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Résumé

L’objectif de cette thèse est de contribuer à l’étude de la théorie de l’homotopie équivariante.
Il se compose de trois parties.

Dans la première partie, nous prouvons que la stabilisation de l’∞-catégorie des G-espaces par
rapport aux sphères de représentation est équivalente à l’∞-catégorie des G-spectres, où G est un
groupe de Lie compact. L’∞-catégorie des G-espaces est obtenue via la structure de modèle stan-
dard sur la catégorie des G-espaces, tandis que l’∞-catégorie des G-spectres est acquise à partir
de la structure du modèle stable. En fait, on prouve que ces catégories sont présentables, donc on
montre l’équivalence des ∞-catégories présentables.

Dans la deuxième partie, nous utilisons la théorie paramétrée des catégories supérieures pour
construire la version équivariante de l’homologie de factorisation. Il existe déjà une construction
de homologie de factorisation équivariante pour les variétés avec l’action d’un groupe fini, que nous
étendons aux variétés avec l’action d’un groupe de Lie compact à stabilisateurs finis.

Dans la troisième partie, nous développons la théorie des approximations des ∞-opérades
paramétrées lorsque la paramétrisation est faite par rapport à l’∞-catégorie des G-espaces transi-
tifs (i.e. les orbites) avec des stabilisateurs finis, où G est un groupe de Lie compact. Nous utilisons
cette théorie pour prouver que l’∞-catégorie des G-disques est librement générée par l’∞-catégorie
des H-disques avec un cadrage approprié sur les G-disques et les H-disques, où H ≤ G est un
sous-groupe fini.

Abstract

The aim of this thesis is to contribute to the study of the equivariant homotopy theory. It
consists of three parts.

In the first part we prove that the stabilization of the ∞-category of G-spaces with respect to
the representation spheres is equivalent to the ∞-category of G-spectra, where G is a compact Lie
group. The ∞-category of G-spaces is obtained via the standard model structure on the category
of G-spaces while the ∞-category of G-spectra is acquired from the stable model structure. In
fact, we prove that these categories are presentable, hence, we show the equivalence of presentable
∞-categories.

In the second part we use the parametrized higher category theory to construct the equivariant
version of the factorization homology. There already exists a construction of genuine equivariant
factorization homology for manifolds with an action of a finite group, which we extend to the
manifolds with an action of a compact Lie group with finite stabilizers.

In the third part, we develop the theory of approximations to parametrized ∞-operads when
the parametrization is done with respect to the∞-category of transitive G-spaces (i.e. orbits) with
finite stabilizers, where G is a compact Lie group. We use this theory to prove that the∞-category
of G-discs is freely generated by the ∞-category of H-discs with suitable framing on both G-discs
and H-discs, where H ≤ G is a finite subgroup.
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Chapter 0

Introduction

Objects with an action of a group G apear naturally in topology (and mathematics in general).
Let X be a space with an action of a group G. Classical constructions in the algebraic topology
such as homotopy groups or singular homology of X do not recognize the action of G. Therefore,
we need to develop suitable machinery that will take this action into account (Bredon (co)homology
etc.). Studying homotopical properties of these equivariant objects gives rise to the equivariant
homotopy theory. Although many results in classical homotopy theory have their equivariant
versions (Whitehead’s theorem, CW -approximations just to name a few) passing to the equivariant
case is not always straightforward.

This thesis consists of three topics related to equivariant homotopy theory when G is a compact
Lie group:

1. Stabilization of the ∞-category of G-spaces with respect to the representation spheres.

2. Equivariant version of the factorization homology.

3. Universal property of the equivariant framed disc algebras.

Part I: Stabilization of the ∞-category of G-spaces with re-
spect to the representation spheres

The importance of having a good stable category is evident in today’s mathematics. In such
category, the basic formal properties of homology and cohomology become trivialities. In the case
of topological spaces, the stable homotopy category is the category obtained from the homotopy
category of topological spaces by inverting the suspension functor (smash product with the circle
S1), which gives us a linear approximation of the homotopy category of spaces. The isomorphism
classes in the stable homotopy category represent generalized cohomology theories.

In equivariant homotopy theory the importance of having a good stable category is even greater
since much of basic equivariant algebra arises in the stable context. When talking about stabiliza-
tion of the category of G-spaces, the suspension functor needs to be replaced by smash product
with representation spheres, that is, one point compactifications of real G-representations. In this
first part, we give a description of the stabilization of the category of G-spaces with respect to the
representation spheres in the higher categorical setting.

G-spectra

In order to index G-representations, one can define a notion of a universe U as a sum of
countably many copies of some set of irreducible representations of a compact Lie group G including

4



CHAPTER 0. INTRODUCTION 5

the trivial representation. Finite dimensional real inner-product spaces of a universe are called
indexing spaces. We can organize them into an ∞-category RepU (G)∞, with objects being the
indexing spaces and morphisms G-equivariant inclusions.
We can now define a G-spectrum E as a family of pointed G-spaces EV for each indexing space
V ∈ U , such that for every pair of indexing spaces V ⊆W we have a structure map

σV,W : ΣW−V EV → EW

where W − V is the orthogonal complement of V in W , with σV,V = Id and such that evident
diagram commutes

ΣU−WΣW−V EV ΣU−WEW

ΣU−V EV EU

'

where V ⊆W ⊆ U are indexing spaces and where we denote ΣVX := SV ∧X.
Note that, unlike classical spectra, G-spectra are graded by indexing spaces. The term that can be
found in literature is RO(G)-graded. This corresponds to the fact that G-spectra encode RO(G)-
graded (co)homology theories for equivariant spaces.

Take an indexing space V and a pointed G-space X. We can define the free suspension G-
spectrum of X as a G-spectrum Σ∞V X such that

(Σ∞V X)(W ) = ΣW−VX, when V ⊆W , and

(Σ∞V X)(W ) = ∗, otherwise

Free suspension G-spectra represent very interesting objects, since the class of free suspension
G-spectra of finite G-CW -complexes generate all G-spectra under filtered homotopy colimits.

Stabilization

At the moment, let us focus our attention on the∞-category of based, finite G-CW -complexes
SpacefinG−CW∞ and the ∞-category (SpUG−CW )∞ of free suspension G-spectra Σ∞V X where V is
an indexing space (i.e. a G-representation) and X is a based, finite G-CW -complex.
The central idea of the first part of the thesis is to look at the functor

χ̃ : RepU (G)∞ → Cat∞

which sends every indexing space to the∞-category SpacefinG−CW∞ , and every inclusion of indexing
spaces V ↪→ U to the smash product with the represantation sphere SU−V where U − V is the
orthogonal complement of V in U . The stabilization of the ∞-category of based, finite G-CW -
spaces with respect to the representation spheres is

colim
RepU (G)∞

χ̃

Informally, the objects of colim
RepU (G)∞

χ̃ can be represented by pairs (X,V ) where X is a pointed,

finite G-CW -space and V is a G-representation. There is an evident functor F : colim
RepU (G)∞

χ̃ →

(SpUG−CW )∞ sending (X,V ) to the G-spectrum Σ∞V X. One of the main results of the first part is
the theorem 4.2.1:

Theorem 0.1. The functor F : colimRepU (G)∞ χ̃→ (SpUG−CW )∞ is an equivalence of∞-categories.
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We can make a similar claim about the ∞-category of based G-spaces SpaceG∞ and the ∞-
category of G-spectra (SpUG)∞, with one fundamental difference: The ∞-categories SpaceG∞ and
(SpUG)∞ are presentable ∞-categories. In particular, we can regard them as elements of the ∞-
category PrL, the∞-category of presentable∞-categories with colimit preserving functors between
them. Moreover, the ∞-categories SpaceG∞ and (SpUG)∞ are generated under filtered colimits by
the ∞-categories SpacefinG−CW∞ and (SpUG−CW )∞ respectively. The stabilization colimit will now
be the colimit in PrL which in general differs from the colimits in Cat∞.

The universal property

Let C⊗ be a symmetric monoidal ∞-category and let X ∈ C⊗. We say that X is an invertible
object of C⊗ if the map X ⊗ (−) : C⊗ → C⊗ is an equivalence. To add up, given a symmetric
monoidal map φ : C⊗ → D⊗ we say that X ∈ C⊗ is sent to an invertible object in D⊗ if φ(X) is
invertible in D⊗.
When talking about G-spectra we can obtain a Quillen equivalence

SV ∧ (−) : SpUG � SpUG : ΩV (−)

on the stable model category of G-spectra. Consequently, we have that representation spheres act
by equivalences on the ∞-category (SpUG)∞. Moreover, the map Σ∞ : SpaceG∞ → (SpUG)∞ sending
a G-space to a free suspension G-spectrum now sends representation spheres to invertible objects in
(SpUG)∞. We want to show that (SpUG)∞ is universal with respect to the inversion of representation
spheres. To be more precise, we want to show that (SpUG)∞ is the initial object of the ∞-category
of presentable symmetric monoidal∞-categories equipped with a map from SpaceG∞ such that the
representation spheres are sent to invertible objects. The main result of this part is the proposition
4.3.1:

Proposition 0.2. The restriction functor

CAlg(PrL)(SpUG)∞/ → CAlg(PrL)SpaceG∞/

is fully faithful, where CAlg(PrL) is the ∞-category of commutative algebras in PrL i.e. pre-
sentable symmetric monoidal categories, such that the essential image consists of those symmetric
monoidal functors SpaceG∞ → C⊗ which send every representation sphere into an invertible object
in C⊗.

Organization by chapters:

1. Preliminaries:
Here we provide the reader with theoretical background and the machinery used in the first
part of the thesis.

2. The ∞-category of G-spaces:
We introduce the∞-category of G-spaces as an underlying∞-category of the model category
of G-spaces. Also, we show that this∞-category is presentable. In particular, it is generated
under filtered colimits by finite G-CW -complexes.

3. The ∞-category of G-spectra:
We introduce the ∞-category of G-spectra as an underlying ∞-category of the stable model
category of G-spectra. Later, we give the construction of the functorial fibrant replacement in
the stable model category of G-spectra. Perhaps the most important section in this chapter is
3.3, where we construct the stable homotopy category of G-spectra SHG. The importance of
this construction lies in the fact that we can prove that every G-spectrum can be obtained as
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a filtered homotopy colimit of free suspension G-spectra Σ∞V X where V is a G-representation
and X is a finite G-CW -complex. Additionally, this helps us to deduce that the ∞-category
of G-spectra is presentable.

4. Stabilization of the ∞-category of G-spaces:
In this last chapter we prove the theorem 0.1 and later deduce that the stabilization of the
presentable ∞-category of G-spaces with respect to the representation spheres is equivalent
to the presentable ∞-category of G-spectra. In the end, we prove proposition 0.2 i.e. we
show that (SpUG)∞ is universal with respect to inverting the representation spheres.

Part II: Equivariant version of the factorization homology

Factorization homology, as presented by Ayala and Francis ([AF15]), or chiral homology of
Lurie ([HA]) represents homology theories for manifolds with coefficients in n-disc algebras, where
n is the fixed dimension of the manifolds that we consider. It stems from the work of Beilinson and
Drinfeld ([BD04]), but it also has roots in the work of Salvatore ([Sa01]) and Segal ([Se10]). There
are numerous reasons to study factorization homology: for one, factorization homology defines
topological quantum field teories (see [CG16]), but more importantly, it defines homology theories
for manifolds and not topological spaces in general.

One of the most interesting examples for us would be the factorization homology of a circle S1

with coefficients in an associative algebra A in some presentable ∞-category C⊗, which we denote
with

∫
S1 A. By [AF15] 3.19 we know that

∫
S1 A is equivalent to the Hochschild complex HC∗(A) of

A. Additionally, we can make the connexion between the factorization homology and the topolog-
ical Hochschild homology by taking A to be an associative ring spectrum. The action on the circle
translates to the action on THH(A) which serves as a motivation for studying factorization homol-
ogy in the equivariant setting. Keeping in mind that there is an action of the group O(2) on S1 and
therefore on THH(A) it is reasonable to consider manifolds with an action of a compact Lie group.

Parametrized higher category theory

Let M be a n-dimensional manifold with an action of a compact Lie group G and let A be an
En-ring spectrum. Then, by functiorality we have an induced action of G on

∫
M
A. Unfortunately,

this action is defined only up to coherent homotopy since the factorization homology is defined as
a ∞-categorical colimit. Therefore

∫
M
A is not a genuine G-object. More generally, we could ask

ourselves: what would be the right notion of an ∞-category with an action of G, which we will
simply call G-∞-categories? One obvious candidate would be an ∞-category C together with a
coCartesian fibration C → BG. Sadly, as explained in [BDGNS16], this coCartesian fibration does
not capture all of the information that we would like to have. This motivates the development of
parametrized higher category theory, provided by Barwick and his students ([BDGNS16], [Shah18],
[Nar16], [Nar17], [NS]). Similarly as one can do computations in homotopy theory in∞-categorical
setting, parametrized higher category theory provides us with a good environment in which we can
work in equivariant homotopy theory. By definition, a G-∞-category is an ∞-category C together
with a coCartesian fibration p : C → OopG where OG is the ∞-category of orbits of G. Informally,
for every orbit G/H ∈ OG, C[G/H] can be viewed as the ∞-category of H-objects. To add up,
we have a family of ∞-categories which are compatible in the sence that we can define restriction
functors, conjugacy action functors between them etc.
Unfortunately, there are some theoretical limitations to this theory. Namely, when G is a compact
Lie group, in general we cannot take OG to be the orbit category of all tranzitive G-spaces, but we
can always restrict our attention to those orbits with finite stabilizers (there will be more words
on that in 5).
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Return to factorization homology

We have already stated that factorization homology represents homology theories for manifolds, and
as such needs to satisfy Eilenberg-Steenrod axioms. In view of Ayala and Francis, the construction
of factorization homology as a symmetric monoidal functor satisfies an analogue of the Eilenberg-
Steenrod axioms called ⊗-excision property: If we have a manifold M obtained as a collar gluing
M ∼= M ′

⋃
M0×RM

′′ then we have an equivalence:∫
M

A '
∫
M ′

A ⊗∫
M0×R A

∫
M ′′

A

where the left side is the two sided bar construction. Perhaps the most important result concern-
ing factorization homology lies in the axiomatic caracterization i.e. Ayala and Francis proved that
factorization homology accounts for all homology theories on manifolds.

We want to develop factorization homology for manifolds with an action of a compact Lie
group G such that the output object

∫
M
A is a genuine G-object. In order to do so we will use the

parametrized higher category theory. In this view, our G-factorization homology would need to
satisfy the equivariant analogues of the ordinary factorization homology: G-⊗-excision property,
axiomatic caracterization etc.
Additionally, if we take A to be equivariant disc algebra with values in the G-symmetric monoidal
G-∞-category of G-spectra SpG (see [Nar17]), the topological induction functor will be compatible
with the norm maps: if K ≤ H ≤ G are finite subgroups of G and if M is a K-manifold, then∫

H×KM
A ' NH

K (

∫
M

A)

Framing on G-manifolds

Framing on G-manifolds provides us with G-factorization homology of G-manifolds with more gen-
eral tangential structure. This way, we can, for example, obtain homology theories for equivariant
oriented manifolds ([CMW01]) or manifolds with free G-action (see [Hor19] 3.3.7 ). The most
common example are V -framed G-manifolds, where V is a G-representation. Such framing on a
G-manifold M corresponds to the trivialization of the tangent vector bundle TM ∼= M × V .
In general, the tangent vector bundle of a G-manifold is determined by the classifying map
τM : M → BOn(G). In other words, there is a pullback diagram of G-vector bundles

TM EOn(G)

M BOn(G)
τM

The data of a framing on a G-manifold M consists of a G-map f : B → BOn(G) where B is
a G-space, together with a factorization of a G-tangent bundle classifying map through f . In
particular, B-framing on M corresponds to the diagram

TM E EOn(G)

M B BOn(G)
fM f

where both left and right (and therefore also the outer) rectangles are pullback diagrams, with
E → B being the G-vector tangent bundle corresponding to the map f . In the case when B = ∗,
the ∗-framing corresponds to the diagram
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TM V EOn(G)

M ∗ BOn(G)
fM

where V is a G-representation. Hence, ∗-framing, or better said V -framing, corresponds to the
trivialization of the tangent vector bundle TM ∼= V ×M .

G-disc algebras

Generally speaking, G-factorization homology is an invariant of a geometric and an algebraic
input. The geometric input is given by (framed) G-manifolds, while the algebraic input is given
by (framed) G-disc algebras. Formally, (framed) G-disc algebras with coefficients in C⊗ are G-
symmetric monoidal functors with the source being the G-∞-category of (framed) G-discs taking
values in some G-symmetric monoidal category C⊗. Informally, G-factorization homology can be
seen as gluing local data of a G-manifold M . This local data can be described by an algebraic
structure given by G-discs on M . In the approach of Ayala and Francis, the algebraic input on
framed n-manifolds is given by En-algebra, while in the equivariant case, the algebraic input is
given by V -framed G-disc algebras. To depict this structure on a G-manifold M , let x ∈ M be
a point with stabilizer Stab(x) = H. Then the tangent space TMx has a linear action of H.
Moreover, it is isomorphic to V as an H-representation. Then the tubular neighborhood of the
orbit of x is isomorphic to G×H V . In other words, the map G×H V → G/H is a G-vector bundle,
where G/H is regarded as the orbit of x. Therefore, intuitively, we can think of our framed discs
as G-vector bundles G×H V → G/H.

Existing work

As of the time of writing this thesis, the author is familiar with the work of Horev ([Hor19])
and Weelinck ([Wee18]) on the equivariant versions of factorization homology. While the work
of Weelinck contains several good ideas, the construction presented in [Wee18] provides us with
factorization homology which is not genuine as explained above. On the other hand, the con-
struction of Horev, using parametrized higher category theory, gives an equivariant extension of
the ordinary factorization homology given by Ayala and Francis when G is a finite group, which
is of greater interest to us. In fact, the second part of this thesis represents the generalization of
Horev’s construction to the case when the group G is a compact Lie group.

Organization by chapters:

5. Preliminaries:
We give the theoretical basis for the parametrized higher homotopy theory and higher algebra:
we define parametrized ∞-categories, parametrized symmetric monoidal ∞-categories and
parametrized ∞-operads. In addition, we give examples of the G-∞-category of G-spaces
and G-∞-category of finite G-sets.

6. G-manifolds:
We give the definition of G-manifolds with which we want to work with. Additionally, we give
the description and construction of the G-∞-category of G-manifolds MfldG, together with

its framed variants MfldG,B−fr where the framing is given by a G-map f : B → BOn(G).
We will also see how the restriction functor, conjugacy functor and the topological induction
functor are incorporated in this G-∞-structure. Finally, we will construct and describe the
G-symmetric monoidal G-∞-category of G-manifolds.
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7. G-discs:
We start by definig G-∞-category of G-discs together with its framed variants. Similar
to the previous chapter, we follow this up with the section devoted to the G-symmetric
monoidal structure on the G-∞-category of G-discs. In section 7.2 we will prove that the
framed G-discs DiskG,B−fr can be obtained as the G-symmetric monoidal envelope of G-∞-
operad RepB−fr,t

n
(G). Secton 7.3 serves to describe the connection between G-discs and G-

configuration spaces. Finally, in the last section 7.4 we give the description of G-disc algebras
taking values in the G-∞-category of G-spectra. In addition, we will see how the norm maps
of Hill-Hopkins-Ravenell ([HHR16]) are incorporated in this G-parametrized structure.

8. G-Factorization homology:
First, we give the definition of the G-factorization homology as a parametrized colimit∫

M

A = G/H − colim(DiskG,B−fr/M → G/H×DiskG,B−fr → G/H×C)

After the definition, we proceed with the description of the G-factorization homology as a
G-functor obtained as a G-left adjoint functor i!

i! : FunG(DiskG,B−fr, C) � FunG(MfldG,B−fr, C) : i∗

Finally, we extend the G-factorization homology functor to the G-symmetric monoidal func-
tor.

9. Properties of G-factorization homology:
In the final chapter we show:

� G-factorization homology satisfies the G-⊗-excision property:
This result can be summed by Definition 9.2.2 and Proposition 9.2.4: if M is a G-
manifold with the gollar gluing decomposition i.e. a G-map f : M → [−1, 1] such that
f−1(−1, 1) ∼= M0 × (−1, 1), with M0 = f−1(0), M ′ = f−1[−1, 1) and M ′′ = f−1(−1, 1],
then there is an equivalence ∫

M

A '
∫
M ′

A ⊗∫
M0×R A

∫
M ′′

A

where A is a (framed) G-disc algebra taking values in a G-symmetric monoidal category
C⊗.

� G-factorization homology respects sequential unions:
If there is a sequence of open G-manifolds M1 ⊂M2 ⊂ ... such that M =

⋃+∞
i=1 Mi then

there is an equivalence

colimi

∫
Mi

A
'−→
∫
M

A

� Axiomatic caracterization of G-factorization homology:
The main result of this section is Theorem 9.4.3 which states:

Theorem 0.3. Let C⊗ → FinG∗ be a presentable G-symmetric monoidal G-∞-category
and let f : B → BOn(G) be a G-map. Then the adjunction

(i⊗)! : Fun⊗G(DiskG,B−fr,t, C⊗) � Fun⊗G(MfldG,B−fr,t, C⊗) : (i⊗)∗

restricts to an equivalence
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(i⊗)! : Fun⊗G(DiskG,B−fr,t, C⊗)
'−→ H(MfldG,B−fr,t, C⊗)

WhereH(MfldG,B−fr,t, C⊗) ⊆ Fun⊗G(MfldG,B−fr,t, C⊗) is the full subcategory spanned
by those functors that are homology theories i.e. which satisfy G-⊗-excision property
and respect G-sequential unions.

In other words, we show that G-factorization homology accounts for all homology the-
ories of G-manifolds.

Part III: Universal property of the equivariant framed disc
algebras

Third and final part of the thesis is dedicated to proving the universal property of the G-disc
algebras. Informally, the ∞-category of G-disc algebras with coefficients in some G-symmetric
monoidal category C⊗ is equivalent to the ∞-category of H-disc algebras taking values in the
underlying H-symmetric monoidal category C⊗H of C⊗ with a suitable choice of framing on both
G-discs and H-discs. In other words, the G-symmetric monoidal category of G-discs is freely
generated by the H-symmetric monoidal category of H-discs with the suitable choice of framing
on both G-discs and H-discs.

Framing on G-discs and H-discs

As we have stated in the beginning, there is a suitable choice of framing on G-discs and H-discs
under which we obtain the equivalence of ∞-categories of G-disc algebras and H-disc algebras.
Namely, the G-discs are framed over the orbit space G/H, while the H-discs are framed over the
point. These framings are compatible in the following sense:
The ∗-framing on H-discs corresponds to the V -framing, where V is an H-representation. Then
the G/H-framing corresponds to the framing with respect to the G-vector bundle G×H V → G/H.
In the case when we work with the manifolds of the same dimension as our compact Lie group
G, the H-representation above corresponds to the adjoint representation of G with the restricted
H-action.

Main result

The most important result of this section is the Theorem 10.2.5:

Theorem 0.4. Let C⊗ be a G-symmetric monoidal category. Then the G-symmetric monoidal
category of G/H-framed G-discs is freely generated by the H-symmetric monoidal category of ∗-
framed H-discs. In other words, there is an equivalence

Fun⊗G(DiskG,G/H−fr, C⊗)
'−→ Fun⊗H(DiskH,∗−fr, C⊗H)

where C⊗H is the underlying H-∞-category of G-∞-category C⊗.

What would be the motivation for showing this universal property? The input of
the G-factorization homology is a G-disc algebra together with a G-manifold which we regard as a
genuine G-object in the parametrized∞-category, and as an output we receive a genuine G-object.
The universal property allows us to replace G-algebra with an H-algebra, which is in general, less
complicated object. To be more precise, a V -framed (or ∗-framed) H-disc algebra AH in C⊗H
(the underlying H-∞-category of a G-∞-category C⊗), where V is the adjoint representation of
G restricted to H-action, gives us the corresponding G/H-framed G-algebra A in C⊗. Moreover,
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computing
∫
G/H

A now gives us a genuine G-object (i.e. a coCartesian section of C⊗ → OopG ) living

in C⊗.
In particular, taking H = {e} to be a trivial subgroup, the ∗-framed (or better said Rn-framed)
H-disc is equivalent to the En-algebra object in the underlying∞-category C⊗e of C⊗. Additionally,
taking n = 1 and G = S1, gives us the following:

� Taking an associative algebra object Ae in C⊗e gives us a corresponding G-framed G-disc
algebra A in C⊗. Therefore, the associative algebra Ae produces a genuine S1-object

∫
S1 A

in C⊗.

This will be explained in more detail in 10.3.

To conclude, the result on the universal property of G-discs can carve a path to a new insight
into the norm maps of Hill, Hopkins and Ravenel [HHR16].

Organization by chapters:

10. G-approximations to G-∞-operads: In the first section we introduce the reader to
the theory of G-approximations to G-∞-operads. Informally, a G-approximation is an ∞-
category C together with a map f : C → E⊗ satisfying certain conditions, where E⊗ is a
G-∞-operad. The ∞-category C is not a G-∞-operad, but under certain conditions does
capture valuable information of the G-∞-operad it approximates (in our case E⊗). More-
over, given another G-∞-operad E′⊗ we can define the C-algebra objects in E′⊗ as functors
F : C → E′⊗ satisying some conditions. Again, informally, they are adequate replacements
of maps of G-∞-operads.

The most important result of this section is the Proposition 10.1.7, which states that if
f : C → E⊗ induces a categorical equivalence of the underlying ∞-categories of C and
E⊗ then we can replace the ∞-category of E⊗-algebras in E′⊗, AlgG(E⊗, E′⊗) with the
∞-category AlgG(C,E′⊗) of C-algebras in E′⊗.

11. The universal property: In this section we use the theory of G-approximations to con-
struct a map θ : Rep∗−fr,t

n
(H) → RepG/H−fr,t

n
(G) and to prove that it is in fact a G-

approximation satisfying the conditions of Proposition 10.1.7. Using the results DH,∗−fr '
EnvH(Rep∗−fr,t

n
(H)) and DG,G/H−fr ' EnvG(RepG/H−fr,t

n
(G)) i.e. DH,∗−fr is equivalent

to the H-symmetric monoidal envelope of Rep∗−fr,t
n

(H) and DG,G/H−fr is equivalent to the

G-symmetric monoidal envelope of RepG/H−fr,t
n

(G), we obtain the Theorem 10.2.5.

12. Applications: In the final section, we give two examples as applications of the universal
property. In particular, we explain how:

� Associative algebra objects with genuine involution in SpZ2 correspont to the O(2)-

genuine objects in SpO(2). In addition, we will see how to refine the Z2-genuine structure
on the real topological Hochschild homology to O(2)-genuine structure;

� Associative algebra objects in the ∞-category of spectra Sp correspond to the S1-

genuine objects in SpS
1

.
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Anica Stamenić, pour avoir été avec moi à chaque étape. Merci, ça a été un voyage merveilleux.

Acknowledgements

I would like to thank my advisor Yonatan Harpaz for introducing the topics of this thesis to
me and for his guidance and patience. It helped me to see the beauty of mathematics hidden
behind all the technical details. I would also like to thank Bruno Vallette and all the personnel at
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Anica Stamenić, for being with me every step of the way. Thank you, it has been a wonderful
journey.



Part I

Stabilization of the ∞-category of
G-spaces

14



Chapter 1

Preliminaries I

1.1 Model categories

The theory of model categories was developed by Quillen in [Qui67] and [Qui69]. Formally, a
model category is an ordinary category with three specified classes of morphisms: weak equiva-
lences, fibrations and cofibrations. These classes are subject to some axioms which we will state
later. The main advantage of model categories is that they provide us with decent machinery with
which we can operate in homotopy theory. Some good refferences are [Hov98], [PH03], [DS95] and
[IHom], but there are of course many others.

Other importance of model categories is that we can construct an underlying ∞-category of a
model category, which plays a significant role in the first part.

Definition 1.1.1. Let M be an ordinary category. A morphism q : A → B is called a retract of
f : X → Y if there is a commutative diagram

A X A

B Y B

idA

q f q

idB

Remark 1.1.2. If we take M to be a category of topological spaces and q = idA, f = idX , the
notion of idA being a retract of idX corresponds to the notion of space A being a retract of a
topological space X.

Definition 1.1.3. A model category is a category M equipped with three classes of morphisms:

� class of weak equivalences W (which are denoted with
∼→)

� class of fibrations F (denoted with �),

� class of cofibrations C (denoted with �).

which satisfy the following 5 axioms:

1. M is cocomplete.

2. (2 out of 3 property) For every commutative diagram

15
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B

A C

if two of the three morphisms are weak equivalences then so is the third.

3. If q is a retract of f such that f ∈ W (resp. f ∈ F , f ∈ C), then q ∈ W (resp. q ∈ F , q ∈ C).

4. For every commutative diagram

A B

C D

i p

such that i ∈ C and p ∈ F the dashed lift exists if i or p is in addition a weak equivalence.

5. Every morphism f : X → Y admits two natural factorizations

X
∼
� Pf � Y , and

X � Cf
∼
� Y

We will write (M,W,F , C) for a model category M to indicate the classes of weak equivalences,
fibrations and cofibrations. We will also write just M when the model structure is known.

Remark 1.1.4. The condition in axiom 5 that the factorizations are natural (functorial) can be
omitted. The reason why it is written is of practical nature: Consider, for example, the commuta-
tive square

A B

A′ B′

p

f

q

f ′

The functoriality of the factorization allows us to obtain the following diagrams

A Pf B

A′ Pf ′ B′

p

∼

P (p,q) q

∼

A Cf B

A′ Cf ′ B′

p

∼

C(p,q) q

∼

Remark 1.1.5. By axiom 1 every model category M has an initial and a final object since these
objects correspond to the limit and colimit of empty diagrams respectively. For future reference,
let us denote with 0 the initial and with {∗} the terminal object of M .
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Definition 1.1.6. Let X ∈M where M is a model category. We say that X is

� fibrant if we have X � {∗}

� cofibrant if we have 0 � X

Definition 1.1.7. For every X ∈ M consider the maps 0 → X and X → {∗}. Axiom 5 gives us
a factorization

X
∼
� PX � {∗} , and

0 � CX
∼
� X

We call PX (resp. CX) the fibrant (resp. cofibrant) replacement of X.

Remark 1.1.8. Given a model category M , we will denote with Mf (resp. Mc) the full subcategory
spanned by fibrant (resp. cofibrant) objects.
By axiom 5 we have functors

R :M →Mf

L :M →Mc

such that R(X) = PX and L(X) = CX .

Example 1.1.9. Quillen model category: Quilen gave a proof that the category of topological
spaces Top can be endowed with the structure of a model category with:

� the class of weak equivalences being weak homotopy equivalences,

� fibrations being Serre fibrations, and

� cofibrations being retracts of general cellular inclusions.

It is worth noting that in this structure every object is fibrant.

Definition 1.1.10. Let M be a model category withW the class of weak equivalences. We define
the homotopy category of M to be the localization of M at the class of maps W and we denote it
with

Ho(M) := M [W−1]

Note that we also have the projection functor π : M → Ho(M).

Lemma 1.1.11. Let M be a model category. The canonical inclusions Mf ↪→ M and Mc ↪→ M
induce equivalences of homotopy categories

Ho(Mf )
'−→ Ho(M)

Ho(Mc)
'−→ Ho(M)

As we said in the beginning of this section one important aspect of model categories is that
they admit an underlying ∞-category
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Definition 1.1.12. Let M be a model category. We define the underlying ∞-category as

M∞ = N(M)[W−1]

in other words, as the simplicial localization at the class of arrows represented by weak equivalences
in M .

Given a functor F : C → D between two model categories, we would like to study the conditions
on F which would allow us to compare the two model categories and their underlying homotopy
categories and therefore their underlying ∞-categories. To start, we can define the notion of left
and right Quillen functor.

Definition 1.1.13. Let C and D be two model categories ad let F : C → D and G : D → C be
two functors. We say that:

� F is a left Quillen functor if it is left adjoint and if it preserves cofibrations and trivial
cofibrations,

� G is a right Quillen functor if it is right adjoint and if it preserves fibrations and trivial
fibrations.

Definition 1.1.14. A Quillen adjunction is an adjunction F : C � D : G between model
categories such that F is a left Quillen functor and G is a right Quillen functor.

Next thing that we will do is introduce the notion of a derived functor. Generally speaking,
when we have a functor F : C → D between two model categories, a derived functor of F is a
functor between homotopy categories of C and D induced by F (or equivalently, a functor between
∞-categories C∞ and D∞ induced by F ).

Definition 1.1.15. Let C and D be two model categories ad let F : C → D and G : D → C be
two functors. We define:

� Left derived fuctor of F , LF : Ho(C) → D to be the Left Kan extension of F along πC :
C → Ho(C),

� Right derived fuctor of G, RG : Ho(D) → C to be the Right Kan extension of G along
πD : D → Ho(D),

� Total left derived fuctor of F , LtotF as the left derived functor of the compositionong C
F−→

D
πD−−→ Ho(D),

� Total right derived fuctor of G, RtotG as the right derived functor of the compositionong

D
G−→ C

πC−−→ Ho(C).

Proposition 1.1.16. Let C and D be two model categories ad let F : C → D and G : D → C be
two functors that form a Quillen adjunction

F : C � D : G

then the total left and right functors LtotF and RtotG form an adjunction

LtotF : Ho(C) � Ho(D) : RtotG

Defintion 1.1.17. A Quillen equivalence is a Quillen adjunction F : C � D : G such that the
induced adjunction LtotF : Ho(C) � Ho(D) : RtotG represents the equivalence of categories.
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Remark 1.1.18. An immediate consequence of the upper definition is that given that two model
categories C and D are Quillen equivalent their underlying ∞-categories C∞ and D∞ are also
equivalent.

Example 1.1.19. The most important examples of total derived functors are homotopy colimits.
Note that, given a category K and a category C we have a category of K-indexed diagrams CK .

Moreover, we have an adjunction colim : CK � C : c where colim is a functor which assigns to
every K-diagram X : K → C its colimit and where c is a constant functor.

If C is a model category we can equip CK with the projective model category structure in which
the weak equivalences (resp. fibrations) are those natural transformations τ : X → Y such that
τk : X(k)→ Y (k) is a weak equivalence (resp. fibration) for every k ∈ K. The cofibrations would
be those natural transformations that have a left lifting property (LLP) with respect to all trivial
fibrations.
Now the colim functor is a functor between two model categories and we will mark

hocolim := Ltotcolim

the homotopy colimit. We can also make an analogous definition for homotopy limits.

By [HTT] 4.2.4 we have the following:

Lemma 1.1.20. Let M be a model category. Then the notion of homotopy colimit corresponds to
the notion of colimit in the underlying ∞-category M∞.

This lemma can be used for variety of results. The one that we will be using the most in
particuliar is:

Theorem 1.1.21. Let M be a model category and let I be a filtered category with a filtered
subcategory J together with an inclusion functor incl : J → I such that for every i ∈ I there
exists j ∈ J such that there is a map i→ incl(j). Then for an I-diagram X : I →M, the map

hocolimJ incl
∗X → hocolimIX

is a weak equivalence.

Proof. LetM∞ be the underlying ∞-category of the model categoryM, and let N(I) and N(J )
denote the nerve of categories I and J respectively. Now we have the situation

N(J ) ↪→ N(I)
X̃−→M∞

where N(I)
X̃−→ M∞ is induced by X : I → M. We would like to show that the map N(J ) ↪→

N(I) is cofinal in the ∞-categorical sense. For that we will use the Quillen’s theorem A for
∞-categories (see [HTT] 4.1.3.1 )

Quillen’s theorem A. Let p : X → C be a map of simplicial sets whose codomain is an ∞-
category. Then p is cofinal if and only if for every y ∈ C the simplicial set X ×C Cy/ is weakly
contractible.

It is easy to see that for any i ∈ I the category J ×IIi/ is filtered. Since the nerve functor preserves
pullbacks and N(Ii/) = N(I)i/, the filtered property tells us that the category N(J )×N(I)N(I)i/
is weakly contractible, hence the map N(J )→ N(I) is cofinal.

This gives us the fact that colimits in M∞ computed over the category N(I) are weakly
equivalent to the colimits computed over N(J ), but the colimits inM∞ corespond to the homotopy
colimits in the underlying model category, hence the desired result.
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Remark 1.1.22. We will finish this section with a remark on how to compute homotopy colimits
in general:
Let M be a model category, K an ordinary category and X : K →M a K-diagram. As we have
defined in 1.1.19, hocolimKX = LtotcolimKX. By the definition of derived functors hocolimKX =
colimKLX where LX is the cofibrant replacement of the K-diagram X in the projective model
structure on MK .

