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Abstract

Abstract

D eep learning applications are rapidly expanding and show no signs of slowing down. Neural
network topologies are becoming larger and more complex for challenging real-life problems.
This increased complexity necessitates more time and expertise from professionals, as well as a
significant financial investment for AI companies. Neural Architecture Search is a novel Machine
Learning paradigm that seeks to determine the best NN architecture for a given problem. NAS
techniques, on the other hand, have only been studied and developed in limited, well-defined
Machine Learning problems, which are not representative of all existing ML scenarios. This
thesis focuses on the research and development of the NAS approaches for new tasks, as well as
a new learning framework that is more relevant to real-world applications. We suggested using
a neuro-evolutionary NAS framework to solve the extreme multi-label classification challenge in
particular. We combined convolution and recurrent networks to provide a more appropriate space
search for this assignment. On several datasets, we evaluate the performance of the searched
network. We also looked at the challenge of reconstructing an RSSI map, which is a more difficult
process due to the lack of input data and the fact that it is only partially annotated. In this way,
we provide a system for semantic segmentation task dynamic architecture search with a minimal
number of annotated samples. We investigated multiple semi-supervised learning algorithms in
this framework to see which one was the most successful at using unlabeled samples. We looked
at a number of strategies, including "traditional" and "new" semi-supervision approaches, as well
as self-supervision approaches.
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Résumé

Résumé

L es applications d’apprentissage profond se développent rapidement et ne montrent aucun
signe de ralentissement. Les topologies des réseaux neuronaux deviennent de plus en plus grandes
et complexes pour résoudre les problèmes de la vie réelle. Cette complexité accrue nécessite
plus de temps et d’expertise de la part des professionnels, ainsi qu’un investissement financier
important pour les entreprises d’IA. La recherche d’architecture neuronale (RAN) est un nou-
veau paradigme d’apprentissage automatique qui cherche à déterminer la meilleure architecture de
réseau neuronal pour un problème donné. Les techniques de RNA, d’autre part, n’ont été étudiées
et développées que dans des problèmes d’apprentissage automatique limités et bien définis, qui ne
sont pas représentatifs de tous les scénarios d’apprentissage automatique existants. Cette thèse se
concentre sur la recherche et le développement des approches RAN pour de nouvelles tâches ainsi
que sur un nouveau cadre d’apprentissage qui est plus pertinent pour les applications du monde
réel. Nous avons proposé d’utiliser un cadre RAN neuro-évolutif pour résoudre le défi extrême
de la classification multi-label en particulier. Nous avons combiné des réseaux de convolution et
récurrents pour fournir une recherche spatiale plus appropriée à cette tâche. Sur plusieurs jeux
de données, nous évaluons la performance du réseau recherché. Nous avons également exam-
iné le défi de la reconstruction d’une carte RSSI, qui est un processus plus difficile en raison du
manque de données d’entrée (c’est-à-dire données partiellement annotée). De cette façon, nous
fournissons un système de recherche d’architecture dynamique pour les tâches de segmentation
sémantique avec un nombre minimal d’échantillons annotés. Nous avons étudié plusieurs algo-
rithmes d’apprentissage semi-supervisé dans ce cadre afin de déterminer celui qui réussit le mieux
à utiliser des échantillons non étiquetés. Nous avons examiné un certain nombre de stratégies,
y compris des approches de semi-supervision "traditionnelles" et "nouvelles", ainsi que des ap-
proches d’auto-supervision.
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Introduction

This first chapter will provide a general overview of deep learning,
neural networks, and its potential applications and evolutions. The
main objectives of this thesis will next be presented. Finally, the
thesis outline will be presented, along with a brief summary of each
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Chapter 1. Introduction

1.1 Overview

Deep learning has grown rapidly in recent years and has become very popular for achieving
various tasks in numerous areas. Among these tasks we find game reasoning (Silver et al., 2016),
language translation (Bahdanau et al., 2015), natural language processing (Devlin et al., 2019a),
speech recognition (Hinton et al., 2012; Zhang et al., 2017) or image identification (Krizhevsky
et al., 2012). This large field of application is mainly due to the automatization process of features
engineering. Indeed, this process is no longer done by "hand", but by feature extractors that are
driven in specific ways for each task. This democratization, as well as this automation, is partly
due to the increase in the number of available architectures, all of which require architectures that
are increasingly complex to design manually. This has led many researchers to conduct studies in
this direction and thus to propose new architectures for a whole range of applications : (He et al.,
2016; Chen et al., 2015; Chen et al., 2017; Szegedy et al., 2015; Krizhevsky et al., 2012; Howard
et al., 2017; Zhang et al., 2018b; Ronneberger et al., 2015; Vaswani et al., 2017a; Hu et al., 2018a;
Yu et al., 2021b; Dosovitskiy et al., 2021; Liu et al., 2022)

Among the large number of available tasks, one acts as a reference, this is the ImageNet image
classification (Deng et al., 2009). This challenge consists of a large data set, of the same name, in
which objects must be either classified, detected or located according to the chosen task. Being
a major axis in the field of deep learning for computer vision, this challenge has received a lot of
studies on the architecture in order to obtain each time a better performance. In the early days of
modern deep learning research, the AlexNet (Krizhevsky et al., 2012) network established early
benchmark results in 2012 by achieving a top 5 accuracy at 15.3%. The proposed architecture
concept was then improved over time, in order to be ever more efficient. This has given in 2014
networks like VGG (Simonyan and Zisserman, 2015), Inception-V1 (Szegedy et al., 2015), the still
widely used ResNet (He et al., 2016) or more recently SENets (Hu et al., 2018b), which almost
halves the error rate compared to previous performance. Figure 1.1 illustrates the improvement
over years. If we look at them from a high level, all these networks are similar, and have a
similar construction which consists of a succession of convolution layers with different kernel
sizes, pooling operations or fully connected. Figure 1.2 illustrates the structures of some of these
networks. However, if we take a closer look, most recent structures uses much more complex
blocks. Those blocks are like mini deep neural network with multiples operations, branches and
data flow, with a higher complexity than simply stacking convolution operations.

However, this neural network architecture design process has some drawbacks. One of the
most important is that the architecture design phase is a long process, filled with trial and error. It
also requires certain human skills as a starting point, like prior knowledge on the domain, data and
task. All this represents a blow, which can be a brake for some companies or for the application of
neural networks to new domains or applications. The second major drawback is that the potential
architectures proposed are limited to the imagination and background of each researcher. One
way to solve these two major problems, but also others, would be to automate this design process,
by learning an architecture directly from the available data. This part of automatic architecture
discovery is a separate field of research, commonly called Neural Architecture Search (NAS).

To be more specific, the NAS is part of a much larger automation domain: AutoML (He et al.,
2021). In this super-field, we generally group together all the research that is related to the au-
tomation of the machine learning pipeline using data. This pipeline could include the composition
of the pre-processing or the choice of the most suitable training procedure. Two other topics of
AutoML, which are greatly related to the topic of NAS, are hyperparameters optimization (Yu and
Zhu, 2020) (HPO) and meta-learning (Thrun and Pratt, 2012; Hospedales et al., 2020). All these
topics can be treated under the same prism of the two-level optimization. Indeed, the choice of
hyperparameters, deep neural network structures or parameters of meta-learning can be seen as the

2



1.2. Thesis objectives

Figure 1.1: Improvement of Top-1 accuracy of various neural network, over years. Illustration
from (Zhang and Davison, 2020)

first level of optimization. The second level would be the optimization of the parameters (weights)
of the different operations constituting the neural network. Unlike hyperparameter optimization,
which typically assumes that optimization is a black box, it is easily transposable to many ma-
chine or deep learning algorithms, the NAS methods often go further than black box by using
prior knowledge of proposed neural architectures. This usage lead to reduction of computational
costs and time compared to black box optimization. These savings are crucial for NAS methods,
because evaluating a network requires training, which usually takes several hours or even days.

At present, the performance of automatically found architectures has already exceeded the
performance of manually designed ones on various tasks. As pictured in Fig. 1.1, NasNet (Zoph
et al., 2018) obtains performances exceeding all other architectures for image classification. This
situation is similar for many other tasks such as semantic segmentation, object detection and natu-
ral language processing. Moreover, this automation will allow the growth of deep learning to new
applications, which are impossible today because of budget, time constraints or lack of expert or
knowledge in a particular field.

1.2 Thesis objectives

The growing enthusiasm around the NAS topic is accompanied by a number of challenges to
be addressed. In this section, we will present and explain the objectives that will be addressed in
this thesis. The main challenge we hoped to address with this thesis was the relatively restricted

3



Chapter 1. Introduction

(a) Illustration of network VGG16. Illustration from (Ferguson et al., 2017)

(b) Illustration of network Inception-Resnet-V2. Constructed from (Szegedy et al., 2017)

Figure 1.2: Illustration of two neural networks, showing the evolution of architectures over the
years
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1.3. Outline and contributions

application of NAS methods. We have decided to approach this broad spectrum challenge from
three distinct perspectives:

1.2.1 Objective 1 : Explore the application to new tasks

The first perspective is the use of the NAS for new tasks. The NAS approaches are researched
in a variety of disciplines, but only on a small number of tasks, which frequently return to image
classification (Zoph et al., 2018; Pham et al., 2018; Liu et al., 2019b). However, this task is only a
tiny part of the vast array of tasks (e.g. several thousands tasks listed on paperswithcode1 website)
that neural networks can be used. Indeed, the majority of research is concentrated on presenting
new methods that are always more efficient, with little interest in applying these approaches to
new, less researched areas. Our first goal was to examine how NAS approaches adapt and behave
on new tasks, in order to determine if it was possible to find equal or even better performing
designs on certain aspects than "hand-made" architecture on these new tasks.

1.2.2 Objective 2 : Learning from sparsely annotated data

The second perspective was to investigate NAS techniques in a scenario with a limited amount
of labeled data. Indeed, because the annotation process may be time-consuming and tiresome,
businesses may be hesitant to engage in it. As a result, there are many real-world applications
where the amount of annotated data is limited. However, the majority of the approaches conducted
architecture research in a completely supervised environment. Approaches have only recently
focussed on architecture search in a context where there are no labels (Liu et al., 2020; Kaplan and
Giryes, 2020) but the final architecture is trained in a supervised way.

As a result, we sought to investigate this direction, concentrating on the semi-supervised sce-
nario. In this semi-supervised environment, we intend to investigate the joint search capabilities
of the architecture and the parameters.

1.2.3 Objective 3 : Be as efficient as possible

A more transversal objective was to use the most efficient approach that meet our requirements,
and produce a network as efficient as possible. Indeed, most of the time, resources are a limiting
issue because they are costly to purchase or rent, thus it is critical to make the greatest use of
these resources. Furthermore, as environmental challenges become more prevalent, it is critical to
lessen the energy impact and, as a result, the environmental footprint that is associated with it.

1.3 Outline and contributions

Based on the questions proposed above, we will follow the following outline in order to intro-
duce the concepts and present the contributions that have been made. In the course of this thesis,
several domains were approached (e.g. text, images). An introduction to the different application
domains will be given at the beginning of each chapter in order to introduce the concepts.

The first three chapters will be devoted to the introduction as well as the presentation of the
related works, after which the various contributions made during this thesis will be outlined.

1https://paperswithcode.com/sota

5

https://paperswithcode.com/sota


Chapter 1. Introduction

1.3.1 Chapter 2: Neural Networks

To make this text as accessible as possible, this chapter will first reconstruct the history of the
neural network, beginning with the initial efforts more than 70 years ago. Then, a brief overview
of supervised learning and the gradient descent concept, which serves as the foundation for neural
network optimization. Finally, a review of the many forms of neural networks found in the litera-
ture. Furthermore, we will delve into further depth on two networks that were "pioneers" and are
employed by many ways in their work.

1.3.2 Chapter 3: Introduction to Neural Architecture Search

This chapter will introduce the field of NAS and this various concept, in order to give a complete
overview of this constantly evolving field to the researcher. To complete this, we will categorize
the body of work into three main parts (search space, search algorithm and evaluation of per-
formance). The first axis is the search space, this space defines the way in which the researched
architecture will be represented. Its definition varies according to several parameters, we generally
find architectures in chain structure (classic feed-forward networks), or more recently cell-based
networks.

Once the search space is defined, it is necessary to choose the way to search in this space, this
is the role of the search algorithm or strategies. Among popular algorithms, some of the first re-
search use black box based algorithms such as Bayesian optimization, Reinforcement learning or
evolutionary algorithm. Recently, specific design approach have been studied by taking advantage
of a search space continuous relaxation and using gradient descent optimization.

Lastly, the estimation of network performance, which is a crucial point in this research. Indeed,
the evaluation of a network is a costly operation if it is done too often. To overcome this, some
estimation methods have been proposed, among which we find low fidelity estimator or weight
sharing.

1.3.3 Chapter 4: Learning from partially annotated data

Data collection and annotation has always been one of the obstacles to the expansion of deep
learning. This collection of annotated data is extremely costly both in time and money, so that
some methods have proposed to use data directly without annotations or using a small amount of
annotated data. Among these methods, we can distinguish for example those that involve a single
network or those that require a second network.

Using only one network, we can cite the self-learning technique, which has recently been im-
proved by injecting noise during training phase. Differently, the methods involving two networks
rely on the idea of consistency in the predictions and those despite the various perturbations that
can be injected. These disturbances can be induced in different forms, for example by the distur-
bance of the inputs or by the architecture itself. In this chapter, we will provide an introduction to
those various techniques that have been proposed.

1.3.4 Chapter 5: XMCNAS : NAS for extreme classification

The architecture search methods were essentially tested on the image domain, where they showed
their efficiency and their performances. However, the image domain represents only a fraction of
the domains where the use of deep learning would be interesting. Therefore, one of the challenges
to address would be the adaptation and testing of certain methods to other domains or tasks. To get
into the idea of democratization of NAS, in this chapter we will present the way we have adapted

6
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NAS methods to the text and, more precisely, to the task of extreme classification (XMC). More-
over, we wanted to go further than the simple application of NAS methods on a new domain, we
also wanted to understand how the architecture was impacted by each new change and also if all
operations that compose it were used in the same way. To achieve this goal, we used and adapted
an evolutionary algorithm, which allowed us to do this impact analysis at a fine level.

On various benchmark datasets, we also evaluate and compare the performance of the pro-
duced architecture to that of several specific human-designed architecture and methods.

1.3.5 Chapter 6: NAS for RSSI map reconstruction

In the extension of the previous work, we have explored another task, this time more complex.
Indeed, because the available data is only partial, the task of RSSI map reconstruction is more
difficult. As a consequence, we investigated several NAS methods in order to find the one that
would allow us to have the most efficient architecture. We then used a self-learning technique on
the unannotated data to optimize the parameters of the model.

The results of the various approaches are then compared using state-of-the-art non-learning
interpolation techniques.

1.3.6 Chapter 7: NAS with Partially labeled data for Semantic Segmentation

To go deeper into the exploration of NAS in a regime with a limited amount of annotated data,
we are interested in the semantic segmentation task, which is more widespread and has numer-
ous application cases. We analyzed various methods, including traditional semi-supervised and
self-supervised approaches, in order to determine what is the most efficient method for utilizing
unannotated data.

Then, based on this method, we proposed a method for searching for efficient semantic seg-
mentation architecture in a semi-supervised context.
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2
Neural Networks

In this chapter, we will recall the fundamentals of neural networks.
We will start with a historical review of artificial neurons, and we
will describe he basics of supervised learning. Then, we will present
the mathematical foundations of learning with the gradient descent
algorithm. Finally, we will review neural networks and present some
important networks in the community.
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Chapter 2. Neural Networks

2.1 Introduction

The study of neural networks began with the pioneering work of neurologist Santiago Ramon
y Cajal near the end of the nineteenth century. Ramon y Cajal studied a natural neuron and
demonstrated how its dendrites convey information to other neurons connected to it. Years later,
McCullogh (a neurologist) and Pitts (a logician) devised a formal neuron, which is a mathematical
model of a neuron. A formal neuron receives a signal x = (x1, . . . , xd) in the form of a set of
real-valued characteristics and uses a vector of weights w = (w1, . . . , wd) to estimate a weighted
sum of these features. This model returns a binary result based on whether the weighted sum
is greater than or less than a given threshold b. In their paper (Mcculloch and Pitts, 1943), they
showed that this formal neuron is able to learn basic logic operators like the logical AND and
the logical OR. Their study was in line with previous efforts at the time to create a machine
with artificial intelligence, and the formal neuron became one of the principals models in this
investigation. Several works then tackled the tedious question of how to determine the weights of
the formal neuron, enabling one to resolve, basic logical operations. Different strategies have then
been proposed for more than a decade to learn these weights, such as the Hebb rule which states
that neurons which wire together, fire together; however, we must wait for the inspiring work of
Frank Rosenblatt, a psychologist, who was the first to successfully use the analogical computer;
ENIAC; to efficiently learn these weights.

Rosenblatt, 1958’s Perceptron algorithm, named in reference to a human perception neuron,
was created to detect a given form presented on a 2D board by turning on and off lamps with re-
spect to the others. This was a ground-breaking end-to-end model that had two major innovations
that were adopted by other learning models years later. The first point concerns the representa-
tion of forms that are not hand-crafted and are acquired from random placement of captures. The
second is in relation to the stochastic gradient descent technique, which works by updating the
weights sample by sample, by reducing the distance between a misclassified example and the cur-
rent hyperplane discovered by the formal neuron. This model sparked interest and paved the way
for the development of other similar techniques based on stochastic gradient descent to learn the
weights of a formal neuron. Researchers from other fields were also interested in the learnability
of these models, such as statistician (Novikoff, 1962), who proved the convergence of the percep-
tron algorithm in the case where there exist a hyperplane that separates the classes. (Minsky and
Papert, 1969)’s paper showing that a formal neuron is not able to learn the exclusive OR (XOR),
marked a stop to most of these works.

The resuscitation of Neural Networks had to wait until the mid-1980s, when it was discovered
that by adding a layer between the input and output of a formal neuron, called the hidden layer,
it was feasible to modify the representation space and solve the XOR problem in the new space
associated with this new layer. This discovery paved the way for the development of complex
models with several hidden layers and even loops between neurons, to solve advanced prediction
problems. A Neural Network is defined then as an oriented graph with three sets of neurons; that
are in the input, in the output and in the hidden layers. When the number of layers exceeds two,
these models are sometimes referred to as Deep Neural Networks. The crucial question in this case
is how to update the weights that connect the neurons of layers after the last layers of the NN? The
answer to this question was given by Rumelhart et al., 1986 who proposed the backpropagation
algorithm that is based on the gradient descent and the chain rule to recursively update all weights.
This powerful method, which is still employed in the learning of NNs, along with the finding
that a NN with a single layer may be a universal approximator, allowed the domain to evolve
quickly. However, NN models with complex architectures and a large number of parameters,
require a consequent training set to be learned. This feature proved to be a disadvantage for NNs
who competed in the Caltech 101 competition1 in 2004 (Fei-Fei et al., 2004). The goal of this

1http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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2.2. A brief presentation of Supervised learning

challenge was to build a model to categorize an image into 101 categories using a training set
of 3000 images (with around 30 images per class). The winner of this competition was not a
NN-based system, sounding the death knell for these models, which were entering their second
winter.

The rebirth of Neural networks happened in 2012 with the ILSVRC2 challenge using a sub-
set of ImageNet3 with about 1.2 million images categorized in 1000 classes (Russakovsky et al.,
2015). The creation of this big collection was combined with the usage of Graphic Process-
ing Units (GPUs), which significantly reduce processing time. The winner of this competition
was AlexNet (Krizhevsky et al., 2012), a Neural Network with about 60 million parameters that
was trained over six days using two NVIDIA GTX 580 3GB GPUs (vs. 42 days training using
CPUs under use at that time). The availability of massive datasets, as well as ongoing techno-
logical advancements in the construction of increasingly powerful GPUs, have paved the road for
widespread use of Neural Networks across a wide range of applications.

In this chapter, we will briefly describe Neural Networks by first providing a rapid presentation
of Supervised Learning framework under which these models were first developed (Section 2.2).
Then the gradient descent method that is generally used to train these models in Section 2.3. In
Section 2.4, we will finish up with the backpropagation method and a description of the most
common Neural-Networks.

2.2 A brief presentation of Supervised learning

A learning algorithm induces a prediction function from a set of examples. Each example is
a pair (observation, response); and the function returned by the algorithm must make it possible
to predict the response associated with a given observation. More precisely, it must make it pos-
sible to predict the response associated with new observations. The underlying assumption is that
the examples are, in one way or another, representative of the prediction problem on which the
function will be used.

This is the supervised learning paradigm in which algorithms strive to find the mapping func-
tion between an input space X , which is often X ⊂ Rd, and an output space Y . In the case where
Y = R we deal with a regression problem and when Y is a discrete set, we have a classification
problem.

The aim is to identify the mapping f from a set of hypothesis F = {f : X → Y} over a finite
set of examples S = (xi, yi)1≤i≤m, called the training set, that has the lowest probability of error
on new observations that do not belong to S.

2.2.1 Central hypothesis and the ERM principle

The fundamental assumption of statistical learning theory is that all examples are independently
generated by a fixed, but unknown, probability distribution. It will be denoted D. The immediate
consequence is that for any set of examples S, examples (xi, yi) are generated independently
according to D. We then say that S is a sample of i.i.d. (independent and identically distributed)
according to D.

Informally, the identically distributed assumption defines the notion of the stationarity of the
underlying phenomena; that is training examples, as well as future ones, come from a single

2https://image-net.org/challenges/LSVRC/2012/
3https://www.image-net.org/
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source. The independently distributed assumption stipulates that each example brings maximum
information for learning.

The second fundamental notion in learning is the notion of loss, also called risk. Given a
prediction function f , the disagreement between the prediction f(x) and the desired output y for a
pair (x, y) is measured using a function called the instantaneous loss – a function ℓ : Y×Y → R+.
Intuitively, ℓ(f(x), y) measures the proximity between the predicted response and the actual one.
It is therefore generally a distance on the set Y . In classification, the instantaneous error generally
considered is:

ℓc(f(x), y) = 1f(x)̸=y,

where 1π equals 1 if the predicate π is true and 0 otherwise. In regression, the commonly used
instantaneous loss function is the distance on R defined by the square of the absolute value:

ℓr(f(x), y) = |f(x)− y|2.

In general, other error functions can be used (for example in regression ℓ′r(f(x), y) = |f(x)− y|).
Let remind that the objective of a learning algorithm is to choose a function capable of per-

forming good predictions on observations that are not part of the learning set. In other words,
the prediction function must be able to generalize. As each pair (observation, desired output) is
assumed to be generated by D independently of the other examples, the generalization error of a
prediction function f is naturally defined by:

R(f) = E(x,y)∼D[ℓ(f(x), y)] =

∫
X×Y

ℓ(f(x), y)dD(x, y), (2.1)

where E(x,y)∼D[X(x, y)] designates the expectation of the random variable X when the couple
(x, y) follows the distribution D.

Given a training set S, the empirical error defined below is used to measure the performance
of a prediction function f on S:

Rm(f, S) =
1

m

m∑
i=1

ℓ(f(xi), yi). (2.2)

The motivation for this error is that for a given function f , Rm(f, S) is an unbiased estimator
of the generalization error of f : indeed, since we assume that the examples (xi, yi) of S are
independent, the random variables ℓ(f(xi), yi) can also be considered independent. We then have:

ES∼DmRm(f, S) =
1

m

m∑
i=1

ES∼Dmℓ(f(xi), yi) =
1

m

m∑
i=1

E(xi,yi)∼Dℓ(f(xi), yi) = R(f).

From this observation, it is then natural, to determine a prediction function on a training set, to
choose in F a prediction function fS which minimizes the empirical error. This learning method
is called the Empirical Risk Minimization (or ERM) principle. An important part of the theory of
Vapnik, 1998 aims to study the generalization error of the function fS according to its empirical
error Rm(fS , S) and the class of functions F considered.

The central question in learning theory is to determine if the function fS ∈ F found by
minimizing the empirical error Rm(f, S) on a training set S will have a good generalization error?
In general, the answer to this question is negative.

Thus, there are two desirable characteristics for a learning algorithm: (1) the algorithm must
return a function capable of generalizing, i.e. its learning error must somehow reflect his gener-
alization error. Moreover, (2) the objective of an algorithm can be more ambitious: not only the
chosen function must generalize, but in addition, if the number of training examples is large, the
algorithm must find a function which minimizes the generalization error in the class of functions
considered.
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2.2.2 Consistency of ERM and the SRM principle

An algorithm with the two previous properties is called consistent. The question posed by Vapnik,
1998: considering a learning algorithm minimizing the empirical risk, under what conditions is
it consistent? Note that the learning algorithm depends on two factors: the class of functions
F considered in the minimization, and the function chosen when several functions achieve the
minimum. We consider algorithms for which this choice is deterministic.

