N

N
N

HAL

open science

Counting queries in ontology-based data access

Quentin Maniere

» To cite this version:

Quentin Maniere. Counting queries in ontology-based data access. Databases [cs.DB]. Université de

Bordeaux, 2022. English. NNT: 2022BORDO0261 . tel-03923163

HAL Id: tel-03923163
https://theses.hal.science/tel-03923163

Submitted on 4 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03923163
https://hal.archives-ouvertes.fr

LaBRI papte s
THESE PRESENTEE

POUR OBTENIR LE GRADE DE

DOCTEUR
DE L’UNIVERSITE DE BORDEAUX

ECOLE DOCTORALE MATHEMATIQUES ET

INFORMATIQUE

Par Quentin M ANIERE
Counting queries in ontology-based data access

Dirigée par Meghyn BIENVENU et Michaél THOMAZO
Soutenue publiquement le 30 septembre 2022

Composition du jury, présidé par Carsten LUTZ :

Meghyn BIENVENU Directrice de recherche CNRS Directrice
Bernardo CUENCA GRAU Professor Université d’Oxford Rapporteur
Carsten LUTZ Professor Université de Leipzig Rapporteur
Marie-Laure MUGNIER Professeure Université de Montpellier Examinatrice
Marie-Christine ROUSSET Professeure Université de Grenoble Examinatrice
Mantas SIMKUS Associate professor Université d’Umea Rapporteur

Michaél THOMAZO Chargé de recherche INRIA Invité

Remerciements

J’aimerais tout d’abord remercier mes deux merveilleux encadrants pour ces trois
années de thése. Meghyn, source intarissable de références et de connexions
avec d’autres approches, et Michaél, joyeux destructeur de conjectures pleines
d’espoir, j’ai adoré travailler avec vous et tant appris a vos cotés | Pour cet
enseignement, votre disponibilité, vos conseils et votre confiance, je vous suis
infiniment reconnaissant. Merci aussi, Michaél, pour les petits-déjeuners dans la
cour de 'ENS, au tout début. Merci aussi, Meghyn, pour les soirées jeux et le logis
a la toute fin (merci d’ailleurs a Laurent et & Quentin pour leur accueil !). J'espére
avoir la chance de retravailler avec vous deux a 'avenir.

Je tiens & remercier aussi Bernardo Cuenca Grau, Carsten Lutz et Mantas
Simkus d’avoir accepté de rapporter cette thése. Vos retours m’ont permis d’ancrer
plus clairement ce travail dans le paysage de notre communauté ; le présent
manuscrit en ressort grandi. Je suis également reconnaissant & Marie-Laure Mugnier
et Marie-Christine Rousset d’avoir pris part au jury. Si une gréve des transports,
coutume nationale que le monde entier nous envie, vous a empéchées d’assister en
personne a la soutenance, nul doute que nous aurons tout de méme des occasions
de nous recroiser autrement qu’en ligne.

Merci bien stir aux camarades du 123, simplement de passage ou “permanents”
du bureau, vous avez été de fantastiques compagnons de route durant ces trois
années | Je pense & Govind, notre doyen qui a soutenu il y a déja plus d’'un
an, & Noureddine et ses protocoles horriblement non-transitifs, & Shih-Shun et
sa compagne désormais parents, & Jonathan et ses eeleriages colorations qui se
reconfigurent en quelques “tchak-tchak”, a Jana et sa virtuosité en musique, a Pierre
et son Tchoupi, & Angélique et son rire si reconnaissable, & Benoit qui a retrouvé ses
lunettes, & Natacha et ses méandres au tableau, et & tous ceux que j’ai forcément
oubliés dans cette tentative d’énumération.

Les camarades thésards ne se limitent évidemment pas au 123 : je remercie Zoé
pour son engagement dans les Hanabis du mardi, Timothée pour ’ensemble de ses
blagues, Clément pour ses cours de tricot, Claire pour ses origamis, Jojo(séphine)
pour I’association pommes-Beethoven dont je n’arrive plus a me défaire, Corto,
Antonio et Thibault pour leurs passages au bureau a I’heure du déjeuner, réglés
comme du papier a musique, Aida pour les précisions sur le statut juridique du
patio, Rémi pour ses combines de magicien (spécialité “Escamotage”), Maxime pour
son expertise inattendue en cucurbitacées, Sanja pour ses astuces en allemand,
Sarah pour sa courageuse représentation des Méthodes Formelles-Formelles dans
un bureau de CombAlgo, Aline pour ses slides sur lesquelles j’ai d improviser,
Arthur pour ses talents en improvisation justement, et Théo, Rohan, Alex, P-E,
Elsa et bien d’autres.

Merci également aux différentes équipes de recherches dans lesquelles je me suis
glissé. A toute I’équipe du DI, sous les toits de 'ENS, pour son accueil pendant
mon stage de fin de Master qui a préfiguré cette thése : Camille, Tatiana, Pierre,
Luc, Chien-Chung, Julien, Garance et Michaél. A 1'équipe RATIO et ses pique-
niques dans I'herbe : Diego, Joanna, Anca, Igor, Marc, Vincent, Gianluca, Sanja et
Meghyn. A I'équipe autour du projet INTENDED et de son université d’été trés
réussie. A I'équipe autour du projet CQFD, qui a financé ce travail et dont les
rendez-vous annuels ont toujours été enrichissants.

Plus généralement, bien des membres du LaBRI ont embelli mes trois années
passées & Bordeaux. Je pense notamment a Marthe et Pascal, qui ont formé un
comité de suivi plein de précieux conseils, a Katel et Elia, qui ont coordonné les
missions auxquelles j’ai pris part, & Corinne, chargée de I’entretien des bureaux
et qui a eu bien d’autres casquettes a I'université, & Francois, Arnaud, Frédéric,
David, Sébastien, Vincent et une nouvelle fois & Marthe “pour les nombreux fruits,
gateaux et thés” [Thomazo, 2013].

Une thése au LaBRI constituerait une toute autre expérience sans I’AFoDIB,
'association des doctorants en informatique (épargnons-nous la signification exacte
de Pacronyme), dont les événements rythment 1’aventure doctorale. Ces occasions
contribuent a rassembler les thésards, mais aussi les stagiaires et les permanents,
pour parler science autour d’une tisane ou mettre a I’épreuve la théorie des jeux
(de société) en salle de séminaire. Merci a ’AFoDIB donc, et a tous ses membres
qui la font vivre | Mention spéciale & Sarah et Corto pour avoir pris ma suite a la
trésorerie et couvert le trou dans la caisse qui a financé mes derniéres vacances.

Merci a mes amis de longue date qui m’ont accompagné avant et pendant
cette aventure : Mathilde et Matthieu pour le gite au pied du Vercors et ’atelier
potager, Morgan l'indéfectible nantais, Martin, Thomas et Olivier que je ne croise
pas aussi souvent que je le voudrais, sans oublier la bande orcéenne, Pablo, notre
Hanabi-sensei, Paul, Fabien, Florian, Alexia et Thomas.

Merci a Odile Vallée, excellente professeure de mathématiques au lycée, et dont
I’enseignement m’a laissé ce gotit prononcé pour la logique qui ne m’a jamais quitté.

Je tiens également a remercier ma famille, Maman et Papa, Vincent et Pierre,
Mamie Paule, Mamie Thé, les Maniére et les Juranville, pour leur soutien de
toujours.

Enfin, & Christéle, merci pour ta présence durant ces trois années, les horaires
des trains Paris-Bordeaux n’ayant plus de secrets pour nous. Merci d’avoir supporté
I'absurdité de I'Educ’ Nat’ qui ne t’a pas laissée venir a Bordeaux, mais qui nous a
gracieusement affectés au méme endroit une fois ta dispo et ma démission posées
(*soupir®). Je suis heureux d’avoir pu partager les bons moments de cette thése
avec toi, et je suis stir que de nombreux camarades ont apprécié le partage de tes
succulentes patisseries avec eux !

Contents

Contents i
List of Figures v
List of Tables vii
Résumé étendu en francais ix
1 Introduction 1
Description Logics oo 2
Reasoning tasks Lo 3
Queries 4
Structure of the thesis 5)
Related publications 7

2 Preliminaries 9
2.1 Description Logicso o 9
2.1.1 ALCHT and its sublogics, 9

2.1.2 Set semanticso 12

2.1.3 Normal forms 15

2.1.4 Canonical models for ELHZ, KBs 17

2.1.5 Closed predicates 18

2.2 Reasoning tasks oL 19
2.2.1 Satisfiability, subsumption and instance checking 19

2.2.2 Query answering 22

Contents

3 Counting Conjunctive Queries
3.1 Preliminaries
3.1.1 Related work
3.1.2 Semantics of counting conjunctive queries
3.1.3 Decision problems
3.2 Imterlacings
3.2.1 [Existential extraction
3.2.2 A family of models: interlacings
3.2.3 Finitemodels
3.2.4 Countermodels via interlacings
3.3 Answering CCQs over ALCHZ ontologies
3.3.1 Patterns
3.3.2 Soundness: from patterns to models
3.3.3 Completeness: from models to patterns
3.4 Countermodels with bounded size
3.4.1 Equivalence relation based on neighbourhoods . . .
3.4.2 DL-Litecye: simpler neighbourhoods
3.5 Matching lower bounds
3.5.1 Two reductions from closed predicates
3.5.2 A tiling problem for DL-Litecgre
3.5.3 Data complexity

4 Rooted CCQs

4.1 Preliminaries

4.2 A weak notion of rootedness
4.2.1 Combined complexity: from CCQs to rooted CCQs
4.2.2 Two reductions for data complexity

4.3 Exhaustive rooted CCQs over ACCHZ
4.3.1 The interlacing function f¢.
4.3.2 Quotients of f°-interlacings: a coNEXP upper bound
4.3.3 'Two matching lower bounds with inverse roles . . .

4.4 Further refinements for ACCH
4.4.1 The interlacing function f*.
4.4.2 A PSPACE algorithm, up to satisfiability
4.4.3 Matching lower bounds

4.5 Refinements within DL-Lite
4.5.1 From DL-Lite¥ _ to DL-Litecore - - -+«
4.5.2 DL-Litecye and combined complexity
4.5.3 DL-Litecye and data complexity

il Q. MANIERE

Contents

5 Cardinality Queries 157
5.1 Preliminaries 159
5.2 Combined complexity and closed predicates 160

5.2.1 Extensionsof EL 160
5.2.2 Extensions of DL-Liteposo 168
5.3 Hard cases in data complexity 172
5.3.1 A reduction from 3-CoL 172
5.3.2 A reduction from 3-SAT 173
5.3.3 A reduction from SET COVER 175
5.4 Tractable cases in data complexity 176
5.4.1 Role cardinality over DL-Litecore - - - 177
5.4.2 Construction of the TC” circuits 188
5.4.3 Concept cardinality over DL-Lite’ . without role inclusions . 194
5.5 Role cardinality over DL—Lite?;f)s 199
5.5.1 coNP-hardness in presence of propagation 200
5.5.2 Equivalence with Perfect Matching 203
5.5.3 TC” membership in the remaining cases 211
5.5.4 Towards DL—Liter)re 212
Conclusion 219
Summary of the contributions o000 219
Perspectiveso 221

Bibliography 225

Index 237

A Additional proof material 241
A.1 Proofs for Section 3.3 (Answering CCQs over ALCHZ ontologies) . 241
A.2 Proofs for Section 3.4 (Countermodels with bounded size) 246
A.3 Proofs for Section 5.4 (Tractable cases in data complexity) 249
A4 Proofs for Section 5.5 (Role cardinality over DL—Lite?fos) 252

B Four flavors of interlacings 257

Counting Queries in Ontology-Based Data Access iii

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4

List of Figures

The 16 investigated sublogics of ACCHZ.
Interpretations of K., for Example 2.

The ABox A, from Example 5.
The query ¢. from Example 5.
Model Z! from Example 6.
Model Z? from Example 6
DL-Lite interleaving applied on the EL KB Ky
Model Z, of ICo
A representation of f and of the existential extraction of Z,
Initial portion of the f*-interlacingof Z,
Mappings involved in the proof of Lemma 5.
Interpretations of the patterns from Example 12
Links between the 12 patterns from Example 12
Patterns from Example 12 as realizedinZ,
Models from Example 15.
Models, domains, and mappings involved in Section 3.4.1..
The subquery ¢*(©<)2 to check an horizontal tiling condition. . . .
A part of C with (u,u') € & and (v,0') € &,o
The Count()-CCQ q o i
The Cntd(z)-CCQ q

A part of Cx, with (ug,u2) €€
The rooted CCQ q« .
The intended structure of models of K.
The query ¢f (2@, 20) 0o

14

List of Figures

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

0.1
5.2
2.3
5.4

B.1

A model 7, of K, from Example 16. 123
Initial portion of the f*-interlacing of Z.. 124
The query ¢, from Example 17. 129
The tree branches B, B and B® from Example 18. 131
A part of C, with (ur,u0) €€o 144
The exhaustive rooted CCQ ¢ 144
A part of C, with (ug,ue) €€ 147
The exhaustive rooted CCQ ¢ 148
The query gy with ¢ = (uy V —ug V —us) A (-ug Vug Vug). 153
Cardinality query answering: worst-case combined complexity. . . . 158
The built ABox for the example instance of SET COVER. 175
Initial portion of the canonical model of 178
Finite models of the example KB 179
Intuition of the underlying structure for each type of interlacing. . . 259

vi

Q. MANIERE

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2

5.1

List of Tables

Allowed features depending on the considered DL. 10
Semantics of concept and role constructors. 13
Normalization of ALCHZ ontologies. 16
Complexity of common reasoning tasks in standard DLs. 20
Complexity of CCQ answering 25
Matches and counting matches of ¢, in Z! and Z2 34
Specifications from Example 12 52
(Exhaustive) rooted CCQs answering: worst-case complexity. . . . 95
The promise x® for Example 19. 133
Cardinality query answering: worst-case data complexity. 158

vii

Résumé étendu en francais

La réponse a des requétes en présence d’'une ontologie (OMQA, pour “ontology-
mediated query answering”) est une approche facilitant 'accés & des données par
I'intermédiaire d’ontologies. Ces derniéres sont des spécifications formelles de
la terminologie et des connaissances conceptuelles d’'un domaine d’intérét. Les
ontologies peuvent servir a fournir un vocabulaire adapté a la formulation de
requétes, ce qui est particulierement adéquat lors de l'intégration de diverses
sources de données. Les ontologies capturent également des connaissances sur
le domaine étudié, qui peuvent étre utilisées pour gérer des données incomplétes
en inférant des informations implicites, ce qui permet d’enrichir les réponses aux
requétes posées. A partir d’environ 2005 et des premiers travaux de Poggi et al.
[2008], OMQA est devenu un champ de recherche prolifique dans les communautés
IA et bases de données. Les articles de synthése [Bienvenu and Ortiz, 2015; Xiao
et al., 2018] fournissent une introduction a ce domaine ainsi que de nombreuses
références vers la littérature existante.