For example let

X1 → X2 → ...→ Xn → ...

be a sequence in M. By inspection, the cofibrant replacement is the sequence

X1 X2 ... Xn ...

CX1 CX2 ... CXn ...

where CXi → Xi is a weak equivalence and CXi → CXi+1 is a cofibration for every i, thus

hocolimi∈NXi = colimi∈NCXi

1.2 Presentable ∞-categories

Presentable ∞-categories are ∞-categories with nice formal properties. Informally speaking, a
presentable ∞-category is generated under filtered colimits by some set of objects. The category
of Abelian groups is one such example: even though the category is large, it is in some sense
determined by the much smaller category of finitely generated abelian groups. There are many
other examples of presentable categories that arise naturally in mathematics. For the theory of
presentable categories in classical categorical setting one can look at [AR94], for more references
one can look in [Gro15] and [HTT].

Formally, the definition of a presentable ∞-category is the following:

Definition 1.2.1. An ∞-category C is presentable if it is cocomplete and accessible.

Informally, the condition of being accessible means that our ∞-category C is generated under
filtered colimits by some small set of objects in C. For that we will introduce the category of Ind-
objects. Later, we will introduce the notion of left and right adjoint functor between ∞-categories
in order to present the version of Freyd’s adjoint functor theorem.

Ind-objects and accessible ∞-categories

Let C be a category. An Ind-object of C is a diagram f : I → C where I is a small filtered
category. We will denote with Ind(C) the category of Ind-objects in C. Note that C may be
recovered from Ind(C) by taking diagrams indexed by the one-point category. The idea is that
Ind(C) is obtained from C by formally adjoining colimits of filtered diagrams. Moreover, Ind(C)
can be described by the following universal property: for any category D which admits filtered
colimits and any functor F : C → D, there exists a functor F̃ : Ind(C) → D whose restriction to
C is isomorphic to F and which commutes with filtered colimits.

In higher categorical setting we will need to take some time to explain the analogues of filtered
∞-categories:

Definition 1.2.2. ([HTT] 5.3.1.7 ) Let C be an∞-category. We say that C is filtered if, for every

small simplicial set K and every map f : K → C, there exists a map f̃ : KB → C extending f .
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Remark 1.2.3. Note that in [HTT] the definition of a filtered ∞-category is given with respect to
some regular cardinal κ, that is we say that C is κ-filtered if, for every κ-small simplicial set K and
every map f : K → C, there exists a map f̃ : KB → C extending f . Then when we take κ = ω
we arrive at our definition. Of course that we can keep this size factor throughout this section but
for the sake of simplicity we will stick to the case κ = ω whenever it is possible.

Lemma 1.2.4. ([HTT] 5.3.1.14) Let C be an ∞-category. Then C is filtered if and only if it has
the right extension property with respect to every inclusion

∂∆n ↪→ Λn+1
n+1

for every n ≥ 0.

Lemma 1.2.5. ([HTT] 5.3.1.15) Let C be a topological category. Then C is filtered if and only if
the ∞-category N(C) is filtered.

For the following part, denote with j : C → P(C) := Fun(Cop,S) the Yoneda embedding
where C is an ∞-category and S is the ∞-category of spaces.

Definition 1.2.6. ([HTT] 5.3.5.1 ) Let C be a small ∞-category. We let Ind(C) denote the full

subcategory of P(C) spanned by those functors f : Cop → S which classify right fibrations C̃ → C,

where the ∞-category C̃ is filtered. We will refer to Ind(C) as the ∞-category of Ind-objects of
C.

Proposition 1.2.7. ([HTT] 5.3.5.3) The full subcategory Ind(C) ↪→ P(C) is stable under filtered
colimits.

Proposition 1.2.8. ([HTT] 5.3.5.4) Let C be a small ∞-category and let F : Cop → S be an
object of P(C). The following conditions are equivalent:

1. There exists a (small) filtered ∞-category I and a diagram p : I → C such that F is a colimit
of the composition j ◦ p : I → P(C).

2. The functor F belongs to Ind(C).

If C admits small colimits, then the upper conditions are equivalent to:

3. The functor F preserves small limits.

Definition 1.2.9. ([HTT] 5.3.4.5 ) Let C be an ∞-category which admits small filtered colimits
and let κ be a regular cardinal. We will say that a functor f : C → D is κ-continuous if it preserves
κ-filtered colimits. In particuliar, we will say that f is continuous if it is ω-continuous.
Let C be an ∞-category which admits filtered colimits and let X ∈ C. Let jX : C → Ŝ denote the
functor corepresented by X. We will say that X is compact if jX is continuous.

Proposition 1.2.10. ([HTT] 5.3.5.5) Let C be a small ∞-category and let j : C → Ind(C) be the
restriction of the Yoneda embedding. For each object X ∈ C, j(X) is a compact object of Ind(C).

Definition 1.2.11. ([HTT] 5.4.2.1 and 5.4.2.5 ) An ∞-category C is accessible if there exists a
small category C0 together with an equivalence

Ind(C0)→ C

If C is an accessible ∞-category, then a functor F : C → D is accessible if it is κ-continuous for
some regular cardinal κ.
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Adjoint functors

Every reader is familiar with importance of adjunctions in classical category theory. Here, we
will give a brief introduction to adjunctions in the higher categorical setting. We will start with
the definition of an associated functor which we will use in the definition of adjunction:

Definition 1.2.12. ([HTT] 5.2.1.1 ) Let p : M → ∆1 be a Cartesian fibration and let C and D
be ∞-categories such that we have equivalences h0 : C → p−1(0) and h1 : D → p−1(1). We will
say that a functor g : D → C is associated to M if there is a commutative diagram

D ×∆1 M

∆1

s

such that s|D×{1} = h1, s|D×{0} = h0 ◦ g and s|{d}×∆1 is a p-Cartesian edge of M for every d ∈ D.

We have the converse:

Proposition 1.2.13. ([HTT] 5.2.1.3 (1)) Let C and D be ∞-categories and let g : D → C be a
functor. Then there exists a diagram

C M D

{0} ∆1 {1}

p

such that p : M → ∆1 is a Cartesian fibration, the associated maps C → p−1(0) and D → p−1(1)
are equivalences, and g is associated to M .

Remark 1.2.14. The proposition [HTT] 5.2.1.3 also tells us that the ∞-category M is unique up
to a categorical equivalence.

Now we are ready to give the formal definition of an adjunction in the higher categorical setting:

Definition 1.2.15. ([HTT] 5.2.2.1 ) An adjunction between ∞-categories C and D is a map
p : M → ∆1 which is a Cartesian and CoCartesian fibration.
Let g : D → C be a functor associated to p : M → ∆1 and let f : C → D be a functor associated
to pop : Mop → (∆1)op ' ∆1. we will say that f is left adjoint to g and g is right adjoint to f .

We will turn to some properties of adjoint functors:

Proposition 1.2.16. ([HTT] 5.2.2.6) Let C, D and E be ∞-categories and let f : C → D and
f ′ : D → E be functors such that f has a right adjoint g and f ′ has a right adjoint g′. Then f ′ ◦ f
has a right adjoint g ◦ g′.

Proposition 1.2.17. ([HTT] 5.2.3.5) Let f : C � D : g be an adjunction between ∞-categories
C and D. Then f preserves all colimits that exist in C and g preserves all limits that exist in D.

Proposition 1.2.18. ([HTT] 5.5.1.4) Let f : C → D be a functor between ∞-categories that
admit small filtered colimits. Suppose that f admits a right adjoint functor g : D → C such that g
is continuous. Then f carries compact objects to compact objects.

Definition 1.2.19. ([HTT] 5.2.6.1 ) Let C andD be∞-categories. We will denote with FunL(C,D)
(resp. FunR(C,D)) the full subcategory of Fun(C,D) spanned by left (resp. right) adjoint func-
tors.

Proposition 1.2.20. ([HTT] 5.2.6.2) The∞-categories FunL(C,D) and FunR(D,C)op are equiv-
alent.
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Presentable ∞-categories

Since we have covered enough theoretical ground, the definition of presentable ∞-categories is
quite easy to formulate:

Definition 1.2.21. An ∞-category is presentable if it is cocomplete and accessible.

We know that the presentable ∞-categories are cocomplete by definition but we also have this
important result:

Proposition 1.2.22. ([HTT] 5.5.2.4) A presentable ∞-category admits all (small) limits.

One of the most important properties of presentable ∞-categories is their relation to the adjoint
functors which we can express as the version of the adjoint functor theorem:

Theorem 1.2.23. ([HTT] 5.5.2.9) Let F : C → D be a functor between presentable ∞-categories.
Then:

� F admits a right adjoint if and only if it preserves small colimits.

� F admits a left adjoint if and only if F is accessible and it preserves small limits.

This description allows us to form two ∞-categories of presentable ∞-categories which would
be in some sense antiequivalent.

Definition 1.2.24. ([HTT] 5.5.3.1 ) Let Ĉat∞ be the ∞-category of (not necessarily small) ∞-

categories. Define two subcategories PrL,PrR ⊆ Ĉat∞ the following way:

� The objects of both PrL and PrR are presentable ∞-categories.

� A functor F : C → D of presentable ∞-categories is a morphism in PrL if it preserves small
colimits i.e. it is a left adjoint functor.

� A functor F : C → D of presentable ∞-categories is a morphism in PrR if it is accessible
and if it preserves small limits i.e. it is a right adjoint functor.

Remark 1.2.25. The ∞-categories PrL and PrR are antiequivalent in the sense that for every
simplicial set K we have a canonical bijection

[K,PrL] ' [Kop,PrR]

where [K,C] denotes the collection of equivalence classes of objects of the∞-category Fun(K,C).
In particular, there is a canonical isomorphism

PrL ' (PrR)op

in the homotopy category of ∞-categories (see [HTT] 5.5.3.4 ).

Proposition 1.2.26. ([HTT] 5.5.3.13 and 5.5.3.18) The ∞-categories PrL and PrR admit small

limits, and the inclusion functors PrL ⊆ Ĉat∞ and PrR ⊆ Ĉat∞ preserve small limits, where
Ĉat∞ is the ∞-category of (not necessarily small) ∞-categories.

Remark 1.2.27. Moreover, we have that the ∞-category PrL admits small colimits: Since PrL is
anti-equivalent to PrR by replacing each left adjoint by its right adjoint, it follows that colimits in
PrL are computed as limits in PrR, which are in turn computed as limits in Ĉat∞. This means
that colimits in PrL are computed as limits in Ĉat∞.

At the end of this section, we will list some properties and examples of presentable∞-categories:
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Proposition 1.2.28. Let {Cα}α∈A be a family of presentable ∞-categories indexed by a small
set A. Let C and D be presentable ∞-categories and let K be a small simplicial set. Then the
following ∞-categories are also presentable:

�

∏
α∈A Cα,

� Fun(K,C),

� FunL(C,D),

� C/p and Cp/, for a diagram p : K → C.



Chapter 2

The ∞-category of G-spaces

The goal of this chapter is to introduce the reader with the definition and properties of com-
pactly generated weak Hausdorff spaces with an action of a compact Lie group G (G-CGWH spaces,
for short). In fact, following this chapter all spaces will be assumed to be G-CGWH (based) spaces.

We introduce the standard model structure on G-CGWH spaces and consequently the model
structure on the based G-CGWH spaces. In 2.1 we study colimits and homotopy colimits in this
category. Finally, in 2.2 we prove that the underlying ∞-category of the model category of based
G-CGWH spaces is presentable. In particular. it is generated under filtered colimits by the full
subcategory spanned by the finite G-CW -complexes.

2.1 G-CGWH spaces

In order to prove some fundamental statements that will be of use in our further work, it will
be convenient to introduce the category of compactly generated weak Hausdorff spaces equipped
with an action of a compact Lie group G, which we will denote as G-CGWH spaces.

As noted in [Sch18] (Appendix B), the category of G-CGWH spaces is (co)complete. Using
[Sch18], Proposition B.2. (i), G/H is compactly generated, where H ≤ G is a closed subgroup,
which gives us:

Proposition 2.1.1. Every G-CW-complex is compactly generated.

The category of G-CGWH spaces can be endowed with model structure, which we will call the
standard model structure for G-spaces ([Sch18], Proposition B.7.), where:

� weak equivalences are weak homotopy equivalences of G-spaces, that is G-maps f : X → Y
such that fH : XH → Y H is a weak homotopy equivalence for every closed subgroup H ≤ G.

� fibrations are Serre fibrations of G-spaces, that is G-maps f : X → Y such that fH : XH →
Y H is a Serre fibration for every closed subgroup H ≤ G.

We also know that this model structure is cofibrantly generated, with the set of generating
cofibrations

IG = {G/H × Sk−1 → G/H ×Dk}k≥0,H≤G (2.1)

(note that, for k = 0, Sk−1 is taken to be the empty set), and with the set of generating acyclic
cofibrations

JG = {G/H ×Dk → G/H ×Dk × [0, 1]}k≥0,H≤G

where in both cases H ≤ G runs through the set of closed subgroups of G. We will reffer to
weak equivalences, fibrations and cofibrations in this model structure by G-weak equivalences, G-
fibrations and G-cofibrations.

Imitating the proofs of [Hov98] 2.4.5 and 2.4.6 we can conclude:
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Proposition 2.1.2. Every G-cofibration is a closed inclusion.

What we want to accomplish next is to formulate a statement similar to [Rezk] 10.14 which
would take into account the action of compact Lie group G on the maping space of all continuous
maps between two G-CGWH spaces X and Y .

Remark 2.1.3. When K is compact and X is compactly generated, then the mapping space
MapSpace(K,X) of all continuous maps is compactly generated. If we take spaces K and X to be
equipped with an action of a compact Lie group G, we will mark MapG(K,X) the G-CGWH space
of all continuous maps with G acting by conjugation. As noted in [Sch18], given a G-CGWH space
X and a closed subgroup H ≤ G, the space XH is a closed subspace of X and hence compactly
generated, meaning that the spaces (MapG(K,X))H are all compactly generated.

Theorem 2.1.4. Let
X0 → X1 → ...→ Xn → ..

be a sequence of G-CGWH spaces where the maps Xi → Xi+1 are closed inclusions of G-CGWH
spaces. Denote with X the colimit of the sequence. Then for every compact G-space K we have a
bijection

colimnMapG(K,Xn)→MapG(K, colimnXn) (2.2)

which is G-equivariant. Moreover, for every closed subgroup H ≤ G, we have a bijection

colimn(MapG(K,Xn))H → (MapG(K, colimnXn))H

Proof. By first forgetting the action of G and using [Rezk] 10.14 we know that every map f : K →
X factors through Xn for some n. We can look at Xn as a closed subspace of X (see for example
[Sch18] A.14(i)). Let us denote with in : Xn ↪→ X the inclusion, which in addition is a G-map, so

we can write f = in ◦ f̃ . Fix an element g ∈ G. Then we again have that g−1fg factors through
Xm for some m, and let us write that factorization as g−1fg = im ◦ fg. Since the inclusion maps
are also G-maps we can assume that n = m without any loss of generality. Since

g−1f̃(gK) ⊆ g−1f̃(K) ⊆ g−1Xn ⊆ Xn

we have a well defined map g−1f̃g : K → Xn. But now

in ◦ g−1f̃g = g−1 ◦ inf̃ ◦ g = g−1fg = in ◦ fg

the map in is an inclusion and hence g−1f̃g = fg. With this we have concluded that the bijection
(2.2) is G-equivariant. The second part follows automatically.

In other words, when restricting the G-action to H-action, we have a bijection

colimnMapSpaceH (K,Xn)→MapSpaceH (K, colimnXn)

Let us focus a little bit on the spaces of fixed points:
As mentioned in 2.1.3, given a G-CGWH space X and a closed subgroup H ≤ G, the space XH

is a closed subspace of X and hence compactly generated. Then the closed inclusion of G-spaces
X → Y gives us a closed inclusion XH → Y H . This with the fact that taking H-fixed points
commutes with filtered colimits along G-maps that are closed inclusions (a slight modification of
[Sch18] B.1 (ii)) gives us:

Corollary 2.1.5. Let H ≤ G be a closed subgroup. Then for a sequence

X0 → X1 → ...→ Xn → ..
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of G-CGWH spaces where the maps Xi → Xi+1 are closed inclusions of G-CGWH spaces and
every G-fixed point x ∈ X0, the map

colimnπ
H
k (Xn, x)→ πHk (colimnXn, x)

is an isomorphism for every k ≥ 0.

Corrolary 2.1.6. Let
X0 → X1 → ...→ Xn → ..

be a sequence of G-CGWH spaces where the maps Xi → Xi+1 are closed inclusions of G-CGWH
spaces. Then the colimit colimnXn in the category of G-CGWH spaces is also the homotopy colimit
with respect to the standard model structure on G-spaces.

Corollary 2.1.7. Let K be a compact G-space and let

X0 → X1 → ...→ Xn → ..

be a sequence of G-CGWH spaces where the maps Xi → Xi+1 are closed inclusions of G-CGWH
spaces. Then the map

colimnMapG(K,Xn)→MapG(K, colimnXn)

is a weak homotopy equivalence of G-spaces.

Now we are ready to prove theorem which will play a significant role in the upcoming sections:

Theorem 2.1.8. Let K be a compact G-CW-complex and let

X0 → X1 → ...→ Xn → ..

be a sequence of G-CGWH spaces. Then the map

hocolimnMapG(K,Xn)→MapG(K,hocolimnXn)

is a weak equivalence of G-spaces.

Proof. The homotopy colimit is computed by taking the colimit of the cofibrant replacement of the
initial diagram with respect to the projective model structure. In our case, that would include re-
placing the sequence by a weakly equivalent one involving G-cofibrations. The functor MapG(K, )
with K a compact G-CW-complex preserves weak homotopy equivalences of G-spaces and so we
can assume that the maps Xn → Xn+1 are G-cofibrations, and therefore closed inclusions of G-
spaces by 2.1.2. Then each MapG(K,Xn) → MapG(K,Xn+1) is also a closed inclusion, and so
2.1.6 and 2.1.7 gives us the desired result.

We will state another theorem which will be of use further on:

Theorem 2.1.9. Let
X0 → X1 → ...→ Xn → ..

be a sequence of G-CGWH spaces and let H ≤ G be a closed subgroup of a compact Lie group G.
Then the map

colimnπ
H
k (Xn)→ πHk (hocolimnXn)

is an isomorphism.
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Proof. As stated in the proof of the previous statement, the homotopy colimit is computed by
replacing the initial sequence by a weakly equivalent one involving G-cofibrations, which are in
particular closed inclusions. Let us denote with {CXn} the cofibrant replacement diagram of {Xn}.
Since we are talking about weakly equivalent replacement in the projective module structure on
the category of diagrams, the maps CXn → Xn are all weak homotopy equivalences of G-spaces.
By 2.1.5 we have have an isomorphism

colimnπ
H
k (Xn) = colimnπ

H
k (CXn)→ πHk (colimnCXn) = πHk (hocolimnXn)

for every k ≥ 0. With this the proof is finished.

Remark 2.1.10. Note that we have been talking about G-CGWH spaces which are not pointed.
But as in non-equivariant case (see [Hov98], Corollary 2.4.24 and Theorem 2.4.25 ) that is not a
big concern since all of the proofs pass when we restrict our attention to pointed G-CGWH spaces
(with pointed mapping spaces).

Notation 2.1.11. From now on, when we say space or G-space we will mean a CGWH space or
G-CGWH space respectively.

2.2 Presentable ∞-category of G-spaces

Similarly as in 2.1 the category of based G-spaces can be endowed with the model structure
which we call the standard model structure on based G-spaces. In particular we have:

� weak equivalences are weak homotopy equivalences of based G-spaces, that is based G-
maps f : X → Y such that fH : XH → Y H is a weak homotopy equivalence for every closed
subgroup H ≤ G.

� fibrations are Serre fibrations of based G-spaces, that is based G-maps f : X → Y such
that fH : XH → Y H is a Serre fibration for every closed subgroup H ≤ G.

We also know that this model structure is cofibrantly generated, with the set of generating
cofibrations

IG = {(G/H × Sk−1)+ → (G/H ×Dk)+}k≥0,H≤G

(note that, for k = 0, Sk−1 is taken to be the empty set), and with the set of generating acyclic
cofibrations

JG = {(G/H ×Dk)+ → (G/H ×Dk × [0, 1])+}k≥0,H≤G

where in both cases H ≤ G runs through the set of closed subgroups of G. We will reffer to
weak equivalences, fibrations and cofibrations in this model structure by G-weak equivalences, G-
fibrations and G-cofibrations.

To summarize, we have the following:

Theorem 2.2.1. ([MMMF02] III 1.8) The category of based G-spaces is a compactly generated
model category with respect to the based G-weak equivalences, based G-fibrations, and retracts of
relative based G-cell complexes. The sets IG and JG are the generating G-cofibrations and the
generating acyclic G-cofibrations.

As for any model category, we have an underlying ∞-category of G-spaces SpaceG∞, which is
computed as the localization of the nerve

SpaceG∞ = N(SpaceG∗)[W
−1]

where W is the collection of G-weak homotopy equivalences. We will denote by SpaceG−CW∞ ⊂
SpaceG∞ the ∞-subcategory spanned by finite, based G-CW -complexes.
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We want to show that the ∞-category SpaceG∞ is a presentable ∞-category. In particular,
we want to show that the objects of the ∞-category SpaceG−CW∞ are compact objects in SpaceG∞
and that the ∞-category SpaceG∞ is, in fact, generated under filtered colimits by the objects of
SpaceG−CW∞ .

Lemma 2.2.2. Finite based G-CW -complexes are compact objects in SpaceG∞

Proof. Let X be a finite, based G-CW -complex and let Y : I → SpaceG∞ be a diagram indexed by
a filtered category I. We want to show that

MapSpaceG∞(X, colimi∈IYi) ' colimi∈IMapSpaceG∞(X,Yi)

We will prove this by induction on k = dim(X).
For k = 0, without loss of generality, we have that X = G/H where H is a closed subgroup of

G. In other words, X is a G orbit space. In order to show that orbits are compact objects recall
the Elmendorf theorem (see, for example [Ste10])

Elmendorf’s theorem. Let G be a topological group. Then there is a pair of Quillen equivalences

Θ : SpaceO
op
G � SpaceG : Φ

where OopG is the orbit category. The category SpaceO
op
G is endowed with projective model structure

while the category SpaceG is endowed with the standard model structure.

This Elmendorf Quillen equivalence sends each orbit G/H to the corresponding representable
functor OopG → Space. Representable functors are always compact in the functor category, since
mapping out of them is given by evaluation at the representing object, and evaluation commutes
with all homotopy colimits, and in particular filtered homotopy colimits. Since the categories
SpaceO

op
G and SpaceG are Quillen equivalent, their underlying ∞-categories are equivalent, and

since G/H maps to a compact object, it is also compact.
For the inductive step, let Xk be a finite G-CW -complex of dimension k and Xk−1 its k − 1-

skeleton. By the inductive hypothesis, Xk−1 is a compact object. Xk is obtained via the pushout∐
j

G/Hj × Sk−1 Xk−1

∐
j

G/Hj ×Dk Xk

Note that since the left vertical map is in fact a cofibration we have even more, that the diagram is
a homotopy pushout square. Moreover, the objects

∐
j

G/Hj × Sk−1, Xk−1 and
∐
j

G/Hj ×Dk are

all compact (fist two are clear and the third is equivalent to disjoint union of orbits and hence is
compact). The statement now follows from the fact that MapSpaceG∞(•, Y ) takes colimits to limits
and that finite limits commute with filtered colimits.

Theorem 2.2.3. The ∞-category SpaceG∞ is a presentable ∞-category.

Proof. We have that the ∞-category SpaceG∞ has all small colimits, and is in fact generated under
filtered colimits by SpaceG−CW∞ . By the previous lemma 2.2.2, we know that the elements of
SpaceG−CW∞ are compact objects in SpaceG∞ and hence we can write SpaceG∞ as the Ind -completion
of SpaceG−CW∞ , that is

SpaceG∞ ' Ind(SpaceG−CW∞ )
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The ∞-category of G-spectra

Since we have defined the ∞-category of G-spaces and concluded that it is in fact an Ind-
completion of its subcategory spanned by finite G-spaces, it is our turn to do the same with the
∞-category of G-spectra and it’s subcategory spanned by free suspension spectra of finite G-CW -
complexes.

First section is dedicated to the introduction of the category of G-spectra, where we will become
familiar with the model structure as well as other constructions. Secondly, we will turn our
attention to the ∞-category of G-spectra where we will show that free suspension spectra of finite
G-CW -complexes are compact objects in the ∞-category of G-spectra. Later, we will construct
a functorial fibrant replacement QX of a G-spectrum X. This construction is important for two
reasons:

� The fibrant replacement is used when computing the mapping spaces in the∞-category of G-
spectra (see [DK1], [DK2] for the overall theory and [DK3] for the case of model categories),
which we will use to prove that the stabilization of the ∞-category of G-spaces with respect
to the representation spheres is equivalent to the ∞-category of G-spectra.

� Secondly, the fibrant replacement will be used when defining the stable homotopy category
of G-spectra SHG.

Finally, in the last section, we will show that the ∞-category of G-spectra is presentable. In par-
ticular, we will show that (SpUG)∞ = Ind((SpUG−CW )∞) where (SpUG−CW )∞ is the full subcategory
of (SpUG)∞ spanned by free spectra Σ∞V X where V ⊂ U is an indexing space and X is a finite
G-CW -complex.

3.1 The model category of G-spectra

Let G be a compact Lie group. Generally speaking, G-spectra are objects that encode equivari-
ant (co)homology theories. They are generalization of spectra as one passes from stable homotopy
theory to equivariant stable homotopy theory. Some good refferences include [MMMF02], [CBMS],
and for a slightly different approach one can look at [Sch01].

Unlike the classical case, where (co)homology theories are indexed by numbers, equivariant
(co)homology theories are indexed by G-representations i.e. real inner-product G-vector spaces in
a chosen G-universe which we define:

Definition 3.1.1. ([CBMS] or [MMMF02]) A universe U is a sum of countably many copies of some
set of irreducible representations of a compact Lie group G including the trivial representation.
Finite dimensional real inner-product subspaces of U are called indexing spaces. The universe is
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called complete when we take the set of all irreducible representations, and is called trivial if we
take only the trivial representation.

The work with a universe gives us more flexibility (as well as some technical advantages) as
opposed to working with set of representations of G.
Where the ordinary concept of spectrum is given in terms of looping and delooping of ordinary
topological spaces by ordinary spheres, a G-spectrum is instead given by looping and delooping of
topological G-spaces with respect to representation spheres of G:

Definition 3.1.2. Representation sphere of the indexing space V ∈ U is the pointed G-space
obtained as the one-point compactification of that indexing space, denoted SV . Representation
sphere SV acts functorially on the category SpaceG∗ by the smash product. Given a pointed
G-space X, we denote SV ∧X by ΣVX.

Definition 3.1.3. Let RepU (G) be the category whose objects are indexing spaces of a given
universe U , with morphisms given by inclusions. By a spectrum indexed on U , we mean a family
of based G-spaces EV , one for each indexing space V ⊂ U , together with structure G-maps

σV,W : ΣW−V EV → EW

where V ⊆ W are indexing spaces and W − V is the orthogonal complement of V in W . We
require σV,V = id, and we require evident transitivity diagram to commute for indexing spaces
V ⊂W ⊂ U

ΣU−WΣW−V EV ΣU−WEW

ΣU−V EV EU

'

A map between two G-spectra f : E → F is given by a family of maps of based G-spaces f(V ) :
EV → FV for every indexing space V ⊂ U such that the diagram

ΣW−V EV ΣW−V FV

EW FW

commutes for all indexing spaces V ⊆ W of U . We denote with SpUG the category of G-spectra
indexed on universe U .

Remark 3.1.4. Note that we have the adjoint structure maps σ̃V,W : EV → ΩW−V EW , where
ΩW−V EW = MapG(SW−V , EW ).
For G-spaces X and Y MapG(X,Y ) represents the internal hom object, that is, the mapping
G-space of maps between bassed G-spaces X and Y , which is a space of all (not necessarily
equivariant) continuous maps between based G-spaces X and Y with G acting by conjugation.

Definition 3.1.5. In the case when maps σ̃V,W from 3.1.4 are all weak homotopy equivalences of
G-spaces, we say that E is an Ω-G-spectrum.

Example 3.1.6. Given a based G-space X and an indexing space V ⊂ U , we can define a free
G-spectrum functor, which we will denote by Σ∞V : SpaceG∗ → SpUG, given by:

Σ∞V X(W ) = ΣW−VX, for V ⊆W , and

Σ∞V X(W ) = ∗, otherwise
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On the other hand, we have a functor Ω∞V : SpUG → SpaceG∗, which assigns to a G-spectrum E a
based G-space Ω∞V E = EV . These two functors form an adjunction (see, for example [MMMF02]):

Σ∞V : SpaceG∗ � SpUG : Ω∞V

which will prove to be very useful.

The category of G-spectra SpUG can be endowed with the stable model structure. We will give
a quick expository here, more details can be found in [MMMF02].
First, we define homotopy groups of a G-spectrum E ∈ SpUG ([MMMF02], definition III 3.2):

Definition 3.1.7. Let E ∈ SpUG be a G-spectrum. The homotopy groups of E are defined the
following way:

πHq (E) = colim
V ∈RepU (G)

πHq (ΩV E(V )), for q ≥ 0,

πH−q(E) = colim
Rq⊂V ∈RepU (G)

πH0 (ΩV−R
q

E(V )), for q > 0

where H is the closed subgroup of G, πHq (A) = πq(A
H) for every based G-space A and V runs

through all indexing spaces of U . The colimit in the definition of negatively indexed homotopy
groups is indexed by all indexing spaces V ⊂ U that contain Rq.
A map f : X → Y between G-spectra will be called a π∗-isomorphism if it induces an isomomor-
phism between homotopy groups.

Before going to the stable model structure it is necessary to visit the level model structure on
SpUG:

Definition 3.1.8. ([MMMF02], definition III 2.3) Given a map f : X → Y of G-spectra, we say
that:

1. f is a level equivalence if f(V ) : X(V )→ Y (V ) is a weak equivalence of G-spaces,

2. f is a level fibration if f(V ) : X(V )→ Y (V ) is a Serre fibration of G-spaces,

3. f is a level acyclic fibration if it is both a level equivalence and level fibration,

4. f is a q-cofibration if it satisfies the LLP with respect to level acyclic fibrations.

Now we can present the stable model structure:

Theorem 3.1.9. ([MMMF02], III 4.1 and 4.2) The category SpUG is a compacly generated, proper
G-topological model category where:

� weak equivalences are the π∗-isomorphisms,

� cofibrations are q-cofibrations,

� fibrations are those maps which satisfy the RLP with respect to the acyclic cofibrations.

Moreover, the fibrant objects are the Ω-G-spectrum objects.

Note that we have an action of SpaceG∗ on the category SpUG, where for a pointed G-space X
and a G-spectrum E this action is given by (X ∧ E)(V ) = X ∧ EV . We also have another action
given by F (X,E)(V ) = MapG(X,EV ). In the special case when we take X to be a representation
sphere SV we define functors ΣV E(W ) = ΣV EW and ΩV E(W ) = MapG(SV , EW ) = ΩV EW . A
result form [MMMF02] gives us:

Lemma 3.1.10. ([MMMF02], III 4.15) For every indexing space V ⊂ U , the pair of endofunctors
(ΣV ,ΩV ) in SpUG is a Quillen equivalence.
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3.2 The ∞-category

The category of G-spectra SpUG is endowed with a stable model structure which means that we
have an underlying ∞-category (see also [Gro15] and [HTT]), in which, by lemma 3.1.10 represen-
tation spheres act invertibly.

Definition 3.2.1. We will denote with (SpUG)∞ the underlying ∞-category of the model category
of G-spectra SpUG with respect to the stable model structure.

Definition 3.2.2. Let SpUG−CW ⊆ SpUG be the full subcategory spanned by free G-spectra Σ∞V X
where V ⊂ U is an indexing space and X is a finite G-CW -complex. Let us also denote with
(SpUG−CW )∞ the full subcategory of (SpUG)∞ again spanned by free G-spectra Σ∞V X where V ⊂ U
is an indexing space and X is a finite G-CW -complex.

Throughout the section we will heavily rely on the fact that RepU (G) is a filtered category,
thus we will state this quick lemma which is the direct corolarry of 1.1.21:

Lemma 3.2.3. Let R be a filtered subcategory of the category RepU (G) together with the inclusion
functor i : R ↪→ RepU (G). Additionally, for every V ∈ RepU (G) there exists W ∈ R and a map
V ↪→ i(W ). Then for every functor X : RepU (G)→ SpaceG the map

hocolimRi
∗X → hocolimRepU (G)X

is a weak equivalence of G-spaces.

First we want to show that elements of the ∞-category (SpUG−CW )∞ are compact objects in
the ∞-category of G-spectra.

Let E be a G-spectrum, I a filtered category and {Yi}i∈I a diagram of G-spectra indexed by I.
We say that G-spectrum E is a compact object if the map

hocolim
i∈I

MapSpUG(E, Yi)→MapSpUG(E, hocolim
i∈I

Yi)

is a weak equivalence. We will show the following:

Theorem 3.2.4. Let X be a finite G-CW -complex, V ⊂ U an indexing space. Then the G-
spectrum Σ∞V X is a compact object in SpUG.

Proof. As before, let I be a filtered category and {Yi}i∈I a diagram of G-spectra indexed by I.
We want to show that the map

hocolim
i∈I

MapSpUG(Σ∞V X,Yi)→MapSpUG(Σ∞V X,hocolim
i∈I

Yi)

is a weak equivalence. For that we will use the adjunction Σ∞V : SpaceG∗ � SpUG : Ω∞V . If we could
prove that the functor Ω∞V commutes with filtered homotopy colimits, the lemma 2.2.2 would give
us the desired conclusion.

The homotopy colimit hocolim
i∈I

Yi is obtained by computing the colimit of the diagram obtained

as the cofibrant replacement of the original diagram. Note that, by [MMMF02] III Lemma 3.3, the
level equivalence of G-spectra is a stable equivalence, and that, by definition, the cofibrations in
level model structure are cofibrations in the stable model structure. That being said, the cofibrant
replacement in the level model structure of the diagram {Yi}i∈I is the cofibrant replacement in the
stable model structure, which we will denote as {CYi}i∈I . To add up, the diagram {CYi(V )}i∈I
is the cofibrant replacement of the diagram {Yi(V )}i∈I , since {CYi}i∈I is obtained from the level
model structure, meaning that

Ω∞V hocolim
i∈I

Yi → hocolim
i∈I

Ω∞V Yi

is a weak equivalence. This finishes the proof.
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3.3 The stable homotopy category of G-spectra

In this section, we give the construction and the description of the homotopy category of G-
spectra which we will call the stable homotopy category of G-spectra and denote it by SHG. We
will start with the introduction of the functorial fibrant replacement in the stable model category
of G-spectra, since it plays a vital role in our construction of SHG.

The fibrant replacement

Since we know that the fibrant objects are the Ω-G-spectra we can define:

Definition 3.3.1. For a G-spectrum X we define QX to be the G-spectrum such that:

QX(V ) = hocolimV⊂WΩW−VX(W )

where V is an indexing space, and the homotopy colimit is taken over all indexing spaces W ⊂ U
such that V ⊆W . We have the cannonical map µ : X → QX. The homotopy colimit is constructed
with respect to the standard model structure on pointed G-spaces.

As mentioned before, we will restrict our attention to G-spectra X that are levelwise compactly
generated, that is X(V ) is a G-CGWH space for every indexing space V ⊂ U . Due to the work
of Illman ([Ill78] and [Ill83]) we know that representation spheres admit a structure of a G-CW-
complexes, therefore they are compact G-CW-complexes hence taking a G-CGWH space A, the
spaces ΣVA and ΩVA are again G-CGWH spaces.

In order to show that QX is indeed a fibrant replacement of X it would suffice to prove that QX
is an Ω-G-spectrum and that the map µ is a weak equivalence in the model structure (that is, a
π∗-isomorphism).

Lemma 3.3.2. Let X ∈ SpUG be a G-spectrum. Then QX is an Ω-G-spectrum.