The formal definition of the consistency of the ERM principle, for a given learning problem, is
as follows: the following two conditions must be verified by the function returned by the algorithm
minimizing the empirical risk:

• ∀ϵ > 0; lim
m→∞

P(|R(fS)− inf
g∈F

R(g)| > ϵ) = 0,

• ∀ϵ > 0; lim
m→∞

P(|Rm(fS , S)− inf
g∈F

R(g)| > ϵ) = 0,

remembering that the limit is taken when m, the size of the training set S, tends to infinity.
The study of the consistency of the ERM principle led to the following fundamental result of

statistical learning theory (Vapnik, 1998, theorem 2.1): The ERM principle is consistent if and
only if:

∀ϵ > 0, lim
m→∞

P

(
sup
f∈F

[R(f)−Rm(f, S)] > ϵ

)
= 0. (2.3)

Note that this relation is less constraining than the two sufficient conditions presented above,
as it is no longer the absolute value of R(g)−Rm(g, S) which is considered. Classical derivations
of (2.3) lead to generalization bounds that take the following form:

∀S, ∀δ ∈]0, 1[;P

R(f) ≤ Rm(f, S) + C(F , S) +

√
log 1

δ

2m

 ≥ 1− δ,

where C(F , S) is a measure of the capacity of the class of functions F that can be estimated over
the training set S. The greater the capacity, the more it is possible to obtain a low empirical risk,
without guaranteeing a lower generalization error. The difficulty of learning is therefore to achieve
a compromise between a low empirical error and a low capacity of the set of functions in order
to minimize the generalization error. This compromise is called Structural Risk Minimization
principle (Vapnik, 1998). This principle can be resumed as follows: considering several sets of
functions F1, ..., FN , it minimizes the empirical risk in each of these sets separately, then select
the prediction function that minimizes the bound on the generalization error.

In practice, the SRM principle is applied by regularizing the minimization of the empirical
loss. That is to minimize the empirical error together with a term that penalizes the choice of com-
plex functions. In general, this penalization term is a ℓ2-norm of the parameters of the function.
The minimization of the empirical error with the regularization term then resumes to choose the
function f̂ ∈ F such that:

f̂ = argminf∈FRm(f, S) + λ∥f∥2, (2.4)

where λ is called the regularization term.
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2.3 Gradient Descent Algorithm

Minimization problems related to the ERM or SRM principles are solved using optimization
techniques, and their advancement is closely tied to that of the Machine Learning field. Among
the various optimization approaches, the Gradient Descent (GD) algorithm is without a doubt the
most commonly utilized in ML models. This algorithm finds a (local) minimum of a convex
differentiable surrogate function of the (regularized) 0/1 loss by only relying on the information
provided by the gradient of the loss function, and it is hence referred to as a first-order optimization
process.

The approach is based on the observation that if the loss function, L̂, to be minimized is defined
and differentiable in the vicinity of a weight vector, w(t), then the loss reduces as one moves one
step ηt ∈ R+, called the learning rate, away from the actual value of the loss, L̂(w(t)) in a descent
direction pt defined as p⊤

t ∇L̂(w(t)) ≤ 0.
At each iteration, if we define the new weight vector w(t+1) as

w(t+1) = w(t) − ηtpt, (2.5)

with a small learning rate ηt, we get

L̂(w(t+1)) ≤ L̂(w(t)). (2.6)

The decreasing condition above does not guarantee that the loss function will reach a local mini-
mum, or the global minimum, of the loss function if ηt is too small. For each iteration of GD, the
following sufficient conditions, known as Wolfe conditions, have been proposed in order to ensure
the algorithm convergence. These conditions are depicted in Figure 2.1.

Figure 2.1: Illustration of the Wolfe conditions for a convex function L̂(w(t) + ηpt) with respect
to the learning rate η. η = 0 corresponds to the actual value of the loss function, and the gray
dashed line corresponds to the tangent of the loss at this value. For a given 1 > α > 0; the
line in teal y = L̂(w(t)) + αηtp

⊤
t ∇L̂(w(t)) delimits the admissible values for η with respect to

the Armijo condition (2.7). The line in purple with the slope βp⊤
t ∇L̂(w(t)) shows the admissible

values of η with respect to the curvature condition (2.8). Admissible values of the learning rate
with respect to the Wolfe conditions are in between these two values.
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Armijo condition. In relation to the length of the jumps, the decrease in L̂ should not be too
small. As a result, for a given 1 > α > 0:

∀t ∈ N∗, L̂(w(t) + ηtpt) ⩽ L̂(w(t)) + αηtp
⊤
t ∇L̂(w(t)). (2.7)

Curvature condition. Each update should result in a change in the curvature of the loss function.
Alternatively, the slope should drop sufficiently; i.e. ∃β ∈ (α, 1) such that

∀t ∈ N∗,p⊤
t ∇L̂(w(t) + ηtpt) ≥ βp⊤

t ∇L̂(w(t)). (2.8)

In practice, the learning rate is determined at each iteration using a line search algorithm. It
includes beginning with a high value of the learning rate and repeatedly reducing it by multiplying
the current value by a factor 1 > a > 0 (i.e., backtracking) until the Armijo condition is satisfied.

When the loss function is convex and differentiable, and its gradient is Lipschitz continuous,
with parameter L > 0 defined as

∀w,w′; ∥∇L̂(w)−∇L̂(w′)∥2 ≤ L∥w −w′∥2, (2.9)

the GD algorithm is ensured to converge to a (local) minimum of the loss function according to
the following result.

Theorem 1 (Zoutendijk, 1966). Let L̂ be a differentiable objective function with a Lipschtiz con-
tinuous gradient and lower bounded. Suppose that the GD algorithm generates (w(t))t∈N defined
by ∀t ∈ N,w(t+1) = w(t) + ηtpt; where pt is a descent direction of L̂ and ηt a learning rate
verifying both Wolfe conditions (2.7) and (2.8). By considering the angle θt between the descent

direction pt and the direction of the gradient cos(θt) =
p⊤
t ∇L̂(w(t))

||∇L̂(w(t))||×||pt||
; the following series is

convergent ∑
t

cos2(θt)||∇L̂(w(t))||2.

2.4 Neural Network : an overview

In this section, we will provide an overview of Neural Networks that we will consider through-
out this thesis. As mentioned in the introduction, (Mcculloch and Pitts, 1943)’ model perform a
weighted sum of the inputs which is then composed with an activation function; H , also called
transfer function.

f : x 7→ H(w⊤x+ w0)

This operation is illustrated in Figure 2.2. In the case of the Perceptron, the activation function is
the indicator function of positive real numbers, also called the Heaviside function; which is equal
to 1 if the weighted sum is positive and 0 otherwise.

2.4.1 Activation functions

As mentioned in the introduction, a Neural Network is a graph of interconnected nodes in which
each node in the input corresponds to a feature of an example and is connected to neurons in the
first hidden layer. A hidden layer neurons are linked to a group of neurons that might be from the
same hidden layer or from another hidden layer. The last hidden layer neurons are linked to the
output layer neurons.
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w⊤x+ w0 H f(x) = H(w⊤x+ w0)

Figure 2.2: Illustration of the operation of a formal neuron whose output is calculated after a
composition of an activation function H with a weighted sum of the characteristics with the model
weights.

The values of each node in the hidden and output layers are estimated in the same way that
they are in the Perceptron model: they are a composition of the values of previous nodes connected
to that node by an activation function. The most popular activation functions are:

ReLu : H(z) =

{
z, if z ≥ 0

0, otherwise.

Sigmoid : H(z) =
1

1 + e−z

Hyperbolic Tangent : H(z) =
ez − e−z

ez + e−z

These activation functions are illustrated in Figure 2.3.
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Figure 2.3: Illustration of some popular activation functions: (a) ReLu, (b) sigmoid and (c)
hyperbolic tangent.

In the literature, other activation functions have been proposed recently ; such as Swish (Ra-
machandran et al., 2018) and GeLU (Hendrycks and Gimpel, 2016). According to this definition,
a neural network output is a series of T no-linear compositions of any input x:

∀x, fW(x) = fT
WT ◦ . . . ◦ f1

W 1(x),

where W = {W 1, . . . ,W T } is the set of all model parameters; and each Wn; 1 ⩽ n ⩽ T is a
matrix of weights. Suppose that, ln is the number of neurons in layer n, and, zn = (zn1 , . . . , z

n
ln
)⊤

the vector of values of neurons in that layer, obtained recursively. Hence, we have

z0 = x (2.10)

zn = fn
Wn(zn−1) = fn

Wn ◦ . . . ◦ f1
W 1(x), and

∀j ∈ [ln], z
n
j = H(anj ) (2.11)
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where [ln] = {1, . . . , ln}, anj = wn
j .

⊤zn−1 + wn
0 with wn

j . the vector column of matrix Wn

that connects all neurons of layer n − 1 with the neuron j from layer n. Each Wn can also
encapsulate more complex structures, such as weight tensors, but for the sake of presentation,
at the level considered here they will only appear as matrices, the structures they contain being
always serialized. The activation function H is mostly the same all over the network; there are
some studies that consider different activation functions depending on the layer, but in all case their
activation functions are continuous and differentiable with respect to the data and the parameters.

In summary, as in the case of the perceptron, a layer of neurons is often implemented in two
functions, corresponding to two different types of layers (or sub-layers): one called the linear
layer, which corresponds strictly to the product of a matrix by a vector for the linear part, and the
other called the point-to-point layer, which corresponds to the application of the activation function
component by component for the non-linear part. Additional functions, such as normalization or
regularization, are occasionally added.

2.4.2 Parameter learning with the backpropagation algorithm

To train the parameters of a neural network, most algorithms employ a method based on stochastic
gradient descent using mini-batches.

Considering a training set S = (xi, yi)1≤i≤m ; we seek to minimize a regularized objective
function which is in line with the the SRM principle :

L̂m(fW, S) =
1

m

∑
(x,y)∈S

ℓ(fW(x), y) + λΩ(W ) (2.12)

where the loss function ℓ is assumed to be continuously differentiable, and Ω(W ) is a regulariza-
tion term whose purpose is to prevent overfitting. The function Ω is also assumed to be continu-
ously differentiable, and the parameter λ is used to determine the relative impact of the regulariza-
tion term. In the stochastic mini-batch variant of the gradient descent technique, weights W are
updated based on a subset of the training set, Sb ⊆ S termed mini-batch, as follows:

W(t+1) = W(t) − η

| Sb |
∑

(x,y)∈Sb

∇WL(x,y)(W(t)) (2.13)

with :
L(x,y)(W) = ℓ(fW(x), y) + λΩ(W) (2.14)

For example, ℓ(.) could be the square loss and Ω(.) the squared norm of the weights :

L(x,y)(W) =
1

2
(fW(x)− y)2 +

λ

2
∥W∥2 (2.15)

=
1

2

lT∑
j=1

(H(aTj )− zTj )
2 +

λ

2

T∑
n=1

ln−1∑
i=1

ln∑
j=1

(wn
ji)

2

To implement gradient descent as described in the equations (2.13) and (2.14), we need to
be able to compute ∇Wℓ(fW(x), y) for the example (x, y). This achieved recursively using the
backpropagation algorithm (Rumelhart et al., 1986).

• The first part of this algorithm, called forward pass, corresponds to the spreading of the
input layer per layer recursively as in (2.11).

• The second part is done in two steps;
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– First backpropagation according to data, is done as part of a back pass. In this part of
the backward pass, we calculate by recurrence for decreasing values of n starting from
T , the gradients with respect to the data an from error ℓ by using the chain rule :

∀j ∈ [lT ], δ
T
j =

∂ℓ(zT , y)

∂aTj
(2.16)

∀n ∈ {T − 1, . . . , 1}, ∀j ∈ [ln]; δ
n
j =

∂ℓ(zT , y)

∂anj
=

ln+1∑
k=1

∂ℓ(zT , y)

∂an+1
k

∂an+1
k

∂anj

= H ′(an+1
j )

ln+1∑
k=1

δn+1
k wn+1

kj (2.17)

– The second step, called back-propagation according to parameters, does not involve
a recurrence relation. The gradients with respect to the parameters Wn = [wn

ji] of the
error ℓ are calculated by using the chain rule once again :

∀n ∈ {T, . . . , 1},∀i ∈ [ln−1], ∀j ∈ [ln];
∂ℓ(zT , y)

∂wn
ji

=
∂ℓ(zT , y)

∂anj

∂anj
∂wn

ji

= δnj z
n−1
i (2.18)

After (2.18), parameters are updated using the GD rule (2.5). The backpropagation
procedure is illustrated in figure 2.4.

Figure 2.4: Illustration of a backward step. The weights between neurons are optimized, positively
by increasing (up arrow) or negatively by decreasing (arrow down). The backward goes layer-by-
layer starting with last layer to input layer, as indicated by steps. Illustration from (Schneider,
2021)

Now that we have covered the principles of deep learning, we will go through some of the
most common types of neural network models.
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2.4.3 Different types of networks

Deep learning is rapidly changing, with new networks and architectures appearing every few
months. We will briefly present the most common types of networks in this section, which are
feed-forward, recurrent and convolutional networks.

Feed Forward Network. The feed forward model is the most prevalent type of neural network,
in which information is propagated from the input to the output in one way.

The single layer perceptron network is the simplest type of feed-forward network, consisting
of a single layer of output nodes with the inputs fed directly to the outputs via a set of matrix
weights (see fig. 2.5a). The multi-layer perceptron is a straightforward expansion of the single-
layer perceptron (MLP). This network is made up of numerous layers of computing units coupled
in a feed-forward method. Directed connections connect each neuron in one layer to the neurons in
the next layer. (see fig. 2.5b). A large majority of the actual neural network are direct descendant
of this type of network.

(a) (b)

Figure 2.5: The left-hand side is a single layer perceptron, on the right-hand side its direct exten-
sion, that is a multi-layer perceptron (MLP)

Recurrent Neural Network. RNN is a widely used and popular deep learning approach, espe-
cially in natural language processing and speech processing (Cho et al., 2014b). RNNs, unlike
typical neural networks, deal with sequential data. In many applications, when the intrinsic struc-
ture in the data sequence transfers vital information, this quality is critical (e.g. to understand a
word in a sentence the context is required). RNNs are similar to typical neural networks in that
they consist of an input layer, numerous hidden layers (commonly referred to as states), and an
output layer. A traditional RNN is depicted in the figure 2.6. "Input-to-Hidden," "Hidden-to-
Output," and "Hidden-to-Hidden" are three deep RNN techniques proposed by (Pascanu et al.,
2014). A deep RNN is built based on these three strategies that not only takes advantage of deeper

Figure 2.6: Illustration of an RNN and its unrolled version
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RNNs but also reduces the complexity of deep network learning. Later, to replace recurrent cells,
additional improvements such as Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
or Gated Recurrent Unit (Cho et al., 2014a) were developed.

Convolutional Neural Network. The CNN could be the most popular type of network, as it is
so widely used in deep learning (LeCun, Bengio, et al., 1995) community. This type of network
has been employed in a variety of applications, including NLP (Jacovi et al., 2018) and Computer
Vision (Khan et al., 2018). The application of computer vision will be the emphasis of this para-
graph. Local connections and shared weights are employed in the network instead of fully linked
networks to fully use the two-dimensional structure of incoming data (e.g., image). This method
produces a network with considerably fewer parameters, making training faster and easier. Short
segments of a scene are more receptive to these procedures than the complete scene. To put it an-
other way, the cells operate as local filters on the input, extracting data with spatially constrained
correlation. More formally, a CNN is made of several convolutional layers, where in each one
several filters of size ℓ× ℓ× k where ℓ is the size of the filter and k is the numbers of filters. The
figure 2.7 illustrates a convolution with ℓ = 3 and k = 1.

Figure 2.7: Illustration of a convolution, with a filter size of 3× 3. Illustration from (Amidi, 2018)

2.4.4 ResNet and its variants

We will go through some of the most often utilized model in computer vision, which is ResNet.
We will demonstrate one such modification of a reference architecture that was initially created
for image classification, but has been extended to a variety of workloads. This section is not
meant to be exhaustive; rather, it is meant to highlight ResNet that we will also consider in our
contributions.

ResNet. Residual Network (ResNet) introduced by He et al., 2016 have been rapidly adopted
by the community, to become one of the most used neural architecture in the deep learning com-
munity. Initially, this network has shown significant performance by winning the ILSVRC 2015
image classification challenge4 with an error rate of 3.57% which is lower than the percentage
of error that humans make on this problem (which is around 5%). To solve a complex problem,
deep neural networks are usually stacked with additional layers, which improves accuracy and
performance. The idea behind adding more layers is that these layers will gradually learn more
complex features. In the case of image recognition, for example, the first layer can learn to detect
edges, the second layer can learn to identify textures, and the third layer can learn to detect ob-
jects, and so on. However, it has been discovered that the traditional convolutional neural network
model has a maximum depth threshold. As depicted in fig. 2.8 adding more layers on top of a

4https://image-net.org/challenges/LSVRC/2015/
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Figure 2.8: Plot of the training and test error obtained with two deep plain networks, with different
number of layers. The network with a larger number of layers perform worse than its smaller
counterpart. Illustration from (He et al., 2016)

network degrades its performance. This could be attributed to the optimization function, network
initialization, and, most importantly, the vanishing gradient problem.

To overcome this problem of training a deep neural network, the authors propose to use "Resid-
ual block" (Figure 2.9). The first thing you notice is that there is a direct connection between the
two that skips a few layers. This is known as a "skip connection," and it is at the heart of the resid-
ual blocks. Because of this skip link, the layer output is no longer the same. Without this jump
connection, the input x is multiplied by the layer weights before being multiplied by a bias term.

Figure 2.9: Illustration of a residual block.

This block can have some modification in the case where f(x) and x do not have the same dimen-
sion. In this case, we usually use a projection layer (a convolution 1× 1) to match the dimension,
the final result is so f(x) + Wx. ResNet skip connections are extremely beneficial in that they

Figure 2.10: Plot of the error obtained by a plain network (on left) and by ResNet (on right) with
the same number of layer. Illustration from (He et al., 2016)
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solve the problem of gradient varnishing in deep neural networks by enabling the gradient to flow
through this alternate shortcut. These connections are also beneficial in helping the model to learn
identity functions, ensuring that the top layer performs at least as well as the bottom layer, if not
better. By using residual blocks, the performance of a deeper network are increased and overpass
the performance of "shallow" networks, as shown in fig. 2.10.

In the literature, two versions of ResNets are widely used ResNet-50 and ResNet-101, which
have 50 and 101 layers, respectively.

Variant. Currently, many methods use a ResNet as a backbone (or feature extractor) and propose
improvements around it depending on the task to be performed. Because there are almost as many
neural networks as there are tasks, we will take the segmentation task as an example. This task
consists in the prediction of a semantic mask from an image (e.g. figure 2.11). More details on this
task will be given in a later chapter. This problem can be reduced to a pixel by pixel classification,
which is harder to solve than a whole image classification, and so require a more complex neural
network. Many works have been proposed to address this task, but we will focus on one of the
most used DeepLabV1 (Chen et al., 2015) and those evolutions DeepLabV2 (Chen et al., 2018b),
V3 (Chen et al., 2017) and V3+ (Chen et al., 2018c).

Figure 2.11: Example of the segmentation task, with the input image and the associated segmen-
tation mask. Illustration from (Chen et al., 2018b)

The nature of the first changes is based on the following points: the use of new types of con-
volutions called atrous (e.g. figure 2.12a) and a new module called Fully-connected Conditional
Random Field (CRF) (e.g. figure 2.12b). All these modifications helps to produce a quality seg-
mentation mask.

The following versions will bring new improvements in order to have always better perfor-
mances. Among the most important new features, we find (in historical order): the appearance

(a) (b)

Figure 2.12: Illustration of atrous convolution and fully connected CRF proposed in Deeplab.
Illustration from (Chen et al., 2015)
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of an Atrous Spatial Pyramid Pooling (ASPP) module (see fig. 2.13a), the use of a multiscale
structure, the abandonment of the CRF module, and the implementation of an encoder-decoder
architecture. The most recent architectures (DeepLabV3 and V3+) are shown in figure 2.13. In
DeepLabV3 (Fig. 2.13a), the architecture is based on the ResNet backbone, with atrous convolu-
tions and ASPP at the third ResNet block in order to predict meaningful masks. In DeepLabV3+,
a ResNet network is also used as backbone, but they add a decoder part. In this case, features are
extracted from low level stage and merged with deeper features thanks to the decoder.

(a)

(b)

Figure 2.13: Illustration of the networks used un DeeplabV3 and V3+. Illustration from (Chen
et al., 2017) and (Chen et al., 2018c)

2.5 Summary

Now that we’ve defined and explained what a neural network is, we can see that the majority
of the networks that comprise the state of the art are hand-crafted. However, the design process
is frequently time-consuming and costly. Indeed, designing a network necessitates specific skills
and expertise of one or more disciplines. This is frequently a lengthy iterative process of trial and
error. Furthermore, since hardware systems advance at a quick pace, it becomes more difficult to
choose a network that will best fit the user’s hardware. To solve this architecture design dilemma,
a new branch of research has just evolved. This is the Neural Architecture Search, which allows
users to find the architecture that is best suited to their task, data, and hardware automatically.
These approaches will be discussed in more details in the next chapter.
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3
Introduction to Neural Architecture Search

This chapter gives an overview of the area of Neural Architecture
Search (NAS). More precisely, we will go through the many concepts
that form the foundation of Neural Architecture Search. Then we
will go through some of the many search algorithms that have been
presented by the community in recent years. Finally, we will discuss
several estimating strategies that have been utilized to minimize the
amount of time necessary to discover an architecture. We will also
discuss some potential research options for this new but rapidly ex-
panding field of study.
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3.1 Introduction

The automation of feature engineering has largely contributed to a wide use of deep learning in
many applications, such as perception. In traditional machine learning algorithms, the definition or
the selection of data features are done manually, which are long and costly in general. Deep learn-
ing overcomes this difficulty, thanks to feature extractors learned in an end-to-end way. However,
these feature extractors rely on architectures that are still manually designed and with the rapid
development of field the design of an adapted NN model becomes tedious in many situations.

A new field of research known as Neural Architecture Search (NAS) has recently arisen to
address this problem. In applications such as image segmentation and classification, Neural Net-
works with automatically obtained architectures have already proven their efficiency by surpassing
traditional Neural Networks with hand-crafted structures. The NAS study is part of a much wider
super-area in Machine Learning known as AutoML. This super-domain collects all the research on
Deep Learning pipeline automation, including data preparation and selection, hyperparameter op-
timization, and even meta-learning. The three dimensions of the NAS pipeline are: search space,
search strategy or architecture optimization, and performance evaluation strategy.

• Search Space : The search space specifies the design concepts for various neural architec-
tures. This space is specific to each scenario, usually it incorporates the prior knowledge
gained from human well-designed architectures. This knowledge is important as it helps to
reduce this space and keep it simple, this also has some drawbacks, as it is at this stage that
biases can be introduced and potentially force the research in the wrong direction.

• Search Strategy : This phase, also known as Architecture Optimization, outlines how to
efficiently explore the search space in order to discover the best performing architecture.
Because the aim is to uncover efficient structures rapidly, but sticking inside a restricted
region might lead to poor findings, this is a real example of the trade-off between exploration
and exploitation.

• Evaluation Method : After a model has been constructed, its performance must be assessed,
frequently using previously unseen data. The easiest method is to train the model on training
data until it converges, then assess it on a validation set. However, this technique necessitates
a high degree of computing as well as sufficient time to sample and train a sufficient number
of models, limiting the number of architectures that may be studied. Some new strategies
promise to speed up this procedure at the expense of fidelity in the model evaluation. Some
recent methods propose to accelerate this process at the cost of a loss of fidelity in the
evaluation of the model.

Figure 3.1 illustrates these three components and how they interact. In the next section, we
will present the various types of search space, then section 3.3 will cover the different strategies,
finally the evaluation methods will be discussed in section 3.4.

3.2 Search Space

Generally, a Neural Architecture can be represented as a Direct Acyclic Graph (DAG) com-
posed of N nodes, where each of the nodes represents a latent feature vector and each directed
edge is an operation. The computational process at each node can be represented by the equation
3.1.

Fd =

Nd∑
i=1

oi(Ii) : o ∈ O (3.1)
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Search  
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Figure 3.1: General neural architecture search pipeline. This pipeline is formed of three major
components, namely Search Space, Search Strategy and Performance evaluation. To begin, one
must first define the search space, which must then be combined with a search technique. This
approach generates architecture a, which will be evaluated, and the strategy will then utilize the
architecture of a to steer the search inside the search space.

where Fd, d ∈ 1, ..., N is the latent feature vector associated with node d, Nd is the node index
of Fd, Ii and oi are the i-th input tensor and the associated operation, respectively. O is the set of
candidates operations, which can contain basic operations like convolution, pooling, activation or
concatenation. Recent research suggests using more complex operations to get better and better
performances or more efficient networks; among these new operations are depth-wise separable
convolution, squeeze-and-excitation, and others (Hu et al., 2018b). The search space specifies the
structure that the Search Strategy will investigate; as a result, this stage is critical for the remainder
of the process, but it is also complicated in that the operations’ selection and order will vary based
on the beginning space. In the following sections, we will present the two most commonly used
search spaces. It is important to know that other techniques exist and that they will be presented if
necessary in the corresponding chapters.

3.2.1 Macro Search Space

The macro (or entire-structured) search space, was one of the first to be proposed because of its
simplicity. Figure 3.2 illustrates various types of macro search space, in this situation each node
represents an operation layer. The left side of fig. 3.2, is the simplest, because it is built from
a stack of operations of a predefined number of operations and linked in chain form, the middle
representation is more complex as it allows the creation of skip-connections between nodes, these
connections have shown their efficiency on human-designed models. These connections have also
allowed the creation of more complex networks, called multi-branch, these networks can have
parallel operations as illustrated on the right side of the figure 3.2. In this case, the input tensor Ii
is described as a combination function, which can be a sum (He et al., 2016) or a concatenation
(Huang et al., 2017). However, despite this simplicity, this search space structure has some disad-
vantages. The search for a very deep neural architecture is extremely computationally expensive,
which limits the size of the architectures and thus the ability of the architectures to generalize. In
addition, in some cases, the architecture found on a small dataset is not transferable or is not as
efficient on larger datasets.

