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Abstract

Throughout the last years, there has been a surge in false news spreading across the
public, ranging from biased political campaigns, to the propagation of misinformed
coronavirus claims. This has especially seen more interest as advances in deep learning
made it feasible to produce sound text steered towards disinformation. Despite efforts
made in alleviating “fake news”, from the identification of check-worthy claims to the
extraction of evidence for claim verification, there remains a lot of ordeals when trying
to build automated fact-checking systems, including the four we discuss in this thesis.
First, it is not clear how to bridge the gap between input textual claims, which are to be
verified, and structured data that is to be used for claim verification. We take a step
in this direction by introducing Scrutinizer, a data-driven fact-checking system that
translates textual claims to SQL queries, with the aid of a human-machine interaction
component. We then apply the system to two use cases: the energy and health domains.
Second, many data-driven solutions for fact-checking rely on pre-trained language models
(PLMs), where one application is for the verification of a claim. While PLMs exhibit
some form of logical and reasoning capabilities, they still lack in basic logical notions
such as negation and symmetry. One step in this direction is RuleBERT, a PLM that
has is fine-tuned on data coming from logical rules. We discuss how to generate the
data and incorporate weights of soft rules during training, showing more consistency in
terms of negation and symmetry. Third, PLMs store vast information; a key resource in
fact-checking applications. Still, it is not clear how to efficiently access them. Several
works try to address this limitation by searching for optimal prompts or relying on
external data, but they do not put emphasis on the expected type of the output. For this,
we propose Type Embeddings (TEs), additional input embeddings that encode the
desired output type when querying PLMs. We discuss how to compute a TE, and provide
several methods for analysis. We then show a boost in performance for the LAMA dataset
and promising results for text detoxification. Finally, while PLMs are a viable approach
for computational fact-checking, there is no escape from including humans-in-the-loop.
In this direction, we analyze the Birdwatch program, a community-driven approach to
fact-checking tweets. We investigate how users choose claims, what sources of information
they use, and whether their assessment is viable by comparing it to that of expert
fact-checkers. This study allows us to compare and contrast the alternative methods
and envision collaborative systems where computational methods work hand in hand
with humans. All in all, the work in this thesis aims at a better understanding of how
machines and humans could aid in reinforcing and scaling manual fact-checking.
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Abrégé

Ces dernières années, on a assisté à une recrudescence de la diffusion de fausses nouvelles
dans le public, qu’il s’agisse de campagnes politiques biaisées ou de la propagation
d’affirmations de coronavirus mal informés. Ce phénomène a suscité un intérêt accru
depuis que les progrès de l’apprentissage profond ont rendu possible la production de
textes sonores orientés vers la désinformation. Malgré les efforts déployés pour atténuer
les "fake news", de l’identification des affirmations dignes d’être vérifiées à l’extraction
de preuves pour soutenir la vérification des affirmations, il reste beaucoup d’épreuves
à surmonter lorsqu’on essaie de construire des systèmes de vérification automatique
des faits, y compris les quatre que nous abordons dans cette thèse. Tout d’abord, il
n’est pas clair comment combler le fossé entre les revendications textuelles d’entrée,
qui doivent être vérifiées, et les données structurées qui doivent être utilisées pour la
vérification des revendications. Nous faisons un pas dans cette direction en présentant
Scrutinizer, un système de vérification des faits piloté par les données qui traduit
les affirmations textuelles en requêtes SQL, avec l’aide d’un composant d’interaction
humain-machine. Nous appliquons ensuite le système à deux cas d’utilisation, notamment
dans les domaines de l’énergie et de la santé. Deuxièmement, de nombreuses solutions
de vérification des faits basées sur les données reposent sur des modèles de langage
pré-entraînés (PLM), dont l’une des applications est la vérification d’une déclaration. Si
les PLM présentent une certaine forme de capacités logiques et de raisonnement, ils ne
maîtrisent toujours pas les notions logiques de base telles que la négation et la symétrie.
Un pas dans cette direction est RuleBERT, un PLM qui a été développé sur des données
provenant de règles logiques. Nous discutons de la manière de générer les données et
d’incorporer les poids des règles logiques pendant l’apprentissage, ce qui montre une
plus grande cohérence en termes de négation et de symétrie. Troisièmement, les PLM
stockent de vastes informations qui constituent une ressource clé dans les applications
de vérification des faits. Pourtant, la manière d’y accéder efficacement n’est pas claire.
Plusieurs travaux tentent de remédier à cette limitation en recherchant des prompts
optimales ou en s’appuyant sur des données externes, mais ils ne mettent pas l’accent
sur le type attendu de la sortie. C’est pourquoi nous proposons les Embeddings de
Type (TEs), des embeddings d’entrée supplémentaires qui encodent le type de sortie
souhaité lors de l’interrogation du PLM. Nous expliquons comment calculer un TE et
fournissons plusieurs méthodes d’analyse. Nous montrons ensuite une augmentation
des performances pour le jeu de données LAMA et des résultats prometteurs pour la
détoxification de textes. Enfin, si les PLM constituent une approche viable pour le
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fact-checking computationnel, il n’est pas possible d’échapper à l’inclusion des humains
dans la boucle. Dans cette direction, nous analysons le programme Birdwatch, une
approche communautaire de vérification des faits dans les tweets. Nous étudions comment
les utilisateurs choisissent les affirmations, quelles sources d’information ils utilisent, et si
leur évaluation est viable en la comparant à celle d’experts en vérification des faits. Cette
étude nous permet de comparer et de contraster les méthodes alternatives et d’envisager
des systèmes collaboratifs où les méthodes informatiques travaillent main dans la main
avec les humains. Dans l’ensemble, les travaux de cette thèse visent à mieux comprendre
comment les machines et les humains pourraient contribuer à renforcer et à étendre la
vérification manuelle des faits.
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1 Introduction

From politicians to advertisers, from advocacy groups to enterprises — everyone who
seeks to persuade others has an incentive to distort, exaggerate or obfuscate the facts.
The topic of fake news has experienced a substantial resurgence of interest in our society.
This is not surprising as the number of fact-checking organizations nearly doubled from
186 active organizations in 2016, to 391 active fact-checking projects in 2021 across 105
countries (Stencel et al., 2022). In addition to that, there was an increase of engagement
with fake news content in social media platforms such as Facebook (Allcott et al., 2019)
and Twitter (Hindman and Barash, 2018), which is exacerbated by the millions of fake-
news-spreading bots (Ferrara et al., 2016). However, fake news is not something new; in
fact, fake news has been spreading ever since the printing press was created back in the
15th century. One particular instance is that of the ‘The Great Moon Hoax’, where the
New York Sun newspaper published a series of illustrated articles in 1835 about mythical
creatures living on the surface of the moon. Such made-up stories were viral until the
writers of the stories declared them to be satire (Posetti and Matthews, 2018). Indeed,
nowadays, we have started to catch a glimpse of the dire effects fake news could have on
several angles including our society, economy, and personal health. For example, during
the US presidential elections of 2016, articles about the Pope endorsing Donald Trump
and Hilary Clinton’s ISIS email getting leaked had more engagement than mainstream
news (Armstrong, 2016); where the most engaged fake articles tended to favor Donald
Trump over Hillary Clinton. Some work suggested such influence actually steered the
elections in favor of Trump (Dewey, 2016; Parkinson, 2016). On the economy level, fake
news always had its shares. A prime example of this is when a group of people who
planned, in a virtual chat room, to promote a certain crypto coin through a fake ‘John
McAfee’ Twitter account (Shome, 2017). After sending out a tweet from the account
declaring that the coin was the coin of the day, its value skyrocketed, and the chat group
were able to identify the best times to buy and sell the coin, before the value returned
to its original cost later. In reality, a study estimated the cost of online fake news on
the global economy to be at least $78 billion annually (CHEQ, 2019). Last but not
least, fake news has drastically affected our health with the flood of false coronavirus
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news; especially, about those promoting fake coronavirus cures, where at least 800 people
have died in the first 3 months of 2020 by drinking methanol or alcohol-based cleaning
products, believing it was a cure for the virus (Coleman, 2020). Indeed, it is not a
surprise that massive digital misinformation has been designated as a major technological
and geopolitical risk by the 2013 report of the World Economic Forum (Howell, 2013),
and an ‘infodemic’ by the World Health Organization causing confusion and risk-taking
behaviors that can harm health (Organization, 2022).

1.1 Fake News

1.1.1 A Brief Definition

While Collins Dictionary named it word of the year in 2017, there is no agreed on
definition of fake news (Shu et al., 2017; Sharma et al., 2019). Fake news has generally
been defined as “news articles that are intentionally and verifiably false, and could mislead
readers” (Shu et al., 2017; Allcott and Gentzkow, 2017). Another definition includes
news fabrications, satires, and hoaxes (Balmas, 2014; Rubin et al., 2016). However,
such definitions are narrow, restricted either by the type of information or the intent of
deception, and do not capture the broader scope of the term based on its current usage.
Therefore, we define fake news similarly to (Sharma et al., 2019) as follows:

Definition 1. A news article or message published and propagated through media,
carrying false information regardless the means and motives behind it.

Such definition allows covering a broader aspect of fake news, more aligned with its usage,
and regardless of the intent of the user.

1.1.2 Why is Fake News a Matter of Concern?

It is hardly surprising that fake news has had grave consequences on several aspects
including political (Parkinson, 2016), economical (CHEQ, 2019), and physiological (Cole-
man, 2020). Stanford researchers, conducting a study, were ‘shocked’ by how young
Americans could not differentiate between fake and real news (Group and Foundation,
2016). As a large majority of people rely on social media to get their news, this has
become exceedingly worrying (Shearer, 2021). Such worry is validated by a recent Harvard
study on participants in 142 countries, showing that the majority of regular internet
users globally (58.5%) are concerned about misinformation (Knuttila et al., 2022).
While fake news has a plethora of worrying concerns, a possible explanation of its
ramifications could be accounted for by comparing with common challenges observed in
modern data management (Abiteboul et al., 2015):

• The Volume of Fake News. It is within anyone’s capability to spread any sort
of news on the web, as some form of proper verification is either lacking on some
social medias, or can not cope up with the amount of fake news. Some social media
platforms have intervened by cooperating with third party organizations (Meta,
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Tweet Pregnant women, please don’t take this vaccine.
https://t.co/4KKlnMIbl7

User Fact-check Updated CDC guidance, and newly accepted and
reviewed medical research, has stated there
are no safety concerns for pregnant women to
be vaccinated against COVID-19. (links omitted for
brevity)

Expert Fact-Check The vaccine is safe for pregnant women or women
planning on becoming pregnant within a few months
of taking the vaccine.

Table 1.1: A tweet promoting fake news being debunked by a Twitter user and an expert
fact-checker.

2016) and adopting a community-based approach to misinformation (Coleman,
2021a). However, there does still exist numerous pages on the web that spread fake
news (Allen et al., 2020).

• The Velocity of Fake News. Fake news can be generated and spread rapidly.
Regarding the generation aspect, with recent advances in natural language genera-
tion (NLG) models (Otter et al., 2021; Li et al., 2021b) and computation power,
it has become a sinecure to generate a deluge of textual claims that are coherent
without any guarantees on their factual correctness. Regarding the spread of fake
news, a study on Twitter showed that tweets containing false claims reached six
time more people than regular news (Langin, 2018), resulting in more engagement
with users on social media, and possibly more severe socio-economical effects and
health risks.

• The Variety of Fake News. Not all fake news is created equally; in fact, it
can take many forms such as satire (manipulated news intended for the use of
humor, irony, exaggeration, or ridicule to expose and criticize people’s stupidity
or vices), clickbaits (intentionally misleading headlines or titles for the purpose of
encouraging a user to click through and visit a certain website), and conspiracy
theories (manipulated information spread deliberately to affect political or social
institutions) (Carrasco-Farré, 2022). Deliberately faking news with the intent to
harm is often termed as Disinformation, while that due to unintentional mistakes
is termed as Misinformation. Fake news can also span various topics (Figure 1.3),
and occur in claims requiring some form of numerical computation to be verified, or
logical claims needing some form of facts and logical rules for assessing truthfulness
(Figure 1.1).

• The Veracity of Fake News. Verifying an input claim is by no means a trivial
task, as there is still no agreed upon methodology for properly assessing a claim.

https://t.co/4KKlnMIbl7
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Figure 1.1: Some problems encountered during claim verification.

As different places have different standards of journalism, let alone varying levels
of press freedom, it is no surprise that fact-checking methodologies adapt to their
circumstances. While the International Fact-Checking Network published a code
of principles for fact-checkers1, such principles are far from being adopted by fact-
checkers and fact-checking organizations. Moreover, verification of a claim cannot be
modeled as a yes/no problem, as there are multiple shades of truthfulness of claims.
PolitiFact, one of the renowned fact-checking organizations, defines the truthfulness
of a statement according to a scale of six ratings2, while Snopes on the other hand
defines 17 different ratings3. It is therefore strenuous to discretize the degrees of
truthfulness of a claim and uniform them across the various rating schemes. The
MisInfoMe dataset tries to normalize labels coming from various sources under
5 ratings (Mensio and Alani, 2019). However, verifying the authenticity of fake
news does not need to be done by trained professionals only. Recently with the
Twitter’s Birdwatch program, users, with no formal fact-checking training, can
also participate in identifying misleading information (Table 1.1, Figure 1.3).

1http://www.poynter.org/ifcn-fact-checkers-code-of-principles/
2https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-

politifacts-methodology-i/
3https://www.snopes.com/fact-check-ratings/

http://www.poynter.org/ifcn-fact-checkers-code-of-principles/
https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/
https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/
https://www.snopes.com/fact-check-ratings/
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Figure 1.2: Humans can be included in a fact-checking system as (i) workers who interact
with the system and update its performance or (ii) consumers who digest the system
output. Workers can be experts or humans without any formal training. Consumers are
humans who do not interact with the system and witness the output results only.

1.2 Fact-Checking

1.2.1 Journalistic Fact-Checking

In the pre-automation period, checking for fake news was performed by trained journalists.
These journalists were employed to proofread and verify claims made in written or spoken
language. This type of fact-checking verifies the solidity of the stated claims, and serves
as an overall round of quality control for a news outlet’s content before publication;
acting as a core part of journalistic work (Cazalens et al., 2018; Mantzarlis, 2018). Such
fact-checking procedure is a vital component in the news reporting process. In their
book, “The Elements of Journalism”, Tom Rosenstiel and Bill Kovach wrote that “The
essence of journalism is a discipline of verification.". Both fact-checking and verification
are complementary rather than conflictual, as the former is used in the latter (Mantzarlis,
2015). In this thesis, we use both terms interchangeably.

In this thesis, we tackle the second type of fact-checking, which happens not before
something is published but rather after a claim becomes public. This form of a posteriori
fact-checking is often performed by specialists in active NGOs such as PolitiFact, FullFact,
and Les Décodeurs. The fact-checking work concentrates primarily, but is not limited to,
political ads, campaign speeches and party manifestos (Mantzarlis, 2018).

1.2.2 Why Manual Fact-Checking is not Enough?

With the struggles of manual fact-checkers to keep up with the ever-increasing surge
of fake news (Horwitz, 2020), we are facing a widening partition between the growing
amount of data on one hand, and the shrinking body of trained journalists on the
other (Jennings, 2020). Alas, relying solely on manual fact-checkers for the fight is not
enough. One possible direction to narrow this partition is through the efficient use of
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Figure 1.3: A graph showing the tweets from BirdWatch data matched with ClaimRe-
view fact-checks, clustered by topic. Pink lines indicate tweets that have been checked
by BirdWatch users only, while the green ones show tweets that have been matched to
fact-checks performed by experts (The process of matching between tweets and expert
fact-checks is explained in Section 6.3.3). The tweets have been grouped by topic, where
larger fonts indicate topics with high relevance. Indeed, topics such as Politics and Health
are more dominant, and seem to be check-worthy by both BirdWatch users and expert
fact-checkers. As fact-checks done by experts are costly, the majority of tweets are only
fact-checked by BirdWatch users who are not formally trained for fact-checking claims.
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Figure 1.4: A Fact-Checking pipeline (taken from (Nakov et al., 2021a)).

computing algorithms and resources. Computing methods would, ideally, attempt to
imitate a fact-checker as much as possible. This would not only ease some manual aspects
of the fact-checking process, but could help, to a certain extent, with the enormous
volume of fake news produced every day. For such reason, it is not a surprise that
Computational Fact-Checking has sparked interest across academic labs and industries,
and has emerged as an aspiring research field among academics (Vlachos and Riedel,
2014; Hassan et al., 2015).

1.2.3 Computational Fact-Checking to the Rescue

There have been calls to automate the fact-checking process. (Vlachos and Riedel, 2014)
envision the task as providing tools to journalists that would allow more ease in the
process due to advances in computational domains such as natural language processing,
databases and information retrieval. They also released the first dataset by crawling
statements from PolitiFact and Channel 4. This was then followed by several fact-
checking-related tasks, such as the CLEF CheckThat! lab (Elsayed et al., 2019; Nakov
et al., 2021b) and the Fact Extraction and Verification shared task (FEVER) with its
derivatives (Thorne et al., 2018a; Christodoulopoulos et al., 2020; Aly et al., 2021). On
the other hand, (Hassan et al., 2015) ideate a computer-based fact-checking system that
is fully automated, instant, accurate, and accountable.

The process of fact-checking is usually envisioned with a certain pipeline. A FullFact
report associates automating fact-checking with the automation of a four-stage pipeline
consisting of (i) monitoring claims, (ii) spotting claims, (iii) checking claims, and (iv)
publishing the fact-checking results (Babakar and Moy, 2016). Another typical pipeline
is shown in Figure 1.4. It is composed of four main stages: (i) detecting claims that are
check-worthy, (ii) retrieving claims that have been previously fact-checked, (iii) gathering
evidence that is vital for (iv) claim verification where a final verdict is expected. We will
adopt this pipeline in the thesis.

Note that any fact-checking pipeline ideally can digest any form of manipulated input,
including images and videos, and not necessarily textual data. As for the output of such
pipelines, the approaches can be divided into explainable and non-explainable (Nakov
et al., 2021a). Explainable approaches are more relevant for fact-checkers, as they provide
evidence needed to explain the system’s decision. In this thesis, we lean more towards
explainable methods to fact-checking with only textual claims as input, as they are the
main focus of fact-checking organizations.
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1.3 Challenges for Computational Fact-Checking

Despite the numerous fact-checking systems currently present (Guo et al., 2022b), we
are yet far from fully automating the fact-checking pipeline (Figure 1.4) due to several
ordeals. We tackle 4 of them in this thesis:

1. Despite the plethora of fact-checking systems built, incorporating structured data,
specifically relational tables, into the fact-checking procedure is still an open-
problem. This is of valuable interest, as relational tables are one of the most
prominent data storage formats. While there exists many systems that attempt
to integrate tabular information (Borisov et al., 2021; Gorishniy et al., 2021), the
majority of such systems has been applied on well-curated datasets, disregarding the
challenge posed by domain-specific claims that require costly annotations of domain
experts. Given the statistical claim in Figure 1.1, verifying such a claim would
require identifying key cells in a database DB (shown in C), followed by the use of
some mathematical formula to compute revenue growth; such formulas can even be
more complex such as the compound annual growth rate4. As more and more data
is abundantly stored in relational tables5, verification of textual claims renders
more cumbersome, as the gap between unstructured textual data and structured
relational tables needs to be addressed. With the limitations offered by machine-
learning models, including humans in the fact-checking procedure is inevitable.
Figure 1.2 shows a high-level overview of a fact-checking system with humans.
Humans can be on the consuming end of the system, digesting the output; or part
of the fact-checking system itself, where they interact with machines (e.g., through
a machine-learning model (Maadi et al., 2021) or a scheduling algorithm (Difallah
et al., 2016)) steering the system’s behavior. However, in practical settings, multiple
claims exist where manual verification becomes tedious and intractable; especially
when claims relate to a specific domain that needs expert fact-checkers, thus making
the cost of verification exorbitant. How does one go about verifying numerous
claims without relying excessively on expert fact-checkers for manual labeling,
while coping with the imperfections of machine learning models? An approach
that utilizes machine learning models for scalability while soliciting feedback from
experts in an optimal fashion would be needed (Figure 1.1(F)) for such an ordeal.

2. Despite that recent work utilizes pre-trained language models (PLMs) for claim
verification, PLMs still lack in terms of logical reasoning, as they cannot perform
deductive reasoning using logical rules (Figure 1.1(E)). They are also severely
inconsistent. Figure 1.1(A) shows how a sentence and its negated form have
similar outputs from a PLM. While several work tries to address this ordeal on
generic neural networks, a few approaches tackle this for transformer-based PLMs.
Augmenting PLMs with logic is worthwhile, as, aside from their ground-breaking
performances on several language tasks, incorporating reasoning in them would

4https://en.wikipedia.org/wiki/Compound_annual_growth_rate
5https://db-engines.com/en/ranking_trend

https://en.wikipedia.org/wiki/Compound_annual_growth_rate
https://db-engines.com/en/ranking_trend
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allow PLMs to enhance in logic-related tasks such as answering questions that need
some form of reasoning (Dua et al., 2019; Clark et al., 2019a; Liu et al., 2020a).
Despite that PLMs incur some form of logical notion (Talmor et al., 2020a), they
do suffer from inconsistency (Elazar et al., 2021) in terms of negation (Kassner and
Schütze, 2020) and symmetry (Ribeiro et al., 2020). However, even for some line of
work that augments PLMs with logical rules (Clark et al., 2020; Saha et al., 2020;
Tafjord et al., 2021), the associated rules are simplistic as they only consider hard
rules with single-variable predicates. This is not sufficient for real-world first-order
logic requiring predicates with multiple variables and rules with an accompanying
weight to measure their validity (Russell and Norvig, 2010; Fierens et al., 2014).
How can a PLM “reason” with facts, rules, and hypothesis in natural language
with probabilistic outputs (Figure 1.1(E))?

3. As PLMs store vast factual and common-sense information, it is no surprise that
they are used for fact retrieval in domains such as fact-checking (Lee et al., 2020)
and rule mining (Cui and Chen, 2021). Obtaining the capital of Chile is merely
but a query as The capital of Chile is , where the PLM must fill in the
blanks with the correct answer Santiago. However, one cannot always expect to
arrive at their desired output. Figure 1.1(D) shows how PLMs predict location
outputs, contrary to the intent of the user to retrieve birth years instead. Thus,
one caveat of querying PLMs is the inability to control the output type. Being able
to direct the PLM when querying to match a desired criterion is required for better
retrieval, and eventually better performance on related tasks. While approaches
that search for optimal prompts through means of learning algorithms, or rely on
external resources to enrich the input context improve performance, they do not
take the desired output type into account on one hand, and require training the
model or relying on external resources on the other. How can we enforce the desired
type, knowing that PLMs encode latent concepts such as city and year (Dalvi et al.,
2022) (Figure 1.1(D))?

4. As automating the entire fact-checking pipeline is currently unfeasible, including
humans in the pipeline is inevitable. As expert fact-checkers are scarce, a certain
methodology remedies this by relying on a larger number of unprofessional humans
to perform fact-checking (Figure 1.3); or what is known as the ‘wisdom of the crowd’.
While a series of works analyze such crowdsourcing approach to fact-checking, it
has been only done for controlled environments, and there is no clear vision of how
such an approach would behave in real uncontrolled settings. An analysis in such
settings is needed as to better understand what each user in the crowd has to offer
per se, compared to one another, and compared to expert fact-checkers. Is such
an approach effective? And how does it compare to experts and computational
methods (Figure 1.1(B))?

1.3.1 Contributions

The remainder of the thesis is organized as follows:
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I Chapter 2 comprises the background knowledge required for the rest of the chapters
of the thesis.

I Chapter 3 presents a fact-checking system, Scrutinizer, that verifies statistical
claims in natural language by exploiting the synergy between humans and algorithms.
The system is based on two components: a claim translation component and a
question planning component. The former is responsible for automated translation
from text to query elements (such as datasets and attributes) needed to fact-check
the claim, done through the use of trained classifiers. However, as data is not
always available, the system needs to solicit feedback from experts for labeling the
data. This is where the latter component comes into play. The question planning
component interacts with human domain experts in a manner that optimizes
verification tasks for maximal benefit. This is done by modeling claim selection
as an integer linear programming problem that allows to select the most optimal
claims to be labeled. We apply Scrutinizer to two use-cases: one domain-specific
related to energy, and the other to coronavirus.

Chapter 3 comprises the evidence retrieval and claim verification stages of
Figure 1.4. The novelty lies in a Text2SQL fact-checking system applied to real
world data, where users can be involved in the interaction with the machine,
or as consumers of the system’s output.

I Chapter 4 explores how to emulate reasoning with PLMs using first-order soft
logic rules. We extend previous work by (i) harnessing PLMs with logical rules
containing binary predicates, as opposed to unary predicates, and (ii) incorporating
soft rules during training. For (i), we develop a data generation algorithm that
encompasses logical aspects such as symmetry, which is crucial when dealing with
binary predicates, and negation. For (ii), we propose to modify the objective
function to integrate the weights of rules. To do so, we go by weighting data-
points by the rule confidence and creating their virtual counter-part before training.
We test our system RuleBERT on single rules of various confidences, multiple
rules including rules with conflicting conclusions, and chained rules. We finally
test RuleBERT on several external datasets showing improvements in deductive
reasoning and in logical notions such as negation and symmetry. We also release
this novel dataset, comprising 3.2M examples derived from 161 logical rules.

Chapter 4 encompasses the claim verification stage of Figure 1.4. The contribu-
tion lies in studying how well first-order soft logical rules incorporate in PLMs,
where users provide rules for the system and retrieve outputs with degrees of
truthfulness.

.
I Chapter 5 proposes the idea of Type Embeddings, additional input embeddings

that guide the model into the direction of a certain type, for example by steering



CHAPTER 1. INTRODUCTION 11

the outputs to years instead of locations (Figure 1.1(D)). We present a method to
compute TEs based on removing the first singular vector of a token embedding
matrix. To test the effectiveness of this embedding, we offer a suite of tests. We
study aspects related to type classification and sensitivity of a model equipped
with the TE. We also perform a similar analysis in a layerwise fashion. Finally,
we show that PLMs equipped with TEs provides an increase in performance on
fact-retrieval datasets.

Chapter 5 focuses on gathering facts that match a user’s intent, thus enhancing
one aspect of the evidence retrieval stage in Figure 1.4. The novelty lies in
encoding type information in PLMs without supervised learning, where users
can provide typed tokens and steer the output type to match their needs. TEs
can also be pre-computed and utilized by consumers.

I Chapter 6 analyzes the Birdwatch program, the first large-scale community-based
fact-checking initiative by Twitter. We analyze how the crowd attempts to fact-
check tweets in practice, while comparing with human experts and automated
fact-checking tools. We focus on three aspects related to claim selection, evidence
retrieval, and claim verification (Figure 1.3). Our insights show that the crowd
could be effective in verifying truthfulness of claims in a faster pace compared to
expert fact-checkers, however more care should be taken into profiling these workers,
as in the uncontrolled environment we study (Twitter), since malicious users could
manipulate the verification process in their favor. While a purely crowdsourced
approach to fact-checking has its limitations, it seems that most of these limitations
can be complemented by a larger system incorporating experts and computational
methods in the loop. We also release the matched dataset of 11.9k tweets with
Birdwatch checks and identify 2.2k tweets verified both by Birdwatch users and
experts.

Chapter 6 analyzes the Birdwatch fact-checking program through the lens
of the pipeline in Figure 1.4. The contribution lies in providing empirical
evidence that the performance of a crowd of non-experts matches, to some
degree, that of experts in verifying tweets in an uncontrolled environment.

I Chapter 7 wraps up the results achieved in this thesis. We highlight some draw-
backs of the proposed solutions and discuss several promising directions for future
developments in the field.

1.4 Publications
This thesis is based on work done during the course of the PhD and published in
peer-reviewed venues6.

6Equal Contribution is denoted by a *.
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Chapter 2 includes work from the paper:

Gilbert Badaro, Mohammed Saeed, Paolo Papotti. Transformers for Tabular
Data Representation: A Survey of Models and Applications (Survey Paper).
Transactions of the Association for Computational Linguistics Volume 10 2022.
(Conditional Acceptance)

Chapter 3 is based on the papers:

• Georgios Karagiannis∗, Mohammed Saeed∗, Paolo Papotti, Immanuel Trum-
mer. Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-
Driven Claim Verification. (Research Paper) Proceedings of the VLDB
Endowment Volume 13 Issue 12, August 2020, pages 2508–2521, Online.

• Georgios Karagiannis∗, Mohammed Saeed∗, Paolo Papotti, Immanuel Trummer.
Scrutinizer: Fact checking statistical claims. (Demo Paper) Proceedings
of the VLDB Endowment Volume 13 Issue 12, August 2020, pages 2965–2968,
Online (Best Demo Paper Award at BDA 2020, 36ème Conférence sur la
Gestion de Données).

• Mohammed Saeed, Paolo Papotti. Fact-Checking Statistical Claims with
Tables. (Invited Paper). IEEE Data Engineering Bulletin Volume 44 Issue 3
2021.

Chapter 4 is based on the paper:

• Mohammed Saeed, Naser Ahmadi, Preslav Nakov, Paolo Papotti. RuleBERT:
Teaching Soft Rules to Pre-Trained Language Models. (Full Paper)
Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing 2021, pages 1460-1476, Dominican Republic, Association for
Computational Linguistics

Chapter 5 is based on the paper:

• Mohammed Saeed, Paolo Papotti. You Are My Type! Type Embeddings
for Pre-trained Language Models. (Full Paper) Under Submission at
EMNLP 2022.

Chapter 6 is based on the paper:

• Mohammed Saeed, Maelle Nicolas, Nicolas Traub, Gianluca Demartini, Paolo
Papotti. Crowdsourced Fact-Checking at Twitter: How Does the
Crowd Compare With Experts? (Full Paper) 31st ACM International
Conference on Information and Knowledge Management, Atlanta, Georgia,
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USA, Association for Computing Machinery.

I have also been involved in other publications during my thesis which are not part
of this thesis:

1. I have supervised the application of Scrutinizer on The Shared Task on Evaluating
Accuracy in Generated Texts challenge in INLG 2021 (Reiter and Thomson, 2020).

Rayhane Rezgui, Mohammed Saeed, Paolo Papotti. Automatic Verification
of Data Summaries. (Systems Paper) Proceedings of the 14th International
Conference on Natural Language Generation 2021.

2. I have extended the baseline of FEVEROUS (Aly et al., 2021) with the addition of
a neural re-ranker.

Mohammed Saeed, Giulio Alfarano, Khai Nguyen, Duc Pham, Raphaël Troncy,
Paolo Papotti. Neural Re-rankers for Evidence Retrieval in the FEVER-
OUS Task (Systems Paper) In Proceedings of the Fourth Workshop on Fact
Extraction and VERification (FEVER), pages 108–112, Dominican Republic.
Association for Computational Linguistics

3. I was involved in work about generating ambiguous data for a model, where I
implemented a baseline utilizing GPT-2.

• Enzo Veltri, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, Paolo
Papotti. Pythia: Unsupervised Generation of Ambiguous Tex-
tual Claims from Relational Data (Research Paper) 39th IEEE In-
ternational Conference on Data Engineering, California, USA .

• Enzo Veltri, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, Paolo
Papotti. Pythia: Unsupervised Generation of Ambiguous Tex-
tual Claims from Relational Data (Demo Paper) Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA (Best Demo Paper Award).





2 Background

In this chapter, we provide the essential background knowledge upon which the succeeding
chapters are based on. We start by reviewing Pre-trained Language Models (PLMs)
in Section 2.1 by considering standard language models, attention, transformers, a
knowledge-probing dataset for PLMs, and applications of transformer-based LMs on
Tabular Data. We then consider Knowledge Graphs in Section 2.2. Finally, we explore
fact-checking with human-in-the-loop in Section 2.3. More accompanying related work
will be discussed in the following chapters.

2.1 Pre-trained Language Models

The transformer architecture (Vaswani et al., 2017), shown in Figure 2.1, has achieved
great success in the natural language processing (NLP) domain. In this section, we present
transformer-based language models, by first defining language models (Section 2.1.1), then
we discuss transformers usage (Section 2.1.2), transformer components (Section 2.1.3), pre-
training (Section 2.1.4), a prominent dataset to test factual and commonsense knowledge
of PLMs (Section 2.1.5), and how tabular data is incorporated with PLMs (Section 2.1.6).
In this section, we describe the vanilla transformer. A survey of notable transformer
architectures can be found in (An, 2021).

2.1.1 Language Models

Definition. Language Modeling is the task of predicting what token comes next in a se-
quence of tokens. More formally, given a sequence of tokens x(1),x(2), ...,x(t), the goal is to
compute the probability distribution of the next word , x(t+1), P (x(t+1)|x(1),x(2), ...,x(t))
where x(t+1) is restricted by a vocabulary of tokens V . A system performing this task is
called a Language Model. Language Models (LM) are intended to distinguish grammatical
from ungrammatical sequences in a specified language. In other words, given a phrase or
a sentence in a language, a LM has to identify if it is fluent or plausible according to the
grammar of that language or not. A language model is expected to identify “I defend

14
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Figure 2.1: The Transformer Architecture

my thesis.” as a fluent sequence in English that accords with its grammar, whereas “my
thesis defend I.” as non-fluent or ungrammatical.

Brief History. Traditional approaches to language modeling included n-grams-based
methods with the usage of smoothing techniques (Goldberg, 2017; Jurafsky and Martin,
2009). However, such approaches have drawbacks, mainly related to the costly scaling to
larger n-grams. Nonlinear neural network models solved some drawbacks of traditional
LMs, as they can incorporate larger context sizes with a linear increase in the number
of parameters. A popular model was proposed by (Bengio et al., 2000). Prominent
architecture for LMs include RNNs (Elman, 2010), LSTMS (Hochreiter and Schmidhuber,
1997), GRUs (Chung et al., 2014), and most recently, transformer-based LMs (Vaswani
et al., 2017). We stress the fact that all LMs discussed in this thesis are transformer-
based.

2.1.2 Transformer Usage

The transformer architecture can be used as an encoder-decoder (Vaswani et al., 2017;
Raffel et al., 2020), an encoder-only (Devlin et al., 2019; Liu et al., 2020b), or a decoder-
only (Radford et al., 2019; Brown et al., 2020) model. The choice of the architecture
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Figure 2.2: High-level overview of the components comprising a transformer encoder
module.

depends on the final task. Encoder-only models are mainly used for classification.
Encoder-decoder architectures are used for models that focus on sequence generation
tasks such as machine translation. Decoder-only models are used for autoregressive tasks
such as language-modeling.

2.1.3 Transformer Components

The vanilla transformer (Vaswani et al., 2017) is a sequence-to-sequence model (Sutskever
et al., 2014) consisting of an encoder and a decoder, each of which is a stack of N
identical modules. The encoder block is composed of a multi-head self-attention module
(Section 2.1.3.1) and a position-wise feed-forward network (Section 2.1.3.2). The input
is tokenized and embedded before inputting to the model (Section 2.1.3.3). Residual
connections and layer-normalization modules (Section 2.1.3.4) are also used for stable
training. Figure 2.2 shows a transformer encoder block.

2.1.3.1 Multi-Head Self-Attention

General Picture. The self-attention module is the fundamental operation of any
transformer-based architecture. Simply, it takes as input a set of vectors, and outputs
a contextualized version of that set of vectors, while conserving the same dimension.
More formally, given a set of input vectors x1,x2, ...,xt of dimension dmodel, the set of
output vectors y1, y2, ..., yt are computed as yi = ∑

j wijxj . The weights wij are not
parameters learned by the model, but rather derived from the input vectors xi and xj .
They are often denoted as attention weights. A few more components, which will be
discussed soon, are needed for a complete view of a transformer; but this is basically
the fundamental operation of a transformer model. More importantly, this is the only
operation in the whole architecture that propagates information between the vectors.
Every other operation in the transformer is applied to each vector in the input sequence
without interactions between vectors.

Computing Attention Weights. Each input vector xi is represented in three different
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Figure 2.3: Diagram showing the self-attention mechanism. The value vectors
(x1v,x2v,x3v) are summed and weighted by the attention weights (w21,w22,w23), which
are computed from the key (x1k,x2k,x3k), and query vector (x2q) to produce a more con-
textualized representation (y2). The self-attention mechanism is a permutation-invariant
operation. For simplicity, the query, key, and value vectors have been drawn identically.

ways in a self-attention operation:
• It is compared to every other vector in the input to establish the attention weights

for its own output yi.
• It is compared to every other vector to establish the attention weights for the

output of yj .
• It is used as part of the weighted sum to compute each output vector once the

attention weights have been established.
These roles are respectively called the query, the key, and the value. Computing such
vectors is performed by a linear transformation with three matrices for the three respective
representations (Eq. 2.1-2.3). Wq ∈ Rdmodel×dk transforms an input xi to its query
representation qi (Eq. 2.1), where dk is the dimension of the key and query vectors.
Similarly, Wk ∈ Rdmodel×dk (Eq. 2.2) and Wv ∈ Rdmodel×dv (Eq. 2.3) transform xi to
its key and value representations, respectively, where dv is the dimension of the value
vectors. This is followed by the dot product of the key and query vectors to compute the
attention weights. To stop the dot product from growing too much and eventually killing
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the gradient, the dot product is scaled (Eq. 2.4). A softmax operation is used to provide
a normalized probability distribution over the attention weights (Eq. 2.5). Finally, a
weighted sum of the value vectors yields the output of the attention mechanism (Eq. 2.6).

qi = Wqxi (2.1)
ki = Wkxi (2.2)
vi = Wvxi (2.3)

w
′
ij = qTi kj√

dk
(2.4)

wij = softmax(w′ij) (2.5)
yi =

∑
j

wijvj (2.6)

A simplification of this mechanism is shown in Figure 2.3. This action performed by
the self-attention mechanism resembles a "fuzzy" query operation on a key-value database.
The matrix given by the attention weights wij is often called the attention matrix, as
it portrays how much each element in a layer attends to each element in the previous
layer. For inputs with large size, computing the attention matrix becomes infeasible and
efficient methods are utilized (Tay et al., 2022).

Multi-Head Attention. The previous subsection described how a single attention
mechanism or attention head works. Instead of relying on a single head, transformers
use multi-head attention, where the original queries, keys, and values with dimension
dmodel are projected into dk, dk, and dv dimensions, respectively, with h attention heads,
each with a different set of learned projections. Each head output is computed with
Eq. (2.6), and all outputs are concatenated and projected back to a dmodel-dimensional
representation with a learned transformation WO ∈ Rhdv×dmodel (Eq. 2.7).

