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Contents Introduction

Context

The legacy of the quantum Hall effect In 2016, the Nobel Prize in physics was awarded to Thouless, Kosterlitz and Haldane for the topological description of quantum phase transitions and quantum phases of matter, acknowledging the fundamental role played by the theory of topology in the general understanding of quantum physics since the early '80s. Topology is a mathematical theory based on the idea that different geometric objects can be classified into categories, each of which is characterized by an integer or topological invariant. Two objects can be continuously deformed one into the other if, and only if they belong to the same class of equivalence, i.e. if they have the same topological invariant. Such an invariant can be for instance the number of handles in a three-dimensional surface, also called its genus; two surfaces with a different genus cannot be deformed one into the other, since it would mean opening or closing a handle, which is a singular deformation.

The groundbreaking contribution of Thouless and his collaborators [START_REF] Thouless | Quantization of particle transport[END_REF] was to provide a topological explanation of the quantum Hall effect. The integer quantum Hall effect is the property of a two-dimensional (2D) metal which, at sufficiently low temperature and when subjected to a strong transverse magnetic field, displays quantized values of conductivity (figure 1, right), which were found to be remarkably robust against the imperfections of the metal. This phenomenon is related to a certain number of electrons being able to conduct the current along the edges of the two-dimensional material, independently of its geometry or defects (figure 1, left). [START_REF] Thouless | Quantization of particle transport[END_REF] interpreted the quantization of conductivity as a manifestation of a topological invariant called the Chern number1 , which characterizes the electronic bands of the metal. The jumps of the metal's conductivity with the magnetic field were the first example discovered of transition in a topological phase of matter. This understanding of the quantum Hall effect was to lead, from 2005 onwards, to the discovery of a new class of materials called topological insulators [START_REF] Hasan | Colloquium: topological insulators[END_REF]. These are electronic insulators (i.e. with a gap between the valence and conduction wavebands) within their bulk but they can have conducting states propagating along their edges, which are quantized by the topology of the wavebands. To be more precise, when two materials with different band topologies are in contact, for instance a topological material and the vacuum, quantized electronic states propagate along their interface, which produce a current as they cross the gap between the valence band and the conduction band of the materials.

These topological waves are robust against backscattering by the imperfections of the interface or the defects of the bulk material. The properties of these edge modes, in particular their number and the direction in which they propagate, are characterized by the topological invariants of the material's electronic bands, namely their Chern numbers. The most important example regarding this thesis is that of a 2D material with broken time-reversal symmetry, which exhibits unidirectional topological edge modes (owing to a magnetic field, for instance, as in the integer quantum Hall effect).

Topological insulators is a vast topic and an exploding area in current research, which is why I want to comment on this right now: it is not the subject of my thesis, and the precise knowledge of this topic is not necessary to understand the results that will be presented here.

Ideas of topology in classical physics

A topological property is characterized by an integer invariant. Therefore, topology has been exploited in different areas of physics, beyond quantum mechanics and condensed matter theory, to study physical properties that change step-wise and are otherwise robust against perturbations. The theory of topology is particularly relevant in fluid dynamics, since the latter naturally deals with continuous deformations of fields and shapes. In the last century, one of the main contributors of applying topology in this area was the mathematician Arnold (see for instance [START_REF] Arnold | Topological methods in hydrodynamics[END_REF]), although ideas of topology in this domain go back to Thomson (Lord Kelvin, see for instance [START_REF] Thomson | Vi.-on vortex motion[END_REF]).

There are two noteworthy examples of application of topology in problems related to the area of fluid dynamics and dynamical systems:

• 1) In a three-dimensional flow, the hydrodynamical helicity of a vortex tube2 is the scalar product of the fluid's velocity and vorticity fields, integrated over the tube's volume. In a barotropic3 fluid subjected to potential forces only, this quantity is a constant of motion [START_REF] Moreau | Constantes d'un îlot tourbillonnaire en fluide parfait barotrope[END_REF], which can be related to the topology of the tubes: for a single or several vortex tubes, the helicity is associated to their linkage and knottedness [START_REF] Irvine | Moreau's hydrodynamic helicity and the life of vortex knots and links[END_REF] (figure 2).

Figure 2: A single knotted vortex line (left) and two linked vortex lines (right), adapted from [START_REF] Irvine | Moreau's hydrodynamic helicity and the life of vortex knots and links[END_REF].

The degree of knottedness and/or linkage is a constant of motion in a perfect barotropic fluid.

• 2) The catastrophe theory was developed in the '60s and '70s by the mathematicians Thom, Zeeman and Arnold (see [START_REF] Arnold | Catastrophe theory[END_REF]). It is a branch of bifurcation theory, whose applications in physics ranges from small [START_REF] Kusmartsev | Application of catastrophe theory to molecules and solitons[END_REF] to large-scale dynamical systems [START_REF] Doedel | Numerical methods for bifurcation problems and large-scale dynamical systems[END_REF]. The purpose of the catastrophe theory is to study the qualitative transitions within a dynamical system under a small change in one or more of its parameters, like a phase transition. The originality of the approach of the catastrophe theory is to characterize these bifurcations by classifying the geometry and topology of the transition around the critical points of the dynamical systems.

Although Kelvin was ahead of his time regarding the applications of topology to the physics of vortices [START_REF] Thomson | Vi.-on vortex motion[END_REF], it turns out that one of his discoveries on another topic shares more similarities with the phenomenology of topological insulators: the oceanic Kelvin waves4 . Kelvin was investigating surface waves in a shallow basin rotating at a rate Ω and realized that waves propagating at frequencies lower than 2Ω have different properties from those of higher frequencies [START_REF] Thomson | 1. on gravitational oscillations of rotating water[END_REF]. Indeed, those low-frequency modes propagate in one direction along the edges of the basin, and are the only modes that fill the spectral gap below the frequency 2Ω: as such, they are robust against backscattering that could occur owing to the defects of the coast (within the linear approximation). Now, even if the role of topology in this example is not obvious, the phenomenological similarity with topological insulators is clear: the system studied by Kelvin exhibits unidirectional edge modes owing to the breaking of time-reversal symmetry, i.e. when Ω ̸ = 0 (figure 3). One of the purposes of this thesis is to clarify the relation between these two examples, which belong to very distinct areas of physics. I will thus often return to the Kelvin waves in this thesis, especially in sections 1.3 and 3.5. In a 2D metal subjected to a strong transverse magnetic field, some electrons move in cyclotron orbits (purple) while there are unidirectional conducting states at the edges (blue). These correspond to quantized modes crossing the energy gap (green) between the material's bulk wavebands. b. In a rapidly rotating fluid, the Coriolis force dominates and the particles move in circles (purple), but they organize at the edge to generate a unidirectional wave propagating along a coast, called the Kelvin wave (represented in blue). Its dispersion relation is a branch that crosses the frequency gap (green), thus accessing frequencies below 2Ω.

Topological waves everywhere

It is now understood that the existence of topological waves mostly relies on the system's dimensionality and discrete symmetries, which are not specific to condensed matter systems. Therefore it became clear that the theory of topological insulators could be applied to virtually all fields of physics, including the domain of fluid dynamics. This led to the conception of physical systems on lattices, designed to mimic the properties of topological insulators and thus exhibit edge states which are protected by the discrete symmetries of the system. The enthusiasm spread rapidly among the physics community and gave rise to numerous artificial topological devices like photonic crystals [START_REF] Wang | Topological photonic crystals: a review[END_REF] and waveguides [START_REF] Ozawa | Topological photonics[END_REF], cold atom arrays [START_REF] Jotzu | Experimental realization of the topological haldane model with ultracold fermions[END_REF], but also macroscopic systems in the areas of mechanics and metamaterials -such as isostatic lattices [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF], gyroscopic arrays [START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF], spring-mass systems [START_REF] Chen | Elastic quantum spin hall effect in kagome lattices[END_REF][START_REF] Zhou | Quantum-spin-hall topological insulator in a springmass system[END_REF] or acoustic networks [START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF][START_REF] Fleury | Floquet topological insulators for sound[END_REF][START_REF] Zheng | Observation of edge waves in a two-dimensional su-schrieffer-heeger acoustic network[END_REF] -and active matter -with self-propelled particles or polar liquids [START_REF] Shankar | Topological sound and flocking on curved surfaces[END_REF][START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF][START_REF] Shankar | Topological active matter[END_REF] (figures 4 and 5).

Two common points between the systems shown in figures 4 and 5 are the facts that they all have boundaries and a lattice design, the idea being to imitate topological electronic insulators, which are periodic lattices of atoms with edges. From a more conceptual point of view, it seemed difficult to define the same topological properties and compute the same invariants for unbounded and continuous systems, thus the latter could not fit into the same paradigm. However, in 2017, the theory was successfully extended to a case of fluid waves in a continuous medium by Delplace, Marston and Venaille (cf. [START_REF] Delplace | Topological origin of equatorial waves[END_REF]), who reinterpreted the existence of certain equatorial waves in terms of a topological invariant characterizing the topology of surface waves. This invariant is an adaptation of the Chern number mentioned earlier -which is usually defined for periodic structures -to continuous, unbounded media. These waves, namely the equatorial Kelvin5 and Yanai waves, are unidirectional as they only propagate from west to east, and they are robust against perturbations, owing to their topological nature. Although these equatorial waves were long known in the geophysics community, topology brought a new perspective on this old problem, and paved the way toward the generalization of the concept of topological wave to natural, continuous and unbounded media. This perspective is the whole motivation of the present work, and one of the purposes of this thesis is to classify the topological waves existing in the context of geophysical and astrophysical fluid dynamics, beyond the context of equatorial waves. 

, active matter (green, figure 5) and fluid dynamics (red, figure 5). a. Spring-mass system on a Kagome lattice with an asymmetry in the spring stiffness [START_REF] Chen | Elastic quantum spin hall effect in kagome lattices[END_REF]. The system exhibits robust topological waves propagating along an interface where this asymmetry is reversed. b. Gyroscopes on an hexagonal lattice, coupled with springs [START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF]. The system supports the propagation of unidirectional modes on the edge of the lattice, and they are robust against disorder as they propagate around any defect. c. Unidirectional edge modes in a gyromagnetic photonic crystal [START_REF] Wang | Observation of unidirectional backscatteringimmune topological electromagnetic states[END_REF]. The topological modes are immune to backscattering, and thus can propagate around obstacles at the edge of the waveguide. d. Topological acoustic waves propagating in a triangular lattice of rotating cylinders [START_REF] Yang | Topological acoustics[END_REF]. As time-reversal symmetry is broken by the mean flow generated by the rotating cylinders, the edge mode is unidirectional. e. Topological acoustic waves propagating in a 2D network of waveguides [START_REF] Zheng | Observation of edge waves in a two-dimensional su-schrieffer-heeger acoustic network[END_REF]. f . Hexagonal lattice of toroidal waveguides with an azimuthal mean flow in each element, creating a Doppler bias [START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF]. Topological waves can propagate at the edges or at the interface where the Doppler bias is reversed, and their direction of propagation is fixed by the chirality of the mean flow.

Exploring geophysical and astrophysical wave models with broken discrete symmetries

Owing to their similarity with topological insulators' topological edge states, the equatorial waves naturally lead the way toward applying tools from topology in the more general geophysical and astrophysical realm. Now, since I will deal with classical fluid-wave dynamics, I will obviously not consider the exotic quantum symmetries involved in topological condensed matter physics 6 . Nevertheless, there is much to be investigated in terms of wave topology with the combination of two discrete symmetries that can be naturally broken 7 in flow models:

• Time-reversal symmetry -Imagine that someone is watching a movie of a fluid medium and then watches it again as the film is being rewound at normal speed. If they are unable to tell which is the original movie, i.e. if the movie in reverse is a possible scenario, it means that the 6 For instance, the concepts of gauge, charge-conjugation, particle-hole or chiral symmetries are not defined in fluids. However one can make the fluid fields complex, simply by considering them in the Fourier space, and thus give a meaning to these symmetries in the fluid realm. Non-trivial analogies have thus been found between quantum symmetries and spatial symmetries in fluid models [START_REF] David | How do discrete symmetries shape the stability of geophysical flows?[END_REF].

7 Throughout this thesis, I use the term "broken symmetry" to refer to the fact that the dynamical equations of a flow model are not invariant under the corresponding symmetry, owing to the model's parameters. This should not be confused with a "spontaneous symmetry breaking", where the solution of the equations does not respect their discrete symmetries. A similar device as f on a Lieb lattice with rings filled with a spontaneously flowing active liquid [START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF]. The polarity of the liquid dictates the direction of the unidirectional modes. h. Organized motion of self-propagating particles on curved surfaces can support topological sound modes on the surface's edges and geodesics [START_REF] Shankar | Topological sound and flocking on curved surfaces[END_REF]. i. Shallow-water waves in a tank [Sakai et al.]. If the tank is not rotating (below), gravity waves can propagate at any frequency. If it is rotating at frequency Ω (above), the only modes allowed in the gap below the inertial frequency 2Ω are Kelvin waves which are localized at the tank's edges and propagate in one direction. j. Eastward propagation of a temperature anomaly (in red) between the 1 st of November 2009 and the 1 st of December 2009. The equator can be viewed as an interface across which the rotation rate changes sign, allowing the propagation of topologically protected equatorial waves [START_REF] Delplace | Topological origin of equatorial waves[END_REF]. Image: Courtesy NASA/JPL-Caltech. Source: Jet Propulsion Laboratory.

medium is invariant under time-reversal symmetry. For fluid waves, time-reversal symmetry can be naturally broken by a fixed background rotation of the medium, or by a fixed mean flow.

• Reflection symmetry -In the very same way, if one looks at a photograph of the fluid medium and cannot tell the difference with its image in a mirror, then the medium is said to have a reflection symmetry in the direction perpendicular to the mirror. In fluids, reflection symmetry can be broken for instance by the introduction of an inhomogeneity, like gravity, which breaks reflection symmetry in the vertical direction.

To illustrate time-reversal and reflection symmetries being broken in a fluid-wave problem, just consider the Euler equation of an inviscid fluid in a rotating frame, subjected to gravity (blue) and the Coriolis force (red)8 :

∂v ∂t + v • ∇v = - 1 ρ ∇P -g n -2Ω × v , (1) 
where v, ρ and P are the fluid's velocity, density and pressure fields, respectively -which are functions of the time t and spatial coordinates x, y, z, for instance -, n the vertical unit vector pointing upward, g the acceleration of gravity and Ω the rotation rate of the frame. One can see that the Euler equation ( 1) is not invariant under vertical-reflection symmetry (z → -z and w → -w, where w is the vertical component of the velocity) if g ̸ = 0,9 and it is not invariant under time-reversal symmetry (t → -t and v → -v) if Ω ̸ = 0.10 In condensed matter physics, the nature of topological waves and their related invariants were classified in terms of the materials' discrete symmetries and dimensionality [START_REF] Kitaev | Periodic table for topological insulators and superconductors[END_REF]. Since gravity and the Coriolis force play an important role in geophysical and astrophysical wave dynamics [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]Aerts et al., 2010], it seems natural to apply the ideas of topological physics in these contexts.
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Figure 6: What is the connection between topology and the equatorial waves? a. A surface in 3D can be characterized for instance by an invariant computed by integration of the surface's curvature. A manifestation of this invariant is the topological defects of a field of vectors tangent to the surface. b. An invariant characterizing the fluid's wavebands, namely the Chern number, can be computed for the frequency bands of fluid waves, and a manifestation of this invariant is the number of topological modes crossing the gap between this waveband and the others. Contrary to the quantum Hall effect, these modes are not located at the edges of an homogeneous medium but at the interface defined by the vanishing of a parameter in an unbounded inhomogeneous medium.

Bulk-boundary correspondence for waves in continuous media

As explained earlier, the electronic states propagating at the boundaries of a topological insulators are quantized by the Chern numbers of its bulk11 waveband. This is what is called the bulk-boundary correspondence [START_REF] Hasan | Colloquium: topological insulators[END_REF][START_REF] Fukui | Bulk-edge correspondence for chern topological phases: A viewpoint from a generalized index theorem[END_REF][START_REF] Hatsugai | Chern number and edge states in the integer quantum hall effect[END_REF], which originates from a profound mathematical result, the Atiyah-Singer index theorem [START_REF] Atiyah | The index of elliptic operators on compact manifolds[END_REF][START_REF] Faure | Topological properties of quantum periodic hamiltonians[END_REF].

In order to properly apply the tools of topology, this correspondence needs to be defined in the context of fluid-wave problems.

Important remark: To be clear, we will thus consider the abstract topology of the bulk waves in a reciprocal space, like for topological insulators, and not that of the fields in real space, like the knotting and linking of vortex tubes or the singularities of the wind seen as a tangent vectorial field over the globe.

Let us return to the equatorial waves mentioned earlier. The phenomenology -which is that of quantized unidirectional modes propagating along a line (the equator) in a two-dimensional model and accessing frequencies in the gap -, along with the topological arguments described by [START_REF] Delplace | Topological origin of equatorial waves[END_REF], were a solid starting point to establish a general theory by analogy with the physics of topological insulators. However there are two major difficulties that need to be clarified:

• First, topological insulators support topological waves which propagate at their boundaries, whereas the equatorial waves propagate along the equator, which is not an edge.

• Second, as mentioned earlier, most topological systems studied in the literature have a lattice structure. This implies a periodic Fourier space, for which the Chern numbers are computed over a compact space12 and are thus well-defined. Indeed, the latter can be computed by integration of a quantity named the Berry curvature [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] over the reciprocal space, so the Chern numbers are finite as the Berry curvature is finite as well. Conversely, the model for equatorial waves is continuous, thus the reciprocal space is the whole Fourier space of wave vectors, which is unbounded, and this can be problematic to define the Chern numbers [START_REF] Tauber | A bulk-interface correspondence for equatorial waves[END_REF][START_REF] Tauber | Anomalous bulk-edge correspondence in continuous media[END_REF][START_REF] Parker | Topological phase in plasma physics[END_REF].

In other words, we want to use a kind of bulk-boundary correspondence for continuous, unbounded media (figure 6) but 1) it is not possible to use the same bulk topological invariant as in condensed matter, and 2) there is no boundary.

Significance of the Berry curvature in geophysical and astrophysical waves

As explained earlier, the Chern number is a topological invariant, which expresses a global property of a geometrical object (for instance the wavebands of a topological insulator). Such an invariant can be computed by the integration of a quantity characterizing the local geometry of the object, namely its curvature. This is the general Chern-Gauss-Bonnet theorem, which, for instance, relates the Chern number of a waveband to its Berry curvature [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF]. In short, the eigenvalues of a fluid model define frequency bands that are functions of a continuous parameter space, at each point of which the corresponding eigenspaces can also be defined, and the Berry curvature characterizes the geometry of these eigenspaces continuously defined over parameter space.

Because of its abstract nature, it is logical to think that the Berry curvature is just a mathematical artefact embedded in the waves' geometrical structure, which should not have any consequence on the physical observables of the fluid waves. Yet it is known that this quantity is related to the geometrical phases arising in some oscillating systems of vectorial character. Examples of such geometrical phases can be found in all fields of physics -for instance the precession of the Foucault pendulum or the phase arising in the wave function of an adiabatically-driven quantum system [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] -and they reflect the subtle geometry or curvature of the underlying space in which these oscillating systems evolve. The existence of such geometrical phases has long been investigated in geophysical fluid dynamics [START_REF] Budden | Phase memory and additional memory in wkb solutions for wave propagation in stratified media[END_REF][START_REF] Vanneste | On wave action and phase in the non-canonical hamiltonian formulation[END_REF][START_REF] Godin | Wentzel-kramers-brillouin approximation for atmospheric waves[END_REF]. Furthermore, some works in quantum physics have shown that the Berry curvature is also manifested in the evolution of polarized wave packets, which was demonstrated theoretically [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF] and experimentally in solids [START_REF] Cho | Experimental observation of hidden berry curvature in inversion-symmetric bulk 2h -wse 2[END_REF], cold atoms [START_REF] Jotzu | Experimental realization of the topological haldane model with ultracold fermions[END_REF] and photonic quantum walks [START_REF] Wimmer | Experimental measurement of the berry curvature from anomalous transport[END_REF].

One of the aims of this thesis is to translate these manifestations of the Berry curvature in the context of geophysical and astrophysical waves.

Aims and results

Here is the list of the main questions I wanted to answer in my thesis, and my contributions for each of them.

1) Can we predict the existence of new waves in geophysical and astrophysical media, by means of topological arguments?

To answer that question, I adopted an analytical approach, mostly inspired by the analogy with condensed matter physics but different, and tested my predictions with numerical tools, mostly using Dedalus [START_REF] Burns | Dedalus: A flexible framework for numerical simulations with spectral methods[END_REF]. The theoretical approach differs from that of condensed matter physics in the sense that we are concerned with continuous media instead of discrete lattices, the infinite Fourier space instead of the finite first Brillouin zone, fluid waves instead of Bloch wave functions, etc. My intention is not to establish a complete classification of the topological waves that can exist in the geophysical and astrophysical realm, depending on the dimension, the parameters and the symmetries that they break, etc. It is rather to identify some general examples of topological waves that can be well-understood -and possibly observed in the ocean, atmosphere or stellar media -and whose topological character can be appreciated in the scope of analogous condensed matter systems combining time-reversal and reflection-symmetry breaking, such as the Haldane model [START_REF] Haldane | Model for a quantum hall effect without landau levels: Condensed-matter realization of the" parity anomaly[END_REF].

My main contribution is to demonstrate the existence of new waves in rotating, compressible-stratified fluid media, which have a mixed behavior between acoustic and internal-gravity waves, and propagate along interfaces separating two regions with different stratification properties in the vertical direction. I will particularly emphasize the importance of the interplay between stratification and compressibility, which is topologically encoded in the acoustic and internal-gravity wavebands being degenerate. Regarding the effect of rotation, I will demonstrate the unexpected role of an often disregarded element in geophysical fluid dynamics, namely the nontraditional contribution of the Coriolis force [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. More specifically, I will show that the nature of topological modes in compressible-stratified atmospheres and oceans is dictated by the medium's compressibility and stratification properties, and the nontraditional Coriolis force selects their location and direction of propagation.

Another personal contribution is the extension of the result of [START_REF] Delplace | Topological origin of equatorial waves[END_REF] to a more general equatorial wave model that takes stratification, compressibility and the nontraditional Coriolis force into account. I will show that the two topological equatorial waves, namely the Yanai and Kelvin modes, still exist no matter how high the rotation rate, stratification or compressibility. In addition, I will demonstrate the existence of two topological equatorial waves at higher frequencies, which exist only in a certain regime defined by the competition between rotation and stratification.

Finally I participated in the application of the topological analysis to stellar oscillations in stratified polytropic celestial objects, a work started by [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]. We found that a mode in the pulsation spectrum, namely the f-mode, which behaves successively as an internal g-mode and a surface mode, can now be understood as the result of the hybridization between a topological mode and a surface-gravity mode.

2) How can we formulate a general property that is reminiscent of the bulkboundary correspondence, for fluid waves in continuous, unbounded media? How to define the appropriate Chern number?

In light of the equatorial waves example and the wide knowledge of 2D Chern insulators, throughout this thesis, I will consider general 2D fluid-wave problems in inhomogeneous media, i.e. coupled partial differential equations with arbitrarily varying parameters, which can be difficult to solve. However, I will focus on their bulk version, i.e. the same problem with fixed parameters, as if the medium were homogeneous, which is a much simpler one. More specifically, I will show that the existence of topological waves in the inhomogeneous medium is determined by that of a topological defect quantized by an invariant of the homogeneous problem's wavebands, which is none other than a Chern number, with a different definition. These waves are not located at the edges, but rather at an interface in the medium, where some parameter changes sign and closes the gap locally. Therefore we will rather talk about a bulk-interface correspondence, and the canonical example of equatorial waves will constantly be invoked as an example to illustrate it (figure 6). Finally, I will discuss the position of the general class of fluid problems at stake with respect to topological insulators and Weyl metals [START_REF] Burkov | Weyl metals[END_REF].

My contribution here is to propose a general framework that encompasses a large class of 2D fluid-wave problems whose interface waves and bulk topological indices are connected through a bulk-interface correspondence, which is adapted from the version of the index theorem proposed by [START_REF] Faure | Manifestation of the topological index formula in quantum waves and geophysical waves[END_REF]. I believe this is an important theoretical result because it provides a simple and systematic method to identify the criteria of existence of topological waves in a wide range of fluid models. I will show that, regarding topological condensed matter physics, these fluid models exhibit topological modes that are reminiscent of those supported by materials called 2D Chern insulators, but with an alternative topological characterization.

Alternatively, I propose another interpretation of the index theorem in terms of the change in the number of zeros of one of the eigenfunctions of the wave problem. I show that some bulk modes win or lose C zeros as the wave number is swept, C being the Chern number of the degeneracy point involved in a topological interface in the medium.

In order to clarify the situation of boundaries in this bulk-interface correspondence, I also extend the discussion of [START_REF] Venaille | Wave topology brought to the coast[END_REF] on the topological nature of coastal waves, and generalize their approach for shallow-water waves with both a varying topography and Coriolis parameter. More generally, I will discuss the relation between boundary modes and topological modes and show how they can be connected to each other.

3) Does the Berry curvature have a manifestation in the propagation of geophysical and astrophysical wave rays?

This question originates from the previous works mentioned earlier, which demonstrated the manifestation of the Berry curvature in the propagation of wave packets in a variety of systems, both theoretically and experimentally [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF][START_REF] Cho | Experimental observation of hidden berry curvature in inversion-symmetric bulk 2h -wse 2[END_REF][START_REF] Jotzu | Experimental realization of the topological haldane model with ultracold fermions[END_REF][START_REF] Wimmer | Experimental measurement of the berry curvature from anomalous transport[END_REF]. Since [START_REF] Delplace | Topological origin of equatorial waves[END_REF] revealed a non-zero Berry curvature in the geophysical realm, it is natural to question the significance of this geometrical quantity for the propagation of geophysical and astrophysical wave rays.

My main contribution here consists in revisiting the textbook problem of ray tracing while taking the geometrical character of multi-component waves into account. I exhibit a correction to the usual ray-tracing equations for wave packets, coming from the wave's Berry curvature [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF]. I illustrate the general result and estimate this correction by focusing on inertiagravity surface waves on a rotating planet, in which case I find an eastward correction to the group velocity. This eastward rectification of rays can be viewed as a geofluid analog of the anomalous Hall effect, i.e. the extraordinary transverse (or Hall) conductance in ferromagnetic metals, with the meridional variation of the Coriolis parameter instead of the electric field and the zonal group-velocity correction instead of the Hall current. The general framework that I propose goes beyond this case and, hopefully, will shed light on geometrical effects in other geophysical and astrophysical models.

Organization of the thesis

Chapter 1 of this thesis aims to provide the reader with the most important notions of geophysical and astrophysical fluid dynamics to understand the models that will be studied throughout this work. I will start by presenting the general framework of fluid dynamics in the realm of this thesis: first, the primitive equations and the approximations that will be systematically applied to them, in agreement with the regime of scales considered in the context of geophysical and astrophysical wave dynamics; and second, the discrete symmetries that can be broken by the relevant parameters of these fluid models, namely rotation with the Coriolis force and gravity with density stratification [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF]. Establishing this hierarchy of models will be the starting point of the chapter. Next, in the second section, I will introduce the basic properties of fluid media that are compressible, allowing the propagation of acoustic waves, and stratified under the effect of gravity, allowing the propagation of internal-gravity waves. Then we will discuss in a third section the influence of rotation on wave propagation, in particular for surface waves, introducing the celebrated shallow-water model. I will thus emphasize and specify the case of equatorial waves, because of its importance in the context of this thesis [START_REF] Delplace | Topological origin of equatorial waves[END_REF], and discuss two unidirectional modes transiting from one waveband to another, which can be interpreted as topological modes. Finally, I will introduce in the fourth section a general model including all of these ingredients, which will be the basis of the results presented in the third chapter.

The purpose of chapter 2 is to familiarize the reader with the notions of geometry and topology that will be necessary to understand the results of this thesis. Because of its simplicity and, most of all, its importance regarding the context of this thesis, I will constantly use the equatorial shallow-water model, introduced in the first chapter, as an example for the definition of these important notions. I believe this will simplify the explanation of those concepts, which can appear very abstract and puzzling if presented in the general case. The first section of this chapter will be dedicated to the Foucault pendulum, because it is a classical and simple example of geometrical phase, which is related to the Berry curvature and Chern number mentioned earlier, and because of its similarities with the model for equatorial waves discussed in the first chapter (see [START_REF] Delplace | From the geometry of foucault pendulum to the topology of planetary waves[END_REF]). The second section consists in three examples of topological defects and phase singularities in physics: the tidal amphidromic points [START_REF] Whewell | Xi. essay towards a first approximation to a map of cotidal lines[END_REF], the Aharonov-Bohm effect [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] and an experiment of wavefront dislocation of surface waves in water [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF]. The purpose of this section will be two-fold: on the one hand, introducing the universal notions of topological defects and phase singularities through examples from very distinct domains of physics, and, on the other, presenting a quantum system (the Aharonov-Bohm effect) that has fluid equivalents at large scale (the amphidromic points) and small scale (the dislocation experiment), stressing the universality of topological defects and their relation with time-reversal-symmetry breaking. This will ease the reader's way to the third section, in which I will introduce the Chern number as the invariant counting the number of phase singularities arising when one attempts to continuously define a complex field (the wave's polarization relations) on a closed surface (in parameter space). Incidentally, I will introduce an important quantity that characterizes the local geometry of a complex field, namely the Berry curvature. I will then compute the Chern numbers of the shallow-water model, which will lead us to the fourth section of this chapter. In the fourth section I will present the mathematical framework that is necessary to understand how to exploit the topological information provided by these Chern numbers. The notions of symbol and spectral flow will be defined in a more formal way, in order to show that the topological equatorial modes discussed in the first chapter are linked to the wavebands' Chern numbers through the index theorem [START_REF] Atiyah | The index of elliptic operators on compact manifolds[END_REF].

In chapter 3, building upon the example of the equatorial waves described in the second chapter, I will then present a systematic methodology to predict the existence of topological modes in more general fluid wave models, which serve as a basis for the presentation of my first results. In a first section I will describe this method and the class of wave problems concerned, then, in the second, I will extensively classify the degeneracy points between the wavebands of the general fluid model introduced at the end of the first chapter. In the third and fourth sections of this chapter, I will review the 2D topological waves arising in a large class of situations emerging from our general model. I will demonstrate the existence of such waves propagating in a vertical plane for a stratified fluid medium, with and without rotation [START_REF] Perrot | Topological transition in stratified fluids[END_REF][START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. I will also generalize the spectrum of equatorial waves, which is extensively studied in the first and second chapters. The fifth section will be dedicated to a discussion on the important case of boundary modes, and question their nature regarding the topological properties, or the influence of boundaries on the previously exhibited topological waves.

Finally, I will open the analysis to the spherical geometry and the study of stellar pulsations in the sixth section of the chapter.

Finally, chapter 4 of this thesis will be dedicated to a discussion on the manifestation of the Berry curvature in geophysical and astrophysical ray propagation [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF]. I will start by motivating the subject with the general notions of geometrical phases (already introduced in the second chapter) and polarization, which are central in the general frame of this work. I will illustrate their importance in wave physics by reviewing the historical progress of geometrical methods in the context of ray dynamics, and by discussing the position of Berry's and related works regarding this context. In the second section I will define the notion of multi-component wave packet, which is a natural approximation to exhibit the geometrical effects on wave propagation in a slowly-varying medium. I will then redefine the Berry curvature in the realm of the shallow-water model. In the third and fourth sections I will derive the equations of ray propagation in a semi-classical fashion akin to the WKB analysis of waves, and show the emergence of the Berry curvature in these equations. This will immediately apply to shallow-water wave packets evolving at mid-latitudes.

Chapter 1

Waves in geophysical and astrophysical fluid dynamics

The purpose of this first chapter is to introduce the fundamental equations and approximations used to model wave propagation phenomena in geophysical fluid media (oceans and atmosphere) and astrophysical media (such as stellar interiors), which is the context of this thesis. These models are based on certain primitive equations, which are partial differential equations that express the conservation of some physical properties of the fluid when the latter is locally perturbed (i.e. displaced, compressed, transported, heated, etc.) by a wave. To be more precise, these models can be classified mostly according to the different scales and parameters that are relevant to study the phenomenona at interest, allowing one to establish a hierarchy of dynamical equations based on the corresponding approximations. This classification allows to identify the important parameters at work in geophysical and astrophysical wave dynamics, and the main purpose of this chapter is to introduce these ingredients. Most of what will be presented in this first chapter can be found in classical textbooks like [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] or review [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF]. However, as announced in the introduction, one of the principal motivation for using the tools of topology and geometry to study geophysical and astrophysical wave propagation is the fact that the discrete symmetries play a key role in it, especially the reflection symmetry and the time-reversal symmetry. I will therefore strive to introduce these different ingredients of geophysical fluid dynamics while emphasizing the discrete symmetries that are involved in their definition and their consequence on wave dynamics. Section 1.1 of this chapter aims at introducing the generalities of geophysical and astrophysical flows, i.e., on the one hand, the primitive equations that will be used throughout this thesis -in their simplified form owing to the approximations and scales that are involved in the present context -and, on the other, a general explanation of how some discrete symmetries are naturally and intuitively broken in this context. In section 1.2 we will present the waves that can propagate in a fluid medium owing to its elasticity or compressibility, i.e the acoustic waves, and show how the gravity-induced reflectionsymmetry breaking modifies their propagation properties and leads to a different kind of waves, the internal-gravity waves, to propagate in the medium, owing to its stratification. Then, in the third section 1.3 we will discuss the consequences of the violation of time-reversal symmetry that occurs naturally in rotating fluid media, which is manifested through the Coriolis force. An important model used to describe the horizontal dynamics of planetary flows will be introduced, the shallow-water model, in which the influence of the Coriolis force vanishes at the equator, thus allowing for timereversal symmetry to be restored locally, the spectral consequence of this being the original motivation of this whole thesis [START_REF] Delplace | Topological origin of equatorial waves[END_REF]. Finally, in section 1.4, we will introduce a general model gathering all these ingredients priorly presented, which will serve as a basis for the results presented in chapter 3.

Preliminaries of geophysical and astrophysical fluid dynamics

The purpose of this section is to provide a general overview of the fluid models used throughout this thesis: what kind of phenomena do they model? What are the acceptable approximation that will always be made? I will stress in particular the fact that simple considerations on the different characteristic scales of the flow allow one to select the appropriate parameters involved in the dynamics which describes it.

The primitive equations

The general framework of this thesis is that of geophysical and astrophysical fluid dynamics. Generally speaking, we will consider large-scale propagation phenomena in the ocean, the atmosphere or the stellar interior (but without considering the electric charge), which are described at the elementary, continuous level 1 by a set of primitive partial differential equations. In the context of this thesis I will consider thermomechanical perturbations of a fluid medium, described by three partial differential equations in the coordinates of space x and time t:

• The equation of mass conservation

∂ρ ∂t + ∇ • (ρv) = 0 , (1.1)
where ρ(x, t) and v(x, t) are the fluid's density and velocity fields, respectively, and ∇• is the divergence operator. Equation (1.1) reflects the fact that the mass of the fluid is conserved during the dynamics. However the density can vary, for instance it increases where the flow converges.

In the context of this thesis there will be no source term in this equation, as there would be for instance in a two-phase flow, owing to the vaporization and condensation.

Remark: For the sake of simplicity, we will mostly use the notation

∂ t ≡ ∂ ∂t , ∂ x ≡ ∂ ∂x , etc. and D t ≡ ∂ t + v • ∇ , (1.2)
where • denotes the standard scalar product. The last one of (1.2) is the Lagrangian derivative, which is the time differentiation of an observable following the fluid particles. It accounts for the fact that the fluid's observables can vary owing to both local transformations and transport of the fluid particles.

• We will always consider isentropic perturbations, i.e. locally reversible transformations without heat exchange or diffusion (I will return to this approximation a bit later). In this case, generally speaking, the fluid's local entropy (per unit of mass) is related to the pressure and density through an equation of state s = s(P, ρ) and the transformations thus satisfy ds = ∂s ∂P ρ dP + ∂s ∂ρ P dρ = 0 , (1.3) which yields the equation of entropy conservation:

D t ρ = χ s D t P , (1.4) 
1 Understand that these partial differential equations describe the dynamics of a fluid seen as a continuous medium. In other words they do not account for the fluid particle's motions at the molecular level, at which a quantum and statistical description is necessary. For instance, the molecules of a gas at room temperature move in random directions at an average speed of ≈ 500 m.s -1 (which is higher than the speed of sound waves supported by the same medium), owing to thermal agitation, and constantly change direction owing to random collisions. However humans cannot see, nor feel these extremely erratic motions, and are rather sensitive to the average local observables of the fluid, like its temperature and velocity, which can be steady at this level of description even if the microscopic state is extremely agitated. This is the minimal level of description adopted in this thesis.

where χ s is the isentropic compressibility factor of the fluid,

χ s = ∂ρ ∂P s , (1.5)
which is also an observable (for a perfect gas, for instance, it depends on the temperature [START_REF] Lamb | On atmospheric oscillations[END_REF]).

• Finally, the equation describing the variations of the fluid's mechanical momentum, i.e. Newton's second law adapted for a moving fluid medium is the Euler equation:

ρD t v = -∇P + forces .
(1.6)

In equation (1.6), the term ∇P is the pressure force felt locally by the fluid, and the "forces" (per unit of volume) can come from any external source: in the context of this thesis it will always be the fluid's weight ρg,2 and the inertial forces felt by the fluid in a rotating frame, especially the Coriolis force (cf. section 1.3). Adding stress forces to equation (1.6) (e.g. shear stress resulting from the microscopic viscous friction between the fluid particles) yields the Navier-Stokes equation.

However, viscosity will be systematically ignored in this thesis.

In this thesis we are interested in waves, therefore we will always consider the linearized version of these primitive equations (1.1)-(1.4)-(1.6).

Some elementary approximations

Let us now discuss some approximations that I will always adopt in the thesis, first on the mechanisms that will be neglected in the dynamical equations, and second on some geometrical considerations.

Perturbations of a state of rest

Everywhere in this thesis except in 2.2.4, we will linearize the dynamical equations around a stable state of rest, i.e. a state where the fluid has zero velocity everywhere and its other fields are steady (constant in time). This will allow us to formulate the dynamical equations in a Hermitian framework, which is the most convenient one for topological waves.

Why do we neglect diffusion and viscous dissipation effects?

In the present work, as mentioned above, I will neglect all kinds of diffusive process (particle or heat diffusion, shear stress, water salinity, etc.), assumed to be very slow compared to the wave dynamics.

In the context of large-scale geophysics and astrophysics, the influence of molecular diffusion processes (e.g. momentum diffusion by viscous stress, the diffusion of heat or salinity, etc.) are mostly negligible at distances more than a few millimeters away from a solid boundary (see for instance [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], p.

201).

Of course diffusion is important to understand the dynamics of the fluid at small scales, however we can easily show that it is not for large-scale oceanic and atmospheric waves. Indeed, let us compare the fluid's displacements owing to the passage of a wave and the diffusive spreading occuring meanwhile.

Typically, the local velocity v of the air or water supporting such waves are of a few centimeters per second, and the diffusion coefficients3 D for water and air range from 10 -7 to 10 -5 m 2 .s -1 (e.g. [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], p. 12). Therefore, during a time δt, the fluid's displacement owing to the wave is vδt whereas the distance of diffusive transport scales as √ Dδt, so the latter is negligible provided δt ≫ D/v 2 ∼ 0.1 s, which is indeed very small compared to the waves' time scales in this context.

Two aspects of the geometry of fluid problems

• Boundaries -To complete the system of primitive equations (1.1)-(1.4)-(1.6), one must fix the boundary conditions at the boundaries of the fluid medium. This often imposes a critical boundary layer where the fluid's observables vary rapidly to connect the solution with the boundary condition, and thus where shear stress and dissipation can be important. Moreover, the presence of boundaries also has a basic linear effect which is to reflect waves, one consequence of which is the emergence of singular modes of propagation for certain types of waves in non-conventional confined geometries, called wave attractors [START_REF] Maas | Geometric focusing of internal waves[END_REF][START_REF] Rieutord | Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum[END_REF] (figure 1.1). However, as will be often recalled, I will not consider such confined geometries, and even consider unbounded geometries4 to better stress the effects of parameters taking particular values inside the bulk of the medium (see chapter 3). Nevertheless, I will dedicate section 3.5 of chapter 3

to the modes arising at parallel boundaries (channel or wall geometries, but the medium is always open, i.e. not confined) in the problem, to connect my work with a topic that has been extensively investigated [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF][START_REF] Auclair | Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean[END_REF].

b a Figure 1.1: Successive reflections of waves (here, internal-gravity waves) in confined geometries give rise to singular modes concentrated around attractors. a. An example of a wave attractor in a parabolic basin, with the predicted ray trajectory (above) and a simulation of the mode's stream function (below). Adapted from [START_REF] Maas | Geometric focusing of internal waves[END_REF]. b. Distribution of kinetic energy of various modes in a spherical shell (meridional section), showing the concentration of energy around asymptotic attractors. Adapted from [START_REF] Rieutord | Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum[END_REF].

• Cartesian/planar geometry -In addition, in all of the present thesis (except the discussion on stellar modes in section 3.6), we consider local Cartesian geometries (e.g. the yellow frame in figure 1.3), which is indicated by the use of a local coordinate system (x, y, z) defined by the vertical axis and tangent plane at the location considered5 . In other words, we assume that the scales involved in the wave dynamics are small compared to the radius of the planet, and thus that the propagation occurs at a local level, at which the curvature of the planet can be neglected.

Although this approximation is not very relevant to model phenomena of propagation through the whole body of a gaseous planet, or the global stellar pulsations, it is an acceptable assumption in the geophysical context, because the ocean and the atmosphere are shallow fluid layers in comparison with the Earth's radius 6 . Most of the literature on geophysical fluid dynamics uses this Cartesian approximation, including to model certain phenomena at scales comparable to the Earth [START_REF] Munk | The wind-driven circulation in ocean basins of various shapes[END_REF][START_REF] Zeitlin | Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models[END_REF]. However, one may find extensive treatments of fluid models in spherical geometries in the literature, for geophysical waves [START_REF] Longuet-Higgins | The eigenfunctions of laplace's tidal equation over a sphere[END_REF][START_REF] Paldor | Shallow water waves on the rotating Earth[END_REF] and stellar pulsations as well [Aerts et al., 2010]. Moreover, I will open the discussion to spherical geometries in section 3.6.

Scales, hierarchy of models and discrete symmetries

Generally speaking, the essence of geophysical and astrophysical fluid dynamics is to model phenomena by identifying the relevant scales and parameters involved in their dynamics. In other words, one may start from the primitive equations (1.1)-(1.4)-(1.6) (and the boundary conditions), which describe the fluid at an elementary level, and discard all the unnecessary or negligible terms. Different problems thus lead to different models coming from the same primitive system, separated into a hierarchy of models [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF]. Let us consider the following example: an oceanic surface wave propagating on the Earth with a wavelength of 100 km will not be sensitive to the surface tension between water and air, because the capillarity length of the interface is only 2.7 mm: considering the surface tension is therefore unnecessary in this context, whereas it is for a wave propagating on the surface of water in a glass (see figure 1.2). In contrast, it is not relevant to take the Earth's rotation into account to model a surface wave in the glass of water, whose period is much smaller than a day, whereas it has a strong influence on the dynamics of the oceanic wave (see section 1.3).

In short, an analysis of the different scales 7 involved in a flow allow one to properly select the different relevant parameters (see figure 1.2) to model it. Now, in the context of this thesis, these parameters will be particularly interesting for the discrete symmetries that they break, and one can understand from the above analysis that a parameter that breaks a given symmetry may be relevant in a model but not in another, like the rotation rate of the Earth for instance. In other words, the relevant parameters to model a fluid problem, and thus the broken and preserved symmetries, depend on the scales at stake. I wish to develop this discussion for the two natural discrete symmetries involved in fluid problems, namely the time-reversal symmetry and the reflection symmetries.

Time-reversal-symmetry breaking

In the above example, large-scale oceanic waves (say with a typical horizontal length scale of ∼ 100 km) experience the planet's rotation, and thus are described by a model with broken time-reversal symmetry. However, waves propagating at the surface of a 10m pool are not sensitive to the planet's rotation, yet both propagate in the same element, water, whose dynamics is described by the same primitive equations. Let us take a step back to these equations, i.e. (1.1)-(1.4)-(1.6) (+ boundary conditions). Time-reversal symmetry is preserved if the system is invariant 8 under the following transformation of the fields and variable:

t → -t , v → -v , (1.7)
the rest (i.e. x, y, z, ρ, P ) being left unchanged. In consequence, the set of primitive equations (1.1)-

(1.4)-(1.6) is invariant under time-reversal symmetry, unless the boundaries are time-dependent (which is not a situation considered here), or the forces in equation (1.6) depend on the velocity field v or the 6 The maximal depth of the ocean is about ten kilometers, and the atmosphere's thickness is roughly 100km. Moreover, the different atmospheric layers can be studied separately, in general. The radius of the Earth is 6370 kilometers, which is much bigger.

7 Its typical length and time scales, but also the typical amplitude of the fields such as the velocity, which for instance separates turbulent and nonturbulent flow regimes. Note that turbulence is absolutely not relevant in the context of this thesis, especially because we will always work with linearized dynamical equations in inviscid media.

8 Understand that the physical solutions are the same: if ρ, P, v are solutions of the problem, then ρ, P, -v as well, at time t ′ = -t. time t. As we will see in section 1.3, the first situation is naturally achieved with the Coriolis force, which depends linearly on the velocity field: because of this force, a fluid particle is laterally deviated from its trajectory, but a particle moving in the opposite direction will not follow the inverse path9 , which is a signature of time-reversal symmetry being broken. The second situation is achieved when an external force depends on time, like the tidal forcing from the moon or the sun (see 2.2.2), but we will not consider this type of forcing in the present thesis.

There is another, indirect way to break time-reversal symmetry in a fluid medium: one can assume that the fluid is initially flowing with a steady velocity U(x, y, z) and regard U as a parameter of the fluid medium. Then, if one considers the perturbation of the mean-flow state, i.e. v ′ = v -U, instead of the total velocity v, the dynamical equations (1.1)-(1.4)-(1.6) are not invariant under time-reversal of the perturbation field, i.e. t → -t, v ′ → -v ′ . However this transformation also breaks the Hermiticity of the system (see for instance [START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF]), as mentioned earlier.

Generally speaking, a flow model is time-reversal symmetric when one can just reverse the flow and get an acceptable solution as well. In the context of this thesis, this symmetry will be broken by the planetary rotation and the Coriolis force, except in 2.2.4 where we will consider a situation in which it is broken by a mean flow generated by a vortex.

Reflection-symmetry breaking

Another discrete symmetry which can be naturally broken in continuous media is the reflection symmetry. Consider the following example: if one makes an audible sound in water, it will propagate equally upward and downward, in spite of the fact that gravity is reversed when changing the vertical direction. In that sense the physical features of acoustic waves in the audible range are insensitive to gravity, and thus are invariant under reflection-symmetry breaking in the vertical direction. However, some waves propagating in water at much lower frequencies are sensitive to gravity, and thus have a broken vertical-reflection symmetry. Generally speaking, a system has a broken reflection symmetry when the model's equations are not invariant under the transformation

X → -X , v X → -v X , (1.8)
for a certain spatial coordinate X and v X the component of the velocity field along the X direction.

Now a fluid problem is not invariant under reflection symmetry in the direction X if there is a boundary that is not parallel and invariant in the X direction, basically, for instance with surface waves and a varying mean depth. On the other hand, the set of dynamical equations (1.1)-(1.4)-(1.6) is invariant under reflection symmetry in the X direction, unless there is an external force that depends on X or has a component in the X direction, like the acceleration of gravity, g = -gê z , which breaks the vertical-reflection symmetry of equation (1.6). Incidentally, the Coriolis force, which depends on the speed, also breaks reflection symmetry in certain directions, however the composition of time-reversal symmetry and a certain reflection symmetry can be preserved10 (see figure 1.3).

Another way to break reflection symmetry in the direction X is to consider the perturbations of a state that is not symmetric under this transformation, i.e. the initial state depends on the variable X, or the velocity field has a non-zero component in the X direction. This will be crucial in this thesis, because gravity alone is not sufficient to really break the vertical-reflection symmetry, and here is the reason: let us consider a three-dimensional inviscid fluid, initially at perfect rest (∂ t = 0, v = 0) under the effect of gravity -ge z only. In this initial state, the Euler equation (1.6) yields the well-known hydrostatic vertical balance equation, which relates the vertical variation of pressure P 0 at equilibrium to the density profile ρ 0 : dP 0 dz = -gρ 0 .

(1.9)

Note that equation (1.9) implies that both P 0 and ρ 0 are functions of the vertical coordinate z only 11 . Now, if ρ = ρ 0 is a constant, introducing the pressure perturbation P ′ ≡ P -P 0 , the terms corresponding to pressure and gravity forces add up to -∇P -ρge z = -∇P ′ . In this case the verticalreflection-symmetry breaking is artificial because the gravity term disappears by simply replacing P by P ′ . Moreover, the equation of conservation of mass simply reads as ∇ • v = 0 (where • is the natural scalar product and ∇• the divergence operator), which is also invariant under reflection symmetry. A striking consequence is that gravity alone is not the key ingredient to observe interesting features of fluid motions under vertical-reflection-symmetry breaking: one rather needs to consider the possible variations of density, in the background (equilibrium) density profile (stratification and buoyancy effects, see 1.2.2) and/or in the motion of fluid particles (compressibility, see 1.2.1).

In this thesis we will mostly consider the vertical-reflection symmetry, broken by gravity in a stratified, compressible medium.

SUMMARY

The dynamics of fluid media is described by primitive equations, which can be broken down to different flow models depending on the scales involved. In this thesis I will consider a general flow model to describe idealized geophysical and astrophysical waves in local Cartesian, unbounded geometries a . In this context, we will need to take a few ingredients into account: first, the fluid's compressibility and its density stratification owing to gravity, which breaks the verticalreflection symmetry. This will be the subject of section 1.2. Secondly, we will consider the planetary rotation, mostly through the Coriolis force, which essentially breaks time-reversal symmetry. This will be the object of section 1.3.

a We will consider simple boundaries for the numerical simulations of chapter 3, but the general discussion will always be separated from the influence of these boundaries, the intention being to separate the central discussion of this thesis from that of geometrical effects owing to finite size, wave confinement and reflection, critical layers, etc. However, a special attention will be given to some features of the boundaries in section 3.5 of chapter 3.

Waves in stratified and compressible fluids

This section aims at introducing the properties of wave propagation in non-rotating fluid media, owing to two natural restoring mechanisms in the geophysical context: compressibility, which is the ability of a fluid's local density to vary under pressure variations, and buoyancy, which is the force felt by a fluid particle surrounded by a fluid of different density. To emphasize these two effects separately, I will present in the first part (1.2.1) the propagation of acoustic waves in a compressible fluid, without buoyancy, and, in the second part (1.2.2), the propagation of internal-gravity waves in an incompressible fluid medium with a buoyancy force generated by a variable background density. Both of these waves will be essential for understanding the results of this thesis.

Acoustic waves in compressible fluid media

Let us consider an inviscid steady compressible fluid medium free of body forces (we thus set g = 0 for now). The velocity field v at equilibrium is zero everywhere in the fluid and both pressure P 0 and density ρ 0 are uniform. Assume now that the fluid supports adiabatic perturbations (v = v ′ , P = P 0 + P ′ , ρ = ρ 0 + ρ ′ ), in such a way that the three linearized equations governing the dynamics of the perturbations are

ρ 0 ∂ t v ′ = -∇P ′ (1.10a) ∂ t ρ ′ = -ρ 0 ∇ • v ′ (1.10b) ∂ t ρ ′ = χ s ∂ t P ′ , (1.10c)
where χ s is the isentropic compressibility factor of the fluid introduced in equation (1.5). Equations

(1.10) correspond respectively to the conservation of momentum, mass and entropy, the latter being here expressed as the absence of local variation of potential density, or ρ ′ -χ s P ′ = 0. It follows from the coupled equations (1.10) that all the perturbation fields obey the d'Alembert wave equation:

∂ 2 ∂t 2 -c 2 s ∆ (v ′ , ρ ′ , P ′ ) = 0 , with c s = χ -1/2 s (1.11)
appearing as the celerity of the linear wave perturbations in the uniform and steady fluid, i.e. acoustic waves. By definition, c s depends on the thermodynamic properties of the medium, especially the temperature 12 (cf. appendix A). Equation (1.11) describes the propagation of sound waves or acoustic waves: for a plane-wave solution -i.e. with the perturbation v ′ , ρ In this case they are nondispersive, thus the frequency spectrum is gapless, i.e. all frequencies are allowed. b. Propagation of an acoustic wave supported by a fluid medium. The motion of the particles is longitudinal, i.e. in the direction of propagation, as long as the influence of gravity is negligible.

′ , P ′ ∝ exp [i(k • x -ωt)] -,

How negligible is the influence of gravity?

As previously demonstrated, the dominant restoring mechanism at work in the propagation of acoustic waves is the compression of the fluid in the longitudinal direction (figure 1.4b). Nevertheless, we neglected the presence of gravity g in the previous analysis, and we shall explain here to what extent that is an appropriate approximation. Gravity enters the linearized Euler equation (1.10a) through a term ρ ′ g = -ρ ′ gê z , z being the upward vertical direction (figure 1.4b). Combining the different equations (1.10), in terms of orders of magnitudes for an acoustic wave of frequency ω and wave vector k, we have the following orders:

||ρ 0 ∂ t v ′ || ||∇P ′ || ∼ ω c s k 2 , and ||ρ ′ g|| ||∇P ′ || ∼ g kc 2 s .
(1.12)

Consequently, acoustic waves are not influenced by gravity -and remain in the isotropic, nondispersive regime where they are longitudinal and have the dispersion relation ω = ±c s k -as long as their wavelength is small compared to c 2 s /g. This naturally induces a frequency cutoff, i.e. beneath which acoustic waves are not allowed to propagate. This can be understood with the following intuitive reasoning: as the wave propagates over a wavelength λ during a time δt = 2π/ω, one can estimate that the particles move vertically in a free-fall motion 14 , over a distance δz ≈ gδt 2 /2, so, in the end, the amplitude of the vertical motions owing to gravity and the wavelength compare as

δz λ ≈ πg c s ω . (1.13)
In other words, the vertical motions can be neglected as long as the frequency is large compared to g/c s , which is the nondispersive limit. In the long-wavelength limit (k ∼ g/c 2 s ), gravity becomes important and acoustic waves have a frequency cutoff 15 . Much like the energy bands in condensed matter physics when a discrete symmetry is broken, one can say that reflection-symmetry breaking lifts the degeneracy ω = 0 at the points k = 0, i.e. the point where the positive-frequency band ω + = +c s k and the negative-frequency band ω -= -c s k cross each other.

The critical wavelength 2πc 2 s /g, above which the effect of gravity on the propagation of acoustic waves 16 becomes important, is of order 70 km in the air at room temperature, and about 1400 km in water, therefore the effect of gravity can be important for the atmospheric dynamics, whereas it is hardly relevant for the propagation of sound waves in the ocean 17 . As a side note, the corresponding critical frequencies g/c s are of about ≈ 1 mHz in water and ≈ 5 mHz in the air, at room temperature, so we are talking about acoustic waves that are much lower pitched than the limit of human audition.

In the other limit, the audible sounds are indeed not at all affected by gravity, neither in water, nor in the air.

Remark on the stars: At the surface of the sun, the gravitational acceleration is g = 274 m.s -2 and the speed of sound is about c s = 7 km.s -1 [CEA, 2012]. Therefore the critical length is only about a thousand kilometers, which is much lower than the typical wavelengths considered in the context of heliosismology [START_REF] Christensen-Dalsgaard | The current state of solar modeling[END_REF]Aerts et al., 2010]. For this reason, the propagation of these acoustic waves, called the p-waves, is strongly influenced by gravitational effects. As will be explained in chapter 3, the realm of asteroseismology is thus particularly relevant for the application of the present study, where the combination of gravity, compressibility and rotation will be essential (see chapter 3).

To conclude, we showed that acoustic waves in fluids are mostly nondispersive, longitudinal waves that are not sensitive to the medium's gravity-induced anisotropy for sufficiently small wavelengths. At high wavelengths however, the acoustic spectrum is gapped 18 , and we found g/c s as a characteristic frequency of this gap, in a first approximation. However we have neglected so far another effect of gravity in fluid media, already briefly discussed in section 1.1, which is that the thermodynamic variables of the medium at hydrostatic equilibrium, for instance the density ρ 0 , have a vertical dependence. For example, c s ≈ 340 m.s -1 near the ground, where the air temperature is roughly 20 • C, but it drops to 300 m.s -1 at the top of Mount Everest, where the temperature can reach -50 • C. Thus an acoustic wave propagating vertically sees an anisotropic medium, owing to gravity, which is another effect that we will discussed in the next part. To be more precise, I will show in the next part that gravity induces a background density stratification and thus buoyant motions of the fluid particles in the vertical direction. These vertical motions allow the propagation of low-frequency waves whose spectrum lies in the acoustic-waveband gap.

14 Keep in mind that this is a naive approach to understand when the propagation of acoustic waves becomes sensitive to gravity. Gravity is actually balanced by buoyancy due to the medium's stratification in density, which is neglected here as ρ 0 is taken uniform. However, stratification and buoyancy are the objects of section 1.2.2. 15 As we will see in section 1.4 of this chapter, the real frequency cutoff for acoustic waves also involves a characteristic frequency owing to the medium's vertical stratification, which will be introduced in the next part 1.2.2 of this section. 16 These effects mostly consist in the fact that waves are not perfectly longitudinal, i.e. support transverse motions of the fluid, and the deflection of acoustic waves owing to dispersivity.

17 Actually we will use in 1.2.2 a model that separates the effect of gravity from that of compressibility, i.e. discards acoustic waves from the analysis of the wave dynamics owing to gravity, which is a good approximation for oceanic waves.

18 In other words, the acoustic frequencies have a minimum, below which there is a gap of forbidden frequencies, i.e. a band gap. However, we will see at a later stage that the width of this gap is not equal to g/cs, and includes the effect of density stratification.

Stratification and internal-gravity waves

Throughout this thesis, we use the term stratification to refer to the structure of a fluid medium with a density gradient at equilibrium, in the direction of gravity19 . The fluid is then said to be stratified under the effect of gravity. However we will see that the effect of stratification is different from that of compressibility, as a fluid medium can be stratified even when the fluid itself is nearly incompressible.

As we will explain in the following, stratification leads to low-frequency waves of a very different nature than acoustic waves, namely internal-gravity waves. First, I will present the restoring mechanism at the origin of the low-frequency vertical oscillations of a stratified fluid subjected to gravity, or buoyancy, and derive the expression of the buoyancy frequency N , essential in geophysical fluid dynamics. Then, in order to separate the effect of stratification from that of compressibility, discussed in 1.2.1, I will introduce the dynamics of an incompressible stratified fluid owing to buoyancy only, which leads to the propagation of internal-gravity waves.

The buoyancy frequency

Let us consider now a fluid particle of mass m, initially at height z in the steady fluid with a background density profile ρ 0 (z). The initial equilibrium of this particle of volume V = m/ρ 0 (z) is ensured by the hydrostatic balance, i.e. equation (1.9), but what about the stability of this equilibrium? To answer that question, one must identify the external forces that the fluid particle undergoes when it is vertically moved from its position.

Assume that the particle is adiabatically displaced at height z + δz, 20 whithout affecting the static density and pressure profiles of the background fluid at equilibrium. The particle undergoes its own weight -mg and pressure forces that add up to the buoyant upthrust-weight (or the "Archimedes' force") +g(V + δV )ρ 0 (z + δz), which is the restoring force of the fluid particle (figure 1.5a). One must take the variation of the particle's volume, δV , with the adiabatic displacement, in the case of a compressible fluid (see figure 1.5a). This variation is δV = -(V 2 /m)χ s δP 0 , from definition (1.5) of the fluid's isentropic compressibility χ s , 21 introduced in 1.2.1. The hydrostatic balance (1.9) yields the relation δP 0 = -gρ 0 δz, therefore, by keeping only terms of order 1 in δz, Newton's second law eventually reads as Temperature profile of the Earth's atmosphere [START_REF] Gerber | Assessing and understanding the impact of stratospheric dynamics and variability on the earth system[END_REF].

m δz = g(V + δV )ρ 0 (z + δz) -gV ρ 0 (z) = mg 1 ρ 0 dρ 0 dz + gχ s δz ≡ -N (z) 2 mδz . ( 1 
that N 2 > 0 is called a stably stratified region24 N 2 can be expressed as

N 2 = -g 2 1 gρ 0 dρ 0 dz + χ s = g 2 dρ 0 dP 0 - ∂ρ ∂P S .
(1.15)

In this way, we see that a fluid initially at rest is stably stratified under the condition that the actual compression of the static fluid is higher than its adiabatic compressibility. If the medium is stably stratified, horizontal fluid motions are energetically favoured instead of vertical motions (convection).

In the case of an ideal gas atmosphere, one can derive an explicit expression of N (z) as a function of the vertical temperature profile. As shown in appendix A, an atmospheric layer of ideal gas in which the temperature profile is an increasing function of altitude is stably stratified. This is the case of the stratosphere, located at altitudes between 10 and 45 km (figure 1.5b). Conversely, the troposphere, located between the ground and the stratosphere, has a decreasing temperature profile with altitude and is thus occasionally unstable regarding stratification25 , giving rise to episodes of convection (vertical currents of the fluid particles instead of stable oscillations). However N 2 is positive in general in the atmosphere and the ocean (see figure 1.6). Typical values of N are 10 -2 s -1 in the atmosphere, 10 -3 s -1 in the ocean (see figure 1.6) and between these two values in the sun, although it drops close to the surface [START_REF] Fuller | Angular momentum transport via internal gravity waves in evolving stars[END_REF]. More details for the atmosphere and the ocean can be found in [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], and for the stellar case in [Aerts et al., 2010].

We will see in chapter 3 that the competing effect of compressibility (which does not reflect any symmetry-breaking of the fluid medium) and stratification (which, in contrast, does characterize the breaking of vertical-reflection symmetry) is essential for a certain kind of wave, of topological origin, to emerge. For now, however, the most natural way to introduce the propagation of waves due to the buoyancy is by considering an incompressible stratified fluid medium.

Internal-gravity wave propagation in stratified media As explained in 1.2.1, the presence of gravity induces a low-frequency band gap in which acoustic waves do not exist. Moreover, when looking at adiabatic perturbations of a fluid subjected to vertical gravity, it is not acceptable to take compressibility into account without considering background stratification. Indeed, as can be deduced from expression (1.15), those perturbations would be unstable otherwise. We shall demonstrate here that stable stratification leads to a different kind of wave, called internal-gravity waves, to propagate in this interval of low frequencies.

Contrary to sound waves, compressibility is not necessary for the existence of internal-gravity waves.

In fact, in the ocean, the water density variations are due to three effects which are all very small (see for instance [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], p. 70): compression by pressure, thermal expansion and haline contraction (salinity change), although these last two will be ignored in this thesis. For the first one, we have δρ ≈ δP/c 2 s ≈ ρ 0 gH/c 2 s the typical density variation over a depth H, using the hydrostatic balance approximation. Therefore the absolute density variation owing to pressure is typically δρ/ρ 0 ≈ gH/c 2 s . In the ocean, H is at most of 8 km whereas c 2 s /g ≈ 200 km (density scale height of the ocean), hence the smallness of those variations in the oceanic context: even at the bottom of the ocean where pressure is huge, it is not sufficient to make a significant change in water density. Similarly, density variations owing to dynamical pressure perturbations are also very small as long as the Mach number is small (Ma = ||v||/c s ), which is always the case in large-scale oceanic motions (c s ≈ 1500 m.s -1 ).

We shall therefore begin by considering an incompressible fluid medium 26 , in order to discard high-frequency sound waves and focus on the characteristics of low-frequency internal-gravity waves in liquid media. For the incompressible fluid, the mass continuity equation (1.1) thus simply becomes

∇ • v = 0 .
(1.16)

Following the above comments, we can write ρ(x, t) = ρ 0 + δρ(x, t), as local density variations δρ remain very small compared to the mean density ρ 0 . The density variations can be separated into a static term ρ(x) and a dynamical perturbation ρ ′ (x, t), and of course we assume

|ρ|, |ρ ′ | ≪ ρ 0 , with δρ = ρ + ρ ′ .
(1.17)

These are the basic assumptions of the Boussinesq approximation, sometimes used in atmospheric and mostly in oceanic science: in the absence of compressibility, heat source or diffusion, the flow is mainly driven by buoyancy, which is best addressed using this model. We also write the pressure as P = P 0 (z) + δP (x, t), with P 0 the reference pressure of the medium in hydrostatic balance with respect to the constant mean density profile, as defined by relation (1.9). Neglecting the term δρD t v,27 the Euler equation (1.6) reads as

D t v = -∇p + bê z ,
(1.18) with p = δP/ρ 0 , b = -gδρ/ρ 0 the buoyancy field and D t = ∂ t + v • ∇ the Lagrangian or particle derivative. A proper asymptotic derivation of equation (1.18) can be found in [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] (p. 100).

The basic idea behind the Boussinesq approximation is that the variations of density are only associated to the gravitational term in the momentum equation (1.18), because g is assumed to be large compared to the advection of momentum ||D t v||. This equation indicates that the dynamics of momentum transport in the vertical direction is dominated by buoyancy while the horizontal fluid motions behave in a different way.

Finally, the transport of density can be associated to the conservation of entropy through a thermodynamic equation of state. In our case it simply yields

D t b = 0 . (1.19)
In a more general context one would write the buoyancy b(P, σ, Θ) as a function of pressure P , salinity σ and another thermodynamic variable Θ. Reference [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] discusses the contribution of salinity and heat transfer terms in this conservation equation (it basically amounts to replacing the density by a potential density that includes the contribution of the other variables), but for the purpose of this section we can ignore salinity, and the incompressibility condition corresponds to c s → ∞. In the end equation (1.19) adds up to 

D t b ′ + N 2 w = 0 , ( 1 
ω 2 = N 2 k 2 x k 2 x + k 2 z .
(1.23)

These waves fill a low-frequency band, with -N < ω < N (figure 1.8b), and the frequency has the particular property to depend only on the angle θ between the vertical axis and the wave vector k, as

ω 2 = N 2 sin 2 (θ) , (1.24) with k = k(sin θê x -cos θê z ) (figure 1.8a).
Internal-gravity waves are thus highly dispersive. In particular, the group velocity28 c g = ∂ω/∂k is orthogonal to the wave vector k and thus to the phase velocity c φ = ωk/k 2 . Moreover, since the 2D velocity field is orthogonal to the wave vector, by definition of the stream function, thus the local fluid motions are in the same direction as the group velocity, which is along the wavefronts/perpendicular to the wave vector and phase velocity (figure 1.8a). Consequently, purely horizontal fluid oscillations (w = 0, hence k x = 0) are steady (ω = 0), whereas vertical oscillations (u = 0 and k z = 0) reach the maximal frequency ω = N , as expected from the physical picture described in 1.2.2. Remark: Finally, it is worth mentioning that an important consequence of the internal-gravity waves' dispersion relation (1.24) is the independence between the frequency and the wavelength. The frequency only imposes four possible directions of propagation for the rays 29 (θ, -θ, π -θ and π + θ, see figure 1.8a), thus leading to nonspecular 30 reflections of internal-gravity wave rays at the boundaries, and non-conservation of the wavelength. This leads to continuous spectra of generalized modes even in bounded geometries, for which waves can converge to asymptotic attractors (cf. figure 1.1). These particular modes have been investigated in trapezoidal [START_REF] Maas | Geometric focusing of internal waves[END_REF] or spherical [START_REF] Rieutord | Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum[END_REF] geometries, in the context of geophysical and astrophysical internal-gravity waves, including the effect of rotation. Generally speaking, the essential ingredient for the emergence of these properties are confined geometries. Therefore it will not be the point of this thesis, whose intention is rather to discuss the effects of the underlying abstract geometry of the wave spectra in unbounded media, and show the emergence of topological modes within the bulk, independently of the boundaries. Boundary modes will however be the object of section 3.5 of chapter 3, but always with one unbounded direction.

29 By definition, the ray's direction of propagation is given by the group velocity cg. 30 The usual specular reflection would be when the ray is reflected in a direction which is the reflection of the direction of incidence with respect to the normal of the wall (Snell's law).

SUMMARY: ACOUSTIC AND INTERNAL-GRAVITY WAVES

We have introduced the notions of compressibility and density stratification, which both are essential characteristics of geophysical and astrophysical media. They justify the existence of the following adiabatic oscillations in the fluid medium:

• Acoustic waves, whose main restoring mechanism is compressibility, are longitudinal, nondispersive waves in the high-frequency or, equivalently, short-wavelength limit. At low frequency the effect of gravity, which breaks the vertical-reflection symmetry of the fluid medium, becomes important and the acoustic-wave spectrum is gapped. A particularly important quantity to describe these waves is the celerity of sound c s .

• Internal-gravity waves, whose main restoring mechanism is density stratification, are dispersive and their spectrum lies within the low-frequency gap left below the acousticwave spectrum, bounded by the buoyancy frequency N . a They are very distinct from the acoustic waves, as they are dominated by gravity, cannot reach arbitrarily high frequencies and their direction of propagation is determined by their frequency and not their wave vector. The most important quantity to describe these waves is the buoyancy frequency N . In fluid media, internal-gravity waves can be generated in the ocean by the interaction of a mean flow with bottom topography [START_REF] Nikurashin | The impact of finite-amplitude bottom topography on internal wave generation in the southern ocean[END_REF], for instance, or excited by convection in oceans and stars [START_REF] Lecoanet | Internal gravity wave excitation by turbulent convection[END_REF][START_REF] Anders | Stellar convective penetration: parameterized theory and dynamical simulations[END_REF]. They play an important role in ocean mixing [START_REF] Garrett | Internal tides and ocean mixing[END_REF] and momentum transport in stars [START_REF] Fuller | Angular momentum transport via internal gravity waves in evolving stars[END_REF].

In order to discuss the respective properties of these two types of waves, we have introduced the acoustic waves in compressible media without taking gravity into account (1.2.1), and conversely we have introduced internal-gravity waves for a stratified but incompressible medium (1.2.2).

However, both waves exist in fluid media that both are stratified and compressible (see figure 1.9), and they are responsible for most of the large-scale dynamics of the atmosphere, the ocean, and the pulsations in stars [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]Aerts et al., 2010]. In section 1.4 I will introduce a model that accounts for both compressibility and vertical stratification of fluid media, but first I shall present another key ingredient of geophysical and astrophysical fluid dynamics, namely the rotation.

a Note that this limit is changed in the presence of rotation [START_REF] Gerkema | Near-inertial waves in the ocean: beyond the 'traditional approximation[END_REF]. 

Figure 1.9: General wave spectrum in a compressible and stratified fluid medium (without rotation). In the limit where gravity is not involved in the dynamics (left), a compressible fluid medium supports acoustic waves, described in 1.2.1. If the medium is incompressible but vertically stratified under the effect of gravity (right), acoustic waves are ignored and the medium supports internal-gravity waves, described in 1.2.2. If the medium is compressible and stratified (middle), it supports the propagation of both types of waves at finite frequencies.

1.3 Rotation: the traditional approximation and the shallowwater model

In the previous section 1.2, I introduced the notions of compressibility, acoustic waves, density stratification and internal-gravity waves. However I did not discuss the very important influence of planetary or stellar rotation, which affects the wave dynamics mainly through the Coriolis force. First I will explain why it is an important ingredient for understanding the dynamics of waves and flows in the geophysical and astrophysical contexts, but not to understand waves, say, at the surface of a swimming pool. Then I will introduce a very important model for studying the dynamics of two-dimensional flows that shape the large-scale motions of the atmosphere and oceans, namely the shallow-water model, which is a simple model that can be understood independently of the notions of compressibility and stratification previously introduced. This will bring us to a very important point of this thesis, the spectrum of equatorial waves, which led the way to exploiting the theory of topological insulators in the geophysical context [START_REF] Delplace | Topological origin of equatorial waves[END_REF], and will serve as an example and inspiration throughout the rest of this thesis.

