
HAL Id: tel-03922843
https://theses.hal.science/tel-03922843v1

Submitted on 4 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain Application for Mesh and Mobile Ad Hoc
Networks

David Alexis Córdova Morales

To cite this version:
David Alexis Córdova Morales. Blockchain Application for Mesh and Mobile Ad Hoc Net-
works. Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2022. English. �NNT :
2022SORUS338�. �tel-03922843�

https://theses.hal.science/tel-03922843v1
https://hal.archives-ouvertes.fr

Sorbonne Université
École Doctorale Informatique, Télécommunications et

Électronique de Paris

Laboratoire d’Informatique de Sorbonne Université (LIP6)

Blockchain Application for Mesh and
Mobile Ad Hoc Networks

Présenté par

David Alexis CÓRDOVA MORALES

Thèse de doctorat en Informatique
Présentée et soutenue publiquement le 30/11/2022

Devant un jury composé de:

Stefano SECCI
Professeur, Conservatoire National des Arts et Métiers

Rapporteur

Diogo MENEZES FERRAZANI MATTOS
Professeur, Universidade Federal Fluminense (Brésil)

Rapporteur

Anne FLADENMULLER
Professeur, Sorbonne Université

Examinatrice

Nadjib ACHIR
Maître de conférences HDR, Université Sorbonne Paris Nord

Examinateur

Pedro BRACONNOT VELLOSO
Maître de conférences, Conservatoire National des Arts et Métiers

Invité (Co-Encadrant)

Guy PUJOLLE
Professeur émérite, Sorbonne Université

Co-Directeur

Thi-Mai-Trang NGUYEN
Maître de conférences HDR, Sorbonne Université

Directrice de thèse

1

Sorbonne Université
École Doctorale Informatique, Télécommunications et

Électronique de Paris

Laboratoire d’Informatique de Sorbonne Université (LIP6)

Blockchain Application for Mesh and
Mobile Ad Hoc Networks

Présenté par

David Alexis CÓRDOVA MORALES

Thèse de doctorat en Informatique
Présentée et soutenue publiquement le 30/11/2022

Devant un jury composé de:

Stefano SECCI
Professeur, Conservatoire National des Arts et Métiers

Rapporteur

Diogo MENEZES FERRAZANI MATTOS
Professeur, Universidade Federal Fluminense (Brésil)

Rapporteur

Anne FLADENMULLER
Professeur, Sorbonne Université

Examinatrice

Nadjib ACHIR
Maître de conférences HDR, Université Sorbonne Paris Nord

Examinateur

Pedro BRACONNOT VELLOSO
Maître de conférences, Conservatoire National des Arts et Métiers

Invité (Co-Encadrant)

Guy PUJOLLE
Professeur émérite, Sorbonne Université

Co-Directeur

Thi-Mai-Trang NGUYEN
Maître de conférences HDR, Sorbonne Université

Directrice de thèse

1

Contents

1 Introduction 1
1.1 Context and motivation . 2
1.2 Contributions . 3
1.3 Thesis outline . 6

2 Background and State-of-the-Art 7
2.1 The Bitcoin System . 7

2.1.1 Basic Functioning . 7
2.1.2 The Double Spending Problem 9
2.1.3 Bitcoin Tokenomics . 10

2.2 Blockchain Background . 10
2.3 Blockchain Generalities . 13

2.3.1 Properties . 14
2.3.2 Types of Blockchain . 14
2.3.3 Base Elements . 16

2.3.3.1 Miners . 16
2.3.3.2 Validators Nodes . 16
2.3.3.3 Addresses . 16
2.3.3.4 Transactions . 17
2.3.3.5 Blocks . 17
2.3.3.6 Mempool . 17
2.3.3.7 Forks . 17
2.3.3.8 Digital Assets . 18

2.4 Blockchain Consensus Algorithms . 19
2.4.1 The Nakamoto Consensus (Proof-of-Work) 19
2.4.2 Proof-of-Stake . 20

2.4.2.1 Chain-based PoS . 21
2.4.2.2 Delegated PoS . 21

2.4.3 Proof-of-Authority . 22

2

2.4.4 Proof-of-Elapsed-Time . 23
2.5 Blockchain Applied to Mesh and Ad Hoc Networks 23
2.6 Direct Acyclic Graphs and Blockchain 31

2.6.1 Block-DAGs . 31
2.6.2 Blockless-DAGs . 34

2.7 Consensus for Mobile Networks . 38
2.8 Chapter Summary . 40

3 Blockgraph 41
3.1 Introduction and context . 41
3.2 The Split and Merge Problem . 43
3.3 The Blockgraph Model . 43

3.3.1 The System Model and Assumptions 44
3.3.1.1 The Mobility Model 44
3.3.1.2 The Blockchain Model 45
3.3.1.3 The Transaction Model 46

3.3.2 Blockgraph Structure and Components 47
3.3.2.1 Structure of a Transaction 47
3.3.2.2 Structure of a Block 48
3.3.2.3 Blockgraph Data Structure 50

3.4 The Blockgraph Framework . 54
3.4.1 The Group Management Module 55

3.4.1.1 Our Network Discovery Solution 57
3.4.2 The Consensus Module . 58
3.4.3 The Blockgraph Protocol . 60

3.4.3.1 Transactions in the Blockgraph Protocol 61
3.4.3.2 Blocks in the Blockgraph Protocol 61
3.4.3.3 Block Mining . 62
3.4.3.4 Block Treatment . 63
3.4.3.5 The Merge Synchronization Procedure 64

3.5 Blockgraph Implementations and Evaluations 67
3.5.1 NS-3 Implementation . 67

3.5.1.1 Methodology, Simulations, and Results 68
3.5.1.2 NS-3 Implementation Conclusion 71

3.5.2 Testbed Implementation . 72
3.5.2.1 Methodology, Simulations, and Results 73
3.5.2.2 Testbed Implementation Conclusion 79

3

3.6 Chapter Summary . 79

4 Consensus for Mesh Networks 81
4.1 Introduction . 81
4.2 RAFT Overview . 83

4.2.1 Basic Functioning . 84
4.2.1.1 Leader Election . 85
4.2.1.2 Log Replication . 86
4.2.1.3 Safety . 88

4.2.2 Membership Change . 88
4.3 C4M: A Consensus Algorithm for Mesh and Mobile Ad Hoc Networks . 89

4.3.1 Operating Modes . 90
4.3.2 Configuration Change . 91
4.3.3 Log Realignment Process . 94

4.4 C4M Implementation and Evaluation 95
4.4.1 Methodology, Simulations, and Results 97

4.4.1.1 Leader Election Results 99
4.4.1.2 Configuration Change Results 102

4.4.2 C4M Implementation Conclusion 105
4.5 Chapter Summary . 106

5 Conclusions 108
5.1 Summary of Contributions . 108
5.2 Perspectives . 109

5.2.1 Blockgraph . 109
5.2.2 C4M . 110

Appendices 112

A The Blockgraph Algorithms 113
A.1 The Group Management Module . 113
A.2 The Blockgraph Protocol . 114
A.3 The merge synchronization procedure 117

B List of Publications 121
B.1 International Conferences . 121
B.2 In Process of Publication . 121

4

List of Figures

2.1 Blocks of transactions chained through a hash function. 8
2.2 Bitcoin’s transaction model. 9
2.3 Types of blockchain. 15
2.4 Example of a Block-DAG data structure. 32
2.5 Example of a Blockless-DAG data structure. 34

3.1 Structure of a generic transaction. 48
3.2 Structure of a block. 49
3.3 Elements of the Blockgraph data structure. 50
3.4 Representation of the effects of a split and a merge in the Blockgraph

data structure. 52
3.5 Architecture of the system. 55
3.6 Main elements of the group management module. 57
3.7 Block communication channels in the Blockgraph Framework. 62
3.8 Problematic of multiple childless blocks during the merge synchronization

procedure and the creation of new blocks. 67
3.9 Progression of the number of transactions in the leader’s mempool

through time for the No Split scenario with λ = 0.5 tps. 70
3.10 Progression of the number of transactions in the leader’s mempool

through time for the Split followed by a merge scenario with λ = 0.5 tps. 71
3.11 Architecture of the Blockgraph system in integration with Green Com-

munication’s mesh routers. 72
3.12 Class diagram of the testbed implementation. 73
3.13 Average Mempool usage. 75
3.14 Average Inter-Block Time. 76
3.15 Transaction Latency. 77
3.16 Transaction Throughput. 77
3.17 Average Resource Usage. 78
3.18 Example of the final Blockgraph data structure after an execution. . . . 79

5

4.1 Nodes states of the RAFT algorithm. 85
4.2 RAFT’s replicated log. 87
4.3 C4M operating modes. 91
4.4 Logs realignment process. 96
4.5 Number of leader election messages. 100
4.6 Number of Vote Request and Ack Vote for scenario 2. 100
4.7 Leader election performance. 101
4.8 Number of completed leader elections for scenario 1. 102
4.9 Number of completed leader elections for scenario 2. 103
4.10 Configuration change performance in scenario 1. 104
4.11 Number of completed Configuration Changes for scenario 1. 104
4.12 Configuration Change delay for scenario 1. 105

6

List of Tables

3.1 Mobility description for Scenario 1 . 69
3.2 Mobility description for Scenario 2 . 69
3.3 Scenario 1 summary . 70
3.4 Scenario 2 summary . 71
3.5 Variable and fixed parameters of the executions. 74

4.1 Values of the C4M parameters for the simulations. 98
4.2 Message overhead of C4M in number and volume. 105

7

8

Remerciements

Les travaux réalisés durant ces trois dernières années furent riches en apprentissage,
non seulement d’un point de vue de la recherche scientifique ou technique, mais aussi d’un
point de vue humain. En effet, le développent des nouvelles compétences personnelles
que j’ai pu apprendre durant mon séjour au sein de l’équipe Phare du laboratoire
d’informatique de Paris 6 m’ont permis de découvrir et de développer une nouvelle
facette de moi-même capable d’achever des grands objectifs. Cela, n’aurait pas eu été
possible sans l’aide des toutes les personnes qui m’ont soutenue tout au long de ma
thèse.

Je voudrais tout d’abord commencer par adresser mes sincères remerciements à ma
directrice de thèse Thi-Mai-Trang Nguyen pour avoir accepté de diriger ma thèse. Son
constant soutien ainsi que son sens de la responsabilité et ses conseils m’ont énormément
aidé à surmonter tous les défis qui se sont présentés tout au long de ma thèse. Ces
nombreux enseignements, tant dans le plan technique et méthodologique que pour
l’exercice de synthèse et de rédaction furent précieux. D’autant même, je voudrais
adresser mes remerciements à mon codirecteur de thèse Guy Pujolle, qui m’a beaucoup
aidé a garder une vision d’ensemble des enjeux de ma thèse ainsi que de me rappeler
constamment les objectifs à atteindre. Son soutien ainsi que son expertise furent déter-
minants pour mener à bien mon entreprise. Finalement, je voudrais exprimer toute
ma gratitude à Pedro Braconnot Velloso, qui par le hasard des faits est devenue mon
encadrant de thèse. Sa constante disposition au dialogue et à l’échange des idées fut
une constante source d’inspiration grâce à son très solide savoir technique de la matière.
Je me considère chanceux à avoir eu l’opportunité d’apprendre de vous trois de si près
depuis la position privilégiée du doctorant. Je garderais en mémoire des très bons
souvenirs des nombreuses réunions de travail riche en échanges, débat, et rires. C’est
grâce à votre expertise, vos conseils et votre soutien que cette thèse arrive à échéance.

Je tiens à remercier mes rapporteurs de thèse, Steffano Secci et Diogo Menezes
Ferrazani Mattos pour leur temps consacré à la lecture et au rapport de cette thèse.
Leurs critiques constructives ont permis d’améliorer la qualité de cette thèse. De même,
je voudrais remercier Anne Fladenmuller et Nadjib Achir d’avoir accepté de former
part de mon jury de thèse. Leur expertise et leur œil critique ne font qu’additionner au
travail qui est présenté dans cette thèse.

De même, je voudrais remercier toutes les personnes qui direct ou indirectement ont
participé à la réalisation de cette thèse. Alexandre Laubé, pour m’avoir donné le coup de

9

pouce initial dont j’avais besoin pour commencer à mener les expérimentations qui sont
décrites dans cette thèse, Alexandre Guerre, pour avoir pris le challenge d’implémenter
notre solution pour créer une plateforme fonctionnelle, Khaldoun Al Agha, pour sa
précieuse participation à la gestion et facilitation du projet dans lequel cette thèse est
contextualisée, ainsi que pour ses travaux initiaux qui furent essentiels au développement
des idées originales présenté dans cette thèse, et Brigitte Kervella pour ses corrections
et ses conseils.

Je remercie également le Conseil National de Science et Technologie (CONACYT)
du gouvernement du Mexique, qui a financé en grande mesure le développement de
cette thèse, sans leur généreuse contribution, cette thèse n’aurait pas eu lieu.

Je voudrais aussi dédier quelques lignes à toutes ces personnes qui me sont chères,
et qui par le fait de leur existence, m’ont apporté du bonheur, du rire, des aventures,
du soutien, de la complicité, de l’amour, et même du désamour et du chagrin. Sans
eux, Paris ne serait pas une fête.

Finalement, mes plus profonds remerciements vont à ma famille, à mon père et à
ma mère qui m’ont toujours soutenu et qui malgré la distance ont toujours été présents
à chaque jalon de mon parcours pour m’offrir leur amour et leur soutien. À mon frère
et ma sœur dont notre complicité transcende les frontières, et à Ada, ma nièce chérie
qui m’inspire de l’optimisme envers le futur.

10

Abstract

Blockchain is a technology that maintains a single record of information in a
decentralized and distributed manner while ensuring data security. This technology,
which is behind the most popular cryptocurrency, Bitcoin, is changing the way we think
about information records in distributed systems. Indeed, the cryptographic feature set
and the distributed nature of the technology make blockchain one of the most secure
tools available today for maintaining a record of information.

The first applications to have adopted this technology are in the field of finance,
where it is now possible to carry out transactions directly between users without going
through a central authority. However, other fields have also shown interest in this
technology, such as medicine, for the secure sharing of medical records; art and music,
for the tracking of copyrights and royalties; governance, for secure voting, IoT, etc.

However, to benefit from such technology it is necessary to count with high reliability
and connectivity, as provided by the Internet. In mesh and mobile ad hoc networks, it
is often necessary to deploy its own infrastructure and services where the infrastructure
of operators are not available due to the geography of the site or to an exceptional
situation as is the case of natural disasters, war zones or monitoring of protected areas
to achieve specific missions. The dynamism of these networks makes it difficult to use
a blockchain to maintain a record of information. Indeed, the mobility of nodes can
cause partitions in the network that may or may not be desired; nodes can appear and
disappear, partitions can split or reunite depending on the mobility of the nodes. This
poses a problem for a traditional blockchain, as partitions in the network lead to forks
(competing chains) that are often resolved by choosing the longest chain and ignoring
other competing chains. For the use cases of mesh and mobile ad hoc networks that
we seek to solve, the concurrent chains constructed by the effect of network partitions
can be considered as legitimate chains carrying information related to a given network
partition. It is therefore important to include these chains in the information register.

In this thesis manuscript, we propose the Blockgraph, a blockchain-like technology
capable of dealing with network partitions for mobile mesh and ad hoc networks. The
Blockgraph, takes the form of a direct acyclic graph based on node mobility and inherits
all the security properties of the blockchain. In addition, we propose C4M, a RAFT-
based consensus algorithm that has been adapted to work with the Blockgraph and is
also tolerant to network partitions.

To validate our solutions, we first implemented the Blockgraph and C4M in the
discrete event simulator, NS-3. We performed a first performance study of each system,

then we implemented the Blockgraph in real proof-of-concept mesh routers to validate
the effectiveness of our solution. Finally we performed a performance study and
presented our conclusions.

2

Résumé

La blockchain est une technologie qui permet de maintenir un unique registre
d’information de façon décentralisée et distribuée tout en garantissant la sécurité des
données. Cette technologie, qui est à l’origine de la cryptomonnaie la plus populaire, le
Bitcoin, est en train de changer la façon dont nous concevons les registres d’informations
dans les systèmes distribués. En effet, l’ensemble des fonctions cryptographiques ainsi
que la nature distribuée de la technologie font de la blockchain, un des outils les plus
sécurisés de nos jours pour maintenir un registre de l’information.

Les premières applications à avoir adopté cette technologie se trouvent dans le
domaine des finances, où il est désormais possible de réaliser des transactions directement
entre les utilisateurs sans passer par une autorité centrale. Néanmoins, d’autres domaines
ont aussi suscité leurs intérêts pour cette technologie, telle que la médecine, pour le
partage sécurisé des données médicales ; l’art et la musique, pour le suivi des droits
d’auteur et des redevances ; la gouvernance, pour le vote sécurisé, l’IoT, etc.

Or, pour bénéficier d’une telle technologie il est nécessaire de compter avec une haute
fiabilité et connectivité, telle que fourni par l’Internet. Dans les réseaux mesh et ad
hoc mobile, il est souvent nécessaire de déployer sa propre infrastructure et ses propres
services là où l’infrastructure des opérateurs ne sont pas disponibles dus à la géographie
du site ou à une situation d’exception comme est le cas de désastre naturels, zone de
guerre ou le monitorat des zones protégées pour réaliser des missions déterminées. La
dynamiste de ces réseaux rend difficile l’utilisation d’une blockchain pour maintenir un
registre d’information. En effet, la mobilité des nœuds peut causer des partitions dans
le réseau qui peuvent ou pas être désirées ; des nœuds peuvent apparaître et disparaître,
les partitions peuvent se séparer ou se réunir en fonction de la mobilité des nœuds. Cela
pose un problème pour une blockchain traditionnelle, car les partitions dans le réseau
entraînent des forks (des chaînes concurrentes) qui sont souvent résolu en choisissant
la chaîne la plus longue et en ignorant les autres chaînes concurrentes. Pour les cas
d’utilisation des réseaux mesh et ad hoc mobile que nous cherchons à résoudre, les
chaînes concurrentes construites par effet des partitions réseaux peuvent être considérées
comme des chaînes légitimes portant des informations relatives à une partition réseau
déterminé. Il est donc important d’inclure ces chaînes dans le registre d’information.

Dans ce manuscrit de thèse, nous proposons le Blockgraph, une technologie
semblable à la blockchain capable de faire face aux partitions réseaux pour les réseaux
mesh et ad hoc mobiles. Le Blockgraph, prend la forme d’un graph orienté acyclique
en fonction de la mobilité de nœuds et hérite de toutes les propriétés de sécurité de

la blockchain. De plus, nous proposons C4M, un algorithme de consensus inspiré en
RAFT qui a été adapté au Blockgraph et qui également est tolérant aux partitions du
réseau.

Pour valider nos solutions, nous avons d’abord implémenté le Blockgraph et C4M
dans le simulateur à événements discrets, NS-3. Nous avons réalisé une première étude
des performances de chaque système, puis nous avons implémenté le Blockgraph dans
des vrais routeurs mesh à mode de proof-of-concept pour valider l’efficacité de notre
solution. Finalement nous avons réalisé une étude de performances et présenté nos
conclusions.

2

Chapter 1

Introduction

Since the surge of Bitcoin’s whitepaper in 2008 by the pseudonym Satoshi Nakamoto [1],
blockchain technology has gained tremendous notoriety among the scientific community
and has inspired the development of new technologies and applications. It first emerged
as an alternative to the current economic system where no-trust parties are needed
between participants to carry out transactions. This was a revolutionary change of
paradigm. Centralized economic institutions are no longer needed to either carry out
transactions or verify the solvency of an account. Bitcoin’s blockchain was able to remove
effectively the man-in-the-middle by reaching a consensus on the state of a distributed
ledger in a peer-to-peer network. Naturally, the success of Bitcoin has put blockchain
technology in the spotlight. Other blockchain projects began to proliferate with the
objective to decentralize other services or competing with Bitcoin. A few years after the
lunch of the Bitcoin network, Ethereum co-founder Vitalik Buterin introduce the idea of
using the key functionality of Bitcoin’s blockchain with a Turing-complete language [2],
which gave birth to Smart Contracts and decentralized applications (dApps). This
blockchain breakthrough gave users the possibility to create and specify all kinds of
agreements that are enforced autonomously and automatically by the blockchain system
without the need of involving a trusted third party. Today, blockchain technology can
be found in almost all areas of the social sphere and it is said to be the cornerstone of
the development of what today is known as web 3.0 [3].

One of the main reasons for the success of blockchain technology is its properties
that enhance data security and transparency. Today, in a context where cyberattacks
are on the rise and where cybersecurity concerns is the 7th risk that worsens the most to
companies and industries [4], many are those who have turned towards blockchain as a
potential solution to protect data from tampering or as mean to perform traceability [5,
6, 7, 8]. Moreover, as the world increasingly embraces digitalization, the urgency of
having a trusted system capable of safeguarding proof-tempered and non-repudiation

1

information also increases. In this regard, blockchain technology provides a series of
guarantees that complies with those expectations.

Today, blockchain solutions are being explored in the health sector [9], supply
chain [5], real states [10], energy supply [8], the Internet-of-Things (IoT) [11], citizen
and corporate governance [12], financial applications [13], defense [14], and nature
monitoring and conservation [15]. However, not all kind of networks can benefit from
blockchain technology. Wireless Mesh Networks (WMNs) and Mobile Ad Hoc networks
(MANETs) are a kind of network that changes its network connectivity dynamically as
nodes in the network move. And since blockchain technology relies on a peer-to-peer
fully connected network, the connectivity and reliability requirements are no longer
met to use a blockchain in these networks. Indeed, due to topology changes, nodes in
the network might split and merge into different independent partitions, disrupting
the connectivity of the network, which creates consistency issues in the blockchain
distributed ledger by creating different versions of the blockchain. This issue is commonly
referred to as the split and merge problem as defined in [16].

1.1 Context and motivation

MANETs are a form of a decentralized network that is composed of wireless nodes
that can directly communicate with each other without relying on network infras-
tructure. They use multi-hop routing to reach other wireless nodes, which are not
within their transmission range. WMNs are composed of mobile wireless routers that
can directly communicate with each other to form a mobile wireless infrastructure,
providing connectivity to clients who are connected to the nearest wireless router. These
technologies have the advantage of allowing easy network deployment in areas where
network infrastructure, such as access points or base stations are not available or not
easy to build. Thus, they are the chosen technologies in case of natural disaster areas,
war and conflict zones, wildfire and other environmental monitoring, remote areas, and
ephemeral campsites such as refugee camps.

Traditionally, MANETs are associated with very restrained resource devices. How-
ever, the significant advances in computing power, storage capacity, and battery au-
tonomy have enhanced the use of these networks by integrating more advanced and
sophisticated embedded services and applications [17]. Indeed, some mobile wireless
routers are now endowed with important resources that enable cloud computing capa-
bilities at the edge of the network [18]. It is called the Multi-Access Edge Computing
(MEC) paradigm, which in our context, allows for storage and process of data close
to the end-users, which helps drive significant performance enhancements, including

2

higher bandwidth, lower latency, and faster response times and decision-making.
It is, therefore, under these new circumstances, where MANETs and WMNs are no

longer composed of wireless devices that lack computational and material resources, that
we aim to secure legacy and future services and applications by integrating blockchain
technology to the benefit of these networks.

However, to integrate blockchain technology with these networks, we first need
to deal with the split and merge problem. Indeed, the mobility of the nodes may
cause changes in the network topology at the point to split the network into several
independent sub-networks or merging several sub-networks into a single network. Thus,
the mobility factor poses several challenges that need to be addressed to correctly
integrate blockchain technology with MANETs and WMNs. Today, no traditional
blockchain is capable of dealing with the split and merge problem since they were
conceived to function in a fully connected network. Submitting them to a context
of mobility would make their protocols deal with network partitions as if they were
undesirable events by triggering security mechanisms that counteract the harmful effects
that network partitions entail. In the case of the Bitcoin network, it is the longest chain
rule that prevails, in other cases, different mechanisms are implemented to maintain a
single chain. These mechanisms are in some cases implemented at the consensus level
and are the main reason on way MANETs and WMNs are not able to benefit from
blockchain technology.

Thus, it is as important to rethink the way blockchain technology works as the
consensus algorithm that it implements. In this regard, we developed a blockchain-like
technology that treats network partitions as normal behavior of the network while
maintaining the properties and guarantees of blockchain technology. Moreover, we were
inspired by a legacy consensus algorithm to develop a new consensus algorithm capable
of tolerating network partitions. Thus, we can now provide MANETs and WMNs with
a blockchain-like technology capable of securing legacy and future applications in a
mobile distributed system.

1.2 Contributions

This dissertation discusses and explains the fundamental basis for a blockchain-like tech-
nology to become resilient to intended network partitions in a mobile environment and
proposes a new consensus algorithm capable of tolerating frequent network partitions.

The main contribution of our work is the construction of a new type of Distributed
Ledger Technology (DLT) with the characteristics of a blockchain, which is capable

3

of overcoming the challenges that a mobile network entails. To such a solution, we
named it the Blockgraph. The Blockgraph is a full framework composed of three
independent modules that treat three relatively independent sub-problems.

The first module is the Blockgraph protocol. This module is in charge of managing
the blockchain-like data structure, also referred to as the Blockgraph data structure,
which can take the form of a Direct Acyclic Graph (DAG). It administrates the incoming
and outcoming blocks of the module to ensure the data consistency across all nodes
is maintained. It also executes the merge synchronization procedure, which allows for
the fusion of different Blockgraph data structures into a single data structure when
several network partitions merge into a single network. Finally, it provides the needed
communication interfaces to exchange with an external application and the other
modules of our framework.

The second module of our framework is the consensus module, which could be
understood as a sort of proxy between a consensus protocol and the Blockgraph
framework. It provides the Blockgraph protocol with blocks that have passed through
a consensus process and pass to the hosted consensus protocol with updated network
topology information. Moreover, we have defined a series of properties and characteristics
that a consensus protocol needs to have to be compatible with our Blockgraph solution.
To that, we have proposed a new consensus algorithm, Consensus for Mesh (C4M),
which can tolerate network partitions by renewing the set of nodes participating in the
consensus process as the topology of the network changes with mobility. Our algorithm
inspires by the work of Diego Ongaro and John Ousterhout, which introduced the
RAFT algorithm [19]. Their work includes a cluster membership change mechanism
that updates the set of nodes participating in the replicated state machines consensus.
However, this mechanism can only be used in occasional configuration changes, when
a node fails, or when changing the degree of the system replication without having
to take the entire cluster down. In this regard, we made modifications to introduce
our configuration change procedure that performs this action in a distributed manner.
Additionally, C4M implements a new operational mode and a log realignment process to
make the algorithm more reactive to network partitions.

The third module that integrates our Blockgraph framework is the group man-
agement module. It provides the consensus module and the Blockgraph protocol with
network topology information, such as the list of nodes in the topology and the nature
of a topology change, meaning whether the network has suffered a split or a merge.
It rests on a network discovery solution capable of sensing the network topology. In
this regard, we implemented our solution based on the proactive nature of the OLSR
routing protocol [20] by exploiting the nodes’ routing table.

4

To validate our Blockgraph concept, we first implemented our solution in the discrete-
event network simulator, NS-3 1, and we then evaluated our solution. The results of
our evaluation show that our solution was able to replicate 99.72% of the blocks when
submitted to a split and a merge in a network composed of 10 nodes. Moreover, the
system showed stability during operation in all modules when providing a transaction
arrival rate of 5 transactions per second (tps). The concept of our work and the results
of the simulations were presented in this conference paper [21].

We then focus our attention on C4M. To validate our algorithm, we implemented
C4M in NS-3 2. The objective of our simulations was, from one side, to provide a first
validation of the efficacity of our algorithm when subjected to intended network partitions
and, from the other side, to evaluate the performance of our algorithm and characterize
its behavior. Results of our simulations demonstrated the efficiency of our algorithm
in changing the set of nodes participating in the consensus process with intended and
frequent network partitions. Moreover, we characterized the parameterization of our
algorithm based on the number of nodes in the system. The introduction of C4M and
the results of our work were presented to the community in a conference paper [22] that
we extended into a journal article in process of publication.

As part of a research project, we implemented our Blockgraph solution in a testbed
composed of five low-power mesh routers. During the implementation phase, we im-
proved our merge synchronization procedure, which increased the efficiency of our system
in merging the Blockgraph data structures. Moreover, we successfully tested the modu-
larity of our framework by integrating the mesh routers’ consensus algorithm with our
consensus module. The demonstration of our proof-of-concept consisted in provoking
intended network partitions by separating the mesh routers into two clusters. Our
Blockgraph solution was able to handle the network partitions by constructing the
DAG and replicating it in all five mesh routers. Our SIGCOM’21 Demo paper [23] was
awarded the second prize of the ACM Student Research for this work. Further on, we
conducted a performance evaluation of our testbed where we measured the transaction
throughput of our solution and the resource consumption of our framework in the
mesh routers. The results of this evaluation published in [24] demonstrate that the
achieved transaction throughput represented at least 85% of the maximum theoretical
transaction throughput and that the resource consumption, in terms of Random-Access
Memory, was relatively moderated regardless of the transaction arrival rate.

1https://gitlab.lip6.fr/cordova/b4mesh
2https://gitlab.lip6.fr/cordova/c4m

5

1.3 Thesis outline

To begin, Chapter 2 presents the background and related work of this thesis. We first
introduce the technical details of blockchain as well as the cryptographic primitives
involved. We then cover the related work specific to each of our contributions and we
finish this chapter with a summary.

In Chapter 3 we present the Blockgraph. We begin by introducing the context
and boundaries of our solution and its main characteristics. We then present the
split and merge problem that our solution solves. Here, we raise several questions
about the issues that may result from a peer-to-peer network running a blockchain-like
technology and the main consequences on the state of the distributed ledger when
facing network dysconnectivity. Furthermore, we explain how this issue (split and merge
problem) may affect the different consensus algorithms. We continue by describing
the system model and a punctual description of every module forming the Blockgraph
framework. We highlight our merge synchronization procedure, which allows the fusion
of two independent chains into a single one and gives the Blockgraph its graph structure.
We then present our two solution implementations that validate our concept with its
corresponding performance evaluation, and we close this chapter with a summary.

In Chapter 4 we delve into the consensus layer and explain the need for a distributed
consensus algorithm resilient to constant changes in the network topology in our
context. We present our consensus solution, C4M, which is a RAFT-based consensus
algorithm with the ability to adapt its set of nodes participating in the consensus
process dynamically and to automatically align the indexes used for the consensus
process according to the topology changes. To validate our solution, we implemented a
prototype version of our C4M algorithm using the discrete-event network simulator, NS-
3. Most of our implementation was done and designed to approach as much as possible
to a real implementation. Thus, in this chapter, we present an overview of RAFT, a
full description of our C4M consensus mechanism, and the NS-3 implementation of our
consensus algorithm. Finally, we conclude this chapter by presenting the performance
evaluation of our simulations and a summary.

Chapter 5 presents our general conclusions and future perspective of our work.
In addition, we provide Appendix A, which provides our main algorithms from our
contributions.