3.2.2 Micro Search Space

Inspired by high performing handcrafted architecture with repeated motifs such as in ResNet (He
et al., 2016) or DenseNet (Huang et al., 2017), some researchers proposed to use a cell-based
search space (i.e. also known as micro search space) (Zoph et al., 2018; Zhong et al., 2018). In
this case the goal is to search those motifs, called cells, rather than the whole architecture. The
final structure is composed of a fixed number of structures of these cells repeated. This search
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Figure 3.2: Illustration of a macro search space. The left side, is a chain-like structure, with a
simple feed-forward paradigm. The center, is more advanced as it contains complex structure like
skip-connection. Finally, the right side is even more complex, as it contains multi-path and skip-
connection in the structure.

spaces as several advantages compared to the macro search space :

• Since cells often have fewer layers than entire architectures, the size of the search space is
considerably reduced.

• This search space allows for more transferability and adaptability because it only requires
stacking more cells or change some filter size to construct a larger network, with no re-
searching step.

Figure 3.3 depicts a cell-based architecture, such as that presented by (Zoph et al., 2018) . It is
made up of two types of cells: normal and reduction, which retain and reduce dimensionality,
respectively, and which are similar to many commonly used structures.

The internal design of these cells refers in most of the NAS research to those proposed by
(Zoph et al., 2018), being the first to have experimented with this type of search space.

All these advantages and performances have allowed the rapid adoption of this search space in
the most recent papers. However, some drawbacks need to be mentioned. When adopting a cell-
based search space, a new design choice arises: how to determine the macro-architecture: how
many cells should be used, and how should they be connected to construct the real model? Zoph
et al., 2018 construct a sequential model from cells in which each cell receives as input the outputs
of the two preceding cells, whereas Cai et al., 2018 use the high-level structure of well-known
manually designed architectures, such as DenseNet (Huang et al., 2017), and their cells within
these models. In theory, cells can be arbitrarily combined, for example, within the previously
described multi-branch space, by replacing layers with cells. Rather than optimizing the micro-
architecture only, both the macro-architecture and the micro-architecture (i.e., the structure of the
cells) should ideally be jointly optimized; otherwise, after finding a high-performing cell, one
may have to manually build the macro-architecture. Research is beginning to address this topic,
as with a hierarchical search space. Another point is that the NAS methods of cell-based search
space are often divided into two phases: search and evaluation. The best-performing model is
chosen first in the search phase, and then it is trained from scratch or fine-tuned in the assessment
phase. However, there is a significant difference in model depth between the two phases. While
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Figure 3.3: Illustration of a micro-search space. The right part represents the cells sought, here
is the reduction and normal types. Once these cells are built, they are then stacked to form the
structure on the left, which will represent the final structure. The "×n" terms denotes the number
of times this cell is repeated, "n" being a hyperparameter.

the search phase identifies the optimum cell structure for the shallow model, this does not imply
that it is still appropriate for the deeper model in the evaluation phase. In other words, merely
increasing the number of cells may degrade model performance. To close this gap, recent research
such as (Chen et al., 2019) proposed progressive DARTS (P-DARTS), a strategy that separates
the search period into many stages and gradually raises the depth of the searched networks at the
conclusion of each step.

3.2.3 Hierarchical Search Space

A new search space called "hierarchic" has emerged, inspired by the two forms of search space
shown above. In the cell-based search space (micro), most of the proposed method follow a bi-
level hierarchy : the inner level is the cell level, which determines the operation and connection for

Figure 3.4: Illustration of the hierarchical search space proposed by AutoDeepLab. The left part
represent the dense network among which the path will be searched, the x-axis represent the layer
index, the y-axis represent the downsampling ratio compared to the input size. For each down
sampling level, the number of features is multiplied by 2 compared to the previous level (e.g.
64,128,256,512). Illustration from (Liu et al., 2019a).

31



Chapter 3. Introduction to Neural Architecture Search

each node in the cell, and the outer level is the network level, which regulates spatial-resolution
changes. However, these techniques are cell-centric and neglect the network level. The spatial
dimension can only stay the same or be halved by adding a reduction cell. (Liu et al., 2019a)
established a broad formulation for a network-level structure, represented in Figure 3.4, from
which many current acceptable network designs can be duplicated in order to jointly learn an
appropriate combination of repeatable cell and network structures. This allows us to fully examine
the varying number of channels and feature map sizes for each layer. Transversal works propose to
use a hierarchical search space, but in a more flexible manner via dynamic routing (Li et al., 2020);
we will go over this in greater detail in Chapter 7. However, these works can be applied to NAS in
the sense that we search for the best path for each entry using a cell mesh similar to Autodeeplab.
Furthermore, a "common" path, can be extracted if necessary to keep only the necessary cells.

Liu et al., 2017a have used this notion of hierarchy to build progressively more complex cell.
As example, starting from level one with basic operations such as convolutions with various kernel
size (e.g. 3× 3; 5× 5), pooling. The level two use, the level one operation to build basic cell, then
the level three uses those basic cells to build more complex cells and so on. Finally, the highest
level represent the full architecture. An illustration of HierNAS (Liu et al., 2017a) process is given
in figure 3.5.

Figure 3.5: Illustration of the hierarchical search space used by HierNAS. In this figure, the graph
G

(2)
1 is composed operation of level 1 (o11, o

1
2,...) to form the operation of level 2 (o(2)1 ). Then the

operation of level 2 (o(2)1 , o
(2)
2 ,...) will be used in graph G

(3)
1 to build operation of level 3 and so

on. Illustration from (Liu et al., 2017a)

The following section discusses search strategies that are well-suited for these types of search
spaces.

3.3 Search Algorithm

Following the definition of the search space, we must search for the best-performing archite-
cture, a process known as Search Algorithm (also known as Search Strategy or Architecture Op-
timization). Various search strategies, including random search, Bayesian optimization, evolu-
tionary methods, reinforcement learning (RL), and gradient-based methods, can be employed to
explore the space of neural networks. This process is heavily reliant on human specialists and ne-
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cessitates a significant amount of time and resources for trial and error. We will present the most
commonly used algorithms.

3.3.1 Evolutionary Algorithm

Chronologically speaking, evolutionary algorithms were the first to be used in NAS (Miller et
al., 1989). The evolutionary algorithm (EA) (also called neuro-evolution) is a population-based
metaheuristic optimization algorithm inspired by biological evolution. EA is a global optimiza-
tion approach with excellent robustness and extensive applicability when compared to traditional
optimization algorithms such as exhaustive methods. It can solve complex issues that standard op-
timization algorithms cannot solve without being bound by the nature of the problem. In general,
the EA is divided into three stages:

• Selection : This stage entails selecting a subset of all created networks for mutation, with
the goal of retaining well-performing neural architectures while discarding the unpromising
ones. This selection can be done in different ways. Performance selection is a mechanism
in which the probability of a network being chosen is proportional to its performance value.
Another used method is tournament selection, in this case, k (tournament size) networks are
randomly chosen from the population and ordered according to their performance in each
iteration; then, the best network is chosen with a probability of p, the second-best network
with a probability of p × (1 − p), and so on. Lastly, Elsken et al., 2019 propose using an
inverse density to pick parents from a multi-objective Pareto front.

• Mutation : After the parent has been selected, a mutation process is applied, and it can
take different forms. Xie and Yuille, 2017 use one of the most common processes, called
point mutation, which involves randomly and independently flipping each bit in an encoded
version of the architecture. In (Miikkulainen et al., 2019) authors propose two types of
mutation, one turns on or off a connection between two levels, while the other adds or elim-
inates skip connections between two nodes or layers. (Real et al., 2017) build a collection of
mutation operators, such as changing the learning rate and eliminating skip links between
nodes.

• Update : The new networks formed by completing the preceding processes are numerous,
and because of computing resource constraints, some of these must be deleted. Real et al.,
2017 propose to simply remove the least performing network, in (Real et al., 2019), authors
delete the oldest one. Some studies as in (Suganuma et al., 2017) also remove models but at
regular interval, while in (Liu et al., 2017a), models are not removed at all.

Many methods for optimizing architecture and weights employ evolutionary algorithms similar
to the one presented above, however, these approaches run into scale issues when millions of
parameters need to be tuned. Recent works propose to combine gradient descent and evolutionary
algorithm, to optimize the parameters and the architecture, respectively (Suganuma et al., 2017;
Real et al., 2017). Most of the presented methods use random initialization of child networks to
generate offspring, however Elsken et al., 2019 use Lamarckian inheritance, in which information
(in the form of learned weights) is transmitted from a parent network to its offspring. In (Real
et al., 2017), authors allow an offspring to inherit all of its parent parameters that are not involved
by the selected mutation. Compared to random initialization, this type of inheritance, which is not
exactly function preserving, may speed up learning.

3.3.2 Reinforcement Learning

The first attempts to apply the Reinforcement Learning (RL) concept to NAS stated that the cre-
ation of an architecture can be thought of as the action of the agent, with the action space being
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similar to the search space. The figure 3.6 illustrates the process RL-based NAS. The controller, is
usually a recurrent neural network (RNN) which sample an architecture A at each time step t from
the predefined search space. This architecture A is then trained and evaluated on unseen data, the
obtained performance is then used as reward r to update the controller sampling policy.

Figure 3.6: Operating scheme used in the RL-based architecture search. Illustration from (Zoph
and Le, 2017).

Various RL techniques differ in how they describe and optimize the policy of the agent. Zoph
and Le, 2017 use the REINFORCE policy gradient algorithm to optimize the controller policy.
However, in (Real et al., 2017), authors use another optimization method called proximal policy
optimization (PPO) (Schulman et al., 2017). Figure 3.7 illustrates the output of the RNN. Baker
et al., 2017 propose MetaQNN a meta modeling method that use Q-learning to train a policy that
searches for neural architecture sequentially.

Figure 3.7: Illustration of the result generated by the controller, here, it is a case of micro search
space with 4 nodes per cell. The controller takes as input either the id of the input node or the
operation applied, and produces as output the operation applied or the id of the input node for the
following node, respectively. Illustration from (Pham et al., 2018)

This strategy allowed to obtain good performances on the image classification but also on
other domain such as language modeling with the usage of this technique on the Penn Treebank
dataset (Marcus et al., 1994), nevertheless this method remains very greedy in computing re-
sources. Indeed, in (Baker et al., 2017), authors used 800 GPU for more than 20 days to obtain
best-performing architecture, while Zoph and Le, 2017, used 10 GPU for 10 days. Recent works,
proposes to drastically reduce the amount of resources needed as in Efficient Neural Architecture
Search (ENAS) (Pham et al., 2018), where the authors use weight sharing across all child archite-
cture, which avoids the need to train from scratch each child. By this strategy, they reduce the
required time by ×1000, using a single GPU for 10 hours.
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3.3.3 Gradient Descent based

Different from the previously presented search strategy which sample operation from a discrete
search space, (Liu et al., 2019b) propose differentiable architecture search (DARTS) a continuous
relaxation of the search space to make it differentiable. This relaxation enable the usage of the
gradient, which has been successfully proposed by DARTS. The search space is then represented
as in eq. (3.2).

o(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (3.2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector
α(i,j) of dimension |O|. The architecture search problem is then reduced to learn a set of contin-
uous variables α = {α(i,j)} (edges on figure 3.8). After the relaxation, the tasks of architecture
search is then transformed to a joint optimization problem, between the neural architecture α and
the associated weight θ. Thus, this is a bi-level optimization, where those parameters are alterna-
tively optimized. More specifically, α and θ are not optimized with the same set, validation and
training, respectively. The optimization process is then given by eq. (3.3).

min
α

Lval(θ
∗, α)

s.t. θ∗ = argminθLtrain(θ, α)
(3.3)

where Ltrain and Lval are the training and validation loss, respectively. The task of searching for
architecture is then reduced to learning a set of continuous variables α = {α(i,j)}. By replacing
each mixed operation o(i,j) with the most likely operation (i.e. o(i,j) = argmaxi∈Oα

(i,j)
o ) at the

end of the search, a discrete architecture can be obtained. The whole process is illustrated in fig.
3.8.

Figure 3.8: Illustration of differentiable architecture search, with |O| = 3. In this overview,
edges represent different operations, nodes represent the latent feature vector. The node 0 and 3
represent the input and output of a cell, respectively. (a) Operations on the edges are unknown at
start. (b) represents the continuous relaxation, replacing each edges by operation mixing given by
eq. (3.2), (c) is the joint optimization of mixing probabilities and the network weights, finally, (d)
is the final architecture from the learned probabilities. Illustration from (Liu et al., 2019b)

.

Despite the promising advantages offered by gradient-based methods, they also suffer from
some drawbacks. The first one is that the bi-level optimization is a complex problem to solve,
because the two parameters α and θ are high dimensional parameters. A solution proposed by the
authors is to approximate the gradient of Lval(θ

∗, α) by using∇αLval(w− ξ∇wLtrain(w,α), α),
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where w are the current weights of the architecture, and ξ the learning rate. The key idea here is
to approximate w∗(α) by adapting w using only a single training step, without solving the inner
optimization (e.q. 3.3) completely by training until convergence. A second point is, in the pro-
posed method, each edge is a weighted sum of candidates operations, which in the training stage,
leads to a linear increase of the required amount of GPU memory with the number of candidates
operations. To tackle this issue, for example Xie et al., 2019b propose to have a differentiable
sampling, to sample a child architecture from the supernet by using the Gumbel Softmax trick
(Jang et al., 2017). The architecture can be modeled by a concrete distribution (Maddison et al.,
2017), this allows gradient back propagation and gives an efficient technique to sampling a child
architecture. By using this trick, the equation 3.2 can be rewritten as :

o
(i,j)
k (x) =

K∑
k=1

exp((logα
(i,j)
k +G

(i,j)
k )/λ)∑K

k=1 exp((logα
(i,j)
k +G

(i,j)
k )/λ))

ok(x) (3.4)

In this equation, K is the number of operations, G(i,j)
k = − log(− log(ui,jk )) is the k-th Gumbel

variable, ui,jk is a uniform random variable and λ is the softmax temperature. When the temper-
ature λ → ∞, the possibility distribution of all operations between each node pair approximates
to one-hot distribution. Going further, Cai et al., 2019 propose to use route binarization to re-
duces the massive resource usage. It converts the real-valued path weights to binary gates using
BinaryConnect, which activates only one path of the mixed operations and therefore addresses the
memory problem (Courbariaux et al., 2015).

3.3.4 Surrogate Model-based Optimization

Another type of search strategy, related to Bayesian optimization, is sequential model-based op-
timization (SMBO) algorithms (Kandasamy et al., 2018; Negrinho et al., 2019). The key notion
of SMBO is that it iteratively keeps a record of prior assessment outcomes to develop a surro-
gate model of the objective function, and then utilizes the surrogate model to anticipate the most
promising architecture. Using this prediction, these methods can significantly reduce search time
and increase efficiency. SMBO algorithms use surrogate models, which can be broadly divided
into "classical" Bayesian optimization (BO) methods and neural networks. The BO is widely
used for hyperparameter optimization, but has been applied only rarely to the NAS research.
(Kandasamy et al., 2018) use a derived version of kernel function for the search space in order
to use a classical Gaussian Process(Rasmussen, 2003) to guide the search of architecture. Other
techniques exist such as random forest (RF) (Hutter et al., 2011), tree-structured Parzen estima-
tor (TPE) (Bergstra et al., 2011), such techniques have demonstrated high performance across a
wide range of problems, by combining the architecture search and the associated hyperparameter
(Bergstra et al., 2013). Other studies propose to substitute the "classical" BO methods by neural
networks as surrogate model. (Liu et al., 2018) propose use a LSTM (Hochreiter and Schmidhu-
ber, 1997) as surrogate model, in (Luo et al., 2018) the authors use a simple feed-forward network
and achieves better results than (Liu et al., 2018).

3.4 Evaluation Estimation Strategy

After setting up a new neural network, its performance must be evaluated. A straightforward
approach is to train the network to convergence and then evaluate its performance. However, this
process necessitates a significant amount of time and computing power. As an example, Amoe-
baNet (Real et al., 2019) and NASNet (Zoph et al., 2018) required 500 P100 GPUs and 450 K40
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GPUs, respectively, which is unaffordable in most cases. This massive amount of required com-
puting resources leads to the development of strategies for improving the speed of performance
estimation, which we shall now explore.

3.4.1 Low fidelity estimator

Lower fidelities of real performance after full training can be used to estimate performance (also
denoted as proxy metrics). Among lower fidelities techniques we can find training on a subset
(Klein et al., 2017), with a lower-resolutions (Chrabaszcz et al., 2017) or with a smaller model with
fewer filters per layers or fewer cells (Real et al., 2019; Zoph et al., 2018). Recently, (Mellor et al.,
2021) developed a new approach for estimating architecture performance without even needing
to train it. The main idea behind their method is that there is a relationship between the network
local linear maps (ReLU output) correlation and its overall performance. Such techniques help
to drastically reduces the required amount of computational resources, they also inject bias into
the estimation because performance is usually underestimated. This may not be a concern if the
search technique is limited to rating distinct architectures and the relative ranking remains steady.
Recent results (Zela et al., 2018), however, show that when the difference between the cheap
approximations and the "full" evaluation is too large, this relative ranking might vary substantially.

3.4.2 Extrapolation

Some other method for evaluating an architecture performance is to use learning curve extrapo-
lation and practice early stopping in the not promising case. (Domhan et al., 2015) presents a
learning-curve model that is a weighted mixture of a collection of parametric curve models cho-
sen from the literature, allowing the network performance to be predicted. In Progressive NAS
(PNAS) (Liu et al., 2018), the authors propose to not use learning curve extrapolation, but instead
support predicting performance based on architectural/cell features and extrapolating to architec-
tures/cells larger than those seen during training. The fundamental issue for forecasting neural
architecture performance is that, in order to accelerate the search process, make good predictions
in a reasonably large search space must be produced based on relatively few evaluations.

3.4.3 One-Shot Architecture Search

In this kind of methods, all architectures are treated as separate subgraphs of a supergraph (the
one-shot model), and weights are shared between architectures that share edges with this super-
graph, we can also define that as weight sharing. By these techniques only the weights of a single
one-shot model must be optimized, and architectures (which are simply subgraphs of the super-
graph model) can then be evaluated without additional training by inheriting trained weights from
the one-shot model. Unfortunately, the one-shot model has a bias in that it underestimates the real
performance of the best architectures; yet, it permits ranking architectures, which would be suffi-
cient if the predicted performance significantly correlates with the actual performance. However,
it is currently unclear whether or not this is the case (Yu et al., 2019).

There are variants related to the one-shot method such as, the weights sharing technique used
in (Pham et al., 2018) where parameters are shared among child architecture, network morphism
where also the child network can inherit from previous network. In DARTS, the technique used
can be related to the one-shot model, as it optimizes all weight with a continuous relaxation of
the search space, different from that SNAS (Xie et al., 2019b) propose to optimize a distribution
over those operations, using the concrete distribution (Maddison et al., 2017) and reparametriza-
tion trick (Kingma and Welling, 2014) to make the discrete distribution differentiable. (Bender
et al., 2018) train a one-shot model only once, and demonstrate that simply deactivating sections
of the model stochastically during training with route dropout is sufficient to achieve good results.
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To achieve that, they use a fixed distribution, which might indicate that only a carefully selected
distribution and weights sharing are required to have a good performing one-shot NAS model.

Despite the many advantages of one-shot NAS, there are a few drawbacks. The first, which is
also related to the domain of NAS, is that the supergraph incorporates the human a prior, which
can limit the possible representation of subgraphs. In addition, hardware limitations still exist,
indeed if the entire supergraph must be loaded on GPU there will be a limitation in the size of
the network, or it will require large resources. While weight-sharing methods have considerably
decreased the processing resources necessary for NAS, it is still uncertain what biases they add
into the search (Bender et al., 2018). For example, an initial bias toward investigating specific
areas of the search space more than others may lead to the parameters of the model one-shot being
more tailored to specific structures, thus reinforcing the search bias toward those portions of the
search space.

3.5 Summary

In this chapter, we have covered Neural Architecture Search as well as the most common
methodologies established in this field, mostly developed for image classification. On the one
hand, many NN models have been developed for this task under the supervised learning frame-
work, and they are not easily outperformed by NAS. As a result, we believe it is important to
extend beyond image classification challenges by using NAS to less explored research fields or
under new train settings (e.g. semi-supervised, self-supervised). Some works have started to ex-
plore new tasks such as semantic segmentation (Nekrasov et al., 2019a), transfer learning (Wong
et al., 2018) or optimization of existing neural network (Rawal and Miikkulainen, 2018; Tan and
Le, 2019). In addition, (Liu et al., 2020) have recently explored the potential of self-supervised
architecture search (i.e., without using labels).

To round out the concept of new training settings, it is not uncommon in real-world appli-
cations to have two sets of data, one of which is not annotated because annotation is a time-
consuming and possibly costly operation. Despite the fact that it is not annotated, it contains
information that a neural network can use. As a result, there are numerous approaches of training
a neural network with partially annotated data. This is what will be discussed in the following
chapter, from two perspectives that employ unannotated data in distinct ways.
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4
Learning from partially annotated data

Semi-supervised algorithms aim to learn prediction functions from
a small set of labeled data and a large set of unlabeled data. Since
this framework is applicable in a wide range of applications, it has
piqued the interest of both academics and industry. Among the ex-
isting techniques, self-training methods have undoubtedly attracted
greater attention in recent years. From another perspective, self-
supervised methods also propose to leverage unlabeled data, by us-
ing dedicated transformation or as pretraining. In this chapter, we
introduce self-training and self-supervised methods.
This chapter present works from the following contributions:

• Self-Training: A Survey [1]
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4.1. Introduction

4.1 Introduction

Semi-supervised learning boils down to the fundamental dilemma of how to infer from par-
tially labeled data, and it has become a predominant technique in Machine Learning. Dealing with
circumstances where there are a small number of labeled training points together with a large num-
ber of unlabeled examples is important to a range of applications where obtaining labeled data is
costly, such as image classification and segmentation. Semi-supervised learning as a subject uses
a variety of methods and shows, on a small scale, the intricate machinery found in numerous
disciplines of machine learning, such as Neural Networks.

Similar to semi-supervised learning, new neural network-based methods focusing on the use
of unannotated samples have emerged. This field, known as self-supervised learning, takes ad-
vantage of the vast volumes of unannotated data accessible to give efficient ways for label-free
learning and ever-increasing performance. These techniques are employed as efficient label-free
pretraining methods, which are then fine-tuned with a small number of annotated samples. Next,
a traditional self-training method can be employed (Chen et al., 2020b).

The remainder of this chapter is organized as follows. In the next section, we introduce the
semi-supervision paradigm. Next, in Section 4.3 we present the framework and notations used
throughout the chapter. In Section 4.4, we go over the self-training method in detail, covering
pseudo-labeling and its variants, as well as providing some insights into current theoretical stud-
ies. Other related approaches are described in Section 4.5. An introduction to self-supervised
approaches is given in Section 4.6. Finally, views and future prospects are discussed in Section
4.7.

4.2 Central hypothesis and main approaches

4.2.1 Semi-supervised central hypothesis

Smoothness is a key assumption in semi-supervised learning, which stipulates that two instances in
a high density region should have the same class labels (Chapelle et al., 2010; Amini and Usunier,
2015). This means that if two points belong to the same group or cluster, their class labels will
almost always be the same. On the other hand, if they are separated by a low density zone, their
desired labels should be different. Unlabeled training data may thus contribute in finding the
partition border more effectively than labeled training examples if the instances of the same class
form a partition.

4.2.2 Three main semi-supervised learning families

The smoothness hypothesis is adapted in three main families of semi-supervised learning tech-
niques as a consequence of the assumption used in diverse contexts.

The working premise of generative techniques is data clustering, which use a mixture model
to assign class labels to partitions based on the labeled data they contain (Nigam et al., 2006;
Kingma et al., 2014). The cluster assumption, which underpins these approaches, asserts that if
two examples are in the same group, they are likely to be in the same class. This hypothesis may
be explained as follows: if a group is formed by a large number of instances, it is rare that they
belong to different classes. This does not imply that a class is constituted by a single group of
examples, but rather that two examples from distinct classes are unlikely to be found in the same
cluster.
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If we consider the partitions of instances to be high density areas, a form of the cluster assump-
tion known as low density separation entails determining the decision boundary over low density
regions, and it constitutes the basis of discriminant techniques. The main difference between gen-
erative and discriminant techniques is that discriminant approaches find directly the prediction
function without making any assumption on how the data are generated (Amini and Gallinari,
2002; Oliver et al., 2018).

Density estimation is often based on a notion of distance, which for high dimensional spaces
may also become meaningless. A third hypothesis, known as the manifold assumption, stipulates
that in high-dimensional spaces, instances reside on low-dimensional topological spaces that are
locally Euclidean, which is supported by a variety of semi-supervised models called graphical ap-
proaches (Belkin and Niyogi, 2004; Chong et al., 2020).