Phenomenology of planetary rotation

The Coriolis force and the Rossby radius of deformation

Looking at the global circulation and wave dynamics in the Earth's oceans and atmosphere, it appears that the propagation properties depend on the latitude, i.e. the angular distance from the equator. However the very existence and definition of an equator relies on planetary rotation, therefore it is clear that the fluid dynamics at geophysical scales is sensitive to planetary rotation. Generally speaking, fluid motions on Earth are regarded from a terrestrial point of view, which means that they occur in a non-inertial frame of reference. Therefore, an object of mass m moving at speed v in a frame with a fixed rotation rate Ω (i.e. of fixed rate and direction) will be affected by virtual inertial forcesin addition to real forces like gravity or friction -, especially the Coriolis force, given by

F Coriolis = -2mΩ × v , (1.25)
which is thus perpendicular to the object's direction of motion and tends to deflect its trajectory. Now this force does not seem to affect, say, the trajectory of a tennis ball falling from one's hand, no more than a person is sensitive to it when walking. Therefore, in order to understand the context in which the influence of planetary rotation is a relevant ingredient of a physical phenomenon, one has to take its length and time scales into account. Indeed, when comparing this force with the variation of kinetic momentum m v of an object or a fluid particle, it turns out that the Coriolis force is negligible for motions with a typical time scale T ≪ Ω -1 , i.e. much smaller than the diurnal period. T can either be a natural time scale of the system 31 or the duration of the experiment itself. In the case of the Foucault pendulum, which will be developed in 2.1, the natural time scale of the system is much smaller than the diurnal period, thus one cannot grasp the influence of the Earth's rotation after a few oscillations, however when the duration of the experiment becomes comparable with the length of a day, the effect of the Coriolis force is visible.

The same analysis can be expressed in terms of the length scales of a flow, by comparing it to the Rossby radius of deformation L d :

"In atmospheric dynamics and physical oceanography, the Rossby radius of deformation is the length scale at which rotational effects become as important as buoyancy or gravity wave effects in the evolution of the flow about some disturbance." (Reference [START_REF] Gill | Atmosphere-ocean dynamics[END_REF], p. 662)

In other words, the influence of rotation becomes comparable with other mechanisms, say the buoyancy or compressibility introduced in the previous section 1.2, if the flow's length scales are comparable with the Rossby radius of deformation. Anticipating some notions that will be introduced in 1.3.3 of the present section, let us consider a wave (oceanic or atmospheric) propagating with a celerity c that depends on the characteristics of the medium, without considering the rotation 32 . Then the Rossby radius of deformation can be defined by L d = c/2Ω, where Ω is the planet's rotation rate. For instance, in a 10 m deep lake at latitude 45 • on Earth, we have c ≈ 10 m.s -1 and L d ≈ 100 km, which is in this case the minimum length scale at which the planet's rotation enters considerably the surface wave dynamics. Therefore it has no influence on surface waves on a lake of reasonable size, and the same goes for the evolution of the vortex generated when emptying a bathtub (see 2.2.4). Conversely, typical values of the Rossby radius of deformation for surface waves in the upper oceanic layer and the lower atmosphere are L d ≈ 20 km and L d ≈ 240 km, respectively, at the same latitude 33 of 45 • (see [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] and appendix B). Planetary rotation thus clearly influences the dynamics of geophysical flows in the ocean and atmosphere, such as the Gulf Stream or the circulation of tidal waves.

Solid rotation VS. differential rotation

In all the work presented in this thesis we always consider fluid motions in a frame of reference, rotating at a fixed rate, around a fixed axis in an absolute inertial or Galilean frame (precession effects, for instance, can be neglected), which is a very good approximation for the Earth and other planets and stars. If we want to consider geophysical waves as perturbations of a steady fluid in this rotating frame, however, it is not obvious that this is the case. Indeed, at the scale of an experiment in the laboratory, say when a tank of water starts to turn at a constant rate, the state of solid-body rotation (i.e. when all the water in the tank is static in the rotating frame) can take a while before being completely set and uniform. In planets, the facts that, on the one hand, oceans and atmosphere occupy a shallow layer on a solid ground and, on the other, that the rate and direction of rotation has been in general 31 For instance the inverse of an intrinsic frequency, such as the buoyancy frequency N for a stratified fluid, or a damping time. 32 For a surface-gravity wave, for instance, we will see in 1.3.3 that c depends on the gravitational acceleration g and the depth H, or, alternatively, on the buoyancy frequency N (see appendix B). 33 Here we anticipate that the effective influence of rotation and the Coriolis force on the surface wave dynamics depends on the latitude, and we will explain why in the next part 1.3.2.

very stable for billions of years, make this solid-body rotation a reality. On the Earth for instance, say near the equator, the local speed of the terrestrial frame is RΩ ≈ 460 m.s -1 (R being the radius of the Earth), therefore fluid motions at speed much lower than this can be indeed considered as small perturbations around a state of solid-body rotation. In stellar media, in contrast, fluid layers are very large (comparable to the stellar radius) thus solid-body rotation occurs only at a local level.

The rotation rate observed at the surface of the Sun, for instance, depends on the latitude [Aerts et al., 2010], and probably the rotation rate of interior layers also depends on the distance from the star's center. This state where the background solid-body rotation rate depends on the location is called differential rotation.

Why is the centrifugal force often neglected in geophysical fluid dynamics?

In addition to the Coriolis force one must include the centrifugal force of inertia, which is perpendicular and points outwards from the axis of rotation. For a fluid particle of mass m in the frame rotating with a fixed rate Ω, located at position r (the origin being taken at a fixed point on the axis of rotation, say the center of the planet or star), this virtual force can be expressed as

F Centrifugal = m Ω 2 r -(Ω • r)Ω .
(1.26)

Now if we denote by Φ the gravitational potential (i.e. g = -∇Φ), adding the centrifugal effect in the rotating frame is just equivalent to changing the potential as

Φ(r) → Φ(r) - 1 2 Ω 2 r 2 cos 2 ϑ , (1.27)
where ϑ is the latitude of the fluid particle. By recasting the expression of the centrifugal force into the potential forces affecting the fluid particle, one sees immediately that the only effect of this inertial force is to slightly change the direction and intensity of gravity. At the Earth's surface, the correction for the gravitational acceleration g = ||g|| is dominated by Ω 2 R ≈ 0.03 m.s -2 , and the maximal angular correction (i.e. the angle between the local vertical and the sum of the particle's weight and centrifugal force) by Ω 2 R/2g ≈ 0.1°. Therefore the centrifugal effect will simply be ignored, or implicitly recast into the acceleration of gravity, in most geophysical models. The principal manifestation of rotation in those models will thus appear through the Coriolis force. In particular the particle derivative in the momentum's equation of conservation must be replaced by

D t v → D t v + 2Ω × v .
(1.28)

The shallow-water model and the traditional approximation

In this part I will introduce the shallow-water equations, a two-dimensional model for surface waves that will lead to the derivation of important properties of geophysical waves in rotating planetary oceans and atmospheres [START_REF] Zeitlin | Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models[END_REF]. It was used by Kelvin in 1879 [START_REF] Thomson | 1. on gravitational oscillations of rotating water[END_REF] to study the spectrum of surface waves, which will be discussed in 1.3.3. However, its version in spherical coordinates, i.e. on the whole spherical planet instead of the local tangent plane used by Kelvin (cf. the following remark), was originally introduced by Laplace in 1775 to address the problem of the largescale dynamical response of the oceans to the tidal forces generated by the Moon34 . The basic idea of this model is to discard the vertical space dimension under the hypothesis that fluid motions in this direction are negligible (approximate hydrostatic balance in the vertical direction).

Important remark: As explained in the first section 1.1, in all of the present thesis (except the discussion on stellar modes in section 3.6), we consider local Cartesian geometries (see figure 1.10), which is indicated by the use of the coordinate system (x, y, z). 35 In other words, we assume that the scales involved in geophysical wave dynamics are small compared to the radius of the planet, and thus that the propagation occurs at a local level, at which the curvature of the planet can be neglected. Since the ocean and atmosphere are shallow layers of fluid on the Earth (cf. section 1.1), they are therefore natural realizations of the shallow-water model that will be presented here, and at the same time the vertical scales involved are much smaller than the radius of the Earth. Now a criticism that naturally comes to mind is that of the horizontal scales, which must be small compared to the radius of the Earth as well. We will see in 1.3.4 that a minimal way to take the curvature into account while keeping a Cartesian geometry is simply by adding a meridional dependence to the projections of the rotation vector onto the local Cartesian axes (figure 1.10). Most of the studies in geophysical fluid dynamics use a local Cartesian geometry [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Zeitlin | Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models[END_REF], however there have been many works as well in spherical geometries, especially for the shallow-water model [START_REF] Longuet-Higgins | The eigenfunctions of laplace's tidal equation over a sphere[END_REF][START_REF] Paldor | Shallow water waves on the rotating Earth[END_REF].

Let us derive this model in the most basic realization of a shallow layer of fluid of constant density ρ 0 .

Because we assume the maximal depth H 0 of the layer to be much smaller than the smallest horizontal scale considered (L, for instance the horizontal oscillation's wavelength), fluid motions in such media are naturally dominated by the horizontal dynamics. Indeed, the mass continuity equation (1.16) imposes

W ≈ U H 0 L = εU ≪ U , (1.29)
where W is the order of magnitude of the vertical velocity field and U of the horizontal component.

At leading order we can therefore neglect the vertical dependence of the horizontal components of the velocity field u, v (but not of w, which will in any case disappear from the system of equations). For an inviscid medium the kinematic condition at the bottom (assumed rigid and impenetrable) of the layer is

v • n = 0 , (1.30)
where n is the unit vector normal to the ground (n = êz for a flat bottom, i.e. without topography).

The kinematic condition on top of the layer simply states that fluid particles at the surface must remain there, and therefore that the component of the velocity field normal to the surface equals that of the surface itself, whose equation is η(x, y, t) -z = 0 , (1.31) η being the local elevation of the water surface with respect to the reference z = 0 defined in the case of a flat surface at rest (therefore the bottom is located at z = -H(x, y), by definition). In the absence of surface stress from wind or pressure variations, the free-surface dynamical condition is simply that the surface pressure equals the external pressure P atm .36 Defining again p = (P -P 0 )/ρ 0 (with P 0 = P atm -ρ 0 gz at equilibrium), these two conditions can be respectively written as (1.32b) and are valid at the surface of the fluid layer. Since vertical dependence can be discarded, the pressure perturbation p is given by relation (1.32b) in the approximately two-dimensional fluid and can be interpreted as an hydrostatic variation owing to the elevation of the above column of fluid at (x, y).

w = D t η = ∂ t η + u∂ x η + v∂ y η , (1.32a) p = gη ,
The horizontal momentum equation of conservation can thus be written as

D t v + 2Ω × v = -g∇η , (1.33)
which is the projection of Euler's equation in the horizontal plane.

As for the mass continuity equation, by integrating it in the z direction, i.e. between z = -H(x, y)

and z = η(x, y, t), and using the surface kinematic condition (1.32a), we get

w(z = η) -w(z = -H) = D t η -w(z = -H) ≈ -h(∂ x u + ∂ y v) , (1.34) 
with h = H + η the local height of the fluid layer. Moreover, the bottom kinematic conditions can be written

0 = v • ∇ (z + H(x, y)) = w(-H) + v • ∇H . (1.35)
Altogether, equations (1.34) and (1.35) yield the shallow-water version of the mass continuity equation,

∂ t h + ∇ • (hv) = D t h + h∇ • v = 0 , (1.36)
where the velocity field v = uê x + vê y and the gradient ∇ = ∂ x êx + ∂ y êy are now two-dimensional fields of space variables (x, y) and time t. Equations (1.33) and (1.36) constitute the shallow-water system of equations for a shallow layer of fluid between a rigid impenetrable bottom and a free surface.

What about the vertical component of the Coriolis force?

There is however a subtlety when considering the different components of the equation of momentum

(1.33). For a perfectly two-dimensional (w = 0) arbitrary flow, the Coriolis force is contained in the horizontal plane if, and only if, the rotation vector Ω is along the vertical direction z. This is true on a plane rotating around its normal axis, but on a planetary oceanic or atmospheric layer it is only exactly true at the poles, and nowhere else. In particular, it is drastically false at the equator! Let us fix the local y axis in the meridional direction, pointing toward the north pole, and the x axis in the zonal direction, from west to east (figure 1.10a). The rotation rate multiplied 2 can be decomposed as 2Ω = 2Ω cos (ϑ)ê y + 2Ω sin (ϑ)ê z ≡ f nt êy + f êz .

(1.37)

In expression (1.37), ϑ is the latitude and we have introduced the projections f and f nt of 2Ω, both functions of the latitude thus of the local meridional coordinate y. Therefore the Coriolis term in the left-hand side of equation (1.33) can be decomposed as

2Ω × v = (f nt w -f v)ê x + f uê y -f nt uê z . (1.38)
For an incompressible shallow layer of fluid, the term f nt w in the x component of expression (1.38) is negligible, but there is a priori no reason to discard the vertical term -f nt u. Yet this was implicitly done when we assumed the hydrostatic balance in the vertical direction, i.e. the surface condition

(1.32b). The usual argument to justify it is that this term is small compared to the acceleration of gravity that sets the hydrostatic balance, and thus can be absorbed in this balance equation without changing the horizontal dynamics. One can indeed check that, at the surface of the Earth, the vertical Coriolis acceleration -f nt u is comparable to g for zonal velocities u of order g/2Ω ≈ 67 × 10 3 m.s -1 , which is about a thousand times the wind speed of tornadoes! This is why the vertical component of the Coriolis force is almost always neglected in the dynamics of shallow-water systems, and by extension the whole f nt contribution, i.e. the projection of 2Ω on the horizontal tangent plane. In contrast, the horizontal component of the Coriolis force is an important ingredient of the shallow-water dynamics at the planetary scale, especially because there are surface propagation phenomena whose typical time scale is comparable or larger than f -1 (i.e. about a day), as explained in the discussion of 1.3.1.

The only consideration of the rotation rate's projection on the local vertical axis is referred to as the traditional approximation [START_REF] Eckart | Hydrodynamics of oceans and atmospheres[END_REF] and is constantly used throughout the literature on surface wave dynamics in the ocean and atmosphere (with notable exceptions such as [START_REF] Tort | Consistent shallow-water equations on the rotating sphere with complete coriolis force and topography[END_REF][START_REF] Gerkema | Near-inertial waves in the ocean: beyond the 'traditional approximation[END_REF][START_REF] Gerkema | Geophysical and astrophysical fluid dynamics beyond the traditional approximation[END_REF]). We will therefore call f the (traditional) Coriolis parameter (also called the inertial frequency), in contrast with f nt , the nontraditional Coriolis parameter, whose effect is one of the main concerns of chapter 3 of this thesis. Note that f is positive in the northern hemisphere and negative in the southern hemisphere, and vanishes at the equator.

Final form of the shallow-water equations (1.33)-(1.36)

In a nutshell, the shallow-water system of equations for an incompressible shallow layer of fluid is

D t u = -g∂ x η + f v , (1.39a) D t v = -g∂ y η -f u , (1.39b) D t h = -h (∂ x u + ∂ y v) , (1.39c) 
with the 2D Lagrangian derivative D t = ∂ t + u∂ x + v∂ y . In particular, the shallow-water system (1.39) linearized around a state of rest37 gives

∂ t u ′ = -g∂ x η ′ + f v ′ , ∂ t v ′ = -g∂ y η ′ -f u ′ , ∂ t η ′ = -∂ x (Hu ′ ) -∂ y (Hv ′ ) .
(1.40)

(1.41)

(1.42)

The set of equations (1.40)-(1.41)-(1.42) constitutes the linearized shallow-water system on the shallow ocean of varying mean depth H, including Coriolis effects through f . They describe the free modes of Laplace's tidal equations on a local tangent plane [START_REF] Thomson | 1. on gravitational oscillations of rotating water[END_REF]. As simple as it may look, the shallow-water model owes its importance in planetary fluid dynamics to the fact that its validity goes beyond the very particular case of quasi-two-dimensional flows in a shallow layer. Indeed we saw that the shallow approximation is just a good argument to justify that the vertical velocity in the fluid is very small compared to the horizontal ones, which is generally the case when considering large-scale motions in the ocean or the atmosphere. Moreover, it can be obtained by projecting the equations of the more general Boussinesq model (i.e. for a three-dimensional fluid with a vertically stratified structure), introduced in 1.2.2, onto its vertical modes. This is shown in [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] and appendix B.

SUMMARY FOR THE ROTATING SHALLOW-WATER MODEL

The shallow-water model applies to a variety of situations, beyond the case of a quasi-twodimensional flow in a shallow layer a . It is particularly adapted to address 2D flows in the atmosphere or the ocean, as long as the vertical motions are negligible in comparison with the horizontal ones. In this case, the traditional approximation also applies, which means that planetary rotation is only taken into account through the horizontal projection of the Coriolis force, while the influence of rotation on the vertical motions is negligible. In three-dimensional systems however, if there is no argument to neglect the vertical velocity w with respect to the horizontal components u and v, neither the traditional approximation nor the shallow-water model are valid. This is especially the case in stellar interiors, where the radial motions can be as important as the azimuthal ones, since stellar media are not shallow layers of fluid on a solid planet. This situation will be considered at a later stage.

a In other cases, the elevation η must be replaced with the pressure (see appendix B) or the general notion of geopotential height.

Symmetries of the shallow-water model

As explained in the first section 1.1 of this chapter, the discrete symmetries of geophysical flows are essential for understanding the spectral properties of geophysical wave propagation that are addressed in this thesis. Hopefully, the shallow-water model is a good starting point as its symmetries can easily be identified. Let us consider the set of equations (1.39) introduced above and find which discrete transformations leave the system invariant and under which conditions.

• Inversion symmetry38 transforms x, y, u, v into their opposites, and leaves t, η unchanged. This transformation leaves the Euler equations (1.39a) and (1.39b) unchanged, however equation (1.39c) is modified if H varies, because h = H(x, y) + η. This is more explicit in the linearized version (1.42). The same goes if f varies with y. However, if H and f are constant, the shallow-water system is invariant under inversion symmetry.

• Reflection symmetries transform either (x, u) → (-x, -u) or (y, v) → (-y, -v) (or any other horizontal coordinate), and leave t, η unchanged. These symmetries are obviously broken if H varies in the corresponding direction (or if f varies with y, then the y-reflection symmetry is broken), as the inversion symmetry. However, even if H is constant, reflection symmetries are broken by rotation, i.e. in case f ̸ = 0, as can be seen in the Euler equations. Indeed, The planet turns in the other direction when looking at it in a mirror (as depicted in figure 1.3).

• Time-reversal symmetry transforms (t, u, v) → (-t, -u, -v) and leaves η and the spatial coordinates x, y unchanged. This symmetry is broken by f ̸ = 0, which is an essential remark for the further analyses of this thesis.

• If H and f are constant, the composition of time-reversal symmetry with any reflection symmetry leaves the shallow-water system unchanged, precisely because the image of a rotating planet in a mirror is the same planet rotating backwards (figure 1.3).

These symmetries are summarized in figure 1.11, in the case of a constant depth H, and they constrain those of the spectrum of shallow-water waves, which will be discussed in the following parts. (1.43) where c = √ gH is the well-known celerity of shallow-water gravity waves and Ψ = u v η T is the vector of the Fourier components for the rescaled fields 40 , also called the polarization relations, which will become central at a later stage in this thesis.
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Remark: Beyond the restriction of the linearized shallow-water equations 41 (1.40)-(1.41)-(1.42) to plane-wave solutions, the matrix of equation (1.43) is obtained from the original set of partial differential equations through a general operation that will be introduced in 2.4.1.

The dispersion relation of the bulk shallow-water waves on the f -plane is given by the roots of the characteristic polynomial of the matrix of expression (1.43), i.e.

ω 3 -(f 2 + c 2 k 2 x + c 2 k 2 y )ω = 0 .
(1.44)

The dispersion relation (1.44) has three solutions, describing three bands (figure 1.13) in the wavevector (and f parameter) space:

• The solution ω 0 = 0 corresponds to the geostrophic or vortical surface modes, for which the 39 The fields are proportional to e i(kxx+ky y-ωt) as usual. 40 From now on, whenever we deal with the linearized shallow-water equations, we use the rescaled fields √ Hu ′ , √ Hv ′ and √ gη ′ , renoted respectively u, v and η to simplify the expressions. This is done in order to have a Hermitian matrix (1.43), which will greatly simplify the calculations is the context of the present thesis. Moreover, the notation T stands for the matrix transposition. 41 In this case with a constant depth H and the dimensionless fields.

horizontal pressure gradient is everywhere balanced by the Coriolis force42 . These solutions thus consist in steady flows that follow the isobar lines (i.e. iso-η). Since f is positive in the northern hemisphere and negative in the southern one, those geostrophic flows turn clockwise around the depressions (points of minimal pressure) and counter-clockwise around the anticyclones (points of maximal pressure) in the northern hemisphere (see figure 1.12), and the opposite in the southern hemisphere.

A D D f > 0

Figure 1.12: Geostrophic fluid motions are steady flows (time-independent), for which the Coriolis force is thus exactly compensated by the gradient pressure, i.e. -g∇η -f êz × v = 0, from the Euler equations (1.40) and (1.41). In consequence, the stream lines correspond to the isobar lines, and thus geostrophic flows turn around the anticyclones A (points of maximal pressure) and depressions D (points of minimal pressure), in a direction that is fixed by the sign of f , i.e. that is different in the two hemispheres.

• The solutions ω ±1 = ± f 2 + c 2 k 2 x + c 2 k 2 y are the Poincaré or inertia-gravity waves. In the absence of rotation, they are just the nondispersive surface-gravity waves of group and phase velocity equal to c, but rotation makes them slightly dispersive. At very low wavelength they are equivalent to the nondispersive gravity waves, however at high wavelengths the influence of planetary rotation becomes important and the inertia-gravity waveband flattens in the vicinity of k = 0, converging to the inertial frequency f (figure 1.13). The length scale that separates these two regimes is naturally the Rossby radius of deformation, here L d = c/f = √ gH/f discussed in 1.3.1 with some typical values at latitude 45 If time-reversal symmetry is preserved (f = 0, which corresponds to a non-rotating planet or the f -plane approximation exactly at the equator), gravity waves are nondispersive and their spectrum is gapless, i.e. they can reach arbitrarily low frequencies. In terms of spectral properties, there is a degeneracy point between the three bands at k = 0. Conversely, time-reversal-symmetry breaking (f ̸ = 0) induces a frequency gap and gravity waves can only exist for frequencies higher than the inertial frequency |f |. In other words, the degeneracy point is lifted by time-reversal-symmetry breaking. Now that the spectrum of shallow-water plane waves on the f -plane has been introduced, it is natural to study the spectrum of a dual problem, namely the propagation of shallow-water waves with varying f , which is natural since f actually depends on the latitude. In the next part I will show that both problems are related, and particular modes at the equator are reminiscent of the degeneracy point of the f -plane spectrum with f = 0.

• . ω k x k y ω k x k y | f | f ≠ 0 f = 0
1.3.4 Shallow-water waves trapped at the equator: Matsuno's spectrum

The vicinity of the equator is a particular zone regarding the validity of the rotating shallow-water model. Indeed the traditional Coriolis parameter f vanishes there and the f -plane model is locally equivalent to the non-rotating case. To be more precise, the presence of rotation breaks time-reversal symmetry of the fluid's dynamics (because Euler's momentum equation is not unchanged under the transformation (t, v) → (-t, -v)), but within the shallow-water and traditional approximations, this time-reversal symmetry is recovered in equations (1.39) when f = 0, which occurs at the equator. Nevertheless, it is not realistic to just use the shallow-water system (1.39) with f = 0 near the equator, in the sense that the solution's spatial extension around the equator may reach latitudes at which f is non-zero. One must therefore include the spatial variations of f with latitude ϑ at first order of the Taylor expansions of y and f (see figure 1.14):

y = ϑR , and f (y) = 2Ω sin (ϑ) ≈ 2Ω y R = βy , (1.45) 
R being the planetary radius. We introduced the meridional gradient of f as β, and around the equator the Coriolis parameter shall be replaced by this linear approximation within the shallow-water equations. This is the β-plane approximation, which accounts for the sphericity of the actual 2D flow by introducing a term of differential rotation43 in the Cartesian planar model. On Earth, β is approximately 2.3×10 -11 m -1 s -1 . As simple as it may seem, this linear approximation has provided some deep insights in physical oceanography and atmospheric science, and helped for instance to understand the western intensification of wind-driven currents [START_REF] Stommel | The westward intensification of wind-driven ocean currents[END_REF][START_REF] Munk | The wind-driven circulation in ocean basins of various shapes[END_REF] and the existence of Rossby waves [START_REF] Rossby | Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action[END_REF] (that will be introduced at a later stage in this part), one of the most important propagation phenomena in the atmosphere and oceans.
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.14: The β-plane approximation. In the vicinity of the equator, one can assume f (y) = βy, as long as y remains much smaller than the radius of the planet.

Let us now consider the linearized shallow-water equations (1.40)-(1.41)-(1.42) with the rescaled perturbation fields44 u, v and η:

∂ t u = -c∂ x η + f v , (1.46a) ∂ t v = -c∂ y η -f u , (1.46b) ∂ t η = -c∂ x u -c∂ y v .
(1.46c)

After combining equations (1.46), we obtain three third-order partial differential equations:

∂ ttt u + f 2 ∂ t u -c 2 ∂ t ∆u+βc 2 ∂ x u = -2c 2 β∂ y v , ∂ ttt v + f 2 ∂ t v -c 2 ∂ t ∆v-βc 2 ∂ x v = 0 , ∂ ttt η + f 2 ∂ t η -c 2 ∂ t ∆η+βc 2 ∂ x η = 2cβf v , (1.47) 
(1.48)

(1.49)

with the two-dimensional Laplacian operator ∆ = ∂ xx + ∂ yy . An important remark should be made about these equations: in the f -plane approximation (β = 0), the three scalar equations (1.47), (1.48)

and (1.49) are identical and decoupled, and they all admit plane-wave solutions whose frequency and wave vector are related through the bulk dispersion relation (1.44). Conversely, the inhomogeneity induced by β yields the coupling terms on the right-hand sides of equations (1.47) and (1.49), and a difference between the respective left-hand sides of the three equations. This means that the structure of the wave equation on the β-plane is vectorial, owing to the coupling between the different fields, whereas the f -plane waves can be described with a scalar theory. This remark will be the motivation of the entire discussion of chapter 4.

Because the system of equations (1.47)-(1.48)-(1.49) is invariant under translation in time t and in the zonal direction x (the parameter f only depends on y), a basis of solutions is given, as always, by projecting in Fourier space, i.e. with u v η = u(y) v(y) η(y) e i(kxx-ωt) . Equation (1.48) for the meridional velocity thus becomes

- d 2 v dy 2 + β c 2 y 2 v = ω 2 c 2 -k 2 x - βk x ω v , (1.50)
which is just the stationary Schrödinger equation of a one-dimensional harmonic oscillator45 of intrinsic frequency β/c.

General solutions

The non-zero solutions of equation (1.50) are known to be (for integers n ⩾ 0)

v(y) = V 0 h n β c y , with h n (Y ) = 1 √ 2 n n! H n (Y )e -Y 2 /2 (1.51)
the eigenfunctions of the 1D harmonic oscillator (the functions H n are the Hermite polynomials, and the eigenfunctions h n are shown in figure 1.15b), Y = y β/c the dimensionless meridional coordinate and V 0 an arbitrary multiplicative constant. The corresponding dispersion relation is

ω 2 c 2 -k 2 x - βk x ω = β c (2n + 1) , (1.52)
which has three roots for a given (k x , n). The dispersion relation (1.52) was obtained in 1966 by [START_REF] Matsuno | Quasi-geostrophic motions in the equatorial area[END_REF], and is depicted in figure 1.15a. An important feature of geofluid waves is that, since the fields are real, we could have chosen either

(∂ t , ∂ x ) = (-iω, ik x ) or (∂ t , ∂ x ) = (iω, -ik x )
for the planewave mode convention. This means that for a solution ω(k x ) there is a symmetric solution -ω(-k x ). In this context, this symmetry of the spectrum just reflects the equivalence between positive and negative frequencies for the real fields 46 .

Combining equations (1.47) and (1.49) 47 , and after a few calculations, we find

u(y) = i βc 2 V 0 √ n + 1 ω -ck x h n+1 (Y ) + √ n ω + ck x h n-1 (Y ) , (1.53a) η(y) = i βc 2 V 0 √ n + 1 ω -ck x h n+1 (Y ) - √ n ω + ck x h n-1 (Y ) , (1.53b) 
which are valid expressions for n ⩾ 1 (we will return to the case n = 0 right after this). Note that n is fixed in expressions (1.53) but ω can be either of the solutions of the polynomial equation (1.52), depending on the nature of the wave.

The solutions given by the equatorial modes (1.51) propagate in the zonal direction and are trapped in the meridional direction. To be more precise, the length

L eq = c β (1.54)
is the typical extension of these modes across the equator, called the equatorial radius of deformation [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] 48 . It is therefore acceptable to consider the (x, y) plane unbounded, provided |k x | -1 and L eq are small compared to the radius of the Earth R. For the first oceanic and atmospheric baroclinic modes (cf. [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] (p. 304) and appendix B) we have L eq ≈ 300 km and L eq ≈ 1000 km, respectively. In consequence, the β-plane approximation is better suited for the first baroclinic mode in the equatorial ocean than for the atmospheric one.

The dispersion relation (1.52) is, in a sense, the discrete version of the bulk (i.e. with constant 46 In condensed matter systems, the equivalent symmetry E(k) = -E(-k) of the energy wavebands of a crystal's electron (setting the Fermi level at E F = 0), for instance, is called the particle-hole symmetry, which is anti-unitary. The same waveband symmetry can be achieved with other symmetries -like the composition of chirality and inversion symmetries, which is a unitary transformation -but the correct equivalent is indeed this particle-hole symmetry, because it is just the complex conjugation of the fields (i.e. i → -i in Fourier space, rather than ω → -ω and kx → -kx), which is anti-unitary. For the real fluid fields, this symmetry is just a consequence of the arbitrariness of the choice of convention for the Fourier transform, which is either e i(kxx-ωt) or e i(ωt-kxx) .

47 More precisely, one can introduce the fields u + η and u -η, and obtain expressions (1.53) by combining equations (1.47) and (1.49), as done for instance in [START_REF] Zeitlin | Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models[END_REF].

48 The Rossby radius of deformation is usually defined as L d = c/f , which does not make sense at the equator, where f = 0. The equatorial radius of deformation is thus a convenient alternative to it. f ) dispersion relation of shallow-water waves in a non-rotating frame, in the small wavelength limit k x → ±∞. This part 49 of the spectrum of shallow-water waves on the equatorial β-plane (see figures 1.13 and 1.15) clearly reflects the bulk spectrum derived in 1.3.2 for shallow-water waves on the fplane, with √ 2n + 1/L eq appearing as a discrete equivalent of the meridional wave vector in the limit |k x |, n → ∞ and β → 0, which describes a continuum in this limit. Here one of the main differences with the f -plane spectrum is that there are no purely steady waves, instead the geostrophic band is deformed into low-frequency waves called Rossby or planetary waves (figure 1.15). However this spectrum is in between two very distinct situations of the f -plane model, which is on the one side the rotating model with f ̸ = 0 (which breaks time-reversal symmetry and has a frequency band gap for |ω| < |f |) and the non-rotating case with f = 0 (which has no time-reversal-symmetry breaking and no gap in frequency) on the other, because f (y) vanishes at the equator. In this intermediate situation there seems to be a finite frequency gap 50 of order √ βc for almost every modes except two, whose branches cross this gap with a positive slope (see figure 1.15). These modes correspond to particular solutions of equations (1.47)-(1.48)-(1.49).
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Particular solutions

• A first limiting case is the mode n = 0. In that particular case, the dispersion relation (1.52) 49 The case n = 0 and v = 0 have not been included yet. 50 The gap between the lowest inertia-gravity mode (minimum of the dispersion relation (1.52) for the inertia-gravity mode n = 1) and the highest Rossby mode (maximum of the dispersion relation (1.52) for the Rossby mode n = 1) corresponds to the equatorial waves whose period is between 56h and 135h, for the first baroclinic mode in the atmosphere, or between 200h and 480h, for the first baroclinic mode in the ocean (cf. appendix B): the only waves in these ranges are eastward-propagating Yanai and Kelvin waves, as shown in the following.

factorizes and we have v(y) = V 0 e -y 2 /2L 2 eq , (1.55a)

u(y) = η(y) = V 0 iβy e -y 2 /2L 2 eq ω -ck x , (1.55b) ω c + k x ω c -k x - β ω = 0 . (1.55c)
By replacing in equations (1.46), the solution ω = -ck x of equation (1.55c) turns out to give a spurious solution [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] which diverges as Y → ±∞, which is acceptable only if there are boundaries in the vicinity of the equator (on both sides, typically within a range of latitudes that cannot exceed the equatorial radius of deformation: this would be an equatorial channel) but not in the unbounded equatorial β-plane, as regards the approximations discussed earlier. The localized solution (1.55a) and (1.55b) on the unbounded plane thus corresponds to

ω c -k x - β ω = 0 , (1.56)
which can be solved exactly, yielding the dispersion relation

ω = ck x 2 ± c 2 k 2 x 4 + βc .
(1.57)

These are called the Yanai waves, represented in figure 1.16. Let us consider their positivefrequency branch51 . The two asymptotic limits for this branch read

ω ∼ ck x when k x → +∞ , (1.58a) ω ∼ - β k x when k x → -∞ , (1.58b) 
which is why they are also called mixed Rossby-gravity modes, as they behave as Rossby waves in one asymptotic limit and gravity waves in the other (see the spectrum in figure 1.15a): in other words, they have a hybrid behavior. One can check that their group velocity c g = ∂ω/∂k x is strictly positive, so they only propagate eastward.

• The other particular solution of the equatorial β-plane shallow-water equations (1.46) is a purely zonal flow (v = 0). This solution must satisfy ω = ±ck x and u = ±η, out of which the only physical solution for the unbounded plane is

v(y) = 0 , (1.59a) u(y) = η(y) = U 0 e -y 2 /2L 2 eq , (1.59b) 
with ω = ck x .

(1.59c)

As n = 0 is the lowest eigenstate of the 1D harmonic oscillator, we can formally write h -1 = 0, and since in expression (1.59) we have η -u = 0 and η + u ∝ h 1 , we can formally say that this solution is the mode "n = -1". These are nondispersive modes called the equatorial Kelvin waves, whose spectral behavior is reminiscent of gravity waves in the non-rotating case52 (see figure 1.16). Just as the Yanai modes, the group velocity of the equatorial Kelvin waves is strictly positive, so they propagate eastward along the equator.

Remark: These are similar to the coastal Kelvin waves, predicted in the f -plane shallow-water model in the presence of an edge (shore or coast, see for instance [START_REF] Thomson | 1. on gravitational oscillations of rotating water[END_REF][START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] 2017]), which are nondispersive 53 and longitudinal 54 as well. However the equatorial Kelvin wave is not a boundary wave, as its existence is independent of that of an edge 55 , unlike the coastal Kelvin waves (see figure 1.17). The relation and difference between the coastal and equatorial Kelvin waves will be discussed in 3.5.1.

When k x varies from -∞ to +∞, two modes are gained by the positive-frequency (inertia-gravity) waveband. It corresponds to modes that transit from one waveband to another. This is called a spectral flow. In section 2.4, we will explain the topological origin of this spectral flow. One of the main goal of this thesis will be to describe such spectral flows in different models.

The Yanai mode and the equatorial Kelvin mode are the only two of the Mastuno spectrum that have two particular properties, possessed by neither inertia-gravity waves, nor Rossby waves: first of all they are undirectional, i.e. they only propagate eastward. Second, their respective frequency branches cross a frequency gap that separates inertia-gravity waves from Rossby waves. They are thus the only two modes allowed to propagate in this range of frequencies. Combined, these properties constrain for instance the wave packets in the frequency gap to propagate exclusively eastward, thus forbidding westward backscattering (i.e. elastic diffusion), even in the presence of an obstacle (see figure 1.18 and the Supplementary Material of [START_REF] Delplace | Topological origin of equatorial waves[END_REF]) such as an island in the equatorial Pacific ocean, for instance. The robust unidirectionality of these particular equatorial waves is corroborated by their involvement in tropical phenomena such as the El Niño Southern Oscillation (ENSO) [Delplace et al., 53 Their frequency satisfies ω = ±ckx, where x is the direction of the coast or shore (edge). They are localized and propagate along the edge, which is on their right side in the northern hemisphere, or on the left in the southern hemisphere, because of the sign of f , and thus, of the Coriolis force (see figure 1.17). 54 The transverse component of the velocity, i.e. in the direction perpendicular to the edge, is zero, which reflects the impenetrability of the edge [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF]. 55 We assumed the plane to be unbounded throughout this analysis. In a simplified picture, the resulting Coriolis force has the particles moving circularly in the bulk fluid, clockwise in the northern hemisphere and counterclockwise in the southern hemisphere. In the presence of an impenetrable boundary, the fluid particles move along with the boundary on the right in the northern hemisphere, and on the left in the southern hemisphere, which is a naive view of the coastal Kelvin waves. Across the equator, the Coriolis force changes sign and thus has the fluid particles oscillating around it and globally moving eastward only, which is a naive but insightful vision of the equatorial Yanai and Kelvin waves. c. In that sense, the effect of the Coriolis force on two-dimensional fluid motions can be viewed as the effect of a transverse magnetic on the electrons of a 2D metal: in the bulk, the electrons move in circular Cyclotron orbits owing to the Lorentz force (this is a classical picture), but at the edges they can propagate in one direction, creating a finite unidirectional current along each edge of the metal, similarly to the coastal Kelvin waves. In a semi-classical picture, these edge motions of the electrons are called the skipping orbits [START_REF] Montambaux | Semiclassical quantization of skipping orbits[END_REF]. Similarly, the eastward equatorial motion resembles the snake orbits described by electrons in a 2D material with a sharp step of transverse magnetic field [START_REF] Davies | Skipping and snake orbits of electrons: singularities and catastrophes[END_REF].

2017; [START_REF] Wheeler | Tropical Meteorology: Equatorial Waves[END_REF][START_REF] Zeitlin | Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models[END_REF].

These properties of the equatorial Kelvin and Yanai modes are akin to those of unidirectional conducting states of topological insulators, as mentioned in the introduction of this thesis. However we shall be more precise before endowing the Kelvin and Yanai waves with the designation of "topological modes". Consider for instance the systems of [START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF] or [START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF],

represented respectively on figures 4f and 5g in the introduction of the thesis. In these two systems, time-reversal symmetry is broken by an azimuthal mean flow in each ring of the lattice. In the first example, the mean flow induces a Doppler bias in the propagation of acoustic waves in the waveguides, whereas in the second it is a spontaneously flowing active liquid that produces the same effect on sound modes. Moreover, if the lattice is divided in two parts in each of which the bias is reversed56 , some quantized unidirectional modes propagate at the interface between the two parts, independently of the form of the interface or the obstacles. For the equatorial shallow-water model, the exact same thing happens: in the northern hemisphere, time-reversal symmetry is broken by f > 0, and by f < 0 in the southern one. In this case the equator plays the role of a topological interface, across which the bias for time-reversal breaking is reversed, and thus supporting what can be qualified as interface modes of topological origin. Now inertia-gravity waves and Rossby waves are located at the equator as well, which is the consequence of the β-plane approximation. Yet Kelvin and Yanai waves definitely seem to occupy a particular place in the spectrum of equatorial waves, and their topological character is not particularly characterized by their localization, but rather by their unique spectral properties: they are unidirectional and transit through the frequency gap, between low-frequency and high-frequency wavebands. There still is a question to answer: what is the underlying topological property of the equatorial shallow-water model that explains the presence of these +2 modes transiting through the gap? The answer will be given in the next chapter.

SUMMARY: ROTATION

In this section we discussed the main effects of planetary or stellar rotation on the dynamics of geophysical and astrophysical flows, which mostly consist in the Coriolis force a . It is relevant to describe phenomena whose typical time scales (e.g. the period of a wave) are comparable with the length of a day, or, equivalently, whose typical length scales (e.g. the wavelength) are comparable with the Rossby radius of deformation. We introduced the shallow-water equations, which is a general model to describe the dynamics of almost-two-dimensional flows like surface waves, or more generally when the vertical fluid motions can be neglected in comparison with the horizontal ones. In that context, the Coriolis force only appears through the projection of the rotation vector on the normal to the tangent plane, which is referred to as the traditional approximation. This amounts to viewing the Earth as a continuous family of tangent planes rotating at different speeds, with the rotation rate changing sign across the equator, where it vanishes and thus has time-reversal symmetry locally restored. Therefore we considered two aspects of shallow-water waves:

• Bulk problem -If the Coriolis parameter f is considered constant, which amounts to looking at a fixed latitude on the Earth, the shallow-water equations admit two-dimensional plane-wave solutions (or bulk waves) devided in three wavebands (figure 1.13): the steady geostrophic modes (band n = 0, with ω = 0) and the Poincaré modes (bands n = ±1), which are nondispersive in the short-wavelength limit in which the effects of rotation is negligible, and have a finite limit ±f (inertial frequency) as k → 0. If time-reversal symmetry holds (i.e. f = 0) the three wavebands are degenerate at k = 0, whereas if f is non-zero a finite gap separates these wavebands. In that picture the wavebands are only degenerate at the equator.

• Inhomogeneous problem -If one takes into account the actual variations of f with the latitude, the problem is not homogeneous in this direction and thus the shallow-water equations do not admit two-dimensional plane-wave solutions, however they admit onedimensional plane-wave solutions propagating in the zonal direction. In the approximation of the unbounded equatorial β-plane, the problem is exactly solvable and leads to Matsuno's spectrum, which consists of equatorially trapped modes whose frequency branches ω(k x )

are discrete and reminiscent of the bulk waves: inertia-gravity modes at high frequency and Rossby or planetary modes at low frequency. In addition there are two branches, the Yanai and the Kelvin modes, which only propagate eastward (dω/dk x > 0) and transit between the wavebands through the gap that separates the inertia-gravity modes from the Rossby modes.

a Although in the astrophysical context, additional important effects can arise from the centrifugal force and the differential rotation. In this thesis we will always consider solid-body rotations and ignore the centrifugal force, which are relevant assumptions in the geophysical context.

These dual aspects of the shallow-water model will be precised in the next chapter from the topological point of view, which will be central for the results described in chapter 3. To conclude this chapter, I will present in the next section the general model for fluid waves including the effects of all the ingredients introduced in this chapter, namely compressibility (1.2.1), density stratification (1.2.2) and planetary rotation through the Coriolis force (1.3).

1.4 A three-dimensional flow model for compressible, stratified and rotating fluid media I present here a general model for idealized geophysical and astrophysical waves in a three-dimensional, unbounded medium, including the fluid's compressibility, density stratification and the background rotation. This model has been studied in the past, and many properties of the resulting waves have been understood, for which a hierarchy was proposed [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF]. In the context of this thesis, I will explain how topology and geometry shed some new light on this model, and predict new waves of topological origin, which can have an impact on the general understanding of wave dynamics in the geophysical and astrophysical contexts.

The 3D geometry and the dynamical equations

We shall now derive a model that correctly accounts for both planetary rotation and vertical stratification. Since the latter naturally implies that the local vertical axis z (along the direction of the gravitational acceleration g = -gê z ) is a particular direction, the dynamical equations will be more easily decomposed using a local Cartesian basis of coordinates (x, y, z). The local horizontal coordinates (x, y) thus correspond to the tangent plane (with x in the eastward longitudinal direction and y northward in the meridional direction), which implies again that the Coriolis force can be naturally split into a traditional component, contained within the tangent plane, and a nontraditional component in the (x, z) vertical plane (see figure 1 .19). In this local basis, the solid-body rotation vector has two components, and we recall expression (1.37) introduced in 1.3.2:

2Ω =    0 f nt f    = 2Ω    0 cos ϑ sin ϑ    , (1.60)
where Ω is the value of the rotation rate and ϑ the latitude. For an inviscid fluid, the Euler equation (1.6) in the rotating frame reads as

∂v ∂t + (v • ∇)v = - 1 ρ ∇P -gê z -2Ω × v , (1.61)
where P is the pressure, ρ the density and v the velocity field. Since we consider a shallow fluid layer (compared to the planetary radius), we can assume that g is a constant and absorbs the centrifugal force due to planetary rotation.

We also rewrite the equation of conservation of mass (1.1),

∂ρ ∂t + ∇ • (ρv) = 0 , (1.62)
and the equation of conservation of entropy (1.4),

∂ρ ∂t + (v • ∇)ρ = c -2 s ∂P ∂t + (v • ∇)P . (1.63)
We consider small, adiabatic perturbations of the fluid initially at rest (v = 0) in the rotating frame, therefore we shall linearize equations (1.61), (1.62) and (1.63) around the equilibrium state. The latter is simply described by the hydrostatic relation (1.9) in the vertical direction, thus we can assume that the background fields P 0 , ρ 0 (and c s as an additional assumption) are functions of the vertical coordinate z only. We now write the perturbation fields around the steady state of rest as

v ′ ≡ v, ρ ′ ≡ ρ -ρ 0 , P ′ ≡ P -P 0 , (1.64) 
and linearize equations (1.61), (1.62) and (1.63):

ρ 0 ∂v ′ ∂t = -∇P ′ -gρ ′ êz -2ρ 0 Ω × v ′ , (1.65a) ∂ρ ′ ∂t + v ′ z dρ 0 dz = -ρ 0 ∇ • v ′ , (1.65b) ∂ρ ′ ∂t + v ′ z dρ 0 dz = c -2 s ∂P ′ ∂t -gρ 0 v ′ z .
(1.65c)

It is now convenient to use the following transformations (see for instance [START_REF] Durran | Numerical methods for fluid dynamics: With applications to geophysics[END_REF], p. 408):

u ≡ ρ 1/2 0 v ′ ≡ (u, v, w), ρ ≡ ρ -1/2 0 ρ ′ , P ≡ ρ -1/2 0 P ′ , (1.66)
so that equations (1.65) can be rewritten as

∂ t u = -∇ P -g ρê z -2Ω × u - 1 2ρ 0 dρ 0 dz P êz , (1.67a) ∂ t ρ -c -2 s P = - 1 ρ 0 dρ 0 dz + gc -2 s w , (1.67b) ∂ t P c s = -c s ∇ • u + g c s + c s 2ρ 0 dρ 0 dz w . (1.67c)
We recognize on the right-hand side of equation (1.67b) the buoyancy frequency describing vertical oscillations of the fluid parcels, introduced in 1.2.2 and equation (1.15). We will assume that N is real everywhere in the fluid (which is a good approximation in the ocean and atmosphere in general, cf. 1.2.2), which is consistent with the fluid being initially at rest and stably stratified. Using the notation c ′ s = dc s /dz, we can define another characteristic frequency of the problem,

S(z) = c s 2g N 2 - g 2 c 2 s - c ′ s 2 , (1.68)
called the stratification parameter [START_REF] Perrot | Topological transition in stratified fluids[END_REF], which will be discussed in 1.4.2. Finally, we define the following fields for perturbations:

p ≡ P c s and Θ ≡ g N (ρ -c -2 s P ) .
(1.69)

The second one corresponds to the (rescaled) perturbation of potential density 57 . Using definitions

(1.15), (1.68) and (1.69) along with equations (1.67), we finally get

∂ t u = -2Ω × u -N Θê z + S - c ′ s 2 pê z -c s ∇p , (1.70a) ∂ t Θ = N w , (1.70b) ∂ t p = -c s ∇ • u -S + c ′ s 2 w .
(1.70c)

The linearized coupled dynamical equations (1.70) can eventually be written in the compact form of a Schrödinger-like equation:

i∂ t ψ = Ĥψ , (1.71)
where ψ(x, y, z, t) = u v w Θ p T is a multi-component field gathering the solutions of the dynamical equations, and where ψ is now a complex vector function of y and z in general, and the operator Ĥ is the same as (1.72), only replacing -i∂ x by the wave number k x .

Ĥ = i         0 f (y) -f nt (y) 0 -c s (z)∂ x -f (y) 0 0 0 -c s (z)∂ y f nt (y) 0 0 -N (z) S(z) - c ′ s (z) 2 -c s (z)∂ z 0 0 N (z) 0 0 -c s (z)∂ x -c s (z)∂ y -S(z) - c ′ s (z) 2 -c s (z)∂ z 0 0         (1.
The multi-component equation (1.71) and its stationary version (1.73) will be the basis for deriving all the results that will be presented in chapters 3 and 4.

Important remark: Here we obtained the form (1.71) with a Hermitian matrix operator (1.72) by means of the particular transformations (1.66) and (1.69). However, the expression of the linearized equations in this Schrödinger-like form is no coincidence and is just one of many consequences of the more general non-canonical formulation of fluid dynamics 59 , which is the generalization of the Hamilton 57 It is the density that a fluid particle at pressure P would have if adiabatically (de)compressed to a reference pressure P ref . Since we assume adiabatic perturbation, the source of potential density variation is the advection through the vertically stratified medium, hence the term N w in the right-hand side of equation (1.70b).

58 This is an assumption, and also a numerical limit for the spectral resolution method [START_REF] Burns | Dedalus: A flexible framework for numerical simulations with spectral methods[END_REF] used to obtain the results presented in chapter 3; for instance there can be a solid boundary at z = 0 (see the examples in 3.3 and 3.5.2) or z = -H(y) (see 3.5.1), but the boundaries will never depend on x.

59 See for instance [START_REF] Shepherd | Symmetries, conservation laws, and hamiltonian structure in geophysical fluid dynamics[END_REF][START_REF] Salmon | Lectures on geophysical fluid dynamics[END_REF][START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF] for the general theory, and [START_REF] Vanneste | On wave action and phase in the non-canonical hamiltonian formulation[END_REF] for an application to the conservation of the wave action. Generally speaking, the dynamical equations of an inviscid fluid (including nonlinear terms) can be written in the non-canonical Hamiltonian form

∂ψ ∂t = Ĵ (ψ) δE δψ , (1.74)
equations to fluid media.

The stratification parameter S

The stratification parameter introduced in equation (1.68) is an essential ingredient for understanding the results of this thesis, which will be discussed in chapter 3. It will always be considered as a function of the vertical coordinate z only.

First remark: Reference [START_REF] Durran | Numerical methods for fluid dynamics: With applications to geophysics[END_REF] introduces a quantity Γ, through the same changes of variables (1.66) and (1.69) (p. 408), to simplify the numerical approach of the linearized equations (1.70), more specifically to remove the dependence of the perturbation amplitude with the density ρ 0 (z). Here S appears for the same mathematical purpose, and make the compact differential operator (1.72) Hermitian 60 . Actually, the stratification parameter S as defined by (1.68) is a generalization of the Γ of reference [START_REF] Durran | Numerical methods for fluid dynamics: With applications to geophysics[END_REF] (with S = -c s Γ -c ′ s /2) but also of the S(z) in [START_REF] Perrot | Topological transition in stratified fluids[END_REF] (see the discussion at the end of 3.3.1), as they both considered c s to be constant.

So far there is no exact physical interpretation for this parameter but we can notice that it contains every single ingredient of the model presented in 1.4.1 that breaks reflection symmetry in the vertical direction, namely gravity (g ̸ = 0), stratification (N ̸ = 0, which means that the background density is not uniform) and the compressibility profile (c ′ s ̸ = 0, which for instance amounts to setting a non-isothermal background profile for an atmosphere of ideal gas). If all these parameters are set to zero, then S = 0.

However, the converse proposition is not true, i.e. S can be zero even with non-zero g, N or c ′ s . In other words, a non-zero S implies that the vertical-reflection symmetry is broken, but the latter can be broken even though S = 0, which means that S is not the mathematical translation of vertical-reflection-symmetry breaking as f would be for time-reversal-symmetry breaking in the shallow-water model (cf. 1.3.2). Actually, it is possible to define a more subtle symmetry, called the stratification symmetry [START_REF] Perrot | Topological transition in stratified fluids[END_REF], which is preserved when S = 0, which will be discussed in section 3.2 of chapter 3.

Another characteristic of S that can be noted from expression (1.68) is that it compares the buoyancy frequency N to g/c s , which vanishes for incompressible media but has a finite value for compressible fluids. To be more specific, g/c s can be interpreted as the frequency cutoff for acoustic waves in the presence of gravity (as explained in 1.2.1), while N is the maximal frequency of internal-gravity waves existing inside this acoustic band gap. Therefore one can think of S as a parameter that compares the frequency ranges of acoustic and internal-gravity waves 61 , and thus measures the coupling between acoustic and internal-gravity wavebands. Moreover, we will show in 3.5.2 that the sign of S determines the spatial and spectral behavior of the boundary modes in compressible stratified media.

where ψ is the state vector containing the fields, Ĵ (ψ) is a nonlinear skew-Hermitian operator and E[ψ] is a Hamiltonian functional generally consisting of the energy and some Casimir invariants [START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF]. Assuming small perturbations ψ ′ around a steady state ψ 0 minimizing E, equation (1.74) can be linearized and finally put in the form of (1.71) by means of a linear transformation applied to ψ ′ .

60 Indeed, with this change of variables, the energy density reads as

1 2 (|u| 2 + |v| 2 + |w| 2 + |Θ| 2 + |p| 2 ).
Durran [START_REF] Durran | Numerical methods for fluid dynamics: With applications to geophysics[END_REF] notices that this quantity satisfies a transport equation, thus its integral over space is a constant of motion, which is in agreement with the operator Ĥ being Hermitian.

61 In particular, we see from expression (1.68) that S → ±∞ in the Boussinesq approximation for incompressible media (1.2.2).

SUMMARY: THE STRATIFICATION PARAMETER

We introduced the stratification parameter S in terms of gravitational acceleration g, the buoyancy frequency N and the sound speed c s of the fluid medium:

S = c s 2g N 2 - g 2 c 2 s - 1 2 dc s dz . (1.75)
Even though S can hardly be interpreted as a physical frequency of a stratified and compressible medium, as opposed to N , its relation to the spatial symmetries and the gap between acoustic and internal-gravity waves strongly suggests that S is involved in the possible degeneracy points between these wavebands, i.e. the points in phase space where both bands have the same frequency. Indeed, we will see in chapter 3 that the gap between acoustic and internal-gravity plane-wave spectra vanishes when S = 0, in the absence of rotation. Such degeneracy points often accompany a preserved symmetry a and can be characterized by a topological property.

This point will be developed in chapter 2 and is crucial for the analysis that will be presented in chapter 3.

a See for instance 1.3.3: the gap between the plane waves of the shallow-water model vanishes when f = 0, which is also when time-reversal symmetry is preserved.

Conclusion of the chapter

This first chapter gave the context of interest of this thesis, which concerns fluid dynamics at the geophysical scales. Several ingredients were introduced that will be essential for understanding the models used in chapter 3, such as the notions of compressibility (1.2.1) with acoustic waves, stratification (1.2.2) with the buoyancy frequency and internal waves, rotation (1.3) with the shallow-water model and the traditional approximation, and finally a model gathering all these elements (1.4).

The example of the shallow-water model was particularly developed, because of its simplistic yet relevant spectral properties regarding the analysis that will be developed in chapter 3, and also because of its importance regarding the original idea of using topological tools in the context of geophysical fluid dynamics [START_REF] Delplace | Topological origin of equatorial waves[END_REF]. Indeed, through this exactly solvable example we can already grasp the relation between interface fluid waves, unidirectional and spectrally isolated in a frequency band gap, and the discrete symmetries being broken by a parameter that changes sign across the same interface.

However the existence and properties of the Yanai and Kelvin waves had long been known without the necessity of understanding their precise relation with time-reversal-symmetry breaking. Two of our goals in the rest of this thesis are, on the one hand, to clarify this relation and especially to quantify the number of interface modes with the help of topology, and on the other hand to seek other interface modes in distinct systems with other continuous parameters breaking discrete symmetries, the latter being the reason why we have presented all the notions of the present chapter. The purpose of the following chapter 2 will be to introduce fundamental concepts and notions of topology and geometry that will be essential for this quest, and to demonstrate their utility and relevance in distinct fields of physics, from quantum mechanics to geophysical fluid dynamics.

These arguments naturally encourage us to seek the topological properties in such fluid models, which we will first discuss through the β-plane shallow-water model, allowing us to compare our analysis with the spectral flow 62 of equatorial waves exhibited in 1.3.4. For the latter, we have seen in 1.3.4 that the vanishing of the Coriolis parameter f is a key ingredient for the emergence of unidirectional equatorial waves. In this thesis we will discuss a similar aspect with the parameter S, introduced in the last section 1.4, for stratified and compressible media.

The objective of the following chapter is precisely to motivate the applicability of geometrical and topological concepts in fluid dynamics, which is why the shallow-water model will remain a common thread and a flagship example throughout the following sections. I will develop the notions of topological defect and phase singularity, and explain their relation with the First Chern number and the Berry curvature that will be essential for understanding the results of this thesis, which will be presented in chapter 3 with the general model presented in this last section 1.4.

Chapter 2

Geometrical and topological tools for fluid waves

The concepts of geometry and topology are ubiquitous in everyday life. Topology classifies mathematical objects of the same nature by shapes, and the resulting classes of equivalence can be labelled by an integer, or topological invariant. The most natural example that comes to mind is that of three-dimensional objects. Take for instance the sphere. It is easy to imagine how to continuously deform it so as to obtain a nearly flat sheet, or a glass of wine. However, it is impossible to define such a smooth transformation that would turn it into a cup of tea, because at some point such a transformation must open a "hole" that will be the cup's handle, and that is a singular transformation as it maps a single point onto a circle. Therefore the number of "handles" is a natural integer to classify three-dimensional objects (although not the only one, as we will see in 2.3.1), as it is invariant under smooth deformations. In turn, topology provides precision around this notion of "hole" or "handle": the glass of wine and the sheet of paper belong to the sphere's class (objects with zero handle), whereas the cup of tea belongs to the class of objects with one handle, such as a ring or a penne pasta (figure 2.1).

What is not obvious is that the topological invariant of an object is related to the surface integral of a quantity that describes the object's geometry at a local level, its curvature. For instance, the sphere has a constant curvature, whereas the paper sheet has a zero curvature almost everywhere, except at its edges where it is very high, which yields the same global topological invariant.

The goal of this chapter is to introduce the tools of geometry and topology which will be used in the analysis of geophysical fluid problems presented in chapters 3 and 4, especially the extension of the notions of topological invariant and curvature to more abstract spaces. In section 2.1, I will present the celebrated experiment of the Foucault pendulum, which is a classical example of a phase arising in a system's dynamics owing to a geometrical effect. In section 2.2, I will introduce the notion of topological defect -which naturally exists in a variety of physical systems, from quantum physics to fluid dynamics -and the phase singularities, which are the footprint of these defects in the propagation of a wave. I will develop in particular two examples of phase singularities that occur in oceanic tides (2.2.2) or in surface wave-vortex interactions (2.2.4), which are fluid analogs of the celebrated Aharonov-Bohm effect (2.2.3). This effect describes the interaction of an electronic wave function with a vector potential. It has played a fundamental role in physics to explain how a topological defect emerges from time-reversal-symmetry breaking. The two fluid examples discussed in this chapter are equivalent to this effect because their phase singularities are of the same nature and can be quantified by an integer which depends on the parameters that break time-reversal symmetry. In this chapter we will therefore see more clearly why time-reversal-symmetry breaking is a prerequisite for phase singularities, and, at a later stage, to have unidirectional topological modes. Having defined the notions of topological defect and phase singularities will serve as a preliminary step into the most essential concept of the present thesis, namely the Berry curvature (section 2.3), which is a real quantity that quantifies the twisting of complex vectors in parameter space. In multi-component fluid wave problems, the amplitudes of the different fields can be represented by such vectors, which justifies the use of the Berry curvature in this context. Integrating the Berry curvature over a closed surface in parameter space yields the Chern number, which is the natural invariant that quantifies the topological defects of these complex vectors in parameter space. These defects are related to a property of the wave spectra, called the spectral flow, and the connection between these notions will be explained in section 2.4, through the example of the equatorial shallow-water spectrum presented in the previous chapter (section 1.3).

I will constantly refer to the shallow-water model to discuss the notions introduced in the present chapter, first of all because it is a simple model in which the effect of time-reversal-symmetry breaking is straightforward and, in particular, it easily adapts to the problems presented in 2.2.2 and 2.2.4. More importantly, I will use the shallow-water model as a common thread because it was the first system used to exploit the concepts discussed in this chapter in geophysical fluid dynamics [START_REF] Delplace | Topological origin of equatorial waves[END_REF], and it offers a general understanding for the more general results that will be presented in the next chapters of the present thesis. The following derivation is adapted from [START_REF] Gignoux | Solved problems in Lagrangian and Hamiltonian mechanics[END_REF]] and [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF]. The pendulum of length L is fixed at a height L above the origin of the local rotating frame of reference. We denote z the height of the pendulum in this frame, and x, y its horizontal coordinates (see figure 2.2). In this frame of reference, the pendulum undergoes the action of gravity, support from the string and two inertial forces: the Coriolis force and the centrifugal force. Gravity is oriented along the vertical axis and the supporting force along the string, i.e. along the normalized vector (x/L, y/L, 1 -z/L). The Coriolis force is expressed as -2mΩ × v -with m the pendulum's mass, v its velocity in the rotating frame and Ω the rotation rate of the Earth -and the centrifugal force reads as mRΩ 2 cos (ϑ) (cos (ϑ)e z -sin (ϑ)e y ) with R the radius of the Earth. Newton's second law thus applies as

ẍ = - T m x L + 2Ω sin (ϑ) ẏ -2Ω cos (ϑ) ż , (2.1a) ÿ = - T m y L -2Ω sin (ϑ) ẋ -RΩ 2 sin (ϑ) cos (ϑ) , (2.1b) z = T m 1 - z L -g + 2Ω cos (ϑ) ẋ + RΩ 2 cos (ϑ) 2 , (2.1c)
where we have noted g the acceleration of gravity and T the supporting tension of the pendulum's string.

Considering small oscillations around the vertical axis (maximum angle ν 0 ≪ 1), the z and z terms in equation (2.1c) are of order gν 2 0 and the ẋ term of order (Ω/ω 0 )gν 0 with ω 0 = g/L the pendulum's intrinsic frequency, which is much higher than the Earth's rotation rate (it oscillates at a period of 16 s approximately). Therefore the term T /m is approximately constant and equal to g -RΩ 2 cos (ϑ)

2 ≈ g (since RΩ 2 cos (ϑ) 2 ≈ 1.5 × 10 -3 g at the latitude of Paris), thus equations (2.1a) and (2.1b) can be rewritten

Ẍ -2Ω sin (ϑ) Ẏ + ω 2 0 X = 0 , (2.2a) Ÿ + 2Ω sin (ϑ) Ẋ + ω 2 0 Y = 0 , (2.2b)
with (X, Y ) = (x, y + LRΩ 2 sin (ϑ) cos (ϑ)/g) the coordinates around the medium position of the pendulum, which is slightly shifted in the meridional direction owing to the Earth's centrifugal force. We recognize in equations (2.2) the traditional Coriolis parameter,

f = 2Ω sin ϑ , (2.3) introduced in equation (1.37) (part 1.3.2).
If the pendulum is released at t = 0 from a distance r 0 to the center (say on the positive x axis) and with a zero velocity, the approximate solution of equations

(2.2) is X(t) = r 0 cos (ω 0 t) cos f 2 t , (2.4a) Y (t) = -r 0 cos (ω 0 t) sin f 2 t .
(2.4b)

The pendulum oscillates around the vertical axis with a fast phase given by the frequency g/L, and a much slower phase characterizing the rotation of the plane of oscillation as the main oscillation's frame moves with the Earth (see figure 2.3). After a time t, the pendulum's plane of oscillation has turned by an angle of

ϕ(t) = -Ωt sin ϑ , (2.5)
therefore the pendulum's precession is clockwise in the northern hemisphere, counter-clockwise in the southern hemisphere and there is no effect at the equator. After a day, the Earth completes a full rotation but the pendulum's plane does not return to its original orientation (except at the poles or the equator), instead it has gained an angle of -2π sin ϑ. If one parameterizes the pendulum's trajectory with the longitudinal angle traveled by its frame of oscillation, φ(t) = Ωt (see figure 2.2), then the motion

(X(t), Y (t))
is the product of a dynamical term r 0 cos ω 0 t and the normalized polarization vector in the horizontal plane, given in the (x, y) basis by

u(φ(t)) = cos (-φ(t) sin ϑ) sin (-φ(t) sin ϑ) , (2.6)
which is a multivalued function as u(2π) ̸ = u(0). This example is particularly appropriate regarding the geophysical context for various reasons:

• Traditional Coriolis force -As discussed in the previous chapter, the properties of largescale surface waves in the ocean and atmosphere depend on the Earth's rotation mainly through the Coriolis parameter f (see 1.3.2), and neglecting the vertical component of the Coriolis force is referred to as the traditional approximation [START_REF] Eckart | Hydrodynamics of oceans and atmospheres[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. Similarly, we have neglected the vertical motion of the pendulum and showed that the centrifugal force's main effect is to slightly shift the equilibrium position: the pendulum's motion thus experiences the Earth's rotation through the very same traditional Coriolis force only. Nevertheless, one purpose of this thesis is to show an effect of the nontraditional Coriolis force on the waves propagating in a rotating compressible-stratified fluid medium (chapter 3).

• A geometrical quantity in the dynamics -Although Foucault was not aware of the work of Coriolis [Coriolis, 1835] at the time he set the experiment, his pendulum provided a simple example of geometrical effect owing to rotation and, consequently, time-reversal-symmetry breaking. The effect described here is said to be geometrical because the total angle taken by the pendulum after a full day, which is equal to -2π sin ϑ, is independent of the characteristics of the pendulum (length L, mass m) or the Earth (rotation rate Ω, radius R, gravitational acceleration g), and rather just depends on the latitude ϑ, i.e. the path traveled by the pendulum on the terrestrial sphere. In other words, a pendulum with different characteristics, set in motion at the same latitude on another planet rotating at a different speed, would oscillate faster or slower, and its plane of oscillation would turn at different speed as well, but at the end of the day the total angle of precession would be the same. It is thus a robust characteristic of the system which only depends on the geometry of the terrestrial sphere.

Moreover, the precession angle is zero at the equator, where the pendulum thus virtually does not undergo the influence of the Earth's rotation1 . Incidentally, the equator is the only place where the pendulum is transported along a geodesic2 of the planet. More generally, one can show that the precession angle of the pendulum corresponds to the vector u, defined by equation (2.6),

undergoing parallel transport on the circle of latitude ϑ. This precession can thus be interpreted as a manifestation of a geometrical property of the sphere, called the holonomy [Berry et al., 1990].

• Decoupled fast and slow dynamics -The Coriolis force has very little influence on the rapid oscillations of the pendulum, however it slowly rotates its orientation. Two time scales can thus be clearly separated, one for the "fast oscillation" of the pendulum, which involves the pendulum's characteristic frequency ω 0 , and one for its "slow precession", which occurs on a typical time scale

Ω -1 .
The geometrical effect arises in the slow dynamics, and after a full day it does not depend on the scale separation Ω/ω 0 . This will be one of the motivations of chapter 4, in which we will consider a wave packet whose dynamics can be separated into "slow" and "fast" variables, and we will show that, in this case, the geometrical effects is manifested in the slow dynamics as well.

In conclusion, the Foucault pendulum's precession gives an intuition of the emergence of geometrical effects in the dynamics of geophysical waves, owing to the Coriolis force in particular. The genuine analogy with the geometrical character of the Foucault pendulum has been examined for instance in the context of planetary waves [START_REF] Delplace | From the geometry of foucault pendulum to the topology of planetary waves[END_REF] and seismic waves [START_REF] Snieder | Seismic shear waves as foucault pendulum[END_REF],

whose polarization turns like the pendulum as the Earth slowly rotates. This is an analogy that will be particularly insightful for the result of chapter 4, however it is difficult to relate it to the emergence of undirectional modes and topological invariants, in the present form.

Nevertheless, there are two complementary aspects of a geometrical phase: for the Foucault pendulum, it is manifested through an angle taken by the vector u when parallelly transported around the sphere. Now we can imagine that there is a field of tangent vectors u defined over the whole sphere, and wonder whether it is well-defined everywhere, or if there will be some singular points around which the vectors turn, called topological defects. The next section will be dedicated to this aspect, emerging in physical systems through phase singularities.

2.2 Phase singularities: the Aharonov-Bohm effect and two related phenomena in fluids

The present section presents a few examples of topological defects in real space, from very distinct physical systems. Actually, the purpose of this section is two-fold: on the one hand we will show that topological defects and phase singularities naturally arise in physical systems of very distinct natures, and, on the other, that they generically accompany some discrete symmetry breaking, in particular time-reversal-symmetry breaking.

Definition and quantification of a topological defect in 2D

A complex function of the spatial coordinates, ψ(x), can be decomposed into its modulus and argument:

ψ(x) = |ψ(x)|e iξ(x) , (2.7)
where ξ is a real-valued phase function. Of course one can arbitrarily define ξ modulo 2π, without changing the function ψ, but let us assume that a choice has been made and ξ(x) is fixed, and such that ψ is well-defined and smooth everywhere on the domain. Now let us consider a closed path P on this domain, and wonder how the functions ψ and ξ evolve after a trip along this path. Even though ψ returns to its original value, for it is well-defined on the domain, it is possible that ξ has changed by a multiple of 2π. In other words, ξ can be locally a smooth function everywhere on the domain, without being well-defined over the whole domain. In this case the phase function ξ is said to be multi-valued, and the phase change after a trip along the path can be characterized by an integer called the winding number :

γ(P) = 1 2π P dξ ∈ Z , (2.8) 
which is a mathematically correct formulation as ξ is a smooth function of the domain. Since the quantity (2.8) is an integer, one can safely deform P without changing γ(P). If the path can be continuously deformed until it eventually becomes a point, then this integer is necessarily 0, but if γ(P) ̸ = 0 (see figure 2.4), it means that the path encircles some point or region which cannot be crossed, because the phase ξ becomes undefined. Such points are called topological defects, and the resulting multivaluedness of ξ is referred to as a phase singularity or dislocation. Expression (2.8)

shows that the strength of a topological defect, i.e. a singularity of the phase function, can be quantified by integrating the phase in the domain where it is not singular.
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Figure 2.4: Topological defects and wavefront dislocations. The wavefronts are the lines of maximal amplitude, i.e. for which the phase ξ of the wave is a multiple of 2π. Phase singularities of the wave arise through the dislocations of several wavefronts at the same topological defect. One can count the number of dislocations inside a closed path P by computing the quantity (2.8).

A phase singularity at the planet's scale: tidal amphidromic points

At the planetary scale, the whole oceanic basin vibrates under external periodic forces. The most striking example of such global excitation on Earth are the tides, owing to the attraction of the Moon and Sun, which generate oscillations that are a superposition of surface waves3 . The resulting pattern4 of water elevation and velocity is called the amphidromic circulation. As mentioned in 1.3.2, the simplest way to model the tidal forcing on the Earth's oceans is via the linearized shallow-water model introduced in 1.3.2, which was originally developed by Laplace for that purpose. However, the problem of shallow-water waves discussed in 1.3.2 was considered on the local tangent plane with an unbounded geometry, whereas the amphidromic circulation occurs globally at the planetary level and is thus strongly influenced by the presence of continents and the shape of their edges. In other words, the problem of tidal motion amounts to finding shallow water eigenmodes in bounded geometries. It turns out that this problem leads to the generic emergence of phase singularities, known as amphidromic points, where the oceanic tidal amplitude is zero and which can be seen as topological defects, as will be explained in the following with an argument due to Berry. This was actually the first example of phase singularity in physics [START_REF] Whewell | Xi. essay towards a first approximation to a map of cotidal lines[END_REF].