MultiHeadAttn(qi, ki, vi) = Concat(head1, . . . ,headh)WO (2.7)

where headi is computed with Eq. (2.6).
Multi-head attention allows the model to jointly attend to information from different

representation subspaces at different positions. It could be thought of an ensemble of
classifiers where each head, while performing the same operation, contains different weight
matrices, and could possibly perform different tasks. Indeed, certain heads could reflect
certain syntactical aspects, such as heads where the head word attends to the dependent,
or more complex semantic tasks such as coreference resolution (Clark et al., 2019b).
However, some of these heads can be actually pruned without a significant reduction in
performance (Michel et al., 2019).

Note that this kind of self-attention is found in the encoder module of a transformer.
The same mechanism is found in the decoder module, with the exception that queries at a
certain position can only attend up to that position inclusively. This is done by masking
out all values in the input of the softmax which correspond to unwanted information
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flow. Formally, the input in Eq. 2.5 is multiplied by a mask M that is set to −∞ to
prevent each position from attending to subsequent positions. This is usually called
masked self-attention. For an encoder-decoder module, a special kind of attention is used
where the queries are projected from the outputs of the previous (decoder) layer, whereas
the keys and values are projected using the outputs of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This is called
cross-attention.

2.1.3.2 Feed-forward network.

The position-wise feed-forward network (FFN) is a fully-connected feed-forward module
operating separately on each position:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2.8)

where ReLU refers to the rectified linear unit activation function (Fukushima, 1975).
This FFN is applied to each vector from the output of the self-attention mechanism.
Around two-thirds of the parameters in a transformer block are comprised in the FFN
layer. Previous work posits that FFN layers act as key-value memories, where keys
represent input patterns such as inputs ending with a specific word, or inputs encoding a
“part of" relation, and values represent distributions over the input vocabulary V . FFN
layers aggregate distributions weighted by scores computed from the keys (Geva et al.,
2021b).

2.1.3.3 Input Embeddings

Before feeding the input to the self-attention layer, the input sentences are embedded.
The vanilla transformer architecture embeds each token with a token embedding and a
positional embedding.

Token Embeddings. Token embeddings are learned representations for each token in
the vocabulary V . An input text is split into a sequence of tokens existing in vocabulary
V . Tokenization could occur on a character-level, word-level, or subword-level. One of the
most successful tokenization algorithms are the Byte Pair Encoding algorithm (Gage, 1994;
Sennrich et al., 2016), used in GPT-3 (Brown et al., 2020), and WordPiece algorithm (Wu
et al., 2016) in BERT (Devlin et al., 2019).

Positional Embeddings. Since transformers do not incur any form of recurrence,
positional information is designated by absolute positional embeddings added to each
token embedding of the transformer (Vaswani et al., 2017). Such embeddings can also
be learned (Devlin et al., 2019). The purpose of the positional embedding is to allow a
transformer to make sense of word ordering. Without it, the input would be perceived
as a “bag of words”. Other work proposes relative positional embeddings as a means of
improving performance. Relative positional embeddings represent positional relationships
between tokens instead of absolute positions of individual tokens (Shaw et al., 2018). A
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combination of both absolute and relative positional embeddings has also been studied (Ke
et al., 2021a).

Other Input Embeddings. Other input embeddings can be derived for specific
purposes. For example, to incorporate tabular structure, row and column positional
embeddings have been used to indicate the position of a cell in the table (Herzig et al.,
2020). Other types include input embeddings for numerical input (Wang et al., 2021d).

2.1.3.4 LayerNorm and Residual Connections

Layer Normalization (LN) (Ba et al., 2016) and Residual Connections (He et al., 2016)
are established methods to stabilize the training of deep neural networks. The LN is
placed after the residual connections. (Xiong et al., 2020) has shown that placing the LN
before the residual connections yields better training behavior.

2.1.4 Pre-Training

One of the key factors for the success of PLMs is pre-training. Pre-training finds better
initial representations for the input as opposed to random initialization. This helps
the model acquire a better starting point for embedding the input. In fact, with the
increase in the number of parameters in a deep learning model, larger labeled datasets
are needed for training. This poses a problem, as obtaining large-scale labeled data is
cumbersome for several tasks due to expensive annotation costs. On the contrary, having
access to large unlabeled data is relatively easy, and is leveraged through pre-training.
Once pre-training is done, the model can be fine-tuned on a smaller (labeled) dataset
targeted for a specific task.

A prominent example of a pre-training task would be the masked language modeling
task (Devlin et al., 2019) where some random tokens are masked and are to be predicted
by the model based on the context. A more detailed analysis of pre-training can be found
in (Qiu et al., 2020). Examples of other pre-training tasks targeted for input tabular
data can be found in (Badaro et al., 2022).

2.1.5 LAMA

LAMA (LAnguage Model Analysis) is a probe to assess how much knowledge is recalled
by PLMs, and how different types of knowledge (such as facts about entities and common
sense) affect their performance (Petroni et al., 2019). Simply, a PLM is asked to predict
a masked word in a sentence, e.g., given the cloze sentence “The theory of relativity
was developed by [MASK].”, a PLM would predict the correct response Einstein. The
cloze sentences used include relations between entities stored in Wikidata (from Google-
RE corpus1 and the T-Rex dataset (Elsahar et al., 2018)), common sense relations
between concepts from ConceptNet (Speer and Havasi, 2012), and knowledge necessary
for answering natural language questions in SQuAD (Rajpurkar et al., 2016).

1https://code.google.com/archive/p/relation-extraction-corpus/

https://code.google.com/archive/p/relation-extraction-corpus/
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2.1.6 Application on Tabular Data

To properly model the structure of data in tables, the vanilla transformers are extended
and updated by modifying components at the (i) input, (ii) internal, (iii) output, and
(iv) training-procedure levels. We briefly discuss the modifications here. A more detailed
analysis can be found in our work (Badaro et al., 2022).

2.1.6.1 Input Level.

Modifications on the input level are usually designated with additional positional embed-
dings to explicitly model the table structure. Such embeddings improve performance on
structure-related tasks. For example, embeddings that represent the position of the cell,
indicated by its row and column IDs, are common for relational tables (Yin et al., 2020;
Herzig et al., 2020). For tables without a relational structure, such as entity tables and
spreadsheets, (Wang et al., 2021d) introduces tree-based positional embeddings to encode
the position of a cell using top and left embeddings of a bi-dimensional coordinate tree.

2.1.6.2 Internal Level.

Most of the modifications on the internal level are applied to make the system more
“structure-aware” by updating the attention module in a certain manner. For example,
in (Yin et al., 2020) vertical self-attention layers are produced to capture cross-row
dependencies on cell values by performing the attention module in a vertical fashion.
Empirical results in (Wang et al., 2021d) show that employing row-wise and column-wise
attention, instead of having additional positional embeddings for rows and columns, hurts
model performance for cell-type classification tasks, but it is not the case for table-type
classification tasks.

Other systems employ a masked self-attention module, which attends to structurally
related elements such as those in the same row or the same column, thus ignoring the
other elements, unlike the traditional transformer where each element attends to all other
elements in the sequence (Deng et al., 2020).

Other modifications address the input size constraint of attention modules, where
large tables are often neglected. Sparse attention methods are proposed to cope with this
issue (Tay et al., 2022). For instance, (Eisenschlos et al., 2021) sparsifies the attention
matrix to allow transformer heads to efficiently attend to either rows or columns.

2.1.6.3 Output Level.

Additional layers can be added on top of FFNs depending on the task at hand. Tasks
such as cell selection (Herzig et al., 2020) and table meta-data prediction (Suhara et al.,
2022) require training one or more additional layers. Classification layers for aggregation
operations and cell-selection are used to support aggregating cell values (Eisenschlos
et al., 2021; Yu et al., 2020). In (Liu et al., 2022b), aggregation operations are also
“learned” end-to-end in a seq2seq task.
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2.1.6.4 Training-Procedure Level.

Modifications on the training-procedure level can be attributed to the pre-training task
and objective.

Pre-training Tasks Rather than applying traditional token-level masked-language
modeling (MLM) on the serialized tabular data, effectively treating it as natural language
sequences, most pre-training tasks are designed to consider the information about the
table structure.

While some methods rely on the traditional masking of the tokens in the table cells,
other tasks consider the masking of the whole cell independently of the number of tokens
in it (Wang et al., 2021d; Yin et al., 2020). For instance, masking at the entity level
enables the model to integrate the factual knowledge embedded in the table content and
its context in its different forms. (Yin et al., 2020) also considers masking column names
and data types for relational tables. In (Liu et al., 2022b), the pre-training task adopts
an SQL engine to train the model to act as a neural SQL executor, thus enabling it to
mimic the SQL semantics with relational tables.

Pre-training Objectives. The objective of the majority of the systems is to minimize
cross-entropy loss for a certain classification task. (Wang et al., 2021b) utilizes a point-
wise ranking objective for end-to-end training after pre-training, where multiple tables
are ranked according to a relevance score given a certain query.

2.2 Knowledge Graphs
Knowledge graphs have emerged as an established tool for structuring knowledge over
the web. They have played vital roles in several applications such as data integration and
artificial intelligence. In this section, we briefly visit knowledge graphs, where we provide
a quick definition (Section 2.2.1) and discuss the RDF Data Model (Section 2.2.2).

2.2.1 Definition

A knowledge graph (KG) is a directed labeled graph where the labels have well-defined
meaning. The graph consists of labeled nodes and edges. Any entity or value can act as a
node, where the edge connecting a pair of nodes captures the relationship between them.
For example, a node representing Paris would be connected with the node representing
France by the edge CapitalOf (Figure 2.4).

KGs are used in a variety of ways depending on the needs of an application, mainly
for knowledge representation of real-world facts. The structured data not only enables
“classic” analytics, such as querying with structured languages (such as SQL, SPARQL,
or any graph oriented declarative language), but also advanced analysis, such as logical
reasoning (Ahmadi et al., 2019; Ji et al., 2022). As KGs are modeled as graphs, they
can be utilized for a plethora of tasks such as clustering (Saeedi et al., 2018), link
prediction (Lin et al., 2015), topological sort (Pearce and Kelly, 2007), learning and using
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Figure 2.4: Two Nodes and their relations. CapitalOf is the inverse relation of
HasCapital

embeddings (Wang et al., 2017), and rule-mining (Ortona et al., 2018b). Examples of
famous KGs include DBpedia (Auer et al., 2007), YAGO (Suchanek et al., 2007), and
Wikidata (Vrandečić and Krötzsch, 2014).

2.2.2 RDF Data Model

RDF. The Resource Description Framework2 (RDF) is a framework for representing
information on the web. The RDF data model and its query language SPARQL are
standardized by the World Wide Web Consortium. A triple p(s, o) following the RDF
model, called an RDF triple, consists of a subject s, a predicate p, and an object o. A set
of such triples is an RDF graph. For example, the fact that Dante was born in 1265 is
expressed with a triple birthY ear(Dante, 1265). Nodes can exist in three flavors: IRIs,
literals, and blank nodes. An IRI is an Internationalized Resource Identifier used to
uniquely identify resources on the web. A literal is a value of a primitive data types such
as number, date, and string. A blank node is a node representing a resource for which
an IRI or literal is not given. It simply indicates the existence of a thing.

SPARQL. Is a recursive acronym for SPARQL3 Protocol and RDF Query Language. It
is a query language to retrieve and manipulate data stored using RDF, similar to SQL in
relational databases. SPARQL contains capabilities for querying required and optional
graph patterns, including conjunctions and disjunctions. The results of SPARQL queries
can be sets or RDF graphs. For example, the following SPARQL query retrieves names of
people born in Rome and died in Paris from DBpedia (Prefix definition has been omitted
for brevity.):

SELECT ?name WHERE {
?person dbo:birthPlace dbr:Rome . ?person dbp:deathPlace dbr:Paris.
?person dbp:name ?name.
}

2https://www.w3.org/RDF/
3https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
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2.3 Fact-Checking with Humans
As manual fact-checking cannot scale to the amount of generated fake news, employing
certain aspects of fact-checking pipeline has taken a particular interest (Nakov et al.,
2021a; Guo et al., 2022b). We discuss a few efforts in Section 2.3.1 where humans are
mere consumers of the fact-checking system (Figure 1.2), and then follow by some work
that includes humans in the fact-checking process as workers in Section 2.3.2.

2.3.1 What Technology has Offered Fact-Checking

Technology has helped automate some aspects of manual fact-checking for human acting
as consumers of the fact-checking system:
Claim Check-worthiness. With the overflow of claims, deciding what claim is worthy
fact-checking is inevitable. This has motivated the development of machine learning
solutions (Elsayed et al., 2019; Nakov et al., 2021b). (Hassan et al., 2017b) first model
this problem as a classification and scoring model, where the higher the score, the more
likely an input sentence contains a check-worthy claim. (Konstantinovskiy et al., 2018)
develop an annotation schema and a benchmark for automated claim detection. (Wright
and Augenstein, 2020) model claim check-worthiness detection as a Positive Unlabeled
learning instance (Elkan and Noto, 2008). Automating claim check-worthiness would
reduce manual labor performed by fact-checkers.
Detecting Previously Fact-Checked Claims. As a fact-checked claim repeats itself,
often in a paraphrased form and in other languages (Nakov et al., 2021a), it would be
ideal to identify such claims beforehand. (Shaar et al., 2020) formulate the task by
releasing two datasets and a proposing a learning-to-rank approach utilizing BERT and
BM25 (Robertson et al., 1994). (Vo and Lee, 2020) debunk a tweet containing textual
and visual features by retrieving relevant documents. (Ahmadi et al., 2022a) propose an
unsupervised graph-based method for text matching, which is also applied to structural
data. Detecting previously fact-checked claims would allow fact-checkers to focus on
claims that have not been fact-checked.
Evidence Retrieval. As fact-checkers are flooded with external corpora for assessing a
claim, narrowing down the list to fewer evidences to choose from is needed. The main
approach for this utilizes BM25, or any other similarity score over vectorial representations
between the input claim and the external corpora. The scores are then ranked in order to
find the most relevant evidence. External corpora could be in the form of documents (Chen
et al., 2017), relational tables (Aly et al., 2021; Saeed et al., 2021b), or even PLMs (Lee
et al., 2020). Retrieval could also be on a passage level (Elsayed et al., 2019), or sentence
level (Thorne et al., 2018b). Machine-based methods for evidence retrieval reduces
time required to search for evidence by fact-checkers, especially with large unstructured
corpora.
Automated Verification. Given a bunch of evidence and a claim, a module for verdict
prediction provides the final verdict of the input claim. This could be modeled as a binary
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classification problem. (Thorne et al., 2018b) add a third label indicating that not enough
information is included to produce a verdict. Other work tries to encode multi-class labels
to account for the various shades of truthfulness utilized by fact-checkers (Wang, 2017;
Augenstein et al., 2019). Usually, some model trained on a natural language inference
dataset is used (Sundriyal et al., 2022; Aly et al., 2021). (Eisenschlos et al., 2020) perform
“Table Entailment” which is about finding if a sentence is supported or refuted by the
content of a table. (Clark et al., 2020) postulate that transformers can act as limited
“soft theorem provers” over textual input. Particularly on social networks, one could
benefit also from information of the network structure. (Bansal et al., 2021) utilize graph
embeddings of follower-follower graphs on Twitter, alongside other features, to detect fake
COVID-19 tweets. In addition to graph-based embeddings, (Gangireddy et al., 2020) use
graph-based methods, such as biclique identification, for fake news detection on Twitter.
(Shu et al., 2018) apply network diffusion models to trace the paths of fake news.
Justification Production. Justifying the verdict of a claim is a vital component, as
expert fact-checkers need to convince others of their verdict. Not only that, but as humans,
whether interacting as external users or as part of the system , obtaining explanations is
key for a better human-machine interaction. Regarding automated fact-checking systems,
justification production goes into the lines of interpretability and explainability of the
used models. While some fact-checking systems, rely on logical rules that offer some form
of explainability, most state-of-the-art methods utilize PLMs which are not explainable by
design, as in other rule-based fact-checking systems (Gad-Elrab et al., 2019; Ahmadi et al.,
2019). (Atanasova et al., 2020b) jointly train a PLM for predicting the veracity label and
the explanation. (Tafjord et al., 2021) use an encoder-decoder T5 model (Raffel et al.,
2020) to generate an answer to a hypothesis with the accompanying proof. (Atanasova
et al., 2020a) analyze explainability techniques on downstream text classification tasks
for neural models, and compare with human annotations. (Kotonya and Toni, 2020)
survey the explainability of different automated fact-checking systems.

2.3.2 How can Humans be included as Workers?

Despite all this, fact-checkers agree that including humans in the fact-checking procedure
as workers is inevitable (Arnold, 2020), as machine-based solutions have several limitations
in the ‘understanding’ of language and in reasoning. Given these challenges, there is a
clear opportunity of having humans involved along with machines in the process of fact-
checking a claim, where humans could complement the deficiencies of machine learning
models.

One approach to integrate humans in a fact-checking systems is through Active
Learning (Vlachos, 2008; Konyushkova et al., 2017). The goal of active learning is to
select which data points should be annotated in order to learn the model as quickly as
possible. In practice, this means that instead of a costly annotation of the data, we select
iteratively and adaptively which datapoints should be annotated next. (Karagiannis et al.,
2020) is an example of such hybrid approaches for fact-checking utilizing the knowledge
of experts to label certain data points chosen through an active learning algorithm to
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minimize verification cost. The training procedure is steered through the labels given
by the experts, which form a crucial part of the system, especially in domain-specific
settings, where labeled data is scarce.

Another fundamental approach for integrating humans in fact-checking systems is
Crowdsourcing. The aim of crowdsourcing is to gather a group of humans (crowd), who are
not necessarily experts, to accomplish a certain task, under the premise that the wisdom
of the crowd surpasses that of an individual. Amazon Mechanical Turk4(MTurk) is the de
facto standard crowdsourcing website. Several works study and analyze the performance
of the crowd while verifying claims. (Tschiatschek et al., 2017) utilizes labels by non-
experts in a crowdsourcing setting and applies Bayesian inference for detecting fake news
while learning about a user’s accuracy. (Qu et al., 2022) study how a PLM compares to a
crowd of non-experts on truthfulness classification of claims, looking at both accuracy and
confidence signals. (Roitero et al., 2021) uses crowds to verify coronavirus-related claims,
and asks humans to provide evidence for their verdicts. (Nguyen et al., 2018) follows a
mixed-initiative approach between a single user and a machine learning system where the
machine finds relevant articles, infers the relevance of each, and predicts the final verdict,
and the user can change the source reputation and stance of each retrieved article to
correct the model. The authors find that human-machine interaction can be effective, but
might end up misleading the crowd in cases where the machine-learning models performed
poorly. Note that such crowdsourcing experiments have been performed in controlled
settings (such as MTurk) and on well-curated datasets (e.g. PolitiFact dataset (Wang,
2017)) which hide the intricacies of uncontrolled settings where interactions between the
crowds are not as limited, and the crowd gets to choose which claims to verify from an
increasing pool of unfiltered claims.

(Hassan et al., 2019) analyze an online fact-checking community on Reddit to find
and verify check-worthy facts relating to US politics. Twitter, recently, proposed the
Birdwatch program5, a fully crowdsourced approach for verification of claims in tweets.
A Birdwatch user can create a note for a tweet, where a note comprises if the user’s
verdict, evidence, some metadata about the annotations. Other users can up/down vote
such notes. Currently, the Birdwatch program is deployed in the US only. (Allen
et al., 2021b) studies partisanship and behavior of users on Birdwatch. (Pröllochs,
2021) provide a holistic analysis of Birdwatch by studying aspects such as user profiles,
reasons users report tweets, and agreement between the users. However, such work does
not compare how such users perform when compared to expert fact-checkers regarding
claim selection, evidence retrieval, and claim verification. We tackle these in Chapter 6.

4https://www.mturk.com/
5https://blog.twitter.com/en_us/topics/product/2021/introducing-birdwatch-a-

community-based-approach-to-misinformation

https://www.mturk.com/
https://blog.twitter.com/en_us/topics/product/2021/introducing-birdwatch-a-community-based-approach-to-misinformation
https://blog.twitter.com/en_us/topics/product/2021/introducing-birdwatch-a-community-based-approach-to-misinformation




3 Fact-Checking Domain-Specific Statistical
Claims with Relational Tables

Organizations spend significant amounts of time and money to manually fact-check
text documents summarizing data. In Figure 1.1(C), we have seen that some claims
require aggregating content from a database. We also stated the difficulty when multiple
claims come into play, where multiple human interventions are needed, but is not clear
what is the optimal procedure. In this chapter, we introduce Scrutinizer, a system
to reduce verification overheads by supporting human fact-checkers in translating text
claims into SQL queries on a database. Scrutinizer coordinates teams of human
fact-checkers. It reduces verification time by proposing queries or query fragments to the
users. Those proposals are based on claim-text classifiers, trained on real world data (i.e.
not synthetic), that gradually improve during the verification of a large document. In
addition, Scrutinizer uses tentative execution of query candidates to narrow down the
set of alternatives. The verification process is controlled by a cost-based optimizer. It
optimizes the interaction with users and prioritizes claim verification. For the latter, it
considers expected verification overheads as well as the expected claim utility as training
samples for the classifiers. We evaluate the Scrutinizer system using simulations and
a user study with professional fact-checkers, based on actual claims and data. Our
experiments consistently demonstrate significant savings in verification time, without
reducing result accuracy.

3.1 Introduction
Data is often disseminated in the form of text reports, summarizing the most important
statistics. For authors of such documents, it is time-consuming and tedious to ensure
the correctness of each single claim. Nevertheless, erroneous claims about data are
not acceptable in many scenarios, as each mistake can have dire consequences. Those
consequences reach from retractions (in case of scientific papers (Hosseini et al., 2018)) to
legal implications (in case of business or health reports (Ash et al., 2004)). Besides the
authors, erroneous claims can have serious consequences for the target audience (Brainard
and Hunter, 2020). We note that approaches that integrate table structure into PLMs,

27
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Index 2017 2018 ... 2030 2040
PGElecDemand 22 209 22 793 ... 29 349 35 526
PGINCoal 2 390 2 412 .. 2 341 2 353
TFCelec 21 465 22 040 ... 28 566 34 790
... ... ... ... ... ...

Figure 3.1: Global Energy Demand history and estimates (GED); the full table has 22
rows and 70 attributes.

similar to those in Section 2.1.6, would not be a good fit to the problem, as the complex
queries to fact-check a claim would not be resolved solely by such approaches. Also,
such approaches consume the entire table as an input, which is infeasible for industrial
settings where having tables with large number of rows and columns is standard. In
addition, PLMs performing Question Answering on Tables (Herzig et al., 2020), Semantic
Parsing (Yin et al., 2020), or Table-based Fact-checking (Liu et al., 2022b) either do
not consider aggregation of cell values, or have been trained on a pre-defined set of
functions and require training from scratch to accommodate new aggregation functions.
As obtaining labeled data is cumbersome, this necessitates the need for a human-in-the-
loop component. Besides, in real-world scenarios, training data would not be available,
and having humans label the data is a crucial part of the fact–checking system that is
not found in such approaches. For this, we present Scrutinizer, a “mixed-initiative”
fact-checking system that helps teams of fact-checkers to verify consistency of text and
data efficiently.

Our work is inspired and motivated by two real-world use cases. We describe those
use cases in the following and use them as examples and benchmarks throughout the
chapter.

Use Case 1. The International Energy Agency (IEA) is a Paris-based intergovernmental
organization. Every year the agency produces a report of more than 600 pages about the
energy consumption and production in the world, covering historical facts and predictions
both for individual countries and at the world level. We have been given access to the 2018
edition, which contains 7901 sentences with 1539 manually checked statistical claims.
IEA requires each claim to be verified independently by three persons (beyond the claim
text author). Hence, verification takes months of work of a team of domain experts.
Scrutinizer is the first result of a collaboration aimed at reducing time and financial
overheads of that verification process.

Consider the following example claim from that scenario.

Example 1. The IEA database contains hundreds of relational tables with information
about energy, pollution, and climate. A fragment of a table is reported in Figure 3.1.
Consider the claim “In 2017, global electricity demand grew by 3%, more than
any other fuel besides solar thermal, reaching 22 200 TWh.". An expert validates the
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claim in bold by identifying the relevant table(s) and by writing a query over such table
to collect the relevant information. In the example (assuming unique values in the Index
column):

SELECT POWER(
(SELECT 2017 FROM GED WHERE Index='PGElecDemand')/
(SELECT 2016 FROM GED WHERE Index='PGElecDemand'),
1/(2017-2016)) -1

Finally, the expert compares the output of the query with the claim and either validates
or updates the claim.

Unlike the first, our second use case assumes verification by non-expert, anonymous
crowd workers.

Use Case 2. The spread of the Coronavirus is accompanied by a spread of misinformation.
This “Infodemic” (Latvian Public Broadcasting, 2020) is testing manual verification
capacities of large social media platforms (Horwitz, 2020), thereby motivating automated
methods. Some (even though not all) misclaims about the novel Coronavirus refer to
numerical statistics, thereby falling within the scope of the Scrutinizer system. For
instance, misclaims about absolute or relative case counts for specific regions and time
ranges are common (Wikipedia, 2020). We therefore decided to create a public Web
interface (Karagiannis et al., 2020), based on the Scrutinizer system, that allows to
verify statistical claims on the Coronavirus. The database used for verification consists
of daily updated statistics from official sources such as the World Health Organization
(WHO) and the Center of Disease Control (CDC). Our Website, recently covered in the
press (Claveau, 2020; Milucci, 2020; Spadaro, 2020), has attracted over 12,000 distinct
users at the time of writing.

In both scenarios, we verify claims given as natural language text. We verify or
refute a claim by formulating a query on an associated database. Of course, the primary
challenge is to translate natural language text into SQL statements. This problem has
been the focus of significant prior work (Agrawal et al., 2002; Li and Jagadish, 2016; Iyer
et al., 2017; Li and Jagadish, 2014; Zhong et al., 2017; Saha et al., 2016; Weir et al.,
2019). The scenarios we consider are however specific and require a novel approach.
First, prior work typically aims at automating text to query translations. Relying on
purely automated translation would however not be acceptable for IEA for instance, due
to the high stakes and limitations of current technology. Hence, we verify claims in a
mixed-initiative approach that integrates human feedback. Second, prior work aims at
translating queries instead of claims. This matters, as we can rank queries based on
how close their results come to claimed values. Finally, prior work typically considers
single queries. For example, in the case of IEA, we rather deal with large documents
that contain hundreds of related claims. This can be exploited to reorder claims for
verification and minimize expected verification overheads. Literature on data-driven
claim verification (Cao et al., 2018; Ibrahim et al., 2019; Jo et al., 2019), discussed in more
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detail in Section 3.7, is more sparse at this point. In our experiments, we demonstrate
that prior work cannot address the use cases we consider.

When mapping claims to queries, Scrutinizer considers a scenario-specific query
search space. This search space is defined by a domain expert with SQL training and
knowledge of the database schema (e.g., the head of the fact-checker team in case of IEA).
The same person supplies text snippets that allow Scrutinizer to formulate natural
language questions about query properties. The bulk of the verification work is done by
another group of fact-checkers. Those can be domain experts without IT background
(e.g., the fact-checker team at IEA) or a crowd of anonymous users (like in our second
use case). To map claims to queries, Scrutinizer introduces a scenario-specific set of
classifiers. Each classifier is associated with a choice point in the query search space.
This can be the choice between multiple query templates (e.g., selecting the arithmetic
formula in Example 1) or filling in a placeholder (e.g., the year 2016 in Example 1).
Having the result of each classification for a given claim can determine the associated
query. However, if classifier confidence is below a threshold, classification results must be
verified by human workers.

Our goal is to minimize overheads for human workers. Those overheads are determined
by multiple factors. We expect that verifying a correct option for a query property (e.g.,
a proposition for an arithmetic formula) is typically faster, for workers, compared to
suggesting the correct answer from scratch. We verify this intuition by a user study
in Section 3.6. Hence, verifying claims based on high-quality classifier suggestions is
cheaper than for low-confidence claims. On the other side, obtaining the correct answer
for low-confidence claims and using it as training data, may improve classifier accuracy
for the remaining claims. We take both factors into account when determining the order
in which claims are verified. Also, we optimize the sequence of questions asked to workers
about specific claims. Here, we can exploit the fact that getting answers for certain query
properties implicitly prunes options for others.

Scrutinizer generates suggestions for query translations via classifiers. In principle,
various types of classifiers can be used. Currently, we use PLMs (in particular XLM
model (Conneau and Lample, 2019a)) with task-specific fine-tuning. Besides the claim
text, we also exploit query evaluation results to rank query candidates. More specifically,
to break draws between likely query options, we rank queries higher if their numerical
evaluation results match numbers that appear in claim text. In our experiments, we
demonstrate that Scrutinizer outperforms various baselines for all considered scenarios.

In summary, the original scientific contributions of this chapter are the following:
• We introduce the problem of mixed-initiative data-driven fact-checking and two

corresponding real-world use cases (Section 3.2).
• We describe the Scrutinizer system (Section 3.3), featuring semi-automated claim

to query translations (Section 3.4) and planning modules for optimally interacting
with fact-checkers (Section 3.5).

• We demonstrate experimentally that Scrutinizer performs well in several comple-
mentary scenarios, improving over purely manual fact-checking as well as automated
baselines (Section 3.6).
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3.2 Problem Model

Scrutinizer aims at mixed-initiative verification (MIV) of statistical claims from
relational data. The term “mixed-initiative” refers to the fact that our approach combines
feedback from human workers with automated verification.

Definition 2. One instance of the MIV Problem is defined by a quadruple 〈T ,P ,Q,L〉.
Here, T is the verification target. It describes the claims to verify, and the database used
for verification. Parameters P are configuration parameters. They constrain verification
and contain constants used for cost-based planning. Q is the query template. It describes
complete SQL queries to consider during verification. Finally, L maps template com-
ponents to text snippets, used for formulating associated questions to crowd workers. A
solution to MIV maps each input claim to a Boolean verification result and to an SQL
query justifying that result.

The goal is to reduce overheads for human fact-checkers in MIV. Optionally, the
input also contains training data mapping prior claims from the verification domain to
corresponding queries. This is however not required (“cold start scenario”) as training
data is dynamically collected during verification. Queries can validate claims in different
ways. Claims may explicitly mention numbers that can be matched against query
results. We call this claim category “Explicit Claims” (some prior work is specific to that
category (Jo et al., 2019)). Alternatively, claims may be verified by queries returning a
Boolean value, with the semantics that the claim holds if that value is true (“Implicit
Claims”). Next, we define the four components from Definition 2.

Definition 3. A Verification Target T = 〈C,D, s〉 is a set C of claims to verify,
a relational database D used for verification, and (optionally) a function s : C 7→ S
mapping claims to document sections. Each claim c ∈ C is defined by a natural language
description, containing the claim and relevant context. Each claim can be verified or
refuted by running an associated query on database D.

Definition 4. Configuration Parameters P include constants representing cost esti-
mates for different types of actions performed by human checkers. The specific parameters
and their semantics will be described in Section 3.5. Also, they include a confidence
threshold ρ for verification. Human workers are only used for claims where the confidence
of automated verification is below ρ. Finally, a parameter determines the number of
workers asked the same question.

Definition 5. A Query Template describes a space of SQL queries to consider during
verification. We distinguish Complete Templates, describing complete SQL queries,
from Fragment Templates, describing query parts. We define templates recursively.
Any SQL query fragment, using schema elements from the target database, or an SQL
keyword alone, is a (constant) template. Assuming that Q1, . . . ,Qn are templates, then
CAT (Q1, . . . ,Qn) is also a template. It represents the concatenation of queries (or query
fragments) matching templates Q1 to Qn. Similarly, CHC(Q1, . . . ,Qn) represents a
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choice among different templates. A query matches the choice template if it matches at
least one of the templates Q1 to Qn. Finally, if Q1 is a complete query template describing
queries that evaluate to scalar numerical results then EXP (Q1) is a template as well. It
matches all free arithmetic expressions that can be formed using queries matching Q1 (and
constants) as operands, and logical and arithmetic operators (but no other SQL keywords
such as FROM or SELECT). Templates using concatenation (CAT ), choice (CHC), or free
expressions (EXP ) are Composite Templates. We call templates used as operands
for concatenation, choice, or free expressions (here: Q1 to Qn) their Components.

Example 2. We instantiated Scrutinizer in a public Web interface (“CoronaCheck”)
for verifying single statistical claims about the novel Coronavirus, submitted by users,
using data from WHO and CDC. Data is represented as tables, containing numbers
(e.g., the number of confirmed cases) for different time periods in different columns,
and data for different regions in different rows. For instance, we support compara-
tive claims about the number of confirmed cases. The corresponding query space is
described by a template of the form CAT (′SELECT ′,SQ,′>′,SQ) where SQ is a tem-
plate matching lookup queries, retrieving the number of cases for specific regions and
times. SQ is defined as CAT (′SELECT ′,T ,′ FROM NrCases WHERE′,CP ), where
T = CHC(′Jan′,′ Feb′, . . .) is a choice over time periods (represented as column names)
and CP = CAT (CN ,′= Cname′) models restrictions of the region (i.e., an equality
predicate on the country name column). E.g., the query

Select
Select Feb From NrCases Where Cname='Germany' >
Select Jan From NrCases Where Cname='Germany'

matches that template. Overall, we use a choice template for verification. Each component
represents queries used to verify one popular type of claim, including the one described
above.

Our goal is to map claims to queries. If automated verification fails, we solicit feedback
from human fact-checkers. The labeling function allows us to formulate questions to
workers for narrowing down queries for a given claim.

Definition 6. The Labeling Function L maps query template components to text for
formulating questions. It maps each choice element (CHC) to a question text, and,
optionally, each choice option to a human-readable label. Also, it maps each formula
element (EXP ) to question text, asking workers to select an appropriate formula. No
labels are needed for constant query fragments and concatenations. We also call choice
and expression elements choice points or query properties, as they entail claim-specific
decisions.

Next, we show how to instantiate this model for our two use cases: verifying IEA and
Coronavirus claims.

Example 3. At IEA, claims are extracted from reports by the head of the fact-checker
team (potentially adapting claim text slightly to make claim context more apparent).
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Figure 3.2: Architecture of Scrutinizer.

Claims are verified from a database containing hundreds of tables containing historical data
(e.g., on energy consumption and production) as well as simulation results. Claims can be
verified using the query template CAT (′SELECT ′,EXP (SQ)). Component template SQ
models data lookups and is of the form CAT (′SELECT ′,Y R,′ FROM ′,TB,′WHERE′,CD).
Y R denotes a specific year (generally modeled as columns by IEA), TB the table name
(associated with a specific scenario such as global forecast of CO2 emissions), and
CD = CAT (′Index =′,PV ) a condition fixing the primary key column (generally called
“Index”) to a specific value. We model formulas using the year itself as a numerical
operand via a sub-query accessing a special identity table (mapping each year to itself).
The labeling function assigns for instance Y R to the question text “What is/are the cor-
responding year(s)?” that is shown to crowd workers to solicit feedback (see Figure 3.3).
Also, L(EXP (SQ)) =“Enter a formula translating the claim!”. For highest accuracy,
IEA requires manual verification of each claim (a confidence threshold of ρ = 100%).
The added benefit of Scrutinizer lies in suggesting likely verification options to save
checking time. As a final step for each claim, workers are asked whether the associated
query (with evaluation result) validates or refutes the claim.

The query template above matches the query from Example 1. Here, the free
expression uses the POWER function and four instances of SQ (two lookups and two year
values, internally modeled as lookups in the identity table). CoronaCheck does not
yet introduce new expressions on the fly, based on user feedback, while we consider
this possibility for the IEA scenario. Hence, we use fixed formulas in the CoronaCheck
templates but a free expression (EXP ) element for the IEA template.

Example 4. The query template for CoronaCheck was described in Example 2. If
classifier confidence is above a threshold of ρ = 0.9, users are shown a Boolean verification
result. Clicking on the result reveals query and data used for verification. If confidence
is below the threshold, users are shown a dialog soliciting them to select query and
data themselves (by selecting from given answer options). Based on crowd feedback,
Scrutinizer improves accuracy over time.
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Algorithm 1: Main verification algorithm.
// Verify claims C using models M and return verification results.

1 Function Verify(C,M):
// Initialize verification result

2 A← ∅
// While unverified claims left

3 while C 6= ∅ do
// Select next claims to verify

4 N ←OptBatch(C,M)
// Select optimal question sequence

5 S ←OptQuestions(N ,M)
// Get answers from fact-checkers

6 A← A∪GetAnswers(N ,M ,S)
// Retrain text classifiers

7 M ←Retrain(N ,M ,A)
// Remove high-confidence claims

8 C ← C\Verified(N ,M ,A)
// Return verification results

9 return A

3.3 System Overview
Figure 3.2 shows a simplified overview of Scrutinizer. The system encompasses two
primary components. The automated translation component leverages machine learning
to identify the elements that define every claim, i.e., candidates for datasets, attributes,
rows, and comparison operations. The question planning component interacts with
human domain experts to verify such elements and the checking results, optimizing
verification tasks for maximal benefit.

Verification comprises the following high-level steps. First, based on the query
template (Definition 5), we create a set of text classifiers. We introduce classifiers
for choice points in the query template, as detailed in Section 3.4.1. Those classifiers
map claim text to query properties. If available, they are trained with pairs of claims
and queries from prior verification sessions. Second, as an alternative to automatic
classification, we generate a set of questions on query properties about each claim. Those
questions can be asked, optionally, to human fact-checkers, if classification confidence is
below a threshold. Section 3.4.2 provides details on question generation.

After those preparatory steps, an iterative verification algorithm starts. It runs
until all claims have been verified with sufficiently high confidence. The corresponding
pseudocode in Algorithm 1 is simplified for readability and contains only the most
important parameters (e.g., we do not explicitly refer to configuration parameters P).

In the simplest case, based on previous training data, we are able to map each claim to
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Figure 3.3: Screen soliciting workers to select relevant years for marked up claim.

a query with sufficiently high confidence. Typically, this is not possible. For instance, IEA
generally requires utmost precision in their reports. To achieve an accuracy close to 100%,
inspection by human workers is generally required. Scrutinizer therefore interacts
with human workers, asking them to verify classifier results or to suggest alternatives.
Figure 3.3 shows an example screen (the lower screen half, asking workers to enter new
years if needed, was cropped). We submit claims to workers in batches. Optionally, the
same claims are verified by multiple workers (the number of workers can be configured).
If so, we take the majority vote in case of conflicting answers. For free expressions, we
use a simple normalization method (e.g., we remove spaces and capitalize symbols) before
comparing answers of different workers. Depending on the scenario, we may be able to
choose the order in which claims are verified. For IEA for instance, we can choose which
out of hundreds of claims in a given report are verified first. We prioritize claims in a
principled manner, outlined in Section 3.5.2, to minimize expected verification cost. We
take into account the expected verification cost (which is lower if classifier suggestions
are expected to be accurate) as well as utility in improving classifier precision. The latter
point applies since answers from human workers can be used immediately as additional
training data, thereby benefiting the verification of remaining claims.