4.2.3 Compatibility

Although semi-supervised algorithms have been successfully applied in many situations, there
have been cases where unlabeled data have been shown to have no effect on the performance of
a learning task (Singh et al., 2009). Several attempts have been made to investigate the value of
unlabeled data in the training process (Castelli and Cover, 1995; Li and Zhou, 2011), and the
capacity of semi-supervised learning approaches to generalize (Rigollet, 2007; Maximov et al.,
2018). The bulk of these studies are founded on the notion of compatibility defined in (Balcan
and Blum, 2006), and they strive to exhibit the connection between the marginal data distribution
and the target function to be learned. According to these findings, unlabeled data will only be
beneficial for training if such a relationship exists.

In generative approaches, the marginal distribution is viewed as a mixture of class conditional
distributions, and when compared to the supervised case, semi-supervised learning has been shown
to achieve lower finite-sample error bounds in some general cases, or a faster rate of error con-
vergence in others (Castelli and Cover, 1995; Rigollet, 2007; Maximov et al., 2018; Singh et al.,
2009). In this line, (Ben-David et al., 2008) showed that accessing the marginal distribution on
unlabeled training data would not provide sample size guarantees superior to those obtained by
supervised learning unless very strong assumptions about conditional distribution on class labels
are done.

For graph-based approaches, (Niyogi, 2013) provided a context in which such algorithms may
be studied and perhaps justified; the key finding of the study is that unlabeled data can aid learning
in some situations by defining explicitly the manifold.

Finally, discriminant approaches mostly embed a margin maximization method that searches
the decision boundary in low-density regions by pushing it from the unlabeled data (Joachims,
1999). In this survey, we focus on self-training algorithms that follow this principle by assigning
pseudo-labels to high-confidence unlabeled training examples and include these pseudo-labeled
samples in the learning process.

4.3 Framework and notations

We consider classification problems where the input and the output spaces are respectively
X ⊆ Rd andY . We further assume available a set of labeled training examples S = (xi, yi)1⩽i⩽m ∈
(X × Y)m generated from a joint probability distribution P(x, y) (denoted as D) and a set of un-
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labeled training examples XU = (xi)m+1⩽i⩽m+u ∈ X u supposed to be drawn from the marginal
distribution P(x).

The classic case corresponds to m≪ u, and the issue is thrown into the unsupervised learning
framework if S is empty. The opposite extreme scenario is when XU is empty and the problem
is reduced to supervised learning. Given a hypothesis set of functions H mapping X to Y; the
learner receives a labeled set S and an unlabeled set XU and outputs a hypothesis h ∈ H which
is assumed to have a generalization error R(h) = E(x,y)∼D[1h(x)̸=y] smaller than if just S was
used to find the prediction function, whereby 1π denotes the indicator function equal to 1 if the
predicate π is true and 0 otherwise.

In practice, classifiers are defined based on a scoring function f from a class of functions
F = {f : X ×Y → R}, and for an example x the corresponding classification function h outputs
the class for which the score of f is the highest:

h(x) = argmaxy∈Yf(x, y).

We define the margin ρf (x, y) of a function f for an example x ∈ X and a class y ∈ Y as:

ρf (x, y) = f(x, y)−max
y′ ̸=y

f(x, y′).

In the binary case, Y = {−1,+1}, we define the unsigned margin of a classification function
f ∈ F over an example x (Buc et al., 2001; Amini et al., 2008) as:

mf (x) = |ρf (x,+1)|.

In the multi-class classification case, Y = {1, . . . ,K}, the unsigned margin (Buc et al., 2001;
Feofanov et al., 2019) is defined as

mf (x) =
∑
y∈Y

f(x, y)ρf (x, y).

The maximization of the unsigned margin tends to find a decision boundary that passes through
low density regions, and hence follows the low density separation assumption.

Based on this idea, self-training algorithms define a pseudo-labeling strategy for assigning
pseudo-labels to the examples of XU . This strategy can be characterized by a function, called
pseudo-labeler:

Φℓ : X × F → X × Y.

We denote ỹ the pseudo-label of an unlabeled x ∈ XU assigned by Φℓ and XU\ the set of pseudo-
labeled examples.

4.4 Self-Training approaches

Self-training, also known as decision-directed or self-taught learning machine, is one of the
earliest approach in semi-supervised learning (Scudder, 1965; Fralick, 1967) that has risen in
popularity in recent years.

This wrapper algorithm starts by learning a supervised classifier on the labeled training set S.
Then, at each iteration, the current classifier selects a part of the unlabeled data, XU\, and assigns
pseudo-labels to them using the classifier predictions. These pseudo-labeled unlabeled examples
are removed from XU and a new supervised classifier is trained over S∪XU\, by considering these
pseudo-labeled unlabeled data as additional labeled examples. To do so, the classifier h ∈ H that
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Figure 4.1: Illustration of the traditional self-learning approach.

is learned at the current iteration is the one that minimizes a regularized empirical loss over S and
XU\:

1

m

∑
(x,y)∈S

ℓ(h(x), y) +
γ

|XU\|
∑

(x,ỹ)∈XU\

ℓ(h(x), ỹ) + λ∥h∥2,

where ℓ : Y × Y → [0, 1] is an instantaneous loss most often chosen to be the cross-entropy
loss, γ is a hyperparameter for controlling the impact of pseudo-labeled data in learning, and λ is
the regularization hyperparameter. This process of pseudo-labeling and learning a new classifier
continues until the unlabeled set XU is empty or there is no more unlabeled data to pseudo-label.
The self-training algorithm process is illustrated in fig.4.1 and the pseudocode of is shown in
Algorithm 1.

4.4.1 Pseudo-labeling strategies

At each iteration, the self-training selects just a portion of unlabeled data for pseudo-labeling,
otherwise, all unlabeled examples would be pseudo-labeled after the first iteration, which would
actually result in a classifier with performance identical to the initial classifier (Chapelle et al.,
2010). Thus, the implementation of self-training arises the following question: how to determine
the subset of examples to pseudo-label?

A classical assumption, that stems from the low density separation hypothesis, is to suppose
that the classifier learned at each step makes the majority of its mistakes on observations close
to the decision boundary. In the case of binary classification, preliminary research suggested
assigning pseudo-labels only to unlabeled observations for which the current classifier is the most
confident (Tür et al., 2005). Hence, considering thresholds θ− and θ+ defined for respectively
the negative and the positive classes, the pseudo-labeler assigns a pseudo-label ỹ to an instance
x ∈ XU such that:

ỹ =

{
+1, if f(x,+1) ⩾ θ+,

−1, if f(x,−1) ⩽ θ−,
(4.1)

and Φℓ(f,x) = (x, ỹ). An unlabeled example x that does not satisfy the conditions (4.1) is not
pseudo-labeled; i.e. Φℓ(f,x) = ∅.

Intuitively, thresholds should be set to high absolute values, as pseudo-labeling examples with
low confidence would increase chances of assigning wrong labels. However, thresholds of very
high value imply excessive trust in the confidence measure underlying the model, which, in reality,
can be biased due to the small labeled sample size. Using several iterations makes also the situation
more intricate, as at every iteration the optimal threshold might be different.

One way to select the thresholds is to set them equal to the average of respectively positive and
negative predictions (Tür et al., 2005). In this line, and in the context of multi-class classification,
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Alg. Self-Training

Input : S = (xi, yi)1⩽i⩽m, XU = (xi)m+1⩽i⩽m+u.
k ← 0, XU\ ← ∅.
repeat

Train h(k) on S ∪XU\ ▷ Learning the classifier
Π← {Φℓ(h

(k),x),x ∈ XU} ▷ Pseudo-labeling
XU\ ← XU\ ∪Π
XU ← XU \ {x | (x, ỹ) ∈ Π}
k ← k + 1

until XU = ∅ ∨Π = ∅
Output : h(k)

Lee, 2013 used Neural Networks as the supervised classifier and chose the most confident class
to infer pseudo-labels for unlabeled data using the current model’ outputs. The pseudo-labeled
examples were then added to the labeled training set and treated similarly as labeled examples.

Zou et al., 2018 adapted the idea of Tür et al., 2005 for multi-class classification by not choos-
ing thresholds but rather fixing a proportion p of the most confident unlabeled data to be pseudo-
labeled and then increasing this proportion at each iteration of the algorithm until p = 0.5 was
reached.

Following this idea, (Cascante-Bonilla et al., 2021; Zhang et al., 2021) proposed an adaptation
of curriculum learning to pseudo-labeling, which entails in learning a model using easy-to-learn
observations before moving on to more complex ones. The principle is that at the step k of the
algorithm, the pseudo-labeler selects unlabeled examples having predictions that are in the (1 −
αk)

th percentile of the distribution of the maximum probability predictions assumed to follow a
Pareto distribution, and where αk ∈ [0, 1] is a hyperparameter that varies from 0 to 1 in increments
of 0.2

Considering the distribution of predictions over unlabeled data, and the voted-majority clas-
sifiers, such as Random Forest or Adaboost (Schapire et al., 1997), it is possible to automatically
choose a threshold for pseudo-labeling. Formally, the learning of a voted-majority classifier with
partially labeled data can be defined as follows. After observing the training set S ∪ XU\, the
task of the learner is to choose a posterior distribution Q over a set of hypothesis H such that the
Q-weighted majority vote classifier BQ defined by:

∀x ∈ X , BQ(x) = argmaxy∈YEh∼Q

[
1h(x)=y

]
,

will have the smallest possible risk on examples of XU . The associated Gibbs classifier, GQ, is
defined as the random choice of a classifier h according to the distribution Q, and its error over an
unlabeled set XU , is given by:

R̂u(GQ) =
1

u

∑
x′∈XU

Eh∼Q[1h(x′) ̸=y′ ],

where, for every unlabeled example x′ ∈ XU we refer to y′ as its true unknown class label. For
binary and multi-class classification, (Amini et al., 2008; Feofanov et al., 2019) showed that a tight
upper-bound on the Gibbs’s classifier risk that holds with high probability over the random choice
of S and XU , guarantees a tight bound on the error of the Bayes classifier over the unlabeled
training set:

R̂u(BQ) =
1

u

∑
x′∈XU

1BQ(x′ )̸=y′
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This bound is mainly based on the distribution of predictions over unlabeled data and the deriva-
tions can be extended to bound the risk of voted majority classifiers having margins greater than a
threshold θ, R̂u∧θ(BQ), defined as:

R̂u∧θ(BQ) =
1

u

∑
x′∈XU

1BQ(x′ )̸=y′∧mBQ
(x′)>θ.

One of the practical aspects that arises from this result is the possibility to specify a threshold θ
which minimizes an upper-bound of the conditional risk of a voted majority classifier BQ over the
unlabeled training set, XU , defined as:

R̂u|θ(BQ) =
R̂u∧θ(BQ)

1
u

∑
x∈XU

1mBQ
(x)⩾θ

,

where the denominator is the proportion of the unlabeled examples with the confidence higher
than the threshold θ, and the numerator is the joint Bayes risk on XU . Thus, the criterion can
be interpreted as a trade-off between the number of examples going to be pseudo-labeled and the
error they induce. Furthermore, these bounds are shown to be tight in the case where the majority
vote classifier makes its error mostly on low margin regions.

Feofanov et al., 2019 demonstrated that this technique outperforms conventional fixed-threshold
pseudo-labeling strategies on different multiclass classification problems.

4.4.2 Self-training with two classifiers

In the wake of works utilizing only a single classifier in self-training algorithms, new studies have
been proposed with the use of two classifiers, where each model learns on the output of the other
(Xie et al., 2020b; Chen et al., 2021; Karamanolakis et al., 2021). Most of these techniques are
based on the idea of consensus in predictions between two classifiers and were inspired by the
seminal work of (Blum and Mitchell, 1998) who proposed the co-training algorithm.

In co-training, examples are defined by two modalities that are comparable but not entirely
correlated. Each view of an example is expected to contain complementary information about the
data and if there are enough labeled training data, each of them is supposed to be sufficient for
learning. The goal of learning is to train a classifier on each view by first initializing it with the
labeled training set that is available. Then, one of the classifiers assigns pseudo-labels to unlabeled
data, which the other one will use to learn. Following training, the classifiers switch roles, with the
learned classifier assigning pseudo-labels to unlabeled examples, which will then be used to train
the first classifier. As for self-training algorithms with a single classifier, this procedure continues
until there are no more unlabeled instances to be pseudo-labeled. In practice, several studies
artificially generated the two modalities for classification problems where examples are mono-
viewed and described by a vector representation. These approaches create the two modalities out
of one by selecting at random the set of features that should correspond to each modality from the
initial set of features; and their efficiency was empirically proved on various applications.

Co-training can thus be thought of as a form of self-training; as rather than training a classifier
on its own previous predictions; each classifier is trained on the predictions of another classifier
that was trained on the predictions of the former. Without splitting the input feature set, (Chen
et al., 2021) proposed Cross Pseudo Supervision for semantic segmentation in images, illustrated
in fig. 4.2. This method employs two neural networks as supervised classifiers having the same
images as inputs. Each neural-network is learned at every mini-batch by considering the pseudo-
labels generated by the other network for unlabeled instances as ground-truths.

The learnability of co-training was studied under the PAC framework (Valiant, 1984), which
also accounts for noise in the class labels of unlabeled examples caused by pseudo-labeling. The
injection of noisy labels in the pseudo-labeling step is in fact inherent to any self-training algo-
rithm. Taking into account noisy labels in training, a model was first considered in supervised
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Figure 4.2: Illustration of the Cross Pseudo Supervision used in (Chen et al., 2021). f(θ1) and
f(θ2) are two networks differently initialized, P1 and P2 are the two corresponding prediction.
Finally, the two one-hot encoded prediction Y1, Y2 are swapped and used as ground truth by the
other network. Illustration from (Chen et al., 2021)

learning, following the paradigm of learning with an imperfect supervisor in which training data
contains an unknown portion of imperfect labels (Natarajan et al., 2013; Han et al., 2018). Most
of these studies tackle this problem from an algorithmic point of view, employing regularization
(Miyato et al., 2019) or estimating mislabeling errors by modeling the transition probability be-
tween noisy and true labels (Patrini et al., 2017). Other types of noise considerations for image
(Xie et al., 2020b) and text classification (Karamanolakis et al., 2021) have recently been proposed,
which involve mostly perturbing the input examples (data augmentation in images, for example)
and constraining the two models involved in self-training to produce the same predictions on un-
labeled examples. The figure 4.3 illustrate the noisy process used in (Xie et al., 2020b), a similar
process can be transposed to the language processing.

Figure 4.3: Representation of the noisy student pipeline. This pipeline differs from the original
self-learning pipeline in the sense that here, during the second learning phase, noise is injected.
This noise can be of different natures, such as strong data augmentations, drop out or stochastic
depth. Illustration from (Xie et al., 2020b)

4.4.3 Theoretical studies

Several studies have recently looked into the theoretical properties of self-training algorithms. In
this line, Wei et al., 2021 suggest a new concept of expansion defined as the quantity of data disper-
sion in an neighbor example, where the term neighbor refers to adding adversarial perturbations
(Miyato et al., 2019) or augmentations (Sohn et al., 2020) to the example. The study establishes
distributional guarantees of self-training when the label distribution meets such expansion proper-
ties and classes are suitably separated according to neighbors. The study generates finite sample
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bounds for Deep Neural Networks (DNNs) by combining generalization bounds with DNN gen-
eralization bounds. Experiments with a Generative Adversarial Network (GAN) are also used to
verify the expansion assumption.

Frei et al., 2022 examine a self-training algorithm with linear models for the binary clas-
sification using gradient-based optimization of the cross-entropy loss after supervised learning
with a few samples. The classifier is a mixture model with concentration and anti-concentration
properties. The authors show that utilizing O(d/ϵ2) unlabeled observations in the self learning
algorithm, with d the number of input variables, suffices to achieve the classification error of the
Bayes-optimal classifier up to an ϵ error if the initial pseudo-labeling strategy has a classification
error smaller than an absolute constant Cerr. Furthermore, the authors demonstrate that a constant
number of labeled examples is sufficient for optimal performance in a self-training algorithm by
demonstrating that using only O(d) labeled examples, the standard gradient descent algorithm can
learn a pseudo-labeling strategy with a classification error no more than Cerr. Zhang et al., 2022
study the generalization ability of self-training in the case where the base classifier is a two-layer
neural network with the second layer weights all fixed to one, and assuming that the ground truth
is realizable, the labels are observed without noise, and the labeled and unlabeled instances are
drawn from two isotropic Gaussian distributions. The authors show that, given some plausible
assumptions about the initial point and the amount of unlabeled training examples, the algorithm
converges to the ground truth with fewer observations than needed when no unlabeled data is
provided. The reader can refer to Zhong et al., 2017 for a broader context. Zhang et al., 2022
extend their main result to a more general setting, where it is shown that the model still converges
towards a given convex combination of the ground truth and the initial point, and is guaranteed to
outperform the initial supervised model, without fixing any requirement on the number of labeled
training examples.

4.5 Related approaches

In semi-supervised learning, there are probably two main other areas of research that are re-
lated to self-training. The first, referred to as consistency learning, uses classifier predictions over
unlabeled data as a confidence indicator and constrains model outputs to be comparable for similar
unlabeled examples without assigning pseudo-labels. The second method, known as transductive
learning, is based on the low density separation assumption and tends to give class labels for only
the set of unlabeled training samples. This framework is driven by some applications for which
it is sufficient to properly predict the outputs of instances of an unlabeled or test set rather than
learning a general rule.

4.5.1 Consistency-based approaches

Early studies in this line, see for example (Zhu et al., 2003) for binary classification, were proposed
to learn a single classifier defined from a scoring function f : X × Y → R penalized for quick
changes in its predictions. The similarity matrix W = [Wij ]1⩽i⩽u

1⩽j⩽u
, constructed over the unlabeled

training data, is used to measure the similarity between instances. The penalization is mostly
expressed as a regularization term in the learning objective. As an example, adapting the work of
(Zhu et al., 2003) to multiclass classification, the penalization term can be written as:

ΩW(XU ) =

u∑
i,j=1

Wij∥f(xm+i, .)− f(xm+j , .)∥2
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where for a given example x, f(x, .) = (f(x, k))k∈Y is the vector class predictions of f . In terms
of learning, ΩW can be seen as a regularization term, constraining the model to have the same
predictions on similar unlabeled instances.

Other types of penalization have been studied in the literature. Maximov et al., 2018 suggested
an approach that partitions partially labeled data and then uses labeled training samples to identify
dense clusters having predominant classes with a fraction of non-predominant classes below a
given threshold. In this situation, the proposed penalization term measures the learner’s inability
to predict the predominant classes of the identified clusters, which in turn constrains the supervised
classifier to be consistent with the structure of the dense clusters.

Later, without explicitly stating a penalization term, consistency learning was extended to
cases with two classifiers. The Mean-Teacher approach (Tarvainen and Valpola, 2017) is perhaps
one of the earliest popular techniques that have been proposed in this context. This method em-
ploys Neural Networks (NNs) as supervised classifiers, and it is based on the assumption that two
close models with the same input should make the same prediction. One of the models is called
the teacher, while the other is referred to as the student. These two NN models are structurally
identical, and their weights are related in that the teacher’s weights are an exponential moving
average (Laine and Aila, 2017) of the student’ weights. In this scenario, the student model is the
only one that is trained over the labeled training set, and the consistency loss is computed between
the teacher’s probability distribution prediction and the student’s one using the mean square error
or the Kullback-Leibler divergence. An Illustration of the Mean-Teacher technique is given by
figure 4.4.

Figure 4.4: Illustration of the mean teacher operating scheme. The student network is the only
networks which have access to the label. The input is given to the student and teacher, where
the teacher has the same structure as the student, but have an exponential moving average of the
student weights. Moreover, each network can add perturbations η, η′ such as dropout. Illustration
from (Tarvainen and Valpola, 2017)

Other studies refined the Mean-Teacher approach with a data-augmentation technique by com-
bining two images with random patches to improve prediction consistency (French et al., 2020a;
Xie et al., 2020a) The process used by (Xie et al., 2020a), is also a consistency-based approach,
despite here they only use one network. More recently, (Olsson et al., 2021) advocated using
network predictions as a guidance to retain object boundaries during the mixing phase of image
segmentation. They also employed the teacher predictions as pseudo-labels for the student’s learn-
ing, replacing the consistency regularization term with an empirical cross-entropy error estimated
over the pseudo-labeled data.
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4.5.2 Transductive learning

The goal of transductive learning, as previously stated, is to assign pseudolabels to samples from
an unlabeled training set, XU . As this set is finite, the considered function class F , for finding the
transductive prediction function, is also finite. F can be defined using a nested structure according
to the structural risk minimization principle, F1 ⊆ F2 ⊆ . . . ⊆ F (Vapnik, 1998). Transductive
techniques often employ the distribution of unsigned margins of unlabeled examples to guide the
search for a prediction function, limiting it to following the low density separation assumption in
order to find the best function class among the current ones.

Transductive approaches also assume that the function class structure should reflect prior
knowledge of the learning problem at hand, and that it should be built in such a way that the
correct prediction of class labels of labeled and unlabeled training examples is contained in a
function class Fj of small size with a high probability. In particular, (Derbeko et al., 2004) show
that with high probability the error on the unlabeled training set of a function from a class function
Fj is bounded by its empirical loss on the labeled training set plus a complexity term that depends
on the number of labeled examples m, the number of unlabeled examples u, and the size of the
class function Fj .

The Transductive Support Vector Machines (TSVM) (Joachims, 1999) developed for the bi-
nary case is based on this paradigm, and is looking for the optimal hyperplane in a feature space
that separates the best labeled examples while avoiding high density areas. TSVM does this by
building a structure on a function class F and sorting the outputs of unlabeled samples by their
margins. The solutions to the associated optimization problem are the pseudo-labels of unlabeled
examples for which the resulting hyperplane separates the examples of both labeled and unlabeled
training sets with the largest margin. The main difference with self-training is that in TSVM,
pseudo-labeled examples will not be used to train the classifier again.

(Shi et al., 2018) extended this idea to the multiclass classification case with Neural Networks.
Similar to TSVM, class labels of unlabeled examples are treated as variables, and the algorithm
tries to determine their optimal values, along with the optimal NNs parameter set get by mini-
mizing a cross-entropy loss estimated over both labeled and unlabeled training sets through an
iterative training process. The authors employ the MinMax Feature regularization to constrain the
neural network to learn features of same-class images to be close, and features of different classes
to be separated by a preset margin, in order to overcome incorrect label estimations on outliers and
noisy samples.

4.6 Self-supervised approaches

When you give supervised learning a task and enough labels, it can solve it quite well. Good
performance normally necessitates a large number of labels, but gathering manual labels is costly
(e.g., ImageNet (Deng et al., 2009)) and difficult to scale up. Given that the amount of unlabeled
data (e.g., free text, all photos on the Internet) is significantly greater than the restricted number of
human-curated tagged datasets, it seems wasteful not to use them. Unsupervised learning, on the
other hand, is difficult and typically performs significantly less efficient than supervised learning,
for comparable sample size.

The main reason of the rapid use of self-supervised learning, is producing a dataset with clear
labels is hard and expensive, but unlabeled data is constantly generated. A method to make use
of this much bigger amount of unlabeled data is to appropriately design the learning objectives
so that the data itself can supervise you. The self-supervised task, also known as the pretext task,
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leads to the supervised loss function. However, we are frequently unconcerned about the outcome
of this created task. We are more interested in the learned intermediate representation, with the
assumption that it will have good semantic meanings and will be useful in a range of practical
downstream tasks. Indeed, as previously said, self-supervision approaches are generally used to
pre-train networks before focusing on a downstream task that the user is interested in. We expect
that by applying these strategies, the model will be able to learn high-quality latent variables for
real-world applications such as building an object classifier with very few labeled examples, like
illustrated in fig.4.5.

Figure 4.5: Illustration of the pipeline proposed by (Chen et al., 2020b), which involve self-
supervised learning as pretraining and the small fraction of supervised data as fine-tuning. Il-
lustration from (Chen et al., 2020b)

4.6.1 Image-based approaches

Many ideas for self-supervised image representation learning have been proposed. A standard im-
age classification approach is to train a model on one or more pretext tasks with unlabeled photos,
and then feed one intermediate feature layer of this model to a classifier.

The first proposed methods are based on image distortion, indeed slightly distorted images
keep the same semantic meaning as the original image, so the learned representations should
be invariant to distortions. Dosovitskiy et al., 2014 proposes to create a training dataset called
"surrogate". This new dataset contains a transformed version of the original dataset, where random
transformations have been applied. All these new images, created from a single image, belong to
the same surrogate class. The goal of the method (i.e. the pretext task) is to discriminate between
a set of surrogate classes. Some other task, such as rotation (Gidaris et al., 2018), were also used.
Here, each image is randomly rotated by a multiple of 90◦ (i.e. {0◦, 90◦, 180◦, 270◦}). Then the
model is trained to solve a 4-class classification problem. Using this pretext task, the model is
force to learn semantic concepts, by recognizing high level object, such as heads or eyes and their
positions. The figure 4.6 illustrates the rotation pretext task proposed by (Gidaris et al., 2018).

