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Abstract
Nowadays, cities deal with multiple issues such as rapid urbanization, pollu-

tion or congestion. A fundamental step for facing these raising challenges consists
in accurately characterizing how people move within the city. Such a fundamen-
tal knowledge can be leveraged to improve and optimize the transportation system.
Until recent times, transportation authorities have mainly relied on mobility sur-
veying to capture information on human mobility. However, this method suffers
from multiple drawbacks. Surveys are expensive to run, get quickly outdated, are
unavoidably based on relatively small samples of the population and cannot cap-
ture fine-grained mobility dynamics in space and time. In the last decades, with the
digitization of the society, the emergence of new data sources such as smart cards,
the Global Positioning System (GPS), location-based social media, or mobile phone
records have attracted researchers’ and practitioners’ attention for mobility estima-
tion. The research community has started to investigate the use of these data in the
domain of mobility and transportation, where they could allow analyses at unprece-
dented scales compared to traditional surveys. Among the emerging sources, mobile
phone network data are currently one of the most promising human mobility data
sources. Such kind of data presents a unique combination of desirable properties: (i)
they offer unprecedented penetration, as they are available for the whole subscribers
base of a network provider; (ii) they are recorded continuously over long time pe-
riods, thus allowing fine-grained longitudinal studies over months or years; and,
(iii) they are passively collected and maintained in curated databases for billing pur-
poses, which makes them a very cost-efficient source of data for secondary use and
analysis. However, only limited knowledge exists on the use of large-scale mobile
network data to analyze human mobility in urban environments. This dissertation
aims at filling this gap. In this thesis, we show that despite some limitations that are
typical for the mobile phone data (the sparsity in time and space, the noise and the
large localization error), such data contain rich spatiotemporal information that can
be used for various purposes in the transportation domain such as OD matrix con-
struction, travel demands patterns, land use analysis or popular paths inference. In
addition, we present a new framework TRANSIT (TRAjectory inference from Network
SIgnaling daTa) processing large scale mobile network data. On the one hand, the
framework is able to reconstruct mobility information in especially tell apart move-
ment intervals from stationary activity periods for each mobile device. This allows
to reconstruct travel demand from mobile network data at an unprecedented spatio-
temporal scale. On the other hand, TRANSIT is capable of inferring fine-grained
human mobility trajectories during the associated movement intervals. Thereby, the
frameworks aims at overcoming the above mentioned limitations. TRANSIT ex-
ploits the recurrent patterns of human mobility, i.e., the same individual typically
performs many trips between two same given locations over time, generally follow-
ing very similar paths. This creates redundancy in the mobility information that
TRANSIT uses to increase the spatiotemporal accuracy of the trajectories. To totally
unlock the potential of the mobile phone data, we also developed map-matching
approaches that can be applied on the top of TRANSIT. The latter allow to retrieve
the path a traveller follows on the multimodal transportation system from the re-
constructed trajectories. Relying on the result of TRANSIT, we study the problem of
mobility patterns discovery along multiple dimensions at aggregated scale that we
solved using a data-agnostic method based on tensor decomposition. Thus, we pro-
pose a new set of applications such as the OD-matrix anonymization, the modeling
of the COVID-19 propagation or the regional-scale travel patterns analysis that are
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made possible by the use of mobile network data. As a conclusion, the results of this
thesis demonstrates that fine-grained mobility information can be inferred from mo-
bile phone data at large scale. This paves the way to new applications that could be
further investigated by the research community. In order to make the mobile phone
data totally operational, approaches have to be designed to deal with privacy issues
and bias in the results obtained with mobile phone data.

Keywords: Mobile Phone Data, Human-Centric Mobility, Urban Computing, Big
Data



v

Résumé
De nos jours, les villes sont confrontées à de multiples enjeux tels que l’urbanisation

croissante, la pollution ou la congestion. Une étape fondamentale pour faire face à
ces défis consiste à caractériser avec précision la façon dont les gens se déplacent
dans la ville. Cette connaissance fondamentale peut être utilisée pour améliorer
et optimiser le système de transport urbain. Jusqu’à aujourd’hui, les autorités en
charge du transport utilisent des enquêtes de déplacements pour recueillir des in-
formations sur la mobilité des populations. Toutefois, ces méthodes présentent de
nombreux inconvénients. Les enquêtes sont coûteuses à réaliser, deviennent rapi-
dement obsolètes, sont inévitablement basées sur des échantillons relativement pe-
tits de la population et ne peuvent pas capturer de manière dynamique la mobil-
ité des personnes. Au cours des dernières décennies, avec la digitalisation de la
société, l’émergence de nouvelles sources de données telles que les données bil-
letiques, les données GPS, les données géolocalisés issues des réseaux sociaux ou
encore les données de téléphonie mobile a attiré l’attention des chercheurs et des ac-
teurs opérationnels pour l’estimation de la mobilité. Les chercheurs ont commencé
à étudier l’utilisation de ces données dans le domaine du transport et particulière-
ment de la mobilité, où elles pourraient permettre des analyses à une échelle sans
précédent (tant au niveau spatial que temporel) par rapport aux enquêtes tradition-
nelles. Parmi les sources de données émergentes, les données de téléphonie mo-
bile sont l’une des sources les plus prometteuses. Ce type de données présente
en effet une combinaison unique de propriétés souhaitables : (i) elles offrent un
taux de pénétration sans précédent, car disponibles pour l’ensemble des abonnés
d’un fournisseur de réseau ; (ii) elles sont enregistrées en continu sur de longues
périodes, ce qui permet des études longitudinales fines sur des mois voir des an-
nées ; et (iii) elles sont déjà collectées passivement par l’opérateur à des fins de fac-
turation, ce qui en fait une source de données peu coûteuse pour une utilisation
ultérieure. Cependant, il n’existe que peu de connaissances sur l’utilisation des don-
nées de téléphonie mobile à large échelle pour analyser la mobilité des populations
en milieu urbain. Cette thèse vise à apporter des contributions à ce sujet. Dans
cette thèse, nous montrons qu’en dépit des limitations bien connus des données
de téléphonie mobile (données éparses dans le temps, ayant une large incertitude
spatiale et soumises à des phénomènes d’oscillation récurrents), ces données con-
tiennent de riches informations spatio-temporelles qui peuvent être utilisées pour
divers applications : la construction de matrices Origine Destination, l’analyse de
densité de population ou encore l’inférence des chemins populaires du réseau de
transport. Par ailleurs, nous présentons une nouvelle approche TRANSIT (TRA-
jectory inference from Network SIgnaling daTa) qui porte sur l’analyse de données de
téléphonie mobile à grande échelle. D’une part, notre approche est capable de dis-
tinguer les sessions mobiles des sessions statiques pour un utilisateur donné. Cela
permet de reconstruire la demande de déplacement à une échelle spatio-temporelle
fine. D’autre part, TRANSIT est capable de réduire fortement l’erreur spatiale des
trajectoires de téléphonie mobile. Ainsi, notre approche arrive à surmonter les prin-
cipales limitations déjà mentionnées. TRANSIT exploite la récurrence de la mobilité
humaine: le fait qu’un individu effectuant des déplacements réguliers entre deux
zones va généralement prendre toujours le même chemin. Cela crée une redondance
dans les informations de mobilité que notre approche TRANSIT utilise pour aug-
menter la précision spatio-temporelle des trajectoires. Afin d’exploiter pleinement
le potentiel des données de téléphonie mobile, nous avons également développé
une approche de map-matching qui peut être couplée à TRANSIT. Cette dernière
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permet de retrouver le chemin suivi par un utilisateur dans le système de trans-
port multimodal à partir des trajectoires reconstruites par TRANSIT. Pour démon-
trer le potentiel des approches développées dans cette thèse, nous avons construit
quelques applications qui sont rendus possible par nos travaux : l’analyse de la
mobilité lors d’évènements atypiques à une échelle spatio-temporelle fine, l’analyse
des trajectoires des véhicules roulant sur le périphérique de Paris ou encore un mod-
èle épidémiologique pour l’étude de la propagation du COVID-19. En conclusion,
les résultats de cette thèse démontrent que l’analyse de la mobilité urbaine à large
échelle est possible avec les données de téléphonie mobile. Cela ouvre la voie à de
nouvelles applications qui pourraient être étudiées par la suite. Aussi, afin de ren-
dre les données des téléphones mobiles totalement opérationnelles, deux probléma-
tiques principales doivent être traitées : le respect de la vie privé des utilisteurs et les
biais que peuvent contenir les résultats issus des données des téléphones mobiles.

Mots Clés : Données de téléphone mobile, Mobilité urbaine, Trajectoires indi-
viduelles, Données massives
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Chapter 1

Introduction

In our society which is becoming more and more digital, the emergence of new data
sources has been observed in the transportation domain. These data offers great
opportunities to understand and monitor human mobility as well as build future in-
telligent transportation systems. Among these new data sources, mobile phone data
are particularly promising in the transportation research area. Collected at large
scale by mobile network operators, the mobile phone data provide the mobility dy-
namics of millions of mobile phone subscribers, mobility information that is impos-
sible to grasp at such a scale with other data sources. However, mobile phone data
still have fundamental issues such as low accuracy in space, sparsity in time and
sensitive to oscillation effects which limit their applicability for fine-grained mo-
bility studies. For unlocking the potential of this data, the thesis proposes a set
of methodologies and approaches able to overcome these limitations at scale. As
a proof of this potential, we develop multiple applications including mobility pat-
tern inference, epidemic model of COVID-19 propagation or fine-grained mobility
anomaly detection. Our research makes multiple scientific contributions to the field
of computer science and applied mathematics for solving transportation and mobil-
ity problems.

In this opening chapter, we first discuss the research context in Section 1.1 and
the field of data-driven human mobility analysis in Section 1.2. Then, core data
used in this thesis, the mobile phone data, are presented in Section 1.3. Then, in
Section 1.4 the research questions that this thesis addresses are stated. We elaborate
on our scientific contributions in Section 1.5. Finally, the manuscript organization is
presented in Section 1.6.
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1.1 Context

The world population has grown significantly and our economies have become more
industrialized over the past few hundred years. As a result, many people have
moved into cities. The urban population of the world has grown rapidly from 751
million in 1950 to 4.2 billion in 2018. Current forecasts for urban population growth
predict an increase, from the actual 55% of the world’s population living in urban
areas, to 68% by 2050 [42].

With such rapid urbanization, the cities are facing new challenges. From the
mobility perspective, there is a growing transportation demand handled by an al-
ready saturated transportation system which is hardly expandable. This creates a
pressure between the supply and the demand causing several inconveniences. This
includes heavy congestion in the road networks or overcrowding in the public trans-
port systems, phenomena which are even more important during peak hours when
the demand is high. In addition of a deteriorated level of service, these consequences
represent a high social-economic cost, for instance, the congestion cost can amount
to several billion dollars in developed cities1. To handle properly this additional
demand and maintain a good level of mobility service, urban planners and trans-
portation authorities need to optimize the multimodal transportation system. To
achieve this goal, a fundamental step is to capture knowledge on the transportation
demand. At city scale, transportation authorities have to characterize the urban mo-
bility along multiple dimensions: why, who, when, where, how people move in the
city. This knowledge is necessary for building and improving the urban transporta-
tion system.

So far, transportation authorities have mainly relied on mobility surveys to cap-
ture information on human mobility. However, this method suffers from multiple
drawbacks. Surveys are expensive to run, get quickly outdated (around one mo-
bility survey per decade), are unavoidably based on relatively small samples of the
population (generally, less than 5% penetration rate of the population in the studied
area) and cannot capture fine-grained mobility dynamics in space and time.

At the same time, as our society is becoming more and more digital and with
the technology advances, new data sources such as smart cards, Global Positioning
System (GPS), Location-Based Social Network (LBSN), or mobile phone data have
emerged. These data have gathered the attention of practitioners and researchers
for human mobility modeling. In fact, the research community has largely demon-
strated the potential of these data in the context of mobility and transportation re-
search [106, 133, 43], [132], where they allow analyses at unprecedented scales com-
pared to traditional surveys [22].

1.2 Data-Driven Human Mobility Analysis

Data-driven approaches for studying human mobility have recently become a new
area of research. In the following, we present the main sources of data investigated
by the research community. We briefly describe each data source, their strengths,
weaknesses and their scope for human mobility studies.

1https://www.lapresse.ca/actualites/grand-montreal/201809/13/01-5196357-les-couts-de-la-
congestion-evalues-a-42-milliards-pour-2018.php
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1.2.1 Global Positioning System (GPS)

GPS use information from multiple satellites to provide the precise geo-localization
of moving objects (like smartphones, vehicles) equipped with a GPS receiver. This
data can record the trajectories of user’s movement with a high degree of spatial
accuracy (around 5 meters) and high temporal resolution (in the order of a few sec-
onds). This high spatio-temporal precision allows to analyze human mobility at a
very fine scale in space and time. However, due to the high consumption usage of
the GPS system on the smartphone, the large volume of collected data and privacy
matters, GPS data have only been collected on a small sample of individuals [141].
This limits their applicability for city-scale human mobility studies. In the research
area, GPS have been however used for several research studies such as demonstrat-
ing the Levy walks nature of human mobility [95], traffic congestion estimation [66],
anomaly detection [65] or zones of interest mining in a city [142].

1.2.2 Location-Based Social Network (LBSN)

LBSN data have emerged with the worldwilde expansion of social media. Partic-
ularly, the posts made by a user on platforms like Twitter, Facebook and Flickr are
associated with geolocation. All the geotagged posts on social networks by the users
provide human trajectories that can be analyzed to study human mobility. These
trajectories are very precise in space (like GPS data) but very sparse in time (the in-
terevent time between social posts can vary from minutes to hours). Compared with
other data sources, social media data has its unique characteristics of associating
contextual information, i.e., the social content to the user trajectory. These context-
enriched trajectories allow to study human mobility along dimensions that cannot
be covered by the other data sources. LBSN data have been used to study human
mobility patterns of different social communities through the social interactions of
the individuals [73]. These data have also been used to feed a real time monitor-
ing system that capture travel behaviour from Twitter data and can detect abnormal
situation in a subway network [51].

1.2.3 Smartcard Data

The public transport systems are becoming more and more developed and popu-
lar in the cities. To travel in the public network, people usually carry a smartcard
that the user has to check in and/or check out for boarding and alighting public
transport stops. Such a system generates, at large scale, massive travel data which
include i.e., card ID, stop origin, boarding time, stop destination, alighting time. The
strength of smartcard data is to cover quasi-exhaustively the whole public transport
trips with very high accuracy both in space and time. Nevertheless, the data can-
not provide mobility information on other transportation modes such as car, bike,
walk, train. Smartcard data have been largely used for the study of human mobility.
Sun et al. [107] propose a probabilistic tensor factorization framework to understand
aggregated urban human mobility patterns of public transport in Singapore. This
approach provides knowledge on mobility patterns in space and time. Egu et al.
[32] explore the day-to-day variability of public transport users mobility during one
month in the city of Lyon (France).
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1.2.4 Mobile Phone Data

In recent years, the widespread diffusion of mobile devices and the exploding con-
sumption of Internet traffic via 2G, 3G and 4G technologies have made mobile phone
data a crucial source of information in multiple domains. These data are passively
collected from mobile network operators for billing purposes and network manage-
ment. Thus, for research purpose, these data can be used, with no additional cost for
studying human mobility. Compared to traditional surveys and above mentioned
data sources, mobile phone data present a unique combination of desirable prop-
erties. First of all, they offer unprecedented penetration, as they are available for
the whole subscriber base of a network provider; then, they are recorded continu-
ously at a large geographical scale and over long time periods, allowing fine-grained
longitudinal studies over months or years. Finally, this data covers the mobility of
mobile phone subscribers over all transportation modes so that the whole mobility
can be covered at large scale (including multimodality). However, despite signifi-
cant benefits, mobile phone data still have fundamental issues such as large spatial
error and sparsity in time that need to be addressed and which limits their applica-
bility for detailed studies on mobility and especially in urban settings. Despite these
limitations, mobile phone data have fed plenty of studies related to human mobility.
Indeed, they have been employed to derive and validate general laws that govern
human movements [38], reconstructing static origin-destination matrices [33], un-
derstanding urban land use dynamics [36, 35], or inferring population density shifts
in time [31]. A detailed literature review on the use of mobile phone data for human
mobility studies and its limitation are discussed in detail in Section 1.3.2.

1.3 Mobile Phone Data

1.3.1 Typology of mobile phone data

First, let us describe how mobile phone data are collected. The mobile phone data
are generated by the communications between the communications of the users’ mo-
bile phone and the cellular network. The cellular network is composed of a set of
base transceiver stations called BTS. Each base station is composed of multiple an-
tennas. Each antenna covers one technology (either 2G, 3G or 4G at the moment)
and one azimuth (usually an antenna covers an angle of 120 degree). Each BTS cov-
ers a defined area, known as a cell, which is the smallest spatial entity in the cellular
network. Besides, there are base stations controllers called BSC which are managing
a group of base stations. The area covered by a BSC is called Location Area (LA).
In order to ensure the quality of communication services, mobile network operators
have to monitor locations of subscribers’ mobile phones. Thus, mobile phones are
constantly and frequently communicating with the cellular network. These commu-
nications have two main characteristics: the technology of the antenna on which the
communication is done and the event responsible of the communication triggered
by the mobile device or the cellular network. There are multiple kinds of events:
i) communication events (i.e, calls and SMS); ii) handover events (i.e., base station
change during an established communication); iii) network attachment/detachment
events; iv) data/internet connections; v) Location Area (LA) updates (i.e., base sta-
tion change during a communication resulting in a change of Location Area) and vi)
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(a) Cellular network structure (b) Network events captured by the cellular net-
work

Figure 1.1: Illustration of cellular network (from Huang et al. [46])

Tracking Area updates (i.e., the mobile phone did not generate any event for a pe-
riod of times, typically few hours). An illustration of the cellular network structure
is given in Figure 1.1.

Based on their temporal and spatial properties, different kinds of mobile phone
data can be observed. On the temporal dimension, the data can differ on the set of
events collected and available by the mobile network operator. The most popular
kind of mobile phone data is Call Detail Records (CDR); events considered are only
communication events. Different from CDR data, another kind of mobile phone data
is Network Signaling Data (NSD) which report on multiple kinds of events (i) com-
munication events; ii) handover events; iii) network attachment/detachment events;
iv) data/internet connections; v) Location Area (LA) updates and vi) Tracking Area
updates). For a given mobile phone operator, NSD corresponds to all events gen-
erated by the mobile phone of the subscribers. An event is characterized by four
attributes: the mobile phone ID which is pseudo-anonymized, the timestamp of the
event, the antenna communicating with the mobile phone and the event type. A
sample of NSD is given in table 1.1.

This additional event considered increases the temporal sampling frequency of
NSD compared to CDR. The spatio-temooral granularity of CDR and NSD is dis-
cussed in Chapter 3.

Mobile Phone ID Timestamp Cell ID Event Type Technology
922**********2440000 2019-06-01 9:00:05 123456 Voice 3G
922**********2440000 2019-06-01 9:10:15 234567 Text 2G
922**********2440000 2019-06-01 9:12:23 234567 Text 3G

...
922**********2440000 2019-06-01 9:32:23 234567 Data connection 4G
922**********2440000 2019-06-01 9:38:54 345678 Handover 4G

Table 1.1: Example of rows of NSD

On the spatial dimension, the event can either be mapped to the position of the
antenna or can be a reconstructed position of the mobile phone relying on additional



6 Chapter 1. Introduction

information such as signal strength, triangulation of the signal received by nearby
antennas. The last kind of data are referred to as sighting data. The reconstructed
positions based trajectory from sighting data are much more accurate in space com-
pared to the antenna based trajectory. In this work, we will mainly focus on CDR
and NSD which are the most popular sources of mobile phone data. Sighting data
are not considered.

Finally, a sequence of events related to the same mobile phone can be considered
as a trajectory called mobile phone trajectory or cell phone trajectory. By assuming
that the mobile phone’s user connects antennas which are close to the position of the
user, the mobile phone trajectory can be seen as an approximation of user’s mobility.
Available with large penetration rate, these trajectories can capture human mobility
at large scale. Considering mobile phone data as a set of individual cellular trajec-
tories, each cellular trajectory being an approximation of the user mobility is a core
concept of this thesis.

1.3.2 Mobile Phone Data in Human Mobility Studies

In recent years, the mobile phone turned out to be a crucial source for human mo-
bility modelling. According to Naboulsi et al. [80], the works leveraging mobile
network data for human mobility studies can be classified into two main categories.
The first one includes the works that study physical models able to reproduce typical
mobility patterns at individual and aggregated levels. The second one include works
processing mobile phone data to provide knowledge on transportation demand. In
the first category, some works study the fundamental laws that govern human mo-
bility. By studying the number of cells visited by mobile subscribers, Halepovic et
al. and Paul et al. [41, 86] show that this distribution is heavy tailed. As a direct
result, they show that a lot of the users (around half) visited one cell whereas there
are few users who visit hundred of cells in a week. This phenomenon reveals high
heterogeneity in terms of mobility behaviour of the users. Besides, the number of
visited locations, the travel distance of the users distribution have also been studied
by the research community. Gonzales et al. [38] and Song et al. [103] show that the
distribution of the total travel distance is a truncated power law. This result has been
validated by similar works over different regions: USA [19], Europe [38] or Africa
[84]. Another important result that has been demonstrated using mobile phone data
is the high spatio-temporal regularity of human mobility. Indeed, users movements
exhibit strong periodicity over time and this periodicity is multi-scale (daily and
weekly scales) [44]. In space, a strong regularity is also observed over the sequence
of the cells visited in the users [136]. Moreover, a direct result from the repetitive
nature of human mobility is the predictability of individual movements. Song et al.
[102] show that 93% of individual movements are predictable. Other works aim at
developing physical models able to reproduce the above mentioned laws of human
mobility. At individual scale, we can quote the main models proposed in the lit-
erature: the Lévy Flights [95], CTRW [103] and preferential returns [103]. A more
exhaustive presentation of these models as well as a discussion on the strengths and
limits of each model can be found in [11]. At the aggregated level, models are pro-
posed to characterize mobility flows at city-scale or even country-scale. The most
popular model is the gravity model [144] which stipulates that the flow between
two zones is proportional to the population of each zone and inversely proportional
to the distance between these zones.
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In the second category, some works aim at inferring transportation demand in-
formation from mobile phone data. For instance, the work [10] uses mobile phone
data to estimate travel times with low error compared to those obtained with tradi-
tional loop detectors. Janecek et al. [53] also used network signaling data to char-
acterize congestion on highways. The good results obtained with highway traffic
can not be easily reproduced in the more complex and heterogeneous urban envi-
ronment. Their result shows that the mobile phone data was able to detect traffic
anomalies more efficiently compared to other sources of data such as GPS data from
taxis. Caceres et al. [17] used mobile phone data for travel volume estimation and
were able to infer traffic volume with relative error around 20% compared to those
obtained with loop detectors. Another important task that received a lot of atten-
tion from the research community is estimating Origin-Destination matrices [33, 8].
Besides, other research study the question of understanding demand by transporta-
tion mode. The transportation mode inference is often tackled in simplified cases.
Approaches aims at distinguishing motorized vs not motorized modes, road vs rail
mode, private vs public modes. In such simplified cases, the approaches can exhibit
rather good performance (around 80% accuracy). Another field of study is the trans-
portation system itself. Berlingerio et al. [12] demonstrate using cellular data that
adding 4 lines to public transport system would allow an improvement of overall
travel times as high as 10%. Finally, several works show that mobile phone were
able to accurately estimate the population density [30, 8].

Our thesis focuses on the second category of work and especially travel demand
estimation at large scale and in urban scenario.

1.3.3 Limitations

Despite significant benefits and promising applications, mobile phone data still have
fundamental issues that need to be addressed due to low accuracy along both the
spatial and temporal dimensions which limits their applicability for detailed studies
on mobility and especially in urban settings. In order to fully unlock their potential,
there are still main issues that have to be addressed.

The main limitations are the following:

• The mobile phone data are passively collected by the mobile network operator:
they are not collected for transportation purposes like smartcard or GPS data.
As a result, they do not contain any direct mobility information. The mobility
information has to be inferred from the raw data which is a challenging task
given the other limitations.

• NSD are highly subject to noise. One source of noise is the so-called ping-
pong effect. While static, the mobile phone of a user can connect to multiple
antennas. Thus, it can be tricky to successfully infer that a user is actually static
while he is moving from the perspective of the cellular network.

• NSD have large spatial error. The spatial granularity available with NSD is the
base station level. The base stations can have a range from hundred meters in
urban areas to a few kilometers in rural areas.

• NSD are sparse in time. NSD sampling frequency is in order of magnitude of
minutes which is sparse and makes the mobility inference of the user challeng-
ing since the information level is low.
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1.4 Research Gaps and Open Research Questions

Given this overview of the use of mobile phone for human mobility studies and
the above mentioned limitations of mobile phone data, multiple gaps have been
identified in the literature and will be studied in this thesis.

First, the thesis aims at investigating the question on the representativeness, bi-
ases and suitability of the mobile phone data for travel demand estimation. Due to
lack of comparative mobile phone and survey data, this question, yet fundamental,
is rarely discussed in the literature. Then, we notice that the above mentioned lim-
itations of mobile phone limit the use of NSD for fined grained mobility study in
urban environment. Thus, the thesis studies approaches to overcome these limita-
tions. Finally, after overcoming NSD limitations, our thesis focuses on advancing
current state of the art applications based on mobile phone data.

In summary, the objective of this thesis is to develop data-driven approaches
on large scale mobile phone data capable of estimating human mobility at unprece-
dented spatio-temporal granularity. Centering around this research objective, we
further formulate the following research questions (RQs) that have only been par-
tially addressed by existing studies.

• RQ1: To what extent are mobile phone data suitable for estimating human
mobility? - Chapter 2

• RQ2: Can the repetitive nature of human mobility be used to improve in space
and time human trajectories as observed through the bias of mobile phone
data? - Chapter 3

• RQ3: How can we estimate very fine mobility information i.e., the path trav-
eled on a multimodal transportation network, from mobile phone data? -
Chapter 4

• RQ4: How can we derive aggregated mobility patterns along the main dimen-
sions that characterize human mobility? - Chapter 5

• RQ5: What kind of applications are made possible by our approach when ap-
plied on mobile phone data? - Chapter 6

1.5 Research Contributions

This thesis provides several contributions to research on data-driven modeling for
estimating urban mobility with mobile phone data. These contributions are listed
below :

• Dataset collection and analysis of rich real-world mobile phone datasets. We
lead an experimentation that allowed to gather both GPS and, thanks to the
collaboration with Orange France, mobile phone traces related to a group of
users in the Lyon metropolitan area, France. Given the scarcity of ground truth
data in mobile phone related studies, the collected dataset is quite unique. We
have tested our approaches on real-world, massive mobile phone data pro-
vided by Orange including Terabytes of data, millions of subscribers and bil-
lion of network signaling logs from 2G, 3G and 4G events. To the best of our



1.6. Manuscript Organization 9

knowledge, this mobile phone dataset is the largest in terms of population cov-
ered and number of mobile phone events generated.

• TRANSIT (TRAjectory inference from Network SIgnaling daTa), a new framework
that processes mobile phone data to (i) tell apart movement intervals from
stationary activity periods for each mobile device, and (ii) infer fine-grained
human mobility trajectories during the associated movement intervals. The
validation on the ground-truth dataset showcases the superior performance of
TRANSIT (80% precision and 96% recall) with respect to state-of-the-art solu-
tions in the identification of movement periods, as well as an average 190 m
spatial accuracy in the estimation of the trajectories.

• An approach for the challenging problem of mapping cellular trajectories to
the multimodal transportation network at scale and in urban settings. The
latter is based on Hidden-Markov Model.

• A bunch of new large-scale applications such as the anonymization of OD-
matrix, the modeling of the COVID-19 propagation built on the use of mo-
bile phone data. These applications are made possible by the data-driven ap-
proaches proposed in this thesis and have not been or scarcely explored in the
literature of the field.

1.6 Manuscript Organization

The thesis is structured as follows :

Chapter 2 is dedicated showing the potential of mobile phone data as a source
of data to study human mobility. Preliminary approach based on the literature and
comparative analysis with surveys show that mobile phone data have a good poten-
tial to estimate travel demand at large scale.

Chapter 3 aims at overcoming the limitations discussed in Chapter 2. We propose
a novel framework TRANSIT capable of processing mobile phone data to accurately
distinguish mobility phases from stationary activities for individual mobile devices,
and reconstruct, at scale, fine-grained human mobility trajectories, by exploiting the
inherent recurrence of human mobility. With such approach we are able to study
human mobility at unprecedented spatio-temporal granularity

Chapter 4 builds upon Chapter 3. In this chapter, we develop a Hidden Markov
Model based map-matching approach to infer the exact path travelled by the sub-
scriber on the transportation network given its mobile phone trajectory. The ap-
proach is applied on the result of TRANSIT, i.e., the enhanced human mobility tra-
jectories extracted from mobile phone data from Chapter 3.

Chapter 5 uses the result of the approach from Chapter 3 to derive an aggre-
gated mathematical representation, a mobility tensor which is leveraged to infer ag-
gregated mobility patterns in a city. The proposed representation, which is data
agnostic, is applied on mobile phone data. The use of TRANSIT output allows to
derive these mobility patterns at unprecedented spatio-temporal granularity.

Chapter 6 proposes a non-exhaustive overview of applications that are unlocked
by the use of mobile phone data and the data-driven approaches proposed in this
thesis. The open challenges that still need to be tackled in future works are also
discussed.
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Chapter 2

Travel Demand Estimation at
Regional Scale and Comparison
with Surveys

As an entry point of this thesis, this chapter study the capability of existing ap-
proaches of the literature to estimate travel demand with NSD at large scale. Thus,
we develop a comparative analysis between the demand profile obtained with NSD
and those obtained with surveys. While encouraging, the results show spatio-temporal
biases that have to be tackled for inferring more accurately travel demand with NSD.
Based on this observation, we propose a simple yet effective approach for debiasing
NSD. The latter allowed to further analyze travel demand at finer granularity. Par-
ticularly, we extract travel demand patterns at regional scale with NSD. The results
obtained have been validated with surveys and external data sources.

The chapter is structured as follows. Section 2.1 discusses mobile phone data and
surveys as sources for studying human mobility. Section 2.2 presents the literature
on travel demand estimation with mobile phone data and its validation. Then, the
core of this chapter is presented in Section 2.3. This section includes the compara-
tive analysis between travel demand inferred with NSD and surveys, an approach
for debiasing NSD and finally extraction of travel demand patterns. In Section 2.4,
we discuss the results as well as the perspectives for the rest of this thesis. Finally,
Section 2.5 presents the conclusion of this chapter.

