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Abstract

The λ-calculus is considered the paradigmatic model for functional programming languages. It
comes with a beautiful mathematical theory, which has been studied and improved for more than
80 years. The λ-calculus is based on just one rewriting rule, β-reduction. Although rewriting
expressions is common in computer science, this is not the way in which programs are executed
by the hardware. Hence, there is a distance between the programming language model and the
execution model. This gap is closed by compilers, that translate high-level (functional) programs
to low-level executable machine code. While the semantics of programs remains unaltered during
compilation, the use of resources, in particular time and space, is more difficult to track.

First of all, one should be able to measure the use of resources on the source program. Then,
this amount of used resources should be preserved by compilation. The definition of resource
consumption is typically done on Turing machines (TMs), where time is simply the number of steps
a Turing machine needs to halt, and space is the maximum number of tape cells used during the
computation. We would like to define some time and space measures on top of the λ-calculus, and
we would like them being compatible with those of Turing machines. More formally, Slot and van
Emde Boas Invariance Thesis states that a time (respectively, space) cost model is reasonable for a
computational model C if there are mutual simulations between TMs and C such that the overhead
is polynomial in time (respectively, linear in space). The rationale is that under the Invariance
Thesis, complexity classes such as L, P, PSPACE, become robust, i.e. machine independent. More
concretely, we can see these simulations as consisting of a compilation phase, followed by an
execution phase.

The literature on the subject contains a lot of results about time cost model for the λ-calculus. In
particular, the number of rewriting steps has been proved a reasonable cost model in the majority
of the interesting cases, e.g. in the call-by-name/value/need cases. For space cost models the
situation is different: except for a recent partial result by Forster et al., nothing is known. Indeed,
the problem is far more difficult w.r.t. the one of finding a reasonable time measure. The main
reason of this difficulty is that the required overhead for the space simulations is linear, and not
polynomial, i.e. the space consumption should be the same on both the the sides of the simulations,
only up to a multiplicative constant factor. This is very difficult to achieve for two different reasons.
The former is that typical implementations of the λ-calculus rely on pointers, that give an extra
undesired logarithmic overhead. The latter, instead, is that in the λ-calculus there is not distinction
between programs and data. This fact does not allow to account for sub-linear complexity classes,
if one considers the natural space cost model, i.e. the maximum size of terms encountered during a
reduction, that by definition is at least as big as the input (this is what Forster et al. do).

In this dissertation, we tackle this problem from different perspectives. We start by considering
an unusual evaluation mechanism for the λ-calculus, based on Girard’s Geometry of Interaction,
that was conjectured to be the key ingredient to obtain a space reasonable cost model. By a fine
complexity analysis of this schema, based on new variants of non-idempotent intersection types,
we disprove this conjecture. Then, we change the target of our analysis. We consider a variant
over Krivine’s abstract machine, a standard evaluation mechanism for the call-by-name λ-calculus,
optimized for space complexity, and implemented without any pointer. A fine analysis of the
execution of (a refined version of) the encoding of TMs into the λ-calculus allows us to conclude
that the space consumed by this machine is a reasonable space cost model. In particular, for the
first time we are able to measure also sub-linear space complexities. Moreover, we transfer this
result also to the call-by-value case.

Finally, we provide also an intersection type system that characterizes compositionally this
new reasonable space measure. This is done through a minimal, yet non trivial, modification of
the original de Carvalho type system.
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Chapter 1

Introduction

The λ-calculus has been around for more than 80 years but still attracts the attention of many
researchers around the world. It was originally created by Church (1932) as a logical formal
system. However, soon afterwards, Kleene and Rosser (1935) discovered an inconsistency and
then only the functional part was kept. Church (1936a,b) himself used it as a tool in the first proof
of undecidability for the Entscheidungsproblem. In the following years, with Turing an Kleene,
they realized that, together with Turing machines (TMs) and Gödel/Kleene partial recursive
functions, the λ-calculus was a universal model of computation (Kleene, 1936; Turing, 1937): this
is the Church-Turing thesis. Then, it was studied until the fifties in a pure mathematical way
(Curry and Feys, 1958). With the birth of computer science, the λ-calculus had new life, as it
was now considered a programming language (Landin, 1964, 1965a,b; Plotkin, 1975). Logicians,
mathematicians and computer scientists continued to study this formidable tool that over the
years was given a strong mathematical theory (Barendregt, 1984) and a clear connection with
logic, trough the celebrated Curry-Howard correspondence (Howard, 1980). At present time, the
λ-calculus is considered as the paradigmatic functional programming language, and an unavoidable
tool in the study of programming languages in general. We invite the reader who wants to delve
into the history of the λ-calculus (and combinatory logic (Schönfinkel, 1924)) to read the detailed
survey by Cardone and Hindley (2009).

Programming Languages and Computational Complexity. While the first years of theoretical
computer science were devoted to discover what is computable, later the focus shifted to how things
are computed. The extensional view, was substituted by an intensional one. In particular, the use of
resources needed to execute an algorithm/program was investigated, and it is still now a very active
research area. The attention is mainly devoted to the time and space (i.e. memory) consumption of
algorithms (Hartmanis and Stearns, 1965). Traditionally, the analysis is done considering Turing
machines (TMs), where time and space have a precise meaning:

• time: the number of transitions of the TM;

• space: the maximum number of cells written during the computation of the TM.

This is a very nice theoretical framework, but it is impractical, since no one writes programs as
TMs. In fact, they are very low-level devices, designed for theoretical purposes, rather than real
programming purposes. However, the definition of computational complexity classes, such as L, P,
NP, PSPACE, is done on TMs, since they seem to be the correct tool to study complexity. This is
because a TM transition (respectively, a cell of the TM tape), looks like an atomic unit of measure
for time (respectively, space).

How can we reconcile the study of computational complexity with real programming lan-
guages? A first solution was the introduction of Random Access Machines (RAMs), theoretical
devices which feature direct access memory, thus being closer to actual hardware than to TMs,
whose memory (i.e. tapes) can be accessed only sequentially. RAMs can be programmed in an
assembly-like language and provide this way a first level of abstraction. From the complexity
point of view, is it sensible to consider the time and space consumption of RAMs as a reasonable
measure of time and space complexity? Moreover, what does “reasonable” mean? The idea is that
one would like to have complexity measures which are machine independent. Unfortunately, this
is impossible, already if one considers different variants of TMs. For example, simulating a multi
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tape TM which has time complexity O( f (n)) on a single tape TM takes a quadratic overhead,
i.e. it can be done with complexity O( f 2(n)). If we are not able to preserve specific complexities,
we would like at least to preserve the most important complexity classes. In this spirit, Slot and
Emde Boas (1988) coined the invariance thesis, which states:

Invariance Thesis. Reasonable machine models simulate each other with polynomially bounded overhead
in time and (multiplicative) constant overhead in space.

This way, complexity classes such as L, P, NP, PSPACE become machine independent. Indeed,
both TMs (in all their variants) and RAMs1 satisfy the invariance thesis. High-level language,
however, are quite distant also from RAMs. The reader can think about programming styles and
features such as object orientation, higher-order functions, logic programming, first-class list manipulation.
It is not at all obvious how to measure time and space complexity of programming languages
with these characteristics. As an example, JAVA quite recently introduced lambda functions, thus
giving the programmer the possibility to use first-class (higher-order) functions. Since libraries
for stream processing make a large use of this feature (the so-called map-reduce paradigm), one
would like to have guarantees on the complexity of the programs. In particular, since very large
amounts of data are processed, one would expect to have guarantees about space efficiency. This is
why a reasonable space measure is required. Otherwise, one would not be able to estimate the
space consumption at the level of the source code, but rather should look at how the language is
implemented.

In this dissertation, we will deeply analyze the problem of how to measure the space complexity
of λ-terms, i.e. of programs written in the λ-calculus, that, as we have already said, we consider the
core of modern functional programming languages, such as Haskell and OCaml, and the model
behind the functional parts of imperative languages such as JAVA, Python or Scala. The main
feature of the λ-calculus is that everything is a function. Concrete data types can be added, but this
does not typically add more intricacies. Most of the interesting aspects are already present in the
pure fragment. We start by considering the problem (considered solved) of measuring the time
complexity of λ-terms.

The Time of the λ-Calculus. The λ-calculus comes with just one computational rule, namely
β-reduction. This can be however applied to different reducible expressions (or redexes) inside a
λ-term, thus giving rise to a form of nondeterminism. This is extensionally harmless, because the λ-
calculus can be proved confluent, which implies that the result is unique, when it exists. However,
from an intensional point of view, we have different λ-calculi, depending on the reduction strategy
chosen. For example, call-by-name and call-by-value are typically studied separately, as well as
strong w.r.t. weak strategies.

We are interested in cost models where time is the number of of β-steps taken by a fixed
strategy. Since they attribute the cost of one to every β-steps, these time cost models are called
unitary. The simulation of TMs into the λ-calculus is not problematic, since there is an encoding of
TMs into a strategy independent, deterministic fragment of the weak λ-calculus, due to Dal Lago
and Accattoli (2017), for which many strategies2 simulate Turing machines with a linear number of
β-steps.

The delicate part of showing that a unitary time cost model is reasonable is the simulation
of the λ-calculus strategy in TMs, or another reasonable model, typically RAMs. The difficulty
stems from a degeneracy, called size explosion in the literature. The point is that the size of a term
can grow exponentially during the evaluation (thus also requiring exponential time to be written
down). To circumvent the exponential explosion in space, λ-terms are usually evaluated up to
sharing, that is, in calculi with sharing constructs (a.k.a. explicit substitutions (ES) or let in) or
abstract machines (AMs) that compute shared representations of the results. These representations
can be exponentially smaller than the results themselves: explosiveness is then encapsulated in the

1For RAMs, one has to be quite careful, both on the instruction set and on how the time/space complexity is measured.
In fact, if one considers RAMs with multiplication/division as primitive operations, as a corollary one has that P =
NP Hartmanis and Simon, 1974. Moreover, as far as space complexity is concerned, the choice of the RAM cost model is
non trivial. The different possibilities have different properties. In particular, some are reasonable and some are not Slot
and Emde Boas, 1988.

2In particular, all weak strategies, but also head, leftmost-outermost, open and strong call-by-value and call-by-need.
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sharing unfolding process (which itself has to satisfy some reasonable properties, see Accattoli
and Dal Lago, 2016; Condoluci et al., 2019). The number of β steps, polynomially related to the
complexity of calculi with ES or AM according to various evaluation strategies, then turns out to
be a reasonable time cost model (up to sharing), despite explosiveness. The first such result is for
weak evaluation by Blelloch and Greiner (1995), then extended to strong evaluation by Accattoli
and Dal Lago (2016), and very recently transferred to Strong CbV independently by Accattoli
et al. (2021a) and Biernacka et al. (2021). As we shall see, the very sharing mechanism that makes
natural time reasonable is unfortunately space unreasonable. Accattoli (2017) has surveyed time
cost models quite recently.

The Space of the λ-Calculus. In contrast with time, the problem of finding a reasonable space cost
model for the λ-calculus is not considered solved. The natural space cost model is the maximum
size of λ-terms belonging to the reduction sequence. However, as we have already said, this can
be exponentially bigger than the length of the reduction itself. If one is concerned with space
reasonableness only, i.e. not considering the execution time, then it is possible to simulate the
reduction of λ-terms on TMs, as well as to simulate TMs into the λ-calculus, both with a constant
multiplicative overhead. So, why is the problem still considered unsolved?

1. This simulation of the λ-calculus into TMs cannot accommodate the unitary cost model for
time, because of size explosion. This problem has been tackled by Forster et al. (2020) in the
case of the weak call-by-value λ-calculus, but the employed technique is very general and
can be applied also to many other calculi. Their solution rests on the fact that given two
simulations, one that is reasonable for space but not time, and one that is reasonable for time
but not space, there is a smart way of interleaving them as to obtain reasonability for time
and space simultaneously. Their result therefore shows that, surprisingly, a computational
theory can be reasonable for time and space, also in the case of size explosion. Although
theoretically correct, however, their solution does not seem canonical because of the non-
uniform interleaving mechanism, that operates in rounds.

2. The natural space cost model cannot accommodate sub-linear space complexity, and thus
cannot reflect, e.g., algorithms in L. This is because if space is the maximum size of terms in
an evaluation sequence, the first of which contains the input, then space simply cannot be
sub-linear.

How could we account for logarithmic reasonable space? One needs, as it is done with TMs,
log-sensitivity, that is, a distinction between an immutable input space, which is not counted for
space complexity (because otherwise the complexity would be at least linear), and a (smaller)
mutable work space, that is counted. Moreover, logarithmic space usually requires manipulating
pointers to the input (which are of logarithmic size) rather than pieces of the input (which can be
linear). Log-sensitivity thus seems to clash with the natural approach based on the rewriting of
λ-terms, which does not distinguish between input and work space and that manipulates actual
sub-terms rather than pointers.

Unfortunately, the common way in which λ-terms (and functional programs) are (time) effi-
ciently evaluated, i.e. via sharing, seems to go against space reasonability. In fact, in general, one
sharing annotation is required for every β-redex, this way entangling space with time. In other
words, using calculi with sharing or abstract machines leads to a space consumption which is linear
in time, thus preventing this mechanisms from being reasonable for space. This observation has
guided many researchers to look at different implementation mechanisms, in order to obtain results
about space. The literature, in this respect, reports many results about space complexity based on
Girard’s Geometry of Interaction.

Geometry of Interaction. The birth of linear logic (Girard, 1987) gave new light on the under-
standing of the λ-calculus and Geometry of Interaction (Girard, 1989a) (GoI) is one of its byproducts.
At the time, GoI was a radically new interpretation of proofs, arising from connections between
linear logic and functional analysis, and based on an abstract notion of interactive execution for
proofs. Indeed, it has inspired Abramsky et al. (2000) game semantics, a new kind of interactive
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semantics that allowed to solve the long-standing open problem of full-abstraction for models of
PCF (Milner, 1977). The computational content of GoI was first explored by Danos and Regnier
(1999) and Mackie (1995), who proposed a new form of implementation schema, called interaction
abstract machine (IAM). The IAM works in a fundamentally different way with respect to environ-
ment based abstract machines, which are the standard and time efficient way of implementing
functional languages. In particular, the IAM does not use environments, instead using a data
structure called token, saving information about the history of the computation. The key point is
that the token does not store information about every single β-redex, thus disentangling space
consumption from time consumption. In other words, the IAM is a good candidate for a space
reasonable implementation schema. The price to pay is that the machine wastes a lot of time to
retrieve β-redexes, so that time is sacrificed for space.

GoI and Space Complexity. The IAM has been used in the literature for obtaining sub-linear
space bounds for functional programs. To our knowledge, Schöpp (2006, 2007) was the first one to
use ideas from the GoI to craft L-constrained programming languages, in the spirit of the Implicit
Computational Complexity (ICC) program. Later, together with Dal Lago, they extended his
results to cover a more practical programming language (Dal Lago and Schöpp, 2016). Soon after
the first work by Schöpp, Ghica (2007) independently exploited ideas from the GoI and game
semantics (GS), itself very related to the GoI, to design a compiler from a higher-order functional
language directly to digital circuits, which have a finite amount of memory by definition. This
was the first one of series of works titled “The Geometry of Synthesis”, that applied semantic
techniques such as the GoI and GS to the synthesis of digital circuits. Again belonging to the
ICC program, Aubert et al. (2014) used the GoI to prove that a subset of Prolog is sound and
complete for L. Mazza (2015) did the same for a substructurally typed programming language.
These results have then suggested the folklore conjecture that the IAM space usage could be a
reasonable space measure for the λ-calculus. Having a closer look at the cited results for space
based on the IAM, however, one realizes that those bounds rely crucially on some tweaks (i.e.
restricting to certain λ-terms or extending the language with ad-hoc constructs) and that they do
not seem to be achievable on ordinary pure λ-terms.

GoI and Time Complexity. Concerning time consumption, it is known since the first works by
Mackie (1995) and Danos et al. (1996) that the IAM overhead can be exponential in the number
of β-steps of the implemented strategy3. Therefore, does not show that the unitary cost model
is reasonable. It might however still be possible that the IAM itself is reasonable, that is, that
its number of steps is a reasonable time cost model, if the exponential gap with β-steps never
materializes on the λ-terms that encode Turing machines. From the point of view of practical
efficiency, however, the exponential gap remains problematic. Danos and Regnier (1999) have
proposed an optimization called jumping abstract machine, which affects both the time and the
space behavior. An interesting fact is that the JAM is claimed equivalent to the pointer abstract
machine (PAM), which was defined by Danos et al. (1996) as the computation mechanism behind
Hyland and Ong (2000) game semantics. However, no complexity analyses are known about
these machines. Muroya and Ghica (2019) mix the token passing mechanism of the IAM with
graph rewriting in the style of proof-nets in order to obtain an efficient implementation of different
strategies for the λ-calculus.

The Complexity of GoI. While studied at length, no general theory about the complexity of the
GoI is known in the literature. Since the IAM is essentially an automaton, analyzing its complexity
by executing it can be cumbersome, in particular because its states can be very big. We need a
better, compositional way of reasoning about the IAM time and space consumption. Since the IAM is
deeply rooted in linear logic, the natural direction that we shall follow is the one of non-idempotent
intersection types, that have recently been used to give quantitative (time) bounds on several

3As an example, the family of terms tn defined as t1 := I and tn+1 := tnI (where I is the identity combinator) takes time
exponential in n to be evaluated by the IAM, but only linear time when evaluated in the λ-calculus (with or without ES),
and on any environment machine.
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languages and machines. Being a syntactic presentation of the relational model of linear logic, they
turn out to be very related, also quantitatively, to how the IAM evaluates λ-terms.

Intersection Types. Intersection types (IT) were introduced by Coppo and Dezani-Ciancaglini
(1978) as an extension of simple types able not only to guarantee, but also to characterize termina-
tion. Different variants appeared in the literature that were able to characterize different qualitative
properties, e.g. strong, weak or head normalization. They were used to derive (filter) models of the
λ-calculus and became a standard tool in programming language theory. A recent survey (Bono
and Dezani-Ciancaglini, 2020) gives a complete overview.

More recently, a non-idempotent variant of IT rediscovered by de Carvalho (2018) after having
been introduced by Gardner (1994) and later used by Kfoury (2000) and Neergaard and Mairson
(2004), has been proved to reflect quantitative properties of λ-terms4, such as the number of β-steps
to normal form, or the number of steps of the abstract machine by Krivine (2007) (KAM). The
variant requires dropping the idempotency of the intersection operator, therefore considering A∧ A
as not equivalent to A, and ultimately making the type system strongly related to the modeling of
resources as in linear logic. Such types are sometimes called multi types, as intersections become
multisets. In the last few years, de Carvalho’s results have been dissected and generalized in
various ways, adapting the technique to many different calculi and evaluation strategies (Accattoli
et al., 2020b; Accattoli and Guerrieri, 2018; Accattoli et al., 2019a; Alves et al., 2019; Bucciarelli et al.,
2020; Dal Lago et al., 2021; Kesner and Vial, 2020). In particular, research on the topic received
renewed attention after the recent progress in the study of reasonable cost models that made
evident that counting β-steps gives rise to a reasonable cost model for time.

Caveat. Being the topics of this thesis so different and broad, and never studied together before,
it is not easy to explain them all, in full details. We apologize to the reader for this lack of
completeness. This is why we have tried to cite as many surveys as possible, so that the interested
reader could use them as a reference.

1.1 Structure of the Thesis and Contributions

We explain in this section the structure of the thesis, listing our main contributions. the manuscript
is divided into two parts: the first one devoted to the study of the complexity of the IAM, and
the second one mainly dedicated to the study of the KAM, as a space reasonable device. Before
starting with original content of the thesis, we have given a technical gentle introduction to abstract
machines and intersection types in Chapter 2.

1. Part I is devoted to the Interaction Abstract Machine and to its complexity. We analyze
quantitatively the behaviour of the IAM, so as to prove, actually to disprove, the conjecture
about its space (and eventually time) reasonability. Technically, this is done through a new
definition of the machine and thanks to the introduction of two intersection type systems
that are able to characterize the IAM space and time consumption.

• In Chapter 3, we redefine the IAM as a machine acting directly on λ-terms, dubbed
λIAM, rather than on linear logic proof nets. This way, a clear inductive structure
emerges and this can be used as the basis for a new, conceptually simple, and self-
contained, proof of the correctness of the IAM. The change of presentation allows a finer
understanding of the IAM complexity and will be the basis for the analyzes carried out
in the following chapters. This results appeared in (Accattoli, Dal Lago, and Vanoni,
2020a).

• In Chapter 4, we develop the time complexity analyzes of the IAM. We exploit non-
idempotent intersection types and, in particular, we explain the existing correspondence
between the evaluation mechanism at work in the IAM and non-idempotent intersection

4Actually, non-idempotent IT are able to reflect also the qualitative properties of the idempotent variant. Moreover, the
proofs of soundness and completeness are far more easier. Indeed, the reducibility technique needed in the idempotent case
is replaced by simple inductive and combinatorial arguments. (Bucciarelli et al., 2017) is a recent survey on the subject.
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type derivations. We show how to build a machine on top of type derivations and we
show that this machine is strongly bisimilar to the IAM. Moreover, assigning weights to
types and type judgments, we are able to characterize the IAM time consumption by
the way of the weighted type system, in the same way de Carvalho (2007, 2018) did for
the KAM. These results appeared in (Accattoli, Dal Lago, and Vanoni, 2021c).

• In Chapter 5, we enrich the previously defined type system in such a way that we
are able to capture also the IAM space consumption. This modification is non-trivial
and was not present in the literature. Capturing the space consumption is particularly
interesting as the IAM is supposed to be a space efficient evaluation mechanism, with
no need for external garbage collection. This feature explains why the problem is hard,
indeed at run time the memory used by the IAM sometimes grows and sometimes
shrinks. These results appeared in (Accattoli, Dal Lago, and Vanoni, 2021d).

• In Chapter 6, we give, through the use of the type systems mentioned above, a proof of
unreasonability of the IAM, both in time and space, when Turing machines are encoded
in the λ-calculus in the standard way. This is in contrast with the folklore, because of
the many results about space complexity that used the IAM as a proof technique. These
results appeared in (Accattoli, Dal Lago, and Vanoni, 2021b,d).

2. Part II is mainly devoted to the quest for a reasonable space cost model for the λ-calculus.
Since we have shown in Part I that the IAM cannot be a space reasonable cost model, we
explore other directions. We start from an interesting (time) optimization of the IAM, very
related to Hyland and Ong (2000) game semantics. However, we realize soon that this is
not the right tool. Then, we turn our attention to the KAM, but with a perspective which
is very different from the usual one. First, we optimize it, so as to remove all possible
space overheads (and thus not caring about time efficiency). Then, after having revised the
encoding of Turing machines into the λ-calculus, we are able to prove the modified KAM
the first space reasonable cost model for the λ-calculus accommodating sub-linear space.
Finally, after having transferred this result also to call-by-value evaluation, we are able to
characterize compositionally, through an intersection type system, this new reasonable space
measure.

• In Chapter 7, as a first tentative, we redefine the Jumping Abstract Machine and the
Pointer Abstract Machine in our framework, this way being able to prove their equiva-
lence (actually, a strong bisimulation). Moreover, we are able to analyze their complexity,
thus defining a clear complexity theoretic hierarchy of the abstract machines inspired
by the GoI and GS. Unfortunately, these machines do not appear to be good candidates
for space reasonable cost models. These results appeared in (Accattoli, Dal Lago, and
Vanoni, 2021c).

• In Chapter 8, we finally turn our attention on the KAM, again after Chapter 2. We
define a variant of the KAM, dubbed Space KAM, whose implementation does not
rest on the sharing of the environments/closures and that performs eager garbage
collection. We prove that the space cost model defined as the space consumption of this
machine is reasonable, this way solving a long standing open problem in the theory of
the λ-calculus5. Moreover, we able to transfer our results also to the call-by-value and
to give the Space KAM also a reasonable time cost model. These results will appear
soon as (Accattoli, Dal Lago, and Vanoni, 2022b).

