interest. In this case, individual’s PPS would extend

and encompass the confederate’s PPS, but not the space in-between the two of them.

Empirical data supporting this case was provided by Maister et al. (2015). By means of

a multisensory integration task, these authors observed that following a shared sensory

experience (i.e., a tactile stimulation administered synchronously to the two individuals’

face), faster detection of tactile stimulus was observed when a concomitant auditory

stimulus was presented in the space near the participant as well as near the confederate.
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Figure 10.1
Extension vs. Merging of PPS

Note. A. When acting alone: A higher value (red halo) is attributed to the portion of space
occupied by the objects of interest (the book and the cup) and by the body part used (along
with its position in space) to interact with them. The space separating the trunk from the object
of interest and the hand is also attributed a given value, as it serves as frame of reference for
manual action execution (McIntyre et al., 1998), although to a lesser extent (yellow halo). B.
When a confederate is present in the near space and act on their own objects of interest: A
higher value is attributed to the space occupied by both our and the confederate’s object of
interest. The two foci-map illustrates the sensitivity of an individual to the space where their
confederates acts (with an eventual extension of their own PPS to encompass this area), but
without necessarily creating a merged, shared space. C. When cooperating and executing a
motor action on an object of common interest: The individual’s and confederate’s PPS merges
in order to create a “we-space” serving the social interaction.

Nevertheless, no facilitation effect was observed when the sound was presented in the

space between the two1. Such a change in PPS might allow the individual to monitor the

events happening in others’ space, although the situation does not require any action

from the individual within the others’ space. This case would eventually correspond to

the pattern observed in Study 2, where the observer extended PPS representation to

encompass the space of the actor despite not acting in it.

Finally, Panel C shows the case in which two individuals would be engaged in the

execution of a co-action task (i.e., a task during which the action of the one will be

followed by a complementary action by the other). In such case, we could speculate

that the two individuals would merge their respective PPS to create a shared action

space (Pezzulo et al., 2013). Such type of change was observed by Teneggi et al. (2013).

Differently to Maister et al. (2015), Teneggi et al. found that after the execution of

a cooperative economic game, the distance at which the concomitant sound started

to facilitate tactile stimulus detection shifted in space, towards the confederate. This

case would eventually correspond to the pattern observed in Study 1, where the two

individuals reported an increase of their PPS representation after co-acting in a shared

space for a common goal.

1 Maister et al. (2015) proposed to define the observed change as a remapping rather than an extension
of PPS. More specifically, “Events approaching the other’s body [would be remapped] onto one’s own
PPS representation” (Maister et al., 2015, p.6).
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10.4 a shared space for shared actions

In the previous sections, I discussed the modulatory role that social factors exert on

motor ones in PPS construction (when considering both PPS representation and ex-

ploitation). Nevertheless, Study 3, 4 and 5 (which focused specifically on PPS exploita-

tion) showed that the reverse is also true, namely that the effect of social factors might

be modified by the motor ones.

Study 3 showed indeed that the spatio-temporal motor deviants of a grasp-to-place

action induced by the social intention were smaller when the task required to fast

place the object on a big target when compared to a small one. In addition, Study 4

showed that even eye gaze, which is classically considered as a social interaction cue,

was found to modulate the spatio-temporal features of the executed action. Finally,

Study 5 showed that sharing a physical space might be a crucial factor determining

the specific spatio-temporal motor pattern associated with the expression of the social

intention.

As a whole, these findings reveal that social interactions are grounded and embedded

in a physical and motor context, which determines the way individuals move in space

to communicate non-verbally with other individuals. On a broader perspective, it could

conceivably be hypothesised that the motor pattern associated with the expression of

the social intention is the resultant of a learning process beginning in childhood and

evolving throughout lifetime. If exploiting space in a specific way generate the wished

reaction in a confederate (e.g., capturing their visual attention with wider movement

and establishing gaze contact in order to signal the intention to interact), the system

would therefore select such behaviour and repeat it in future similar situations. There-

fore, apprehending space would be at the core of the establishment of a behavioural

synchrony between two individuals: We learn to behave and move in a certain way in

order to render our gestures understandable by others, and consequently, we become

able to decode similar patterns in other’s behaviour.

Such hypothesis might find support in studies conducted on clinical populations

presenting social interaction deficits. For instance, interesting insights emerged from a

recent study, which compared the performances of typically developing (TD) children

vs. children with autism spectrum disorder (ASD) in kinematic encoding and intention

readout of others’ movements (Montobbio et al., 2022). Results showed that TD chil-

dren were better at detecting the kinematic variations during the observation of TD

actions, while ASD were better at detecting the kinematic variations of ASD actions.

Nevertheless, while TD were able to disentangle the intention associated with such ac-

tions, ASD children showed several difficulties and performed below chance level. Such

results were explained by a kinematic dissimilarity underpinning the motor pattern of

TD and ASD children and it was suggested that the motor pattern of ASD would be less

informative than the one of TD. Together with the difficulties observed in motor adjust-

ment to the final goal of an action (Fabbri-Destro et al., 2009), external visual features

integration during action planning (Dowd et al., 2012) and differences in multisensory
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integration of near-body stimuli (Mul et al., 2019), these findings provide new insights

to understand social interaction difficulties in connection with space coding.