This chapter contains parts of the article [34]:

Fekih M., Bonnetain L., Furno A., Bonnel P., Smoreda Z., Galland S., Bellemans
T., (2021), "Potential of cellular signaling data for time-of-day estimation and spatial
classification of travel demand: a large-scale comparative study with travel survey
and land use data". In: Transportation Letters.
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2.1 Introduction

Spatiotemporal information about people movements are extremely valuable for hu-
man mobility analysis and transportation development purposes [11, 5]. Emerging
forms of data generated by pervasive communication systems such as cellular net-
works are offering new opportunities to track individual-level movements and en-
hance our understanding of travel behavior patterns [22, 96]. Indeed, mobile phone
records are characterized by a low collection cost since they are produced automat-
ically and passively by telecom operators. More interestingly, the existing network
mechanism provides continuous temporal and spatial information about individ-
uals’ whereabouts. Therefore, massive cellular network data provide a promising
source for acquiring information about travel demand, exploring the various factors
that might impact community travel flows and supporting long-term policy deci-
sions on large-scale mobility.

The traditional human mobility research relies on household travel surveys that
typically record one day of travel diaries per household. Yet, there are notable lim-
itations associated with the classical travel survey process [128, 105]. Collected sur-
vey data can be useful to capture cross-sectional snapshots of daily journeys. How-
ever, they do not allow considering fine-grained temporal analysis of e.g., the hourly,
weekly, or special-events related variability of individual trip flows [67].

Understanding the dynamics of human mobility patterns is a core notion in
transportation studies related to, e.g., traffic congestion management and transport
infrastructure planning [100, 134]. Among all possible human mobility patterns, dy-
namic origin-destination flows remain the most used by practitioners. A number of
studies have been conducted to extract this pattern using different forms of mobile
phone data. The majority of these studies have explored Call Detail Records, called
CDR, (i.e., billing data) and developed techniques to figure out temporal distribu-
tion of user trips in limited geographical areas. However, it has been shown that
these methods perform rather poorly, especially in urban zones, due to the very low
spatio-temporal resolution of CDR data [123, 140]. Moreover, few research works
have validated the results against external mobility data sources ([3, 14, 55]. Yet, the
validation process allows to identify possible biases and to have a clearer idea about
the potential of cellular data.

Fekih et al. [33] developed a full workflow to transform cell phone network
logs into individual trip flows and showed the potential of the method to gener-
ate static origin-destination flow matrices. Based upon this work, the focus here is
to explore network signalling data collected from 2G and 3G networks to extract dy-
namic travel patterns of mobile phone users within large-scale area. The aim of this
research is therefore to assess whether these massive signalling traces could act as
reliable data source to capture real-world temporal mobility behaviours.

As a case study related to the Rhône-Alpes region, France, we conduct a compar-
ative analysis of the hourly trip flows estimated via Fekih et al. on NSD approach and
those obtained from the latest travel survey performed in the same region. Along the
comparison, new techniques are introduced to cope with the spatio-temporal biases
detected in the signalling data-based demand estimation. Moreover, we leverage
the proposed methodology to capture groups of zones that consistently behave in
a similar way with respect to the emitted, estimated time-varying demand. To this
end, a spatial clustering process is applied resulting in identifying comprehensive
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different temporal demand patterns within the study area. Then, advanced analy-
ses are conducted by combining the obtained travel demand profiles with land use
data available in the observed region. That helps to highlight the correlation be-
tween land use characteristics and trip generation as well as to reveal meaningful
and significant dynamic mobility patterns of mobile phone users.

2.2 Related Work

Considerable efforts have been devoted to extract OD flows and estimating time-
dependent travel demand from cell phone communication logs. Significant attempts
have been made to study trip distribution differences over weekdays and weekends
[21], to generate O-D flows by purpose and time of day [3] and to reconstruct the
travel mode and flows in each link of the transportation network to perform traffic
assignment [116]. There have been several limited-scale research aimed at identi-
fying temporal movements in urban areas. In 2010, Ahas et al. [2] carried out a
research work using cell phone positioning data of a random sample of 277 respon-
dents. They analysed the diurnal rhythms of the city life and its spatial differences
in Tallinn, Estonia and showed that the majority of users had a similar temporal
rhythm. Kang et al. [59] proposed to study how mobility patterns inside eight cities
in China, are affected by the compactness and the size of the area. The results ob-
tained from CDR data analyses indicate that the distribution of intra-urban travel
follows the exponential law and that individuals living in large cities need to travel
farther on a daily basis. More recently, in Trasarti et al. [117], CDR data have been
used to extract interconnections between different city areas that emerge from cor-
related temporal variations of local population densities. In the same perspective,
study on the dynamic urban activity patterns and interaction between areas has
been performed in Dakar, Senegal [76]. The authors highlighted high interactions
between areas with similar land use characteristics. Based on activity-based mod-
elling approach, Widhalm et al. [127] have extracted activity behavioural patterns
based on trip departure time, activity types and frequencies combined with spatial
typologies and land use data. By leveraging CDR data, they applied the method
in the cities of Vienna and Boston showing similarities between conurbations. The
resulting trip chains and activity patterns match well with data from surveys even
though the inferred activity classes do not directly correspond to those of surveys.

Moreover, mobile phone data have been explored to generate traffic origin desti-
nation flows and estimate relevant temporal mobility metrics within different urban
areas. Following a trip-based approach, Gundlegard et al. [40] proposed a process
for dynamic travel demand estimation using two CDR datasets collected in Ivory
Coast and Senegal. They computed relevant mobility metrics such as route and link
travel flows and travel time. However, the derived estimations were not evaluated
due to the lack of validation data. The travel demand scaling for the full populations
of the two studied areas is not discussed. Similarly, Wang et al. [124] have studied
CDR data to estimate dynamic OD traffic flow and traffic demand by time-of-day in
the Kansas Metro corridor, US. They conclude that the used cell phone data would
be more suitable for long distance or inter-city trips’ extraction due to the low loca-
tion resolution. Notably, the travel demand dynamics of the whole population have
not been addressed in detail. Instead, most of the research have focused on dynamic
road traffic demand estimation by combining/validating cell phone data with avail-
able road traffic counts, which are only measuring vehicle traffic volume and not
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moving travellers during a time interval (Huang and Xiao 2018) [47].

Furthermore, the fundamental question on the representativeness and biases of
the analysed data is rarely discussed. Indeed, cell phone data have key attributes
that are different from travel surveys and which should be carefully interpreted
during the processing step. While the existing state-of-art research employs sev-
eral types of mobile phone data with different sample sizes and characteristics, they
still did not provide satisfactory rules to properly deal with these passive travel data
contents [68]. In fact, additional work is needed to implement adequate standards
and guidelines for data cleaning and processing. Also, more focus should be on ad-
dressing the intrinsic existing biases (e.g., sampling, temporal or spatial) and assess-
ing their impacts to address the concerns of transport modelers. Moreover, the ex-
pansion and evaluation of the results against external sources need to be addressed
extensively to fully check the relevance of estimations for travel demand prediction
and decision-making purposes.

2.3 Case Study : Lyon

The idea is to study to which extent NSD capture accurately the travel demand dy-
namics at regional scale compared to survey and extract meaningfull insights from
the data. One the one hand, the explored NSD dataset includes 2G and 3G signaling
records from June 2017 of over 2 million mobile phone users and covers the entire
Rhône-Alpes region in France. We have analyzed the 24-hour period data collected
from 1st June 3:00 am to June 2, 2017 3:00 am. Figure 2.1a presents the spatial dis-
tribution of 2G/3G cell towers and the administrative sector zoning considered in
the region. On the other hand, the regional travel survey, called EDR 2015, was con-
ducted in the Rhône-Alpes region between 2012 and 2015 (EDR-RA, Conseil régional
Auvergne Rhône-Alpes 2016). Specifically, 37,450 individuals, aged over 11 years,
have been surveyed, and 143,000 trips have been reported. The region has a popula-
tion totaling 5.2 million inhabitants aged over 11 years and covers an area of 43,700
km2. The survey sample has been constructed according to a geographical stratifi-
cation which corresponds to the 77-sector zoning system shown in Figure 2.1a.

2.3.1 Preprocessing Steps

The work developed in this chapter is built upon recent work made by Fekih et
al. [33]. The idea of their work is to transform raw network signaling data into dy-
namic OD-matrices. Their framework include 4 main steps:

• NSD filtering: this step aims at keeping data which are exploitable to analyze
human mobility. They analyzed the number of events per day generated by
the mobile phones. A mobile phone is removed from the dataset if its number
of events per day is lower than 4 (there are not enough events to perform trip
extraction) or if the number of events per day is greater than 1000 (such a high
frequency of event is not imputable to human behaviors, but very likely caused
by device anomalies).

• Home detection and resident filtering: for each user, the most frequent ob-
served cell tower is calculated and assigned to the corresponding sector. The
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Figure 2.1: Cell tower (2 G and 3 G) distribution and administrative sector zoning in
the Rhône-Alpes region with zoom on Lyon city

latter is considered as the home location zone of the user. Once the home detec-
tion done, all users whose home location is outside the study area are filtered.

• Trips extraction: first for each mobile device (user), the events are sorted by
timestamps and the coordinates of the antennas are mapped to sectors. Then,
the stationary activities of each user are identified as a set of consecutive events
observed at the same sector level based on a minimum stationary time thresh-
old. A trip, between two stationary activities, has a start time calculated as the
average between the last time timestamp of the event in the previous station-
ary activity and the first timestamp event of the next stationary activity. The
sector level associated to the previous stationary activity is the origin of the
trip and those associated to the next stationary activity is the destination of the
trip.

• Trips scaling: as the user samples involved in the signalling datasets represent
only a fraction of the population, therefore, the identified trips need to be prop-
erly scaled in order to be representative of the full population mobility. Using
the resident estimations obtained from home detection step, an expansion fac-
tor can be calculated for each filtered user as the ratio of the census population
and the number of residents estimated in his home sector

More details about this methodology can be found in the work by Fekih et al. [33]

In this study, we retain an activity time threshold of 30 minutes to detect trips. It
does not appear recommendable to consider time thresholds which are much lower
than 30 minutes, as multiple false-positive stationary detections may occur, yield-
ing false-positive trips. Also, given this assumption, we pre-processed the EDR data
and applied the same time threshold to make our comparison fair and realistic, by
considering trips taking place between activities with duration more than 30 min-
utes. It is worth recalling that the following analyses are based on signaling data
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(a) (b)

Figure 2.2: (a) Temporal demand profile (number of hourly trips generated from all
zones) from signaling data (SD) and survey data (EDR) and demand difference be-
tween EDR and SD (red bars when the hourly demand from EDR is higher than that
from SD and blue bars otherwise) (b) correlation between hourly demand estima-
tions from SD and EDR

collected during one typical working day -Thursday- which is traditionally consid-
ered (in transportation surveys) as representative of an average weekday. The anal-
yses are presented at sector level by removing the intra-zone trips, given our focus
is on inter-zone flows.

2.3.2 Travel Demand Estimation

Based on the above of mentioned methodology we are able to compute from NSD,
the temporal travel demand profile which corresponds to the number of hourly
trips generated from all zones. The temporal travel demand profiles for signaling
and survey data are shown in Figure 2.2a. As a first insight from our analyses, the
signaling-based demand profile exhibits less sharp morning and afternoon peaks
compared with the survey. The total demand observed from signaling data is thus
lower than the one reported in the survey, as shown in Figure 2.2b. This result could
be explained by the existence of a certain large fraction of users in our mobile phone
data, referred to as “static people” in the following, for whom it is possible to detect
the home sector but no trip can be observed, as the only stationary activity pro-
duced is performed at the home sector. The proportion of such static people in our
mobile phone dataset amounts to 46%. It is noteworthy that signaling data-based
travel demand is to some extent correlated to the number of events generated from
resident users. Therefore, even though a certain portion of static users could be ac-
tually stationary (e.g., elderly people), it appears highly likely that another large
portion of them could be mobile, but due to their very low mobile phone activity
(e.g., during morning hours), no associated trips have been identified. Such reduced
device usage patterns inevitably lead to an underestimation of the travel demand es-
pecially during morning period and requires a proper de-biasing procedure which
is further detailed in the next section. However, despite this underestimation, the
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hourly global demand profiles estimated from both data sources are highly corre-
lated (Pearson coefficient equal to 0.94) as shown in Figure 2.2b. This confirms the
fact that signaling data can provide a travel profile comparable to the well-known
typical demand profile for a working day.

After analysing the demand estimation difference between signaling and survey
data at temporal level, the difference between the demand emitted from each ge-
ographical zone has been studied. Figure 2.3a shows the number of trips emitted
from each sector (as the trip origin). For 45 sectors, the number of emitted trips is
higher when compared to survey (median relative difference of +0.20%). It is instead
lower for 32 areas (median relative difference of -0.21%). These differences can be
better interpreted by relying on the map shown in Figure 2.3c, which is a spatial rep-
resentation of the absolute difference between the demand generated by each zone
from mobile phone and survey data. The emitted demand estimated with mobile
phone data tends to be higher in rural areas and lower in urban dense areas. In rural
areas we can reasonably assume that signaling records provide more consistent esti-
mations, since long-distance trips from/to these areas are typically better-captured
with mobile phone passive data than surveys and for a larger sample of the popu-
lation (Janzen et al. [54]). Instead, in urban areas, it seems that the proposed trip
extraction method is unable to capture short-distance trips, which are expected to
occur with higher frequency in urban areas than in rural one. Indeed, it is not obvi-
ous to differentiate noise from short-distance trips with mobile phone data. Despite
such limitation, the total number of trips emitted by each zone based on cellular and
survey data remains highly correlated (Pearson coefficient equal to 0.86) as shown
in Figure 2.3b.

Figure 2.4a, representing the emitted demand difference per zone and per hour,
confirms the spatial and temporal bias previously observed. In the figure, zones are
sorted from left to right by decreasing density of urban land use, as retrieved from
the (CORINE Land Cover 2012) dataset. On the one hand, in highly-dense urban
zones (on the left of the Figure 2.4a), the demand is higher in survey compared
to mobile phone regardless of the hour of the day. On the other hand, the hourly
travel demand during the morning peak period is higher in the survey compared to
mobile phone regardless of the zone. These preliminary analyses let us identify a
“systematic” bias present in the data. In the following, we propose a heuristic-based
method to cope with these biases.

2.3.3 De-biasing Procedure

Based on the previous considerations on the biases present in signaling data-based
demand estimation in both spatial and temporal dimensions, two different approaches
have been proposed for mitigating such biases. Concerning the spatial correction,
Figure 2.4b shows that the emitted demand difference between survey and mobile
phone is abnormally highly-correlated to the urban density of the sectors. Specifi-
cally, the difference is much higher for denser urban areas compared to rural one.
This aspect can be interpreted as an underestimation of the urban area travel de-
mand in the case of the signaling data, due to the previously discussed difficulty
of such data in capturing short-distance trips (more likely to happen between ad-
jacent/smaller urban areas). In order to address this bias, we have thus applied
a spatial correction factor estimated per zone and calculated using the regression
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(a)

(b)

(c)

Figure 2.3: (a) Emitted demand per zone (each zone is described on the x-axis by its
sector ID). The zones are sorted (from left to right) in descending order of urban land
use percentage per zone. (b) Correlation between signaling data (SD) and survey
(EDR) emitted demand per zone and (c) heatmap of the emitted demand difference
per zone from SD and EDR
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(a)

(b) (c)

Figure 2.4: (a) Spatio-temporal distribution of the emitted demand difference be-
tween signaling data (SD) and survey (EDR) (b) correlation between emitted de-
mand difference (EDR – SD) and urban land use percentage per zone and (c) hourly
demand distribution of EDR and SD after application of the de-biasing procedure
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equation shown in Figure 2.3b:

DSurvey(x)− DSD(x) = 94835 ·Ula(x)− 7395 (2.1)

The expression of this factor is the following:

S(x) = 1 +
94835 ·Ula(x)

DSD(x)
(2.2)

where Ula(x), DSurvey(x) and DSD(x) represent respectively, the urban density (as
computed from land use data) and the emitted demand associated to each zone x
(as estimated from the signaling data). By applying this correction factor, we can
decorrelate this difference with respect to the urban density.

Concerning the temporal bias, it shall be noted that this phenomenon is often
observed in mobile phone data (e.g., especially in CDRs) and has been raised by
several researchers without being resolved [40, 56]. In our case, we have noticed
that the observed underestimation (i.e., between 5 and 9am) of the travel demand
also appears in the temporal distribution of LAU (events passively generated by the
device and not by explicit users’ communications, i.e., when changing the Location
Area zone). Also, the distribution of periodic events (e.g., LAPU) which implic-
itly reflect the active/idle behaviour, has been analysed. It shows that during the
early morning period [3-9am] the residents are notably less active, hence generate
less cell phone logs, with high number of LAPU events. In addition to that, users
usually tend to turn off their terminals during night period and until early hours of
the day. Therefore, we can reasonably assume that the observed underestimation of
trip flows is due to the low total volume of signaling traffic during morning peak
hours. To address this bias, a uniform correction factor has been applied on all mo-
bile phone-based trips with a start time estimated during and around the morning
peak period [5-9am]. This factor has been calculated as the ratio of the afternoon and
morning peaks in the LAU profile, allowing to consider the non-observed cell phone
transactions and extract the hidden information from them. Based on these consid-
erations, the applied temporal correction factor results equal to a value of 1.3. It is
important to note that the temporal correction is a de-biasing procedure totally inde-
pendent from the survey data (used for the comparative analysis), thus being easily
reproducible by solely relying on information collected by the mobile phone opera-
tor (i.e., the LAU events distribution). After applying both the spatial and temporal
correction factors to the trips reconstructed via network signaling data, the travel
demand profile has been recomputed in Figure 2.4c, which clearly exhibits higher
correlation with respect to the survey-based one.

2.3.4 Spatial Clustering and Travel Patterns Extraction

This study aims at extracting meaningful travel patterns of the residents’ OD trips
within the region and to analyse their dynamics during the day. By aggregating all
individual trips generated from each zone on the same time window, the temporal
demand profile emitted from each given area can be derived. Hence, in order to
identify the different existing mobility patterns through the region, an unsupervised
clustering method is proposed to group zones with similar travel behaviors. Thus,
a hierarchical agglomerative clustering is performed on the normalized hourly tem-
poral profiles of the 77 studied sectors. The normalization consists in dividing each
hourly volume by the total daily volume of the profile. The correlation coefficient
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has been used as similarity measure between profiles. Two indicators are computed,
i.e., the Silhouette [97] and Davies–Bouldin indexes [29], to decide the number of
clusters to select. These indicators are depicted in Figure 2.5. A good clustering
is heuristically associated to lower values of the Davies Bouldin and higher val-
ues of the Silhouette index. Therefore, according to such rules of thumb, several
cluster configurations have been analyzed (e.g., 3, 7 and 9), preferring in the end
the clustering associated to a choice of 9 clusters, that allowed us to discriminate a
larger number of finer-grained patterns (which corresponds to a local minimum of
the Davies Bouldin index and relatively high values of the Silhouette index). The
results were consistent among the different analyzed cluster configurations. Once
the clustering is achieved, each zone is characterized by its own temporal profile,
the cluster number and the average temporal profile of the cluster to which the zone
belongs to.

(a) Silhouette score (b) Davies Bouldin score

Figure 2.5: Distribution of clustering scores

Among the 9 clusters, we could distinguish 3 main clusters, each including at
least 18 zones, and 6 minor clusters with at most 2 zones each (zones in each clus-
ter represent trip origins). The map representing all these clusters is shown in Fig-
ure 2.6e.

The average temporal profiles, noted as “ATP” in the following, of the 3 main
clusters (2,4 and 5) as well as one minor cluster (6) are represented in Figure 2.6.
Based on these demand profiles, the following interpretations can be given:

• Cluster 2 represents rural areas. The ATP emitted by the related areas (Figure
2.6a) is composed of two peaks with a morning peak much higher than the
afternoon peak. Given that these rural areas are mostly residential and rather
unattractive in terms of business or leisure activities, we can safely state that a
large amount of people leave this cluster to reach working places at the morn-
ing peak and come back at the late-afternoon peak

• Cluster 5 represents urban areas. The ATP emitted by these areas (Figure 2.6b)
is composed of two peaks with an afternoon peak higher than the morning
one. These zones are both residential (high population density) and attractive
in terms of jobs and leisure. During the morning peak, these areas generate a
high number of home-work commuting trips within the cluster and to other
areas, but, at the same time, attract a significant amount of demand from the
surrounding areas that is supposed to leave the cluster (thus generating trips)
later on, at the afternoon/evening peak.
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(a) (b) (c) (d)

(e) Spatial distribution map of all sector clusters

Figure 2.6: Temporal demand profile of clusters 2 (a), 4 (b), 5 (c) and 6 (d). Spatial
distribution map of all clusters (e)

• Cluster 4 can be described as a mixture of cluster 2 and 5 in the sense that these
areas are mostly neither rural nor highly dense urban zones. In this case, the
ATP (Figure 2.6c) is more balanced with a morning peak slightly higher than
the afternoon peak (rather than the asymmetrical profile observed for cluster
2).

• The remaining clusters (1,3,6,7,8,9) have rather peculiar profiles compared to
the major clusters previously discussed. For instance, this appears evident
from the highly asymmetric ATP of cluster 6 (Figure 2.6d) with a major sig-
nificant peak during late afternoon. This cluster depicts a particular travel
behaviour of highly urban areas, which might be considered as specific cases
of the observations reported for cluster 5, mostly composed of urban areas as
well. Also, similar ATP has been identified for cluster 9 which is a single-sector
cluster including the whole city centre of Lyon.

Our previous conclusions on the nature of each cluster (i.e., rural, urban and
mixed), drawn from the interpretation of the emitted demand estimated via signal-
ing data, have been further validated using land use data retrieved from the Euro-
pean CORINE land use dataset. Figure 2.7 shows the distribution of land use per
cluster (i.e., percentages of cluster area covered by each specific land use). We con-
sidered 7 main categories of land use, i.e., urban, industrial, rural, sport/leisure,
transport, water and other. First of all, we can observe that, for all the major clus-
ters, rural areas cover the largest part of the cluster (even urban areas have a large
rural land use proportion) due to the rather large spatial extension of the analysed
sectors. However, the density of urban and industrial land use for clusters 6 and
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Figure 2.7: Land use coverage percentage per cluster. The clusters are sorted in
ascending order of urban land use coverage: the 3 main clusters are sorted separately
on the left

9 is significantly higher compared to the one of cluster 5, which is in turn signifi-
cantly higher if compared to the one of cluster 4. The land use analysis appears to
clearly corroborate the previously reported interpretations of the clusters and of the
associated reconstructed demand.

In order to verify the resulting mobility patterns within the region, we have com-
pared the ATPs estimated from signaling and survey data for the three main clusters
2, 5 and 4 (Figures 2.8a, 2.8c and 2.8e respectively) and the minor cluster 6 (Figure
2.8g). The patterns derived from the two sources of data well agree in terms of Pear-
son coefficients (between 0.89 and 0.96) shown in Figures 2.8b, 2.8d, 2.8f and 2.8h.
For high urban areas (cluster 5 and 6), signaling-based estimations are slightly lower
than those estimated from survey at afternoon peak, but they properly preserve the
specificity of the distribution shape. For mixed (cluster 4) and rural (cluster 2) areas,
cell phone-based estimations well match those from survey with slight differences
at morning peak. These results confirm that signaling data can act as a good sensor
and solve the sampling rate problem of surveys in large mixed and rural areas, if
properly de-biased. Also, we notice that, for all clusters, signaling data provide less
sharp curves in the proximity of the midday period, while survey data depicts con-
siderable peaks centered at noon. Since the analysed flows consist of only inter-zone
trips and the individual movements during the lunchtime period are more likely
to be short (or very short) distance trips (i.e., intra-sector trips), the signaling data-
based pattern (with rather a flat curve) surrounding this time window (11am-2pm)
seems to be more relevant and realistic than the one observed via the survey. There-
fore, the overall resulting observations show that the cellular signaling data can cap-
ture unknown and more reasonable flow patterns specifically for low density and
large-scale areas where accurate travel data are often not available.

2.4 Discussion

For decades, traditional approaches such as travel surveys have been the major
source of information for transportation planners to estimate trip flows, necessary
for calibration and simulation of transport models. These travel surveys, although
providing rich socio-demographic details about the respondent and his/her trips,
suffer from several drawbacks such as limited sample size of involved individuals,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.8: Comparison of average temporal demand profiles from signaling data
(SD) and survey (EDR) and correlation between the hourly demand estimations after
application of the correction for (a, b) cluster 2 (c, d) cluster 5 (e, f) cluster 4 and (g,
h) cluster 6

the high deployment costs and, subsequently, the low frequency of the gathered
information making them rapidly outdated and inappropriate for dynamic travel
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behavior studies.

This study has demonstrated the feasibility and the potential of using cellular
signaling data to track individual trips over a large-scale geographical area, to de-
rive the travel demand by time-of-day and extracting relevant mobility spatial pat-
terns. It thus represents an advanced step toward building a convenient framework
to leverage rich mobile phone data for travel demand modeling purposes that could
be used as an alternative to traditional surveys.

While promising, the obtained results have some limitations. First of all, due
to the method applied to detect trips (Fekih et al. [33]), travel demand inference
can not be done with fine spatial granularity. Indeed, small zone sectors would
make the stationary activities detection even more difficult and as a result increase
the spatial bias. This phenomenon has been previously discussed in Section 2.3.3.
Moreover, the approach without debiasing has still significant error, the error could
be reduced with more refined approach. Finally, the preprocessing approach stud-
ied in this chapter does not allow to retrieve important information about human
mobility such as the destination of the trips, the trajectory of the user during his trip.
The encouraging results related to the use of NSD for travel demand estimation as
well as the above mentioned limitations, motivated the work done in Chapter 3.

2.5 Conclusion

This chapter introduces a framework to process cellular network signalling data for
estimating accurately travel demand patterns. The framework relies on preliminary
data pre-processing and filtering steps in order to only retain data that are useful for
the extraction of pertinent mobility information. Then, by analysing signalling data
of 2 million mobile phone users, we show that NSD is feasible to robustly extract res-
idents’ trips and estimate the hourly trip distribution throughout the studied region,
on the condition that spatio-temporal biases of cell phone signalling transactions are
properly detected and removed. Finally, by clustering the trip flows based on the
temporal profile of the emitted demand of each zone and matching them with offi-
cial land use data, we also unveil interesting and relevant heterogeneities in dynamic
travel demand patterns related to trip production zones. In this study, results were
obtained by exploring signalling data covering a large territory of about 44,000km2
including different socio-demographic and economic zone profiles. The evaluation
performed on both the temporal and the spatial dimensions show that the resulting
travel demand profiles strongly match to those obtained from travel survey data,
with correlation coefficients higher than 0.9. This confirms that signalling data can
be effectively exploited as a good proxy for population mobility estimations. Thus,
such data should be acknowledged as a valuable cost-effective mobility data source,
especially in the case of territories where accurate mobility data are not available or
hard to collect via surveys or dedicated traffic probes and sensors. Moreover, we
were able to identify significant correlations between mobile phone-based dynamic
patterns and land use profiles. Very dense urban zones are characterized by a high
afternoon peak, while low density areas depict a rather high morning peak. Besides,
in the rural and mixed/suburban zones, cell network signalling data exhibit signifi-
cantly higher trip flows and more reasonable patterns than survey data.
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Chapter 3

Trajectory Inference at Scale

In this chapter, we present TRANSIT, TRAjectory inference from Network SIgnal-
ing daTa, a new framework capable of processing NSD to accurately distinguish
mobility phases from stationary activities for individual mobile devices, and recon-
struct, at scale, fine-grained human mobility trajectories, by exploiting the inherent
recurrence of human mobility and the relatively high sampling rate of NSD. The
validation on a ground-truth dataset of GPS trajectories showcases the superior per-
formance of TRANSIT (80% precision and 96% recall) with respect to state-of-the-art
solutions in the identification of movement periods, as well as an average 190 m
spatial accuracy in the estimation of the trajectories. We also leverage TRANSIT to
process a unique large-scale NSD dataset of more than 10 millions of individuals
and perform an exploratory analysis of city-wide transport mode shares, recurrent
commuting paths and the construction of mobility tensor. TRANSIT aims at over-
coming, at scale, the main limitations of NSD.

The chapter is structured as follows. Section 3.2 provides the problem that this
chapter tackles. Section 3.3 and 3.4 present respectively the related works and the
mobile phone dataset collected. Then, our framework TRANSIT as well as state of
the art approaches are described in Section 3.5, followed by the validation of TRAN-
SIT and discussion in Section 3.6. Section 3.7 studies the properties of the proposed
framework and Section 3.8 presents some new human mobility applications that
TRANSIT make possible. Finally, Section 3.9 and Section 3.10 present the conclusion
with suggestions for future research directions.

This chapter contains parts of the article [16]:

Bonnetain L., Furno A, El Faouzi N.-E., Fiore M., Stanica R., Smoreda Z., Ziem-
licki C., (2021), "TRANSIT: Fine-grained human mobility trajectory inference at scale
with mobile network signaling data". In: Transportation Research Part C: Emerging
Technologies.

Patent:

Bonnetain L., Furno A, El Faouzi N.-E., Fiore M, (2021), "Détermination de trajec-
toires à partir de données de téléphonie mobile". Patent number: FR2107437. France.
Deposed July 8, 2021.



28 Chapter 3. Trajectory Inference at Scale

3.1 Notation for this chapter

Symbol Description

i Generic mobile device, also referred as user.

T i Temporally sorted set of NSD events of mobile device i.

Ni Number of NSD events in T i .

ei
n The nth NSD event recorded for device i.

ci
n Generic antenna of the mobile network where mobile device i is attached when ei

n is
recorded.

ti
n Timestamp of the instant when ei

n is recorded.

li
n Location of the antenna that handled ei

n, expressed in terms of (latitude, longitude)
coordinates.

Tw Minimum cumulated time for an antenna to be labeled as static (tunable parameter: a default
value of 20 minutes is used).

ai
k Generic static activity session of device i, i.e., maximal set of consecutive events only associ-

ated to static antennas.

Ai Set of all static activity sessions across the whole observation period [ti
0, ti

N−1] of device i.

No Maximum number of unique antennas, associated to events recorded after the end of ai
k

and before the beginning ai
k+1, required for merging ai

k and ai
k+1 in one single static activity

session (tunable parameter: a default value of 2 is used).

Ts Minimum duration of a static session (tunable parameter: a default value of 20 minutes is
used).

mi
h Generic mobile session (i.e., trajectory) of device i defined as the maximal set of consecutive

events not belonging to any static activity session, after their merging process. It includes
the last static event of the preceding static session, if any, and the first static event of the
following static session, if any.

Mi Set of all mobile sessions across the whole observation period [ti
0, ti

N−1] of device i.

Mi
R Set of trajectories from Mi that are classified in a cluster by DBSCAN and identified as

recurrent by TRANSIT.

M̂i
R Set of recurrent trajectories fromMi that are spatially augmented by TRANSIT.

Mi
O Set of unique trajectories fromMi that are classified as outliers by DBSCAN and left spatially

unmodified by TRANSIT.

M̂i Final set of trajectories retrieved by TRANSIT corresponding to M̂i
R ∪Mi

O.

dH(., .) Hausdorff distance.

d(., .) Geodesic distance.

Ds Maximum distance allowed between pairs of static positions in the DBSCAN clustering en-
suring consistency in the location of events belonging to a cluster of static activity sessions
(tunable parameter: a default value of 0.15 km is used).