• In Chapter 9, we formulate an intersection type system that exactly captures the space
consumption of the Space KAM. This is obtained through a small, yet non trivial, modi-
fication and adaptation of de Carvalho original type system. This way, a compositional
way of measuring reasonable space is given. Also these results will appear soon as
(Accattoli, Dal Lago, and Vanoni, 2022a).

5The importance of this problem is witnessed by its mention on the Wikipedia page on the λ-calculus: https://en.
wikipedia.org/wiki/Lambda_calculus#Complexity (accessed on 25 November 2021).

https://en.wikipedia.org/wiki/Lambda_calculus#Complexity
https://en.wikipedia.org/wiki/Lambda_calculus#Complexity


Chapter 2

Types, Machines and the Complexity
of the λ-Calculus

In this section we present all the preliminaries related to what will be discussed in the following
parts of the dissertation.

2.1 The Closed Call-by-Name λ-Calculus

Church’s λ-calculus will be our main object of study throughout this dissertation. We consider
it the paradigmatic functional programming language and we want to study its computational
complexity, or better the complexity of its implementation. We start by defining the language of
terms.

Let V be a countable set of variables. Terms of the λ-calculus Λ are defined as follows:

λ-TERMS t, u, r ::= x ∈ V | λx.t | tu.

Free and bound variables are defined as usual: λx.t binds x in t. Terms are considered modulo
α-equivalence1, and t{x�u} denotes capture-avoiding (meta-level) substitution of all the free
occurrences of x for u in t. The operational semantics of the λ-calculus is given just one rewriting
rule, called the β-rule:

(λx.t)u 7→β t{x�u}

Terms like (λx.t)u, called reducible expressions, or redexes, can occur as sub-terms inside a bigger
term. Restricting the scope of the β-rule to only some of the redexes, i.e. defining a reduction strategy,
gives rise to the different λ-calculi. In this dissertation we deal with the simple possible fragment,
which we call Closed Call-by-Name (Closed CbN). It is dubbed closed, because we consider only
closed terms, i.e. terms which do not have any free variable, and call-by-name, because arguments
are substituted inside function bodies unevaluated. Moreover, Closed CbN is a weak strategy,
called in fact also weak head reduction, because does not evaluate under abstractions2, which are,
this way, the all and only normal forms, and because it evaluates first the head redex. We can
define Closed CbN in the following way:

(λx.t)ur1 . . . rh →wh t{x�u}r1 . . . rh.

Alternatively, we can use contexts to define weak evaluation in a more “inductive” way, often
useful in proofs. Contexts are just λ-terms containing one occurrence of a special symbol, the hole
⟨·⟩, which is a placeholder intuitively standing for a removed sub-term. CbN contexts are defined
as follows:

CBN CONTEXTS H ::= ⟨·⟩ | Hu

1Two λ-terms are considered α-equivalent if they are α-convertible. α-conversion is the process of renaming bound
variables. Out of the context of the λ-calculus, α-equivalence is usually implicitly assumed, e.g. f (x) = x is considered the
same as f (y) = y.

2This is the common practice in functional programming languages.



8 Chapter 2. Types, Machines and the Complexity of the λ-Calculus

The operation replacing the hole ⟨·⟩ with a term t in a context C is noted C⟨t⟩ and called plugging.
Then, Closed CbN can be defined as the contextual closure of the β-rule by CbN contexts:

t 7→β u

C⟨t⟩ →wh C⟨u⟩

It is already evident from these first definitions that the evaluation of λ-terms according to
the definition of Closed CbN reduction is not an atomic operation from the complexity-theoretic
point of view. Indeed, performing the substitution t{x�u} has a cost which is at least linear in the
number of occurrences of x in t (itself bounded by the size of t) and in the size of u. The situation
is even worse, because the size of λ-terms can grow exponentially in the length of a reduction
sequence, this is the already cited size explosion.

This is why β-reduction is never implemented as it is specified, otherwise it would be impossible
to reach the good performances that functional programming languages have. Typically, abstract
machines are employed to evaluate functional programs, the OCaml ZINC (Leroy, 1990), for call-by-
value, and the Haskell G-machine (Jones, 1992), for call-by-need, being two notable examples.

2.2 The Krivine Abstract Machine

In this section we give the definition and some basic results about an abstract machine for Closed
CbN due to Krivine (2007) and dubbed KAM. While giving the correctness results, we have already
in mind the complexity analyses, that is, the quantitative properties of the KAM. Since many
abstract machines will be introduced next, we first give some definition abstracting from the
specific implementation.

Abstract Machines Glossary. An abstract machine M = (S,→M, init(·), ·→ ) is a transition system
→ over a set of states, noted S, together with two functions:

• Compilation. init(·) : Λ→ S, turning λ-terms into states;

• Decoding. (·) → : S→ Λ, turning states into λ-terms and such that init(t)

→

= t for every closed
λ-term t.

A state is composed by the (immutable) code t0, the active term t, and some data structures. Since
the code never changes, it is usually omitted from the state itself, focussing on dynamic states that
do not mention it. A state s ∈ S is initial for t if init(t) = s. In this dissertation, init(t) is always
defined as the state having t as both the code and the active term and having all the data structures
empty. Additionally, the code t shall always be closed, without further mention. A state is final if no
transitions apply. A run ρ : s →∗ s′ is a possibly empty sequence of transitions, whose length is
noted |ρ|. If a and b are transitions labels (that is,→a⊆→ and→b⊆→) then→a,b:=→a ∪ →b, |ρ|a
is the number of a transitions in ρ, and |ρ|¬a is the size of transitions in ρ that are not→a. An initial
run is a run from an initial state init(t), and it is also called a run from t. A state s is reachable if it is
the target state of an initial run. A complete run is an initial run ending on a final state.

Implementation Theorem for Environment Machines. We state the correctness of an abstract
machine as an implementation theorem. An environment abstract machine M implements a
strategy→ if from the initial state st of code t it computes a representation of the normal form
nf→(t). In particular, the machine somehow maintains the representation of how the strategy→
modifies the term t they both evaluate. The implementation theorem states a weak bisimulation
between the transitions s→M s′ of the machine and the steps t→ u of the strategy. In particular, a
run ρt of the machine on t passes through some states representing u, i.e. that can be decoded to u.

The Krivine Abstract Machine, Concretely. The KAM is a standard environment-based machine
for Closed CbN, often defined as in Fig. 2.1. The machine evaluates closed λ-terms to weak head
normal form via three transitions, the union of which is noted→KAM:
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CLOSURES ENVIRONMENTS STACKS STATES

c ::= (t, e) e ::= ϵ | [x�c] · e π ::= ϵ | c · π s ::= (t, e, π)

Term Env Stack Term Env Stack

tu e π →sea t e (u, e)·π
λx.t e c·π →β t [x�c]·e π

x e π →sub u e′ π if e(x) = (u, e′)

FIGURE 2.1: KAM data structures and transitions.

• →sea looks for redexes descending on the left of topmost applications of the active term,
accumulating arguments on the stack;

• →β fires a β redex (given by an abstraction as active term having as argument the first entry
of the stack) but delays the associated meta-level substitutions, adding a corresponding
explicit substitution to the environment;

• →sub is a form of micro-step substitution: when the active term is x, the machine looks up
the environment and retrieves the delayed replacement for x.

The data structures used by the KAM are local environments, closures, and a stack. Local environments,
that we shall simply refer to as environments, are defined by mutual induction with closures. The
idea is that every (potentially open) term t in a dynamic state comes with an environment e that
closes it, thus forming a closure c = (t, e), and, in turn, environments are lists of entries [x�c]
associating to each open variable x of t, a closure c i.e., morally, a closed term. The stack simply
collects the closures associated to the arguments met during the search for β-redexes.

A dynamic state s of the KAM is the pair (c, π) of a closure c and a stack π, but we rather see
it as a triple (t, e, π) by spelling out the two components of the closure c = (t, e). Initial dynamic
states of the KAM are defined as init(t0) := (t0, ϵ, ϵ) (where t0 is a closed λ-term, and also the
code). The decoding of closures and states is as follows:

CLOSURES (t, ϵ)

→

:= t (t, [x�c]·e) → := (t{x�c

→ }, e)

→

STATES (t, e, ϵ)

→

:= (t, e)

→

(t, e, π·c) → := (t, e, π)

→

c

→

Basic Qualitative Properties. Some standard facts about the KAM follow. Let ρ : init(t0)→KAM
∗s

be a run.

• Closures-are-closed invariant: if the code t0 is closed (that is the only case we consider here)
then every closure (u, e) in s is closed, that is, for any free variable x of u there is an entry
[x�c] in e, and recursively so for the closures in c. Thus (u, e)

→

is a closed term, whence the
name closures.

• Final states: the previous fact implies that the machine is never stuck on the left of a→sub
transition because the environment does not contain an entry for the active variable. Final
states then have shape (λx.u, e, ϵ).

Theorem 2.2.1 (Implementation (Accattoli et al., 2014a)). The KAM implements Closed CbN, that is,
there is a complete→wh-sequence t→n

wh u if and only if there is a complete run ρ : init(t)→KAM
∗s such

that s

→

= u and |ρ|β = n.

The key point is that there is a bijection between→wh steps and→β transitions, so that we can
identify the two. Moreover, the number of→wh steps is a reasonable cost model for time, as first
proved by Sands et al. (2002).
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Quantitative Properties. We recall also some less known quantitative facts, for runs as above, from
papers by Accattoli and co-authors (Accattoli et al., 2014a; Accattoli and Barras, 2017; Accattoli
and Dal Lago, 2012). The aim is to bound quantities relative to the run ρ and the reachable state s.
The bounds are given with respect to two parameters: the size |t0| of the code and the number |ρ|β
of β-transitions, which, as mentioned, is an abstract notion of time for Closed CbN.

• Number of transitions: the number |ρ|sub of sub transitions in ρ is bounded by O(|ρ|2β), and
there are terms on which the bound is tight. The number |ρ|sea of sea transitions is bounded
by O(|ρ|2β · |t0|), but on complete runs the bound improves to O(|ρ|β) and in particular
|ρ|sea = |ρ|β.

• Sub-term invariant: every term u in every closure (u, e) in every reachable state is a literal
(that is, not up to α-renaming) sub-term of the code t0 . Therefore, in particular |u| ≤ |t0|.

• The length of a single environment: the number of entries in a single environment is bounded
by the size |t0| of the code.

• The number of environments: the number of distinct environments in s is bounded only by |ρ|β.

• The length of the stack: the length of the stack in s is bounded byO(|ρ|2β · |t0|), but on complete
runs the bound improves to O(|ρ|β).

Sub-Term Pointers and Data Pointers. The KAM is usually implemented using two forms of
pointers:

1. Sub-term pointers: the initial term t0 provides the initial immutable code. The essential sub-
term invariant mentioned above allows us to represent the terms u in every closure (u, e) of
reachable states with a pointer to t0 instead that with a copy of u.

2. Data (structure) pointers: to ensure that the duplication of the environment e in transition
→sea can be implemented efficiently (in time), environments, implemented as linked lists, are
shared so that what is duplicated is just a pointer to an environment, and not the environment
itself.

Both kinds of pointers shall draw our attention. Sub-term pointers have size O(log |t0|). For the
present discussion they are space-friendly, because their size does not depend on the length of
the run—we shall inspect them in Chapter 8, where we shall ensure that their number is under
control. Data pointers, on the other hand, are space-hostile, because (as recalled above) the number
of environments is bounded only by |ρ|β, that is, time. Data pointers on complete runs have thus
size O(log |ρ|β), entangling space with time, which is unreasonable for space.

Cost of KAM Transitions. The idea is that environments are implemented as linked lists, so
that the duplication and insertion operations in transitions →sea and →β can be implemented
in time proportional to the size of manipulated pointers. Actually, these are the only transitions
that contribute to space complexity, creating new pointers. Transition→sub needs to access the
environment, whose size is bounded by |t0|, the size of the initial term t0 of the run. By adopting
smarter implementations of environments, such as random access lists or balanced trees, one→sub
transition costs log |t0| plus the cost of manipulating data pointers—see Accattoli and Barras (2017)
for discussions about implementations of the KAM. No space is consumed by the→sub transition.

The Time and Space Complexity of the KAM. Since on complete runs ρ manipulated pointers
are just sub-term pointers, of size log |t0|, and data pointers, of size log |ρ|β, considering the
complexity analyses of the previous paragraphs, we have the following theorem.

Theorem 2.2.2. Let ρ : init(t0)→KAM
∗s be a complete KAM run. It can be implemented on RAMs in time

O(|ρ|2β · log(|ρ|β · |t0|)) and space O(|ρ|β · log(|ρ|β · |t0|)).
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x : [A] ⊢ x : A
T-VAR

Γ, x : M ⊢ t : A
Γ ⊢ λx.t : M→ A T-λ ⊢ λx.t : ⋆

T-λ⋆

Γ ⊢ t : [B1, . . . , Bn]→ A [∆i ⊢ u : Bi]i∈[1,...,n]

Γ ⊎⊎
i∈[1,...,n] ∆i ⊢ tu : A T-@

FIGURE 2.2: The multi type system for Closed CbN.

As one can immediately notice, the time overhead of the KAM implementation on RAMs,
which are a time reasonable model, is polynomial in |ρ|β3. Since we have identified |ρ|β and the
number of→wh-steps, this is a proof that the number of→wh-steps, which is the natural time cost
model for the Closed CbN λ-calculus, is a reasonable time cost model4.

At the same time, the theorem above, tell us that the space consumed by the KAM is an
unreasonable cost model. In fact, it depends quasi-linearly from time. This is a problem when
one has to implement, say, TMs into the λ-calculus. If a TM halts in n steps, then a linear-time
simulation of TMs into the λ-calculus would require space, when executed via on the KAM,
quasi-linear in n. This would mean that space on the λ-calculus is more than linear in time of TMs.
For the invariance thesis to hold, one requires instead that space in the λ-calculus is linear in the
space of TMs.

Related Work on The Complexity of Environment Machines. The time efficiency of environment
machines has been recently closely scrutinized. Before 2014, the topic had been mostly neglected—
the only two counterexamples being Blelloch and Greiner (1995) and Sands et al. (2002). Since
2014—motivated by advances by Accattoli and Dal Lago on time cost models for the λ-calculus
Accattoli and Dal Lago, 2016—Accattoli and co-authors have explored time analyses of environ-
ment machines from different angles (Accattoli et al., 2014a; Accattoli and Barras, 2017; Accattoli
et al., 2021a; Accattoli and Guerrieri, 2019; Accattoli et al., 2019b). Recently, also Biernacka et al.
(2021) gave similar results. A (slightly outdated) survey on the topic by Accattoli (2016) gives a
gentle introduction to the topic.

2.3 Non-Idempotent Intersection Types

We give in this section an introduction to non-idempotent intersection types (a.k.a. multi types).
First, we consider them from the qualitative point of view, and the we refine our analysis quantita-
tively. We will review them quite quickly, inviting the reader to consult (Bucciarelli et al., 2017)
about the qualitative part, and (Accattoli et al., 2020b) about the quantitative one. Multi types are
very related to linear logic in how they track the use of resources, and in particular their grammar
is reminiscent of the (call-by-name, in our case) translation ·† of intuitionistic logic into linear
logic (A → B)† = !A† ⊸ B†. Semantically, they can be seen as a syntactical presentation of the
relational model (Bucciarelli and Ehrhard, 2001) of the λ-calculus, when the latter is interpreted
into linear logic.

LINEAR TYPES A, B ::= ⋆ | M→ A
MULTI TYPES M, N ::= [A1, . . . , An] n ≥ 0

Note that there is a ground type ⋆, which can be thought as the type of normal forms, that in
Closed CbN are precisely abstractions. Note also that arrow (linear) types M → A can have a
multiset only on the left. The empty multiset is noted [·], and the union of two multisets M and N
is noted M ⊎ N.

3It is possible to make the overhead quasi-linear instead of quasi-quadratic by adopting an optimization called unchaining.
This shall be presented in Chapter 8, since it is related also to space consumption

4Actually, to prove that a cost model is reasonable one has also to show the inverse direction, i.e. that there is a
polynomially bounded simulation of a reasonable model into the Closed CbN λ-calculus. This can be proved by simulating
TMs, e.g. as it is done in Appendix D
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⊢1 T-VAR
⊢w

⊢w+1 T-λ
⊢0 T-λ⋆

⊢w [⊢vi ]i∈[1,...,n]

⊢w+∑ vi+1 T-@

FIGURE 2.3: The weight assignments WKAM(·).

Type judgments have the form Γ ⊢ t : A, where Γ is a type environment, defined below.
The typing rules are in Fig. 2.2, type derivations are noted π and we write π ▷ Γ ⊢ t : A for a
type derivation π of ending judgment Γ ⊢ t : A. Type environments, ranged over by Γ, ∆ are
total maps from variables to multi types such that only finitely many variables are mapped to
non-empty multi types, and we write Γ = x1 : M1, . . . , xn : Mn if dom(Γ) = {x1, . . . , xn}. Given
two type environments Γ, ∆, the expression Γ ⊎ ∆ stands for the type environment assigning to
every variable x the multiset Γ(x) ⊎ ∆(x).

Characterization of Termination. Multi types characterize Closed CbN termination, that is,
they type all and only those λ-terms that terminate with respect to Closed CbN. Differently from
what happens with the idempotent version, proving this result is surprisingly easy. Indeed,
one is required to prove in quantitative way the substitution lemma plus subject reduction for
correctness, and anti-substitution lemma, subject expansion, and typability of all normal forms
for completeness (here trivial, because all normal forms are typed by T-λ⋆). All the proofs can be
carried out by a simple induction on the structure of terms/types. In Appendix C, the reader can
find the proof for a little variant over this multi type system.

Theorem 2.3.1. A closed term t has weak head normal form if and only if ⊢ t : ⋆.

Multi Types and the KAM Time Consumption. Multi types have been successfully applied in
quantitative analyses of normalization, starting with de Carvalho (2007, 2018) who used them to
give a bound to the length of KAM runs. de Carvalho’s technique can be re-phrased and distilled
as a decoration of type derivations with weights, that is, cost annotations, following the scheme
of Fig. 2.3. Please note that the weight assignment is blind to types, and thus relies only on the
structure of the type derivation. de Carvalho’s result can be formulated as follows.

Theorem 2.3.2 (de Carvalho). There is a complete KAM run of length n from t if and only if exists π
such that π ▷ ⊢ t : ⋆ and WKAM(π) = n.

The KAM being deterministic, one has that all derivations ⊢ t : ⋆ induce the same weights.
Moreover, there is a stronger correspondence between the rules of the type system, and the transi-
tions of the KAM. Every T-@ rule corresponds to a→sea transition, every T-λ rule corresponds to
a→β transition5, and every T-VAR rule corresponds to a→sub transition. The only T-λ⋆ rule in a
type derivation for t corresponds to the final state of the KAM run on t. The correspondence is
deep, each state of the KAM run on a λ-term t is linked to a judgment in the type derivation of t in
such a way that the sub-term of the state is exactly the same sub-term of the judgment. In other
words, the KAM and multi types compute in the same way, they are only different syntactical styles.
Moreover, this is the same mechanism Accattoli and Kesner’s Linear Substitution Calculus (Accat-
toli and Dal Lago, 2012; Accattoli et al., 2014b), which will be introduced in the next chapter, uses
to evaluate λ-terms.

Related Works on Multi Types. Various works in the literature explore multi types from various
points of view. Several papers study multi types qualitatively, e.g. in call-by-name (Bucciarelli et al.,
2018, 2021; Kesner and Vial, 2017; Olimpieri, 2021; Tsukada and Ong, 2016) and in call-by-value
(Carraro and Guerrieri, 2014; Ehrhard, 2012). Quantitatively, many works by Accattoli, Kesner and
coauthors have already been cited, e.g. (Accattoli and Guerrieri, 2018; Accattoli et al., 2019a; Alves
et al., 2019; Bucciarelli et al., 2020; Kesner and Vial, 2020). Dal Lago et al. (2021) used multi types to
give a quantitative characterization of the probability of convergence of probabilistic λ-terms.

5This way, multi type derivations can be used to count also the number of→wh-steps a λ-term needs to normalize.
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Scoping. In this thesis we shall define several weighted type systems in the same style of the
one presented in this chapter. In order to not to make the notation too heavy, we do not have
given different symbols to the different systems. We assume a scoping by-chapter. Indeed, no
type system is used outside the chapter in which it is defined. The only exception being Chapter 6,
where the two sections are clearly using two different type systems.





Part I

The IAM: Types and Complexity





Chapter 3

The Interaction Abstract Machine

The original GoI machine is the Interaction Abstract Machine (IAM). It was developed at the same
time by Mackie and Danos & Regnier, and its first appearance is in a paper by Mackie (1995),
dealing with implementations. Danos and Regnier study it in two papers, one in 1996 together
with Herbelin (Danos et al., 1996), where it is dealt with quickly, and its implementation theorem
(or correctness1) is proved via game semantics, and one by themselves (Danos and Regnier, 1999),
published only in 1999 but reporting work dating back to a few years before, dedicated to the IAM
and to an optimization based on a fine analysis of IAM runs. These papers differ on many details
but they all formulate the IAM on linear logic proof-nets as a reversible, bideterministic automaton.
Danos, Herbelin, and Regnier (1996) prove that the IAM implements linear head evaluation→lh
(shortened to LHE), a refinement of head evaluation, arising from the linear logic decomposition
of the λ-calculus.

New Proof of the Implementation Theorem. We present an alternative proof of the implementa-
tion theorem for the IAM, which is independent of game semantics and other abstract machines.
Our proof is direct and based on a natural notion of bisimulation, namely a variant on Sands’
improvements (Sands, 1996).

The implementation theorem of GoI machines amounts to showing that their result is an
adequate and sound semantics for LHE, that is, it is invariant by LHE (soundness) and it is non-
empty if and only if LHE terminates (adequacy). The key point for soundness is that—in contrast
to the study of environment machines—steps of the GoI machine are not mapped to LHE steps,
because the GoI computes differently. What is shown is that if t→lh u then the run of the machine
on t is “akin” to the run on u, and they produce akin results—see Sect. 3.6 for more details. In our
proof, “akin” is interpreted as bisimilar. An improvement is a bisimulation asking that the run on u
is no longer than the run on t. Building on such a quantitative refinement, we prove adequacy. The
proof of our implementation theorem is arguably conceptually simpler than Danos, Herbelin, and
Regnier’s. Of course, their deep connection with game semantics is an important contribution that
is not present here.

The Lambda Interaction Abstract Machine. The second contribution of this chapter is a formu-
lation of the IAM as a machine acting directly on λ-terms rather than on linear logic proof nets.
Our proof might also have been carried out on proof nets, but we prefer switching to λ-terms for
two reasons. First, manipulating terms rather than proof nets is easier and less error-prone for the
technical development. Second, we aim at minimizing the background required for understanding
the IAM, and so doing we remove any explicit reference to linear logic and graphical syntaxes.

The starting point of our Lambda Interaction Abstract Machine (λIAM) is seeing a position in
the code t (what is usually the position of the token on the proof net representation of t) as a pair
(u, C) of a sub-term u and a context C such that C⟨u⟩ = t. These positions are simply a readable
presentation of pointers2.

1The result that an abstract machine implements a strategy is sometimes called correctness of the machine. We prefer to
avoid such a terminology, because it suggests the existence of a dual completeness result, that is never given because already
contained in the statement of correctness. We then simply talk of an implementation theorem.

2For the acquainted reader, they play a role akin to the initial labels in Lévy’s labeled λ-calculus, itself having deep
connections with the IAM (Asperti et al., 1994).
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The main novelty of the new presentation is that some of the exponential transitions on proof
nets are packed together in macro transitions. The shape of our transitions makes a sort of
backtracking mechanism more evident. Careful: that the IAM rests on backtracking is the key point
of Danos and Regnier (1999), and therefore it is not a novelty in itself. What is new is that such a
mechanism is already visible at the level of transitions, while on proof nets it requires sophisticated
analyses of runs.