6

Chapter 2

Background and State-of-the-Art

2.1 The Bitcoin System

To understand the fundamental basis of blockchain, we first have to understand the
motivation behind blockchain technology. Bitcoin’s blockchain is the first use case of
blockchain and therefore, is it important to understand which problems its solves to
correctly implement this technology in other contexts and use cases such as the one we
present in this dissertation. Bitcoin’s blockchain was conceived to create a peer-to-peer
electronic cash system [1] as an alternative to the current economic system. Many works
in the field of economics [25, 26, 27, 28], refer to the unsustainability of the current
economic system and criticize the current modus operandi, which mainly relies on its
centralized approach built on baseless trust; where financial institutions unilaterally
dictate political-economic decisions that directly impact civil society. In this context,
Bitcoin’s blockchain allows individuals to transact directly with each other without
the need for financial institutions such as banks or other trusted third parties while
maintaining pseudo-anonymity, financial control, and small transaction fees.

2.1.1 Basic Functioning

The Bitcoin system works the same way as an accounting ledger book; it keeps a
register of all transactions performed in the Bitcoin network. However, unlike a
traditional accounting book ledger, bitcoin’s transactions are replicated in a distributed
network composed of thousands of nodes with no central authority and use a consensus
mechanism that allows all nodes to agree on the same state of the distributed ledger
and the order in which transactions were executed. Once the nodes have agreed on the
same state of the distributed ledger, transactions become immutable and cannot be
undone or forged, providing certainty and guarantee on bitcoin’s balances.

7

Transactions are compiled into blocks, which is a data structure where transactions
are stored. We can think of blocks, as a page in our accounting ledger book where a set
of transactions are listed. Blocks are said to be chained among them by including bits
of the previous block in the new block as illustrated in Figure 2.1. Indeed, every block
in the blockchain includes the identifier of the previous block in its header, except for
the genesis block, which is the first block in the blockchain and has no predecessors;
these identifiers are the outcome of a cryptographic function known as the one-way
function (a.k.a., hash function) that takes as an input, the header of the block, which
also includes transactions’ information and return a unique value. They are said to
be one-way because the input cannot be deduced from the output of the function and
because there is only a unique output for every input. In this regard, tempering with a
block will change the outcome of the hash function and will invalidate the block since
the block identifier will no longer match with the information provided in the next
block.

Figure 2.1: Blocks of transactions chained through a hash function.

Blocks are proposed by miners, which are nodes participating in the consensus
mechanism; they compete with each other to be the first in proposing the next block to
be appended to the blockchain. The first miner node proposing a valid block has the
right to propagate the block in the network so other nodes can verify the validity of the
block. In Bitcoin, miners nodes have to solve a probabilistic mathematical puzzle that
requires high computational resources before every other node solves it. Miners have to
find through a hash function the identifier of the block they are proposing, such as the
outcome of the hash function begins with a certain number of zeros; to do that, they
use a nonce that takes different values until generating the correct hash that meets
all the requirements. When the puzzle is solved, the value of the nonce that allows
the verification of the puzzle is included in the header of the newly proposed block
so other nodes can easily validate the result of the puzzle. This process is known as
Proof-of-Work (PoW) since proof of the solution is included in the block, which accounts
for the effort spent by a node to solve the puzzle. A block is considered committed
after being validated by a majority of nodes. Indeed, every node participating in the

8

consensus process validates every transaction in the proposed block, ensuring that
there are no transactions incoherences in the block and that the nonce included in the
header solves the cryptographic puzzle. If a node does not validate a block due to
transaction inconsistencies or the nonce does not solve the puzzle, the node will refuse
to acknowledge the validity of the block and will ignore the block.

2.1.2 The Double Spending Problem

The Bitcoin system solves a long-time unsolved problem by its predecessors, the double
spending problem. The problem stands that a digital coin can be duplicated and spent
more than once due to its digital nature. In the real world, when using cash, one
cannot pay for two different things using the same money since a physical trade is
performed on-site when transacting; and when transacting through a centralized entity
such as a bank, it is the bank that makes sure to differentiate both payments. However,
in a decentralized system, there is no central authority that controls the unicity of
coins in payment. Bitcoin solves this problem with its transaction model that makes
heavy use of cryptographic primitives that links transactions with each other through
digital signatures and the use of asymmetric keys; ensuring that every transaction in
the network is related cryptographically. Figure 2.2 illustrates Bitcoin’s transaction
model. Moreover, the distributivity and decentralization of the system reinforce the
statement that every honest node will not allow a double spending situation since it
will cause transaction inconsistencies. In this regard, as long as a majority of nodes are
honest, double spending bitcoins is extremely difficult to achieve.

Figure 2.2: Bitcoin’s transaction model.

9

2.1.3 Bitcoin Tokenomics

Bitcoin has a maximum supply of 21 million bitcoins; this number is hard-coded
in the core system and can only be changed through a synchronized decision of all
participating nodes. This limit in the maximum supply makes bitcoin deflationary and
therefore, increases its value over time. This is a major difference between Bitcoin and
a government-issued currency whose value is derived from the relationship between
supply and demand, and whose value can be regulated by increasing or decreasing
the total supply; new bitcoins cannot be created once the threshold is reached, which
introduces scarcity and store of value to the digital currency.

On the other hand, the Bitcoin system encourages users to participate in the
maintenance of the network by rewarding them with bitcoins for creating new blocks.
Indeed, the Bitcoin network rewards miners with new bitcoins to validate transactions,
which contributes to the decentralization and distributivity of the network. Furthermore,
the reward (bitcoins) obtained to mine new blocks, also works as a way to introduce
new bitcoins into the network, which increases the number of bitcoins in circulation
since there is no central authority to issue them. By design, the number of bitcoins
minted per block is reduced by half every 210, 000 blocks, which is around every four
years; this allows a gradual augmentation in the total supply.

2.2 Blockchain Background

The idea of having an immutable ordered, and append-only chain of blocks came from
Haber and Stonetta’s work [29], who proposed a trusted time-stamping system to certify
digital documents. Their idea was to use servers that would sign and certify digital
documents for clients by time-stamping them and keeping a record of these certificates.
However, a question about trust arises in this scheme since nothing prevents those
servers from issuing a false time-stamp. Their solution is to link the entries together
by including bits from the previous sequence of clients’ requests in the new signed
certificates. Once in a while, the most recent hash would be widely published in a public
time-proof document, such as a newspaper, proving time-stamped historical evidence of
the existence of that digital certificate and all certificates before it. With this action, it
is possible to know whether a certain time-stamp occurred after previous sequences,
providing time-ordered sequences of events. Moreover, their solution makes heavy use
of one-way hash functions to provide privacy and the use of digital signatures to provide
certainty. However, no matter how well designed this solution is, it has not become
popular due to a lack of incentive to run a trusted time-stamping server. Furthermore,
no consensus mechanism was thought to make the system truly distributed, which

10

centralized the information in one or a few servers making it vulnerable to a single
point of failure attacks. Later on, the same authors proposed in [30] an alternative to
their linking system. In this new proposal, a verification of time-stamped certificates is
conducted employing hash trees or Merkle trees [31], which would reduce the storage
and computation required to validate a given certificate. The main idea was to merge
a considerably high number of unnoteworthy time-stamping events into a single time-
stamping event (the root of the tree). This allows efficient and secure verification of
the content of a large Merkle tree.

In 1990, Cynthia Dwork and Moni Naor [32] proposed a method to deter the sending
of junk mail. In their proposal, the mail system would require the sender to compute
a moderately, but not intractable, mathematical function to send a message. This
requirement would mainly affect spammers and not common mail users since this
principle is based on the fact that spammers would make heavy usage of the mail system
and therefore would have to pay the cost of computational resources. The authors also
propose a series of mathematical functions that could be used as a computational cost,
that included extracting square roots modulo of a prime number, the Shamir signature
scheme, the Ong-Schnorr-Shamir based Scheme, and Hash functions.

In 2002 Adam Back proposed Hashcash [33], a similar idea implemented in the form
of an extension or plugin to be used in the email system. It would use partial hash
collisions as a cost-function. The main idea is to throttle systematic abuse of un-metered
Internet resources such as the email service. Cryptographic functions are designed to
be collision-resistant. This means that is very hard to find two output results from
a hash function such as two different inputs giving the same output. In other words,
h(x) ≡ h(y) where x 6= y. This is called a hash full-collusion and for a SHA1 function,
it would take around 2160 tries of different y values until the same output is obtained for
a given x value, which is today computationally infeasible. In the partial hash-collusion
function, the k most significant bits match the output of the two functions. It’s a partial
collision and would require fewer tries than a full collision, simplifying the problem. The
degree of difficulty to find a partial hash collision varies in terms of k. In this work [33],
the computed solution would be used as a proof-of-work token from the sender to the
recipient and would take non-effort from the recipient to verify its validity. This would
guarantee the recipient that the received email is legitimate and comes from an honest
intention since the proof-of-work attached to the email header was specially made for
the receiver and attests to the amount of computational resources spent to send it.
Thus, was not sent from a spammer.

In 1982, Leslie Lamport et al. [34] introduced a problem well known in distributed
systems in the form of a metaphor. The idea was to expose the problem of distributed

11

systems to reach a consensus on a given command in the presence of faulty or malicious
nodes. The problem is known as the Byzantine General Problem and goes as follows: A
Byzantine army is divided into different units surrounding a city prepared to coordinate
to take a city. A general commands one unit, and generals can only communicate with
other generals using a messenger. They can only be successful if they decide whether
to attack or retreat. The problem, however, is that any general could be disloyal and
act maliciously to prevent a united plan. Nevertheless, if all honest generals agree on
the same decision and those generals are the majority, then a united decision is reached
and success is guaranteed even with the presence of treacherous generals. The problem
remained unsolved until 1999 when Castro and Liskov presented the Practical Byzantine
Fault Tolerant (PBFT) algorithm [35], which can solve the Byzantine General Problem
in an asynchronous environment like the Internet using a state machine replication
protocol.

Blockchain technology uses all these principles to create a peer-to-peer distributed
ledger that is cryptographically secure, append-only, immutable, and that can only
be updated via a consensus mechanism involving all peers. The time-stamp server
solution [29, 30] is used in Blockchain by widely publishing a block in a peer-to-peer
distributed network. Each block includes the time-stamp of the previous block, forming a
chain, with each additional time-stamp reinforcing the ones before it. However, in a peer-
to-peer distributed network is not enough to just widely publish a block. Cryptographic
proof of the correctness of the block is necessary so other nodes can acknowledge
the veracity of the information. Similar to Adam Back’s Hashcash solution [33], the
proof-of-work is used in this context by using the previous block hash as the seed value
to find the new block’s hash such as the hash begins with a certain number of zero
bits. This is done by increasing a nonce in the block until a value is found that gives
the block’s hash the required zero bits. Once the block satisfies the proof-of-work, the
block cannot be changed without rebuilding the work. As new blocks are chained after
it, the work to change a block would include rebuilding all the blocks after it. The
proof-of-work also performs as a stochastic consensus algorithm, in part determined
by the computational power of a node that efficiently solves the Byzantine General
Problem proposed by Lamport [34] and as well as a means to determine representation
in a majority decision making. This means that as long as a majority of CPU power is
controlled by honest nodes, the chain of blocks created by that majority will remain
hegemonic, and therefore, honest. In this regard, the honest chain will represent the
greatest proof-of-work effort and will always grow faster and outrun any other competing
chains. Nonetheless, in [1] the author points out that the incentive system in Bitcoin’s

12

blockchain helps to encourage nodes to stay honest and mitigate Sybil Attacks since,
for a greedy node to be able to defraud people by stealing back his payments, it would
require the attacker to assemble more CPU power than all honest nodes to rebuild
the proof-of-work of the concerned blocks; the same power that could be used to mine
new honest blocks faster than anyone else in the network and obtain the rewards.
Finally, the ensemble of all these solutions allowed Bitcoin’s blockchain to solve the
double-spending problem that arises with a digital currency. It all comes to agreement
and transparency, agreement on the order of transactions, and transparency on all the
history of transactions ever executed on the network. Naturally, pseudo-anonymity
is assured by using digital signatures. This way, a user only needs to sign a hash of
the previous transactions with its private key and the public key of the next owner to
execute a transaction.

While not every blockchain works the same way Bitcoin’s blockchain does, we
thought it was important to recapitulate the different breakthroughs that led to its
achievement. In this regard, we consider Bitcoin’s blockchain as the result of many years
of research in the fields of cryptography, computer networks, distributed systems, and
especially an eagerness for a change of paradigm regarding our current economic system.
It is no coincidence that the appearance of Bitcoin coincides with the financial crisis
of 2007-2009. It can be found in the first transaction of the first block, a hexadecimal
message that goes as follow: “The Times 03/Jan/2009 Chancellor on brink of second
bailout for bank”. The message refers to The Times’ newspaper headline of January
the 3th, 2009 as the British government prepared to bail out a bank that had declared
itself in bankruptcy due to the economical crisis. Although this dissertation does not
pretend to explain the complexity of financial behavior in the current economic system,
we can relate that the existence of central authorities within any system represents a
potential single point of failure.

2.3 Blockchain Generalities

Blockchain technology is another form of Distributed Ledger Technology (DLT), which
is a board term for all shared databases. Although all blockchains are DLTs, all DLTs
are not necessarily blockchains. In this regard, blockchain can be considered the most
recent member of the DLT family. Since 2009, blockchain technology has proliferated
in the digital world, evolving into more complex systems accordingly to the top-level
application and the entities participating in the network. However, despite all this new
diversity of blockchains, we can find that a large majority share common elements. In
this Section, we describe the generalities and the elements that compose the blockchain.

13

2.3.1 Properties

Bitcoin’s blockchain is proving itself to be a solid alternative to the traditional financial
system. The main reason for its success comes from its properties that provide guaran-
tees and assurances to the end-user. However, not every blockchain assures the same
level of guarantees. Indeed, depending on certain features and types of blockchains (per-
missionless or permissioned), some properties may or may not be assured. Nevertheless,
some properties are common to every blockchain.

2.3.2 Types of Blockchain

We can distinguish two types of blockchains: permissionless and permissioned blockchains.
A permissionless or open blockchain is a blockchain that is accessible to any node.
Nevertheless, restrictions may apply in some cases, such as the case of the Hybrid
blockchain, which is a compromise between permissionless and permissioned blockchains.
A permissioned blockchain, on the other hand, is a blockchain where participants of the
network are already known and trusted. According to the nature of each blockchain
project, the network will not have the same characteristics, guarantees, or performances.
While a permissionless blockchain will guarantee the equity of participation and trust
at the cost of lower performance, a permissioned blockchain will guarantee better
performances at the cost of trust. Indeed, in a permissionless blockchain, any node
can join the blockchain network even if it is malicious. Thus, a consensus algorithm
capable of dealing with byzantine nodes is essential in these networks. Nevertheless,
these algorithms require a higher complexity to reach consensus, which directly impacts
the overall performance of the network. As an example, the Bitcoin network can only
handle between 7 and 10 transactions per second because every transaction has to be
verified and replicated in all nodes. Bitcoin network has a yearly average of 14, 6041

reachable nodes. Therefore, an average of 10 min is needed to propagate a block to
verify the transactions and update the ledger. Figure 2.3 synthesizes the different types
of blockchain and their details can be described as follows:

• Public Blockchain: it is a permissionless ledger. Every node participating in
this network has the same level of rights as any other node in the network. Nodes
are allowed to mine and validate blocks. The code of the blockchain protocol
is open source, and changes to the core system can only be achieved through
collaboration and collective agreement. It is considered to be truly decentralized
because there is no central authority that has clear control over the network. Its

1https://bitnodes.io/dashboard/ - Consult on July the 26th, 2022

14

Figure 2.3: Types of blockchain.

consensus algorithm must be resilient to byzantine nodes and scalable to large
networks.

• Private Blockchain: it is a permissioned ledger. Nodes participating in this
network are known and trusted by a central authority. Different rights may be
granted to each node, creating different roles or levels of participation in the
network. Access to this network is regulated by an access control policy. It cannot
be considered a decentralized ledger since the nodes are under the influence of
a single group or a single authority. However, this type of blockchain does not
necessarily seek decentralization but rather to obtain certain benefits provided
by blockchain properties such as traceability, transparency, and immutability,
depending on the top-level application. They have the advantage of being able
to use non-stochastic consensus protocols that do not require a complex and
secure mechanism to neutralize Byzantine nodes. Instead, a simple State Machine
Replication (SMR) mechanism and an agreement protocol are sufficient to agree
on the state of the distributed ledger, which also provides better performances.

• Consortium Blockchain: it is a permissioned ledger. In this type of blockchain,
the register is distributed among nodes belonging to different entities or organi-
zations that form the blockchain consortium. Nodes are authorized and known
by each entity but not necessarily by the other organizations that form the
consortium. In this regard, the distributed ledger is no longer controlled by a
unique central authority, and therefore, trust is not presumed. It is considered
to be a decentralized ledger but not of open access. Regarding the method to
reach consensus on the state of the distributed ledger, a Byzantine fault-tolerant

15

mechanism needs to be enforced since there is no guarantee by all involved parties
that a node is not malicious. A consideration of the size of the network must also
be taken into account to better determine a consensus algorithm.

• Hybrid Blockchain: it is a permissioned ledger with a permissionless access
policy. Miner nodes are usually controlled by a single or a group of entities, while
other (public) nodes can join the network as validator nodes in exchange for some
sort of compensation. This model allows an entity or a group of entities to be
credible in the face of public opinion while maintaining control of the network
and high performances.

2.3.3 Base Elements

In this Section, we detail the basic concepts that forms blockchain technology.

2.3.3.1 Miners

The term miner was first introduced to refer to a computer node in the Bitcoin network
that would first validate and then compile transactions in a block hoping to be the first
to solve the proof-of-work and obtain the incentive (reward) granted by the network.
Today, it is used indistinctly to refer to a node participating in the blockchain consensus
mechanism with the ability to propose a new block.

2.3.3.2 Validators Nodes

A validator node is a node in the blockchain network that maintains the distributed
ledger. Its role is mainly to verify that transactions are valid. In the Bitcoin network,
a validator node does not propose new blocks; instead, it only verifies the validity of
the transactions within the blocks proposed by the miner nodes. In other blockchain
networks, a validator node can also be a miner node.

2.3.3.3 Addresses

An address is a unique identifier in the blockchain. It is usually a public key or
derived from it. Blockchain technology makes heavy use of asymmetric cryptography
primitives to create unique identifiers in the blockchain. A user will usually own a pair
of public/private keys. The public key can be perceived as a bank account number,
an email, a username, or any form of unique identifier within the blockchain that can
be securely shared. The private key, however, is the element that allows the transfer
of a digital asset attached to its correspondent public key to another address in the

16

blockchain. It also works like a digital signature that allows to claiming responsibility
for a transaction. In this regard, a “transfer” could be understood as an update in the
distributed ledger. Addresses are the fundamental element of a transaction since they
are the subject of the ledger and they serve as the origin and destination of a blockchain
transaction.

2.3.3.4 Transactions

A transaction is a new entry in the distributed ledger. Depending on the use of the
blockchain, the entry of the transaction can take different forms. It can be a transfer of
value between two or more addresses in the blockchain, the registration of an event,
GPS coordinates, data files, or simple references to any digital information. It can
virtually be anything that needs to be stored in the distributed ledger.

2.3.3.5 Blocks

Blocks are data structures within the blockchain where transactions are permanently
stored. Blocks are built by miners who collect some of the most recent transactions
not yet validated by the network. In this regard, a block can be seen as a page of a
traditional bookkeeping ledge compiling transactions within a time frame. Blocks are
appended one after the other forming the blockchain data structure.

2.3.3.6 Mempool

The mempool is a common term to refer to a physical space in the node’s memory
where unconfirmed transactions are waiting to be included in the next block. When a
transaction is created, they are broadcasted in the network for other nodes to validate.
The nodes will collect all transactions that were propagated in the network and will
store them in the mempool where transactions will await until either a node selects
them for inclusion in the next block (the node mines the block) or drop them when
another’s block containing the same transaction arrives for validation.

2.3.3.7 Forks

Forks in the blockchain ecosystem can be characterized in two different manners.
An intentional fork and an unintentional fork. Intentional forks are also known as
programming forks. Usually, a programming fork happens when a modification in the
source code of the blockchain is introduced into the system. As not every miner node
implements the update at the same time, two versions of the blockchain are created
until all miner nodes update the source code. If a disagreement on the implementation

17

of the system occurs, two versions of the blockchain likely exist. On the other hand, an
unintentional fork happens when two or more new blocks are proposed to the network
almost at the same time. This can only happen in stochastic consensus algorithms
where the probability for a miner node to propose a new block is determined by protocol
factors. This could be a consequence of a low difficulty creation block, a high block
creation rate, or a small block size. Usually, there are mechanisms within the consensus
protocol that foresees and mitigates these forks.

2.3.3.8 Digital Assets

A trivial definition of an asset is a useful or valuable thing. A digital asset in the
blockchain context can be defined as digital and valuable information that resides in the
blockchain. Today, we can mainly difference two types of digital assets in blockchain
that we can define as follows:

• Cryptocurrencies: it is the native asset of a blockchain conceived to function
as a means of exchange. It is considered a currency since it presents all money
properties such as fungibility, durability, or portability. Nevertheless, there is a
debate on wheatear cryptocurrencies should be considered real currencies. The
most popular cryptocurrencies are Bitcoin (BTC) and Ethereum (ETH). In the
case of Bitcoin, it is the native asset of Bitcoin’s blockchain since its existence
is intrinsic to the Blockchain itself. It was defined in [1] as a chain of digital
signatures.

• Tokens: it is a form of a unit of value that resides in a blockchain. They are
often issued using smart contracts, which is a programmable contract in the
blockchain that executes automatically upon the fulfillment of the contract, it is
invoked via a top-level application. Depending on the top-level application and
the token standard used to create it, they can represent different forms of a unit
of value. Some of the most popular token standards are those from the Ethereum
blockchain, which includes the ERC-20 and ERC-721 standards, which are a set of
rules to create fungible and non-fungible tokens respectively. Tokens can represent
financial assets like a share in a company, voting power, a government-issued
currency like the USD, or even a deed for an artwork.

It is important to point out that, according to the use case, some blockchains may
not make use of digital assets; thus, they are known as tokenless blockchains. They
are often used in cases where there is no need for a transfer of value to take place in
the network. Nevertheless, other forms of transactions are viable such as sharing data
between users.

18

2.4 Blockchain Consensus Algorithms

The problem of reaching consensus in blockchain is similar to the problem of reaching
consensus in traditional distributed computing systems. However, the consensus target
for blockchain is for all nodes to create a unified view of the network’s entire history
of transactions. In practice, a blockchain system such as Bitcoin or Ethereum, which
are permissionless systems, needs a consensus protocol capable of considering several
physical challenges, such as network connectivity, average network bandwidth, faulty
or byzantine nodes, the size of the network, and its ability to scale in terms of the
number of transactions per seconds, or the rate in which transactions are created. Such
considerations are not treated in the same manner in permissioned blockchains since
several elements are controlled by the consortium or the private entity, such as the
bandwidth and the number of nodes. Therefore, it is crucial to take into account the
functionality of each blockchain to correctly characterize its consensus algorithm.

2.4.1 The Nakamoto Consensus (Proof-of-Work)

In a permissionless blockchain like Bitcoin or Ethereum, the network model is a peer-
to-peer overlay communication network on top of the Internet. Every node runs an
instance of the Nakamoto protocol [1] and maintains a local replica of the blockchain.
Messages are considered to be exchanged in a partially synchronous fashion, which
means that the transmission delay of an eventual message is bounded to guarantee
continuity in the consensus protocol. The Nakamoto consensus allows a homogenous
network, meaning that there are no coordinating roles or a predefined or deterministic
leader node. Each node has a probability ρ of mining the next block and each node is
capable of verifying information on its own with no or minimal trust among the nodes.

For the distributed ledger to remain consistent, a common order over the transactions
has to be agreed upon among the nodes. This problem is solved by broadcasting a block
created by one of the miners participating in the consensus process. A block contains
a set of transactions Tb that the node which created the block has chosen to commit.
The block is then distributed to all peer nodes in the network. Each node verifies the
validity of the transactions and the proof-of-work associated with the block. Once the
block has been propagated and validated in a majority of nodes, a consensus on the
state of the distributed ledger is reached. To determine which miner will generate the
block, the nodes attempt to find a solution to the proof-of-work with a given probability
of success. The proof-of-work consists in finding a nonce, which is a string of bytes that
combined with the block header, results in a hash Hb such as Hb has a given number
of leading zeros. Nodes are capable of verifying any proof-of-work with no effort by

19

calculating Hb with the given nonce that is included in the block’s header. The number
of leading zeros needed to be found is commonly called target or difficulty. The target
is adjusted by every node every 2,016 blocks and it aims to regulate the throughput of
mined blocks in the network such as there is one mined block every 10 minutes. This
rule provides, time for newly founded blocks to propagate through the entire network
and gives a consistent issuance of newly created bitcoins, which provides stability to
the cryptocurrency. Indeed, once a block has been mined, it takes a certain amount
of time for the other miners to know about the presence of the new block, and until
then, miners are still competing against the new block instead of adding to it. In other
words, miners are still trying to find the proof of work from a previous block while the
new block is being propagated through the network. During this period, other miners
might find a valid block and start disseminating their newly founded block. At this
point, a race between the blocks to reach a higher number of nodes is held. Eventually,
the block that reached a greater number of replicas will prevail since a greater number
of replicas will start adding to that block. According to the longest chain rule defined
in [1], nodes will always conserve the longest chain in the network. Therefore, if a node
finds out the existence of an alternative chain longer than his, it will update its ledger
with the predominant one. In this regard, all blocks that were added to the smaller
chain from the moment of the fork are dumped; and with it, the computational effort
to find them. Such blocks are called orphan blocks and represent waste in terms of
computational resources.

We can notice that there is a relationship between the target or difficulty and the
rate of orphan blocks produced in the network. Indeed, the easier is to find a block, the
more competing chains will appear in the system, and thus, the more energy will be
wasted due to chain reorganization. On the other hand, the harder is to find a block,
the slower would become the global transaction throughput in the Bitcoin network and
the less accessible would become for miners to participate in the system since more
specialized hardware would be needed to mine new blocks. A 10-minute inter-time
block seems to be a fair tradeoff of the Nakamoto consensus between a healthy network
(reducing the number of forks and reducing the number of orphan blocks) and a low
transaction confirmation time, according to [1].

2.4.2 Proof-of-Stake

Another type of consensus protocol for blockchain is the Proof-of-Stake (PoS). It is a
consensus proposed by the blockchain community that aims to solve Bitcoin’s energivore
problem. In this model, a node participating in the consensus protocol must stake a
certain amount of cryptocurrency to be chosen as the next validator node proposing

20

the next block to obtain the network reward. The model works under the assumption
that if a person holds a stake in the system, they will never try to sabotage the system.
Validator nodes are often chosen by the amount of stake they are putting into the system.
In other words, the probability of proposing the next block is directly proportional to
the amount of value staked. However, if only the wealthiest participants can propose
new blocks, then the outcome will be rather deterministic for a distributed consensus
algorithm. In this regard, there are several ways to introduce randomization into the
consensus protocol to provide opportunity and fairness such as chain-based PoS [36],
delegated PoS [37], and BFT-based PoS [38]. Other different variations of PoS emerge
as new blockchain projects adopt this approach while keeping specific features of their
system. Nevertheless, the main idea remains the same. Peercoin [39] was one of the
first blockchain projects to introduce a consensus mechanism based on the concept of
proof-of-stake.

2.4.2.1 Chain-based PoS

In this model, the blockchain implementing the chain-based PoS selects first a set of
validator nodes according to stake capabilities and other inner policy criteria specific
to each system implementing the chain-based PoS. The agreement process of reaching
consensus is discretized in rounds or block generation cycles. For each block generation
cycle, every validator invests a stake in the competition that is kept frozen until the
end of the round. The protocol then follows the two following steps:

• Validators pick transactions from the memory pool and create a candidate block.

• Validators try to solve a simple proof-of-work associated with the candidate block
as in the Nakamoto’s consensus but with a personalized target and within a
short-predetermined time interval.

The first validator solving the proof-of-work wins the right to propose the next
block and takes the reward. The difficulty target of each validator is calculated so that
it is directly related to the amount of value staked and the time that a validator has
been staking in the system. Peercoin [39] and Jelurida-nxt [40] are chain-based PoS
consensus.

2.4.2.2 Delegated PoS

In this model, a group of validators is chosen via a voting process. Users grant their
vote by delegating their cryptocurrency to a validator node. Validators with the greater
amount of stake raised are selected to participate in the consensus process. Once the

21

group of validators has been determined for a particular cycle, each validator creates a
block in a round-robin fashion during a predefined cycle.

As happens with Nakamoto’s consensus, fault tolerance is achieved if all honest
nodes own more than half of the total stake value. The probability for a malicious
agent to revoke a block drops exponentially as the chain grows. From an economical
point of view, a malicious agent should stake more than half of the total staked value in
the system to perform a 51% attack, which is economically expensive. Moreover, most
of the systems based on PoS imposes sanctions on those who try to defraud the system
by forfeiting their stake. Finally, although the Proof of stake model has proven to be
secure and durable, there are still some concerns related to the incentive mechanism of
the system that particularly impacts public blockchains. In a PoS model, it is more
difficult to participate as a validator in the proof of stack model since it is often needed
a minimum amount of stake to become a validator. This excludes a big proportion of
stakeholders that would like to become validators but do not have enough staking power
to become one. As a result, only the wealthiest have the opportunity to participate
in the consensus process and therefore have more weight on the network, which leads
to an excessive influence on transaction validation and sets the ground for an unfair
repartition of the wealth under the motto "the wealthier you are, "the wealthier you are,
the wealthier you get". As a regular stakeholder, you still have the option of delegating
your stake to a validator but you will depend on the good behavior of the validator.

2.4.3 Proof-of-Authority

The consensus algorithm Proof-of-Authority (PoA) was introduced by a group of
developers in 2017 [41] and it claims to be an enhanced version of proof-of-stake. This
model was designed to be used in permissioned blockchains using Ethereum Virtual
Machine (EVM) and therefore a group of validators can be chosen as the authority
of the network. The main idea is to use the validator’s identity as a form of stake
in the network. To this end, validators are needed to complete a mandatory process
of authentication in which government-issued documents are required to ensure that
block issuers (the authorities) can be held accountable. PoA relies on a set of N-trusted
nodes that are the authorities. Each authority has a unique identifier and a majority of
nodes are assumed honest, namely N/2 + 1. Each authority orders the transactions
that are issued by clients and creates blocks in a round-robin fashion to distribute
the responsibility of issuing blocks among all authorities’ nodes. Time is divided into
rounds in which each authority can issue new blocks. This scheme is considered to form
part of the Byzantine fault-tolerant (BFT) consensus algorithm family but uses fewer
messages. PoA has several advantages over PoW and PoS since no communication is

22

needed to reach a consensus between nodes. Blocks are issued in a pre-defined order
and at a fixed time interval by the authorized nodes which increases the transaction
rate and confirmation time. Moreover, energy consumption is much less important than
in PoW. On the downside, the consensus algorithm lacks decentralization. A study
in [42] claims that PoA in a permissioned blockchain deployed over the Internet and
with the presence of Byzantine nodes does not provide correct consistency assurances
for scenarios where data integrity is essential, and therefore, PBFT fits better in such
scenarios despite its lower performance.