Dm Maximum distance allowed between pairs of mobile trajectories in the DBSCAN clustering
process aimed at grouping trajectories with similar spatial geometries (tunable parameter: a
default value of 2.5 km is used).

Table 3.1: Chapter 3’ specific notations
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3.2 Introduction

The preprocessing approach presented in the previous chapter as well as most of
the works in the field take for granted the intrinsic limitations of mobile phone
data: large spatial error, sparsity in time and oscillation effect. To overcome these
limitations, they often rely on coarse aggregation along both temporal and spatial
dimensions for deriving mobility information at macroscopic scale [33, 49]. These
approaches seem not to leverage the full potential of mobile phone data for estimat-
ing human mobility, and, in particular the repetitive nature of human mobility with
its associated consequences on a user’s signalling activity.

Instead, an idea would be to reconstruct mobility information at individual level
as fine as possible. Our rational is the following: if the mobility can be better esti-
mated at individual level, the resulting aggregated mobility could be estimated at
finer spatio-temporal scale. The aim of this chapter is twofold. On the one hand,
we want to develop an approach able to tell apart movement intervals from station-
ary activity periods for each mobile device. This step is fundamental for estimating
travel demand with mobile phone data and for instance, is also required before ap-
plying map-matching approach. On the other hand, for unlocking the potential of
mobile phone data, we aim at developing an approach which overcomes the two
main limitations of NSD: sparsity in time and large uncertainty error.

One original research direction that we have explored to solve the second prob-
lem is to exploit the repetitive nature of human mobility for improving in space and
time the mobile phone trajectories. Indeed, in her mobility routine, the same individ-
ual who is performing many trips between two given locations over time, generally
follows very similar paths. This creates redundancy in the mobility information that
can be used to increase the spatio-temporal accuracy of the trajectories.

3.3 Literature Review

In the last two decades, CDR have been at the core of a large corpus of research
related to reconstructing human mobility from large-scale passively collected data.
These works have traditionally targeted the estimation of travel demand [7, 116, 18],
[54], [26], the construction of signatures for automated identification of land use and
urban fabrics [36, 115], the analysis of urban dynamics [83], the estimation of pop-
ulation density [62] and patterns discovery in human activities [38, 55]. However,
despite their potential, CDR present inherent spatio-temporal biases and sparsity
that have impeded their universal adoption for operational purposes related e.g., to
city planning and transportation. Conversely, research has flourished around the
challenges aimed at improving the quality of CDR-based approaches [140] for hu-
man mobility reconstruction and modelling.

Concerning the temporal dimension, several approaches have been proposed to
exploit the repetitive nature of human activities, which can be captured via a suffi-
ciently long observation of the same user over time. The general idea is to recover
information from multiple observations of the user’s communication activity and
thus increase the generally low frequency at which mobile phone traces are normally
available. Such methods are traditionally based on machine learning techniques [24]
and rely on custom spatio-temporal distances to detect trajectory similarity [71].
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Regarding the spatial dimension, the geographical information associated to CDR
usually comes only in the form of the coordinates of the base station to which the
user is associated when a mobile phone event is issued and logged. Traditionally, the
geographical area assigned to each base station is roughly determined via Voronoi
or other regular (e.g., grid-based) tessellations of the mobile network topology and
elected as the user’s position whenever an event is logged at that base station. As a
result, in the most traditional case of a Voronoi tessellation, the spatial resolution of
CDR only depends on the density of base stations, ranging from hundreds of meters
at best in dense urban areas to several kilometers in rural ones. Another important
issue affecting both the spatial and the temporal dimension of CDR is represented
by the oscillation phenomenon that traditionally characterizes cellular communi-
cations [129]. Since user association in mobile networks follows operator-specific
schemes based on dynamic metrics such as received signal power or base station
load, oscillations can easily take place between two or more antennas, even in the
absence of an actual mobility of the user. These characteristics add noise to the lo-
calization information that can be inferred from CDR data and make extremely hard
the task of reliably discriminating between static and mobile sessions with CDR [60].

In the following, we focus on two approaches recently proposed in the literature
to overcome location-related limitations, that represent the most related proposals
to our problem. Wu et al. [129] propose a framework, called DECRE, to remove
oscillations from CDR and reduce spatial uncertainty for enhanced human mobility
modeling. To that purpose, the authors adopt a heuristic-based approach composed
of three major steps, namely detect, expand and remove. The rational behind this ap-
proach is to remove oscillations assuming that the antennas causing oscillations are
noise events that tend to reduce the spatial accuracy of the trajectory. The approach
is presented in detail in Section 3.5.1.

A different strategy has been proposed in [27] and later improved by Bachir et
al. [7], and applied to both a simple CDR dataset and a second one containing CDR
enriched with location update events (a type of traffic control generated on the mo-
bile network when a user moves over medium to long distances). Instead of filtering
out the oscillations directly, the authors argue that these oscillations can be used to
infer with increased accuracy user locations, by assuming that, if oscillations occur,
the user should be, by triangulation, in the barycenter of these oscillation anten-
nas. The approach, named Cumulative Weighted Moving Average (CWMA), consists
in smoothing each mobile phone position by computing a weighted barycenter of
all the consecutive antennas the user connects to within a given time-window. In
particular, Bachir et al. [7] exploit the CWMA technique to segment the sequence
of mobile phone events generated by a given user into a set of mobile and static
sessions. This approach is presented in detail in Section 3.5.2.

Other approaches, tested on small samples of mobile phone data, aim at reducing
the spatial inaccuracy by relying on map-matching methods [6, 15]. These methods
match sequences of mobile phone events from the operator network to the nodes and
edges of the transportation one, by relying on hidden Markov modeling. Despite
promising results in terms of spatial accuracy, the computation time for processing
a single mobile phone trace in urban environments with a dense transportation net-
work is extremely high, thus making these approaches hard to scale to city-wide
populations of mobile phone users. Some solutions, e.g., [116], manage to assign
trips extracted from CDR to the transportation network at scale, but require exter-
nal information and assumptions, such as a route choice model. In addition, these
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approaches can be used in combination with preprocessing approaches aiming at
improving the spatiotemproal accuracy of the mobile phone trajectories.

Some types of network signaling data have also been used in the literature. Ahas
et al. [1] use Positium, an active data collection tool, which allows them to control
the temporal granularity in their dataset. However, such tools are not commonly
deployed by network operators and they are more intrusive from a privacy point of
view than passive approaches that simply log the user activity. Janecek et al. [53]
use handover and location area update information for travel time estimation and
map matching on the highway network. However, all these approaches tend to ex-
hibit low performance in urban environments with a dense road network, due to
the large set of similar alternative paths and low-resolution of the spatial informa-
tion that is directly derived from the location of the antennas in the cellular network.
Leontiadis et al. [70] achieve better results, but on a small mobile network signaling
data, recorded by a smartphone application on a few tens of users. Recent studies
included information regarding the user data connections [139] or even information
regarding the increasingly popular machine-type communications [85], but without
focusing explicitly on human-centric mobility. Zhao et al. [138] use large scale Inter-
net access data and propose a machine learning approach to detect public/private
transportation mode.

Very recently, some authors have started harnessing the potential of large-scale
Network Signaling Data for different purposes. Qin et al. use NSD for sensing traffic
conditions in urban networks [91] and making individual cellular usage prediction
[90]. In [137], Zhao et al. compared different mathematical-based human mobility
models from the literature by using NSD as ground truth. Such a study allows to
improve the understanding of human mobility as well as providing tools for the
simulation of mobility at both individual and population levels. In the literature,
there are almost no works that aim at solving the spatiotemporal limitation of NSD.
The only exception is the recent work by Song et al. [104]. The authors propose
MIFF (Multi-Information Fusion Framework), a tool that leverages similar mobility
patterns of individuals as a preliminary step before performing a map-matching of
NSD to derive personal trajectories. There are some main limitations in this work.
The approach has not been applied on large scale NSD. Thus, the scalability of MIFF
is not demonstrated yet. They do not propose any trajectory segmentation approach
as we aim to do in this chapter. Finally, as many works in the field they applied
noise filtering as [129]. Instead, our idea which is original and counter intuitive
is to use oscillation as triangulation for improving the spatial accuracy of the NSD
trajectories. The rational behind our approach is presented in detail in Section 3.5.3.

3.4 Data Collection

The Network Signaling Data (NSD) used in our study were collected in the pro-
duction infrastructure of Orange, a leading mobile operator internationally and the
largest telecommunications provider in France. The content of NSD have already
been presented in Section 1.3 from Chapter 1. We next present the data collection
process, in Section 3.4.1, and then investigate their statistical properties, in Sec-
tion 3.4.2. We provide a comparison of NSD against other mobile network data
sources in order to contextualize our framework, and broaden the understanding of
NSD, whose adoption is still at early stages.
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Figure 3.1: Examples of inference of one trajectory of a volunteer from (a) CDR, (b)
NSD, and (c) our NSD-based TRANSIT approach.

3.4.1 Large-Scale Data Collection and Ethical Considerations

The NSD used in our work cover all Orange subscribers observed in two major
metropolitan areas of France, i.e., Paris and Lyon; in the following, the NSD datasets
in the two cities are denoted by DP and DL, respectively. The resulting total user
base tallies to over 10 millions of individual mobile subscribers identifiers (IMSI)
and over 3 millions of estimated residents in the two considered cities. The data
were gathered during three consecutive months in 2019, from March 15th to June
15th, including more than 150 billions of logged events overall, observed on a mo-
bile phone network including more than 4,600 antennas. More details on theDP and
DL NSD datasets are reported in Table 3.2.

The data from the Orange network probes used in this work were collected as
part of the CANCAN - Content and Context based Adaptation in Mobile Networks col-
laborative research project founded by the French National Research Agency (ANR).
The collection of this personal data has been authorized by the Data Protection Of-
ficer (DPO) of Orange according to article 89 of the General Data Protection Regula-
tion (GDPR)1, which provides an exemption for research, in particular for scientific
and research purposes. The data were collected and processed exclusively on the
Orange Labs secure Big Data platform. The data were pseudonymized and stored
in a private directory in a server located in the operator premises, and accessible
only to authorized researchers. All source data were deleted 12 months after the
collection.
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Figure 3.2: CDF of inter-event times recorded in NSD, CDR, and CDR+. The plots
refer to (a) median, and (b) average times per user.

3.4.2 Comparison with Other Mobile Network Data Sources

The assortment of situations (i)–(vi) captured by NSD is much wider than the sole
call- and text-related events in (i); this naturally leads to a much higher sampling
frequency of the locations of devices (hence, users) over time in NSD with respect to
traditional CDR. Below, we investigate the added accuracy of NSD along the tem-
poral and spatial dimensions. NSD is a much more recent data sources investigated
by the research community compared to CDR. Thus, it is important to discuss the
differences between these data along the spatial and the temporal dimensions.

Temporal Accuracy

A quantitative inspection of the increased temporal accuracy of NSD is provided in
Figure 3.2. The two plots present Cumulative Distribution Functions (CDF) of the
time between subsequent NSD events; specifically, the distributions are computed
over the (a) median and (b) mean inter-event time recorded for each device, hence
they provide a fair view of the statistics across the observed population. We also
report equivalent CDF obtained using other kinds of mobile network data: (i) CDR,
which, as already mentioned, only capture voice and texting communication events
in (i), and (ii) CDR augmented with LA (Location Area) and TA (Tracking area)
update events in (iii), which we term CDR+. The rationale is that CDR are the most
widely adopted source of data from mobile networks, whereas CDR+ have been
previously used for human mobility trajectory inference in the literature [9]. We
directly extrapolated CDR and CDR+ from the available NSD database, by simply
retaining only the spatiotemporal samples generated by the events that are captured
by such data sources (i.e., types (i), and (i)+(iii), respectively), while filtering out the
information associated to all other network event types.

The distributions in Figure 3.2 yield a number of interesting observations. NSD
grants a median inter-event time below 1 minute for 90% of the users, while that fig-
ure grows to 5 minutes for CDR+ and over 30 minutes for CDR. Per-user averages
that are biased by long inactivity periods highlight even more the difference be-
tween the data sources: NSD keeps averages below 15 minutes for 90% of the users,
whereas CDR+ and CDR record mean inter-arrivals of up to 1 hour and 3.5 hours

1https://gdpr.eu/tag/gdpr/
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City Lyon Paris

Dataset DL DP

Area (km2) 1,506 5,784

Number of antennas 646 3,972

2G events (·106)
Nb IMSI 1.7 5.9
Nb events 83 850

3G events (·106)
Nb IMSI 2.8 6.5
Nb events 1,470 10,166

4G events (·106)
Nb IMSI 2.9 6.1
Nb events 20,994 116,461

Table 3.2: Statistics on the large scale network signaling data

for the same user fraction. Similar considerations hold for users with very hetero-
geneous levels of network activity, as the CDF remain neatly separated across the
whole domain in abscissa. The conclusion is that NSD ensure a sampling rate in-
crease of more than one order of magnitude with respect to CDR and of a factor 5
over CDR+. Importantly, these results are fairly uniform over the considered popu-
lation.

Spatial Accuracy

NSD do not bring any advantage over other classes of mobile network positioning
data in terms of the absolute spatial accuracy of each location sample. As a matter of
fact, NSD, CDR, CDR+, and any other network data types, are collected on the same
radio access network infrastructure: therefore, the locations used to geo-reference
the events are those of a matching set of base stations to which mobile devices as-
sociate over time. To prove our point, we run experiments with ground truth GPS
data collected by a small set of volunteers, described in detail later in Section 3.6.
For each volunteer, we compute the distance between the location of the antenna as-
sociated to all generated network events and the corresponding GPS position at the
time. Repeating the process for all CDR, CDR+ and NSD events yields very similar
average distances, between 0.26 and 0.28 km, in the three cases.

However, NSD provide a much more accurate spatial representation of the trajec-
tory as a whole, as a direct consequence of the increased sampling rate. This is clearly
shown in plots (a) and (b) of Figure 3.1 for a single trajectory, as well as in plots (a)
and (b) of Figure 3.4 for multiple trips of a same user. These figures highlight the ca-
pability of NSD to capture individual mobility patterns in a much more exhaustive
way compared to CDR. The unprecedented spatiotemporal resolution of NSD is at
the basis of TRANSIT.

3.4.3 Impact of the Radio Technology

An important aspect of the data employed for our study is that it covers three gen-
erations of cellular network technologies. This lets us investigate the relevance of
events generated by 2G, 3G, and 4G events on the accuracy of the positioning data.
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Table 3.2 breaks down the number of unique devices observed under each tech-
nology, as well as the number of events recorded, separately reported for the two
large-scale datasets related to Paris and Lyon, DP and DL, respectively. The fig-
ures evidence how the number of users that can be monitored by the three radio
access technologies is comparable, and partially overlapping. However, the sets of
geo-referenced NSD collected for the monitored devices is completely different: the
number of events grows by more than one order of magnitude when moving from
one cellular generation to the next.

While this is a clear result of the increased consumption of mobile services and
associated growth of mobile data traffic that newer network technologies support, it
further distinguishes our study from the many previous works that date back to the
2005-2015 period, and that could only rely on limited 2G and 3G data.

3.4.4 Small Scale Data Collection

Besides, the large scale NSD provided by Orange, we launch another experiment
for overcoming the above mentioned limitations of the first ground truth dataset.
The trajectory data used in our validation was collected by four Orange subscribers
who voluntarily agreed to be monitored by a GPS tracking app installed on their
smartphones, and who provided informed consent for their NSD to be extracted
from the network operator database before pseudonymization and employed for
the purpose of this research. For the sake of the experimentation, we developed
a GPS tracking smartphone app called LicitGPSLogger downloadable on the play
store 2. Once gathered, all data were in any case pseudonymized, and accessed by
authorized personnel of the research team only. The combined GPS and NSD data
of the four users, denoted as A, B, C and D in the following, were collected during
a continued period of three months, March 15 and June 15 2019, in the city of Lyon,
France. We stress that size of the volunteer set, although limited, is aligned with
that of state-of-the-art studies [104], with respect to which we collect a much larger
number of human trajectory samples.

The dataset of GPS locations, named EGPS in the following, contains GPS data
collected via a custom Android application installed on the volunteers’ personal mo-
bile phone, so as to track their movements with high resolution and in a continued
manner during the observation period. For battery saving purposes, GPS data have
been collected with a sampling rate of 5 seconds. Due to the higher spatial accuracy
(in the order of meters) and temporal granularity (order of seconds), we employ
EGPS as ground truth information about the mobility of the users.

The NSD dataset, named ENSD in the following, contains all network signaling
events associated to the mobile devices of the four voluntaries, across 2G, 3G and
4G technologies. We highlight that (i) all volunteers were Orange subscribers at the
time of the data collection campaign, and (ii) their were explicitly invited to main-
tain their regular mobile communication and service consumption habits during the
measurement period. This limits biases, and we indeed observe that A, B, C and
D have fairly heterogeneous profiles in the way they use mobile network services:
Figure 3.3 shows that the median and average inter-event times in their NSD fall
between the 60th and 93th percentiles of the distributions for all users in the DP and
DL datasets that capture all subscribers in Paris and Lyon.

2https://play.google.com/store/apps/details?id=fr.licit.gpsloggerhl=frgl=US
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Figure 3.3: CDF of inter-event times recorded in NSD for the large-scale datasets
DP and DL (solid curve), and corresponding values for the voluntary users in the
validation datasetENSD. The plots refer to (a) median, and (b) average times per
user.

Overall, the validation datasets EGPS and ENSD provide corresponding GPS and
NSD data for over 900 hours, and encompass over 300 ground-truth trajectories of
the four volunteer users. Such ground-truth trajectories were identified by first ap-
plying a recent segmentation approach for spatiotemporal GPS data [60] to EGPS,
and then having the volunteers verify the resulting movement patterns via visual
inspection.

3.5 Trajectory Identification, Augmentation Frameworks

3.5.1 DECRE

Wu et al. [129] have built an algorithm called DECRE: Detect, Expand, Check and
REmove. This approach is a 4 steps heuristic based approach aiming at finding and
removing oscillations in the mobile phone data. By removing outliers, the approach
is able to improve to spatial accuracy of the NSD trajectories. The following concept
have to be defined before describing the method.

Definition 1 (Stable period) Given a sequence of events (E1, E2, . . . , En) emitted by a
mobile phone ordered by datetime and (A1, A2, . . . , An) the corresponding sequence of an-
tennas, the same-cell sequence are the continuous sequences of events where the antenna is
unchanged, i.e, A1 = A2 = · · · = An. The duration of the same cell sequence is the time
duration from the time of the first event to the time of the last event of the same-cell sequence,
i.e, TDE1,En . If the time duration of a same cell sequence is long enough (e.g, longer than a
threshold L), the sequence is labelled as stable period.

First, for detecting the oscillation, 4 heuristics have been used. First, if the time
difference between two stable periods is lower than a threshold T1 (heuristic 1) then
the intermediate events are labelled as oscillations. Then, if the time difference be-
tween an event and the last event of a stable period is lower than a threshold T2 and
the distance between these two events is higher than a threshold D2 then the event
is also labelled as oscillations (heuristic 2). The third heuristic, prevent the mobile
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phone trace from having abnormal jumps with unrealistic speed, can be expressed
as follows:

(VAi−1,Ai > V) ∧ (VAi ,Ai+1 > V)

∧(DAi−1,Ai > D3) ∧ (DAi−1,Ai > D3) ∧ (DAi−1,Ai+1 >
D3

2
)

(3.1)

Where V is a threshold for speed and D3 a threshold for distance. If for the index i
this condition is satisfied then the corresponding event is considered as an oscillation.
The last heuristic is the following : if within a short period of time T4, there are at
least Ne events from at least Na antennas then the corresponding events are labelled
as supsicious sequence

The second step is called expand. Given a suspicious sequence, the authors ex-
pand the sequence by looking at most T4 minutes before the suspicious sequence
and at most T4 minutes after the suspicious sequence. The look-back (or look-after)
process stops when it encounters a log whose cellular tower did not appear in the
suspicious sequence.

The third step aims at checking whether each suspicious sequence contains a cy-
cle. If it does not, they remove the suspicious sequence label for the events belonging
to this sequence.

The last step is remove. The events that have been labelled as oscillation from
heuristic 1,2 and 3 are removed. Concerning the heuristic 4, for a given suspicious
sequence, each cellular get a score which depends on its frequency in the sequence
and its average distance to other antennas appeared in the sequence. The events
corresponding to the antenna which get the highest score are kept, the others are
removed.

More information about the approach can be found in Wu et al. [129]. We have
implemented this method with the following parameters: T1 = 2min, T2 = 1min,
D2 = 5km, D3 = 2km, V = 200km/h, T4 = 1min, Ne = 3 and Na = 2.

DECRE has several limitations. By removing events, the approach tends to im-
prove spatial accuracy but reduce the temporal granularity of NSD trajectories. The
approach does not leverage the repetitive nature of human mobility. In addition,
DECRE does not contain any trajectory segmentation approach. Finally, removing
oscillations is not the best strategy for improving the spatial accuracy of NSD as we
show in Section 3.6.2.

3.5.2 CWMA

The approach CWMA used in [7, 27] is based on the following idea. Due to mobile
network operator management, the position of the antenna does not always reflect
the position of the user, the closest antenna is not automatically the one which the
mobile phone user connect. The underlying assumption is that if user keeps con-
necting to a single antenna this is very likely that this is the closest antenna of the
actual user position. Otherwise, if the device oscillates between several nearby an-
tennas, this reveals that the real device position is probably between the oscillating
cells. This filtering approach is computed as follows. Let’s consider a sequence of co-
ordinates: (x1, x2, . . . , xn) of the antennas which a mobile phone has been connected
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at times (t1, t2, . . . , tn). The authors propose to calculate a smoothed positions of the
user, denoted by (y1, y2, . . . , yn) as following :

yi = ∑
j∈Bδ(i)

w(j) · x(j) (3.2)

With Bδ(i) =
{

j,
∣∣tj − ti

∣∣ < δ
}

, where Bδ(i) denotes the indices of the events emitted
the mobile phone within a maximum interval δ from the current time ti of the event.
The weight wi is computed as follows :

wi = 1−
∣∣tj − ti

∣∣
δ

(3.3)

Where i is the index of the index which the coordinate is smoothed.

This method has been implemented by Bachir et al. [7] with δ = 8min. It is this
approach with parameter settings used by Bachir et al. that we have implemented in
this study.

However, CWMA has two main limitations: firstly, the moving average smooth-
ing tends to excessively distort the reconstructed trajectories; secondly, both of the
approaches proposed in [7, 27] do not take into account the existence of high regu-
larity in human movements, and consequently in mobile phone events.

3.5.3 TRANSIT

In this section we present the approach we develop, i.e., TRANSIT. The perfor-
mance of the approach will be compared to above mentioned frameworks in Section
3.6.1 and 3.6.2. The rationale behind TRANSIT is to leverage the inherent regu-
larity of individual mobility, in combination with the high temporal resolution of
NSD, to reconstruct the fine-grained mobility of individuals in urban areas. Pre-
vious works have already identified the high regularity that characterizes human
movements [102, 98], and possibly used it to help coarse mobility inference at, e.g.,
hourly resolution [23]. Indeed, regularity is already visible with the CDR employed
in such earlier studies, as exemplified by Figure 3.4a. Yet, NSD provide a much more
accurate perception of individual movement regularity, as illustrated in Figure 3.4b,
which TRANSIT takes advantage of.

Our framework receives as input the set of NSD events of a mobile device i de-
noted by T i = {ei

1, . . . , ei
n, . . . , ei

Ni
}, where ei

n is the nth NSD event recorded for device
i. Each NSD event is the result of a communication activity between a mobile de-
vice and a base station antenna of the telecommunication network, across all 2G, 3G
and 4G technologies; it is defined as a tuple ei

n = (ci
n, ti

n), where ci
n is the antenna

at location li
n that handled the network event, and ti

n is the timestamp of the instant
at which the event was recorded. The NSD events in a mobile phone trace T i are
ordered by their timestamps ti

n, and Ni denotes the number of events for device i.
Then, TRANSIT processes T i to produce two outputs in succession, as follows.

• Trajectory identification. The framework labels each NSD event ei
n ∈ T i as either

static, if the user i is deemed to be engaged in an activity at a same location at
the event time ti

n, or mobile, if i is performing a movement at ti
n. The labeling

factually allows telling apart the continuous time intervals during which an
individual is moving or not, and building a setAi of static activity sessions and a
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Figure 3.4: Sample weekly trajectories of one voluntary user inferred from CDR: (a),
NSD: (b) and TRANSIT: (c).
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Input: set T i of NSD events of a mobile device i

Tagging of static antennas, as the antennas that have a daily
cumulated association time above a threshold Tw for user i

Labeling of static activity sessions ai
k , as each

continued time interval where all events of de-
vice i are only associated with static antennas

Removal of oscillations via a dedicated heuristic, consol-
idation of adjacent static activity sessions, and filtering
out of static activity sessions with duration below Ts

Refinement of the location of the static
activity sessions with spatial clustering

Tagging of all non-static events as mobile, and merging of
consecutive mobile events into continued mobile sessions mi

h

Intermediate result: set Ai of static activity ses-
sions, and set Mi of mobile sessions, i.e., trajectories

Spatial clustering of trajectories in Mi , based
on a pairwise Hausdorff distance measure

Spatial augmentation of trajectories in a same spatial clus-
ter, via a reconstructed standard itinerary of the cluster

Output: set Ai of static activity sessions of user i, and the
set M̂i of mobile sessions with augmented trajectories

Figure 3.5: Flowchart of TRANSIT

setMi of mobile sessions. As a result, the setMi also identifies all the trajectories,
i.e., continued sequences of movement in time, of user i.

• Trajectory augmentation. The framework enhances the trajectories associated to
mobile sessions inMi, by exploiting the fact that the same individual typically
performs many trips between two given locations over time, generally follow-
ing very similar paths. This creates redundancy in the mobility information
that can be used to increase the spatiotemporal accuracy of the trajectories, as
shown in Figure 3.4c. The resulting set of mobile sessions possibly augmented
trajectories is denoted as M̂i.

Ultimately, the output of TRANSIT are the setAi of static activity sessions of user i,
and the set M̂i of mobile sessions with augmented trajectories. Table 3.1 summarizes
our notation, and Figure 3.5 presents a flowchart of the stages of TRANSIT.

Trajectory Identification

As anticipated, the trajectory segmentation step is applied to the individual set of
NSD events T i recorded for device i, and returns a subset of T i where each event is
labeled as static or mobile and detected oscillations are removed.

Figure 3.6 illustrates the process of trajectory identification using TRANSIT. The
interpolation of NSD events is portrayed as the black solid line. Figure 3.6a refers
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Figure 3.6: Main steps of the trajectory identification via TRANSIT.

to static antennas with daily accumulated association time above Tw. Figure 3.6b
identifies static activity sessions as obtained from consecutive sequences of static
antennas only, and detected oscillations. Figure 3.6c exhibits the final static activity
sessions upon removal of oscillations, as well as the consequent detected mobile
sessions.

We start by assuming that the time spent by user i at the antenna ci
n associated

to event ei
n is ti

n+1 − ti
n, i.e., the temporal span to the subsequent event ei

n+1. Given
the high temporal resolution of NSD, this simple approach already provides a very
good estimation of the time the user is associated to a given antenna, at a low com-
putational cost. Then, a preliminary labeling is performed to trim down candidate
static events. To this end, we calculate the cumulated time spent by user i at each
antenna ci

n, on a daily basis. As devices stay connected to a limited set of antennas
while still, we expect such antennas to yield a non-negligible cumulated time during
the target day. We thus tag as static antennas for user i those antennas with a daily
cumulated time above a threshold Tw. In our experiments, we set Tw to 20 minutes,
which falls within the range of commonly accepted values for the typical minimum
duration of a significant activity carried out by an individual at a same location [33,
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55], and is employed also with high-frequency longitudinal (e.g., GPS) data [60]. An
example is provided in Figure 3.6a.

A continued time interval where all events of device i are only associated with
static antennas is then denoted as a static activity session ai

k. The set of all such
sessions across the whole observation period is Ai = {ai

1, . . . , ai
Ki
}.

Typically, during one day, a user can have several static sessions, and each can
be composed of one or multiple antennas.

After the stage above, only part of the antennas are labeled. Unlabeled an-
tennas are either encountered during movements, or the result of oscillations that
are known to characterize mobile device association to the radio access infrastruc-
ture [60]. Oscillations can in fact affect both static and mobile users. In the former
case, they can cause the separation of continuous static activities into different static
sessions in Ai interleaved by non-static antennas. In order to address the issue, and
remove oscillations from Ai, TRANSIT adopts the following heuristic. If (i) two
consecutive static sessions ai

k and ai
k+1 present at least one common (static) antenna,

and (ii) the number of unique antennas associated to events observed after ai
k and

before ai
k+1 is below a threshold No, we merge all the events in ai

k and ai
k+1 into a new,

single static session. The new sessions replaces the former pair in Ai. An example
of oscillation detection and static sessions before the merging process is shown in
Fig 3.6b.

The single events identified as oscillations in the previous stage are in fact re-
moved from T i entirely, so as to limit uninformative noise in the data. The revised
static sessions in Ai are further filtered based on their total duration, and only those
with time span higher than a threshold Ts are retained. The value of Ts corresponds
to the assumed minimum duration of a static activity, so that we do not include, e.g.,
waiting periods at red traffic lights for pedestrian or vehicular trips, or dwell times
at stops for bus trips. For the same reasons explained above in relation to threshold
Tw, used to identify static antennas, the value of 20 minutes has been adopted for Ts
as well.

TRANSIT also enforces consistency in the locations of events associated to static
activity sessions, as follows. First, we compute the centroid of the locations li

n of all
events in each session ai

k; then, the well-known DBSCAN clustering algorithm3 is
run on the centroids of all ai

k ∈ Ai. This lets us group together all static sessions
related to a same activity, and compute a consolidated location for the activity as
the barycenter of all centroids in a same cluster. The locations li

n of all events in
each session ai

k are then replaced with the barycenter of the corresponding cluster.
Note that the position of the static activity sessions that are labeled as outliers by the
DBSCAN algorithm are left unchanged. An example of the resultingAi is in Fig 3.6c.

Finally, all events that have not been labeled as static are labeled as mobile. This
directly identifies the mobile sessions mi

h of user i, as the time-continuous sequences
of mobile events; an important remark is that the two static events immediately pre-
ceding and following the mobile session are also integrated into mi

h. As a result, the
set of mobile sessions isMi = {mi

1, . . . , mi
Hi
}. Each mi

h corresponds to one trajectory
of user i identified by TRANSIT. An example is also in Fig 3.6c.

3The parametrization of DBSCAN for static session clustering leverages is discussed later in Sec-
tion 3.6.3.
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Figure 3.7: Set of trajectories of a voluntary user clustered by DBSCAN, for the
Origin-Destination path in Figure 3.1.

Trajectory Augmentation

The sequences of NSD events in T i that correspond to the single trajectories mi
h of

user i are still affected by the limited spatial accuracy of mobile network data, which
affects NSD as explained in Section 3.4.2. In its second phase, TRANSIT thus aims
at improving the geographical correctness of the movement information. As antici-
pated, the framework relies on the regularity of human mobility; more precisely, we
use the the information from multiple similar trajectories identified for a same user
to mutually improve their accuracy.