Cette thése étudie la question de la réponse a des requétes de comptage dans
ce cadre OMQA, et plus particuliérement la complexité de ce probléme. A ce jour,
ce sujet n’a été étudié que dans des cas trés restreints, et sans définition commune
de ce que sont les requétes de comptage. De plus, les résultats existants sont
largement insatisfaisants puisque la plupart échouent & déterminer avec exactitude la
complexité du probléme, et ce malgré I'expressivité limitée des langages d’ontologies
considérés.

Une nouvelle étude de ces requétes de comptage en présence d’'une ontologie
est donc nécessaire. Nous définissons tout d’abord une notion simple et élégante
des requétes de comptage qui généralise plusieurs définitions précédentes. Nous
étendons ensuite notre cadre a des langages d’ontologies plus expressifs, qui étendent
ceux explorés jusqu’alors mais couvrent aussi d’autres logiques trés populaires,

X

Logiques de description

notamment utilisées dans la pratique. Dans ce contexte élargi, nous caractérisons
la complexité exacte du probléme de réponse aux requétes de comptage en présence
de ces ontologies expressives, et déterminons ensuite comment celle-ci varie si 'on
restreint la structure des requétes et/ou 'expressivité du langage des ontologies.
Notre travail ne clot pas seulement les questions laissées ouvertes dans de précédents
travaux, mais étend aussi notre compréhension des requétes de comptage a des
panels bien plus larges de situations OMQA.

Logiques de description

La plupart des travaux sur OMQA considére que la connaissance est représentée
par des logiques de description, une famille de langages introduite dans les années
80 [Brachman and Schmolze, 1985], et qui a suscité beaucoup d’attention depuis
[Baader et al., 2003, 2017|. Dans les logiques de descriptions, les notions élémentaires
du domaine d’intérét sont décrites par un vocabulaire consistant de concepts et de
roles, qui sont respectivement des prédicats unaires et binaires, et a partir desquels
des concepts et roles plus complexes peuvent étre obtenus par divers constructeurs
(par exemple la conjonction M). La diversité de ces constructeurs est dictée par la
logique de description.

Une base de connaissance en logique de description se décompose en deux parties:
une ontologie et des données. L’ontologie contient la connaissance terminologique
du domaine, et consiste en un ensemble d’axiomes (tels que des inclusions C) qui
décrivent les relations entre les différents concepts et roles. Les données représentent
des connaissances factuelles, et précisent quels sont les concepts satisfaits par tel
ou tel individu et quels réles les connectent. Cela prend la forme d’un ensemble de
faits que I'on peut assimiler a une base de données usuelle (mais restreinte a des
faits unaires et binaires).

L’intérét des logiques de description pour représenter des connaissances est
désormais largement reconnu et celles-ci sont le fondement logique du langage
d’ontologie web OWL, un standard W3C pour le web sémantique [Horrocks et al.,
2003, 2006; Hitzler et al., 2009]. Une attention toute particuliére a été portée aux
familles DL-Lite et ££ de logiques de description [Calvanese et al., 2007b; Baader
et al., 2005], du fait de leurs bonnes propriétés en terme de complexité. DL-Lite est
adapté pour des applications impliquant un grand volume de données et a donné
naissance au profil OWL 2 QL, tandis que les logiques de la famille £L£ sous-tendent
le profil OWL 2 EL! et sont utilisées pour exprimer des ontologies médicales a
grande échelle telles que SNOMED CT? [Spackman, 2000].

"https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct

X Q. MANIERE

https://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct

Résumé étendu en francais

La ou les travaux existants sur les requétes de comptage se cantonnent a des
fragments de la famille DL-Lite, cette thése étend le champ d’étude a la logique
plus expressive ALCHZ, qui contient a la fois EL et des fragments trés usités de la
famille DL-Lite.

Opérations de déduction

Une couche ontologique sur des données conduit a de nouvelles opérations de
déduction et accroit la complexité de celles usuellement considérées dans le contexte
des bases de données. Les opérations communes incluent par exemple la question
de la satisfiabilité, qui sert a détecter si une base de connaissance contient des
informations contradictoires, et la question de la subsomption, qui teste si un
concept donné est plus spécifique qu’un autre.

Comme son nom le laisse deviner, le cadre OMQA est particuliérement intéressé
par les réponses a des requétes, une opération tres étudiée dans le cadre des bases
de données relationnelles usuelles et qui correspond, quand des ontologies sont
introduites, a se demander si une requéte est une conséquence logique de la base
de connaissances considérée.

La complexité de ces opérations de déductions augmentent naturellement avec
I'expressivité de la logique de description considérée et du langage de requéte.
Un compromis est donc nécessaire entre la capacité des logiques de description
a représenter des connaissances de facon satisfaisantes, et I'efficacité a raisonner
avec des bases de connaissances exprimées dans ces logiques. La compréhension
de la complexité des opérations de déduction est donc un enjeu majeur dans le
paradigme OMQA: elle guide le choix du langage de requétes et de la logique de
description selon le cas applicatif étudié. De telles considérations pratiques ont
menés au développement des logiques de description dites “légeres”, telles que les
sus-mentionnées DL-Lite et ££, qui permettent de bonnes performances [Calvanese
et al., 2007b; Baader et al., 2005].

Les travaux existants sur les réponses a des requétes de comptage [Kostylev
and Reutter, 2015; Calvanese et al., 2020a] échouent & caractériser pleinement la
complexité de ce probléeme de déduction, laissant souvent des trous béants entre les
bornes de complexité supérieure et inférieure. Dans cette thése, nous déterminons
exactement la complexité du probléme de réponse a des requétes de comptage
dans toutes les situations étudiées, cloturant ainsi les cas restés ouverts de la
littérature mais fournissant également une compréhension fine de ce probléme dans
des contextes bien plus vastes.

Counting Queries in Ontology-Based Data Access xi

Requétes

Requétes

La grande majorité des travaux dans le cadre OMQA suppose que 'utilisateur
formule ses requétes sous la forme de requétes conjonctives. De telles requétes
demandent si une condition conjonctive donnée, la requéte, est logiquement induite
par la base de connaissance formée de I'ontologie et des données.

Cependant, il existe de nombreux autres types de requétes, au dela des requétes
conjonctives, qui sont utiles en pratique. Cela a motivé des recherches sur I’adoption
d’autres langages de requétes pour OMQA. Tandis qu’enrichir les requétes con-
jonctives par des conditions négatives ou des inégalités méne a des problémes
indécidables, méme sous des hypothéses trés restreintes [Gutiérrez-Basulto et al.,
2015], la situation est plus favorable pour les requétes navigationnelles (comme
celles fondées sur des chemins réguliers), qui peuvent étre utilisées sans perdre le
caracteére décidable du probléme associé, et qui a méme parfois une complexité tout
a fait raisonnable vis-a-vis des données |Bienvenu et al., 2015].

Les requétes d’agrégation, qui utilisent des opérateurs numériques (comme du
comptage, des sommes ou des moyennes) pour résumer certaines parties du jeu de
données, constituent une autre classe majeure des requétes en bases de données.
Bien que de telles requétes soient largement utilisées pour l'analyse des données,
elles demeurent peu explorées dans le contexte OMQA. Cela est peut-étre di au
fait qu’il n’est pas évident de définir la sémantique de ces requétes.

Plusieurs sémantiques ont ainsi été proposées ces derniéres années [Calvanese
et al., 2008; Kostylev and Reutter, 2015| pour répondre & ce probléme, mais sans
atteindre une définition unifiée et satisfaisante. Cette thése définie une sémantique
qui généralise celles explorées dans [Kostylev and Reutter, 2015] et permet des
requétes relativement expressives.

Contributions

Cette thése présente un panorama exhaustif de la complexité du probléme de la
réponse a des requétes de comptage en présence d’ontologies selon trois dimensions.
La premiére est 'expressivité des ontologies: nous explorons systématiquement
ALCHT et ses sous-logiques, ALCHZ étant une logique de description trés expres-
sive qui capture notamment £L et les principales sous-logiques de DL-Lite. La
deuxiéeme dimension est le langage de requéte: nous considérons une notion générale
de requéte conjonctive de comptage (CCQ, pour “counting conjunctive query”), et
explorons ensuite deux sous-classes naturelles de CCQ, basées respectivement sur
I’enracinement et 'atomicité, afin de déterminer si de telles restrictions syntaxiques
réduisent la complexité de la réponse a ces CCQs. La troisiéme dimension est la
mesure de la complexité utilisée. Nous considérons a la fois la complexité combinée,

xii Q. MANIERE

Résumé étendu en francais

usuelle, et la complexité de données, la premiére explicitant la complexité totale du
probléme tandis que la seconde se concentre sur comment cette complexité évolue
selon la taille des données.

Notre premiére contribution est la sémantique méme des requétes de comptage.
Rappelons qu’un modéle est une facon de compléter les données afin de satisfaire
a tous les axiomes de 'ontologie. Dans un modéle donné, nous nous intéressons
aux fagons de satisfaire une requéte conjonctive, que 'on appelle des matches ;
leur nombre constitue la réponse a la requéte de comptage correspondante, et varie
de modéle en modéle. La sémantique que nous définissons pour une réponse a
une CCQ sur une base de connaissance consiste en des bornes sur ce nombre de
matches, qui doivent étre valides pour tout modéle de la base de connaissance. Ces
réponses sont appellées des réponses certaines, étendent les sémantiques présentées
dans [Kostylev and Reutter, 2015] et généralisent le probléme usuel de réponse a
des requétes conjonctives.

Dans le cas général des CCQs, nous prouvons que le probléme de réponse a
ces requétes est 2EXP-complet pour la plupart des sous-logiques d’ALCHZ, mais
devient coNEXP-complet pour DL-Litecy. En terme de complexité de données,
nous montrons que le probléme est coNP-complet pour toutes les sous-logiques
considérées. Les techniques développées s’appuient sur des manipulations pré-
cautionneuses des modeéles, qui préservent a la fois le nombre de matches de la
requéte et déplient les régularités inhérentes au modele. Nos constructions s’avérent
robustes dans la mesure ou elles nous permettent de clore une question voisine
dans le domaine des prédicats clos, pour lequels certains prédicats ne peuvent
s'interpréter au-dela de leur description dans les données. Nous montrons ainsi que
le probléme de satisfiabilité d’une base de connaissance exprimée dans DL-Litege €t
avec des prédicats clos est coONEXP, rejoignant ainsi une borne inférieure existante.

Dans la perspective d’identifier des cas profitant d’une meilleure complexité, nous
considérons d’abord I'impact de la restriction aux CCQs enracinées. L’enracinement
est en effet une restriction syntaxique bien connue pour réduire la complexité dans
des cadres OMQA proches. Il s’avére cependant que ’adaptation la plus directe
de cette restriction & nos CCQs ne conduit pas a de meilleures propriétés que
dans le cas général. Cela nous conduit & nous concentrer sur une classe plus
restreinte: les CCQs enracinées et exhaustives. Pour cette derniére classe, nous
utilisons des variations des constructions développées précédemmemt afin d’obtenir
quatre améliorations différentes, selon la logique de description considérée, allant
de la PP-complétude a la coNEXP-complétude. Cette derniére repose notamment
sur la présence de roles inverses dans ’ontologie, une fonctionnalité déja connue
pour augmenter la complexité des requétes enracinées. En terme de complexité
de données, nous exhibons des cas raisonnables en pratique pour les ontologies
exprimées dans DL-Lite.,e. Ce résultat positif s’appuie sur le fait que le modéle

Counting Queries in Ontology-Based Data Access xiii

Contributions

canonique minimise le nombre de matches.

Nous continuons notre quéte de cas plus simples, en terme de complexité, que
le cas général, par une autre restriction sur le langage de requétes, sans lien avec
I’enracinement: 1’atomicité. La classe des CCQs consistant en un seul atome,
que nous appelons des requétes de cardinalité, sont disponibles en deux saveurs
selon que le prédicat d’intérét est unaire ou binaire. De nombreuses connexions
naturelles avec la sémantique des prédicats clos sont exploitées afin de déterminer
la complexité combinée du probléme de réponse & ces requétes de cardinalité.
Nous prouvons que ce probléme est coNP-complet pour les langages de la famille
DL-Lite, tandis qu’il demeure EXP-complet pour £L et plusieurs de ses extensions.
Quand les ontologies sont suffisamment expressives pour contraindre les modéles
a étre de taille exponentiellement grande, cette complexité augmente en coNEXP-
complétude, ce qui est surprenamment élevé pour un cas particulier d’apparence si
simple. Cependant, la situation est plus favorable en complexité de données, pour
laquelle nous identifions des cas raisonnables pour des ontologies formulées dans la
famille DL-Lite. De fagon remarquable, ces derniers résultats ne reposent pas sur
I'existence d’un modéle canonique optimal mais plutot sur I'existence d’une famille
de modéles dans laquelle un modéle optimal peut toujours étre trouvé. Finalement,
nous éclaircissons la complexité des requétes de cardinalité dans la famille DL-Lite
par une analyse de cette complexité pour chaque paire requéte-ontologie. En
particulier, nous caractérisons complétement la complexité de données de ces paires,
pour des ontologies exprimées dans DL-Lite’ et montrons une trichotomie (TCO,

pos?

coNP; ou logspace-équivalent & PERFECT MATCHING).