More About the λIAM. The original papers on the IAM (Danos et al., 1996; Danos and Regnier,
1999; Mackie, 1995) differ on many points. Here we follow (Danos et al., 1996), modeling the
λIAM on the call-by-name translation of the λ-calculus in linear logic and considering only the
path/runs starting on the distinguished conclusion corresponding to the output of the net/term.
This is natural for terms, and also along the lines of how AJM games interpret terms. Similarly to
AJM games, then, our GoI semantics is sound also for open terms with respect to erasing steps.

An original point of our work is the identification of a new invariant of the λIAM—probably
of independent interest—based on what we call exhaustible states. Informally, a state of the λIAM
is exhaustible if its token can be emptied in a certain way, somehow mimicking the computation
which leads to the state itself.

Related Work on GoI. The literature about the GoI and its applications is huge, and goes from
the original paper by Girard (1989b), to the reformulation by (Abramsky et al., 2002) using the
INT-construction, Danos and Regnier (1993) using path algebras, the application by Ghica (2007)
to circuit synthesis, together with extensions by Hoshino et al. (2014) to languages with various
kinds of effects, and Laurent (2001) extension to the additive connectives of linear logic. In all these
cases, the GoI interpretation, even when given on λ-terms, goes through linear logic (or symmetric
monoidal categories) in an essential way. The only notable exceptions are perhaps the recent
contributions by Schöpp (2014, 2015) on the relations between GoI, CPS, and defunctionalization in
which, indeed, some deep relations are shown to exist between GoI and classic tools in the theory of
λ-calculus3. Even there, however, GoI is seen as obtained through the INT-construction (Abramsky
et al., 2002; Joyal et al., 1996), although applied to a syntactic category of terms.

The GoI has been studied in relationship with implementations of functional languages, by
Gonthier et al. (1992), who studied Lévy’s optimal evaluation, and by Mackie (1995, 2017) with
his GoI machine for PCF, Gödel System T, and—with Fernandez—for call-by-value (Fernández
and Mackie, 2002). The space-efficiency studied by Dal Lago and Schöpp (2016) is exploited by
Mazza (2015) and by Mazza and Terui (2015). Dal Lago et al. (2017a, 2014, 2015, 2017b) have also
introduced variants of the IAM acting on proof nets for a number of extensions of the λ-calculus.
Curien and Herbelin (1998, 2007) study abstract machines related to game semantics and the IAM.
Muroya and Ghica (2017) have recently studied the GoI in combination with rewriting and abstract
machines.

3.1 A Gentle Introduction to the λIAM

This section introduces the λIAM gradually. There are various mechanisms at work in the λIAM.
Most of them are also part of the simpler machine that evaluates linear λ-terms (where each
variable occurs exactly once). Then we first see the Linear λIAM , which is easier to grasp, and
later refine it with non-linearity.

Defining the Linear λIAM . An essential point is that the initial code t of the machine never
changes. The λIAM only moves over it, in a local way, with no rewriting of the code and without
ever substituting terms for variables. The current position in the code t is represented as a pair
(u, C) where C is a context (that is, a term with a hole) and C⟨u⟩ = t. A state s of the Linear λIAM

3In particular, Schöpp highlights how GoI can be seen as an optimized form of CPS transformation, followed by
defunctionalization.
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Sub-tm Context Token Sub-tm Context Token

tu C T →@1 t C⟨⟨·⟩u⟩ @·T
λx.t C @·T →@2 t C⟨λx.⟨·⟩⟩ T
x C⟨λx.D⟩ T →var λx.D⟨x⟩ C x·T
λx.D⟨x⟩ C b·T →bt2 x C⟨λx.D⟩ T

t C⟨⟨·⟩u⟩ λ·T →λ2 tu C T
t C⟨λx.⟨·⟩⟩ T →λ1 λx.t C λ·T
t C⟨⟨·⟩u⟩ x·T →arg u C⟨t⟨·⟩⟩ T
t C⟨u⟨·⟩⟩ T →bt1 u C⟨⟨·⟩t⟩ b·T

FIGURE 3.1: Linear λIAM transitions.

has the shape (t, C, T, d) where (t, C) is a position, while T and d are the linear token (which is a
stack) and the direction, defined by:

(LINEAR) TOKEN T ::= ϵ | @·T | λ·T | x·T | b·T
DIRECTION d ::= ↓ | ↑

The token T can contain occurrences of @ and λ, variables, and occurrences of b. The use of these
symbols is explained below via examples. Directions ↓ and ↑, pronounced down and up, shall be
represented mostly via colors and underlining: the code term in red and underlined, for ↓, and
the code context in blue and underlined, for ↑. This way, the fourth component of states is often
omitted.

The transitions of the Linear λIAM are in Fig. 3.1. Roughly, when the direction is ↓, the machine
looks for the head variable of t. The direction changes to ↑ when the head variable x is found,
moving also the machine to the position (λx.u, D) of the binder of x. In direction ↑, the λIAM
explores D looking for the argument that head evaluation would substitute on x. Initial states have
the form st := (t, ⟨·⟩, ϵ), where t is a term.

Mechanism 1: Search Up to β-Redexes. A basic mechanism of the Linear λIAM is the search
of the head variable in direction ↓ without recording β-redexes, via transitions →@1 and →@2.
Consider the following run, with Iz := λz.z and Iw := λw.w.

Sub-tm Context Tok.
((λy.λx.xy)Iz)Iw ⟨·⟩ ϵ →@1
(λy.λx.xy)Iz ⟨·⟩Iw @ →@1

λy.λx.xy (⟨·⟩Iz)Iw @·@ →@2
λx.xy ((λy.⟨·⟩)Iz)Iw @ →@2

xy ((λy.λx.⟨·⟩)Iz)Iw ϵ →@1
x ((λy.λx.⟨·⟩y)Iz)Iw @

When the machine faces an application, transition →@1 records on the token the presence of
an argument by pushing the symbol @, but not the argument itself (as it would instead do an
environment machine), and moves to the left sub-term. Dually, on an abstraction, if the top of
the token is @ then the machine pops it and moves to the body of the abstraction. This way,
β-redexes are simply skipped. Note indeed that after the first 4 transitions the machine has crossed
2 β-redexes and the token is empty, as at the beginning.

Mechanism 2: Finding Variables and Arguments. In the example, the Linear λIAM finds the
head variable x. Then transition→var applies, changing the direction to ↑ and moving the position
to the binder λx. The machine now looks for the argument of the binder, exploring the context
(now underlined and in blue) rather than the sub-term of the current position.
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x ((λy.λx.⟨·⟩y)Iz)Iw @ →var

λx.xy ((λy.⟨·⟩)Iz)Iw x·@ →λ1
λy.λx.xy (⟨·⟩Iz)Iw λ·x·@ →λ2

(λy.λx.xy)Iz ⟨·⟩Iw x·@ →arg

Iw ((λy.λx.xy)Iz)⟨·⟩ @

Note that→var adds x to the token, recording that the variable x has been found. The search for
the argument is, again, up to β-redexes, via transitions→λ1 and→λ2, adding a symbol λ to the
token on abstractions and removing it on applications. The ↑ phase ends with transition→arg,
that fires when the hole of the context is facing an argument and the token contains a variable,
here x—such an argument matches the binder λx of the previously found variable. The transition
removes x from the token, moves to the found argument, and switches direction.

Mechanism 3: Backtracking. On the example, the Linear λIAM continues by looking for the
head variable of Iw, as expected.

λw.w ((λy.λx.xy)Iz)⟨·⟩ @ →@1
w ((λy.λx.xy)Iz)(λw.⟨·⟩) ϵ →var

λw.w ((λy.λx.xy)Iz)⟨·⟩ w

Now something different happens. The machine is looking for the argument of Iw. Such an
argument is not readily available, as the hole has no arguments in the current context, because
⟨·⟩ is the right sub-term of an application. Since Iw is a replacement for x, its argument is actually
the argument y of x. Then the machine backtracks to x. Backtracking is started by transition→bt1,
which adds b to the token, moves to the left sub-term of the application, and changes direction.
The next 3 steps look for λx up to β-redexes:

Iw ((λy.λx.xy)Iz)⟨·⟩ w →bt1
(λy.λx.xy)Iz ⟨·⟩Iw b·w →@1
(λy.λx.xy) (⟨·⟩Iz)Iw @·b·w →@2

λx.xy ((λy.⟨·⟩)Iz)Iw b·w →bt2
x ((λy.λx.⟨·⟩y)Iz)Iw w →arg

y ((λy.λx.x⟨·⟩)Iz)Iw ϵ

When λx is found, transition→bt2 ends the backtracking, going back to the unique occurrence of
x in the body of the abstraction (here linearity is crucial), and restores the search for arguments,
changing direction and removing b. The next step is given by transition→arg, that finally finds the
argument y of Iw, removing w from the token. In two more transitions, the Linear λIAM reaches a
final state, signifying that t is normalizing when evaluated under Closed CbN.

y ((λy.λx.x⟨·⟩)Iz)Iw ϵ →var

(λy.λx.xy) (⟨·⟩Iz)Iw y →arg

Iz ((λy.λx.xy)⟨·⟩)Iw ϵ

Two Observations: @ and λ Can Be Merged, and Locality. Note that the symbols @ and λ of the
token play dual roles and never interact. In the following sections, we then harmlessly merge them
into a single symbol •, pronounced dot. Moreover, the reader can observe that transitions→var

and→bt2 move from a variable to its binder and vice versa. These moves are local if one assumes
that λ-terms are represented by implementing variable occurrences as pointers to their binders, as
in the proof net representation of λ-terms, see Sect. 3.8 for a precise comparison.

Two Issues with Non-Linearity. Generalizing the Linear λIAM to arbitrary, potentially non-
linear λ-terms needs to address two difficulties. The first one is that, when the machine faces a
sub-term λx.t and needs to end backtracking via transition→bt2, it is no longer clear to which
occurrence of x in t one should move, if there are many, or what to do, if x does not occur in t.
The second issue is related to duplication. Consider the term t := (λx.x(xu))(λy.r). The head
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Sub-term Context Log Tape Sub-term Context Log Tape

tu C L T →•1 t C⟨⟨·⟩u⟩ L • · T
λx.t C L • · T →•2 t C⟨λx.⟨·⟩⟩ L T
x C⟨λx.Dn⟩ Ln · L T →var λx.Dn⟨x⟩ C L ln · T
λx.Dn⟨x⟩ C L ln · T →bt2 x C⟨λx.Dn⟩ Ln · L T

where ln := (x, λx.Dn, Ln).

t C⟨⟨·⟩u⟩ L • · T →•3 tu C L T
t C⟨λx.⟨·⟩⟩ L T →•4 λx.t C L • · T
t C⟨⟨·⟩u⟩ L l · T →arg u C⟨t⟨·⟩⟩ l · L T
t C⟨u⟨·⟩⟩ l · L T →bt1 u C⟨⟨·⟩t⟩ L l · T

FIGURE 3.2: λIAM transitions.

evaluation of t makes two copies of λy.r that are used differently, because one is applied to u and
the other one to (λy.r)u. The machine does not duplicate sub-terms but still it has to somehow
distinguish different uses of a sub-term.

Towards the λIAM. The two issues are solved via three correlated modifications of the machine.
First, the symbols x and b for the token are generalized to variable positions (x, λx.C) inside the
scope of their binder. Replacing b with (x, λx.C) in particular removes the non-determinism on
→bt2, when x has many occurrences4. Second, the token is split into two components, called log
and tape. Roughly, the tape is the token of the Linear λIAM (generalized to variable positions)
while the log stores, after transition→arg, the variable position for which the machine found the
argument, so as to be able to know to which occurrence to backtrack to in transition→bt1. Third,
there is a mechanism for distinguishing different uses of sub-terms. The log actually stores more
than one variable position, and every position comes with its own log, acting as a sort of identifier
for the use of that position. The next section formally develops this subtle mechanism. Logs and
the way they distinguish uses of sub-terms without duplicating are far from being intuitive: they
are both the mystery and the magic of the geometry of interaction.

3.2 The λIAM

In this section we introduce the data structures used by the λIAM and its transition rules.

Leveled Contexts. The study of the λIAM requires contexts, that are terms with a single occurrence
of a special constant ⟨·⟩, called the hole, that is a place-holder for a removed sub-term. In fact, we
need a notion of context more informative than the usual one, introduced next.

LEVELED CONTEXTS
C0 ::= ⟨·⟩ | λx.C0 | C0t;

Cn+1 ::= λx.Cn+1 | Cn+1t | tCn.

The index n in Cn counts the number of arguments into which the hole ⟨·⟩ is contained5. The level
of a context shall be omitted when not relevant to the discussion—note that any ordinary context
can be written in a unique way as a leveled context, so that the omission is anyway harmless. The
plugging Cn⟨t⟩ of a term t in Cn is defined by replacing the hole ⟨·⟩ with t, potentially capturing
free variables of t. Plugging Cn⟨Cm⟩ of a context for a context is defined similarly. A position (of
level n) in a term u is a pair (t, Cn) such that Cn⟨t⟩ = u.

4An invariant shall guarantee that one never backtracks inside an abstraction whose variable has no occurrences.
5Such an index has a natural interpretation in linear logic terms. According to the standard (call-by-name) translation of

the λ-calculus into linear logic proof nets, in a context Cn the hole lies inside exactly n !-boxes.
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Logs and Logged Positions. The λIAM relies on two mutually recursive notions, namely logged
positions and logs: a logged position is a position (t, Cn) together with a log6 Ln, that is a list of
logged positions, having length n.

LOGGED POSITIONS LOGS
l ::= (t, Cn, Ln) L0 ::= ϵ Ln+1 ::= l · Ln

We use · also to concatenate logs, writing, e.g., Ln · L, using L for a log of unspecified length.
Intuitively, logs contain some minimal information for backtracking to the associated position.

Tape, Token, Direction, State. The tape T is a finite sequence of elements of two kinds, namely
logged positions, and occurrences of the special symbol •, needed to cross abstractions and
applications.

TAPES T ::= ϵ | • ·T | l · T.

A token is a log plus a tape.

Definition 3.2.1 (λIAM State). A state s of the λIAM is a quintuple (t, C, L, T, d) where t is a λ-term,
called the code term, C is a context, called the code context, L is a log, T is a tape, and d is an element of
{↑, ↓}, called the direction.

As for the Linear λIAM , directions shall be represented mostly via colors and underlinings,
omitting the fifth component.

Initial States. The λIAM starts on initial states of the form st := (t, ⟨·⟩, ϵ, ϵ, ↓), where t is a λ-term7,
and ϵ is the empty log/tape.

Transitions. The transitions of the λIAM are in Fig. 3.2. Their union is noted→λIAM. A state s is
reachable if st →∗λIAM s for an initial state st and it is final if there exists no s′ such that s→λIAM s′.
The shape of final states is characterized in Sect. 3.3.

As for the Linear λIAM , ↓-states (t, C, L, T) are queries about the head variable of (the head
normal form of) t and ↑-states (t, C, L, T) are queries about the argument of an abstraction. With
respect to the Linear λIAM , transitions →@1,→@2,→λ1, and →λ2 are respectively renamed
→•1,→•2,→•4, and →•3, because • subsumes both token symbols @ and λ. The role of both
symbols x and b is instead played by logged positions. Note that transition→arg moves the logged
position from the tape to the log, and that transition→bt1 moves it back to the tape, as it shall
specify, at the end of the backtracking, to which variable occurrence→bt2 has to move. The less
intuitive aspect of the λIAM is the splitting of the log in transition→var and the dual concatenation
of logs in→bt2. To justify it, note first that the log is extended every time the machine enters into
an argument via→arg, which is also when the level of the position increases of 1. Note also that
transitions→bt1 moves out of an argument (decreasing the level of 1) and removes an entry from
the log. To preserve the invariant that the log length is exactly the depth of the context, transition
→var splits the log between the two positions (λx.Dn⟨x⟩, C) and (x, λx.Dn), according to the depth
of their contexts, and→bt2 merges them back.

3.3 Properties of the λIAM

Here we first discuss a few invariants of the data structures of the machine, and then we analyze
final states and the semantic interpretation defined by the λIAM.

6In computer science logs are traces that can only grow, while here they also shrink. The terminology suggests a tracing
mechanism—trace is avoided because related to categorical formulations of the GoI.

7To be precise, one needs a well-named term, that is, one in which all bound variables have distinct names, also distinct
wrt free names. Since the code is immutable, this detail is only needed to assure that the relationship between variables and
binders is unambiguous, for the definition of the transitions.
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The Code Invariant. An inspection of the rules shows that, along a computation, the machine
travels on a λ-term without altering it.

Proposition 3.3.1 (Code Invariant). If (t, C, L, T, d)→λIAM (u, D, L′, T′, d′), then C⟨t⟩ = D⟨u⟩.

The Balance Invariant. Given a state (t, C, L, T, d), the log and the tape, i.e. the token, verify two
easy invariants connecting them to the position (t, C) and the direction d. The log L, together with
the position (t, C), form a logged position, i.e. the length of L is exactly the level of the code context
C. This fact guarantees that the λIAM never gets stuck because the log is not long enough for
transitions→var and→bt1 to apply.

About the tape, note that every time the machine switches from a ↓-state to an ↑-state (or vice
versa), a logged position is pushed (or popped) from the tape T. Thus, for reachable states, the
number of logged positions in T gives the direction of the state. These intuitions are formalized by
the balance invariant below. Given a direction d we use dn for the direction obtained by switching
d exactly n times (i.e., ↓0 = ↓, ↑0 = ↑, ↓n+1 = ↑n and ↑n+1 = ↓n).

Lemma 3.3.2 (Balance Invariant). Let s = (t, Cn, L, T, d) be a reachable state and |T|l the number of
logged positions in T. Then

1. Position and log: (t, Cn, L) is a logged position, and

2. Tape and direction: d = ↓|T|l .

Proof. By induction on the execution s0 →k
λIAM s from the initial state s0. If k = 0, s = i =

(t, ⟨·⟩, ϵ, •k). Clearly ⟨·⟩ is a level 0 context, and |L| = 0. Moreover, |T|e = 0 and ↓0 = ↓. Now, let
us consider a IAM run of length k > 0 and let {sh}0≤h≤k be the sequence of states of this run. By
induction hypothesis sk−1 = (t, Cn, T, L, d) is a logged position i.e |L| = n and ↓|T|e = d. We can
show, by cases, that the Lemma holds for sk.

Note that, because of the invariant, the tape T of a reachable ↑-state always contains at least
one logged position, which is why it can be seen as the answer to a query about the head variable.
More generally, the parity of a logged position l on the tape determines the role of l. If l is the
n-th position on T (from the right) and n is odd, then l was added by→var and denotes a found
variable waiting for an argument, while if n is even then l was added by→bt1, its argument was
already found, and the machine is backtracking to l.

The Exhaustible State Invariant. The study of the λIAM requires to prove that some bad
configurations never arise. On states such as (λx.D⟨x⟩, C, L, l·T), transition →bt2 requires the
logged position l to have shape (x, λx.D, L′), that is, to contain a position isolating an occurrence
of x in λx.D⟨x⟩, otherwise the machine is stuck. The exhaustible state invariant guarantees that
the machine never gets stuck for this reason. The invariant being technical, it is developed in the
Section 3.5. Here we only mention a key consequence.

Proposition 3.3.3 (Logged Positions Never Block the λIAM). Let (λx.D⟨x⟩, C, L, l·T) be a reachable
state. Then l = (x, λx.D, L′).

Reversibility. The proof of Prop. 3.3.3 relies on a key property of the λIAM, bi-determinism, or
reversibility: the machine is deterministic, and moreover for each state s there is at most one state
s′ such that s′ →λIAM s. The property follows by simply inspecting the rules. Moreover, a run can
be reverted by just switching the direction.

Proposition 3.3.4 (Reversibility). If
(t, C, L, T, d)→λIAM (u, D, L′, T′, d′), then (u, D, L′, T′, d′1)→λIAM (t, C, L, T, d1).

Final States. A run of initial state st = (t, ⟨·⟩, ϵ, ϵ) may either never stop or end in a final state
of the shape (λx.u, C, L, ϵ). This is the machine’s way of saying that t terminates when evaluated
under Closed CbN strategy.
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The Semantics. The characterization of final states induces a semantic interpretation of terms,
that we shall show to be sound and adequate with respect to weak (linear) head evaluation.

Definition 3.3.5 (λIAM Semantics). We define the λIAM semantics of λ-terms by way of a function
J·K : Λ→ {⇓,⊥}, defined as follows.

JtK :=

{
⇓ if st →∗λIAM (λx.u, C, L, ϵ),
⊥ if the λIAM diverges on st.

Lifting. The λIAM verifies a sort of context-freeness with respect to the tape T. Intuitively, lifting
the tape preserves the shape of the run and of the final state (up to lifting).

Lemma 3.3.6 (Lifting). If (t, C, L, T, d)→n
λIAM (u, D, L′, T′, d′), then

(t, C, L, T·T′′, d)→n
λIAM (u, D, L′, T′·T′′, d′).

Proof. We proceed by induction on n. Thus we have that if (t, C, L, T, d) →n−1
λIAM (u, D, L′, T′, d′),

then (t, C, L, T·T′′, d)→n−1
λIAM (u, D, L′, T′ · T′′, d′). The proof now proceeds analyzing all possible

transitions from (u, D, T, T, d′) and (u, D, L′, T·T′′, d′). The key point is that every transition of
the λIAM consumes at most 1 element of the tape. This is why the pushed stack T′′ never gets
touched.

3.4 Micro-Step Refinement

The proof of soundness of the λIAM cannot be directly carried out with respect to weak head
evaluation: this is specified using meta-level substitutions, here noted t{x�u}, which is a macro
operation, potentially making many copies of u and modifying t in many places, while the λIAM
does a minimalist evaluation that in general does not even pass through most of those many places.
It is very hard—if possible at all—to define explicitly a bisimulation of λIAM runs (as required
for soundness) that relates states whose code is modified by meta-level substitution. We then
switch to weak linear head evaluation (shortened to WLHE), a refinement of weak head evaluation
in which substitution is performed in micro-steps, replacing only the head variable occurrence,
and keeping the substitution suspended for all the other occurrences. This is also the approach
followed by Danos et al. (1996). We depart from their approach, however, in the way we formally
define LHE. We adopt a formulation where the suspension of the substitution is formalized via
a sharing constructor t[x�u], which is nothing else but a compact notation for let x = u in t, and
the rewriting is modified accordingly. They instead avoid sharing, by encoding t[x�u] as (λx.t)u,
which is more compact but conflates different concepts and makes the technical development less
clean. An important point is that weak head evaluation and its linear variant are observationally
equivalent, that is, one terminates on t if and only if the other terminates on t, and they produce
the same head variable, as we shall discuss below.

The Adopted Presentation. (Weak) linear head evaluation was introduced by Mascari and
Pedicini (1994) and Danos and Regnier (2004) as a strategy on proof nets. It is to proof nets for the
λ-calculus what (weak) head evaluation is to the λ-calculus. The presentation adopted here, noted
→lh, was introduced by Accattoli and Kesner (Accattoli, 2012; Accattoli et al., 2014b), formulated
as a strategy in a λ-calculus with explicit sharing, the linear substitution calculus8 (shortened to LSC).
The LSC presentation of→lh is isomorphic to the one on proof nets (Accattoli, 2018), while the one
used by Danos and Regnier—although closely related to proof nets—is not. It is isomorphic only
up to the σ-equivalence by Regnier (1994).

8The LSC is a subtle reformulation of Milner’s calculus with explicit substitutions (Kesner and Conchúir, 2008; Milner,
2007), inspired by the structural λ-calculus of Accattoli and Kesner (2010).
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RULES AT TOP LEVEL
⟨λx.t⟩Su 7→dB ⟨t[x�u]⟩S

H⟨x⟩[x�t] 7→ls H⟨t⟩[x�t]
t[x�u] 7→gc t if x /∈ fv(t)

CONTEXTUAL CLOSURE
t 7→a u

H⟨t⟩ →a H⟨u⟩
a ∈ {dB, ls, gc}

NOTATION
→lh :=→dB ∪ →ls ∪ →gc

FIGURE 3.3: Rewriting rules for linear head evaluation→lh.

LSC Terms and Leveled contexts. Let V be a countable set of variables. Terms of the linear
substitution calculus (LSC) are defined by the following grammar.