During the same years, other researches have followed another approach by relying instead
on image patches. The pretext task proposed by (Doersch et al., 2015) is defined as guessing the
relative position of two random patches from a single image. In order to determine the relative
position of parts, a model must grasp their spatial context. To works, these methods apply a 3x3
grid to the images, but only use two patches from this grid. To take advantage of other patches,
and make this task more difficult, Noroozi and Favaro, 2016 designed a jigsaw puzzle as pretext
task, the model learn how to place the shuffled patches back to the original locations, the fig. 4.7
illustrate this process.
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Figure 4.6: Illustration of the rotation pretext task proposed by (Gidaris et al., 2018). The unla-
beled image X is randomly rotated among 4 predefined angles, which is associated as label for
this image. The task is to predict the rotation angle. Illustration from (Gidaris et al., 2018)

Figure 4.7: Illustration of the jigsaw solving pretext task. A random crop in the image is divided
in 9 patches. Each patch are permuted according to a randomly sampled permutation order (i.e.
id). Then, all the permuted patches given as input to the network, which need to identify the id of
the selected permutation. Illustration from (Noroozi and Favaro, 2016)

Other techniques propose to use image reconstruction as a pretext task. (Zhang et al., 2016) use
colorization techniques as task, the model is then trained to color a grayscale input image; more
specifically, the aim is to transfer this image to a distribution of quantized color value outputs.
Instead of using the standard RGB format, authors use CIE Lab* color space, which is designed
to be closer to the human vision. The model is fed with the L channel and need to predict the
ab channels. Because of the multimodal nature of the colorization problem, cross-entropy loss
of predicted probability distribution across binned color values outperforms L2 loss of raw color
values.

The approach used by (Pathak et al., 2016) is called context encoder, this technique is related
to generative modeling (see fig. 4.8). The model is trained to fill up a missing picture element.
The model is trained using both the reconstruction (L2).

During recent years, new methods based on the latent representation, those methods have made
huge improvement in performance of the resulting model, specially image based methods.

4.6.2 Representation based approaches

Most of the research presented in this section is based on the principle of contrastive learning. The
first works, laying the foundations of this type of learning, go back more than 15 years ago with
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Figure 4.8: Pretext task proposed by (Pathak et al., 2016), here the pretext task is simple, a random
part of the image is masked. The network goal is simply to recreate the masked portion as good it
can. Illustration from (Pathak et al., 2016)

the works of (Chopra et al., 2005), which propose contrastive loss as one of the first deep metric
learning training objectives. They define the contrastive loss as follows: Given a list of samples
{xi}, each with a corresponding label yi ∈ {1, ..., L} in L classes, the objective is to learn an
embedding function fθ(.) : X → Rd, that encode xi to a vector in such a way that samples from
the same class have similar embeddings while samples from different classes have significantly
distinct embeddings. Thus, given a pair of inputs, (xi, xj), the contrastive loss reduces the em-
bedding distance when they belong to the same class but maximizes the distance when they don’t.
The equation 4.2 give a formal version of this loss.

Lcontrast(xi,xj , θ) =1[yi = yj ]∥fθ(xi)− fθ(xj)∥22+
1[yi ̸= yj ] max(0, ϵ− ∥fθ(xi)− fθ(xj)∥2)2

(4.2)

Based on this concept, many methods have been proposed. In the following, we will focus on
image-based technique. However, similar techniques for language processing have evolved, such
as the work proposed by(Devlin et al., 2019b; Su et al., 2020; Shi et al., 2021). Firstly, we will give
some general requirements. The majority of approaches for contrastive representation learning, in
the computer vision domain, focus on generating a noisy version of a sample (i.e. xi, xj) through
a series of data augmentation techniques. The augmentation should dramatically alter its aesthetic
look while maintaining the semantic content.

There are numerous methods for modifying an image while keeping its semantic value. The
simplest way is to apply or multiple basic augmentation such as random cropping, color jittering
or Gaussian blur (cf. fig 4.9). Build upon that, many frameworks, such as AutoAugment(Cubuk et
al., 2018) or RandAugment(Cubuk et al., 2020), propose to learn good data augmentation strate-
gies. To achieve that, new augmentation methods have been designed to build new data point
by mixing existing ones. Among those techniques, we can find MixUp(Zhang et al., 2018a) or
MoCHi (Kalantidis et al., 2020).

The image-based contrastive approach can be divided into three major groups, and we will
give a major method by group.

Simultaneous Augmentation

A framework for contrastive learning of visual representations was proposed by (Chen et al.,
2020a) called SimCLR. It learns visual input representations by maximizing agreement across
multiple augmented perspectives of the same sample using a contrastive loss in the latent space.
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Figure 4.9: Example of the different types of augmentation used in (Chen et al., 2020a). Illustra-
tion from (Chen et al., 2020a)

This framework works as the following, and is illustrated in fig. 4.10 :

1. A batch of N samples is chosen at random, and each sample is treated to two different data
augmentation algorithms, resulting in a total of 2N augmented samples.

xi = a(x) xj = a′(x) a, a′ ∼ As

where a, a′ are two separate data augmentation functions sampled from a set of augmenta-
tions A which include functions such as random crop, resize, blur, ...

2. Given a single positive pair, the remaining 2(N-1) data points are regarded as negative sam-
ples. The representation is created by an encoder f(.)

hi = f(xi), hj = f(xj)

3. Here the contrastive loss is defined using the cosine similarity sim(., .). It should be noted,
that the loss operates on an extra layer, called projection layer, of the representation g(.)
rather than on the representation space directly. This projection layer can take various form
such as convolution or fully-connected layers. However, only the representation h is used
for downstream operations.

zi = g(hi), zj = g(hj)

L(i,j)SimCLR = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

1[k ̸=i] is an indicator function which is equal to 1 if k ̸= i, 0 otherwise.

Memory Bank

He et al., 2020 created MoCo (Momentum Contrast), an unsupervised learning visual representa-
tion system, as a dynamic dictionary look-up. The dictionary is organized as a huge FIFO queue
of encoded sample representations.

From a sample xq, called query sample, we obtain a query representation through an encoder
model q = fq(xq). On the other side, we have a momentum encoder ki = fk(x

k
i ), which encodes

a list of key representation noted {k1, k2, . . . }. Assume there is just one positive key k+ in the
dictionary that matches the query q. k+ is build, in this method, by employing a noisy copy of
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Agreement maximization

Figure 4.10: Schema of SimCLR workflow. Given an input x, two different augmentations a and
a′ are sampled from a set of augmentations operations A and applied on x to create xi and xj
respectively. Those augmented samples are then passed through the encoder f(.), to obtain the
representations hi and hj . Then, the representations hi and hj are projected via the layer g(.)
into zi, zj , respectively. Finally, the agreement maximization loss is performed on the projected
representation.

xq with varied augmentation. Then the contrastive loss proposed by (Oord et al., 2018) is used on
one positive sample and N − 1 negative samples.

LMoCo = − log
exp(q · k+/τ)∑N
i=1 exp(q · ki/τ)

(4.3)

However, because the MoCo dictionary cannot be differentiated as a queue, we cannot rely on
back-propagation to update the key encoder fk. The straightforward approach would be to use the
same encoder for both fq and fk. MoCo, on the other hand, recommended using a momentum-
based update with a momentum coefficient α ∈ [0, 1). Assume that the parameters of fq and fk
are designated θq and θk, respectively, the equation (4.4) give the momentum formula.

θk ← αθk + (1− α)θq (4.4)

This framework has several advantages over the previous one (SimCLR). The major one is
that MoCo decouples batch size from the number of negatives samples, whereas SimCLR requires
a high batch size to have enough negative samples and suffers performance decreases when the
batch size is reduced.

An evolution called MoCoV2 has been proposed by (Chen et al., 2020c), this evolution take
advantages of designs proposed in SimCLR. Precisely they incorporate the MLP projection head
and a stronger data augmentation, this two novelty allow this new version to achieve better transfer
performance with still no dependency on a very large batch size.

Clustering

(Caron et al., 2020) suggested an algorithm for online contrastive learning. It generates codes
(Q) from an augmented version of the image and attempts to estimate it using another augmented
version of the same image. This algorithm is called Swapping Assignments between multiple
Views (SwAV), and illustrated by fig. 4.12.
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Figure 4.11: A diagram illustrating how Momentum Contrast (MoCo) learns visual representa-
tions. Illustration from (He et al., 2020)

Figure 4.12: Illustration and comparison between the method proposed in SwAV and contrastive
instance learning (Wu et al., 2018)(similar to MoCo). Illustration from (Caron et al., 2020)

Given an image with two different augmentation xt, xs, we obtain two set of features zt, zs by
passing those input through an encoder fθ. Then SwAV generates the corresponding codes qt,qs,
and the final loss LSwAV is computed by swapping two codes, using ℓ(.) function to measure the
agreement between a feature and a code.

LSwAV(zt, zs) = ℓ(zt,qs) + ℓ(zs,qt) (4.5)

The predicted swapped agreement is determined by the cross entropy between the generated
code and a set of K trainable prototype vectors C = c1, ..., cK . The prototype vector matrix is
shared across batches and represents the anchor clusters to which each instance should be grouped.
Then the loss function ℓ(.) is defined as eq. (4.6).

ℓ(zt,qs) = −
∑
k

q(k)
s logp

(k)
t

p
(k)
t =

exp(z⊤t ck/τ)∑
k′ exp(z

⊤
t ck′/τ)

(4.6)

The term τ is the temperature hyperparameter. Given a batch of B features B = [z1, z2, . . . , zB],
and the set of prototype vectors C, the matrix mapping between them (code) is defined as Q =
[q1, q2, . . . , qB]. The objective is to maximize the similarity between the features and the proto-
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types:
max
Q∈Q

Tr(Q⊤C⊤Z) + εH(Q)

where Q =
{
Q ∈ RK×B

+ | Q1B =
1

K
1K ,Q⊤1K =

1

B
1B
}

where H is the entropy function H(Q) = −
∑

ij Qij logQij and ε is a parameter that controls
the smoothness of the mapping. To find the optimal solution for Q SwAV use the Sinkhorn-Knopp
algorithm (Cuturi, 2013).

4.7 Summary

In this chapter, we provided an overview of self-training approaches for semi-supervised learn-
ing and an introduction to some self-supervised techniques that have received increasing attention
in recent years. First, we discussed the various strategies for selecting unlabeled samples for
pseudo-labeling that have been proposed. In particular, we discussed the importance of the distri-
bution of margins over unlabeled data as a key component in the development of these strategies.
Second, we overviewed different variants of self-training that have been studied in the literature,
as well as some related approaches. Next, we discussed recent theoretical advances achieved in
this area of research. Finally, we provided an overview of recent techniques developed around the
self-supervision.

Recently, the self-training is not only restricted to semi-supervised learning, but has also been
extensively applied for unsupervised domain adaptation (Saito et al., 2017; Zou et al., 2018; Zou
et al., 2019), where the goal is to transfer knowledge from the labeled source domain to the target
unlabeled one. However, as there exists a distribution shift between the source and the target, the
prediction confidence given by the training model may be highly biased towards the source, and
thus may be not reliable for pseudo-labeling the target.

Recent works tend to close the gap between self-supervision and semi-supervision like int
(Chen et al., 2020b), in which they start by pretraining a model in a self-supervised manner and
then fine-tuning it to a downstream task with a limited number of annotated samples.
However, we can notice that all the presented methods are based on a fixed human architecture,
thus it would be interesting to examine if this learning context with limited data can be transferred
to a NAS application.
We have seen an overview of the concepts and related works essential to the main theme of this
thesis through these chapters; The second part of the thesis describes the contributions, starting
with the first objective of this thesis.
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5
NAS for extreme multi-label classification

Extreme classification and Neural Architecture Search (NAS) are re-
search topics, which have gain a lot of interest recently. In this study,
we extend the scope of NAS to the extreme multi-label classification
(XMC) tasks. We propose a neuro-evolution approach, that has been
found most suitable for a variety of tasks. Our NAS method auto-
matically finds architectures that give competitive results to the state
of the art with faster convergence. Furthermore, the weights of the
architecture blocks have been analyzed to give insight on the im-
portance of the various operations that have been selected by the
method.
This chapter present works from the following contributions:

• Neural Architecture Search for Extreme Multi-label Text Clas-
sification [5; 6]
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Supervised classification problems comprise different types. The most basic is undoubtedly
supervised monolabel classification learning, sometimes known as binary learning. Its goal is
to associate an object, represented by a vector of attribute variables, with a single class (target
variable), referred to as label in this context. For example, one might want to create a learning
system that can decide whether a stock should be bought or sold based on last tendency (here
only two labels are possible "buy" or "sell"). The multiclass classification paradigm, which is
currently the most extensively used, was created to cover a broader family of problems. It enables
dealing with situations in which the output variable has more than two options. In this scenario,
each object is assigned to a class from a list of more than two classes. For example, it enables
determining the numbers written on images of handwritten text defined by pixels, and the output
variable thus takes a single value among "1", "2",..., "10" (e.g. MNIST (LeCun et al., 2010)).

To solve this kind of tasks, Neural Networks (NNs) have demonstrated outstanding perfor-
mance in a wide range of tasks. In the field of natural language processing (NLP), a significant
challenge in using NNs for this purpose is designing an architecture capable of successfully cap-
turing text semantics. Many methods such as convolutional neural networks (Zhang et al., 2015),
recurrent neural networks (Liu et al., 2015) ,and a combination of both (Zhou et al., 2015) have
been studied. However, this design process is complex and frequently necessitates the involvement
of a human with extensive understanding of the topic and data.

NAS research has paved the way in recent years for the development of neural networks tai-
lored to a specific task or data set to address this design phase. However, as previously stated,
most NAS research has concentrated on a small number of tasks (e.g., image classification). Ac-
cordingly, we will address in this chapter the first objective of this thesis by focusing on extreme
multi-label classification (XMC) task, which is of growing interest in the big data era and has not
previously been explored using NAS techniques. In this work, we propose XMC-NAS, a NAS-
based method for autonomously developing an architecture for the extreme multi-label text clas-
sification challenge with minimal prior knowledge. In addition, we establish a search space with
natural language processing (NLP) specific operations (e.g., RNN, Convolution, etc.).

We used three large scale XMC datasets with an increasing number of labels to evaluate our
method. During the search phase, we employ a proxy dataset to train and assess architectures,
similar to common NAS approaches. The discovered architecture achieves competitive results on
the proxy dataset in comparison to the state of the art while achieving faster convergence. The
highest performing design is then transferred to different datasets and evaluated. In addition, this
work includes a study on the significance of operation kinds and network depth in relation to the
acquired results.

In the following section, we briefly present some background. In Section 5.2, we present our
solution to extreme multi-label classification with neural architecture search. Experimental results
are presented in Section 5.3 and the conclusion with an outcome of this work are presented in
Section 5.4.

5.1 Background

In addition to the examples given above, for some applications, objects must be specified by
many labels. For example, in text annotation, one would want to create a system that describes
a document as hilarious, about sports, and in English all at once. In a music collection, one may
also wish to annotate a piece of music as being both tragic and classical. This last scenario is
known as multi-label classification, and it allows an object to be assigned to one or more labels
from a list of predetermined options. However, since the first works, the size of the data has
significantly increased due to the advent of big data and larger and larger platforms (e.g., Amazon,
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Wikipedia), and most of the pioneer algorithms are no longer able to withstand these new scales.
This progression resulted in the extreme multi-label classification problem (XMC). The analyzed
data in this context are distinguished by a large number of objects, necessitating the ability to
process a large number of attribute variables in input and label variables in output (of the order of
104 to 107) (Liu et al., 2017b; Nam et al., 2017). As example, the dataset WikiLSHTC (Partalas
et al., 2015) include 2.4 millions article, where the goal is to categorize them among the 350 000
possibilities (e.g. fig. 5.1).

Figure 5.1: Example of an extreme multi-class multi-label classification case. Here, a Wikipedia
article need to be classified into a small portion of relevant categories among a large number of
possibilities.

For this task, the most common way to evaluate the performance of an approach is to use
the two following metrics. The Precision at k denoted by P@k, and the normalized discounted
cumulative gain at k denoted by nDCG@k (Jain et al., 2016). Both metrics are standard and
widely used in the state-of-the-art references.

P@k =
1

k

∑
l∈rankk(ŷ)

yl (5.1)

In the eq. (5.1), y denotes the binarized true label vector (y ∈ {0, 1}L), ŷ represent the pre-
dicted labels vector and rankk(ŷ) returns the k largest indices of ŷ ranked in descending order l
in the predicted result.

To address the stakes posed by the extreme multi-label text classification (Babbar and Schölkopf,
2017; Babbar and Schölkopf, 2019; Khandagale et al., 2020), different methods have been pro-
posed that can be classified in the four following family.

The One-Vs-All (OVA) method, such as DiSMEC (Babbar and Schölkopf, 2017), is the most
traditional and straightforward strategy for XMC. It simply treats each label independently and
learns a classifier (e.g. SVM) for each label. OVA has demonstrated good accuracy, but the
computation is too expensive for excessively large label sets. Over time, more complex approaches
such as embedding and tree-based techniques have been developed.

The key idea behind embedding-based methods (e.g. AnnexML (Tagami, 2017)) is, since the
label size is huge, to compress the labels and use the compressed labels for training, and finally,
compressed labels are decompressed for prediction. More formally, given a training instance
(xi, yi) where xi is the features vector and yi the one-hot encoded L-dimensional label vector.
This family of methods will compress yi into a lower L′-dimensional label embedding vector ei
using a compression function ei = fC(yi). Then the method train a regressor model fR to predict
ei from xi. Finally, a decompression model, fD, is used to generate the prediction ŷ from ei.

Tree-based approaches (e.g. PfastreXML (Jain et al., 2016)) are based on the concept of a
decision tree. They build a tree by recursively splitting provided instances by features at non-
terminal nodes, yielding a basic classifier with only a few active labels at each leaf. Following
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the random forest concept, most tree-based algorithms produce an ensemble of trees by randomly
selecting (sampling) a feature subset at each node of the trees.

The most recent of those methods are deep learning based such as XML-CNN (Liu et al.,
2017b), a structure of convolutional neural network (CNN) and pooling in order to get a precise
text representation. However, it is hard for CNN to capture the most relevant part of a text and
the long term dependency. Other methods, more similar, to Seq2seq methods have been applied
as discussed in MLC2Seq (Nam et al., 2017), SGM (Yang et al., 2018) and AttentionXML (You
et al., 2018). Those methods used recurrent neural network (RNN) to classify the text. Moreover,
a significant interest has been given on attention mechanism in the last few years (Lin et al., 2017).
Attention mechanism has demonstrated great performance in sequence modeling, in particular in
NLP domain, and has therefore been also applied in the context of XMC (Yang et al., 2018; You
et al., 2018).

5.2 XMC-NAS: NAS for XMC

In this work, we propose XMC-NAS, a tool to automatically design architecture for the ex-
treme multi-label classification task. Our approach is based on three main components: i) the text
embedding, ii) the search of the architecture, and iii) output classification. These three compo-
nents form a pipeline in which components i) and iii) are fixed and excluded from the search task.
Thus, the architecture search task is performed only on the component ii). The first component of
our methods consists in transforming the text into word embedding, i.e. numerical vectors. This
embedding step should allow the model to use these representations to produce a more accurate
prediction. The second step is the search phase for the most performing architecture, using an
evolutionary algorithm (c.f. Fig.5.2).

Finally, the last component classifies the output, in several categories. This last component is
based on attention mechanism and fully connected layers.

 

Figure 5.2: I. Architectures are constructed from randomly sampled operations and then trained
and evaluated, II. Randomly sample 10 architectures, and rank them by Precision@5 obtained on
test set. The most performing one is selected for mutation, III. The newly mutated architecture, is
trained and evaluated. Then placed in the trained population. The oldest architecture is removed
from the population.

In the following section, we describe our approach in detail. First, we present the search space,
the search algorithm used and their specificities; and finally, we describe the different parts of the
discovered network.
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5.2.1 Architecture search phase

The search phase can be broken down as follows. The architecture is searched in a search space
that defines the possible structure of the final architecture. In this search space, we have candidate
operations that can be used in the architecture. Finally, to research the architecture, we use a
search algorithm that searches for best architectures in the search space.

Search Space.

In this work, we used a macro search space. We chose this option, because it is generally this kind
of architecture that is used in the natural language processing. Furthermore, this type of search
space allowed us to dynamically add operations, either in multipath or in a chained manner. This
flexibility allowed us to investigate the impact that the depth of the network could have on the final
result. More precisely, we build our graph as follows: first, the nodes are sequentially sampled
(i.e. an operation is selected) to create a graph of N nodes. Then the input of a node j is selected
in the set of previous nodes (i.e. nodes from 1 to j − 1). At start, these set is initialized with the
embedding layer. Finally, when the node j has an operation and an input node, it is added to the
set of the previous nodes.

Candidate Operations.

To build our set of candidate operations, we have selected the most common operations in NLP
field, which consist of a mixture of convolutional, pooling and recurrent layers. We have defined
four variants of 1D convolutional layers, with a kernel of different size: 1, 3, 5 and 7 respectively.
All convolution layers use a stride of 1 and use padding if necessary to keep a consistent shape.
We used the two types of pooling layers that calculate either the average or the maximum on the
filter size, this size is set to 3 for both. Similarly to the convolution layers, the pooling layers use a
stride of 1 and use padding if necessary. Finally, we used the two popular types of recurrent layers,
namely the Gated Recurrent Unit (GRU) (Cho et al., 2014a) and the Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), which are able to capture long-term dependencies.
Specifically, we use bidirectional LSTM and GRU.

Figure 5.3: Illustration of a simple architecture, with 6 layers. The numbers represent the sampling
order of the layers. The limit of maximum number of previous layers that can be used as input
is set to 5 (e.g. the layer 6 could hence take as input only nodes from 1 to 5). Here, different
operations are illustrated with different colors.

Search Algorithm.

As NAS search algorithm we use a neuro-evolution process (regularized evolution) as described in
(Real et al., 2019). We chose this approach because it allows us to have a fine vision of the impact
of each operation on the final result. Regarding the mutation aspect, we use the same configuration
as described in (Real et al., 2019):

• Randomly select an input from a node on the network and modify it with a new input.
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• Randomly select an operation from the network and change it with a new sample.

Figure 5.2 illustrates the search algorithm of the regularized evolution. In order to see the impact
of the number of layers on the final results, a third mutation, corresponding to the addition of a
new layer, has been introduced. The choice among these mutations is random. We also seek to
better understand how operations perform together, i.e. to evaluate the importance of the various
operations with respect to the final results. To do this, we use a linear combination of outputs from
each layer, where weights are learned during the training process.

5.2.2 Components

Our network has certain parts fixed, namely the embedding, attention and classification modules.
This section will introduce them. The full pipeline of XMC-NAS is illustrated in fig. 5.4.

Figure 5.4: Illustration of a XMC-NAS pipeline.

Text Embedding.

The embedding layer produces a fixed length representation. This layer is an embedding map,
which means that each word is mapped to a vector; these vectors are designed in such a way that
words with similar meanings should have close representations, resulting in a cluster if we project
this vector in 2D space (e.g. Figure 5.5).

Figure 5.5: Illustration of the projected GloVe embedding. Words with close meaning should have
close embedding.

To initialize this embedding map, we used the GloVe (Pennington et al., 2014) embedding
840B-300d1 version, which allows us to skip the step of learning a new embedding from scratch.

Attention Module.

We use a self-attention mechanism based on the one demonstrated in (Lin et al., 2017), similarly
to (You et al., 2018). The attention process helps to grasp the important parts of the text. This
mechanism uses a vector ct that represents the relevant context for the label t, where t is in
1, . . . , T . For an input sequence of size N , the context vector is given in equation 5.2.

1http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
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ct =
N∑
i=1

αt,ihi, (5.2) αt,i =
eWt

T ·hi∑N
k=1 e

Wt
T ·hk

(5.3)

Where, hi denotes the hidden representation, i.e. the output of RNN encoder states or of the
convolution. In the case of BiRNN, layer hi is the concatenation of vectors from the forward

−→
hi

and backward
←−
hi passes. The term αt,i is called attention factor (Eq. (5.3)). The set of attention

factors {αt,i} represents how much of each input should be considered for each output. In Eq.
(5.3), Wt is the attention weight (i.e. a learnable weight matrix) for the t-th label.

Classification Module.

The final part of the network is composed of 2 or 3 fully connected layers, which reduces the
output of the attention module. The output is then fed into a classification layer that predict the
labels associated to the inputs. This module is illustrated by figure 5.6.

Figure 5.6: Illustration of the classification module, the n number of fully connected layer is
specified in table 5.2. The Pi is the probability prediction for the i-th label.

5.2.3 Analysis of Operations Importance

This section presents an analysis of the weights of the linear combination, particularly the impact
of each operation on the final results, and whether different operations combine efficiently. We
address this analysis in two steps. In the first step, we focus on how operations combine with
each other. In a second step, we analyze the results and the impact of operations as the networks
deepen.
First Step: In this step, the base population is randomly initialized, meaning that the input and
operation of each node is chosen at random. We try to determine which operation is the most
important in the first layers by scaling their outputs with trainable weights of the linear combina-
tion. The Fig.5.7 shows three examples of the first layers for different combinations of operations,
as well as the corresponding learned weights assigned to each operation. The block "Rest of the
network" represents the attention and classification modules. The blocks in the hatched areas of
the Fig.5.7 were not part of the mutation process and were fixed. For each architecture example,
the displayed weights are the averages obtained over several runs of the NAS. The different gray
scales indicate different experiments. We observe in Fig.5.7 that pairs of operations of the same
type (i.e. BiLSTM), tend to have almost equal weights. However, some trends could be observed
in the case of the combination of two convolutions; those with a larger kernel size have higher
weights. This effect is particularly pronounced in the case of the kernel size of 1, reflecting the
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need for sequence modeling blocks at this level. In the case of mixed operations, it turned out
that BiLSTM operations systematically have higher weights. An example of a run with mixed
operation is presented in the right-hand side of Fig.5.7c. More generally, our results show that
architectures, which contain BiLSTM at the first layer, perform better. This first step shows that
the result is based mainly on the long-term dependencies captured by BiLSTM rather than on the
combinations of local features generated by the convolution.