Xiv Q. MANIERE

Introduction

Ontology-mediated query answering (OMQA) facilitates access to data through the
use of ontologies, which are formal specifications of the terminology and conceptual
knowledge of a given application domain. Ontologies can serve to provide a
convenient vocabulary for query formulation, which is especially relevant when
integrating data from different sources, and they also provide domain knowledge
that can be exploited at query time to infer implicit information and obtain more
complete query results, thus helping to tackle data incompleteness. Starting from
around 2005 and the seminal work of Poggi et al. [2008], OMQA has grown into an
active topic of research in the Al and database communities. The survey articles
[Bienvenu and Ortiz, 2015; Xiao et al., 2018 provide introductions to the area and
pointers to the literature.

This thesis investigates the issue of answering counting queries in the OMQA
framework and focuses in particular on pinpointing the precise computational
complexity of this problem. So far, this topic has only been explored for very
restricted settings, without even a unified notion of what is a counting query.
Furthermore, existing complexity results remain unsatisfactory as many of them fail
to pinpoint the precise complexity of the problem, despite the limited expressiveness
of the considered ontology languages.

This motivates us to take a fresh look at counting queries in OMQA. We
begin by defining a simple yet elegant notion of counting query, which is a natural
generalization of some existing notions. We further extend the scope of our study
to more expressive ontology languages, which properly extend those explored so
far but also cover other popular logics that are used in practical applications. In
this broader context, we characterize the precise complexity of answering counting
queries over these expressive ontologies, and further determine how the complexity
varies if we restrict the structure of the counting queries and/or the expressiveness
of the ontology language. Our work not only closes the complexity gaps that had

Description Logics

been left open in the literature, but it also extends our understanding of counting
queries to a much wider range of OMQA settings.

Description Logics

Much of the work on OMQA considers ontologies formulated in fragments of first-
order logics such as description logics (DLs) or existential rules (also known as
Datalog®). In this work, we focus on description logics ontologies, a family of
knowledge representation languages introduced in the 80’s [Brachman and Schmolze,
1985 and which has drawn a lot of attention since then |Baader et al., 2003, 2017].
In DLs, the basic notions of the domain of interest are described using a vocabulary
consisting of concept and roles names, that are respectively unary and binary
predicates, from which complex concepts and roles can be further built using
various constructors (e.g. conjunction M or existential restriction 3). The set of
available constructors is dictated by the considered DL.

A DL knowledge base consists of two components: a TBox and an ABox. The
TBox (or ontology) contains the terminological knowledge about a domain and
consists of a set of axioms (such as inclusions, C) that describe the relationship
between different concepts and roles. The ABox captures the assertional knowledge
by specifying which concepts, resp. roles, hold on which individuals, resp. connect
which pairs of individuals, where individuals are constants. It takes the form of
a set of ground facts and can be thought of as a classic database instance (but
restricted to unary and binary facts).

Let us give a toy example to illustrate these latter definitions. It is common
knowledge that a mule is an animal that is the offspring of a male donkey and a
female horse, these two latter being distinct species of animals. Assume we know a
mule molly, but no horse nor donkey. Using DL notations, our toy example could
be captured with the following TBox consisting of 4 axioms:

Mule C Animal M dMaleParent.Horse M dFemaleParent. Donkey
Horse M Donkey C | Horse T Animal Donkey = Animal

and by the ABox containing a single fact:
Mule(molly).

The interest of description logics to represent knowledge is now widely recognized,
and DLs notably provide the logical foundations of the OWL web ontology language,
a W3C standardized language for the Semantic Web [Horrocks et al., 2003, 2006;
Hitzler et al., 2009]. Particular attention has been paid to the DL-Lite [Calvanese
et al., 2005, 2007b; Artale et al., 2009] and £L families [Baader et al., 1999, 2005,

2 Q. MANIERE

1. Introduction

2008|, due to their favorable computational properties. DL-Lite is well suited for
data-intensive applications and gave rise to the OWL 2 QL profile, while DLs of
the £L family underly the OWL 2 EL profile! and are used to specify large-scale
medical ontologies such as SNOMED CT? [Spackman, 2000].

While existing work concerning counting queries in OMQA has remained limited
to fragments of the DL-Lite family, this thesis extends the scope to the expressive
description logic ALCHZ, with subsumes both ££ and popular dialects of the
DL-Lite family.

Reasoning tasks

Adding an ontological layer on top of data motivates looking at new reasoning
tasks, and it typically also increases the complexity of the usual computational
tasks considered in the database domain. Common reasoning tasks include for
example satisfiability, that serves to detect whether a knowledge base contains
contradictory information (e.g. if there exists an animal that is both an horse and
a donkey, in our toy example) and subsumption, that tests if a concept is more
specific than another (e.g. it can be deduced that Mule C Animal even though this
axiom is not explicitly given in our toy TBox).

As its name suggests, OMQA is additionally concerned with query answering,
a task that is well studied for classical relational databases, and which corresponds,
when ontologies are introduced, to testing if a query is logically entailed from the
knowledge base of interest.

The complexity of these reasoning tasks generally increases with the expressive-
ness of the considered DL and query language. A trade-off hence arises between the
capacity of DLs to provide a satisfactory representation of the domain knowledge,
and the desired efficiency to reason over DL KBs. Understanding the complexity
of the reasoning tasks of interest is a major issue in OMQA: it guides the choice
of which DL and which query language should be used for a given application.
Practical considerations led to the development of so-called ‘lightweight’ DLs,
such as the previously mentioned DL-Lite and £L£ families, which enjoy favorable
computational properties [Calvanese et al., 2007b; Baader et al., 2005].

Existing work on the task of answering counting queries [Kostylev and Reutter,
2015; Calvanese et al., 2020a] fails to fully characterize the complexity of the
query answering task, with many open gaps between the obtained upper and lower
complexity bounds. In this thesis, we pinpoint the exact complexity of answering
counting queries in all of the considered situations, thereby closing the open cases

https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct

Counting Queries in Ontology-Based Data Access 3

https://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct

Queries

from the literature as well as providing a precise understanding of the problem for
a much wider range of settings.

Queries

The question of how to query DL knowledge bases (KBs), composed of a TBox
(ontology) and ABox (data), has been explored since the early days of DL research.
Initially, the focus was on instance queries [Baader et al., 2003], where the task is to
determine all members of a given concept or role and which basically corresponds
to testing entailment of atomic facts from the KB. However, starting from the
works of [Calvanese et al., 1998; Levy and Rousset, 1998; Horrocks and Tessaris,
2000; Calvanese et al., 2005], and motivated by the interest of using DL ontologies
to improve data access, attention shifted to the more expressive conjunctive queries
(CQs), and the vast majority of work on OMQA takes CQs as the query language.
Such queries consist of a conjunction of atoms and have been widely studied in the
database community, as they correspond to the Select-Project-Join fragment of
the SQL query language. In the OMQA setting, the problem of answering CQs
essentially corresponds to asking whether the conjunctive condition given by the
query and candidate answer tuple is entailed from the knowledge base.

In our toy example, one can ask “Who has a parent who is a horse?”. Using a
classical database management system (DBMS), this query would not admit any
answer as no horse occurs in the data. In the OMQA setting, however, the domain
knowledge can be used to infer that the mule molly must have a (male) parent who
is a horse, hence, we are able to deliver the intended answer: molly.

However, there are many other kinds of database queries, beyond plain CQs, that
are relevant in practice. This motivated research into the feasibility of adopting
other database query languages for OMQA. While enriching CQs with either
negated atoms or inequalities has been shown to lead to undecidability even in
very restricted settings |Gutiérrez-Basulto et al., 2012, 2015|, the situation is more
positive for navigational queries (like regular path queries), which can be adopted
without losing decidability, sometimes even retaining tractable data complexity
[Calvanese et al., 2007a; Ortiz et al., 2011; Stefanoni et al., 2014; Bienvenu et al.,
2015].

Aggregate queries, which use numeric operators (e.g. count, sum, max) to
summarize selected parts of a dataset, constitute another prominent class of
database queries. While they have been studied for a broad range of related
settings®, from relational databases to extensions of rule-based languages such as
Datalog or Answer Set Programming (ASP), and are widely used for data analysis,

3See Section 3.1.1 for a presentation of the state-of-the-art regarding aggregate functions.

4 Q. MANIERE

1. Introduction

these queries have been little explored in the framework of OMQA. This may be
partly due to the fact that it is not at all obvious how to define the semantics of
such queries in the OMQA setting. In our toy example, one can ask “How many
animals are there?”. A classic DBMS will return the answer 0 (it only knows molly
as a mule, not an animal). The expected answer is less clear in the OMQA setting:
should it be 1 because of molly? or rather 3 if also counting its two parents? or “at
least 377 or maybe “at least 2”7 as our toy ontology does not prevent molly from
being its own parent?

Several semantics of counting queries over OMQA have hence been proposed
in the past years [Calvanese et al., 2008; Kostylev and Reutter, 2015 to address
this question, without reaching a satisfactory unique definition. This thesis defines
a semantics unifying both those explored in [Kostylev and Reutter, 2015| and
allowing for rather expressive queries.

Structure of the thesis

We present a complete picture of the complexity landscape of answering counting
queries, along three main dimensions. The first dimension is the expressive power
of the ontology: we systematically explore a variety of sublogics of ALCHZ, an
expressive description logic that notably captures both ££ and central dialects of
the DL-Lite family. The second dimension is the query language. We consider a
general notion of counting conjunctive query (CCQ) and further explore two natural
subclasses of CCQs, based upon rootedness and atomicity, to determine whether
such syntactic restrictions lower the complexity of CCQ answering. The third
dimension is the complexity measure. In this work, we consider both the standard
combined complexity as well as data complexity, with the former elucidating the
overall complexity of the problem, and the latter focusing on how the complexity
scales w.r.t. the size of the data.

We now present the global structure of this dissertation, organized according to
the second dimension.

Chapter 2. This chapter introduces the necessary notions for later chapters: it
defines the investigated description logics, the associated semantics, and recalls the
standard reasoning tasks and their complexities.

Chapter 3. This chapter formally defines the consider query language of CCQs
and pinpoints the precise complexity of answering these queries. Based on the
construction of interlacings, which are models enjoying good properties with respect
to the query of interest, we prove that the combined complexity ranges from coNEXP-
completeness to 2EXP-completeness, depending on the considered DL, while we

Counting Queries in Ontology-Based Data Access D

Structure of the thesis

obtain coNP-complete data complexity for all considered logics. Interestingly, our

approach also allows to answer an open question from the related problem of
OMQA with closed predicates.

Chapter 4. This chapter explores rootedness, a structural restriction on queries
that is known to lower the complexity of reasoning in related OMQA settings. We
show that the most straightforward adaptation of rootedness to CCQs does not
lead to improved complexity, which motivates us to focus on a natural subclass of
exhaustive rooted CCQs. For this latter class, we use variations of the constructions
developed for the general case to obtain four different improvements depending on
the considered DL, ranging from PP-completeness to coNEXP-completeness, for
the combined complexity measure. For data complexity, we prove that exhaustive
rooted CCQ answering over DL-Lite.y. ontologies is tractable and enjoys the lowest
possible complexity (TC).

Chapter 5. This chapter explores cardinality queries, which are CCQs consisting
of a single atom. Several connections with OMQA with closed predicates are
exhibited, which we use to determine the combined complexity of cardinality query
answering in all of our considered DLs. In particular, we prove that the problem is
coNP-complete for the DL-Lite family and is EXP-complete for ££ and several of
its extensions. This complexity even rises to coONEXP-completeness for the most
expressive investigated DLs. The situation is more favorable in data complexity,
as we obtain tractable cases (TC’) in the DL-Lite family. Finally, we gain further
insights into the complexity of cardinality query answering in the DL-Lite family
by performing a non-uniform complexity analysis that aims to determine the data
complexity associated with each particular ontology-mediated query (OMQ). In
particular, we are able to fully characterize the data complexity of OMQs consisting
of a cardinality query and DL—Lite?foS ontology, exhibiting a complexity trichotomy

(TC®, coNP, or logspace-equivalent to PERFECT MATCHING).

Chapter 6. This chapter summarizes the results of the thesis and suggests several
further directions of research.

Annex A. Additional proof material that has not been included within the thesis
is available in this annex.

Annex B. This annex aims to facilitate the understanding of the four investigated
flavors of interlacings by centralizing useful definitions and figures. We encourage
the reader to keep a printed version of this annex close at hand.

6 Q. MANIERE

1. Introduction

Related publications

Some of the results presented in this thesis have already been published:

The semantics of CCQs introduced in Chapter 3, the associated coNP and
DP procedures for DL-Lite ontologies with respect to data complexity, and
some results from Chapter 4 regarding rooted CCQs, again over DIL-Lite, can
be found in [Bienvenu et al., 2020].

In Chapter 5, all of the data complexity results for cardinality query answering
over DL-Lite ontologies have been presented in [Bienvenu et al., 2021al,
including the complexity classification in Section 5.5.

The generalization of these DL-Lite approaches to sublogics of ALCHT
between L and ELHTI, appeared in a workshop paper |Bienvenu et al.,
2021b], establishing in particular data complexity results for CCQ answering
over these ontologies that appear in Chapter 3, while the exact combined
complexity remained open.

In Chapter 3, optimal bounds for CCQ answering over these sublogics of
ELHT, with respect to combined complexity have been further presented in
[Bienvenu et al., 2022|. This latter publication also provides all the results
from Chapter 5 concerning cardinality queries answering over these DLs.

By contrast, all of the results in this thesis that concern ALC or its extensions have
not been published yet, and the study of rooted CCQs beyond DL-Lite, notably in
extensions of £L, is also a novelty.

Counting Queries in Ontology-Based Data Access 7

Preliminaries

This chapter introduces the background notions required for the later chapters.
We begin with the description logics (DLs) investigated in this thesis: we define
ALCHT knowledge bases, their interpretations and models. Closed predicates are
also briefly introduced as several connections to this setting will be made and
exploited in later chapters. We further give an overview of the usual reasoning
tasks and recall their associated complexities.