The tidal constituents

Let us consider the field η describing the elevation pattern of the sea crests, which can be decomposed by Fourier transform as η(φ, θ, t) = η(φ, θ, ω)e -iωt dω .

(2.9)

The amplitude η(φ, θ, ω) of the mode at frequency ω is a function of the Earth's angular coordinates (or any pair of coordinates mapping the spherical Earth or a local tangent plane, depending on the regarded scale), here the longitude φ and colatitude θ for instance. The frequency spectrum is peaked around defined constituents of the global tidal scheme, which includes various modes given by the different time periods involved in the relative motion of the Earth, the Moon and the Sun (the most important ones are all around 12 and 24 hours). Although this tidal spectrum is quite complex, the main tidal constituent is the principal lunar semidiurnal M 2 excitation (T ≈ 12, 46 hours). For realvalued fields such as η, the Fourier transform must satisfy η(φ, θ, -ω) = η(φ, θ, ω) * for every frequency ω. Simply put, the total contribution of a given tidal mode of frequency ω can be written as

η(φ, θ, t) = ℜ e -iωt η(φ, θ, ω) = A(φ, θ) cos(ωt) + B(φ, θ) sin(ωt) , (2.10)
where A, B are two real-valued scalar functions, and "ℜ" stands for the real part.

Role of time-reversal symmetry

Let us first consider a problem that is left invariant under time-reversal, as in the absence of the Coriolis force (see 1.3.2) or mean flow5 . This implies that, if η(φ, θ, t) obeys the linear dynamical equations, then η(t) + η(-t) is a solution, provided it verifies the proper boundary conditions imposed at the edges of the basin. From expression (2.10), the solution is thus a standing wave, with η(t) = 2A(φ, θ) cos(ωt). In this case, the amplitude η is a real-valued function. In contrast, if f ̸ = 0 in the shallow-water equations, time-reversal symmetry is broken and the amplitude η is generically a complex function of the spatial coordinates, yielding a traveling wave. These two situations can be physically interpreted in the following way:

• If time-reversal symmetry holds, then for a given motion of a fluid particle, the same motion in the opposite direction is allowed as well. With the presence of coasts, the global pattern obtained by interference between the waves and the counter-propagating reflected waves is a standing wave. • In the presence of the Coriolis force, say a fluid particle propagating eastward in the northern hemisphere is deflected southward, whereas the same particle propagating westward is deflected northward. By extension, the reflected wave is not the time-reversed counterpart of the incident wave, and the wave pattern obtained is not a standing wave but a complex system known as the amphidromic circulation (figure 2.5).

Mathematically, a real amplitude (standing wave with preserved time-reversal symmetry) would have lines of zero or nodes, as one can witness by shaking the water surface in a tank. At the oceanic scale, time-reversal symmetry is broken by the Coriolis force and the zeros of the complex amplitude η are located at the intersections between the lines of zeros of its real and imaginary parts, i.e. at punctual locations called the amphidromic points (figure 2.5). While the lines of constant tidal range (amplitude |η|) encircle these amphidromic points in their vicinity, the cotidal lines (lines at which high tides occur at the same time, i.e. of constant phase of the complex amplitude η) meet at these points, where the phase of η is thus undefined: the amphidromic points are thus dislocations of the wave. Since the total phase of a given mode as expressed by the integrand of (2.9) is equal to ξ(φ, θ) -ωt (where ξ is the argument of η), the cotidal lines (hence the lines of simultaneously high tides) turn around the amphidromic points as time goes by, in a direction that is not necessarily dictated by whether the point is in the northern or southern hemisphere. As explained at the beginning of this section, although η is well defined, we cannot continuously define the phase ξ of the complex amplitude around the amphidromic points, where it becomes singular. In particular, the quantity γ(P) of expression (2.8), where P is a path that encircles one time a given amphidromic point, is an integer whose absolute value equals the number of lines of high tide that end at this point.

In conclusion, time-reversal-symmetry breaking implies the existence of amphidromic points in the tidal oceanic circulation 6 , which are phase singularities of the tidal wave. Although their exact location and the direction of circulation around each of them is complex (as it depends on the geometry of the coasts, bathymetry, etc.), the very existence of these points is symptomatic of time-reversal symmetry being broken by the Coriolis force. In the following part we will present the notorious Aharonov-Bohm effect, which is an analogous situation in a quantum system where time-reversal symmetry is broken by a magnetic flux, thus generating the same type of phase singularity.

The original magnetic Aharonov-Bohm effect

Many textbooks dealing with phase singularities and topological defects start with the famous Aharonov-Bohm effect, which was proposed by [START_REF] Ehrenberg | The refractive index in electron optics and the principles of dynamics[END_REF][START_REF] Ehrenberg | The refractive index in electron optics and the principles of dynamics[END_REF][START_REF] Ehrenberg | The refractive index in electron optics and the principles of dynamics[END_REF], and precised ten years later by [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF]. Originally designed to challenge the reality of electromagnetic potentials on electron dynamics, through an interference experiment, it was later interpreted as a phase singularity in the electron's wave function [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF], which is the feature that will be discussed here. In this part we recall the basics of the Aharonov-Bohm effect, and in the next one we will discuss an analogous experiment with surface waves, designed in the '90s, in which a phase singularity can be actually observed.

In the experiment, a particle of charge q and mass m can propagate in a two-dimensional space free of electric or magnetic fields, but with a non-zero vector potential, owing to the presence of a static magnetic flux in a closed area (figure 2.6a). Such a situation can be realized with a solenoid, infinite in the direction perpendicular to the plane.
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.6: a. The Aharonov-Bohm experiment: a particle of charge q and mass m propagates in a twodimensional plane which is free of magnetic field, however a flux contained in an impenetrable transverse solenoid generates a non-zero vector potential outside of it. b. The equivalent of the Aharonov-Bohm experiment with surface waves in a bathtub and a mean flow generated by a vortex at the center.

Classically, the particle does not experience any field and thus moves in a straight line at constant speed, as it undergoes a zero Lorentz force 7 . However, in the quantum treatment of the problem, the classical vector potential A has an effect on the particle's wave function as it appears in the expression of the Hamiltonian

Ĥ = (p -qA) 2 2m , (2.11) 
where p = -iℏ∇ is the momentum operator and the classical vector potential A is a function of the position x. Let us consider for simplification a quasi-punctual area at r = 0 containing a flux ϕ, 8

pointing out of the plane, i.e. the limit of an infinitely thin solenoid containing a finite flux ϕ: in the two-dimensional plane, this is a point located at the origin, which will be referred to as the flux point in the following. Outside this area the magnetic field is null and we can choose the vector potential A = (ϕ/2πr)ê θ , in polar coordinates. Let Ψ 0 (r, θ) be the solution of the stationary Schrödinger equation ĤΨ 0 = EΨ 0 for the problem with zero flux (ϕ = 0) 9 . By direct substitution into the Hamiltonian (2.11), one can show that the function

Ψ α (r, θ) = e iαθ Ψ 0 (r, θ) , (2.12)
is a solution of the stationary Schrödinger equation with non-zero magnetic flux, with the same energy E and α = qϕ/h, the number of flux quanta h/q contained in the flux point 10 . Let us consider an integer α, for which expression (2.12) is correct 11 .

Phase singularity of the wave function Ψ α

The wave function Ψ α (r, θ) can be decomposed into a modulus and a phase function ξ, as explained in the introduction of the present section. If we define the wavefronts of ψ as the lines of maximal amplitude, i.e. where ξ = 2πM for integer values of M , then γ(P), defined by equation (2.8), counts the number of wavefronts terminating inside the area enclosed by P. 12 As in [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF], let us consider a wave incoming from the far right (x → +∞) with wave vector -kê x , 13 for which the phase of the wave function (2.12) is ξ(r, θ) = αθ -kr cos θ .

(2.13) Expression (2.13) is clearly multi-valued if α ̸ = 0, and is singular at the flux point (r = 0), where its gradient diverges. Since γ(P) is equal to α if the path encircles 14 the flux point, and 0 otherwise, this point bears a wavefront dislocation: in other words, there are α wavefronts terminating at the flux point, where the singularity is located.

Remarks: This result can be generalized to non-integer values of α, 15 and the winding number of the singularity at the flux point is equal to the closest integer to α (figure 2.7a). At the wavefront dislocation, the phase ξ is undefined and the modulus |ψ| vanishes, just as for the tidal amplitude, here because the probability current must remain finite everywhere while ∇ξ diverges in the vicinity of the phase singularity. The flux point is thus equivalent to the tidal points of 2.2.2, because the amplitude |ψ| of the electron's wave function vanishes there, and its wavefronts turn around this dislocation point 16 .

8 This is the flux-line case originally considered by [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF]. 9 Ψ 0 is the complex amplitude or wave function of the eigenmode oscillating at frequency E/ℏ, where ℏ = h/2π is the Planck constant. This is a free-particle mode so we shall denote E = ℏ 2 k 2 /2m, with k > 0 the wave number. This wave function is unique given the boundary condition, i.e. the limit Ψ 0 = e -ikr cos θ at the far right (incoming particle). References [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] show the expansion in the basis of the Bessel functions.

10 In other words, the magnetic vector potential in expression (2.11) can be absorbed by a gauge change whose phase reads as (q/ℏ) A • dx = αθ.

11 Indeed, for an integer value of α, Ψα(r, θ) = Ψα(r, θ + 2π), thus Ψα is single-valued. Otherwise expression (2.12) is correct locally, but multi-valued globally [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF], which means that Ψα is not an acceptable solution of the Schrödinger equation.

12 Here P is a closed path that encircles once the flux point, as in figure 2.7a.

13 Thus -kx = -kr cos θ is the phase of Ψ 0 .

14 Because P encircles the point one time and counterclockwise around the point. More generally γ(P) = α Ind 0 (P), where Ind 0 (P) is the winding number or index of the path around the flux point.

15 With the notable exception of half integers, since in this case their is a whole line of singularities instead of isolated points.

16 More precisely, the angular velocity of the wavefronts around the topological defect is dθ/dt = E/αℏ, where E is the electron's energy.

In conclusion, the modulus of the wave function 17 does not bear the footprint of the magnetic flux when α is an integer, however it arises in its phase 18 through a topological defect located at the flux point. The winding number of this phase singularity, which is an integer counting the number of wavefronts ending at this point, can thus only change by steps of 1. Therefore it is robust against continuous variations of the flux 19 . In that sense, the quantity γ(P) of equation (2.8), characterizing the wave function, can be called a topological quantity, as it is thus robust against both continuous deformations of the path P and continuous changes of α.

We have seen that phase singularities appearing in tidal maps and in the Aharonov-Bohm effect are of the same kind, and both are a consequence of time-reversal-symmetry breaking. In the case of tides, this symmetry is broken owing to the Coriolis force, while it is due to a magnetic flux in the Aharonov-Bohm effect. [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] proposed a fluid analog of the Aharonov-Bohm effect where the breaking of time-reversal symmetry occurs as a result of a prescribed mean flow that mimics the effect of a magnetic field. Let us now describe this effect in detail, in order to understand how it is a situation equivalent to the Aharonov-Bohm effect, but in a classical fluid system.

Wavefront dislocations of surface waves in a bathtub

In this part I present the experiment described in reference [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF], whose purpose was to design a fluid system in which the wavefront dislocations of the Aharonov-Bohm wave function would be directly observable on the surface wave's crests in a emptying tank or bathtub, which is an equivalent fluid system. Contrary to the fluid motions occuring at geophysical scales, the Earth's rotation, i.e. the Coriolis force, has almost no influence on the surface wave dynamics at the scale of a bathtub. Instead, [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] considered a mean flow generated by a localized vortex, created by emptying the tub (figure 2.6b), which is a clever way to break time-reversal symmetry at the scale of a lab experiment.

This part has two goals:

• The first one is to show that, again, a phase singularity is generated by time-reversal-symmetry breaking, but this time in a fluid system at much smaller scale than the tidal waves described in 2.2.2.

• The second goal is to present an example that proves once again that the concepts of geometry and topology usually applied in quantum mechanics and condensed matter physics can be cleverly used to understand analogous phenomena in fluid dynamics.

Let us consider a wave of frequency ω propagating at the surface of the tub in the presence of a steady vortex. The fluid medium is not homogeneous, as the vortex induces a mean flow U(x, y) whose direction and intensity both vary in space. If these spatial variations are sufficiently slow 20 , the solution has the structure of a plane wave locally, which can be defined mathematically by a varying wave vector k(x, y). The unperturbed medium supports surface plane waves whose frequency and wave number are related through a dispersion relation

ω = Ω(k) , (2.14)
which only depends on the norm k = k 2 x + k 2 y of the wave vector 21 , as the surface of the tub at rest is isotropic 22 . With the previous approximation of a slow perturbation (slow in space, i.e. varying over large distances compared to the typical wavelength), the local dispersion relation is modified by the 17 Which is the measurable quantity, related to the probability of presence of the charged particle. 18 Which is not measurable absolutely but whose difference can be observed with interference experiments. 19 Except across the transitions, when α is a half-integer and a wavefront connects or disconnects to the dislocation (see figure 2.7. 20 In particular, if they occur on a scale that is large compared to the typical wavelength.

21 A typical dispersion relation for surface waves is given for instance by expression (C.11), and the experiment of [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] considers the different possible regimes of surface waves, dominated by capillarity or gravity.

22 Of course we must consider wavelengths that are small compared to the size of the tub, whose edges produce reflection effects that are ignored in this analysis.

Doppler effect:

ω = Ω(k) + U • k , (2.15)
where now the mean flow velocity U and the wave vector k both are slowly-varying functions of the position (x, y). More details on how to obtain expression (2.15) can be found in [START_REF] Coste | Scattering of dislocated wave fronts by vertical vorticity and the aharonov-bohm effect. i. shallow water[END_REF],

and I propose a WKB derivation of it in appendix C. If the mean flow velocity is sufficiently weak 23 , we can rewrite expression (2.15) by identification with the first-order Taylor expansion of Ω, 24 as

ω = Ω k + kU c g . (2.16)
Comparing expression (2.16) with the Hamiltonian (2.11) of a particle of mass m and charge q in a magnetic field of vector potential A, the local Doppler shift induced by the mean flow arises in a form similar to the effect of the magnetic field on the wave function of the quantum particle. More precisely,

we have the equivalence 25

- k c g U ←→ q ℏ A .
(2.17)

Remark: Of course, this analogy is just formal. For instance, the vector potential is not gauge invariant and thus not a measurable quantity, whereas the mean flow U is clearly measurable. Moreover, the flux quantum h/q is an intrisic quantity of the electron, whereas the quantization of the vorticity flux in this case depends on the wavelength and the characteristics of the tub (e.g. the depth H). Nevertheless, this formal analogy has motivated recent development in various domains, in particular for acoustic metamaterials [START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF][START_REF] Yang | Topological acoustics[END_REF] and active matter systems [START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF] (see figures 4 and 5), in which synthetic vector potentials have been artificially engineered to mimic the quantum effect of a magnetic field 26 in classical systems.

Therefore, one can expect the wave to be deformed in the presence of a mean flow, exhibiting similar patterns as in figure 2.7a for the same velocity profile U as the magnetic vector potential of the Aharonov-Bohm effect. In short, the solenoid of the Aharonov-Bohm effect is mimicked by a single vortex (figure 2.6b). In this case a wavefront dislocation arises in the vortex region, and the number γ(P) of wave crests ending there (figure 2.7b) is the integer closest to the quantity

α = - 1 λc g P U • dx , (2.18) 
P encircling once the vortex counterclockwise, far away from it, where the wave vector k, and thus the wavelength λ = 2π/k and the group velocity c g , are approximately constant. This result is indeed what was observed by [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] in their experiment (figure 2.7). Note that the integral quantity appearing in expression (2.18) is the total circulation of the vortex,

Γ ≡ P U • dx , (2.19)
which is independent of the path P encircling the vortex 27 . Finally, let us note that the sign of α is in accordance with the intuitive manifestation of the Doppler effect: the wave crests are pulled apart from one another on the side where U is in the direction of propagation, and conversely they are brought closer on the other side of the vortex, where U is in the opposite direction (see figure 2.6).

23 Typically, we assume ||U||k ≪ ω. Note that, for a localized vortex, the mean flow velocity decreases with the distance to the vortex, which makes the approximation even more accurate in this situation.

24 Indeed, the group velocity cg = ∂Ω/∂k = (∂Ω(k)/∂k) k/k = cgk/k is, in this case, aligned with the wave vector. 25 Recall that the quantum momentum p is equivalent to ℏk in the Fourier representation.

26 Typically the Aharonov-Bohm or the quantum Hall effect.

27 By means of the Stokes theorem, the circulation (2.19) is equal to the flux of the vorticity, ∇ × U, which is assumed to be zero outside the vortex. Therefore the quantity α of expression (2.18) is proportional to the vorticity flux, exactly like the winding number of the dislocation of the Aharonov-Bohm wave function is proportional to the magnetic flux [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF]. In the first two cases the number of wavefronts ending at the flux point, which can be counted by following a path P that encircles it, is equal to α. For half-integer values of α, the phase singularity spreads over the whole semi-infinite line {x ∈] -∞, 0], y = 0}, as the number of wavefronts ending at the dislocation changes by one when half-integer values are crossed. b. Experimental results obtained by [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] showing the dislocation of the wave crests, with surface waves incident from the right, interacting with an irrotational vortex circulating clockwise (Γ < 0). Estimated values of the flux parameter α are indicated. The number of wave crests (pink) terminating is the integer closest to α, thus α = 2.5 marks a transition point across which a wavefront reconnection mechanism occurs on a semi-infinite line (dotted line in red), cf. [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF].

Phase singularities: take-home message

Through the last examples, we have shown that similar phase singularities arise for a variety of distinct systems (figure 2.8), from classical physics -at the scale of the Earth with the amphidromic points (2.2.2) or at room scale with the Doppler shift induced by a vortex in a bathtub (2.2.4) -to quantum mechanics -with the Aharonov-Bohm effect (2.2.3). Although these phases are not always easy to quantify and can leave one facing possibly unsolvable analytical problems (for instance predicting the position of the amphidromic points for arbitrary coast shapes and bathymetry), we still noticed a common point to the existence of those phase singularities: they arise when some discrete symmetry is broken. In all the examples, time-reversal symmetry is broken, by the planetary rotation in 2.2.2, a magnetic field in 2.2.3, and the presence of a mean flow in 2.2.4. This is necessary because, in all three examples, the phase of the wave reads as

ϕ(x, t) = ξ(x) -ωt ,
(2.20) therefore, for a given frequency ω, the wavefronts turn around the topological defects, in a direction that is fixed by a robust, non-zero integer γ, and cannot turn in the other direction. This feature is characteristic of systems with broken time-reversal symmetry. Incidentally, these examples clearly show that such topological defects emerge for complex objects -like the Fourier transform η in the examples 2.2.2, and 2.2.4 of the quantum wave function Ψ α in 2.2.3 -defined over continuous spaces.

In all three situations we have been able to identify robust integers quantifying the singularities and thus characterizing them via a topological property, which is an intuitive concept that we shall justify later on (2.3.1). The precession of the Foucault pendulum described in section 2.1 provided a complementary example, because in this case the pendulum takes a geometrical phase as time goes by, whereas in all three examples of section 2.2 the mathematical objects are stationary and the geometrical phase is defined on a closed circuit in space. For the Foucault pendulum it seems difficult to associate a topological integer to the geometrical phase, however we will show in 2.3.2 that all the examples introduced so far in the present chapter are elegantly conciliated through the concept of Berry phase, which is itself related to a topological integer called the first Chern number, a notion that we will constantly refer to throughout this thesis. In the following sections we will introduce all these geometrical and topological tools.

The Berry curvature and the first Chern number

In this section I will introduce the concepts of Chern number and Berry curvature, which will both be essential for understanding the results of the following chapters. As we will see, the Chern number is an integer characterizing globally a continuous family of complex vector spaces, while the Berry curvature provides information on the local geometry of these objects, which is quite abstract. Therefore I will first give an intuition of those notions by presenting a simpler case of real vectors tangent to a surface (2.3.1). I will then define the Berry curvature and the Chern number in a simple and historical example 2.3.2, and I will finally show how these concepts apply to the plane waves of the f -plane shallow-water model introduced in part 1.3.3.

An intuitive approach of topological invariants and curvature

In a very broad sense, topology provides information on the global shape of an object. The most natural example are closed smooth surfaces in 3D 28 (sphere, torus, etc.): we can say that two such surfaces have the same topology (or belong to the same topological class of equivalence) when they can be continuously deformed one into the other (i.e. there exists a homeomorphism, a continuous bijection transforming one surface into the other). In that sense, a glass of wine belongs to the same class as the sphere whereas a cup of tea belongs to that of the torus, because of its handle (figure 2.1). With this definition, it is straightforward that all 2D shapes in 3D belonging to the same class are characterized by the same integer, which is for instance the number of handles in the surface, called the genus g of the surface. The same logic applies for any family of objects, as long as one can define the notion of topology (which involves, among other things, the concept of differentiation, implied in the previous example under the term "deforming").

However, the genus is not the only choice of topological invariant to classify 3D surfaces. For instance, let us consider a smooth field of tangent vectors defined over a 3D surface Σ. Now it turns out that any such smooth vector field has χ singular points (Poincaré-Hopf theorem) 29 , where χ is the Euler characteristic of the surface, which is also an integer invariant under continuous transformations of the surface. For instance, χ = 2 for the sphere's class and χ = 0 for the torus' class. Incidentally, the singular points are the ones where the vector field vanishes, and around which the field is not differentiable (e.g.

the green points in figure 2.9a), which is the same manifestation as for the topological defects studied in section 2.2. Just as in the examples discussed in section 2.2, these points are topological defects that generate a phase singularity, i.e. the vector field rotates when following a closed path around a singularity.

g = 0 g = 1 a χ = 2 χ = 0 γ(𝒫) = + 1 γ(𝒫) = -1 γ(𝒫) = + 2 b ξ V 𝒫 Figure 2
.9: Topological defects of 2D vector fields. a. A smooth vector field on a closed surface has singularities, and the sum of the winding numbers of the vectors around these points is equal to the Euler characteristic χ of the surface. A vector field without singularity can be defined on the torus (right), because its Euler characteristic is 0. b. Examples of singularities of a 2D vector field (at the center of each picture), with different degrees. The degree γ of the singularity counts the number of turns made by the vector field (i.e. the variation of its angle ξ, divided by 2π) when following a closed path P (in blue) encircling the singularity counterclockwise.

One can choose either the genus g or the Euler characteristic χ to characterize a topological class of surfaces in 3D. The point is that an integer cannot continuously change, and thus remains constant as the surface is continuously deformed. Therefore, such an integer, robust against continuous deformations, can be called a topological invariant. The genus g classifies the surfaces through their number of "handles", and χ yields the same classification of surfaces through the number of singularities of a tangent vector fields defined over it (figure 2.9). Indeed there is a relation between the two:

χ = 2 -2g . (2.21)
To sum up, a topological invariant characterizes a closed surface, and defines the topological category to which it belongs. Moreover, the Euler characteristic of a surface can be computed by simply counting the winding numbers of a continuous family of tangent vectors defined over it (see figure 2.9).

To be more precise, χ is equal to the sum, for each singularity, of quantities such as γ(P) defined in expression (2.8), where P is a closed path encircling the singularity counterclockwise and ξ is the polar angle of the vector field in the local tangent plane (see figure 2.9b).

This calculation has to account for all the singularities of the vector field, so it can be written as a sum of path-integrals of dξ (divided by 2π), with a family of closed paths 30 that covers the whole closed surface Σ. However, one can anticipate that the definition of dξ on a full curved surface is tricky, as ξ is naturally defined on its local tangent planes 31 . Nevertheless, the calculation turns out to equal that of the integral of the local Gaussian curvature K of the surface Σ, 32 in other words:

χ(Σ) = 1 2π Σ KdS . (2.22)
This is the Gauss-Bonnet theorem. It is a powerful result, because it relates an invariant, characterizing the global topology of a surface, to the curvature, which is a natural property of a curved surface characterizing its local geometry. In particular, the fact that the integral (2.22) is an integer is not obvious at all in general, especially because this integer is unchanged as the surface is deformed, while the curvature, which is defined locally on the surface, changes.

An abstract curvature defined by a continuous family of complex vectors

In this thesis, we are interested in continuous families of complex vectors defined over R 3 (which can thus be defined on closed surfaces of R 3 ), namely the waves' polarization relations. For instance, as explained in 1.3.3, a plane-wave solution of the f -plane shallow-water equations (1.40)-(1.41)-(1.42) is characterized by a band index n (n = -1, 0 or +1) and the value of (f, k x , k y ), which is a triplet of continuous parameters. The eigenfrequency ω n (f, k x , k y ) is thus a function of this triplet of parameters, but also the normalized eigenvectors Ψ n (f, k x , k y ) of the matrix (1.43), which is the vector of polarization relations whose components give the relative amplitude and phase between the different wave fields: it is therefore a continuous family of vectors of C 3 defined over a three-dimensional space of parameters.

In the same way as the Euler characteristic of a surface is given by the number of singularities of a field of vectors defined over the surface, one can thus wonder:

Which invariant counts the number of singularities of a complex vector field on a closed surface, and is there a curvature associated to it through a relation as (2.22)?

The notions of curvature and phase singularity are obviously less intuitive for complex vector fields, especially since until now phase singularities could always be visualised with the change of vector's angle in a local plane. Therefore, one must keep in mind that the concept of curvature that we are about to describe is rather abstract, contrary to the Gaussian curvature of a surface. We will show in this thesis 30 Encircling but not passing through the topological defects where ξ is not defined.

31 Indeed the definition of dξ has to take into account the transformation of the tangent plane as one travels across the curved surface. The correct definition involves notions of differential geometry such as the connection, holonomy and parallel transport [START_REF] Guggenheimer | Differential geometry[END_REF], which we shall not develop here beyond their intuitive description. 32 On a point M of the surface, let us consider the unit vector n normal to the surface. One can pick a plane containing n, whose intersection with the surface defines a curve of algebraic curvature κ at M . Noting κ 1 and κ 2 respectively the maximal and minimal curvatures -the inverse of the curvature radii (see figure 2.10a) -of all the curves that can be defined in this way at the point M , the Gaussian curvature of the surface at this point is defined as

K = κ 1 κ 2 .
that this abstract quantity has in fact very concrete physical manifestation in the spectral properties of fluid waves (chapter 3) and in ray tracing (chapter 4).

In the following we will introduce the curvature (geometric, local) and topological invariant (integer, global) characterizing these continuous families of complex vectors, through a simple and historical example. The application to shallow-water waves will be developed right afterwards, in 2.3.3.

The Berry curvature and the Chern number in a simple case

In the same vein as the eigenvectors of the f -plane shallow-water model, defined on the (k x , k y , f )parameter space (see figure 2.11), let us consider the eigenvectors of the Hermitian matrix

H = B z B x -iB y B x + iB y -B z , (2.23)
which depends on three real, continuous parameters gathered in a triplet B = (B x , B y , B z ). 33 The choice of notation is not insignificant: although the emergence of the geometrical phase in physical systems (outside of the context of geophysical fluid dynamics or astrophysics) had already been addressed by mathematicians [START_REF] Hörmander | The weyl calculus of pseudo-differential operators[END_REF][START_REF] Maslov | The Complex WKB Method for Nonlinear Equations I: Linear Theory[END_REF] and physicists [START_REF] Pancharatnam | Generalized theory of interference and its applications[END_REF][START_REF] Thouless | Quantization of particle transport[END_REF][START_REF] Shapere | Geometric phases in physics[END_REF], the interest of the entire physics community over this aspect increased considerably in 1984 after the work of [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF], who demonstrated that a quantum system, driven adiabatically through some parameter space and back to its original position, gains a geometrical phase factor which does not depend on the time taken, but only on the geometry of the parameter space 34 , much like the plane of oscillation of the Foucault pendulum (section 2.1). In his paper, he took the example of a magnetic dipole, aligned with an external magnetic field B by the Zeeman effect, whose dynamics is described by the Schrödinger equation with an Hamiltonian as (2.23). The emergence of this geometrical phase in the context of geophysical fluid dynamics will be discussed in chapter 4.

As we want to define a geometrical curvature for continuous families of complex vectors, let us consider the two eigenvectors of the matrix (2.23). This matrix has two eigenvalues ω ± = ±B, 35 which describe two bands in the (B x , B y , B z )-parameter space, with the notable exception of B = (0, 0, 0), where the unique eigenvalue 0 is degenerate and the eigenvectors are not defined. The eigenvectors associated to the eigenvalues ±B, respectively noted Ψ ± (B), are normalized 36 vectors of C 2 , and they are thus defined up to a phase, i.e. a factor e -iζ(B) with a real phase function ζ. In that sense, what is actually well-defined here is two (±) continuous families of eigenspaces over the (B x , B y , B z )-parameter space, also called eigenbundles 37 . Building upon the concepts previously introduced, in section 2.2 and 2.3.1, one may wonder whether it is possible to continuously define Ψ + or Ψ -on a closed surface of the parameter space, or not.

Let us consider a sphere in the B space, centered at the origin, and denote by (φ, θ) the spherical coordinates of the vector B. A possible choice for the + state is

Ψ + (B) = cos θ 2 e iφ sin θ 2 , (2.24)
but this expression is multi-valued at the south pole (θ = π). In that sense, expression (2.24) has a 33 Since the system entirely depends on these parameters, the B-space may as well be called the phase space. 34 This aspect is precised in chapter 4.

35 Where B = B 2 x + B 2 y + B 2 z is the norm of the vector B. 36 We define naturally the normalization by means of the canonical scalar product of complex vectors: if 37 In the following we may indifferently refer to the normalized eigenvectors Ψ or their eigenspaces as eigenbundles or vector bundles.

Ψ = z z ′ ∈ C 2 , |Ψ| 2 = Ψ † Ψ = |z| 2 + |z ′ | 2 , with † the Hermitian conjugation, Ψ † = z * z ′ *
phase singularity at the south pole, one of a similar nature as in the different situations presented in 2.2. However, one can apply a gauge change on expression (2.24), multiplying it for instance by e -iφ , in which case the field of eigenvectors is regular at the south pole but becomes singular at the north pole (θ = 0). Actually, owing to the presence of the degeneracy point (0, 0, 0) inside the sphere, there is always a phase singularity for Ψ + (and the same goes for Ψ -) defined over the sphere, and no gauge can remove it. In this case, this singularity is manifested in the geometric phase taken by the eigenvector Ψ ± when transported 38 along a closed path P, which is equal to

P iΨ ± (B) † dΨ ± (B) .
(2.25)

With this definition, expression (2.25) is not necessarily a multiple of 2π (see figure 2.10) and should not be confused with the winding number γ(P) that has been discussed from the beginning of this chapter, especially because it is not as easy to define the phase of a complex vector as it is for a real vector in a plane. Nevertheless, the singularities of Ψ ± on a closed surface (say, a sphere centered at the origin) can be counted with the global 39 counterpart of expression (2.25), divided by 2π. This quantity can be expressed as a flux integral, by means of the Stokes theorem 40 :

γ ± = 1 2π F (±) • dB with F (±) = ∇ × iΨ † ± ∇Ψ ± , (2.26)
where dB is an oriented element of the closed surface and ∇× is the curl in the B-parameter space. The quantity F (±) is known as the Berry curvature of the waveband ± and is actually more handy than the object in the integral (2.25), for the following reasons: first, the quantity iΨ † ± dΨ ± is gauge-dependent, i.e. it depends on the choice of the phase implied in the definition of the eigenvectors 41 Ψ ± whereas the Berry curvature does not depend on the gauge 42 . In that sense the Berry curvature is purely the footprint of the geometry of the complex eigenspaces defined over parameter space, and not that of an arbitrary gauge. Second, the eigenvectors are singular somewhere on the surface, so the integral (2.25) can be awkward to express for an arbitrary path, as the very essence of a phase singularity relies on the fact that the eigenvectors cannot be differentiated everywhere on a closed surface 43 . In contrast, the Berry curvature is well-defined everywhere except at the degeneracy point B = (0, 0, 0) (see [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] and appendix D.1). The calculation is developed in [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] and yields

F (±) (B) = ∓ B 2B 3 .
(2.27)

Remark: The geometrical phase (2.25) is equal to the flux of the Berry curvature (2.27) through an arbitrary oriented surface bearing on the closed circuit P, 44 which is equal to half the solid angle enclosed by path, up to a sign. This feature is strikingly similar to the rotation angle of a vector that has been transported along a closed path on a curved surface (see figure 2.10).

To summarize, in this example, the phase singularities of the eigenvectors Ψ ± are the manifestation of the curvature of the band's eigenspaces defined over a three-dimensional parameter space, i.e. its 38 We shall not develop any further the concept of transport in this case, because it appeals to some notions from differential geometry such as the parallel transport and the holonomy of a connection. These notions are presented in detail in the book [START_REF] Guggenheimer | Differential geometry[END_REF] (chapters 13 and 14), for instance, and discussed in the context of Berry's paper [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] in [START_REF] Simon | Holonomy, the quantum adiabatic theorem, and berry's phase[END_REF][START_REF] Aharonov | Phase change during a cyclic quantum evolution[END_REF].

39 For paths covering the whole surface. 40 Generally speaking, the connection iΨ † ± dΨ ± is a 1-form (called the Berry connection) and the surface integral (2.26) is that of its exterior derivative, which is a 2-form usually noted F (±) . In the particular case of a three-dimensional parameter space, it can be expressed in a simpler way as a vector. Note that, since the eigenvectors are normalized, both the connection and the curvature are real.

41 However the integration of the connection iΨ † ± dΨ ± on a closed path is not gauge-dependent. Indeed, if one choose e -iζ(B) Ψ ± (B) instead of Ψ ± (B), with a real smooth function ζ, a term ∇ζ • dB is added to expression (4.3), which vanishes on a closed circuit.

42 Indeed, the curl of ∇ζ is null. 43 Although the singular points of the eigenvectors can be moved thanks to a change of gauge, as in the example given in 2.3.3, they cannot always be completely removed from a closed surface if γ ± ̸ = 0.

44 Provided this surface does not contain the degeneracy point. However, the crucial difference between these two situations is that, for the Berry curvature, it is possible to directly connect the topological integer (Chern number) to the presence of a degeneracy point of the matrix H(B) inside the surface, independently of the shape of the surface itself. An interpretation of this result is to assign a topological charge (the Chern number) to the degeneracy point, for each waveband.

In the next part we show that the geometrical Berry curvature and the topological Chern number that were defined here can be computed for the eigenvectors of the f -plane shallow-water model introduced in 1.3.3 (see figure 2.11), i.e. the vectors containing the polarization relations between the three fields (components of the velocity and elevation) which describe the shallow-water elementary plane-waves.

H( f, ck x , ck y ) = 0 if ck x -if 0 ck y ck x ck y 0 H(B) = ( B z B x -iB y B x + iB y -B z ) ck x ck y f B x B y B z B x B y B z B Ψ n ( f, ck x , ck y ) ck x ck y f Ψ ± (B) (n = -1, 0, + 1)
x y z V(x, y, z) The first row summarizes our introductive example in 2.3.1, the second one summarizes the geometrical and topological properties discussed here in 2.3.2, and the third one shows the equivalent objects and concepts for the plane waves of the shallow-water model, which will be presented with more details in 2.3.3.

Gaussian curvature K(x, y, z) = 1 R 1 R 2 Berry curvature Berry curvature F ± (B) = ∇ × ( iΨ † ± ∇Ψ ±) F n ( f, ck x , ck y ) = ∇ × ( iΨ † n ∇Ψ n) χ = 1 2π ∬ dS K Euler characteristic 𝒞 ± = 1 2π ∬ ⋅ dS F ± First Chern number 𝒞 n = 1 2π ∬ ⋅ dS F n

The first Chern numbers of the shallow-water wavebands

As explained in the previous part, and depicted in figure 2.11, all the ingredients introduced previously to compute the Berry curvature and the Chern number are gathered in the f -plane shallow-water model. In this part I will thus compute topological invariants of this model.

The calculations presented in this part can be found in the supplemental material of [START_REF] Delplace | Topological origin of equatorial waves[END_REF]. The matrix (1.43) introduced in 1.3.3,

H =    0 if k x -if 0 k y k x k y 0    , (2.28)
describes the bulk shallow-water waves in the f -plane approximation. In this part 2.3.3 we will take c = 1 so as to lighten the notation 45 . Strictly speaking, the matrix (2.28) is a function of the parameters (f, k x , k y ) whose eigenvalues and eigenvectors correspond respectively to the frequencies and polarization relations of the bulk waves on the f -plane approximation, described in 1.3.2, i.e. the geostrophic (band n = 0) and Poincaré waves (bands n = ±1):

ω 0 = 0 and ω ±1 = ± f 2 + k 2 , (2.29)
which are functions of the parameters (f, k x , k y ), like the matrix itself. We introduce the notation

k ≡ k 2 x + k 2 y .
As for the normalized eigenvectors of (2.28), we can choose 46 them as

Ψ 0 (f, k x , k y ) = 1 f 2 + k 2    k y -k x if    and Ψ ±1 (f, k x , k y ) = 1 √ 2      kx k ± i f ky k √ f 2 +k 2 ky k ∓ i f kx k √ f 2 +k 2 ± k √ f 2 +k 2      , (2.30)
each of which defines a field of C 3 vectors over the smooth space of parameters (f, k x , k y ), like the C 2 vectors Ψ ± introduced previously in 2.3.2, which were defined over the B-space. In addition to the frequency spectrum, these vectors are an important physical feature of the waves:

• ω n are the frequencies of the plane waves, which provide scalar information on the nature of the waves for every value of the triplet (f, k x , k y ).

• Ψ n are the polarization relations of the plane waves (i.e. the relations between the complex amplitudes of the velocity fields u, v and geopotential height η), which provides geometrical information on the spectrum.

Remark: If f = 0, the eigenvectors (2.30) are real, which is symptomatic of time-reversal symmetry (see for instance the discussion of 2.2.2).

Building upon the notions introduced in 2.3.1 and 2.3.2, let us now study the topology of the eigenspaces of the bands n = -1, 0, +1 defined over parameter space. Earlier we made an important remark, which is that the normalized eigenvectors are defined up to a phase. More precisely, for a fixed band n ∈ {-1, 0, +1}, the vector Ψ n given by expression (2.30) is an eigenvector of the matrix (2.28)

for the eigenvalue ω n , and so is e iζ Ψ n , for any smooth real-valued scalar function ζ of the variables (f, k x , k y ). Now the topological nature of the band n depends on whether the vector field Ψ n is singlevalued in parameter space, and, if not, how many singularities it systematically possesses. Obviously the point (f, k x , k y ) = (0, 0, 0) must be excluded from the analysis because it is the unique degeneracy point of the model, where f 2 + k 2 = 0 is the common eigenvalue of the bands -1, 0 and +1. 47 So the question here is rather whether Ψ n is well-defined over parameter space without the degeneracy point.

For n = 0 expression (2.30) of Ψ 0 is single-valued everywhere in this space, whereas for n = ±1 it is not, as the definition of Ψ ±1 is unclear when k = 0 and f ̸ = 0. To see this with more perspective, let us parameterize the parameter space with spherical coordinates, as in 2.3.2:

k x = f 2 + k 2 sin θ cos φ , (2.31a 
)

k y = f 2 + k 2 sin θ sin φ , (2.31b) f = f 2 + k 2 cos θ , (2.31c)
where (φ, θ) are the longitude and colatitude of parameter space 48 , respectively. With those coordinates, the eigenvector Ψ +1 becomes

Ψ +1 = 1 √ 2    cos φ + i cos θ sin φ sin φ -i cos θ cos φ sin θ    .
(2.32)

46 Again, the eigenspaces are unique, but the definition of the eigenvectors is relative to a choice of gauge. 47 Since the three bands touch precisely at this isolated point, it is called a three-fold degeneracy point. 48 Here we use the convention (kx, ky, f ) instead of (f, kx, ky), which is completely equivalent.

Since expression (2.32) does not depend on the radial coordinate, we can define it on the unit sphere of the parameter space, as in 2.3.2. As expected, Ψ +1 is multi-valued at the north pole (θ = 0) and the south pole (θ = π). Indeed, at these poles, expression (2.32) becomes

Ψ +1 (φ, θ = 0) = e iφ √ 2    1 -i 0    and Ψ +1 (φ, θ = π) = e -iφ √ 2    1 i 0    , (2.33)
which are multi-valued expressions at the corresponding points (figure 2.12a and b). However Ψ +1 can be partially regularized by a gauge transformation. In particular, the eigenvectors

Ψ N +1 = e -iφ Ψ +1 and Ψ S +1 = e iφ Ψ +1 (2.34)
are single-valued everywhere except one pole, respectively: Ψ N +1 is only multi-valued at the south pole and Ψ S +1 is only multi-valued at the north one. Yet it looks like there is still a systematic singularity that cannot be removed. Just as a field of tangent vectors on a closed surface in R 3 has a certain number of singularities, which is related to a topological invariant of the surface (see 2.3.1), we expect that the existence of these singularities is related to the natural topological invariant of the band n, namely its first Chern number.

In order to compute the first Chern number of the waveband n = +1, as explained in 2.3.2, we must introduce the Berry curvature, which in the three-dimensional case reduces to a three-component vector defined as

F (n) = ∇ × iΨ † n ∇Ψ n = ∇ × A n , (2.35) 
here with n = +1, and with the natural gradient in the parameter-space coordinates ∇ = (∂ kx , ∂ ky , ∂ f ).

We can recall that this quantity is real (because Ψ +1 is normalized), defined everywhere but the degeneracy point (here the origin of parameter space, which can be seen as a source generating the curvature)

and does not depend on the gauge chosen to define the eigenbundle. Therefore expression (2.35) would amount the same with Ψ S +1 or Ψ N +1 instead of Ψ +1 . Indeed, from definitions (2.34) we have:

A N +1 = Ψ N † +1 ∇Ψ N +1 = A +1 + ∇φ , and A S +1 = iΨ S † +1 ∇Ψ S +1 = A +1 -∇φ , (2.36)
which obviously yield the same Berry curvature. This stresses an important point: as explained in sections 2.2 and 2.3 of this chapter, singularities arise when one tries to continuously define a complex object over a closed space. Here the eigenvectors of the band +1 are everywhere defined up to a phase, which means that what is actually well-defined is the continuous family of eigenspaces 49 over the unit sphere (which contain the elements Ψ +1 , Ψ N +1 , Ψ S +1 , etc.). Conversely, one will inevitably fail in attempting to define a continuous family of eigenvectors (which amounts to picking one element of the eigenspace at each point), say Ψ +1 , over the same sphere, and this failure is manifested through the singularities. Yet the location of such singularities depends on the choice of the eigenvectors, i.e. the gauge, as demonstrated with the example (2.34), but the Berry curvature does not. Therefore, the Berry curvature provides information on the geometry of the continuous family of eigenspaces, rather than that of the eigenvectors. Now the first Chern number of the band n is given by the flux of the Berry curvature through the unit sphere S:

C +1 = 1 2π S F (+1) • dS = 1 2π θ 0 dθ 2π 0 dφ F (+1) • êr , (2.37)
where êr is the unit vector normal to the sphere, pointing outward. The integral (2.37) can be split 49 To be more specific, since the eigenvectors are normalized, it is a U (1) fiber.

between the two hemispheres (figure 2.12c), and we can apply the Stokes theorem on the equator (θ = π/2) for each of them, separately, using Ψ N +1 for the upper hemisphere and Ψ S +1 for the lower hemisphere, where they are respectively well-defined (see figure 2.12c). Using relations (2.36), expression (2.37) finally yields

C +1 = 1 2π 2π 0 dφ A N +1 -A S +1 • êφ = 1 2π 2π 0 2 dφ = +2 .
(2.38)

In the same way, we would find for the other bands

C 0 = 0 and C -1 = -2 .
(2.39)

The value of C 0 is straightforward because Ψ 0 is single-valued everywhere on the sphere, and C -1 can be obtained directly from the symmetry between the wavebands50 n = +1 and n = -1 (see also appendix D.2).

Ψ S +1 (φ, θ)

Ψ N +1 (φ, θ) k x k y f k x k y f k x k y f dS F +1 c a b
Figure 2.12: One cannot continuously define the normalized eigenvectors Ψ+1 of the inertia-gravity wavebands over a closed surface enveloping the degeneracy point at the origin of the (kx, ky, f ) parameter space. a. The choice Ψ S +1 is singular on the semi-axis {kx, ky = 0, f > 0}. From a complementary point of view, an eigenvector transported along a closed path in parameter space will pick up a phase, which is also the manifestation of a topological property of the fiber bundle. b. The same goes for any other gauge choice, like Ψ N +1 , the singularities are just displaced. c. The Chern number of a waveband is the quantized flux of its Berry curvature through a surface around the degeneracy point. Owing to the presence of this topological charge at the center, the connection can only be defined piecewise.

SUMMARY: THE CHERN NUMBER AND THE BERRY CURVATURE

In this section I introduced the notion of Chern number, which quantifies the unavoidable existence of phase singularities when defining a continuous family of complex vectors over a closed surface in a three-dimensional parameter space, much like the number of singularities of a tangent vector field on a surface is quantized by the Euler characteristic. In particular, when these complex vectors are the eigenvectors Ψ n of a matrix defined over parameter space, a non-zero Chern number may arise when the closed surface envelops a degeneracy point of the band n, in which case the Chern number C n is defined for the band n and the corresponding degeneracy point, and characterizes the topological charge held by this degeneracy point in the three-dimensional parameter space a . Locally, the geometry of the eigenvectors Ψ n in parameter space is described by the Berry curvature, whose integration over the surface yields the Chern number. In this thesis we will always consider matrices such as (2.28), characterizing a wave model, whose eigenvectors Ψ n can be defined as functions of three continuous parameters, for each waveband n. The lesson to be taken from the previous examples (and figure 2.11) is that the Berry curvature and the Chern numbers will always be defined in the same way, in a three-dimensional parameters and around isolated degeneracy points.

a These are reminiscent of the Weyl points.

These concepts may seem rather abstract for now, however in the following section I will present an important result, which embodies the whole motivation for using the notions of Berry curvature and Chern number in the context of geophysical waves. This result is known as the index theorem, whose general scope goes far beyond the context of this thesis. In our case it relates the Chern number introduced in this section to a spectral property of waves propagating in a medium with inhomogeneous parameters. In chapter 3 I will demonstrate the manifestation of this theorem in other fluid models, and first I will develop it for the equatorial shallow-water model in the next section 2.4.

Bulk-interface correspondence for differential operators

We saw in 1.3.4 the Matsuno spectrum for the equatorial β-plane shallow-water waves, in which two modes transit from one waveband to another when the zonal wave number k x is increased. This is what is called a spectral flow. The purpose of this section is to explain how this spectral flow can be predicted from the knowledge of the Chern numbers of the f -plane wavebands computed in the previous part 2.3.3. Concretely, I will show that the Chern number of the homogeneous (f -plane) or bulk problem's waveband n is equal to the number of modes transiting to the similar band of the dual inhomogeneous (β-plane) problem as k x increases, and that these modes are localized at the interface where f takes the value for which the f -plane wavebands are degenerate (f = 0, i.e. at the equator). This will thus be referred to as the bulk-interface correspondence, which will be generalized to other fluid models in the following chapter.

The symbol of a differential operator

To compute the Chern numbers in 2.3.3, we considered the f -plane model, which allowed us to derive the matrix (2.28) with a direct Fourier transform of the shallow-water equations. Now there is a more formal procedure to obtain this matrix without the necessity to consider f constant, which is the correct operation regarding the index theorem. This procedure is known as the Wigner-Weyl quantization. The matrix obtained from the dynamical equations through this procedure is called the symbol of the differential operator ( Ĥ, such as (1.72) defined in section 1.4). I will define this operation in the context of the shallow-water model, without loosing any generality for the further extrapolation of chapter 3.

The symbol of the shallow-water wave operator

As suggested in the previous section, some spectral properties of a fluid model can be connected to the topology of a matrix characterizing the bulk plane-waves of this model. For instance, the shallow-water waves introduced in 1.3.2 (with constant depth) are described by the linearized dynamical equations (1.40)-(1.41)-(1.42), which one can put in the Schrödinger-like form, like the general 3D equations introduced in 1.4.1: 

i∂ t ψ = Ĥψ , with Ĥ = i    0 f (y) -c∂ x -f (y) 0 -c∂ y -c∂ x -c∂ y 0    , ( 2 
H S =    0 if (y) ck x -if (y) 0 ck y ck x ck y 0    .
(2.41)

The matrix (2.28) is formally a function of the phase-space variables y, k x and k y , so it is not related to the operator Ĥ of equation (2.40) through a Fourier transform 52 , but rather through a kind of generalized Fourier transform that accounts for the variations of the parameter f , which is called the Wigner transform. The matrix H S is called the symbol of the operator Ĥ and is formally the image of the latter through that transform. This is an important point for the present study, because we are about to connect spectral features of the fluid waves with varying parameters, which is a problem described by an operator such as (2.40), to the topological properties introduced in the previous section 2.3, which are specific to matrices such as (2.41), and the Wigner transform establishes a correspondence between both objects.

General case: the Wigner-Weyl mapping

Let us first consider a scalar differential operator 53 Ĥ, acting on complex scalar functions of the position x ∈ R d . In the example of the operator (2.40), d = 2. Generally speaking, such an operator is a sum of functions of x multiplied by some partial derivative in the coordinates of x -at least in the context of this thesis 54 -like the coefficients of (2.40). If the operator respects certain properties [START_REF] Hörmander | The weyl calculus of pseudo-differential operators[END_REF], the following expression is valid:

Ĥψ(x) = 1 (2π) d H S x + x ′ 2 , k ψ(x ′ )e ik•(x-x ′ ) dx ′ dk .
(2.42)

H S (x, k
) is called the symbol of the operator Ĥ and is bijectively associated to it through relation (2.42), called the Weyl correspondence or Weyl quantization [START_REF] Hörmander | The weyl calculus of pseudo-differential operators[END_REF][START_REF]Quantum mechanics as a statistical theory[END_REF][START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF], which we can write Ĥ = Ôp(H S ). The Wigner transform corresponds to the inverse map, written H S = σ( Ĥ). As suggested earlier, the idea behind that correspondence is a generalization of the Fourier transform to quantities that are more complex than functions (operators) and that are not invariant 51 The equatorial problem, i.e. with f = βy, admits 1D wave solutions trapped at the equator, described in 1.3.4. 52 This would work only if f were constant, which is the f -plane approximation discussed in 1.3.3. 53 The definition will be easily extrapolated to matrix operators, i.e. square matrices of scalar operators, afterwards: the symbol of a matrix of scalar operators is simply the matrix of symbols of its components. 54 The concept can be generalized to pseudo-differential operators [START_REF] Hörmander | The weyl calculus of pseudo-differential operators[END_REF].

under translation in space. As such, the symbol is a representation of the operator in the phase space of both position x and wave vector k. For instance, the symbol (2.41) is a function of k x , k y and y through the Coriolis parameter. This is a convenient mapping for different reasons:

• It is bijective, linear and transfers the Hermiticity of the operator to the symbol 55 and vice-versa.

• It transforms scalar operators (which are noncommutative objects) into scalar functions (which are commutative) 56 of the phase-space variables.

• It takes into account the space scale over which the coefficients of an operator vary: indeed if the operator depends on constant parameters and the space derivatives (∂ x , ...), we want an operation that corresponds to the intuition, which is simply to replace ∂ x by ik x , like the Fourier transform.

However, if the operator has a coefficient that varies in the y direction over a typical scale L y , for instance, we want an operation that is still close to the Fourier transform when the operator is applied to test functions rapidly varying in the y direction (over a smaller scale λ y ), with a correction that is typically of order λ y /L y , and thus that is as small as the coefficients are slowly varying. Moreover, we expect that the multiplication by a function f (x) of the position operator should be associated to the symbol f (x).

It turns out that the operation (2.42) matches all those requirements. For example, we can show the operator-symbol correspondences for the following basic examples:

σ(∂ y ) = ik y , (2.43a) σ(∆) = -k 2 , (2.43b) σ(f (x)) = f (x) , (2.43c) σ (c(x)∂ y ) = ik y c(x) - 1 2 ∂ y c . (2.43d)
For instance relation (2.43d), which will be a useful result throughout the next chapters, meets the requirements previously mentioned. First of all, it proves that, in general, σ( Â B) ̸ = σ( Â)σ( B), 57 otherwise the operation would be incompatible with the fact that operators do not systematically commute, even in the scalar case: an obvious example is the operators in the left-hand side of equation (2.43d), which do not commute whenever the parameter c depends on y. Second, if c varies slowly in the y direction, over a distance L y , the main term is of order ck y ∼ c/λ y whereas the correction (second term in the right-hand side) is of order c/L y , which is indeed a small correction for rapidly varying functions.

This last property of the Wigner-Weyl mapping makes it a particularly convenient tool to address problems of wave propagation in slowly-varying media, and thus will be central in the analysis of ray tracing [Littlejohn and Flynn, 1991a,b;[START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF], which we will address in chapter 4.

Historical overview of the Wigner-Weyl mapping in physics

The Wigner quantization was originally introduced by H. Weyl in 1927 [START_REF] Weyl | Quantenmechanik und gruppentheorie[END_REF] with the purpose of formally connecting the classical phase-space observables, whose dynamics is usually described 55 See for instance [START_REF] Hall | Quantum theory for mathematicians[END_REF], p. 266: in the scalar case, the operator is self-adjoint if, and only if its symbol is real. A matrix of operators (or simply matrix operator)

Ĥ is Hermitian if R d dx ψ † 1 Ĥψ 2 = R d dx ψ † 2 Ĥψ 1 *
for any C n -vector functions ψ 1 (x) and ψ 2 (x), where * is the complex conjugation and † is the matrix Hermitian conjugation (by extension, one can use the same notation for the Hermitian conjugation of operators, i.e. Ĥ † = Ĥ). For the symbol, which is a matrix of scalar functions, the Hermiticity is simply H † S = H S . Therefore, by extension, a matrix operator is Hermitian if, and only if, its symbol is a Hermitian matrix.

56 However, be careful that we deal here with matrices of symbols, which are noncommutative objects. 57 In other words, the symbol of a product (i.e. the composition) of operators is not given by the direct product of the symbols, even in the scalar case. In the matrix case, the source of noncommutativity is double : that the matrices and that of their elements which are scalar operators. Generally speaking, the correct mapping is the Moyal product (see for instance [START_REF]Quantum mechanics as a statistical theory[END_REF], or the supplemental material of [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]), however we shall not give detail on this in the present thesis, because we will only encounter simple products of operator such as in relation (2.43d).

with the formalism of Hamiltonian mechanics, to their equivalent operators in quantum mechanics, in agreement with Schrödinger's picture 58 . In 1932, the Wigner transform was used by E. Wigner to compute the quantum correction of the Boltzmann probability distribution at low temperature [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF]. Since it connects a quantum description of a physical system to its classical counterpart, this approach is usually referred to as semiclassical.

Later in the '70s, the Weyl quantization became a powerful tool to develop the mathematical theory of pseudo-differential operators [START_REF] Hörmander | The weyl calculus of pseudo-differential operators[END_REF] and extend the Wentzel-Kramers-Brillouin (WKB, or sometimes WKBJ) approximation, also originally developed in the semiclassical context [START_REF] Brillouin | La mécanique ondulatoire de schrödinger; une méthode générale de résolution par approximations successives[END_REF][START_REF] Kramers | Wellenmechanik und halbzahlige quantisierung[END_REF][START_REF] Wentzel | Eine verallgemeinerung der quantenbedingungen für die zwecke der wellenmechanik[END_REF], to more complex mathematical problems than the 1D Schrödinger equation [START_REF] Maslov | The Complex WKB Method for Nonlinear Equations I: Linear Theory[END_REF].

The basis of the WKB approximation can be expained as follows: consider that a scalar field ψ(y), function of the spatial coordinate y, satisfies an ordinary differential equation (which can be nonlinear) whose parameters vary slowly (over L y ) in comparison with a solution's length scale λ y . This can be formulated in terms of the small parameter ε = λ y /L y . 59 The WKB ansatz then basically consists in writing Now the WKB approximation and ray-tracing methods were already popular for some time in other fields than quantum mechanics, like fluid dynamics for instance [START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF][START_REF] Gill | Atmosphere-ocean dynamics[END_REF]], yet it was not until the early '90s that physicists began to wonder how to define the quantization of multi-component wave fields [Littlejohn and Flynn, 1991a,b;[START_REF] Emmrich | Geometry of the transport equation in multicomponent wkb approximations[END_REF]. This led to a new interest of the geophysical community in the geometrical aspects of ray tracing in continuous media, with the use of the Wigner transform to address the transport equations of multi-component fluid waves [START_REF] Ryzhik | Transport equations for elastic and other waves in random media[END_REF][START_REF] Vanneste | On wave action and phase in the non-canonical hamiltonian formulation[END_REF][START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF]. We will return to the WKB approximation for such multi-component wave problems in chapter 4, where we will propose a derivation of the ray-tracing equations which accounts for the complex geometry of the symbol, i.e. the Berry curvature introduced in the previous section 2.3.

ψ = exp (iΦ) , with Φ = ε -1 Φ 0 (εy) + Φ 1 (εy) + εΦ 2 (εy) + ε 2 Φ 3 (εy)... , ( 
In conclusion, the Wigner-Weyl mapping (2.42) is the correct way to relate a fluid wave problem with varying parameters, given by a set of partial differential equations that can be cast in the form (2.40), to a matrix such as (2.41), which is formally a function of both the position and wave vector, i.e.

the phase-space coordinates. Incidentally, the eigenvalues and eigenvectors of the symbol (2.41) with constant parameters coincide with the bulk plane waves' dispersion and polarization relations, given by 58 For instance, the motion of a classical 1D particle of mass m and momentum p in a potential V (x) is described by the conservation of the classical Hamiltonian or mechanical energy H = p 2 /2m + V (x) with the phase-space variables (x, p). In quantum mechanics, it is well-known that the correct quantization of this classical observable is the quantum Hamiltonian Ĥ = -(ℏ 2 /2m)∆ + V (x), which is a 1D operator whose symbol is the mechanical energy of the classical particle. In its original form, this quantization method expresses the anti-commutation of two scalar quantum operators â and b (for instance the famous Heisenberg principle, [x, p] = iℏ) as an expansion of the symbol of their bracket, [â, b], in powers of ℏ (by means of the Moyal product [START_REF]Quantum mechanics as a statistical theory[END_REF], see for instance [START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF] or the appendix of [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]), so that one recovers classical mechanics as ℏ → 0. The latter is not an important point in the context of this thesis, therefore we assimilate the momentum p to the wave vector k, i.e. we consider ℏ = 1. 59 In quantum mechanics, the WKB approximation and the Wigner transform both are expressed as an expansion in ℏ [START_REF]Quantum mechanics as a statistical theory[END_REF].

the eigenvalue equation (1.43). Therefore, the topological properties presented in the previous section 2.3, in particular for the matrix (2.41) in 2.3.2, are actually those of the symbol, generally speaking. The symbol's topology is connected to the spectral properties of the corresponding differential operator through the index theorem, which will be introduced in the next part, always with the example of shallow-water waves.

The spectral flow of equatorial waves

In 1.3.4 we noticed the existence of two modes in the Matsuno spectrum of equatorial waves, which cross the gap from the Rossby modes to the inertia-gravity modes, as k x is swept (see figure 1.15). This property is called a spectral flow [START_REF] Volovik | The universe in a helium droplet[END_REF]. In this part I will provide a mathematical argument to quantify this +2 spectral flow index in terms of an analytical index related to the shallow-water operator (2.40). In particular, I will show that there is a correspondence between this analytical index and the topological index of its symbol, a notion that was introduced in the previous part 2.4.1. The arguments presented in this part can be found in a more general form in Delplace's notes [START_REF] Delplace | Berry-chern monopoles and spectral flows[END_REF]. At the end of this part I will also discuss an interpretation of the spectral flow index in terms of the zeros of the shallow-water eigenfunctions, which originates from a personal reflection of Iga's works [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. The operator (2.45) can be easily decomposed on the following Hermitian matrices 60 :

S 1 =    0 i 0 -i 0 0 0 0 0    , S 2 =    0 0 0 0 0 1 0 1 0    , S 3 =    0 0 1 0 0 0 1 0 0    , (2.46) 
and finally it can be written as

Ĥ = cβ 2 âS -+ â † S + + κS 3 . (2.47)
We shall explicit the different quantities intervening in the above expression. The dimensionless parameter κ = k x 2c/β will be referred to as the spectral-flow parameter, which can vary continuously from -∞ to +∞ as the one-dimensional Fourier space is swept. We also introduced the 3-by-3 matrices S ± = S 1 ± iS 2 , which are the adjoints of each other, and the operators

â = Y + ∂ Y √ 2 and â † = Y -∂ Y √ 2 , (2.48)
which act on complex scalar functions of the variable Y = y/L eq = y β/c.

Important remark on the form of expression (2.47): This decomposition is motivated by the fact that, at large k x , i.e. in the short wavelength limit, the effects of rotation are negligible and 60 Interestingly, these matrices are a representation of the spin 1.

thus the modes are those of the non-rotating, one-dimensional shallow-water model. This suggests the decomposition of the space of complex vector functions on the following basis:

{Ψ p,m (Y ) = h p (Y )Φ m | p ∈ N, m = -1, 0, 1} , (2.49)
where the functions h p (Y ) are the Hermite functions introduced in equation (1.51) 61 and Φ m are the normalized eigenvectors of the matrix S 3 (whose eigenvalues are m = -1, 0, 1):

Φ -1 =    i/ √ 2 0 -i/ √ 2    , Φ 0 =    0 1 0    , Φ +1 =    i/ √ 2 0 i/ √ 2    .
(2.50)

Note that the vectors (2.50) are the solutions of the non-rotating 1D case (β = 0 and ∂ y = 0).

This basis is particularly convenient regarding the operators involved in expression (2.47), because â (resp. â † ) decreases (resp. increases) the index p of h p (until eventually âh 0 = 0) while S -(resp. S + ) decreases (resp. increases) the value of m (with S -Φ -1 = 0 and S + Φ +1 = 0). Therefore the operator D = âS -transforms Ψ p,m into Ψ p-1,m-1 and its adjoint D † = â † S + transforms Ψ p,m into Ψ p+1,m+1 , up to a scalar factor (see figure 2.13).

Manifestation of the β term as a splitting and exchange of modes

Now when one takes a close look at expression (2.47) at large wave numbers (i.e. |κ| ≫ 1), it is clear that the dynamics is completely dominated by the term ck x S 3 . In this asymptotic limit 62 , therefore, the modes are indexed by p and m, the eigenvalues of Ĥ are close to 63

ω p,m = mck x , with m = -1, 0, 1 , (2.51) 
and the functions of the basis (2.49) are correct eigenfunctions 64 of the operator (2.47) in the limit ϵ → 0. In physical terms, we recover the geostrophic and gravity surface modes at low wavelengths, where the effect of rotation is negligible. Incidentally, the modes m = -1, 0 and 1 are well-separated in frequency. However, if one zooms on each branch, the correction 65 induced by β is manifested as a splitting of the non-rotating wavebands into discrete branches 66 . At low wave numbers (|κ| ∼ 1), the effect of β is stronger and the term D + D † in expression (2.47) induces the exchange of the different modes p of the bands m, which appears clearly in the Matsuno spectrum of shallow-water equatorial waves 67 : indeed, it seems that the first branches of the positive-frequency inertia-gravity modes (m = +1) in the limit k x → +∞ are not the same as in the limit k x → -∞ (see figure 2.13).

The spectral flow indices of Ĥ

In other words, the β-effect induced by the term D + D † seems to provoke the transition of some branches of modes from the band m = 0 to the band m = +1 (and from m = -1 to m = 0, equivalently), as k x goes from -∞ to +∞. In this sense we can call this property a spectral flow, and here κ is designated as the spectral-flow parameter. To count these modes that the gravity waveband gains as k x is swept, we must count the number of modes (p, m = +1) at k x → +∞ that are not paired with a mode

(p ′ , m = +1) when k x → -∞.
Owing to the symmetry of the Hamiltonian (2.47) 68 , the transformation 61 The operators â and â † act on the Hermite functions hp as âhp = √ ph p-1 and â † hp = √ p + 1h p+1 62 Also called semi-classical limit. 63 Up to a relative correction of order ϵ = κ -1 . 64 This is in agreement with the asymptotic limit (κ → ±∞) of the solutions given in 1.3.4, and the spectrum of figure 1.15a. 65 In terms of the semi-classical parameter ϵ = κ -1 . 66 For the groups of inertia-gravity modes (m = ±1), the frequency splitting is of order √ βc/κ (see expression (1.52) derived in 1.3.4). Generally speaking, the presence of a gap in a flow model induces the splitting of the bulk wavebands into discrete branches [START_REF] Faure | Manifestation of the topological index formula in quantum waves and geophysical waves[END_REF].

67 Note that the index p here is not the same as the index n used in the exact expression of the eigenvalues and eigenmodes provided in 1.3.4. 68 We recall that, owing to the realness of the initial problem, if the operator Ĥ(kx) admits an eigenvalue ω, then

m = + 1 -3 -1 1 3 -3 -1 1 3 ω k x m = 0 m = -1 p = 0 p = 1 p = 2 p = 3 p′ = 1 p′ = 0 Δ𝒩 +1 = + 2 Δ𝒩 0 = 0 Δ𝒩 -1 = -2 D2 V Figure 2
.13: The spectral flow of equatorial waves as a manifestation of an analytical index. The +2 imbalance of modes m = +1 between kx → +∞ and kx → -∞, which is equal to the imbalance between the modes m = +1 and m = -1 at kx → +∞, can be expressed mathematically as an analytical index, which is the dimension of the kernel of the operator D2 .

k x → -k x is equivalent to m → -m.
Therefore the number of modes transiting to the upper gravity waveband is equal to the difference of modes between the groups m = +1 and m = -1, when k x → +∞.

In this limit, there is a direct mapping between these groups of modes, given by the action of D2 and D †2 : 

D2 : Ψ p,m=+1 → Ψ p ′ ,m=-1 D †2 : Ψ p ′ ,m=-1 → Ψ p,m=+1 , with p ′ = p -2 . ( 2 
Ĥ = Ô p(H S ) σ( Ĥ) = H S 𝒞 m Δ𝒩 m -3 -1 1 3 -3 -1 1 3 ω ω k x k x k y

Remark on the zeros of the eigenfunctions

To conclude this section, I wish to discuss another, perhaps more physical, manifestation of the spectral flow in terms of the zeros of the modes. The starting point of this reflection is the reference [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF], by Iga, in which he discusses the behavior of the shallow-water modes in a rotating channel in different asymptotic limits of the spectrum. The problem of Iga is similar to the one described in 1.3.4 and in the present part: the medium is considered invariant in the x direction, thus allowing the search of wave solutions e i(kxx-ωt) , and the parameter f can vary in the y direction 72 . The only two differences with the equatorial model presented here is that Iga imposes two boundaries at y = Y 1 and 69 This relation can sometimes be found in the alternative form ∆Nm = -Cm, as in [START_REF] Delplace | Berry-chern monopoles and spectral flows[END_REF]. This artificial difference is due to the definition of the parameter-space orientation, as will be explained in 3.1.4.

70 I go back to labelling them with n after that. 71 Note that, in the inhomogeneous problem, the wavebands are split into wave branches that are still separated in distinguishable groups (especially in the semi-classical limit k → ∞, in which one recovers the homogeneous problem), which we can still call wavebands. 72 The mean depth H can also vary in [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF], but that is not important here, we can consider it constant. Here we chose v = 0 on both extremities (impenetrable walls), which is one of the many cases studied by Iga. The channel is represented on the left. For each asymptotic limit (a, b, c and d), the shallow-water equations yield a Sturm-Liouville-type wave problem, thus the modes in each limit can be ordered by the number of zeros of some field. In the case represented, the first mode (p = 0) in the limit (c) converts into the first mode of (b), while the first mode of (a) becomes the second mode (p = 1) of (b). Thus, in this case, there is a mode transiting through the gap from the geostrophic band to the inertia-gravity band, called a Kelvin wave. Generally speaking, one can use the zeros of the eigenfunctions to identify the existence and behavior of transiting modes depending on the different boundary conditions, as explained in details in [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF]. The spectrum on the right is the same as the middle one with the frequency in log-scale, so as to better see the discrete low-frequency modes.

y = Y 2 (hence the term "channel", see figure 2.15) and that f > 0: in other words, this is not an equatorial channel.

The modes in this channel consist in discrete frequency branches, as in the Matsuno spectrum, whose precise behavior depend on the parameters and the boundary conditions. In particular, Iga considered the four possible asymptotic limits for the modes' frequencies:

• (a) ω has a finite limit as k x → 0.

• (b) ω has an infinite limit as k x → ∞ (non-rotating limit).

• (c) ω has a null limit as k x → 0 (quasi-geostrophic).

• (d) ω has a finite (possibly null) limit as k x → ∞. 

d dy P (i) (y) dϕ (i) dy + Q (i) k,ω (y)ϕ (i) = 0 α (i) ϕ (i) + β (i) dϕ (i) dy = 0 at y = Y 1 , and 
γ (i) ϕ (i) + δ (i) dϕ (i) dy = 0 at y = Y 2 (Dirichlet conditions) ,
(2.56)

where P (i) (y) is a strictly positive function and

Q (i)
k,ω (y) is a function that depends on k and ω. Thus the frequencies in those limits can be naturally ordered with the indices p = 0, 1, 2..., where p is the number of zeros of the field in ]Y 1 , Y 2 [. By definition, p = 0 indicates the branch that is closest to the gap in a given asymptotic limit, so the transition of a branch between the quasi-geostrophic and the inertia-gravity modes can be expressed in terms of the behavior of the modes p = 0 in each limit.

More precisely, Iga showed that most boundary conditions do not allow the number of zeros of u(y) (zonal velocity field) to change as k x is swept, for a given branch. Moreover, in each of the four asymptotic limits, u can be expressed by means of the field ϕ (i) of the corresponding Sturm-Liouville problem.

Consequently, if one compares the modes p = 0 in the respective limits (a) and (b), and notice that the corresponding functions u do not have the same number of zeros, it means that a mode transits (see figure 2.15). By means of these arguments, Iga thus managed to classify the transition modes of a rotating channel by their asymptotic behavior, which depends on the boundaries. In that sense, the Yanai and Kelvin modes are a particular case of transition modes, as their existence does not rely on the boundaries, just on f changing sign, i.e. the presence of the equator. If one looks at the inertia-gravity branches of the Matsuno spectrum, the first one (p = 0) in the limit k x → -∞ becomes the third one in the limit k x → +∞, as the Kelvin and Yanai wave transit and become respectively the first and second modes in this limit (see figure 2.13). Therefore the number of zeros of u for an inertia-gravity mode increases by +2 as k x goes from -∞ to +∞ (figure 2.16). Now since there is no boundary in this case, the only way for u to win or lose zeros, as one follows a given inertia-gravity branch, is for two zeros to disappear simultaneously at the same point, where u and du/dy thus vanish. This situation would not be allowed for a Sturm-Liouville problem, however it is possible here because of the equator, which is where u gains two zeros as k x goes from negative to positive values. This happens for all inertia-gravity branches (see figure 2.16).

The fact that the number of zeros of these eigenfunctions increases by +2 as k x changes sign (and that the two zeros appear simultaneously at the equator for all the inertia-gravity branches) can be viewed as a manifestation of the spectral flow. Exact expression of the eigenfunctions of Ĥ in the basis (2.49)

In 1.3.4 we gave the exact solution for the equatorial modes. Using the basis (2.49) previously defined, we can rewrite expressions (1.51) and (1.53) (setting V 0 = 1) as

ψ = h n (Y )Φ 0 + √ cβ ω -ck x h n+1 (Y )Φ +1 + √ cβ ω + ck x h n-1 (Y )Φ -1 , (2.57)
where n ⩾ 1 and ω is one of the three solutions of the dispersion relation (1.52). Expression (2.57) clearly shows that, at finite wave numbers, the eigenmodes are mixed states involving all three values of m = -1, 0, +1. However, in the high wave-number limit, if ω is a Rossby frequency (ω → 0 when k x → ∞), the term m = 0 dominates the above expression, whereas if ω is an inertia-gravity frequency (ω ∼ ±ck x when k x → ∞), the terms m = ±1 are the dominant ones.