2.4.4 Proof-of-Elapsed-Time

This model of consensus was introduced by Intel in 2016 [43]. It uses a Trusted Exe-
cution Environment (TEE) where the code of the consensus resides. The basic idea
is that each node generates a random number to determine how long it has to wait
before it is allowed to propose a block. The generation of the random number is based
on a mathematical distribution previously specified by the system. The TEE used by
Intel is the Intel Software Guard Extensions (SGX) [44] platform and it is primarily
used to ensure randomness and safety in the leader election process. When the node is
allowed to propose a block, SGX creates proof of the waiting time spent by the node
before proposing the block. This proof can easily be verified by other nodes with SGX
technology. The node runs a statistical test to determine whether the waited time indeed
follows the agreed distribution. This solution assumes that the TEE is indeed secure,
however, some studies claim that SGX and other trusted computing technologies are not
100% reliable [45]. This raises concerns about the capability of the consensus mechanism
to remain secure even when the TEE is compromised. Proof-of-Elapsed-Time (PoET)
has major advantages compared with the Nakamoto consensus, such as its efficiency
since there is no need for participants to compute expensive workload before creating a
block, and its fairness since this model achieves the objective of “one CPU equals one
Vote”. On the downside, all nodes have to use SGX technology to participate in the
consensus process.

2.5 Blockchain Applied to Mesh and Ad Hoc Net-
works

Mesh and ad hoc networks are two types of wireless network technology that rely on
device-to-device communication to create a network. In this communication model,

23

the network devices can communicate directly with each other without the need to
transit through a router, a telecommunication base station, or even via Internet Service
Providers (ISPs). In other words, there is no need for the Internet infrastructure to
deliver messages to a nearby station. Mesh networks, on the other hand, are composed
of wireless routers that can form a mobile wireless infrastructure, providing connectivity
to clients who are connected to the nearest wireless router. Both technologies can access
the Internet via a gateway station to access all the services that the Internet provides, as
in the case of Athens Wireless Metropolitan Network2; where a mesh network is deployed
in an isolated and geographically complicated area in Athens to provide connectivity to
the local inhabitants; or the case of Occupy Wall Street3 movement in 2011, where a
mesh network was deployed to ensure Internet connection to protestors after the local
government shut down the surrounding infrastructure where the movement was camping
to deprive them of access to the Internet. Nevertheless, Internet access is no longer
seen as a fundamental feature as it was for some use cases. Indeed, today the advances
in data processing and data storage capabilities allow the embedment of proprietary
services that are directly integrated into the routing devices. Edge computing has surely
enhanced mesh and ad hoc network capabilities and has brought into the spotlight new
useful use cases for these technologies. However, the protocolar level has almost not
suffered from significant changes, meaning that, in the case of MANETs, we are still
restrained from scaling due to long overhead and control messages from the routing
algorithm to perform the process of forwarding packets to their destination. It is also
worth mentioning that an ad hoc network is essentially a cooperative network, hence
the operation of the entire network relies on the willingness of participants to remain
active in the network. Such dependency on something as abstract as "goodwill" has
incapacitated the adoption of these technologies by the general public since there is no
incentive for a participant to remain active. On this subject, researchers have turned
their attention to blockchain to incorporate this technology in mesh and ad hoc networks.
One of the principal use cases for blockchain in mesh and ad hoc networks is the inclusion
of an economical model that offers rewards or incentives to run a node in these networks.

In [46], the authors propose a framework model where users could benefit from
blockchain capabilities to enable transparency and accountability in a mesh network.
Their idea is to create an economical, sustainable and decentralized Internet access
using a mesh network where participants can either pay or get paid for the usage of
the network infrastructure to recover the cost of network devices and maintenance

2http://www.awmn.net/content.php
3https://mashable.com/archive/how-occupy-wall-street-is-building-its-own-internet-video

24

by employing cryptocurrencies and smart contracts. Their work also includes a use
case study where an Hyperledger Fabric blockchain and an Ethereum-based Proof
of Authority blockchain are used for comparison. They also provide results on CPU
load, memory consumption, and transaction latency for both technologies. Their work
highlights the high CPU load on the mesh routers as the main cause for bottlenecks
since the hardware used for these types of equipment is often low-power/low-cost and
struggles to handle a high throughput of blockchain transactions.

Along the same line, the authors in [47] raise the need for mesh and ad hoc networks
to find a suitable way to encourage people to participate in a mesh or ad hoc network.
They propose an in-network blockchain using a novel consensus algorithm called “Proof-
of-Network”. In this model, network participants are economically incentivized to remain
active in the network. They make use of the routing algorithm information to quantify
the degree of connectivity of a node. The more a node is central in the network (has a
higher degree of connectivity), the more likely the node is to be selected as the next
miner and obtain the network reward. The authors argue that a tokenized blockchain
might encourage participants to participate in a mesh or ad hoc network while providing
a reliable tool for communitarian network governance. However, the authors have no
details about their consensus algorithm nor how they prevent blockchain concerns such
as block collisions from their proposed consensus algorithm.

More recently, Machado et al. [48] studied and classified different data forwarding
incentives in multi-hop MANETs using a blockchain technology that has been applied
in the state-of-the-art. They focus their work on the assumption that MANETs require
cooperative sharing of resources to enable data forwarding, but most often, the presence
of misbehaving nodes tends to undermine the network reliability by acting selfishly. Here
again, the authors argue that blockchain-incentivized services can deal with free-riders
nodes in MANETs. As an example, in [49], the authors proposed a decentralized mech-
anism for low-latency data forwarding, where participants are rewarded to forward data
according to different criteria. In this model, a time-locked puzzle mechanism is used to
distribute rewards. Every time a participant forwards data successfully to a destination,
it gets a solution to a puzzle. Hence, the first to claim the correct answer to a puzzle wins
the economical reward. This mechanism is very close to the proof-of-work reward system
in Bitcoin, however, the competition is about delivering messages instead of solving
a cryptographic puzzle. Most similar [50, 51, 52] also offer incentives for data forwarding.

Another popular use case of blockchain in mesh and ad hoc network is the utilization
of blockchain technology as a method for network authentication. The blockchain
properties such as data immutability, transparency, and authenticity, can be used to

25

grant access to a network while preserving pseudo-anonymity. A follow on the client
can then be performed to disclaim responsibility in case of misbehavior. Therefore,
blockchain technology can provide not only a form of network authentication but also a
tool for decentralized network management.

In [53], a blockchain-based authentication protocol for WLAN mesh routers is
proposed. The authors argue that to add a WLAN mesh router with authentication
capabilities using a traditional authentication method, a great deal of administrator
configuration is required. Every time a WLAN mesh AP is added to the network,
administrators need to configure secret keys on both the AP and the RADIUS server. In
their approach, each mesh AP runs a blockchain where immutable information containing
key elements for authentication is stored. The idea is to remove the centralized RADIUS
server and to make it distributed using blockchain. The authors implement their solution
in a test-bed environment and evaluate the average authentication delay for different
numbers of wireless hops. Results show that their blockchain-based authentication
method can reduce the authentication delay in a multi-hop environment when compared
to a traditional RADIUS authentication method.

In [54], a mesh network for IoT devices using a blockchain is proposed. In their
model, there are two types of nodes; the IoT devices that can create transactions and
execute smart contracts and the miner nodes, which can mine new blocks. The collected
data from the IoT devices are registered as a transaction and are eventually included in
the blockchain. In their proof-of-concept, the authors used a Raspberry Pi 3B as the IoT
device. The authors argue that their scheme provides better information management
for IoT systems while enhancing security.

Other researchers focus their attention on exploiting blockchain’s properties to
create a trusted management system at a network level. Routing strategies in mesh
and ad hoc networks are known to have particular needs due to their dynamic and
unstable topology and are far from being considered secure. Next, we present some
representative research where blockchain is used to deal with the trust issue in mesh
and ad hoc networks at the network level.

In [55], the authors propose a blockchain-based trust management system in MANET
using a lightweight consensus algorithm called Delegated Proof-of-Trust (DPoT). In this
scheme, policy-based and reputation-based trust management are used to calculate a
node trusted value. The authors use the additive increase multiplicative decrease scheme
for their proposal. To evaluate whether a node is malicious or trusted, the authors use
DCFM [56] over OLSR [20] as a representative detection mechanism for identifying
malicious attackers. When a node is identified as malicious, the node is flagged, and its

26

information is shared across the network using the blockchain. The other trusted nodes
in the network will remove their connections with the malicious node. This process
efficiently excludes the malicious node from the network and makes the transition of
information more secure. The blockchain used is a public blockchain that is maintained
by all nodes in the network. Miners are selected based on their trusted value, and as
consequence, only trusted nodes can participate in the DPoT consensus algorithm. A
node is elected leader by following the bully election strategy [57].

From another perspective, the authors in [58], propose a blockchain-based approach
to enable Unnamed Aerial Systems (UAS) such as a swarm of drones, to collect,
aggregate and redistribute routing information in a secure and trustworthy manner.
Their goal is to find a solution to the Route Disclosing and Pollution Problem [59] that
comes from UAS routing strategies, where malicious nodes can analyze the network
topology of the entire network and broadcast fake routing tables to interrupt the whole
network by exploiting proactive or reactive routing strategies. Their solution includes
the construction of a sub-graph of the entire network where each node in the sub-graph
can participate in the consensus process. The blockchain is distributed among all nodes
and it makes heavy use of smart contracts. Each node will submit a view of its network
topology that includes its neighbors and proof to the smart contract. A smart contract
verifies the integrity of the view and aggregates the different views to form a unified
view of the network. Finally, cluster-head nodes are granted by smart contracts with
sufficient routing information to deliver a packet but the entire network topology is not
disclosed. Evaluations show that their approach outperforms conventional methods in
preserving routing information confidential and secure.

Along the same line, the authors in [60] propose an enhanced version of the AODV
routing algorithm using blockchain technology. Their solution does not use a blockchain
per se; instead, they use Haber and Stornetta’s [29] time-stamping trusted system and
Merkle trees to establish a chain of nodes from the source to the destination. A smart
contract reads the generated chain of nodes and selects a path toward the destination
based on routing conditions to provide QoS.

So far, we have reviewed the literature on the usage of blockchain in mesh and
ad hoc networks from a general perspective. Nevertheless, there is a domain within
the MANET that is gaining “momentum” in recent years: Vehicular Ad hoc Network
(VANET), which is another form of mobile network that defines communication between
vehicles and roadside units (RSUs) as V2V and V2R. It may assist drivers in the driving
experience by picking the shortest route based on traffic optimization, identifying the
closest gas station, preventing accidents, and creating an ad hoc network that facili-

27

tates communication. Many researchers have been interested in integrating blockchain
technology with VANET, mainly to overcome the privacy and security limitations by
providing a tamper-proof network system but also to accelerate the adoption of smart
vehicles that can efficiently minimize the environmental impact in our ecosystem. For
the global industry, corporations are looking forward to relying on an intelligent trans-
portation system that ensures transparency, authenticity, reliability, and immutability
of the information. Like in mesh and ad hoc networks, VANET also needs to ensure that
the vehicles participating in the network are correctly authenticated and potentially
identifiable to be held accountable for any misconduct.

In this regard, the authors in [61] propose a blockchain-based decentralized au-
thentication approach for VANET. Their work intends to replace the traditional PKI
authentication method in VANET with a distributed ledger such as the blockchain.
In their architecture, three main entities participate in the authentication process:
Authentication Parties (AP), the RSUs, and the individual vehicles. The blockchain
used in this scheme is based on Hyperledger Fabric, which is distributed among the
AP and the RSUs. At first, each vehicle gets from an AP a set of public-private key
pairs and a pseudo-ID. After the issuance of the network credentials, the AP adds a
registration transaction to the blockchain. At this point, every entity in the architecture,
including the vehicles can access the public ledger to verify the information. In the
case of V2V communication, a vehicle can verify the authenticity of Broadcast Safety
Messages from another vehicle. In this scheme, only the Authentication Parties have
the right to issue transactions in the blockchain; thus, a misconduct report has to come
first from RSUs. A very similar architecture is presented in [62], with the difference
that smart contracts are deployed at the moment of authentication and key pairs are
loaded on the onboard unit.

In [63], a self-managed and decentralized system for VANET is proposed using
the Ethereum blockchain. In this model, RSUs are equipped with a decentralized
application interacting with the Ethereum blockchain. Authentication in the network is
performed via the user’s Ethereum address. Relevant control messages and registration
transactions are included in the Ethereum blockchain and therefore, users need to pay
small fees for each transaction. While the proposed architecture allows vehicles to easily
join the network, there are several downsides to this proposal, such as the energy used
to mine new blocks and the uncontrolled cost of transaction fees.

Another similar approach in [64] uses the Ethereum blockchain as a cooperative
protocol for authentication in VANET. In this scheme, an Internet of Vehicle (IoV)
can register in the Ethereum blockchain to provide forwarding services to another IoV.
The usage of the Ethereum blockchain guarantees the integrity and preservation of

28

the privacy of the IoVs. The authors validate their results through numerical analysis,
and their results show that the proposed architecture successfully increases the system
throughput and decreases the packet dropping rate.

In [65], the authors propose a decentralized trust management system based on
blockchain for rating the social behavior of vehicles in VANET. In their framework, they
assume that different RSUs might use different blockchain technology, and therefore, a
cross-blockchain technology will have to be used to conciliate all the information. A
cross-blockchain is a technology that allows transferring assets from one blockchain to
another without altering basic properties. The authors proposed a cross-blockchain
based on the Tendermint [38]consensus algorithm as the interoperability between dif-
ferent blockchains that might co-exist in VANET. In their vision, a vehicle can send
another vehicle’s trust value to an RSU, which will later be sent as a transaction to the
blockchain. If a vehicle’s trust value needs to be verified by an RSU or another vehicle,
they can do so by querying the blockchain. However, if the information is not in the
RSU’s blockchain, it can be solicited using the cross-blockchain. The authors argue
that this framework allows a better form of decentralization while reducing latency and
improving transaction speed. Other blockchain authentication solutions for VANET
include [66], which uses a Conditional Privacy-Preserving Authentication (CPPA)
protocol using a blockchain instead of a PKI-based protocol.

All the solutions proposed in this Section aim to improve the overall experience in
mesh and ad hoc networks by efficiently using blockchain properties for the benefit of
these networks. At the network layer, different propositions use blockchain technology
to enhance the process of routing packets to their destination or as a mechanism to
prevent and remove malicious nodes in the network. At the upper layers, the utilization
of blockchain was mainly proposed as a way to improve the authentication process of
nodes in the network but as a form of managing the nodes in a decentralized fashion.
Then, blockchain technology was proposed to support Decentralized Autonomous
Organizations (DAOs) in mesh and ad hoc networks in a more commercial approach.
We have also covered the utilization of blockchain as a platform to facilitate the
distribution of incentives to encourage people to use these types of networks. Finally,
we appreciated different blockchain applications for the management and enhancement
of UAS, VANETs, IoT, and IoV.

Nevertheless, none of them takes into account connectivity problems, and as conse-
quence, they all assume full connectivity among peers. In other words, the possibility
for these networks to split into two or more independent networks or to merge as a
single network is not contemplated as can often happen in MANETs. Indeed, until

29

now, we understand the blockchain as a peer-to-peer distributed system that maintains
a shared ledger in a connected network. Of course, the nodes are always capable to
connect and disconnect at will from the network, but the blockchain is still maintained
by the other connected nodes. In this paradigm, we assume that a split in the network
results from an anomaly in the network connectivity that triggers an unwanted event
that alters the status quo of the system; since a split in the network implies a fork in
the blockchain. Today, most blockchain projects solve the fork problem by choosing one
branch and ignoring the others. As we have already explained, Bitcoin’s blockchains
use the longest chain rule on the basis that the longest chain of blocks accumulates
more processing power. Other projects use a similar approach with peculiar differences
but the objective is the same: choosing one chain among the others. This solution
makes perfect sense in a connected network where transactions are interdependent since
having two or more versions of the same ledger have consequences on the data integrity.
As an example, a user would only have to change between the networks to perform a
double-spending attack in a Decentralized Finance (DeFi) application. Moreover, the
aggregation of the transactions that took place in the other chain would be extremely
complicated to achieve. Therefore, a unified version of events is necessary for certain
use cases, even at the cost of losing the effort spent in constructing other chains.

In the case of the solutions reviewed in this Section, many solutions make use
of DeFi applications in the context of mesh and ad hoc networks, which is the case
of [46, 47, 48, 49, 50, 51, 63, 64] where blockchain is used in-network. The utilization
of cryptocurrency for incentivization implies the maintenance of an accountable ledger
and therefore, the necessity of a unified common history of events. A split on this
network will result in the continuous application of the longest chain rule, which is
not optimal for networks that are meant to be dynamic. Likewise, the authentication
application in mesh and ad hoc networks using blockchain [53, 54, 64, 62] needs to
access a unified and updated version of the ledger at all times. In the case of a split
in this scenario, all new nodes that were authenticated during the fork and which
authentication register happens to be in the smallest chain will be lost after applying
the longest chain rule, leading to trust problems and data inconsistency during and
after the fork. It is important to point out, that changes in the network topology
already cause losses of information due to its dynamic nature. This behavior is not only
common but is intrinsic in mobile ad hoc networks.

In our solution of which this thesis is the object, we propose a solution to the
split and merge problem for blockchain technology in mesh and ad hoc networks. Our
solution is based on the concept of a graph of blocks and no longer follows the traditional

30

blockchain structure. In this regard, we focus our attention to address the problem of
having legitimate alternative chains and guaranteeing data consistency in each network
partition. Therefore, our work is adapted to dynamic networks. Next, we present a
state-of-the-art of relevant work that has incorporated the concept of a graph of blocks
as another form of blockchain structure.

2.6 Direct Acyclic Graphs and Blockchain

A Direct Acyclic Graph (DAG) is a mathematical concept coming from Graph Theory.
It is composed of a set of vertices and a set of edges, such as each edge is directed from
one vertex to another in a way that those directions will never form a closed loop. In
recent years, and partly because of the popularization of blockchain, DAG-based data
structure has been used as another form of DLT in the same way that blockchain is
used. In that sense, DAG-based data structures are trying to solve the same problems
that blockchain technology solves. While blockchain builds a chain of blocks as a data
structure, DAG-based DLT creates a graph of nodes or blocks to form its data structure.
During our research, we noticed that the primary motivation to create such graphs
was mainly correlated to the need of improving the transaction throughput limited
in blockchain, which significantly differs from our motives to create a graph with our
Blockgraph. As far as our research is concerned, none of the protocols presented in this
Section solves the problem of split and merge in MANETs. We can differentiate two
main forms of DAG-based DLT: Block-DAGs and Blockless-DAGs.

2.6.1 Block-DAGs

Block-DAGs are a DAG-based DLT that uses blocks to compile transactions in a
distributed network as is done in the blockchain. Figure 2.4 illustrates an example of
the structure created by Block-DAGs. One of the main barriers to blockchain scalability
is the orphan rate problem. Orphan blocks are blocks that are eventually not included
in the main chain or the longest chain due to unavoidable network propagation delay
or the inefficiency of a consensus algorithm to terminate on every single block. The
main motivation to avoid the creation of orphan blocks or at least, minimize its rate
is to maximize the transaction throughput performance, and therefore, the overall
performance of the blockchain. Nevertheless, eliminating orphan blocks is not an easy
task. In most blockchain applications, transactions are co-dependents, and being able
to determine a specific order and validate each transaction to ensure that no rules are
broken, is of major importance. An example of this issue would be the double-spending

31

Figure 2.4: Example of a Block-DAG data structure.

problem. Detecting and ensuring these properties requires a fast consensus that can
keep up with the utilization of the network (transaction rate). Thus, orphan blocks are
eventually created, either because they contain fraudulent transactions, because the
correct order of events is not respected, or because the rate at which blocks are created is
higher than the capacity of the blockchain system. These blocks that are never included
in the blockchain data structure imply costs and a waste of computational resources that
should be minimized. The cadence at which orphan blocks are created depends on the
block creation rate or its size. This phenomenon is explained because by the time a new
block propagates throughout the network, other new blocks which do not reference the
block that is being propagated are likely to be created, resulting in spontaneous forks in
the blockchain. For that reason, Satoshi’s original system implements mechanisms such
as the longest chain rule and PoW consensus as we have explained in Section 2.4, which
regulates the block creation rate to accommodate the network propagation needs and
minimize orphan blocks. However, even if those mechanisms are efficient in securing
the blockchain and guaranteeing strong data consistency, its performances are limited
by those same mechanisms. At present, blocks are mined in the Bitcoin network every
10 minutes and the average confirmation time for a transaction is between 3 and 7
minutes 4.

Block-DAGs are considered a solution to the orphan rate problem in the blockchain.
It modifies the block structure so that a block can refer to multiple predecessors
allowing a newly created block to refer to several branches created by forks. However,

4https://www.blockchain.com/charts/avg-confirmation-time

32

by incorporating different branches, some blocks may have conflicting transactions.
To avoid this problem, several approaches are proposed in the literature. Zohar
et al. from the Hebrew University proposes to use Block-DAG systems, such as
GHOST [67] and INCLUSIVE [68], as a solution to increase the transaction throughput
in Bitcoin’s blockchain while maintaining security. In addition, they have proposed
ordering algorithms, such as SPECTRE [69] and PHANTOM [70], to ensure data
consistency and prevent double-spending attacks. In these protocols, new blocks are
allowed to reference all known childless blocks by a miner node. In other words, a
miner can propose a block that refers to all known blocks at the end of a branch. This
process creates a DAG-based data structure where blocks are partially ordered. Thus,
it is only needed to define a particular order over blocks created in parallel to define
an order over the transactions. Once an order is defined, it iterates the DAG and
eliminates transactions that are in conflict. Their algorithm first identifies the blocks
that were created by honest nodes with a certain probability ρ, that were likely created
by misbehaving nodes are separated from the main DAG. In this way, the authors argue
that as long as the hashing power remains among honest nodes, including every block in
the DAG, it allows for obtaining better performances and increases the block creation
rate since their algorithm identifies conflictive transactions as a posteriori. Nevertheless,
limitations on the confirmation time and the exponential use of the memory space
are still a concern for these protocols. Moreover, there is a lack of self-regulation of
relevant parameters in the PHANTOM [70] protocol which raises questions about its
decentralization and distributivity.

Another work that uses block-DAG is [71]. In this scheme, nodes in the network
jointly create a DAG structure and subsequently interpret it as a byzantine tolerant
consensus mechanism. Nodes may or may not share the same view of the DAG,
and therefore an ordering process is needed. To this end, a consensus mechanism,
which is a simplification of the PBFT protocol, elects particular nodes as “Famous
witnesses”, which are trusted nodes to facilitate ordering and guarantee consensus
finality. The network can reach high transaction throughput if we assume a partial
synchronization of the nodes via a synchronization protocol and a highly connected
network. Decentralization, however, is weakened by the use of Famous witnesses since
those nodes can eventually collude to perform fraudulent actions. Additionally, the set
of trusted nodes might represent a single point of failure and could easily be the victim
of a targeted attack putting the whole network operation at risk.

33

2.6.2 Blockless-DAGs

In the work of Bencic and Zarko [72], a comparison between blockchain and blockless-
DAG revealed that the main difference between these two technologies is the choice of
structural design. While blockchain gathers transactions to form a block, blockless-DAG
forms nodes or units, where a single transaction is stored. Nevertheless, this statement
is not completely accurate since the problem of having two conflictive transactions that
were committed simultaneously still represents a challenge for data consistency in the
DAG-based paradigm. Many works use DAG-based structures, not only as a choice of
structure design but also as an alternative to finding more efficient ways of improving
scalability in DLTs. But scalability does not come without a trade. In some works,
scalability is obtained at the cost of losing strong data consistency or by granting special
privileges to certain nodes, and therefore, losing in decentralization, or by considering
important computational resources to execute complex ordering algorithms. Figure 2.5
illustrates a Blockless-DAG data structure.

Figure 2.5: Example of a Blockless-DAG data structure.

Authors in [73] use the concept of blockless-DAG to create a DAG-based data
structure called the Hashgraph. In this data structure, records of gossip about gossip
are stored to create correlations about who gossiped to whom and in which order. In
that sense, the history of all gossip events can be illustrated by a DAG, where vertex
are the events, that might or might not, contain transactions, and downward edges
are either a reference to the last known event of the node or a reference connecting
to the immediately preceding gossip from another node. The consensus algorithm
is asynchronous, nondeterministic, and tolerates byzantine nodes; it is based on the

34

hashgraph itself. Since all nodes in the network are aware of the chain of gossiping and
in which order, no real consensus is required, since everyone already agrees on the chain
of events. However, if a conflictive transaction is detected, the consensus algorithm uses
the concept of virtual voting. In this scenario, no real votes are cast or transmitted
over the network, instead, every node that owns a copy of the hashgraph can determine
what would each node have voted if they had been running a traditional Byzantine
agreement protocol. Thus, nodes reach a consensus without the need of sending a single
message. Their solution assumes that at least 2/3 of the nodes are honest, and strong
connectivity among nodes exists. While the hashgraph is one of the first DAG-based
data structures for DLT, their solution has problems determining the order of events
when two or more parallel events occur.

With most resemblance to Hashgraph, authors in [74] proposed a communication
history DAG for distributed systems in asynchronous networks. Their solution uses a
DAG-based structure to maintain communication history among peers. They reach
consensus by using an Asynchronous Byzantine Fault Tolerant consensus. In their work,
they divide the consensus process into rounds and can guarantee data consistency up
to a k-round. While this model is decentralized and distributed, it does not scale well
in large networks, as is often the case, in financial applications.

Another blockless-DAG DLT is IOTA [75], a cryptocurrency for IoT. The main
objective of this project is to maintain a distributed ledger of micropayments for IoT
systems. In this work, transactions are added atomically in a DAG structure called
the tangle. Hence, every transaction represents a vertex in the tangle. To validate a
transaction, a node has to validate two previous transactions that are the immediate
predecessors of the new transaction. Conflicts among transactions are solved by running
multiple times a tip selection algorithm in each node. The algorithm selects the
conflicting transactions that are more likely to be indirectly approved. Each transaction
is assigned a weight, and a cumulative weight is calculated from past transactions. The
higher the weight of a transaction is, the more the transaction is considered secure. This
is called confirmation confidence. To avoid the possibility of overthrowing a transaction
from the tangle and ensure finality, a trusted centralized entity, called the coordinator,
under the control of the IOTA Foundation, issues a milestone transaction every two
minutes to fully guarantee the confirmation confidence of previous transactions. This
centralized solution that ensures consensus finality is claimed provisory by the IOTA
Foundation; however, there is no clear timeline to replace this solution.

Similar to the tangle, the authors in [76] presented Nano, a cryptocurrency that
achieves consensus via a balance-weighted vote on conflicting transactions. In this
model, each user owns an account and every account has a transaction chain similar

35

to a blockchain. Nodes participating in this network keep track of account balances
rather than transaction amounts, which reduces memory complexity but eliminates
transparency and auditability properties. Voting power is gained by proving commitment
to the network. While Nano seems to scale in transaction throughput, it is clear that
the network is not completely decentralized and therefore vulnerable to greedy conduct.

In a more general use case, Byteball [77] allows a decentralized system for storage
and transfer of value of arbitrary data. It uses the blockless-DAG paradigm to store
transactions. Every transaction is linked to past transactions. The more a transaction
is located deep in the DAG, the more the transaction is confirmed. Byteball achieves
consensus by relying on the concept of the main chain, which is a chain of transactions
selected by an algorithm that represents the principal chain in the DAG. The authors
argue that as long as honest, reputable, and user-trusted “witnesses” agree on the main
chain, it is possible to define a total order of events and therefore identify conflictive
transactions. A conflict is solved by choosing the closest transaction to the main chain.
Nevertheless, a conflictive transaction is hardly detected at the time it was issued. It
may take some time to detect conflictive transactions, and therefore, it can impact
real-time applications.

More similar to our solution, the authors in [78] proposed a partition-tolerant
blockchain for IoT that uses a DAG-based structure called Vegvisir. In their approach,
the DAG-based structure is created due to IoT’s lack of connectivity or a high block
creation rate. Nevertheless, the number of previous block references in a block is limited
to two. To face the problem of short storage in IoT devices, they use a support-chain,
which is a regular blockchain in the cloud where devices can offload part of their DAG
to save space. However, no detail on the governance of the support-blockchain is
available. Very different from our approach, the creator of a block is the originator of all
transactions in the block, therefore, there is no need for transactions to be propagated in
the network. In this regard, Vegvisir only supports Conflict-free Replicated Data types
as transactions, which eliminates the need for a partial or a full ordering of transactions;
and thus, the need of employing any sort of consensus algorithm. Moreover, the authors
only consider partitions that are limited to short periods and do not consider node
mobility.

Other solutions to Bitcoin’s scalability problem besides Block-DAG that have gained
momentum are the Lightning Network (LN) [79] and other layers 2 solutions such as
Polygon/MATIC [80]. There are three desirable properties that a blockchain should
have, decentralization, security, and scalability. As the blockchain trilemma states, a

36

simple blockchain architecture can only achieve two out of three. For permissionless
blockchains such as Bitcoin and Ethereum, scalability is sacrificed. Therefore, Layer 2
solutions have positioned themselves as the primary solution to solve scalability issues
in blockchain technology. In the case of the LN for the Bitcoin Network, scalability is
achieved by limiting the number of transactions that are broadcasted on-chain. Instead
of recording every transaction between regular transactors, micropayment channels
are created between two entities that commit funds in a 2-of-2 multisignature Bitcoin
address. The two entities can then transact off-chain unlimitedly as long as both agree
to keep the channel open. In this regard, only the initial and last transactions of a
channel are propagated in the Bitcoin blockchain. Any attempt of fraud will end in the
100% redemption of the funds for the affected party. Moreover, there is no need to open
a dedicated micropayment channel with every entity to transact. It is possible to send
funds to a destination via multiple intermediaries without the risk of theft of funds.

We differentiate between two main types of DAG-based systems: Block-DAG and
Blockless-DAG. While Block-DAG compiles transactions in blocks or other structures
that ensembles transactions, blockless-DAG links transactions together without the need
for a container structure; which eliminates the need to order transactions within a block
but still requires performing an ordering among the other transactions. Block-DAG
solutions were mainly proposed as a solution to the orphan rate problem in Bitcoin’s
blockchain, while blockless-DAG came as a simplification of the block structure to
facilitate ordering and as an alternative to Nakamoto’s consensus algorithm. In any
case, as we explained from the work that was presented in this Section, scalability can
be achieved but at a cost of losing strong consistency. Moreover, security performances
have not been fully validated since DAG-based structures are still considered in their
early stages of development.

Despite these interesting works on DAG-based DLTs, they focus mainly on scaling
the transaction throughput and do not consider network connectivity, except for [78].
Hence, these solutions are not suitable for mobile ad hoc and Mesh networks. Although
the authors in [78] consider IoT devices’ connectivity, none of the previous solutions
can deal with topology changes. Therefore, the main goal of this thesis is to provide
mobile ad hoc and mesh networks with a blockchain-like data structure capable of
dealing with mobility and changes in the network topology. As a form of contrast,
our DAG-based solution (Blockgraph) does not use its DAG structure to increase the
transaction throughput in some blockchain systems, nor as an alternative to achieve
consensus on a distributed system. Instead, our solution obtains its DAG data structure
to solve the split and merge problem in mobile nodes. To this end, different branches

37

in the DAG, represent partitions in the network topology that occurred due to node
mobility. To our knowledge, no work in the literature presents a DAG-based DLT
solution to solve the split and merge problem in mesh and mobile ad hoc networks.