11
TOWARDS A FUNCTIONAL CONSTRUCTION OF

PPS

11.1 a model accounting for pps construction

11.1.1 A multi-layer construction of PPS

In light of the findings of the present thesis, a new model could be proposed to offer an

integrative view of PPS construction. As shown by Figure 11.1, such model would be

composed of three layers: a perceptual priority map layer, a motor priority map layer

and an action execution layer. It is important to note that these maps would not be

constructed along a horizontal 2D plane, but they would rather extend in the three

dimensional space closely surrounding the body.

The first layer, the perceptual priority map layer, would correspond to the perceptual

representation of near-body space, stemming from the integration of different sensory

inputs (e.g., visual, auditory, tactile). Such perceptual representation would owes to

Bufacchi and Iannetti (2018)’s conceptualisation the idea of being divided into multiple

response-fields, each endowed with a specific value. For instance, the space occupied

by a cup that we want to grasp would be associated with a higher value (red-coloured

area in the model), when compared to the corner of the table on which the cup is

located. In the present model, such specific value would concern the stimuli of interest

and the position they occupy in space. Therefore, this layer would allow the system to

create a perceptual map of the surrounding space, where salient stimuli and space are

endowed with a certain value and perceptual priority. We could imagine that in patients

presenting unilateral spatial neglect (i.e., a brain lesion-derived neurological disorder

inducing a reduction of the attention to and awareness of the hemispace opposite to

the damaged brain hemisphere; Heilman et al., 1987), the neglected hemispace could

be excluded from such perceptual priority map.

The second layer corresponds to themotor priority map of near-body space. Similarly

to the perceptual map, the motor map would be composed of multiple response-fields.

Nevertheless, there would be one main difference: Value attribution to each field would

be motor in nature. In other terms, this motor map would code the near-body space

as a function of the potential actions that can be prioritised and realised in different

portions of space. For this reason, this layer would underlie the action selection process.

The motor priority map would be constructed on the basis of the body part mobilised

137
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Figure 11.1
A Model Accounting for PPS Construction

Note. According to the present model, PPS construction would occur at three layers: a perceptual
priority map layer, a motor priority map layer and a motor action execution layer. The three
layers would be differently influenced by different factors, but they would not be independent.
They would rather be interconnected and influence mutually, constituting a sort of sensori-
motor loop constantly updating in order to allow the individual to respond with a proper
behaviour to the demands of the task and the environment.

during the action as well as on the location of objects with respect to such body part. To

illustrate this concept, we can take the example of right-handed individuals. For such

individuals, the motor priority map would be heterogeneous across their near-body

space and encompass to a larger extent the right vs. the left space. Due to right-hand

preference, the right space corresponds to the space mainly used during daily actions,

and therefore, were actions are more likely to be performed (see also the concept of

motor fluency, e.g., more fluid actions are the ones carried out by the dominant hand

on the dominant side; Milhau et al., 2015).

The third layer corresponds to the stage of motor action execution. We can speculate

that motor commands are programmed at this stage in order to be sent to the relevant

body effector. We could consider that this is the stage associated with what Cisek and

Kalaska (2010) defined as the “action specification” process, namely “the process of

specifying the spatio-temporal aspects of possible actions” (Cisek & Kalaska, 2010, p.

227). This latter layer would depend on the perceptual and motor priority map levels.

The next section will describe more in detail how the three layers influence each other.
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11.1.2 The interconnection between the three layers and the factors influencing it

Although the illustration shows the three layers as being separated, it is important to

note that they can not be considered as independent, nor as being activated in a se-

quential order. In my conception, the three layers overlap, as indicated by the fact that

they are vertically superposed, and they mutually influence each other, as indicated by

the ascending and descending arrows. The construction of one layer would subtend the

construction of the others, and a modification of the one would result in an adaptation

of the others. Such parallel involvement of the three layers was inspired by the hypoth-

esis advanced by Cisek on the basis of neurophysiological studies review, stating that

sensory processing, action selection and action specification occur simultaneously and

operate in a coordinate and integrated manner (Cisek & Kalaska, 2010).

Another feature of the present model is that the three layers would not be stable,

but rather constructed instantaneously (as suggested by Bufacchi & Iannetti, 2019) as

a function of the task demands, the stimulus/object, the eventual social context and

various other factors. The findings emerging from the present research work support

such multi-factors determined construction of PPS. The construction of PPS as a func-

tion of different factors could be resumed by the following metaphorical mathematical

equation (Formula 11.1).

PPS(t) = ConstantFactors + (w1 × Task(t)) + (w2 × MotorFactors(t))+

(w3 × SocialContext(t)) + (w4 × StimuliFeatures(t)) + ... + ε
(11.1)

Such equation states that PPS at an instant in time t would be determined by (a) a

constant term, (b) a series of parameters, each one associated with a given weight (w)

and (c) an error term (ε). In this formula, t indicates that the features of the concerned

element vary according to the context and that are thereby determined in a specific

instant in time. The constant would correspond to a series of factors that are stable in

time, such as for instance the multisensory mechanism, arm length and body schema.

All these factors would be specific to each individual and can be considered as a set of

“tools” underlying PPS construction.

The parameters would correspond to all the factors that can vary during the inter-

action with the environment. Amongst them are the social context (e.g., the presence

of another individual, the execution of a collaborative task or a joint action with a

confederate, etc.), the features of the object/stimulus (e.g., a small or big glass, a

computer mouse vs. a keyboard), the type of task (e.g., grasping, reaching), motor

action-related factors (e.g., reward prospects, features of the final spatial target...),

but also the previous motor experience in space.