Validating claims is easier for humans if the system suggests correct answer options
for questions on query properties. As described in detail in Section 3.4.3, we rank likely
queries (according to our classifiers) based on their query evaluation results. If presenting
workers with answer options, we show them in order of likelihood to minimize expected
overheads. Section 3.5.1 contains more details on how we select and prioritize questions
asked about specific claims.

3.4 Claim Translation
We exploit three sources of information to translate claims to queries. First, we introduce
classifiers that use claim text as features. Second, we request feedback from human
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Algorithm 2: Initializing ML classifiers.
// Get classifiers for choice points in query template Q.

1 Function InitML(Q):
// Distinguish type of query template

2 if Q is constant then
3 return ∅ // No classifiers needed

4 else if Q = CAT (Q1, . . . ,Qn) then
// Combine classifiers of components

5 return ∪1≤i≤n{InitML (Qi)}
6 else if Q = CHC(Q1, . . . ,Qn) then

// Classifiers for choice and components
7 return ∪1≤i≤n{InitML (Qi)} ∪ {MCHC(Q)}
8 else if Q = EXP (QS) then

// Classifiers for expression and component
9 return {InitML(QS)} ∪ {MEXP(Q)}

fact-checkers. Third, we use evaluation results from candidate queries to rank them by
likelihood. The following subsections discuss those mechanisms in more detail.

3.4.1 Claim Classification

For a given scenario, the query template (see Section 3.2) defines the search space for
queries. It defines degrees of freedom in the form of choice points (i.e., one out of several
options is correct) and free expressions. We introduce one classifier for each of those query
properties. Those classifiers exploit claim text as well as the claim location (e.g., the claim
section for IEA reports) as features. Different types of classifiers can be used. We exploit
pre-trained language models that are fine-tuned by task-specific training (Conneau and
Lample, 2019a).

Algorithm 2 illustrates which classifiers are created for a given query template. This
is done before the actual claim verification starts. Algorithm 2 takes the query template
as input, the output is a set of classifiers linked to specific choices in the query template.
Function InitML decomposes input templates and collects classifiers for components
via recursive invocations. The behavior of the function depends on the type of input.
No classifiers are necessary for constant query templates. For concatenations, we take
the union of the classifiers for the concatenation operands (the components). Similarly,
we union classifiers from components for choice elements together with a new classifier
(initialized with functionMCHC(Q)) in charge of selecting one of the choice options. For
free expressions, we collect classifiers for the component and introduce a new classifier
to determine the expression itself (functionMEXP (Q)). After initialization, classifiers
are trained during verification, using input from human fact-checkers. Optionally, they
can be trained before verification starts if training data is available, e.g, in case of IEA,
labels from prior text versions.
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Template Type CAT CHC EXP

Answer Multiplicity [l,u] [0,u] [0,∞]

Table 3.1: New bounds on answer multiplicity given components with bounds [l,u].

Example 5. Consider the query template from Example 3 (IEA). The template is defined
as a concatenation between a constant and a free expression. The free expression, in
turn, depends on a component that represents an SQL query. Here, we introduce a
classifier determining the free expression, a classifier determining the table TB within
the sub-query, one for the year Y R, and one for the row index PV .

3.4.2 Generating Questions

Classifier accuracy is limited as automated natural language understanding is imperfect.
Also, classes may be initially unknown, e.g., a claim whose associated query uses an
expression that has not appeared before. To make up for the limitations of automated
translation, we may request feedback from human workers. We introduce questions for
each property of the query template. This means that each classifier is complemented
by a question. Its answer, for a specific claim, replaces the classification result. Note
that all those questions are optional. We may not ask about a query property if the
confidence of the corresponding classifier is sufficiently high. Also, the answer to one
question may prune possible answers for another question about the same claim. We
discuss in Section 3.5 how to select which questions/answers to expose in which order.
Here, we discuss how to generate the set of possible questions.

We omit the code for generating questions as it is similar to the one for generating
classifiers (Algorithm 2) and describe the differences instead. For each initialized classifier,
a corresponding question is introduced. The question uses text snippets, given via the
labeling function L (see Section 3.2). For context, workers are shown the claim text
along with the question. Furthermore, workers can select between multiple ranked answer
options. In that context, we must decide how many answers workers can select. For
instance, given a choice between constant query fragments, only one single answer can be
accepted. On the other side, free expressions may contain a number of symbols that is
a-priori unknown. Hence, unless the concrete expression is known, an arbitrary number
of selections can be made for any answers that refer to the component template. We
calculate lower (l) and upper bounds (u) on allowed answer multiplicity in a bottom-up
approach with the recursive rules in Table 3.1. Given a question about a query template
with answer multiplicity in [l,u], it shows multiplicity after inserting the template as a
component into a composite template.

Example 6. Consider the sub-query element (SQ) from Example 3. It must contain
exactly one year, hence we have multiplicity bounds [1, 1] for questions on the year as long
as we consider SQ alone. However, SQ appears inside a free expression. This changes
the multiplicity range to [0,∞] according to Table 3.1. This means that, when asking
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Algorithm 3: Generating candidate queries using classifiers.
// Generate most likely queries matching Q, using k most likely

alternatives per choice according to ML classifiers M, for claim
c.

1 Function GQ(Q,M , k, c):
// Distinguish type of query template

2 if Q is constant then
3 return Q
4 else if Q = CAT (Q1, . . . ,Qn) then

// Combine most likely queries from components
// return GQ (Q1,M , k, c)× . . .×GQ (Qn,M , k, c)

5 else if Q = CHC(Q1, . . . ,Qn) then
// Most likely queries for most likely choices

6 return {GQ (QS ,M , k, c)|QS ∈M(Q, k, c)}
7 else if Q = EXP (QS) then

// Get most likely operands
8 O ←GQ(QS ,M , k, c)

// Most likely expressions using operands
9 return {e.substitute(O)|e ∈M(Q, k, c)}

workers which years are relevant for a claim (see Figure 3.3), we allow them to select
arbitrarily many options.

Beyond questions on specific query properties, manual verification of each claim ends
with a question asking workers to validate the query as a whole (i.e., all properties) and
to determine the final claim verification result.

3.4.3 Query Generation

Besides the claim text, we also use query evaluation results to rank queries. This ranking
determines the order in which options are shown to workers (see Section 3.5). For Boolean
queries, a true result typically indicates that the query verifies the claim. Hence, as a
heuristic, we rank queries returning “True” above queries returning “False” (or “Null”).
This assumes that accurate claims are more likely than inaccurate claims, an assumption
that has been used in prior work (Jo et al., 2019) and holds for our test scenarios. Queries
with numerical result typically validate a claim by calculating numbers that appear in
claim text. Hence, we heuristically rank queries by the distance between query result
and numbers that appear in claim text (we use the number with minimum distance if
the claim contains multiple numbers).

Of course, we cannot evaluate all possible queries matching the template. Instead,
we focus on queries that are likely according to classifiers and worker answers (if any).
Algorithm 3 shows how we derive the scope of queries for evaluation. The pseudocode
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is simplified, assuming that only classifier results but no worker answers are considered.
Worker answers may prune classes further.

Algorithm 3 uses the scenario-specific query template, the trained classifiers, the
current claim, and an integer parameter k as input. Parameter k determines how many
of the most likely alternatives to consider for each query property. Function M(Q, k, c)
retrieves the k most likely alternatives for the classifier associated with query template
Q, considering the text and location (section) of claim c. The algorithm composes likely
queries for a template by combining likely queries for its components (obtained via
recursive invocations). For instance, for concatenation, likely queries are formed via cross
product between likely queries for components. For free expressions, likely queries are
created in two steps. First, we retrieve a likely set of operands (Line 16) via recursive
invocation. For the k most likely operands, we instantiate the k most likely expressions in
all possible ways. I.e., we substitute their symbols with most likely operators, considering
all possible permutations.
Example 7. Consider the query template from Example 3 again. Assume we obtained
formula POWER(a/b,1/(c-d))-1 as free expression (either by classification with suffi-
ciently high confidence or by asking human workers). Furthermore, assume that the most
likely operands for the formulas are the years 2016, 2017, and 2018, and two sub-queries
retrieving energy demand data for years 2016 and 2018, respectively. We evaluate queries
5 · 4 · 3 · 2 = 120 queries, considering all possible substitutions via likely operators. As
the claim text (see Example 1) contains the number 3%, we rank by the distance between
query result and that number. When proposing answer options to workers, we order them
according to the rank of the query they appear in.

3.5 Question Planning
Question planning consists of two tasks: determining optimal questions to verify single
claims, and determining an optimal verification order between claims. We discuss the
first problem in Section 3.5.1 and the second one in Section 3.5.2.

3.5.1 Single Claim Verification

For each claim, we generate a series of screens (Figure 3.3 shows an example). Each
screen contains questions that are answered by a worker. Each screen is associated with
one specific query property. On the upper part of each screen, workers are shown a set of
answer options with regards to the current property. Those answer options are obtained
from our classifiers. On the lower part of each screen, workers have the option to suggest
new options, if the correct answer is not on display. The final screen for each claim asks
directly for the query translating the current claim. Answers to prior questions may
have allowed us to narrow down the range of possible queries. If so, the chances for
confronting workers with the correct query increase.

In this scenario, our search space for question planning is the following. First, we
need to decide how many screens to show. Second, we need to determine what query
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properties our questions should focus on. Third, we need to decide how many answer
options to display on each screen. Fourth, we need to pick those answer options.

We make those decisions based on a simple cost model, representing time overhead
for crowd workers for verifying the current claim. We assume that workers read screen
content from top to bottom. For each answer option, a worker needs to determine whether
it is correct or not. We count a per-option verification cost in our model, distinguishing
cost of verifying answers about query properties, vp, from the cost of verifying the full
query (on the final screen), vf . We choose constants such that vp � vf to account for the
fact that full queries are significantly longer than their fragments (which increases reading
time and therefore verification cost). If none of the given options applies, crowd workers
must suggest an answer themselves. We denote by sp and sf the cost of suggesting
answers for properties and queries (again, sp � sf ).

First, we discuss how to choose the number of screens and answer options. We denote
the number of screens by nsc and the number of options by nop. Predicting the precise
verification cost for specific choices of those parameters is not possible. Doing so would
require knowing the right solution to each question (as it determines how many options
workers will read). However, we can upper-bound verification cost in relation to the cost
of verifying claims without Scrutinizer (the proofs for this and the following theorems
can be found in Appendix A.6).

Theorem 1. Compared to the baseline, relative verification overhead of Scrutinizer is
at most (nop · vf + nsc · (vp + sp))/sf .

Corollary 1. Setting nop = sf/vf and nsc = sf/(vp + sp) limits verification overheads
to factor three.

We will use the aforementioned setting for most of our experiments. Having determined
the number of screens and options, we still need to pick specific screens and answers.
First, we discuss the selection of answer options. Note that the worst-case verification
cost of a property depends only on the number of options shown (but not on the options
themselves). Hence, to pick options, we consider expected verification cost instead.

We calculate expected verification cost based on our classifiers, assigning specific
answer options to a probability. For a fixed property, denote by A the set of all relevant
answer options. Also, denote by pa the probability that an answer a ∈ A is correct. We
calculate expected verification cost when presenting users with an (ordered) list of answer
options 〈a1, . . . , am〉 where ai ∈ A.

Theorem 2. The expected verification cost for answer options 〈a1, . . . , am〉 is vp ·∑
i=1..m(1−∑1≤j<i pai).

Corollary 2. Selecting answer options in decreasing order of probability minimizes
expected verification cost.

We illustrate screen design by an example.

Example 8. Consider the query from Example 1. Our goal is to obtain feedback on
the “Index” property. Our classifier ranks options in descending order of probability as
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follows: PGElecProd, PGElecDemand, and PGaccess. Assuming that it takes workers
two times longer to look up the correct alternative themselves, compared to validating a
given option, we select the first two options to display on screen (and a field to write the
correct answer if not shown).

Finally, we discuss the selection of query properties. Our goal is to select the best nsc
properties to verify by creating corresponding screens. We define the quality of a property
as follows. At any point, we consider a set of likely query translations for a claim. A
good property has high pruning power with regards to the current set of candidates.
This means that it allows us to discard as many incorrect candidates as possible. The
following example illustrates pruning.

Example 9. Assume a worker selects year 2030 in Figure 3.3. Implicitly, this decision
prunes all possible expressions that use more (or less) than one symbol (to represent the
year). E.g., we prune formula a+1 since it contains too few placeholders.

How many query candidates we can prune depends on the correct property value.
Depending on the answer we obtain from the fact-checkers, more or less queries can be
pruned. We do, of course, not know the correct answers when selecting questions. Hence,
we define the expected pruning power of a set of properties as follows.

Definition 7. Given a set Q of query candidates, a set S of query properties to verify,
and trained models M predicting a-priori probabilities for possible answers, we define
the pruning power P(S,Q,M) as the expected number of queries that are excluded by
obtaining answers for S.

Next, we provide a formula for pruning power, based on simplifying assumptions. For
that, we denote by ais the i-th answer option for property s ∈ S and by Eis ⊆ Q queries
that are excluded if answer option ais turns out to be correct. We assume independence
between pruning probabilities for different query properties. While this assumption
is simplifying, it allows us to use simple optimization algorithms (we may consider
extensions in the future). Also, we assume that answer options are mutually exclusive
(which holds for most, even not for all, query properties).

Theorem 3. The pruning power P(S,Q,M) is given by
∑
q∈Q(1−∏s∈S

∑
i:q /∈Ei

s
Pr(ais correct|M)).

Next, we discuss the question of how to find property sets maximizing the above
formula. Iterating over all possible property sets is possible, but expensive (exponential
complexity in the number of properties). Instead, we select properties according to a
simple, greedy approach. At each step, we add whichever property maximizes pruning
power to the set of selected properties (when comparing properties to add, we calculate
pruning power for the union between the new and previously selected properties). We
stop once the number of selected properties has reached the threshold determined before.
An illustrative example follows.

Example 10. We consider two queries and three properties. Assume property one prunes
query one with probability 0.7 and query two with probability 0.3. The corresponding
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numbers are 0.5 and 0.9 for property two, and 0.1 and 0.95 for property three. We
select screens for verifying two properties (i.e., nsc = 2). If selecting property one,
the expected number of remaining queries is 0.3 + 0.7 = 1. It is 0.5 + 0.1 = 0.6 for
property two and 0.9 + 0.05 = 0.95 for property three. Hence, we greedily select property
two first. Assuming independence, selecting property one next leads to an expected
number of 0.5 · 0.3 + 0.1 · 0.7 = 0.22 queries remaining. Selecting property three yields
0.5 · 0.9 + 0.1 · 0.05 = 0.455 queries. Hence, we select property one next.

While this algorithm may seem simple, it offers surprisingly strong formal guaran-
tees. Those guarantees are derived from the fact that pruning power is a sub-modular
function (Nemhauser and Wolsey, 1978). We define sub-modularity below.

Definition 8. A set function f : S 7→ R is sub-modular if, using ∆f (S, s) = f(S∪{s})−
f(S), it is ∆f (S1, s) ≥ ∆f (S2, s) for any S1 ⊆ S2.

Intuitively, sub-modularity captures a “diminishing returns” behavior. If adding more
elements to a set, the utility of new elements decreases as the set of previous elements
grows. The pruning power function is sub-modular as well, according to the following
theorem.

Theorem 4. Pruning power is sub-modular.

Next, we show that the simple greedy algorithm produces a near-optimal set of
questions.

Theorem 5. Using the greedy algorithm, we select a set of questions that achieve pruning
power within factor 1− 1/e of the optimum.

Finally, we analyze time complexity (denoting by nsc the number of screens, by npr
the number of properties, and by nqu the number of query candidates).

Theorem 6. Finding optimal question sequences for verifying single claims is in O(nsc ·
npr · nqu).

3.5.2 Claim Ordering

We consider two criteria when selecting the next claims to verify. First, we consider
the benefit of claim labels for training our classifiers (for automated claim to query
translation). Second, we consider the expected verification cost.

The first point relates to prior work on active learning. Here, the goal is generally
to select optimal training samples to increase the quality of a learned model. In our
case, verified claims correspond to training samples for classifiers that translate claims
to queries. We follow the popular heuristic of picking training samples with maximal
uncertainty and define the training utility as follows.

Definition 9. Let m ∈M be a model predicting specific properties of the query associated
with a text claim c. We assume that m maps each claim to a probability distribution over
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property values. Denote by e(m, c) the entropy of that probability distribution. We define
the training utility of c, u(c) by averaging over all models (associated with different query
properties): u(c) = ∑

m∈M e(m, c).

The second point (verification cost) relates to the cost model discussed in the previous
subsection. However, this cost model is incomplete. It neglects the cost of understanding
the context in which a certain claim is placed. Intuitively, verifying multiple claims in
the same section is faster than verifying claims that are far apart in the input document.
Our extended cost model takes this into account. It calculates verification cost for claim
batches.

Definition 10. Denote by C a batch of claims for verification. For each claim c ∈ C,
denote by s(c) the section in which this claim is located (instead of sections, a different
granularity such as paragraphs can be chosen as well). Denote by v(c) the pure claim
verification cost for c defined in the last subsection. Further, denote by r(s) the cost of
reading (respectively skimming) section s. We define the total (combined verification and
skimming) cost for claim batch C as the sum of both verification cost over all claims and
reading cost over all associated sections: t(C) = (∑c∈C v(c)) + (∑s∈{s(c)|c∈C} r(s)).

This cost model captures the desired property that verifying claims in the same
section is faster. Our approach to claim ordering is based on this model. It is not useful
to determine a global claim order before verification starts. We cannot predict how
the quality of classifiers (and therefore claim verification cost) will change over time.
Instead, we repeatedly select claim batches that are presented to the checkers. Those
claim batches are selected based on training utility and the aforementioned cost model.
To select claim batches, we solve the following optimization problem.

Definition 11. Given a set of unverified claims C, the goal of claim selection is to
select a claim batch B ⊆ C such that total cost of B remains below a threshold tm:
t(B) ≤ tm. Additionally, the minimal and maximal batch size is restricted by parameters
bl and bu: bl ≤ |B| ≤ bu. Under those constraints, the goal is to maximize accumulated
training utility

∑
c∈B u(c). Alternatively, as a variant, we minimize the cost formula

t(B)−wu ·
∑
c∈B u(c) where wu is a weight representing the relative importance of selecting

claims with high uncertainty for classifier training.

Analyzing complexity, we find the following.

Theorem 7. Claim selection is NP-hard.

The fact that claim selection is NP-hard justifies the use of sophisticated solver tools.
We reduce the problem to integer linear programming. This allows us to apply mature
solvers for this standard problem. Next, we discuss how we transform claim selection
into integer linear programming.

An integer linear program (ILP) is generally characterized by a set of integer variables,
a set of linear constraints, and a (linear) objective function. The goal is to find an
assignment from variables to values that minimizes the objective function, while satisfying
all constraints.
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We introduce binary decision variables of the form csi, indicating whether the i-th
claim was selected (csi = 1) or not (csi = 0). Also, we introduce binary variables of the
form srj to indicate whether section number j needs to be skimmed or not (to verify
the selected claims). Next, we express the constraints of our scenario on those variables.
First, we limit the number of selected claims to the range [bl, bu] by introducing the linear
constraints bl ≤

∑
i csi ≤ bu. Next, we represent the constraint that sections of selected

claims must be read. We introduce constraints of the form srj ≥ csi if claim i is located
within section j. Furthermore, we limit accumulated verification cost of the selected
claims by the constraint (∑i csi · v(ci)) + (∑j srj · r(sj)). Finally, we set −∑i csi · u(ci)
as objective function to minimize. We illustrate the transformation.

Example 11. We select up to two out of three claims for verification (i.e., bu = 2)
with a time limit of 4 minutes. The first two claims are located within the same section,
while the third one is in a separate section. We have uncertainties 0.3, 0.5, and 0.9
associated with the three claims. Each claim has an estimated verification time of one
minute. We estimate one minute for skimming a section as well, and set wu to one.
We introduce decision variables cs1 to cs3, representing claim selections, and rs1 and
rs2, representing skimmed sections. Verifying claims requires skimming their sections,
therefore cs1 ≥ sr1, cs2 ≥ sr1, and cs3 ≥ sc2. Under the constraint

∑
i=1..3 csi ≤ 2 and

(∑i=1..3 csi) + sr1 + sr2 ≤ 4, we minimize −0.3 · cs1 − 0.5 · cs2 − 0.9 · cs2. The optimal
solution selects claims two and three.

The time complexity for solving a linear program generally depends on the solver and
the algorithm it selects to solve a specific instance. However, the number of variables
and constraints often correlates with solution time.

Theorem 8. The size of the ILP problem is in O(cc · sc) where cc is the claim count
and sc the section count.

3.6 Experiments

We evaluated Scrutinizer using real data along four dimensions: (i) the accuracy and
efficiency of the query generation from text w.r.t. state-of-the-art methods, (ii) the
end-to-end effectiveness of the system in real verification tasks with domain experts, (iii)
the effectiveness and efficiency of question scheduling, (iv) the impact of the quality of
the user feedback on the results. The code of the system is available at https://github.
com/MhmdSaiid/statchecker. More experimental results can be found in Appendix A.3.
Datasets. Our experiments are based on the two use cases described in Examples 3
and 4. For the coronavirus claims, we generated 3M true claims starting from the data
(Appendix A.1). This synthetic corpus enabled us to bootstrap the classifiers, and we
denote it as C19L. For testing the system with unseen claims, we analyzed the log of more
than 30K claims tested by users on the website. We found that around 60% of the claims
are statistical and, among those, we have the datasets to verify 70%. From the claims
that the system can check, we manually annotated 55. For the IEA claims, we obtained

https://github.com/MhmdSaiid/statchecker
https://github.com/MhmdSaiid/statchecker
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a document of 661 pages, containing 7901 sentences, and the corresponding corpus of
manually checked claims, with check annotations for every claim from three domain
experts. The annotations cover 2053 numerical claims, out of which we identified 1539
having a formula that occurs at least five times in the corpus. We denote the resulting
dataset as IEAL. After processing the claims, we identify 1791 relations, 830 row indexes,
87 columns, and 413 formulas. Around 50% of the values for all properties appear at
most 10 times in the corpus, with the top 5% most frequent formulas appearing at least 8
times. In another paper (Saeed and Papotti, 2021), we further compare the systems with
an additional dataset related to Basketball Data (BBL) (Reiter and Thomson, 2020)1.
We utilize 132 tables with 1523 real annotated claims provided in the repository for the
testing step. We generate ourselves the training data from the tables, as in the C19
scenario (Rezgui et al., 2021). We obtain an initial dataset of 32.3K samples, where 90%
is used for training classifiers and 10% for validation. The dataset used for bootstrapping
is denoted by BBLL and the test dataset as BBLS. The datasets (BBLS and C19S)
are publicly available2. Examples datapoints of the datasets are shown below.
IEA Datapoint:

• Claim(underlined): Renewables and nuclear power generated more electricity
than coal for the first time in 2019, and are on track to open a permanent lead.

• Formula: (a+ b) > c

• File: outlookElectricity_World.csv (OEW)
• Attribute Label: 2019
• Row Indices: pgoutrenew (a), pgoutnuclear (b), pgoutcoal (c)
• Query:

q1 = SELECT 2019 FROM OEW WHERE Index= pgoutrenew
q2 = SELECT 2019 FROM OEW WHERE Index= pgoutnuclear
q3 = SELECT 2019 FROM OEW WHERE Index= pgoutcoal
Final Query = SELECT ((q1 + q2) > q3)

C19 Datapoint:
• Claim: The number of confirmed cases increased in France in from March 2022

to May 2022.
• Formula: b > a

• File: ConfirmedCases.csv
• Attribute Labels: March_2022, May_2022
• Row Index: France

1https://github.com/ehudreiter/accuracySharedTask
2https://zenodo.org/record/5128604#.YPrSgXUzZuU

https://github.com/ehudreiter/accuracySharedTask
https://zenodo.org/record/5128604#.YPrSgXUzZuU
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Table 3.2: Ratio of supported claims.

AggCheck Tapas TabFact Scrutinizer

IEAL 33.06% 17.02% 27.28% 74.96%

C19L 21.49% 21.49% 37.82% 100%

BBLL 53.00 % 56.17% 56.17% 56.17%

BBL Datapoint:
• Claim: Mike Conely scored the most points in the Utah Jazz vs Boston Celtics

game.
• Formula: Max(Points) == a

• File: UtahBoston.csv
• Attribute Label: Points
• Row Index: Mike Conely

3.6.1 Statistical Claim to Query

We compare the performance of our query generator solution against three state-of-the-art
systems. We characterize such systems by proposed dimensions, on the input and output
levels, as a basis for comparison (Saeed and Papotti, 2021). The dimensions can be found
in Appendix A.5.

The first system, AggCheck (Jo et al., 2019), translates statistical claims into SQL
queries for verification. The second, TabFact, exploits PLMs to encode the linearized
table (taken as input) and a statement into continuous vectors for verification (Chen
et al., 2020b). We fine-tuned the PLM with the training examples in our experiments.
The third, Tapas, is a question answering system that extends BERT’s architecture to
encode tables as input (Herzig et al., 2020). Its pre-trained semantic parsing model takes
as input a sentence and a table obtaining state-of-the-art accuracy in several datasets.
We tried automatically translating claims to questions as pioneered by the ClaimBuster
system (Hassan et al., 2017a). The precision was however not satisfactory (e.g., we did
not obtain any questions for 7 out of the 20 IEA claims considered next), upper-bounding
the precision of even a perfect natural language query interface. Instead, we manually
translated claims into questions. For BBLS, we relied on a pattern-based script to
generate questions.

Both natural language baselines have limitations on the input data and on the query
space. However, they report top performance in semantic parsing datasets because
the majority of examples in these are limited to one (small) relation and simple oper-
ations (Chen et al., 2020b; Herzig et al., 2020). These limitations are reflected in the
smaller percentage of claims that the baselines can handle with their set of functions,
as reported in Table 3.2. One of the reasons why Scrutinizer covers a much larger
number of claims is its ability to combine multiple functions in the verification expression,
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Table 3.3: Verification accuracy on the small datasets.

Tapas TabFact AggCheck Scrutinizer

C19S 0.64 0.76 0.44 0.80
IEAS 0.07 0.58 0.5 0.65
BBLS 0.41 0.17 0.13 0.51

however, the system is limited by the amount of available data. More than 22% of the
claims in IEAL has a total of three or more variables and functions (42% for log claims
in C19L), we observed expressions with up to 14 operators. To enable a comparison
against the baselines, we selected a subset of suitable claims from our datasets. We
automatically identified explicit claims that require only one relation for the verification
and with mathematical operations supported by both baselines. We denote these simpler
datasets as C19S and IEAS. After the selection, these small datasets contain 0.92%
and 15.6% of the claims in the original C19L and IEAL, respectively. As indicated for
BBLS, we utilize the claims in the repository and generate data for BBLL.

All baseline methods require the associated relation as input, so we fed the same
information also to Scrutinizer. For Tapas, we limit the input to a sample of 11 tuples,
including the one needed to verify the claim, as the system fails with the entire relation
as input. For Scrutinizer and TabFact, the training set contains 3000 claims, while
Tapas and AggCheck have no training step. Notice that for Scrutinizer we use the
top-10 output from the classifiers without relying on the user feedback in this experiment.
We also note that our system requires having the SQL template as an input, since it
follows a slot-filling approach to generate the final query (Choi et al., 2021).

Table 3.3 reports the results of the experiments with the four systems on the test
claims filtered from the large datasets to be supported by the baselines.We observe that
Scrutinizer outperforms all the baselines. Moreover, only AggCheck and Scruti-
nizer return a query to “explain” their decision, while the others are not immediately
interpretable. It is also evident that Coronavirus claims are easier to handle as the
number of operations, rows and attributes is smaller than for the IEA claims. For C19S,
Scrutinizer fails only for claims which require formulas that it has not learned yet. For
BBLS, low results are explained by the fact that all systems have low coverage of the
claims in the data and some claims require verification that spans across multiple tables.
We note that Scrutinizer requires annotations on multiple levels (table, row index,
attribute label, and formula), making it more ‘label-demanding’ than other systems.

For the execution times, we distinguish the training and the testing. Classifier-training
time is needed for Scrutinizer and TabFact; however, this is typically negligible (on
the studied datasets) with the usage of GPUs. AggCheck and TabFact, on the
other hand, have zero setup time. We report the execution times for all test data in
Table 3.4. Tapas is the slowest as the model is jointly computing the relevant cells
and performing an operation on them, compared to TabFact that requires a negligible
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Table 3.4: Execution time of the test datasets (seconds).

AggCheck Tapas TabFact Scrutinizer

C19S 280.41 991.52 23.09 0.03
IEAS 321.53 943.25 18.11 0.68
BBLS 3472.44 12709.45 40.20 236.64

amount of time to perform binary classification. Scrutinizer consumes negligible time
in classifier predictions, but the brute-force query generation process could potentially
take considerable amount of time when multiple combinations are available. AggCheck,
although having to perform evaluations of a large number of queries, successfully merges
the execution of similar queries to increase efficiency. In summary, all systems are usable
in reasonable time in our experience in an entry-level infrastructure with a low-end GPU.

3.6.2 User Study

In this experiment, we involved seven domain experts from the institution to measure the
benefit of our system compared to the traditional manual workflow for verification. We
trained Scrutinizer with all the annotated statistical (real world) claims and randomly
selected 43 claims among the ones with the 10 formulas that cover the majority of the
claims. As we only have access to the correct version of the claim, we randomly selected
25% of them to inject errors.

Three experts have been randomly assigned to the Manual process and the remaining
four to the System-assisted process. We gave them instructions to execute the test
without interruptions and without collaboration. Three claims (two correct, one incorrect)
have been used for training on the new process and the remaining 40 for the study. The
task given to the experts was to verify as many claims as possible in 20 minutes, given
access to their traditional tools in the manual process (spreadsheets and databases) and
to our system only in the second case. The order of the claims has been fixed to allow
comparison among experts, and the time for checking every claim has been registered.

We distinguish three cases: skipped claims, claims that have been correctly labeled,
and incorrect decisions. Results for each checker are reported in Figure 3.4. Considering
correct and incorrect checks, on average a user verifies 7 claims manually and 23 claims
with Scrutinizer in 20 minutes. Users tend to skip a comparable amount of claims in
both settings. In the System process, a few claims have been incorrectly checked. Those
are all correct claims labeled as incorrect. However, by using simple majority voting
over three checkers, the accuracy of the aggregate answers is 100% for both the Manual
and the System groups. There was only one claim where verification time using the tool
surpassed the traditional manual verification time. After investigating this case, it turned
out that this was due to sequential checking. The user consulted a relation different from
what we were expecting him to choose. The different relation led him to the correct
answer, but such relation was used also in the previous question with the same primary
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Figure 3.4: Number of claims verified in 20 minutes by checkers with the manual process
(M1–M3) and with our system (S1–S4).
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Figure 3.5: Average time to verify claims of increasing complexity with the Manual and
System processes.

key and attributes values, making this claim very fast to verify.
We also report in Figure 3.5 average verification time and standard deviation for

the two groups of checkers with claims of increasing complexity. The claim complexity
is the sum of the elements in the query to verify it: number of key values, attributes,
operations, constants and variables. Checkers using Scrutinizer take on average less
than half the time to verify claims of the same complexity. The average time taken
by checkers using our system for claims of 11 elements is lower than the time used by
checked with the manual process with 6 elements. We report in the plot claims for which
at least two checkers have been able to process it. We are therefore not showing in the
plot a checker using Scrutinizer who took on average 29 seconds to verify two claims
of complexity 14. We remark that for one claim of complexity 6, it took 203 seconds for
one of the Manual users to verify it, while for the same claim the slowest System user
spent 66 seconds on the same task.
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Figure 3.6: Accumulated verification time over verification period.

We conducted the study on a laptop (1.80GHz x 8 i7 CPU, 32 GB of memory). For
any claim, testing a classifier took less than 0.2 seconds and query generation took less
than half a second (0.35 seconds on average).

3.6.3 Simulation

In the previous subsection, we have demonstrated that Scrutinizer decreases verification
overheads for single claim batches. Next, we study the efficiency of Scrutinizer when
verifying entire reports. Verification time for entire reports is typically in the order
of months for IEA. Hence, we cannot use another user study. Instead, we created a
simulator, based on the results of our initial user study. We simulate the verification of
the 2018 IEA world energy outlook report, using the original claims and original data.
We assume a team of three fact-checkers (which is typical for IEA). We simulate a “cold
start” scenario, meaning that our classifiers have no initial training data. Instead, they
use claim labels provided by simulated fact-checkers. This corresponds to the worst case
for our system. It represents a scenario in which the very first version of a new report is
received and verified. Our model for verification time per claim is based on time measured
in the user study. It takes into account reduced verification overheads once proposed
query fragments are accurate. We compare three baselines. First, we consider manual
verification (“Manual”) which is the current default. Each claim is verified without any
computational support. Second, we consider a simplified version of Scrutinizer. This
version (“Sequential”) does not optimally reorder claims, as described in Section 3.5.2,
but verifies them sequentially (i.e., in document order) instead. We compare those two
approaches against the Scrutinizer system. For Sequential and Scrutinizer, we
assume that ten answer options are shown per property. For Scrutinizer, we use claim
batches of size 100, after which we retrain classifiers and select the next claims to verify
via ILP. Our simulator is implemented in Python 3, using Gurobi 9.0.1 as ILP solver.
Experiments were executed on a MacBook Pro with 2.4 GHz Intel Core i5 processor and
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Figure 3.7: Evolution of Scrutinizer and sequential average accuracy over verification
period.

8 GB memory.
Table 3.5: Summary of simulation results.

Manual Sequential Scrutinizer

Time (Weeks) 4.1 2.1 1.7
% Savings - 49% 59%
Avg. Accuracy - 40% 47%
Max Accuracy - 46% 53%
Comp. (Mins) - 14 28

Table 3.5 summarizes simulation results. We report total verification time for all
three fact-checkers, assuming an eight-hour work day and a five-day week. We make
the following observations. First, using Scrutinizer reduces verification overheads by
more than factor two (circa 60%). This is consistent with the results of our user study.
At the same time, it is remarkable since we consider a cold start scenario. The results
show that, given a sufficiently large document to verify, the initial warm-up period of
the classifiers does not impact overall performance by too much. Second, we observe a
positive impact due to claim ordering. While using Scrutinizer without that feature is
still helpful, cost savings increase when claims are systematically prioritized. Table 3.5
shows that, in the latter case, the average (and maximal) quality of classification over the
entire period improves. Figure 3.6 shows that Scrutinizer and the sequential baseline
are near-equivalent at the beginning of the classification process. Claim ordering pays off
more and more as verification proceeds. At the same time, computational overheads are
negligible for all compared systems. Scrutinizer spends 15 minutes in total to plan
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Figure 3.8: Evolution of classifier accuracy over verification period.

optimal question sequences, and for selecting optimal claims via ILP. The remaining 13
minutes are due to retraining classifiers.

Figure 3.7 analyzes classifier accuracy as a function of verification time. Scrutinizer
has initially a lower accuracy, as it selects claims that have low classifier confidence
(therefore useful for learning) but are relatively cheap to verify. Soon, active learning
starts paying off and the accuracy of Scrutinizer dominates the baseline. Scrutinizer
postpones verifying particularly expensive claims that are associated with low classifier
confidence. Once running out of other options, those claims are verified at the very end
(leading to a drop in accuracy).

Figure 3.8 decomposes accuracy for Scrutinizer (with claim ordering) according to
classifier type. The effect discussed in the last paragraph (a steep increase followed by
a drop towards the end) still hold when considering classifiers separately. Further, we
notice that certain properties are harder to infer from text. For instance, inferring row
indices is among the hardest classification tasks. This is intuitive, as the classification
domain (i.e., number of rows) is typically larger than for other classifiers (e.g., columns).

Finally, in Figure 3.9, we analyze accuracy for the top-k labels and for different
classifiers. In most cases, classifiers reach most of their potential with the first 10 entries.

3.6.4 Quality of User Feedback

We measure the impact of the quality of the annotations in three experiments: by
injecting synthetic errors, by varying the size of the training data, and by training the
models with the noisy examples gathered from the Web users of the system. We then
repeat each experiment three times and report the average accuracy. We report the
results for k = 5, as this is the default value in our experiments.

We start with the study of how the label error rate in the IEAL training data affects
the classifier accuracy. For each property, we randomly split the annotated claims into
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Figure 3.9: Top k accuracy for different Scrutinizer classifiers as a function of k.

Table 3.6: Accuracy on C19L vs. training data quality.

Relation Column Row Index

Web crowd 0.84 0.04 0.74
Generated 1 0.98 0.96

training and test sets (0.9/0.1 ratio). We then select a percentage of training claims at
random and change their target label with one of the possible labels (minus the correct
one). Figure 3.10 shows how accuracy varies as a function of the error rate for top-5
predictions. With an increasing number of mislabeled data points, all classifiers show
decreasing accuracy. However, even with up to 30% error rate, the results are close to
the case without noise. In our experiments, IEA checkers error rate is below 10% and
even Website users do not exceed the 30% rate. Finally, as expected, the accuracy gets
close to random guessing for very high ratio of error injection (0.9) and classifiers with a
small number of possible outputs perform better at any rate. We also observe similar
patterns with top-1 results.

In a second experiment, we vary the train/test ratio by sampling increasing portions
from the dataset and testing on the others. Figure 3.11 shows how properties with high
number of classes (e.g., row_index) perform poorly when the training data is small
compared to properties with a low number of classes (e.g., column).