2.7 Consensus for Mobile Networks

Reaching consensus in distributed or decentralized systems is a problem that has widely
been studied by researchers. Basically, the consensus problem consists of a situation in
which several spatially distributed nodes, agents, or processors must reach a common
state on a value, a ledger, an output, or a sequence of commands, but without the
intervention of a central coordinator. Most of the consensus algorithms studied in the
literature are considered static in the sense that the communication network among
processors is reliable. However, the dynamic nature of mobile networks requires tight
coordination among nodes. In this Section, we present a state-of-the-art on consensus
algorithm for mobile networks. We are especially interested in those algorithms that are
partition-tolerant in mobile networks. Nevertheless, few of them highlight this property.

Authors in [81], propose a dynamic consensus for mobile networks. In this work, the
authors focus on solving what is known as the distributed average consensus problem,
in which, given a graph of nodes, each node has a number associated with it and
the goal is to find the mean value of all these numbers across the graph, based only
on communication between neighbors on the graph and on local computation. Their
solution includes a dynamic consensus based on adjacent matrices from neighbor nodes
to form a Laplacian matrix from which a Laplacian consensus dynamic is inferred. They
provide proof that a Laplacian dynamic is not sufficient to provide consensus tracking
in the case of network splitting and merging and propose modifications to the equations
to make the consensus partition-tolerant. Other works solving the average consensus
problem in distributed systems are [82, 83, 84]. While these consensus algorithms can
reach consensus on a single value in a distributed network, they can not maintain an
ordered history of events needed in DLTs. This is because most of the applications
using average consensus algorithms such as [85, 86] are implemented for Mobile Wireless
Sensor Networks (MWSN), which are often constraints at the hardware level in terms
of computational, power, and memory resources, even worse than MANETs.

In [87], the authors propose a stabilizing consensus in mobile networks for biologically-
motivated systems. In their approach, the authors argue that a stabilizing consensus
does not need that each node commits to a final output at some point. Instead, they
consider that each node can change its current output as the execution proceeds. Their

38

stabilizing consensus is mainly used to converge in a time-sensitive value that could
represent a direction, speed, acceleration, or localization in a flock of mobile nodes.
Since the output is sensitive to change, this stabilization implies a constant modification
of the agreed output which only achieves a weak consistency and leaves no traces of the
history of events.

In another work, Sun et al. [88] implement a distributed consensus algorithm for
clock synchronization in dynamic networks. Their goal is to synchronize every node in
a mobile network in a distributed and decentralized manner using timing messages that
are broadcast randomly. A consensus on a single time is never reached, however, each
node manages to synchronize with its direct neighbors providing accurate overall time
synchronization. In this case, the consensus finality is at a system level and not at a
data user level.

DREAM [89] is a data replication technique for real-time ad hoc mobile databases
that uses a State Machine Replication technique. The solution considers the mobility
of the nodes as a factor in the managing of the data. In their scheme, not every data is
replicated in all servers, instead, servers are selected based on an algorithm to determine
which data should be replicated. The solution reaches a consensus on the data that is to
be replicated but at a cost of centralization. A hierarchy of nodes is necessary for this
scheme to succeed since each node plays a role. Moreover, the synchronization process
might alter previous entries of the database without keeping a trace of the evolution of
the data.

In the same line, [90] proposes a replication extended state machine suitable for
MANETs. In their work, they assume one client at a time submitting transactions
into the system. The system achieves consensus in 4 phases and uses a hierarchical
structure. Nevertheless, there is no consideration of the split and merge problem.

The consensus problem in mobile networks is a well-studied case in the field of
distributed systems. Nevertheless, several restrictions limit the solutions that we
have presented. On one hand, a solution to the consensus problem is considered in
resource-restrained networks such as the case of MWSN. Here, a simplification of the
application requires only reaching a consensus on a single value without taking into
account conflictive transactions or ordered events. On the other hand, an SMR approach
is used where a hierarchy of nodes exists to manage the data replication in the mobile
network. These trade-off between node centralization in the SMR model and the single
data convergence in the average consensus model limits the potential user applications
in mobile networks. In the case of more traditional consensus algorithms such as
Paxos [91], PBFT [35], or RAFT [19], there are no solutions applied to mobile networks

39

using these algorithms. The main reason is that these consensus algorithms assume high
connectivity and a small size network; something rather scarce in mobile and dynamic
networks. As far as we know, C4M, the solution we present in this dissertation, is the
only consensus algorithm designed for blockchain-like DLTs and particularly for our
Blockgraph, that works in a mobile environment with the flexibility to support frequent
changes in the network topology and that is partition-tolerant.

2.8 Chapter Summary

We have introduced in this chapter the motives and technical backgrounds that are at
the origin of blockchain technology and we came to better understand blockchain as
a contribution to distributed and decentralized systems. We explained the different
types of blockchains, their properties, and how they are related. We highlight the
fact that blockchain technology not only is relevant to solving the problem of double
spending that arises in financial applications but it also finds its place in all sorts of
decentralized applications as we saw in our state-of-the-art. We introduced the main
consensus algorithms used in blockchain technology and how are they related to the
different types of blockchain. Furthermore, we have contextualized our contributions by
providing the state-of-the-art in the different areas of our research. In the next chapters,
we further detail our contributions to the field by providing the necessary technical
elements, the details of our implementations, and the results.

40

Chapter 3

Blockgraph

This chapter presents a detailed explanation of our Blockgraph solution; a framework
that allows the utilization of a blockchain-like data structure in mesh and mobile
ad hoc networks. We present the network characteristics in which our Blockgraph is
contextualized, we break down each component of our framework and explain its function
and their correlation; we provide details on the construction of the data structure, and
explain the merge synchronization procedure. Blockgraph inherits important blockchain
properties, and therefore, it also has the same guarantees as those of the blockchain,
which provides mesh and ad hoc networks with a blockchain-like technology adapted to
the needs of the network.

3.1 Introduction and context

Advances in Computer Sciences have enabled researchers to provide better solutions
to contemporary problems and innovate with new solutions to improve the quality
and life experience of all of us. One of the research areas within computer networks
that has constantly been evolving is Mobile and Ad hoc Networks (MANETs). As an
example, let us take the different areas within MANETs that have aroused interest.
Vehicular Ad hoc Networks (VANETs) are a relatively recent type of MANET that
enables effective communication between vehicles or roadside equipment; VANETs are
meant to enhance security and provide a better mobility experience to users. Flying
Ad hoc Networks (FANETs) are composed of a set of Unmanned Air Vehicles (UAVs)
that are used to monitor remote geographical areas and other military and civilian
applications. FANETs enable multi-UAV communication, which enhances cooperation
and collaboration between UAVs. Other examples of MANETs include Smart Phone
Ad hoc Network (SPAN), which creates peer-to-peer network communication without
relying on cellular carrier networks; Internet-based Mobile Ad hoc networks (iMANETs),

41

which support Internet protocols such as TCP/UDP and IP; and Military or Tactical
MANETs, which has a particular emphasis on data rate, real-time demand, fast routing
during mobility, and security. All these networks consist of a set of mobile nodes
connected wirelessly in a self-configured, self-healing network without having a fixed
infrastructure and with the possibility of frequent changes in the network topology due
to nodes’ mobility. In parallel, significant advances in computing processing, volume
storage, and radio capabilities have significantly enhanced the use of MANETs by inte-
grating more advanced and sophisticated embedded services and applications [92, 93].
Indeed, Multi-access Edge Computing (MEC) has provided MANETs with an all-in-one
set of resources to run an independent network where services and applications are
embedded and distributed in the nodes. In this regard, it is possible to conceive a full
stack of applications and services, like those of the Internet, that can easily be deployed
in the form of a private network. We can certainly foresee several use cases where cor-
porations, civilians, or private entities could make use of these private networks to carry
on with their missions while ensuring security and data privacy. MEC technology also
brings some advantages, it allows running applications and performing processing tasks
closer to end-users, which reduces latency and network congestion, and applications
perform better in general. However, in the context of MANETs where nodes are mobile
and distributed, edge computing nodes need to remain synchronized to ensure data
consistency. To this end, researchers from distributed systems field have also done their
part to contribute to the enhancement of these systems. An example of the production
of the combination of technologies mentioned above is Green Communications [94],
which produces mobile computer nodes with Edge computing capabilities in restrained
devices for mesh and mobile ad hoc networks.

In this context of high innovation, resources enhancement, and network dynamicity
is that we are interested in providing MANETs, with a blockchain-like technology that
allows legacy and new applications to benefit from blockchain properties and guarantees,
that until now, have been reserved for connected networks. In section 2.5, we gave
a detailed state-of-the-art on blockchain applied to mesh and ad hoc networks, we
concluded that section by arguing that blockchain technology is without a doubt useful
to MANETs for system services and users’ applications. However, every proposed
solution using blockchain technology in MANETs, either assumes an external blockchain
connected to the MANET via a gateway or assumes a certain number of non-mobile
nodes with higher computational resources to maintain the blockchain or does not
assume network partitions at all. In this regard, we consider it important that MANETs
can handle their own blockchain “in-network”, and consider network partitions.

42

3.2 The Split and Merge Problem

A mobile ad hoc network is a network wherein nodes communicate over a sequence of
wireless links that can include one or more intermediate nodes; since nodes are mobile,
partitions in the network are likely to happen. Network partitions result from a wireless
link disconnection or failures that occur when two previous communicating nodes move
such that they are no longer within the transmission range of each other or by the
presence of high interference. Likewise, wireless link formations occur when two nodes
that were too far from each other to communicate move such that they are within
the transmission range of each other. In a mobile environment, those are a common
phenomenon and are commonly referred to as split and merge respectively. Now, let’s
assume that every node in the network participates in the maintenance of a blockchain;
as we have already explained, a blockchain is a particular form of distributed database
that should ensure data consistency in all replicas. When a split happens in the mobile
network implementing a traditional blockchain conceived for a connected network, the
blockchain will treat the split as it treats a fork; and when the networks will merge
again, one of the two branches resulting from the fork will be removed (e.g., by applying
the longest chain rule) since both branches cannot coexist in the same chain. This
behavior seems perfectly normal in a traditional blockchain where the data structure
of the blockchain is a unique chain of blocks, and the network infrastructure allows
high availability and connectivity. However, in a mobile ad hoc network, where the
partition of the network is the result of intended mobility, we can no longer apply the
same paradigm since assuming that the mobility of the nodes has a purpose, a network
partition implies application and system independence over its distributed system. Of
course, it is important to notice that applications in a mobile ad hoc network can vary
from connected network applications. Finally, we are left with the question: How do
we maintain a blockchain-like data structure and ensure blockchain properties and
guarantees in a mobile environment subject to network partitions?

3.3 The Blockgraph Model

The Blockgraph is a full framework that considers three important aspects of the system;
the maintenance of a Distributed Ledger Technology (DLT) taking the form of a Direct
Acyclic Graph (DAG), a consensus algorithm capable of tolerating network partitions,
and a source of topology information to make the system adaptable to changes in the
network topology. The Blockgraph data structure guarantee blockchain’s properties
such as immutability, integrity, transparency, and authenticity of the data. In other

43

words, the Blockgraph model allows the maintenance of blockchain-like technology in
the context of mobile nodes capable of tolerating network partitions.

3.3.1 The System Model and Assumptions

We consider a system where a set of n independent nodes communicates over a mobile
ad hoc network. We define a node as an electronic device running the Blockgraph
framework, which includes the Blockgraph protocol, the consensus module, and the
group management module. In our system model, we assume that nodes have a unique
identifier like their MAC address or any other kind of unique identifier. Communication
links among nodes are bidirectional, and network topology may change frequently.
The Blockgraph network is constituted of a peer-to-peer overlay network over the ad
hoc network. Nodes create connections with every joinable node in the network to
exchange protocol-related communication. We assume that an authentication protocol
is needed to join the network and ensure that only trusted nodes can participate
in the network; we can suppose an external distributed authentication protocol is
employed to make the system as distributed as possible. Thus, we assume that the
Blockgraph network is constituted of well-known trusted nodes. [95, 96] are examples
of distributed authentication protocols for mobile ad hoc networks. The network
synchrony model is assumed to be a partially-synchronous message passing system with
bounded transmission delay between two nodes. The data propagation model might
vary depending on the message being propagated over the Blockgraph network, but we
can assume that a gossip-fashion information propagation model is primarily employed.
We also assume the presence of a solution to discover the network topology to provide
the group management module with a constantly updated view of the joinable nodes
in the network. This network information allows the whole Blockgraph framework to
better adapt to the topology changes and manage the DAG-based DLT.

3.3.1.1 The Mobility Model

The Blockgraph mobility model considers that any node participating in the Blockgraph
framework is capable to move at will. However, we believe that the top-level applications
that may use our Blockgraph solution do not entail a completely random model of
mobility. Instead, we assume that a certain order and control exist in the mobility of
the nodes, as can often be the case of a platoon of vehicles, team squads, or other group
movements that cooperates to achieve a common goal. Indeed, as the mobility factor
plays an important role in determining the specifications of the Blockgraph and must
particular, the group management module, the definition of the model of mobility is a

44

primary subject. While our Blockgraph solution manages to maintain a DAG-based
DLT in a group of nodes, our solution does not manage to achieve its goal in extreme
mobility conditions. In this regard, our experiments in simulations and testbed only
consider similar mobility conditions such as the speed, direction, and density of the
network.

3.3.1.2 The Blockchain Model

It is essential to notice that even though our Blockgraph cannot be considered a
blockchain due to the shape of the structure it forms, our Blockgraph inherits properties
and characteristics from blockchain technology. In this regard, and intending to keep it
simple, we call the blockchain model the ensemble of specifications and attributes of
our Blockgraph technology.

Our Blockgraph solution was first conceived as a permissioned blockchain in the
context of a specific project. In that sense, the Blockgraph network allows trusted
nodes that were previously authenticated to participate in the network. Permissioned
blockchains have the advantage to reduce the likelihood of a malicious entity performing
an attack since nodes need to be known to join the network. Moreover, by employing
access control in the network, we can relieve security mechanisms present in permission-
less blockchains that otherwise would not be possible to neglect. Thus, a permissioned
blockchain allows us to adopt a more efficient consensus algorithm that provides better
performances such as consensus delay, message complexity, or block finality; and since
nodes are already well-known by the system and depending on the top-level application,
there is no need to employ stochastically proof-based consensus algorithms such as
proof-of-work (PoW) to achieve consensus since it would become highly expensive in
terms of computational resources and would increase the management complexity of the
data structure. Instead, we can achieve consensus by using a deterministic consensus
algorithm such as state machine replication systems (e.g., Paxos [91], RAFT [19] or
PBFT [35]), or recent blockchain consensus such as proof-of-authority (PoA) [41], which
is considered the most recent member of the BFT algorithms.

In every blockchain design, the top-level application plays a fundamental role in
determining the properties and characteristics of the blockchain. In our case, we did not
contemplate a financial application like most traditional blockchains. Instead, we imag-
ined use case scenarios where sensitive information needed to be stored and replicated in
a secure database, like disseminating data through the network for user communication
or for the exchange of digital information. In that regard, transactions are added to the
distributed ledger while preserving the immutability, integrity, transparency, auditability,
and authenticity of data. Finally, all nodes in the Blockgraph network participate in

45

the consensus process, disseminate transactions, and can create new blocks. Special
nodes are not required to be predefined in the network since every node runs the same
Blockgraph daemon.

3.3.1.3 The Transaction Model

A transaction in our model is a digital piece of information relevant to the application
using the Blockgraph framework. A transaction could be any kind of information
such as a message, a digital file, a date, a time, geographical coordinates, data from
sensor networks, traces, or system logs. As opposed to most well-known blockchains,
in our transaction model, transactions are not correlated with each other to prevent
double-spending frauds in financial applications; a transaction in a Blockgraph is rather
represented as a piece of information that deserves to be stored securely. This could
be useful to disseminate information in the network or as a means to store secure
information the way a computer log does.

The main reason that prevents us from using a transaction model like the one used by
Bitcoin is the network partitions. Indeed, if we assume that conflicts among transactions
are possible, let’s say, by tokenizing assets or using cryptocurrencies; an attacker would
only have to connect to another network partition to perform fraudulent transactions
(e.g., double-spending attack); and since network partitions are independent of one
another, we would only be able to detect those conflicts after a merge of the network
partitions. Therefore, the Blockgraph transaction model is tokenless.

The Blockgraph ledger, on the other side, is a sequence of transactions that is acces-
sible to everyone having access to the Blockgraph data structure. Therefore, it could
be possible to perform one-on-one or one-on-many transactions by using cryptographic
functions. Indeed, the use of cryptographic primitives can guarantee pseudo-anonymity
and data confidentiality in the Blockgraph model. Every entity transacting in the
Blockgraph network can have a set of public/private keys to execute a transaction.
When an entity wishes to disseminate information accessible to every participant in the
network, the transaction can be encrypted with the sender’s private key; and receivers
will only have to use the sender’s public key to decrypt the transaction. Likewise,
when an entity wishes to disseminate information accessible only to one other entity
in the network, the transaction is encrypted with the destination’s public key, being
this last one, the only one capable of decrypting the transaction with its private key.
Multi-addresses allow making a transaction accessible to a group of entities by using a
single public key.

46

As we can see, the use of cryptographic primitives allows us to ensure data confiden-
tiality and non-repudiation while maintaining pseud anonymity. Indeed, asymmetric
key cryptography guarantees that only the holders of the corresponding public keys
can decrypt the transaction, which provides confidentiality. At the same time, once a
transaction is effectively executed, the sender and the receiver of the transaction can
no longer deny its doing at a later stage since key pairs are unique and the distributed
ledger is immutable, which ensures non-repudiation. Finally, only an authorized entity
knows the relationship between public keys and the real entities’ identity, providing
pseudo-anonymity during operation.

3.3.2 Blockgraph Structure and Components

The Blockgraph data structure is a new type of DLT similar to a traditional blockchain,
with the difference, the Blockgraph data structure does not create a unique chain of
blocks; instead, it creates a DAG according to network partitions caused by the mobility
of the nodes. In other words, the shape of the DAG is defined by network partitions.
Each branch of the DAG is composed of a chain of blocks created by a network partition
agreed through consensus by the nodes participating in the consensus process within
the network partition.

3.3.2.1 Structure of a Transaction

A transaction in Blockgraph is the smallest and most basic data structure of the
Blockgraph framework. It is composed of a header and a data container. The transaction
header holds needed metadata information to identify and secure the transaction.
Figure 3.1 illustrates a generic transaction. We detail the fields of the transaction
header as follows:

• Transaction Hash: this is the output of the result of a hash function having
as an input the content of the data container (payload). It is further used in
constructing a data block to calculi the root hash of the Merkle tree.

• Size: the size in bytes of the transaction.

• Timestamp: the creation time of a transaction.

• Sender’s public key: this field allows for the identification of the user responsible
for the creation of the transaction.

Alternatively, and according to the top-level application, data fields might be
included or excluded in the header. It is also important to notice that a generic

47

Figure 3.1: Structure of a generic transaction.

transaction model like the one we are proposing here is only the bases for a wider
transaction model following the top-level application requirements.

3.3.2.2 Structure of a Block

A block in a Blockgraph is a data structure that includes a header and a data container.
Depending on the type of block, the data container might hold a set of transactions
or relevant protocol information to perform the merge synchronization procedure. In
Blockgraph, there are two types of blocks: A merge block and a data block. A merge
block is a special block that is created at the time of merging two or more network
partitions. Thus, it does not contain transactions or top-level application information
but protocol-related information that facilitates the merging of the network partitions’
data structures. A merge block can include in its header the reference of several previous
blocks (HashPrevBlock field), which are usually the last block of each network partition
participating in the merging process. The merge block and the merge synchronization
procedure are further covered in the Blockgraph framework section 3.4. A data block, on
the other hand, can only reference one previous block and can only contain transactions
in the data container. Figure 3.2 illustrates the data structure of both blocks; we detail
the utility of each field of the block header as follows:

• Version: indicates the block’s current version. It allows the Blockgraph protocol
to perform the correct treatment for the block.

• Block Index: it refers to the height of the block with respect to the genesis

48

Figure 3.2: Structure of a block.

block. It allows us to find a block and ensure the correct order of the block in the
Blockgraph data structure.

• Block Hash: it is the outcome of a hash function that takes as input the block’s
header. It serves as the block identifier and is the value that is included in the
HashPrevBlock field in the next block’s header.

• HashPrevBlock: it is the reference to the previous block identifier (Block Hash),
it allows the interconnection of blocks and gives the chained structure. The field
contains an aggregate data type that allows inserting more than one previous
block hash in the case of a merge block.

• Group ID: it is the outcome of a hash function calculated by the group manage-
ment module, having as an input, the identifiers of all the nodes in the network
partition. It allows identifying a group of blocks created by the same network
partition (a branch).

• Leader ID: it is the identifier of the node that creates the block.

• Timestamp: it is the creation time of the block with respect to the miner node’s
clock.

• HashMerkleRoot: it is the hash value resulting from the outcome of the Merkle
tree function based on all the transactions in the block. It ensures that potential
modifications in the data container entail a modification in the block’s header.

49

3.3.2.3 Blockgraph Data Structure

Like in blockchain, the Blockgraph data structure starts with a genesis block, which is
the starting block of the graph and the ancestor of all blocks. Each block is formed of
transactions propagated from other nodes. As the system evolves, the Blockgraph adapts
to a DAG structure due to splits and merges caused by nodes’ mobility. Figure 3.3,
illustrate the main elements that compose the Blockgraph data structure. We define
each element as follows:

Figure 3.3: Elements of the Blockgraph data structure.

• Genesis block: this is the starting block of the DAG-based DLT and the ancestor
of all the blocks. It is created when launching the Blockgraph daemon and does
not contain transactions. It could serve as a network identifier.

• Merge block: this is a special block that is capable of referring to several
previous blocks. It is created when merging several network partitions. Merge
blocks are the elements of the Blockgraph data structure that allows the fusion of
divergent data structure from different network partitions into a single structure.

• Branches: they are an ensemble of blocks or a chain of blocks created by a group
of nodes in the same network partition. Every block in a branch shares the same
GroupID.

• Childless block: this is a block in the Blockgraph data structure that is not
referred to by any other block. In other words, is the last committed block of a
given branch in the Blockgraph data structure.

50

When the network is connected, the shape of the data structure will take the form of
a regular blockchain. When a split occurs, the nodes within the same network partition
will continue to maintain the Blockgraph data structure by adding new blocks. In this
regard, each network partition will create a different block that will have as reference
the last common block before the split. At the time of a merge, the Blockgraph protocol
will merge the different branches held by other network partitions into a single data
structure. Indeed, each network partition will synchronize the others’ network partitions
Blockgraph to conciliate the different branches into the DAG-based DLT. It is important
to notice that when a merge is detected, a process of synchronization is triggered at the
Blockgraph protocol level, which we will fully cover in section 3.4.3. Figure 3.4 illustrates
the Blockgraph data structure when subject to a split and a merge. We can notice in
Figure 3.4a, that both network partitions share the same history of the DAG-based
DLT before the split and become different after the split due to the loss of connectivity.
In Figure 3.4b, we can notice that after the merge, all network partitions share the
same Blockgraph data structure.

Since the mobility of the nodes plays an important role in the management of the
system. Any considerable change in the network topology will trigger the execution of
a sequence that will allow the three modules comporting the Blockgraph framework to
update their parameters to adapt to the new network topology condition and provide
relatively stable conditions to maintain the distributed structure. We define two types
of topology changes that trigger updates between modules as follows:

• Split: a split occurs when the nodes in the network move such as there is no
communication path between two or more nodes due to their transmission range
being disrupted by interference or distance. Thus, creating a network partition.
Each network partition becomes then disconnected from the other. For our
Blockgraph framework, a split in the network topology is detected by every
node by their group management module, which includes a topology discovery
mechanism. The information of the split is then transmitted to the consensus
module and the Blockgraph protocol. At the consensus level, parameters might vary
depending on the consensus algorithm being used. For instance, in a vote-based
consensus algorithm such as RAFT [19] or PBFT [35], the majority criteria are the
parameter that defines the minimum number of nodes needed to reach consensus.
If the number of nodes changes with the new topology, it is, therefore, a parameter
that needs to be changed when a split arises. At the Blockgraph protocol level, an
updated list of reachable nodes is needed for protocol communication.

• Merge: a merge occurs when several independent network partitions become

51

(a) Split Scenario

(b) Merge Scenario

Figure 3.4: Representation of the effects of a split and a merge in the Blockgraph data structure.

close enough to form a unique connected network. Like in a split, the Blockgraph
protocol and the consensus module parameters are needed to be updated. More-
over, the merge of several network partitions should end in the convergence of the
different versions of the Blockgraph involved in the merging. For this purpose, a
merge synchronization procedure is invoked by the Blockgraph protocol to merge
all divergent branches. This procedure is further detailed in section 3.4.3.5.

52

Our Blockgraph, as we have explained, is a distributed system, and as such, is
submitted to the CAP theorem [97] proposed by Eric Brewer. The CAP theorem states
that any distributed system with data replication cannot guarantee all three desirable
properties (Consistency, Availability, and Partition tolerance) at the same time; and
therefore, can only strongly support two of such properties. We define such properties
as follows:

• Consistency: in our context, we argue that data consistency can only be
guaranteed at a network partition level. Indeed, when the network is connected, it
forms a single network partition in the system, allowing all nodes of the system to
agree on the same state of the distributed ledger. When the network is partitioned
into several independent network partitions, it is not possible to agree on the
same state of the distributed ledger across different network partitions since
connectivity between those network partitions is impossible, ergo, the network
partitions. Therefore, data consistency only becomes relevant within every network
partition. We differentiate two forms of data consistency in the Blockgraph system,
strong and weak consistency; strong consistency means that every node in the
Blockgraph network has the same state of the distributed ledger. A strong
consistency can only be achieved when all the nodes of the Blockgraph network
are connected in a single network. A weak consistency means that every node
in a network partition has the same copies of the DAG-based DLT within the
network partition.

• Availability: availability is the capability of the system to respond to clients’
requests in a reasonable amount of time without the guarantee that it contains
the most recent view of the Blockgraph.

• Partition tolerance: this is the capability of the system to continue to operate
despite network partitions.

In the case of the Blockgraph context, partition tolerance is a native property of the
Blockgraph system since its data structure was designed to adapt to network partitions.
Thus, one has to choose between consistency and availability. As for consistency, the
Blockgraph system cannot guarantee strong consistency during network partitions since
there is no possible way for two or more network partitions without an Internet gateway
to maintain the same data due to that each network partition is disconnected from the
others. In this regard, it is important to point out that top-level applications should be

53

consistent with this restriction. Even though strong consistency cannot be achieved
during network partitions, weak consistency is a guarantee in each network partition.

3.4 The Blockgraph Framework

The Blockgraph framework is composed of three independent modules that manage three
different aspects of our solution. The Blockgraph protocol to manage the Blockgraph
data structure, the consensus module to ensure that all the nodes participating in the
Blockgraph network agree on the same state of the distributed ledger, and the group
management module to provide a stable view of the network topology to the system.
We choose to design the architecture of our solution as a modular framework where
each module can execute tasks as an independent process. This allows from one side
the possibility to easily adapt each aspect of our solution according to the needs and
requirements of the top-level applications, and from the other side, to contain potential
failures and malfunctions in a module. This type of architecture allows application
flexibility and reinforces the security aspect of the system. On the other hand, it is
well-known that top-level applications have an important impact on the design and the
conception of different aspects of the blockchain, such as the choice of the consensus
algorithm or the blockchain transaction model. With our modular framework, changes
can easily be implemented to allow other application use cases.

Communication among modules is performed via defined interfaces that we identified
for our system. Modules need to communicate selected information from their operation
to feed other modules and allow the system to better adapt to changes in the network
topology. Figure 3.5 illustrates the architecture of the system along with the three
modules that compose the Blockgraph framework with their respective interfaces; we
describe the role of each interface of the Blockgraph framework as follows:

• Network-Io it feeds the group management module with a current view of the
network topology. It also provides the module with a list of joinable nodes in the
network at regular intervals of time.

• GMtoConsensus-Io: it provides the consensus module with an updated list of
nodes in the network topology at each network partition.

• GMtoBlockgraph-Io: : it provides the Blockgraph protocol with group member-
ship information, such as an updated list of nodes in the network topology and
information on the nature of a network partition (e.g., split and merge).

54

Figure 3.5: Architecture of the system.

• Consensus-Io: it allows communication between the consensus module and
the Blockgraph protocol. It particularly provides the Blockgraph protocol with
information on the current leader node.

• BlockComm-Ch: this is the channel where blocks transit between the consensus
module and the Blockgraph protocol for consensus proposes and block treatment.

• Blockgraph API: this is the communication channel between the Blockgraph
protocol and external top-level applications. It allows the top-level application to
query the Blockgraph data structure.

3.4.1 The Group Management Module

The group management module is the process of the Blockgraph framework whose main
purpose is to constantly be aware of the network topology and to react to drastic
changes in the network topology caused by nodes’ mobility to adapt the consensus mod-
ule and the Blockgraph protocol to a new network configuration. It is also responsible for
establishing groups resulting from topology changes. Groups are a list of the reachable
nodes in the network partition that provides momentary stability to the Blockgraph
framework in the context of dynamic networks. Once a group is established, it remains

55

so regardless of ephemeral changes in the network topology.

In principle, any solution capable of discovering the network topology could provide
the necessary information for our group management module to process and generate
an understandable output for our framework. To establish a group, each node in the
network partition needs to be aware of the presence of other nodes constituting its
network partition. To address this problem, several approaches to discovering the
network topology might be considered. If we contemplate a network partition as a
connected graph, we could conceive a solution that applies a graph traversal algorithm
such as Depth-first search (DFS) [98] and Breadth-first search (BFD) [99] to explore
the network; and since our framework is distributed, every node will agree on the same
group within the same network partition. These types of solutions could be the baseline
to adopt a probabilistic consensus algorithm in a dynamic network since we assure that
every node in a network partition has the same view of the network topology. Another
approach for discovering the network topology is to exploit the information generated
from the network layer under the condition of using a proactive routing algorithm.
Indeed, a proactive routing algorithm such as OLSR [100] and DSDV [101] maintains a
routing table with routes to all destinations within the network partition. We could
use this information to obtain a list of reachable nodes to create a group. Neverthe-
less, regardless of the method employed to discover the network topology, our group
management module will take as an input a list of joinable nodes in the network topology.

From the list provided by the network discovery solution, our group management
module will keep a copy of the current network topology that we call, the current
group list. Such a list will become the comparison element to further changes in the
network topology and the input element to calculi the group identifier. The Group
Identifier or GroupID is the result of a hash function having as an input the list of
nodes currently participating in the consensus process, it is the key element that allows
the merge synchronization procedure to identify the blocks created in the same network
partition and therefore belonging to the same branch. The GroupID is transmitted to
the Blockgraph protocol for inclusion in the header of the newly created block. When a
new change in the network topology arises, the GroupID changes too, and parameters
from the consensus module and the Blockgraph protocol needs to be updated. To identify
the nature of the network topology change, meaning whether the change corresponds
to a split or a merge, we compare the current group list with a candidate list containing
a new list of joinable nodes provided by the network discovery solution. Since both
changes lead to different treatments in the upper modules, differentiating a split from a

56

merge will allow us to efficiently react to changes in the network topology. We defer a
split from a merge by calculating the difference between the current group list and the
candidate list. Indeed, we detect a split by checking that all nodes in the new candidate
list are also present in the current group list and that the size, in terms of the number
of nodes in the candidate list, is strictly smaller than the current group list. Likewise,
we detect a merge by checking that all nodes in the current group list are also present
in the candidate list and that the size, in terms of the number of nodes, is strictly
greater than the current group list. Once the nature of the topology change is identified,
it is transmitted along with the GroupID to the upper modules to implement their
operations. Figure 3.6 illustrates the main elements of the group management module.