Remark: For a given n ⩾ 1, in the limit k x → +∞, expression (2.57) is dominated by the component h n+1 (Y )Φ +1 for the band m = +1 and h n-1 (Y )Φ -1 for the band m = -1, thus exhibiting once again the +2 mode imbalance through the number of zeros of the eigenfunctions, as discussed previously.

This illustrates the idea that the spectral flow in this model occurs around finite wave numbers, where the Rossby modes and inertia-gravity modes are mixed, while at high wave numbers there is no mode mixing and the different bands are well separated. In particular, the spectral-flow modes can be expressed as Yanai :

ψ Y = h 0 (Y )Φ 0 + ω √ cβ h 1 (Y )Φ +1 , (2.58a) Kelvin : ψ K = h 0 (Y )Φ +1 .
(2.58b) Expression (2.58a) confirms that the Yanai modes behave as the Rossby modes in the low-frequency

limit (|ω| ≪ √ cβ)
, where it is a mode p = 0, and as a Poincaré wave in the high-frequency limit (|ω| ≫ √ cβ), where it is a mode p = 1. Moreover one can notice that both functions (2.58) are in the kernel of D2 . The particularity of expression (2.58b) for the Kelvin wave is that it does not seem to involve the low-frequency waveband (there is no term m = 0). Indeed, we say that the Kelvin wave transits from the Rossby modes to the inertia-gravity modes, which is true, stricly speaking. However, when looking at the Matsuno spectrum, it rather looks like it transits directly from the band m = -1 to m = +1, contrary to the Yanai wave which really is a mixed Rossby-gravity wave.

SUMMARY: SYMBOL AND SPECTRAL FLOW

We showed that the matrix (1.43), used in 1.3.3 to compute the plane-waves of the f -plane shallow-water model, can be generally (i.e. even with a varying f (y)) obtained through the Wigner transform of the shallow-water wave operator (2.40). The matrix is called the symbol of the operator, and there is a general index theorem that connects the spectral properties of the wave operator to the topological properties of its symbol. To be more precise, the spectral flow of equatorial waves is given by analytical indices characterizing the operator (2.40), and the corresponding topological indices are the Chern numbers computed in 2.3.3.

In 2.4.1 I provided a general definition of the symbol, which will allow us to generalize the analysis of this section to other fluid models. In parallel, I showed that the symbol of an operator can be viewed as its semi-classical representation in the phase-space coordinates a , which was the original motivation for this operation [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF] and will be an insightful consideration for the analysis of ray tracing in chapter 4. In 2.4.2 I showed that the spectral flow of equatorial waves, i.e. the Yanai and Kelvin waves derived in 1.3.4, is a manifestation of an analytical index of the shallow-water operator, and that another manifestation of this index is the evolution of the number of zeros of some eigenfunction. In the following chapter I will present a systematic method, based on what was done in the last two sections 2.3 and 2.4 for the equatorial shallowwater model, and apply this method to a variety of situations derived from the general 3D model introduced in section 1.4 of chapter 1.

a For the equatorial shallow-water model, these coordinates are y, kx and ky, and the symbol does not depend on the zonal coordinate x.

Conclusion of the chapter

We started this chapter by reviewing two manifestations of the geometrical phases in physics: first, the precession of the Foucault pendulum oscillating on the rotating Earth (section 2.1) and second the phase singularties of waves at isolated topological defects enforced by time-reversal-symmetry breaking, through three examples (section 2.2). The purpose of these first section was two-fold. First, to show that topology and geometry are powerful tools to interpret a variety of physical phenomena of very distinct nature, including in fluid dynamics. Second, to show that geometrical phases and topological defects arise when complex mathematical objects (for instance a tangent vector, like the projection of the Foucault pendulum's plane of oscillation on the sphere, or a complex scalar function, as in the examples of section 2.2), fail to return to their original orientation when continuously transported on a curved space, or simply cannot be continuously defined on a curved space. In these two complementary points of view, this failure for continuity is the manifestation of an invariant characterizing the topology of the underlying space, which was the object of the second section 2.3.

In a second time, I introduced the Euler characteristic, which is a topological integer that quantifies the topological defects of a smooth field of tangent vectors on a closed surface, and can be alternatively computed by integration of the surface's curvature. This provided a natural preliminary to the definition of the Chern number, which quantifies the topological defects of a field of complex vectors defined on a closed surface, called a complex vector bundle, and can be computed by integration of the Berry curvature. Now, any multi-component homogeneous wave problem (i.e. with coupled dynamical equations), such as the shallow-water model, generically reduces to an eigenvalue equation: the eigenvalues of some matrix H S , which depends on the wave vector k and the parameters of the problem 74 , provide the dispersion relation of the wave problem, and define bulk wavebands, i.e. a set of continuous functions of k and the parameters, each of which is indexed by an integer n. The eigenvectors of H S provide the corresponding polarization relations of the different waves, and they also define a set of continuous functions of k and the parameters. As such, each waveband n defines a particular type of vector bundle, called an eigenbundle, for which a non-zero Chern number C n is generated by a degeneracy point of the waveband n enclosed by the surface. In 2.3.3, we computed the Chern numbers of the f -plane shallow-water model introduced in section 1.3.

Finally, I came back to the dual aspects of the shallow-water wave problem, presented in section 1.3. The first one is that of the bulk wavebands of the f -plane problem, i.e. the homogeneous model, which is characterized by a matrix H S which depends on k x , k y and f , and for which one can thus define Chern numbers as explained above. The second one is the eigenmodes of the equatorial problem, inhomogeneous in the y direction, which are described by the eigenvalues ω of an operator Ĥ that depends on k x , ∂ y and y through the variations of f . In section 2.4 I explained the mathematical connection between these dual problems, namely the Wigner-Weyl correspondence. It allowed us to interpret the Chern numbers of the matrix H S -the symbol of the operator Ĥ -in terms of analytical indices characterizing Ĥ, by means of the index theorem. Then I showed that the spectral flow of equatorial modes is a manifestation of these analytical indices, thus incidentally of the topological invariants of the symbol H S . In the following chapter, I will extend the analysis described in chapter 2 to other fluid models, which include all the geophysical and astrophysical ingredients that were introduced in chapter 1.

reminded in the next chapter.

Chapter 3

New waves in compressible-stratified rotating fluids

In this chapter I will show that, using the abstract mathematical tools of topology introduced in chapter 2, we are able to discover new kinds of fluid waves that could be observed in planetary oceans, atmospheres or stars. These waves are trapped and propagate along interfaces in the fluid medium. To predict the existence of such waves, I will adapt the example of the shallow-water model that was extensively discussed in the two previous chapters. At a practical level, we will see that topology provides a simple argument which transforms a complicated wave computation into a much simpler one. To be more precise, it will allow us to reveal trapped waves whose existence would otherwise be extremely difficult to explain. While the case of the equatorial shallow-water model was a reinterpretation of unidirectional trapped waves that were already known in geophysical fluid dynamics, namely the Yanai and Kelvin modes, the novelty of the study presented in this chapter is the prediction of new waves resulting from the combined effect of density stratification, rotation, and compressibility. The observation of such waves could reveal important informations on the internal structure of stars, for instance. Some of the results presented in this chapter were published, for instance those of 3.3.2 in Physical Review Letters [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF], and those of section 3.6 in The Astrophysical Journal [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]. Other elements of sections 3.3 and 3.4 are the object of a long article currently in preparation.

In section 3.1 of this chapter, after briefly summarizing the main message of the analysis of the equatorial shallow-water waves, I will provide a precise methodology, which will be systematically applied in the rest of the chapter to predict the existence of spectral-flow modes in different fluid-wave problems. By analogy with the equatorial shallow-water model, the starting point of this method will consist in finding the degeneracy points of the wavebands of the flow model's symbol, and compute the resulting Chern numbers. Then, in section 3.2, I will explicit the symbol of the general flow model introduced in section 1.4 and study its degeneracy points: a particular attention will be given to the degeneracy points between acoustic and internal-gravity wavebands, which combine stratification, compressibility, traditional and nontraditional rotation. The concrete results on fluid waves will be presented after these sections on methodology.

First I will apply this method to predict the existence of new topological waves in a variety of submodels of a general wave problem featuring stratification, compressibility and rotation, introduced in section 1.4. These waves are trapped along interfaces where a certain parameter changes sign, which corresponds to a degeneracy of the symbol's wavebands. In section 3.3 I will treat the case of topological modes propagating along interfaces separating the medium in the vertical direction. I will discuss with particular attention the effect of the nontraditional Coriolis force on these interfaces and the corresponding topological modes [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. In section 3.4 I will return to the equatorial interface, and extend the Matsuno spectrum of equatorial waves -which we have discussed so far in the context of the shallow-water model -to the complete wave problem with stratification, compressibility and nontraditional Coriolis force. section 3.5 will be dedicated to topological effects in presence of boundaries, which are unavoidable in real flows and numerical simulations. I will discuss in particular the possibility of interpreting the boundaries as interfaces, and the hybridization between topological interface modes and boundary modes. Finally, in section 3.6, I will present an extension of the topological analysis to spherical geometries -where the natural spatial curvature is involved in the definition of the interfaces -and discuss the application to asteroseismology.

Important comment on the terminology used in this thesis: I use the term topological waves/modes throughout this thesis. This must be understood as a shortcut for "interface waves whose existence is explained by an underlying topological property". As stressed in the introduction, the topology of such waves in real space is not the point of interest here (in contrast with the tidal amphidromic points introduced in 2.2.2, for instance), but the topology of the wave spectrum in reciprocal space is, as explained in sections 2.3 and 2.4.

3.1 A general method for predicting the existence of spectralflow modes 3.1.1 Preambule: can we predict new waves from topology?

The lesson to be taken from the equatorial shallow-water waves can be summarized in the following way. By means of an approximation on the form of the function f ,1 an analytical expression of the dispersion relation (1.52) could be found, leading to the Matsuno spectrum discussed in 1.3.4 and 2.4.2. This spectrum exhibits two modes transiting between the Rossby and the inertia-gravity wavebands. Now, for an arbitrary function f (y),2 there would not be such an analytical expression in general. However we demonstrated that the existence of the two modes crossing the gap between the Rossby modes and the inertia-gravity modes does not rely on the exact expression of f but rather just on the fact that this parameter changes sign across an interface, namely the equator. This robust property of the spectrum was indeed interpreted as the manifestation of the topological Chern numbers of the symbol, which is an intrinsic property of the simpler f -plane problem. It is thus a lot easier to compute the symbol's Chern numbers than the spectrum of the inhomogeneous problem for an arbitrary function f (y), since the first one reduces to the integration of a function of (f, k x , k y ), whereas the second one is not analytically solvable in general and rather requires a numerical resolution. In a nutshell, the index theorem proves that the +2 spectral flow is entirely constrained by the fact that f changes sign across the equator, from negative to positive values as y increases, independently of the precise expression of f (y). The crucial point is that the equator defines an interface where f = 0, which closes the gap between the symbol's wavebands, i.e. corresponds to a degeneracy point of the symbol. Now the existence and properties of the equatorial Yanai and Kelvin waves were long known and investigated in geophysical fluid dynamics [START_REF] Matsuno | Quasi-geostrophic motions in the equatorial area[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] before their topological interpretation. In that sense the tools of topology introduced in the previous chapter have mostly just provided a new point of view on certain already known geophysical waves [START_REF] Delplace | Topological origin of equatorial waves[END_REF][START_REF] Venaille | Wave topology brought to the coast[END_REF], so far. Nevertheless, the scope of the index theorem and its consequences presented in the previous chapter have a more general extent and thus are not limited to the equatorial shallow-water waves [START_REF] Faure | Manifestation of the topological index formula in quantum waves and geophysical waves[END_REF]. As such, the method developed in these works also sheds some light on possibly new localized modes existing inside the bulk of non-rotating stratified and compressible media [START_REF] Perrot | Topological transition in stratified fluids[END_REF], similar to the Lamb waves observed at the rigid boundaries of such media [START_REF] Lamb | On atmospheric oscillations[END_REF]. In the continuity of these works, the purpose of this chapter is precisely to show that the analysis presented in the previous chapter applies to other, more general fluid models beyond the equatorial shallow-water wave problem.

In this section, I will explain point by point the methodology for predicting interface spectralflow modes in fluid media, by analogy with everything that was explained in the previous chapter for the equatorial shallow-water waves. I will stress an interesting similarity between 2D fluid-wave problems and Chern insulators, and of their topological property with those of the Weyl metals. Now, this analogy is not necessary to understand the topological features of fluid waves and the results presented in this chapter. Nevertheless, due to their historical importance and their particular similarities with the properties that will be described in this chapter, I choose to briefly present the basic principles of these systems.

3.1.2 Bulk-interface correspondence for fluid waves : Chern insulators VS.

Weyl points

The problem of the equatorial waves is included in a broad class of fluid-wave problems, which will be considered throughout this chapter. First of all we will considered two-dimensional models: the wave is characterized by a multi-component field ψ which is a function of the time t and two spatial coordinates, x 1 and x 2 . The problem is inhomogeneous in the direction x 2 , but invariant in the direction

x 1 and with time, which leads to wave solutions of the type

ψ(x 2 )e i(k1x1-ωt) , (3.1)
where k 1 is the wave number in the direction x 1 and ω is the wave's frequency. In terms of dynamical equations, ω is thus an eigenvalue of an operator Ĥ which depends on k 1 , ∂ x2 and some varying medium's parameter ∆(x 2 ),3 and ψ(x 2 ) is the corresponding eigenfunction, i.e. Ĥψ(x 2 ) = ωψ(x 2 ).

This will be generically referred to as the inhomogeneous problem. Now the spectrum ω(k 1 ) consists in discrete branches and has distinct groups (that one can also call wavebands) of modes that we can label with an index n.

Important remark: Even if the wave problem is in a two-dimensional plane (x 1 , x 2 ), the function ψ can contain for instance the component of the velocity transverse to this plane. Thus what we define here is not a two-dimensional flow but a two-dimensional wave. There will be cases for which the velocity is in the same plane, which reduces the dimension of ψ by one. However, it is important to understand that, by "propagation in the plane (x 1 , x 2 )", we will just say that the wave vector, and thus the wave propagation occurs in a plane.

One can define the symbol H S of the operator Ĥ, by means of the Wigner transform introduced in 2.4.1, which is thus a function of k 1 , k 2 and x 2 through the parameter ∆(x 2 ). 4 The eigenvalues of the symbol H S define wavebands in the (∆, k 1 , k 2 )-parameter space, labelled by n as for the groups of modes of the inhomogeneous problem, since there is a correspondence between the two5 . Let us assume that for ∆ = 0 the waveband n is degenerate with a neighboring band at some wave vector (k ⋆ 1 , k ⋆ 2 ). In terms of condensed matter systems, the corresponding point in the three-dimensional parameter space is reminiscent of a Weyl point6 [START_REF] Burkov | Weyl metals[END_REF][START_REF] Delplace | Berry-chern monopoles and spectral flows[END_REF] (see figure 3.1).
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3D Weyl point topology 2D Chiral edge modes Figure 3.1: Relation between the class of fluid-wave problems studied in this chapter and topological electronic materials. In the language of condensed matter physics, the topological modes arising in fluid media share strong similarities with those of the Chern insulators [START_REF] Haldane | Model for a quantum hall effect without landau levels: Condensed-matter realization of the" parity anomaly[END_REF][START_REF] Hasan | Colloquium: topological insulators[END_REF][START_REF] Qi | Topological insulators and superconductors[END_REF]] (top left), but the underlying topological properties are reminiscent of those of the Weyl semimetals [START_REF] Jia | Weyl semimetals, fermi arcs and chiral anomalies[END_REF][START_REF] Burkov | Weyl metals[END_REF] (top right). In a Chern insulator, there are unidirectional, or chiral topological electronic states propagating at the edges of the 2D material. However this material is gapped everywhere (|∆| > 0), and the Chern numbers are computed by integration of the Berry curvature in the first Brillouin zone (BZ), which is a finite surface characteristic or the lattice's periodic geometry. A Weyl semimetal is a 3D crystal whose wavebands have isolated degeneracy point in the space of crystal momentum k. Owing to a magnetic field B, the electrons are coupled to a vector potential A, which is the inhomogeneous parameter that lifts the band gap. Quantized electronic states thus propagate in the direction of B. The Chern numbers are computed in the same way as described in 2.3, and can be seen as topological charges held by the degeneracy points in the 3D k-space. In this chapter we study the propagation of 2D topological waves in an inhomogeneous fluid medium (bottom down), whose band gap closes locally at an interface (i.e. where ∆ = 0). The Chern numbers that quantize the interface modes are those of Weyl-like points in the 3D parameter space (bottom right), whose third coordinate is ∆, which is the inhomogeneous parameter of the 2D problem.

Let us now fix an arbitrary closed surface that envelops this point in parameter space. As explained in section 2.3, one can define the Berry curvature of the band n, as in equation (2.35) with the eigenvector Ψ n of the symbol, and integrate its flux over the closed surface, which yields the Chern number C n of the waveband n associated with the degeneracy point, also called its topological charge.

Let us assume that the parameter ∆ vanishes at x 2 = 0, which defines an interface along the x 1 direction, and linearly changes sign across this interface. We can assume that ∆ changes sign in an increasing fashion, like f across the equator (the result will be generalized at a later stage for a decreasing ∆). In consequence of the index theorem (cf. section 2.4), the spectrum of the inhomogeneous problem has C n modes which are localized at the interface where ∆ = 0 and transit to the waveband n as k 1 is swept past the value of the degeneracy point's wave number. Since the number of such spectral-flow modes at the interface is given by a topological invariant of the bulk wavebands, this result7 can be called the bulk-interface correspondence.

This is an adaptation -to the specific class of wave problems discussed here -of the bulk-boundary correspondence, originally introduced in the context of the Chern insulators [START_REF] Hasan | Colloquium: topological insulators[END_REF][START_REF] Fukui | Bulk-edge correspondence for chern topological phases: A viewpoint from a generalized index theorem[END_REF][START_REF] Hatsugai | Chern number and edge states in the integer quantum hall effect[END_REF]. Indeed, the topological modes described here propagate along an interface of the inhomogeneous medium at which the gap of the corresponding bulk wavebands closes, whereas those of a Chern insulator propagate at the edges of an insulator whose gap is open everywhere in the bulk (see figure 3.1). In the first case the topological interface modes are quantized by the Chern number of a 3D degeneracy point or Weyl-like point, which is the integral of the Berry curvature over a surface in 3D enveloping the point. Conversely, in a Chern insulator, the topological edge states are quantized by the global Chern number of the waveband, which is the integral of the Berry curvature over the two-dimensional first Brillouin zone.

This nuance is important. The wave problems discussed here have the same phenomenology as the Chern insulators, in the sense that both support localized modes which propagate along lines in a 2D medium, transit between the wavebands and are quantized by a topological integer. The underlying topological invariant is the Chern number of a Weyllike point in a three-dimensional space, instead of that of a waveband in a two-dimensional bounded space 8 . In other words, since we deal with continuous media without underlying lattice, we use the topology of 3D Weyl points (with a varying parameter ∆ instead of the third component of the wave vector) to describe topological interface modes in 2D. This is summarized in figure 3.1.

8 Usually a torus corresponding to the first Brillouin zone, for models with a lattice structure.

SUMMARY FOR THE EQUATORIAL WAVES

Let us summmarize the results of section 2.4 for the equatorial waves, in terms of the class of problems introduced previously:

• Inhomogeneous problem -First of all, the equatorial wave problem is homogeneous in the zonal direction x 1 = x and inhomogeneous in the meridional direction x 2 = y, and is described by the operator Ĥ of equation (2.40) The spectrum ω(k x ) (i.e. the Matsuno spectrum introduced in 1.3.4) is mostly divided into three groups: the inertia-gravity modes (n = ±1) and the Rossby modes (n = 0).

• Symbol's degeneracy point and Chern number -The symbol H S of Ĥ, defined by equation (2.41), is a function of k x , k y and y (through the parameter f ). Its eigenvalues and eigenvectors reflect the spectrum of the bulk 2D plane waves propagating in the homogeneous (f -plane) medium, i.e.

Ψ n e i(kxx+kyy-ωt) , with H S Ψ n = ω n Ψ n .

(3.

2)

The discrete eigenvalues ω n (f, k x , k y ) of the symbol H S thus define the wavebands (n = ±1

for the Poincaré wavebands and n = 0 for the geostrophic waveband of zero frequency)

in the symbol's or parameter space (f, k x , k y ), which is three-dimensional, and each corresponding eigenspace n (generated by the eigenvector Ψ n ) defines an eigenbundle over a

given closed surface of this parameter space, as long as the surface in question does not contain a degeneracy point of the band n where the eigenvector Ψ n is not defined. Let us consider an arbitrary surface that envelops the degeneracy point of the symbol H S at (f, k x , k y ) = (0, 0, 0), which in this case involves the three wavebands n = -1, 0 and +1.

The corresponding Chern numbers are

C -1 = -2 , C 0 = 0 , and C +1 = +2 . (3.3)
• Spectral flow -Two branches of modes, namely the Yanai and the Kelvin waves, transit between the wavebands of the inhomogeneous problem as k x is increases past 0. In particular, the waveband n = +1 gains those two modes as k x increases, while the equivalent group n = -1 loses them and thus the total number of modes gained by the Rossby group n = 0 is zero. They are localized a at the interface where f = 0, i.e. the equator.

a Strictly speaking, all equatorial modes are centered around the equator (see 1.3.4), however the equator is essential for the existence of the Yanai and Kelvin modes, while it is not for inertia-gravity or Rossby waves, which would still exist for instance in a rotating channel that does not contain the equator [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF] (see the discussion in 2.4.2). To be more precise, Rossby waves exist in the rotating channel owing to the β-effect, nevertheless, generally speaking, there is always a low-frequency group of modes (n = 0) generically called quasi-geostrophic modes, even in the f -plane channel.

In the following part, I will describe step by step the method for investigating interface modes of topological origin in the class of fluid-wave problems that I described here.

Predicting spectral-flow modes from the bulk's topology: method

As explained earlier, the bulk-interface correspondence for the equatorial waves was established by [START_REF] Delplace | Topological origin of equatorial waves[END_REF] in the following order of thoughts: first they noticed that the Yanai and Kelvin waves are the only two modes that are unidirectional and transit between the Rossby and the inertia-gravity modes. Then they computed the Chern numbers of the f -plane shallow-water model (see 2.3.3) and found the values that allowed them to conclude on the topological nature of the +2 spectral flow of equatorial waves. At that time, though, it was still not clearly understood how this version of the bulk-boundary correspondence could be extended to a certain class of problems that are intermediate situations between a Chern insulators and a Weyl semimetal, as explained in 3.1.2. The method described here is based on the reversed order of reasoning: we will start from fluid-wave problems which belong to the class described in 3.1.2, investigate their topological properties and predict the existence of new topological waves in fluid media. The different steps are summarized as well in figure 3.2.
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The different steps of the method. a. Frequency spectrum in (k1, k2) of two wavebands involved in a generic two-band degeneracy for ∆ = 0. The degeneracy is lifted for ∆ ̸ = 0. b. In the three-dimensional (∆, k1, k2)-space, the eigenvectors Ψn of the waveband n and the corresponding Berry curvature can be computed, and the flux of the latter through a closed surface (here we represent an oriented element of surface dS in this space) around the degeneracy point (in red) yields Cn, the first n th Chern number of the degeneracy point (here we consider for instance Cn = +1, and we have Cn-1 = -1, cf. appendix D.1). c. In the inhomogeneous problem, whose parameters vary in the x2 direction, one expects the existence of spectral-flow modes if ∆(x2) changes sign, localized around the vanishing point. d. Spectral-flow modes arise in the problem's wave spectrum as branches (one in this example) which transit between the two wavebands involved in the degeneracy point. The value of the Chern number Cn determines the number of such branches and whether they transit from the band n or to the band n, as k1 increases.

• Inhomogeneous problem and spectral-flow parameter -The first step of the method is to extract a two-dimensional wave problem out of the general 3D fluid model presented in section 1.4 of chapter 1. To coincide with the previous analysis, we will only keep the spatial dependence of the solution in a direction x 1 which is invariant (direction of wave propagation) and a direction x 2 which is the inhomogeneous direction. In numerical simulations, the x 2 directions will have boundaries, as mentioned earlier, but these are considered flat (i.e. at fixed x 2 ), in agreement with the x 1 -invariance. By analogy with the Matsuno spectrum, the wave number k 1 is the spectralflow parameter9 (see 2.4.2), i.e. a parameter involved in the dynamical equations (operator Ĥ) that can take continuous values but that is not a varying quantity of the problem. In other words we will visualize the spectral flow of the branches ω(k 1 ) of the operator's eigenvalues.

• Bulk wavebands and degeneracy points identification -The next step consists in visualizing the bulk wavebands of the dual homogeneous problem -i.e. the eigenvalues ω n of the operator's symbol H S -in the wave-vector space (k 1 , k 2 ), and identifying the existence of degeneracy points, i.e. points where ω n = ω m with n ̸ = m (two or more wavebands can be involved). Since the bulk bands are visualized in the 2D (k 1 , k 2 )-space but the analysis presented in section 2.4 is based on the existence of degeneracy points10 in a 3D space, we must identify the correct parameter ∆ whose vanishing provokes a degeneracy, which is lifted when ∆ ̸ = 0. The important matter is that the relevant degeneracies, i.e. those that bear a topological charge, must be actual points in the 3D space of (∆, k 1 , k 2 ), and not lines or surfaces (see the discussion in the next section 3.2).

At this step we have found some parameter ∆ whose vanishing generates a degeneracy point, from the symbol's point of view. In the inhomogeneous problem, ∆ is a function of x 2 which involves the different parameters of the problem, varying or not.

• Bulk-interface correspondence -Using the concepts introduced in section 2.3, we can compute the Chern numbers of the degeneracy point

(∆, k 1 , k 2 ) = (0, k ⋆ 1 , k ⋆ 2 )
, for each band n involved in the degeneracy11 . Eventually, according to the bulk-interface correspondence that was discussed in 2.4.2 and 3.1.2, we can consider the case where the inhomogeneous medium has an interface where ∆(x 2 ) vanishes and changes sign. We can predict the existence of topological modes at this interface, whose number and direction of spectral flow are in agreement with the index theorem.

These will be revealed by means of numerical computations. The numerical resolutions in this thesis are all performed with Dedalus [START_REF] Burns | Dedalus: A flexible framework for numerical simulations with spectral methods[END_REF] (see appendix E for some details).

Some important comments

Here is a list of important remarks to clarify the applicability of the bulk-interface correspondence previously presented in the wave problems considered in the following sections.

• Complexity of the inhomogeneous wave problem -In the rest of this chapter we will apply the method described step by step in 3.1.3 to the general 3D model introduced in section 1.4 of chapter 1, i.e. the operator (1.72). Strictly speaking, this operator describes a 3D problem whose parameters are inhomogeneous in both directions y (meridional dependence of f and f nt ) and z (vertical dependence of N, S and c s ), therefore the method will be applied to 2D sub-models for which the parameters can be considered inhomogeneous in only one of these directions. Now the equatorial shallow-water model is an exceptional case for which the spectrum can be computed analytically (see 1.3.4), which is made possible by means of two approximations: the linear βplane and the unbounded y direction. For a more general two-dimensional, inhomogeneous wave problem extracted from the 3D operator (1.72), the spectrum ω(k 1 ) cannot be computed without the numerical tool for arbitrary varying parameters in the bounded direction x 2 . However, the point is not to compute the whole spectrum but to determine the existence of spectral-flow modes, for which the problem amounts to computing the Chern number of the symbol. Now the latter is sometimes possible analytically (see 2.3.3 for the shallow-water model), and always at least numerically12 . It turns out that the Chern numbers for this model will always be ±1 or ±2, since the degeneracy points will always be generic two-fold or three-fold conical points13 . In other words, investigating the existence of topological modes amounts to a simpler problem -namely computing the Chern numbers -than solving the coupled partial differential equations of the problem with specific varying parameters and boundary conditions.

• The sign of the index theorem -In the literature, the index theorem (2.55) can sometimes be found in the opposite form, i.e. ∆N n = -C n , for instance in the reference [START_REF] Delplace | Berry-chern monopoles and spectral flows[END_REF]. This is due to the variability of the definition of the Chern number C n : for instance, in [START_REF] Delplace | Berry-chern monopoles and spectral flows[END_REF], the Berry curvature of the shallow-water wavebands is integrated in the space (f, k y , k x ), which yields a minus sign in comparison with the convention (f, k x , k y ) adopted in this thesis 14 . In the rest of the thesis we will thus be careful to use the same convention, i.e. define and integrate the Berry curvature in the three-dimensional space (∆, k 1 , k 2 ).

• Definition of the parameter space and sign of the spectral flow -On a second note, it seems arbitrary to use the parameter ∆ since, strictly speaking, one could just consider that the parameter of the problem is ∆/2 or even sin(∆), etc. Actually this choice does not matter, as long as ∆ is linear at the interface. Say, if ∆ = αx 2 in the vicinity of the interface x 2 = 0, 15 then, one can compute the Chern number by integrating the Berry curvature over an infinitely small sphere enveloping the degeneracy point

(∆, k 1 , k 2 ) = (0, k ⋆ 1 , k ⋆ 2 ).
In the equivalent circuit-integral formulation 16 , the ∆ term appearing in the integral thus amounts to

iΨ † n ∂Ψ n ∂∆ d∆ = iΨ † n ∂Ψ n ∂x 2 dx 2 . (3.4)
Therefore, at the end of the day, we use ∆ for convenience, but the actual symbolic space 17 is (x 2 , k 1 , k 2 ), which yields the same: the coefficient α of the linear expansion does not matter as long as it is non-zero. The exception is when α < 0, which amounts to the reflection ∆ → -∆ in parameter space, changing the sign of the integration. In this case the spectral flow is thus reversed: the band n gains C n modes around k ⋆ 1 for an increasing interface (∆ = 0 and ∆ ′ > 0), conversely it loses C n modes for a decreasing one (∆ = 0 and ∆ ′ < 0). In 2.4.2 we had β > 0 because of the definition of the axes, but if one reverses those axes, the spectral flow of equatorial waves is obviously opposite. For instance, reference [START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF] considers two equators on a shallow-water planet, which yields Yanai and Kelvin modes in both directions, localized at the respective equators.

• Convenience of the double interface -In the rest of this chapter we will almost always consider a medium with two interfaces for ∆, an increasing and a decreasing one, the reason of which is double: first we want to discuss interface modes and not boundary modes, but boundaries are mandatory in numerical simulations. Nevertheless the unbounded medium can be achieved numerically by imposing periodic boundary conditions in the direction x 2 . 18 In this case, if there is only one interface in the medium, say an increasing one, then ∆ > 0 at the upper boundary whereas ∆ < 0 at the lower one, thus imposing an artificial discontinuity with periodic boundary conditions 19 . To avoid this singular situation we must impose at least two interfaces, an increasing and a decreasing one, so as to ensure the continuity of ∆ at the boundaries. Now the equatorial shallow-water waves have a trivial counterpart for a negative equator, because this situation is simply equivalent to turning the medium by 180 • in the horizontal plane. However we will see that, in contrast, increasing and decreasing interfaces in compressible-stratified fluids support topological modes whose respective characteristics are very different (see section 3.3).

Note that the spectra obtained with such a double interface are thus expected to be topologically 14 Or, equivalently, (kx, ky, f ) as in 2.3.3. 15 For instance f = βy at the equator. 16 Throughout this thesis we define the Chern number by means of a surface integral, which is the flux of the Berry curvature. However there is an equivalent formulation, as in equation (2.25) (part 2.3.2), in terms of circuit integral of a 1-form, the Berry connection, whose exterior derivative is the Berry curvature.

17 Understand the phase space of semi-classical variables (x 1 , x 2 , k 1 , k 2 ), here without the coordinate x 1 of the homogeneous direction.

18 Of course these are not physical boundary conditions, especially if x 2 is the vertical direction, however it genuinely allows to discard the boundary modes from the simulation, without changing qualitatively the wavebands. Examples of boundary modes are the subject of section 3.5, and some precise discussions can be found in [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF][START_REF] Auclair | Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean[END_REF].

19 It can be seen as an infinitely sharp, decreasing interface, but the bulk-interface correspondence can sometimes be wrong in such singular cases. For instance, if one models the equatorial region with a step-function Coriolis parameter (i.e. f = f 0 > 0 in the northern hemisphere and f = -f 0 in the southern one, instead of f = βy), the equatorial Kelvin wave still exists but the Yanai wave disappears, which can be verified analytically. Then the spectral flow is not +2 anymore.

trivial20 . Indeed, for a spectral-flow mode at one interface, there is another one of opposite spectral flow at the other interface21 , thus yielding a zero net spectral flow. However, if the interfaces are far enough apart, it is as if they belonged to two distinct problems, and the two modes cross without avoiding each other in the global spectrum22 . Conversely, if the interfaces of opposite sign of ∆ ′ are sufficiently close to each other, the topological modes can avoid each other in the spectrum and reveal the topological triviality. This will be extensively discussed in section 3.5 of this chapter.

• Locality of the spectral flow -With the example of the equatorial shallow-water model (1.3.4 and 2.4.2), we described the spectral flow of Yanai and Kelvin waves as modes transiting between the Rossby and inertia-gravity wavebands as k x goes from -∞ to +∞. This was correct because this model has one degeneracy point. However we will see that there can be several degeneracy points in the (∆, k 1 , k 2 )-space, for other fluid problems, and spectral-flow modes around each corresponding value of k ⋆ 1 in the spectrum of the inhomogeneous problem. For instance, if the symbol's waveband k has a degeneracy point (0, +k, 0) of Chern number +1 and another one at (0, -k, 0) (with k > 0), and the inhomogeneous medium has an increasing interface ∆ = 0, then this interface supports one topological mode transiting from the band to another around k 1 = -k, and one that transits to the band n around k 1 = +k. 23 In that sense the notion of spectral flow must be understood as a local property of the spectrum, like the degeneracy points of the symbol.

For example, the topological modes of the equatorial shallow-water model transit around k x = 0, because it is the corresponding location of the degeneracy point in the symbol's space. More details on the local character of the spectral flow can be found in [START_REF] Faure | Manifestation of the topological index formula in quantum waves and geophysical waves[END_REF].

SUMMARY OF THE METHOD FOR FINDING SPECTRAL-FLOW MODES

I showed that the equatorial shallow-water model is part of a larger class of wave problems that can support the propagation of topological interface modes. More specifically, the topological modes emerging in this class of 2D problems share strong similarities with those of the 2D Chern insulators, as they are trapped at lines, propagate in one direction along these lines and transit between the wavebands of the bulk modes, which is referred to as spectral flow. The topological invariants that quantize these fluid waves are correctly defined in a 3D parameter space, which is that of the 2D wave vector plus an inhomogeneous parameter. The location of a degeneracy point in this parameter space indicates the interface at which the topological modes propagate and the value of the wave number around which they transit in the spectrum, and the number of such modes if given by the Chern numbers of the degeneracy point.

In the following section we will identify the degeneracy points of the symbol of the operator (1.72) describing the general wave problem in a rotating, compressible-stratified fluid medium.

Degeneracy points of the wavebands in compressible-stratified rotating fluids

Consistently with the methodology described in the previous section, the prediction of the existence and quantization of spectral-flow modes in a 2D wave problem relies on the knowledge of the symbol's degeneracy points and their topological charge. In this section I will thus extensively study and locate the degeneracy points of the symbol of the wave operator (1.72), which describe waves in a rotating, compressible-stratified fluid medium. First I will derive the operators's symbol and discuss its symmetries, then I will classify the degeneracy points in two categories: the ones at zero-frequency that involve the three wavebands n = -1, 0, +1, and the ones at non-zero frequency, which only involve two bands (+1 and +2, or -2 and -1).

In section 1.4 I presented a general 3D model for fluid waves in a compressible, density-stratified medium in rotation, initially at rest, expressed in terms of the local Cartesian coordinates24 (see figure 1.19). The multi-component wave field, ψ(x, y, z, t) = u v w Θ p T , contains the velocity components (u, v, w), the potential density perturbation Θ and the pressure perturbation p, under the rescaling (1.66). The dynamical equations were recast in the form of a Schrödinger-like equation i∂ t ψ = Ĥψ, with the operator (1.72), which we can recall here:

Ĥ = i         0 f (y) -f nt (y) 0 -c s (z)∂ x -f (y) 0 0 0 -c s (z)∂ y f nt (y) 0 0 -N (z) S(z) - c ′ s (z) 2 -c s (z)∂ z 0 0 N (z) 0 0 -c s (z)∂ x -c s (z)∂ y -S(z) - c ′ s (z) 2 -c s (z)∂ z 0 0         . (3.5)
Among the different geophysical parameters appearing in expression (3.5), there are the two components of the Coriolis force, i.e. the traditional component f and the nontraditional one f nt (cf. section 1.3), which depends on the latitude, i.e the local coordinate y. There is also the celerity of sound waves c s (introduced in 1.2.1) and its derivative c ′ s , the buoyancy frequency N (introduced in 1.2.2) and the stratification parameter S (introduced in 1.4.2), which is a combination of the latter. given by equation (1.68). All these parameters are considered to be functions of the vertical coordinate z only.

Symmetries and bulk wavebands

By means of the Wigner transform introduced in 2.4.1, especially relation (2.43d) for the terms -c s (z)∂ z , the symbol of the operator (3.5) reads as

H S =         0 if -if nt 0 c s k x -if 0 0 0 c s k y if nt 0 0 -iN iS + c s k z 0 0 iN 0 0 c s k x c s k y -iS + c s k z 0 0         , (3.6)
which is a function of the spatial coordinates y, z (through the parameters) and the wave numbers

k x , k y , k z .
Important remark: Since the symbol (3.6) is a self-adjoint matrix, the operator (3.5) is Hermitian25 (see 2.4.1). In agreement with the spectral theorem, this ensures that both the bulk wavebands and the eigenfrequencies of the inhomogeneous problem are real26 .

Discrete symmetries and degeneracy points

Now as explained in chapter 1, the different parameters of the problem break certain discrete symmetries, in the sense that if these parameters are non-zero, the solutions cannot be transformed under the corresponding symmetries and remain solutions of the problem (see figure 3.3). Some discrete symmetries of a geophysical problem are:

• Time-reversal symmetry T transforms (u, v, w, t) → (-u, -v, -w, -t) and leaves the other fields and coordinates unchanged.

• Reflection symmetry M with respect to a spatial coordinate. For the coordinate x it transforms (u, x) → (-u, -x) and leaves the other fields and coordinates unchanged, for y it transforms (v, y) → (-v, -y), and for z it transforms (w, z) → (-w, -z).

• The stratification symmetry S transforms (w, Θ, z) → (-w, -Θ, -z). This symmetry was introduced by [START_REF] Perrot | Topological transition in stratified fluids[END_REF], and we will see its consequence in 3.3.1.

f f nt 𝒯 ℳ x ℳ y ℳ x ∘ ℳ y 𝒯 ∘ ℳ x N S ℳ z 𝒯 ∘ ℳ y ℳ x ∘ ℳ y ∘ ℳ z 𝒮 V X X V X V V V V V V V V V V X X X V V V V V V X X V V X X X V X V X X Figure 3.3:
Examples of broken and preserved discrete symmetries of the bulk problem (i.e. with fixed parameters). The rows are the symmetries considered above, i.e. time-reversal, reflection and stratification symmetries, and some of their compositions. The different characteristic frequencies of the bulk problem are indicated in the columns. "X" indicates that the symmetry is broken when the parameter of the column is non-zero, and "V" means that the symmetry is preserved even when the parameter is non-zero.

Let us consider these symmetries for the symbol (3.6). In mathematical terms, a discrete symmetry imposes a constraint on the symbol's coefficients and thus on its eigenvalues. This constraint is thus reflected on the symmetries of the bulk spectrum, and is occasionally manifested through a degeneracy point, which is lifted when the symmetry is broken. Now, some symmetries of the problem are broken owing to certain non-zero parameters, and are restored if these parameters vanish (figure 3.3). Similarly, a parameter ∆ that lifts a degeneracy point when ∆ = 0 corresponds to a discrete symmetry of the problem. For example, in the shallow-water model, the vanishing of ∆ = f at the equator imposes a strong constraint on the problem as it restores various discrete symmetries (see 1.3.2), and the three wavebands have a common degeneracy point. However, as we will see in the rest of this chapter, the emergence of a degeneracy point does not mean that the corresponding condition ∆ = 0 can be expressed in terms of one (or a composition) of the natural discrete symmetries listed above (see for example the top-right corner of figure 3.4). Generally speaking, the appropriate parameter ∆ to describe a degeneracy point is a function of the model's parameters, i.e. f, f nt , N and S. At this point, our purpose is precisely to find the degeneracy points of the symbol (3.6) and the corresponding parameters ∆ whose vanishing provoke the degeneracies. In that sense, the underlying discrete symmetry that is characterized by the condition ∆ = 0 is broken everywhere in the inhomogeneous medium except at the interfaces where the topological modes associated to the corresponding degeneracy point propagate.

Now the bulk wavebands ω n are the roots of the symbol's characteristic polynomial, which is

Π(ω) ≡ det (ωI 5 -H S ) = ω 5 -S 2 + N 2 + f 2 + f 2 nt + K 2 x + K 2 y + K 2 z ω 3 -2K x Sf nt ω 2 + f 2 (S 2 + N 2 ) + (f K z + f nt K y ) 2 + N 2 (K 2 x + K 2 y ) ω = 0 , (3.7)
where I 5 is the 5-by-5 identity matrix and we use for simplification the notation (K x , K y , K z ) ≡ (c s k x , c s k y , c s k z ) and K ≡ c s k. 27 We will also write k ≡ k 2 x + k 2 y + k 2 z and K ≡ c s k. In the symbol picture, one must think of the different parameters appearing in expression (3.6) and (3.7) as free and independent, even if in the real problem S, N and c s are actually related through expression (1.68), and the parameters are fixed functions that characterize the medium. One important constraint in particular is f 2 + f 2 nt = 2Ω, imposed by the rotation vector Ω being constant.

Equation (3.7) has five roots which depend on all the coefficients. A quick observation of this equation leads to two properties:

• First, there is a whole band of zero-frequency geostrophic modes, independently of the value of the buoyancy frequency N , the stratification parameter S or the Coriolis parameters f and f nt .

These correspond to steady flows at hydrostatic equilibrium in the vertical direction 28 and in geostrophic motion in the horizontal directions.

• Second, for a given set of parameters f, f nt , S, N and c s , any positive root ω at wave vector k has a symmetric counterpart -ω at -k. This property of the spectrum is due to the realness of the fluid problem, i.e. its conjugation symmetry, which was discussed in chapter 1. Concretely, this means that the knowledge of the positive-frequency bands is sufficient for any purpose.

In the end one can label the different wavebands of the symbol with the integers -2, -1, 0, +1, +2, ordering them by increasing frequency: n = 0 is the geostrophic band of zero frequency, n = ±2 are the acoustic wavebands, and n = ±1 are the internal-gravity wavebands 29 which lie between the others wavebands (see the spectra of figure 3.4).

In the short-wavelength limit k → ∞, one can show the following behavior of the acoustic and internal-gravity wavebands, discussed in chapter 1:

ω 2 ±2 ∼ c 2 s k 2 (nondispersive limit) ,
and

ω 2 ±1 ∼ N 2 k 2 x + k 2 y k 2 + f k z + f nt k y k 2 , (3.8) 
which means that the acoustic waveband is unbounded in frequency whereas internal-gravity waves are bounded as k → ∞, by frequencies that depend on N, f, f nt and the orientation on the wave vector 30 .

Interestingly, the stratification parameter S does not intervene in these asymptotic expressions.

Remark: In the context of this model we will never consider the singular but distinct cases N = 0 or c s = 0. We will always consider N, c s > 0.

27 The wave vector K thus has the dimension of a frequency, as all the other terms of expression (3.7). 28 In other words w ≡ 0, owing to equation (1.70b) which is equal to zero, translating the absence of local potential density variations. 29 In the rotating case they are also called internal inertiogravity waves, however we will keep the name of internalgravity waves for simplicity. Nevertheless we will see that, contrary to the non-rotating case, their frequency range is approximately |f | < |ω ±1 | < N , for N > |f | [START_REF] Gerkema | Geophysical and astrophysical fluid dynamics beyond the traditional approximation[END_REF]: in addition to the upper limit N , they have a lower limit which is approximately given by the inertial frequency f , just as shallow-water waves (see 1.3.3). 30 In particular, the second of expressions (3.8) can be written

|ω ±1 | 2 -→ k→∞ N 2 sin 2 (θ) + (2Ω) 2 cos 2 (α) , (3.9)
where θ is the angle between the wave vector k and the vertical axis of density stratification, and α is the angle between k and the rotation vector Ω.

S ≠ 0

S = 0 rotating non-rotating k z = 0 k y = 0 ω k x k y ω k x k z ω k x k z ω k x k y ω k x k z ω k x k z Figure 3
.4: Representations of the bulk wavebands of the symbol (3.6) in the (kx, ky) space (first column, with kz = 0) or the (kx, kz) space (second and third columns, with ky = 0). In the first two columns rotation is set to zero, and non-zero in the third column (but with f = 0, i.e. at the equator). In the first row S ̸ = 0 and S = 0 in the second row. In the non-rotating case, S = 0 closes the gap between the internal-gravity and acoustic wavebands, as we will see in 3.2.3 and 3.3.1, and the corresponding degeneracy points appear in circles (xy plane) or isolated points (xz plane). In the rotating case, S = 0 does not close this gap, but we will see that it can be closed with a non-zero S (see 3.3.2): this is an example in which the underlying discrete symmetry that closes the gap cannot be trivially expressed in terms of the ones listed above. The zero-frequency band (n = 0) is represented in green.

Let us now investigate the degeneracy points of the symbol's wavebands, i.e. the values of the parameters in the dispersion relation (3.7) such that the polynomial has multiple roots. As explained above, the wavebands are degenerate when the symbol's parameters are such that some discrete bulk symmetry is punctually restored. However it is possible that this symmetry is compatible with another symmetry of the spectrum, in which case the degeneracy point can describe lines in the three-dimensional space (see for example the bottom-left corner of figure 3.4). We will thus be careful to identify the correct parameters ∆ and two-dimensional wave-vector subspaces (k 1 , k 2 ) such that the degeneracy points are actual isolated points in the (∆, k 1 , k 2 )-parameter space, in order to proceed with the method described in the previous section 3.1.

Degeneracy points at zero frequency

The first category of degeneracy points, which is the easiest to identify, is those between the zerofrequency waveband (n = 0) and the internal-gravity wavebands (n = ±1). Such a degeneracy point at zero-frequency arises whenever ω = 0 has a multiplicity higher than one in the characteristic polynomial (3.7). This clearly happens if the last term of expression (3.7) is exactly zero, i.e. for k x , k y and f = 0 , (3.10) which is the same condition as for the shallow-water wavebands' degeneracy point (see 1.3.3 and 2.3.3).

Regarding the method described in the previous section 3.1, it is thus clear that this degeneracy point will only generate equatorial spectral-flow modes, since f is the only acceptable mass term to close the gap at zero frequency and is a function of y that vanishes only at the equator 31 . We can thus expect the emergence of topological waves trapped at the equator for any fixed values 32 of k z , N, S and Ω, which is therefore a generalization of the Matsuno spectrum discussed in 1.3.4 and 2.4.2. These waves will be discussed in section 3.4.

Note that when the condition (3.10) is fulfilled, the multiplicity of ω = 0 is actually three, because the term proportional to ω 2 in equation (3.7) vanishes as well. However the multiplicity cannot be higher than 3 because the term of degree 3 cannot vanish. In other words, the degeneracy points at zero frequency are three-fold points involving the bands n = -1, 0, 1, but never the acoustic wavebands n = ±2. In this generic case we predict that the Chern numbers of this degeneracy point in the (f, k x , k y )-space will be the same as for the shallow-water model (see 2.3.3), i.e. +2 or -2 for C ±1 , 33 and 0 for C 0 .

Acousto-gravity degeneracy points

Let us now identify the degeneracy points between the internal-gravity waveband +1 and the acoustic waveband 34 . These will be called the acousto-gravity degeneracy points in the following. Keep in mind that the purpose here is not only to locate these points, but also to determine the correct mass terms ∆ and 2D wave-vector subspace (k 1 , k 2 ) for which they are actual points in the 3D parameter space (∆, k 1 , k 2 ), in order to determine the 2D wave problems in which we can predict the existence of spectral-flow modes transiting between the internal-gravity and the acoustic wavebands.

We know beforehand that these degeneracy points are two-fold 35 , since we already dealt with the degeneracy points at zero frequency and determined that they do not involve the acoustic wavebands n = ±2. The problem is mathematically equivalent to finding the conditions for which the polynomial (3.7) has a non-zero root of multiplicity higher than one, which is less obvious than the previous analysis for the root ω = 0. One possible way to express the existence of a multiple root is the condition of vanishing of the discriminant

R Π, d Π dω = 0 , (3.11)
where Π(ω) is the characteristic polynomial (3.7) divided by the monomial ω, and R is the resultant, here of Π and its derivative 36 . In this case the resultant (3.11) is a 7-by-7 determinant which depends on all the parameters N, S, f, f nt , K x , K y and K z , thus solving equation (3.11) is a difficult task even numerically. Nevertheless, this condition allows the visualization of the degeneracy points as subsets of the large parameter space, which can describe various shapes in a three-dimensional subspace (see the following figures 3.5, 3.6 and 3.7).

The location of the acousto-gravity degeneracy points is thus difficult to find in the general case (i.e. when all the parameters are non-zero), however we can do it analytically in several simple cases, which I will present now. Note that we will always consider fixed values of N, c s > 0 and see how the degeneracy points appear and behave when varying the other parameters.

• Traditional rotation -This is the case f nt ≡ 0, which, strictly speaking, is only correct at the poles of the rotating planet 37 . In this case the polynomial Π of order 4 only has monomials of even degree and is thus exactly factorizable. Note that, in this situation, the characteristic polynomial 32 The choice of the vertical parameters, kz, N and S, can be seen as a sort of vertical modes decomposition (see also appendix B for the decomposition of the Boussinesq problem on vertical modes).

33 Either C ±1 = ±2 or C ±1 = ∓2. 34 As previously explained, the degeneracy points between the negative-frequency bands n = -2 and -1 can be trivially deduced from those between the positive-frequency bands n = +1 and +2.

35 They only involve the two bands n = ±1 and n = ±2.

36 Two polynomials have a common root if and only if there resultant, which is a function of their coefficients, is zero. Now a root of a polynomial is multiple if and only if also a root of its derivative. Expression (3.11) is thus a generalization of the discriminant for polynomials higher than 2.

37 Moreover, at the scale of the lab, this is typically the kind of experiment realizable in a rotating tank, in which the direction of stratification (vertical) is aligned with the rotation axis of a tank.

depends on the horizontal wave numbers through the terms K 2

x + K 2 y , and thus the wavebands as well. The resulting rotational symmetry of the spectrum in the plane (k x , k y ) is a consequence of the invariance of the problem at the pole by rotation around the vertical axis z. The degeneracy points between the bands n = +1 and n = +2 are given by the vanishing of the polynomial's discriminant After a few calculations, the discriminant (3.12) vanishes -and thus the wavebands n = +1 and n = +2 are degenerate -in these two cases:

δ = S 2 + N 2 + f 2 + K 2 x + K 2 y + K 2 z 2 -4f 2 S 2 + N 2 + K 2 z -4N 2 K 2 x + K 2 y . (3.12) | f | < N | f | > N ω k x k y (x, y)-plane (x, z)-plane ω k x k z ω k x k y ω k x k z
S = K z = 0 and K 2 x + K 2 y = N 2 -f 2 , if |f | ⩽ N ; K 2 x + K 2 y = 0 and S 2 + K 2 z = f 2 -N 2 , if |f | ⩾ N .
(3.13)

The location of the degeneracy points in different subspaces is represented in figure 3.6. In the geophysical and astrophysical context, the typical values of N are larger than 2Ω in general (see appendix B), so we will not consider the second of cases (3.13). The first one, in turn, shows that S is a suitable mass term (∆) to define the topological interfaces in a 2D wave problem in a vertical plane, with traditional rotation (and, by extension, without rotation, see 3.3.1). This was anticipated in the discussion of 1.4.2 at the end of chapter 1, since we interpreted S as a coupling term between acoustic and internal-gravity waves.

Remark:

The degeneracy points at K ± ≡ (0, ± N 2 -f 2 , 0) bear opposite topological charges in the (0, K x , K z )-space, for the positive-frequency wavebands, by extension of the non-rotating case (see 3.3.1) and as will be obsereved in the spectral flow of the corresponding 2D wave problem (see figure 3.19 in the next section). However, as |f | is increased the two degeneracy points eventually collapse, and then for |f | > N they are not points anymore but circles in this parameter space • Nontraditional rotation -Another exactly solvable case is that of a purely nontraditional rotation (f ≡ 0), i.e. at the equator, where the direction of stratification (vertical) is perpendicular to the axis of rotation, as opposed to the case previously described. One can check 38 that the wavebands n = +1 and n = +2 are degenerate for

(see figure 3.6c). K x K y f (S, K z ) = 0 N N K x K y S N 2 -f 2 (S, K z ) ≠ 0 | f | > N K x K z S N 2 -f 2 | f | ↗ c a b f 2 -N 2
K z = 0 , K 2 x + K 2 y = N 2 + f 2 nt and f nt K x + S N 2 + f 2 nt = 0 . (3.14)
The location of the degeneracy points in different subspaces is represented in figure 3.7. Note that, while there is a singular change in the traditional case when the inertial frequency |f | becomes higher than the buoyancy frequency N , there is no such behavior in the nontraditional case with f nt . However in most situations in the ocean, atmosphere and stellar media, f nt is generally smaller than N . Now one can simply assume that, in the intermediate case where f, f nt ̸ = 0 (i.e. at mid-latitudes), the localization of the acousto-gravity degeneracy points is an in-between situation regarding the two cases previously described. Regarding the results shown in figures 3.6c and 3.7c, we can safely say that, at a fixed latitude, the acousto-gravity degeneracy points are actual points in the (S, K x , K x )subspace, which means that we can expect the existence of spectral-flow modes between the acoustic and internal-gravity wavebands in 2D wave problems that are inhomogeneous in the vertical direction.

The corresponding interfaces should be defined by S taking a certain value that depends on f, f nt , N , etc. The aim of the next section 3.3 is precisely to discuss these topological modes.

However, in the previous analysis, we considered the purely traditional and non-traditional cases 39 , and thus implicitly disregarded the possibility of an interface at a given latitude, i.e. the emergence of Weyl-like points in the (f, K x , K y )-subspace with fixed values of N, S, Ω, K z , and, of course, with the condition f 2 nt = (2Ω) 2 -f 2 . Let us consider for instance K z = 0 and values of S, Ω such that |S| ⩽ 2Ω. At the equator (f = 0), there are two degeneracy points in the (K x , K y )-plane (for instance the yellow ones in figure 3.7a and b), or one in the particular case |S| = 2Ω (purple in figure 3.7a and b). Then, one can observe that if f ̸ = 0, these degeneracy points are lifted (figure 3.8). In other words, they are actual points in the (K x , K y , f )-space and therefore may generate equatorial topological modes 38 Since there is no easy way to factorize the polynomial (3.7), even assuming f = 0, I proceeded empirically: I noticed that, for Kz = 0 and certain values of S and fnt, the acoustic and internal-gravity wavebands touch each other and the whole line connecting the origin of the frame (Kx, Ky, ω) to the degeneracy point belongs to the spectrum (see figure 3.7a). This allowed me to assume that the degenerate frequency is equal to K 2 x + K 2 y and, after some calculations, eventually find the degeneracy conditions (3.14).

39 In other words, we had fixed |f | = 2Ω in the first case, and fnt = 2Ω in the second one.

K x K y S b f nt = 0 N 2 + f 2 nt f nt N K x K z S N 2 + f 2 nt -K 2 y f nt 1 - K 2 y N 2 + f 2 nt c ω k x k y ω k x k y ω k x k z k z = 0, S = f nt k z = 0, S < f nt k y = 0, S = f nt a Figure 3
.7: Visualization of the acousto-gravity degeneracy points (between the positive-frequency wavebands n = +1 and +2) in different parameter subspaces, for f = 0 (nontraditional rotation). a. spectra exhibiting one or several degeneracy points corresponding to those represented below (in colors). For a fixed fnt and kz = 0, there are two degeneracy points (middle) as long as |S| < |fnt|, which eventually merge as |S| increases past the value |fnt| (left: the yellow dots become the purple one). In the (kx, kz)-subspace (i.e. for fixed ky), there is only one of these points, at kz = 0 and for a certain value of S (blue dot), and the band gap opens when S varies. b. For a fixed value of fnt and Kz = 0, the degeneracy points are located on an ellipse (blue) in the (S, Kx, Ky)-space (defined by equation (3.14)), whose projection on the plane S = 0 is the circle of radius N 2 + f 2 nt . c. In the (S, Kx, Kz)-space, with fixed fnt and Ky, the degeneracy points are actual points (blue).

transiting between the internal-gravity and acoustic wavebands, in addition to the +2 spectral flow expected between the quasi-geostrophic and internal-gravity wavebands (generalization of the Matsuno spectrum). These topological modes will be investigated in section 3.4. On a final note, one can check that, at mid-latitudes, there are degeneracy points for K z ̸ = 0 (see figure 3.8c), contrary to the purely traditional/nontraditional cases previously discussed.

K z = 0, S < 2Ω b. The number and location of degeneracy points is given by the conditions (3.14) of the nontraditional case: they are at the intersections between the ellipse of figure 3.7b and the plane S. In particular, the degeneracy points for |S| < 2Ω eventually colapse into a single one as |S| reach the value 2Ω, above which there is no acousto-gravity degeneracy point. c. For Kz ̸ = 0 there are acousto-gravity degeneracy points at mid-latitudes, and these are actual points in the (f, Kx, Ky)-subspace.

K z = 0, S = 2Ω a K x K y S N 2 + (2Ω) 2 2Ω ( f = K z = 0) f = 0 f ≠ 0 ω k x k y ω k x k y ω k x k y ω k x k y ω k x k

SUMMARY FOR THE DEGENERACY POINTS

The symbol of the operator describing the general 3D fluid-wave model -including the traditional and nontraditional Coriolis force, compressibility and density-stratification -exhibits an incredibly rich variety of degeneracy points. The ones at zero frequency involve the geostrophic (n = 0) and internal-gravity wavebands (n = ±1), and are isolated points only in the (f, K x , K y )subspace. Therefore, it is expected to generate topological modes only in the 2D equatorial plane, which is a generalization of the Matsuno problem that will be discussed in section 3.4. The degeneracy points between the internal-gravity (n = ±1) and the acoustic (n = ±2) wavebands, in contrast, have a complex behavior and can possibly lead to a variety of topological modes in different 2D wave problems, which have, to our knowledge, never been mentioned in the literature.

The rest of this chapter is dedicated to the description of some of these topological modes -which will be revealed by means of the methodology described in the previous section 3.1 -and the discussion of their possible existence in realistic oceanic, atmospheric or stellar media.

A topological transition for a varying stratification profile

This section deals with a first situation for which the method described in 3.1 is applicable, which is the case of a fluid medium with varying parameters in the vertical direction z. To be specific, we consider the problem of waves propagating in a medium that is invariant in the horizontal directions, which means that the Coriolis parameters f and f nt are assumed to be constant. In other words, this is the f -plane approximation discussed in 1.3, but for the 3D model with a stratified vertical structure, and taking compressibility and nontraditional Coriolis force into account. Before anything, an important remark must be made about the horizontal symmetries of the 3D model, i.e. the reflection symmetries in the x or y directions. As for the shallow-water model of constant depth (see 1.3.2), the compressiblestratified medium, non-rotating or only with the traditional rotation 40 is invariant under any rotation of vertical axis. Incidentally, the wave spectra have the same symmetry in the wave-vector space, i.e.

they are invariant under rotation of the horizontal wave vector, which has two consequences:

• First, the choice of k x or k y for computing the spectra is unimportant, as it yields the exact same situation. In the non-rotating case (3.3.1) we will choose k x .

• The spectra without the nontraditional term are symmetric, i.e a mode of frequency ω exists for both k x and -k x . Therefore, in the invariant problem in the direction y , there cannot be unidirectional trapped waves without nontraditional rotation 41 .

Therefore, a particular attention must be given to the nontraditional term, which induces an asymmetrical dynamics in the zonal and meridional directions. In 3.3.1 I will first discuss the non-rotating model studied in [START_REF] Perrot | Topological transition in stratified fluids[END_REF] and its spectral flow, then in 3.3.2 I will show the effect of the nontraditional component of the Coriolis force on these spectral-flow modes [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. These results will be generalized in 3.3.3, in which I will discuss the existence of those topological modes at arbitrary latitudes and directions of propagation.

The non-rotating case: Lamb-like and buoyant-like modes

In this part I will develop the topological properties of the spectrum of adiabatic oscillations in a non-rotating, stratified compressible fluid, and the resulting spectral flow. This part intends to provide some details on the 2018 study by [START_REF] Perrot | Topological transition in stratified fluids[END_REF], in light of the general method provided in 3.1, and address some specific points that where not well understood in [START_REF] Perrot | Topological transition in stratified fluids[END_REF]. In the following parts, I will generalize the results presented here to the rotating case, which is my main contribution.

First of all, as explained at the beginning of this section, the model is invariant under rotation around the axis z, so the choice of the horizontal direction of propagation is unimportant. Let us therefore consider that the wave propagates in a vertical plane (x, z). The dynamical wave equations

(1.73) thus reduce to a 4-by-4 system of partial differential equations 42 , written ωψ = Ĥψ with ψ(z) = u w Θ p T and the operator

Ĥ =        0 0 0 c s (z)k x 0 0 -iN (z) i S(z) - c ′ s (z) 2 -ic s (z)∂ z 0 iN (z) 0 0 c s (z)k x -i S(z) + c ′ s (z) 2 -ic s (z)∂ z 0 0        . (3.15)
The term c ′ s /2 in expression (3.15) is a generalization of the model studied by [START_REF] Perrot | Topological transition in stratified fluids[END_REF]], as will be explained at the end of this part. Following the method described in section 3.1, and by means of the Wigner-Weyl transform introduced in 2.4.1, the symbol of the operator (3.15) is

H S =       0 0 0 c s k x 0 0 -iN iS + c s k z 0 iN 0 0 c s k x -iS + c s k z 0 0       , ( 3 

.16)

40 With fnt = 0 and constant f , which is only valid at the poles, strictly speaking. One may think of this situation as an experiment with a vertically-stratified fluid medium set in rotation around the vertical axis.

41 In an equivalent way, the degeneracy points between two given wavebands appear by pairs at +Kx and -Kx, generating topological modes of opposite spectral flow.

42 Actually it is a system of coupled, ordinary differential equations in z, nevertheless we keep the notation ∂z.

whose eigenvalues, the roots of the polynomial (3.7), can be obtained explicitly (and are represented in figure 3.9):

ω ±1 = ± S 2 + N 2 + K 2 x + K 2 z 2 - S 2 + N 2 + K 2 x + K 2 z 2 2 -N 2 K 2 x (3.17a) and ω ±2 = ± S 2 + N 2 + K 2 x + K 2 z 2 + S 2 + N 2 + K 2 x + K 2 z 2 2 -N 2 K 2 x , (3.17b) using the notation (K x , K z ) = (c s k x , c s k z ).
The bulk wavebands n = ±2 of expression (3.17b) can be identified as the acoustic wavebands introduced in 1.2.1 (but modified by gravity and stratification), as their short-wavelength limit43 satisfies

ω ±2 ∼ ±c s k 2 x + k 2 z when k 2 x + k 2 z ≫ S 2 + N 2 c 2 s , (3.18)
which is the dispersion relation of sound waves in an homogeneous medium. Similarly, the bulk wavebands n = ±1 of expression (3.17a) can be identified as the internal-gravity wavebands introduced in 1.2.2 (but for a compressible fluid), as one can check that |ω ±1 | < N and the short wavelength limit reads as

ω 2 ±1 ∼ N 2 k 2 x k 2 x + k 2 z when |k x | ≫ N c s , (3.19)
which is exactly the dispersion relation (1.23). Note that the limit |k x | ≫ N/c s is always satisfied in the incompressible limit (c s → ∞).

Remark: In this sub-model the zero-frequency waveband (n = 0) is discarded.

S = 0 S ≠ 0 k z ω k x k z ω k x 0 n = -2 n = + 2 n = -1 n = + 1 0 Figure 3
.9: Plot of the dispersion relations (3.17), giving the internal-gravity wavebands (n = ±1) and the acoustic wavebands (n = ±2) in the (kx, kz)-space, for different values of the parameter S. There is a gap between the wavebands for S ̸ = 0 (left), which is closed when S = 0 (right).

Topological properties of the acoustic and internal-gravity wavebands

As explained in section 3.2.2, since f and K y are zero in this model, there is a whole degeneracy line at zero frequency (thus between the gravity wavebands n = ±1) for k x = 0 but it cannot be lifted in this model. Therefore, the degeneracy points of interest are the ones between the gravity and the acoustic wavebands. It is clear that these bands touch each other when the second term inside the expressions (3.17) vanishes (cf. the study of 3.2.3), which happens for (3.20) as shown in figure 3.9. Let us make two important comments about these degeneracy points:

K z = 0 , S = 0 and K x = ±N ,
• As explained in 3.2.3, the conditions (3.20) define actual isolated points in the (S, K x , K z )-space 44 , which appear by pairs (simultaneously at K x = +N and K x = -N ) because of the isotropy in the horizontal directions, as mentioned at the beginning of this section. The degenerate frequency between the bands n = +1 and n = +2 is equal to the buoyancy frequency N , 45 and -N for the equivalent degeneracy points between the negative wavebands n = -2 and n = -1.

• This confirms the interpretation of S proposed in 1.4.2, which is, it measures the coupling between acoustic and internal-gravity modes. Concretely, if S is close to zero somewhere in the medium, then acoustic and internal-gravity modes could mix and hybridize around the horizontal wave number N/c S and the frequency N . In the symbol picture, the gap between the two bands is direct (i.e. min{ω 2 } ⩾ max{ω 1 }) and its value is

∆ω 1,2 = N 2 + S 2 -N , (3.21)
which vanishes indeed for S = 0 only.

Remark: When S = 0, the dynamical equations with the operator (3.15) are invariant under the transformation (z, w, Θ) → (-z, -w, -Θ), which is a kind of vertical symmetry baptized stratification symmetry 46 (S) by [START_REF] Perrot | Topological transition in stratified fluids[END_REF] (see figure 3.3).

Now that the isolated degeneracy points have been identified, the next step is to compute their respective topological charges, i.e. the flux of the Berry curvature generated by the degeneracy points of the symbol (3.16) through a surface in (S, K x , K z )-space enveloping one of these degeneracy points.

This can always be done at least numerically 47 . Generally speaking, the Chern number of a two-fold conical degeneracy point in a three-dimensional parameter space is equal to ±1 (e.g. 2.3.2), and the only difficulty is to infer the sign. Moreover, once one has found the Chern number of a given band (say for n = 2) and a given point (say the one at K x = +N ), all the others can be inferred by considerations of symmetry or basic properties of the first Chern numbers:

• First, the two bands involved in a given degeneracy point have opposite Chern numbers for this point. It was shown in 2.3.2 in the case of the quantum dipole in a magnetic field, for instance, and a general proof for a degeneracy point involving two bands is proposed in appendix D.1. This allows one to infer the Chern numbers of the bands ±1, knowing those of the bands ±2.

• The Chern number of the band +2 at the point (0, N, 0) is opposite to the one at (0, -N, 0) for the bands +2 and -2, which can be proved by taking advantage of the reflection symmetry (x → -x)

and the conjugation symmetry (or particle-hole symmetry). This is demonstrated in appendix D.2.

Spectral-flow modes

The Chern numbers of each band at each point are summarized in figure 3.10. By means of the method described in 3.1, one can exploit that bulk information to predict the existence of spectral-flow 44 In the symbol picture, S can be considered as an independent parameter, however the real function S depends on N , cs and g. In particular, if cs is taken constant, it is obvious from equation (1.68) that S cannot be lower than -g/2cs in a stably stratified medium.

45 However, keep in mind that in the real inhomogeneous problem, N can be a function of z.

46 This symmetry can be seen as an extension of the Boussinesq symmetry for compressible media. 47 And, in some situations, analytically. In this case a method is proposed in the appendix of [START_REF] Perrot | Topological transition in stratified fluids[END_REF] based on the fact that the squared symbol (3.16) is a block-diagonal matrix with (tilted) Dirac-like degeneracy points. The computation of the Chern number is thus reduced to that of the index of a vector, just as for the quantum dipole in 2.3.2. Other examples of direct computation can be found in [START_REF] Delplace | Topological origin of equatorial waves[END_REF][START_REF] Venaille | Wave topology brought to the coast[END_REF]. modes transiting between the acoustic and internal-gravity wavebands in the real problem with varying parameters, provided there is an interface where S = 0. To be specific, if S takes the value 0 at height z ⋆ with S ′ (z ⋆ ) > 0,48 one can expect the band n to gain C n (K ± ) modes -where K ± is one of the degeneracy points -transiting around k ⋆ x = ±N (z ⋆ )/c s (z ⋆ ) and localized around the height z = z ⋆ . If S ′ (z ⋆ ) < 0, the band n loses C n (K ± ) modes49 .

ω k x S K z K x K + K - (+1, -1, -1, + 1) (-1, + 1, + 1, -1) -1 -1 -1 -1 +1 +1 +1 +1
In order to confirm this prediction, figure 3.11 gathers both cases S ′ (z ⋆ ) < 0 and S ′ (z ⋆ ) > 0 in the same numerical simulation, by taking a profile of S that changes sign twice, in an increasing fashion at z 1 and decreasing at z 2 . Conversely, the resolution at the top right-hand corner of figure 3.11 is for a profile of S which does not change sign. The results are only shown for positive frequencies, because the spectrum at negative frequencies can be obtained straightforwardly by symmetry (k x , ω) → (-k x , -ω), and positive k x because of the spectrum is symmetric by k x → -k x owing to the horizontal isotropy.

For the simulations of figure 3.11 we choose periodic boundary conditions, as explained in section 3.1.

Incidentally, this choice constrains the S profile to have the same value at both extremities, and thus to change sign an even number of times, as many times in an increasing fashion as in a decreasing one50 . Therefore, in order to know which transiting modes are localized around z 1 or z 2 , we numerically computed both the spatial extension and the medium position of each mode in the vertical direction.

The numerical resolution (figure 3.11) exhibits two branches of modes transiting between the acoustic and internal-gravity wavebands:

• The Lamb-like modes: A first topological mode (red in figure 3. 11b andc) is localized at height z 2 . At large wavelengths (k x → 0) it becomes an internal-gravity wave, whereas at low wavelengths (k x → ∞) it becomes an acoustic wave (i.e. ω = O(k x ) in both limits)51 . It is the equivalent of the Lamb wave52 described in [START_REF] Lamb | On atmospheric oscillations[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. However, its existence does not rely on the presence of a boundary, just on the presence of an interface where S changes sign in a decreasing fashion. In that sense it was named the Lamb-like mode by [START_REF] Perrot | Topological transition in stratified fluids[END_REF].