The weight w associated with each parameter would depend on the characteristics of

situation in a given time and space. Positive (+w) or negative (-w) weights values would

determine respectively approach or avoidance behaviours towards a given portion of

space. As an example, we can evoke the results of the present thesis. Let’s consider the
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situation where individuals perform the stimuli-selection task in collaboration with a

confederate, and action reward prospects are higher in the confederate’s PPS). In such

a case, the weight associated with the motor factors parameter (indicating rewards

prospects in the far space) could have the value of 5 (such value is arbitrarily attributed

for the sake of the example). Nevertheless, since the distal space corresponds to the

confederate’s PPS and that individual tends to avoid it, we could speculate that the

weight associated with the social context would be -10, as invading other space has

stronger consequences on one’s own behaviour and personal integrity. Therefore, the

combination of weights for such portion of space being negative (i.e., -5), individuals

would tend to avoid selecting the stimuli located in confederate’s PPS, ant therefore

avoid acting within it. On the contrary, in a situation where individuals perform the

same task but alone, as in Coello et al. (2018), the weight associated with the social

context would be equal to 0. As a consequence, reward prospects would be the main

factors determining PPS perceptual and motor priority maps, and consequently motor

behaviour in space.

The error term (ε) would allow to take into account the potential influence of other

factors not accounted in the construction of PPS (e.g., individual characteristics such

as anxiety or other psychopathological traits, prosocial attitude...), but that could be

considered in future interactions with the environment.

The components specified in Formula 11.1 (constant, parameters and their weights

and error term) can exert an influence on all the three layers of the model. When

considering the findings of the present thesis, we could state that rewards associated

with self-generated motor actions influence the motor priority map and action execu-

tion layers, and as a consequence, remap the perceptual priority map layer. On the

contrary, observing other’s action rewards (which would therefore correspond to the

other’s motor execution layer) seems sufficient enough to modify the observer’s percep-

tual priority map, but not the motor priority map layer. The social intention would

impact concurrently the three layers: I am sensitive to and take into account other’s

PPS (eventually merging my own PPS with others’), I chose where to act in space, and

the spatio-temporal properties of my actions are modified by the intention to include

the other person in the interaction. The arguments provided above suggest that PPS

construction depends on the influence of a given set of factors tightly linked to the

specific moment in time and space. However, one question arises now logically: What

is the exact nature of PPS?

11.1.3 An a priori or an on-line construction?

If we consider that PPS is constantly adjusted as a function to the constraints in

time and space, one might wonder what is the exact nature of PPS: Is it a stable

representation that constantly adapts to the constraints of the context, or is it rather

an instantaneous map of space that is computed and constructed instant by instant

as a function of the integration of these constrains? In both cases, one could argue
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that it would not be economic for the system. The idea of a stable representation

would not be parsimonious, since one might wonder what is the utility of having a

stable representation that needs constant adjustments in order to be functional to the

individual’s needs. Such constant adjustments would be too costly in terms of energy.

Furthermore, empirical data fail at supporting such conception, since the idea of a

stable representation of the world constructed by the brain does not complies with

the constant modulation of neuronal activity by attention orientation in space (Cisek

& Kalaska, 2010). However, on the other side, one might consider that computing all

the time the value attributed to a given portion of space would not be parsimonious

either. Such constant computation from a tabula rasa would require a certain amount

of constant energy. Furthermore, such conceptualisation would contradict the existence

of anticipatory and predictive mechanisms, which have been found to play a crucial

role in the optimisation of the external world processing (see Kawato et al., 1987; Miall

& Wolpert, 1996; Wolpert et al., 2003).

A way to solve this issue could rely on the consideration that the brain retains a

sort of “embryonic” semi-stable representation of PPS, that would serve as a basis for

the construction of the “instantaneous” multiple-field spatial map in a given space and

time. Such embryonic semi-stable representation would be plastic (i.e., slowly changing

following learning, training or cortex lesions) but not dynamic (i.e., changing abruptly

following as change in the environment or the individual’s internal state; definitions

provided by Cléry et al., 2015).

In a broader prospective, such debate about the a priori vs. on-line construction of

PPS mirrors the cognitivism vs. enactivism current of thought of human cognition (see

Versace et al., 2018). According to cognitivism, the individual needs a representation

of the surrounding environment and its elements. The reference is in the external

world and the brain has to build a representation in order to apprehend it. Due to

this representation, the brain would then program the most pertinent actions to be

executed in the environment. On the contrary, according to enactivism, the system does

not need any prior representation of the surrounding environment and its elements.

The reality is not pre-existent but co-constructed by the organism through a sensori-

motor mechanisms occurring during the direct experience of the individual with the

environment. The reference would thereby correspond to the sensori-motor approach

of external stimuli. The truth1 lies in the middle, which is represented by the embodied

and situated approach of cognition (for a review, see Borghi & Cimatti, 2010; Coello

& Fischer, 2016; Versace et al., 2018). According to such approach, the system would

build a representation of the external world, but this representation would not have

the role to process the information (input) in order to produce an action (output). It

would directly serve the action, and would thereby be sensori-motor in nature.