Proof. We want to show that the adjoint structure map

σ̃W,V : QX(V )→ ΩW−VQX(W )

is a weak equivalence of G-spaces, for indexing spaces V ⊂W .
Let us take an expanding countable sequence of indexing paces Ui such that W ⊂ Ui for all i

and such that their union is the whole universe U . Note that we automatically have V ⊂ Ui for
all i. By 3.2.3 we have a weak equivalence:

hocolimUiΩ
Ui−VX(Ui)→ hocolimV⊂UΩU−VX(U)

We will stick to the computation on the sequential homotopy colimit.

hocolimUiΩ
Ui−VX(Ui) ' hocolimUiΩ

W−V ΩUi−WX(Ui)

By 2.1.8 we have a weak equivalence of hocolimUiΩ
W−V ΩUi−WX(Ui)→ ΩW−V hocolimUiΩ

Ui−WX(Ui).
Since the functor of mapping outside of G-CW-complexes preserves weak equivalences, we again,
by using 3.2.3 have a weak equivalence

ΩW−V hocolimUiΩ
Ui−WX(Ui)→ ΩW−V hocolimW⊂UΩU−WX(U) = ΩW−VQX(W )

Putting everything together we see that spaces QX(V ) and ΩW−VQX(W ) are weakly equivalent.

Lemma 3.3.3. Let X ∈ SpUG be a G-spectrum. Then the map µ : X → QX is a π∗-isomorphism.
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Proof. Since the map µ : X → QX is cannonical it will be enough to check the homotopy groups
of QX. For k ≥ 0 and H ≤ G a closed subgroup, we have

πHk (QX) = colimV π
H
k (ΩVQX(V ))

= colimV π
H
k (ΩV hocolimV⊂Wi

ΩWi−VX(Wi))

→ colimV π
H
k (hocolimV⊂Wi

ΩV ΩWi−VX(Wi))

→ colimV colimV⊂Wiπ
H
k (ΩV ΩWi−VX(Wi))

= colimV colimV⊂Wi
πHk (ΩWiX(Wi))

= colimUπ
H
k (ΩUX(U))

= πHk (X)

where Wi is an expanding countable sequence such that the union is the universe U . Isomorophism
at the 3rd row is due to 2.1.8 and the isomorphism at the 4th row is due to 2.1.9, while the equality
at the end is due to cofinality. The case when k < 0 is similar.

The stable homotopy category of G-spectra

For the sake of convenience, we will work only with G-spectra that are levelwise G-cofibrant,
that is they are cofibrant in the level model structure, see 3.3.7. This is only a technical requirement
and does not represent a problem since the homotopy category of the subcategory spanned by
cofibrant objects is equivalent to the homotopy category of original model category.

We start with the definition of SHG:

Definition 3.3.4. The stable homotopy category SHG has as objects G-spectra that are levelwise
G-cofibrant. For two such G-spectra X and Y , the morphisms from X to Y are given by [X,QY ]G
the set of G-homotopy classes from X to the fibrant replacement QY of Y . If f : X → QY is
a map of G-spectra, we denote by [f ] : X → Y its homotopy class, considered as a morphism in
SHG. We will also denote SHG(X,Y ) for the set of homotopy classes [X,QY ]G.

Remark 3.3.5. As we have seen in 3.3.3 for every G-spectrum X there is a stable equivalence
µX : X → QX to the fibrant replacement (an Ω-G-spectrum) QX. In the case when X is already
an Ω-G-spectrum we will take QX = X and µX = IdX .

In order to define the composition and to show the associativity of composition in SHG we will
use the following lemma:

Lemma 3.3.6. Let f : X → Y be a map of G-spectra where X and Y are levelwise G-cofibrant.
Then f is a stable equivalence if and only if

f∗ : [Y,E]G → [X,E]G

is and isomorphism for every Ω-G-spectrum E.

Proof. This is basically a reformulation of [MMMF02] III Theorem 6.1.
By [MMMF02] III section 2, for any two G-spectra X and Y we have

HolG(X,Y ) ∼= [ΓX,Y ]G (3.1)

where HolG(X,Y ) is the set of maps in the homotopy category with respect to the level model
structure, and ΓX is the cofibrant replacement of X. In our case, X and Y are already cofibrant,
hence the statement follows from [MMMF02] III Theorem 6.1.
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Remark 3.3.7. The requirement that we work only with levelwise G-cofibrant spectra lies in (3.1).
Let us denote (SpUG)Co the subcategory of SpUG spanned by the G-spectra which are levelwise G-
cofibrant. Since the cofibrant replacement in level model structure is the cofibrant replacement
in the stable model structure this allows us to identiy the mapping space in the stable homotopy
category between cofibrant G-spectra X and Y exactly with [X,QY ]G. Moreover, the category
(SpUG)Co admits stable model structure from the category of G-spectra, and since object of (SpUG)Co

are obtained as cofibrant replacements in the level model structure and therefore in the stable model
structures, we have that the inclusion functor (SpUG)Co ↪→ SpUG induces an equivalence on homotopy
categories.

First thing we want to adress is the composition in SHG. We define it the following way:
Let f : X → QY and g : Y → QZ be morphism of G-spectra which represent morphism from X
to Y and from Y to Z in SHG respectively. Then, by 3.3.6 there is a morphism g̃ : QY → QZ of
G-spectra, unique up to homotopy, such that g̃ ◦ µY ' g. The composite of [f ] ∈ SHG(X,Y ) and
[g] ∈ SHG(Y,Z) is then defined by

[g] ◦ [f ] = [g̃ ◦ f ] ∈ SHG(X,Z)

Secondly, we want to show that this composition is associative. For this, let us consider
X,Y, Z, T ∈ SHG with morphisms of G-spectra

f : X → QY

g : Y → QZ

h : Z → QT

As above we can choose morphisms g̃ : QY → QZ and h̃ : QZ → QT such that g̃ ◦ µY ' g and
h̃ ◦ µZ ' h. Then

([h] ◦ [g]) ◦ [f ] = [h̃ ◦ g] ◦ [f ] = [(h̃ ◦ g̃) ◦ f ] = [h̃ ◦ (g̃ ◦ f)] = [h] ◦ [g̃ ◦ f ] = [h] ◦ ([g] ◦ [f ])

Remark 3.3.8. Let us focus on µX : X → QX. From the definition of composition we see that µX
is a two sided unit for composition, and therefore represents the identity of X in SHG.

Definition 3.3.9. We can define the functor

L : (SpUG)Co → SHG
which is the identity on objects and which sends a map of G-spectra f : X → Y to [µY ◦ f ] ∈
SHG(X,Y ).

Now we prove that L indeed a functor and that it is in fact a localization functor which sends
stable equivalences to isomorphisms.

Theorem 3.3.10. The functor L : (SpUG)Co → SHG is a localization functor at the class of stable
equivalences. In particular:

1. The functor L takes stable equivalences to isomorphisms. Even more, a map of G-spectra is
a stable equivalence if and only if its image in SHG is an isomorphism.

2. For every functor F : (SpUG)Co → C which takes stable equivalences to isomorphisms, there

exists a unique functor F̃ : SHG → C such that F̃ ◦ L = F .
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Proof. The proof is similar to the proof of [Sym] II theorem 4.12, with exeption to few technical
differences, so we give the complete proof here.
To check functoriality, note that by 3.3.8 [µX ] represents the identity of X ∈ SHG, hence L
preserves identities. Now consider f : X → Y and g : Y → Z two morphisms in (SpUG)Co. Now we
have

L(g) ◦ L(f) =[µZ ◦ g] ◦ [µY ◦ f ]

=[ ˜(µZ ◦ g) ◦ µY ◦ f ]

=[µZ ◦ g ◦ f ] = L(g ◦ f)

where the equality at the last line is justified since ˜(µZ ◦ g) is chosen is such way that ˜(µZ ◦ g)◦µY '
µZ ◦ g.
Now we prove the main points of this theorem:

1. By 3.3.6 a map f : X → Y in (SpUG)Co is a stable equivalence if f∗ : [Y,E]G → [X,E]G is
an isomorphism for every Ω-G-spectrum E. Note that we can restrict our attention to only
those Ω-G-spectra that belong to (SpUG)Co since the same proof as in [MMMF02] III theorem
6.1 passes in this case. Now the same argument using the Yoneda lemma follows as in the
proof of [MMMF02] III theorem 6.1 :
As Z runs through the objects of (SpUG)Co, QZ runs through all Ω-G-spectra in (SpUG)Co and
we have a commutative square

SHG(Y,Z) SHG(X,Z)

[Y,QZ]G [X,QZ]G

=

SHG(L(f),Z)

=

f∗

An immediate consequence is that L(f) is a stable equivalence if and only if SHG(L(f), Z)
is an isomorphism for every G-spectrum Z ∈ (SpUG)Co. By the Yoneda lemma, this is the
case if and only if L(f) is an isomorphism.

2. Consider a functor F : (SpUG)Co → C which takes stable equivalences to isomorphisms. In

order to show that there exists a unique functor F̃ : SHG → C such that F̃ ◦L = F we have
to prove two things:

� A functor G : SHG → C is completely determined by G ◦ L : (SpUG)Co → C.

� Existence of functor F̃ : SHG → C for F : (SpUG)Co → C as above.

The first part takes care of the uniqueness requirement. Onto the proof:
Fistly, consider a functor G : SHG → C. It is ovbious to see that G is completely determined
by G ◦ L on objects. Now, consider a morphism [f ] : X → Y ∈ SHG(X,Y ) which is
represented by a map f : X → QY . Note that, by 3.3.5, we have L(µY ) = [µY ], hence for
every morphism f : X → QY ∈ (SpUG)Co we have:

L(µY ) ◦ [f ] = L(f) ∈ SHG(X,QY )

Hence, we have the following:

[f ] = L(µY )−1 ◦ L(f) ∈ SHG
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Now we obtain

G([f ]) = G(L(µY )−1 ◦ L(f)) = (G ◦ L)(µY )−1 ◦ (G ◦ L)(f)

which finishes the first part.
For the second part, consider a functor F : (SpUG)Co → C which takes stable equivalences

to isomorphisms. We set F̃ (X) = F (X) on objects. Motivated by previous part, for a map
f : X → QY ∈ (SpUG)Co, we define

F̃ ([f ]) = F (µY )−1 ◦ F (f)

We have to show that the functor F̃ is well-defined, in particular, we need to show that
F (f) only depends on the homotopy class of f : X → QY . For X ∈ (SpUG)Co consider
the G-spectrum I ∧X where I is the unit interval endowed with trivial G-action. The map
∗ → I is a G-cofibration and therefore, by [MMMF02] III lemma 1.22 the G-spectrum I ∧X
is levelwise G-cofibrant.
The morphism c : I ∧ X → X that maps I to a single point is a stable equivalence (even
more, a level equivalence). By hypothesis, F (c) : F (I ∧X)→ F (X) is an isomorphism. The
composite with the two end point inclusions i0, i1 : X → I ∧X satisfy c ◦ i0 = c ◦ i1 = IdX ,
and we have

F (c) ◦ F (i0) = IdX = F (c) ◦ F (i1)

Thus, we have F (i0) = F (i1). Now, given two homotopic maps f, g : X → QY with
homotopy given by H : I ∧X → Y we have

F (f) = F (H ◦ i0) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (H ◦ i1) = F (g)

Next, we show that F̃ is unital which follows from

F̃ (IdX) = F̃ ([µX ]) = F (µX)−1 ◦ F (µX) = IdF̃ (X)

For composition we consider two maps f : X → QY and g : Y → QZ for X,Y, Z ∈ (SpUG)Co.
Note that we can choose a map g̃ : QY → QZ such that g̃ ◦ µY ' g. Then we have

F̃ ([g] ◦ [f ]) =F̃ ([g̃ ◦ f ])

=F (µZ)−1 ◦ F (g̃ ◦ f)

=F (µZ)−1 ◦ F (g̃) ◦ F (f)

=F (µZ)−1 ◦ F (g̃) ◦ F (µY ) ◦ F (µY )−1 ◦ F (f)

=F (µZ)−1 ◦ F (g̃ ◦ µY ) ◦ F (µY )−1 ◦ F (f)

=F (µZ)−1 ◦ F (g) ◦ F (µY )−1 ◦ F (f)

=(F (µZ)−1 ◦ F (g)) ◦ (F (µY )−1 ◦ F (f))

=F̃ ([g]) ◦ F̃ ([f ])

Lastly, we have to check the relation F̃ ◦ L = F . This is clear for objects. For a morphism
f : X → Y , where X,Y ∈ (SpUG)Co, we have
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F̃ (L(f)) =F̃ ([µY ◦ f ])

=F (µY )−1 ◦ F (µY ◦ f)

=F (µY )−1 ◦ F (µY ) ◦ F (f)

=F (f)

With this the proof is finished.

In the remainder of this section we will show that any G-spectrum X can be written as a filtered
homotopy colimit indexed by free suspension G-spectra Σ∞V A where A is a finite G-CW -complex
and V is an indexing space.
Since every G-spectra is stably equivalent (even more, we can choose it to be level equivalent as we
have seen above) to its cofibrant replacement we can work with G-spectra in (SpUG)Co. Without
loss of generality we can furthemore assume that X has a property that X(V ) is a G-CW -complex
for every indexing space V .

Remark 3.3.11. Now we can write X as a colimit of the sequence

X0 → X1 → ...→ Xn....

such that Xn(V ) is a finite G-CW -complex for every n ≥ 0 and every indexing space V . Furthe-
more we can choose this sequence in such a way that Xn−1(V ) is a G-CW -subcomplex of Xn(V )
in which case Xn−1(V ) ↪→ Xn(V ) is a G-closed inclusion. Therefore, by 2.1.6 X is in fact the
homotopy colimit of the above sequence.

In what follows, we will assume even more, that X is levelwise finite G-CW -complex.
For every pair of indexing spaces V ⊆W consider the map

λWV : Σ∞W (X(V ) ∧ SW−V )→ Σ∞V X(V )

This map is a stable equivalence, and therefore admits an inverse in the stable homotopy category

ψWV = L(λWV )−1 : Σ∞V X(V )→ Σ∞W (X(V ) ∧ SW−V ) ∈Mor(SHG)

Furthemore, we can define a map

jWV : Σ∞V X(V )
ψWV−−→ Σ∞W (X(V ) ∧ SW−V )

L((σWV )∗)−−−−−−→ Σ∞WX(W )

Using the adjunction Σ∞V : SpaceG � SpUG : Ω∞V we obtain a map:

iV : Σ∞V X(V )→ X

adjoint to the identity map on X(V ). Since the following diagram is commutative in the category
of G-spectra

Σ∞V X(V ) X

Σ∞W (X(V ) ∧ SW−V )

Σ∞WX(W )

iV

λWV

(σWV )∗

iW
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we obtain a commutative diagram in SHG

Σ∞V X(V ) X

Σ∞WX(W )

L(iV )

jWV

L(iW )

Now we have a well-defined map in SHG

i : hocolimV Σ∞V X(V )→ X

We want to prove the following

Theorem 3.3.12. Let X be a G-spectrum such that X(V ) has a structure of a finite G-CW -
complex for every indexing space V . Then X ∈ (SpUG)Co and the map

i : hocolimV Σ∞V X(V )→ X

is an isomorphism in the stable homotopy category SHG.

Before starting the proof we will show the following lemma which will be of use:

Lemma 3.3.13. Given a sequence of G-spectra

E0 → E1 → ...→ En → ...

we have an isomorphism

colimiπ
H
k (Ei)→ πHk (hocolimiEi)

for every k and every closed subgroup H ≤ G.

Proof. We will prove this in the case when k ≥ 0. The case when k < 0 is similar.
By definition, we have

πHk (hocolimiEi) = colimV π
H
k (ΩV (hocolimiEi)(V ))

Homotopy colimits are computed by first passing to the cofibrant replacement of the original
diagram in the projective model structure on diagram spaces, and then obtaining the colimit. Let
{CEi} be the cofibrant replacement of the sequence {Ei}. In particular, the maps CEn → En are
stable equivalences and the maps CEn−1 → CEn are G-cofibrations, hence closed G-inclusions.
This with the fact that the colimits are computet levelwise gives us:

πHk (hocolimiEi) =colimV π
H
k (ΩV (hocolimiEi)(V ))

=colimV π
H
k (ΩV (colimiCEi)(V ))

=colimV π
H
k (ΩV (colimiCEi(V )))

2.1.7−−−→colimV π
H
k (colimiΩ

V CEi(V ))

2.1.5−−−→colimV colimiπ
H
k (ΩV CEi(V ))

∼=colimicolimV π
H
k (ΩV CEi(V ))

=colimiπ
H
k (CEi)

∼=colimiπ
H
k (Ei)
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Lemma 3.3.14. Let I be a filtered category that admits a countable exaustive sequence

io → i1 → ...→ in → ...

In particular, for every j ∈ I there exists in in the sequence such that there is a map j → in in I.
Let {Ei}i∈I be a diagram of G-spectra indexed by I. Then the map

colimi∈Iπ
H
k (Ei)→ πHk (hocolimi∈IEi)

is an isomorphism for every k and every closed subgroup H ≤ G.

Proof. Mark the sequence with J . The inclusion of the exaustive sequence into J ↪→ I is cofinal,
and therefore we have

colimi∈J π
H
k (Ei) ∼=colimi∈Iπ

H
k (Ei)

πHk (hocolimi∈JEi) ∼=πHk (hocolimi∈IEi)

These two parts can be connected by 3.3.13 with which the proof is finished.

Now we are ready to prove the theorem 3.3.12:

Proof. It will be enough to show that the map i induces an isomorphism on all homotopy groups.
In the ligh of this, consider a closed subgroup H ≤ G and k ≥ 0. The proof when k < 0 is similar.
For every indexing space V we can construct the map

αV : πHq (ΩVX(V ))→ πHq (ΩV (Σ∞V X(V ))(V ))→ πHq (Σ∞V X(V ))

where the first map is the identity and the second map is cannonical map to the colimit.
Next, we have that the following diagram commutes

πHq (ΩVX(V )) πHq (ΩWX(W )) πHq (X)

πHq (Σ∞V X(V )) πHq (Σ∞WX(W ))

αV αW

πHq (jWV )

πHq (L(iW ))

Note that, by definition L(iW ) = [µX ◦ iW ] where µX ◦ iW : Σ∞WX(W )→ QX, so it is not entirely
correct to write πHq (L(iW )) : πHq (Σ∞WX(W ))→ πHq (X). Since µX is a stable equivalence we should

have written instead πHq (L(iW )) in composition with the inverse of the isomorphism induced by
µX , but for the sake of readability we omit it in the notation.
This means that we have a well defined map

α : πHq (X) = colimV π
H
q (ΩVX(V ))→ colimV π

H
q (Σ∞V X(V ))

Since the right triangle in the upper diagram commutes, the composition

πKq (X)
α−→ colimV π

H
q (Σ∞V X(V ))

3.3.14−−−−→ πHq (hocolimV Σ∞V X(V ))
πHq (i)
−−−−→ πKq (X)

is an isomorphism, and since the middle map is an isomorphism it would suffice to show that α is
also an isomorphism. Note that the middle map is an isomorphism by 3.3.14 and using the fact
that there is an exaustive sequence of indexing spaces in RepU (G).
We do this by constructing a map
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ξV : πHq (Σ∞V X(V )) = colimV≤Wπ
H
q (ΩWΣW−VX(V ))

∐
πHq ((ΩWσWV )∗)−−−−−−−−−−−→ πHq (ΩWX(W ))→ πHq (X)

Since the folowing diagram commutes

πHq (Σ∞V X(V )) πHq (Σ∞WX(W ))

πHq (X) πHq (X)

πHq (jWV )

ξV ξW

Id

we have a well defined map

ξ : colimV π
H
q (Σ∞V X(V ))→ πHq (X)

Now we have that α◦ξ is identity on colimV π
H
q (Σ∞V X(V )) and ξ◦α is identity on πHq (X), meaning

that α is an isomorphism.

Since α is an isomorphism, so is πHq (i), hence the proof is finished.

Corollary 3.3.15. Every G-spectrum E can be written as a filtered homotopy colimit of free G-
suspension spectra of the form Σ∞V A where V is an indexing space and A is a finite G-CW -complex.

Proof. As we have seen before we can choose a cofibrant replacement of X of E in the stable
model structure in such way that X ∈ (SpUG)Co. But X can be written as a homotopy colimit of a
sequence X0 → X1 → ...→ Xn → ... as in 3.3.11. Furthemore, by 3.3.12 every Xn can be written
as hocolim

V ∈RepU (G)
Σ∞V Xn(V ). This in total gives us a map

hocolim
(n,V )∈N×RepU (G)

Σ∞V Xn(V )→ X

which is an isomorphism in SHG. Note that N × RepU (G) is again filtered which finishes the
proof.

Presentability

As in the case with G-spaces, we can also define the ∞-category of G-spectra as

(SpUG)∞ = N(SpUG)[W−1
st ]

the localization of the nerve of the category of G-spectra with respect to the class of maps Wst

which correspond to stable equivalences in SpUG.
Define with (SpUG−CW )∞ the∞-subcategory of (SpUG)∞ spanned by elements of the form Σ∞V A

where A is a finite G-CW -complex and V is an indexing space..
We close this section with the following

Proposition 3.3.16. The ∞-category (SpUG)∞ is a presentable ∞-category. In particular, it can
be written as the Ind completion of (SpUG−CW )∞.

Proof. As in the case with G-spaces, the ∞-category (SpUG)∞ admits all small colimits. Moreover,
by 3.3.15 (SpUG)∞ is generated under filtered colimits by objects of (SpUG−CW )∞, which are, by
3.2.4 all compact objects (in all of the claims we use the fact that homotopy colimits in the model
structure correspond to the colimits in the underlying ∞-categorical structure). Hence, we have
the equivalence
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(SpUG)∞ ' Ind((SpUG−CW )∞)



Chapter 4

Stabilization of the ∞-category of
G-spaces

Now that we have done most of the heavy lifting in the previous chapters, we are ready to
prove the main result of the first part of this paper.
We will write RepU (G)∞ for the categorical nerve N(RepU (G)) of the category of indexing spaces
of a universe U .
The idea is to look at the following map:

χ : RepU (G)∞ → PrL

which sends every G-representation to the presentable∞-category of based G-spaces, SpaceG∞, and
every inclusion map V ↪→ W to the operation of smashing with the representation sphere SW−V .
Our stable∞-category would now be the colimit of χ: colim

RepU (G)∞
χ. The next important step would

be to prove the following equivalence:

(SpUG)∞ ' colim
RepU (G)∞

χ (4.1)

Note that the upper equivalence is the equivalence of presentable ∞-categories. In addition, the
colimit colim

RepU (G)∞
χ is the colimit in the ∞-category of presentable ∞-categories PrL, which in

general differs from the colimit in the ∞-category of ∞-categories (see 1.2.27). This problem
would be hard to tackle straightforward, so it would be wise to restrict to the case of finite spaces,
that is, we can look at the map

χ̃ : RepU (G)∞ → Cat∞

which sends every G-representation to the∞-subcategory of SpaceG−CW∞ spanned by based, finite
G-CW -complexes, and every map V ↪→ W to the operation of smashing with the representation
sphere SW−V . In this case, our stable∞-category would be the colimit of χ̃: colim

RepU (G)∞
χ̃. Then we

could prove the following equivalence:

(SpUG−CW )∞ ' colim
RepU (G)∞

χ̃ (4.2)

where (SpUG−CW )∞ is the ∞-subcategory of the underlying ∞-category (SpUG)∞ of the model
category SpUG spanned by free G-spectra Σ∞V X, where V is the indexing space of U and X is a
finite, based G-CW -complex.

Note that (4.1) and (4.2) are similarly written, but the difference between them is fundamental:

44
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The colimit in (4.2) is the colimit of small ∞-categories, which is in general easier to compute.
Therefore, we obtain our main equivalence (4.1) from (4.2) by passing to the Ind-completion of
∞-categories.

In the final section, we will use the results of Marco Robalo ([Rob13]) on the inversion of an
object in a symmetric monoidal ∞-category in order to show the universal property of (SpUG)∞
with respect to the inversion of representation spheres.

4.1 Inversion of an object in a symmetric monoidal∞-category

Let X ∈ C⊗ be an object of a symmetric monoidal ∞-category C⊗. The goal of this section is
to give a description of a symmetric monoidal∞-category C⊗[X−1] together with a monoidal map
C⊗ → C⊗[X−1] which sends the object X to the invertible object in C⊗[X−1]. In this section, we
follow the notes of Marco Robalo’s paper [Rob13].
By an invertible object we mean the following:

Definition 4.1.1. Let X ∈ C⊗ be an object of a symmetric monoidal∞-category C⊗. We say that
X is invertibe if there exists an object Y ∈ C⊗ such that X⊗Y (and therefore Y ⊗X) is equivalent
to the unit object of C⊗. Equivalently, X is an invertible object if the map X ⊗ (−) : C⊗ → C⊗ is
an equivalence of ∞-categories.

The work of Marco Robalo in [Rob13] gives us the following result:

Proposition 4.1.2. For every presentable symmetric monoidal∞-category C⊗ and for every object
X ∈ C⊗ there exists a presentable symmetric monoidal∞-category C⊗[X−1] together with a functor
FX : C⊗ → C⊗[X−1] which sends X to an invertible object. Moreover, the ∞-category C⊗[X−1]
admits the universal property in the sense that:

1. The restriction functor

CAlg(PrL)C⊗[X−1]/ → CAlg(PrL)C⊗/

is fully faithful with essential image consisting of those algebras i.e. symmetric monoidal
functors C⊗ → D⊗ which send X into an invertible object in D⊗, where CAlg(PrL) is
the ∞-category of commutative algebra objects in PrL i.e. presentable symmetric monoidal
∞-categories.

2. The forgetful functor

ModC⊗[X−1](PrL)→ModC⊗(PrL)

is fully faithful with essential image being a full subcategory spanned by those presentable
∞-categories equipped with an action of C⊗ such that X acts as an equivalence, where
ModC⊗[X−1](PrL) is the∞-category of C⊗[X−1]-modules in PrL (and similarly for ModC⊗(PrL)).

Observation 4.1.3. Let C⊗ be a symmetric monoidal ∞-category and let X,Y ∈ C⊗. By
the universal property, we have that C⊗[X−1][Y −1] ' C⊗[Y −1][X−1], which we can denote with
C⊗[X−1, Y −1]. Note that, since C⊗ is symmetric monoidal, the element X ⊗ Y is invertible if and
only if the elements X and Y are invertible. Therefore, we write C⊗[X−1, Y −1] := C⊗[(X ⊗Y )−1].
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Inversion and stabilization

Recall that, given a (ordinary) category C and an endofunctor F : C → C, the stabilization of the
category C with respect to F is the colimit

C
F−→ C

F−→ ...C
F−→ ...

and we denote it as StabF (C).
Similarly, given a symmetric monoidal category C⊗ and an element X ∈ C⊗, we say that the

stabilization of the category C⊗ with respect to the element X is the colimit of the sequence

C⊗ X⊗−−−→ C⊗ X⊗−−−→ ...C⊗ X⊗−−−→ ...

which we denote as StabX(C⊗).
It is natural to assume that StabX(C⊗) is our category C⊗[X−1] and that is correct under the

condition that X is a symmetric object of C⊗:

Definition 4.1.4. ([Rob13] 4.18 ) The object X ∈ C⊗ of a symmetric monoidal ∞-category
C⊗ is said to be symmetric if there is a 2-equivalence in C⊗ between the cyclic permutation
σ : (X ⊗X ⊗X)(1,2,3) and the identity of X ⊗X ⊗X, that is, there exists a 2-cell in C⊗

X ⊗X ⊗X X ⊗X ⊗X

X ⊗X ⊗X

id

σ

id

The author of [Rob13] gives us the following results:

Proposition 4.1.5. ([Rob13] 4.24) Let C⊗ be a presentable symmetric monoidal ∞-category, and
let X be a symmetric object of C⊗. Then the ∞-category of formal inversion C⊗[X−1] is equivalent
to the stabilization StabX(C⊗).

Corollary 4.1.6. ([Rob13] 4.25) Let C⊗ be a stable presentable symmetric monoidal ∞-category
and let X be a symmetric object in C⊗. Then C⊗[X−1] is again a stable presentable symmetric
monoidal ∞-category.

4.2 The ∞-category of G-spectra as the stabilization

Note that by [MMMF02], IV, 4.2, we know that the stable model category on SpUG is topological.
Then the topological space of maps between G-spectra X and Y is weakly equivalent to the derived
mapping space if X is cofibrant and Y is fibrant (see [DK1], [DK2] and [DK3]). To add up, the set
of generating cofibrations is the set Σ∞V IG, where Σ∞V ( ) is the free G-spectrum functor and IG is
the set of maps

IG = {(G/H × Sk−1)+ → (G/H ×Dk)+}k≥0,H≤G

In particular, the elements of SpUG−CW are of the form Σ∞V X where X is a finite G-CW-complex
hence they are all cofibrant. Note that they are all also levelwise G-CGWH spaces.

Proposition 4.2.1. Define the functor f : colimRepU (G)∞ χ̃→ (SpUG−CW )∞ sending the object of
colimRepU (G)∞ χ̃ of the form (X,V ) where X is a finite G-CW -complex and V an indexing space,
to the G-spectrum Σ∞V X. The functor f is an equivalence of ∞-categories.
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Proof. First, note that both∞-categories have the same elements which can be written in the form
of a pair (X,V ), where X is a finite G-CW -complex and V is an indexing space.

In (SpUG−CW )∞ the pair (X,V ) coresponds to the free G-spectrum Σ∞V X, that is, a G-spectrum
such that Σ∞V X(W ) = ΣW−VX when V ⊂W and is a point otherwise.

In colimRepU (G)∞χ the pair (X,V ) coresponds to the element X in the colimit which is present

from the ”V th level”.
Since both categories have the same elements, what is left to show is that the mapping spaces

in one ∞-category are weakly equivalent to the mapping spaces in the other ∞-category. The ∞-
category (SpUG−CW )∞ is obtained from the model category SpUG−CW meaning that the mapping
space Map(SpUG−CW )∞(Σ∞V X,Σ

∞
WY ) is computed by passing to the fibrant replacement of Σ∞WY

(see [DK3]):
Map(SpUG−CW )∞(Σ∞V X,Σ

∞
WY ) = MapSpUG(Σ∞V X,Q(Σ∞WY ))

Using the adjunction (Σ∞V ,Ω
∞
V ) we have

MapSpUG(Σ∞V X,Q(Σ∞WY )) ∼= MapSpaceG∗(X,Q(Σ∞WY )(V ))

= MapSpaceG∗(X,hocolimV⊂UΩU−V (Σ∞WY )(U))

= MapSpaceG∗(X,hocolimV,W⊂UΩU−V ΣU−WY )

We can again take an expanding countable sequence Ui of indexing spaces such that their union is
whole U and such that V,W ⊂ Ui for every i. Now, by 3.2.3 we have a weak equivalence

MapSpaceG∗(X,hocolimV,W⊂UiΩ
Ui−V ΣUi−WY )→MapSpaceG∗(X,hocolimV,W⊂UΩU−V ΣU−WY )

Furthemore, by 2.1.8 we have a weak equivalence

hocolimV,W⊂UiMapSpaceG∗(X,Ω
Ui−V ΣUi−WY )→MapSpaceG∗(X,hocolimV,W⊂UiΩ

Ui−V ΣUi−WY )

Again, by the adjunction (ΣV ,ΩV ) and 3.2.3 we obtain

hocolimV,W⊂UiMapSpaceG∗(X,Ω
Ui−V ΣUi−WY ) ' hocolimV,W⊂UiMapSpaceG∗(Σ

Ui−VX,ΣUi−WY )

and a weak equivalence

hocolimV,W⊂UiMapSpaceG∗(Σ
Ui−VX,ΣUi−WY )→ hocolimV,W⊂UMapSpaceG∗(Σ

U−VX,ΣU−WY )

Finally, note that the expression hocolimV,W⊂UMapSpaceG∗(Σ
U−VX,ΣU−WY ) represents the map-

ping space MapcolimRepU (G)∞
χ((X,V ), (Y,W )) of elements (X,V ) and (Y,W ) in the ∞-category

colimRepU (G)∞χ. To summarize, we have shown that the mapping spaces Map(SpUG)∞(Σ∞V X,Σ
∞
WY )

and MapcolimRepU (G)∞
χ((X,V ), (Y,W )) are weakly equivalent. With this the proof is finished.

In order to prove the equivalence for the presentable∞-categories colimRepU (G)∞χ and (SpUG)∞,

we will pass to the Ind-completion of the ∞-categories colimRepU (G)∞ χ̃ and (SpUG−CW )∞. There
is one subtile point that we need to adress with regard to the Ind-completion. Namely, The
functor Ind preserves colimits when considered as a functor from the ∞-category Catfin−colim∞
of ∞-categories with finite colimits (and finite colimit preserving functors between them) to the
∞-category PrL. Therefore, we do not have the commutativity of Ind-functor with colimits in
Cat∞. When looking at the Ind(colimRepU (G)∞ χ̃) the colimit now is the colimit in the∞-category

Catfin−colim∞ and not Cat∞. The equivalent statement of [HTT] 6.3.4.4 tells us that Catfin−colim∞
admits small colimits. The next thing that we need to prove is:

Lemma 4.2.2. The inclusion functor

Catfin−colim∞ → Cat∞

preserves and detects filtered colimits.
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Proof. The proof is basically the reformulation and adaptation of the proof of [HTT] 5.5.7.11.
Let I be a (small) filtered category and let d : I → Catfin−colim∞ be a diagram in Catfin−colim∞ .
Since Cat∞ is cocomplete let C be the colimit of the diagram d′ : I → Catfin−colim∞ ↪→ Cat∞. We
need to prove the following:

1. The ∞-category C admits finite colimits.

2. The induced functors d(I)→ C preserve finite colimits for every I ∈ I.

3. For every functor F : C → D if the composite functors d(I)→ C F−→ D preserve finite colimits
for every I ∈ I, then the functor F does as well.

Note that, since I is filtered every finite diagram in C will factor through some d(I), I ∈ I,
therefore, it will suffice to prove point (2) from above, since in that case the points (1) and (3)
follow imediately.

Arguing as in [HTT] 5.5.7.11 we can assume without the loss of generality that I is the nerve
of a filtered partially ordered set K ([HTT] 4.2.4.4 ). We can furthemore reduce to the case when
d is the nerve of a functor f : K → Set∆, with C being the homotopy colimit of this diagram
([HTT] 5.3.1.18 and 4.2.4.1 ). Finally, since the collection of categorical equivalences is stable
under filtered colimits, we can regard C as the colimit of f .

Let S be a finite simplicial set and let Cx = f(x) for x ∈ K. Let ḡx : S. → Cx be a colimit
diagram in Cx for some x ∈ K and denote gx = ḡx|S . We would like to show that the induced
map ḡ : S. → C is also a colimit diagram. It would suffice to show that the map θ : Cḡ/ → Cg/ is a
trivial fibration. Note that θ is a filtered colimit of the maps θy : (Cy)ḡy/ → (Cy)gy/ with y ≥ x,
y ∈ K. Since all of the functors Cx → Cy preserve finite colimits, all of the maps θy are trivial
fibrations, hence so is θ.

Now we are ready to prove the main equivalence.

Proposition 4.2.3. The functor F : colimRepU (G)∞χ → (SpUG)∞ induced by the functor f from
4.2.1 is an equivalence.

Proof. By slight abuse of notation let us write colimRepU (G)∞ χ̃ as colimRepU (G)∞Space
G−CW
∞ , and

colimRepU (G)∞χ as colimRepU (G)∞Space
G
∞. Since SpaceG∞ ' Ind(SpaceG−CW∞ ) and (SpUG)∞ '

Ind((SpUG−CW )∞), and since Ind-completion commutes with our filtered colimit colimRepU (G)∞

we have

(SpUG)∞ 'Ind((SpUG−CW )∞)

'Ind(colimRepU (G)∞Space
G−CW
∞ )

'colimRepU (G)∞Ind(SpaceG−CW∞ )

'colimRepU (G)∞Space
G
∞

The second equivalence is given by 4.2.1, while the third is given by 4.2.2. In total, we obtain our
main equivalence

(SpUG)∞ ' colimRepU (G)∞χ

4.3 The universal property

Following the work of Robalo ([Rob13]) we would like to show the analogue of the proposition
4.10 :
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Proposition 4.3.1. The restriction functor

CAlg(PrL)(SpUG)∞/ → CAlg(PrL)SpaceG∞/

is fully faithful, where CAlg(PrL) is the ∞-category of commutative algebras in PrL i.e. pre-
sentable symmetric monoidal ∞-categories, such that the essential image consists of those sym-
metric monoidal functors SpaceG∞ → C⊗ which send every representation sphere into an invertible
object in C⊗.