• The buoyant-like modes: A topological mode of opposite spectral flow (blue in figure 3. 11b andc) is localized at height z 1 . At large wavelengths it becomes an acoustic wave, whereas at low wavelengths it becomes an internal-gravity wave (i.e. ω has a finite, non-zero value in both limits). This mode is reminiscent of the inertial Brünt-Väisälä oscillation53 , which is another boundary wave discussed in [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. Again, the existence of this mode is independent of the boundaries and is entirely constrained by the presence of an interface where S = 0 and S ′ > 0 within the bulk. This case is not discussed in [START_REF] Perrot | Topological transition in stratified fluids[END_REF]. It is safe to call this mode a buoyant-like topological mode. The relation between these topological modes and their similar boundary waves is further discussed in section 3.5. As they transit from one waveband to another when k x is swept, these modes describe a spectral flow as defined in 2.4.2. Their respective velocity fields are represented in figure 3.11c. Because of the horizontal isotropy, these modes are multidirectional (contrary to the Kelvin and Yanai equatorial modes, which exclusively propagate eastward), in the sense that any mode of wave number k x and frequency ω also exists for -k x and the same frequency. Finally, the conclusion brought by the numerical resolution is in agreement with the announced prediction and the Chern number-spectral flow correspondence (2.55). The existence of these topological waves is constrained by the criterion S = 0 in the bulk, and they are robust against the fluctuations of the parameters' profiles, as long as this criterion holds. Therefore, breaking this criterion can be referred to as a topological transition, which leads to the appearance/disappearance to these modes in the frequency gap.

What has been better understood since the study of [START_REF] Perrot | Topological transition in stratified fluids[END_REF]?

First of all, the application of the Wigner-Weyl transform (presented in 2.4.1) to obtain the symbol, and infer the criteria for a spectral flow to exist, was not clearly understood. A particular subtlety in the models addressed in this thesis comes from the presence of the product of non-commuting operators, typically c s (z)∂ z 54 in expression (3.15), whose symbol is given by (2.43d). This allowed to infer the symbol (3.16) from the general expression of the operator (3.15) with varying sound speed c s , which explains why expression (1.68) of the stratification parameter S contains the term c ′ s /2. The model of [START_REF] Perrot | Topological transition in stratified fluids[END_REF] had to assume c s constant, so that the operator only had commuting coefficients, for which the Wigner-Weyl transform reduces to the Fourier transform, which is less general as explained in 2.4.1. Having to consider c s constant thus raised two major difficulties:

• In a perfect gas atmosphere at equilibrium, all three parameters N, S and c s depend on the temperature profile only (see appendix A). Therefore, assuming c s constant amounts to considering an isothermal atmosphere, and thus no variation of S, which keeps a constant, negative value as can be seen in expression (A.5). This forbids the possibility of an interface S = 0, obviously. [START_REF] Perrot | Topological transition in stratified fluids[END_REF] bypassed this inconsistency by taking a profile of S which is almost constant in the medium and increases rapidly in a small domain near the bottom. However this situation lacks generality as it only allows the existence of Lamb-like waves (since S ′ < 0), and the transition point where S vanishes is so close to the bottom boundary that there is a confusion with the boundary Lamb wave described by [START_REF] Lamb | On atmospheric oscillations[END_REF][START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF].

• The variations of S are shaped by those of the buoyancy frequency N with z, but expression (1.68) for S also involves c s . Yet we often consider c s constant in this thesis, mostly so as to simplify the numerical calculations (see for instance the spectra of figure 3.11). In the present case, as well as in [START_REF] Perrot | Topological transition in stratified fluids[END_REF], it yields a nondispersive Lamb-like wave of constant group velocity c s , but it also shapes the particular form of the spectra observed in figure 3.11: the frequency gap between internal-gravity and acoustic modes is indirect 55 (contrary to the gap of the symbol's bulk wavebands), which leads to the curious situation in which the topological Lamb-like and buoyant-like waves both have a positive group velocity in spite of their opposite spectral flow. This is a general and important remark, worth remembering: two topological modes transiting around the same wave number k ⋆

x can have an opposite spectral flow and still have their group velocities of the same sign, or, similarly, the existence of a spectral flow is compatible with an indirect band gap.

In order to convince oneself that the analysis described in this part is general, one can consider for instance the exactly opposite situation, i.e. a stratification profile with constant buoyancy frequency N and varying sound speed c s (figure 3.12a and b); or an atmospheric layer of perfect gas with a temperature profile such that S changes sign (see figure A.1 in appendix A). The conclusion is the same, which is that a mode transits from the internal-gravity to acoustic waves, as k x goes from 0 to +∞, if there is an interface S = 0 with S ′ < 0, or conversely a mode transiting from acoustic to internal-gravity waves if S = 0 with S ′ > 0.

54 Or c(y)∂y as in [Venaille and Delplace, 2021] and 3.5.1. 55 This is a systematic fact for constant cs, demonstrated in appendix F.3. . its frequency has a finite limit when kx → 0, see [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]) to the internal-gravity waveband. The velocity field and lines of constant Θ of the topological mode for kx = k0 (red dot) are represented below. Boundary conditions: p = 0 at both extremities.

Possible observation

As far as potential observation of these modes is concerned, as pointed out in [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF][START_REF] Perrot | Topological transition in stratified fluids[END_REF], the parameters in most of the atmosphere and the deep ocean are such that N < g/c s , 56 whereas N > g/c s can occur in the thermocline (upper oceanic layer, of about a hundred meters deep), as shown in figure 3.13. Without taking the term c ′ s /2 of expression (1.68), one would think that S increases and changes sign in the ocean as z increases, and thus that buoyant-like modes might propagate around the crossing point 57 . However, accounting for the term c ′ s /2 -which is not considered by [START_REF] Perrot | Topological transition in stratified fluids[END_REF] -leads to the opposite conclusion in the ocean, namely that S is rather positive in the deep ocean while negative in the thermocline (see figure 3.13). This suggests the possible existence of Lamb-like modes propagating in the ocean, thus waves of arbitrarily low frequency which propagate at the speed of sound.

56 Indeed, g ≈ 10 m.s -2 and cs ≈ 1.5 × 10 3 m.s -1 in water, thus g/cs ≈ 6.7 × 10 -3 s -1 , whereas N < 5 × 10 -3 s -1 in most of the ocean. 57 The question of how localized these modes can be is discussed in 3.5.2 and appendix F. For instance, Iga [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF] predicts that a boundary Lamb wave cannot exist in the ocean because its extension in the vertical direction turns out to be much higher than the maximal oceanic depth. However, the extension of the topological interface modes described here depends on the steepness of S at the transition, which may be sufficiently high so that localized topological modes can exist in the atmosphere or the ocean. S N (10 -2 s -1 ) , g/c s ,
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Figure 3.13: Realistic profiles of the buoyancy frequency N , stratification parameter S and g/cs in the ocean (left) and the atmosphere (right), for typical profiles of density, sound speed and temperature (see for instance [START_REF] Gerber | Assessing and understanding the impact of stratospheric dynamics and variability on the earth system[END_REF]). The z axis is not to scale for the ocean and atmosphere). Note that, while there is no crossing point (where S = 0) in this atmosphere, there is one in the ocean for this particular profile, mostly due to dcs/dz changing sign across the SOFAR channel [START_REF] Munk | The heard island feasibility test[END_REF].

In section 3.6 I will also discuss the case of stellar media, for which adiabatic oscillations can propagate deeper and, consequently, the variations of g intervene in the expression of S and thus in the transition criterion. Incidentally, the huge radial extension of a gaseous stellar medium leads to greater variations of S, and thus crossing points.

Now that the non-rotating case has been fully presented, from now on I will show how the presence of rotation modifies the conclusions presented here, and how these modifications arise in the symbol's topology and, incidentally, in the spectrum of the real problem with varying stratification.

3.3.2

The rotating case: a simplified model at the equator (Phys. Rev. Lett.

2022)

In the non-rotating case previously described, the dynamics can be reduced to a two-dimensional flow, in the sense that, if the initial perturbation is contained in a vertical plane, the dynamics will remain in this plane58 . In a rotating medium this is not true in general, because the Coriolis force couples the three components of the velocity field, as can be seen in the general linearized dynamical equations (1.70). The only exception is the equatorial plane, where the rotation rate is orthogonal and thus the Coriolis force is contained in the same plane, allowing a 2D flow to be set in this particular configuration (figure 3.14). This is the particular case that will be considered in here. The following study was published in the form of a letter [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF].

Ω g f nt z x S(z) > f nt z x k x S(z) < f nt x y g f Figure 3
.14: Geometry of the planar equatorial problem on a rotating planet. The traditional component f vanishes at the equator, while the nontraditional term fnt is maximal, which is the exact opposite situation to that of the poles. Unidirectional trapped modes can propagate in the zonal direction x along interfaces defined by S = +fnt (or S = -fnt).

The restriction to the equatorial case has two main motivations: 

Ĥ =        0 -if nt 0 c s (z)k x if nt 0 -iN (z) i S(z) - c ′ s (z) 2 -ic s (z)∂ z 0 iN (z) 0 0 c s (z)k x -i S(z) + c ′ s (z) 2 -ic s (z)∂ z 0 0        , (3.22)
which is the general 3D operator (3.5) with the second row and column removed 60 , and also the same as (3.15) in 3.3.1, including the Coriolis force with the nontraditional parameter f nt . As will be shown in this part, it is possible to identify exactly the degeneracy points of the symbol of (3.22), which makes it a textbook case to study the interplay between rotation and stratification from a topological point of view. In particular, we will see explicitly how rotation at the equator modifies the degeneracy points and the spectral flow of the non-rotating case addressed in 3.3.1.

• Importance of the nontraditional term -As explained in chapter 1, in a great majority of geophysical studies, it is customary to only retain the traditional component of the Coriolis force (i.e. in the horizontal plane), especially to investigate planetary fluid motions with large horizontal scales in comparison to their vertical ones. For that reason, neglecting f nt is referred to as the traditional approximation [START_REF] Eckart | Hydrodynamics of oceans and atmospheres[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. While exact for a truly twodimensional fluid (see 1.3.2), this approximation cannot be justified from first principles in more comprehensive three-dimensional geophysical flows, and even less in astrophysical flows for which 59 As always presented in the form of the eigenvalue equation ωψ = Ĥψ for propagating solutions ψ(z)e i(kxx-ωt) 60 And ∂x → ikx. Note that this reduction amounts to discarding static modes (i.e. ω = 0, which is a waveband of the 3D model as shown in section 3.2), which in this case corresponds to fluid motions in the meridional direction, out of the plane.

the vertical (in other words, radial) scales and motions cannot be neglected [Aerts et al., 2010].

Therefore, the consideration of nontraditional effects has been subjected to a resurgence of interest for the last years [START_REF] Gerkema | Geophysical and astrophysical fluid dynamics beyond the traditional approximation[END_REF][START_REF] Tort | Consistent shallow-water equations on the rotating sphere with complete coriolis force and topography[END_REF]]. In the model presented here, rotation enters only through the nontraditional term, which is therefore in drastic contrast with the traditional approximation. In particular, contrary to the unidirectional equatorial shallow-water modes trapped at an interface in the horizontal plane where the (varying) traditional Coriolis parameter f vanishes [START_REF] Matsuno | Quasi-geostrophic motions in the equatorial area[END_REF][START_REF] Delplace | Topological origin of equatorial waves[END_REF] (see 1.3.4), I will demonstrate the existence of unidirectional modes trapped at an interface in the vertical plane, involving the combined effects of gravity, compressibility, stratification and nontraditional Coriolis force altogether. From now on the value of f nt is fixed and taken positive, since the definition of the east/west and the north/south pole is up to the direction of planetary rotation.

Let us now use the recipe given in section 3.1. The symbol of the operator (3.22) reads as

H S =       0 -if nt 0 c s k x if nt 0 -iN iS + c s k z 0 iN 0 0 c s k x -iS + c s k z 0 0       , (3.23)
and its eigenvalues (i.e. the frequencies of the bulk plane-waves) are given by the dispersion relation

ω 4 -(S 2 + N 2 + f 2 nt + K 2 x + K 2 z )ω 2 -2K x Sf nt ω + N 2 K 2 x = 0 , (3.24)
which is the characteristic equation (3.7) without the trivial solution ω = 0 and in the particular case

K y = f = 0.
The bulk wavebands thus consist again in acoustic (n = ±2) and internal-gravity (n = ±1) waves. Indeed the spectrum of the symbol (3.23) does not have the symmetry K x → -K x (see figure 3.15), owing to the symmetries broken by the nontraditional Coriolis force.

Discussion of the symmetries

Note that the symmetries of the model are reflected in the dispersion relation (3.24), and thus, incidentally, the bulk spectrum (figure 3.15). As usual, the dispersion relation is unchanged under

(K x , K z , ω) → (-K x , -K z , -ω)
, which is the conjugation symmetry (noted C) of the real fluid problem. More interestingly, the nontraditional Coriolis (non-zero f nt ) breaks both time-reversal symmetry T , which transforms (K x , K z , ω) → (K x , K z , -ω) in the symbol space 61 , and reflection symmetry in the

x direction (M x ), which transforms (K x , K z , ω) → (-K x , K z , ω). 62 Indeed equation (3.24) is not left unchanged under these transformations. However, the composition of both transformation (T -t). Yet, one should proceed with caution as regards the symmetry terminology: in the language of condensed matter, the direct transformation ω → -ω in the Fourier space is referred to as the chiral symmetry, which is unitary, whereas time-reversal symmetry is the composition of the inversion (K → -K) and the complex conjugation (i → -i), which is anti-unitary. In the fluid context, the we can assimilate the two, so we will not discuss this subtlety any further.

• M x ), i.e. (K x , K z , ω) → (-K x , K z , -ω),
62 Or (u, w, Θ, p)

Mx

---→ (-u, w, Θ, p) and (x, z, t)

Mx

---→ (-x, z, t) in real space. 63 (u, w, Θ, p)

T •Mx -----→ (u, -w, Θ, p) and (x, z, t) T •Mx -----→ (-x, z, -t).
64 See figure 3.14: the full Coriolis force is strictly traditional in an horizontal plane at the poles, where the rotation axis is aligned with the direction of stratification, while purely nontraditional in a vertical plane at the equator, where the two directions are orthogonal. 65 In the shallow-water model, the same T • M symmetry-breaking is achieved for instance with a varying topography

In terms of spectral symmetry, the combination of nontraditional rotation (f nt ̸ = 0) and stratification (S ̸ = 0) is manifested in the bulk spectrum with an asymmetry K x → -K x (see figure 3.15). Incidentally, the propagation properties of this model are not symmetric in the zonal direction, and we will see that through the spectral-flow modes.

Degeneracy points of the dispersion relation

In this case the location of the degeneracy points can be found analytically (see 3.2.3). Once again, we are not interested by the degeneracy point at zero frequency and K x = 0, between the internalgravity wavebands, because it is protected as f = 0 in the whole plane 66 . For a fixed parameter f nt > 0, there are two degeneracy points at positive frequency (i.e. between the bands +1 and +2) in the (S, K x , K z )-space, for

K z = 0 , S = ±f nt and K x = ∓ N 2 + f 2 nt , (3.25)
and the degenerate frequency at these points is + N 2 + f 2 nt (cf. equation (3.14) in 3.2.3). The equivalent degeneracy points at negative frequency (i.e. between the bands -1 and -2) appear at

K z = 0 , S = ±f nt and K x = ± N 2 + f 2 nt . (3.26)
The degeneracy points are represented in figure 3.15. The points K ± = (0, ±N, 0) are the degeneracy points of both the positive (+1 and +2) and negative (-2 and -1) wavebands for f nt = 0, as we saw in part 3.3.1, and as rotation is "switched on" (f nt > 0), they split in parameter space (see figure 3.15), which is reminiscent of the x-reflection-symmetry breaking. Regarding the expected spectral flow in this model, the criterion that was previously S = 0 is now

S = ±f nt , (3.27)
which is rather surprising: on the left-hand side of equation (3.27), one finds the parameters of stratification, gravity and compressibility, and on the other the nontraditional Coriolis parameter characterizing the rotation. To our knowledge there is no interpretation of this condition S = ±f nt in terms of the system's physical symmetries 67 . However one can interpret this shift in the following way: a topological mode is localized around an interface due to an inversion of some effective restoring mechanism across the interface 68 . In the non-rotating case this mechanism is entirely determined by the stratifcation properties, however, in the rotating case, the vertical Coriolis force also intervenes in the effective balance.

Since "switching on" rotation only displaced the degeneracy points in the (S, K x , K z )-parameter space, the respective Chern numbers of the different bands for each of these points remain unchanged.

More precisely, the original eigenvectors Ψ n (n = ±1, ±2) of the non-rotating problem's symbol (3.16) are smoothly transformed into those of the symbol (3.23), as f nt is increased continuously, therefore the [START_REF] Venaille | Wave topology brought to the coast[END_REF] (or a mean flow as in [START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF], but the fluid is assumed to be initially at rest), an we will show in 3.5.1 that the traditional shallow-water model with varying bottom topography is indeed a very similar problem to that of the wave dynamics with nontraditional Coriolis force and varying stratification in the equatorial plane.

66 In other words, there is no interface that lifts this degeneracy point, as in 3.3.1. 67 No more than for the condition S = 0 in the non-rotating case, in fact, except for the abstract stratification symmetry mentioned in [START_REF] Perrot | Topological transition in stratified fluids[END_REF] and 3.3.1. Here on can note for instance that, if Kz = 0 and S = ±fnt, the symbol (3.23) commutes with the unitary self-adjoint matrix (3.28) in other words H S is left invariant under some abstract symmetry corresponding to the band closing. 68 The effective force acting on the wave in the vertical must be negative above the interface and positive beneath it, otherwise the wave is "pushed" to the boundaries (see the discussion of 3.5.2). topological invariants are robust against this modification 69 . Figure 3.15 shows the value of the Chern numbers, which are in agreement with those of the non-rotating case showed in figure 3.10. In the following, only the positive-frequency degeneracy points (i.e. between the bulk wavebands n = +1 and +2) are considered, as usual, because of the straightforward spectrum's symmetry ω(-k x ) ↔ -ω(k x ).

U ± =     0 0 0 ±1 0 1 0 0 0 0 1 0 ±1 0 0 0     ,
k z k x ω n = -2 n = + 2 n = -1 n = + 1 S K z K x K + K - + + - - (-1, + 1, 0, 0) (+1, -1, 0, 0) (0, 0, + 1, -1) f nt f nt f nt f nt S = + f nt S = -f nt S = f nt = 0 (+1, -1, -1, + 1) (-1, + 1, + 1, -1) -1, + 1 +1, -1 1, -1 + (0, 0, -1, + 1) 1, + 1 - (𝒞 -2 , 𝒞 -1 , 𝒞 +1 , 𝒞 +2 ) =

Unidirectional modes and selection of the Lamb waves

Since the values of the Chern numbers are unchanged, we can expect the existence of spectral-flow modes of the same nature as the ones described in 3.3.1, i.e. Lamb-like waves 70 localized around z ⋆ if S(z ⋆ ) = ±f nt and S ′ (z ⋆ ) < 0, or buoyant-like waves 71 if S(z ⋆ ) = ±f nt and S ′ (z ⋆ ) > 0. However, the position of the degeneracy points in the symbol's parameter space is shifted by the nontraditional rotation term (see figure 3.15), which has therefore a particular consequence on the spectral flow: in the non-rotating case, if there is an interface S(z ⋆ ) = 0, say for instance with S ′ < 0, a branch of Lamb-like modes appears at positive 72 k x and propagate eastward along the interface, together with the symmetric branch of Lamb-like modes at k x < 0 which propagate along the same interface but in the other direction 73 . In other words, the Lamb-like modes in this case are multidirectional, and the spectral flow at negative k x has a symmetric branch of opposite spectral flow at positive k x , because of the spectrum's symmetry ω(k x ) ↔ ω(-k x ) in the absence of rotation. However, the nontraditional 69 One can check numerically that the Chern numbers are indeed the same . 70 Transiting from the internal-gravity modes at high wavelength to the acoustic modes at low wavelength. 71 Transiting from the acoustic modes at high wavelength to the internal-gravity modes at low wavelength. 72 Just to be clear, it has a prolongation for kx < 0 but for negative frequencies, and here we do not consider this part of the spectrum, for the sake of conciseness.

73 Indeed, in the symbol's parameter space, both degeneracy points K ± are crossed at the same interface S = 0, in the non-rotating case, see 3.3.1.

f nt = 0 f nt = 0.25 f nt = 0.6 S 0 z z z S S +f nt -f nt 0 0 +f nt -f nt B 1 B 2 L 1 L 2 B 1 B 2 L 1 L 2 B 2 L 2 L 1 L 2 B 1 B 2 L 1 L 2 B 1 B 2 L 2 B 2 L 1 L 2 B 1 B 2 L 1 L 2 B 1 B 2 L 2 B 2
Profile of S( z The first column of spectra corresponds to a case where cs is fixed (cs = 1 constant, therefore the Lamb-like modes are nondispersive, see appendix F) and N varies, and vice-versa for the spectra on the right (N = 1 constant, therefore the non-rotating buoyant-like mode has a fixed frequency ω = N , see appendix F). In the non-rotating case (fnt = 0, first row), the spectrum is symmetric, the Lamb-like modes (westward L1 and eastward L2, in red) are localized at the same interface and propagate in both directions, and the same goes for the buoyant-like modes (B1 and B2, in blue). If fnt is non-zero but not too strong (second row), the crossing points are slightly separated, so the topological modes L1 and L2 (resp. B1 and B2) still exist but their respective locations are shifted. A transition occurs in the strong regime (third row), when fnt becomes sufficiently high so that some interfaces disappear. In the present example, the spectral flow at negative kx is canceled, and both the Lamb-like mode L1 and the buoyant-like mode B1 mix and become delocalized at the transition.

term f nt > 0, breaks this symmetry, as it is clear from the position of the degeneracy points 74 that a spectral flow for negative k x (i.e. Lamb-like modes propagating westward) now only exists for an interface S = +f nt , whereas a spectral flow for positive k x (i.e.

Lamb-like modes propagating eastward) would be located at an interface S = -f nt .

Regarding the behavior of the spectral flow, it is thus possible to consider a weak and a strong rotational regimes, which is summarized in figure 3.16:

• If the stratification profile has a transition point S = 0, then a parameter f nt which is non-zero but still small compared to the maximal values taken by |S| has the effect of splitting the crossing point into two spatially separated interfaces S = +f nt and S = -f nt (see figure 3.16, second row).

Therefore, the spectral-flow modes at negative and positive k x still both exist, but their respective location is slightly shifted, as explained before. for instance, if the interface is decreasing (S ′ < 0), then the interface S = +f nt is located beneath the other interface S = -f nt , so Lamb-like waves 74 Between the bands +1 and +2, in cyan in figure 3.15. propagating eastward would be shifted upward in comparison with Lamb-like waves propagating westward. For an interface S ′ > 0 (buoyant-like modes), the conclusion is the opposite. To sum up, the weak rotational regime induces a spatial separation of the westward and eastward propagating topological modes. This regime is a priori relevant for instance in the ocean and atmosphere of the Earth, because S ∼ 10 -3 s -1 , while f nt ≈ 1.5 × 10 -4 s -1 , however a more precise knowledge of the S profile is necessary to conclude. In particular, the spatial separation of the modes is clear if they do not overlap, i.e. if their respective extension is not large compared to the interfaces' relative distance (cf. the discussion of 3.5.2 and appendix F).

In the atmosphere, more generally in a stratified perfect gas, S is mostly negative (see appendix A), which barely allows the possibility of a crossing point S = 0, however if rotation is sufficiently strong there may be interfaces S = -f nt and thus possibly unidirectional interface waves.

• In the strong rotational regime, i.e. when f nt is higher than a local maximal value of |S|, then an interface can disappear. For instance, if S decreases from a maximal value S max > 0 to a minimal value S min < 0, there would be Lamb-like modes propagating in both direction and located at the interface S = 0, in the absence of rotation. However, if f nt > S max and -f nt > S min , then only the interface S = -f nt remains, and thus only the eastward Lamb-like modes (branch at positive k x ) are allowed. If rotation is even stronger, i.e. f nt is higher than both S max and -S min , then there is no interface at all and thus the whole spectral flow disappears (figure 3.16, third row). According to this analysis, a topological transition occurs when the number of crossings between the vertical profile S(z) and the value ±f nt changes, leading to the appearance/disappearance of unidirectional interface waves whose frequency branches transit between the gravity and acoustic wavebands. These modes are the rotating counterpart of the multidirectional topological modes introduced in the non-rotating case (3.3.1), as they have a similar structure75 . In that sense they are unidirectional modes selected by the rotation.

In the next part, I will extend the results of the present part to a fluid medium with varying stratification, outside the equator, where both the traditional and the nontraditional components of the Coriolis force have to be accounted for.

generalization at non-zero latitudes

In the previous part we demonstrated that, for two-dimensional waves propagating in an equatorial plane, if there is a certain height z ⋆ such that S(z ⋆ ) = ±f nt , topological modes, whose branch transits between the acoustic and the internal-gravity wavebands, can propagate along the interface z = z ⋆ .

While the results of 3.3.2 thus demonstrate that the nontraditional part of the Coriolis force must be taken into account for the prediction of topological modes in compressible-stratified and rotating fluids, it still may be misleading as it leaves one under the impression that only the nontraditional term is involved in the topological transition. Indeed, in the equatorial case, rotation is purely nontraditional (f nt = 2Ω, with Ω the planetary rotation speed), so one wants to know whether these topological modes still exist away from the equator, where f ̸ = 0, and whether both the traditional and nontraditional contributions are involved in the emergence of a spectral flow in this generalization of the situation previously considered. As explained in 3.3.2, at non-zero latitude, one has to take the three components of the fluid's velocity field into account (v ̸ = 0, in particular), on the one hand, and also the possibility for the wave to propagate in the meridional direction (i.e. with k y ̸ = 0) instead of only the zonal one, on the other. To be consistent with the class of problems of this section, where the parameters only vary in the vertical direction z, we thus consider 3D waves propagating in a medium with fixed Coriolis parameters 76 , with a plane-wave structure in the horizontal directions, x and y and an amplitude which varies in the vertical direction z (see figure 3.18, which depicts the situation). In other words, we consider the solutions ψ(z)e i(kxx+kyy-ωt) of equation (1.71), with the eigenvalues ω of the operator

Ĥ =         0 if -if nt 0 c s (z)k x -if 0 0 0 c s (z)k y if nt 0 0 -iN (z) iS(z) -i c ′ s (z) 2 -ic s (z)∂ z 0 0 iN (z) 0 0 c s (z)k x c s (z)k y -iS(z) -i c ′ s (z) 2 -ic s (z)∂ z 0 0         . (3.29)
Remark: In the continuity of what has been done so far in this chapter, one can thus simply consider the meridional wave number k y as a fixed parameter in the inhomogeneous problem, and sweep the zonal wave number k x to compute a spectrum of eigenvalues ω. In this case the spectral-flow parameter 76 For that point of view to be consistent with a real wave on the planet of radius R, the meridional scales of the wave (i.e. its extension and wavelength in the y direction) must be much smaller than R, so as to neglect the variation of the Coriolis parameters with latitude. This is incidentally implied with the local 3D Cartesian geometry, though.

is k x , although the choice could be different (see for example [START_REF] Faure | Topological chern indices in molecular spectra[END_REF][START_REF] Faure | Manifestation of the topological index formula in quantum waves and geophysical waves[END_REF] and the discussion of 3.1.3). For instance, k y can be the spectral-flow parameter and k x taken constant, or one could even compute the spectrum as a function of some parameter s with the horizontal wave numbers describing a parametric curve (k x (s), k y (s)). At the end of the day the conclusion is the same: there will be a spectral flow under the condition that a degeneracy point is crossed. As depicted in 3.2.3, when K y and f are "switched on", the acousto-gravity degeneracy points of the symbol (3.6) are displaced in the (S, K x , K z )-parameter space from their position when f, K y = 0 (see 3.3.2). In particular if f = 0 and K y ̸ = 0, 77 these degeneracy points remain at K z = 0, and the same goes in the opposite scenario, i.e. for f ̸ = 0 and K y = 0. 78 If both f and K y are non-zero, however, the degeneracy points move in all three directions of parameter space. As stressed out in 3.2, there is no analytical expression for the coordinates of the degeneracy points in the general case, at least to 77 Which is again the equatorial situation, but for waves that can propagate in the meridional direction.

k y = 0 ω k x 0 0 k y = 1 k y = 3 0 k x ω 0 N max f 0 k x ω 0 0 k x ω 0 0 k x ω 0 0 k x ω 0 ϑ = 0 ( f nt ≠ 0, f = 0) ϑ = 45 ∘ ( f nt = f ≠ 0) S K x K z S max S min S K x K z S K x K z S K x K z S K x K z S K x K z N max f N max f
78 This corresponds to a plane wave at non-zero latitude, propagating in the zonal direction.

my knowledge, only for particular situations such as the ones previously described in 3.3.1 and 3.3.2.

However, one of the lessons to be taken from these previous examples is that the precise location of the degeneracy point in parameter space is not important regarding the spectral flow. For instance, in the equatorial case of 3.3.2, among the coordinates (3.25) of the positive-frequency degeneracy point, the value K z = 0 has actually no importance in the spectral-flow analysis, and neither is K x = ∓ N 2 + f 2 nt , except to give an estimate of the range of wave numbers k x around which the modes transit between the bands. The most important information is the value of S at the degeneracy point, since the only condition for a spectral flow to exist is that the stratification profile S(z) crosses this value somewhere. Figure 3.19 thus shows the spectra of the operator (3.29) with periodic boundary conditions and a profile of S(z) that varies twice between two values, S min and S max , as the one taken for the simulations shown in figures 3.11 and 3.17. As demonstrated in the simulations of figure 3.19, Lamb-like waves are still located at the crossing point where S ′ < 0 and the buoyant-like modes are located at the crossing point where S ′ > 0, and the fact that they transit between the bands is entirely determined by whether a degeneracy point in the symbol's space has a value of S which is between S min and S max .

Remark on the spectra: Note that, if f = 0, internal-gravity waves can have arbitrarily low frequencies (see the left column of figure 3.19), whereas at non-zero latitude, they have a non-zero minimum frequency (right column). Within the traditional approximation, internal-gravity waves only exist in the spectral window79 |f | < ω < N max (cf. for instance [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], p. 277), but nontraditional effects enlarge this window [START_REF] Gerkema | Near-inertial waves in the ocean: beyond the 'traditional approximation[END_REF], as confirmed by the spectra of figure 3.19 (right column).

In conclusion, the topological modes described in 3.3.2 still exist out of the equator and for non-zonal directions of propagation80 . The criterion for the existence of a spectral flow is now that an interface z = z ⋆ exists, such that S(z) takes a value which depends on the local Coriolis parameters f nt , f , and also c s (z ⋆ )k y and N (z ⋆ ). This criterion is S = ±f nt (i.e. with f, k y = 0, see 3.3.2) and, for instance at the poles (f nt = 0), S = 0 see 3.2.3 and figure 3.20). In other words the traditional rotation alone does not affect the spectral-flow criterion S = 0, although with f ̸ = 0, the Lamb-like modes are dispersive in the long wavelength limit, because internal-gravity waves have a finite frequency limit when k x , k y → 0 (see figure 3.20c).
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.20: The general 2D wave problem, inhomogeneous in z, for different situations. cs is taken constant in the simulations: in this case the topological modes of opposite spectral flow cross exactly at the common value of k ⋆

x corresponding to the symbol's degeneracy points (see equations (3.13) and (3.14)). a. In the absence of rotation (see 3.3.1), topological modes arise at opposite wave numbers and thus propagate in both directions x and -x, along the interfaces where S = 0. b. With a purely nontraditional rotation the interface condition becomes S = ±fnt (see 3.3.2). Here the S profile crosses twice the value +fnt > 0, which leaves us only with unidirectional topological modes propagating along the interfaces where S = +fnt. With the particular choice of a constant cs, both the Lamb-like and the buoyant-like modes propagate westward. Note that the axis of rotation is perpendicular to the plane of propagation. c. In the opposite case of a purely traditional rotation, the interface condition is still S = 0, as in the non-rotating case (see equations (3.13) in 3.2.3), so the topological modes still exist at opposite wave numbers. The modes have a lower frequency cutoff which is given by the inertial frequency |f |. Note that the axis of rotation is parallel to the plane of propagation.

The generalized Matsuno spectrum

The parameters of the general operator (3.5) describing geophysical and astrophysical waves vary in the vertical direction and also the meridional one. Therefore a second category of 2D wave problems that belong to the class of models described in section 3.1 is a fluid medium inhomogeneous in the direction x 2 = y. In this section I wish to discuss the topological modes emerging in this problem with fixed 81 parameters S, N and c s and varying f (y), f nt (y) (figure 3.21c). Therefore we will consider the 5-by-5 Schrödinger-like equation (1.71) for a wave solution ψ(y)e i(kxx+kzz-ωt) , i.e. find the eigenvalues ω of the operator As in 3.3.3, we will take k x for a spectral-flow parameter, and k z can be seen as an external parameter as N, S and c s , which amounts to looking at some vertical mode defined by the wave number k z . However we will restrain the present analysis to k z = 0, i.e. not consider the vertical dependence of the wave, like for the shallow-water model (see 1.3.2) 82 . The main reason is that, in this case, the location of the symbol (3.6)'s degeneracy points in the (f, K x , K y )-space can be found exactly. To be more precise, the motivation of this section is based on the following observation, made in section 3.2: for K z = 0, not only there is the degeneracy point at zero frequency for (f, K x , K y ) = (0, 0, 0), 83 but there are also degeneracy points between the acoustic (n = +2) and the internal-gravity (n = +1) wavebands in this parameter space (see figure 3.8). Therefore we will consider a generalized equatorial problem (see figure 3.21) and investigate the existence of topological modes transiting between the upper frequency bands.

Ĥ =         0 if (y) -if nt (y) 0 c s k x -if (y) 0 0 0 -ic s ∂ y if nt (y) 0 0 -iN iS + c s k z 0 0 iN 0 0 c s k x -ic s ∂ y -iS + c s k z 0 0         . ( 3 
81 Strictly speaking, the results of this section could be generalized to a situation where all the parameters, including S, N and cs depend on y.

82 In fact, the Matsuno spectrum introduced in 1.3.4 is that of surface-gravity waves, where the vertical dependence is discarded (see appendix B). Here we consider this vertical dependence, i.e. we study internal-gravity waves 83 Which was discussed in 3.2.2.

Location of the symbol's equatorial degeneracy points

In the case K z = 0, 84 the result (3.14) teaches us 85 that, for f = 0, the two positive-frequency acousto-gravity degeneracy points are located at

K x = - S f nt N 2 + f 2 nt ( ≡ K ⋆ x ) and K y = ± (N 2 + f 2 nt ) 1 - S 2 f 2 nt . (3.31)
Note that |f nt | = 2Ω at the equator. As shown in 3.2.3 and graphically in figure 3.8, there are two such acousto-gravity degeneracy points if |S| < f nt , which merge at K y = 0 when the critical value |S| = f nt is reached 86 . For |S| > f nt these degeneracy points split again and go to non-zero values of f in (f, K x , K y )-space (see figure 3.22), which should be manifested in the spectrum of equatorial waves as the disappearance of the spectral flow between the acoustic and internal-gravity wavebands if |S| becomes too large 87 . The expected spectral flow shall be quantized by the Chern numbers of the degeneracy points, which are given in figure 3.8b and c. This is confirmed by means of numerical simulations, as shown in the following.

A particularity of the numerical simulations -Once again it is convenient to use periodic boundary conditions for the numerical problem, in order to discard the boundary modes. In this case the varying parameters are f nt (y) and f (y), whose periodicity in the direction y imposes two equators (one with β > 0 and one with β < 0, see figure 3.21c). This is done as well in the numerical simulations of [START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF]. The medium is thus virtually mapped on a zonally-unbounded channel whose meridional extension describes a complete turn around the terrestrial sphere, passing through the south and north poles, and twice through the equator (figure 3.21b). Contrary to the unbounded equatorial β-plane considered for the shallow-water model in 1.3.4 and throughout chapter 2, the spectra will thus exhibit simultaneously the modes at both equators. In particular, the x direction points eastward at the first equator (where β > 0) and westward at the second one (where β < 0), so it will not be surprising to find eastward-propagating equatorial modes yet whose dispersion relations (frequency branch) are decreasing functions of k x : these are located at the second equator.

Generalized Yanai and Kelvin modes

First of all the three-fold degeneracy point at zero frequency (between the bands n = -1, 0 and +1, red in figure 3.22) is the generalization of the shallow-water model's one at (f, K x , K y ) = (0, 0, 0), which was extensively studied in 2.3.3. It thus naturally bears the same topological charges

C -1 = -2 , C 0 = 0 and C +1 = +2 , (3.32) 
which can be computed numerically. We can thus expect the existence of two equatorial modes transiting between the generalized Rossby and gravity bands (independently of the value of S), as in the Matsuno spectrum. Figure 3.23a shows the spectrum of the wave problem with two equators, where the modes localized at the first equator (β > 0) are emphasized in dark red and the ones at the second equator (β < 0) are emphasized in dark blue. We observe the equivalent of the Yanai and Kelvin modes at low frequency, whose respective branches are bounded by the buoyancy frequency N . The horizontal 84 In the inhomogeneous wave problem, it would correspond to a mode which is homogeneous in the vertical direction, or with a wave vector tangent to the surface. If one considers Kz ̸ = 0, the degeneracy points can be outside the equator (cf. figure 3.8). Here we will study the same degeneracy points as in the previos section 3.3, i.e. those at Kz = 0, only in a different space.

85 Graphically, one can find the equatorial acousto-degeneracy points by intersecting the ellipse of figure 3.8b with the horizontal plane S: there is a non-empty intersection provided |S| < 2Ω.

86 This is similar as the merging of Dirac points that has been reported in condensed matter physics [START_REF] Montambaux | Merging of dirac points in a twodimensional crystal[END_REF][START_REF] Delplace | Merging of dirac points and floquet topological transitions in ac-driven graphene[END_REF].

87 When |S| becomes larger than fnt, the degeneracy points are deported to non-zero values of f which, for a fixed value or Ω, decreases the value of fnt and thus lowers the critical value. Here we analyse the symbol as if f and fnt were independent parameters, however the topological characterization of the case |S| > 2Ω is not yet completely understood if we take into account the condition 

f 2 + f 2 nt = (2Ω) 2 . K x K y f | S | = f nt K x K y f | S | < f nt ω k x k y ω k x k y ω k x k y K x K y f | S | > f nt f = 0 f = 0 f > 0 K ⋆ x (𝒞 -1 , 𝒞 0 , 𝒞 +1 ) = (-2,0, + 2) (𝒞 +1 , 𝒞 +2 ) = (-2, + 2) (𝒞 +1 , 𝒞 +2 ) = (-1, + 1) (𝒞 +1 , 𝒞 +2 ) = (-1, + 1)

High-frequency equatorial modes

Now in a stratified incompressible medium with the traditional Coriolis force only88 , the equatorialwave problem would yield a spectrum similar as the one of figure 3.23a, without any mode above the buoyancy frequency N (in particular, no acoustic waves). In the present case, the nontraditional component of the Coriolis force leads to the propagation of internal-gravity waves above the frequency N [START_REF] Gerkema | Geophysical and astrophysical fluid dynamics beyond the traditional approximation[END_REF], and compressibility induces the existence of acoustic waves at finite frequencies, above the internal-gravity waveband. The present work demonstrates that, if |S| < 2Ω, some equatorial modes can transit between the two wavebands, thus closing the frequency gap between the internal- The Chern numbers of the (positive-frequency) acousto-gravity degeneracy points are given in figure 3.22. Note that, as in section 3.3, the knowledge of just one Chern number of one acousto-gravity degeneracy point is sufficient to deduce all the others (see appendix D which gives an example of how to use the symmetries to connect them together): in particular, if |S| < 2Ω, there are two positive-frequency acousto-gravity degeneracy points and their Chern numbers are equal 89 . At the beginning of this chapter, I wrote that the Chern numbers of the 2-fold degeneracy points would be ±1, however, when these two merge for |S| = 2Ω, they become one acousto-gravity degeneracy point of higher order, whose Chern numbers are ±2 (see figure 3.22). In fact this double degeneracy point is not conical, contrary to the separated ones, hence its higher topological charges.

f f nt ω k x N 0 k ⋆ x = - S 2Ωc s N 2 + (2Ω) 2 -k ⋆ x | S | < 2Ω | S | > 2Ω
To compute the spectra of figure 3.24a and c, I used a profile of f (y) and f nt (y) that was slighty different from the normal sine/cosine profile (see figure 3.24b), so as to increase the value of |β| near the equators and thus localize more clearly the topological modes. This does not change the conclusion regarding the criterion of spectral flow, which is |S| < 2Ω. 90 The observed spectral flow between the positive-frequency gravity and acoustic wavebands is consistent with our prediction: first of all there are two transiting modes at each equator, which result from the two degeneracy points at the same K ⋆

x . The values of k ⋆

x ( ≡ K ⋆ x /c s ) around which the spectral flow occurs is given by expression (3.31) 91

SUMMARY FOR THE GENERALIZED MATSUNO SPECTRUM

In this section, I showed that the topology of the symbol allows to establish a criterion for the existence of two high-frequency, eastward-propagating equatorial modes which transit between the internal-gravity and acoustic wavebands, in addition to the two low-frequency spectral-flow modes (Yanai and Kelvin) transiting from the generalized Rossby waveband to the internal-gravity waveband. In other words, we thus extended the Matsuno spectrum of equatorial waves to a more general model -including the waves' vertical velocity, the fluid's compressibility and density stratification, and the nontraditional component of the Coriolis force -which exhibits additional spectral flow modes at higher frequencies. Now the nature of these topological modes needs to be further investigated, especially because they are numerically hard to resolve.

From the topological point of view, we have an example of two degeneracy points merging when the stratification parameter reaches the critical value of 2Ω, although the topological properties of the symbol above this value are not yet completely understood. Now, if one considers a nonzero vertical wave number k z , a the acousto-gravity degeneracy points still exist for non-zero f (see figure 3.8c), which suggests that there must be high-frequency spectral-flow modes outside the equator, localized at certain latitudes and existing under a condition that is different from |S| < 2Ω. This case is left to further investigation.

a This amounts to investigating the higher-order vertical modes, with varying fields in the vertical direction.

Interface modes meet boundary modes: discussion

So far we have discussed the existence of modes transiting between wavebands owing to a constraint of topological nature, materialized by an interface inside the inhomogeneous medium. The conclusions 89 This can be shown by means of a reasoning such as in appendix D.2, using the fact that the matrix

P ≡      1 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1      (3.33)
transforms the symbol of the operator (3.30) as P H(f, Kx, Ky)P -1 = H(-f, Kx, -Ky), i.e. sends one positive-frequency acousto-gravity degeneracy point on the other by a rotation around the Kx-axis, which leaves the Chern numbers unchanged. 90 In particular, one can notice that the part of the spectrum below the buoyancy frequency N is mostly the same as the one shown in figure 3.23.

91 Note that fnt = 2Ω at the first equator, and fnt = -2Ω at the second one, so, in agreement with expression (3.31) and the symmetry between both equators, the spectral flow at the first equator occurs around k ⋆

x and the one at the second equator occurs around -k ⋆

x .

of the previous sections are thus a priori independent of the boundaries, and most of the analysis was done without solid boundaries and rather with periodic boundary conditions or, in the case of the equatorial shallow-water model, in an unbounded medium. However the existence of boundaries is inherent of real media, and not considering them can even be constraining, because it forces one to consider only the vanishing solutions of an unbounded wave problem, or to impose periodic parameters and study the periodic solutions92 in the case of periodic boundary conditions.

In a Chern insulator, the edge modes are said to be topological, and the material's bulk spectrum is completely gapped except for these edge modes which cross the frequency gap separating the wavebands (see figure 3.1). Now for a 2D fluid-wave problem bounded in the direction x 2 and with homogeneous93 parameters such that the bulk wavebands are gapped, there are boundary modes that transit through the gap and propagate along the edges, depending on the boundary conditions94 [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF][START_REF] Auclair | Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean[END_REF]. In a sense these modes are thus analogous to the topological edge states of a Chern insulators, so it is natural to question their possibly topological nature. For example, a rotating channel with impenetrable boundaries (see [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF]) supports the propagation of unidirectional boundary Kelvin waves at the edges, and they are the only waves that can propagate below the inertial frequency |f |. These modes share strong similarities with the equatorial Kelvin waves (see 1.3.4 and figure 1.17), although the latter are not boundary waves.

To summarize, there are several questions at stake here:

• To what extent can we say that the boundary modes in a fluid-wave problem are topological?

• Regarding the results of the previous sections, is a boundary in a homogeneous medium equivalent to an interface in an inhomogeneous unbounded medium?

• Can boundary modes and topological interface modes interact?

In this section I wish to address these questions with two examples. First, building upon the analysis of [START_REF] Venaille | Wave topology brought to the coast[END_REF], I will show that the boundary Kelvin wave can be seen as an interface mode for a topological interface defined by the variation of topography. Second, by comparing the results of 3.3.1 with the analysis of [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF], I will show that, regarding the transition modes, an interface S = 0 in a non-rotating, compressible-stratified medium, can be seen as the association of two bounded media with constant values of S of opposite sign.

Equatorial and coastal waves of the shallow-water model

Let us reconsider the linearized shallow-water model introduced in section 1.3.2, i.e. equations (1.40)-

(1.41)-(1.42). Although it was introduced in a general frame, we have treated it in the case of a constant depth H,95 so far. However, even in the case of varying depth, it still belongs to the category of 2D fluidwave models introduced in section 3.1: generally speaking we can consider a shallow-water system whose depth H and Coriolis parameter f both vary in the same direction x 2 = y, but which is homogeneous in the x direction (figure 3.25). The following analysis is based on [START_REF] Venaille | Wave topology brought to the coast[END_REF]. The multi-component field of the 2D wave problem is

ψ(x, y, t) =    u v η    = ψ(y)e i(kxx-ωt) , (3.34) 
where we use again the rescaled fields u, v, which are the components of the velocity perturbation multiplied by H(y), and η, which is equal to the elevation of the waves multiplied by √ g (see 1. 

Ĥ =    0 if ck x -if 0 -ic∂ y ck x -ic∂ y -i∂ y c 0    , (3.35) 
and the celerity of gravity waves, c = √ gH, is now a function of y. The symbol of the operator (3.34) is

H S =    0 if ck x -if 0 ck y + iβ τ ck x ck y -iβ τ 0    (3.36)
where

β τ = 1 2 dc dy = c 4H dH dy (3.37)
is the topographic parameter introduced in [Venaille and Delplace, 2021]. The characteristic polynomial of the symbol (3.36) yields the following dispersion relation [START_REF] Cushman-Roisin | Introduction to geophysical fluid dynamics: physical and numerical aspects[END_REF]] (again we use the notation K x = ck x and K y = ck y ). We will denote the waveband of topographic Rossby modes with the index 0 and the inertia-gravity wavebands with ±1. One can check that the degeneracy points of the bulk wavebands appear for β τ = ±f . In this case the degeneracy point between the 0 and +1 wavebands is located at (K x , K y ) = (±|f |, 0), where the degenerate frequency is equal to |f |, and the equivalent degeneracy point of negative frequency -|f | between the wavebands -1 and 0 is at (K x , K y ) = (∓|f |, 0) (figure 3.26). In the particular case where f = β τ = 0, there is a unique 3-fold degeneracy point at (K x , K y ) = (0, 0). [START_REF] Haldane | Model for a quantum hall effect without landau levels: Condensed-matter realization of the" parity anomaly[END_REF], which is a key model for studying the topological properties of the electrons' wave functions on a graphene sheet. Its topological properties arise from the combination of inversion-symmetry breakingowing to a mass term ∆ which makes the lattice asymmetrical -and time-reversal-symmetry breakingowing to a kind of local magnetic phase ϕ in the interaction term t 2 = |t 2 |e iϕ between the different sites of the sublattice (second-neighbor interaction). In this model, when the parameters ∆ and ϕ satisfy a certain relation, the gap between the energy wavebands of the graphene's electrons closes, just as the symbol's wavebands are degenerate here when β τ = ±f , or when S = ±f nt in the wave problem of 3.3.2.

ω 3 -(K 2 x + K 2 y + f 2 + β 2 τ )ω + 2f β τ K x = 0 , ( 3 
Topology of the degeneracy points and spectral-flow modes [START_REF] Venaille | Wave topology brought to the coast[END_REF] consider f fixed 96 and look for the wavebands' degeneracy points in the (β τ , K x , K y )-space, which are isolated points bearing a non-zero topological charge in this space. This allows one to apply the methodology described in section 3.1 to investigate the topological modes that transit between the topographic Rossby and Poincaré wavebands in the presence of an interface where β τ (y) = ±f . In order to predict the direction of the spectral flow depending on whether β τ increases or decreases at the crossing point, one must compute the Chern numbers of the degeneracy points. Note that, as usual, it is sufficient to consider only the positive-frequency wavebands, which actually reduces 96 In other words they consider the shallow-water model at fixed latitude with varying bottom topography.

the analysis to the Chern numbers of the n = +1 Poincaré waveband97 . In the (β τ , K x , K y )-space, we have

C +1 (+f, +|f |, 0) = -1 and C +1 (-f, -|f |, 0) = +1 . (3.39)
Consequently, owing to the index theorem (2.55), one can expect the following cases of spectral flow, as k x increases: [START_REF] Venaille | Wave topology brought to the coast[END_REF]). a. In the case of coast at the southern side (Y1), the topographic parameter βτ rapidly diverges to +∞ at Y1 and there is a decreasing interface near the edge. This interface thus supports a +1 spectral flow, which corresponds to an eastward coastal Kelvin wave. b. If H is constant and then diverges past some location, βτ increases at this location, which defines an increasing interface βτ = f . In this case the spectral flow is of -1, and corresponds to a topographic Yanai wave whose group velocity is negative (westward).

Two sides of the same problem

Note that in the previous analysis, if f = 0, the degeneracy points of opposite topological charges merge and result in a single degeneracy point of zero topological charge. Therefore, one cannot expect any spectral flow of interface modes in the non-rotating topographic shallow-water model. Now there is a dual way of looking at the rotating shallow-water-wave problem with topography, which is by fixing the value of β τ and consider instead a varying Coriolis parameter. In this case the degeneracy points must be considered in the (f, K x , K y )-space, and their topological charges (for the 
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.28: Chern numbers of the two positive-frequency degeneracy points, for the Poincaré waveband n = +1. These are different depending on the parameter space in which they are considered. a. In the (βτ , Kx, Ky)-space, they have opposite values ±1. This is in agreement with the fact that, when f = 0, they merge and must have a zero topological charge: owing to the restoration of time-reversal symmetry, there cannot be unidirectional modes. b. In the (f, Kx, Ky)-space, they both are equal to +1, which is in agreement with the fact that, when βτ = 0, we recover the constant-depth case whose topological properties were examined in 2.3.3, and the degeneracy points merge into a single one of charge C+1 = +2. c. These values can be understood by representing the crossing points on a kind of schematic "topological phase diagram" of the wave problem, inspired by that of the Haldane model (see [START_REF] Haldane | Model for a quantum hall effect without landau levels: Condensed-matter realization of the" parity anomaly[END_REF], Fig. 2). The different "phases" are separated by the degeneracy lines βτ = ±f and each is represented by an integer (for the band n = +1). The topological charges C+1 are given by the variation of this integer across the corresponding line, by fixing f and increasing βτ to obtain the charges in the (β -τ, Kx, Ky)-space (blue arrows), or by fixing βτ and increasing f to obtain the charges in the (f, Kx, Ky)-space (red arrows). This approach can be generalized to a situation in which both βτ and f are varying functions in the inhomogeneous problem (figure 3.29b).

Let us now synthesize both points of view by consider the situation in which both β τ (y) and f (y) are varying functions, as in Iga's problem [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF]. As understood from the previous analysis, the interfaces are defined by f ± β τ = 0, and the sign of the spectral flow depends on whether f ± β τ is an increasing or a decreasing function of y across the interface (see figure 3.28a). In particular, let us consider an equatorial channel, which can be seen either as a bounded medium with H(y) > 0 99 , or an unbounded problem with H(y) = 0 for y < Y 1 and y > Y 2 . Therefore we have two varying parameters:

(Y 1 < y < Y 2 )
• The Coriolis parameter f , for which we adopt the usual β-plane approximation, i.e. f (y) = βy (see 1.3.4). 99 Since the equator y = 0 is contained in the channel, we choose Y 1 < 0 and Y 2 > 0

• The depth H, which is positive in ]Y 1 , Y 2 [ and null out of this range.

+1

-1 0 0 and predict the corresponding number and direction of spectral-flow modes, one can draw a trajectory (in red) of the parameters (f, βτ ) on the "phase diagram" as y increases. c. The spectrum of the problem exhibits two eastward modes (+2) transiting from the Rossby to the Poincaré waveband, namely the equatorial Kelvin and Yanai modes, which correspond to the crossing point at the equator. In addition, there are two westward modes (-1 and -1) -coming from negative kx and whose respective branches overlap -localized at the coasts: they are the coastal Kelvin waves. The inset focuses on the point where the respective frequency branches of the Yanai and coastal Kelvin modes cross, revealing the actual avoided crossing of the Yanai mode with a westward Kelvin mode. This phenomenon is explained by the hybridization of the two waves, owing to the finite distance between the interfaces and the finite extension of both modes in the y direction. The conversion of a Yanai mode into a westward coastal Kelvin mode, owing to this spectral crossing point, is studied in [START_REF] Kaufman | Mode conversion in the gulf of guinea[END_REF]] (although the reference example in this paper is the Gulf of Guinea, which does not have a southern boundary, in contrast with the present simulation of an equatorial channel). Because of definition (3.37) and the channel geometry, β τ → ±∞ at the edges (+∞ at Y 1 and -∞ at Y 2 ), therefore there are at least two interfaces β τ = -f near the coasts (figure 3.29). The spectral-flow modes in the channel can thus be predicted by the reasoning in terms of the trajectory in the (β τ , f )space and the corresponding Chern numbers at the crossing points, as illustrated in figure 3.29b. In this configuration there is a +2 spectral flow at the equator, which corresponds to the equatorial Yanai and Kelvin modes, and a -1 spectral flow at each coast, which correspond to westward coastal Kelvin modes 100 (figure 3.29c). In conclusion, this example shows that the varying bottom topography can be represented with 100 These directions of propagation are consistent with the discussion of 1.3.4 (see figure 1.17b): the coastal Kelvin wave at y = Y 2 is in the northern hemisphere and thus propagates with the coast on its right side, i.e. westward. Conversely, the one at y = Y 1 is in the southern hemisphere and thus propagates with the coast on its left side, i.e. westward as well. If we had considered a channel in the northern hemisphere, there would not be an interface βτ = -f near the edge Y 1 , but rather an interface βτ = +f with decreasing βτ -f , which would thus yield a +1 spectral flow, i.e. an eastward Kelvin mode, near y = Y 1 .

β τ f -1 -1 +2 y β τ +f -f equator -1 +2 -1 a b c ω k x 0 0
a continuous parameter, just as stratification in section 3.3. In the limiting case where the depth completely vanishes (coast), the existence of topological interfaces, i.e. where the symbol's wavebands are degenerate, is constrained near the edges, and thus coastal Kelvin modes can be seen as topological modes of the rotating shallow-water model with topography.

Influence of the stratification parameter on the boundary modes

Now let us return to the wave problem treated in 3.3.1, i.e. that of waves propagating in a nonrotating compressible-stratified medium. Just as for the shallow-water model [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Venaille | Wave topology brought to the coast[END_REF], this wave problem has been treated with two different points of view:

• In [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF], Iga considers a bounded medium (Z 1 < z < Z 2 ). By means of the same argument explained at the end of 2.4.2, he shows that the wave equations reduce to a generalized Sturm-Liouville problem in the four asymptotic limits101 , and that, for most boundary conditions, the number of zeros of the density perturbation ρ ′ is conserved along a mode branch. Then, just as for the shallow-water model [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF], he classifies the transition modes that cross the gap, because they are the fundamental mode102 in two asymptotical limits that correspond to two different wavebands. The important point is that the existence and behavior of these transition modes depends on the boundary conditions.

• [START_REF] Perrot | Topological transition in stratified fluids[END_REF] (problem studied in 3.3.1) consider the same problem, homogeneous in the x direction and inhomogeneous in the z direction, whose modes are investigated regardless of the boundaries, i.e. in the unbounded problem or with periodic boundary conditions. In this case, similar modes can transit through the gap owing to the existence of an interface in the medium.

In this case, the interfaces z = z ⋆ are defined by S(z ⋆ ) = 0, and the nature of the transition mode at a given interface mostly depends on whether S increases or decreases across the interface.

The main difference between Iga's transition modes and what we called the topological, or interface modes, is that the existence of the second one is constrained by the varying parameters taking a certain value at some location, whereas the first are mostly determined by the boundary conditions and exist even in an homogeneous bounded medium. In reference [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF], Iga depicts the behavior of some transition modes for several associations of boundary conditions at z = Z 1 and z = Z 2 , and shows in particular the transition modes in a homogeneous medium, i.e. with constant N and c s (cf. [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF], p. 476). However, Iga mostly considers the case g > N c s (weakly stratified medium), and explains that the location of boundary waves may be different if, conversely, g < N c s (strongly stratified medium). Now, in the homogeneous case, looking at expression (1.68) of S, it turns out that the first situation corresponds to S < 0, whereas the second one corresponds to S > 0. Since Iga separates both situations, he does not consider the case where S may change sign, which is exactly the discussion of [START_REF] Perrot | Topological transition in stratified fluids[END_REF]. In these conditions we can observe two types of boundary modes transiting through the frequency gap:

Interpretation of the topological modes with artificial boundary modes

• The Lamb mode, whose dispersion relation is

ω 2 = c 2 s k 2
x , is localized at the boundary where w = 0, which must be the lower one (z = Z 1 ) if S < 0 or the upper one

(z = Z 2 ) if S > 0 (see appendix F.2). w(Z 1 ) = 0 p(Z 1 ) = 0 w(Z 2 ) = 0 p(Z 2 ) = 0 ω ω ω ω ω ω ω ω k x k x k x k x k x k x k x k x 0 0 0 0 0 0 0 0 S > 0 S < 0 w(Z 2 ) = 0 p(Z 2 ) = 0 ⟨z⟩ Z 1 Z 2 X Figure 3
.30: Boundary waves transiting through the gap between the acoustic and internal-gravity wavebands (here for constant parameters). Only the part of the spectrum for positive frequencies and wave numbers is shown, the negative parts are symmetric because of time-reversal symmetry. The modes at the upper boundary (z = Z2) are emphasized in blue and the lower-boundary (z = Z1) modes are in red. The Lamb wave (ω 2 = c 2 s k 2 x ) is localized at the bottom if S(Z1) < 0 and w(Z1) = 0, and at the top if S(Z2) > 0 and w(Z2) = 0. The Brunt-Väisälä oscillation (ω 2 = N 2 ) is localized at the bottom if S(Z1) > 0 and p(Z1) = 0, and at the top if S(Z2) < 0 and w(Z2) = 0.

• The Brunt-Väisälä mode, whose dispersion relation is ω 2 = N 2 , is localized at the boundary where p = 0, which must be the lower one if S > 0 or the upper one if S < 0 (see appendix F.1).

Let us consider the first of these boundary modes, i.e. the Lamb wave. In a semi-infinite medium with z > Z 1 and constant parameters N 1 , c s such that g > c s N 1 , the stratification parameter S 1 is negative and a Lamb mode is thus localized at the bottom. Conversely, in a semi-infinite medium with z < Z 2 and constant parameters N 2 , c s such that g < c s N 2 , the stratification parameter S 2 is positive and a Lamb mode is thus localized at the top. In both cases the Lamb modes exist only if the boundary condition is compatible with w = 0. Now, one can put the first semi-infinite medium on top of the second, so as to obtain an infinite (unbounded) medium with an interface across which S changes from S 2 > 0 to S 1 < 0 (figure 3.31). From what precedes, the Lamb modes of the respective semi-infinite media are thus both localized at the interface, and become a single one in this infinite medium, since there is no boundary and thus no constraint that would prevent w = 0 at the interface.

More realistically, the continuous parameter S(z) decreases smoothly from the value S 2 to S 1 across the interface, and the resulting mode is just an example of the Lamb-like wave discussed in 3.3.1. Actually, even if c s is not the same on both sides of the interface, the Lamb-like modes exist -although it is dispersive (see figure 3.12a) and has a non-zero vertical velocity w -and can be interpreted as the association of a top Lamb mode on the side of the interface where S > 0 and a bottom Lamb mode on the side S < 0.

Z 1 Z 2 z S < 0 S > 0 ω k x 0 ω k x 0 ω k x 0 x Figure 3
.31: A decreasing interface S = 0 seen as the association of two semi-infinite media with respective S of opposite signs (here we take the same, constant cs on both sides). Left: if S < 0 the Lamb mode is localized at the bottom (red arrows, representing the typical velocity field), and if S > 0 the Lamb mode is localized at the top (blue arrows). Right: in the unbounded medium that consists in the artificial association of these two semi-infinite media, the resulting single Lamb-like wave (green arrows) is localized at the interface where S changes sign in a decreasing fashion. NB: some internal-gravity modes appear redder in the spectrum because they are confined in the lower part of the medium, since their frequencies are higher than the buoyancy frequency N in the upper part.

One can have the same view on the buoyant-like mode: the interface at which it appears -i.e. z ⋆ with S(z ⋆ ) = 0 and S ′ (z ⋆ ) > 0 -is an extension of the superposition of two semi-infinite media, one with S > 0 (or g < N c s ) on top of one with S < 0 (or g > N c s ). The resulting buoyant-like mode at the interface is the association of the two Brunt-Väisälä modes that the semi-infinite media would each support at their respective edges if the boundary condition p = 0 holds.

To summarize, the topological interface in the non-rotating compressible-stratified medium can be understood as the artificial association of two semi-infinite media with their respective stratification parameters having different signs, and the topological modes can be seen as the association of the corresponding boundary waves in these hypothetical semi-infinite media. Of course this interpretation has its limits depending on the wave problems considered. For instance, one can see the equatorial Kelvin wave as the association of two boundary Kelvin modes (i.e. a coastal wave with the boundary condition v = 0) on both sides of the equator, which is compatible with the different signs f across the equator. However there is no such interpretation for the Yanai mode, to my knowledge at least.

Remark: This interpretation of the Lamb-like and buoyant-like modes can be extended in the case with nontraditional rotation. The important feature of the corresponding bounded problem is that, in this case, the location of the boundary waves changes with the sign of S ± f nt .

Hybridization of a boundary mode and a topological mode

From the previous discussion, it is naturally tempting to investigate the effect of the presence of an interface in the medium on the boundary modes. In an ideal situation where the distance between the interfaces and the boundaries is arbitrarily large in comparison with the extension of the topological modes or boundary modes, the latter do not mix. However, say if a boundary is close to an interface, the boundary condition may affect the topological mode and modify its behavior. I wish to give a few examples here.

In this thesis I constantly refer to the topological modes as "localized" around the interface. How-ever, to what extent is this appropriate? Since these modes are in the frequency gap, the amplitude of their fields have a minimal number of nodes in the inhomogeneous direction. For instance, the equatorial Kelvin mode is a 0-mode for u and η, and the Yanai mode is a 0-mode for v and a 1-mode for u and η (see the exact expressions (1.55) and (1.59) in 1.3.4), so they are indeed the most localized. Still, all the equatorial modes of the Matsuno spectrum are localized around the equator, as explained in 1.3.4, so this is not a specificity of the topological modes. Conversely, if the equatorial radius of deformation, L eq = c/β is comparable with the size of the equatorial channel considered in 3.5.1, then none of the equatorial modes are localized around the equator, regarding the size of the bounded medium! In this case the equatorial modes and the boundary modes can hybridize, as implied in the simulation shown in figure 3.29.

In the case of the vertically-inhomogeneous, non-rotating compressible-stratified wave problem, I show in appendix F that the typical extension of the topological modes across an interface S(z ⋆ ) = 0 is given by

L ⋆ = c s (z ⋆ ) |S ′ (z ⋆ )| . (3.41)
Note that expression (3.41) is analogous to that of the equatorial radius of deformation, L eq = c/β, with the derivative of S instead of f . In all the simulations of section 3.3, S(z) was taken with steep variations at the crossing points, with the educative intention to exhibit a clear spectral flow of localized modes103 . If one relaxes this constraint, the extension L ⋆ of the topological modes can become comparable with the size of the medium, and the latter can thus hybridize with the boundary modes or another interface mode. To be more precise, the boundary and interface waves are located spectrally in the gap between the acoustic and internal-gravity wavebands, and their respective branches can cross each other. In this case the mode can mix and hybridize -much like the atomic orbitals when a molecular bound is formed -, and this is manifested in the spectrum by an avoided branch crossing. If a mode 1 which is localized at z 1 mixes with a mode 2 localized at z 2 , then the resulting branches behave respectively as, say the mode 1 and 2 at large wavelengths, and the mode 2 and 1 at short wavelengths. Incidentally, the hybridized branches exchange localization as k x increases past the branch-crossing point. Figure 3.32 gives two examples of hybridization, between an interface Lamb-like mode and i) a buoyant-like mode at a neighboring interface (topological-topological mode hybridization); ii) a top-boundary Brunt-Väisälä oscillation (topological-boundary mode hybridization).

Remark: One can also investigate for instance the mixing of a topological mode and a free-surface mode, which is particularly relevant in the geophysical and astrophysical context (see appendix G). The case of the hybridization between a Lamb-like mode at an interface and a surface mode is particularly interesting because of its physical relevance in the geophysical and astrophysical context. For instance, as will be discussed in the next section, we recently suggested that a transiting mode (the f-mode) in the spectrum of stellar pulsations is the result of such an hybridization, between a kind of stellar Lamb-like mode and a surface-gravity mode [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]. 
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Nodes of the density perturbation

Finally, I wish to conclude this part on boundary effects with a discussion, similar to the one at the end of 2.4.2, on the identification of the transition mode through the zeros of the eigenfunctions [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF].

In [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF], Iga analyses the asymptotic behavior of the transition modes in the 2D wave problem considered in this part, i.e. that of a non-rotating, compressible-stratified and bounded fluid medium.

He argues that the number of zeros of the density perturbation ρ ′ of a mode branch does not change as k x is swept, which is true for a large class of boundary conditions. However, some assumptions have to be made, and Iga considers for instance that the parameters can vary in the vertical (z) direction but are such that N (z)c s (z) < g (or N (z)c s (z) > g), just as he assumes in [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF] that f (y) > 0 in the rotating channel (see the discussion of 2.4.2). Yet I showed in 2.4.2 that the equator, where f (y) changes sign, is an exception as the eigenfunctions u(y) of the inertia-gravity modes gain or lose simultaneously 2 zeros at the equator, as k x is swept past 0. This was interpreted as a manifestation of the topological index ±2. As explained earlier, since the regimes g > N c s and g < N c s correspond to different signs of S (in the case of homogeneous layers), and since the crossing point where S changes sign can now be understood as a topological interface, it is natural to study the zeros of the modes' density perturbation in the presence of an interface and thus extend the analysis of 2.4.2 to the non-rotating compressible-stratified 2D wave problem. Figure 3.33 shows that some modes lose or gain one node as k x is swept, if the medium contains an interface where S(z ⋆ ) = 0. For a decreasing interface (S ′ (z ⋆ ) < 0, figure 3.33a), the first internal-gravity mode below the Lamb-like mode, which is a 1-mode at low k x , becomes a 0-mode at higher k x , as the topological mode transits to the acoustic waveband. Similarly, the other internal-gravity modes also lose a zero, etc. For an increasing interface (S ′ (z ⋆ ) > 0, figure 3.33b), the first acoustic mode above the buoyant-like mode, which is a 1-mode at low k x , becomes a 0-mode at higher k x , as the topological mode transits to the internal-gravity waveband. Similarly, the higher-degree acoustic modes also lose a zero as k x increases. This is once again a manifestation of the topological index, which in this case is equal to ±1.

Boundaries and non-Hermiticity

In the topological analysis exploited throughout this chapter, we have considered a generic Schrödingerlike equation ωψ = Ĥψ, and the operator Ĥ was said to be Hermitian. This could be easily checked by computing its symbol, which is always a self-adjoint matrix. However, the definition of Hermiticity, as well as that of the Wigner-Weyl transform introduced in 2.4.1, is based on a scalar product which is an integration of the functions over the unbounded space. In the presence of boundaries, this definition is changed and the very same operator Ĥ may eventually turn out to be non-Hermitian, owing to the boundary conditions.

Let us consider a simple example, with the operator Ĥ = -i∂ x , acting on 1D scalar functions ψ(x).

This operator is clearly Hermitian on the unbounded space, however, if one considers the bounded space

x ∈ [X 1 , X 2 ] and the functions ψ a (x) = e ikax and ψ b (x) = e ik b x , we have (3.42) which is non-zero in general. This means that Ĥ is not Hermitian on the bounded space in general.

X2 X1 dx (ψ b (x) * Ĥψ a (x)) * -(ψ a (x) * Ĥψ b (x)) = i e i(k b -ka)X2 -e i(k b -ka)X1 ,
However, if one limits the space of solutions to those that vanish at the boundaries X 1 and X 1 , or to the periodic solutions, the operator is Hermitian. Yet, even with Hermitian boundary conditions, previous works [START_REF] Tauber | A bulk-interface correspondence for equatorial waves[END_REF][START_REF] Tauber | Anomalous bulk-edge correspondence in continuous media[END_REF] showed that the robust dependence of the edge modes on the boundary conditions makes it a difficult task to establish the bulk-boundary correspondence with the correct Chern number, even if the latter is well-defined. The interface modes in unbounded media studied in this thesis avoid this difficulty.

In chapter 1 I said that finite-size effects are not the concern of this thesis, and, indeed, it is understood from what precedes that the topological analysis is valid in the unbounded-medium approximation, but must be nuanced in the presence of boundaries close to the interface. In this section we considered a minimal way to account for this feature, which consists in the hybridization between interface and boundary modes.

SUMMARY: INTERPLAY BOUNDARY-INTERFACE MODES

To summarize, this section discussed different aspects of the boundaries in 2D wave problems that can also have a topological interface. Building upon the results of [START_REF] Venaille | Wave topology brought to the coast[END_REF], I explained that the coastal Kelvin waves can be seen as topological waves of the shallow-water model with a singular topography, and can coexist with the equatorial waves, just as two topological modes at different interfaces coexist in the wave spectrum. Then I showed that the topological modes of the non-rotating compressible-stratified medium can be understood as a kind of association between two boundary waves that exist in semi-infinite media, forming a topological interface when joined together, much like the equatorial Kelvin wave can be seen as the association of the two coastal Kelvin waves that would propagate along a wall at the equator. In other words I showed that topological interface waves and boundary waves have a similar nature, although the topological modes are not constrained by the boundaries.

The work of Iga [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF] demonstrates that boundary conditions allow the propagation of waves that can transit through the gap, and thus interact with the otherwise robust topological modes. In particular, they can hybridize between each other and exchange location. The effect was studied between the equatorial Yanai wave and counter-propagating coastal Kelvin waves (see figure 3.29 and [START_REF] Kaufman | Mode conversion in the gulf of guinea[END_REF]), and I proposed a similar hybridization mechanism between topological Lamb-like or buoyant-like modes with boundary waves (appendix G also discuss the interaction of topological wave with a free-surface wave). Finally, I extended the analysis of Iga on the number of nodes of the density eigenfunctions to a case where the medium possesses a topological interface, which is an exception to those treated by Iga.

To conclude this chapter, I will open the discussion of topological interfaces and topological modes in geophysical and astrophysical media to spherical geometries, for which I will concentrate the discussion on the study of stellar pulsations [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF].

3.6 An approach of spherical geometries with stellar pulsations (Astrophys. J. 2022)

Although the approximation of a local Cartesian geometry is adopted throughout this thesis, I wish to conclude this chapter by proposing an extension of the previous analysis to spherical geometries, which is still, nevertheless, an open problem. As explained early in this thesis, the planar geometry is a standard textbook approximation when the typical length scales of the waves are much smaller than the planetary or stellar radius. So far we have implicitly assumed that the flow occurs on an external oceanic or atmospheric layer of a planet, i.e. confined at an approximate distance R from the planet's center104 . However, waves in gaseous planets or stars can propagate much deeper into their core, where the actual spherical structure of the medium cannot be ignored. The following study is part of a study started by [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF], along with Venaille, Delplace and myself, and some of the first conclusions and perspectives will be presented here.