The model proposed can be placed within this context, with the idea that PPS con-

struction is embodied. The three maps composing the PPS construction model would

1 The reader would pardon me for such an abuse of language, which is here at the service of the fluidity
and language style for the argumentation rather than to affirm an universal truth, which would be
epistemologically incorrect.
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be separated but still tightly and bidirectionally linked, with constant adaptations of

each layer subserving a functional, sensori-motor construction of PPS.

11.2 general conclusions

11.2.1 Limitations

The present research work presents several limitations that are worthy of note. A first

limitation is that PPS construction was assessed when placing participants in front of

each other. The consequence of such a spatial disposition is that if individuals intend

to act in the space of their confederate, they are induced to enter others’ space directly

from the front. Such motor behaviour could have been perceived as a “stronger invasion”

than what would have happened if participants had sat side by side. Future studies

are needed in order to exhaustively explore how individuals organise their actions in

space as a function of the spatial proximity and location of a confederate.

Another important limitation concerns the absence of significant effects for some

studies. In the context of the present thesis, I made the choice to adopt the frequentist

approach. Nevertheless, making assumptions only on the basis of a cut-off is quite

reductive and does not allow to deeply understand the effect of the manipulated factors.

No clear-cut conclusions are possible on the basis of non-significant results, except

affirming that we can not firmly conclude about a given phenomenon. The hypotheses

and explanations advanced in the present thesis could be strengthened by analysing

data using a Bayesian approach (e.g., for mixed models), which would allow to assess

whether the effect is truly absent or not (Lakens et al., 2020).

In addition, it is worth noting that PPS representation was assessed by means of an

explicit task (i.e., the reachability judgment task) recruiting sensori-motor processes

through motor imagery (see Geers et al., 2021; Pelgrims et al., 2011), relying on motor

imagery, a relatively high-level process that recruits sensori-motor , such as y. It would

be therefore be interesting to replicate the present experiments using more implicit

tasks, such as the multisensory integration task. The use of this implicit task would

also allow to shed light on the exact interplay between sensorial and motor coding of

space, and determine to what extent low-level mechanisms are impacted by similar

factors than higher-level processes when constructing PPS.

A final limitation in the present research work concerns the interpretation of the

effect of observing other’s action rewards on PPS construction. The limitation resides

in the fact that it is difficult to disentangle whether the increase of PPS representation

induced by other’s rewards was due to a form of sensitiveness to others’ actions, or

simply by a learning of the statistical regularities of the environment. Said differently,

one could wonder whether a similar extension effect had been observed if a robotic

arm would have performed the stimuli-selection task. Therefore, whether we sensitive

to others’ action (and rewards) or simply to the statistical regularities events of the

environment remains an open issue.
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11.2.2 Future perspectives

The present thesis paves the way for several new theoretical avenues and potential

applications. A natural progression of this work would be to analyse how exactly the

different factors influencing PPS contribute to its construction. In the present thesis,

PPS was conceptualised as a multi-response field, each field being endowed a given value.

I advanced the idea that multiple factors would concurrently be integrated to determine

such value. Nevertheless, the way these factors interact need further clarifications: Do

they exert an additive effect on each other? Do they rather interact among each other

and then influence PPS construction?

Moreover, the empirical findings, theoretical hypotheses and functional model pro-

posed in the present thesis provide several insights for future researches in the field of

clinical psychology. For instance, they might offer a new framework allowing the exami-

nation of social deficits in autism and schizophrenia spectrum disorders. Indeed, several

studies have recently highlighted in such populations an impairment of the multisen-

sory integration, body frontiers processing as well as PPS coding (e.g., Delevoye-Turrell

et al., 2011; Ferroni et al., 2020; Mul et al., 2019). In light of these findings, it would

be pertinent to test whether the impaired multisensory integration underlying body

frontiers and PPS would explain the difficulties in social interactions (whether it is

interpersonal distance regulation or action execution in space) classically observed in

such pathologies (e.g., Kennedy & Adolphs, 2014; Park et al., 2009) Finally, more stud-

ies will need to be conducted to determine to what extent others’ actions influence the

way individuals apprehend the world. The findings of the present thesis suggested that

other’s action might influence PPS representation. Such result might find an explana-

tion in the recruitment of mirror mechanisms, as suggested by previous literature (e.g.,

Fujii et al., 2007; Livi et al., 2019; Pezzulo & Dindo, 2011). Nevertheless, they also

suggest that mirror mechanisms might not be recruited during action selection and

that one’s own motor experience would be needed to actually construct a motor prior-

ity map of space. More broadly, these findings might therefore provide new insights to

understand imitation processes and learning by observing other agents.

11.2.3 Contributions of the present thesis

As a first main contribution, the present body of work enlarges the conceptualisation

of PPS proposed by Bufacchi and Iannetti (2018, 2019) as a multiple motor response-

fields zone. Specifically, the present thesis showed that, in addition to stimuli value

and past motor experiences, motor- and social context-related factors contribute to

the attribution of a functional value to a given portion of space, determining whether

and how exploiting such portion of space. In addition, the present findings provide

empirical evidence for a bidirectional modulation between social and motor factors on

the attribution of such action-related value.
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The second contribution of the present thesis was the examination of two dimen-

sions when assessing the influence of motor and social factors on PPS, namely the

way individuals represent such space (i.e., PPS representation) and use it during their

interaction with the physical and social environment (i.e., PPS exploitation). Results

showed that these two dimensions, despite being interconnected and determining each

other, would be differently influenced by the factors manipulated. The examination

of these two dimensions was a novelty with respect to the existent literature and the

findings of the present thesis strongly suggest that both dimensions need to be taken

into account in further studies in order to properly examine PPS.