LSC TERMS t, u, r ::= x ∈ V | λx.t | tu | t[x�u]

The construct t[x�u] is called an explicit substitution or ES, not to be confused with meta-level
substitution t{x�u}. As it is standard, t[x�u] binds x in t, but not in u—terms are still considered
up to α-conversion. Leveled contexts naturally extend to the LSC.

LEVELED CONTEXTS

C0 ::= ⟨·⟩ | λx.C0 | C0t | C0[x�t]
Cn+1 ::= λx.Cn+1 | Cn+1t | Cn+1[x�t] | tCn | t[x�Cn]

Contexts and Plugging. The LSC makes a crucial use of contexts to define its operational seman-
tics. First of all, we need substitution contexts, that simply pack together ES and weak linear head
contexts, under which reduction rules are closed.

SUBSTITUTION CTXS S ::= ⟨·⟩ | S[x�t]

WEAK LINEAR HEAD CTXS H ::= ⟨·⟩ | H[x�t] | Ht

When plugging is used for substitution contexts, we write it in a post-fixed manner, that is ⟨t⟩S, to
stress that the ES actually appears on the right of t.

Weak Linear Head Evaluation. The LSC comes with a notion of reduction that resembles the
decomposed, micro-step process of cut-elimination in linear logic proof-nets. Essentially, the
meta-level substitution t{x�u} is decomposed into a sequence replacements from t[x�u] of one
occurrence of x in t with u at the time. Weak linear head evaluation, moreover, is the reduction
that replaces only the head variable occurrence y, if it is bound by an ES [y�r] and leaves the other
occurrences of y, if any, bound by [y�r].

The rewriting rules, in Figure 3.3, are first defined at top level and then closed by weak head
contexts. A feature of the LSC is that contexts are also used to define the linear substitution
rule at top level 7→ls. In plugging t in H, rule →ls may perform on-the-fly renaming of bound
variables in H, to avoid capture of free variables of t. Often, the literature does not include rule
→gc, responsible for erasing steps, in the definition of →lh. The reason is that →gc is strongly
normalizing and it can be postponed. Note that our definition of→lh is non-deterministic, for
instance t := (λx.(y[y�u]))r →ls (λx.(u[y�u]))r and t →dB x[y�u][x�r]. It is not a problem, as
→lh has the diamond property—this is standard, see (Accattoli, 2012).

Example 3.4.1. We provide here an example of LHE sequence. Consider the following 3 steps:

(λx.xx)(λy.y) →dB (xx)[x�λy.y]→ls ((λy.y)x)[x�λy.y]
→dB y[y�x][x�λy.y]

that turn a β/multiplicative redex into a ES, substitute on the head variable occurrence, and continue with
another multiplicative step. Two linear substitution steps on the head variable, followed by two steps of
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Sub-tm Context Log T Sub-tm Context Log T

t[x�u] C L T →es t C⟨⟨·⟩[x�u]⟩ L T
x C⟨Dn[x�u]⟩ Ln · L T →var2 u C⟨Dn⟨x⟩[x�⟨·⟩]⟩ ln · L T

t C⟨⟨·⟩[x�u]⟩ L T →es2 t[x�u] C L T
u C⟨Dn⟨x⟩[x�⟨·⟩]⟩ ln · L T →var3 x C⟨Dn[x�u]⟩ Ln · L T

where ln := (x, Dn[x�u], Ln)

FIGURE 3.4: Transitions for LSC-terms.

garbage collection complete the evaluation:

y[y�x][x�λy.y] →ls x[y�x][x�λy.y]
→ls (λy.y)[y�x][x�λy.y]→2

gc λz.z

Additional λIAM Transitions. The λIAM presented in the previous sections is easily adapted
to the LSC, by simply considering (logged) positions with respect to the extended syntax, and
adding the four transitions for ES in Fig. 3.4. Transitions→es and→es2 simply skip ES during
search—now search is up to β-redexes and ES. Transition→var2 shortcuts the search of the term u to
substitute for x, given that u is already available in [x�u]. Therefore, the machine stays in the ↓
phase and moves to evaluate u. Note that the logged position for x is directly added to the log
and not to the tape. This is because we have avoided the search of the argument. We have reached
it directly: note that when a ↑-search ends with the→arg transition, the logged position indeed
goes from the tape to the log. Transition→var3 is dual to→var2, and it is used to keep looking for
arguments when the current subterm u has none left.

All results and considerations of Sect. 3.2 and 3.3 still hold in this more general setting, mutatis
mutandis.

Relationship with (Weak) Head Evaluation, and Normal Forms. We shall prove that the λIAM
is sound and adequate with respect to weak linear head evaluation →lh, by showing that it
approximates the spine structure of the→lh-normal form of t, when it exists. Let us explain why
the same holds also for weak head evaluation. The relationship between (weak) linear head and
(weak) head evaluation is studied in detail by Accattoli and Dal Lago (2012), who prove that the
two notions are termination equivalent and produce the same normal forms up to unfolding. The
definition of unfolding t

→

of a term with ES follows.

x

→

:= x (tu)

→

:= t

→

u

→

(λx.t)

→

:= λx.t

→

(t[x�u])

→

:= t

→ {x�u

→ }

Proposition 3.4.2 (Accattoli and Dal Lago, 2012). Let t be a λ-term. There exists a head evaluation
t→∗h hnf(t) to head normal form if and only if there exists a linear head evaluation t→∗lh lhnf(t) to linear
head normal form. Moreover, lhnf(t)

→

= hnf(t)9.

The same result holds also in the weak case present here.

3.5 The Exhaustible State Invariant

The previous sections introduced all the ingredients for the formal study of the λIAM. From now
on, we turn to the development of the proofs of soundness and adequacy. The first step, taken
here, is to formalize the exhaustible state invariant mentioned in Sect. 3.3.

The intuition behind the invariant is that whenever a logged position l occurs in a reachable
state, it is there for a reason: no logged positions occur in initial states, and transitions only add

9The same theorem applies also in the case of weak head linear reduction.



3.5. The Exhaustible State Invariant 27

logged positions to which the machine may come back. In particular, if the state is set in the right
way (to be explained), the λIAM can reach l, exhausting it.

Why It Is Needed. The exhaustible state invariant is meant to show that some undesirable config-
urations never arise, to characterize the final states of the λIAM. On states such as (λx.D⟨x⟩, C, L, l·T)
the λIAM requires the logged position l to have shape (x, λx.D, L′), that is, to be associated to
a position isolating an occurrence of x in λx.D⟨x⟩, otherwise the machine is stuck. Similarly, on
states such as (t, C⟨D⟨x⟩[x�⟨·⟩]⟩, l · L, T) the position of l is expected to isolate an occurrence of
x in D⟨x⟩, or the machine is stuck. Luckily, the machine is never stuck for these reasons, and
exhaustible states are the technical tool to prove it10. The invariant also allows to prove that
the backtracking to a logged position l always ends on a state of position l, as expected—that is,
backtracking always succeeds, and to characterize the structure of the tape in final states.

Preliminaries. Exhaustible states rest on some tests for their logged positions. More specifically,
each logged position l in a state s has an associated test state sl that tunes the data structures of s as
to test for the reachability of l. Actually, there shall be two classes of test states, one accounting for
the logged positions in the tape of s, and one for those in the log of s.

Tape Tests. Tape tests are easy to define. They focus on one of the logged positions in the tape,
discarding everything that follows.

Definition 3.5.1 (Tape tests). Let s = (t, C, L, T′·l·T′′, d) be a state. Then the tape test of s of focus l is
the state sl = (t, C, L, T′·l, ↑|T′ ·l|l ).

Note that the direction of tape tests is reversed with respect to what stated by the tape and
direction invariant (Lemma 3.3.2), and so, in general, they are not reachable states. Such a counter-
intuitive fact is needed for the invariant to go through, no more no less. When proving that
backtracking always succeeds (Lemma 3.5.6 below), we shall extend their tape via the tape lifting
property (Lemma 3.3.6) as to satisfy the invariant and be reachable.

Log Tests. The idea is the same underlying tape tests: they focus on a given logged position in
the log. Their definition however requires more than simply stripping down the log, as the new
log and the state position still have to form a logged position, which requires to change the state
position—said differently, the position and the log invariant (Lemma 3.3.2) has to be preserved.

In the applications of the exhaustible invariant given below, we need only log tests of a
very simple form. Namely, given a state s = (t, C, l · L, T), we shall consider the log test sl :=
(t, C, l · L, ϵ), obtained by emptying the tape and (in this case) without changing the position. The
more general form of log tests needing the position change is technical and defined at the end
of the section—it is unavoidable for proving the invariant, but we fear that giving it here would
obfuscate the use of the exhaustible invariant, whose idea is instead quite simple.

The Exhaustibility Invariant. Exhausting a logged position l means backtracking to it. We then
decorate the backtracking transition→bt1 and→bt2 as→bt1,l and→bt2,l to specify the involved
logged position l. We also need a notion of state positioned in l, which is the target state of→bt2,l .

Definition 3.5.2 (State surrounding a position). Let l = (t, D, L′) be a logged position. A state s
surrounds l if s = (t, Cn⟨D⟩, L′ · Ln, ϵ) for some context Cn and log Ln.

After having introduced all the necessary preliminaries, we can define exhaustible states.

Definition 3.5.3 (Exhaustible States). E is the smallest set of states s such that if sl is a tape or a log test
of s then there exists a run ρ : sl →∗λIAM→bt2,l s′, where s′ surrounds l and for the shortest of such runs ρ
it holds that s′ ∈ E . States in E are called exhaustible.

10One could redefine the transitions of the λIAM asking—for these states—to jump to whatever variable position is in
the logged position l. Then the λIAM would not get stuck, and the invariant would not be needed for characterizing final
states, but we would then need it for soundness—there is no easy way out.
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Informally, exhaustible states are those for which every logged position can be successfully
tested, that is, the λIAM can backtrack to (an exhaustible state surrounding) it, if properly initial-
ized. Roughly, a state is exhaustible if the backtracking information encoded in its logged positions
is coherent. The set E being the smallest set of such states implies that checking that a state is
exhaustible can be finitely certified, i.e. there must be a finitary proof.

Proposition 3.5.4 (Exhaustible invariant). Let s be a λIAM reachable state. Then s is exhaustible.

The proof of Prop. 3.5.4 is long, but logically quite simple, being structured around a simple
induction on the length of the run from the initial state to s, and can be found in the Appendix.

Consequences of the Exhaustible Invariant. First, the λIAM never gets stuck for a mismatch of
logged positions.

Corollary 3.5.5 (Logged Positions Never Block the λIAM). Let s be a reachable state.
1. If s = (λx.D⟨x⟩, C, L, l·T) then s is not final.
2. If s = (u, C⟨D⟨x⟩[x ← ⟨·⟩]⟩, l · L, T) then s is not final.

Proof. For point 1, by the exhaustible invariant (Prop. 3.5.4), s is exhaustible. Then, its tape test
(λx.D⟨x⟩, C, L, l) does at least one transition towards a state s′ ̸= s surrounding l. Point 2 is
analogous, just consider the log test s′ = (u, C⟨D⟨x⟩[x ← ⟨·⟩]⟩, l · L, ϵ).

The second consequence is that backtracking always succeeds.

Lemma 3.5.6 (Backtracking always succeeds). Let s a reachable state. If s→bt1,l s′ then there is s′′ such
that s′ →∗λIAM→bt2,l s′′.

Proof. Consider s = (t, C⟨u⟨·⟩⟩, l · L, T)→bt1,l (u, C⟨⟨·⟩t⟩, L, l · T) = s′. Since s′ is reachable then it
is exhaustible, and so its tape test s′ l := (u, C⟨⟨·⟩t⟩, L, l) can be exhausted, that is, there is a run
ρ : s′ l →∗λIAM→bt2,l q for a state q surrounding l. Note that s′ l is s′ with empty tape. Now, we lift ρ

to a run ρT : s′ →∗λIAM→bt2,l s′′ by using the tape lifting lemma (Lemma 3.3.6).

Finally, we characterize final states, as anticipated in Section 3.3.

Lemma 3.5.7 (Final states). Let st →∗λIAM s be a run ending on a final state. Then s = (λx.u, C, L, ϵ)
for some C and L.

Proof. The λIAM is never stuck on→•1,→•4,→es, and→es2. By the balance invariant (Lemma 3.3.2),
it is also never stuck on→var,→var2, and→bt1 because the log has not enough entries. Note also
that if the position is (t, C⟨⟨·⟩u⟩) and the direction is ↑, one among→•3 and→arg always applies,
as the tape cannot be empty, by the balance invariant. By Corollary 3.5.5, the λIAM cannot be stuck
on→bt2 and→var3. Then, the machine is stuck only on→•2 if the tape is empty—the stuck state is
(λx.u, C, L, ϵ).

Log Tests and Position Changes. To define the log test focussing on the m-th logged position lm
in the log of a state (t, Cn, ln · · · l2 · l1, T, d), we remove the prefix ln · · · lm+1 (if any), and move the
current position up by n−m levels. Moreover, the tape is emptied and the direction is set to ↑. Let
us define the position change.

Definition 3.5.8 (Outer Contexts and Positions). Let (u, Cn+1) be a position. Then, for every decompo-
sition of n into two natural numbers m, k with m + k = n, we can find contexts Cm and Ck, and a term r
satisfying exactly one of the two following conditions (levels can be incremented in two ways).
• Case t = Cm⟨rCk⟨u⟩⟩. Then, the m + 1-outer context of the position (u, Cn+1) is the context

Om+1 := Cm⟨r⟨·⟩⟩ of level m + 1 and the m + 1-outer position is (Ck⟨u⟩, Om+1).
• Case t = Cm⟨r[x ← Ck⟨u⟩]⟩. Then, the m + 1-outer context of the position (u, Cn+1) is the context

Om+1 := Cm⟨r[x ← ⟨·⟩]⟩ of level m + 1 and the m + 1-outer position is (Ck⟨u⟩, Om+1).
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Note that the m-outer context and the m-outer position (of a given position) have level m. It is
easy to realize that any position having level n has unique m-outer context and m-outer position,
for every 1 ≤ m ≤ n + 1, and that, moreover, outer positions are hereditary, in the following sense:
the i-outer position of the m-outer position of (u, Cn+1) is exactly the i-outer position of (u, Cn+1).

Definition 3.5.9 (Log tests). Let s = (t, Cn, ln · · · l2 · l1, T, d) be a state with 1 ≤ m ≤ n, and (u, Om) be
the m-outer position of (t, Cn). The m-log test of s of focus lm is the state slm := (u, Om, lm · · · l2 · l1, ϵ, ↑).

By definition, log tests for s do not depend on the direction of s, nor on the underlying tape, and
they are stable by head translations of the position (t, Cn) of s, in the sense that if t = H⟨r⟩ then
s = (t, Cn, L, T, d) and its head translation (r, Cn⟨H⟩, L, T′, d) induce the same log tests (because
the two positions have the same outer positions and the two states have the same logs).

Lemma 3.5.10 (Invariance properties of log tests). Let s = (t, Cn, Ln, T, d) be a state. Then:

1. Direction: the dual (t, Cn, Ln, T, d1) of s induces the same log tests;

2. Tape: the state (t, Cn, Ln, T′, d) obtained from s replacing T with an arbitrary tape T′ induces the
same log tests;

3. Head translation: if t = H⟨r⟩ then the head translation (r, Cn⟨H⟩, Ln, T′, d) of s induces the same
log tests.

4. Inclusion: if Cn = Cm⟨Ci⟩ and Ln = Li·Lm then log tests of (Ci⟨t⟩, Cm, Lm, T′, d) are log tests of s.

Proof. The first three points are immediate consequences of the definition of log test. We prove
the fourth point. Let s′ = (Cj⟨t⟩, Ci, Li, T, d). By induction on j. If j = 0 then i = n and s = s′,
therefore the statement is simply says that the log test of s is itself, that is obviously true. Let j > 0.
By i.h., the log test s′′ of (Cj−1⟨t⟩, Ci+1, l·Li, T, d) is sli . Let us spell out s′′. If Ci+1 = Ci⟨uC0⟩ then
s′′ = (u, Ci⟨⟨·⟩Cj−1⟨t⟩⟩, Li, l, ↑). Note that Cj = Ci⟨u⟨·⟩⟩. Since s′′ = sli , we have sli−1

is a log test
of s′′. Now, since log tests are stable by head translation (Point 3), we have that sli−1

is also the
log test of the translation of s′′ with respect to Cj−1⟨t⟩, that is, of the state (uCj−1⟨t⟩, Ci, Li, l, ↑) =
(Cj⟨t⟩, Ci, Li, l, ↑).

3.6 Improvements

Implementation Theorem(s) for the λIAM. The λIAM, and more generally GoI machines, do
implement strategies, but in a different way w.r.t. environment machines. The key point is that
these machines do not trace how the strategy modifies the term. If t→wh u, a λIAM run of code
t never passes through a representation of u, as implementing→wh here denotes something else.
There are actually two implementation theorems, called soundness and adequacy. Soundness is the
fact that the run of code t is bisimilar to the run of code u. Note the difference with environment
machines: there, the bisimulation is between steps on terms and transitions on states. For the λIAM,
it is between transitions on states (of code t) and transitions on states (of code u). The important
consequence of soundness is that the runs from t and u produce bisimilar final states (if they
terminate). The idea is that these final states are different but encode the same description of the
normal form of t and u, which is the semantics JtK induced by the λIAM. Adequacy guarantees
that the interpretation JtK reflects some observable aspects of t. For a weak head evaluation11,
one usually observes termination only. This is exactly what JtK reflects, or it is adequate for.
Environment machines implementing a strategy→ stop on final states s f decoding to→-normal
forms.

11In the general case, the IAM implements (linear) head reduction, as we prove in (Accattoli et al., 2020a). However, for
the sake of uniformity, here we present it in a slightly simplified way: we choose to not evaluate under λ-abstractions i.e.
following the weak (linear) head reduction, dubbed also Closed CbN. Indeed, the other machines presented in this thesis
evaluate according to the same Closed CbN strategy.
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3.6.1 Improvements, Abstractly

To prove the soundness and adequacy theorems we shall use improvements, a refinement of the
classical notion of bisimulation inspired by Sands (1996), and explained here. The concrete
improvements at work in the proofs of the theorems are defined in Sect. 3.6.

An improvement is a weak bisimulation between two transition systems preserving termination
and guaranteeing that, whenever s and q are related and terminating, then q terminates in no more
steps than s—the no-more-steps part implies that the definition is asymmetric in the way it treats
the two transition systems, and it shall play a key role in the proof of adequacy.

Preliminaries. A deterministic transition system (DTS) is a pair S = (S, T ), where S is a set of
states and T : S ⇀ S a partial function. If T (s) = s′, then we write s→ s′, and if s rewrites in s′ in
n steps then we write s→n s′. We note with FS the set of final states, i.e. the subset of S containing
all s ∈ S such that T (s) is undefined. A state s is terminating if there exists n ≥ 0 and s′ ∈ FS such
that s→n s′. We call S↓ the set of terminating states of S and S↑ stands for S \ S↓. The evaluation
length map | · | : S→N∪ {∞} is defined as |s| := n if s→n s′ and s′ ∈ FS , and |s| := ∞ if s ∈ S↑.

Definition 3.6.1 (Improvements). Given two DTS S and Q, a relationR ⊆ S×Q is an improvement
if given (s, q) ∈ R the following conditions hold (for 2 and 3 see Fig. 3.5).

1. Final state right: if q ∈ FQ, then s→n s′, for some s′ ∈ FS and n ≥ 0.

2. Transition left: if s → s′, then there exists s′′, q′, n, m such that s′ →m s′′, q →n q′, s′′Rq′ and
n ≤ m + 1.

3. Transition right: if q → q′, then there exists s′, q′′, n, m such that s →m s′, q′ →n q′′, s′Rq′′ and
m ≥ n + 1.

What improves along an improvement is the number of transitions required to reach a final
state, if any.

Proposition 3.6.2. LetR be an improvement on two DTS S and Q, and sRq.

1. Termination equivalence: s ∈ S↓ if and only if q ∈ Q↓.

2. Improvement: |s| ≥ |q|.

Proof.

1. ⇒. Let us suppose s ∈ S↓ and let n be the number of steps that s needs to terminate. We
proceed by induction on n. If n = 0, s ∈ FS and since sRq, q ∈ FQ and thus q ∈ Q↓. If
n = h > 0, then s→ s′, and thus there exists s′′, q′, k, j such that q→k q′, s′ →j s′′, s′′Rq′ and
k ≤ j + 1. Since s′′ terminates in less than h− 1 steps, by induction hypothesis q′ ∈ Q↓ and
thus also q ∈ Q↓.
⇐. Let us suppose q ∈ Q↓ and let n be the number of steps that q needs to terminate. We
proceed by induction on n. If n = 0, q ∈ FQ and since sRq, s ∈ S↓. If n = h > 0, then q→ q′,
and thus there exists s′, q′′, k, j such that s →k s′, q′ →j q′′, s′Rq′′ and k ≥ j + 1. Since q′′

terminates in less than h steps, by induction hypothesis s′ ∈ S↓ and thus also s ∈ S↓.

2. If s ∈ S↑ and q ∈ Q↑, then |s| = |q| = ∞. Let us consider the other case, i.e. when s ∈ S↓ and
q ∈ Q↓. We proceed by induction on |s|. If |s| = 0, then q ∈ FQ and thus also |q| = 0. If
|s| = n > 0, then s → s′ and there exists s′′, q′, m, l such that q →m q′, s′ →l s′′, s′′Rq′ and
m ≤ l + 1. By i.h., |s′′| ≥ |q′|. Thus, since m ≤ l + 1, then |s| = |s′′|+ l + 1 ≥ |q′|+ m = |q|.
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FIGURE 3.5: Diagrammatic definition of improvements.

3.6.2 Improvements, Concretely

In this section we define an improvement ▶ relation for the λIAM, to be used in the sequel to
prove soundness and adequacy.

Given a→lh-step t→lh u, the improvement ▶ has to relate states of code t with states of code
u. Since→lh is the union of the three rewriting rules→dB,→ls and→gc, we are going to define ▶
as the union of three improvements ▶dB, ▶ls, and ▶gc.

Improvement for→dB. Lifting a step t→lh u to a relation between a λIAM state s of code t and
a state q of code u requires changing all positions relative to t in s to positions relative to u in q.
Note that all the positions in the token have to be changed, so that ▶ has to relate positions, logged
positions, tape, log, and states.

Explaining the Need of Context Rewriting. A second more technical aspect is that one needs to
extend weak linear head evaluation to contexts. Consider a step t→dB u where—for simplicity—
the redex is at top level and the associated state (⟨λx.r⟩Sw, ⟨·⟩, ϵ, ϵ) has an empty token. This
should be ▶dB-related to a state (⟨r[x�w]⟩S, ⟨·⟩, ϵ, ϵ). Let’s have a look at how the two states
evolve:

(⟨λx.r⟩Sw, ⟨·⟩, ϵ, ϵ) (⟨r[x�w]⟩S, ⟨·⟩, ϵ, ϵ)

(r[x�w], S, ϵ, ϵ)

(⟨λx.r⟩S, ⟨·⟩w, ϵ, •)

(λx.r, Sw, ϵ, •)

(r, ⟨λx.⟨·⟩⟩Sw, ϵ, ϵ) (r, ⟨⟨·⟩[x�w]⟩S, ϵ, ϵ)

▶dB

|S|

|S|

To close the diagram, we need ▶dB to relate the two bottom states. Note that their relation can be
seen as a→dB step involving the contexts of the two positions. Therefore we extend the definition
of→dB to contexts adding the following top level clause (then included in→dB via a closure by
head contexts): ⟨λx.C⟩St 7→dB ⟨C[x�t]⟩S. The new clause, in turn, requires a further extension of
→dB (again closed by head contexts): ⟨λx.t⟩SC 7→dB ⟨t[x�C]⟩S.