Let V ⊆ W be two indexing spaces. Then we can write SW ∼= SV ∧ SW−V , hence by 4.1.2
and 4.1.3 we have a map SpaceG∞[(SV )−1] → SpaceG∞[(SW )−1]. Moreover, we can organize the
presentable ∞-categories SpaceG∞[(SV )−1] into a diagram

λ : RepU (G)∞ → CAlg(PrL)

sending every indexing space V to SpaceG∞[(SV )−1]. Next, note that, by 3.1.10 SV ∧ (−) :
(SpUG)∞ → (SpUG)∞ is an equivalence for every representation sphere, hence, for every repre-
sentation V we have a map

τV : SpaceG∞[(SV )−1]→ (SpUG)∞

Therefore (SpUG)∞ fits into a cone of the diagram λ. We would like to show that this is in fact a
colimit cone. Note that colimRepU (G)∞λ is a colimit in CAlg(PrL), but since RepU (G)∞ is a filtered

category the computation of this colimit is reduced to the computation in PrL. Additionally, we
have:

Lemma 4.3.2. The representation sphere SV is a symmetric object of the symmetric monoidal
∞-category SpaceG∞ for every indeging space V ⊂ U .

Proof. First, note that SV ∧ SV ∧ SV = SV⊕V⊕V , meaning that σ : (SV ∧ SV ∧ SV )(1,2,3) =

S(V⊕V⊕V )(1,2,3)

.
Basically, what we need to do is to show that the map σ, induced by the cyclic permutation, is
homotopic to the identity map on SV⊕V⊕V in the underlying category of G-spaces.

For start, let dimV = n and let us fix a basis e = {ei}o≤i≤n. Now dim(V ⊕ V ⊕ V ) = 3n and
basis consists, informally speaking, of three copies of e. It will be easier if we write the maps as
matrices. Let σ̃ : (V ⊕ V ⊕ V )(1,2,3) be the map induced by cyclic permutation on (V ⊕ V ⊕ V ).
Since the representation spheres are one point compactifications of indexing spaces we see that σ̃
extends to σ. Now we can write

σ̃ =

0 0 E
E 0 0
0 E 0


where E is the identity matrix in GLn(V ) with respect to basis e. We can see that the action of G
can be seen as an homomorphism ρ : G→ GLn(V ), so if for g ∈ G, we have A = ρ(g), the action
of g on V ⊕ V ⊕ V can be seen as

Pg =

A 0 0
0 A 0
0 0 A


It is not hard to check that σ̃Pg = Pgσ̃, that is, that σ̃ is a well defined G-map. Now we define the
homotopy between σ̃ and the identity map Id of V ⊕ V ⊕ V the following way:

H :I × V ⊕ V ⊕ V → V ⊕ V ⊕ V
H(t, ) = tσ + (1− t)Id



CHAPTER 4. STABILIZATION OF THE ∞-CATEGORY OF G-SPACES 50

Since H(t, ) is a linear combination of two G-maps, it will also be a G-map, hence we have a well
defined G-homotopy between maps σ̃ and Id. As noted before, representation spheres are just one
point compactifications, meaning that H extends to the homotopy of maps σ and the identity map
of SV⊕V⊕V . This finishes the proof.

As a direct corollary we have an equivalence

SpaceG∞[(SV )−1] ' StabSV (SpaceG∞)

hence, the colimit of the diagram λ is equivalent to the colimit of the diagram λ̃ : RepU (G)∞ → PrL
sending every G-representation V to StabSV (SpaceG∞). Moreover, for G-representations V ⊆ W ,
the map StabSV (SpaceG∞)→ StabSW (SpaceG∞) is induced by

SpaceG∞ SpaceG∞ SpaceG∞ ...

SpaceG∞ SpaceG∞ SpaceG∞ ...

id

SV ∧(−)

SW−V ∧(−)

SV ∧(−)

S(W−V )⊕(W−V )∧(−)

SV ∧(−)

SW∧(−) SW∧(−) SW∧(−)

therefore, we have the following

Lemma 4.3.3. The cone constructed above exibits (SpUG)∞ as a colimit of λ.

Proof. By 4.2.3 we can write (SpUG)∞ as colimRepU (G)∞χ. We can write a new universe Ũ :=

U ⊕ U ⊕ ... as an infinite sum of copies of U . We can again construct a category RepŨ (G)∞
analogous to RepU (G)∞ as well as a diagram χ′ : RepŨ (G)∞ → PrL analogous to χ. Since U is a

complete universe so is Ũ and hence the colimits colimRepU (G)∞χ and colimRepŨ (G)∞
χ′ are both

equivalent to (SpUG)∞. To add up, we can construct a map

t : RepU (G)∞ × N→ RepŨ (G)∞

which sends an object (V, n) (where V is an indexing space) to V ⊕ V ⊕ ... ⊕ V (n times). More
formally, the element V ⊕ V ⊕ ... ⊕ V is viewed as taking value V in the first n-coordinates of
U ⊕ U ⊕ ... = Ũ and nothing in the rest.
We claim that this map is cofinal:

First, note that both categories RepU (G)∞ × N and RepŨ (G)∞ are filtered. Let W be an

indexing space of Ũ . Since indexing spaces are of finite dimension we can choose big enough n such
that W is contained in the first n copies of U in Ũ . Let Wi be a projection of W onto ith copy of
U , for 1 ≤ i ≤ n. We can choose an indexing space V of U which contains all of the projections

Wi and hence, we have a map in RepŨ (G)∞, W ↪→ t(V, n). Therefore, t is cofinal.

Next, we can focus our attention to the following sequence of indexing spaces in RepŨ (G)∞
given by

V ↪→ V ⊕ V ↪→ V ⊕ V ⊕ V ↪→ ...

where V is an indexing space of U regarded as an indexing space of Ũ that corresponds to t(V, 1).
Under χ′ this sequence becomes

(SpaceG∞, V )
SV ∧(−)−−−−−→ (SpaceG∞, V ⊕ V )

SV ∧(−)−−−−−→ (SpaceG∞, V ⊕ V ⊕ V )→ ...



CHAPTER 4. STABILIZATION OF THE ∞-CATEGORY OF G-SPACES 51

where we have written (SpaceG∞, V ⊕ ... ⊕ V ) as χ′(V ⊕ ... ⊕ V ) = SpaceG∞ i.e. we have marked
the copy of SpaceG∞ to which V ⊕ ... ⊕ V is sent. The colimit of this sequence corresponds to
StabSV (SpaceG∞). To add up, for a map of indexing spaces V ⊆ W , where V , W are indexing

spaces of U regarded as indexing spaces of Ũ , we have

(SpaceG∞, V ) (SpaceG∞, V ⊕ V ) (SpaceG∞, V ⊕ V ⊕ V ) ...

(SpaceG∞,W ) (SpaceG∞,W ⊕W ) (SpaceG∞,W ⊕W ⊕W ) ...

SW−V ∧(−)

SV ∧(−)

S(W−V )⊕(W−V )∧(−)

SV ∧(−)

S(W−V )⊕(W−V )⊕(W−V )∧(−)

SV ∧(−)

SW∧(−) SW∧(−) SW∧(−)

which corresponds to the map StabSV (SpaceG∞) → StabSW (SpaceG∞). Note that the diagram

χ′|t : RepU (G)∞ × N→ PrL corresponds exactly to the diagram λ̃ hence

colim
RepU (G)∞×N

χ′|t ' colimRepU (G)∞ λ̃

Moreover, since t is cofinal we have an equivalence

colim
RepU (G)∞×N

χ′|t
'−→ colimRepŨ (G)∞

χ′

Finally, by our previous remark on the completeness of universes U and Ũ we have an equivalence

colimRepŨ (G)∞
χ′
'−→ (SpUG)∞, and therefore we obtain a sequence

colimRepU (G)∞ λ̃ ' colim
RepU (G)∞×N

χ′|t
'−→ colimRepŨ (G)∞

χ′
'−→ (SpUG)∞

With this the proof is finished.

Finally, we are able to give the proof of 4.3.1:

Proof. Since every map SpaceG∞ → SpaceG∞[(SV )−1] is an epimorphism (see [Rob13] proof of
4.10 ), so is the induced map SpaceG∞ → (SpUG)∞. Therefore, the map CAlg(PrL)(SpUG)∞/ →
CAlg(PrL)SpaceG∞/ is fully faithful by [Rob13] 4.3 (and the proof of 4.10 ). The only thing left to
check is the essential image:

It is clear that if ϕ : SpaceG∞ → C⊗ is in the image of CAlg(PrL)(SpUG)∞/ → CAlg(PrL)SpaceG∞/.

Then ϕ factors through (SpUG)∞ and hence, the representation spheres are sent to invertible objects
in C⊗. On the other hand, if ϕ : SpaceG∞ → C⊗ is such that representation spheres are sent to
invertible objects in C⊗, then by [Rob13] 4.10, for every G-representation V we have a factorization

SpaceG∞ C⊗

SpaceG∞[(SV )−1]

ϕ

ϕV

Moreover, this factorization is essentially unique. Therefore, we can make a compatible choice of
maps ϕV for every G-representation V and we obtain a map φ : colimRepU (G)∞λ → C⊗. The
statement now follows from 4.3.3.
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Chapter 5

Preliminaries II

This chapter will introduce reader to the theory of parametrized higher category theory and
higher algebra. The founders of this theory are Clark Barwick and his students: Denis Nardin, Jae
Shah, Emmanuel Dotto, Saul Glassman (see [BDGNS16], [Nar16], [Nar17], [Shah18]).

In general, parametrized higher category theory and higher algebra represents a framework for
doing equivariant homotopy theory as we will explain below.

In order to motivate the reader and give a little bit of insight of the forthcoming theory, assume
that X is a G-space where G is a finite group. Recall that we can describe X with a functor

FX : OopG → Space

FX(G/H) 7→ XH

In the setting of ∞-categories, we will replace OG with the corresponding ∞-category, which
we will again mark with OG and we will replace Space with Cat∞. The Grothendieck-Lurie
correspondence (see [HTT]) gives us a functor (a coCartesian fibration)

p : X → OopG
which we think of as a G-∞-category. The reason why we regard coCartesian fibrations p : X →
OopG as equivariant objects rather than functors from OopG lies in the fact that coCartesian fibrations
regarded as objects are much easier to manipulate than general functors.

We will start with the formal definition of coCartesian fibration, followed by technical results
relating to them which will allow us to construct some important parametrized∞-categories, such
as G-∞-category of finite G-spaces (or finite G-sets). In the last two part of this introductory part
we will introduce the parametrized version of symmetric monoidal ∞-categories and ∞-operads.

This chapter does not contain any original ideas or results, it is a recolection of results from
beforementioned sources.

5.1 (Co)Cartesian fibrations

CoCartesian fibrations represent a type of fibrations between ∞-categories. Given that, they
do admit some sort of a lifting property, but they carry much more information: The importance
of coCartesian fibrations lies in the Lurie-Grothendieck correspondence, which tells us that the ∞-
category of all coCartesian fibrations above some simplicial set S is equivalent to the ∞-category
of functors from S to Cat∞. First, we will give a definition of a coCartesian fibrations and then
state the Lurie-Grothendieck correspondence. In the end, we will give a criterion on how to detect
coCartesian fibrations that we will most commonly use.
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Definition 5.1.1. Let π : X → S be a map of simplicial sets, and let f : x→ y be an edge in X.
We say that f is π-coCartesian if for every n ≥ 2 and every commutative square

Λn0 X

∆n S

σ

π

such that σ(∆{0,1}) = f , the dotted lift exists.

Definition 5.1.2. Let π : X → S be a map of simplicial sets. We say that π is a coCartesian
fibration if:

� π is an inner fibration, that is, π satisfies the right lifting property for every horn inclusion
Λni ↪→ ∆n where n > 0 and 0 < i < n.

� For every x ∈ X and every edge φ : π(x)→ s in S there exists a π-coCartesian edge f : x→ y
in X such that π(f) = φ.

We say that π is a Cartesian fibration if its opposite πop is a coCartesian fibration.

Remark 5.1.3. A coCartesian (resp. Cartesian) fibration π : X → S is a left (resp. right) fibration
if the fiber Xs is a Kan complex for every s ∈ S.

Definition 5.1.4. Let π : X → S and φ : Y → S be two (co)Cartesian fibrations and let
f : X → Y be a map of simplicial sets. We say that f is a map of (co)Cartesian fibrations if f
sends π-(co)Cartesian edges to φ-(co)Cartesian edges.

Remark 5.1.5. Let S be a simplicial set. Using 5.1.4 we can form an ∞-category coCart(S)
whose objects are coCartesian fibrations p : X → S, and a map between two objects (coCartesian
fibrations) p : X → S and q : Y → S is a map f : X → Y of coCartesian fibrations. This category
plays a key role in the Lurie-Grothendieck correspondene.

Theorem 5.1.6. (The Lurie-Grothendieck correspondence) Let S be a simplicial set. There exists
a functor called unstraightening functor

Un∞S : Fun(S,Cat∞)→ coCart(S)

Moreover, this functor in an equivalence and it is compatible with base change. To add up, it
reduces to the tautological identification

coCart(∗) = Cat∞
Id−→ Cat∞ = Fun(∗, Cat∞)

Remark 5.1.7. Similar statement could be made for Cartesian fibrations. Namely, given a simplicial
set S we can again construct an ∞-category whose objects are Cartesian fibrations and with
morphisms between two Cartesian fibrations p : X → S and q : Y → S being maps f : X → Y of
Catesian fibrations, that is maps over S which send p-Cartesian arrows in X to q-Cartesian arrows
in Y .

The Lurie-Grothendieck correspondance now gives us an equivalence

Cart(S)
'−→ Fun(Sop, Cat∞)

The following proposition gives us a criterion of how to detect coCartesian fibrations:

Proposition 5.1.8. ([Shah18] 2.5) Let π : X → S be an inner fibration and let f : a → b be an
edge in X. Then f is π-coCartesian if and only if for every c ∈ X the following diagram
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MapX(b, c) MapX(a, c)

MapS(π(b), π(c)) MapS(π(a), π(c))

π

f∗

π

π(f)∗

is homotopy Cartesian.

5.2 Dualizing Cartesian and CoCartesian fibrations

Let p : X → S be a coCartesian fibration. We know that p is classified by the functor
X : S → Cat∞. Similarly, given a Cartesian fibration q : Y → Sop, we have its classifying functor
Y : S → Cat∞. The question now arises: Can we pass from a coCartesian fibration p : X → S to
some Cartesian fibration q : Y → Sop which is represented by the same functor X ?
In this section we give a description of such construction. For more informations, see [BGN14].

Definition 5.2.1. Let X be an ∞-category. We define the twisted arrow ∞-category of X, and
denote it with Õ(X) the following way

Õ(X)n = Mor(∆n,op ?∆n, X) ∼= X2n+1

Proposition 5.2.2. ([BGN14], 2.3) Let X be an ∞-category. The inclusion maps ∆n,op ↪→
∆n,op ?∆n and ∆n ↪→ ∆n,op ?∆n induce the map

Õ(X)→ Xop ×X

which is a left fibration. Therefore, Õ(X) is an ∞-category.

Definition 5.2.3. Let X be an∞-category and let X† and X† be two subcategories which contain
all the equivalences. We say that (X,X†, X

†) is a triple of∞-categories and we call the morphisms
of X† ingressive and the morphisms of X† egressive.
Furthemore, we say that a triple (X,X†, X

†) is adequate if for every ingressive morphism x1 � y1

and any egressive morphism y2 � y1 there exists a pullback square

x2 y2

x1 y1

such that x2 → y2 is ingressive and x2 → x1 is egressive.

Definition 5.2.4. Let (X,X†, X
†) be an adequate triple of ∞-categories. The effective Burn-

side ∞-category Aeff (X,X†, X
†) of the triple (X,X†, X

†) is the simplicial set whose n-simplices
are functors

x : Õ(∆n)→ X

such that for every 0 ≤ i ≤ k ≤ l ≤ j ≤ n with xij � xkj and xil � xkl being ingressive arrows
and xij � xil and xkj � xkl being egressive arrows, the square

xij xkj

xil xkl
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is a pullback square.

Let π : X → S be a cartesian fibration. Denote with Seq ⊂ S the subcategory which contains all
the objects, but whose morphisms are the equivalences in S. To add on, denote with Xπ−cart ⊂ X
the subcategory which contains all the objects of X but whose morphisms are π-cartesian arrows
of X. The triples

(S, Seq, S)

(X,X ×S Seq, Xπ−cart)

are adequate triples of ∞-categories. Moreover π induces a map

π̄ : Aeff (X,X ×S Seq, Xπ−cart)→ Aeff (S, Seq, S)

Also, the projection Õ(∆n)→ ∆n,op gives rise to the map

Sop ↪→ Aeff (S, Seq, S)

Definition 5.2.5. Let π : X → S be a Cartesian fibration. Then we define the dual of π denoted
as π∨ the following way

π∨ : Aeff (X,X ×S Seq, Xπ−cart)×Aeff (S,Seq,S) S
op → Sop

The map π∨ is a coCartesian fibration.

Remark 5.2.6. ([BGN14] 3.7 ) The map Sop ↪→ Aeff (S, Seq, S) is an equaivalence, hence, the
projection map

Aeff (X,X ×S Seq, Xπ−cart)×Aeff (S,Seq,S) S
op → Aeff (X,X ×S Seq, Xπ−cart)

is an equivalence aswell.

Proposition 5.2.7. ([BGN14] 3.4) The map

π̄ : Aeff (X,X ×S Seq, Xπ−cart)→ Aeff (S, Seq, S)

is a coCartesian fibration. Moreover, a morphism in Aeff (X,X ×S Seq, Xπ−cart) is a span of a
form

x

y z

which is π̄-coCartesian when x→ z is an equivalence.

5.3 Parametrized ∞-categories

At the start of the chapter, we have given a motivation as to what the parametrized higher
category should be. In this section we will give a formal definition. Additionally, we will see under
which conditions we can define a G-∞-category with G being a compact Lie group.
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Definition 5.3.1. Let T be an ∞-category. A T -parametrized ∞-category is a cocartesian fibra-
tion π : X → T op. We also say that X is a T -∞-category for short. A T -parametrized functor
(short, T -functor) between two T -∞-categories π : X → T op and φ : Y → T op is a map of cocarte-
sian fibrations.
When π is a left fibration, we say that X is a T -∞-groupoid.

Example 5.3.2. Let G be a compact Lie group and let OG be a full subcategory of the category
of G-spaces spanned by the transitive G-spaces (G-orbits). We call OG the orbit category, and we
call OG-category π : X → OopG simply a G-∞-category.
We can look at the objects O ∈ OG as cosets G/H by choosing a basepoint x ∈ O with Stabx(O) =
H.
Informally, by Lurie’s straightening/unstraightening a G-∞-category π : X → OopG is classified by
a functor X : OopG → Cat∞ which sends every orbit G/H to the fiber X[G/H] := π−1(G/H).

We have seen that we can define a T -∞-category for any ∞-category T but in order to be
able to do some non-trivial constructions, such as to define a T -symmetric monodal structure for
example, the ∞-category T needs to satisfy some additional conditions. Therefore, we define:

Definition 5.3.3. ([Nar17] 1.2 and 2.2 ) Let T be a small ∞-category. We define the ∞-category
of finite T -sets denoted as FT to be a subcategory of Fun(T op, T op) spanned by finite coproducts
of representables. In the case when T = OG, FOG := FG corresponds to the category of finite
G-sets.
We say that T is orbital if FT admits all pullbacks and we say that T is cartesian orbital if FT
admits all limits.
To add up, we say that an orbital ∞-category T is atomic if there are no nontrivial retracts in T
i.e. every map with a left inverse is an equivalence.

Example 5.3.4. Let G be a finite group, then OG is a cartesian orbital ∞-category which is also
atomic.
If we take G to be a compact Lie group then OG is not orbital in general, but the ∞-category of
transitive G-spaces with finite stabilizers is atomic orbital ∞-category. It is cartesian if G is a
finite group.

For more examples see [Nar17] 1.3.

Notation 5.3.5. From now on, we will focus on G-∞-categories π : X → OopG where OG is the
category of transitive G-spaces with finite stabilizers.

Example 5.3.6. One of the examples of G-∞-categories that we will see throughout this paper is
the G-∞-category of G-spaces, which we denote with TopG. Here, we will give the description of
this category.
Let us introduce the category OG − Top whose objects are G-maps X → O where X is a G-space
and O ∈ OG and whose morphisms are G-commutative diagrams

X1 X2

O1 O2

where (X1 → O1), (X2 → O2) ∈ OG − Top. We can regard OG − Top as a topological category by
taking the space of morphisms to be a subspace of

MapOG−Top(X1 → O1, X2 → O2) ⊆MapTopG(X1, X2)×MapOG(O1, O2)
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consisting of those maps such that upper diagram is commutative.
The idea behind this construction is that we can regard X → O as classifying an H-space XH

where we write O ∼= G/H with the choice of a basepoint of O, and where XH is the fiber of X → O
over eH.
Consider the forgetful functor q : OG−Top→ OG which after applying the topological nerve functor
becomes

N(q) : N(OG − Top)→ OG
where, by abuse of notation we write OG for N(OG). This functor is a Cartesian fibration with
the Cartesian arrows given by diagrams as above which are pullback squares. Then by dualizing
this Cartesian fibration we obtain our G-∞-category of G-spaces

((N(OG − Top))∨ → OopG ) ∼= (TopG → OopG )

The elements of TopG can still be written as G-maps X → O whereas the morphisms between
X1 → O1 and X2 → O2 are represented by diagrams

X1 X X2

O1 O2 O2
=

where the left square is a pullback square. This map is coCartesian just in case X → X2 is
an equivalence. The fiber TopG

[G/H]
is equivalent to N(TopG/(G/H)) which is further equivalent to

N(TopH) by taking the fibre over eH.
The ideas and constructions in this example are common in this paper, most notably in 6.1 where
we will use almost the same construction for building our G-∞-category of G-manifolds.

Example 5.3.7. Let π : C → OopG be a G-∞-category and let x ∈ C. Denote with O(C) the ∞-
category of edges of C and denote with OcoCart(C) the full subcategory spanned by the coCartesian
edges. Then we define

x = OcoCartx→ (C) = {x} ×C OcoCart(C)

which we call the G-space associated to x (see [Shah18] 2.28).

5.4 G-∞-category of G-sets

In this section we will give a construction of the G-∞-category of finite pointed G-sets for G
a compact Lie group, which plays a fundamental role in the definition of the symmetric monoidal
G-∞-categories and more generally G-∞-algebras.
Note: Strictly speaking, this will not trully be a category of finite G-sets, but rather a finite
disjoint union of tranzitive G-spaces (G-orbits). The justification for this name comes from the
case when G is a finite group, which the autors of [BDGNS16] had in mind.

Let FG be an ∞-category of finite coproduct completion of transitive G-spaces. Since FG is
orbital the target functor

Fun(∆1, FG)
ev1−−→ Fun(1, FG) ∼= FG

is a Cartesian fibration. Thus, by pulling back along the inclusion OG ↪→ FG we obtain a Cartesian
fibration
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π : Fun(∆1, FG)×Fun(1,FG) OG → OG

Definition 5.4.1. (see [Nar17] 2.14, [Hor19] 3.4.1 ) Denote with

OG − FinG = Fun(∆1, FG)×Fun(1,FG) OG
The elements of OG − FinG can be seen as arrows U → O with U ∈ FG and O ∈ OG. Consider a
morphism in OG − FinG written as

U1 O1 ×O2
U2 U2

O1 O1 O2
=

We will say that this morphism is a summand inclusion just in case the map of G-sets U1 →
O1×O2

U2 is a summand inclusion i.e. there exists a finite G-set U such that U1

∐
U → O1×O2

U2

is an equivalence.
We will denote with OG − FinG∪ ⊂ OG − FinG the subcategory consisting of all objects with
morphisms being the summand inclusions.

Let OG∼ denote the maximal subgroupoid of OG, that is OG∼ ⊂ OG is a subcategory consisting
of all object with morphisms being the equivalences. It is not hard to show that

(OG − FinG,OG − FinG ×OG OG
∼,OG − FinG∪) (5.1)

is an adequate triple. Therefore we can define

Definition 5.4.2. The G-∞-category of finite pointed G-sets is defined as the pullback

FinG∗ Aeff (OG − FinG,OG − FinG ×OG OG
∼,OG − FinG∪)

OopG Aeff (OG,OG∼,OG)

It has the same objects as OG − FinG with morphism between (U1 → O1) and (U2 → O2) being
the span

U1 U U2

O1 O2 O2
=

with the left square being a summand inclusion.
We will say that a morphism in FinG∗ is inert if the map U → U2 is an equivalence, and that it
is active if the map U → O2 ×O1

U1 is an equivalence.

Remark 5.4.3. In order to see that FinG∗ is in fact a G-∞-category, that is that FinG∗ → O
op
G

is a coCartesian fibration we can consider FinG∗ as a particular subcategory of a G-∞-category
Aeff (OG) (see [Nar17] 2.13 ) containing all of the coCartesian edges of Aeff (OG) → OopG making
it a G-∞-subcategory (see [BDGNS16] section 4 ).
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Remark 5.4.4. ([BDGNS16] 2.11 ) Let I = [U → O] ∈ FinG∗ be a finite G-set and let Õ(FG) be a
twisted arrow ∞-category together with a left fibration

Õ(FG)→ F opG × FG
Taking a pullback of this left fibration along

OopG ∼= O
op
G × {U} → F opG × FG

we obtain a G-∞-category (a G-space to be more precise)

pU : U → OopG
which is classified by the functor U : OopG → Top, U(O) = MapFG(O,U). We will call pU : U →
OopG the discrete G-space attached to U .
Note that U '

∐
W∈Orbit(U)

W . Also note that this G-space U is equivalent to the one of 5.3.7, hence

we use the same notation.

Lemma 5.4.5. ([BDGNS16] 2.12) Let C be a G-∞-category and let U ∈ FG be a finite G-set.
Then the formation of the fibers over each orbit W ∈ Orbit(U) induces a trivial fibration

FunG(U,C)
'
�

∏
W∈Orbit(U)

CW

5.5 G-symmetric monoidal G-∞-categories

In the non-parametrized setting, we define a symmetric monoidal ∞-category as a coCartesian
fibration p : C⊗ → Fin∗ satisfying some additional conditions. Naturally, we would want to
imitate this definition in order to obtain G-symmetric monoidal ∞-categories by replacing Fin∗
with FinG∗ .

Definition 5.5.1. (see [Nar17], section 3.1 or [Hor19], B.0.10 ) A G-symmetric monoidal G-∞-
category is a coCartesian fibration C⊗ → FinG∗ such that for every finite pointed G-set J = (U →
O) ∈ FinG∗ we have an equivalence∏

W∈Orbit(U)

(χ[W⊂U ])! : C⊗[J] →
∏

W∈Orbit(U)

C⊗[I(W )]

where I(W ) = (W
=−→ W ) ∈ FinG∗ , C⊗[J] and C⊗[I(W )] are the corresponding fibers. The functor

χ[W⊂U ] : C⊗[J] → C⊗[I(W )] is associated to the following map in FinG∗ :

U W W

O W W

=

= =

=

Remark 5.5.2. When defining the maps χ[W⊂U ] in 5.5.1 we make use of the fact that OG is an
atomic ∞-category to ensure that the map

W → U ×O W

is a summand inclusion.

Remark 5.5.3. Given a G-symmetric monoidal G-∞-category C⊗ → FinG∗ we can define its un-
derlying G-∞-category CI(−) which fits into the pullback square
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CI(−) C⊗

OopG FinG∗
I(−)

where I : OG → FinG∗ is the same as in 5.5.1.

5.6 G-∞-operads

Definition 5.6.1. ([Nar17] def. 3.1 ) A G-∞-operad is an inner fibration p : O⊗ → OopG satisfying
the following conditions:

� For every inert edge e : J1 → J2 in FinG∗ and every x ∈ O⊗[J1] there exists a coCartesian lift

ẽ : x→ y over e.

� For any J = [U → O] ∈ FinG∗ and any choice of a pushforward functors along inert edges,
we have an equivalence ∏

W∈Orbit(U)

(χ[W⊆U ])! : O⊗[J]

'−→
∏

W∈Orbit(U)

O⊗I(W )

� For any choice of pushfoward functors along inert morphisms and for every map e : J1 =
[U1 → O1]→ J2 = [U2 → O2] in FinG∗ and every x ∈ O⊗[J1] and y ∈ O⊗[J2] the map

MapeO⊗(x, y)→
∏

W∈Orbit(U2)

Map
χ[W⊆U]◦e
O⊗ (x, (χ[W⊆U ])!y)

is an equivalence whereMapeO⊗(x, y) is the fiber over e of the mapMapO⊗(x, y)→MapFinG∗ (J1, J2).

An arrow e : x→ y of a G-∞-operad p : O⊗ → FinG∗ is called inert if it is p-coCartesian and
if p ◦ e is inert in FinG∗ . Let p : O⊗ → FinG∗ and q : E⊗ → FinG∗ be two G-∞-operads and let
F : O⊗ → E⊗ be a map over FinG∗ . We say that F is a map of G-∞-operads if F sends inert
edges to inert edges.

Remark 5.6.2. Every G-symmetric monoidal ∞-category is a G-∞-operad. Moreover, just as in
5.5.3 we can define the underlying G-∞-categorry of a G-∞-operad to be the pullback

O⊗I(−) O⊗

OopG FinG∗
I(−)

We will usually mark with O the underlying G-∞-category O⊗I(−).

Remark 5.6.3. Let p : O⊗ → FinG∗ and q : E⊗ → FinG∗ be two G-∞-operads and let F : O⊗ → E⊗

be a map of G-∞-operads. We will sometimes call F an O⊗-algebra in E⊗ especially when E⊗

is a G-symmetric monoidal ∞-category. We will mark with AlgG,O⊗(E⊗) or AlgG(O⊗, E⊗) the
∞-category of O⊗-algebras in E⊗.

Remark 5.6.4. Taking G to be a trivial group e, the notion of e-∞-operad corresponds to the
notion of an ∞-operad in the sense of Lurie (see [HA]). In this case, we will write Fine∗ simply as
Fin∗.
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G-coCartesian structure

Given a G-∞-category C, we will present the G-∞-operad C
∐
→ FinG∗ , the parametrized

version of the coCartesian structure from [HA] (see 2.4.3 ) which we will naturally call the G-
coCartesian structure. The construction of this G-∞-operad is given by Nardin and Shah in [NS].
The summary of this construction can be put in the following:

Proposition 5.6.5. Let C be a G-∞-category. Then there exists an ∞-category C
∐

together with
a map C

∐
→ FinG∗ which is a G-∞-operad such that

� For I = [U → O] ∈ FinG∗ the fiber (C
∐

)I is equivalent to FunG(U,C).

� An arrow from X1 to X2 lying above a map

U1 U U2

O1 O O2

f g

in FinG∗ is a natural transformation

f∗X1 → g∗X2

in FunG(U,C). To add up, the arrow is coCartesian if it exibits X2 as a G-left Kan extension
of f∗X1 along g̃ : U → U2 (induced by g).

Moreover, C
∐

is a G-symmetric monoidal G-∞-category if and only if C has all finite G-coproducts.

We have the following lemma which will prove to be useful:

Lemma 5.6.6. ([Hor19] 3.5.1) Let C be a G-∞-category and let O⊗ be a unital G-∞-operad. Con-

sider the ∞-category AlgG(O⊗, C) of morphisms of G-∞-operads C
∐

(with G-coCartesian struc-
ture) and O⊗ and the∞-category of G-functors between the underlying G-∞-categories FunG(O, C).
There is an evident restriction functor

AlgG(O, C)→ FunG(O, C)

which is an equivalence.
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G-manifolds

The second part of this project is dedicated to defining the equivariant version of factorization
homology defined by Ayala and Francis (see [AF15]) by using parametrized higher category theory.
Having that in mind, instead of ∞-categories we will have G-∞-categories, instead of functors we
will have G-functors etc.
The first thing on the list would be to define the G-∞-category of G-manifolds, which we describe
in the first section. Later, we introduce the tangent bundle classifier which we use to define the
framed version of the G-∞-category of G-manifolds. Lastly, we will describe the G-symmetric
monoidal structure on the G-∞-category of G-manifolds.
Note that the constructions and ideas presented here stem from the work of Horev (see [Hor19])
who gave a construction of equivariant version of factorization homology when G is a finite group.
From now on we will always assume that G is a compact Lie group of dimestion l.

6.1 G-∞-category of G-manifolds

We would want to have a G-∞-category of G-manifolds, that is a coCartesian fibration p :
MfldG → OopG such that for G/H ∈ OopG , MfldG

[G/H]
' N(MfldH), the nerve of the category of

H-manifolds. This coCartesian fibration is indeed classified by a functor

MfldG : OopG → Cat∞

MfldG : G/H 7→ N(MfldH)
(6.1)

so by the Lurie-Grothendieck correspondence we can take MfldG := Un∞(MfldG), but as Horev
explained in [Hor19] sec. 3.1, Un∞(MfldG) is not suitable for our work. Therefore, similar to
Horev’s construction, we will give an equivalent construction of MfldG.

Definition 6.1.1. Denote with OG−Mfld the topological category whose objects are G-manifold
bundles p : M → O where M is a smooth G-manifold such that the fibers are of dimension n,
O ∈ OG and p is a G-equivariant manifold bundle map, which we call the OG-manifolds. A map
between two OG-manifolds p1 : M1 → O1 and p2 : M2 → O2 consists of a commutative diagram

M1 M2

O1 O2

p1 p2

ϕ

63
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with the following property:
For every x ∈ O1 the induced map on the fiber (M1)x → (O1 ×O2

M2)x is a G-embedding map.
We denote with EmbOG(M1,M2) the subspace of Map(O1, O2)×C∞(M1,M2) consisting of maps
between OG-manifolds endowed with the weak C∞-topology.

Remark 6.1.2. Given an orbit O ∈ OG and choosing a basepoint of that orbit we can write the
given orbit as G/H where H is the stabilizer of the basepoint. Having this in mind, we can think
of OG-manifolds as equivariant manifold bundle maps M → G/H. The fiber MH over the coset
eH (where e is the neutral element of G) is therefore an H-manifold. Moreover, we see that in
that case, the map (M1)x → (O1 ×O2

M2)x from 6.1.1 is actually an H-embedding.

Remark 6.1.3. There exists an obvious forgetful functor θ : OG −Mfld → OG which takes an
OG-manifold M → O to its underlying orbit O. Given a map of orbits ϕ : O1 → O2 and two OG-
manifolds M1 → O1 and M2 → O2 we will denote with EmbOGϕ (M1,M2) ⊂ EmbOG(M1,M2) the

fiber over ϕ of the map EmbOG(M1,M2)→Map(O1, O2) induced by the forgetful functor. In the
case when φ : O

=−→ O is the identity, we will simply write EmbOGO (M1,M2) for EmbOGϕ (M1,M2).

Moreover, by 6.1.2 EmbOGO (M1,M2) is equivalent to the space ofH-embeddings EmbH((M1)x, (M2)x)
where x ∈ O and H = Stabx(O).

G-isotopy maps

Up until now, we have just defined OG-manifolds and maps between them. In this subsection we
will define G-isotopies and see their connection to G-homotpy equivalences and G-diffeomorphisms.

Definition 6.1.4. Let M1 → O1 and M2 → O2 be two OG-manifolds and let ϕ : O1 → O2 be a
map of orbits. By a G-isotopy over ϕ we will mean a path in EmbOGϕ (M1,M2). In the case when

O1 = O2 = O we will say that a path in EmbOGO (M1,M2) is a G-isotopy over O.
A map between two OG-manifolds is called a G-isotopy equivalence if it induces an equivalence in
N(OG −Mfld).

Remark 6.1.5. Note that an equivalence in N(OG −Mfld) always lies over an isomorphism of
orbits.
Let O ∈ OG be an orbit and let x ∈ O and let H = Stab(x). By taking x to be a basepoint of
O we have that O ∼= G/H. Let M1 → O and M2 → O be two OG-manifolds. A G-isotopy over
O in EmbOGO (M1,M2) is then equivalent to an H-equivariant isotopy between two H-embeddings
(M1)x → (M2)x. Having this in mind, a map of OG-manifolds f : M1 → M2 over the orbit O is
an equivalence in N(OG−Mfld) if and only if the restriction fx : (M1)x → (M2)x is invertible up
to H-isotopy, which means that f does not have to induce a G-diffeomorphism.

The same thing as in 6.1.5 occurs in the work of Horev ([Hor19] 3.1 ) and similarly we can deduce
that the existence of a G-isotopy equivalences ensures the existence of a G-diffeomorphisms. We
will show that the Proposition 3.1.12 in [Hor19] holds in the case when G is a compact Lie group:

Proposition 6.1.6. Let M1 → O and M2 → O be two OG-manifolds and let f ∈ EmbOGO (M1,M2)

and g ∈ EmbOGO (M2,M1) be G-isotopy inverses over O. Then there exists G-equivariand diffeo-
morphism M1

∼= M2 over O

Proof. As in 6.1.5 take x ∈ O and denote H = Stab(x). Since the space EmbOGO (M1,M2) is
homeomorphic to the space of H-equivariant embeddings (M1)x → (M2)x it is enough to consider
the case when G = H. Since H is finite the proof follows from the proof of [Hor19] 3.1.12.