As a first step, a similarity measure is computed for all pairs of mobile session
mi

h ∈ Mi. We employ the Hausdorff distance [109], which is defined as:

dH(mi
h1

, mi
h2
) = max{D(mi

h1
, mi

h2
), D(mi

h2
, mi

h1
)},

where D(mi
h1

, mi
h2
) = sup

li
n1
∈mi

h1

inf
li
n2
∈mi

h2

d(li
n1

, li
n2
), (3.4)

where mi
h1

and mi
h2

are the two mobile sessions to be compared and d(·, ·) is the
geodesic distance between the two argument locations. This results in a matrix of
pairwise distances between all mobile sessions of a same user i.

Then, DBSCAN is applied4 to the distance matrix, in order to group trajectories
that have similar spatial geometries, and correspond to diverse trips of the user be-
tween the same two static activity locations. Figure 3.7 shows an example of a set of
mobile sessions, i.e., trajectories, grouped together in the same cluster by DBSCAN,
for the origin-destination activity locations in Figure 3.1. Based on the result of DB-
SCAN, we can tell apart the mobile sessions inMi into two subsets: (i) trajectories
that fall into a cluster, i.e., which refer to a path that is recurrent in the mobility of
user i, and which we denote as the setMi

R; and, (ii) outlier trajectories that represent
unique movements of i, which are grouped in setMi

O =Mi \Mi
R.

For trajectories in Mi
R, TRANSIT operates a spatial augmentation, as follows.

First, the average duration is computed for all trajectories assigned to a same spatial
cluster by DBSCAN above; this corresponds to the expected time that user i takes to
travel between the same origin-destination activity locations. The time information

4The parametrization of DBSCAN for mobile session clustering is discussed later in Section 3.6.3.
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is used to filter out trajectories whose duration deviates from the median by 50% or
more: these mobile sessions are considered not representative of the routine mobility
patterns along the target path. The retained trajectories in a same cluster are then
temporally scaled (i.e., stretched or compressed) in time so as to match the average
travel duration for the cluster. Finally, the scaled trajectories are temporarily binned
according to a fixed time period of one minute, and the spatial coordinates of all
different events that fall in a same time bin are averaged.

The previous steps lead to a set of positions, one per minute, which represent the
reconstructed itinerary. If there is no event within a particular time slot, the result-
ing enhanced trajectory will have missing positions. All trajectories in the cluster
are then matched to the reconstructed one, and become thus identical in the space
dimension. However, they are re-conducted to their original duration (i.e., via com-
pression or stretching) so as to keep them faithful to their recorded travel time in the
NSD.

As a result, each original mobile sessions in Mi
R is replaced by a set of recon-

structed positions without any temporal deformation, and is enriched with infor-
mation derived from multiple similar trajectories traveled by the same user. This set
of enhanced mobile sessions is referred as M̂i

R. We recall that Figure 3.1c shows the
final spatial trajectory inferred from the cluster in Figure 3.7. Trajectories inMi

O stay
instead unchanged, corresponding to those obtained from the simple interpolation
of NSD data. The final set of mobile sessions is M̂i = M̂i

R ∪Mi
O.

3.6 TRANSIT Validation

3.6.1 Trajectory Segmentation

We first assess the performance of TRANSIT in identifying trajectories, by separat-
ing the static activity sessions and mobile sessions of a user. To this end, we compare
the sessions identified by our approach applied on ENSD against the ground truth ex-
tracted from EGPS. We also include in our analysis one recent benchmark from the
literature, i.e., the CWMA approach [27, 7] respectively presented in Section 3.5.1
and in Section 3.5.2. We use classical precision, recall and F1 metrics to evaluate the
performance of the trajectory segmentation approaches. Formally:

Precision =
TP

(TP + FP)
, Recall =

TP
(TP + FN)

(3.5)

F1 = 2 · Precision · Recall
(Precision + Recall)

(3.6)

where: (i) the number of true positives TP is the number of NSD events labeled as
static when the user is also considered as static in GPS data; (ii) the number of false
positives FP represents the number of NSD events labeled as static while the user is
in fact mobile according to the ground truth; (iii) the number of false negatives FN
maps to the number of NSD events labeled as mobile while the user is static in the
GPS data.

Overall and per-user results are summarized in Table 3.3. Both TRANSIT and
CWMA attain rather high values of precision and recall, typically in the 75–100%
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range. For users with enough trajectories, i.e., B, C and D, this leads to F1 scores
between 0.8 and 0.9. However, the session classification approach of TRANSIT per-
forms consistently better, yielding a 5% relative improvement in the total F1 score
with resect to CWMA.

A closer inspection reveals how CWMA tends to yield higher precision than re-
call, i.e., to incorrectly label static events as mobile. We ascribe the problem to the
oscillation phenomenon discussed in Section 3.5.3: CWMA lacks a tool to remove
oscillations occurring during static activity phases, hence tags such events as move-
ments and overestimates the incidence of mobile events. As a by-product, CWMA
detects a large number of non-existent trajectories (504 against 310 in the ground
truth), which are in fact network-driven changes of the antenna serving the static
user.

TRANSIT is designed to cope with these situations: it labels as oscillations and
removes around 3% of the events. As a result, the number of identified trajectories
(265) is much closer to the real one, and the result is fairly consistent across indi-
vidual users. TRANSIT thus achieves near-perfect recall, while it slightly penalizes
precision, by wrongly labeled static events where the user is in fact mobile. In-depth
investigations revealed that this can appear in two situations. First, when a user
performs very short displacements between the locations of two consecutive static
activities, there is a risk that the two nearby static sessions will be merged into a sin-
gle one, due to the limited spatial accuracy of NSD. Second, in round trips where the
origin and the destination of the trajectory are the same, if the user connects to two
or less different antennas, the mobility will be ignored altogether. These issues are
caused by the finite spatial and temporal resolution of NSD, which our framework
can mitigate only to a point.

3.6.2 Trajectory Enhancement

We now explore the capability of TRANSIT to improve the spatial representation of
the individual trajectories identified above. We thus compare the augmented trajec-
tories returned by our framework in M̂i against the ground truth inferred from the
GPS data in EGPS. We also consider a comprehensive set of benchmarks to contextu-
alize the performance of our framework, as follows: (i) DECRE/CDR is the trajectory
reconstruction method implemented by DECRE [129] as presented in Section 3.5.1
– in this case, we apply DECRE on CDR data extrapolated from NSD as explained
in Section 3.4.2, as the method was originally conceived for this type of data; (ii)
CWMA/CDR+ is the trajectory reconstruction approach adopted by CWMA [27, 7]
– here, it is applied to CDR+ data, also extracted from NSD as explained in Sec-
tion 3.4.2, since these are the kind of data the approach was tested with by its au-
thors; (iii) Raw NSD are the trajectories interpolated from the NSD directly, which
is an important baseline for comparison; (iv) DECRE is the trajectory reconstruction
method implemented by DECRE, run on NSD; (v) CWMA is the the trajectory re-
construction approach adopted by CWMA, run on NSD. Note that we are interested
in comparing the different techniques in the specific task of trajectory augmentation:
therefore, for the sake of fairness, we run TRANSIT and all benchmarks on the same
set of trajectoriesMi, i.e., those identified by our approach, as it provided the most
accurate result in Section 3.6.1 above.
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In all cases, two distance measures are used to evaluate the trajectory enhance-
ment. On the one hand, DGPS denotes the distance from the GPS ground-truth tra-
jectory to that inferred from mobile network data: it is calculated by averaging the
geodesic distance between each GPS point and the closest network data position in
space. On the other hand, DNSD is the distance from the mobile network trajectory
to the GPS-based one: it is computed as the average geodesic distance between each
point in the inferred trajectory from network data and its closest GPS point in space.
Formally:

DGPS =
1

|mGPS| ∑
en′∈mGPS

min
en∈mNSD

d(ln′ , ln) (3.7)

DNSD =
1

|mNSD| ∑
en∈mNSD

min
en′∈mGPS

d(ln, ln′) (3.8)

where mGPS and mNSD are, respectively, two trajectories inferred from GPS and mo-
bile network data. The operator | · | denotes the cardinality of the argument set, i.e.,
the number of samples in the case of a trajectory, and d(·, ·) the geodesic distance.
We use both metrics as they are complementary: while DGPS is representative of the
error observed for continuously tracked user, DNSD measures the error specific to
events recorded by the mobile phone network.

The results are reported in Table 3.4, for each user and in total. Trends are clear
and consistent across users: there is a neat increase of accuracy in the inferred tra-
jectories when moving from the right to the left in the table. Clearly, using CDR
and CDR+ data penalizes DECRE and CWMA in the two rightmost columns, where
the average error in the trajectory locations is 680–1,000 meters for DGPS, and 250–
360 meters for DNSD. A simple interpolation of the Raw NSD already improves the
result substantially, with average errors at 380 and 260 meters, for DGPS and DNSD,
respectively. Interestingly, DECRE cannot improve that performance, mainly be-
cause its oscillation removal process has alternating effects, and can also eliminate
events that are in fact useful to reconstruct the correct itinerary. CWMA improves
the average DNSD, bringing it down to 160 meters, however does not affect DGPS.
TRANSIT achieves the best performance in nearly all situations, and attains aver-
age errors that are as low as 220 meters for DGPS and 160 meters for DNSD.

Overall, the relative performance in Table 3.4 prove that TRANSIT does not sim-
ply rely on the added temporal resolution of NSD to advance the current state of the
art; instead, it also introduces original processing that can take full advantage of
NSD. From an absolute performance viewpoint, TRANSIT sets a new bar for the
quality of individual trajectories inferred from mobile network data: with errors in
the order of 150 meters, it demonstrates that a tailored processing of NSD can result
in positioning information that is sufficiently accurate to support mobility monitor-
ing applications at scale. We will provide multiple examples later, in Section 3.8.

3.6.3 Parameter Setup and Implementation Settings

TRANSIT requires the setting of five tunable parameters (i.e., Tw, Ts, No, Ds and
Dm), reported in the notation table of Table 3.1.
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Sensitivity Analysis on Ds, Dm and No

The No parameter refers instead to oscillation removal and corresponds to the max-
imum number of unique antennas where a user can be observed between two con-
secutive static activity sessions in order that the two static sessions can be merged
into a single one. To select the default value of No, we have performed trajectory
identification with TRANSIT over a large range of values, i.e., [1, 10], using the seg-
mentation information from dataset EGPS as ground-truth. Accuracy is consistent
and close to 100% for No = 1 and No = 2, while the number of retrieved trajectories
rapidly decreases to 20 trips out of 310 when No = 10. These results lead to a final
choice of 2 as the default value of No.

Finally, we report in Figure 3.8 the results of the sensitivity analysis performed
to determine the two distance thresholds Ds and Dm, used as the maximum distance
allowed in DBSCAN cluster for both location enhancement of static sessions and for
the identification of similar mobile sessions. As performance criterion of the analy-
sis, we have used the average of the two distance metrics DGPS and DNSD described
in Equation 3.8. For each configuration of the parameters Ds and Dm in the ranges
reported in Figure 3.8, we obtained a different set of M̂i

R for all users in ENSD and
computed the corresponding value of our performance metric. The figure highlights
that the selected performance criterion attains its minimum value (i.e., better recon-
struction of the real trace) when Ds = 0.15Km and Dm = 2.5Km. These values have
been thus selected as the default values for the two parameters.
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Figure 3.8: Parameter Dm and Ds sensitivity on trajectory enhancement performance.

Sensitivity analysis on Ts and Tw

The criterion that has been considered for the selection of the Ts and Tw thresholds
is twofold. Firstly, to determine Ts we consider the number of mobile sessions (i.e.,
non-enhanced trips) detected by TRANSIT on our validation dataset ENSD, namely
NT. Secondly, to determine Tw we consider the number of missed trips by TRNSIT,
namely ∆N, with respect to a benchmark segmentation method for GPS data [60],
used as ground truth. We recall that Ts is the minimum duration of a static session,
and it is a shared parameter of the benchmark segmentation method used with GPS
data and the trajectory segmentation approach of TRANSIT used with NSD. Tw is
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the minimum cumulated time for an antenna to be labeled as static, and it is only
related to the segmentation approach of TRANSIT.

On the one hand, figure 3.9a shows the sensitivity of NT on Tw and Ts. We can ob-
serve that for a given Tw, NT increases when Ts decreases. In other words, when the
minimum duration of a static session Ts decreases, TRANSIT captures more trips,
i.e., trips taking place between shorter stationary activities, which can correspond to
e.g., leisure stops, public transport connections and modal shifts, taking children at
school, stops at traffic lights, etc. Therefore, Ts has to be chosen accordingly to con-
siderations that are specific to the kind of mobility analyses one might want to study.
With that regard, the nature of the trips that we aim to reconstruct and enhance with
TRANSIT via NSD is mainly related to recurrent itineraries linked to different kinds
of transport motifs, which do not normally include trips between very short station-
ary activities. For this reason, we set Ts to 20 minutes, which allows detecting a fairly
high number of trips (as from figure 3.9a) and is also a typical reference values from
state-of-the-art literature on stationary activity detection via mobile phone and GPS
data for recurrent mobility analyses [33], [55], [60]. On the other hand, figure3.9b
shows the sensitivity of ∆N on Tw and Ts. In particular, the number of missed trips
∆N is minimized by larger values of Tw as larger values of Ts are considered. Specif-
ically, the value of Tw that minimizes the ∆N error is 10 minutes for Ts = 5 minutes,
20 minutes for Ts = 20 minutes, 30 minutes for Ts = 60 minutes, etc. Thus, given our
choice of Ts equal to 20 minutes, the value of Tw has been set to 20 minutes in order
to minimize the number of trips missed by TRANSIT with respect to the adopted
benchmark method.
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Figure 3.9: Sensitivity of TRANSIT on Tw and Ts in terms of: (a) volume of trips
detected by TRANSIT; (b) error in the number of detected trips using [60] applied
to EGPS and TRANSIT applied to ENSD

Implementation Settings

TRANSIT has been implemented in PySpark and run on a Spark cluster deployed at
the mobile network provider’s facilities. The Spark execution environment consists
in 50 executors, each configured with 4 cores and 28 Gigabytes of memory. All the
main algorithmic components of TRANSIT from Figure 3.1 have been implemented
via PySpark User-Defined Functions (UDF) and applied in a distributed manner to
the whole sets of subscribers’ network signaling traces considered in our analyses.
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Figure 3.10: Analysis of the performance of TRANSIT versus the ratio of NSD
events retained by subsampling, for the (a) DGPS and (b) DNSD distance metrics.

Specific optimizations have been required in order to process the three months of
NSD from the large-scale datasets DP and DL.

Among the different optimizations, a special attention was dedicated to the com-
putation of the pair-wise Hausdorff distance matrix, which represents the most time-
consuming step of our approach (taking approximately 70% of the total computation
time). Specifically, we avoid computing the Hausdorff distance for all pairs of trajec-
tories having different origin and/or destination. In such case, we set their distance
to a value larger than the Dm parameter, thus making it impossible for DBSCAN to
cluster them together. Similarly, the Hausdorff distance is immediately limited to
Dm when a value larger than Dm is found during the iterative computation of the
inner distances D(. , .) from Eq. 3.4. It is worth to note that this simple optimization
allows us saving significant computation time, as well as keeping the result of the
clustering unchanged.

3.7 TRANSIT Properties

3.7.1 Impact of Sampling Rate

We investigate further the settings that help TRANSIT achieve such a remarkable
result in terms of accuracy of the inferred trajectories. As a first step, we consider
the impact of the spatiotemporal sparsity of the NSD that is fed to TRANSIT. We
do this by randomly subsampling the NSD of each user i ∈ {A, B, C, D} down to a
fraction of original mobile events in every sessions in M̂i; we then run the trajectory
augmentation method of TRANSIT on the sparser trajectories. Due to the stochastic
nature of the subsampling, we averaged the metrics DGPS and DNSD over 10 trials
for each distinct sampling ratio.

Figure 3.10 shows the results. When looking at DGPS, the impact of the sampling
ratio on TRANSIT performance is marginal, even when retaining as little as 10% of
the NSD events. The relative gain in term of spatial accuracy of TRANSIT compared
to trajectories obtained from a naive interpolation of the Raw NSD grows from 40%
to 60%, as the latter are obviously negatively impacted by a reduced NSD sampling
frequency. Concerning DNSD, the trend is different. Indeed, the average value of
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Figure 3.11: Analysis of the performance of TRANSIT versus the time span of the
NSD data, for the (a) DGPS and (b) DNSD distance metrics. Different curves report
the results for trajectories in M̂i, M̂i

R, andMi
O.

DNSD remains constant for raw NSD, regardless the sampling frequency, whereas
it decreases for TRANSIT in the case of higher sampling ratio. Indeed, there is no
reason that an increased number of NSD events would improve the intrinsic spatial
uncertainty of Raw NSD: as this error is linked to the geographical sparsity of the
antennas, the distance between NSD and the closest GPS position stays constant at
around 300 meters. However, TRANSIT decouples trajectory samples from base
station locations, and can better approximate the actual position of the user by av-
eraging over a higher number of NSD samples collected at different antennas. This
lets TRANSIT increase its gain up to 40% as the sampling ratio grows.

3.7.2 Impact of Data History

As a second test, we study the effect of NSD temporal coverage on the performance
of TRANSIT. To this end, we divide the 3-month NSD datasets ENSD into non-
overlapping shorter chunks; we consider chunks of one day in a first experiment,
then of 1 week, 2 weeks, and 1 month in subsequent trials. We run TRANSIT’s tra-
jectory augmentation method on each chunk separately, and then compute the usual
metrics DGPS and DNSD between the inferred trajectories and the ground truth.

The results are in figure 3.11. The average accuracy of all trajectories identified
by TRANSIT in M̂i substantially improves for longer observation periods. The er-
rors decreases by 40% for both DGPS and DNSD when NSD are collected during three
months rather than in a single day. Also, recall that M̂i is in fact composed of tra-
jectories that are actually augmented by TRANSIT, in the set M̂i

R, and trajectories
that the framework could not improve due to the lack of similar movements in the
user data, in the setMi

O. Thus, figure 3.11 also breaks down the results for these two
categories. As expected, different NSD time spans do not affect the accuracy inMi

O.
Instead, in the case of the recurrent trajectories in M̂i

R, a longer history of mobility
helps clustering and averaging a larger number of similar mobility patterns of the
user, hence reducing the natural spatial bias of the original NSD.
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Figure 3.12: Analysis of the performance of TRANSIT versus the number of aver-
aged trajectories per cluster in M̂i

R, for the (a) DGPS and (b) DNSD distance metrics.
Different colors map to diverse geographical lengths.

3.7.3 Impact of Number of Clustered Trips

The results in figure 3.11 highlight that at least a few weeks of NSD data are needed
in order for TRANSIT to be able to enrich recurrent trajectories. However, this is
an artifact of the availability of additional comparable trajectories as we observe the
user mobility in time. We thus decouple this phenomenon from the time dimension,
and investigate how the number of clustered trajectories used to improve the spatial
accuracy of NSD affects DGPS and DNSD directly. We conduct the following exper-
iment: we select clusters of at least 3 trajectories, ending up with 11 clusters across
all voluntary users. For these clusters, we test how the number N of trips within
each cluster affects the spatial accuracy of the reconstructed itinerary. For instance,
for one cluster, we select randomly N trips among all the trips within the cluster, we
reconstruct the itinerary using these N trips and then compute the distance metrics.
For each cluster, we are able to test N ranging from 1 to the number of trips within
the cluster.

The results are shown in figure 3.12. On the ordinate, we represent the spatial ac-
curacy gain compared to the scenario using 1 trajectory for doing the reconstruction.
For DGPS in figure 3.12a, we can observe that most of the curves have similar shapes,
with a gain for a relatively low number of trajectories (between 2 and 6) and the
emergence of a clear diminishing return effect afterwards. A similar phenomenon
can be observed for DNSD in figure 3.12b, albeit with less neat transition. This be-
havior is consistent across trajectories covering different spatial distances (colors),
and achieving diverse accuracy gains (final value in the ordinate). We conclude that,
at least in the set of trajectories we could study, a fairly small number of less than
10 instances of the same route is typically sufficient to achieve the maximum error
reduction that TRANSIT can grant.
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3.8 TRANSIT Validation and Applications

While the validation results are related to a reduced number of users, the interest
of TRANSIT reveals at city-wide scales, where it can enable a number of mobility-
related applications. This section analyzes three case studies related to urban mobil-
ity that leverage the large-scale datasets DP and DL described in Section 3.3.

3.8.1 Comparison with Surveys

In order to validate TRANSIT, we compare the typical travel demand profile inferred
by TRANSIT with those obtained with surveys as done in Chapter 2 for the area of
Lyon. The studied area is a subset of the Rhônes-Alpes area described in Chapter 2
as DL do not cover the whole Rhônes-Alpes area. This allows to compare TRAN-
SIT and Fekih et al. approach described in Chapter 2 on the same region. The latter
is composed of 16 zones and corresponds to the city of Lyon. The temporal travel
demand profiles outputed by TRANSIT and those obtained with survey is depicted
in Figure 3.13. For comparison purposes, we also computed the travel demand pro-
file obtained with the methodology of Fekih et al. without the debiasing procedure
which is also represented in the figure. The results show that the demand profile
obtained by TRANSIT is better than the one obtained with Fekih et al. approach for
inferring travel demand profile. We can observe that TRANSIT demand estimation
is higher during non-peak hours demand compared to surveys. We can assume that
this difference can be explained by an underestimation of the surveys which can ac-
curately estimate the demand representing commuting trips but struggle to capture
the other kind of trips. The latter results demonstrate the capability of TRANSIT to
estimate accurately travel demand. Moreover, we also compare the result of TRAN-
SIT with respect to Fekih et al. methodology (with and without debiasing procedure)
at a finer spatial granularity. Indeed, for each zone, we computed the travel demand
of the zone with TRANSIT, Fekih et al. approach and relying on the surveys. 2 met-
rics are used to compared the TRANSIT and Fekih et al. approach. The first one
is the Pearson correlation between the temporal demand per zone inferred by the
considered approach and the one obtained with surveys. This Pearson correlation is
computed for each zone and then averaged for all zones. The average Pearson corre-
lation is denoted as Pcorr. The second one is the Root Mean Square Error between the
temporal demand per zone inferred by the approaches and the one obtained with
surveys. This RMSE is computed for each zone and then averaged for all zones. The
average RMSE is denoted as RMSE. The results are given Table 3.5. TRANSIT has
Pcorr equal to 0.89 instead of 0.81 for Fekih et al. without debiasing. Besides, TRAN-
SIT has RMSE equal to 2080 instead of 2900 for Fekih et al. without debiasing. The
results show that TRANSIT outperforms Fekih et al. methodology without debiasing
with respect to both metrics. When compared with Fekih et al. approach with de-
biasing, TRANSIT obtained equivalent performance on Pcorr and RMSE. However,
TRANSIT do not need to rely on debiasing procedure to compute accurately travel
demand profile. Finally, contrary to state of the art approaches, TRANSIT is able to
infer travel demand at finer spatio-temporal scale. This point will be discussed in
Chapter 5.
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Figure 3.13: Temporal demand profile (number of hourly trips generated from all
zones) from TRANSIT, Fekih et al. approach and survey data (EDR).

Measure TRANSIT Fekih et al. with debiasing Fekih et al.

Pcorr 0.89 ± 0.06 0.87 ± 0.07 0.81 ± 0.09

RMSE 2080 ± 556 2008 ± 715 2900 ± 1263

Table 3.5: Evaluation of travel demand profiles inference per zone

3.8.2 Urban Mobility and Public Transport

By counting the number of concurrent active trips inferred via TRANSIT over time,
we are able to reconstruct accurate temporal profiles of the travel demand in ur-
ban regions. For such profiles to be dimensionally correct, a rescaling is needed to
account for the penetration rate of the technology (close to 100% in developed coun-
tries like France) and the market share of Orange (at 37% over the French territory).
The resulting average weekly demand profiles computed in Paris and Lyon are de-
picted in blue in Figure 3.14a and Figure 3.14b, respectively. Our estimates are that
around 1,300,000 individual trips occur at the same time in Paris during commuting
peaks, while the figure is at 180,000 for Lyon.

We compare the profiles obtained with TRANSIT with equivalent ones from
smart card data, which capture mobility via public transportation systems. For
Paris, data were provided by the transportation company Ile-de-France-Mobilité.
Concerning Lyon, data were shared by the transportation company Keolis-Lyon.
For both cities, public transport data were provided in the same period of the year
of NSD, and all smart-card transactions were anonymized in the form of aggregate
measures at the scale of the whole agglomeration.

Also in this case, a rescaling is required: while the TRANSIT trajectories re-
fer to the resident population, the smart card data include both residents and non-
residents. In order to make the numbers comparable, we apply a scaling factor of
0.81 to the smart card temporal profile; the factor has been calculated from the raw
network signaling data, by computing the average instantaneous fraction of resident
subscribers present in the target cities, over the total number of observed users. The
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Figure 3.14: Average weekly profiles of the number of concurrent trips in (a) Paris
and (b) Lyon, as inferred from TRANSIT and smart card data. Normalized versions
with integral one of the same profiles are in (c) and (d).

weekly profiles from smart cards are superposed to the TRANSIT-inferred ones, as
the orange curves in Figure 3.14a and Figure 3.14b.

The comparison of the profiles reveals interesting facets of mobility in Paris and
Lyon. Clearly, the volume of trips identified by TRANSIT is higher than that recon-
structed with smart card data: NSD allows monitoring virtually all transport modes,
including those beyond public means, e.g., private vehicles, biking, or walking. This
lets us quantify which proportion of trips is performed with underground, buses or
tramways, and which using personal means. We find that a significant fraction of
trips is performed using public transports in both cities: we estimate the percentages
of movements captured by smart card data to 66% and 39% of the total, in Paris and
Lyon, respectively. The difference between these values is explained by the more de-
veloped multimodal transit network available in Paris, as required to support mass
mobility in such a large metropolis.

In addition, we can investigate the temporal incidence of public transports by
looking at versions of the same profiles that are normalized so that the integral of
all curves is one. Figure 3.14c and Figure 3.14d show the result. This perspective
lets us appreciate how in Paris public transports are especially important during
commuting hours, but relatively less used during the lunch break or weekends. A
slightly different pattern emerges in Lyon, where public transports are also very
much used around midday, but have a lower incidence on total mobility during
evenings and weekend mornings. We highlight that obtaining this type of insights
is hardly achievable by solely relying on surveying, which demonstrates the value
of NSD and a method like TRANSIT that can exploit them.
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As a final remark, we highlight that the results in Figure 3.14 can also be consid-
ered as a partial validation of the trajectories inferred by TRANSIT in large-scale set-
tings. Indeed, the near-perfect match of the timing of commuting peaks or overnight
low mobility among curves proves the capability of our trajectory segmentation ap-
proach to identify trips that are very consistent with data collected in the field over
time.

3.8.3 Popular Paths of Commuting Trips

The previous section indicates that TRANSIT accurately extracts urban mobility
patterns. Therefore, as a second application, we focus on inferring popular commut-
ing trips within a city. The knowledge of such trips is an extremely precious source
of information for transport authorities and city planners as: (i) they represent the
largest share of the the daily urban traffic demand of a city; (ii) they identify the typ-
ical commuting behaviors of travelers which regularly stress the transport network
infrastructure, especially during peak hours; (iii) they are hard-to-quantify and char-
acterize at city-scale because of the absence of dedicated sensors or probes that can
precisely capture the multi-modal, diverse and time-varying nature of such trips.

(a) Heatmap of trips (D > 3km) in Lyon (b) Heatmap of trips (D > 3km) in Paris

(c) Heatmap of trips (D > 3km) in Lyon with
the multimodal transportation network of Lyon

(d) Heatmap of trips (D > 3km) in Paris with the mul-
timodal transportation network of Paris

Figure 3.15: Heatmap of commuting trips in Lyon and Paris.

By applying our framework to the large-scale datasets DP and DL, we associate
to each user i of the two analyzed cities a set of trips M̂i for the whole period of 3
months. As explained above, M̂i can be divided in two subsets: M̂i

r, a subset of
recurrent trips enhanced by TRANSIT, andMi

o, a set of non-recurrent trips of user
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u. Considering that commuting trips are, by definition, recurrent, in the remainder
of this section we focus our analysis only on subset M̂i

r.

Furthermore, to extract commuting trips from M̂i
r, we filter only those trips as-

sociated to the two most popular locations of each user, under the constraint that at
least 10 trips are present between these two locations. The underlying assumption is
that the remaining set should mostly contain the two most popular trips performed
by users in their daily routine, i.e., home-to-work and work-to-home trips (commut-
ing trips).

The spatial density (heatmap) of the reconstructed trips is represented in Fig-
ure 3.15a for Lyon and Figure 3.15b for Paris. As a first consideration, the recurrent
trips appear to have overall a good match with the multi-modal urban transporta-
tion network, graphically overlapped to the heatmap in figure 3.15c for Lyon and
in figure 3.15d for Paris. A more in-depth inspection of the figures highlights that,
for both cities, the subway network, the tramway lines and most important urban
roads clear show up among the commuting trips reconstructed via TRANSIT. In
the case of Paris, NSD trips appear to have a near perfect match to the underlying
multi-modal transport network. The less evident match for the case of Lyon, espe-
cially characterizing some peripheral roads (however present in the heatmap), can
be explained by the lower number of available trips and the lower density of the
cellular network of Lyon in these areas, compared to those from the capital city.

Of course, the fact that the majority of commuting trips maps to the public trans-
portation network is not unexpected. However, TRANSIT opens the door to a de-
tailed analysis of these trips, which we leave as future work: the obtained trips can
be easily map matched to the different transportation lines and modes, showing
their share of trips, in different days of the week and at different times of the day.
Such information would be highly valuable for any public transportation company
or municipality.

3.9 Discussion

Our developed framework TRANSIT overcomes two main limitations of the mo-
bile phone data. First of all, TRANSIT solves the trajectory identification task with
high accuracy with respect to state of the art approaches. In addition, by leveraging
the repetitive nature of human mobility and the oscillation effect, TRANSIT out-
performs other approaches like CWMA and DECRE on the trajectory augmentation
task. Moreover, our approach is scalable so that it enables new human mobility re-
lated applications as presented in this chapter. We also demonstrated that TRANSIT
is able to estimate accurately travel demand in urban environment with comparison
analysis with surveys. Based on these strong results, we explored other applications
allowed by TRANSIT in Chapter 6.

Despite its already satisfying results, TRANSIT can be further improved over
several dimensions. The reconstructed trajectories could be easily map matched to
the different lines and modes of the underlying transportation network to further
reduce their spatial error. This aspect is investigated in Chapter 4. Other kinds of
data on human mobility, such as smart card logs or GPS floating car data, could be
jointly leveraged with NSD, e.g., to better estimate the typical duration of similar
trips and support a more informed filtering during the trajectory clustering process.
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Further technical optimizations could be helpful towards a stream-based online im-
plementation of TRANSIT that could support a large variety of real-time applica-
tions, such as urban anomaly detection, data-driven dynamic control of transport
infrastructures, as well as advanced location-aware caching schemes and schedul-
ing policies for telecommunication networks. Finally, TRANSIT exploits the reg-
ularity of the mobility of a particular user to increase spatio-temporal accuracy of
NSD, inter-individual mobility regularity by leveraging clustering algorithm could
be explored in future works.