A final contribution of the present thesis was the consideration of PPS as a space not

only underlying the interaction with the physical environment, but also structuring

(and being structured by) social interactions. Accordingly, results revealed that social

interactions are grounded and embedded in a physical and motor context, which de-

termines the way individuals move in space to communicate non-verbally with other

individuals.

In conclusion, the present PhD thesis proposes a functional conception of PPS.

Specifically, it defends the idea that PPS construction is not stable, but constructed in a

specific instant as a function of the task demands, stimuli features and the physical and

social context. The integration of such factors influences individuals’ PPS representation

and exploitation, determining therefore whether and how individuals prioritise a given

portion of space during their interactions with the environment.
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Tool morpho-functional sensori-motor constraints. Cognition, 149, 1–5. https://doi.org/10.
1016/j.cognition.2016.01.001
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Cléry, J., & Ben Hamed, S. (2018). Frontier of self and impact prediction. Frontiers in Psychology, 9,
1–17. https://doi.org/10.3389/fpsyg.2018.01073
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ence of different types of grasping on the transport component of prehension movements.
Neuropsychologia, 29 (5), 361–378. https://doi.org/10.1016/0028-3932(91)90025-4

Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1988). Functional
organization of inferior area 6 in the macaque monkey - I. Somatotopy and the control of
proximal movements. Experimental Brain Research, 71 (3), 475–490. https://doi.org/10.1007/
BF00248741

Gentilucci, M. (2002). Object motor representation and reaching–grasping control. Neuropsychologia,
40 (8), 1139–1153. https://doi.org/10.1016/s0028-3932(01)00233-0

Georgiou, I., Becchio, C., Glover, S., & Castiello, U. (2007). Different action patterns for cooperative
and competitive behaviour. Cognition, 102 (3), 415–433. https://doi.org/10.1016/j.cognition.
2006.01.008

Gigliotti, M. F., Sampaio, A., Bartolo, A., & Coello, Y. (2020). The combined effects of motor and
social goals on the kinematics of object-directed motor action. Scientific Reports, 10 (1), 1–10.
https://doi.org/10.1038/s41598-020-63314-y

Gigliotti, M. F., Soares Coelho, P., Coutinho, J., & Coello, Y. (2021). Peripersonal space in social
context is modulated by action reward, but differently in males and females. Psychological
Research, 85 (1), 181–194. https://doi.org/10.1007/s00426-019-01242-x

Goldin-Meadow, S. (1999). The role of gesture in communication and thinking. Trends in Cognitive
Sciences, 3 (11), 419–429. https://doi.org/10.1016/S1364-6613(99)01397-2

Goodale, M. A., & Milner, D. A. (1992). Separate visual pathways for perception and action. Trends
in neurosciences, 15 (1), 20–25. https://doi.org/10.1016/0166-2236(92)90344-8

Graziano, M. S., & Gandhi, S. (2000). Location of the polysensory zone in the precentral gyrus of
anesthetized monkeys. Experimental Brain Research, 135 (2), 259–266. https://doi.org/10.
1007/s002210000518

Graziano, M. S. A., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive
behavior. Neuropsychologia, 44 (6), 845–859. https://doi.org/10.1016/j.neuropsychologia.
2005.09.009

Graziano, M. S. A., & Gross, C. G. (1993). A bimodal map of space: somatosensory receptive fields
in the macaque putamen with corresponding visual receptive fields. Experimental Brain Re-
search, 97 (1), 96–109. https://doi.org/10.1007/bf00228820

Graziano, M. S. A., Hu, X. I. N. T., & Gross, C. G. (1997). Visuospatial properties of ventral premotor
cortex. Journal of neurophysiolo, 77 (5), 2268–2292. https://doi.org/10.1152/jn.1997.77.5.
2268

Graziano, M. S. A., Reiss, L. A. J., & Gross, C. G. (1999). A neuronal representation of the location
of nearby sounds. Nature, 397 (6718), 428–430.

Graziano, M. S. A., Yap, G. S., & Gross, C. G. (1994). Coding of Visual Space by Premotor Neurons.
Science, 266 (5187), 1054–1057. https://doi.org/10.1126/science.7973661