G-∞-category of G-manifolds

The goal of this section is to construct the G-∞-category of G-manifolds. The idea is the following:
Note that the forgetful functor
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N(θ) : N(OG −Mfld)→ N(OG)

is a Cartesian fibration (see Lemma 6.1.8 below) which is by 6.1.2 and 6.1.3 classified by the functor
as in (6.1). Therefore, we will obtain our G-∞-category of G-manifolds as a dual to this Cartesian
fibration. In order to do so, we will first analyse the Cartesian edges in N(OG −Mfld).

Lemma 6.1.7. The forgetful functor N(θ) : N(OG −Mfld)→ N(OG) is an inner fibration.

Proof. By [HTT] 2.4.1.10 (i) it will suffice to show that, for two OG-manifolds p1 : M1 → O1 and
p2 : M2 → O2 the map

MapSing(OG−Mfld)(M1,M2)→MapSing(OG)(O1, O2)

is a Kan fibration. We will demonstrate this by showing that the map

p : EmbOG(M1,M2)→MapOG(O1, O2)

is a fiber bundle, hence in particular a Serre fibration ([Hat01] 4.48 ). Take ϕ ∈ MapOG(O1, O2)
and take x ∈ O1. Note that since orbits are transitive G-spaces, the map ϕ is determined by
its image ϕ(x) = y ∈ O2. Let H = Stab(x) and K = Stab(y) with H ≤ K. Furthemore, let
N1 = (M1)x and N2 = (M2)y and note that N1 is an H-manifold and N2 a K-manifold. We have
(O1, x) ∼= G/H, (O2, y) ∼= G/K and M1

∼= G×H N1, M2
∼= G×K N2. Then, a map

M1 M2

O1 O2
ϕ

is determined by a G-commutative diagram

N1 N2

{x} {y}

f

ϕ

Since the map M1 → O1 ×O2 M2 has to be a fiberwise G-embedding we see that the upper
horizontal map needs to be a G-embedding: a map f : (M1)x → (M2)y above ϕ induces a map on

the pullback f̃ : (M1)x → (O1×O2M2)x which is a G-embedding, but (O1×O2M2)x ∼= (M2)y = N2

as an H-manifold (i.e. with the restriction of action of K to H). Therefore

EmbOGϕ (M1,M2) ∼= EmbH(N1, N2)

Before we continue, note that, since O1 and O2 are G-orbits i.e. transitive G-spaces, the space
of G-equivariant maps MapG(O1, O2) will be generated under ϕ by G. In other words, every
ψ ∈ MapG(O1, O2) can be written as gϕ for g ∈ G. Now, consider a neighborhood V of ϕ in
MapG(O1, O2). By our previous remark, we conclude that there exists an open neighborhood U
of the neutral element e ∈ G such that for every ψ ∈ V there exists g ∈ U such that ψ = gϕ.
Additionally, we can choose V small enough such that U ∩ kU = ∅ for all k ∈ K (we can do this
because K is finite). This way, for every ψ ∈ V there exists a unique g ∈ U such that ψ = gϕ.
Then by letting U act on y ∈ O2 we obtain an open neighborhood Uy of y. Again, we can choose
V small enough such that p−1

2 (Uy) ∼= Uy ×N2. Then a map (f, ψ) ∈ EmbOG(M1,M2) with ψ ∈ V
restricts to
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N1 Uy ×N2

{x} Uy

f̃

ψ

Moreover, for the unique g ∈ U , ψ = gϕ, ψ(x) = gϕ(x) = gy, hence the upper diagram further
restricts to

N1 N2

{x} {gy}

f̃

ψ

Therefore, the map (f, ψ) ∈ EmbOG(M1,M2) is completely determined by the choice of ψ and

f̃ ∈ EmbH(N1, N2) and we have

p−1(V ) ∼= V × EmbH(N1, N2)

Hence, the map p : EmbOG(M1,M2) → MapOG(O1, O2) is a fiber bundle map, and consequently
a Serre fibration, as desired.

Lemma 6.1.8. N(θ) : N(OG−Mfld)→ N(OG) is a Cartesian fibration. To be more precise, let
M → O be a OG-manifold and let ϕ : O1 → O be a map of orbits. Then the pullback square

O1 ×O M M

O1 O
ϕ

is a N(θ)-Cartesian arrow in N(OG −Mfld). Moreover, a morphism between two OG-manifolds
M1 → O1 and M2 → O2 is N(θ)-Cartesian if and only if the commutative diagram from 6.1.1 is
equivalent to to a pullback diagram. In other words, the diagram

M1 O1 ×O2
M2

O1 O1
=

is a G-isotopy equivalence.

Proof. Given a commutative diagram as in 6.1.1, we can compose it as

M1 O1 ×O2
M2 M2

O1 O1 O2
=

If we assume that the right pullback square is N(θ)-Cartesian, then by [HTT] 2.4.1.7 the whole
morphism is N(θ)-Cartesian if and only if the left square is N(θ)-Cartesian, and the left square
is N(θ)-Cartesian if and only if the map M1 → O1 ×O2 M2 is an equivalence by [HTT] 2.4.1.5.
Therefore, we only need to prove the first part.
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By the dual statement of 5.1.8, we need to show that for every OG-manifold N → O2 the
diagram

EmbOG(N,O1 ×O M) EmbOG(N,M)

MapOG(O2, O1) MapOG(O2, O)

is a homotopy pullback diagram. By 6.1.7 we know that vertical arrows are fibrations hence it will
suffice to show that the fibers are equivalent. Fot this note that, for every ψ ∈MapOG(O2, O1) we
have a continuous bijection of the fibers

EmbOGψ (N,O1 ×O M)
f∗−→ EmbOGϕ◦ψ(N,M)

given by the universal property of the pullback, where f∗ is post composition with f : O1×OM →
M .

N O1 ×O M M

O2 O1 O

f

ψ ϕ

By the choice of the basepoint of the orbits, we can write the upper diagram as

N G/K1 ×G/H M M

G/K2 G/K1 G/H

f

with K2 ≤ K1 ≤ H all finite groups. Note that we can regard N and G/K1 ×G/H M as OG-
manifolds lying over G/H by composition N → G/K2 → G/K1 → G/H and G/K1 ×G/H M →
G/K1 → G/H. Note also that G/K2 → G/K1 → G/H and G/K1 → G/H are covering spaces
with fibres corresponding to H/K2 and H/K1 respectively. By taking the fiber over eH ∈ G/H
the upper diagram becomes equivalent to

t
H/K2

N1 t
H/K1

M1 M1

H/K2 H/K1 H/H

f1

where N1 is the fiber of N → G/K2 and M1 the fiber of M → G/H. Note that the fibers
of M → G/H and G/K1 ×G/H M → G/K1 are non-equivariantly the same (since the latter is
obtained via the pullback) but with different action. The fiber of the first bundle map is the
manifold M1 equipped with H-action, while the fiber of the second is acain M1 but with action
restricted to K1-action.
The right square is still a pullback square, hence we have that f1 induces a continuous bijection

EmbH( t
H/K2

N1, t
H/K1

M1)
f1∗−−→ EmbH( t

H/K2

N1,M1)

Since the map f1 is essentially given as a disjoint union of diffeomorphisms it is not hard to see
that the map f1∗ is open, hence it is a homeomorphism. By 6.1.3 we have
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EmbOGψ (N,O1 ×O M) ' EmbH( t
H/K2

N1, t
H/K1

M1)

EmbOGϕ◦ψ(N,M) ' EmbH( t
H/K2

N1,M1)

which ultimately gives us EmbOGψ (N,O1 ×O M) ' EmbOGϕ◦ψ(N,M) and the proof is finished.

Now we are ready to define the G-∞-category of G-manifolds.

Notation 6.1.9. For the sake of readability and easier writing we will abuse notation and write
OG for the nerve N(OG).

Let O∼G denote the maximal subgroupoid of OG. By 5.2 we have that the triples

(N(OG −Mfld), N(OG −Mfld)×OG O∼G, N(OG −Mfld)N(θ)−cart)

(OG,O∼G,OG)

are adequate triples.

Definition 6.1.10. The G-∞-category of G-manifolds is the coCartesian fibration π : MfldG →
OopG dual to the Cartesian fibration N(θ) : N(OG −Mfld)→ OG. By 5.2.7 the objects of MfldG

are OG-manifolds and a morphism from M1 → O1 to M2 → O2 is a diagram of the form

M1 M M2

O1 O2 O2
=

such that the left square is a pullback square. This morphism is π-coCartesian just in case the
right square is a G-isotopy equivalence.

Remark 6.1.11. Unwinding the definition, MfldG is obtained via the pullback of the effective
Burnside category

Aeff (N(OG −Mfld), N(OG −Mfld)×OG O∼G, N(OG −Mfld)N(θ)−cart)

along the equivalence

OopG
'−→ Aeff (OG,O∼G,OG)

Remark 6.1.12. Since π : MfldG → OopG is the dual of N(θ) it is classified by the same functor

OopG → Cat∞ sending an orbit G/H 7→ N(MfldH).
We have already explained how we can view orbits as quotients G/H where H is a finite subgroup
of G. Then the equivalence

MfldG
[G/H]

'−→ N(MfldH)

is given by taking the fiber of M → G/H over eH, with inverse given by the functor of topological
induction G×H (−) (see also [TD87] chapter 1, 9.2 ): Given an H-manifold M which we can write
as M → ∗, the topological induction gives us

G×H M → G×H (∗) ' G/H

which is an OG-manifold.
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Remark 6.1.13. Apart from 6.1.12 we would like to see other advantages of using the MfldG.
Some of them include:

� Restriction: Given finite subgroups K ≤ H ≤ G we would like to have a restriction functor

ResHK : MfldG
[G/H]

→MfldG
[G/K]

which under the equivalence from 6.1.12 restricts the H-action to K-action of the H-manifold
M .
Given an OG-manifold M → G/H the restriction functor gives us ResHK(M) the OG-manifold
over G/K obtained as a coCartesian lift of G/H → G/K ∈ Mor(OGop) starting from
M → G/H. By the description of coCartesian edges in MfldG this would simply be the
pullback

M ResHK(M)

G/H G/K

Forgetting the action, the fibers of M → G/H and ResHK(M) → G/K are the same, with
the ones of the former being H-manifolds and ones of the latter being K-manifolds, which is
what we wanted.

� Conjugation: For H ≤ G and g ∈ G the conjugation action equivalence

cg : MfldG
[G/H]

'−→MfldG
[G/gHg−1]

is given the following way:
For M → G/H, the conjugacy action on M , cg(M) is given as a coCartesian lift of the
equivalence G/H → G/gHg−1 ∈Mor(OGop) starting from M . Again, by the description of
the coCartesian arrows in MfldG, we have a pullback square

M cg(M)

G/H G/gHg−1

The inverse is given by cg−1 .

� Topological induction: Let K ≤ H ≤ G be finite subgroups and let MK be a K-manifold.
We would like to give a description of the topological induction H ×K MK in MfldG.
Let M → G/K be an OG-manifold with fiber MK . Then the topological induction H×KMK

in MfldG is given as a fiber of

M → G/K → G/H

Note that G/K → G/H is a covering G-map, hence the composition M → G/K → G/H
remains a G-manifold bundle i.e. an OG-manifold.
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6.2 The G-∞-category of framed G-manifolds

Following the non-parametrized and non-equivariant setting we would like to get to the notion
of framing on G-manifolds. By ”framing” we mean the G-manifolds with tangential structure.
Note that this term differs in the literature. Here, we focus on the framing in the sense of Ayala
and Francis [AF15] and consequently Horev [Hor19].
Similarly as in [MS74], the tangential structure on a n-dimensional G-manifold M is given by a
G-map τM : M → BOn(G) (see also [Wan80]). In this section we will define the G-∞-groupoid
Rep

n
(G) that can be identified with the G-space BOn(G) that classifies G-vector bundles and we

will define the G-tangent classifier map in the higher parametrized setting.

G-tangent classifier

In the non-equivariant (and non-parametrized) case the tangent classifier map is given by (see
[AF15] 2.1 )

τ : Mfldn → Top/BO(n)

where Mfldn is the ∞-category of smooth n-dimensional manifolds.
Our task is to find the parametrized version of this construction. There is one difference that we
need to address: we are not interested in framings on the underlying G-manifolds of a OG-manifolds
M → G/H, but we are rather interested in the framing on the fibers of M → G/H. Therefore,
even though the G-manifold M is of dimension n + l our fiberwise tangent classifier map will be
given by

τ : MfldG → TopG/BOn(G) (6.2)

Note that if we, by abuse of notation, write TM →M for the fiberwise tangent bundle map with
respect to M → G/H, then TMH is an H-representation (a finite dimensional real vector space
with H acting by linear isomorphisms), where MH is a fiber over eH of M → G/H. Therefore,
TM →M is a G-vector bundle map i.e. a vector bundle map which is a G-map such that G acts
on TM by bundle maps (linear actions on each fiber) and is hence classified by a map (6.2).

We define the following:

Definition 6.2.1. Let Rep
n
(G) ⊂ MfldG be the full G-∞-subcategory spanned by the OG-

manifolds E → O which are G-vector bundles.

The G-∞-category Rep
n
(G) is important since it will play a major role in the parametrized version

of (6.2).
Let us denote with V ectn(G)/B the category of n-dimensional G-vector bundles over the G-space
B. Since G-vector bundles are stable under pullbacks we have the following:

Proposition 6.2.2. ([TD87] I 9.2) Let H ⊆ G be a subgroup of G. For an H-space X and
a G-vector bundle p : E → G ×H X the assignment p 7→ pX , where pX is the restriction
of p to X ∼= H ×H X represents an equivalence between the category of G-vector bundles over
G ×H X and H-vector bundles over X. In particular, we have an equivalence V ectn(G)/(G/H) '
V ectn(H)/∗ ' Repn(H) from the category of G-vector bundles over the orbit G/H to the category
of H-representations. An inverse is given by sending a representation V of H to its topological
induction G×H V .

This proposition is very important since it helps us to prove that Rep
n
(G) is in fact a G-∞-

groupoid. But first, we will need a notion of the equivariant version of Kister-Mazur theorem (see
[Kis64]).
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Proposition 6.2.3. Let H ≤ G be a finite subgroup of a compact lie group G, and let V be an
n-dimensional H-representation. Then the spaces AutH(V ) and EmbH(V, V ) endowed with the
weak C∞-topology are weakly equivalent.

Proof. By translation, we have a weak equivalence of the spaces

EmbH0 (V, V ) ↪→ EmbH(V, V ), and AutH0 (V ) ↪→ AutH(V )

where EmbH0 (V, V ) (resp. AutH0 (V )) are embeddings (resp. automorphisms) which preserve the
origin. We will show that both these spaces are weakly equivalent to GLn(V ).
In order to show that GLn(V ) → EmbH0 (V, V ) is a weak equivalence it will suffice to show the
existence of the dashed lift of the diagram

Sk GLn(V )

Dk+1 EmbH0 (V, V )
f

f̃

for k ≥ −1 (with S−1 = ∅). We will write fd = f(d) ∈ EmbH0 (V, V ). Informally, we want to
transform the functions fd into linear functions. In addition, we want our transformation to send
fd into fd in case fd is already a linear function. We proceed with the following:

Take µ : [0,+∞) → [0, 1] to be a decreasing smooth function which is equal to 1 near 0 and
which is 0 on [1,+∞). Define

Fd(x, t) = (1− tµ(
||x||
ε

))fd(x) + tµ(
||x||
ε

)Dfd(0)x

where t ∈ [0, 1], x ∈ V and where Dfd(0) is the derivative at 0 of fd. Note that Fd(x, t) = fd(x)
whenever ||x|| ≥ ε. Additionally, since Dk+1 is compact, we can write

||DFd(x, t)−Dfd(x)|| < Cε

for some C > 0, ||x|| ≤ ε and for all d ∈ Dk+1. Hence, choosing ε small enough we can conclude
||DFd(x, t)|| 6= 0 for every x ∈ V , t ∈ [0, 1], d ∈ Dk+1, hence, they will all be embeddings (since
they are when t = 0). Let us denote with f̄d(x) = Fd(x, 1). Note that, if fd is linear, then
Fd(x, t) = fd(x) for every t ∈ [0, 1], hence, in particular f̄d(x) = fd(x).
Next, define the function F ′d(x, t) to be

Dfd(0)x, for ||x|| ≤ ε,t < 1 or t = 1

(1− t)f̄d(
x

1− t
), for ||x|| > ε,t < 1

Again, note that if f̄d is linear, then F ′d(x, t) = f̄d(x) for every t ∈ [0, 1].

Finally, define f̃d = F ′d(x, 1). With this, we have shown that GLn(V ) → EmbH0 (V, V ) is a weak
equivalence.

The proof that GLn(V )→ AutH0 (V ) is analogous. We consider a diagram

Sk GLn(V )

Dk+1 AutH0 (V )
f
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Since all fd are now diffeomorphisms, then so will Fd(−, t) and F ′d(−, t) be for all t ∈ [−1, 1].

We are ready to present the following:

Proposition 6.2.4. The G-∞-category Rep
n
(G) is a G-∞-groupoid. In particular, for an orbit

G/H, the objects of the fiber Rep
n
(G)[G/H] can be viewed as n-dimensional real H-representations.

The mapping space between two such elements V,W is equivalent to the mapping space IsoRepn(H)(V,W )
of linear, H-equivariant isomorphisms endowed with a weak C∞-topology.

Proof. By [HTT] 2.4.2.4 it will suffice to show that the fibers Rep
n
(G)[O] are ∞-groupoids, hence

the coCartesian fibration Rep
n
(G) → OopG is a left fibration i.e. a G-∞-groupoid. By taking a

basepoint x ∈ O and using (O, x) ∼= G/H we have Rep
n
(G)[G/H] ' Repn(H) by taking the fibers

over eH. The claim now follows from 6.2.3.

Recall that the classifying space for G-vector bundles is a G-space BOn(G) with the following
property:
For every G-space X we have the following isomorphism

[X,BOn(G)]G ∼= Ob(V ectn(G)/X)

between the G-homotopy classes of maps X → BOn(G) and the G-vector bundles over X.

Proposition 6.2.5. The G-∞-groupoid Rep
n
(G) corresponds to BOn(G) ∈ TopG, the classifying

G-space of n-dimensional G-vector bundles.

Proof. Space BOn(G) classifies the functor O 7→ MapG(O,BOn(G)), but MapG(O,BOn(G))
classifies all G-vector bundles over O i.e. MapG(O,BOn(G)) ' Rep

n
(G)[O]. Therefore, the

coCartesian fibration BOn(G) → OopG induced by BOn(G) is classified by the same functor as

Rep
n
(G)→ OopG , hence the conclusion.

Moving on with the parametrized construction of the tangent classifier map, we have to replace
TopG with a suitable parametrized invariant. Note that the model for TopG from 5.3.6 is not a

good one since we need the G-∞-category of G-∞-groupoids in the place of TopG. We provide the
following construction:

Construction 6.2.6. Let us denote with GrpG the ∞-category obtained as the nerve of a sim-
plicial category whose objects are given by left fibrations X → OopG . Note that we have a functor
Lf : TopG → GrpG that sends a G-space X to a left fibration Lf(X)→ OopG classified by a functor
O 7→ MapG(O,X). We proceed with the construction of G-∞-category of G-∞-groupoids in a
similar manner as in 5.3.6.
Denote with OG−Grp the nerve of the simplicial category whose objects are pairs (O,X → Lf(O))
where O ∈ OG and where X → Lf(O) is a left fibration. The forgetful functor OG −Grp → OG
is a Cartesian fibration and we obtain GrpG → OopG from the construction of a dual.
The functor Lf induces a functor OG − Top → OG − Grp which further induces a functor
Lf∗ : TopG → GrpG sending (X → O) to the pair (O,Lf(X) → Lf(O)). This functor re-

stricts to an equivalence on a full G-∞-subcategory of TopG spanned by elements (X → O) where
X is a G-CW -complex.

Remark 6.2.7. Note that Lf(O) ' O since they are classified by the same functor.

With all categories in place we would like to construct a map

τ : MfldG → GrpG
/BOn(G)
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which corresponds to the G-tangent bundle classifying map.

We need to prepare ourselves a little bit more in order to continue our construction

Definition 6.2.8. We will denote with OG−Rep the full subcategory of OG−Mfld spanned by
those objects E → O which are G-vector bundles.

As a direct corollary of 6.2.4 we have:

Lemma 6.2.9. The natural map OG −Repop → Rep
n
(G) is an equivalence.

Proof. It would be enough to verify that (OG − Repop)[O] ' Rep
n
(G)[O] for every O ∈ OG which

follows from the description of mapping spaces in Rep
n
(G) from 6.2.4.

Construction 6.2.10. Let (M → O) ∈MfldG
[O]

and let D(M)→ OG −Repop be a left fibration

classified by a functor (E → W ) 7→ MapOG−Mfld(E → W,M → O). The forgetful functor
MapOG−Mfld(E →W,M → O)→MapG(W,O) induces a diagram

D(M) OG −Repop

Lf(O) OopG

We first note that Lf(O) ' O and then, with 6.2.9 we obtain the diagram

D(M) Rep
n
(G)

O OopG

Next, we see that the composition D(M) → O → OopG makes D(M) into a G-∞-groupoid since

it is a composition of two left fibrations, hence a left fibration, and we have D(M) ∈ GrpG
[O]

.

Moreover, the structure map D(M) → O factors through D(M) → O×Rep
n
(G) → O hence

we have constructed an object living in (GrpG
/Rep

n
(G)

)[O]. This fiberwise functor MfldG
[O]
→

(GrpG
/Rep

n
(G)

)[O] assembles into a G-functor

τ : MfldG → GrpG
/Rep

n
(G)
' GrpG

/BOn(G)
(6.3)

Proposition 6.2.11. The functor τ in (6.3) corresponds to the G-tangent bundle classifying func-
tor.

Proof. For (M → O) ∈MfldG
[O]

we have the corresponding left fibration D(M)→ O which factors
as

D(M)→ O×Rep
n
(G)→ O

We have to show that this map corresponds to the fiberwise tangent bundle classifier of M

τ : M → BOn(G)

Since the left fibration O×Rep
n
(G)→ O is obtaine via the pullback of the left fibration Rep

n
(G)→

OopG along O → OopG , they are classified by the same G-space, which is BOn(G) by 6.2.5. Therefore,
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we need to prove that D(M) corresponds to M . In other words, we need to prove the following
equivalence

D(M)[W ] 'MapG(W,M)

where (W → O) ∈ O. Without the loss of generality, it will suffice to prove the statement for
(O

=−→ O) ∈ O. Unwinding the definition of D(M) we see that, by [HTT] 3.3.4.5 the fiber D(M)[O]

is equivalent to

D(M)[O] ' colim
(E→O)∈Rep

n
(G)
EmbOG(E,M)

Taking a basepoint x ∈ O and identifying (O, x) ∼= G/H we obtain the following equivalent
expression by taking the fibers over x:

D(M)[O] ' colim
V ∈Repn(H)

EmbH(V,N)

where N is the H-manifold obtained as the fiber of M → O over x. We need to show that this
colimit is equivalent to MapG(O,M) ' MapH(∗, N) ' NH . Note that the upper colimit is the
colimit in the ∞-categorical sense. Equivalently, we would have to prove the equivalence

hocolim
V ∈Repn(H)

EmbH(V,N)
'−→MapH(∗, N)

in the category of spaces. Note that by the equivariant version of Kister-Mazur theorem (see
6.2.3), the colimit in our equation decomposes as a disjoint union indexed by the isomorphism
classes of H-representations, hence we can focus only on one such class, and it will suffice to show

hocolim
AutH(V )

EmbH(V,N)
'−→MapH(∗, N).

We can replace EmbH(V,N) with the equivalent space of frames FrH(V,N) (see 7.3), which we
can regard as the space of H-vector bundle maps

V TN

∗ N

where we have an induced map FrH(V,N) → MapH(∗, N) given by the downstairs map of the
diagram ∗ → N , hence a map hocolim

AutH(V )
FrH(V,N)→MapH(∗, N). We want to show that this map

is in fact a weak homotopy equivalence. Note that the homotopy colimit is given by a diagram of
a group action of AutH(V ) on FrH(V,N) by precomposition, hence hocolim

AutH(V )
FrH(V,N) is given

by the homotopy quotient FrH(V,N)AutH(V ).

In order to show that the map FrH(V,N)AutH(V ) →MapH(∗, N) is a weak homotopy equivalence

it will sufice to show that the homotopy fiber of the map FrH(V,N) → MapH(∗, N) is weakly
equivalent to AutH(V ). Next, note that MapH(∗, N) represents the equivariant configuration
space, hence the map FrH(V,N)→MapH(∗, N) is a fibration, meaning that fibers and homotopy
fibers coincide.
Let us fix e ∈MapH(∗, N). Note that e(∗) = y ∈ NH . Therefore TNy ∼= V as an H-representation
and we have that the fiber of FrH(V,N) → MapH(∗, N) over e is equivalent to FrH(V,N)e '
AutH0 (V ). The claim follows from the equivalence AutH(V ) ' AutH0 (V ) given by translations.
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Framing on G-manifolds

Following our previous work, we are ready to define the G-∞-category of framed G-manifolds.
We start with the definition of a framing:

Definition 6.2.12. Let B be a G-space and let f : B → BOn(G) be a G-map. Let M be a
G-manifold. The B-framing on M is given by a G-map fM : M → B together with a G-homotopy
commutative diagram

B

M BOn(G)

ffM

τM

where M
τM−−→ BOn(G) is a tangent bundle classifier map.

Definition 6.2.13. Let B be a G-space and let f : B → BOn(G) be a G-map. The G-∞-category
of B-framed OG-manifolds is defined to be a pullback

MfldG,B−fr GrpG
/B

MfldG GrpG
/BOn(G)

f∗

τ

Moreover, for O ∈ OG and for two B-framed OG-manifolds M,N ∈ MfldG,B−fr
[O]

the mapping

space EmbG,B−frO (M,N) is obtained via the homotopy pullback

EmbG,B−frO (M,N) MapG/(B×O)(M
f̃M−−→ B ×O,N f̃N−−→ B ×O)

EmbGO(M,N) MapG/(BOn(G)×O)(M
τ̃M−−→ BOn(G)×O,N τ̃N−−→ BOn(G)×O)τ

Definition 6.2.14. Analogous to G-manifolds, we can define the G-∞-category RepB−fr
n

(G) as
a pullback

RepB−fr
n

(G) MfldG,B−fr

Rep
n
(G) MfldG

f∗

τ

Proposition 6.2.15. The G-∞-category RepB−fr
n

(G) corresponds to the G-space B.

Proof. Left fibration corresponding toG-space B can be described as O 7→MapG(O,B), where O ∈
OG, which corresponds to the classification of B-framed G-vector bundles over O by composition
O → B → BOn(G).

Remark 6.2.16. Let D be a G-space. Then D defines a G-object in TopG. By definition (see

[BDGNS16] section 7 ), this G-object is a coCartesian section D : OopG → TopG given by
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D(O) := (D ×O → O)

Therefore an object of (TopG
/D

)[O] ' TopG
[O]/D(O)

' TopG/(D×O→O) is given by a G-space X

together with G-maps X → O and X → D.

Example 6.2.17. One of the most interesting examples of framing is when the G-space B is taken
to be a point B = ∗. The map ∗ → BOn(G) classifies a G-vector bundle over the point i.e. an
n-dimensional G-representation V → ∗. Therefore, the tangent bundle on M ∈ MfldG,B−fr is
given by a commutative diagram

TM V EOn(G)

M ∗ BOn(G)

where both inner right and left squares are pullback squares. We will call this the V -framing on
MfldG. Finally, note that V -framing corresponds to the trivialization of the fiberwise tangent
bundle TM ∼= M × V as a G-vector bundle.

Example 6.2.18. By taking B = BOn(G) and f : BOn(G)
=−→ BOn(G) we get to the notion of

G-∞-category of G-manifolds with no tangential structure in which case we have an equivalence
MfldG,B−fr 'MfldG.

Remark 6.2.19. For more example, such as orientations of G-vector bundles (see also [CMW01])
and G-∞-category of G-manifolds with free G-action, see [Hor19] 3.3.

6.3 G-symmetric monoidal structure

In this section, we will endow the G-∞-category of G-manifolds with a G-symmetric monoidal
structure. In particular, we will construct a new G-symmetric monoidal category MfldG,t whose

underlying G-∞-category will be MfldG.
After that, we will take the framing into account.

In order to construct the G-symmetric monoidal category of G-manifolds, we would like to use
the unfurling construction of Barwick (see [Bar14], in particular section 11 ). In order to do so we
will first introduce the category OG − Fin−Mfld based on which we will build our category:

Definition 6.3.1. Let us denote with OG − Fin−Mfld the topological category whose objects
consist of a sequence M → U → O where M is a G-manifold, U is a finite G-set and O ∈ OG such
that the composite map M → O is a G-manifold bundle map. We will say that (M → U → O) is
a OG − Fin-manifold. Let (M1 → U1 → O1) and (M2 → U2 → O2) be two OG − Fin-manifolds.
A morphism of OG − Fin-manifolds consists of a commutative diagram

M1 M2

U1 U2

O1 O2

ϕ̃

ϕ
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where the lower square is a map of finite G-sets. Additionally, we will require that the induced
map M1 → O1 ×O2

M2 is fiberwise a G-embedding map.
We will denote with MapOG−FinG(U1, U2) the subspace of MapG(O1, O2) ×MapG(U1, U2) such
that lower square in the upper diagram commutes, with inherited weak C∞-topology. Similarly,
we will denote with EmbOG−Fin(M1,M2) the subspace of MapOG−Fin(U1, U2) × C∞(M1,M2)
forming commutative diagrams as above, with the inherited weak C∞-topology.

Remark 6.3.2. Let M → U → O be an OG − Fin-manifold. The idea of this construction is
to view this OG − Fin-manifold as the disjoint union of MW → W → O, where W ∈ Orbit(U)
and MW is the restriction of M → U to W . Note that the composite map MW → W → O is
a G-manifold bundle map. Moreover, W → O is a covering map, and as in 6.1.13, we can look
at MW → W → O as the topological induction of MW → W along W → O. In other words,
MW →W is an OG-manifold. This fact will prove useful in our later work.

Again, we have a forgetful functor q : OG − Fin −Mfld → OG − FinG which we would like
to use for our unfurling construction. The unfurling construction requires additional collection of
data on OG−FinG. In particular, we need a pair of subcategories containing all the equivalences.
The morphisms of the first and second subcategory will be called respectively:

� ingressive: In our case those will be morphisms in OG−FinG which are isomorphisms over
orbits;

� egressive: Morphisms in OG − FinG containing summand inclusions.

The first step toward our construction is:

Lemma 6.3.3. The forgetful functor N(q) : N(OG −Fin−Mfld)→ N(OG −FinG) is an inner
fibration.

Proof. Similarly to the proof of 6.1.7 it will be enough to show that the map

MapSing(OG−Fin−Mfld)(M1 → U1 → O1,M2 → U2 → O2)

MapSing(OG−FinG)(U1 → O1, U2 → O2)

is a Kan fibration. Note that this map breaks as a disjoint union of

(MapSing(OG−Fin−Mfld)(M1 → U1 → O1,M2 → U2 → O2))[ϕ̃]

(MapSing(OG−FinG)(U1 → O1, U2 → O2))[ϕ̃]

indexed by [ϕ̃] = π0(ϕ̃, ϕ) ∈ π0(MapSing(OG−FinG)(U1 → O1, U2 → O2)). Suppose that these
maps are all Kan fibrations. Then, for n ≥ 1 and 0 ≤ i ≤ n, the dotted lift in the following
diagram exists

Λni MapSing(OG−Fin−Mfld)(M1,M2)

∆n MapSing(OG−FinG)(U1 → O1, U2 → O2)

since the diagram factors as
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Λni (MapSing(OG−Fin−Mfld)(M1,M2))[ϕ̃] MapSing(OG−Fin−Mfld)(M1,M2)

∆n (MapSing(OG−FinG)(U1 → O1, U2 → O2))[ϕ̃] MapSing(OG−FinG)(U1, U2)

for some [ϕ̃] ∈ π0(MapSing(OG−FinG)(U1 → O1, U2 → O2)). Therefore, it will suffice to show that

(MapSing(OG−Fin−Mfld)(M1 → U1 → O1,M2 → U2 → O2))[ϕ̃]

(MapSing(OG−FinG)(U1 → O1, U2 → O2))[ϕ̃]

are all Kan fibrations. We will show that

q[ϕ̃] : (MapOG−Fin−Mfld(M1,M2))[ϕ̃] → (MapOG−FinG(U1 → O1, U2 → O2))[ϕ̃]

are all fiber bundle maps, hence Serre fibrations. Let us fix (ϕ̃, ϕ) ∈MapOG−FinG(U1 → O1, U2 →
O2). Consider a commutative diagram

M1 M2

U1 U2

O1 O2

ϕ̃

ϕ

As in 6.1.7 the map ϕ is completely determined by the image ϕ(x) = y for some chosen x ∈ O1.
We will mark H = Stab(x) and K = Stab(y). Since U1 → O1 and U2 → O2 are covering maps, we
can mark their fibers with S and T respectively. Since U1 and U2 are finite G-sets i.e. equivalent to
finite disjoint union of orbits, S and T will be finite sets. Moreover, S will have induced H-action
and T will be equipped with K-action. Now again, by equivariance, the map ϕ̃ will be completely
determined by the restriction ξ : S → T (which is an H-map) to the fibers of x and y. Then the
upper diagram restricts to

N1 N2

S T

{x} {y}

f

ξ

ϕ

where N1 = (M1)x and N2 = (M2)y. Note that the map f corresponds to an H-embedding
N1 → N2, but also note that f cannot be any H-embedding, it lies over the map ξ̄ : OrbitH(S)→
OrbitK(T )
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N1 N2

S T

OrbitH(S) OrbitK(T )

f

ξ

ξ̄

where OrbitH(S) is the set of H-orbits of S and OrbitK(T ) is the set of all K-orbits of T . Furthe-
more, ξ̄ is determined by [ϕ̃] ∈ π0(MapOG−FinG(U1 → O1, U2 → O2)). We will denote with

EmbH[ϕ̃](N1, N2)

all such H-embeddings of N1 into N2.

Since the topology on (MapOG−FinG(U1, U2))[ϕ̃] is inherited fromMapG(O1, O2)×MapG(U1, U2)
we can choose a suitable neighborhood V of (ϕ̃, ϕ) such that the projection on the level of orbits
represents a neighborhood W of ϕ as in 6.1.7 with the addition that the inverse of Wy of the

covering map U2 → O2 can be written as Wy × T . To add up, the maps (ψ̃, ψ) ∈ V are such that

π0(ψ̃) = π0(ϕ̃). Now the map (f, ψ̃, ψ) ∈ EmbOG−Fin(M1,M2) with (ψ̃, ψ) ∈ V restricts to

N1 Wy ×N2

S Wy × T

{x} Wy

f̃

ε

ψ

There is a unique g ∈W such that ψ = gϕ, hence we have

N1 N2

S T

{x} {gy}

f̃

ε

ψ

And the map (ψ̃, ψ) is completely determined by the lower square of this diagram. Therefore, we
have

q−1
[ϕ̃] (V ) ∼= V × EmbH[ϕ̃](N1, N2)

meaning that q[ϕ̃] is a fiber bundle map and consequently a Serre fibration. With this the proof is
finished.

Lemma 6.3.4. A morphism (f, ϕ̃, ϕ) of N(OG − Fin−Mfld) in which (ϕ̃, ϕ) ∈ OG − FinG∪ is
N(q) - Cartesian if and only if it is equivalent to a pullback over a summand-inclusion.

Proof. We prove this lemma in several steps:
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1. We can factor a morphism between two elements of OG − Fin −Mfld, (M1 → U1 → O1)
and (M2 → U2 → O2) as

M1 U1 ×U2
M2 M2

U1 U1 U2

O1 O1 O2

=

=

where the right side is a pullback over a summand inclusion. By [HTT] 2.4.1.7 and 2.4.1.5
it will suffice to prove that the right side is an N(q)-cartesian arrow, which we prove in the
following step.