Finally, we report on an experiment conducted with classifiers trained with the 1388
answers collected from our Web interface for the test dataset of C19L. Table 3.6 shows
that, even in a very noisy setting, without majority voting to filter out incorrect answers,
the classifiers for Relation and Row Index perform well, but accuracy for the Column
classifier is very low. In C19L, the number of classes when classifying relations, rows,
and columns, are all comparable. However, the semantics of claim text fragments tends
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Figure 3.10: Classifier accuracy as a function of the percentage of erroneous training
claims.

to be time-sensitive for the column classifier alone (e.g., semantics of the expression
“this month”). If re-training the column classifier each month (using labels collected
in that month alone), accuracy varies between 0.12 to 0.49 for the months January
to June (Appendix A.3.4). While we did not collect user answers for the formula, we
manually annotated 40 real examples from the log for the Formula classifier. We picked
two formulas that were not in the synthetic training data, i.e., max(a) and max(a/b),
with 20 labels each. We then incrementally added them to the training data and tested
on the remaining claims. The results show that the system is able to learn the two new
formulas after 12 examples per class. Also, in a small experiment described in more detail
in Appendix A.3.5, we verified that classifier confidence is significantly higher for claims
translating to queries that match the current template (confidence of 0.39 versus 0.94).

3.7 Related Work
Scrutinizer targets the verification of numerical claims from raw data. Our scope
differs from prior work not focused on verification (e.g., work on identifying check-
worthy claims (Hassan et al., 2017a; Jaradat et al., 2018) or on studying misinformation
spread (Sherchan et al., 2013; Ferrara et al., 2016)), from prior work verifying claims
given as logical formulae (e.g., for verifying claim robustness (Wu et al., 2014)), from
work on verifying claims from different types of data (e.g., Web documents (Mihaylova
et al., 2018; Thorne and Vlachos, 2018; Wang et al., 2018b) or databases of previously
checked claims (Karagiannis et al., 2019; Hassan et al., 2017b)), and from work that
focused on different claim types (e.g., claims associating entities with non-numerical
properties (Ciampaglia et al., 2015; Shi and Weninger, 2016; Gardner et al., 2014;
Gardner and Mitchell, 2015; Huynh and Papotti, 2019)). Scrutinizer connects to work
on explainable fact-checking (Leblay, 2017; Gad-Elrab et al., 2019; Ahmadi et al., 2019)
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Figure 3.11: Accuracy versus training set size.

as it verifies claims via queries whose structure can be explained to users.
Scrutinizer relates to prior efforts on data-driven analysis of statistical claims.

BriQ can map one explicit claim to the input dataset and supports only 6 operations
for a single user (Ibrahim et al., 2019). StatSearch considers a corpus of relations, but
supports only SP queries (no functions) and can search (not verify) one explicit claim
with a single user (Cao et al., 2018). The closest work is the AggChecker system (Jo et al.,
2019) in that it translates statistical claims into SQL queries for verification. Scrutinizer
supports however a richer query model (see Section 3.6), it assumes verification by a crowd
of fact-checkers (instead of single users), and it supports verification of long documents
(as opposed to short texts) by features such as question reordering for active learning.
Prior work on mixed-initiative fact-checking (Gatterbauer et al., 2009) does not translate
claims to SQL queries.

We translate text to SQL queries, thereby connecting to prior work on natural language
query interfaces (NLQI) (Agrawal et al., 2002; Li and Jagadish, 2014; Zhong et al., 2017;
Li and Jagadish, 2016; Saha et al., 2016; Weir et al., 2019; Iyer et al., 2017) and learning
query interfaces (Iyer et al., 2017; McCamish et al., 2019) in general. Our scenario differs
in multiple ways. First, most prior work assumes that domain-specific training data
is either already available (Zhong et al., 2017) or not required (Li and Jagadish, 2016,
2014; Agrawal et al., 2002). We propose methods for efficiently acquiring domain-specific
training data and show experimentally that generic methods do not work for our use
cases (Chen et al., 2020b; Herzig et al., 2020). Second, prior work (Agrawal et al., 2002;
Li and Jagadish, 2014; Zhong et al., 2017; Li and Jagadish, 2016; Saha et al., 2016; Weir
et al., 2019; Iyer et al., 2017; McCamish et al., 2019) typically considers translation of
single queries. Here, we consider large claim collections. This motivates claim context
as a feature (see Section 3.4) or claim selection as a planning problem (see Section 3.5).
We do not reason over the database with neural networks as other work (Thorne et al.,
2021), but instead use classifiers to predict query properties, thus offering explainability
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of the system’s decision. Finally, unlike prior work (Iyer et al., 2017), we decompose
query translation into sequences of simple questions (see Section 3.5.1) as writing entire
SQL queries is beyond the capabilities of domain experts employed for verification.

3.8 Conclusion
We introduced Scrutinizer, the first system for crowdsourcing the verification of general
statistical claims. Our solution effectively minimizes the amount of work needed by a
group of domain experts to verify textual claims in a document. We find that professional
fact-checkers from IEA verify claims twice as fast using Scrutinizer, compared to their
traditional workflow. However, this chapter covers only one of the two claims shown in
Figure 1.1. The first claim requires reasoning over facts and rules, which Scrutinizer is
not capable of. That said, we will see in the next chapter how to (i) augment PLMs with
soft logic rules, and (ii) test their logical performance on external datasets.





4 Emulating Soft Reasoners with RuleBert

While PLMs are the go-to solution to tackle many natural language processing problems,
they are still very limited in their ability to capture and to use common-sense knowledge.
In fact, even if information is available in the form of approximate (soft) logical rules, it
is not clear how to transfer it to a PLM in order to improve its performance for deductive
reasoning tasks. Verifying the first claim in Figure 1.1, requires the PLM to reason over
rules and facts. Not only that, but as some rules are accompanied by weights expressing
their confidence, it is key to incorporate such weights during the reasoning process in
order to verify a certain claim. In this chapter, we aim to bridge this gap by teaching
PLMs how to emulate reasoning with soft Horn rules. We introduce a classification task
where, given facts and soft rules, the PLM should return a prediction with a probability
for a given hypothesis. We release the first dataset for this task, and we propose a
revised loss function that enables the PLM to learn how to predict precise probabilities
for the task. Our evaluation results show that the resulting fine-tuned models achieve
very high performance, even on logical rules that were unseen at training. Moreover, we
demonstrate that logical notions expressed by the rules are transferred to the fine-tuned
model, yielding improvements on external datasets.

4.1 Introduction

PLMs based on transformers (Devlin et al., 2019; Liu et al., 2020b) are established tools for
capturing both linguistic and factual knowledge (Clark et al., 2019b; Rogers et al., 2020).
However, even the largest models fail on basic reasoning tasks. If we consider common
relations between entities, we see that such models are not aware of negation, inversion
(e.g., parent-child), symmetry (e.g., spouse), implication, and composition (Kassner et al.,
2020). While these are obvious to a human, they are challenging to learn from text
corpora as they go beyond linguistic and factual knowledge (Ribeiro et al., 2020; Kassner
and Schütze, 2020). We claim that such reasoning primitives can be transferred to the
PLMs by leveraging logical rules, such as those shown in Figure 4.1. Such augmented
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Input facts:
Mike is the parent of Anne. Anne lives with Mark. Anne is the child of Laure. Anne
lives with Mike.
Input rules:
(r1, .1) Two persons living together are married.
(r2, .7) Persons with a common child are married.
(r3, .9) Someone cannot be married to his/her child.
(r4, 1) Every person is the parent of his/her child.
Test 1: Laure and Mike are married.
Answer: True with probability 0.7 [r4, r2]
Test 2: Anne and Mark are married.
Answer: False with probability 0.9 [r1]
Test 3: Anne and Mike are married.
Answer: False with probability 0.9 [r1, r3, r4]

Figure 4.1: Examples of hypotheses that require reasoning using facts and possibly
conflicting soft rules (confidence shown to the right, with rule ids shown in brackets).

PLMs can aid in the verdict prediction phase of a fact-checking system (Nakov et al.,
2021a), resolving some of the logical deficiencies of standard PLMs.

While there have been initial attempts to teach reasoning with rules to PLMs (Clark
et al., 2020; Kassner et al., 2020), such approaches model only a subclass of logical rules.
In fact, current solutions focus on exact rules, i.e., rules that hold in all cases. In reality,
most of the rules are approximate, or soft, and thus have a certain confidence of being
correct. For example, across the 7,015 logical rules defined on the DBpedia knowledge
graph, only 11% have a confidence above 95%. In the example, rules r1–r3 are soft,
i.e., cover knowledge that is not true in all circumstances. Consider rule r2, stating that if
two persons have a child in common, they are most likely married. As r2 has a confidence
of being correct of 0.7, this uncertainty is reflected in the probability of the prediction.

With the above considerations in mind, here we show how to reason over soft logical
rules with PLMs. We provide facts and rules expressed in natural language, and we
ask the PLM to come up with a logical conclusion for a hypothesis, together with the
probability for it being true.

Unlike previous approaches (Clark et al., 2020), we enable deductive reasoning for a
large class of soft rules with binary predicates and an unrestricted number of variables.
Our model can even reason over settings with conflicting evidence, as shown in Test 3 in
Figure 4.1. In the example, as Anne and Mike live together, they have a 0.1 probability
of being married because of soft rule r1. However, we can derive from exact rule r4 that
Anne is the child of Mike, and therefore they cannot be married, according to soft rule
r3.

To model uncertainty, we pick one flavor of probabilistic logic programming languages,
LPMLN, for reasoning with soft rules (Lee and Wang, 2016). It assigns weights to stable
models, similarly to how Markov Logic assigns weights to models. However, our method
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is independent of the logic programming approach at hand, and different models can be
fine-tuned with different programming solutions. Our proposal makes use of synthetic
examples that “teach” the desired formal behavior through fine-tuning. In particular, we
express the uncertainty in the loss function used for fine-tuning by explicitly mimicking
the results for the same problem modeled with LPMLN.

Our contributions in this chapter can be summarized as follows:
• We introduce the problem of teaching soft rules expressed in a synthetic language to

PLMs through fine-tuning (modeled as binary classification). This is understudied
in the claim verification phase of a fact-checking system, as usually hard rules are
addressed.

• We create and release the first dataset for this task, which contains 3.2M examples
derived from 161 rules describing real common-sense patterns with the target
probability for the task obtained from a formal reasoner (Section 4.4).

• We introduce techniques to predict the correct probability of the reasoning output
for the given soft rules and facts. Our solution relies on a revised loss function
that effectively models the uncertainty of the rules (Section 4.5). Our approach
handles multi-variable rules and nicely extends to examples that require reasoning
over multiple input rules.

• We show that our approach enables fine-tuned models to yield prediction probability
very close to that produced by a formal reasoner (Section 4.6). Our PLM fine-tuned
on soft rules, RuleBERT, can effectively reason with facts and rules that it has
not seen at training, even when fine-tuned with only 20 rules.

• We demonstrate that our fine-tuning approach effectively transfers knowledge about
predicate negation and symmetry to the lower levels of the transformer, which
benefits from the logical notions in the rules. In particular, RuleBERT brings
enhancement in performance on three external datasets.

The data, the code, and the fine-tuned model are available at http://github.com/
MhmdSaiid/RuleBert.

4.2 Related Work

PLMs have been shown to portray some reasoning capabilities (Talmor et al., 2020b),
but fail on basic reasoning tasks (Talmor et al., 2020a; Helwe et al., 2021) and are
inconsistent (Elazar et al., 2021), especially when it comes to negation (Kassner and
Schütze, 2020). While some inconsistencies could be addressed by further training (Hos-
seini et al., 2021), our work focuses on deductive reasoning for PLMs, where alleviating
logical inconsistency is a side-product. Note that our work is different from previous
work, e.g., on measuring the factual knowledge of PLMs (Petroni et al., 2019), on probing
the commonsense capabilities of PLMs at the token or at the sentence level (Zhou et al.,
2020b), or on testing the reasoning capabilities of PLMs on tasks such as age comparison
and taxonomy conjunction (Talmor et al., 2020a). Our work relates to Task #15 in the
bAbI dataset (Weston et al., 2016) and to RuleTakers (Clark et al., 2020). However,

http://github.com/MhmdSaiid/RuleBert
http://github.com/MhmdSaiid/RuleBert
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we differ (i) by using a larger subclass of first-order logic rules (with more variables
and various forms), and (ii) by incorporating soft rules. Our proposal is different from
work on Question Answering (QA) with implicit reasoning based on common-sense
knowledge (Clark et al., 2019a), as we rely purely on deductive logic from explicitly stated
rules. Our approach also differs from methods that semantically parse natural language
into a formal representation on which a formal reasoner can be applied (Liang, 2016),
as we directly reason with language. Unlike previous work (Yang et al., 2017; Hamilton
et al., 2018; Minervini et al., 2020), we do not design a new, ad-hoc module for neural
reasoning, but we rely solely on the transformer’s capability to emulate algorithms (Wang
et al., 2019; Lample and Charton, 2020). Our work is related to Natural Language
Inference (NLI) and textual entailment, but we deal with soft Horn rules expresses in
language (MacCartney and Manning, 2009; Dagan et al., 2013). Our work is related
to the reasoner module of our system ExpClaim (Ahmadi et al., 2019). The reasoner
module takes similar input to that of RuleBERT, but in a logical form expressed in
a probabilistic logical program. With RuleBERT, we emulate the reasoner module of
ExpClaim with input expressed in synthetic English.

4.3 Background

In this section, we discuss logical rules that are obtained from DBpedia (Section 4.3.1),
how their confidences are computed (Section 4.3.2), and one flavor of soft logic that is
used in our experiments (Section 4.3.3).

4.3.1 Logical Rules.

We rely on existing corpora of declarative Horn rules mined from large RDF KGs (Galár-
raga et al., 2015; Ortona et al., 2018a; Ahmadi et al., 2020). An atom in a rule is a
predicate connecting two universally quantified variables. A Horn rule (or clause) has
the form: B → h(x, y), where h(x, y) is a single atom (head or conclusion of the rule)
and B (body or premise of the rule) is a conjunction of atoms. Positive rules identify
relationships between entities, e.g., r1, r2, r4 in Figure 4.1. Negative rules identify
contradictions, e.g., r3 in Figure 4.1. Rules can contain predicates comparing numerical
values, such as <. For example, negative rule r5: birthYear(b,d) ∧ foundYear(a,c) ∧
<(c,d) → negfounder(a,b) states that any person (variable b) with a birth year (d) higher
than the founding year (c) of a company (a) cannot be its founder. A fact is derived
from a rule if all the variables in the rule body are replaced with constants from facts.
For r5, facts “foundYear(Ford,1903), birthYear(E. Musk,1971), >(1971,1903)” trigger
the rule that derives the fact negFounder(E. Musk, Ford).

4.3.2 Rule Confidence.

Exact rules, such as r4, apply in all cases, without exception. However, most rules
are approximate, or soft, as they apply with a certain likelihood. For example, r3 in
Figure 4.1 is true in most cases, but there are historical exceptions in royal families. Rules
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are annotated with a measure of this likelihood, either manually or with a computed
confidence. To compute rule confidences, we start with the notion of confidence of a
positive rule from the literature (Galárraga et al., 2015).

The support of a rule is defined as the number of distinct pair of subjects and objects
in the head of all instantiations of the rule that appear in the KG:

supp( ~B → h(x, y)) := #(x, y) : ∃z1, ..., zn : ~B ∧ h(x, y) (4.1)

where z1, ..., zn are the non-target variables.
We remark that the support makes use of the non-target variables, but counts only

the number of distinct pairs for the head values. Consider the rule “if two persons have
a child in common, they are in the spouse relation” (hasChild(a, c) ∧ hasChild(b, c)→
spouse(a, b)) and the Smith family. Assume Will Smith, Jada Pinkett, and their two
children are in the KG with the correct Spouse and Child triples to represent their
relationships. The support would count this family as one occurrence. While it uses the
non-target variables (referring to the child), the measure does not count this family twice,
despite the rule can be instantiated twice (once for each child). This design choice takes
care of possible skews in the data, making sure that a rule does not get assigned a very
high support when it applies to only one (distinct) pair of head entities.

The counter-support of a rule quantifies the number of false predictions over the
existing KG. A challenge to compute this number is that KGs do not provide negative
evidence, but we want to claim a mistake only if some evidence to support the case exists.
To address this issue, we rely on a Local Closed World Assumption. This assumption
states that if we know one y (resp. x) for a given x (resp. y) and h, then we know all y
(resp. x) for that x (resp. y) and h. This is widely used in practice and has proven to be
an effective heuristic to overcome incompleteness of KGs (Galárraga et al., 2015; Dong
et al., 2014; Ortona et al., 2018).

counter_supp( ~B → h(x, y)) := #(x, y) : ∃z1, ..., zn,h(x, y′) ∨ h(x′, y) : ~B ∧ ¬h(x, y)
(4.2)

For example, a rule predicts that “Luke” and ”Mary” are married, this triple is not in
the KG, but “Luke" is already reported as married to someone else in the KG. To take
into account both true and false predictions for a rule, we introduce confidence scores for
positive and negative rules.
Positive Rules. Considering a positive rule ~B → h(x, y) for relation h(x, y). We define
its confidence score as following:

conf( ~B → h(x, y)) := supp( ~B → h(x, y))
supp( ~B → h(x, y)) + counter_supp( ~B → h(x, y))

(4.3)

Negative Rules. Consider a negative rule ~B′ → ¬h(x, y) for relation h(x, y). We define
its confidence score as following:

conf( ~B′ → ¬h(x, y)) := counter_supp( ~B′ → h(x, y))
counter_supp( ~B′ → h(x, y)) + supp( ~B′ → h(x, y))

(4.4)
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Intuitively, by definition, the support (resp. counter-support) of a negative rule
~B′ → ¬h(x, y) is indeed the counter-support (resp. support) of the corresponding
positive rule ~B′ → h(x, y).

4.3.3 Probabilistic Answer Set Programming.

As we deal with soft rules, we adopt LPMLN (Lee and Wang, 2016) to create the dataset.
LPMLN is a probabilistic extension of answer set programs (ASP) with the concept of
weighted rules from Markov Logic (Baral, 2010). In ASP, search problems are reduced
to computing stable models (answer sets), a set of beliefs described by the program. A
weight (or confidence) is assigned to each rule, so that the more rules a stable model
satisfies, the larger weight it gets, and the probability of the stable model is computed
by normalizing its weight among all stable models. Given a set of soft rules and facts, we
measure how much the hypothesis is supported by the stable model. More details can be
found in Appendix B.1.

4.4 Dataset
We start by defining the reasoning task. We then discuss example generation methods for
three scenarios: a single rule as input, multiple (possibly conflicting) rules that require
reasoning for the same conclusion, and multiple rules that require a sequence (chain)
of reasoning steps. An example of a generated datapoint with a single rule is shown in
Section 4.4.3. More examples in the appendix can be found for union of rules (Section B.6)
and chained rules (Section B.7).

4.4.1 Reasoning Task

Each example is a triple (context, hypothesis, confidence). Context is a combination of
rule(s) and generated facts, such as “If the first person lives together with the second
person, then the first person is the spouse of the second person.” and “Anne lives with
Mike.” Hypothesis is the statement to be assessed based on the context, e.g., “Laure is
the spouse of Mike.” Confidence is the probability that the hypothesis is valid given by
the reasoner, e.g., 0.7. As we generate the examples, we know the confidence for each
hypothesis.

4.4.2 Single-Rule Dataset Generation

Given a rule, we generate examples of different hypotheses to expose the model to various
contexts. Each example contains the context c and a hypothesis h with its probability of
being true as obtained for the (c,h) pair from the LPMLN reasoner. The intuition is that
the examples show the expected behavior of a formal reasoner for every combination of
possible facts for a given rule. This process is not about teaching the model specific facts
to recall later, but ‘teaching’ it reasoning patterns.
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Unlike previous work (Clark et al., 2020), our rules allow for multiple variables. This
introduces additional complexity as examples must show how to deal with the symmetry
of the predicate. For example, child(Alice,Bob) and child(Bob,Alice) are not equivalent
since child is not symmetric, while spouse(Alice,Bob) and spouse(Bob,Alice) are equivalent
as spouse is symmetric. We assume that metadata about the symmetry and the types is
available from the KG for the predicates in the rules.

Given as input (i) a rule r, (ii) a desired number n of examples, (iii) an integer m to
indicate the maximum number of facts given as a context, and (iv) a pool of values for
each type involved in r’s predicate pools, Algorithm 4 outputs a dataset D of generated
examples.

Algorithm 4: Generate Synthetic Data
Input: rule r ; // child(a,b)→parent(b,a)

n ; // # of examples
m ; // max # of facts
pools ; // pools of names

Output: Generated Dataset D
1 D = {}, i = 1 ; // initialize
2 while i ≤ ceiling(n/8) do
3 F = GenFacts(r,m, pools) ; // child(Eve,Bob),parent(Amy,Sam)
4 O = LPMLN(r,F ) ; // reasoner output
5 h1 = f ∈ F ; // child(Eve,Bob)
6 h2 = Alter(f) ; // negchild(Eve,Bob)
7 h3 = r(F ) ; // parent(Bob,Eve)
8 h4 = Alter(r(F )) ; // parent(Eve,Bob)
9 h5 = pos.fl /∈ F ; // child(Joe,Garry)

10 h6 = ¬h5 ; // negchild(Joe,Garry)
11 h7 = fr /∈ O ; // parent(Alice,Joe)
12 h8 = ¬h7 ; // negparent(Alice,Joe)
13 D.add(h1−8);
14 i← i+ 1;
15 Function GenFacts(r,m,pools):
16 F = GetRandomFacts(r, pools,m);
17 F .add(GetRuleFacts(r, pools));
18 return F
19 Function Alter(p(s, o)):
20 if p is symmetric then return ¬p(s, o) ;
21 if random()>0.5 then return ¬p(s, o) ;
22 else return p(o, s) ;

We start at line 3 by generating facts, such as child(Eve,Bob), using the function
GenFacts (lines 15–18), which takes as input a rule r, the maximum number of facts m
to generate, and the pools. A random integer less than m sets the number of facts in the
current context. The generated facts F have predicates from the body of r, their polarity
(true or negated atom) is assigned randomly, and variables are instantiated with values
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sampled from the pool (line 16). Facts are created randomly, as we are not interested
in teaching the model specific facts to recall later, but instead we want to ‘teach’ it
how to reason with different combinations of rules and facts. We then ensure that the
rule is triggered in every context, eventually adding more facts to F using the function
GetRuleFacts in line 17. After obtaining F , we feed rule r along with facts F to the
LPMLN reasoner, and we obtain a set O containing all satisfied facts and rule conclusions
(line 4).

We generate different hypotheses, where each one leads to an example in dataset D.
For each context, we add an example with different facts with respect to the given rule
according to three dimensions. A fact can be (i) for a predicate in the premise or in the
conclusion of a rule, could be (ii) satisfied or unsatisfied given the rule, and could have
(iii) positive or negative polarity. This makes eight different possibilities, thus leading to
the generation of eight different hypotheses (one for each context).

The first hypothesis h1 is obtained by sampling a fact from the set F (line 5). We
then produce the counter hypothesis h2 by altering the fact (line 6) using the function
Alter (lines 19-22). Given a hypothesis p(s, o) (line 19), we return its negated form if p is
symmetric (line 20). Otherwise, if p is not symmetric, we produce a counter hypothesis
either by negation (line 21), or by switching the subject and the object in the triple as
the predicate is not symmetric (line 22). We rely on a dictionary to check whether a
predicate is symmetric or not.

We then produce hypothesis h3 (line 7), which is the outcome of triggering rule r
with the facts added in line 17. The counter hypothesis h4 is generated by altering h3
(line 8). Moreover, we generate hypothesis h5 by considering any unsatisfied positive fact
outside F . Following a closed-world assumption (CWA), we assume that positive triples
are false if they cannot be proven, meaning that their negation is true. We sample a
fact fl from the set of all possible positive facts that do not have the same predicate
of the rule head (line 9). Thus, h5 will never be in the output O of the reasoner, as it
cannot be derived. We then produce h6 by negating h5 in line 10. We further derive h7
by sampling a fact fr that has the same predicate as that of the rule head, but does not
belong to the output of the reasoner O (line 11). For a positive (negative) rule, such
a fact is labeled as False (True). h7 is then negated to get the counter hypothesis h8
(line 12). All generated hypotheses are added to D (line 13), and the process repeats
until we obtain n examples. Finally, we automatically convert the examples to natural
language using predefined templates. A basic template for atom predicate p (type t1,
type t2) is “If the 1st t1 is p of the 2nd t2.” (“If the first person is spouse of . . . ”). For
the single-rule scenario, we release a dataset for 161 rules with a total of 3.2M examples
and a 80%:10%:10% split for training, validation, and testing.

4.4.3 Data Generation Example

We show an example of data generation for Algorithm 4. For simplicity, here we show an
example of a hard rule, i.e., one whose confidence is implicitly set to one.1 We begin by

1We show an example of a soft rule in subsection B.6 below.
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setting the values of the input parameters:
Algorithm 1 Input:

• r = child(A,C) ∧ parent(C,B) → spouse(A,B)
• n = 8
• m = 5
• pools ={Alice,Bob,Carl,David,Eve}

We set n = 8 to generate all the eight hypotheses. We start by generating a set of
facts F (line 3), having predicates from the body of the rule with random polarity. We
ensure that there are facts that trigger the rule. Their number should not exceed m.
Here is an example of generated facts F :
Generated Facts F:

• f1: negparent(Eve,Carl)
• f2: child(Eve,David)
• f3: parent(Carl,Bob)
• f4: child(Alice,Carl)

Four facts are generated in total. Facts f3 and f4 trigger rule r. We then feed the
rule r and facts F into the LPMLN reasoner (line 4). The output O is then:

LPMLN Reasoner Output O:
• o1: child(Eve,David)
• o2: child(Alice,Carl)
• o3: parent(Carl,Bob)
• o4: spouse(Alice,Bob)
• o5: negchild(Eve,Carl)

We start generating the hypotheses:
Generated Hypotheses H:

• h1: child(Eve,David)
• h2: child(David,Eve)
• h3: spouse(Alice,Bob)
• h4: negspouse(Alice,Bob)
• h5: child(David,Carl)
• h6: negchild(David,Carl)
• h7: spouse(Bob,Eve)
• h8: negspouse(Bob,Eve)

Hypothesis h1 is obtained by sampling from F (line 5), and thus it is a valid hypothesis.
Then, the hypothesis h2 is generated by altering h1 with the function Alter (line 19-22).
In this example, since child is not symmetric, h2 is produced using a switch of the subject
and the object of h1 to generate a false hypothesis (line 6).

Hypothesis h3 is the outcome of rule r being triggered by facts f3 and f4 (line 7). In
a similar fashion to h2, we produce h4 (line 8).
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Hypothesis h5 is sampled from the universe of all unsatisfied positive facts having
a different predicate than that of the rule body (line 9), which makes it an invalid
hypothesis, as it is not found in the O. Hypothesis h6 is the negation of h5, and, following
CWA, it is a valid hypothesis (line 10).

Finally, hypothesis h7 is sampled from the universe of unsatisfied rule-head atoms
(line 11), and it is negated to produce hypothesis h8.

Overall, we obtain eight different examples represented in symbolic knowledge, where
each example contains the set of generated facts F , the rule r, and a single hypothesis hi.
The following is one example in symbolic knowledge:
Example #1 (Symbolic):

• Rule r = child(A,C) ∧ parent(C,B) → spouse(A,B)
• Facts F :

– f1: negparent(Eve,Carl)
– f2: child(Eve,David)
– f3: parent(Carl,Bob)
– f4: child(Alice,Carl)

• Hypothesis h3 : spouse(Alice,Bob)

We then convert each example to synthetic English using a set of pre-defined templates
for the facts and for the rules. Here is the above Example #1, but now rewritten in
synthetic English:
Example #1 (Synthetic English):

• Rule r = If the child of the first person is the third person, and the parent of
the third person is the second person, then the first person is the spouse of the
second person.

• Facts F :
– f1: The parent of Eve is not Carl.
– f2: The child of Eve is David.
– f3: The parent of Carl is Bob.
– f4: The child of Alice is Carl.

• Hypothesis h3 : The spouse of Alice is Bob.

The Context is defined as the combined set of facts and rule(s). Both Context and
Hypothesis are fed as an input to the model.
Example #1 (Model Input):

• Context : The parent of Eve is not Carl. The child of Eve is David. If the child
of the first person is the third person, and the parent of the third person is the
second person, then the first person is the spouse of the second person. The
parent of Carl is Bob. The child of Alice is Carl.

• Hypothesis : The spouse of Alice is Bob.
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4.4.4 Rules with Overlapping Conclusion

When multiple rules are in the context, there could be facts that trigger more than
one rule for a given hypothesis. The triggered rules might be all of the same polarity
(positive or negative), eventually accumulating their confidence, or could be a mix of
positive and negative rules that oppose each other. While the data generation procedure
in Section 4.4.2 can be extended to handle multiple rules, this raises an efficiency problem.
Given a set of R rules, it would generate 8|R| examples for each (facts,rule) pair in order
to cover all rule combinations. This is very expensive, e.g., for five rules, it would generate
85 = 32, 768 examples for a single context.

Given this challenge, we follow a different approach. We first generate data for
each rule individually using Algorithm 4. We then generate more examples only for
combinations of two or more rules having all their rule conclusions as hypotheses. For
every input context, we produce rule-conclusion hypotheses (positive and negative) while
varying the rules being fired. Thus, we generate 2 ∗∑|R|x=2

(|R|
x

)
examples with at least two

rules triggered. Adding the single-rule data, we generate 8 ∗ |R|+ 2 ∗∑|R|x=2
(|R|
x

)
for every

(facts,rules) pair, which is considerably smaller than 8r for |R| ≥ 2, according to the
binomial theorem. For example, for |R|=5, we generate 92 examples per context. For the
overlapping rules scenario, we release a dataset for 5 rules with a total of 300K examples,
and a 70%:10%:20% split for training, validation, and testing. We use 5 rules, as it is
enough to measure different combinations of rules (31 rule combinations), and it is very
unlikely to have more than 5 rules sharing the same target predicate (Appendix B.2).

4.4.5 Chaining of Rule Executions

For certain hypotheses, an answer may be obtained by executing rules in a sequence,
i.e., one on the result of the other, or in a chain. To be able to evaluate a model in this
scenario, we generate hypotheses that can be tested only by chaining a number of rules
(an example is shown in Appendix B.7). Given a pool of rules over different relations
and a depth D, we sample a chain of rules with length D. We then generate hypotheses
that would require a depth varying between 0 and D. We generate a rule-conclusion
hypothesis (h3) and its alteration (h4) for each depth d ≤ D. A depth of 0 means that
the hypothesis can be verified using the facts alone without triggering any rule. We also
generate counter-hypotheses by altering the hypotheses at a given depth, and we further
include hypotheses that are unsatisfied given the input. For the chaining rules scenario,
we start with a pool of 64 soft rules, and we generate hypotheses that would need at
most five chained rules to verify them. The dataset for d ≤ 5 contains a total of 70K
examples, and a 70%:10%:20% split for training, validation, and testing.

4.5 Teaching PLMs to Reason
In this section, we explain how we teach a PLM to ‘reason’ with one or more soft rules.
Note that uncertainty stems from the rule confidence. One approach to teach how to
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estimate the probability of a prediction is to treat each confidence value (or bucket of
confidence values) as a class and to model the problem as a k-way classification instance
(or regression), but this is intractable when multiple rules are considered. Instead, we
keep the problem as a two-class one by altering how the information is propagated in the
model to incorporate uncertainty from the rule confidence.
Let D = {(xi, yi)}mi=1 be our generated dataset, where xi is one example of the form
(context, hypothesis, confidence) and yi is a label indicating whether the hypothesis is
validated or not by the context (facts and rules in English), and m is the size of the
training set. A classifier f is a function that maps the input to one of the labels in
the label space. Let h(x, y) be a classification loss function. The empirical risk of the
classifier f is Rh(f) = ED(h(x, y)) = − 1

m

∑m
i=1 h(xi, yi).

We want to introduce uncertainty in our loss function, using the weights computed
by the LPMLN solver as a proxy to represent the probability of predicting the hypothesis
as being true. To do so, we apply a revised empirical risk:

R′h(f) = ED(h(x, y)) = − 1
m

m∑
i=1

(w(xi) ∗ h(xi, 1) + (1− w(xi)) ∗ h(xi, 0)) (4.5)

where w(xi) is the probability of xi being True.
We now state that each example is considered as a combination both of a weighted

positive example with a weight w(xi) provided by the LPMLN solver and a weighted
negative example with a weight 1−w(xi). When trained to minimize this risk, the model
learns to assign the weights to each output class, thus predicting the confidence for the
true class when given the satisfied rule head as a hypothesis.

4.6 Experiments

We first describe the experimental setup (Section 4.6.1). We then evaluate the model
on single (Section 4.6.2) and on multiple rules (Sections 4.6.3 and 4.6.4). We show that
a PLM fine-tuned on soft rules, namely RuleBERT, makes accurate predictions for
unseen rules (Section 4.6.5), and it is more consistent than existing models on three
external datasets (Section 4.7). We report the values of the hyperparameters, as well as
the results for some ablation experiments in Appendices B.3 and B.4 respectively. The
datasets for all experiments are summarized in Table 4.1.

4.6.1 Experimental Setup

Rules. We use a corpus of 161 soft rules mined from DBpedia. We chose a pool of
distinct rules with varying number of variables, number of predicates, rule conclusions,
and confidences.
Reasoner. We use the official implementation2 of the LPMLN reasoner. We set the
reasoner to compute the exact probabilities for the triples.

2http://github.com/azreasoners/lpmln

http://github.com/azreasoners/lpmln
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Dataset Total Train Dev Test

Single Rule (Section 4.6.2) 20K 16K 2K 2K
Overlap (Section 4.6.3) 300K 210K 30K 60K
Chaining (Depth=5) (Section 4.6.4) 70K 56K 4.6K 9.4K
RuleBERT (Section 4.7) 3.2M 2.56M .32M .32M

Table 4.1: Datasets for the experiments and their splits.

RoBERTa-wBCE RoBERTa
Rule Conf. Acc. CA@k Acc. CA@k

.10 .01 .10 .01
birthYear(a,c) ∧ deathYear(b,d) ∧ >(c,d)→negspouse(a,b) .990 .995 .993 .993 .970 .490 .486
birthYear(b,d) ∧ foundYear(a,c) ∧ <(c,d)→negfounder(a,b) .990 .928 .927 .927 .908 .486 .456
spouse(c,a) ∧ parent(b,c) → negspouse(a,b) .923 .974 .963 .747 .875 .491 .279
relative(a,c) ∧ spouse(b,c) ∧ child(b,a) → relative(a,b) .860 .922 .844 .801 .866 .342 .146
parent(c,a) ∧ child(b,c) → spouse(a,b) .825 .944 .828 .444 .842 .342 .146
publisher(c,b) ∧ subsequentWork(c,a) → publisher(a,b) .721 .909 .834 .765 .905 .358 .219
successor(b,a) → negspouse(a,b) .718 .972 .896 .693 .949 .369 .313
child(c,b) ∧ relative(c,a) → negchild(a,b) .644 .935 .880 .693 .905 .310 .303
child(c,b) ∧ spouse(a,c) → negrelative(a,b) .562 .920 .907 .608 .915 .255 .250
relation(a,b) → negchild(a,b) .549 .904 .886 .737 .902 .371 .366
child(c,b) ∧ spouse(c,a) → child(a,b) .492 .901 .827 .422 .658 .223 .107
knownFor(b,a) → founder(a,b) .387 .882 .601 .477 .839 .372 .215
founder(c,b) ∧ publisher(c,a) → negfounder(a,b) .246 .886 .795 .665 .802 .311 .297
publisher(a,c) ∧ parentCompany(b,c) → negpublisher(a,b) .235 .812 .748 .643 .811 .313 .271
successor(c,a) ∧ spouse(c,d) ∧ successor(d,b)→spouse(a,b) .221 .927 .738 .628 .761 .248 .215
relative(a,c) ∧ parent(c,b) → child(a,b) .135 .841 .704 .552 .727 .227 .182

Table 4.2: Evaluation results for single-rule models.

PLM. We use the HuggingFace pre-trained RoBERTaLARGE (Liu et al., 2020b) model
as our base model, as it is trained on more data compared to BERT (Devlin et al., 2019),
and is better at learning positional embeddings (Wang and Chen, 2020). We fine-tune
the PLM3 with the weighted binary cross-entropy (wBCE) loss from Section 4.5. More
details can be found in Appendix B.3.
Evaluations Measures. For the examples in the test set, we use accuracy (Acc.) and
F1 score (F1) for balanced and unbalanced settings, respectively. As these measures do
not take into account the uncertainty of the prediction probability, we further introduce
Confidence Accuracy@k (CA@k), which measures the proportion of examples whose
absolute error between the predicted and the actual probabilities is less than a threshold
k:

CA@k = #{xi, |wi − ŵi| < k}
#{xi}

(4.6)

where xi is the ith example of dataset, wi is the actual confidence of the associated
hypothesis given by the LPMLN reasoner, ŵi is the predicted confidence by the model,
and k is a chosen threshold.

3The prompt is <s>context</s></s>hypothesis</s>.
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The measure can be seen as the ordinary accuracy measure, but true positives and
negatives are counted only if the condition is satisfied, where lower values for k indicate
stricter evaluation.

4.6.2 Single Soft Rule

We fine-tune 16 models for 16 different positive and negative rules (one model per rule)
using 16k training samples per rule. We compare the accuracy of each model (i) without
teaching uncertainty using binary cross-entropy (RoBERTa), and (ii) with teaching soft
rules using wBCE.
Results. Every row in Table 4.2 shows a rule with its confidence, followed by accuracy
and CA@k (for k = 0.1 and k = 0.01) for both loss functions. We see that models
fine-tuned using RoBERTa-wBCE perform better on CA@k. In terms of accuracy, both
models perform well, with RoBERTa-wBCE performing better for all rules. Interestingly,
the best performing rules are two rules that involve comparison of numerical values (birth
years against death and founding years), which suggests that our method can handle
comparison predicates.

Test Size F1 CA@.15 CA@.1 CA@.05

r1 1.6k .990 .987 .986 .954
r2 1.6k .999 .997 .996 .946
r3 1.6k .995 .994 .994 .992
r4 1.6k .990 .989 .988 .935
r5 1.6k 1 .999 .998 .979

U=2 20k .985 .997 .993 .968
U=3 20k .925 1 .998 .949
U=4 10k .956 1 1 .988
U=5 2k 1 1 1 .980

Table 4.3: Results for a model trained on five rules sharing the same predicate, and
tested on multiple test sets.