https://doi.org/10.1080/17470910802046230
https://doi.org/10.1037/0022-3514.77.3.642
https://doi.org/10.1037/0022-3514.77.3.642
https://doi.org/10.1016/j.neuropsychologia.2020.107622
https://doi.org/10.1016/j.neuropsychologia.2004.05.006
https://doi.org/10.1016/j.neuropsychologia.2004.05.006
https://doi.org/10.1016/j.concog.2008.03.003
https://doi.org/10.1523/JNEUROSCI.0377-09.2009
https://doi.org/10.1016/j.tics.2013.02.002
https://doi.org/10.1038/s41598-021-86719-9
https://doi.org/10.1038/s41598-021-86719-9
https://doi.org/10.1152/jn.00840.2010
https://doi.org/10.1016/0028-3932(91)90025-4
https://doi.org/10.1007/BF00248741
https://doi.org/10.1007/BF00248741
https://doi.org/10.1016/s0028-3932(01)00233-0
https://doi.org/10.1016/j.cognition.2006.01.008
https://doi.org/10.1016/j.cognition.2006.01.008
https://doi.org/10.1038/s41598-020-63314-y
https://doi.org/10.1007/s00426-019-01242-x
https://doi.org/10.1016/S1364-6613(99)01397-2
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1007/s002210000518
https://doi.org/10.1007/s002210000518
https://doi.org/10.1016/j.neuropsychologia.2005.09.009
https://doi.org/10.1016/j.neuropsychologia.2005.09.009
https://doi.org/10.1007/bf00228820
https://doi.org/10.1152/jn.1997.77.5.2268
https://doi.org/10.1152/jn.1997.77.5.2268
https://doi.org/10.1126/science.7973661


154 bibliography

Graziano, M. S. (2018). The spaces between us: A story of neuroscience, evolution, and human nature.
Oxford University Press.

Green, P., & Macleod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed
models by simulation. Methods in Ecology and Evolution, 7 (4), 493–498. https://doi.org/10.
1111/2041-210X.12504

Grivaz, P., Blanke, O., & Serino, A. (2017). Common and distinct brain regions processing multisensory
bodily signals for peripersonal space and body ownership. NeuroImage, 147, 602–618. https:
//doi.org/10.1016/j.neuroimage.2016.12.052

Grüsser, O.-J. (1983). Multimodal Structure of the Extrapersonal Space. In A. Hein & M. Jeannerod
(Eds.), Spatially oriented behavior (pp. 327–352). Springer New York. https://doi.org/10.
1007/978-1-4612-5488-1 18

Guipponi, O., Wardak, C., Ibarrola, D., Comte, J. C., Sappey-Marinier, D., Pinède, S., & Ben Hamed,
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Kumle, L., Võ, M. L. H., & Draschkow, D. (2018). Mixedpower: a library for estimating simulation-
based power for mixed models in R. https://doi.org/https://github.com/DejanDraschkow/
mixedpower
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Sokolov, A. A., Krüger, S., Enck, P., Krägeloh-Mann, I., & Pavlova, M. A. (2011). Gender affects body
language reading. Frontiers in psychology, 2, 16. https://doi.org/10.3389/fpsyg.2011.00016

Sommer, R. (1959). Studies in Personal Space. Sociometry, 22 (3), 247. https ://doi .org/10.2307/
2785668

Spence, C., Kingstone, A., Shore, D. I., & Gazzaniga, M. S. (2001). Representation of visuotactile
space in the split brain. Psychological Science, 12 (1), 90–93. https://doi.org/10.1111/1467-
9280.00316

Spence, C., Pavani, F., Maravita, A., & Holmes, N. (2004). Multisensory contributions to the 3-D
representation of visuotactile peripersonal space in humans: evidence from the crossmodal
congruency task. Journal of Physiology-Paris, 98 (1-3), 171–189. https://doi.org/10.1016/j.
jphysparis.2004.03.008

Sposito, A., Bolognini, N., Vallar, G., & Maravita, A. (2012). Extension of perceived arm length
following tool-use: Clues to plasticity of body metrics. Neuropsychologia, 50 (9), 2187–2194.
https://doi.org/10.1016/j.neuropsychologia.2012.05.022

Stapel, J. C., Hunnius, S., & Bekkering, H. (2012). Online prediction of others’ actions: the contribution
of the target object, action context and movement kinematics. Psychological Research, 76 (4),
434–445. https://doi.org/10.1007/s00426-012-0423-2

Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective
of the single neuron. Nature Reviews Neuroscience, 9 (4), 255–266. https://doi.org/10.1038/
nrn2331

https://doi.org/10.1007/s00221-012-3294-2
https://doi.org/10.3389/fpsyg.2013.00114
https://doi.org/10.1371/journal.pone.0025203
https://doi.org/10.1038/srep24126
https://doi.org/10.1007/s00221-003-1435-3
https://doi.org/10.1007/s00221-003-1435-3
https://doi.org/10.1007/s00221-008-1587-2
https://doi.org/10.1016/j.neuropsychologia.2014.03.006
https://doi.org/10.1016/j.neuropsychologia.2014.03.006
https://doi.org/10.1111/j.1756-8765.2009.01024.x
https://doi.org/10.1080/13506280444000157
https://doi.org/10.3389/fpsyg.2019.01681
https://doi.org/10.1016/j.neubiorev.2019.01.016
https://doi.org/10.1038/srep18603
https://doi.org/10.1016/j.concog.2017.02.012
https://doi.org/10.3389/fnint.2010.00005
https://doi.org/10.3389/fnint.2010.00005
https://doi.org/10.3389/fpsyg.2011.00016
https://doi.org/10.2307/2785668
https://doi.org/10.2307/2785668
https://doi.org/10.1111/1467-9280.00316
https://doi.org/10.1111/1467-9280.00316
https://doi.org/10.1016/j.jphysparis.2004.03.008
https://doi.org/10.1016/j.jphysparis.2004.03.008
https://doi.org/10.1016/j.neuropsychologia.2012.05.022
https://doi.org/10.1007/s00426-012-0423-2
https://doi.org/10.1038/nrn2331
https://doi.org/10.1038/nrn2331


bibliography 161

Stone, K. D., Kandula, M., Keizer, A., & Dijkerman, H. C. (2018). Peripersonal space boundaries
around the lower limbs. Experimental Brain Research, 236 (1), 161–173. https://doi.org/10.
1007/s00221-017-5115-0