Note that in the shown local bisimulation diagram the right side is shorter. This is typical of
when the machine travels through the redex. Outside of the redex, however, the two sides have the
same length, as the next example shows—example that also motivates a further extension of→dB
to contexts. Consider the case where t→dB u and the diagram is (the states do a→arg transition):

(t, ⟨·⟩r, ϵ, l) (u, ⟨·⟩r, ϵ, l)

(r, t⟨·⟩, l, ϵ) (r, u⟨·⟩, l, ϵ)

▶dB

We then need to extend→dB so that t⟨·⟩ →dB u⟨·⟩. A similar situation happens also when entering
an ES with transition→var2. To close these diagrams, we add two further cases of reduction on
contexts. Note that this time they have to be expressed via steps on terms (then included in→dB
via a closure by head contexts), as their direct definition would require contexts with two holes. Of
course, the same situation arises with ls and gc steps.
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t→a u
tC →a uC

t→a u
t[x�C]→a u[x�C] a ∈ {dB, ls, gc}

Definition 3.6.3. The (overloaded) binary relation ▶dB between positions, stacks, and states is defined by
the following rules12.

t→dB u
(t, H)▶dB(u, H)

rdxdB
C →dB D

(t, C)▶dB(t, D)
ctxdB

ϵ▶dBϵ
tok1dB

T▶dBT′

• · T▶dB • ·T′
tok2dB

(x, C)▶dB(x, D) L▶dBL′

(x, C, L)▶dB(x, D, L′)
posdB

l▶dBl′ Γ▶dBΓ′

l · Γ▶dBl′ · Γ′
tok3dB

(t, C)▶dB(u, D) T▶dBT′ L▶dBL′ d = d′

(t, C, L, T, d)▶dB(u, D, L′, T′, d′)
statedB

Note that ▶dB contains all pairs ((t, ⟨·⟩, ϵ, ϵ), (u, ⟨·⟩, ϵ, ϵ)), where t→dB u, i.e. all the pairs of initial
states involving a dB-redex.

Improvement for→ls. As for→dB, the improvement for→ls requires extending the rewriting
relation to contexts. There are, however, some new subtleties. Given t→dB u and a position (r, C)
for t, for ▶dB the redex in t falls always entirely either in t or C. If t→ls u, instead, the redex can
be split between the two. Consider the following diagram (where to simplify we assume the step
to be at top level and the token to be empty).

(H⟨x⟩[x�r], ⟨·⟩, ϵ, ϵ) (H⟨r⟩[x�r], ⟨·⟩, ϵ, ϵ)

(H⟨x⟩, ⟨·⟩[x�r], ϵ, ϵ) (H⟨r⟩, ⟨·⟩[x�r], ϵ, ϵ)

▶ls

To close it, we have to ▶ls-relate the two bottom states, where the pattern of the redex/reduct
is split between the two parts of the position. This motivates clause rdx2 in the definition of ▶ls
below.

The new rule comes with consequences. Consider the following diagram involving the new
clause for ▶ls:

(x, H[x�t], ϵ, ϵ) (t, H[x�t], ϵ, ϵ) := q

s =: (t, H⟨x⟩[x�⟨·⟩], (x, H[x�t], ϵ), ϵ)

▶ls

(1)

To close the diagram, we have to ▶ls-relate s and q. There are, however, two delicate points. First,
we cannot see the context H⟨x⟩[x�⟨·⟩] as making a→ls step towards H[x�t], because t does not
occur in H⟨x⟩[x�⟨·⟩]. For that, we have to introduce a variant of→ls on contexts that is parametric
in t (and more general than the one to deal with the showed simplified diagram):

H⟨x⟩[x�C] 7→ls,t H⟨C⟩[x�C⟨t⟩].

The second delicate point of diagram (1) is that the extension of ▶ls has to also ▶ls-relate logs of
different length, namely ϵ and (x, H[x�t], ϵ). This happens because positions of the two states do
isolate the same term, but at different depths, as one is in the ES. Then the definition of ▶ls has two
clauses, one for logs (pos2ls) and one for states (state2ls), to handle such a case. The mismatch in
logs lengths is at most 1.

Definition 3.6.4. The binary relation ▶ls is defined by:

12Γ is a meta-variable that stands either for a log L or for a tape T.



3.7. Soundness and Adequacy 33

t→ls u
(t, H) ▶ls (u, H)

rdxls
C →ls D

(t, C) ▶ls (t, D)
ctxls

K = K′⟨G[x ← t]⟩
(H⟨x⟩, K) ▶ls (H⟨t⟩, K)

rdx2
ϵ ▶ls ϵ

tok1ls

T ▶ls T′

• · T ▶ls • · T′
tok2ls

l ▶ls l′ Γ ▶ls Γ′

l · Γ ▶ls l′ · Γ′
tok3ls

(x, C) ▶ls (x, D) L ▶ls L′

(x, C, L ▶ls (x, D, L′)
posls

C →ls,x D L ▶ls L′

(x, C, L · l) ▶ls (x, D, L′)
pos2ls

(t, C) ▶ls (u, D) T ▶ls T′ L ▶ls L′ d = d′

(t, C, L, T, d) ▶ls (u, D, L′, T′, d′)
statels

C →ls,t D T ▶ls T′ L ▶ls L′ d = d′

(t, C, L · l, T, d) ▶ls (t, D, L′, T′, d′)
state2ls

Note that ▶ls contains all pairs ((t, ⟨·⟩, ϵ, ϵ), (u, ⟨·⟩, ϵ, ϵ)), where t→ls u, i.e. all the initial states
containing a ls-redex and its reduct.

Improvement for→gc The candidate improvement ▶gc induced by→gc requires an extension of
→gc with a rule on contexts similar to the parametric one for→ls. Let t[x�u]→gc t and consider:

(t[x�u], ⟨·⟩, ϵ, ϵ) (t, ⟨·⟩, ϵ, ϵ)

(t, ⟨·⟩[x�u], ϵ, ϵ)

▶gc

To close the diagram, we extend the definition of→gc to context with the following parametric
rule (closed by head contexts):

C[x�u] 7→gc,t C if x /∈ fv(t) ∪ fv(C).

Definition 3.6.5. The binary relation ▶gc is defined as follows.

t→gc u
(t, H)▶gc(u, H)

rdxgc
C →gc D

(t, C)▶gc(t, D)
ctxgc

ϵ▶gcϵ
tok1gc

C →gc,t D
(t, C)▶gc(t, D)

ctx2gc

T▶gcT′

• · T▶gc • ·T′
tok2gc

l▶gcl′ Γ▶gcΓ′

l · Γ▶gcl′ · Γ′
tok3gc

(x, C)▶gc(x, D) L▶gcL′

(x, C, L)▶gc(x, D, L′)
posgc

(t, C)▶gc(u, D) T▶gcT′ L▶gcL′ d = d′

(t, C, L, T, d)▶gc(u, D, L′, T′, d′)
stategc

The proof of the next theorem is a tedious easy check of diagrams.

Theorem 3.6.6. ▶ls, ▶dB and ▶gc are improvements.

3.7 Soundness and Adequacy

Here, we use the improvements of the previous sections to prove soundness and adequacy.
Consider ▶ = ▶dB∪ ▶ls ∪▶gc, that is an improvement because its components are. Consequently,
if t→lh u, then the λIAM run on u improves the one on t, that is,

st = (t, ⟨·⟩, ϵ, ϵ) ▶ (u, ⟨·⟩, ϵ, ϵ) = su
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Theorem 3.7.1 (Soundness). If t→lh u, then JtK = JuK.

Proof. Since t →lh u, then s = (t, ⟨·⟩, ϵ, ϵ)▶(u, ⟨·⟩, ϵ, ϵ) = q by the results about improvements
(Theorem 3.6.6). Since improvements transfer termination/divergence (Prop. 3.6.2.1), we have
JtK = JuK.

Adequacy. Adequacy is the fact that JtK = ⇓ if and only if→lh terminates on t. We prove the two
directions separately.

Direction λIAM to→lh. The only if direction of the statement is immediate to prove. Since JtK is
invariant by→lh (soundness) and→lh terminates on t, we have that JtK = Jwhnf(t)K = ⇓.

Direction →lh to λIAM. The proof of the if direction of the adequacy theorem is by contra-
position: if the→lh diverges on t then no run of the λIAM on t ends in a final state. The proof is
obtained via a quantitative analysis of the improvements, showing that the length of runs strictly
decreases along→lh. Note indeed that improvements guarantee only that the length of runs does
not increase. To prove that it actually decreases one needs an additional global analysis of runs—
improvements only deal with local bisimulation diagrams. On proof nets, this decreasing property
correspond to the standard fact that IAM paths passing through a cut have shorter residuals after
that cut.

We recall that we write |t| for the length of the run (t, ⟨·⟩, ϵ, ϵ), with the convention that |t| = ∞
if the machine diverges.

Lemma 3.7.2 (The length of terminating runs strictly decreases along→lh). Let t→lh u and |t| ̸= ∞.
Then, |t| > |u|.

Proof. We treat the case of t →dB u, the others are obtained via similar diagrams. If t has a
→dB-redex then it has the shape t = H⟨⟨λx.r⟩Sw⟩ and u is in the form u = H⟨⟨r[x�w]⟩S⟩. By
induction on the structure of H one can prove that there exist k, n ≥ 0 such that (t, ⟨·⟩, ϵ, ϵ)→n

λIAM
(⟨λx.r⟩Sw, H, ϵ, •k) and (u, ⟨·⟩, ϵ, ϵ)→n

λIAM (⟨r[x�w]⟩S, H, ϵ, •k). By the definition of the improve-
ment ▶dB, we have the following diagram:

(H⟨⟨λx.r⟩Sw⟩, ⟨·⟩, ϵ, ϵ) (H⟨⟨r[x�w]⟩S⟩, ⟨·⟩, ϵ, ϵ)

(⟨λx.r⟩Sw, H, ϵ, •k) (⟨r[x�w]⟩S, H, ϵ, •k)

(r[x�w], H⟨S⟩, ϵ, •k)

(⟨λx.r⟩S, H⟨⟨·⟩w⟩, ϵ, • · •k)

(λx.r, H⟨Sw⟩, ϵ, • · •k)

s1 = (r, H⟨⟨λx.⟨·⟩⟩Sw⟩, ϵ, •k) (r, H⟨⟨⟨·⟩[x�w]⟩S⟩, ϵ, •k) = s2

▶dB

▶dB

▶dB

|S|

n n

|S|

From s1▶dBs2, the hypothesis |t| ̸= ∞, and the properties of improvements (Lemma 2), we obtain
|s1| ≥ |s2|. Then, we have |t| = n + 1 + |S|+ 1 + |s1| > n + |S|+ 1 + |s2| = |u|.

Using the lemma, we prove the if direction of adequacy, that then follows.

Proposition 3.7.3 (→lh-divergence implies that the λIAM diverges). If t is a→lh-divergent LSC term,
then JtK = ⊥.

Proof. By contradiction, suppose that JtK = ⇓. Then, by definition, |t| = n ∈ N and it ends
on a final state. Since t →lh-divergent, then there exists an infinite reduction sequence ρ : t =
t0 →lh t1 →lh t2 →lh · · · tk →lh · · · . Since the length of terminating runs strictly decreases along
→lh (Lemma 3.7.2), for each i ∈ N if ti →lh ti+1 then |ti| > |ti+1|. Then |t0| ≥ |tn+1| + n + 1.
Since the length of runs is non-negative, we obtain that |t0| ≥ n + 1, which is absurd because
|t0| = |t| = n.
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FIGURE 3.6: The call-by-name translation (·)† of the λ-calculus into linear logic
proof nets.

Theorem 3.7.4 (Adequacy). Let t be a LSC term. Then t has→lh-normal form if and only if JtK = ⇓.

3.8 Comparison with Proof Nets

Here we sketch how the λIAM relates to the original presentation based on linear logic proof nets,
due to Mackie (1995), Danos et al. (1996) and Danos and Regnier (1999), the IAM. Since this is not
the main object of this thesis, we avoid defining proof nets and related concepts, and focus only on
the key points.

The λIAM corresponds to the IAM on proof nets representing λ-terms according to the call-by-
name translation (·)† in Fig. 3.613, and considering only paths from the distinguished conclusion
of the net, as in (Danos et al., 1996) (while Mackie (1995) uses the call-by-value translation, and
Danos and Regnier (1999) consider paths starting on whatever conclusions).

There is a bisimulation between the λIAM and such a restricted IAM, which is not strong
because two λIAM transitions rather are macros, packing together whole sequences of transitions
in their presentation. Namely, transition→var short-circuits the path between a variable x and
its abstraction λx.Cn⟨x⟩. In proof nets, this path traverses a dereliction, exactly n auxiliary doors,
possibly a contraction tree, and ends on the ` representing the abstraction. The dual transition
→bt2 does the reverse job, corresponding to the reversed path. Aside the different notations and
the macrification, our transitions correspond exactly to the actions attached to proof net edges
presented in (Danos and Regnier, 1999)14, as we explain next.

In the proof nets presentation the token is given by two stacks, called boxes stack B and balancing
stack S, corresponding exactly to our log L and tape T, respectively. They are formed by sequences
of multiplicative constants p (corresponding to our •) and by exponential signatures σ. They are
defined by the following grammar15.

BALANCING STACKS S ::= ϵ | p · S | σ · S
BOXES STACKS B ::= ϵ | σ · B

EXP. SIGNATURES σ, σ′ ::= □ | ⟨σ, σ′⟩ | ⟨l, σ⟩ | ⟨r, σ⟩

Intuitively, exponential signatures are binary trees with □, l or r as leaves, where l and r denote
the left/right premise of a contraction. Fig. 3.7 shows the IAM transitions concerning exponential
signatures that are the relevant difference with respect to the λIAM.

To explain how→var is simulated by the IAM, let us recall it:

13The translation uses a recursive type o =?o⊥ ` o in order to be able to represent untyped terms of the λ-calculus—this
is standard. Every net has a unique conclusion labeled with o, which is the output, and all the other conclusions have type
?o⊥ and are labeled with a free variable of the term. In the abstraction case λx.t, if x /∈ fv(t) then a weakening is added to
represent that variable.

14We refer to (Danos and Regnier, 1999) rather than (Danos et al., 1996) because in (Danos et al., 1996) the definition is
only sketched, while (Danos and Regnier, 1999) is more accurate.

15With respect to (Danos and Regnier, 1999): for clarity, we use symbols l and r instead of p′ and q′, and we omit q, dual
of p, as in the call-by-name translation it is always and only next to exponential signatures, which then subsume it.
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▽

d →
▽

d

▽

c →
▽

c

(B, S) → (B,□ · S) (B, σ · S) → (B, ⟨l, σ⟩ · S)

▽

→
▽

▽

c →
▽

c

(σ′ · B, σ · S) → (B, ⟨σ′ , σ⟩ · S) (B, σ · S) → (B, ⟨r, σ⟩ · S)

FIGURE 3.7: The transition rules of the proof nets presentation of the IAM related to
exponential signatures.

(x, C⟨λx.Dn⟩, Ln · L, T)→var (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln) · T).

The IAM does the same, just in more steps and with another syntax. Consider a token (Bn · B, S)
approaching a variable x that is n boxes deeper than its binder λx.Dn⟨x⟩. Variables are translated
as dereliction links and thus we have: (Bn · B, S)→ (Bn · B,□ · S).

Then, the token travels until the binder of x is found (a ` in the proof net translation of the
term), i.e. it traverses exactly n boxes always exiting from the auxiliary doors. Moreover, for every
such box a contraction could be encountered. Let’s first suppose that x is used linearly, so that no
contractions are encountered. Then the token rewrites in the following way, traversing n auxiliary
doors.

(σ1 · Bn−1 · B,□ · S) → (σ2 · Bn−2 · B, ⟨σ1,□⟩ · S)
→ (σ3 · Bn−3 · B, ⟨σ2, ⟨σ1,□⟩⟩ · S)
→ · · · → (B, ⟨σn, ⟨· · · ⟨σ1,□⟩ · · · ⟩⟩ · S).

Note the perfect matching between the two formulations: in both cases the first n logged po-
sitions/signatures in the log/boxes stack are removed from it and, once wrapped in a single
logged position/signature, then put on the tape/balancing stack. In presence of contractions
the exponential signature ⟨σn, ⟨· · · ⟨σ1,□⟩ · · · ⟩⟩ is interleaved by l and r leaves. These symbols
represent nothing more than a binary code used to traverse the contraction tree of x. In the λIAM,
the same information is represented, more compactly, by specifying the variable occurrence via its
position inside its binder.
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Sequence Types Capture IAM Time

Here we introduce the type system that we shall use to measure the length of λIAM runs. We shall
give an abstract type-theoretic notion of time, strongly linked to linear logic via non-idempotent
intersection types. Moreover, we recover the λIAM as a machine acting directly on type derivations,
this way showing its canonicity, and linking two apparently distinct worlds.

4.1 Sequence (Intersection) Types

Intersections, Multi Sets, and Sequences. The framework that we adopt is the one of intersection
types. As in many recent works, we use the non-idempotent variant, where the intersection type
A ∧ A is not equivalent to A, and which has stronger ties to linear logic and time analyses, because
it takes into account how many times a resource/type A is used, and not just whether A is used
or not. We recall that non-idempotent intersections are multi sets, which is why these types are
sometimes called multi types and an intersection A ∧ B ∧ A is rather noted [A, B, A]. Here we
add a further change, we also consider non-commutative multi types. Removing commutativity
turns multi sets into lists, or sequences—thus, we call them sequence types. Adopting sequences
is an inessential tweak. Our study does not really depend on their sequential structure, we only
need to use bijections between multi sets, to describe the SIAM, and these bijections are just more
easily managed using sequences rather than multi sets. This rigid approach has been already used
fruitfully by Tsukada et al. (2017) and Mazza et al. (2018).

Basic Definitions. As for multi types, there are two layers of types, linear types and sequence types,
mutually defined as follows.

LINEAR TYPES A, B ::= ⋆ | S→ A
SEQUENCE TYPES S, S′ ::= [A1, . . . , An]

Since commutativity is ruled out, we have, e.g., [A, B] ̸= [B, A]. We shall use [·] as a generic list
constructor not limited to types, thus writing [2, 1, 12, 4] for a list of natural numbers, and also
use it for lists of judgments or type derivations. Note that there is a ground type ⋆, which can be
thought as the type of normal forms, that in Closed CbN are precisely abstractions. Note also that
arrow (linear) types S→ A can have a sequence only on the left. The empty sequence is noted [·],
and the concatenation of two sequences S and S′ is noted S ⊎ S′.

Type judgments have the form Γ ⊢ t : A, where Γ is a type environment, defined below. The
typing rules are in Fig. 4.1, type derivations are noted π and we write π ▷ Γ ⊢ t : A for a type
derivation π of ending judgment Γ ⊢ t : A. Type environments, ranged over by Γ, ∆ are total maps
from variables to sequence types such that only finitely many variables are mapped to non-empty
sequence types, and we write Γ = x1 : S1, . . . , xn : Sn if dom(Γ) = {x1, . . . , xn}—note that type
environments are commutative, what is non-commutative is only the sequence constructor [·].
Given two type environments Γ, ∆, the expression Γ ⊎ ∆ stands for the type environment assigning
to every variable x the list Γ(x) ⊎ ∆(x).

In the following we use two basic properties of the type system, collected in the following
straightforward lemma. One is the absence of weakening, and the other one is a correspondence
between sequence types and axioms. We write |S| for the length of S as a sequence.



38 Chapter 4. Sequence Types Capture IAM Time

x : [A] ⊢ x : A
T-VAR

Γ, x : S ⊢ t : A
Γ ⊢ λx.t : S→ A T-λ ⊢ λx.t : ⋆

T-λ⋆

Γ ⊢ t : [B1, . . . , Bn]→ A [∆i ⊢ u : Bi]i∈[1,...,n]

Γ ⊎⊎
i∈[1,...,n] ∆i ⊢ tu : A T-@

FIGURE 4.1: The sequence type system.

Lemma 4.1.1 (Relevance and axiom sequences). If π ▷ Γ ⊢ t : A then dom(Γ) ⊆ fv(t), thus if t is
closed then Γ is empty. Moreover, there are exactly |Γ(x)| axioms typing x in π, which appear from left to
right as leaves of π (seen as an ordered tree) in the order given by Γ(x) = [A1, . . . , Ak] and that the i-th
axiom types x with Ai.

Characterization of Termination. It is well-known that intersection and multi types characterize
Closed CbN termination, that is, they type all and only those λ-terms that terminate with respect
to weak head reduction. If terms are closed, the same result smoothly holds for sequence types,
as we now explain. The only point where non-commutativity is delicate for the characterization
is in the proof of the typed substitution lemma for subject reduction (and the dual lemma for
subject expansion), as substitution may change the order of concatenation in type environments.
In our simple setting where terms are closed, however, the term to substitute is closed1 and—by
the relevance lemma—its type derivation comes with no type environment, so the order-of-
concatenation problem disappears. Therefore, sequence types characterize termination in Closed
CbN too. Thus from now on we essentially identify multi and sequence types.

Theorem 4.1.2. A closed term t has weak head normal form if and only if ⊢ t : ⋆.

Sequence Types and λIAM Time. We would like to extend de Carvalho (2007) result, presented
in Chapter 2, that links (the size of) multi type derivations to the length of KAM runs, to the case
of the IAM. The way in which the IAM computes is completely different from how the KAM
evaluation mechanism, and in particular not a priori linked to the normalization of multi type
proofs. This way, while keeping the same type system, we have to change the weight assignment
to typing rules. We anticipate that the intuition is that there is a bijection between occurrences of
the ground type ⋆ in a derivation for a term t and states in the λIAM run for t. This is why we
have to count the number of occurrences of ⋆ in a type derivation. First, we have to define a norm
on types and sequence types, counting the number of occurrences of ⋆:

∥⋆∥ := 1 ∥S→ A∥ :=∥S∥+∥A∥
∥∥[A1, . . . , An]

∥∥ := ∑
1≤i≤n

∥Ai∥

Then we define the weight system WλIAM(·) in Fig. 4.2. Observe how this weight system is
structurally very similar to WKAM(·) of Fig. 2.3, the only difference being the fact that whenever
the latter adds 1 to the weight, thus counting the size of the derivation, the former adds the number
of occurrences of ⋆ in the underlying type, thus counting the total number of ⋆ occurrences. The
next section proves the following theorem, that is the λIAM analogous of de Carvalho’s theorem.

Theorem 4.1.3. There is a complete λIAM run of length n from t if and only if exists π such that π ▷ ⊢ t : ⋆
and WλIAM(π) = n.

1It is well known that in Closed CbN the substitutions t{x�u} associated to reduced β-redexes are such that u is closed.
The term t is of course (potentially) open, and its type derivation has a type environment Γ, but the important point here is
that the type derivation of u has no type environment, so that the substitution does not concatenate sequence types.



4.2. The Sequence IAM 39

x : [A]
∥A∥
⊢ x : A

T-VAR
Γ, x : S

w
⊢ t : A

Γ
w+∥S→A∥
⊢ λx.t : S→ A

T-λ
0
⊢ λx.t : ⋆

T-λ⋆

Γ
w
⊢ t : [B1, . . . , Bn]→ A [∆i

vi
⊢ u : Bi]i∈[1,...,n]

Γ ⊎⊎
i∈[1,...,n] ∆i

w+∑ vi+∥A∥
⊢ tu : A

T-@

FIGURE 4.2: The weight assignment WλIAM(·).

4.2 The Sequence IAM

This section introduces yet another machine, the Sequence IAM, or SIAM, that mimics the λIAM
directly on top of a type derivation π. It is the key tool used in the next section to show that the
λIAM weights on type derivations do measure the time cost of λIAM runs.

The SIAM. The idea behind the SIAM is simple but a formal definition is a technical nightmare.
Let us explain the idea. The machine moves over a fixed type derivation π ▷ ⊢ t : ⋆, to be thought
as the code. The position of the machine is expressed by an occurrence of a type judgment2 J of π.
As the λIAM, the SIAM has two possible directions, noted ↓ and ↑3. In direction ↑ the machine
looks at the rule above the focused judgment, in direction ↓ at the rule below. The only "data
structure" is a type context A isolating an occurrence of ⋆ in the type A of the focused judgment
(occurrence) Γ ⊢ u : A, defined as follows (careful to not confuse type contexts A with type
environments Γ):

TYPE CTXS A ::= ⟨·⟩ | S→ A | S→ A
SEQUENCE CTXS S ::= [A1, .., Ak, A, Ak+1.., An]

Summing up, a state s is a quadruple (π, J, A, d). If J is in the form Γ ⊢ u : A, we often write s as
⊢ u : A⟨⋆d⟩, where A⟨⋆⟩ = A. In fact we shall see that type environments play no role.