3.10 Conclusion

In this chapter, we presented TRANSIT, a framework to classify mobile and static
phases of human activity and reconstruct fine-grained individual human mobility
trajectories from Network Signaling Data. TRANSIT advances the state-of-the-art
on human-centric mobility trajectory inference by leveraging dedicated heuristics,
consolidation of static activity location and trajectory enhancement via spatial clus-
tering to: i) extract useful information from the higher sampling rate at which com-
munication events are collected in NSD; ii) perform effective oscillation detection
and removal; iii) capture the repetitive nature of individual trips over time. This
combination of unique features permits to achieve improved classification of mobile
and static sessions, as well as increased accuracy of the reconstructed trajectories.

We validate TRANSIT with ground-truth GPS trajectories collected by a small
set of volunteers, showing that it achieves 80% precision and 96% recall in the iden-
tification of movement periods, as well as an average 190 m spatial accuracy in the
estimation of the trajectories. Comparisons with previous tools for the reconstruc-
tion of movements from mobile phone data also show gains in the order of 50%-70%.

We applied TRANSIT at scale, to the whole subscriber base of a major net-
work operator in two major cities in France, Paris and Lyon. This allows to vali-
date TRANSIT at large scale showing that it achieves 0.89 Pearson correlation with
surveys for inferring temporal demand profiles. Such a result allows TRANSIT to
outperform state of the art approaches including the one studied in Chapter 2. More-
over, on the large scale dataset, TRANSIT is able to identify 480 million trajectories
of over 10 millions of individuals during a period of three months in 2019 – and im-
prove substantially the accuracy of 100 millions of those. We leverage such a unique
information to carry out preliminary explorations of: (i) the fraction of trips using
public transport versus other modes, (ii) the metropolitan-scale commuting paths.
To the best of our knowledge, we are the first to employ NSD to conduct mobility
analysis at such a large scale.
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Chapter 4

Multi-Modal Path Inference in
Urban Environment

In this chapter, in line with the previous chapter, we study the problem of map-
matching network signaling trajectories to the urban transportation network to fur-
ther refine the information that we can retrieve from network signalling trajectories.
Thus, we developed an Hidden Markov Model based map-matching approach that
we apply on the set of mobile sessions outputed by TRANSIT. At microscopic scale,
our map-matching approach is capable of inferring the route traveled by the mobile
subscriber with high accuracy: a geographical error around 60 m, a matching rate of
77% and a F1 score of 0.77. Such a promising result is made possible by leveraging
the trajectory enhancement step of TRANSIT and relying on the assumption of hav-
ing a coarse transportation mode knowledge before the map-matching algorithm. At
macroscopic scale, we propose a method for overcoming the latter assumption and
show that our approach is promising for inferring popular paths per transportation
mode.

The chapter is structured as follows. Section 4.2 provides the problem that this
chapter tackles. Section 4.3 presents the related works. Section 4.4 is dedicated to de-
velop the theoretical background of our approach based on Hidden Markov Model.
Then, we present, our Hidden Markov Model based map-matching in Section 4.5.
Results at microscopic and macroscopic scales are presented respectively in Section
4.6 and Section 4.7. In Section 4.8 the results are discussed and future research direc-
tions are proposed. Finally, Section 4.8 present the conclusion of this chapter.

This chapter contains parts of the following article:

Bonnetain L., Furno A., Krug J., El Faouzi N.-E. (2019), "Can we map-match in-
dividual cellular network signaling trajectories in urban environments? Data-driven
study". In: Transportation Research Record: Journal of the Transportation Research Board.

Bonnetain L., Furno A., El Faouzi N.-E. (2021), "Multi-modal fine-grained map-
matching of mobile phone network signaling data in urban areas". In: Transportation
Research Board.
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4.1 Notation for this chapter

Symbol Description

vi Hidden state i.

oj Observation j.

aij Transition probability from hidden state vi to hidden state vj.

A Transition probability matrix.

πi Initial probability of hidden state vi .

π Initial probability matrix.

Bij Emission probability that hidden state vj emits observation oi .

B Emission probability matrix.

Groad Graph representing road network.

Gtc Graph representing public transport network.

Gtrain Graph representing train network.

V Set of vertices.

E Set of edges.

k Node degree.

l Edge length.

ti Timestamp of ith event of a trajectory T.

O Set of observation (o1, . . . , oM).

oi ith signaling event.

T Cell phone trajectory defined as a set of observation (o1, . . . , on).

M Number of observations.

N Number of hidden states.

Mi Set of all mobile sessions across the whole observation period [ti
0, ti

N−1] of device i.

Mi
R Set of trajectories from Mi that are classified in a cluster by DBSCAN and identified as

recurrent by TRANSIT.

M̂i
R Set of recurrent trajectories fromMi that are spatially augmented by TRANSIT.

Mi
O Set of unique trajectories fromMi that are classified as outliers by DBSCAN and left spatially

unmodified by TRANSIT.

M̂i Final set of trajectories retrieved by TRANSIT corresponding to M̂i
R ∪Mi

O.

Table 4.1: Chapter 4’ specific notations
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4.2 Introduction

Surveys, despite the limitations described in Chapter 1, are able to retrieve mobil-
ity knowledge on all transportation modes. This knowledge, although coarse at
the spatiotemporal level allows to capture the city scale dynamics of all transporta-
tion modes. The situation changes when it comes to data-driven human mobility
analysis. Among all these data-sources, none of them bring reliable information on
transportation mode at large scale. For instance, smartcard data capture only public
transport dynamics. For the GPS data, the transport mode inference is possible but
the small samples available with this kind of data do not allow large scale mobility
studies. LBSN trajectory are too sparse to apply transportation mode inference. In
this context, the mobile phone data remain the only candidate susceptible to capture
multiple transportation mode dynamics at large scale.

In the previous chapter, we presented our approach TRANSIT able to increase
temporal granularity and reduce the spatial error of raw signalling trajectories. In
this chapter, we will investigate whether it is possible to accurately reconstruct mo-
bility information based on the output of TRANSIT. In particular, we studied the
problem of map-matching network signalling trajectories in order to reconstruct the
exact path followed by the user in a multi-modal transportation network. The value
of map-matching approach in multi-modal settings is twofold. First, such an ap-
proach would allow to further reduce the spatial error of the signalling trajectories
of TRANSIT. Second, it could allow to infer very valuable mobility information such
as the transportation mode and especially the path followed by the user on the trans-
portation network.

However, given the nature of signalling trajectories, multimodal map-matching
is a very challenging task. On the one hand, state of the art map-matching ap-
proaches on mobile phone data consider only the road network. On the other hand,
the transportation mode knowledge extractable from approaches of the literature is
very limited: coarse transportation detection or transport mode detection in inter-
urban environment. The next section 4.3 will discuss the latter points in detail. This
chapter aims at developing a map-matching approach that could be applied to the
mobile sessions that TRANSIT outputs (Chapter 3). The latter is an attempt to solve
the challenging problem of multimodal path inference in urban environment.

4.3 Literature Review

Map-matching is a basic operation for improving positioning accuracy by integrat-
ing positioning data with spatial transportation data to identify the correct link on
which a mobile object is traveling [74].

Several approaches exist in the literature to solve the problem of map-matching
GPS traces to a transportation network. The map-matching of GPS trajectories is a
widely studied topic and the approaches to solve such a problem are necessary for
navigation systems. Quddus et al. [94] categorize map-matching approaches in four
classes.

• Geometric approaches only use the spatial geometry of the network: the most
simple and popular map-matching algorithm consists in matching each posi-
tion point to the closest node in the network [126].
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• Topological approaches use geometric information as well as topological infor-
mation like the existence of connectivity between nodes of the network [135].
Very sensitive to noise and outliers, these approaches are not appropriate to
solve map-matching problems in presence of highly noisy and sparse data.

• Probabilistic methods exploit a confidence region around the location of the mov-
ing object is defined. Then, candidate network links are identified as those
present in this confidence region. The evaluation of the candidates is based on
the geometrical criteria.

• Advanced map-matching approaches use more complex mathematical tools. A
non exhaustive list of these methods includes, i.e., the Kalmam Filter, its Ex-
tended Kalman version [82], Dempster–Shafer theory [135], fuzzy logic mod-
els [93], or the application of Bayesian inference [58].

The latter category corresponds to state-of-the-art algorithms which may achieve
a very high accuracy (location error lower than 10 meters) with high sampling rate
GPS data. Newson et al. [81] first introduce HMM-based map-matching dealing
with different GPS traces sampling rate. Their approach turned out to be much
more robust and accurate with sparse and noisy trajectories compared to standard
advanced map-matching approaches for high sampling rate data.

As a consequence of the growing availability of large-scale mobile phone data
collected by network operators, map-matching cell phone trajectories is recently be-
coming a challenging task for researchers. Most of the approaches used with cel-
lular trajectories are based on those traditionally designed for GPS map-matching.
Schulze et al. [99] use a probabilistic approach: their solution restricts the set of ad-
missible routes to a corridor by estimating the area within which a user is allowed
to travel and infers path using the shortest path on candidate routes. With only 55%
of correct matches, this method has been outperformed by a HMM-based approach
recently developed by Jagadeesh et al. [52], which reaches 75% of median accuracy.

In addition, HMM-based map-matching has become the state-of-the-art approach
for noisy and sparse location data and, a fortiori, mobile phone trajectory. Thiagara-
jan et al. [113] and, more recently, Algizawy et al. [4] developed supervised HMM
models exhibiting good accuracy (75% for Thiagarajan et al. approach). However,
such an approach needs to train the HMM model with a large amount of labeled
cellular trajectories, which are very hard to obtain, especially when dealing with
highly dynamic and irregular environments, such as urban areas. Instead, we prefer
to focus on unsupervised models that do not require collecting and labeling any tra-
jectory. Moreover, we state that additional information such as signal strength of ob-
servation are relatively hard to obtain from mobile network operators and therefore
should not be required by the map-matching approach, as for example is the case
in [113]. Jagadeesh et al. [52] proposed an online map-matching algorithm combin-
ing HMM-based map-matching and route choice model.

The main limitation of the above mentioned works is to study the map-matching
of cell phone trajectories only on road networks, without considering other trans-
portation modes. Among the very few exceptions, it is necessary to mention the
methodology recently proposed by Asgari et al. [6]. The authors have developed
an approach, namely CT-Mapper, which is an unsupervised HMM model which
aims at mapping sparse multimodal cellular trajectories by using a multi-layer trans-
portation network. Yet, CT-Mapper has some limitations: the multi-layer network
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does not cover all transportation modes such as bus and tramways. In addition, CT-
Mapper requires already preprocessed cellular trajectories. Dealing with noisy mo-
bile phone data requires an advanced cleaning process which is not further specified
in CT-Mapper. Finally, Asgari et al. filtered out trajectories whose lengths are shorter
than 5 kilometers, only keeping longer trajectories, with an the average length of 26.5
kilometers. Hence, CT-Mapper has been validated only in inter-urban mobility sce-
narios, thus seeming not to handle urban mobility as the choice of covered modes
seems to confirm.

Other works tackle the transportation mode detection problem without relying
on map-matching. These approaches from the literature usually deal with simplified
settings. For instance, some of them aim at differentiating between road and train
inter-city trips [101]. Some works focus on retrieving easy to detect transportation
mode like train, metro or plane [130, 45] Other works, simplified the transportation
mode inference by grouping several transportation modes such as public transport
versus private transport [88, 92], air versus ground, moving versus stationary [20,
48] and rail versus road [6].Only two works develop approaches aiming at differ-
entiate finely all transportation mode. Danafar et al. [28] develop an approach for
retrieving 6 different modes: car, bus, tram, train, cycling and walking. However,
there is no quantitative result that would allow to evaluate the performance of the
approach. Chin et al. [25] propose an hybrid model based rule based heuristics com-
bined with random forest. Their classification approach achieves accuracy of 73%
when differentiating 5 modes. However, the approach has several limitations. The
ground truth dataset is unbalanced in terms of transportation mode trips distribu-
tion with an overepresentation of subway trips which are easier to infer compared
to other transportation mode. They applied supervised approach on a small ground
truth dataset which can lead to overfitting. Finally, they did not apply and validate
their approach at large scale.

Based on such an analysis of the related work, we will investigate the problem of
map-matching cellular trajectories using Hidden Markov Model. By considering the
problem in a multimodal context and for an urban use case, we aim at investigating
and overcoming the limitations of state-of-the-art approaches. Considering such
settings makes the map-matching problem even more challenging.

4.4 Theoretical Background

Hidden Markov Model is the core model on which our map-matching approach is
built. Thus, we present the theoretical background of this model in the following
sections.

4.4.1 Markov Chain

A Markov chain is a stochastic process in which the system follows the Markov prop-
erty. A Markov chain is based on states and transitions, a transition represents the
passage from one state to another (that can be the original state itself). The Markov
property states that the probability of being in a given state depends only on the
previous state.

The figure 4.1 shows an example of Markov chain. The states are denoted as v1
and v2. For instance, if the system is in state v1, it can transit to the state v2 with
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probability a12 or stay in the same state v1 with the probability a11. In general, the
stochastic processes studied depend on time. Thus, at each unit of time, a transition
is made, which ultimately generates a sequence of states.

v1 v2a11

a12

a22

a21

Figure 4.1: Markov chain

4.4.2 Hidden Markov Model

The Hidden Markov Model is a statistical mathematical model derived from Markov
chains. In this model, we cannot directly observe the sequence of states: the states
are hidden. Nevertheless, each state emits observations which are observable. The
system generates a sequence of observations that are emitted by hidden states. In-
formation about these hidden states can be retrieved from the observations. Indeed,
the probability that the system generates a given observation depends on the state
of the system.

The figure 4.2 represents a Hidden Markov Model with two hidden states v1 and
v2 and two observations o1 and o2. It is based on the Markov chain with additional
emission probabilities bij and initial probabilities πi. For instance, the emission prob-
ability b12 represents the probability of the state v1 to emit observation o2 i.e., the
probability of observing o2 given that the hidden state is v1. Finally, the initial prob-
abilities π1 and π2 corresponds to the probability that the user is respectively in the
hidden state v1 and v2 at the first unit of time.

Initial state

v1 v2

o1 o2

a11

a12

a22

a21

π1 π2

b11 b21 b22b12

Figure 4.2: Hidden Markov Model
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In a more formal way, the Hidden Markov Model with N hidden states and M
observations is defined by a five-fold 〈V, O, π, A, B〉:

• V = {v1, . . . , vN} is a set of N hidden states.

• O = {o1, . . . , oM} is a set of M observations.

• π is a N× 1 vector of initial probabilities, it defines the probability of being on
each of the hidden states at the initial moment. In addition, π is probability

distribution:
N

∑
i=1

π(i) = 1.

• A is a N × N transition matrix, it defines all transition probabilities between
all the states. The transition probability from vi to vj is P(vj|vi) denoted as aij.
Besides, ∀vi ∈ V, ∑

vj∈V
P(vj|vi) = 1.

• B is a M× N emission matrix, it defines all emission probabilities between the
observations and the hidden states. The probability that the hidden state vj

emits the observation oi is P(oi|vj) denoted as bij. Besides, ∀vi ∈ V, ∑
oi∈O

P(oi|vj) = 1.

Given this model, given a sequence of observations, the application of the hidden
Markov model allows to solve three typical problems :

• determines the probability that the system emits a given sequence.

• determines the most likely sequence of hidden states resulting from a given
sequence.

• determines the optimal parameters of the Hidden Markov Model so that the
probability that the system emits a given sequence is maximum.

For solving the map-matching problem using a hidden Markov model, we are
interested in solving the second category of problem. The algorithm used to find the
solution of this problem is the Viterbi algorithm presented in Section 4.4.3

4.4.3 Viterbi Algorithm

This section presents the basis of the Viterbi algorithm. The algorithm is based on
formulas demonstrated in this section and will be further used in the implementa-
tion of our map-matching approach presented in the Section 4.5.

The Viterbi algorithm [119] is a recursive algorithm which aims at finding the
most likely sequence of hidden states (v1 . . . vt . . . vl) given a sequence of observa-
tions (o1 . . . ot . . . ol), with l the length of the sequence.

Let us define ot ∈ O, the observation at the unit of time t, t ∈ [[1, l]].

Let us define vt ∈ V, the current state of the system at the unit of time t, t ∈ [[1, l]].

Thus, the problem that the Viterbi algorithm solves is the following :

max(P(v1 . . . vt . . . vl |o1 . . . ot . . . ol)) (4.1)
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According to the standard definition of the conditional probability, we get :

P(v1 . . . vt . . . vl |o1 . . . ot . . . ol) =
P(v1 . . . vt . . . vl ∩ o1 . . . ot . . . ol)

P(o1 . . . ot . . . ol)
(4.2)

As the probability P(o1 . . . ot . . . ol) in equation 4.2 is constant the maximisation
problem becomes :

max(P(v1 . . . vt . . . vl ∩ o1 . . . ot . . . ol)) (4.3)

By assuming that the hidden states vi, vj, (1 ≤ i, j ≤ N) are independent as well
as the observations oi, oj, (1 ≤ i, j ≤ N), we get :

P(v1 . . . vl , o1 . . . ol) = P(v1 . . . vl−1, o1 . . . ol−1) · P(vl |v1 . . . vl−1, o1 . . . ol−1)

· P(ol−1|v1 . . . vl−1, o1 . . . ol−1)
(4.4)

Since the Hidden Markov Model is without memory, the state of the system only
depends on the previous state of the system and does not depend on any other an-
terior state or observation. Thus, we obtain:

P(vt|v1 . . . vt−1) = P(vt|vt−1) (4.5)

Similarly, the observations only depend on the previous state of the system but do
not depend on all anterior states or observations. We also get :

P(ot|v1 . . . vt, o1 . . . ot−1) = P(ot|vt) (4.6)

By substituting equation 4.5 and equation 4.6 in equation 4.4, the new formulation
of the problem is the following :

max(P(v1 . . . vt . . . vl |o1 . . . ot . . . ol)) = max(P(v0) ∗
l

∏
t=1

(P(vt|vt−1) ∗ P(ot|vt)) (4.7)

P(v0) is given by π, P(vt|vt−1) is given by A and P(ot|vt) is given by B. Thus,
given the HMM parameters, the solution of equation 4.7 can be found.

4.5 Map-matching Signalling Trajectories

4.5.1 HMM based Map-Matching

Our map-matching problem can be modelled using a Hidden Markov model. The
hidden states are modelled as the set of vertices (nodes) of the graph representing
the transportation network. The observations are modelled as the unique set of x-y
coordinates of the cell phone trajectories considered. The Hidden Markov Model
allows to solve the following problem: from the sequence of positions, the mobile
phone trace (sequence of observations), find the most probable sequence of nodes on
the graph (sequence of hidden states). This modelling of the map-matching problem
is illustrated in Figure 4.3. The observations o1, o2 and o3 correspond to a sequence of
positions representing the mobile phone trace. Each position has an area which cor-
respond to the spatial error of the mobile phone position. The nodes of the transport
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v1
v2

v3 v4

v5

v6 v7

o3

o2

o1

(a) Example of signalling trajectories
(o1, o2 and o3) and candidates nodes
(v1, v2, · · · v7)

v1

v2

v3

v4

v5

v6

v7

o1 o2 o3

(b) Hidden Markov Model

Figure 4.3: Illustration of Hidden Markov Model based map-matching
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network within it are candidate nodes. For example, the nodes v1 and v2 are can-
didate nodes for having transmitted the observation o1. Then, the solid arrows cor-
respond to the different possible transitions between the candidate nodes between
two consecutive instants. The dotted arrows represent the possible emissions of ob-
servations by the candidate nodes at each instant.

In the following, we will define the multimodal transportation network model
and the main (hyper-)parameters of the HMM: the initial, transition and emission
probabilities.

4.5.2 Network Modeling

In line with Chapter 2 and Chapter 3, we consider the multi-modal transportation
network of the city of Lyon as a case study. This network includes multiple trans-
portation modes, i.e., road, subway, tramway, bus and train. In the following, we
make the assumption that the transportation modes available to travelers can be
generally classified into three categories: road, public transport (subway, tramway
and bus) and train. Thus, the network is modeled as a graph G composed of three
sub-graphs Groad, Gtc and Gtrain that are assumed to be not connected between each
other. In order to move from one graph to another the user will need to spend a
period of immobility at a given location (e.g., in the proximity of a bus stop, i.e., under
the coverage of a limited subset of cellular antennas), which, if long enough, will
be detected by TRANSIT as a static activity. As a consequence, our framework will
consider two different trips (before and after the modal-shift static session) that can
be separately matched to the specific sub-graph. Inter-modal trips are therefore not
possible across the three sub-graphs, but can occur within the transit network, i.e.,
Gtc, which covers three different transportation modes (i.e., subway, tramway and
bus). The assumption of considering the three sub-graphs Groad, Gtc and Gtrain sep-
arately and not connected at each other is discussed and stressed in Section 4.6. For
the rest of the chapter, we will denote as Gj the generic sub-graph of G related to a
specific category of transport modes, i.e., either Groad, Gtc or Gtrain.

The graph and its different sub-graphs are built using multiple data sources and
programming tools. The road sub-network Groad is generated via OSMnx [13], a
Python library which creates NetworkX graphs from OpenStreetMap (OSM) data.
Public transport sub-network Gtc has been generated using GTFS (Google Tran-
sit Feed Specification) data. The public transport sub-network Gtc is modeled as
a multi-layer graph including three layers corresponding to the three transporta-
tion modes (subway, tramway and bus). Between public transport layers, cross-
layers edges are defined as connections at transfer stops between public transport
lines (this information is contained in the GTFS transfer file). Finally, the train sub-
network Gtrain is derived using the geometry of train lines available as open data1.
The nodes of the Gtrain sub-network correspond to stations of the railway system of
the city of Lyon.

Similarly to what is proposed in the work of Putra et al. [89], whenever the dis-
tance between a pair of adjacent nodes (from both the transit and the train sub-
networks) is larger than a given threshold Dinter, additional nodes have been added
via linear interpolation of the x-y coordinates of the considered pair of adjacent
nodes. Such an interpolation can be considered as a reasonable approximation of

1https://www.data.gouv.fr/fr/datasets/fichier-de-formes-des-lignes-du-reseau-ferre-national/
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the real geometry of the link connecting the pair of nodes, which is hard to take into
account during the map-matching process. In particular, Dinter is set to 200m for Gtc
and 500m for Gtrain so that the distance between adjacent nodes is, on average, in the
same order of magnitude for the three sub-graphs Groad, Gtc and Gtrain. More details
in the importance of adding interpolated nodes in the transportation network can
be found in the work of Putra et al. [89]. Some statistics of the final multi-modal
transportation network G is given in Table 4.2.

Layer Mode |V| |E| 〈k〉 〈l〉 (km)
Groad Road 27213 58593 4.3 0.13

Gtc

Bus 31072 41755 2.7 0.15
Subway 636 669 2.3 0.17

Tramway 2239 2790 2.6 0.16
All modes 34033 46458 2.7 0.15

Gtrain Train 1657 1725 2.1 0.46
G All modes 59942 102073 / 0.14

Table 4.2: Main characteristics of each transportation layer of G: number of nodes
|V|, number of edges |E|, average node degree 〈k〉 and average edge length in kilo-
meter 〈l〉.

4.5.3 HMM Parameters

In the following, the parameters 〈V, O, π, A, B〉 denotes the HMM parameters for
map-matching a set of signalling trajectories (set of mobile sessions M̂i inferred by
TRANSIT) to any transportation graph (Groad, Gtc, Gtrain or G).

Initial Probability

In our scenario, no particular a priori exists, as a user could start his trip from any
initial location. Therefore, all the nodes of the transportation network are initially
equally assigned with a probability of 1/N with N representing the total number of
nodes in the transportation network:

π(vm) =
1
N

(4.8)

Transition Probability

The transition probability corresponds to the probability that a mobile phone user
moves on the underlying transportation network from hidden state vm at time t− 1
to hidden state vn at time t. In the following, we choose the definition proposed by
Putra et al. [89], i.e., the transition probability depends on the travel time over an
edge. For the public transport and railway sub-networks, the travel time of each
edge is calculated by multiplying the speed (the speeds are defined by mode2 and

2Speeds on the road network depend on the OpenStreetMap type of route, it varies from 30 km/h
to 90km/h. For the subway, the tramway and the bus the speed is respectively 30 km/h, 15 km/h and
15 km/h.
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the edge distance (geodesic distance between the two nodes of the edge). For the
road network, the travel time corresponds to the free flow travel time on each road
segment, as available from the OpenStreetMap information. Additionally, for public
transport, cross-layers edges connecting the different lines and modes are associated
to a travel time that corresponds to a typical connecting time, which is set to 5 min-
utes.

Finally, the transition probability a(vm, vn) between the generic pair of nodes
vm and vn is defined to be exponentially decreasing according to the travel-time
weighted shortest path between the two nodes vm and vn. Formally:

a(vm, vn) = exp−β·ttvm ,vn , ttvm,vn = ∑∀(su,sv)∈SPmn
ttvu,vv (4.9)

where (su, sv) is the generic edge on the travel-time weighted shortest path SPmn
connecting the two nodes vm and vn in sub-graph Gj, computed via the Dijkstra
algorithm. The length of the weighted shortest path SPmn corresponds to the sum of
the travel time over each edge (su, sv) belonging to SPmn. ttvu,vv denotes the travel
time between each two nodes vu and vv. β is a damping factor to control the effect
of the travel time.

Emission Probability

When the trajectory is a sequence of reconstructed positions with a given spatial
error, the map-matching problem can be viewed as a map-matching problem with
noisy GPS points. Similarly to Newson et al. [81], we model the emission probability
as a Gaussian noise centered on the hidden state vm and an empirically estimated
standard deviation of the distance error between hidden states and observations:

b(vm, ok) =
1√
2πα

e
−0.5

(
m

dvm ,ok
α

)2

(4.10)

where dvm,ok is the geodesic distance between the generic observation ok and the
generic node vm, while α is the standard deviation of a Gaussian random variable
associated to the error distance between the reconstructed and the real position of the
mobile. More details on the estimation of this parameter are given in Section 4.6.1.
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4.5.4 Map-Matching Algorithm

Procedure 1 Map-Matching Algorithm
Input:

Transportation Network, Gj(V, E)
States (Network Nodes), V = {v0, . . . , vN−1}
Cell phone trajectory, T = (o0, . . . , ol−1), l is the length of the sequence
Initial probabilities, πi such that i ∈ V
Transition probabilities, aij such that i, j ∈ V
Emission probabilities, bik such that i ∈ V and k ∈ C

Output:
Maximum probability, OutputProb
Most likely expanded node sequence, FinalPath =< vo0 , . . . , vol−1 >

First step: Optimized Viterbi Algorithm
1: StateProb[t][y]← 0, ∀t, y
2: Path← {}
3: for all y in V do
4: StateProb[0][y] = πy · by,o0

5: Path[y]← y
6: end for
7: for t← 0 to l − 1 do
8: for all y in V|by,ot 6= 0 do
9: 〈Prob, Pred〉 ← 〈 max

z∈V|az,y 6=0
(StateProb[t− 1][z] · az,y · by,ot), z〉

10: StateProb[t][y]← Prob
11: NewPath[y]← Path[Pred] + y
12: end for
13: Path← NewPath
14: end for
15: 〈Prob, Pred〉 ← 〈max

y∈V
(StateProb[l − 1][y]), y〉

16: OutputProb← Prob
17: OutputPath← Path[Pred]

Second step: Final itinerary reconstruction
18: FinalPath← OutputPath[0]
19: for k← 1 to OutputPath.size()− 1 do
20: FromNode← OutputPath[k− 1]
21: ToNode← OutputPath[k]
22: IntPath← ShortestPath(FromNode, ToNode, Gj)
23: FinalPath← FinalPath + IntPath
24: end for
25: return〈FinalPath, OutputProb〉

As a pre-processing step, for the set of raw signaling trajectories not enhanced by
TRANSIT, we re-sample the network signaling traces with a three minutes frequency.
In space, we calculate the centroid of the coordinates of the signaling events falling
in the three minutes time-window. In time, we associated each time window to its
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starting time. This aggregation step aims at reducing the oscillation effect on the
cellular trajectory.

After the pre-processing step, our approach performs a two-steps map-matching
procedure, reported in Pseudo-code 1. The first phase consists in an optimized
Viterbi algorithm [119]. The inputs of the Viterbi process are the following: the
generic transportation sub-network modeled as a graph Gj, the possibles states (set
of the nodes of Gj), the emissions (the unique set of x-y coordinates in M̂i), the pre-
viously defined HMM parameters and the input trajectory from M̂i. By calculating
all possible paths given the input trajectory, the Viterbi process output is the most
likely sequence of graph nodes, one for each time instant in the input. For real-time
application, due to a large number of states and emissions, the execution time of the
Viterbi algorithm is critical [4]. To improve performance, we implemented an opti-
mized version of the Viterbi algorithm as done by Algizawy et al. [4] which consists
in eliminating all multiplications by zero thus reducing the search space by keep-
ing only emittable states from each observable state. Moreover, to further reduce
computation time, the following approximations are considered: (i) if the distance
between state vm and observation ok is larger than 2km, the emission probability
e(vm, ok) is rounded to 0; (ii) similarly, if the distance between state vm and state vn
is larger than 5km, transition probability a(vm, vn) is rounded to 0.

It is worth observing that, after inferring the most likely states sequence using the
optimized Viterbi implementation presented above, the output sequence of hidden
states (nodes on a given sub-network Gj) do not necessarily form a connected path
on the specific transport sub-network. Therefore, as the second step of the map-
matching procedure, the final trajectory is further completed by applying a tradi-
tional shortest path (Dijkstra) detection algorithm on the underlying transportation
graph between any two consecutive nodes of the most likely states sequence. The
final completed sequence of nodes on sub-network Gj represents the map-matched
trace for the processed trace from M̂i for user i.

4.6 Microscopic Validation

4.6.1 Datasets

The microscopic dataset used in this section is the same dataset used for validating
TRANSIT in Chapter 2. As a reminder, the dataset of GPS locations, named EGPS
in the following, contains GPS data collected via a custom Android application in-
stalled on the volunteers’ personal mobile phone, so as to track their movements
with high resolution and in a continued manner during the observation period.

The NSD dataset, named ENSD in the following, contains all network signaling
events associated to the mobile devices of the four voluntaries, across 2G, 3G and
4G technologies. We highlight that (i) all volunteers were Orange subscribers at the
time of the data collection campaign, and (ii) they were explicitly invited to main-
tain their regular mobile communication and service consumption habits during the
measurement period.

Overall, the validation datasets EGPS and ENSD provide corresponding GPS and
NSD data. We applied a recent segmentation approach for spatio-temporal GPS
data [60] for the traces in EGPS. The resulting set of trajectories is denoted as MGT.
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TRANSIT is applied on ENSD and outputs the set M̂ of mobile sessions with aug-
mented trajectories which is the input of our map-matching approach. Then, we
manually labeled the transport mode of all trajectories in MGT by associating one
sub-graph Gj of G for each trajectory. In total, ground-truth data contain 111 trajecto-
ries related to public transport, 72 to car and 12 to train, for a total of 195 trajectories.