Figure 3.6: Main elements of the group management module.

3.4.1.1 Our Network Discovery Solution

For our Blockgraph framework implementations, we chose to make use of the routing
tables of OLSR to discover the network topology. This decision was primarily driven by
the fact that the mobile routers that we were working on were already using a modified
version of OLSR to route packages to their destination. Moreover, as far as we know,
there is no precedent in the literature for the exploitation of the routing information to
map a view of the current network topology in a distributed system.

The base idea is to extract the routing table of the node and process the information
to create a trusted list of joinable nodes in the network topology to create a group.

57

However, since the network is mobile, some routes tend to appear and disappear with
node mobility even without experiencing a network partition. In this case, we would
like our algorithm to be capable of reacting only to permanent topology changes and
not ephemeral changes. To address this problem, we implement a series of mechanisms
that allows the group management module to better react to changes in the routing table.

Algorithm A.1 in Appendix A details the mechanisms that we have implemented
to fine-tune the level of reactivity to network topology changes. We start by defining
two variables, time_of_change and topology_tolerance_time. The time_of_change
variable holds the time in which the last effective topology change happened, and the
topology_tolerance_time is a variable parameter that defines the time that has to elapse
without changes for a new routing table before considering a topology change effective.
If another change in the routing table appears before the topology_tolerance_time, a
new candidate list is set, no topology changes are triggered, and the process starts again.
Once a change is considered effective, and a new list of joinable nodes is selected, the
algorithm continues as described above.

It is important to notice that proactive routing algorithms have limitations in
converging on the same view of the network topology for every node. This is mainly
because the OLSR algorithm selects neighboring multipoint relays (MPRs) nodes to
create paths to destinations that only reach a certain number of nodes in the network
topology. In a small to medium size topology, this network discovery solution may
be used without further problems but loses efficiency for large networks. Finally, in a
Blockgraph system implementing a vote-based leader election consensus algorithm, it is
the leader node’s view that will prevail, and therefore, there is no need for all nodes in
the network partition to converge on the same view of the network.

3.4.2 The Consensus Module

The consensus module is the process of the Blockgraph framework that contains a
consensus algorithm whose objective is to agree on the same state of the distributed
ledger in all nodes participating in the consensus process. It is also responsible for
providing the consensus algorithm with updated network topology information and
provides the Blockgraph protocol with a leader node. Furthermore, it implements a
block communication channel where blocks can transit from the consensus module to
the Blockgraph protocol and vice-versa.

Our consensus module was designed to contain a consensus algorithm based on
leader elections. Indeed, most of the consensus algorithms used in a permissionless

58

blockchain environment, such as PoW [1], Proof of Stake (PoS) [39], and Proof of
Elapsed Time (PoET) [43], assume a stable connected network and implement secu-
rity mechanisms to tolerate a certain number of dishonest nodes. In the case of our
Blockgraph context, we assumed our blockchain model to be permissioned and with a
network access control politic. If we take into consideration our assumptions, we realize
that using a stochastically proof-based consensus algorithm to reach consensus is not
only useless and lowers system performances but could also lead to a waste of resources
that are not tolerable within our context. On the other hand, by assuming a trusted
permissioned blockchain, we can bypass security mechanisms that are usually intrinsic
in stochastically consensus algorithms for permissionless blockchains and adopt a more
traditional method such as a legacy state-machine vote-based consensus algorithm to
increase the performance of the system. In this regard, our consensus module considers
a leader election-based consensus algorithm to provide the Blockgraph protocol with the
leader node capable of creating new blocks.

To respect the modularity of our framework, we have defined a certain number of
properties that the consensus algorithm must follow to be compliant with the Blockgraph
context. We define those properties as follows:

• Network partition-tolerant: the consensus algorithm must contemplate a
method that updates membership accordingly to the changes in the network
topology; for our Blockgraph system, it allows the Blockgraph protocol to only
manage blocks agreed from a coherent group of nodes.

• Crash fault-tolerant: this property ensures that the consensus algorithm
continues to operate in the event of node failure. When a node was in the leader
mode during a crash, a new leader must be elected to ensure continuity; if the
node was a non-leader node, it should be able to reintegrate operation.

• State termination: eventually, every honest node decides on the state of the
block.

• State Integrity: if all honest nodes propose the same state of a block Sb, then
any honest node must decide Sb.

• State agreement: every honest node must agree on the same state of a block.

Likewise, we define the properties that a leader election algorithm must have to be
compliant with our framework.

59

• Leader Election Termination: the leader election algorithm should finish
within a finite time.

• Election Safety: at most, one leader node can be elected in a network partition.

• Leader Agreement: all other non-leader nodes know who the leader is.

The consensus module gets its network topology information from the group man-
agement module, which provides the module with updated network topology. This
information allows the consensus algorithm to update relevant consensus parameters
such as the majority criteria. In a vote-based consensus algorithm, the majority criteria
serve as a threshold that determines in the leader election process, the number of needed
votes to become a leader; likewise, it determines the minimum number of nodes that a
block needs to be replicated and accepted before considered committed. In a dynamic
network, where nodes are mobile, the size of the network partition may vary with the
mobility; this is the reason why updating this parameter is so important in vote-based
consensus algorithms.

Finally, our consensus module performs the communication between the Blockgraph
protocol and the consensus module. Indeed, when a new block is created by the leader
node at the Blockgraph protocol level, it is transmitted to the consensus module for
agreement. The consensus module will then check if the construction of the block is
compliant with the Blockgraph protocol version, whether the transactions are valid, and
if there is no inconsistency at the application level. Once the block is validated by
the consensus module of the leader node, the block is then propagated to all nodes in
the network partition. Other nodes, perform the same verifications and acknowledge
the validity of the block to the leader node. Once the block has reached the majority
criteria, the leader node orders non-leader nodes to commit the block. The commitment
process consists in delegating the block to the Blockgraph protocol for treatment. If
the block does not reach an agreement, the block is dumped, and correct transactions
return to the mempool in the Blockgraph protocol.

3.4.3 The Blockgraph Protocol

The Blockgraph protocol is the module of our framework that manages the Blockgraph
data structure and performs the merge synchronization procedure. It gives all the
directives for the blockchain characteristics, including the creation and processing of
blocks, ensuring the correct order of blocks, and managing the processing of transactions;

60

it also implements the cryptographic primitives that characterize the blockchain system,
such as one-way functions, signatures, and asymmetric keys.

3.4.3.1 Transactions in the Blockgraph Protocol

Transactions are created by external applications that can communicate with the
Blockgraph protocol via an API. The external application should be capable of generating
new transactions following the specifications and characteristics of our system to allow
the Blockgraph protocol to treat compliant transactions. When a new transaction is
created, it is broadcasted to all neighboring nodes in the network partition. Therefore,
transaction arrives into the Blockgraph protocol in two different ways; either by the
Blockgraph API, which allows communication with an external application, or through
the Blockgraph protocol itself which communicates with other nodes participating in the
network partition. In any case, the same treatment is applied to every transaction.

The Transaction Treatment function (Algorithm A.2 in Annex A) details the
treatment of a transaction in every node. It starts by checking that the transaction is
correctly constructed and that the values in the transaction header are coherent. For
instance, it verifies that the time shown in the timestamp field is previous to the node’s
current clock time or that the output of the hash function of the transaction header
coincides with the value provided in the hash field of the transaction header. It then
checks whether the transaction is already present in the node, either in the mempool
or into a block in the Blockgraph. If the transaction is not in the mempool nor the
Blockgraph, it is stored in the node’s mempool until found in a future block or the
case that the node is a miner, until included in a block. A transaction is systematically
dumped in the case that such transaction is already present in the node or if the
mempool has reached its maximum storage capacity.

In the situation of a node receiving a data block, transactions are checked as part of
the Block Treatment process; when the block is added to the distributed ledger, the
mempool is updated by erasing all the transactions that were present in the block.

In case the node is a miner wanting to create a new block. The transactions
are collected from the mempool and added to the block data container. By default,
transactions are selected according to the time spent in the mempool; older transactions
are selected first.

3.4.3.2 Blocks in the Blockgraph Protocol

Blocks are the main element of the Blockgraph data structure. They are requiring
special management due to the mobile conditions in which our solution is contextualized.

61

Our Blockgraph solution currently supports consensus algorithms based on a leader
election protocol. The Blockgraph protocol obtains from the consensus algorithm the
identity of the leader node; in Blockgraph, the leader node is the only allowed node
in a network partition to create new blocks. Blocks are created upon the affirmation
of two conditions: The size of transactions in the mempool and the inter-block time
must be superior to a certain threshold. Indeed, to obtain an acceptable efficacity
ratio between the application data and the protocol overhead, the block must contain a
minimum size of transactions to ensure that the application data is larger during blocks
transmissions; on the other hand, the inter-block time allows the block to propagate
through the network and gives time to the consensus algorithm to agree on the state of
the block before a new block arrives. The inter-block time is, therefore, the time that
has passed between the creation of two consecutive blocks. Once the block is created,
it is delegated to the consensus module for agreement and finally transmitted back
to the Blockgraph protocol for treatment. Figure 3.7 illustrates the different block’s
communication levels in the Blockgraph framework.

Figure 3.7: Block communication channels in the Blockgraph Framework.

3.4.3.3 Block Mining

Algorithm A.3 in Annex A details the creation of a data block. In the simplest case
scenario, where no changes in the network topology are detected nor an ongoing merge

62

synchronization procedure, the leader node ensembles transactions from its mempool
into the block data container, obtains the previous block hash and sets the values of
the block header. The chosen transactions are removed from the mempool and placed
into a temporary memory space until the consensus module has managed to replicate
the block in a majority of nodes. This temporary copy of the transactions is helpful
when a block gets dumped due to the inability to reach consensus within the network
partition or due to block or data inconsistencies; therefore, transactions that were in a
dumped block can safely be returned to the mempool.

The previous block hash that goes into the block’s header that aims to be created is
chosen by selecting the blocks in the Blockgraph data structure that are not referred to
by any other block in the Blockgraph, such blocks are referred to as childless blocks. In
stable network conditions, there is usually only one childless block per network partition
since all nodes in the network partition manage to agree on the same membership
configuration. During a merge, it is the merge synchronization procedure that deals
with multiple childless blocks coming from other network partitions to create the merge
block. Nevertheless, the merge synchronization procedure constantly adds new blocks
into the Blockgraph data structure, which can be misinterpreted by the algorithm
thinking that the last synchronized block is childless, and therefore, a predecessor of
a newly mined block. To cope with this problem, at the time of triggering the merge
synchronization procedure, the Blockgraph protocol transits to a synchronization state,
where new blocks can refer only to blocks with a higher index than the merge block.
The merge synchronization procedure is further detailed in section 3.4.3.5.

Once a block is correctly created by the leader node, it is delegated to the consensus
module. The consensus module will take care of broadcasting the block to all neighboring
nodes in the network partition to ensure that consensus requirements are meant before
treating the block.

3.4.3.4 Block Treatment

The Block Treatment function (Algorithm A.4 in Annex A) of the Blockgraph protocol
is the main function that manages the Blockgraph data structure. During this process,
the protocol decides what to do with the incoming block. It is important to mention
that before the treatment of an incoming block, the block has already gone through a
period of validations by the consensus module. Therefore, every incoming block has
already been validated by a group of nodes and is already present in a majority of
nodes in a network partition. When the consensus module reaches an agreement with a

63

majority of nodes, the block is automatically transmitted to the Blockgraph protocol for
treatment. During the treatment, the algorithm examines the header of the block to
know if the block is well constituted, if the block is already present in the Blockgraph
data structure, and depending on the type of block, sub-processes are invoked. It is
also worth mentioning that due to the wireless communication context, blocks might
not reach all the nodes in the network partition during the consensus process, therefore,
a mechanism to recover missing blocks is also implemented in the Blockgraph protocol.
Indeed, when a node receives an incoming block, it can realize that it has missing blocks
by failing to find its predecessor block announced in the block header. At this point,
the Blockgraph protocol caches the block in a temporal data structure until recovering
the missing block. A sub-process of the Blockgraph protocol will then be in charge of
recovering all missing blocks.

The process of re-transmitting blocks happens at two different levels. First, at
the consensus module level, where the leader node re-transmits a block that was not
correctly received by other nodes in the network partition until reaching the majority
criteria of the consensus algorithm; once the majority criteria are reached, the block
is considered to be sufficiently replicated and is ready for treatment in the Blockgraph
protocol. Nodes that were not able to obtain the block through the consensus mechanism
will try to obtain the missing block through the Blockgraph protocol.

3.4.3.5 The Merge Synchronization Procedure

The merge synchronization procedure is a process in the Blockgraph framework that
is first triggered by the group management module upon the detection of a merge. It
invokes a function in the Blockgraph protocol that will trigger a series of events that
culminate in the fusion of all data structures involved in the merge.

Upon detection of a merge at the consensus module level, the current leader node
renounces its leadership to invoke new elections. At the Blockgraph protocol level, the
module waits for the new leader node to start the merge synchronization procedure.
Once a leader node is elected by the consensus algorithm, it will execute the following
steps to perform the merge synchronization procedure:

1. Childless Block Request: the leader node sends a request to all the nodes that
were not in its previous network partition, asking for the hash of their childless
blocks A.5. Non-leader nodes will only have to look for the last block in their local
Blockgraph and send the hash of the childless blocks to the leader node A.6.

2. Creation of a Mapping Table: upon the reception of the hashes of the

64

childless blocks, the leader node treats the collected information in the childless
block treatment function detailed in the algorithm A.7. The algorithm primarily
searches for the hash of the childless block in its Blockgraph data structure and
the temporary memory spaces in the Blockgraph protocol. Failing to find the hash
of the childless block sent by another node in its Blockgraph, it will consider that
the childless block is indeed a childless block from another network partition. At
the end of the treatment of all the hashes of all the childless blocks, the leader
node will have generated a mapping table containing a list of tuples <NodeID,
childless_block_hash>, where chidless_block_hash is the hash identifying the
childless block, and the NodeID is the identifier of the node holding the childless
block, for every new node in the network partition.

3. Merge Block Creation: the leader node will create a merge block that will
refer to all the childless blocks known during the previous phase A.8. Is important
to notice that at the time of the creation of the merge block, not every childless
block is present in the leader’s Blockgraph. In fact, only the childless block from
its previous network partition is present. In the data container of the block, the
leader node will include the mapping table instead of regular transactions. Finally,
once the merge block is constructed, it is transmitted to the consensus module for
agreement.

4. Merge Block Treatment: once the merge block is committed by a follower
node, it is treated by the Block Treatment function. The function will identify
the block as a merge block and will treat the block in a special way. Transactions,
which hold tuples pair <NodeId, childless_block_hash> are extracted from the
block and sent for treatment to the childless block treatment function A.7. This
treatment will allow each follower node to corroborate the leader’s node mapping
table. At present, each node owns a mapping table that indicates which node has
which branch. Nodes will only have to choose among the list, a node that has
the branch that they are missing. The merge block is immediately added to the
Blockgraph data structure to allow the production of new blocks.

5. Send Branch Request: each node will send a Branch Request for each missing
branch to one node that owns the expected missing branch A.9. The node will
choose the node randomly to avoid saturation. If the demand is not satisfied
within a certain period, the node can choose another random node to make its
request.

6. Branch Request Treatment: upon the reception of a branch request, the node

65

takes the hash of the childless block included in the request and searches for a
match in its local Blockgraph. When founded, the node will extract from the
block’s header the information relative to the block’s GroupID. Let us remember
that the GroupID is the identifier of all nodes participating in the consensus
process in a network partition and that it is included in every block mined by the
group. Therefore, the GroupID allows identifying all blocks in a Blockgraph’s
branch. Once the GroupID is identified, the node sends all blocks with the same
GroupID to the requester A.10.

While steps 1, 2, and 3 are processes executed only by the leader node; steps 4, 5,
and 6 are executed in a distributed fashion by every other node in the new network
partition. We guarantee that new data blocks are not created during steps 1-3 by
modifying momentary parameters allowing the creation of a block (block difficulty),
naming, the size of transactions in the mempool, and the inter-block time, which are
set at higher values to prevent a new block to be created during these stages. Indeed,
before the merge synchronization procedure, the leader node of each network partition
will empty its mempool by creating a last block before renouncing its leadership to give
more time to the newly elected leader node to create and commit the merge block. Once
the merge block is effectively included in the leader’s Blockgraph, the block difficulty
parameters are set back to normal values, allowing the production of a new block even
during the execution of steps 4, 5, and 6. Resuming a normal production of blocks as
fast as possible is a major priority to ensure continuity in the system.

There is another challenge in creating new data blocks during the merge synchro-
nization procedure. At the moment of creating a new block, the Blockgraph protocol
will look into the local Blockgraph data structure to obtain the hash of the childless
block in the Blockgraph to create the link between the new block and the previous
block. However, during the merge synchronization procedure, blocks from other network
partitions are being added as well to the local Blockgraph, causing the momentary
presence of more than one childless block as illustrated in Figure 3.8. In this case, the
Blockgraph protocol must be able to only include the hash of the last created block after
the merge into the new block header and not the reference of an ancient block from
another branch of the Blockgraph. To avoid this problem during the synchronization
phase, new blocks can only refer to blocks created after the last merge block.

66

Figure 3.8: Problematic of multiple childless blocks during the merge synchronization procedure and
the creation of new blocks.

3.5 Blockgraph Implementations and Evaluations

To validate the concept of Blockgraph, we have implemented our solutions in a two-phase
approach. First, we have implemented the Blockgraph framework into the discrete-event
network simulator for Internet systems, NS-3. Then, we implemented our solution into
a testbed composed of five low-power mesh routers from Green Communications as
proof-of-concept.

3.5.1 NS-3 Implementation

To implement the Blockgraph framework, we use legacy NS-3 libraries to simulate
the lower layers of the protocolar communication model and create new NS-3 code to
simulate the application layer. To create the Blockgraph data structure we implement
the classes transaction, block, and Blockgraph. Each class contains the needed functions
for the creation, manipulation, and destruction of the corresponding instantiated object.
We create a special application class for the Blockgraph protocol, which contains all the
functions related to the management of the Blockgraph data structure. A customized
ApplicationPacket class was also created, which handles all protocol-related messages
exchange. For the consensus module, we create the oracle class, which is able of
simulating a consensus algorithm by adjusting its parameters in function of the required

67

performances. Finally, we created the b4mesh-mobility class to define a customized
mobility model adapted to our needs and implement our group management module in
charge of discovering the network topology.

To simulate the mobile communication network, we used the NS-3 YansWi-FiPhyHelper
to define the physical conditions for the nodes’ communication. We implemented an
IEEE 802.11g Wi-Fi standard configured in the ad hoc mode for all nodes. The radio
frequency locates in the range of 2.4 GHz with a constant data rate of 11 Mbps. The
propagation loss model used for our simulations is the NS-3 RangePropagationLossModel
with a defined maximum range (MaxRange) of 100 meters. This propagation loss model
allows us to control the maximum distance between a transmitter and a receiver to
communicate properly. Any receiver beyond the MaxRange receives a transmission
at a -1000 dBm, which is effectively zero. This configuration allows us to have better
control of the splits and merges of the network when defining our mobility model. Addi-
tionally, we have installed a full Internet protocol stack that aggregates IP/TCP/UDP
functionalities and chose OLSR as the routing protocol for all nodes.

For our mobility model, we have created a customized class application called
b4mesh-mobility that constantly updates the position of the nodes through time. Each
node has installed the NS-3 ConstantPositionMobilityModel that allows us to set for any
node a new position and velocity at any given time. Thus, our customized application
is tasked with updating the positions of the nodes accordingly to a predefined mobility
scenario that we defined.

To implement our group management module, we made use of the RoutingTableChange
trace source of the OLSRRoutingProtocol module of the NS-3 library that allows us
to know and trigger a defined function when a changeset in the OLSR routing table
has occurred. Thus, we have implemented our network discovery solution described in
Section 3.4.1.1 to discover the network topology.

3.5.1.1 Methodology, Simulations, and Results

The first objective of this implementation was to validate the concept of Blockgraph and
obtain the first performance of our system through simulations. To that, we measure
the level of replication of the distributed ledger and the impact a network partition
can have on the system. We kept track of the number of transactions in the leader’s
mempool to monitor the creation of new blocks and evidence the impact of the network
partitions on the block creation process.

We identified two case scenarios that allow us to compare and test the performance
of our solution. In the first scenario, all nodes in the system move in the same direction
maintaining a connected network throughout the simulation. Therefore, no network

68

partitions are inflicted in this scenario. The second scenario involves a partition (split)
and a regrouping (merge) of the network to validate the concept of Blockgraph. Table 3.1
and 3.2 summarize the description of nodes’ mobility according to the simulation time
for each scenario respectively.

We ran each scenario 10 times. Thus, the results correspond to the average of 10
experiments. Each simulation corresponds to a relative duration of 15 min (900 s). The
number of nodes for both scenarios is 10 nodes.

Simulation time Description of mobility
< 900s All nodes move towards the same direction

in a single connected network.

Table 3.1: Mobility description for Scenario 1

Simulation time Description of mobility
< 300s All nodes move towards the same direction

in a single connected network.
300s− 600s A partition in the network occurs. Nodes 0

to 4 and 5 to 9 form an independent network
partition respectively.

> 600s All nodes regroup themselves into one con-
nected network. They all keep moving in the
same direction as a single connected network.

Table 3.2: Mobility description for Scenario 2

The creation of a block occurs when the leader’s mempool reaches 130 transactions.
The size of each transaction is generated by a random variable that follows a uniform
law that ranges between 300 and 600 bytes. On average, each block has a size of 58.5
KB, which does not exceed the theoretical limit of a UDP packet which is defined at
65.6 KB. Each node generates transactions that are propagated to all nodes in the
same network partition. The generation of transactions in each node is modeled as
follows: each node generates a random variable that follows an exponential law that
represents the time between two generations of transactions (time between two arrivals).
We can then model the arrival of transactions as a Poisson process, where lambda
(λ) represents the transaction arrival rate per node and is defined as the inverse of
the time between two arrivals. For our simulations, we choose to set a relatively low
λ to ensure that we do not saturate the system to provide the right conditions to
test our concept. Thus, each scenario uses a transaction arrival rate of λ = 0.5 trans-
actions per second (tps). In other words, a node generates a transaction every 2 seconds.

69

Figure 3.9 shows the number of unconfirmed transactions in the leader’s mempool.
Every time the mempool reaches 130 transactions, a block is created and transactions are
removed from the mempool. The curve shows the expected behavior; with a λ = 0.5 tps
and a network composed of 10 nodes, we have a global transaction rate of 5 tps. We
should be able to form a block every 26 seconds and have a total of 34 blocks at the
end of the simulation. Table 3.3 summarizes relevant results from the simulation. We
can appreciate that both the total number of blocks created during the simulation and
the number of transactions generated correspond to the theoretical results. The block
replication percentage, which is the percentage of nodes that were able to replicate the
full ledger, is 89.34%, which is a large majority of the nodes.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900

T
ra

n
sa

c
ti

o
n
s

Time(s)

Figure 3.9: Progression of the number of transactions in the leader’s mempool through time for the
No Split scenario with λ = 0.5 tps.

Number of blocks 35
Number of transactions in the Blockgraph 4030

Block replication percentage 89.34%

Table 3.3: Scenario 1 summary

In scenario 2, we can appreciate in Figure 3.10 that there is a deceleration in the
production of blocks between 300 and 600 seconds. This corresponds to the moment
there was a split and a merge of the network partitions respectively. This deceleration
can be explained by the fact that since the network has been partitioned into two
separate network partitions, each network partition is now composed of 5 nodes. With
this network configuration, it takes around 52 seconds for every network partition to
produce a block. Hence, during the partition period, each network partition could only

70

have produced 5.77 blocks approximately. Table 3.4 summarizes some relevant results
from this simulation. We can appreciate that the results in this scenario correspond also
to the theoretical results. The percentage of block replication is close to 99.72%. The
difference between the results of the two scenarios might be caused to a decrease in the
load on the network in scenario 2 during the partition period. By reducing the number
of nodes, the exchange of messages needed to reach consensus is also reduced. Moreover,
the arrival transaction rate is divided by two during this time period. The sum of these
factors may be the cause of the difference in the two scenarios’ performances.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900

T
ra

n
sa

c
ti

o
n

s

Time(s)

Figure 3.10: Progression of the number of transactions in the leader’s mempool through time for the
Split followed by a merge scenario with λ = 0.5 tps.

Number of blocks 36
Number of transactions in the Blockgraph 4680

Block replication percentage 99.72%

Table 3.4: Scenario 2 summary

3.5.1.2 NS-3 Implementation Conclusion

The implementation of our Blockgraph solution in NS-3 has allowed us to validate
our concept through simulations. The results show that in a 10 nodes network the
DAG-based distributed ledger is replicated in both scenarios in more than 89% of the
network. Moreover, we validate the efficiency of our merge synchronization procedure
and provide the first results on the block creation process. More experiments using
simulation shall be done to study other Blockgraph performances.

71

(a) Final architecture of the Blockgraph framework with
Green’s communication core system

(b) Illustration of a mesh router node with its network
interfaces.

Figure 3.11: Architecture of the Blockgraph system in integration with Green Communication’s mesh
routers.

3.5.2 Testbed Implementation

After having validated the concept of Blockgraph through simulation, we opted to
implement our solution in a testbed environment. Our testbed is composed of 5
low-power mesh routers from Green Communications. The main objective of this
implementation is two-fold: (i) create a proof-of-concept of our solution in real equipment
and (ii) evaluate the performance of our system on a real platform.

The implementation of the testbed was realized in collaboration with multiple parties
and was primarily inspired by the NS-3 implementation. In this regard, we choose to
implement our solution in C++ language programming, which is the same language used
for the NS-3 implementation. To integrate our solution with the Green Communications
Core System, we created the b4mesh application, which aggregates the Blockgraph
framework and made it compatible with existing functionalities. Figure 3.11a illustrates
the final architecture of our system in integration with Green’s Core System and
Figure 3.11b illustrates the mesh router used for our testbed.

We used the preexisting consensus algorithm and the integrated network discovery
topology in Green’s Core System to feed our Blockgraph’s consensus module with a
leader node and a list of reachable nodes participating in the consensus process. It is
important to notice that these functionalities were already present in the mesh routers
since it implements a distributed system that requires consensus for its functioning.
Thus, the group management module and the consensus module were adapted in this
implementation to work as a proxy between Green’s Core System and the Blockgraph
protocol.

Our implementation is constituted of 8 classes that regroup the required elements
to implement the Blockgraph framework. Figure 3.12 illustrates a class diagram of

72

our implementation. The session class manages the connection of the application
among the distributed nodes, the client class handles the Blockgraph’s endpoints for
clients utility, and the consensus and node classes, implement the consensus module
and the group management module proxies respectively. Additionally, we meet again
the transaction, block, and Blockgraph classes that form the Blockgraph data structure,
the ApplicationPacket class that handles the Blockgraph’s protocol messages, and the
b4mesh class, which implements the Blockgraph protocol.

The mesh routers are equipped with three network interfaces: an Ethernet interface
and two Wi-Fi interfaces. The Ethernet interface is meant to provide a gateway to
another reachable network, while the first Wi-Fi interface is used to provide access
to clients and the second Wi-Fi interface is used to create a backhaul network that
connects every other router node together.

Figure 3.12: Class diagram of the testbed implementation.

3.5.2.1 Methodology, Simulations, and Results

The implementation of the Blockgraph in a testbed has as objective to demonstrate the
proof-of-concept of our solution and provide the first performance of our system in a
real mobile network. During our experimentations, we took special care to measure
the transaction throughput of the system, the resource usage of our solution in the
mesh routers, the transaction latency, and the mempool usage. To this, we retook
our two scenarios where we contrast the impact of maintaining a distributed ledger
in a fully connected network with a mobile network subject to a network partition.

73

The experiments in both scenarios were held at our facilities at the Computer Science
Laboratory of Paris (LIP6). Every experiment made has an average duration of
500 seconds. Thus, we define our two scenarios as follows.

• Static Network: in this scenario, the five mesh routers are fully interconnected
and are not subjected to mobility. Routers are equidistantly spaced.

• Split and Merge: in this scenario, the five mesh routers start as a fully
interconnected network. After 120 seconds from the beginning of the experiment,
we create a network partition by taking two mesh routers far away in the corridor
until the network is completely split into two clusters. One network partition is
composed of three mesh routers and the other with two routers. Both network
partitions are separated long enough so new blocks are generated in each network
partition. At 240 seconds from the begging of the experiment, we create a merge
of the two network partitions by bringing the two mobile routers back to their
initial position.

For the measurement of the performance of our proof-of-concept, we executed each
scenario 10 times. Results are, therefore, the mean of the results of executions. For each
scenario, we vary the rate at which transactions are generated. Every node generates
transactions at the same constant rate. The average size of a transaction is 450 bytes
and it is defined by a random variable following a uniform law. The generation of
transactions is modeled as a Poisson process of parameter λ following an exponential
law independent from the other mesh routers. Thus, for our experimentation, we choose
a transaction generation rate per node (λ) varying between 0.5 and 3 tps. Table 3.5
summarizes the transaction generation rate values and the main fixed parameters of
our experiments.

Transaction generation rate values
Per node in tps Global in tps
0.5 2.5
1 5
1.5 7.5
2 10
2.5 12.5
3 15

Execution parameters
Parameter Values
Number of nodes 5
Execution time 500 sec
Mempool Size 500 KB
Avg. Transaction Size 450 bytes
Min. Inter-Block Time 5 sec

Table 3.5: Variable and fixed parameters of the executions.

Figure 3.13a compares the average number of transactions in a router’s mempool
for different transaction generation rates for both scenarios. This performance allows

74

(a) Number of transactions in the Mempool. (b) Evolution of the number of transactions in the Mem-
pool.

Figure 3.13: Average Mempool usage.

us to monitor the node’s mempool utilization space for all λ values. We can notice
that in the static network scenario, the difference between the number of transactions
in the router’s mempool is very short among the different values of λ. On average a
mesh router has 38.4 transactions in its mempool when λ = 0.5 tps, while for λ = 3 tps
it only increases to 44.2 transactions. That is a difference of 5.8 transactions for a
3x transaction income rate. This behavior indicates that the protocol manages to
correctly adjust the rate at which blocks are created. On the other hand, in the split
and merge scenario, we can notice an upward trend in the average number of transac-
tions in a node’s mempool. This is partially explained by the merge synchronization
procedure, which maintains transactions in a node’s mempool until recovering the
missing blocks. However, we can notice in Figure 3.13b, which illustrates the average
evolution of a node’s mempool through time for a global transaction generation rate
of 15 tps for both scenarios, that the split and merge scenario presents two spikes
at the split and merge respectively. Thus, concluding that the topology change has
an impact on the mesh router’s mempool but recovers its normal behavior relatively fast.