Rest of the network

(a)

Rest of the network

(b)

Rest of the network

(c)

Figure 5.7: Visualization of the network architecture with the applied weight on each operation.
The weights have been averaged over multiple runs, the range of P@5 are obtained on the proxy
dataset. For the central case, we also averaged over the kernel size.

Second Step: This second stage of analysis aims to quantify the impact of the number of layers
on the final results, as well as the weights assigned to each operation. According to the results
obtained in the first step, which show that the network with BiLSTM layers works better, in this
second step, a part of the population has the constraint to start with at least one BiLSTM layer,
which takes as input the embedding. For the analysis of the impact of the number of operations, we
calculated the average P@5 based on the number of operations. The number of operations ranged
from 2 to 6. We observed that the average precision is almost constant, regardless of the number
of operations in the network, with a range of results close to what we have previously obtained.
This result is corroborated by the analysis of the combination of operation weights. The Fig.5.8
shows examples of architecture for different combinations of operations with associated weights,
RoN stand for the rest of the network. This time the operations are assigned sequentially (i.e. one
after the other) forming a deeper network. The blocks in hatched areas in Fig.5.8 are partially or
totally part of a constraint, as in the previous subsection. Here, the blocks "Rest of the network"
represent the following layers in the network, not shown for the sake of clarity, and still followed
by the attention and classification modules. As previously, the weights displayed for each type of
architecture are the averages obtained from multiple runs of the NAS. We note on the Fig.5.8 that
the weights on additional layers are small compared to those that bypass it. This trend has been
observed in all experiments and suggests that, given our operations pool, additional layers do not
provide much more information. Thus, the information important for the result is extracted by
layers that take the embedding as input.
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(a) (b)

(c) (d)

Figure 5.8: Visualization of the network architecture, when the network is deeper. The weighted
line represents the linear combination of all the layers outputs, with the weight applied on each
output. The weighted line is the linear combination of all layer outputs, with a weight applied to
each output. The weights show that the output of the first layer is more relevant for the final result.
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5.3 Experiments

We have conducted a number of experiments to evaluate how the proposed XMC-NAS method
can help design an efficient neural network model for multi-label text classification.

5.3.1 Experimental Setup

Datasets and Evaluation Metrics

We conducted our study on three of the most popular XMC benchmark datasets downloaded from
the XMC repository2. These datasets are considered large scale, with the number of class labels
ranging from 4,000 to 30,000, which are listed from smallest to largest (in terms of number of
labels) by EURLex-4K (Mencía and Fürnkranz, 2008), AmazonCat-13K (McAuley and Leskovec,
2013), and Wiki10-31K (Zubiaga, 2012) summarized in Table 5.1. We followed the same pre-
processing pipeline as the one used in (You et al., 2018). To create the validation set, we perform
a split with the same initialization seed for all experiments.

Table 5.1: Statistics of XMC datasets used in our experiments. L: # of classes.

Dataset # of Training examples # of Test examples L Avg. of class labels per example Avg. size of classes

EURLex-4K 15,539 3,809 3,993 25.73 5.31

Wiki10-31k 14,146 6,616 30,938 8.52 18.64

AmazonCat-13K 1,186,239 306,782 13,330 448.57 5.04

Architecture Search Evaluation

This section presents the data and the hyperparameters that we have used during the search phase
of our method. Finally, we present the most performing architecture that has been discovered on
the proxy dataset.

Parameters and Data. We performed the search phase on the relatively small EURLex-4K
dataset for scalability considerations, we call it the proxy dataset. In each experiment, we create
a base population of 20 networks. We then apply 50 rounds of mutations. For our experiments
we have used the same hyperparameters as in (You et al., 2018), for the training of each sampled
network. Namely, the optimizer was Adam (Kingma and Ba, 2014) with a learning rate set to
0.001, and the maximum number of epochs were set to 30 epochs with early stopping. To be
consistent with, (You et al., 2018) we have used the same number of hidden states for the LSTM,
which are specified in Table 5.2. The training stops if the performance of the network does not
increase during 50 consecutive steps. We have used the cross-entropy loss function as proposed in
(Liu et al., 2017b) for training the models.

The Discovered Architecture. The architecture, found by XMC-NAS, consists of two BiLSTMs
that take the same input and holds their own representation. The outputs of the two BiLSTMs is
then concatenated along the hidden dimension, and given as the input of the self-attention block.
Finally, we use a chain of fully connected networks to classify the sequence. For the training
detail, we use the same as presented in the previous paragraph (see also Table 5.2).
The architecture of the network discovered by XMC-NAS is presented in Fig.5.9.

2http://manikvarma.org/downloads/XC/XMLRepository.html

70

http://manikvarma.org/downloads/XC/XMLRepository.html


5.3. Experiments

Table 5.2: Hyperparameters used for the training of the discovered model.

Dataset Valid size BiLSTM Hidden size Fully connected

EURLex-4K 200 256 [512,256]

Wiki10-31k 200 256 [512,256]

AmazonCat-13K 4000 512 [1024,512,256]

Embedding

BiLSTM

BiLSTM

Concat Attention Module

Classification Module

Figure 5.9: Illustration of a XMC-NAS pipeline.

5.3.2 Experimental Results

In this section, we will present the results obtained by the XMC-NAS discovered architecture (Fig-
ure 5.9) on various XMC datasets (Table 5.1). First, we present the results obtained on the proxy
dataset (EURLex-4K) used for the search phase. Finally, we evaluate the performance of this
discovered architecture, transferred to the other datasets. To train our network, we use 2 Nvidia
GV100, with data parallelism training. The search time on the proxy dataset, depending on the
configuration, ranges from 6 hours to 5 days. We compare the results of our method to the most
representative methods on XMC (with the results provided by the authors in corresponding pa-
pers). Some of these techniques are deep learning based like MLC2Seq (Nam et al., 2017), XML-
CNN (Liu et al., 2017b), Attention-XML (You et al., 2018). The others techniques are, AnnexML
(Tagami, 2017), DiSMEC (Babbar and Schölkopf, 2017), PfastreXML (Jain et al., 2016) and
Parabel (Prabhu et al., 2018).

Table 5.3: Comparison performance table on three datasets. Our methods surpass the state of the
art in 4 cases and get competitive results that are really close to the state of the art otherwise.

EURLex-4K Wiki10-31K AmazonCat-13K

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

PfastreXML (2016) 0.731 0.601 0.505 0.835 0.686 0.591 0.917 0.779 0.636

AnnexML (2017) 0.796 0.649 0.535 0.864 0.742 0.642 0.935 0.783 0.633

DiSMEC (2017) 0.832 0.703 0.587 0.841 0.747 0.659 0.938 0.791 0.640

MLC2Seq (2017) 0.627 0.591 0.513 0.807 0.585 0.546 0.942 0.694 0.575

XML-CNN (2017) 0.753 0.601 0.492 0.814 0.662 0.561 0.932 0.770 0.614

Parabel (2018) 0.821 0.689 0.579 0.841 0.724 0.633 0.930 0.791 0.645

AttentionXML-1 (2018) 0.854 0.730 0.611 0.870 0.777 0.678 0.956 0.819 0.669

XMC-NAS 0.858 0.738 0.620 0.849 0.772 0.681 0.951 0.813 0.664
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Figure 5.10: Plot of the nDCG@5 and P@5 on the validation set, on two different datasets. We
notice, the discovered architecture have a faster convergence compared to the current state of the
art. In the 5.10a our method get better final results, in 5.10b our final results (around epoch 15)
are close.

EURLex-4K Results.

As presented in the left-hand side of the Table 5.3 we have obtained an improvement on P@1,
P@3 and P@5 with respect to the state of the art. The shown precision are averaged over 3
different initializations. A significant improvement is obtained on the precision at 3 and 5, where
we obtain 0.738 and 0.620, respectively, compared to 0.730 and 0.611 before. The Fig.5.10a
presents the evolution of P@5 and the nDCG@5 over the validation set with respect to the number
of epochs. We can observe that our network has a faster convergence. The results are obtained
around 15 epochs and after this point, the improvement is relatively small, which indicates that
the network might overfit. It is not impossible that the improvement obtained is due to a larger
network. However, we have systematically observed faster convergence in all the cases we have
experienced. Furthermore, the contribution of the embedding or attention module on the results is

72



5.4. Summary

not yet clear, as we have not yet studied the impact of these modules.

Architecture Transfer Results.

We train and evaluate the discovered architecture following the same training procedure as defined
in section 5.3.1 and using the hyperparameters presented in Table 5.2 on the two other datasets.
The middle and right side of Table 5.3 show the comparison of the architecture discovered by
XMC-NAS on EURLex-4K with others methods. We notice that the best discovered architecture
transferred to larger datasets obtains results close to the current state of the art. In some cases
we slightly exceed the results, as in the case of P@5 on the Wiki10-31K. Moreover, we notice in
Fig.5.10b that our methods still have a faster convergence, the same trend as observed on proxy
dataset (cf. Fig.5.10a). Moreover, our results on Wiki10-31K and AmazonCat-13K are obtained
in half of the epochs required by AttentionXML-1.

5.4 Summary

We have presented in this work a way to extend the field where NAS have been by applied, by
proposing an automated method to discover architecture for the specific task of extreme multi-label
classification, based on the regularized evolution (Real et al., 2019) and with a domain oriented
pool of operations. This method has found architectures that have provided competitive results
with the existing state-of-the-art methods (You et al., 2018), and in some cases overpassed them.
Moreover, our method showed faster convergence rates on all datasets, which are more likely
due to a higher complexity of the model. In addition, trainable weights were introduced on each
operation of the pool in order to provide more understanding on the impact of each architecture
blocks.

Motivated by these initial encouraging results, we intended to replicate them on another task.
The rebuilding of the RSSI map, on the other hand, is a more difficult operation. Indeed, in its
optimal form, this endeavor necessitates the collection of a large number of values at various points
on a map for reconstruction purposes. Unfortunately, in practice, collecting all of these locations
is very expensive; thus, the goal is to recreate the map from a specific spot. In the following
contribution, we will see how the NAS technique is being adapted for this new task in a situation
with limited amount of annotated data.
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6
NAS for RSSI map reconstruction

In this work, we present a Neural Network (NN) model based on
Neural Architecture Search (NAS) and self-learning for received sig-
nal strength (RSS) map reconstruction out of sparse single-snapshot
input measurements, in the case where data-augmentation by side
deterministic simulations cannot be performed. The approach first
finds an optimal NN architecture and simultaneously train the de-
duced model over some ground-truth measurements of a given (RSS)
map. These ground-truth measurements along with the predictions
of the model over a set of randomly chosen points are then used to
train a second NN model having the same architecture. Experimental
results show that signal predictions of this second model outperforms
non-learning interpolation state-of-the-art techniques and NN mod-
els with no architecture search on five maps of RSS measurements.
This chapter present works from the following contributions:

• Self-learning for Received Signal Strength Map Reconstruc-
tion with Neural Architecture Search [2; 3]
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Chapter 6. NAS for RSSI map reconstruction

The integration of low-cost sensor and radio chips in a plurality of connected objects on the
Internet of Things (IoT) has been contributing to the fast development of large-scale physical
monitoring and crowd sensing systems in various kinds of smart environments (e.g., smart cities,
smart homes, smart transportations, etc.). In this context, the ability to associate accurate location
information with the sensor data collected in the field opens appealing perspectives in terms of
both location-enabled applications and services (Khelifi et al., 2019).

Typical fingerprinting methods applied to wireless localization (Vo and De, 2016) ideally re-
quire the prior knowledge of a complete map of such radio metrics, covering the area of interest.
However, in real life systems, it is impractical to collect measurements from every single location
of the map and one must usually rely uniquely on sparse and non-uniform field data. Since only
partial data is available, this approach falls within the category of semi-supervised learning.

To tackle this problem, classical map interpolation techniques, such as radial basis functions
(RBF) or kriging (Choi et al., 2018), have been used in this context. These approaches are simple
and fast, but they are quite weak in predicting the complex and heterogeneous spatial patterns
usually observed in real life radio signals (e.g., sudden and/or highly localized transient variations
in the received signal due to specific environmental effects). Data augmentation techniques have
thus been proposed for artificially increasing the number of measurements in such radio map
reconstruction problems.

However, the application of neural networks to this task is still limited, which motivates the
study of NAS methods in this particular domain.

We consider Received Signal Strength Indicator (RSSI) map reconstruction in a constrained
low-cost and low-complexity IoT context, where one can rely only on few ground-truth (i.e., GPS-
tagged) single-snapshot field measurements and for which data-augmentation techniques based on
side deterministic simulations cannot be applied, due to their prohibitive computational cost and/or
to a prior unknown environment physical characteristics. This problem of map interpolation is
similar to the task of image restoration, for which, NN based models with fixed architectures have
been already proposed (Ulyanov et al., 2017). In the case where there are few observed pixels
in an image, these approaches fail to capture its underlying structure that is often complex. In
this context, we will therefore address the two main objectives of this thesis. We propose a first
NN model find using Neural Architecture Search (NAS) for the design of the most appropriate
model given a RSSI map with a small number of ground truth measurements. For this purpose,
we develop two strategies based on genetic algorithms and dynamic routing for the search phase.
We show that with the latter approach, it is possible to learn the model parameters while simul-
taneously searching the architecture. Ultimately, after selecting the best architecture and in order
to enhance the model predictions, the proposed approach uses also some extra data of the map
with the predictions of the optimized NN in non-visited positions together with the initial set of
ground-truth measurements for learning a final model.

6.1 Background

As presented earlier, it is important for a whole range of applications to associate an accurate
location associated with the sensor data. To acquire this localization information, it is possible
to use technologies such as Global Positioning Systems (GPS) , which have been widely used
in outdoor environments for the last past decades. However, these systems still suffer from high
power consumption, which is hardly compliant with the targeted IoT applications.

In order to preserve both nodes with low complexity and fairly good localization performances,
an alternative is to interpret radio measurements, such as the Received Signal Strength Indicator
(RSSI) (i.e., received power of sensor data packets sent by IoT nodes and collected at their
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serving base station(s)), as location-dependent fingerprints for indicating the positions of mobile
devices (Burghal et al., 2020; Cheng et al., 2012; Dargie and Poellabauer, 2010; Tahat et al., 2016;
Yu et al., 2009).

However, as previously noted, fingerprinting approaches ideally require prior knowledge of a
comprehensive map of such measures, which is impossible to achieve in a real-world system. To
circumvent the limitation of a partially available map, a more complete map is constructed from
the available points (cf. Figure 6.1). Several approaches have been proposed for this, and we will
provide an overview of them in the following section.

(a) (b)

Figure 6.1: Illustration of RSSI map reconstruction, with a random map. The left side is the
input, where the datapoint are collected. On the right side is the interpolated reconstructed map.
The intensity of each point represents the received signal intensity in decibels (dB). Axis denote
the x and y positions

6.1.1 Interpolation techniques

Various spatial interpolation methods have been proposed for radio map reconstruction in the
wireless context.

One first approach, known as kriging or Gaussian process regression (Li and D.Heap, 2011),
exploits the distance information between measured points, while trying to capture their spatial
dependencies. Another popular method is based on radial basis functions (RBF) (Choi et al.,
2018; Enrico and Redondi, 2018; Redondi, 2018). This technique is somehow more flexible,
makes fewer assumptions regarding the input data (i.e., considering only the dependency on the
distance) and is shown to be more tolerant to some uncertainty (Rusu and Rusu, 2006). In (Choi
et al., 2018) for instance, the authors have divided all the points of a database of outdoor RSSI
measurements into training and testing subsets, and compared different kernel functions for the
interpolation. The two methods above, which rely on underlying statistical properties of the input
data (i.e., spatial correlations) and kernel techniques, require a significant amount of input data to
provide accurate interpolation results. Accordingly, they are particularly sensitive to sparse initial
datasets. They have thus been considered in combination with crowdsensing. In (Liao et al.,
2019) for instance, so as to improve the performance of basic kriging, one calls for visiting new
positions/cells where the interpolated value is still presumably inaccurate. In our case though, we
can just rely on a RSSI map with few ground truth initial measurements.

Another approach considered in the context of indoor wireless localization relies on both col-
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lected field data and an a priori path loss model that accounts for the effect of walls attenuation
between the transmitter and the receiver (Kubota et al., 2013). In outdoor environments, local path
loss models (and hence, particularized RSSI distributions) have been used to catch small-scale
effects in clusters of measured neighboring points, instead of using raw RSSI data (Ning and
al., 2016). However, those parametric path loss models are usually quite inaccurate and require
impractical in-site (self-)calibration.

Data-augmentation approaches. One more way to build or complete radio databases relies on
deterministic simulation means, such as Ray-Tracing tools (e.g., (Laaraiedh et al., 2012; Raspopou-
los et al., 2012; Sorour et al., 2015)). The latter aim at predicting in-site radio propagation (i.e.,
simulating electromagnetic interactions of transmitted radio waves within an environment). Once
calibrated with a few real field measurements, such simulation data can relax initial metrology and
deployment efforts (i.e., the number of required field measurements). Nevertheless, these tools
require a very detailed description of the physical environment (e.g., shape, constituting materials
and dielectric properties of obstacles, walls...). Moreover, they usually require high computa-
tional complexity. Finally, simulations must be re-run again, likely from scratch, each time minor
changes are introduced in the environment.

6.1.2 NN based models trained after data-augmentation

Machine and deep learning approaches have been recently applied for RSSI Map reconstruction.
These methods have shown to be able to retrieve unseen spatial patterns with highly localized
topological effects and hidden correlations. Until now, these methods have been trained over
simulated datasets given by data-augmentation approaches.

In (Levie et al., 2020), given an urban environment, the authors introduce a deep neural net-
work called RadioUNet, which outputs radio path loss estimates trained on a large set of generated
using the Dominant Path Model data and UNet architecture (Ronneberger et al., 2015). In another
contribution, the authors have shown that using the feedforward neural network for path loss mod-
elling could improve the kriging performance (Sato et al., 2019), as conventional parametric path
loss models admit a small number of parameters and do not necessarily account for shadowing
besides average power attenuation.

Besides wireless applications, similar problems of map restoration also exist in other domains.
In (Zhu et al., 2020) for instance, the authors try to build topographic maps of mountain areas
out of sparse measurements of the altitudes. For this purpose, they use a Generative Adversarial
Network (GAN) architecture, where in the discriminator they compare pairs of the input data and
the so-called “received” map, either generated by the generator or based on the full true map.
Another close problem making extensive use of neural networks is the image inpainting problem,
where one needs to restore missing pixels in a single partial image. By analogy, this kind of
framework could be applied in our context too, by considering the radio map as an image, where
each pixel corresponds to the RSSI level for a given node location. Usually, such image inpainting
problems can be solved by minimizing a loss between true and predicted pixels, where the former
are artificially and uniformly removed from the initial image. This is however impossible in our
case, as only a few ground-truth field measurements can be used.

In contrast to the previous approaches, we consider practical situations where data-augmentation
techniques cannot be used mainly because of unknown environment characteristics and compu-
tational limitations, and, where there is only a small amount of ground-truth measurements. Our
approach automatically searches an optimized Neural Network model for the RSSI map recon-
struction in hand, and, it is based on self-training for learning an enhanced NN model with the
initial ground-truth and pseudo-labeled measurements obtained from the predictions of the first
NN model on a set of randomly chosen points in the map.
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Alg. SLNAS

Input : A training set: (Xℓ, Yℓ); a validation set: (Xv, Yv) and a set of 2D locations
without measurements: Xu.
Init : Using (Xℓ, Yℓ) ∪ (Xv, Yv), find interpolated measurements Ỹu over Xu using the
RBF interpolation method;

Step 1 : Search the optimal NN architecture using (Xℓ, Yℓ) ∪ (Xu, Ỹu);
Step 2 : Find the parameters θ⋆1 of the NN model fθ :

θ⋆1 = argminθ L(Xℓ, Yℓ, θ) ▷ Eq. 6.1;
Step 3 : Choose X(k)

u randomly from Xu and find the new parameters θ⋆2 of the model fθ :

θ⋆2 = argminθ L(Xℓ ∪X
(k)
u , Yℓ ∪ fθ⋆1 (X

(k)
u ), θ);

Output : fθ⋆2 ,Ỹu

Algorithm 1: Algorithm used to jointly search architecture of f and pseudo annotated data Ỹu

6.2 Methods

In this section, we first introduce our notations and setting, and then present our main approach,
denoted as SLNAS in the following.

6.2.1 Notations and Setting

For a given base station X , let Y ∈ RH×W be the whole matrix of ground-truth signal measure-
ments , where H ×W is the size of the (discretized) area of interest. We suppose to have access
to only some ground truth measurements Ym in Y , that is Ym = Y ⊙M , where M ∈ {0, 1}H×W

is a binary mask indicating whether each pixel includes one available measurement or not, and
⊙ is the Hadamard’s product. Here, we suppose that the number of non-null elements in Ym is
much lower than H ×W . We further decompose the measurements set Ym into three parts Yℓ (for
training), Yv (for validation) and Yt (for test), such that Yℓ⊕Yv⊕Yt = Ym, where⊕ is the matrix
addition operation. Let Xℓ, Xv, Xt, Xm be the associated 2D node locations (or equivalently, the
cell/pixel coordinates) with respect to base station X and Xu be the set of 2D locations for which
no measurements are available.

Our approach is based on three main phases i) architecture search phase - the search of an
optimal architecture of a Neural Network model; ii) data-augmentation phase - the assignment
of pseudo-labels to randomly chosen unlabeled data using the predictions of the found NN model
trained over Yℓ; and iii) self-learning phase - the training of a second NN model with the same
architecture over the set of initial ground truth measurements and the pseudo-labeled examples. In
the next sections, we present these phases in more detail. These phases are resumed in Algorithm
1.

6.2.2 Architecture Search phase

Here, we consider a first reference RSSI map as an input image, where unknown measurements
in Xu are obtained with a RBF using points in the train and validation sets; (Xℓ, Yℓ) ∪ (Xv, Yv).
The latter was found the most effective among other state-of-the-art interpolation techniques (Choi
et al., 2018). Let Ỹu be the set of interpolated measurements given by RBF over Xu. For the search
phase of the NAS we have employed two strategies described below.
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Figure 6.2: Example of the Neural network architecture found by the Architecture Search phase
for the RSSI Map of the city of Grenoble used in our experiments.

Genetic Algorithm (GA)

From the set (Xℓ, Yℓ) ∪ (Xu, Ỹu), we use an evolutionary algorithm similar to (Real et al., 2019).
Here, the validation set (Xv, Yv) is put aside for hyperparameter tuning. Here, we also use a macro
search space, where edges of the DAG represent data flow with only one input for each node, which
is a single operation chosen among a set of candidate operations. We consider usual operations
in the image processing field; that are a mixture of convolutional and pooling layers. We also
consider three variants of 2D convolutional layers as in (Ulyanov et al., 2017) with kernels of size
3, 5 and 7; and two types of pooling layers that compute either the average or the maximum on the
filter of size 4. Candidate architectures are then built from randomly sampled operations and the
corresponding NN models are trained. The 30 resulting architectures are then ranked according to
a pixel-wise Mean Absolute Error (MAE) criterion between the interpolated result of the network
and the set of interpolated measurements given by RBF Ỹu. The most performing one is finally
selected for mutation and placed in the trained population. The oldest architecture is removed in
order to keep the size of the population equal to 20 as in (Real et al., 2019). Figure 6.2 illustrates
such an optimized architecture with 18 nodes, which was found for the RSSI Map of the city of
Grenoble used in our experiments (Section 6.3.1).

Dynamic Routing (DR)

For the training phase, we employ the same structure and routing process as those proposed in (Li
et al., 2020) (Figure 6.3). The structure is composed of 4 down-sampling level, where the size of
the features map is divided by 2 at each level, but the depth of the latter is multiplied by 2 using
a 1 × 1 2D-convolution. In ours experiments, we use a network of 9 layers, which correspond to
33 cells in total (in yellow on Fig.6.3). The structure also contains an "upsampling aggregation"
module at the end (red part on Fig.6.3). The goal of this module is to combine the features maps
from all levels and reconstruct a map of the size of the input. Different from (Li et al., 2020),
here, each cell contains three transforming operations (i.e. 2D-convolution with a kernel size of
3, 5 or 7) to have a good point of comparison with the method described above. However, due
to the structure of the network we decided not to use pooling operations, as this could have been
potentially redundant. In addition, we have left the possibility of creating residual connections
by adding operation identity in each cell. Moreover, we did not use the first two convolutions,
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originally used to reduce the size of the input, in order to keep as much information as possible.
Instead, we used a 1× 1 2D-convolution (in purple on Fig.6.3).

Input Output

Sep 3x3

Sep 5x5

Sep 7x7

Identity

Figure 6.3: Diagram of the architecture used in our experiments. The purple, yellow and red
dots represents respectively the "stem" convolution, the cells and the "upsampling aggregation"
module. The arrows represent the data flow.