Szpak, A., Loetscher, T., Churches, O., Thomas, N. A., Spence, C. J., & Nicholls, M. E. (2015). Keeping
your distance: Attentional withdrawal in individuals who show physiological signs of social
discomfort. Neuropsychologia, 70, 462–467. https://doi.org/10.1016/j.neuropsychologia.2014.
10.008

Teneggi, C., Canzoneri, E., Di Pellegrino, G., & Serino, A. (2013). Social modulation of peripersonal
space boundaries. Current Biology, 23 (5), 406–411. https://doi.org/10.1016/j.cub.2013.01.043

Toussaint, L., Wamain, Y., Bidet-Ildei, C., & Coello, Y. (2018). Short-term upper-limb immobilization
alters peripersonal space representation. Psychological Research, 84 (4), 907–914. https://doi.
org/10.1007/s00426-018-1118-0

Uzzell, D., & Horne, N. (2006). The influence of biological sex, sexuality and gender role on inter-
personal distance. British Journal of Social Psychology, 45 (3), 579–597. https://doi.org/10.
1348/014466605X58384
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2018. Pour cela, vous pouvez solliciter les conseils du Correspondant informatique et libertés (DPO) ou du service juridique de votre université ou de votre 

organisme de recherche. Le comité éthique rappelle l'obligation d'inscrire au registre des traitements de l'université tout traitement de données à caractère 

personnel conformément à l'article 30 du Règlement Général sur le Protection des données. 

Par cet avis favorable, le CER U-Lille ne se prononce pas sur le respect des mesures barrières contre le Covid-19. Afin de protéger les participants et les 

chercheurs et enseignants-chercheurs, les organismes responsables de la recherche doivent impérativement se mettre en conformité avec les mesures 

préconisées pour toutes recherches sur site et hors site par les tutelles hébergeant les unités de recherche concernées. 

       
       Pr Yvonne DELEVOYE-TURRELL 
       Présidente du comité d’éthique 
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interpersonal reactivity index (iri)-chapter 5

CODE PARTICIPANT : ……………………………………….. 
 

1 
 

IRI 

 
Indiquez en utilisant les indications qui figurent ci-dessous à quel point vous êtes en Désaccord ou en 

Accord avec chacune des affirmations qui suivent. Ne donnez qu'une réponse pour chaque proposition, 

puis reportez dans la case de droite le chiffre correspondant. Vous n’utiliserez le milieu de l’échelle que 

s’il vous est tout à fait impossible de porter un jugement sur votre manière de réagir. 

 

 
Désaccord 

Complet 

Désaccord 

Relatif 

Ni accord, 

Ni désaccord 

Accord 

relatif 

Accord 

complet 

1 2 3 4 5 

 

 
1. Assez régulièrement, je rêvasse et fantasme à propos de choses 

qui pourraient m’arriver. 

 1 2 3 4 5 

2. J’ai souvent des sentiments de tendresse, de compassion pour 

les personnes moins favorisées que moi. 

 1 2 3 4 5 

3. Je trouve parfois difficile de voir les choses du point de vue de 

l’autre. 

 1 2 3 4 5 

4. Il m’arrive de ne pas me sentir sincèrement désolé(e) pour les 

autres lorsqu’ils ont des problèmes. 

 1 2 3 4 5 

5. Je deviens vraiment absorbé(e) par les sentiments des 

personnages d’un roman. 

 1 2 3 4 5 

6. Dans les situations d’urgence, je me sens inquiet(e) et mal à 

l’aise. 

 1 2 3 4 5 

7. Lorsque je regarde un film ou une pièce de théâtre, je suis 

généralement objectif(ve), et il est rare que je sois complètement 

pris(e) dedans. 

 1 2 3 4 5 

8. En cas de désaccord, j’essaie de voir le point de vue de chacun 

avant de prendre une décision. 

 1 2 3 4 5 

9. Lorsque je vois une personne se faire exploiter, j’éprouve un 

certain sentiment de protection envers elle/à son égard. 

 1 2 3 4 5 

10

. 
Je me sens parfois désarmé(e) lorsque je me trouve au cœur 

d’une situation très émotionnelle. 

 1 2 3 4 5 

11

. 
Parfois, j’essaie de mieux comprendre mes ami(e)s en imaginant 

comment les choses se présentent de leur point de vue. 

 1 2 3 4 5 

12

. 
C’est assez rare que je sois fortement absorbé(e) par un bon livre 

ou un bon film. 

 1 2 3 4 5 

13

. 
Quand je vois qu’on fait du mal à quelqu’un, j’ai tendance à 

garder mon calme. 

 1 2 3 4 5 

14

. 
D’habitude, les malheurs des autres ne m’affectent pas 

vraiment. 

 1 2 3 4 5 

15

. 
Si je suis sûr(e) d’avoir raison sur un point, je ne perds pas 

tellement de temps à écouter les arguments des autres. 

 1 2 3 4 5 
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CODE PARTICIPANT : ……………………………………….. 
 