Figure 3.14 show the evolution of the average inter-block time for every λ in each
scenario respectively. The inter-block time refers to the time that has passed between
the creation of two consecutive blocks and models the cadence at which blocks are
created. We can notice that as λ grows in both scenarios, the inter-block time decreases
forming an exponential decay curve. This is the expected behavior since as transactions
arrive at a higher rate, conditions for generating a new block are satisfied faster. In
Figure 3.14a, when λ = 3 tps, we reach an inter-block time of 6.8 seconds which is still
relatively far from the 5 seconds we defined in Table 3.5 to allow a block to propagate in
the network before a new block arrives. Thus, there is still room for an increase in the
transaction throughput. Figure 3.14b shows the same curve behavior for the scenario

75

(a) Scenario Static Network. (b) Scenario Split and Merge.

Figure 3.14: Average Inter-Block Time.

split and merge. However, due to topology changes, notably the split, the inter-block
time is higher since it takes more time for network partitions to satisfy the conditions
to generate a new block.

Figure 3.15 illustrates the average time for a transaction to be included in a block
with respect to λ for both scenarios. To that time, we call it transaction latency. It is
measured from the moment the transaction is created to the moment the transaction
is included in a block. Figure 3.15a illustrates the average transaction latency for all
transactions in the Blockgraph. We can notice in the split and merge scenario, that
transaction latency is between 2.2 and 4.8 times slower than in the static network
scenario. This difference is due to the merge synchronization procedure. Indeed, our
calculations include transactions created in a network partition and added to another
network partition when recovering the blocks. Nevertheless, the values in the split
and merge scenario might correspond to the average time for a transaction to be fully
replicated in the distributed system for this specific case scenario. Figure 3.15b, on the
other hand, only considers the transactions created in each network partition without
considering the merge synchronization procedure. The results show that the transaction
latency has on average the same performance for both scenarios. Thus, the mobility of
the nodes has little impact on the transaction latency performance and goes as low as 3
seconds for λ = 3 tps.

Figure 3.16 shows the evolution in time of the transaction throughput for each λ.
The transaction throughput is the number of transactions per second being added to
the Blockgraph data structure. We can notice in Figure 3.16a, which corresponds to
the static network scenario, that our system remains in a transient state during the
150 seconds of the execution. During this state, we can appreciate that the number
of transactions per second is increasing with time until reaching a practical maximum.
For the rest of the execution, the system reaches a steady state near the theoretical

76

(a) Transaction Latency considering the merge synchro-
nization procedure.

(b) Transaction Latency without considering the merge
synchronization procedure.

Figure 3.15: Transaction Latency.

(a) Scenario Static Network. (b) Scenario Split and Merge.

Figure 3.16: Transaction Throughput.

maximum of transactions per second, which corresponds to the global transaction
generation rate defined in Table 3.5. On the split and merge scenario illustrated in
Figure 3.16b, the curve shows a more dynamic evolution of the performance. At 150
seconds, as the network is being partitioned, a decrease in terms of the number of
transactions is observed. This is the expected behavior since the fewer nodes are in a
network partition the longer it takes for a network partition to create new blocks, which
impacts the transaction throughput. Around 300 seconds, the two network partitions
are merged again and a marked rise of the transactions per second being added to the
data structure is witnessed. This is caused by the Blockgraph protocol merging both
data structures to create a single branch. Finally, at 350 seconds a steady state is
reached again.

Figure 3.17a illustrates the average CPU and Random-Access Memory utilization
for each λ value. We can notice that the CPU usage of the node increases with the
transaction generation rate in a linear form, reaching a maximum of 27% of the CPU
usage for λ = 3 tps. It is important to notice that the Blockgraph daemon is not

77

the only service running in the mesh router. Other services such as Nginx and native
services of the system are also using the node’s resources. Thus, we can not attribute the
full amplitude of the given percentages to our Blockgraph resource utilization. Memory
usage, on the other hand, increases very little for different values of λ. We can therefore
conclude that the Blockgraph framework has very little impact on the Random-Access
Memory of the mesh node. Figure 3.17b shows the evolution of CPU usage through
time for all λ values. We can observe a transit state for each λ value. As time passes,
more aggressive variations in the usage of the CPU are witnessed for higher λ values.
Nevertheless, we can observe a clear stabilization of the CPU usage as time reaches
the end of the execution. Thus, even though there is a clear correlation between the
transaction generation rate and the CPU usage, our testbed manages to use less than
50% of the CPU resources for all executions.

(a) Resource usage. (b) CPU usage through time.

Figure 3.17: Average Resource Usage.

Finally, Figure 3.18 illustrates an example of the Blockgraph data structure of
our testbed implementation. Figure 3.18a shows the final Blockgraph of one of the
mesh routers for the split and merge scenario with λ = 0.5 tps. Figure 3.18b shows
the inclusion of every block through time. We can notice the effect of the merge
synchronization procedure by remarking that the merge block (3505486) is added into
the mesh router’s Blockgraph before blocks 15297894 and 9918612, which are blocks
created by the other network partition in which the corresponding mesh router did not
participate. It is important to mention that our Blockgraph prototype managed to
replicate the 100% of the distributed ledger for all executions.

78

(a) Final Blockgraph data structure. (b) Addition of Blocks through Time.

Figure 3.18: Example of the final Blockgraph data structure after an execution.

3.5.2.2 Testbed Implementation Conclusion

We implemented a prototype of Blockgraph using mesh routers as a proof-of-concept of
our solution. The results demonstrate from one side, the possibility of maintaining a
blockchain-like data structure in MANETs in the presence of topology changes leading
to network partitions. On the other side, we provide the first performance evaluation of
our solution that allow us to characterize our Blockgraph. Thanks to this results, we
can better dimension the required space allocated to the usage of a node’s mempool in
function of the transaction generation rate and the number of nodes in the network.
For our prototype, we only used less than 10% (45 KB) of the allocated memory space
(500 KB). We demonstrate the possibility of increasing the transaction generation
rate without crating forks in the Blockgraph data structure by calculating the average
inter-block time. We also demonstrate that the transaction latency remains constant
regardless of the mobility and that solution reached a maximum throughput of 13 tps,
which is only 2 tps less than the theoretical maximum. Moreover, we have implemented
a live visualizer that allow us to see in real time the evolution of our Blockgraph and
provide statistics of the Blockgraph. In the next steps, the testbed will be used to
measure main performance metrics such as block and transaction processing time. These
measures will be then integrated into our simulator to evaluate the performance of
Blockgraph in more complex mobility scenarios and large scales.

3.6 Chapter Summary

In this chapter, we have broken down our Blockgraph solution, a full framework capable
of maintaining a blockchain-like DAG-based DLT data structure that is capable to deal
with the mobility of the nodes. We have started by introducing the context in which
our Blockgraph solution is susceptible to function. We explained the split and merge
problem, which is the fundamental difference and the main reason why a traditional
blockchain solution cannot deal with frequent network partitions. We then proceed
to explain our system model and the assumptions we made to develop our solution.
We noticed that our Blockgraph solution was not meant to deal with random and
chaotic mobility since it responds to specific application needs such as platooning, squad
commuting, and team-oriented mobility. We highlighted the flexibility of our modular

79

architecture that allows us to adapt functionalities of our Blockgraph framework to
better fit with the top-level application. This includes the transaction model, the
network discovery solution, and the consensus algorithm. We have also detailed the
structure of the main elements that composes the Blockgraph data structure such as the
transactions, data blocks, and merge blocks. We have provided a detailed explanation
of our merge synchronization procedure, which is the method we use to merge divergent
branches to form a unique data structure after a merge. Likewise, we have explained
the solution we have adopted to perform the discovery of the network.

In the next chapter, we present a consensus algorithm capable to tolerate network
partitions that we have called C4M (Consensus for Mesh Networks). This consensus
was developed in the context of our Blockgraph solution and was meant to function as
the de facto consensus algorithm working in the consensus module of our Blockgraph
framework.

80

Chapter 4

Consensus for Mesh Networks

This chapter presents our consensus algorithm solution for our Blockgraph: A partition-
tolerant algorithm for mesh and mobile ad hoc networks. Consensus for Mesh (C4M)
implements a novel solution to constantly renew its configuration (nodes participating
in the consensus process) and synchronize unphased entries from different network
partitions. We also present an overview of the RAFT consensus algorithm, which is the
base of our work. Moreover, we provide details of our implementation in the discrete
network simulator, NS-3, and present a performance evaluation of our solution. Finally,
we present our conclusions and final thoughts.

4.1 Introduction

Reaching consensus has always been at the center of any social concern. It allows
us to agree on practical issues and make collective decisions that go forward in the
development of society. Nevertheless, we must follow established frames to make those
decisions in a regulated and ordered manner; for instance, in Occident, most societies
have opted for a parliamentary system in which representatives from the civil society
gather to discuss and agree on a certain number of measures and resolutions.

In the context of distributed systems, the problem of reaching consensus is ap-
proached differently. A distributed system is composed of computer nodes that strive
to achieve a common goal despite being separated geographically; the common goal
would be to reach an agreement on certain data values. To that, a value or set of values
needs to be proposed for consensus consideration by a node.

There are two main consensus models that worth to be considering at the time of
designing a distributed system: a deterministic or a stochastic model. In a deterministic
model, the set of events needed to reach consensus is completely determined by previously
existing causes, for instance, the appointment of a leader node proposing new data

81

values for agreement. Paxos [91], Practical Byzantine Fault Tolerance (PBFT) [35], and
RAFT [19] are representative vote-based consensus algorithms employing a deterministic
approach since they use a voting procedure to elect a leader among a set of nodes,
which is the only node allowed to propose data values. On the other hand, in a
stochastic model, the set of events needed to reach consensus is described by a random
probability distribution, where every node participating in the consensus process has a
certain probability P to propose new data values. Proof-of-Work (PoW) [1], Proof-of-
Stake (PoS) [39], and Proof-of-Elapsed-Time (PoET) [43] are representative consensus
algorithms using pseudo-randomization to select a leader. Naturally, the adoption of
each model will mainly depend on the nature of the distributed system itself, namely,
a permissioned or permissionless system. Indeed, when considering a permissioned
distributed system, we are implying the presence of a centralized entity with a certain
degree of control over the distributed system. In this case, a deterministic consensus
model might be adequate since nodes are usually known and trusted by the central
entity and provides strong control over the distributed system; in addition to better
performance. On the other hand, when considering a permissionless distributed system,
we are implying that there is no control over the participants of the network, and
therefore, the network is trustless. In this case scenario, a stochastic consensus model
is preferred since providing the opportunity to any node to propose a value or a set
of values for agreement is preferable to having a selected group of non-trusted nodes
dictating new values.

It is also important to keep in perspective that the performance of the consensus
algorithm will depend on the type of model chosen for the application. While a de-
terministic model will provide high transaction throughput, most of these solutions
usually suffer from scalability issues since they tend to be intensive in terms of message
transmissions. In opposition, a stochastic model has better scalability and reduces
the number of messages used by the protocol to achieve consensus but at the cost of
lower transaction throughput and the possibility of introducing collisions in the leader
selection process. Therefore, choosing a consensus algorithm is one of the most critical
decisions in the designing processes of a distributed system.

In chapter 3, we have detailed our Blockgraph solution and the context in which it
unfolds. We can think of our solution as a permissioned distributed system composed of
a set of mobile nodes that maintains the Blockgraph data structure. As in blockchain,
our Blockgraph solution needs a consensus algorithm to reach an agreement on the state
of the distributed ledger. Nevertheless, and very different from traditional blockchains,
the nodes participating in the consensus process are mobile; thus, partitions in the

82

network topology are likely to happen. Therefore, the consensus algorithm for our
Blockgraph solution should be partition-tolerant.

In general, most of the consensus algorithms designed for blockchain consider a
stable and fully connected network that can tolerate faulty or malicious nodes. Hence,
these protocols can deal with topology changes caused by node crashes, node arrival or
departure, and node misbehavior. However, in the context of mesh and mobile ad hoc
networks, most network topology changes occur due to nodes’ mobility. In this context,
the network might split into different partitions or merge into a single one. Thus, the
consensus algorithm should not consider these topology changes as faulty events but
as network partition events (split and merge), while continuing to consider faulty or
byzantine nodes. In this regard, the consensus algorithm should adapt to network
topology changes as they are happening, allowing nodes in each network partition to
continue with the consensus process.

Next, we present Consensus for Mesh (C4M): A partition-tolerant algorithm for
mesh and mobile ad hoc networks based on RAFT [19]. It was designed as part of the
Blockgraph framework, nonetheless, it might find utility in general mobile distributed
systems. We opted for a deterministic consensus algorithm due to the permissioned
nature of the Blockgraph system. And we have chosen RAFT as our based algorithm
due to its simpleness, task division (leader election, log replication, and safety), and
profile needed features for our solution. For this purpose, we have mainly modified the
“membership change” procedure of RAFT to enable the algorithm to handle frequent
changes in the network topology and added a realignment indexes procedure when
merging different network partitions. Our modifications remain compatible with other
events such as node crash, node insertion, and node removal that RAFT was designed
to handle.

4.2 RAFT Overview

RAFT is the result of the work of Diego Ongaro and John Ousterhout (Standford
University) in their quest for better understandability of how consensus can be achieved
in a distributed system. Priory to RAFT, the Paxos algorithm [91] was the primary
reference on how to achieve consensus in distributed systems; however, Paxos is very
difficult to understand and implement, making it unpractical and less attractive for
building new systems. RAFT produces similar results and performance as Paxos. It
enhances understandability by separating key elements of the consensus process, such
as leader election, log replication, and safety. Moreover, it introduced novel features

83

that made RAFT more robust and adaptable than other consensus algorithms. Such
features are (i) Strong Leader, which states that log entries can only flow from the
leader node to other nodes; (ii) Leader Election Mechanism, where RAFT introduced
randomized timers to elect a leader, which resolves conflict simply and rapidly; and
(iii) Membership Changes, which allows the distributed system to continue operating
normally during configuration changes (replacing the set of nodes participating in the
consensus process). This last feature was a key piece in the decision of employing
RAFT as a based algorithm for our solution in which our modifications mainly, but not
only, were concentrated on solving the split and merge problem in the consensus process.

The RAFT algorithm was designed to manage a replicated log containing state
machine commands issued from clients. In other words, it implements a Replicated
State Machine (RSM), where a collection of servers computes identical copies of the
same state and can continue operating even if some server crashes. We said that the
system is Crash Fault Tolerant (CFT) since the system remains available. In this model,
the replicated log is a series of application commands where each server stores a copy of
the log, which its state machine executes in a particular order. Since state machines are
deterministic, each server will compute the same state and generate the same sequence
of outputs for a given sequence of inputs. Managing to keep the replicated log consistent
among the servers is the consensus algorithm finality.

4.2.1 Basic Functioning

The RAFT algorithm based its philosophy as follows: if a series of decisions must be
taken, it is simpler and faster to elect a leader node and then have the leader coordinate
the replication of the entries. As such, the RAFT algorithm starts by appointing a
leader node and then endowing it with the responsibility of dictating to the other nodes
the updates of the replicated log. Once a leader is established, it accepts the entries
coming from clients, replicates them in the distributed system, and tells the nodes when
is safe to apply (commit) log entries to their state machine.

There are three states that every node can take at any given time: leader, follower,
and candidate. Figure 4.1, illustrate the transitions a node can take between each state.
In normal conditions, only one leader node is active in the system. Nodes in the follower
state do not issue new entries or requests on their own, instead, they respond to leader
and candidate requests. A node turns into the candidate state when the presence of a
leader is not detected.

Time is divided into terms of arbitrary length, which is numbered and increases
monolithically. Each term is determined by the election of a leader and ends with a new

84

Figure 4.1: Nodes states of the RAFT algorithm.

election. Terms work as a time reference for every node, which allows for detecting stale
information, such as unchanged candidates or obsolete leaders. Indeed, as described by
the authors, some nodes may not observe an election or entire terms due to unavoidable
delays in the network or node failures. Therefore, every node keeps a record of the
current term, which is exchanged whenever nodes communicate. Thus, when a candidate
node or a leader node receives information from another node holding a higher term, it
immediately reverts to the follower state.

The original RAFT algorithm uses Remote Procedure Calls (RPCs) to communicate
among nodes. Only two types of RPCs are needed to reach consensus: a RequestVote
RPCs, which are used by candidates during elections, and Append-Entries RPCs, which
are used by the leader node to replicate log entries and as a form of heartbeat to maintain
its ruling.

The RAFT algorithm decomposes the consensus problem into three relatively
independent subproblems, namely, the leader election, log replication, and safety.

4.2.1.1 Leader Election

At the start, every node is in the follower state. When a follower does not receive
communication from a leader node over a determined period, called the election timeout,
it assumes that the distributed system has no active leader node. It then increases its
current term value and transitions to the candidate state to call for new elections. It

85

issues RequestVotes RPCs to every other node in the distributed system and grants a
vote to itself. It remains a candidate until one of the following events occurs first. (i)
Winning the election, (ii) receiving an Append-Entry RPC from a leader node, or (iii)
a time period passes without a winner.

In the first case scenario, a candidate node wins the election by gathering a majority
of votes, which is defined by the majority criterion, which is the minimum value needed
to either become a leader or to replicate an entry before considering it committed. The
majority criterion (m) is calculated in function of the number of nodes in the distributed
system, m = N

2 + 1, where N represents the total number of nodes in the distributed
system. A follower node can only grant one single vote per term. Once the candidate
node has won the election, it transits to the leader state and issues Append-Entries
RPCs to every other node to maintain its ruling and prevent new elections.

In the second case scenario, the candidate node receives an Append-Entry RPC
from a leader node. The candidate node will then compare the leader’s term included
in the RPC to take a decision. If the leader’s term is at least as high as the candidate’s
current term, then the candidate transits to the follower state, otherwise, it continues
in the candidate state.

In the last case scenario, more than one candidate may request votes, splitting
the election so that no candidate manages to reach the majority criterion to win the
election. In this case, each candidate’s election timeout will exhaust, which triggers a
new election round. To avoid falling into the same repetition pattern, randomization is
employed in the election timeout timers to resolve this issue.

4.2.1.2 Log Replication

Once a leader node has been elected, it might start taking requests. In the RSM context,
the leader appends the client’s command to its log as a new entry and issues Append-
Entries RPCs to every other node to replicate the entry. Entries are not immediately
applied (commit) by a follower node upon the reception of an Append-Entry RPC;
instead, followers wait for the leader’s command to commit the entries. A leader node
commits a client’s command when the entry has been safely replicated in a majority of
nodes according to the majority criterion.

The replicated log is composed of a succession of entries holding a command ordered
sequentially. Each entry is identified by an index, the logIndex, which defines the
position of the entry in the log. Moreover, each entry contains the current term in
which the client’s command was issued, which allows to better identify inconsistencies
in the replicated log.

The leader node maintains a reference of the replication level for each of its followers.

86

To that, it stores two variables for each follower: the nextIndex and matchIndex. The
nextIndex defines the logIndex of the next entry to be sent to that follower and the
matchIndex defines the logIndex of the last entry known to be replicated by that follower.
Indeed, each node evolves at its own pace due to multiple factors. Therefore, the leader
node needs to keep track of the replication advancement of each of its followers to
ensure consistency. Likewise, all nodes keep track of their own level of log advancement
by storing two variables: the commitIndex and lastApplied index. The commitIndex
stores the logIndex of the last entry known to be committed by the node and the
lastApplied index stores the logIndex of the last entry added to the log by the node.
The commitIndex is sent at every Append-Entries RPCs (including heartbeats) by the
leader node so that every other node becomes aware of when to apply a given command.
Committed entries are those that have been safely replicated in a majority of nodes
and can never be reverted in any case. Figure 4.2 illustrates the RAFT replicated log
along with the indexes.

Figure 4.2: RAFT’s replicated log.

A leader node can crash, leaving the replicated log inconsistent in the distributed
system. Multiple case scenarios may exist in this situation; a follower may have extra
entries that are not present on the leader, or it could be missing entries or both. In
this case, the leader deals with those inconsistencies by forcing the follower nodes to
duplicate its own log. To approach this issue, the leader node needs to find the last log
entry where the two logs agree and overwrite the follower’s log entries from this point

87

with the leader’s entries.

4.2.1.3 Safety

The safety subproblem of RAFT consists in defining a series of rules that ensures that
the same commands are applied in the same order in all state machines. Such rules can
be summarized as follows:

• Election Safety: only one leader can be elected in a given term.

• Leader Append-Only: a leader can never overwrite or delete entries in its own
log; it can only append new entries.

• Log Matching: if two different logs contain a given entry with the same log
index and the same term, then the logs are identical in all entries up through that
given index.

• Leader Completeness: if a log entry is committed in a given term, then that
entry continues to be committed in the log of future leaders for all higher-numbered
terms.

• State Machine Safety: if a node has applied a given entry at a given log index
to its state machine, no other node will apply a different log entry for the same
log index.

Those are the safety rules proposed in [19] that were thought for the RSM context.
In the next Section, we will see that compromises on certain safety rules can be made
in the Blockgraph context.

4.2.2 Membership Change

The RAFT algorithm was designed to function in a connected network using a fixed set
of nodes participating in the consensus process. However, it has a special procedure
to change the configuration. In [19], the authors point out that the reasons to make a
configuration change in the distributed system are mainly occasional; this could be the
case when replacing faulty nodes or updating the degree of replication.

Taking the distributed system down to perform a configuration change leaves the
system unavailable during the process, which could be unacceptable for some use cases.
Thus, to achieve a configuration change during operation, the authors proposed a
two-phase approach, where there is no possibility during the transition of having two
elected leaders for the same term. The approach goes as follows: it first switches to a

88

transitional configuration state called the joint consensus; this allows individual nodes to
transit between configurations at different times. Once the joint consensus configuration
has been committed, the systems switch to the new configuration; nodes that are not
included in the new configuration can safely be removed. The joint consensus configu-
ration includes nodes from both the old and new configurations. Therefore, during the
joint consensus phase, log entries are replicated to all nodes in both configurations.

In the Blockgraph context, the membership change procedure proposed by RAFT
cannot be employed since it assumes control over the physical location and assurances
of network connectivity for all nodes involved during the membership change transition
process. This is primarily because membership changes in Blockgraph cannot be foreseen
or scheduled. Therefore, RAFT’s join consensus solution, which needs the nodes from
the old and new configuration to be available, cannot be assured in the Blockgraph
context.

4.3 C4M: A Consensus Algorithm for Mesh and
Mobile Ad Hoc Networks

In Blockgraph, the problem of reaching consensus remains the same but the entities
and elements of the process change. For instance, a client no longer submits a series of
commands needed for execution in a set of servers; instead, clients create application
transactions to be included in a block in the Blockgraph. Thus, it is the blocks that
need to be replicated in a majority of nodes to agree on the next block to be appended
in the Blockgraph data structure. Therefore, the role of the replicated log changes
completely from being the structure where the application data resides, in the RSM
context, to being the structure where the control information necessary to achieve
Blockgraph consistency resides. This new approach places two levels of replication
information: the replicated log at the consensus level and the Blockgraph distributed
ledger at the application level. In this regard, it is important to point out that due to
frequent membership changes caused by mobility and the nature of the linear structure
of the C4M log, in the Blockgraph context, the replicated log no longer guarantees the
Log Matching property of RAFT’s safety process, which makes the replicated log incon-
sistent at a given point. Indeed, at the time of a merge, where two different replicated
logs encounter each other, both replicated logs have a different history of replication
and cannot, therefore, be consistent with one another. However, the consistency of
two separate replicated logs is not the objective at the consensus level, that is the

89

Blockgraph data structure objectives. Thus, in the case of a merge, it is only important
to generate the initial conditions for the new configuration to begin agreeing on the
new entries (replicating blocks in a majority of nodes) regardless of the previous log
entries before the merge.

In Blockgraph, the distributed ledger is an append-only data structure composed
of blocks containing application transactions. When a block is created through the
Blockgraph protocol by a leader node, it sends the block to the consensus module. The
block is then added as a log entry, which the leader node will try to replicate by
sending the block to its followers. The followers are all nodes present in the current
configuration. Once the block is replicated in a majority of nodes, the leader node
instructs its followers that a given block in a given entry can safely be committed.
The follower nodes become aware of the commitment of a block when receiving the
Append-Entries messages, where protocol-related information is included. When a node
commits a block, it transmits the block to the Blockgraph protocol for treatment.

The contributions of our solution focused primarily on the ability of the algorithm
to perform frequent membership changes that we call configuration changes and to
synchronize all nodes indexes during a merge. To that, a new operating mode is
defined, which modifies the behavior of a node to go forward in the direction of a
smooth configuration change. Next, we present the new operating mode in which our
contributions are implemented.

4.3.1 Operating Modes

For the C4M consensus algorithm to adapt to frequent changes in the configuration,
we define two operating modes that a node can take: a stable topology mode and a
topology change mode. Figure 4.3 illustrates the two operating modes. In the stable
topology mode, the consensus algorithm operates in normal conditions, meaning, that
the fundamental processes of electing a leader and replicating logs are executed as the
RAFT basic functioning. On the other hand, when a node shifts to the topology change
mode, the node will prioritize the upcoming configuration change before the leader
election and the log replication processes. Naturally, the actions that a node will take
in this mode are dependent on the state they are in.

90

Figure 4.3: C4M operating modes.

4.3.2 Configuration Change

The shifting to the topology change mode starts with a topology change notification
from the group management module 3.4.1 of the Blockgraph framework and ends with
the commitment of a configuration change entry in the replicated log. It is the module
that generates a new list of nodes that are available to participate in the consensus
process upon the detection of a topology change in the network partition; it also provides
the nature of the topology change, meaning, a split or a merge. Each node in the
network partition holds two new control variables as part of the consensus process:
the currentConf and the pendingConf variables. The currentConf variable stores the
current list of nodes participating in the consensus process and the pendingConf stores
the most updated list of nodes in the new network partition.

A configuration change only occurs when the node is in the topology change mode.
This operating mode will provide the conditions for the leader node to enforce a change
of configuration as fast as possible. In the Blockgraph context, a configuration change
is defined by the addition or removal of nodes from the currentConf variable, either
because new nodes are introduced in the overall distributed system or either because
the mobility of nodes entails topology changes, meaning, nodes arriving or leaving the
network partition. For the new configuration to take effect, a special entry called, the
configuration change entry, is added by the leader node in its log. The configuration
change entry holds the list of nodes, viewed from the leader’s perspective, of the new
set of nodes that will be participating in the consensus process upon the commitment

91

of the special entry. We will further see that the configuration change entry is added
differently to the leader’s log depending on the nature of the topology change.

In a connected network context, the addition or removal of new nodes is controlled
by the administrators; in the mobile and dynamic network context, such control is not
possible. Therefore, a joint consensus approach as proposed in RAFT [19] is not viable
for our case scenario since we must infer the possibility of removing the leaving nodes at
the time of committing the new configuration. However, the node’s autonomy prevents
us from ensuring that such timing is possible. Thus, a new approach, said: “on-the-fly”
is proposed.

When a node is in the leader state during the topology change mode, it first has to
figure out two things before taking any actions: the role that it’s going to take during
the configuration change phase and the nature of the topology change, which is given
by the group management module. To know whether the leader node remains the leader
during the configuration change phase, we define two new concepts: the new majority
and the new minority. A leader knows if it belongs to the new majority or the new
minority by comparing its currentConf with the new pendingConf.

If more than half of the nodes, including itself, from the currentConf, are also present
in the pendingConf, it means that the leader node is part of the new majority in the
new configuration and therefore, remains as a leader. In the case scenario where the
leader node is part of the new minority, meaning, that less than half of the nodes in its
currentConf are present in the latest pendingConf, it transits to the follower state. In
other words, if the leader node is the node leaving the network partition, it transits
back to the follower state, and if the leader node stays in the network partition, it
remains the leader to deal with the configuration change.

If the leader crashes or a candidate node takes over the leader’s position, the new
leader can carry out the configuration change process without further actions.

Depending on the topology change nature, the leader node will proceed to the
configuration change differently.

If the topology change refers to a split, the leader node will stop adding new block
entries to its log, adds a configuration change entry at the next available entry, and
prioritizes the commitment of the remaining entries in its log. Once the configuration
change entry is committed in all nodes from the pendingConf, it transits back to the
follower state to elect a new leader. In the case of the new network partition resulting
from the split has no leader node, a leader is elected and performs the same procedure.

92

If the topology change is a merge and the leader node is part of the new majority,
it will follow the same procedure as in the split but will add the configuration change
entry based on the new minority logs. Indeed, for the new configuration to take effect
in a merge case scenario, the indexes of all nodes in the pendingConf must be aligned
to restart the consensus process. The log realignment process is further explained in
Section 4.3.3.

In either case, whether is a split or a merge, the leader node has to commit the
remaining entries in its log. To that, the leader has to choose which majority criterion
to adopt. As we have already explained, the majority criterion is the minimum degree
of replication needed to commit an entry, and it is based on the number of nodes in a
configuration. However, during the configuration change phase, two configurations are
available the currentConf and the pendingConf.

The leader chooses the majority criterion for the configuration change phase based
on the nature of the topology change. Indeed, a different majority criterion is applied
for a split that is for a merge. In the case of a split, the majority criterion is based on
the pendingConf, since nodes from the currentConf are no longer available. On the
other hand, in the case of a merge, the majority criterion is based on the currentConf,
since block entries are meant to be committed in the current configuration.

While block entries are committed based on the majority criterion, a configuration
change entry needs unanimity to be committed. In other words, the entry has to be
replicated in all nodes before the leader node can advance its commitIndex at the
logIndex position value where the configuration change entry is placed. Once the config-
uration change entry is committed, the pendingConf will become the new currentConf,
and all nodes in the currentConf will switch to the stable topology state.

Follower nodes in the topology change mode will act differently whether they are
included in the new majority or new minority. If a follower node is in the new minority,
it will be allowed to respond to AppendEntries messages from a leader node not included
in its currentConf but present in its pendingConf. However, it will only update its state
if the AppendEntry message includes a configuration change entry or stuffing entries.

If a follower node in the new minority transits to the candidate state, it will ask for
votes only to nodes in their currentConf since the pendingConf is not yet applied. In
this regard, if the candidate manages to become a leader, it will transit back to the
follower state since the node is still part of the new minority. On the other hand, if
the follower node is in the new majority, its behavior does not change from the basic
RAFT functioning.

93

4.3.3 Log Realignment Process

The log realignment process is a special procedure that occurs during the merge of
diverse network partitions. This procedure is necessary to align the indexes used by the
C4M protocol, inherited by RAFT, to achieve consensus among a set of nodes. Indeed,
by aligning the indexes of all the nodes forming the new configuration, the ground is
set to start a new consensus process. This desynchronization of the indexes occurs
because the rate at which the Blockgraph branches grows is different for each network
partition; it depends on the number of nodes participating in the consensus process and
the cadence in which transactions are arriving the system. Therefore, when a merge
arises in the network topology, the indexes used to maintain the replicated log as the
content of the replicated logs are different in each network partition.

In regards to the difference in the content of the two replicated logs, we consider
that up to the merge, each network partition has managed to maintain a consistently
replicated log. Thus, the new network partition should start a new replicated log
regardless of the previous content. This consideration is possible because the replicated
log is used as an underlying layer that provides blocks agreed by a majority of nodes to
the Blockgraph protocol to be appended in the Blockgraph data structure. Once an entry
in the replicated log has been committed, it becomes merely historical record keeping.
It is the Blockgraph data structure that needs to maintain the full consistency of the
distributed ledger by only appending blocks that were committed at the consensus level.