6.2.3 Data-augmentation and Self-Learning phases

After the search phase, the found NN model with parameters θ, fθ is trained on (Xℓ, Yℓ) by mini-
mizing the following loss :

L(Xℓ, Yℓ, θ) = ℓ(fθ(Xℓ), Yℓ) + λ∥θ∥22 + µΩ(fθ(Xℓ)) (6.1)

where ℓ(.) is the Mean Absolute Error (MAE), and Ω(fθ(Xℓ)) is the total variation function
defined as:

Ω(Z) =
∑
i,j

| zi+1,j − zi,j | + | zi,j+1 − zi,j |, (6.2)

with zi,j the measurement value of a point of coordinates i, j in some signal distribution map Z.
This function estimates the local amplitude variations of points in Z that is minimized in order to
ensure that neighbor points will have fairly close predicted measurements (i.e., preserving signal
continuity/smoothness). Here, λ and µ are hyperparameters for respectively the regularization and
the total variation terms, and they are found by cross-validation.

With Dynamic routing used in the search phase, we optimize the network structure and the
learning of parameters minimizing (Eq. 6.1) at the same time. Referring to Algorithm 1, the step
1 and 2 are combined in this case.

Let θ⋆1 be the parameters of the optimized NN model found by minimizing the loss (6.1) on
ground truth measurements (Xℓ, Yℓ). This model is then applied to randomly chosen points, X(k)

u ,
in Xu and pseudo-RSSI measurements Ỹ

(k)
u are obtained from the predictions of the optimized

NN model fθ⋆1 : Ỹ (k)
u = fθ⋆1 (X

(k)
u ).

With the same NN architecture, a second model fθ⋆2 is obtained by minimizing the loss (6.1)

over the augmented training set (Xℓ, Yℓ) ∪ (X
(k)
u , Ỹ

(k)
u ).

6.3 Experiments

In this section, we will first describe our experimental setup and then present our experimental
results.
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6.3.1 Experimental Setup.

In all experiments, we considered maps of size 368 × 368 cells and tested our algorithm on field
data from two distinct urban environments, namely the cities of Grenoble (France) and Antwerp
(The Netherlands). We aggregated and averaged the given measurements in cells/pixels of size
10 meters x 10 meters. The Antwerp dataset is described in detail in (Aernouts et al., 2018)
on which we considered three base stations, BS′

1, BS′
2 and BS′

3, with respectively 5969, 6450
and 7118 ground-truth measurements. For the Grenoble dataset, we collected GPS-tagged LoRa
RSSI measurements with respect to 2 base stations located in different sites BS1 and BS2 with
respectively 16577 and 7078 ground truth measurements. To perform in-cell data aggregation,
we measured the distances based on local East, North, Up (ENU) coordinates. Then in each cell,
we also computed the mean received power over all in-cell measurements (once converted into
RSSI values), before feeding our algorithm and the averaged RSSI values have been normalized
between 0 and 1.

For each base station, 8% of the pixels with ground-truth measurements were chosen for train-
ing (Xℓ, Yℓ), 2% for validation (Xv, Yv) and the remaining 90% for testing (Xt, Yt).The unlabeled
data used in Step 3 of Algorithm 1 were selected at random from the remaining 4% of each map
cells with no ground truth measurements. Results are evaluated over the test set using the MAE, dB,
estimated after re-scaling the normalized values to the natural received signal strength ones. The
reported errors are averaged over 20 random sets (training/validation/test) of the initial ground-
truth data, and unlabeled data were randomly chosen for each experiment.

We compare Total Variation (TV) in-painting (Eg. 6.2), Radial basis functions (RBF) (Bishop,
2006) with linear kernel that were found the most performant, kriging (KRIG) (Oliver and Webster,
1990), and Navier-Stocks (NS) (Bertalmio et al., 2001) state-of-the-art interpolation techniques
with the proposed SLNAS approach. For the latter, we employ both search phase methods based
on Genetic Algorithm (GA) and Dynamic Routing (DR) and respectively referred to as SLNAS-GA
and SLNAS-DR. For SLNAS-GA we also evaluate the impact of the self-training step (Step 3) (called
SLNAS-GA(fθ⋆2 )) by comparing it with the NN model found at Step 1 (called SLNAS-GA(fθ⋆1 )). The
evolutionary algorithm in the architecture search phase (Section 6.2.2) was implemented using the
NAS-DIP (Ho et al., 2020) package1. The latter was developed over the Deep Image Prior (DIP)
method (Ulyanov et al., 2017) which is a NN model proposed for image reconstruction. By consid-
ering RSSImaps as corrupted images with partially observed pixels (ground-truth measurements),
we also compare with this technique by training a NN model having the same architecture as the
one presented in (Ulyanov et al., 2017) and referred to as DIP in the following. All experiments
were run on Tesla V100 GPU.

As an unsupervised method, DIP (Ulyanov et al., 2017) uses an exact architecture of generative
neural network, as a prior to the image for each of the tasks (in the original paper, they do super
resolution, inpainting, denoising and image reconstruction). The network does not need external
dataset for training, only the structure of the generative network itself to complete corrupted image.
For each exact image, the algorithm finds the best parameters of the network for observed values
of the pixels

6.3.2 Experimental Results.

Table 7.1 summarizes results obtained on the five considered RSSI maps. We use boldface to
indicate the lowest errors. The symbol ↓ indicates that the error is significantly higher than the
best result with respect to Wilcoxon rank sum test used at a p-value threshold of 0.01 (Wilcoxon,
1945). In all cases, SLNAS-GA and SLNAS-DR perform better than other state-of-the-art models
even without the data-augmentation and self-training steps (SLNAS-GA(fθ⋆1 )). We notice that DIP

1https://github.com/Pol22/NAS_DIP
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Table 6.1: Average values of the MAE, dB of different approaches on all base stations.

Grenoble Antwerp

BS1 BS2 BS′
1 BS′

2 BS′
3

KRIG (1990) 5.68↓ 4.21↓ 3.69↓ 4.39↓ 4.91↓

NS (2001) 5.11↓ 3.14↓ 4.28↓ 3.45 3.87

RBF (2006) 5.03↓ 3.16↓ 3.58↓ 3.35 3.90

DIP (2017) 5.14↓ 3.22↓ 3.53 3.41 3.92

TV 5.13↓ 2.89 3.76 3.51 3.83

SLNAS-DR 4.82 2.82 3.48 3.42 3.81

SLNAS-GA(fθ⋆
1
) 4.79 2.81 3.39 3.27 3.75

SLNAS-GA(fθ⋆
2
) 4.76 2.79 3.33 3.27 3.74

Figure 6.4: MAE, dB with respect to the distance to the base station, BS1.

which is also a NN based model but with a fixed architecture has similar results than RBF. These
results show that the search of an optimized NN model is effective for RSSI map reconstruction
in a constrained low-cost and low-complexity IoT context.

Figure 6.4 depicts the average MAE in dB with respect to the distance to the Base Station BS1

for the city of Grenoble. For a distance above 250 m, SLNAS-GA(fθ⋆2 ) provides uniformly better
predictions in terms of MAE. These findings point to future research into how the model predicts the
signal dynamics in regions where the signal is more irregular and where the dynamics are strong
(for example near the base stations), especially in the cases where extra contextual knowledge
about the physical environment may be included into the learning process (e.g., typically as a side
information channel or the city map).

Figure 6.5 displays the MAE, dB boxplots of DIP, RBF and SLNAS-GA (fθ⋆2 ) on BS1 for dif-
ferent percentages of unlabeled data used in the self-learning phase (Section 6.2.3). We notice that
by increasing the size of unlabeled examples, the variance of MAE for SLNAS-GA(fθ⋆2 ) increases
mostly due to the increase of noisy predicted signal values by fθ⋆1 . This is mostly related to learning
with imperfect supervisor that has been studied in semi-supervised learning (Amini et al., 2009;
Krithara et al., 2008). As future work, we plan to incorporate a probabilistic label-noise model
in step 3 of algorithm 1 and to learn simultaneously the parameters of the NN and the label-noise
models.
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Figure 6.5: Boxplots showing the MAE, dB distributions of DIP, RBF and SLNAS-GA (fθ⋆2 ) on BS1

for different percentage of unlabeled data {4, 7, 10, 14} used in the self-learning phase.

6.4 Summary & Discussion

In this chapter, we presented a Neural Network model based on NAS and self-learning for
RSS map reconstruction from sparse single-snapshot input measurements in the absence of data
augmentation via side deterministic simulations. We presented two variants for the search phase
of NAS based on Genetic algorithm and Dynamic routing. Experimental results on five large-scale
maps of RSSmeasurements reveal that our approach outperforms non-learning based interpolation
state-of-the-art techniques and NN with manually designed architecture.

This work showed that, despite a limited amount of annotated data, it was able to find a pow-
erful architecture using adapted techniques. To further explore the NAS approach under a regime
with minimal annotated data, we have investigated the task of semantic segmentation since 1) it
has a particularly cumbersome annotation process, and hence labels are usually difficult to acquire,
and 2) state-of-the-art models are usually complex and hand-crafted, and therefore well suited to
study efficient NAS. This approach under a semi- and self-supervision regime will be discussed in
the next chapter.
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7
NAS with Partially Labeled Data for Semantic

Segmentation

In this chapter, we propose an architecture search framework with
the constraint of using only a small amount of annotated data. As
a result, we investigated many approaches, more or less complex, to
determine which was the most efficient and how certain parameters
could affect performance. We tested these approaches on the two
most popular datasets of the state-of-the-art. Furthermore, we of-
fered a modification of this framework in order to broaden the search
to a higher level; the results will be reviewed as well.
This chapter present works from the following contributions:

• Se2NAS: Self-Semi-Supervised architecture optimization for
Semantic Segmentation [7; 8; 4]
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7.1. Background

Semantic segmentation entails in assigning a specific class to each pixel in an image with
the overall aim of discovering objects. It is a key task in the field of computer vision, and has a
wide range of applications, including autonomous driving (Badrinarayanan et al., 2017), medical
research (Ronneberger et al., 2015), facial recognition (Müller et al., 2021) or person reidenti-
fication (Wu et al., 2020). In comparison to other computer vision tasks, the equivalent of this
pixel-level label is a difficult and time-consuming effort.

The key challenges here are taking into account the context of objects inside images (Mottaghi
et al., 2014), and, learning with a small set of annotated data together with a large set of unlabeled
data. To address these issues, different approaches have been proposed. For automatically taking
into account the context, various approaches have been proposed under the self-supervised frame-
work, which consists in exploiting the underlying data structure in order to gain supervision for
an auxiliary task and learn a model by resolving both the auxiliary and the semantic segmentation
problems simultaneously. For the problem of learning with partially labeled training data, i.e. in
semi-supervised learning setting, existing approaches mostly assign pseudo-labels to unlabeled
training data in order to augment the labeled training set using an auxiliary loss; under various
perturbations such as images augmentations (French et al., 2020a), features (Ouali et al., 2020) or
network (Ke et al., 2019) perturbations; for enforcing the consistency of predictions.

In this chapter, we intend to address the second objective of this thesis in further detail, as
well as to optimize this work to be as efficient as possible. We propose an end-to-end method
combining NAS and dynamic routing in a semi-supervised setting. Our approach is based on
firstly searching cell operation and secondly searching for the most adapted path according to the
input on the fly.

Moreover, we conduct the preliminary study with different settings where the model archite-
cture is obtained by dynamic routing in order to identify the most efficient way to leverage unla-
beled data. We, then, transpose the most efficient way to leverage unlabeled data to the proposed
end-to-end methods. We compare the performance of the proposed methods on various partitions
in end-to-end way to the previously established baselines.

The performance of the architecture search is shown on known semantic segmentation bench-
marks under different partition set-ups and are further compared to a state-of-the-art hand-crafted
architecture.

This chapter is organized as follows. Section 7.1 presents some background of semantic seg-
mentation. Section 7.2 provides details about the techniques studied in our framework. Sec-
tion 7.3, exhibits our approach, and finally, in Section 7.4 we present experimental results obtained
during the study and by the proposed approach on Cityscapes and Pascal VOC 2012 benchmarks.

7.1 Background

Semantic segmentation consists in classifying each pixel of an image into a class, where each
class represents an object or a portion of the image (Liu et al., 2019c) (e.g. fig. 7.1). This task is
part of the scene understanding concept, which is much more complex than image classification,
as it requires apprehending the whole context of an image. To comprehend a scene, each piece of
visual data must be assigned to an entity while taking into account the spatial information.

To measure the model performance on this task, the Mean Intersection over Union (mIoU) is
used. The IoU is first computed by class, following equation 7.1 (see also fig. 7.2).

IoUc =
TP

TP + FP + FN
(7.1)
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Figure 7.1: Example of image and the associated segmentation mask. Illustration from (Chen
et al., 2017)

Figure 7.2: Visual example of IoU

Where for a given class c, TP and FP denote the number of true and false positives, respec-
tively, and FN denotes the number of false negatives. The IoUs are then averaged to obtain mIoU,
the more this metric is high, the better the network is in its predictions.

Recent research on this topic has largely relied on Neural-Networks, as these models have
been shown to outperform other techniques in scene analysis (Long et al., 2015).

Hand-crafted architectures, designed by experts in the field, are the most popular way to create
specific NN models for semantic segmentation. In this category, a wide range of architectures
requiring high computational resources exist, including U-Net (Ronneberger et al., 2015), Conv-
Deconv (Fourure et al., 2017) or FCN (Long et al., 2015). However, (Yu et al., 2018) have shown
that, by dissociating context information from the spatial information, it is possible to achieve
highly efficient models with lighter architectures.

Recently, (Chen et al., 2018a; Nekrasov et al., 2019b), have studied how Neural Architecture
Search (NAS) can be applied to the decoder in order to improve the performance for semantic
segmentation. However, different from the proposed study, these proposed NAS techniques rely
on a fully supervised learning framework.
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7.2 Baseline

In this section, we will present the baselines as well as some definitions of notations that will
be used throughout this chapter.

7.2.1 Definitions

We assume that we have a labeled training setDℓ = (xl, yl)1⩽l⩽m of size m, and a possibly much
larger set of unlabeled training examples Du = (xu)m+1⩽u⩽m+n of size n. We further consider
that θ represents the set of all network weights.

In our setting, we consider the jigsaw solving pretext task as the self-supervised method.
The main motivation here is that the jigsaw task have shown good performance of discovering
architecture on the dataset of interest (Liu et al., 2020). On the other hand, there is no apparent
consensus in the literature on which semi-supervised approach is the most efficient for semantic
segmentation. Here we considered the Mean-Teacher, the Co-Teaching and Augmentation based
approaches, which have been increasingly popular in recent years. Our goal is to investigate their
efficacy in the context of semantic segmentation using neural architecture search. Depending on
the self-supervised and semi-supervised method, we define Lmethod

u as the unsupervised loss re-
lated to the considered approach (i.e. method ∈ {ssl, ssup}). In all scenarios, the supervised loss
Ls is based on an individual loss ℓd defined as the cross-entropy loss.

7.2.2 Self-supervised regularization

For the self-supervised learning method, a geometric transformation is applied to the inputs for
the pretext task, and a label is generated. For each labeled training example, (xl, yl) ∈ Dℓ this
transformation on the input xl acts as an augmentation and the same transformation is applied on
yl. For an unlabeled example xu ∈ Du, the label produced by the transformation, yu, is used as
the ground truth with respect to the pretext task. For the jigsaw task, proposed in (Noroozi and
Favaro, 2016), the key idea is to learn visual representations for puzzles solving. In practice, this
task consists in cutting images in 9 patches from a grid of 3× 3. The patches are then mixed using
specified random permutations, and the network is trained to predict the permutation in question
in order to solve the problem. Along with the supervised semantic segmentation problem, one or
more distinct pretext tasks can be considered in this framework. In addition, unlike other state-of-
the-art approaches, just one network is employed, and the perturbation is applied to the input via
geometric transformation.

In our experiments, we followed a similar approach to (Zhai et al., 2019), by training the
network in a multitask manner, where a supervised loss (Ls) is minimized along a self-supervised
loss (Lsslu ) that acts as a regularizer. In this case, for a given permutation jig ∈ {1, . . . , k}where k
is the total number of considered permutations; the problem of jigsaw solving can be formulated as
a classification task using the produced pretext labels for both labeled (yjigl )1⩽l⩽m and unlabeled
training samples (yjigu )1⩽u⩽n. The self-supervised loss function is, in this case, the average cross-
entropy loss:

Lssl
u =

1

k

k∑
jig=1

(
1

m

∑
Dℓ

ℓce(p
jig
l , yjigl ) +

1

n

∑
Du

ℓce(p
jig
u , yjigu )

)

where ℓce(.) is the individual cross-entropy loss function. In all of ours experiments, we used
a fixed set of k = 100 permutations, as in (Noroozi and Favaro, 2016). As supervised loss, the
averaged cross-entropy over the labeled training set is used:

Ls =
1

m

∑
Dl

ℓd(pl, yl), (7.2)
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Figure 7.3: Illustration of the self-supervised learning strategy, xu is an unlabeled sample and
(xl, yl) is a labeled training example. The label yjigl and yjigu are the transformations associated to
xl and xu. Ls and Lu are respectively the supervised and unsupervised loss functions. (pl)1⩽l⩽m

are predictions for the supervised semantic segmentation task, pjigl and pjigu are the prediction for
the pretext task.

7.2.3 Semi-supervised Mean Teacher method

The mean-teacher method was developed for semi-supervised classification (Tarvainen and Valpola,
2017) and has lately been adapted to semi-supervised semantic segmentation (French et al., 2020a).

This approach is based on consistency regularization that constraints a model to have the same
output for a given input. The underlying model is made of two neural networks of the same
structure, one denoted as student, f(θ), and the other called teacher, f(θ)), where θ denote the
exponential moving average (i.e. EMA) of the parameters of the student, and are iteratively com-
puted as:

θt = αθt−1 + (1− α)θt, (7.3)

with α a hyperparameter used to control the dependency between the two networks. In this
method, only the student is trained using the labeled training set and the predictions of the teacher.
Let (psl )1⩽l⩽m and (ptl)1⩽l⩽m be the outputs predicted by the student and teacher networks on
labeled examples; and, (psu)1⩽u⩽n and (ptu)1⩽u⩽n predictions of both networks on unlabeled sam-
ples. The consistency regularization is achieved by restricting the distribution outputs of both
networks to be as close to each other as possible on labeled and unlabeled samples provided as
inputs to both models; and that by minimizing the following unlabeled loss by the student:

Lssup−mt
u =

1

m

∑
Dℓ

ℓMSE(p
t
l , p

s
l ) +

1

n

∑
Du

ℓMSE(p
t
u, p

s
u) (7.4)

where ℓCE is the per-pixel cross-entropy summed up over all pixels and classes. The supervised
loss of the student is based on the teacher outputs and the ground truth of the labeled training
examples:

Ls =
1

m

∑
Dl

ℓd(p
t
l , yl), (7.5)

Figure 7.4 illustrates this strategy. At the beginning, both networks have the same initial weights.
At each iteration, the parameters of the student are first updated by minimizing both the supervised
and unsupervised losses; then the parameters of the teacher are updated by EMA (c.f. eq. (7.3)).
Following (French et al., 2020a), we fixed α to 0.99 in our experiments.

7.2.4 Semi-supervised co-teaching method

This method is well-known in the deep learning community, and it has been widely used in differ-
ent problems, including semantic segmentation (Chen et al., 2021). Similarly to the mean teacher
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Figure 7.4: Illustration of mean teacher process. psl , p
s
u and ptl , p

t
u are predictions for labeled

and unlabeled samples, by the student and the teacher, respectively. The EMA arrow stand for
exponential moving average of weights from the student to the teacher.

approach, co-teaching uses two networks of the same architecture (e.g. f(θa), f(θb)). However,
differently from the previous approach, here the two networks update their weights and are inde-
pendently trained. The main idea is that each network can learn from the other one. Formally,
given an unlabeled input xu, each network, i.e. f(θa) and f(θb), predicts an output pau and pbu.
Then by one-hot encoding, these outputs are transformed to pseudo-labels; ỹau and ỹbu; which serve
as ground truth for the other network, and the definition of a cross-pseudo supervision loss over
the unlabeled data:

Lcpsu =
1

n

∑
Du

(ℓce(p
a
u, ỹ

b
u) + ℓce(p

b
u, ỹ

a
u)), (7.6)

Similarly to Lcpsu , a cross-pseudo supervision loss Lcpsl can be defined on the examples in Dℓ

and the unsupervised loss is defined as the sum of these two losses:

Lssup−ct
u = Lcpsu + Lcpsl (7.7)

The supervised loss that is used for the training of both networks is defined as:

Ls =
1

m

∑
Dl

(ℓd(p
a
l , yl) + ℓd(p

b
l , yl)), (7.8)

Figure 7.5 illustrates the whole process of co-teaching. In our setup both models, f(θa) and f(θb)
are dynamic, and their weights are found independently one from the other.

7.2.5 Strong Data Augmentation

Data augmentation techniques are a common practice among deep learning community, and demon-
strated as affective in a semi-supervised (Xie et al., 2020a) or self-supervised (He et al., 2020)
learning context. Motivated by the simplicity and the performance of FixMatch (Sohn et al., 2020),
we investigate the performance of the architecture optimization using a similar learning scheme.
The main idea of this learning scheme is based on the consistency error minimization, which con-
straints the network prediction of a sample and its perturbed (augmented) version to be the same.
To achieve this, two types of augmentation (weak and strong) are used on the unlabeled sample
data. First, a weakly augmented unlabeled sample is run through a teacher to obtain a prediction
that will serve as pseudo annotations. Weak augmentation typically includes random scaling, ran-
dom cropping or random vertical/horizontal flipping. Then, this same weakly augmented image
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Figure 7.5: An illustration of the co-teaching workflow, where xu is an unlabeled sample, (xl, yl)
is a labeled training example. The terms pal , p

a
u and pbl , p

b
u are predictions for labeled and unla-

beled samples of the Model A and B respectively. ỹal , ỹ
a
u, ỹ

b
l , ỹ

b
u are the associated pseudo-labels

obtained with one-hot encoding.

is passed through other so-called strong augmentations, to obtain a strongly augmented image.
Finally, this strongly augmented image will pass through the student and the prediction obtained
will be compared with the pseudo-annotation obtained previously. This process is illustrated in
Figure 7.6. More formally, we define a weak augmentation as Aw and strong augmentations as
As. As strong augmentations, the most commonly used set has been selected, which is formed of
colorjitter, Gaussian blur and grayscale as in many works (Chen et al., 2020c; Chen et al., 2020a).
To complete this set with different transformations, the impact of three image mixing methods,
namely CowMix (French et al., 2020b), CutMix (French et al., 2020a) and ClassMix (Olsson et
al., 2021), has been investigated. Those augmentations act like perturbation and are combined

Figure 7.6: Illustration of Strong Data Augmentation process, as proposed in (Sohn et al., 2020).
In this illustration, (xl, yl) is a pair of annotated samples, xwu and xsa are the the weakly and
strongly augmented version of the unlabeled sample xu, respectively. The term psa is the model
prediction for the input xsa and ỹu is the per-pixel pseudo label generated by the model from xwu .
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with a weak augmentation. More formally, a strongly augmented sample is given by :

xsa = As(Aw(xu)) (7.9)

The unlabeled loss is given by the following equation :

Lssup−sda
u =

1

n

∑
Du

ℓCE(psa, ỹu) (7.10)

where psa = Model(xsa) is the prediction of the network on the strongly augmented unlabeled
sample xsa and ỹu is the per-pixel pseudo label generated by the network on the weakly augmented
unlabeled sample xwu (i.e. ỹu = max(Model(Aw(xu))). The function ℓCE is the standard cross-
entropy loss function.

7.3 Se2NAS: Semi-Supervised learning with Neural Architecture Search

This section presents our semi-supervised learning approach for semantic segmentation based
on Neural Architecture Search, that we call Se2NAS.

7.3.1 Se2NAS learning scheme

This study take place in a context similar to that proposed by AutoDeepLab (Liu et al., 2019a).
The end-to-end search, in this work, is defined as: searching for (1) the inner cell operation and
(2) the optimal paths to use to navigate through those cells depending on the input. Here, the
learning problem for semantic segmentation is to jointly find an optimized architecture of a neural
network and its parameters θ, that minimize the weighted sum of a supervised loss, Ls; and up to
two unsupervised losses defined from self-supervision, Lsslu , and semi-supervised learning Lssupu :

Ltotal = λ0Ls + λ1Lsslu + λ2Lssupu (7.11)

Different from (Liu et al., 2019a), which propose a two-stage search by firstly find the structure
and secondly perform a retraining, we investigate the possibility of doing it all at once. Moreover,
this process is performed in a semi-supervised manners. The methods that have been used will be
described in the two following subsections. The process is illustrated in figure 7.7 and pseudocode
is given by Algorithm 2.