The context of asteroseismology

The purpose of this section is to extend the general 3D model introduced in section 1.4 to spherical geometries, which is a particularly relevant and necessary generalization in the astrophysical context105 . Now there is a large variety of categories of stars on the Hertzsprung-Russell diagram, each of which has a complex dynamical behavior involving very distinct mechanisms. So far we have considered neutrallycharged inviscid fluid media supporting the propagation of waves, whose dynamics at the geophysical scale is mostly dominated by compressibility, density stratification and planetary (solid-body) rotation through the Coriolis force (see chapter 1). In turn, the stellar dynamics involves a larger variety of processes. For instance, in order to remain stable under its own gravitational field, the stars maintain a high temperature by means of very energetic radioactive and nonlinear mechanisms, mostly in the stellar core. Owing to these high temperatures, most stars of the main sequence are made of a plasma, which is not locally neutral and interacts with the star's own magnetic field, for example. Now the different processes involved in the stellar evolution and dynamics occur at separated time scales and spatial scales, and one can still investigate the star's global oscillations without having to consider in much details the microscopic mechanisms which are mostly involved in the slow evolution of the star [START_REF] Christensen-Dalsgaard | The current state of solar modeling[END_REF]. Overall, the stellar structure is stable regarding global vibrations of the whole star, or stellar pulsations, whose features are mostly related to the very same ingredients introduced in chapter 1. These pulsations thus mostly consist in higher-frequency pressure or p-modes, and lower-frequency gravity or g-modes, just as acoustic and internal-gravity waves for a compressible-stratified fluid. Asteroseismology refers to the field of study of these stellar pulsations and their characteristics, which are very instructive informations regarding the internal structure of the star [START_REF] Christensen-Dalsgaard | The current state of solar modeling[END_REF]Aerts et al., 2010].

The domain of asteroseismology has exploded in the last decades, essentially owing to the development of measuring instruments capable of measuring the characteristics of the Sun with a great precision. A notable example in the last years is the launching of the Parker Solar Probe, which has on board various instruments to study the solar wind, the particles, the electric and the magnetic fields in the solar corona. Details on observational techniques and mode identification can be found in the reference [Aerts et al., 2010]. The general idea of the area is to infer informations on the internal structure of stellar interiors from the measurements of fluctuations at the surface.

Polytropic stellar structure

In order to illustrate the actual spherical geometry of geophysical and astrophysical flows and investigate the possibility of spectral-flow modes, let us therefore consider an idealised self-gravitating sphere of gas initially at hydrostatic equilibrium, and stratified under the effect of its own gravity. The gravitational Gauss theorem provides a relation between the local gravitational acceleration g 0 (r) and density ρ 0 (r) at equilibrium, and the latter is also related to the pressure P 0 (r) through the hydrostatic balance equation:

4πGρ 0 = 1 r 2 d dr r 2 g 0 (gravitational Gauss theorem) , (3.43a) 
dP 0 dr = -ρ 0 g 0 (hydrostatic equilibrium) .

(3.43b)

To close this system of equations, one needs a thermodynamic relation, so we make the standard approximation of a polytropic fluid, i.e. a fluid medium whose local density and pressure at equilibrium satisfy, everywhere in the stellar medium, the relation

P 0 = κρ γ 0 , with γ = 1 + 1 n . (3.44)
Relation (3.44) is not necessarily an equation of state of the stellar gas, but rather a thermomechanical relation which describes its radial structure. The polytropic index, n, is assumed to be constant in the region considered [Christensen-Dalsgaard, 1997]. For instance, n = 3 is usually chosen to model the solar radiative zone, other main-sequence stars and high-mass white dwarfs, whereas n = 1.5 is a good representation of convective interiors (N = 0), such as those of the red giants, and also for gaseous planets like Jupiter [START_REF] Horedt | Polytropes: applications in astrophysics and related fields[END_REF]. Combining relation (3.44) with the gravitational Poisson equation and the hydrostatic balance equation finally yields the Lane-Emden equation [START_REF] Lane | On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment[END_REF][START_REF] Chandrasekhar | An introduction to the study of stellar structure[END_REF] (see appendix H) governing the internal structure of the star at equilibrium:

d 2 ϱ dx 2 + 2 x dϱ dx + ϱ n = 0 , with ρ 0 (r) = ρ c ϱ n r L (3.45)
and where x = r/L is a dimensionless radius with a characteristic length L which depends on the polytropic index n, the quantity κ, the gravitational constant G and ρ c (see appendix H). Let us consider the solution ϱ n of equation (3.45) such that ϱ(0) = 1,106 and ϱ ′ (0) = 0.107 All the thermodynamic variables in the star at equilibrium, as well as the gravity field g, can be expressed by means of these parameters:

ρ 0 (r) = ρ c ϱ n n r L , (3.46a) 
P 0 (r) = P c ϱ n+1 n r L , (3.46b) g(r) = -(n + 1) P c ρ c L ϱ ′ n r L , (3.46c) c s (r) = γ 1 P c ρ c ϱ n r L . (3.46d)
The last expression (3.46d) is the local speed of sound waves, which is defined for adiabatic perturbations of the gas, thus in terms of its adiabatic exponent, or heat capacity ratio γ 1 :

γ 1 = d ln P d ln ρ adiabatic (3.47)
The exponent γ 1 is characteristic of the gas at the microscopic level, and therefore shall not be confused with the polytropic exponent γ, which is a characteristic exponent of the radial stellar structure at equilibrium. The adiabatic exponent is actually a function of the gas temperature, however it will be assumed constant in the following. For instance, γ 1 = 5/3 for an ideal monoatomic gas and γ 1 = 7/5

for an ideal diatomic gas, and these values are valid in a large range of temperatures, in general108 .

Combining the different expressions (3.46), definition (1.15) for the buoyancy frequency thus becomes

N (r) 2 = g 2 c 2 s γ 1 γ -1 , (3.48)
therefore the star is stably stratified only if the adiabatic exponent is larger than the polytropic exponent109 . Let us now study the dynamics of the adiabatic stellar pulsations perturbing this stably stratified polytrope, which is the usual framework of asteroseismology [Aerts et al., 2010].

Adiabatic perturbations in spherical geometry

We now wish to express the 3D model of section 1.4, describing the adiabatic perturbations of the fluid medium at equilibrium, in the full polytropic sphere. Naturally, the vertical direction and coordinate z is now the radial one, r, and the zonal and meridional components, x and y, have to be replaced by angular coordinates, the longitude φ and colatitude θ respectively (see figure 3.34a). One thus obtains the same linearized equations (1.65) for the small perturbations (1.64), only this time the gradient ∇ and the divergence operator ∇• must be projected onto the local spherical basis (ê r , êθ , êφ )

and coordinates (r, θ, φ).

Important remark: Since the gravity field g(r) is related to the local density, one should also account for the perturbations of g in the Euler equation, in principle. However, these perturbations can be neglected in general, which is known as the Cowling approximation (see for instance [Christensen-Dalsgaard, 1997], p. 74-75), and is adopted here.

In this section, as well as in [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF], we only deal with non-rotating objects (a brief discussion of stellar rotation is given in 3.6.4). In this case we can look for modes with assigned angular wave numbers ℓ, m,110 and an appropriate decomposition of the wave fields is provided by the (vector) spherical harmonics [START_REF] Rieutord | Linear theory of rotating fluids using spherical harmonics part i: Steady flows[END_REF]: 

ρ 1/2 0 rv ′ ≡ uS ℓ,m + vT ℓ,m + wR ℓ,m , ρ -1/2 0 g N r ρ ′ -c -2 s P ′ ≡ ΘY ℓ,m , ρ -1/2 0 r c s P ′ ≡ pY ℓ,
Ĥ =       0 0 0 L ℓ (r) 0 0 -iN (r) iS(r) -i c ′ s (r) 2 -ic s (r)∂ r 0 iN (r) 0 0 L ℓ (r) -iS(r) -i c ′ s (r) 2 -ic s (r)∂ r 0 0       , (3.52)
where we define the Lamb frequency, a characteristic frequency of the p-modes [Aerts et al., 2010], as

L ℓ (r) = ℓ(ℓ + 1) c s r , (3.53) 
and the stratification parameter111 as given by (F.5) in appendix F, but adapted for spherical geometries (see the supplemental material of [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]). a. A model for Vega with a polytropic index n = 3, computed with equation (3.57). The values of ±fnt at the equator are indicated and, by analogy with the results of 3.3.2, one can predict that the minimal effect of rotation will be to spatially separate the eastward and westward topological modes. In rapidly rotating stars such as Vega, this separation might be sufficiently large so that the unidirectional modes do not overlap. b. Profiles of S for four different typical stellar objects. The buoyancy frequency N is plotted for comparison. Stellar interiors were computed by Leclerc with MESA. The High mass star is an M = 100 M⊙ main-sequence star. The White dwarf's mass is 0.6 M⊙, during its cooling phase. The Jupiter model has a solid core of 10 Earth masses. S vanishes always at least once, whether in the radiative or convective region (light grey area).

S(r) = c s 2g N 2 - g 2 c 2 s - c ′ s 2 + c s r . ( 3 
Generally speaking, the behavior (trapping, critical frequency, direction of propagation, etc.) of the g-modes inside a star or a gaseous giant is mostly determined by the buoyancy frequency N , which depends on the radius, while that of the p-modes mostly depends on other characteristic acoustic frequencies112 (see figure 3.34b). Now there are some locations where the maximal frequency of the g-modes reaches the minimal frequency of the p-modes, so it is extremely tempting to seek an interpretation of these crossing points in term of the degeneracies of the symbol. Therefore a natural question is:

Are there modes transiting through the frequency gap between the g and p-modes, not owing to the boundary condition but on the existence of a topological crossing point inside the star?

Regarding the topological analysis, one can naturally investigate the spectral flow of the operator (3.52) when sweeping the angular wave number ℓ, instead of k x in the plane-parallel case. In other words, one can compute the modes' frequencies ω as a function of this angular wave number and identify the transiting mode branches of the spectrum. This is the point addressed in [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF], which will be discussed in 3.6.5. Before that I shall point out the various difficulties imposed by rotation.

Remarks on the influence of rotation

The complete effect of rotation on stellar pulsations is an open subject, particularly regarding modemixing effects [START_REF] Soufi | Effects of moderate rotation on stellar pulsation. i. third order perturbation formalism[END_REF]. So far in the context of this thesis, we have considered it through the Coriolis force only, and assuming a medium in solid-body rotation, i.e. with Ω fixed and uniform. In stellar media this must be nuanced, mainly for two reasons:

• Differential rotation -First of all most stars are not in solid-body rotation but rather differentially rotating [START_REF] Rüdiger | Differential rotation and stellar convection[END_REF], as discussed in section 1.3. In other words the rotation rate Ω is rarely uniform and rather is a function of radius and latitude. While the Earth's oceans and atmosphere are fluid layers on a solid sphere, for which solid-body rotation is achieved, stars and gaseous planets are generally full spherical bodies of fluid, for which solid-body rotation rarely happens. For instance, the rapid and differential rotation of Saturn induces a mode-mixing effect, particularly between the g-modes and the fundamental or f-mode [START_REF] Dewberry | Constraining saturn's interior with ring seismology: effects of differential rotation and stable stratification[END_REF].

• Centrifugal effect -So far we assumed a spherical geometry, however for rapidly rotating star the effect of the centrifugal force (term in Ω 2 in the Euler equation) cannot be ignored. For the star at equilibrium, it deforms the spherical structure, generating an equatorial bulge, which is the effect at lowest order. For instance, Vega (α Lyrae) has a rotational period of approximately 12.5 hours and its equatorial radius is about 20% higher than its polar radius [START_REF] Yoon | A new view of vega's composition, mass, and age[END_REF]. In addition, the centrifugal force also affects the stellar pulsations through higher-order dynamical effects [START_REF] Dhouib | The traditional approximation of rotation for rapidly rotating stars and planets. i. the impact of strong deformation[END_REF]].

An overview of the complications brought by rotation in the study of stellar oscillations can be found in reference [Aerts et al., 2010] (pp. 265-294). Nevertheless, rotational effects are more than worth considering regarding the present work, especially because stellar media offer ranges of parameters that are more suited than the Earth's atmosphere and ocean for potential observation of the topological modes investigated in the previous sections 3.3 and 3.4. I will discuss this point in 3.6.6 at the end of this section. Nevertheless, I will consider non-rotating stars or gaseous planets in the following, for simplification, which leads to the spherical counterpart of the problem addressed in 3.3.1.

Spectral flow in a non-rotating star

Using the Wigner transform introduced in 2.4.1, the symbol of operator (3.52) reads as for a polytropic sphere, combining the structural equations (3.46) yields the following expression for the stratification parameter [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]:

      0 0 0 L ℓ 0 0 -iN iS + c s k r 0 iN 0 0 L ℓ -iS + c s k r 0 0       , ( 3 
S(r) = c s r 1 + (2 -γ 1 )n + (4 -γ 1 )/2 2γ 1 d ln ϱ n d ln x x= r L . (3.57)
Therefore, in theory, we have S(r) → +∞ near the star's center (r → 0) and S(r) → -∞ near the 113 Saying that the orbital number ℓ is a spectral-flow parameter is not correct in principle, since it takes integer values and thus cannot be varied continuously. Yet, in the end, it does not need to be a continuous parameter, the only important feature of the spectrum is for one to be able to identify the different mode branches as ℓ varies, no matter whether it varies continuously or by steps of one. 114 The degenerate frequency in the symbol picture is then equal to N . surface (r → R ⊙ ). Since S takes all values, there is a crossing point in most stellar objects, so, at the end of the day, there is generically at least one mode transiting between the g-modes and the p-modes as ℓ is swept. ized near the star's center when ℓ is small, and near the surface for high ℓ). This mode is the f-mode, which can thus be understood as the hybridization of the spherical counterpart of the topological Lamblike mode and a surface-gravity mode [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF].

Remark: Other relevant boundary conditions are suggested in references [Christensen-Dalsgaard, 1997;Aerts et al., 2010], which have not been tested by ourselves yet.

Possible observation of the unidirectional modes in stellar media

The spectral flow previously exhibited for an ideal non-rotating polytropic star is the equivalent of the Lamb-like mode of the plane-parallel problem treated in 3.3.1, because S vanishes in a decreasing way. In fact, [START_REF] Perrot | Topological transition in stratified fluids[END_REF] argued that the astrophysical context is certainly the best candidate for potential observations of Lamb-like waves, however the effect of rotation on these waves was not regarded until now. Let us therefore consider what could happen to these topological modes in a rotating star, by analogy with the minimal model of 3.3.2, i.e. with the nontraditional Coriolis force only.

As explained in section 3.3, in the plane-parallel case, if S(z) has a point of vanishing z ⋆ (at which S ′ (z ⋆ ) < 0) and if rotation is not too strong115 , the eastward and the westward Lamb-like modes are spatially separated: the westward ones propagate along the interface S = +f nt , which is below the altitude z ⋆ , while the eastward ones propagate along the interface S = -f nt , which is beyond z ⋆ (see figure 3.16). As far as applications are concerned, this effect of splitting the topological modes' location in the weak rotational regime is a feature that is more likely to be observed, especially in the astrophysical context. Indeed, the previous study demonstrates that, in most stellar media, S is a decreasing function of r, which varies from +∞ at the center of the star to -∞ at the surface. It thus vanishes at some radius r 0 and generically takes both values ±f nt for any rotation rate.116 . These modes are well-separated if f nt is sufficiently high so that the topological modes do not completely overlap, in other words if the sum of their respective extension in the radial direction, L = c s /|S ′ | S=±fnt (see figure 3.35 and the discussion of 3.5.2), is not high compared to the distance d separating the interfaces. This could be achieved for some young stars of the upper main sequence of the Hertzprung-Russell diagram117 , which can reach high rotation rates (figure 3.35a). For instance, Vega, in the Lyra constellation, has a rotation period of about 12.5 hours [START_REF] Yoon | A new view of vega's composition, mass, and age[END_REF], thus f nt ≈ 3 × 10 -4 s -1 at the equator, yielding a ratio of order 1 between d and the sum of the trapping lengths [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF].
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SUMMARY: TOPOLOGY AND STELLAR PULSATIONS

The study of [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF], to which I participated, allowed to extend the results of [START_REF] Perrot | Topological transition in stratified fluids[END_REF] to spherical geometries and stellar media. It is now understood that the f-mode in non-rotating stars results from the hybridization of a topological mode and a surface-gravity mode, whose properties are therefore constrained by the S profile. This work opened the way toward the generalization of my results described in sections 3.3 and 3.4 to the investigation of stellar pulsations of topological origin in rotating stars. Indeed, stellar media are a promising area for possible observations of the topological modes described in this chapter with the plane-parallel approximation, as I stressed in [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. Along with rotational effects, the perturbations of the magnetic field is another important characteristic of stellar media that should be taken account into account for further works, especially since the recent works on topological waves in magnetized plasmas [Parker et al., 2020b,a;[START_REF] Parker | Topological phase in plasma physics[END_REF][START_REF] Fu | Topological phases and bulk-edge correspondence of magnetized cold plasmas[END_REF] Now the effects of rotation will have to be considered with caution, as I explained in this section.

First of all, in terms of stellar pulsations' dynamics, one must take the centrifugal force and the differential rotation into account, for rapidly rotating stars. In other words, considering a solid-body rotation and its effect only through the Coriolis force may not be accurate in stellar media [START_REF] Dhouib | The traditional approximation of rotation for rapidly rotating stars and planets. i. the impact of strong deformation[END_REF][START_REF] Soufi | Effects of moderate rotation on stellar pulsation. i. third order perturbation formalism[END_REF]. Moreover, the non-rotating case allows to express the wave equation in an angular-independent formulation, which is particularly handy because otherwise, in the general case, one would have to adapt the Wigner transform to the spherical space coordinates, in order to correctly extend the index theorem in this geometry. Another limit is brought by finite-size effects, with the emergence of a continuous spectrum, and in particular the existence of mode attractors [START_REF] Maas | Geometric focusing of internal waves[END_REF][START_REF] Rieutord | Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum[END_REF].

Conclusion of the chapter

In this chapter I explored some geophysical and astrophysical models to generalize the topological interpretation of the equatorial Yanai and Kelvin waves [START_REF] Delplace | Topological origin of equatorial waves[END_REF]. In section 3.1, building upon the work of Faure [START_REF] Faure | Manifestation of the topological index formula in quantum waves and geophysical waves[END_REF], I proposed a general framework of 2D fluid-wave problems, including the equatorial shallow-water model, in which the index theorem is manifested through the existence of a spectral flow between the wavebands. These correspond to topological modes propagating along an interface at which the parameters are such that the bulk wavebands are degenerate. I explained that the phenomenology of these topological waves is akin to that of the quantized electronic states which propagate at the edges of a Chern insulator or the interface between two insulators, but their topological characterization was developed for fluid waves which propagate at an interface inside the medium, whether it is bounded or not. I showed that the quantization of this modes is given by a topological charge, which is that of the Weyl points of the symbol's eigenbundles in a three-dimensional parameter space. In section 3.2, I studied the conditions of existence and location of the symbol's degeneracy points, in particular those between the acoustic and internal-gravity bulk wavebands. This was the starting point to predict the characteristics of the interfaces supporting topological modes.

I started section 3.3 by applying this general topological methodology in a non-rotating, compressible medium with varying stratification, and provided some details and clarification of the work started by [START_REF] Perrot | Topological transition in stratified fluids[END_REF]. I discussed the two kinds of topological modes existing in this context, namely the Lamb-like wave, introduced by [START_REF] Perrot | Topological transition in stratified fluids[END_REF], and the buoyant-like wave, introduced in this thesis and in [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. The first one behaves as an internal-gravity wave at large wavelengths and an acoustic wave as short wavelengths, and conversely for the second. Both propagate along horizontal interfaces which separate regions with different stratification properties, but they share similar features with some well-known boundary waves, namely the Lamb wave [START_REF] Lamb | On atmospheric oscillations[END_REF][START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF] and the Brunt-Väisälä oscillation [START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF].

Then I extended this work to the rotating case, which is my principal contribution. First I showed that the combination of stratification, compressibility and the nontraditional component of the Coriolis force induces splits the interfaces at which the previous topological modes propagate. In other words, the breaking of time-reversal symmetry by the nontraditional rotation induces the existence of interfaces where unidirectional topological modes propagate. These are the same Lamb-like and buoyant-like modes of the non-rotating case, but spectrally modified and spatially separated by the nontraditional rotation. I extended this analysis to the general case with varying stratification, and with both the traditional and nontraditional components of the Coriolis force. This allowed me to exhibit a variety of topological transitions, at which the spectral flow appears or disappears past a certain latitude, or if rotation reaches a critical value.

In section 3.4, building upon [START_REF] Delplace | Topological origin of equatorial waves[END_REF] and the newly considered acousto-gravity degeneracy points, I studied a generalized equatorial model, in order to provide an extension of the results of the equatorial shallow-water modes in a more general fluid model, accounting for stratification, compressibility and nontraditional rotation. I showed that the +2 spectral flow of equatorial waves in the frequency gap between the Rossby modes and the gravity modes still exists but the corresponding modes are bounded by the upper frequency limit of internal-gravity waves. Above this frequency, I showed that there can also be a +2 spectral flow in the frequency gap between internal-gravity and acoustic waves, provided the stratification parameter S is smaller than 2Ω. These results demonstrate the power of the topological approach, which allowed us to classify wave spectra into different categories.

In section 3.5 I discussed the interplay between interface topological modes and boundary modes. I showed that the two can interact and form branches of hybridized modes. I also continued the discussion started at the end of chapter 2 on the number of nodes of the eigenfunctions, and showed that the existence of a topological interface in the fluid medium is an exception to the analysis of Iga [START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF], as the topological charge is manifested through the change in the number of zeros of the density perturbation of some branches as the spectral-flow parameter is swept.

Eventually, I discussed in section 3.6 the extension of this work to spherical geometries and stellar media, which is the object of a work with Leclerc and Laibe [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]. I described some of the preliminary results, especially the interpretation of the f-mode, resulting from the hybridization of a surface-gravity wave and a kind of topological Lamb-like mode, owing to the systematic vanishing of the stratification parameter S in polytropic stars.

To summarize, I described global oscillations in fluid media, and related certain modes to an invariant which characterizes the global topological properties of the symbol. In the next chapter I will discuss a complementary problem, which is that of the local oscillations in a slowly-varying medium, i.e. the wave-packet dynamics, and I will show how the Berry curvature, which describes the local geometry of the symbol, intervenes in the motion of these wave packets. This is the first topic that I investigated at the start of my research project [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF].

Chapter 4

Manifestation of the Berry curvature in ray trajectories (Proc. R. Soc. A

2021)

So far we have used tools from topology to predict the existence and properties of modes transiting through the gap, by computing the Chern numbers of the symbol's degeneracy points. To compute these Chern numbers, we used the Berry curvature introduced in section 2.3 of chapter 2. This quantity characterizes the twisting of the eigenvectors, i.e. the wave's polarization relations, in parameter space.

Consequently, it must be involved in the transport of polarized waves, i.e. waves that are described by various fields whose respective phases and amplitudes are related through polarization relations. Based on that consideration, I developed a general framework to demonstrate how the Berry curvature arises in the motion of polarized wave packets, in a general geophysical and astrophysical context. Most of this chapter is adapted from my article [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF].

In section 4.1 of this chapter, I will give some details about the motivations of this work, for which I will refer to various concepts that were introduced in the previous chapters. In section 4.2 I will introduce the context of this study, which concerns the propagation of localized wave packets with separated scales, in contrast with the global fluid oscillations considered in chapter 3. After that, in section 4.3, I will demonstrate the manifestation of the Berry curvature in the motion of those waves, using a general framework and a variational principle adapted from the one developed by Sundaram and Niu for quantum solids [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF]. In section 4.4, I will apply this theory to reveal a small correction of geometrical origin in the trajectory of inertia-gravity wave packets, which was up to now unnoticed. As a byproduct, I report a direct analogy between the behaviour of inertia-gravity wave rays on the β-plane Earth and the anomalous Hall effect [START_REF] Xiao | Berry phase effects on electronic properties[END_REF][START_REF] Karplus | Hall effect in ferromagnetics[END_REF][START_REF] Nagaosa | Anomalous hall effect[END_REF]. Finally, I will compare the result -obtained with a multi-component WKB ansatz -with the traditional scalar WKB approach for ray tracing.

Motivation: geometrical phases and the Berry curvature

Until now, we have considered the Berry curvature only as a mathematical tool to compute the topological charges of the degeneracy points. Let us first explain how this Berry curvature is related to the Berry phase, which is a more familiar quantity for physicists, as seen for instance in the example of the Foucault pendulum (section 2.1). Before coming back to classical systems, let us discuss a quantum example that was introduced by [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF].

enclosed by P, which is indeed a purely geometrical quantity.

Remark: Since the geometrical phase γ ± (P) is a gauge-invariant quantity, Berry predicted that it would be involved in the expression of some physical observables, which turned out to be proven in the context of condensed matter physics, with the notable example of the anomalous Hall effect6 [START_REF] Nagaosa | Anomalous hall effect[END_REF]. Since then, the concept has been extended to many fields of physics involving the continuous evolution of complex objects [START_REF] Shapere | Geometric phases in physics[END_REF]].

Extension to the physics of classical waves

Now, as pointed out by [Berry et al., 1990] and explained in sections 2.1 and 2.3 of chapter 2, the emergence of two distinct phases characterizing the adiabatic evolution of a quantum state is reminiscent of the oscillations of the Foucault pendulum (figure 4.1): indeed, the frequency ω 0 of the pendulum's rapid oscillations is an intrinsic property of it, which depends on its length, just as the intrinsic band frequency of the quantum state in the previous example. After a day, the pendulum has performed many periods of these main oscillations. This is thus analogous to the dynamical phase in expression (4.3). Conversely, the pendulum's slow precession -given by expression (2.5) -eventually amounts to a total angle of ϕ(T ) = -2π sin(ϑ) after a full day, which does not depend on the pendulum's character- After a day, the plane of oscillations (projected on the horizontal plane, red arrows) of the Foucault pendulum -which can be assimilated to its polarization -has turned by an angle ϕ2 -ϕ1 = -2π sin ϑ (clockwise), which only depends on the latitude ϑ. This precession angle can be seen as the manifestation of the sphere's curvature when the polarization vector is parallelly transported on a line that is not a geodesic of it (i.e. at non-zero latitude). The cone described by the displacement of the pendulum' frame (left, in green), is flattened on the right so as to show more clearly the parallel transport of the polarization vector and the angle it takes after a full day. b. Similarly, if the quantum dipole initially in the eigenstate Ψ± is adiabatically transported (which should not be confused with the parallel transport [Berry et al., 1990;[START_REF] Anandan | The geometric phase[END_REF]) along a closed curve in the B-space, it returns to the original eigenstate up to a phase γ± that depends on the geometry of the bundle it has traveled across.

Generally speaking, such geometrical phases arise in oscillating systems that have a vectorial structure, i.e. multi-component waves, when they are transported in such a way that their polarization relations slowly change. For instance, the quantum dipole's wave function is a two-component complex vector, and the motion of the Foucault pendulum is also two-dimensional. Another example is that of classical electromagnetic waves: actually, before Berry's work in 1984, the geometrical phase had been priorly addressed by S. Pancharatnam in the context of interference experiments with light beams whose polarization describe slow cycles when evolving in anisotropic media [START_REF] Pancharatnam | Generalized theory of interference and its applications[END_REF]Berry et al., 1990]. In seismology, two distinct propagation modes in an elastic solid medium are the s and p-waves. The feature that differentiates them in particular is their respective polarization relations, since the p-waves are longitudinal (compression waves) whereas the s-waves are transverse (shear waves), and they also have different celerities in general. The emergence of a geometrical phase in the propagation of seismic waves was recently advocated by [START_REF] Snieder | Seismic shear waves as foucault pendulum[END_REF], who emphasized in particular the analogy with the Foucault pendulum, owing to the involvement of the Coriolis force in the slow-phase dynamics of seismic rays.

As regards the context of this thesis, I extensively justified in the previous chapters that geophysical and astrophysical waves are particularly adapted to the investigation of geometrical effects. Indeed, a conservative (inviscid, etc.) flow model can be generically expressed in the form

i∂ t ψ = Ĥψ , (4.4)
with a Hermitian operator Ĥ containing the model's parameters and space derivatives. The Schrödingerlike equation (4.4) is the linearized version (i.e. for wave problems) of the non-canonical formulation (see for instance 1.4.1, and the references [START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF][START_REF] Shepherd | Symmetries, conservation laws, and hamiltonian structure in geophysical fluid dynamics[END_REF][START_REF] Salmon | Lectures on geophysical fluid dynamics[END_REF]). Since ψ(x, t) is a multi-component field, the wave solutions of equation (4.4) are thus polarized waves. It is therefore natural to ask:

How is the geometry of the space of polarization vectors manifested in the propagation properties of geophysical and astrophysical waves?

It was understood long ago that geometrical phases exist in fluid waves. In 1975, Budden and

Smith noticed an additional phase in the WKB solution for atmospheric waves [START_REF] Budden | Phase memory and additional memory in wkb solutions for wave propagation in stratified media[END_REF]. This phase characterizes the wave's memory of the medium through which it traveled, which is a surprising anticipation of the geometrical phase in a geophysical context. It is only 15 years later [Berry, 1990] that Berry connected this phase memory to the phase factor that he had studied with adiabatic quantum cycles [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF]. It thus became clear that a relevant context in which geometrical phases could appear was the transport of multi-component waves in slowly-varying media, also called ray tracing, since the slow aspect here is reminiscent of the adiabatic evolution that generates Berry's geometrical phase. It was commonly known that the appropriate framework for the study of waves in slowly-varying media is that of the WKB approximation (see 2.4.1), which was already used in fluid dynamics [START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF], and its multi-component aspects were already studied by mathematicians [START_REF] Maslov | Semi-classical approximation in quantum mechanics[END_REF]. Thereafter, since the beginning of the '90s, the concept of geometrical phase began to spur among the community of mathematical physicists working in other domains than quantum mechanics [Littlejohn and Flynn, 1991a,b;[START_REF] Emmrich | Geometry of the transport equation in multicomponent wkb approximations[END_REF][START_REF] Petrov | Evolution of berry's phase in a graded-index medium[END_REF], including geophysical fluid dynamics [START_REF] Vanneste | On wave action and phase in the non-canonical hamiltonian formulation[END_REF][START_REF] Godin | Wentzel-kramers-brillouin approximation for atmospheric waves[END_REF].

Nevertheless, geometrical phases remain an often disregarded topic in geophysical and astrophysical fluid dynamics, and the Berry curvature is never mentioned in those domains. The purpose of this chapter is to report the direct effect of the Berry curvature on wave propagation, rather than the geometrical phase. More precisely, building upon previous works in condensed matter physics and other domains, I claim that 7 , which I will prove in the following.

7 the Berry curvature is manifested in the trajectory of geophysical and astrophysical rays or wave packets 4.2 Dynamics of multi-component wave packets in a slowly-varying medium As explained in section 2.3, the Berry curvature appears naturally in multi-component wave problems, from quantum condensed matter systems [START_REF] Xiao | Berry phase effects on electronic properties[END_REF][START_REF] Qi | Topological insulators and superconductors[END_REF] to classical waves in optics [START_REF] Ozawa | Topological photonics[END_REF][START_REF] Price | Mapping the berry curvature from semiclassical dynamics in optical lattices[END_REF], plasma physics [START_REF] Fu | Topological phases and bulk-edge correspondence of magnetized cold plasmas[END_REF], mechanics [START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF][START_REF] Ni | Topological edge states in acoustic kagome lattices[END_REF] and hydrodynamics [START_REF] Delplace | Topological origin of equatorial waves[END_REF][START_REF] Perrot | Topological transition in stratified fluids[END_REF][START_REF] Venaille | Wave topology brought to the coast[END_REF][START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. A direct physical manifestation of the Berry curvature itself -rather than the geometrical phase it is related to -arises in ray-tracing experiments: the Berry curvature is a correction of the group velocity that bends rays trajectories [START_REF] Xiao | Berry phase effects on electronic properties[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF]. This correction was measured in condensed matter [START_REF] Luu | Measurement of the berry curvature of solids using high-harmonic spectroscopy[END_REF][START_REF] Cho | Experimental observation of hidden berry curvature in inversion-symmetric bulk 2h -wse 2[END_REF], cold atoms setups [START_REF] Jotzu | Experimental realization of the topological haldane model with ultracold fermions[END_REF] and photonic quantum walks [START_REF] Wimmer | Experimental measurement of the berry curvature from anomalous transport[END_REF]. Although geophysical flows gather all the ingredients for a Berry curvature to emerge, it has until now not been established how this curvature arises in geophysical ray tracing. This was the purpose of my work [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF], presented in this chapter.

In 2.3.3 we showed that the Poincaré wavebands (n = ±1) of the rotating shallow-water model admit non-zero Berry curvature [START_REF] Delplace | Topological origin of equatorial waves[END_REF]. This is therefore a natural starting point to address possible deviations of ray trajectories, which I will derive in section 4.3 using a variational principle inspired by quantum mechanics [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF]. More generally, we proposed in [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF] a consistent framework to reconsider the ray-tracing problem in a large class of multi-component geophysical flow models, building upon previous results on vectorial elliptical linear systems [Littlejohn and Flynn, 1991a;[START_REF] Emmrich | Geometry of the transport equation in multicomponent wkb approximations[END_REF][START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF]. This new approach emphasizes the role of Berry curvature effects that were until now overlooked in geophysics.

First, in this section, I will provide some details on the framework considered here to illustrate these effects, which is that of wave packets with well-separated spatial scales.

The wave packet and the WKB approximation for multi-component wave problems

We consider the dynamics of a wave packet in a medium characterized by a length ℓ, varying spatially over a typical distance L. To fix the ideas, we will consider as a main example shallow-water wave packets evolving in a fluid layer. In this case ℓ is the Rossby radius of deformation, L d , which is inversely proportional to the rotation rate of the frame of reference (see 1.3.2).

The wave packet has a mean wavelength λ and is modulated by an envelope of typical size Λ > λ.

We assume that the extension of the wave's envelope Λ is much smaller than the typical distance L depicting the medium's variations (λ, Λ ≪ L). This amounts to assuming that the solution is localized regarding the scale of the medium's variations, thus allowing one to project the packet onto a plane wave solution with wavelength λ and local ℓ as parameters. We restrict ourselves to cases where the medium's properties enter the dispersion relation at lowest order, which, for the models considered in this thesis, adds up to assuming ℓ ∼ λ. To sum up, the lengths describing the problem and its wave packet solution are organized as follows:

ℓ ∼ λ < Λ ≪ L . (4.5)
As mentioned at the end of section 4.1, and earlier in 2.4.1, the usual way to derive ray-tracing equations in geophysics is via a WKB ansatz [START_REF] Hinch | Perturbation methods[END_REF][START_REF] Bühler | Waves and mean flows[END_REF][START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF] under scaling conditions such as (4.5). At the scale of the wavelength, the medium is approximately homogeneous and steady, which can be quantified by the introduction of a small dimensionless parameter, say ε = λ/L. This scale separation justifies the use of a WKB ansatz for a solution described by a scalar field v (see 2.4.1):

v(x, t) = e iΦ(x,t) , with Φ = Φ 0 ε + Φ 1 + O (ε) . (4.6)
Along with slowly-varying (in time and space) functions Φ i of order 1, expression (4.6) corresponds to the idea of a plane wave modulated by an envelope of finite size8 , with identifiable mean wave vector.

In geophysics, a WKB ansatz is indeed generally injected in a scalar equation as if the problem were entirely defined by one scalar equation and a sufficient number of boundary conditions [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Bühler | Waves and mean flows[END_REF][START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF]. Nevertheless, what about the models that are not well defined by and reducible to just one equation, even of higher order, and rather by a set of coupled wave equations with distinct coefficients? As illustrated with nearly all the examples of this thesis, such a set of equations can be rewritten as one with a multi-component field, as (4.4), which makes the WKB approximation more complex. Indeed, a multi-component mode is characterized by both the dispersion and the polarization relations, the latter relating the different component fields between each other, all depending on the wave vector and the medium's parameters. Therefore, as the wave packet moves through the slowly-varying medium, its polarization relations change accordingly as the ray coordinates (x, k) evolve in phase space. As a consequence, we expect a footprint of the corresponding Berry curvature in the ray dynamics of multi-component geophysical wave problems.

The shallow-water model with Coriolis parameter f varying with the meridional coordinate y is a classical three-component wave model that cannot be reduced to one scalar equation. It will be used as the key example throughout the rest of this chapter. A scalar equation for the meridional component of the velocity field v(x, y, t) alone can be derived (see equation (1.48) in 1.3.4), then one can inject ansatz (4.6) in this scalar equation in order to infer an approximate WKB solution for v and find the corresponding relations for the phase functions at different orders. The results obtained via this approach for ray tracing can be found in various articles such as [START_REF] Blandford | Mixed gravity-rossby waves in the ocean[END_REF][START_REF] Ripa | Horizontal wave propagation in the equatorial waveguide[END_REF][START_REF] Schopf | Beta-dispersion of low-frequency rossby waves[END_REF] and textbooks [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Boyd | Dynamics of the equatorial ocean[END_REF], and are presented as a reminder in 4.4.3. However, this method suffers from two difficulties:

• First, the field v alone is not sufficient to fully characterize the energy propagation. Indeed, the two other fields involved in the shallow water dynamics, i.e. the zonal velocity u and the elevation η, do not satisfy the same wave equation as v when the Coriolis parameter is not homogeneous. Instead, they both are coupled to the field v, as can be seen from their respective expressions (1.47) and (1.49), in 1.3.4. As a reminder, the coupled second-order partial differential equations of shallow-water waves on the equatorial β-plane are

∂ ttt u + f 2 ∂ t u -c 2 ∂ t ∆u + βc 2 ∂ x u = -2c 2 β∂ y v , (4.7a) ∂ ttt v + f 2 ∂ t v -c 2 ∂ t ∆v -βc 2 ∂ x v = 0 , (4.7b) ∂ ttt η + f 2 ∂ t η -c 2 ∂ t ∆η + βc 2 ∂ x η = 2cβf v . (4.7c)
This leads to inconsistent WKB ansätze for the different fields of the problem9 , as noticed for example by Godin in the context of compressible stratified waves [START_REF] Godin | Wentzel-kramers-brillouin approximation for atmospheric waves[END_REF]. In fact, keeping just a single scalar wave equation amounts to only considering the dispersion relation and loosing all the information on the polarization relations between the fields. In other words, the scalar approach misses any geometrical effect related to the polarization relations of the eigenmodes, which is an essential feature in the presence of inhomogeneity. Therefore, the geometrical nature of the problem must be accounted for.

• Second and just as importantly, we find that the usual textbook derivation of ray-tracing equations from a scalar equation involves a contradictory hypothesis on the scale of variation of the Coriolis parameter: keeping the variations of the Coriolis parameter at leading order of the WKB expansion (which is the dispersion relation that normally accounts for the homogeneous parameters) amounts to assuming that it varies considerably over a distance λ (typically a few kilometers for geophysical shallow water waves on Earth), whereas it does over a scale L that is much greater than λ (L is typically of a thousand kilometers on Earth). We show that it is therefore necessary to reconsider the order of magnitude of a small parameter characterizing the inhomogeneity of the medium in order to properly derive the ray-tracing equations at order one in this small parameter.

As explained earlier, the issue of solving multi-component differential systems has long been addressed in applied mathematics [Littlejohn and Flynn, 1991a,b;[START_REF] Hörmander | The weyl calculus of pseudo-differential operators[END_REF][START_REF] Maslov | The Complex WKB Method for Nonlinear Equations I: Linear Theory[END_REF]. This

has been related to the existence of geometric phases in the vectorial WKB solutions of multi-component wave problems [START_REF] Budden | Phase memory and additional memory in wkb solutions for wave propagation in stratified media[END_REF][START_REF] Vanneste | On wave action and phase in the non-canonical hamiltonian formulation[END_REF][START_REF] Godin | Wentzel-kramers-brillouin approximation for atmospheric waves[END_REF]. However the role of Berry curvature in ray tracing -which is a simpler problem because it does not aim at computing precisely the evolution of the phase -has not been shown in the geophysical context. We will rectify the situation in the following. First I will introduce some notations to clarify the scale separation of shallow-water wave packets.

Fast and slow variables of the shallow-water model

As mentioned earlier, in order to illustrate the general issue of ray tracing for multi-component wave problems in the geophysical and astrophysical realm, we propose here to treat the particular case of energy propagation through surface wave packets. We choose to describe them with the linearized shallow-water model of constant speed c, introduced in 1.3.2, keeping in mind that the results presented in section 4.3 have a more general extent.

Let us therefore reconsider the system of equations (1.46) used in 1.3.4:

i∂ t ψ = Ĥψ , with ψ(x, y, t) =    u v η    and Ĥ = i    0 f (y) -∂ x -f (y) 0 -∂ y -∂ x -∂ y 0    . (4.8a)
We use again the rescaled fields of velocity u, v (which are equal to the velocity perturbation multiplied by √ H) and elevation η (which is equal to the real elevation multiplied by √ g). The Coriolis parameter f and the variables x, y, t are adimensionalized with the length λ and time λ/c, λ being the wave packet's mean wavelength and c = √ gH. This will allow us to introduce small parameters to separate the "fast" and "slow" dynamics of the wave.

Slow variables

To summarize, we consider the problem of a shallow-water wave packet evolving in a medium with varying Coriolis parameter f . The dynamics is given by equations (4.8) and a typical initial condition as depicted by relations (4.5). The problem involves four length scales, and admits therefore three Let us comment on each of them:

• ε ≪ 1 states that the packet's wavelength is small compared to the typical scale over which the Coriolis parameter varies with latitude. It is the control parameter in the WKB expansion. The contribution of the Berry curvature to ray-tracing equations arises as a correction of order ε, as will be shown in section 2.3.

• f ∼ 1 is a function of the slow variable Y ≡ εy, varying over a typical scale Y ∼ 1. We indiscriminately write f as a function of y or Y , as the case may be. Another important remark to be made right now is that we do not necessarily consider the equatorial model, so, for now, no assumption should be made about the form of the function f (Y ).

• α ≲ 1 reflects the ratio between the wavelength and the spatial extension of the packet. For the wave packet to behave as a plane wave at leading order, its envelope's extension must be at least a few times the wavelength, and thus α must be smaller than one. The ratio ε/α = Λ/L appears as a small control parameter that guarantees that the medium is quasi-homogeneous at the scale of the wave packet. Therefore, α must not be too small (i.e. of the order of ε), otherwise this localized wave packet picture fails down.

We propose to organize these parameters according to the set of inequalities ε ≪ α 2 ≲ 1 to derive the ray-tracing equations, together with f (Y ) ∼ 1. This last choice guarantees that rotation enters at lowest order in the wave dispersion relation. The reason for the scaling ε ≪ α 2 will be clarified in part 4.3.1.

Consequently, we assume that the phases are natural functions of the slow variables (X, Y, T ) ≡ (X, T ) ≡ (εx, εy, εt) , (4.10)

whereas the amplitude function is by definition a natural function of the variables

(X ′ , Y ′ , T ′ ) ≡ (X ′ , T ′ ) ≡ (αx, αy, αt) . (4.11)
Therefore the existence of these two parameters describing the solution leads to a multiscale characterization of the ansatz. In the following we sometimes rather use the derivation operators with respect to these coordinates, namely

∇ X ≡ (∂ X , ∂ Y ) and ∇ X ′ ≡ (∂ X ′ , ∂ Y ′ ) . (4.12)
Introducing these notations does not mean that we aim at computing the evolution of the wave packet's phase, which is not relevant in this ray-tracing context. Our assumptions, however, allow us to treat the variation of the Coriolis parameter as a perturbation -as it should be, considering its order of magnitude -that will enter ray-tracing equations at lower order. As explained earlier, we need such geometric tools as the Berry curvature and a vectorial WKB ansatz in order to address this perturbation correctly regarding the multi-component nature of shallow-water waves. Let us therefore recall the quantities introduced in 1.3.3 and section 2.3 for the shallow-water model.

Berry curvature of the f -plane shallow-water model

Following [START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF], in order to construct the wave packet solution for waves in a slowly-varying medium we must first and foremost derive the plane-wave solutions supported by the translationally-invariant medium, in this case the f -plane shallow-water model. Plane-wave solutions are written in the form ψ(x, t) = e i(k•x-ωt) Ψ, and the polarization vector Ψ satisfies the eigenvalue equation 

H S (f, k x , k y )Ψ = ωΨ , with H S (f, k x , k y ) ≡    0 if k x -if 0 k y k x k y 0    . ( 4 
ω 0 = 0 , ω ±1 = ± f 2 + k 2 (4.14)
for the eigenvalues, and

Ψ 0 (f, k x , k y ) = 1 f 2 + k 2    k y -k x if    , Ψ ±1 (f, k x , k y ) = 1 √ 2      kx k ± i f ky k √ f 2 +k 2 ky k ∓ i f kx k √ f 2 +k 2 ± k √ f 2 +k 2      (4.15)
for the eigenvectors10 .

As explained in section 2.3, the normalized eigenvectors Ψ n are defined up to a phase, thus defining a complex eigenspace of dimension 1 at each point of a base space like (f, k x , k y ). The continuous family of such parameterized eigenspaces over (f, k x , k y ) defines an eigenbundle, which owns specific geometric properties, whose repercutions on wave packet dynamics is the central motivation of this work. These properties can be quantified by the Berry curvature, which was introduced as a three-component vector in section 2.3. Here we will adopt the more general tensorial notation11 In the next section we will use these f -plane quantities to construct a wave-packet solution of the general shallow-water equations (4.8) in the general case where f varies.

F (n) λµλν ≡ i ∂Ψ † n ∂λ µ ∂Ψ n ∂λ ν - ∂Ψ † n ∂λ ν ∂Ψ n ∂λ µ , ( 4 

Berry curvature in ray-tracing equations of multi-component waves

In this section we derive ray-tracing equations by exploiting the equivalence between the Schrödingerlike equation (4.4) and a problem of functional optimization [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF]. First we introduce a vectorial ansatz for the wave packet, then we show that the Lagrangian describing its dynamics involves the Berry connection of the wave's eigenspace (cf. 2.3.2).

The results of this section are not specific to the shallow-water model, and can be extended to any other continuous multi-component wave system provided that the scaling discussed in 4.2.1 is respected.

Introduction of a variational principle

Our starting point is the following vectorial ansatz:

ψ ′ (x, t) = A(αx, αt) e iΦ(εx,εt) Ψ n (f (εy), k c (εt)) .
(4.17)

This ansatz corresponds to the initial condition discussed in introduction, which is a wave packet on band n with adiabatically varying mean wave vector k c (T ) and corresponding local eigenmode

Ψ n (f (Y ), k c (T ))
, modulated by the envelope function A(X ′ , Y ′ , T ′ ) (with the notation introduced in relations (4.10) and (4.11) for the variables X, Y, T, X ′ , Y ′ and T ′ ). Again, all functions in the ansatz (4.17) can be written as a function of the slow or normal variables in the following, as the case may be. Both the slowly-varying phase Φ(X, Y, T ) and the envelope function A of the vectorial field are real-valued, contrary to the scalar ansatz (4.6), where the phase was given by ℜ(Φ) and the amplitude by exp (-ℑ(Φ)) ("ℜ" stands for the real part and "ℑ" for the imaginary part), which is more convenient for the scalar method. We can expand Φ = Φ 0 /ε + Φ 1 + ..., with all Φ i of order 1, in a WKB framework, but we do not expand further than i = 1, all the geometrical effect at interest here being expected to appear at this order. As usual, one needs to eventually take the real part of the wave function (4.17) to find the actual solution of the fluid problem. It is however more convenient to work with the complex solutions throughout the rest of the chapter.

We aim at deriving the ray-tracing equations, meaning the equations of motion of the coordinates defining the wave packet: the position x c (t) and momentum k c (t) of its center of mass, which we hereby define. It is convenient to use a bra-ket notation12 , although with non-normalized vectors. For instance, by definition of the canonical inner product of the Hilbert space L 2 (R 2 , C 3 ), ⟨ψ(t)|ψ(t)⟩ ≡ dxdy ψ(x, y, t) † ψ(x, y, t) = dx A(αx, αt) 2 , (4.18) the total mechanical energy (per unit of mass) of the perturbation reads

E = 1 2 dxdy |u(x, y, t)| 2 + |v(x, y, t)| 2 + |η(x, y, t)| 2 = 1 2 ⟨ψ|ψ⟩ . (4.19)
The energy is a constant of motion since the operator Ĥ is Hermitian. Similarly the position and momentum of center of the wave packet are defined with Hermitian operators as The latter must be equal to the wave vector preassigned in ansatz (4.17). This consistency condition yields the following relation, shown in appendix J.1:

k c (t) = ∇ X Φ 0 + ε ∇ X Φ 1 -iΨ † n ∇ X Ψ n + O ε α 2 , (4.21)
all the phase functions in relation (4.21) being evaluated at time t and position x c (t), and the vector

Ψ n at (f (Y c (T )), k c (T )).
Solving equation (4.4) is equivalent to the variational problem of finding the function ψ ′ (x, t) optimizing the action integrated from the following Lagrangian [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF]: (4.20) [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF].

L ′ [ψ ′ ] ≡ ⟨ψ ′ | i∂ t -Ĥ |ψ ′ ⟩ ⟨ψ ′ |ψ ′ ⟩ . ( 4 
This variational approach is convenient for ray tracing because the Lagrangian L ′ defined by expression (4.22) depends only on the variables of center of mass x c and k c and their time derivatives at lowest orders (see appendix J.1 for the precise derivation):

L ′ = ẋc • k c + ẋc • iΨ † n ∂Ψ n ∂x c + kc • iΨ † n ∂Ψ n ∂k c -Ω (n) (x c , k c ) - d dt ξ(t) + O ε α 2 , (4.23)
with the notation ȧ ≡ da/dt and

Ψ n (x c , k c ) ≡ Ψ n (f (x c ), k c ) , and 
Ω (n) (x c , k c ) ≡ ⟨ψ| Ĥ|ψ⟩ ⟨ψ|ψ⟩ + O ε α 2 , (4.24) 
where the index n indicates the band over which the packet is defined, as written in expression (4.17).

In other words, defining the reduced Lagrangian as 4.25) the difference between the functionals L ′ and L adds up to second order terms and the exact time derivative of a function ξ(t) that can be removed, for it does not affect the solutions of the variational problem (see appendix J.1).

L(x c , k c , ẋc , kc ) ≡ ẋc • k c + ẋc • iΨ † n ∂Ψ n ∂x c + kc • iΨ † n ∂Ψ n ∂k c -Ω (n) (x c , k c ) , ( 
We recognize, in expression (4.25), the Berry connection iΨ † n dΨ n of the n th eigenvectors' bundle parameterized over the ray phase space (x c , k c ) as base space (cf. section 2.3), with Expression (4.25) justifies the interest of this variational principle altogether with the approximation of a wave packet in a slowly-varying medium: the dynamics of such a solution can be reduced to that of its coordinates of center of mass. The results of this section do not depend on the choice of ansatz (4.17), as long as the scaling ε ≪ α 2 ≲ 1, introduced in 4.2.2, is respected. More precisely, the reduced Lagrangian L defined in equation (4.25) and the full Lagrangian L ′ defined in equation (4.22) are equal up to order ε in the regime (ε/α) 2 ≪ ε ≪ 1.

ẋc • iΨ † n ∂Ψ n ∂x c + kc • iΨ † n ∂Ψ n ∂k c = iΨ † n dΨ n dt . ( 4 

The Hamilton equations of the ray

The coordinates of the wave packet in phase space, x c (t) and k c (t), are the generalized coordinates of the system whose Lagrangian L is defined by equation (4.25), and their time derivatives are the generalized velocities. Canceling the lowest-order variations of the action integrated from L yields the Euler-Lagrange equations:

∂L ∂q = d dt ∂L ∂ q , (4.27)
where q is any of x c or k c components. The spatial coordinates will be noted with Greek letters µ, ν

for the Einstein tensorial notations in the following. From the Berry connection arising in expression (4.25) results that the conjugated momentum of x c is equal to k c plus an additional geometric term related to the Berry connection:

∂L ∂ ẋc = k c + iΨ † n ∂Ψ n ∂x c , and 
∂L ∂ kc = iΨ † n ∂Ψ n ∂k c (4.28)
for the conjugated momentum of k c . Deriving expression (4.25) and injecting expressions (4.28) in the Euler-Lagrange equations (4.27) finally yields, with q = k c and q = x c respectively:

15 ẋµc = + ∂Ω (n) ∂k µc -F (n) kµcxνc ẋνc -F (n) kµckνc kνc , (4.29a) kµc = - ∂Ω (n) ∂x µc + F (n) xµcxνc ẋνc + F (n) xµckνc kνc . (4.29b)
The Berry curvature tensor F (n) is defined as in equation (4.16), with λ µ ∈ {x c , y c , k xc , k yc }

for the shallow water model, choosing the phase space coordinates to parameterize the eigenvectors

Ψ n (λ) ≡ Ψ n (x c , k c ) of the symbol H S (λ) ≡ H S (f (y c ), k c ), with eigenvalue ω n (x c , k c ) ≡ ω n (f (y c ), k c ).
Since Ψ n is normalized for every (x c , k c ), the Berry connection iΨ † n dΨ n has real coefficients.

As shown in [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF], the Berry curvature of the n th waveband defined in equation (4.16) can be expressed with off-diagonal elements of the symbol's derivatives (as expression (D.3) in appendix D.1):

F (n) λµλν = -2 ℑ   m̸ =n Ψ † n ∂H S ∂λµ Ψ m Ψ † m ∂H S ∂λν Ψ n (ω n -ω m ) 2   (Berry curvature) .
(4.30)

15 Here the theory is applied to the shallow-water equations which are two-dimensional and whose varying parameter, the Coriolis parameter f , only depends on y. However, this could be done for a more general situation, for instance in 3D with parameters which vary slowly in other directions of space and/or in time (i.e. adiabatically). In the time-dependent case, the ray-tracing equations (4.29) would have additional curvature terms, namely -F (n) kµc t in (4.29a) and +F (n) xµc t in (4.29b) (see equation [2.20] in [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF]).

As for Ω (n) , defined by relation (4.24), we show the following expression in appendix J.2:

Ω (n) -ω n = -ℑ   m̸ =n Ψ † n ∂H S ∂xµc Ψ m Ψ † m ∂H S ∂kµc Ψ n ω n -ω m   (gradient correction) .
(4.31)

The gradient correction Ω (n) -ω n comes from the spatial variations of the medium's parameters: it is a dynamical quantity. Conversely, the curvature F (n) as expressed in expressions (4.16) or (4.30) only depends on the choice made to parameterize the manifold over which the eigenmodes are defined: it is a purely geometric quantity. As a by-product, Ω (n) -ω n is exactly null for the homogeneous problem, contrary to the Berry curvature F (n) . Both the ray Hamiltonian and the Berry curvature corrections in (4.29) are of order ε at best, therefore we recover the classical scalar ray-tracing equations ẋc = ∂ω n /∂k c and kc = -∂ω n /∂x c at leading order, with ω n given by the bulk dispersion relation (4.14).

Expressions (4.30) and (4.31) give respectively the curvature and the ray Hamiltonian with interband terms m ̸ = n, showing that the corrections are larger at points k where the band n is close to another one in frequency, and vanish as the bands are separated in frequency16 . This effect is visible on figure 4.2 in the shallow-water case, with higher values of F kxky when the triplet (f, k x , k y ) becomes closer to the degeneracy point (0, 0, 0). We shall keep in mind that ω n , ω m , Ω (n) , H S , Ψ n and Ψ m in these relations are all functions of (x c , k c ) = (x c , y c , k xc , k yc ).

The set of equations (4.29) is different from the ones obtained with the traditional scalar derivation (see part 4.4.3 of the next section) as it accounts for both the corrected ray Hamiltonian Ω (n) and the geometry of the wave packet's polarization relations in ray phase space through the Berry curvature.

Such a form of ray-tracing equations has already been derived for different purposes such as the study of the time-dependent Schrödinger equation in the adiabatic limit [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF], the theory of Bohr-Sommerfeld quantization [Littlejohn and Flynn, 1991a,b] and semiclassical analyses of wave packet trajectories in slowly perturbed crystals [START_REF] Xiao | Berry phase effects on electronic properties[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF][START_REF] Yao | First principles calculation of anomalous hall conductivity in ferromagnetic bcc fe[END_REF][START_REF] Puetter | Semiclassical klein tunneling and valley hall effect in graphene[END_REF], optical lattices [START_REF] Wimmer | Experimental measurement of the berry curvature from anomalous transport[END_REF][START_REF] Roy | Tunable axial gauge fields in engineered weyl semimetals: semiclassical analysis and optical lattice implementations[END_REF] and ultracold atoms [START_REF] Jotzu | Experimental realization of the topological haldane model with ultracold fermions[END_REF]. Formal expressions for first order corrections to transport equations in multi-component fluid wave problems with inhomogeneous media were recently proposed by Onuki, with concrete applications to shallow water waves [START_REF] Onuki | Quasi-local method of wave decomposition in a slowly varying medium[END_REF]. However, the explicit contribution of the Berry curvature to the ray-tracing equations had never been exhibited in astrophysical or geophysical fluid dynamics. Since a non-trivial Berry curvature has recently been reported in magnetized plasma [Parker et al., 2020b] and compressible stratified fluids [START_REF] Perrot | Topological transition in stratified fluids[END_REF][START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF], we expect that geometrical corrections to ray-tracing equations will matter in those context.

Application to shallow-water wave packets

In this section I will illustrate the geometrical effects on shallow-water wave rays with varying Coriolis parameter. Since the propagation of such waves has been extensively treated in the literature [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Boyd | Dynamics of the equatorial ocean[END_REF][START_REF] Zeitlin | Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models[END_REF][START_REF] Blandford | Mixed gravity-rossby waves in the ocean[END_REF][START_REF] Ripa | Horizontal wave propagation in the equatorial waveguide[END_REF][START_REF] Schopf | Beta-dispersion of low-frequency rossby waves[END_REF], I shall compare the result with the traditional scalar method usually applied to determine the ray trajectory.

β-plane shallow-water waves

As shown in section 4.3, the ray equations of motions (4.29) require only the knowledge of the ray

Hamiltonian Ω (n) (x c , k c ) and the Berry curvature tensor F (n) (x c , k c ). In other words, with equations (4.29), we are dealing with a double correction to the usual ray-tracing equations. These additional terms only appear at lower order in the medium's variations, since their expressions only involve firstorder space derivatives of the symbol H S [f (y c ), k c ] and its eigenvectors. We will therefore only need gradient corrections of the Coriolis parameter to apply equations (4.29) to shallow-water wave rays.

The gradient of f with latitude was introduced in 1.3.4 in the equatorial case, but we can define it in the general case as

β(y) ≡ df (y) dy = ε df (Y ) dY . (4.32)
By definition, β is of order ε. When β is assumed to be constant, we recover the β-plane approximation, usually exploited to model wave propagation in the equatorial area (see 1.3.4 and [START_REF] Delplace | Topological origin of equatorial waves[END_REF][START_REF] Blandford | Mixed gravity-rossby waves in the ocean[END_REF][START_REF] Ripa | Horizontal wave propagation in the equatorial waveguide[END_REF][START_REF] Schopf | Beta-dispersion of low-frequency rossby waves[END_REF][START_REF] Matsuno | Quasi-geostrophic motions in the equatorial area[END_REF][START_REF] Anderson | Beta dispersion of inertial waves[END_REF]).

Note that the ray Hamiltonian Ω (n) for shallow-water waves is exactly equal to ω n in the f -plane approximation (β = 0).

Just as traditional ray tracing methods (based on the eikonal equation [START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF][START_REF] Anderson | Beta dispersion of inertial waves[END_REF] or another scalar equation [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Boyd | Dynamics of the equatorial ocean[END_REF][START_REF] Blandford | Mixed gravity-rossby waves in the ocean[END_REF][START_REF] Ripa | Horizontal wave propagation in the equatorial waveguide[END_REF][START_REF] Schopf | Beta-dispersion of low-frequency rossby waves[END_REF]), we just need to know the properties of the homogeneous (f -plane) system to infer the leading-order deviations arising from inhomogeneities (β-plane). The upgrade brought by the variational method presented in section 4.3 is that it adds the f -plane polarization relations (hence the Berry curvature) to the dispersion relation of the wave, thus accounting for its vectorial character.

Then from the homogeneous model's eigenvalues ω n and eigenvectors Ψ n , we just need to compute Ω (n) , defined by expression (4.31), and F (n) , defined by expression (4.30), and inject them into equations 

Berry curvature contribution to inertia-gravity waves eastward drift

Let us now compute the drift of shallow-water vectorial wave packets induced by first-order corrections to the ray-tracing equations, for the different bands n = -1, 0, 1 successively, by computing the observables Ω (n) and F (n) .

The Berry connection iΨ † 0 dΨ 0 of the geostrophic band n = 0 is null everywhere, hence so is its Berry curvature F (0) (see appendix I). Therefore, only the dynamical correction remains in the set of equations of motion (4.29). Expression (4.31) with n = 0 yields

Ω (0) (x c , k c ) = - β k xc f (y c ) 2 + k 2 c , (4.33)
which is nothing more than the dispersion relation of planetary or Rossby waves [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. In this case, the Berry-curvature terms in equations (4.29) drop and we simply retrieve the Hamilton equations ẋc = ∂Ω (0) /∂k c and kc = -∂Ω (0) /∂x c , as if the equations of motion came from a scalar WKB ansatz: there is no geometrical effect for these wave rays, which is to say one scalar field -for instance the geostrophic streamfunction -contains all the information on the phase of the fields. Therefore, the first-order corrections to Rossby wave rays' dynamics only involve a corrected dynamical phase.

As for the higher-frequency Poincaré wavebands n = ±1, we can straightforwardly infer the properties of the one from the other: since the fields are real, a wave at +k on the band n = +1 must behave as a wave at -k on the band n = -1 -which corresponds to the particle-hole-like symmetry (ω, k) → (-ω, -k) -, because a real inertia-gravity wave packet is a combination of the two 18 . Keeping that in mind we will work with n = +1 only. The expressions of F (±1) and Ω (±1) are respectively given in appendices I and J.2.

All terms combined, equations (4.29) finally add up to

ẋc = k xc f (y c ) 2 + k 2 c + β(y c ) 2 (f (y c ) 2 + k 2 c ) , (4.34a) ẏc = k yc f (y c ) 2 + k 2 c , (4.34b) kxc = 0 , (4.34c) kyc = - β(y c ) f (y c ) f (y c ) 2 + k 2 c . (4.34d)
The third of equations (4.34) is a straightforward consequence of the invariance along the zonal direction x, whereas there is an effective force along the meridional direction y. The only footprint of the medium's variation on the group velocity of inertia-gravity wave rays is along the zonal direction, while the geometrical corrections compensate the dynamical one for ẏc . On a rotating planet, up to the definition of the north and south poles, β is positive everywhere and vanishes at the poles. Therefore, only remains an eastward anomalous velocity19 along x and a pseudo-force kc along y in the raytracing equations (4.34), both proportional to β, thus of order ε in amplitude. There is an interesting parallel between this anomalous velocity under β-effect and the anomalous Hall effect [START_REF] Xiao | Berry phase effects on electronic properties[END_REF][START_REF] Karplus | Hall effect in ferromagnetics[END_REF][START_REF] Nagaosa | Anomalous hall effect[END_REF]: in this analogy the polarized wave packet undergoes an electric field proportional to β along the meridional direction y. As a consequence, an additional anomalous velocity arises, proportional and perpendicular to the electric field. 

Comparison with scalar ray tracing

As discussed in 4.2.1, the method used in [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Boyd | Dynamics of the equatorial ocean[END_REF][START_REF] Blandford | Mixed gravity-rossby waves in the ocean[END_REF][START_REF] Ripa | Horizontal wave propagation in the equatorial waveguide[END_REF][START_REF] Schopf | Beta-dispersion of low-frequency rossby waves[END_REF] to derive the ray-tracing equations for v does not deal with the geometrical aspects of the problem as it ignores the polarization relations. We shall recall here the results obtained from this scalar framework and compare them to the ones we got with the vectorial ansatz and the variational principle described in section 4.3.

Following Bretherton [START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF], the shallow-water ray-tracing equations in the In order to compute the β correction to shallow-water waves' group velocity, the traditional approach consists in applying Bretherton's method to the exact scalar equation for v that includes the β-effect:

∂ ttt v + f (y) 2 ∂ t v -∆∂ t v -β(y)∂ x v = 0 . (4.36)
The corrected dispersion relation is then obtained by formally replacing20 ∂ t with -iω and ∇ = (∂ x , ∂ y )

with ik = (ik x , ik y ) in (4.36), which yields

ω 3 -f (y) 2 + k 2 x + k 2 y ω -β(y)k x = 0 . (4.37)
By differentiating equation (4.37) with respect to k, one eventually gets the following expression for the group velocity:

∂ω ∂k = k + β 2ω êx ω + βkx 2ω 2 , (4.38)
where êx is the unit basis vector along the local zonal direction x, pointing eastward, and ω is one of the solutions of the dispersion relation (4.37). This result can be found in [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] (p. 311). It echoes directly the scalar WKB solution of equation (4.36). However, using only this equation for ray tracing is problematic whenever β ̸ = 0, because the other fields of the problem satisfy different equations, as explained in 4.2.1:

∂ ttt u + f (y) 2 ∂ t u -∆∂ t u + β(y)∂ x u = -2β(y)∂ y v -β ′ (y)v , (4.39a) ∂ ttt η + f (y) 2 ∂ t η -∆∂ t η + β(y)∂ x η = 2β(y)f (y)v . (4.39b)
This multi-component aspect leads to inconsistent WKB ansätze for the different scalar fields of the problem [START_REF] Godin | Wentzel-kramers-brillouin approximation for atmospheric waves[END_REF]. Yet, accounting for the three fields is crucial for computing ray observables such as the ones defined by relations (4.19) or (4.20), and therefrom to properly derive the ray-tracing equations.

When β ∼ ε, both scalar and vectorial methods yield the same leading-order ray-tracing equation through the f -plane dispersion relation, whose solutions are given by expressions (4.14). The β term in the left-hand side of equation (4.36) appears only at next order. We explained that β also induces additional geometric corrections to the ray-tracing equations, owing to the multi-component nature of the problem. The scalar approach is therefore inconsistent at order ε.

Thus the only way to properly take into account the inhomogeneity parameter β is to introduce it as a perturbation in the vectorial problem. Keeping that in mind, it is instructive to compare the group velocity (4.38), derived within the traditional scalar WKB framework, to the group velocity (4.34) derived within our vectorial framework. By differentiating expression (4.37) with respect to k and x and expanding the result at order 1 in β ∼ ε, one gets the following ray-tracing equations for Poincaré wave rays 21 :

ẋ = ∂ω ∂k = k f 2 + k 2 + β êx 2 (f 2 + k 2 ) - k x k (f 2 + k 2 ) 2 , (4.40a) k = - ∂ω ∂x = -β f êy f 2 + k 2 . (4.40b)
The latter must be compared to expressions (4.34a) and (4.34b) obtained with the vectorial ansatz.

The most striking difference is that the correction proportional to β in the group velocity (4.40a) is not always pointing eastward, contrary to what is predicted by the vectorial method. Accounting for the geometrical character of inertia-gravity wave rays thus adds a systematic eastward term to its group velocity compared to the expected value of the scalar WKB approximation, as illustrated in figure 4.4.

Figure 4.4 presents the case of equatorial oscillation [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Boyd | Dynamics of the equatorial ocean[END_REF][START_REF] Ripa | Horizontal wave propagation in the equatorial waveguide[END_REF], an instructive example showing the enhanced eastward group velocity of an inertia-gravity wave packet, predicted by accounting for the Berry curvature of the Poincaré waveband in ray-tracing equations. However one must keep in mind that, in the equatorial region -as opposed to mid-latitude ray tracing (figure 4.3) -, below a typical latitude called the equatorial radius of deformation L eq = c/β eq (see 1.3.4)22 , our scaling fails down: on the one hand the Coriolis parameter vanishes at the equator, thus possibly so does the separation in frequency between inertia-gravity modes and planetary modes, allowing interband coupling if the wave number is too small. And on the other hand the wave packet is subjected to strong dispersion in the equatorial region, which eventually spreads its envelope to a scale comparable with L.

One can wonder what are the typical orders of magnitude for this vectorial correction in dimensional units, say for oceanic inertia-gravity waves on Earth, with c = 2 m.s -1 and β = 2.3 × 10 -11 m -1 .s -1 (in the following all quantities are given in their natural units). Subtracting the projection along x of equation (4.40a) to expression (4.34a), the zonal projection of the difference of group velocity between the vectorial and the scalar method reads

∆v x = βk 2 x (f /c) 2 + k 2 2 ∼ βλ 2 ∼ c λ L eq 2 , (4.41)
which is a constant of motion with both methods, and shall be compared to the leading order zonal velocity ck x / (f /c) 2 + k 2 . For inertia-gravity waves of wavelength smaller than the equatorial radius of deformation (λ ∼ 100 km), relation (4.41) adds up to a vectorial correction of about one to ten percent of c, typically, to the zonal group velocity, thus yielding an overall zonal shift of order λ after a time t = λ/∆v x ∼ (βλ) -1 , which is typically a month. The corresponding total zonal displacement of the wave packet after such time is about c/(βλ) ∼ 6000 km.

21 Again we work with the positive solution (n = +1), which reads ω 

(x, k) = f (y) 2 + k 2 + βkx 2(f (y) 2 +k 2 ) + O ε 2 . y x equator k c (t = 0)

Conclusion of the chapter

Using the classical example of the linear β-plane shallow-water model, introduced in section 1.3, we showed how the vectorial nature of waves is involved in their ray dynamics, both through the βeffect and a geometrical observable: the Berry curvature. In a way that could not be derived from a scalar approach, these joint contributions yield an eastward deviation of Poincaré wave rays' trajectory, exhibiting a geophysical analog with the anomalous Hall effect. The ray-tracing equations that we derived are based on coherent hypotheses with respect to the scales characterizing the wave packet and the variations of the Coriolis parameter, in contrast with scalar derivations of the equatorial ray-tracing equations that can be found in classical textbooks.

Previous works had revealed geometric phase effects in geophysical waves [START_REF] Budden | Phase memory and additional memory in wkb solutions for wave propagation in stratified media[END_REF][START_REF] Vanneste | On wave action and phase in the non-canonical hamiltonian formulation[END_REF][START_REF] Godin | Wentzel-kramers-brillouin approximation for atmospheric waves[END_REF], although it is rarely mentioned in geophysical fluid dynamics textbooks, with the notable exception of [START_REF] Bühler | Waves and mean flows[END_REF]. Our contribution here has been to exhibit a quantitative manifestation of the Berry curvature in the ray-tracing equations, with application to shallow-water waves. This manifestation is yet subtle from a practical point of view. Indeed, the Berry curvature of the inertia-gravity wavebands is highest at small wave vectors, thus for large wavelengths (figure 4.2). Yet our analysis is based on a scaling that assumes sufficiently small wavelength. Furthermore, large Berry curvature is concomitant to large dispersion as both effects are associated with the proximity of a degeneracy point between wavebands. In practice, a large dispersion tends to spread the envelope of the wave packet. This effect of dispersion, together with dissipation and nonlinearities, will need to be addressed in future works.

Our approach thus highlights the multi-component nature of geophysical wave dynamics, where the primitive set of equations always involve the time derivative of several fields coupled together. The dynamics is sometimes reduced down to a scalar equation, which can conveniently be expressed in a Lagrangian framework different than the one used in this paper [START_REF] Whitham | Linear and nonlinear waves[END_REF]. These scalar-field Lagrangian approaches are very useful as they allow one to describe nonlinear effects. However, information of the underlying multi-component dynamics is not encoded into such scalar Lagrangians. This is why we used here an alternative variational approach that takes into account the multi-component nature of the wave equations. It cannot account for nonlinear effects, but it is suitable to capture Berry curvature effects on ray trajectories.