On the other hand, realigning the different indexes used by C4M is capital to
synchronize the new set of nodes (pendingConf) participating in the consensus process
and will provide the proper conditions to begin a new consensus process to ensure
agreement on the future blocks.

It is also worth mentioning that in the case of a split, the configuration change in
both network partitions equals the removal of nodes in the distributed system. There-
fore, there is no need to realign the indexes upon this configuration change.

In C4M as in RAFT, each node keeps track of its log’s advancement by using the
commitIndex and lastApplied index. Both indexes are updated upon the reception of
an AppendEntry message sent by the leader node. The leader node, on the other side,
holds two more variables for each of its followers: the nextIndex and the matchIndex.
These indexes are updated upon an AppendEntry reply message from a follower node.

The realignment process of the indexes is performed by the standing leader node in
a change topology operation mode during the configuration change process of a merge.
It is important to remember that a leader node only remains a leader if he belongs to
the new majority.

94

Upon the reception of the new configuration by the group management module, the
leader node starts sending heartbeat messages to the new arriving node. The new
arriving nodes form the new minority, and therefore, no leader nodes can be among
them. The follower nodes are only allowed to respond to AppendEntries messages from
a leader node, if this last is not present in the follower’s currentConf and if the node is
in the topology change mode.

Upon the reception of an AppendEntry message (heartbeat) of the leader node by
the follower nodes forming the new minority, the follower nodes will reset their election
timeout timer and respond with an AppendEntry reply containing their current term,
commitIndex, and lastApplied index values.

This process allows the leader node to maintain its ruling during the configuration
change process and to establish at which logIndex to place the configuration change
entry. To that, it will compare its own lastApplied index with the highest commitIndex
of the nodes from the new minority. If the commitIndex has a higher logIndex than
the leader’s lastApplied index, then the leader node will place the configuration change
entry at the logIndex = commitIndex + 1. If the highest commitIndex from the new
minority is inferior to the leader’s lastApplied index, then it will place the configuration
change entry at the logIndex = lastApplied + 1. At this point, the configuration change
entry is added to the leader’s log, in a way that, the leader node can either add stuffing
entries to its log and applied them to its new majority, or force the new minority
to add stuffing entries after their commitIndex until the leader’s lastApplied index.
This process allows realigning the indexes of all nodes in the pendingConf such as the
configuration change entry is in the same logIndex for all nodes in the pendingConf.
Figure 4.4 illustrates this process for the two case scenarios.

4.4 C4M Implementation and Evaluation

To assess the efficacy and to evaluate our solution’s performance, we have opted for a
simulation approach since it allows us to evaluate the potential effects of our solution
as in a real implementation. To that end, we have chosen to employ the discrete-event
network simulator for Internet systems, NS-3.

To simulate a mobile network, we used the NS-3 modules that allow us to implement
in every node, an IEEE 802.11g technology configured in the ad hoc mode for the
communication protocol. The radio frequency in which this technology work is in the
range of 2.4 GHz with a data rate of 11 Mbps. The propagation loss model used for
our simulations is the RangePropagationLossModel with a maximum range (MaxRange)

95

Figure 4.4: Logs realignment process.

of 250 meters. This propagation model is convenient for our use case scenario since
it allows us to effectively schedule splits and merges topology changes during our
simulations. Moreover, we have installed a full Internet protocol stack in every node,
which aggregates IP/TCP/UDP functionalities to the mobile nodes. In this regard, we
installed the IPv4 protocol for addressing, OLSR as the routing protocol, and UDP as
the transport protocol.

For the C4M algorithm, we created an application for NS-3 implementing our C4M
solution. To that, we first implement the RAFT basic functioning, meaning, the leader
election and the log replication processes; then, we implemented our modification as
described in Section 4.3.1 to create the C4M algorithm. The replicated log is repre-
sented by a linear vector containing pair data structures, where each entry contains the
term when the entry was first added to the log and a random sequence of characters
representing the hash of a block. For simplicity, new entries can only be generated by a
leader node. The C4M algorithm uses a costumed ApplicationPacket class that handles
protocol-related messages. It allows us to create our application packet as a form to
substitute RAFT’s RPCs.

To simulate the mobility of the nodes, we created an NS-3 application that updates
the position of the nodes through time. To that, we installed in all nodes the Constant-
PositionMobilityModel, which is an NS-3 model that allows us to set the position and
the velocity of a node; these parameters do not change until explicitly set with a new

96

value. Thus, our mobility application performs the task of setting new position values
according to the direction we want the nodes to take at a given simulation time. In
Section 4.4.1, we define the mobility scenarios use for our simulations. Additionally,
we implemented our group management module in this application. In that regard,
we used the same approach described in Section 3.4.1.1 to discover the network topology.

Traces to measure our metrics are collected by using control variables that are
updated constantly during the simulations. Those variables are printed in a log file for
a post-treatment.

4.4.1 Methodology, Simulations, and Results

The objective of our simulations is to validate the efficiency, describe the characteristics,
and define the limits of our solution. To that, we placed special care on the measure
of metrics related to the leader election and the configuration change processes, such
as the number of messages to elect a leader, the number of messages to commit a
configuration change, the configuration change delay, the leader election efficiency,
and the configuration change efficiency. We tested our C4M algorithm under mobility
conditions and introduced topology changes during the simulation to assess the behavior
of the configuration change procedure and the realignment log process. Thus, we have
defined two mobility scenarios in which our algorithm is tested to contrast results
obtained from both scenarios. In each scenario, the nodes starts with the same network
topology configuration, which is a fully connected network. The description of our
mobility scenarios goes as follows:

• Scenario 1 - Split and Merge: in this scenario, the nodes move in the same
direction at a constant speed. Two groups of nodes are defined: even and odds
nodes. A split is scheduled after 100 seconds of simulation by changing the
direction in opposite ways in which each group moves; two different network
partitions are then formed for a period of 100 seconds of simulation time. A
merge is then scheduled by changing the direction of both groups towards each
other; the network will then form a connected network for a period of 100 seconds.
This pattern of split and merge repeats every 100 seconds until the end of the
simulation.

• Scenario 2 – Connected Network: in this scenario, the nodes move in the
same direction at a constant speed. All nodes are close enough to form a single
network partition. No topology changes occur during this scenario. Thus, all
nodes form a single connected network throughout the simulation.

97

The simulation time for both scenarios is set to a fixed 600 seconds. Scenario 1 aims
to test our C4M algorithm in the context of topology changes, while scenario 2 is used
as a reference scenario to contrast the performance evaluation of scenario 1 in a stable
connected network. For each scenario, we vary the number of nodes in the system to
evaluate the scalability of our solution. The values defining the number of nodes used
for each scenario are 6, 10, 16, 20, 26, and 30 nodes.

We identified two parameters that have a direct impact on the behavior of the leader
election and the configuration change processes: the AppendEntries messages interval
(or heartbeat interval) and the election timeout window. The heartbeat interval is the
time between two AppendEntries messages sent by a leader node to its followers, and
the election timeout window is the range of time in which a node randomly chooses
a value to set its timer. As a manner of reference, we included the original values
proposed by RAFT to compare the performances of both algorithms, namely, a 50 ms
heartbeat interval and an election timeout window of [300-450] ms. The rate at which
entries are added in the replicated log is configured to happen 1 entry every 5 seconds,
with a 50% probability of success of adding the entry. This, allow us to desynchronize
the log indexes between the distributed log of different network partitions and help us
create the conditions to test our log realignment procedure. Table 4.1 summarizes the
C4M parameters used for the simulations.

C4M Simulation Parameters
Parameters Values

Entry log rate 0.2 entry/s
Heartbeat interval (HB) 50 ; 500 ; 1,000 ms

Election timeout window (Elto) [300-450] ; [600-750] ; [1,600-1,750] ; [4,000-4,150] ms
Number of nodes 6 ; 10 ; 16 ; 20 ; 26 ; 30

Propagation loss model RangePropagationLossModel (MaxRange 250 m)
Routing protocol OLSR
Transport protocol UDP

Table 4.1: Values of the C4M parameters for the simulations.

To obtain better and more accurate results, we run each configuration of each
scenario 10 times. Thus, the results are average values with a confidence interval of
95%. It is also important to notice that the heartbeat interval must remain shorter than
the election timeout window. Thus, for a 500 ms heartbeat only [600-750], [1,600-1,750],
and [4,000-4,150] election timeout windows are considered for simulations. Likewise,
for a 1,000 ms heartbeat only [1,600-1,750] and [4,000-4,150] are considered. Finally,
and for the sake of simplicity, we choose to display only results for 50 and 1,000 ms

98

heartbeat intervals since 500 ms results were must the time redundant with 1,000 ms
results. In this regard, 500 ms results have a similar performance that 1,000 ms results
unless said otherwise.

4.4.1.1 Leader Election Results

First, we analyze the number of leader election messages of C4M. The leader election
procedure uses two different messages: VoteRequest and AckVote messages. When the
election timeout timer reaches zero, the node switches to the candidate state and sends
a VoteRequest message to all nodes in the same currentConf. Upon the reception of a
VoteRequest message, the node responds with an AckVote message by either granting
or denying its vote. It is important to point out that not every VoteRequest culminates
in the election of a leader. Figure 4.5 compares the number of leader election messages
generated for each scenario and different network sizes. Figure 4.5a uses a heartbeat
interval value of 50 ms and an election timeout window of [300-450] ms, while Figure 4.5b
uses a heartbeat value of 1,000 ms and an election timeout window of [4,000- 4,150] ms.
As expected, in scenario 1, the size of the network has a significant impact on the
number of leader election messages. Interestingly enough, the heartbeat rate and the
election timeout window play an important role in the number of election messages. We
can notice that in Figure 4.5a the curves tend to grow exponentially, while in Figure 4.5b
the curves present a linear growth. These observations are valid for both scenarios. This
difference is mainly due to network congestion since reducing the heartbeat interval, and
the election timeout window implies an increase in network traffic. Thus, as network
congestion escalates, packet loss increases, causing the efficacy of the election procedure
to shrink. These problems might lead not only to an augmentation in the number of
VoteRequests to consolidate an election but also to an increase in the total number of
elections. Moreover, the short election timeout interval increases the chances to trigger
new leader elections. In contrast, Figure 4.5b shows a more linear progression according
to the size of the network and a much lower number of leader election messages. Thus,
a higher election timeout window allows the leader node to maintain its leadership for
longer periods.

Figure 4.6 shows the number of VoteRequest and AckVote messages for scenario
1 using extreme heartbeat interval and election timeout values. In an ideal network
condition, the number of VoteRequest would be equal to the number of AckVote
messages. However, we can notice in Figure 4.6a that the gap between the number of
VoteRequest and AckVote messages tends to increase exponentially with the size of the
network. We attribute this difference to the loss of some of the AckVote messages. As
we have seen in the previous result, a 50 ms heartbeat interval can cause the saturation

99

6 10 16 20 26 30

Number of nodes

0

2000

4000

6000

8000

10000
N

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

Scenario 1

Scenario 2

(a) HB 50 ms - ETo [300-450] ms.

6 10 16 20 26 30

Number of nodes

0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

Scenario 1

Scenario 2

(b) HB 1000 ms - ETo [4000-4150] ms.

Figure 4.5: Number of leader election messages.

of the network for large networks, which causes high packet losses and longer delay.
These losses combined with a short election timeout window ([300-450] ms) can severely
impact our algorithm by triggering several leader elections. It might also cause the
algorithm to stay in a constant leader election process when using shorter intervals. In
contrast, Figure 4.6b shows 10 to 30 times fewer leader election messages with almost
no loss of AckVote messages. Therefore, these results confirm the significant impact of
the heartbeat interval on the leader election performance and show that a less frequent
heartbeat interval and a longer election timeout window allow for better conditions in
mobile and topology changing networks.

6 10 16 20 26 30

Number of nodes

0

2000

4000

6000

8000

10000

12000

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

Vote requests

Ack votes

(a) HB 50 ms - ETo [300-450] ms.

6 10 16 20 26 30

Number of nodes

0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

Vote requests

Ack votes

(b) HB 1000 ms - ETo [4000-4150] ms.

Figure 4.6: Number of Vote Request and Ack Vote for scenario 2.

Figure 4.7a shows the number of leader election messages generated for a network
size of 6, 16, and 26 nodes according to different election timeout window values, with a
fixed heartbeat of 50 ms. We can notice that the difference in the number of messages is
more important for a shorter election timeout window. Indeed, part of this phenomenon
is explained by the fact that larger networks require more messages to elect a leader node.

100

Moreover, we can also notice that the number of leader election messages decreases with
the higher values of election timeout. This is explained because longer election timeout
timers give more time for heartbeat messages to reach the follower nodes in conditions
of a congested network that entails packet losses and long delays. This conclusion is
in line with Figure 4.7a, which shows that different network sizes tend to converge
with an election timeout window of 4,000 ms. Figure 4.7b depicts the efficiency of the
leader election process. We calculate the efficiency by dividing the number of successful
leader elections by the total number of leader elections triggered. It is important to
highlight that neither the heartbeat nor the election timeout parameters impact the
leader’s election efficiency. Only mobility and the size of the network have a significant
impact on this metric. Indeed, one could think that the election timeout parameter may
impact the leader’s election efficiency due to its natural correlation. However, results
show that regardless of the election timeout parameter, the proportion of successful
leader elections is always around the same values. We notice that the leader election
efficiency is much lower when nodes split and merge, as happens in scenario 1, than in
scenario 2, when nodes stay together in a single connected network.

[300-450] [600-750] [1600-1750] [4000-4150]

Election Timeout [ms]

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

e
r

o
f

M
e
s
s
a
g

e
s

6 nodes

16 nodes

26 nodes

(a) Number of leader election messages with respect of
the size of the network.

6 10 16 20 26 30

Number of nodes

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ia

n
c
y
 [

%
]

Scenario1

Scenario2

(b) Leader election efficiency

Figure 4.7: Leader election performance.

Figure 4.8 shows the number of completed leader elections for scenario 1. In this
scenario, the network alternates between split and merge every 100 seconds for 10
minutes, meaning that at least 10 leader elections should occur if no leader is detected
after each configuration change. In Figure 4.8a we can notice a gradual growth in the
completed number of leader elections when we increase the number of nodes in the
network for a heartbeat interval of 50 ms. We can also notice that simulation scenarios
with a shorter election timeout window tend to acute this phenomenon. Indeed, here
once again we can notice how a short timeout window prevents the leader from keeping
its leadership. Figure 4.8b, on the other hand, shows a constant number of completed

101

leader elections. There are two main reasons for this result. First, a 1,000 ms heartbeat
interval imposes a significantly lower network load, leaving less room for an eventual
network saturation, which allows communications to take place correctly. Second, using
higher election timeout window values gives the leader more time to keep its leadership,
since nodes wait longer to call for new elections. We obtained similar results for a
heartbeat interval of 500 ms.

6 10 16 20 26 30

Number of nodes

0

5

10

15

20

25

30

N
u

m
b

e
r
 o

f
le

a
d

e
r
 e

le
c
ti

o
n

s

Elto [300-450]

Elto [600-750]

Elto [1600-1750]

Elto [4000-4150]

(a) HB 50 ms

6 10 16 20 26 30

Number of nodes

0

5

10

15

20

25

30

N
u

m
b

e
r
 o

f
le

a
d

e
r
 e

le
c
ti

o
n

s

Elto [1600-1750]

Elto [4000-4150]

(b) HB 1000 ms

Figure 4.8: Number of completed leader elections for scenario 1.

Figure 4.9 shows the number of completed leader elections for scenario 2. In this
scenario, despite mobility, nodes are connected in a single network partition. We can
notice in Figure 4.9a that the number of completed leader elections is 1 for all election
timeout window values, up to 20 nodes. This result is expected for this scenario since
it only takes one leader election in a single network partition without any splits or
merges. However, as the size of the network increases, the network condition degrades,
causing packet loss and longer delays. This problem provokes new unnecessary elections,
especially for shorter election timeout window values. Figure 4.9b shows that for a
1,000 ms heartbeat interval, all election timeout values are equal to 1. We observe a
similar result for a 500 ms heartbeat interval. The longer election timeout window
values combined with less frequent heartbeat intervals maintain the network stable and
allow the leader to maintain its leadership.

4.4.1.2 Configuration Change Results

The group management module 3.4.1 is responsible for detecting changes in the network
topology and identifying new network partitions to form the new group of nodes allowed
to participate in the consensus process. The consensus module receives this information
and stores it in the pendingConf variable waiting for the leader node to commit this new
configuration according to the conditions explained in Section 4.3.1. For our simulations,

102

6 10 16 20 26 30

Number of nodes

0

2

4

6

8

10

12

14

16

18

20

N
u

m
b

e
r
 o

f
le

a
d

e
r
 e

le
c
ti

o
n

s

Elto [300-450]

Elto [600-750]

Elto [1600-1750]

Elto [4000-4150]

(a) HB 50 ms

6 10 16 20 26 30

Number of nodes

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r
 o

f
le

a
d

e
r
 e

le
c
ti

o
n

s

Elto [1600-1750]

Elto [4000-4150]

(b) HB 1000 ms

Figure 4.9: Number of completed leader elections for scenario 2.

we marked the messages related to the configuration change process to better treat our
results. Hence, AppendEntries messages with a configuration change entry are marked
as AppendConfig messages for the simplicity of the results treatment.

Figure 4.10 depicts the performance of the configuration change process in scenario
1 with an election timeout window of [4000-4150] ms. In Figure 4.10a, we show the
number of AppendConfig messages in scenario 1 with a heartbeat of 1,000 ms. We
can notice that the number of configuration changes messages increases with the size
of the network. This effectively means that the more nodes in the network, the more
AppendConfig messages are issued. This is explained by the inability of the group
management module to effectively provided the consensus mechanism with an updated
list of nodes present in the network partition. Thus, triggering new AppendConfig
messages. Nevertheless, the increase of AppendConfig messages between network sizes
has a linear progression. Figure 4.10b shows the configuration change efficiency for
different heartbeat values. We can notice that the heartbeat interval has a direct
impact on the configuration change efficiency. A 50 ms heartbeat tends to lose efficiency
as the network grows, while a 500 and 1,000 ms heartbeat manages to maintain a
high efficiency above 95%, which indicates that most of the configuration changes are
correctly committed. Hence, even though our group management module struggles to
provide a correct view of the network partition, the C4M algorithm using a 500 or
1,000 ms heartbeat and a high election timeout window manages to correctly commit
the frequent configuration changes.

The configuration change delay is the time from the moment the group management
module notifies the C4M algorithm of a topology change until the new configuration
is committed. Figure 4.11 shows the results of the average number of completed
configuration changes during simulation for different values of the election timeout

103

6 10 16 20 26 30

Number of nodes

0

20

40

60

80

100

120

140

160

180

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

Config Changes

(a) Number of Configuration change messages

6 10 16 20 26 30

Number of nodes

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ia

n
c
y
 [

%
]

hb=50

hb=500

hb=1000

(b) Configuration Change efficiency

Figure 4.10: Configuration change performance in scenario 1.

window using a particular heartbeat interval. We can notice that in Figure 4.11b all
different election timeout window values converge to the exact number of configuration
changes expected. This result is also valid for a heartbeat interval of 500 ms. However,
Figure 4.11a shows a slight variation in the number of configuration changes executed.
Nevertheless, the variance between election timeout values is barely perceived. These
results confirm that the election timeout parameter has no impact on the correctness of
the execution of our configuration change procedure, as already mentioned. In any case,
the variance experienced among the different values of the election timeout window in
Figure 4.11a can be attributed to the negative effect of a short heartbeat interval.

6 10 16 20 26 30

Number of nodes

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

C
o

n
fi

g
u

ra
ti

o
n

 C
h

a
n

g
e
s

Elto [300-450]

Elto [600-750]

Elto [1600-1750]

Elto [4000-4150]

(a) HB 50 ms

6 10 16 20 26 30

Number of nodes

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

C
o

n
fi

g
u

ra
ti

o
n

 C
h

a
n

g
e
s

Elto [1600-1750]

Elto [4000-4150]

(b) HB 1000 ms

Figure 4.11: Number of completed Configuration Changes for scenario 1.

Figure 4.12 illustrates the results of configuration change delays for different election
timeout values and different numbers of nodes in the network using a particular heartbeat
interval. We can observe that varying the heartbeat interval and the election timeout
window have little impact on the delay of the configuration change process. This
difference is due to the increase in the heartbeat interval since configuration changes are

104

propagated through heartbeat messages. In addition, Figure 4.12a reveals that smaller
values of the election timeout window still perform better than higher values. Indeed,
smaller values imply shorter election delays. Thus, given that configuration changes
are committed by the leader, shorter election delays allow leaders to react faster to
configuration changes.

6 10 16 20 26 30

Number of nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

C
o

n
fi

g
u

ra
ti

o
n

 C
h

a
n

g
e
 d

e
la

y
 [

m
s
]

Elto [300-450]

Elto [600-750]

Elto [1600-1750]

Elto [4000-4150]

(a) HB 50 ms

6 10 16 20 26 30

Number of nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

C
o

n
fi

g
u

ra
ti

o
n

 c
h

a
n

g
e
 d

e
la

y
 [

m
s
]

Elto [1600-1750]

Elto [4000-4150]

(b) HB 1000 ms

Figure 4.12: Configuration Change delay for scenario 1.

Finally, Table 4.2 presents the message overhead of C4M in terms of the number of
messages and the traffic volume considering all types of C4M messages. We can observe
that although heartbeats and ack_entries correspond to 93% of the total messages,
their amount of traffic represents only 15%. Likewise, block messages only represent
3% of the total messages but they correspond to 85% of the traffic volume. In all cases,
configuration change entries and election-related messages correspond only to a small
fraction of the total number of messages and data volume.

Proportion of messages in number
Type of message Percentage
Vote Request 2%
Ack Vote 1%

Data Blocks 3%
Config Change Entries < 1%

Heartbeats 45%
Ack Entry 48%

Proportion of traffic overhead in bytes
Type of message Percentage
Vote Request < 1%
Ack Vote < 1%

Data Blocks 85%
Config Change Entries < 1%

Heartbeats 8%
Ack Entry 7%

Table 4.2: Message overhead of C4M in number and volume.

4.4.2 C4M Implementation Conclusion

Recent solutions for IoT applications, vehicular networks, and mesh networks rely on
the mobile ad hoc networks’ paradigm. However, maintaining a consistent distributed

105

database in MANETs is not a trivial task. In this regard, we have described all the
challenges of using non-partition tolerant algorithms in a mobile network context.
Therefore, we have proposed a new consensus algorithm for Blockgraph that is robust
to network partitions. C4M is a consensus algorithm based on RAFT that achieves
this goal by introducing a new operation mode that prioritizes configuration changes to
follow up with nodes’ mobility. Our simulation results demonstrate that our algorithm
responds to a correct characterization, behaves well, and fulfills its purpose.

We conclude that the original values proposed in [19] do not perform well in our
context. Indeed, the added complexity and the node mobility require a less frequent
heartbeat interval and a longer election timeout window. Our results show that our
algorithm performs best for a 500 ms heartbeat interval and an election timeout window
of [1600-1750] ms for all the parameters we have chosen. However, these values may
vary accordingly to the size of the network and other factors, such as the nodes’ speed.
We also evaluate the efficiency of our leader election and configuration change processes
in the presence of network topology changes. Results show that certain configurations
of our parameters do not impact the efficiency of these processes. Nevertheless, it
demonstrates the importance of correctly sizing the network. Additionally, we present
the message overhead of C4M, considering both the volume of data sent, as well as, the
number of messages. Our results demonstrate that even though control messages of
the protocol (messages not containing entries) have a large proportion of the overall
number of messages sent during the simulations, it only represents a small proportion
of the total data volume, which gives a good efficiency to the protocol.

4.5 Chapter Summary

In this chapter, we presented the importance of consensus algorithms in a distributed
system. We first emphasized the relevance of choosing between a deterministic and a
probabilistic consensus algorithm, according to the characteristics and needs of the top-
level application and the network. We highlighted the need for mobile ad hoc and mesh
networks to count on a consensus mechanism capable of keeping up with the mobility of
the nodes. In this regard, we present C4M, a Blockgraph consensus algorithm tolerant
to network partitions based on RAFT. Our C4M algorithm differentiates from RAFT by
adding a temporary state: the partition mode state. This new state shifts the prioritizing
task of the algorithm from the log replication process to the configuration change process.
Moreover, it changes how a membership change is executed. Indeed, C4M performs its
configuration change while the nodes are mobile, on-the-fly, while RAFT performs its
membership change by controlling all nodes involved in the configuration change process.

106

To that, we have modified the configuration change process and introduced a index
realignment procedure. To test our solution, we implemented C4M in the discrete-event
network simulator, NS-3. Finally, we present the result of the performance of our
algorithm by performing extensive simulations which aim to characterize and validate
the feasibility of our solution.

107

Chapter 5

Conclusions

In this thesis entitled “Blockchain application in Mesh and Ad hoc Networks”, we
presented a full blockchain-like solution for Mesh and Mobile Ad Hoc Networks. We
introduced the need for these networks to rely on a blockchain-like technology to
secure new and legacy applications in the context of mobility and network partitions.
Blockgraph is the result of this challenge for which we validate our concept through
simulations and the implementation of a prototype. We conclude this thesis by giving a
summary of our contributions and proposing several perspectives for each of them.

5.1 Summary of Contributions

Each of our contributions unfolds in the context of maintaining a blockchain-like data
structure in a Mobile Ad hoc Network where the changes in the network topology can
lead to multiple network partitions. In this regard, we believe that the Blockgraph
concept along with the Blockgraph framework is our first contribution. Blockgraph is a
new concept where the use of a DAG-based blockchain-like data structure is employed
to respond to the split and merge problem without neglecting the intrinsic properties
that blockchain technology provides. On the other hand, the Blockgraph framework
allows the separation of the three fundamental sub-problems linked to the maintenance
of the Blockgraph, namely, a network discovery solution, the consensus algorithm, and
the Blockgraph data structure management. By designing our solution in a modular
fashion, we also provide the opportunity to make changes and adaptations easily without
impacting the whole system. A future system designer might want to use a proprietary
solution to discover the network topology other than the one we provide or might want
to use a different consensus algorithm that better adapts its needs. The Blockgraph
framework facilitates all this. We presented this contribution in a conference paper [21]
where we validate our Blockgraph concept through simulations and results.

108

We then directed our attention to implementing a testbed version of our Blockgraph
solution in a real distributed system composed of five low-power mesh routers. Although
the validation of our concept through simulation provided the first results of the
Blockgraph performance, the implementation of the testbed brought improvements in
the algorithmics of our system, which results in a new and more efficient way to perform
the merge synchronization procedure. Thus, the results of our testbed not only reaffirmed
our Blockgraph concept but also improved the performance of the system compared
with the simulation results and become a data collection source to feed our simulator.
We presented the implementation of our proof-of-concept to the community [23], which
was awarded second place in the ACM Student Research Competition in 2021.

Finally, we decided to work on a consensus mechanism capable of tolerating network
partitions to integrate with our Blockgraph solution. To achieve this goal, we were
inspired by RAFT’s approaches to reaching consensus, to create a tolerant-partition
consensus algorithm that we called, C4M. The problem of this contribution was mainly
focused on being able to update the list of participant nodes in the consensus process
during execution and synchronize the different distributed logs upon network partitions.
By using our network discovery solution, we were able to provide C4M with updated
topology information and by using a novel index realignment procedure, we managed to
synchronize all distributed logs after a merge. This work resulted in the publication of a
conference paper [22], which we extended into a journal article in process of publication.

5.2 Perspectives

This section concludes our dissertation by presenting the future line of work that we
identified for our contributions.

5.2.1 Blockgraph

The main objective of Blockgraph is to provide MANETs with a blockchain-like tech-
nology to secure in a distributed fashion new and legacy applications. Nevertheless,
at the current state of our solution, Blockgraph only supports permissioned access to
the system. Thus, all nodes participating in the distributed ledger are well-known by
the system, which entails a form of centralization that limits potential applications.
We, therefore, believe that exploring the possibility of decentralizing the Blockgraph
in future work, could provide MANETs with the benefits of decentralized applications
(dApps). To do that, it is important to review different aspects of our solution. As a
fundamental layer, we shall use a new form of consensus mechanism that is scalable,

109

allows agreement in a trustless manner, and is partition-tolerant. However, existing
consensus algorithms do not hold all these characteristics at once. We believe that
some lines of work to resolve this issue can go forward in the direction of a form of
economic incentive that privileges nodes by creating new connections with other network
partitions. The work of Ghiro et al. [47] approaches this problem and could be an
interesting starting point to making the Blockgraph decentralized.

We also believe that Blockgraph should support a form of tokenization that allows
both inter-related transactions and independent transactions. Nevertheless, the Split
and Merge problem still poses challenges to a tokenized form of transaction, since the
lack of communication between several network partitions creates security issues that
can easily be exploited by malicious actors.

Concerning the performance optimization of our Blockgraph solution, we believe that
an important improvement that can be made is on the memory consumption usage. As
we know, the Blockgraph is an ever-growing distributed ledger that increases its needed
storage space as time passes. Thus, we believe that an integration of the sharding
solution with our Blockgraph could reduce the memory requirements of mesh routers,
which will also benefit the effective transaction throughput of the system. Indeed,
integrating sharding in the Blockgraph not only optimize the resource consumption in
term of memory space and CPU usage but will also be consistent with the resource
restrictions of mobile mesh routers embedded system.

5.2.2 C4M

The C4M consensus algorithm responds to the need of relying on a robust consensus
capable of tolerating network partitions. It was designed in the context of Blockgraph
and it was meant to integrate the Blockgraph framework. In this regard, we believe to
have identified the main characteristics that a consensus algorithm working in a mobile
and dynamic network needs to have to overcome frequent changes in the set of nodes
participating in the consensus process. Indeed, our Blockgraph framework uses a network
discovery solution that provides updated network topology information to the C4M
consensus algorithm. Nevertheless, it would be interesting to integrate this functionality
as part of the consensus process without relying on external information. This will allow,
from one side, to export this solution in a different context outside the blockchain scope
and from the other side, to provide the algorithm with full independence to achieve
consensus in a dynamic network. Another interesting perspective would be exploring
a different form of distributed log data structure. C4M uses a linear data structure
inherited from RAFT consensus, which was designed to function in a connected network.
A DAG-based structure could potentially allow faster configuration changes in both

110

split and merge cases, which could positively impact the overall performance of the
system.