Step 1: Cell search

Instead of searching for a complex cell with multiples operations, repeated through the network
such as in (Liu et al., 2019a), we take another approach by seeing each cell independently. Nev-
ertheless, instead of searching for multiples layers and connections per cells, we simplify the
problem by searching among predefined types of cells. We based this part of the search on the
work proposed by DSNAS (Hu et al., 2020). In this part, each cell is constructed by sampling
a one-hot vector Z from a categorical architecture distribution pβ(Z), where β is the parameters
for architecture distribution. This parameter β will be optimized through time to select the most
suited operation type for each cell. During this step, the searching of optimal path is disabled
by setting all connections between cells to 1. Similar to (Hu et al., 2020), the list of predefined
cells are inspired by ShuffleNet V2 (Ma et al., 2018), which seems to have good performance in
segmentation (Yu et al., 2021a). We investigate 4 types of cells, namely, one with three different
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(a)

 

(b)

Figure 7.7: Illustration of the 2 steps of end-to-end search in Se2NAS. The top figure shows the
step 1, where the goal is to search the most fitted operation in each cell, the connections between
layers (arrow) are fixed to 1.0. The bottom figure shows the step 2: once the operation have been
found and fixed (step 1), the connection between layers are searched (i.e. Routing process).

kernel size (K = 3, 5, 7) and one deeper. Those cells are illustrated in figure 7.8a and 7.8b respec-
tively. This process is illustrated in Figure 7.7a. In this figure, each cell have a list of associated β,
among which at each iteration we sample one operation per cell (i.e. red path) to build our vector
Z. During the backward pass, this list of β is optimized with respect to the loss. In the proposed
framework, this option can be enabled by setting use_cell_search=True in Alg. 2. This
special case is called Se2NAS-b.

Step 2: Routing process

Dynamic networks have exhibited superiority in network capacity and greater performance with
budgeted resource use, by fitting the model architecture to the input data. Among different ap-
proaches, dynamic routing (Li et al., 2020), on which we base our routing algorithm, has the
advantage of allowing the transfer of weights from a prior training, that has become more essen-
tial in terms of time savings.

In our approach, the routing space (or structure) noted fθ, is defined as a 4-level network with
L layers composed of cells (Figure 7.7b). Each level in this structure represents a stride rate,
where the size of the input is successively reduced by descending in the network. The strides rates
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(a) (b)

Figure 7.8: Illustration of the ShuffleNetV2 cells. We studied 4 types of cells distributed as follows,
3 of type (a) with different kernel size 3,5,7 and one of type (b). DWConv denote depth-wise
convolution.

are thus 1/4 for the highest level and 1/32 for the deepest one. Depending on whether the level
is greater or lower, the image ratio is then lowered or raised by 2. The path through the levels
is performed by a convolution with a kernel size of 1, while the size is reduced, the convolution
increases the number of feature map by 2.

For the initialization of the dynamic structure, we set a fixed 3-layer block ’STEM’, used to
reduce the resolution of the input to 1/4. Note that in this block, separated convolution are used.
At the end, we find a simple decoder (red cells in Figure 7.7b), which go from bottom to top of
the levels. This decoder is just a composition of convolution and upsampling operations in order
to add the features of each level. Once added, the features go through a last classification layer.
Concerning the cell aspect (various color in 7.7b), each cell consists of an operation manually
selected or an operation chosen by search (c.f. Step 1 of Sect. 7.3.1) according to the selected
context. This structure also allows the multi-path routes and the creation of skip-connections. The
choice of the paths in this structure and the parameters of each operation, are all optimized using
the gradient descent algorithm.

7.4 Experiments

In this section, the used experimental setup and results will be presented.

7.4.1 Experimental setup

Datasets

In our experiments, we have considered two popular data collections for image segmentation,
which are Pascal VOC 2012 and Cityscapes.
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Alg. Se2NAS

Input : Du, Dℓ, E: epochs, M : method, λ0, λ1, λ2: losses weights, pβ(Z): arch distribu-
tion
N ← max(|Du|, |Dℓ|);
fθ ← DR_struture();
fθ0 ← init();
for e ∈ range(0,E) do

for i ∈ range(0, N) do
t← i+ e;
Bℓ ← Dℓ;
Bu ← Du;
if use_cell_search then
Z← pβ(Z):

else
Z← fixed_operation();

end if
Ls,Lsslu ,Lssupu ←M(Bl,Bu, fθt ,Z);
Ltotal ← λ0Ls + λ1Lsslu + λ2Lssupu ;
fθt+1 , β ←optimize(fθt ,Z,Ltotal);

end for
end for
Output : fθ⋆ : Network trained after E epochs

Algorithm 2: Pseudocode of Se2NAS

Pascal VOC 2012 The Pascal VOC dataset (Everingham et al., 2010), which contains 20 object
classes and one background category, is a widely used dataset in object semantic segmentation.
The original dataset contains almost 13000 images, including 1464 images for training, 1449 for
validation, and 1456 for testing as standard splits. We employ the augmented version provided by
(Hariharan et al., 2011) as a standard base for our work, raising the total number of usable images
for training to 10582.

Cityscapes The Cityscapes dataset (Cordts et al., 2016) is frequently utilized, mostly in the
context of analyzing urban scenes. The collection contains 5000 finely annotated images, each
with a per-pixel label from one of 19 semantic classes. There are 2975 images for training, 500
for validation, and 1525 for testing in the splits provided, with each image having a resolution
of 1024x2048. Following other studies, we solely use the training and validation sets in our
experiments.

Evaluation The results are reported on the full validation set for each dataset (500 for Cityscapes,
1449 for Pascal VOC) using the standard mean Intersection-over-Union (mIoU) metric. In all of
our experiments, we use single scale testing with no augmentation, the size of the input in evalua-
tion stage is 1024x2048 and 512x512 for Cityscapes and Pascal VOC, respectively.

Preliminary analysis

In this preliminary analysis, we first determine which of the baseline (i.e., which loss) is the most
effective to solve the learning problem. For this study, has been kept network simple, therefore
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the cell search part was disabled. The cells was defined as in (Li et al., 2020), namely two sep-
arable convolution 3 × 3. So only the routing process is active here (i.e. Step 2), by setting
use_cell_search to False in the Algorithm 2.

For both datasets, similar weak data augmentation to (Chen et al., 2021; Li et al., 2020) have
been used, including random scaling, followed by random horizontal flipping, and random square
cropping. The scaling factor was taking values in {0.5, 0.75, 1, 1.25, 1.5, 2.0}. We set the hyper-
parameter of the supervised loss in (7.11); λ0 = 1 in all of our experiments.

To investigate the effects of semi-supervised and self-supervised settings on the learning of
parameters, we respectively set the corresponding hyperparameters, λ1 and λ2, to 0 in eq. (7.11).
These scenarios will be presented in the next section. We deploy an extra classifier for the pretext
task in the self-supervised experiments. Accordingly, the dynamic routing output is taken in the
other direction (from top to bottom in Figure 7.7). Then, before the fully connected layer, we
apply global average pooling to the features.

For experiments using strong data augmentation, we set the intensity of colorjitter as in (Zou et
al., 2021), for grayscale and blur same as (Chen et al., 2020c). The mixing method is applied with a
probability of 0.75 to a batch of unlabeled samples. The encoder of the network is initialized by the
ImageNet pre-trained weights, provided by (Li et al., 2020), while the others weights are initialized
using Kaiming initialization (He et al., 2015). For parameter updates, we used a standard mini-
batch SGD with momentum of 0.9, with an initial learning rate of 0.02. In addition, similar to
other approaches (Chen et al., 2017; Li et al., 2020), we adopt a polynomial learning rate decay
with a power of 0.9. The training batch size is 8 for Cityscapes and 16 for Pascal VOC. Concerning
the dynamic routing structure, we follow (Li et al., 2020) and set L = 16 to be consistent with a
ResNet-50 (He et al., 2016).

End-to-end search

We studied the performance of the proposed end-to-end research compared to the previously stated
baseline. So, use_cell_search is set to True in the algorithm 2 (i.e. Se2NAS-b). For
these experiments, we follow a similar set-up as the previously identified most efficient approach,
MOTSDA (see Sect. 7.4.2), during the two phases. As mentioned in 7.3, we decompose the end-
to-end research in to two phases. During the first phase, we search for the most suited operation in
each cell, similar to (Hu et al., 2020), we apply an early-stopping threshold, in order to save time
by not selecting poorly performing operation. When the majority of the cell operation satisfy this
early-stopping, we move to the second phase of searching. In this second phase, we fix the cell
to the most promising operation selected in phase one, we also transfer the associated parameters
and discard all others parameters. We then continue the training process, with enabling the routing
process. The β architecture parameters are updated with Adam optimizer (Kingma and Ba, 2014)
with an initial learning rate of 0.001 as in (Hu et al., 2020).

7.4.2 Experimental results

For all experiments, the fractions of the labeled dataset are the same as those proposed in (Chen
et al., 2021). More precisely, they are four fractions (1/16, 1/8, 1/4, 1/2) which represent 186,
372, 744, 1488 and 662, 1323, 2646, 5291 images for Cityscapes and Pascal VOC, respectively.
We used random crop of size 768 for Cityscapes and 512 for Pascal VOC, with padding, and an
ignored value if necessary.

Preliminary analysis

In this section, we present the experimental results obtained for the preliminary study, to deter-
mine the most efficient baseline settings. In all the experiments, we define the "Baseline" as the
supervised only version (i.e. λ1 = λ2 = 0).
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Self-supervised regularization (SSR) : We begin by examining the obtained gain by perform-
ing the jigsaw pretext problem discovered by self-supervised learning (Section 7.2.2) simultane-
ously with the pixel classification task for semantic segmentation. In this scenario, the correspond-
ing hyperparameter of self-supervised learning in eq. (7.11); λ1 was set to 0.1; and; we disabled
the effect of semi-supervised learning by setting the hyperparameter λ2 to 0. The corresponding
model is denoted by Se2NASλ2=0 and it is compared to the fully supervised setting, in which
no self-supervised nor semi-supervised learning is utilized. In the following, Se2NASλ1=λ2=0,
stands for the fully supervised model. Tables 7.1a and 7.1b summarizes results obtained for dif-
ferent fraction of the labeled training set on Pascal VOC and Cityscapes, respectively. The highest
performance rates are indicated in boldface. It turns out that the pretext task effectively adds infor-
mation to semantic segmentation, although the benefits are limited. This could be due to the fact
that images are cut using a 3× 3 grid for puzzle solving, and the resolution of the jigsaw problem
may introduce noise into the pixel classification, particularly where puzzle pieces are cut.

Table 7.1: mIoU of Baseline (Se2NASλ1=λ2=0) and SSR (Se2NASλ2=0) obtained on val. set of
Cityscapes/Pascal VOC for different fractions of the labeled training set.

(a) Cityscapes

Fraction of the labeled training set

1
16

1
8

1
4

1
2

Baseline 61.07 68.42 72.02 74.84

SSR 61.41 68.87 72.18 75.11

(b) Pascal VOC

Fraction of the labeled training set

1
16

1
8

1
4

1
2

Baseline 53.33 59.45 65.21 69.02

SSR 53.80 60.33 65.25 69.27

Semi-supervised learning (SSL) : We now investigate the effect of semi-supervised learning
alone by setting λ1 to 0. The resulting model is referred to as Se2NASλ1=0 in the following. By
setting λ1 to 0, we hence disable the associated geometric transformation.

We compared the effect of various semi-supervised techniques on the proposed framework
Se2NAS. In this section, we compared the performance obtained using the Mean Teacher and
Co-teaching technique. The performance of each method, with 1/8 of the annotated data used in
training, is presented in table 7.2. We can observe that in our context, the results are not consistent.
We believe that the discrepancy in performance, with the Co-Teaching approach, is due to the noise
introduced when each of the classifiers assigns pseudo-labels to unlabeled examples and results
in a snowball effect, reinforcing the predictions of the models in these errors and leading to a
performance degradation in the final model. On the other hand, Mean Teacher is based on the
consistency regularization with the only constraint that the outputs of the student and the teacher
networks should be as close as possible on the same unlabeled examples. There is no label-noise
propagation in this situation, and Se2NAS is able to take advantage of the lack of label information
by exploiting the structure of the data more efficiently using the unlabeled set.

Table 7.2: mIoU of Se2NAS using different techniques of semi-supervison under the 1/8 training
settings.

Cityscapes Pascal VOC

Co-teaching 73.10 64.02

Mean Teacher 72.34 68.64

Due to this discrepancy, we employed Mean-Teacher (Section 7.2.3) technique, as semi-
supervised techniques. For Mean-Teacher method, the hyperparameter λ2 in eq. (7.11) was
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empirically set to 100 as in (Chen et al., 2021). Tables 7.3a and 7.3b show the performance of
Se2NASλ1=0 using the Mean-Teacher technique, for different fractions of the labeled training sets
of Cityscapes and Pascal VOC datasets, respectively.

Table 7.3: mIoU of Baseline (Se2NASλ1=λ2=0) and SSL (Se2NASλ1=0) with MT approach, ob-
tained on val. set of Cityscapes/Pascal VOC for different fractions of the labeled training set.

(a) Cityscapes

Fraction of the labeled training set

1
16

1
8

1
4

1
2

Baseline 61.07 68.42 72.02 74.84

SSL 67.54 72.34 75.28 77.74

(b) Pascal VOC

Fraction of the labeled training set

1
16

1
8

1
4

1
2

Baseline 53.33 59.45 65.21 69.02

SSL 65.05 68.64 72.19 73.95

Mixing of techniques (MOT) : We compare the performance of Se2NAS under various mixed
semi-supervised learning setting using the Mean-Teacher technique to its other versions discussed
above on the Cityscapes and Pascal VOC datasets, respectively.
− SSL+SSR : We define MOTSSR as a combination of mean-teacher technique with

an added self-supervised regularization. We use the same value of λ as defined before (i.e.
λ1 = 0.1 and λ2 = 1). Results are presented in Tables 7.5a and 7.5b. We can observe in
MOTSSR that the pretext task has also here a limited benefit on semi-supervised learning,
comforting the idea that, while complementing, puzzle solving and pixel classification are
not totally correlated.
− SSL+SDA : In order to improve stability in the predictions for the mixing method,

as in (Olsson et al., 2021; French et al., 2020a) , we study the performance of the strong
data augmentation (SDA) combined with Mean-Teacher (i.e. MOTSDA). Here we set
λ1 = 0 and λ2 = 1. The pseudo label of the weakly augmented unannotated image is
generated by the teacher (i.e. ỹu = Teacher(xw)) and the student see the supervised and
strongly augmented samples.

For this part, we firstly conduct an ablation study to investigate the impact of the
various strong augmentation in the learning scheme. Especially, we have investigated the
impact of a mixing method, colorjittering, Gaussian Blur and grayscale. All the results
are presented in the smallest setting (1/16) of Cityscapes.

Table 7.4: Comparison of Se2NAS performance under different augmentations on the 1/16 frac-
tion of Cityscapes

(a) mIoU of Se2NAS under different mixing type

mIoU

CowMix 70.80

CutMix 72.13

ClassMix 72.22

(b) mIoU of Se2NAS using "classic" augmenta-
tion

mIoU

Gaussian Blur 67.26

Grayscale 68.06

ColorJitter 69.20

All 71.57

We can see in table 7.4a, that the ClassMix is the most effective mixing method.
Moreover, we observe in table 7.4b the individual effects of the so-called "classic" aug-
mentations. Finally, the figure 7.9 summarizes the performance of both augmentation
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Figure 7.9: Comparison of obtained mIoU for each augmentation on the 1/16 fraction of
Cityscapes. C+M stand for all colors augmentations plus ClassMix

types. Note that the combination of ClassMix and all "classic" augmentations gives the
best performance.

This combination of augmentations is the one that will be used in our experiments. We
can observe, that MOTSDA improve the performance by a large step in all the experiments
for the both datasets. This gain is even more noticeable on the smallest fractions on
both datasets. Those results confirm that in NAS, as for traditional networks, strong
perturbations are also important to achieve good results.

Table 7.5: mIoU of Se2NAS with different strategies obtained on the val. set of Cityscapes / Pascal
VOC.

(a) Cityscapes

Fraction of the labeled training set

1
16

1
8

1
4

1
2

Baseline 61.07 68.42 72.02 74.84

SSR 61.41 68.87 72.18 75.11

SSL 67.54 72.34 75.28 77.74

MOTSSR 67.80 72.74 75.42 77.91

MOTSDA 73.03 75.33 76.25 78.02

(b) Pascal VOC

Fraction of the labeled training set

1
16

1
8

1
4

1
2

Baseline 53.33 59.45 65.21 69.02

SSR 53.80 60.33 65.25 69.27

SSL 65.05 68.64 72.19 73.95

MOTSSR 65.32 68.96 72.49 74.47

MOTSDA 70.82 71.97 73.40 75.29

Outcome : It turns out that Se2NAS, with fixed operation, is the most effective under SDA
approach. Furthermore, Se2NAS can obtain competitive results to more traditional and
complex approaches in an automated manner, like presented in Table 7.6. Moreover, the
proposed approach use up to 4 times less floating-point operations during inference stage
with respect to this measure than the neural-network with the hand-crafted architecture,
more precisely using 117 GFLOPs in the Cityscapes experiments with an input of size
1024x2048 and 15 GFLOPs in the Pascal VOC experiments with an input size of 512x512,
compared to the 479 and 62 GFLOPs respectively used by DeepLabV3+ (estimated from
corresponding setting).
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Table 7.6: mIoU of Se2NAS with MOTSDA strategies compared to DeepLabV3+ based methods
on the val. set of Cityscapes / Pascal VOC.

(a) Cityscapes

Fraction of the labeled training set

1
16

1
8

1
4

1
2

CPS (2021) 74.47 76.61 77.83 78.77

MOTSDA 73.03 75.33 76.25 78.02

(b) Pascal VOC

Fraction of the labeled training set

1
16

1
8

1
4

1
2

CPS (2021) 71.98 73.67 74.90 76.15

MOTSDA 70.82 71.97 73.40 75.29

Se2NAS-b: Extension to full search

In the previous experiments, we have identified the most effective way to exploit the
unlabeled data, which seems to be the MOTSDA approach. We will now transpose this
approach in an end to end manners.

In end-to-end settings, we follow the setup described in 7.4.1 for various split size.
In the results presented in Table 7.7a, we can see that Se2NAS-b, in an end-to-end con-
text, can find an architecture that achieves reasonable performance compared to its fixed
operations counterpart, knowing that this version was not pre-trained on ImageNet. In
average, the drop of mIoU is only around 3.89 points. However, using the new cell type,
the resulting network has a decrease of almost twice in terms of FLOPs compared to the
original version, reducing it from 117 to an average of 69, despite the fact that some of
these new blocks have larger kernel sizes. We also transpose this approaches to the Pas-
cal VOC dataset. However, the results presented in table 7.7b are not as conclusive as
those obtained on Cityscapes, and they are significantly lower than those obtained with
the fixed counterpart. One possible explanation for the comparison is that the training
hyperparameters were not fully discovered during the Pascal VOC training.

Table 7.7: Comparison between Se2NAS & Se2NAS-b using MOTSDA on the val. set of
Cityscapes and Pascal VOC.

(a) mIoU of Se2NAS with different strategies obtained on
the val. set of Cityscapes.

Fraction of the labeled training set FLOPs(G)

1
8

1
4

Se2NAS 75.33 76.25 117

Se2NAS-b 70.40 73.62 69

(b) mIoU of Se2NAS with different strategies obtained on
the val. set of Pascal VOC.

Fraction of the labeled training set FLOPs(G)

1
8

1
4

Se2NAS 71.97 73.40 15

Se2NAS-b 52.09 57.14 9
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7.5 Summary

We suggested in this chapter to investigate a variety of techniques for using unla-
beled data to perform Neural Architecture Search for semantic segmentation. On the
Pascal VOC and Cityscapes datasets, we demonstrated that employing strong augmen-
tation in conjunction with a teacher-student approach in this NAS setting may result in
performance that is comparable to more sophisticated approaches based on hand-crafted
networks while consuming fewer FLOPs. Based on our results, we sought to extend the
dynamic routing architecture by searching for and adding new operations for each cell in
an end-to-end manner. We have shown in tables 7.7 that in both cases a decrease of the
number of FLOPs can be observed. This is promising, however, the mIoU performance is
inferior to the fixed dynamic routing version, especially for the Pascal VOC experiments.
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Conclusions and Outlook

Deep learning applications continue to expand and are not about to slow down. Neural
network architectures are becoming larger and more complex in order to meet these de-
mands. This increasing complexity necessitates an increasing amount of time and knowl-
edge from humans, and possible cost for companies. As described in this thesis, the NAS
domain would reduce this demand by adding automation. However, the NAS methods
have only been studied and presented in small and well-defined domains, which are un-
fortunately not representative of the potential real-world applications.

In this thesis, we mainly studied the exploration and extension of the NAS approach
for new tasks and a new learning context that was intended to be more representative of
real world application cases.

Summary of contributions

In Chapter 5, we proposed applying a neuro-evolutionary NAS framework to the ex-
treme multi-label classification task. We redefined a more appropriate space search for
this task, combining convolution and recurrent network. We evaluate the performance
of the searched network on various datasets. The resulting network worked well on the
dataset that was searched, producing results that were comparable to or slightly better
than the state of the art. The behavior was comparable when transferred to other datasets.
In all scenarios studied, the automatically discovered network converged faster than the
hand-crafted networks. In addition, we performed an impact analysis of the network op-
erations to determine and comprehend the importance of each layer or operation in the
final result.

Then, in Chapter 6, to continue on the previous line, we further investigated the NAS
behavior on a new task, namely the reconstruction of RSSI map. This reconstruction task
is particularly complex in real situation since it demands the measurement of the power
at each position (x, y), which is in practice not feasible. Therefore, RSSI map reconstruc-
tion is usually performed with partially annotated data. To solve this task from the NAS
perspective, different search algorithms to determine which one produced the best per-
forming architecture, have been studied. Then, this architecture was trained in two steps
according to a self-learning scheme. Then, the performance of the obtained architectures
as well as the different training phases have been shown on several datasets and several
fractions. The performances are then compared to other state-of-the-art methods, and the
results obtained show well the performance of this approach.

Finally, in Chapter 7, a framework for dynamic architecture search with small amount
of annotated samples for the semantic segmentation task, has been proposed. In this
framework, different semi-supervised learning strategies to determine which was the most
effective to leverage unlabeled samples, have been studied. We examined at a variety
of methodologies, including "classic" and more current semi-supervision approaches, as
well as self-supervision approaches. We also conducted a more in-depth effect analysis
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of potential augmentations to determine the ideal combination. We tested these strategies
on the most popular datasets in the state-of-the-art. The results obtained are competi-
tive with those of more complex, state-of-the-art methods based on hand-made networks.
Moreover, the search space of the framework allows the number of floating point oper-
ations to be reduced by 4 times. An extension of this framework is also proposed with
an end-to-end search, including in addition the search of network operations. The results
of this extension are encouraging, with a contained decrease in performance compared to
the base version. However, more work remains to be done on this extension.

Now that we have summarized the contributions of this thesis, we will look at some
avenues for future work.

Future directions
• Introduce new operations : Many new architectures with new blocks have emerged

as a result of the research dynamics and since the completion of these works. In-
deed, with the revolution brought by Transformer (Vaswani et al., 2017b) in the NLP
field could be the starting point of a new search space. As an example, for the work
in chapter 5, the search space could be extended with the attention module of the
encoder. In (So et al., 2019) have applied evolutionary algorithm to the transformer
structure and find some modification that improve the final performance. Moreover,
in the last works (Chap. 7) we used variants of a block only, it would be interesting
to extend this to more blocks, such as (Yu et al., 2021b), in order to obtain better
performances or have a lighter network.

• Design more flexible search spaces : The search spaces of the current approaches
are relatively restrictive and still require expert knowledge. While a search space
that is carefully designed by experts clearly facilitates research, it also contradicts
the idea of having a system that can be used by non-experts. This type of search
space has also raised the question of whether NAS methods outperform random
search. There is some evidence that the gap between random search and NAS
widens when moving to less trivial spaces. (Xie et al., 2019a) show that archi-
tectures obtained by randomly generating graphs that are then mapped to a neural
network architecture already give good performance. First solutions proposed with
hierarchical search spaces are beginning to prove their worth, but can still be ex-
tended. For example, to be as generic as possible, the search space should consist
of elementary operations and elementary functions, as studied in (Real et al., 2020).
However, a larger and more diverse search space will naturally come with an in-
crease in search costs.

• Continue to explore new context : As we have begun to do with these, we should
continue to explore new tasks or contexts, and ideally as close as possible to real-
world problems. Currently, NAS techniques are often run against a given set of
hyperparameters and a specific learning pipeline, so the architecture is determined
by the parameter utilized, even though alternative architectures are likely to require
different hyperparameters. The selection of these hyperparameters is critical, be-
cause in some circumstances, such as the one discussed in Chapter 7, the archite-
cture produced is only marginally efficient. Ideally, the architecture should be tuned
in conjunction with all the other factors influencing the training outcome, such as
hyperparameters and data augmentations. Moreover, in recent years, new research
has boosted the performance of learning methods without annotated data, it could
be interesting, as (Liu et al., 2020; Kaplan and Giryes, 2020) has started to do, to
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apply such methods to architecture search. Another area to investigate is multitask
learning. Indeed, in order to come closer to general AI, various challenges must
be resolved, and to address this, a new form of architecture known as Pathways 1

has recently emerged. This type of architecture has already demonstrated its per-
formance on numerous NLP tasks (Chowdhery et al., 2022) and might thus serve
as the foundation for a new type of NAS. However, this kind of architecture re-
quires a very large number of parameters (more than 500 billion) and therefore new
adaptations in the NAS methods will surely be considered in order to scale up to
that point. Finally, as previously said, there is a wide panel of prospective neural
network applications and hence new sectors to be studied under the NAS aspect.

1https://blog.google/technology/ai/introducing-pathways-next-generation-ai-
architecture/
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