2.1 Description Logics

ALCHT is an extension of the central ALC description logic, which serves as a
base for many more expressive DLs. We hereby recall its syntax and its relevant
sublogics. ALCHZ notably extends £L and, by allowing for inverse roles, several
dialects of the DL-Lite family such as DL-Litecye. Importantly, and following
Bienvenu et al. [2014a|, we allow negative role inclusions in ALCHZ so that it
admits DL-Lite _ as a sublogic. We further recall the usual set semantics for these

DLs, through the notions of interpretations and models, present a normal form for
ALCHIL ontologies, and briefly introduce the semantics of closed predicates.

2.1.1 ALCHI and its sublogics

Description logics usually split the representation of knowledge into two parts: a
terminological one, the ontology, and an assertional one, the data. The second
accounts for ground facts that are typically stored and processed by database
management systems, while the first represents the domain knowledge, given by a
logical theory. The building blocks of these two parts are concept and role names
(unary and binary predicates) that can further be combined, using the constructors
provided by the considered DL, to obtain complex concepts and roles.

2.1. Description Logics

DL-Lite Suffixes Examples
pos core EL ALC H I | \ ALCT ELH,
. A|FRT | v v v v v
5 T|BiNB,|3R.B VY v v
§ 1 v v v v
-B | B; UB;y | VR.B v v
8 ReNg| vV v V v v v v
= ReNE| v v v v
2 Positive concept incl. | v vV v v v
.E Positive role incl. v v
< Corresp. neg. incl. v v v v v

Table 2.1: Allowed features depending on the considered DL.

Definition 1. We assume mutually disjoint sets Nc, Ng, and Ny of concept, role,
and individual names, their union being the basic vocabulary used to represent
knowledge. A knowledge base (KB) K := (T,.A) consists of a terminological part T
called a TBox, and an assertional part A called an ABox. An ABox is a finite set
of concept assertions A(b) (with A € N¢, b € N;) and role assertions P(a,b) (with
P € Ng, a,b € N;). We denote by Ind(A) the set of individuals occurring in an
ABox A. A TBox is a finite set of axioms, whose forms are dictated by the DL in
question.

We shall use sig(T) (resp. sig(A) and sig(K)) to denote the signature of a
TBox T (resp. ABox A and KB K), i.e. the set of concept and role names
appearing in T (resp. A and K).

The types of axioms that can appear in a TBox depends on the chosen DL, but
the most common form of TBox axiom are inclusions that can represent hierarchies
between concepts or roles, but also enforce disjointness of such predicates. To define
the syntax of the DLs considered in this thesis, it will be helpful to distinguish four
possible shapes of inclusions in the TBox.

Definition 2. We distinguish four kinds of possible axioms in a TBox: positive
concept inclusions By C By, negative concept inclusions By M By T L (alternatively
denoted B; C —By), positive role inclusions R; C Ry, and negative role inclusions
Ri MRy C L (alternatively denoted Ry © =Ry), where By, By, resp. Ry, Rg, are
concepts, resp. roles, whose forms are dictated by the DL of interest.

We begin with the most expressive DL considered in this thesis, namely ALCHZ,

10 Q. MANIERE

2. Preliminaries

which allows all four shapes of inclusions in the TBox, with roles R drawn from
the set NZ := {P,P~ | P € Ng}, consisting of all role names P and their inverse
role P~, and with concepts B constructed according to the following grammar:

B:=T|L|A|-B|B;MBy|B;UBy|3RB|VR.B with A€ Nc,R € Ng.

Remark 1. We follow e.g. Bienvenu et al. [2014a] by including negative role
inclusions in ALCHZI, so that it has DL-Lite! _ (defined later) as a sublogic. We
also remark that, in the case of ALCHZ, allowing negative concept inclusions is
redundant as positive concept inclusions already allow us to express such negative

concept inclusions, due to the expressive syntax of concepts in ALCHL

Various sublogics of ALCHZ can be obtained by disallowing some forms of
inclusions, inverse roles, and/or several concept constructors. For example, the
well-known E£L [Baader et al., 1999, 2005, 2008] is obtained by removing negative
concept inclusions, both shapes of roles inclusions, inverse roles and restricting to
the concepts B obtained from the following grammar:

B:=T|A|B NBy|3R.B with A € N¢,R € Ng.

We shall also consider some DL-Lite dialects that are fragments of ALCHZ.
The most expressive dialect is DL-Lite’ _ (alternatively known as DL-Liteg) which
allows the four kind of inclusions, inverse roles, and the following restricted forms

of concepts:
Di:=A|3R.T with A € Nc,R € Ng.

The logics DL—LiteZ)’és, DL-Litecore, and DL-Liteyos are obtained respectively by
dropping negative inclusions, role inclusions, or both features [Calvanese et al.,
2005, 2007b; Artale et al., 2009].

Table 2.1 summarizes the naming conventions underlying each explored com-
bination: the row entries are the possible features and column entries are (parts
of) names of DLs. A feature is allowed in a DL if the symbol v" is present in a
column corresponding to (a part of) the name of the DL. Generally speaking, one
starts from either DL-Liteyos, DL-Litecore, £L£ or ALC and adds combinations of
the 3 available suffixes H, Z and / or |, that are not intended to be considered
alone. The use of H indicates that role inclusions are allowed, use of Z that inverse
roles are allowed (both for building concepts and in eventual role inclusions), and
1 that the concept L is allowed along with the negative inclusions corresponding
to the positive permitted inclusions. Several combinations are of course irrelevant
as redundant, e.g. DL—LitefOS or ALC, .

In addition to the already introduced ££ and DL-Lite logics, two examples are
detailed in the right most columns, namely ALCZ and ELH . Notice that ELH |

Counting Queries in Ontology-Based Data Access 11

2.1. Description Logics

ALCHT
~
ALCH ALCT
- /
ELH, ELT, DL—Liter,re
~ / \ ~
E,CL SLHI DL—Litecore
ecn | ELT ~ DL-Litel,
EL DL-Litepos

Figure 2.1: The 16 investigated sublogics of ALCHZ.

allows for both positive concept and role inclusions, and for the corresponding
negative inclusions, that is all four shapes of inclusions, while ALCZ only permits
positive and negative concept inclusions, but neither positive nor negative role
inclusions. The hierarchy, w.r.t. relative expressiveness, of the 16 sublogics of
ALCHIL explored in this thesis and obtained from combinations of the presented
restrictions, is depicted in Figure 2.1

Example 1. We reuse the example from the introduction: the knowledge base ICe,
is the pair (Tex, Aex) where Ae, := {Mule(molly)} is the ABox and T, is the TBox
consisting of the 4 axioms:

Mule C Animal M dMaleParent.Horse M dFemaleParent. Donkey
Horse M Donkey C | Horse T Animal Donkey C Animal.

There are 4 concept names and 2 role names in the signature of T.., which contains
3 positive concept inclusions, 1 negative concept inclusion and no role inclusions.
It 1s easily verified that T., is an EL, TBox.

2.1.2 Set semantics

ALCHI knowledge bases are well known to correspond to decidable fragments
of first-order logic. More precisely, ALCHZ KBs translate into the two-variable
fragment of first-order logic (see e.g. [Baader et al., 2017]), whose entailment
problem is known to be in NEXP |Grédel et al., 1997]. As fragments of first-order
logic, ALCHZ knowledge bases are equipped with the standard set semantics,
based upon interpretations, recalled next.

12 Q. MANIERE

2. Preliminaries

Constructor Syntax ‘ Interpretation
Inverse role P {(y,z) | (z,y) € P*}
Bottom L 0
Top T AT
Negation -B AT\ B?
Conjunction B, M By Bf N BZ
Disjunction B; U By B UBZ
Existential restriction JR.B {d|3Je e AT (d,e) € RT Ae € BT}
Universal restriction VR.B {d|Ve € AT (d,e) € RT — e € B}

Table 2.2: Semantics of concept and role constructors.

Definition 3. An interpretation takes the form T = (AZ,-T), where AT is a non-
empty set (called the domain) and - is the interpretation function that maps each
A € N¢ to AT C A%, each P € Ng to PT C AT x A?, and each a € N, to a%. In
this thesis, we will make the Standard Names Assumption by setting aZ = a. Note
however that our results only rely upon the weaker Unique Names Assumption

(UNA), which stipulates that a # b whenever a # b. The function T extends to
roles and complex concepts as summarized in Table 2.2.

Remark 2. Notice the set AT is required not to be empty and to contain at least
N, (due to the SNA), but is otherwise unrestricted. This is sometimes referred
to as the open domain assumption, as opposed to the closed domain assumption
underlying usual databases in which no elements outside of those mentioned in the
data (the individuals of the ABox, from the OMQA perspective) are considered.

As DL KBs only use unary and binary predicates, an interpretation Z is easily
represented as a labeled directed graph according to the two following rules: (i)
each e € AT is represented by a vertex e, labeled with all the concept names A € N¢
such that e € AT; (ii) there is a directed edge (e, e9) in the graph representation
of Z iff there exists a role name P € Ng, such that (e;, e;) € PZ, in which case the
edge (ey, ez) is labeled with all such role names P. For readability, we often replace
each vertex representing an element e from A%\ Ind(A) by a placeholder o to avoid
specifying the exact definition of AZ.

We now move to the notion of models of a knowledge base.

Definition 4. An inclusion G C H is satisfied in T if GT C HZ; an assertion A(b)
(resp. P(a,b)) is satisfied in T if b € AT (resp. (a,b) € PT). An interpretation is

Counting Queries in Ontology-Based Data Access 13

2.1. Description Logics

a model of a TBox T (resp. KB K) if it satisfies all axioms in T (resp. axioms
and assertions in KC). A KB is satisfiable if it has at least one model. An inclusion
(resp. assertion) @ is entailed from T (resp. KC), written T = ® (resp. K = @), if
O is satisfied in every model of T (resp. K).

Example 2. Continuing Example 1, three interpretations of K., are depicted in
Figure 2.2, in which indiwidual and concept names have been abbreviated to their
first letter for readability. The interpretation I, is not a model as the anonymous
element (depicted by o) satisfies both Horse and Donkey, hence violating aziom
Horse M Donkey C L. It also violates the first axiom of T.. since molly is a Mule
that does not have a MaleParent being a Horse.

The two other interpretations are indeed models of K.,. Notice in particular our
ontology is somehow ill-formed as it permits molly to be its own male parent being
a horse. One could exclude this kind of model, e.g. by adding a negative concept
inclusion Mule M Horse £ L to the ontology.

H.D. A H, A D, A D, A
o m - MParent.{H,A} m-FParent.{D, A} °
& 4&?& > &
o o
o‘fd m m o‘fd m
= MA M, A = MHA
(a) Interp. Zy of Ke, (b) Model Z; of K¢, (¢) Model Z3 of K¢,

Figure 2.2: Interpretations of K., for Example 2.

Remark 3. Notice that a model can interpret some individual names as satisfying
more concept names than required by the KB: in our example, molly is a horse in
model I3 but not in model Iy, hence the fact Horse(molly) is not entailed by Ke,
but it doesn’t contradict Z., being a model. This is referred to as the open world
assumption, as opposed to the closed world assumption underlying usual databases
in which unsure facts are assumed to be false.

It will often be useful to manipulate interpretations similarly to ABoxes, which
motivates the following definition.

Definition 5. We can view an interpretation Z as a (possibly infinite) set of
assertions A7 = {A(e) | e € AT, A € Nc} U{P(e,€) | (e,¢/) € PE,P € Ng}. We
say that T is T-satisfiable if T U Az has a model.

14 Q. MANIERE

2. Preliminaries

2.1.3 Normal forms

It is standard to assume that the TBoxes are in a given normal form, which is often
tailored to the setting of interest. Such a normal form simplifies the description
of algorithms and proofs of modelhood by restricting the shapes of axioms that
need to be considered. So long as the transformation to normal form preserves the
central properties of the considered problem (e.g. satisfiability of the TBox), it can
be assumed without loss of generality that all TBoxes are in normal form. In our
own study, we shall work with ALCHZ TBoxes that in the following normal form,
which extends the normal form presented in Baader et al. [2017].

The normalization proceeds in three steps. The first step aims at removing
nested occurrences of concepts. We say a concept B has a nested occurrence in
a concept D if B is not a concept name and D has one of the following shapes:
-B|BnC|BUC|CnB|CUB|3R.B|VR.B, where C is any concept (nested
or not). As is standard (see e.g. Baader et al. [2017]), we can assume w.l.o.g. that
there are no such nested occurrences by introducing linearly many fresh concept
names and axioms in the TBox.

The second step replaces each axiom B; C By by the two axioms B; C Ag, ,
and Ap, B, C By, where Agp, p, is a dedicated fresh concept name. This only
doubles the size of the TBox and ensures each concept inclusion has now a single
concept name on its left-hand side or on its right-hand side. We are therefore left
with the following 15 shapes of concept inclusions:

ACB
TCA ACT
1LCA AC L
AMACA AC A MA, ' .
ATUA; CA AT A UA, with A, Ay, A2, B € Nc and R € Ny
JRBCA A C 3R.B
VRBLCA A CVR.B
-BC A AC -B

The third step applies the 9 kinds of substitutions from Table 2.3 to reduce to
the following 6 shapes of concept axioms:

TCA ATMA C A JRBCA ACJR.B -BC A AC -B,

with A, A;,A5,B € Nc and R € N?{[. Each substitution from Table 2.3 directly
gives axioms with the desired shapes, so a single iteration of these rules is required.
This latter step gives us the desired normal form.

Counting Queries in Ontology-Based Data Access 15

2.1. Description Logics

ACT ~ ACB ~ AMNCTtCB
AC-Cy
AC L ~ { TCos 1CA ~
ANCy C A
AC A MAy ~ ANGCtC Ay
TCCt
é L ﬂﬂCéAl”ﬂ? . ANCrCA
AC A UAy ~ AL MRAr = oA AY A A A~ { AICTC A
~A1 £ Copy TCC
—Ay C Coa, =T
AC -Car-B -Car-BC A
ACVR.B ~ { 3JR.C_5C Car_p VRBC A ~<{ JR.C_gpC Csr-p
-BLC C_p -BLC C-p

where concepts Cx are fresh concept names representing (complex) concepts X.
Table 2.3: Normalization of ALCHZ ontologies.