It is worth highlighting that the choice of the parameters of the Hidden Markov
Model presented in Section 4.5.1 makes our map-matching approach suitable for
GPS trajectories according to recent works on GPS map-matching [81, 89]. The only
difference with the map-matching of signaling trajectories concerns the definition of
emissions. For GPS trajectories, they are defined as the unique set of x-y coordinates
in MGT. Based on the extremely high accuracy (above 95%) of the map-matching
process on GPS trajectories [81, 89], we consider the set of map-matched GPS trajec-
tories as ground-truth in the evaluation.

Finally, we apply our map-matching approach on different NSD-based sets of
trajectories, specifically: M,MR, M̂R and M̂, defined as follows. M is the set of sig-
naling trajectories that the trajectory segmentation step of TRANSIT outputs, prior
to any further processing.MR is the set of recurrent trajectories identified by TRAN-
SIT, without any trajectory enhancement. M̂R is the set of recurrent trajectories that
have received a trajectory enhancement by TRANSIT. M̂ is the whole set of trajecto-
ries, possibly augmented, produced at the end of TRANSIT. These sets of trajectories
covers the four volunteer users considered in the microscopic validation.

Parameter Choice

Our map-matching approach depends on two parameters, namely α and β, respec-
tively associated to the emission and transition probabilities of the Hidden Markov
Model. In order to choose the best values for such parameters, we apply our ap-
proach on M and M̂R and then compute the average F1 score for different combina-
tions of values for α and β, using the corresponding map-matched GPS trajectories
as ground-truth. The sensitivity analysis on M and M̂R is respectively considered
for choosing the best parameters for applying map-matching on raw signaling tra-
jectories and TRANSIT enhanced trajectories. The F1 score is a metric for evaluating
the performance of the map-matching at the trajectory level. To evaluate the perfor-
mance on a set of trajectories, we average the F1 score obtained for each NSD-based
trajectory. This score is defined as follows:

Precision =
TP

(TP + FP)
, Recall =

TP
(TP + FN)

(4.11)

F1 = 2 · Precision · Recall
(Precision + Recall)

(4.12)

where: (i) the number of true positives TP is the number of edges in common be-
tween the ground-truth GPS and NSD map-matched trajectories; (ii) the number of
false positives FP represents the number of edges in the NSD map-matched trajec-
tory that do not belong to the corresponding ground-truth GPS map-matched tra-
jectory; (iii) the number of false negatives FN represents the number of edges from
the ground-truth GPS map-matched trajectory that do not belong to the NSD map-
matched one.
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Figure 4.4 shows the sensitivity analysis on the parameters α and β of our ap-
proach on the two sets of NSD-based trajectoriesM and M̂R for two transportation
sub-networks: road and public transport. We do not dispose of enough trajectories
to conduct a sensitivity analysis on train trips. We recall thatM is the set of raw sig-
naling trajectories identified after the TRANSIT segmentation step and M̂R is the set
of recurrent trajectories as enhanced by TRANSIT. From the figure, it can be noted
that both the nature of the transportation mode and the enhancement performed by
TRANSIT have a relevant impact for the optimal choice of α and β. Thus, the sen-
sitivity analysis appears necessary for choosing the most appropriate combination
of values for parameters α and β and thus for optimizing the performance of the
map-matching procedure. In addition, all the figures exhibit a very similar trend:
performance globally grows when both alpha and beta grow. Finally, the optimal
values of β and α are located around the yellow diagonal of the two heatmaps in
Figure 4.4 (higher values of F1 score). Based on such results, we choose the follow-
ing settings for the parameters: for road raw signaling trips, (α, β) = (0.75, 250);
for public transport raw signaling trips, (α, β) = (0.5, 500); for road TRANSIT en-
hanced trips, (α, β) = (0.5, 250); and for public transport TRANSIT enhanced trips,
(α, β) = (0.25, 100). For the train sub-network, we make the assumption that this
transport mode is more similar to the public transport one than to the car-mode.
Thus, we decided to adopt, for this mode, the same parameters as those used for the
public transport one.

(a)M - Road (b) M̂R - Road

(c)M - Public transport (d) M̂R - Public transport

Figure 4.4: Sensitivity analysis on parameters α and β for raw signaling trajectories
with road (a) and public transport (c); for transit enhanced trajectories with road (b)
and public transport (d)
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Set of trajectories
Transportation
mode knowledge

Mode Ge (km) MR F1 score

M̂ No All modes 0.11 63 0.59

M Yes
Road 0.14 63 0.57

TC 0.05 78 0.71
All 0.09 71 0.65

MR Yes
Road 0.14 60 0.56

TC 0.05 78 0.70
All modes 0.09 70 0.64

M̂R Yes
Road 0.08 68 0.69

TC 0.02 86 0.89
All modes 0.05 78 0.80

M̂ Yes
Road 0.10 67 0.67

TC 0.03 86 0.86
All modes 0.06 77 0.77

Table 4.3: Result of the map-matching approach on different sets of trajectories: M̂
without prior knowledge on the transportation mode and M,MR, M̂R and M̂with
prior knowledge on the transportation mode.

4.6.2 Map-Matching Performance

Once the parameters set, to evaluate the map-matching performance, we use two ad-
ditional metrics, which complement the information provided by the F1 score i.e., the
matching rate and the geographical error. The matching rate, MR is the percentage
of correctly map-matched edges by our approach. The geographical error, Ge is the
distance between the NSD-based map-matched trajectory and the GPS-based one:
it is computed as the average geodesic distance between each node in the inferred
trajectory from NSD data and its closest node in space from the GPS map-matched
trajectory. Formally:

MR =
TP

TP + FN + FP
and, Ge =

1
|mNSD| ∑

en∈mNSD

min
en′∈mGPS

d(ln, ln′) (4.13)

where TP, FP and FN correspond respectively to the number of true positives, false
positives and false negatives as defined above. mGPS and mNSD are, respectively, two
map-matched trajectories (sequence of nodes in the transportation network) from
GPS and mobile network data, respectively. The operator | · | denotes the cardinality
of the argument set, i.e., the number of samples contained in the trajectory, while the
operator d(·, ·) denotes the geodesic distance.

In our evaluation, we compare the result of the map-matching procedure with
and without prior knowledge on the transportation mode. In case the map-matching
is done without any prior knowledge on transportation mode, we map-matched the
trajectories to all the sub-graphs of G, and we output the one with the highest prob-
ability from the Viterbi algorithm. Table 4.3 reports on the performance of our map-
matching approach on 5 different input sets of trajectories, namely M̂without prior
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knowledge on the transportation mode and M,MR, M̂R and M̂ with prior knowl-
edge on the transportation mode. The results clearly highlights the importance of
adding a prior information on transportation knowledge in order to improve the
overall performance of the map-matching approach. The improvement is particu-
larly relevant in relation to the matching rate, allowing an increase of 13% with re-
spect to the case without any prior knowledge. Similarly, the F1 score increases from
0.59 without prior transportation mode knowledge, to 0.77 when considering it. In
the following, we thus assume to dispose of transportation mode information before
applying our map-matching approach. We can observe that despite the large uncer-
tainty of NSD, our approach can map-match the NSD trajectories rather accurately.
For the whole set of mobile sessions, the geographical error is in fact equal to only
60m, matching attains a 77% success rate and the F1 score equals 0.77. By comparing
the performance of the map-matching on M̂R andMR we are also able to appreci-
ate the positive impact of TRANSIT on the map-matching performance. The results
show that the enhancement step performed by TRANSIT onMR allows improving
significantly the map-matching process: the geographical error is divided by a fac-
tor 2, the matching rate increase by 10% and the F1 score reaches 0.80 on M̂R (with
TRANSIT) instead of 0.64 onMR (without TRANSIT). Then, in the worst case, i.e.,
for the set M of trajectories which are not enhanced by TRANSIT, the performance
of the map-matching remains good with a geographical error inferior than 100m and
a matching rate of 71%. Finally, it can be noticed that the result of the map-matching
approach is superior, with respect to all considered metrics, in the public transport
sub-network case than the road one. Such a result is explained by the more complex
topology of the road network compared to that of the public transport one, which
makes the map-matching problem harder in the former case.

4.6.3 Impact of Sampling Rate

To further evaluate the performance of our approach, we also quantify in the fol-
lowing the impact of spatio-temporal sparsity of NSD data that are fed to TRAN-
SIT before map-matching. We do this by randomly sub-sampling the NSD of each
user down to a fraction of the original mobile events in every sessions in M̂; we
then run our map-matching approach on the sparser trajectories, after performing
or not trajectory augmentation with TRANSIT. Due to the stochastic nature of the
sub-sampling, we averaged the F1 score over 10 trials (random samples selected
with a given frequency) for each distinct sampling rate.

Figure 4.5: Performance of the map-matching with and without TRANSIT with
varying events sampling rate.
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We can observe that the average value of the F1 score follows different trends in
the case of the raw signaling trajectories and the TRANSIT-enhanced ones. Values
of the F1-score increase for small growing values of the sampling frequency, both in
the case of raw NSD and in the TRANSIT one. The difference of the performance
between TRANSIT and raw NSD is constant and close to 0.15 for the smaller val-
ues. Differently, for higher sampling frequency, the F1 score remains approximately
constant for raw NSD, regardless of the sampling frequency, whereas it keeps in-
creasing for TRANSIT. Indeed, there is no reason why an increased number of raw
NSD events would improve the intrinsic spatial uncertainty proper to such kind of
data, as the map-mathing error is linked to the geographical sparsity of the antennas
in the raw NSD case. In fact, the distance between NSD and the closest GPS position
stays constant, and, consequently, the map-matching process cannot rely on addi-
tional spatial information to improve its performance when a higher sampling fre-
quency is available. On the contrary, TRANSIT decouples trajectory samples from
base station locations, and can better approximate the actual position of the user by
averaging over a higher number of NSD samples collected at different antennas. As
TRANSIT achieves to better reconstructing spatial information, the map-matching
on TRANSIT-enhanced trajectory attains increased performance even with higher
sampling frequency. This lets TRANSIT increase its F1 score up to 0.8 as the sam-
pling rate grows.

4.7 Macroscopic Validation

To validate our map-matching approach at macroscopic level, we apply our ap-
proach on three different pairs of OD, namely: C1, C2 and C3. It is worth highlighting
that C1, C2 and C3 are composed of raw signaling trips as well as TRANSIT enhanced
trips related to the whole subscribers’ base that have traversed these zones. As dis-
cussed in Section 4.6.2, the performance of the map-matching process is superior
when considering prior knowledge on the transportation mode. Thus, we apply a
simple, yet effective, speed-based heuristic to infer the transportation mode (either
car, public transport or train) of each trip in C1, C2 and C3. This heuristic is based
on the assumption that public transport trips speed is lower than car trips speed
which is lower than train speed. Ideas for improving such a basic inference approach
are given in Section 7. Then, we apply our map-matching approach on C1, C2 and
C3. For evaluating the result of the map-matching, we compare the reconstructed
paths obtained for each OD pair via our approach with reference paths, that we call
ground-truth popular paths in the following. The latter have been obtained using a
variety of route planners3. The former have been obtained by summing the number
of occurrences of each edge of the transportation network from the map-matched
trajectories obtained by means of our approach. Results are graphically presented in
Figure 4.6, while the performance of our approach is assessed via visual inspection,
as discussed in the following.

Concerning the OD pair C1, related trips belong either to the road or to public
transport sub-networks. For public transport trips, in Figure 4.6a and Figure 4.6b,
we can observe that our approach correctly inferred the main two ground-truth pop-
ular paths as obtained via commonly-used route planners. The first one is a bus
itinerary and the second one is a multi-modal public transport itinerary, consisting
in a tramway segment followed by a subway one. Regarding car trips, in Figure 4.6c

3https://www.google.fr/maps, https://www.viamichelin.fr/web/Itineraires
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and Figure 4.6d, our approach completely retrieved ground-truth itineraries 1, 2,
while retrieving only a portion of itinerary 3. In particular, our approach seems to
wrongly infer a popular itinerary in the center of the figure. This itinerary is located
between the retrieved itineraries 1 and 2. It is possible that, our speed-based heuris-
tic approach failed at inferring the correct transportation mode for some trips. As
a result, our approach map-matched trips to the wrong transportation network. In
our case, it is likely that some public transport trips have been wrongly matched
to the road network thus generating a fake road-based popular path, which is spa-
tially close to a well-known public transport segment (included in itinerary 1 from
Figure 4.6b).

For the OD pair C2, trips are associated either to the road or to the train sub-
networks. For train trips, in Figure 4.6e and Figure 4.6f the only popular itinerary
is correctly retrieved by our approach. Concerning car trips, in Figure 4.6g and Fig-
ure 4.6h, two main popular paths are present in our ground-truth data. The first one
(itinerary 1) is correctly detected by our approach, whereas the second one (itinerary
2) is not. It is worth highlighting that ground-truth popular paths proposed by the
route planners give some reasonable indications on popular paths, but may not nec-
essarily be representative of actual route-choice preferences of users. This can ex-
plain some of the differences observed when inferring popular paths via our ap-
proach that relies on large-scale fresh data describing actual movements of large
crowds of people, as observed through the lens of the mobile phone communication
network.

Finally, for the C3 OD pair, as reported in Figure 4.6i, Figure 4.6j, Figure 4.6k
and Figure 4.6l, trips are associated either to the road or to the public transport sub-
networks. For both car and public transport trips, a good match for popular paths
can be observed: our approach retrieves the main popular paths detected via route
planners. We also highlight that popular itinerary 1 for public transport is a multi-
modal one.

All these aggregate results show a very promising application of our approach
for inferring fine-grained mobility information, i.e., popular paths, by transportation
mode at macroscopic level. Reported results also prove the capability of our solution
to perform accurate map-matching even in the case of complex urban and multi-
modal settings.

4.8 Conclusion

In this chapter, we investigated the potential of network signalling data to provide
fine-grained spatio-temporal information to reconstruct users’ mobility. Thus, we
developed a HMM-based map-matching algorithm for mapping sparse and noisy
cellular trajectories to the underlying multi-modal transportation network. The map-
matching approach is applied on the output of TRANSIT (the framework has been
previously presented in detail in Chapter 3).

To validate our approach, we have analyzed an original case study, related to
French city of Lyon, by leveraging both real cellular traces collected by a major net-
work operator and GPS data collected via a mobile phone application. This data has
been leveraged to perform a microscopic validation, aimed at both fine-tuning the
parameters of the HMM-based map-matching step and at showing the capability
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(a) C1 - Reconstructed
popular paths - PT

(b) C1 - Ground-truth
popular paths - PT

(c) C1 - Reconstructed
popular paths - Road

(d) C1 - Ground-truth
popular paths - Road

(e) C2 - Reconstructed
popular paths - Train

(f) C2 - Ground-truth
popular path - Train

(g) C2 - Reconstructed
popular paths - Road

(h) C2 - Ground-truth
popular paths - Road

(i) C3 - Reconstructed
popular paths - PT

(j) C3 - Ground-truth
popular path - PT

(k) C3 - Reconstructed
popular paths - Road

(l) C3 - Ground-truth
popular paths - Road

Figure 4.6: Comparison between reconstructed popular paths reconstructed by our
approach and ground-truth popular paths for 3 case studies: C1, C2 and C2.

of our approach to accurately map-matching cellular trajectories on multiple trans-
portation mode. We also demonstrated the importance of having prior rough trans-
portation mode knowledge before applying the map-matching process to improve
the performance of the latter.

Then, using simple transportation mode inference, we have demonstrated the
possibility to retrieve popular paths by transportation mode for multiple OD-pairs.
We underline the fact that, by relying on our approach and network signaling data,
such a knowledge can be provided at very large scale (an entire country), with a
temporal description (popular paths can be different at given moments of the day



82 Chapter 4. Multi-Modal Path Inference in Urban Environment

or during week-ends), and at much higher spatial resolution (covering also periph-
eral areas, or regions hardly observed via GPS-based data) than the one provided
via simple traditional route planners, thus proving the utility of our approach and
interest of the analyzed case study.

Future works directions that are not tackled in this thesis include improvements
on the HMM parameters. For the initial probability, instead of having all states
equally probable, the probability could be weighted by the level of confidence that
a user is in a particular transportation mode. This level of confidence could be es-
timated based on trip information (travel time, speed ...). Besides, transition matrix
could be dynamic and estimated based on travel time depending on real traffic con-
ditions.

Other work directions include improvement on the transportation mode infer-
ence technique. Indeed, instead of using only the speed, multiple features could be
used for the inference such as: the probability that the Viterbi algorithm outputs,
start time/duration of the trip and total static activity duration within the trip. De-
tailed analysis of the results deriving from a country-scale application of our solution
could be explored as future directions.
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Chapter 5

Urban Mobility Dynamics
Extraction

In this chapter, we study the problem of urban dynamics extraction from mobile
phone data in the city of Lyon. Based on TRANSIT approach developed in Chap-
ter 2, we can represent the urban mobility of Lyon as a mobility tensor with fine
spatio-temporal granularity. We leverage Tucker decomposition approach to extract
urban dynamics from this mobility tensor. The results show that the approach is
able to retrieve typically known temporal patterns. In space, the approach is able
to find relevant origin and destination communities. The size of these communities
is consistent with the density of trips of these zones. Thus, the approach can re-
trieve interesting spatial and temporal patterns as well as complex spatio-temporal
dependence. Finally, we demonstrate that the approach is still able to retrieve the
main urban dynamics with incomplete mobility tensor (mobility sample sampled
with 50% rate).

The chapter is structured as follows. Section 5.2 provides the problem that this
chapter tackles. Section 5.3 presents the related works. Section 5.4 is dedicated to
develop the theoretical background of our approach based on Non-negative Tucker
Factorization. The parameter choices, the extraction of urban dynamics using our
decomposition approach as well as a comparative analysis of state of the art ap-
proaches are provided in Section 5.5. Finally, Section 5.6 present the conclusion of
this chapter and future directions that could be explored.
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5.1 Notation for this chapter

Symbol Description

M Number of zones

N Number of time slices

E Random error tensor

M The mobility tensor

mxyz The (x, y, z) elment of M

M̂ The reconstructed mobility tensor

W the urban context matrix

wpq The (p, q) element of W

Ntrips Total number of trips
C The core tensor

cijk the (i, j, k) element of C
O Origin factor matrix

I Number of origin spatial patterns

D Destination factor matrix

J Number of destination spatial patterns

T Temporal factor matrix

K Number of temporal patterns

ox , dx , tx the x-th row vectors of O, D, T

o:j, d:j, t:j the i-th column vectors of O, D, T

oxj, dxj, txj the (x, i) elements of O, D, T

γ, δ, ε, ζ Regularization parameters

α, β urban context parameters

Table 5.1: Chapter 5’ specific notations
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5.2 Introduction

In Chapter 1, we presented the various sources of data that have emerged for study-
ing human mobility. We showed the potential and the limitations of one of the most
promising source: mobile phone data. The latter were leveraged in Chapter 2 to
infer travel demand patterns. In the same chapter, we also demonstrated, with a
comparison with surveys, that mobile phone data were able to infer travel demand
accurately even in urban environment. Then, in Chapter 3, we developed TRAN-
SIT, a framework able to transform noisy and sparse mobile phone trajectories into
fine-grained trajectories with contextual information (mobility/staticity of the mo-
bile phone user over time). This chapter aims at developing approaches able to
extract urban dynamics, meaningful knowledge on human mobility in urban con-
text. Our approach is based on TRANSIT which allows it to infer these dynamics at
unprecedented spatio-temporal scale.

Understanding urban dynamics is a very important step for transportation plan-
ners. Such a knowledge is necessary to design and improve urban transportation
systems. These urban dynamics of mobility are characterized by multiple dimen-
sions. For instance, at individual level the mobility is characterized by a lot of
attributes such as trip origin, trip destination, time, transportation mode, socio-
economic status of the persona and so on. When it comes to analyze human mobility
at aggregated level, this mobility can be analyzed along different dimensions, each
dimension being an above mentioned attribute. Given the multivariate nature of hu-
man mobility and the complex travel behaviours of individuals, extracting interest-
ing urban dynamics along multiple dimension is very challenging. This is especially
true when the number of dimensions analyzed increases.

Moreover, representing the mobility in a form where it can be further analyzed
is not trivial. If the mobility (a set of trips) have to be analyzed along one dimension,
for instance the origin, a natural way to represent this mobility is to use a vector
representation where each element denotes the number of trips emitted from each
origin. Similarly, if the mobility has to be analyzed in two dimensions, a natural
representation is a matrix. More generally, if the mobility has to be analyzed in N
dimensions, the natural representation is a N-way tensor. However, analyzing this
tensor is very challenging given the number of its elements. Developing approaches
able to extract meaningful knowledge related to urban dynamics is the goal of this
chapter.

5.3 Literature Review

The research community has largely studied the different tensor factorization ap-
proaches [64]. Thus, thanks to these theoretical advances, tensor factorization has
recently fed many applications in different domains [64]: in medicine for the anal-
ysis of electroencephalogram (EEG) signals [77], face recognition [118], psychology
analysis [63] or movies recommendation [111]. In this context, the tensor factor-
ization has also became popular in the transportation domain. In the field, tensor
factorization have been leveraged for two main purposes. The first category is to
reconstruct tensors for predicting unknown values in multi-variate data sets. This
includes a lot of applications such as completing missing traffic data [110], inferring
urban gas consumption [143], predicting travel time [125] or recommending social
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tags [108]. In the second category, the works aims at discovering latent structure
from multivariate data. Our work falls in this second category.

In the mobility field, tensor factorization has been widely used to understand ur-
ban dynamics. The common approach is to represent the the aggregated mobility of
a region as dynamic origin destination matrices which is a 3-way tensor (with time,
origin and destination as dimensions of this tensor). Then, the tensor factorization
can be applied on the 3-way tensor. Among the possible approaches for estimating
urban mobility patterns, Wang et al. [121] have shown that that Tucker decompo-
sition performs better than CANDECOM/PARAFAC. Sun at al. explore tensorial
probabilistic latent semantic analysis (PLSA) which is equivalent of tensor decom-
position. These decomposition has been applied for modelling urban dynamics with
different sources of data: smartcard data [106], mobile phone data [120] and taxi data
[112, 87]. Recently, another model has been proposed which combine Tucker de-
composition with external urban context knowledge from point of interest data and
neighboring regularization [122]. For this chapter, we implemented this approach.
Thus, the latter will be presented in details in the next section.

However, these works have limitations that we aim at overcoming. First, the
works often rely on coarse space segmentation for creating their dynamic OD matri-
ces (mobility tensor). When the data source is mobile phone data [120], the reason
of such a choice is the lack of methods able to estimate accurately the origins and
the destinations of the mobile phone trips. Thus, to mitigate the bias, they have to
build OD matrices with poor spatial granularity. This problem has already been dis-
cussed in Chapter 2 and Chapter 3. The above mentioned problem is one the reason
we have developed TRANSIT. Thus, with TRANSIT, as we know accurately the ori-
gins and the destinations of the trips, the tensor can be build based on a fine space
segmentation which improves the granularity of the inferred urban dynamics. In
addition, there is a lack of work in the literature which compare the different tensor
factorization approaches.

5.4 Methodological Background

5.4.1 Problem Formulation

In this section we will present the theoretical background of the core method of this
chapter: sparse non negative Tucker decomposition. The approach is based on the
one proposed by Wang et al. [122] .

The following will present the main notations used in this chapter. Let us assume
that an urban region can be divided into M zones with Ntrips trips occurring in the
region during a day. The day can also be divided into N time slices. Let us denote
mxyz the number of trips from an origin zone x ∈ 1, . . . , M to a destination zone
y ∈ 1, . . . , M with the starting time of the trip taking place within a time slice z ∈
1, . . . , N. A third order tensorM ∈ RM×M×N is then defined by having mxyz as the
generic (x, y, z) element of the tensor. Thus, we have ∑x,y,z mxyz = Ntrips. The tensor
M is called mobility tensor.

Tucker decomposition decomposes a tensor into a smaller tensor with predeter-
mined dimensions C (called the core tensor), multiplied by factor matrices O, D and
T along each dimension, given by:



5.4. Methodological Background 87

M = C ×o O×d D×t T + E (5.1)

where E ∈ RM×M×N is a random error tensor, and ×n denotes the tensor n-
mode product. M is the mobility tensor as described above. O ∈ RM×I , D ∈
RM×J and T ∈ RN×K are the factor matrices and represent the latent urban dynamics
of each dimension: origin, destination and time. C ∈ RI×J×K is the core tensor
and capture the multimodal dynamics of the factor matrices. I, J and K are the
number of latent structures associated to each factor matrices. An illustration of
Tucker decomposition is represented Figure 5.1. oi ∈ RM for i ∈ 1, . . . , I is a vector
representing a hidden structure associated to the dimension origin also denoted as
origin pattern. Similarly, dj ∈ RM for j ∈ 1, . . . , J is a vector representing a hidden
latent structure associated to the dimension destination also denoted as destination
pattern. Finally, tk ∈ RN for k ∈ 1, . . . , K is a vector representing a hidden latent
structure associated to the dimension time also denoted as temporal pattern.

The reconstructed mobility tensor M̂ using the core tensor and the factor matri-
ces is given by the following equation:

M̂ = C ×o O×d D×t T (5.2)

M is estimated with the data. The core tensor C as well as the projection matrices
O, D and T are unknown variables that have to be estimated. Hence, our task is
twofold:

• Infer C, O, D and T fromM, i.e., reduce the error betweenM and M̂;

• Understand urban dynamics from the analysis of C, O, D and T.

Figure 5.1: Tucker factorization

In the approach proposed by Wang et al., the authors add additional urban-
context similarity matrix W to the above mentioned modeling. The idea is to use
external information such as point of interest data to help the finding of the latent
patterns. Indeed, the point of interest of a city can be classified in different categories
(for instance food service, transportation facilities, residence ...). Moreover, we can
characterize each zone by its POI distribution in each category. Thus, similar zones
will exhibit similar POI distribution. We can build a similarity matrix W where ele-
ment wij denotes the similarity between origin i and destination j and computed as
the vector product of the two POI distribution of i and j. Based on the reasonable
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assumption that similar urban zones should exhibit similar spatial patterns, this sim-
ilarity matrix can also be estimated with the origin and destination patterns. Let us
take the origin case, this matrix will be denoted as WO and the element wO

ij is com-
puted as the vector product of the latent structure of origin i (the score of all origin
patterns associated to origin i) and the latent structure of origin j. With such a defi-
nition WO

ij = OO>. For the destination dimension we get WD
ij = DD>. Finally, we

have the following relationships between W and projection matrices O and D that
can be added to our model :

W = OO> + EO, and W = DD> + ED (5.3)

where EO and ED are random error matrices.

The idea is to minimize the error between W and OO> as well as the error be-
tween W and DD>

5.4.2 Non-Negative Tucker Decomposition

For building our Tucker factorization model, we made multiple assumptions.

1. The residual tensor E follows a normal distribution: E ∼ N (0, σ2
M)

2. we assume that the factor matrices and the core tensor follows zero mean
Laplace distribution

3. the observed data cells are mutually independent

Given that hypothesis 1-st and 3, the conditional distribution over the observed
data inM is defined as:

P(M|C, O, D, T, σ2
M) =

M

∏
x=1

M

∏
y=1

N

∏
z=1
N (mxyz|C ×o ox ×d dy ×t tz, σ2

M)

=
M

∏
x=1

M

∏
y=1

N

∏
z=1

1
σM
√

2π
e
− (mxyz−C×oox×ddy×ttz)2

2σ2
M

(5.4)

Given that hypothesis 2-st and 3, the distribution over the core tensor in C and
the factor matrices O, D and T are defined as:

P(O|σO) =
M

∏
x=1
L(ox|0, σOII) =

M

∏
x=1

I

∏
i=1
L(oxi|0, σO) =

M

∏
x=1

I

∏
i=1

1
2σO

e
−|oxi |

σO (5.5)

P(D|σD) =
M

∏
y=1
L(dy|0, σDIJ) =

M

∏
y=1

J

∏
j=1
L(dyj|0, σD) =

M

∏
y=1

J

∏
j=1

1
2σD

e
−|dyj |

σD (5.6)

P(T|σT) =
N

∏
z=1
L(tz|0, σTIK) =

N

∏
z=1

K

∏
k=1
L(ozk|0, σT) =

M

∏
z=1

K

∏
k=1

1
2σT

e
−|tzk |

σT (5.7)

P(C|σC) =
I

∏
i=1

J

∏
j=1

K

∏
k=1
L(cijk|0, σC) =

I

∏
i=1

J

∏
j=1

K

∏
k=1

1
2σC

e
−|cijk |

σC (5.8)
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The posterior distribution of the pattern variables is according to the Bayes the-
orem:

P(C, O, D, T|M)

=
P(M|C, O, D, T)P(C)P(T)P(D)P(O)

P(M)

= K ∏
x,y,z

e
− (mxyz−C×oox×ddy×ttz)2

2σ2
M ∏

i,j,k
e
−|cijk |

σC ∏
x,i

e
−|oxi |

σO ∏
y,j

e
−|dyj |

σD ∏
z,k

e
−|tzk |

σT

(5.9)

where K = 1
(σM
√

2π)M×M×N(2σO)M×I(2σD)M×J(2σT)N×K(2σC)I×J×K P(M)

The log posterior distribution is then calculated by:

ln P(C, O, D, T|M) = ln K + ∑
x,y,z

ln e
− (mxyz−C×oox×ddy×ttz)2

2σ2
M +

∑
i,j,k

ln e
−|cijk |

σC + ∑
x,i

ln e
−|oxi |

σO + ∑
y,j

ln e
−|dyj |

σD + ∑
z,k

ln e
−|tzk |

σT

= ln K− ∑
x,y,z

(mxyz − C ×o ox ×d dy ×t tz)2

2σ2
M

−

∑
i,j,k

|cijk|
σC
−∑

x,i

|oxi|
σO
−∑

y,j

|dyj|
σD
−∑

z,k

|tzk|
σT

(5.10)

Thus:

ln P(C, O, D, T|M) ∝ − 1
2σ2

M
∑

x,y,z
(mxyz − C ×o ox ×d dy ×t tz)

2−

1
σC

∑
i,j,k
|cijk| −

1
σO

∑
x,i
|oxi| −

1
σD

∑
y,j
|dyj| −

1
σT

∑
z,k
|tzk|

(5.11)

Therefore, to obtain the Maximum A Posteriori (MAP) estimation of C, O, D and
T is equivalent to minimizing the object function:

J̃ =
1

2σ2
M
‖M− C ×o O×d D×t T‖2

F +

1
σC
‖C‖1 +

1
σO
‖O‖1 +

1
σD
‖D‖1 +

1
σT
‖T‖1

(5.12)

where ‖·‖2
F is the Frobenius norm and ‖·‖1 the L-1 norm.