4.6.3 Rules Overlapping on Conclusion

The dataset contains five soft rules with spouse or negspouse in the rule conclusion, and a
confidence between 0.30 and 0.87 (shown in Figure 4.2). We train a model on the dataset
and test it (i) on a test set for each of the five rules separately, (ii) on test sets with U
triggered rules, where U ∈ {2, 3, 4, 5}.
Results. Table 4.3 shows that the model achieves high scores both on the single test
sets (top five rows) and on the sets with interacting rules. The test sets with U = 2 and
U = 3 are most challenging, as they contain

(5
2
)

= 10 and
(5
3
)

= 10 combinations of rules,
respectively, while the one with U = 5 has only one possible rule combination. The high
scores indicate that PLMs can actually learn the interaction between multiple soft rules.
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(r1, .87) child(a,c) ∧ parent(c,b) → spouse(A,B)
(r2, .64) child(a,b) → negspouse(a,b)
(r3, .3) relative(a,b) → spouse(a,b)
(r4, ,78) child(a,c) ∧ child(b,c) → spouse(a,b)
(r5, .67) predecessor(a,b) → negspouse(a,b)

Figure 4.2: The five overlapping soft rules.

4.6.4 Rule Chaining

Here, we assess models fine-tuned on various chaining depths. We construct six datasets
for this scenario with increasing depths (D = 0, D ≤ 1, D ≤ 2, D ≤ 3, D ≤ 4, D ≤ 5),
i.e., dataset D ≤ x contains hypotheses that need at most x chained rules. We thus
train six models (one per dataset), and we test them (i) on their own test dataset (Test),
(ii) on the test set with D ≤ 5 that contains all examples up to depth 5 (All), and (iii) on
test sets with a chaining of depth x (Depx).

Data Mod0 Mod1 Mod2 Mod3 Mod4 Mod5

Test .996 .926 .883 .852 .856 .831
All .589 .743 .772 .811 .831 .831
Dep0 .993 .974 .973 .982 .978 .973
Dep1 .264 .860 .884 .887 .889 .889
Dep2 .396 .655 .730 .751 .750 .720
Dep3 .438 .581 .636 .684 .690 .656
Dep4 .538 .468 .547 .626 .666 .627
Dep5 .552 .356 .496 .703 .785 .744

Table 4.4: F1 scores for models trained on varying depths and tested on six datasets.
The boxed area indicates models tested on unseen chaining depths.

Results. The results are shown in Table 4.4. We can see that the models achieve high
F1 scores on the respective test sets for Depth 0. The red borderline indicates F1 scores
for models tested on chaining depths higher than the ones they have been trained on.
We see that Mod3 and Mod4 do fairly well on Depth 5. However, there is a decrease for
higher depths, possibly due to the need for more training examples in order to learn such
depths.

Moreover, since we sample a chain of rules each time, it is likely that every model has
been trained on certain chains of rules. This yields lower scores in the constant-depth
test sets as the models are being tested on unseen rule chains.

Note that Mod0 shows a counter-intuitive increase in the F1 score for higher unseen
depths. Chaining soft rules may lead to a low probability for the associated hypothesis,
and thus eventually to a False label. However, Mod0 is not trained on chaining and sees
a hypothesis that requires chaining as an unsatisfied fact, thus eventually labeling it as
False, while in fact it is the chaining of the soft rules that is the cause for this label. This
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Rule FT-PLM RuleBERT20 FT-RuleBERT20

Known predicates

child(a,b) → parent(b,a) .719 .869 .989
relative(a,b) → negspouse(b,a) .885 .885 .963
child(a,b) ∧ child(b,c) → negchild(a,c) .835 .888 .918
parent(a,b) ∧ parent(a,c) → spouse(b,c) .754 .757 .814
parent(a,b) → negchild(a,b) .923 .933 .963

Unknown predicates

knownFor(b,a) → founder(a,b) .817 .795 .971
worksFor(b,a) → negfounder(a,b) .951 .915 .952
occupation(a, b) → negalmaMater(a, b) .939 .917 .972
author(c,b) ∧ series(a,c) → author(a,b) .965 .937 .989
city(a,b) → negstate(a,b) .923 .912 .971

Table 4.5: Evaluation on unseen rules (accuracy). The first group contains rules with
predicates seen by RuleBERT among the 20 rules used for fine-tuning, while the second
group has rules with unseen predicates.

is never the case with hard rules, as the actual label there would be True.

4.6.5 Testing RuleBERT on Unseen Rules

We have seen that a PLM can be successfully fine-tuned with rules. We now study the
performance on the PLM after it has been fine-tuned on 161 (single) rules. We call this
fine-tuned model RuleBERT.

We first evaluate RuleBERT on unseen rules. We fine-tune it with only twenty
randomly selected rules (shown in Figure 4.3) and call it RuleBERT20. We then select
ten new rules divided into two groups: (i) five rules containing predicates that were used
in the rules for fine-tuning RuleBERT20, and (ii) five rules that share no predicates
with the fine-tuning rules. For each rule in the test sets, we run a model fine-tuned
(with 4k examples) only for that rule (FT-PLM), the model fine-tuned on the twenty
original rules (RuleBERT20), and the same model fine-tuned again for the rule at hand
(FT-RuleBERT20).
Results. Table 4.5 shows that RuleBERT20 outperforms the fine-tuned model (FT-
PLM) on the first group. Even though fine-tuned on 20 rules, it learned enough about
(i) symmetric/transitive predicates and (ii) rule confidence to predict correctly, even
better than rule-specific models.

For the second rule group, the accuracy of RuleBERT20 is high, but FT-PLM
performs better. Applying the same fine-tuning on RuleBERT20 yields the best results
in all scenarios.

4.7 RuleBERT on External Datasets
As our fine-tuning propagates information in the layers of the encoder, we hypothesize
that RuleBERT effectively “learns” logical properties of the concepts represented in the
rules, such as negation and symmetry, and thus it could perform better on tasks testing
such properties of PLMs. To study the negation of predicates, we use the Negated LAMA
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child(a,b) → negparent(a,b)
child(a,b) → nespouse(a,b)
child(a,b) → negchild(b,a)
child(a,b) → negrelation(b,a)
parent(a,b) → negparent(b,a)
parent(a,b) → nespouse(a,b)
spouse(a,b) → relative(b,a)
successor(a,b) → predecessor(b,a)
predecessor(a,b) → negsuccessor(a,b)
successor(a,b) → negspouse(a,b)
predecessor(a,b) → negspouse(a,b)
child(a,c) ∧ parent(c,b) → spouse(a,b)
child(b,a) ∧ child(c,a) → spouse(b,c)
parent(a,b) ∧ parent(b,c) → negparent(a,c)
parent(a,b) ∧ child(c,a) → spouse(b,c)
spouse(a,b) ∧ parent(c,a) → negspouse(b,c)
spouse(a,b) ∧ child(a,c) → negspouse(b,c)
successor(a,c) ∧ successor(b,c) → negspouse(a,b)
publisher(c,b) ∧ subsequentwork(c,a) → publisher(a,b)
publisher(c,b) ∧ previouswork(c,a) → publisher(a,b)

Figure 4.3: The 20 random rules used for RuleBERT20.

datasets, which test how PLMs distinguish a cloze question and its negation (Kassner
and Schütze, 2020). In most cases, PLMs make the same prediction both for a positive
statement (“Relativity was developed by Einstein.”) and for its negation (“Relativity was
not developed by Einstein.”). To test the symmetry relationship between predicates, we
use the SRL test in CheckList (Ribeiro et al., 2020), which focuses on behavioral testing
of NLP models; we use its test set for the duplicate-question detection task (QQP) (Wang
et al., 2018a). Finally, we test deductive reasoning on the bAbI dataset and its Task
#15 (Weston et al., 2016).

4.7.1 Negated LAMA Experiments

For Negated LAMA, we do not fine-tune RuleBERT for the task; instead, we replace
its original classification layer by an MLM head with weights identical to those of
RoBERTa (not fine-tuned). Note that this configuration is biased in favor of RoBERTa,
as the parameters of the MLM head and of the RoBERTa encoder have been trained in
conjunction and thus more optimal network weights have been found for this combination,
which is not the case for our RuleBERT.
Results. Yet, even in this arguably unfair setting, RuleBERT outperforms RoBERTa
on all datasets of Negated LAMA, as shown in Table 4.6. We can see that RuleBERT
performs better on both evaluation measures used in (Kassner and Schütze, 2020). It
achieves a lower mean Spearman rank correlation (ρ) and a much smaller percentage of
positive and negated answers overlap (%). The correlation measure helps capture cases
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Facts RoBERTa RuleBERT
ρ % ρ %

GR
birthplace 2,404 90.99 18.51 71.72 4.20
birthdate 1,565 82.87 1.40 63.55 0.13
deathplace 649 86.44 0.31 71.13 0.00

T-REx
1-1 973 78.95 61.38 51.21 32.96
N-1 20,006 87.56 43.80 67.63 11.48
N-M 13,096 89.39 50.78 72.59 28.90

ConceptNet — 2,996 42.61 9.00 37.43 4.83
SQ — 286 89.71 44.76 75.05 26.32

Table 4.6: Negated LAMA: Mean Spearman rank correlation (ρ) and mean percentage of
overlap in the first ranked predictions (%) for original vs. negated queries.

Fine-Tuned RoBERTa RuleBERT

bAbI
1 epoch .401 .477
2 epochs .676 .863
3 epochs .827 .825

Neg. LAMA - .684 .852

CheckList QQP 1 epoch .000 .422
3 epochs .000 .000

Table 4.7: Evaluation on external datasets (accuracy).

where negation has a small effect from those where it has a larger effect.

4.7.2 CheckList QQP Experiments

The CheckList tests (Ribeiro et al., 2020) have shown that PLMs fail in many basic
cases. We hypothesize that RuleBERT can perform better on tasks and examples that
deal with symmetric and asymmetric predicates, if such predicates have been shown
to it during pre-fine-tuning. We experiment with the QQP dataset, which asks to
detect whether two questions are duplicates. We identify a few rules that can teach a
model about symmetric predicates, and we pre-fine-tune RuleBERT on them; then, we
fine-tune it on the QQP dataset.
Results. Table 4.7 shows the results on the challenging CheckList QQP test set: we can
see that RuleBERT achieves accuracy of 0.422 after one epoch, while RoBERTa is at 0.0.
However, after three epochs RuleBERT is also at 0.0,4 i.e., it started to unlearn what it
had learned at pre-fine-tuning (Kirkpatrick et al., 2017; Kemker et al., 2018; Biesialska
et al., 2020). Learning a new task often leads to such catastrophic forgetting (Ke et al.,
2021b). While there are ways to alleviate this (Ke et al., 2021b), this is beyond the scope
of this work.

4On the much easier QQP test set, RuleBERT achieved 0.89 accuracy after one epoch, and 0.91 after
three epochs.
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4.7.3 bAbI Task #15 Experiments

Finally, we experiment with task #15 of the bAbI dataset, where the goal is to assess
whether a model can perform deductive reasoning. However, as mentioned in the original
bAbI paper (Weston et al., 2016), it is not only desirable to perform well on the task,
but also to use the fewest examples.

Thus, we use the smallest dataset consisting of about 2,000 data points. We hy-
pothesize that, under the same conditions and hyperparameters, RuleBERT should
be able to generalize faster and to learn in fewer epochs. As PLMs produce varying
scores when fine-tuned on small datasets, we repeat the experiment ten times, and we
report the average scores (more details in Appendix B.5). We then compare to RoBERTa.
Both models contain two classification layers to predict start and end spans of the input
context.
Results. We can see in Table 4.7 that RuleBERT achieves accuracy of 0.863 in two
epochs, while RoBERTa achieves 0.676. On the third epoch, RoBERTa catches up with
accuracy of 0.827, while RuleBERT starts to overfit (goes down to 0.825), indicating
that fewer epochs should be used.

4.8 Retrieving Explanations
To promote more the use of soft rules, we argue that rule weights can help guide users
to the triggered rules, if any. In a single rule setting, this is trivial, as if the output
probability matches the rule confidence, the user can be informed that the associated
rule was triggered. In a multi-rule setting, the output probabilities can also guide the
users into which rules were triggered. Assuming that rules r1 and r2 of Figure 4.3 were
the only rules triggered, we would expect an output probability of 0.71 for a non-negative
hypothesis. Thus, one could generate a mapping between triggered rules and output
probabilities, such as that in Table 4.8, to provide rule explanations. Such a table can be
generated during data generation and cached for later use to obtain rule explanations with
a best-case time complexity of O(1), as opposed to high-complexity brute force methods
that remove one sentence at a time (Clark et al., 2020). For rule combinations with
relatively similar confidences ((r1, r2)&(r1, r3)), the brute-force method could be applied
but with only two rule combinations, i.e., we prune the set of rule combinations using the
expected output confidence. Future work could include utilizing encoder-decoder models
to generate explanations (Tafjord et al., 2021).
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Rules Expected

r1 0.87
r2 0.64
r3 0.30
(r1, r2) 0.71
(r1, r3) 0.74
(r2, r3) 0.13
(r1, r2, r3) 0.51

Table 4.8: Rule combinations and their expected output confidence.

4.9 Conclusion
We studied whether PLMs could reason with soft rules over natural language. We
experimented with one flavor of probabilistic answer set programming (LPMLN), but
other semantics can be also used with the proposed methodology. We further explored
the inference capabilities of transformer-based PLMs, focusing on positive and negative
textual entailment. Augmenting PLMs with logical rules can help alleviate some of their
logical shortcoming, which is a crucial aspect during claim verification in fact-checking.
However, claim verification is as good as the evidence received. Querying PLMs might
not be always straightforward, especially when their output does not match what a user
was expecting (Figure 1.1(D)). In the following chapter, we introduce a new kind of
embedding that steers the PLM output to match a user’s intent.





5 Type Embeddings: Encoding Type Information
for Pre-trained Language Models

One key component of fact-checking is the ability to retrieve facts efficiently. While facts
could be stored in textual corpora or databases, PLMs can themselves act as means to
store relational knowledge (Petroni et al., 2019). However, one challenge is that they are
schema-less, meaning they do not explicitly define types of their entities. Figure 1.1(D)
shows a PLM returning death places for a given prompt, where a user was expecting death
years. Given that PLMs encode semantic types, such as ‘European City’ or ‘Woman’, it
is beneficial to try and use such concepts to steer the model output. In this work, we
introduce Type Embeddings (TEs), input embeddings that promote desired types in a
PLM. Our proposal is to define a type by a small set of word examples. We empirically
study the ability of TEs both in representing types and in steering masking predictions
without changes to the prompt text in BERT. Finally, using the LAMA datasets, we show
how TEs highly improve the precision in extracting facts from PLMs. Such improvements
render PLMs as better fact-retrievers and thus can enhance overall fact-checking systems.

5.1 Introduction

PLMs based on transformers (Vaswani et al., 2017) have achieved state-of-the-art results
in several downstream NLP tasks (Devlin et al., 2019; Liu et al., 2020b). Being trained
in a self-supervised fashion, such models convey, to a certain extent, linguistic (Puccetti
et al., 2021; Lin et al., 2019) and factual knowledge (Rogers et al., 2020; Meng et al.,
2022). Being able to faithfully extract the desired knowledge is a crucial aspect that has
sparked lots of interest (Petroni et al., 2019; Bouraoui et al., 2020).

However, querying the PLM for information is not always reliable and requires more
than a manually-written prompt as an input (Petroni et al., 2020). This is opposed to a
standard KG, where users formulate a structured SPARQL query specifying exactly what
to expect at the output. For example, the query “SELECT ?x WHERE wd:Q76 wdt:P26
?x” returns the spouse of Barack Obama, “Michelle Obama”. In the PLM setting, the
SPARQL query could be replaced by a natural-language prompt, such as “The spouse of

77
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Figure 5.1: Top-5 predictions of BERT (with log probabilities) for a given prompt (left)
and the changes when adding type information (right). Tokens following the desired type
are colored. Correct answer is underlined.

Barack Obama is [MASK]”. While the predictions of the prompt are reasonable (left-hand
side of Figure 5.1), they do not reflect the requirement of getting instances of a specific
type (names of people) in the output. In fact, analyzing BERT’s top-1 prediction on
prompts where the desired output type is a musical instrument (e.g., “Philip Glass
plays [MASK]”), more than half of the predictions follow different types such as sport
(“plays football”) and character (“plays Hamlet”), instead of the expected “plays
piano”. Indeed, differently from the KG with typed entities and predicates, the output
type information is dismissed from the input prompt, thus bringing no guarantee about
the expected type.

While several works try to remedy this by engineering prompts to satisfy a desired
type (Jiang et al., 2020; Shin et al., 2020; Zhong et al., 2021), or relying on external
sources to enrich the prompt (Petroni et al., 2020), these approaches do not fully exploit
the latent concepts encoded in the PLM (Dalvi et al., 2022; Mamou et al., 2020). To fill
up this gap, we introduce the notion of Type Embeddings (TEs). Similar to how positional
embeddings in a PLM encode information about the position of a token in an input (Wang
and Chen, 2020), TEs encode the expected type information of the output. The definition
of a TE requires neither supervised training nor external resources as it simply uses the
existing PLM token embeddings, e.g., people names, to obtain type information, e.g.,
for person. The TE can be then naturally injected into the input embedding layer of a
PLM to embody the expected type in the output (right-hand side of Figure 5.1). Driving
the model towards the expected type can help in numerous applications exploiting PLMs,
such as data cleaning (Narayan et al., 2022), rule induction (Cui and Chen, 2021), and
fact-checking (Lee et al., 2020).

Our contributions can be summarized as follows:
• We introduce Type Embeddings (TEs), which, similar to positional embeddings,

can be added to the input of PLMs and effectively encode type information. We
show how to compute these embeddings using only labeled tokens that adhere
to the specific type; the main idea is to remove the first singular vector (with a
multiplier) of the token embedding matrix (Section 5.3).
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Figure 5.2: Given positive and negative examples of a concept (red), CAVred is the normal
to the hyperplane separating the examples. The function f is a model’s activations at a
certain layer.

• We propose methods to analyze type embeddings and evaluate their effectiveness
by (i) measuring their semantic similarity to instances of the type, (ii) assessing the
sensitivity of tokens to a given type, and (iii) analyzing layer-wise type classification
(Section 5.4).

• We inject type embeddings into PLMs and show increase in performance for a
factual probing dataset (LAMA) and alleviation of “type bias” for a prompt by
steering the output type with TEs (Section 5.5).

We conclude the chapter by discussing future directions, including the extension of
our approach from types to more generic concepts (Section 5.6). The data and the code
are available at https://github.com/MhmdSaiid/TypeEmbedding.

5.2 Related Work
PLMs have been largely studied in the last years, with most analysis focusing on the
attention mechanism (Voita et al., 2019; Vig and Belinkov, 2019; Kobayashi et al., 2020)
and on the role of embeddings (Rogers et al., 2020; Li et al., 2021a; Clark et al., 2019b).
However, none of those efforts study the notion of types that we introduce with our work.
One exception is the recent studies of how concepts are encoded in PLMs. One line
of work analyzes BERT by clustering contextual representations across layers, followed
by a manual annotation to label clusters with meaningful concepts (Dalvi et al., 2022).
Another work starts from treating the feedforward network of a transformer as a key-value

https://github.com/MhmdSaiid/TypeEmbedding
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Figure 5.3: Input representation for a PLM (BERT). The year type embedding (green
box) is added to the [MASK] token, similarly to token and positional embeddings at the
input.

memory and studies how certain vectors encode concepts in the vocabulary space (Geva
et al., 2022). Our effort is different in two ways. First, we do not require the labeling
of artifacts from the PLM, but rather we rely on user-specified tokens to model their
common type. Second, we focus on type, which is one semantic concept, leaving the
others, such as syntactic, morphological, and lexical to future work (Section 5.6).

In the context of image classification, our approach is related to the interpretation of
a neural net’s internal state in terms of a concept defined through a vector (Kim et al.,
2018; Schrouff et al., 2021). This is denoted as Concept Activation Vector (CAV) and is
derived from example images by finding the normal to the hyperplane. CAVs separate
examples with and without the target concept in a model’s activation at a certain layer.
Figure 5.2 shows the CAV for the concept ‘red’ in a certain model’s layer. By Testing
with a CAV (TCAV), one can identify the importance of the color ‘red’ in fire-engine
images for a neural network. We use CAVs on textual input, rather than on images, to
measure how sensitive the model is to a type after adding its TE (Section 5.4.3). However,
while CAV is a sensitivity measurement tool, TEs steer the target type in the model’s
output.

A work sharing the same spirit as ours uses a vector to steer output in a PLM for
style transfer between sentences (Subramani et al., 2022). However, we use tokens to
obtain our vector and not sentences. We require 10 labeled tokens as opposed to 100
labeled samples for style transfer. The paper states that they ’cannot steer GPT-2 at
either the embedding ... locations.’, but our method could do that from the embedding
layer.

Our work introduces a new kind of type embeddings to improve the input to the PLM
in the target task, in analogy to what is done with positional embeddings (Wang and
Chen, 2020; Wang et al., 2021a). To show the benefit of such a solution, we focus on the
LAMA benchmark (Petroni et al., 2019), which is composed of a series of cloze statements
used to query the PLM for a masked token, thus assessing a PLM’s factual knowledge.
To enhance PLMs’ performance for such task, considerable work went into improving
prompts by mining or paraphrasing new prompts (Jiang et al., 2020), by adding trigger
tokens (Shin et al., 2020), by finding vectors for prompts in the embedding space without
restriction to the space of a PLM’s vocabulary (Zhong et al., 2021), or by combining
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multiple prompts (Qin and Eisner, 2021). Our approach does not aim at refining the
prompt, as we simply add the type embedding to the input. It is therefore also different
from approaches that pre-train an adapter to enhance PLMs’ factual knowledge (Wang
et al., 2021c) or rely on information retrieval to provide additional context for the
prompt (Petroni et al., 2020). Finally, we are steering the output while not changing the
underlying model, for example by triggering the neurons responsible for a prediction (Dai
et al., 2022) or producing an alternative model with edited facts (De Cao et al., 2021;
Mitchell et al., 2022).

5.3 Type Embedding

In this section, we propose how to compute TEs from PLM token embeddings (Sec-
tion 5.3.1), and how to use them (Section 5.3.2). Following the work on latent concepts
in BERT (Dalvi et al., 2022), we focus on such model and report results on other PLMs
in Appendix C.3.

5.3.1 Obtaining the TE

Given a type t, let the matrix Pt ∈ Rn×d hold the token embeddings for n different
tokens, where d is the dimension of the token embeddings. The n tokens are instances of
a specific type t. We call these tokens positively typed tokens.

For our analysis of Pt, we apply Singular Value Decomposition (SVD). The SVD of
an m× n matrix M factorizes it into M = UΣV T , where U is an m×m unitary matrix,
Σ is an m× n diagonal matrix, and V is an n× n unitary matrix. We call the column
vectors of U and V singular vectors. The diagonal values in Σ are called singular values.
Assuming that M is a matrix where each row contains features of a data point, then the
first singular vector of V , corresponding to the highest singular value, corresponds to the
direction with maximum variance for the covariance matrix. In other words, it is the
vector that contains the “common-part" of all data points.

The SVD of the matrix is Pt = UΣV T . The first column of the matrix V , v(1), is
the first singular vector, which encodes information common between all n tokens. We
hypothesize that this vector, unlike other singular vectors, contains non-type related
information and needs to be removed from the input to promote type information encoded
in the other singular vectors (more details in Section 5.4). A similar observation has
been made for multilingual representations (Roy et al., 2020), where removing r singular
vectors leaves semantic-related information in the input representations (Yang et al.,
2021). Thus, the embedding to be added to promote type t is Et = −λv(1), where λ is a
multiplier that is tuned on a hold-out dataset.

In practice, a type embedding is derived from a small set of tokens that are instances
of the same type. Those can be provided by users, or obtained from existing typed
resources such as KGs. In the rest of the chapter, the TEs are computed based on
weighted sampling from KG entities. We query the KG (DBpedia (Auer et al., 2007)) for
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tokens adhering to a specific type, keeping only those in the PLM’s vocabulary, and use
their node degree as the weight.

5.3.2 Using the TE

Assuming that a user has obtained the TE for the expected output type, the TE is simply
added to the [MASK] input embedding, in analogy to token and positional embeddings.
Figure 5.3 shows an example for a prediction where we enforce a year type.

Depending on the task at hand, the TE can be added to one or more tokens. We
found it more effective to add it only to the [MASK] token for MLM tasks, while for
text generation it is more effective to add the TE to all tokens in the prompt. While our
focus in this paper will be on MLM, we perform some preliminary experiment for text
generation in Section 5.6.

Type Emb. Predictions

city Kazan(.69), Baku(.67), Cologne(.67), Düsseldorf(.63), Toulouse(.62), Strasbourg(.62), Bonn(.61)
year 1823 (.85), 1834(.83), 1819(.82), 1755 (.82), 1825(.82), 1835 (.82), 1805(.82)

occupation geologist(.76), biologist(.73), theologian(.72), screenwriter(.7), botanist(.69), linguist(.68), novelist(.67)

Table 5.1: Most similar token embeddings to a given Type Embedding with cosine
similarity score in parentheses. Tokens in italic were used to compute the TE.

5.4 Analysis of TEs
Having obtained a TE, we propose a series of analysis methods to assess its validity. We
use the TE as a simple type retriever (Section 5.4.1), study the distribution of singular
vectors (Section 5.4.2), analyze the effect of the TE w.r.t. the output and quantify the
model’s sensitivity w.r.t. typed tokens (Section 5.4.3), perform layer-wise classification to
identify the desired type (Section 5.4.4), and measure TCAV of a model equipped with a
TE (Section 5.4.5).

5.4.1 Similarity

As the TE is computed from token embeddings, the vector lives in the subspace formed
by these embeddings. Therefore, we can use the TE to sort token embeddings (through
cosine similarity) as a qualitative confirmation that the TE reflects the desired type.
Table 5.1 shows examples of TEs for three types (cities, years, and occupations) and
the most similar token embeddings of BERT. This suggests that TEs could act as a
standalone type retriever, to sort tokens according to type and analyze any biases in
the tokens from which the TE is computed. Applying the method on the first singular
vector (i.e., −Et), we observe that the top retrieved tokens (‘.’, ‘and’, ‘the’,...) relate to
syntax, suggesting that the first singular vector encodes syntactic aspects, in agreement
with other work in multilingual representations (Roy et al., 2020), showing that the first
singular vectors encode non-semantic-related information (Yang et al., 2021).
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Figure 5.4: Distribution of the mean of the singular vectors across different types. We
report the singular vectors with top-4 singular values. The distribution of the v(1)

resembles less a Gaussian distribution (high kurtosis) as opposed to the others.

Type AA AS

city .853 (.0166) .82 (.014)
language 1 (0) .860 (.012)

occupation 1 (0) .893 (.018)

Table 5.2: Mean and standard deviation (in parentheses) of AA and AS for different
types (λ = 1).

5.4.2 Distribution of Singular Vectors

To understand the bias imposed by the first singular vector, we follow other work in
analyzing distributions of singular vectors (Shin et al., 2018), where it is shown that
distributions of singular vectors deviating from a Gaussian distribution contain bias.

From Figure 5.4, we see that the distribution of the singular vector v(1), corresponding
to the largest singular value, clearly deviates from a Gaussian distribution, while others
do not. This is indicated by the high kurtosis values for the first singular vectors. This
suggests that this singular vector could represent a common bias that affects tokens (Shin
et al., 2018). Note that since each singular vector is of dimension d, and to plot the
histogram, we report the mean of the singular vector.
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5.4.3 Effect of TE

We introduce two metrics for measuring TE’s effectiveness.
Adversarial Accuracy. We expect that adding a TE to BERT causes the PLM to

be more “type aware” in the associated task, i.e., adding the TE conveys type-related
tokens in the output. For example, in an MLM task, adding the TE should rank higher
the tokens following the associated type. In a NLG task, adding a TE should convey
more type-related tokens in the generated text. We focus on the former in this work, and
leave the latter for future work.

To validate this hypothesis, we check if the score of a positively typed token in an
MLM task for a model with the associated TE is greater than that of a standard BERT
model. Formally, given a modelMt, with an MLM head that has been equipped with a
TE Et promoting a specific type t, we denote by P (x)

Mt
the normalized output score of

the token x with modelMt and prompt pr. To assess the effectiveness of the TE, we
compute this normalized probability to that of an adversary, a BERT model without any
equipped TE. We define the metric adversarial accuracy (AA) as:

AA =
|{x ∈ Xt+ |P

(x)
Mt

> P
(x)
M∅}|

|Xt+ |
(5.1)

whereM∅ is a model without any TE, and Xt+ is a set of tokens adhering to the type
t. A higher value indicates that the TE is able to promote PLM tokens following type t.

Adversarial Sensitivity. We also expect that adding the TE should make tokens
following the type more sensitive to the input TE. In other words, adding the TE in an
MLM setting should cause these tokens to be more salient w.r.t. the input. To validate
this hypothesis, we compare the sensitivity of a token w.r.t. the input in two models
with and without a TE. If the former is greater than the latter, then the model is more
sensitive to the typed token.

More formally, given a modelM, the output score of a token x is P (x)(X[MASK])1.
With a first-order Taylor series expansion, we obtain S

(x)
M = P t(X[MASK]) − P t(0) ≈

∂P t(X[MASK])T

∂X[MASK]
X[MASK], where 0 is the zero vector.

S
(x)
M is reminiscent of metrics used in the neural network pruning literature (LeCun

et al., 1989; Molchanov et al., 2017). However, the metric is applied w.r.t. a vector rather
than to the usual case of scalar, and we do not take the absolute value of the metric as
we focus on comparing sensitivities of models and not measuring an absolute effect.

Finally, to test a TE, we compare the sensitivity to that of a standard BERT model.
Similarly, we define adversarial sensitivity as the number of positive typed tokens whose
sensitivity increased after adding TE to the number of positive typed tokens in a set Xt+ .
More formally:

AS =
|{x ∈ Xt+ |S

(x)
Mt

> S
(x)
M∅}|

|Xt+ |
(5.2)

1Other input tokens are omitted for brevity.
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For both measures, we report results over a sample of 100 tokens, making sure that
every one is an instance of type t and none of them has been used to derive the TE. We
then compute the accuracy 10 times to get mean and standard deviation. To make sure
that any change in the scores is due only to the TE, we set pr = [MASK]. This simple
prompt neglects any contextual information that might affect PLM tokens, thus ensuring
that any change is due to the TE.

Results for mean and standard deviation are reported in Table 5.2 for both AA and
AS. For AA, TEs perform well in promoting tokens respecting a certain type. We
observe a lower score for type city, which is likely due to (a) the large cardinality of
the city type making it more difficult to model all required aspects of cities, and (b)
coincidence of some city tokens with people names such as Morris, Salem, and Riley.

For AS, the TE has a small error margin. As we cannot expect token embeddings
to capture all intricacies of a certain type, there are examples where the model fails
the sensitivity test. Examples of failing tokens that did not show improvement in type
sensitivity for city are Salvador and Blair, for language are Cherokee and Romani,
and occupation are general and vicar.

5.4.4 Layer-wise Classification

As TEs are added at the input of the model, we postulate that adding TEs should help
BERT identify types of input prompts more efficiently. For this, we train a layer-wise
linear classifier on embeddings of input prompts, where positive instances are prompts
belonging to a certain type t and negative instances are prompts of other types (examples
in Table 5.3). For each type, we sample 100 positive and negative instances from other
LAMA datasets (negative instances are sampled randomly from the remaining types),
and train a layer-wise linear classifier. We repeat each experiment 10 times and report
mean accuracy on a test set of the same size. Prompts appearing in the train set do not
appear again in the test set. Results in Figure 5.5 show that adding TE gives most layer
classifiers an increase in F1-score. The highest increase is usually at a layer in the middle,
in agreement with other work (Dalvi et al., 2022), possibly because this is where a type is
formed (Geva et al., 2021b; Jawahar et al., 2019). The highest increase is for language,
likely due to the smaller cardinality of the type compared to city and organization.
We obtain from these the classifiers the CAVs needed for TCAV in the following section.

5.4.5 TCAV Sensitivity

A Concept Activation Vector (CAV) for a concept is simply a vector in the direction
of the values of that concept’s set of examples (Kim et al., 2018). For example, given
images showing the concept of the red color (positive samples), and other images that do
not (negative samples), a linear classifier is trained on the activations at each layer when
inputted by such images to separate the positive and negative samples (Figure 5.2). The
normal to the hyperplane separating both samples is the CAV. By using CAVs (with
directional derivatives), one can measure the sensitivity of an input w.r.t to a concept by
gauging the sensitivity of ML predictions to changes in inputs towards the direction of
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Figure 5.5: F1 scores of three classifiers trained and tested on layer-wise embeddings of
city (Ci), language (L), and organization (Org) datasets.
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Figure 5.6: TCAV values for city (top) and language (bottom) datasets compared
against the city (C), language (L), and organization (O) CAVs for layers 5-12 of
BERT (left) and BERT+TE (right).
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Dataset Prompt Example

P27 Albert II of Belgium is [MASK] citizen .
P1376 Cardiff is the capital of [MASK] .
P17 Cairo American College is located in [MASK] .

P131 Saharsa district is located in [MASK] .
P20 Fredegund died in [MASK] .
P937 Xavier Zubiri used to work in [MASK] .

Table 5.3: Examples of LAMA datasets grouped by output types country (top) and
city (bottom).

a concept. Thus, given a set of datapoints representing a certain concept, Testing with
CAVs (TCAVs) provides means to compute the model’s conceptual sensitivity across the
input (Kim et al., 2018). As a final analysis measure, we posit that a model equipped
with a TE should have higher TCAV values across layers. For this, we compute layer-wise
TCAV using the CAVs in Section 5.4.4. Figure 5.6 shows the TCAV values for types
City and Language, comparing a vanilla BERT model (λ = 0) and one equipped with
TE (λ > 0) for layers 5-12. As TCAV computes the model’s conceptual sensitivity across
a set of inputs, we observe that with the right TE, the importance of the type becomes
more salient. This mean that the sensitivity of model predictions with respect to types,
such as City at a certain layer, increases when inputting a prompt and a TE associated
with that type.

5.5 Experiments

The LAMA benchmark (Petroni et al., 2019) contains cloze statements to test PLMs’
factual knowledge. First, we apply TEs to PLMs and show increase in precision for most
datasets (Section 5.5.1). We then enforce a change in the output with TEs (Section 5.5.2).
Finally, we show the impact of the tokens that encode the TE (Section 5.5.3). We perform
weighted sampling tokens from DBpedia where the weight represents the node degree of
the token in the KG.

5.5.1 LAMA

We focus on the GRE and TREx datasets (Elsahar et al., 2018) as their prompts can be
grouped into 17 output types from 38 datasets, with most examples covered by types
city, language, and country; examples for two types are in Table 5.3 (full list in
Appendix C.1). We remove prompts whose expected output is not in BERT’s vocabulary
and prompts containing more than one [MASK] token. This gives an upper bound on
BERT’s performance on LAMA.

As stated in Section 5.3.1, the type embedding is computed with weighted sampling
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P@1 P@10 P@50 P@100

B .223 .509 .740 .845
BTo .146 .327 .550 .640

PostTE .248 .577 .819 .889
BTE (our method) .291 .606 .838 .899

Table 5.4: Mean precision over all LAMA datasets compared to intrinsic baselines.

from KG entities (10, by default). To tune the value λ of a TE, we use a hold-out dataset
of 5% for each dataset, and choose the λ value that maximizes precision. We report
results mainly on a Bert Base Cased model. Further experiments with BERT Large
Cased and RoBERTa base show similar trends (Table C.3).

Intrinsic Evaluation. We compare BERT with TE (BTE) against standard BERT (B).
As we assume that the user knows the desired output type, we also report for a baseline
BERT + Token Type (BTo), which adds the expected type label (e.g., “the year”) before
the [MASK] token. We also report on a baseline PostTE which uses the TE at the output
for re-ranking. The initial output score is added to the cosine similarity between the
token embedding and the type embedding, controlled by a hyperparameter to adjust the
importance of the similarity score. We choose the range of the hyperparameter to vary
from 0 to 30 as in a similar work for natural language generation (Pascual et al., 2021).
We also tested a second baseline where we add the tokens used to derive the TE before
the [MASK] token, as a signal of the desired types (Shin et al., 2020), but the results
are lower than BTo. Aggregated (macro) precision@k (P@k) results over all datasets are
reported in Table 5.4 (full results in Appendix, Table C.4). On average, our proposal
clearly improves the results. We see improvements across most of the types using TEs.
However, we do observe reduction of precision in a few types, where the main reason
being the greedy selection of a non-optimal value of λ. For type manufacturer, setting
λ = 1 (rather than λ = 2) improves the results. For type specialization, while desired
outputs such as mathematics and physics do exist in the KG samples, other nodes in the
KG, such as teenager, Greek, and Sir have greater node degree and thus got selected in
the sample for obtaining the TE. For the group data, the value of λ for the TE was
0, meaning that adding the TE would hurt performance. Analyzing the predictions,
we believe this is due to the bias in the TE imposed by the KG as most samples are
related to sport groups (such as FIFA, UEFA, and CONCACAF) thus producing a TE
biased towards sports group which negatively impacts the predictions. We discuss other
sampling methods in Section 5.5.3. Finally, the year dataset shows lower performance.
We believe this is due to BERT’s inability to precisely capture numeracy (Wallace et al.,
2019). For PostTE, our method, of using the TE at the input, produces better results,
as using the TE at the output does not allow for the fusion between factual and type
knowledge in the model. PosTE does push typed tokens to higher rankings (indicating
also the effectiveness of TEs in modeling type), but adding TEs to the input is better in
terms of performance. Plus adding TEs to the input is more universal:, as the output is
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P@1 P@10 P@50 P@100

LPAQA .288 .607 .791 .855
BTE .317 .650 .868 .920

OptiPrompt .469 .790 .922 .956
BTE .356 .697 .876 .930

Table 5.5: Mean precision over all LAMA datasets compared to extrinsic baselines. We
perform better than LPAQA which uses super-vised learning to optimize for prompt
weights. The other supervised-learning approach, OptiPrompt, obtains higher precision
as it searches for prompts in the embedding space.

usually controlled by the experiment type (binary classification, MLM, NLG,...), which
might not always make it clear how to insert the TE, whereas the input is always fixed.
One thing to note is that, with PosTE, out of the 38 different datasets used, 22/38 had
an optimal value of λ to be zero. Meaning that for most datasets, it did not improve
results, as opposed to our method which had only 5/38 datasets with optimal λ = 0.