Definition 6. An ALCHI TBox T is said to be in normal form if every concept
inclusion in T has one of the following shapes:

TCA AIMA C A JRBCA AC JR.B -BC A A C -B,

with A, Ay, Ay, B € Nc and R € N&.

To ensure the normalization procedure does not affect the outcome of the
reasoning tasks we consider in this thesis, it is sufficient to ensure that the normalized
TBox is a conservative extension of the initial TBox.

Definition 7. A TBox T’ is a conservative extension of a TBox T if the three
following conditions are satisfied:

- sig(T) C sig(T");
- Bvery model of T" is a model of T ;

- For every model T of T, there exists a model T' of T such that the restriction
of T tosig(T) is -L.

The desired properties of the normalization procedure can now be summarized
as follows.

16 Q. MANIERE

2. Preliminaries

Theorem 1. Every ALCHZ TBox T can be transformed in linear time into a
conservative extension T' of T such that T' is in normal form and has linear size
w.r.t. the size of T.

In particular, this transformation does not affect the outcome of upcoming
reasoning tasks, nor the associated complexity results.

2.1.4 Canonical models for ELHZ, KBs

As previously noted, many DLs of the DL-Lite and ££ families [Calvanese et al.,
2005; Baader et al., 1999] allow for efficient reasoning due to their carefully restricted
syntax. Such logics belong to the broader class of Horn DLs, which are those that
cannot express (implicitly or explicitly) any form of disjunction, and thus do not
require reasoning by cases. More expressive Horn DLs can be defined by selecting
a (highly) expressive DL, like SHZ Q, and suitably restricting its syntax to exclude
the need for disjunctive reasoning, yielding e.g. Horn-SHZ Q [Hustadt et al., 2005;
Krotzsch et al., 2013]. The key property of Horn DLs is that every satisfiable KB
admits a canonical (or universal) model that embeds homomorphically into each
of its models. Such a canonical model plays a central role in designing reasoning
procedures as it often suffices to restrict the attention to this single model.

In our setting, it is well known that every satisfiable ELHZ, KB admits a
canonical model (ELHZ, being essentially Horn-ALCHZ, up to some syntactic
reformulations relying on inverse roles). We recall how such a model Cx can be
constructed (see [Bienvenu and Ortiz, 2015]).

Definition 8. The domain A~ consists of all sequences a-Ri. My - - - Ry.M, (n>0)
such that a € Ind(A), each R; belongs to NfRE, each M; is a conjunction of concepts
from Nc U{T} (which is treated as a set when convenient), and the following
conditions hold:

1. If n > 1, then T = My C 3R;.M; where My = {A € NceU{T} | K = A(a)}
and My is maximal, as a set of concept names, for this property.

2. If n > 1, then there is no b € Ind(A) such that K = M;(b) and K = R4(a,b).

3. For every 1 <i<n, T EM; C 3Ri11. M1 and M1 is mazimal, as a set of
concept names, for this property.

4. For every 1 <i<n—2,T £M; E Mo or T £~ Rij1 E R,

Individual names are interpreted as themselves (a® = a), and concept and role

Counting Queries in Ontology-Based Data Access 17

2.1. Description Logics

names are interpreted as follows:

A = {a|KEAQ)} (1
U{e-RM|AeM} (2
(

P’ = {(a,b) | K =P(a,b)} 1

U {(e,e-Po.M) | T =Py C P} (21)
U{(e-PoMe) [TEP, TP} (27)

~— ~—

~—

+

The canonical model Cy plays a central role in conjunctive query (CQ) answering,
as, by virtue of embedding in every model of the KB I of interest, it provides
either the assurance that the query further embeds in every model Z of K (if a
embedding of the CQ in Cx exists), or a countermodel for the query (that is, an
example of a model in which there are no embedding of the CQ). This issue will be
recalled in more detail later in this chapter. To formalize this central property, it
is necessary to properly recall the definition of a homomorphism of interpretations.

Definition 9. Given two interpretations I, and Iy, a function f : AT — A2 is q
homomorphism of I, into I, denoted [: I, — I, if the three following conditions
hold: (i) f(a%¥*) = a®2 for alla € Ny; (i) f(AT*) C A2 for all concept name A € Nc¢;
(iii) f(AT) C A2 for all role name P € Ng.

We can now formally recall the central property of the canonical model, which
motivates its name.

Theorem 2. Let K be a satisfiable ELHZI, KB. The canonical model Cx is a model
of K and for every model I of IC, there exists a homomorphism f :Cx — I.

Example 3. The canonical model of IKC., from Example 1 is depicted as model Iy in
Figure 2.2. It embeds in model Iy by mapping molly - MaleParent.{Horse, Animal}
to molly and molly - FemaleParent.{Donkey, Animal} to itself.

2.1.5 Closed predicates

The open-world and open-domain assumptions are natural in settings where the
data is incomplete, and there may be missing facts and a need to reason about
unnamed objects. Many scenarios, however, may involve some parts of the data
which are incomplete, and other parts which are known to be complete (e.g. when
considering the list of countries). The combination of DL reasoning with (partially)
complete data was first explored in Franconi et al. [2011] and led to a line of work
on DL KBs with closed predicates [Lutz et al., 2013; Ngo et al., 2016], which allow
for a trade-off between the closed- and open-world assumptions. Formally, one

18 Q. MANIERE

2. Preliminaries

adapts the notions of KBs and models as follows, where the interpretations of some
predicates are stated to be fully known, and hence should not extend beyond the
instances explicitly given in the ABox.

Definition 10. A KB with closed predicates consists of a KB (T,.A) and a set
Y. € Nc UNR of closed predicates. An interpretation Z is a model of (T, A, X) if
it is a model of (T,.A) which interprets the closed predicates according to A, i.e.
AT ={a | A(a) € A} for every A € ¥ N Nc and P = {(a,b) | P(a,b) € A} for
every P € XN Nc.

Example 4. In our running example, K., admits models as presented before,
but the corresponding KB with a single closed predicate Animal, that is K., =
(Tex, {Animal}, A, } becomes unsatisfiable.

Closed predicates have been explored for a range of DLs and have been shown to
increase significantly the complexity of the most common reasoning tasks compared
to the classical setting without closed predicates [Franconi et al., 2011; Lutz et al.,
2013; Ngo et al., 2016].

2.2 Reasoning tasks

We now recall the usual reasoning tasks associated with knowledge bases and
summarize the known complexity of answering these problems. For each task, we
distinguish between combined complexity in which everything is part of the input,
and data complexity in which only the data, that is, the ABox, is considered as
input and the other parameters are treated as fixed.

Both combined and data complexity measures consider the worst-case complexity
of the problem. It can also be interesting to pinpoint the complexity of a particular
ontology or ontology-mediated query (OMQ), i.e. an ontology-query pair. This more
refined approach has yielded several dichotomy results and complexity classifications,
which identify what are the possible complexities and pinpoint the tractable and
intractable cases |Lutz and Wolter, 2012; Lutz et al., 2012; Bienvenu et al., 2014b;
Lutz and Sabellek, 2017].

2.2.1 Satisfiability, subsumption and instance checking

The most basic reasoning task associated with a TBox or a KB is arguably to ask
whether it is consistent or not. This is known as the satisfiability problem.

Definition 11. Given a TBox T, resp. a KB K, the satisfiability problem is to
decide whether T, resp. KC, admits a model.

Counting Queries in Ontology-Based Data Access 19

2.2. Reasoning tasks

Satisfiability Instance checking CQ answering
Data Combined Data Combined Data Combined

DL-Lite*) in AC° NL in AC® NL in ACY NP

core

EL, ELH, P P P P P NP
ELT,ELHI, P EXP P EXP P EXP
ALC NP EXP coNP EXP coNP EXP
ALCT NP EXP coNP EXP coNP 2EXP

Table 2.4: Complexity of common reasoning tasks in standard DLs. Lower bounds
for satisfiability do not apply for ££ and ££Z KBs which always admit a model.

The second task concerns TBoxes, and asks whether a new inclusion can be
inferred from the given ones, which is known as the subsumption problem.

Definition 12. Given a TBox T and two concepts Cy, Cq, the subsumption problem
18 to decide whether T entails C; C Cs.

The third problem is the assertional counterpart of the subsumption problem,
asking whether a given assertion can be inferred from a given KB, which is known
as instance checking.

Definition 13. Given a KB K and a concept C and an individual name a € Ny,
the instance checking problem is to decide whether K entails the assertion C(a).

These three reasoning tasks are known to be reducible to each other as soon
as disjointness is expressible in the TBox (e.g. with DL-Litecye or £,), and both
their data and combined complexities are well understood for sublogics of ALCT
and of ELHT, . These results are recalled in Table 2.4, borrowed from |Bienvenu
and Ortiz, 2015], and have been obtained from a variety of techniques.

One prominent approach for Horn DLs is query rewriting, in which reasoning
tasks are reduced to the more well-known problems of evaluating first-order (FO) or
Datalog queries over databases. More precisely, query rewriting takes a TBox and
query as input and produces an FO-query (resp. Datalog-query) that incorporates
the relevant knowledge from the TBox and is such that evaluating this query over
the ABox yields the required result for the initial reasoning task. It is known that
FO query evaluation is PSPACE-complete w.r.t. combined complexity [Vardi, 1982]
and in AC® w.r.t. data complexity [Vardi, 1995|, while Datalog query evaluation is
EXP-complete w.r.t. combined complexity [Vardi, 1982| and P-complete w.r.t. data
complexity [Immerman, 1986]. First-order query rewriting can be used to obtain an
AC? procedure (w.r.t. data complexity) for instance checking for a range of DL-Lite

dialects, including DL-Lite* _, and can also be used to show an NL upper bound in

20 Q. MANIERE

2. Preliminaries

combined complexity [Artale et al., 2009]. By rephrasing satisfiability as a query
answering task, we can obtain the same upper bounds for satisfiability of DL-Lite
KBs. For ££ and its extensions, it is not always possible to reduce to FO query
evaluation, but Datalog rewriting can be used to establish tight upper bounds for
instance checking and satisfiability in ELHZ, [Hustadt et al., 2005]. Note that for
EL and ELZ, only the instance checking problem is of interest, as the satisfability
task is trivial, due to the absence of disjointness, negation, or other constraints.

Another prominent reasoning technique for Horn DLs is saturation (or mate-
rialization), which consists in iteratively adding (some of) the facts that can be
entailed from the KB, then checking whether the target query has been produced.
The P upper bounds in combined complexity for £L£ and its extension ELH | were
originally established using such saturation techniques [Baader et al., 2005] (see
Calvanese et al. [2006] for the matching lower bounds).

For expressive DLs, reasoning tasks are often rephrased as satisfiability checks
and addressed with tableaux techniques. In a nutshell, tableaux algorithms test the
satisfiability of the input KB by trying to construct a (representation of a) model.
They can be seen as extending saturation procedures by exploring the different
ways of adding facts to account for the disjunctive features allowed in the KBs. A
tableaux procedure for the DL ALCZ can be found in Donini and Massacci [2000],
and the even more expressive DL SHZQ was addressed in Tobies [2001].

Throughout the later chapters, we will often need to perform some satisfiability
(resp. subsumption and instance checking) checks, relying upon these complexity
results. For satisfiability tests for our slightly non-standard versions of ALCH and
ALCHZI allowing negative role inclusions, we prove that it remains EXP-complete
with respect to combined complexity (satisfiability of ALCHZ KBs without negative
role inclusions being EXP-complete as proven in [Tobies, 2001 and [Schild, 1991]).
Although we will not need the corresponding statement for data complexity, it also
remains NP-complete, as follows from a later result (Theorem 8).

Theorem 3. The satisfiability of a ALCHZ KB with role disjointness is EXP-
complete w.r.t. combined complexity.

Proof. EXP-hardness is immediate as ALCHZ extends ALC, for which the satis-
fiability task is already EXP-complete [Schild, 1991]. For the upper bound, we
reduce our problem to the satisfiability problem of ALCZb KBs, also known to be
EXP-complete (see Theorem 4.42 in Tobies [2001]). An ALCZb KB extends the
ALCT KBs presented in this chapter by allowing more expressive combinations of
roles in the construction of concepts (see Definition 4.17 in Tobies [2001]): “An
ALCTb-role expression w is built from ALCZb-roles [i.e. roles from NZ| using the
operators 1 (role intersection), LI (role union), and — (role complement), with the
restriction that, when transformed into disjunctive normal form, every disjunct

Counting Queries in Ontology-Based Data Access 21

2.2. Reasoning tasks

contains at least one non-negated conjunct. A role expression that satisfies this
constraint is called safe.”

Consider a ALCHZ KB K := (T,.A) in normal form. We first construct an
extension A’ of the ABox A. For each assertion R(a,b) € A and each (eventually
inverse) role S such that 7 = R C S, we add the assertion S(a,b) (or S(b,a) in the
inverse case) to A’. We now turn to a modified version 7" of the TBox 7T, in which
each role inclusion is dropped, each axiom dR.B C A € T is replaced by the axiom
Jw.B C A, where w is the following safe role expression:

W= U S,

TESCR

and each axiom A C JR.B € 7T is replaced by the axiom A C Jw.B where w is the
following safe role expression:

W= ﬂ SN ﬂ -T

TERCS TERNTC L

Note that all the role inclusion checks in this construction can be polynomially
decided due to the very limited role constructors and inclusions in ALCHZ. It
remains to establish the following claim:

K= (T, A") is satisfiable iff K is satisfiable.
(«<). It is easily checked that every model Z of K is also a model of K.