2. Consider a map in OG − Fin−Mfld

M1 M2

U1 U2

O1 O2

=

=

where the upper square is a pullback square. We can factor this map as

M1 O1 ×O2
M2 M2

U1 O1 ×O2 U1 U2

O1 O1 O2
=

Note that the right lower square and right rectangle are pulback diagrams, hence so is the
right upper square. Since the upper rectangle is a pullback diagram so is the left upper
square. Analogous to 6.1.8 we can show that the right side is N(q)-Cartesian taking into
account 6.3.3, hence by [HTT] 2.4.1.7, we need to show that the left side is an N(q)-Cartesian
morphism.

3. Let U1

∐
U2 be a coproduct of finite G-sets U1 and U2 (hence, it is a finite G-set). Note that

every OG − FinG-manifold M → (U1

∐
U2) → O decomposes as M1 tM2 → U1

∐
U2 → O

where M1 → U1 → O and M2 → U2 → O are OG − FinG-manifolds.
Having this in mind, consider the following diagram

M1 M1 tM2

U1 U1

∐
U2

O O=
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Note that it is a pullback diagram. We want to show that it is a N(q)-Cartesian arrow. By
the dual statement of 5.1.8 we have to prove that for every N → U →W the diagram

MapOG−Fin−Mfld(N,M1) MapOG−Fin−Mfld(N,M1 tM2)

MapOG−FinG(U →W,U1 → O) MapOG−FinG(U →W,U1

∐
U2 → O)

is homotopy Cartesian.
By 6.3.3 the left and right vertical arrows are fibrations, hence it will suffice to show the
equivalence of the fibers. First note that W ×O (M1tM2) ∼= (W ×OM1)t(W ×OM2) hence,
for a map in MapOG−Fin−Mfld(N,M1) the upper horizontal map is determined by a map

N →W ×O M1 ↪→ (W ×O M1) t (W ×O M2) ∼= W ×O (M1 tM2)

which is a fiberwise embedding map. Therefore, for Φ ∈MapOG−FinG(U →W,U1 → O) the
fibers EmbOGΦ (N,M1) and EmbOGΦ◦q(i)(N,M1 tM2) are the same, where i : M1 ↪→ M1 tM2

and q(i) is the projection to a map in OG − FinG. With this the proof is finished.

Lemma 6.3.5. A morphism (f ′, ϕ̃′, ϕ′) in which (ϕ̃′, ϕ′) ∈ OG − FinG ×OG OG
∼ is N(q)-

coCartesian if and only if it is G-isotopic to an identity of manifolds over an orbit isomorphism.

Proof. Let (M1 → U1 → O1) and (M2 → U2 → O2) be the elements of OG − Fin −Mfld such
that there is an isomorphism O1

∼= O2. Then every morphism of these elements lying over the
isomorphism of orbits can be factored as

M1 M1 M2

U1 U2 U2

O1 O2 O2

=

∼= =

Then, by the dual statements of [HTT] 2.4.1.7 and 2.4.1.5 it will suffice to show that the left side
is a N(q)-coCartesian morphism.
By 5.1.8 we have to show that for every (M → U → O) ∈ OG − Fin −Mfld the commutative
diagram

MapOG−Fin−Mfld(M1,M) MapOG−Fin−Mfld(M1,M)

MapOG−FinG(U2 → O2, U → O) MapOG−FinG(U1 → O1, U → O)

is in fact a homotopy pullback diagram. By 6.3.3 we know that vertical maps are fibrations,
therefore it will suffice to show that the fibers are equivalent. They will, in fact, be the same,
since the induced map on fibers is given simply by precomposition M1

=−→ M1 → M on the level
of manifolds i.e. we have



CHAPTER 6. G-MANIFOLDS 82

M1 M1 M

U1 U2 U

O1 O2 O

=

∼=

The inverse will again be the identity on the level of manifolds and is given by the commutativity
of the diagram

U1 U2

O1 O2
∼=

Proposition 6.3.6. The inner fibration OG − Fin −Mfld → OG − FinG is adequate over the
triple

(OG − FinG,OG − FinG ×OG OG
∼,OG − FinG∪)

in the sense of [Bar14] definition 10.3.

Proof. By [Bar14] 10.3 we need to verify the following:

1. Ingressive morphisms have coCartesian lifts, which is true by 6.3.5;

2. Egressive morphisms have Cartesian lifts, which is true by 6.3.4;

3. In the terminology of Barwick [Bar14], for a given ambigressive pullback diagram in OG −
FinG

I1 I2

J1 J2

ϕ1

ψI

ϕ2

ψJ

where ψI and ψJ are ingressive and ϕ1 and ϕ2 are egressive morphisms, the natural base-
change operation b : (ψI)! ◦ ϕ1

∗ → ϕ2
∗ ◦ (ψJ)! is an equivalence.

Let I1 = [UI1 → OI1], I2 = [UI2 → OI2], J1 = [UJ1 → OJ1], J2 = [UJ2 → OJ2] and let
M → UJ1 → OJ1 be an OG − Fin-manifold above J1. Then by 6.3.4 and 6.3.5 we have:

ϕ1
∗(M → UJ1 → OJ1) = [UI1 ×UJ1

M → UI1 → OI1]

(ψI)! ◦ ϕ1
∗(M → UJ1 → OJ1) = [UI1 ×UJ1

M → UI2 → OI2]

given by a diagram
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M UI1 ×UJ1
M UI1 ×UJ1

M

UJ1 UI1 UI2

OJ1 OI1 OI2

=

∼=

where the upper left square is a pullback square. For the other operation:

(ψJ)!(M → UJ1 → OJ1) = [M → UJ2 → OJ2]

ϕ2
∗ ◦ (ψJ)!(M → UJ1 → OJ1) = [UI2 ×UJ2

M → UI2 → OI2]

given by a diagram

M M UI2 ×UJ2
M

UJ1 UJ2 UI2

OJ1 OJ2 OI2

=

∼=

where the upper right square is a pullback square.
We obtain the map b by composing the diagrams of ϕ∗1 and (ψI)! to obtain

UI1 ×UJ1
M M M

UI1 UJ1 UJ2

OI1 OJ1 OJ2

=

∼=

Note that by the commutativity of the ambigressive square we have that

UI1 → UJ1 → UJ2 ' UI1 → UI2 → UJ2

which induces a map b̄ to the pullback

UI1 ×UJ1
M UI2 ×UJ2

M M

UI1 UI2 UJ2

OI1 OI2 OJ2

b̄

∼=
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Our natural base-change operation b is thus obtained as the left side of the following com-
mutative diagram

UI1 ×UJ1
M UI1 ×UJ1

M UI2 ×UJ2
M

UI1 UI2 UI2

OI1 OI2 OI2

= b̄

=

∼= =

We still need to prove that b is an equivalence. In order to do so, we turn to the diagram

UI1 ×UJ1
M M

UI1 UJ1

UI2 UJ2
∼=

in which the upper square is a pullback square by the construction of UI1×UJ1
M and where

the lower square is also a pullback square provided by the fact that that we have been given
an ambigressive pullback square. Hence, the outer rectangle is a pullback diagram, which
implies UI1 ×UJ1

M ' UI2 ×UJ2
M as desired.

Definition 6.3.7. Let us denote with (OG−Fin−Mfld)+ ⊂ OG−Fin−Mfld the subcategory
consisting of all the objects of OG − Fin−Mfld with morphisms the N(q)-Cartesian edges over
summand inclusions. Additionaly, denote with (OG − Fin−Mfld)+ the category

OG − Fin−Mfld×OG−FinG (OG − FinG ×OG OG
∼) ' OG − Fin−Mfld×OG OG

∼

Proposition 6.3.8. The triple (OG −Fin−Mfld, (OG −Fin−Mfld)+, (OG −Fin−Mfld)+)
is adequate. Moreover, applying the effective Burnside construction to the functor N(q) : OG −
Fin−Mfld→ OG − FinG, we obtain a functor

Aeff (OG − Fin−Mfld, (OG − Fin−Mfld)+, (OG − Fin−Mfld)+)

Aeff (OG − FinG,OG − FinG ×OG OG
∼,OG − FinG∪)

γ

which is a coCartesian fibration. We call γ the unfurling of N(q).

Proof. By (5.1) and 6.3.6 together with [Bar14] 11.2 we have that the triple

(OG − Fin−Mfld, (OG − Fin−Mfld)+, (OG − Fin−Mfld)+)

is adequate, which justifies the construction of the functor γ.
By [Bar14] 11.4 the functor γ is an inner fibration. The structure of a coCartesian fibration is

given by [Bar14] 11.5, 6.3.5 and 6.3.4.
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Definition 6.3.9. Define the∞-categoryMfldG,t together with a coCartesian fibrationMfldG,t →
FinG∗ by a pullback

MfldG,t Aeff (OG − Fin−Mfld, (OG − Fin−Mfld)+, (OG − Fin−Mfld)+)

FinG∗ Aeff (OG − FinG,OG − FinG ×OG OG
∼,OG − FinG∪)

γ

'

As we will later see MfldG,t has a structure of a symmetric monoidal G-∞-category.

Remark 6.3.10. Unwinding the definitions we can see that the objects in MfldG,t are OG − Fin-
manifolds, while a morphism between (M1 → U1 → O1) and (M2 → U2 → O2) is given by a
diagram

M1 M M2

U1 U U2

O1 O2 O2
=

where the left side is equivalent to a pullback over a summand inclusion. This morphism is
coCartesian just in case when the right side is equivalent to the identity of manifolds.

Proposition 6.3.11. The coCartesian fibration MfldG,t → FinG∗ has the structure of a G-

symmetric monoidal ∞-category whose underlying G-∞-category is equivalent to MfldG, the G-
∞-category of G-manifolds.

Proof. The underlying G-∞-category of MfldG,t is obtained via the pullback along the functor

I(−) : OopG → FinG∗ given by I(O) = [O
=−→ O]. Hence, the objects of (MfldG,t)I(−) are given by

M → O
=−→ O and the morphisms are given by diagrams

M1 M M2

O1 O2 O2

O1 O2 O2

= = =

Where the left side is a pullback diagram. Hence, (MfldG,t)I(−) 'MfldG by the functor (M →
O

=−→ O)→ (M → O).
Next, consider I = [U → O] ∈ FinG∗ . An object M → U → O decomposes as

t
W∈Orbit(U)

MW →
∐

W∈Orbit(U)

W → O
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with (MW →W ) ∈MfldG
[W ]

. Therefore, the functor∏
W∈Orbit(U)

(χ[W⊆U ])! : MfldG,t
[I]
→

∏
W∈Orbit(U)

MfldG
[W ]

given by

(M → U → O) ' ( t
W∈Orbit(U)

MW →
∐

W∈Orbit(U)

W → O) 7→
∏

W∈Orbit(U)

(MW →W )

is an equivalence. Hence the statement follows.

Framed case

For this part, let us fix a G-map f : B → BOn(G) with B a G-space. Going further, it would
be more conveniend to look at the G-∞-category of G-∞-groupoids GrpG as a subcategory of
G-∞-category of G-spaces. We have already mentioned that if we restrict our attention to the
subcategory of TopG spanned by those G-spaces of the form X → O with O ∈ OG and X a

G-CW -complex, which we mark with TopG−CW , we obtain an equivalence GrpG ' TopG−CW .
Since we have already seen that the classifying G-space BOn(G) corresponds to the G-∞-groupoid
Rep

n
(G) we have the following:

Proposition 6.3.12. The fibrewise tangent bundle classifying map from (6.3) is equivalent to the
map

τ : MfldG → TopG−CW
/BOn(G)

sending an OG-manifold M → O to the G-space (M → O) ∈ TopG−CW
[O]

together with the map

τM : M → BOn(G) classifying the fiberwise tangent vector space of M . Equivalently, the G-∞-
category of B-framed G-manifolds fits into the pullback square

MfldG,B−fr TopG−CW
/B

MfldG TopG−CW
/BOn(G)

f∗

τ

We would like to obtain the G-symmetric monoidal G-∞-category of B-framed G-manifolds
in the similar way as in 6.3.12, i.e. via the pullback square. In that case, we would naturally
replace MfldG with MfldG,t. As for TopG−CW

/BOn(G)
and TopG−CW

/B
we will replace them with

(TopG−CW
/BOn(G)

)
∐

and (TopG−CW
/B

)
∐

respectively, the G-coCartesian structures on TopG−CW
/BOn(G)

and

TopG−CW
/B

(respectively). Note that (TopG−CW
/BOn(G)

)
∐

and (TopG−CW
/B

)
∐

are G-∞-operads, but since

TopG−CW
/BOn(G)

and TopG−CW
/B

both admit G-coproducts, then by 5.6.5 we have that (TopG−CW
/BOn(G)

)
∐

and (TopG−CW
/B

)
∐

are in fact G-symmetric monoidal ∞-categories.

We need to show that the pull-back square from 6.2.13 extends to the pull-back square of
G-symmetric monoidal ∞-categories (and G-symmetric monoidal functors between them)



CHAPTER 6. G-MANIFOLDS 87

MfldG,B−fr,t (TopG−CW
/B

)
∐

MfldG,t (TopG−CW
/BOn(G)

)
∐

f
∐
∗

τ

By 5.6.6 these G-functors extend to lax G-symmetric monoidal functors. It then remains to verify
that these lax G-symmetric monoidal functors are G-symmetric monoidal.

Remark 6.3.13. In order to better understand the G-coCartesian structure, one can look at 5.6 (or
[NS] to be more precise). In addition, for a more ilustrative depiction of G-coproducts in TopG−CW

we give the following description of Horev ([Hor19] 3.5.2 ):
Let I = [U → O] ∈ FinG∗ be a finite G-set. An element of ((TopG−CW

/BOn(G)
)
∐

)I is given by X ∈

FunG(U, TopG−CW ). By definition, a G-coproduct
∐
I X : O → TopG−CW is given by the G-left

Kan extension of X along U → O, which we can by [Shah18] 10.9 look as a non-parametrized left
Kan extension. In other words,

∐
I is left adjoint to the restriction functor along U → O.

Since we are working with G-∞-groupoids, by Grothendieck-Lurie correspondence, X : U →
TopG−CW is given by a G-map XI → U where XI is a G-space. Additionally, Grothendieck-Lurie
correspondence is compatible with base change, meaning that

∐
I is now left adjoint to the pull-

backing along U → O and therefore given by the post composition with U → O. In other words,∐
I X : O → TopG−CW is given by XI → U → O under straightening/unstraightening.

Remark 6.3.14. Additionally, we can give the description of the objects of the G-coCartesian
structure on the parametrizad ∞-category (TopG−CW

/BOn(G)
)
∐

. For I = [U → O] ∈ FinG∗ a finite G-

set, an element X ∈ FunG(U, (TopG−CW
/BOn(G)

)
∐

) of ((TopG−CW
/BOn(G)

)
∐

)I , is represented by a G-space

XI → U ×BOn(G).
The G-coproduct

∐
I X : O → (TopG−CW

/BOn(G)
)
∐

is then represented by a G-space XI → U ×
BOn(G)→ O ×BOn(G). Alternatevly, we can say that XI → U ×BOn(G)→ O ×BOn(G) (the
G-coproduct space) is given by XI → U → O together with a map XI → BOn(G)

Lemma 6.3.15. The G-tangent bundle classifying functor τ : MfldG → TopG−CW
/BOn(G)

extends to

a G-symmetric monoidal functor

τ : MfldG,t → (TopG−CW
/BOn(G)

)
∐

which we, by abuse of notation, again mark with τ .

Proof. Let us see how τ behaves on objects. Let I = [U → O] ∈ FinG∗ and let (M → U → O) ∈
(MfldG,t)[I]. Then τ(M → U → O) ∈ ((TopG−CW

/BOn(G)
)
∐

)[I] is given by M → U together with

G-tanget classifier M → BOn(G), or simply M → U × BOn(G). The G-coproduct is then given
simply by postcomposing M → U → O together with the map M → BOn(G).
Additionally, if we look at the composition map M → U → O as an object of MfldG

[O]
, then

τ(M → U → O) again maps to M → U → O together with a map M → BOn(G) which is
compatible with the upper calculation.
Finally, let
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M1 M M2

U1 U U2

O1 O2 O2
=

be a coCartesian arrow in MfldG,t. By τ this arrow maps, by inspection, to an arrow

M1 M M2

U1 U U2 BOn(G)

O1 O2 O2
=

which is again coCartesian.

Lemma 6.3.16. Let B be a G-space and let f : B → BOn(G) be a G-map. Then the induced
functor f∗ : TopG−CW

/B
→ TopG−CW

/BOn(G)
extends to the G-symmetric monoidal functor

f
∐
∗ : (TopG−CW

/B
)
∐
→ (TopG−CW

/BOn(G)
)
∐

Proof. Let I = [U → O] be a finite G-set and let X ∈ (TopG−CW
/B

)
∐

be an element given by

XI → U ×B. Note that we have a commutative diagram

(XI → U ×B) (XI → U ×BOn(G))

(XI → O ×B) (XI → O ×BOn(G))

f∗

f∗

Finally, note that the commutativity of the upper diagram renders the following diagram

(TopG−CW
/B

)
∐

(TopG−CW
/BOn(G)

)
∐

TopG−CW
/B

TopG−CW
/BOn(G)

f
∐
∗

f∗

comutative, which finishes the proof.

Proposition 6.3.17. Let B be a G-space and let f : B → BOn(G) be a G-map. Then the
G-symmetric monoidal structure on MfldG,B−fr is given by lifting the G-symmetric monoidal

structure on MfldG. In particular, we have a pullback diagram
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MfldG,B−fr,t (TopG−CW
/B

)
∐

MfldG,t (TopG−CW
/BOn(G)

)
∐

f
∐
∗

τ

Proof. Lemmas 6.3.15 and 6.3.16 make the upper diagram commutative. Let

P⊗ (TopG−CW
/B

)
∐

MfldG,t (TopG−CW
/BOn(G)

)
∐

f
∐
∗

τ

be a pullback diagram, which provides us with a map MfldG,B−fr,t → P⊗. Note that passing to

the underlying G-∞-category is given by taking a pullback of the structure map along FinG∗ → O
op
G ,

hence it preserves limits. Therefore

(P⊗)I(−) TopG−CW
/B

MfldG TopG−CW
/BOn(G)

f∗

τ

is a pullback diagram meaning P := (P⊗)I(−) ' MfldG,B−fr ' (MfldG,B−fr,t)I(−). This is

enough to conclude that the map MfldG,B−fr,t → P⊗ is an equivalence since for any I = [U →
O] ∈ FinG∗

(P⊗)[I] '
∏

W∈Orbit(U)

P[W ] '
∏

W∈Orbit(U)

MfldG,B−fr
[W ]

' (MfldG,B−fr,t)[I]



Chapter 7

G-Discs

In this chapter we will define the G-∞-category of G-discs. Equivalently to the non-equivariant
case, G-discs represent the link between the algebra and the geometry of G-manifolds. The G-∞-
category of G-disks is used for defining the G-disk algebras which are again used as coefficients
for equivariant version of factorization homology. At the same time, G-discs provide insight into
geometry of G-manifolds by capturing the local properties. Furthemore, they can be linked with
equivariant configuration spaces.

In the first section, we will provide the definition of the G-∞-category of G-discs along with its
framed variants and G-symmetric monoidal structure. Later, we will prove that the G-∞-category
of G-discs is the G-symmetric monoidal envelope of Rep

n
(G). Finally, we will finish with the

section related to the G-configuration spaces, which will play a role later in this paper, and at the
end a short example on G-disc algebras with coefficients in SpG.

7.1 Definition of G-Discs and G-algebras

In the classical (non-equivariant) setting of Ayala and Francis (see [AF15] 2.2 ) the discs were
simply taken to be disjoint union of n-dimensional Euclidean spaces, which in line with configura-
tion spaces lie over points. In the equivariant theory, points are replaced by orbits and so, in our
new definition, G-disc ought to be something lying over an orbit in a similar matter as before.

Consider a map U → O where O ∈ OG and where U is a finite G-set. Note that this map is
a covering map. Therefore for a G-vector bundle E → U the composite map E → U → O is a
G-manifold bundle, hence it is an element of MfldG.

Therefore, we arrive at our definition:

Definition 7.1.1. Define a G-disc to be a vector bundle E → O of rank n where O ∈ OG.
Denote with DiskG ⊂ MfldG the full G-∞-subcategory spanned by objects equivalent to the
form E → U → O where U is a finite G-set and E → U is a G-vector bundle.

Remark 7.1.2. Let E → U → O be a G-disc. The reason we insert U a finite G-set in the definition
of the objects of DiskG lies in the following: as in the non-equivariant case (as in [AF15]), discs
are disjoiunt unions of n-dimensional Eucidean spaces. In our case, if we consider a decomposition
of a finite G-set U into orbits U =

∐
W∈Orbit(U)

W , we can view E → U → O as a G-disjoint union of

G-vector bundles EW → W . The composition with W → O exhibits EW → O as the topological
induction of EW →W along W → O.

90
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G-symmetric monoidal structure

Similar to our upper definition of DiskG as a full G-subcategory of MfldG spanned by G-discs,
we would hope that we could do something similar in the case of framing as well as in the case of
endowing DiskG with G-symmetric monoidal structure. Although it requires some technical work,
the ideas are pretty much straightforward at this point.

Analogous to the G-manifolds, we will consider a G-symmetric monoidal category whose un-
derlying G-∞-category is the G-∞-category of G-discs.

Definition 7.1.3. Let DiskG,t ⊂ MfldG,t be a full subcategory spanned by those elements
equivalent to E → U → V → O where U, V are finite G-sets, O ∈ OG and where E → U is a
G-vector bundle.

Remark 7.1.4. Note that, given an element E → U → V → O, the composite E → V → O exibits
E → U → V → O as an OG − Fin-manifold, hence it is truly an element of MfldG,t.

Proposition 7.1.5. The operation of G-disjoint union on MfldG,t induces a G-symmetric monoidal

structure on the G-∞-subcategory DiskG,t.

Proof. Since we have defined DiskG,t ⊂ MfldG,t as a full G-symmetric monoidal category
spanned by the G-disjoint union of G-discs it will suffice to show that the underlying G-∞-category
of DiskG,t is equivalent to DiskG. This is evident since the G-∞-category (DiskG,t)I(−) is

spanned by elements E → U → O
=−→ O where E → U is a G-vector bundle. The equivalence is now

induced by functor (DiskG,t)I(−) → DiskG sending (E → U → O
=−→ O) 7→ (E → U → O).

Framed G-discs

Definition 7.1.6. Let B be a G-space and let f : B → BOn(G) be a G-map. We define the
G-∞-categories of B-framed G-discs and disjoint union of B-framed G-discs as the pullbacks

DiskG,B−fr MfldG,B−fr

DiskG MfldG

DiskG,B−fr,t MfldG,B−fr,t

DiskG,t MfldG,t

Description 7.1.7. By definition of a G-disc E → U → O, the map E → U is a G-vector bundle,
therefore, we can write this G-disc in the form

U BOn(G)

O

where the horizontal map is a tangent bundle classifing map. Consequently, we can think of a
B-framed G-disk in a form of
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U B

O

where the horizontal map is now the framing map. Note that in both cases we can write these
G-discs as U → O ×BOn(G) and U → O ×B respectively.
Reader should keep in mind that this is only the depiction of objects, as the maps between framed
discs carry more information than just the map of the underlying finite G-sets.

Definition 7.1.8. Let C⊗ be a G-symmetric monoidal G-∞-category, let B be a G-space and let
f : B → BOn(G) be a G-map. Define the ∞-category of B-framed G-algebras with values in C⊗
to be the ∞-category of G-symmetric monoidal functors Fun⊗G(DiskG,B−fr,t, C⊗).

Example 7.1.9. Let B = BOn(G) and f : BOn(G)
=−→ BOn(G). Then DiskG,B−fr ' DiskG,

that is, we have the category of G-discs without framing. In this case we will call the ∞-category
of B-framed G-algebras with values in C⊗ simply by the ∞-category of G-disc algebras and mark
it with Fun⊗G(DiskG,t, C⊗).
Another important example stems from the case B = ∗. In this situation ∗ → BOn(G) corresponds
to the n-dimensional G-representation V . We will call Fun⊗G(DiskG,V−fr,t, C⊗) the ∞-category
of V -framed G-disc algebras with coefficients in C⊗.

7.2 G-symmetric monoidal envelope

We have said that G-disc algebras are coefficients for the equivariant version of factorization
homology. The word ”algebra” suggests that an operad is involved, yet we have defined the
category of (framed) G-disc algebras simply as category of G-symmetric monoidal functors from
the G-∞-category of (framed) G-discs. In this section we show that this name is indeed justified.

Definition 7.2.1. Let Rept
n

(G) be the full G-∞-subcategory of MfldG,t spanned by the objects
of the form E → U → O where U is a finite G-set and E → U is a G-vector bundle.

Lemma 7.2.2. The map Rept
n

(G) → FinG∗ is a G-∞-operad. Moreover, the underlying G-∞-

category of Rept
n

(G) is equivalent to Rep
n
(G).

Proof. It is clear that the map Rept
n

(G)→ FinG∗ is an inner fibration. By definition 5.6.1 we have
to prove three points:

1. Let

U1 U2 U2

O1 O2 O2

=

=

be an inert arrow in FinG∗ i.e. the right square is a summand inclusion. Let (E → U1 →
O1) ∈ Rept

n
(G) be an element above U1 → O1. The coCartesian lift is given by

E U2 ×U1 E U2 ×U1 E

U1 U2 U2

O1 O2 O2

=

=

=
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Indeed, the map U2×U1 E → U2 is obtained via pullback from E → U1 hence it is a G-vector
bundle.

2. Let I = [U → O] ∈ FinG∗ , and let (E → U → O) ∈ Rept
n

(G). Then by the decomposition
U '

∐
W∈Orbit(U)

W we have a decomposition

(E → U → O) ' ( t
W∈Orbit(U)

EW →
∐

W∈Orbit(U)

W → O)

where EW →W are all G-vector bundels. Therefore, the functor∏
W∈Orbit(U)

(χ[W⊆U ])! : Rept
n

(G)[I] →
∏

W∈Orbit(U)

(Rept
n

(G))[W ]

given by

(E → U → O) ' ( t
W∈Orbit(U)

EW →
∐

W∈Orbit(U)

W → O) 7→
∏

W∈Orbit(U)

(EW →W
=−→W )

is an equivalence.

3. Mark with e := I1 = [U1 → O1] → I2 = [U2 → O2] an arrow in FinG∗ and mark with
x = E1 → U1 → O1 and y = E2 → U2 → O2 two elements of Rept

n
(G) above I1 and I2

respectively. A map in MapeRept
n

(G)(x, y) can be written in the form

E1 E E2

U1 U U2

O1 O2 O2
=

We can again decompose E2 → U2 as the disjoint union of G-vector bundles EW → W for
W ∈ Orbit(U2), hence the upper map decomposes as

E1 E E2 EW EW

U1 U U2 W W

O1 O2 O2 W W

=

=

= =

for every W ∈ Orbit(U2), hence we have an equivalence

MapeO⊗(x, y)
'−→

∏
W∈Orbit(U2)

Map
χ[W⊆U]◦e
O⊗ (x, (χ[W⊆U ])!y)
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The proof that Rept
n

(G) is a G-∞-operad is finished. For its underlying G-∞-category, note that

the pullback of Rept
n

(G) along the map I(−) : OopG → FinG∗ , I(O) = [O
=−→ O] is a G-∞-category

(Rept
n

(G))I(−) whose elements are E → O
=−→ O where E → O is a G-vector bundle and whose

mapping spaces consist of diagrams

E1 E E2

O1 O2 O2

O1 O2 O2
=

where the left side is a pullback diagram. Trerefore the equivalence (Rept
n

(G))I(−) → Rep
n
(G) is

given by the functor (E → O
=−→ O) 7→ (E → O).

Definition 7.2.3. For a G-space B and a G-map f : B → BOn(G) define RepB−fr,t
n

(G) to be a

full G-∞-subcategory of MfldG,B−fr,t via the pullback

RepB−fr,t
n

(G) MfldG,B−fr,t

Rept
n

(G) MfldG,t

Note that RepB−fr,t
n

(G) is also a G-∞-operad.
The following definition stems from [NS]:

Definition 7.2.4. Let p : O⊗ → FinG∗ be a G-∞-operad. The G-symmetric monoidal envelope
of O⊗ is defined to be

EnvG(O⊗) = ArractG (O⊗)×FinG∗ O
⊗

where ArractG (O⊗) ⊂ ArrG(O⊗) is the full G-∞-subcategory of the G-∞-category of arrows in O⊗
spanned by fiberwise active arrows. The objects of EnvG(O⊗) can be represented as

x

U U U1

O O O

=

==

for I = [U → O] and x ∈ O⊗[I]. Moreover, the induced map EnvG(O⊗)→ FinG∗ exibits EnvG(O⊗)

as a G-symmetric monoidal category whose underlying G-∞-category is equivalent to O⊗act the
wide G-∞-subcategory of O⊗ on active arrows.

Proposition 7.2.5. Let B be a G-space and let f : B → BOn(G) be a G-map. Then the G-
symmetric monoidal∞-category of B-framed G-disks, DiskG,B−fr,t is equivalent to EnvG(RepB−fr,t

n
(G)),

the G-symmetric monoidal envelope of RepB−fr,t
n

(G).
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Proof. We will give a proof for f : BOn(G)
=−→ BOn(G). The general case can be proven analo-

gously by taking into account the description of B-framed G-discs.
Since Rept

n
(G) is a G-∞-operad, by definition 7.2.4 EnvG(Rept

n
(G)) → FinG∗ is a G-symmetric

monoidal category. In order to prove that it is equivalent to DiskG,t it will suffice to show that
their underlying G-∞-categories are equivalent. Again, by definition, the underlying G-∞-category
(EnvG(Rept

n
(G)))I(−) is equivalent to (Rept

n
(G))act. It is clear that both (Rept

n
(G))act and DiskG

have the same objects given by E → U → O where E → U is a G-vector bundle.
The map between E1 → U1 → O1 and E2 → U2 → O2 is given by active arrows

E1 E E2

U1 U U2

O1 O2 O2
=

hence, the lower left square is a pullback square. By definition, the upper left square is also a pull-
back square, hence the whole left rectangle is a pullback diagram, which is exactly a map in DiskG.
Therefore, the mapping spaces are equivalent which concludes the proof of the equivalence of the
underlying G-∞-categories and consequently the equivalence of G-symmetric monoidal categories
EnvG(Rept

n
(G)) and DiskG,t.

One of the main results from [NS] concerning the G-symmetric monoidal envelope is that, given a
G-symmetric monoidal category C⊗ and a G-∞-operad O⊗ we can replace the ∞-category of O-
algebrasAlgG(O⊗, C⊗) with the∞-category ofG-symmetric monoidal functors Fun⊗G(EnvG(O⊗), C⊗).
In particular, we have

Corollary 7.2.6. Let C⊗ be a G-symmetric monoidal ∞-category, let B be a G-space and let
f : B → BOn(G) be a G-map. Then there is an equivalence of ∞-categories

Fun⊗G(DiskG,B−fr,t, C⊗)
'−→ AlgG(RepB−fr,t

n
(G), C⊗)

7.3 G-configuration spaces

In this section we define G-configuration spaces and study their relation to the mapping spaces
of G-discs into an OG-manifold. The results obtained here play a role in proving the properties of
G-factorization homology (9) defined below.

Definition 7.3.1. Let M → O ∈MfldG be an OG-manifold and let U → O be a finite G-set over

O ∈ OG. We will denote with ConfGO (U,M) the space of injective G-equivariant maps U ↪→ M
over O, with topology inherited from the weak C∞-topology on MapGO(U,M).

Let E → U → O be a G-disc (that is E → U is a G-vector bundle) and let M → O be an
OG-manifold. We will denote with EmbGO(E,M) the space of equivariant smooth embeddings of
E into M . Note that there is an evident map

c : EmbGO(E,M)→ ConfGO (U,M)

given by the evaluation at the zero section s0 : U ↪→ E. We would like to study the map c. In
fact, we claim that it is a fibration. The proof is shown through several steps:
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Definition 7.3.2. Let M → O be an OG-manifold and let E → U → O be a G-disc, in other
words, let U be a finite G-set and let E → U be a G-vector bundle. Consider the fiberwise tangent
vector bundle (which we, by abuse of notation mark with TM) TM → M → O. We define the
∞-category FrGO(E,M) of frames E on M to be the ∞-category of G-vector bundle maps from

E → U → O to TM →M → O covering the identity O
=−→ O.

Remark 7.3.3. The motivation behind the name of the∞-category of frames stems from the (non-
equivariant) case where we can associate a frame bundle Fr(M) to any manifold M as a space
of pairs (x,Bx) where x ∈ M and where Bx is the basis for TMx. Alternatively, we can look at
the frame bundle as a space of vector bundle maps (E → ∗) → (TM → M). We can make this
story more general, by replacing the point ∗ with a finite set I and define the frame bundle as
the ∞-category Fr(E,M) of vector bundle maps (E → I)→ (TM →M) covering an embedding
I ↪→M i.e. a configuration. Definition 7.3.2 is the equivariant version of this story.

Note that there is a natural map g : FrGO(E,M)→ ConfGO (U,M) which basically just forgets the
map on the level of G-vector bundles. This map is in fact a fibration, which will prove to be useful
in the near future.
Next, note that our map c : EmbGO(E,M)→ ConfGO (U,M) actually factorizes through FrGO(E,M)

EmbGO(E,M) ConfGO (U,M)

FrGO(E,M)

c

d g

where the map d : EmbGO(E,M) → FrGO(E,M) is obtained by taking the derivative at the zero
section U ↪→ E.

Lemma 7.3.4. The map d : EmbGO(E,M)→ FrGO(E,M) is a homotopy equivalence.

Proof. We have already stated that the map g : FrGO(E,M)→ ConfGO (U,M) is a fibration. Note
that, by choosing a basepoint x ∈ O and taking a fiber over eH of the orbit G/H ∼= (O, x)
of M → O and E → U → O we have that EmbGO(E,M) → ConfGO (U,M) is equivalent to
cH : EmbH( t

i∈S
Vi,MH) → CongH(S,MH) where MH (resp. S, t

i∈S
Vi) is the fiber of M →

G/H (resp. U → G/H, E → U → G/H) over eH. By a suitable version of the equivarian
isotopy extension theorem (see [Las85]), we have that this map is a Serre fibration, hence so is
c : EmbGO(E,M) → ConfGO (U,M). Therefore, it would be enough to check if the fibers of the
maps c and g are weakly homotopy equivalent, but this now follows from 6.2.3.

Corollary 7.3.5. The map c : EmbGO(E,M)→ ConfGO (U,M) is a fibration.

We conclude this section with the following proposition:

Proposition 7.3.6. Let (E → U → O) ∈ DiskG and let (M → O) ∈ MfldG with i : N ↪→ M a
submanifold-fibre bundle. Then the following diagram

EmbGO(E,N) EmbGO(E,M)

ConfGO (U,N) ConfGO (U,M)

c c

is homotopy Cartesian.
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Proof. The diagram above is equivalent to

EmbGO(E,N) EmbGO(E,M)

FrGO(E,N) FrGO(E,M)

ConfGO (U,N) ConfGO (U,M)

d d

g g

The upper square is a homotopy pullback hence it will suffice to show that the bottom square is
also homotopy pullback square. Since the lower vertical maps are fibrations it will suffice to show
that the lower square induces an equivalence of the fibers. Let f ∈ ConfGO (U,N). We want to
show that the induced map on the fibers

(FrGO)f (E,N)→ (FrGO)i◦f (E,M)

is an equivalence. But this is clear since TNf(U)
∼= TMi◦f(U) because N ⊂ M are of same

dimension.

7.4 G-disc algebras in SpG

In this short section we will give a description of framed G-disc algebras with coefficients in
the G-∞-category of G-spectra SpG (see [Nar17]). We will also see the connection with the norm
maps of Hopkins, Hill and Ravenel (see [HHR16]):

Let f : B → BOn(G) be a G-map with B a G-space and let F ∈ AlgG(DiskG,B−fr, SpG)

be a B-framed G-disc algebra. By 7.1.7 we can write (U1 → G/H × B) ∈ DiskG,B−fr[G/H] and

(U2 → G/K ×B) ∈ DiskG,B−fr[G/K] , where K ≤ H ≤ G are subgroups.

� Recall ResHK : DiskG,B−fr[G/H] → DiskG,B−fr[G/K] the restriction functor from 6.1.13. We have:

ResHK : SpG
[G/H]

→ SpG
[G/K]

ResHKF (U → G/H ×B) ' F (ResHK(U → G/H ×B)) ' F (G/K ×G/H U → G/K ×B)

� Again, recall that the topological induction functor:

H ×K (−) : DiskG,B−fr[G/K] → DiskG,B−fr[G/H]

is given by post-composition with G/K → G/H. Topological induction funcor is compatible
with the norm construction of Hill, Hopkins and Ravenel

NH
K (−) : SpK → SpH

which with SpG
[G/H]

' SpH and SpG
[G/K]

' SpK gives

F (U2 → G/K ×B → G/H ×B) ' NH
K F (U2 → G/K ×B)
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Remark 7.4.1. For more concrete examples when G is finite group, one can look up [Hor19] section
7. Additionaly, note that our theory restricts to the theory of Horev when G is a finite group,
therefore all the results regarding real topological Hochschild homology and twisted topological
Hochschild homology of genuine Cn-ring spectra hold in our case.