Extrinsic Evaluation. We evaluate our model against two baselines. The first baseline,
LPAQA (Jiang et al., 2020), uses mining-based methods on Wikipedia to identify
possible prompts for a given relation. As not all mined prompts might be efficient for fact
retrieval from PLMs, the authors propose to optimize for prompt weights to maximize
scores on a training set. The second baseline, OptiPrompt (Zhong et al., 2021), follows
other work in searching for prompts in the input embeddings space (Shin et al., 2020).
However, rather then being constrained to discrete input tokens, OptiPrompt finds
real-valued input vectors that maximize the likelihood of the gold label on the training set
using a gradient-based searching algorithm. Results are found in Table 5.5. We observe
that our approach does better with fewer prompts, as LPAQA requires at least 10X
more prompts per example. For OptiPrompt, the supervised approach does produce
better results, surpassing our method. However, the approach requires training data,
which is not always available. The authors of the paper use only TREx relations as
they can query the knowledge graph for more data, which is not the case for Google-RE
datasets that we use. Also, the authors use 1000 data points for training, where one can
not guarantee that 1000 data points are always available. For that, the authors had to
rely on another knowledge graph to gather more samples. Our approach requires only
10 tokens per type belonging to the PLM’s vocabulary. Finally, while training enhances
performance, training data clearly encodes certain regularities that models could exploit,
such as being prone to over-predicting the majority class label (OptiPrompt suffers
from this (Zhong et al., 2021)), unlike our approach which keeps model parameters intact.

5.5.2 Switching Types in Prompts

LAMA authors provide manually written prompts that adhere to the desired type. For
example, to get the place of birth (PoB) of a person, they use the prompt “[X] was
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Prompt TE P@1 P@10 P@50 P@100

DoB
- 0 0 0 0

Ecity .153 .404 .613 .701
Eoptim

city .194 .444 .614 .719

PoB - .244 .533 .728 .808

Table 5.6: Precision in predicting PoB (place of birth) for DoB (date of birth) prompts
by adding city TE (λ = 5). Results with TE are comparable to the PoB prompt.

P@1 P@10 P@50 P@100

BTE 0.291 0.606 0.838 0.899
Top10 0.336 0.660 0.856 0.907
Bot10 0.235 0.534 0.764 0.846
Unif 0.250 0.563 0.798 0.884

Table 5.7: Mean over all datasets for every sampling method.

born in [Y].”, while for the date of birth (DoB) of a person they use the prompt
“[X] (born [Y])". These prompts follow from how sentences about date and place of
birth are written in Wikipedia pages. In this experiment, we ponder whether TEs can
enforce a different type given one of these two prompt structure. We use DoB prompts
with the expected outcomes of PoB, where the goal is to steer the type of the output
to a different type. For example, given “Barack (born [MASK])" (prompt for DoB),
we set as expected output “Honolulu” (PoB answer). We remove examples for which
the expected output is not in BERT vocabulary and are left with 1139 prompts. We
then add the TE for city during inference. The results are shown in Table 5.6. As
expected, without any TE, the precision score is zero as the output type is heavily
influenced by the prompt. Adding Ecity to the input steers the model to change type
and it outputs cities. However, the scores are still less than those of PoB prompts.
Since the prompt is biased towards a certain type, better results can be obtained by
removing the projection of the year information onto the city TE. Our optimized TE
is then Eoptimcity = Ecity − Ecity .Eyear

||Ecity ||2||Eyear||2Eyear, which indeed shows improved results in
Table 5.6.

5.5.3 Token Sampling

We study the impact of how tokens for TEs are sampled by (i) changing the sampling
method, and (ii) varying the number of tokens used.

Sampling Methods. We evaluate forms of obtaining tokens alternative to weighted
sampling: (i) weighted sampling with node degrees as weights (BTE), (ii) using the
Top-10 tokens w.r.t. node degree (Top10 ), (iii) using the Bottom-10 tokens (Bot10 ),
and (iv) sampling uniformly without relying on node degree (Unif ). We repeat the
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P@1 P@10 P@50 P@100
n

0 0.223 0.509 0.740 0.845
5 0.279 0.611 0.814 0.873
10 0.291 0.606 0.838 0.899
15 0.275 0.617 0.847 0.894
20 0.298 0.644 0.859 0.905
50 0.292 0.631 0.853 0.906

Table 5.8: Average of precision of the datasets while varying the number of samples n to
compute the TE.

experiment in Section 5.5.1 with every sampling strategy and show results in Table 5.7.
More detailed results are found in Table C.5.

We observe that Top10 and weighted sampling obtain comparable performance. While
Top10 gets better results for Country, Organization, and Genre, other types such
as Year, Specialization and Manufacturer show lower precision because of the
bias coming from the most popular KG samples. For example, Top10 samples only years
in the 21st century, specializations related to titles (duke, Sultan, and Sir rather than
mathematics and physics), and it is biased towards car manufacturers (Fiat and Honda).
Weighted sampling reduces such bias. For Football Position, Unif does better as it
has more variety in the sample with more tokens related to American football positions
(quarter back and guard) rather than soccer positions only (goalkeeper and midfielder).

In some cases, the bias in the KG reflects the bias in the test data. For occupation,
the TE using Top10 does encode some bias as most tokens are related to artistic positions
(musician, actor), but this improves results as the same bias occurs also among the
expected outputs.
Varying Size of Samples. To study the effect of the number of tokens used in deriving
the TE, we repeat the experiment in Section 5.5.1, while varying the number of tokens
n. Results are reported in Table 5.8. We observe that results peak between 10 and 20
samples, but even a small number of samples significantly improves the results compared
to the original BERT without TE (n=0).

5.6 Conclusion
Efficient fact retrieval leads to better fact-checking systems overall. One direction to
achieve this is to encode types during PLM querying. This allows users to have more
control on PLMs by defining their desired type and embedding it in the PLM. For this, we
have introduced TEs as an additional input for PLMs to better encode type information,
proposed methods to analyze TEs, and experimented with them on the LAMA dataset.

While initial results are promising, we identify two main directions of research.
More Precise Type Embeddings. Further analysis of the examples can lead to

better type embeddings, which in turn lead to better fact-retrieval. One direction is
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to use also negative samples to compute the TE. This implies learning a vector that
separates between the samples, as CAVs do. However, adding negative samples to the mix
can bring more bias in the TE. This could be alleviated by performing some statistical
hypothesis testing, as with CAVs (Kim et al., 2018).

Another way to improve the effectiveness of our proposal is to combine vectors.
Assuming a taxonomy of the types, it would be possible to combine different TEs, for
example by subtracting for the one at hand, say person, all the ones that are not super
or subtypes, such as city and year, as we discussed for DoB in Table 5.6.

From Types to Concepts. While we focus on types and TEs, our approach can be
extended to include more generic concepts, as long as tokens that relate to the concept
are found in the PLM’s vocabulary. This could help alleviate the stereotypical and
toxic content found in NLP systems using PLMs (Ousidhoum et al., 2021). To test
our idea, we report an example for the task of natural language generation, where we
“de-toxify” text generated by an autoregressive language model. We use a distilled GPT-2
model (Radford et al., 2019) and the RealToxicityPrompts dataset that contains 100K
sentence-level prompts derived from a corpus of English text (Gehman et al., 2020). We
feed 10K samples to the model, thus producing the generated texts. We then measure
the toxicity of such texts with the Perspective API 2. We consider a text toxic if the
toxicity probability returned by the API is > 0.5 and obtain 460 toxic prompts. We then
compute a “toxicity concept embedding” using the method described in the chapter with
6 manually picked tokens that convey toxicity. To de-toxify the generated text, we set the
multiplier λ to negative values. Instead of adding the embedding to the [MASK] token
only, we found better results when adding it to all tokens in the prompt, for which we
report results. We believe this is because adding the TE to all tokens helps to ‘preserve’
type information along the lengthy generation procedure, as opposed to MLM which
decodes one token.

We also report on a sample of non-toxic prompts (size equal to that of toxic prompts)
to show the effect of the concept embedding. In addition to toxicity, we measure also
fluency (perplexity of generated continuations according to a larger PLM) and diversity
(the mean number of distinct uni-, bi-, and trigrams, normalized by the length of text for
each prompt), as it is common for evaluating text generation (Liu et al., 2021).

In the results in Table 5.9, we observe a huge reduction in the toxicity probability
with λ = −1, higher more diversity but slightly less fluency for the toxic prompt. Setting
λ = −2 decreases further the toxicity probability, but at the expense of less fluency. For
the non-toxic prompts, the toxicity results are nearly the same, with minor differences for
fluency and diversity. Considering that a “concept vector” steers the generation of the
PLM without any form of fine-tuning, it is promising to study the use of “plug-and-play"
concept vectors. A few examples are shown in Table C.2.

Despite enhancements in fact retrieval (this chapter) and claim verification (Chapter 4),
relying solely on machines for fact-checking is ineffective, employing humans in inevitable.
While humans are employed in Chapter 3, they are domain-specialized experts who

2https://perspectiveapi.com/

https://perspectiveapi.com/


CHAPTER 5. TYPE EMBEDDINGS 94

λ Toxicity (↓) Fluency (↓) Diversity (↑)
Toxicity pr. Output ppl. Di-1 Di-2 Di-3

Toxic 0 .687 4.727 .541 .455 .357
Prompt -1 .389 6.340 .602 .476 .377

-2 .356 17.564 .668 .509 .400

Non-toxic 0 .045 4.195 .801 .676 .528
Prompt -1 .077 4.038 .782 .622 .484

-2 .088 3.716 .840 .620 .475

Table 5.9: Results of detoxifying texts generated from a distilled GPT-2 model. λ
indicates the value of the multiplier of the TE (λ = 0 for original PLM).

are scarce and require formal training. As previous work has shown that a crowd of
non-experts could be effective in misinformation identification (Allen et al., 2021a), it is
promising to see how such a crowd would compare to professional experts in a large-scale
uncontrolled environment. We study this in the following chapter.





6 Analyzing Large Scale Crowd-Sourcing in
Twitter’s BirdWatch

Fact-checking is one of the effective solutions in fighting online misinformation. However,
traditional fact-checking is a process requiring scarce expert human resources, and thus
does not scale well on social media because of the continuous flow of new content to be
checked. Also, the methods of Chapters 3 and 4 focus on particular subsets of claims
and require training data that, in a best-case scenario, would require labels of experts,
thus rendering the fact-checking process costly and difficult to scale. Methods based
on humans-in-the-loop have been proposed to tackle this challenge. Crowdsourcing is
when humans, typically with no professional expertise in fact-checking, are included
in the process. It is a popular approach as the workers can scale with a smaller cost;
but, while they have shown to be feasible, they have always been studied in controlled
environments. In this chapter, we study the first large-scale effort of crowdsourced
fact-checking deployed in practice, started by Twitter with the Birdwatch program.
Our analysis shows that crowdsourcing may be an effective fact-checking strategy in
some settings, even comparable to results obtained by human experts, but does not lead
to consistent, actionable results in others. We processed 11.9k tweets verified by the
Birdwatch program and report empirical evidence of i) differences in how the crowd
and experts select content to be fact-checked, ii) how the crowd and the experts retrieve
different resources to fact-check, and iii) the edge the crowd shows in fact-checking
scalability and efficiency as compared to expert checkers.

6.1 Introduction
The spread of online misinformation carries risks for the democratic process and for a
decrease in public trust towards authoritative sources of news (Starbird, 2019). Fact-
checking is one of the prominent solutions in fighting online misinformation. However,
traditional fact-checking is a process requiring scarce expert human resources, and thus
does not scale well to social media because of the continuous flow of new content (Hassan
et al., 2015). Automated methods and crowdsourcing have been proposed to tackle this
challenge (Thorne and Vlachos, 2018; Nakov et al., 2021a; Roitero et al., 2020a), as they
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Figure 6.1: Given input tweets, the three alternative checking methods (automatic, crowd,
professional checkers) are analyzed across their comparable dimensions according to a
standard fact-checking pipeline.

can scale with a smaller cost, but have always been studied in controlled environments.
Current approaches focus either on fully automated machine learning methods (Wei
et al., 2019; Liu and Wu, 2018) or on hybrid human-machine approaches making use of
crowdsourcing to scale-up human annotation efforts (Roitero et al., 2020b).

The first large-scale effort of crowdsourced fact-checking was piloted by Twitter with
the Birdwatch program on the 23rd of January 2021 (Coleman, 2021b). Birdwatch
adopts a community-driven approach for fact-checking by allowing selected Twitter
users to identify fallacious information by (i) classifying tweets as misleading or not,
accompanied by a written review, and by (ii) classifying reviews of other Birdwatch
users as being helpful or not. In this setting, any user can create a note for a tweet
(providing some metadata about the annotations) and other users can up/down rate such
note. Multiple users can check the same content independently.

In this study, we perform an analysis of how crowdsourced fact-checking works in
practice when compared with human experts and automated fact-checking methods. To
this end, we perform an analysis of the grass-root fact-checking process in Birdwatch,
including which content is selected to be fact-checked, which sources of evidence are used,
and the fact-checking outcome. We also look at possible bias in terms of volume and
topics as compared to experts. To enable a fair comparison across the three fact-checking
approaches (i.e., computational methods, crowd, experts), we collected a dataset of 11.9k
tweets with Birdwatch checks and identified 2.2k tweets verified both by Birdwatch
users and expert journalists. This dataset enables us to analyze and contrast the three
approaches across the main dimensions in the standard fact-checking pipeline (see Figure
6.1). We focus on the following research questions:
RQ1 How are check-worthy claims selected by Birdwatch users? Can the crowd identify
check-worthy claims before experts do?
RQ2 What sources of information are used to support a fact-checking decision in
Birdwatch and how reliable are they? Does the crowd always rely on data previously
fact-checked by experts, or can they be considered as “independent fact-checkers”?
RQ3 Are crowd workers able to reliably assess the veracity of a tweet? Is their assessment
always considered helpful by others?
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Our results reveal insights from real data to answer these questions. As automatic
methods are still not competitive for checking the truthfulness of online content, we focus
on how the crowd can fact-check claims and the way they do it as compared to experts.
The main contribution of this work is an in-depth data-driven study of how crowdsourced
fact-checking can work in practice, as compared to expert fact-checking over a number of
dimensions such as topics, sources of evidence, timeliness, and effectiveness.

Claim Selection. The first step in the process is deciding which claims, out of the
very many produced on Twitter, should be fact-checked. This is similar to the process of
assessing relevance in a search task, as users are looking for a piece of content that is
valuable and that satisfies their requirements (e.g., an information need or potential harm
caused by the piece of content if misleading). Regarding the selection of the claims to
check, we show that the crowd mostly matches the claims selected by expert fact-checkers
in terms of topics, and it is not strongly influenced by properties of the social network,
such as popularity of tweets. Moreover, we analyze the responsiveness of crowd and
experts with respect to fresh tweets and found that in some cases the crowd is orders of
magnitude faster in generating a correct fact-checking outcome.

Evidence Retrieval. In terms of sources, Birdwatch users and fact-checkers rely
on different set of online resources, with only few reference websites in common. For
the sources used by the crowd and the experts, we also compare the quality perceived
by the Birdwatch community against the quality ratings obtained from a professional
journalistic tool. The two scoring methods show correlation, but also remarkable bias in
source quality assessment by the crowd on some topics related to politics.

Claim Verification. In terms of effectiveness of the claim verification, we show that
crowdsourcing may be an effective checking strategy in most settings, even comparable
to the results obtained by human experts, but does not lead to consistent, actionable
results for some topics. We also analyze the agreement among Birdwatch users and the
use of different scoring functions to aggregate their feedback, including the one used in
production by Twitter.

Our observations show how crowdsourcing fact-checking in practice can bring an
added value as compared to expert fact-checkers or computational methods used in
isolation. Additionally, we release the first dataset of tweets with labels from expert
fact-checker, crowd, and computational methods.

In the rest of the chapter, we discuss related work in fact-checking and crowdsourcing
(Section 6.2), introduce the datasets collected and crafted for our study (Section 6.3), and
discuss the empirical results for our analysis (Section 6.4). Finally, we discuss the main
challenges and opportunities for crowdsourced fact-checking (Section 6.5) and conclude
the chapter with some open research questions (Section 6.6).

6.2 Background and Related Work
Fact-checking requires a chain of steps that starts with identifying check-worthy claims
and ends with a label about the veracity of the claim. Labels vary across services but
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usually can be divided into four popular categories: true, partially-true, false, or not
enough evidence to judge. The top of Figure 6.1 shows a generic high-level fact-checking
pipeline (Nakov et al., 2021a). The three considered checking methods are then reported,
specifically automatic methods, Birdwatch, crowd, and expert fact-checkers. Given
an input textual tweet, every method can be used to assess if it is worth checking and
eventually verified. For every checking method, we also report the dimensions that can be
used to compare and contrast the alternative methods. We discuss next the main steps
in the pipeline, their related work, and their implementation in the different methods.

Claim Selection. For claim selection we can use automatic methods, the crowd,
or experts. Given a sentence, an automatic method scores if it contains check-worthy
factual claims (Hassan et al., 2017a; Atanasova et al., 2019; Hansen et al., 2019). A model
trained on annotated sentences gives low scores to non-factual and subjective sentences.
Deciding whether a claim is worth checking is similar to the task of judging the relevance
of a document w.r.t. a search query. In Information Retrieval evaluation, well-trained
experts (e.g., NIST assessors) may be used to produce judgements of relevance following
guidelines, or be instead substituted by crowd workers who receive simple instructions.
Similarly, check-worthiness may be performed by a panel of experts or crowdsourced, like
done in Birdwatch. The crowdsourced annotation of textual content on social networks
is a widely supported activity across all platforms. Users label content that violates the
guidelines of the site, such as hate speech and misinformation. This process triggers the
human verification with moderators hired by the platform (Meta, 2021; Dori-Hacohen
et al., 2021). For expert, human fact-checkers the selection of the claims to verify is
driven by journalistic principles, e.g., claims should contain verifiable facts (Holan, 2018).
Experts also assess if a claim is important, with a definition that changes according to the
public and the mission of the organization, e.g., voters and elections (Kessler, 2017). The
crowd may have different criteria and priorities in deciding which claims to fact-check
and a definition of check-worthiness that takes into account the topic, the timeliness, and
their own personal points of view. Previous research in crowdsourced fact-checking (e.g.,
(Pinto et al., 2019)) has not looked in detail at how the crowd may perform this step of
the pipeline, and it is something that instead we do in this work.

Evidence Retrieval. For computational methods, we distinguish the task of de-
tecting previously fact-checked claims and the task of gathering evidence to support the
verification step. As false claims are often repeated across platforms and over time, inde-
pendently of available fact-checks, claim matching aims at automatically identifying an
existing debunking article for the claim at hand (Adler and Boscaini-Gilroy, 2019; Shaar
et al., 2020; Botnevik et al., 2020). Claim matching is feasible at scale because websites
use the schema.org standard ClaimReview metadata to share their checks (CRP). For
fresh claims, which have not been debunked yet, several methods aim at finding external
evidence to help fact-checkers and computational methods deciding on the veracity of a
claim (Thorne et al., 2018b). The output is usually a ranking of retrieved documents or
specific passages (Alshomary et al., 2020). The crowd makes use of expert fact-checking
outcomes when available. Indeed, Roitero et al. (2020a) removed expert outcomes from
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Figure 6.2: Birdwatch note and ClaimReview fact-check Example. (A) shows a tweet.
(B) is the note with the assigned label to such tweet. (C) is a sample of questions when
submitting a note. (D) is a sample of questions when submitting a rating. (E) shows a
fact-check delivered by an expert.

the search results used by the crowd in their fact-checking task to avoid influencing crowd
worker judgments. Expert fact-checkers instead rely on their training to identify proven,
verified, transparent, and accountable evidence (Rautner, 2020), sometimes involving
third-party domain experts (FullFactFAQ, 2022).

Claim verification. A large body of research focus on developing and evaluating
automatic solutions for fact-checking (Nakov et al., 2021a; Vo and Lee, 2018; Brand et al.,
2021; Botnevik et al., 2020; Pradeep et al., 2021; Su et al., 2019; Karagiannis et al., 2020).
However, there are coverage and quality issues with automated systems (Arnold, 2020),
and thus a pragmatic approach is to build tools to facilitate human fact-checkers (Vo and
Lee, 2018). At the same time, effort in artificially creating rumors and misinformation
has been shown to be effective (Huynh et al., 2021). The crowd makes use of evidence
from the Web and is influenced by their own personal belief and context (Roitero et al.,
2020b; Barbera et al., 2020). Interestingly, when misinformation is identified on social
media, users tend to counter it by providing evidence of it being misleading (Micallef
et al., 2020). This shows an intrinsic motivation that certain members of the crowd have
to contribute to the checking process. An approach for crowdsourced fact-checking is
using tools that surface relevant evidence for their judgement (Fan et al., 2020). This
however comes with the risk of over relying on such tools to make judgements (Nguyen
et al., 2018).

Finally, there has been some early analysis of the Birdwatch data (Allen et al.,
2021b; Pröllochs, 2021), but they focus only on the tweets and notes content, while
we rely on the manually aligned expert claim reviews to compare Birdwatch results
against the best solution in this space. A related study has looked at a Reddit community
involved in the fact-checking process using a crowdsourced approach (Hassan et al., 2019).
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6.3 Data
Community-driven fact-checking on Twitter is governed by the Birdwatch initia-
tive (Coleman, 2021b), while fact-checks written by journalists and expert fact-checkers
are curated using the ClaimReview schema (CRP). In this section, we describe both
datasets and how to match similar claims identified by both parties. Approval from
authors’ institution research ethics committee to perform this study has been obtained
prior to commencing.

6.3.1 Birdwatch

Misinformation on Twitter can be mitigated through the Birdwatch program, where
participants can identify misleading tweets and provide more context (Coleman, 2021b).
Currently, Birdwatch is only available to participants in the US (thus our analysis has
been limited to the US), where users can identify misleading information using two core
elements: Notes and Ratings.

Notes. Participants in the Birdwatch program can add notes to any tweet. Their
notes are formed from: (i) a classification label indicating whether the tweet is misin-
formed/misleading (MM) or not misleading (NM) according to their judgement, (ii)
answers to several multiple-choice questions about their decision (Birdwatch, 2021),
and (iii) an open text field where participants can justify their choice of the label and
possibly include links to sources that prove their point. An example of a note is shown
in Figure 6.2 (B,C). The key data we use from the notes are the following:

• Classification Label: Whether the tweet is misinformed (MM) or not (NM) according
to the Birdwatch user (Section 6.4.3).

• Note Text: the text given by the user with the justification for the label (Sections
6.3.4 and 6.4.1).

• Timestamps: time at which the note was written (Section 6.4.1).

Ratings. Participants rate the notes of other participants. Ratings help identify
which notes are most helpful. A user rates a note by providing answers to a list of
questions (Birdwatch, 2021). An example of a rating is shown in Figure 6.2 (D). Out of
these questions, we focus on the following:

• High-quality Sources: The user answers the yes/no question ‘Is this note helpful
because it cites high-quality sources?’. We use this information to assess whether
Birdwatch users distinguish credible sources (Section 6.4.2.2).

• Helpfulness Label: The user answers the question ‘Is this note helpful?’. The possible
answers are (i) not helpful, (ii) somewhat helpful, and (iii) helpful. We use this
information to compute a helpfulness score for notes (Section 6.4.3).

All Birdwatch notes start with a ‘Needs More Rating’ status until enough ratings are
achieved according to a platform-defined threshold (currently set to 5). Once achieved,
these ratings are aggregated and weighted by a ‘Rater Score’ to compute the ‘Note
Helpfulness Score’. A higher rater score gives more weight to participants (i) whose notes
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ID Tweet BW Note CR Fact Comment
Text Label Text Label

#1 Pregnant
women, please
don’t take
this vaccine.
https://t.co/
4KKlnMIbl7

Updated CDC guidance,
and newly accepted
and reviewed medical
research, has stated
there are no safety
concerns for pregnant
women to be vaccinated
against COVID-19. (links
omitted for brevity)

MM The vaccine is
not safe for
pregnant women or
women planning on
becoming pregnant
within a few months
of taking the
vaccine... We
are the lab rats.

NC The Birdwatch user pro-
vides proof of why the
claim is False. The
fetched fact-check has a la-
bel of being not credible.

#2 The mass
shooting at
Marjory Stoneman
Douglas High
School in
Parkland,
Florida was real
and not staged.

That this continues
to be debated is
astounding. Yes, this
really happened. Here
is a link: https:
//en.m.wikipedia.org/
wiki/Stoneman_Douglas_
High_School_shooting

NM Say David Hogg is
a crisis actor.

NC BW note confirms the
tweet, thus the label was
not misleading. The CR
check states a claim oppo-
site to the tweet and its
label is not credible.

#3 Chicago PD Says
Enhanced Vid
Shows Gun in
13-Year-Old Adam
Toledo’s Hand
https://t.co/
B0Twu733RL

Chicago Mayor Lori
Lightfoot said Adam
Toledo had a gun in
his hand when he was
fatally shot by a
police officer, or
words to that effect.

MM Adam Toledo did
not have the gun
in his hand when
he was approached
by the police who
shot him. He has
his arms up and
complied. The gun
was on the floor,
not his hands.

CR Difference in granular-
ity of the claim. For
CR check, the claim is
whether Toledo was hold-
ing a gun; while for the
BW note, the claim was
whether Chicago’s mayor
said that Toledo hold a
gun.

#4 New poll
indicates
Biden approval
at 11%. The
LOWEST approval
rating of ANY
president in
American history.
Gallup via Daily
Caller

https://
fivethirtyeight.com/
features/how-were-
tracking-joe-bidens-
approval-rating/

MM Biden approval at
11%

NC The Birdwatch partici-
pant provided a reliable
source (score of 92.5) 7
days before a fact-check
by an expert was avail-
able.

#5 Biden thinks he
came to the US
Senate 120 years
ago?!?

US President Joe
Biden made a clear
joke at his first
press briefing since
his inauguration, in
which he said he went
to the Senate 120
years ago. This is
a self-deprecating
joke and shouldn’t be
taken seriously.

MM Joe Biden said,
‘With regard to
the filibuster, I
believe we should
go back to the
position of the
filibuster that
existed just when
I came to the
United States
Senate 120 years
ago.’

CR The tweeter took a joke
seriously, which was inter-
preted as misleading by
the Birdwatch partici-
pant.

Table 6.1: Examples of tweets, Birdwatch Notes, and matched ClaimReview fact-
checks. Birdwatch uses labels misleading/potentially misinformed (MM) or not mis-
leading (NM), while ClaimReview uses credible (CR) or not credible (NC).

are found helpful by other participants, and (ii) whose ratings align with the final rating
outcome. A higher note helpfulness score means that many participants found a note
adequate, and it would likely hold a valid classification label.
A complete list of questions asked for notes and rating (during the time of writing) are

https://t.co/4KKlnMIbl7
https://t.co/4KKlnMIbl7
https://en.m.wikipedia.org/wiki/Stoneman_Douglas_High_School_shooting
https://en.m.wikipedia.org/wiki/Stoneman_Douglas_High_School_shooting
https://en.m.wikipedia.org/wiki/Stoneman_Douglas_High_School_shooting
https://en.m.wikipedia.org/wiki/Stoneman_Douglas_High_School_shooting
https://t.co/B0Twu733RL
https://t.co/B0Twu733RL
https://fivethirtyeight.com/features/how-were-tracking-joe-bidens-approval-rating/
https://fivethirtyeight.com/features/how-were-tracking-joe-bidens-approval-rating/
https://fivethirtyeight.com/features/how-were-tracking-joe-bidens-approval-rating/
https://fivethirtyeight.com/features/how-were-tracking-joe-bidens-approval-rating/
https://fivethirtyeight.com/features/how-were-tracking-joe-bidens-approval-rating/
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shown in Appendix D.1.
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Figure 6.3: Bar plot of the number of notes per tweet.
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Figure 6.4: Bar plot of the number of ratings per note.

Descriptive Statistics. We use the Birdwatch data up to September 18th 2021.
The dataset contains 86,924 ratings for 15,445 notes on 11,871 tweets from 5124 unique
Birdwatch participants. Bar plots of the number of notes and ratings are shown in
Figure 6.3 and Figure 6.4, respectively. Most tweets have only one or two notes, while
the tweet with the most notes has 61. The majority of notes have less than five ratings,
and the most rated note has 184 ratings. The user with most notes checked 656 tweets,
with around 71% related to US Politics. Among these 656 tweets, 643 do not have any
other note. The user with most notes in common with other users shares 85 notes (on 85
tweets) with 217 other users.

6.3.2 ClaimReview
The ClaimReview project (CRP) is a schema used to publish fact-checking articles by
organizations and journalists. The schema defines mark-up tags that are used in web
pages so that search engines identify the information in a debunking article, such as
text claim, claim label, and author (CRS). Our dataset is a collection of items following
the ClaimReview schema, collected from various sources (Mensio and Alani, 2019).
Each item, or fact-check, is a (claim, label) pair produced by a professional journalist
or fact-checking agency. We assume that professional fact-checkers do not overlap with
Birdwatch participants, as the former have no interest in doing their work without
retribution. Since different fact-checkers use different labels, the data is normalized into
a smaller subset of labels (credible, mostly credible, uncertain, unverifiable, not credible).
In addition to the claim and the label, the checks also contain a link to the fact-checking
article. Note that checked claims in this dataset could occur anywhere on the web and
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Figure 6.5: Bar plot of tweets checked by Birdwatch (BW) and ClaimReview (CR)
fact-checks for 2021 divided by topic.

need not be only on Twitter. We use a dataset containing 76,769 fact-checks. Examples
of the data are shown in Figure 6.2 (E) and Table 6.1.

6.3.3 Matched Data

To study how the judgements of the crowd compare to those of expert fact-checkers,
we match claims from both datasets. As the automatic matching is imperfect, we used
the MTurk crowdsourcing platform for matching the text in the tweets checked by the
Birdwatch crowd with the claim text in the ClaimReview fact-checks. When workers
accepted a Human Intelligence Task (HIT), they were shown (i) the tweet that is to be
matched and (ii) the top-10 similar ClaimReview checks provided by SentenceBERT
using a bi-encoder with cosine similarity between the text of the tweet and that of the
claim in ClaimReview fact-checks (Reimers and Gurevych, 2019). We also add a ‘None
of the Above’ option for cases where the worker could not find a match. A manual
inspection of the matches showed that the vast majority of tweets with a score below 0.6
do not have matching ClaimReview checks. We therefore run the annotation for tweets
with at least 0.6 as top-1 similarity score. The workers were required to have at least 500
approved HITs to access our task, which comprised of 5322 tweets to be matched. Each
tweet was shown to 3 workers, similar to previous work (Kazai, 2011; Liu et al., 2010).
The hourly rate based on median completion time was 12.41$.

To measure the quality of the worker annotations, we manually annotated the
top-500 tweets in terms of matching score. Among these 500 tweets, we manually
identified 75 with a matching ClaimReview check. Workers correctly matched 63/75
tweets according to our ground truth, while the baseline method choosing the highest
SentenceBERT score correctly matched 59/75 tweets. After running the study over
the 5322 tweets, we obtain 2208 tweets (3043 notes) matching with ClaimReview
checks. An example of a tweet matching a ClaimReview check is shown in Figure 6.2
(A,E). More examples of matched tweets, Birdwatch notes, and ClaimReview checks
are in Table 6.1. Our dataset containing matched tweets to ClaimReview checks
alongside labels from Birdwatch and ClaimReview and relevant code are available at
https://github.com/MhmdSaiid/BirdWatch.

https://github.com/MhmdSaiid/BirdWatch
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Figure 6.6: Per-topic frequency histograms and KDE Plots for Birdwatch (BW) notes
and ClaimReview (CR) fact-checks (month granularity).

6.3.4 Topics

We analyze how Birdwatch notes and ClaimReview checks compare in terms of
covered topics. We use BertTopic, a topic-modeling technique that utilizes transformers
and TF-IDF for clustering (Grootendorst, 2020), to predict the topic of every Birdwatch
tweet and ClaimReview claim for the year 2021 and report their frequency distributions
in Figure 6.5. Politics and Health have high counts in both. Topic Country, which
includes news about countries all over the world, has higher counts for ClaimReview
data since Birdwatch is deployed in the US only. Birdwatch notes cover mostly
tweets in English and is biased towards US related news, whereas the ClaimReview
data contains fact-checks in different languages and from local fact-checking agency, thus
explaining the high number of country-related tweets.

6.4 Results
We report results in addressing our three research questions next.

6.4.1 RQ1: Claim Selection

We analyze how Birdwatch participants effectively identify check-worthy claims in a
comparison with fact-checking experts. We also compare Birdwatch users, who do not
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Figure 6.7: (A) shows a box plot of claim check-worthiness scores of Birdwatch tweets
and the claims in the ClaimReview fact-checks. (B) shows a box plot of journalist
scores compared to the final verdict of Birdwatch users (x-axis).

necessarily have journalistic training, against computational methods for this task.

6.4.1.1 Topic Analysis

After predicting the topic of every Birdwatch tweet and ClaimReview fact-check, we
plot the frequency distribution of four topics showing interesting trends, on a monthly
basis, in Figure 6.6. The high count of Birdwatch tweets and ClaimReview fact-checks
covering political tweets show that they both consider the Politics topic important. The
similar trends for this topic suggest that both methods react similarly to news and major
events in terms of claim selection. For example, the peak in Politics for both methods in
August is related to the Taliban take-over of Afghanistan. We observe the same trend
for the topics Economy and Natural Disasters.

However, for the Health related tweets, we observe an abrupt change in the trends
from July 2021. This is due to the emergence of the COVID-19 Delta variant in US,
which triggered more tweets about the topic, mainly discussing masks/vaccines issues,
and more Birdwatch notes on this topic. This is accompanied by a decrease in the
number of health-related fact-checks, which can be explained by multiple reasons. One
explanation is that the most important issues about masks and vaccines had already
been debunked before the Delta variant. This shows that despite fact-checks are available
online, numerous social network users keep spreading false claims that have previously
been debunked (see also Section 6.4.3).

Topic selection also reflects the different geographic focus of the two methods. For
example, the Birdwatch peak in February in topic Economy is due to the Texas power
crisis, a US-specific event. Despite the differences, our results show that both Birdwatch
participants and ClaimReview experts pick the content to verify in response to the
events happening in reality, independently of the specific topic.

6.4.1.2 Computational Methods

We report on the ClaimBuster API for claim check-worthiness (Hassan et al., 2017a).
Given a sentence, the API provides a score between 0.0 and 1.0, where a higher score
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Figure 6.8: Tweet popularity and Birdwatch activity.

indicates that the sentence contains check-worthy claims. We run the API on Birdwatch
tweets and the claims in the ClaimReview fact-checks, with the associated box plots
for the scores in Figure 6.7 (A). The results show a check-worthiness median score at
around 0.4, for both sets of claims, while in ClaimBuster the suggested threshold for
check-worthiness is 0.5 (Hassan et al., 2017a). One explanation of the difficulties of
computational methods for claim selection is the bias in the training data used to build
them. Indeed, most available datasets for this task are of high-quality text, coming from
articles or political speeches, while the text used on Twitter is usually much noisier, e.g.,
due to the use of slang.

6.4.1.3 Tweet Popularity

We check whether the claim selection process of Birdwatch users is affected by the
popularity of a tweet. For every tweet, we retrieve the number of retweets and favorites
and sum them to obtain a quantifiable popularity score. As expected, Figure 6.8 shows
that popular tweets receive more activity than others from the Birdwatch community,
i.e., have more notes and ratings. However, there are popular tweets with low Birdwatch
activity and unpopular tweets with high number of notes and ratings.

6.4.1.4 Temporal Analysis

We analyze tweets (T), Birdwatch notes (B), and ClaimReview fact-checks (C)
time-wise. As a note can only occur after a tweet, we have three different configura-
tions: (i) Tweet occurs first, then Birdwatch note, then ClaimReview fact-check
(TBC), (ii) Tweet then ClaimReview fact-check then Birdwatch note (TCB), and
(iii) ClaimReview fact then Tweet then Birdwatch note (CTB).

TBC: There are 129/2208 tweets in our matched data for this case. In all tweets,
Birdwatch users provide a response much faster than experts. On average, a Birdwatch
provides a response 10× faster than an expert. These examples show how Birdwatch
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participants can fact-check claims with reliable sources without the need of ClaimReview
fact-checks such as ID #4 in Table 6.1.

TCB: In our dataset, a ClaimReview rarely occurs after a tweet and before a
Birdwatch. We observe faster responses from ClaimReview than Birdwatch users
for 26/2208 tweets. Since the granularity of the ClaimReview is days while that of
Birdwatch is seconds, there are also 17/2208 tweets that occur on the same day, and
we cannot state which of the two was actually faster.

CTB: The majority of the matched tweets follow this pattern, with most of them
related to US politics and COVID-19. As Twitter is an open space, several users tend to
spread false news even after they have been fact-checked, specifically those related to
Trump winning the elections. We discuss more this issue in Section 6.5.

Claim Selection Take-away Message: Birdwatch users and ClaimReview experts
show correlation in claim selection decisions w.r.t. major news and events, but with
important differences due to the circulation of claims that have been already debunked by
experts. The crowd seems to be effective also in identifying tweets with misleading claims
even before they get fact-checked by an expert. Also, both popular and non-popular
tweets get verified by Birdwatch users. Computing the check-worthiness of a tweet
does not lead to effective results using current off the shelf APIs.

6.4.2 RQ2: Evidence Retrieval

Both crowd checkers and experts report the sources used in their verification process. We
analyze such sources and then contrast their quality according to an external journalistic
tool1.

6.4.2.1 Descriptive Statistics

We extract all links from Birdwatch notes. We find a total of 12,909 links covering
2,014 domains. Unsurprisingly, the top cited links are those coming from journalistic and
fact-checking sites (PolitiFact, Reuters, NYtimes) and governmental websites, such as
USGS and CDC. The distribution of the links is right-skewed, where half of the links
are from only 29 domains. ClaimReview checks contain 76,769 links covering only 73
domains of fact-checking groups and journalists. The distribution of links shows less
skewness than that of Birdwatch. Birdwatch participants use only 17 domains in
common to those of the ClaimReview experts. The other 56 ClaimReview domains,
which are not in the overlap, include 53 local resources, such as news outlets, for non US
countries as fact-checking organizations work at a global scale and Birdwatch focuses on
US. Birdwatch sources are a larger number as they range from Wikipedia and YouTube
videos to medical websites and research papers.

1https://www.newsguardtech.com/

https://www.newsguardtech.com/
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6.4.2.2 Expert Judgement of Source Quality

We compare ratings of source quality of Birdwatch users to those of expert fact-checkers.
To assess the quality of web sources, we rely on an external tool that provides a score
(between 0 and 100) where the higher the score, the higher the quality of the source2.
The score is obtained by journalists manually reviewing every website, and we refer to it
as the journalist score.