(=). Consider a model Z’ of K'. Axioms 3R.B C A € T are clearly satisfied in Z'.
However, 7' may violate some role inclusions and role disjointness axioms from
T. For each A C JR.B € T, and each element e € AT, our construction ensures
that there exists at least one successor to e for the corresponding 7' axiom that
respects both the positive and negative role inclusions from 7. Dropping all role
facts in Z' that are neither involved in such a successor relationship nor entailed on
individuals by K, we obtain a model Z of K. [

2.2.2 Query answering

As the counting conjunctive queries we study in this thesis correspond to an
extension of classical conjunctive queries, we briefly recall the definition of such
queries, which constitute a simple, yet practically relevant and much studied, query
language. A conjunctive query (CQ) takes the form ¢(x) = Jy ¢ (x,y), where x,y
are tuples of answer and existential variables, respectively, and 1) is a conjunction

22 Q. MANIERE

2. Preliminaries

of concept and role atoms with terms from N, Ux Uy. We use terms(q) for the set
of all terms occurring in q. A CQ g is said to be Boolean if x = ().

A match for a CQ ¢ in an interpretation Z is a homomorphism from ¢ into Z, i.e.
a function 7 that maps each term in ¢ to an element of AZ such that 7(t) = ¢ when
t € Ny, w(t) € AT for every A(t) € ¢, and (7 (t), 7(t')) € P* for every P(t,t') € q.
The set of answers to ¢ in Z, denoted ¢%, contains all tuples a of individuals from
N, such that there exists a match of ¢(a) in Z. A certain answer to a CQ q w.r.t.
K is an answer in every model of K, that is, a tuple from ¢* := mIFIC q~.

Definition 14. Given a KB IC, a CQ q and a tuple a, the problem of C(Q) answering
is to decide whether a € ¢~.

A summary of the complexity results for CQ answering over the considered
DLs is provided in Table 2.4 and, as for the previous reasoning tasks, the upper
bounds often rely on rewriting techniques. Query rewriting notably underlies the
data complexity results for the DL-Lite family, and there have been many rewriting
algorithms developed since the original PerfectRef algorithm [Calvanese et al., 2005,
2007b]. Rewriting techniques have been employed to answers CQs in the presence of
KBs formulated in the ££ family [Rosati, 2007; Krisnadhi and Lutz, 2007; Krotzsch
and Rudolph, 2007| and have been extended to handle Horn versions of expressive
DLs |Eiter et al., 2012a].

For expressive DLs, rewriting procedures to Disjunctive-Datalog are possible
[Motik, 2006; Hustadt et al., 2007; Rudolph et al., 2012| (see notably Lutz [2008]
for some lower bounds). Saturation techniques or variations of tableaux-based
procedure can also prove useful for CQ answering in such DLs [Ortiz et al., 2008].
Other algorithms used to handle expressive DLs mostly rely on two main steps
|Glimm et al., 2008; Eiter et al., 2008, 2012b; Kikot et al., 2012]. The first step is to
split the query into a part mapping on individuals from the ABox while other parts
are to be mapped on tree-shaped interpretations completing the ABox. Whether
such mappings in tree-shaped structures exists in all models of the KB of interest
form the second step of the algorithm. This step can notably reuse existing results
on instance checking since the selected tree-like parts of the query can be expressed
as a single concept. However, the first step often creates an exponential number of
instances for the second step, based on the possible decompositions of the query,
that may result in an exponential increase in combined complexity between instance
checking and CQ) answering (see e.g. the situation for ALCZ KBs in Table 2.4).

Interestingly, several works have explored the possibility to mixing rewriting
and saturation procedures in order to keep the best of both techniques, resulting
in the so-called combined approach. This provides alternative ways to tackle ££
and several of its extensions [Lutz et al., 2009], some dialects of the DL-Lite family
|[Kontchakov et al., 2011] and even the Horn version of ALCHOZQ [Carral et al.,
2018|.

Counting Queries in Ontology-Based Data Access 23

Counting Conjunctive Queries

In this chapter, we introduce the semantics of counting conjunctive queries (CCQs)
and the corresponding ontology-mediated query answering problem (OMQA). We
further study the computational complexity of this problem for knowledge bases

(KBs) expressed in ALCHZ and its sublogics. Our results are summarized in
Table 3.1.

Combined complexity Data complexity
DL-Litel,, L, ALCHT 2EXP-complete coNP-complete?
DL-Litepos, DL-Litecore coNEXP-complete coNP-completet

Table 3.1: Complexity of CCQ answering. *: previously known lower bound.

Section 3.1 presents the semantics of CCQs, its connection with existing work,
and the associated decision problem in term of combined and data complexities.
Section 3.2 investigates a family of models, namely interlacings, built from an
initial model of interest, from which they retain desirable properties with respect
to CCQs while enjoying a more tree-shaped structure. Based on those interlacings,
Section 3.3 establishes a 2EXP procedure, with respect to combined complexity,
to answer CCQs over ALCHZ KBs. Afterwards, in Section 3.4, it is shown how
to construct optimal models of bounded size, yielding a coNP procedure for CCQ
answering over ALCHZ KBs with respect to data complexity, and allowing us to
refine the 2EXP algorithm in combined complexity into a coNEXP procedure for
DL-Litecore KBs. Section 3.5 concludes the chapter by providing matching lower
bounds and draws a first connection to closed predicates.

25

3.1. Preliminaries

Organization of Chapter 3

3.1 Preliminaries 26
3.1.1 Related work o 26
3.1.2 Semantics of counting conjunctive queries 29
3.1.3 Decision problems 0L 35

3.2 Imterlacings 36
3.2.1 Existential extraction 39
3.2.2 A family of models: interlacings 40
3.2.3 Finitemodels 44
3.2.4 Countermodels via interlacings 46

3.3 Answering CCQs over ALCHZ ontologies 48
3.3.1 Patterns 49
3.3.2 Soundness: from patterns tomodels 56
3.3.3 Completeness: from models to patterns 61

3.4 Countermodels with bounded size 64
3.4.1 Equivalence relation based on neighbourhoods 65
3.4.2 DL-Litecye: simpler neighbourhoods 74

3.5 Matching lower bounds o000 79
3.5.1 Two reductions from closed predicates 79
3.5.2 A tiling problem for DL-Litecore 80
3.5.3 Data complexity Lo 86

3.1 Preliminaries

Aggregate queries, which use numeric operators (e.g. count, sum, max) to summa-
rize selected parts of a dataset, constitute a prominent class of database queries.
Although such queries are widely used for data analysis, they have been little
explored in context of OMQA. This may be partly due to the fact that it is not at
all obvious how to define the semantics of such queries in the OMQA setting.

3.1.1 Related work

Aggregate queries have been first studied for relational databases before being
integrated in other knowledge representation frameworks. In Klug [1982], these
queries are formulated with the standard relational query language SQL! (see
e.g. Ullman [1988] for a presentation of SQL) and allow to aggregate the values
from selected entries of a relational table. The expressive power of SQL has
notably drawn attention due to the support of these aggregate operators |Libkin,

"https://www.iso.org/standard/63555.html

26 Q. MANIERE

https://www.iso.org/standard/63555.html

3. Counting Conjunctive Queries

2003|. Similar aggregate features have also been investigated in the RDF query
language SPARQL? [Kaminski et al., 2016], and are now supported by modern
implementations such as RDFox® [Nenov et al., 2015]. The upcoming standard for
querying graph databases GQL?, inspired, among others, by both standards SQL
and SPARQL, plans to integrate aggregate features too [Deutsch et al., 2021].

Answering aggregate queries over inconsistent databases has also received
attention: in Arenas et al. [2003], a range semantics is proposed to bound the
answers of an aggregate query across the repairs of a database violating some
functional dependencies (with the notion of answer in a repair defined as in the
relational setting).

Aggregate query answering over incomplete data is also addressed. In presence
of conditional tables, that allow to manipulate unknown or missing information in
relational databases by specifying various conditions on entries whose exact values
are unknown, data can still be aggregated, resulting in an answer being itself a
conditional table [Lechtenborger et al., 2002|. In presence of source-to-target tuple-
generating dependencies (s-t tgds), various semantics have been proposed in Afrati
and Kolaitis [2008] to account for the possible nulls that may arise. It is worth
mentioning that their count operator, denoted count(x) in the reference, is allowed
to count null elements in the considered models (while other aggregate operators
simply drop these nulls), and that the complexity of deciding model-independent
bounds on these count numbers is in P due to the restricted retained notion of
models (endomorphisms of the canonical model, for the interested reader).

The rule-based language Datalog [Ceri et al., 1990; Ullman, 1988| has also been
extended with aggregate operators. They have indeed been studied to enrich the
expressive power of rules expressed in Datalog [Consens and Mendelzon, 1993|, or
in disjunctive Datalog with a notable implementation in the DLV system [Dell’Armi
et al., 2003]. More recently, restrictions of Datalogz, an extension of Datalog which
captures many data aggregation tasks by allowing arithmetic functions over integers
at the cost of undecidability, have been studied to regain decidability, resulting in
the fragment Limit Datalogy [Cuenca Grau et al., 2020] whose expressive power
has been further studied [Kaminski et al., 2021].

Integration of aggregate functions in another prominent rule-based declarative
language, namely Answer Set Programming (ASP), has also drawn particular
attention as it notably extends ASP with the possibility to express functional
dependencies (see |Gelfond and Lifschitz, 1991]| for the original semantics underlying
ASP and [Brewka et al., 2011] for a more recent presentation). Several semantics
have been proposed to handle more and more forms of aggregates: monotone and

’https://www.w3.org/TR/sparqlil-query/
3https://docs.oxfordsemantic.tech/
‘https://www.iso.org/standard/76120.html

Counting Queries in Ontology-Based Data Access 27

https://www.w3.org/TR/sparql11-query/
https://docs.oxfordsemantic.tech/
https://www.iso.org/standard/76120.html

3.1. Preliminaries

convex aggregates |Liu and Truszczynski, 2006], non-negated aggregates |[Faber
et al., 2011; Ferraris, 2011], or aggregate over conditional expressions [Cabalar
et al., 2020].

Apart from the mentioned exception of Afrati and Kolaitis [2008], all the above
works do not involve elements that are unknown in the original data, while such
anonymous elements are one of the main features the OMQA framework aims to
take into account. We recall that, in this thesis, our attention focuses on this latter
setting and notably differs from the presented works so far as we adopt the open
domain and open world assumptions, in particular with expressive DLs that often
rely on elements outside of the original data to be satisfiable.

Closer to the realm of description logics, some attempts have been made to
enrich the ontology language with aggregate operators (e.g. by allowing concepts
that already perform aggregate operation). Equipping the well-known DL ALC
with such features quickly leads to undecidable basic reasoning tasks such as
satisfiability and subsumption [Baader and Sattler, 2003], while the situation is
more favorable when extending the less expressive DL-Lite family [Artale et al.,
2012; Savkovic and Calvanese, 2012; Hernich et al., 2017]. By contrast, in this
thesis, we investigate the impact of counting features on the query language rather
than on the ontology language.

In the OMQA framework, a first exploration of aggregate queries was conducted
by Calvanese et al. [2008]. They argued that the most straightforward adaptation
of classical certain answer semantics to aggregate queries was unsatisfactory, as
often values would differ from model to model, leading to no certain answers. For
this reason, an epistemic semantics was proposed, in which variables involved in
the aggregates are required to match to data constants. However, as discussed in
Kostylev and Reutter [2015], this semantics can also give unintuitive results by
ignoring ways of mapping aggregate variables to anonymous elements inferred due
the ontology axioms. For instance, if no children of alex are listed in the data, then
a query that asks to return the number of children will yield 0 under epistemic
semantics, even if it can be inferred (e.g. due to a family tax benefit) that there
must be at least 3 children. This led Kostylev and Reutter to define an alternative
semantics for two kinds of counting queries (inspired by the COUNT and COUNT
DISTINCT in SQL) which adopts a form of certain answer semantics but considers
lower and upper bounds on the count value across different models. This latter
semantics relates to those explored for aggregate queries over inconsistent databases,
in Arenas et al. [2003], and for data exchange, in Afrati and Kolaitis [2008|.

The semantics by Kostylev and Reutter was adopted in later work by Calvanese
et al. [2020a], in which DL-Lite ontologies coupled with various restrictions on the
counting query shape have been explored. In this latter reference and in Calvanese
et al. [2020c|, a rewriting procedure is also provided for connected and rooted

28 Q. MANIERE

3. Counting Conjunctive Queries

counting queries, based upon the canonical model being sufficient to decide the
problem in this particular setting.

Interestingly, techniques to decide the multiplicity of an answer for a rooted CQ
with respect to bag semantics, notably investigated in Nikolaou et al. [2019], are
similar to those investigated for rooted counting CQs with respect to set semantics.
However, no immediate reduction from one setting to the other seems possible, as
discussed in Calvanese et al. [2020a] (see Example 1 in the reference).

Another recent study by Feier et al. [2021] classifies the complexity of counting
the number of certain answers (rather than the number of ways a certain answer
is obtained) for guarded existential rules. This notably gives lower bounds on
the number of answers that might be relevant when allowed to also count outside
individual elements, but the converse is false in general (see the discussion following
Example 6, later in this chapter).

Instead of counting the (certain) answers, a closely related approach consists of
enumerating them, a topic that has been extensively studied in the database setting
(see for example the survey [Berkholz et al., 2020]). In enumeration, a preprocessing
phase is allowed after which answers must be returned with a permitted delay
between two successive answers, the efficiency of the enumeration being measured
according to the lengths of both the preprocessing phase and the delay. A recent
study by Lutz and Przybylko [2022] studied the enumeration of certain answers to
CQs over ontologies expressed in ELZ or as a set of guarded-TGDs.

3.1.2 Semantics of counting conjunctive queries

We propose a new notion of counting CQ that generalizes the two forms of queries
from Kostylev and Reutter [2015], hence also those considered in Calvanese et al.
[2020a].

Definition 15. A counting conjunctive query (CCQ) takes the form

q(x) =3y Iz P(x,y,2),

where X,y,z are tuples of answer, existential, and counting variables, respectively,
and 1 is a conjunction of concept and role atoms with terms from NyUx Uy U z.
We use terms(q) for the set of all terms occurring in q, and we treat queries as sets
of atoms when convenient. A CCQ q is Boolean if x = ().

The usual notion of conjunctive queries (CQ) is captured by CCQs without
counting variables, i.e. z = (). The counting queries studied in Kostylev and Reutter
[2015] were CCQs restricted by |z| = 1, denoted ¢(x, Cntd(z)) in the reference, and
CCQs restricted by y = (), denoted ¢(x, Count()) in the reference. Calvanese et al.
[2020a] continued the study of the latter subclass of CCQs.