Since the Berry curvature most often comes along with multi-component wave problems in the presence of broken discrete symmetries, it is natural to expect its manifestation on a wider class of systems, from small scales hydrodynamics to large scales geophysics and astrophysics, such as the models considered throughout this thesis, as well as in the domain of seismic and elastic waves.

Conclusion

Results

The purpose of this thesis was two-fold. First, bulding upon the theoretical approach of Delplace, Marston and Venaille, who reinterpreted the Matsuno spectrum with the prism of topology [START_REF] Delplace | Topological origin of equatorial waves[END_REF] -and in continuity of the general fashion of using topological tools in systems other than solid quantum materials [START_REF] Ozawa | Topological photonics[END_REF][START_REF] Jotzu | Experimental realization of the topological haldane model with ultracold fermions[END_REF][START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF][START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF][START_REF] Chen | Elastic quantum spin hall effect in kagome lattices[END_REF][START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF][START_REF] Shankar | Topological active matter[END_REF]Parker et al., 2020b] -, the original idea of my thesis was to further develop the formal analogy between such systems and waves in the geophysical and astrophysical realm. To be more precise, beyond the analogy, I wanted to find out the meaning in this context of certain concepts originally introduced in quantum physics, namely the Berry curvature [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF], the Chern number and topological waves. Second and more importantly, once the translation of those notions for fluid waves would be understood and correctly formulated, I wanted to investigate their manifestation in the propagation of such waves. In other words, my main goal was to exploit these elements of topology to predict new effects of geometrical and topological nature in geophysical and astrophysical waves. My main contributions can be separated into two categories:

Topological waves in fluids and manifestations of the Chern number in their wave spectra

These are the results presented in chapter 3.

The precise analysis of the equatorial shallow-water waves and their topological characteristics, a problem that I treated separately in the introductive chapters 1 and 2, allowed me to formulate a bulkinterface correpondence for a large class of 2D fluid-wave problems. In the context of this thesis I used the example of the shallow-water model, and other models derived from the general wave equations in a rotating, compressible-stratified fluid medium, introduced at the end of chapter 1. These wave problems are three-dimensional but I studied sub-cases of 2D waves propagating in a plane with a homogeneous direction and an inhomogeneous one.

I inferred the existence of modes transiting between the different wavebands and propagating along interfaces separating the medium in the inhomogeneous direction. These waves are thus similar to topological edge modes in Chern insulators [START_REF] Hasan | Colloquium: topological insulators[END_REF], but instead of the edge of a gapped material, they are localized at interfaces inside the medium, where some parameter vanishes and a discrete symmetry is thus locally restored. These waves are the manifestation of the degeneracy points in the frequency bands of the wave-operator's symbol. In topological terms, such a degeneracy point is associated to a Weyl point in a three-dimensional parameter space, which bears topological charges (Chern numbers) that quantize the number of interface modes transiting between the wavebands, also called the spectral-flow modes. In mathematical terms, the relation between the spectral flow of the wave operator and the Chern numbers of its symbol is a particular manifestation of the index theorem [START_REF] Atiyah | The index of elliptic operators on compact manifolds[END_REF]. Building upon Iga's work on transition modes, I showed that another manifestation of the index theorem can be found in the evolution of the zeros of an eigenfunction when following the mode branches.

Concretely, the interfaces along which the topological waves propagate are defined by the symbol's degeneracy condition in terms of the problem's parameter, which provides a simple criterion of existence originating from a topological argument. My first example was a review of the work of [START_REF] Perrot | Topological transition in stratified fluids[END_REF] on topological waves in non-rotating, compressible-stratified media [START_REF] Perrot | Topological transition in stratified fluids[END_REF], appearing at interfaces where S = 0 and transiting between the internal-gravity and acoustic wavebands. I provided a better understanding to these results. For instance, I generalized their analysis to arbitrary profiles of the stratification parameter S, including the case of varying sound speed c s . Moreover, in addition to the Lamb-like mode studied in their work, I introduced the buoyant-like mode, of opposite spectral flow.

However, a more important personal contribution was the investigation of the rotating case. I showed that, owing to the nontraditional contribution of the Coriolis force -which breaks time-reversal symmetry like the traditional contribution, but also the rotational symmetry in the horizontal plane, which is not broken by the traditional contribution -, the eastward and westward modes (i.e. the same topological modes at opposite zonal wave numbers in the spectrum of the non-rotating problem) propagate at different interfaces, and thus the modes supported by each interface are unidirectional [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]. I proposed an exact condition for a simplified model at the equator, and showed that the result is valid for waves at mid-latitudes and even at the poles. For a given stratification profile, I

showed that there is a critical rotation above which a topological mode disappears from the spectrum, which is a topological transition.

A second important example is that of the generalized equatorial waves, accounting for the fluid's compressibility and the nontraditional Coriolis force, in contrast with the shallow-water model. I showed that, in addition to the Yanai and Kelvin modes that still exist at intermediate frequencies between planetary and internal-gravity waves, there are also spectral-flow modes at higher frequencies, i.e. between internal-gravity and acoustic waves. These two equatorial modes also propagate eastward, but they disappear if |S| > 2Ω, which is another example of topological transition.

In contrast with boundary waves, those interface topological modes are ideally predicted in unbounded media. Conversely, the existence of boundaries and the boundary conditions jeopardize the Hermiticity of the wave equations and, thus, the reliability of the bulk-interface correspondence. So as to nuance the statement of the index theorem, I considered some aspects of the boundaries and showed for instance that a minimal effect consists in the hybridization of boundary modes and interface topological modes. Alternatively, I explained that interface modes in unbounded media can sometimes be interpreted as the association of boundary modes in two semi-infinite media (e.g. the Lamb-like and buoyant-like modes), or, conversely, that an edge wave can be seen as an interface wave provided it is possible to define the edge with a varying parameter (cf. the coastal Kelvin wave with varying topography)

Finally, I presented some primary results obtained by [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF] on the topological nature of stellar pulsations in non-rotating stars. The main result is that the stratification parameter S -which we introduced to understand the topological properties of waves in rotating, compressiblestratified media -locally vanishes somewhere in most stars. Just as for the plane-parallel problem, the stratification parameter measures the coupling between the g-modes (gravity) and p-modes (pressure), and its vanishing is reminiscent of the spectral crossings between those modes. At the end of the day, we find that a mode branch arise from this coupling and can be viewed as a topological mode, which behaves as an internal g-mode at low orbital momenta and a surface p-mode at higher orbital momenta. This is an important result for the general understanding of the stellar pulsation spectra in asteroseismology.

Significance of the Berry curvature in geophysical and astrophysical ray tracing This is the contribution described in chapter 4. I proposed a general framework to address the significance of the Berry curvature in the motion of wave packets in slowly-varying media, accounting for the intrinsic polarized nature of fluid-wave fields, which obey coupled partial differential equations. Using a general multi-component WKB ansatz and a variational principle adapted from quantum mechanics [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF], I showed that the Berry curvature is involved in the ray equations of geophysical and astrophysical waves, and estimated the effect on Poincaré wave packets.

The ray equations for Poincaré waves were not consistently derived in standard textbooks, which rely on asymptotic developments based on the scalar theory. I found a systematic eastward correction to the traditional scalar result, which I verified in numerical simulations. This correction of rays' trajectories is the geometrical footprint of the underlying eigenbundle of wave polarization relations, as is the spectral flow for its topology. The relation between the spectral flow and ray tracing is the subject of an article currently in preparation [START_REF] Venaille | From ray tracing to topological waves in continuous media[END_REF].

Opening and perspectives

Many questions are obviously left unanswered, which are directly related to the work presented in this thesis. Here are some of them.

Interactions with disorder and mean flow

I presented the basics of topological fluid waves in ideal models, in order to emphasize the fundamental role of the Coriolis and stratification parameters, the buoyancy frequency and the compressibility factor. However, I always considered linear perturbations of a motionless flow at equilibrium in a rotating frame. Now, possible directions of investigation are to study how topological waves behave when interacting with, for instance

• Disorder -One may wonder how robust are the topological equatorial modes to a random topography, or Lamb-like waves to a random S(z) profile, provided it has a crossing point. Previous works have shown that non-rotating 1D shallow-water waves are subjected to the phenomenon of Anderson localization in the presence of a random topography [START_REF] Belzons | Localization of surface waves on a rough bottom: Theories and experiments[END_REF], but the 2D problem with rotation is still, to my knowledge, an open problem. A logical question is whether the topological waves are subjected to the Anderson localization with the same strength as the other (i.e. the same scattering length), or if they exhibit some robustness to disorder.

• Mean flow -In the atmospheric and oceanic contexts, the interactions between waves and mean flows are essential for understanding most circulation mechanisms [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. Do topological waves exhibit particular interaction properties with mean flows? A recent study by [START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF] shows that the Chern numbers of the Poincaré wavebands are left unchanged by the introduction of a background shear-flow forcing, which is a source of non-Hermiticity of the primitive equations and of instability. By virtue of the topological argument, the equatorial Yanai and Kelvin waves are stable to the shear-flow forcing, but the possible existence of a critical forcing amplitude remains open. Perhaps part of the question was answered by [START_REF] Hua | Destabilization of mixed rossby gravity waves and the formation of equatorial zonal jets[END_REF], regarding the behavior of the Yanai wave, which is destabilized by barotropic shear instability, leading to the formation of equatorial zonal jets. Generally speaking, because of their unidirectionality and their spectral presence in a frequency gap, the role of topological waves in circulation mechanisms, as well as their interaction with mean flows, are definitely subjects worth investigating.

• Waves -All models in this thesis were linear. Accounting for nonlinear effects and dissipation is thus a logical direction of investigation. In addition of being a relevant question for wave-mean flow interactions, it is as well for wave-wave interactions. For instance, internal-gravity waves are known to be subjected to the resonant triadic instability, which is a sub-harmonic instability owing to a nonlinear wave-wave interaction [START_REF] Dauxois | Instabilities of internal gravity wave beams[END_REF]. Generally speaking, topological waves are robust against linear backscattering but may be involved in these nonlinear wave-generation processes.

Theoretical challenges

Behind the models that I studied in this thesis, my intention was to establish a general geophysical and astrophysical framework to deduce wave-propagation properties from a topological analysis. Thus, I leave the possibility of looking for new interface waves in other flow models or compute the Berry curvature correction for internal-gravity wave packets, for instance, for further works. Beyond that, perpetuating the tradition of building topological bridges between quantum physics and fluid dynamics, we can formulate fluid versions of some of today's conceptual challenges. For example, non-Hermitian systems have drawn increasing attention in the condensed matter community [START_REF] Hu | Absence of topological insulator phases in non-hermitian pt-symmetric hamiltonians[END_REF], in relation with PT-symmetric (invariant under combined spatial and time-reversal symmetries) systems.

In this thesis we have studied a number of situations which exhibit such symmetries and the parameters that break them. Moreover, non-Hermiticity can be naturally induced in fluid-wave models with viscous dissipation or boundary conditions (see the discussion at the end of 3.5 and the recent article [START_REF] Chew | Instability of the isothermal, hydrostatic equatorial atmosphere at rest under the full coriolis acceleration[END_REF]). A recent study already linked the PT-symmetries in fluid dynamics to the stability of geophysical flows in the quasi-geostrophic model [START_REF] David | How do discrete symmetries shape the stability of geophysical flows?[END_REF], and revealed the emergence of exceptional points accompanying the baroclinic instability, for instance. Such points are ubiquitous in the physics of instabilities [START_REF] Kirillov | Nonconservative stability problems of modern physics[END_REF]. The physical implication of their topological properties regarding instabilities is, however, still an open question. Another theoretical question that is left unanswered in the context of my thesis is the formulation of the index theorem, and thus of the bulkinterface correspondence, for wave operators in spherical coordinates, which will have to be addressed to investigate the topological nature of stellar pulsations in rotating stars.

Topology and geometry of stellar pulsations

Laibe, Delplace and Venaille noticed a few years ago that the bulk spectrum of adiabatic oscillations in a generic polytropic star exhibits a radius-frequency range in which both g and p-modes can coexist (figure 3.34b), and the limit of this range is represented by two crossing points. This -along with the typical values of S in stars which are in contrast with those accessible on the Earth's oceans and atmosphere (see [START_REF] Perrot | Topological transition in stratified fluids[END_REF][START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF]) -motivated the investigation of stellar pulsations with the tools of topology. Concretely, this project was started by Laibe and Leclerc, and we took part of it. Our first results are presented in section 3.6, and with more details in the recent article [START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]. As mentioned in this thesis, including rotational effects is one of the priority issues.

Additionally, we want to test the ray tracing theory, presented in [START_REF] Perez | Manifestation of the berry curvature in geophysical ray tracing[END_REF] and chapter 4, for coherent rays of stellar oscillations, which is a promising direction of application of my work.

gravity. As it turns out, for the range atmospheric temperatures, the latter varies between about 20 and 30 km, which is comparable with the scales of variation of the temperature profile. The two terms thus contribute equally in general, which is not true in liquid media (see 1.2.2), where compressibility is often neglected.

Similarly, one can derive an expression for the stratification parameter S of an ideal atmosphere, from definition (1.68): .5) Remark: In an isothermal atmosphere, N is constant (it is the maximal frequency of internalgravity waves), S is constant and negative, and the frequency cutoff for acoustic waves is equal to

S(z) = γ -2 2 g c s + 1 2 dc s dz . ( A 
N 2 + S 2 = S + g c s = γg 2c s , (A.6)
which is agreement with the simplistic analysis of the influence of gravity made in 1.2.1, although I had not yet taken the effect of stratification into account in this early analysis.

A.2 Topological modes in a perfect gas atmosphere

Now the numerical simulations in chapter 3 are always done taking c s constant, for simplification, and it was demonstrated that the existence of a spectral flow and the number of modes transiting from a waveband to another does not depend on the variations of c s but rather on whether S does cross a degeneracy point or not. This implies, however, an inconsistency in the case of an atmosphere. Indeed, each of the parameters N, S and c s depend on the temperature profile, thus choosing a constant sound speed c s and a varying stratification parameter S does not look accurate, regarding the above expression (A.5). In particular, in an isothermal atmospheric layer, expression (A.5) for S is constant and negative.

In conclusion, for an ideal gas layer of atmosphere, one can only expect the existence of an interface S = 0 if the temperature increases2 . but both w and b disappeared in equation (B.2)), which is obviously still true by adding traditional rotation. This property allows one to separate the vertical dependence by seeking a solution for p ′ that is also an eigenfunction of the operator L, whose hermiticity2 ensures that these functions exist and correspond to real eigenvalues. As long as the medium is stably stratified (N 2 (z) > 0, ∀z ∈ [0, H]) and Dirichlet boundary conditions for p ′ are fixed, the Sturm-Liouville theory tells us that:

• the eigenvalues λ n of L are discrete and in infinite number, with λ 0 < λ 1 < ... and λ n → ∞ when n → ∞.

• the eigenfunctions p n (z) form an orthogonal basis of the space of functions of the vertical variable z (hence the decomposition being justified), and have exactly n zeros on [0, H].

These properties do not depend on the buoyancy frequency profile. However the validity of the resulting shallow-water model depends on the sign of the eigenvalues: for a given mode n, the eigenvalue λ n must be positive in order to have a well-defined wave celerity c n = λ which ensures that any eigenvalue is positive.

These are known as the vertical normal modes (see [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], p. 115): for such a solution, u, v and p ′ all have the same vertical dependence (they are products of a function of (x, y, t) and the eigenfunction p n ) and define in the horizontal plane a shallow-water system of celerity c n , such that

d dz N -2 (z) dp n dz + 1 c 2 n p n = 0 . (B.6)
The lower n the faster the mode, therefore the dominant vertical mode is the one with zero nodes in the vertical direction. the next ones (n = 1, 2, ...) are called the (first, second, ...) baroclinic modes. In the superficial oceanic and atmospheric layers, the Boussinesq model is a rather good approximation:

in the equatorial ocean (thermocline) we have c 1 = 2 m.s -1 , whereas c 1 = 25 m.s -1 in the atmosphere [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. To conclude, the 3D Boussinesq equations, within the traditional approximation, yield a discrete family vertical modes n whose horizontal dynamics is described by the linear shallow-water equations with constant depth, i.e. in the form (1.46), with celerity c n and elevation or geopotential height η = p ′ /g and where the functions ξ i are complex functions of the slow variables x ε = εx, y ε = εy (and also t ε = εt)2 , just as the slowly-varying mean flow U. We shall write ∇ ε = ∂ xε êx + ∂ yε êy = ε -1 ∇ the gradient with respect to these slow space variables. The ansatz (C.4) is compatible with the idea of a solution that has locally the structure of a plane wave, i.e. with a proper scale separation between the main oscillation (λ) and the other scales (L). Indeed the phase is dominated by the leading-order term ξ 0 /ε, which corresponds to the rapidly varying part of the solution. The local wave vector and frequency are thus

k = ∇ ξ 0 ε = ∇ ε ξ 0 ∼ 1 λ and ω = -∂ t ξ 0 ε = -∂ tε ξ 0 , (C.5)
respectively. At leading order, we must therefore retrieve a local version of the plane waves dispersion relation for the functions k and ω defined by expressions (C.5), which is called in this case the eikonal equation [START_REF] Bühler | Waves and mean flows[END_REF][START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF], an partial differential equation on the phase ξ 0 . Using the same ansatz (C.4) for the components of the velocity u ′ , the sum in expression (C.3) disappears at leading order and the remaining terms yield the eikonal equation

(∂ tε ξ 0 + U • ∇ ε ξ 0 ) 2 = c 2 (∇ ε ξ 0 ) 2 . (C.6)
For the shallow-water model, relation (2.14) is simply Ω(k) = ±ck, therefore the eikonal equation (C.6) identifies to expression (2.15).

Let us now show that the mean flow generated by the vortex induces a singularity for the leadingorder phase ξ 0 . To be clear, the WKB approximation fails near the vortex, where the mean flow does not vary slowly, but it is valid sufficiently far from it, therefore we can compute γ(P) for a closed path Here the frequency ω = ∂ tε ξ 0 is fixed, so k only varies in space. As for the Aharonov-Bohm effect, we shall consider a plane wave incoming from x → +∞ with initial wave vector K = -Kê x (therefore we take K = ω/c > 0 and thus consider the positive branch of the dispersion relation Ω(k) 2 = c 2 k 2 ).

As the wave approaches the vortex, the wave vector is perturbed, so we can write k = K + p, and p can be treated as a perturbation sufficiently far from the vortex, where the mean flow velocity is small. If the path P is a circle whose center is located at the whirl's position, we can see from expression (C.7) that the γ(P) only depends on the component of p along the azimuthal direction êθ , so we can assume that the perturbation is only along this direction, p = pê θ (with |p| ≪ K). Thus the eikonal equation , in other words excluding a small sector around the x axis. Within this sector, expression (C.9) is not valid and so the WKB approximation fails, therefore the solution there is a more complex function that connects both sides y > Γ/2πc and y < Γ/2πc where the WKB analysis is valid. Eventually, the number of wavefronts ending in the vortex, γ(P), is the integer closest to expression (C.10).

Note that the original analysis of [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] did not provide a mathematical proof but more of an analogy with the Aharonov-Bohm effect based on a semi-classical analysis of waves in a mean flow. This appendix aimed at showing the approximation that is hidden behind equation (2.18), which is the WKB approximation that yields the eikonal equation (C.6) for the phase. In terms of this approximation, the zone of wavefront reconnection (around the semi-infinite line at the left of the vortex) is where the WKB approximation fails down.

Finally, the original paper generalizes the result to the short-wavelength regime of surface waves, where the depth of the basin becomes comparable with the wavelength, on the one hand, and the surface tension must be accounted for, on the other. In this case the general isotropic dispersion relation (2.14) of surface waves is

Ω(k) 2 = gk + σ ρ k 3 tanh (kH) , (C.11)
where H is the constant depth, ρ the water density and σ its surface tension with the air. [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] found experimentally that the winding number of the dislocation is also given by expression (2.18) in this regime. Here it has been derived for the shallow-water model (which is the long-wavelength limit of (C.11), i.e. with λ ≫ H, σ/ρg), on the one hand because surface tension is not relevant in the geophysical context, and on the other because the vectorial WKB analysis presented in chapter 4 is based on the shallow-water model.

the Chern number C n (K 0 ) is the limit when ϵ → 0 of the flux of

-ℑ Ψ † n (∇H)Ψ n+1 × Ψ † n+1 (∇H)Ψ n (ω n -ω m ) 2 (D.3)
through a sphere of center K 0 and radius ϵ. Noting that the exact same analysis is valid with the band n + 1, for which the dominating term is the same as (D.3) with n ←→ n + 1, i.e. the opposite of (D.3), this finally proves

C n+1 (K 0 ) = -C n (K 0 ) . (D.4)
This allows one to deduce all the Chern numbers of the internal-gravity wavebands n = ±1, knowing those of the acoustic wavebands n = ±2

D.2 Symmetries of the symbol and Chern numbers

The problem of 3.3.1 has various symmetries, namely time-reversal symmetry (T ), horizontalreflection symmetry (M x ) and also the realness or conjugation symmetry (C) that is common to all fluid problems (the spectrum is invariant under (ω, k) → (-ω, -k)). The composition of these symmetries is reflected in the spectrum of (3.17), which is invariant under any composition of these symmetries, for instance:

(K x , K z , ω) C -→ (-K x , -K z , -ω) T -→ (-K x , -K z , ω) Mx --→ (K x , -K z , ω) (D.5)
The conjugation and reflection symmetry, together with the property demonstrated in the previous appendix D.1, are sufficient to infer all the Chern numbers of the symbol (3.16) from the knowledge of just one, say C 2 at the point (S, K x , K z ) = (0, +N, 0) (noted K + in the following). Let us show how the symmetries can be exploited to relate the different Chern numbers.

D.2.1 Reflection symmetry

In the inhomogeneous problem of 3.3.1, the reflection symmetry in x is translated by the invariance of the dynamical equations (1.71) (limited to the (x, z) plane and without rotation) under the change (x, u) → (-x, -u). In the symbol picture, this can be written as P H S (S, K x , K z )P -1 = H S (S, -K x , K z ) , with P = In (D.6), P is the x-reflection operator and H S is the symbol (3.16). Therefore, if Ψ + 2 (S, K x , K z ) is a choice of eigenvectors in the vicinity of K + , one can choose Ψ - 2 (S, K x , K z ) = P Ψ + 2 (S, -K x , K z ) in the vicinity of the point K -. 1 Let us define a closed oriented path P in the vicinity of the point K -.

From the previous properties we have In terms of spectral flow (see the results of [START_REF] Perrot | Topological transition in stratified fluids[END_REF] presented in 3.3.1), the property (D.8) is in agreement with the fact that, because of the isotropy, a given band losing a branch of modes at positive (resp. negative) k x must win the same type of branch mode at negative (resp. positive) k x .

More generally, the sum of the Chern numbers of a band with this symmetry is 0. 

D.2.2 The conjugation symmetry

As always in fluid problems, a natural symmetry of the bulk spectrum comes from the equivalence between the conventions e i(ωt-k•x) and e -i(ωt-k•x) for the bulk plane waves, because the solutions are real. In the symbol picture, here for the symbol (3.16), this symmetry can be written as H S (S, K x , K z ) * = -H S (S, -K x , -K z ) , (D.9)

where * stand for the complex conjugation (of each matrix coefficient). Therefore, if Ψ 2 (S, K x , K z ) is a choice of eigenvectors for the band n = +2 in the vicinity of K + , one can choose Ψ -2 (S, K x , K z ) = Ψ 2 (S, -K x , -K z ) * in the vicinity of the point K -for the eigenvectors of the waveband n = -2. Then, for an oriented path P around K -we have leading-order Taylor expansion of the term in the integral (F.2):

S(z ′ ) c s (z ′ ) ≈ S ′ (z ⋆ ) c s (z ⋆ ) (z -z ⋆ ) , (F.3)
thus, in the vicinity of the interface, the amplitude is approximated by

w(z) = -iΘ(z) ∝ 1 c s (z) exp - S ′ (z ⋆ ) 2c s (z ⋆ ) (z -z ⋆ ) 2 , (F.4)
which is acceptable only if S ′ (z ⋆ ) > 0. Incidentally, equation (F.4) provides an expression for the spatial extension of the topological mode across the interface:

L ⋆ = c s (z ⋆ ) |S ′ (z ⋆ )| . (F.5)
Remark: The Boussinesq equations (B.1) of appendix B reveal that this mode can exist independently of compressibility. In the incompressible case, however, it is uniform in the vertical direction, whereas compressibility localizes the mode at the interface S = 0 (if S ′ > 0) or at the boundaries (see [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF] and 3.5.2). In terms of spectral flow it is abusive to say that it transits to or from the acoustic waveband, because in reality the mode is a flat branch that always remains well-separated from the acoustic modes in the frequency spectrum (see figure 3 .12b). Yet the notion of spectral flow must be understood as a local property in the spectrum, and the mode locally joins or leaves the internal-gravity waveband.

Boundary Brunt-Väisälä oscillation -Note that expression (F.2), along with u = p = 0, defines a valid solution (of frequency ω = N ) of the wave equations (F.1) with constant N , even if there is no interface. However it is an acceptable solution only if it does noes not diverge. In a bounded medium where S has a constant sign, this mode can exist and is localized at an edge where the boundary condition is p = 0: it is the Brunt-Väisälä oscillation [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. Owing to expression (F.2), it is localized at the upper boundary if S < 0, and at the lower one if S > 0.

F.2 The Lamb-like mode with constant c s and nontraditional rotation let us study the other topological mode appearing in the vertically-inhomogeneous problem, which we called the Lamb-like mode. Historically, the Lamb wave was studied by Lamb [START_REF] Lamb | On atmospheric oscillations[END_REF] in an isothermal atmosphere, i.e. with constant c s . In a more general case, every time we took a constant c s in the simulations of 3.3.1 and 3.3.2 (i.e. the non-rotating case of with purely nontraditional rotation), the Lamb mode appeared to be nondispersive and strictly longitudinal (w = 0, see figures 3.11, 3.16 and 3.17 Exactly as for the previous analysis of the buoyant-like mode, expression (F.7) confirms that the Lamb-like modes have zero nodes and are localized on the interface z ⋆ if S(s ⋆ ) = ∓f nt (+ for the eastward mode, -for the westward one) and S ′ (z ⋆ ) < 0. Again, the expression of the Lamb-like modes' amplitude in the vicinity of an interface is approximately given by u(z) = ±p(z) ∝ exp + S ′ (z ⋆ ) 2c s (z -z ⋆ ) 2 , (F.8) which yields the same localization length as (F.5).

Remark: If we include traditional rotation, i.e. with f ̸ = 0, there is a lower frequency cutoff for internal-gravity waves, therefore the Lamb-like wave cannot be nondispersive at low frequencies (see figures 3.19 and 3.20c).

Boundary Lamb wave -Note that expression (F.7), along with w = Θ = 0, defines a valid solution (of frequency ω = ±c s k x ) of the wave equations (F.6) with constant c s , even if there is no interface.

However it is an acceptable solution only if it does noes not diverge. In a bounded medium where S has a constant sign, this mode can exist and is localized at an edge where the boundary condition is w = 0: it is the Lamb wave [START_REF] Lamb | On atmospheric oscillations[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. Owing to expression (F.7), it is localized at the upper boundary if S > 0, and at the lower one if S < 0 (e.g. near the ground in the atmosphere).

F.3 The indirect gap with constant c s

In the simulations of 3.3.1 and 3.3.2 we noticed that, if c s is taken constant, there seems to be an indirect gap between acoustic and internal-gravity modes. In other words, even if the gap is locally non-zero for every value of k x , the minimal acoustic frequency (excluding the spectral-flow modes that cross the gap) is smaller than the maximal frequency of the internal-gravity modes. This explains the particular situation in which the Lamb-like and buoyant-like modes transiting around the same wave numbers have opposite spectral flow but a phase and group velocities of the same sign. Let us prove that, if c s is constant4 , this gap is systematically indirect. The proof for f nt ̸ = 0 is rather tedious so we will just admit the result as an extension of the non-rotating case. We can extimate the maximal and minimal frequencies of each wavebands by searching their values for the bulk wavebands, i.e. the maximum of ω +1 given by expression (3.17a) and the minimal value of ω +2 given by expression (3.17b).

To be consistent, we have to consider the maximum of ω +1 and the minimum of ω +2 for S min < S < S max noting that, in this case, S > -g/2c s . Now the spectral gap in the inhomogeneous wave problem is direct only if min ω +2 > max ω +1 . If there is an interface where S = 0 in the medium, then we have S min < 0 and S max > 0, and thus min ω +2 < g/c s < max ω +1 , so the gap cannot be direct. At long wavelengths, however, the behavior of the surface modes depend on whether S < 0 or S > 0 (figure G.1a and b). The Lamb-like mode and the surface mode hybridize if the distance Z 2 -z ⋆ is not sufficiently large compared to the localization lengths of the two modes.

The hybridization of the Lamb-like wave and the surface wave gives rise to a mode whose density has no node in the bulk and which changes localization from the interface at low wave numbers to the surface at higher wave numbers (see the green curves in the insets of figure G.1d). This branch is the equivalent of the f-mode that transits through the gap between the g-modes and p-modes in the spectrum of pulsations of a polytropic star (figure G.2b). for the Berry curvatures. Keeping in mind that, in the three-dimensional case, the coefficients of F (n) are given by the curl of iΨ † n ∇Ψ n (see for instance [START_REF] Xiao | Berry phase effects on electronic properties[END_REF]), which is equal to ∓ cot θ √ f 2 +k 2 êφ for n = ±1, the coefficients of the Berry curvature tensor can thus be expressed as 2 This expression -i.e. F (n) = nB/B 3 (n = -1, 0, +1) with the notation B = (kx, ky, f ) and B = k 2 + f 2 -is similar to the Berry curvature of the quantum dipole computed as an example in 2.3.2, which was F (±) = ±B/2B 3 . This is actually a generic expression of the Berry curvature for a spin in a magnetic field, which in this case is a spin 1/2 for the quantum dipole and a spin 1 for the f -plane eigenvectors. Incidentally, integrating expression (I.7) over the unit sphere immediately yields the values of the Chern numbers Cn = 2n found in 2.3.3.

F (±1) =    F (±1) kyf
3 Since the Coriolis parameter has no dependence in the longitudinal direction x and F (n) are antisymmetric tensors, the Berry curvatures of the different bands are entirely defined by the 3 coefficients F whereas the third one remains and we get A 2 g(r, t) A 2 = g(r c , t) + O ε α 2 g 0 , (J.5) by definition of α (see 4.2.2). The derivatives of the slowly-varying functions in the integrals (J.2) and (J.3) reveal terms of order 1, with -∂ t Φ 0 /ε = -∂ T Φ 0 and ∇Φ 0 /ε = ∇ X Φ 0 , and ε with ε -∂ T Φ 1 + iΨ † n ∂ T Ψ n and ε ∇ X Φ 1 -iΨ † n ∇ X Ψ n . Therefore we have here g 0 of order 1 at most and we arrive at This last expression is the same as (4.21), only here for the purpose of the following development we do not need to separate the terms of order 1 and ε. Noticing now that d dt ϕ(x c (t), t) is equal to (∂ t + ẋc • ∇) ϕ(x c , t) for any function ϕ(x, t), we can combine equation (J.6) with (J.7) and expressions (4.24), and the Lagrangian reads as

L ′ + d dt Φ(x c (t), t) = ẋc • k c -Ω (n) (x c , k c ) + iΨ n (x c , k c ) † d dt Ψ n (x c , k c ) + O ε α 2 . (J.8)
This last relation corresponds to expression (4.23) with ξ(t) ≡ Φ(r c (t), t).

J.2 Expression of the ray Hamiltonian

Let us now prove expression (4.31) for Ω (n) in the case of the shallow-water model. First of all we notice that the Hamiltonian operator defined in (4.8) reads as Ĥ = f (y) ∂H S ∂f -i ∂H S ∂k •∇, using the formal derivatives of the symbol H S defined in (4.13). In addition, one can check that Ψ † n ∂H S ∂k Ψ n is equal to c n ≡ ∂ω n /∂k, the group velocity of the n th band of the f -plane system. Then, using the ansatz (4.17) yields

⟨ Ĥ⟩ ≡ ⟨ψ| Ĥ|ψ⟩ ⟨ψ|ψ⟩ = A 2 c n • ∇Φ + f Ψ † n ∂H S ∂f Ψ n -iΨ † n ∂H S ∂k • ∇Ψ n -ic n • ∇ A 2 2 A 2 . (J.9)
Integrating by parts the last term in the integral of expression (J.9), and noticing that the symbol reads H S (f (y), k c ) = f (y) ∂H S ∂f + ∂H S ∂k • k c , equation (J.9) yields

⟨ Ĥ⟩ = A 2 ω n + c n • (∇Φ -k c ) + i 2 ∇ • c n -iΨ † n ∂H S ∂k • ∇Ψ n A 2 . (J.10)
Moreover, knowing that m∈{-1,0,+1} Ψ m Ψ † m = I 3 (the 3-by-3 identity matrix) and that the connection iΨ † n ∇Ψ n is real, one gets

i 2 ∇ • c n -iΨ † n ∂H S ∂k • ∇Ψ n = -c n • iΨ † n ∇Ψ n + ℑ   m̸ =n Ψ † n ∂H S ∂k Ψ m • Ψ † m ∇Ψ n   . (J.11)
For m ̸ = n, one can prove that Ψ † m ∇Ψ n is equal to

Ψ † m ∇HΨn
ωn-ωm [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF], therefore relation (J.10) yields

⟨ Ĥ⟩ = A 2 ω n + c n • ∇Φ -k c -iΨ † n ∇Ψ n -ℑ m̸ =n Ψ † n ∂H S ∂x Ψm•Ψ † m ∂H S
∂k Ψn ωn-ωm A 2 . (J.12)

With the approximation of integrals weighted by A 2 explained in appendix J.1, the second term in expression (J.12) being straightforward to deal with via relation (J.7) and the third one of order ε, equation (J.12) yields

⟨ Ĥ⟩ = ω n -ℑ   m̸ =n Ψ † n ∂H S ∂xc Ψ m • Ψ † m ∂H S ∂kc Ψ n ω n -ω m   + O ε α 2 ≡ Ω (n) + O ε α 2 . (J.13)
An equivalent expression of Ω (n) , as in [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF] (expression [2.18]), is given by

Ω (n) = ω n -ℑ ∂Ψ † n ∂x µc (ω n I 3 -H S )
∂Ψ n ∂k µc .

(J.14)

All the functions in expressions (J.14) are valued at (x c , k c ), which demonstrates that Ω (n) is indeed a function of x c and k c only, at leading order in the gradient corrections. This proves relation (4.31).

Using expression (J.13) with the geostrophic waveband (n = 0), one gets the dispersion relation of Rossby waves (4.33) for Ω. For the Poincaré wavebands (n = ±1), it yields:

Ω (±1) (x c , k c ) = ± f (y c ) 2 + k 2 c - β k xc 2 (f (y c ) 2 + k 2 c )
.

(J.15)

Résumé en français

La topologie et la géométrie ont permis de comprendre puis de révéler des propriétés inattendues des ondes dans des domaines aussi variés que la matière condensée, l'optique, les atomes froids, les plasmas, ou encore la matière active. L'objet de cette thèse est de comprendre comment appliquer ces concepts dans le contexte des ondes se propageant à l'échelle géophysique, dans l'atmosphère, l'océan, ou même les étoiles. Plus précisément, je me suis intéressé à un invariant topologique, le nombre de Chern, qui caractérise les propriétés topologiques qui surviennent lorsque les spectres des ondes (ondes internes, ondes acoustiques) ont un point de croisement. Le calcul de cet invariant permet de prédire le nombre de modes existant dans la bande de fréquences interdites séparant ces ondes, et qui ont un comportement hybride en terme de propagation. En d'autres termes, la topologie a permis de déterminer, de manière détournée, des propriétés spectrales importantes et méconnues des ondes en milieux fluides, en tenant compte des mécanismes essentiels de la géophysique, à savoir la stratification due à la gravité, la compressibilité et la rotation, en incluant les effets dits non-traditionnels de la force de Coriolis. Cette étude a ainsi permis d'établir des critères robustes sur les paramètres du milieu contraignant l'existence de ces nouveaux modes, ce que le calcul numérique direct ne permet pas de déterminer. L'outil numérique a néanmoins permis de vérifier avec succès ces conclusions contreintuitives. Le nombre de Chern, qui caractérise de manière globale les ondes, est lié par ailleurs à la courbure de Berry, qui caractérise localement la géométrie de l'espace spectral décrit par les relations de polarisation de ces ondes. J'ai évalué l'effet de cette quantité sur la propagation des rayons pour les ondes de surface à l'échelle planétaire et mis en évidence une correction vers l'est de la trajectoire des paquets d'onde de Poincaré, correction d'origine géométrique.

Figure 3 :

 3 Figure3: Some geophysical waves share similarities with topological edge states. a. In a 2D metal subjected to a strong transverse magnetic field, some electrons move in cyclotron orbits (purple) while there are unidirectional conducting states at the edges (blue). These correspond to quantized modes crossing the energy gap (green) between the material's bulk wavebands. b. In a rapidly rotating fluid, the Coriolis force dominates and the particles move in circles (purple), but they organize at the edge to generate a unidirectional wave propagating along a coast, called the Kelvin wave (represented in blue). Its dispersion relation is a branch that crosses the frequency gap (green), thus accessing frequencies below 2Ω.
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 4 Figure4: Topological edge waves in different fields of physics: mechanics (blue), photonics (purple), acoustics (orange), active matter (green, figure5) and fluid dynamics (red, figure5). a. Spring-mass system on a Kagome lattice with an asymmetry in the spring stiffness[START_REF] Chen | Elastic quantum spin hall effect in kagome lattices[END_REF]. The system exhibits robust topological waves propagating along an interface where this asymmetry is reversed. b. Gyroscopes on an hexagonal lattice, coupled with springs[START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF]. The system supports the propagation of unidirectional modes on the edge of the lattice, and they are robust against disorder as they propagate around any defect. c. Unidirectional edge modes in a gyromagnetic photonic crystal[START_REF] Wang | Observation of unidirectional backscatteringimmune topological electromagnetic states[END_REF]. The topological modes are immune to backscattering, and thus can propagate around obstacles at the edge of the waveguide. d. Topological acoustic waves propagating in a triangular lattice of rotating cylinders[START_REF] Yang | Topological acoustics[END_REF]. As time-reversal symmetry is broken by the mean flow generated by the rotating cylinders, the edge mode is unidirectional. e. Topological acoustic waves propagating in a 2D network of waveguides[START_REF] Zheng | Observation of edge waves in a two-dimensional su-schrieffer-heeger acoustic network[END_REF]. f . Hexagonal lattice of toroidal waveguides with an azimuthal mean flow in each element, creating a Doppler bias[START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF]. Topological waves can propagate at the edges or at the interface where the Doppler bias is reversed, and their direction of propagation is fixed by the chirality of the mean flow.

  Figure5: g. A similar device as f on a Lieb lattice with rings filled with a spontaneously flowing active liquid[START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF]. The polarity of the liquid dictates the direction of the unidirectional modes. h. Organized motion of self-propagating particles on curved surfaces can support topological sound modes on the surface's edges and geodesics[START_REF] Shankar | Topological sound and flocking on curved surfaces[END_REF]. i. Shallow-water waves in a tank[Sakai et al.]. If the tank is not rotating (below), gravity waves can propagate at any frequency. If it is rotating at frequency Ω (above), the only modes allowed in the gap below the inertial frequency 2Ω are Kelvin waves which are localized at the tank's edges and propagate in one direction. j. Eastward propagation of a temperature anomaly (in red) between the 1 st of November 2009 and the 1 st of December 2009. The equator can be viewed as an interface across which the rotation rate changes sign, allowing the propagation of topologically protected equatorial waves[START_REF] Delplace | Topological origin of equatorial waves[END_REF]. Image: Courtesy NASA/JPL-Caltech. Source: Jet Propulsion Laboratory.

  Figure 1.2: Which parameters or physical mechanisms are relevant to model surface waves at different scales? For instance, capillary waves (top) are influenced by surface tension effects but not surface waves breaking on the sea shore (middle), nor internal-gravity waves in the ocean (bottom). Conversely, internal-gravity waves in the ocean are influenced by the Earth's rotation but not the first two examples.

  Figure 1.3: Because of the Earth's rotation, especially the Coriolis force, geophysical flows are not invariant under time-reversal symmetry, and nor by reflection symmetry. However, the image of the Earth in a mirror is itself rotating backwards, therefore the composition of reflection symmetry and time-reversal symmetry can, in some situations, be a preserved symmetry of the flow.

  Figure 1.4: a. Dispersion relation of acoustic waves in a homogeneous fluid, here as a function of kx and kz.In this case they are nondispersive, thus the frequency spectrum is gapless, i.e. all frequencies are allowed. b. Propagation of an acoustic wave supported by a fluid medium. The motion of the particles is longitudinal, i.e. in the direction of propagation, as long as the influence of gravity is negligible.

Figure 1

 1 Figure1.5: a. A fluid particle of mass m vertically displaced from its initial position oscillates vertically under the action of gravity and buoyancy, the restoring force. The buoyancy force (and frequency) depends on both the medium's stratification and the fluid's compressibility, thus the stability of the fluid particles depends on the background thermodynamic profile. b. Temperature profile of the Earth's atmosphere[START_REF] Gerber | Assessing and understanding the impact of stratospheric dynamics and variability on the earth system[END_REF].
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 16 Figure 1.6: Profiles of buoyancy frequency N (z) measured at different locations on the Earth's ocean and at different periods of time, showing a good stability over the years. The data were obtained in the World Ocean Circulation Experiment (WOSE) [King et al., 2012].

  .20) with w = v • êz the vertical component of the velocity field, b ′ = -gρ ′ /ρ 0 = b-b the dynamical the buoyancy frequency introduced in equation (1.15), here in the incompressible case. In this context, equations (1.16), (1.18) and (1.20) form the Boussinesq system in a non-rotating frame.The internal-gravity wave spectrumLet us now derive the wave dynamics in the incompressible and initially steady medium, stably stage, together with stratification.

Figure 1 . 7 :

 17 Figure 1.7: Internal-gravity wave trains propagating in the atmosphere (left) or the ocean (right). On the left, stratocumulus clouds are affected by a gravity wave disturbance (NASA/GSFC/LaRC/JPL, MISR Team). On the right, internal-gravity waves underneath the surface of the Caribean sea, on the north coast of the Trinidad island, create observable wave patterns on the sea surface (NASA Photo ID ISS034-E-32377, Expedition 34).

Figure 1

 1 Figure 1.8: a. Internal waves emitted by an object oscillating vertically, in the center of the image [Mowbray and Rarity, 1967]. The group velocity cg (white arrows) and the phase velocity cφ (black arrows, as the wave vector k) are perpendicular, thus from expression (1.23) the energy can only propagate in 4 directions given by the angles ±θ, which is fixed by the ratio between the oscillator's frequency ω and the buoyancy frequency N . b. The dispersion relation of internal-gravity waves for a fixed value of kz ̸ = 0. The frequency range is bounded by the buoyancy frequency N .

Figure 1

 1 Figure 1.10: a. A shallow layer of fluid on a rotating planet with a local planar geometry and Cartesian coordinates (x, y, z). The Coriolis parameter f (yellow) is the projection of 2Ω on the local normal axis z, and the traditional approximation amounts to neglecting the meridional component fnt (blue). b. The local shallow layer of fluid of depth H, and the perturbation fields u and η. The effect of rotation on the 2D flow's dynamics is embedded in f .
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 113 Figure 1.13: The plane-wave spectrum of shallow-water waves as a function of the wave vector's components (kx, ky) (the geostrophic waveband ω0 is in blue and the inertia-gravity bands ω±1 are in red), for f = 0 (left) and f ̸ = 0 (right).

Figure 1

 1 Figure 1.15: a. Matsuno spectrum for the equatorial waves on the unbounded β-plane shallow-water model. The branches n ⩾ 1 are separated in three groups, corresponding to low-frequency Rossby (or planetary) waves and high-frequency inertia-gravity waves, and two branches (the Yanai and Kelvin modes) cross the gap between these groups. The values of the wave number kx are given in units of β/c and those of ω in units of √ βc. b. Plot of the functions hn(Y ) of expression (1.51), representing the meridional velocity field v of the equatorial modes, for n = 0, 1, 2 and 10 and with Y = y/Leq. Each function hn(Y ) has n zeros.

Figure 1

 1 Figure 1.16: The Yanai and Kelvin waves transiting across the frequency gap of the β-plane shallow-water model, given by expressions (1.55) and (1.59), respectively, here for β, c, kx = 1 (thus Leq = 1). The velocity fields are represented by the black arrows and the elevation (or geopotential height) η appears in color (negative values in blue and positive in red). The purple dashed line is the equator. The extension of the plots in the zonal direction is 1.5 λ, with λ = 2π/kx the wavelength, and 10 Leq in the meridional direction.

Figure 1

 1 Figure1.17: Fluid motions with rotation VS. electronic motions with a magnetic field. a. The effective Coriolis force in the shallow-water model is reversed across the equator. b. In a simplified picture, the resulting Coriolis force has the particles moving circularly in the bulk fluid, clockwise in the northern hemisphere and counterclockwise in the southern hemisphere. In the presence of an impenetrable boundary, the fluid particles move along with the boundary on the right in the northern hemisphere, and on the left in the southern hemisphere, which is a naive view of the coastal Kelvin waves. Across the equator, the Coriolis force changes sign and thus has the fluid particles oscillating around it and globally moving eastward only, which is a naive but insightful vision of the equatorial Yanai and Kelvin waves. c. In that sense, the effect of the Coriolis force on two-dimensional fluid motions can be viewed as the effect of a transverse magnetic on the electrons of a 2D metal: in the bulk, the electrons move in circular Cyclotron orbits owing to the Lorentz force (this is a classical picture), but at the edges they can propagate in one direction, creating a finite unidirectional current along each edge of the metal, similarly to the coastal Kelvin waves. In a semi-classical picture, these edge motions of the electrons are called the skipping orbits[START_REF] Montambaux | Semiclassical quantization of skipping orbits[END_REF]. Similarly, the eastward equatorial motion resembles the snake orbits described by electrons in a 2D material with a sharp step of transverse magnetic field[START_REF] Davies | Skipping and snake orbits of electrons: singularities and catastrophes[END_REF].

  Figure1.18: Simulated scattering of equatorial Kelvin waves (adapted from the Supplemental Material of[START_REF] Delplace | Topological origin of equatorial waves[END_REF]), for a Kelvin wave of intermediate frequency (left, purple) and a Kelvin wave of low frequency (green, right). Periodic boundary conditions are imposed in the zonal direction (in other words the waves returns to the other side of the box after crossing it). The intermediate-frequency wave does not undergo any westward backscattering, as only eastward-propagating waves are allowed at its frequency. Therefore the Kelvin wave packet remains coherent after passing once (t = 120 days) and even twice (t = 275 days) through an fixed obstacle (dashed circle). Conversely, the low-frequency Kelvin wave strongly interacts with the obstacle and generates westward-propagating Rossby waves, and the diffusion eventually completely convert the Kelvin wave packet into a westward Rossby wave.

  Figure 1.19: General 3D model on a local Cartesian geometry. The Earth's rotation vector Ω can be projected on the local Cartesian axes (meridian y and vertical z). Both the traditional (f ) and nontraditional (fnt) components are functions of the latitude ϑ (plots on the left) or, locally, the coordinate y. The stratification parameter S is a function of z, which is represented by the gradient blue color (lower right corner).

  72) is a matrix differential operator acting on the wave function ψ. Actually, since neither the parameters of the operator (1.72), nor the boundaries of the problem 58 depend on the zonal coordinate x, equation (1.71) can be directly projected onto the Fourier basis {e i(kxx-ωt) }, just as with the equatorial shallowwater problem presented in 1.3.4, and reduces to the eigenvalue problem ωψ = Ĥψ , (1.73)
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 21 Figure 2.1: Three different topological classes of objects in 3D, defined by the number of handles of their surface. The respective surfaces of two objects belonging to the same class can be smoothly deformed one into the other, but not with an object from another class.

Figure 2

 2 Figure 2.2: a. The pendulum's frame of reference at latitude ϑ rotates with the Earth. b. Coordinates of the problem in the local frame.

Figure 2

 2 Figure 2.3: a. The pendulum's plane of oscillation slowly rotates, here clockwise with f > 0 (northern hemisphere). b. The Foucault pendulum underneath the dome of the Panthéon in Paris.

Figure 2 . 5 :

 25 Figure 2.5: The amphidromic circulation of the M2 component (12.4 hours period) in the North Sea, from [Kvale, 2003]. The dashed lines are lines of same amplitude |η|. The solid lines are cotidal lines, i.e. lines of constant phase ξ, where high (or low) tides occur at the same time. These lines meet at the amphidromic points, around which the M2 tidal circulation (arrows) is organized.

  Figure2.7: a. The real part of the Aharonov-Bohm wave function for α = 2, 3 and 2.5, plotted with Mathematica from the analytic expressions given in[START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF]. In the first two cases the number of wavefronts ending at the flux point, which can be counted by following a path P that encircles it, is equal to α. For half-integer values of α, the phase singularity spreads over the whole semi-infinite line {x ∈] -∞, 0], y = 0}, as the number of wavefronts ending at the dislocation changes by one when half-integer values are crossed. b. Experimental results obtained by[START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] showing the dislocation of the wave crests, with surface waves incident from the right, interacting with an irrotational vortex circulating clockwise (Γ < 0). Estimated values of the flux parameter α are indicated. The number of wave crests (pink) terminating is the integer closest to α, thus α = 2.5 marks a transition point across which a wavefront reconnection mechanism occurs on a semi-infinite line (dotted line in red), cf.[START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF].

  Figure 2.8: Examples of topological defects in three physical systems, manifesting as a phase singularity of a wave. Wavefronts (lines of maximal amplitude at a given time) are represented in pink, and some topological defects in green. a. The amphidromic points of oceanic tides (with the wavefronts at t = 11h). b. The phase singularity of the Aharonov-Bohm wave function at the flux line. c. Wavefront dislocation of surface waves in a bathtub with a localized vortex.

Figure 2

 2 Figure 2.10: Two examples of geometrical phases taken by different vectorial objects after completing a closed path on a surface. a. A tangent vector on the sphere transported (here from the north pole) along a closed path of geodesics eventually returns to its original tangent plane, but has turned by an angle γ equal to the flux of the Gaussian curvature inside the path. In the case of the sphere, this flux is equal to the solid angle Ω enclosed by the path (in the picture, γ = Ω = π/2). b. Similarly, as the magnetic field B varies and eventually returns to its original direction, the eigenvector Ψ±(B) acquires a global phase which is equal to the flux of the Berry curvature through the surface (in the B-space) enclosed by the path. The local eigenspaces are represented by the black lines: Ψ± returns to its original space but with a different phase.

Figure 2

 2 Figure2.11: Direct analogy between the different mathematical objects descibed in section 2.3, their geometrical and topological properties. The first row summarizes our introductive example in 2.3.1, the second one summarizes the geometrical and topological properties discussed here in 2.3.2, and the third one shows the equivalent objects and concepts for the plane waves of the shallow-water model, which will be presented with more details in 2.3.3.

  2.44)and then split the wave equation into successive orders of ε. It is thus clear why this ansatz is relevant to describe wave propagation in slowly-varying media: the leading-order term Φ 0 is the wave's main phase (and its gradient is the wave vector), which obeys the eikonal equation (i.e. the local dispersion relation of the varying medium), and the following terms provide the transport equations of the phase and amplitude (imaginary part of Φ). Regarding the description of the Wigner transform made earlier, the link with this approximation appears more clearly. I use the WKB approximation in appendix C and chapter 4.

A

  suggestive rewrite of the shallow-water operator Let us start by rewriting the shallow-water equations (2.40) with f = βy (Coriolis parameter in the equatorial β-plane approximation), ∂ t = -iω and ∂ x = ik x (projection on the Fourier space). As explained in 1.3.4, the problem thus amounts to finding the eigenvalues ω of the differential operator vector of polarization relations ψ = u v η T , which is a C 3 -valued function of y ∈ R.

  .52) This mapping is non-reversible, because each mode (p, m = +1) is paired with a mode (p ′ = p -2, m = -1), with the exception of (p = 0, m = +1) and (p = 1, m = +1), which are thus the modes transiting to the gravity waveband in the limit k x → +∞ (figure 2.13). Therefore the number of modes of the spectral flow is +2, which is in agreement with the equatorial Yanai and Kelvin waves being the only modes existing in the frequency gap between Rossby and Poincaré waves. Similarly, the negative Poincaré band loses two modes as k x goes from -∞ to +∞, and the Rossby wavebands gains zero mode in total. The spectral flow of each band thus reads as∆N -1 = -2 , ∆N 0 = 0 , and ∆N +1 = +2 .(2.53)In mathematical terms, these are indices characterizing the operator Ĥ. In particular, ∆N +1 is equal to the analytical index of the operator D2 over the subspace m = +1:∆N +1 = dim Ker D2 -dim Ker D2 † . (2.54)Regarding the values of the spectral flows (2.53), we showed through this example the crucial Ĥ(-kx) admits the eigenvalue -ω. relation 69 ∆N m = C m , (2.55) with m = -1, 0, +1 the indices of the bulk wavebands of the f -plane shallow-water model 70 and C m the Chern numbers of the symbol (2.41) computed in 2.3.3. To be clear, it proves that the number of modes gained by a waveband 71 of the operator Ĥ -which is inhomogeneous in the y direction -is equal to the Chern number characterizing the corresponding waveband of its symbol H S -which reflects the homogeneous problem. This is a consequence of the general Atiyah-Singer index theorem [Atiyah and Singer, 1963], which relates the analytical indices characterizing an operator -yielding the spectral flow indices ∆N m -to the topological indices of its symbol, i.e. the Chern numbers C m . This correspondence is summarized in figure 2.14.

Figure 2 .

 2 Figure 2.14: Manifestation of the index theorem, in the context of this thesis. The operator (left), characterizing an inhomogeneous problem, has a spectral flow, which is quantized by the indices ∆Nm. The symbol (right) represents the homogeneous problem, and its wavebands are characterized by the topological indices Cm. The operator and its symbol are connected through the Wigner-Weyl correspondence, and their respective indices are connected through the index theorem.
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 215 Figure2.15: Transition modes in a rotating channel for certain boundary conditions. Here we chose v = 0 on both extremities (impenetrable walls), which is one of the many cases studied by Iga. The channel is represented on the left. For each asymptotic limit (a, b, c and d), the shallow-water equations yield a Sturm-Liouville-type wave problem, thus the modes in each limit can be ordered by the number of zeros of some field. In the case represented, the first mode (p = 0) in the limit (c) converts into the first mode of (b), while the first mode of (a) becomes the second mode (p = 1) of (b). Thus, in this case, there is a mode transiting through the gap from the geostrophic band to the inertia-gravity band, called a Kelvin wave. Generally speaking, one can use the zeros of the eigenfunctions to identify the existence and behavior of transiting modes depending on the different boundary conditions, as explained in details in[START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF]. The spectrum on the right is the same as the middle one with the frequency in log-scale, so as to better see the discrete low-frequency modes.

  The first two limits, (a)-(b), define the group of inertia-gravity waves (upper band) and the second two, (c)-(d), define the group of quasi-geostrophic waves (lower band). These two groups are separated by a frequency gap, except for the transition modes that may cross the gap, i.e. have a behaviour (a)-(d) or (b)-(c), for example (see figure 2.15). In each of the above four limits, the linearized shallow-water equations (1.40)-(1.41)-(1.42) reduce to a generalized Sturm-Liouville problem for one of the wave fields ϕ (i) (y) (with (i) = (a), (b), (c) or (d) according to the limit considered 73 , i.e. a problem of the type

  Figure 2.16: Plots of the amplitude u(y) (zonal velocity) for four branches of equatorial Poincaré modes (with β = 1 and c = 1). The amplitude plots are organized on the right: the columns correspond to four different values of kx (increasing from left to right, with the same color as in the spectrum on the left side of the figure),and the lines to the branches of modes considered (the upper branch is the upper line, etc.). As kx goes across the value 0, the amplitude u for a given branch of positive-frequency (resp. negative-frequency) inertia-gravity modes gains (resp. loses) two zeros, which is a manifestation of the +2 (resp. -2) spectral flow.
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 35 Figure 3.5: Degeneracy points between the positive-frequency acoustic (n = +2) and internal-gravity (n = +1) wavebands, for fnt = 0 (traditional rotation). The spectrum are visualized in the (kx, ky)-space (left, with kz = 0) or in the (kx, kz)-space (right, with ky = 0), and in both cases |f | < N (top) or |f | > N (bottom). The zero-frequency band (n = 0) is represented in green.
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 36 Figure 3.6: Points, lines and surfaces (in blue) of acousto-gravity degeneracy points in different parameter subspaces, for fnt = 0 (traditional rotation). a. In the (f, Kx, Ky)-subspace the degeneracy points are on a sphere of radius N for S = Kz = 0, and if Kz or S ̸ = 0 the degeneracy points are on the semi-axes |f | > N . b. In the (S, Kx, Ky)-subspace the degeneracy points describe circles of radius N 2 -f 2 in the plane S = 0, for different values of f such that N > |f | (and with Kz = 0). If N < |f | the degeneracy points are on the line Kx = Ky = 0. c. In the (S, Kx, Kz)-subspace (with Ky = 0) the degeneracies are at the isolated points (0, ±N, 0) as long as |f | < N , otherwise they describe circles of radius f 2 -N 2 in the plane Kx = 0.

  Figure 3.8: Behavior of the acousto-gravity degeneracy points with the latitude. a. For Kz = 0 and fixed N, Ω and S (such that |S| ⩽ 2Ω), the internal-gravity (n = +1) and acoustic (n = +2) wavebands are degenerate at the equator (f = 0, top) and the degeneracies are lifted outside the equator (f ̸ = 0, bottom), just as the zerofrequency degeneracy point at (kx, ky) = (0, 0). Therefore they are actual points in the (f, Kx, Ky)-subspace.b. The number and location of degeneracy points is given by the conditions (3.14) of the nontraditional case: they are at the intersections between the ellipse of figure 3.7b and the plane S. In particular, the degeneracy points for |S| < 2Ω eventually colapse into a single one as |S| reach the value 2Ω, above which there is no acousto-gravity degeneracy point. c. For Kz ̸ = 0 there are acousto-gravity degeneracy points at mid-latitudes, and these are actual points in the (f, Kx, Ky)-subspace.
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 3 Figure 3.10: Chern numbers of the symbol (3.16). Both the points K± = (0, ±N, 0) in (S, Kx, Kz)-space are degeneracy points of all the bands, and the corresponding Chern numbers are given by the quadruplet (C-2, C-1, C+1, C+2) (in purple). The Chern numbers are also indicated on the right, with an illustration of the bulk dispersion relation fof kz = 0 and S = 0.

  Figure 3.11: Eigenvalues of the operator (3.15) for two different stratification profiles (green curves), with constant cs, obtained with Dedalus [[START_REF] Burns | Dedalus: A flexible framework for numerical simulations with spectral methods[END_REF]. If S(z) changes sign twice, the spectrum has two branches of opposite spectral flow, the Lamb-like modes (linear branch) and the buoyant-like modes. The spectrum is represented in a, where the localization of the modes in the vertical direction is emphasized (darker colors for smaller extensions δz in z, see E), and in b, where the proximity of their average position ⟨z⟩ to one of the interfaces is emphasized in red and blue (see E). The vertical bars accompanying the S profile indicates the typical extension of each topological mode. The wave number k ⋆ x = N (z ⋆ )/cs(z ⋆ ) corresponding to the symbol's degeneracy point is indicated in red (in this case cs is constant so k ⋆ x = g/c 2 s for both z ⋆ = z1 and z2). c. Plot of the velocity fields of the topological modes at kx = k0 (at an instant t), with an extension of 1.5 × 2π/k0 in the x direction. Both modes are localized around the corresponding crossing points. The Lamb-like mode is longitudinal (w = 0), whereas the buoyant-like mode is dominated by the vertical fluid motions. d. If S(z) does not change sign, there is no spectral flow. The minimal value of N (z) is indicated as a frequency scale.

Figure 3

 3 Figure3.12: Spectra and topological modes of the operator (3.15) with varying sound speed cs and a constant buoyancy frequency N . a. With the cs profile on the right (black curve), the resulting S profile (green curve) has a decreasing crossing point z ⋆ . Accordingly, a (dispersive) Lamb-like mode transits from internal-gravity to acoustic waves. In this case there is a direct frequency gap (purple band) in which the Lamb-like wave is the only one allowed to propagate. The velocity field of the topological mode for kx = k0 (red dot) is represented (at an instant t) in the plane with extension 1.5 × 2π/k0 in the x direction (the black lines are lines of constant potential density Θ, solid for positive values and dashed for the negative ones). Boundary conditions: w = 0 at both extremities. b. With another cs profile, S has an increasing crossing point and a buoyant-like mode of constant frequency ω = N transits from the acoustic waveband (i.e. its frequency has a finite limit when kx → 0, see[START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]) to the internal-gravity waveband. The velocity field and lines of constant Θ of the topological mode for kx = k0 (red dot) are represented below. Boundary conditions: p = 0 at both extremities.

•

  Reduced 4-by-4 model -Regarding the above comment, the equatorial plane is the simplest way to introduce rotation in the general model of 1.4 with varying stratification, in the sense that it allows us to treat the problem as a two-dimensional flow model, just as in the previous part 3.3.1. Indeed, the traditional Coriolis parameter f , introduced in section 1.3 and expression (1.37), vanishes at the equator. Therefore the meridional component of the Euler equation (1.70a) simply yields a null meridional velocity v = 0 (since ∂ y = 0), which is compatible with the assumed two-dimensional flow. The dynamical equations (1.71) are thus reduced to a 4-by-4 system 59 with the fields ψ(z) = u w Θ p T , as in 3.3.1, and the operator

  63 leaves the dynamical equations and the dispersion relation(3.24) unchanged. This was suggested in section 1.1 of chapter 1, as reflection symmetry reverses the Coriolis force, which can be undone by reverting time (see figure1.3). As discussed in 1.3.2, the traditional Coriolis parameter f has the same effect on the horizontal-reflection symmetries of the shallow-water system, because in both cases the model is a 2D fluid with a transverse rotation rate 64 . However, reflection symmetry in the vertical direction z is broken in the present model, because of stratification, so the composition of time-reversal symmetry and z-reflection symmetry is preserved only if S = 0) 65 . 61 Or, in terms of the fields and coordinates, (u, w, Θ, p) T -→ (-u, -w, Θ, p) and (x, z, t) T -→ (x, z,

Figure 3 .

 3 Figure 3.15: Trajectory of the symbol (3.23)'s acousto-gravity degeneracy points in the (S, Kx, Kz)-space, as fnt increases from zero. In the absence of rotation, the points K± ≡ (0, ±N, 0) are the acousto-gravity degeneracy points for both the positive and negative-frequency wavebands (left). If fnt ̸ = 0 these points move at opposite values of S ̸ = 0, thus for a fixed value of S = ±fnt has only one degeneracy point, the other being sent to -S. The topological charges of the different degeneracy points are given for each band, by extension of the non-rotating case depicted in figure 3.10. Note that the zero Chern numbers indicate that the corresponding bands are not involved in the degeneracy.

  Figure 3.16: Topological transition induced by the nontraditional Coriolis force in a compressible-stratified fluid medium. I computed the spectrum of the operator (3.22) (positive frequencies only) with a typical stratification profile S(z) varying between -0.75 and 0.42 (green).The first column of spectra corresponds to a case where cs is fixed (cs = 1 constant, therefore the Lamb-like modes are nondispersive, see appendix F) and N varies, and vice-versa for the spectra on the right (N = 1 constant, therefore the non-rotating buoyant-like mode has a fixed frequency ω = N , see appendix F). In the non-rotating case (fnt = 0, first row), the spectrum is symmetric, the Lamb-like modes (westward L1 and eastward L2, in red) are localized at the same interface and propagate in both directions, and the same goes for the buoyant-like modes (B1 and B2, in blue). If fnt is non-zero but not too strong (second row), the crossing points are slightly separated, so the topological modes L1 and L2 (resp. B1 and B2) still exist but their respective locations are shifted. A transition occurs in the strong regime (third row), when fnt becomes sufficiently high so that some interfaces disappear. In the present example, the spectral flow at negative kx is canceled, and both the Lamb-like mode L1 and the buoyant-like mode B1 mix and become delocalized at the transition.

  Figure 3.17: Numerical solutions of the eigenvalue problem with constant sound speed cs, a strictly positive S profile and periodic boundary conditions. a. Spectrum for fnt = 0.1: S does not take the value fnt, no mode transits through the gap. Nm = min{N (z)}. b. fnt = 2: S takes twice the value of fnt, a mode is localized at each interface S = fnt and transits through the gap around k ⋆ x . The pressure perturbation's amplitude p(z) of the topological modes at kx = k0 are plotted with the background stratification S in green. c. Plot of the velocity field of the topological modes of wave number k0, with pressure levels in background (positive values in solid lines and negative in dashed lines).

Figure 3

 3 Figure3.18: 2D problem at mid-latitude with varying stratification. Even with a non-zero meridional wave number ky, the problem can be seen as a 2D wave problem in the (x, z)-plane, because ky can be considered as an external, fixed parameter in the operator (3.29). However, if ky ̸ = 0, we do not actually describe zonallypropagating waves.
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 319 Figure3.19: Spectrum of the positive-frequency acoustic and internal-gravity waves at the equator (f = 0, left column) or at mid-latitude (f ̸ = 0, right column). The spectra are plotted for -4 < kx < 4, periodic boundary conditions, a constant sound speed cs = 1 and a stratification profile S(z) as in figure3.17, varying between Smin = 1 and Smax = 4 (we also took Ω, g = 1). The modes in red (resp. blue) are the most localized near the upper (resp. lower) interface, i.e. where S varies abruptly. The rows correspond to three different meridional wave numbers, ky = 0, 1 and 3 respectively. The insets show one of the symbol's degeneracy point between the bands n = +1 and n = +2. When ky is too high, the stratification parameter S(z) does not reach the crossing point, thus the spectral flow disappears (third row). Actually the critical value of |ky|, above which the spectral flow disappears, can be computed exactly in the case f = 0 (it corresponds to when the range of kx, S considered in the computation does not intersect with the ellipse of degeneracy points, see equation (3.14) and figure 3.7b in 3.2.3): with our values it is approximately 2.3. The maximal value of the buoyancy frequency, Nmax, as well as the inertial frequency f , are indicated in the spectra of the right column, showing that nontraditional effects lead to the propagation of internal-gravity waves outside of the traditional frequency range |f | < ω < Nmax[START_REF] Gerkema | Near-inertial waves in the ocean: beyond the 'traditional approximation[END_REF].
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 321 Figure 3.21: Geometry of the 2D equatorial-wave problem. a. We consider the problem described in 3.1.3 with the propagation direction x1 = x and the inhomogeneous direction x2 = y. b. With periodic boundary conditions, the medium is equivalent to a channel whose meridional extension completes a full turn around the terrestrial sphere, thus with two equators, i.e. to interfaces. c. The periodic profile of the parameters defines two equators where the traditional Coriolis parameter f vanishes and where β is positive ("EQ1") or negative ("EQ2").
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 3 Figure 3.22: Degeneracy points of the symbol (3.6) (only the ones involving positive-frequency bands) in (f, Kx, Ky)-parameter space, with Kz = 0. The three situations |S| < fnt, |S| = fnt and |S| > fnt are depicted from left to right. The wavebands n = 0, +1, +2 are shown above for fixed values of f corresponding to the presence of an acousto-gravity degeneracy point in each case. The different degeneracy points are shown below with their respective Chern numbers. As shown in 3.2.3, there are two symmetric acousto-gravity degeneracy points at f = 0 if |S| < fnt, which merge (at K ⋆ y = 0) when |S| = fnt and split again as |S| > fnt.For |S| > fnt, the acousto-gravity degeneracy points are non-equatorial (f ̸ = 0). Since the two acousto-gravity degeneracy points merging into have equal topological charges, these sum up as they merge together.
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 323 Figure 3.23: The low-frequency part of the generalized Matsuno spectrum. a. Numerical simulation of the spectrum under the buoyancy frequency N . The red modes are the ones localized at the first equator (β > 0) and the blue ones are localized at the second equator (β < 0). The modes are an extension of the ones studied in 1.3.4 to the 3D model with compressibility, stratification and nontraditional Coriolis force: there are the Rossby and gravity modes which propagate in both directions, and the Yanai and Kelvin modes which propagate eastward and transit through the low-frequency gap. b. Profile of the Coriolis parameters used for the simulation. I chose the sine/cosine functions which are the real profiles of f andfnt. c. Plot of the horizontal velocity of the Kelvin and Yanai waves at wave number k0 (indicated in a). At low frequency they resemble their respective shallow-water couterparts shown in figure 1.16.

  gravity and acoustic waves. According to equation (3.31), these topological equatorial modes should exist if |S| < 2Ω, which is coherent with the numerical simulations shown in figure 3.24. The topological properties of the case |S| > 2Ω are not yet completely understood but it seems that these topological modes disappear past the critical value |S| = 2Ω. To our knowledge, these modes are not mentioned in the literature.

  Figure 3.24: Full spectrum of equatorial waves. a. If |S| < 2Ω, two modes at each equator (which are the same, regarded on both sides of the planet) transit between the acoustic and internal-gravity wavebands, around k ⋆ x given by expression (3.31). The low-frequency Yanai and Kelvin modes are present below the internal-gravity waveband. b. I used a modified profile for the Coriolis parameter f and fnt, which still obeys the relation f 2 + f 2 nt = 2Ω. c. For |S| > 2Ω, the spectral flow seems to disappear and a gap opens between the acoustic and internal-gravity wavebands. The low-frequency spectral flow (Kelvin and Yanai waves), however, is still present.

Figure 3

 3 Figure 3.25: The shallow-water model with varying topography. a. The 2D flow dynamics involves only the traditional component of the Coriolis force, given by the normal projection of 2Ω. b. Both the traditional Coriolis parameter f and the mean depth H are assumed to be functions of the coordinate y.

  . With the field (3.34), equations (1.40)-(1.41)-(1.42) thus read as ωψ = Ĥψ, with the operator

  .38) which corresponds to the three wavebands of topographic Rossby and Poincaré modes [Cushman-Roisin

  Figure 3.26: Bulk wavebands of the symbol (3.36) (adapted from [Venaille and Delplace, 2021]). The topographic Rossby and Poincaré wavebands are degenerate when f = ±βτ .

•

  If β τ (y) increases across the interface, then the topographic Poincaré waveband i) loses one mode to the Rossby waveband around k x = +|f | if β τ = +f at the interface (figure 3.27b), or ii) gains one mode from the Rossby waveband around k x = -|f | if β τ = -f at the interface 98 . • If β τ (y) decreases across the interface, then the topographic Poincaré waveband i) gains one mode from the Rossby waveband around k x = +|f | if β τ = +f at the interface (figure 3.27a), or ii) loses one mode to the Rossby waveband around k x = -|f | if β τ = -f at the interface.

Figure 3 .

 3 Figure 3.27 shows two examples of such spectral-flow modes discussed in [Venaille and Delplace, 2021].

  band n = +1) are given by C +1 (+β τ , +|β τ |, 0) = +1 and C +1 (-β τ , -|β τ |, 0) = +1 , (3.40) in contrast with their opposite values in the (β τ , K x , K y ) (figure 3.28b). This subtlety can be understood schematically with figure 3.28a. In particular, when β τ = 0, the degeneracy points merge into a single one of topological charge C +1 = +2, which is in agreement with the shallow-water model of constant depth (see 2.3.3). The exact same phenomenon happens for the equatorial acousto-gravity degeneracy points discussed in section 3.4 (see figure 3.22).