For every note in our matched dataset, we first compute a Birdwatch score indicating
whether the links are high-quality sources or not by performing a majority voting on the
ratings of the note, and we then compute the average journalist score of every link in the
note. Out of 3043 notes, 2231 contained links. We obtained results for 656, while the
others either had (i) no ratings (363/2231), (ii) no journalist scores (698/2231), (iii) nor
both (309/2231), or (iv) there was no majority in the ranking votes (205/2231).

A box plot of journalist scores and Birdwatch labels is shown in Figure 6.7 (B). For
note links rated as high-quality by Birdwatch users (with majority voting), we observe
high journalist scores. The majority of tweets of the notes are related to US elections
and COVID-19, with Birdwatch users citing sources such as PolitiFact and CDC. Some
sources in the notes have been classified as being high-quality by Birdwatch users, but
low-quality w.r.t. the journalist scores. Those notes share mainly COVID-19 studies
such as Mayoclinic.org, a nonprofit American medical center, and fda.gov, the US food
and drug administration, that are regarded as reliable sources in the US but do not meet
all the requirements for high journalist score.

238/656 notes contain sources that are rated as low-quality, but have a high journalist
score. These notes are debunking news about US politics, specifically about Trump
winning the 2020 elections, and misinformed COVID-19 content. These tweets include
links to reliable sources, but a significant fraction of Birdwatch users labeled such links
as low-quality. This shows how some Birdwatch users convey partisanship, forming
a group of people trying to deceive the Birdwatch program to serve their common
interest, such as supporting a political party in social media.

Such groups can be effective in “gaming” the algorithm (Epstein et al., 2020), ul-
timately having a profound effect on Birdwatch since (i) the biased Birdwatch
participants can steer the ultimate label of a note to their favor, thus spreading mis-
information, and (ii) by increasing their weight in the Birdwatch platform since if
one’s ratings match those of the ultimate rating, they will get a higher weight. As an
example, for the tweet ‘Joe Biden is President In Name Only. #PINO’, a certain
note replied that Biden is indeed the president with links from PolitiFact and APNews,
both having journalistic scores of 100/100 and 95/100 respectively while 12/14 of the
raters identified such sources as unreliable.

We also compute journalist scores for links in Birdwatch and ClaimReview
data. As Birdwatch users use many links, we only computed scores for the top-100
occurring links that form 68.6% of the data. While both distributions of Birdwatch and
ClaimReview link scores attain a median of 1.0, links by ClaimReview fact-checks

2https://www.newsguardtech.com

https://www.newsguardtech.com
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Figure 6.9: Violin Plot of note counts and class splits of the classification labels of notes.
The figure shows the Kernel Density Estimation (KDE) plot of every note count, with
their respective data points. Tweets with two notes are dominant, with most notes
agreeing on the label. Other note counts do show full agreement on the label (0/100),
with more cases of disagreement as the number of notes increase.

have lower variance with a minimum of 0.875, while that of Birdwatch notes is 0.495.
Evidence Retrieval Take-away Message: Expert fact-checkers rely on a relatively small

set of high-quality sources to verify claims, while Birdwatch participants provide a
variety of sources that seem to be neglected by fact-checkers. While most of these sources
are evaluated as credible (by journalists) and useful (by the Birdwatch crowd), malicious
users might game the algorithm and effectively label notes as unhelpful according to their
ideology.

6.4.3 RQ3: Claim Verification

We ponder whether Birdwatch participants provide accurate judgements. We first
compare agreement (i) among themselves and then (ii) with ClaimReview expert fact-
checkers. We then analyze different scoring functions for note aggregation, and finally
report results for computational methods.

6.4.3.1 Internal Agreement

We use the participants’ classification labels to see whether the tweet is classified as
misinformed or not. To compute agreement, we use the standard metrics Krippendorff’s
alpha (Krippendorff, 2011) and Fleiss’s kappa (Fleiss, 1971). However, due to the large
sparsity in the data and the huge number of missing values, both metrics fail to provide
meaningful results (Checco et al., 2017). We then compute the variance as a metric
for agreement. Lower variance means that all Birdwatch participants agree on the
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BirdWatch

Notes Tweets

MM NM MM NM Tie

Claim
Review

credible 209 25 126 9 9
mostly_credible 56 14 44 7 5
not_credible 1983 184 1476 62 55
not_verifiable 300 25 225 8 9

uncertain 225 22 156 8 9

Table 6.2: Matching the classification labels across Birdwatch and ClaimReview on
the note level and the tweet level (obtained through majority voting). Agreement in
bold.

classification label. A violin plot is shown in Figure 6.9 for tweets with various note
counts. On the y-axis, we report the density of the class splits, where a class 0/100
indicates full agreement across the users and 50/50 indicates full disagreement. We see
that most tweets have two notes and the majority of users perfectly agree on the final
classification label. The same applies to tweets with more note counts, where most of the
notes agree on the final label, with conflicts happening on some tweets but with a small
subset with full disagreement. A topic analysis of tweets shows that 48.3% of tweets with
full disagreement are related to either politics or COVID-19.

6.4.3.2 External Agreement

After matching Birdwatch data with ClaimReview fact-checks, we compare their
labels. Table 6.2 shows that the majority of ClaimReview labels match the Birdwatch
ones. Specifically, in terms of notes, there are 2022 cases (25+14+1983) where they
agree and 449 cases of disagreement. In terms of tweets, there are 1492 (9+7+1476)
decisions with the same classification label and 232 (126+44+62) with different labels.
For 69 (9+5+55) tweets, there is a tie in the voting across Birdwatch users. For
completeness, we report also the numbers for other ClaimReview labels (‘not_verifiable’
and ‘uncertain’), even if they have no mapping to Birdwatch classification labels.
We did some analysis to understand the cases where the labels are not aligned. Some
examples are reported in Table 6.1. Among the 209 notes that are labeled as credible by
the ClaimReview fact-checks and misinformed by the Birdwatch participants, the
most common cause are texts with multiple claims, i.e., multiple facts are reported in a
tweet and the fact-checked claims differ (ID #3). In other cases, tweets are mistakenly
labeled as misinformed, e.g., because a joke is taken seriously by a Twitter user (ID
#5). Finally, assuming correct ClaimReview labels, we believe in some cases the
mismatch is due to biased Birdwatch users. For the tweets labeled as not credible by
ClaimReview fact-checks and not misleading by Birdwatch notes, we observe cases
where a Birdwatch note is the negated version of the ClaimReview fact-check (ID
#2), thus producing opposite labels. There are also mismatch of labels, even though the
Birdwatch user provides evidence from a link that has a high journalistic score (0.875).
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6.4.3.3 Note Helpfulness Score

In the real-world production setting, not all Birdwatch notes are used for finding the
ultimate label that gets exposed on the platform. In fact, a note helpfulness score is
computed by the platform for each note, and those having a high enough score are used
for computing the ultimate label. Birdwatch exposes the code for computing such
score, however, the public code does not include raters’ scores into consideration. We
use the available code and filter out notes that are not helpful for the final label, using
a Twitter-defined threshold for the note helpfulness score (0.84). We are left with 533
tweets (over 2208) that pass the threshold, with 333 notes labeling the tweets according to
ClaimReview checks. About 95% of notes label the tweets as misleading, thus indicating
that Birdwatch users tend to rate misleading tweets more than non-misleading ones,
in agreement with previous work (Pröllochs, 2021). Of course, malicious ratings of the
classification labels can steer the note helpfulness score in misleading directions, similarly
to the judgement for source quality as discussed in Section 6.4.2.2.

6.4.3.4 Computational Methods.

We compare our matched data with labels coming from computational fact-checking
systems. The systems discussed in Chapters 3 and 4 are not directly usable as they
require specific labeled data, which is not available from the notes. Moreover, such
systems handle subclasses of claim types that do not cover the type of claims found in
the majority of the tweets. Most claims found in tweets require finding evidence related
to very recent events, which is not available in databases, knowledge graphs, or PLMs,
and also require human-reasoning capabilities. Nevertheless, we use other systems such
as ClaimBuster, as it can also verify claims (Hassan et al., 2017b), and E-BART (Brand
et al., 2021). ClaimBuster provides correct results for 118 out of 2208 tweets, where 2090
tweets have no output from the model with an F1-score of 0.042. E-BART correctly
labels 369 (over 2208) and does not produce a decision for 59 tweets with an F1-score
of 0.17. A random classifier produces an average F1-score of 0.333 with 0.008 standard
deviation. As for claim selection, tweets are harder to handle for computational methods
than news articles and quotes from politicians, which are the bulk of content in training
corpora.

Claim Verification Take-away Message: Birdwatch users show high enough levels
of agreement to reach decisions in the vast majority of cases. The Birdwatch crowd
focuses mostly on misleading tweets and shows high agreement with expert fact-checkers
in terms of classification label. Computational methods have room for improvement in
automatically verifying tweets.
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6.5 Discussion

6.5.1 Collaborative solutions

The analysis of the quality of the Birdwatch users shows that crowdsourced fact-checking
is a promising and complementary solution, with results that correlate with those of
professional fact-checkers. However, we argue that a crowd-based solution should not
be considered to replace experts, but rather as a tool in collaborative effort where, for
example, the crowd helps flagging content and creating links to more sources of trustable
evidence. Indeed, our results show that the crowd can be even more reactive than experts
to a new false claim and is able to identify a large array of high quality sources of evidence.
This is especially important, as there is evidence that fact-checking interventions are
significantly more effective in novel news situations (Nevo and Horne, 2022).

Looking forward, and assuming we can characterize the trust and the cost level for all
involved actors (i.e., crowd, experts, and computational methods), there is an opportunity
to design novel hybrid human-machine solutions that coordinate this joint effort in order
to combine the benefits of the different approaches. The role of automatic tools can be
that of providing real-time and scalable fact-checking for all posted content. Platform
users can then intervene quickly in a more focused manner to provide a first line of
defense on potentially harmful content. This can then be followed by quality in every
step of the fact-checking pipeline, with humans collectively processing evidence for the
final labeling.

6.5.2 Hard-to-verify claims

The matching process of tweets and claim-review checks led us to recognize the difficulty
of this task. The first challenge is the semantic match in terms of content, but in many
cases where the match is clear, the problem is hard even for humans. Several problems,
such as sarcasm and vagueness, are known in general for the detection of worth-checking
claims (Atanasova et al., 2019). However, another problem is the granularity of the tweet.
Even a very short tweet may contain two interleaved claims, such as “Mike said: the
earth is flat” (see also, e.g., tweet #3 in Table 6.1). Assume there are two claim reviews,
one checks that Mike made a claim about the earth (labeling the matching tweet as true),
and the other checks about the fact that the planet is not flat (labeling the tweet as
false). This suggests the challenge of being able to identify the textual claims where both
crowdsourcing and computational fact-checking methods are most likely to fail short.
This can be modeled as a new supervised classification task aiming at predicting when a
claim cannot be verified effectively without experts. As an orthogonal approach, this is
also an opportunity for automatic controversy detection methods (e.g., (Dori-Hacohen
et al., 2016)) to play a complementary role in supporting the crowd, making them aware
of potential controversies during their verification tasks.
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6.5.3 Stale claims

We found clear evidence that claims that have been already verified by expert checkers
keep circulating and spreading on Twitter, even months after the publication of their
debunking (Shin et al., 2017). Unfortunately, we have also observed that automatic meth-
ods still fail short in matching with high accuracy tweets that contain such “stale" claims,
likely because of the peculiar language used in tweets. In such a setting, Birdwatch
users can play an important role in quickly and effectively recognizing these cases. Indeed,
the significant difference in the health-related Birdwatch notes and ClaimReview
fact-checks is explained by the increase of tweets spreading already fact-checked claims.
Stale claims are a good fit for the role of Birdwatch participants, especially when
automatic matching methods (Shaar et al., 2020; Ahmadi et al., 2022b) fail, while fresh
claims might require proper forensic processes and need the expertise of journalists.

6.6 Conclusion
As computational fact-checking systems cover only a subset of claims for verification
and require costly labeled data, crowdsourcing approaches offer more coverage of claims.
Also, such crowd-based approaches do not require training data, making the verification
procedure of a claim, especially a critical one, much faster rather than systems that
have to collect data and re-train. In this chapter, we presented a data-driven analysis
of the Birdwatch program through the lens of the three main components of a fact-
checking pipeline: claim detection based on check-worthiness, evidence retrieval, and
claim verification. This is also the first study that bridges real data from a large-scale
crowdsourced fact-checking initiative with the debunking articles produced by professional
fact-checkers.

However, such crowdsourcing approaches have their downsides. A prominent one
from our study is that some malicious sharing a common goal could potentially steer
the system to their favor, such as in the case of source credibility for Birdwatch. This
suggests that more attention is needed in identifying harmful groups by profiling their
activity and by incorporating their biases in the note ranking system.





7 Conclusion & Future Directions

In this thesis, we have seen how to extend PLMs to render them more functional for
consumers of fact-checking systems. We propose extensions that (i) help the model deal
with tables with optimally integrated domain expert feedback for claim verification, (ii)
emulate soft reasoning over language, and (iii) query with a specified output type. In
addition, we also analyze a large-scale crowdsourcing program at Twitter. Nevertheless,
a lot of obstacles are left and need to be tackled.

7.1 Summary of the Contributions and Future Work
This thesis makes the following contributions:

I Domain-Specific Fact-Checking with Tabular Evidence and Humans-in-
the-Loop [Chapter 3]
In this chapter, we propose the system Scrutinizer to verify statistical claims
in a domain-specific setting. As input claims are expressed in natural English,
and the means to validate them are stored in relational tables, we cast the ver-
ification procedure as a Text2SQL problem, where specific query properties are
predicted using fine-tuned PLMs, and then queries are generated using a slot-filling
approach (Wang et al., 2020; Yu et al., 2018) and executed to verify or debunk the
claim in question. However, as our approach is data-driven, labeled data is needed.
This becomes infeasible, especially in peculiar domains where experts would have
to indulge in a costly labeling task. To tackle this, we propose an active learning
procedure to identify a batch of claims that are to be labeled by fact-checkers, and
then used for training the models. This allows the models to reach acceptable
accuracy with a minimal number of examples.

Future Work: With the incorporation of tables within PLMs, come many unan-
swered questions. Tables by themselves contain a rich structure with semantically
meaningful attributes. One question is how can PLMs correlate between attributes
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that, while are semantically identical, are represented differently. For example,
given an attribute about distances in meters, and another about distances in yards,
PLMs identifying such attributes as "similar" would require further extensions than
standard pre-training in a self-supervised fashion. Such sort of identification is
crucial for fact-checking as multiple tables might be needed for verification (Aly
et al., 2021; Karagiannis et al., 2020), especially when tables might originate from
heterogeneous sources (Dong et al., 2019). This encourages incorporating data
curation techniques within deep learning models (Thirumuruganathan et al., 2020;
Cappuzzo, 2022), specifically for tables with PLMs, which have not received much
attention. Another important hinder, especially for Text2SQL models, is the inabil-
ity to perform complex queries with aggregations and joins. As most work assumes
a single table as input, developing models that handle multiple tables is inevitable
for established claim verification.

I Emulating Soft Reasoning with PLMs [Chapter 4]
In this chapter, we propose RuleBERT as a methodology to emulate reasoning
over language with PLMs. Specifically, our proposed data-generation algorithm
allows handling rules with binary predicates rather than unary ones. We also
propose to incorporate the weight of the rule in the objective function as a means to
handle the uncertainty of rules. Such rules that are both soft and containing binary
predicates allow for better representation of knowledge in real-world settings (Russell
and Norvig, 2010). This is also essential in the claim verification procedure of
a fact-checking system, as ‘fuzziness’ of the input is crucial to encode degrees
of truth of claims. This is shown by applying RuleBERT to external datasets,
showing improvement in terms of deductive reasoning and logical consistency in
terms of negation and symmetry. RuleBERT could, ideally, be used for logical
deductive reasoning tasks (Sanyal et al., 2022) and extended for other logic-related
tasks (Clark et al., 2019a; Geva et al., 2021a).

Future Work: While a line of work tries to ‘incorporate’ logical rules in neural
networks (Li and Srikumar, 2019; Hu et al., 2016; Xie et al., 2019; Clark et al., 2020),
obtaining systems that can actually reason is far-fetched. In fact, such systems
are more situated into the so-called System 1 category in deep learning, which are
systems that are fast, unconscious, and employ no planning or reasoning; as opposed
to System 2 that are slow, logical, and involve reasoning component(s) (Kahneman
et al., 2020). Moving from System 1 to System 2 would require multiple steps.
One of these steps is the ability to express high-level semantic representations
and manipulate them. Examples of high-level semantic representations in logical
settings would be predicates such as spouse and occupation. However, it is not
clear whether reasoning with such concepts should happen within the neural network
itself (Clark et al., 2020; Saeed et al., 2021a), or through a more hybrid approach
where the network interacts with a symbolic system such as a reasoner (Manhaeve
et al., 2018; Weber et al., 2019). The former would need a certain methodology to
produce a symbolic description of the network for explainability purposes. The latter
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would need a way to interface between the neural network and the symbolic system.
A more thorough discussion can be found in (d’Avila Garcez and Lamb, 2020).
Another main drawback concerning RuleBERT and similar models is catastrophic
forgetting (Kirkpatrick et al., 2017; Ke et al., 2021b). As we further fine-tune the
model on a new task, we would eventually degrade the model performance on other
tasks (such as QQP in Table 4.7). This motivates incorporating continual learning
approaches (Wu et al., 2022) to alleviate the effects of catastrophic forgetting.

I Output Type Specification in PLMs [Chapter 5]
In this chapter, we enforce the type of the output prediction of a PLM. This is
a vital component for fact retrieval, that implicitly exists during retrievals from
KGs, but non-existent when querying PLMs. For this, we develop TEs, additional
input embeddings that encode the desired output type. We devise a simple method
to derive the TE, and then follow with techniques to analyze it. Finally, we run
experiments on the LAMA dataset, showing improvements with TEs. We observe
that fact retrieval from PLMs can be enhanced by integrating type information.
Our experiments show that, with as a few as ten labeled typed-tokens, one can
encode the type and inject it in the model without the need of external resources
or further training of the model, agreeing with other work showing that latent
concepts, and hence types, are encoded by PLMs (Dalvi et al., 2022).

Future Work: Controlling the output type of PLM is a vital component of triplet-
fact retrieval that arises with the transition from structured systems such as KGs to
PLMs. Controlling the type can help in many scenarios such as efficient information
retrieval for fact-checking (Petroni et al., 2019), or rule mining from PLMs (Cui
and Chen, 2021). TE is one approach for doing so, however, it comes with its
limitations. As we turn to PLMs for deriving the TE, we are restricted by the tokens
in its vocabulary, which limits the number of possible types for TEs. One possible
remedy is to integrate modules that adapt a PLM’s vocabulary to new unseen
tokens (Chen et al., 2022; Hong et al., 2021). In addition, while we use TEs for a
factual dataset, the TE encodes only type information and no factual information.
While results improve for LAMA with TE, the interaction of type information and
factual knowledge of the PLM is not fully understood yet. A series of works have
tried to understand how factual information emerge during PLMs (Meng et al.,
2022; Geva et al., 2021b), and a recent work shows that types such as language and
organization emerge through PLMs such as BERT (Dalvi et al., 2022); however,
the study of entanglement of both factual and type knowledge for fact retrieval
is still lacking. A possible route would be to investigate the key-value memories
in a PLM, as some values might be able to encode the desired type (Geva et al.,
2022). Finally, it would be interesting to understand how TEs behave in other
scenarios, such as text generation. A preliminary experiment shows that types can
be reflected in the output text without any fine-tuning of the PLM, but a more
in-depth study should investigate how TEs behave in a "plug-and-play" controlled
text generation scenario (Dathathri et al., 2020; Pascual et al., 2021).
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I Analysis of a Large-scale Crowdsourcing Initiative [Chapter 6]
In this chapter, we lay our attention on the Birdwatch initiative, a program
launched by Twitter to combat fake news through crowdsourcing. We perform
analysis regarding claim selection, evidence retrieval, and claim verification by
processing 11.9k tweets. We compare the results of Birdwatch users against
themselves and against expert tools and fact-checkers. We also release a dataset of
matched tweets and Birdwatch notes with expert fact-checks. Our work goes in
line with work showing that the wisdom of the crowd can be effective in terms of
claim verification (Allen et al., 2021a; Resnick et al., 2021; Bhuiyan et al., 2020), as
the crowd can be much faster to verify or debunk a claim than expert fact-checkers.
However, malicious groups serving s specific purpose can manipulate the program
in their favor. Such coordinated manipulation attempts are currently addressed
through certain eligibility criteria that a Birdwatch participant should follow.

Future Work: While the Birdwatch initiative takes a vital step towards crowd-
sourcing based approached for fact-checking in uncontrolled environments, more
efforts should be carried in the behavioral analysis of users per se, and how they
interact with other groups of users, eventually identifying cliques that follow similar
behavior (Chakraborty et al., 2017; Dhawan et al., 2019). Also, there might be
an opportunity to extend the program with solicitations to experts that optimize
a certain objective. This objective would ideally minimize verification costs by
consulting experts in demanding onerous scenarios, such as tweets having high
conflicts between the participants themselves, or tweets showing unusual activity,
like participants labeling links of fact-checking organization as unreliable. This
might help identify the bad players and alleviate their influence. Another non-
trivial aspect is the difficulty to capture the intricacies when fact-checking a claim.
Determining the veracity of a claim is not as challenging as detecting the level of
harmfulness of a tweet, or whether more context is needed for verification. Such
‘meta-tasks’ of fact-checking cannot be modeled with the same perspective used for
the current tasks of fact-checking, and require a broader vision.

7.2 Where Do We Stand from Automated Fact-Checking
Systems Today?

As numerous academics, journalists, and organizations have indulged heavily in the
development of automated fact-checking (AFC) systems, one cannot but emphasize
the vital role technology has offered in helping fact-checkers. However, it is crucial to
take a step back and reflect on what technology has not (yet) offered for automated
fact-checking:

• Trustworthiness of (Heterogeneous) Sources. Current systems usually rely
on a single source of information for assessing the validity of a claim. However,
“the most dangerous misinformation for each of us comes from the sources we trust”.
While sources are key in fact-checking, models should be ‘aware’ that sources could
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be mistaken, and should not heavily depend the decision on information from
the source. One might consider including multiple sources rather than a single
one; however, not all information is equally trustworthy, and sometimes sources
contradict each other. Systems should be able to model sourcing being contradicting,
or not fully trustworthy. Soft logic approaches (as the one used in Chapter 4) can
help on passing this degree of truthfulness of the system towards claim verification.
Also, care should be taken when sources are of heterogeneous formats, such as
knowledge graphs, textual corpora, and relational databases. Computing the source
weights should be agnostic of the type of the source. Possible directions could
relate with work that tries to assess user reputation in crowdsourcing (Jagabathula
et al., 2014) or social networks (Wang et al., 2012) or ‘truth discovery’ methods
that resolve conflicts among multi-source noisy data (Li et al., 2016).

• Effective Judgement. Much of the scope of claims covered by human fact-
checkers requires a kind of judgement and analysis of context that remains far out
of reach for fully automated verification. Such reasoning capabilities are beyond
the capabilities of current AI models now. Nevertheless, much more effective
judgement could be attained by taking into consideration the fact that claims
could be unverifiable and/or ambiguous. Unverifiable claims arise when there is
no sufficient evidence to verify or refute a claim. Currently, unverifiable claims
are usually handled by introducing a Not Enough Info (NEI) label (Thorne
et al., 2018a). Other approaches include leaving out sentences or tables from gold
evidence chains to augment NEI examples (Malon, 2021), and predicting the NEI
class if there is no information, based on similarity and voting heuristics, that the
extracted evidence supports or contradicts the claim (Temiz et al., 2021). One
could borrow from the line of work of Selective Prediction that enables systems
to abstain from making predictions when they are likely to be incorrect (Hendrycks
and Gimpel, 2017; Varshney et al., 2022b,a). Such an approach could also be
used for claims incurring some form of ambiguity, resulting in uncertainty among
humans (Pavlick and Kwiatkowski, 2019). Approaches to resolving ambiguity,
usually include modeling it in the training dataset (Veltri et al., 2022; Meissner
et al., 2021; Chen et al., 2020a).

• Human and PLM Biases. Employing humans in AFC systems, especially
in crowdsourced fact-checking applications, includes therefore human-imposed
biases. This is well studied in the literature: when humans see a claim that does
not align with their political views, they are less likely to provide an objective
evaluation (Jakesch et al., 2020). Human bias could also resurge from crowdsourced
datasets (Eickhoff, 2018; Hube et al., 2019; Liu et al., 2022a). Models trained on such
datasets tend to rely on their encoded biases, rather than learning the underlying
task (Poliak et al., 2018; McCoy et al., 2019; Zhou et al., 2021). While it is not
easy to detect such biases, methods of analyzing activity of users could alleviate
such bias. Possible solutions include modeling annotator bias probabilistically for
achieving more accurate labeling (Wauthier and Jordan, 2011; Liu et al., 2022a) or a
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game-theoretic incentive scheme to counter the effect of worker bias (Faltings et al.,
2014). On the other hand, PLMs themselves encode biases (Bender et al., 2021),
whether stereotypical or negative sentiments towards specific groups. Such biases
should be taken into consideration when developing AFC systems, as they affect
the system’s final decision (Speer, 2017). TEs (Chapter 5) have shown promising
results on text detoxification, and are worth studying for reducing bias. Work
on debiasing PLMs is indeed gaining traction (Guo et al., 2022a; Lauscher et al.,
2021; Khalifa et al., 2021) and future work needs to prioritize debiasing methods
that are training-efficient, i.e., do not require full fine-tuning of the model, and are
generalizable over multiple NLP tasks, i.e., not just NLG.

• Multimodality and Multilinguality. Even though most systems focus on some
form of triple or unstructured text, misinformation and reference data could appear
in various formats (e.g., images, videos, sound). While most of the work focuses on
textual input, fact-checking of multimodal claims remains underexplored in compar-
ison. Some relatively recent work putting on other modalities (Singhal et al., 2019;
Alam et al., 2021), however, several challenges persist. One of such challenges is the
methodology to combine the different modalities as ideally, one modality should
complement the other rather than fusion-based techniques that do not offer so (Zhou
et al., 2020a; Zhang et al., 2019). Also, more traction is needed for developing truly
multimodal datasets. Recent work has been studying multimodal transformers with
attention-based approaches to combine modalities (Xu et al., 2022). Another aspect
worth shedding light on is the fact that claims could appear in multiple languages,
while most work is biased towards English. Indeed, recent work addresses this
by introducing a multilingual benchmark for fact-checking (Gupta and Srikumar,
2021). Meta’s "No Language Left Behind" project aims at creating datasets and
models that narrow the gap between low and high-resource languages (NllbTeam
et al., 2022).

• Change in Paradigm. Nowadays, with the stampede of work in AFC systems,
both researchers and practitioners agree that the real promise of AFC technologies
lies in tools to assist fact-checkers to identify and investigate claims, and to deliver
their conclusions as effectively as possible. Nevertheless, it is still crucial to establish
some common grounds between researchers and journalists in the field to alleviate
some of the ambiguities and hurdles in the fact-checking procedure in order to achieve
the next milestones. Interestingly, it seems that aside from all what technology
has to offer, the next steps to automate fact-checking might require looking at
the problem from a different lens. (Ammara et al., 2020) propose to analyze
misinformation through the lens of Systems Thinking, a highly-developed discipline
that aims to model systems as wholes and relationships between them, rather than
single modules (Stroh, 2015). For example, the authors envision that some notions
of Systems Thinking can be used to model the reliability of news sources and
improve ethical decision-making around misinformed news. (Vlachos, 2020) models
fact-checking as a conversation. While conversations might help in broadening one’s



CHAPTER 7. CONCLUSION & FUTURE DIRECTIONS 120

point of view around a subject, they could increase polarization (Bail et al., 2010;
Balietti et al., 2010). The authors promote the idea of conversations, as reasoning
has been shown to work better in groups (Sperber and Mercier, 2018; Laughlin
et al., 2003). This could be accomplished by bots that, unlike chatbots, engage in
a conversation with a user, without any task-oriented purpose. Other approaches
include an ‘infodemiological’ approach where users study the spread of news the
way an epidemiologist studies the spread of diseases (Daley and Kendall, 1964), and
philosophical approaches such as that of Ludwig Wittgenstein that could provide a
framework for effective misinformation analysis (Omoregie, 2021).

Finally, all advances in AFC systems are futile as long as the freedom of journalists
is jeopardized and controlled by malicious parties1. Fact-checking is a key-stone in
journalism that needs to be preserved under all circumstances. “You have to start
with the truth. The truth is the only way that we can get anywhere. Because any
decision-making that is based upon lies or ignorance can’t lead to a good conclusion.”
#FreeAssange

1https://assangedefense.org/
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A Additional Material For Chapter 3

A.1 CoronaCheck Data Generation
We did not have any initial dataset to bootstrap CoronaCheck. For this, we used values
from the relations themselves to generate the training sentences for the classifiers. For
example, we have a table for the number of deaths in each country and across several
days and months. By using simple templates and queries, we generate sentences such as
“There are 82279 cases in China in March”, where the bold tokens are coming from
the query result and the italic ones are coming from the template. The query results
cover different country names and dates, leading to numerous possible sentences. We
follow the same process across the different tables with the number of deaths, recovered
cases and so on.

Following the idea in data augmentation, we add variety to the sentences by replacing
some keywords with their synonyms. We also add interchange clauses in a sentence. For
example, the previously mentioned sentences becomes “In March, there are 82279 cases
in China”. We generate training sentences in English, French, and Italian. We did not
generate data for German, as we found the quality of the multilingual transformer good
enough to handle new languages.

We remark that these sentences are not labeled true or false, as we are using them to
train the classifiers (e.g., recognize the right relation, formula, etc.), they are not training
examples for the verification step.

A.2 Claim Preprocessing
For mapping a claim to the options in the query spaces, we rely on classifiers built on
top of pre-trained embeddings, which map each word to a real-valued vector (Pennington
et al., 2014; Conneau and Lample, 2019b). Our solution is independent of the under-
lying classifier (as long as it can express a confidence measure) and of the pre-trained
embeddings.
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Figure A.1: Preprocessing of the claims.

To get the embedding of a sentence, we average the embedding of each word in that
sentence. As a sentence may contain more than one claim, we enrich the representation
with claim-specific features. As depicted in Figure A.1, for every claim, we concatenate
the sentence embedding with the TF-IDF scores of the claim unigrams and bigrams,
followed by the TF-IDF scores of every 3 characters. N-grams enable the learning of sub
strings in the claim, such as “non-increasing”. If the claim is explicit, we identify the
value directly from the sentence with a syntactical parsing.

Figure A.2: Transformer Input and Architecture

When dealing with transformers, we input both the sentence and claim as input by
first tokenizing them, and then use the [SEP] token to join them. The joined tokenized
input is fed to the transformer with a linear layer on top of the pooled output to allow
for multi-class classification, as shown in Figure A.2.
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A.3 More Experimental Results

Table A.1: Percentiles of property value frequencies.

Percentiles 10% 25% 50% 95% 99%

Relation 2 4 10 199 532
Row Index 2 2 4 39 107
Column 1 2 7 127 1400
Formula 1 1 1 8 55

Table A.1 reports percentiles of property value frequencies for IEAL.

A.3.1 More Results on Error Injection
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Figure A.3: Variation of classifier top-1 accuracy as a function of ratio of erroneous
claims .

Figure A.3 reports the quality results for k = 1 with increasing amount of mislabeled
training data given as input. Experimental setup is the same as that in Figure 3.10.
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A.3.2 Supported Functions

Table A.2: Percentage of claims IEAL w.r.t. the functions covered by the baseline
methods.

%

Lookup 11.29%
SUM 0.98%

COUNT 0.06%
AVG 1.05%
MAX 0.3%
ArgMax 0.37%
RANK 1.11%
Comparison 9.13%

We report in Table A.2 a break-down of the percentage of claims that can be covered by
the baselines in the IEAL dataset.

A.3.3 Variation of Training Set Size
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Figure A.4: Variation of classifier top-1 accuracy as a function of training dataset size.

Figure A.4 reports the quality results for k = 1 and increasing amount of training
data given as input. Experimental setup is the same as that in Figure 3.11.

A.3.4 Freshness vs. Training Data Size

The semantics of certain text fragments changes over time. For instance, a reference to
the “current month” changes semantics as the month changes. Training our classifiers



APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 3 160

with outdated samples (user input assigning claims to query properties) may lead to
suboptimal results. For our CoronaCheck Website, using user-provided training data,
we noticed low accuracy for the classifier mapping claims to relevant time periods. We
identified training with outdated training data as a likely cause. To verify that hypothesis,
we tried training a specialized classifier for each month, using only crowd input obtained
during the corresponding month. Note that the total amount of training data used
per classifier is lower than before. Hence, we have a tradeoff between the amount and
freshness of training data.

Table A.3: Accuracy on C19L test data with column classifiers trained on monthly
answers from Web users.

Month Size of Training Set Accuracy

February 96 0.33
March 920 0.12
April 347 0.49
May 35 0.49
June 18 -
July 7 -

Table 3.6 shows the experimental results. We report the number of training samples
obtained from users during a certain month. Also, we report accuracy of the time period
classifier (time periods are represented as columns in our database). For each month, we
report accuracy on the claims from C19L, adapting labels assuming that the claim was
issued in the corresponding month (e.g., we update labels for claims referring to “the
current month”). For June and July, we received a few training samples that all assign
the same (current) month as label. We do not report accuracy numbers, as our classifier
implementation throws an error if only one label is defined for classification. Accuracy
does not necessarily correlate with the number of training samples. For instance, we
obtain relatively low accuracy for March despite receiving the highest number of samples.
Here, we observed repeated occurrences of low-quality labels obtained from the crowd.
On the other side, accuracy is relatively high for April and May. This is explained by the
fact that learning to map input claims to the current month as default is most crucial to
increase accuracy. This can be achieved using a low number of training samples with
high-quality labels. Altogether, using smaller sets of fresh training samples increases
accuracy, compared to using all training data (accuracy of 0.04).

A.3.5 Outlier Claim Experiments

Our templates support the most popular claim types. Nevertheless, we occasionally
encounter claims that are verified by queries that do not match any of our templates. To
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Figure A.5: Simulated verification time versus quality of classifiers.

detect outlier claims, we could, for instance, prompt administrator users to consider an
expansion of the current templates if outliers are detected. As a first step, we verified
whether claims with outlier queries could be recognized based on classifier confidence.
We hypothesize that such claims may correlate with low classifier confidence.

To verify our hypothesis, we collected claims from the CoronaCheck log that cannot
be verified with the current templates. We identified ten claims that translate into
queries with a MAX aggregation function. This case is rather rare, and we do not currently
support it. For comparison, we sampled ten other claims from our log (with uniform
random distribution) that can be verified using our templates. The average classifier
confidence was 0.39 (standard deviation of 0.08) for the outlier claims. It was 0.94
(standard deviation of 0.035) for the randomly sampled claims. Hence, our hypothesis
holds in this experiment, motivating outlier detection mechanisms based on classifier
confidence.

A.3.6 Simulation with Low-Accuracy Classifiers

The quality of the classifiers may influence the benefit we obtain via techniques such
as claim prioritization. We tested that hypothesis by simulating classifiers of varying
accuracy in the following experiment (classifier accuracy depends for instance on the
quality of training data). We use the same experimental setup as for the results shown in
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<Query>::="Select" <E>
<E>::=<E>"+"<E>|<E>"-"<E>|<E>"*"<E>|<E>"/"<E>|

<E>"%"<E>|"("<E>")"|<Const>|<SQ>
<SQ>::="Select" <YR> "From" <TB> "Where" <CD>
<YR>::="2000"|"2001"|...
<TB>::="GlobalCO2"|"GlobalEnergyDemand"|...
<CD>::="Index=" <PV>
<PV>::="PGElecDemand"|"PGINCoal"|...

Figure A.6: EBNF representation of query space considered for verifying IEA claims.

Figure 3.6. However, we “disturb” classifiers to varying degrees. We add a disturbance
by artificially decreasing the rank of ground truth labels in the classification result. We
do so with a disturbance probability δ, varying δ from 0 to 0.9 (i.e., from none to high
degree of disturbance).

Figure A.5 reports the results. We find that classifier accuracy influences indeed the
performance of Scrutinizer and the sequential baseline. Simulated verification time
increases as the accuracy of classification drops. This is due to the fact that correct
answers are shown less frequently as answer options. In that case, fact-checkers need
to enter the correct option manually, which takes more (simulated) time. Regardless of
classifier accuracy, we observe that claim prioritization remains helpful (i.e., Scrutinizer
performs better than the Sequential baseline), even if the absolute distance decreases for
higher degrees of disturbance. In most cases, Scrutinizer dominates manual verification
(simulating the approach taken by the IEA fact-checkers currently). This changes only for
very high degrees of disturbance. If answer options suggested by the system are almost
certainly incorrect, entering the answer manually is preferable.

A.4 Query Space for Use Cases
Our system is motivated by two use cases: verifying claims in IEA reports and on the
Coronavirus (“CoronaCheck”). We discuss those use cases in detail in the introduction.
Due to space constraints, we omitted a full description of the space of queries considered
for verification in those two scenarios. We do so in the following. We represent the space
of considered queries for each scenario as a grammar, described in Extended Backus-Naur
form (EBNF). Alternatively, we could describe those search spaces as query templates
(described in Section 3.4). We choose EBNF over query templates due to its conciseness
when describing CoronaCheck queries (while the template formalism is more convenient
for describing our pseudocode).

Figure A.6 describes the space of queries considered for verifying IEA’s queries. It
corresponds to the query template specified in Example 3. We consider queries that
calculate arithmetic expressions, using (numerical) constants (<Const>) or lookup sub-
queries (<SQ>) as operands. The lookup sub-queries are formed by selecting a table, a
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<Query>::="Select" <Bool>
<Bool>::=<C> <Cmp> <C>|<C> <Cmp> <Const>|

<D> <Cmp> <D>|<D> <Cmp> <Const>|
<R> <Cmp> <R>|<R> <Cmp> <Const>|
<B> <Cmp> <B>|<B> <Cmp> <Const>

<cmp>::="<"|">"|"="
<C>::="Select" <Time> "From NrCases Where" <Pred>
<D>::="Select" <Time> "From NrDeaths Where" <Pred>
<R>::="Select" <Time> "From NrDeaths Where" <Pred>

"/ Select" <Time> "From NrCases Where" <Pred>
<B>::="Select" <Time> "From NrRecov Where" <Pred>
<Pred>::="Cname=" <Country>

Figure A.7: EBNF representation of query space considered for verifying claims in
CoronaCheck.

column representing the year, and an equality condition on the primary key column.
Figure A.7 shows the grammar describing some queries considered for CoronaCheck

(as of June 2020, we keep extending the range of supported queries). Compared to
IEA, we consider a more narrow space of formulas. Unlike in the case of IEA, the
associated query template does not use an EXP element modeling arbitrary arithmetic
expressions. For CoronaCheck, we restrict ourselves to comparisons between two data
points or between one data point and a constant. We consider data points representing
the number of confirmed cases in specific regions and at specific times, the number of
recoveries, the number of deaths, and the ratio of deaths to total cases. As comparison
operators, we consider equalities and inequalities. Non-terminal symbol <F> translates
into a numerical value that appears in the input claim text. Symbol <Country> translates
to the name (i.e., a string) of a country that appears in the database.