Counting Queries in Ontology-Based Data Access 29

3.1. Preliminaries

The CQ obtained by replacing each counting variable of a CCQ by a fresh
existential variable is referred to as the underlying CQ of the CCQ. For readability,
it is convenient to represent a CCQ ¢ as a graph: each term ¢ is represented by
a vertex v, labeled by ¢ and by concept names A such that A(t) € ¢, and an
oriented edge (v, v,) labeled with P is added for each atom P(t1,t) € ¢. To
easily distinguish the status of each term (and often to omit the name of the term),
the node v; is depicted as @ if t € IndUx, asoif t €y, and as @ if t € z.

Example 5. Let us illustrate the notion of CCQ with a toy example, inspired by
Bienvenu and Ortiz [2015]. A logician enters a vegetarian-friendly and kid-friendly
restaurant r in which the menu s partially ripped off, so that only the following
facts are readable, here encoded as an ABox A.:

VegFriendly(r) GivesChoice(my, carb)

KidFriendly(r) GivesChoice(msy, carb) WithMeat (carb)
Offers(r,my) GivesChoice(my, regi) WithMeat(regi)
Offers(r, my) GivesChoice(ms, tira) Dessert(tira)
Menu(my) : : Dessert(baba)
Menu(m,) GivesChoice(ms, baba) iy A1cohol(baba)

The ABox A, is depicted in Figure 3.1.

Menu GivesChoi
my vestholee carb WithMeat
ofie .
tira Dessert
KidFriendly off Menu
ers

r moy regi WithMeat

VegFriendly Gi YesChojce
bab Dessert

9 WithAlcohol

Figure 3.1: The ABox A, from Example 5.

Furthermore, clients can expect some general principles to hold, encoded in the
following ALC TBox T.:

Menu C 3GivesChoice.MainDish M 3GivesChoice.Dessert
VegFriendly C JOffers.(Menu N VGivesChoice.m~WithMeat)
KidFriendly C 3O0ffers.(Menu M VGivesChoice.~WithAlcohol)
WithMeat C MainDish
MainDish M Dessert T L

Our logician wonders how many combinations of dish z and dessert z can be
ordered in this restaurant r as long as each such combination 1s permaitted within

30 Q. MANIERE

3. Counting Conjunctive Queries

some menu y. This can be seen as evaluating the following CCQ q., also depicted
in Figure 3.2, over the KB K. := (T., A.):

¢e := Jy J2z1 Tz Offers(r,y) A Menu(y) A GivesChoice(y, z1) A MainDish(z)
A GivesChoice(y, z2) A Dessert(zs)

MainDish
. 21
%G‘QO\Ce .
es

Menu GW
F e Offers o

Giy,
", %})essert
@ =

Figure 3.2: The query ¢. from Example 5.

The query q. is Boolean and y being an existential variable means that a value
for the pair (z1, z3) obtained from two different menus should only be counted once.

The answers to a CCQ in a fixed model Z are defined using counting matches,
which are defined similarly to the classical notion of matches for a (plain) CQ, but
are then restricted to the counting variables from z.

Definition 16. A match for a CCQ q in an interpretation Z is a homomorphism
from q into I, i.e. a function m that maps each term in q to an element of AT such
that w(t) =t when t € Ny, 7(t) € AT for every A(t) € q, and (7(t),w(t')) € P% for
every P(t,t') € q. If a match m maps x to a, then the restriction of ™ to z is called
a counting match (c-match) of g(a) in Z.

The usual problem of CQ answering is to decide whether there exists a match
in every model of the KB of interest. With counting conjunctive queries, we are
interested in how many counting matches exist in such models. However, the exact
number from a model to another might vary, especially since ontologies expressed
with ALCHZ cannot constrain the size of the models:

Proposition 1. If a CCQ q is satisfied in a model of an ALCHZ KB K and z # (),
then there exists a model of IC with an infinite number of counting matches for q.

Proof. Let T be a model of K := (T,.A) in which ¢ is satisfied. Let p; be the
mapping renaming an element e into e;. Let Z,, be the interpretation with domain
AT = J25 pr(AT), which interprets each individual a as ag (slightly abusing the
SNA), and each concept name A and role name P as follows:

+00 +oo +oo
A= = | (A7) P = |J U (i x o) (P
k=0 =0 j5=0

Counting Queries in Ontology-Based Data Access 31

3.1. Preliminaries

Since Z,, embeds in Z by dropping all indexes and that Z embeds in each layer
Ty = pr(Z) of I, it is easily verified that Z, is a model of the ALCHZ KB K and
that the counting match 7 : z — A7 yields an infinite number of distinct counting
matches 7 1= p o m in Z, (recall z # (). O

Therefore, a notion of certain answer requiring that there exist exactly n
counting matches for ¢ in every model I will likely return false for every integer n.
To address this issue, we follow Kostylev and Reutter [2015] and consider bounds
on the exact number of counting matches. More precisely, answers to a CCQ in a
model are all intervals bounding the exact number of counting matches.

Definition 17. The set of answers to q in I, denoted ¢, contains all pairs
(a, [m, M]), with m, M € NU {+o0}, such that the number of distinct counting
matches of g(a) in L belongs to the interval [m, M].

Importantly, these bounds are taking into consideration counting matches that
are mapping counting variables z outside of individual elements of Z. Hence these
elements may not be shared across models, as opposed to values of the answer
variables x. It does not cause any issue to define certain answers as we are only
interested in (bounds on) the number of such counting matches from a model
to another. Furthermore, let us emphasize those bounds hold on the number of
counting matches, not on the number of matches, treating equally a counting match
obtained from a single match and a counting match obtained from an eventually
infinite number of matches. Notice the pair (a, [0, +0o0]) is always an answer, for
any suitable a, over any interpretation as [0, +0o¢] is a trivial bound on the number
of counting matches. The notion of certain answer is then defined as usual certain
answers for CQ)s, that is as the intersection of answers across all models:

Definition 18. A certain answer to ¢ w.r.t. K is an answer in every model of I,
that is a pair from mI):IC qt. In particular, if K is unsatisfiable, then all couples
(a, [m, M]), with a € Ind(A) and m, M € NU {+oo}, are certain answers.

Let us illustrate the notions of matches, counting matches, answers and certain
answers with the following example, which is a continuation of Example 5.

Example 6 (Example 5 continued). Two models I and I? of the KB K. are
depicted in Figures 3.3 and 3.4. Matches and counting matches of q. in each model
are presented in Table 3.2. The number of counting matches in I} is 5, while it is
6 in Z2.

In the model I?, there equal numbers of matches and counting matches, but this
doesn’t hold in general as illustrated by model I}. In the latter, we indeed retain
a single occurrence of the pair (carb,tira) even though it can be obtained in two
different ways by mapping the existential variable y to either my or to m,.

32 Q. MANIERE

3. Counting Conjunctive Queries

Menu
GivesChoice MainDish
mi car ,
WithMeat
ofier®
tira Dessert
e Menu
KidFriendly Offers GivesChoice . MainDish

T : regi
VegFriendly W WithMeat
Og. Dessert
: /GSCW) baba WithAlcohol
M
et GivesChoice d MainDist
Jlaimlisn

m

Figure 3.3: Model Z! from Example 6.

o W1 Dessert
. 1CE
Menu W
(GivesChoice MainDish
carb

my
WithMeat

tira Dessert

KidFriendl M

yr TS nirzm GivesChoice re gi MainDish

Gives thMes

VegFriendly IVebChOI-Ce WithMeat

Oﬁ%’s bab Dessert
aba withAlcohol

Menu . .
m GivesChoice Wy MainDish

W
W3 Dessert

Figure 3.4: Model Z? from Example 6

The answers to q. in I} are precisely those intervals containing 5, hence the
pair (0, [6,+00]) is not an answer in I}, while it is an answer in Z2. It follows
that (0, [6,+00]) is not a certain answer. The pair (0,[5,7]) is an answer in both
models I} and I?, but one can easily come up with another model containing, say,
8 matches, proving that (0, [5,7]) is not a certain answer.

It is not hard to see that (0,[4,+00]) is a certain answer as the 4 common
matches of I} and I? (those involving menu my) are actually entailed by the KB
and hence yield 4 distinct counting matches in every model (recall that models are
required to comply with the unique name assumption). Interestingly, this lower
bound of 4 can be obtained by counting the certain answers of the usual CQ ¢.(xy, x2)
obtained by considering our CCQ q. in which we replace the two counting variables
z1 and z9 by answer variables x1 and xs.

Counting Queries in Ontology-Based Data Access 33

3.1. Preliminaries

Y 21 22 21 22 Y 21 22 21 22
m; carb tira carb tira m; carb w; cartb wy
m, carb tira carb baba m, carb tira carb tira
m, carb baba regi tira m, carb baba carb baba
my regi tira regi baba my regi tira regi tira
my regi baba d baba m, regi baba regi baba
m d baba m Wy W3 Wy W3
(b) Counting (d) Counting

(a) Matches in Z} matches in Z} (c) Matches in Z? matches in 72

Table 3.2: Matches and counting matches of ¢, in Z} and Z?

Note that a tighter certain answer exists, as (1, [5, +00]) is also a certain answer,
and that [5, +00] is included in [4,400]. This is because the vegetarian menu that
each model must contain always yields an extra counting match as the 4 entailed
matches all involve non-vegetarian main dishes.

To conclude this example, notice that IC. admits universal models in all of which
model I? embeds. From the above discussion, it follows (,[6,+o0]) not being a
certain answer for q. cannot be determined by considering universal models of IC..
This is in contrast with CQ) answering, for which we know that the certain answers
are precisely the answers in any uniwwersal model, whenever such a model exists.

The connection mentioned in Example 6 between counting the certain answers
of a usual CQ), a reasoning task notably explored in Feier et al. [2021], and the
proposed notion of certain answers for CC(Q actually holds in general: if m is the
number of certain answers of the CQ ¢(x,z) = Jy ¢(X,y,z) mapping x to a, then
(a, [m,+00]) is a certain answer to the CCQ ¢(x) = Jy Iz ¢(x,y,z). The converse
is not true in general.

Example 6 may have convinced the reader that the notation of answers and
certain answers as pairs is cumbersome. It should hence be a relief that, as usual,
it is sufficient to consider the Boolean case: (a,[m, M]) is a certain answer to a
CCQ q(x) iff (0, [m, M]) is a certain answer to the Boolean CCQ ¢(a) obtained by
replacing x with a. Thus, from now on, we focus on Boolean CCQ)s, and work with
answers and certain answers [m, M] in place of (0, [m, M]).

Furthermore, and as already mentioned in Remark 1, ALCHZ cannot restrict
the size of models, hence the least upper bound M in a certain answer [m, M] is:

- 0 if the underlying CQ is unsatisfiable w.r.t. T;

- 1if ¢ has a match in every model but z = (;

34 Q. MANIERE

3. Counting Conjunctive Queries

- 400 otherwise.

As the first two cases can be readily handled using existing techniques, we focus on
identifying certain answers of the form [m, +o0o].

Remark 4. The question of upper bounds M, that we have so quickly dismissed in
the ALCHT setting, arises naturally in closely related contexts, for example when
considering functionality axioms in the ontology or dealing with closed predicates.
It is for this reason that we chose to present our semantics with intervals of the
form [m, M| rather than directly focusing on intervals [m, +o0].

3.1.3 Decision problems

CCQ answering Given a ALCHZ knowledge base K = (T, .A), a Boolean CCQ
¢, and an integer m > 0 (in binary), we are interested in the complexity of deciding
whether [m, +00] is a certain answer to ¢ w.r.t. K. We refer to this decision problem
as CC(Q) answering and consider the two usual complexity measures: combined
complexity which is in terms of the size of the whole input, and data complexity
which is only in terms of the size of A and m (7 and ¢ are treated as fixed).

Recall that if O is a TBox, ABox, KB, or CCQ), then the size of O, denoted
|O|, is the number of occurrences of concept and role names in O and that m is
written in binary. This latter point will not appear crucial in the present chapter
as reductions involved in the proofs of lower complexity bounds happen to only
construct polynomially large such integers m w.r.t. the size of the instance of the
reduced decision problem, if not constant (e.g. for data complexity). In the two
following chapters, however, several reductions strongly require a binary encoding
of these integers m.

When deciding whether a given [m, +00] is a certain answer for some CCQ) over
some KB, we use the term of countermodel to refer to a model with less than m
counting matches. Similarly, an optimal model is a model minimizing the number
of counting matches.

Tightest variant The definition of certain answers implies that if [m, +oc] is a
certain answer, then so is [m/, +00], for every m’ < m. It is naturally of interest to
focus on certain answers providing the greatest m, i.e., the tightest certain answer
[Mopt, +00], being the intersection of all certain answers. Given the same input
as CCQ answering, we refer to the problem of deciding if [m, +oc] is the tightest
certain answer as tight CCQ answering.

This optimization variant has already been formulated as an open question
in Kostylev and Reutter [2015], in presence of coNP-complete situations for CCQ

answering over DL-Lite? . KBs w.r.t. data complexity. We close these questions

Counting Queries in Ontology-Based Data Access 35

3.2. Interlacings

in Subsection 3.5.3 and prove tight CCQ answering is DP-complete not only in the
settings considered in Kostylev and Reutter [2015] but also for ££ ontologies.

Remark 5. Notice [m, M] being the tightest certain answer doesn’t imply that for
all n € [m, M| there exists a model containing exactly n matches. Consider the
Boolean query qaxa = 321 3z A(21) A A(zq) for any concept name A, evaluated
over the empty KB. The number of counting matches of qaxa in an interpretation
7 s }AI}Q and therefore only perfect squares can be reached despite [0, +o0] being
the tightest certain answer. Interestingly, this could motivate a more general setting
i which answers and certain answers allow more refined subsets of integers instead
of intervals [m, M].