We introduce urban contextual factors as context-aware regularization using a
maximum a posteriori method. Assume the elements of EO and ED in Eq. [Ref eq]
follow zero-mean Gaussian distributions, then we have:
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P(W|O, σ2
WO) =

M

∏
p=1

M

∏
q=1
N (wpq|opo>q , σ2

WO) =
M

∏
p=1

M

∏
q=1

1
σWO
√

2π
e
−(wpq−opo>q )2

2σ2
WO (5.13)

P(W|D, σ2
WD) =

M

∏
p=1

M

∏
q=1
N (wpq|dpd>q , σ2

WD) =
M

∏
p=1

M

∏
q=1

1
σWD
√

2π
e
−(wpq−dpd>q )2

2σ2
WD (5.14)

Let Ω = {σ2
M, σ2

WO, σ2
WD, σO, σD, σT, σC}. Given the data tensor M and urban

context matrix W, the posterior distribution of O, D, T and C is given by:

ln P(C, O, D, T|M, W, Ω)

∝ ln P(M|C, O, D, T)P(C, Ω)P(W|O, Ω)P(W|D, Ω)P(O|0, Ω)P(D|0, Ω)

P(T|0, Ω)P(C|0, Ω)

∝ − 1
2σ2

M
∑

x,y,z
(mxyz − C ×o ox ×d dy ×t tz)

2−

1
2σ2

WO
∑
p,q
(wpq − opo>q )

2 − 1
2σ2

WD
∑
p,q
(wpq − dpd>q )

2−

1
σC

∑
i,j,k
|cijk| −

1
σO

∑
x,i
|oxi| −

1
σD

∑
y,j
|dyj| −

1
σT

∑
z,k
|tzk|

(5.15)

To maximize the posterior distribution is equivalent to minimizing the sum-of-
squared errors function with hybrid quadratic regularization terms, i.e.,

J̃ =
1

2σ2
M
‖M− C ×o O×d D×t T‖2

F +

1
2σ2

WO

∥∥∥W−OO>
∥∥∥2

F
+

1
2σ2

WD

∥∥∥W−DD>
∥∥∥2

F
+

1
σC
‖C‖1 +

1
σO
‖O‖1 +

1
σD
‖D‖1 +

1
σT
‖T‖1

(5.16)

Which is equivalent to minimize the following equation :

J̃ = ‖M− C ×o O×d D×t T‖2
F +

α
∥∥∥W−OO>

∥∥∥2

F
+ β

∥∥∥W−DD>
∥∥∥2

F
+

γ ‖C‖1 + δ ‖O‖1 + ε ‖D‖1 + ζ ‖T‖1

and C ≥ 0, O ≥ 0, D ≥ 0, T ≥ 0

(5.17)

where α =
σ2

M
σ2

WO
, β =

σ2
M

σ2
WD

, γ =
2σ2

M
σC

, δ =
2σ2

M
σO

, ε =
2σ2

M
σD

and ζ =
2σ2

M
σT

We adopt the Block Coordinate Descent-Proximal Gradient (BCD-PG) algorithm
developped by Xu et al. [131] to solve the equation 5.17. While this function is not
jointly convex with respect to O, D, T and C, it is block multiconvex with each one
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when the other three are fixed. Therefore, we adopt a Block Coordinate Descent
(BCD) procedure [131], which starts from an initialization on C(0), O(0), D(0)andT(0),
and then iteratively updates C(s), O(s), D(s)andT(s) with s ∈N by:

C(s) = argmin
C
J
(
C, O(s−1), D(s−1), T(s−1)

)
+ γ ‖C‖1

O(s) = argmin
C
J
(
C(s), O, D(s−1), T(s−1)

)
+ δ ‖O‖1

D(s) = argmin
C
J
(
C(s), O(s), D, T(s−1)

)
+ ε ‖D‖1

T(s) = argmin
C
J
(
C(s), O(s), D(s), T

)
+ ζ ‖T‖1

(5.18)

The Block Coordinate Descent approach implemented to solve the optimization
problem defined in equation 5.17 is detailed in Appendix A.

5.5 Case Study

We leverage the results of TRANSIT to build daily mobility tensors. With TRANSIT,
we are able to estimate accurately the origin and the destination of the trips. Thus,
a fine grained spatial segmentation can be used. Indeed, in the studied Lyon area,
we divided the area into N = 625 zones (1, · · · , M), each zone being a 800m×800m
square. In time, we can be divided into M = 20 slots, (1, · · · , N) (one slot per hour).
The four missing slots correspond to slots before 4 a.m when the demand is very low.
For each trip resulting from TRANSIT, we can map the time origin on (1, · · · , N), the
origin and the destination to (1, · · · , M). By aggregating the results on all trips, we
end up with the daily mobility tensor M.

5.5.1 Parameter Choice

First, we have to determine the number of spatial patterns (I origin patterns and J
destination patterns) and the number K of temporal patterns. This choice has to be
a trade-off between the error of the approach and the complexity/interpretability of
the urban dynamics. The error is measured as measures as the Root Mean Square
Error (RMSE) betweenM and M̂. If the number of patterns is high, the error model
will be low but the number of latent patterns will be high and interpreting the model
to extract knowledge on urban dynamics will be difficult. On the contrary, if the
number of patterns is too low, the error of the model will be high and the latent
structure inferred by the model will be trivial. Thus, we apply our Tucker decom-
position approach for different numbers of spatial and temporal patterns (I,J and K)
and compute the RMSE on each decomposition. We made 5 trials of our decomposi-
tion for I,J varying from 10 to 50 and K varying from 2 to 6. We kept the best model
(in terms of loss functionJ ) among the 5 trials and consolidated the results by aver-
aging the RMSE obtained by applying our approach on 3 different days of data (18th,
19th and 20th of March, 2019). For simplification we considered the same number of
origin and destination patterns, i.e., I = J. The sensitivity analysis of I = J and
K are given in Figure 5.2a and Figure 5.2b. We can observe that the RMSE have a
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decreasing trend when the number of patterns either spatial or temporal, increases.
The results are consistent with what has been obtained in the literature [122]. Based
on the latter results and a manual investigation of the decomposition we set I = J
to 20 and K to 4. Selecting a number of patterns higher than the chosen one would
make the interpretation of the decomposition too difficult.

Then, we have to choose the best parameters for our approach and in particular
our optimization problem. We have two types of parameters: the urban context
parameters α and β which aims at obtaining both origin and destination similarity
matrices close to the ones obtained with external data (POI), W. The second type of
parameters refers to the regularization terms: γ, δ, ε and ζ whose purpose is that
our decomposition: C, O, D and T are as sparse as possible. We made 5 trials of our
decomposition for α and β varying from 0 to 0.01 and γ, δ, ε and ζ varying from
0 to 10. We kept the best model (in terms loss function J ) among the 5 trials and
consolidated the results by averaging the RMSE obtained on 3 days of data. For
simplification matters we considered α = β and γ = δ = ε = ζ.
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Figure 5.2: Sensitivity analysis on the dimension of the Tucker decomposition (α and
β) and on the parameters of the approach (γ, δ, , ε and ζ).
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The sensitivity analysis of α = β and γ = δ = ε = ζ are given in Figure 5.2c and
Figure 5.2d. We can observe that the RMSE have an increasing trend for both con-
text and regularization parameters. This result is not in line with those obtained by
Xu et al. [122]. For both curves they obtained a RMSE decreasing and then increas-
ing. Thus, the authors pick the minimum of the curve for choosing their parameters.
However, such a result is surprising given the nature of the optimization problem.
Indeed, the urban context and the regularization terms in the optimization of the
problem can be seen as a constraint of the problem which forces the optimization
to deviate from the only minimization error betweenM and M̂ to also consider
the urban context and regularization term. The latter allows to have a better inter-
pretability of the results: the regularization allows to minimize the number of non-
zero elements for the tensor and factor matrices of the decomposition and the urban
context term ensures that the obtained origin and destination patterns respect prop-
erties of trusted ground truth data. Thus, it seems logical for us to have an increasing
RMSE when the weight in the optimization problem given to the urban context and
the regularization terms increases. In addition to study the RMSE, we also study the
sparsity of our model (percentage of zero elements from all the elements of C, O, D
and T). We aim at minimizing the RMSE while maximizing the sparsity. We rea-
sonnably assume that decomposition with fewer number of elements will be easier
to interpret. The urban context parameters do not have a strong effect on the sparsity
whereas the regularization parameters allow to significantly increase the sparsity of
the model. After an investigation on the results obtained by varying urban context
terms we do not observe significant changes in the patterns obtained. Given the
latter observation and the above mentioned sensitivity analysis, we set α = β to 0.
Here, we nuance the result obtained by Xu et al. on the added value of urban context
term for the Tucker decomposition. Concerning the regularization term, an inves-
tigation of the result reveals that a slight increase of the regularization term (0, 0.5
or 1) allow to improve the interpretability of the result with a RMSE remaining low.
However, if we keep increasing this term, the obtained patterns are too sparse, the
RMSE increase significantly and the obtained patterns become inconsistent. Given
the latter observation and the sensitivity analysis we set γ = δ = ε = ζ to 1.

5.5.2 Daily Decomposition and Analysis

After choosing the parameters of our Tucker decomposition approach, in this section
we aims at showing and analyzing the results of this decomposition for one day of
data (the 20th of March, 2019). The results of the decomposition is the following:
the factor matrix T ∈ R20×4 which represents the 4 hidden temporal patterns, the
factor matrix O ∈ R625×20 which represents the 20 hidden origin patterns, the factor
matrix D ∈ R625×20 which represents the 20 hidden destination patterns and the core
tensor C ∈ R4×20×20 which represents the hidden interactions between the above
mentioned patterns.

The four hidden temporal patterns are represented in Figure 5.3. The results
show that our approach is able to retrieve latent temporal patterns such as commut-
ing trips which are are well known in the transportation community. The morning
peak is centered at 8a.m whereas the afternoon peak is centered at 6p.m. We can
also observe that the morning peak is sharper than the afternoon peak. This reveals
that the morning peak of the commuting demand is sharper and of shorter dura-
tion compared to the afternoon peak. Such a phenomenon is also well known by
the transportation experts community. The third temporal pattern is largely spread
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over time and with lower intensity compared to the commuting temporal patterns.
This corresponds to a demand between morning and afternoon peaks with relatively
high values during lunchtime. The last temporal pattern has high values after 6 p.m
and seems to correspond to leisure activities after working.

4 6 8 10 12 14 16 18 20 22
Hour of the day

0.0

0.1

0.2

0.3

0.4
Pa

tte
rn

 c
oe

ffi
cie

nt
TP1
TP2
TP3
TP4

Figure 5.3: Hidden temporal patterns

The twenty hidden origin patterns are represented in Figure 5.4. The cells with
yellow color corresponds to high values in the factor matrices and blue ones corre-
sponds to low values. The first very interesting result is that our approach is able
to infer consistent origin patterns i.e high values for cells origins which are close to
each other. Usually, and especially for the surveys, based on expert knowledge, a
spatial segmentation is defined to analyze the mobility. Here the approach is differ-
ent, we retrieve the origin communities (pattern) that are the most relevant given the
mobility tensor. The use of fine spatial segmentation (800m×800m) that TRANSIT
made possible, allow to improve the spatial granularity of the inferred origin pat-
terns. This shows the capability of our approach to optimize the granularity of the
origin patterns and adapt it to the density of the trips in space. Areas with a high
density of trips will result with smaller origin patterns. Indeed, our approach infer
small communities for origin trips within the city-center (origin patterns 6, 11, 13,
15, 17 for instance) and large communities for trips in the suburb of the city (ori-
gin patterns 1, 2, 4, 8, 12). Moreover, our approach is able to retrieve communities
centered on the main stations of the city: origin pattern 6 corresponds to Part-Dieu
station (the biggest station in Lyon) and origin pattern 13 corresponds to Perrache
station (the second biggest station in Lyon). Another interesting result is the distri-
bution of the values for each origin pattern. We can observe a small area with high
values in the barycenter of the origin pattern and then decreasing values when the
distance between cells and the barycenter increases. Such a representation allows to
have a better knowledge of trips patterns compared to traditional approach which
consist on having a coarse spatial segmentation with the assumption that the trips
from an area are uniformly distributed within the area. Finally, there are some origin
patterns that do not form a continuous cells in space such as origin patterns 16, 18
and 20. The origin patterns in Figure 5.4 are sorted by order of importance in the de-
composition (by summing all coefficients for each origin pattern we get a score that
indicates the importance of the origin pattern in the decomposition). The rank 16,
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18 and 20 of the above mentioned origin patterns suggests that these origin patterns
are not essential for reconstructing the mobility tensor, i.e., they have a minor role in
the urban dynamics of the city.

(a) Origin pattern 1 (b) Origin pattern 2 (c) Origin pattern 3 (d) Origin pattern 4

(e) Origin pattern 5 (f) Origin pattern 6 (g) Origin pattern 7 (h) Origin pattern 8

(i) Origin pattern 9 (j) Origin pattern 10 (k) Origin pattern 11 (l) Origin pattern 12

(m) Origin pattern 13 (n) Origin pattern 14 (o) Origin pattern 15 (p) Origin pattern 16

(q) Origin pattern 17 (r) Origin pattern 18 (s) Origin pattern 19 (t) Origin pattern 20

Figure 5.4: Hidden origin patterns - Lyon
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(a) Destination pattern 1 (b) Destination pattern 2 (c) Destination pattern 3 (d) Destination pattern 4

(e) Destination pattern 5 (f) Destination pattern 6 (g) Destination pattern 7 (h) Destination pattern 8

(i) Destination pattern 9 (j) Destination pattern 10 (k) Destination pattern 11 (l) Destination pattern 12

(m) Destination pattern
13

(n) Destination pattern 14 (o) Destination pattern 15 (p) Destination pattern 16

(q) Destination pattern 17 (r) Destination pattern 18 (s) Destination pattern 19 (t) Destination pattern 20

Figure 5.5: Hidden destination patterns - Lyon

The twenty hidden destination patterns are represented in Figure 5.5. The cells
with red color corresponds to high values in the factor matrices and light orange
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ones corresponds to low values. We can observe that there are strong similarities
between the hidden origin patterns and the hidden destination patterns. This can be
explained by the commuting pattern observed in the temporal patterns: the origin
of the home to work trip is also the destination of the work to home trip and the
destination of the home to work trip is also the origin of the work to home trip. In
that context, it seems consistent to obtain very similar spatial communities for origin
and destination patterns. Thus, the analysis of origin patterns done in the previous
paragraph is also valid for the destination patterns.
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(a) Temporal pattern 1
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(b) Temporal pattern 2
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(c) Temporal pattern 3
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(d) Temporal pattern 4

Figure 5.6: Core tensor coefficient

After analyzing the factor matrices: temporal, origin and destination patterns,
we will analyze the coefficient of the core tensor. This core tensor captures the in-
teractions, dynamics between these patterns. The number of elements of the core
tensor is 4 ∗ 20 ∗ 20 = 1600 elements. The elements of the core tensor are repre-
sented in Figure 5.6 using 4 slices along the temporal dimension. The cells with
yellow color corresponds to high values in the core tensor whereas blue ones corre-
sponds to low values. The interactions between origin and destination patterns for
the temporal pattern 1 is represented Figure 5.6a. As analyzed before, the tempo-
ral pattern 1 correspond to high demand of trips during the evening which seems
to relate to leisure activities. Indeed, we can observe strong interactions between
residential areas (original patterns 13, 19, 17) and leisure areas with a lot of bars
(destination patterns 4, 14, 11). The interactions between origin and destination pat-
terns for the temporal pattern 3 is represented Figure 5.6c.The temporal pattern 3
which correspond of trips between morning and afternoon peak is characterized
with many origin/destination interaction in the diagonal which means that the trips
stays within the same community. This indicates that for temporal pattern 3, the
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trips are mainly short distance trips. The interactions between origin and destination
patterns for the temporal pattern 2 and 4 are represented respectively Figure 5.6b
and Figure 5.6d.The phenomena observed for temporal pattern 3, is also present for
temporal pattern 2 but with lower intensity. For temporal pattern 2, we can observe
longer distance origin/destination interaction. Indeed, strong interactions between
the city center (origin pattern 4, 11, 14) and working area (destination pattern 8)
school area (destination pattern 5) or area with a station which is also a working
area (destination pattern 6). Most of the above interactions are also observed for
temporal pattern 4. Different from temporal pattern 2, the destination pattern 4 is
a strong destination which attracts surrounding origin patterns (origin pattern 6, 7,
13).

5.5.3 Comparative Analysis

In this section, we benchmark the performance of multiple tensor decomposition
approaches: Regularized Non-negative Tucker Decomposition (R-NTF) which is the
approach proposed by Xu et al. [122] and that we implemented in this chapter,
Non-negative Tucker Decomposition which is the approach developed by Sun et
al. [106] (NTF), Candecom-Parafac decomposition with a rank equal to 20 (CP-20)
and Candecom-Parafac decomposition with a rank equal to 4 (CP-4). The difference
between R-NTF and NTF, is that R-NTF leverages regularization and use alternating
proximal gradient approach for solving the optimization problem. Instead, NTF do
not rely on regularization and multiplicative algorithm is used for solving the op-
timization problem. Alternating proximal gradient algorithm that we implemented
in this chapter can be found in Appendix A and details about the algorithm can be
found in the work by Xu et al. [131]. Details about the Candecom-Parafac decom-
position as well as multiplicative approach can be found in the article of Kolda et al.
[64] which reviews the different tensor decomposition approaches in the literature.

Approach Metric 50% 75% 100%

R-NTF [122] RMSE / Sparsity (%) 0.101 / 78 0.118 / 75 0.131 / 72

NTF [106] RMSE 0.100 0.116 0.129

CP-20 RMSE 0.100 0.116 0.128

CP-4 RMSE 0.107 0.125 0.140

Table 5.2: Comparative analysis of multiple tensor decomposition approaches R-
NTF, NTF, CP-20 and CP-4 under different sampling ratio of the daily mobility ten-
sor 50%, 75% and 100%

We also stressed the performance of the latter approaches under different sam-
pling ratio of the daily mobility tensor 50%, 75% and 100% (which consist on re-
moving randomly a certain percentage of the total trips before building the daily
mobility tensor). The result of this benchmark is given Table 5.2. We can observe
that the RMSE of CP-20 and NTF is almost the same whatever the sampling ratio
used. We can also notice that the RMSE of the R-NTF is slightly higher compared
to the above mentioned methods. However, whereas the sparsity of NTF and CP-20
is 0%, the sparsity of R-NTF is around 75%. This means that R-NTF needs a quar-
ter of the number of parameters of NTF and CP-20 for a small additional error. As
seen in Section 5.5.1, we accept to slightly increase the RMSE to reduce the number
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of parameters and have a better explainability of the model. The last model CP-4
performs significantly worse than the other decomposition approaches. In addition,
we can notice that the sparsity of the model decreases for R-NFT as the sampling
ratio increases. It seems that the model is able to adapt the number of parameters
of the model to the complexity of the daily mobility tensor in input. When the sam-
pling ratio is equal to 50%, there is less information in the mobility tensor and the
model has a greater sparsity compared to the 100% sampling ratio case where the
full information is available.

Finally, we also explore the capability of R-NFT to retrieve correct urban dy-
namics with different sampling ratio. The temporal, origin and destination patterns
obtained in the worst case, i.e., 50% sampling ratio, for one day (18th March, 2019)
is given in Appendix B. The results show that even with 50% sampling ratio of the
initial daily mobility tensor, R-NFT is able to retrieve the main urban dynamics com-
pared to 100% sampling ratio case analyzed in Section 5.5.2. Thus, R-NFT is robust
to sampling effect and the results advocate for the use of mobile phone data to cap-
ture the urban dynamics of the city even if the penetration rate of the mobile phone
dataset do not allow to cover the whole population but a significant fraction of it. In
our case, the market share of Orange is at 37% over the French territory.

5.6 Conclusion

In this chapter, we investigated the problem of urban dynamics discovery and use
as a case study the daily mobility in the city of Lyon. We model the mobility within
the city by an agnostic mathematical representation: a tensor. This tensor allow to
represent the daily mobility at aggregated scale along multiple dimensions. Here,
we selected three dimensions: time, origin and destination. Thanks to TRANSIT ap-
proach from Chapter 3 we are able to characterize this tensor at fine spatio-temporal
granularity. In particular, the spatial segmentation used is a spatial grid composed
of 625 squares, each square having the dimension of 800m×800m. Such a square
based segmentation is significantly finer compared to usual administrative spatial
segmentation (as for instance the one used in Chapter 2).

To extract the urban dynamics of the city based on the daily mobility tensor, we
rely on non-negative Tucker decomposition approach able to decompose the mo-
bility tensor into a smaller tensor with predetermined dimensions (the core tensor),
multiplied by factor matrices. The factor matrices are able to capture the latent urban
dynamics of each dimension (origin, destination and time) whereas the core tensor
grab the interactions between the factor matrices.

The approach implemented consist on an Non-Negative sparse Tucker Decom-
position which is coupled with regularization. The optimization method used is the
alternating proximal gradient. The results contained in this chapter allow to miti-
gate the role of regularization and the integration of urban factors for improving the
decomposition compared to the result of litterature [122]. Besides, we demonstrate
the capability of the approach in conjunction with fine-grained tensor computed
from TRANSIT outputs to capture the latent urban dynamics of the city. Finally,
we perform a comparative analysis of the state of the art tensor factorization ap-
proaches. While a sightly higher RMSE error compared to other methods, the stud-
ied approach have much less parameters. We also showed that the approach is still
able to retrieve urban dynamics with a 50% sampled mobility tensor.
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Futures works could explore the possibility to add more dimension in the mo-
bility tensor such as the transportation mode to improve the quality of the extracted
urban dynamics. Moreover, the mobility tensor could be built using multiple data
sources using appropriate data fusion approach. This would allow to have a more
accurate representation of the urban mobility.
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Chapter 6

Mobile Phone Data: Opportunities
and Challenges

In Chapter 3 and Chapter 4, we developed approaches able to overcome NSD limi-
tations first and then infer rich mobility information. Thus, our approaches pave the
way of the use of NSD for many new applications that were not possible using meth-
ods from the literature. As a proof that we were able to unlock the potential of NSD,
we develop several applications including trajectory analysis of users in the ring
road in Paris, human mobility analysis during abnormal events or mobility based
epidemiological model for modeling COVID-19 propagation. Besides developing
new applications in the transportation domain, we also discuss the main threats as-
sociated to the use of mobile phone data based for human mobility analysis. The
first one is the spatio-temporal bias in the results derived from mobile phone data.
The second one is the presence of personal sensitive information which make users’
privacy at risk. Thus, we develop preliminary yet effective solution to tackle the
second issue.

The chapter is structured as follows. Section 6.3 presents several applications
that are made possible by the methods developed in this thesis. Then, Section 6.4
discusses the threats of NSD and preliminary solutions to tackle them. Finally, Sec-
tion 6.5 presents the conclusion with suggestions for future research directions.

This chapter contains parts of the following articles [37, 78]:

Goel R., Bonnetain L., Sharma R., Furno A., (2021), "Mobility Based SIR Model
For Complex Networks –With Case Study Of COVID-19". In: Social Network Analysis
and Mining.

Matet B., Côme E., Furno A., Bonnetain L., Oukhellou L., El Faouzi N.-E., (2021),
"A Lightweight Approach for Origin-Destination Matrix Anonymization". In: Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning.
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6.1 Notation for this chapter

Symbol Description

s(t) Fraction of susceptible population to be infected at time t.

i(t) Fraction of infected population at time t.

r(t) Fraction of recovered population at time t.

n(t) Population size at time t.

β Incidence rate.

µ Cure rate.

cij Flow of individuals from location j to location i.

Si(t) Fraction of susceptible population to be infected from location i at time t.

Ii(t) Fraction of infected population from location i at time t.

Ri(t) Fraction of recovered population from location i at time t.

Ni(t) Population from location i at time t.

k Anonymity threshold.

U Original grid containing N × N tiles.

n Single tile.

Q Set of quadtrees whose root represents the complete study area and whose vertices corre-
spond to a non-empty set of tiles in U.

q Element of Q.

L(q) Set of the leaves of q .

G(·, ·) General information loss.

S Suppression threshold.

δ Cost of suppression coefficient.

MAO Mean area of origins.

MAD Mean area of destinations.

Table 6.1: Chapter 6’ specific notations
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6.2 Introduction

Our work advances the state of the art of mobile phone data based human mobility
analysis. Our work studies a recent kind of mobile phone data: Network Signal-
ing Data. By proposing approaches for overcoming the intrinsic limitation of NSD,
we can unlock the potential of the latter. On the one hand, multiple already exist-
ing applications can be significantly improved. For instance, for the works related
to the validation of the laws that govern human mobility, the studies work either
on GPS or CDR. However, each data source bring strong limitations. GPS data al-
low human mobility analysis at very fine grained but with very limited number of
trajectories. The CDR, which are the main source analyzed in the literature allow to
model city-scale population but at very coarse spatio-temporal resolution. By apply-
ing TRANSIT on raw NSD, we end up with large scale and fine-grained trajectories
that allow human mobility modeling at unprecedented spatio-temporal scale. Thus,
our approach could improve the models studied in this area of research. Moreover,
concerning the works focusing on travel demand estimation. On the one hand, we
propose a segmentation approach exhibiting higher accuracy than approaches from
the literature. On the other hand, the trajectory enhancement of TRANSIT enables
unprecedented spatiotemporal resolution for travel demand inference. Besides, we
strengthened the confidence on TRANSIT by validating the travel demand inferred
with surveys. Thus, the whole framework allow to improve significantly the exist-
ing approaches for travel demand inference. In addition, our work paves the way
of new studies along two main directions. The first one, is the analysis of large
scale trajectory based dataset. Until now, the mobile phone data were mostly used
for estimating the origin and the destination of users’ trips in space and time. Be-
sides improving the spatial inference of the origins and the destinations, our work
allows to estimate accurately the trajectory as well as the path between the origin
and the destination. This knowledge brings a lot of potential for new studies in-
cluding route choice modelling, trajectory mining and so on. Until now, the latter
studies were only conducted with GPS data which was the only source of data to
provide fine-grained spatio-temporal trajectories. The second one is the analysis of
the mobility from a multimodal perspective. While this subject was almost not cov-
ered by the literature, we demonstrate by combining TRANSIT with map-matching
approaches that studying multimodality with mobile phone data was possible. We
hope that our work will pave the way of new studies for dealing with remaining
problems that were not tackle in thesis (transportation mode classification between
road, public transport and train) and advances mobile phone data based approaches
for studying human mobility from a multimodal perspective.

6.3 Opportunities

In the following we present different new cases studies based on NSD that have not
been covered yet by the literature and/or enabled by the approaches developed in
this thesis and presented in the previous chapters.

6.3.1 A1: Human Mobility Analysis during Abnormal Events

As an application, that our work makes possible is for instance detecting abnormal
mobility situations that can occur in the city at fine spatiotemporal grained. For this,
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we segment the city of Paris into a set of squares of dimension 800m × 800m, with
a temporal bin size of one hour. This spatio-temporal granularity makes it possible
to analyze human mobility at a fine-grained scale. For each zone, we compute the
attraction demand profile, which corresponds to the number of trips having as des-
tination the studied zone at any given hourly time slot. These profiles have been
obtained by retaining such trips from the whole set of trajectories M̂i computed via
TRANSIT on DP for each user i. This allows us to build a typical weekly attraction
profile for each zone and, at the same time, to distinguish abnormal patterns during
certain events. We use three such abnormal mobility situations as examples below.
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Figure 6.1: Typical/atypical weekly temporal demand profile during atypical events

First of all, on Wednesday, the 1st of May 2019, a bank holiday, the Labor Day
march took place near Place d’Italie in Paris. Figure 6.1a shows in blue the typical
attraction profile of this zone and in red the attraction profile of the week that in-
cludes the demonstration. Whereas, for all days, the attraction profile was similar to
the typical profile, we can see that, on Labor Day, the attraction of the studied zone
presents a high peak after midday.

As a second event, we studied the fire of the Notre Dame de Paris cathedral, on
Monday the 15th of April 2019. Figure 6.1b shows in blue the typical attraction profile
of this zone, and in red the attraction profile of the week that includes the abnormal
event. We can see a high peak in the attraction profile right after the beginning of the
fire on Monday 15th (around 6:30pm). Contrary to the previous example, this event
also affected mobility the following days, when an attraction demand higher than



6.3. Opportunities 105

usual is observed in the corresponding area. This attraction demand progressively
decreases after the event, but we notice an upsurge on Sunday, the Easter holiday,
probably explainable by religious activities and nearby gatherings of tourists and
worshipers visiting the area surrounding the cathedral after the fire on this special
day.

Finally, we study another special event, the Marathon of Paris, on Sunday the
14th of April 2019, with its start and end in the proximity of the Arc de Triomphe.
A high peak on the attraction profile can be observed at the departure time of the
marathon, at 9am, as shown in Figure 6.1c. A second peak, is observed few hours
later, more spread over time and lower in magnitude compared to the first one,
corresponding to the marathon arrival.

These three examples are representative of the vast potential of TRANSIT to-
wards building mobility profiles of the typical demand attracted by a given zone, as
well as detecting and characterizing mobility patterns during abnormal or special
events.

6.3.2 A2: Ring Road Trajectory Analysis

As a second case study, we leverage TRANSIT to perform a fine-grained trajec-
tory analysis focused on the Paris périphérique (ring road). The mobility flow on
this urban highway is usually very high, often leading to heavy congestion espe-
cially during peak hours. Transport authorities are traditionally very interested in
the possibility of tracing and quantifying the flows of people moving along city ma-
jor road axes. Such studies are necessary for urban planning purposes, infrastructure
renewal and road maintenance, and can be extremely cost-demanding. Specifically,
they are based on travel diaries or GPS trace collection, and generally end up captur-
ing only a small sample of the flow actually traversing the major axis, with resulting
limited accuracy. TRANSIT permits to leverage NSD to access a much larger and
more representative sample of this specific population.

In our case study related to the Paris périphérique, we considered four different
zones of interest: the east, west, north and south entries. The idea is to select a spatial
zone and study all the trajectories passing by the respective zone. The enhanced
trajectories M̂i produced by TRANSIT onDP allow us to capture at scale the origin,
the destination, and the paths taken by the users passing by the studied zone, the
kind of information usually expected in the aforementioned studies. The result for
the four zones of the périphérique (east, west, north and south) are thus reported in
Figure 6.2b, Figure 6.2c, Figure 6.2d and Figure 6.2a.

The obtained maps underline the major role of the périphérique in Paris, allowing
people to travel across the city and reach any area of interest. Some interesting pat-
terns can be distinguished as well. For example, the trips coming from the west side
of the city show a strikingly different pattern from the three other maps. This can be
explained by the fact that the west side of Paris is the richest area of the city, with
inhabitants who have a lifestyle involving shorter commuting trips. Moreover, the
west side of Paris is also the area with the highest density of offices, including the
La Defense and Boulogne neighborhoods. This could explain why this area attracts a
large amount of trips, even from faraway zones.

These results hint at the numerous perspectives brought by TRANSIT in the
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(a) North Ring Road (b) West Ring Road

(c) South Ring Road (d) East Ring Road

Figure 6.2: Heatmap of recurrent trips for the Paris ring-road (the black square
shows the catchment area)
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study of major road arteries. These include fine-grained temporal analysis, the de-
tection of usage and attraction patterns, origin and destination profiling, etc. Gener-
ally speaking, having access to detailed human mobility trajectories at scale, as those
produced by TRANSIT, enables the in-depth study of any part of the transportation
network.