Note that (unlike for elements that appear in the query template representation)
there is no one-to-one mapping between transformation rules in each of the two grammars
and choice points in the query space (for which questions to crowd workers are generated
and classifiers are introduced). Instead, in case of IEA, as implied by the associated
template from Example 3, we have four choice points, referring to formula, tables, years,
and primary key values. In case of CoronaCheck, our choice points include comparison
formula and data source, as well as time and country.
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A.5 System Dimensions

Type Dimension AggCheck Tapas TabFact Scrutinizer

Input

Implicit Claims X X X
Schema-Independence X X X–

Multi-variable Formulas X– X– X
Multi-tables X– X

Output Interpretability X X– X
Alternative Interpretations X X

Table A.4: Dimensions that characterize the systems (X–denotes partial support).

We believe that, given the increasing number of fact-checking systems, it is important to
start characterizing them with clear dimensions to enable a more rigorous comparison.
We first describe four main dimensions that characterize the input across the different
proposals. Then, we discuss two dimensions that characterize the output. A summary of
the dimensions and how systems support them is reported in Table A.4.

A.5.1 Input Dimensions

Explicit claims are handled by all fact-checking systems, as they are much easier to deal
with. However, the support for Implicit Claims, i.e. statistical claims that do not
mention a number and can be verified by a Boolean function that takes as parameters cell
values in the input relation, requires a deeper understanding of the semantics behind the
given sentence. One approach to dealing with this problem is feature-based entity linking,
where all entities are detected in the input statement and a set of pre-defined trigger-
words are used to build programs representing the semantics of the statement (Chen
et al., 2020c). However, such approaches are very sensitive to the error-prone entity
linking process. Another approach is to learn such implicit claims in a supervised manner.
Scrutinizer learns from the classifiers’ labels (Karagiannis et al., 2020). Tapas also
learns correlations between the text and the table during the pre-training process.

Another dimension is Schema-Independence. AggCheck, TabFact and Tapas
can consume potentially any table with any unseen schema, while Scrutinizer is
limited to tables whose row index values and attribute labels have been trained on. For
Scrutinizer, adding new tables requires fine-tuning the classifiers. The operation is not
expensive in terms of execution time, because its classifiers are based on a fine-tuning
procedure, rather than having to pre-train again from scratch; however, it requires specific
annotations that go beyond the true/false binary label. This dimension highlights that
Scrutinizer is domain-specific and thus has to learn the related tables for the task at
hand, while AggCheck and Tapas try to be agnostic of the table schema, and can
handle any table as input. For TabFact, while it can be used on any unseen schema, our
experiments show that it should be trained on the examples at hand in order to obtain
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good accuracy performance.
In practice, computations involving values of a database go beyond simple look up and

aggregation functions. The function for the verification of a claim can require complex
Multi-variable Formulas. For example, the Compound Annual Growth Rate1 is a
formula needed to verify a claim in our experiments.

Scrutinizer handles complex formulas on the condition that they are observed in its
classifier-specific training data, and resorts to a brute-force approach to assign predicted
values to variables. AggCheck can be extended to handle complex aggregation functions.
Tapas handles aggregate queries with simple functions where the cell values have been
selected by the model. It is not clear if and how Tapas could support functions with
more than one variable, and it would require training again the model from scratch such
that new functions are learned. Finally, TabFact has no explicit notion of formulas, as
it is a black-box model fine-tuned end-to-end on a binary classification task. According
to the original paper and our experiments, TabFact struggles to learn how to handle
formulas with multiple variables.

TabFact and Tapas assume that the right table to verify the input claim is also
given as input. In practice, many tables can be available and the most likely one for the
task at hand is identified by Scrutinizer and AggCheck (Multi-Tables). Moreover,
in some cases more than one table is needed to verify a claim and only Scrutinizer
supports verification that requires the combination of values from multiple tables. This
dimension highlights one of the limits of the methods that rely on the linearized data fed
to the transformers, as it is hard to feed multiple tables without hitting the limit on the
size of the input.

A.5.2 Output Dimensions

Interpretability is a key dimension supported by methods that output the query used
to verify the claim. However, systems using a black-box model to verify claims, such as
TabFact, lack interpretability as an explanation of the prediction is not provided. There
do exist methods attempting to explain black-box models which include explanations by
simplification (Ribeiro et al., 2016). However, there is no consistent method to define
how faithful are the explanations to the model prediction (Jacovi and Goldberg, 2020).
Tapas is not fully interpretable since it provides only cell values and, in some cases, the
aggregation operation. AggCheck and Scrutinizer expose the declarative query used
to verify the associated claim. Systems that predict query fragments and combine them,
rather than producing an answer in one shot, are easier to interpret (d’Avila Garcez and
Lamb, 2020).

Claims expressed in natural language can be incomplete or ambiguous in many ways.
Some systems support Alternative Interpretations to clarify how the output changes
depending on the details of the verification. Consider a simple claim “Mike scored 30

1It describes the net gain or loss of an investment over a certain period of time (https://en.
wikipedia.org/wiki/Compound_annual_growth_rate).

https://en.wikipedia.org/wiki/Compound_annual_growth_rate
https://en.wikipedia.org/wiki/Compound_annual_growth_rate
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points”, and a table with two players whose first name is “Mike”. The claim is true for
one player, but false for the other. AggCheck resolves such ambiguities by evaluating
multiple queries and soliciting feedback from users. Scrutinizer learns ambiguities
conditioned that they are represented in the training data. Tapas and TabFact do
not include any clear means to resolve this kind of ambiguities, as they default to one
interpretation in the current architectures. (Veltri et al., 2022) tackle the problem by
generating ambiguous training data for models to learn from.

A.6 Proofs
Theorem 1. Compared to the baseline, relative verification overhead of Scrutinizer is
at most (nop · vf + nsc · (vp + sp))/sf .

Proof. Reading through answer options on the final screen adds cost overheads of nop ·vf
in the worst case. We have overheads of nsc · (vp + sp) for all previous screens. Verifying
the claim without help means suggesting a query for the current claim. This has cost sf
in our model.

Corollary 1. Setting nop = sf/vf and nsc = sf/(vp + sp) limits verification overheads
to factor three.

Proof. This follows immediately by substituting the proposed formulas in the equations
from Theorem 1.

Theorem 2. The expected verification cost for answer options 〈a1, . . . , am〉 is vp ·∑
i=1..m(1−∑1≤j<i pai).

Proof. We consider the case that at most one answer option is accurate (this case is
typical). The cost of verifying one answer option is vp (assuming properties). The
probability that workers need to read beyond the i-th option is the probability that none
of the first i options is correct: Pr(a1 to ai incorrect) = 1 −∑1≤j≤i pai . The expected
cost is the cost of each verification, weighted by the probability that it is necessary:
vp ·

∑
i=1..m(1−∑1≤j<i pai).

Corollary 2. Selecting answer options in decreasing order of probability minimizes
expected verification cost.

Proof. Each term in the cost formula, proven in Theorem 2, decreases if the sum of
probabilities of the first options increases. Hence, starting with higher probability choices
decreases cost.

Theorem 3. The pruning power P(S,Q,M) is given by
∑
q∈Q(1−∏s∈S

∑
i:q /∈Ei

s
Pr(ais correct|M)).

Proof. The pruning power is given as the expected number of pruned queries: ∑q∈Q Pr(q is pruned).
Clearly, it is Pr(q pruned) = 1− Pr(q not pruned). Assuming independence, we obtain

Pr(q not pruned) =
∏
s∈S

Pr(q not pruned by s|M)



APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 3 167

. Assuming mutually exclusive answer options for the same property, we obtain

Pr(q not pruned by s) =
∑
i:q /∈Ei

s

Pr(ais correct|M)

. Substitution yields the postulated formula.

Theorem 4. Pruning power is sub-modular.

Proof. Consider the probability that one specific query is not pruned via questions relating
to any property, given as ∏s∈S Pr(q not pruned by s|M) (see proof of Theorem 3). From
the perspective of each query, adding one more property corresponds to multiplying its
probability of not being pruned by a factor between zero and one. For x1,x2, y ∈ [0, 1], it
is generally x1 − x1 · y ≥ x2 − x2 · y if x1 ≥ x2. As the probability of not being pruned
does not increase when adding questions, the impact of adding a new question on pruning
probability decreases for each query. This means the probability of one query of being
pruned is sub-modular in the question set. The same applies to pruning power itself (as
a sum over sub-modular functions with positive weights is sub-modular).

Theorem 5. Using the greedy algorithm, we select a set of questions that achieve pruning
power within factor 1− 1/e of the optimum.

Proof. The greedy algorithm is equivalent to the greedy algorithm by Nemhauser (Nemhauser
and Wolsey, 1978). The pruning power function is sub-modular (see Theorem 4), it is
non-negative (as we sum over probabilities) and non-decreasing (as pruning probability
can only increase when adding more questions). Hence, it satisfies the conditions under
which those bounds have been proven for Nemhauser’s algorithm (Nemhauser and Wolsey,
1978).

Theorem 6. Finding optimal question sequences for verifying single claims is in O(nsc ·
npr · nqu).

Proof. The greedy algorithm performs O(nsc) steps and considers O(npr) options in
each step. Evaluating the pruning power function requires O(nqu) steps.

Theorem 7. Claim selection is NP-hard.

Proof. We prove NP-hardness by a reduction from the knapsack problem. Let I =
{〈wi, bi} a set of items with associated weights wi and benefit bi. The goal is to maximize
accumulated benefit ∑i∈I∗ bi for an item set I∗ ⊆ I whose accumulated weight remains
below a threshold T : ∑i∈I∗ bi ≤ T . We construct an equivalent instance of claim selection
as follows. We introduce an unverified claim ci for each item i ∈ I. We assume that each
claim is located in a separate section (si for claim ci). We set combined verification and
reading cost for each claim and associated section to be proportional to item weight:
v(ci) + r(si) = wi. Training utility is proportional to benefit (u(ci) = bi). We choose
cardinality bounds that do not influence the solution (bl = 0 and bu = |I|). Now, an
optimal solution to claim verification yields an optimal solution to the original knapsack
instance (via a polynomial time transformation).
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Theorem 8. The size of the ILP problem is in O(cc · sc) where cc is the claim count
and sc the section count.

Proof. The number of variables is in O(cc+ sc) while the number of constraints (specifi-
cally: constraints connecting claims to sections read) is in O(cc · sc).



B Additional Material for Chapter 4

B.1 More on Reasoning with Soft Rules

Let σ be a signature as in first-order logic. An LPMLN program Π is a finite set of
weighted rules of the form:

w : A← B (B.1)

where A is a disjunction of atoms of σ, B is a conjunction of literals (atoms and negated
atoms) of σ, and w is a real number or the symbol α.

When A is ⊥ (the empty disjunction), the rule asserts that B should be false in the
stable model. An LPMLN rule (B.1) is called soft if w is a real number or hard if w is
α. An LPMLN program is ground if its rules contain no variables. An LPMLN program
Π that contains variables is identified with a ground LPMLN program grσ[Π], which is
obtained from Π by replacing every variable with every ground term of σ. The weight of
a ground rule in grσ[Π] is the same as the weight of the corresponding rule in Π. By Π
we denote the unweighted logic program obtained from Π, i.e., Π = {R | w : R ∈ Π}.

For a ground LPMLN program Π, ΠI denotes the set of rules w : R in Π such that I satis-
fiesR (denoted I |= R) and SM[Π] denotes the set {I | I is a (deterministic) stable model of ΠI}.
The (unnormalized) weight of I under Π is defined as follows:

WΠ(I) =

exp(
∑

w:R∈ΠI

w) if I ∈ SM[Π];

0 otherwise.

The probability of I under Π is the normalized weight defined as follows:

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]WΠ(J) .

In Answer Set programming (ASP), search problems are reduced to computing stable
models (a.k.a. answer sets), a set of beliefs described by the program. In the case of a

169
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Figure B.1: Support of the overlapping rules.

Horn program, the stable models coincide with the minimal models. LPMLN programs
are transformed to meet the needs of an ASP solver (an, 2014; Lee et al., 2017).

B.2 Rule Support
We designed an experiment to show the impact of increasing the number of overlapping
rules on the same target predicate. The goal is to measure how often multiple rules are
triggered for the same target triple.

We measure this with the support of a rule, i.e., the number of triples in the knowledge
base that satisfy all the atoms in the rule.

To compute the support for more than one rule, we combine the premises of the rules.
In this experiment, we picked three predicates (spouse, child and relative), and for each
one we selected ten rules randomly. Next, we used DBpedia online endpoint1 to compute
the support for each combination of n (n=1,2,...,5) rules for each predicate. The results
in Figure B.1 show that by increasing the number of rules, the support decreases for all
predicates. For combinations with more than three rules, the support is very small.

B.3 More Experimental Details

For fine-tuning our models, we use Google Colaboratory (Bisong, 2019), which assigns
random GPU clusters of various types. The number of parameters of our models is
about 355M. We select the values of our hyperparameters (shown in Table B.1) on the
development sets, by maximizing accuracy.

The execution times vary largely depending on the GPU at hand and on the scenario,
with fine-tuning on a Tesla V100 taking from one hour for a single rule to a few hours
for all the chaining experiments. The training/validation/testing splits are shown in
Table 4.1. Table B.2 shows the sizes of the used test datasets.

1http://dbpedia.org/sparql

http://dbpedia.org/sparql
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Hyper-Parameter Value

Learning Rate 1e-6
Weight Decay 0.1
Number of Epochs 3
Batch Size 16
Learning Rate Decay Linear
Warmup Ratio 0.06

Table B.1: Hyper-parameters for fine-tuning
our model.

Dataset Size

Mod0 Test(own) 2,667
Mod1 Test(own) 4,000
Mod2 Test(own) 5,334
Mod3 Test(own) 6,667
Mod4 Test(own) 8,000
Mod5 Test(own) 9,334
Test(D≤5) 9,334
Depth=0 16,057
Depth=1 6,608
Depth=2 5,389
Depth=3 3,993
Depth=4 2,619
Depth=5 1,336

Table B.2: Number of examples in each of
the test datasets for the chaining experiment.
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Figure B.2: Impact of the training data size.

B.4 Ablation

B.4.1 Impact of the Data Size

Setting. We report the impact of the size of the fine-tuning data on the model perfor-
mance. As shown in Table 4.2, the accuracy of the fine-tuned model is higher for rules
with higher confidence. We therefore divide the rules in three categories: High contains
rules with confidence greater than 0.8, Medium has rules with confidence between 0.4
and 0.8, and Low is for the rest. There are six rules in the Medium category and the
other two categories have five rules each. For each rule, we fine-tune seven models with
1k, 2k, 5k, 10k, 15k, 20k, and 30k examples.
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Results. Figure B.2 shows that having more training data improves the accuracy in all
scenarios. For all categories, there is a sizable increase going from 10k to 15k examples;
the impact is smaller for higher values. The highest increase is for rules with high
confidence, and rules with medium confidence demonstrate larger increase than low
confidence.

B.4.2 Role of the Example Format

Setting. When we ‘teach’ rules to PLMs, we rely on examples with real names from a
fixed pool. However, our goal is to ‘teach’ PLMs the semantics of the soft rule, not the
facts in our examples. Thus, we further design an experiment to assess the impact of
the format used in the example facts on the behavior of the model. We distinguish two
formats for the generated facts: (i) real names such as Alice and IBM, and (ii) letters
such as A and B. We first use each format in fine-tuning and we then test both formats.
We end up with two test/train scenarios: one with the same format and one with different
formats. For this study, we use just one rule: child(a,c) ∧ parent(c,b) → spouse(a,b),
with 30K examples for fine-tuning, and 2k for testing.

Train Letter Train Name

Test Letter .981 .932
Test Name .977 .985

Table B.3: Impact of the example format on accuracy.

Results. The results in Table B.3 show that the model performance does not depend
heavily on using the same fact format for training and testing. With examples using
letters in training, the results are slightly better in the case with two formats. We
ultimately use names for testing and training in our default configuration, as it yields
better results.

B.5 Impact of the Random Seed
Pre-trained transformers often suffer from instability of the results across multiple reruns
with different random seeds. This usually happens with small training datasets (an, 2020;
Mosbach et al., 2021). In such cases, typically multiple reruns are performed, and the
average value over these reruns is reported.

However, the numbers for the main experiments we report are not averaged over
multiple reruns as our datasets are considerably large and the models did not suffer
from instability due to random seeds. For example, when we reran RuleBERT on a
single-rule experiment three times, we obtained accuracy of 0.98959, 0.99551, 0.99636
with a standard deviation of only 0.003.

Yet, for the small dataset bAbI, we observed a much higher standard deviation of
0.17. Thus, in this case we report results that are averaged over ten reruns.
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B.6 Rule Overlap Example
After generating the data for every rule in Figure 4.2, we generate additional examples
using combinations of rules. Below, we show how to handle the interaction of two rules:
r2 and r3. We follow the procedure in Algorithm 4 by generating facts that trigger the
rules, but we only take into consideration hypotheses that deal with rule conclusions.

For example, consider the following facts:
Generated Facts

• f1: negparent(Eve,Carl)
• f2: child(Eve,David)
• f3: relative(Eve,David)
• f4: predecessor(Eve,David)

We can generate an example that triggers two rules: f2 triggers r2, and f3 triggers
r3. Feeding the above facts and rules r2 and r3 to the reasoner, we obtain the following
output (the numbers in parentheses indicate the likelihood of the triple):

LPMLN Reasoner Output O:
• o1: relative(Eve,David) (1.0)
• o2: child(Eve,David) (1.0)
• o3: negparent(Eve,Carl) (1.0)
• o4: spouse(Eve,David) (0.134)
• o5: negspouse(Eve,David) (0.55)
• o6: predecessor(Eve,David) (1.0)

We produce hypotheses that trigger both rules together. For example, here we
generate two hypotheses coming from o4 and o5. The confidence (weight) of a hypothesis
is given by the LPMLN reasoner. Taking o5 as a hypothesis, we feed the following example
to the model:
Example #2 (Model Input):

• Context : The parent of Eve is not Carl. The child of Eve is David. If the child
of the first person is the second person, then the first person is not the spouse
of the second person. The relative of Eve is David. If the relative of the first
person is the second person, then the first person is the spouse of the second
person. The predecessor of Eve is David.

• Hypothesis : The spouse of Eve is not David.
• Weight : 0.55

We also generate an example, where three rules are triggered: In addition to r2 and
r3, r5 is triggered by f4. We then repeat the same procedure to generate the following
example:
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Example #3 (Model Input):
• Context : The parent of Eve is not Carl. The child of Eve is David. If the child

of the first person is the second person, then the first person is not the spouse
of the second person. The relative of Eve is David. If the relative of the first
person is the second person, then the first person is the spouse of the second
person. The predecessor of Eve is David. If the predecessor of the first person is
the second person, then the first person is not the spouse of the second person.

• Hypothesis : The spouse of Eve is not David.
• Weight : 0.6

This procedure is repeated for all combinations of two or more rules. In case when all
rules have the same head polarity, we generate a false example by altering the hypothesis
and finding the complement of the initial (1-Weight) weight. For example, r2 and r5
can occur together and both have the same rule head, and thus no conflict occurs. The
generated valid example would be as follows:
Example #4 (Model Input):

• Context : The parent of Eve is not Carl. The child of Eve is David. If the child
of the first person is the second person, then the first person is not the spouse
of the second person. The relative of Eve is David. The predecessor of Eve is
David. If the predecessor of the first person is the second person, then the first
person is not the spouse of the second person.

• Hypothesis : The spouse of Eve is not David.
• Weight : 0.64

An invalid example is generated from the valid example by altering the hypothesis.
Here is an invalid example:
Example #4 (Model Input):

• Context : The parent of Eve is not Carl. The child of Eve is David. If the child
of the first person is the second person, then the first person is not the spouse
of the second person. The relative of Eve is David. The predecessor of Eve is
David. If the predecessor of the first person is the second person, then the first
person is not the spouse of the second person.

• Hypothesis : The spouse of Eve is not David.
• Weight : 0.36 (1-0.64)

B.7 Rule Chaining Example
Here is an example that illustrates rule chaining:
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Example #5 (Symbolic):
• Rules R =

– r1: child(A,C) ∧ parent(C,B) → spouse(A,B)
– r2: child(B,A) → parent(A,B)

• Facts F :
– f1: negparent(Eve,Carl)
– f2: child(Bob,Carl)
– f3: child(Alice,Carl)

• Hypothesis h : spouse(Alice,Bob)

f2 triggers r2 which produces t =

child(Bob,Carl).

t and f3 trigger r1 to validate the hypothesis h. r1 and r2 have been chained to
validate the hypothesis. Since we used two rules to validate the hypothesis, we say that
this is a chain of depth = 2.



C Additional Material for Chapter 5

C.1 LAMA
Dataset statistics are reported in Table C.1.

P@1 P@10 P@50 P@100

B 0.223 0.509 0.740 0.845
BTo 0.146 0.327 0.550 0.640

PostTE .248 .577 .819 .889
BTE 0.291 0.606 0.838 0.899
Top10 0.336 0.660 0.856 0.907
Bot10 0.235 0.534 0.764 0.846
Unif 0.250 0.563 0.798 0.884

Table C.2: Mean over all datasets for every sampling method.

P@1 P@10 P@50 P@100

Bl 0.245 0.523 0.729 0.811
BlTE 0.297 0.582 0.777 0.849
Rob 0.073 0.235 0.400 0.479

RobTE 0.177 0.331 0.481 0.589

Table C.3: Mean over all datasets for Bert Large (Bl) and Roberta base (Rob) with and
without TEs..

176
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Type Total Size Dataset Size Sample

Country (Co) 3796

P495 896 The Sharon Cuneta Show was created in [MASK] .
P27 948 Albert II of Belgium is [MASK] citizen .
P1376 196 Cardiff is the capital of [MASK] .
P1001 665 National Congress of Honduras is a legal term in [MASK] .
P530 174 Vanuatu maintains diplomatic relations with [MASK] .
P17 917 Cairo American College is located in [MASK] .

Football Position (FP) 737 P413 737 Curt Flood plays in [MASK] position .
Manufacturer (Ma) 878 P176 878 iPod shuffle is produced by [MASK] .

Organization (Org) 837 P108 342 David Dimbleby works for [MASK] .
P178 495 iPod Classic is developed by [MASK] .

Occupation (Occ) 915 P106 915 Murray Grand is a [MASK] by profession .
Year GRE (Y (GRE)) 1821 date_of_birth 1821 Emily Ballou (born [MASK]).
Genre (Ge) 849 P136 849 Boyd Raeburn plays [MASK] music .
Group (Gr) 212 P463 212 Russian Football Union is a member of [MASK] .

Language (L) 4118

P407 756 The Pirate Bay was written in [MASK] .
P103 954 The native language of Jan Davidsz. de Heem is [MASK] .
P1412 921 Leone Caetani used to communicate in [MASK] .
P37 707 The official language of Iitti is [MASK] .
P364 780 The original language of Do Phool is [MASK] .

Specialization (Sp) 533 P101 533 John Archibald Wheeler works in the field of [MASK] .
Religious Position (RelP) 727 P39 727 John Joseph Williams has the position of [MASK] .
Record Label (Rec) 256 P264 256 Amr Mostafa is represented by music label [MASK] .

City (Ci (GRE)) 3689 place_of_birth 2925 Jacques Autreau was born in [MASK] .
place_of_death 764 Robert Jack died in [MASK] .

City (Ci) 6490

P131 774 Saharsa district is located in [MASK] .
P20 844 Fredegund died in [MASK] .
P937 864 Xavier Zubiri used to work in [MASK] .
P19 704 James Jackson Putnam was born in [MASK] .
P740 643 Standard Bank was founded in [MASK] .
P190 283 Inverness and [MASK] are twin cities .
P36 400 The capital of Realm of Stefan Dragutin is [MASK] .
P159 700 The headquarter of Shelbourne F.C. is in [MASK] .
P47 542 Campi Bisenzio shares border with [MASK] .
P276 736 Hiroshima International Animation Festival is located in [MASK] .

Continent (Con) 964 P30 964 Dominion Range is located in [MASK] .
Musical Instrument MI 739 P1303 739 Kerry King plays [MASK] .
TV Network (TVN) 806 P449 806 The New Dick Van Dyke Show was originally aired on [MASK] .
Religion (Rel) 452 P140 452 Muhammad Ali Jinnah is affiliated with the [MASK] religion .

Table C.1: LAMA datasets grouped by type. Each dataset belongs to the TREx dataset,
unless otherwise stated by (GRE).
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Detailed results on the datasets are reported in Table C.4. A full inference run on
all LAMA datasets takes on average approximately 5 minutes on Google Colab with a
Tesla P100 with a batch size of 32. We vary λ from 0 to 5. We repeat the experiment
in Section 5.5.1 with every sampling strategy and report results in Table C.5. For
Language, all sampling methods outperform the weighted method. This is due to the
non-optimal value of λ produced for one dataset that reduced the average value. Indeed,
setting a more suitable value for λ, pushes the precision scores comparably to other
sampling methods. Surprisingly, for Religious Position, Bot10 produces better results
on all metrics except P@1. This is because most of the golden labels of the data related
to religious positions for Christianity, while using Top10 includes a position for Judaism
(rabbi), which is not the case for Bot10 and Unif. Finally, similar results are observed
for Group and Continent simply because there were less than 10 tokens for each type
from the KG.
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P@1 P@10 P@50 P@100

Co
B 0.333 0.578 0.812 0.892
BTo 0.092 0.269 0.427 0.520
PostTE 0.323 0.549 0.838 0.888
BTE 0.393 0.643 0.874 0.916

FP
B 0.003 0.234 0.500 0.701
BTo 0.203 0.407 0.657 0.730
PostTE 0.239 0.510 0.883 0.977
BTE 0.276 0.500 0.826 0.896

Ma
B 0.865 0.945 0.982 0.988
BTo 0.859 0.939 0.98 0.987
PostTE 0.008 0.848 0.941 0.965
BTE 0.564 0.923 0.970 0.978

Org
B 0.347 0.733 0.928 0.961
BTo 0.248 0.393 0.447 0.464
PostTE 0.347 0.733 0.928 0.961
BTE 0.279 0.730 0.955 0.977

Occ
B 0.002 0.089 0.463 0.839
BTo 0.0 0.023 0.305 0.441
PostTE 0.012 0.188 0.619 0.951
BTE 0.036 0.196 0.601 0.904

Y (GRE)
B 0.016 0.152 0.623 0.806
BTo 0.002 0.102 0.499 0.783
PostTE 0.016 0.152 0.623 0.806
BTE 0.017 0.146 0.624 0.802

Ge
B 0.007 0.470 0.697 0.803
BTo 0.0 0.087 0.636 0.743
PostTE 0.594 0.690 0.834 0.844
BTE 0.589 0.686 0.831 0.841

Gr
B 0.692 0.821 0.861 0.886
BTo 0.025 0.214 0.652 0.801
PostTE 0.692 0.821 0.861 0.886
BTE 0.692 0.821 0.861 0.886

L
B 0.600 0.892 0.971 0.988
BTo 0.168 0.436 0.622 0.716
PostTE 0.445 0.750 0.965 0.982
BTE 0.556 0.855 0.967 0.980

Sp
B 0.085 0.362 0.569 0.688
BTo 0.0 0.008 0.138 0.291
PostTE 0.085 0.362 0.569 0.688
BTE 0.097 0.302 0.545 0.640

RelP
B 0.070 0.281 0.709 0.900
BTo 0.0 0.023 0.219 0.372
PostTE 0.010 0.503 0.938 0.962
BTE 0.159 0.488 0.951 0.959

Rec
B 0.140 0.416 0.733 0.877
BTo 0.062 0.342 0.539 0.642
PostTE 0.095 0.218 0.539 0.621
BTE 0.152 0.444 0.819 0.922

Ci (GRE)
B 0.142 0.353 0.566 0.657
BTo 0.0 0.003 0.024 0.06
PostTE 0.142 0.353 0.566 0.657
BTE 0.144 0.365 0.572 0.663

Ci
B 0.287 0.570 0.757 0.831
BTo 0.058 0.107 0.194 0.252
PostTE 0.284 0.563 0.756 0.839
BTE 0.299 0.577 0.768 0.849

Con
B 0.216 0.481 0.730 0.822
BTo 0.613 0.864 0.969 0.995
PostTE 0.477 0.885 0.963 0.995
BTE 0.408 0.882 0.945 0.980

MI
B 0.064 0.390 0.553 0.614
BTo 0.131 0.64 0.821 0.832
PostTE 0.017 0.587 1.000 1.000
BTE 0.017 0.593 0.991 1.000

TVN
B 0.210 0.858 0.986 0.997
BTo 0.161 0.609 0.952 0.992
PostTE 0.210 0.858 0.986 0.997
BTE 0.200 0.877 0.993 0.997

Rel
B 0.107 0.536 0.883 0.967
BTo 0.002 0.422 0.814 0.900
PostTE 0.476 0.809 0.925 0.981
BTE 0.352 0.876 0.998 1.000

Table C.4: Average precision scores
for different types of the LAMA
dataset for BERT (B), BERT with
additional typed tokens (BTo), TE
applied at the output (PostTE), and
BERT with TE (BTE).

P@1 P@10 P@50 P@100

Co
Top10 0.407 0.708 0.891 0.930
Bot10 0.326 0.608 0.836 0.903
Unif 0.355 0.601 0.83 0.904

FP
Top10 0.277 0.564 0.861 0.91
Bot10 0.0 0.04 0.684 0.746
Unif 0.223 0.561 0.859 0.911

Ma
Top10 0.770 0.921 0.974 0.984
Bot10 0.865 0.945 0.982 0.988
Unif 0.865 0.945 0.982 0.988

Org
Top10 0.606 0.866 0.966 0.979
Bot10 0.307 0.665 0.906 0.951
Unif 0.275 0.588 0.897 0.951

Occ
Top10 0.087 0.547 0.849 0.921
Bot10 0.002 0.089 0.48 0.845
Unif 0.001 0.089 0.496 0.872

Y (GRE)
Top10 0.019 0.145 0.618 0.792
Bot10 0.010 0.109 0.377 0.578
Unif 0.018 0.147 0.625 0.803

Ge
Top10 0.582 0.703 0.84 0.842
Bot10 0.006 0.416 0.703 0.806
Unif 0.043 0.057 0.356 0.636

Gr
Top10 0.692 0.821 0.861 0.886
Bot10 0.692 0.821 0.861 0.886
Unif 0.692 0.821 0.861 0.886

L
Top10 0.61 0.905 0.981 0.992
Bot10 0.612 0.894 0.975 0.989
Unif 0.603 0.895 0.976 0.993

Sp
Top10 0.085 0.354 0.573 0.682
Bot10 0.081 0.356 0.577 0.688
Unif 0.087 0.391 0.581 0.686

RelP
Top10 0.300 0.600 0.955 0.959
Bot10 0.0 0.651 0.961 0.965
Unif 0.0 0.506 0.954 0.962

Rec
Top10 0.193 0.469 0.885 0.942
Bot10 0.144 0.428 0.761 0.881
Unif 0.148 0.436 0.761 0.881

Ci (GRE)
Top10 0.148 0.37 0.584 0.678
Bot10 0.098 0.320 0.521 0.613
Unif 0.084 0.309 0.525 0.628

Ci
Top10 0.306 0.580 0.773 0.851
Bot10 0.280 0.548 0.734 0.805
Unif 0.292 0.578 0.762 0.841

Con
Top10 0.408 0.882 0.945 0.980
Bot10 0.408 0.882 0.945 0.980
Unif 0.408 0.882 0.945 0.980

MI
Top10 0.074 0.699 0.849 0.996
Bot10 0.064 0.39 0.553 0.614
Unif 0.017 0.692 0.996 1.000

TVN
Top10 0.086 0.864 0.997 0.997
Bot10 0.225 0.864 0.984 0.997
Unif 0.299 0.897 0.986 0.997

Rel
Top10 0.396 0.879 0.998 1.000
Bot10 0.119 0.590 0.914 0.988
Unif 0.089 0.734 0.972 0.988

Table C.5: Average precision scores for
different types of the LAMA dataset
with various sampling methods to com-
pute the TE.
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C.2 Generated Text
A few examples of generated text with TEs are reported in Table C.6.

Generation

GPT-2

I like a lot of the things that your parents did at the age of 9 that made you happy, and
now you’re in my life."The former wrestler said he is glad he didn’t pass that test. "They
thought I was a bad idea, as far as it goes in life," Mayweather said of his parents and
co-stars. "But that went way overboard for me. I went from having a bad childhood and
now living in the Bronx with my aunt and her little sister to a guy who’s trying to put it
all in the right place."That brought me back to the top of my wrestling career and I think
the most special person is David Letterman, who gave me that opportunity...

GPT2 +
country
TE

I like a lot of the things that your guys are doing in the dressing room that the team does,
and that’s what we do.

Q: You have said in a couple of different emails that you wanted to go back to Switzerland,
but that’s a different subject as well.

A: Well, you will return. I have spoken to the players and said, that way, to go back to
France and see the success.

Q: What’s the biggest point of contention from last week?

A: I was on the bench in the first half of the game against France, although today I was
on the bench. But yesterday I was in the team too. It was a big point of contention. And
then tomorrow I will go to Switzerland . I had a talk with the coaches this morning and
they said to him there were plenty people in the dressing room.

Q: Will the U.S. play at the Emirates ?

A: That’s a possibility for sure...

GPT-2 +
year TE

I like a lot of the things that she is doing at the moment, but that is for the time being."
She also said she has a lot of work ahead in mind when he arrives on an episode of "The
Simpsons." For a fuller picture of her as a show host and actor see "What Happened to
the Kids on the Island of the Gummy"? A documentary record ( 1990 ), also by David
R. Seidman. Also on H&M Records. The last time she appeared on a TV show was on
"Saturday Night Live" in 2007 , and in "My Brother’s Wedding" on ABC in August 2007
. The first time she appeared on "The Tonight Show, with Johnny Carson" was in 1996
. She also won the Tony Award with "The Little Princess" from the Writers Guild and
the Outstanding Dramas Award in 2002 . When interviewed on the TV show she recalled
that she has worked as the ’Gummy’ and ’Grandma’ of the show, and gave the following
list of roles for "My Brother’s Wedding, with Johnny Carson" of her own first year. The
’90s came in the last season of "How I Met Your Mother" which she co-starred on...

GPT-2
I hate RelG, yet RelG are the ones who are allowed to carry out this murderous act by
terrorising RelG in Religious Country and then going on to kill innocent RelG in the
future."...

GPT-2 +
affection
TE

I hate RelG, yet RelG are the ones who are allowed to carry the torch of Religion and fight
injustice and oppression. You and I will continue to fight this oppression till the end and
in the long run, in every age we are going forward. You will do whatever is necessary to
keep our sisters on the right path...

Table C.6: We report a set of truncated generated texts using GPT-2 and how they
change using TEs for country and year. We also try to remove hate speech using
an affection embedding derived from keywords such as love and cheerful. We replace
specific keywords by more general keywords. RelG stands for a religious group that has
been used in the underlined prompt and has been hidden for ethical considerations.
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D Additional Material for Chapter 6

D.1 Note and Rating Questions

Input Possible Output
Given current evidence, I believe this tweet is: (1) NOT MIS-

LEADING (2) MIS-
INFORMED OR
POTENTIALLY
MISLEADING

If this tweet were widely spread, its message would
likely be believed by:

(1) BELIEVABLE
BY FEW
(2) BELIEVABLE
BY MANY

If many believed this tweet, it might cause: (1) LITTLE HARM
(2) CONSIDER-
ABLE HARM

Finding and understanding the correct information
would be:

(1) EASY
(2) CHALLENG-
ING

Is this tweet misleading because it contains a factual
error?

True, False

Is this tweet misleading because it contains a digitally
altered photo or video?

True, False

Is this tweet misleading because it contains outdated
information that may be misleading ?

True, False

Is this tweet misleading because it is a misrepresen-
tation or missing important context?

True, False

Is this tweet misleading because it presents an unver-
ified claim as a fact?

True, False

Is this tweet misleading because it is a joke or satire
that might be misinterpreted as a fact?

True, False

Is this tweet misleading for other reasons ? True, False
Is this tweet not misleading because it expresses a
factually correct claim?

True, False

Is this tweet not misleading because it was correct
when written, but is out of date now?

True, False

Is this tweet not misleading because it is clearly satir-
ical/joking ?

True, False

Is this tweet not misleading because it expresses a
personal opinion?

True, False

Is this tweet not misleading for other reasons ? True, False
Did you link to sources you believe most people would
consider trustworthy?

Yes, No

Table D.1: Questions to Birdwatch participants when writing a note for a tweet.
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Input Possible Output
Do you agree with the note’s conclusion? Yes,No
Is this note helpful? (1) NOT HELP-

FUL
(2) SOMEWHAT
HELPFUL
(3) HELPFUL

Is this note helpful because it was clear and/or
well-written?

Yes,No

Is this note helpful because it cites high-quality
sources?

Yes,No

Is this note helpful because it directly addresses
the Tweet’s claim?

Yes,No

Is this note helpful because it provides a neutral
or unbiased language?

Yes,No

Is this note helpful for other reasons ? Yes,No
Is this note unhelpful because it contains in-
correct information” ?

Yes,No

Is this note unhelpful because there are sources
missing or unreliable?

Yes,No

Is this note unhelpful because it misses key
points or irrelevant?

Yes,No

Is this note unhelpful because it is hard to
understand?

Yes,No

Is this note unhelpful because it contains an
argumentative or biased language?

Yes,No

Is this note unhelpful because it contains spam,
harassment, or abuse?

Yes,No

Is this note unhelpful because the sources do
not support note?

Yes,No

Is this note unhelpful because it is an opinion
or speculation?

Yes,No

Is this note unhelpful because it is not needed
on this Tweet?

Yes,No

Is this note unhelpful for other reasons ? Yes,No

Table D.2: Questions to Birdwatch participant when rating a note.
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