Transitions. The SIAM starts on the final judgment of π, with empty type context A = ⟨·⟩ and
direction ↑. It moves from judgment to judgment, following occurrences of ⋆ around π. The
transitions are in Fig. 4.3, their union noted→SIAM, as we now explain them—the transitions have
the labels of λIAM transitions, because they correspond to each other, as we shall show.

Let’s start with the simplest, →•2. The state focuses on the conclusion judgment J of a T-λ
rule with direction ↑. The eventual type environment Γ is omitted because the transition does not
depend on it—none of the transitions does, so type environments are omitted from all transitions.
The judgment assigns type S → A to λx.t, and the type context is S → A, that is, it selects an
occurrence of ⋆ in the target type A = A⟨⋆⟩. The transition then simply moves to the judgment
above, stripping down the type context to A, and keeping the same direction. Transition •4 does
the opposite move, in direction ↓, and transitions •1 and •3 behave similarly on T-@ rules: [⊢]
simply denotes the right premise that is left unspecified since not relevant to the transition.

Transitions→arg: the focus is on the left premise of a T-@ rule, of type S→ B isolating ⋆ inside
the i-th type Ai in S. The transition then moves to the final judgment of the i-th derivation in the
right premise, changing direction. Transition→bt1 does the opposite move.

Transitions→var and→bt2 are based on the axiom sequences property of Lemma 4.1.1. Consider
a T-λ rule occurrence whose right-hand type of the conclusion is S→ B. The premise has shape
Γ, x : S ⊢ t : B, and by the lemma there is a bijection between the sequence of linear types in S and
the axioms on x, respecting the order in S. The left side of→bt2 focuses on the i-th type Ai in S

2A judgment may occur repeatedly in a derivation, which is why we talk about occurrences of judgments. To avoid too
many technicalities, we usually just write the judgment, leaving implicit that we refer to an occurrence of that judgment.

3Type derivations are upside-down wrt to the term structure, then direction ↓ of the λIAM becomes here ↑, and ↑ is ↓.
The color code remains the same, of course.
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⊢ t : S→ A [⊢]
⊢ tu : A⟨⋆↑⟩ →•1

⊢ t : S→ A⟨⋆↑⟩ [⊢]
⊢ tu : A

⊢ t : A
⊢ λx.t : S→ A⟨⋆↑⟩ →•2

⊢ t : A⟨⋆↑⟩
⊢ λx.t : S→ A

⊢ t : S→ A⟨⋆↓⟩ [⊢]
⊢ tu : A →•3

⊢ t : S→ A [⊢]
⊢ tu : A⟨⋆↓⟩

⊢ t : A⟨⋆↓⟩
⊢ λx.t : S→ A →•4

⊢ t : A
⊢ λx.t : S→ A⟨⋆↓⟩

⊢ x : A⟨⋆↑⟩i
i

....
⊢ λx.C⟨x⟩ : [...Ai...]→ B →var

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : [...A⟨⋆↓⟩i...]→ B

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : [...A⟨⋆↑⟩i...]→ B →bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : [...Ai...]→ B

⊢ t : [...A⟨⋆↓⟩i...]→ B ⊢i u : Ai

⊢ tu : B →arg

⊢ t : [...Ai...]→ B ⊢i u : A⟨⋆↑⟩i
⊢ tu : B

⊢ t : [...Ai...]→ B ⊢i u : A⟨⋆↓⟩i
⊢ tu : B →bt1

⊢ t : [...A⟨⋆↑⟩i...]→ B ⊢i u : Ai

⊢ tu : B

FIGURE 4.3: The transitions of the Sequence IAM (SIAM).
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and the SIAM moves to the judgment of the axiom corresponding to that type, which is exactly the
i-th from left to right seeing the derivation as a tree where the children of nodes are ordered as in
the typing rules. Transition→var does the opposite move, which can always happen because the
code is the type derivation of a closed term.

The only typing rule not inducing a transition is T-λ⋆. Accordingly, when the SIAM reaches
one of these rules it is in a final state. Exactly as the λIAM, the SIAM is bi-deterministic.

Proposition 4.2.1. The SIAM is bi-deterministic for each type derivation π ▷ ⊢ t : ⋆.

An Example. We present below the very same example analyzed in Section 3.1. We have reported
its type derivation, with the occurrences of ⋆ on the right of ⊢ annotated with increasing integers
and a direction. The occurrence of ⋆ marked with 1 represents the first state, and so on.

x : [[⋆]→ ⋆] ⊢ x : [⋆↓16]→ ⋆↑6 y : [⋆] ⊢ y : ⋆↑17

y : [⋆], x : [[⋆]→ ⋆] ⊢ xy : ⋆↑5
y : [⋆] ⊢ λx.xy : [[⋆↑15]→ ⋆↓7]→ ⋆↑4

⊢ λy.λx.xy : [⋆↓18]→ [[⋆↑14]→ ⋆↓8]→ ⋆↑3 ⊢ I : ⋆↑19

⊢ (λy.λx.xy)I : [[⋆↑13]→ ⋆↓9]→ ⋆↑2

z : [⋆] ⊢ z : ⋆↑11

⊢ λz.z : [⋆↓12]→ ⋆↑10

⊢ (λy.λx.xy)I(λz.z) : ⋆↑1

One can immediately notice that every occurrence of ⋆ is visited exactly once. Moreover, the
sequence of the visited subterms is the same as the one obtained in the example of Section 3.1.

4.3 Measuring the Time of Interaction

The aim of this section is to explain the strong bisimulation between the SIAM and the λIAM, that,
once again, is based on a variant on the exhaustible invariant. A striking point of the SIAM is that
it does not have the log nor the tape. They are encoded in the judgment occurrence J and in the
type context A of its states, as we shall show. But first, let’s make a step back.

Handling Duplication. β-reducing a λ-term (potentially) duplicates arguments, whose different
copies may be used differently, typically being applied to different further arguments. The
machines in this thesis never duplicate arguments, but have nonetheless to distinguish different
uses of a same piece of code. This is why the λIAM uses logged positions instead of simple positions:
the log is a trace of (part of) the previous run that allows to distinguishing different uses of the
position—the closures of the KAM or the history mechanism of the λPAM are alternatives.

The key point of multi/sequence type derivations is that duplication is explicitly accounted for,
somewhat in advance, by multi-set/sequences: all arguments come with as many type derivations
as the times they are duplicated during evaluation. Note indeed that the type derivation may be
way bigger than the term itself, while this is not possible with, say, simple types. Therefore, there is
no need to resort to logs, closures, or histories to distinguish copies, because all copies are already
there: simple positions in the type derivation (not in the term!) are informative enough.

Relating Logs and Tapes with Typed Positions. In the λIAM, the log L = l1· . . . ·ln has a logged
position for every argument u1, . . . , un in which the position of the current state is contained. The
argument ui is the answer to the query of an argument for the variable in the logged position li.
The SIAM does not keep a trace of the variables for which it completed a query, but the answers
to those (forgotten) queries are simply given by the sub-derivations for u1, . . . , un in which the
current judgment occurrence J is contained—the way in which lk identifies a copy of uk in the
λIAM corresponds on the type derivation π to the index i of the sub-derivation (in the sequence of
sub-derivations) typing uk in which J is located. Note that the λIAM manipulates the log only via
transitions→arg and→bt1, that on the SIAM correspond exactly to entering/exiting derivations
for arguments. The tape, instead, contains logged positions for which the λIAM either has not yet
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found the associated argument, or it is backtracking to. Note that the λIAM puts logged positions
on the tape via transitions→var and→bt1, and removes them using→arg and→bt2. By looking at
Fig. 4.2, it is evident that there is a logged position on the λIAM tape for every type sequence S in
which it lies the hole ⟨·⟩ of the current type context A of the SIAM.

These ideas are used to extract from every SIAM state s a λIAM state ext(s) in a quite technical
way. A notable point is that the extraction procedure is formally defined by means of yet another
reformulation on the SIAM of the exhaustible invariant, called S-exhaustibility, relying on tests
induced by a SIAM state built following the explained correspondence. The extraction process
induces a relation s ≃ext ext(s) that is easily proved to be a strong bisimulation between the SIAM
and the λIAM.

4.3.1 S-Exhaustible Invariant

In this section we prove the S-exhaustible state invariant for the SIAM, then use it to extract λIAM
states from SIAM ones, and finally prove the strong bisimulation between the two machines.

We start by defining the notions of typed tests used to define S-exhaustible states.

Type Positions and Generalized States. To define tests, we have to consider a slightly more
general notion of SIAM state. In Sect. 4.2, a state is a quadruple (π, J, A, d) where J is an occurrence
of a judgment Γ ⊢ u : A in π, d is a direction, and A is a type context isolating an occurrence of ⋆
in A. The generalization simply is to consider type contexts A such that A⟨B⟩ = A for some B,
that is, not necessarily isolating ⋆. A pair (B, A) such that A⟨B⟩ = A is called a position in A.

Note that the SIAM can be naturally adapted to this more general notion of state, that follows
an arbitrary formula B, not necessarily ⋆ —it can be found in Fig. 4.4, and it amounts to simply
replacing ⋆ with B.

To easily manage SIAM states we also use a concise notations, writing ⊢ t : A, A for a state
s = (π, J, (A, A), d) where J is Γ ⊢ t : A⟨A⟩ for some Γ, potentially specifying the direction via
colors and under/over-lining.

SIAM Tests. Given a SIAM state s = (π, J, (A, A), d), the underlying idea is that the judgment
occurrence J encodes the log of the λIAM, while the type context A encodes the tape. It is then
natural to define two kinds of test, one for judgments and one for type contexts.

The intuition is that a test focuses on (the occurrence of) an element B of a sequence S related to
s, and that these sequence elements play the role of logged positions in the λIAM. These sequence
elements are of two kinds:

1. Elements containing J: those in which the focused judgment J itself is contained, corresponding
to the logged positions in the log of the λIAM. Note that the positions on the log are those
for which the λIAM has previously found the corresponding arguments. In the SIAM these
arguments are exactly those in which the focused judgment is contained.

2. Elements appearing in A: those in the right-hand type of s in which the focused type A is
contained, corresponding to the logged positions on the tape of the λIAM. They correspond
to λIAM queries for which the argument has not yet been found, or positions to which the
λIAM is backtracking to.

Each one of these elements is then identified by a judgment occurrence π′ and a position (B, A′)
in the right-hand type of π′.

Definition 4.3.1 (Focus). A focus f in a derivation π is a pair f = (J, (A, A)) of a judgment occurrence
J and of a type position (A, A) in the right-hand type A⟨A⟩ of J.

The intuition is that exhausting a test sJ,(A,A) in π shall amount to retrieving the axiom of
π of type A that would be substituted by that sequence element of type A by reducing π via
cut-elimination—the definition of exhaustible tests is given below, after the definition of tests.
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⊢ t : S→ A [⊢]
⊢ tu : A⟨B↑⟩ →•1

⊢ t : S→ A⟨B↑⟩ [⊢]
⊢ tu : A

⊢ t : A
⊢ λx.t : S→ A⟨B↑⟩ →•2

⊢ t : A⟨B↑⟩
⊢ λx.t : S→ A

⊢ t : S→ A⟨B↓⟩ [⊢]
⊢ tu : A →•3

⊢ t : S→ A [⊢]
⊢ tu : A⟨B↓⟩

⊢ t : A⟨B↓⟩
⊢ λx.t : S→ A →•4

⊢ t : A
⊢ λx.t : S→ A⟨B↓⟩

⊢ x : A⟨B↑⟩i
i

....

⊢ λx.C⟨x⟩ : [...Ai ...]→ A′′ →var

⊢ x : Ai
i

....

⊢ λx.C⟨x⟩ : [...A⟨B↓⟩i ...]→ A′′

⊢ x : Ai
i

....

⊢ λx.C⟨x⟩ : [...A⟨B↑⟩i ...]→ A′′ →bt2

⊢ x : A⟨B↓⟩i
i

....

⊢ λx.C⟨x⟩ : [...Ai ...]→ A′′

⊢ t : [...A⟨B↓⟩i ...]→ A′′ ⊢i u : Ai

⊢ tu : A′′ →arg

⊢ t : [...Ai ...]→ A′′ ⊢i u : A⟨B↑⟩i
⊢ tu : A′′

⊢ t : [...Ai ...]→ A′′ ⊢i u : A⟨B↓⟩i
⊢ tu : A′′ →bt1

⊢ t : [...A⟨B↑⟩i ...]→ A′′ ⊢i u : Ai

⊢ tu : A′′

FIGURE 4.4: The transitions of the (Generalized) Sequence IAM (SIAM).

Definition 4.3.2 (judgment tests). Let s = (π, J, (A, A), d) be a SIAM state. Let ri be i-th T-@ rule
found traversing π by descending from the focused judgment J towards the final judgment of π. Let Ji
be the judgment of the sequence Si in the right premise of ri traversed in such a descent (careful: Ji is the
j-th judgment of Si for some j, that is, the index i denotes the connection with rule ri, not the position
in Si). Let Ji be Γ ⊢ t : B. Then si

f = (π, Ji, (B, ⟨·⟩), ↓) is the i-th judgment test of s, having as focus
f := (Ji, (B, ⟨·⟩)).

We often omit the judgment from the focus, writing simply s(B,⟨·⟩), and even concisely note s f
as ⊢ t : B, ⟨·⟩↓. Note that judgment tests always have type context ⟨·⟩. According to the intended
correspondence judgment/ log and type context/tape between the SIAM and the λIAM, having
type context ⟨·⟩ corresponds to the fact that the log tests of the λIAM have an empty tape.

Example 4.3.3 (judgment test).

x : [[⋆]→ ⋆] ⊢ x : [⋆↓16]→ ⋆↑6 y : [⋆] ⊢ y : ⋆↑17

y : [⋆], x : [[⋆]→ ⋆] ⊢ xy : ⋆↑5
y : [⋆] ⊢ λx.xy : [[⋆↑15]→ ⋆↓7]→ ⋆↑4

⊢ λy.λx.xy : [⋆↓18]→ [[⋆↑14]→ ⋆↓8]→ ⋆↑3 ⊢ I : ⋆↑19

⊢ (λy.λx.xy)I : [[⋆↑13]→ ⋆↓9]→ ⋆↑2

z : [⋆] ⊢ z : ⋆↑11

⊢ λz.z : [⋆↓12]→ ⋆↑10

⊢ (λy.λx.xy)I(λz.z) : ⋆↑1

Let us give an example of judgment test in the context of the given example of SIAM run (which we have
reported here, for readability reasons). If we consider the state ↑11, we find its log tests going down in
the type derivation for each T-@ rule traversed from the right hand side. In this case we immediately
find the judgment ⊢ λz.z : [⋆] → ⋆. Then, ⊢ λz.z : ⟨[⋆] → ⋆⟩↓ is a log test for ↑11. Since between
⊢ λz.z : [⋆] → ⋆ and the root of the derivation we do not cross any other suitable T-@ rule, there are no
other log tests for ↑11.
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Type (Context) Tests. While judgment tests depend only on the judgment occurrence J of a state
s = (π, J, (A, A), d), type context tests—dually—fix J and depend only on the type context A of
s, that is, they all focus on sequence elements of the form (J, (B, A′)) where A′⟨B⟩ = A⟨A⟩ and
A = A′⟨A′′⟩ for some type context A′′. Namely, there is one type context test (shortened to type
test) for every sequence in which the hole of A is contained. We need some notions about type
contexts, in particular a notion of level analogous to the one for term contexts.

Terminology About Type Contexts. Define type contexts An of level n ∈N as follows:

A0 := ⟨·⟩ | S→ A0
An+1 := [...An...]→ A | S→ An+1

Clearly, every type context A can be seen as a type context An for a unique n, and viceversa a type
context of level n is also simply a type context—the level is then sometimes omitted. A prefix of a
context A is a context A′ such that A′⟨A′′⟩ = A for some A′′. Given A of level n > 0, there is
a smallest prefix context A|i of level 0 < i ≤ n, and it has the form A′⟨[...⟨·⟩...] → A⟩ for a type
context A′ of level i− 1.

Definition 4.3.4 (Type tests). Let s = (π, J, (A, A), d) be a SIAM state and n be the level of A. The
sequence of directed prefixes DiPref(A) of A is the sequence of pairs (A′, d′), where A′ is a prefix of A,
defined as follows:

DiPref(A) := [·] if n=0
DiPref(A) := [(A|1, ↑), . . . , (A|n, ↑n−1)] if n>0

The i-th directed prefix (from left to right) (A′, d′) in DiPref(A) induces the type test si
f := (π, J, (A′′⟨A⟩, A′), d′)

of s and focus f := (J, (A′′⟨B⟩, A′)), where A′′ is the unique type context such that A = A′⟨A′′⟩.
According to the idea that type tests correspond to the tape tests of the λIAM, note that the first

element (on the left) of the sequence DiPref(A) has ↑ direction, and that the direction alternates
along the sequence. This is the analogous to the fact that the tape test associated to the first logged
position on the tape (from left to right) has always direction ↓, and passing to the test of the next
logged position on the tape switches the direction.

Example 4.3.5 (Type test). Let us now give examples of type tests in the example of SIAM run that we
provided. We compute the tape tests of ↑13. Its type is

[[⟨⋆⟩]→ ⋆]→ ⋆

with respect to the notation of the previous definition, we have A = ⋆ and A = [[⟨·⟩] → ⋆] → ⋆.
The level of A is 2. Tape tests are associated with the pairs in DiPref([[⟨·⟩] → ⋆] → ⋆), namely
[([⟨·⟩]→ ⋆, ↑), ([[⟨·⟩]→ ⋆]→ ⋆, ↓)].
Definition 4.3.6 (State respecting a focus). Let f = (J, (A, A)) be a focus. A SIAM state s respects f if
it is an axiom ⊢ x : ⟨A⟩↓ for some variable x (the typing context of s, which is omitted by convention, is
x : A).

Definition 4.3.7 (S-Exhaustible states). The set ES of S-exhaustible states is the smallest set such that if
s ∈ ES, then for each type or judgment test of s f of focus f there exists a run ρ : s f →∗SIAM→bt2 s′ where
s′ respects f and for the shortest such run s′ ∈ ES.

Lemma 4.3.8 (S-exhaustible invariant). Let t be a closed term, π ▷ Γ ⊢ t : A a sequence type derivation
for it, and ρ : ⊢ t : ⟨A⟩↑ →k

SIAM s an initial SIAM run. Then s is S-exhaustible.

The proof, long but conceptually simple, is in the Appendix.

4.3.2 The Extraction Process, and the λIAM/SIAM Strong Bisimulation

From S-exhaustible states one is able to extract λIAM states, as the following definition shows.
Please note that the definition is well-founded, precisely because the objects are S-exhaustible
states. Indeed, the induction principle used to define S-exhaustability allows recursive definition
on S-exhaustible states to be well-behaved.
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Definition 4.3.9 (Extraction of logged positions). Let s be an S-exhaustible SIAM state in a derivation
π, t be the final term in π, and s f be a judgment or type test of s. Since s is S-exhaustible, there is an
exhausting run s f →+

SIAM s′ ∈ ES. Let x be the variable of s′. Then the logged position extracted from s f is

lext(s f ) := (x, λx.Dn, lext(s′
1). .lext(s′

n)), where Dn is the context (of level n) retrieved traversing π from

s′ to the binder of λx of x in t and s′ i is the i-th judgment test of s′.

Definition 4.3.10 (Extraction of logs, tapes, and states). Let s = (π, J, (A, A), d) be an S-exhaustible
SIAM state where t is the final term in π, and J is Γ ⊢ u : A⟨A⟩. The λIAM state extracted from s is
sext(s) := (u, Cs, Lext(s), Text(s), d) where

• Context: Cs is the only term context such that t = Cs⟨u⟩;

• Log: Lext(s) := l1 · · · li · · · ln where li = lext(si
f ) where si

f is the i-th judgment test of s.

• Tape: Text(s) = Ts
ext(A, 0) where Ts

ext(A, i) is the auxiliary function defined by induction on A as
follows.

Ts
ext(⟨·⟩, i) := ϵ

Ts
ext(S→ A, i) := • · Ts

ext(A, i)

Ts
ext([...A...]→ B, i) := lext(si

f ) · T
s
ext(A, i + 1)

where si
f is the i-th type test of s.

We use ≃ext for the extraction relation between S-exhaustible SIAM states and λIAM states defined as
(s, sext(s)) ∈≃ext.

First of all, we show that the extracted state respects the λIAM invariant about the length of the
log.

Lemma 4.3.11. Let s be an S-exhaustible SIAM state and sext(s) = (t, Cs, Lext(s), Text(s), d) the λIAM
state extracted from it. Then the level of Cs is exactly the length of Lext(s), that is, (t, Cs, Lext(s)) is a
logged position.

Proof. The length of Lext(s) is the number of judgment tests of s, which is the number of T-@ rules
traversed descending from the focused judgment J of s to the final judgment of π. The level of Cs
is the number of arguments in which the hole of Cs is contained, which are exactly the number of
T-@ rules traversed descending from J to the final judgment of π.

Now we are able to state (and prove) that ≃ext is a strong bisimulation.

Proposition 4.3.12 (SIAM-λIAM bisimulation). Let t a closed and→wh-normalizable term, and π ▷ ⊢
t : ⋆ a type derivation. Then ≃ext is a strong bisimulation between S-exhaustible SIAM states on π and
λIAM states on t. Moreover, if sπ ≃ext sλ then sπ is SIAM reachable if and only if sλ is λIAM reachable.

The proof, long but conceptually simple, is in the Appendix.

4.3.3 Acyclicity and The Correctness of the Weighting System

Weights and the Length of SIAM Runs via Acyclicity. We now turn to the proof of the correctness
of the weight assignment WλIAM(π), that is, the fact that it correctly measures the length of λIAM
complete runs. While the weight assignment for the λIAM is similar to de Carvalho’s one for the
KAM, the proof of its correctness is completely different, and it must be, as we know explain. The
KAM performs an evaluation that essentially mimics cut-elimination and so the number of KAM
transitions to normal form is obtained via a refined, quantitative form of subject reduction. One
may say that it is obtained in a step-by-step manner. The λIAM, instead, does not mimic subject
reduction. It walks over the type derivation without ever changing it, potentially passing many times
over the same judgment (because of backtracking). Correctness of weights cannot then be obtained
via a refined subject reduction property, because the reduced derivation gives rise to a different
run, and not to a sub-run. It must instead follow from a global analysis of a fixed derivation, that
we now develop.
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Weights as in WλIAM(π) count the number of occurrences of ⋆ in π, and every such occurrence
corresponds to a state of the SIAM. Proving the correctness of the weight system amounts to
showing that every state of the SIAM is reachable, and reachable exactly once. In order to do so,
we have to show that the SIAM never loops on typed derivations.

Note a subtlety: by the bisimulation with the λIAM (Prop. 4.3.12) we know that the run of the
SIAM terminates, but we do not know whether it reaches all states (i.e. all ⋆ occurrences). What
we have to prove, then, is that there are no unreachable loops, that is, loops that are not reachable
from an initial state. The next easy lemma guarantees that this is enough.

Lemma 4.3.13. Let T be an acyclic bi-deterministic transition system on a finite set of states S and with
only one initial state si. Then all states in S are reachable from si, and reachable only once.

Proof. Let us consider a generic state s ∈ S and show that it is reachable from si. If s = si we are
done. Otherwise, since the system is bi-deterministic we can deterministically go backwards from
s. Since the set of states is finite and there are no cycles, then the backward sequence must end on
an initial state, that is, on si. Thus s is reachable from si. If a state is reachable twice, then clearly
there is a cycle, absurd.

We show the absence of loops using a sort of subject reduction property. We first show that if
the SIAM loops on π ▷ ⊢ t : ⋆ and t→wh u, then there is a type derivation π′ ▷ ⊢ u : ⋆ on which
the SIAM loops—that is, SIAM looping is preserved by reduction of the underlying term. This is
done by defining a relation ▶ between the SIAM states on π and on π′. This idea has been already
exploited in Section 3.6, indeed we have to prove that ▶ is an improvement.