In particular, for G = S1 with the class of cyclic subgroups {Cn}n∈N let us look at the S1-

∞-category of V -framed S1-discs Fun⊗S1(DiskS
1,V−fr,t, SpS

1

), where V is some S1 representation.

For Cn < S1 we have that the total space of a V -framed disc E → S1/Cn is equivalent to
S1 ×Cn V by [TD87] I, 9.2, hence any V -framed S1-disc is equivalent to S1 ×Cn V → S1/Cn. Let

us fix one particular A ∈ Fun⊗G(DiskS
1,V−fr,t, SpS

1

).
We will denote with

ACn := A(S1 ×Cn V → S1/Cn) ∈ SpS
1

[S1/Cn]
' SpCn

In other words, for every S1-disc S1 ×Cn V → S1/Cn we have a corresponding Cn-spectrum ACn
such that for any Cr ≤ Cn we have

� ResCnCrACn = ACr

� ACn ' N
Cn
Cr
ACr



Chapter 8

G-Factorization homology

We have finally arrived to the chapter where we will define the equivariant version of factoriza-
tion homology (or, simply G-factorization homology).
First, we give the definition of the G-factorization homology as parametrized colimit. Later, we
give a description of a G-factorization homology as a G-functor and finally as a symmetric monoidal
G-functor. Here we follow the same path as Horev ([Hor19] section 4 ):

For starters, let A ∈ Fun⊗G(DiskG,B−fr,t, C⊗) be a B-framed disc algebra with coefficients in

C⊗ and let M ∈MfldG,B−fr
[O]

be a B-framed G-manifold lying over the orbit O. We can construct

a diagram of O-∞-categories

DiskG,B−fr/M O×DiskG,B−fr O×C

O

where DiskG,B−fr/M is the parametrized slice category. We can look at DiskG/M → O as the co-

Cartesian fibration dual to the Cartesian fibration DiskG/M → OG/O (see [Hor19] 4.1.1 ).
The definition of the G-factorization homology would be as follows:

Definition 8.0.1. Let M ∈ MfldG,B−fr
[O]

and let A be a B-framed G-disc algebra with values in

C⊗. We define the factorization homology of M with values in A by the following parametrized
colimit ∫

M

A = O − colim(DiskG,B−fr/M → O×DiskG,B−fr → O×C)

Remark 8.0.2. The G-factorization homology
∫
M
A is computed as an O-colimit, therefore it can

be written as a coCartesian section of O×C → O. Since O×C is a pullback, we can also write this
coCartesian section as a G-functor O → C which corresponds to an object of C in the fibre of O.
Therefore, we can write

∫
M
A ∈ C (or C[O] to be more precise).

G-factorization homology as a G-functor

Let C be a G-cocomplete G-∞-category. The inclusion functor i : DiskG,B−fr ↪→MfldG,B−fr

is fully faithful. Therefore, by [Shah18] 10.6, the restrictionG-functor i∗ : FunG(MfldG,B−fr, C)→
FunG(DiskG,B−fr, C) admits a fully faithful left G-adjoint

99
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i! : FunG(DiskG,B−fr, C) � FunG(MfldG,B−fr, C) : i∗

where the values of i! are given by left O-Kan extensions. Taking coCartesian sections one again
recovers an adjunction

i! : FunG(DiskG,B−fr, C) � FunG(MfldG,B−fr, C) : i∗ (8.1)

where the values of i! are given by left G-Kan extensions.
Now we are ready to show that G-factorization homology can be expressed as a G-functor:

Proposition 8.0.3. Let C⊗ be a G-cocomplete G-∞-category. Then the functor

Fun⊗G(DiskG,B−fr,t, C⊗)→ FunG(DiskG,B−fr, C) i!−→ FunG(MfldG,B−fr, C)

sends A ∈ Fun⊗G(DiskG,B−fr,t, C⊗) to i!(A) ∈ FunG(MfldG,B−fr, C), i!(A) : M 7→
∫
M
A, where

A in i!(A) is regarded as an ordinary (not G-symmetric monoidal) G-functor.

Proof. This is a combination of [Shah18] 10.3 and 10.4. By the former i!(A) is given by the left
G-Kan extension of A along i and by the latter, this left G-Kan extension is computated via the
formula

i!(A) = O − colim(DiskG,B−fr/M → O×DiskG,B−fr → O×C)

which is by definition equal to
∫
M
A (see also [Hor19] 4.1.4 ).

G-factorization homology as a G-symmetric monoidal functor

In order to show that G-factorization homology can be extended to a G-symmetric monoidal
functor it will suffice to show the following:

Proposition 8.0.4. Let C⊗ be a G-presentable G-symmetric monoidal category. Then the adjunc-
tion of (8.1) lifts to an adjunction

(i⊗)! : Fun⊗G(DiskG,B−fr,t, C⊗) Fun⊗G(MfldG,B−fr,t, C⊗) : (i⊗)∗

i! : FunG(DiskG,B−fr,t, C) FunG(MfldG,B−fr,t, C) : i∗

We need to prepare for the proof. We will start with:

Lemma 8.0.5. ([Hor19] 4.2.5) Let C⊗ → FinG∗ be a presentable G-symmetric monoidal category,
let M⊗ → FinG∗ be a small G-symmetric monoidal category and i⊗ : D⊗ →M⊗ an inclusion of
a full G-symmetric monoidal subcategory. Denote by i : D → M the induced G-functor on the
underlying G-∞-categories. If for every active morphism ψ : I → J in the fiber FinG∗ [O] and every

coCartesian lift x→ y of ψ to M⊗ the O-functor ⊗ψ : (D⊗<I>)x → (D⊗<J>)y is O-cofinal then
the diagram

Fun⊗G(D, C) Fun⊗G(M, C)

FunG(D, C) FunG(M, C)

(i⊗)!

i!
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commutes, where (i⊗)! and i! the left adjoins to the restrictions along i⊗ and i, respectively.

To simplyfy the calculations we will state the following proposition on the equivalence of
parametrized slice categories MfldG

/M
and MfldG,B−fr

/M
, which allow us to work with the un-

framed G-manifolds. It will also prove to be very useful later on when proving the properties of
G-factorization homology.

Proposition 8.0.6. Let B be a G-space, let f : B → BOn(G) be a G-map and let M ∈
MfldG,B−fr

[O]
. Then the O-functor that forgets the framing structure

MfldG,B−fr
/M

→MfldG
/M

is an equivalence of O-categories.

Proof. We proceed by proving that MfldG,B−fr
/M

→MfldG
/M

is an equivalence. It would suffice to

show that it is a levelwise equivalence. Without loss of generality it would further suffice to show
that the map

(MfldG,B−fr
/M

)[ϕ] → (MfldG
/M

)[ϕ]

is an equivalence only for [ϕ : O
=−→ O] ∈ O. By construction, theses fibers are equivalent to

(MfldG,B−fr
/M

)[ϕ] ' (MfldG,B−fr
[O]

)/M

(MfldG
/M

)[ϕ] ' (MfldG
[O]

)/M

To add on, by the definition of the G-∞-category of B-framed G-manifolds the fibers MfldG
[O]

and

MfldG,B−fr
[O]

fit into the pullback square

MfldG,B−fr
[O]

(TopG−CW
[O]

)/B(O)

MfldG
[O]

(TopG−CW
[O]

)/BOn(G)(O)

Further on, we obtain the following diagram of slice categories

(MfldG,B−fr
[O]

)/M (TopG−CW/B×O )/M→B×O)

(MfldG
[O]

)/M (TopG−CW/BOn(G)×O)/M→BOn(G)×O)

TopG−CW/M

Where TopG−CW is the∞-category of G-CW -complexes and where the square part of the diagram
is a pullback square. By [AF15] 2.5 the bottom vertical map is an equivalence as well as the map
obtained by composing the two right vertical maps, hence

(TopG−CW/B×O )/(M→B×O) → (TopG−CW/BOn(G)×O)/(M→BOn(G)×O)
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is an equivalence as well. Since the square in the upper diagram is a pullback the left vertical map
is an equivalence thus giving us

MfldG,B−fr
/M

'−→MfldG
/M

Remark 8.0.7. Beside simplyfing the calculation 8.0.6 carries some more information. Namely,

under the equivalence MfldG,B−fr
/M

'−→ MfldG
/M

, the framing on M induces a framing on any

N ⊆M .

We are ready to present the proof of 8.0.4:

Proof. Let I1 = [U1 → O] and I2 = [U2 → O] be the elements of FinG∗ , let ψ : I1 → I2 be an
active morphism and let f : [M1 → U1 → O]→ [M2 → U2 → O] be a coCartesian lift of ψ. Then
we can depict f as a diagram

M1 M1 M2

U1 U1 U2

O O O

'

=

= =

By 8.0.5 it will suffice to prove that the induced functor

(DiskG,B−fr,t<I1>
)/M1

→ (DiskG,B−fr,t<I2>
)/M2

is O-cofinal. Note that by 8.0.6 we are reduced to showing that

(DiskG,t<I1>)/M1
→ (DiskG,t<I2>)/M2

is O-cofinal. We will show that it induces fiberwise equivalences and is therefore an equivalence.
Without the loss of generality it will suffice to show an equivalence only for the fiber of ϕ : O

=−→
O ∈ O. By definition, we have

((DiskG,t<Ii>)/Mi
)[ϕ]
∼= ((MfldG,t

<Ii>
)/Mi

)[ϕ] ×(MfldG,t
<Ii>

)[ϕ]
(DiskG,t<Ii>)[ϕ]

with

((MfldG,t
<Ii>

)/Mi
)[ϕ] ' ((MfldG,t

<Ii>
)[O])/Mi

(MfldG,t
<Ii>

)[O]
∼= MfldG,t

[Ii]

Unwinding the definitions, as explained by Horev, the category ((MfldG,t
<Ii>

)/Mi
)[ϕ] can be mod-

eled by the coherent nerve of the Moore over category ((OG − Fin −Mfld)Ii)
Moore
/Mi

. Therefore

((DiskG,t<Ii>)/Mi
)[ϕ] can be regarded as a full subcategory of ((OG−Fin−Mfld)Ii)

Moore
/Mi

spanned
by the objects of the form

(E → U → Ui → O)→ (Mi → Ui → O)

which can be depicted by diagrams



CHAPTER 8. G-FACTORIZATION HOMOLOGY 103

E E′ Mi

U U

Ui Ui Ui

O O O

'

=

= =

= =

With this clarification, the induced functor ((DiskG,t<I1>)/M1
)[ϕ] → ((DiskG,t<I2>)/M2

)[ϕ] is given by
the composition with

M1 M1 M2

U1 U1 U2

O O O

=

=

= =

which further induces an equivalence between topological subcategories of ((OG−Fin−Mfld)ϕ∗I1)Moore
/ϕ∗M1

and ((OG − Fin − Mfld)ϕ∗I2)Moore
/ϕ∗M2

corresponding to the categories ((DiskG,t<I1>)/M1
)[ϕ] and

((DiskG,t<I2>)/M2
)[ϕ] respectively, by sending an object

E M1

U

U1

O

to the object

E M1 M1 M2

U

U1 U1 U2

O O O

=

=

= =
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Definition 8.0.8. By abuse of notation we will again mark the G-symmetric monoidal functor i⊗! :

Fun⊗G(DiskG,B−fr,t, C⊗) → Fun⊗G(DiskG,B−fr,t, C⊗) with
∫
−A and call it the G-factorization

homology functor with coefficients in A ∈ Fun⊗G(DiskG,B−fr,t, C⊗).



Chapter 9

Properties of G-factorization
homology

This chapter is dedicated to the properties of G-factorization homology. These properties
include:

� The G-⊗-excision property;

� Respect with regard to G-sequential unions;

� Axiomatic caracterization of G-factorization homology

We start this chapter with a section dedicated to G-collar decomposition and then go on to prove
before mentioned properties in the order that they are written.

9.1 G-collar decomposition

In this section we define the G-colar gluing of G-manifolds, which is used in the G-⊗-excision
property of G-factorization homology. The main part of this section is the construction of the
inverse image functors 9.1.3 which requires attention to detail.

Definition 9.1.1. ([Hor19] 5.1.1 or [Wee18] 4.20 ) Let M be a G-manifold and let [−1, 1] be a
closed interval endowed with the trivial G-action. By G-collar decomposition we mean a surjective
equivariant map f : M → [−1, 1] such that the restriction M |(−1,1) → (−1, 1) is a manifold bundle
map with a choice of trivialization M |(−1,1)

∼= M0 × (−1, 1) where M0 = f−1(0). We will denote
with M+ = f−1(−1, 1] and M− = f−1[−1, 1).

Let M ∈ MfldG,B−fr
[O]

be a B-framed G-manifold over O ∈ OG. A G-collar decomposition on

M → O is a G-collar decomposition on the underlying G-manifold.

Lemma 9.1.2. Let p : M → O be an OG-manifold equipped with a G-collar decomposition f :
M → [−1, 1] of the underlying G-manifold M . Let V ⊂ [−1, 1] be an oriented embedding of a
1-dimensional manifold possibly with boundary. Then the restriction map f−1(V ) → O makes
f−1(V ) an OG-manifold.

Proof. Let x ∈ O. By choosing x as a basepoint of O we have (O, x) ∼= G/H where H = Stab(x).
Let U ⊂ G be a sufficiently small neighborhood of e ∈ G such that U ∩H = {e}. Such U exists
since H is a finite subgroup. By letting U act on x we obtain a neighborhood Ux ⊂ O of x.
Furthemore, we can choose U to be sufficiently small such that p−1(Ux) ∼= Mx × Ux, where Mx is
the fiber of p above x ∈ O.
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Since the G-collar gluing map f : M → [−1, 1] is G-equivariant, the restriction map p−1(Ux) ∼=
Mx × Ux → [−1, 1] factors through a unique map Mx → [−1, 1] given by Mx × {x} → [−1, 1]

Mx × Ux [−1, 1]

Mx

Denote with p′ : f−1(V )→ O the restriction map p|f−1(V ). Then

p′−1(Ux) ∼= Ux × (f−1(V ) ∩Mx)

Considering some other point y ∈ O we can obtain the same formula p′−1(Uy) ∼= Uy×(f−1(V )∩My).
It is only left to show that f−1(V ) ∩Mx

∼= f−1(V ) ∩My. Since x, y ∈ O there exists g ∈ G such
that gx = y. Since p and f (and therefore p′) are all G-maps, the isomorphism f−1(V ) ∩Mx →
f−1(V ) ∩My is induced by a map ξg, the action map of element g on M . The inverse is then
induced by ξg−1 . It is clear now that p′ : f−1(V ) → O is a G-manifold fibre bundle i. e. an
OG-manifold.

Following the story in the classical setting, we would like to construct the map

Disk∂,or/[−1,1]

f−1

−−→ (MfldG,B−fr
[O]

)/M (9.1)

where Disk∂,or/[−1,1] is the∞-category of one dimensional oriented manifolds possibly with boundary

over the segment [−1, 1]. Using 8.0.6 we can restrict to the case Disk∂,or/[−1,1]

f−1

−−→ (MfldG
[O]

)/M
Both∞-categories can be described using the coherent nerve of the corresponding Moore over cate-
gories (see for example [Hor19] app. A), which we will mark as (Disk∂,or)Moore

/[−1,1] and (MfldG
[O]

)Moore
/M .

Construction 9.1.3. Let (M → O) be anOG-manifold with an underlyingG-collar decomposition
f : M → [−1, 1]. We then construct the functor f−1 : (Disk∂,or)Moore

/[−1,1] → (MfldG
[O]

)Moore
/M the

following way

� An element V ↪→ [−1, 1] of (Disk∂,or)Moore
/[−1,1] is sent to the pullback (f−1(V ) → O) where

the last arrow is given by the composition f−1(V ) → M → O. By 9.1.2 we see that
(f−1(V ) → O) is indeed an element of MfldG

[O]
and since f : M → [−1, 1] is a G-map

and V ↪→ [−1, 1] is an embedding, the map f−1(V ) → M will be a G-embedding, hence
(f−1(V )→ O) ∈ (MfldG

[O]
)Moore
/M .

� Let ϕ1 : V1 ↪→ [−1, 1] and ϕ2 : V2 ↪→ [−1, 1] be two elements in the Moore over category
(Disk∂,or)Moore

/[−1,1]. Let (h, (r, γ)) be a point in Map(Mfld∂,or)Moore
/[−1,1]

(V1, V2), where h : V1 → V2

is an oriented embedding and (r, γ) ∈ [0,∞)×Emb∂,or(V1, [−1, 1])[0,∞) is a Moore path from
ϕ1 to ϕ2 ◦ h. We define a functor

f−1 : Map(Disk∂,or)Moore
/[−1,1]

(V1, V2)→Map(MfldG
[O]

)Moore
/M

(f−1(V1), f−1(V2))

f−1(h, (r, γ)) := (f−1(h), (r, α))

where f−1(h) is obtained via the diagram
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f−1(V1) f−1(V2) M

V1 V2 [−1, 1]

f−1(h)

f

where both left and right squares are pullback squares and where α ∈ EmbG(V1,M)[0,∞) is
a Moore path of length r defined as follows. If x ∈ M |(−1,1)

∼= M0 × (−1, 1) such that x
corresponds to (y, s) ∈M0 × (−1, 1) define

αt(x) = (y, γt ◦ ϕ−1
1 (s)) ∈M0 × (−1, 1)

otherwise, if f(x) = ±1 define αt(x) = x.

9.2 G-⊗-excision

In this section we will first define what does it mean for a G-functor to satisfy the G-⊗-property,
and then we will prove that our G-factorization homology satisfies that property.

The main result of this section is the Proposition 9.2.4 which states that given an OG-manifold
M together with a collar gluing map f : M → [−1, 1] and a G-disc algebra A taking values in C⊗
satisfying certain conditions (to be specified below) we have the following equivalence∫

M

A '
∫
M−

A⊗∫
M0×(−1,1)

A

∫
M+

A

which serves as an analogue to the Eilenberg-Steenrod axiom for the homology theories.
First, we will give the construction of the right side of the upper equivalence in general case (not
only for G-factorization homology).

Construction 9.2.1. Let F : MfldG,B−fr → C⊗ be a G-symmetric monoidal functor. Let

(M → O) ∈ MfldG,B−fr
[O]

and let f : M → [−1, 1] be a G-collar decomposition map of the

underlying G-manifold M .

Disk∂,or/[−1,1]

f−1

−−→ (MfldG
[O]

)/M
'−→ (MfldG,B−fr

[O]
)/M

F−→ C[O]/F (M)
(9.2)

Let us assume that C[O] admits sifted colimits and that the tensor product functor in C[O] preserves
sifted colimits in each variable. Then by precomposing the upper map with the cofinal map
∆op → Disk∂,or/[−1,1] (see [AF15] 3.11 ) and taking the colimit of 9.2 we obtain the two sided bar
construction

(F (M−)⊗F (M0×(−1,1)) F (M+)→ F (M)) ∈ (C[O])/F (M)

Definition 9.2.2. Let F : MfldG,B−fr → C be a G-symmetric monoidal functor such that for

every (M → O) ∈ MfldG,B−fr with a G-collar decomposition of the underlying G-manifold
f : M → [−1, 1] the induced map F (M−)⊗F (M0×(−1,1)) F (M+)→ F (M) is an equivalence in C[O].
In such case we say that F satisfies the G-⊗-excision property.

Remark 9.2.3. By [HA] 4.4.2.8, under the conditions imposed on C[O] as in 9.2.1, the relative tensor
product F (M−)⊗F (M0×(−1,1))F (M+) can be identified with the two sided bar construction, hence
we use the same notation in both cases.
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Proposition 9.2.4. Let A : DiskG,B−fr,t → C⊗ be a B-framed G-disc algebra with values in C⊗.
Then the G-factorization homology functor

∫
A− : MfldG,B−fr,t → C⊗ satisfies the G-⊗-excision

property.

The proof of the theorem can be expressed in several steps, imitating the approach of Ayala and
Francis in [AF15]. We will first give one useful construction that will make the proof of 9.2.4
analogous to that of [Hor19] 5.2.3

Construction 9.2.5. Let (M → O) ∈ MfldG,B−fr be an OG-manifold with a G-collar de-
composition of the underlying G-manifold f : M → [−1, 1]. We define the following O-category
Diskf → O as the O-limit of the diagram

DiskG,B−fr/M FunO(O ×∆1,MfldG,B−fr
/M

) O ×Disk∂,or/[−1,1]

MfldG,B−fr
/M

MfldG,B−fr
/M

ev0
ev1

f−1

together with O-functors ev0 : Diskf → DiskG,B−fr/M and ev1 : Diskf → O ×Disk∂,or/[−1,1]

Description 9.2.6. Let us give a description of the O-category Diskf . Let (ψ : W → O) ∈ O.
Then the fiber of Diskf → O over ψ is the limit of the diagram

(DiskG,B−fr[W ] )/ψ∗M Fun(∆1, (MfldG,B−fr
[W ]

)/ψ∗M ) Disk∂,or/[−1,1]

(MfldG,B−fr
[W ]

)/ψ∗M (MfldG,B−fr
[W ]

)/ψ∗M

ev0
ev1

ψ∗f−1

The ∞-categories (DiskG,B−fr[W ] )/ψ∗M , (MfldG,B−fr
[W ]

)/ψ∗M and Disk∂,or/[−1,1] can be modeled by the

adequate coherent nerves of the Moore over categories, hence an element of (Diskf )[ψ] can be
written as

(g : E ↪→ ψ∗M,ϕ : V ↪→ [−1, 1], h : E ↪→ f−1(V ), γ)

where:

� V is a finite disjoint union of 1-dimensional oriented disks with boundary, i.e oriented open
intervals equivalent to R and oriented half open intervals equivalent to [0, 1) or (0, 1],

� ϕ is an orientation preserving embedding of V into the closed interval [−1, 1],

� E → U →W is a finite G-disjoint union of G-disks (i.e E → U is a G-vector bundle over a
finite G-set),

� g is a G-equivariant embedding over W of E into ψ∗M ,

� h is a G-equivariant embedding over W of E into the preimage f−1(V )

� γ is a Moore path in EmbGW (E,ψ∗M) from g to f−1(ϕ)◦h, where f−1(ϕ) : f−1(V ) ↪→ ψ∗M .
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Furthemore, we have

(ev0)[ψ](g : E ↪→ ψ∗M,ϕ : V ↪→ [−1, 1], h : E ↪→ f−1(V ), γ) = (g : E ↪→ ψ∗M) ∈ (DiskG,B−fr[W ] )/ψ∗M

(ev1)[ψ](g : E ↪→ ψ∗M,ϕ : V ↪→ [−1, 1], h : E ↪→ f−1(V ), γ) = (ϕ : V ↪→ [−1, 1]) ∈ Disc∂,or/[−1,1]

Lemma 9.2.7. The O-functor ev0 : Diskf → DiskG,B−fr/M is an O-Cartesian fibration. Addition-

ally, the O-functor ev1 : Diskf → O ×Disk∂,or/[−1,1] is an O-coCartesian fibration.

Proof. From [HTT] 2.4.7.12 it follows that for every (ψ : W → O) ∈ O the functor

(ev0)[ψ] : (Diskf )[ψ] → (DiskG,B−fr[W ] )/ψ∗M

is a Cartesian fibration. Moreover, a morphism in Diskf is (ev0)-Cartesian if and only if its image

in DiskG,B−fr/M is an equivalence, hence the second condition of [Shah18] 7.1 is true by [HTT]

2.4.1.5 and 2.4.1.7.

Lemma 9.2.8. The O-functor ev0 : Diskf → DiskG,B−fr/M is O-cofinal.

Proof. By 8.0.6 it will suffice to prove the claim in the non-framed case.
We have to show that for every ϕ : W → O the map (ev0)[ϕ] : (Diskf )[ϕ] → (DiskG/M )[ϕ] is cofinal.

Without the loss of generality it will suffice to prove the claim for ϕ : O
=−→ O. In other words, we

need to show that (ev0)[O] : (Diskf )[O] → (DiskG/M )[O] is cofinal.
Note that with a choice of a basepoint x ∈ O we have (O, x) ∼= G/H where H = Stab(x) is a finite
subgroup, and using the equivalence G/H ' OopH we restrict to the finite group case. We have

(DiskG/M )[G/H] ' (DiskG[G/H])/M ' (DiskH[H/H])/MH

where MH is the fiber of M → G/H over eH where e is the neutral element of G. Moreover,
(Diskf )[O] is the limit of

(DiskG[G/H])/M Fun(∆1, (MfldG
[G/H]

)/M ) Disk∂,or/[−1,1]

(MfldG
[G/H]

)/M (MfldG,B−fr
[G/H]

)/M

ev0
ev1

ψ∗f−1

which becomes the limit of

(DiskH[H/H])/MH
Fun(∆1, (MfldH

[H/H]
)/MH

) Disk∂,or/[−1,1]

(MfldH
[H/H]

)/MH
(MfldH

[H/H]
)/MH

ev0
ev1

The proof now follows from [Hor19] 5.2.7.

We are ready to give the proof of 9.2.4:
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Proof. By 9.2.8 we can write ∫
M

A ' O − colim(F ) (9.3)

where F is an O-functor

F : Diskf → DiskG,B−fr/M → O×DiskG,B−fr → O×C

Consider the following diagram of O-categories

Diskf DiskG,B−fr/M O×DiskG,B−fr O×C

O ×Disk∂,or/[−1,1]

ev0

ev1
L

where L is the parametrized left Kan extension of F along ev0. Note that L is obtained via the
O-left adjoint functor (ev1)! i.e. L = (ev1)!(F ) where

(ev1)! : FunO(Diskf , O×C) � FunO(O ×Disk∂,or/[−1,1], O×C) : (ev1)∗

is an O-adjoint pair. Since parametrized left adjoint functors preserve parametrized colimits (see
[Shah18] 8.7 ) we have

O − colim(F1) ' O − colim((ev1)!(F )) ' O − colim(F ) '
∫
M

A

Additionally, since the O-colimit over O × Disk∂,or/[−1,1] is equivalent to the (non-parametrized)

colimit over Disk∂,or/[−1,1] by the equivalence

FunO(O ×Disk∂,or/[−1,1], O×C)
'−→ Fun(Disk∂,or/[−1,1], C[O])

L 7→ L|
(O

=−→O)×Disk∂,or
/[−1,1]

= L1

we obtain the following ∫
M

A ' colim(L1) = colim
V ∈Disk∂,or

/[−1,1]

L1(V )

Using the same arguments as in [Hor19] proof of 5.2.3, again by passing to the finite group case by
writing (O, x) ∼= G/H, G/H ' OopH with the choice of basepoint x ∈ O and H = Stab(x) a finite
group, we can conclude

L1(V ) '
∫
f−1(V )

A

We finish the proof by using the result [AF15] 3.11 the same way as in 9.2.1 which gives us the
desired result.
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9.3 G-sequential unions

Definition 9.3.1. Let M → O be an OG-manifold. A G-sequential union of (the underlying
G-manifold) M is a sequence of open OG-submanifolds M1 ⊂ M2 ⊂ ... ⊂ M with M = ∪∞i=1Mi.
A G-sequential union of a B-framed OG-manifold M ∈MfldG,B−fr

[O]
is a G-sequential union of its

underlying G-manifold.

Let F : MfldG,B−fr,t → C⊗ be a G-symmetric monoidal functor and M = ∪∞i=1Mi a G-sequential

union of M ∈MfldG,B−fr
[O]

, then F induces a map

colimiF (Mi)→ F (M) (9.4)

in C⊗[O].

Definition 9.3.2. Let F : MfldG,B−fr,t → C⊗ be a G-symmetric monoidal functor and M =

∪∞i=1Mi a G-sequential union of M ∈MfldG,B−fr
[O]

. We say that F respects G-sequential unions if

the map (9.4) is an equivalence in C⊗[O].

Proposition 9.3.3. Let A ∈ Fun⊗G(DiskG,B−fr,t, C⊗) be a B-framed G-disc algebra with values

in C. Then the G-factorization homology functor
∫
A : MfldG,B−fr → C respects G-sequential

unions.

First we prove the following useful lemmas:

Lemma 9.3.4. Let M ∈MfldG,B−fr
[O]

be a B-framed OG-manifold over O ∈ OG, and M = ∪∞i=1Mi

a G-sequential union of M and let (E → U → O) ∈ DiskG,B−fr[O] be a finite disjoint union of G-

discs. Then the induced map

hocolimiEmb
G
O(E,Mi)→ EmbGO(E,M)

is a weak equivalence.

Proof. By 7.3.6 the following square

EmbGO(E,Mi) EmbGO(E,M)

ConfGO (U,Mi) ConfGO (U,M)

is a homotopy pullback square. Since homotopy colimits preserve homotopy pullbacks we obtain
the homotopy pullback square

hocolimiEmb
G
O(E,Mi) EmbGO(E,M)

hocolimiConf
G
O (E,Mi) ConfGO (E,M)

Fortunately, since Mi are all open in M and since M = ∪∞i=1Mi, the collection of ConfGO (E,Mi)
represents the complete open cover of ConfGO (E,M) hence the lower horizontal line is an equiva-
lence by [DI04] 1.6.
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Lemma 9.3.5. Let M ∈MfldG,B−fr
[O]

be a B-framed OG-manifold over O ∈ OG, and M = ∪∞i=1Mi

a G-sequential union of M . Then the O-functor

colimiDisk
G,B−fr
/Mi

→ DiskG,B−fr/M

is an equivalence of O-categories.

Proof. By 8.0.6 it will suffice to show that the O-functor colimiDisk
G,B−fr
/Mi

→ DiskG,B−fr/M is a

fiberwise equivalence. Without loss of generality, it will further suffice to prove that colimi(Disk
G,B−fr
/Mi

)[ϕ] →
(DiskG,B−fr/M )[ϕ] is an equivalence for ϕ : O

=−→ O. Therefore, we need to show that the functor

colimi(Disk
G,B−fr
[O] )/Mi

→ (DiskG,B−fr[O] )/M

is fully faithful and essentially surjective.
For the former, let E1 → U1 → O and E2 → U2 → O be the two elements of colimi(Disk

G,B−fr
[O] )/Mi

.

There is big enough i ∈ N such that (E1 → U1 → O), (E2 → U2 → O) ∈ (DiskG,B−fr[O] )/Mi
given by

G-embeddings e1 : E1 ↪→Mi and e2 : E2 ↪→Mi. Then the mapping spaceMap(DiskG,B−fr
[O]

)/Mi
(E1, E2)

is given as the homotopy fiber

Map(DiskG,B−fr
[O]

)/Mi
(E1, E2)→ EmbGO(E1, E2)

(e2)∗−−−→ EmbGO(E1,Mi)

over e1. Since the homotopy fibers are preserved by filtered homotopy colimits, we obtain the
following sequence

hocolimiMap(DiskG,B−fr
[O]

)/Mi
(E1, E2)→ EmbGO(E1, E2)→ hocolimiEmb

G
O(E1,Mi)

Recall that by 9.3.4 we have an equivalence hocolimiEmb
G
O(E1,Mi) ' EmbGO(E1,M) giving us

hocolimiMap(DiskG,B−fr
[O]

)/Mi
(E1, E2)→ EmbGO(E1, E2)→ EmbGO(E1,M)

In particular, the upper sequence expreses hocolimiMap(DiskG,B−fr
[O]

)/Mi
(E1, E2) as the homotopy

fiber of EmbGO(E1, E2)→ EmbGO(E1,M) over the map E1
e1−→ Mi ↪→ M . On the other hand, this

homotopy fiber is exactly equivalent to Map(DiskG,B−fr
[O]

)/M
(E1, E2), hence giving us a homotopy

equivalence

hocolimiMap(DiskG,B−fr
[O]

)/Mi
(E1, E2) 'Map(DiskG,B−fr

[O]
)/M

(E1, E2)

hence proving the fully faithful condition.
For essential surjectivity, consider (E → U → O) ∈ (DiskG,B−fr[O] )/M . We can chose t > 0 small

enough such that Bt(E) ↪→ E ↪→ M factors through some Mi. By radial dilation E → U → O

and Bt(E) → U → O are equivalent objects in (DiskG,B−fr[O] )/M . On the other hand, Bt(E) →
U → O represents an object of colimi(Disk

G,B−fr
[O] )/Mi

thus proving the essential surjectivity

condition.

The proof of 9.3.3 goes as follows:

Proof. Let M ∈MfldG,B−fr
[O]

be a B-framed G-manifold such that M = ∪iMi is a sequential union

of G-manifolds. Then
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colimi

∫
Mi

A =colimi(O − colim(DiskG,B−fr/Mi
→ O×DiskG,B−fr → O×C))

'O − colim(colimi(Disk
G,B−fr
/Mi

→ O×DiskG,B−fr → O×C))

Then, by using 9.3.5 we obtain

colimi

∫
Mi

A ' O − colim(DiskG,B−fr/M → O×DiskG,B−fr → O×C) =

∫
M

A

9.4 Axiomatic caracterization of G-factorization homology

In this final section we give the axiomatic caracterization of the G-factorization homology. In
other words, we will prove that G-factorization homology represents all of the G-homology theories,
that is, G-symmetric monoidal functors whose domain is MfldG,B−fr and which take values in
presentable G-symmetric monoidal categories who, in addition, satisfy the G-⊗-excision property
and who respect G-sequential unions.

Definition 9.4.1. Let C⊗ → FinG∗ be a G-symmetric monoidal G-∞-category, f : B → BOn(G)
be a G-map and let F ∈ Fun⊗G(MfldG,B−fr,t, C⊗) be a G-symmetric monoidal functor. We
will call F an equivariant homology theory if F satisfies G-⊗-excision property and is compatible
with G-sequential unions. We will denote with H(MfldG,B−fr,t, C⊗) the full subcategory of

Fun⊗G(MfldG,B−fr,t, C⊗) consisting of equivariant homology theories.

Construction 9.4.2. Let N,M with N ⊆M be compact G-manifolds. Additionally, let f : M →
R be an equivariant Morse function (which exists by [Was69] 4.10 ) such that M�N contains a
single critical orbit, which we denote with W . Furthemore, TWM →W decomposes as the sum of
G-vector bundles TWM ∼= P ⊕ B such that the Hessian of f at W is positive on P and negative
on B. Denote with D(P ) → W and D(B) → W the closed unit disc bundles and let S(B) → W
be the unit sphere bundle. Then

M ∼= N
⋃

D(P )×W S(B)

D(P )×W D(B)

In other words, we say that M is obtained from N by attaching a handle-bundle of type (P,B)W,f .

Now assume that M is a G-manifold, not necessarily compact. We can again choose a Morse
function on f : M → R such that f−1(−∞, r] is a compact G-submanifold for every r ∈ R. More-
over, we can choose the increasing sequence of regular values r0, r1, ... such that limi→+∞ri = +∞,
f−1(−∞, r0) = ∅ and (ri, ri+1) contains a critical point. With the notation Mi = f−1(−∞, ri), M
becomes the G-sequential union

⋃+∞
i=0 Mi. Notice that Mi+1�Mi contains only a finite number of

critical orbits (since Mi is compact for all i), which we can, without the loss of generality reduce to
one critical orbit because the orbits are disjoint. Therefore, Mi+1 is obtained from Mi by attaching
a single handle bundle of type (P,B)W,f described above. Therefore

M i+1
∼= M i

⋃
D(P )×W S(B)

D(P )×W D(B)

Taking A(B) to be a unit annulus bundle (which is a G-tubular neighborhood of the unit sphere
bundle) and discarding the boundary points we have
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Mi+1
∼= Mi

⋃
D(P )×WA(B)

D(P )×W D(B)

Therefore, Mi+1 is obtained from Mi by attaching an ”open” handle bundle of type (P,B)W,f .
Since M is a sequential union of G-manifolds Mi we have a handle bundle decomposition of M .