3.2 Interlacings

Looking to existing DL-Lite approaches [Kostylev and Reutter, 2015|, we observe
that the high-level idea to answer CCQs is to start from an arbitrary optimal
model Z and merge its elements so as to reduce its size, while at the same time not
introducing any new query matches. This ensures that if a countermodel exists for
the candidate integer m, then there exists one with size at most the size of the model
obtained when merging the initial optimal model. This technique allowed Kostylev
and Reutter [2015] to obtain, in combined complexity, a coN2EXP algorithm for
answering the two subclasses of CCQs they considered over DL-Lite’ ., refined
into a coNEXP algorithm over DL-Litecye, and also yielding a coNP upper bound
in data complexity.

But how can we decide which elements of the starting model Z can be safely
merged? We observe that they proceed in two steps. First, they define an
intermediate model Z’ (called interleaving) that, informally, retains the useful parts
of Z (i.e., those involved in query matches or needed to satisfy the ABox) and
replaces the rest with tree-shaped structures taken from the corresponding parts of
the canonical model. With this more structured countermodel Z’, it is easier to
identify, via a well-chosen equivalence relation, the elements that behave similarly
and thus can be safely merged. In a second step, elements of Z' from the same
equivalence class are merged to obtain the desired bounded-size countermodel.

A naive adaptation of the DL-Lite approach to ALCHZ fails at the very first
step as the existence of a canonical model is not guaranteed. Furthermore, even
when a canonical models exists, due to conjunction in the LHS of concept inclusions,
for example in £L TBoxes, the interleaving need not be a model as the next example
illustrates. Generally speaking, the issue is that the canonical model may not
contain elements witnessing conjunctions of concepts that occur in the initial
countermodel, so it is not enough to copy over parts of the canonical model.

36 Q. MANIERE

3. Counting Conjunctive Queries

Example 7. Consider the EL KB Ky whose ABox only contains the assertion A(a)
and whose TBox contains the four following axioms:

ACJR.B ACJR.C BCD CCD BrnCCdR.A

A countermodel Iy for integer 2 and CCQ qo := 3z D(z) over Ky is depicted
on Figure 3.5a. It contains a single counting match: z — 6. The canonical model
Cx, of Ko is depicted on Figure 3.5b and embeds in the countermodel through the
homomorphism fy : a +— a,a-R.{B,D} — §,a-R{C,D} — 0. The interleaving
as defined in Kostylev and Reutter [2015] considers the interpretation obtained
from Cx, by merging together elements u,v from Ao iff fo(u) = fo(v) and this
element of Ly is reached by a counting match of Zy. In our case, it holds that
fo(a-RAB,D}) = fo(a-RA{C,D}) =0 and that § is reached by a counting match,
hence the interleaving depicted on Figure 3.5c. This latter interpretation violates
axiom BT C C JR.A, hence fails to be a model of ICy.

A«
«()=
B C B,C
B,C.D § a-R.{B,D} a-R.{C,D} 5
| T |
A a A a A a
(a) Countermodel (b) Canonical model (c) Interleaving

Figure 3.5: DL-Lite interleaving applied on the ££ KB K

In this section, we present a family of models of a KB K that is built from
a starting model of interest Z. The construction proceeds in two steps. First, it
unfolds Z into a tree-shaped domain called the existential extraction which keeps
track of the RHS existential concepts satisfied in Z. This existential extraction
embeds in the initial model Z through a mapping f. Second, it folds back parts of
the existential extraction according to a parameter f’ being a function allowed to
merge together elements u and v of the existential extraction, i.e. f'(u) = f'(v),
only if f(u) = f(v). This condition is sufficient to ensure that the resulting
interpretation, called the f’-interlacing of Z, is a model of /.

Depending on the chosen function f’, the f’-interlacing may retain desirable
features of the initial model Z. By choosing f’ := Id, we show that the resulting
interlacing can be collapsed into a finite model with at most exponential size, which

provides a countermodel for large values of the candidate integer m when evaluating
a CCQ q over K.

Counting Queries in Ontology-Based Data Access 37

3.2. Interlacings

To handle the remaining values of m, we further explore another function
f":= f* whose corresponding interlacing has at most as many counting matches
as the initial model Z, but also partially inherits from the tree-shaped structure of
the existential extraction. This latter f*-interlacing motivates the 2EXP procedure
presented in the next section and allows us to build finite models that minimize
the number of matches.

Other interlacings, obtained wia refined functions f’, will further prove useful
to answer rooted CCQs (see Chapter 4).

To illustrate the various constructions presented in this section and the next
one, we rely on the following KB I, and CCQ ¢, as a running example.

Example 8. Let K. be the KB whose ABox A only contains the assertion A(a)
and whose ontology T contains the following azioms:

A CJR.A BC B'UD DC 3IS.D ANBLC L
A’C JR.A B'C JR.C CC3SA RORTC L
A’C JR.B B'C3T.D CC3S.B D3R~ A'C L

A model I, of K. is depicted on Figure 3.6. Consider the Boolean CCQ q. :=
Jyy Jyo 32 R(y1, y2) A S(ya, 2), which admits 2 counting matches in L., mapping
respectively z to a or to €.

IR
>

Figure 3.6: Model Z, of IC.

38 Q. MANIERE

3. Counting Conjunctive Queries

3.2.1 Existential extraction

We fix a satisfiable ACCHZ KB K := (T, .A) and a model Z of K. The definition
of existential extraction uses the alphabet Q) consisting of all R.A such that GR.A
is the RHS of an axiom in 7. Furthermore, it assumes that, for every R.A €), we
have chosen a function succk , that maps every element e € (3R.A)* to an element
¢’ € AT such that (e,e’) € R* and ¢’ € AT,

Definition 19. OQuver the set Ind(A) - Q*, inductively build the following mapping:

filnd(A)-Q° = ATU{T)
a +— a

w0 RA {T if fw) =1 or f(w) ¢ (GRA)T

succk A (f(w)) otherwise

where T is a fresh symbol witnessing the absence of a proper image for an element of
Ind(A) - Q*. The existential extraction® of Z is A° := {w | w € Ind(A) - Q*, f(w) #
1}. Slightly abusing the notation, the mapping fiao : A° — AT is also denoted f
for readability.

Remark 6. A° can be seen as the domain of a form of unravelling of T starting
from Ind(A), in which we only follow the selected successors for the RHS ezistential
concepts.

Example 9. For K., we have Q := {R.A;R.A’, R.B,R.C,S.A,S.B,S.D, T.D}. We
chose succk . (a) := a1, one could have also chosen az. All the other choices of
successors in L. are unique. The existential extraction AL of I, is depicted on
Figure 3.7 as a directed graph: an element w belongs to AY iff there exists a path
p from the node a to a node n, that produces w when concatenating a with the
encountered labels along p. For example, element a - R.A" - R.B belongs to A?
while a - R.A" - R.A" doesn’t. Notice A? is infinite. The image of an element w
by f is indicated as (f(w)) on the node n,. Hence f(a-R.A"-R.B) = 8 and
f(@a-R.A"-R.B-R.C-S.A) =a.

As illustrated by the above example, existential extractions contain many
regularities. In particular, the branches issuing from two elements of an existential
extraction that map on the same element in the starting model are similar. This is
formalized by the following lemma.

Lemma 1. Let u,v € Ind(A) - Q* such that f(u) = f(v). For all w € Q*, we have
flu-w)= f(v-w); hence in particular v -w € A° iff v-w € A°.

®While the definitions of f, A°, and later constructions depend on the choice of successor
functions, all choices lead to the desired result.

Counting Queries in Ontology-Based Data Access 39

3.2. Interlacings

(9) (az) (8) (9)

(a2) (8)
?\ /3 A 2\ /% A
v o n v & x
(a1) (9) (a1) (0)
% \ / | z
wn N
(aa) (8) (9) (@) (e)
P Y Q)
4) =) &
y Q/ 5 \ /

(as)

S \V

(a2)

o

(a1)

Figure 3.7: A representation of f and of the existential extraction of Z,

Proof. We proceed by induction on w € Q*. For w being the empty word, it is
trivial. Assume now it holds for w and consider w-R.A. Observe that the definition
of f(u-w-R.A) only depends on f(u-w), which is equal to f(v-w) by induction
hypothesis. Therefore f(u - w - R.A) yields the same value as f(v-w-R.A). O

3.2.2 A family of models: interlacings

Consider a satisfiable ALCHZ KB K := (T,.A), a model Z of £ and A° an
existential extraction A° of Z for some choice of successors in Z. We recall that
f : A° — AT denotes the mapping built along the domain A°. We proceed to
define f’-interlacings, parametrized by a function of interest f’.

Definition 20. The f’-interlacing Z' of Z is the interpretation whose domain is

40 Q. MANIERE

3. Counting Conjunctive Queries

AT = f'(A°) and which interprets concept and role names as follows:

AT = {f'(w) |u € A°, f(u) € AT}

P .= {(a,b)|a,beInd(A)AK = P(a,b)} (Vo)
U {(f'(v), f'(u-R.B)) |u,u-RB€A°AT =REP} (V)
U {(f'(u-R.B), f'(v)) |u,u-RBeA*NT ER™ C P} (V-)

Intuitively, the Id-interlacing is the interpretation with domain A° with concepts
imported from Z and roles interpreted in a tree-shaped manner (apart from the
ABox part) issuing from the occurring successors in Z. The f’-interlacing is then
the image of the Id-interlacing by f’. In particular, by setting f’' := f, we obtain
the f-interlacing being a sub-interpretation of the original model Z.

Notice the interpretation of roles is mainly defined from the existential extraction,
which is similar in spirit to the interpretation of roles in the canonical model when
it exists, and relates to the original model as follows:

Lemma 2. For all u,v € A° and all role R € N, if (f'(u), f'(v)) € RT, then
(f(u), f(v)) € R,

Proof. Let u,v € A° and R € NZ such that (f'(u), f'(v)) € R¥. We distinguish
the three cases from definition of RZ'":

Vo. We have u,v € Ind(A) and K | P(u,v). In particular f(u) = w and f(v) = v,
and since Z is a model, it immediately gives (f(u), f(v)) € RZ.

V4. There exists P.B € Q such that 7 = P C R and v = u - P.B. Since
u-P.B € A°, we have that succh 5(f(u)) is defined and the definition of f yields

f(v) = succk 5(f(u)). By definition of succh 5(f(u)), we have in particular
(f(u), f(v)) € PL. Since Z is a model, it now ensures (f(u), f(v)) € RT.

V_. There exists P.B € Q such that 7 = P~ C R and v = v - P.B. Since
v-P.B € A°, we have that succh 5(f(v)) is defined and the definition of f yields
f(u) = succh 5(f(v)). By definition of succh 5(f(v)), we have in particular
(f(v), f(u)) € PL. Since T is a model, it now ensures (f(u), f(v)) € RZ. O

In general, the f’-interlacing may not be a model of K. For example if the
function f’ maps two elements u and v on a same element e := f'(u) = f’(v), and
that u € AT and v € B? for some concepts A and B such that 7 = ANBLC 1,
then the element e satisfies both A and B in f’(Z), proving the latter is not a
model of IC. We hence explore a sufficient condition ensuring modelhood, namely
pseudo-injectivity of f’, which intuitively requires the function f’ not to merge
together elements that are not already merged by the function f.

Counting Queries in Ontology-Based Data Access 41

3.2. Interlacings

Definition 21. A function f': A° — E is pseudo-injective if: for all u,v € A°, if
f'(u) = f'(v), then f(u) = f(v).

Under this condition, we obtain modelhood but also prove that such a f’-
interlacing embeds in 7.

Theorem 4. If f': A° — FE is pseudo-injective, then I’ is a model of IC and the
following mapping is a homomorphism from I' to L:

o: AT 5 AT
fi(w) = f(u)

Notice that f' being pseudo-injective ensures o is indeed well-defined.

Proof. We start by showing that 7’ is a model, by considering each possible shape
of assertions and axioms (recall that 7 is in normal form):

A(a). Since Z is a model, we have f(a) = a € AZ. Therefore, the definition
of AT gives f'(a) =a € AT

P(a,b). Setting Py := P in Case V of the definition of PZ' yields (f'(a), f'(b)) =
(a,b) € P¥.

TC A. Let wu e T = A?. By definition of A, there exists uy € A° such
that f'(ug) = u. Since f(up) € TZ and Z is a model, it ensures
f(ug) € AT. Therefore u = f'(uy) € A

ATTMA C A Let u € (Ay M AZ)I'. By definition of A{l and A%/, there exists
up, upy € A° with f'(uy) = f'(up) = u and such that f(u;) € AT and
f(uy) € AZ. Since f’ is pseudo-injective, it yields f(u1) = f(us),
hence f(u1) € (A; M Ay)%. Since T is a model, it ensures f(u;) € AZ.
Recalling f'(u;) = u, we obtain u € A”".

A C IR.B. Let u € AT, By definition there exists v € A° with f'(v) = u and
such that f(v) € AZ. Since Z is a model, it ensures succk 5(f(v)) is
defined. Therefore v-R.B € A° and element w := f'(v - R.B) satisfies:

- (u,w) € RY since (u,w) = (f'(v), f'(v-R.B));
- w € BT since f(v-R.B) = succk 5(f(v)) € BY and f'(v-R.B) =

w.

Hence u € (3R.B)?".

42 Q. MANIERE

3. Counting Conjunctive Queries

JR.BC A.

Ri MRy C A,

Let u € (3R.B)Y, that is there exists v € BY with (u,v) € R*. By
definition of AT, there exists ug € A° such that f'(ug) = u, and
by definition of B?' there also exists vy € A° such that f'(vy) = v
and f(vy) € BZ. Notice (f'(up), f'(vo)) € RT hence Lemma 2 gives
(f(uo), f(vg)) € RE. Therefore f(uy) € (3R.B)*. Since Z is a model,
it ensures f(u;) € AZ, yielding u = f'(u;) € AT

. By contradiction, assume u € AZ N B?'. By definition there exists

v,w € A° with f/(v) = f'(w) = u and such that f(v) € AT and
f(w) € Bf. Since f’ is pseudo-injective, we obtain f(v) = f(w).
Hence f(v) € AT N BT, contradicting Z being a model.

. Let u € =BY". By definition of AZ', there exi