Explaining the Bisimulation via a Diagram. Let us give an intuitive explanation of the improve-
ment ▶ that we are going to build next. Given two type derivations π ▷ ⊢ H⟨(λx.r)w⟩ : ⋆ and
π′ ▷ ⊢ H⟨r{x�w}⟩ : ⋆, it is possible to define a relation ▶ between states of the former and of the
latter as depicted in the figure below. The key points are:

1. each axiom for x in π is ▶-related with the judgment for the argument w that replaces it in
π′.

2. Both the judgment for r and the one for (λx.r)w are ▶-related to r{x�w}.

3. The judgment for λx.r is not ▶-related to any judgment of π′.

` x : A′1 · · · ` x : A′n....
x : [A′1, . . . , A′n] ` r : A

` λx.r : [A′1, . . . , A′n]→ A

....
[` w : A′i]1≤i≤n

` (λx.r)w : A....
` H〈(λx.r)w〉 : ?

....
` w : A′1 · · ·

....
` w : A′n....

` r{x�w} : A....
` H〈r{x�w}〉 : ?

Defining ▶. In order to define ▶ formally, we enrich each type judgment (occurrence) ⊢ t : A⟨⋆⟩
with a context C such that C⟨t⟩ is the term in the final judgment of the derivation π, obtaining
⊢ (t, C) : A⟨⋆⟩.

Definition 4.3.14 (Bisimulation ▶). The definition of ▶ for ⊢ (t, C) : A⟨⋆⟩ has 4 clauses:

• rdx: the redex is in t, that is, t = H⟨(λx.u)r⟩, and so C is a head context K:

⊢ (H⟨(λx.u)r⟩, K) : A⟨⋆⟩▶rdx ⊢ (H⟨u{x�r}⟩, K) : A⟨⋆⟩
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• body: the term t is part of the body of the abstraction involved in the redex:

⊢ (t, H⟨(λx.D)u⟩) : A⟨⋆⟩▶body ⊢ (t{x�u}, H⟨D{x�u}⟩) : A⟨⋆⟩

• arg: the term t is part of the argument of the redex:

⊢ (t, H⟨(λx.D⟨x⟩)E⟩) : A⟨⋆⟩▶arg ⊢ (t, H⟨D{x�E⟨t⟩}⟨E⟩⟩) : A⟨⋆⟩

• ext: The term t is disjoint form the redex, that then takes place only in C:

⊢ (t, K⟨H⟨(λx.r)u⟩D⟩) : A⟨⋆⟩▶ext ⊢ (t, K⟨H⟨r{x�u}⟩D⟩) : A⟨⋆⟩

Please note that the only states of π which are not mapped to any state of π′ are those relative
to the judgment ⊢ λx.r : [B1...Bn]→ A.

Proposition 4.3.15. ▶ is a loop-preserving improvement between SIAM states.

The proof, again quite long but conceptually simple, is carried out in the Appendix.

Corollary 4.3.16. If π ▷ ⊢ H⟨(λx.r)w⟩ : ⋆ contains a cycle, the also π′ ▷ ⊢ H⟨r{x�w}⟩ : ⋆ contains a
cycle.

Proof. If the run of the SIAM on π ▷ ⊢ H⟨(λx.r)w⟩ : ⋆ loops then there exists a state sπ such that a
computation starting from sπ diverges. Every state but ⊢ (λx.r, H⟨⟨·⟩w⟩) : A⟨⋆⟩, which however
is not final, is related by ▶ to a state sπ′ of Tπ′ . Since improvements preserve non-termination
(Prop. 3.6.2.1), also sπ′ diverges. Since sπ′ has a finite number of states, there must be a cycle.

Other works dealing with the GoI also prove the absence of unreachable loops, for instance
(Baillot, 1999; Baillot et al., 2011). Then, by the trivial fact that the SIAM does not loop on→wh-
normal terms (as they are typed using just one rule, namely T-λ⋆), we obtain that it never loops.

Corollary 4.3.17. Let π ▷ ⊢ t : ⋆ be a type derivation. Then the SIAM does not loop on π.

Proof. Since t is typable, then it has normal form, call it u. Clearly the type derivation for u has no
cycles. By the previous corollary, also π cannot have any of them.

Quantitative Correctness. The correctness of the weights for the length of SIAM runs immediately
follows, and, via the strong bisimulation in Prop. 4.3.12, it transfers to the λIAM.

Theorem 4.3.18 (λIAM time via sequence types). Let t be a closed term that is→wh-normalizing, σ the
complete λIAM run from st, and π ▷ ⊢ t : ⋆ a type derivation for t. Then |σ| = WλIAM(π).

Proof. By Lemma 4.3.13 every state of Tπ is traversed exactly once, during a computation that
starts from the initial state. Thus the length of the computation is the cardinality of the states of Tπ .
Since a state in a type judgment Γ ⊢ t : A occurring in π is given by an occurrence of ⋆ in A, then
for every judgment the number of associated states is∥A∥. Then, it is immediate to note that the

number of states in a type derivation ending in π ▷
n
⊢ t : ⋆ is exactly n.





Chapter 5

Tree Types Capture IAM Space

On the same line of the previous chapter, we would like to measure also the λIAM space consump-
tion by the way of a type system. This is particularly interesting because of the already cited results
about the space efficiency of the λIAM. Indeed, a type-theoretic characterization could be a very
useful tool to study the space behaviour of the λIAM in the general case of the pure λ-calculus.

λIAM Space Consumption. The space needed to represent a λIAM state is given by the following
definition (the meta-variable Γ to denote either a tape T or a log L):

|(t, C, L, T, d)|sp := |L|sp + |T|sp
|(x, D, L′)|sp := X+ |L′|sp |ϵ|sp := 0

|l · Γ|sp := |l|sp + |Γ|sp | • ·T|sp := 1 + |T|sp

The value of the unknown X is simply the size of a pointer to a subterm of the term under
evaluation, i.e. X = log |C⟨t⟩|. Then, we are able to define the space of a λIAM run by taking the
maximum size of the states reached during the run.

Definition 5.0.1. Let ρ : s0 →∗λIAM s be a λIAM run. Then,

|ρ|sp := max
s′∈ρ
|s′|sp

First of all, it is worth noticing what happens in the case of diverging computations. In principle,
two cases could occur: either the space consumption is finite, or it is infinite. Actually, it is easy to
prove that the first case is not possible.

From bi-determinism it is immediate to prove acyclicity for reachable states.

Proposition 5.0.2. Let s be a reachable λIAM state. Then s is reached exactly once.

Proof. We proceed by induction on the length of the run ρ : s0 →∗λIAM s. If |ρ| = 0, the result is
trivial. Otherwise, if |ρ| > 0, we have ρ : s0 →∗λIAM s′ →λIAM s. Let us call σ : s0 →∗λIAM s′. By i.h.,
every state in σ is reached exactly once. Then s cannot be part of σ, because otherwise it would
have two different predecessors, contradicting bi-determinism. Thus s is reached exactly once in
ρ.

Then, since there are no cycles, an infinite run goes through infinite different states and thus
consumes unbounded space.

Proposition 5.0.3. Let ρ be an infinite λIAM run. Then |ρ|sp = ∞.

Proof. The result comes from the fact that in finite amount of memory, only a finite amount of
configurations can be encoded. Since in an infinite run, an infinite number of different states are
reached, then the λIAM needs an unbounded space to perform the computation.

5.1 Tree (Intersection) Types

Here we introduce the type system that we shall use to measure the space used by λIAM runs.
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x : [A] ⊢ x : A
T-VAR

Γ, x : T ⊢ t : A
Γ ⊢ λx.t : T → A T-λ

Γ ⊢ t : T → A ∆ ⊢ u : T
Γ ⊎ ∆ ⊢ tu : A T-@ ⊢ λx.t : ⋆

T-λ⋆

Γi ⊢ t : Gi 1 ≤ i ≤ n
[⊎n

i=1Γi] ⊢ t : [G1, . ., Gn]
T-MANY ⊢ t : [·] T-NONE

FIGURE 5.1: The tree type system.

We adapt sequence types of Chapter 4 in order to capture the size of λIAM states. In particular,
we need to store more information into types. Indeed, multi/sequence types are usually defined
by two mutually dependent layers, a linear one containing ground types and (linear) arrow types,
and the multiset level containing linear types. Here we also have two layers, except that we allow
multisets to also contain multisets, thus we can have [A, [[B, B], A, [A]], A, B]. A nested multiset is
a tree whose leaves are linear types and whose internal nodes are nested multisets.

Basic Definitions. As for multi types, there are two mutually defined layers of types, linear types
and tree types.

LINEAR TYPES A, B ::= ⋆
∣∣∣ T → A

TREE TYPES T, T′ ::= [G1, . . . , Gn] n ≥ 0

(GENERIC) TYPES G, G′ ::= A
∣∣∣ T

As the reader can note, the grammar for tree types is almost identical to that of sequence/multi
types, except for the fact that now trees can contain other trees, and not only linear types. About
trees, since commutativity is ruled out, we have, for instance, that [A, B] ̸= [B, A]. As always,
note that the empty tree type/sequence is a valid type, which is noted [·]. The concatenation
of two sequences T and T′ is noted T ⊎ T′. We use |T| for the length of T as a sequence, that is,
|[G1, . ., Gn]| := n. Notations and conventions about type judgments and derivations are the same
as those introduced in previous chapters.

The typing rules are in Fig. 5.1. With respect to the literature, the differences are in rule T-MANY.
There are two differences. The first one is the already mentioned fact that premises may assign both
linear types and tree types, while the literature usually only allows linear types. The second one is
that the rule surrounds Γ := ⊎n

i=1Γi with an additional nesting level—the notation [Γ] standing for
the type environment x1 : [T1], . . . , xn : [Tn] if Γ = x1 : T1, . . . , xn : Tn.

A Small Example. We show an instance of the rule T-MANY in the delicate case in which the
premises contain the same free variable x.

x : [A1] ⊢ t : G1 x : [A2] ⊢ t : G2

x : [[A1, A2]] ⊢ t : [G1, G2]
T-MANY

In particular, please note that first [A1] and [A2] are joined, and then they are surrounded by an
additional nesting level. The other option would have been x : [[A1], [A2]], but it is not what
T-MANY does.

Leaves Extraction and Leaf Contexts. Every tree type T induces the sequence T— equivalently,
the flat tree type—of its leaves, defined by the following leaves extraction operation.

[·]ℓ := [·] ([A] ⊎ T)ℓ := [A] ⊎ Tℓ ([T′] ⊎ T)ℓ := T′ℓ ⊎ Tℓ
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We shall describe the leaves of a tree type also via a notion of leaf context.

LEAF CTXS L ::= [G1, . ., ⟨·⟩, . ., Gn]
∣∣∣ [G1, . ., L, . ., Gn]

If Tℓ = [A1, . ., An] then for every Ai there is a leaf context Li such that T = Li⟨Ai⟩. Therefore, we
shall use the notation T = Li⟨A⟩, or even simply Ti = A, to say that the linear type A is the i-th
leaf of T.

In the following we use two basic properties of the type system (the same already given for the
sequence type system), collected in the following straightforward lemma. One is the absence of
weakening, and the other one is a correspondence between sequence types and axioms.

Lemma 5.1.1 (Relevance and axiom sequences). If π ▷ Γ ⊢ t : A then dom(Γ) ⊆ fv(t), thus if t is
closed then Γ is empty. Moreover, there are exactly |Γ(x)ℓ| axioms typing x in π, which appear from left to
right as leaves of π (seen as an ordered tree) in the order given by Γ(x)ℓ = [A1, . . . , Ak] and that the i-th
axiom types x with Ai.

Characterization of Termination. It is well-known that intersection and multi types characterize
Closed CbN termination, that is, they type all and only those λ-terms that terminate with respect to
Closed CbN. Moreover, every term that is Closed CbN normalizable can be typed with ⋆. The same
characterization holds with tree types, following the standard recipe1 for multi types, without
surprises. See the Appendix for details.

Theorem 5.1.2 (Correctness and completeness of tree types for Closed CbN). A closed term t is
Closed CbN normalizable if and only if there exists a tree type derivation π ▷ ⊢ t : ⋆.

Relationship with Multi Types. The leaves extraction operation can easily be extended to a
flattening function turning a tree type into a multi type. Flattening can also be extended to
derivations, by collapsing trees of T-MANY rules into the more traditional rule for multi sets that
does not nodify the type context. In this way, one obtains a forgetful transformation, easily defined
by induction on derivations. A converse lifting transformation, however, cannot be defined by
induction on derivations—it is unclear how to define it on applications. This fact is evidence that
tree types are strictly richer than multi types, because the tree structure cannot be inferred from
the multiset one.

5.2 The Tree IAM

This section introduces a machine evaluating type derivations, the Tree IAM, or TIAM, that mimics
the λIAM directly on top of a type derivation π, as we have already done with sequence types. It
is the key tool that we shall use to measure the space cost of λIAM runs. Indeed, the TIAM is a
very minor variant over the similar SIAM machine evaluating type derivations for sequence types
of the previous chapter.

The TIAM. The TIAM moves over a fixed type derivation π ▷ ⊢ t : ⋆, to be thought as the
code, following the occurrence of ⋆ in the final judgment through π, according to the transitions
in Fig. 5.2. It is defined in the very same ways of the SIAM. Although identical to the previous
chapter, we shall now explain every involved concept.

The position of the machine is given by an occurrence of a type judgment2 J of π. As the λIAM,
the TIAM has two possible directions, noted ↓ and ↑3. In direction ↑ the machine looks at the rule
above the focused judgment, in direction ↓ at the rule below. The only “data structure”—encoding

1Namely, substitution lemma plus subject reduction for correctness, and anti-substitution lemma, subject expansion,
and typability of all normal forms for completeness (here trivial, because all normal forms are typed by T-λ⋆).

2A judgment may occur repeatedly in a derivation, which is why we talk about occurrences of judgments. To avoid too
many technicalities, however, we usually just write the judgment, leaving implicit that we refer to an occurrence of that
judgment.

3Type derivations are upside-down wrt to the term structure, then direction ↓ of the λIAM becomes here ↑, and ↑ is ↓.
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⊢ t : T → A ⊢
⊢ tu : A⟨⋆↑⟩ →•1

⊢ t : T → A⟨⋆↑⟩ ⊢
⊢ tu : A

⊢ t : A
⊢ λx.t : T → A⟨⋆↑⟩ →•2

⊢ t : A⟨⋆↑⟩
⊢ λx.t : T → A

⊢ t : T → A⟨⋆↓⟩ ⊢
⊢ tu : A(= A⟨⋆⟩) →•3

⊢ t : T → A ⊢
⊢ tu : A⟨⋆↓⟩

⊢ t : A⟨⋆↓⟩
⊢ λx.t : T → A →•4

⊢ t : A
⊢ λx.t : T → A⟨⋆↓⟩

⊢ x : A⟨⋆↑⟩i
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B →var

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↓⟩i⟩ → B

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↑⟩i⟩ → B →bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B

⊢ t : L⟨A⟨⋆↓⟩i⟩ → A

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T
⊢ tu : A →arg

⊢ t : T → A

.. ⊢ u : A⟨⋆↑⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩
⊢ tu : A

⊢ t : T → A

.. ⊢ u : A⟨⋆↓⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩
⊢ tu : A →bt1

⊢ t : L⟨A⟨⋆↑⟩i⟩ → A

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T
⊢ tu : A

FIGURE 5.2: The transitions of the Tree IAM (TIAM).
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z : [⋆] ⊢0 z : ⋆↑3

⊢X λz.z : [⋆↓4]→ ⋆↑2

x : [[⋆]→ ⋆] ⊢X x : [⋆↓14]→ ⋆↑8

x : [⋆] ⊢0 x : ⋆↑15

x : [[⋆]] ⊢X x : [⋆]

x : [[⋆]→ ⋆, [⋆]] ⊢X xx : ⋆↑7

⊢2X λx.xx : [[⋆↑13]→ ⋆↓9, [⋆↓16]]→ ⋆↑6

y : [⋆] ⊢0 y : ⋆↑11

⊢X λy.y : [⋆↓12]→ ⋆↑10

⊢0 λy.y : ⋆↑17

⊢X λy.y : [⋆]

⊢2X λy.y : [[⋆]→ ⋆, [⋆]]

⊢2X (λx.xx)(λy.y) : ⋆↑5

⊢3X (λx.xx)(λy.y) : [⋆]

⊢3X (λz.z)((λx.xx)(λy.y)) : ⋆↑1

FIGURE 5.3: An example of TIAM execution.

the tape of the λIAM, as we shall explain—is a type context A isolating an occurrence of ⋆ in the
type A of the focused judgment (occurrence) Γ ⊢ u : A, defined as follows (careful to not confuse
type contexts A and T with type environments Γ):

LINEAR CTXS A ::= ⟨·⟩
∣∣∣ T → A

∣∣∣ T→ A
TREE CTXS T ::= [G1, . ., G, . ., Gn]

TYPE CTXS G ::= A

∣∣∣ T

Summing up, a state s is a quadruple (π, J, A, d). If J is in the form Γ ⊢ u : A, we often write s as
⊢ u : A⟨⋆d⟩, where A⟨⋆⟩ = A. We shall see that type environments play no role.

Intuitions about Positions (and Logs). The intuition is that the active position (t, Cn) of a λIAM
state corresponds to the judgment occurrence J in the TIAM, or, more precisely, to its position in
the type derivation π. The sub-term t is exactly the term typed by J. The context Cn is exactly the
context giving the term Cn⟨t⟩ typed by the final judgment of π. The level n of the context Cn of the
active position counts the number of arguments in which the hole of Cn is contained. On the type
derivation, each such argument is associated to a T-@ rule having the current judgment J in its
right sub-derivation. Last, note that in the λIAM the current log Ln has length equal to n. We shall
see in the next section that one can recover the log Ln applying an extraction process to the T-@
rules found descending from J towards the final judgment.

Transitions. The TIAM starts on the final judgment of π, with empty type context A = ⟨·⟩ and
direction ↑. It moves from judgment to judgment, following occurrences of ⋆ around π. To specify
the transitions, we use the leaf contexts defined in the previous section and we mark by the double
horizontal line trees of T-MANY rules. Exactly as the λIAM, the TIAM is bi-deterministic.

Proposition 5.2.1. The TIAM is bi-deterministic for each type derivation π ▷ ⊢ t : ⋆.

An Example. In Fig. 5.3 we present the an example of (weighted) type derivation. We have
reported the occurrences of ⋆ on the right of ⊢ annotated with increasing integers and a direction.
The occurrence of ⋆ marked with 1 represents the first state, and so on. One can immediately
notice that every occurrence of ⋆ is visited exactly once. Please note that judgments are decorated
with weights (such as X), which shall be introduced only in Sect. 5.3, in order to later provide an
example of decoration—they can be safely ignored for now.

5.2.1 The λIAM and TIAM Bisimulation

The aim of this section is to explain the strong bisimulation between the TIAM and the λIAM, that
is essentially the same between the SIAM and the λIAM studied in the previous chapter. A striking
point of the TIAM is that it does not have the log nor the tape. They are encoded in the position of
the judgment occurrence J and in the type context A of its states, as we shall show.
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x : [A]
∥A∥
⊢ x : A

T-VAR
Γ, x : T

w
⊢ t : A

Γ
max{w,∥T→A∥}

⊢ λx.t : T → A

T-λ
Γ

w
⊢ t : T → A ∆

v
⊢ u : T

Γ ⊎ ∆
max{w,v}
⊢ tu : A

T-@

0
⊢ λx.t : ⋆

T-λ⋆

Γi
wi
⊢ t : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi]

X+maxi{wi}
⊢ t : [G1, . ., Gn]

T-M
0
⊢ t : [·]

T-NONE

FIGURE 5.4: The tree type system with weights.

Relating Logs and Tapes with Typed Positions. In the λIAM, the log L = l1· . . . ·ln has a logged
position for every argument u1, . . . , un in which the position of the current state is contained. The
argument ui is the answer to the query of an argument for the variable in the logged position li.
The TIAM does not keep a trace of the variables for which it completed a query, but the answers
to those (forgotten) queries are simply given by the sub-derivations for u1, . . . , un in which the
current judgment occurrence J is contained—the way in which lk identifies a copy of uk in the
λIAM corresponds on the type derivation π to the index i of the leaf (in the tree of sub-derivations)
typing uk in which J is located. Note that the λIAM manipulates the log only via transitions→arg

and→bt1, that on the TIAM correspond exactly to entering/exiting derivations for arguments.
The tape, instead, contains logged positions for which the λIAM either has not yet found the
associated argument, or it is backtracking to. Note that the λIAM puts logged positions on the tape
via transitions→var and→bt1, and removes them using→arg and→bt2. By looking at Fig. 5.2, it is
clear that there is a logged position on the λIAM tape for every type sequence of the flattening of
T in which it lies the hole ⟨·⟩ of the current type context A of the TIAM.

Extracting λIAM States. These ideas are used to extract from every TIAM state s a λIAM state
ext(s) in a quite technical way. In particular, the extraction process retrieves a log Lext(s) from the
judgment J of s and a tape Text(s) from the type context A of s, using a sophisticated T-exhaustible
invariant of the TIAM to retrieve the exact shape of the logged positions in Lext(s) and Text(s).

Let us give a high-level description of how extraction works. The invariant is based on the
pairing of every TIAM state s with a set of test states, some coming from the judgment J of s, called
judgment tests, and some coming from the type context A, called type (context) tests. The invariant
guarantees a certain recursive property of each test state. The extraction process uses this property
to extract a logged position ls′ from each test state s′ of s.

Given a TIAM state s = (π, J, A, d), its judgment tests are associated to the T-@ rules having J
in their right sub-derivation. Their extractions give logged positions l1 · . . · ln forming the extracted
log Lext(s), following the correspondence described above.

Type tests are associated to the leaf contexts surrounding the hole of A. The extraction of the
tape Text(s) from A is done according to the following schema:

Text(⟨·⟩) := ϵ
Text(T → A) := • · Text(A)
Text(L⟨A⟩ → B) := lext(sL) · Text(A)

where sL is the state test associated to the leaf context L.
Since this is essentially identical to what have been done in the previous chapter for the

SIAM, the technical development is in the Appendix. The extraction process induces a relation
s ≃ext ext(s) that is easily proved to be a strong bisimulation between the TIAM and the λIAM.

Proposition 5.2.2 (TIAM and λIAM bisimulation). Let t a closed term and π ▷ ⊢ t : ⋆ a tree type
derivation. Then ≃ext is a strong bisimulation between TIAM states on π and λIAM states on t. Moreover,
if sπ ≃ext sλ then sπ is TIAM reachable if and only if sλ is λIAM reachable.
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The moreover part of the above statement hints at a bijection between all the states in π and
reachable λIAM states. However, there still could be the possibility that some of the states in π are
not reachable. This is actually not the case, as for the SIAM.

Proposition 5.2.3. Let t a closed term and π ▷ ⊢ t : ⋆ a tree type derivation. Then every state of π is
reached exactly once.

5.3 Measuring the Space of Interaction

This section contains the main contribution of the chapter: it gives a way of measuring the space
consumed by the complete λIAM run on the term t via a quantitative analysis of the tree type
derivation for t. We proceed in two steps.

1. The space of single extracted states: given a TIAM state s = (π, J, A, d), we show how to
measure the space of the extracted λIAM state ext(s) from π, J, and A.

2. The space of the whole execution: we refine tree type derivations adding weights on judg-
ments, and show that the weight of the final judgment coincides with the maximum space
consumption over all extracted states, that is, along the whole λIAM execution.

The Undetermined Pointers Size X. A technical point common to both parts is that the quantita-
tive study of tree types derivations is relative to an undetermined value X. The reason for using X
is that our space analyses have both local and global components. Locally, we count how many
occurrences of • and how many logged positions are involved in a state (for step 1) or in all states
in and above that judgment (for step 2). The global component comes from the fact that all logged
positions of the λIAM, independently of where they arise, are implemented via pointers to the
global code. Essentially, X is meant to be replaced, at the very end of both analyses, by the size
of pointers to the λIAM global code, that is, by log |t0|, where t0 is the term typed in the final
judgment of the type derivation π. Therefore, locally our measures shall include X, which shall
substituted at the end with log |t0|.