Figure 3 .

 3 Figure 3.29: Spectral-flow modes in the case of an equatorial channel with coasts. a. As in figure 3.27a, the topographic parameter βτ diverges near the coast, thus enforcing two crossing points βτ = -f , in addition to the double crossing point βτ = ±f at the equator. b. To compute the Chern numbers for the Poincaré band n = +1 and predict the corresponding number and direction of spectral-flow modes, one can draw a trajectory (in red) of the parameters (f, βτ ) on the "phase diagram" as y increases. c. The spectrum of the problem exhibits two eastward modes (+2) transiting from the Rossby to the Poincaré waveband, namely the equatorial Kelvin andYanai modes, which correspond to the crossing point at the equator. In addition, there are two westward modes (-1 and -1) -coming from negative kx and whose respective branches overlap -localized at the coasts: they are the coastal Kelvin waves. The inset focuses on the point where the respective frequency branches of the Yanai and coastal Kelvin modes cross, revealing the actual avoided crossing of the Yanai mode with a westward Kelvin mode. This phenomenon is explained by the hybridization of the two waves, owing to the finite distance between the interfaces and the finite extension of both modes in the y direction. The conversion of a Yanai mode into a westward coastal Kelvin mode, owing to this spectral crossing point, is studied in[START_REF] Kaufman | Mode conversion in the gulf of guinea[END_REF]] (although the reference example in this paper is the Gulf of Guinea, which does not have a southern boundary, in contrast with the present simulation of an equatorial channel).
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 3 Figure 3.29a gathers the corresponding profiles of β τ and f ± β τ , and the crossing points β τ = ±f .

Figure 3 .

 3 Figure 3.30 shows the spectrum of the wave problem with constant parameters and the association of two basic boundary conditions: w = 0 (rigid lid or bottom) and p = 0 (absence of pressure variation).
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 332 Figure 3.32: Hybridization of an interface Lamb-like wave and a buoyant-like wave (top, with periodic boundary conditions) or a Brunt-Väisälä oscillation (bottom, with w = 0 at z = Z1 and p = 0 at z = Z2). I took cs constant for the simulations. a. The stratification parameter S has two interfaces z1 and z2 where S = 0, the first with S ′ (z1) > 0, thus supporting a buoyant-like mode (blue), and the second with S ′ (z2) < 0, thus supporting a Lamb-like mode. If the separation between the interfaces is such that the modes do not overlap (i.e. L ⋆ 1 + L ⋆ 2 < |z2 -z1|, the localization lengths L ⋆ being represented with the vertical colored bars), the two branches do not hybridize. b. If the topological modes overlap, they hybridize and the spectrum exhibits an avoided branch crossing. c. The parameter S has one decreasing crossing point z ⋆ , where a Lamb-like wave (red) propagates. In addition, the boundary condition p = 0 at z = Z2, where S is negative, leads to a surface Brunt-Väisälä oscillation (blue). if the topological interface is sufficiently deep from the surface compared to the localization lengths of both waves, there is no hybridization. d. If the interface is close to the surface, the two modes hybridize, and the avoided branch crossing is visible in the spectrum.

  Figure3.33: Zeros of the density perturbation of some modes in two situations. a. For a wave problem with constant cs, a decreasing interface S = 0 and boundary condition w = 0 on both sides, a unique non-dispersive Lamb-like mode transits through the gap. b. For a wave problem with constant n, an increasing interface S = 0 and boundary condition p = 0 on both sides, a unique buoyant-like mode of frequency ω = N transits through the gap. The density eigenfunctions are plotted below for some modes at low and higher wave numbers, with the zeros marked by colored circles.
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 334 Figure 3.34: Spherical stellar structure. a. In this section we use spherical coordinates (radius r, longitude φ and colatitude θ) instead of local Cartesian coordinates. b. The two main families of stellar pulsation, namely the g-modes and the p-modes, are characterized by fundamental frequencies which depend on the radius: the buoyancy frequency N (r) (blue curve) an some acoustic frequencies L ℓ (r) (red and dashed curved, for a few values of ℓ) defined in expression (3.53), respectively [Christensen-Dalsgaard, 1997]. For a given frequency ω, the g-modes are trapped in the radial zone where ω < N (r) (blue), and the p-modes are trapped in the region where ω > L ℓ (r) (red). At certain radii the two regions intersect, which may be understood as an acousto-gravity degeneracy point from the symbol point of view.

  m , (3.49) where the multi-component field ψ = u v w Θ p T is a function of the radial coordinate r oscillating with frequency ω. Definition (3.49) is a kind of adaptation of (1.66)-(1.69) to spherical geometries. Here we adopt the following definitions for the vector spherical harmonics: R ℓ,m = Y ℓ,m êr , (3.50a)S ℓ,m = r∇Y ℓ,m i ℓ(ℓ + 1) or 0 if ℓ = 0 , (3.50b) T ℓ,m = rê r × ∇Y ℓ,m i ℓ(ℓ + 1) or 0 if ℓ = 0 . (3.50c)With this decomposition, we have∇ • (uS ℓ,m + vT ℓ,m + wR ℓ,m ) = 1 r 2 ∂ r (r 2 w) + i ℓ(ℓ+1) first of linearized equations (1.65), it is clear that the velocity field has no component along T ℓ,m in the non-rotating case. Finally, the dynamics of stellar pulsations adds up to the Schrödinger-like equation (1.71) with ψ = u w Θ p T and the operator
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 3 Figure3.35 shows some profiles of S, some of them (3.35b) computed with MESA by Leclerc, including for non-polytropic celestial objects. At the end of the day, the stratification parameter bears the footprint of the spherical geometry through the red term in expression (3.54), which is an addition to expression (1.68) that can be neglected in the limit of the planar geometry. This term simply accounts for the change of the horizontal plane's curvature with the radius, and its presence in the expression of S is consistent with the fact that this change of curvature breaks reflection symmetry in the vertical or radial direction (see 1.4.2). In other words, operator (3.52) is alike (3.15), and the contribution of the curvature, which is ignored in the rest of the thesis, is only manifested as an additional term in S.

  Figure3.35: Profiles of S in some celestial objects. The solid orange lines indicate the region where the topological mode is trapped in the radial direction, the localization length is computed with the expression of L ⋆ given by (F.5) in appendix F, but adapted for spherical geometries (see the supplemental material of[START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]). a. A model for Vega with a polytropic index n = 3, computed with equation (3.57). The values of ±fnt at the equator are indicated and, by analogy with the results of 3.3.2, one can predict that the minimal effect of rotation will be to spatially separate the eastward and westward topological modes. In rapidly rotating stars such as Vega, this separation might be sufficiently large so that the unidirectional modes do not overlap. b. Profiles of S for four different typical stellar objects. The buoyancy frequency N is plotted for comparison. Stellar interiors were computed by Leclerc with MESA. The High mass star is an M = 100 M⊙ main-sequence star. The White dwarf's mass is 0.6 M⊙, during its cooling phase. The Jupiter model has a solid core of 10 Earth masses. S vanishes always at least once, whether in the radiative or convective region (light grey area).

  .55) using in particular equations (2.43d) with the Weyl correspondence ∂ r ↔ ik r . The symbol (3.55) is thus a function of the parameters (r, ℓ, k r ), strictly speaking. Its eigenvalues provide a quasi-local description of the g-modes and p-modes at the corresponding radius r in the star (see figure 3.34b), and they may be degenerate for some value of (r, ℓ, k r ). In this case we can predict the existence of topological modes manifesting in the spectrum ω(ℓ) through a spectral flow between the g-modes and p-modes 113 (figure 3.36).As for the plane-parallel case treated in 3.3.1, the eigenvalues of the symbol (3.55) are degenerate 114 when k r = 0 , S = 0 , and L ℓ (r) = N (r) , (3.56) which is in agreement with expressions (3.20) of the acousto-gravity degeneracy points in the nonrotating case. The condition L ℓ (r) = N (r) is in agreement with the basic prediction regarding the g and p-waves' spectral crossing points (see figure 3.34b), and provides the value of ℓ around which the mode transits, along with the condition S(r) = 0, i.e. the spectral-flow condition (see figure 3.36). Now,

Figure 3

 3 Figure3.36: A topological mode (bottom, in black) transits from the g-waves to the p-waves when the stratification parameter S (top) changes sign (adapted from[START_REF] Leclerc | Topological modes in stellar oscillations[END_REF]). From left to right: artificial profile that vanishes in the bulk; decaying positive S profile; polytrope of index n = 3; and a typical Solarlike profile. Physical values of the orbital momentum ℓ are integer, and plotted with large points, from 0 to 20. Non-integer values are plotted with small points for readability. Surface gravity waves are filtered out by appropriate boundary conditions. These values are computed by solving the wave equation numerically using Dedalus[START_REF] Burns | Dedalus: A flexible framework for numerical simulations with spectral methods[END_REF].

  Figure 3.37b shows this mode with the boundary condition w = 0 at the center and at the surface r = R ⊙ . The evolution of the number of nodes of the density perturbation is in agreement with the result of 3.5.2 (see figure 3.33): the g-modes lose one zero as ℓ is swept.

Figure G. 2

 2 Figure G.2 in appendix G shows the spectrum of the stellar modes with the same polytropic stratification profile, only this time with a boundary condition w = 0 at the center and a free-surface condition at r = R ⊙ . In this case, the transiting mode is a Lamb-like wave which changes localization (it is local-

  Figure 3.37: Spectrum of stellar pulsations for a standard Solar-like polytropic star (with boundary conditions w = 0 at r = 0 and r = R⊙). a. The stratification parameter S has a crossing point inside the star. b. A kind of Lamb-like mode transits from the g-modes (low frequency) to the p-modes (high frequency) as the orbital momentum ℓ increases. the modes in deep blue are more localized at the center of the star, whereas the green ones are localized near the surface. The transiting mode's location changes as ℓ increases (cf. the green curves in c). c. Density perturbation (rescaled) of the stellar pulsations, for three different values of ℓ and following five branches. The mode with zero nodes (green) is the stellar version of the topological Lamb-like mode. Note that the evolution of the zeros of the density perturbation for the g-modes is compatible with that of internal-gravity waves of the plan-parallel case (cf. figure 3.33a).

  Figure 4.1: Geometrical phases in different systems. a. After a day, the plane of oscillations (projected on the horizontal plane, red arrows) of the Foucault pendulum -which can be assimilated to its polarization -has turned by an angle ϕ2 -ϕ1 = -2π sin ϑ (clockwise), which only depends on the latitude ϑ. This precession angle can be seen as the manifestation of the sphere's curvature when the polarization vector is parallelly transported on a line that is not a geodesic of it (i.e. at non-zero latitude). The cone described by the displacement of the pendulum' frame (left, in green), is flattened on the right so as to show more clearly the parallel transport of the polarization vector and the angle it takes after a full day. b. Similarly, if the quantum dipole initially in the eigenstate Ψ± is adiabatically transported (which should not be confused with the parallel transport[Berry et al., 1990;[START_REF] Anandan | The geometric phase[END_REF]) along a closed curve in the B-space, it returns to the original eigenstate up to a phase γ± that depends on the geometry of the bundle it has traveled across.

  .16) where the λ µ are the coordinates of the base space, say λ ≡ (f, k x , k y ). Importantly, this quantity is real-valued and gauge-invariant, i.e. it does not depend on the phase choice for the eigenvectors Ψ n . Qualitatively, it describes the local twisting of these vectors. It was computed for shallow water waves in [Delplace et al., 2017] (see appendix I). The value of F kxky for the f -plane wavebands is reproduced on the dispersion relation in figure 4.2. An important relation is n F (n) λµλν = 0 [Xiao et al., 2010], which appears clearly in figure 4.2.
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  Figure 4.2: Plot of the dispersion relation of the f -plane shallow-water model for the three bands n = -1, 0, +1. The gap between them equals |f |. In color is the value of the component F kxky of the Berry curvature, defined in equation (4.16), as a function of k and for a fixed positive value of f , for each band.

  .22) The solution of the variational problem (4.22) directly gives a solution of equation (4.4), differing by a time-dependent phase that does not change any of the observables defined by relations (4.19) and

  .26) We explain in part 4.3.2 of this section the relation between this function and the Berry curvature. This quantity connects Ψ n (x c + dx c , k c + dk c ) to Ψ n (x c , k c ), thus providing a footprint of the vectorial polarization relations in the ray trajectory in phase space. If the connection were null one would recover the simple form L= ẋc • k c -Ω (n) (x c , k c) and simply identify observables x c , k c and Ω (n) -defined respectively in equations (4.20) and (4.24) -to the generalized position, momentum 13 and Hamiltonian 14 of classical analytical mechanics, respectively. Such a trivial case would occur for instance in a one-band system or, more generally, in the case of a band with topologically flat eigenbundles (like the geostrophic band n = 0): all Berry connections, of the form iΨ † n ∂Ψ n /∂q as appearing in expression (4.26), are null in this situation.

( 4 .

 4 29) to infer the trajectory of the corresponding wave packets (figure4.3). We consider the shallowwater model's different bands n: the geostrophic (n = 0) and Poincaré wavebands (n = ±1). Since the shallow-water equations are time-independent, the ray Hamiltonian Ω (n) (x c (t), k c (t)) is a ray-tracing constant of motion, which can be shown directly from the antisymmetry of equations (4.29) 17 .

  Figure 4.3: Simulation of an inertia-gravity wave packet in the northern hemisphere, computed with Dedalus [Burns et al., 2020] (the real part of the fiel u is represented at initial and final times). The initial wavelength is 1, f0 = 3 the Coriolis parameter at middle ordinate of the frame, β = 0.6 and the simulation runs until t = 32. a. The red dots are the position of center of mass xc(t) computed with the fields -from definition (4.20)at regular steps of the simulation. b. We zoom around the last position of the packet and compare the real trajectory (red dots) with the ones predicted respectively by the geometric ray-tracing equations (4.34) (red curve), scalar equations (4.40) (blue curve) and elementary ray-tracing equations (4.35) (green curve). Although the difference still appears small after t = 32, the geometric theory fits best the actual trajectory.

  presence of a varying Coriolis parameter are derived from the f -plane dispersion relation ω n (x, noted from now on x = (x, y) and k = (k x , k y ) as well, without the index c, for simplification. Equations (4.35) yield a term of order β for k but no such correction in the expression of the group velocity ẋ.

Figure 4 . 4 :

 44 Figure 4.4: Ray trajectory of an inertia-gravity wave packet oscillating eastward around the equator, predicted by the different theories (same color code as in figure4.3). The initial wavelength is 2.8, β = 0.25 and the ray trajectories are plotted to t = 240. The vectorial theory anticipates a packet heading east to be faster than within the scalar framework. Conversely, a packet heading west would be slower.

  Figure A.1: Spectrum of the adiabatic oscillations in a non-rotating, stratified and compressible perfect gas, bounded by rigid lids (i.e. the boundary conditions at both of the extremities is w = 0). In the perfect gas, the parameters S (green curve on the right), N (blue curve, with the extrema indicated, as well as on the spectrum) and cs depend on the temperature profile T0 at equilibrium (black curve). Here S has a decreasing crossing point, around which a Lamb-like wave transiting between the wavebands is localized (blue dots in the spectrum). The value of k ⋆ x = N (z ⋆ )/cs(z ⋆ ) at the crossing point is indicated in red.

.

  Let us check that. By definition of the eigenvalue and the scalar product, we have:⟨p n |Lp n ⟩ = λ n ||p n || 2 = -ocean with a flat bottom, the impenetrability condition is w(z = 0) = 0 gives dp n /dz = 0 at z = 0, from the buoyancy equation (B.1e) and the hydrostatic relation b ′ = ∂ z p ′ . This cancels the first term of expression (B.3). At the top, the free-surface 3 condition (1.32)z = H. Injecting this boundary condition into expression (B.3) finally gives λ n ||p n || 2 = p n (H)

P

  that encircles the vortex counterclockwise and remains sufficiently far from it. With the notation (

(

  ω = cK = c||K + p|| + U • (K + p) .(C.8)Therefore we obtain, at first order,k(r, θ) = -Kê x -U (r)K sin θ U (r) + c sin θ êθ ≈ -Kê x -for U , we finally get the following expression for γ(P):γ(P) = 1 2π P p • dx = -KΓ 2πc = α , (C.10) which corresponds exactly to the prediction (2.18) made by analogy with the Aharonov-Bohm effect in the previous paragraph. If expression (C.10) is not an integer, the leading-order term of the WKB ansatz (C.4), i.e. exp(iξ 0 /ε), is not single-valued, which means that the WKB expansion fails and a correction must be added, coming from the next-order phase terms. Actually, the approximation made in equation (C.9) to get (C.10) is only valid if |U | ≪ c| sin θ|, i.e. for |y| ≫ |Γ|/2πc

  is the mirror image of P in the K x direction (P ′ is therefore in the vicinity of K + ). With the Stokes theorem, the Chern number of the waveband n = +2 associated with a given degeneracy point can be computed as a sum of integrals like (D.7) for a collection of oriented paths covering a closed surface around the degenercay point 2 . Expression (D.7) thus expresses an elementary flux, yet because of reflection symmetry the path P ′ has the wrong orientation for the flux of the topological charge at K + (figure D.1). In consequence, the elementary fluxes at K + and K -have opposite sign, and thus we haveC +2 (K -) = -C +2 (K + ) .(D.8)

  Figure D.1: P corresponds to a reflection symmetry in the (S, Kx, Kz)-space, therefore it maps Ψ - 2 (S, Kx, Kz) onto P Ψ + 2 (S, -Kx, Kz), but it reverses the direction of the paths of integration to compute the degeneracy points' Chern numbers.

  course a real quantity 3 , so the complex conjugation * in expression (D.10) drops. This time, the path P ′ in expression the (D.10) is the image of P by rotation around the axis S, 4 so the orientation of both paths is correct for the computation of the elementary fluxes of the topological charges. Therefore we haveC -2 (K -) = -C +2 (K + ) .(D.11) Remark: The reflection operation used to obtained relation (D.8) changes the orientation in the path P in parameter space, whereas the transformation used to obtain relation (D.11) is a rotation, which does not change the orientation. Yet both transformations send K + to K -, which can be confusing! The Chern numbers of the symbol (3.16) are gathered in 3.10, in agreement with the properties demonstrated in this appendix. Note that the exact same reasoning can be applied to connect the Chern numbers of the different degeneracy points of each model discussed in sections 3.4 and 3.3. Finally, most of the spectra shown in this thesis represent the modes obtained by Dedalus as dots whose color depends on the values of (E.3) and (E.4) for the corresponding modes, thus providing information on the location and extension of the modes in the varying direction Y . Throughout this manuscript I use the cmap='Oranges' color map 3 to emphasize the most localized modes with the darkest shades, using a color function c=exp (-α(δY /L Y ) 2 ) (vmin=0,vmax=1), with α a positive factor and L Y the size of the domain (Y ∈ [0, L Y ]). I also use the cmap='brg' color map 4 with the color function c=⟨Y ⟩/L Y (vmin=0,vmax=1), to emphasize the average location of the modes. Finally, the most often employed color map is the cmap='RdBu' one 5 . I use it to emphasize in red and blue the modes which are simultaneously localized (i.e. have small δY ) and located near topological interfaces 6 (i.e. have small |⟨Y ⟩ -Y ⋆ |, where Y ⋆ defines a topological interface: ∆(Y ⋆ ) with the notation of section 3.1). To do that with two interfaces (denoted Y ⋆ 1 and Y ⋆ 2 ), I define a color function c= exp vmax=1) . (E.5) With the color function (E.5), the modes which are most localized AND whose average position is closest to the interface Y ⋆ 1 (resp. Y ⋆ 2 ) appear in the spectrum in the darkest blue (resp. darkest red) colors.

  ) 2 . Let us verify this with nontraditional rotation only. The wave equations areωu = -if nt w + c s k x p , (F.6a) ωw = if nt u -iN (z)Θ + iS(z)p -ic s dp dz , (F.6b) ωΘ = iN (z)w , (F.6c) ωp = c s k x u -iS(z)w -ic s dw dz , (F.6d)which, for w = 0, yield Θ = 0, ω = ±c s k x (nondispersive indeed), u = ±p (longitudinal wave similar to an acoustic mode in the absence of gravity, see 1.2.1) 3 , and the amplitude u(z) = ±p(z) ∝ exp z S(z ′ ) ± f nt c s dz ′ . (F.7)

(

  range of S(z) in the simulation). Using expressions (1.68) (with constant c s ) and (3.21), we find max ω +1 = max N =

Figures

  Figures G.1c and d shows the wave spectra in a bounded medium with a decreasing interface (S(z ⋆ ) = 0 and S ′ (z ⋆ ) < 0), depending on the distance of the interface to the surface. The boundary conditions, w(Z 1 ) = 0 (solid bottom) and free-surface (G.2) at z = Z 2 , only allow the existence of a Lamb-like wave at the interface and a surface-mode branch in the gap between the acoustic and internal-gravity wavebands. At short wavelengths, the surface waves' dispersion relation is ω 2 = g|k x |.

Figure G. 2 :

 2 Figure G.1: Behavior of the surface wave at large wavelengths and hybridization with a Lamb-like mode.a. In a semi-infinite, non-rotating, compressible-stratified medium with constant parameters and a free-surface boundary condition, the spectrum exhibits a surface wave (in deep blue) of dispersion relation ω 2 = g|kx| at short wavelengths. At large wavelengths, it reconnects with the acoustic waveband if S < 0. b. Conversely, if S > 0, it reconnects with the internal-gravity waveband. The singular transition thus occurs when S = 0. c. Spectrum (in log-log scale) of the wave problem with constant cs, varying S with a single decreasing interface, and boundary conditions w(Z1) = 0 and (1.32) at z = Z2. These conditions do not allow a boundary wave to propagate at the bottom, however there is a Lamb-like mode at the interface and a free-surface mode (in green). The color indicates the mean location of the modes. d. If the distance between the two is not large compared to their respective localization lengths, their crossing point is avoided, which yields two branches that exchange localization as kx increases (see the green and red curves on the insets). The insets show the evolution of the density eigenfunctions for some mode branches, as kx increases, with the nodes marked with colored circles.
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  Cartesian basis of (k x , k y , f ). 2 Finally, by formally replacing the variable f in the previous with df = β dy, we obtain the expressions of the non-zero coefficients 3 of the Berry curvature F (±1) , used to derive the ray-tracing equations (4.34):

  ⟨ψ ′ |i∂ t |ψ ′ ⟩ ⟨ψ ′ |ψ ′ ⟩ = -∂ t Φ(x c , t) + iΨ n [f (y c ), k c (t)] † ∂ t Ψ n [f (y c ), k c (t)∇Φ(x c , t) -iΨ n [f (y c ), k c (t)] † ∇Ψ n [f (y c ), k c (t)

  

  solutions because of the dependence of the Coriolis parameter f with latitude 51 . However, for a wave-packet solution whose wavelength is much smaller than the typical length over which f varies in the meridional direction, the local structure of the wave packet, i.e. the dominant part of equation (2.40), is described by the eigenvalues and eigenvectors of the matrix (2.41) with the local value of f ,

		.40)
	T	
	and ψ(x, y, t) = u v η	the vector of dimensionless velocity and elevation fields. As explained
	in 1.3.4, strictly speaking, the linearized shallow-water equation (2.40) do not admit two-dimensional
	plane-wave	

i.e. the matrix

In the rest of the thesis, we will always be concerned with the first Chern number, so it will often be referred to as the Chern number, without the "first" for simplicity. There are other topological invariants that characterize other topological phases, for instance, the Z

invariant[START_REF] Kane | Topological band theory and the Z 2 invariant[END_REF]. However we will not discuss these in this thesis.

It is a domain bounded by a surface at each point of which the vorticity, i.e. the rotational of the fluid's velocity, is tangent.

A fluid is said to be barotropic when the pressure field can be expressed as function of the density field. To put it differently, the gradients of pressure and density are aligned everywhere in a barotropic fluid.

The name "Kelvin wave" is sometimes used in fluid dynamics to refer to the wake left behind an object moving in a steady fluid[START_REF] Thomson | On ship waves[END_REF] or the vibrations of a vortex[START_REF] Burbea | The kelvin waves in vortex dynamics and their stability[END_REF]. In this thesis we will exclusively use this term to refer to the coastal and equatorial waves.

This is not the same as the Kelvin wave mentioned earlier, since this one propagates along the equator in the open ocean, whereas the other propagates along the coasts.

We will return to these notions in detail in the first chapter.

However, the parameter g does not break the horizontal-reflection symmetries, i.e. x → -x and u → -u, with x a horizontal direction and u the component of the velocity field in this direction.

Note that the vertical-reflection symmetry is also broken by the Coriolis force, unless Ω is along the vertical axis.

The Chern number characterizes a waveband of the bulk material, i.e. hypothetically unbounded, even if the actual material has boundaries.

Called the first Brillouin zone.

In the geophysical context, the ocean and atmosphere are thin layers compared to the Earth's radius, therefore it will be appropriate to write g = -gêz with a constant g > 0 and êz the unit vector normal to the Earth's local tangent plane, pointing upward.

Whichever, the heat diffusion coefficient, the kinetic viscosity ν, etc.

To be clear, I do not consider confined geometries, in which the medium is bounded in all directions. I will call a medium "unbounded" if it has no boundaries at all, and "bounded" if it has at least one bounded direction, even if it is infinite in another direction. I will most often consider unbounded media for the theory, but have to take boundaries into account for the numerical simulations.

Everywhere on the planet or star the coordinate x will be in the zonal direction, pointing eastward, y in the meridional direction, pointing northward, and z the local vertical coordinate aligned with gravity and pointing toward outer space.

The Coriolis force is manifested for fluid particles just as the magnetic Lorentz force for charged particles. In the same way, for a fixed magnetic field, the cyclotron trajectories of the charged particles are fixed: either they move clockwise around the field, or counterclockwise, but not both.

This is an example of the important PT-symmetries, which has important consequences in quantum mechanics[START_REF] Bender | PT symmetry: In quantum and classical physics[END_REF]. Consequences of this type of discrete symmetries on the stability of geophysical flows are studied in[START_REF] David | How do discrete symmetries shape the stability of geophysical flows?[END_REF].

Indeed, the isobar and isopycnal (i.e. of constant mass density) surfaces are thus the horizontal planes in the static case.

Although the term "stratification" may be reminiscent of a medium separated in discrete layers of constant density, which is a common model in geophysics[Vallis, 

2017], the real stratification profiles are in general continuous with the altitude, so we will consider smooth density profiles ρ 0 (z). There are, however, exceptions when one regards a fluid medium's vertical structure at smaller scales, where diffusive effects intervene in the stratification setting. A notable example is that of stratification staircases in the ocean owing to the double-diffusivity of heat and salt, which has been measured in the Atlantic ocean[START_REF] Tait | Some observations of thermo-haline stratification in the deep ocean[END_REF] or the Caribbean sea[START_REF] Gregg | Mixing in the thermohaline staircase east of barbados[END_REF], for instance.20 The size of the particle is assumed to be small compared to the displacement, which is itself assumed to be small compared to the typical vertical variation scale of ρ 0 21 The isentropic variations of fluid density may also depend on local variations of salinity in the ocean, for instance. Here we just consider mechanical compressibility for simplification, but a more generalized expression of the buoyancy frequency can be found in[START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF].22 This is what happens for instance when boiling water in a pan: as the fluid is heated from the bottom, its density is higher at the top, thus generating a downward buoyancy.23 Including density ρ 0 (z) and also the temperature profile at equilibrium, because the compressibility factor χs depends on temperature.

Although a vertical column of fluid is stable regarding the vertical perturbations of a static equilibrium profile, instability can still be generated through other processes (heating, viscosity, eddy mixing, dissipation and wave-mean-flow interaction, diffusion owing to salinity, etc.)[START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF].

The troposphere actually has a stable potential density profile, which includes the effect of compressibility in the adiabatic displacement of fluid particles, however it is marginally close to instability.

Compressibility is still important in the atmospheric and astrophysical media, and will be considered again at a later

In order to do this we can assume that time scales advectively, i.e. Dt scales as v • ∇[START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. The term δρDtv is neglected but we keep the term ρ 0 Dtv in Euler's equation, of course.

The group velocity is the velocity of a wave packet, or, more generally, a ray, in the real space (see for instance the references[START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF]). This will be an important notion in chapter 4

We will briefly return to that application in 2.2.2 to address a topological feature arising in these tidal waves owing to the Coriolis effect.

Everywhere the coordinate x will be in the zonal direction, pointing eastward, y in the meridional direction, pointing northward, and z the local vertical coordinate aligned with gravity and pointing toward outer space.

For waves at the geophysical scale we will always ignore small-scale effects such as surface tension or microscopic fluctuations owing to thermodynamics or quantum mechanics.

At rest, u, v = 0 and η = 0. For the linearization to hold, the perturbation of the surface must satisfy|η ′ | ≪ H, |u ′ |, |v ′ | ≪ √ gH.The quantity √ gH will appear to be the celerity of gravity waves[START_REF] Thomson | 1. on gravitational oscillations of rotating water[END_REF].

Also called "point-reflection" or "centro-symmetry", this symmetry transforms each spatial coordinate into its opposite. It is therefore the composition of all reflection symmetries, which is simply equivalent to a space rotation of π in 2D.

Indeed they are steady solutions of the shallow-water equations (1.40)-(1.41)-(1.42), i.e. with ∂t = 0, therefore the pressure gradient must exactly compensate the Coriolis force in Euler's equations (1.40) and (1.41).

As briefly explained in the introduction of 1.3.1, an object is said to be differentially rotating when the rotation rate actually depends on the position within the object. This is often the case for large fluid objects like stars or gaseous giants, where the rotation rate depends on the latitude and radius at which the fluid medium is considered. Conversely, rocky planets such as the Earth are mostly solid, therefore one can consider them as uniformly rotating. However, because of the traditional approximation, everything happens as if the planetary rotation rate, felt by the fluid through the horizontal Coriolis force, is maximal at the poles and null at the equator, as if the planet were differentially rotating.

Again we denote by (u, v) the components of the velocity perturbation multiplied by √ H, and η the elevation multiplied by √ g. We will always use these fields to deal with the shallow-water model.

With ℏ = 1 and the oscillator's mass m = 1.

The negative one being its exact image under kx → -kx, ω → -ω.

It is as if rotation deforms the gravity waveband, with the exception of the equatorial Kelvin mode which is confined where f = 0.

In other words, time-reversal symmetry is broken on both sides of the interface but by parameters of opposite signs.

A term introduced by Atiyah, Patodi and Singer[START_REF] Atiyah | Spectral asymmetry and riemannian geometry[END_REF]. Outside the area of classical fluid dynamics, the term was also used by Volovik to refer to the states crossing the Fermi level in the quasi-particle spectrum of a film of Helium 3[START_REF] Volovik | The universe in a helium droplet[END_REF].

This is symptomatic of the traditional approximation.

The geodesics of a curved surface are the trajectories of minimum distance connecting two points. In the case of a sphere, the geodesic between two points if the circular arc formed by the intersection of the sphere and the plane containing the two points and the sphere's center.

Inertia-gravity waves (see 1.3.3) and Kelvin waves, equatorial (see 1.3.4) or coastal (see 3.5.1).

This pattern depends on the variation of the medium's parameters, especially the Coriolis parameter f and the oceanic topography or bathymetry H, and the reflection of waves on the coasts.

Instead of the tides at the oceanic scales, one can think of a vibrating, non-rotating tank of water. As explained in section 1.3, planetary rotation is negligible in the dynamics of surface waves in such a system, which is thus time-reversal invariant. In other words, the length scales of the excited waves in such a system are much smaller than the Rossby radius of deformation.

For a given tidal mode. Since the location of the the amphidromic points are different for each mode, the principal ones are those of the M 2 mode, but there still are a weak tides at these points owing to the other constituents.

This is compatible with the fact that, in classical physics, the potentials have no effect on the dynamics. Indeed the potentials can be mathematically defined up to a gauge choice that does not change the electric field E or magnetic field B, and thus are not expected to be observable in a direct measurement of the particle's trajectory.

I only consider orientable surfaces here, unlike the Klein bottle, for instance, which is a non-orientable surface.

To be precise, the theorem states that the sum of the "number of rotations" (i.e. the γ(P)'s introduced in section 2.2) of the field of tangent vectors around all the singularities on the surface, is equal to χ. Therefore one has to take into account the winding number of the vectors for each singularity, which can also be negative or higher than 1 (see figure 2.9b). For instance, a vector field on the sphere can have two singularities of degree γ = +1 (example on the left) or one of degree γ = +2, etc.

This is justified here because we consider the shallow-water model with constant depth, therefore c is a constant that can be absorbed by a change of variable, for instance t ′ = ct and f ′ = f /c. In chapter 3 we will consider the more general case where the celerity c or the speed of sound cs can vary in space.

The matrix (2.28) satisfies H(f, kx, ky) = -H(f, -kx, -ky) * , where * is the complex conjugation. This relation translates the usual symmetry of real-valued fields problems, which we will always have in the context of classical fluid waves. It states that an elementary wave of frequency ω and wave vector k is equivalent to one of frequency -ω and wave vector -k. Therefore the observables of the negative-frequency wavebands can be deduced from those of the positive ones. Using this property and expression (2.29) for the eigenfrequencies ω ±1 of inertia-gravity waves, we find that the corresponding normalized eigenvectors are related through Ψ -1 (f, kx, ky) = -Ψ +1 (-f, -kx, -ky) = -Ψ +1 (f, -kx, -ky) * , up to a phase factor.

In[START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF], Iga uses ϕ (i) = √ Hv in the limits (i) = (a) and (d), and ϕ (i) = η in the limits (i) = (b) and (c).

Say f, N, cs, etc., introduced in the first chapter. In this thesis, in order to apply the methodology described in the last sections, we will always consider three-dimensional sub-spaces of the space of k and the parameters. This will be

The linear β-plane approximation, f = βy

For instance if we had considered the next-order term proportional to y

in the expansion of f around the equator.

In the language of condensed matter, ∆ is a mass term, in reference to the Dirac fermions whose dispersion relation is gapped when they have a mass.

This is a tricky point. In the inhomogeneous fluid-wave problem, the wave operator Ĥ depends on the parameter ∆, which is a function of the coordinate x 2 . As for the symbol H S of the wave operator, it is a matrix function of ∆, so it can be formally seen as a function of x 2 as well, although ∆ is not a varying parameter of the medium in the symbol picture and is rather just a coordinate of the symbolic space.

For the shallow-water model, for instance, the inertia-gravity and Rossby modes of the inhomogeneous equatorial β-plane problem correspond respectively to the Poincaré and geostrophic wavebands of the bulk f -plane problem.

However, this is not a Weyl point in the strict sense, because this is a point in the (∆, k 1 , k 2 )-parameter space instead of the 3D (k 1 , k 2 , k 3 )-momentum space. This is a particular situation because, instead of a Weyl point in a 3D momentum space, we have a point in the 3D space which is that of a 2D wave vector (k 1 , k 2 ) and a parameter ∆ that depends on x 2 , i.e. the conjugated variable of k 2 . The topological property of the two is formally the same.

Which, at this point of the thesis, is more of a prediction, extrapolated from the equatorial shallow-water waves, which is yet to be verified in other 2D waves.

This is not the only choice, see for instance[START_REF] Faure | Topological chern indices in molecular spectra[END_REF], in the context of the vibrational and rotational energy levels of a molecule. In this reference, the spectral-flow parameter is a continuous spin-orbit coupling term τ between the molecule's angular momenta, and the energy spectrum is visualized as a family of branches E(τ ) which are the different vibrational bands split into rotational branches (much like in the shallow-water model, the Poincaré and geostrophic bands of the f -plane are split into inertia-gravity and Rossby branches respectively, owing to the β-effect).The energy spectrum exhibits a spectral flow of rotational states between the different vibrational bands of the molecule, as τ is swept.

 cf. 3.1.2. 

We can do the same calculation as well for the bands that are not degenerate at this point, but it will obviously yield zero.

Reference[START_REF] Fukui | Chern numbers in discretized brillouin zone: efficient method of computing (spin) hall conductances[END_REF] provides a numerical method to compute the Chern numbers of a 2D Chern insulator by integration over the discretized first Brillouin zone. In spite of the fact that we use here the Weyl points' topology, the method can be adapted in three dimensions to compute the Chern numbers in this case as well.

A degeneracy point is said to be p-fold when it involves p wavebands.

Even if the degeneracy points of the symbol have non-zero topological charges.

And located around the same wave numbers in the spectrum, see the following comment.

For instance, in the case of the shallow-water model with a double equator[START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF], the condition for having two well-separated equators is Leq ≪ d, where Leq = c/|β| is the equatorial radius of deformation (see 1.3.4) and d is the distance separating the equators.

This is like the situation depicted at the top-right corner of figure3.1, and also in 3.3.1.

Let us recall that x points eastward in the longitudinal direction, y points northward in the meridional direction, and z point upward in the vertical direction.

For the unbounded problem, strictly speaking[START_REF] Hall | Quantum theory for mathematicians[END_REF], or the problem with periodic boundary conditions.

Provided the wave vector's components are real, of course. However, the unbounded problem may not be Hermitian but still have real wavebands, in addition to boundary modes in the gap that have a real frequency with an imaginary wave number (evanescent waves)[START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF][START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF].

The degeneracy point at zero frequency is an actual point only in the three-dimensional (f, kx, ky)-space.

Following the discussion of 1.2.1 on the estimate of the wavelength regime in which the effect of gravity (and stratification) can be neglected in the properties of acoustic waves, the asymptotic limit (3.18) is the correct expression of this regime.

The derivative of S with the latitude is noted dS/dz = S ′ and is assumed to be non-zero at the points where S changes sign, in order to have linear crossing points.

This inverse conclusion comes from the fact that the correct phase space for the symbol is actually (z, kz), with kx as a parameter that can vary, so having S ′ < 0 instead of S ′ > 0 simply amounts to inverting the Chern numbers, and thus the spectral flow.

Having only one interface where S changes sign between the extremities Z 1 and Z 2 naturally imposes S(Z 1 ) ̸ = S(Z 2 ), which is a discontinuity of the parameters for solutions with periodic boundary conditions, i.e. a boundary[START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF].

See for instance the classification of the transition modes by[START_REF] Iga | Transition modes of rotating shallow water waves in a channel[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF],[START_REF] Tolstoy | The theory of waves in stratified fluids including the effects of gravity and rotation[END_REF] or, more recently, by[START_REF] Auclair | Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean[END_REF].

If cs is taken constant (e.g. in an isothermal atmosphere), this mode is an analytical solution of the dynamical equations (1.71) of the compressible stratified fluid (see 3.5.2 and appendix F), with zero vertical velocity (w = 0), so it is a kind of longitudinal acoustic wave which is "compressed" in the vertical direction owing to the interplay between buoyancy and compressibility.

Indeed, if N is constant (in which case the variations of S depend on that of cs, which is valid in theory but mostly artificial), this wave oscillates vertically (u = 0) at the buoyancy frequency ω = ±N (see appendix F).

Understand that the fluid's velocity is contained in this plane, and the fields are invariant in the direction perpendicular to it.

For instance, if cs is taken constant (see figure3.17), the Lamb-like wave is nondispersive and vertically at hydrostatic equilibrium (w = 0), owing to the balance between buoyancy, compression and the vertical Coriolis force (which is allowed only with the nontraditional term).

Similarly, the frequencies of the shallow-water model's inertia-gravity waves are higher than the inertial frequency |f | (see 1.3.3).

They can thus be regarded as 3D waves which propagate along horizontal interfaces (z = z ⋆ ) and are evanescent in the vertical direction, on both sides of the interface.

Which is modeled by the Boussinesq equations, see for instance 1.2.2: instead of choosing kz = 0 we can pick a vertical mode (see appendix B).

Note that, if the medium is bounded in the direction x 2 , evanescent solutions are allowed, i.e. solutions with k 2 ∈ iR.

In that sense, the problem is inhomogeneous in the direction x 2 because it has boundaries, even if its parameters are constant.

In condensed matter systems, the only natural boundary condition to be applied to the solutions of the Schrödinger equation is |ψ| = 0, whereas in fluid media there are various possibilities boundary conditions: free surface, rigid lid, impenetrable wall, etc.

Which can be generalized with the Boussinesq model for stratified incompressible fluids, see appendix B.

Indeed the Chern numbers of a given 2-fold degeneracy point between the bands n = 0 and n = +1 are opposite, i.e. C 0 = -C +1 for this degeneracy point (see appendix D.1).

Note that the cases βτ = -f can be deduced from βτ = +f by spectral symmetry kx → -kx, owing to the invariance of the shallow-water model under the symmetry T • Mx (see figure1.11 in 1.3.2).

These four principal limits are (a) ω finite when kx → 0, (b) ω = O(kx) when kx → +∞, (c) ω = O(kx) when kx → 0, and (d) ω finite when kx → +∞. the branches that connect the limits (a) and (b) are acoustic modes, and the ones that connect (c) and (d) are internal-gravity modes.

Understand the mode "p = 0" of the corresponding generalized Sturm-Liouville problem (see 2.4.2, which is the closest one to the gap.

Following the previous discussion, the topological modes can be interpreted as the association of the boundary waves of two hypothetical semi-infinite media, with different values of S, artificially connected at the interface. In this case there is a real discontinuity of S across the interface, which is physically unacceptable in general. However, conversely, the presence of a boundary can be an actual discontinuity for S, for instance the surface of the water in contact with the air.

For instance we have always implicitly assumed the acceleration of gravity, g, to be constant, whereas, strictly speaking, it depends on the radial distance to the center.

And, to a certain extent, for the wave dynamics in gaseous planets[START_REF] Horedt | Polytropes: applications in astrophysics and related fields[END_REF].

This defines ρc as the density at the center of the star.

This condition is a natural constraint owing to spherical geometries, which is necessary so as to avoid pressure singularities across the star's center.

For instance, γ 1 = 7/5 ± 4% for the hydrogen H 2 between -80 • C and 1000 • C[START_REF] White | Fluid mechanics[END_REF].

Note that expression (3.48) diverges at the surface of the star, where by definition ϱ → 0. Actually the expression is wrong near the surface, where ionization processes occur and thus γ 1 changes. In a real star, therefore, expression (3.48) is only valid in an inner radiative zone, whereas N vanishes in the convective zone and remains finite globally in the whole star.

In other words, since the parameters vary only in the radial direction, we look for wave fields in the form ψ(r)Y ℓ,m e -iωt , where the angular wave numbers of the spherical harmonic Y ℓ,m (θ, φ) are integers which satisfy ℓ ⩾ 0 and -ℓ ⩽ m ⩽ ℓ.

Here we choose the polytropic model because the stratification profile of a star is easy to infer from this model. However the analysis can be extended to any kind of star (see figure3.35).

Actually the whole spectrum depends on all of these parameters, just as in a compressible-stratified fluid both internal-gravity and acoustic waves depend on the buoyancy frequency and the fluid's compressibility.

In realistic planetary fluids, fnt is much smaller than S in general. On Earth, fnt ≈ 10 -4 s -1 remains negligible compared to the typical values of S in the atmosphere and ocean (≈ -10 -2 s -1 ). Therefore the Earth's atmosphere and ocean are a priori not fitted for observing the strong rotational regime discussed in 3.3.2, i.e. where rotation is sufficiently strong so that Lamb-like waves can only propagate in one direction.

Therefore, in rotating stellar interiors, one can expect a westward Lamb-like mode closer to the core (r < r 0 ) and an eastward one closer to the surface (r > r 0 ), thus improving the chance of a possible direct observation of the latter

This diagram classifies the stars according to their luminosity and effective temperature.

This refers to the additional transverse electronic conductivity appearing in a material with a band structure. If the electronic states occupy a band with non-trivial topology (i.e. with a non-zero Berry curvature), the Berry curvature generates a deviation of the current perpendicular to the applied electric field, which is therefore a geometrical contribution to the anomalous Hall effect.

The real part of Φ is the phase, and the imaginary part gives the amplitude.

Understand that, for an ordinary differential equation like (4.7b), one can directly inject the ansatz (4.6) and the equation can be divided by the exponential, leaving us with a nonlinear partial differential equation on Φ. This equation can then be decomposed in terms of different orders in ε. The leading-order equation, for instance, is called the eikonal equation, and can be solved by the method of characteristics[START_REF] Maslov | The Complex WKB Method for Nonlinear Equations I: Linear Theory[END_REF]. This can simply not be done with u and η because these fields are coupled with v, as can be seen in equations (4.7a) and (4.7c).

Again with the notation k ≡ k 2 x + k 2 y .

This is the general definition of the Berry curvature, which is a second-order tensor since it is the exterior derivative of a 1-form, namely the Berry connection. In chapter 3 we considered three-dimensional parameter spaces, in which case the exterior derivative reduces to the usual cross product and the Berry curvature is a three-component vector.

The object |ψ⟩ is used to represent the multi-component field ψ in the integrals over space such as (4.18), (4.19) and (4.20) (packet-averaged observables), which is a convenient way to avoid heavy integral notations.

Indeed xc and kc both are seen as generalized coordinates in phase space, but in the particular case of a null connection we have the equality kc = ∂L/∂ ẋc, therefore kc identifies to the conjugated momentum of xc.

This corresponds to the ray Hamiltonian, which has the dimension of a frequency and is not to be confused with the energy Hamiltonian commonly used in variational methods for fluid dynamics[START_REF] Bretherton | Wavetrains in inhomogeneous moving media[END_REF][START_REF] Salmon | Lectures on geophysical fluid dynamics[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF].

The same perturbative expressions for the quantities (4.30) and (4.31) can be found in[START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects[END_REF] for corrected Bloch bands, due to the interaction between an external magnetic field and the orbital magnetic moment of an electron, for instance. As shown in[START_REF] Fuchs | Topological berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models[END_REF] for electrons in a crystal, other observables of the wave packet, such as its magnetization, are naturally expressed in a form that reveals the interband transitions.

One can express dΩ (n) /dt with expressions (4.29) to show that it yields zero.

This can be proven by injecting relationU -1 [f, kx, ky] = -U +1 [-f, -kx, -ky] (see appendix I) into expressions (4.30) and (4.31), and then the latter into the ray-tracing equations (4.29).

To be clear, the first (leading-order) terms in equations (4.34) would have the opposite sign if we had taken the waveband n = -1 instead of n = +1, owing to the symmetry k ↔ -k between the two. However the first-order term (in β) in equation (4.34a) has a + sign in both cases.

To be clear, equation (4.37) is the eikonal equation of the scalar theory. It is obtained by injecting the ansatz (C.4) into (4.36) and retaining the leading order terms, which yield equation (4.37) with ω ≡ -∂ T Φ 0 and k ≡ ∇ X Φ 0 . Kepping the β terms (of order ε) in the leading-order equation is thus inconsistent with the WKB expansion.

For the first baroclinic mode in the equatorial ocean, for instance, we have c ≃ 2 m.s -1 , thus Leq ≃ 300 km[START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF].

In the stratosphere (roughly 10km < z < 45km), the temperature increases from -60 • C to -10 • C, approximately, thus the first term of equation (A.5) is about -10 -2 s -1 whereas the second one is ≈ 7 × 10 -4 s -1 , leaving little chance for S to vanish (see figure

3.13, which also shows an approximate profile of S in the ocean). The same study of S could be done for gaseous planets or atmospheric exoplanets.

With respect to the canonical scalar product ⟨ψ 1 |ψ 2 ⟩ = H 0 ψ * 1 (z)ψ 2 (z)dz, which in this case can be defined over real functions (thus without the conjugation * ). We also write ||ψ|| 2 ≡ ⟨ψ|ψ⟩ ⩾ 0.

Note that choosing a rigid-lid condition w(H) = 0 would cancel the second term of expression (B.3) and thus yield the same conclusion

In the original WKB approximation for quantum mechanics[START_REF] Brillouin | La mécanique ondulatoire de schrödinger; une méthode générale de résolution par approximations successives[END_REF], ℏ is the small parameter used for the expansion, here in fluid mechanics the wavelength plays the same role, and this is also visible in the analogy between the two quantities (2.17).

Understand that ξ i are functions whose typical scale of variation is L, i.e. they have variations of order 1 over this scale.

This may not be compatible with a smooth choice of Ψ

between K -and K + , but it is a valid definition in the respective vicinities of these two degeneracy points, taken separately.2 This is the basis of the computation method described in[START_REF] Hatsugai | Chern number and edge states in the integer quantum hall effect[END_REF].

Indeed, since the eigenvectors are normalized (Ψ † Ψ = 1), we have(iΨ † dΨ) * = -idΨ † Ψ = iΨ † dΨ, because d(Ψ † Ψ) = dΨ † Ψ + Ψ † dΨ = 0.

Which transforms (S, Kx, Kz) → (S, -Kx, -Kz).

Here we note Y the varying direction, which is either the meridional (y) or vertical (z) direction in the examples of this thesis.

The only exception in this thesis is the simulation of figure 4.3, which is performed with Dedalus using the IVP class.

Or ω = -N , which is the equivalent mode at negative frequency. Here we can simply consider the positive-frequency mode.

This is compatible with the atmospheric Lamb wave in an isothermal atmosphere: since N and S are also constant in this case (see appendix A and the discussion of

3.3.1), there is no interface in the bulk medium. However the Lamb wave can exist on the solid boundaries, where the condition is w = 0 (see[START_REF] Iga | Transition modes in stratified compressible fluids[END_REF] and the discussion of 3.5.2).

This time the sign is important because, in the rotating case, there is a difference between the eastward and westward modes.

As one can notice on the spectra 3.12, the gap can be direct if cs is not constant.

SUMMARY: NEW INTERFACE MODES GOVERNED BY STRATIFICATION

In this section we have investigated the topological modes emerging in the class of 2D wave problems whose inhomogeneous direction is the vertical one, z, i.e. the direction of stratification (x 2 = z with the notation of section 3.1).

First, in the non-rotating case, I showed that two kinds of topological modes propagate along the interfaces where S = 0, i.e. where the symbol's acoustic and internal-gravity wavebands are degenerate. For a decreasing interface (S = 0 and dS/dz < 0), the topological mode is a Lamb-like mode studied by [START_REF] Perrot | Topological transition in stratified fluids[END_REF], which looks like the Lamb waves propagating along rigid boundaries in a compressible-stratified medium [START_REF] Lamb | On atmospheric oscillations[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]]. The second one, which was not discussed in [START_REF] Perrot | Topological transition in stratified fluids[END_REF], is a buoyant-like mode of opposite spectral flow, propagating along an increasing interface (S = 0 and dS/dz > 0) and sharing similarities with the boundary inertial Brunt-Väisälä oscillation [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. The main message is that these waves propagate along interfaces inside the medium and are independent of the boundaries, in spite of their resemblance with the boundary modes discussed by Iga [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. Moreover, we predicted their existence and spectral behavior -i.e. the fact that they transit between wavebands -by means of the topological argument which was described in detail in section 3.1.

My main contribution was to study the behavior of these modes in a rotating medium, including the nontraditional component of the Coriolis force, which is an often disregarded aspect in geophysical fluid dynamics. First of all I considered the case of a 2D equatorial problem in which the only contribution of the Coriolis force is the nontraditional one [START_REF] Perez | Unidirectional modes induced by nontraditional coriolis force in stratified fluids[END_REF],

and showed that the interfaces, which were defined by S = 0 in the non-rotating case, are split into distinct interfaces S = ±f nt , each of which supports topological modes propagating in opposite directions. If rotation is sufficiently strong so that one of these interfaces disappears, the topological modes become unidirectional, which is a characteristic feature of topological 2D systems with a transverse field breaking time-reversal symmetry [START_REF] Delplace | Topological origin of equatorial waves[END_REF][START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF][START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF][START_REF] Haldane | Model for a quantum hall effect without landau levels: Condensed-matter realization of the" parity anomaly[END_REF].

Finally I showed that these results can be extended to non-zonal 2D wave problems (k y ̸ = 0), outside the equator (f ̸ = 0). In this general case, the spectral features of the topological modes, as well as the interface criteria, are slightly different. Nevertheless, the conclusion remains the same: it is the nontraditional rotation that explains the emergence of unidirectional modes in this category of 2D wave problems. Indeed, as shown in figure 3.20c, a strictly traditional rotation (i.e. with the rotation axis parallel to the 2D plane of wave propagation) changes the spectral properties of the non-rotating modes but these are still multi-directional, owing to the rotational invariance of the medium around the axis of rotation. The topology of the symbol and its degeneracy points allows one to predict rather simple criteria for the existence of an interface supporting the propagation of topological modes. Continuous modifications of the medium's parameters involved in the definition of those interfaces can lead to their spontaneous appearance or disappearance, and thus that of the corresponding topological modes, which can be seen as a topological transition.

In the next section I will discuss another 2D wave problem which is "orthogonal" to the one that was studied in this section: the generalized equatorial problem (figure 3.21a).

4.1.1 An introductive example: slow evolution of a quantum state Let us reconsider the example used in [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] and 2.3.2, which is that of a quantum dipole coupled to a magnetic field B = (B x , B y , B z ) by the Zeeman effect. The dipole's wave function ψ obeys the Schrödinger equation

where H(B) is the Hamiltonian matrix (2.23) which depends on the magnetic field 1 and ψ is a twocomponent complex vector. As explained in 2.3.2, the matrix H(B) has two eigenvalues that depend on B -i.e. two wavebands -, given by ω ± = ±B, 2 whose eigenvectors Ψ ± define locally smooth functions of the (B x , B y , B z )-parameter space 3 . Let us assume that the quantum dipole is initially prepared in the eigenstate Ψ ± (B) for the initial value of B, 4 and the magnetic field starts to slowly vary with the time t.

The idea behind the expression "slowly varying" will be central in this chapter. For [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF],

the corresponding assumption is that the typical frequency at which the magnetic field is driven in time remains much smaller than the gap between the wavebands, so as to avoid interband transitions 5 [START_REF] Aharonov | Phase change during a cyclic quantum evolution[END_REF]. This is referred to as the adiabatic approximation in the context of quantum mechanic [START_REF] Born | Beweis des adiabatensatzes[END_REF]. In this case, the wave function follows the motion of the eigenvector Ψ ± (B(t)) across space, and we can write

with a real-valued phase Γ(t). After the magnetic field completes a cycle, i.e. after a time T such that B(T ) = B(0), the quantum dipole returns to its original eigenstate, up to a phase factor

where P is the closed oriented path described by the magnetic field B (figure 4.1b). The first term in expression (4.3) is referred to as the dynamical phase. It is the traditional evolution term of the phase owing to the intrinsic band frequency ω ± . As Berry put it himself, the dynamical phase mostly answers the question "how long was your trip across the parameter space? " asked to the quantum system. In contrast, the second term, which is the geometrical phase (2.25) already mentioned in 2.3.2, only depends on the trajectory in parameter space and not on the time taken, and therefore answers the question "where have you been during your trip? " By definition of the adiabatic approximation, the dynamical phase after a complete cycle is much larger than 2π whereas the geometrical phase is of order 2π. In other words, the quantum system oscillates rapidly at its intrinsic frequency, with a slow correction owing to the underlying complex space across which its wave function travels. In 2.3.2 we showed that the geometrical phase γ ± (P) is equal to the flux of the Berry curvature -generated by the degeneracy point at B = (0, 0, 0) -through the surface 1 And other physical constants like Planck's constant ℏ, the Bohr magneton µ B and the Landé g-factor g S , which are all absorbed by a change of unit in the magnetic field.

2 The Larmor frequency, with B the norm of B.

3 Although, as extensively discussed in section 2.3, the eigenvectors are not define at the degeneracy point (0, 0, 0), and cannot be continuously defined over a closed sphere enveloping this point, owing to its topological charge. 4 In other words, it is aligned with the magnetic field.

5 Or, in the case of the quantum dipole, to avoid changes of alignment. In this situation, this amounts to assuming τ ≫ B -1 , where τ is a typical time scale of the magnetic field's variations.

Appendix A

Stratification profile of realistic terrestrial atmosphere

This appendix intends to give the exact expression of the vertically varying parameters -N (z), S(z) and c s (z) -for an ideal gas atmosphere and, in particular, discuss the sign of S.

Let us consider an ideal gas at hydrostatic equilibrium to model the stratified atmosphere. In addition to relation (1.9), the pressure P 0 , mass density ρ 0 and temperature T 0 at equilibrium (all of them are assumed to be functions of the altitude z) are related by the ideal gas law:

where R s stands for the specific gas constant, given by the ratio of Boltzmann's constant by the molecular mass, i.e. R s = k B /m ⋆ . Moreover, in typical atmosphere's range of temperatures, the Laplace coefficient or adiabatic index γ, given by the ratio between the heat capacities of the gas at constant pressure and constant volume (i.e. γ = C P /C V ), is a constant fixed by the number of molecular degrees of freedom contributing to the internal energy in this range of temperature (γ = 7/5 for a diatomic gas). The speed of sound at temperature T 0 is then given by

A.1 Expression of N and S in an ideal gas atmosphere

Combining together expressions (1.9), (A.1) and (A.2), relation (1.15) can be expressed in terms of the speed of sound or the temperature profile as

As a direct consequence of expression (A.3), an atmospheric layer of ideal gas in which the temperature profile is an increasing function of altitude (e.g. the stratosphere) is stably stratified. More generally, the criterion for static stability in the perfect gas is therefore

as can be found in [START_REF] Lamb | On atmospheric oscillations[END_REF] 1 (note that 1 -γ < 0). In expression (A.3), N 2 /g is the sum of two inverse lengths: the vertical scale of variation of the temperature profile (second term in brackets) and a length characterizing the spreading of the gas as the internal molecular agitation competes with

1 Lamb has the opposite criterion because he chooses the vertical axis pointing downwards.

To be convinced that the results of 3.3.1 -and more generally of chapter 3 -have a general, I show in figure A.1 the spectrum of the oscillating modes in a non-rotating, compressible-stratified fluid which is non-isothermal and thus has a non-constant c s . The profiles of N and S are related to that of the temperature through relations (A.3) and (A.5). Since the parameters are not periodic, contrary to most of the simulations executed in this thesis, we cannot choose boundary conditions (see the explanation of 3.1.4). Instead I use the condition w = 0 (rigid lid) on both sides, which, in this case, are not compatible with the boundary Lamb waves described by Iga [START_REF] Iga | Transition modes in stratified compressible fluids[END_REF] and in 3.5.2, because S > 0 at the bottom and S < 0 at the top. Therefore the Lamb-like wave observed in figure A.1 is an atmospheric Lamb-like wave of topological origin, which is not constrained by the boundaries.

Appendix B

Extension of the shallow-water model with the Boussinesq equations

The goal of this appendix is to show that the shallow-water model, introduced in 1.3.2 in the context of a shallow layer of fluid, can be generalized in the case of fluid media with a vertical structure (i.e.

a vertical extension with a background stratification profile), with 0 ⩽ z ⩽ H, but still with negligible vertical motions (|w| ≪ |u|, |v|). The following is a classical derivation, which can be found in several textbooks on oceanic and atmospheric physics [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF][START_REF] Holton | An introduction to dynamic meteorology[END_REF]. The Boussinesq equations are used by [START_REF] Zhu | Topology of rotating stratified fluids with and without background shear flow[END_REF] in the context of topology, precisely to extend the shallow-water model's analysis [START_REF] Delplace | Topological origin of equatorial waves[END_REF].

A first natural approach that comes to mind to address this problem is to model vertical stratification with discrete values of the density (ρ i , i = 1, 2, ..., constant in each layer). The complete 3D flow then simply consists in a series of nonmiscible shallow layers stacked with each others, yielding a discrete family of coupled shallow-water systems. A more realistic and perhaps more simple version of this is the continuous equivalent, starting with the Boussinesq model introduced in 1.2.2. At leading order, the Boussinesq equations linearized around a state of rest are 1 Here η is introduced as a notation, but it corresponds to the general notion of geopotential height.

Remarks: Note that the applicability of the Boussinesq approximation mostly relies on the smallness of the total depth H compared to the compressibility scale c 2 s /g (which is very good in the ocean), while the shallow-water model on a thin fluid layer relies on the smallness of H compared to the horizontal scales, such as the wavelength λ. In a formal way, both models are thus equivalent in the limit H → 0.

For a given baroclinic mode n, the vertical length scale of the fields (i.e. over which thsy oscillate in the vertical direction) is given by a typical vertical wave number ∼ k n ≡ πn/H, because p n (z) has n nodes. Therefore, if N (z) does not vary too much around a mean value N , we have from equation (B.6):

therefore the Rossby radius of deformation of the n th baroclinic mode is typically L d = HN /πnf . In general the values of N in the ocean, atmosphere and stellar media (typically 10 -3 to 10 -2 s -1 ) are much larger than f (around 10 -5 s -1 at best), thus the Rossby radius of deformation, like the average horizontal scales of the flows considered in this model, is much larger than the typical vertical extension H. Nevertheless, the oceanic Rossby radius of deformation varies a lot with the latitude [START_REF] Gill | Atmosphere-ocean dynamics[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF].

Appendix C

A WKB analysis of the

Aharonov-Bohm effect in a bathtub

This part intends to provide a more rigorous justification of both the Doppler shift in equation

(2.15) and expression (2.18) that were obtained by [START_REF] Berry | Wavefront dislocations in the aharonovbohm effect and its water wave analogue[END_REF] in the analysis of the experiment presented in 2.2.4. Using the WKB approximation, I will show mathematically how the geometrical phase arises. To do so we will consider the simplest model we have at hand to describe surface waves, namely the shallow-water model, introduced in 1.3.2, here in the absence of the Coriolis force but in the presence of a mean flow U. Let us consider for simplification that the latter consists in a whirl of constant vorticity localized in a small area, outside of which the vorticity is zero and the depth is constant and equal to H. The total vorticity flux will be noted Γ. Outside of the whirl (that we will not consider from now on), the mean flow velocity is

in polar coordinates. The shallow-water equations (1.39) can be linearized around the steady state described by the mean flow, i.e. with u = U + u ′ and h = H + η. This yields

where we have noted D t = ∂ t + U • ∇ the derivative accounting for the advection by the vortex mean flow. Combining equations (C.2), we obtain the equation

where the summation over the i, j indices, which indicate either the x or y spatial coordinate, is implicit. Now the idea of the WKB approximation is the following: assuming that U varies over some scale L which is much larger than the wavelength λ (which is defined as the smaller length over which the solutions, u ′ and η, vary) 1 , we can expand the solution in terms of the small parameter ε/L. Therefore we use the following ansatz [START_REF] Bühler | Waves and mean flows[END_REF]:

Chern numbers and symmetries of the symbol

This appendix provides a proof that the knowledge of the Chern number of one band for one degeneracy point is sufficient when the symbol has sufficient symmetries. The symbol (3.16) will serve for an example.

D.1 Chern numbers of two bands involved in a degeneracy point

Let H(K) be a matrix depending smoothly on the three-dimensional vector K, and whose eigenvalues {ω n (K), n = 1, 2, ...} define wavebands in the K-space. Let us assume the existence of a two-fold degeneracy point K 0 involving the bands n and n + 1 (i.e. ... < ω n-1

in the vicinity of K 0 , which ensures that the degeneracy is an actual point). In this case, the Berry curvature of the band n is well-defined in the vicinity of K 0 (but excluding it) and can be written as a three-component vector:

where ∇ is the gradient in the K-space and Ψ n (K) is the n th eigenvector of H(K) (and Ψ † n is its Hermitian conjugate). As shown in [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF], expression (D.1) can be written

which is a sum over all the bands m ̸ = n. The form (D.2) is actually more insightful than (D.1) for two reasons:

• First, as explained in 2.3 and shown in the case of the quantum dipole (2.3.2) and the shallow-water model (2.3.3), the connection iΨ † n ∇Ψ n cannot be continuously defined on a closed surface around the degeneracy point, and has non-removable (but movable with a gauge choice) singularities if the Chern number C n (K 0 ) (which is the flux of F (n) through the surface) is non-zero. Yet F (n) is gauge-invariant and well-defined everywhere on this surface, which is straightforward when looking at (D.2).

• Second, it shows that the Berry curvature can be expressed with interband terms, which become arbitrarily large as another band gets close to the band n.

In particular, in the vicinity of K 0 , the dominating term in the sum (D.2) is the m = n + 1 one, so

Appendix E

Numerical methods

In this appendix, I wish to briefly describe the method used to numerically solve the eigenvalue problems expressed as equation (1.73) (with additional boundary conditions), and to obtain the spectra in (k x , ω) shown throughout chapter 3 and appendices A, G. The resolution is performed using the Dedalus package, which offers a wide range of tools to solve and analyze such eigenvalue problems. Review [START_REF] Burns | Dedalus: A flexible framework for numerical simulations with spectral methods[END_REF], along with a considerable amount of examples available on https://groups.google.com/g/dedalus-users, will provide the reader with all the necessary details to implement these numerical methods.

As exposed in section 3.1, we are interested in solving a set of linear partial differential equations

where ψ(x, Y, t) is a vector containing the unknown fields and Ĥ a matrix of operators which can be expressed in terms of ∂ x , ∂ Y and some functions of the variable Y . Therefore, we can look for a wave solution of the form 1 ψ(Y )e i(kx-ωt) . (E.2)

In this case, equation (E.1) reduces to a set of coupled ordinary differential equations in the variable Y . For fixed boundary conditions and fixed value of the wave number k, Dedalus is able to interpret this set of equations as an eigenvalue problem (the EVP problem class) 2 , which is solved by expanding the eigenfunctions on a certain number of basis functions (in this thesis we generally use up to N = 64

Chebyshev polynomials). The result is stored as a set of eigenvalues ω and corresponding eigenfunctions.

In the examples of this thesis, we create a loop to vary k, and the solver finds the eigenvalues and eigenfunctions for each of these values. At each step we also compute some observable quantities of the eigenmodes, namely the first moment

which provides the average position of the mode's envelope in the direction Y , and the variance

whose square root gives the typical extension of the mode around its average position in the Y direction.

Note that, in expressions (E.3) and (E.4), we average with a weight which represents the total energy of the mode, which is conserved for the Hermitian operators Ĥ considered here.

Appendix F

Exact expression of the topological modes of the compressible-stratified fluid in specific cases

Like the Yanai and Kelvin waves, which are the topological modes of the equatorial shallow-water model, some of the topological modes exhibited in section 3.3, i.e. for a vertically-inhomogeneous wave problem, have an exact analytical expression. I shall give some examples in this appendix.

F.1 The buoyant-like mode in a non-rotating medium with constant N

Let us first consider the buoyant-like mode in a non-rotating medium, studied in 3.3.1. It is the topological mode propagating along an interface S = 0 with S ′ > 0. As shown in figure 3.12b, it seems that this mode has a zero horizontal velocity u if the buoyancy frequency N is taken constant (transverse wave). Let us verify that. The equations of the wave problem read as

By replacing u = 0 in equations (F.1), one also finds p = 0 (the pressure perturbation is zero, in contrast with acoustic wave), ω = N (like a Brunt-Väisälä oscillation) 1 and thus Θ = iw (the perturbations of potential density and vertical velocity are in quadrature, which explains why the maxima of potential density are located where the velocity field vanishes in figure 3.12b). Finally, the buoyant-like mode's amplitude is given by

Expression (F.2) confirms that the buoyant-like mode, if it exists, has zero nodes, much like the equatorial or coastal Kelvin waves. Moreover, if S vanishes at z ⋆ and S ′ (z ⋆ ) > 0 it is allowed and localized around the interface, whereas it is not if S ′ (z ⋆ ) < 0. To illustrate that, let us consider the

Appendix G

Behavior of surface waves with S and hybridization Following the discussion of 3.5.2 on the hybridization of topological and boundary waves, let us consider here the additional case of free-surface waves in a non-rotating, compressible-stratified medium.

The free oscillations at the surface of the fluid are described by the condition

at linear order in the perturbations [START_REF] Auclair | Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean[END_REF][START_REF] Iga | Transition modes in stratified compressible fluids[END_REF]. In the 2D wave problem, with definitions (1.66) and (1.69), this surface condition becomes

Appendix H

The Lane-Emden equation

The purpose of this appendix is to provide an elementary derivation of the Lane-Emden equation used in section 3.6 to establish the radial density structure of a star at mechanical equilibrium. The equations of the polytrope at hydrostatic equilibrium under its own gravity read as In equations (H.1) all the equilibrium quantities (mass density ρ 0 , pressure P 0 and the gravitational potential Φ 0 defined by g 0 = -∇Φ 0 , where g 0 is the gravitational field of the star at equilibrium) are functions of the radius r. G is the gravitational constant and γ ≡ 1 + 1/n. Equation (H.3) is called the Lane-Emden equation [START_REF] Lane | On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment[END_REF]. As explained in section 3.6, there is a unique solution ϱ n such that ϱ(0) = 1 and ϱ ′ (0) = 0. This implies that ρ c and P c are respectively the density and pressure at the star's center, and that there is no pressure singularity at the center. The first zero of the function ϱ n , noted x n , gives the theoretical radius of the star as R ⊙ = Lx n .

Together with the stellar mass M ⊙ , this provides the equations to find ρ c and P c and thus obtain the complete theoretical stellar stratification profile, with equations (3.46).

1 With n ⩾ 0, the two limits being the isothermal perfect gas (n = ∞) and the rocky planet (n = 0).

Solutions ϱn of the Lane-Emden equation (H.3) for different values of n, with their respective first zeros xn. n = 1/2 (blue) and n = 1 (purple) can be used to model neutron stars [START_REF] Horedt | Polytropes: applications in astrophysics and related fields[END_REF]; n = 3/2 (green) is often used to model the red giants' convective interior [START_REF] Chandrasekhar | An introduction to the study of stellar structure[END_REF], brown dwarfs of gaseous planets like Jupiter; n = 3 (red) is used to model high-mass white dwarfs or the radiative zone of main-sequence stars like the sun [START_REF] Pols | Stellar structure and evolution[END_REF].

Appendix I

The Berry curvature of the f -plane shallow-water wavebands

Based on expressions (4.15) of the eigenvectors of the symbol for shallow-water bulk waves, we provide here the expression of the Berry curvature of the geostrophic (n = 0) and Poincaré (n = ±1)

wavebands.

As described in 2.3.3, the shallow-water polarization relations can be expressed in terms of spherical coordinates in the (k x , k y , f )-parameter space:

With the gauge choice of 2.3.3, we have

for the geostrophic band, and

for the Poincaré wavebands. Owing to the linear property Appendix J

Variational derivation of the ray-tracing equations

In this appendix we demonstrate expressions (4.21), (4.23) and (4.31), starting from the ansatz (4.17) for the wave packet. We will pay particular attention to the necessary approximations to get the expansions up to the order ε.

J.1 Reduction of the Lagrangian L ′ First, expression (4.22) can be separated as

The second term, defined in relation (4.24), will be treated separately, in the second part of this appendix. Using the ansatz (4.17), the first term yields

with the notation A 2 ≡ dxA(x, t) 2 . To lighten the presentation, variables of functions have been omitted, i.e. Φ stands for Φ(x, t) and Ψ n for Ψ n [f (y), k c (t)], for instance. Since the operator Ĥ is Hermitian, the norm of |ψ⟩ is left constant by the dynamics 1 , therefore the second term in equation (J.2) is null, leaving us only with the first term, which is real. Similarly, the expression of the mean wave vector, defined in (4.20), is simplified into

Let us now simplify expressions (J.2) and (J.3) by approximating the integrals weighted by A 2 . The Taylor expansion of a general function g(x, t) around x c (t) reads as g(x, t) = g(x c , t) + (x -x c ) • ∇g(x c , t) + O (x -x c ) 2 ε -2 g 0 , (J.4) if ε -1 is the variation scale of the function g of order g 0 . By performing the integral of the previous weighted by A 2 , the second term in the right-hand side of equation (J.4) yields 0, by definition of r c , 1 Indeed i 2 d dt ln A 2 = i d dt ln ∥ψ ′ ∥ and we can restrain the search of a solution to the space of functions of constant norm with time, because Ĥ is Hermitian: that way the Lagrangian L ′ is real. One would directly remove the second term in equation (J.2) from the variational problem because it is an exact time derivative, but if the Lagrangian were not real the Schrödinger-like equation (4.4) would not be equivalent to the corresponding variational problem [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF].