
HAL Id: tel-03923163
https://theses.hal.science/tel-03923163

Submitted on 4 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting queries in ontology-based data access
Quentin Maniere

To cite this version:
Quentin Maniere. Counting queries in ontology-based data access. Databases [cs.DB]. Université de
Bordeaux, 2022. English. �NNT : 2022BORD0261�. �tel-03923163�

https://theses.hal.science/tel-03923163
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ECOLE DOCTORALE MATHÉMATIQUES ET

INFORMATIQUE

Par Quentin Manière

Counting queries in ontology-based data access

Dirigée par Meghyn Bienvenu et Michaël Thomazo

Soutenue publiquement le 30 septembre 2022

Composition du jury, présidé par Carsten Lutz :

Meghyn Bienvenu Directrice de recherche CNRS Directrice
Bernardo Cuenca Grau Professor Université d’Oxford Rapporteur
Carsten Lutz Professor Université de Leipzig Rapporteur
Marie-Laure Mugnier Professeure Université de Montpellier Examinatrice
Marie-Christine Rousset Professeure Université de Grenoble Examinatrice
Mantas Šimkus Associate professor Université d’Umeå Rapporteur
Michaël Thomazo Chargé de recherche INRIA Invité

Remerciements

J’aimerais tout d’abord remercier mes deux merveilleux encadrants pour ces trois
années de thèse. Meghyn, source intarissable de références et de connexions
avec d’autres approches, et Michaël, joyeux destructeur de conjectures pleines
d’espoir, j’ai adoré travailler avec vous et tant appris à vos côtés ! Pour cet
enseignement, votre disponibilité, vos conseils et votre confiance, je vous suis
infiniment reconnaissant. Merci aussi, Michaël, pour les petits-déjeuners dans la
cour de l’ENS, au tout début. Merci aussi, Meghyn, pour les soirées jeux et le logis
à la toute fin (merci d’ailleurs à Laurent et à Quentin pour leur accueil !). J’espère
avoir la chance de retravailler avec vous deux à l’avenir.

Je tiens à remercier aussi Bernardo Cuenca Grau, Carsten Lutz et Mantas
Šimkus d’avoir accepté de rapporter cette thèse. Vos retours m’ont permis d’ancrer
plus clairement ce travail dans le paysage de notre communauté ; le présent
manuscrit en ressort grandi. Je suis également reconnaissant à Marie-Laure Mugnier
et Marie-Christine Rousset d’avoir pris part au jury. Si une grève des transports,
coutume nationale que le monde entier nous envie, vous a empêchées d’assister en
personne à la soutenance, nul doute que nous aurons tout de même des occasions
de nous recroiser autrement qu’en ligne.

Merci bien sûr aux camarades du 123, simplement de passage ou “permanents”
du bureau, vous avez été de fantastiques compagnons de route durant ces trois
années ! Je pense à Govind, notre doyen qui a soutenu il y a déjà plus d’un
an, à Noureddine et ses protocoles horriblement non-transitifs, à Shih-Shun et
sa compagne désormais parents, à Jonathan et ses coloriages colorations qui se
reconfigurent en quelques “tchak-tchak”, à Jana et sa virtuosité en musique, à Pierre
et son Tchoupi, à Angélique et son rire si reconnaissable, à Benoît qui a retrouvé ses
lunettes, à Natacha et ses méandres au tableau, et à tous ceux que j’ai forcément
oubliés dans cette tentative d’énumération.

Les camarades thésards ne se limitent évidemment pas au 123 : je remercie Zoé
pour son engagement dans les Hanabis du mardi, Timothée pour l’ensemble de ses
blagues, Clément pour ses cours de tricot, Claire pour ses origamis, Jojo(séphine)
pour l’association pommes-Beethoven dont je n’arrive plus à me défaire, Corto,
Antonio et Thibault pour leurs passages au bureau à l’heure du déjeuner, réglés
comme du papier à musique, Aïda pour les précisions sur le statut juridique du
patio, Rémi pour ses combines de magicien (spécialité “Escamotage”), Maxime pour
son expertise inattendue en cucurbitacées, Sanja pour ses astuces en allemand,
Sarah pour sa courageuse représentation des Méthodes Formelles-Formelles dans
un bureau de CombAlgo, Aline pour ses slides sur lesquelles j’ai dû improviser,
Arthur pour ses talents en improvisation justement, et Théo, Rohan, Alex, P-E,
Elsa et bien d’autres.

Merci également aux différentes équipes de recherches dans lesquelles je me suis
glissé. À toute l’équipe du DI, sous les toits de l’ENS, pour son accueil pendant
mon stage de fin de Master qui a préfiguré cette thèse : Camille, Tatiana, Pierre,
Luc, Chien-Chung, Julien, Garance et Michaël. À l’équipe RATIO et ses pique-
niques dans l’herbe : Diego, Joanna, Anca, Igor, Marc, Vincent, Gianluca, Sanja et
Meghyn. À l’équipe autour du projet INTENDED et de son université d’été très
réussie. À l’équipe autour du projet CQFD, qui a financé ce travail et dont les
rendez-vous annuels ont toujours été enrichissants.

Plus généralement, bien des membres du LaBRI ont embelli mes trois années
passées à Bordeaux. Je pense notamment à Marthe et Pascal, qui ont formé un
comité de suivi plein de précieux conseils, à Katel et Élia, qui ont coordonné les
missions auxquelles j’ai pris part, à Corinne, chargée de l’entretien des bureaux
et qui a eu bien d’autres casquettes à l’université, à François, Arnaud, Frédéric,
David, Sébastien, Vincent et une nouvelle fois à Marthe “pour les nombreux fruits,
gâteaux et thés” [Thomazo, 2013].

Une thèse au LaBRI constituerait une toute autre expérience sans l’AFoDIB,
l’association des doctorants en informatique (épargnons-nous la signification exacte
de l’acronyme), dont les événements rythment l’aventure doctorale. Ces occasions
contribuent à rassembler les thésards, mais aussi les stagiaires et les permanents,
pour parler science autour d’une tisane ou mettre à l’épreuve la théorie des jeux
(de société) en salle de séminaire. Merci à l’AFoDIB donc, et à tous ses membres
qui la font vivre ! Mention spéciale à Sarah et Corto pour avoir pris ma suite à la
trésorerie et couvert le trou dans la caisse qui a financé mes dernières vacances.

Merci à mes amis de longue date qui m’ont accompagné avant et pendant
cette aventure : Mathilde et Matthieu pour le gîte au pied du Vercors et l’atelier
potager, Morgan l’indéfectible nantais, Martin, Thomas et Olivier que je ne croise
pas aussi souvent que je le voudrais, sans oublier la bande orcéenne, Pablo, notre
Hanabi-sensei, Paul, Fabien, Florian, Alexia et Thomas.

Merci à Odile Vallée, excellente professeure de mathématiques au lycée, et dont
l’enseignement m’a laissé ce goût prononcé pour la logique qui ne m’a jamais quitté.

Je tiens également à remercier ma famille, Maman et Papa, Vincent et Pierre,
Mamie Paule, Mamie Thé, les Manière et les Juranville, pour leur soutien de
toujours.

Enfin, à Christèle, merci pour ta présence durant ces trois années, les horaires
des trains Paris-Bordeaux n’ayant plus de secrets pour nous. Merci d’avoir supporté
l’absurdité de l’Éduc’ Nat’ qui ne t’a pas laissée venir à Bordeaux, mais qui nous a
gracieusement affectés au même endroit une fois ta dispo et ma démission posées
(*soupir*). Je suis heureux d’avoir pu partager les bons moments de cette thèse
avec toi, et je suis sûr que de nombreux camarades ont apprécié le partage de tes
succulentes pâtisseries avec eux !

Contents

Contents i

List of Figures v

List of Tables vii

Résumé étendu en français ix

1 Introduction 1
Description Logics . 2
Reasoning tasks . 3
Queries . 4
Structure of the thesis . 5
Related publications . 7

2 Preliminaries 9
2.1 Description Logics . 9

2.1.1 ALCHI and its sublogics 9
2.1.2 Set semantics . 12
2.1.3 Normal forms . 15
2.1.4 Canonical models for ELHI⊥ KBs 17
2.1.5 Closed predicates . 18

2.2 Reasoning tasks . 19
2.2.1 Satisfiability, subsumption and instance checking 19
2.2.2 Query answering . 22

i

Contents

3 Counting Conjunctive Queries 25
3.1 Preliminaries . 26

3.1.1 Related work . 26
3.1.2 Semantics of counting conjunctive queries 29
3.1.3 Decision problems . 35

3.2 Interlacings . 36
3.2.1 Existential extraction . 39
3.2.2 A family of models: interlacings 40
3.2.3 Finite models . 44
3.2.4 Countermodels via interlacings 46

3.3 Answering CCQs over ALCHI ontologies 48
3.3.1 Patterns . 49
3.3.2 Soundness: from patterns to models 56
3.3.3 Completeness: from models to patterns 61

3.4 Countermodels with bounded size 64
3.4.1 Equivalence relation based on neighbourhoods 65
3.4.2 DL-Litecore: simpler neighbourhoods 74

3.5 Matching lower bounds . 79
3.5.1 Two reductions from closed predicates 79
3.5.2 A tiling problem for DL-Litecore 80
3.5.3 Data complexity . 86

4 Rooted CCQs 95
4.1 Preliminaries . 97
4.2 A weak notion of rootedness . 97

4.2.1 Combined complexity: from CCQs to rooted CCQs 97
4.2.2 Two reductions for data complexity 102

4.3 Exhaustive rooted CCQs over ALCHI 106
4.3.1 The interlacing function f ⋄ 107
4.3.2 Quotients of f ⋄-interlacings: a coNEXP upper bound 109
4.3.3 Two matching lower bounds with inverse roles 110

4.4 Further refinements for ALCH . 122
4.4.1 The interlacing function f ⋆ 122
4.4.2 A PSPACE algorithm, up to satisfiability 127
4.4.3 Matching lower bounds . 136

4.5 Refinements within DL-Lite . 145
4.5.1 From DL-LiteHcore to DL-Litecore 146
4.5.2 DL-Litecore and combined complexity 151
4.5.3 DL-Litecore and data complexity 153

ii Q. Manière

Contents

5 Cardinality Queries 157
5.1 Preliminaries . 159
5.2 Combined complexity and closed predicates 160

5.2.1 Extensions of EL . 160
5.2.2 Extensions of DL-Litepos . 168

5.3 Hard cases in data complexity . 172
5.3.1 A reduction from 3-Col . 172
5.3.2 A reduction from 3-Sat . 173
5.3.3 A reduction from Set Cover 175

5.4 Tractable cases in data complexity 176
5.4.1 Role cardinality over DL-Litecore 177
5.4.2 Construction of the TC0 circuits 188
5.4.3 Concept cardinality over DL-LiteHcore without role inclusions . 194

5.5 Role cardinality over DL-LiteHpos . 199
5.5.1 coNP-hardness in presence of propagation 200
5.5.2 Equivalence with Perfect Matching 203
5.5.3 TC0 membership in the remaining cases 211
5.5.4 Towards DL-LiteHcore . 212

6 Conclusion 219
Summary of the contributions . 219
Perspectives . 221

Bibliography 225

Index 237

A Additional proof material 241
A.1 Proofs for Section 3.3 (Answering CCQs over ALCHI ontologies) . 241
A.2 Proofs for Section 3.4 (Countermodels with bounded size) 246
A.3 Proofs for Section 5.4 (Tractable cases in data complexity) 249
A.4 Proofs for Section 5.5 (Role cardinality over DL-LiteHpos) 252

B Four flavors of interlacings 257

Counting Queries in Ontology-Based Data Access iii

List of Figures

2.1 The 16 investigated sublogics of ALCHI. 12
2.2 Interpretations of Kex for Example 2. 14

3.1 The ABox Ae from Example 5. 30
3.2 The query qe from Example 5. 31
3.3 Model I1e from Example 6. 33
3.4 Model I2e from Example 6 . 33
3.5 DL-Lite interleaving applied on the EL KB K0 37
3.6 Model Ie of Ke . 38
3.7 A representation of f and of the existential extraction of Ie 40
3.8 Initial portion of the f ∗-interlacing of Ie 47
3.9 Mappings involved in the proof of Lemma 5. 48
3.10 Interpretations of the patterns from Example 12 54
3.11 Links between the 12 patterns from Example 12 55
3.12 Patterns from Example 12 as realized in Ie 63
3.13 Models from Example 15. 68
3.14 Models, domains, and mappings involved in Section 3.4.1. 69
3.15 The subquery qH,(c,c′),2 to check an horizontal tiling condition. . . . 84
3.16 A part of CK with (u, u′) ∈ E1 and (v, v′) ∈ E2. 87
3.17 The Count()-CCQ q . 88
3.18 The Cntd(z)-CCQ q . 91

4.1 A part of CKG with (u1, u2) ∈ E . 103
4.2 The rooted CCQ q . 103
4.3 The intended structure of models of K. 114
4.4 The query qksame bit(z

(0), z(1)). 119

v

List of Figures

4.5 A model Ie of Ke from Example 16. 123
4.6 Initial portion of the f ⋆-interlacing of Ie. 124
4.7 The query qe from Example 17. 129
4.8 The tree branches B(0), B(1) and B(2) from Example 18. 131
4.9 A part of CKG with (u1, u2) ∈ E . 144
4.10 The exhaustive rooted CCQ q . 144
4.11 A part of CKG with (u1, u2) ∈ E . 147
4.12 The exhaustive rooted CCQ q . 148
4.13 The query qψ with ψ = (u1 ∨ ¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3 ∨ u4). 153

5.1 Cardinality query answering: worst-case combined complexity. . . . 158
5.2 The built ABox for the example instance of Set Cover. 175
5.3 Initial portion of the canonical model of Ke. 178
5.4 Finite models of the example KB Ke. 179

B.1 Intuition of the underlying structure for each type of interlacing. . . 259

vi Q. Manière

List of Tables

2.1 Allowed features depending on the considered DL. 10
2.2 Semantics of concept and role constructors. 13
2.3 Normalization of ALCHI ontologies. 16
2.4 Complexity of common reasoning tasks in standard DLs. 20

3.1 Complexity of CCQ answering . 25
3.2 Matches and counting matches of qe in I1e and I2e 34
3.3 Specifications from Example 12 . 52

4.1 (Exhaustive) rooted CCQs answering: worst-case complexity. . . . 95
4.2 The promise χ(2) for Example 19. 133

5.1 Cardinality query answering: worst-case data complexity. 158

vii

Résumé étendu en français

La réponse à des requêtes en présence d’une ontologie (OMQA, pour “ontology-
mediated query answering”) est une approche facilitant l’accès à des données par
l’intermédiaire d’ontologies. Ces dernières sont des spécifications formelles de
la terminologie et des connaissances conceptuelles d’un domaine d’intérêt. Les
ontologies peuvent servir à fournir un vocabulaire adapté à la formulation de
requêtes, ce qui est particulièrement adéquat lors de l’intégration de diverses
sources de données. Les ontologies capturent également des connaissances sur
le domaine étudié, qui peuvent être utilisées pour gérer des données incomplètes
en inférant des informations implicites, ce qui permet d’enrichir les réponses aux
requêtes posées. A partir d’environ 2005 et des premiers travaux de Poggi et al.
[2008], OMQA est devenu un champ de recherche prolifique dans les communautés
IA et bases de données. Les articles de synthèse [Bienvenu and Ortiz, 2015; Xiao
et al., 2018] fournissent une introduction à ce domaine ainsi que de nombreuses
références vers la littérature existante.

Cette thèse étudie la question de la réponse à des requêtes de comptage dans
ce cadre OMQA, et plus particulièrement la complexité de ce problème. A ce jour,
ce sujet n’a été étudié que dans des cas très restreints, et sans définition commune
de ce que sont les requêtes de comptage. De plus, les résultats existants sont
largement insatisfaisants puisque la plupart échouent à déterminer avec exactitude la
complexité du problème, et ce malgré l’expressivité limitée des langages d’ontologies
considérés.

Une nouvelle étude de ces requêtes de comptage en présence d’une ontologie
est donc nécessaire. Nous définissons tout d’abord une notion simple et élégante
des requêtes de comptage qui généralise plusieurs définitions précédentes. Nous
étendons ensuite notre cadre à des langages d’ontologies plus expressifs, qui étendent
ceux explorés jusqu’alors mais couvrent aussi d’autres logiques très populaires,

ix

Logiques de description

notamment utilisées dans la pratique. Dans ce contexte élargi, nous caractérisons
la complexité exacte du problème de réponse aux requêtes de comptage en présence
de ces ontologies expressives, et déterminons ensuite comment celle-ci varie si l’on
restreint la structure des requêtes et/ou l’expressivité du langage des ontologies.
Notre travail ne clôt pas seulement les questions laissées ouvertes dans de précédents
travaux, mais étend aussi notre compréhension des requêtes de comptage à des
panels bien plus larges de situations OMQA.

Logiques de description

La plupart des travaux sur OMQA considère que la connaissance est représentée
par des logiques de description, une famille de langages introduite dans les années
80 [Brachman and Schmolze, 1985], et qui a suscité beaucoup d’attention depuis
[Baader et al., 2003, 2017]. Dans les logiques de descriptions, les notions élémentaires
du domaine d’intérêt sont décrites par un vocabulaire consistant de concepts et de
rôles, qui sont respectivement des prédicats unaires et binaires, et à partir desquels
des concepts et rôles plus complexes peuvent être obtenus par divers constructeurs
(par exemple la conjonction ⊓). La diversité de ces constructeurs est dictée par la
logique de description.

Une base de connaissance en logique de description se décompose en deux parties:
une ontologie et des données. L’ontologie contient la connaissance terminologique
du domaine, et consiste en un ensemble d’axiomes (tels que des inclusions ⊑) qui
décrivent les relations entre les différents concepts et rôles. Les données représentent
des connaissances factuelles, et précisent quels sont les concepts satisfaits par tel
ou tel individu et quels rôles les connectent. Cela prend la forme d’un ensemble de
faits que l’on peut assimiler à une base de données usuelle (mais restreinte à des
faits unaires et binaires).

L’intérêt des logiques de description pour représenter des connaissances est
désormais largement reconnu et celles-ci sont le fondement logique du langage
d’ontologie web OWL, un standard W3C pour le web sémantique [Horrocks et al.,
2003, 2006; Hitzler et al., 2009]. Une attention toute particulière a été portée aux
familles DL-Lite et EL de logiques de description [Calvanese et al., 2007b; Baader
et al., 2005], du fait de leurs bonnes propriétés en terme de complexité. DL-Lite est
adapté pour des applications impliquant un grand volume de données et a donné
naissance au profil OWL 2 QL, tandis que les logiques de la famille EL sous-tendent
le profil OWL 2 EL1 et sont utilisées pour exprimer des ontologies médicales à
grande échelle telles que Snomed CT2 [Spackman, 2000].

1https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct

x Q. Manière

https://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct

Résumé étendu en français

Là où les travaux existants sur les requêtes de comptage se cantonnent à des
fragments de la famille DL-Lite, cette thèse étend le champ d’étude à la logique
plus expressive ALCHI, qui contient à la fois EL et des fragments très usités de la
famille DL-Lite.

Opérations de déduction

Une couche ontologique sur des données conduit à de nouvelles opérations de
déduction et accroît la complexité de celles usuellement considérées dans le contexte
des bases de données. Les opérations communes incluent par exemple la question
de la satisfiabilité, qui sert à détecter si une base de connaissance contient des
informations contradictoires, et la question de la subsomption, qui teste si un
concept donné est plus spécifique qu’un autre.

Comme son nom le laisse deviner, le cadre OMQA est particulièrement intéressé
par les réponses à des requêtes, une opération très étudiée dans le cadre des bases
de données relationnelles usuelles et qui correspond, quand des ontologies sont
introduites, à se demander si une requête est une conséquence logique de la base
de connaissances considérée.

La complexité de ces opérations de déductions augmentent naturellement avec
l’expressivité de la logique de description considérée et du langage de requête.
Un compromis est donc nécessaire entre la capacité des logiques de description
à représenter des connaissances de façon satisfaisantes, et l’efficacité à raisonner
avec des bases de connaissances exprimées dans ces logiques. La compréhension
de la complexité des opérations de déduction est donc un enjeu majeur dans le
paradigme OMQA: elle guide le choix du langage de requêtes et de la logique de
description selon le cas applicatif étudié. De telles considérations pratiques ont
menés au développement des logiques de description dites “légères”, telles que les
sus-mentionnées DL-Lite et EL, qui permettent de bonnes performances [Calvanese
et al., 2007b; Baader et al., 2005].

Les travaux existants sur les réponses à des requêtes de comptage [Kostylev
and Reutter, 2015; Calvanese et al., 2020a] échouent à caractériser pleinement la
complexité de ce problème de déduction, laissant souvent des trous béants entre les
bornes de complexité supérieure et inférieure. Dans cette thèse, nous déterminons
exactement la complexité du problème de réponse à des requêtes de comptage
dans toutes les situations étudiées, clôturant ainsi les cas restés ouverts de la
littérature mais fournissant également une compréhension fine de ce problème dans
des contextes bien plus vastes.

Counting Queries in Ontology-Based Data Access xi

Requêtes

Requêtes

La grande majorité des travaux dans le cadre OMQA suppose que l’utilisateur
formule ses requêtes sous la forme de requêtes conjonctives. De telles requêtes
demandent si une condition conjonctive donnée, la requête, est logiquement induite
par la base de connaissance formée de l’ontologie et des données.

Cependant, il existe de nombreux autres types de requêtes, au delà des requêtes
conjonctives, qui sont utiles en pratique. Cela a motivé des recherches sur l’adoption
d’autres langages de requêtes pour OMQA. Tandis qu’enrichir les requêtes con-
jonctives par des conditions négatives ou des inégalités mène à des problèmes
indécidables, même sous des hypothèses très restreintes [Gutiérrez-Basulto et al.,
2015], la situation est plus favorable pour les requêtes navigationnelles (comme
celles fondées sur des chemins réguliers), qui peuvent être utilisées sans perdre le
caractère décidable du problème associé, et qui a même parfois une complexité tout
à fait raisonnable vis-à-vis des données [Bienvenu et al., 2015].

Les requêtes d’agrégation, qui utilisent des opérateurs numériques (comme du
comptage, des sommes ou des moyennes) pour résumer certaines parties du jeu de
données, constituent une autre classe majeure des requêtes en bases de données.
Bien que de telles requêtes soient largement utilisées pour l’analyse des données,
elles demeurent peu explorées dans le contexte OMQA. Cela est peut-être dû au
fait qu’il n’est pas évident de définir la sémantique de ces requêtes.

Plusieurs sémantiques ont ainsi été proposées ces dernières années [Calvanese
et al., 2008; Kostylev and Reutter, 2015] pour répondre à ce problème, mais sans
atteindre une définition unifiée et satisfaisante. Cette thèse définie une sémantique
qui généralise celles explorées dans [Kostylev and Reutter, 2015] et permet des
requêtes relativement expressives.

Contributions

Cette thèse présente un panorama exhaustif de la complexité du problème de la
réponse à des requêtes de comptage en présence d’ontologies selon trois dimensions.
La première est l’expressivité des ontologies: nous explorons systématiquement
ALCHI et ses sous-logiques, ALCHI étant une logique de description très expres-
sive qui capture notamment EL et les principales sous-logiques de DL-Lite. La
deuxième dimension est le langage de requête: nous considérons une notion générale
de requête conjonctive de comptage (CCQ, pour “counting conjunctive query”), et
explorons ensuite deux sous-classes naturelles de CCQ, basées respectivement sur
l’enracinement et l’atomicité, afin de déterminer si de telles restrictions syntaxiques
réduisent la complexité de la réponse à ces CCQs. La troisième dimension est la
mesure de la complexité utilisée. Nous considérons à la fois la complexité combinée,

xii Q. Manière

Résumé étendu en français

usuelle, et la complexité de données, la première explicitant la complexité totale du
problème tandis que la seconde se concentre sur comment cette complexité évolue
selon la taille des données.

Notre première contribution est la sémantique même des requêtes de comptage.
Rappelons qu’un modèle est une façon de compléter les données afin de satisfaire
à tous les axiomes de l’ontologie. Dans un modèle donné, nous nous intéressons
aux façons de satisfaire une requête conjonctive, que l’on appelle des matches ;
leur nombre constitue la réponse à la requête de comptage correspondante, et varie
de modèle en modèle. La sémantique que nous définissons pour une réponse à
une CCQ sur une base de connaissance consiste en des bornes sur ce nombre de
matches, qui doivent être valides pour tout modèle de la base de connaissance. Ces
réponses sont appellées des réponses certaines, étendent les sémantiques présentées
dans [Kostylev and Reutter, 2015] et généralisent le problème usuel de réponse à
des requêtes conjonctives.

Dans le cas général des CCQs, nous prouvons que le problème de réponse à
ces requêtes est 2EXP-complet pour la plupart des sous-logiques d’ALCHI, mais
devient coNEXP-complet pour DL-Litecore. En terme de complexité de données,
nous montrons que le problème est coNP-complet pour toutes les sous-logiques
considérées. Les techniques développées s’appuient sur des manipulations pré-
cautionneuses des modèles, qui préservent à la fois le nombre de matches de la
requête et déplient les régularités inhérentes au modèle. Nos constructions s’avérent
robustes dans la mesure où elles nous permettent de clore une question voisine
dans le domaine des prédicats clos, pour lequels certains prédicats ne peuvent
s’interpréter au-delà de leur description dans les données. Nous montrons ainsi que
le problème de satisfiabilité d’une base de connaissance exprimée dans DL-Litecore et
avec des prédicats clos est coNEXP, rejoignant ainsi une borne inférieure existante.

Dans la perspective d’identifier des cas profitant d’une meilleure complexité, nous
considérons d’abord l’impact de la restriction aux CCQs enracinées. L’enracinement
est en effet une restriction syntaxique bien connue pour réduire la complexité dans
des cadres OMQA proches. Il s’avère cependant que l’adaptation la plus directe
de cette restriction à nos CCQs ne conduit pas à de meilleures propriétés que
dans le cas général. Cela nous conduit à nous concentrer sur une classe plus
restreinte: les CCQs enracinées et exhaustives. Pour cette dernière classe, nous
utilisons des variations des constructions développées précédemmemt afin d’obtenir
quatre améliorations différentes, selon la logique de description considérée, allant
de la PP-complétude à la coNEXP-complétude. Cette dernière repose notamment
sur la présence de rôles inverses dans l’ontologie, une fonctionnalité déjà connue
pour augmenter la complexité des requêtes enracinées. En terme de complexité
de données, nous exhibons des cas raisonnables en pratique pour les ontologies
exprimées dans DL-Litecore. Ce résultat positif s’appuie sur le fait que le modèle

Counting Queries in Ontology-Based Data Access xiii

Contributions

canonique minimise le nombre de matches.
Nous continuons notre quête de cas plus simples, en terme de complexité, que

le cas général, par une autre restriction sur le langage de requêtes, sans lien avec
l’enracinement: l’atomicité. La classe des CCQs consistant en un seul atome,
que nous appelons des requêtes de cardinalité, sont disponibles en deux saveurs
selon que le prédicat d’intérêt est unaire ou binaire. De nombreuses connexions
naturelles avec la sémantique des prédicats clos sont exploitées afin de déterminer
la complexité combinée du problème de réponse à ces requêtes de cardinalité.
Nous prouvons que ce problème est coNP-complet pour les langages de la famille
DL-Lite, tandis qu’il demeure EXP-complet pour EL et plusieurs de ses extensions.
Quand les ontologies sont suffisamment expressives pour contraindre les modèles
à être de taille exponentiellement grande, cette complexité augmente en coNEXP-
complétude, ce qui est surprenamment élevé pour un cas particulier d’apparence si
simple. Cependant, la situation est plus favorable en complexité de données, pour
laquelle nous identifions des cas raisonnables pour des ontologies formulées dans la
famille DL-Lite. De façon remarquable, ces derniers résultats ne reposent pas sur
l’existence d’un modèle canonique optimal mais plutôt sur l’existence d’une famille
de modèles dans laquelle un modèle optimal peut toujours être trouvé. Finalement,
nous éclaircissons la complexité des requêtes de cardinalité dans la famille DL-Lite
par une analyse de cette complexité pour chaque paire requête-ontologie. En
particulier, nous caractérisons complètement la complexité de données de ces paires,
pour des ontologies exprimées dans DL-LiteHpos, et montrons une trichotomie (TC0,
coNP, ou logspace-équivalent à Perfect Matching).

xiv Q. Manière

1
Introduction

Ontology-mediated query answering (OMQA) facilitates access to data through the
use of ontologies, which are formal specifications of the terminology and conceptual
knowledge of a given application domain. Ontologies can serve to provide a
convenient vocabulary for query formulation, which is especially relevant when
integrating data from different sources, and they also provide domain knowledge
that can be exploited at query time to infer implicit information and obtain more
complete query results, thus helping to tackle data incompleteness. Starting from
around 2005 and the seminal work of Poggi et al. [2008], OMQA has grown into an
active topic of research in the AI and database communities. The survey articles
[Bienvenu and Ortiz, 2015; Xiao et al., 2018] provide introductions to the area and
pointers to the literature.

This thesis investigates the issue of answering counting queries in the OMQA
framework and focuses in particular on pinpointing the precise computational
complexity of this problem. So far, this topic has only been explored for very
restricted settings, without even a unified notion of what is a counting query.
Furthermore, existing complexity results remain unsatisfactory as many of them fail
to pinpoint the precise complexity of the problem, despite the limited expressiveness
of the considered ontology languages.

This motivates us to take a fresh look at counting queries in OMQA. We
begin by defining a simple yet elegant notion of counting query, which is a natural
generalization of some existing notions. We further extend the scope of our study
to more expressive ontology languages, which properly extend those explored so
far but also cover other popular logics that are used in practical applications. In
this broader context, we characterize the precise complexity of answering counting
queries over these expressive ontologies, and further determine how the complexity
varies if we restrict the structure of the counting queries and/or the expressiveness
of the ontology language. Our work not only closes the complexity gaps that had

1

Description Logics

been left open in the literature, but it also extends our understanding of counting
queries to a much wider range of OMQA settings.

Description Logics
Much of the work on OMQA considers ontologies formulated in fragments of first-
order logics such as description logics (DLs) or existential rules (also known as
Datalog±). In this work, we focus on description logics ontologies, a family of
knowledge representation languages introduced in the 80’s [Brachman and Schmolze,
1985] and which has drawn a lot of attention since then [Baader et al., 2003, 2017].
In DLs, the basic notions of the domain of interest are described using a vocabulary
consisting of concept and roles names, that are respectively unary and binary
predicates, from which complex concepts and roles can be further built using
various constructors (e.g. conjunction ⊓ or existential restriction ∃). The set of
available constructors is dictated by the considered DL.

A DL knowledge base consists of two components: a TBox and an ABox. The
TBox (or ontology) contains the terminological knowledge about a domain and
consists of a set of axioms (such as inclusions, ⊑) that describe the relationship
between different concepts and roles. The ABox captures the assertional knowledge
by specifying which concepts, resp. roles, hold on which individuals, resp. connect
which pairs of individuals, where individuals are constants. It takes the form of
a set of ground facts and can be thought of as a classic database instance (but
restricted to unary and binary facts).

Let us give a toy example to illustrate these latter definitions. It is common
knowledge that a mule is an animal that is the offspring of a male donkey and a
female horse, these two latter being distinct species of animals. Assume we know a
mule molly, but no horse nor donkey. Using DL notations, our toy example could
be captured with the following TBox consisting of 4 axioms:

Mule ⊑ Animal ⊓ ∃MaleParent.Horse ⊓ ∃FemaleParent.Donkey

Horse ⊓Donkey ⊑ ⊥ Horse ⊑ Animal Donkey ⊑ Animal

and by the ABox containing a single fact:

Mule(molly).

The interest of description logics to represent knowledge is now widely recognized,
and DLs notably provide the logical foundations of the OWL web ontology language,
a W3C standardized language for the Semantic Web [Horrocks et al., 2003, 2006;
Hitzler et al., 2009]. Particular attention has been paid to the DL-Lite [Calvanese
et al., 2005, 2007b; Artale et al., 2009] and EL families [Baader et al., 1999, 2005,

2 Q. Manière

1. Introduction

2008], due to their favorable computational properties. DL-Lite is well suited for
data-intensive applications and gave rise to the OWL 2 QL profile, while DLs of
the EL family underly the OWL 2 EL profile1 and are used to specify large-scale
medical ontologies such as Snomed CT2 [Spackman, 2000].

While existing work concerning counting queries in OMQA has remained limited
to fragments of the DL-Lite family, this thesis extends the scope to the expressive
description logic ALCHI, with subsumes both EL and popular dialects of the
DL-Lite family.

Reasoning tasks

Adding an ontological layer on top of data motivates looking at new reasoning
tasks, and it typically also increases the complexity of the usual computational
tasks considered in the database domain. Common reasoning tasks include for
example satisfiability, that serves to detect whether a knowledge base contains
contradictory information (e.g. if there exists an animal that is both an horse and
a donkey, in our toy example) and subsumption, that tests if a concept is more
specific than another (e.g. it can be deduced that Mule ⊑ Animal even though this
axiom is not explicitly given in our toy TBox).

As its name suggests, OMQA is additionally concerned with query answering,
a task that is well studied for classical relational databases, and which corresponds,
when ontologies are introduced, to testing if a query is logically entailed from the
knowledge base of interest.

The complexity of these reasoning tasks generally increases with the expressive-
ness of the considered DL and query language. A trade-off hence arises between the
capacity of DLs to provide a satisfactory representation of the domain knowledge,
and the desired efficiency to reason over DL KBs. Understanding the complexity
of the reasoning tasks of interest is a major issue in OMQA: it guides the choice
of which DL and which query language should be used for a given application.
Practical considerations led to the development of so-called ‘lightweight’ DLs,
such as the previously mentioned DL-Lite and EL families, which enjoy favorable
computational properties [Calvanese et al., 2007b; Baader et al., 2005].

Existing work on the task of answering counting queries [Kostylev and Reutter,
2015; Calvanese et al., 2020a] fails to fully characterize the complexity of the
query answering task, with many open gaps between the obtained upper and lower
complexity bounds. In this thesis, we pinpoint the exact complexity of answering
counting queries in all of the considered situations, thereby closing the open cases

1https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct

Counting Queries in Ontology-Based Data Access 3

https://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct

Queries

from the literature as well as providing a precise understanding of the problem for
a much wider range of settings.

Queries

The question of how to query DL knowledge bases (KBs), composed of a TBox
(ontology) and ABox (data), has been explored since the early days of DL research.
Initially, the focus was on instance queries [Baader et al., 2003], where the task is to
determine all members of a given concept or role and which basically corresponds
to testing entailment of atomic facts from the KB. However, starting from the
works of [Calvanese et al., 1998; Levy and Rousset, 1998; Horrocks and Tessaris,
2000; Calvanese et al., 2005], and motivated by the interest of using DL ontologies
to improve data access, attention shifted to the more expressive conjunctive queries
(CQs), and the vast majority of work on OMQA takes CQs as the query language.
Such queries consist of a conjunction of atoms and have been widely studied in the
database community, as they correspond to the Select-Project-Join fragment of
the SQL query language. In the OMQA setting, the problem of answering CQs
essentially corresponds to asking whether the conjunctive condition given by the
query and candidate answer tuple is entailed from the knowledge base.

In our toy example, one can ask “Who has a parent who is a horse?”. Using a
classical database management system (DBMS), this query would not admit any
answer as no horse occurs in the data. In the OMQA setting, however, the domain
knowledge can be used to infer that the mule molly must have a (male) parent who
is a horse, hence, we are able to deliver the intended answer: molly.

However, there are many other kinds of database queries, beyond plain CQs, that
are relevant in practice. This motivated research into the feasibility of adopting
other database query languages for OMQA. While enriching CQs with either
negated atoms or inequalities has been shown to lead to undecidability even in
very restricted settings [Gutiérrez-Basulto et al., 2012, 2015], the situation is more
positive for navigational queries (like regular path queries), which can be adopted
without losing decidability, sometimes even retaining tractable data complexity
[Calvanese et al., 2007a; Ortiz et al., 2011; Stefanoni et al., 2014; Bienvenu et al.,
2015].

Aggregate queries, which use numeric operators (e.g. count, sum, max) to
summarize selected parts of a dataset, constitute another prominent class of
database queries. While they have been studied for a broad range of related
settings3, from relational databases to extensions of rule-based languages such as
Datalog or Answer Set Programming (ASP), and are widely used for data analysis,

3See Section 3.1.1 for a presentation of the state-of-the-art regarding aggregate functions.

4 Q. Manière

1. Introduction

these queries have been little explored in the framework of OMQA. This may be
partly due to the fact that it is not at all obvious how to define the semantics of
such queries in the OMQA setting. In our toy example, one can ask “How many
animals are there?”. A classic DBMS will return the answer 0 (it only knows molly
as a mule, not an animal). The expected answer is less clear in the OMQA setting:
should it be 1 because of molly? or rather 3 if also counting its two parents? or “at
least 3”? or maybe “at least 2” as our toy ontology does not prevent molly from
being its own parent?

Several semantics of counting queries over OMQA have hence been proposed
in the past years [Calvanese et al., 2008; Kostylev and Reutter, 2015] to address
this question, without reaching a satisfactory unique definition. This thesis defines
a semantics unifying both those explored in [Kostylev and Reutter, 2015] and
allowing for rather expressive queries.

Structure of the thesis
We present a complete picture of the complexity landscape of answering counting
queries, along three main dimensions. The first dimension is the expressive power
of the ontology: we systematically explore a variety of sublogics of ALCHI, an
expressive description logic that notably captures both EL and central dialects of
the DL-Lite family. The second dimension is the query language. We consider a
general notion of counting conjunctive query (CCQ) and further explore two natural
subclasses of CCQs, based upon rootedness and atomicity, to determine whether
such syntactic restrictions lower the complexity of CCQ answering. The third
dimension is the complexity measure. In this work, we consider both the standard
combined complexity as well as data complexity, with the former elucidating the
overall complexity of the problem, and the latter focusing on how the complexity
scales w.r.t. the size of the data.

We now present the global structure of this dissertation, organized according to
the second dimension.

Chapter 2. This chapter introduces the necessary notions for later chapters: it
defines the investigated description logics, the associated semantics, and recalls the
standard reasoning tasks and their complexities.

Chapter 3. This chapter formally defines the consider query language of CCQs
and pinpoints the precise complexity of answering these queries. Based on the
construction of interlacings, which are models enjoying good properties with respect
to the query of interest, we prove that the combined complexity ranges from coNEXP-
completeness to 2EXP-completeness, depending on the considered DL, while we

Counting Queries in Ontology-Based Data Access 5

Structure of the thesis

obtain coNP-complete data complexity for all considered logics. Interestingly, our
approach also allows to answer an open question from the related problem of
OMQA with closed predicates.

Chapter 4. This chapter explores rootedness, a structural restriction on queries
that is known to lower the complexity of reasoning in related OMQA settings. We
show that the most straightforward adaptation of rootedness to CCQs does not
lead to improved complexity, which motivates us to focus on a natural subclass of
exhaustive rooted CCQs. For this latter class, we use variations of the constructions
developed for the general case to obtain four different improvements depending on
the considered DL, ranging from PP-completeness to coNEXP-completeness, for
the combined complexity measure. For data complexity, we prove that exhaustive
rooted CCQ answering over DL-Litecore ontologies is tractable and enjoys the lowest
possible complexity (TC0).

Chapter 5. This chapter explores cardinality queries, which are CCQs consisting
of a single atom. Several connections with OMQA with closed predicates are
exhibited, which we use to determine the combined complexity of cardinality query
answering in all of our considered DLs. In particular, we prove that the problem is
coNP-complete for the DL-Lite family and is EXP-complete for EL and several of
its extensions. This complexity even rises to coNEXP-completeness for the most
expressive investigated DLs. The situation is more favorable in data complexity,
as we obtain tractable cases (TC0) in the DL-Lite family. Finally, we gain further
insights into the complexity of cardinality query answering in the DL-Lite family
by performing a non-uniform complexity analysis that aims to determine the data
complexity associated with each particular ontology-mediated query (OMQ). In
particular, we are able to fully characterize the data complexity of OMQs consisting
of a cardinality query and DL-LiteHpos ontology, exhibiting a complexity trichotomy
(TC0, coNP, or logspace-equivalent to Perfect Matching).

Chapter 6. This chapter summarizes the results of the thesis and suggests several
further directions of research.

Annex A. Additional proof material that has not been included within the thesis
is available in this annex.

Annex B. This annex aims to facilitate the understanding of the four investigated
flavors of interlacings by centralizing useful definitions and figures. We encourage
the reader to keep a printed version of this annex close at hand.

6 Q. Manière

1. Introduction

Related publications
Some of the results presented in this thesis have already been published:

- The semantics of CCQs introduced in Chapter 3, the associated coNP and
DP procedures for DL-Lite ontologies with respect to data complexity, and
some results from Chapter 4 regarding rooted CCQs, again over DL-Lite, can
be found in [Bienvenu et al., 2020].

- In Chapter 5, all of the data complexity results for cardinality query answering
over DL-Lite ontologies have been presented in [Bienvenu et al., 2021a],
including the complexity classification in Section 5.5.

- The generalization of these DL-Lite approaches to sublogics of ALCHI
between EL and ELHI⊥ appeared in a workshop paper [Bienvenu et al.,
2021b], establishing in particular data complexity results for CCQ answering
over these ontologies that appear in Chapter 3, while the exact combined
complexity remained open.

- In Chapter 3, optimal bounds for CCQ answering over these sublogics of
ELHI⊥ with respect to combined complexity have been further presented in
[Bienvenu et al., 2022]. This latter publication also provides all the results
from Chapter 5 concerning cardinality queries answering over these DLs.

By contrast, all of the results in this thesis that concern ALC or its extensions have
not been published yet, and the study of rooted CCQs beyond DL-Lite, notably in
extensions of EL, is also a novelty.

Counting Queries in Ontology-Based Data Access 7

2
Preliminaries

This chapter introduces the background notions required for the later chapters.
We begin with the description logics (DLs) investigated in this thesis: we define
ALCHI knowledge bases, their interpretations and models. Closed predicates are
also briefly introduced as several connections to this setting will be made and
exploited in later chapters. We further give an overview of the usual reasoning
tasks and recall their associated complexities.

2.1 Description Logics
ALCHI is an extension of the central ALC description logic, which serves as a
base for many more expressive DLs. We hereby recall its syntax and its relevant
sublogics. ALCHI notably extends EL and, by allowing for inverse roles, several
dialects of the DL-Lite family such as DL-Litecore. Importantly, and following
Bienvenu et al. [2014a], we allow negative role inclusions in ALCHI so that it
admits DL-LiteHcore as a sublogic. We further recall the usual set semantics for these
DLs, through the notions of interpretations and models, present a normal form for
ALCHI ontologies, and briefly introduce the semantics of closed predicates.

2.1.1 ALCHI and its sublogics

Description logics usually split the representation of knowledge into two parts: a
terminological one, the ontology, and an assertional one, the data. The second
accounts for ground facts that are typically stored and processed by database
management systems, while the first represents the domain knowledge, given by a
logical theory. The building blocks of these two parts are concept and role names
(unary and binary predicates) that can further be combined, using the constructors
provided by the considered DL, to obtain complex concepts and roles.

9

2.1. Description Logics

DL-Lite Suffixes Examples

pos core EL ALC H I ⊥ ALCI ELH⊥
C

on
ce

pt
s A | ∃R.⊤ ✓ ✓ ✓ ✓ ✓ ✓

⊤ | B1 ⊓ B2 | ∃R.B ✓ ✓ ✓ ✓

⊥ ✓ ✓ ✓ ✓

¬B | B1 ⊔ B2 | ∀R.B ✓ ✓

R
ol

es R ∈ NR ✓ ✓ ✓ ✓ ✓ ✓ ✓

R ∈ N±
R ✓ ✓ ✓ ✓

A
xi

om
s Positive concept incl. ✓ ✓ ✓ ✓ ✓ ✓

Positive role incl. ✓ ✓

Corresp. neg. incl. ✓ ✓ ✓ ✓ ✓

Table 2.1: Allowed features depending on the considered DL.

Definition 1. We assume mutually disjoint sets NC, NR, and NI of concept, role,
and individual names, their union being the basic vocabulary used to represent
knowledge. A knowledge base (KB) K := (T ,A) consists of a terminological part T
called a TBox, and an assertional part A called an ABox. An ABox is a finite set
of concept assertions A(b) (with A ∈ NC, b ∈ NI) and role assertions P(a, b) (with
P ∈ NR, a, b ∈ NI). We denote by Ind(A) the set of individuals occurring in an
ABox A. A TBox is a finite set of axioms, whose forms are dictated by the DL in
question.

We shall use sig(T) (resp. sig(A) and sig(K)) to denote the signature of a
TBox T (resp. ABox A and KB K), i.e. the set of concept and role names
appearing in T (resp. A and K).

The types of axioms that can appear in a TBox depends on the chosen DL, but
the most common form of TBox axiom are inclusions that can represent hierarchies
between concepts or roles, but also enforce disjointness of such predicates. To define
the syntax of the DLs considered in this thesis, it will be helpful to distinguish four
possible shapes of inclusions in the TBox.

Definition 2. We distinguish four kinds of possible axioms in a TBox: positive
concept inclusions B1 ⊑ B2, negative concept inclusions B1 ⊓ B2 ⊑ ⊥ (alternatively
denoted B1 ⊑ ¬B2), positive role inclusions R1 ⊑ R2, and negative role inclusions
R1 ⊓ R2 ⊑ ⊥ (alternatively denoted R1 ⊑ ¬R2), where B1,B2, resp. R1,R2, are
concepts, resp. roles, whose forms are dictated by the DL of interest.

We begin with the most expressive DL considered in this thesis, namely ALCHI,

10 Q. Manière

2. Preliminaries

which allows all four shapes of inclusions in the TBox, with roles R drawn from
the set N±

R := {P,P− | P ∈ NR}, consisting of all role names P and their inverse
role P−, and with concepts B constructed according to the following grammar:

B := ⊤ | ⊥ | A | ¬B | B1 ⊓ B2 | B1 ⊔ B2 | ∃R.B | ∀R.B with A ∈ NC,R ∈ N±
R .

Remark 1. We follow e.g. Bienvenu et al. [2014a] by including negative role
inclusions in ALCHI, so that it has DL-LiteHcore (defined later) as a sublogic. We
also remark that, in the case of ALCHI, allowing negative concept inclusions is
redundant as positive concept inclusions already allow us to express such negative
concept inclusions, due to the expressive syntax of concepts in ALCHI

Various sublogics of ALCHI can be obtained by disallowing some forms of
inclusions, inverse roles, and/or several concept constructors. For example, the
well-known EL [Baader et al., 1999, 2005, 2008] is obtained by removing negative
concept inclusions, both shapes of roles inclusions, inverse roles and restricting to
the concepts B obtained from the following grammar:

B := ⊤ | A | B1 ⊓ B2 | ∃R.B with A ∈ NC,R ∈ NR.

We shall also consider some DL-Lite dialects that are fragments of ALCHI.
The most expressive dialect is DL-LiteHcore (alternatively known as DL-LiteR) which
allows the four kind of inclusions, inverse roles, and the following restricted forms
of concepts:

Di := A | ∃R.⊤ with A ∈ NC,R ∈ N±
R .

The logics DL-LiteHpos, DL-Litecore, and DL-Litepos are obtained respectively by
dropping negative inclusions, role inclusions, or both features [Calvanese et al.,
2005, 2007b; Artale et al., 2009].

Table 2.1 summarizes the naming conventions underlying each explored com-
bination: the row entries are the possible features and column entries are (parts
of) names of DLs. A feature is allowed in a DL if the symbol ✓ is present in a
column corresponding to (a part of) the name of the DL. Generally speaking, one
starts from either DL-Litepos, DL-Litecore, EL or ALC and adds combinations of
the 3 available suffixes H, I and / or ⊥, that are not intended to be considered
alone. The use of H indicates that role inclusions are allowed, use of I that inverse
roles are allowed (both for building concepts and in eventual role inclusions), and
⊥ that the concept ⊥ is allowed along with the negative inclusions corresponding
to the positive permitted inclusions. Several combinations are of course irrelevant
as redundant, e.g. DL-LiteIpos or ALC⊥.

In addition to the already introduced EL and DL-Lite logics, two examples are
detailed in the right most columns, namely ALCI and ELH⊥. Notice that ELH⊥

Counting Queries in Ontology-Based Data Access 11

2.1. Description Logics

DL-Litepos

DL-LiteHpos

DL-Litecore

DL-LiteHcore

EL

EL⊥

ELH

ELH⊥

ELI

ELI⊥

ELHI

ELHI⊥ALC

ALCIALCH

ALCHI

Figure 2.1: The 16 investigated sublogics of ALCHI.

allows for both positive concept and role inclusions, and for the corresponding
negative inclusions, that is all four shapes of inclusions, while ALCI only permits
positive and negative concept inclusions, but neither positive nor negative role
inclusions. The hierarchy, w.r.t. relative expressiveness, of the 16 sublogics of
ALCHI explored in this thesis and obtained from combinations of the presented
restrictions, is depicted in Figure 2.1

Example 1. We reuse the example from the introduction: the knowledge base Kex
is the pair (Tex,Aex) where Aex := {Mule(molly)} is the ABox and Tex is the TBox
consisting of the 4 axioms:

Mule ⊑ Animal ⊓ ∃MaleParent.Horse ⊓ ∃FemaleParent.Donkey

Horse ⊓Donkey ⊑ ⊥ Horse ⊑ Animal Donkey ⊑ Animal.

There are 4 concept names and 2 role names in the signature of Tex, which contains
3 positive concept inclusions, 1 negative concept inclusion and no role inclusions.
It is easily verified that Tex is an EL⊥ TBox.

2.1.2 Set semantics

ALCHI knowledge bases are well known to correspond to decidable fragments
of first-order logic. More precisely, ALCHI KBs translate into the two-variable
fragment of first-order logic (see e.g. [Baader et al., 2017]), whose entailment
problem is known to be in NEXP [Grädel et al., 1997]. As fragments of first-order
logic, ALCHI knowledge bases are equipped with the standard set semantics,
based upon interpretations, recalled next.

12 Q. Manière

2. Preliminaries

Constructor Syntax Interpretation

Inverse role P− {(y, x) | (x, y) ∈ PI}
Bottom ⊥ ∅

Top ⊤ ∆I

Negation ¬B ∆I \ BI

Conjunction B1 ⊓ B2 BI
1 ∩ BI

2

Disjunction B1 ⊔ B2 BI
1 ∪ BI

2

Existential restriction ∃R.B {d | ∃e ∈ ∆I , (d, e) ∈ RI ∧ e ∈ BI}
Universal restriction ∀R.B {d | ∀e ∈ ∆I , (d, e) ∈ RI → e ∈ BI}

Table 2.2: Semantics of concept and role constructors.

Definition 3. An interpretation takes the form I = (∆I , ·I), where ∆I is a non-
empty set (called the domain) and ·I is the interpretation function that maps each
A ∈ NC to AI ⊆ ∆I, each P ∈ NR to PI ⊆ ∆I ×∆I, and each a ∈ NI to aI. In
this thesis, we will make the Standard Names Assumption by setting aI = a. Note
however that our results only rely upon the weaker Unique Names Assumption
(UNA), which stipulates that aI ̸= bI whenever a ̸= b. The function ·I extends to
roles and complex concepts as summarized in Table 2.2.

Remark 2. Notice the set ∆I is required not to be empty and to contain at least
NI (due to the SNA), but is otherwise unrestricted. This is sometimes referred
to as the open domain assumption, as opposed to the closed domain assumption
underlying usual databases in which no elements outside of those mentioned in the
data (the individuals of the ABox, from the OMQA perspective) are considered.

As DL KBs only use unary and binary predicates, an interpretation I is easily
represented as a labeled directed graph according to the two following rules: (i)
each e ∈ ∆I is represented by a vertex e, labeled with all the concept names A ∈ NC

such that e ∈ AI ; (ii) there is a directed edge (e1, e2) in the graph representation
of I iff there exists a role name P ∈ NR, such that (e1, e2) ∈ PI , in which case the
edge (e1, e2) is labeled with all such role names P. For readability, we often replace
each vertex representing an element e from ∆I \ Ind(A) by a placeholder ◦ to avoid
specifying the exact definition of ∆I .

We now move to the notion of models of a knowledge base.

Definition 4. An inclusion G ⊑ H is satisfied in I if GI ⊆ HI; an assertion A(b)
(resp. P(a, b)) is satisfied in I if b ∈ AI (resp. (a, b) ∈ PI). An interpretation is

Counting Queries in Ontology-Based Data Access 13

2.1. Description Logics

a model of a TBox T (resp. KB K) if it satisfies all axioms in T (resp. axioms
and assertions in K). A KB is satisfiable if it has at least one model. An inclusion
(resp. assertion) Φ is entailed from T (resp. K), written T |= Φ (resp. K |= Φ), if
Φ is satisfied in every model of T (resp. K).

Example 2. Continuing Example 1, three interpretations of Kex are depicted in
Figure 2.2, in which individual and concept names have been abbreviated to their
first letter for readability. The interpretation I1 is not a model as the anonymous
element (depicted by ◦) satisfies both Horse and Donkey, hence violating axiom
Horse ⊓Donkey ⊑ ⊥. It also violates the first axiom of Tex since molly is a Mule
that does not have a MaleParent being a Horse.

The two other interpretations are indeed models of Kex. Notice in particular our
ontology is somehow ill-formed as it permits molly to be its own male parent being
a horse. One could exclude this kind of model, e.g. by adding a negative concept
inclusion Mule ⊓ Horse ⊑ ⊥ to the ontology.

m
M,A

◦
H,D,A

M
P
ar
en
t FP

ar
en
t

(a) Interp. I1 of Kex

m
M,A

m ·MParent.{H,A}
H,A

m · FParent.{D,A}
D,A

M
Parent FP

ar
en
t

(b) Model I2 of Kex

m
M,H,A

◦
D,A

M
P
ar
en
t FP

ar
en
t

(c) Model I3 of Kex

Figure 2.2: Interpretations of Kex for Example 2.

Remark 3. Notice that a model can interpret some individual names as satisfying
more concept names than required by the KB: in our example, molly is a horse in
model I3 but not in model I2, hence the fact Horse(molly) is not entailed by Kex,
but it doesn’t contradict Iex being a model. This is referred to as the open world
assumption, as opposed to the closed world assumption underlying usual databases
in which unsure facts are assumed to be false.

It will often be useful to manipulate interpretations similarly to ABoxes, which
motivates the following definition.

Definition 5. We can view an interpretation I as a (possibly infinite) set of
assertions AI = {A(e) | e ∈ AI ,A ∈ NC} ∪ {P(e, e′) | (e, e′) ∈ PI ,P ∈ NR}. We
say that I is T -satisfiable if T ∪ AI has a model.

14 Q. Manière

2. Preliminaries

2.1.3 Normal forms

It is standard to assume that the TBoxes are in a given normal form, which is often
tailored to the setting of interest. Such a normal form simplifies the description
of algorithms and proofs of modelhood by restricting the shapes of axioms that
need to be considered. So long as the transformation to normal form preserves the
central properties of the considered problem (e.g. satisfiability of the TBox), it can
be assumed without loss of generality that all TBoxes are in normal form. In our
own study, we shall work with ALCHI TBoxes that in the following normal form,
which extends the normal form presented in Baader et al. [2017].

The normalization proceeds in three steps. The first step aims at removing
nested occurrences of concepts. We say a concept B has a nested occurrence in
a concept D if B is not a concept name and D has one of the following shapes:
¬B | B ⊓ C | B ⊔ C | C ⊓ B | C ⊔ B | ∃R.B | ∀R.B, where C is any concept (nested
or not). As is standard (see e.g. Baader et al. [2017]), we can assume w.l.o.g. that
there are no such nested occurrences by introducing linearly many fresh concept
names and axioms in the TBox.

The second step replaces each axiom B1 ⊑ B2 by the two axioms B1 ⊑ AB1,B2

and AB1,B2 ⊑ B2, where AB1,B2 is a dedicated fresh concept name. This only
doubles the size of the TBox and ensures each concept inclusion has now a single
concept name on its left-hand side or on its right-hand side. We are therefore left
with the following 15 shapes of concept inclusions:

A ⊑ B

⊤ ⊑ A A ⊑ ⊤
⊥ ⊑ A A ⊑ ⊥

A1 ⊓ A2 ⊑ A A ⊑ A1 ⊓ A2

A1 ⊔ A2 ⊑ A A ⊑ A1 ⊔ A2

∃R.B ⊑ A A ⊑ ∃R.B
∀R.B ⊑ A A ⊑ ∀R.B
¬B ⊑ A A ⊑ ¬B

with A,A1,A2,B ∈ NC and R ∈ N±
R

The third step applies the 9 kinds of substitutions from Table 2.3 to reduce to
the following 6 shapes of concept axioms:

⊤ ⊑ A A1 ⊓ A2 ⊑ A ∃R.B ⊑ A A ⊑ ∃R.B ¬B ⊑ A A ⊑ ¬B,

with A,A1,A2,B ∈ NC and R ∈ N±
R . Each substitution from Table 2.3 directly

gives axioms with the desired shapes, so a single iteration of these rules is required.
This latter step gives us the desired normal form.

Counting Queries in Ontology-Based Data Access 15

2.1. Description Logics

A ⊑ ⊤ ⇝ A ⊑ B ⇝ A ⊓ C⊤ ⊑ B

A ⊑ ⊥ ⇝

{
A ⊑ ¬C⊤
⊤ ⊑ C⊤

⊥ ⊑ A ⇝

A ⊑ A1 ⊓A2 ⇝


A ⊓ C⊤ ⊑ A1

A ⊓ C⊤ ⊑ A2

⊤ ⊑ C⊤

A ⊑ A1 ⊔A2 ⇝


A ⊑ ¬C¬A1⊓¬A2

C¬A1 ⊓ C¬A2 ⊑ C¬A1⊓¬A2

¬A1 ⊑ C¬A1

¬A2 ⊑ C¬A2

A1 ⊔A2 ⊑ A ⇝


A1 ⊓ C⊤ ⊑ A
A2 ⊓ C⊤ ⊑ A
⊤ ⊑ C⊤

A ⊑ ∀R.B ⇝


A ⊑ ¬C∃R.¬B
∃R.C¬B ⊑ C∃R.¬B
¬B ⊑ C¬B

∀R.B ⊑ A ⇝


¬C∃R.¬B ⊑ A
∃R.C¬B ⊑ C∃R.¬B
¬B ⊑ C¬B

where concepts CX are fresh concept names representing (complex) concepts X.

Table 2.3: Normalization of ALCHI ontologies.

Definition 6. An ALCHI TBox T is said to be in normal form if every concept
inclusion in T has one of the following shapes:

⊤ ⊑ A A1 ⊓ A2 ⊑ A ∃R.B ⊑ A A ⊑ ∃R.B ¬B ⊑ A A ⊑ ¬B,

with A,A1,A2,B ∈ NC and R ∈ N±
R .

To ensure the normalization procedure does not affect the outcome of the
reasoning tasks we consider in this thesis, it is sufficient to ensure that the normalized
TBox is a conservative extension of the initial TBox.

Definition 7. A TBox T ′ is a conservative extension of a TBox T if the three
following conditions are satisfied:

- sig(T) ⊆ sig(T ′);

- Every model of T ′ is a model of T ;

- For every model I of T , there exists a model I ′ of T ′ such that the restriction
of ·I′ to sig(T) is ·I.

The desired properties of the normalization procedure can now be summarized
as follows.

16 Q. Manière

2. Preliminaries

Theorem 1. Every ALCHI TBox T can be transformed in linear time into a
conservative extension T ′ of T such that T ′ is in normal form and has linear size
w.r.t. the size of T .

In particular, this transformation does not affect the outcome of upcoming
reasoning tasks, nor the associated complexity results.

2.1.4 Canonical models for ELHI⊥ KBs

As previously noted, many DLs of the DL-Lite and EL families [Calvanese et al.,
2005; Baader et al., 1999] allow for efficient reasoning due to their carefully restricted
syntax. Such logics belong to the broader class of Horn DLs, which are those that
cannot express (implicitly or explicitly) any form of disjunction, and thus do not
require reasoning by cases. More expressive Horn DLs can be defined by selecting
a (highly) expressive DL, like SHIQ, and suitably restricting its syntax to exclude
the need for disjunctive reasoning, yielding e.g. Horn-SHIQ [Hustadt et al., 2005;
Krötzsch et al., 2013]. The key property of Horn DLs is that every satisfiable KB
admits a canonical (or universal) model that embeds homomorphically into each
of its models. Such a canonical model plays a central role in designing reasoning
procedures as it often suffices to restrict the attention to this single model.

In our setting, it is well known that every satisfiable ELHI⊥ KB admits a
canonical model (ELHI⊥ being essentially Horn-ALCHI, up to some syntactic
reformulations relying on inverse roles). We recall how such a model CK can be
constructed (see [Bienvenu and Ortiz, 2015]).

Definition 8. The domain ∆CK consists of all sequences a ·R1.M1 · · ·Rn.Mn (n ≥ 0)
such that a ∈ Ind(A), each Ri belongs to N±

R , each Mi is a conjunction of concepts
from NC ∪ {⊤} (which is treated as a set when convenient), and the following
conditions hold:

1. If n ≥ 1, then T |= M0 ⊑ ∃R1.M1 where M0 = {A ∈ NC ∪ {⊤} | K |= A(a)}
and M1 is maximal, as a set of concept names, for this property.

2. If n ≥ 1, then there is no b ∈ Ind(A) such that K |= M1(b) and K |= R1(a, b).

3. For every 1 ≤ i < n, T |= Mi ⊑ ∃Ri+1.Mi+1 and Mi+1 is maximal, as a set of
concept names, for this property.

4. For every 1 ≤ i ≤ n− 2, T ̸|= Mi ⊑ Mi+2 or T ̸|= Ri+1 ⊑ R−
i+2.

Individual names are interpreted as themselves (aCK = a), and concept and role

Counting Queries in Ontology-Based Data Access 17

2.1. Description Logics

names are interpreted as follows:

ACK := {a | K |= A(a)} (1)

∪ {e · R.M | A ∈ M} (2)

PCK := {(a, b) | K |= P(a, b)} (1)

∪ {(e, e · P0.M) | T |= P0 ⊑ P} (2+)

∪ {(e · P0.M, e) | T |= P0 ⊑ P−} (2−)

The canonical model CK plays a central role in conjunctive query (CQ) answering,
as, by virtue of embedding in every model of the KB K of interest, it provides
either the assurance that the query further embeds in every model I of K (if a
embedding of the CQ in CK exists), or a countermodel for the query (that is, an
example of a model in which there are no embedding of the CQ). This issue will be
recalled in more detail later in this chapter. To formalize this central property, it
is necessary to properly recall the definition of a homomorphism of interpretations.

Definition 9. Given two interpretations I1 and I2, a function f : ∆I1 → ∆I2 is a
homomorphism of I1 into I2, denoted f : I1 → I2, if the three following conditions
hold: (i) f(aI1) = aI2 for all a ∈ NI; (ii) f(AI1) ⊆ AI2 for all concept name A ∈ NC;
(iii) f(AI1) ⊆ AI2 for all role name P ∈ NR.

We can now formally recall the central property of the canonical model, which
motivates its name.

Theorem 2. Let K be a satisfiable ELHI⊥ KB. The canonical model CK is a model
of K and for every model I of K, there exists a homomorphism f : CK → I.

Example 3. The canonical model of Kex from Example 1 is depicted as model I2 in
Figure 2.2. It embeds in model I3 by mapping molly ·MaleParent.{Horse,Animal}
to molly and molly · FemaleParent.{Donkey,Animal} to itself.

2.1.5 Closed predicates

The open-world and open-domain assumptions are natural in settings where the
data is incomplete, and there may be missing facts and a need to reason about
unnamed objects. Many scenarios, however, may involve some parts of the data
which are incomplete, and other parts which are known to be complete (e.g. when
considering the list of countries). The combination of DL reasoning with (partially)
complete data was first explored in Franconi et al. [2011] and led to a line of work
on DL KBs with closed predicates [Lutz et al., 2013; Ngo et al., 2016], which allow
for a trade-off between the closed- and open-world assumptions. Formally, one

18 Q. Manière

2. Preliminaries

adapts the notions of KBs and models as follows, where the interpretations of some
predicates are stated to be fully known, and hence should not extend beyond the
instances explicitly given in the ABox.

Definition 10. A KB with closed predicates consists of a KB (T ,A) and a set
Σ ⊆ NC ∪ NR of closed predicates. An interpretation I is a model of (T ,A,Σ) if
it is a model of (T ,A) which interprets the closed predicates according to A, i.e.
AI = {a | A(a) ∈ A} for every A ∈ Σ ∩ NC and PI = {(a, b) | P(a, b) ∈ A} for
every P ∈ Σ ∩ NC.

Example 4. In our running example, Kex admits models as presented before,
but the corresponding KB with a single closed predicate Animal, that is K′

ex :=
(Tex, {Animal},Aex} becomes unsatisfiable.

Closed predicates have been explored for a range of DLs and have been shown to
increase significantly the complexity of the most common reasoning tasks compared
to the classical setting without closed predicates [Franconi et al., 2011; Lutz et al.,
2013; Ngo et al., 2016].

2.2 Reasoning tasks

We now recall the usual reasoning tasks associated with knowledge bases and
summarize the known complexity of answering these problems. For each task, we
distinguish between combined complexity in which everything is part of the input,
and data complexity in which only the data, that is, the ABox, is considered as
input and the other parameters are treated as fixed.

Both combined and data complexity measures consider the worst-case complexity
of the problem. It can also be interesting to pinpoint the complexity of a particular
ontology or ontology-mediated query (OMQ), i.e. an ontology-query pair. This more
refined approach has yielded several dichotomy results and complexity classifications,
which identify what are the possible complexities and pinpoint the tractable and
intractable cases [Lutz and Wolter, 2012; Lutz et al., 2012; Bienvenu et al., 2014b;
Lutz and Sabellek, 2017].

2.2.1 Satisfiability, subsumption and instance checking

The most basic reasoning task associated with a TBox or a KB is arguably to ask
whether it is consistent or not. This is known as the satisfiability problem.

Definition 11. Given a TBox T , resp. a KB K, the satisfiability problem is to
decide whether T , resp. K, admits a model.

Counting Queries in Ontology-Based Data Access 19

2.2. Reasoning tasks

Satisfiability Instance checking CQ answering
Data Combined Data Combined Data Combined

DL-Lite(H)
core in AC0 NL in AC0 NL in AC0 NP

EL, ELH⊥ P P P P P NP

ELI, ELHI⊥ P EXP P EXP P EXP

ALC NP EXP coNP EXP coNP EXP

ALCI NP EXP coNP EXP coNP 2EXP

Table 2.4: Complexity of common reasoning tasks in standard DLs. Lower bounds
for satisfiability do not apply for EL and ELI KBs which always admit a model.

The second task concerns TBoxes, and asks whether a new inclusion can be
inferred from the given ones, which is known as the subsumption problem.

Definition 12. Given a TBox T and two concepts C1,C2, the subsumption problem
is to decide whether T entails C1 ⊑ C2.

The third problem is the assertional counterpart of the subsumption problem,
asking whether a given assertion can be inferred from a given KB, which is known
as instance checking.

Definition 13. Given a KB K and a concept C and an individual name a ∈ NI,
the instance checking problem is to decide whether K entails the assertion C(a).

These three reasoning tasks are known to be reducible to each other as soon
as disjointness is expressible in the TBox (e.g. with DL-Litecore or EL⊥), and both
their data and combined complexities are well understood for sublogics of ALCI
and of ELHI⊥. These results are recalled in Table 2.4, borrowed from [Bienvenu
and Ortiz, 2015], and have been obtained from a variety of techniques.

One prominent approach for Horn DLs is query rewriting, in which reasoning
tasks are reduced to the more well-known problems of evaluating first-order (FO) or
Datalog queries over databases. More precisely, query rewriting takes a TBox and
query as input and produces an FO-query (resp. Datalog-query) that incorporates
the relevant knowledge from the TBox and is such that evaluating this query over
the ABox yields the required result for the initial reasoning task. It is known that
FO query evaluation is PSPACE-complete w.r.t. combined complexity [Vardi, 1982]
and in AC0 w.r.t. data complexity [Vardi, 1995], while Datalog query evaluation is
EXP-complete w.r.t. combined complexity [Vardi, 1982] and P-complete w.r.t. data
complexity [Immerman, 1986]. First-order query rewriting can be used to obtain an
AC0 procedure (w.r.t. data complexity) for instance checking for a range of DL-Lite
dialects, including DL-LiteHcore, and can also be used to show an NL upper bound in

20 Q. Manière

2. Preliminaries

combined complexity [Artale et al., 2009]. By rephrasing satisfiability as a query
answering task, we can obtain the same upper bounds for satisfiability of DL-Lite
KBs. For EL and its extensions, it is not always possible to reduce to FO query
evaluation, but Datalog rewriting can be used to establish tight upper bounds for
instance checking and satisfiability in ELHI⊥ [Hustadt et al., 2005]. Note that for
EL and ELI, only the instance checking problem is of interest, as the satisfability
task is trivial, due to the absence of disjointness, negation, or other constraints.

Another prominent reasoning technique for Horn DLs is saturation (or mate-
rialization), which consists in iteratively adding (some of) the facts that can be
entailed from the KB, then checking whether the target query has been produced.
The P upper bounds in combined complexity for EL and its extension ELH⊥ were
originally established using such saturation techniques [Baader et al., 2005] (see
Calvanese et al. [2006] for the matching lower bounds).

For expressive DLs, reasoning tasks are often rephrased as satisfiability checks
and addressed with tableaux techniques. In a nutshell, tableaux algorithms test the
satisfiability of the input KB by trying to construct a (representation of a) model.
They can be seen as extending saturation procedures by exploring the different
ways of adding facts to account for the disjunctive features allowed in the KBs. A
tableaux procedure for the DL ALCI can be found in Donini and Massacci [2000],
and the even more expressive DL SHIQ was addressed in Tobies [2001].

Throughout the later chapters, we will often need to perform some satisfiability
(resp. subsumption and instance checking) checks, relying upon these complexity
results. For satisfiability tests for our slightly non-standard versions of ALCH and
ALCHI allowing negative role inclusions, we prove that it remains EXP-complete
with respect to combined complexity (satisfiability ofALCHI KBs without negative
role inclusions being EXP-complete as proven in [Tobies, 2001] and [Schild, 1991]).
Although we will not need the corresponding statement for data complexity, it also
remains NP-complete, as follows from a later result (Theorem 8).

Theorem 3. The satisfiability of a ALCHI KB with role disjointness is EXP-
complete w.r.t. combined complexity.

Proof. EXP-hardness is immediate as ALCHI extends ALC, for which the satis-
fiability task is already EXP-complete [Schild, 1991]. For the upper bound, we
reduce our problem to the satisfiability problem of ALCIb KBs, also known to be
EXP-complete (see Theorem 4.42 in Tobies [2001]). An ALCIb KB extends the
ALCI KBs presented in this chapter by allowing more expressive combinations of
roles in the construction of concepts (see Definition 4.17 in Tobies [2001]): “An
ALCIb-role expression ω is built from ALCIb-roles [i.e. roles from N±

R] using the
operators ⊓ (role intersection), ⊔ (role union), and ¬ (role complement), with the
restriction that, when transformed into disjunctive normal form, every disjunct

Counting Queries in Ontology-Based Data Access 21

2.2. Reasoning tasks

contains at least one non-negated conjunct. A role expression that satisfies this
constraint is called safe.”

Consider a ALCHI KB K := (T ,A) in normal form. We first construct an
extension A′ of the ABox A. For each assertion R(a, b) ∈ A and each (eventually
inverse) role S such that T |= R ⊑ S, we add the assertion S(a, b) (or S(b, a) in the
inverse case) to A′. We now turn to a modified version T ′ of the TBox T , in which
each role inclusion is dropped, each axiom ∃R.B ⊑ A ∈ T is replaced by the axiom
∃ω.B ⊑ A, where ω is the following safe role expression:

ω :=
⋃

T |=S⊑R

S,

and each axiom A ⊑ ∃R.B ∈ T is replaced by the axiom A ⊑ ∃ω.B where ω is the
following safe role expression:

ω :=

 ⋂
T |=R⊑S

S

 ∩
 ⋂

T |=R⊓T⊑⊥

¬T

 .

Note that all the role inclusion checks in this construction can be polynomially
decided due to the very limited role constructors and inclusions in ALCHI. It
remains to establish the following claim:

K′ := (T ′,A′) is satisfiable iff K is satisfiable.

(⇐). It is easily checked that every model I of K is also a model of K′.

(⇒). Consider a model I ′ of K′. Axioms ∃R.B ⊑ A ∈ T are clearly satisfied in I ′.
However, I ′ may violate some role inclusions and role disjointness axioms from
T . For each A ⊑ ∃R.B ∈ T , and each element e ∈ AI′ , our construction ensures
that there exists at least one successor to e for the corresponding T ′ axiom that
respects both the positive and negative role inclusions from T . Dropping all role
facts in I ′ that are neither involved in such a successor relationship nor entailed on
individuals by K, we obtain a model I of K.

2.2.2 Query answering

As the counting conjunctive queries we study in this thesis correspond to an
extension of classical conjunctive queries, we briefly recall the definition of such
queries, which constitute a simple, yet practically relevant and much studied, query
language. A conjunctive query (CQ) takes the form q(x) = ∃y ψ(x,y), where x,y
are tuples of answer and existential variables , respectively, and ψ is a conjunction

22 Q. Manière

2. Preliminaries

of concept and role atoms with terms from NI ∪ x ∪ y. We use terms(q) for the set
of all terms occurring in q. A CQ q is said to be Boolean if x = ∅.

A match for a CQ q in an interpretation I is a homomorphism from q into I, i.e.
a function π that maps each term in q to an element of ∆I such that π(t) = t when
t ∈ NI, π(t) ∈ AI for every A(t) ∈ q, and (π(t), π(t′)) ∈ PI for every P(t, t′) ∈ q.
The set of answers to q in I, denoted qI , contains all tuples a of individuals from
NI such that there exists a match of q(a) in I. A certain answer to a CQ q w.r.t.
K is an answer in every model of K, that is, a tuple from qK :=

⋂
I|=K q

I .

Definition 14. Given a KB K, a CQ q and a tuple a, the problem of CQ answering
is to decide whether a ∈ qK.

A summary of the complexity results for CQ answering over the considered
DLs is provided in Table 2.4 and, as for the previous reasoning tasks, the upper
bounds often rely on rewriting techniques. Query rewriting notably underlies the
data complexity results for the DL-Lite family, and there have been many rewriting
algorithms developed since the original PerfectRef algorithm [Calvanese et al., 2005,
2007b]. Rewriting techniques have been employed to answers CQs in the presence of
KBs formulated in the EL family [Rosati, 2007; Krisnadhi and Lutz, 2007; Krötzsch
and Rudolph, 2007] and have been extended to handle Horn versions of expressive
DLs [Eiter et al., 2012a].

For expressive DLs, rewriting procedures to Disjunctive-Datalog are possible
[Motik, 2006; Hustadt et al., 2007; Rudolph et al., 2012] (see notably Lutz [2008]
for some lower bounds). Saturation techniques or variations of tableaux-based
procedure can also prove useful for CQ answering in such DLs [Ortiz et al., 2008].
Other algorithms used to handle expressive DLs mostly rely on two main steps
[Glimm et al., 2008; Eiter et al., 2008, 2012b; Kikot et al., 2012]. The first step is to
split the query into a part mapping on individuals from the ABox while other parts
are to be mapped on tree-shaped interpretations completing the ABox. Whether
such mappings in tree-shaped structures exists in all models of the KB of interest
form the second step of the algorithm. This step can notably reuse existing results
on instance checking since the selected tree-like parts of the query can be expressed
as a single concept. However, the first step often creates an exponential number of
instances for the second step, based on the possible decompositions of the query,
that may result in an exponential increase in combined complexity between instance
checking and CQ answering (see e.g. the situation for ALCI KBs in Table 2.4).

Interestingly, several works have explored the possibility to mixing rewriting
and saturation procedures in order to keep the best of both techniques, resulting
in the so-called combined approach. This provides alternative ways to tackle EL
and several of its extensions [Lutz et al., 2009], some dialects of the DL-Lite family
[Kontchakov et al., 2011] and even the Horn version of ALCHOIQ [Carral et al.,
2018].

Counting Queries in Ontology-Based Data Access 23

3
Counting Conjunctive Queries

In this chapter, we introduce the semantics of counting conjunctive queries (CCQs)
and the corresponding ontology-mediated query answering problem (OMQA). We
further study the computational complexity of this problem for knowledge bases
(KBs) expressed in ALCHI and its sublogics. Our results are summarized in
Table 3.1.

Combined complexity Data complexity

DL-LiteHpos, EL, ALCHI 2EXP-complete coNP-complete
†

DL-Litepos, DL-Litecore coNEXP-complete coNP-complete

†

Table 3.1: Complexity of CCQ answering.

†

: previously known lower bound.

Section 3.1 presents the semantics of CCQs, its connection with existing work,
and the associated decision problem in term of combined and data complexities.
Section 3.2 investigates a family of models, namely interlacings, built from an
initial model of interest, from which they retain desirable properties with respect
to CCQs while enjoying a more tree-shaped structure. Based on those interlacings,
Section 3.3 establishes a 2EXP procedure, with respect to combined complexity,
to answer CCQs over ALCHI KBs. Afterwards, in Section 3.4, it is shown how
to construct optimal models of bounded size, yielding a coNP procedure for CCQ
answering over ALCHI KBs with respect to data complexity, and allowing us to
refine the 2EXP algorithm in combined complexity into a coNEXP procedure for
DL-Litecore KBs. Section 3.5 concludes the chapter by providing matching lower
bounds and draws a first connection to closed predicates.

25

3.1. Preliminaries

Organization of Chapter 3
3.1 Preliminaries . 26

3.1.1 Related work . 26
3.1.2 Semantics of counting conjunctive queries 29
3.1.3 Decision problems . 35

3.2 Interlacings . 36
3.2.1 Existential extraction . 39
3.2.2 A family of models: interlacings 40
3.2.3 Finite models . 44
3.2.4 Countermodels via interlacings 46

3.3 Answering CCQs over ALCHI ontologies 48
3.3.1 Patterns . 49
3.3.2 Soundness: from patterns to models 56
3.3.3 Completeness: from models to patterns 61

3.4 Countermodels with bounded size 64
3.4.1 Equivalence relation based on neighbourhoods 65
3.4.2 DL-Litecore: simpler neighbourhoods 74

3.5 Matching lower bounds . 79
3.5.1 Two reductions from closed predicates 79
3.5.2 A tiling problem for DL-Litecore 80
3.5.3 Data complexity . 86

3.1 Preliminaries
Aggregate queries, which use numeric operators (e.g. count, sum, max) to summa-
rize selected parts of a dataset, constitute a prominent class of database queries.
Although such queries are widely used for data analysis, they have been little
explored in context of OMQA. This may be partly due to the fact that it is not at
all obvious how to define the semantics of such queries in the OMQA setting.

3.1.1 Related work

Aggregate queries have been first studied for relational databases before being
integrated in other knowledge representation frameworks. In Klug [1982], these
queries are formulated with the standard relational query language SQL1 (see
e.g. Ullman [1988] for a presentation of SQL) and allow to aggregate the values
from selected entries of a relational table. The expressive power of SQL has
notably drawn attention due to the support of these aggregate operators [Libkin,

1https://www.iso.org/standard/63555.html

26 Q. Manière

https://www.iso.org/standard/63555.html

3. Counting Conjunctive Queries

2003]. Similar aggregate features have also been investigated in the RDF query
language SPARQL2 [Kaminski et al., 2016], and are now supported by modern
implementations such as RDFox3 [Nenov et al., 2015]. The upcoming standard for
querying graph databases GQL4, inspired, among others, by both standards SQL
and SPARQL, plans to integrate aggregate features too [Deutsch et al., 2021].

Answering aggregate queries over inconsistent databases has also received
attention: in Arenas et al. [2003], a range semantics is proposed to bound the
answers of an aggregate query across the repairs of a database violating some
functional dependencies (with the notion of answer in a repair defined as in the
relational setting).

Aggregate query answering over incomplete data is also addressed. In presence
of conditional tables, that allow to manipulate unknown or missing information in
relational databases by specifying various conditions on entries whose exact values
are unknown, data can still be aggregated, resulting in an answer being itself a
conditional table [Lechtenbörger et al., 2002]. In presence of source-to-target tuple-
generating dependencies (s-t tgds), various semantics have been proposed in Afrati
and Kolaitis [2008] to account for the possible nulls that may arise. It is worth
mentioning that their count operator, denoted count(∗) in the reference, is allowed
to count null elements in the considered models (while other aggregate operators
simply drop these nulls), and that the complexity of deciding model-independent
bounds on these count numbers is in P due to the restricted retained notion of
models (endomorphisms of the canonical model, for the interested reader).

The rule-based language Datalog [Ceri et al., 1990; Ullman, 1988] has also been
extended with aggregate operators. They have indeed been studied to enrich the
expressive power of rules expressed in Datalog [Consens and Mendelzon, 1993], or
in disjunctive Datalog with a notable implementation in the DLV system [Dell’Armi
et al., 2003]. More recently, restrictions of DatalogZ, an extension of Datalog which
captures many data aggregation tasks by allowing arithmetic functions over integers
at the cost of undecidability, have been studied to regain decidability, resulting in
the fragment Limit DatalogZ [Cuenca Grau et al., 2020] whose expressive power
has been further studied [Kaminski et al., 2021].

Integration of aggregate functions in another prominent rule-based declarative
language, namely Answer Set Programming (ASP), has also drawn particular
attention as it notably extends ASP with the possibility to express functional
dependencies (see [Gelfond and Lifschitz, 1991] for the original semantics underlying
ASP and [Brewka et al., 2011] for a more recent presentation). Several semantics
have been proposed to handle more and more forms of aggregates: monotone and

2https://www.w3.org/TR/sparql11-query/
3https://docs.oxfordsemantic.tech/
4https://www.iso.org/standard/76120.html

Counting Queries in Ontology-Based Data Access 27

https://www.w3.org/TR/sparql11-query/
https://docs.oxfordsemantic.tech/
https://www.iso.org/standard/76120.html

3.1. Preliminaries

convex aggregates [Liu and Truszczynski, 2006], non-negated aggregates [Faber
et al., 2011; Ferraris, 2011], or aggregate over conditional expressions [Cabalar
et al., 2020].

Apart from the mentioned exception of Afrati and Kolaitis [2008], all the above
works do not involve elements that are unknown in the original data, while such
anonymous elements are one of the main features the OMQA framework aims to
take into account. We recall that, in this thesis, our attention focuses on this latter
setting and notably differs from the presented works so far as we adopt the open
domain and open world assumptions, in particular with expressive DLs that often
rely on elements outside of the original data to be satisfiable.

Closer to the realm of description logics, some attempts have been made to
enrich the ontology language with aggregate operators (e.g. by allowing concepts
that already perform aggregate operation). Equipping the well-known DL ALC
with such features quickly leads to undecidable basic reasoning tasks such as
satisfiability and subsumption [Baader and Sattler, 2003], while the situation is
more favorable when extending the less expressive DL-Lite family [Artale et al.,
2012; Savkovic and Calvanese, 2012; Hernich et al., 2017]. By contrast, in this
thesis, we investigate the impact of counting features on the query language rather
than on the ontology language.

In the OMQA framework, a first exploration of aggregate queries was conducted
by Calvanese et al. [2008]. They argued that the most straightforward adaptation
of classical certain answer semantics to aggregate queries was unsatisfactory, as
often values would differ from model to model, leading to no certain answers. For
this reason, an epistemic semantics was proposed, in which variables involved in
the aggregates are required to match to data constants. However, as discussed in
Kostylev and Reutter [2015], this semantics can also give unintuitive results by
ignoring ways of mapping aggregate variables to anonymous elements inferred due
the ontology axioms. For instance, if no children of alex are listed in the data, then
a query that asks to return the number of children will yield 0 under epistemic
semantics, even if it can be inferred (e.g. due to a family tax benefit) that there
must be at least 3 children. This led Kostylev and Reutter to define an alternative
semantics for two kinds of counting queries (inspired by the Count and Count
Distinct in SQL) which adopts a form of certain answer semantics but considers
lower and upper bounds on the count value across different models. This latter
semantics relates to those explored for aggregate queries over inconsistent databases,
in Arenas et al. [2003], and for data exchange, in Afrati and Kolaitis [2008].

The semantics by Kostylev and Reutter was adopted in later work by Calvanese
et al. [2020a], in which DL-Lite ontologies coupled with various restrictions on the
counting query shape have been explored. In this latter reference and in Calvanese
et al. [2020c], a rewriting procedure is also provided for connected and rooted

28 Q. Manière

3. Counting Conjunctive Queries

counting queries, based upon the canonical model being sufficient to decide the
problem in this particular setting.

Interestingly, techniques to decide the multiplicity of an answer for a rooted CQ
with respect to bag semantics, notably investigated in Nikolaou et al. [2019], are
similar to those investigated for rooted counting CQs with respect to set semantics.
However, no immediate reduction from one setting to the other seems possible, as
discussed in Calvanese et al. [2020a] (see Example 1 in the reference).

Another recent study by Feier et al. [2021] classifies the complexity of counting
the number of certain answers (rather than the number of ways a certain answer
is obtained) for guarded existential rules. This notably gives lower bounds on
the number of answers that might be relevant when allowed to also count outside
individual elements, but the converse is false in general (see the discussion following
Example 6, later in this chapter).

Instead of counting the (certain) answers, a closely related approach consists of
enumerating them, a topic that has been extensively studied in the database setting
(see for example the survey [Berkholz et al., 2020]). In enumeration, a preprocessing
phase is allowed after which answers must be returned with a permitted delay
between two successive answers, the efficiency of the enumeration being measured
according to the lengths of both the preprocessing phase and the delay. A recent
study by Lutz and Przybylko [2022] studied the enumeration of certain answers to
CQs over ontologies expressed in ELI or as a set of guarded-TGDs.

3.1.2 Semantics of counting conjunctive queries

We propose a new notion of counting CQ that generalizes the two forms of queries
from Kostylev and Reutter [2015], hence also those considered in Calvanese et al.
[2020a].

Definition 15. A counting conjunctive query (CCQ) takes the form

q(x) = ∃y ∃z ψ(x,y, z),

where x,y, z are tuples of answer, existential, and counting variables, respectively,
and ψ is a conjunction of concept and role atoms with terms from NI ∪ x ∪ y ∪ z.
We use terms(q) for the set of all terms occurring in q, and we treat queries as sets
of atoms when convenient. A CCQ q is Boolean if x = ∅.

The usual notion of conjunctive queries (CQ) is captured by CCQs without
counting variables, i.e. z = ∅. The counting queries studied in Kostylev and Reutter
[2015] were CCQs restricted by |z| = 1, denoted q(x, Cntd(z)) in the reference, and
CCQs restricted by y = ∅, denoted q(x, Count()) in the reference. Calvanese et al.
[2020a] continued the study of the latter subclass of CCQs.

Counting Queries in Ontology-Based Data Access 29

3.1. Preliminaries

The CQ obtained by replacing each counting variable of a CCQ by a fresh
existential variable is referred to as the underlying CQ of the CCQ . For readability,
it is convenient to represent a CCQ q as a graph: each term t is represented by
a vertex vt labeled by t and by concept names A such that A(t) ∈ q, and an
oriented edge (vt1 , vt2) labeled with P is added for each atom P(t1, t2) ∈ q. To
easily distinguish the status of each term (and often to omit the name of the term),
the node vt is depicted as • if t ∈ Ind ∪ x, as ◦ if t ∈ y, and as if t ∈ z.

Example 5. Let us illustrate the notion of CCQ with a toy example, inspired by
Bienvenu and Ortiz [2015]. A logician enters a vegetarian-friendly and kid-friendly
restaurant r in which the menu is partially ripped off, so that only the following
facts are readable, here encoded as an ABox Ae:

VegFriendly(r) GivesChoice(m1, carb) WithMeat(carb)
KidFriendly(r) GivesChoice(m2, carb)
Offers(r,m1) GivesChoice(m2, regi) WithMeat(regi)
Offers(r,m2) GivesChoice(m2, tira) Dessert(tira)
Menu(m1) GivesChoice(m2, baba)

Dessert(baba)
Menu(m2) WithAlcohol(baba)

The ABox Ae is depicted in Figure 3.1.

regi WithMeat

carb WithMeat

tira Dessert

baba
Dessert

WithAlcohol

r
KidFriendly

VegFriendly

m2

Menu

m1

Menu

Offe
rs

Offers

GivesChoice

Giv
esC

hoic
e

GivesChoice

GivesCh
oice

GivesChoice

Figure 3.1: The ABox Ae from Example 5.

Furthermore, clients can expect some general principles to hold, encoded in the
following ALC TBox Te:

Menu ⊑ ∃GivesChoice.MainDish ⊓ ∃GivesChoice.Dessert
VegFriendly ⊑ ∃Offers.(Menu ⊓ ∀GivesChoice.¬WithMeat)
KidFriendly ⊑ ∃Offers.(Menu ⊓ ∀GivesChoice.¬WithAlcohol)
WithMeat ⊑ MainDish

MainDish ⊓Dessert ⊑ ⊥

Our logician wonders how many combinations of dish z1 and dessert z2 can be
ordered in this restaurant r as long as each such combination is permitted within

30 Q. Manière

3. Counting Conjunctive Queries

some menu y. This can be seen as evaluating the following CCQ qe, also depicted
in Figure 3.2, over the KB Ke := (Te,Ae):

qe := ∃y ∃z1 ∃z2 Offers(r, y) ∧Menu(y) ∧GivesChoice(y, z1) ∧MainDish(z1)
∧GivesChoice(y, z2) ∧Dessert(z2)

•r ◦
y

Menu

z1

MainDish

z2

Dessert

Offers Give
sCho

ice

GivesChoice

Figure 3.2: The query qe from Example 5.

The query qe is Boolean and y being an existential variable means that a value
for the pair (z1, z2) obtained from two different menus should only be counted once.

The answers to a CCQ in a fixed model I are defined using counting matches,
which are defined similarly to the classical notion of matches for a (plain) CQ, but
are then restricted to the counting variables from z.

Definition 16. A match for a CCQ q in an interpretation I is a homomorphism
from q into I, i.e. a function π that maps each term in q to an element of ∆I such
that π(t) = t when t ∈ NI, π(t) ∈ AI for every A(t) ∈ q, and (π(t), π(t′)) ∈ PI for
every P(t, t′) ∈ q. If a match π maps x to a, then the restriction of π to z is called
a counting match (c-match) of q(a) in I.

The usual problem of CQ answering is to decide whether there exists a match
in every model of the KB of interest. With counting conjunctive queries, we are
interested in how many counting matches exist in such models. However, the exact
number from a model to another might vary, especially since ontologies expressed
with ALCHI cannot constrain the size of the models:

Proposition 1. If a CCQ q is satisfied in a model of an ALCHI KB K and z ̸= ∅,
then there exists a model of K with an infinite number of counting matches for q.

Proof. Let I be a model of K := (T ,A) in which q is satisfied. Let ρk be the
mapping renaming an element e into ek. Let I∞ be the interpretation with domain
∆I∞ :=

⋃+∞
k=0 ρk(∆

I), which interprets each individual a as a0 (slightly abusing the
SNA), and each concept name A and role name P as follows:

AI∞ :=
+∞⋃
k=0

ρk(A
I) PI∞ :=

+∞⋃
i=0

+∞⋃
j=0

(ρi × ρj)(PI)

Counting Queries in Ontology-Based Data Access 31

3.1. Preliminaries

Since I∞ embeds in I by dropping all indexes and that I embeds in each layer
Ik := ρk(I) of I∞, it is easily verified that I∞ is a model of the ALCHI KB K and
that the counting match π : z→ ∆I yields an infinite number of distinct counting
matches πk := ρk ◦ π in I∞ (recall z ̸= ∅).

Therefore, a notion of certain answer requiring that there exist exactly n
counting matches for q in every model K will likely return false for every integer n.
To address this issue, we follow Kostylev and Reutter [2015] and consider bounds
on the exact number of counting matches. More precisely, answers to a CCQ in a
model are all intervals bounding the exact number of counting matches.

Definition 17. The set of answers to q in I, denoted qI, contains all pairs
(a, [m,M]), with m,M ∈ N ∪ {+∞}, such that the number of distinct counting
matches of q(a) in I belongs to the interval [m,M].

Importantly, these bounds are taking into consideration counting matches that
are mapping counting variables z outside of individual elements of I. Hence these
elements may not be shared across models, as opposed to values of the answer
variables x. It does not cause any issue to define certain answers as we are only
interested in (bounds on) the number of such counting matches from a model
to another. Furthermore, let us emphasize those bounds hold on the number of
counting matches, not on the number of matches, treating equally a counting match
obtained from a single match and a counting match obtained from an eventually
infinite number of matches. Notice the pair (a, [0,+∞]) is always an answer, for
any suitable a, over any interpretation as [0,+∞] is a trivial bound on the number
of counting matches. The notion of certain answer is then defined as usual certain
answers for CQs, that is as the intersection of answers across all models:

Definition 18. A certain answer to q w.r.t. K is an answer in every model of K,
that is a pair from

⋂
I|=K q

I. In particular, if K is unsatisfiable, then all couples
(a, [m,M]), with a ∈ Ind(A) and m,M ∈ N ∪ {+∞}, are certain answers.

Let us illustrate the notions of matches, counting matches, answers and certain
answers with the following example, which is a continuation of Example 5.

Example 6 (Example 5 continued). Two models I1e and I2e of the KB Ke are
depicted in Figures 3.3 and 3.4. Matches and counting matches of qe in each model
are presented in Table 3.2. The number of counting matches in I1e is 5, while it is
6 in I2e .

In the model I2e , there equal numbers of matches and counting matches, but this
doesn’t hold in general as illustrated by model I1e . In the latter, we indeed retain
a single occurrence of the pair (carb, tira) even though it can be obtained in two
different ways by mapping the existential variable y to either m1 or to m2.

32 Q. Manière

3. Counting Conjunctive Queries

regi
MainDish

WithMeat

carb
MainDish

WithMeat

tira Dessert

baba
Dessert

WithAlcohol

d MainDish

r
KidFriendly

VegFriendly
m2

Menu

m
Menu

m1

Menu

Offe
rs

Offers

Offers

GivesChoice
GivesChoice

Giv
esC

hoic
e

GivesChoice

GivesCh
oice

GivesChoice

GivesChoice
GivesCh

oice

Figure 3.3: Model I1e from Example 6.

regi MainDish

WithMeat

carb
MainDish

WithMeat

tira Dessert

baba
Dessert

WithAlcohol

w1 Dessert

w2 MainDish

w3 Dessert

r
KidFriendly

VegFriendly

m2

Menu

m
Menu

m1

Menu

Offe
rs

Offers

Offers

GivesChoice
GivesCh

oice

Giv
esC

hoic
e

GivesChoice
GivesCh

oice

GivesChoice

GivesChoice
GivesChoice

Figure 3.4: Model I2e from Example 6

The answers to qe in I1e are precisely those intervals containing 5, hence the
pair (∅, [6,+∞]) is not an answer in I1e , while it is an answer in I2e . It follows
that (∅, [6,+∞]) is not a certain answer. The pair (∅, [5, 7]) is an answer in both
models I1e and I2e , but one can easily come up with another model containing, say,
8 matches, proving that (∅, [5, 7]) is not a certain answer.

It is not hard to see that (∅, [4,+∞]) is a certain answer as the 4 common
matches of I1e and I2e (those involving menu m2) are actually entailed by the KB
and hence yield 4 distinct counting matches in every model (recall that models are
required to comply with the unique name assumption). Interestingly, this lower
bound of 4 can be obtained by counting the certain answers of the usual CQ q′e(x1, x2)
obtained by considering our CCQ qe in which we replace the two counting variables
z1 and z2 by answer variables x1 and x2.

Counting Queries in Ontology-Based Data Access 33

3.1. Preliminaries

y z1 z2

m1 carb tira
m2 carb tira
m2 carb baba
m2 regi tira
m2 regi baba
m d baba

(a) Matches in I1e

z1 z2

carb tira
carb baba
regi tira
regi baba
d baba

(b) Counting
matches in I1e

y z1 z2

m1 carb w1

m2 carb tira
m2 carb baba
m2 regi tira
m2 regi baba
m w2 w3

(c) Matches in I2e

z1 z2

carb w1

carb tira
carb baba
regi tira
regi baba
w2 w3

(d) Counting
matches in I2e

Table 3.2: Matches and counting matches of qe in I1e and I2e

Note that a tighter certain answer exists, as (∅, [5,+∞]) is also a certain answer,
and that [5,+∞] is included in [4,+∞]. This is because the vegetarian menu that
each model must contain always yields an extra counting match as the 4 entailed
matches all involve non-vegetarian main dishes.

To conclude this example, notice that Ke admits universal models in all of which
model I2e embeds. From the above discussion, it follows (∅, [6,+∞]) not being a
certain answer for qe cannot be determined by considering universal models of Ke.
This is in contrast with CQ answering, for which we know that the certain answers
are precisely the answers in any universal model, whenever such a model exists.

The connection mentioned in Example 6 between counting the certain answers
of a usual CQ, a reasoning task notably explored in Feier et al. [2021], and the
proposed notion of certain answers for CCQ actually holds in general: if m is the
number of certain answers of the CQ q(x, z) = ∃y ϕ(x,y, z) mapping x to a, then
(a, [m,+∞]) is a certain answer to the CCQ q(x) = ∃y ∃z ϕ(x,y, z). The converse
is not true in general.

Example 6 may have convinced the reader that the notation of answers and
certain answers as pairs is cumbersome. It should hence be a relief that, as usual,
it is sufficient to consider the Boolean case: (a, [m,M]) is a certain answer to a
CCQ q(x) iff (∅, [m,M]) is a certain answer to the Boolean CCQ q(a) obtained by
replacing x with a. Thus, from now on, we focus on Boolean CCQs, and work with
answers and certain answers [m,M] in place of (∅, [m,M]).

Furthermore, and as already mentioned in Remark 1, ALCHI cannot restrict
the size of models, hence the least upper bound M in a certain answer [m,M] is:

- 0 if the underlying CQ is unsatisfiable w.r.t. T ;

- 1 if q has a match in every model but z = ∅;

34 Q. Manière

3. Counting Conjunctive Queries

- +∞ otherwise.

As the first two cases can be readily handled using existing techniques, we focus on
identifying certain answers of the form [m,+∞].

Remark 4. The question of upper bounds M , that we have so quickly dismissed in
the ALCHI setting, arises naturally in closely related contexts, for example when
considering functionality axioms in the ontology or dealing with closed predicates.
It is for this reason that we chose to present our semantics with intervals of the
form [m,M] rather than directly focusing on intervals [m,+∞].

3.1.3 Decision problems

CCQ answering Given a ALCHI knowledge base K = (T ,A), a Boolean CCQ
q, and an integer m ≥ 0 (in binary), we are interested in the complexity of deciding
whether [m,+∞] is a certain answer to q w.r.t. K. We refer to this decision problem
as CCQ answering and consider the two usual complexity measures: combined
complexity which is in terms of the size of the whole input, and data complexity
which is only in terms of the size of A and m (T and q are treated as fixed).

Recall that if O is a TBox, ABox, KB, or CCQ, then the size of O, denoted
|O|, is the number of occurrences of concept and role names in O and that m is
written in binary. This latter point will not appear crucial in the present chapter
as reductions involved in the proofs of lower complexity bounds happen to only
construct polynomially large such integers m w.r.t. the size of the instance of the
reduced decision problem, if not constant (e.g. for data complexity). In the two
following chapters, however, several reductions strongly require a binary encoding
of these integers m.

When deciding whether a given [m,+∞] is a certain answer for some CCQ over
some KB, we use the term of countermodel to refer to a model with less than m
counting matches. Similarly, an optimal model is a model minimizing the number
of counting matches.

Tightest variant The definition of certain answers implies that if [m,+∞] is a
certain answer, then so is [m′,+∞], for every m′ ≤ m. It is naturally of interest to
focus on certain answers providing the greatest m, i.e., the tightest certain answer
[mopt,+∞], being the intersection of all certain answers. Given the same input
as CCQ answering, we refer to the problem of deciding if [m,+∞] is the tightest
certain answer as tight CCQ answering.

This optimization variant has already been formulated as an open question
in Kostylev and Reutter [2015], in presence of coNP-complete situations for CCQ
answering over DL-LiteHcore KBs w.r.t. data complexity. We close these questions

Counting Queries in Ontology-Based Data Access 35

3.2. Interlacings

in Subsection 3.5.3 and prove tight CCQ answering is DP-complete not only in the
settings considered in Kostylev and Reutter [2015] but also for EL ontologies.

Remark 5. Notice [m,M] being the tightest certain answer doesn’t imply that for
all n ∈ [m,M] there exists a model containing exactly n matches. Consider the
Boolean query qA×A := ∃z1 ∃z2 A(z1) ∧A(z2) for any concept name A, evaluated
over the empty KB. The number of counting matches of qA×A in an interpretation
I is

∣∣AI
∣∣2 and therefore only perfect squares can be reached despite [0,+∞] being

the tightest certain answer. Interestingly, this could motivate a more general setting
in which answers and certain answers allow more refined subsets of integers instead
of intervals [m,M].

3.2 Interlacings

Looking to existing DL-Lite approaches [Kostylev and Reutter, 2015], we observe
that the high-level idea to answer CCQs is to start from an arbitrary optimal
model I and merge its elements so as to reduce its size, while at the same time not
introducing any new query matches. This ensures that if a countermodel exists for
the candidate integer m, then there exists one with size at most the size of the model
obtained when merging the initial optimal model. This technique allowed Kostylev
and Reutter [2015] to obtain, in combined complexity, a coN2EXP algorithm for
answering the two subclasses of CCQs they considered over DL-LiteHcore, refined
into a coNEXP algorithm over DL-Litecore, and also yielding a coNP upper bound
in data complexity.

But how can we decide which elements of the starting model I can be safely
merged? We observe that they proceed in two steps. First, they define an
intermediate model I ′ (called interleaving) that, informally, retains the useful parts
of I (i.e., those involved in query matches or needed to satisfy the ABox) and
replaces the rest with tree-shaped structures taken from the corresponding parts of
the canonical model. With this more structured countermodel I ′, it is easier to
identify, via a well-chosen equivalence relation, the elements that behave similarly
and thus can be safely merged. In a second step, elements of I ′ from the same
equivalence class are merged to obtain the desired bounded-size countermodel.

A naïve adaptation of the DL-Lite approach to ALCHI fails at the very first
step as the existence of a canonical model is not guaranteed. Furthermore, even
when a canonical models exists, due to conjunction in the LHS of concept inclusions,
for example in EL TBoxes, the interleaving need not be a model as the next example
illustrates. Generally speaking, the issue is that the canonical model may not
contain elements witnessing conjunctions of concepts that occur in the initial
countermodel, so it is not enough to copy over parts of the canonical model.

36 Q. Manière

3. Counting Conjunctive Queries

Example 7. Consider the EL KB K0 whose ABox only contains the assertion A(a)
and whose TBox contains the four following axioms:

A ⊑ ∃R.B A ⊑ ∃R.C B ⊑ D C ⊑ D B ⊓ C ⊑ ∃R.A

A countermodel I0 for integer 2 and CCQ q0 := ∃z D(z) over K0 is depicted
on Figure 3.5a. It contains a single counting match: z 7→ δ. The canonical model
CK0 of K0 is depicted on Figure 3.5b and embeds in the countermodel through the
homomorphism f0 : a 7→ a, a · R.{B,D} 7→ δ, a · R.{C,D} 7→ δ. The interleaving
as defined in Kostylev and Reutter [2015] considers the interpretation obtained
from CK0 by merging together elements u, v from ∆CK0 iff f0(u) = f0(v) and this
element of I0 is reached by a counting match of I0. In our case, it holds that
f0(a · R.{B,D}) = f0(a · R.{C,D}) = δ and that δ is reached by a counting match,
hence the interleaving depicted on Figure 3.5c. This latter interpretation violates
axiom B ⊓ C ⊑ ∃R.A, hence fails to be a model of K0.

aA

δB,C,D

αA

R
R

R
(a) Countermodel

aA

a · R.{B,D}
B

a · R.{C,D}
C

R
R

(b) Canonical model

aA

δ

B,C

R

(c) Interleaving

Figure 3.5: DL-Lite interleaving applied on the EL KB K0

In this section, we present a family of models of a KB K that is built from
a starting model of interest I. The construction proceeds in two steps. First, it
unfolds I into a tree-shaped domain called the existential extraction which keeps
track of the RHS existential concepts satisfied in I. This existential extraction
embeds in the initial model I through a mapping f . Second, it folds back parts of
the existential extraction according to a parameter f ′ being a function allowed to
merge together elements u and v of the existential extraction, i.e. f ′(u) = f ′(v),
only if f(u) = f(v). This condition is sufficient to ensure that the resulting
interpretation, called the f ′-interlacing of I, is a model of K.

Depending on the chosen function f ′, the f ′-interlacing may retain desirable
features of the initial model I. By choosing f ′ := Id, we show that the resulting
interlacing can be collapsed into a finite model with at most exponential size, which
provides a countermodel for large values of the candidate integer m when evaluating
a CCQ q over K.

Counting Queries in Ontology-Based Data Access 37

3.2. Interlacings

To handle the remaining values of m, we further explore another function
f ′ := f ∗ whose corresponding interlacing has at most as many counting matches
as the initial model I, but also partially inherits from the tree-shaped structure of
the existential extraction. This latter f ∗-interlacing motivates the 2EXP procedure
presented in the next section and allows us to build finite models that minimize
the number of matches.

Other interlacings, obtained via refined functions f ′, will further prove useful
to answer rooted CCQs (see Chapter 4).

To illustrate the various constructions presented in this section and the next
one, we rely on the following KB Ke and CCQ qe as a running example.

Example 8. Let Ke be the KB whose ABox A only contains the assertion A(a)
and whose ontology T contains the following axioms:

A ⊑ ∃R.A′ B ⊑ B′ ⊔D D ⊑ ∃S.D A ⊓ B ⊑ ⊥
A′ ⊑ ∃R.A B′ ⊑ ∃R.C C ⊑ ∃S.A R ⊓ R− ⊑ ⊥
A′ ⊑ ∃R.B B′ ⊑ ∃T.D C ⊑ ∃S.B D ⊓ ∃R−.A′ ⊑ ⊥

A model Ie of Ke is depicted on Figure 3.6. Consider the Boolean CCQ qe :=
∃y1 ∃y2 ∃z R(y1, y2) ∧ S(y2, z), which admits 2 counting matches in Ie, mapping
respectively z to a or to ε.

a

A

εB,D

α1

A′

α3

A′

α2A α4 A β B,B′

γ

C

δD
R

R

R

R

R

R

R

T

SS

S

S

R

R

Figure 3.6: Model Ie of Ke

38 Q. Manière

3. Counting Conjunctive Queries

3.2.1 Existential extraction

We fix a satisfiable ALCHI KB K := (T ,A) and a model I of K. The definition
of existential extraction uses the alphabet Ω consisting of all R.A such that ∃R.A
is the RHS of an axiom in T . Furthermore, it assumes that, for every R.A ∈ Ω, we
have chosen a function succIR.A that maps every element e ∈ (∃R.A)I to an element
e′ ∈ ∆I such that (e, e′) ∈ RI and e′ ∈ AI .

Definition 19. Over the set Ind(A) · Ω∗, inductively build the following mapping:

f : Ind(A) · Ω∗ → ∆I ∪ {↑}
a 7→ a

w · R.A 7→
{
↑ if f(w) = ↑ or f(w) /∈ (∃R.A)I
succIR.A(f(w)) otherwise

where ↑ is a fresh symbol witnessing the absence of a proper image for an element of
Ind(A) ·Ω∗. The existential extraction5 of I is ∆◦ := {w | w ∈ Ind(A) ·Ω∗, f(w) ̸=
↑}. Slightly abusing the notation, the mapping f|∆◦ : ∆◦ → ∆I is also denoted f
for readability.

Remark 6. ∆◦ can be seen as the domain of a form of unravelling of I starting
from Ind(A), in which we only follow the selected successors for the RHS existential
concepts.

Example 9. For Ke, we have Ω := {R.A,R.A′,R.B,R.C, S.A, S.B, S.D,T.D}. We
chose succIeR.A′(a) := α1, one could have also chosen α3. All the other choices of
successors in Ie are unique. The existential extraction ∆◦

e of Ie is depicted on
Figure 3.7 as a directed graph: an element w belongs to ∆◦

e iff there exists a path
p from the node a to a node nw that produces w when concatenating a with the
encountered labels along p. For example, element a · R.A′ · R.B belongs to ∆◦

e

while a · R.A′ · R.A′ doesn’t. Notice ∆◦
e is infinite. The image of an element w

by f is indicated as (f(w)) on the node nw. Hence f(a · R.A′ · R.B) = β and
f(a · R.A′ · R.B · R.C · S.A) = a.

As illustrated by the above example, existential extractions contain many
regularities. In particular, the branches issuing from two elements of an existential
extraction that map on the same element in the starting model are similar. This is
formalized by the following lemma.

Lemma 1. Let u, v ∈ Ind(A) · Ω∗ such that f(u) = f(v). For all w ∈ Ω∗, we have
f(u · w) = f(v · w); hence in particular u · w ∈ ∆◦ iff v · w ∈ ∆◦.

5While the definitions of f , ∆◦, and later constructions depend on the choice of successor
functions, all choices lead to the desired result.

Counting Queries in Ontology-Based Data Access 39

3.2. Interlacings

a(a)

(α1)

R
.A

′
(α2) (β)

R.A R.B

(α3) (δ) (γ)
R.A ′ R.

CT.D

(α4) (β) (δ) (a) (ε)

R
.A

S
.D

S.A

S.
B

R
.B

(α1) (δ) (α1) (δ)(δ) (γ)

R
.A ′

S
.D

R
.A

′

S
.D

R
.C

T
.D

(α2) (β) (δ) (α2) (β) (δ)(δ) (a) (ε)

R
.A

R
.B S
.D

R
.A

R
.B S
.D

S
.A

S
.BS
.D

··
·

··
·
· ·
·

··
·

··
·
· ·
·

··
·
· ·
·

··
·

··
·

··
·

··
·

Figure 3.7: A representation of f and of the existential extraction of Ie

Proof. We proceed by induction on w ∈ Ω∗. For w being the empty word, it is
trivial. Assume now it holds for w and consider w ·R.A. Observe that the definition
of f(u · w · R.A) only depends on f(u · w), which is equal to f(v · w) by induction
hypothesis. Therefore f(u · w · R.A) yields the same value as f(v · w · R.A).

3.2.2 A family of models: interlacings

Consider a satisfiable ALCHI KB K := (T ,A), a model I of K and ∆◦ an
existential extraction ∆◦ of I for some choice of successors in I. We recall that
f : ∆◦ → ∆I denotes the mapping built along the domain ∆◦. We proceed to
define f ′-interlacings, parametrized by a function of interest f ′.

Definition 20. The f ′-interlacing I ′ of I is the interpretation whose domain is

40 Q. Manière

3. Counting Conjunctive Queries

∆I′
:= f ′(∆◦) and which interprets concept and role names as follows:

AI′
:= {f ′(u) | u ∈ ∆◦, f(u) ∈ AI}

PI′
:= {(a, b) | a, b ∈ Ind(A) ∧ K |= P(a, b)} (▽0)
∪ {(f ′(u), f ′(u · R.B)) | u, u · R.B ∈ ∆◦ ∧ T |= R ⊑ P} (▽+)
∪ {(f ′(u · R.B), f ′(u)) | u, u · R.B ∈ ∆◦ ∧ T |= R− ⊑ P} (▽−)

Intuitively, the Id-interlacing is the interpretation with domain ∆◦ with concepts
imported from I and roles interpreted in a tree-shaped manner (apart from the
ABox part) issuing from the occurring successors in I. The f ′-interlacing is then
the image of the Id-interlacing by f ′. In particular, by setting f ′ := f , we obtain
the f -interlacing being a sub-interpretation of the original model I.

Notice the interpretation of roles is mainly defined from the existential extraction,
which is similar in spirit to the interpretation of roles in the canonical model when
it exists, and relates to the original model as follows:

Lemma 2. For all u, v ∈ ∆◦ and all role R ∈ N±
R , if (f ′(u), f ′(v)) ∈ RI′, then

(f(u), f(v)) ∈ RI.

Proof. Let u, v ∈ ∆◦ and R ∈ N±
R such that (f ′(u), f ′(v)) ∈ RI′ . We distinguish

the three cases from definition of RI′ :

▽0. We have u, v ∈ Ind(A) and K |= P(u, v). In particular f(u) = u and f(v) = v,
and since I is a model, it immediately gives (f(u), f(v)) ∈ RI .

▽+. There exists P.B ∈ Ω such that T |= P ⊑ R and v = u · P.B. Since
u·P.B ∈ ∆◦, we have that succIP.B(f(u)) is defined and the definition of f yields
f(v) = succIP.B(f(u)). By definition of succIP.B(f(u)), we have in particular
(f(u), f(v)) ∈ PI . Since I is a model, it now ensures (f(u), f(v)) ∈ RI .

▽−. There exists P.B ∈ Ω such that T |= P− ⊑ R and u = v · P.B. Since
v·P.B ∈ ∆◦, we have that succIP.B(f(v)) is defined and the definition of f yields
f(u) = succIP.B(f(v)). By definition of succIP.B(f(v)), we have in particular
(f(v), f(u)) ∈ PI . Since I is a model, it now ensures (f(u), f(v)) ∈ RI .

In general, the f ′-interlacing may not be a model of K. For example if the
function f ′ maps two elements u and v on a same element e := f ′(u) = f ′(v), and
that u ∈ AI and v ∈ BI for some concepts A and B such that T |= A ⊓ B ⊑ ⊥,
then the element e satisfies both A and B in f ′(I), proving the latter is not a
model of K. We hence explore a sufficient condition ensuring modelhood, namely
pseudo-injectivity of f ′, which intuitively requires the function f ′ not to merge
together elements that are not already merged by the function f .

Counting Queries in Ontology-Based Data Access 41

3.2. Interlacings

Definition 21. A function f ′ : ∆◦ → E is pseudo-injective if: for all u, v ∈ ∆◦, if
f ′(u) = f ′(v), then f(u) = f(v).

Under this condition, we obtain modelhood but also prove that such a f ′-
interlacing embeds in I.

Theorem 4. If f ′ : ∆◦ → E is pseudo-injective, then I ′ is a model of K and the
following mapping is a homomorphism from I ′ to I:

σ : ∆I′ → ∆I

f ′(u) 7→ f(u)

Notice that f ′ being pseudo-injective ensures σ is indeed well-defined.

Proof. We start by showing that I ′ is a model, by considering each possible shape
of assertions and axioms (recall that T is in normal form):

A(a). Since I is a model, we have f(a) = a ∈ AI . Therefore, the definition
of AI′ gives f ′(a) = a ∈ AI′ .

P(a, b). Setting P0 := P in Case ▽0 of the definition of PI′ yields (f ′(a), f ′(b)) =
(a, b) ∈ PI′ .

⊤ ⊑ A. Let u ∈ ⊤I′
= ∆I′ . By definition of ∆I′ , there exists u0 ∈ ∆◦ such

that f ′(u0) = u. Since f(u0) ∈ ⊤I and I is a model, it ensures
f(u0) ∈ AI . Therefore u = f ′(u0) ∈ AI′ .

A1 ⊓ A2 ⊑ A. Let u ∈ (A1 ⊓ A2)
I′ . By definition of AI′

1 and AI′
2 , there exists

u1, u2 ∈ ∆◦ with f ′(u1) = f ′(u2) = u and such that f(u1) ∈ AI
1 and

f(u2) ∈ AI
2 . Since f ′ is pseudo-injective, it yields f(u1) = f(u2),

hence f(u1) ∈ (A1 ⊓ A2)
I . Since I is a model, it ensures f(u1) ∈ AI .

Recalling f ′(u1) = u, we obtain u ∈ AI′ .

A ⊑ ∃R.B. Let u ∈ AI′ . By definition there exists v ∈ ∆◦ with f ′(v) = u and
such that f(v) ∈ AI . Since I is a model, it ensures succIR.B(f(v)) is
defined. Therefore v ·R.B ∈ ∆◦ and element w := f ′(v ·R.B) satisfies:

- (u,w) ∈ RI′ since (u,w) = (f ′(v), f ′(v · R.B));
- w ∈ BI′ since f(v ·R.B) = succIR.B(f(v)) ∈ BI and f ′(v ·R.B) =
w.

Hence u ∈ (∃R.B)I′ .

42 Q. Manière

3. Counting Conjunctive Queries

∃R.B ⊑ A. Let u ∈ (∃R.B)I′ , that is there exists v ∈ BI′ with (u, v) ∈ RI′ . By
definition of ∆I′ , there exists u0 ∈ ∆◦ such that f ′(u0) = u, and
by definition of BI′ there also exists v0 ∈ ∆◦ such that f ′(v0) = v
and f(v0) ∈ BI . Notice (f ′(u0), f

′(v0)) ∈ RI′ hence Lemma 2 gives
(f(u0), f(v0)) ∈ RI . Therefore f(u1) ∈ (∃R.B)I . Since I is a model,
it ensures f(u1) ∈ AI , yielding u = f ′(u1) ∈ AI′ .

A ⊑ ¬B. By contradiction, assume u ∈ AI′ ∩ BI′ . By definition there exists
v, w ∈ ∆◦ with f ′(v) = f ′(w) = u and such that f(v) ∈ AI and
f(w) ∈ BI . Since f ′ is pseudo-injective, we obtain f(v) = f(w).
Hence f(v) ∈ AI ∩ BI , contradicting I being a model.

¬B ⊑ A. Let u ∈ ¬BI′
. By definition of ∆I′ , there exists v ∈ ∆◦ such that

f ′(v) = u. Since u /∈ BI′ , we have f(v) /∈ BI . Hence I being a model
gives f(v) ∈ AI , yielding by definition u = f ′(v) ∈ AI′ .

P ⊑ R. Let (u, v) ∈ PI′ . By definition of ∆I′ , there exists u0, v0 ∈ ∆◦ such
that f ′(u0) = u and f ′(v0) = v. In case ▽0 from the definition of
PI′ we have K |= P(u, v), hence K |= R(u, v) and (u, v) ∈ RI′ by
definition of RI′ . Otherwise both cases ▽+ and ▽− provides a subrole
P0 ∈ N±

R of P, hence also of R, which triggers the corresponding case
for RI′ and ensures (u, v) ∈ RI′ .

R1 ⊓ R2 ⊑ A. By contradiction, assume one can find (u, v) ∈ (R1 ⊓ R2)
I′ . By

definition of ∆I′ , there exists u0, v0 ∈ ∆◦ such that f ′(u0) = u and
f ′(v0) = v. Notice (f ′(u0), f

′(v0)) ∈ RI′
1 and (f ′(u0), f

′(v0)) ∈ RI′
2 ,

hence Lemma 2 gives (f(u0), f(v0)) ∈ RI
1 and (f(u0), f(v0)) ∈ RI

2 ,
that is (f(u0), f(v0)) ∈ (R1 ⊓ R2)

I . However, I being a model ensures
(R1 ⊓ R2)

I = ∅, hence a contradiction.

We now prove that σ is a homomorphism:

- Let u ∈ AI′ . By definition of AI′ , we have u0 ∈ A∆◦ such that f ′(u0) = u
and f(u0) ∈ AI . Remark 7 provides σ(f ′(u0)) = f(u0), hence σ(u) ∈ AI .

- Let (u, v) ∈ RI′ . By definition of ∆I′ , we have u0, v0 ∈ ∆◦ such that
f ′(u0) = u and f ′(v0) = v. Notice (f ′(u0), f

′(v0)) ∈ RI′ , hence Lemma 2
gives (f(u0), f(v0)) ∈ RI . Using Remark 7, we obtain (σ(u), σ(v)) ∈ RI .

Remark 7. It is immediate that σ ◦ f ′ = f .

Interestingly, using a very simple pseudo-injective function, this construction
allows to equip the existential extraction with an interpretation being a model.

Remark 8. Id : ∆◦ → ∆◦ is pseudo-injective, hence the Id-interlacing is a model.

Counting Queries in Ontology-Based Data Access 43

3.2. Interlacings

3.2.3 Finite models

We now exhibit a finite model IK for each satisfiable ALCHI KB K. This will
allow us to answer a CCQ q over K with candidate integer greater than |IK||q|
simply by checking satisfiability. The existence of such finite model is obtained by
merging elements from the Id-interlacing of a model of K, primarily according to
the atomic concepts they satisfy but also with some additional conditions due to
role disjointness axioms.

Theorem 5. If K := (T ,A) is a satisfiable ALCHI KB, then it admits a model
with size at most |Ind(A)|+ 3 |T | 2|T |.

Proof. Assume K admits a model I. Consider its Id-interlacing I ′. For each
element of ∆I′ , we define its size: the size |a| of an individual a is 1, the size
|w · R.B| of a non-individual element w · R.B is |w|+ 1. We now equip ∆I′ with
the following equivalence relation ∼: each individual is only equivalent to itself,
while two non-individual elements w1 · R1.B1 and w2 · R2.B2 are equivalent iff they
satisfy the same concept names, that R1.B1 = R2.B2 and |w1| = |w2| mod 3. Let
ũ denote the equivalence class of the element u w.r.t ∼ and ν : d 7→ d̃ the canonical
projection.

We claim that the interpretation M := I ′ / ∼ with domain ∆I′
/ ∼ and

interpretation function ·M := ν ◦ ·I′ is a model. Notice it has the desired number of
elements as each equivalence class is either a single individual, or fully characterized
by an integer modulo 3, a role from sig(T) and a set of concepts from sig(T).

We consider in turn each of the possible forms of assertions and axioms:

A(a). Since I ′ is a model, we have a ∈ AI′ . Therefore, the definition of AM

gives ã = a ∈ AM.

P(a, b). Since I ′ is a model, we have (a, b) ∈ PI′ . Therefore, the definition of
PM gives (ã, b̃) = (a, b) ∈ PM.

⊤ ⊑ A. Let u ∈ ⊤M = ∆M. By definition of ∆M, there exists u0 ∈ ∆I′ such
that ũ0 = u. Since u0 ∈ ⊤I′ and I ′ is a model, it ensures u0 ∈ AI′ .
Therefore the definition of AM gives u = ũ0 ∈ AM.

A1 ⊓ A2 ⊑ A. Let u ∈ (A1 ⊓ A2)
M. By definition of AM

1 and AM
2 , there exists

u1 ∈ AI′
1 and u2 ∈ AI′

2 with ũ1 = ũ2 = u. Since ũ1 = ũ2, elements
u1 and u2 satisfy the same concepts. In particular u1 ∈ (A1 ⊓A2)

I′ .
Since I ′ is a model, it ensures u1 ∈ AI′ , yielding by definition of AM

that u = ũ1 ∈ AM.

44 Q. Manière

3. Counting Conjunctive Queries

A ⊑ ∃R.B. Let u ∈ AM. By definition of AM there exists u0 ∈ AI′ with ũ0 = u.
Since I ′ is a model, it ensures there exists v0 ∈ BI′ with (u0, v0) ∈ RI′ .
By definition of BM and RM, the element v := ṽ0 satisfies both
v ∈ BM and (u, v) ∈ RM, that is u ∈ (∃R.B)M.

∃R.B ⊑ A. Let u ∈ (∃R.B)M, that is there exists v ∈ BM with (u, v) ∈ RM. By
definition of BM and RM, there exist (u0, v0) ∈ RI′ and v1 ∈ BI′ such
that ũ0 = u and ṽ0 = ṽ1 = v. Again, since ṽ0 = ṽ1 both v0 and v1
satisfy the same concepts, that is in particular u0 ∈ (∃R.B)I′ . Since
I ′ is a model, it ensures u0 ∈ AI′ , yielding by definition of AM that
u = ũ0 ∈ AM.

A ⊑ ¬B. By contradiction, assume u ∈ AM ∩ BM. By definition there exists
v ∈ AI′ and w ∈ BI′ with ṽ = w̃ = u. Since ṽ = w̃, both v and w
satisfy the same concepts, contradicting I ′ being a model.

¬B ⊑ A. Let u ∈ ¬BM. By definition of ∆M, there exists v ∈ I ′ such that
ṽ = u. Since u /∈ BM, we have v /∈ BI′ . Hence I ′ being a model gives
v ∈ AI′ , yielding by definition u = ṽ ∈ AM.

P ⊑ R. Let (u, v) ∈ PM. By definition of PM, there exists (u0, v0) ∈ PI′ such
that ũ0 = u and ṽ0 = v. Since I ′ is a model, it ensures (u0, v0) ∈ RI′ ,
hence (ũ0, ṽ0) = (u, v) ∈ RM by definition of RM.

R1 ⊓ R2 ⊑ ⊥. By contradiction, assume one can find (u, v) ∈ (R1 ⊓ R2)
M. By

definition of RM
1 and RM

2 , there exists (u1, v1) ∈ RI′
1 and (u2, v2) ∈ RI′

2

such that ũ1 = ũ2 = u and ṽ1 = ṽ2 = v.
If either K |= R1(u1, v1) or K |= R2(u2, v2), then, each individual
being alone in its equivalence class, we have u1 = u2 and v1 = v2.
In particular it gives (u1, v1) ∈ (R1 ⊓ R2)

I′ , contradicting I ′ being a
model.
Otherwise we distinguish the four possible cases:

- v1 = u1 · P1.B1 and T |= P1 ⊑ R1.

- v2 = u2 · P2.B2 and T |= P2 ⊑ R2. Since ṽ1 = ṽ2 we have
P1.B1 = P2.B2. In particular (u1, v1) ∈ R2

I′
, which contradicts

I ′ being a model.
- u2 = v2 · P2.B2 and T |= P2 ⊑ R−

2 . In particular |v1| = |u1|+ 1
mod 3 and |u2| = |v2| + 1 mod 3. Recall that ũ1 = ũ2 and
ṽ1 = ṽ2, hence |u1| = |u2| mod 3 and |v1| = |v2| mod 3. It
yields 0 = 2 mod 3, contradiction.

- u1 = v1 · P1.B1 and T |= P1 ⊑ R−
1 .

Counting Queries in Ontology-Based Data Access 45

3.2. Interlacings

- v2 = u2 · P2.B2 and T |= P2 ⊑ R2. Symmetric to the previous
case, leading to a contradiction.

- u2 = v2 · P2.B2 and T |= P2 ⊑ R−
2 . Since ũ1 = ũ2 we have

P1.B1 = P2.B2. In particular (u1, v1) ∈ R2
I′

, which contradicts
I ′ being a model.

Lemma 3. For every satisfiable ALCHI KB K := (T ,A) and CCQ q, there exists
a model with at most (|Ind(A)|+ 3 |T | 2|T |)|q| counting matches.

Proof. The model exhibited in Theorem 5 is such a model.

3.2.4 Countermodels via interlacings

We now consider a CCQ q and investigate a more specific function f ∗, whose
f ∗-interlacing has at most as many counting-matches as the original model I. This
latter property along with the locally tree-shaped structures inherited from the
existential extraction will play key roles in the 2EXP procedure developed further
in this chapter and will be the starting point for the constructions of models with
polynomial size w.r.t. data complexity. To define this new interlacing function f ∗,
we first need to capture which elements in the starting model I are involved in
counting matches.

Definition 22. Given an interpretation I, we let ∆∗ be the set of individuals from
A plus all the elements from ∆I reached by counting matches. More formally:

∆∗ := Ind(A) ∪
⋃

π:q→I
match

π(z)

We can now define f ∗ as a function which mimics f when it reaches ∆∗, and
preserves ∆◦ otherwise. This definition is a direct adaptation of the function used
in Kostylev and Reutter [2015], but using existential extraction and interlacings in
place of canonical models and interleavings.

Definition 23. The f ∗ mapping of I is:

f ∗ : ∆◦ → ∆∗ ⊎ (∆◦ \∆∗)

w 7→
{
f(w) if f(w) ∈ ∆∗

w otherwise

Example 10. Figure 3.8 depicts the f ∗-interlacing Ie′ of Ie. It has an infinite
domain inherited from the existential extraction, but only 2 counting matches for qe
like the initial model Ie. On the other hand, the number of matches for qe in Ie′ is
infinite while it was 2 in Ie.

46 Q. Manière

3. Counting Conjunctive Queries

a

◦

R

◦ ◦
R R

◦ ◦ ◦
R RT

◦ ◦ ◦

ε

R

S

S

S

R
◦ ◦ ◦ ◦◦ ◦

R

S

R S

R

T

◦ ◦ ◦ ◦ ◦ ◦◦

R

R S R

R SS

··
·

··
·
· ·
·

··
·

··
·
· ·
·

··
·
· ·
·

··
·

··
·

···

···

S S

Figure 3.8: Initial portion of the f ∗-interlacing of Ie

To ensure modelhood of the f ∗-interlacing, we rely on Theorem 4 and thus
concentrate on proving f ∗ is pseudo-injective.

Lemma 4. f ∗ is pseudo-injective.

Proof. Let u, v ∈ ∆◦ such that f ∗(u) = f ∗(v). We distinguish two cases based on
f(u) belonging, or not, to ∆∗.

f(u) /∈ ∆∗. Therefore f ∗(u) = u and in particular f ∗(u) /∈ ∆∗. Recall f ∗(v) = f ∗(u),
hence f ∗(v) /∈ ∆∗. Therefore f ∗(v) = v, yielding u = v, hence f(u) =
f(v).

f(u) ∈ ∆∗. Therefore f ∗(u) = f(u) ∈ ∆∗. Recall f ∗(v) = f ∗(u), hence f ∗(v) ∈ ∆∗.
Therefore f ∗(v) = f(v), yielding f(u) = f(v).

We now turn to the counting matches in the f ∗-interlacing I ′, which are
exactly those of the original model I. Notice however that the number of matches
extending each counting match may have increased (eventually becoming infinite as
in Example 10). The general idea is to use the homomorphism σ also provided by

Counting Queries in Ontology-Based Data Access 47

3.3. Answering CCQs over ALCHI ontologies

q

I∆◦

I ′
π

π̃

f

f ∗

σ

Figure 3.9: Mappings involved in the proof of Lemma 5.

Theorem 4 to injectively transform counting matches of I ′ into counting matches
of I, from which it follows by definition of ∆∗ and f ∗ that these counting matches
coincide.

Lemma 5. The f ∗-interlacing of a model I has at most as many counting matches
for q as I.

Proof. Let I ′ be the f ∗-interlacing of I. We prove that if π : q → I ′ is a match,
then (σ ◦ π)|z = π|z. Since σ ◦ π is a match of q in I, it proves in particular that
σ injects the c-matches of I ′ in the c-matches of I, hence the claim. Let us thus
consider a match π : q → I ′. By definition of ∆I′ , we can pick some π̃ : q → ∆◦

such that π = f ∗ ◦ π̃ (note that π̃ is not a match since we do not define an
interpretation on ∆◦). By Theorem 4, σ ◦π is a match of q in I. Therefore we have
(σ ◦ π)(z) ⊆ ∆∗, that is (σ ◦ f ∗ ◦ π̃)(z) ⊆ ∆∗. Remark 7 ensures σ ◦ f ∗ = f , hence
it is also (f ◦ π̃)(z) ⊆ ∆∗. Along with the definition of f ∗, it gives f ∗ ◦ π̃|z = f ◦ π̃|z.
Recall π = f ∗ ◦ π̃, by definition of π̃, hence in particular π|z = f ∗ ◦ π̃|z. Therefore
σ ◦ π|z = σ ◦ f ∗ ◦ π̃|z = f ◦ π̃|z = f ∗ ◦ π̃|z = π|z.

3.3 Answering CCQs over ALCHI ontologies
In this section, we devise a procedure that computes in double-exponential time
the minimum number of counting matches, which immediately yields the following
upper bound:

Theorem 6. CCQ answering in ALCHI is in 2EXP w.r.t. combined complexity.

Our approach is based upon the f ∗-interlacings from Section 3.2.4, witnessing
that there exists a model minimizing the count value that consists of an arbitrary
structure I∗ containing all assignments for the counting variables, augmented
with structures that are tree-shaped, provided we ignore edges to and from I∗.
Importantly, we can bound the size of the central component I∗, which enables us
to explore all possible options for I∗. Checking whether a given I∗ can be extended

48 Q. Manière

3. Counting Conjunctive Queries

to a model preserving the minimum count value can be done by specifying a set
of patterns (intuitively representing a pair of adjacent elements), and testing via
local consistency conditions whether they can be coherently assembled. This latter
step takes inspiration from a CQ answering technique for existential rules found
in Thomazo et al. [2012], and is also similar in spirit to type-elimination style
procedures, which have been employed for reasoning with expressive DLs, see e.g.
Rudolph et al. [2012]; Eiter et al. [2009].

3.3.1 Patterns

We fix an ALCHI KB K := (T ,A), a CCQ q. If K is not satisfiable, which can be
tested in EXP (see Theorem 3), then the minimum number of counting matches
is +∞ (as every [m,+∞] is a certain answer). We henceforth focus on the case
of K being satisfiable. It follows from Lemma 3 that the minimum is at most
M := (|Ind(A)|+ 3 |T | 2|T |)|q|. Hence, in any model I having a minimum number
of counting matches, the set ∆∗ ⊆ ∆I (see Definition 22) of elements appearing in
the image of a c-match has size at most M · |q|. We can thus iterate over all such
∆∗, and even over all induced interpretations I∗ = I|∆∗ , in double-exponential time
w.r.t. combined complexity. The core task will then be to determine, given such
a candidate I∗, whether we can extend I∗ into a model of K without introducing
new c-matches.

Let us fix our candidate I∗ and see how to check for a suitable extension. The
challenging axioms to handle are those of the form A ⊑ ∃R.B, as they might require
us to introduce new elements. We recall the set Ω := {R.B | A ⊑ ∃R.B ∈ T } and
shall refer to its members as (existential) heads. Importantly, as the f ∗-interlacings
from Section 3.2.4 witness, it is sufficient to consider extensions of I∗ which are
obtained by adding tree-shaped structures of new elements, plus some edges between
the new elements and ∆I∗ (we may need to use elements from ∆I∗ as witnesses for
existential heads to avoid new query matches). This property enables us to build
such an extension by piecing together local interpretations corresponding to the
addition of a single edge, using two distinguished symbols ⊚ and ⊛ as placeholders
for fresh elements. We shall call these building blocks patterns, as they are inspired
by a notion of the same name introduced for CQ answering with existential rules
[Thomazo et al., 2012]. To be easily connected, these local interpretations are
required to be saturated, in the following sense.

Definition 24. An interpretation I is T -saturated if it can be extended to a model
J such that J|∆I = I. In particular, I must contain all certain facts that can be
inferred from I and T .

Remark 9. Testing the T -saturation of an interpretation I can be done by testing
the T ′-satisfiability of I enriched by: all facts A(e) with e ∈ ∆I \AI, where A is

Counting Queries in Ontology-Based Data Access 49

3.3. Answering CCQs over ALCHI ontologies

a fresh concept name, and T ′ contains T and axioms A ⊓ A ⊑ ⊥; and by facts
R(e1, e2) with (e1, e2) ∈ ∆I ×∆I \ RI, where R is fresh role name, and T ′ also
contains axioms R ⊓ R ⊑ ⊥.

Patterns not only consist of a local interpretation, but also other information
needed to ensure that assembled patterns do not violate any TBox axioms or
introduce any new matches. In particular, we shall keep track of (partial) query
matches involving the local elements using the notion of a coherent specification.
Intuitively, such a specification tells us which matches should be realized in the
constructed extension, and naturally contains at least the matches of subqueries of
q already realized in the local interpretation.

Definition 25. Let I be an interpretation.

- The specification MI induced by I is the set of pairs (r, π) such that r ⊆ q
and π : r → I is a (full) match.

- A coherent specification M over I is a set of pairs (r, π) where r ⊆ q and π
is a partial mapping from terms(r) to ∆I such that:

- MI ⊆M;

- If (r1, π1), (r2, π2) ∈ M with π1 and π2 defined and equal on var(r1) ∩
var(r2), then (r1 ∪ r2, π1 ∪ π2) ∈M.

To check the compatibility of different specifications, we will need to be able to
restrict them to a subdomain:

Definition 26. The restriction of a specification M over an interpretation I to
a domain ∆ ⊆ ∆I, denoted M|∆, is the set of pairs (r, π′) such that π′ is the
restriction of π to π−1(∆) for some (r, π) ∈M.

Remark 10. Induced specifications and restrictions of coherent specifications are
both coherent specifications.

Patterns will contain a further kind of information called a prediction, defined
next. The purpose will be explained in more detail once we introduce links between
patterns, but roughly it serves to coordinate the successor patterns of a pattern to
avoid violating negative role inclusions.

Definition 27. A prediction is a function next : Ω→ ∆I∗ ∪ Ω verifying that: for
all R1.B1,R2.B2 ∈ Ω, if T |= R1 ⊓ R2 ⊑ ⊥, then next(R1.B1) ̸= next(R2.B2).

We now formally define the central notion of pattern, relative to I∗ and a
candidate specification M∗ over I∗.

50 Q. Manière

3. Counting Conjunctive Queries

Definition 28. A pattern P (w.r.t. I∗ and M∗) is a tuple (frP , genP , IP ,MP , nextP)
where:

- The frontier and generated domains frP and genP are disjoint sets of elements
from ∆I∗ ∪ {⊚,⊛};

- IP is a T -saturated and T -satisfiable interpretation with ∆IP = ∆I∗∪frP∪genP
and such that IP

|∆I∗ = I∗;

- MP is a coherent specification of q over IP that preserves M∗, that is
(MP)|∆I∗ = M∗;

- nextP is a prediction.

We shall be interested in two types of patterns. The (unique) initial pattern
P∗ := (∅,∆I∗

, I∗,M∗, Id) simply represents I∗ and M∗. All other patterns of
interest represent additions of a pair of adjacent elements, and frP and genP will be
singletons (representing these two elements).

Example 11. In our running example, ∆∗
e := {a, ε} (z maps to only these elements).

The initial pattern P∗
e has frontier ∅, generated terms ∆∗

e, interpretation I∗e :=
(Ie)|∆∗

e
depicted in Figure 3.10a, and specification given in Table 3.3. Non-initial

patterns will be illustrated later.

We now define how to combine patterns together, and first, when it is necessary
to combine them.

Definition 29. We say that R.B ∈ Ω is applicable to e in a pattern P if e ∈ genP

and there exists A ⊑ ∃R.B ∈ T with e ∈ AIP but e /∈ (∃R.B)IP .

When a head is applicable to a pattern, we need to find another pattern that
can realize the head. This is formalized by the following notion of link between
patterns, which requires that the two patterns are compatible (Conditions 1, 2,
3), the second pattern realizes the head (Condition 4), and certain consistency
conditions hold (Conditions 5, 6).

Definition 30. Let R.B be an applicable head on e1 in a pattern P1. There is a
(R.B, e1)-link from P1 to P2 if:

1. frP2 = {e1} and genP2 is a singleton, say {e2};

2. For all concept names A, we have e1 ∈ AIP1 iff e1 ∈ AIP2 ;

3. MP1

|∆I∗∪{e1}
= MP2

|∆I∗∪{e1}
;

Counting Queries in Ontology-Based Data Access 51

3.3. Answering CCQs over ALCHI ontologies

p y1 y2 z M∗ M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pR a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pR ⊚ ✓ ✓ ✓ ✓
pR a ⊚ ✓ ✓ ✓ ✓
pR ⊚ ✓ ✓ ✓ ✓
pR ⊚ ⊛ ✓ ✓
pR ⊛ ✓ ✓ ✓
pR ⊛ ✓ ✓ ✓ ✓
pR ⊛ ⊚ ✓ ✓

pS ⊚ a ✓ ✓ ✓
pS ⊚ ε ✓ ✓ ✓
pS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pS ε ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pS a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pS ε ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pS ε ⊚ ✓ ✓ ✓ ✓
pS ⊚ ⊚ ✓ ✓ ✓ ✓
pS ε ⊛ ✓ ✓
pS ⊛ ⊛ ✓ ✓
pS ⊚ ⊛ ✓ ✓
pS ⊛ ⊚ ✓ ✓

qe a ✓ ✓ ✓ ✓ ✓ ✓ ✓
qe ε ✓ ✓ ✓ ✓ ✓ ✓ ✓
qe ⊛ a ✓ ✓
qe ⊛ ε ✓ ✓
qe ⊚ a ✓ ✓
qe ⊚ ε ✓ ✓
qe ⊛ ⊚ a ✓
qe ⊛ ⊚ ε ✓

Table 3.3: Specifications from Example 12. ✓ in a M-column indicates that the
pair (p, π) given by the first 4 columns, with π a partial match of p, belongs to M.

52 Q. Manière

3. Counting Conjunctive Queries

4. e2 ∈ BIP2 and for all P ∈ NR:

PIP2 = PI∗ ∪ {(e1, e2) | T |= R ⊑ P} ∪ {(e2, e1) | T |= R− ⊑ P}

5. If ever e2 ∈ ∆I∗ ∩ frP1, then IP1 ∪ IP2 is T -satisfiable.

6. If e2 ∈ ∆I∗, then e2 = nextP1(R.B).

We denote by LR.B
P1,e1

the set of patterns P2 such that there is a (R.B, e1)-link from
P1 to P2.

Remark 11. Predictions are used in Condition 6 to avoid problematic situations
where two successor patterns merge back to the same element of ∆I∗. Specifically,
if we have a R1.B1-link from P0 to P1 and a R2.B2-link from P0 to P2, with
T |= R1 ⊓ R2 ⊑ ⊥, then nextP0(R1.B1) ̸= nextP0(R2.B2), preventing P1 and P2

from using the same element of ∆I∗ as generated term (which would violate T).
Condition 5 is similar in spirit, handling the case of the pattern P1 using the frontier
element of P0 as a generated term.

Example 12. We consider patterns Pe1, . . . ,Pe11 whose interpretations are depicted
in Figure 3.10. Frontier terms are indicated using square-purple and generated
terms by circle-green. Predictions are always Id except for nextPe7, which maps S.A
to a and S.B to ε. The specifications Mi are given in Table 3.3, with pR being
the R-atom of qe and pS its S-atom. Links between our patterns are depicted in
Figure 3.11.

Let us illustrate the underlying mechanisms of specifications and Condition 3 with
the link Pe6 ∈ LS.B

Pe7,⊚
. Notice that despite IPe7 interprets S as empty, its specification

M7 contains the pair (qe, (y1, y2, z) 7→ (⊛,⊚, ε)) witnessing for a complete match
it doesn’t have full knowledge of. This is made possible by: (i) the fact R(⊛,⊚)
satisfied in the interpretation of Pe7 ensures (pR, (y1, y2) 7→ (⊛,⊚)) ∈ M7 as M7

must be coherent; (ii) similarly (pS, (y2, z) 7→ (⊚, ε)) ∈M6 from the coherence of
M6; (iii) Condition 3 requires the restrictions of their specifications to {a, ε,⊚}
to coincide, hence (pS, (y2, z) 7→ (⊚, ε)) ∈M7; (iv) coherence of M7 requires that
the combination of (pS, (y2, z) 7→ (⊚, ε)) and (pR, (y1, y2) 7→ (⊛,⊚)) belongs to M7,
which is the desired pair. This highlights how specifications, if well assembled, suffice
to capture complete matches of the CCQ of interest despite the local interpretations
they are attached to.

We now characterize patterns that cannot be used to satisfy a head without
introducing a new c-match.

Definition 31. A pattern P is rejecting if one of the two following conditions
holds:

Counting Queries in Ontology-Based Data Access 53

3.3. Answering CCQs over ALCHI ontologies

a

A

ε

B,D

(a) Interp. I∗e .

a

A

ε

B,D

⊚
A′

R

(b) Interp. of Pe2.

a

A

ε

B,D

⊚
A′

⊛
A

R

(c) Interp. of Pe2.

a

A

ε

B,D

⊚
A′

⊛
A

R

(d) Interp. of Pe3.

a

A

ε

B,D

⊚
A′

⊛

B,B′

R

(e) Interp. of Pe4.

a

A

ε

B,D

⊚
C

S

(f) Interp. of Pe5.

a

A

ε

B,D

⊚
C

S

(g) Interp. of Pe6.

a

A

ε

B,D

⊚
C

⊛

B,B′

R

(h) Interp. of Pe7.

a

A

ε

B,D

⊚
D

⊛

B,B′

T

(i) Interp. of Pe8.

a

A

ε

B,D

⊚
D

S

(j) Interp. of Pe9.

a

A

ε

B,D

⊚
D

⊛
D

S

(k) Interp. of Pe10.

a

A

ε

B,D

⊚
D

⊛
D

S

(l) Interp. of Pe11.

Figure 3.10: Interpretations of the patterns from Example 12

- There exists (q, π) ∈MP with π(z) ∩ {⊚,⊛} ≠ ∅;

- There exists an existential head R.B that applies on e in P such that all
patterns P′ ∈ LR.B

P,e are rejecting.

A pattern is accepting if it is not rejecting.

The acceptance of the initial pattern P∗ is a sufficient condition ensuring I∗
extends to a model having no more counting matches than encoded in M∗, i.e. the
pairs (q, π) ∈M∗ such that π is defined for all counting variables.

Lemma 6. If P∗ := (∅,∆∗, I∗,M∗, Id) is accepting, then there exists a model I♢
such that I∗ ⊆ I♢ and if π : q → I♢ is a c-match, then (q, π) ∈M∗. In particular,
I♢ has at most as many c-matches as those encoded in M∗.

Furthermore, the minimum number of counting matches is reached among initial
patterns due to the following result:

54 Q. Manière

3. Counting Conjunctive Queries

P∗
e

Pe1 Pe2 Pe3

Pe4

Pe7Pe5 Pe6

Pe8

Pe9 Pe10 Pe11

(R
.A

′ ,
a)

(R
.A

′, a)

(R.A,⊚)

(R.A,⊚)

(R.A′,⊛)(R
.B
,⊚

) (R.B,⊚)

(S.A,⊚) (S.B,⊚)

(R
.C
,⊛

)

(T.D,⊛)

(S.D, ε)

(S.D
,⊚

)

(S.D,⊚)

(S.D,⊚)

(S.D,⊛)

(S.D, ε)

Figure 3.11: Links between the 12 patterns from Example 12. Label (h, e) on an
edge (u, v) indicates a (h, e)-link between patterns u and v.

Lemma 7. If I is a model of K with m counting matches, then there exists an
accepting initial pattern whose specification encodes exactly m c-matches.

Before proving Lemmas 6 and 7, let us recap the overall double-exponential
procedure underlying Theorem 6:

Proof of Theorem 6. We consider all possible initial patterns P∗ with an interpre-
tation domain ∆∗ such that Ind(A) ⊆ ∆∗ and |∆∗| ≤ M |q| (recall Lemma 3).
Every such P∗ is of single-exponential size w.r.t. combined complexity (observe
that its specification M∗ corresponds to a subset of 2q × (∆∗ ∪ {↑})q), and thus
are double-exponential in number (up to isomorphism) and can be enumerated in
double-exponential time. For each such P∗, we construct in double-exponential time
the set of all possible descendant patterns of P∗ (which are of single-exponential
size, having at most |∆∗| + 2 elements). We then check whether each possible
pattern (P∗ or candidate descendant) is in fact a well-defined pattern, in particular,
its interpretation is T -satisfiable and T -saturated. These verifications can be done
in double-exponential time, recalling that KB satisfiability and instance checking
are in EXP for ALCHI (even this variant with negative role inclusions, see 3).
Acceptance of P∗ is tested (again in deterministic exponential time) by repeatedly
iterating over the set of patterns and removing those that are rejecting either due

Counting Queries in Ontology-Based Data Access 55

3.3. Answering CCQs over ALCHI ontologies

to their specification, or due to the removal of all patterns that could provide
a link for an applicable head. If P∗ is found to be accepting and M∗ encodes
m c-matches, then Lemma 6 ensures the existence of a model with at most m
c-matches. Conversely, Lemma 7 ensures that we can find the smallest such m
among the accepting initial patterns.

3.3.2 Soundness: from patterns to models

To prove Lemma 6, assume we are given an initial pattern P∗ := (∅,∆∗, I∗,M∗, Id)
that is accepting. Our aim is to construct a model I that extends I∗ and is such
that (q, π) ∈M∗ for every c-match π : q → I.

We proceed as follows. For each accepting descendant pattern P (w.r.t. I∗ and
M∗) and each head R.B applicable to e in P, we choose an accepting pattern chR.BP,e
from LR.B

P,e . Then, starting from P∗, we build a tree-shaped set of words, whose
letters consist of an accepting pattern and existential head, and which witnesses
the acceptance of P∗.

Definition 32. The pattern tree P is the smallest set of words such that:

- (P∗, ∅) ∈ P;

- If w ·(P, h) ∈ P and R.B is applicable to e in P, then w ·(P, h)·(chR.BP,e ,R.B) ∈ P.

Remark 12. Each element from P has shape w · (P, h), where w is eventually the
empty word. In particular, in what follows, when we let w · (P, h) ∈ P it includes
the case of the initial pair w · (P, h) = (P∗, ∅).

It remains to ‘glue’ together the interpretations IP according to the structure
of P. Since a pattern P may occur more than once, we create a copy of IP for
each node in P of the form w · (P, h). We do not duplicate however elements from
I∗ as they precisely are those we want to reuse. Hence only the frontier term
and the generated term may be duplicated (provided they do not belong to ∆∗).
When a node w · (P1, h1) · (P2, h2) is encountered, we merge the frontier term of
P2 with the already-introduced copy of the generated element from P1 on which
h2 is applied (which is the only element in frP2). Therefore, when considering
such a node w · (P1, h1) · (P2, h2), the only element we might have to introduce
is a copy of the generated term e of P2 (unless e ∈ ∆∗), which we shall simply
name w · (P1, h1) · (P2, h2). Formally, the copying and merging of elements is
achieved by the following family of duplicating functions, defined inductively for

56 Q. Manière

3. Counting Conjunctive Queries

each w · (P, h) ∈ P .

λw·(P,h) : ∆
IP → ∆I∗ ∪ {w,w · (P, h)}

e 7→


e if e ∈ ∆I∗

w if e ∈ frP \∆I∗

w · (P, h) if e ∈ genP \∆I∗

Note that if e ∈ frP2 \∆I∗ , then e ∈ genP1 \∆I∗ , hence

λw·(P1,h1)·(P2,h2)(e) = λw·(P1,h1)(e) = w · (P1, h1).

The desired model I can then be defined as follows:

I :=
⋃

w·(P,h)∈P

λw·(P,h)(I
P),

that is the domain (resp. the interpretation of each concept name and each role
name) of I is the union across all w · (P, h) ∈ P of the image by λw·(P,h) of the
domain (resp. the interpretation of each concept name and each role name) of IP .

Example 13. The patterns introduced in Example 12 are sufficient to witness that
P∗
e is accepting. The corresponding pattern tree Pe can be obtained by “unfolding”

the links between patterns depicted in Figure 3.11, starting from the pattern P∗
e.

The resulting Ie is depicted in Figure 3.8, which coincides with the f ∗-interlacing
of the original model Ie. Notice how it inherits the tree-shaped structure of Pe up
to roles collapsing back in I∗e .

By definition, each λw·(P,h) is a homomorphism from IP to I. Due to Condition 2
of Definition 30, the shared element of linked patterns must belong to the same
concepts, so concept membership in I transfers back to IP :

Lemma 8. For all w · (P, h) ∈ P, for all e ∈ ∆IP and for all A ∈ NC, if
λw·(P,h)(e) ∈ AI, then e ∈ AIP .

Proof. Let w1 · (P1, h1) ∈ P be a node from the pattern tree, e1 an element from
∆IP1 and A a concept name. Assume λw1·P1(e1) ∈ AI . By definition of AI there
exists a node w2 · (P2, h2) from the pattern tree, and an element e2 ∈ AIP2 such
that λw1·(P1,h1)(e1) = λw2·(P2,h2)(e2). We further refer to this equality as (∗). We
distinguish 5 cases.

1. e1 ∈ ∆I∗ or e2 ∈ ∆I∗ .
(∗) yields e1 = e2. Interpretation IP2 preserves I∗, hence e2 ∈ AI∗ . Interpre-
tation IP1 preserves I∗, hence e1 ∈ AIP1 .

In the remaining cases, we assume e1, e2 /∈ ∆I∗, which ensures P1 ̸= P∗ and
P2 ̸= P∗. In particular, frP1, genP1, frP2 and genP2 are singletons.

Counting Queries in Ontology-Based Data Access 57

3.3. Answering CCQs over ALCHI ontologies

2. e1 ∈ genP1 \∆I∗ and e2 ∈ genP2 \∆I∗ .
(∗) yields P1 = P2. Recall genP1 is a singleton hence e1 = e2, which concludes.

3. e1 ∈ frP1 \∆I∗ and e2 ∈ genP2 \∆I∗ .
(∗) yields w1 = w2 · (P2, h2). In particular w2 · (P2, h2) · (P1, h1) ∈ P, hence
P1 = chh1P2,e2

. From the definition of a link, e1 = e2 (Condition 1) and
e1 satisfies the same concepts in both interpretations (Condition 2) hence
e1 ∈ AIP1 .

4. e1 ∈ genP1 \∆I∗ and e2 ∈ frP2 \∆I∗ .
Same arguments as for Case 3 but this time with P2 = chh2P1,e1

.

5. e1 ∈ frP1 \∆I∗ and e2 ∈ frP2 \∆I∗ .
(∗) yields the existence of w · (Q, h) such that w1 = w2 = w · (Q, h). In
particular w · (Q, h) · (P2, h2) ∈ P , hence P2 = chh2Q,e2 . By definition of a link,
e2 satisfies the same concepts in both interpretations (Condition 2) hence
e2 ∈ AIQ . Similarly, w · (Q, h) · (P1, h1) ∈ P , hence P1 = chh1Q,e2 . By definition
of a link e1 = e2 (Condition 1) and e1 satisfies the same concepts in both
interpretations (Condition 2) hence e1 ∈ AIP1 .

An analogous property fails however for roles, as two patterns P1 = chR1.B1
P,e and

P2 = chR2.B2
P,e may reuse the same element from ∆∗, that is, genP1 = genP2 ⊆ ∆∗. In

that case, we have λw·(P,h)·(P1,R1.B1)(∆
IP1) = λw·(P,h)·(P2,R2.B2)(∆

IP2) hence IP1 maps
somewhere in I satisfying the role R2, but there is no reason for R2 to be satisfied
in IP1 . Such a situation may also arise for P and P1 as above if genP1 ⊆ frP ⊆ ∆∗.
Conditions 5 and 6 from the definition of a link, respectively handling the second
and the first of the two cases described above, allow us to show the following weaker
property, sufficient for our purposes:

Lemma 9. For all w·(P, h) ∈ P, d, e ∈ ∆IP , and P ∈ NR: if (λw·(P,h)(d), λw·(P,h)(e)) ∈
PI, then IP remains T -satisfiable if we add (d, e) to PIP .

Proof sketch. The full proof can be found in the appendix and proceeds by a case
analysis similar in spirit to the proof of Lemma 8 (except there are twice as many
elements to consider). As mentioned, this is the main proof in which Conditions 5
and 6 from the definition of a link are required. We recall the purpose of these
conditions has been discussed in Remark 11.

With Lemmas 8 and 9 in hand, we are ready to show that I is a model of K.

Lemma 10. I is a model of K.

Proof. We consider each possible shape of assertion and axiom in K:

58 Q. Manière

3. Counting Conjunctive Queries

A(a). Since I∗ is a model of A, we have a ∈ AI∗ . Recall I∗ is the inter-
pretation of the initial pattern. Therefore the definition of AI gives
a = λP∗,∅(a) ∈ AI .

P(a, b). Since I∗ is a model of A, we have (a, b) ∈ PI∗ . Recall I∗ is the
interpretation of the initial pattern. Therefore the definition of PI

gives (a, b) = (λP∗,∅(a), λP∗,∅(b)) ∈ PI .

⊤ ⊑ A. Let u ∈ ⊤I = ∆I . By definition of ∆I , we have w · (P, h) ∈ P and
an element e ∈ ∆IP such that λw·P,h(e) = u. Since e ∈ ⊤IP and IP is
T -saturated, it ensures e ∈ AIP . Therefore the definition of AI gives
u = λw·(P,h)(e) ∈ AI .

A1 ⊓ A2 ⊑ A. Let u ∈ A1 ⊓ A2
I . By definition of ∆I , there exist w · (P, h) ∈ P

and an element e ∈ ∆IP such that λw·(P,h)(e) = u. Lemma 8 applied
on both concepts A1 and A2 ensures e ∈ A1 ⊓ A2

IP . Since IP is
T -saturated, it ensures e ∈ AIP . Therefore the definition of AI gives
u = λw·(P,h)(e) ∈ AI .

A1 ⊑ ∃R.A2. Let u ∈ AI
1 . By definition of A1

I , there exist w · (P, h) ∈ P and an
element e ∈ ∆IP such that e ∈ A1

IP and λw·(P,h)(e) = u.
We first prove that w.l.o.g. we can assume that e ∈ genP . Indeed, if
e ∈ ∆∗, then e is in the generated domain of the initial pattern P∗

and Lemma 8 gives e ∈ A1
I∗

. Otherwise, if e ∈ frP , then w cannot be
empty (recall the initial pattern has an empty frontier!) and therefore
we have w = w′ · (P0, h0) with e ∈ genP0 and λw′·(P0,h0)(e) = u. Again,
Lemma 8 gives e ∈ A1

IP0 . Therefore, up to switching P to P∗ or to
P0, we can assume w.l.o.g. that e ∈ genP .
If R.A2 is not applicable to e in P, then this is because there exists
e′ ∈ A2

IP with (e, e′) ∈ RIP . Set v := λw·(P,h)(e
′). By definition of RI

and A2
I , we obtain v ∈ AI

2 and (u, v) ∈ RI .
If R.A2 is applicable to e in P, then since P is accepting there must
exist an accepting pattern P1 ∈ chR.A2

P,e . In particular w · (P, h) ·
(P1,R.A2) ∈ P . Let e′ be the generated term of P1. From the definition
of a link between patterns, we have (e, e′) ∈ RIP1 and e′ ∈ AIP1

2 . Set
v := λw·(P,h)·(P1,R.A2)(e

′). Noticing λw·(P,h)(e) = λw·(P,h)·(P1,R.A2)(e) and
by definition of RI and A2

I , we obtain v ∈ AI
2 and (u, v) ∈ RI .

∃R.A1 ⊑ A2. Let u ∈ (∃R.A1)
I , that is, there exists v ∈ AI

1 with (u, v) ∈ RI . By
definition of RI , there exist w · (P, h) ∈ P and elements e, e′ ∈ ∆IP

such that (e, e′) ∈ RIP , λw·(P,h)(e) = u and λw·(P,h)(e
′) = v. By

Counting Queries in Ontology-Based Data Access 59

3.3. Answering CCQs over ALCHI ontologies

Lemma 8 we obtain e′ ∈ A1
IP . Since IP is T -saturated, we have

e ∈ A2
IP . Therefore by definition of A2

I we obtain u ∈ A2
I .

A ⊑ ¬B. By contradiction, assume there exists u ∈ AI ∩ BI . By definition
of ∆I , there exist w · (P, h) ∈ P and an element e ∈ ∆IP such that
λw·(P,h)(e) = u. Lemma 8 applied on both concepts A and B ensures
e ∈ (A ⊓ B)I

P , contradicting IP being T -satisfiable.

¬B ⊑ A. Let u ∈ ¬BI . By definition of ∆I , there exist w · (P, h) ∈ P and
an element e ∈ ∆IP such that λw·(P,h)(e) = u. Since u /∈ BI′ , we
have e /∈ BIP . Since IP is T -saturated, it gives e ∈ AIP , yielding by
definition u ∈ AI .

P ⊑ R. Let (u, v) ∈ PI . By definition of PI , there exist w · (P, h) ∈ P
and elements e, e′ ∈ ∆IP such that (e, e′) ∈ PIP , λw·(P,h)(e) = u

and λw·(P,h)(e
′) = v. Since IP is T -saturated, we have (e, e′) ∈ RIP .

Therefore by definition of RI we obtain (u, v) ∈ RI .

R1 ⊓ R2 ⊑ ⊥. Let (u, v) ∈ R1 ⊓ R2
I . By definition of RI

1 , there exist w1 ·(P1, h1) ∈ P
and elements d1, e1 ∈ ∆IP1 such that (d1, e1) ∈ RIP1

1 , λw1·(P1,h1)(d1) = u
and λw1·(P1,h1)(e1) = v. Similarly, by definition of RI

2 , there exist a
pattern w2 · (P2, h2) and elements d2, e2 ∈ ∆IP2 such that (d2, e2) ∈
RIP2

2 , λw2·(P2,h2)(d2) = u and λw2·(P2,h2)(e2) = v. In particular we have
λw1·(P1,h1)(d1) = λw2·(P2,h2)(d2) and λw1·(P1,h1)(e1) = λw2·(P2,h2)(e2). By
Lemma 9, we can add (d1, e1) to RIP1

2 while retaining T -satisfiability,
contradicting the fact that T contains R1 ⊓ R2 ⊑ ⊥.

It remains to verify that there are no additional c-matches for q in I, that is,
no more than encoded in M∗. The inherited tree-like structure of I, along with
the specifications having to be preserved between linked patterns, ensures that if
a match π : q → I exists, then it is actually already taken into account in the
specification of the patterns from P . Therefore, if a match maps a counting variable
z onto an element of shape w · (P, h) in I, we shall ensure that (q, z 7→ s), with
s either ⊚ or ⊛, belongs to MP . This would contradict P being accepting. The
exact (stronger) statement is as follows.

Lemma 11. If π : r → I is a match of r ⊆ q, then for all w · (P, h) ∈ P, we have
(r, π′) ∈MP where π′ := (λw·(P,h))

−1 ◦ π|∆ with ∆ := π−1(λw·(P,h)(∆
IP)).

Proof sketch. The full proof can be found in the appendix and proceeds by a breadth-
first induction on the pattern tree P to verify the statement holds for matches that
map in the intermediate interpretation IW obtained by piecing patterns until W ,
that is restricting the union in the definition of I to those elements w · (P, h) ∈ P

60 Q. Manière

3. Counting Conjunctive Queries

that are at smaller or equal to W w.r.t. a breadth-first ordering on P. This is
sufficient to prove our statement since any match mapping to the full model I only
requires a finite set of facts ϕ1, . . . ϕk, coming from the images of interpretations
IP1 , . . . IPk by some duplicating functions λw1·(P1,h1), . . . λwk·(Pk,hk). Picking W as
the greatest such node wi · (Pi, hi), with i = 1, . . . k, w.r.t. the breadth-first ordering
on P , we obtain that our match of interest is already a match in IW .

At such a step W , we prove the desired property on the specification holds for
all patterns P occurring in some node w · (P, h) introduced prior to W . This is also
achieved by induction, but on the distance, in the pattern tree P , between W and
the node w · (P, h).

The two latter lemmas yield the following, concluding the proof of Lemma 6.

Proposition 2. I is a model of K whose c-matches are included in those encoded
in M∗.

Proof. Modelhood follows directly from Lemma 10, itself based on Lemmas 8 and
9, while the number of c-matches is handled by Lemma 11.

3.3.3 Completeness: from models to patterns

We now turn to the proof of Lemma 7. We fix a model I of K, and our task is to
construct an accepting initial pattern having the same number of c-matches as I.

Let ∆∗ be the subset of ∆I consisting of all individuals in A and all elements
e such that e = π(z) for some π : q → I and counting variable z. Set I∗ := I|∆∗

and M∗ := (MI)|∆∗ . Notice in particular that the number of c-matches for q
encoded in M∗ is exactly the number of c-matches for q in I. We claim that
P∗ := (∅,∆∗, I∗,M∗, Id) is accepting.

To prove this, we shall build a set of patterns, whose every pattern P is not
trivially rejecting, i.e. P does not satisfy the base-case condition of a rejecting
pattern, and which is realized in I, meaning that IP homomorphically embeds
into I. Observe that the initial pattern P∗ satisfies both conditions. To pursue
the construction, given any pattern P satisfying the two conditions and a head
h applicable to P, we show how to extract from I another Q which satisfies the
conditions and which makes h hold for P. Since the number of patterns is finite,
every sequence of patterns constructed in such a manner either leads to a trivially
accepting pattern (i.e. one with no applicable heads) or loops back to an already
explored pattern satisfying the conditions. It follows that all patterns in the set
are accepting (in particular, P∗).

To formalize the construction, we shall introduce along with each pattern P
a function τ being a homomorphism IP → I. Recall that for every R.A ∈ Ω, we

Counting Queries in Ontology-Based Data Access 61

3.3. Answering CCQs over ALCHI ontologies

have chosen a function succIR.A that maps every element e ∈ (∃R.A)I to an element
e′ ∈ ∆I such that (e, e′) ∈ RI and e′ ∈ AI .

Definition 33. Base case: the construction begins with the pair (P∗, IdI∗→I), where
IdI∗→I denotes the identity function.

Induction case: consider some already constructed pair (P1, τ1), and a head R.B
that is applicable to e1 in P1. Since R.B applies to e, there must exist A ∈ NC such
that e ∈ AIP1 and T |= A ⊑ ∃R.B. Set e′1 := τ1(e1). Since τ1 is a homomorphism
and I is a model of T , we obtain e′1 ∈ (∃R.B)I and can set e′2 := succIR.B(e

′
1). If

e′2 ∈ ∆∗, then we set e2 := e′2, otherwise we set e2 to either ⊚ or ⊛ such that
e1 ̸= e2.

We now define a new pattern P2. Its frontier is e1 and its generated term is e2.
Its interpretation is given by:

CIP2 := CI∗ ∪ {ek | e′k ∈ CI , k = 1, 2}
PIP2 := PI∗ ∪ {(e1, e2) | T |= R ⊑ P}

∪ {(e2, e1) | T |= R− ⊑ P}

Its specification is (MI)|∆∗∪{e′1,e′2} in which e′1 (resp. e′2) has been replaced by e1
(resp. e2). Its prediction maps a head h to the value of succIh(e′2) if it is defined,
else to h. Finally, we let τ2 be the function that maps elements of ∆∗ to themselves,
e1 to e′1 and e2 to e′2. We obtain a new pair (P2, τ2).

Example 14. In the model Ie from Example 8, depicted in Figure 3.6, we can
set succIeR.A′(a) := α1 (other choices of successors are unique), and then apply the
preceding construction to obtain the accepting patterns from Example 12. Figure 3.12
illustrates where these patterns are realized in Ie. A same pattern can be realized
several times, e.g. Pe2. Patterns Pe10 and Pe11 illustrate how a loop in the original
model unfolds as two patterns. In their specifications, notice the partial matches
(y2, z) 7→ (⊚,⊚) and (y2, z) 7→ (⊛,⊛) witnessing this loop that can not be retrieved
in their respective interpretations.

Recalling that I is a model, of K it is then straightforward to verify that P2 is
a well-defined not-trivially-rejecting pattern, satisfying P2 ∈ LR.B

P1,e1
, and that τ2 is

indeed a homomorphism. These properties are verified by the next two lemmas.

Lemma 12. Each pair (P, τ) built according to Definition 33 yields consists of a
well-defined and non-trivially rejecting pattern P and a homomorphism τ : IP → I.

Proof. The base case consisting of verifying that P∗ is non-trivially rejecting is
trivial, and IdI∗→I is indeed a homomorphism.

We move to the induction case: assume (P1, τ1) is obtained by the described
procedure with P1 a well-defined and non-trivially rejecting pattern and τ1 : IP1 → I

62 Q. Manière

3. Counting Conjunctive Queries

a(a) ε(ε)

⊚(α1)

⊚(α3)

⊛(α2) ⊛(α4) ⊛(β)

⊚(γ)

⊚ /⊛(δ)P e
1

Pe1

P
e 2

P
e3 P

e 2

P
e3

Pe7

P e
8

P
e6

P e
5

P
e 9

Pe10 Pe11

Pe4

Pe4

Figure 3.12: Patterns from Example 12 as realized in Ie. An edge (u(a), vb) with
label p indicates there exists a built pair (p, τ) such that τ(u) = a and τ(v) = b.

a homomorphism. Let R.B an existential head that applies on e1 in P1 and consider
the pair (P2, τ2) obtained by applying Definition 33 on (P1, τ1) for this head.

We first verify that τ2 is a homomorphism:

- Let u ∈ AIP2 . If u ∈ AI∗ , then in particular u ∈ ∆∗ hence τ2(u) = u ∈ AI∗ ⊆
AI . Otherwise, u = ek for k = 1 or k = 2 with e′k ∈ AI . In that case, notice
τ2(u) = e′k which concludes.

- Let (u, v) ∈ PIP2 . If (u, v) ∈ PI∗ , then in particular u, v ∈ ∆∗, hence
(τ2(u), τ2(v)) = (u, v) ∈ PI∗ ⊆ PI . Otherwise, if (u, v) = (e1, e2) with
T |= R ⊑ P, then notice that (τ2(u), τ2(v)) = (e′1, e

′
2). Since e′2 is the

successor of e′1 for R.B in I, and I models T , we obtain (e′1, e
′
2) ∈ PI as

desired. Otherwise we have (u, v) = (e2, e1) with T |= R− ⊑ P, then notice
that (τ2(u), τ2(v)) = (e′1, e

′
1). Since e′2 is the successor of e′1 for R.B in I, and

I models T , we have (e′2, e
′
1) ∈ PI as desired.

We now verify that P2 is a well-defined pattern.

- The frontier e1 and the generated term e2 of P2 are elements from ∆∗∪{⊚,⊛}.

- The interpretation IP2 is T -satisfiable as it embeds by τ2 in I being a model
of T . It is T -saturated since concepts and roles on I∗ are fully preserved
as they come from the model I. The additional concepts on e1 and e2 are
also all preserved from those on e′1 and e′2. The additional roles between e1
and e2 are all defined as induced by R(e1, e2) which ensures this edge is also

Counting Queries in Ontology-Based Data Access 63

3.4. Countermodels with bounded size

saturated. Finally, it indeed preserves I∗: this is trivial for concepts, and for
roles it suffices to verify that e′1 and e′2 cannot be both elements of ∆∗ (hence
no new role fact). Since e′1, e′2 ∈ ∆∗ would contradict R.B being applicable on
e1 = e′1 since e2 = e′2 is the R.B successor in I, this case is indeed excluded.

- Restrictions of induced specifications are coherent, hence MP2 is indeed
coherent. It is a technicality to verify that ((MI)|∆∗∪(τ2)−1({e′1,e′2}))|∆∗ =
(MI)|∆∗ , which proves (MP2)|∆∗ = M∗.

- Let R1.B1 and R2.B2 be two heads such that T |= R1 ⊓ R2 ⊑ ⊥. By definition
of next2, if it maps R1.B1 and R2.B2 to the same element, then the successors
of e′1 for these two heads in I are equal, contradicting I being a model.

The fact that P2 is not trivially rejecting is immediate as its specification is a
restriction of the induced specification of I, which doesn’t contain pairs (q, π) with
π mapping outside ∆∗ (that is precisely the definition of ∆∗).

Lemma 13. In the induction step of Definition 33, we have P2 ∈ LR.B
P1,e1

.

Proof. We verify P2 ∈ LR.B
P1,e1

by checking each condition from Definition 30.

1. frP2 = {e1} and genP2 = {e2} are indeed singletons.

2. P1 can either be the initial pattern or a non-initial one. In both cases, the
concepts satisfied on e1 in P1 are inherited from those on e′1. Since it is also
the case for P2, this condition holds.

3. P1 can either be the initial pattern or non-initial one. In both cases, the
specification is the induced specification of I restricted to the domain of IP1 .
We directly have the desired equality as both e1 (seen in P1 and P2) comes
from the same e′1.

4. This condition matches the definition of IP2 .

5. A violation of this condition would imply that e′1 is the successor of e′2 for a
head incompatible with h, which would contradict I being a model.

6. This follows from the fixed choice of successors in I.

3.4 Countermodels with bounded size

In this section, we prove that starting from a model with a minimum number of
counting matches, we can construct such an optimal model whose size is polynomial

64 Q. Manière

3. Counting Conjunctive Queries

w.r.t. data complexity, double-exponential w.r.t. combined complexity, and single-
exponential if the size of the CCQ q is fixed (see further Theorem 8). Although this
result doesn’t allow us to improve upon our previous 2EXP algorithm for answering
CCQ over ALCHI KBs w.r.t. combined complexity, it does immediately yield the
following result for data complexity:

Theorem 7. CCQ answering in ALCHI is in coNP w.r.t. data complexity.

We further refine the construction in the case of DL-Litecore to obtain an optimal
model with exponential size, which yields a coNEXP procedure w.r.t. combined
complexity.

3.4.1 Equivalence relation based on neighbourhoods

To obtain optimal models of bounded size, we start from the f ∗-interlacing I ′ of
an optimal model I. It remains to merge elements of I ′ to obtain a model of the
required size. To identify similar elements, we define a notion of neighbourhood.

Definition 34. Consider an interpretation M and an element c ∈ ∆M. Its
n-neighbourhood NM,∆

n (c) w.r.t. a subdomain ∆ ⊆ ∆M is defined inductively as:

NM,∆
0 (c) := {c}
NM,∆
n+1 (c) := NM,∆

n (c) ∪
{
e

∣∣∣∣ ∃d ∈ NM,∆
n (c) \∆,

∃R ∈ N±
R , (d, e) ∈ RM

}
Observe that we stop adding successors when we reach ∆. In particular, for
c ∈ ∆, we have NM,∆

n (c) = {c} for every value of n. It follows that the statement
‘c1 ∈ NM,∆

n (c2) iff c2 ∈ NM,∆
n (c1)’ does not hold in general.

Recall that the definition of ∆I′ ensures that any c ∈ ∆I′ \∆∗ is actually an
element of ∆◦ and therefore we have c = aw for some individual name a and word
w ∈ Ω∗. The tree-shaped structure of ∆◦ ensures that for all n, there exists a unique
prefix rn,c of aw such that (i) f ∗(rn,c) ∈ N I′,∆∗

n (c) and (ii) for any d ∈ N I′,∆∗
n (c),

there exists a unique word wdn,c such that d = f ∗(rn,c · wdn,c).
This leads us to characterize the n-neighbourhood of an element c ∈ I ′ via the

following function χn,c, whose domain Ωn is the set of words over Ω with length
≤ 2n. Notice that, departing from Kostylev and Reutter [2015], we keep track
of sets of satisfied concepts, in order to handle conjunctions of concepts in the
left-hand sides of axioms.

χn,c : Ωn → ∆∗ ∪ 2sig(T) ∪ {∅}

w 7→


∅ if f ∗(rn,c · w) undefined
f ∗(rn,c · w) if f ∗(rn,c · w) ∈ ∆∗

{A ∈ sig(T) | f ∗(rn,c · w) ∈ AI} otherwise

We can now introduce the equivalence relation we use to merge elements:

Counting Queries in Ontology-Based Data Access 65

3.4. Countermodels with bounded size

Definition 35. The equivalence relation ∼n on ∆I′ is defined as follows: an
element e ∈ ∆∗ is ∼n-equivalent only to itself; elements c1, c2 from ∆I′ \∆∗ are
∼n-equivalent iff wc1n,c1 = wc2n,c2, χn,c1 = χn,c2, and |c1| = |c2| mod 2|q|+ 3.

We obtain a finite model of the required size by merging elements with respect
to ∼|q|+1.

Theorem 8. The interpretation J := I ′/∼|q|+1 is a model of K that has at most
as many c-matches for q as I. Its size is polynomial w.r.t. data complexity, double-
exponential w.r.t. combined complexity, and single-exponential if the size of the
CCQ q is fixed.

Proof sketch. The key to proving that the number of c-matches does not increase as
a result of the quotient operation is to exhibit suitable local homomorphisms. Indeed,
a match of q in J maps each connected component C of q into a |q|-neighbourhood
N J ,∆∗

|q| (c), where c denotes the equivalence class of c w.r.t. ∼|q|+1 and ∆∗ stands for

the set {e | e ∈ ∆∗}. By exhibiting a homomorphism ρc : N J ,∆∗

|q| (c) → N I′,∆∗

|q| (c)

such that ρ−1
n,c(∆

∗) ⊆ ∆∗, we can find a match of C in I ′. Such matches for q’s
connected components together form a match of the full q in I ′. It is mostly
straightforward to show that J is a model, except for negative role inclusions,
where the homomorphisms ρc are needed to move violations of R1 ⊓ R2 ⊑ ⊥ in J
back into I ′. The claimed upper bounds are obtained by analyzing the size of J
(i.e. counting the equivalence classes in ∆J), keeping in mind that due to Lemma 3,
we may assume that |∆∗| ≤ |Ind(A)|+ |q| (|Ind(A)|+ 3 |T | 2|T |)|q|.

Example 15. To illustrate this construction, consider the ABox Ae = {A(a),B(b)}
and the ELHI⊥ TBox Te:

A ⊑ ∃P.A′ B ⊑ ∃Q.B′ A′ ⊓ B′ ⊑ A0 A′ ⊑ D B′ ⊑ D
A0 ⊑ ∃R1.A1 A1 ⊑ ∃R2.A2 A2 ⊑ ∃R3.A3 A3 ⊑ ∃S.B0 B0 ⊑ ∃V.B′

0

B0 ⊑ ∃U.C0 U ⊑ V C0 ⊑ ∃V1.C1 C1 ⊑ ∃V2.C2 C2 ⊑ ∃V3.D

Our example KB is Ke := (Te,Ae). Figure 3.13 depicts several model of Ke. A
countermodel Ie for the CCQ qe := ∃zD(z) and integer 3 is depicted on Figure 3.13a.

A part of the Id-interlacing of Ie is depicted on Figure 3.13b (a tree-structure
similar to the one following the P-edge issued from a also follows the Q-edge issued
from b).

The corresponding part of the f ∗-interlacing of Ie is depicted on Figure 3.13c.
Like the initial model Ie, it is a countermodel for qe and integer 3. Two neighbour-
hoods N I′,∆∗

2 (γ) and N I′,∆∗

2 (δ) are depicted (in green, resp. blue). In particular,
notice a /∈ N I′,∆∗

2 (δ) since α ∈ ∆∗.
Finally, the model Je obtained by merging elements of the f ∗-interlacing of Ie

according to ∼5 is depicted in Figure 3.13d, together with two 2-neighbourhoods

66 Q. Manière

3. Counting Conjunctive Queries

N Je,∆∗

2 (γ) and N Je,∆∗

2 (δ). Notice Je remains a countermodel for qe and candidate
integer 3.

The remainder of this subsection is devoted to a proof of Theorem 8, that is,
proving J is indeed a model and contains at most as many counting matches as I ′.
Let us first formulate two remarks concerning the constructed interpretation J .

Remark 13. The set of concepts from sig(T) satisfied by c ∈ ∆I′ is exactly
χn,c(w

c
n,c). Therefore, if c ∼n c′, then c and c′ satisfy the same concept names.

Remark 14. If c ∼n c′, then c ∼m c′ for any m ≤ n.

We now define homomorphisms ρc, mentioned in the proof sketch, inductively
on N J ,∆∗

k (c) with k increasing from 0 to |q|. Figure 3.14 summarizes the structures
and mappings involved in the construction. Starting from the element c ∈ N J ,∆∗

0 (c),
we can naturally carry it back as ρc(c) = c ∈ N I′,∆∗

0 (c). Assume now that we have
defined ρc(d) for some d ∈ N J ,∆∗

n (c) and that we are moving further to an element
e ∈ N J ,∆∗

n+1 (c) along an edge (d, e) in J . In the case of e /∈ ∆∗, the following lemma
produces a candidate ρc(e), namely e′, which is to ρc(d), namely d′, what e is to d.

Lemma 14. Given two elements d, e ∈ ∆J \∆∗, if there exists a role P from N±
R

such that (d, e) ∈ PJ , then there exists a unique element R.B ∈ Ω such that one of
the two following conditions is satisfied:

edge+. |e| = |d|+ 1 mod 2|q|+ 3, we|q|+1,e = wd|q|,d · R.B and T |= R ⊑ P.

Furthermore, for all d′ ∼k d, the element e′ := d′ · R.B belongs to ∆I′ and
satisfies e′ ∼k−1 e.

edge−. |d| = |e|+ 1 mod 2|q|+ 3, wd|q|+1,d = we|q|,e · R.B and T |= R− ⊑ P.

Furthermore, for all d′ ∼k d, we have e′ such that d′ = e′ ·R.B and the prefix
e′ satisfies e′ ∼k−1 e.

Proof. Notice the two conditions are mutually exclusive: |e| = |d|+1 mod 2|q|+3
and |d| = |e|+1 mod 2|q|+3 would imply 0 = 2 mod 2|q|+3, which is impossible
as 2|q|+ 3 > 2. Furthermore, in each case R.B is defined as the last letter of the
word we|q|+1,e (resp wd|q|+1,d), which is unique and does not depends on the choice of
e (resp d) nor on P. This proves the uniqueness.

We now focus on the existence and the additional property. From the definition
of PJ , there exist (d0, e0) ∈ PI′ such that d0 = d and e0 = e. Recall d, e /∈ ∆∗,
hence d0, e0 /∈ ∆∗. In that case the definition of f ′ ensures the only antecedent of
d0 (resp e0) by f ′ is itself. Therefore the definition of PI′ , that is σ(PI), yields two
cases:

Counting Queries in Ontology-Based Data Access 67

3.4. Countermodels with bounded size

aA

α A′,B′,D,A0

b B
P Q

◦
A1

◦ A2

◦ A3

R
1

R
2

R
3

◦
B0

S

◦B′
0

◦B′
0

V

V
V

◦ C0

U,
V

◦ C1

◦ C2

V
1

V
2

◦
A1

◦ A2

◦ A3

R1

R
2

R
3

◦
B0

S

◦
B′

0

V
◦ C0

U,
V

◦ C1

◦ C2

V
1

V
2

β

C3,D

V3 V
3

V
(a) Initial countermodel Ie.

aA

◦A′,B′ D,A0

b B

◦A′,B′ D,A0

P Q
··
·

· ·
·◦

A1

◦ A2

◦ A3

R
1

R
2

R
3

γ1

B0

S

◦B′
0

◦B′
0

◦B′
0

...

V

V
V

γ C0

U,
V

◦ C1

◦ C2

V
1

V
2

◦ A1

◦ A2

◦ A3

R1

R
2

R
3

γ2

B0

S

◦
B′

0

V
◦ C0

U,
V

◦ C1

◦ C2

V
1

V
2

◦
C3,D

◦
C3,D

V
3

V
3

(b) Id-interlacing of Ie.

aA

α A′,B′,D,A0

b B
P Q

◦
A1

◦ A2

◦ A3

R
1

R
2

R
3

γ1

B0

S

◦B′
0

◦B′
0

◦B′
0

...

V

V
V

γ C0

U,
V

◦ C1

◦ C2

V
1

V
2

δ A1

◦ A2

◦ A3

R1

R
2

R
3

γ2

B0

S

◦
B′

0

V
◦ C0

U,
V

◦ C1

◦ C2

V
1

V
2

β

C3,D

V3 V
3

(c) f∗-interlacing of Ie.
aA

α A′,B′,D,A0

b B
P Q

δ A1

◦ A2

◦
A3

R
1

R
2

R
3

γ1

B0

S

◦B′
0

◦B′
0

◦
B′

0

V

V
V

◦B′
0

◦B′
0 ◦ B′

0

◦ B′
0

V

V

V V

V

γ2

B0

S

γ
C0

U,V U,V

◦ C1

◦ C2
V

1
V

2

◦
B′

0

V

◦ β

C3,D

V
3

(d) Je from the f∗-interlacing of Ie.

Figure 3.13: Models from Example 15.

68 Q. Manière

3. Counting Conjunctive Queries

I
Initial countermodel

∆◦Existential extraction

I ′

Interlacing
J

Reduced interlacing

N J ,∆∗
n (c)N I′,∆∗

n (c)

f

f ∗

σ p

ρn,c

Countermodels

Figure 3.14: Models, domains, and mappings involved in Section 3.4.1.

- We have e0 = d0 · R.B with T |= R ⊑ P. It follows that |e0| = |d0| + 1
mod 2|q|+ 3 and we0|q|+1,e0

= wd0|q|+1−1,d0
· R.B, immediately yielding the same

properties for d and e as (d0, e0) = (d, e).

Let now 1 ≤ k ≤ |q| + 1 be an integer and d′ ∼k d. Transitivity gives
d′ ∼k d0, and we have in particular χk,d′ = χk,d0 and wd′k,d′ = wd0k,d0 . Recall that
e0 = d0 ·R.B, hence we have χk,d0(w

d0
k,d0
·R.B) ̸= ∅, hence χk,d′(wd

′

k,d′ ·R.B) ̸= ∅,
that is d′ · R.B is well-defined.

Notice it is now sufficient to prove d′ · R.B ∼k−1 e0: that is because e = e0,
hence transitivity will conclude the proof. It should be clear that wd′·R.Bk−1,d′·R.B =
we0k−1,e0

and |d′ · R.B| = |e0| mod 2|q| + 3. Hence we are only left proving
that χk,e0 = χk,d′·R.B.

First, e0 = d0 · R.B ensures that χk,d0 fully determines χk−1,e0 . Moreover,
χk,d′ fully determines χk−1,d′·R.B. But since χk,d0 = χk,d′ and we0k,d0 = wd

′·R.B
k,d′ ,

we obtain: χk,e0 = χk,d′·R.B, concluding the proof.

- We have d0 = e0 · R.B with T |= R− ⊑ P. It follows that |d0| = |e0| + 1
mod 2|q|+ 3 and wd0|q|+1,d0

= we0|q|+1−1,e0
· R.B, immediately yielding the same

properties for d and e as (d0, e0) = (d, e).

Let now 1 ≤ k ≤ |q| + 1 + 1 be an integer and d′ ∼k d. Transitivity gives
d′ ∼k d0, and we have in particular wd′1,d′ = wd01,d0 = R.B (very important to
have k ≥ 1 here!). That is d′ ends by R.B, and therefore we can indeed have
prefix e′ such that d′ = e′ · R.B.

Notice the “strength” of the equivalence relation∼k between e and ρc(e) decreases
as we move further in the neighbourhood of c. However, since we start from
ρc(c) := c ∼|q|+1 c and explore a |q|-neighbourhood, the index remains at least 1.
This is essential as ∼1 encodes relations to elements of ∆∗ as the next lemma shows.
It allows in particular to treat the case of e ∈ ∆∗.

Lemma 15. If (d, e) ∈ RJ for some e ∈ ∆∗, and if d′ ∼1 d, then (d′, e) ∈ RI′.

Counting Queries in Ontology-Based Data Access 69

3.4. Countermodels with bounded size

Proof. Recall that since e ∈ ∆∗ we have e = {e}. The definition of RJ and
further of RI′ provide d0, e0 ∈ ∆◦ such that: f ∗(d0) = d, f ∗(e0) = e and satisfying
(f ∗(d0), f

∗(e0)) ∈ RI′ from one of the following three cases:

- (f ∗(d0), f
∗(e0)) ∈ RI∗ . In particular f ∗(d0) ∈ ∆∗, hence f ∗(d0) = d = d′.

Therefore (d′, e) = (f ∗(d0), f
∗(e0)) ∈ RI′ .

- e0 = d0 · P.B with T |= P ⊑ R. If f ∗(d0) ∈ ∆∗, then we again have
f ∗(d0) = d = d′ immediately yielding (d′, e) ∈ RI′ . Otherwise we have
χ1,f∗(d0)(w

f∗(d0))
1,f∗(d0)

· P.B) = f ∗(e0) = e. But since f ∗(d0) ∼1 d ∼1 d
′, we have

χ1,d′ = χ1,f∗(d0) and wd′1,d′ = w
f∗(d0)
1,f∗(d0)

. Therefore e = χ1,f∗(d0)(w
f∗(d0)
1,f∗(d0)

·P.B) =
χ1,d′(w

d′

1,d′ · P.B) = f ∗(r1,d′ · wd
′

1,d′ · P.B). Recalling that d′ = f ∗(r1,d′ · wd
′

1,d′),
we hence obtain (d′, e) = (f ∗(r1,d′ · wd

′

1,d′), f
∗(r1,d′ · wd

′

1,d′ · P.B)) ∈ PI′ ⊆ RI′ .

- d0 = e0 · P.B with T |= P ⊑ R−. If f ∗(d0) ∈ ∆∗, then we again have
f ∗(d0) = d = d′ immediately yielding (d′, e) ∈ RI′ . Otherwise the 1-root of
f ∗(d0) = d0 is e0 and wd1,d = P.B. We thus have: χ1,f∗(d0)(ε) = f ∗(e0) = e
(where ε denotes the empty word). But since f ∗(d0) ∼1 d ∼1 d

′, we have
χ1,d′ = χ1,f∗(d0) and wd

′

1,d′ = wd1,d. Combining the preceding facts, we obtain
(d′, e) = (f ∗(r1,d′ · wd

′

1,d′), χ1,d′(ε)) = (f ∗(r1,d′ · P.B), f ∗(r1,d′)) ∈ (P−)I
′ ⊆

RI′ .

It remains to free ourselves from the particular choice of d, which is likely not to
be the only element of N J ,∆∗

n (c) connected to e. Taking a closer look at Lemma 14,
we observe that ρc(e), that is e′, is obtained either by adding a letter to ρc(d), that
is d′, or by removing the last letter of ρc(d), and that these letters coincide with
those in the suffixes of elements d and e. Therefore, when moving from c to e and
ignoring self-cancelling steps, each added letter must appear in the suffix of e and,
similarly, each removed letter must appear in the suffix of c.

The challenge is therefore to quantify the number of additions and removals
to build ρc(e) directly from c and e. The next definition captures the relative
difference of letters between c and e, encoded in |c| and |e| mod 2|q|+ 3.

Definition 36. Let c ∈ ∆J and n ≤ |q|. The relative depth of e ∈ N J ,∆∗
n (c) from

c is the integer δc(e) ∈ [−n, n] such that |e| = |c|+ δc(e) mod 2|q|+ 3.

Remark 15. By induction on n ≤ |q|, it is straightforward to see that δc(e) is well
defined. Unicity is ensured by δc(e) ≤ n ≤ |q|. A consequence of Lemma 14 is that
for the smallest n ≤ |q| such that e ∈ N J ,∆∗

n (c) we have δc(e) = n mod 2.

We can now identify how many additions and removals cancelled each other.
Indeed, if it takes n steps to reach e from c, with relative difference of δ := δc(e),

70 Q. Manière

3. Counting Conjunctive Queries

then n−|δ| is the length of the self-cancelling path, hence: n−|δ|
2

cancelled additions
and n−|δ|

2
cancelled removals. Therefore, the actual number of additions is n−|δ|

2
+ δ

if δ ≥ 0, or n−|δ|
2

if δ ≤ 0, that is in both cases n+δ
2

. Similarly we obtain n−δ
2

for
the actual number of removals. The next theorem formalizes all these intuitions:
ρn,c(e) (in non-trivial cases) is obtained by removing the n−δ

2
last letters of c and

keeping the n+δ
2

last letters from the suffix of e. It is then a technicality to verify
these syntactical operations on words make sense in the domain of I ′.

Theorem 9. For all c ∈ ∆I′ and all n ≤ |q|, the following mapping:

ρn,c(e) : N J ,∆∗
n (c)→ N I′,∆∗

n (c) e 7→


ρn−1,c(e) if e ∈ N J ,∆∗

n−1 (c)
e if e ∈ ∆∗

rn−δc(e)
2

,c
· wen+δc(e)

2
,e

otherwise

is a homomorphism satisfying ρn,c(e) ∼|q|+1−n e and ρ−1
n,c(∆

∗) ⊆ ∆∗.

Proof sketch. The full proof can be found in the appendix and proceeds by induction
on the radius n of the considered neighbourhood. In the induction step, the two
cases highlighted by Lemma 14 arise and allow us to verify each considered element
in the definition of ρn,c is indeed well defined as an element of I ′.

Let us now complete the proof of Theorem 8 with Theorem 9 in hand.

Proof of Theorem 8.

Modelhood. We first prove that J is indeed a model by considering each possible
shape of assertions and axioms:

A(a). Since I ′ is a model, we have a ∈ AI′ . Therefore, the definition of AJ

gives a = a ∈ AJ .

P(a, b). Since I ′ is a model, we have (a, b) ∈ PI′ . Therefore, the definition of
PJ gives (a, b) = (a, b) ∈ PJ .

⊤ ⊑ A. Let u ∈ ⊤J = ∆J . By definition of ∆J , there exists u0 ∈ ∆I′ such
that u0 = u. Since u0 ∈ ⊤I′ and I ′ is a model, it ensures u0 ∈ AI′ .
Therefore the definition of AJ gives u = u0 ∈ AJ .

A1 ⊓ A2 ⊑ A. Let u ∈ (A1⊓A2)
J . By definition of AJ

1 and AJ
2 , there exists u1 ∈ AI′

1

and u2 ∈ AI′
2 with u1 = u2 = u. Remark 13 ensures u1 and u2 satisfy

the same concepts, that is in particular u1 ∈ (A1 ⊓ A2)
I′ . Since I ′

is a model, it ensures u1 ∈ AI′ , yielding by definition of AJ that
u = u1 ∈ AJ .

Counting Queries in Ontology-Based Data Access 71

3.4. Countermodels with bounded size

A1 ⊑ ∃R.A2. Let u ∈ AJ
1 . By definition of A1

J there exists u0 ∈ A1
I′

with
u0 = u. Since I ′ is a model, it ensures there exists v0 ∈ A2

I′
with

(u0, v0) ∈ RI′ . By definition of A2
J and RJ , the element v := v0

satisfies both v ∈ A2
J and (u, v) ∈ RJ , that is u ∈ (∃R.A2)

J .

∃R.A1 ⊑ A2. Let u ∈ (∃R.A1)
J , that is, there exists v ∈ AJ

1 with (u, v) ∈ RJ . By
definition of AJ

1 and RJ , there exist (u0, v0) ∈ RI′ and v1 ∈ AI′
1 such

that u0 = u and v0 = v1 = v. Remark 13 ensures v0 and v1 satisfy
the same concepts, in particular u0 ∈ (∃R.A1)

I′ . Since I ′ is a model,
this ensures u0 ∈ AI′

2 , yielding by definition of AJ
2 that u = u0 ∈ AJ

2 .

A ⊑ ¬B. By contradiction, assume u ∈ AJ ∩ BJ . By definition there exists
v ∈ AI′ and w ∈ BI′ with v = w = u. Remark 13 ensures v and w
satisfy the same concepts, contradicting I ′ being a model.

¬B ⊑ A. Let u ∈ ¬BJ . By definition of ∆J , there exists v ∈ I ′ such that
v = u. Since u /∈ BJ , we have v /∈ BI′ . Hence I ′ being a model gives
v ∈ AI′ , yielding by definition u = v ∈ AJ .

P ⊑ R. Let (u, v) ∈ PJ . By definition of PJ , there exists (u0, v0) ∈ PI′ such
that u0 = u and v0 = v. Since I ′ is a model, it ensures (u0, v0) ∈ RI′ ,
hence (u0, v0) = (u, v) ∈ RJ by definition of RJ .

R1 ⊓ R2 ⊑ ⊥. By contradiction, assume one can find (u, v) ∈ (R1 ⊓ R2)
J . By def-

inition of RJ
1 and RJ

2 , there exists (u1, v1) ∈ RI′
1 and (u2, v2) ∈ RI′

2

such that u1 = u2 = u and v1 = v2 = v.
If u1, v1 ∈ ∆∗, then, each element from ∆∗ being alone in its equiv-
alence class, we have u1 = u2 and v1 = v2. In particular it gives
(u1, v1) ∈ (R1 ⊓ R2)

I′ , contradicting I ′ being a model.
Otherwise say u1 /∈ ∆∗ (the case of v1 /∈ ∆∗ is symmetrical), hence
v1 ∈ N J ,∆∗

1 (u1). Theorem 9 gives a homomorphism from N J ,∆∗

1 (u1)

to N I′,∆∗

1 (u1). But since (u1, v1) ∈ (R1 ⊓ R2)
J , we obtain a contra-

diction with I ′ being a model.

Number of c-matches. We now prove J contains at most as many matches as
I ′ by building an injection from matches in J to matches in I ′. Assume we have a
match π : q → J . Consider the set of variables vπ := {v | v ∈ y∪z, π(v) /∈ ∆∗}. Let
C denote the set of connected components of vπ in q|vπ (that is the query obtained
by keeping only those atoms containing variables from vπ). For each connected
component C ∈ C, choose a reference variable vC ∈ C. Since π is a homomorphism
and |C| ≤ |q|, every variable v ∈ C satisfies π(v) ∈ N J ,∆∗

|q| (π(vC)). Let dC ∈ ∆I′

denote your favourite representative for the class of π(vC) (that is dC = π(vC)).

72 Q. Manière

3. Counting Conjunctive Queries

From Theorem 9, we have a homomorphism ρC : N J ,∆∗

|q| (π(vC)) → N I′,∆∗

|q| (dC).
Using these ρC , one per C ∈ C, we define:

π′ : x ∪ y ∪ z → ∆I′

v 7→
{
ρC(π(v)) if v ∈ C,C ∈ C
e if π(v) = e ∈ ∆∗

Since each ρC is a homomorphism (again Theorem 9), we can check the overall π′

is also a homomorphism:

- Consider A(v) ∈ q. If v ∈ C for some C ∈ C, then ρC being a homomorphism
gives π′(v) ∈ AI′ . Otherwise π(v) = e ∈ ∆∗, but since π is a homomorphism
we have π(v) ∈ AJ . Since e = {e} and by definition of AJ , it ensures e ∈ AI′ ,
that is π′(v) ∈ AI′ .

- Consider R(u, v) ∈ q.

- If both π(u), π(v) /∈ ∆∗, then we can find C ∈ C such that u, v ∈ C, and
then we use ρC being a homomorphism.

- If both π(u), π(v) ∈ ∆∗, then the definition of RJ provides (u0, v0) ∈ RI′

with u0 = π(u) ∈ ∆∗ and v0 = π(v) ∈ ∆∗. Hence u0 = {u0} and
v0 = {v0}, which gives (π′(u), π′(v)) ∈ RI′ .

- If π(u) /∈ ∆∗ and π(v) ∈ ∆∗, then we have π′(u) = ρC(π(u)) for
some C ∈ C. Theorem 9 ensures π′(u) ∼1 π(u), and since π is a
homomorphism, we also have (π(u), π(v)) ∈ RJ . Therefore we can apply
Lemma 15 and we obtain (π′(u), π′(v)) ∈ RI′ .

In particular, π′ is a match, hence π′(z) ⊆ ∆∗. Using property ρ−1
C (∆∗) ⊆ ∆∗ for

each C ∈ C, provided by Theorem 9 along with definition of π′, we obtain that
π(z) ⊆ ∆∗. Since ρ|∆∗ = Id, we have that the application π|z 7→ π′

|z is injective.
Therefore J contains at most as much matches as I ′ does.

Size of the model. Finally, an equivalence class d is characterized by: |d|
mod 2|q|+ 3, that is one equivalence class among 2|q|+ 3 possible classes; wd|q|+1,d,
that is a word over an alphabet with at most |T | symbols and a length at most
|q|+ 1; and χ|q|+1,d, that is a function from words over an alphabet with at most
|T | symbols and length at most 2|q|+1 to a set with size at most |∆∗|+2|sig(T)| +1.
Therefore, the number of possibly different equivalence classes, that is |∆J |, is
at most (2|q|+ 3)× |T ||q|+2 × (|∆∗|+2|sig(T)| + 1)|T |2|q|+2

. Recalling that Lemma 3
allows us to assume |∆∗| ≤ |Ind|+ (|Ind(A)|+ 3 |T | 2|T |)|q||q|, we have the claimed
bounds for the size of J , which concludes the proof of Theorem 8.

Counting Queries in Ontology-Based Data Access 73

3.4. Countermodels with bounded size

3.4.2 DL-Litecore: simpler neighbourhoods

In this section, we refine the preceding construction of optimal models with double-
exponential size to the case of DL-Litecore KBs, in which models with single-
exponential size can be obtained, yielding the following complexity refinement.

Theorem 10. CCQ answering in DL-Litecore is in coNEXP w.r.t. combined com-
plexity.

The key idea is to explore a more restricted notion of neighbourhoods, yielding
in particular exponentially smaller neighbourhoods that are still sufficient to capture
the counting matches in the quotient model. To do so, we recall the definition of
interleaving as first introduced in Kostylev and Reutter [2015], which starts from
the canonical model rather than from the existential extraction we designed for the
ALCHI case. Let us also recall that for every DL-LiteHcore KB K, it is well-known
the set of concept names M occurring in an element w ·∃R.M ∈ ∆CK of the canonical
model of K contains exactly those concept names entailed by the concept ∃R−

[Calvanese et al., 2007b]. We will hence omit such sets of concept names M for the
remainder of this section. Let us also fix a DL-Litecore KB K = (T ,A) and a CCQ
q.

Definition 37. Let I be a model of K. We recall ∆∗ denotes the subset of ∆I

containing Ind(A) and the images of counting matches of q in I. Let f : CK → I
be a homomorphism from the canonical model of K to I. The interleaving I♭ of a
model I is the image of CK by the function f ♭ defined as follows:

f ♭ : ∆CK → ∆∗ ⊎ (∆CK \∆∗)

w 7→
{
f(w) if f(w) ∈ ∆∗

w otherwise

Remark 16. The interleaving function f ♭ is essentially the same function than
the interlacing function f ∗ as used in Definition 23, where ∆◦ is replaced by ∆CK.

While interpretations of roles in interleavings and interlacings are defined in
a similar manner, that is purely syntactically w.r.t. the domain elements, there
are two differences we need to stress. First, only concepts entailed by ∃R− are
satisfied by an element w ·R in the interleaving. This is in contrast with interlacings
in which an element w · R.M satisfies all concepts satisfied by f(w · R.M) in I.
Second, the interleaving inherits the parsimonious introduction of fresh elements in
DL-Litecore canonical models, ensuring it also satisfies the following lemma.

Lemma 16. For any role R ∈ N±
R and anonymous element d1 in the canonical

model CK of K, there is at most one element d2 ∈ CK such that (d1, d2) ∈ RCK.

74 Q. Manière

3. Counting Conjunctive Queries

Proof. From the definition of RCK , if d1 is an anonymous domain element and
(d1, d2) ∈ RCK , then either:

- d1 = d2 · S− for some role S such that T |= S ⊑ R, or

- d2 = d1 · S for some role S such that T |= S ⊑ R.

In both cases, since T is a DL-Litecore TBox, the condition on S holds only if
S = R. Moreover, we observe that if the first case holds, i.e., d1 = d2 · R−, then
the definition of ∆CK prevents the creation of an element d1 · R. It follows that
only one of the preceding cases can hold, and so there can be at most one d2 with
(d1, d2) ∈ RCK .

Repeated applications of Lemma 16 ensure that each partial match of a query
q in the non-∆∗ parts of interleavings can be completed uniquely in a maximal
such partial match (see further Lemma 17). This motivates a refined notion of the
neigbhourhoods of an element c, restricting the (usual) neighbourhood to those
elements e that can be reached by a match of some connected sub-query of q
involving both c and e.

Definition 38. Consider an interpretation I and an element c ∈ ∆I. Its n-core-
neighbourhood N I,∆

n,core(c) w.r.t. a subdomain ∆ ⊆ ∆I is defined as:

N I,∆
0,core(c) := {c}

N I,∆
n+1,core(c) :=

e
∣∣∣∣∣∣
∃p ⊆ q connected
∃π : p→ I|(NI,∆

n,core(c) \∆)∪{e} match
c, e ∈ π(terms(p))


Remark 17. By contrast with previous neighbourhoods, core-neighbourhoods are
query dependent. Furthermore, since the subquery p must be connected, the inclusion
N I,∆
n,core(c) ⊆ N I,∆

n (c) is straightforward.

The central property allowing core-neighbourhoods to improve our construction
is the following polynomial bound on their size in interleavings.

Lemma 17. Let I be a model of K and I♭ its interleaving. Consider c ∈ ∆I♭ \∆∗,
then

∣∣∣N I♭,∆∗
n,core (c)

∣∣∣ ≤ |q|2(|T |+ 1).

Proof. Let c ∈ ∆I♭ \∆∗ We proceed in two steps. We first prove that the number
of elements in N I♭,∆∗

n,core (c) \∆∗ is at most |q|2. In a second step, we notice that each
element e ∈ N I♭,∆∗

n,core (c)∩∆∗ must be connected to an element d ∈ N I♭,∆∗
n,core (c) \∆∗ by

construction of the core-neighbourhoods. However, by construction of interleavings,
each such element d is connected to at most |T | elements (a property directly

Counting Queries in Ontology-Based Data Access 75

3.4. Countermodels with bounded size

inherited from anonymous elements of the canonical model), and we know from
the first step that there are at most |q|2 such elements d. This ensures there are at
most |q|2 · |T | elements in e ∈ N I♭,∆∗

n,core (c) ∩∆∗, hence the claimed total bound of
|q|2 + |q|2 · |T | = |q|2(|T |+ 1).

Henceforth, we focus on the first step. We start by proving that if the connected
subquery p ⊆ q and the term t0 that shall map on c are fixed, then all matches
p→ I|(NI,∆

n,core(c) \∆) indeed mapping t0 on c are equal. Consider two such matches π1
and π2. We proceed by induction on the terms t of p being connected. For t = t0,
we have π1(t0) = π2(t0) by definition. For a further term t, we use the induction
hypothesis, that is the existence of an atom R(t′, t) ∈ p (or the other way around)
such that π1(t′) = π2(t

′). Recall π1 and π2 are matches for p in I|(NI,∆
n,core(c) \∆), in

particular π1(t′), π2(t′) /∈ ∆∗, hence we can apply Lemma 26, yielding π1(t) = π2(t).
This proves that, for a fixed t0 ∈ terms(q), each connected subquery p ⊆ q

admitting a match in I|(NI,∆
n,core(c) \∆∗ defines at most |p| new neighbours, but also

that if p ⊆ p′ ⊆ q are two such subqueries, then the neighbours defined by p are
subsumed by those defined by p′ (the restriction to the terms of p of the unique
match of p′ mapping t0 on c must coincide with the unique match of p mapping t0
on c). Still for a fixed t0, consider now two connected subqueries p1, p2 ⊆ q, each
admitting a (unique) match π1 resp. π2, to I|(NI,∆

n,core(c) \∆∗ mapping t0 to c, and each
maximal, w.r.t. the inclusion, for this property. By the previous property, we know
π1 and π2 coincide on terms(p1) ∩ terms(p2). Therefore, p1 ∪ p2 admits a match
I|(NI,∆

n,core(c) \∆∗ mapping t0 to c, being π1 ∪ π2. But since p1 and p2 are assumed
maximal for this property, we must have p1 = p2.

Therefore, for a fixed t0 ∈ terms(q), there is a unique maximal connected
subquery pmax ⊆ q admitting a match in I|(NI,∆

n,core(c) \∆∗ and mapping t0 to c. As
previously seen, the neighbours defined by pmax subsume those defined by other
such subqueries, and since the match for pmax is unique, it defines at most |q|
neighbours. This holds for each possible choices of term t0, hence a total number
of possible neighbours bounded by |q|2 as claimed.

As for the general ALCHI case, this leads us to characterize the n-core-
neighbourhood of an element c ∈ I♭ via a subset Σn,c of Ωn, (we recall Ωn is the
set of words over Ω with length ≤ 2n) and by the following function χn,c.

χn,c : Σn,c → ∆∗ ∪ {∅}

w 7→
{
∅ if f ♭(rn,cw) /∈ ∆∗

f ♭(rn,cw) if f ♭(rn,cw) ∈ ∆∗

Notice Lemma 17 ensures the set Σn,c has size at most |q|2(|T | + 1), that is
polynomial, while we kept track of the full Ωn in the ALCHI setting. This will

76 Q. Manière

3. Counting Conjunctive Queries

ensure that the following equivalence relation, used to merge elements, only admits
an exponential number of equivalent classes.

Definition 39. The equivalence relation ∼core
n on I♭ is defined as follows: an

element e ∈ ∆∗ is ∼n-equivalent only to itself; elements c1, c2 from ∆I♭ \∆∗ are
∼core
n -equivalent iff wc1n,c1 = wc2n,c2, χn,c1 = χn,c2, Σn,c1 = Σn,c2, and |c1| = |c2|

mod 2|q|+ 3.

We obtain a finite model of the required size by merging elements with respect
to ∼core

|q|+1.

Theorem 11. The interpretation J := I♭/∼core
|q|+1 is a model of K that has at

most as many c-matches for q as I. Its size is polynomial w.r.t. data complexity,
simply-exponential w.r.t. combined complexity.

Proof. Modelhood is known from Kostylev and Reutter [2015], but can also be
easily verified based on the DL-Litecore subparts from the proof of Theorem 8.

To obtain an injective mapping of counting matches of q in J to counting
matches of q in I♭, one follows a similar proof strategy to the one used in Sec-
tion 3.4.1, building homomorphisms from core-neighbourhoods in the quotient to
core-neighbourhoods in the interleaving. We shall not go into the full details, but
instead mention a significant point. In the proof of Theorem 9, one can verify the
image of inductively built homomorphisms ρn,c belongs to the n-core-neighbourhood
(and not simply to the usual n-neigbourhood!). Indeed, when building the im-
age of an element e belonging to N J ,∆∗

n,core(c), hence being reached by some match
π : p→ J

|(NJ ,∆∗
n−1,core(c) \∆∗)∪{e}

, the resulting element ρn,c(e) is reached by the match

ρn,c ◦ π : p→ I♭
|(NI♭,∆∗

n−1,core(c) \∆∗)∪{e}
, ensuring ρn,c(e) belongs to N I♭,∆∗

n,core (c).

Finally, regarding the size of J , we remark that an equivalence class d is now
characterized by: |d| mod 2|q| + 3, that is one equivalence class among 2|q| + 3
possible classes; wd|q|+1,d, that is a word over an alphabet with at most |T | symbols
and a length at most |q|+1; Σ|q|+1,d, that is a subset, with size at most |q|2(|T |+1)
(Lemma 17), of the exponentially large set Ωn; and χ|q|+1,d, that is a function from
a set with at most |q|2(|T |+ 1) elements to a set with at most |∆∗|+ 1 elements.
Therefore, the number of possibly different equivalence classes, that is |∆J |, is at
most:

(2|q|+ 3)× |T ||q|+2 × (|T |2|q|+3)|q|
2(|T |+1) × (|∆∗|+ 1)|q|

2(|T |+1).

Recall Lemma 3 allows to assume |∆∗| ≤ |Ind|+ (|Ind(A)|+3 |T | 2|T |)|q||q|, we have
the claimed bounds for the size of J , which concludes the proof of Theorem 11.

Counting Queries in Ontology-Based Data Access 77

3.4. Countermodels with bounded size

We conclude this section by closing an open question regarding UCQ answering
over DL-Litecore KBs with closed predicates. This problem is known to be coNEXP-
hard from Ngo et al. [2016], but, to the best of our knowledge, no matching
upper bound has yet been found. We hereby close this question by showing our
construction easily adapts to this related setting.

Theorem 12. (Boolean) UCQ answering over DL-Litecore KBs with closed predi-
cates is in coNEXP w.r.t. combined complexity.

The proof follows from the following remark, which states that our construction
still holds for subqueries p of the original CCQ q as long as the counting matches
for p are already captured by the set ∆∗ defined to handle q. Notice this condition
has no chance to hold in general, as being a subquery makes p “easier” to map in a
model than q.

Lemma 18. Consider a DL-Litecore KB (without closed predicates), a CCQ q and
a model I of K. Let J be the model with polynomial size w.r.t. data complexity,
simply-exponential size w.r.t. combined complexity, obtained in Theorem 11. We
recall that ∆∗ contains the individuals from Ind(A) and the elements reached by
counting matches of q in the original model I. Consider a sub-query p ⊆ q. If the
counting matches for p in I are also contained in ∆∗, then the model J has at
most as many counting matches for p as I.

Proof. This follows from the various homomorphisms connecting the intermediate
models, and by ∆∗ being preserved all along the construction.

We can now prove Theorem 12.

Proof of Theorem 12. Let Q(x) :=
⋃l
k=1 qk(x) be a UCQ and K := (T ,Σ,A) a

DL-Litecore KB with closed predicates. Without loss of generality, we can assume
that x = ∅, that is Q is Boolean, and that no existential variable occurs in two
distinct CQs qk. Consider the Boolean CCQ q :=

∧l
k=1 qk in which all existential

variables have been replaced by counting variables. If a countermodel exists for
Q over K, that is a model I in which no qk matches, then it provides a model
of (T ,A) in which each qk, hence the whole q, admits 0 counting matches. In
particular, it yields ∆∗ = Ind(A) and the counting matches for each subquery qk
are contained in ∆∗. We can therefore use Lemma 18 for each qk, which ensures
that the model J obtained from the whole q has 0 counting match for each qk,
hence is a countermodel for Q over (T ,A). Finally, it is easily verified that since
Ind(A) ⊆ ∆∗, model J complies with the closed predicates from Σ, hence is a
countermodel for Q over (T ,Σ,A), that is K.

78 Q. Manière

3. Counting Conjunctive Queries

3.5 Matching lower bounds
We proceed to exhibit matching lower bounds for each previous upper bound. For
combined complexity, there are three main results: two 2EXP-hardness proofs for
EL and DL-LiteHpos, both obtained by reducing UCQ answering over KBs with
closed predicates, and a coNEXP-hardness proof for DL-Litecore, relying on a more
classical reduction from a tiling problem. For data complexity, two coNP lower
bounds follow from the subclass of rooted CCQs which is further investigated in
Chapter 4, and the DP-hardness of the tightest variant is also proved.

Interestingly, all these reductions to deciding if [m,+∞] is a certain answer
for a CCQ over a KB involve at most polynomially large such integers m. As a
consequence, the complexity of answering CCQs over the considered family of KBs
does not decrease if one enforces a unary encoding of the input integer m.

3.5.1 Two reductions from closed predicates

We now provide 2EXP lower bounds for EL and DL-LiteHpos, which together with
Theorem 6, establish the 2EXP-completeness of CCQ answering for ALCHI and
every sublogic that extends EL or DL-LiteHpos. The proofs are by reduction from
the problem of answering Boolean union of conjunctive queries (BUCQs) over KBs
with closed predicates, proven 2EXP-hard in Ngo et al. [2016].

Theorem 13. CCQ answering in EL is 2EXP-hard w.r.t. combined complexity.

Proof. Consider an EL KB K = (T ,A,Σ) with closed predicates and a BUCQ
q =

∨l
k=1 qk. Examining the 2EXP-hardness proof from Ngo et al. [2016], we may

assume that Σ consists only of concept names and each qk is connected and has
only variables as terms.

Pick a fresh individual aux not used in A, and let A′ be obtained from A by
adding A(aux) for every concept name A from sig(K) and P(aux, aux) for every role
name P from sig(K). Consider the KB K′ = (T ,A′) and the CCQ q′ built as the
conjunction of (i) all of the CQs qk in q (with all variables treated as counting
variables), (ii) the query qA = ∃zA A(zA) for each A ∈ Σ, and (iii) the queries
q+P = ∃z+P P(z+P , aux) and q−P = ∃z−P P(aux, z−P) for each role name P from K. For
each A ∈ Σ, let nA be the number of individuals a such that A(a) ∈ A, and set
N :=

∏
A∈Σ(nA + 1). To complete the proof, we prove the following claim: N + 1

is a certain answer to q′ over K′ iff K entails q.
First assume that N + 1 is certain answer to q′ over K′, and consider a model

I of K. Add aux and all the associated facts from A′ \ A to obtain a model I ′ of
K′. Observe that I ′ must contain at least N matches: the disjuncts qk and the
queries q+P and q−P all have a match sending all variables to aux, and each qA has
n matches due to A, plus one more sending zA to aux. Since N + 1 is a certain

Counting Queries in Ontology-Based Data Access 79

3.5. Matching lower bounds

answer, there must exist some additional match for q′ in I ′. As I is a model of
K, it interprets each A ∈ Σ as {a | A(a) ∈ A}, so there are no further matches for
qA. Next note that since aux is disconnected from the rest of I ′, there is no extra
match for each q±P . The only possibility then is that must be an extra match for
one of the qk, aside from the one mapping all variables aux. Since qk is connected,
this extra match is fully contained in ∆I′ \ {aux}. Hence, I contains a match for
qk. We may thus conclude that K entails q.

For the other direction, suppose that K entails q, and consider a model I ′ of K′.
There are at least N trivial matches for q′ in I ′. If there is an extra match for one
of the qA or one of the q±P , then we are done. Otherwise, removing aux from I ′
yields a model I of K. Since K entails q, there must be a match for one of the qk
in I. This yields a new match for qk in I ′ and concludes.

Theorem 14. CCQ answering in DL-LiteHpos is 2EXP-hard w.r.t. combined com-
plexity.

Proof. As the 2EXP-hardness proof for DL-LiteHcore from Ngo et al. [2016] does not
involve negative inclusions, we can employ the same approach as for EL (the added
aux assertions cannot lead to inconsistency).

We thus close the open question of the combined complexity of CCQ answering
in DL-LiteHcore. Note that our lower bound applies even to the subclass of CCQs
whose every variable is a counting variable, as considered in Kostylev and Reutter
[2015]; Calvanese et al. [2020a].

3.5.2 A tiling problem for DL-Litecore
The preceding 2EXP lower bound does not apply to DL-Litepos, for which coNEXP
membership has been shown (Theorem 10). We pinpoint the exact complexity by
giving a matching lower bound, via a reduction from the exponential grid tiling
problem. Here again the lower bound holds even when restricted to CCQs with
only counting variables.

Theorem 15. CCQ answering in DL-Litepos is coNEXP-hard w.r.t. combined
complexity.

Proof. The proof is by reduction from the exponential grid tiling problem ExpTiling.
We recall that an instance of this problem consists of a set C of colors, two rela-
tions H,V ⊆ C × C that give the horizontal and vertical tiling conditions, and a
number n. The task is to decide whether there exists a valid (H,V)-tiling of an
2n × 2n grid, i.e., a mapping τ : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} 7→ C such that
(τ(i, j), τ(i + 1, j)) ∈ H for every 0 ≤ i < 2n − 1 and (τ(i, j), τ(i, j + 1)) ∈ V for

80 Q. Manière

3. Counting Conjunctive Queries

every 0 ≤ j < 2n − 1. In what follows, we consider an instance (n, C,H,V) of the
ExpTiling problem.

To be able to test for the existence of a tiling of a 2n × 2n grid, we must start
by ensuring we can find such a grid in each model. Furthermore, we will need to
detect horizontal and vertical adjacency in this grid, it is thus appropriate to use
horizontal/vertical coordinates. To ensure a polynomial reduction, we need to use
a binary encoding of these coordinates. We start from an initial element a and use
TBox axioms to generate all possible coordinates of the horizontal coordinates:

A(a) A ⊑ ∃Rh,n−1,b ∃R−
h,i,b ⊑ ∃Rh,i−1,b′

(
i = 1, . . . n
b, b′ ∈ {0, 1}

)
We proceed similarly with the vertical coordinates, until we generate all possible
pairs of coordinates:

∃R−
h,0,b ⊑ ∃Rv,n−1,b′ ∃R−

v,i,b ⊑ ∃Rv,i−1,b′

(
i = 1, . . . n
b, b′ ∈ {0, 1}

)
The preceding axioms will generate a binary tree of height 2n in the canonical
model, whose leaves represent all possible grid positions. We use the following
axiom to assign a color to each of the points representing a grid position:

∃R−
v,0,b ⊑ ∃HasCol (b ∈ {0, 1})

To help us compare positions, we will include the following TBox axioms:

∃R−
d,i,b ⊑ ∃HasBitd,j

 0 ≤ i < j ≤ n− 1
b ∈ {0, 1}
d ∈ {h, v}


and:

∃R−
v,i,b ⊑ ∃HasBith,j

(
0 ≤ i, j ≤ n− 1

b ∈ {0, 1}

)
To keep track of elements used as color or bits, we also add:

∃HasCol− ⊑ Color ∃HasBit−d,i ⊑ Bit

(
0 ≤ i ≤ n− 1
d ∈ {h, v}

)
This completes our description of the TBox. We will finish our description of the
ABox later in the proof, but it will be useful to know that it will contain an ABox
individual c for every color c ∈ C and two ABox individuals (one, zero) to represent
bits.

Let us now define the query q. In what follows, we build q step by step, providing
several subqueries. For the sake of readability, we omit subscript/superscripts that

Counting Queries in Ontology-Based Data Access 81

3.5. Matching lower bounds

would allow to decide which variable occurs in which subquery. The reason is
simple: in what follows, no variable is shared by different subqueries.

To keep track of the colors used in a candidate tiling, we use the following
subquery:

qColor := ∃zColor(z)

We also need to detect if other bits than the intended ones (one, zero) are being
used to satisfy the right hand sides ∃HasBitd,i. For this purpose, we introduce the
following subquery:

qBit := ∃z Bit(z)

To detect if the ith bit of the coordinate in direction d is one when it should be
zero:

qd,i,one := ∃z1∃z2 Rd,i,0(z1, z2) ∧ HasBitd,i(z2, one)

(
0 ≤ i ≤ n− 1
d ∈ {h, v}

)
And the other way around:

qd,i,zero := ∃z1∃z2 Rd,i,1(z1, z2) ∧ HasBitd,i(z2, zero)

(
0 ≤ i ≤ n− 1
d ∈ {h, v}

)
To detect if the jth bit of the coordinate in direction d isn’t carried from the ith
level to the next:

qd,i,b,j := ∃z1 ∃z2 ∃z′1 ∃z′2 Rd,i,b(z1, z2) ∧ HasBitd,j(z1, z
′
1)

∧HasBitd,j(z2, z′2) ∧ Bit̸=(z′1, z
′
2)

 0 ≤ i < j ≤ n− 1
b ∈ {0, 1}
d ∈ {h, v}


To detect if the jth bit of the horizontal coordinate isn’t carried through the ith
vertical level:

qi,b,j := ∃z1 ∃z2 ∃z′1 ∃z′2 Rv,i,b(z1, z2) ∧ HasBith,j(z1, z
′
1)

∧HasBith,j(z2, z′2) ∧ Bit̸=(z′1, z
′
2)

(
0 ≤ i, j ≤ n− 1

b ∈ {0, 1}

)
To detect if part of the model is collapsing on the auxiliary individual:

qaux,R := ∃z R(z, aux) (R = Rd,i,b,HasBitd,i,HasCol)

We next discuss the parts of the query that are used to check the tiling condi-
tions. To detect adjacency, we remark that two grid positions (h1, v1), (h2, v2) ∈
{0, . . . , 2n − 1} × {0, . . . , 2n − 1} are vertically adjacent iff:

- h1 = h2, so the binary encodings of h1 and h2 are the same;

82 Q. Manière

3. Counting Conjunctive Queries

- v2 = v1 + 1, so the binary encodings of v2 and v1 are the same until, at some
point, v2 ends with 1 · 0k while v1 ends with 0 · 1k.

To detect a violation of the vertical tiling condition (i.e. two vertically adjacent tiles
with colors c and c′ such that (c, c′) /∈ V), we need n queries, one for each possible
position where the bit from the vertical coordinates differ. For each 1 ≤ k ≤ n, we
create a subquery qV,(c,c′),k defined as follows.

qV,(c,c
′),k = ∃zl ∃zr ∃zh,0 . . . ∃zh,n−1 ∃zv,k+1 . . . ∃zv,n−1

n−1∧
i=0

(HasBith,i(zl, zh,i) ∧ HasBith,i(zr, zh,i))

∧
n−1∧
i=k+1

(HasBitv,i(zl, zv,i) ∧ HasBitv,i(zr, zv,i))

∧ HasBitv,k(zl, zero) ∧ HasBitv,k(zr, one)

∧
k−1∧
i=0

(HasBitv,i(zl, one) ∧ HasBitv,i(zr, zero))

∧ HasCol(zl, c) ∧ HasCol(zr, c
′)

We can similarly define a set of subqueries qH,(c,c′),k that detect violations of the
horizontal tiling conditions (see e.g. Figure 3.15).

Finally, we let q be the conjunction of the all of the preceding subqueries. We
can now define the ABox, which introduces individuals for the intended colors and
bits and a further individual d that serves to ensure that all parts of the query can
be matched:

A = {Root(a),Bit(zero),Bit(one),Bit̸=(zero, one),Bit̸=(one, zero)}
∪ {Color(c) | c ∈ C}
∪ {Root(aux),Bit(aux),Color(aux),Bit̸=(aux, aux),HasCol(aux, aux)}
∪ {Rd,i,b(aux, aux) | d ∈ {h, v}, i ∈ {0, . . . n− 1}, b ∈ {0, 1}}
∪ {HasBitd,i(aux, aux) | d ∈ {h, v}, i ∈ {0, . . . n− 1}}

Let p = |C|, and let K be the KB with the preceding TBox and ABox. To
complete the proof, it suffices to establish the following claim:

Claim [3p+4,+∞] is a certain answer for q over K ⇐⇒ (n, C,H,V) /∈ ExpTiling.
First observe that there are always at least 3(p + 1) c-matches given by: p + 1
mappings for qColor (on each color-individual c and on aux), times 3 mappings for
qBit (on zero, one and aux), times 1 mapping for each other subquery (collapse on
aux).

Counting Queries in Ontology-Based Data Access 83

3.5. Matching lower bounds

zl zr

•
c

•
c′

zh,n−1

...

zh,2

zv,n−1

...

zv,0

•
one

•
zero

HasCol HasCol
H
as
B
it h
,n
−1

Ha
sB
ith,

3

HasBith,2

HasB
ith,1,

HasB
ith,0

H
asB

it
h,n−

1

HasBit
h,3

HasBith,2

HasBith,1,HasBith,0

HasBitv,n−1

HasBit
v,0

Has
Bitv

,n−
1

Ha
sB
it v
,0

Figure 3.15: The subquery qH,(c,c′),2 to check an horizontal tiling condition.

(⇒) Assume [3p + 4,+∞] is a certain answer, and take some candidate tiling
τ : {0, . . . 2n − 1} × {0, . . . 2n − 1} → {c | c ∈ C}. Let Iτ be the model of K that is
obtained from CK as follows:

- ∆Iτ contains all elements from ∆CK except those anonymous elements whose
last symbol is HasCol or HasBitd,i (i.e. witnesses for axioms involving ∃HasCol
or ∃HasBitd,i);

- the roles HasCol and HasBitd,i are interpreted as follows:

HasBitIτd,i := {(aux, aux)}
∪ {(awRd,i,0w

′, zero) | awRd,i,0w
′ ∈ ∆Iτ}

∪ {(awRd,i,1w
′, one) | awRd,i,1w

′ ∈ ∆Iτ}
HasColIτ := {(aux, aux)}

∪ {(aRh,n−1,hn−1 . . .Rh,0,h0Rv,n−1,vn−1 . . .Rv,0,v0 , τ(h, v))
| h := hn−1, . . . h0 ∈ [0, 2n − 1], v := vn−1, . . . v0 ∈ [0, 2n − 1]}

84 Q. Manière

3. Counting Conjunctive Queries

where h := hn−1 . . . h0 and v := vn−1 . . . v0 mean h and v are the numbers
whose binary encodings are hn−1 . . . h0 and vn−1 . . . v0 respectively;

- the remaining roles are interpreted exactly as in CK.

Recall our assumption that there is an additional c-match π for q in Iτ . It is easily
verified that the additional match can only result from one of the queries qh,(c,c′),k
or qv,(c,c′),k. From the definition of Iτ , this implies that there are two horizontally
(or vertically) adjacent tiles, which positions are encoded on π(zl) and π(zr) by
the endpoints of their respective roles HasBitd,i, whose respective colors c and c′

violate either H or V. Thus τ is not an (H,V)-tiling. As this construction holds
for any possible tiling τ , we infer that (n, C,H,V) /∈ ExpTiling.

(⇐) Assume (n, C,H,V) /∈ ExpTiling, and take some model I of K. There is
a homomorphism f : CK → I. If there exists aw ∈ ∆CK such that f(aw) = aux,
then there exists a new c-match for the subquery qaux,R, where R is the last let-
ter of the shortest prefix w′ of w such that f(aw′) = aux. Otherwise, we define
τ : {0, . . . , 2n − 1} × {0, . . . 2n − 1} → ∆I as follows: τ(hn−1 . . . h0, vn−1 . . . v0) :=
f(aRh,n−1,hn−1 . . .Rh,0,h0Rv,n−1,vn−1 . . .Rv,0,v0HasCol) (again slightly abusing nota-
tion by working with binary encodings of numbers). There are five cases to consider:

- If there exists (hn−1 . . . h0, vn−1 . . . v0) such that τ(hn−1 . . . h0, vn−1 . . . v0) /∈
{c | c ∈ C}, then this provides a new c-match of q in I in which the subquery
qColor is mapped as z 7→ τ(hn−1 . . . h0, vn−1 . . . v0).

- Otherwise, suppose there exists an element that is in the range of Bit that is
not zero nor one, then this also provides a new c-match of q, in which the
subquery qBit is mapped on this element.

- Otherwise, suppose there exists an inconsistent choice of bit, that is awRd,i,0

and f(awRd,i,0HasBitd,i) = one (respectively: awRd,i,1 and f(awRd,i,0HasBitd,i) =
zero), then it provides a new c-match for the subquery qd,i,one (resp: qd,i,zero).

- Otherwise, suppose there exists an non-propagated coordinate, that is awRd,i,b

such that f(awHasBitd′,k) ̸= f(awRd,i,bHasBitd′,k), then it provides a new
c-match either for the subquery qd,i,b,j or for the subquery qi,b,j.

- Else, since (n, C,H,V) /∈ ExpTiling, there exist two adjacent positions with
coordinates p := (hn−1 . . . h0, vn−1 . . . v0) and p′ := (h′n−1 . . . h

′
0, v

′
n−1 . . . v

′
0)

such that (τ(p), τ(p′)) ∈ (C × C) \ D, for D either H or V. Letting k
be the bit from which the encoding of the non-D coordinate differs, we
obtain a new c-match for q, in which the subquery qD,(τ(p),τ(p

′)),k is satis-
fied by mapping zl to f(aRh,n−1,hn−1 . . .Rh,0,h0Rv,n−1,vn−1 . . .Rv,0,v0) and zr to
aRh,n−1,h′n−1

. . .Rh,0,h′0
Rv,n−1,v′n−1

. . .Rv,0,v′0
) (or the converse).

Counting Queries in Ontology-Based Data Access 85

3.5. Matching lower bounds

In every case, there is an additional c-match for q. We thus obtain that [p+1,+∞]
is a certain answer to q over K.

3.5.3 Data complexity

We move to lower bounds for data complexity, consisting of a coNP-hardness result
for all investigated DLs and DP-hardness if we consider tight CCQ answering. For
coNP-hardness, only a brief proof sketch is provided here as the result follows
from later results in the context of the more restricted class of rooted CCQ (see
Theorem 21 in Chapter 4). Note that a coNP-hardness result for DL-Litepos was
already proved in Kostylev and Reutter [2015], from which our reduction borrows
the main ideas.

Theorem 16. CCQ answering in DL-Litepos ∩ EL is coNP-hard w.r.t. data com-
plexity.

Proof sketch. We reduce the complement of the graph 3-colorability problem
(3-Col) to answering the CCQ which is the conjunction of the subqueries

qcol := ∃y ∃z HasCol(y, z)

qedge := ∃yc ∃z1 ∃z2 Edge(z1, z2) ∧ HasCol(z1, yc) ∧ HasCol(z2, yc)

w.r.t. the TBox T containing the single axiom Vertex ⊑ ∃HasCol.⊤.

From the coNP membership of CCQ answering, it is easily seen that tight CCQ
answering can be done in DP by making a call to a coNP oracle (is [m,+∞] a
certain answer?) and an NP oracle (is [m+ 1,+∞] not a certain answer?). The
DP-hardness of this problem was left as an open question by Kostylev and Reutter.

Based on the preceding reduction from 3-Col, we give a reduction from the
following problem (DP-complete due to Garey et al. [1976]): given planar graphs G1
and G2, decide if G1 ∈ 3-Col and G2 /∈ 3-Col. Here again, the result follows from
an analogous result for the subclass of rooted CCQs (see Theorem 22 in Chapter 4).

Theorem 17. Tight-CCQ answering in DL-Litepos ∩ EL is DP-hard w.r.t. data
complexity.

If one drops the rootedness restriction and focuses on either EL or DL-Litepos,
then the preceding reduction can be adapted to show DP-hardness also for the two
kinds of CCQs from Kostylev and Reutter [2015], closing their open question.

Theorem 18. Tight CCQ answering in DL-Litepos and in EL for Count()-queries
as defined in Kostylev and Reutter [2015], that are CCQs with y = ∅, is DP-hard
w.r.t. data complexity.

86 Q. Manière

3. Counting Conjunctive Queries

Proof. We focus on DL-Litepos and mention along the proof of to adapt to EL.
Consider two planar graphs G1 := (V1, E1) and G2 := (V2, E2). Each vertex is
described in the ABox with a specific concept, either Vertex1 or Vertex2 depending
on which graph it appears in, and each edge by a simple Edge role. Three colors are
also provided for each graph, and identified with concepts Color1 and Color2. We
also introduce a auxiliary vertex aiv for each graph, equipped with a monochromatic
red edge so that each upcoming subquery is ensured to match. Formally, we
consider the following ABox:

A := {Vertex1(u) | u ∈ V1} ∪ {Vertex2(u) | u ∈ V1}
{Edge(u1, u2) | (u1, u2) ∈ E1 ∪ E2}
{Color1(c) | c ∈ {r1, g1, b1}} ∪ {Color2(c) | c ∈ {r2, g2, b2}}
{Edge(a1v, a1v),HasColor(a1v, r1),Edge(a2v, a2v),HasColor(a2v, r2)}

The TBox contains the following axioms, requiring each vertex to get a color
identified with the correct concept.

Vertex1 ⊑ ∃HasCol1 ∃HasCol−1 ⊑ Color1
Vertex2 ⊑ ∃HasCol2 ∃HasCol−2 ⊑ Color2

For EL, we consider instead axioms Vertex1 ⊑ ∃HasCol1.Color1 and Vertex2 ⊑
∃HasCol2.Color2.

u Vertex1

u′ Vertex1

◦

◦

r1 Color1

g2 Color1

b1 Color1

a1v

v Vertex2

v′ Vertex2

◦

◦

r2 Color2

g2 Color2

b2 Color2

a2v

E
d
ge

HasCol1

HasCol1

Edge
Ha

sCo
l1

E
d
ge

HasCol2

HasCol2

Edge
Ha

sCo
l2

Figure 3.16: A part of CK with (u, u′) ∈ E1 and (v, v′) ∈ E2.

Subqueries qedgei and qcoli are then defined to detect monochromatic edges or use

Counting Queries in Ontology-Based Data Access 87

3.5. Matching lower bounds

z11

z12

z1c

z1

Color1

z0

Color1 z21

z22

z2c z2

Color2E
d
ge

Ha
sC
ol1

HasCol1
E
d
ge

Ha
sC
ol2

HasCol2

Figure 3.17: The Count()-CCQ q, which is the conjunction of qedge1 , qcol1 , qcol0 (left
part) and qedge2 , qcol2 (right part).

of new colors for each graph, that is, for i ∈ {1, 2}:

qedgei =∃zic ∃zi1 ∃zi2 Edge(zi1, z
i
2) ∧ HasColi(z

i
1, z

i
c) ∧ HasColi(z

i
2, z

i
c)

qcoli =∃zi Colori(zi)

The main challenge is however to make sure that we can determine the 3-colorability
status of the two graphs solely by looking at the number of counting matches of
the query. To be able to distinguish G1 from G2, we introduce an asymmetry by
duplicating the color counter query for G1, i.e., create a copy qcol0 of qcol1 that uses a
fresh variable: qcol0 = ∃z0 Color1(z

0). We now let q be the conjunction of these 5
subquery, and K := (T ,A).

It is easily verified that the query q now corresponds to a Count query as defined
in Kostylev and Reutter [2015]. The query q is displayed in Figure 3.17, and the
canonical model CK of K is displayed in Figure 3.16.

We now claim [36,+∞] is the tightest certain answer to q over K iff G1 ∈ 3-Col
and G2 ̸∈ 3-Col. This is proven by a case analysis, summarized here:

G1 ∈ 3-Col G1 /∈ 3-Col

G2 ∈ 3-Col 27 (= 3× 3× 3) 48 (= 4× 4× 3)

G2 /∈ 3-Col 36 (= 3× 3× 4) 64 (= 4× 4× 4)

Each of the four cells displays the largest value of m such that [m,+∞] is a certain
answer of q over K, under different assumptions on the 3-colorability of G1 and G2.
To establish these values, one must first prove that every model has at least this
many c-matches, and then exhibit a model that realizes the exact number. For
the latter, we utilize our assumption that the graphs are planar, hence 4-colorable
[Gonthier, 2008], which we use to show that the minimal number of c-matches is
realized in a model that encodes proper 3- or 4-colorings of the graphs. We refer to
22 for the proof of this case analysis, as the number involved in the four cells are
strictly the same.

88 Q. Manière

3. Counting Conjunctive Queries

Theorem 19. Tight CCQ answering over DL-Litepos ∩ EL ontologies for Cntd(z)-
queries as defined in Kostylev and Reutter [2015], that are CCQs with |z| = 1 is
DP-hard w.r.t. data complexity.

Proof. We recall that the Cntd queries from Kostylev and Reutter [2015] correspond
to CCQs with exactly one counting variable. As in the previous reductions, we aim
to force additional matches whenever an input graph is not 3-colorable, and the
challenge is to track of the number of colors used to color the two graphs.

Having only a single counting variable forces us to count colors used for G1 in
exactly the same as we count those used for G2. In particular, the asymmetry we
introduced in the query must now be introduced into the ABox. This is done by
considering a copy of our first graph. However, this is not enough as two different
graphs could use the same additional color, making it impossible to detect with
our single counting variable that both graphs are using more than three colors.
Therefore, we will provide a set of basic colors for each graph and additionally
check whether a graph uses a color that is intended for another graph. Concretely,
we achieve this by connecting vertices from different graphs using a new role Diff,
and by adding a new subquery that will generate new c-matches whenever two
vertices connected by Diff use the same color.

Let us now give a more formal description of the construction. As mentioned
earlier, we will introduce a copy G0 = (V0, E0) of the graph G1. Without loss of
generality, we can assume that V0 ∩ V1 ∩ V2 = ∅. As ABox individuals, we will use:

- an individual name u for each u ∈ V0 ∪ V1 ∪ V2, to represent our graphs;

- individuals r0, g0, b0 (resp. r1, g1, b1 and r2, g2, b2), intended to color G0 (resp.
G1 and G2);

- auxiliary individuals for vertices (a0, a1, a2, c, d, e) and auxiliary individuals
for colors (r, g, b).

Counting Queries in Ontology-Based Data Access 89

3.5. Matching lower bounds

We then consider the following ABox:

A(G1,G2) = {Vertex(u) | u ∈ V0 ∪ V1 ∪ V2}
∪ {Edge(u1, u2) | (u1, u2) ∈ E0 ∪ E1 ∪ E2}
∪ {Edge(a0, a0),Edge(a1, a1),Edge(a2, a2),Edge(c, c),Edge(d, d)}
∪ {Diff(u1, u2) | u1 ∈ Vi, u2 ∈ Vj, i ̸= j}
∪ {Diff(u, ai) | u ∈ Vj, i, j ∈ {0, 1, 2}, i ̸= j}
∪ {Diff(a0, a0),Diff(a1, a1),Diff(a2, a2),Diff(c, c),Diff(e, e)}
∪ {Auxe(a0, a0),Auxe(a1, a1),Auxe(a2, a2),Auxe(d, d)}
∪ {Auxe(e, u) | u ∈ V0 ∪ V1 ∪ V2}
∪ {Auxe(u, c) | u ∈ V0 ∪ V1 ∪ V2}
∪ {Auxd(a0, a0),Auxd(a1, a1),Auxd(a2, a2),Auxd(e, e)}
∪ {Auxd(d, u) | u ∈ V0 ∪ V1 ∪ V2}
∪ {Auxd(u, c) | u ∈ V0 ∪ V1 ∪ V2}
∪ {HasCol(ai, t) | t ∈ {ri, gi, bi}, i ∈ {0, 1, 2}}
∪ {HasCol(d, r),HasCol(d, g),HasCol(d, b)}
∪ {HasCol(e, r),HasCol(e, g),HasCol(e, b)}
∪ {HasCol(c, r)}.

and the TBox T := {Vertex ⊑ ∃HasCol}. We denote by KG = (T ,A) the resulting
KB.

We consider the three following subqueries:

qdiff (y) = ∃yd1 ∃yd2 ∃ydc Auxd(y, y
d
1) ∧Diff(yd1 , y

d
2) ∧ HasCol(yd1 , y

d
c) ∧ HasCol(yd2 , y

d
c)

qedge(y) = ∃ye1 ∃ye2 ∃yec Auxe(y, ye1) ∧ Edge(ye1, y
e
2) ∧ HasCol(ye1, y

e
c) ∧ HasCol(ye2, y

e
c)

qcol(y) = ∃z HasCol(y, z)

and let q = ∃y qdiff (y) ∧ qedge ∧ qcol be the complete CCQ, which corresponds to a
Cntd query class as there is only one counting variable z. The query q is displayed
in Figure 3.18.

Claim: (a∅, [10,+∞]) ∈ qK iff G1 ∈ 3-Col and G2 ̸∈ 3-Col.
We prove this claim using the following case analysis:

G1 ∈ 3-Col G1 /∈ 3-Col

G2 ∈ 3-Col 9 (= 3 + 3 + 3) 11 (= 4 + 4 + 3)
G2 /∈ 3-Col 10 (= 3 + 3 + 4) 12 (= 4 + 4 + 4)

90 Q. Manière

3. Counting Conjunctive Queries

◦
y

z

◦
ye1

◦ye2

◦
yec

◦
yd1

◦ yd2

◦
ydc

H
as
C
ol

AuxeEdge

H
as
C
ol

H
asC

ol

Auxd Diff

H
asC

ol H
as
C
ol

Figure 3.18: The Cntd(z)-CCQ q, which is the conjunction of qedge (left part), qdiff
(right part) and qcol (upper part).

To obtain the values in the preceding table, consider an arbitrary model I of
K, along with a homomorphism f : CK → I. First observe that there are always 9
c-matches, which are obtained from the matches given by:

z 7→ ri | gi | bi y, ye1, y
e
2, y

d
1 , y

d
2 7→ ai yec , y

d
c 7→ ri (i ∈ {0, 1, 2})

Hence qI∅ ≥ 3 + 3 + 3 = 9.
Furthermore, let us define τI : V0∪V1∪V2 → ∆I as follows: τI(u) = f(uHasCol).

We’ll use the notation τI(Vi) to refer to the set {τI(u) | u ∈ Vi}. Notice that, if
τI(Vi) ∩ τI(Vj) ̸= ∅ with i ̸= j, that is, we have u ∈ Gi, v ∈ Gj with i ̸= j and
τI(u) = τI(v), then we have 3 additional c-matches corresponding to the matches
given by:

z, yec 7→ r | g | b y, ye1, y
e
2 7→ d yd1 7→ u yd2 7→ v ydc 7→ τI(u)

Therefore, in such a model I, we have qI∅ ≥ 9 + 3 = 12, and thus sufficiently many
c-matches w.r.t. the numbers in the table. We will therefore assume in the following
that τI(Vi) ∩ τI(Vj) = ∅ for i ̸= j (assumption (i)).

The same applies in the case where τI(Vi) ∩ {rj, gj, bj} ̸= ∅ for i ̸= j, as one
can exhibit the same three additional c-matches by replacing the individual v by aj
in the latter definition of matches. Therefore, we can also assume in what follows
that τI(Vi) ∩ {rj, gj, bj} = ∅ for all i ̸= j (assumption (ii)).

Finally, notice that if τI introduces a monochromatic edge, i.e. an edge (u, v) ∈
E0∪E1∪E2 such that τI(u) = τI(v), we again have 3 additional c-matches obtained
from the matches given by:

z, ydc 7→ r | g | b y, yd1 , y
d
2 7→ e ye1 7→ u ye2 7→ v yec 7→ τI(u)

Counting Queries in Ontology-Based Data Access 91

3.5. Matching lower bounds

Therefore, we can also restrict our attention to models without monochromatic
edges (assumption (iii)). Any model that satisfies properties (i), (ii) and (iii) will
be called non-trivial.

We now proceed to consider the four cases. In each case, the minimal number
of c-matches is obtained by exhibiting a model built from colorings for each graph
that use a minimal number of colors. The only important difference w.r.t preceding
reductions is that when more than one graph utilizes a fourth color, we need to use
distinct fourth colors for each graph. We now complete the proof by showing that
every non-trivial model has at least the number of c-matches as listed in the table.

- G1,G2 ∈ 3-Col: We have already seen that every model contains at least 9
c-matches.

- G1 /∈ 3-Col,G2 ∈ 3-Col: Since G0 and G1 are not 3-colorable, any non-
trivial model I must satisfy τI(V0) ≥ 4 and τI(V1) ≥ 4, due to assumption
(iii). In particular, we have a vertex u0 ∈ V0 (resp. u1 ∈ V1) such that
τI(u0) /∈ {r0, g0, b0} (resp. τI(u1) /∈ {r1, g1, b1}). This yields the following
matches:

z 7→ τI(ui) y 7→ ui ye1, y
e
2, y

d
1 , y

d
2 7→ c yec , y

d
c 7→ r (i ∈ {0, 1})

which give rise to two new c-matches because of assumptions (i) (ensuring
the two colors τI(u0) and τI(u1) are different) and (ii) (ensuring τI(u0) and
τI(u1) are different from the colors in the 9 basic c-matches). Hence, every
non-trivial model contains at least 11 c-matches.

- G1 ∈ 3-Col,G2 /∈ 3-Col: Since G2 is not in 3-Col, any non-trivial model I
must satisfy τI(V2) ≥ 4 because of assumption (iii). In particular, we have
a vertex u2 ∈ V2 such that τI(u2) /∈ {r2, g2, b2}. This provides a new match
given by:

z 7→ τI(u2) y 7→ u2 ye1, y
e
2, y

d
1 , y

d
2 7→ c yec , y

d
c 7→ r

which gives rise to a new c-match because of the assumption (ii) (which
ensures τI(u2) is different from the colors in the 9 basic c-matches). Hence,
every non-trivial model contains at least 10 c-matches.

- G1,G2 /∈ 3-Col: We can proceed similarly to the two previous cases to exhibit
u0 ∈ V0, u1 ∈ V1, u2 ∈ V2 that are assigned new colors, providing three new
matches given by:

z 7→ τI(ui) y 7→ ui ye1, y
e
2, y

d
1 , y

d
2 7→ c yec , y

d
c 7→ r (i ∈ {0, 1, 2})

92 Q. Manière

3. Counting Conjunctive Queries

which give rise to three new c-matches because of assumptions (i) (the colors
τI(u0), τI(u1), τI(u2) are all different) and (ii) (they are also different from
the colors in the 9 basic c-matches). Hence, we have that every non-trivial
model contains at least 12 matches.

Counting Queries in Ontology-Based Data Access 93

4
Rooted CCQs

In this chapter, we explore whether a first structural restriction on CCQs allows us
to lower the complexity. The reductions used to prove lower complexity bounds in
Chapter 3 mostly rely on disconnected CCQs admitting fully anonymous matches
in some models. A natural idea is thus to restrict to the class of rooted CCQs, for
which each match must involve at least one individual per connected component of
the query. Rootedness is already known to lower the complexity in several settings
(see e.g.Lutz [2008]; Calvanese et al. [2020a]), notably leading to tractable data
complexity for CQ answering under bag semantics in DL-Litecore (Nikolaou et al.
[2019]).

In the case of CCQs, we show that this restriction does not lead to lower
complexity than in the general case. Intuitively, one can use existential variables
to connect a root of a query to its counting variables, thereby making it possible
to bypass the rootedness restriction. Rooted CCQs are investigated in Section 4.2
and lead to the very same complexity results as in the general case, recalled in
Table 4.1.

Exhaustive rooted Rooted
Data Combined Data Combined

DL-LiteHpos, ELI,ALCHI coNP-c coNEXP-c coNP-c 2EXP-c
ALC,ALCH coNP-c EXP-c coNP-c 2EXP-c
EL, ELH⊥ coNP-c PSPACE-c coNP-c 2EXP-c
DL-Litepos,DL-Litecore TC0-c PP-c coNP-c coNEXP-c

Table 4.1: (Exhaustive) rooted CCQs answering: worst-case complexity.

These results lead us to consider an additional constraint: disallowing existential
variables. We term such CCQs exhaustive as this further restriction means that we

95

count every match for the query, since (plain) matches now coincide with counting
matches. As our exploration reveals, exhaustive rooted CCQ answering enjoys
lower complexity bounds, summarized in Table 4.1. In data complexity, we obtain a
tractable TC0 case for DL-Litecore, by showing that a carefully defined notion of the
canonical model always yields the tightest certain answer. In combined complexity,
we exhibit four situations ranging from PP-completeness to coNEXP-completeness.
All four results are obtained by refinements of interlacing functions. In Section 4.3,
a first refinement for ALCHI KBs allows us to ensure existence of countermodels
with exponential size, if a countermodel does exist, hence yielding the coNEXP
upper bound. In Section 4.4, we construct an interlacing function tailored to the
absence of inverse role in ALCH, from which we derive a EXP procedure, dropping
to PSPACE when considering ELH⊥. In Section 4.5 we focus on DL-Litecore and
obtain a PP completeness result relying, as mentioned for data complexity, on the
canonical model yielding the tightest certain answer.

Interestingly, all of the lower bounds for combined complexity explored in the
present chapter rely on a binary encoding of the input integer. This is in contrast
with the general case (Chapter 3), and whether the complexity of (exhaustive)
rooted CCQ answering drops when requiring m to be written in unary remains an
open question.

Organization of Chapter 4
4.1 Preliminaries . 97
4.2 A weak notion of rootedness . 97

4.2.1 Combined complexity: from CCQs to rooted CCQs 97
4.2.2 Two reductions for data complexity 102

4.3 Exhaustive rooted CCQs over ALCHI 106
4.3.1 The interlacing function f ⋄ 107
4.3.2 Quotients of f ⋄-interlacings: a coNEXP upper bound 109
4.3.3 Two matching lower bounds with inverse roles 110

4.4 Further refinements for ALCH . 122
4.4.1 The interlacing function f ⋆ 122
4.4.2 A PSPACE algorithm, up to satisfiability 127
4.4.3 Matching lower bounds . 136

4.5 Refinements within DL-Lite . 145
4.5.1 From DL-LiteHcore to DL-Litecore 146
4.5.2 DL-Litecore and combined complexity 151
4.5.3 DL-Litecore and data complexity 153

96 Q. Manière

4. Rooted CCQs

4.1 Preliminaries
To define rootedness, we first recall the definition of the labeled directed graph
associated to a CCQ q given in Chapter 3: each term t is represented by a vertex
vt labeled by t and by concept names A such that A(t) ∈ q, and an directed edge
(vt1 , vt2) labeled with P is added for each atom P(t1, t2) ∈ q. To easily distinguish
the status of each term (and often to omit the name of the term), the node vt is
depicted as • if t ∈ Ind ∪ x, as ◦ if t ∈ y, and as if t ∈ z. Rootedness is then
defined as follows:

Definition 40. A CCQ q is rooted if every connected component of the graph
associated to q contains at least one answer variable or individual name.

We may focus on Boolean CCQs without loss of generality, since replacing an
answer variable by the individual of interest preserves rootedness. Observe that for
Boolean CCQs, the rootedness restriction enforces that every connected component
of the graph contains at least one individual name.

As mentioned in the introduction of this chapter, we also consider the subclass
of exhaustive queries, which basically corresponds to the class of Count()-CQs
considered in Kostylev and Reutter [2015].

Definition 41. A CCQ q(x) := ∃y ∃z ψ(x,y, z) is exhaustive if y = ∅.

For exhaustive CCQs, the notions of matches and counting matches coincide.
When it is clear we are considering such queries, we will use the term matches for
simplicity, and hence be interest in the number of matches.

4.2 A weak notion of rootedness
In this section, we prove that rootedness is not sufficient to lower the complexity
of CCQ answering compared to the general case. For combined complexity, we
show how to directly reduce CCQ answering to rooted CCQ answering. For data
complexity, we proceed by reduction from (the complement of) the 3-Col problem
to obtain coNP-hardness. Notice this also closes the pending lower bounds from
Section 3.5.3.

4.2.1 Combined complexity: from CCQs to rooted CCQs

For the combined complexity measure, we exhibit a direct reduction from CCQ
answering to rooted CCQ answering. This is achieved by a slight modification of
the ontology, essentially requiring that each (relevant) element in a model must
connect to a root-like element via a dedicated role. Such root-like elements are

Counting Queries in Ontology-Based Data Access 97

4.2. A weak notion of rootedness

further counted by a subquery, which is duplicated enough times so that each
unknown instance of a root-like element causes an exponential number of new
counting matches. Interestingly, the number of copies of this subquery to introduce
is data-dependent, which is why this reduction doesn’t work for data complexity.
The key ingredient is hence to be able to count the root-like elements of a model
without counting all elements of the model. Indeed, as our constructed CCQ must
be rooted, the only way to count a root-like element to which an arbitrary element
e in the model is connected is by considering a path from a fixed individual (the
root of our query) to e. This is precisely what existential variables allow us to do:
to consider such a path without counting it.

The precise result, sufficient for our purposes, is as follows.

Theorem 20. Let L be a sublogic of ELHI extending either EL or DL-Litepos.
Then CCQ answering over L KBs can be polynomially reduced to rooted CCQ
answering over L KBs.

Proof. Let L be a sublogic of ELHI extending either EL or DL-Litepos. Let
K := (T ,A) be an L KB, q be a CCQ and m a candidate integer. We begin with
a slight reformulation, by noticing that we can assume without loss of generality
that q doesn’t contain any individual name. Indeed, by replacing each occurrence
of an individual a in q by an existential variable ya, adding the atom IsInda(ya) to
q and the assertion IsInda(a) to A, we obtain such an individual-free query q′ and
extended ABox A′ such that n is a certain answer to q over K iff n is a certain
answer to q′ over K′ := (T ,A′). Henceforth the terms of q are either existential or
counting variables.

We now proceed to the main reduction and build a new L KB K′ := (T ′,A′), a
rooted CCQ q′ and a new integer m′ such that m is a certain answer to q over K
iff m′ is a certain answer to q′ over K′. The built KB K′ extends the original K,
that is T ⊆ T ′ and A ⊆ A′, with additional assertions and axioms that are further
detailed.

The general idea is to ask for relevant elements of a model I ′ of K′, those are
the elements ensuring modelhood, to be directly connected to one of the two roots
that we provide as part of A′, namely a and b. We enforce this behaviour with
a variation of the axiom ⊤ ⊑ ∃toRoot.⊤ in T ′ and by counting the number of
root-like elements in I ′ with a subquery of q′ containing an atom toRoot(y, z). By
considering enough copies of the latter subquery (≈ log 3

2
m), we make sure the

introduction of a third root-like element in I ′ disqualifies I ′ as an optimal model,
and we can hence focus on models that only contain the two provided roots. In
such a model, q can easily be rewritten as a rooted CCQ since each relevant element
of the model is connected either to a or to b.

The reason why we provide two roots is to allow to distinguish two “sides” in
a model I ′ of K′: the main side containing a and the auxiliary side containing

98 Q. Manière

4. Rooted CCQs

b. The purpose of the main side in I ′ is to represent (the relevant elements of) a
model I of the original KB K, while the auxiliary side provides basic matches for
the query q′. To this end, a is chosen among individual names from A, or as a fresh
new individual if ever A = ∅, while b is always chosen as a fresh new individual
name. Changing side will be represented by following a fresh new role toSide from
a. We add in A′ the two following assertions:

toSide(a, a) toSide(a, b)

Since a is part of the main side, which aims to represent a model of K, we ask each
individual element on this side to be connected to a with the following assertions:

toRoot(a, a) toRoot(c, a) (c ∈ Ind(A))

On the auxiliary side, we allow b to be its own root and to satisfy every possible
fact related to the original KB K:

toRoot(b, b) A(b) P(b, b) (A,P ∈ sig(K))

To prevent the main side from reusing facts from the auxiliary side, we introduce
M copies of the following subqueries in q′ (the value of M will be specified latter)
to capture outgoing and incoming roles involving b:

q
(i)
P,b := ∃z P(b, z) q

(i)

P−,b := ∃z P(z, b) (P ∈ sig(T) ∪ {toRoot}, 1 ≤ i ≤M)

Notice each copy is rooted and embeds on b in all models of A′. We now aim to
make sure that relevant elements on the main side are connected to a. We introduce
a fresh new concept Aux⊤ aiming to capture all relevant elements by subsuming all
concept that might occur in the original KB K. We hence add in T ′ the following
axioms, depending on which DL the logic L is extending:

L extends EL L extends DL-Litepos

⊤ ⊑ Aux⊤

A ⊑ Aux⊤ (A ∈ sig(T))
∃P.⊤ ⊑ Aux⊤ (P ∈ sig(T))
∃P−.⊤ ⊑ Aux⊤ (P ∈ sig(T))

Notice the use of inverse roles is only needed if the logic L already allows it. We
now require that such elements are connected to a root-like element with the axiom:

Aux⊤ ⊑ ∃toRoot.⊤

To enforce the root a to be reused in optimal models, we proceed inductively:
individuals from A and individual a already satisfy this condition, and we build a
subquery qP,a which counts the root-like elements used by the P-neighbours of an

Counting Queries in Ontology-Based Data Access 99

4.2. A weak notion of rootedness

element already connected to a known root. We consider in fact N copies of this
subquery per role P and per inverse role P− from the signature of T :

q
(j)

P±,a := ∃y, y1, yf , y2, y′1, y′f , y′2 ∃z toSide(a, y)

∧toRoot(y1, y) ∧ fetch(y1, yf) ∧ fetch(y2, yf)

∧P±(y2, y
′
2)

∧fetch(y′2, y′f) ∧ fetch(y′1, y
′
f) ∧ toRoot(y′1, z)

(
P ∈ sig(T)
0 ≤ j ≤ N

)

in which fetch is a fresh new role name whose purpose is to let a be a match for
each q(i)P±,a. It is indeed essential that a is already counted as a basic c-match, but
since we don’t want to introduce auxiliary facts on a (which would restrict the
possible models represented on the main side), the role fetch allows a to borrow
facts from b thanks to the following assertions in A′:

fetch(a, b) fetch(b, b)

The following axiom in T ′ is therefore needed to ensure queries q(j)P±,a can still map
on other relevant elements:

Aux⊤ ⊑ ∃fetch.⊤
Finally, the original query becomes:

qrooted := ∃y toSide(a, y) ∧ q ∧
∧

v∈terms(q)

toRoot(v, y)

and we let q′ be the conjunction of all the above subqueries.
Notice there are always: 1 c-match (on b) for each q(i)P,b, 1 c-match (on b) for qrooted

and 2 c-matches (on a or b) for each q(j)P,a for every model of A′. Together, it yields
12M(|sig(T)|+1) × 1 × 22N |sig(T)| basic c-matches for the whole query q′. Therefore,
if there are m c-matches in a model of K, we should aim for 12M(|sig(T)|+1) ×
(m + 1) × 22N |sig(T)| c-matches in the corresponding model of K′. We hence set
n′ := (n+ 1)× 22N |sig(T)|. We now discuss how to set M and N . We want any new
c-match for a subquery q(i)P,b to allow for more than m′ c-matches for the whole q′,
that is:

2M × 12M(|sig(T)|+1)−M × 1× 22N |sig(T)| > (m+ 1)× 22N |sig(T)|

Hence we set M := ⌊log2(m+ 1)⌋+ 1. We proceed as well for N , aiming for:

12M(|sig(T)|+1) × 1× 3N × 22N |sig(T)|−N > (m+ 1)× 22N |sig(T)|

Hence we set N := ⌊log 3
2
(m+ 1)⌋+ 1.

It remains to prove that [m′,+∞] is a certain answer to q′ over K′ iff [m,+∞]
is a certain answer to q over K.

100 Q. Manière

4. Rooted CCQs

(⇒). Assume [m,+∞] is not a certain answer to q over K, that is we have a
countermodel I of K for q and m. Denote m0 the number of matches in I. We
now build a countermodel I ′ of K′ for q′ and m′. If the initial ABox A is empty,
we assume, up to a renaming, that a ∈ ∆I (recall that otherwise, that is A ≠ ∅,
we chose a among Ind(A)).

The domain of I ′ is ∆I ∪ {a, b}, and interpretations of concept and role names
are given as follow:

AI′
:= AI ∪ {b} (A ∈ sig(T))

Aux⊤
I′
:= ∆I′

PI′
:= PI ∪ {(b, b)} (P ∈ sig(T))

toSideI
′
:= {(a, a), (a, b)}

toRootI
′
:= {(a, a), (b, b)} ∪ {(e, a) | e ∈ ∆I}

fetchI′
:= {(e, b) | e ∈ ∆I}

It is easily verified that I ′ is a model of K′, mainly from the following facts:

- I is a model of K;

- Facts in I ′ involving elements of ∆I ensure satisfaction of the additional
axioms of T ′;

- In the absence of negative inclusions (recall L belongs to ELHI), all the facts
on b do not yield any contradiction;

- Since in any case a already belonged to ∆I , it ensures all axioms with shapes
⊤ ⊑ B are already satisfied on a in I.

It is further direct that I ′ contains exactly (m0 + 1)× 22N |sig(T)| < m′ matches for
q′, yielding the desired countermodel.

(⇐). Assume that [m,+∞] is a certain answer to q over K. Consider a model I ′
of K′. If b is reached by any new fact involving a role P± from sig(T) ∪ {toRoot}
in I ′, it yields a new c-match for all the corresponding qP±,b and ensures existence
of at least m′ c-matches for q′ in I ′. Otherwise we say that b is isolated and we
consider the submodel I∗ of I ′ obtained by only keeping the connected components
containing an element from Ind(A) ∪ {a}. Using the queries qP±,a and b being
isolated, we prove by induction on these connected components that if any element
from I∗ is not connected by toRoot to a, then there exists at least m′ matches
in I∗, hence in I ′. Otherwise, we consider the model I of K obtained from I∗
by dropping b. Modelhood is indeed ensured from modelhood of I ′, hence of I∗,
and the fact that b was isolated before being dropped. By hypothesis, we have

Counting Queries in Ontology-Based Data Access 101

4.2. A weak notion of rootedness

m c-matches for q in I. It can be verified that these m c-matches correspond to
exactly m new c-matches for qrooted in I ′, ensuring existence of m′ c-matches for
the whole q′ in I ′.

Using Theorem 20, we can import from Chapter 3 the three lower bounds for
combined complexity.

Corollary 1. Rooted CCQ answering over EL ontologies is 2EXP-hard.

Proof. Theorem 20 combined with Theorem 13.

Corollary 2. Rooted CCQ answering over DL-LiteHpos ontologies is 2EXP-hard.

Proof. Theorem 20 combined with Theorem 14.

Corollary 3. Rooted CCQ answering over DL-Litepos ontologies is coNEXP-hard.

Proof. Theorem 20 combined with Theorem 15.

4.2.2 Two reductions for data complexity

We now move to data complexity, for which we prove the coNP-hardness of answering
rooted CCQs over DL-Litepos ∩ EL, hence coNP-completeness for all DLs up to
ALCHI (recall that CCQ answering over ALCHI KBs is in coNP from Theorem 7).
This also proves Theorem 16 from Chapter 3.

Theorem 21. Rooted CCQ answering over DL-Litepos ∩ EL ontologies is coNP-
complete w.r.t. data complexity.

Proof. The proof borrows some ideas from the proofs of Lemmas 12 and 16 from
Kostylev and Reutter [2015]. It proceeds by reduction from the well-known coNP-
complete 3-Col problem: given an undirected graph G = (V , E), return yes iff G
has no 3-coloring, i.e., a mapping from V to {red, green, blue} such that adjacent
vertices map to different colors (equivalently: there is no monochromatic edge).

The reduction uses atomic roles Edge and toVertex to encode the graph and
HasCol to assign colors. The DL-Litepos∩EL TBox T has a single axiom: Vertex ⊑
∃HasCol.⊤. The ABox AG contains an assertion Vertex(v) for each vertex v ∈ V
and an assertion Edge(u, v) for each edge {u, v} ∈ E . All vertices are connected
to a special root individual a: toVertex(a, v) for each v ∈ V. The three colors are
represented by individuals r, g and b. To ensure that the query has matches in every
model, we include a ‘dummy’ vertex individual av and the following assertions:
toVertex(a, av), Edge(av, av), HasCol(av, r), HasCol(av, g), and HasCol(av, b).

Let KG := (T ,AG) be the built KB. A part of the canonical model of KG is
depicted in Figure 4.1.

102 Q. Manière

4. Rooted CCQs

a

u1

Vertex

u2

Vertex

u1 · HasCol

u2 · HasCol

r

g

b

av

toVertex

toV
ert

ex

toVertex

E
d
ge

HasCol

HasCol

Edge Ha
sCo

l

HasCol

HasCol

Figure 4.1: A part of CKG with (u1, u2) ∈ E .

The query q, depicted in Figure 4.2, is the conjunction of the two subqueries:

qedge = ∃yc ∃z1 ∃z2 toVertex(a, z1) ∧ toVertex(a, z2)∧
Edge(z1, z2) ∧ HasCol(z1, yc) ∧ HasCol(z2, yc)

qcol = ∃y ∃z toVertex(a, y) ∧ HasCol(y, z)

serving respectively to detect monochromatic edges and to check whether any
additional colors have been introduced.

•
a

z1

z2

◦yc ◦
y

z

toVertex

toV
ert

ex

toVertex HasCol

E
d
ge

Ha
sCo

l

HasCol

Figure 4.2: The rooted CCQ q, being the conjunction of qedge (left) and qcol (right).

It is not hard to see that [3,+∞] is a certain answer to q over KG. Indeed, there
are at least 9 matches of q in any model I of K, given by:

z1, z2, y 7→ av yc 7→ r | g | b z 7→ r | g | b

These 9 matches give rise to 3 c-matches for q, corresponding to the three ways of
mapping z. To complete the proof, we establish the following claim:

[4,+∞] is a certain answer to q over KG iff G /∈ 3-Col.

Counting Queries in Ontology-Based Data Access 103

4.2. A weak notion of rootedness

(⇒) Assume [4,+∞] is a certain answer to q over KG, and take some possible
coloring τ : V → {r, g, b} of the graph G. Let IGτ be the model of KG whose domain
is Ind(AG) and which interprets concept Vertex and roles toVertex and Edge exactly
following the ABox, and which interprets HasCol according to τ :

HasColI
G
τ = {(av, r), (av, g), (av, b)} ∪ {(v, τ(v)) | v ∈ V}

Intuitively, Iτ is obtained from the canonical model by replacing the element
v · HasCol with τ(v).

By hypothesis, there is a fourth c-match π for q in IGτ . It is easily verified that
the additional match can only result from the atom Edge(z1, z2) being mapped
onto an edge Edge(u1, u2) that is different from Edge(av, av). From the definition of
IGτ , this implies that the edge (u1, u2) of G is monochromatic, both vertices sharing
the color π(yc). Thus, τ is not a 3-coloring. As this construction holds for any
possible coloring τ , we obtain G /∈ 3-Col.

(⇐) Assume G /∈ 3-Col, and take some model I of KG . There is a homomorphism
f : CKG → I (which preserves individual names). Define τ : V → ∆I as follows:
τ(u) = f(u · HasCol). There are two cases to consider:

- If there exists u ∈ V such that τ(u) /∈ {r, g, b}, then this provides a match
of q in I given by z 7→ τ(u) and y 7→ uI , whose restriction to the counting
variables is a new c-match.

- Else, since G /∈ 3-Col, there exists an edge (u1, u2) ∈ E such that τ(u1) =
τ(u2). It provides a new match given by:

z 7→ r y 7→ av z1 7→ u1 z2 7→ u2 yc 7→ τ(u1) (= τ(u2))

In both cases, there is a fourth c-match for q. As this holds for any model I of KG ,
it proves [4,+∞] is certain answer to q over KG.

To conclude with this form of rooted queries, we turn to the tightest certain
answer variant. Based on the previous proof, we can adapt the reduction to obtain
a DP lower bound for this tightest variant. This also proves Theorem 17 from
Chapter 3.

Theorem 22. Tight-rooted CCQ answering in DL-Litepos ∩ EL is DP-hard w.r.t.
data complexity.

Proof. We give a reduction from the following problem (DP-complete due to Garey
et al. [1976]): given planar graphs G1 and G2, decide if G1 ∈ 3-Col and G2 /∈ 3-Col.

104 Q. Manière

4. Rooted CCQs

Let the TBox T and ABoxes AG1 ,AG2 be defined as in the proof of Theorem 21.
Rename the individuals to ensure Ind(AG1)∩ Ind(AG2) = ∅, then set K = (T ,AG1 ∪
AG2). Let qcolor1 and qedge1 (resp. qcolor2 and qedge2) be defined as before, but using
disjoint variables and the root individual from the AG1 (resp. AG2). The challenge
is to make sure that we can determine the 3-colorability status of the two graphs
solely by looking at the number of c-matches of the query. To be able to distinguish
G1 from G2, we introduce an asymmetry by duplicating the color counter query
for G1, i.e., create a copy qcolor0 of qcolor1 that uses fresh variables but the same root
individual. We then take the query:

q := qcolor0 ∧ qcolor1 ∧ qedge1 ∧ qcolor2 ∧ qedge2 .

We claim [36,+∞] is the tightest certain answer to q over K iff G1 ∈ 3-Col
and G2 ̸∈ 3-Col. This is proven by a case analysis, summarized here:

G1 ∈ 3-Col G1 /∈ 3-Col

G2 ∈ 3-Col 27 (= 3× 3× 3) 48 (= 4× 4× 3)

G2 /∈ 3-Col 36 (= 3× 3× 4) 64 (= 4× 4× 4)

Each of the four cells displays the largest value of m such that [m,+∞] is a certain
answer of q over K, under different assumptions on the 3-colorability of G1 and G2.
To establish these values, one must first prove that every model has at least this
many c-matches, and then exhibit a model that realizes the exact number. For
the latter, we utilize our assumption that the graphs are planar, hence 4-colorable
[Gonthier, 2008], which we use to show that the minimal number of c-matches is
realized in a model that encodes proper 3- or 4-colorings of the graphs.

We now provide more details on the case analysis. In what follows, I denotes an
arbitrary model of K = (T ,AG1 ∪AG2). We first remark that every model contains
the c-matches given by:

z0, z1 7→ r1 | g1 | b1 z11 , z
1
2 7→ av

1 z2 7→ r2 | g2 | b2 z21 , z
2
2 7→ av

2

Hence I contains at least 3× 3× 1× 3× 1 = 27 c-matches.
In what follows, we will use IGτ to denote a minimal model of KG complying

with a given coloring τ of a graph G, constructed as in the proof of Theorem 21.
We observe that if τ1 and τ2 are respectively colorings for the graphs G1 and G2,
then the interpretation IG1

τ1
∪ IG2

τ2
which is the disjoint union of IG1

τ1
and IG2

τ2
is a

model of the considered KB K. We use such models to establish the minimum
number of c-matches in the four different cases:

- G1,G2 ∈ 3-Col: We have already seen that every model of K contains at
least 27 c-matches. Let τ1 (resp. τ2) be a 3-coloring for G1 (resp. G2). Then
the model IG1

τ1
∪ IG2

τ2
has exactly 27 c-matches.

Counting Queries in Ontology-Based Data Access 105

4.3. Exhaustive rooted CCQs over ALCHI

- G1 ∈ 3-Col,G2 /∈ 3-Col: As G2 is not 3-colorable, the part of I describing
G2 must either introduce a fourth color, providing a new value for z2 (hence
at least 3× 3× 1× 4× 1 = 36 c-matches), or contain a monochromatic edge,
providing another possible value for (z21 , z22) (hence at least 32×1×3×2 = 54
c-matches). Therefore, every model contains at least 36 c-matches for q.
To show we cannot ensure more than 36 c-matches, let τ1 (resp. τ2) be a
3-coloring (resp. 4-coloring) for G1 (resp G2). Then IG1

τ1
∪ IG2

τ2
has exactly 36

c-matches.

- G1 /∈ 3-Col,G2 ∈ 3-Col: The part of I describing G1 must introduce
either a fourth color, providing a new value for z0 and z1 (hence at least
4×4×1×3×1 = 48 c-matches), or contain a monochromatic edge, providing
another possible value for (z11 , z

1
2) (hence at least 3 × 3 × 2 × 3 × 1 = 54

c-matches). It follows that every model contains at least 48 c-matches. To
show this is the best value that can be attained, let τ1 (resp. τ2) be a 4-coloring
(resp. 3-coloring) for G1 (resp. G2). Then IG1

τ1
∪ IG2

τ2
has exactly 48 c-matches.

- G1,G2 /∈ 3-Col: For each of the two graphs, I must introduce either a fourth
color or a monochromatic edge. There are four cases to consider:

Fourth color for G1 Monochrom. edge for G1
Fourth color for G2 42 × 1× 4× 1 = 64 32 × 2× 4× 1 = 72
Monochrom. edge for G2 42 × 1× 3× 2 = 96 32 × 2× 3× 2 = 108

We therefore see that every model contains at least 64 c-matches of q. To
realize the minimal number, we let τ1 (resp. τ2) be a 4-coloring (resp. 4-
coloring) for G1 (resp. G2) and observe that IG1

τ1
∪IG2

τ2
has exactly 64 c-matches.

This completes the case analysis and the proof.

4.3 Exhaustive rooted CCQs over ALCHI
For the remainder of this chapter, we turn to exhaustive rooted CCQs and hence no
longer distinguish matches from counting matches. In this section, we investigate a
refinement of the interlacing function allowing us to obtain countermodels with
exponential size, if a countermodel does exist, yielding the coNEXP upper bound.
We proceed in two steps: in Section 4.3.1 we introduce the interlacing function f ⋄

and verify the corresponding f ⋄-interlacings have at most as many matches as the
initial models, in Section 4.3.2 we quotient these latter f ⋄-interlacings to obtain
(counter)models with the claimed size. The equivalence relation used in this process
is very similar, but slightly more careful, than the one used in Section 3.2.3 to

106 Q. Manière

4. Rooted CCQs

obtain “naive” finite models. In Section 4.3.3 we exhibit two matching lower bounds
for exhaustive rooted CCQ answering over EL KBs and DL-LiteHpos KBs respectively.
These two reductions are strongly inspired by a reduction in Lutz [2008] in the
context of rooted CQ answering over ALCI KBs, known to be coNEXP-complete.

4.3.1 The interlacing function f ⋄

We begin with a new refinement of the interlacing function. To introduce it, let
K := (T ,A) be an ALCHI KB, I a model of K, and q an exhaustive rooted CCQ.
We recall that Ω denotes the set of heads of existential rules from T , that ∆◦

denotes the existential extraction of I and that f : ∆◦ → ∆I is the mapping used
to build this existential extraction (see Definition 19). We also recall that ∆∗ is
the subset of ∆I containing all individuals from A and all elements reached by
matches of q in I (see Definition 22).

We now explain the intuition underlying the new function f ⋄. Consider the
Id-interlacing of I, that is essentially its existential extraction equipped with a
basic interpretation. Notice f is a homomorphism from the Id-interlacing to I,
ensuring the counting matches for q in the Id-interlacing are contained in f−1(∆∗).
In the general setting, we considered an interlacing function collapsing back in
place all these elements from f−1(∆∗). However since q is exhaustive rooted, it is
sufficient to put back in place only those connected components of f−1(∆∗) which
contain some individuals from the ABox. Indeed, elements from the Id-interlacing
involved in matches of q must be connected by some path of variables in the query
to an individual name since q is rooted, and the intermediate elements reached by
the match all belong to f−1(∆∗) since q is exhaustive. This motivates the following
definition of f ⋄ which inductively starts from individuals and stops collapsing
elements back in place as soon as we leave f−1(∆∗).

Definition 42. The interlacing function f ⋄ is defined inductively as:

f ⋄ : ∆◦ → ∆∗ · Ω∗

a 7→ a ⋄0
w · h 7→

{
f(w · h) if f ⋄(w) ∈ ∆∗ and f(w · h) ∈ ∆∗ ⋄1
f ⋄(w) · h otherwise ⋄2

Remark 18. Notice that in both Cases ⋄0 and ⋄1, we have f ⋄(w) = f(w).

The very first thing to do is to verify f ⋄ is pseudo-injective, as this gives
modelhood by Theorem 4.

Lemma 19. f ⋄ is pseudo-injective.

Proof. We need to prove that for all u and all v in ∆◦, if f ⋄(u) = f ⋄(v), then
f(u) = f(v). We proceed by induction on u.

Counting Queries in Ontology-Based Data Access 107

4.3. Exhaustive rooted CCQs over ALCHI

u ∈ Ind(A). By definition of f and f ⋄ (case ⋄0), we have f(u) = u and f ⋄(u) = u.
Let v ∈ ∆◦. We distinguish the 3 possible cases for f ⋄(v):

⋄0 ⋄1. Based on Remark 18, we have f ⋄(v) = f(v). Therefore assuming
f ⋄(u) = f ⋄(v) gives f(u) = f(v).

⋄2. We have f ⋄(v) = f ⋄(w) · h. In particular f ⋄(v) /∈ ∆∗. Assuming
f ⋄(u) = f ⋄(v) yields a contradiction as f ⋄(u) = u ∈ Ind(A) ⊆ ∆∗.

u = u0 · h. If f ⋄(u) is in Case ⋄1, then Remark 18 and the same arguments as in the
base case conclude (notice f ⋄(u) ∈ ∆∗ still holds). Otherwise, f ⋄(u) is in
Case ⋄2, that is f ⋄(u) = f ⋄(u0) · h /∈ ∆∗. Let v ∈ ∆◦. If v is in Case ⋄0
or in Case ⋄1, then f ⋄(v) ∈ ∆∗, which yields a contradiction. Otherwise,
v is in Case ⋄2, that is f ⋄(v) = f ⋄(v0) · h′, with v = v0 · h′. Assuming
f ⋄(u) = f ⋄(v) yields f ⋄(u0) = f ⋄(v0) and h = h′. Induction hypothesis
gives f(u0) = f(v0). And from h = h′ we obtain f(u0 · h) = f(v0 · h′),
that is f(u) = f(v).

We now turn to the number of matches in the f ⋄-interlacing, which is at most
the number of matches from the original model. The proof proceeds by a formal
explanation of the intuition previously presented.

Lemma 20. I⋄ has at most as many matches for q than I.

Proof. Consider a counting match π : q → I⋄ of q in I⋄.
Let us first suppose that there is a counting variable z ∈ z such that π(z) /∈ ∆∗,

in which case we must have π(z) = t · w for some t ∈ ∆∗ and some non-empty
word w ∈ Ω∗. Since q is exhaustive rooted, all intermediate elements t · w′

with w′ a prefix of w, must be reached by some other counting variables. In
particular, one of these counting variables, say z0, must map onto t · h, with h the
first symbol of w. From the definition of f ⋄, we also have a word wt such that
f ⋄(wt) = f(wt) = t. However, via the homomorphism σ (see Theorem 4), we can
transform π into a match σ ◦ π : q → I in the original model I. In particular, we
have σ(π(z0)) = σ(t · h) = σ(f ⋄(wt)) · h) = σ(f(wt · h)) = f(wt · h). Thus, f(wt · h)
belongs to the image of the match σ ◦ π in I. From the definition of ∆∗, we can
thus infer that f(wt · h) ∈ ∆∗. But since f ⋄(wt) = t ∈ ∆∗ and f(wt · h) ∈ ∆∗, we
have f ⋄(wt · h) = f(wt · h) ∈ ∆∗. This contradicts z0 mapping onto t · h /∈ ∆∗.
Therefore, there is no counting variable z ∈ z mapping outside ∆∗.

Hence, we have π(z) ⊆ ∆∗. Then since σ|∆∗ = Id, we have σ ◦ π = π, which
shows that the mapping π 7→ σ ◦ π is injective. In particular, I contains at least as
many c-matches as I∗.

The obtained f ⋄-interlacing I⋄ has a particular structure: it is essentially ∆∗

enriched by tree-shaped structures. In contrast to the general case of CCQs,

108 Q. Manière

4. Rooted CCQs

these tree-shaped structures do not contain any edges pointing back to ∆∗, which
simplifies the structure of interlacings.

4.3.2 Quotients of f ⋄-interlacings: a coNEXP upper bound

In this section, we briefly show how to quotient f ⋄-interlacings to obtain optimal
models with exponential size. This immediately yields the following result.

Theorem 23. Exhaustive rooted CCQ answering over ALCHI ontologies is in
coNEXP w.r.t. combined complexity.

It thus suffices to focus on the following.

Lemma 21. Let K be an ALCHI KB, q an exhaustive rooted CCQ and m a candi-
date integer. If a countermodel exists for m, then there exists such a countermodel
whose domain has an exponential number of elements w.r.t. combined complexity.

Proof. Recall that from Theorem 5, this is trivial ifm is greater than the exponential
bound (w.r.t. combined complexity) exposed in Lemma 3. Henceforth we assume m
to be at most exponential w.r.t. combined complexity. Consider I a countermodel
for m and I⋄ its f ⋄-interlacing. Notice ∆∗ also has exponential size due to our
assumption on m. For each element of ∆I⋄ , we define its size: the size |a| of an
individual a is 1, the size |w · R.M| of a non-individual element w · R.M is |w|+ 1.
We now equip ∆I⋄ with the following equivalence relation ∼: an element with size
less than |q|+ 1 is only equivalent to itself, while two elements w1 · h1 and w2 · h2
with size greater than |q| + 1 are equivalent iff they satisfy the same concepts,
h1 = h2 and |w1| = |w2| mod 3. Let ũ denote the equivalence class of the element
u w.r.t ∼ and ρ : d 7→ d̃ the canonical projection.

We claim that the interpretation M := I⋄ / ∼ with domain ∆I⋄
/ ∼ and

interpretation of atomic concepts and roles given by ·M := ρ◦ ·I⋄ is a model. Notice
it has the desired number of elements as each equivalence class is: either an element
from I⋄ being at distance less than |q| + 1 from ∆∗ (there can be exponentially
many such elements in the tree structure issuing from an element of ∆∗, and ∆∗

itself is exponential), or fully characterized by a set of concepts from sig(T), a role
or its inverse from sig(T) and another set of concepts from sig(T), and an integer
modulo 3. The full verification follows the proof of Theorem 5, to which we refer.

Furthermore, M has exactly as many matches as I⋄ since M and I⋄ both
coincide when restricted to their respective set of elements being at distance at
most |q|+ 1 from an element of ∆∗. This concludes the proof thatM is indeed a
countermodel with exponential size w.r.t. combined complexity.

Counting Queries in Ontology-Based Data Access 109

4.3. Exhaustive rooted CCQs over ALCHI

4.3.3 Two matching lower bounds with inverse roles

In this section, we exhibit two lower bounds matching the coNEXP upper bounds
from the previous section. These coNEXP-hardness results strongly rely on inverse
roles, together with role inclusions and DL-Lite concepts (DL-LiteHpos), or with
EL concepts (ELI). Both proofs proceed by reduction from the exponential grid
tiling problem ExpTiling, as in Theorem 15, and borrow ideas from the reduction
for rooted CQ entailment over ALCI ontologies developed in Lutz [2008]. We
recall that an instance of ExpTiling consists of a set C of colors, two relations
H,V ⊆ C × C that give the horizontal and vertical tiling conditions, and a number
n (given in unary). The task is to decide whether there exists a valid (H,V)-tiling
of a 2n × 2n grid, i.e., a mapping τ : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} 7→ C such
that (τ(i, j), τ(i+ 1, j)) ∈ H for every 0 ≤ i < 2n − 1 and (τ(i, j), τ(i, j + 1)) ∈ V
for every 0 ≤ j < 2n − 1.

To reuse ideas from Lutz [2008], which works with the more expressive ALCI
ontologies, we first need to simulate very basic axioms such as GridPosition ⊑
C1 ⊔ ... ⊔ Cp, where each C1, . . . Cp are the colors from C, assigning a color to
an element being a grid position. In the general CCQ setting and, say, with
EL, such a task is fairly easy: simply require in the TBox that GridPosition ⊑
∃hasColor.Color and Ck ⊑ Color for each Ck ∈ C, provide an instance of each color
Ck(ck) in the ABox, and count instances of the concept Color with the CCQ. To
minimize the query, elements satisfying GridPosition will need to reuse the existing
instances of Color, hence satisfy ∃hasCol.C1 ⊔ ... ⊔ ∃hasCol.Cp which is a good
enough simulation of the previous ALC axiom.

This approach does not easily transfer with exhaustive rooted CCQs as the latter
require to count each intermediate element satisfying GridPosition prior to reaching
the Color instance of interest. In particular, we cannot enforce given instances of
Color to be reused as endpoints for the role hasCol. Instead, we can enforce in
the TBox that each instance of GridPosition must be connected to one instance
of each color, one of them being “Used”, as follows: GridPosition ⊑ ∃hasColor.Ck

for each Ck ∈ C and GridPosition ⊑ ∃hasColor.Used. If we are interested by
m elements satisfying GridPosition, we can count instances of the role hasColor
with a exhaustive rooted CCQ and expect the result to be m × |C| if the head
∃hasColor.Used indeed collapses on one of the ∃hasColor.Ck. However, since we
are working with EL, hence without any form of disjointness, it could happen that
∃hasColor.C1 collapses on ∃hasColor.C2, hence reducing the number of matches.

Therefore, we also need to simulate axioms such as C1 ⊓ C2 ⊑ ⊥. This is
achieved by another part of the exhaustive rooted CCQ which has the property of
admitting a big enough number of matches, that is more than m× |C|, as soon as
it detects the concept ∃hasColor.(C1 ⊓ C2) on a GridPosition-element of interest.

The proofs of the two following theorems implement the preceding intuitions.

110 Q. Manière

4. Rooted CCQs

We choose to focus on the case of DL-LiteHpos as it is arguably a more distant
setting from ALCI, explored in Lutz [2008], than ELI. For the latter, we only
give indications on how to adapt the proof of the DL-LiteHpos situation but we don’t
redo all the arguments.

Remark 19. Readers familiar with the proofs from [Lutz, 2008] will notice several
differences with the original construction. This is due to rather non-trivial issues
we detected in those proofs when adapting their ideas to our counting queries.
Briefly, some collapsings of the constructed queries are not treated in the proofs
of Theorems 1 and 2 in the reference, while they actually provide matches for the
query. These latter matches however violate the key property used in the reduction:
they do not connect G-nodes agreeing on the interpretation of a given concept.
For example, such a collapsing of the query on Figure 2 in the reference can be
obtained by identifying variables vm+1 and vm+2, an option not considered in the
proof argument.

This issue has been reported in a personal communication with the author, who
addressed it with a rather elegant fix. The idea is to break the excessively symmetric
ways in which the query can match by requiring that it navigates from one tree
structure to another. This hence requires a duplication of the (exponentially large)
original tree structure, both being identified with dedicated concepts also added to the
query. Navigating from one tree to another is made possible via a single dedicated
edge, which provides the missing ingredient to fully control the collapsing of the
query using the intuition underlying the original construction.

Theorem 24. Exhaustive rooted CCQ answering over DL-LiteHpos KBs is coNEXP-
hard.

Proof. In what follows, we consider an instance (n, C,H,V) of the ExpTiling
problem. To be able to test for the existence of a tiling of a 2n × 2n grid, we must
start by ensuring we can find (the encoding of) such a grid in each model. To
easily detect horizontal and vertical adjacency in this grid, it is appropriate to use
horizontal/vertical coordinates, and to ensure the reduction remains polynomial,
we need to use a binary encoding of these coordinates.

Knowledge Base. We first generate an exponentially-large tree T0 with 2n × 2n

leaves, each representing a possible horizontal-vertical coordinate (u, v) identified by
the m := 2n branchings leading to this leaf from an individual a0. For the reasons
explained in Remark 19, we also build a similar tree T1 rooted at an individuala1. As
we’ll further need to navigate these trees in both directions (symmetry) but also not
to go anywhere (reflexivity), we ask that branchings in the trees happen with the
composition of two roles. More precisely, facts Nextbt,k(e1, e2) and AltNextbt,k(e2, e3)

represents a branching in the tree Tt from e1 assigning b to the kth bit in the binary

Counting Queries in Ontology-Based Data Access 111

4.3. Exhaustive rooted CCQs over ALCHI

encoding of (u, v). We require Nextbt,k to be a subrole of Next, and AltNextbt,k to
be a subrole of Next−, which allows us to move from e1 to e3, or vice-versa, by the
composition of Next followed by Next−. Notice that this composition also allows
us to move from e1 to e1 or from e3 to e3. This is achieved with the following facts
and axioms (for each t, b ∈ {0, 1} and 0 ≤ i ≤ m− 1):

Nodet,0(at)

Nodet,i ⊑ ∃Nextbt,i+1 ∃(Nextbt,i+1)
− ⊑ Nodebt,i Nextbt,i+1 ⊑ Next

Nodebt,i ⊑ ∃AltNextbt,i+1 ∃(AltNextbt,i+1)
− ⊑ Nodet,i+1 AltNextbt,i+1 ⊑ Next−

A node satisfying Nodet,m shall hence represent the encoding of one pair (u, v)
(seen as the concatenation of the binary encodings of u and v) in the tree Tt. Note
that, due to our two-step-branching procedure, each element satisfying Nodet,k,
which we henceforth term a Nodet,k-element, is actually at depth 2k in the tree Tt
(and an element satisfying Nodebt,k is at depth 2k + 1).

We desire three properties to hold when reaching a Nodet,m-element e:

1. e is required to satisfy the concept Ft and the concept ∃HasBitt,k.Bit1−b if
the branch leading to e picks b as kth bit;

2. e is followed through a composition of roles Next and Next− by a node e′
satisfying the concept Gt and the concept ∃HasBitk.Bitb if the branch leading
to e picks b as kth bit;

3. e′ is required to be assigned a color c ∈ C, encoded as satisfying the concept
∃HasCol.Colorc;

Notice that the concepts satisfied by a Ft-node shall encode the converse of the
branchings used to reach this node, while those satisfied by Gt-node shall match
these branchings.

So far, all this latter part about Ft-nodes and Gt-nodes is only a declaration of
intent. Let us clarify how to enforce all this. For Property 1, we add the following
axioms (for each t ∈ {0, 1}):

Nodet,m ⊑ Ft

Ft ⊑ ∃ToBit0
Ft ⊑ ∃ToBit1

∃(ToBit0)− ⊑ Bit0

∃(ToBit1)− ⊑ Bit1

ToBit0 ⊑ ToBit

ToBit1 ⊑ ToBit

and also axioms (for each t ∈ {0, 1} and 1 ≤ i ≤ m):

Ft ⊑ ∃HasBiti ∃(HasBiti)− ⊑ ChosenBiti HasBiti ⊑ ToBit

Ensuring that each role HasBiti reuses the correct bit Bit0 or Bit1 will be further
achieved via the query.

112 Q. Manière

4. Rooted CCQs

For Property 2, we use the following axioms (for each t ∈ {0, 1}):

Ft ⊑ ∃GNextt ∃GNextt
− ⊑ ∃AltGNextt ∃AltGNextt

− ⊑ Gt

GNextt ⊑ Next AltGNextt ⊑ Next−

and we then assign bits in the very same manner has for Ft-nodes (for each t ∈ {0, 1}
and 1 ≤ i ≤ m):

Gt ⊑ ∃ToBit0 Gt ⊑ ∃ToBit1 Gt ⊑ ∃HasBiti

For Property 3, we proceed essentially as for bits, but here relying on the colors
available in the input set C. This is achieved with the following axioms (for each
t ∈ {0, 1} and c ∈ C)

Gt ⊑ ∃ToColc ∃(ToColc)− ⊑ Colorc ToColc ⊑ ToCol

Gt ⊑ ∃HasCol ∃HasCol− ⊑ ChosenColor HasCol ⊑ ToCol

And here again, ensuring the role HasCol points to a valid color will further be
achieved via the query.

This completes the description of the DL-LiteHpos TBox T , consisting of all the
preceding axioms. It remains to introduce the root r that will be used in the
query, an element a1/2 connecting individuals a0 and a1, and two elements l0 and l1
to increase drastically the number of matches of some subqueries. Consider the
following assertions (for each t ∈ {0, 1}):

toStart(r, at) Next(at, a1/2) toLoader(at, l0) toLoader(at, l1)

To conclude the construction of the KB, we introduce an auxiliary individual b
whose purpose is to ensure that each subquery can map at least once. It satisfies:
all concepts concept assertions B(b) with B a concept name previously mentioned,
all role assertions P(b, b) with P a role name previously mentioned, and the fact
toStart(r, b). We let A be the ABox consisting of the previous facts and K := (T ,A)
the KB obtained from T and A. The intended structure of models of K is depicted
in Figure 4.3.

Query. We distinguish two main kinds of subqueries: structural subqueries and
consistency subqueries. Structural subqueries ensure that each model contains
the desired tree-shaped structures or yields too many matches to be optimal.
Consistency subqueries ensure models with the desired tree-shaped structures
either represent a valid tiling or yield at least one additional match.

Counting Queries in Ontology-Based Data Access 113

4.3. Exhaustive rooted CCQs over ALCHI

•
r

a0

Node0,0

a1/2

a1

Node1,0

b l0 l1

◦F0 ◦ ◦ G0

◦F1 ◦ ◦ G1

toS
tar

t

toStart

toStart

∗

N
ext

N
ex
t

Next Next

Next Next

Figure 4.3: The intended structure of models of K. Dashed edges represent
toLoader-roles; the label ∗ witnesses that all roles are satisfied on the loop (b, b).
We omitted the concepts and roles related to bits and colors.

We begin with the loading subquery qload, which contains a free variable z so
that copies of qload will be instantiated for building the other structural subqueries.

qload(z) := ∃z1, . . . zM toStart(r, z) ∧
M∧
i=1

toLoader(z, zi)

Notice that if z is mapped onto b, then there is in general only one way to map
the remaining variables from qload (all onto b as well). On the other hand, if z is
mapped onto a0 or onto a1, then there are at least 2M ways to map these remaining
variables (each variable can be mapped either onto l0 or l1). The exact value of M
will be specified later in the construction.

To ensure the tree-shaped structure is preserved, we first require the branchings
(leading to either Node0t,i or Node1t,i) to be indeed branching, meaning we don’t
want these two concepts being witnessed by the same element. We proceed with
the following subqueries, each detecting a non-branching node at depth 2d, with
1 ≤ d ≤ m and t ∈ {0, 1}:

qt,dbranch := ∃z0, . . . z2d qload(z0) ∧
d−1∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧ Node0t,i(z2d) ∧ Node1t,i(z2d)

114 Q. Manière

4. Rooted CCQs

Let us emphasize that qt,dbranch is rooted via its copy of qload and that existentially-
quantified variables from qload are not shared with those of qt,dbranch.

We proceed as well with the Bit0 and Bit1 branchings at each Ft and Gt-nodes,
with the following subqueries, each detecting collapsed Booleans coming from
a node at depth 2m (that is a Ft-node) or 2m + 2 (that is a Gt-node), with
d ∈ {2m, 2m+ 2}:

qdbool := ∃z0, . . . z2d, z qload(z0) ∧
d−1∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧ ToBit(z2d, z) ∧ Bit0(z) ∧ Bit1(z)

Similar subqueries qc1,c2color can detect if two different colors c1, c2 ∈ C issuing from a
Gt-node are collapsed together.

We further detect if a branch loops back on itself, which can be captured by
detecting nodes satisfying concepts corresponding to different depths. Consider B1

and B2 two such concepts and consider the following subqueries, with 0 ≤ d ≤ m+1:

q2dloop := ∃z0, . . . z2d, z qload(z0) ∧
d−1∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧ B1(z2d) ∧ B2(z2d)

and for 1 ≤ d ≤ m+ 1:

q2d−1
loop := ∃z0, . . . z2d−1, z qload(z0) ∧

d−2∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧ Next(z2d−2, z2d−1) ∧ B1(z2d−1) ∧ B2(z2d−1)

Similar subqueries qdtree can detect if two branches issuing from the two different
trees collapse together.

To preserve the tree-shaped structure, it remains to detect two branches sepa-
rating at depth 2d and collapsing further together at depth 2d+ 2p+ 1. Consider
two concept name B1 and B2, eventually equal, witnessing depth 2d+ 2p+ 1 and

Counting Queries in Ontology-Based Data Access 115

4.3. Exhaustive rooted CCQs over ALCHI

consider the subquery with 0 ≤ d ≤ n− 1 and t ∈ {0, 1}:

qt,2d,B1,B2

cycle := ∃z0, . . . z2d, z01 , . . . z02p, z11 , . . . z12p, z qload(z0)

∧
∧d−1
i=0 Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧Next(z2d, z01) ∧ Node0t,2d(z
0
0) ∧ Next(z02 , z

0
1)

∧
∧p−1
i=1 Next(z

0
2i, z

0
2i+1) ∧ Next(z02i+2, z

0
2i+1)

∧Next(z2d, z11) ∧ Node1t,2d(z
1
0) ∧ Next(z12 , z

1
1)

∧
∧p−1
i=1 Next(z

1
2i, z

1
2i+1) ∧ Next(z12i+2, z

1
2i+1)

∧Next(z02p, z) ∧ Next(z12p, z)

and this can be also obtained for even depths (2d+ 2p) in a manner similar to the
preceding subqueries q2d−1

loop .
Our next structural subqueries detect if a head HasBitk from a Ft-nodes collapses

on the wrong head ToBitb in the sense of the Property 1 previously exposed, that
is if it collapses on the bit-value corresponding to the branching leading to the Ft of
interest. This is achieved with the following subqueries, with t ∈ {0, 1}, 1 ≤ k ≤ m,
b ∈ {0, 1}:

qt,k,bF-bit := ∃z0, . . . z2m, z qload(z0) ∧
m−1∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧ Ft(z) ∧ Nodebt,k(z2k) ∧ ToBit(z2m, z) ∧ Bitb(z) ∧ ChosenBitk(z)

Similarly, we detect if a head HasBitk from a Gt-nodes collapses on the wrong
head ToBitb in the sense of the Property 2 previously exposed, that is, if it collapses
on the bit-value not corresponding to the branching leading to the Gt of interest.
This is achieved with the following subqueries, with t ∈ {0, 1}, 1 ≤ k ≤ m,
b ∈ {0, 1}:

qt,k,bG-bit := ∃z0, . . . z2m+2, z qload(z0) ∧
m∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧Gt(z) ∧ Nodebt,k(z2k) ∧ ToBit(z2m, z) ∧ Bit1−b(z) ∧ ChosenBitk(z)

To conclude with the structural subqueries, we detect if there is a Gt-node at
depth less than expected, that is less than 2m+ 2. Consider the subqueries, with
1 ≤ d ≤ m and t ∈ {0, 1}:

qt,dG-depth := ∃z0, . . . z2d qload(z0) ∧
d−1∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧Gt(z2d)

116 Q. Manière

4. Rooted CCQs

We now move to consistency subqueries. Our first consistency subquery keeps
track of the elements used as bits, coming from either a Ft or from a Gt, node at
depth d. Consider the two following subqueries with d ∈ {2m, 2m+ 1}:

qd# bool := ∃z0, . . . z2d, z toStart(r, z0) ∧
d−1∧
i=0

Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1)

∧ ToBit(z2d, z)

A similar subquery q2m+2
color counts the number of colors issuing from Gt-nodes.

Notice that if the tree-shaped structures are preserved in a model, we know
that there should be at least 2× 2× 2m+1 matches for q2m# bool, from the two bits of
each of the 2m Ft-nodes of each tree Tt and from the individual b. The same holds
for q2m+2

bool. For q2m+2
color, we shall similarly expect |C| × 2× 2m + 1 matches. From

the combination of these three subqueries, one shall hence expect the product N
of these three numbers of matches, which is essentially |C| × 22m. Recalling that
m = 2n and that n is given in unary, we can find an integer M with a polynomially
large binary encoding and such that 2M > N . This is how we set M in the subquery
qload.

It can now be verified that if I is a model minimizing the number of matches
for the (yet not fully-defined) query q and that f : CK → I is a homomorphism
from the canonical model of K, then I satisfies the following property:
Property (⋆): f is injective for the tree-shaped structures of CK issuing from a0 and
from a1, except for those elements ending by either HasCol or by HasBiti for any
1 ≤ i ≤ m.

We next discuss the parts of the query that are used to check the tiling conditions.
The general idea is as follows: say we have a model I satisfying Property (⋆), then
either there is an element with shape at · w · HasCol such that

f(at · w · HasCol) /∈ {f(at · w · ToColc) | c ∈ C},

in which case f(at · w · HasCol) provides a new match for q2m+2
color, or there is no

such element, in which case we can define two tilings τ0 and τ1 (maybe non-valid),
associated with the trees issuing from a0 and a1, given by setting τt(u, v) to the
color c ∈ C such that f(at ·w ·HasCol) = f(at ·w ·ToColc), and where w corresponds
to the branchings encoding the coordinate (u, v). We first require that τ0 = τ1 and
further test if τ0, hence also τ1 is valid. We hence need to check whether a G0-node
and a G1-node correspond to the same coordinates. To do so, we borrow a (slightly
patched version of) the query used in Lutz [2008], which allows us to check if two
such nodes agree on the interpretation of a given bit 1 ≤ km. This is achieved with
the following subquery qksame bit(z

(0), z(1)), where z(0) and z(1) are the two variables

Counting Queries in Ontology-Based Data Access 117

4.3. Exhaustive rooted CCQs over ALCHI

intended to map on the nodes of interest, and which is depicted in Figure 4.4:

∃z−1, . . . z4m+5, z
′
−1, . . . z

′
4m+5, z0,val, z

′
0,val, z4m+4,val, z

′
4m+4,val

toStart(r, z2m+2) ∧ toStart(r, z′2m+2) ∧G0(z
(0)) ∧G1(z

(1))

∧
∧2m+1
i=0 Next(z2i, z2i+1) ∧ Next(z2i+2, z2i+1) ∧ Next(z′2i, z

′
2i+1) ∧ Next(z′2i+2, z

′
2i+1)

∧Next(z0, z′′0) ∧ Next(z′′0 , z
′
0) ∧ Next(z4m+4, z

′′
4m+4) ∧ Next(z′′4m+4, z

′
4m+4)

∧Next(z0, z−1) ∧ Next(z−1, z
(0)) ∧ Next(z′0, z

′
−1) ∧ Next(z′−1, z

(0))

∧Next(z4m+4, z4m+5) ∧ Next(z4m+5, z
(1)) ∧ Next(z′4m+4, z

′
4m+5) ∧ Next(z′4m+5, z

(1))

∧ToBit(z0, z0,val) ∧ ChosenBitk(z0,val) ∧ Bit0(z0,val)

∧ToBit(z′0, z′0,val) ∧ ChosenBitk(z
′
0,val) ∧ Bit1(z

′
0,val)

∧ToBit(z4m+4, z4m+4,val) ∧ ChosenBitk(z4m+4,val) ∧ Bit1(z4m+4,val)

∧ToBit(z′4m+4, z
′
4m+4,val) ∧ ChosenBitk(z

′
4m+4,val) ∧ Bit0(z

′
4m+4,val)

It can be verified that, in a model minimizing the number of matches, hence
satisfying Property (⋆), if qksame bit(z

(0), z(1)) admits a non-trivial match, that is not
a simple collapse on the individual b, then z(0) maps onto a G0-node and z(1) maps
onto a G1-node such that both these nodes agree on the kth bit of the coordinates
they encode. Indeed, to eliminate the 6-cycle in the query going through z(0), z0
and z′0, one has to collapse z(0) on either z0 or z′0 (the case of z0 collapsing on
z′0 is excluded as it would trigger a structural subquery qt,k,bF-bit or qt,k,bG-bit due to the
image of z0 having admitting the two possible values for its kth bit, hence violating
either Property 1 or Property 2). Say z(0) collapse with z0. Since z(0) maps onto a
G0-node and that there exists no path shorter than 2m+ 2 to reach the root of the
tree (otherwise one structural subquery q0,dG-depth would trigger), it enforces z2m+2 to
map on a0. But in that case, it is therefore impossible for z(1) to similarly collapse
on z4m+4 as, for the same reason, it would enforce z2m+2 to map in a1. However, if
z(1) collapses on z′4m+4, and hence z4m+4 collapses with the corresponding F1-node,
then a match becomes possible as the 2 moves made available in the path bridging
z0 and z4m+4 in query can now be used to move from a0 to a1. Therefore, either
z(0) collapses on z0 and z(1) on z′4m+4, agreeing on a value of 0 for the kth-bit, or
z(0) collapses on z′0 and z(1) on z4m+4 agreeing on a value of 1 for the kth bit.

We therefore detect if the two tilings τ1 and τ2 differ with the following subqueries

118 Q. Manière

4. Rooted CCQs

•
r

◦
G0

z(0)

◦
G1

z(1)

◦

◦

◦z2m+2

◦

◦z2m

...

◦z2

◦

◦z0

◦

◦

◦z2m

...

◦z4m+2

◦

◦z4m+4

◦

◦ z′2m+2

◦

◦ z′2m

...

◦ z′2

◦

◦ z′0

◦

◦

◦ z′2m

...

◦ z′4m+2

◦

◦ z′4m+4

◦

◦ChosenBitk,Bit0 ◦ ChosenBitk,Bit1

◦ChosenBitk,Bit1 ◦ ChosenBitk,Bit0

toStart toStart

ToBit

To
Bi
t

To
Bi
t

ToBit

Figure 4.4: The query qksame bit(z
(0), z(1)). For readability, several variable names

have been omitted and non-labeled edges depict Next-atoms.

Counting Queries in Ontology-Based Data Access 119

4.3. Exhaustive rooted CCQs over ALCHI

qc,c
′ defined for each c, c′ ∈ C such that c ̸= c′ as follows.

qc,c
′
=∃z(0), z(1), z(0)col , z

(1)
col

m∧
i=1

qisame bit(z
(0), z(1))

∧ ToCol(z(0), z
(0)
col) ∧ ChosenColor(z

(0)
col) ∧ Colorc(z

(0)
col)

∧ ToCol(z(1), z
(1)
col) ∧ ChosenColor(z

(1)
col) ∧ Colorc′(z

(1)
col)

To detect adjacency, we remark that two grid positions (h1, v1), (h2, v2) ∈
{0, . . . , 2n − 1} × {0, . . . , 2n − 1} are vertically adjacent iff:

- h1 = h2, so the binary encodings of h1 and h2 are the same;

- v2 = v1 + 1, so the binary encodings of v2 and v1 are the same until, at some
point, v2 ends with 1 · 0k while v1 ends with 0 · 1k.

To detect a violation of the vertical tiling condition (i.e. two vertically adjacent tiles
with colors c and c′ such that (c, c′) /∈ V), we need n queries, one for each possible
position where the bit from the vertical coordinates differ. For each 1 ≤ k ≤ n, we
create a subquery qV,(c,c′),k defined as follows.

qV,(c,c
′),k =∃z(0), z(1), z(0)n−k . . . z

(0)
2n , z

(1)
n−k . . . z

(1)
2n , z

(0)
col , z

(1)
col

n+k−2∧
i=1

qisame bit(z
(0), z(1))

∧ ToBit(z(0), z
(0)
n−k) ∧ ChosenBitn−k(z

(0)
n−k) ∧ Bit0(z

(0)
n−k)

∧
2n∧

i=n−k+1

ToBit(z(0), z
(0)
i) ∧ ChosenBiti(z

(0)
i) ∧ Bit1(z

(0)
i)

∧ ToBit(z(1), z
(1)
n−k) ∧ ChosenBitn−k(z

(1)
n−k) ∧ Bit1(z

(1)
n−k)

∧
2n∧

i=n−k+1

ToBit(z(1), z
(1)
i) ∧ ChosenBiti(z

(1)
i) ∧ Bit0(z

(1)
i)

∧ ToCol(z(0), z
(0)
col) ∧ ChosenColor(z

(0)
col) ∧ Colorc(z

(0)
col)

∧ ToCol(z(1), z
(1)
col) ∧ ChosenColor(z

(1)
col) ∧ Colorc′(z

(1)
col)

We can proceed as well to detect the horizontal violations, and we now let q be the
conjunction of all the preceding subqueries.

To conclude from here, it suffices to prove the following claim:

[N + 1,+∞] is a certain answer for q over K iff (n, C,H,V) /∈ ExpTiling.

120 Q. Manière

4. Rooted CCQs

(⇒) Assume [N + 1,+∞] is a certain answer for q over K and consider a tiling
τ of exponential grid. One can build a model Iτof K satisfying Properties 1, 2,
3 and (⋆) to represent this tiling τ in a both trees issuing from a0 and a1. By
construction, there shall be no matches for structural subqueries, hence a priori
the only N matches in Iτ from the three subqueries counting bit-like and color-like
elements. However, since [N + 1,+∞] is a certain answer for q over K, there exists
an additional match in Iτ , distinct from the N above. It can be verified that
this can only comes from one of the subquery checking the validity of the tiling
(such as qV,(c,c′),k). By construction of Iτ , the G0 and G1 yielding this extra match
correspond to a violation of the tiling τ , hence not being valid. As this holds for
any initial choice of τ , it ensures that (n, C,H,V) /∈ ExpTiling.

(⇐) If [N + 1,+∞] is not a certain answer for q over K, then there exists a
countermodel I for N + 1. Therefore no structural subquery triggers in the
structures issuing from a0 and a1 as that would lead to 2M matches, being at least
N + 1, hence contradicting I being a countermodel for N + 1. We hence have the
N basics matches counted by the three subqueries q2m# bool, q

2m+2
bool and q2m+2

color. If
the Gt are not reusing colors already counted by q2m+2

color, then it yields a new match
for this latter subquery and again contradicts I being a countermodel for N + 1.
Therefore we can extract the two encoded tilings τ1 and τ2, and the subqueries qc,c′

not admitting extra matches (again, that would contradict the countermodelhood
of I) ensures τ1 = τ2. From the subqueries qV,(c,c′),k not admitting extra matches,
we derive that τ1 is a valid tiling, hence (n, C,H,V) ∈ ExpTiling.

We now explain how to adapt the construction to ELI ontologies, essentially
by replacing each combination of DL-LiteHpos axioms A ⊑ ∃R, ∃R− ⊑ B and R ⊑ S
by the ELI axiom A ⊑ ∃S.B.

Theorem 25. Exhaustive rooted CCQ answering over ELI KBs is coNEXP-hard.

Proof. As already mentioned, we replace each combination of DL-LiteHpos axioms
A ⊑ ∃R, ∃R− ⊑ B and R ⊑ S by the ELI axiom A ⊑ ∃S.B. For example, the first
block of axioms, generating most of the tree structures, becomes (for the relevant
values of t, b and i):

Nodet,i ⊑ ∃Next.Nodebt,i
Nodebt,i ⊑ ∃Next−.Nodet,i+1

Proceeding similarly for the subroles creating the Gt-nodes, the subroles creating
the bits and those creating the colors, we end up with an ELI TBox. If suffices
now to notice that the rest of proof can remain unchanged as, in particular, we
made sure not to use any subsumed roles in the query (which could have slightly
simplified the DL-LiteHpos construction), hence q doesn’t require any update.

Counting Queries in Ontology-Based Data Access 121

4.4. Further refinements for ALCH

4.4 Further refinements for ALCH
In this section, we devise a procedure to compute the tightest certain answer to
exhaustive rooted CCQs over ALCH KBs. The key ingredient is another refinement
of interlacings leading to optimal models consisting of an enriched version of the
ABox, that is, only involving individuals from the input ABox, completed as a
model by directed tree-shaped structures (intuitively, the lack of inverse roles make
all roles point in the same direction: deeper in the tree). Such directionality
drastically restricts how the rooted CCQ can map into the tree-shaped structures,
which allows for local characterizations of matches that require only polynomial
space, while still being sufficient to capture the global number of matches. Verifying
these local characterizations can be pieced together leads to an essentially PSPACE
algorithm, similar in spirit to fork-rewriting approaches [Lutz, 2008] but also to the
pattern-based approach developed in Chapter 3. For ALC and its extension ALCH,
the satisfiability check of the interpretation underlying each local characterization
however requires an EXP procedure (see Theorem 3), hence an overall complexity of
EXP for these two sublogics. The complexity drops to PSPACE for ELH⊥ ontologies
for which the satisfiability check can be performed in P. The EXP matching lower
bound is inherited from the analogous lower bound for the satisfiability problem,
while the PSPACE lower bound proceeds by reduction from the Quantified Boolean
Formula problem (QBF) using some original tricks also used in the preceding proof
of Theorem 25.

4.4.1 The interlacing function f ⋆

We begin with a new refinement f ⋆ of the interlacing function. To introduce it, let
K := (T ,A) be an ALCH KB, I a model of K, and q an exhaustive rooted CCQ.
We recall again that Ω denotes the set of heads of existential rules from T , that
∆◦ denotes the existential extraction of I and that f : ∆◦ → ∆I is the mapping
used to build this existential extraction (see Definition 19). We also recall that ∆∗

is the subset of ∆I containing all individuals from A and all elements reached by
matches of q in I (see Definition 22).

The idea underlying f ⋆ is to obtain a forest model of K, that is, a model
consisting of an interpretation over Ind(A) extended with tree-shaped structures
rooted on individuals from Ind(A), with at most as many matches as in I. The
major improvement of such a model compared to our previous approaches is that
the central domain of the forest-model is Ind(A) instead of ∆∗, the latter being
eventually exponentially large. Existence of such forest models is already used
to answer CQs over expressive DLs such as SH [Lutz, 2008]. However, existing
constructions essentially consist in considering the Id-interlacing of I, which may
contain more matches than the original model I. Indeed, apart from several ABox

122 Q. Manière

4. Rooted CCQs

a b

γ

R2

R
1
,R

3

R
1

R
2 ,R

3

R
2
,R

3

R1

Figure 4.5: A model Ie of Ke from Example 16. Labels for concept A (on each
visible vertex) and role S (on each visible edge) are omitted.

facts not being reused, we may need to merge together two elements w · R.B1 and
w · R.B2 from the Id-interlacing to minimize the number of matches for any role
subsuming R (e.g.R itself). Surprisingly, for exhaustive rooted CCQs and in the
absence of inverse roles, this is all we need to modify in the Id-interlacing to obtain
a model with at most as many matches than in the original model.

To identify which such elements should be identified, we simply mimic the
initial model I and capture its behavior through the following equivalence relations
on heads from Ω.

Definition 43. Let e be an element of I. We define an equivalence relation ∼e on
elements of Ω: two elements h1 and h2 of Ω are equivalent w.r.t. e iff succIh1(e) and
succIh2(e) are both defined and equal. We denote by h

e
the equivalence class of h

for relation ∼e.

We can now define the new interlacing function f ⋆, which, as explained, reuses
facts from A when I does (only as long as we remain among the individuals Ind(A),
for the same reasons as explained in Section 4.3.1), and further identifies elements
from the existential extraction according to the equivalence relations defined just
above.

Definition 44. The interlacing function f ⋆ is defined inductively as:

f ⋆ : ∆◦ → Ind(A) · (2Ω)∗
a 7→ a ⋆0

w · h 7→

{
f(w · h) if f ⋆(w) ∈ Ind(A) and f(w · h) ∈ Ind(A) ⋆1

f ⋆(w) · h
f(w)

otherwise ⋆2

Remark 20. Notice that in both Cases ⋆0 and ⋆1, we have f ⋆(w) = f(w).

Counting Queries in Ontology-Based Data Access 123

4.4. Further refinements for ALCH

a b
R2

R1

◦ ◦

R
1 ,R

3 R
2
,R

3

◦ ◦ ◦ ◦

R
1

R
2
,R

3 R
1

R
2
,R

3

◦

...

◦

...

◦

...

◦

...

◦

...

◦

...

◦

...

◦

...

R
1

R
2
,R

3

R
1 ,R

3

R
2 R

1

R
2
,R

3

R
1 ,R

3

R
2

Figure 4.6: Initial portion of the f ⋆-interlacing of Ie. Labels for concept A (on
each visible vertex) and role S (on each visible edge) have been omitted.

Example 16. We illustrate this construction with the KB Ke given by the following
ABox Ae := {A(a), A(b), S(a, b)} and the following TBox Te:

A ⊑ ∃R1.A A ⊑ ∃R2.A A ⊑ ∃R3.A

R1 ⊑ S R2 ⊑ S R3 ⊑ S

R1 ⊓ R2 ⊑ ⊥

A model Ie of Ke is depicted in Figure 4.5. Its f ⋆-interlacing I⋆ is depicted in
Figure 4.6. Notice the two directed tree-shaped structures issuing from a and b.

We now verify that f ⋆ is pseudo-injective to ensure modelhood of the resulting
f ⋆-interlacing I⋆ via Theorem 4.

Lemma 22. f ⋆ is pseudo-injective.

Proof. We need to prove that for all u and all v in ∆◦, if f ⋆(u) = f ⋆(v), then
f(u) = f(v). We proceed by induction on u.

u ∈ Ind(A). By definition of f and f ⋆ (case ⋆0), we have f(u) = u and f ⋆(u) = u.
Let v ∈ ∆◦. We distinguish the 3 possible cases for f ⋆(v):

124 Q. Manière

4. Rooted CCQs

⋆0 ⋆1. Based on Remark 20, we have f ⋆(v) = f(v). Therefore assuming
f ⋆(u) = f ⋆(v) gives f(u) = f(v).

⋆2. We have f ⋆(v) = f ⋆(w) · h
w
. In particular f ⋆(v) /∈ Ind(A). Assum-

ing f ⋆(u) = f ⋆(v) yields a contradiction as f ⋆(u) = u ∈ Ind(A).

u = u0 · h. If f ⋆(u) is in Case ⋆1, then Remark 20 and the same arguments as in
the base case conclude (notice f ⋆(u) ∈ Ind(A) still holds). Otherwise,
f ⋆(u) is in Case ⋆2, that is f ⋆(u) = f ⋆(u0) · h

f(u0). Let v ∈ ∆◦. If v is in
Case ⋆0 or in Case ⋆0, then f ⋆(v) ∈ Ind(A), which yields a contradiction.

Otherwise, v is in Case ⋆2, that is f ⋆(v) = f ⋆(v0) ·h′
f(v0)

, with v = v0 ·h′.
Assuming f ⋆(u) = f ⋆(v) yields f ⋆(u0) = f ⋆(v0) and h

f(u0)
= h′

f(v0)
.

Induction hypothesis gives f(u0) = f(v0). In particular, it ensures
h ∼f(u0) h′, that is succIh(f(u0)) = succIh′(f(u0)). The definition of f
hence gives f(u0 · h) = f(v0 · h′), that is f(u) = f(v).

It remains to consider the matches of q in the f ⋆-interlacing I⋆. Importantly,
all the construction above is query independent (observe that we do not rely on ∆∗

to define f ⋆), which leads to the following statement.

Lemma 23. Let I⋆ be the f ⋆-interlacing of I. For every exhaustive rooted CCQ q,
there are at most as many matches of q in I⋆ as there are in I.

Proof. Let q be an exhaustive rooted CCQ. We prove that σ injects matches of
I⋆ into matches of I (we recall σ : I⋆ → I is the homomorphism obtained in
Theorem 4). Let π1 and π2 be two matches q → I⋆ such that σ ◦ π1 = σ ◦ π2.We
prove by induction on each connected component p of q that (π1)|p = (π2)|p on p.
It is therefore sufficient to focus on the case of a connected exhaustive rooted CCQ
q (so that p = q and (π1)|p = π1 and (π2)|p = π2).

Base case: individual terms of q. Consider an individual a occurring in q.
Since π1 and π2 are matches, they satisfy in particular that π1(a) = π2(a).

Induction case. Consider a counting variable z of q which is connected by a
role P to a term t being closer to an individual than z is. The induction hypothesis
hence ensures that π1(t) = π2(t). There are two main cases to distinguish based on
the direction of the connection, that is either P(z, t) ∈ q or P(t, z) ∈ q.

Subcase P(t, z) ∈ q. Since π1 is a match, we have (π1(t), π1(z)) ∈ PI⋆ . In
the absence of inverse roles, it only yields Cases ▽0 and ▽+ from the definition of
PI⋆ (see Definition 20). The same holds for π2, yielding 4 subcases:

Counting Queries in Ontology-Based Data Access 125

4.4. Further refinements for ALCH

▽0 · ▽0. In particular, we have π1(z), π2(z) ∈ Ind(A). Therefore σ(π1(z)) = π1(z)
and σ(π2(z)) = π2(z). Recalling the assumption σ ◦ π1 = σ ◦ π2 yields
π1(z) = π2(z).

▽0 · ▽+. From Case ▽0 on π1 we obtain π1(t), π1(z) ∈ Ind(A) and σ(π1(z)) = π1(z).
From Case ▽+ on π2, we can write (π2(t), π2(z)) as (f ⋆(w), f ⋆(w · h)). On
the first hand, from π1(t) = π2(t) we get f ⋆(w) ∈ Ind(A). On the second
hand, from σ ◦ π1 = σ ◦ π2 and f = σ ◦ f ⋆, we obtain f ⋆(w · h) ∈ Ind(A).
Therefore, f ⋆(w · h) is in Case ⋆1 and we have f ⋆(w · h) = f(w · h), that is
π2(z) = σ(π2(z)) by reusing f = σ ◦ f ⋆. Recalling σ ◦ π1 = σ ◦ π2, we now
obtain π1(z) = π2(z).

▽+ · ▽0. Symmetric to the previous case ▽0 · ▽+.

▽+ · ▽+. From both cases ▽+, we can write (π1(t), π1(z)) as (f ⋆(w1), f
⋆(w1 · h1))

and (π2(t), π2(z)) as (f ⋆(w2), f
⋆(w2 · h2)). From π1(t) = π2(t) we get

f ⋆(w1) = f ⋆(w2). From σ ◦ π1 = σ ◦ π2 and f = σ ◦ f ⋆, we obtain
f(w1) = f(w2) and f(w1 · h1) = f(w2 · h2). Combining the latter with the
definition of f gives us succIh1(f(w1)) = succIh2(f(w2)), which, when further
combined with the former equality, yields h1 ∼f(w1) h2. Altogether, this
ensures f ⋆(w1 · h1) = f ⋆(w2 · h2), that is π1(z) = π2(z).

Subcase P(z, t) ∈ q. Since π1 is a match, we have (π1(z), π1(t)) ∈ PI⋆ . In
the absence of inverse roles, it only yields Cases ▽0 and ▽+ from the definition of
PI⋆ . The same holds for π2, yielding 4 subcases:

▽0 · ▽0. In particular, we have π1(z), π2(z) ∈ Ind(A). Therefore σ(π1(z)) = π1(z)
and σ(π2(z)) = π2(z). Recalling the assumption σ ◦ π1 = σ ◦ π2 yields
π1(z) = π2(z).

▽0 · ▽+. From Case ▽0 on π1 we obtain π1(z), π1(t) ∈ Ind(A) and σ(π1(t)) = π1(t).
From Case ▽+ on π2, we can write (π2(z), π2(t)) as (f ⋆(w), f ⋆(w ·h)). From
π1(t) = π2(t) we now get f ⋆(w · h) ∈ Ind(A). Hence f ⋆(w) ∈ Ind(A), that
is π2(z) ∈ Ind(A), and we conclude as in case ▽0 · ▽0.

▽+ · ▽0. Symmetric to the previous case ▽0 · ▽+.

▽+ · ▽+. From both cases ▽+, we can write (π1(t), π1(z)) as (f ⋆(w1), f
⋆(w1 · h1))

and (π2(t), π2(z)) as (f ⋆(w2), f
⋆(w2 · h2)). From π1(t) = π2(t) we get

f ⋆(w1 · h1) = f ⋆(w2 · h2). If this latter common value belongs to Ind(A),
then so do f ⋆(w1) and f ⋆(w2) and we conclude as in the subcase ▽0 · ▽0.
Otherwise, we must have f ⋆(w1 · h1) = f ⋆(w1) · h

f(w1)

1 and f ⋆(w2 · h2) =

126 Q. Manière

4. Rooted CCQs

f ⋆(w2) · h
f(w2)

2 . Recall f ⋆(w1 · h1) = f ⋆(w2 · h2), hence f ⋆(w1) = f ⋆(w2),
that is π1(z) = π2(z).

4.4.2 A PSPACE algorithm, up to satisfiability

The goal of this section is to establish the following result, relying on the structure
of f ⋆-interlacings.

Theorem 26. Let L be a subclass of ALCH KBs and denote by Sat(L) the
satisfiability problem of L KBs. There exists a PSPACE algorithm with access to a
Sat(L) oracle for answering exhaustive rooted CCQ over L.

We obtain the following two corollaries for fragments of ALCH.

Corollary 4. Exhaustive rooted CCQ answering over ALCH ontologies is in EXP.

Proof. Since Sat(ALCH) ∈ EXP (see Theorem 3) and that PSPACE ⊆ EXP,
Theorem 26 yields an overall EXP procedure.

Corollary 5. Exhaustive rooted CCQ answering over ELH⊥ ontologies is in
PSPACE.

Proof. Since Sat(ELH⊥) ∈ P and that P ⊆ PSPACE, Theorem 26 yields an overall
PSPACE procedure.

The remainder of this section is devoted to the proof of Theorem 26. Let
K := (T ,A) be an ALCH KB, q be an exhaustive rooted CCQ and m be a
candidate integer. We prove that if a countermodel for m exists, then its existence
can be checked in NPSPACE (up to satisfiability checks), which yields a coNPSPACE
(again, up to satisfiability checks) procedure. Savitch’s theorem [Savitch, 1970] and
closure of PSPACE under complement then concludes the proof. We start by giving
a general intuition of our approach.

Assume that there exists a countermodel I for m, and let I⋆ be its f ⋆-interlacing.
Consider a match π of an exhaustive rooted CCQ q in I⋆. The query q can be
decomposed into a subquery p0 ⊆ q mapped by π onto Ind(A) and other subqueries
p1, . . . pk ⊆ q mapping to directed-tree shaped structures T1, . . . Tk of I⋆, each Ti
being a set of words admitting ai · hi as a prefix for some individual ai ∈ Ind(A)
and some equivalence class hi ⊆ Ω. If we fix π|p0 , subqueries p1, . . . pk ⊆ q, and the
ai · hi, then the number of matches of q mapping p0 as π|p0 and each pi to each Ti
can simply be obtained by multiplying the number of matches of each pi in each
Ti that can be consistently assembled with π|p0 . The number of matches of q in
I⋆ can then be obtained by forming the sum of these products over each possible
choice of π|p0 , subqueries p1, . . . pk ⊆ q and ai · hi.

Counting Queries in Ontology-Based Data Access 127

4.4. Further refinements for ALCH

The key ingredient is hence the number of matches of pi in Ti that are consistent
with π|p0 . Since q is rooted, p0 cannot be empty, hence pi has to reach ai · hi.
Since there are no inverse roles, the variables of pi that shall map onto ai · hi are
fully decided and further variables must map further in Ti. Since q is exhaustive
there can be no “blank” steps, hence the number of such further matches can
be decomposed as we did with q: as the sum, over ways to split pi into further
structures of Ti, of the number of matches induced by each such split, which itself
can be obtained as a product.

Our procedure starts by guessing an interpretation corresponding to I⋆ restricted
to Ind(A) and all elements with shape a · h (the first layer of anonymous elements
in I⋆), together with a promise function χ indicating the number of matches one
can expect for each relevant p ⊆ q in the directed tree-structure following each
a · h. Importantly, the number of such p to be considered is polynomial (due to the
absence of inverse roles in the directed tree-structure, each relevant p is essentially
characterized by which variable of q maps onto a · h), so that χ has polynomial
size as a function. The procedure further checks the consistency of the promise
χ by guessing how each a · h further extends (that is, guessing elements of I⋆
with shape a · h · h′ and an extension of the promise χ to these elements). This
is performed in a depth-first manner so that we can drop information each time
we reach a depth greater than |q|, hence only using a polynomial amount of space.
Satisfiability is checked at each step, hence the need for an oracle for Sat(L), so
that if no inconsistency is detected at the end, the union of all guessed branches
can be extended to a model (recall we only guess the first |q| layers of I⋆ along the
procedure), whose number of matches is encoded in the initial interpretation and
promise.

We now move to a proper proof. Again, let K := (T ,A) be a ALCH KB, q
an exhaustive rooted CCQ and m be a candidate integer. Let us recall that if
m is greater than some exponential bound M depending only on K and q (see
Theorem 3), then [m,+∞] is not a certain answer and we can return false. We
henceforth assume m ≤ M . To identify how constrained are the mappings q
in directed tree structures, we introduce the following notions enlightening the
dependencies between terms of a query.

Definition 45. Let s ∈ terms(q). The possible depths ∆s(t) of terms t ∈ terms(q)
relative to s are defined inductively as the smallest sets such that for all t, u ∈
terms(q), all role names P and all integers n ≥ 0, we have:

0 ∈ ∆s(s)
n ∈ ∆s(t) ∧ P (t, u) ∈ q → n+ 1 ∈ ∆s(u)
n+ 1 ∈ ∆s(t) ∧ P (u, t) ∈ q → n ∈ ∆s(u)

We say that a term t ∈ terms(q) depends on s if ∆s(t) ̸= ∅. We denote dep(s) the

128 Q. Manière

4. Rooted CCQs

•
a z0 z1

z2

z′2

z3

z′1z′0

S S

S

S

S

S

S

Figure 4.7: The query qe from Example 17.

set of terms depending on s and denote qs := q|dep(s) the query restricted to terms
depending on s.

We say a term s from q is tree-mappable if dep(s)∩ Ind = ∅ and for all t ∈ dep(s)
the set ∆s(t) is a singleton. We denote by Vanon by the set of tree-mappable terms.
If s ∈ Vanon, we define δs : dep(s)→ N the function that maps a term t depending
on s to the single element of ∆s(t) and call it the depth of t relative to s.

Remark 21. Notice that for all s ∈ terms(q), we have s ∈ dep(s). The two
conditions for a term to be tree-mappable reflect the facts that: all individuals can
only match on themselves; if a term depending on s has two possible depths, then
there exists a cycle in the query that cannot be collapsed onto a directed tree-shaped
structure. In particular, individuals are not tree-mappable.

One situation is of particular interest, namely when two terms of q have relative
depth to each other of 0, i.e. two terms t1 and t2 such that δt1(t2) = 0 (which
implies δt2(t1) = 0). These are two terms satisfying that if t1 maps in an directed
tree-shaped structure, then t2 must map on the same element from the structure.
Keeping track of these “equivalent” variables is primordial to avoid counting as
different the matches of qt1 and of qt2 .

Lemma 24. Let s1, s2 ∈ Vanon, we denote s1 ∼ s2 iff δs1(s2) = 0. The relation ∼
defines an equivalence relation on Vanon.

Proof. Reflexivity is trivial. To prove symmetry, that is δs1(s2) = 0 implies
δs2(s1) = 0, one simply follows backwards the sequence of atoms leading from s1
to s2. Transitivity is obtained by concatenating the two intermediate sequences.
More generally, one can prove that if δs1(s2) = k and δs2(s3) = k′, then δs1(s3) =
k + k′.

Counting Queries in Ontology-Based Data Access 129

4.4. Further refinements for ALCH

Example 17. Consider the exhaustive rooted CCQ qe, depicted in Figure 4.7, and
defined as follows:

qe := ∃z0, z1, z2, z3, z′0, z′1, z′2 S(a, z0) ∧ S(z0, z1) ∧ S(z1, z2) ∧ S(z2, z3)
∧ S(z′0, z

′
1) ∧ S(z′1, z

′
2) ∧ S(z1, z

′
2)

One can verify that δz1(z3) = 2 while δz3(z1) is undefined. Furthermore, since
δz1(z

′
1) = 0, we have z1 ∼ z′1. Similarly z0 ∼ z′0 holds, while z2 ̸∼ z′2. Continuing

Example 16, the model Ie has 144 matches (among which 36 map z1 to a, 36 map
z1 to b, and 72 map z1 to γ) for the query qe, while its f ⋆-interlacing I⋆ only has
40 matches for qe.

We now abstract the branches one can encounter in f ⋆-interlacings as follows.

Definition 46. Let W be a word from W := {ε} ∪ {a · h1 · · ·hn | a ∈ Ind(A), hi ∈
2Ω, n ≥ 0}, where ε denotes the empty word. A W -branch B is an interpretation
whose domain ∆B is divided into two disjoints sets of elements:

- a set inner(B) of inner elements being all individuals from Ind(A) and all
prefixes of W ;

- a set front(B) of frontier elements with shapes w · h such that w is an inner
element of B and h a set of heads.

and such that:

1. B |= A;

2. B is T -satisfiable;

3. For all role names P, we have: (u, v) ∈ PB iff either u, v ∈ Ind(A) or v = u ·h
and h contains some head R.B such that T |= R ⊑ P;

4. No rule apply on inner elements of B, i.e. there are no R.B ∈ Ω and e ∈
inner(B) such that there exists A ⊑ ∃R.B ∈ T with e ∈ AB and e /∈ (∃R.B)B.

Example 18. Figures 4.8a, 4.8b and 4.8c depict respectively an ε-branch B(0), a
b · {R2.A,R3.A}-branch B(1), and a b · {R2.A,R3.A} · {R1.A}-branch B(2). Inner
elements are indicated using square-purple and frontier elements by circle-green.

As explained before, we now introduce a promise to specify how many matches
for each qt can be found in the directed tree-structure following each non-individual
element.

Definition 47. A weighted branch (B, χ) is a branch B along with a promise χ, that
is a family χ := (χw)w∈∆B\Ind where each χw is a function terms(q)→ {0, . . .M}.

130 Q. Manière

4. Rooted CCQs

a b
R2

R1

◦ ◦

R
1 ,R

3 R
2
,R

3

(a) The ε-branch B(0).

a b
R2

R1

◦ ◦

R
1 ,R

3 R
2
,R

3

◦ ◦

R
1

R
2
,R

3

(b) The b · {R2.A,R3.A}-branch B(1).

a b
R2

R1

◦ ◦

R
1 ,R

3 R
2
,R

3

◦ ◦

R
1

R
2
,R

3

◦ ◦

R
1

R
2
,R

3

(c) The b · {R2.A,R3.A} · {R1.A}-branch B(2).

Figure 4.8: The tree branches B(0), B(1) and B(2) from Example 18. Labels for
concept A (on each visible vertex) and role S (on each visible edge) are omitted.
Inner elements are indicated using square-purple and frontier elements by circle-
green.

Counting Queries in Ontology-Based Data Access 131

4.4. Further refinements for ALCH

Remark 22. The exponential bound M allows χ to be described in polynomial
size. Without such a bound, we would have to consider functions terms(q) → N,
that might be impossible to fully guess in polynomial space.

As we need to combine weighted branches together, it is useful to define the
notion of induced weighted branches.

Definition 48. Let (B, χ) is a weighted-W -branch and that w is a prefix of W . The
induced weighted-w-branch of (B, χ) is the biggest (w.r.t. inclusion of interpretations
and inclusions of functions) weighted-w-branch that is included in (B, χ).

Remark 23. The above definition is slightly abusive as we need in general to
modify the inner and frontier sets of elements: if w · h is also a prefix of W , then
we must allow w · h to be moved from the inner elements of the weighted-W -branch
to the frontier elements of the (induced) weighted-w-branch.

To check whether a promise is coherent w.r.t. the weighted branch it belongs to,
we verify that the encoded numbers of matches promised by χ on inner elements
correspond to those that can be inferred from a combination of a partial match on
B and the promised numbers of matches at further elements. To formalize this, we
define a split of the query q, a notion inspired by the fork-rewriting approach (see
e.g. Lutz [2008]).

Definition 49. Let p ⊆ q be a subquery of q and π : p → B a match. We say π
splits q over (B, χ) iff:

1. For all v1, v2 such that π(v1), π(v2) ∈ ∆B \ Ind, if v1 ∼ v2 then π(v1) = π(v2);

2. For all v such that π(v) ∈ front(B), we have χπ(v)(v) ̸= 0.

3. The following is a partition of terms(q):

(terms(p) \ π−1(front(B))) ∪ {dep(v) | v ∈ π−1(front(B))}

And we hence restrict ourselves to valid weighted branches.

Definition 50. A weighted branch (B, χ) is valid if the two following conditions
are satisfied:

1. For all w ∈ ∆B\Ind and for all v1, v2 ∈ Vanon, if v1 ∼ v2 then χw(v1) = χw(v2);

2. For all w ∈ inner(B) \ Ind and all v ∈ terms(q), we have:

χw(v) =
∑
π|qv

π splits q over B
π(v)=w

∏
v′

v′∈terms(qv)
δv(v′)=1

χπ(v′)(v
′)

132 Q. Manière

4. Rooted CCQs

z0 z′0 z1 z′1 z2 z′2 z3

χa·{R1.A,R3.A} 16 16 0 0 0 0 0

χb·{R2.A,R3.A} 0 0 8 8 2 1 1

χb·{R2.A,R3.A}·{R2.A,R3.A} 0 0 0 0 2 1 1

χb·{R2.A,R3.A}·{R1.A} 0 0 0 0 2 1 1

χb·{R2.A,R3.A}·{R1.A}·{R1.A} 0 0 0 0 0 0 1

χb·{R2.A,R3.A}·{R1.A}·{R2.A,R3.A} 0 0 0 0 0 0 1

Table 4.2: The promise χ(2) for Example 19.

In that case, we define the number of matches mB,χ encoded in (B, χ) as:

mB,χ :=
∑
π

π splits q over B

∏
v

v∈terms(q)
π(v)∈front(B)

χπ(v)(v)

Remark 24. The product from Condition 2 is well defined as, despite the fact that
we iterate over equivalence classes of terms of q (with relative depth from v equal
to 1), the choice of witness doesn’t matter due to Condition 1 and the first item of
the definition of a split. Furthermore, notice that Condition 2 can be checked in
polynomial space by enumerating the splits of q over B and incrementing a counter,
despite the fact that there might exist exponentially many such splits.

Example 19. Consider the promise χ(2) for the branch B(2) (see Example 18 and
Figure 4.8c) given in Table 4.2. It can be verified that (B(2), χ(2)) is a valid weighted
b · {R2.A,R3.A} · {R1.A}-branch. By restricting χ(2) to the elements of B(1), resp.
B(0), we obtain a promise χ(1), resp. χ(0), such that (B(1), χ(1)) is a valid weighted
b · {R2.A,R3.A}-branch, resp. (B(0), χ(0)) is a valid weighted ε-branch. The latter
two are the induced b · {R2.A,R3.A}-branch and the induced ε-branch of (B(2), χ(2)).
All these weighted branches have an encoded number of matches of 40. For example,
one can consider the following split of q over (B(0), χ(0)):

z0, z
′
0 7→ a · {R1.A,R3.A}

whose contribution in the sum defining mB(0),χ(0) is χ(0)
a·{R1.A,R3.A}(z0) = 16 (recall

z0 ∼ z′0 hence we consider either χ(0)
a·{R1.A,R3.A}(z0) or χ(0)

a·{R1.A,R3.A}(z
′
0), which are

equal, but do not combine both). Another split of of q over (B(0), χ(0)) is:

z0, z
′
0, z1, z

′
1 7→ b z2, z

′
2 7→ b · {R2.A,R3.A}

whose contribution is χ(0)
b·{R2.A,R3.A}(z2)× χ

(0)
b·{R2.A,R3.A}(z

′
2) = 2× 1 (recall z2 ̸∼ z′2).

Counting Queries in Ontology-Based Data Access 133

4.4. Further refinements for ALCH

Data: ALCH KB K := (T ,A), exhaustive rooted CCQ q, integer m.
Result: May return yes iff [m,+∞] is not a certain answer of q w.r.t. K.
(B, χ)← Guess a candidate weighted-ε-branch.
Wlim ← ε
if (B, χ) is not a valid weighted ε-branch or m ≤ mB,χ then

return no
end
while there exists W ∈ front(B) with |W | < |q|+ 2 and W > Wlim do

W ′ ← smallest W ∈ front(B) s.t. |W | < |q|+ 2 and W > Wlim

(B′, χ′)← Guess a candidate weighted W ′-branch.
w ← longest common prefix of Wlim and W ′

(B1, χ1)← induced weighted w-branch of (B, χ)
(B2, χ2)← induced weighted w-branch of (B′, χ′)
if (B′, χ′) is not a valid weighted W ′-branch or (B1, χ1) ̸= (B2, χ2) then

return no
end
(B, χ)← (B′, χ′)
Wlim ← W ′

end
return yes

Algorithm 1: An algorithm for exhaustive rooted CCQ answering in ALCH.

We assume fixed a depth-first ordering on the set of words W := {ε} ∪ {a ·
h1 · · ·hn | a ∈ Ind(A), hi ∈ 2Ω, n ≥ 0}, where ε denotes the empty word, and
consider the coNPSPACE procedure described by Algorithm 1. Observe the Sat(L)
oracle is needed to test whether the guessed branches are valid weighted branches.

We now prove the central lemma of this section, which concludes the proof of
Theorem 26.

Lemma 25. There exists a countermodel for m iff there exists an accepting
computation for Algorithm 1.

Proof. We prove the two directions in turn.

(⇒) If there exists a countermodel I, then consider its f ⋆-interlacing I⋆. An
accepting run can be obtained by extracting branches from I⋆ and setting promises
as follows:

χw : terms(q) → {0, . . .M}
t 7→ #{π|qt | π : q → I⋆ is a match s.t. π(t) = w}

134 Q. Manière

4. Rooted CCQs

(⇐) If there exists an accepting run, let us consider w0, . . . wK all intermediate
values of Wlim and (B0, χ0), . . . (BK , χK−1) the corresponding values of (B, χ) (in
particular w0 := ε). Let us consider the interpretation obtained as I :=

⋃K
k=0 Bk,

along with the promise obtained as the union of all intermediate promises χ :=
(
⋃K
k=0(χk)w)w.
We prove that I can be completed into a countermodel for m. From the

satisfiability checks performed at each step (when verifying that the guessed
branches are indeed branches, see Condition 2 of Definition 46),it follows that one
can extend I into a complete model Iext. Importantly, since branches require that
no rule applies on inner elements and that each element from I at distance less
than |q|+ 1 from the individuals is an inner element of some encountered branch,
this extension Iext can be obtained without introducing any element at distance
less than |q|+ 1 from the individuals. To prove the extension Iext has less than m
matches, it hence suffices to prove that this holds for the interpretation I. To do
so, we prove the following property, henceforth referred to as Property (⋆):

∀w ∈ ∆I ∀t ∈ terms(q), χw(t) = #{π|qt | π : q → I is a match s.t. π(t) = w}

To see how Property (⋆) will conclude the proof, it suffices to notice that for all
branches B ∈ {B0, . . .BK}, the set of matches of q in I can be decomposed as
follows: ⋃

π
π splits q over B

{π|∆B\front(B)} ×
∏
v

v∈terms(q)
π(v)∈front(B)

{
ρ|qv

∣∣∣∣ ρ : q → I is a match
s.t. ρ(v) = π(v)

}

In particular for B = B0 and if Property (⋆) holds, this is exactly the comparison
with m performed at the beginning of the algorithm.

We henceforth focus on proving Property (⋆). We proceed by a descending
induction on elements of I, with respect to the depth-first order chosen on wordsW .
For an element w at depth |q|+ 1, the sum in the definition of χw must be empty
since q is rooted, hence χw is the function always equal to 0. For the same reason
of q being rooted, {π|qt | π : q → I is a match s.t. π(t) = w} must be empty, hence
the desired equality. For the induction case, consider an element w ∈ ∆I at depth
at most |q| and assume Property (⋆) holds for deeper elements. By construction
of I, there must exists k such that Wk = w and consider then the corresponding
weighted w-branch (Bk, χk) ⊆ (I, χ). Fix a term t ∈ terms(q) and specialize the
decomposition above to the branch Bk and to matches mapping t onto w. Since w
is a inner element of Bk, one simply obtains the following decomposition:⋃

π
π splits q over Bk

π(t)=w

{π|∆Bk\front(Bk)} ×
∏
v

v∈terms(q)
π(v)∈front(Bk)

{
ρ|qv

∣∣∣∣ ρ : q → I is a match
s.t. ρ(v) = π(v)

}

Counting Queries in Ontology-Based Data Access 135

4.4. Further refinements for ALCH

Consider now only the restriction of those matches to qt, that is exactly the set
appearing in the RHS of Property (⋆), which hence decomposes as:⋃

π
π splits q over Bk

π(t)=w

{(π|∆Bk\front(Bk))|qt} ×
∏
v

v∈terms(q)
π(v)∈front(Bk)

{
(ρ|qv)|qt

∣∣∣∣ ρ : q → I is a match
s.t. ρ(v) = π(v)

}

Since π(t) = w and that w /∈ front(Bk), the terms in the product are always empty
unless v ∈ dep(t), and since frontier elements are exactly 1 step away from an inner
element, we must have more precisely δt(v) = 1. Hence the simplification:⋃

π
π splits q over Bk

π(t)=w

{(π|∆Bk\front(Bk))|qt} ×
∏
v

v∈terms(qt)
δt(v)=1

{
ρ|qv

∣∣∣∣ ρ : q → I is a match
s.t. ρ(v) = π(v)

}

If we consider the above in terms of cardinality, we can apply the induction
hypothesis to obtain the following:

#{π|qt | π : q → I is a match s.t. π(t) = w} =
∑
π

π splits q over Bk
π(t)=w

∏
v

v∈terms(qt)
δt(v)=1

χπ(v)(v)

From the Condition 2 of (Bk, χk) being a valid weighted-branch, we now obtain
that the RHS of this equality is exactly χw(t), hence the Property (⋆) for w.

4.4.3 Matching lower bounds

In this section, we exhibit two lower bounds for exhaustive rooted CCQ answering
in ALCH ontologies. As we have seen in Section 4.4.2, the complexity of our
algorithm to answer such queries drops from EXP to PSPACE when moving from
ALC to ELH⊥, as the corresponding satisfiability problem gets easier. Our first
lower bound emphasizes that satisfiability is indeed the limiting factor by trivially
reducing the EXP-complete satisfiability problem over ALC to ours.

Theorem 27. Exhaustive rooted CCQ answering over ALC ontologies is EXP-hard
w.r.t. combined complexity.

Proof. We proceed by reduction from the EXP-complete concept satisfiability
problem with an ALC TBox (see Schild [1991]). Let T be an ALC TBox and C
be the concept of interest. We claim that: C is satisfiable w.r.t. T iff 2 is not a
certain answer to q := C(a) over the KB (T , {C(a)}). If C is satisfiable, then there
exists a model for (T , {C(a)}), which obviously yields a single match for q, hence it
is a countermodel for 2. Conversely, if 2 is not a certain answer, then there exists a
model of (T , {C(a)}), witnessing the satisfiability of C w.r.t. T .

136 Q. Manière

4. Rooted CCQs

For restrictions of ELH⊥, we obtain a PSPACE lower bound for EL by a more
involved reduction from the Quantified Satisfiability (QBF) problem. Interestingly,
this construction strongly relies on a binary encoding of the input integer. Whether
the complexity drops if the integer is encoded in unary remains an open question.

Theorem 28. Exhaustive rooted CCQ answering over EL ontologies is PSPACE-
hard w.r.t. combined complexity.

Proof. We reduce (the complement of) the Quantified Boolean Formula problem
(QBF) known to be PSPACE-complete (see e.g. Sipser [1996]). QBF takes as input
a Boolean formula with shape ∀x1∃y1 . . . ∀xn∃yn ϕ(x1, y1, . . . , xn, yn), where ϕ is a
quantifier-free Boolean formula, and decides if this formula is true.

Let F := ∀x1∃y1 . . . ∀xn∃yn ϕ(x1, y1, . . . , xn, yn) be an instance of QBF. We
build a knowledge base K, an exhaustive rooted CCQ q and an integer N such that
N + 1 is a certain answer to q over K iff F is false. We are interested in optimal
models, that are models minimizing the number of matches for q.

Intuitively, we want each model I to generate all possible assignments for the
universally quantified variables, which is represented as a tree-shaped structure
in I, and pick along each branch one assignment for the existentially quantified
variables. At each leaf the formula ϕ is evaluated and a part qϕ of the query q
detects if this returns False. If the whole formula F is true, there exists a model
without such a match for qϕ and it gives a countermodel for N +1. Otherwise each
model must contain this additional match and N + 1 is a certain answer.

The main challenge is to ensure assignments represented at each node in the
tree uses only two Boolean values, True or False. With exhaustive rooted queries
we cannot simply count the number of elements used as Boolean in our models and
set N = 2 so that optimal models only use two Booleans. Indeed, to detect such a
Boolean-like element, the query q has to keep track of the whole path between its
root and the element of interest. Since we want our tree to contain 2n leaves, that
is, a total of 2n+1 − 1 nodes (including the root), we should consider 2× (2n+1 − 2)
Boolean-like elements (2 per anonymous node). In particular, it means that we
want optimal models to contains at least that many matches coming from their
tree-shaped structure, and therefore, if this structure collapses in a model, then
it must come at the cost of at least that many matches (so that we can focus on
models in which the tree-shaped structure does not collapse).

This tree-shaped structure is rooted on an individual, namely a and further
generated with the TBox and the use of a single role, namely “next” (⋆). Since we
need a single-exponential number of nodes, each node of interest can be generated
within polynomial depth n, which can be reached by our rooted query (†). To
prevent an optimal model to collapse the tree-shaped structure, we take advantage
of (⋆) and (†) which ensures the number of shapes of cycles to exclude is polynomial.
Each such shape is excluded from optimal model with the help of a subquery q′

Counting Queries in Ontology-Based Data Access 137

4.4. Further refinements for ALCH

which itself contains a “loading subquery”, namely qload. This loading subquery
satisfies the property that if q′ maps in the tree-shaped structure of I, that is, if
q′ detects the shape of cycle in this structure, then it allows qload to map in 2M

different manners in the ABox, with M big enough to make I non-optimal.

Knowledge Base. We first generate the exponentially large tree. The branching
containing concept name Nodeti , resp. Nodefi , represents an assignment in which
the universally quantified variable xi should be true, resp. false:

Node0(a)
Nodei ⊑ ∃next.Nodeti+1 Nodeti+1 ⊑ Nodei+1

Nodei ⊑ ∃next.Nodefi+1 Nodefi+1 ⊑ Nodei+1

(0 ≤ i ≤ n− 1)

We now require that a node at depth i assigns a valuation to each variable xj and
yj with j ≤ i, and that it provides at least the two usual Boolean values represented
by concepts True and False:

Nodei ⊑ ∃toBool.True
Nodei ⊑ ∃toBool.False

Nodei ⊑ ∃toBool.EVarj
Nodei ⊑ ∃toBool.UVarj

(1 ≤ j ≤ i ≤ n)

We now evaluate ϕ inductively at each node. The concept IsTrueψ, resp. IsFalseψ,
indicates that the subformula ψ occurring in ϕ evaluates to True, resp. False. We
start with the case of a single variable:

∃tobool.(True ⊓ EVari) ⊑ IsTruexi
∃tobool.(False ⊓ EVari) ⊑ IsFalsexi

∃tobool.(True ⊓ UVari) ⊑ IsTrueyi
∃tobool.(False ⊓ UVari) ⊑ IsFalseyi

Case of a conjunction:

IsTrueψ1 ⊓ IsTrueψ2 ⊑ IsTrueψ
IsFalseψ1 ⊑ IsFalseψ
IsFalseψ2 ⊑ IsFalseψ

(ψ = ψ1 ∧ ψ2 occurs in ϕ)

Case of a disjunction:

IsTrueψ1 ⊑ IsTrueψ
IsTrueψ2 ⊑ IsTrueψ

IsFalseψ1 ⊓ IsFalseψ2 ⊑ IsFalseψ

(ψ = ψ1 ∨ ψ2 occurs in ϕ)

Case of a negation:

IsFalseψ′ ⊑ IsTrueψ
IsTrueψ2 ⊑ IsFalseψ

(ψ = ¬ψ′ occurs in ϕ)

The preceding axioms together ensure that each leaf, that is, a node satisfying
Noden, satisfies IsTrueϕ or IsFalseϕ. Note that it is possible that internal nodes,

138 Q. Manière

4. Rooted CCQs

satisfying Nodei for some i < n, can already satisfy these two concepts. This won’t
interfere with the number of matches for the query as the corresponding subquery
will ask for a path of length exactly n from the root.

It remains to introduce the root that will be used in the query and the two
elements allowing for the loading subquery to increase drastically the number of
matches:

toStart(r, a) toLoader(a, l0) toLoader(a, l1)

To conclude the construction of the KB, we introduce an auxiliary individual b
whose purpose is to let each subquery map at least once. In particular, it satisfies all
concepts names previously mentioned, which we don’t recap here, and the following
role assertions:

toStart(r, b) toLoader(b, b) next(b, b) toBool(b, b)

Query. We distinguish two main kinds of subqueries: structural subqueries
and consistency subqueries. Structural subqueries ensure each model contains the
desired tree-shape structured or yields too many matches to be optimal. Consistency
subqueries ensure models in the first case either represent proper assignments for
variables or yields at least one additional match.

We begin with the loading subquery qload, which contains a free variable z so
that copies of qload will be instantiated for building the other structural subqueries.

qload(z) := ∃z1, . . . , zM toStart(r, z) ∧
M∧
i=1

toLoader(z, zi)

Notice that if z is mapped onto b, then there is in general only one way to map
the remaining variables from qload (all onto b as well). On the other hand, if z is
mapped on a, then there are at least 2M ways to map these remaining variables
(each variable can be mapped onto either l0 or l1). The exact value of M will be
specified later in the construction.

To ensure the desired tree-shaped structure, we first require the branching
(leading to either Nodeti or Nodefi) to be indeed branching, meaning we don’t
want these two concepts being witnessed by the same element. We proceed with
the following subqueries, each detecting a non-branching node at depth d, with
1 ≤ d ≤ n:

qdbranch := ∃z0, . . . , zd qload(z0) ∧
d−1∧
i=0

next(zi, zi+1) ∧ Nodetd(zd) ∧ Nodefd(zd)

We proceed as well with the True and False branching at each node, with the
following subqueries, each detecting collapsed Booleans coming from a node at

Counting Queries in Ontology-Based Data Access 139

4.4. Further refinements for ALCH

depth d, with 1 ≤ d ≤ n:

qdbool := ∃z0, . . . , zd, z qload(z0)∧
d−1∧
i=0

next(zi, zi+1)∧toBool(zd, z)∧True(z)∧False(z)

We further detect if a branch loops back on itself. We proceed with the following
subqueries, each detecting a branch whose dth and (d+ p+ 1)th nodes are merged,
with 0 ≤ d ≤ n− 1 and 0 ≤ p ≤ n− 1− d:

qdloop := ∃z0, . . . , zd+p qload(z0) ∧
d+p−1∧
i=0

next(zi, zi+1) ∧ next(zd+p, zd)

To ensure a tree-shaped structure, it remains to detect two branches separating at
depth d and collapsing further together, the first after p additional nodes and the
second after q additional nodes, with 0 ≤ d ≤ n− 1 and 0 ≤ p, q ≤ n− 1− d:

qd,p,qcycle := ∃z0, . . . , zd, zt0, . . . , ztp, z
f
0 , . . . , z

f
q , z qload(z0) ∧

∧d−1
i=0 next(zi, zi+1)

∧next(zd, zt0) ∧ Nodetd+1(z
t
0) ∧

∧p−1
i=0 next(z

t
i , z

t
i+1) ∧ next(ztp, z)

∧next(zd, zf0) ∧ Nodefd+1(z
f
0) ∧

∧q−1
i=0 next(z

f
i , z

f
i+1) ∧ next(zfq , z)

We now move to the consistency subqueries. Our first consistency subquery
keeps track of the elements used as Boolean values. We count elements used as
Boolean values coming from a node at depth d, with 1 ≤ d ≤ n:

qd# bool := ∃z0, . . . , zd, z toStart(r, z0) ∧
d−1∧
i=0

next(zi, zi+1) ∧ toBool(zd, z)

Notice that due to the subqueries qdbool, we know that there should be at least 2
such elements for each node at depth d in the tree-shaped structure. Therefore,
in a model exhibiting the desired tree-shaped structure, qd# bool yields at least 2d+1

matches plus 1 on b. For the combination of all qd# bool for 1 ≤ d ≤ n, one shall
hence expect

∏n
d=1(2

d+1 − 1) matches, which is essentially 2O(n2). Since n is given
in unary (it is the essentially the number of variables in F), we can find an integer
M with a polynomially large binary encoding and such that 2M > N . This is how
we set M in the subquery qload.

We now detect if the assignment for an existentially quantified variable yd
(hence chosen for some node at depth d), here True, isn’t preserved at some further
node at depth d+ k, with 1 ≤ d ≤ n− 1 and 1 ≤ k ≤ n− d:

qyd,True,kassign := ∃z0, . . . , zd, zd+k, z, z′ toStart(r, z0) ∧
∧d+k−1
i=0 next(zi, zi+1)

∧toBool(zd, z) ∧ EVark(z) ∧ True(z)
∧toBool(zd+k, z′) ∧ EVark(z

′) ∧ False(z′)

140 Q. Manière

4. Rooted CCQs

We do the same in case the chosen assignment is False:

qyd,False,kassign := ∃z0, . . . , zd, zd+k, z, z′ toStart(r, z0) ∧
∧d+k−1
i=0 next(zi, zi+1)

∧toBool(zd, z) ∧ EVark(z) ∧ False(z)
∧toBool(zd+k, z′) ∧ EVark(z

′) ∧ True(z′)

We proceed as well with universally quantified variable xd, whose valuation,
here True, should be decided by the branching following a node at depth d − 1
and then be preserved at further nodes, here at depth d+ k, with 1 ≤ d ≤ n and
0 ≤ k ≤ n− d:

qxd,True,kassign := ∃z0, . . . , zd, zd+k, z toStart(r, z0) ∧
∧d+k−1
i=0 next(zi, zi+1)

∧Nodetd(zd) ∧ toBool(zd+k, z) ∧ UVark(z) ∧ False(z)

We do the same if the chosen assignment is False:

qxd,False,kassign := ∃z0, . . . , zd, zd+k, z toStart(r, z0) ∧
∧d+k−1
i=0 next(zi, zi+1)

∧Nodefd(zd) ∧ toBool(zd+k, z) ∧ UVark(z) ∧ True(z)

Finally, we detect if an assignment at a leaf evaluates the formula to false:

qϕ := ∃z0, . . . , zn, z toStart(r, z0) ∧
n−1∧
i=0

next(zi, zi+1) ∧ IsFalseϕ(zn)

We now set q to be the conjunction of all the above subqueries and complete
the reduction by proving the following claim:

F is false iff N + 1 is a certain answer to q over K.

(⇒). Assume F is false. Consider a model I of K, and let f be a homomorphism
from the canonical model CK of K to I. We focus on how the tree-shaped structure
consisting of elements of ∆CK with prefix a embeds into I. If an element a ·w ∈ ∆CK

is such that f(a ·w) ∈ (Nodetd∩Nodefd)I , then it yields 2M matches for the subquery
q
|w|
branch. The other subqueries can independently collapse on b, ensuring the whole q

admits at least 2M matches. Since we set M and N such that 2M ≥ N , we obtain at
least the desired N+1 matches in I. Similarly, one can eliminate models containing
loops (2M matches for a subquery qdloop), cycles (2M matches for a subquery qd,p,qcycle),
or elements representing both true and false (2M matches for qdbool).

In the remaining models of K, there are at least N matches for q#bool as
explained when setting the correct value for M . In a model I, if an element f(a ·w)
does not reuse its two already counted True and False Booleans, that is there exists
some concept EVark (or UVark) with k ≤ |w| such that a ·w ·toBool.{EVark} ∈ ∆CK

Counting Queries in Ontology-Based Data Access 141

4.4. Further refinements for ALCH

but f(a ·w · toBool.{EVark}) /∈ {f(a ·w · toBool.{True}), f(a ·w · toBool.{False})},
then it yields a new match for q|w|#bool and we are done. Otherwise, each such
node f(a · w) is connected to an element satisfying EVark ⊓ True or to an element
satisfying EVark ⊓ False, for each k ≤ |w|. This defines a valuation at this node
for the |w| first existential variables y1, . . . yd which we denote τw : {y1, . . . yd} →
{True,False}. We proceed as well with the |w| first universal variables to extend
τw as τw : {x1, y1 . . . xd, yd} → {True,False}.

If w,w′ ∈ ∆CK with w a prefix of w′ but that τe ⊊ τe′ , then it yields an additional
match for qvk,True,passign or for qvk,False,passign , where vk is the existential or universal variable
on which τw and τw′ disagree, and where p is the integer such that |w′| = |w|+ p.

Recall now that F is false, hence there must exists a valuation, say True, of
x1 such that whatever the valuation of y1 the remaining F1 of the formula is false.
Consider hence the element f(a · next.{Nodet1,Node1}) in I, and remark we can
assume τa·next.{Nodet1,Node1}(x1) = True (otherwise it would yield an additional match
for qx1,True,0assign) and that this valuation and the one for y1 is now fixed for further
elements. But since F1 is false, we can iterate until we reach depth n, for which we
have an element a · w ∈ ∆CK with |w| = d whose valuation τw is such that Fn, that
is ϕ, must be false. Therefore the element f(a · w) yields a new match for qϕ and
we are done.

(⇐). Assume F is true. We briefly explain how to obtain a model with exactly
N matches from the canonical model CK of K. Since F is true, for each case x1 = 0
or x1 = 1, there exists a valuation of y1 such that the remainder of the formula is
true. Say that for x1 = 1 we need to set y1 = 0. Then we consider CK in which we
identify all elements with shape a · next.{Nodet1,Node1} · w · toBool.{UVar1} with
the element a ·next.{Nodet1,Node1} ·w · toBool.{True} and all elements with shape
a·next.{Nodet1,Node1}·w·toBool.{EVar1} with the element a·next.{Nodet1,Node1}·
w · toBool.{False}. We proceed similarly on the side of x1 = 0, according to the
required valuation of y1, and further iterate this construction.

From the tree-shaped structure of the canonical model, even with our slight
modifications, it can be verified that no structural subquery can map in the
structure issuing from a. The consistency queries qd#bool indeed yield N matches
from the remaining Booleans in this structure and from their match on b, while
other consistency subqueries can only map onto b. In particular, since F is true,
such a construction does not trigger the concept IsFalseϕ on elements a · w with
|w| = n, hence qϕ can only map onto b.

We also close the case of data complexity for EL with the following theorem.

Theorem 29. Exhaustive rooted CCQ answering over EL is coNP-complete w.r.t.
data complexity.

142 Q. Manière

4. Rooted CCQs

Proof. The main idea is the same as in proof of Theorem 21. However, due to the
lack of existential variables, we can no longer ‘reach’ the colors without taking into
account the paths leading to them. To address this difficulty, we translate into our
context an idea from Kostylev and Reutter [2015], which takes advantage of role
inclusions.

Starting from an instance G = (V , E) of the decision problem 3-Col, we consider
the ABox AG given by:

AG = {toVertex(a, u) | u ∈ V} ∪ {Vertex(u) | u ∈ V}
∪ {Edge(u1, u2) | (u1, u2) ∈ E}
∪ {toVertex(a, av),Colors(av, av),Monochrom(av)}

∪
⋃
u∈V

{Colors(u, ru),R(ru),Colors(u, gu),G(gu),Colors(u, bu),B(bu)}

and the TBox T containing axiom Vertex ⊑ ∃Colors.Used, and each following
axiom for C ∈ {R,G,B}:

∃Colors.(C ⊓ Used) ⊓ ∃Edge.(∃Colors.(C ⊓ Used)) ⊑ Monochrom.

and we denote by KG = (T ,AG) the resulting KB. A part of the canonical model
of KG is depicted in Figure 4.9. We use Vertex ⊑ ∃Colors.Used to assign colors to
vertices.

We consider the two following exhaustive rooted CCQs:

qedge = ∃zm toVertex(a, zm) ∧Monochrom(zm)

qcol = ∃zv ∃z toVertex(a, zv) ∧ Colors(zv, z)

and let q be the query obtained by taking the conjunction of these two queries and
keeping all of the variables existentially quantified. The query q is displayed in
Figure 4.10. Observe that compared to the query from the proof of Theorem 21
(see Figure 4.2), the part of the query detectecing monochromatic edges has been
internalized into the TBox T .
It is not hard to see that [3|V|+ 1,+∞] is a certain answer to q over KG. Indeed,
there are at least 3|V| matches of q in any model I of KG, obtained as follows:

zm 7→ av zv 7→ u z 7→ ru | gu | bu (u ∈ V)

and one additional match given by:

zm, zv, z 7→ av

To complete the proof, we establish the following claim:

[3|V|+ 2,+∞] is a certain answer to q over KG iif G /∈ 3-Col.

Counting Queries in Ontology-Based Data Access 143

4.4. Further refinements for ALCH

a av Monochrom

u1

Vertex

u2

Vertex

u1 · Colors.{Used}

u2 · Colors.{Used}

ru1R

gu1G

bu1B

ru2R

gu2G

bu2B

toVertex

toV
ert

ex

E
d
ge

C
olors

C
ol
or
s

toVertex

Colors

Colors
Colors

Color
s

Colors
Colors

Color
s

Figure 4.9: A part of CKG with (u1, u2) ∈ E .

•
azm

Monochrom

zv

z
toVertex toVertex Colors

Figure 4.10: The exhaustive rooted CCQ q, which is the conjunction of qedge (left
part) and qcol (right part).

(⇒) This direction is proven in the same manner as the claim in the proof of
Theorem 21. We assume [3|V| + 2,+∞] is a certain answer and take a possible
coloring τ : V → {r, g, b}. We then use τ to build a model Iτ of KG and use the
existence of an additional match π to show that τ contains a monochromatic edge
(hence G /∈ 3-Col).

(⇐) Assume G /∈ 3-Col, and take some model I of KG . There is a homomorphism
f : CKG → I. Define τ : V → ∆I as follows: τ(u) = f(u · Colors.{Used}). Note
that τ is well defined, as the inclusion Vertex ⊑ ∃Colors.Used ensures that there is
an element u · Colors.{Used} in CKG . There are two cases to consider:

- If there exists u ∈ V such that τ(u) /∈ {ru, gu, bu}, then it provides an
additional match of qcolor in I with z 7→ τ(u) and zv 7→ uI .

- Else, since G /∈ 3-Col, there exists an edge (u1, u2) ∈ E such that τ(u1) = cu1

144 Q. Manière

4. Rooted CCQs

and τ(u2) = cu2 for some c ∈ {r, g, b}. The corresponding axiom

∃Colors.(C ⊓ Used) ⊓ ∃Edge.(∃Colors.(C ⊓ Used)) ⊑ Monochrom

hence triggers and yields a new match for qedge given by:

zm 7→ u1

In both cases, there is an additional c-match for q. We thus obtain that [3|V| +
2,+∞] is certain answer to q over KG.

We can adapt the previous reduction to prove DP-hardness w.r.t. data complexity
of the corresponding problem of tight exhaustive rooted CCQ answering.

Theorem 30. Tight exhaustive rooted CCQ answering over EL ontologies is
coNP-complete w.r.t. data complexity.

Proof. We give a reduction from the following problem (DP-complete due to Garey
et al. [1976]): given planar graphs G1 := (V1, E1) and G2 := (V2, E2), decide if
G1 ∈ 3-Col and G2 /∈ 3-Col. The proof proceeds w.r.t. the proof of Theorem 29
exactly as the proof of Theorem 22 proceeds w.r.t. the proof of Theorem 21, that
is by introducing an asymmetry in the query on the G1-side. The only difference
is that the basic number of matches on the side of G1 is (3|V1|+ 1)× (3|V1|+ 1)
instead of 3 × 3, and similarly for G2, it is 3|V2| + 1 instead of 3. This slightly
modifies the case analysis as follows:

G1 ∈ 3-Col G1 /∈ 3-Col

G2 ∈ 3-Col (3|V1|+ 1)2 × (3|V2|+ 1) (3|V1|+ 2)2 × (3|V2|+ 1)

G2 /∈ 3-Col (3|V1|+ 1)2 × (3|V2|+ 2) (3|V1|+ 2)2 × (3|V2|+ 2)

One can easily verify these 4 numbers are always distinct, hence the claim becomes:

[(3|V1|+ 1)2 × (3|V2|+ 2),+∞] is the tightest certain answer
iff

G1 ∈ 3-Col and G2 /∈ 3-Col.

4.5 Refinements within DL-Lite
In the previous section, we investigated how the absence of inverse roles allows us
to lower the combined complexity of answering exhaustive rooted CCQs. We now
turn to DL-LiteHcore KBs, for which we already know that inverse roles coupled with
role inclusions, a combination allowed in DL-LiteHpos, leads to a coNEXP-complete
problem (see Theorems 23 and 24).

Counting Queries in Ontology-Based Data Access 145

4.5. Refinements within DL-Lite

In Section 4.5.1, we close the case of DL-LiteHpos by showing coNP-hardness in
data complexity, hence matching the upper bound from the general case (Theo-
rem 6). We further move to DL-Litecore and exhibit the central property of this
section, namely that the canonical model yields the optimal number of matches for
exhaustive rooted CCQs over DL-Litecore KBs. This property has been indepen-
dently used in Calvanese et al. [2020a], from which an L upper bound is derived. A
similar property in the bag semantics counterpart of DL-Litecore has been exploited
in Nikolaou et al. [2019] for CQ entailment, though reducing one setting to the other
seems non-trivial (see Example 1 in Calvanese et al. [2020a]). In Sections 4.5.2
and 4.5.3, we explore the consequence of this property on combined, resp. data,
complexity for answering exhaustive rooted CCQs in DL-Litecore. More precisely,
we prove that the problem becomes PP-complete for combined complexity, hence
in PSPACE, while it becomes TC0 for data complexity.

Let us also recall that for every DL-LiteHcore KB K, it is well known the set of
concept names M occurring in an element w ·R.M ∈ ∆CK of the canonical model of
K contains exactly those concept names entailed by the concept ∃R− [Calvanese
et al., 2007b]. We will hence omit such sets of concept names M within this section.

4.5.1 From DL-LiteHcore to DL-Litecore
We begin by closing the case of DL-LiteHpos, hence also of DL-LiteHcore, by proving
that exhaustive rooted CCQ answering over such KBs is coNP-hard w.r.t. data
complexity, hence coNP-complete from Theorem 7. This is shown by another
reduction from 3-Col which involves ideas from our proof of Theorem 21 and the
proof of Lemma 16 from Kostylev and Reutter [2015].

Theorem 31. In DL-LiteHpos, exhaustive rooted CCQ answering is coNP-complete
w.r.t. data complexity.

Proof. The main idea is the same as in the proof of Theorem 21. However, due to
the lack of existential variables, we can no longer ‘reach’ the colors without taking
into account the paths leading to them. To address this difficulty, we translate into
our context an idea from Kostylev and Reutter [2015], which takes advantage of
role inclusions.

Starting from an instance G = (V , E) of the decision problem 3-Col, we consider
the ABox AG given by:

AG = {toVertex(a, u) | u ∈ V} ∪ {Vertex(u) | u ∈ V}
∪ {Edge(u1, u2) | (u1, u2) ∈ E}
∪ {toVertex(a, av),Edge(av, av),HasCol(av, r)}
∪ {Colors(u, r) | u ∈ V} ∪ {Colors(u, g) | u ∈ V} ∪ {Colors(u, b) | u ∈ V}

146 Q. Manière

4. Rooted CCQs

and the TBox T := {Vertex ⊑ ∃HasCol,HasCol ⊑ Colors}, and we denote by
KG = (T ,AG) the resulting KB. A part of the canonical model of KG is depicted in
Figure 4.11. As in the proof of Theorem 21, we use Vertex ⊑ ∃HasCol to assign
colors to vertices, and the more general role Colors will be used to detect colors.

a av

u1

Vertex

u2

Vertex

u1 · HasCol

u2 · HasCol

r

g

b

toVertex

toV
erte

x

E
d
ge

H
asC

ol

H
as
C
ol

toVertex

Edge

Colors

Col
ors

Co
lor
s

Colors
Colors
Colors

HasCol

Figure 4.11: A part of CKG with (u1, u2) ∈ E .

We consider the two following exhaustive rooted CCQs:

qedge = ∃zc ∃z1 ∃z2 toVertex(a, z1) ∧ toVertex(a, z2)

∧ Edge(z1, z2) ∧ HasCol(z1, zc) ∧ HasCol(z2, zc)

qcol = ∃zv ∃z toVertex(a, zv) ∧ Colors(zv, z)

and let q be the query obtained by taking the conjunction of these two queries
and keeping all of the variables existentially quantified. The query q is displayed
in Figure 4.12. Observe that while it is similar to the query from the proof of
Theorem 21 (see Figure 4.2), the two existential variables in that query (yc, y) have
been replaced with counting variables (zc, zv), and one of the HasCol atom has
been changed to a Colors atom.
It is not hard to see that [3|V|+ 1,+∞] is a certain answer to q over KG. Indeed,
there are at least 3|V| matches of q in any model I of KG, obtained as follows:

z1, z2 7→ av zc 7→ r zv 7→ u (u ∈ V) z 7→ r | g | b

Counting Queries in Ontology-Based Data Access 147

4.5. Refinements within DL-Lite

•
a

z1

z2

zc

zv

z

toVertex

toV
ert

ex

toVertex Colors

E
d
ge

Ha
sCo

l

HasCol

Figure 4.12: The exhaustive rooted CCQ q, which is the conjunction of qedge (left
part) and qcol (right part).

and one additional match given by:

z1, z2, zv 7→ av zc, z 7→ r

To complete the proof, we establish the following claim:

[3|V|+ 2,+∞] is a certain answer to q over KG iif G /∈ 3-Col.

(⇒) This direction is proven in the same manner as the claim in the proof of
Theorem 21. We assume [3|V| + 2,+∞] is a certain answer and take a possible
coloring τ : V → {r, g, b}. We then use τ to build a model Iτ of KG and use the
existence of an additional match π to show that τ contains a monochromatic edge
(hence G /∈ 3-Col).

(⇐) Assume G /∈ 3-Col, and take some model I of KG . There is a homomorphism
f : CKG → I. Define τ : V → ∆I as follows: τ(u) = f(u · HasCol). Note that τ is
well defined, as the inclusion Vertex ⊑ ∃HasCol ensures that there is an element
u · HasCol in CKG . There are two cases to consider:

- If there exists u ∈ V such that τ(u) /∈ {r, g, b}, then the axiom HasCol ⊑
Colors ensures (uI , τ(u)) ∈ ColorsI , which provides an additional match of
qcolor in I with z 7→ τ(u) and zv 7→ uI .

- Else, since G /∈ 3-Col, there exists an edge (u1, u2) ∈ E such that τ(u1) =
τ(u2). It yields a new match given by:

z 7→ r zv 7→ av z1 7→ u1 z2 7→ u2 zc 7→ τ(u1) (= τ(u2))

In both cases, there is an additional c-match for q. We thus obtain that [3|V| +
2,+∞] is certain answer to q over KG.

148 Q. Manière

4. Rooted CCQs

We can adapt the previous reduction to prove DP-hardness w.r.t. data complexity
of the corresponding problem of tight exhaustive rooted CCQ answering.

Theorem 32. Tight exhaustive rooted CCQ answering over DL-LiteHpos ontologies
is coNP-complete w.r.t. data complexity.

Proof. Here again we proceed by reduction from the DP-complete problem of
deciding if G1 ∈ 3-Col and G2 /∈ 3-Col. given planar graphs G1 := (V1, E1) and
G2 := (V2, E2). The proof proceeds w.r.t. the proof of Theorem 31 exactly as the
proof of Theorem 22 proceeds w.r.t. the proof of Theorem 21, that is by introducing
an asymmetry in the query on the G1-side. The only salient difference is that the
basic number of matches on the side of G1 is (3|V1| + 1) × (3|V1| + 1) instead of
3× 3, and similarly for G2, it is 3|V2|+1 instead of 3. The case analysis is modified
as follows:

G1 ∈ 3-Col G1 /∈ 3-Col

G2 ∈ 3-Col (3|V1|+ 1)2 × (3|V2|+ 1) (3|V1|+ 2)2 × (3|V2|+ 1)

G2 /∈ 3-Col (3|V1|+ 1)2 × (3|V2|+ 2) (3|V1|+ 2)2 × (3|V2|+ 2)

One can easily verify these 4 numbers are always distinct, hence the claim becomes:

[(3|V1|+ 1)2 × (3|V2|+ 2),+∞] is the tightest certain answer
iff

G1 ∈ 3-Col and G2 /∈ 3-Col.

We now move to DL-Litecore and start by recalling Lemma 16, which highlights
an important property of the canonical model construction for DL-Litecore KBs.

Lemma 26 (Recalling Lemma 16). For any role R ∈ N±
R and anonymous element

d1 in the canonical model CK of a DL-Litecore KB K, there is at most one element
d2 ∈ CK such that (d1, d2) ∈ RCK.

This leads to the following central property, which ensures it is sufficient to
compute the number of matches of an exhaustive rooted CCQ over the canonical
model of a DL-Litecore KB to answer it.

Theorem 33. For every DL-Litecore KB K and exhaustive rooted CCQ q, the
minimum number of matches of q across models of K is reached in the canonical
model of K.

Proof. Exploiting the structure of DL-Litecore canonical models, we show that if
π1, π2 are distinct matches of an exhaustive rooted CCQ q in CK, then there exists
a variable v such that π1(v) ̸= π2(v) and π1(v), π2(v) ∈ Ind(A). It follows that if

Counting Queries in Ontology-Based Data Access 149

4.5. Refinements within DL-Lite

we take an arbitrary model I of K, and f a homomorphism of CK into I, then f
injectively maps query matches in CK to query matches in I.

We hence focus on proving that if π1, π2 are distinct matches of a exhaustive
rooted CCQ q in CK, then there exists a variable v such that π1(v) ̸= π2(v) and
π1(v), π2(v) ∈ Ind(A).

Suppose for a contradiction that this is not the case. There there are distinct
matches π1, π2 of q in CK such that for all variables v such that π1(v) ̸= π2(v),
either π1(v) ̸∈ Ind(A) or π2(v) ̸∈ Ind(A). As q is exhaustive rooted, every variable
v is connected to either an answer variable or individual in the Gaifman graph.
Let d(v) denote the length of the shortest path from v to an answer variable of
individual. Note that d(v) = 0 iff v is an answer variable. Since π1 and π2 are
distinct, there exists a variable v such that π1(v) ̸= π2(v). Choose such a variable
v∗ with minimal d-value, i.e., if d(u) < d(v∗), then π1(u) = π2(u). By assumption,
either π1(v∗) ̸∈ Ind(A) or π2(v∗) ̸∈ Ind(A). We’ll suppose the former (the other
case is treated analogously). Note that v∗ cannot be an answer variable (else we
would have π1(v∗) ∈ Ind(A)). It follows that d(v∗) > 0, and so we can find another
variable u∗ and role name R ∈ N±

R , with d(u∗) = d(v∗)− 1 and either R(u∗, v∗) ∈ q
or R−(v∗, u∗) ∈ q (recall that if R = P−, then R− = P). As π1 and π2 are matches
of q in CK, we therefore have (π1(u

∗), π1(v
∗)) ∈ RCK and (π2(u

∗), π2(v
∗)) ∈ RCK .

Moreover, since d(u∗) < d(v∗), we have π1(u∗) = π2(u
∗). There are two cases to

consider:

- Case 1: π1(u∗) = π2(u
∗) = c ∈ Ind(A). From the proof of Lemma 26, we

know that π1(v∗) = c · R. The fact that c · R ∈ ∆CK implies that there is no
individual b such that (c, b) ∈ RCK . Thus, we must have π2(v∗) = c ·R, which
yields π1(v∗) = π2(v

∗), contradicting our earlier assumption.

- Case 2: π1(u∗) = π2(u
∗) ̸∈ Ind(A). By Lemma 26, there is a unique element

e such that (π1(u
∗), e) ∈ RCK . We thus obtain π1(v

∗) = e = π2(v
∗), a

contradiction.

As both cases lead to a contradiction, it must therefore be the case that the
statement holds.

In the following sections, we explore how this property of the canonical model
being optimal impacts the combined, resp. data, complexity of answering exhaustive
rooted CCQs. For both situations, we use the next lemma, implicit in Bienvenu
et al. [2013], constraining the possible images of matches in CK:

Lemma 27. For every DL-Litecore TBox T and CCQ q, we can construct in
polynomial time a set of words Γq,T such that for every KB K = (T ,A), match π
of q in CK, and variable v of q: π(v) = a · w for some a ∈ Ind(A) and w ∈ Γq,T .

150 Q. Manière

4. Rooted CCQs

4.5.2 DL-Litecore and combined complexity

In this section, we prove that exhaustive rooted CCQ answering over DL-Litecore
KBs is PP-complete w.r.t. combined complexity, and hence in PSPACE. We recall
that the class PP contains all decision problems for which there exists a non-
deterministic Turing machine (TM) such that, when the input is a ‘yes’ instance,
then at least half of the computation paths accept, while on ‘no’ instances, less
than half of the computation paths accept.

Theorem 34. Exhaustive rooted CCQ answering over DL-Litecore KBs is in PP
w.r.t. combined complexity.

Proof. We describe the TM used for PP membership, which takes as input a
DL-Litecore KB K = (T ,A), an exhaustive rooted CCQ q, and candidate integer
m.
Phase 1 The TM deterministically constructs the set Γq,T of words from Lemma 27.

Phase 2 The TM guesses a mapping π of the variables in q to elements from
{a · w | a ∈ Ind(A), w ∈ Γq,T }. It then compares m with the number C = |Γq,T ||q|
of possible mappings and proceeds accordingly:

- if m ≥ C
2
+ 1, the TM guesses an integer i with 0 ≤ i ≤ 2m− 3 and accepts iff π

is a c-match of q and i < C;

- if m < C
2
+1, the TM guesses an integer i with 0 ≤ i ≤ 2C − 2m+1 and accepts

iff π is c-match for q or i < C − 2m+ 2.

Let us denote qCK the number of matches for q in CK. Due to Theorem 33 and
Lemma 27, an input is a ‘yes’ instance iff qCK ≥ m. To finish the proof of PP
membership, we need to examine the number of accepting computation paths for
the described TM and show that when qCK ≥ m, at least half of the computation
paths accept, and when qCK < m, less than half of the computation paths accept.
Let us consider the two cases from Phase 2:

- If m ⩾ C
2
+ 1, then the number of accepting computation paths is qCK × C,

corresponding to cases where the TM guesses a mapping that is a c-match,
then guess a number 0 ≤ i < C. The total number of computation paths is
C × (2m− 2), corresponding to a guess of one of the C mappings, then the
guess of an integer 0 ≤ i ≤ 2m− 3.

- If m < C
2
+ 1, then the number of accepting computation paths is

qCK × (2C − 2m+ 2) + (C − qCK)× (C − 2m+ 2) = C(C − 2m+ qCK + 2),

Counting Queries in Ontology-Based Data Access 151

4.5. Refinements within DL-Lite

corresponding to the sum of the number of cases where we guess a c-match
followed by an integer 0 ≤ i ≤ 2C − 2m + 1 and the number of cases
where we guess a mapping that is not a c-match followed by an integer
i with 0 ≤ i < C − 2m + 2. The total number of computation paths is
C × (2C − 2m + 2) (guess one of the C mappings, then guess an integer
0 ≤ i ≤ 2C − 2m+ 1).

In both cases, it is easily verified that:

qCK ≥ m⇐⇒ #accepting computation paths

#possible computation paths
>

1

2
.

(Note that in the first case, we always have m ≥ 2, so the value 2m − 2 in the
denominator is positive, while in the second case, C ≥ 1 implies that the value
(2C − 2m+ 2) in the denominator is positive.)

The lower bound is obtained by a reduction from the following PP-complete
problem [Bailey et al., 2007]: given a propositional formula ψ in CNF and number
n, decide whether ψ has at least n satisfying assignments.

Theorem 35. Exhaustive rooted CCQ answering over DL-Litepos KBs is PP-hard
w.r.t. combined complexity.

Proof. Consider an instance of the PP-complete problem mentioned above, given
by the formula ψ := ∃u

∧l
k=1 ξk (with ξk is a 3-clause) and number N . We consider

the KB Kψ = (∅,Aψ), which has an empty TBox, and whose ABox Aψ contains
the following assertions:

- Clausek(a, ξ
p
k) for each clause ξk and each p ∈ {1, ...7}, with each ξpk repre-

senting one of the 7 satisfying assignments for the clause ξk;

- Asn1(ξ
p
k , ξ

p
k(ω

1
k)), Asn2(ξ

p
k , ξ

p
k(ω

2
k)) and Asn3(ξ

p
k , ξ

p
k(ω

3
k)) for each p = 1, ...7

and each clause ξk, where ξpk(ω
i
k) is the truth value (true or false) assigned by

ξpk to the ith variable occurring in the kth clause.

As for the query, we consider the following exhaustive rooted CCQ (an example
is depicted in Figure 4.13):

qψ := ∃zξ1 . . . ∃zξl ∃zu1 . . . ∃zun
l∧

k=1

(
Clausek(a, zξk) ∧

3∧
i=1

(
Asni(zξk , zωik)

))

To complete the proof, we establish the following claim:

[N,+∞] is a certain answer to qψ over Kψ iff ψ has at least N satisfying
assignments.

152 Q. Manière

4. Rooted CCQs

•
a

zξ1 zξ2

zu1 zu2 zu3 zu4

Clause
1 Cl

au
se 2

A
sn

1

A
sn

2

As
n3 Asn

1

A
sn

2

A
sn

3

Figure 4.13: The query qψ with ψ = (u1 ∨ ¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3 ∨ u4).

(⇒) Assume (∅, [N,+∞]) ∈ q
Kψ
ψ . This implies in particular that there are N

c-matches for qψ in CKψ . Since the TBox is empty, the domain of CKψ is Ind(Aψ),
and CKψ makes true precisely the assertions in Aψ. By examining qψ and Aψ, we
see that each of the matches of qψ in CKψ maps each of the variables zui to either
true or false. We can therefore associate with each match π the following truth
assignment for the variables u1, . . . , un: τπ(ui) = π(zui). By further examining the
definition of the individuals ξpk and the roles Asn1,Asn2,Asn3, it is easy to verify
that each τπ is a satisfying assignment for ψ. Moreover, since we know we have
N such assignments, it only remains to show that each match π yields a distinct
assignment τπ. To see why this is the case, observe that once we know the images
of all of the variables zui , there is a unique way of mapping the variables zξp . It
follows that ψ has at least N satisfying assignments.

(⇐) Assume ψ has at least N satisfying assignments. Therefore, we have τ1, . . . τN
distinct assignments for u1, . . . un satisfying ψ. This ensures that, if we define
πτm(zui) = τm(ui), we can always extend the mapping πτm(zui) into a match for
qψ, yielding N distinct matches. This holds in any model since we only need the
‘ABox part’ of the model, hence [N,+∞] is a certain answer to qψ over Kψ.

4.5.3 DL-Litecore and data complexity

We now turn to the data complexity of answering exhaustive rooted CCQs over
DL-Litepos ontologies. With Theorem 33 and Lemma 27 in hand, we prove that
this problem is TC0-complete. We recall that TC0 is a circuit complexity class
defined similarly to AC0 but additionally allowing threshold gates. It is known that
AC0 ⊊ TC0 ⊆ NC1 ⊆ LogSpace ⊆ PTime.

Counting Queries in Ontology-Based Data Access 153

4.5. Refinements within DL-Lite

Theorem 36. Exhaustive rooted CCQ answering in DL-Litecore is in TC0 w.r.t.
data complexity.

Proof. We need a family of circuits in order to be able to handle ABoxes of different
sizes. More precisely, we will create one circuit for each possible number ℓ of
individual names. We can assume w.l.o.g. that the same set of individuals, denoted
Indℓ, is used for all of the ABoxes having ℓ individuals. Let us now explain how to
represent an input (A∗, a∗,m∗) to the circuit that handles ℓ-individual ABoxes.

- Each atomic role P appearing in T and/or q is represented by input gates
?P(a,b)∈A? for a, b ∈ Indℓ. The gate ?P(a,b)∈A? is set to 1 iff P(a, b) ∈ A∗.

- Each atomic concept A appearing in T and/or q is represented by input gates
?A(a)∈A? for a ∈ Indℓ. The gate ?A(a)∈A? is set to 1 iff A(a) ∈ A∗.

- The tuple a∗ is represented by input gates ?ak=a for 1 ≤ k ≤ |x| and a ∈ Indℓ.
The gate is set to 1 iff a∗

k = a.

- The integer m∗ is represented in binary by input gates ?bk=1 for each 0 ≤
k < log2(|Ind(A∗)|+ |T |)|q|). The gate ?bk=1 is set to 1 iff the kth bit of m∗ is
1 (with 0th-bit being the least significant bit).

Regarding the last point, we use the observation from Kostylev and Reutter [2015]
that if (a∗, [m∗,+∞]) ∈ q(T ,A

∗), then m∗ cannot exceed (|Ind(A∗)| + |T |)|q| =
(|Indℓ| + |T |)|q|. This is a direct consequence of the fact that every satisfiable
DL-LiteR KB K = (T ,A) has a model with at most |Ind(A)|+ |T | elements.

We now describe the other parts of the circuit. We introduce, for each relevant
positive concept C (i.e., atomic concept or existential concept ∃R that uses concept
and role names from T and/or q) and each individual name a ∈ Indℓ, a disjunctive
gate ∨K|=C(a)? taking as inputs:

- ?A(a)∈A? for each atomic concept A such that T |= A ⊑ C.

- ?P(a,b)∈A? for all b ∈ Ind(A) such that T |= ∃P ⊑ C.

- ?P(b,a)∈A? for all b ∈ Ind(A) such that T |= ∃P− ⊑ C.

The preceding gates determine the ABox part of the canonical model. We next
need to decide the existence of each element of the form aw, where a ∈ Ind(A) and
w ∈ Γq,T \ ε (by Lemma 27, these are the only anonymous elements that can occur
in a match for q). For each such aw, we denote by Rw the first role name of w and
introduce a conjunctive gate ∧aw∈∆CK? which takes as input:

- The negation ¬∀b∈Ind(A) ¬R(a,b)? of a disjunctive gate ∨∃b∈Ind(A) R(a,b)? taking
as inputs the gates:

154 Q. Manière

4. Rooted CCQs

- ?P(a,b) for each b ∈ Indℓ, if R = P ∈ NR.

- ?P(b,a) for each b ∈ Indℓ if R = P− with P ∈ NR.

which verifies that there is not already a Rw-successor to a.

- The gate ∨K|=∃Rw(a)? that checks that a witnessing Rw-successor is needed.

The circuit next determines for each mapping π : x ∪ z 7→ {aw|a ∈ Indℓ, w ∈
Γq,T }, whether π is a match for q(a∗). Notice that, regardless of the input ABox,
we can restrict to a set of relevant mappings by keeping only those which map
the answer variables x to individuals from Indℓ and which map variables v1, v2
occurring in a role atom R(v1, v2) from q onto either:

- a pair of individual names, or

- a pair w1, w2 such that w2 = w1R or w1 = R−w2.

Similarly, we can restrict the set of relevant mappings by keeping only those which
map variable v occuring in a concept atom A(v) from q onto either an individual
name, or an element awR, where K |= ∃R− ⊑ A. Clearly, any mapping π that does
not respect these conditions cannot be a match, due to the definition of RCK . This
restriction simplifies the process of checking if a mapping is a match for q(a∗): we
are only left with verifying the existence of the anonymous elements in its image,
as well as the validity of the atoms mapped onto the ABox part of the canonical
model.

For each relevant mapping π, we introduce a conjunctive gate ∧π match ? taking
as inputs all gates:

- ?ak=π(xk)? for each 1 ≤ k ≤ |x| (to check x is mapped on a∗).

- ∧π(z)∈∆CK? for each z ∈ z such that π(z) /∈ Indℓ (to check for existence of π(z)
under input A∗).

- ?R(π(v1),π(v2))∈A? for each v1, v2 ∈ x∪z such that R(v1, v2) ∈ q and π(v1), π(v2) ∈
Ind(A) (to check the validity of the mapping for pairs of variables mapped
on individual names).

- ∨K|=A(π(v))? for each v ∈ x∪z such that A(v) ∈ q and π(v) ∈ Ind(A) (to check
the validity of the mapping for variables mapped on individual names).

We will next use threshold gates in order to compute the total number of
matches. Introduce, for each k = 0, . . . , (Indℓ × Γq,T)

|q|, a threshold gate T(k)
q
CK
a ≥k?

taking as input every ∧π match ?. The gate T(k)
q
CK
a ≥k?

returns 1 iff at least k of its

Counting Queries in Ontology-Based Data Access 155

4.5. Refinements within DL-Lite

inputs are 1. By construction, the latter holds iff there are at least k matches for
q(a∗).

In parallel, we introduce a conjunctive gate ∧m=k? for each k = 0, . . . , (Indℓ ×
Γq,T)

|q| taking as inputs:

- the input gates ?bj=1? such that the jth bit of the binary encoding of k is 1

- the negation of each input gate ?bj=1? such that the jth bit of the binary
encoding of k is 0

The gate ∧m=k? returns 1 iff m∗ = k.
We combine the preceding two types of gates to compare m∗ and the computed

number of matches. For each k = 0, . . . , (Indℓ× Γq,T)
|q|, we introduce a conjunctive

gate ∧
q
CK
a ≥m?

taking as input T(k)
q
CK
a ≥k?

and ∧m=k?.
Finally, our output gate is a disjunctive gate ∨output taking as inputs all gates

∧
q
CK
a ≥m?

. By construction, this gate outputs 1 iff there are at least m∗ matches of
q(a∗) in the canonical model of the considered KB.

The depth of the circuit is 7, hence constant, showing membership in TC0.

A matching lower bound can be shown by a simple reduction (using an empty
TBox) from the TC0-complete problem that asks, given a binary string s and
number k, whether the number of 1-bits in s exceeds k [Aehlig et al., 2007].

Theorem 37. Exhaustive rooted CCQ answering in DL-Litepos is TC0-hard w.r.t.
data complexity.

Proof. The reduction from the NumOnes problem works as follows: given an
instance (s, k), we create an ABox As := {R(a, sk) | sk ∈ s ∧ sk = 1}, along with
the empty TBox T = ∅ and exhaustive rooted CCQ q := ∃z R(a, z). It is clear
that [k,+∞] is a certain answer of q over (T ,As) iff (s, k) ∈ NumOnes. It can
be verified that this simple reduction can be implemented by AC0 circuits (so
constitutes an AC0-reduction, as required).

156 Q. Manière

5
Cardinality Queries

In this chapter, we focus on Boolean atomic counting queries of the form ∃z A(z)
and ∃z1 ∃z2 R(z1, z2). We shall refer to such restricted CCQs as cardinality queries
as they correspond to the natural task of determining (bounds on) the cardinality
of a given concept or role name.

The data complexity of answering such basic counting queries has been briefly
explored in Calvanese et al. [2020a], remaining completely open for DL-Litecore
ontologies, whilst for DL-LiteHcore, the problem is known to be P-hard and in coNP.
The main results of our investigation of data complexity are displayed Table 5.1.
Due to our results for general CCQs from Chapter 3, membership in coNP holds for
the more expressive DL ALCHI and all of its sublogics. Moreover, we shall prove
corresponding lower bounds for concept cardinality queries evaluated over EL or
DL-LiteHcore ontologies. We show that when ontologies are expressed in DL-Litecore,
cardinality query answering is tractable in data complexity and enjoys the lowest
possible complexity (TC0-complete). For cardinality queries based upon a concept
atom, TC0 membership holds even for the fragment of DL-LiteHcore obtained by
disallowing negative role inclusions. By contrast, for role cardinality queries, we
show that coNP-hard situations arise in DL-LiteHpos, which allows only positive
concept and role inclusions.

In fact, we obtain a complete data complexity classification for DL-LiteHpos, show-
ing that every ontology-mediated query is either TC0-complete, coNP-complete, or
is in P and logspace-equivalent to the complement of Perfect Matching (whose
precise complexity is a longstanding open problem). The preceding classification
does not extend to DL-LiteHcore: we identify new sources of coNP-hardness and
further exhibit L-complete cases. We find it intriguing that such complex behaviour
arises in what appears at first glance to be a simple OMQA setting. Moreover,
in all of the tractable cases we identify, the canonical model may not yield the

157

Concept cardinality Role cardinality

DL-Litepos,DL-Litecore TC0-c TC0-c
DL-LiteHpos TC0-c coNP-c
DL-LiteHcore, EL,ALCHI coNP-c coNP-c

Table 5.1: Cardinality query answering: worst-case data complexity.

minimum cardinality, and query answering involves solving non-trivial optimization
problems. This leads us to devise an entirely new approach based upon exploring
a space of strategies to find the optimal way of merging witnesses for existential
axioms.

In addition to data complexity, we also obtain a complete picture of the combined
complexity of answering cardinality queries in ALCHI and its various sublogics.
The combined complexity ranges from NL to coNP in DL-Lite logics and from
EXP to coNEXP for EL and its extensions. We achieve these results using a
variety of techniques: refinements of our approach for general CCQs, adaptations of
existing constructions, and further reductions involving closed predicates. Figure 5.1
summarizes these latter complexity results for cardinality queries.

DL-Litepos
NL-c

DL-LiteHpos
NL-c / coNP-c

DL-Litecore
coNP-c

DL-LiteHcore
coNP-c

ELI
EXP-c

ELI⊥
coNEXP-c

ELHI
EXP-c

ELHI⊥
coNEXP-c

EL
EXP-c

EL⊥
EXP-c

ELH
EXP-c

ELH⊥
EXP-c

ALC
coNEXP-c

ALCI
coNEXP-c

ALCH
coNEXP-c

ALCHI
coNEXP-c

Figure 5.1: Concept / Role cardinality answering: worst-case combined complexity.

158 Q. Manière

5. Cardinality Queries

Organization of Chapter 5
5.1 Preliminaries . 159
5.2 Combined complexity and closed predicates 160

5.2.1 Extensions of EL . 160
5.2.2 Extensions of DL-Litepos . 168

5.3 Hard cases in data complexity . 172
5.3.1 A reduction from 3-Col . 172
5.3.2 A reduction from 3-Sat . 173
5.3.3 A reduction from Set Cover 175

5.4 Tractable cases in data complexity 176
5.4.1 Role cardinality over DL-Litecore 177
5.4.2 Construction of the TC0 circuits 188
5.4.3 Concept cardinality over DL-LiteHcore without role inclusions . 194

5.5 Role cardinality over DL-LiteHpos . 199
5.5.1 coNP-hardness in presence of propagation 200
5.5.2 Equivalence with Perfect Matching 203
5.5.3 TC0 membership in the remaining cases 211
5.5.4 Towards DL-LiteHcore . 212

5.1 Preliminaries
As mentioned in the introduction, this chapter will focus on Boolean atomic
counting queries, which correspond to determining bounds on the cardinality of a
given concept or role name. Such queries come in two flavours, depending upon
whether the query predicate is a concept or a role name.

Definition 51. Concept cardinality queries are Boolean CCQs of the form ∃z A(z)
with A an atomic concept from NC, while role cardinality queries have the form
∃z1 ∃z2 R(z1, z2) with R an atomic role from NR. The query predicate refers to
this concept name A or role name R occurring in the cardinality query of interest.
We denote qP the cardinality query whose query predicate is P.

The next theorem illustrates how to reduce one setting to the other. Despite the
rich concept constructors allowed in ALCHI compared to those allowed for roles,
our result proves that concept cardinality queries can be reduced to role cardinality
queries. While most of our results show no difference between the two settings in
term of complexity, a notable exception arises with DL-LiteHpos ontologies, for which
all concept cardinality queries can be answered in TC0 (resp. in NL) while there
exists coNP-hard (resp. coNP-hard) role cardinality queries w.r.t. data complexity
(resp. combined complexity).

Counting Queries in Ontology-Based Data Access 159

5.2. Combined complexity and closed predicates

Theorem 38. Let L be a sublogic of ALCHI that can express A ⊑ ∃P.⊤ (A ∈ NC,
P ∈ NR). Then concept cardinality query answering over L KBs can be polynomially
reduced to role cardinality query answering over L KBs.

Proof. Consider a concept cardinality query qA = ∃z A(z) and a KB K = (T ,A).
We pick a fresh role name P ̸∈ sig(K), and consider the role cardinality query
qP = ∃z1 ∃z2 P(z1, z2) and modified TBox T ′ := T ∪ {A ⊑ ∃P.⊤}.

Any model I of K can be extended to a model I ′ of K′ = (T ′,A) by setting
PI′

:= {(e, e) | e ∈ AI}. Indeed, this ensures satisfaction of the additional axiom
A ⊑ ∃P.⊤. Moreover, as no new domain elements were introduced, axioms ⊤ ⊑ B
from T remain satisfied, and all other axioms are not affected since P /∈ sig(T).

Notice that qA has exactly as many matches in I as qP has in I ′, hence an
interval [m,+∞] is a certain answer to qA over K iff it is a certain answer to qP
over K′.

Due to our results for general CCQs investigated in Chapter 3, we know that
cardinality query answering can be performed in 2EXP. A closer look at the size of
optimal models exhibited in Section 3.4, coupled with the trivial bound on the size
of cardinality queries, containing at most one atom with two variables, allows us to
refine this upper bound as follows.

Theorem 39. Role cardinality query answering in ALCHI is in coNEXP w.r.t.
combined complexity.

Proof. Theorem 8 from Chapter 3 proves that the minimal number of matches is
reached with a model of exponential size.

In the next section, we prove that this coNEXP upper bound is optimal for
extensions of either ELI⊥ or ALC, but can be refined via connections to closed
predicates for some of the other considered sublogics of ALCHI.

5.2 Combined complexity and closed predicates

5.2.1 Extensions of EL
The next two results, together with Theorem 38, establish that cardinality query
answering is coNEXP-complete w.r.t. combined complexity in extensions of ELI⊥
and ALC. The proof relies upon the existence of KBs that only admit exponentially
large models. These are easily obtained through a combination of atomic concepts,
disjointness axioms, and a feature allowing to propagate these atomic concepts
forward along roles. This is performed by existential-restrictions involving inverse
roles in ELI⊥ and by universal restrictions in ALC.

160 Q. Manière

5. Cardinality Queries

Theorem 40. Concept cardinality query answering in ELI⊥ and in ALC is coNEXP-
hard w.r.t. combined complexity.

Proof. This proof focuses on the case of ELI⊥ and involves inverse roles only in
axioms of the form ∃R−.A ⊑ B. Therefore, the proof for ALC can be obtained by
replacing each such ELI⊥ axiom ∃R−.A ⊑ B by the ALC axiom A ⊑ ∀R.B. In
particular, one doesn’t need the full expressive power of ALC.

The proof proceeds by reduction from the complement of the NEXP-complete
Succinct-3-Col problem. An instance of Succinct-3-Col consists of a Boolean
circuit C with 2n input gates. The graph GC encoded by C has 2n vertices, identified
by binary encodings on n bits. Two vertices u and v, with respective binary
encodings u1 . . . un and v1 . . . vn, are adjacent in GC iff C returns True when given as
input u1 . . . un on its first n gates and v1 . . . vn on the second half. The problem of
deciding if GC is 3-colorable has been proven to be NEXP-complete in Papadimitriou
and Yannakakis [1986].

Let C be an instance of Succinct-3-Col having 2n input gates. We start
by generating an exponential tree, henceforth referred to as the reference tree, to
assign a color to each vertex, that is a binary identifier (k ranges from 1 to n):

U0(a)
Uk−1 ⊑ ∃R.A0

k

Uk−1 ⊑ ∃R.A1
k

A0
k ⊑ Uk

A1
k ⊑ Uk

∃R−.A0
k ⊑ A0

k

∃R−.A1
k ⊑ A1

k

A0
k ⊓ A1

k ⊑ ⊥

At the end of a branch, we ask for a color to be chosen among three provided
options. The color can actually be chosen elsewhere, but at the cost of a new
c-match for our query qGoal.

Un ⊑ ∃HasCol.Color Color ⊑ Goal Color(c1) Color(c2) Color(c3)

We now generate all possible pairs of vertex identifiers, starting from the first
identifier (k ranges from 1 to n):

V0(b)
Vk−1 ⊑ ∃R.B0

k

Vk−1 ⊑ ∃R.B1
k

B0
k ⊑ Vk

B1
k ⊑ Vk

∃R−.B0
k ⊑ B0

k

∃R−.B1
k ⊑ B1

k

B0
k ⊓ B1

k ⊑ ⊥

and followed by the second identifier (k ranges from 1 to n):

Vn ⊑W0

Wk−1 ⊑ ∃R.C0
k

Wk−1 ⊑ ∃R.C1
k

C0
k ⊑Wk

C1
k ⊑Wk

∃R−.C0
k ⊑ C0

k

∃R−.C1
k ⊑ C1

k

C0
k ⊓ C1

k ⊑ ⊥

At the end of a branch, we ask for each node to be connected to the two corre-
sponding nodes from the reference tree.

Wn ⊑ ∃Fst.Goal

Wn ⊑ ∃Snd.Goal

∃Fst−.B0
k ⊑ A0

k

∃Fst−.B1
k ⊑ A1

k

∃Snd−.C0
k ⊑ A0

k

∃Snd−.C1
k ⊑ A1

k

Un ⊑ Goal

Un ⊓ Color ⊑ ⊥

Counting Queries in Ontology-Based Data Access 161

5.2. Combined complexity and closed predicates

Notice axioms Un ⊑ Goal and Un ⊓ Color ⊑ ⊥ act as an incentive to reuse elements
from the reference tree, otherwise it would come at the cost of a new c-match
for our query qGoal. We also note that, at this point, there are always at least
2n + 3 matches in every model given by the three possible colors c1, c2, c3 and the
2n instances of Un, which must all be disjoint. Finally, we import the chosen colors
from the reference tree with the following assertions and axioms:

Col1(c1)

Col2(c2)

Col3(c3)

∃Fst.(∃HasCol.Col1) ⊑ Colfst1
∃Fst.(∃HasCol.Col2) ⊑ Colfst2
∃Fst.(∃HasCol.Col2) ⊑ Colfst3

∃Snd.(∃HasCol.Col1) ⊑ Colsnd1

∃Snd.(∃HasCol.Col2) ⊑ Colsnd2

∃Snd.(∃HasCol.Col3) ⊑ Colsnd3

It remains to evaluate the circuit to test adjacency for each pair of vertex
identifiers. This is handled by the TBox in the following fashion. For the first n
input gates gfstk introduce the axioms:

B0
k ⊑ IsFalsegfstk

B1
k ⊑ IsTruegfstk

(k = 1, . . . , n)

and for the remaining n input gates gsndk introduce the axioms:

C0
k ⊑ IsFalsegsndk

C1
k ⊑ IsTruegsndk

(k = 1, . . . , n).

For each negation gate g with parent gate g0, we introduce the two axioms:

IsFalseg0 ⊑ IsTrueg IsTrueg0 ⊑ IsFalseg.

For each conjunctive gate g with parent gates g1 and g2, introduce the three axioms:

IsTrueg1 ⊓ IsTrueg2 ⊑ IsTrueg
IsFalseg1 ⊑ IsFalseg

IsFalseg2 ⊑ IsFalseg.

For each disjunctive gate g with parent gates g1 and g2, introduce the three axioms:

IsTrueg1 ⊑ IsTrueg

IsTrueg2 ⊑ IsTrueg
IsFalseg1 ⊓ IsFalseg2 ⊑ IsFalseg.

Finally, to detect monochromatic edges, consider the three axioms where gout
denotes the output gate of C:

IsTruegout ⊓ Colfst1 ⊓ Colsnd1 ⊑ Goal

IsTruegout ⊓ Colfst2 ⊓ Colsnd2 ⊑ Goal

IsTruegout ⊓ Colfst3 ⊓ Colsnd3 ⊑ Goal

To ensure this case indeed creates a new match for qGoal we make sure that it
cannot be an already existing match with the two negative concept inclusions:

Wn ⊓ Color ⊑ ⊥ Un ⊓Wn ⊑ ⊥

162 Q. Manière

5. Cardinality Queries

Claim: C /∈ Succinct-3-Col iff 2n + 4 is a certain answer for qGoal over K.

Note: Both the constructed ELI⊥ and ALC KBs admit a canonical model, hence
we allow ourselves to refer to the canonical model in what follows. For readability,
we omit the concepts associated with the evaluation of the circuit when considering
elements of CK.

(=⇒). Assume C /∈ Succinct-3-Col and consider a model I of K. There exists
a homomorphism from the canonical model of K to this I, say we choose one such
f : CK → I.

If any of the f(a · · ·R.{Un,Goal,Aa1
1 , . . .A

an
n } · HasCol.{Color,Goal}) does not

belong to {c1, c2, c3}, then it provides a new c-match for qGoal and we are done.
Otherwise, denote by τ the coloring induced by the reference tree in I, defined

by setting:

τ(a1 . . . an) := f(a · · ·R.{Un,Goal,Aa1
1 , . . .A

an
n } · HasCol.{Color,Goal}).

Since C /∈ Succinct-3-Col and τ only uses the 3 colors c1, c2 and c3, there
must exist a monochromatic edge {u, v}. Denote by b1, . . . , bn the identifier of
u, by c1, . . . , cn the identifier of v, and by k the number of the shared color ck.
Since u and v are adjacent, the concept IsTruegout is satisfied on the element
e := f(b · · ·R.{Wn,B

b1
1 , . . .B

bn
n ,C

c1
1 , . . .C

cn
n }) of I.

If f(b · · ·R.{Wn,B
b1
1 , . . .B

bn
n ,C

c1
1 , . . .C

cn
n }·Fst.{Un,Goal,Ab1

1 , . . . ,A
bn
n }) (notice

the first vertex identifier is converted into an identifier in the reference tree) is not
equal to f(a · · ·R.{Un,Goal,Ab1

1 , . . .A
bn
n }) being the corresponding element from

the reference tree, then it yields a new c-match and we are done.
Otherwise, axiom ∃Fst.(∃HasCol.Colk) ⊑ Colfstk ensures Cfst

k holds on e. Simi-
larly, f(b · · ·R.{Wn,B

b1
1 , . . .B

bn
n ,C

c1
1 , . . .C

cn
n } · Snd.{Un,Goal,Ac1

1 , . . . ,A
cn
n }) either

yields a new c-match, in which case we are done, or Csnd
k holds on e. In the latter

case, axiom IsTruegout ⊓ Colfstk ⊓ Colsndk ⊑ Goal triggers a new c-match on e.
In all cases, we exhibit an additional c-match, which proves 2n + 4 is a certain

answer for qGoal over K.

(⇐=). Assume C ∈ Succinct-3-Col and pick a 3-coloring τ of the underlying
graph of C, using as colors c1, c2 and c3. From the canonical model of K, iden-
tify each element of the form a · · ·R.{Un,Goal,Aa1

1 , . . .A
an
n } ·HasCol.{Color,Goal}

with the individual τ(a1 . . . an). Additionally, identify each element of the form
b · · ·R.{Wn,B

b1
1 , . . .B

bn
n ,C

c1
1 , . . .C

cn
n } · Fst.{Un,Goal,Ab1

1 , . . . ,A
bn
n } with the ele-

ment a · · ·R.{Un,Goal,Ab1
1 , . . .A

bn
n }, and similarly identify each element of the

form b · · ·R.{Wn,B
b1
1 , . . .B

bn
n ,C

c1
1 , . . .C

cn
n } · Snd.{Un,Goal,Ac1

1 , . . . ,A
cn
n } with the

element a · · ·R.{Un,Goal,Ac1
1 , . . .A

cn
n }.

Counting Queries in Ontology-Based Data Access 163

5.2. Combined complexity and closed predicates

Saturate the obtained interpretation to obtain a model Iτ of K. Because τ is a
3-coloring, there is no monochromatic edge, hence it can be verified that Iτ has
exactly the 2n + 3 original c-matches. This provides a model of K with less than
2n + 4 c-matches for qGoal, ensuring 2n + 4 is not a certain answer for qGoal over K.

As already mentioned, the latter coNEXP-hardness proof relies on KBs that
only admit exponentially large models. We now turn to ALCHI KBs admitting
polysize models. The key observation is that, for logics with polysize models and
single-atom queries, the optimal number of matches is bounded polynomially in
the size of the KB. We can thus iterate over all polynomial-sized ABoxes that
could represent the restriction of an optimal model to the ABox and elements in
matches. We test whether such an ABox extends to a model without new matches
by performing a satisfiability check, taking the query role as closed predicate.
This gives a deterministic single-exponential time procedure, since satisfiability of
ALCHI KBs with closed predicates is in EXP, as proven in Ngo et al. [2016].

Theorem 41. Let L be a subclass of ALCHI KBs for which every satisfiable KB
admits a polynomial-sized model. Then role cardinality query answering over L
KBs is in EXP.

Proof. Let L be a sublogic of ALCHI for which every satisfiable KB admits a
polynomial-sized model. Then proceeding similarly to Lemma 3, we can exhibit a
polynomial p such that for every satisfiable KB K = (T ,A) and cardinality query
q, there exists a model of K having at most p(|K|) matches to q.

With this in mind, let us fix a satisfiable KB K = (T ,A) and a role cardinality
query qGoal = ∃z1 ∃z2 Goal(z1, z2), and let nK = p(|K|). Consider a set of individual
names D ⊆ NI of size 2nK + |Ind(A)| and containing Ind(A). For each subset
S ⊆ D×D, we check whether the following KB with closed predicates is satisfiable
(note that Goal is the only closed predicate):

KS := (T , {Goal},A ∪ {Goal(a, b) | (a, b) ∈ S})

If such a KB is satisfiable with Goal a closed predicate, it provides a model of K
with precisely |S| matches. Conversely, if there exists a model I of K with n ≤ nK
matches, there exists a subset S ⊆ D×D such that KS is satisfiable: pick S as the
pairs (φ(a), φ(b)) ∈ GoalI , where φ is an injection from the subset of ∆I appearing
in matches of qGoal to D which is the identity on Ind(A).

By Theorem 7 of Ngo et al. [2016], this check can be performed in exponential
time in KS, which is of polynomial size w.r.t.K.

Corollary 6. Role cardinality query answering in ELH⊥ is in EXP w.r.t. combined
complexity.

164 Q. Manière

5. Cardinality Queries

Proof. Let K be a satisfiable ELH⊥ KB, which we may suppose w.l.o.g. to be in
normal form, and consider the following interpretation IK (a variation on the one
defined in Lutz et al. [2009] for ELH⊥

dr without negative role inclusions):

∆IK =Ind(A) ∪ {xR.B | A ⊑ ∃R.B ∈ T and T ̸|= B ⊑ ⊥}
AIK ={a | K |= A(a)} ∪ {xR.B | T |= B ⊑ A}
PIK ={(a, b) | K |= P(a, b)} ∪ {(a, xR.B) | K |= ∃R.B(a), T |= R ⊑ P}∪

{(xR1.B1 , xR2.B2) | T |= B1 ⊑ ∃R2.B2, T |= R2 ⊑ P}

Note that |∆IK| ≤ |K|, so we only need to show that IK is a model of K. It is
not hard to see that IK satisfies ABox assertions of A and all concept axioms
and positive role inclusions from T . Suppose that T contains a negative role
inclusion T1 ⊓ T2 ⊑ ⊥ and there is a pair (u, v) ∈ T1

IK ∩ T2
IK . We cannot have

u, v ∈ Ind(A), since this would imply that K is unsatisfiable. If (u, v) = (a, xR.B),
then K |= ∃R.B(a), T |= R ⊑ T1, and T |= R ⊑ T2, which again means K
is unsatisfiable. Finally suppose that we have (u, v) = (xR1.B1 , xR2.B2). Then
T |= B1 ⊑ ∃R2.B2, T |= T |= R2 ⊑ T1, and T |= R2 ⊑ T2. But that would mean
that T |= B1 ⊑ ⊥, contradicting the definition of ∆IK . We thus conclude that IK
is indeed a model of K.

Corollary 7. Role cardinality query answering in ELHI is in EXP w.r.t. combined
complexity.

Proof. Existence of polynomial-sized models is trivial due to the absence of negative
inclusions. For example, extending A with every possible fact constructed from
Ind(A) and sig(K) yields a model of K = (T ,A).

We conclude this subsection by providing matching lower bounds for concept
cardinality queries in EL, which completes the complexity landscape for cardinality
queries answering over ALCHI KBs extending EL.

Theorem 42. Concept cardinality query answering in EL is EXP-hard w.r.t. com-
bined complexity.

Proof. The proof proceeds by reduction from the problem of deciding if an EL KB
with closed predicates is satisfiable, known to be EXP-hard from Ngo et al. [2016].
As noticed by the authors in the conclusion of Ngo et al. [2016], we point out that
their reduction (Propositions 4 and 5) produces a KB (T ,Σ,A) such that the set
of closed predicates Σ only contains concept names. Therefore, we assume w.l.o.g.
that our starting KB K := (T ,Σ,A) also satisfies this property. Restricting the
construction of ALCHI normal form (see Section 2.1.3) to EL axioms, we reduce

Counting Queries in Ontology-Based Data Access 165

5.2. Combined complexity and closed predicates

to the case in which every concept inclusion has one of the following restricted
shapes:

⊤ ⊑ A A ⊓ B ⊑ C A ⊑ ∃R.B ∃R.A ⊑ B with A,B,C ∈ NC,R ∈ NR.

It can be verified that such a normalization procedure doesn’t affect the satisfiability
w.r.t. the closed predicates.

We will need to consider two fresh new concept names Goal and Aux⊤, a fresh
new role name RB for each closed concept name B ∈ Σ, and a fresh individual aux.
The concept Goal will be our query predicate and aims to capture excessive uses
of the closed predicates.

To capture such uses on non-individual elements, we consider the axiom B ⊑
Goal for each B ∈ Σ. Therefore, we also consider the assertion Goal(a) for each a
such that there exists B(a) ∈ A with B ∈ Σ. To prevent such an assertion Goal(a)
from “hiding” the use of a by a closed concept B such that B(a) /∈ A, we introduce
the axiom ∃RB.B ⊑ Goal for each B ∈ Σ and the assertion RB(aux, a) for each
a ∈ Ind(A) and each B ∈ Σ such that B(a) /∈ A.

Adding such a new individual aux may cause axioms with shape ⊤ ⊑ A from
T to trigger on aux hence requiring further concepts to hold on aux. To prevent
this, we replace each axiom ⊤ ⊑ A from T by Aux⊤ ⊑ A, we also add the axiom
A ⊑ Aux⊤ for each A ∈ sig(T) and the assertion Aux⊤(a) for each a ∈ Ind(A).

To summarize, we define T ′ and A′ as follows:

T ′ := (T \ {⊤ ⊑ A | ⊤ ⊑ A ∈ T })
∪ {Aux⊤ ⊑ A | ⊤ ⊑ A ∈ T }
∪ {A ⊑ Aux⊤ | A ∈ sig(T)}
∪ {B ⊑ Goal | B ∈ Σ}
∪ {∃RB.B ⊑ Goal | B ∈ Σ}

A′ := A
∪{Aux(a) | a ∈ Ind(A)}
∪ {RB(aux, a) | B(a) /∈ A,B ∈ Σ}
∪ {Goal(a) | B(a) ∈ A,B ∈ Σ}

Finally, let n := |{Goal(a) | B(a) ∈ A,B ∈ Σ}| be the number the of ABox matches
for qGoal in (T ′,A′). To complete the proof, we establish the following claim.

(T ,Σ,A) is satisfiable iff n+ 1 is not a certain answer for qGoal over (T ′,A′).

(⇒). Assume (T ,Σ,A) is satisfiable and let I be one of its models. We build an
interpretation I ′ of (T ′,A′) with domain ∆I′

:= ∆I ∪ {aux} as follows:

AI′
:= AI (A ∈ sig(T))

GoalI
′

:= {Goal(a) | B(a) ∈ A,B ∈ Σ}
Aux⊤

I′
:= ∆I

PI′
:= PI (P ∈ sig(T))

RB
I′

:= {RB(aux, a) | B(a) /∈ A,B ∈ Σ}

166 Q. Manière

5. Cardinality Queries

Clearly, I ′ has exactly n matches for qGoal. We verify it is a model of (T ′,A′),
concluding this part of the proof as I ′ is a counter-model for n+1. All axioms from
T are trivially satisfied as interpretations of concept and roles names from sig(T)
are preserved (recall those with shape ⊤ ⊑ A have been removed!). Assertions in
A′ are also trivially satisfied, either by definition We check the other axioms in
turn:

Aux⊤ ⊑ A (⊤ ⊑ A ∈ T). Since I is a model of T , we obtain: Aux⊤
I′
= ∆I =

⊤I ⊆ AI = AI′ .

A ⊑ Aux⊤ (A ∈ sig(T)). Trivial: AI′
= AI ⊆ ∆I = Aux⊤

I′
.

B ⊑ Goal (B ∈ Σ). Let e ∈ BI′ . We have B ∈ Σ ⊆ sig(T), hence by definition
e ∈ BI . Since B ∈ Σ and I is a model of K, it follows that B(e) ∈ A.
Hence, by definition: e ∈ GoalI

′
.

∃RB.B ⊑ Goal (B ∈ Σ). Let e ∈ (∃RB.B)
I′ . We hence have an individual a ∈ BI′

such that B(a) /∈ A (from the definition of RB
I′

). From the definition
of BI′ , we obtain a ∈ BI , which implies, as I is a model of K, that
B(a) ∈ A. Contradiction, hence (∃RB.B)

I′
= ∅ and the axiom is

trivially satisfied.

(⇐). Assume n+ 1 is not a certain answer, that is, we have a counter-model I
(in which matches are exactly the n ABox matches). Consider the interpretation
I ′ obtained by restricting I to the domain ∆I′

:= (Aux⊤)
I .

Axioms from A are clearly satisfied in I ′ as A ⊆ A′. We verify that axioms
from T also hold:

⊤ ⊑ A. In particular Aux⊤ ⊑ A ∈ T ′. From I being a model of T ′, we
have Aux⊤

I ⊆ AI . Thus, AI′
= Aux⊤

I ∩ AI = AI , which yields:
⊤I′

= Aux⊤
I ⊆ AI = AI′ .

A ⊓ B ⊑ C. In particular A ⊓ B ⊑ C ∈ T ′. Using I ′ being a model of T ′, we obtain:
(A ∩ B)I

′
= AI ∩ BI ∩∆I′ ⊆ CI ∩∆I′

= CI′ .

∃R.A ⊑ B. In particular ∃R.A ⊑ B ∈ T ′. First notice that (∃R.A)I′ ⊆ (∃R.A)I
since RI′ ⊆ RI and AI′ ⊆ AI . Using I ′ being a model of T ′, we now
obtain: (∃R.A)I′ ⊆ (∃R.A)I ∩∆I′ ⊆ BI ∩∆I′

= BI′ .

A ⊑ ∃R.B. In particular, both A ⊑ ∃R.B and B ⊑ Aux⊤ are in T ′. Let e ∈ AI′ . In
particular, e ∈ AI . Since I is a model of T ′, we have some (e, e′) ∈ RI

with e′ ∈ BI . Still from I being a model of T ′, we also have e′ ∈ Aux⊤
I ,

and therefore b ∈ ∆I′ . Hence (e, e′) ∈ RI ∩ ∆I′ and e′ ∈ BI ∩ ∆I′ ,
yielding e ∈ (∃R.B)I′ .

Counting Queries in Ontology-Based Data Access 167

5.2. Combined complexity and closed predicates

We now verify that no closed concept has been violated, which concludes the
proof. Let e ∈ BI′ for some closed concept B ∈ Σ. In particular we have both
B ⊑ Goal and ∃RB.B ⊑ Goal in T ′. By definition of BI′ and from I being a model
of T ′, we obtain e ∈ BI ⊆ GoalI .

From I being a counter-model for n + 1, we know that GoalI = {Goal(a) |
B(a) ∈ A,B ∈ Σ}. In particular aux /∈ GoalI . But since I is a model of T ′, it
ensures that aux /∈ (∃RB.B)

I . Recall we have RB(aux, b) ∈ A′ for all individuals
b such that B(b) /∈ A, and therefore b /∈ BI for such individuals. It follows that
B(e) ∈ A.

5.2.2 Extensions of DL-Litepos

We now proceed to extensions of DL-Litepos. For DL-LiteHcore KBs, we proceed as
for the extensions of EL admitting polysize models and establish a connection to
closed predicates which allows to obtain coNP membership. One can indeed guess
a small countermodel to [m,+∞] being a certain answer, relying on the existence
of small models, atomicity of the query, and Theorem 3 of Ngo et al. [2016].

Theorem 43. Role cardinality query answering in DL-LiteHcore is in coNP w.r.t.
combined complexity.

Proof. Let qP be a role cardinality query. As DL-LiteHcore knowledge bases admit
models of polynomial size in combined complexity, and the query is atomic, there
are at most polynomially many guaranteed matches. To check if [m,+∞] is a
certain answer, we can proceed as follows:

- if m is too big with respect to the polynomial bound, we reject;

- otherwise, we guess an instance A′ containing A and additional matches (up
to m) for qP. We then check whether (A′, T , {P}) is a satisfiable knowledge
base with closed predicates. According to the proof of Theorem 3 of Ngo
et al. [2016], if this is the case, then there is a model of polynomial size.
We guess it, and this provides a counterexample to [m,+∞] being a certain
answer.

A matching coNP lower bound can easily be obtained for concept cardinality
queries as soon as concept disjointness is permitted, that is, for DL-Litecore KBs.
We point out that this holds even if the ABox is consists of a single fact.

Theorem 44. Concept cardinality query answering in DL-Litecore is coNP-hard
w.r.t. combined complexity.

168 Q. Manière

5. Cardinality Queries

Proof. Let G = (V , E) be an undirected graph, and consider

TG =
⋃
v∈V

{A ⊑ ∃V,∃V− ⊑ C} ∪
⋃

{v1,v2}∈E

{∃V−
1 ⊑ ¬∃V−

2 }.

It is easily verified that G ∈ 3-Col iff [4,+∞] /∈ qKG for the KB KG := (TG, {A(a)})
and query q = ∃zC(z).

More interestingly, complexity results for role and concept cardinality queries
differ when disallowing disjointness axioms but keeping role inclusions. While there
exist coNP-complete DL-LiteHpos KBs for role cardinality answering (see Theorem 50
in the next section, proving it already holds in data complexity), we obtain a NL
procedure for all DL-LiteHpos ontologies and all concept cardinality queries.

Theorem 45. Concept cardinality query answering in DL-LiteHpos is in NL w.r.t.
combined complexity.

Proof. Let qC = ∃z C(z) be a concept cardinality query. Starting from the canonical
model CK of a KB K = (T ,A), the minimal number of matches can easily be
computed.

- If there exists an individual a ∈ Ind(A) such that K |= C(a), then we can
collapse all anonymous elements onto one such individual (the choice doesn’t
matter), obtaining a model in which matches are exactly such individuals a,
which is clearly minimal (recall we make the UNA). We can check whether
K |= C(a) in NL, see e.g. Artale et al. [2009].

- Otherwise, if there exists an anonymous match in CK, then we collapse all
anonymous elements onto a chosen ABox individual, obtaining a model with
a single match for qC, which is clearly optimal. Existence of an anonymous
match can be checked in NL [Artale et al., 2009].

- Otherwise, there are no matches in CK, hence 0 is the minimal number of
matches.

Notice that we do not need to actually compute the model corresponding to the
optimal number of matches, and we only need to compare that number to the input
integer.

Relying on the same principle but employing a more sophisticated case analysis,
we obtain NL membership for role cardinality queries evaluated over DL-Litepos
ontologies.

Theorem 46. Role cardinality query answering in DL-Litepos is in NL w.r.t. combined
complexity.

Counting Queries in Ontology-Based Data Access 169

5.2. Combined complexity and closed predicates

Proof. Consider the role cardinality query ∃z1 ∃z2 P(z1, z2), and define the sets
D+

K = {a | aP ∈ ∆CK} and D−
K = {a | aP− ∈ ∆CK} of positive and negative

demanding individuals. We assume w.l.o.g. that |D+
K| ≤ |D

−
K|. Let p : D+

K → D
−
K

be an injection.
We partition the generated roles (i.e., the roles such that there is wT ∈ ∆CK)

into four categories:

1. T |= ∃T− ⊑ ∃P and T |= ∃T− ⊑ ∃P−

2. T |= ∃T− ⊑ ∃P and T ̸|= ∃T− ⊑ ∃P−

3. T ̸|= ∃T− ⊑ ∃P and T |= ∃T− ⊑ ∃P−

4. T ̸|= ∃T− ⊑ ∃P and T ̸|= ∃T− ⊑ ∃P−

The roles in the first three cases are called demanding, and we need to consider
which P-edges can be used for them.

We use the term non-paired critical individual to designate an individual
belonging to D+

K ∪D
−
K but not to the domain of p. We then define what constitutes

a solution to a demanding role:

- A solution to a case-1 demanding role is either a non-paired critical individual,
or an individual a such that A, T |= ∃xP(a, x) and A, T |= ∃xP(x, a).

- A solution to a case-2 demanding role is either a non-paired critical individual,
or an individual a such that A, T |= ∃xP(a, x).

- A solution to a case-3 demanding role is either a non-paired critical individual,
or an individual a such that A, T |= ∃xP(x, a).

If a demanding role T has a solution, we let sol(T) be (an arbitrarily chosen)
solution.

If all demanding roles have a solution, then the optimal number of matches is
nA +max(|D+

K|, |D
−
K|), as witnessed by the model f(CK), which is the image of CK

under the following partial function f :

- f(a) = a;

- f(aP) = p(a);

- f(aP−) = p−1(a) if defined, a otherwise;

- f(wT) = sol(T) if T is neither P nor P− and is demanding;

- f(wT) = wT if wT contains no occurrence of P nor of P− and T is not
demanding.

170 Q. Manière

5. Cardinality Queries

Note that f is not defined on elements from CK with shape awTPw′ or awTP−w′,
where w is a possibly-empty word that contains neither P nor P− and w′ is a
possibly-empty word. In the case of awTPw′ (the case of awTP−w′ is similar),
notice that awT is sent to an element sol(T), such that K |= ∃x P(sol(T), x) by
definition of a solution. Therefore the images of elements awTPw′ don’t need to be
specified to ensure modelhood, as the corresponding facts are already consequences
of the P-edge (a, b) (if there exists b such that (sol(T), b) ∈ A) or of the P-edge
(a, f(aP)) (if no such b exists). It can be verified that f(CK) is a model with exactly
nA +max(|D+

K|, |D
−
K|) matches.

If there is at least one demanding role that does not have a solution, then
the optimal number of matches is mA +max(|D+

K|, |D
−
K|) + 1, as witnessed by the

following model (which we describe by an ABox):

A ∪ {A(a) | A, T |= A}
∪ {P(a, p(a)) | a ∈ D+

K}
∪ {R(a, ⋆) | R ̸= P ∧ aR ∈ ∆CK}
∪ {R(⋆, ⋆) | R ∈ NR} ∪ {A(⋆) | A ∈ NC}

The above interpretation is indeed a model, because all elements are paired and
disjointness is not expressible in DL-Litepos. Moreover, its number of matches is
mA+max(|D+

K|, |D
−
K|)+ 1. This is optimal as there are at least mA+ |D+

K| matches
in any model and that there exists T a demanding role having no solution. Indeed,
if T is in cases 2 or 3, there cannot be any P-edge in the ABox nor paired elements
(as it would provide a solution for T), and 1 is thus the optimal as any model
contains at least 1 match given by the image of the pair (wT, wTP) from the
canonical model (T in case 2) or of the pair (wT, wTP−) (in case 3). Otherwise T
belongs to case 1, still without a solution, which means that no individual has both
an ingoing and outgoing P. Therefore, in any model, at least one of the image of
the pairs (wT, wTP) and (wT, wTP−) (both exist in the canonical model, for the
same w!) provides an additional match.

Note that each condition can be checked in non-deterministic logarithmic space.
The number of optimal matches is thus also computable within the same bound, as
is the comparison with the input integer. This shows that role cardinality answering
lies in NL.

Finally, we prove that concept cardinality query answering over DL-Litepos
KBs is NL-hard by reduction from the st-connectivity problem, known to be
NL-complete [Immerman, 1999].

Theorem 47. Concept cardinality query answering in DL-Litepos is NL-hard w.r.t.
combined complexity.

Counting Queries in Ontology-Based Data Access 171

5.3. Hard cases in data complexity

Proof. Let G = (V , E) be an oriented graph and s, t two vertices from V. For
each vertex v ∈ V, we introduce a concept name V. Consider the KB given by
A := {S(a)} and T := {V1 ⊑ V2 | (v1, v2) ∈ E}. We are interested in the concept
cardinality query qT := ∃z T(z).

It is now straightforward that 1 is a certain answer to qT over (T ,A) iff t is
reachable from s in G.

This concludes our study of cardinality queries in combined complexity, which
is summarized in Figure 5.1. The remainder of the present chapter is devoted to
the study of data complexity, and more especially in the extensions of DL-Litepos.

5.3 Hard cases in data complexity
To begin our study of cardinality query answering in data complexity, let us first
recall that we inherit the coNP upper bound from the general CCQ setting (see
Theorem 8 from Chapter 3) In this section, we exhibit three matching lower bounds
relying on three rather different mechanisms.

5.3.1 A reduction from 3-Col

We begin with a reduction from the 3-Col problem to prove the coNP-hardness
of answering the concept cardinality query qB over a specific EL TBox. The key
ingredient of the reduction is the ability the detect monochromatic edges with a
single EL axiom, while known reductions from 3-Col to the DL-Lite settings (see
e.g. Theorem 16 treating the case of CCQs) achieve this through a more involved
query. In other words, EL TBoxes allow us to internalize sufficient parts of the
query so the latter can be restricted to a concept cardinality query.

Theorem 48. Concept cardinality query answering in EL is coNP-hard w.r.t. data
complexity.

Proof. We reduce the complement of the graph 3-colorability problem to answer-
ing the EL OMQ (q, T), with q = ∃z B(z) and T containing A ⊑ ∃R.B and
∃R.Ck ⊓ ∃E.(∃R.Ck) ⊑ B for k ∈ {1, 2, 3}.

Let G = (V , E) be an undirected graph, and consider now the ABox given by:

A := {A(v) | v ∈ V} ∪ {E(v1, v2) | {v1, v2} ∈ E}
∪ {C1(c1),C2(c2),C3(c3),B(c1),B(c2),B(c3)}

Set K = (T ,A). Observe that there are 3 ABox matches: c1, c2, c3. We claim:

[4,+∞] is a certain answer of q w.r.t. K ⇔ G /∈ 3-Col

172 Q. Manière

5. Cardinality Queries

(⇐). Assume G /∈ 3-Col. Let I be a model of K and f : CK → I a
homomorphism. We are interested in the image of elements v · R.B, with v ∈ V,
whose existence in ∆CK is ensured by axiom A ⊑ ∃R.B. If there exists v ∈ V such
that f(v · R.B) /∈ {c1, c2, c3}, then f(v · R.B) provides a new match. Otherwise,
define the colouring induced by I as ρI(v) = f(v · R.B) ∈ {c1, c2, c3}. Since
G /∈ 3-Col, there exists an edge {v1, v2} ∈ E with both vertices having the same
colour ck for some k ∈ {1, 2, 3}. For the corresponding individuals v1 and v2, the
axiom ∃R.Ck ⊓ ∃E.(∃R.Ck) ⊑ B triggers and provides two new matches: v1 and v2.
In all cases, [4,+∞] is a certain answer of q w.r.t. K.

(⇒). Assume G ∈ 3-Col. Take a 3-colouring ρ : V → {c1, c2, c3}, and
consider the interpretation Iρ obtained from K in which we add facts R(v, ρ(v))
for each v ∈ V, complying with the axiom A ⊑ ∃R.B. By definition of ρ, there
is no monochromatic edge, which ensures the three other axioms don’t trigger on
individuals v. This interpretation Iρ is hence a model. It only has 3 matches, hence
[4,+∞] is not a certain of q w.r.t. K.

This concludes for the present chapter our study of extensions of EL, for which
cardinality query answering is always coNP-complete in the worst case for data
complexity.

5.3.2 A reduction from 3-Sat

We now move to extensions of DL-Litepos, as usual up to DL-LiteHcore KBs. Interest-
ingly, this setting has already been investigated in Calvanese et al. [2020a]. They
proved cardinality query answering over DL-Litepos ontologies can be performed
in P, an upper bound that we refine further in Section 5.4, and that there exists
P-hard DL-LiteHcore ontologies for role cardinality answering. None of their bounds
in that work are tight and in particular the existence of coNP-hard cardinality
queries over DL-LiteHcore ontologies was left open.

Through a reduction from 3-Sat, we exhibit a DL-LiteHcore ontology and a
concept cardinality query for which the answering problem is coNP-hard. The
construction relies mainly on role disjointness axioms to constraint the reuse of
individuals, when trying to minimize the number of instances for the query concept
which is entailed by the endpoints of different roles.

Theorem 49. Concept cardinality query answering in DL-LiteHcore is coNP-complete
w.r.t. data complexity.

Proof. We reduce the complementary of 3-Sat to the problem of answering the
concept cardinality query qC over the DL-LiteHcore TBox T containing the 7 following
axioms:

A ⊑ ∃U ∃U− ⊑ C U ⊑ ¬U′ B ⊑ ∃V ∃V− ⊑ C V ⊑ ¬V′ ∃U− ⊑ ¬∃V−

Counting Queries in Ontology-Based Data Access 173

5.3. Hard cases in data complexity

We first explain the general idea. Three individuals are introduced per proposi-
tional variable (one for the variable itself with concept A, two for its possible truth
values), as well as one individual per clause (with concept B). Each variable should
have a truth value given by U (whose possible values in the ABox are restricted
through the use of U′), and each clause should have a falsified literal given by V
(whose possibles values in the ABox are restricted, according to the input formula,
with V′). The input formula is a tautology iff every model introduces a new
element marked C (as a witness for either ∃U or ∃V). More formally, consider a

3DNF formula ϕ(x1, . . . xm) =
n∨
i=1

li, with li =
3∧
j=1

(¬)pi,jvi,j . Introduce the following

individual names:

Indϕ = {x1, . . . xm, l1, . . . ln, t1, . . . tm, f1, . . . fm}

Consider now the ABox given by:

Aϕ = {A(x1), . . .A(xm),B(l1), . . .B(ln),C(t1), . . .C(tm),C(f1), . . .C(fm)}
∪ {U′(xk, a) | 1 ≤ k ≤ m, a ∈ Indϕ \ {tk, fk}}

∪
{
V′(li, a)

∣∣∣∣ 1 ≤ i ≤ n, a ∈ Indϕ \
{
ti

∣∣∣∣ vi,j = xi
pi,j = 0

}
∪
{
fi

∣∣∣∣ vi,j = xi
pi,j = 1

}}
Set Kϕ = (T ,Aϕ). Notice there are 2m ABoxes matches: t1 . . . tm and f1, . . . fm.
We now prove the following claim:

[2m+ 1,+∞] is a certain answer of qC w.r.t. Kϕ iff ∀x ϕ(x)

(⇐). Assume ∀x ϕ(x). Let I be a model of Kϕ and f : CKϕ → I a homomorphism.
If there exists a k ∈ {1, . . .m} such that f(xkU) /∈ {tk, fk}, then f(xkU) is an
anonymous element, since U′ prevents f(xkU) to be equal to other individuals. As
f(xkU) ∈ CI , it provides a new match. Otherwise, define the assignment induced
by I as ρI(x) = 1 if f(xkU) = tk, and ρI(x) = 0 if f(xkU) = fk. Since ∀x ϕ(x),
there exists a satisfied clause li. For this i, the element f(liV) cannot be equal to
any individual (as V′ and ∃U− prevent it), and therefore provides a new match for
qC. In all cases [2m+ 1,+∞] is a certain answer of qC w.r.t. Kϕ.

(⇒). Assume ∃x ¬ϕ(x). Consider such a valuation ρ : x → {0, 1} such that
¬ϕ(ρ(x)). For each clause li, there exists (at least) a variable xki which invalidates
li. Consider the interpretation Iρ obtained from Kϕ in which we add facts U(xk, tk)
iff ρ(xk) = 1, resp U(xk, fk) iff ρ(xk) = 0, and V(li, tki) if ρ(xki) = 0, resp V(li, fki)
if ρ(xki) = 1. By definition of variables xki , we are ensured this interpretation Iρ
is a model. It only has 2m matches, hence [2m + 1,+∞] is not a certain of qC
w.r.t. Kϕ.

174 Q. Manière

5. Cardinality Queries

5.3.3 A reduction from Set Cover

While concept cardinality queries over DL-LiteHpos ontologies are proven tractable in
the next section, our third reduction shows there exist coNP-hard such ontologies for
role cardinality query answering. This reduction plays a central role in Section 5.5,
as it is the prototype of such coNP-hard ontology-mediated role cardinality queries.
It exploits the propagation of some subroles of the query role to construct a
reduction from the Set Cover problem, and this propagation schema allows us
to separate exactly the coNP-hard ontologies (for a fixed query role), from those
that can be solved in P.

Theorem 50. Role cardinality query answering in DL-LiteHpos is coNP-complete
w.r.t. data complexity.

Proof. We consider the NP-complete Set Cover problem: given a set U , set of
subsets S ⊆ 2U whose union is U , and number k, decide whether there exists
a k-cover, i.e. a subset C of S with |C| ≤ k whose union is U . We reduce the
complementary of Set Cover to the problem of answering the role cardinality
query qS over the DL-LiteHpos TBox T := {B ⊑ ∃R1,R1 ⊑ S,∃R−

1 ⊑ ∃R2,R2 ⊑ S}.
From an instance of Set Cover we construct A = {B(u) | u ∈ U} ∪ {S(u, s) |
u ∈ s, s ∈ S}. Figure 5.2 depicts the ABox built from the following instance of
Set Cover:

U = {1, 2, 3, 4, 5} S = { {1, 2}, {3, 4}, {4, 5}, {1, 2, 3} } k

1

B

2

B

3

B

4

B

5

B

{1, 2} {3, 4} {4, 5}{1, 2, 3}

S

S

S S S SS S S

Figure 5.2: The built ABox for the example instance of Set Cover.

We prove the following claim:

There exists a k-cover
iff

[Σs∈S |s|+ k + 1,+∞] is not a certain answer for qS over K := (T ,A).

Intuitively, from a k-cover C, we obtain a countermodel in which role R1 contains
pairs (u, s) such that u ∈ s and s ∈ C, and there is one outgoing R2 role from
each s ∈ C. Notice there are at least mA := Σs∈S |s| many matches for qS from the
instances of S encoded in the ABox A.

Counting Queries in Ontology-Based Data Access 175

5.4. Tractable cases in data complexity

(⇒). Assume (U ,S, k) ∈ Set Cover. Take some k-cover F ⊆ S of U . For each
u ∈ s ∈ C, enrich the ABox A with the assertions R1(u, s), R2(s, s) and S(s, s). The
resulting interpretation IC (based upon the described enriched ABox) is a model,
as we introduced all needed roles. In addition to the mA ABox matches, each used
subset s provides one additional match since the assertion S(s, s) has been added.
We thus obtain a model with exactly mA + k matches, that is a countermodel for
[mA + k + 1,+∞] being a certain answer.

(⇐). Assume (U ,S, k) /∈ Set Cover. Consider a model I of K and a homomor-
phism f : CK → I. or each u ∈ U , we associate a subset ρ(u) := s if f(u · R1) = s
and u ∈ s ∈ S, otherwise set ρ(u) := su, where su ∈ S in any subset containing u
(if no such su, then the Set Cover instance is trivially unsatisfiable). The image
ρ(U) is a covering of U , hence |ρ(U)| ≥ k+1. By definition, for each s ∈ ρ(U) there
exists u ∈ U such that: either f(u · R1) = s with u ∈ s ∈ S, or f(u · R1) ̸= s′ for
all u ∈ s′ ∈ S. In the first case, the pair (f(u · R1), f(u · R1 · R2)) is an additional
match. In the second case, (f(u), f(u · R1)) is a new match. Therefore we can
conclude that there are at least mA + k + 1 matches in I.

5.4 Tractable cases in data complexity

In this section, we identify two settings in which cardinality queries can be answered
with the lowest possible complexity. As previously mentioned, a P procedure was
already provided in Calvanese et al. [2020a] for the even more restricted class of
cardinality queries over DL-Litepos ontologies. Our result refines and extends theirs:

Theorem 51. Answering a cardinality query q over a TBox T is in TC0 if either
(i) q is a role cardinality query and T a DL-Litecore TBox, or (ii) q is a concept
cardinality query and T is a DL-LiteHcore TBox without negative role inclusions.

The remainder of this section is devoted to establishing TC0 membership for
case (i) where our query is qS = ∃z1 ∃z2 S(z1, z2) (see Section 5.4.1). A similar but
simpler argument can be used for the membership of case (ii) (see Section 5.4.3).
The lower bound, that is, TC0-hardness, is also discussed in Section 5.4.3 and
is easily shown, if the query predicate is satisfiable, by reduction from the TC0-
complete NumOnes problem [Aehlig et al., 2007] asking, given a binary string X
and k ≥ 1, whether X contains at least k 1-bits.

Since we will be focusing on DL-LiteHcore KBs from the present section to the
end of the chapter, we recall the definition of the canonical models we consider,
slightly simplified to better fit our restricted setting [Calvanese et al., 2007b].

176 Q. Manière

5. Cardinality Queries

Definition 52. Every satisfiable DL-LiteHcore KB K = (T ,A) has a canonical model
CK, defined as follows. The domain of CK contains Ind(A) and all words aR1 . . .Rn,
with a ∈ Ind(A), Ri ∈ N±

R , and n ⩾ 1, such that:

- K |= ∃R1(a) and there is no R1(a, b) ∈ A;
- for 1 ≤ i < n, T |= ∃R−

i ⊑ ∃Ri+1 and R−
i ̸= Ri+1.

Concept and role names are interpreted as follows:

ACK = {a ∈ Ind(A) | K |= A(a)}
∪ {aR1 . . .Rn ∈ ∆CK \ Ind(A) | T |= ∃R−

n ⊑ A}
PCK = {(a, b) | P(a, b) ∈ A}

∪ {(e1, e2) | e2 = e1R and T |= R ⊑ P}
∪ {(e2, e1) | e2 = e1R and T |= R ⊑ P−}

We use genK to refer to the set of generated roles, i.e. those R ∈ N±
R such that ∆CK

contains an element wR.

5.4.1 Role cardinality over DL-Litecore
Existing proofs of sub-polynomial data complexity for restricted classes of counting
queries rely on the canonical model minimizing the number of matches (see Chapter 4
and Calvanese et al. [2020a]). However, for the class of cardinality queries, the
canonical model may not yield the minimum value (see e.g. Example 20 below).
Therefore, we develop a different approach based upon a systematic exploration
of a set of models that is guaranteed to contain an optimal model and whose
size depends only on the TBox. This special set of models will be induced from
strategies that dictate how to merge elements of the canonical model. To show
such models contain the optimal value, we show that if we extract a strategy σ
from an arbitrary model I and consider any model J induced by σ, then J has at
most as many matches as the initial model I.

Example 20. As a running example, we will consider the KB Ke = (Te,Ae) whose
TBox contains the following inclusions

A1 ⊑ ∃T1 A2 ⊑ ∃T2 ∃T−
1 ⊑ ∃S ∃R−

1 ⊑ ¬∃R−
2

B1 ⊑ ∃R1 B2 ⊑ ∃R2 ∃R−
1 ⊑ ∃S− ∃R−

1 ⊑ ¬∃T−
1

∃T−
2 ⊑ ∃S ∃S− ⊑ ∃S ∃R−

2 ⊑ ∃S−

and whose ABox contains the assertions

{A1(a1),A2(a2),B1(b1),B2(b2),R1(a1, a2), S(b2, b1)}

Counting Queries in Ontology-Based Data Access 177

5.4. Tractable cases in data complexity

a1

a1T1

a1T1S

· · ·

a2

a2S

· · ·

a2S
−

a2T2

a2T2S· · ·

b1

b1S

· · ·

b1R1

b1R1S

· · ·

b1R1S
−

b2

b2R2

b2R2S
· · ·

b2R2S
−

R
1

T
1

T2

R1

R
2

SS

S

S

S

S

S
S

S

S

Figure 5.3: Initial portion of the canonical model of Ke. For readability, we have
omitted concepts and highlighted the role S from the cardinality query.

Two finite models of Ke are displayed in Figures 5.4a and 5.4b. An initial portion
of (the infinite) canonical model of Ke is displayed in Figure 5.3. Observe that
genK = {S, S−,R1,R2,T1,T2}.

Consider the role cardinality query qS. The answer to qS is +∞ in CKe, 6 in the
model from Figure 5.4a, and 5 in the model from Figure 5.4b. The latter implies
that [6,+∞] is not a certain answer. We leave it is an exercise to find a model
with 3 matches and show there is no model with fewer matches, which means that
[m,+∞] is a certain answer to qS over Ke if and only if m ≤ 3.

We now formalize the sketched approach. In order to abstract from specific
ABox individuals, we introduce types.

Definition 53. A type for a TBox T is a subset of sig(T)±C . The set of all types
is ΘT = 2sig(T)±C . We denote by θK(d) the type of a domain element d w.r.t. K and
define it by: θK(d) =

{
B ∈ sig(T)±C | K |= B(d)

}
if d ∈ Ind(A), else θK(d) = ∅.

Example 21. In our running example, θKe(a1) = {A1,∃R1,∃T1} and θKe(α) = ∅
(since α ̸∈ Ind(Ae)).

We use types to define strategies, which indicate for each generated role R the
type onto which all elements wR should merge and whether roles with the same
target type should or should not be mapped onto the same element. Several copies
of a type might be required to comply with negative inclusions (e.g. R1 and R2

associated to the same type but the TBox satifies T |= ∃R−
1 ⊑ ¬∃R−

2).

178 Q. Manière

5. Cardinality Queries

a1

α

a2

b1

b2

β

R
1 ,S

R
2
,S

T 2
,S

T 1

R 1

S

S

S

S

(a) Another model of Ke.

a1

⊥1

a2

b1

b2

⊥2

R
1

R
2
,S

R 1
,S

T 2

T 1

S
S

S

S

(b) Interpretation of strategy σe.

Figure 5.4: Finite models of the example KB Ke. For readability, we have omitted
concepts and highlighted the role S from the cardinality query.

Definition 54. A strategy σ for the TBox T is a partial function from sig(T)±R to
ΘT × {1, . . .

∣∣sig(T)±R ∣∣}, satisfying the following two conditions:

1. For all R ∈ dom(σ), if σ(R) = (t, i), then T ̸|= ∃R− ⊑ ¬B for all B ∈ t.

2. For all R1,R2 ∈ dom(σ), if σ(R1) = σ(R2), then T ̸|= ∃R−
1 ⊑ ¬∃R−

2 .

Where dom(σ) denotes the subset of sig(T)±R on which σ is defined.

This notion only depending on the TBox, the number of possible strategies is
constant w.r.t. data complexity. However, it also means a given strategy might be
irrelevant for a particular ABox, as it may require more copies of a type than the
ABox can provide. This motivates the following notion of legal strategy.

Definition 55. Let A be an ABox and K := (T ,A). A strategy σ for T is legal
for K if it satisfies the following two conditions:

1. Coverage: genK = dom(σ)

2. Availability: For all t ∈ ΘT , if t ̸= ∅, then

|{i | ∃R ∈ genK, σ(R) = (t, i)}| ≤ |{a | a ∈ Ind(A) ∧ θK(a) = t}| .

Condition 1 ensures roles for which the strategy is defined are matching those
encountered in CK, while Condition 2 requires the ABox provides at least as many
individuals of a non-empty type as the strategy requires copies of this type.

Counting Queries in Ontology-Based Data Access 179

5.4. Tractable cases in data complexity

Example 22. The following mapping σe is a legal strategy for Ke:

T1 7→ (∅, 1) R2 7→ ({B1,∃R1,∃S,∃S−}, 1)
T2 7→ (∅, 2) S 7→ (∅, 2)
R1 7→ (∅, 2) S− 7→ ({A1, ∃R1,∃T1}, 1)

To construct a model from a legal strategy σ, the basic idea is to merge elements
wR with an element of type σ(R), with the latter selected according to a choice of
well-typed elements :

Definition 56. A mapping ch : genK → Ind(A) ⊎ {⊥i | i = 1, . . . ,
∣∣sig(T)±R ∣∣}, is a

choice of well-typed elements for σ over K if it satisfies the following conditions:

1. For all R ∈ genK, there exists 1 ≤ i ≤
∣∣sig(T)±R ∣∣ such that σ(R) = (θK(ch(R)), i).

2. For all R1,R2 ∈ genK, we have ch(R1) = ch(R2) iff σ(R1) = σ(R2).

Example 23. The function che, defined as below, is a choice of well-typed elements
for σe over Ke:

T1 7→ ⊥1 T2 7→ ⊥2 R1 7→ ⊥2

R2 7→ b1 S 7→ ⊥2 S− 7→ a1

When reusing an element w.r.t. a strategy, we often take advantage of possible
existing S or S− edges involving this element. Choosing such an edge, when it
exists, motivates the following definitions.

Definition 57. For every R ∈ sig(T)±R , pick a function succKR that maps every
individual in {a | K |= R(a, b) for some b ∈ NI} to an individual succKR(a) such that
K |= R(a, succKR(a)). The family of functions (succKR)R is called a certain successor
preference. Similarly for a given interpretation I, a family of functions (succIR)R
mapping an element d ∈ (∃R)I to an element e ∈ ∆I such that (d, e) ∈ RI is a
successor preference in I.

It turns out however that when R = S or R = S−, it is useful to depart from
the guideline of a strategy in order to reduce the number of query matches, as this
stand-alone example illustrates:

Example 24. Consider the canonical model of the KB formed by the TBox T =
{A ⊑ ∃S,B ⊑ ∃S−} and the ABox A = {A(a1),A(a2),B(b1),B(b2)}. If we merge
a1S with a2S, and b1S

− with b2S
−, then there will be at least three matches of qS,

no matter which further merges are performed. However, by ‘pairing’ a1 with b1
and a2 with b2, we can obtain a model with only two matches: (a1, b1), (a2, b2).

The next three definitions serve to identify the critical elements for which such
a pairing operation is useful. Notice they are similar in spirit to those used within
the proof of Theorem 46, though slightly different for roles.

180 Q. Manière

5. Cardinality Queries

Definition 58. We define positive (resp. negative) demanding individuals as:

D+
K :=

{
a | a ∈ Ind(A) and aS ∈ ∆CK

}
D−

K :=
{
a | a ∈ Ind(A) and aS− ∈ ∆CK

}
Definition 59. Given a strategy σ, we define positive (resp. negative) demanding
roles as:

D+
σ = {R ∈ dom(σ) \ {S, S−} | T |= ∃R− ⊑ ∃S and ∃S /∈ t where (t, k) := σ(R)}

and

D−
σ = {R ∈ dom(σ)\{S, S−} | T |= ∃R− ⊑ ∃S− and ∃S− /∈ t where (t, k) := σ(R)}.

Definition 60. Let ch be a choice of well-typed elements for σ. We define positive
(resp. negative) critical elements as:

crit+ := D+
K ∪ ch(D+

σ) crit− := D−
K ∪ ch(D−

σ)

Example 25. For σe and che as defined in Examples 22 and 23, we have crit+ =
{a2, b1,⊥1,⊥2} and crit− = {a2,⊥2}.

Intuitively, a pairing matches critical elements from crit+ (which require an
outgoing S) with those from crit− (which require an incoming S).

Definition 61. A pairing for ch and σ consists of two partial functions p+ : crit+ →
crit− and p− : crit− → crit+ such that one of the functions is total and injective,
and the other is its partial inverse.

Example 26. A pairing for che and σe is given by p+e = {a2 7→ a2, b1 7→ ⊥2} and
p−e = {a2 7→ a2,⊥2 7→ b1}.

We are now ready to define the interpretation of a strategy.

Definition 62. Consider a strategy σ, choice of well-typed elements ch, certain
successor preference (succKR)R and pairing (p+, p−) for ch. Define function χ as
follows:

∆CK → Ind(A) ∪ {⊥i | i = 1, . . . ,
∣∣sig(T)±R ∣∣}

a 7→ a

wS 7→


succKS (χ(w)) if succKS (χ(w)) is defined
p+(χ(w)) else if p+(χ(w)) is defined
ch(S) otherwise

wS− 7→


succKS−(χ(w)) if succKS−(χ(w)) is defined
p−(χ(w)) else if p−(χ(w)) is defined
ch(S−) otherwise

wR 7→ ch(R)

The interpretation of σ (according to ch, (p+, p−) and the succKR) has domain χ(∆CK)
and interpretation function χ ◦ ·CK.

Counting Queries in Ontology-Based Data Access 181

5.4. Tractable cases in data complexity

Example 27. With choice che and pairing (p+e , p
−
e), we get χ(b2R2) = ch(R2) = b1,

χ(b2R2S) = p+e (b1) = ⊥2, and χ(b2R2S
−) = succKS−(b1) = b2 (observe that on our

example, the function succKS− is uniquely defined, and the same is true for the other
roles). Figure 5.4b displays the interpretation of σe.

Observe that the interpretation of a strategy σ depends not only on σ but also
on the functions ch, p+, p−, succKR. Importantly, however, the key property of such
interpretations (stated in Lemma 29 later in this section) holds for any particular
choice of these functions.

It remains to prove that a model minimizing the number of matches can be
found among the interpretations of strategies. The first step is to extract a strategy
from a model.

Definition 63. Let I be a model of K, f : CK → I be a homomorphism, and repr
be a function mapping each role R ∈ genK to an element with shape wR from ∆CK.
Then P = {P1, . . . , Pk}, defined by

{P1, . . . , Pk} = {(f ◦ repr)−1(w) | w ∈ ∆I} \ {∅}

is a partition of genK. The strategy extracted from I (for f and repr) is defined as:

genK → ΘT × {1, . . . ,
∣∣sig(T)±R ∣∣}

R 7→ ((θK ◦ f ◦ repr)(R), i) with R ∈ Pi

Example 28. In our running example, there is a unique homomorphism fe from
CKe to the model displayed in Figure 5.4a. Let repre be:

T1 7→ a1T1 R2 7→ b2R2 T2 7→ a2T2

S 7→ b1SSS R1 7→ b1R1 S− 7→ a2S
−

The strategy extracted from this model (for fe and repre) is the strategy provided in
Example 22.

We further introduce the following useful lemma, stating that a choice of well-
typed elements for a strategy σ extracted from a model provides, as one would
expect, elements with the same type as those used in the first place to extract the
strategy σ.

Lemma 28. Let A be an ABox and K := (T ,A). Let reprK be a function mapping
each role R ∈ genK to an element with shape wR from ∆CK. Let I be a model of
K, and let f : CK → I be a homomorphism. Let chσ/K be a choice of well-typed
elements for σf◦reprK over A. The strategy σf◦reprK extracted from I (for f and
reprK) preserves both:

182 Q. Manière

5. Cardinality Queries

1. ∀R ∈ genK, θK(chσf◦reprK/K(R)) = θK(f(reprK(R)))

2. ∀R,T ∈ genK, chσf◦reprK/K(R) = chσf◦reprK/K(T) ⇔ f(reprK(R)) = f(reprK(T))

Proof. 1. Let R ∈ genK. By definition of σf◦reprK , there exists i ∈ {1, . . . |sig(T)|}
such that σf◦reprK(R) = ((θK ◦f ◦ reprK)(R), i) with R ∈ Pi. From Condition 1
of Definition 56, we get σf◦reprK(R) = (θK(chσf◦reprK/K(R)), i), which gives the
desired equality of types.

2. From Condition 2 of Definition 56, chσ/K(R) = chσ/K(T) iff σf◦reprK(R) =
σf◦reprK(T). If f(reprK(R)) = f(reprK(T)), then by the definition of the
extracted strategy, we have σf◦reprK(R) = σf◦reprK(T), so we are done. Con-
versely, if chσ/K(R) = chσ/K(T), then σf◦reprK(R) = σf◦reprK(T). This implies
in particular that R and T belong to the same Pi, hence f(reprK(R)) =
f(reprK(T)).

By applying the next lemma to a model I having the fewest possible number of
matches, we obtain the desired conclusion: there is a model minimizing the number
of matches among the models obtained by interpreting a strategy.

Lemma 29. Let I be a model of K, and J an interpretation of a strategy extracted
from I. J is a model of K and qJS ≤ qIS .

We first prove the first point of Lemma 29, stating the interpretation of a
strategy extracted from a model is also a model, in the following stronger form,
which does not require the strategy to be extracted from a model in the first place.

Lemma 30. Let A be an ABox and K := (T ,A) a satisfiable KB. Let (succKR)R
be a certain successor preference. Let σ be a legal strategy for K. Let chσ/K be a
choice of well-typed elements for σ over K. Let pairchσ/K := (pair+chσ/K , pair

−
chσ/K

) be
a pairing for chσ/K and σ. Then the interpretation J of σ (according to chσ/K,
pairchσ/K, and (succKR)R) is a model.

Proof. Assertions from the ABox and positive inclusions from T are satisfied since
the interpretation J is built from CK. Indeed, suppose that B ⊑ C ∈ T and d ∈ BJ .
Then from the definition of J , there exists w ∈ ∆CK such that w ∈ BCK and
d = χ(w). Since CK satisfies B ⊑ C, we have w ∈ CCK . If C ∈ NC, this immediately
gives d ∈ CJ . If C = ∃R, there exists w′ such that (w,w′) ∈ RCK , and hence we
will have (χ(w), χ(w′)) ∈ RJ , which yields w ∈ CCK .

Consider now a negative axiom of the form B ⊑ ¬C. By contradiction assume
there is an element d such that d ∈ BJ ∩ CJ . In what follows, χ is the function
used in the definition of J .

1. If K |= B(d) and K |= C(d), then this contradicts K being satisfiable.

Counting Queries in Ontology-Based Data Access 183

5.4. Tractable cases in data complexity

2. If K |= B(d) and K ̸|= C(d), then d = χ(wT) with T ∈ genK and T |= ∃T− ⊑
C. Indeed K ̸|= C(d) ensures d is not the image through χ of some individual
certainly satisfiying C. Nevertheless, since d ∈ CJ , it must be that d is the
image through χ of some anonymous element, say wT, such that wT ∈ CC

K.
By definition of CC

K, it yields T |= ∃T− ⊑ C.

(a) If d = succKT(χ(w)) with T ∈ {S, S−}, then T(χ(w), d) ∈ A, contradict-
ing K ̸|= C(d).

(b) If d = pair+chσ/K(χ(w)) with T = S, then in particular d ∈ crit−chσ/K .

- If d ∈ D−
K , then in particular K |= ∃S−(d), contradicting K ̸|= C(d).

- If d = chσ/K(T0) with T0 ∈ D−
σ , then in particular T |= ∃T−

0 ⊑ ∃S−.
Hence T |= ∃T−

0 ⊑ ¬B. Condition 1 in the definition of a choice of
well-typed elements ensures σ(T0) = (θK(d), i). Condition 1 in the
definition of a strategy ensures B /∈ θK(d), contradicting K |= B(d).

(c) If d = pair−chσ/K(χ(w)) with T = S−. Same argument as in Case 2.b,
based on d ∈ crit+chσ/K .

(d) If d = chσ/K(T). Condition 1 from the definition of choice of well-typed
elements ensures σ(T) = (θK(d), i). Condition 1 from the definition of a
strategy ensures B /∈ θK(d), contradicting K |= B(d).

3. If K ̸|= B(d) and K |= C(d). Symmetric to Case 2.

4. If K ̸|= B(d) and K ̸|= C(d), then d = χ(wR) = χ(w′T) with R,T ∈ genK
such that T |= ∃R− ⊑ B and T |= ∃T− ⊑ C, due to the same reason than in
Case 2, applied here to both concepts B and C.

(a) If d = succKR(χ(w)) with R ∈ {S, S−}, then R(χ(w), d) ∈ A, contradict-
ing K ̸|= B(d).

(b) If d = pair+chσ/K(χ(w)) with R = S, then in particular d ∈ crit−chσ/K .

- If d ∈ D−
K , then it contradicts K ̸|= B(d).

- If d = chσ/K(R0) with R0 ∈ D−
σ , then in particular T |= ∃R−

0 ⊑ ∃S−.
i. If d = succKT(χ(w

′)) with T ∈ {S, S−}, then it contradicts
K ̸|= C(d).

ii. If d = pair+chσ/K(χ(w
′)) with T = S, then T |= ∃S− ⊑ ¬∃S−.

Contradiction.
iii. If d = pair−chσ/K(χ(w

′)) with T = S−, in particular d ∈ crit+chσ/K .

- If d ∈ D+
K then it contradicts K ̸|= C(d).

184 Q. Manière

5. Cardinality Queries

- If d = chσ/K(T0) with T0 ∈ D+
σ , then in particular T |=

∃T−
0 ⊑ ∃S. Condition 2 in the definition of the choice of

well-typed elements ensures: σ(R0) = σ(T0). Condition 2
in the definition of a strategy ensures: T ̸|= ∃R−

0 ⊑ ¬∃T−
0 ,

contradicting T |= B ⊑ ¬C.

iv. If d = chσ/K(T). Condition 2 in the definition of the choice
of well-typed elements ensures: σ(R0) = σ(T). Condition 2
in the definition of a strategy ensures: T ̸|= ∃R−

0 ⊑ ¬∃T−,
contradicting T |= B ⊑ ¬C.

(c) If d = pair−chσ/K(χ(w)) with R = S−. Analogous argument to Case 4.b.

(d) If d = chσ/K(R).

i. If d = succKT(χ(w
′)) with T ∈ {S, S−}, then it contradicts K ̸|= C(d).

ii. If d = pair+chσ/K(χ(w
′)) with T = S. Symmetric to Case 4.b.iv.

iii. If d = pair−chσ/K(χ(w
′)) with T = S−. Symmetric to Case 4.c.iv.

iv. If d = chσ/K(T). Condition 2 in the definition of the choice of
well-typed elements ensures: σ(R) = σ(T). Condition 2 in the
definition of a strategy ensures: T ̸|= ∃R− ⊑ ¬∃T−, contradicting
T |= B ⊑ ¬C.

In order to prove the second point of Lemma 28, stating that the interpretation
J of the strategy extracted from a model I has at most as many matches as the
initial model I, we need to understand which pairs appear in the role of interest S
in an interpretation of our strategy. This is the purpose of the following result.

Lemma 31. Let A be an ABox and K := (T ,A). Let (succKR)R be a certain
successor preference. Let σ be a legal strategy for K. Let chσ/K be a choice of
well-typed elements for σ over K. Let pairchσ/K := (pair+chσ/K , pair

−
chσ/K

) be a pairing
for chσ/K. Denote by J the interpretation of σ (according to chσ/K, pairchσ/K, and

Counting Queries in Ontology-Based Data Access 185

5.4. Tractable cases in data complexity

(succKR)R). We have:

SJ = {(a, b) | K |= S(a, b)} Shape 1

∪

{
(x, y)

∣∣∣∣∣ (x, y) ∈ crit+chσ/K × crit−chσ/K
pair+chσ/K(x) = y

}
Shape 2

∪
{
(x, chσ/K(S))

∣∣∣ x ∈ crit+chσ/K \ dom(pair+chσ/K)
}

Shape 3+

∪
{
(chσ/K(S

−), y)
∣∣∣ y ∈ crit−chσ/K \ dom(pair−chσ/K)

}
Shape 3−

∪

(chσ/K(S), chσ/K(S))

∣∣∣∣∣∣∣∣∣

∣∣∣crit+chσ/K∣∣∣ > ∣∣∣crit−chσ/K∣∣∣
T |= ∃S− ⊑ ∃S
∃S /∈ θK(chσ/K(S))
chσ/K(S) /∈ chσ/K(D+

σ)

 Shape 4+

∪

(chσ/K(S
−), chσ/K(S

−))

∣∣∣∣∣∣∣∣∣

∣∣∣crit−chσ/K∣∣∣ > ∣∣∣crit+chσ/K∣∣∣
T |= ∃S ⊑ ∃S−

∃S− /∈ θK(chσ/K(S−))
chσ/K(S

−) /∈ chσ/K(D−
σ)

 Shape 4−

Notice there can be no overlap between two distinct shapes and that shapes with
opposite superscripts cannot coexist.

Proof sketch. The full proof can be found in the appendix and simply proceeds
by case analysis based on the definition of the interpretation of the role S in the
canonical model and on the function χ from Definition 62.

We next need to understand how to relate the elements of J with the elements
of the original model I. In particular, we are interested in critical elements, which
motivates the following definition.

Definition 64. Let A be an ABox and K := (T ,A). Let reprK be function mapping
each role R ∈ genK to an element with shape wR from ∆CK. Let I be a model of K
and f : CK → I be a homomorphism. Let σ be the strategy extracted from I (for f
and reprK). Let chσ/K be a choice of well-typed elements for σ over K. The origins
of critical elements are given by:

ori+ : crit+chσ/K → ∆I

x 7→
{
x if x ∈ D+

K
f(reprK(R)) if x = chσ/K(R) with R ∈ D+

σ

ori− : crit−chσ/K → ∆I

y 7→
{
y if y ∈ D−

K
f(reprK(T)) if y = chσ/K(T) with T ∈ D−

σ

186 Q. Manière

5. Cardinality Queries

Notice the second point in Lemma 28 ensures that ori+, resp. ori−, is well defined,
that is, it does not depend on the choice of the role R, resp. T.

Observe that this way of associating critical elements with elements of the
original model is injective.

Lemma 32. The functions ori+ and ori− as defined in Definition 64, are injective.

Proof. Let x, x′ ∈ crit+chσ/K such that ori+(x) = ori+(x′). We consider the four
possible cases.

1. Suppose x ∈ D+
K .

(a) Suppose x′ ∈ D+
K .

Trivial: x = ori+(x) = ori+(x′) = x′.
(b) Suppose x′ = chσ/K(R

′) with R′ ∈ D+
σ .

On the one hand, statement 1 from Lemma 28 ensures θK(x
′) =

θK(f(reprK(R
′)). Since by our assumptions we have x = ori+(x) =

ori+(x′) = f(reprK(R
′), we get θK(x) = θK(f(reprK(R

′)), hence θK(x′) =
θK(x). Since x ∈ D+

K , this means in particular that ∃S ∈ θK(x′).
On the other hand, chσ/K must satisfy Condition 1 of the definition of
choice of well-typed elements, so σ(R′) = (θK(x

′), i) for some i. However,
from R′ ∈ D+

σ , we have that ∃S /∈ θK(x′), a contradiction.

2. Suppose x = chσ/K(R) with R ∈ D+
σ .

(a) Suppose x′ ∈ D+
K .

Symmetric to Case 1.b.
(b) Suppose x′ = chσ/K(R

′) with R′ ∈ D+
σ .

Then θK(f(reprK(R)) = θK(f(reprK(R
′)). Statement 2 from Lemma 28

yields chσ/K(R) = chσ/K(R
′), hence x′ = x.

Therefore, ori+ is injective. The argument for ori− is symmetric.

We are now ready to prove the second point of Lemma 29, which is formulated
in full detail in the following statement.

Lemma 33. Let A be an ABox and K := (T ,A). Let reprK be function mapping
each role R ∈ genK to an element with shape wR from ∆CK. Let I be a model of
K and f : CK → I be a homomorphism. Let σ be the strategy extracted from I
(for f and reprK). Let chσ/K be a choice of well-typed elements for σ over K. Let
pairchσ/K be a pairing for chσ/K. Denote by J the model resulting from interpreting
the strategy σ (according to chσ/K, pairchσ/K, and any certain successor preference).
Then we have:

qJS ≤ qIS .

Counting Queries in Ontology-Based Data Access 187

5.4. Tractable cases in data complexity

Proof. In the following, assume
∣∣∣crit+chσ/K∣∣∣ ≥ ∣∣∣crit−chσ/K∣∣∣ so that the only possible

shapes for matches are 1, 2, 3+ and 4+. The case
∣∣∣crit−chσ/K∣∣∣ > ∣∣∣crit+chσ/K∣∣∣ with

possible shapes 1, 2, 3− and 4− is symmetrical.
Pick some successor preference (succIR)R for I (refer back to Definition 57). We

associate with each match π of qS in J , seen as the pair (π(z1), π(z2)), a match
ρ(π) in I depending on the shape of π:

ρ(π) :


(a, b) if π = (a, b) has Shape 1
(ori+(x), succIS(ori

+(x))) if π = (x, y) has Shape 2 or 3+

(f(reprK(S)), succ
I
S(f(reprK(S)))) if π = (chσ/K(S), chσ/K(S)) has Shape 4+

Notice that in all cases ρ(π) is indeed a match in I. This is obvious if π
is of Shape 1. When π of Shape 2 or 3+, ori+(x) is an element of ∆I that
possesses an S-successor, so succIS(ori

+(x)) is well defined, and we have ρ(π) =
(ori+(x), succIS(ori

+(x))) ∈ SI . Finally, if π is of Shape 4+, this means T |= ∃S− ⊑
∃S, succIS(f(reprK(S)))) is well defined, and (f(reprK(S)), succ

I
S(f(reprK(S)))) ∈ SI .

It now remains to verify ρ is indeed injective, a case analysis can be found in
the appendix.

5.4.2 Construction of the TC0 circuits

We now sketch how to construct a family of TC0 circuits (one for each size of ABox)
to decide the role cardinality query qS over a DL-Litecore TBox T . Each such circuit
first computes the set genK and the type of each ABox individual. Next, for each
function ϱ : genK → ΘT × {1, . . . ,

∣∣sig(T)±R ∣∣} satisfying Definition 54, the circuit
decides whether ϱ is a legal strategy for K (i.e. if Definition 55 holds), and if so,
computes the number of matches of qS in interpretations induced by ϱ. Importantly,
this can be done without actually building interpretations: in Lemma 35 below, we
give an explicit formula for this number which can be computed with a TC0 circuit.
Moreover, the number of strategies depends only on |T |, so is constant w.r.t. data
complexity. Finally, the circuit computes the minimum value across strategies and
compares it with the input number.

To avoid computing an actual model interpreting a strategy and then computing
its number of matches, it is useful to observe that this value is easily decided in
advance and, in particular, is independent of the choice of well-typed elements and
of the pairing. This is expressed by the following lemma.

Lemma 34. Let A be an ABox and K := (T ,A). Let σ be a legal strategy over
K. Every model interpreting the strategy σ provides the following number λσ/K of

188 Q. Manière

5. Cardinality Queries

matches:

λσ/K := |{(a, b) | K |= S(a, b)}| + max
(∣∣D+

K
∣∣+ |σ(D+

σ)|,
∣∣D−

K
∣∣+ |σ(D−

σ)|
)

+1 if

∣∣∣∣∣∣∣∣
∣∣D+

K
∣∣+ |σ(D+

σ)| >
∣∣D−

K
∣∣+ |σ(D−

σ)|
T |= ∃S− ⊑ ∃S
∃S /∈ t if σ(S) = (t, k)
σ(S) /∈ σ(D+

σ)

+1 if

∣∣∣∣∣∣∣∣
∣∣D−

K
∣∣+ |σ(D−

σ)| >
∣∣D+

K
∣∣+ |σ(D+

σ)|
T |= ∃S ⊑ ∃S−

∃S− /∈ t if σ(S−) = (t, k)
σ(S−) /∈ σ(D−

σ)

Before giving the proof of the preceding lemma, it will helpful to first establish
the relationship holding between the sizes of the sets D+

K ,D+
σ ,D−

K ,D−
σ and the sets

of critical elements.

Lemma 35. Let chσ/K be a choice of well-typed elements for a legal strategy σ over
K. Then the sets crit+chσ/K and crit−chσ/K satisfy the following:

∣∣∣crit+chσ/K∣∣∣ =
∣∣D+

K
∣∣ +

∣∣σ(D+
σ)
∣∣ ∣∣∣crit−chσ/K∣∣∣ =

∣∣D−
K
∣∣ +

∣∣σ(D−
σ)
∣∣.

In particular, the sizes of crit+chσ/K and crit−chσ/K do not depend on chσ/K.

Proof. First we prove that D+
K and chσ/K(D+

σ) are disjoint. Notice that if a ∈ D+
K ,

then ∃S ∈ θK(a). Therefore, if ever chσ/K(R) = a, then by Condition 1 from
the definition of a choice of well-typed elements: σ(R) = (θK(a), k), which would
contradict R ∈ D+

σ . Hence D+
K ∩ chσ/K(D+

σ) = ∅. We conclude by applying
Condition 2 from the definition of a choice of well-typed elements, which ensures
that

∣∣chσ/K(D+
σ)
∣∣ = |σ(D+

σ)|. The case of crit−chσ/K is symmetric.

We now return to the proof of Lemma 34:

Proof of Lemma 34. Let J be the interpretation of σ obtained according to a
choice of well-typed element chσ/K, a pairing pairchσ/K , and some certain successor
preference. From Lemma 31, and recalling that distinct shapes are incompatible,

Counting Queries in Ontology-Based Data Access 189

5.4. Tractable cases in data complexity

we have:∣∣SJ
∣∣ = |{(a, b) | K |= S(a, b)}| from Shape 1

+min
(∣∣∣crit+chσ/K∣∣∣, ∣∣∣crit−chσ/K∣∣∣) from Shape 2

+max
(∣∣∣crit+chσ/K∣∣∣− ∣∣∣crit−chσ/K∣∣∣, 0) from Shape 3+

+max
(∣∣∣crit−chσ/K∣∣∣− ∣∣∣crit+chσ/K∣∣∣, 0) from Shape 3−

+1 if Shape 4+ is active

+1 if Shape 4− is active

= |{(a, b) | K |= S(a, b)}| from Shape 1

+max
(∣∣∣crit+chσ/K∣∣∣, ∣∣∣crit−chσ/K∣∣∣) joint Shapes 2, 2+ and 3−

+1 if Shape 4+ is active

+1 if Shape 4− is active

We can then apply Lemma 35 to express crit+chσ/K and crit−chσ/K in terms of the
sets D+

K ,D+
σ ,D−

K ,D−
σ . We also use Condition 1 from the definition of a choice of

well-typed elements in order to replace ∃S /∈ θK(chσ/K(S)) by ∃S /∈ t if σ(S) = (t, k),
and Condition 2 to replace chσ/K(S) /∈ chσ/K(D+

σ) by σ(S) /∈ σ(D+
σ) (and similarly

for S−). It can be verified that this indeed yields the desired number λσ/K.

We now describe in detail the family of TC0 circuits to decide our problem. We
create one circuit for each possible number ℓ of individual names. We can assume
w.l.o.g. that the same set of individuals, denoted Indℓ, is used for all of the ABoxes
having ℓ individuals. In what follows, we introduce the different gates which are
used for computing the various sets and values used in the construction and how
they are connected to each other. Input gates are represented by ?, conjunctive
gates by ∧, disjunctive gate by ∨, negation gates by ¬ and a threshold gate with
threshold k by T(k). Each gate is identified and refereed to by a label label indicated
by a subscript, e.g.∨label.

We start by the input gates which show how we represent an input (A∗,m∗) to
the circuit that handles ℓ-individual ABoxes. It can be verified that for each of the
gates we introduce decides the statement or property occurring in its label (with
A∗, resp. K∗ = (T ,A∗) substituted for A, resp. K).

Input gates
Each atomic role P appearing in T is represented by input gates ?P(a,b)∈A for

a, b ∈ Indℓ. The gate ?P(a,b)∈A is set to 1 iff P(a, b) ∈ A∗.

190 Q. Manière

5. Cardinality Queries

Each atomic concept A appearing in T is represented by input gates ?A(a)∈A
for a ∈ Indℓ. The gate ?A(a)∈A is set to 1 iff A(a) ∈ A∗.

The integer m∗ is represented in binary by input gates ?bk=1 for each 0 ≤ k <
log2(|Ind(A∗)|+ |T |)|q|). The gate ?bk=1 is set to 1 iff the kth bit of m∗ is 1 (with
0th-bit being the least significant bit).

Regarding the last point, we use the observation from Kostylev and Reutter
[2015] that ifm∗ is a certain answer for q over K∗, thenm∗ cannot exceed (|Ind(A∗)|+
|T |)|q| = (|Indℓ| + |T |)|q|. We denote K this upper bound. This is a direct
consequence of the fact that every satisfiable DL-LiteHcore KB K = (T ,A) has a
model with at most |Ind(A)|+ |T | elements.

Gates computing available roles and entailed concepts for individuals
For each positive role R and each individual name a ∈ Indℓ, introduce a

disjunctive gate ∨∃b,K|=R(a,b) taking as inputs:

- ?R(a,b)∈A for each b ∈ Ind(A), if R ∈ NR.

- ?P(b,a)∈A for each b ∈ Ind(A), if R = P− with P ∈ NR.

For each positive concept B and each individual name a ∈ Indℓ, introduce a
disjunctive gate ∨K|=B(a) taking as inputs:

- ?A(a)∈A for each atomic concept A such that T |= A ⊑ B.

- ∨∃b,K|=R(a,b) for all role R ∈ N±
R such that T |= ∃R ⊑ B.

Computing types and counting number of occurring types

For each type t ∈ ΘT and each individual name a ∈ Indℓ, introduce a conjunctive
gate ∧θK(a)=t taking as inputs:

- ∨K|=B(a) for each positive concept B such that B ∈ t.

- the negation of ∨K|=B(a) for each positive concept B such that B /∈ t.

For each type t ∈ ΘT and each k ∈ {0, . . .
∣∣sig(T)±R ∣∣}, introduce a threshold

gate T(k)∃≥k ind. of type t taking as inputs: ∧θK(a)=t for each individual name a ∈ Indℓ.

Remark: Notice here that k ranges up to
∣∣sig(T)±R ∣∣ as any strategy requires at most

this many copies of a type (see availability condition from Definition 55). Notice
also the label “∃≥k ind. of type t”, which stands for |{a ∈ Indℓ | θK(a) = t}| ≥ k.

Counting Queries in Ontology-Based Data Access 191

5.4. Tractable cases in data complexity

Identifying generated roles
For each individual name a ∈ Indℓ and each positive role R, introduce a con-

junctive gate ∧aR∈∆CK taking as inputs: ∨K|=∃R(a) and the negation of ∨∃b,K|=R(a,b).
For each positive role R, introduce a disjunctive gate ∨R∈genK taking as inputs:

∧aT∈∆CK for each positive role T such that T ensures that if aT ∈ ∆CK , then there
exists a word w starting with T and ending by R s.t aw ∈ ∆CK .

Identifying demanding individuals (see Definition 58)
For each a ∈ Indℓ, introduce a conjunctive gate ∧a∈D+

K
taking as inputs: ∨K|=∃S(a)

and the negation of ∨∃b,K|=S(a,b).
For each a ∈ Indℓ, introduce a conjunctive gate ∧a∈D−

K
taking as inputs: ∨K|=∃S−(a)

and the negation of ∨∃b,K|=S−(a,b).

Deciding legality of each strategy σ (see Definitions 54 and 55)
Introduce a conjunctive gate ∧coverage σ taking as inputs:

- ∨R∈genK for each positive role R ∈ dom(σ),

- the negation of ∨R∈genK for each positive role R /∈ dom(σ).

Introduce a conjunctive gate ∧availability σ taking as inputs: T(k)∃≥k ind. of type t for
each type t being required k times by σ.

Introduce a conjunctive gate ∧legal σ taking as inputs: ∧coverage σ and ∧availability σ.

Computing λσ/K for each strategy σ (see Lemma 34).

A threshold gate T(k)
mA+|D+

K|+|σ(D+
σ)|≥k for

each k ∈ {0, . . . , K} with inputs:

- ?S(a,b)∈A for each (a, b) ∈ Indℓ × Indℓ,

- ∧a∈D+
K

for each a ∈ D+
K ,

- |σ(D+
σ)| copies of a true gate true.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A threshold gate T(k)
mA+|D−

K|+|σ(D−
σ)|≥k for

each k ∈ {0, . . . , K} with inputs:

- ?S(a,b)∈A for each (a, b) ∈ Indℓ × Indℓ,

- ∧a∈D−
K

for each a ∈ D−
K ,

- |σ(D−
σ)| copies of a true gate true.

Introduce ∧|D+
K|+|σ(D+

σ)|=|D−
K|+|σ(D−

σ)|=k−mA
for each k ∈ {0, . . . , K} with inputs:

- T(k)
mA+|D+

K|+|σ(D+
σ)|≥k and the negation of T(k+1)

mA+|D+
K|+|σ(D+

σ)|≥k+1
,

- T(k)
mA+|D−

K|+|σ(D−
σ)|≥k and the negation of T(k+1)

mA+|D−
K|+|σ(D−

σ)|≥k+1
,

- ∧legal σ.

192 Q. Manière

5. Cardinality Queries

Notice that for the latter and upcoming gates of this block, we omit “legal σ” from
the labels for clarity.

Gate ∧|D+
K|+|σ(D+

σ)|<|D−
K|+|σ(D−

σ)|=k−mA

for each k ∈ {0, . . . , K} with inputs:

- the negation of T(k)
mA+|D+

K|+|σ(D+
σ)|≥k,

- T(k)
mA+|D−

K|+|σ(D−
σ)|≥k and the negation

of T(k+1)

mA+|D−
K|+|σ(D−

σ)|≥k+1
,

- ∧legal σ.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Gate ∧|D−
K|+|σ(D−

σ)|<|D+
K|+|σ(D+

σ)|=k−mA

for each k ∈ {0, . . . , K} with inputs:

- T(k)
mA+|D+

K|+|σ(D+
σ)|≥k and the negation

of T(k+1)

mA+|D+
K|+|σ(D+

σ)|≥k+1
,

- the negation of T(k)
mA+|D−

K|+|σ(D−
σ)|≥k,

- ∧legal σ.

For each k ∈ {0, . . . , K}, introduce a disjunctive gate ∨λσ/K=k taking as inputs:

- ∧|D+
K|+|σ(D+

σ)|=|D−
K|+|σ(D−

σ)|=k−mA
,

- If T |= ∃S ⊑ ∃S−, ∃S− /∈ t with σ(S−) = (t, k) and σ(S−) /∈ σ(D−
σ), then gate

∧|D+
K|+|σ(D+

σ)|<|D−
K|+|σ(D−

σ)|=k−1−mA
, otherwise gate ∧|D+

K|+|σ(D+
σ)|<|D−

K|+|σ(D−
σ)|=k−mA

,

- If T |= ∃S− ⊑ ∃S, ∃S /∈ t with σ(S) = (t, k), and σ(S) /∈ σ(D+
σ), then gate

∧|D−
K|+|σ(D−

σ)|<|D+
K|+|σ(D+

σ)|=k−1−mA
, otherwise gate ∧|D+

K|+|σ(D+
σ)|<|D−

K|+|σ(D−
σ)|=k−mA

.

We are now able to compute the minimal number of matches given by legal
strategies.

Final comparison with the input integer (see Lemma 29).
For each k ∈ {0, . . . , K}, introduce a disjunctive gate ∨ min

legal σ
λσ/K<k taking as inputs:

∧λσ/K=k′

legal σ

for each strategy σ and each k′ < k.

For each k ∈ {0, . . . , K}, introduce a conjunctive gate ∧m=k taking as inputs:

- ?bj=1 such that the jth bit of the binary encoding of k is 1,

- the negation of ?bj=1 such that the jth bit of the binary encoding of k is 0.

For each k ∈ {0, . . . , K}, introduce a conjunctive gate ∧ min
legal σ

λσ/K≥m=k taking as
inputs: ∧m=k and the negation of ∨ min

legal σ
λσ/K<k.

Introduce an output disjunctive gate ∨ min
legal σ

λσ/K≥m taking as inputs: ∧ min
legal σ

λσ/K≥m=k

for each k ∈ {0, . . . , K}.

Counting Queries in Ontology-Based Data Access 193

5.4. Tractable cases in data complexity

To complete the proof, we observe that, since the TBox T is fixed, the number
of gates is polynomial in the described family of circuits. Moreover, all circuits
in the family have the same depth (13). Thus, the construction yields a TC0 of
circuits for deciding the role cardinality query qS over the DL-Litecore TBox T and
establishes membership in TC0.

5.4.3 Concept cardinality over DL-LiteHcore without role in-
clusions

We now turn to the case where T is a DL-LiteHcore TBox without negative role
inclusions and qC is the concept cardinality query: ∃z C(z).

Due to a simpler shape of the query, several notions simplify. In particular,
distinguishing between positive and negative critical elements is no longer necessary
and these notions can be unified as follows.

Definition 65. Let σ be a strategy. Define demanding roles Dσ as:

Dσ :=

R

∣∣∣∣∣∣
R ∈ dom(σ)
T |= ∃R− ⊑ C
C /∈ t if σ(R) = (t, k)


Let chσ/K be a choice of well-typed elements for σ over K. Define the set of critical
elements as:

critchσ/K = chσ/K(Dσ)

Pairing is also no longer necessary, which means the interpretation of a strategy
can be drastically simplified as follows.

Definition 66. Let A be an ABox and K := (T ,A). Let σ be a legal strategy
over K. Let chσ/K be a choice of well-typed elements for σ over A. Consider the
following mapping:

χ : ∆CK → Ind(A) ∪ {⊥i | i = 1, . . .
∣∣sig(T)±R ∣∣}

a 7→ a
wR 7→ chσ/K(R)

The interpretation J of σ w.r.t. chσ/K is defined as the image of ·CK through χ: its
domain is ∆J = χ(∆CK), and its interpretation function is ·J = χ ◦ ·CK.

Under these updated definitions, notice the Lemma 29 still makes perfect sense,
and we start by proving it, following closely the analogous proof for role cardinality
queries.

194 Q. Manière

5. Cardinality Queries

Proof of Lemma 29 for concept cardinality queries

We first prove the first point of Lemma 29, stating that the interpretation of a
strategy extracted from a model is also a model, in the following stronger form,
not requiring the strategy to be extracted from a model in the first place.

Lemma 36. Let A be an ABox and K := (T ,A) be a satisfiable KB. Let σ be a
legal strategy over K. Let chσ/K be a choice of well-typed elements for σ over A.
The interpretation J of the strategy σ w.r.t. chσ/K is a model.

Proof. Assertions from the ABox and axioms without negation are satisfied since
the interpretation J is built from CK. Consider now a negative concept inclusion
B1 ⊑ ¬B2. Assume for a contradiction that there is an element d such that
d ∈ B1

J ∩ B2
J . There are four cases to consider:

1. If K |= B1(d) and K |= B2(d), then this contradicts K being satisfiable.

2. If K |= B1(d) and K ̸|= B2(d), then d = χ(wR) with R ∈ genK and T |=
∃R− ⊑ B2. In particular, d = chσ/K(R) and T |= ∃R− ⊑ ¬B1. Condition 1
from the definition of choice of well-typed elements ensures σ(R) = (θK(d), i)
for some i. Condition 1 from the definition of a strategy implies that B1 /∈
θK(d), contradicting K |= B1(d).

3. If K ̸|= B1(d) and K |= B2(d). Symmetric to Case 2.

4. If K ̸|= B1(d) and K ̸|= B2(d), then d = χ(w1R1) = χ(w2R2) with R1 ∈
genK, R2 ∈ genK, T |= ∃R−

1 ⊑ B1 and T |= ∃R−
2 ⊑ B2. In particular,

d = chσ/K(R1) = chσ/K(R2). Condition 2 in the definition of the choice of
well-typed elements ensures: σ(R1) = σ(R2). Condition 2 in the definition of
a strategy ensures: T ̸|= ∃R−

1 ⊑ ¬∃R−
2 , contradicting T |= B1 ⊑ ¬B2.

In order to prove the second point of Lemma 28, stating an interpretation J
of the strategy extracted from a model I has at most as matches as the original
model I, we need to better understand what kinds of matches of qC can be found
in J . This is achieved by the following result which precisely characterizes CJ

Lemma 37. Let A be an ABox, and K := (T ,A) be satisfiable KB. Let σ be a
legal strategy over K, and let chσ/K be a choice of well-typed elements for σ over K.
Denote by J the interpretation of σ w.r.t. chσ/K. Then we have:

CJ = {a | K |= C(a)} (Shape 1)

∪
{
chσ/K(R) | R ∈ Dσ

}
(Shape 2)

Furthermore, there is no overlap between these two distinct shapes.

Counting Queries in Ontology-Based Data Access 195

5.4. Tractable cases in data complexity

Proof. The first inclusion (⊆) is rather straightforward. We therefore focus on
proving the direction (⊇).

1. Let a be such that K |= C(a), in particular a ∈ Ind(A). By definition,
χ(a) = a, hence a ∈ CJ .

2. Let R ∈ Dσ. By definition of genK, there exists wR ∈ CK. By definition of the
interpretation of a strategy, χ(wR) = chσ/K(R). Moreover, R ∈ Dσ implies
that T |= ∃R− ⊑ C, which ensures wR ∈ CC

K. Therefore chσ/K(R) ∈ CJ .

We can now prove the second point of Lemma 29, recalled in the following
statement.

Lemma 38. Let A be an ABox and K := (T ,A). Let I be a model of K. Let σ be
the strategy extracted from I. Let chσ/K be a choice of well-typed elements for σ
over K. Denote J the resulting interpretation of σ. We have:

qJ ≤ qI .

Proof. Associate each match π of q in J to a match ρ(π) in I depending of the
shape of π:

ρ(π) :

{
z 7→ π(z) if π has Shape 1

z 7→ f(reprK(R)) if π has Shape 2 with π(z) = chσ/K(R)

Notice ρ(π) is indeed a match in I. We now prove that ρ is injective. Let
π1, π2 : q → Jσf◦reprK be two matches such that ρ(π1) = ρ(π2). We consider all four
cases:

1. 1. π1(z1) = ρ(π1)(z1) = ρ(π2)(z1) = π2(z1) and π1(z2) = ρ(π1)(z2) =
ρ(π2)(z2) = π2(z2).

2. We have π2(z) = chσ/K(R) with R ∈ Dσ. Therefore C /∈ θK(chσ/K(R)).
Lemma 28 provides θK(chσ/K(R)) = θK(ρ(π2)(z)). Recall ρ(π1) = ρ(π2),
hence C /∈ θK(π1(z)). Contradiction with K |= C(π1(z)).

2. 1. Symmetric to Case 1.2.

2. We have π1(z) = chσ/K(R1) with R1 ∈ Dσ and π2(z) = chσ/K(R2) with
R2 ∈ Dσ. Therefore f(reprK(R1)) = f(reprK(R2)). Lemma 28 provides
π1(z) = π2(z).

196 Q. Manière

5. Cardinality Queries

Number of matches in the interpretation of a strategy.

We will again avoid having to produce interpretations of strategies by showing that
we can directly determine the number of matches occurring in such models. This
is the purpose of the following lemma.

Theorem 52. Let A be an ABox, and K := (T ,A) be a satisfiable KB. Let σ be
a legal strategy over K. Any interpretation J of the strategy σ has the following
number λσ/K of matches:

λσ/K = |{a | K |= C(a)}| + |σ(Dσ)|

Proof. The equation immediately follows from Lemma 37 and by noticing that∣∣∣critchσ/K∣∣∣ = |σ(Dσ)| due to second condition in the definition of a choice of well-
typed elements.

The family of circuits.

To complete the proof, we describe how to construct a family of TC0 circuits that
can be used to decide our problem. The construction is very similar to the one
given for role cardinality queries, so we simply mention the updates required to
adapt the family of circuits to concept cardinality queries.

- We need to introduce further gates in the second block to compute entailed role
assertions.

- The circuits in the block “Deciding demanding individuals” are no longer required.

- Each block dedicated to a particular strategy simplifies as we no longer need
to compare the size of positive vs negative critical elements: each strategy still
comes with a specific number of additional matches |σ(Dσ)| due to demanding
roles, again introduced through constant gates, and counting ABox matches
needs to be slightly updated from the role setting to the concept one.

To match our TC0 membership results, it is natural to investigate the TC0-
hardness of our problem in these situations. We show that as soon as the query pred-
icate is satisfiable, then it is sufficient to obtain TC0-hardness (for any DL-LiteHcore
TBox), and it also necessary as the excluded situations can be decided within AC0

(which we recall is the circuit complexity class obtained from TC0 by disallowing
threshold gates). We thus prove the following statement:

Theorem 53 (TC0-hard / in AC0). Let q be a cardinality query and T be a
DL-LiteHcore TBox. If the query predicate is satisfiable w.r.t. T , then answering q
over T is TC0-hard. Otherwise it is in AC0.

Counting Queries in Ontology-Based Data Access 197

5.4. Tractable cases in data complexity

The argument for AC0 membership is trivial: a cardinality query with an
unsatisfiable predicate admits as certain answers precisely those intervals of the
form [0,M], since every model will contain 0 matches.

For both concept and role cardinality queries, we show TC0-hardness by AC0-
reduction from the NumOnes problem, known to be TC0-complete Aehlig et al.
[2007]. The problem NumOnes is to decide, given as input an integer k ≥ 1 (given
in binary) and a binary string X, whether the number of 1-bits in X is at least k.

We note that we cannot reuse the TC0-hardness proof given in Bienvenu et al.
[2020], since that result used a rooted counting query coupled with an empty TBox.
By contrast, we consider non-empty TBoxes which may include existential axioms,
and our queries may match to unnamed elements.

Proof for concept cardinality queries. Let qC be our concept cardinality query and
assume C is satisfiable w.r.t. our TBox T . Set K(T ,q) := (T , {C(a)}). Our assump-
tion ensures K(T ,q) is satisfiable hence its canonical interpretation (model) CK(T ,q)

is indeed a model. Let (k,X) be an instance of NumOnes. Consider the following
ABox:

A = {A(aux1) | a ∈ A
CK(T ,q)} ∪ {R′(aux1, auxR) | aR ∈ ∆

CK(T ,q) , T |= R ⊑ R′}
∪ {A(b) | bit b of X is equal to 1, a ∈ A

CK(T ,q)}
∪ {R′(b, auxR) | bit b of X is equal to 1, aR ∈ ∆

CK(T ,q) , T |= R ⊑ R′}
∪ {A(auxR) | wR ∈ ∆

CK(T ,q) , T |= ∃R− ⊑ A}
∪ {R′(auxT, auxR) | wTR ∈ ∆

CK(T ,q) , T |= R ⊑ R′}

Note that in particular that A will contain C(b) for every 1-bit b of X, as
well as C(aux1). The auxiliary individual aux1 mimics a 1-bit from X in order to
appropriately handle the case in which X doesn’t contain any such bit. As the
notation suggests, auxiliary individuals auxR are intended to receive all needed
outgoing roles R from other elements (so auxR is intended to satisfy the concept
∃R−). Note that by construction the interpretation based upon A already satisfies
all of the TBox axioms. In particular, this means that there exists a model of (T ,A)
all of whose matches are already present in A. We can thus focus on counting the
matches explicitly given in A.

Observe that the number m of matches of qC among the auxiliary elements only
depends on the OMQ (qC, T). In particular notice that aux1 always provides a
match, hence m ≥ 1. It is straightforward to verify that m+ k is a certain answer
for q over K := (T ,A) iff (k,X) ∈ NumOnes. Moreover, the input (A,m+ k) to
our OMQA problem can be computed from (k,X) by an AC0 circuit (recall that
binary integer addition is known to be computable in AC0).

198 Q. Manière

5. Cardinality Queries

5.5 Role cardinality over DL-LiteHpos
In this section, we consider DL-LiteHpos TBoxes. We show that coNP-hard OMQs
exist and prove a complexity trichotomy which precisely delineates the tractabil-
ity boundary. We begin by recalling the coNP-complete1 situation exhibited in
Theorem 50.

Example 29. Answering the role cardinality query qS over the DL-LiteHpos TBox
given by T = {B ⊑ ∃R1,R1 ⊑ S, ∃R−

1 ⊑ ∃R2,R2 ⊑ S} is coNP-complete. We
consider the NP-complete Set Cover problem: given a set U , set of subsets
S ⊆ 2U whose union is U , and number k, decide whether there exists a k-cover,
i.e. a subset C of S with |C| ≤ k whose union is U . We prove that there exists a
k-cover iff [Σs∈S |s|+ k + 1,+∞] is not a certain answer on the following ABox:
{B(u) | u ∈ U} ∪ {S(u, s) | u ∈ s, s ∈ S}.

The following definition abstracts the preceding example.

Definition 67. A TBox T admits a propagation of role W by a concept B ∈ sig(T)±C
and roles R1,R2 if T entails {B ⊑ ∃R1,R1 ⊑W,∃R−

1 ⊑ ∃R2,R2 ⊑W}.
A propagation of S (or S−) is not sufficient to ensure coNP-hardness: the

reduction sketched in Example 29 will fail in the presence of ‘interferences’, which
can be of three types.

Definition 68. A role U interferes with the propagation of W by B,R1,R2 if it
satisfies one of the following conditions:

1. T |= {B ⊑ ∃U,U ⊑W,U ⊑W−};

2. T |= {∃W− ⊑ ∃U,U ⊑W} and either T |= U ⊑W− or T ̸|= R2 ⊑W−;

3. if B = ∃T and T ⊑W, then T |= {∃T− ⊑ ∃U,U ⊑W} and either T |= U ⊑W−

or T ̸|= R2 ⊑W−.

Remarkably, the existence of a propagation without any interfering role (which
we call a non-trivial propagation) ensures coNP-hardness of answering the corre-
sponding role cardinality query, while its absence ensure P-membership. We further
distinguish two tractable cases, depending on the existence of a non-trivial pairing.

Definition 69. A TBox T admits a non-trivial pairing of S if there exist B ∈
sig(T)±C and R ∈ sig(T)±R such that

T |= B ⊑ ∃R T |= R ⊑ S T |= R ⊑ S− T ̸|= S ⊑ S−

and if B = ∃T, then either T ̸|= T ⊑ S or T ̸|= T ⊑ S−.
1A P upper bound for atomic counting queries in DL-LiteHpos erroneously appears in Table 1 of

Calvanese et al. [2020a], but was corrected in a later arXiv version [Calvanese et al., 2020b].

Counting Queries in Ontology-Based Data Access 199

5.5. Role cardinality over DL-LiteHpos

To formulate our trichotomy result, we recall that a matching in a graph (V , E) is
a set of edges that are pairwise vertex-disjoint. The Perfect Matching problem
asks whether there exists a matching such that every vertex is incident to one of its
edges. Despite being the focus of intensive research, its exact complexity remains
open: in P [Edmonds, 1965] and NL-hard [Chandra et al., 1984].

Theorem 54. Let T be a DL-LiteHpos TBox. Answering the role cardinality query
qS := ∃z1 ∃z2 S(z1, z2) over T is coNP-complete if T admits a non-trivial propaga-
tion of either S or S−, is L-equivalent to the complement of Perfect Matching
if it does not admit such a non-trivial propagation but admits a non-trivial pairing
of S, and is in TC0 otherwise.

The rest of this section is devoted to the proof of the latter theorem. In
Section 5.5.1, we generalize the reduction sketched in Example 29 to obtain coNP-
hardness. If there is a non-trivial pairing (but no non-trivial propagation), we show
in Section 5.5.2 that, up to trivial cases solvable in TC0, the existence of a model
with few matches is equivalent to the existence of a large matching between critical
individuals. This yields L-equivalence with the Maximum Matching decision
problem, which is L-equivalent to the better-known Perfect Matching problem
[Rabin and Vazirani, 1989]. In Section 5.5.3 we conclude the proof with TC0

membership, obtained by case analysis, where we exhibit for each case a model
with an optimal (and easily computable) number of matches.

5.5.1 coNP-hardness in presence of propagation

We begin by proving coNP-hardness of answering the role cardinality qS over a
DL-LiteHpos TBox T that admits a non-trivial propagation of either S or S−. Recall
that coNP membership is an immediate consequence of existing results on counting
queries [Kostylev and Reutter, 2015].

Let us thus assume that T has a non-trivial propagation B, R1, R2 of S (the case
of a non-trivial propagation of S− being symmetrical). We proceed by reduction
from the Set Cover problem, and distinguish two cases based on the nature of
the concept B.

Consider an instance (U ,S, k) of Set Cover: each element u ∈ U occurs
in at least one subset of S, we denote su by such a subset. We introduce an
individual name u for each u ∈ U , and an individual name s for each s ∈ S. The
individual introduced for the subset su is denoted su. We further introduce auxiliary
individuals a and b.

We now provide the reductions for the two cases.

Case 1: B ∈ NC or B = ∃T with T ̸|= T ⊑ S. We first describe the ABox.
Elements from U are represented by facts {B(u) | u ∈ U} if B ∈ NC, otherwise

200 Q. Manière

5. Cardinality Queries

by facts {T(u, a) | u ∈ U} if B = ∃T. Subsets from S are represented by facts
{S(u, s) | u ∈ s, s ∈ S}. All the roles issuing from B and which are not subroles of
S are also introduced as follows, pointing to auxiliary a:{

U(u, a)
∣∣U ∈ N±

R , u ∈ U , T |= B ⊑ ∃U, T ̸|= U ⊑ S
}

We proceed as well with the roles issuing from ∃S−, pointing either to b or to a.{
U(s, b)

∣∣U ∈ N±
R , s ∈ S, T |= ∃S

− ⊑ ∃U, T |= U ⊑ S
}

and: {
U(s, a)

∣∣U ∈ N±
R , s ∈ S, T |= ∃S

− ⊑ ∃U, T ̸|= U ⊑ S
}

To complete our description of the ABox, we saturate a and b with facts:

{U(a, a) | U ∈ sig(T)R} ∪ {U(b, b) | U ∈ sig(T)R}

Let A be the union of all preceding facts, and consider the KB K := (T ,A). Notice
that due to the many role assertions included in the ABox, all of the anonymous
elements in CK are of the form uUw with u ∈ U , w some word, and T |= U ⊑ S
but T ̸|= U− ⊑ S (because we are considering a non-trivial propagation, the role
U cannot satisfy Condition 1 of Definition 68). Notice also that (the negation of)
Condition 2 from the same definition further ensures that there is no ABox match
(b, s), with s ∈ S.

Let us denote by mA be the number of matches for qS present in the ABox A.
In particular, mA ≥

∑
s∈S |s|+ 1, due to the representation of the subsets and the

saturation of a. We prove the following claim:

[mA + k + 1,+∞] is a certain answer for qS w.r.t. K ⇔ (U ,S, k) /∈ Set Cover.

(⇒). Assume (U ,S, k) ∈ Set Cover. Take some k-cover F ⊆ S of U . For
each u ∈ s with s ∈ F and each positive role U such that T |= B ⊑ ∃U and
T |= U ⊑ S, enrich the ABox A with the assertion U(u, s). Saturate now the used
subsets, that is, for each s ∈ F , add the assertions U(s, s) for all U ∈ sig(T)R.

Up to introducing the entailed concepts, the resulting interpretation IF (based
upon the described enriched ABox) is a model, as we introduced the missing roles
for the elements, the used subsets are now saturated, and the non-used subsets
were already given their needed roles.

In addition to the mA ABox matches, each used subset provides one additional
match since the assertion S(s, s) has been added. Recall Condition 1 from Defini-
tion 68 which ensures no match with shape S(s, u) is introduced, hence the roles
added between the elements and subset individuals only reuse pre-existing matches.
We thus obtain a model with exactly mA + k matches, and thus a countermodel
for [mA + k + 1,+∞] being a certain answer.

Counting Queries in Ontology-Based Data Access 201

5.5. Role cardinality over DL-LiteHpos

(⇐). Assume (U ,S, k) /∈ Set Cover. Consider a model I of K and a
homomorphism f : CK → I. For each u ∈ U , we associate a subset ρ(u) := s if
f(uR1) = s and u ∈ s ∈ S, otherwise set ρ(u) := su. The image ρ(U) is a covering
of U , hence |ρ(U)| ≥ k + 1. By definition, for each s ∈ ρ(U) there exists u ∈ U
such that: either f(uR1) = s with u ∈ s ∈ S, or f(uR1) ̸= s′ for all u ∈ s′ ∈ S.

In the first case, since T |= {R1 ⊑ S,∃R−
1 ⊑ ∃R2,R2 ⊑ S} (due to the

assumed non-trivial propagation), we focus on the pair (f(uR1), f(uR1R2)). If
(f(uR1), f(uR1R2)) is not already an ABox match, then we have found an ad-
ditional match. Otherwise (f(uR1), f(uR1R2)) is an ABox match (i.e. K |=
S(f(uR1), f(uR1R2)). By construction of A, this must be due to S propagating a
subrole U of S (see ‘Introduction of subroles of S for subsets’ in the definition of
the ABox), which means we have f(uR1R2) = b. Condition 2 from Definition 68
applied with U provides T |= R−

2 ⊑ S, hence (f(uR1R2), f(uR1)) is a new match
(recall that (b, s) is not an ABox match!). In the second case, (f(u), f(uR1)) is a
new match (in the case where B = ∃T, simply recall that T ̸|= T ⊑ S). Therefore
we can conclude that there are at least mA + k + 1 matches in I.

Case 2: B = ∃T with T |= T ⊑ S. We first describe the ABox. Elements from U
and the subsets in which they occur are represented by facts {T(u, s) | u ∈ s ∈ S}.
All the roles issuing from ∃T and which are not subroles of S are introduced as
follows, pointing to auxiliary a:{

U(u, a)
∣∣U ∈ N±

R , u ∈ U , T |= ∃T ⊑ ∃U, T ̸|= U ⊑ S
}

We proceed as well with the roles issuing from either ∃T− or ∃S−, pointing either
to b or to a:{

U(s, b)
∣∣U ∈ N±

R , s ∈ S, T |= ∃S
− ⊑ ∃U ∨ T |= ∃T− ⊑ ∃U T |= U ⊑ S

}
and {

U(s, a)
∣∣U ∈ N±

R , s ∈ S, T |= ∃S
− ⊑ ∃U, T ̸|= U ⊑ S

}
To complete our description of the ABox, we saturate a and b with facts:

{U(a, a) | U ∈ sig(T)R} ∪ {U(b, b) | U ∈ sig(T)R}

We again let A be the union of all the preceding facts and set K := (T ,A) and
observe that the anonymous elements in CK are all of the form uUw with u ∈ U ,
T |= U ⊑ S, and w a word. Notice again that no pair (b, s), with s ∈ S, is an
ABox match, which is due here to both Conditions 2 and 3 from Definition 68.

As before, we denote by mA the number of matches for qS in the ABox A. In
particular mA ≥

∑
s∈S |s|+ 1, due to the representation of the problem instance

and the saturation of a. We establish the following claim:

[mA+k+1,+∞] is a certain answer for qS w.r.t. K ⇐⇒ (U ,S, k) /∈ Set Cover.

202 Q. Manière

5. Cardinality Queries

(⇒). The proof is essentially the same as for Case 1.

(⇐). Assume (U ,S, k) /∈ Set Cover. Consider a model I of K and a
homomorphism f : CK → I. For each u ∈ U , we associate a subset ρ(u) := s if
f(uR1) = s and u ∈ s ∈ S, otherwise set ρ(u) := su. The image ρ(U) is a covering
of U , hence |ρ(U)| ≥ k + 1. By definition, for each s ∈ ρ(U), there exists u ∈ U
such that: either f(uR1) = s with u ∈ s ∈ S, or f(uR1) ̸= s′ for all u ∈ s′ ∈ S.

In the first case, since T |= {R1 ⊑ S, ∃R−
1 ⊑ ∃R2,R2 ⊑ S} (due to the

assumed non-trivial propagation), we focus on the pair (f(uR1), f(uR1R2)). If
(f(uR1), f(uR1R2)) is not already an ABox match, then we are done. Otherwise
(f(uR1), f(uR1R2)) is an ABox match, then by construction of A, it must be due
to either S or T propagating a subrole U of S, in particular, we get f(uR1R2) = b.
Condition 2 (resp. Condition 3) from Definition 68 applied with U provides T |=
R−

2 ⊑ S, hence (f(uR1R2), f(uR1)) is a new match (recall (b, s) is not an ABox
match!). In the second case, (f(u), f(uR1)) is a new match. Therefore there are at
least mA + k + 1 matches in I.

5.5.2 Equivalence with Perfect Matching

We now turn to the second part of Theorem 54, which characterizes the complexity
of answering qS over T in the case in which the DL-LiteHpos TBox T admits a non-
trivial pairing of S but does not have any non-trivial propagation of S or S−. We start
by proving a logspace reduction from the complement of Maximum Matching
to our problem. The problem Maximum Matching asks whether, given a non-
oriented graph G and an integer k, there exists a matching of G with size at
least k. As explained before, the latter problem is known to be equivalent, up to
logspace reductions, to the better known Perfect Matching problem [Rabin
and Vazirani, 1989]. Thus, the reduction we give also proves a reduction from
Perfect Matching to our problem.

Proof of the reduction from Maximum Matching. Consider a DL-LiteHpos TBox
T that admits a non-trivial pairing of S and does not admit any non-trivial
propagation of S or S−. Let B and R verify the pairing conditions, that is,

T |= B ⊑ ∃R T |= R ⊑ S T |= R ⊑ S− T ̸|= S ⊑ S−

and if B = ∃T, then either T ̸|= T ⊑ S or T ̸|= T ⊑ S−.
Consider an instance of Maximum Matching given by the undirected graph

G := (V , E) and integer k. Let ≤V be any total order on the vertices of G. We

Counting Queries in Ontology-Based Data Access 203

5.5. Role cardinality over DL-LiteHpos

encode G using the following ABox AG:

AG :=

∣∣∣∣ {B(u) | u ∈ V} if B ∈ NC

{T(u, a) | u ∈ V} else, with B = ∃T (Representing vertices)

∪ {S(u, v) | {u, v} ∈ E , u ≤V v} (Representing edges)

∪ {U(a, a) | U ∈ sig(T)R} (Saturating a)

Let KG be the KB (T ,AG). Let mA be the number of matches in the ABox.
Notice each edge {u, v} gives one match in the ABox, through the added assertion
S(u, v) with u ≤V v, and exactly one as T ̸|= S− ⊑ S. We claim that [mA + |V| −
k+1,+∞] is a certain answer for qS w.r.t. KG iff (G, k) /∈Maximum Matching.
Notice that both AG and the integer mA + |V| − k + 1 are easily computable in
logarithmic space from any reasonable representation of the instance (G, k), so we
will get the desired within logspace reduction.

(⇐). Assume (G, k) /∈ Maximum Matching. Consider a model I of K and a
homomorphism f : CK → I. Consider the following matching:

MI := {{u, v} ∈ E | f(uR) = v, f(vR) = u}

As f is a function, it is clear that each vertex is incident to at most one of the edges
from MI , ensuring MI is a matching. In particular, it yields |MI | < k. Each edge
from MI provides exactly one additional match, since there was already exactly
one match per edge, and the role R is a subrole of both S and S−. Each vertex that
is not incident to any edge in MI provides at least one additional match: recall
that since T ̸|= T ⊑ S or T ̸|= T− ⊑ S, either (f(u), f(uR)) or (f(uR), f(u)) is a
new match.Therefore there are at least mA + |MI |+ |V| − 2|MI | > mA + |V| − k
matches in I.

(⇒). Assume (G, k) ∈Maximum Matching. Consider a matching M ⊆ E with
|M | ≥ k. Consider the enriched ABox AM such that for each {u, v} ∈M and each
positive role U ∈ N±

R , we have U(u, v) ∈ AM . This yields exactly one additional
match per edge in M , again because exactly one match per edge was already
present. For each u ∈ V such that u is not incident to any edge in M , also add
all the assertions U(u, u) ∈ AM . This yields exactly one new match per vertex not
incident to any edge in M . Up to adding the entailed concepts wherever needed,
this provides a model with at most: mA + |E|+ |V| − 2|E| ≤ mA + |V| − k matches
of qS, being a counter model for [mA + |V| − k + 1,+∞].

We complete the proof of the second part of Theorem 2 by showing how
answering qS over T can be reduced, via logspace reductions, to the complement

204 Q. Manière

5. Cardinality Queries

of Maximum Matching in the case in which T is a DL-LiteHpos TBox without
non-trivial propagation. Again, this yields a logspace reduction to the complement
of Perfect Matching due to the previously cited logspace-equivalence between
these two matching problems. We let qS be our role cardinality and T a DL-LiteHpos
TBox T without non-trivial propagation and start with some general remarks.

Compared with the tractable settings of Section 5.4.1, with DL-LiteHpos we no
longer need to take care of negative concept inclusions, but we will now need to take
into account role inclusions when handling role cardinality queries. In particular,
role inclusions allow for a class BT of what we call bipotent roles, i.e., subroles of
both S and S− (formally: positive roles U such that T |= U ⊑ S and T |= U ⊑ S−).
On the other hand, the class NT of positive roles not being a subrole of S nor a
subrole of S− are called nilpotent (formally: positive roles U such that T ̸|= U ⊑ S
and T ̸|= U ⊑ S−).

Recall that our previous notion of type aimed to characterize individuals based
on their ability to receive some roles (is there a negative concept preventing my
anonymous element to merge with this individual?) and to provide ABox matches
on which to fold (is there an ABox match on which to fold matches propagated
by a given anonymous element?). This typing notion needs to be modified for the
setting we consider here. On the one hand, negative inclusions being disallowed, all
individuals are able to receive all roles. On the other hand, we must now distinguish
ABox matches on which we can fold bipotent roles from those on which we can
only fold non-bipotent roles. We also extend our typing notion to nilpotent roles:
their type being a characterization of the subroles they propagate.

Definition 70. Let A be an ABox and K := (T ,A). The type θK(d) of an element
d ∈ Ind(A) over K is the set:

θK(d) :=

{
R

∣∣∣∣ R ∈ {{S, S−}, {S}, {S−}}
∃e ∈ ∆CK ∀R ∈ R, CK |= R(d, e)

}
.

The type θK(R) of a nilpotent role R ∈ NT over K is the set:

θK(R) :=

{
U

∣∣∣∣ U ∈ {{S, S−}, {S}, {S−}}
∃V ∈ N±

R ,∀U ∈ U, T |= ∃R− ⊑ ∃V ∧ T |= V ⊑ U

}
.

The set ΘT of possible types is hence:

{{{S, S−}, {S}, {S−}}, {{S}, {S−}}, {{S−}}, {{S}}, ∅}.

Following the line of the TC0 membership proofs for role cardinality queries,
we are still interested in demanding elements. In particular, bipotent roles might
create a new kind of such elements: bidemanding elements, which are defined as
follows.

Counting Queries in Ontology-Based Data Access 205

5.5. Role cardinality over DL-LiteHpos

Definition 71. Let A be an ABox and K := (T ,A). We consider bidemanding
individuals D±

K and bidemanding roles D±
σ as follows:

D±
K :=

a

∣∣∣∣∣∣
a ∈ Ind(A)
{S, S−} ∈ θK(a)
∀b ∈ Ind(A), (K ̸|= S(a, b)) ∨ (K ̸|= S−(a, b))


D±
σ :=

{
R

∣∣∣∣ R ∈ genK
{S, S−} ∈ θK(R)

}
Notice here the assumptions that bidemanding roles should be nilpotent and

not only “non-bipotent”.We now redefine for our setting the notions of positive /
negative demanding individuals.

Definition 72. Let A be an ABox and K := (T ,A). Define positive demanding
individuals D+

K, resp. negative demanding individuals D−
K as:

D+
K :=

a

∣∣∣∣∣∣
a ∈ Ind(A) \ D±

K
{S} ∈ θK(a)
∀b ∈ Ind(A), K ̸|= S(a, b)


D−

K :=

a

∣∣∣∣∣∣
a ∈ Ind(A) \ D±

K
{S−} ∈ θK(a)
∀b ∈ Ind(A), K ̸|= S−(a, b)


Strategies are no longer needed in our setting, as negative inclusions have been

removed. Due to the adaptation of our notions of types, a choice of well-typed
elements is redefined to now apply to types (of roles) instead of applying to the
positive roles themselves. This is simply because the absence of negative concept
inclusions allows us to apply the same choice to all nilpotent roles having the same
type.

Definition 73. Let A be an ABox and K := (T ,A). A choice of well-typed
elements for K is a function chσ/K : ΘT → Ind(A) such that for each type t ∈ ΘT ,
if there exists a nilpotent generated role R ∈ genK ∩NT such that θK(R) = t, then
we have t ⊆ θK(chσ/K(t)).

We now state our fundamental theorem, which proves that, if a choice of well-
typed elements is available and in the absence of demanding individuals, then the
canonical model can fully fold on the individuals without creating any additional
match. This central property crucially relies on the absence of a non-trivial
propagation schema.

Theorem 55. Let A be an ABox and K := (T ,A). If there is a choice chσ/K of
well-typed elements over Ind(A) and if K admits no bidemanding individuals, then
there exists a mapping χ : ∆CK → Ind(A) s.t. the matches in the resulting model
χ(CK) are exactly the ABox matches.

206 Q. Manière

5. Cardinality Queries

Proof sketch. The proof proceeds by induction on CK, exploiting the choice of
well-typed elements to build an image for each of its elements. As it requires some
additional technical definitions, the full proof is deferred to the appendix.

With this key result in hand, we can now observe that, in the absence of
bidemanding individuals, our problem is easy to decide: within TC0. Indeed,
without bidemanding individuals, the best way to combine positive and negative
demanding individuals is still to pair them 1-to-1. Therefore, the optimal number
of matches can easily be decided by counting such elements.

Lemma 39. Let A be an ABox and K := (T ,A). If K admits no bidemanding
individuals, then the minimal number of matches can be decided within TC0.

Proof. Assume K does not admit any bidemanding individuals. Set a classic pairing
pairchσ/K := (pair+chσ/K , pair

−
chσ/K

) for positive and negative demanding individuals.
We distinguish several cases, but the proof idea is always the same: in each case
we exhibit the optimal number of matches that can be easily computed from the
types of individuals. We then prove it is minimal and exhibit a model with this
precise number of matches using Theorem 55 on ABox A∗ and some chK∗ that will
be specified in each case:

A∗ := A ∪ {S(x, y) | pair+chσ/K(x) = y}

∪
{
S(x, x)

∣∣∣∣ x ∈ D+
K

x /∈ dom(pair+chσ/K)

}
∪
{
S(x, x)

∣∣∣∣ x ∈ D−
K

x /∈ dom(pair−chσ/K)

}
The recurrent arguments to prove minimality are the following mappings, always
defined and injective, I being a model of K:

ρ+ : D+
K → ∆I ×∆I

x 7→ (x, succIS(x))
ρ− : D−

K → ∆I ×∆I

x 7→ (succIS−(x), x)

We denote M := mA +max(
∣∣D+

K
∣∣, ∣∣D−

K
∣∣).

1. If there exists an individual a such that {S, S−} ∈ θK(a). Optimum is M
reached with A∗. A∗ does not admit demanding elements, and we choose, for
all t ∈ ΘT , and chK∗(t) := a.

2. Else if
∣∣D+

K
∣∣ > ∣∣D−

K
∣∣. Optimum is M reached with A∗ not admitting demand-

ing elements and setting ∀t ∈ ΘT , chK∗(t) ∈ D+
K \ dom(pair+chσ/K).

3. Else if
∣∣D+

K
∣∣ < ∣∣D−

K
∣∣. Optimum is M reached with A∗ not admitting demand-

ing elements and setting ∀t ∈ ΘT , chK∗(t) ∈ D−
K \ dom(pair−chσ/K).

Counting Queries in Ontology-Based Data Access 207

5.5. Role cardinality over DL-LiteHpos

4. Else if there exists an individual a ∈ D+
K ∩ D

−
K . Optimum is M reached with

A∗ not admitting demanding elements, assuming w.l.o.g pair+chσ/K(a) = a, and
setting ∀t ∈ ΘT , chK∗(t) := a.

5. Else if there exists (a, b) ∈ D+
K × D

−
K such that K |= S(b, a). Optimum is

M reached with A∗ not admitting demanding elements, assuming w.l.o.g
pair+chσ/K(a) = b, and setting ∀t ∈ ΘT , chK∗(t) := a.

6. Else if there exists a role R ∈ NT ∩genK such that {S, S−} ∈ θK(R). Let V be a
bipotent role generated by R−. Optimum isM+1 reached withA∗∪{S(⊥,⊥)}
not admitting demanding elements and setting ∀t ∈ ΘT , chK∗(t) := ⊥. To
ensure this number of matches is still a lower bound for the number of
matches in any model I, we need to specify where the extra match can
be found in any model I of K. Consider f : CK → I a homomorphism.
Because of all the excluded previous cases, it can be verified that either
(f(reprK(R)), succ

I
V(f(reprK(R)))) or (succIV(f(reprK(R))), f(reprK(R))) is an

additional match in I (in particular, not already counted by one’s favorite
mapping ρ+ or ρ−).

7. Else if there exists an individual a such that {S}, {S−} ∈ θK(a). Optimum
is M reached with A∗ not admitting demanding elements and setting ∀t ∈
ΘT , chK∗(t) := a.

8. Else if there exists a role R ∈ NT ∩ genK and {S}, {S−} ∈ θK(R). Optimum
is M + 1 reached with A∗ ∪ {S(⊥,⊥)} not admitting demanding elements
and ∀t ∈ ΘT , chK∗(t) := ⊥. Again, we need to specify where the extra
match can be found in any model I of K. Consider f : CK → I a homo-
morphism. It can be verified that either (f(reprK(R)), succ

I
S(f(reprK(R)))) or

(succIS−(f(reprK(R))), f(reprK(R))) is an additional match in I (in particular,
not already counted by one’s favorite mapping ρ+ or ρ−).

9. Else if there exists an individual a such that {S} ∈ θK(a). Optimum is M
reached with A∗ not admitting demanding elements and chσ/K({S}) := a and
chσ/K({S−}) := b with b the other endpoint (either certain or from pairing).

10. Else if there exists a role R ∈ NT ∩ genK and either {S} ∈ θK(R) or
{S−} ∈ θK(R). Optimum is mA + 1 reached with A∗ ∪ {S(⊥,⊥)} not ad-
mitting demanding elements and setting ∀t ∈ ΘT , chK∗(t) := ⊥. Again,
we need to specify where the extra match can be found in any model I of
K. Consider f : CK → I a homomorphism. It can be verified that either
(f(reprK(R)), succ

I
S(f(reprK(R)))) or (succIS−(f(reprK(R))), f(reprK(R))) is an

additional match in I (in particular, not already counted by one’s favorite
mapping ρ+ or ρ−).

208 Q. Manière

5. Cardinality Queries

11. Otherwise. Optimum is mA with A not admitting demanding elements and
setting ∀t ∈ ΘT , chK∗(t) := ⊥.

To conclude the TC0 membership proof, we describe the slight changes required to
adapt the circuits already provided for the role cardinality queries:

- In the block “A closer look at roles and concepts over the input”, one should
extend the inputs to all subroles of R.

- The typing block should be adapted to fit the new typing notion (see Defini-
tion 70).

- All the blocks, each dedicated to a single strategy, can now be united as a
single block computing

∣∣D+
K
∣∣ and

∣∣D−
K
∣∣.

- From this previous step, the typing block and the generated roles block,
deciding if Situation 6, 8 or 10 occurs is easy, in which case one should add 1
to the final number of matches.

We can now prove the desired reduction from our problem to Maximum Matching.

Proof of the reduction. Let A be an ABox and K := (T ,A).
If K does not admit bidemanding individuals, then Lemma 39 ensures we can

actually compute the answer within TC0, in particular within L, and create a trivial
instance of Maximum Matching co-equivalent to it.

Otherwise, there are some bidemanding individuals. Consider then the following
graph GK:

V := (D+
K × {1}) ∪ (D−

K × {−1}) ∪ D
±
K

E := {{(x, 1), (y,−1)} | (x, y) ∈ D+
K ×D

−
K}

∪
{
{x, (y, 1)}

∣∣∣∣ (x, y) ∈ D±
K ×D

+
K

K |= S(x, y)

}
∪
{
{x, (y,−1)}

∣∣∣∣ (x, y) ∈ D±
K ×D

−
K

K |= S−(x, y)

}
∪
{
{x, y}

∣∣∣∣ (x, y) ∈ D±
K ×D

±
K

K |= S(x, y)

}
We claim [k,+∞] is a certain answer for qS w.r.t. K iff (G,mA+ |V|− k+1) /∈

Maximum Matching. Notice the graph G and the integer mA + |V| − k + 1 are
easily computable within L.

Counting Queries in Ontology-Based Data Access 209

5.5. Role cardinality over DL-LiteHpos

(⇐). Assume (G,mA + |V| − k + 1) /∈ Maximum Matching. Consider a
model I of K and a homomorphism f : CK → I. For each demanding individual
x, we denote Rx a role causing this element to be demanding (that is, a bipotent
role for bidemanding elements, a subrole of S for positive demanding elements, a
subrole of S− for negative demanding elements such that xRx ∈ ∆C

K). Consider the
following matching, induced by I:

MI := {{(x, 1), (y,−1)} | (x, y) ∈ D+
K ×D

−
K , f(xRx) = y ∧ x = f(yRy)}

∪
{
{x, (y, 1)}

∣∣∣∣ (x, y) ∈ D±
K ×D

+
K

K |= S(x, y)
, f(xRx) = y ∧ x = f(yRy)

}
∪
{
{x, (y,−1)}

∣∣∣∣ (x, y) ∈ D±
K ×D

−
K

K |= S−(x, y)
, f(xRx) = y ∧ x = f(yRy)

}
∪
{
{x, y}

∣∣∣∣ (x, y) ∈ D±
K ×D

±
K

K |= S(x, y)
, f(xRx) = y ∧ x = f(yRy)

}
Being a matching, |MI | < mA+ |V|−k+1. Each edge from MI provides exactly

one additional match: either through the pairing of a positive with a negative,
or through the pairing of a bidemanding with another demanding given that one
match was already present in between. Each non-covered vertex provides one
additional match, being (x, succIRx

(x)) for positive demanding uncovered elements,
(succIRy

(y), y) for negative demanding uncovered elements, and at least one of the
latter two shapes for bidemanding elements. In addition with ABox matches, all
these matches are distinct, hence there are at least mA + |MI | + |V| − 2|MI | =
mA + |V| −MI > k − 1 matches in I. That is at least k matches.

(⇒). Assume (G,mA + |V| − k + 1) ∈ Maximum Matching. Consider a
matching M ⊆ E with |M | ≥ mA + |V| − k + 1. Consider the enriched ABox AM :

AM := A Shape 1

∪ {S(x, y) | (x, y) ∈ D+
K ×D

−
K , {(x, 1), (y,−1)} ∈M} Shape 2

∪
{
S(x, y)

∣∣∣∣ (x, y) ∈ D±
K ×D

+
K

K |= S(x, y)
{x, (y, 1)} ∈M

}
Shape 3+

∪
{
S(x, y)

∣∣∣∣ (x, y) ∈ D±
K ×D

−
K

K |= S(y, x)
, {x, (y,−1)} ∈M

}
Shape 3−

∪
{
S(x, y)

∣∣∣∣ (x, y) ∈ D±
K ×D

±
K

K |= S(y, x)
, {x, y} ∈M

}
Shape 4

∪ {S(x, x) | x ∈ V , x uncovered by M} Shape 5

Notice KM := (T ,AM) does not admit any demanding individuals. Since there
exists at least one bidemanding individual a for K, setting chσ/K(∗) := a provides a

210 Q. Manière

5. Cardinality Queries

well-typed choice of elements for both K and KM . Applying Theorem 55 provides
a model of KM , hence of K, in which the matches are exactly: mA ABox matches
(Shape 1), |M | matches from shapes 2, 3+, 3−, and 4, and |V|− 2|M | for uncovered
by M elements of V (Shape 5). Hence a total of exactly: mA + |V| − |M | matches.
Recall |M | ≥ mA + |V| − k + 1, hence that is at most k − 1 matches, that is less
than k, hence this model is a countermodel for k.

5.5.3 TC0 membership in the remaining cases

We now prove that if a DL-LiteHpos TBox T does not admit a non-trivial propagation
of S or S−, and does not admit a non-trivial pairing, then answering the role
cardinality qS over T is in TC0.

Notice that if T satisfies T ̸|= S ⊑ S−, then for any ABox A, K = (T ,A)
does not admit bidemanding individuals. Indeed, the existence of a bidemanding
individual a implies the existence of B and R such that B(a) ∈ A, T |= B ⊑ ∃R,
T |= R ⊑ S and T |= R ⊑ S−. If B is a concept name, this is non-trivial pairing. If
B = ∃T, then to prevent a non-trivial pair, T |= T ⊑ S and T |= T ⊑ S−, which
would prevent a from being bidemanding. In that case, Lemma 39 holds and solves
the problem.

Otherwise T |= S ⊑ S−, in which case the only possible demanding individuals
are bidemanding individuals (which disallows Shapes 2, 3+ and 3− from the proof
just above) not touching any pre-existing match as T |= S ⊑ S− (which also
disallows Shape 4). In particular the easiest way to minimize the number of
matches is simply by introducing a self-S-loop on each bidemanding individual,
and the optimal number of matches is therefore mA +

∣∣D±
K
∣∣ in general except if

mA =
∣∣D±

K
∣∣ = 0 and there exists a generated bipotent role R, in which case it is

exactly 1. This is easily shown through the following injective mapping, providing
at least

∣∣D±
K
∣∣ non-ABox matches in any model I:

ρ± : D±
K → ∆I ×∆I

x 7→ (x, succIS(x))

Furthermore, in the exception stated above the single match is found in any model
I by considering where the representative reprK(R) = wR ∈ ∆CK maps in I through
a homomorphism f : CK → I. It gives a match (f(w), f(wR)), or alternatively
(f(wR), f(w)) as R is bipotent (but if the model I is optimal enough, these two
are the same match!). Notice that again, with slight adaptations of the circuits,
this is still easily computable within TC0, the threshold gates being here essential
to count the number of bidemanding individuals.

Counting Queries in Ontology-Based Data Access 211

5.5. Role cardinality over DL-LiteHpos

5.5.4 Towards DL-LiteHcore
We now turn to DL-LiteHcore and exhibit new situations that are not captured by
the preceding complexity classification.

First, we observe that negative concept and role inclusions introduce two new
sources of coNP-hardness.

Theorem 56. Answering the role cardinality query qS over the DL-LiteHcore TBox
T = {B ⊑ ∃U, U ⊑ S, C ⊑ ∃V, V ⊑ S, ∃U− ⊑ ¬∃V− } is coNP-complete.

Proof. Consider the ABox:

A = {B(u) | u ∈ U} ∪ {S(u, s∗) | u ∈ s ∈ S} ∪ {C(s) | s ∈ S} ∪ {S(s, s∗) | s ∈ S}

and set K = (T ,A). Notice there are |S| +
∑

s∈S |s| ABox matches. We claim
that [|S|+

∑
s∈S |s|+ k + 1,+∞] is a certain answer of qS w.r.t. K iff (U ,S, k) /∈

Set Cover.

(⇒). Assume (U ,S, k) ∈ Set Cover. Consider a covering F ⊆ S of U with
|F | ≤ k. Consider the interpretation obtained from K in which we add, for each
u ∈ s ∈ F the fact U(u, s∗) and V(s, s), which provide k additional matches from
S(s, s). For the remaining s ∈ S, we can add the fact V(s, s∗), which does not
provide an additional match. We obtain a model IF , with exactly |S|+

∑
s∈S |s|+k

matches, being a countermodel.

(⇐). Assume (U ,S, k) /∈ Set Cover. Consider a model I of K and a
homomorphism f : CK → I. For each u ∈ U , we associate a subset ρ(u) = s
if f(uU) = s∗ and u ∈ s ∈ S, otherwise set ρ(u) = su, where su is an arbitrary
set containing u. The image ρ(U) is a covering of U , hence |ρ(U)| ≥ k + 1. By
definition, for each s ∈ ρ(U) there exists u ∈ S such that: either f(uU) = s∗, or
f(uU) ̸= ŝ∗ for all ŝ such that u ∈ ŝ ∈ S. In the first case, (s, f(sV)) must be a
new match as f(sV) cannot be s∗. In the second case (u, f(uU)) is a new match.
Therefore there are at least |S|+

∑
s∈S |s|+ k + 1 matches in I.

Theorem 57. Answering the role cardinality query qS over the DL-LiteHcore ontology
T = { B ⊑ ∃U, U ⊑ S, ∃U− ⊑ ∃V, V ⊑ S−, V ⊑ ¬W } is coNP-complete.

Proof. Consider the ABox:

A = {B(u) | u ∈ U} ∪ {S(u, s) | u ∈ s ∈ S} ∪ {W(s, u) | u ∈ s ∈ S}

and set K = (T ,A). Notice there are
∑

s∈S |s| ABox matches. We claim that
[
∑

s∈S |s|+k+1,+∞] is a certain answer of qS w.r.t. K iff (U ,S, k) /∈ Set Cover.

212 Q. Manière

5. Cardinality Queries

(⇒). Assume (U ,S, k) ∈ Set Cover. Consider a covering F ⊆ S of U
with |F | ≤ k. Consider the interpretation obtained from K in which we add, for
each u ∈ s ∈ F the fact U(u, s) and V(s, s), which provide k additional matches
from S(s, s). We obtain a model IF , with exactly

∑
s∈S |s| + k matches, being a

countermodel.

(⇐). Assume (U ,S, k) /∈ Set Cover. Consider a model I of K and a
homomorphism f : CK → I. For each u ∈ U , we associate a subset ρ(u) = s
if f(uU) = s and u ∈ s ∈ S, otherwise set ρ(u) = su, where su is an arbitrary
set containing u. The image ρ(U) is a covering of U , hence |ρ(U)| ≥ k + 1. By
definition, for each s ∈ ρ(U) there exists u ∈ S such that: either f(uU) = s, or
f(uU) ̸= ŝ∗ for all ŝ such that u ∈ ŝ ∈ S. In the first case, (f(uUV), f(uU)) must
be a new match as f(uUV) cannot be any v with v ∈ U (roles W prevent it!). In the
second case (u, f(uU)) is a new match. Therefore there are at least

∑
s∈S |s|+ k+1

matches in I.

Moreover, we further show that L-complete OMQs exist. The next result
employs a role cardinality query, but a similar result is further obtained using a
concept cardinality query (Theorem 59). For the two L lower bounds, we proceed
by reduction from the Undirected Forest Accessibility (UFA) problem,
known to be L-complete [Cook and McKenzie, 1987]. The UFA problem is to
decide, given an undirected acyclic graph (V , E) with two components, a source
vertex s ∈ V and a target vertex t ∈ V , whether t is reachable from s.

Theorem 58. Answering the role cardinality query qS over the DL-LiteHcore TBox
T = { B ⊑ ∃R, R ⊑ S, R ⊑ ¬R− } is L-complete.

Proof. We start with L membership. Let us first describe how to compute, given an
ABox A, the minimal number of matches of qS. Intuitively, whenever an outgoing
R(v, v′) is required (by the presence of B(v)) but not already provided in the ABox,
one aims at adding R(v, v′) in such a way that S(v, v′) is already present in the
ABox. This is always possible, except for two cases: (i) there are no outgoing S
from v, or (ii) all the S(v, v′) are such that B(v′) holds and S(v′, v) holds as well.

In case (i), a new atom of the shape S(v, v′) has to be added, creating a new
match. In the second case, since R ⊑ ¬R−, one could create an inconsistency if the
choice were to be done in a local fashion. Let us study how to perform optimally
these choices.

We call exit point an individual v that satisfies one of the three following
conditions:

- B(v) ̸∈ A;

- ∃v′ R(v, v′) ∈ A;

Counting Queries in Ontology-Based Data Access 213

5.5. Role cardinality over DL-LiteHpos

- ∃v′ S(v, v′) ∈ A and either B(v′) ̸∈ A or K ̸|= S(v′, v).

Intuitively, an exit point either already satisfies the concept inclusion B ⊑ ∃R (the
first two conditions) or can satisfy it in a globally optimal way by adding R(v, v′)
(in the third case, if a model minimizing the number of matches contains R(v′, v)
and S(v′, v), one can get another minimal mode by adding S(v′, v∗) and S(v′, v∗)),
where v∗ is a fresh element).

Let us thus consider the tradeoff graph of A having as vertices the individuals
of A and an edge between u and v if it holds that S(u, v), S(v, u),B(u),B(v) ∈ A,
and R(u, v),R(v, u) ̸∈ A. This graph may contain several connected components,
which can be of several types:

a. the connected component contains a cycle: there exists a consistent way to
add R atoms wherever necessary in such a way that all the new R atoms fold
on S atoms present in A;

b. the connected component contains an exit point: similarly, add R atoms
wherever necessary in such a way that all the new R atoms fold on S atoms
present in A;

c. the connected component is a tree and does not contain an exit point: an
atom R(v, x) for which S(v, x) ̸∈ A has to be added. v can be chose arbitrarily
among the vertices of the connected component, and x can be chosen to be a
fresh element.

Thus, the minimal number of matches is the number of pairs (v, v′) such that
either R(v, v′) or S(v, v′) holds, plus the number of connected components of type
c. in the previous case distinction. Algorithm 2 computes this minimum number
of matches, and compare it to the number provided in input. Let us notice that
checking for the existence of a cycle in a connected component can be done by
making calls to an oracle for reachability in undirected graphs.

Algorithm 2 runs in logarithmic space, as undirected reachability is decidable
in L, and L is low for itself. This proves membership to L.

For the lower bound, let us reduce UFA to our problem. Let G = (V , E) be
an undirected acyclic graph with two components and let s, t ∈ V be two vertices.
Consider the following ABox:

A = {B(u) | u ∈ V}∪{S(u, v) | {u, v} ∈ E}∪{S(s, v∗), S(t, v∗)}∪{R(s, v∗),R(t, v∗)},

where v∗ is a fresh individual. Note that we have thus made both s and t exit
points, and they are the only such individuals. Let us notice that A is first-order
definable from G. We thus focus on the following claim:

((V , E), s, t) ∈ UFA⇔ [2|E|+ 3,+∞] is a certain answer for qS w.r.t. (T ,A)

214 Q. Manière

5. Cardinality Queries

Data: An ABox A, an integer n
Result: Yes if and only if [n,+∞] is a certain answer for qS w.r.t. (T ,A)
m← |{(v, v′) | S(v, v′) ∈ A ∨ R(v, v′) ∈ A}|;
G ← tradeoff graph of A
for i← 1 to n do

if no vj with j < i is reachable from vi in G then
if no exit point is reachable from vi in G then

if the connected component of vi in G does not contain a cycle
then
m← m+ 1;

end
end

end
return Yes if n ≤ m, no otherwise

end
Algorithm 2: An algorithm for checking whether [n,+∞] is a certain answer
for qS w.r.t. (T ,A)

Let us first notice that in any model, there are 2|E|+ 2 matches of qS, as there are
that many matches from qS in A.

Let us consider the case where s is not reachable from t. As G has exactly
two connected components, for any vertex v (distinct from both s and t), there
exists a unique vertex among {s, t} that is reachable from v and a unique S-
edge S(v, f(v)) outgoing from v on the shortest path to s or t (depending on
which connected component v belongs). Let us consider the interpretation I =
A ∪ {R(v, f(v))| v ∈ V \ {s, t}}. I is a model of T : for any v such that B(v) holds,
there is an atom R(v, v′). Moreover, if v is on the shortest path from v′ to s
(resp. to t), then v′ cannot be on the shortest path from v to s (resp. to t), hence
RI ∩ (R−)I = ∅. I is thus a model of A and T in which there are exactly 2|E|+ 2
matches of qS, proving that if ((V , E), s, t) ̸∈ UFA, then [2|E| + 3,+∞] is not a
certain answer of qS w.r.t. (T ,A).

Let us now consider the case where s is reachable from t. We already know
that in any model of A and T , there are 2|E|+ 2 matches of qS. We prove there
must be another match of qS. We show that there must be some R(v, v′) in any
model such that S(v, v′) ̸∈ A. Let v be in the connected component that contains
neither s nor t. Let us consider a maximal (possibly infinite) sequence v1, v2, . . . , vn
with v1 = v and such that for any i, R(vi, vi+1) belongs to I. As there are no cycle
in G and that R ⊑ ¬R−, there exists i such that S(vi, vi+1) ̸∈ A, which provides a
new match for qS, which concludes the proof.

As previously mentioned, a similar statement is obtained in the case of concept

Counting Queries in Ontology-Based Data Access 215

5.5. Role cardinality over DL-LiteHpos

cardinality queries.

Theorem 59. Answering the concept cardinality query qC over the DL-LiteHcore
TBox T = { B ⊑ ∃R, ∃R− ⊑ C, R ⊑ ¬R−, R ⊑ ¬T } is L-complete.

Proof. We start by proving L membership. Let us first notice that the minimum
number of matches can only be one of the two following values:

- n = |{v | C(v) ∈ A ∨ ∃v′ R(v′, v) ∈ A}|, which is the number of matches in
the ABox on which concept inclusions have been applied;

- n+ 1, which can be obtained by introducing a fresh element α, and adding
R(v, α) for any v in Ind(A), as well C(α).

Let us consider a model I having n matches. Let f be a homomorphism from CK
to I. Let v ∈ Ind(A) such that vR ∈ ∆C

K. Then:

- f(vR) ∈ Ind(A) (otherwise, a new match would be created);

- C(f(vR)) ∈ A or there is v′ s.t. R(v′, v) ∈ A (otherwise, a new match would
be created);

- T(v, f(vR)) ̸∈ A (otherwise I would not be a model)

- R(f(vR), v) ̸∈ A (otherwise I would not be a model)

- if f(vR)R ∈ ∆C
K, then f(f(vR)R) ̸= v (otherwise I would not be a model).

All the conditions except the last one can be checked for each individual
separately. We call exit point an individual v for which either vR ̸∈ ∆C

K or there
exists v′ such that by setting f(vR) = v′, the first four conditions are satisfied, and
the fifth one is satisfied by vacuity, i.e., v′R ̸∈ ∆C

K.
Let us define the tradeoff graph G of A having as vertices the individuals of A

and an edge {v, v′} if and only if:

{B(v),B(v′),C(v),C(v′)} ∈ A and {T(v, v′),T(v′, v),R(v, v′),R(v′, v)} ∩ A = ∅.

This is called a tradeoff graph because if {v, v′} is an edge, then we could either
set f(vR) = v′ or f(v′R) = v without creating new matches, but not both, as this
would violate the negative role inclusion R ⊑ ¬R−.

We claim that there exists a model with exactly n matches if and only if in
every connected component of G there is either an exit point or a cycle. Indeed,
notice that if {v, v′} is an edge of the tradeoff graph, then adding an atom R(v, v′)
does not increase the number of matches of qC. If there is an exit point v∗ in a
connected component, there is a way to add an atom R(v∗, v̂) without adding a

216 Q. Manière

5. Cardinality Queries

match and with v̂ not being in the same connected component as v∗ (by definition of
the tradeoff graph). Then, by a breadth first traversal of the connected component,
one can add R atoms as required. Similarly, when there is a cycle, one starts by
such a cycle, and add other atoms in a breadth first fashion.

Conversely, if there exists a model with n matches, then f(vR) ∈ Ind(A) for any
v such that aR is defined. Let v1, . . . , vn, . . . be a sequence such that f(viR) = vi+1

whenever viR ∈ ∆C
K, and such that vi is the last element of the sequence otherwise.

If f(viR) is not an exit point, then there is an edge {vi, vi+1} in the tradeoff graph.
If the sequence if finite, then the one before the last is an exit point. Otherwise,
there must be a cycle in the connected component containing v1.

Algorithm 3 checks this condition. As it amounts to several reachability checks
in an undirected graph, this algorithm can be made to run in L.

Data: An ABox A, an integer n
Result: Yes if and only if [n,+∞] is a certain answer of qC w.r.t. (T ,A)
m← |{(v) | R(v′, v) ∈ A ∨ C(v) ∈ A}|;
r ← m;
G ← tradeoff graph of A for i← 1 to n do

if no vj with j < i is reachable from vi in G then
if no exit point is reachable from vi in G then

if the connected component of vi in G does not contain a cycle
then
r ← m+ 1; // r can take only two values

end
end

end
return Yes if n ≤ r, no otherwise

end
Algorithm 3: An algorithm for checking whether [n,+∞] is a certain answer
of qC w.r.t (T ,A)

To prove L-hardness, we again proceed by reduction from UFA. Consider the
following ABox:

A = {B(u),C(u) | u ∈ V}
∪{T(u, v) | {u, v} ̸∈ E}
∪{T(u, v∗), | u ∈ V \ {s, t}}
∪{R(s, v∗),R(t, v∗)},

There are |V|+ 1 matches of qC in A. We prove that:

((V , E), s, t) ∈ UFA⇐⇒ [|V|+ 2,+∞] is a certain answer of qC w.r.t. (T ,A).

Counting Queries in Ontology-Based Data Access 217

5.5. Role cardinality over DL-LiteHpos

Let us consider the case where s is not reachable from t. As (V , E) has exactly
two connected components, for any vertex v (distinct from both s and t), there
exists a unique vertex among {s, t} that is reachable from v and a unique vertex f(v)
that is on the shortest path from v to s (or t). Let us consider the interpretation
I = A ∪ {R(v, f(v)) | v ∈ V \ {s, t}}. I is a model of T : for any v such that B(v)
holds, there is an atom R(v, v′). Moreover, if v is on the shortest path from v′

to s, then v′ cannot be on the shortest path from v to s, hence RI ∩ (R−)I = ∅.
Moreover, {v, f(v)} ∈ E , hence (v, f(v)) ̸∈ TI . I is thus a model of A and T in
which there are exactly |V|+ 1 matches of qC, proving that if ((V , E), s, t) ̸∈ UFA,
then [|V|+ 2,+∞] ̸∈ q(T ,A)

C .
Let us now consider the case where s is reachable from t. We already know that

in any model of A and T , there are at least |V|+ 1 matches of qC. As there are no
cycle in the connected component not containing s and t, in any model of (A, T)
there must be an individual v having an outgoing edge R(v, v′) with {v, v′} ̸∈ E .
As T(v, u) holds for any u such that {v, u} ̸∈ E , as well as for u = v∗, v′ provides a
novel match for qC, concluding the proof.

Our results imply that, under standard complexity-theoretic assumptions, at
least four different complexities are possible for cardinality queries coupled with
DL-LiteHcore ontologies.

218 Q. Manière

6
Conclusion

Summary of the contributions

We explored the complexity of answering counting conjunctive queries over ALCHI
ontologies, as part of the more general ontology-mediated query answering frame-
work. This problem is structured around three main components: some data
representing ground facts, an ontology representing domain knowledge, and a query,
typically taking the form of an existentially quantified conjunction of atoms. A
knowledge base is the combination of the data and the ontology, and a model of
this combination is a way to extend the data so that the extension satisfies all
the requirements from the ontology. In a given model, we are interested in how
many ways we can satisfy the query, that is the number of so-called (counting)
matches, which provides an answer to our query that might vary from model to
model. The semantics we defined for CCQ answering over KB asks for bounds on
these numbers when considering every possible model of the KB of interest, and
calls such bounds certain answers.

This framework generalizes existing semantics for counting queries in OMQA,
and subsumes the classical problem of conjunctive query answering. On the
description logics side, we investigated ontologies expressed in ALCHI and in its
sublogics, significantly extending the scope of previous explorations of counting
queries in OMQA that were limited to fragments of the DL-Lite family. For such
ontologies, we have seen that only the lower bound in a certain answer is non-trivial,
and hence focused on deciding whether an input integer m is such that the query is
satisfied at least m times in every model of the KB. We measured the complexity of
this decision problem with respect to the standard combined complexity, considering
everything as part of the input, but also with respect to data complexity for which
the ontology and the CCQ are fixed.

Our main contribution is a complete landscape of the complexity of CCQ

219

Summary of the contributions

answering over ALCHI KBs, notably closing the cases left open in the literature.
For the general case, we proved that the problem is 2EXP-complete for most
sublogics of ALCHI, but that it drops to coNEXP-complete for DL-Litecore. In
term of data complexity, we showed the problem is coNP-complete for all considered
DLs. The developed techniques rely on careful manipulations of models of interest,
that both preserve the number of matches for the CCQ of interest and unfold the
inner regularities of the model. Our constructions proved themselves robust as
they also allowed us to close an open question in the related setting of OMQA with
closed predicates, in which some designated predicates are interpreted under the
closed-world assumption. We exhibited a coNEXP procedure to decide whether a
DL-Litecore KB with closed predicates is satisfiable, matching an existing coNEXP
lower bound.

In an effort to identify subcases with better complexity, we first considered the
impact of restricting to rooted CCQs. Rootedness is indeed a syntactic restriction
that has been shown to lower the complexity of several OMQA settings. It turned
out however that the most straightforward adaptation of this restriction to CCQs
does not lead to better computational properties. This motivated us to focus on
the more restricted, yet still natural, class of exhaustive rooted CCQs. For this
latter class, we used variations of the constructions developed in the general case to
obtain four different improvements depending on the considered DL, ranging from
PP-completeness to coNEXP-completeness. Interestingly, the coNEXP-hardness
result strongly relies on the presence of inverse roles in the ontologies, a feature that
is already known to increase the complexity of answering rooted (plain) conjunctive
queries. In terms of data complexity, we exhibited tractable cases for DL-Litecore
ontologies. This positive result relies upon showing that the canonical model
minimizes the number of matches for any exhaustive rooted CCQ.

We continued our hunt for well-behaved subcases of our problem by considering
another restriction on the query language, unrelated to rootedness, namely, atomic-
ity. The class of CCQs consisting of a single atom, which we termed cardinality
queries, comes in two flavors depending on whether this atom concerns a unary
or a binary predicate. Several connections with the semantics of closed predicates
naturally were exhibited and exploited to determine the combined complexity of
cardinality query answering. We proved that while this problem is coNP-complete
for the considered dialects of the DL-Lite family, it remains EXP-complete for
EL and several of its extensions. When the ontologies are expressive enough to
enforce that all of their models are exponentially large, then the complexity rises
to coNEXP-completeness, which is surprisingly high for what appears to be a
very simple setting. However, the situation is more favorable if we consider data
complexity, as we were able to identify tractable cases for ontologies formulated in
the DL-Lite family. Quite interestingly, these tractability results do not rely on the

220 Q. Manière

6. Conclusion

existence of an optimal canonical model, but rather on the existence of a family of
models among which an optimal model can always be found. Finally, we refined our
study of data complexity to the level the ontology-mediated queries. More precisely,
we managed to fully characterize the complexity of answering OMQs consisting
of a cardinality query paired with a DL-LiteHpos ontology, and we provided simple
criteria to distinguish between the three possible complexities.

Perspectives
Going forward, the most natural challenge is to develop practical algorithms for the
tractable cases in data complexity. Rewriting techniques have already been explored
for the case of exhaustive rooted CCQs over DL-Litecore ontologies [Calvanese et al.,
2020a,c], but not for the well-behaved classes of OMQs based upon cardinality
queries that we identified. For these latter cases, our results give a rather precise
insight into the underlying coNP-complete problem, with respect to combined
complexity, and an implementation relying on Sat solvers to handle this part
seems possible. More generally, despite the variety of coNP-complete situations
we obtained, most of the procedures we describe are not easily reducible to Sat,
and it would be desirable to develop more refined coNP procedures to this end,
notably in the case of EL ontologies, for which no tractable class of CCQs is
known yet. Advances in these direction could lead to efficient counting query
rewriting algorithms, typically rewriting the CCQ of interest to a SQL query, based
on existing ontology reasoners such that Ontop1. Once rewritten, the resulting
query could further be evaluated over usual relational databases and provide more
complete answers by taking the knowledge from the ontology into account.

A more theoretical challenge would be to extend our techniques and results
to more expressive ontologies, and in particular to DLs involving more counting-
oriented features. A first step in this direction would be to consider functionality
axioms, for example, with DL-LiteF ontologies, before moving to even more general
forms of cardinality constraints, e.g. ALCQ. We also drew several connections
in this thesis with OMQA with closed predicates, but we haven’t yet considered
the problem of answering CCQs over KBs equipped with such closed predicates,
which are known to already increase the complexity of answering usual conjunctive
queries [Ngo et al., 2016]. Interestingly, the upper bound in the presented notion of
certain answers is no longer trivial in the presence of the latter settings and hence
becomes a relevant question. We believe that if we want to determine such upper
bounds in the case of cardinality queries, then we may be able to take advantage
of results and techniques from recent work on bounded predicates [Lukumbuzya
and Šimkus, 2021].

1https://ontop-vkg.org/

Counting Queries in Ontology-Based Data Access 221

https://ontop-vkg.org/

Perspectives

As the techniques we developed to answer CCQs over ALCHI KBs are inspired
by techniques from the realm of existential rules, it would be relevant to study
to what extent our results can transfer to this setting. Indeed, our semantics of
counting queries allows to take into account anonymous elements induced by the
ontology. Those elements being of particular interest with existential rules, the
semantics of CCQs naturally makes sense in this latter setting and it remains to
understand the complexity of the associated problem. One could for example start
with the linear or frontier-1 fragments of existential rules, to tackle the higher arity
of predicates in controlled cases, before moving to less restricted rules.

More generally, our techniques to obtain models minimizing the number of
matches of a query may appear helpful in other settings in which a minimization is
required. We have already seen that interlacings easily adapt to query answering
over closed predicates, but one could also turn to other forms of reasoning such as
circumscription. Circumscription is a non-monotonic logic framework introduced in
the 80’s, which aims to capture the common sense assumption that things behave
in an expected way unless there are specified reasons to think otherwise [McCarthy,
1980]. It has already been studied as an extension of various description logics
such as ALC, for which circumscription restricts the notion of models to those
minimizing a given set of predicates [Bonatti et al., 2006].

It would also be relevant to explore variations of the considered problems. We
have partially investigated the optimal variant of our decision problem, asking
whether the input integer provides the tightest certain answer, but many questions
remain open. One can also focus on the functional variant of this problem, asking
for this tightest answer (or an approximation of this value) to be given as output.
Indeed, if computing good approximations of this minimum number of matches were
shown to be tractable, it would provide a nice counterpart to the high complexities
obtained within this thesis. Exhibited connections with known hard to approximate
problems tend however in the opposite direction. Regarding variations of the
problem, the question of whether a unary encoding of the input integer lowers the
complexity also remains open for several cases, notably for the combined complexity
of exhaustive rooted CCQ answering in any of the investigated DLs.

Finally, counting queries are a special case of aggregate queries which use
numeric operators (e.g. sum, max, average). Despite being widely used for data
analysis, aggregate queries have been little explored in the OMQA setting. The case
of the counting function is arguably different in nature from the other aggregate
functions, as it is independent from the type of the counted elements. However, we
believe the proposed semantics could serve as a relevant starting point for exploring
other aggregate functions in OMQA, provided that the considered ontologies are
equipped with some datatype features. Identifying ontology languages with such
features is arguably already challenging. Indeed, attempts to equip Datalog, which

222 Q. Manière

6. Conclusion

does not involve anonymous elements, with some arithmetic operations on integers,
e.g. with its extension DatalogZ, easily lead to undecidability. Similarly, extending
the well-known DL ALC with such features makes basic reasoning tasks such
as satisfiability and subsumption undecidable [Baader and Sattler, 2003]. Some
solutions may be found in recent developments identifying fragments of DatalogZ
that regain decidability [Cuenca Grau et al., 2020; Kaminski et al., 2021], or in
attempts to introduce aggregate in Answer Set Programming (ASP) [Faber et al.,
2011; Ferraris, 2011]. The situation also seems more favorable when equipping
lightweight description logics with aggregate features, for example as proposed in
Artale et al. [2012], in Savkovic and Calvanese [2012] or in Hernich et al. [2017],
which extend DL-Lite in this direction and identify cases in which conjunctive
query answering enjoys tractable data complexity.

Counting Queries in Ontology-Based Data Access 223

Bibliography

Aehlig, K., Cook, S. A., and Nguyen, P. (2007). Relativizing small complexity
classes and their theories. In Proceedings of the 21st International Workshop on
Computer Science Logic (CSL), pages 374–388.

Afrati, F. and Kolaitis, P. (2008). Answering aggregate queries in data exchange.
In Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pages 129–138.

Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., and Spinrad, J.
(2003). Scalar aggregation in inconsistent databases. Theoretical Computer
Science (TCS), 296(3):405–434.

Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. (2009). The
DL-Lite family and relations. Journal of Artificial Intelligence Research (JAIR),
36(1):1–69.

Artale, A., Ryzhikov, V., and Kontchakov, R. (2012). DL-Lite with attributes
and datatypes. In Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI), pages 61–66.

Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL envelope. In
Proceedings of the 19th International Joint Conference on Artificial intelligence
(IJCAI), pages 364–369.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider,
P. F. (2003). The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press.

225

Bibliography

Baader, F., Horrocks, I., Lutz, C., and Sattler, U. (2017). An Introduction to
Description Logic. Cambridge University Press.

Baader, F., Küsters, R., and Molitor, R. (1999). Computing least common sub-
sumers in description logics with existential restrictions. In Proceedings of the
16th International Joint Conference on Artificial Intelligence (IJCAI), pages
96–103.

Baader, F., Lutz, C., and Brandt, S. (2008). Pushing the EL envelope further. In
Proceedings of the 5th Workshop on OWL: Experiences and Directions (OWLED).

Baader, F. and Sattler, U. (2003). Description logics with aggregates and concrete
domains. Journal of Information Systems, 28(8):979–1004.

Bailey, D. D., Dalmau, V., and Kolaitis, P. G. (2007). Phase transitions of
PP-complete satisfiability problems. Discrete Applied Mathematics, 155(12):1627–
1639.

Berkholz, C., Gerhardt, F., and Schweikardt, N. (2020). Constant delay enumeration
for conjunctive queries: A tutorial. ACM SIGLOG News, 7(1):4–33.

Bienvenu, M., Calvanese, D., Ortiz, M., and Šimkus, M. (2014a). Nested regular
path queries in description logics. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 218–227.

Bienvenu, M., Cate, B. T., Lutz, C., and Wolter, F. (2014b). Ontology-based
data access: A study through disjunctive datalog, CSP, and MMSNP. ACM
Transactions on Database Systems (TODS), 39(4):1–44.

Bienvenu, M., Manière, Q., and Thomazo, M. (2020). Answering counting queries
over DL-Lite ontologies. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1608–1614.

Bienvenu, M., Manière, Q., and Thomazo, M. (2021a). Cardinality queries over
DL-Lite ontologies. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1801–1807.

Bienvenu, M., Manière, Q., and Thomazo, M. (2021b). Counting queries over
ELHI⊥ ontologies. In Proceedings of the 34th International Workshop on De-
scription Logics (DL).

Bienvenu, M., Manière, Q., and Thomazo, M. (2022). Counting queries over
ALCHI ontologies. In Proceedings of the 19th International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 53–62.

226 Q. Manière

Bibliography

Bienvenu, M. and Ortiz, M. (2015). Ontology-mediated query answering with
data-tractable description logics. In Tutorial Lectures of the 11th Reasoning Web
International Summer School (RW), pages 218–307.

Bienvenu, M., Ortiz, M., and Šimkus, M. (2015). Regular path queries in lightweight
description logics: Complexity and algorithms. Journal of Artificial Intelligence
Research (JAIR), 53:315–374.

Bienvenu, M., Ortiz, M., Šimkus, M., and Xiao, G. (2013). Tractable queries for
lightweight description logics. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), pages 768–774.

Bonatti, P. A., Lutz, C., and Wolter, F. (2006). Description logics with circum-
scription. In Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 400–410.

Brachman, R. J. and Schmolze, J. G. (1985). An overview of the KL-ONE knowledge
representation system. Journal of Cognitive Science (CSJ), 9(2):171–216.

Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set programming at a
glance. Communications of the ACM, 54(12):92–103.

Cabalar, P., Fandinno, J., Schaub, T., and Wanko, P. (2020). An ASP semantics for
constraints involving conditional aggregates. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI), pages 664–671.

Calvanese, D., Corman, J., Lanti, D., and Razniewski, S. (2020a). Counting query
answers over a DL-Lite knowledge base. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI), pages 1658–1666.

Calvanese, D., Corman, J., Lanti, D., and Razniewski, S. (2020b). Counting query
answers over a DL-Lite knowledge base (extended version). arXiv:2005.05886v3.

Calvanese, D., Corman, J., Lanti, D., and Razniewski, S. (2020c). Rewriting count
queries over DL-Lite TBoxes with number restrictions. In Proceedings of the
33rd International Workshop on Description Logics (DL).

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2005).
Dl-lite: Tractable description logics for ontologies. In Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI), pages 602–607.

Calvanese, D., De Giacomo, G., and Lenzerini, M. (1998). On the decidability of
query containment under constraints. In Proceedings of the 17th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages
149–158.

Counting Queries in Ontology-Based Data Access 227

Bibliography

Calvanese, D., Eiter, T., and Ortiz, M. (2007a). Answering regular path queries in
expressive description logics: An automata-theoretic approach. In Proceedings
of the 22nd AAAI Conference on Artificial Intelligence (AAAI), volume 7, pages
391–396.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. (2006).
Data complexity of query answering in description logics. In Proceedings of the
10th International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 260–270.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. (2007b).
Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. Journal of Automated Reasoning (JAR), 39(3):385–429.

Calvanese, D., Kharlamov, E., Nutt, W., and Thorne, C. (2008). Aggregate queries
over ontologies. In Proceedings of the 2nd International Workshop on Ontologies
and Information Systems for the Semantic Web (ONISW), pages 97–104.

Carral, D., Dragoste, I., and Krötzsch, M. (2018). The combined approach to
query answering in Horn-ALCHOIQ. In Proceedings of the 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 339–348.

Ceri, S., Gottlob, G., and Tanca, L. (1990). Logic Programming and Databases.
Springer-Verlag.

Chandra, A. K., Stockmeyer, L. J., and Vishkin, U. (1984). Constant depth
reducibility. SIAM Journal on Computing, 13(2):423–439.

Consens, M. P. and Mendelzon, A. O. (1993). Low-complexity aggregation in
GraphLog and Datalog. Theoretical Computer Science (TCS), 116(1):95–116.

Cook, S. A. and McKenzie, P. (1987). Problems complete for deterministic loga-
rithmic space. Journal of Algorithms, 8(3):385–394.

Cuenca Grau, B., Horrocks, I., Kaminski, M., Kostylev, E. V., and Motik, B. (2020).
Limit datalog: A declarative query language for data analysis. ACM SIGMOD
Record, 48(4):6–17.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., and Pfeifer, G. (2003). Aggregate
functions in DLV. In Proceedings of the 2nd International Workshop on Answer
Set Programming, Advances in Theory and Implementation (ASP).

228 Q. Manière

Bibliography

Deutsch, A., Francis, N., Green, A., Hare, K., Li, B., Libkin, L., Lindaaker, T.,
Marsault, V., Martens, W., Michels, J., Murlak, F., Plantikow, S., Selmer, P.,
Voigt, H., van Rest, O., Vrgoč, D., Wu, M., and Zemke, F. (2021). Graph pattern
matching in GQL and SQL/PGQ. arXiv:2112.06217.

Donini, F. M. and Massacci, F. (2000). ExpTime tableaux for ALC. Journal of
Artificial Intelligence (AIJ), 124(1):87–138.

Edmonds, J. (1965). Paths, trees and flowers. Canadian Journal of Mathematics,
17:449–467.

Eiter, T., Gottlob, G., Ortiz, M., and Šimkus, M. (2008). Query answering in the
description logic Horn-SHIQ. In Proceedings of the 11th European Conference
on Logics in Artificial Intelligence (JELIA), pages 166–179.

Eiter, T., Lutz, C., Ortiz, M., and Šimkus, M. (2009). Query answering in
description logics: the knots approach. In Proceedings of the 16th International
Workshop on Logic, Language, Information and Computation (WoLLIC), pages
26–36.

Eiter, T., Ortiz, M., Simkus, M., Tran, T., and Xiao, G. (2012a). Query rewriting
for Horn-SHIQ plus rules. In Hoffmann, J. and Selman, B., editors, Proceedings
of the 26th AAAI Conference on Artificial Intelligence (AAAI).

Eiter, T., Ortiz, M., and Šimkus, M. (2012b). Conjunctive query answering in the
description logic SH using knots. Journal of Computer and System Sciences
(JCSS), 78(1):47–85.

Faber, W., Pfeifer, G., and Leone, N. (2011). Semantics and complexity of recursive
aggregates in answer set programming. Journal of Artificial Intelligence (AIJ),
175(1):278–298.

Feier, C., Lutz, C., and Przybylko, M. (2021). Answer counting under guarded
TGDs. In Proceedings of the 24th International Conference on Database Theory
(ICDT), pages 11:1–11:22.

Ferraris, P. (2011). Logic programs with propositional connectives and aggregates.
ACM Transactions on Computational Logic (TOCL), 12(4):1–40.

Franconi, E., Ibáñez-García, Y. A., and Seylan, I. (2011). Query answering with
DBoxes is hard. In Proceedings of the 7th Workshop on Methods for Modalities
(M4M), volume 278, pages 71–84.

Garey, M., Johnson, D., and Stockmeyer, L. (1976). Some simplified NP-complete
graph problems. Journal of Theoretical Computer Science (TCS), 1(3):237–267.

Counting Queries in Ontology-Based Data Access 229

Bibliography

Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365–385.

Glimm, B., Horrocks, I., Lutz, C., and Sattler, U. (2008). Conjunctive query
answering for the description logic SHIQ. Journal of Artificial Intelligence
Research (JAIR), 31(1):157–204.

Gonthier, G. (2008). Formal proof – The four-color theorem. Notices of the
American Mathematical Society, 55(11):1382–1393.

Grädel, E., Kolaitis, P. G., and Vardi, M. Y. (1997). On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3:3–53.

Gutiérrez-Basulto, V., Ibáñez-García, Y. A., Kontchakov, R., and Kostylev, E. V.
(2015). Queries with negation and inequalities over lightweight ontologies. Journal
of Web Semantics (JWS), 35:184–202.

Gutiérrez-Basulto, V., Ibáñez-García, Y., and Kontchakov, R. (2012). An update
on query answering with restricted forms of negation. In Proceedings of the
6th International Conference on Web Reasoning and Rule Systems (RR), pages
75–89.

Hernich, A., Lemos, J., and Wolter, F. (2017). Query answering in DL-Lite with
datatypes: A non-uniform approach. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence (AAAI), pages 1142–1148.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foundations of Semantic Web
Technologies. Chapman & Hall/CRC.

Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible SROIQ.
In Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 57–67.

Horrocks, I., Patel-Schneider, P. F., and Harmelen, F. V. (2003). From SHIQ
and RDF to OWL: The making of a web ontology language. Journal of Web
Semantics (JWS), 1(1):7–26.

Horrocks, I. and Tessaris, S. (2000). A conjunctive query language for description
logic aboxes. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI), pages 399–404.

Hustadt, U., Motik, B., and Sattler, U. (2005). Data complexity of reasoning in
very expressive description logics. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI), pages 466–471.

230 Q. Manière

Bibliography

Hustadt, U., Motik, B., and Sattler, U. (2007). Reasoning in description logics
by a reduction to disjunctive datalog. Journal of Automated Reasoning (JAR),
39:351–384.

Immerman, N. (1986). Relational queries computable in polynomial time. Infor-
mation and Control, 68(1):86–104.

Immerman, N. (1999). Descriptive Complexity. Springer Graduate Texts in
Computer Science.

Kaminski, M., Kostylev, E. V., and Cuenca Grau, B. (2016). Semantics and
expressive power of subqueries and aggregates in SPARQL 1.1. In Proceedings of
the 25th International Conference on World Wide Web (WWW), pages 227–238.

Kaminski, M., Kostylev, E. V., Cuenca Grau, B., Motik, B., and Horrocks, I.
(2021). The complexity and expressive power of limit datalog. Journal of the
ACM, 69(1):1–83.

Kikot, S., Kontchakov, R., and Zakharyaschev, M. (2012). Conjunctive query
answering with OWL 2 QL. In Proceedings of the 13th International Conference
on Principles of Knowledge Representation and Reasoning (KR), pages 275–285.

Klug, A. (1982). Equivalence of relational algebra and relational calculus query
languages having aggregate functions. Journal of the ACM, 29(3):699–717.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. (2011).
The combined approach to ontology-based data access. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI), pages
2656–2661.

Kostylev, E. V. and Reutter, J. L. (2015). Complexity of answering counting
aggregate queries over DL-Lite. Journal of Web Semantics (JWS), 33:94–111.

Krisnadhi, A. and Lutz, C. (2007). Data complexity in the EL family of descrip-
tion logics. In Proceedings of the 14th international conference on Logic for
programming, artificial intelligence and reasoning (LAPR), pages 333–347.

Krötzsch, M. and Rudolph, S. (2007). Conjunctive queries for EL with composition
of roles. In Proceedings of the 20th International Workshop on Description Logics
(DL).

Krötzsch, M., Rudolph, S., and Hitzler, P. (2013). Complexities of Horn description
logics. ACM Transactions on Computational Logic (TOCL), 14(1):1–36.

Counting Queries in Ontology-Based Data Access 231

Bibliography

Lechtenbörger, J., Shu, H., and Vossen, G. (2002). Aggregate queries over condi-
tional tables. Journal of Intelligent Information Systems (JIIS), 19(3):343–362.

Levy, A. Y. and Rousset, M.-C. (1998). Combining Horn rules and description
logics in CARIN. Journal of Artificial Intelligence (AIJ), 104(1):165–209.

Libkin, L. (2003). Expressive power of SQL. Journal of Theoretical Computer
Science (TCS), 296(3):379–404.

Liu, L. and Truszczynski, M. (2006). Properties and applications of programs with
monotone and convex constraints. Journal of Artificial Intelligence Research
(JAIR), 27(1):299–334.

Lukumbuzya, S. and Šimkus, M. (2021). Bounded predicates in description logics
with counting. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1966–1972.

Lutz, C. (2008). The complexity of conjunctive query answering in expressive
description logics. In Proceedings of the 4th International Joint Conference on
Automated Reasoning (IJCAR), pages 179–193.

Lutz, C. and Przybylko, M. (2022). Efficiently enumerating answers to ontology-
mediated queries. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS), pages 277–289.

Lutz, C. and Sabellek, L. (2017). Ontology-mediated querying with the description
logic EL: Trichotomy and linear Datalog rewritability. In Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI), pages
1181–1187.

Lutz, C., Seylan, I., and Wolter, F. (2012). Mixing open and closed world assumption
in ontology-based data access: Non-uniform data complexity. In Proceedings of
the 25th International Workshop on Description Logics (DL), pages 268–278.

Lutz, C., Seylan, I., and Wolter, F. (2013). Ontology-based data access with
closed predicates is inherently intractable (sometimes). In Proceedings of the
23rd International Joint Conference on Artificial Intelligence (IJCAI), pages
1024–1030.

Lutz, C., Toman, D., and Wolter, F. (2009). Conjunctive query answering in the
description logic EL using a relational database system. In Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI), pages
2070–2075.

232 Q. Manière

Bibliography

Lutz, C. and Wolter, F. (2012). Non-uniform data complexity of query answering
in description logics. In Proceedings of the 13th International Conference on
Principles of Knowledge Representation and Reasoning (KR).

McCarthy, J. (1980). Circumscription – a form of non-monotonic reasoning. Journal
of Artificial intelligence (AIJ), 13(1-2):27–39.

Motik, B. (2006). Reasoning in description logics using resolution and deductive
databases. PhD thesis, Karlsruhe Institute of Technology, Germany.

Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee, J. (2015).
RDFox: A highly-scalable RDF store. In Proceedings of the 14th International
Semantic Web Conference (ISWC), volume 9367, pages 3–20.

Ngo, N., Ortiz, M., and Šimkus, M. (2016). Closed predicates in description
logics: results on combined complexity. In Proceedings of the 15th International
Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 237–246.

Nikolaou, C., Kostylev, E. V., Konstantinidis, G., Kaminski, M., Cuenca Grau, B.,
and Horrocks, I. (2019). Foundations of ontology-based data access under bag
semantics. Journal of Artificial Intelligence (AIJ), pages 91–132.

Ortiz, M., Calvanese, D., and Eiter, T. (2008). Data complexity of query answering
in expressive description logics via tableaux. Journal of Automated Reasoning
(JAR), 41(1):61–98.

Ortiz, M., Rudolph, S., and Šimkus, M. (2011). Query answering in the Horn
fragments of the description logics SHOIQ and SROIQ. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI).

Papadimitriou, C. H. and Yannakakis, M. (1986). A note on succinct representations
of graphs. Information and Control, 71(3):181–185.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati,
R. (2008). Linking data to ontologies. Journal on Data Semantics (JoDS),
10:133–173.

Rabin, M. O. and Vazirani, V. V. (1989). Maximum matchings in general graphs
through randomization. Journal of Algorithms, 10(4):557–567.

Rosati, R. (2007). On conjunctive query answering in EL. In Proceedings of the
20th International Workshop on Description Logics (DL).

Counting Queries in Ontology-Based Data Access 233

Bibliography

Rudolph, S., Krötzsch, M., and Hitzler, P. (2012). Type-elimination-based reasoning
for the description logic SHIQbs using decision diagrams and disjunctive datalog.
Logical Methods in Computer Science (LMCS), 8(1).

Savitch, W. J. (1970). Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences (JCSS), 4(2):177–
192.

Savkovic, O. and Calvanese, D. (2012). Introducing datatypes in DL-Lite. In
Proceedings of the 20th European Conference on Artificial Intelligence (ECAI),
pages 720–725.

Schild, K. (1991). A correspondence theory for terminological logics: Preliminary
report. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI), pages 466–471.

Sipser, M. (1996). Introduction to the Theory of Computation. PWS Publishing
Company.

Spackman, K. (2000). Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT. Journal of the
American Medical Informatics Association.

Stefanoni, G., Motik, B., Krötzsch, M., and Rudolph, S. (2014). The complexity
of answering conjunctive and navigational queries over OWL 2 EL knowledge
bases. Journal of Artificial Intelligence Research (JAIR), 51(1):645–705.

Thomazo, M. (2013). Conjunctive query answering under existential rules – De-
cidability, complexity, and algorithms. PhD thesis, Montpellier 2 University,
France.

Thomazo, M., Baget, J., Mugnier, M., and Rudolph, S. (2012). A generic querying
algorithm for greedy sets of existential rules. In Proceedings of the 13th Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 96–106.

Tobies, S. (2001). Complexity results and practical algorithms for logics in knowledge
representation. PhD thesis, RWTH Aachen University, Germany.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, Vol. I.
Computer Science Press, Inc.

Vardi, M. Y. (1982). The complexity of relational query languages. In Proceedings
of the 14th annual ACM symposium on Theory of computing (STOC), pages
137–146.

234 Q. Manière

Bibliography

Vardi, M. Y. (1995). On the complexity of bounded-variable queries. In Proceedings
of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), pages 266–276.

Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., and
Zakharyaschev, M. (2018). Ontology-based data access: a survey. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence (IJCAI),
pages 5511–5519.

Counting Queries in Ontology-Based Data Access 235

Index

ABox, 10
ALCHI, 10
answer, 23

to a counting query, 32
assumption

closed domain, 13
open domain, 13
standard names, 13
unique names, 13

axiom, 10

bidemanding
individual, 206
role, 206

branch, 130
induced, 132
valid, 132
weighted, 130

certain answer
tightest, 35
to a counting query, 32
to a query, 23

choice
of well-typed element, 180

closed predicates, 18

complexity
combined, 19, 35
data, 19, 35

concept
⊥, 13
⊤, 13
conjunction, 13
disjunction, 13
existential restriction, 13
name, 10
universal restriction, 13

conservative extension, 16
countermodel, 35
counting conjunctive query, 29
critical element, 181, 194

data, see ABox
∆∗, 46
demanding

individual, 181, 206
role, 181, 194

depth
possible, 128
relative, 70, 129

description logics, 2
DL-Lite, 11

237

Index

domain
of an interpretation, 13

EL, 11
entailment

of an assertion, 14
of an inclusion, 14

existential extraction, 39

head
applicable, 51

homomorphism
of a query, see match, 31
of interpretations, 18

inclusion
concept, 10
negative, 10
positive, 10
role, 10

individual
name, 10

instance checking, 20
interlacing, 40

Id-, 41
f ′-, 40
f ∗-, 46
f ⋆-, 123
f ⋄-, 107

interleaving, 74
interpretation, 13

graph, 13
of a strategy, 181

knowledge base, 10

link, 51

match, 23, 31
counting, 31

model, 14
canonical, 17
counter-, 35

optimal, 35
universal, 17

neighbourhood, 65
core-, 75

normal form, 16

ontology, see TBox
ontology-mediated query answering, 1
origin, 186

pairing, 181
non-trivial, 199

patter
initial, 51

pattern, 51
accepting, 54
rejecting, 53
tree, 56

prediction, 50
promise, 130
propagation, 199

non-trivial, 199
pseudo-injective, 42

query
aggregate, 222
Boolean, 23
cardinality, 159
conjunctive, 22
exhaustive, 97
predicate, 159
rooted, 97
underlying, 30

role
bipotent, 205
generated, 177
inverse, 13
name, 10
nilpotent, 205

satisfiability

238 Q. Manière

Index

of a knowledge base, 14
problem, 19

saturation, 49
set semantics, 12
signature, 10
specification

coherent, 50
induced, 50
restriction of, 50

strategy, 179, 194

extracted, 182
legal, 179

subsumption, 20

TBox, 10
type, 178

variable
answer, 22, 29
counting, 29
existential, 22, 29

Counting Queries in Ontology-Based Data Access 239

A
Additional proof material

A.1 Proofs for Section 3.3 (Answering CCQs over
ALCHI ontologies)

Lemma 9. For all w·(P, h) ∈ P, d, e ∈ ∆IP , and P ∈ NR: if (λw·(P,h)(d), λw·(P,h)(e)) ∈
PI, then IP remains T -satisfiable if we add (d, e) to PIP .

Proof. Let w1 · (P1, h1) ∈ P and d1, e1 ∈ ∆IP1 two elements. Let P ∈ NR be a
role name. Assume (λw1·(P1,h1)(d1), λw1·(P1,h1)(e1)) ∈ PI . By definition of PI , there
exist w2 · (P2, h2) ∈ P and (d2, e2) ∈ PIP2 with λw2·(P2,h2)(d2) = λw1·(P1,h1)(d1) and
λw2·(P2,h2)(e2) = λw1·(P1,h1)(e1). We further refer to these two equalities as (∗d) and
(∗e). We distinguish 5 main cases.

1. (d1 ∈ ∆I∗ or d2 ∈ ∆I∗) and (e1 ∈ ∆I∗ or e2 ∈ ∆I∗).
(∗d) yields d1 = d2 and (∗e) yields e1 = e2. Interpretation IP2 preserves I∗,
hence (d2, e2) ∈ PI∗ . Interpretation IP1 preserves I∗, hence (d1, e1) ∈ PIP1 .
It then suffices to recall that IP1 is T -satisfiable.

In the remaining cases, we assume that e1, e2 /∈ ∆I∗ or d1, d2 /∈ ∆I∗, which
ensures P1 ̸= P∗ and P2 ̸= P∗. In particular, frP1, genP1, frP2 and genP2 are
singletons. Furthermore, the conditions on roles for a non-initial pattern
(Condition 4) ensures d2 ̸= e2 (recall we assume (d2, e2) ∈ PIP2).

2. (d1 ∈ ∆I∗ or d2 ∈ ∆I∗) and (e1, e2 /∈ ∆I∗).
(∗d) yields d1 = d2, we distinguish 4 remaining subcases.

(a) e1 ∈ genP1 and e2 ∈ genP2 .
We have λw1·(P1,h1)(e1) = w1 · (P1, h1) and λw2·(P2,h2)(e2) = w2 · (P2, h2).
Hence (∗e) yields in particular P1 = P2. Recall that genP1 is a singleton,

241

A.1. Proofs for Section 3.3 (Answering CCQs over ALCHI ontologies)

so e1 = e2. Therefore IP1 already contains the fact P(d1, e1). Recalling
that IP1 is satisfiable concludes this case.

(b) e1 ∈ frP1 and e2 ∈ genP2 .
We have λw1·(P1,h1)(e1) = w1 and λw2·(P2,h2)(e2) = w2 · (P2, h2). Hence
(∗e) yields w1 = w2 · (P2, h2). In particular w2 · (P2, h2) · (P1, h1) ∈ P,
therefore P1 = chh1P2,e2

and e1 = e2. Notice e1, that is also e2, satisfies
the same concepts in IP1 and in IP2 (Lemma 8 applies to e1 seen in IP1

and e1 seen in IP2), and same for d1, that is also d2. Therefore, the
T -satisfiability of IP2 ensures that adding fact P(d1, e1) to IP1 does not
violate any negative concept inclusion from T . We make a case analysis
to show the same is true for negative role inclusions:

- First suppose genP1 = {d1}. Since (d1, e1) ∈ PIP2 and e1 ∈ genP2 ,
then we must have frP2 = {d1} (Condition 4). We can hence apply
Condition 5 from the definition of the link given by P1 = chh1P2,e2

,
ensuring that IP1 ∪ IP2 , which contains IP1 and fact P(d1, e1), is
T -satisfiable.

- If genP1 ̸= {d1}, then there are no roles between d1 and e1 in IP1

(Condition 4), hence no negative role inclusion is violated by adding
fact P(d1, e1) in IP1 .

(c) e1 ∈ genP1 and e2 ∈ frP2 .
Same arguments as for Case 2.b but with P2 = chh2P1,e1

.

(d) e1 ∈ frP1 and e2 ∈ frP2 .
We have λw1·(P1,h1)(e1) = w1 and λw2·(P2,h2)(e2) = w2. Hence (∗e) yields
the existence of w · (Q, h) such that w1 = w2 = w · (Q, h). In particular
w · (Q, h) · (P1, h1) ∈ P, hence P1 = chh1Q,e1 . Similarly we obtain P2 =

chh2Q,e2 . As e1, e2 /∈ ∆∗, the pattern Q must be different from P∗, hence
its generated term is unique, which gives e1 = e2. Notice e1, that is
also e2, satisfies the same concepts in IP1 and in IP2 (Lemma 8 applies
to e1 seen in IP1 and e1 seen in IP2), and same for d1, that is also d2.
Therefore, the T -satisfiability of IP2 ensures adding fact P(d1, e1) in IP1

does not violate any negative concept inclusion from T . It remains to
treat the case of negative role inclusions. Notice that due to Condition
4 of links, and the facts that (d2, e2) ∈ PIP2 , e2 /∈ ∆I∗ , and d2 ∈ ∆I∗ , we
must have genP2 = {d2} ⊆ ∆I∗ . It follows then from Condition 6 that
nextQ(h2) = d2. We consider two cases:

- If genP1 = {d1}, we obtain similarly nextQ(h1) = d1. Denoting
h1 := R1.B1 and h2 := R2.B2, we obtain, by definition of a prediction,
that R1 and R2 are non-contradictory. Due to Condition 4 (on the
link between Q and P2), we have T |= R2 ⊑ P. Therefore P(d1, e1)

242 Q. Manière

A. Additional proof material

is non-contradictory with R1(d1, e1) and hence with IP1 as all roles
between d1 and e1 in IP1 are consequences of R1(d1, e1) (Condition 4
on the link given by P1 = chh1Q,e1).

- If genP1 ̸= {d1}, then there are no roles between d1 and e1 (Condi-
tion 4), hence no negative role inclusion is violated by adding fact
P(d1, e1) in IP1 .

3. (d1, d2 /∈ ∆I∗) and (e1 ∈ ∆I∗ or e2 ∈ ∆I∗).
This case is symmetric to Case 2.

4. d1, d2, e1, e2 /∈ ∆I∗ .
If (d1 ∈ genP1 and d2 ∈ genP2) or (e1 ∈ genP1 and e2 ∈ genP2), then (∗d) (resp
(∗e)) yields P1 = P2 and we are easily done. Recalling from the note at the
end of Case 1 that we may assume that d2 ̸= e2, we are left with 4 subcases,
each immediately leading to a contradiction.

(a) d2 ∈ genP2 (thus d1 ∈ frP1 and e2 ∈ frP2) and e1 ∈ genP1 . (∗d) yields
w1 = w2 · (P2, h2) and (∗e) yields w2 = w1 · (P1, h1), contradiction.

(b) d2 ∈ genP2 (thus d1 ∈ frP1 and e2 ∈ frP2) and e1 ∈ frP1 . (∗d) yields
w1 = w2 · (P2, h2) and (∗e) yields w2 = w1, contradiction.

(c) d2 ∈ frP2 (thus e2 ∈ genP2 , thus e1 ∈ frP1) and d1 ∈ genP1 . (∗d) yields
w2 = w1 · (P1, h1) and (∗e) yields w1 = w2 · (P2, h2), contradiction.

(d) d2 ∈ frP2 (thus e2 ∈ genP2 , thus e1 ∈ frP1) and d1 ∈ frP1 . (∗d) yields
w2 = w1 and (∗e) yields w1 = w2 · (P2, h2), contradiction.

Lemma 11. If π : r → I is a match of r ⊆ q, then for all w · (P, h) ∈ P, we have
(r, π′) ∈MP where π′ := (λw·(P,h))

−1 ◦ π|∆ with ∆ := π−1(λw·(P,h)(∆
IP)).

Proof. Considering a breadth-first total order ⩽ on P, and given W ∈ P, define
IW as follows:

IW =
⋃

w·(P,h)⩽W

λw·(P,h)(I
P).

We prove by induction on W ∈ P that for all r ⊆ q, all matches π : r → IW and
for all w · (P, h) ⩽ W , we have (r, π′) ∈ MP where π′ := (λw·(P,h))

−1 ◦ π|∆ with
∆ := π−1(λw·(P,h)(∆

IP)).

- Assume W = (P∗, ∅), we have IW = I∗. Consider r ⊆ q and a match
π : r → IW . The only w ⩽ W is w = W = (P∗, ∅). Recalling λ(P∗,∅) = Id,
we have π′ = π. Therefore (r, π) belongs to the induced specification of I∗.
Since M∗ is coherent, it contains in particular (r, π′), which concludes the
base case.

Counting Queries in Ontology-Based Data Access 243

A.1. Proofs for Section 3.3 (Answering CCQs over ALCHI ontologies)

- Assume W ∈ P with (P∗, ∅) < W and the statement holds for all w0 < W
(Induction hypothesis 1). Consider r ⊆ q and a match π : r → IW . Consider
w · (P, h) ⩽ W . Denote d the distance from W to w · (P, h) in the tree P,
that is the number of links required to move from W to w · (P, h). We prove
by induction on d that (r, π′) ∈MP where π′ := (λw·(P,h))

−1 ◦ π|∆ and with
∆ := π−1(λw·(P,h)(∆

IP)).

- When d = 0, we have W = w · (P, h). Let W ′ the predecessor of W w.r.t.
⩽. We partition r into r1 the atoms α from r such that π is a match
for α in λW (IP) and r2 the other atoms, which are hence necessarily
mapped by π into IW ′ . We denote by π1 := π|var(r1) and π2 := π|var(r2)
the corresponding restrictions of π.
First note that since MP is coherent, it contains the pair (r1, π

′
1) where

π′
1 := (λw·(P,h))

−1 ◦ (π1)|∆1 with ∆1 := (π1)
−1(λw·(P,h)(∆

IP)).
Letting w = w′ · (Q, h′), we next note that applying the Induction
Hypothesis 1 on W ′ with w (which is indeed ⩽ W ′) and r2 and π2,
gives us (r2, π

′
2) ∈ MQ where π′

2 := (λw′·(Q,h′))
−1 ◦ (π2)|∆2 with ∆2 :=

(π2)
−1(λw′·(Q,h′)(∆

IQ)).
Since w′ · (Q, h′) · (P, h) ∈ P , we can consider P = chhQ,e, where e denotes
the frontier of P. Condition 3 in the definition of a link therefore ensures
(r2, (π

′
2)|∆I∗∪{e}) ∈MP . We’d like to form the union of this latter pair

with (r1, π
′
1).

Consider v ∈ var(r1) ∩ var(r2). Since r1 contains only atoms that are
mapped on λW (IP) by π, the variable v is thus mapped either to an
element of ∆∗, to w or to w · (P, h). The latter is excluded as r2 only
contains atoms that are mapped in IW ′ but w · (P, h) /∈ ∆IW ′ since ⩽ is
breath-first and W ′ < W = w · (P, h). If π(v) ∈ ∆∗, then it is clear that
π′
1 and (π′

2)|∆I∗∪{e} are defined and equal on v. Otherwise π(v) = w,
which yields that λW (e) = w and λw(e) = w. The first ensures π′

1 is
defined on v and equal to w, while the second ensures the same for
(π′

2)|∆I∗∪{e}. As this holds for each variable in v ∈ var(r1) ∩ var(r2), and
that MP is coherent we have (r1 ∪ r2, π′

1 ∪ (π′
2)|∆I∗∪{e}) ∈MP , which is

the desired pair.
- Assume now the property holds for all w at distance d ≥ 0 from W

(Induction Hypothesis 2). Let wd+1 ⩽ W be exactly at distance d+ 1
from W . In particular, notice that wd+1 < W . There exists a link
between wd+1 and some wd ⩽ W at distance exactly d from W . We
distinguish two cases:

- wd+1 = wd · (P, h). We exhibit another suitable partition of r.
Denote w+

d+1 the elements w′ · (Q, h′) ∈ P such that wd+1 is a prefix

244 Q. Manière

A. Additional proof material

of w′ · (Q, h′) and w′ · (Q, h′) ⩽ W . Define rd+1 as the atoms α
from r such that π is a match for α in some λw′·(Q,h′)(I

Q) with
w′ · (Q, h′) ∈ w+

d+1. Let rd consists of the remaining atoms, which
are hence mapped on elements that cannot admit wd+1 as a prefix.
Denote by πd+1 and πd the corresponding restrictions of π.
We first note that W /∈ w+

d+1, as it would contradict wd being closer
to W than wd+1. Therefore πd+1 maps rd+1 in IW ′ and we can apply
Induction Hypothesis 1 with wd+1, rd+1 and πd+1, which provides
(rd+1, π

′
d+1) ∈ MP where π′

d+1 := (λwd·(P,h))
−1 ◦ (πd+1)|∆d+1 with

∆d+1 := (πd+1)
−1(λwd·(P,h)(∆

IP)).
Letting wd = w0 · (Pd, hd), we next note that Induction Hypothesis
2 applied on wd, rd and πd provides (rd, π

′
d) ∈ Pd where π′

d :=

(λw0·(Pd,hd))
−1 ◦ (πd)|∆d with ∆d := (πd)

−1(λw0·(Pd,hd)(∆
IPd)). The

link between wd+1 and wd then ensures that (rd, (π
′
d)|∆I∗∪{e}) ∈ P

where e denotes the frontier term of P.
Consider v ∈ var(rd+1) ∩ var(rd). Since rd+1 contains only atoms
that are mapped on λw′·(Q,h′)(Q) by π for some w′ · (Q, h′) ∈ w+

d+1,
the variable v is thus mapped either to an element of ∆∗, to wd or to
elements w′ ·(Q, h′) admitting wd+1 as a prefix. But since rd contains
only terms that can not map on elements admitting wd+1 as a prefix,
only ∆∗ or wd remain possible. Noticing λwd+1

(e) = λwd(e) = wd if
ever π(v) = wd allows to conclude as in the Case d = 0.

- wd = wd+1 · (Pd, hd). We exhibit another suitable partition of r.
Denote w+

d the elements w′ · (Q, h′) ∈ P such that wd is a prefix of
w′ ·(Q, h′) and w′ ·(Q, h′) ⩽ W . Define rd as the atoms α from r such
that π is a match for α in some λw′·(Q,h′)(I

Q) with w′ · (Q, h′) ∈ w+
d .

Let rd+1 consists of the remaining atoms, which are hence mapped
on elements that cannot admit wd as a prefix. Denote by πd and
πd+1 the corresponding restrictions of π.
We first note that W ∈ w+

d , as wd is closer to W than wd+1. There-
fore πd+1 maps rd+1 in IW ′ and we can apply Induction Hypothesis
1 with wd+1, rd+1 and πd+1, which provides (rd+1, π

′
d+1) ∈MP where

π′
d+1 := (λwd·(P,h))

−1◦(πd+1)|∆d+1 with ∆d+1 := (πd+1)
−1(λwd·(P,h)(∆

IP)).
We next note that Induction Hypothesis 2 applied on wd, rd and
πd provides (rd, π

′
d) ∈ Pd where π′

d := (λw0·(Pd,hd))
−1 ◦ (πd)|∆d with

∆d := (πd)
−1(λw0·(Pd,hd)(∆

IPd)). The link between wd+1 and wd then
ensures that (rd, (π′

d)|∆I∗∪{e}) ∈ P where e denotes the frontier term
of Pd.
Consider v ∈ var(rd+1) ∩ var(rd). Since rd contains only atoms that
are mapped on λw′·(Q,h′)(Q) by π for some w′ · (Q, h′) ∈ w+

d , the

Counting Queries in Ontology-Based Data Access 245

A.2. Proofs for Section 3.4 (Countermodels with bounded size)

variable v is thus mapped either to an element of ∆∗, to wd+1 or to
elements w′ · (Q, h′) admitting wd as a prefix. But since rd contains
only terms that can not map on elements admitting wd as a prefix,
only ∆∗ or wd+1 remain possible. Noticing λwd+1

(e) = λwd(e) = wd+1

if ever π(v) = wd+1 allows to conclude as in the previous cases.

A.2 Proofs for Section 3.4 (Countermodels with
bounded size)

Theorem 9. For all c ∈ ∆I♭ and all n ≤ |q|, the following mapping:

ρn,c(e) : N J ,∆∗
n (c)→ N I♭,∆∗

n (c) e 7→


ρn−1,c(e) if e ∈ N J ,∆∗

n−1 (c)
e if e ∈ ∆∗

rn−δc(e)
2

,c
· wen+δc(e)

2
,e

otherwise

is a homomorphism satisfying ρn,c(e) ∼|q|+1−n e and ρ−1
n,c(∆

∗) ⊆ ∆∗.

Proof. Let c ∈ ∆I♭ . We proceed by induction on n ≤ |q| and prove along a
technical statement. Property ρn,c(e) ∼|q|+1−n e will already ensure wρn,c(e)|q|+1−n,ρn,c(e) =

we|q|+1−n,e; we reinforce this latter fact as follows. If e ∈ N J ,∆∗
n (c) \ N J ,∆∗

n−1 (c), then:

w
ρn,c(e)

|q|+1−n−δc(e)
2

,ρn,c(e)
= we

|q|+1−n−δc(e)
2

,e
(∗)

It is indeed a stronger statement since −n ≤ δc(e) ≤ n leads to 0 ≤ n−δc(e)
2
≤ n,

hence |q|+ 1− n ≤ |q|+ 1− n−δc(e)
2

. Property ∗ therefore provides a more precise
information about the suffix of ρn,ce.

Base case: n = 0. Let e ∈ N J ,∆∗

0 (c), hence e = c. If c ∈ ∆∗, then ρ0,ce = e = c.
Otherwise we have δc(e) = 0, hence ρ0,ce = r0,c · wc0,c = c. In both cases ρ0,ce = c,
and it is straightforward that all the desired properties hold. In particular, agreeing
that N J ,∆∗

−1 (c) can reasonably be set to ∅, our technical statement holds.

Induction case. Assume the statement holds for 0 ≤ n − 1 < |q|. Let e ∈
N J ,∆∗
n (c). If e ∈ N J ,∆∗

n−1 (c), then the induction hypothesis applies directly on e
and provides (stronger versions of) the desired properties. Otherwise, we have by
definition of neighbourhoods an element d ∈ N J ,∆∗

n−1 (c), not belonging to ∆∗ nor
to N J ,∆∗

n−2 (c), and a role P ∈ N±
R such that (d, e) ∈ PJ . We apply the induction

246 Q. Manière

A. Additional proof material

hypothesis on d, which gives ρn−1,c(d) = rn−1−δc(d)
2

,d
· wd

n−1+δc(d)

2
,d

since d /∈ ∆∗. We

further distinguish between e ∈ ∆∗ and e /∈ ∆∗, the latter subcase yielding two
subcases by applying Lemma 14 and distinguishing between Cases edge+and edge−.
We have therefore three cases to treat.

e ∈ ∆∗. We have ρn,c(e) = e and the only non-trivial property to prove is that
e ∈ N I♭,∆∗

n (c). Recall the induction hypothesis ensures in particular ρn−1,c(d) ∼1 d.
Lemma 15 applies and ensures (ρn−1,c(d), e) ∈ PI♭ , which provides the desired
property.

edge+. Case edge+ensures |e| = |d|+ 1 mod 2|q|+ 3, hence δc(e) = δc(d) + 1,
and we|q|+1,e = wd|q|+1−1,d · R.B. Therefore, our element ρn,c(e) of interest simplifies
as:

ρn,c(e) = rn−δc(e)
2

,c
· wen+δc(e)

2
,e

= rn−(δc(d)+1)

2
,c
· we

n+(δc(d)+1)

2
,e

= r (n−1)−δc(d)
2

,c
· we

(n−1)+δc(d)

2
+1,e

= r (n−1)−δc(d)
2

,c
· wd

(n−1)+δc(d)

2
,d
· R.B

= ρn−1,c(d) · R.B,

which is well-defined and satisfies ρn,c(e) ∼|q|+1−n e from Lemma 14. Recalling
that the induction hypothesis gives ρn−1,c(d) ∈ N I♭,∆∗

n−1 (c), it follows that ρn,c(e) ∈
N I♭,∆∗
n (c). Furthermore, notice that e and d satisfy all conditions of our additional

statement. Since in Case edge+we have T |= R ⊑ P, reusing ρn,c(e) = ρn−1,c(d)·R.B
immediately yields (ρn−1,c(d), ρn,c(e)) ∈ PI♭ .

Checking that Property ∗ holds is now a technicality, and recall that since
d ∈ N J ,∆∗

n−1 (c) \ N J ,∆∗

n−2 (c), we can apply it to d by induction hypothesis. We hence
have:

w
ρn,c(e)

|q|+1−n−δc(e)
2

,ρn,c(e)
= w

ρn−1,c(d)

|q|+1−n−δc(e)
2

−1,ρn−1,c(d)
· R.B

= w
ρn−1,c(d)

|q|+1− (n−1)+1−(δc(d)+1)

2
−1,ρn−1,c(d)

· R.B

= w
ρn−1,c(d)

|q|+1− (n−1)−δc(d)
2

−1,ρn−1,c(d)
· R.B

= wd
|q|+1− (n−1)−δc(d)

2
−1,d
· R.B

= we
|q|+1−n−δc(e)

2
,e
.

edge−. Case edge−ensures |e| = |d| − 1 mod 2|q|+ 3, hence δc(e) = δc(d)− 1,
and wd|q|+1,d = we|q|+1−1,e · R.B. By induction hypothesis, element ρn−1,c(d) =

r (n−1)−δc(d)
2

,d
· wd

(n−1)+δc(d)

2
,d

is well-defined. Notice Property ∗ on d (which, again

can be applied as d ∈ N J ,∆∗

n−1 (c) \ N J ,∆∗

n−2 (c)) gives more precise information on the

Counting Queries in Ontology-Based Data Access 247

A.2. Proofs for Section 3.4 (Countermodels with bounded size)

suffix of ρn−1,c(d) than the definition of ρn−1,c(d), because n ≤ |q| + 1 leads to
(n−1)+δc(d)

2
+ 1 ≤ |q|+ 1− (n−1)−δc(d)

2
. Therefore, wd

(n−1)+δc(d)

2
+1,d

is itself a suffix of

wd
|q|+1− (n−1)−δc(d)

2
,d
, which equals wρn−1,c(d)

|q|+1− (n−1)−δc(d)
2

,ρn−1,c(d)
. Hence we obtain:

ρn−1,c(d) = r (n−1)−δc(d)
2

+1,d
· wd

(n−1)+δc(d)

2
+1,d

= rn−δc(e)
2

,d
· wdn+δc(e)

2
+1,d

= rn−δc(e)
2

,d
· wen+δc(e)

2
,e
· R.B

= ρn,c(e) · R.B

Lemma 14 now ensures ρn,c(e) ∼|q|+1−n e (and could already ensure we can find
this suffix of ρn,c(d)! However, we had to check that the formula still works here,
in particular that the suffix of ρn−1,c(d) matches long enough the suffix of d) .

Recalling that the induction hypothesis gives ρn−1,c(d) ∈ N I♭,∆∗

n−1 (c), it follows
that ρn,c(e) ∈ N I♭,∆∗

n (c). Furthermore, notice that e and d satisfy all conditions
of our additional statement. Since in Case edge−we have T |= R− ⊑ P, reusing
ρn−1,c(d) = ρn,c(e) · R.B immediately yields (ρn−1,c(d), ρn,c(e)) ∈ PI♭ .

Again, we check Property ∗ holds:

w
ρn,c(e)

|q|+1−n−δc(e)
2

,ρn,c(e)
· R.B = w

ρn−1,c(d)

|q|+1−n−δc(e)
2

+1,ρn−1,c(d)

= w
ρn−1,c(d)

|q|+1− (n−1)+1−(δc(d)−1)

2
+1,ρn−1,c(d)

= w
ρn−1,c(d)

|q|+1− (n−1)−δc(d)
2

,ρn−1,c(d)

= wd
|q|+1− (n−1)−δc(d)

2
,d

= we
|q|+1−n−δc(e)

2
,e
· R.B

We now verify that ρn,c is a homomorphism.

- Let u ∈ AJ ∩N J ,∆∗
n (c). By definition of AJ , we have e ∈ AI♭ . Since n ≤ |q|

we have ρn,c(u) ∼1 e, hence applying Remark 13 we obtain ρn,c(u) ∈ AI♭ .

- Let (u, v) ∈ RJ ∩(N J ,∆∗
n (c)×N J ,∆∗

n (c)). If u ∈ ∆∗ or v ∈ ∆∗, then Lemma 15
applies on ρn,c(u) or on ρn,c(v) (recall ρn,c(u) ∼1 u and ρn,c(v) ∼1 v) and
gives (ρn,c(u), ρn,c(v)) ∈ RJ . Otherwise u /∈ ∆∗ and v /∈ ∆∗. Let n1, n2 be
the minimum integers such that u ∈ N J ,∆∗

n1
(c) and v ∈ N J ,∆∗

n2
(c). Since

(u, v) ∈ RJ , we have n1 − n2 ∈ {−1, 0, 1}. Definitions of δc(u) and δc(v)
lead to |u| − |v| = δc(u)− δc(v) mod 2|q|+ 3. Lemma 14 gives |u| = |v| ± 1
mod 2|q|+3. Recall δc(u), δd(v) ∈ [−|q|, |q|], hence −2|q|−1 ≤ δc(u)−δc(u)∓

248 Q. Manière

A. Additional proof material

1 ≤ 2|q|+1. Since δc(u)− δd(v)∓ 1 = 0 mod 2|q|+3 and 2|q|+1 < 2|q|+3,
we must have δc(u)− δc(v) = ±1. Joint to Remark 15, it excludes the case
n1 − n2 = 0. We are hence left with n1 = n2 ± 1. Applying our additional
property with k := max(n1, n2) gives (ρn,c(u), ρn,c(v)) ∈ RI♭ .

Finally, ρ−1
n,c(∆

∗) ⊆ ∆∗ is a straightforward consequence of ρn,c(u) ∼1 u (and again,
recall elements from ∆∗ are alone in their equivalent class!).

A.3 Proofs for Section 5.4 (Tractable cases in data
complexity)

Lemma 31. Let A be an ABox and K := (T ,A). Let (succKR)R be a certain
successor preference. Let σ be a legal strategy for K. Let chσ/K be a choice of
well-typed elements for σ over K. Let pairchσ/K := (pair+chσ/K , pair

−
chσ/K

) be a pairing
for chσ/K. Denote by J the interpretation of σ (according to chσ/K, pairchσ/K, and
(succKR)R). We have:

SJ = {(a, b) | K |= S(a, b)} Shape 1

∪

{
(x, y)

∣∣∣∣∣ (x, y) ∈ crit+chσ/K × crit−chσ/K
pair+chσ/K(x) = y

}
Shape 2

∪
{
(x, chσ/K(S))

∣∣∣ x ∈ crit+chσ/K \ dom(pair+chσ/K)
}

Shape 3+

∪
{
(chσ/K(S

−), y)
∣∣∣ y ∈ crit−chσ/K \ dom(pair−chσ/K)

}
Shape 3−

∪

(chσ/K(S), chσ/K(S))

∣∣∣∣∣∣∣∣∣

∣∣∣crit+chσ/K∣∣∣ > ∣∣∣crit−chσ/K∣∣∣
T |= ∃S− ⊑ ∃S
∃S /∈ θK(chσ/K(S))
chσ/K(S) /∈ chσ/K(D+

σ)

 Shape 4+

∪

(chσ/K(S
−), chσ/K(S

−))

∣∣∣∣∣∣∣∣∣

∣∣∣crit−chσ/K∣∣∣ > ∣∣∣crit+chσ/K∣∣∣
T |= ∃S ⊑ ∃S−

∃S− /∈ θK(chσ/K(S−))
chσ/K(S

−) /∈ chσ/K(D−
σ)

 Shape 4−

Proof. The first inclusion (⊆) is straightforward.

(⊇) We consider each of the shapes in turn.

Counting Queries in Ontology-Based Data Access 249

A.3. Proofs for Section 5.4 (Tractable cases in data complexity)

1. Let (a, b) such that K |= S(a, b).
Therefore (a, b) ∈ CK. By definition: χ(a) = a and χ(b) = b, hence (a, b) ∈
SJ .

2. Let (x, y) such that (x, y) ∈ crit+chσ/K × crit−chσ/K and pair+chσ/K(x) = y.
Distinguish two cases based on x ∈ crit+chσ/K :

- If x ∈ D+
K. By definition, we must have x ∈ Ind(A), so χ(x) = x.

Moreover, xS ∈ CK, hence succKS (x) is not defined. Together with
x ∈ dom(pair+chσ/K), this gives χ(xS) = pair+chσ/K(x). Since (x, xS) ∈ SC

K,
we have (x, pair+chσ/K(x)) ∈ SJ .

- If x = chσ/K(R) with R ∈ D+
σ . By definition of genK, there exists

wR ∈ CK. Since R /∈ {S, S−}, we have χ(wR) = chσ/K(R). From
R ∈ D+

σ , we know that T |= ∃R− ⊑ ∃S, which ensures wRS ∈ ∆CK .
The definition of D+

σ further tells us that ∃S /∈ θK(chσ/K(R)). As
χ(wR) = x ∈ dom(pair+chσ/K), we must have χ(wRS) = pair+chσ/K(x).
Finally (wR, wRS) ∈ SC

K ensures (x, pair+chσ/K(x)) ∈ SJ .

3+. Let (x, chσ/K(S)) such that x ∈ crit+chσ/K \ dom(pair+chσ/K).
Distinguish two cases based on x ∈ crit+chσ/K :

- If x ∈ D+
K. By definition x ∈ Ind(A), so χ(x) = x. Moreover, xS ∈ CK,

hence succKS (x) is not defined. Combined with x /∈ dom(pair+chσ/K), we
obtain χ(xS) = chσ/K(S). Since (x, xS) ∈ SC

K, we have (x, chσ/K(S)) ∈
SJ .

- If x = chσ/K(R) with R ∈ D+
σ . By definition of genK, there exists wR ∈

∆CK . Since R /∈ {S, S−}, it gives χ(wR) = chσ/K(R). The hypothesis
T |= ∃R− ⊑ ∃S ensures wRS ∈ ∆CK . Since ∃S /∈ θK(chσ/K(R)) and
χ(wR) = x /∈ dom(pair+chσ/K), it gives χ(wRS) = chσ/K(S). Finally
(wR, wRS) ∈ SC

K ensures (x, chσ/K(S)) ∈ SJ .

3−. Symmetric to Case 3+.

4+. Let (chσ/K(S), chσ/K(S)) with
∣∣∣crit+chσ/K∣∣∣ > ∣∣∣crit−chσ/K∣∣∣, T |= ∃S− ⊑ ∃S, ∃S /∈

θK(chσ/K(S)) and chσ/K(S) /∈ chσ/K(D+
σ). Because of

∣∣∣crit+chσ/K∣∣∣ > ∣∣∣crit−chσ/K∣∣∣,
we know that there exists some x ∈ crit+chσ/K \ dom(pair+chσ/K). Distinguish two
cases based on x ∈ crit+chσ/K :

250 Q. Manière

A. Additional proof material

- If x ∈ D+
K. By definition, xS ∈ CK, hence succKS (x) is not defined.

Moreover, we chose x ∈ crit+chσ/K \ dom(pair+chσ/K), so x ̸∈ dom(pair+chσ/K).
It follows that χ(xS) = chσ/K(S). Since T |= ∃S− ⊑ ∃S, we have xSS ∈
∆CK . Combined with our assumptions ∃S /∈ θK(chσ/K(S)) and chσ/K(S) /∈
crit+chσ/K , we obtain χ(xSS) = chσ/K(S). Finally from (xS, xSS) ∈ SCK, we
can infer (chσ/K(S), chσ/K(S)) ∈ SJ .

- If x = chσ/K(R) with R ∈ D+
σ . By definition of genK, there ex-

ists wR ∈ ∆CK . From R ∈ D+
σ , we have R /∈ {S, S−}, which gives

χ(wR) = chσ/K(R). Moreover, we also have that T |= ∃R− ⊑ ∃S,
which ensures wRS ∈ ∆CK . Since ∃S /∈ θK(chσ/K(R)) and χ(wR) = x /∈
dom(pair+chσ/K), we have χ(wRS) = chσ/K(S). Furthermore, we assumed
∃S /∈ θK(chσ/K(S)) and chσ/K(S) /∈ chσ/K(D+

σ), ensuring in particular
chσ/K(S) /∈ crit+chσ/K . Hence χ(wRSS) = chσ/K(S). We conclude by using
(wRS, wRSS) ∈ SC

K to infer (chσ/K(S), chσ/K(S)) ∈ SJ .

4−. Symmetric to Case 4+.

End of the proof of Lemma 33 Now we prove that ρ is injective. Consider
two matches π1, π2 of qS in J such that ρ(π1) = ρ(π2). We will use π1[1], π1[2] to
refer to the first and second arguments of π1, and similarly for π2. We consider
all nine cases, showing in each case that either the situation cannot occur or that
π1 = π2:

1. 1. When π1, π2 are both of Shape 1, we have π1 = ρ(π1) = ρ(π2) = π2.

2, 3+. π1 = (a, b) is of Shape 1, so π1 = ρ(π1), while π2 = (x, y) is of Shape 2
or 3+, which implies that x ∈ crit+chσ/K .

- If x ∈ D+
K, then ρ(π2)[1] = ori+(x) = x. It follows that ρ(π1)[1] =

a = x. But a /∈ D+
K since S(a, b) ∈ A, which is a contradiction.

- If x = chσ/K(R) with R ∈ D+
σ , then in particular ∃S /∈ θK(chσ/K(R)).

Lemma 28 tells us that θK(chσ/K(R)) = θK(f(reprK(R))). We also
have ori+(x) = f(reprK(R)), so ρ(π2)[1] = f(reprK(R)). From
ρ(π1) = ρ(π2) we get a = f(reprK(R)). Putting this together,
we get ∃S /∈ θK(a), which contradicts S(a, b) ∈ A.

4+. In particular ∃S /∈ θK(chσ/K(S)) and ρ(π2)[1] = f(reprK(S)). Lemma 28
provides θK(chσ/K(S)) = θK(ρ(π2)[1]). Recall π1 = ρ(π1) = (a, b) and
ρ(π1) = ρ(π2), hence ∃S /∈ θK(π1[1]). Contradiction with S(a, b) ∈ A.

2, 3+. 1. Symmetric to Case 1.(2, 3+).

Counting Queries in Ontology-Based Data Access 251

A.4. Proofs for Section 5.5 (Role cardinality over DL-LiteHpos)

2, 3+. As both π1 and π2 are of Shapes 2 / 3+, we have ori+(π1[1]) = ori+(π2[1]).
We can apply Lemma 32 to obtain π1[1] = π2[1]. By examining the
conditions of Shapes 2 and 3+, we can see that π1 and π2 must have
the same shape, and moreover, their second arguments must coincide,
yielding π1 = π2.

4+. As π1 = (x, y) is of Shape 2 / 3+, we have x = π1[1] ∈ crit+chσ/K . As
π2 = (chσ/K(S), chσ/K(S)) is of Shape 4, we have T |= ∃S− ⊑ ∃S,
∃S /∈ θK(chσ/K(S)), chσ/K(S) /∈ chσ/K(D+

σ), and the following ρ(π2) =
(f(reprK(S)), succ

I
S(f(reprK(S)))).

- If x ∈ D+
K, then ρ(π1)[1] = ori+(x) = x ∈ Ind(A). From ρ(π1) =

ρ(π2) and above, we get x = ρ(π1)[1] = ρ(π2)[1] = f(reprK(S)). By
statement 1 of Lemma 2, we have θK(chσf◦reprK/K(S)) = θK(f(reprK(S))),
yielding θK(x) = θK(chσ/K(S)). Recall that x ∈ D+

K ensures in partic-
ular ∃S ∈ θK(x), it contradicts the assumption ∃S /∈ θK(chσ/K(S)).

- If x = chσ/K(R) with R ∈ D+
σ , then ρ(π1)[1] = f(reprK(R)). As

ρ(π1) = ρ(π2) and ρ(π2)[1] = f(reprK(S)), we have f(reprK(R)) =
f(reprK(S)). The second statement of Lemma 28 gives us chσ/K(R) =
chσ/K(S). Since R ∈ D+

σ , we get a contradiction with chσ/K(S) /∈
chσ/K(D+

σ).

4+. 1. Symmetric to Case 1.4+.
2, 3+. Symmetric to Case (2, 3+).4+.

4+. By definition π1 = π2 = (chσ/K(S), chσ/K(S)).

A.4 Proofs for Section 5.5 (Role cardinality over
DL-LiteHpos)

Before starting with the proper proof, we need some additional definitions.
First, why do we start from a demanding individual free KB? We want to take

advantage of the absence of non-trivial propagation, in particular of violation of its
Condition 2 (see Definition 68), which is involving roles generated by ∃S− (resp ∃S).
Therefore, we somehow need these generated roles to be here as soon as possible:
we need their causes, that are S-assertions, in our initial ABox.

Speaking about causes, take a look at Condition 3 from Definition 68. Here is
a handy definition to take advantage of the cases in which this latter condition is
broken.

Definition 74. Let wR be an anonymous element of ∆CK. A cause of wR is a
positive concept such that: if w ∈ Ind(A), then cause(wR) is either an atomic

252 Q. Manière

A. Additional proof material

concept B such that K |= B(w) and T |= B ⊑ ∃R, or a positive concept ∃T such
that there exists some b with K |= T(w, b) and T |= ∃T ⊑ ∃R. Otherwise w = w0T,
then cause(wR) := ∃T−.

Following this line, here is a definition capturing the role provided by a violation
of Condition 1 (again from Definition 68).

Definition 75. For an element w ∈ ∆CK, if there exists a positive role U such that
wU ∈ ∆CK, T |= U ⊑ S and T |= U ⊑ S−, then we pick such a role U and say it is
the leader of the element w, denoted leader(w).

Our construction proceed by induction on CK, so here is the order we pick.

Definition 76. We pick an order ≤ on ∆CK such that: ≤ is breadth-first and for
all w ∈ CK, if leader(w) is defined, then ∀R, wR ∈ ∆CK ⇒ w · leader(w) ≤ wR.

We are now all setup for the main construction. Here is some intuition before
this two-page long definition. Recall we explore the canonical model, especially
anonymous elements being words ending by a particular positive role. Whenever
we encounter a nilpotent role, we send it on its choice, because if ever it propagates
some non-nilpotent roles, then the choice of well-typed elements ensures there are
some further pre-existing matches on which to fold. Otherwise (and that is a big
otherwise), if we previously encountered a bipotent role or a bidirectionnal match
(that is a pair of element (a, b) such that both (a, b) and (b, a) are pre-existing
matches), then it is costless to reuse it (protip: that’s what the “flag” is for!).
Otherwise, we look for such a bidirectionnal match around which would solve all
further problems. If none, then the role you are encountering surely isn’t bipotent:
a nilpotent role propagating a bipotent role could not have let you end up on an
element without a bidirectionnal match around (it would contradict the definition of
a choice of well-typed element!), and non-nilpotent nor bipotent roles propagating
a bipotent role could not have either (it would violate the absence of non-trivial
propagation!). Therefore, at this point, the role you are encountering is either
a subrole of S or of S−, but not both. In both cases, you are ensured to find a
pre-existing match on which to fold (otherwise it would again violate either the
choice of well-typed elements of the absence of non-trivial propagation).

Here is the more formal approach. Various properties are carried along the
construction. Property 1 ensures nilpotent roles behave as expected. Properties 2+
and 2− ensures we stay within the ABox matches. Property 3 ensures the flag is
used as expected. Property 4 ensures violations of Conditions 1 and 2 are being
used. Property 5+ and 5− ensure violations of Condition 3 are being used.

Proof. By induction on (∆CK ,≤), we build two mappings flag : ∆CK → {0, 1} and
χ : ∆CK → Ind(A) and ensure alongside that any element e ∈ ∆CK satisfies the
following properties:

Counting Queries in Ontology-Based Data Access 253

A.4. Proofs for Section 5.5 (Role cardinality over DL-LiteHpos)

1. If e = wR ∈ ∆CK with R nilpotent, then χ(wR) = chσ/K(θK(R)).

2+. If e = wR ∈ ∆CK and T |= R ⊑ S, then K |= S(χ(w), χ(wR)).

2−. If e = wR ∈ ∆CK and T |= R ⊑ S−, then K |= S(χ(wR), χ(w)).

3. If e = wR ∈ ∆CK and flag(wR), then K |= S(χ(w), χ(wR)) and K |=
S(χ(wR), χ(w)).

4. If e = wR ∈ ∆CK with R non-nilpotent and leader(w) is defined, then flag(wR)
and χ(wR) = χ(w · leader(w)).

5+. If e = wR1 ∈ ∆CK with T |= R1 ⊑ S and ¬flag(wR1) and cause(wR1) = ∃T
with T |= T ⊑ S and such that there exists wR1R2 ∈ ∆CK with T |= R2 ⊑ S,
then K |= T(χ(w), χ(wR1)) or w = w′T− and χ(w′T−R1) = χ(w′).

5−. If e = wR1 ∈ ∆CK with T |= R1 ⊑ S− and ¬flag(wR1) and cause(wR1) = ∃T
with T |= T ⊑ S− and such that there exists wR1R2 ∈ ∆CK with T |= R2 ⊑
S−, then K |= T(χ(w), χ(wR1)) or w = w′T− and χ(w′T−R1) = χ(w′).

Initialization: Individuals. For all a ∈ Ind(A), we set χ(a) := a and
flag(a) := 0. All properties are trivially satisfied on individuals.

Induction: Anonymous elements. Let wR ∈ ∆CK . Assume all properties
hold for e < wR.

- If R is nilpotent, then we set χ(wR) := chσ/K(θK(R)) and flag(wR) := 0.
Property 1 is satisfied and all other properties trivially hold.

- Else if leader(w) is defined and w · leader(w) < wR, then χ(w · leader(w)) is
already defined, and we set χ(wR) := χ(w · leader(w)) and flag(wR) := 1. By
induction hypothesis, properties hold for w · leader(w) and all transfer to wR,
but Property 4. By definition however, Property 4 also holds for wR.

- Else if flag(w), then w must have shape w = w0R0 (recall the initialization sets
the flag of all individuals to 0). We set χ(wR) := χ(w0) and flag(wR) := 1.
Property 1, 5+ and 5− trivially hold for wR. By induction hypothesis on
w0R0, Property 3 for w0R0 ensures that Properties 2+, 2− and 3 continue to
hold for wR. Property 4 for wR is only relevant if leader(w) = R, in which
case it trivially holds.

- Else if there exists an individual name b such that K |= S(χ(w), b)∧S(b, χ(w)),
then we set χ(wR) := b and flag(wR) := 1. Therefore Property 2+, 2−, 3
hold for wR. Property 1, 5+ and 5− trivially hold for wR. Again, Property 4
for wR is only relevant if leader(w) = R, in which case it trivially holds.

254 Q. Manière

A. Additional proof material

- Else if R is bipotent, that is T |= R ⊑ S and T |= R ⊑ S−. We distinguish
several subcases, each leading to a contradiction.

- If w ∈ Ind(A), then w ∈ D±
K. Contradicts the absence of bidemanding

individuals.

- If w = w0R0 with R0 nilpotent. By induction assumption and Property 1
and the definition of chσ/K, θK(χ(w)) = {{S, S′}, {S}, {S′}}. This is a
contradiction with not being in the previous case.

- Otherwise w = w0R0, then leader(w0) is not defined as Property 4 from
induction hypothesis on w0R0 would then contradicts flag(w) being false.
In particular R0 cannot be bipotent. Hence either T |= R0 ⊑ S or
T |= R0 ⊑ S−, but not both. Both cases being symmetrical, we now
focus on T |= R0 ⊑ S. For the triple (cause(w0),R0,R), we have a
propagation of S. As there are no non-trivial propagation of S, there
must be an interference (Definition 68). Note that there cannot be an
interference of the first type. Indeed, if U were such an interference,
then flag(w) would be set, which we excluded in a previous case. Hence
an interference should be of one of the other types:

- If it is of type 2, then we have a bipotent U generated by ∃S−.
Property 2+ from induction hypothesis gives K |= S(χ(w0), χ(w)).
Hence K |= ∃z U(χ(w), z). As U is bipotent and χ(w) cannot
be a bidemanding element, there exists an individual b such that
K |= S(χ(w), b) and K |= S−(χ(w), b), which we excluded in a
previous case.

- If it is of type 3, then cause(w0R0) = ∃T with ∃T− generating a bipo-
tent role. Property 5+ by induction hypothesis on w0R0 provides
either K |= T(χ(w0), χ(w0R0)) or w0 = w′

0T
− and χ(w) = χ(w′

0T
−).

If K |= T(χ(w0), χ(w0R0)), since χ(w) cannot be a bidemanding
element, there exists an individual b such that K |= S(χ(w), b) and
K |= S−(χ(w), b), which we excluded in a previous case. Otherwise
w0 = w′

0T
− and χ(w) = χ(w′

0T
−). Properties 2+ and 2− from induc-

tion hypothesis on w ensure K |= S(χ(w), b) and S−(χ(w0), χ(w)),
which leads to the same excluded case.

- Otherwise either T |= R ⊑ S or T |= R ⊑ S− (but not both, as we already
dealt with bipotent R). These two cases are symmetrical, we focus on
T |= R ⊑ S. We investigate the various possibilities for w and cause(wR):

- If cause(wR) = ∃T with T |= T ⊑ S and w = w0T
−, then we set

χ(wR) := χ(w0) and flag(wR) := 0. In particular, Property 5+ is

Counting Queries in Ontology-Based Data Access 255

A.4. Proofs for Section 5.5 (Role cardinality over DL-LiteHpos)

satisfied. Property 2+ from induction hypothesis on w gives Property 2+
for wR. Other properties trivially hold.

- Else if cause(wR) = ∃T with T |= T ⊑ S and w ∈ Ind(A), then there
exists b ∈ Ind(A) such that K |= T(w, b), and we set χ(wR) := b and
flag(wR) := 0. In particular, Property 2+ and Property 5+ are satisfied.
Other properties trivially hold.

- Else if cause(wR) = ∃T with T |= T ⊑ S− and w = w0T
−, from all

the preceding tests, (cause(w0),T
−,R) provides a propagation of S. As

there are no non-trivial propagation, there must be an interference. It
cannot be of the first type (otherwise flag(w) would be set), hence it
must be of type 2 or 3:

- If it is of type 2, then we have a role U generated by ∃S− and with
T |= U ⊑ S. Property 2+ from induction hypothesis gives K |=
S(χ(w0), χ(w)). Since K does not contain any positive demanding
individuals, there exists an individual b such that K |= U(χ(w), b),
and we set χ(wR) := b and flag(wR) := 0.

- If it is of type 3, then we set χ(wR) := χ(w0) and flag(wR) = 0.
Applying Property 5+ by induction hypothesis on w0R0 provides
the desired properties.

- Else if w ∈ Ind(A), then, since there are no demanding individuals, there
exists b ∈ Ind(A) such that K |= S(χ(w), b), then set χ(wR) = b and
flag(χ(wR) = 0. In particular, Properties 2+ and 5+ hold.

- Otherwise cause(wR) = ∃T with T nilpotent, then by Property 1 of
induction hypothesis applied on w we have χ(w) = chσ/K(θK(T)). By
definition of the choice of well-typed elements, there exists b ∈ Ind(A)
such that K |= S(χ(w), b), and we set χ(wR) = b and flag(χ(wR) =
0.

256 Q. Manière

B
Four flavors of interlacings

This annex aims to facilitate the understanding of the four variations of the
interlacings by recalling the central Definitions 19 and 20 and Theorem 4 (we
encourage the reader to keep a printed version of this annex close at hand).

We recall that these definitions assume given a model I of an ALCHI KB
K = (T ,A), and that Ω denotes the set of all R.A such that ∃R.A is the RHS of
an axiom in T . Furthermore, it assumes that, for every R.A ∈ Ω, we have chosen a
function succIR.A that maps every element e ∈ (∃R.A)I to an element e′ ∈ ∆I such
that (e, e′) ∈ RI and e′ ∈ AI .

Definition 77. Over the set Ind(A) · Ω∗, inductively build the following mapping:

f : Ind(A) · Ω∗ → ∆I ∪ {↑}
a 7→ a

w · R.A 7→
{
↑ if f(w) = ↑ or f(w) /∈ (∃R.A)I
succIR.A(f(w)) otherwise

where ↑ is a fresh symbol witnessing the absence of a proper image for an element of
Ind(A)·Ω∗. The existential extraction of I is ∆◦ := {w | w ∈ Ind(A)·Ω∗, f(w) ̸= ↑}.
Slightly abusing the notation, the mapping f|∆◦ : ∆◦ → ∆I is also denoted f for
readability.

Definition 78. The f ′-interlacing I ′ of I is the interpretation whose domain is
∆I′

:= f ′(∆◦) and which interprets concept and role names as follows:

AI′
:= {f ′(u) | u ∈ ∆◦, f(u) ∈ AI}

PI′
:= {(a, b) | a, b ∈ Ind(A) ∧ K |= P(a, b)} (▽0)
∪ {(f ′(u), f ′(u · R.B)) | u, u · R.B ∈ ∆◦ ∧ T |= R ⊑ P} (▽+)
∪ {(f ′(u · R.B), f ′(u)) | u, u · R.B ∈ ∆◦ ∧ T |= R− ⊑ P} (▽−)

257

Theorem 60. If f ′ : ∆◦ → E is pseudo-injective, then I ′ is a model of K and the
following mapping is a homomorphism from I ′ to I:

σ : ∆I′ → ∆I

f ′(u) 7→ f(u)

Notice that f ′ being pseudo-injective ensures σ is indeed well-defined.

We also recall the domain ∆∗ ⊆ ∆I is defined as:

∆∗ := Ind(A) ∪
⋃

π:q→I
match

π(z).

The following figure, borrowed from Section 3.4.1, summarizes the relations
between the above constructions.

I
Initial model

∆◦Existential extraction

I ′

Interlacing
J

Reduced interlacing

N J ,∆∗
n (c)N I′,∆∗

n (c)

f

f ′

σ p

ρn,c

Models

Finally, the four flavors of interlacings are obtained by setting f ′ to one of the
functions Id, f ∗, f ⋄ or f ⋆, respectively defined in Remark 8 and Definitions 23, 42
and 44 The intuitive shape of each obtained interlacing are depicted in Figure B.1.

258 Q. Manière

B. Four flavors of interlacings

◦◦

◦◦

◦◦◦

◦◦

◦

◦

◦◦

◦ ◦◦◦

Ind(A)

(a) Id-interlacing

◦
◦ ◦

◦

◦◦

◦◦

◦

◦

◦

◦◦

◦◦

∆∗

(b) f∗-interlacing

◦ ◦
◦

◦◦

◦◦◦

◦◦

◦

◦

◦◦

◦ ◦◦◦

◦

∆∗

(c) f⋄-interlacing

◦

◦

◦◦◦

◦ ◦

◦

◦

◦◦

◦ ◦◦

◦
Ind(A)

(d) f⋆-interlacing

Figure B.1: Intuition of the underlying structure for each type of interlacing.

Counting Queries in Ontology-Based Data Access 259

Requêtes de comptage pour l’accès aux données en présence d’ontologies

Résumé : La réponse à des requêtes en présence d’ontologies est une approche
prometteuse pour l’intégration et l’accès aux données qui a été activement étudiée
ces quinze dernières années. La grande majorité des travaux dans ce domaine se
concentre sur les requêtes conjonctives, alors que des requêtes plus expressives, qui
offrent des fonctionnalités de comptage ou d’autres formes d’agrégation demeurent
largement inexplorées. Dans cette thèse, nous introduisons une forme unifiée
de requêtes de comptage, nous la relions à celles déjà existantes, et étudions la
complexité du problème consistant à répondre à ces requêtes en présence d’ontologies
exprimées dans la logique de description ALCHI ou l’une de ses sous-logiques.
Dans la mesure où la complexité de ce problème dans le cas général est inaccessible
en pratique et parfois très élevée sur de telles ontologies, nous considérons également
deux restrictions sur ces requêtes: l’enracinement et l’atomicité, pour lesquelles
nous établissons de meilleurs résultats en terme de complexité.
Mots-clés : Accès aux données en présence d’ontologie, Logiques de description,
Requêtes de comptage, Complexité du raisonnement

Counting queries in ontology-based data access

Abstract: Ontology-mediated query answering (OMQA) is a promising approach
to data access and integration that has been actively studied in the knowledge
representation and database communities for more than a decade. The vast majority
of work on OMQA focuses on conjunctive queries, whereas more expressive queries
that feature counting or other forms of aggregation remain largely unexplored. In
this thesis, we introduce a general form of counting conjunctive query (CCQ), relate
it to previous proposals, and study the complexity of answering such queries in the
presence of ontologies expressed in the description logic ALCHI or its sublogics. As
the general case of CCQ answering is intractable and often of high complexity over
such ontologies, we consider two practically relevant restrictions, namely rooted
CCQs and Boolean atomic CCQs, for which we establish improved complexity
bounds.
Keywords: Ontology-mediated query answering, Description Logics, Counting
query, Complexity of reasoning

Laboratoire Bordelais de Recherche en informatique (LaBRI)
UMR 5800, Université de Bordeaux, 33000 Bordeaux, France.

	Contents
	List of Figures
	List of Tables
	Résumé étendu en français
	Introduction
	Description Logics
	Reasoning tasks
	Queries
	Structure of the thesis
	Related publications

	Preliminaries
	Description Logics
	ALCHI and its sublogics
	Set semantics
	Normal forms
	Canonical models for ELHIbot KBs
	Closed predicates

	Reasoning tasks
	Satisfiability, subsumption and instance checking
	Query answering

	Counting Conjunctive Queries
	Preliminaries
	Related work
	Semantics of counting conjunctive queries
	Decision problems

	Interlacings
	Existential extraction
	A family of models: interlacings
	Finite models
	Countermodels via interlacings

	Answering CCQs over ALCHI ontologies
	Patterns
	Soundness: from patterns to models
	Completeness: from models to patterns

	Countermodels with bounded size
	Equivalence relation based on neighbourhoods
	DL-Lite-core: simpler neighbourhoods

	Matching lower bounds
	Two reductions from closed predicates
	A tiling problem for DL-Lite-core
	Data complexity

	Rooted CCQs
	Preliminaries
	A weak notion of rootedness
	Combined complexity: from CCQs to rooted CCQs
	Two reductions for data complexity

	Exhaustive rooted CCQs over ALCHI
	The interlacing function f'
	Quotients of f'-interlacings: a coNEXP upper bound
	Two matching lower bounds with inverse roles

	Further refinements for ALCH
	The interlacing function f-star
	A PSPACE algorithm, up to satisfiability
	Matching lower bounds

	Refinements within DL-Lite
	From DL-Lite-core-H to DL-Lite-core
	DL-Lite-core and combined complexity
	DL-Lite-core and data complexity

	Cardinality Queries
	Preliminaries
	Combined complexity and closed predicates
	Extensions of EL
	Extensions of DL-Lite-pos

	Hard cases in data complexity
	A reduction from 3-COL
	A reduction from 3-SAT
	A reduction from Set Cover

	Tractable cases in data complexity
	Role cardinality over DL-Lite-core
	Construction of the TC0 circuits
	Concept cardinality over DL-Lite-core-H without role inclusions

	Role cardinality over DL-Lite-pos-H
	coNP-hardness in presence of propagation
	Equivalence with Perfect Matching
	TC0 membership in the remaining cases
	Towards DL-Lite-core-H

	Conclusion
	Summary of the contributions
	Perspectives

	Bibliography
	Index
	Additional proof material
	Proofs for Section 3.3 (Answering CCQs over ALCHI ontologies)
	Proofs for Section 3.4 (Countermodels with bounded size)
	Proofs for Section 5.4 (Tractable cases in data complexity)
	Proofs for Section 5.5 (Role cardinality over DL-Lite-pos-H)

	Four flavors of interlacings