Theorem 9.4.3. Let C⊗ → FinG∗ be a presentable G-symmetric monoidal ∞-category and let
f : B → BOn(G) be a G-map. Then the adjunction

(i⊗)! : Fun⊗G(DiskG,B−fr,t, C⊗) � Fun⊗G(MfldG,B−fr,t, C⊗) : (i⊗)∗

restricts to an equivalence

(i⊗)! : Fun⊗G(DiskG,B−fr,t, C⊗)
'−→ H(MfldG,B−fr,t, C⊗)

Proof. Let H ∈ H(MfldG,B−fr,t, C⊗) and let AH be the restriction of H along i⊗. Since the G-

symmetric monoidal functor (i⊗)! factors through the full ∞-subcategory H(MfldG,B−fr,t, C⊗)
(by 9.2.4 and 9.3.3) it would be enough to show that the counit map∫

−
AH → H

is an equivalence. We will prove this by induction:
Let Fk for k = 0, 1, ..., n be the full G-∞-subcategory of MfldG,B−fr such that the underlying

OG-manifolds can be written in the form M×OE → O′, where O → O′ is a map in OG, M → O is
a (l+ k)-dimensional OG-manifold and E → O is a finite disjoint union of (n+ l− k)-dimensional
G-discs. Note that the fibers of M → O are k-dimensional smooth manifolds. We prove our claim
by induction on k:

For k = 0, M → O a finite G-set. Since OG is an orbital ∞-category M ×O E → O is just a
disjoint union of G-discs and hence∫

M×OE
AH ' AH(M ×O E) = H(M ×O E)

since (i⊗)! is fully faithful.
When k > 0 note that M can be written as a G-sequential union M =

⋃+∞
i=1 Mi such that each

Mi admits a finite handle bundle decomposition. Since both H and
∫
−AH respect G-sequential

unions it will suffice to provide proof when M admits a finite handle bundle decomposition. We
proceed with the induction on the handle decomposition. The base case of induction is assured.
For the inductive step, assume that M is obtained from N by attaching a handle-bundle of type
(P,B)W,f . Then we have

M ∼= N
⋃

D(P )×WA(B)

D(P )×W D(B), and consequently

M ×O E ∼= N ×O E
⋃

(D(P )×WA(B))×OE

(D(P )×W D(B))×O E

The decomposition of M ×O E presented as above is a G-collar gluing map. Intuitively, this collar
gluing map sends N ×O E to the point −1 in the segment [−1, 1], (D(P )×W D(N))×O E sends to
1, and the manifold bundle structure of the restriction (D(P )×W A(B))×O E → (−1, 1) is given
by the decomposition A(B) ∼= S(B) × (−1, 1) i.e. the fibers of the manifold bundle are given by
(D(P )×W S(B))×O E.
Proceeding further with the proof, we distinguish between two cases:



CHAPTER 9. PROPERTIES OF G-FACTORIZATION HOMOLOGY 115

1. dim(B) = l : In which case N →W is just a finite G-set and therefore A(B) = ∅. Moreover,
M decomposes as

M ×O E ∼= (N ×O E) t (D(P )×W B)×O E

which gives us ∫
M×OE

AH '
∫
N×OE

AH ⊗
∫

(D(P )×WB)×OE
AH

By induction hypotesis
∫
N×OE AH ' H(N ×O E), and since (D(P )×W B)×O E is disjoint

union of G-discs, we have
∫

(D(P )×WB)×OE AH ' AH((D(P ) ×W B) ×O E) = H((D(P ) ×W
B)×O E), which in total gives us

∫
M

AH ' H(N)⊗H((D(P )×W B)×O E) ' H((N ×O E) t (D(P )×W B)×O E) ' H(M)

2. dim(B) > l in which case A(B) ∼= S(B)× (−1, 1) where G acts trivially on the interval (see
9.4.4). Therefore

(A(B)×W D(P ))×O E ∼= (S(B)× (−1, 1))×W (P ×O E) ∼= S(B)×W ((−1, 1)× (P ×O E))

which leads us to the conclusion dim(S(B)) = dim(B) − 1 ≤ M − 1 = l + k − 1. Hence,
(A(B)×W D(P ))×O E ∈ Fk−1.
By the induction hypothesis (on k) we have∫

(A(B)×WD(P ))×OE
AH ' H((A(B)×W D(P ))×O E)

and by the same reasoning as before

∫
N×OE

AH ' H(N ×O E)∫
(D(P )×WD(B))×OE

AH ' H((D(P )×W D(B))×O E)

which in the end gives us

∫
M

AH '
∫
N×OE

AH ⊗∫
(A(B)×W D(P ))×OE

AH

∫
(D(P )×WD(B))×OE

AH

H(N ×O E)⊗H((A(B)×WD(P ))×OE) H((D(P )×W D(B))×O E) ' H(M)

which finishes the proof.
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Remark 9.4.4. In [Was69], Wasserman works with Riemannian G-manifolds, meaning that the
equivariant form given on the tangent bundle is orthogonal i.e. G acts by linear isometries. In our
work, we have only recquired the form to be equivariantly linear. Luckily, this does not represent
a problem since the general linear and orthogonal group are homotopy equivalent, meaning that
we can always replace our linear form with an orthogonal one. Therefore we can claim that the
annulus bundle A(N) is a tubular neighborhood of the unit sphere bundle S(N) and hence we can
write A(N) ∼= S(N)× (−1, 1).

Remark 9.4.5. In the introductory part of [Hor19], Horev stated some dificulties when trying to
expand to the case of compact Lie groups. Namely, the handle bundles over critical orbits can be
non-trivial, since the orbits are of possibly positive dimension, but in our case they are still G-discs,
since we have defined them as (not necessarily trivial) G-vector bundles over orbits. Secondly, all
of the orbits are of the same dimension, which makes the proof almost analogous to that of Horev.
And finally, our ∞-category OG is taken to be the ∞-category of orbits with finite stabilizers,
which is orbital i.e. it is closed under fiber products, which is also important in the proof.
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Chapter 10

Universal property of framed
G-disc algebras

10.1 G-approximations to G-∞-operads

In this section we will present the theory of G-approximations to G-∞-operads. It is rather
technical and serves to develop the machinery used in the following section for proving the universal
property of framed G-disc algebras. Informally, a G-approximation to a G-∞-operad is an ∞-
category that somewhat behaves as a G-∞-operad. It is a more general object that can capture
information about the original G-∞-operad.

Definition 10.1.1. Let p : E⊗ → FinG∗ be a G-∞-operad and let f : C → E⊗ be a categorical
fibration. We say that f is a G-approximation to E⊗ if it satisfies the following conditions:

1. Let p′ = p ◦ f . The ∞-category CI(−) obtained as the pullback

CI(−) C

OopG FinG∗

p′

together with the map CI(−) → OopG is a G-∞-category i.e. the map is a coCartesian fibration.

2. Let c ∈ C and let p′(c) = I = [U → O]. Then there exists p′-coCartesian morphism c→ cW
in C lifting χW⊆U : I → I(W ) for every W ∈ Orbit(U). Additionally, the map f(c→ cW ) is
an inert map in E⊗.

3. Let c ∈ C and let α : x→ f(c) be an active morphism in E⊗. Then there exists a Cartesian
lift ᾱ : x̄→ c of α in C.

Remark 10.1.2. Recall that, given a G-∞-operad E⊗ we can set up a factorization system on the
arrows of E⊗ the following way

� the inert arrows are the inert arrows of G-∞-operads.

� the active arrows are the fiberwise active arrows, that is, active arrows that lie over an
equivalence in OopG .
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Let f : C → E⊗ be a G-approximation. Then by [HA] 2.1.2.5 we have an induced factorization
system on C by taking

� f -inert arrows to be arrows α such that f(α) is an inert arrow in E⊗.

� f -active arrows to be the arrows α such that they are f -Cartesian and f(α) is active in E⊗.

Definition 10.1.3. Let p : E⊗ → FinG∗ and q : E′⊗ → FinG∗ be two G-∞-operads and let
f : C → E⊗ be a G-approximation. Denote with p′ = p ◦ f and consider a functor F : C → E′⊗.
We will say that F is a C-algebra object in E′⊗ if the following conditions are satisfied:

� F induces a G-functor between underlying G-∞-categories CI(−) → E′.

� The following diagram is commutative

C E′⊗

E⊗ FinG∗

f

F

q

p

� Let x ∈ C and let p′(x) = [U → O]. Let αW : x → xW be a p′-coCartesian arrow lifting
χ : [U → O]→ [W

=−→W ] for W ∈ Orbit(U). Then the map F (αW ) is an inert map in E′⊗.

We will denote with AlgG(C,E′) the ∞-category of C-algebra objects in E′⊗.

We would like to prove the proposition 10.1.7 (the equivariant version of [HA] 2.3.3.23 ).
The following lemmas will be helpful:

Lemma 10.1.4. Let p : O⊗ → FinG∗ and q : E⊗ → FinG∗ be two G-∞-operads and let F : O⊗ →
E⊗ be a map over FinG∗ . Let F be a class of arrows in FinG∗ of type

U O2 O2

O1 O2 O2

=

= =

=

Then F is a map of G-∞-operads if and only if it sends an inert arrow in O⊗ over F to an inert
arrow in E⊗.

Proof. For a finite G-set I = [U → O] note that the maps χ[W⊆U ] all belong to F . The proof is
now analogous to the [HA] 2.1.2.9.

Lemma 10.1.5. Let p : E⊗ → FinG∗ be a G-∞-operad and let f : C → E⊗ be a G-approximation.
Let c ∈ C and let α : x→ f(c) be any morphism in E⊗. Consider

Σ ⊆ C/c ×E⊗
/f(c)

E⊗x//f(c)

the full subcategory spanned by the objects corresponding to pairs {β : d → c, γ : x → f(d)} such
that γ is inert. The ∞-category Σ is contractible.

Proof. We can factorize α as in the following commutative diagram

y

x f(c)

α2α1

α
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such that α1 is inert and α2 is active. By definition of a G-approximation, we have a Cartesian
lift ᾱ2 : ȳ → c of γ in C. Now, we claim that the pair σ = (ᾱ2 : ȳ → c, α1 : x → y = f(ȳ)) is a
terminal object of Σ. We will show this, by proving that the map

Σ/σ → Σ

is a trivial Kan fibration. In other words, we need to prove the existence of the dashed lift

∂∆n Σ/σ

∆n Σ

s0

s

The map s0 : ∂∆n → Σ/σ corresponds to the map s′0 : Λn+1
n+1 → Σ sending {n+ 1} 7→ σ. Consider

the restriction map

t0 : Λn+1
n+1

s′0−→ Σ→ E⊗x//f(c)
→ E⊗x/

Next, note that this map corresponds to

t′0 : Λn+2
0 → E⊗

such that t′0 : {0, 1} 7→ α1 : x→ y. Furthemore, we have that

∆n+1 ∼= ∆{0,2,...,n+2} t′0|∆{0,2,...,n+2}−−−−−−−−−−→ E⊗

corresponds to

∆n+1 ∼= {0} ?∆n → E⊗

sending {0} to x, which is induced by the map ∆n s−→ Σ → E⊗x//f(c)
→ E⊗x/. Since t′0 : ∆{0,1} 7→

(x→ y) is inert and hence coCartesian, we have a lift

Λn+2
n+2 E⊗

∆n FinG∗

t′0

Therefore, we also have a lift ∆n+1 → E⊗x/ given by

Λn+1
n+1 Σ E⊗x//f(c)

E⊗x/

∆n+1

s′0

Finally, since the map E⊗x//f(c)
→ E⊗x/ is a right fibration, we have the existence of a dashed lift

in the upper diagram. Let us denote the restriction of that lift ∆n+1 → E⊗x//f(c)
→ E⊗/f(c) with χ,

and the corresponding map ∆n+2 → E⊗ with χ′.

Similarly, if we look at the map
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t : Λn+1
n+1

s′0−→ Σ→ C/c

we see that it corresponds to the map

t′ : Λn+2
n+2 → C

such that t′ : ∆{n+1,n+2} 7→ (ᾱ2 : ȳ → c). Again, ∆n+1 ∼= ∆{0,1,...,n,n+2} ⊂ Λn+2
n+2 → C is induced

by the map ∆n s−→ Σ→ C/c → C. Since ᾱ2 is Cartesian, we have the following lift

Λn+2
n+2 E⊗

∆n+2

t′

which in total gives us the lift

∂∆n Σ/σ

∆n Σ

s0

s

Therefore Σ/σ → Σ is a trivial Kan fibration, and hence, by [HTT] 1.2.12.3 and 1.2.12.5 σ is a
terminal object.

Remark 10.1.6. In Lurie’s book [HA], one can find a definition of a weak approximation to be a map
C → E⊗ satisfying the second point from the definition 10.1.1 and the condition from 10.1.5 (in
the non-equivariant case). In this paper, we will stick to the work with (strong) G-approximation
altough one could add the definition of the weak one.

Proposition 10.1.7. Let p : E⊗ → FinG∗ and q : E′⊗ → FinG∗ be two G-∞-operads and let
f : C → E⊗ be a G-approximation. Furthemore, assume that the induced map CI(−) → E is an
equivalence of G-∞-categories. Then the induced map

θ : AlgG(E,E′)→ AlgG(C,E′)

is an equivalence of ∞-categories.

Proof. Firsty, we can choose a Cartesian fibration u : M → ∆1 associated to the functor f ,
together with isomorphisms M ×∆1 {0} ' E⊗, M ×∆1 {1} ' C and a retraction r : M → E⊗ such
that r|C = f . Denote with Υ ⊆ FunFinG∗ (M,E′) the full subcategory spanned by the functors

F : M → E′ such that:

1. The restriction F |E⊗ belongs to AlgG(E,E′),

2. For every u-Cartesian morphism α of M , the image F (α) is an equivalence in E′ (or, equiv-
alently, F is a q-left Kan extension of F |E⊗).

We will continue the proof and complete it in several steps:

Step 1. The restriction map Υ→ AlgG(E,E′) is a trivial Kan fibration.
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Let X ⊆ FunFinG∗ (M,E′⊗) be the full subcategory spanned by those functors F : M → E′⊗ which

are q-left Kan extensions of F |E⊗ , and let Y ⊆ FunFinG∗ (E⊗, E′⊗) be the full subcategory spanned

by those functors F : E⊗ → E′⊗ such that for every x ∈ M the induced functor E⊗/x → E′⊗ has

a q-colimit, where E⊗/x := E⊗ ×M M/x. By [HTT] 4.3.2.15 the restriction functor X → Y is a

trivial Kan fibration. Moreover, we claim that Y ' FunFinG∗ (E⊗, E′⊗). This follows from the fact

that E⊗/x has a terminal object, hence every functor in FunFinG∗ (E⊗, E′⊗) has a q-colimit. The

terminal object in E⊗/x is given by x→ x if x ∈M |{0} ' E⊗ and by a Cartesian lift y → x over x if

x ∈M |{1} ' C. By the description of the ∞-category Υ the restriction functor Υ→ AlgG(E,E′)
fits in the commutative diagram

Υ X FunFinG∗ (M,E′)

AlgG(E,E′) Y FunFinG∗ (E,E′)'

In fact, the left square is a pullback square, again by the description of Υ, hence Υ→ AlgG(E,E′)
is a trivial Kan fibration.

Going toward our next step, note that precomposition with r gives a section of this trivial
fibration, which we will traditionally mark with s. Let ε : Υ → FunFinG∗ (C,E′⊗) be the other
restriction. The functor θ is given by the composition ε ◦ s, which means that it will suffice to
prove that ε induces an equivalence of ∞-categories Υ and AlgG(C,E′⊗).
Again, by [HTT] 4.3.2.15 it will suffice to show the following:

1. For every F0 ∈ AlgG(C,E′) there exists F ∈ FunFinG∗ (M,E′⊗) such that F is a q-right Kan
extension of F0.

2. A functor F ∈ FunFinG∗ (M,E′⊗) belongs to Υ if and only if it is a q-right Kan extension of

F0 = F |C , with F0 ∈ AlgG(C,E′).

Naturally, our next step would be to prove:

Step 2. For every F0 ∈ AlgG(C,E′) there exists F ∈ FunFinG∗ (M,E′⊗) such that F is a q-right
Kan extension of F0.

Take x ∈ E⊗, let Cx/ = Mx/×MC and let Fx = F0|Cx/ . By [HTT] 4.3.2.13 it will suffice to show

that Fx can be extended to a q-limit diagram CC
x/ → E′⊗ (covering the map CC

x/ →M → FinG∗ ).

Denote with C ′x/ the full subcategory of Cx/ spanned by those morphisms x→ y in M such that

x → f(y) is an inert arrow in E⊗. By 10.1.5 the inclusion functor C ′x/ ↪→ Cx/ is final, thus by

[HTT] 4.3.1.7 it will suffice to show that F ′x = Fx|C′
x/

can be extended to a q-limit C ′
C
x/ → E′⊗.

Let p(x) = [U → O] and let C ′′x/ be the full subcategory of C ′x/ spanned by inert morphisms

x→ f(y) such that their underlying map in FinG∗ can be written as a span

U V V

O V V

=

=

=

=
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where V ∈ OG. At the moment, we wish to prove that F ′x is a q-right Kan extension of F ′′x = F ′x|C′′x/
so that we can use [HTT] 4.3.2.7 :
Let α : x → y be a map in M which is an object of C ′x/ and denote p ◦ f(y) = [U1 → O1]. The

∞-category C ′′x/×C′x/ (C ′x/)α/ can be identified as the full subcategory of Mα/ spanned by diagrams

x
α−→ y

β−→ z such that p ◦ f(β) can be written as the span

U1 V V

O1 V V

=

=

=

=

with V ∈ OG. Note that the upper left G-map V → U1 factors through some W ∈ Orbit(U1). Let,
FW⊆U1

be a full subcategory of FinG∗ χ[W⊆U1]/
spanned by those object (or better said, morpshisms)

of the form

U1 V V

O1 V V

=

=

=

=

with V ∈ OG. In particular, one such morphism can be factored as composition of maps

U1 W W V V

O1 W W V V

=

=

= =

=

=

= =

Now we can write our∞-category C ′′x/×C′x/ (C ′x/)α/ as the disjoint union of∞-categories C ′′(W )y/,

for W ∈ Orbit(U1), where each C ′′(W )y/ is equivalent to the full subcategory of Cy/ spanned by
objects (that is, morphisms) covering a map from FW⊆U1

. Since f is a G-approximation all of these
∞-categories C ′′(W )y/ have an initial object given by the p ◦ f -coCartesian lift y → yW covering
χ[W⊆U1]. Hence, it will suffice to show that F0(y) is a q-product of the objects {F0(yW )}W∈Orbit(U1).
Since E′⊗ is a G-∞-operad it will sufice to show that the maps F0(y)→ F0(yW ) are inert, which
is true since F0 ∈ AlgG(C,E).

We have shown that F ′x is a q-right Kan extension of F ′′x = F ′x|C′′x/ . By [HTT] 4.3.2.7 it will

suffice to prove that F ′′x can be extended to a q-limit diagram C ′′
C
x/ → E′⊗ covering the map

C ′′
C
x/ →M → FinG∗ .

Similarly as before, let C ′′(W )x/ (for W ∈ Orbit(U) with p(x) = [U → O]) be the full subcat-
egory of C ′′x/ spanned by objects covering a map from FW⊆U . Now the ∞-category C ′′x/ can be

written as the disjoint union of ∞-categories C ′′(W )x/. Denote with E(W ) the full subcategory

of E⊗x/ ×FinG∗ [U→O]/
FW⊆U such that we have an equivalence C ′′(W )x/ ' E(W ) ×E CI(−). Since

f induces an equivalence on the underlying G-∞-categories CI(−) ' E this is possible to do. We
can choose the inert morphisms x → xW as coCartesian lifts of χ[W⊆U ] which in turn represent

the initial objects of E(W ). Since f induces a categorical equivalence CI(−)
'−→ E we can write

xW ' f(cW ) with αW : x → cW an initial object of C ′′(W )x/. Similarly to the previous part, we
are required to prove the existence of a q-product of objects F0(cW ), W ∈ Orbit(U) which follows
from the fact that E′⊗ is a G-∞-operad. This finishes the proof of the second step.

The arguments as above give us the following equivalent condition for point 2):
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Help lemma. Let F ∈ FunFinG∗ (M,E′⊗) be such that F0 = F |C ∈ AlgG(C,E′). Let x ∈ E⊗

such that p(x) = [U → O], and let cW ∈ C such that f ◦ p(cW ) = [W
=−→ W ] with W ∈ Orbit(U).

Additionaly, let αW : x → cW be maps in M covering χ[W⊆U ] constructed as above. Then F is a
q-right Kan extension of F0 if and only if F (αW ) are inert arrows in E′⊗ for W ∈ Orbit(U).

This help lemma will turn fundamental in the proof of our third and final step:

Step 3. A functor F ∈ FunFinG∗ (M,E′⊗) belongs to Υ if and only if it is a q-right Kan extension

of F0 = F |C , with F0 ∈ AlgG(C,E′).

Let F ∈ Υ. The functor F0 = F |C is equivalent to the functor F |E⊗ ◦f hence F0 ∈ AlgG(C,E′).
Our help lemma now implies that F is a q-right Kan extension of F0.

For the other direction, let F ∈ FunFinG∗ (M,E′⊗) and let F0 = F |C ∈ AlgG(C,E′). Assume
that F is a q-right Kan extension of F0. Let c ∈ C with f ◦ p(c) = [U → O]. Let x = f(c).
We would like to show that F (x) → F (c) in an equivalence in E′⊗. For that, let us choose p′-
coCartesian (with p′ = f ◦ p) lifts c → cW over χ[W⊆U ]. Since F0 ∈ AlgG(C,E′) by assumption,
the maps F0(c) → F0(cW ) are all inert. Since E′⊗ is an G-∞-operad, it will suffice to show that
F (x)→ F (cW ) are all inert, which is true by help lemma above.

What is left to show is that F |E ∈ AlgG(E,E′). By 10.1.4 it would only suffice to check that
that the inert map x→ xV lying over

U V V

O V V

=

=

=

=

maps to an inert map. This map factors as x→ xW → xV lying over

U W W V V

O W W V V

=

=

= =

=

=

= =

with x→ xW being inert and W ∈ Orbit(U). By the dual of [HTT] 2.4.1.7 the map xW → xV is
also inert. It is enough to show that F (x)→ F (xW ) and F (xW )→ F (xV ) are inert.
Similarly as before, we can assume that xW = f(cW ) and xV = f(cV ). Since the maps F (xW )→
F (cW ) and F (xV ) → F (cV ) are equivalences in E′⊗, for the map F (x) → F (xW ) to be inert it
would suffice to show that the composite map F (x) → F (xW ) → F (cW ) is inert, which follows
from our new criterion. As for F (xW ) → F (xV ), note that it is equivalent to F (cW ) → F (cV )
which is further equivalent to F0(cW )→ F0(cV ). Finally, since F0 ∈ AlgG(C,E′) this map is inert
and so is F (xW )→ F (xV ). With this the proof is finished.

As an immediate consequence we have the following:

Corollary 10.1.8. Let f : E⊗ → E′⊗ be a map of G-∞-operads. Furhemore, assume f is a
G-approximation map that induces an equivalence on the underlying G-∞-categories. Then f is
an equivalence of G-∞-operads.
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10.2 The universal property

In this section we will prove the universal property of G-disc algebras:
Let H ≤ G be a finite subgroup. The statement that we want to prove is the following: The
G-symmetric monoidal category of G/H-framed G-discs is freely generated by the H-symmetric
monoidal category of ∗-framed H-discs. In other words, for C⊗ a G-symmetric monoidal category
we have the following equivalence:

Fun⊗G(DiskG,G/H−fr, C⊗) ' Fun⊗H(DiskH,∗−fr, G/H×C⊗)

where G/H×C⊗ is the underlying H-∞-category of C⊗.

Note that by 7.2 DiskG,G/H−fr and DiskH,∗−fr are equivalent to the G-symmetric monoidal
envelopes EnvG(RepG/H−fr,t

n
(G)) and EnvH(Rep∗−fr,t

n
(H)) respectively. For simplicity, let us

denote with DG,G/H−fr := RepG/H−fr,t
n

(G) and DH,∗−fr := Rep∗−fr,t
n

(H). Now the equivalence
above can be written as

AlgG(DG,G/H−fr, C) ' AlgH(DH,∗−fr, G/H×C) (10.1)

Description 10.2.1. Before continuing, let us give more insight into the objects of Rep∗−fr,t
n

(H)

and RepG/H−fr,t
n

(G). Since the objects of (Rep∗−fr,t
n

(H))I(−) are framed over point, they corre-
spond to the V -framed G-discs where V is an H-representation. Informally, using 7.1.7 we can
depict these objects as

H ×K V V

H/K ∗

H/K

=

where the lower horizontal arrow is the framing map and the square is the pullback square. Using
6.1.12 and 6.1.13 we can write these elements as

G×K V

G/K G/H

G/K

G/H

=

Note that the framing map is the same as the map inducing topological induction. Therefore we can
write this element as G×K V → G/K

=−→ G/K → G/H or even simpler as G/K
=−→ G/K → G/H

(since all the information on the bundle over G/K is carried by the framing map). With this
depiction the general object of Rep∗−fr,t

n
(H) can be written as

U → O → G/H
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where U is a finite G-set and O ∈ OG is an orbit.
Similarly, an object of (RepG/H−fr,t

n
(G))I(−) can be written in the form

G×K V G×H V

G/K G/H

G/K

=

where the lower horizontal map is the framing map and the square is a pullback square. Again, by
7.1.7 we can write this element as

G/K G/H

G/K

=

Therefore, the elements of RepG/H−fr,t
n

(G) can be written in the form

O ← U → G/H

where U is a finite G-set and O ∈ OG is an orbit, the left arrow is the structure map while the
right arrow is the framing map.

In order prove the equivalence (10.1) we would like to be able to use 10.1.7.

Construction 10.2.2. Let us construct a map θ : DH,∗−fr → DG,G/H−fr as part of the commu-
tative diagram

DH,∗−fr DG,G/H−fr

FinH∗ FinG∗

θ

Note that FinH∗ is equivalent to G/H×FinG∗ . Therefore the map FinH∗ → FinG∗ is a left fibration.

By 10.2.1 we have the description of the objects of DH,∗−fr and DG,G/H−fr. The object (U → O →
G/H) ∈ DH,∗−fr is then sent by the map θ to the object (O ← U → O → G/H) ∈ DG,G/H−fr.

Proposition 10.2.3. The map θ : DH,∗−fr → DG,G/H−fr is a G-approximation map. Moreover,
θ induces an equivalence on the underlying G-∞-categories.

Proof. In order to prove that θ is a G-approximation map we need to prove the three points from
10.1.1:

1. Consider the following commutative diagram
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DH,∗−fr DG,G/H−fr

Rep∗−fr
n

(H) RepG/H−fr
n

(G)

FinH∗ FinG∗

OopH OopG

θ

I(−) I(−)

where the right rhombus is a pullback diagram. If we restrict our attention to the part of
the diagram

Rep∗−fr
n

(H) DH,∗−fr ' Rep∗−fr,t
n

(H)

OopH FinH∗

OopG FinG∗

I(−)

I(−)

we have that the upper square is a pullback square by definition. Also, by inspection the
lower square is a pullback square meaning that the whole square is a pullback square.
Therefore, the pullback of DH,∗−fr → FinH∗ → FinG∗ along I(−) : OopG → FinG∗ is

Rep∗−fr
n

(H)→ OopH → O
op
G . Additionally, the first map in the composition is a coCartesian

fibration since Rep∗−fr
n

(H) is an H-∞-category and OopH ' G/H → OopG is a left fibration,

meaning that the composition is a coCartesian fibration i.e. Rep∗−fr
n

(H) → OopG is a G-∞-
category. Additionally, since the right rhombus is a pullback diagram θ induces a map that
fits into the following diagram

Rep∗−fr
n

(H) RepG/H−fr
n

(G)

G/H ' OopH OopG

2. Let x ∈ DH,∗−fr be such that θ(x) lies over I : U → O ∈ FinG∗ . Note that I lies in an image
of FinH∗ → FinG∗ hence we can consider I as an element of FinH∗ . Since FinH∗ → FinG∗ is a
left fibration, the maps χ[W⊆U ] in FinG∗ have coCartesian lifts which are exactly maps χ[W⊆U ]

in FinH∗ . Now, considering that DH,∗−fr → FinH∗ is an H-∞-operad, the coCartesian lifts
of χ[W⊆U ] exist with the source x and therefore the coCartesian lifts of χ[W⊆U ] in FinG∗ also
exist.

3. Recall that, by 10.2.1, objects of DG,G/H−fr can be seen as

U G/H

O
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with U ∈ FinG∗ and O ∈ OG where the horizontal map corresponds to the framing map.
Now let x ∈ DG,G/H−fr lying over U1 → O, c ∈ DH,∗−fr lying over U2 → O and let x→ θ(c)
be an active arrow lying over diagram

U1 U2 G/H

O O G/H

=

=

Note that a map in DG,G/H−fr should be represented by a span, but since the underlying
arrow is fiberwise active, the left side of the span would be the identity, so we omit it in the
diagram.
The element x̄ of the Cartesian lift corresponds to the element U1 → O

=−→ O → G/H.

What is left is to show is that θ induces equivalence on the underlying G-∞-categories. Let us

denote with θI(−) : DH,∗−frI(−) → DG,G/H−frI(−) the induced functor.

Note that the element of DG,G/H−frI(−) can be written as

O G/H

O

=

which is the same as O
=−→ O → G/H, an element of DH,∗−frI(−) , hence θI(−) is essentially surjective.

As for the mapping spaces, recall taht the mapping space in DH,∗−frI(−) between E1 → O1
=−→ O1 →

G/H and E2 → O2
=−→ O2 → G/H consists of the spans

E1 E E2

O1 O2 O2

O1 O2 O2

G/H

=

=

= =

=

which is the same as the span

E1 E E2

O1 O2 O2

O1 O2 O2 G/H

=

=

= =

=
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representing the map of the image of θI(−). We conclude that θI(−) is fully faithful and hence an
equivalence which finishes the proof.

Propositions 10.2.3 and 10.1.7 give us the following result:

Corollary 10.2.4. Let E⊗ be a G-∞-operad. The map θ induces an equivalence

AlgG(DG,G/H−fr, E)
'−→ AlgG(DH,∗−fr, E)

We are one step away from proving our universal property:

Theorem 10.2.5. Let C⊗ be a G-symmetric monoidal category. Then the G-symmetric monoidal
category of G/H-framed G-discs is freely generated by the H-symmetric monoidal category of ∗-
framed H-discs. In other words, there is an equivalence

Fun⊗G(DiskG,G/H−fr, C⊗)
'−→ Fun⊗H(DiskH,∗−fr, C⊗H)

where C⊗H is the underlying H-∞-category of G-∞-category C⊗.

Proof. As discussed in the beginning of this section, the above statement is equivalent to

AlgG(DG,G/H−fr, C) '−→ AlgH(DH,∗−fr, CH)

By 10.2.4 it will suffice to show an equivalence

AlgG(DH,∗−fr, C) ' AlgH(DH,∗−fr, CH)

Recall that the H-symmetric monoidal category C⊗H is obtained via the commutative diagram

C⊗H C⊗

FinH∗ FinG∗

G/H OopG

where both inner rectangles (and consequently also the outer rectangle) are pullbacks.
Let F be a DH,∗−fr-algebra object in C⊗ i.e. F ∈ AlgG(DH,∗−fr, C), and consider the following
diagram

C⊗H

DH,∗−fr C⊗

FinH∗

DG,G/H−fr FinG∗

F

F ′
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By the universal property of the pullback F induces a functor F ′ : DH,∗−fr → C⊗H . We would like
to show that F ′ ∈ AlgH(DH,∗−fr, C⊗H).

Let αW be an inert map in DH,∗−fr covering the map χ[W⊆U ] : [U → O] → [W
=−→ W ] in FinH∗ .

Since FinH∗ → FinG∗ is a left fibration and F ∈ AlgG(DH,∗−fr, C⊗), F (αW ) is inert in C⊗. Again,
since FinH∗ → FinG∗ is a left fibration, and consequently C⊗H → C

⊗, the pullback of F (αW ) is
inert in C⊗H , which is exactly F ′(αW ), meaning F ′ ∈ AlgH(DH,∗−fr, C⊗H). Similarly, if we would
have taken F ′ ∈ AlgH(DH,∗−fr, C⊗H) the induced functor F : DH,∗−fr → C⊗H → C

⊗ would lie in
AlgG(DH,∗−fr, C⊗). By the universality of the maps to the pullback we have

AlgG(DH,∗−fr, C) ' AlgH(DH,∗−fr, CH)

and the proof is finished.

10.3 Applications of the universal property

Algebras with genuine involution and O(2)-genuine objects

Let G = O(2) and H = Z2 and let SpO(2) be a O(2)-∞-category of spectra. Let V be the adjoint
representation of O(2) at the identity element. It is evident that V is endowed with O(2)-action,
which, when we restrict to Z2-action becomes Rσ where σ is an one dimensional sign representation.

Let AH be the Rσ-framed Z2-disc algebra object in SpZ2 . Let us give more insight into the

structure of AH . Using 6.1.13 we conclude that the objects of DiskZ2,Rσ−fr are given by the finite
disjoint unions of

� Rσ, which corresponds to the element Rσ → Z2/Z2;

� The restriction ResZ2

{e}(R
σ) = R1 which corresponds to the element tZ2

R1 → Z2/{e};

� The topological induction tZ2
R1 obtained as the element tZ2

R1 → Z2/{e} → Z2/Z2

Therefore, by 7.4 we can write

� ResZ2

{e}AH(Rσ) = AH(R1);

� A(tZ2
R1) ' NZ2

e (AH(R1)).

Additionally, the equivariant embedding

(tZ2
R1) t Rσ ↪→ Rσ

induces a map NZ2
e (AH(R1)) ⊗ A(Rσ) → A(Rσ). Meaning that the Z2-spectrum A(Rσ) has a

structure of a NZ2
e (AH(R1))-module.

Next, note that AH(R1) has a structure of an E1-algebra object in SpZ2

[Z2/{e}]
' Sp, since

Fun⊗(DiskZ2,Rσ−fr
[Z2/{e}] , SpO(2)

[Z2/{e}]
) ' Fun⊗(Disk1,fr, Sp) ' AlgE1(Sp)

Moreover, the Z2-action makes AH(R1) into an associative (E1) algebra with involution i.e. AH(R1)
is a AH(R1) ⊗ AH(R1)-module. To add up, we have seen that this AH(R1) ⊗ AH(R1)-module
structure lifts to NZ2

e (AH(R1))-module structure on A(Rσ), hence we say that AH is an associative
algebra with genuine involution.

The univesal property of equivariant disc algebras, Theorem 10.2.5, gives us the equivalence
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Fun⊗Z2
(DiskZ2,Rσ−fr, SpZ2) ' Fun⊗O(2)(Disk

O(2),S1−fr, SpO(2))

where we have used the fact that O(2)/Z2
∼= S1.

Let A ∈ Fun⊗O(2)(Disk
O(2),S1−fr, SpO(2)) be an O(2)-disc algebra corresponding to AH . We can

regard S1 as a genuine O(2)-object in the O(2)-∞-category of manifolds MfldO(2),S1−fr given by

S1 :OopO(2) →MfldO(2),S1−fr

O 7→ O × S1

Therefore, we can build the following map

{Associative algebras with genuine involution in SpZ2}

{Genuine O(2)-objects in SpO(2)}

given by

AH 7→
∫
S1

A

The result of Horev, [Hor19] 7.1.1 and 7.1.2 tells us that the underlying Z2-genuine object of∫
S1 A is equivalent to the real topological Hochschild homology THR(A) (see also [DMPR17]). In

other words, we have (∫
S1

A

)
[O(2)/Z2]

' THR(A)

Therefore, we have obtained the refinement of the Z2-genuine structure on THR(A) to the O(2)-
genuine structure.

Associative algebras and S1-genuine objects

For the second example, let us take G = S1 and H = {e} the trivial subgroup. The adjoint rep-

resentation is equal to R1 when forgeting the action, hence the∞-category Fun⊗(Diske,∗−fr, SpS
1

e
)

is equivalent to the∞-category of E1-algebra objects in SpS
1

e
' Sp. Therefore, the Theorem 10.2.5

gives us

AlgE1(Sp) ' Fun⊗S1(DiskS
1,S1−fr, SpS

1

)

Let Aasse be an associative algebra object in the ∞-category of spectra Sp which corresponds to

the S1-framed S1-algebra object A in SpS
1

. Then we can construct a map

{Associative algebras in Sp}

{Genuine S1-objects in SpS
1

}
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given by

Aasse 7→
∫
S1

A

Where the S1-factorization homology is taken with respect to S1 as an S1-genuine object given by

S1 :OopS1 →MfldS
1,S1−fr

O 7→ O × S1

By [Hor19] 7.2.2 we have (∫
S1

A

)ΦCn

[S1/Cn]

' THH(A;Aτ )

where Aτ is a A-Aop-bimodule given by the formula

A⊗Aτ ⊗A→ Aτ

x⊗ a⊗ y → τx⊗ a⊗ y

with τ ∈ Cn being the group generator.
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