2 
 

16

. 
Après avoir vu une pièce de théâtre ou un film, il m’est arrivé 

de me sentir comme si j’étais un des personnages. 

 1 2 3 4 5 

17

. 
Me trouver dans une situation de tension émotionnelle me fait 

peur. 

 1 2 3 4 5 

18

. 
Il m’arrive de ne pas éprouver de pitié pour des personnes que 

je vois être traitées injustement. 

 1 2 3 4 5 

19

. 
En général, je suis plutôt efficace dans les situations d’urgence.  1 2 3 4 5 

20

. 
Je suis souvent assez touché(e) par les événements que je vois 

se produire. 

 1 2 3 4 5 

21

. 
Je crois qu’il y a deux côtés à toute question et j’essaie de les 

regarder tous les deux. 

 1 2 3 4 5 

22

. 
J’aurais tendance à me décrire comme une personne au cœur 

tendre/sentimentale. 

 1 2 3 4 5 

23

. 
Lorsque je regarde un bon film, je peux très facilement me 

mettre à la place du personnage principal. 

 1 2 3 4 5 

24

. 
J’ai tendance à perdre le contrôle de moi-même dans les 

situations d’urgence. 

 1 2 3 4 5 

25

. 
Quand j’en veux à quelqu’un, j’essaie habituellement de me 

mettre ‘dans sa peau’ pendant un moment. 

 1 2 3 4 5 

26

. 
Lorsque je suis en train de lire une histoire intéressante, 

j’imagine ce que je ressentirais si les événements de l’histoire 

m’arrivaient. 

 1 2 3 4 5 

27

. 
Je perds mes moyens quand je vois quelqu’un qui a gravement 

besoin d’aide dans une situation d’urgence. 

 1 2 3 4 5 

28

. 
Avant de critiquer quelqu’un, j’essaie d’imaginer comment je 

me sentirais si j’étais à sa place. 

 1 2 3 4 5 
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social value orientation (svo) slider measure-chapter 5

 1

 2

 3

  4

  5

  6

Vous

Autre

Vous

Autre

Vous

Autre

Vous

Autre

Vous

Autre

Vous

Autre

 10

 11

 12

 13

 14

 15

Vous

Autre

Vous

Autre

Vous

Autre

Vous

Autre

Vous

Autre

Vous

Autre

 7

 8

 9

Vous

Autre

Vous

Autre

Vous

Autre

Dans cet exercice, vous prendrez une série de décisions de distribution d’argent pour vous et pour une autre personne. L’autre 
personne est quelqu’un que vous ne connaissez pas, qui ne vous connaît pas, et vous resterez anonymes. Chaque choix est 
entièrement confidentiel. Pour chacune des questions suivantes, indiquez la distribution d’argent que vous préférez en marquant une 
position sur la ligne du milieu. Vous ne pouvez faire qu’un seul marquage par question.

Vos décisions vous rapporteront de l’argent, aussi bien pour vous que pour l’autre personne. Dans l’exemple ci-dessous, une personne 
a choisi de distribuer l’argent en sorte qu’elle reçoive 50 dollars, tandis que l’autre personne anonyme reçoit 40 dollars.

Il n’y a ni de réponses correctes, ni fausses dans cette tâche ; il ne s’agît que de préférences personnelles. Après avoir pris toutes vos 
décisions, écrivez la distribution d’argent résultante dans les espaces à droite. Comme vous voyez, vos décisions influenceront la 
somme d’argent que vous recevrez, tout comme la somme d’argent que l’autre recevra.

Exemple:

Instructions

30

80

35 40 45 50 55 60 65 70

60 50 40 30 20 10 070

Vous recevez

Autre reçoit 40

50Vous

Autre
b

ID / Nom: ____________________________ Sexe:   M         F 

50

100

54 59 63 68 72 76 81 85

96 94 93 91 89 87 8598

Vous recevez

Autre reçoit

50

100

56636975818894100

88817569635650 94

Vous recevez

Autre reçoit

50

100

54 59 63 68 72 76 81 85

79 68 58 47 36 26 1589

Vous recevez

Autre reçoit

85

85

87899193949698100

76726863595450 81

Vous recevez

Autre reçoit

85

85

85 85 85 85 85 85 85 85

68 59 50 41 33 24 1576

Vous recevez

Autre reçoit

100

50

9896949391898785

41373328241915 46

Vous recevez

Autre reçoit

50

100

56 63 69 75 81 88 94 100

98 96 95 94 93 91 9099

Vous recevez

Autre reçoit

50

100

56636975818894100

93898581787470 96

Vous recevez

Autre reçoit

50

100

56 63 69 75 81 88 94 100

88 81 75 69 63 56 5094

Vous recevez

Autre reçoit

70

100

74788185899396100

98969594939190 99

Vous recevez

Autre reçoit

70

100

74 78 81 85 89 93 96 100

93 89 85 81 78 74 7096

Vous recevez

Autre reçoit

70

100

74788185899396100

88817569635650 94

Vous recevez

Autre reçoit

90

100

91 93 94 95 96 98 99 100

98 96 95 94 93 91 9099

Vous recevez

Autre reçoit

90

100

91939495969899100

93898581787470 96

Vous recevez

Autre reçoit

90

100

91 93 94 95 96 98 99 100

88 81 75 69 63 56 5094

Vous recevez

Autre reçoit
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