6.3.3 A3: Mobility based SIR for Studying COVID-19 Propagation

As a third application, we leverage NSD for providing mobility information and
especially dynamic OD matrix that is integrated in a epidemiological model,SIR.

The model is based on the classical SIR model, developed in 1926 by Kermack
and McKendrick [61] and which can be defined as follows:

ds(t)
dt

= −βs(t)i(t)
n(t)

(6.1)

di(t)
dt

=
βs(t)i(t)

n(t)
− µi(t)

n(t)
(6.2)

dr(t)
dt

=
µi(t)
n(t)

(6.3)

where, s(t), i(t), r(t) are, respectively, the fraction of susceptible, infected and recov-
ered population at time t. The equations 6.1 , 6.2 , 6.3 described the dynamics of the
propagation in terms of the evolution in time of the number of people susceptible
to be infected, infected and recovered. The rational behind this model is that the
number of new people infected is proportional to the number of people susceptible
to be infected s(t) and infected i(t). The proportional factor is β. This factor depends
on the number of contacts between s(t) and i(t) and the probability that someone
in i(t) infects someone in s(t). β factor is also called the incidence rate. In addition,
the population recovered is proportional r(t) to the population infected i(t) with a
proportional factor µ.

However, the classical SIR epidemic model proposed by Kermack and McK-
endrick [61] does not consider the flows that can occur in a region and which affect
the epidemic dynamics. To overcome this limitation, we introduce the mobility and
social connectivity parameters in our proposed model. Instead, considering the pop-
ulation as a whole, we will divide the studied regions into multiple locations and
consider in the model the mobility between these locations. Beyond the epidemio-
logical model, the innovative aspect of this work is to use the mobile phone data for
capturing mobility dynamics of a region over time.

Let j (j ⊂ l) represent a set of locations (zones in a city for instance), which are
connected to location i. Therefore, ∑j Nj is the maximum possible number of indi-
viduals connected to location i, from all the locations j. The parameter ci,j reflects the
mobility of individuals from locations j to location i. This rate will be inferred using
mobile phone data. Global transmission depends upon this mobility parameter of
individuals from one location to another. Similar to local transmission, Ij is the num-
ber of individuals in the infected compartment in location j. Hence, total mobility of
infected individuals from all the other connected locations to location i is ∑j ci,j

Ij
Nj

.

Considering the above description, the chances of transmission of infection from
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all the connected locations to location i is ∑j ci,j
Ij
Nj

β. This transmission further de-
pends upon the social connectivity (α) of all the individuals at location i. α captures
the fact that the population infected within a region is proportional with the number
of social interactions between the individuals of this region. Therefore, the propor-
tion of healthy individuals at location i which can get infected from infected indi-

viduals from location j is
α ∑j ci,j

Ij
Nj

β

Ni+∑j ci,j
. Thus, the mean-field equations for the dynamics

of the pandemic, based on the above discussed interactions are the following:

dSi(t)
dt

= −βSi(t)Ii(t)
Ni(t)

−
αSi(t)∑j ci,j

Ij(t)
Nj(t)

β

Ni(t) + ∑j ci,j
(6.4)

dIi(t)
dt

=
βSi(t)Ii(t)

Ni(t)
+

αSi(t)∑j ci,j
Ij(t)
Nj(t)

β

Ni(t) + ∑j ci,j

− µIi(t)
Ni(t)

(6.5)

dRi(t)
dt

=
µIi(t)
Ni(t)

(6.6)

We perform various simulation experiments to explain the proposed model on
OD matrix in a synthetic case and we then stress our model with a real world exper-
iment. It is to be noted that, the model will behave as a standard SIR model in two
cases, (i) if α = 0, (ii) if the mobility is reduced to 100 percentile (that is no mobility
allowed) from connected locations.

Pandemic Origins From Random Location

Fig. 6.3a to 6.3d display the influence of the social connectivity parameter ‘α’ while
keeping the other parameters constant. It shows the pandemic dynamics with dif-
ferent values of α starting with α = 1 to α = 0.1. We observe that the peak of the
infected compartment decreases significantly, as the α decreases, and it also takes
longer to reach its peak. This indicates that there is a positive impact of lock-down
in controlling a pandemic.

The effect of restricting the mobility from the top-X percentile of highly con-
nected locations with other locations is shown in Fig. 6.3e to 6.3h. It displays the
pandemic dynamics with different percentile of mobility restrictions of highly con-
nected locations starting with 0% to 30% (keeping α = 0.5). We observe that in the
case of a pandemic, restricting the mobility from the top-10 percentile of highly con-
nected locations can reduce the number of individuals who can get infected to 27%.
Therefore, quarantine plays a vital role during pandemics.

Moreover, we can observe that the social connectivity parameter ‘α’ and mobility
both play a fundamental role in determining the dynamics of the pandemics. In-
deed, Controlling mobility reduces the fraction of infected individuals, and α delays
the peak. Therefore, it is advisable to follow a dual strategy approach on the two
above mentioned parameters during a pandemic outbreak.

We also applied our model to real-time data of Rhône-Alpes region’s COVID-
19 cases. Figure 6.4 shows the actual number of cases and the cases forecast by the
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(a) α = 1
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(b) α = 0.6
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(c) α = 0.4
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(d) α = 0.1
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(e) 0% Locations Quarantine
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(f) 10% Locations Quarantine
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(g) 20% Locations Quarantine
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(h) 30% Locations Quarantine

Figure 6.3: Pandemic Origin From Random Location: Effect of Social Connectivity
Parameter ‘α’ (a), (b), (c), (d) and Quarantine Strongly Connected Locations (e), (f),
(g), (h)

model using different values for α and mobility percentile. The region is divided into
14 sectors. For simulation purpose, we again considered the OD matrix between the
sectors of the region obtained via network signaling data from Orange and census
data1. This OD matrix has been built using the approach presented in Chapter 2.

For privacy matters, the number of COVID-19 cases is not reported in France
at a fine spatio-temporal resolution in publicly available data2. Instead, the dataset

1https://www.insee.fr/fr/statistiques/4228434
2 https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-infra-departementales-durant-

lepidemie-covid-19/
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Figure 6.4: COVID-19 Cases In Rhône-Alpes Region In France.

only reports cumulative values of COVID-19 cases on a 7-days rolling window for
each area of the administrative segmentation of the French territory. In addition, the
number of cases is reported discretely, i.e., as a range of values between a lower and
upper bound containing the real value. Therefore, in order to obtain a daily estima-
tion of the number of COVID-19 cases per each sector of the analyzed Rhone-Alpes
region, two main assumptions have been made. On the one hand, we consider the
number of cases as the mid value between the lower and upper bound of the re-
ported range for the given area on a specific day. On the other hand, we replaced the
7 days rolling time window by the median day (i.e., the 4th day of the time window).
As a result, to obtain the daily estimation of the number of cases, the cumulative re-
ported estimation provided on a 7-days rolling time window is divided by 7. After
summing this estimation for all the administrative areas belonging to a given sector
of the OD matrix, we finally obtain an estimation of the number of COVID-19 cases
per sector and per day. COVID-19 data cover the period from 2nd November, 2020
to 19th March, 2021.

For our simulation, the number of cases in all sectors is initialized as on 2nd

November, 2020. For the local transmission of the virus (within the sector), we
consider the reproduction number R0 = 2.5 3. The infection rate β and recov-
ery rate µ are adjusted according to the value of R0. The reported cases in Rhône-
Alpes region in France as well as the forecast cases using the model, are shown in
figure 6.4 until 22nd March 2021. It can be noticed that the model predicted much
higher cases of COVID-19 if no restrictions are introduced (α = 1), while we can ob-
serve that, for α = 0.5, the number of actual cases and forecast ones are quite close
to each other. To explain this result, it is worth remembering that strong mobility
restrictions were re-introduced in France by the end of October 20204, after the first
lockdown ended during summer. The new restrictions contributed to keep low the
number of COVID-19 infections (Actual). Moreover, it is reasonable to assume that
mobility and social interactions were already significantly reduced at the beginning

3https://apps.who.int/iris/handle/10665/331443
4https://www.vie-publique.fr/en-bref/276947-covid-19-un-2e-confinement-national-compter-du-

29-octobre-minuit
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of this second lock-down, with respect to pre-pandemic behaviors, as a consequence
of the first COVID-19 wave and previously imposed restrictive measures. In con-
clusion, this second case study confirms the applicability of the model to forecast a
range of predicted number of cases. The latter can thus help the government and
health agencies to understand the impact and introduce proportional interventions
to restrict the expansion of the epidemic.

6.4 Challenges

Beyond the new opportunities offered by the mobile phone data, there are still sev-
eral challenges that have to be tackled by the research community. Among these
challenge one of the most important is to study the reliability of mobile phone data
for human mobility study. Works from the literature [20, 50] and this thesis aim
at characterizing the spatio-temporal bias of individual mobile phone trajectory by
comparing these trajectories with GPS ground truth trajectories. The result show
that the spatial bias can vary from 100 meters in urban area to several kilometers
in rural areas. With TRANSIT, we can drastically reduce this spatial bias. At ag-
gregated scale, the reliability of mobile phone data does not reach consensus in the
research community. For population estimation, most of the works demonstrate the
capability of mobile phone data for estimating accurately population distribution
[31, 69]. However, the results are less convincing concerning travel demand estima-
tion. On the one hand, Schneider et al. [98] show that the regular mobility patterns
were correctly captured by the mobile network data compared to surveys. Several
works [75, 19] also show OD matrix were equivalent to those obtained on surveys.
On the other hand, Tizzoni et al. [114] observe statistical differences between com-
muting flows inferred from national census data and those observed from mobile
phone data in three European countries, namely Portugal, Spain and France. In this
thesis, this problem has been adressed, in Chapter 2 we demonstrate spatiotempo-
ral bias when we used mobile phone data for estimating travel demand patterns.
In Chapter 3, we improve, with TRANSIT, the travel demand inference and the ap-
proach showed good results when compared with surveys for inferring travel de-
mand profiles. However, there is a need for finer validation before using TRANSIT
in operational context.

Another challenge is related to preserving users’ privacy in mobile phone datasets.
Indeed, the mobile phone contains sensitive information related to the mobile phone
user which raises privacy issue. This issue limits the accessibility and the diffu-
sion of such a dataset. Thus, the research community investigates the problem of
anonymization of mobile phone dataset. By analyzing fifteen months of human mo-
bility data for one and a half million individuals, Montjoie et al. [79] find that human
mobility traces are highly unique. Thus, the anonymization task is challenging. Gra-
maglia et al. develop GLOVES a trajectory anonymization approach which aims at
hiding each trajectory with k similar trajectories so that the trajectory is not uniquely
distinguishable from the k-others trajectories (k being a parameter of the approach).
The approach relies on generalization and suppression. The generalization reduces data
precision in space and time so that different mobile phone trajectories become iden-
tical. The suppression allows instead to remove some data, either individual samples
or the whole trajectory if the anonymity criterion can not be fulfill.
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The first challenge has already been discussed in Chapter 2 and Chapter 3. Re-
lated to the second challenge, we study an anonymization related problem. In-
stead of anonymizing trajectories as previously described, we study the problem of
anonymizing an OD matrix inferred from NSD after applying TRANSIT and spatio-
temporal aggregation. Indeed, if there are some OD-pairs that have a very low flow,
there is a risk of re-identification of the user. This problem has not been tackled yet
by the literature.

6.4.1 A6: Anonymization of Origin-Destination Matrix

Problem Formulation

We consider the problem of OD-matrix anonymization. Given an anonymity thresh-
old k, all flows below k in the OD-matrix are suppressed. The goal is to find the
best spatial grid for deriving the OD-matrix so that the number of flows lost is min-
imum and the spatial grid as fine as possible not to loose too much information on
the OD-matrix. We consider a region partitioned in a uniform grid U containing
|U| = N × N initial tiles. Let 8 ≤ k ≤ 16 be our anonymity threshold. We perform
spatial aggregation based on a quadtree, i.e., a tree-like data structure where each
internal node n represents an area. There are two types of nodes: leaf nodes which
are areas that can not be divided, these areas represent units of spatial information
and non-leaf nodes which are areas that can be divided into four quadrants. Q is
denoted as the set of quadtrees whose root represents the complete study area and
whose vertices correspond to a non-empty set of tiles in U. Besides, for all q ∈ Q
we note L(q) the set of the leaves of q and for all node n ∈ q we note |n| the num-
ber of tiles in U represented by n. For each q ∈ Q, L(q) is a spatial partition of
the study area. We apply spatial partition on origins and destinations separately.
Origin aggregation aims at finding a spatial partition L(qori) = {o1, . . . , oi, . . .} for
which the outgoing volumes vo are the closest to a target volume vtarget. Formally,
qori represents the solution to the optimization problem, defined in Eq. 6.7:

qori = arg min
q∈Q ∑

o∈L(q)
(vo − vtarget)

2 (6.7)

For each origin o ∈ L(qori), destination aggregation aims at finding a spatial par-
tition L(qdest

o ) = {d1, . . . , di, . . .} that minimizes the generalization error defined in
Eq. 6.8. This error, defined for a couple (o, d), corresponds to the individual infor-
mation loss [72], which independently penalizes the generalization of each attribute.
For OD trips, we only have two attributes namely their origin and destination and
we may measure by |o| and |d| their spatial generalizations in number of tiles. This
leads to the following loss function:

G(o, d) =

{
vod
|o|+|d|
|U| if vod ≥ k

vod
|U|+|U|
|U| if vod < k.

(6.8)

Volumes vod < k must be suppressed, and are therefore counted as if they were
aggregated at the highest level, leading to the maximal cost of 1 per attribute. The
associated optimization problem is defined by:
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qdest
o = arg min

q∈Q ∑
d∈L(q)

G(o, d). (6.9)

Treating suppressed volumes as aggregated to the highest level leads to a dispro-
portionate penalty and to solutions that have close to no suppression at all, resulting
in coarse generalization. Trajectory data are known to consistently contain some
hard-to-generalize outliers [39]. In order to allow the suppression of those outliers,
we set a suppression threshold S interpreted as a maximal number of suppressed
trips allowed, and we apply a coefficient 0 ≤ δ < 1 to the cost of suppression. Gen-
eralization error for a trip becomes Gδ(o, d) defined as:

Gδ(o, d) =

{
G(o, d) if vod ≥ k
δG(o, d) if vod < k,

(6.10)

and the corresponding optimization problem becomes:

qdest
o = arg min

q∈Q ∑
d∈L(q)

Gδ(o, d),

s.t. ∑
d∈L(q):
vod≤k

vod < S. (6.11)

Solution Proposed

All objective functions considered above are modular, meaning that for any partition
L(q) of U, the objective function can be expressed as ∑a∈L(q) g(a), where g(a)a∈L(q)
are partial costs that are independent of each other. In the absence of constraints
as in Eq. 6.7 and Eq. 6.9, modularity makes it easy to recursively compute for any
node n ∈ qU the smallest partial cost achievable g∗(n): if n has no children, then
g∗(n) = g(n), else g∗(n) = min(g(n), ∑c∈children(n) g(c)). With this naive method,
we solve Eq. 6.7 after visiting each node of qU once, i.e., in exactly 1

3 (4|U| − 1) steps.
Applied to the problem defined in Eq. 6.11 for each o ∈ L(qori), this approach re-
turns a solution q̃dest

o which is not guaranteed to respect the constraint. However,
Eq. 6.11 can be recast as a type of knapsack problem. In this case, each node n of q̃dest

o
is considered as an item with weight w being the volume that will get suppressed
if n is split, and benefit b being the gain in generalization error induced by splitting
n. The maximum capacity for the knapsack problem is then the suppression thresh-
old S. Then, selecting which areas to split amounts to a knapsack problem with the
following variants: i) the weight w may be zero if splitting n does not lead to sup-
pressing additional volumes; ii) the benefit b may be negative if splitting causes too
much suppression; iii) items follow a dependency tree: we can only split an area if
its parent have been split. This problem has already been explored under the name
of ordered knapsack problem in [57]. As our problem is small enough (an initial grid
of |U| = 128× 128 gives 1

3 (4|U| − 1) = 21 845 items for the knapsack problem), we
can find the exact solution with a dynamic programming approach.
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Case Study Lyon OD-matrix

For our case study, we work on the mobility tensor output by TRANSIT as described
in Section 3.8. This mobility tensors can be seen as a set of OD-matrices, each OD-
matrix being associated to one timeslot. The timeslot varies depending on the hour
of the day so that OD matrices have comparable volume. Indeed, the night hours
are merged in a single timeslot, during off peak each timeslot lasts two hours and in
peak hour the timeslot lasts one hour. The mobility tensor covers one month data
between 15th March, 2019 and 16st April, containing a total of 62 967 903 trips and is
composed of 376 OD-matrices. The studied region can be modeled as a grid U was
set with a mesh mU = 400 m for a study area of 25600× 25600 m2, which corresponds
to |U| = 642 = 4096 tiles. We solved for k ∈ {8, 11, 16}with δ = 0.01 and S = 10% of
total volume for each matrix. For each k, vtarget is manually set based on performance
obtained over one week of data. Due to execution time of the approach, we do not
optimize the value vtarget, instead we set vtarget with reasonable value. We measure
the precision of the aggregated data with the Mean Area of Origins (MAO) and Mean

Area of Destinations (MAD) : MAO = ∑od vod×|o|m2
U

∑od vod
and MAD = ∑od vod×|d|m2

U
∑od vod

. MAO
and MAD represent the spatial precision of the aggregated data in m2 and are tied
to the total generalization error Gδ,tot with :

Gδ,tot = ∑
o,d

Gδ(o, d) = (
∑od vod

|U| ) ∗ (MAO + MAD) + δ ∗ ∑
o,d

vod<k

vod. (6.12)

k approach MAO (km2) MAD (km2) Gδ,tot

8 our approach, vtarget = 500 1.98 7.40 1.9e+05
8 naive 8*8 agg, reported 10.24 13.33 3.6e+05
8 naive 16*16 agg, reported 2.56 13.56. 2.6e+05
8 naive 32*32 agg, reported 0.64. 25.45. 4.1e+05

11 our approach, vtarget = 700 2.78 9.15 2.2e+05
11 naive 8*8 agg, reported 10.24 14.57 3.8e+05
11 naive 16*16 agg, reported 2.56 17.59 3.1e+05
11 naive 32*32 agg, reported 0.64 33.80 5.4e+05

16 our approach, vtarget = 1000 3.89 11.28 2.7e+05
16 naive 8*8 agg, reported 10.24 16.69 4.1e+05
16 naive 16*16 agg, reported 2.56 23.80 4.1e+05
16 naive 32*32 agg, reported 0.64 46.07 7.4e+05

Table 6.2: Performances of k-anonymization with our approach compared to naive
tile aggregation, for various k

We compare our solution to a naive approach using a uniform spatial aggrega-
tion of 8× 8, 16× 16 and 32× 32 initial tiles. Results are shown in Table 6.2. For all
anonymity threshold considered Gδ,tot obtained with our approach is significantly
better than the one obtained with competing approaches. We could further improve
our approach by optimizing the parameter vtarget.
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6.5 Conclusion

In the literature, mobile phone data have been leveraged for a large bunch of appli-
cations such as elaborating the laws that govern human mobility at individual and
aggregated scale, network-scale travel estimation or population density estimation.
By overcoming the main limitations of the mobile phone trajectories i.e., uncertainty
in space, sparsity in time and oscillation effect, we unlock the potential of mobile
phone data. To demonstrate this potential we develop, in this chapter several appli-
cations. The latter include fine grained human mobility analysis during abnormal
events, ring road trajectories analysis and mobility based epidemiological model for
modeling COVID-19 propagation. The approaches developed pave the way of new
applications that make the analysis of human mobility at fine spatio-temporal gran-
ularity and in multimodal settings possible. These applications could be developed
in future works and future directions of improvement of our own work have been
discussed in the different chapter of this thesis. Besides a lot of opportunities, there
are challenges that the mobile phone based approaches face. On the one hand, the
research community and the work developed here demonstrate the importance of
dealing with spatial and temporal bias on aggregated results inferred with mobile
phone data. There is a need of strong validation of travel demand inferred with
mobile phone data so that the latter can be considered as reliable. On the other
hand, there is also a need for anonymization approach on mobile phone datasets.
This would allow to protect the privacy of the user and facilitate the share within
researcher and practitioner communities of mobile phone datasets.
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Chapter 7

Conclusion

The research presented in this thesis has been centered around the study of mobile
network data for estimating human mobility. These include methodologies able to
overcome mobile phone limitations and produce enhanced (in space and time) mo-
bile phone trajectories, map matching approaches able to map these trajectories to
multimodal transportation network in urban environment. The latter allow new
kind of application which are, for some of them, developed in this thesis as a proof
of concept. Five specific research questions have been investigated in the previous
chapters. This chapter aims at answering these questions.

In this final chapter, we draw conclusions in section 7.1 and limitations in sec-
tion 7.2. We further discuss research directions that are worthwhile exploring in the
future in section 7.3.
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7.1 Answers to Research Questions

This thesis has been devoted to develop approaches for large scale urban mobility
estimation. To conclude the thesis, we now provide answers to all the research ques-
tions raised in Chapter 1.

RQ1: To what extent are mobile phone data suitable for estimating human
mobility? - Chapter 2

By applying Fekih et al. [33] framework on signalling data of 2 million mobile
phone users, we show that NSD is feasible to robustly extract residents’ trips and es-
timate the hourly trip distribution throughout the Lyon region, on the condition that
spatio-temporal biases of cell phone signalling transactions are properly detected
and removed. With our debiasing procedure, travel demand inferred by mobile
phone data exhibits strong correlations with the one obtained with surveys. More-
over, by clustering the trip flows based on the temporal profile of the emitted de-
mand of each zone and matching them with official land use data, we also unveil
interesting and relevant heterogeneities in dynamic travel demand patterns related
to trip production zones. All the above-mentioned results advocate for the suitabil-
ity of mobile phone data for estimating human mobility.

RQ2: Can the repetitive nature of human mobility be used to improve in space
and time human trajectories as observed through the bias of mobile phone data?
- Chapter 3

The repetitive nature of human mobility has been largely demonstrated in the lit-
erature. Based on this property and by leveraging oscillation effect as triangulation,
we design TRANSIT, a framework able to improve temporal granularity of mobile
phone trajectories as well as reducing the spatial uncertainty. TRANSIT outperforms
the other approaches of the literature on a ground truth dataset with both mobile
phone and gps data for a set of volunteer in the Lyon metropolitan area. TRAN-
SIT achieves an average spatial accuracy of 190m. Besides these satisfying results,
TRANSIT is scalable, thus it can be used for large scale human mobility estimation.

RQ3: How can we estimate very fine mobility information i.e., the path trav-
eled on a multimodal transportation network, from mobile phone trajectories ? -
Chapter 4

For answering this question, we studied, first, the challenging task of map-matching
mobile phone trajectories to the transportation network. For mapping mobile phone
trajectories to multimodal transportation network, we develop an HMM based map-
matching which achieves low spatial accuracy. The spatial accuracy, the matching
rate and the F1 score can be significantly improved by relying on TRANSIT before
applying map-matching. However, we also showed that despite low spatial accu-
racy, the map-matching applied directly on multimodal-transportation network ex-
hibit low matching rate (i.e., the transportation mode is wrongly inferred by our ap-
proach). The results were much better when the map-matching was applied on each
layer separately: road, public transport and train layers. We leverage the approach
to infer popular paths per transportation mode in the city of Lyon.

RQ4: How can we derive aggregated mobility patterns along the main dimen-
sions that characterize human mobility? - Chapter 5

For estimating aggregated mobility patterns, we consider analyzing the mobility
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in three dimensions: origin, destination and time. We build a daily mobility ten-
sor aiming at capturing the flows along these dimensions in the city of Lyon. The
mobility tensor has been inferred by relying on the aggregation in space and time
of the result of TRANSIT (Chapter 3). The low spatial error that exhibits TRANSIT
allows us to use a fine spatial segmentation for the origin and destinations dimen-
sions: the Lyon area has been divided in 625 areas, each area being a 800m×800m
square. Based on the approach from the literature, we apply non-negative sparse
tucker decomposition to the daily mobility tensor. Then, we analyzed the resulting
decomposition and showed that the approach were able to infer fine-grained tempo-
ral and spatial (origin and destination) patterns. The approach is also able to capture
complex spatio-temporal dependencies. We also demonstrated that our approach is
resistant to sampling effect. Indeed, even with 50% sampling ratio applied to the
daily mobility tensor, most of spatio-temporal patterns were preserved.

RQ5: What kind of applications are made possible by our approach when ap-
plied on mobile phone data? - Chapter 6

The approaches developed in this thesis unlock the potential of mobile phone
data. On the one hand, we provide TRANSIT able to perform trajectory segmenta-
tion as well as trajectory enhancement better than state of the art approaches. The
latter allows to improve already existing studies/application related to large scale
travel demand inference in urban environment with mobile phone data. Moreover,
it allows new kinds of mobility studies including fine-grained trajectory based anal-
ysis which were previously reserved for GPS data. In addition, our multimodal
map-matching approach paves the way for multimodality analysis at large scale
and in urban environment using mobile phone data. Finally, we leverage the ap-
proaches developed in this thesis to feed an original case study which consists on an
epidemiological model for studying COVID-19 propagation. The latter application
demonstrates the potential of mobile phone data to be used for a large diversity of
applications.

7.2 Limitations

The present work is constrained by several limitations. These limitations are related
to the mobile network data. This work is based on the use of NSD that are not widely
open. For privacy matters discussed above there is only few works on this kind of
data and research on NSD is still at early stages. Moreover, it is very difficult to
obtain large scale ground truth datasets. The drawbacks are twofold. On the one
hand, larger dataset would add confidence on the obtained results and would also
allow finer analysis for instance concerning the multimodal map-matching. On the
other hand, the lack of large scale ground truth dataset prevent the use of supervised
algorithms. Instead we have to rely on unsupervised approaches that exhibits in
general lower performances. Still, despite the aforementioned limitations, the pre-
sented works bring several contributions and can be further developed for future
work perspectives.
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7.3 Future Directions

There are several improvements that can be done beyond the approaches developed
in this thesis. These include the refinement of the parameters of our HMM based
map-matching approach. Indeed, the transition matrix could be estimated using
the real traffic conditions whereas the emission matrix could be estimated with an-
tennas’ coverage maps provided by Orange or by Bayesian inference using ground
truth data. In addition, TRANSIT could be further improved taking into account
the inter-individual regularity of human mobility i.e., different users that take sim-
ilar paths from one origin to one destination. This could be done by integrating to
our framework additional clustering approach. On the tensor decomposition ap-
proach it could be interesting to investigate the decomposition obtained by adding
the transportation mode dimension. This would allow to obtain mobility pattern
per mode and these patterns could represent valuable knowledge for transportation
planners. Finally, a lot of new applications could be developed on the basis of the
work proposed in this thesis as discussed in Chapter 6.
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Appendix A

Alternating proximal gradient
approach

Let (g1, g2, g3, g4) denote (C, O, D, T) for concision. Using a Proximal Gradient (PG)
method, the algorithm updates the i-th variable of G in the s-th round as:

g(s)
i = argmin

gi≥0

〈∂J
(

g(s)
<i , g̃(s)

i , g(s−1)
>i

)
∂gi

, gi − g̃(s)
i

〉
+

τi

2

∥∥∥gi − g̃(s)
i

∥∥∥2

F
+ λi ‖gi‖1

= max
{

0, g̃(s)
i −

1
τi

∂J
(

g(s)
<i , g̃(s)

i , g(s−1)
>i

)
∂gi

, gi − g̃(s)
i −

λi

τi

} (A.1)

where 〈·〉 denotes the inner product, g(s)
<i denotes {g(s)

1 , · · · , g(s)
i−1} and g(s)

>i de-

notes {g(s)
i+1, · · · , g(s)

4 }. The variable g̃(s)
i is a linear extrapolated point as follows:

g̃(s)
i = g(s−1)

i + w(s)
i

(
g(s−1)

i − g(s−2)
i

)
(A.2)

where w(s)
i is an extrapolation weight set according to [ref]. The parameter τi is a

Lipschitz constant of ∂J (gi)
∂gi

with respect to gi, namely,∥∥∥∥∥∂J (gi1)

∂gi1
−

∂J (gi2)

∂gi2

∥∥∥∥∥
F

≤ τi

∥∥∥gi1 − gi2

∥∥∥
F

, ∀gi1 , gi2 (A.3)

and λi is the regularization parameter of gi. Specifically, the gradients of J with
respect to each component are calculated as:
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∇CJ =2C ×o

(
O>O

)
×d

(
D>D

)
×t

(
T>T

)
− 2M×o O> ×d D> ×t T>
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(
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(
D>D

)
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(
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))
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(
D>D

))
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− 2
(
M×o O> ×d D>

)
(t)
C>(t)

(A.4)

The algorithm is given by the following pseudo-code:
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Procedure 2 Alternating proximal gradient for sparse NTD
Data: daily mobility tensorM
Initialization: A = (O, D, T), C−1 = C and A−1 = A

1: for k = 1, 2, · · · do
2: Set Ck,−1 = Ck,0 = C0 if k = 1, Ck,−1 = Ck−1,N−1, Ck,0 = Ck−1,N otherwise.
3: for n = 1, · · · , N do
4: Update core tensor C
5: Choose Lk,n

C to be a Lipschitz constant of ∇CJ (C, Ak
j<n, Ak−1

j≥n) about C
6: Choose wk,n

C ≥ 0 and set C̃k,n = Ck,n−1 + wk,n
C (Ck,n−1 − Ck,n−2)

7:

8: Update C by C = max
{

0, C̃k,n − 1
Lk,n
C
∇CJ (C̃k,n, Ak

j<n, Ak−1
j≥n)−

λC
Lk,n
C

}
9:

10: Update factor matrice An
11:
12: Choose Lk

n to be a Lipschitz constant of∇AnJ (Ck,n, Ak
j<n, An, Ak−1

j>n) about
An

13:
14: Choose wk

n ≥ 0 and set Ãk
n = Ak

n−1 + wk
n(A

k
n−1 −Ak

n−2)
15:

16: Update An by An = max
{

0, Ãk
n − 1

Lk
n
∇AnJ (Ck,n, Ak

j<n, Ãk
n, Ak−1

j>n)−
λn
Lk

n

}
17:
18: Re-update if loss function has increased
19: J (Ck,n, Ak

j≤n, Ak−1
j>n) > J (Ck,n−1, Ak

j<n, Ak−1
j≥n)

20:
21: Re-update Ck,n and Ak

n with C̃k,n = Ck,n−1 and Ãk
n = Ak−1

n
22: end for
23: Set Ck = Ck,N

24: stopping conditions
25: Return(Ck, Ak

1, · · · , Ak
N)

26: end for
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Appendix B

Factor matrices obtained with
R-NTF under 50% sampling ratio

B.1 Temporal Patterns
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Figure B.1: Hidden temporal patterns
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B.2 Origin Patterns
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Figure B.2: Hidden origin patterns
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