111

Appendices

112

Appendix A

The Blockgraph Algorithms

A.1 The Group Management Module

Algorithm A.1: Network Topology Change Detection
1 Function TopologyChanges()

2 TOPOLOGY_TOLERANCE_TIME = 5 sec;
3 RouringTable RTable;
4 v_candidateList ← CreatCandidateList(RTable);
5 if currentGroupList != candidateList then

/* A change in the network topology is detected */
6 if currentTime() - time_of_last_change >

TOPOLOGY_TOLERANCE_TIME then
/* Enough time has elapsed since */
/* the last detected change */

7 groupID ← CalculateGroupID(candidateList);
8 natChange ← DetectNatureChange(currentGroupList, candidateList);
9 currentGroupList ← candidateList;

10 time_of_last_change ← Clock();
11 else

/* Not enough time has elapsed to */
/* consider the topology stable */

12 return;
13 end
14 else

/* No changes detected in the network topology */
15 return;
16 end

113

A.2 The Blockgraph Protocol

Algorithm A.2: Basic Transaction Treatment Algorithm
1 Function TransactionTreatment(Transaction T)

/* Function executed upon the arrival of a transaction */

2 if TransactionV alid(T) == true then
/* We check if transaction is present in mempool */

3 if TxInMempool(T) == false then
/* We check if transaction is present in the blockgraph */

4 if TxInblockgraph(T) == false then
/* We check if there is space in the mempool */

5 if SpaceInMempool(T) == true then
/* Adding the transaction to the mempool */

6 mempool.add(T);
7 else
8 DropTransaction(T);
9 end

10 else
11 DropTransaction(T);
12 end
13 else
14 DropTransaction(T);
15 end
16 else
17 DropTransaction(T);
18 end

114

Algorithm A.3: Block Creation Algorithm
/* Upon the conditions to create a block are meant, we decide

what type of block we are creating */
1 if SynchProcess == true then

/* We generate a merge block */
2 CreateMergeBlock();
3 else

/* We generate a data block */
4 CreateDataBlock();
5 end
6 Function CreateDatBlock()

7 Block block ;
/* Construct the block header */

8 block.SetLeader(this→ node.GetID());
9 block.SetGroupId(groupId);

10 block.SetBlockType(Data);
11 block.SetIndex(blockgraph.GetLastIndex+ 1);
12 block.SetT imestamp(Clock());

/* Get the last block from the local blockgraph as reference */
13 prev_block_ref ← blockgraph.GetChildlessBlockHash() ;
14 block.SetReferences(prev_block_ref);

/* transactions are selected from the mempool */
15 TransactionContainer t_container;
16 t_container ← SelectTransactions();
17 block.SetTransaction(t_container);

/* Send the block to the consensus module */
18 SendBlockToConsensus(block);

115

Algorithm A.4: Block Treatment Algorithm
1 Function BlockTreatment(Block block)

/* function executed upon the arrival of a Block */
2 if BlockV alid(block) == true then

/* We check if the block is present in the blockgraph */
3 if BlockInBlockgraph(block) == false then

/* We check if the block is a missing block */
4 if BlockInMissingList(block) == true then

/* We update the list of missing blocks */
5 UpdateMissingList(block.GetHash());
6 end

/* We identify the type of block */
7 if block.GetType() == ”Merge” then

/* The node starts its synchronization process */
8 StartSyncProcess(block.GetTransactions());

/* The Merge Block is added to the blockgraph */
9 blockgraph.add(block);

10 else
/* The block is a data block */

11 if ParentBlockInBlockgraph(block) == true then
/* The block’s predecessor is in the blockgraph. */
/* The block can be added to the Blockgraph. */

12 blockgraph.add(block);
13 else

/* The block’s predecessor is not in the Blockgraph */
/* Add the block’s predecessor to the list of missing

blocks */
14 UpdateMissingList(block.GetParentsHash());

/* Add the block to a temporal emplacement */
15 temporal.add(block);
16 end
17 end
18 else
19 DropBlock(block);
20 end
21 else
22 DropBlock(block);
23 end

116

A.3 The merge synchronization procedure

Algorithm A.5: Send Childless block request to all followers.
/* Only executed by the leader node */

1 if this.node == ’leader’ then
/* Create a CHILDLESSBLOCK_REQ packet */

2 ApplicationPacket packet("CHILDLESSBLOCK_REQ");
3 for nodeDest : currentConf do

/* Send the CHILDLESSBLOCK_REQ to all nodes in the
currentConf */

4 SendPacket(packet, nodeDest);
5 end
6 else
7 return;
8 end

Algorithm A.6: Send Childless block reply from a follower node to a leader
node.

/* Upon reception of the CHILDLESSBLOCK_REQ packet */

1 senderAddr ← packet.GetIPv4();
2 ChildlessBlockReply(senderAddr);
3 Function ChildlessBlockReply(Ipv4Addr addr)

/* Get the local list of childless blocks */

4 myChildless← blockgraph.GetChildlessBlockList() ;
5 serie_hash← ””;
6 for hash : myChildless do

/* Add each childless block hash to the message. */
7 serie_hashes += hash;
8 end

/* Send the CHILDLESSBLOCK_REP to the leader */
9 ApplicationPacket packet("CHILDLESSBLOCK_REP", serie_hashes);

10 SendPacket(packet, addr);

117

Algorithm A.7: Treatment of the follower’s childless blocks list by the leader
node.

/* Upon reception of the CHILDLESSBLOCK_REP packet */
1 if this.node == “leader” then
2 v_responses + = packet.GetNodeId();
3 senderAddr ← packet.GetIPv4();
4 serie_hashes← packet.GetPayload();
5 for hash : serie_hashes do
6 ChildlessBlockTreatment(hash, senderAddr);
7 end
8 if allFollowers ∈ v_responses then

/* All new followers responded to the leader’s request.
The merge block can be created now. */

9 CreateMergeBlock();
10 else

/* Waiting for the followers reply. After a certain time,
the Merge Block is created if a majority of nodes has
replied. */

11 end
12 else
13 return;
14 end
15 Function ChildlessBlockTreatment(string block_hash, Ipv4Addr addr)

/* Get a list of the childless block hashes */
16 myChildless← blockgraph.GetChildlessBlockList() ;
17 if block_hash ∈ myChildless then

/* Both nodes have the same childless block */
18 return;
19 else
20 if block_hash ∈ blockgraph then

/* The childless block is in the leader’s Blockgraph */
21 return;
22 else
23 if block_hash ∈ tmp_space then

/* The childless block is in the leader’s memory */
24 return;
25 else

/* The childless block comes from another network
partition */

26 if block_hash ∈ mapping_table then
/* The childless block has already been mapped */

27 return;
28 else
29 mapping_table.add(block_hash, addr);
30 end
31 end
32 end
33 end 118

Algorithm A.8: Creates the merge block by the leader node.
1 Function CreateMergeBlock()

2 Block block;
3 TransactionContainer t_Container;
4 block.SetLeader(this→ node.GetID());
5 block.SetGroupId(groupId);
6 block_references← blockgraph.GetChildlessBlockList() ;

/* The leader node add its own childless blocks with its own ID
as a transaction. */

7 for block_hash : block_references do
8 Transaction transaction;
9 string payload_t = this→ node.GetID() + ” ” + block_hash;

10 transaction.SetPayload(payload_t);
11 transaction.SetT imestammp(Clock());
12 t_container.add(transaction);
13 end

/* The leader node adds the information gathered in the mapping
table as transactions. */

14 for block_hash : mapping_table do
15 Transaction transaction;
16 string payload_t = block_hash.first+ ” ” + block_hash.second;
17 transaction.SetPayload(payload_t);
18 transaction.SetT imestamp(Clock());
19 t_container.add(transaction);
20 end

/* The leader add the references of the different childless
blocks in the new block. */

21 parents = [];
22 for element : mapping_table.first do
23 if element /∈ parents then
24 parents.add(element);
25 end
26 end
27 block.SetTransaction(t_container);
28 block.SetReferences(parents);
29 block.SetBlockType(Merge);
30 block.SetIndex(blockgraph.GetLastIndex+ 1);
31 block.SetT imestamp(Clock());
32 SendBlockToConsensus(block);

119

Algorithm A.9: Creation of a BranchRequest message from a node.
1 Function BranchRequest()

/* A BRANCH_REQUEST packet is only sent to nodes holding
childless block not present in the current node. */

2 serie_hash← ””;
3 for block_hash : mapping_table do
4 if block_hash /∈ blockgraph.GetChildlessBlockList() then
5 serie_hash+ = block_hash.GetHash();
6 ApplicationPacket packet("BRANCH_REQUEST", serie_hash);
7 SendPacket(packet, block_hash.GetIpv4());
8 end
9 end

Algorithm A.10: Reply of a BRANCH_REQUEST message.
It sends a branch of blocks to the requester.

/* Upon reception of a BRANCH_REQUEST packet */
1 senderAddr ← packet.GetIPv4();
2 serie_hashes← packet.GetPayload();
3 BranchReply(serie_hashes, senderAddr);
4 Function BranchReply(string serie_hashes, Ipv4Addr addr)

/* Obtaining the GroupId of the childless block hashes */
5 list_groupId = [];
6 for block_hash : serie_hashes do
7 groupId_block ← blockgraph.GetGroupId(block_hash);
8 if groupId_block /∈ list_groupId then
9 list_groupId.add(groupId_block);

10 end
11 end

/* Sending all blocks with the same GroupId to the requester */
12 for group_id : list_groupId do
13 V ectorBlock v_blocks← blockgraph.GetBlocksGroup(group_id);
14 for block : v_blocks do
15 ApplicationPacket packet("SEND_BLOCK", block);
16 SendPacket(packet, addr);
17 end
18 end

120

Appendix B

List of Publications

B.1 International Conferences

• D. Cordova, A. Laube, T. -M. -T. Nguyen and G. Pujolle, "Blockgraph: A
blockchain for mobile ad hoc networks," 2020 4th Cyber Security in Networking
Conference (CSNet), 2020, pp. 1-8, doi: 10.1109/CSNet50428.2020.9265532.

• D. C. Morales, P. B. Velloso, A. Laube, T. -M. -T. Nguyen and G. Pujolle, "C4M:
A Partition-Robust Consensus Algorithm for Blockgraph in Mesh Network," 2021
5th Cyber Security in Networking Conference (CSNet), 2021, pp. 82-89, doi:
10.1109/CSNet52717.2021.9614651.

• David Cordova Morales, Pedro Velloso, Alexandre Guerre, Thi-Mai-Trang Nguyen,
Guy Pujolle, Khaldoun Alagha, and Guillaume Dua. 2021. Blockgraph proof-
of-concept. In Proceedings of the SIGCOMM ’21 Poster and Demo Sessions
(SIGCOMM ’21). Association for Computing Machinery, New York, NY, USA,
82–84. https://doi.org/10.1145/3472716.3472866

• D. A. Cordova M, T. -M. -T. Nguyen, P. B. Velloso and G. Pujolle, "A Prelimi-
nary Assessment of Blockgraph - a Mobility-Aware Solution to Secure 6G Mesh
Networks," 2022 1st International Conference on 6G Networking (6GNet), 2022,
pp. 1-4, doi: 10.1109/6GNet54646.2022.9830495.

B.2 In Process of Publication

• D. Cordova, P. B. Velloso, A. Laube, T. -M. -T. Nguyen and G. Pujolle, "A
performance evaluation of C4M consensus Algorithm". Accepted in Annals of
Telecommunications Journal.

121

Bibliography

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[2] Vitalik Buterin et al. Ethereum white paper (2013). URL https://github.
com/ethereum/wiki/wiki/White-Paper, 2013.

[3] Faten Adel Alabdulwahhab. Web 3.0: The decentralized web blockchain networks
and protocol innovation. In 2018 1st International Conference on Computer
Applications & Information Security (ICCAIS), pages 1–4, 2018.

[4] Marsh McLennan. The global risks report 2022 17th edition. World Economic
Forum Cologny, Switzerland, 2022.

[5] Justin Sunny, Naveen Undralla, and V. Madhusudanan Pillai. Supply chain trans-
parency through blockchain-based traceability: An overview with demonstration.
Computers & Industrial Engineering, 150:106895, 2020.

[6] Filipe Calvão and Matthew Archer. Digital extraction: Blockchain traceability in
mineral supply chains. Political Geography, 87:102381, 2021.

[7] PengCheng Wei, Dahu Wang, Yu Zhao, Sumarga Kumar Sah Tyagi, and Neeraj
Kumar. Blockchain data-based cloud data integrity protection mechanism. Future
Generation Computer Systems, 102:902–911, 2020.

[8] Claudia Pop, Marcel Antal, Tudor Cioara, Ionut Anghel, David Sera, Ioan Sa-
lomie, Giuseppe Raveduto, Denisa Ziu, Vincenzo Croce, and Massimo Bertoncini.
Blockchain-based scalable and tamper-evident solution for registering energy data.
Sensors, 19(14), 2019.

[9] Anton Hasselgren, Katina Kralevska, Danilo Gligoroski, Sindre A. Pedersen, and
Arild Faxvaag. Blockchain in healthcare and health sciences—a scoping review.
International Journal of Medical Informatics, 134:104040, 2020.

122

[10] Fahim Ullah and Fadi Al-Turjman. A conceptual framework for blockchain smart
contract adoption to manage real estate deals in smart cities. Neural Computing
and Applications, pages 1–22, 2021.

[11] Qin Wang, Xinqi Zhu, Yiyang Ni, Li Gu, and Hongbo Zhu. Blockchain for the iot
and industrial iot: A review. Internet of Things, 10:100081, 2020. Special Issue
of the Elsevier IoT Journal on Blockchain Applications in IoT Environments.

[12] Evrim Tan, Stanislav Mahula, and Joep Crompvoets. Blockchain governance in
the public sector: A conceptual framework for public management. Government
Information Quarterly, 39(1):101625, 2022.

[13] Omar Ali, Mustafa Ally, Clutterbuck, and Yogesh Dwivedi. The state of play
of blockchain technology in the financial services sector: A systematic literature
review. International Journal of Information Management, 54:102199, 2020.

[14] Raja Wasim Ahmad, Haya Hasan, Ibrar Yaqoob, Khaled Salah, Raja Jayaraman,
and Mohammed Omar. Blockchain for aerospace and defense: Opportunities and
open research challenges. Computers & Industrial Engineering, 151:106982, 2021.

[15] Peter Howson. Building trust and equity in marine conservation and fisheries
supply chain management with blockchain. Marine Policy, 115:103873, 2020.

[16] Alexandre Laube, Steven Martin, and Khaldoun Al Agha. A solution to the split
& merge problem for blockchain-based applications in ad hoc networks. In 2019
8th International Conference on Performance Evaluation and Modeling in Wired
and Wireless Networks (PEMWN), pages 1–6, 2019.

[17] Michel Kadoch. Recent advances in mobile ad hoc networks, 2021.

[18] N Saranya, K Geetha, and C Rajan. Data replication in mobile edge computing
systems to reduce latency in internet of things. Wireless Personal Communications,
112(4):2643–2662, 2020.

[19] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC 14),
pages 305–319, 2014.

[20] Thomas Clausen and Philippe Jacquet. Rfc3626: Optimized link state routing
protocol (olsr), 2003.

123

[21] David Cordova, Alexandre Laube, Thi-Mai-Trang Nguyen, and Guy Pujolle.
Blockgraph: A Blockchain for Mobile Ad hoc Networks. In 2020 4th Cyber
Security in Networking Conference (CSNet), pages 1–8, 2020.

[22] David Cordova, Pedro B. Velloso, Alexandre Laube, Thi-Mai-Trang Nguyen, and
Guy Pujolle. C4M: A Partition-Robust Consensus Algorithm for Blockgraph in
Mesh Network. In 2021 5th Cyber Security in Networking Conference (CSNet),
pages 82–89, 2021.

[23] David Cordova Morales, Pedro Velloso, Alexandre Guerre, Thi-Mai-Trang Nguyen,
Guy Pujolle, Khaldoun Alagha, and Guillaume Dua. Blockgraph Proof-of-Concept.
In Proceedings of the SIGCOMM ’21 Poster and Demo Sessions, SIGCOMM ’21,
page 82–84. Association for Computing Machinery, New York, NY, USA, 2021.

[24] David A. Cordova M, Thi-Mai-Trang Nguyen, Pedro B. Velloso, and Guy Pujolle.
A preliminary assessment of blockgraph - a mobility-aware solution to secure 6g
mesh networks. In 2022 1st International Conference on 6G Networking (6GNet),
pages 1–4, 2022.

[25] Saifedean Ammous. The fiat standard. Saif House, 2021.

[26] Anwar Hasan Abdullah Othman, Syed Musa Alhabshi, and Razali Haron. Cryp-
tocurrencies, fiat money or gold standard: An empirical evidence from volatility
structure analysis using news impact curve. International Journal of Monetary
Economics and Finance, 12(2):75–97, 2019.

[27] Anwar Hasan Abdullah Othman, Syed Musa Alhabshi, Salina Kassim, Adam
Abdullah, and Razali Haron. The impact of monetary systems on income inequity
and wealth distribution: a case study of cryptocurrencies, fiat money and gold
standard. International Journal of Emerging Markets, 2020.

[28] Arthur J Rolnick and Warren E Weber. Money, inflation, and output under fiat
and commodity standards. Journal of Political Economy, 105(6):1308–1321, 1997.

[29] Stuart Haber and W Scott Stornetta. How to time-stamp a digital document.
In Conference on the Theory and Application of Cryptography, pages 437–455.
Springer, 1990.

[30] Dave Bayer, Stuart Haber, and W Scott Stornetta. Improving the efficiency and
reliability of digital time-stamping. In Sequences Ii, pages 329–334. Springer,
1993.

124

[31] Ralph Charles Merkle. Secrecy, authentication, and public key systems. Stanford
university, 1979.

[32] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Annual international cryptology conference, pages 139–147. Springer, 1992.

[33] Adam Back et al. Hashcash-a denial of service counter-measure. 2002.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems, pages
382–401, July 1982.

[35] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OsDI, volume 99, pages 173–186, 1999.

[36] Sina Rafati Niya and Burkhard Stiller. Bazo: A proof-of-stake (pos) based
blockchain. IFI-TecReport No. 2019.03, Zürich, Switzerland, Tech. Rep., 2019.

[37] Fabian Schuh and Daniel Larimer. Bitshares 2.0: general overview. accessed June-
2017.[Online]. Available: http://docs. bitshares. org/downloads/bitshares-general.
pdf, 2017.

[38] Jae Kwon and Ethan Buchman. Cosmos whitepaper. A Netw. Distrib. Ledgers,
2019.

[39] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. self-published paper, August, 19(1), 2012.

[40] Nxt Community. Nxt whitepaper. 2014.

[41] Proof-of-Authority Chains, howpublished = https://openethereum.github.io/
proof-of-authority-chains, note = Accessed: 2022-07-01.

[42] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,
Andrea Margheri, and Vladimiro Sassone. Pbft vs proof-of-authority: Applying
the cap theorem to permissioned blockchain. 2018.

[43] Intel: Sawtooth Lake(2017). https://intelledger.github.io/. Accessed:
2022-07-01.

[44] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint
Archive, Paper 2016/086, 2016. https://eprint.iacr.org/2016/086.

125

https://openethereum.github.io/proof-of-authority-chains
https://openethereum.github.io/proof-of-authority-chains
https://intelledger.github.io/
https://eprint.iacr.org/2016/086

[45] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On
security analysis of proof-of-elapsed-time (poet). In International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pages 282–297. Springer,
2017.

[46] Aniruddh Rao Kabbinale, Emmanouil Dimogerontakis, Mennan Selimi, Anwaar
Ali, Leandro Navarro, Arjuna Sathiaseelan, and Jon Crowcroft. Blockchain for
economically sustainable wireless mesh networks. Concurrency and Computation:
Practice and Experience, 32(12):e5349, 2020.

[47] Lorenzo Ghiro, Leonardo Maccari, and Renato Lo Cigno. Proof of networking:
Can blockchains boost the next generation of distributed networks? In 2018
14th Annual Conference on Wireless On-demand Network Systems and Services
(WONS), pages 29–32. IEEE, 2018.

[48] Caciano Machado and Carla Merkle Westphall. Blockchain incentivized data
forwarding in manets: Strategies and challenges. Ad Hoc Networks, 110:102321,
2021.

[49] Magnus Skjegstad, Anil Madhavapeddy, and Jon Crowcroft. Kadupul: Livin’on
the edge with virtual currencies and time-locked puzzles. In Proceedings of the
2015 Workshop on Do-it-yourself Networking: an Interdisciplinary Approach,
pages 21–26, 2015.

[50] Jehan Tremback, Justin Kilpatrick, Deborah Simpier, and Ben Wang. Althea
whitepaper. Tech. Rep., 2019.

[51] Jason Ernst, Zehua David Wang, Saju Abraham, John Lyotier, Chris Jensen,
Melissa Quinn, and Dana Harvey. A decentralized mobile mesh networking
platform powered by blockchain technology and tokenization. 2018.

[52] Chandrima Chakrabarti and Souvik Basu. A blockchain based incentive scheme
for post disaster opportunistic communication over dtn. In Proceedings of the
20th International Conference on Distributed Computing and Networking, pages
385–388, 2019.

[53] Xin Jiang, Mingzhe Liu, Chen Yang, Yanhua Liu, Ruili Wang, et al. A blockchain-
based authentication protocol for wlan mesh security access. Comput. Mater.
Continua, 58(1):45–59, 2019.

[54] Atharv Chandratre and Yash Chaturvedi. Blockchain based raspberry pi mesh
network. Available at SSRN 3800557, 2020.

126

[55] May Thura Lwin, Jinhyuk Yim, and Young-Bae Ko. Blockchain-based lightweight
trust management in mobile ad-hoc networks. Sensors, 20(3):698, 2020.

[56] Nadav Schweitzer, Ariel Stulman, Asaf Shabtai, and Roy David Margalit. Mit-
igating denial of service attacks in olsr protocol using fictitious nodes. IEEE
Transactions on Mobile Computing, 15(1):163–172, 2015.

[57] Hector Garcia-Molina. Elections in a distributed computing system. IEEE
transactions on Computers, 31(01):48–59, 1982.

[58] Yongxin Liu, Jian Wang, Houbing Song, Jianqiang Li, and Jiawei Yuan.
Blockchain-based secure routing strategy for airborne mesh networks. In 2019
IEEE International Conference on Industrial Internet (ICII), pages 56–61. IEEE,
2019.

[59] Frederic Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. Passive and
active combined attacks: Combining fault attacks and side channel analysis. In
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pages
92–102. IEEE, 2007.

[60] Conglin Ran, Shuailing Yan, Liang Huang, and Lei Zhang. An improved aodv
routing security algorithm based on blockchain technology in ad hoc network.
EURASIP Journal on Wireless Communications and Networking, 2021(1):1–16,
2021.

[61] Sonia Alice George, Arunita Jaekel, and Ikjot Saini. Secure identity manage-
ment framework for vehicular ad-hoc network using blockchain. In 2020 IEEE
Symposium on Computers and Communications (ISCC), pages 1–6. IEEE, 2020.

[62] Qi Feng, Debiao He, Sherali Zeadally, and Kaitai Liang. Bpas: Blockchain-assisted
privacy-preserving authentication system for vehicular ad hoc networks. IEEE
Transactions on Industrial Informatics, 16(6):4146–4155, 2019.

[63] Benjamin Leiding, Parisa Memarmoshrefi, and Dieter Hogrefe. Self-managed and
blockchain-based vehicular ad-hoc networks. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct,
pages 137–140, 2016.

[64] AFM Akhter, Mohiuddin Ahmed, AFM Shah, Adnan Anwar, ASM Kayes, and Ah-
met Zengin. A blockchain-based authentication protocol for cooperative vehicular
ad hoc network. Sensors, 21(4):1273, 2021.

127

[65] Sandeep Kumar Arora, Gulshan Kumar, and Tai-hoon Kim. Blockchain based
trust model using tendermint in vehicular adhoc networks. Applied Sciences,
11(5):1998, 2021.

[66] Chao Lin, Debiao He, Xinyi Huang, Neeraj Kumar, and Kim-Kwang Raymond
Choo. Bcppa: A blockchain-based conditional privacy-preserving authentica-
tion protocol for vehicular ad hoc networks. IEEE Transactions on Intelligent
Transportation Systems, 22(12):7408–7420, 2020.

[67] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing
in bitcoin. In International Conference on Financial Cryptography and Data
Security, pages 507–527. Springer, 2015.

[68] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain
protocols. In International Conference on Financial Cryptography and Data
Security, pages 528–547. Springer, 2015.

[69] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and
scalable cryptocurrency protocol. Cryptology ePrint Archive, 2016.

[70] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. Phantom and ghostdag: A
scalable generalization of nakamoto consensus. Cryptology ePrint Archive, 2018.

[71] George Danezis and David Hrycyszyn. Blockmania: from block dags to consensus.
arXiv preprint arXiv:1809.01620, 2018.

[72] Federico Matteo Benčić and Ivana Podnar Žarko. Distributed ledger technology:
Blockchain compared to directed acyclic graph. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), pages 1569–1570. IEEE,
2018.

[73] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 34,
2016.

[74] Adam Gągol, Damian Leśniak, Damian Straszak, and Michał Świętek. Aleph:
Efficient atomic broadcast in asynchronous networks with byzantine nodes. In
Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
pages 214–228, 2019.

[75] Serguei Popov. The tangle. White paper, 1(3), 2018.

128

[76] Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. Nano
[Online resource]. URL: https://nano. org/en/whitepaper (date of access: 24.03.
2018), 4, 2018.

[77] Anton Churyumov. Byteball: A decentralized system for storage and transfer of
value. URL https://byteball. org/Byteball. pdf, 2016.

[78] Kolbeinn Karlsson, Weitao Jiang, Stephen Wicker, Danny Adams, Edwin Ma,
Robbert van Renesse, and Hakim Weatherspoon. Vegvisir: A partition-tolerant
blockchain for the internet-of-things. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), pages 1150–1158. IEEE, 2018.

[79] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable
off-chain instant payments, 2016.

[80] Jaynti Kanani, S Nailwal, and A Arjun. Matic whitepaper, 2019.

[81] Demetri P Spanos, Reza Olfati-Saber, and Richard M Murray. Dynamic consensus
on mobile networks. In IFAC world congress, pages 1–6. Citeseer, 2005.

[82] Leonidas Georgopoulos, Alireza Khadivi, and Martin Hasler. Speeding up linear
consensus in networks. In Selected Topics in Nonlinear Dynamics and Theoretical
Electrical Engineering, pages 389–405. Springer, 2013.

[83] Zhongkui Li, Guanghui Wen, Zhisheng Duan, and Wei Ren. Designing fully
distributed consensus protocols for linear multi-agent systems with directed
graphs. IEEE Transactions on Automatic Control, 60(4):1152–1157, 2014.

[84] Martin Kenyeres and Jozef Kenyeres. Average consensus over mobile wireless
sensor networks: weight matrix guaranteeing convergence without reconfiguration
of edge weights. Sensors, 20(13):3677, 2020.

[85] Paolo Braca, Stefano Marano, and Vincenzo Matta. Enforcing consensus while
monitoring the environment in wireless sensor networks. IEEE Transactions on
Signal Processing, 56(7):3375–3380, 2008.

[86] Leonidas Georgopoulos and Martin Hasler. Training distributed neural networks
by consensus. Technical report, 2011.

[87] Dana Angluin, Michael J Fischer, and Hong Jiang. Stabilizing consensus in
mobile networks. In International Conference on Distributed Computing in Sensor
Systems, pages 37–50. Springer, 2006.

129

[88] Wanlu Sun, Erik G Ström, Fredrik Brännström, and Mohammad Reza Gholami.
Random broadcast based distributed consensus clock synchronization for mobile
networks. IEEE Transactions on Wireless Communications, 14(6):3378–3389,
2015.

[89] Prasanna Padmanabhan and Le Gruenwald. Managing data replication in mobile
ad-hoc network databases. In 2006 International Conference on Collaborative
Computing: Networking, Applications and Worksharing, pages 1–10. IEEE, 2006.

[90] Aekyung Moon and Haengrae Cho. Energy efficient replication extended database
state machine in mobile ad hoc network. In IADIS International Conference on
Applied Computing, volume 224228, 2004.

[91] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

[92] Michel Kadoch. Recent advances in mobile ad hoc networks. Electronics, 10(12),
2021.

[93] Diaa Eldein Mustafa Ahmed and Othman O Khalifa. An overview of manets:
applications, characteristics, challenges and recent issues. 2017.

[94] Green Communication Technology, howpublished = https://www.
green-communications.fr/technology/, note = Accessed: 2022-07-21.

[95] Tomasz Ciszkowski and Zbigniew Kotulski. Distributed reputation management
in collaborative environment of anonymous manets. In EUROCON 2007 - The
International Conference on "Computer as a Tool", pages 1028–1033, 2007.

[96] Pino Caballero-Gil and Candelaria HernÁndez-Goya. Zero-knowledge hierarchical
authentication in manets. IEICE transactions on information and systems,
89(3):1288–1289, 2006.

[97] Eric Brewer. Cap twelve years later: How the" rules" have changed. Computer,
45(2):23–29, 2012.

[98] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

[99] Edward F Moore. The shortest path through a maze. In Proc. Int. Symp.
Switching Theory, 1959, pages 285–292, 1959.

130

https://www.green-communications.fr/technology/
https://www.green-communications.fr/technology/

[100] P Jacquet, P Muhlethaler, T Clausen, A Laouiti, A Qayyum, and L Viennot.
Optimized link state routing protocol (olsr), 2003.

[101] Charles E Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. ACM SIGCOMM computer
communication review, 24(4):234–244, 1994.

131

	Introduction
	Context and motivation
	Contributions
	Thesis outline

	Background and State-of-the-Art
	The Bitcoin System
	Basic Functioning
	The Double Spending Problem
	Bitcoin Tokenomics

	Blockchain Background
	Blockchain Generalities
	Properties
	Types of Blockchain
	Base Elements
	Miners
	Validators Nodes
	Addresses
	Transactions
	Blocks
	Mempool
	Forks
	Digital Assets

	Blockchain Consensus Algorithms
	The Nakamoto Consensus (Proof-of-Work)
	Proof-of-Stake
	Chain-based PoS
	Delegated PoS

	Proof-of-Authority
	Proof-of-Elapsed-Time

	Blockchain Applied to Mesh and Ad Hoc Networks
	Direct Acyclic Graphs and Blockchain
	Block-DAGs
	Blockless-DAGs

	Consensus for Mobile Networks
	Chapter Summary

	Blockgraph
	Introduction and context
	The Split and Merge Problem
	The Blockgraph Model
	The System Model and Assumptions
	The Mobility Model
	The Blockchain Model
	The Transaction Model

	Blockgraph Structure and Components
	Structure of a Transaction
	Structure of a Block
	Blockgraph Data Structure

	The Blockgraph Framework
	The Group Management Module
	Our Network Discovery Solution

	The Consensus Module
	The Blockgraph Protocol
	Transactions in the Blockgraph Protocol
	Blocks in the Blockgraph Protocol
	Block Mining
	Block Treatment
	The Merge Synchronization Procedure

	Blockgraph Implementations and Evaluations
	NS-3 Implementation
	Methodology, Simulations, and Results
	NS-3 Implementation Conclusion

	Testbed Implementation
	Methodology, Simulations, and Results
	Testbed Implementation Conclusion

	Chapter Summary

	Consensus for Mesh Networks
	Introduction
	RAFT Overview
	Basic Functioning
	Leader Election
	Log Replication
	Safety

	Membership Change

	C4M: A Consensus Algorithm for Mesh and Mobile Ad Hoc Networks
	Operating Modes
	Configuration Change
	Log Realignment Process

	C4M Implementation and Evaluation
	Methodology, Simulations, and Results
	Leader Election Results
	Configuration Change Results

	C4M Implementation Conclusion

	Chapter Summary

	Conclusions
	Summary of Contributions
	Perspectives
	Blockgraph
	C4M

	Appendices
	The Blockgraph Algorithms
	The Group Management Module
	The Blockgraph Protocol
	The merge synchronization procedure

	List of Publications
	International Conferences
	In Process of Publication