5.3.1 The Space of Single Extracted States

Trees and the Size of Extracted Logged Positions. Basically, given a TIAM state s = (π, J, A, d),
the size of logged positions in ext(s) is obtained by counting X for

• Extracted tape: every sequence constructor [·] surrounding the hole ⟨·⟩ in A;

• Extracted log: every T-MANY rule on the path from J to the final judgment of π.

Clearly, it is the newly introduced tree structure that allows to measure the size of extracted logged
positions, as expected. First, we define a size of type contexts meant to measure the size of the
extracted tapes.

Definition 5.3.1 (Branch size of type contexts/extracted tapes). Let s = (π, J, A, d) be a TIAM state.
The branch size | · |b for type contexts is defined as follows:

|⟨·⟩|b := 0 |T → A|b := 1 + |A|b
|T→ A|b := |T|b |[G1, . ., G, . ., Gn]|b := X+ |G|b

Let us interpret the branch size with respect to the tape extraction schema of Section 5.2.1. The
+1 in the clause for T → A is there to count •. The clause for sequences instead gives |L| = n · X if
the hole has height n in the leaf context L seen as a tree—whence the name branch size.

Then, we define a branch size for judgments, meant to measure the size of extracted logs, and a
branch size for states.

Definition 5.3.2. Let s = (π, J, A, d) be a TIAM state.
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• Branch size of judgments/extracted logs: let n be the number of T-MANY rules encountered
descending from J to the root of π. Then |J|b := n · X.

• Branch size of TIAM states: |s|b := |A|b + |J|b.

We prove that the defined branch sizes do correspond to their intended meanings, that is, the
branch sizes of extracted logs and tapes, showing that the size of TIAM states captures the space
size of the extracted λIAM state.

Proposition 5.3.3 (Space of Single Extracted States). Let s = (π, J, A, d) be a reachable TIAM state.
Then |A|b = |Text(s)|sp and |J|b = |Lext(s)|sp, and thus |s|b = |ext(s)|sp. Moreover,

1. if Lext(s) = l1. .ln, and let hi be the number of T-MANY rules of the ith T-MANY rule tree found
descending from J to the root of π, then |li|sp = hi;

2. for each extracted tape position l, i.e. for each G such that A = G⟨L⟨A′⟨⋆⟩⟩ → A⟩, then |l|sp =
|L|·X.

Proof. We proceed by induction on the length of the run σ : s0 →∗TIAM s. If the length is 0,
then s = s0 = (π, J, ⟨·⟩, ↑), J =⊢ t : ⋆ and is the root of ρ. Then |⟨·⟩|b = 0 = |Text(s)|sp and
|J|b = 0 = |Lext(s)|sp. Otherwise, σ : s0 →n

TIAM s′ →TIAM s. We analyze the different cases of the
last transition.

• Case→•1.

s′ =
⊢ t : T → A ⊢
⊢ tu : A⟨⋆↑⟩(= A)→•1

⊢ t : T → A⟨⋆↑⟩ ⊢
⊢ tu : A = s

The log is unchanged. Text(s) = •·Text(s′). Thus |T → A|b = |A|b + 1 =i.h. |Text(s′)|sp +
1 = |Text(s)|sp.

• Case→•2. Equivalent to the previous one.

• Case→var.

s′ =

⊢ x : A⟨⋆↑⟩i(= Ai)
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B→var

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↓⟩i⟩ → B = s

Let us set k := |L| − 1. We observe that k is exactly the number of rules T-MANY which
the judgment i lies in until the judgment J corresponding to the binder. We have sext(s′) =
(x, D⟨λx.C⟩, Lext(i) · Lext(J), Text(Ai)) and sext(s) = (λx.C⟨x⟩, D, Lext(J), (x, λx.C, Lext(i)) ·
Text(Ai)). By i.h. we have k · X = |Lext(i)|sp. Then |L⟨Ai⟩ → B|b = X+ k · X+ |Ai|b =
X+ |Lext(i)|sp + |Text(s′)|sp = |(x, λx.C, Lext(i))|sp + |Text(s′)|sp = |Text(s)|sp. About the
log, it suffices to note that |J|b =i.h. |Lext(s)|sp.

• Case→bt2.

s′ =

⊢ x : Ai(= A⟨⋆⟩i)
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↑⟩i⟩ → B→bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B = s

Let us set k := |L| − 1. We observe that k is exactly the number of rules T-MANY which
the judgment i lies in until the judgment J corresponding to the binder. We have sext(s′) =
(λx.C⟨x⟩, D, Lext(J), (x, λx.C, Lext(i)) · Text(Ai)) and
sext(s) = (x, D⟨λx.C⟩, Lext(i) · Lext(J), Text(Ai)). |Ai|b = |L⟨A⟨⋆↑⟩i⟩ → B|b − |L| · X =i.h.
|Text(s′)|sp − |(x, λx.C, Lext(i))|sp = |(x, λx.C, Lext(i)) · Text(Ai)|sp − |(x, λx.C, Lext(i))|sp =
|Text(Ai)|sp. About the log, since |Lext(i)|sp = k · X by i.h. and |J|b =i.h. |Lext(J)|sp, then
|J⟨i⟩|b = |J|b + k · X = |Lext(J)|sp + |Lext(i)|sp = |Lext(s)|sp.
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• Cases→•3 and→•4. Equivalent to case→•1.

• Case→arg.

s′ =

⊢ t : L⟨A⟨⋆↓⟩i⟩ → A

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T T-M

⊢ tu : A →arg

⊢ t : T → A

.. ⊢ u : A⟨⋆↑⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩
T-M

⊢ tu : A = s

sext(s′) = (t, C, Lext(s′), Text(L⟨Ai⟩)) = (t, C, Lext(s′), l · Text(Ai)) and
sext(s) = (u, D, Lext(s), Text(Ai)) = (u, D, l · Lext(J′), Text(Ai)). We have by i.h. |l|sp +
|Ai|b = |L| ·X+ |Ai|b = |L⟨Ai⟩|b = |Text(L⟨Ai⟩)|sp = |l ·Text(Ai)|sp = |l|sp+ |Text(Ai)|sp.
About the log, we have |J|b = |J′|b + |L| · X =i.h. |Lext(J′)|sp + |l|sp = |Lext(J)|sp.

• Case→bt1. Equivalent to the previous one.

The Need for Tree Types. A subtle point is that the tree structure of types is not needed in
order to define the extraction process—indeed, λIAM states are extracted from sequence type
derivations in the previous chapter. Extraction is an indirect process—a sort of logical relation—
whose functioning is guaranteed by an invariant (the T-exhaustible invariant in the Appendix). The
process does not describe explicitly the shape of the extracted logged positions, it only guarantees
that adequate logged positions exist. Without tree types, the structure of multi types derivations
somehow encodes enough information to retrieve ext(s), but how many logged positions are
involved can be discovered only by unfolding the whole extraction process, the information is
not encoded into the types themselves. There is a further subtlety. Tree types trace the number of
pointers as precisely described by the moreover part of Prop. 5.3.3, but do not describe the internal
structure of logged positions. Given a TIAM state s, we can easily know the length of Lext(s) and
Text(s), and know the number of pointers to implement each logged position l in them, which is
enough to measure space. The internal structure of l, however, cannot be read from tree types.
Again, it is determined only by unfolding the whole extraction process.

5.3.2 The Space of the Whole Execution

Type Weights. To obtain the space cost of the whole execution we endow tree types derivations
with weights4. In turn, we first have to define a notion of weight for types. The intuition is that we
are taking the max of the branch size for type contexts G used above, over all the ways of writing a
type G as G⟨⋆⟩, as confirmed by the associated lemma.

∥⋆∥ := 0 ∥T → A∥ := max{∥T∥ ,∥A∥+ 1}∥∥[G1, . ., Gn]
∥∥ := X+ maxi{∥Gi∥}

Lemma 5.3.4. Let G be a type. Then∥G∥ = maxG|G=G⟨⋆⟩ |G|b.

Proof. We proceed by induction on the structure of G.

• Case G = ⋆. Then there is only one G such that G = G⟨⋆⟩, i.e. G = ⟨·⟩.
4We introduce a different word for measuring space of the whole execution, because judgments are measured in two

different ways: the branch size measures what is below the judgment, and corresponds to the size of the extracted log
for a state, the weight measures what is above a judgment, and gives the maximum space over all states in the rooted
sub-derivation.
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• Case G = T → A. By i.h. ∥T∥ = maxT|T=T⟨⋆⟩ |T|b and∥A∥ = maxA|A=A⟨⋆⟩ |A|b. We have
that {G|G = G⟨⋆⟩} = {T→ A|T = T⟨⋆⟩} ∪ {T → A|A = A⟨⋆⟩}. Then

∥G∥ =∥T → A∥ = max{∥T∥ ,∥A∥+ 1} = max

{
max

T|T=T⟨⋆⟩
|T|b, max

A|A=A⟨⋆⟩
|A|b + 1

}
= max{{|T|b|T = T⟨⋆⟩}, {|A|b + 1|A = A⟨⋆⟩}}
= max{{|T→ A|b|T = T⟨⋆⟩}, {|T → A|b|A = A⟨⋆⟩}} = max

G|G=G⟨⋆⟩
|G|b

• Case G = [G1, . ., Gn]. By i.h. for each 1 ≤ i ≤ n,∥Gi∥ = maxG|Gi=G⟨⋆⟩ |G|b. Then

∥G∥ =
∥∥[G1, . .Gn]

∥∥ = X+ max
i
{∥Gi∥} = X+ max

i

{
max

G|Gi=G⟨⋆⟩
|G|b

}

= max
i

{
X+ max

G|Gi=G⟨⋆⟩
|G|b

}
= max

i

{
{|[G1..Gi..Gn]|b|Gi = Gi⟨⋆⟩}

}
= max

G|G=G⟨⋆⟩
|G|b

Note that, via the space of single extracted states (Prop. 5.3.3), the previous lemma states that
the size of G is the maximum space of all the tapes extracted from TIAM states over the same
judgment Γ ⊢ t : G.

Judgments and Derivations Weights. Weights are extended to judgments in Fig. 5.4, and the
weight of a derivation is the weight of its final judgment. The idea is that the weight w of a

weighted judgment J = Γ
w
⊢ t : G gives the maximum space of all the states over J and—crucially—

above J. Now, we prove that the weight of a judgment J is greater than the maximum size of the
tape of the states in its derivation.

Lemma 5.3.5 (Judgment weights bound extracted tapes). Let π : Γ
w
⊢ t : G be a weighted derivation

and J be the set of all the judgments occurring in π. Then w ≥ max∆⊢u:G′∈J
∥∥G′

∥∥.

Proof. We proceed by induction on π.

• Case T-VAR. This case is trivial.

x : [A]
∥A∥
⊢ x : A

T-VAR

• Case T-λ⋆. Also this case is trivial, since∥⋆∥ = 0.

Γ
0
⊢ λx.t : ⋆

T-λ⋆

• Case T-λ. The thesis follows by the i.h. applied to v.

Γ, x : T
v
⊢ t : A

Γ
max{v,∥T→A∥}

⊢ λx.t : T → A

T-λ

• Case T-@. The thesis follows by the i.h. applied to u and v and the fact that∥A∥ ≤∥T → A∥.

Γ
u
⊢ t : T → A ∆

v
⊢ u : T

Γ ⊎ ∆
max{u,v}
⊢ tu : A

T-@
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• Case T-MANY. The π has the following shape.

Γi

vi
⊢ t : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi]

X+maxi{vi}
⊢ t : [G1, . ., Gn]

T-MANY

By i.h., vi ≥∥Gi∥, so w is ≥ of the weight of the right-hand type of any internal judgment
of π. We only have to show that w also bounds the weight of [G1, . ., Gn]. Note that w =
X+ maxi {vi} ≥i.h. X+ maxi

{
∥Gi∥

}
=:

∥∥[G1, . ., Gn]
∥∥.

• Case T-NONE. Trivial since
∥∥[·]∥∥ = 0.

0
⊢ t : [·]

T-NONE

Judgment weights actually take also logs into account.

Lemma 5.3.6 (Weights bound also extracted logs). Let π ▷ Γ
w
⊢ t : G be a weighted derivation. Then

w ≥ v + |J|b for every weighted judgment J ⊢v in π.

Proof. By induction on the length n of path from J to the final judgment of π. If n = 0 then |J|b = 0
and w = v, giving w = v = v + |J|b. If n > 0 then we look at the rule of which J is a premise. Let
J′ ⊢v′ be the concluding judgment of such a rule. By i.h., w ≥ v′ + |J′|b. Now, for all rules but
T-MANY we have that v′ ≥ v and |J′|b = |J|b, so that w ≥ v′ + |J′|b ≥ v + |J|b. For T-MANY, we
have v′ ≥ X+ v and |J′|b = |J|b − X, so that

w ≥ v′ + |J′|b ≥ X+ v + |J|b − X = v + |J|b.

We then obtain that the weight of a derivation π for t bounds the space used by the TIAM
execution of π, and so by the λIAM execution of t.

Theorem 5.3.7 (λIAM space bounds). Let π ▷
w
⊢ t : ⋆ be a weighted tree types derivation. Then

|ext(s)|sp ≤ w for every s ∈ states(π).

Proof. We prove the bound using |s|b instead of |ext(s)|sp, and obtain the statement because |s|b
instead of |ext(s)|sp by Prop. 5.3.3. Let s = (π, J, A, d) ∈ states(π) be a TIAM state and let v be
its weight. By Lemma 5.3.6, w ≥ |J|b + v. By Lemma 5.3.5, v ≥

∥∥A⟨⋆⟩
∥∥, and by Lemma 5.3.4∥∥A⟨⋆⟩

∥∥ ≥ |A|b. Then v ≥ |A|b. Therefore, w ≥ |J|b + |A|b = |s|b.

Last, we show that weights provide exact bounds, as there always is a witness state using as
much space as in the weight.

Proposition 5.3.8 (Weight witness). Let π ▷ Γ
w
⊢ t : G be a weighted derivation and G ̸= [·]. Then there

exists a TIAM state s over π such that w = |s|b.

Proof. We proceed by induction on the structure of π.

• Case T-VAR:

x : [A]
∥A∥
⊢ x : A

T-VAR

There is no log and thus sL = 0, and by Lemma 5.3.4,∥A∥ = maxA|A=A⟨⋆⟩ |A|b.
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• Case T-λ⋆:

Γ
0
⊢ λx.t : ⋆

T-λ⋆

There is no log and thus sL = 0, and∥⋆∥ = 0 = |⟨·⟩|b.

• Case T-λ:
Γ, x : T

v
⊢ t : A

Γ
max{v,∥T→A∥}

⊢ λx.t : T → A

T-λ

There are two sub-cases:

1. w = v ≥∥T → A∥: then the statement follows by the i.h.

2. w =∥T → A∥ > v, by Lemma 5.3.4, there is a state s = (π, J, A, d) over the concluding
judgment J = Γ ⊢ λx.t : T → A for which∥T → A∥ = |A|b. Since for the concluding
judgment |J|b = 0, we obtain

w =∥T → A∥ = |A|b = |A|b + |J|b = |s|b.

• Case T-@:
Γ

u
⊢ t : T → A ∆

v
⊢ u : T

Γ ⊎ ∆
max{u,v}
⊢ tu : A

T-@

The thesis follows by the i.h. applied to u if u ≥ v and to v otherwise.

• Case T-MANY:

Γi

vi
⊢ t : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi]

X+maxi{vi}
⊢ t : [G1, . ., Gn]

T-MANY

Let us set m := maxi {vi}. Then, we apply the i.h. to the sub-derivation π′ with weight m.
Let us call s′ = (π′, J, G, d) the state obtained through the i.h.. Then |G|b + |J|b = m. Let us
now consider the same state in the new type derivation π, which includes the T-MANY rule,
s = (π, J, G, d). Now |G|b + |J|b = X+ m = X+ maxi {vi}.

• Case T-NONE:
0
⊢ t : [·]

T-NONE

Impossible, because by hypothesis G ̸= [·].

We can then conclude our complexity analysis.

Corollary 5.3.9 (λIAM exact bound via tree types derivations). Let π ▷
w
⊢ t : ⋆ be a tree types

derivation and ρ the complete λIAM run on t. Then |ρ|sp = w.

Proof. By Theorem 5.3.7, |σ|sp ≤ w. By Prop. 5.3.8, there exists a state s of the TIAM over π such
that |s|b = w. By Prop. 5.3.3, |ext(s)|sp = |s|b. Therefore, |σ|sp = w.

Now, the reader can fully understand and appreciate the weights in the derivation of Fig. 5.3.
Please note that we have considered max{1,X} = X when assigning the weights.



Chapter 6

The IAM Seems Unreasonable

In this chapter we exploit the type-theoretic characterization of the λIAM time and space consump-
tion given in the previous chapters. Our application is the complexity analysis of the evaluation
by the λIAM of the encoding of TMs into the λ-calculus. This is needed to prove the λIAM an
(un)reasonable implementation of the λ-calculus, in time and/or space. Fortunately, we do not
have to enter into all the details of the encoding. We just need to analyze how the (tail) recursion
needed by TMs is implemented into the λ-calculus.

TMs can be seen as the iterative (i.e. tail recursive) application of a transition function to the
state s. Given a TM with transition function M, we could write its main loop execution as

while (s is not final) do {M(s)}

This is very easy to implement in the λ-calculus. Let tM be the encoding of the transition
function M (which is typically very simple if states and tapes are encoded using, e.g., Scott’s
numerals (Wadsworth, 1980)). Then, the (recursively defined) function that iterates tM, thus
capturing the overall behavior of M, can be written as follows:

iter = (λ f .λs.if s is final then halt else f (tMs))︸ ︷︷ ︸
iteraux

iter

How can we build a solution to this equation in the form of a λ-term? Apart from an encoding of
the conditional operator, itself very easy to write, we need a fixed-point combinator fix , such as
Turing’s:

fix := θθ where θ := λx.λy.y(xxy)

We highlight that fix t →wh (λy.y(fix y))t →wh t(fix t). Then, we can set, as expected, iter :=
fix iteraux.

Let us analyze how Θ implements recursion, independently on what the argument of Θ is.
Please note that during the reduction of Θt, the variable y is substituted for the term t, which after
two β-steps appears twice, once in head position (call this occurrence t0), and once applied to Θ.
The latter copy of t, together with Θ, can be copied potentially many times, depending on how t0
uses its argument. Some of these copies, say m, will eventually appear in head position, and the
same process starts again. In other words, the copies of t that the combinator Θ will eventually
create can be organized in a tree, see Figure 6.1a. This is a faithful description of how recursion
unfolds, independently on how t uses its argument.

If t = iteraux, however, the situation is much simpler: t uses its argument at most once (note
that f is used linearly), and the complicated tree in Figure 6.1a becomes the one in Figure 6.1b.
Every copy t01n of t either brings Θt1n+1 in head position (without copying it), or discards it,
depending on whether the current state is final or not. Saying it another way, the height of the tree
in Figure 6.1b is nothing more than the number of reduction steps the Turing machine performs.

6.1 Time Unreasonableness via Sequence Types

Considering this simplification, we are able to devise a (sequence) type scheme for fix . The
definition is quite involuted, starting from the fact that it is parametric in n, that morally represents
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Θt

t0
Θt1

t10 ...

Θtm

tm0 ...

...

(A)

Θt

t0 Θt1

t01 Θt11

t011
...

(B)

FIGURE 6.1: Different ways Θ can copy its argument.

the number of times the fix-point is unfolded. Moreover, the scheme is parameterized on a list of
sequence types A := An, . ., A0. Let us first suppose n = 0, i.e. that the recursion is never unfolded.
This means that y never uses its argument xxy. Then, the type scheme is:

FA
0 := [YA

0 ]→ A0

YA
0 := [·]→ A0

XA
0 := [·]→ FA

0

Given fix := (λx.λy.y(xxy))θ, F0 is supposed to be the type of fix , Y0 the type of y, and X0 the
type of x. If the recursion is unfolded n + 1 times, then fix can be typed as follows:

FA
n+1 := [YA

n+1, . . . , YA
0 ]→ An+1

YA
n+1 := [An]→ An+1

XA
n+1 := [XA

n , . . . , XA
0 ]→ FA

n+1

Please note the hypothesis on the behaviour of y, that is supposed to use its argument only once.

Lemma 6.1.1. For each n ≥ 0 and type list A such that |A| ≥ n + 1, ⊢ θ : XA
n .

Proof. Case n = 0.

y : [YA
0 ] ⊢ y : YA

0 := [·]→ A0

y : [YA
0 ] ⊢ y(xxy) : A0

⊢ λy.y(xxy) : FA
0 := [YA

0 ]→ A0

⊢ λx.λy.y(xxy) =: θ : XA
0 := [·]→ FA

0

Case n + 1.

y : [YA
n+1] ⊢ y : YA

n+1 := [An]→ An+1

x : [XA
n ] ⊢ x : XA

n := [XA
n−1, .., XA

0 ]→ FA
n

[
x : [XA

i ] ⊢ x : XA
i

]
i∈[0..n−1]

x : [XA
n , .., XA

0 ] ⊢ xx : [YA
n , .., YA

0 ]→ An =: FA
n

[
y : [YA

i ] ⊢ y : YA
i

]
i∈[0..n]

x : [XA
n , .., XA

0 ], y : [YA
n , .., YA

0 ] ⊢ xxy : An

x : [XA
n , .., XA

0 ], y : [YA
n+1, .., YA

0 ] ⊢ y(xxy) : An+1

x : [XA
n , . . . , XA

0 ] ⊢ λy.y(xxy) : FA
n+1 := [YA

n+1, .., YA
0 ]→ An+1

⊢ λx.λy.y(xxy) =: θ : XA
n+1 := [XA

n , .., XA
0 ]→ FA

n+1

Then, it is immediate to conclude the following proposition.

Proposition 6.1.2. For each n ≥ 0 and type list A such that |A| ≥ n + 1, ⊢ fix : FA
n .



6.2. Space Unreasonableness via Tree Types 63

Proof.
Lemma 6.1.1

⊢ θ : XA
n := [XA

n−1, . . . , XA
0 ]→ FA

n

Lemma 6.1.1[
⊢ θ : XA

i

]
i∈[0..n−1]

⊢ fix := θθ : FA
n

We can now return to our original problem, i.e. estimating the λIAM time consumption when
executing the encoding of a Turing machine M which halts in n steps. We have already observed
that the number of times the fix-point operator used in the encoding is unfolded is exactly n. This
because the term encoding the transition function has to applied n times. This way, we have
that fix is typed by FA

n for a suitable type list A. The point now is to observe that the size of FA
n ,

intended as the number of ⋆ occurrences inside it, is exponential in n.

Corollary 6.1.3. For each n + 1 ≥ 0 and type list A such that |A| ≥ n,
≥2n

⊢ fix : FA
n .

Proof. We partially weight the derivation of the previous proof.

Lemma 6.1.1
⊢w θ : XA

n := [XA
n−1, . . . , XA

0 ]→ FA
n

Lemma 6.1.1[
⊢ θ : XA

i

]
i∈[0..n−1]

⊢≥w fix := θθ : FA
n

Of course we have that w ≥
∥∥∥XA

n

∥∥∥. We observe that
∥∥∥XA

n

∥∥∥ ≥ ∑0≤i≤n−1

∥∥∥XA
i

∥∥∥. This is a Fibonacci-
like recurrence and has a solution which is super-exponential. Thus w ≥ 2n.

The fact that the λIAM simulates a TM M which halts in n steps in at least 2n steps makes the
number of λIAM transitions a non reasonable time measure. The required overhead is indeed
polynomial. One could already deduce that the λIAM is not reasonable for space, too. In fact, the
λIAM space consumption cannot be less that linear in n: it is well known that in order to have an
exponential time, at least linear space is required. This fact contradicts the space invariance thesis,
since one should have the space consumption of the λIAM linear in the space consumption of M,
and not in time.

However, this last result can be proved also independently, by exploiting tree types.

6.2 Space Unreasonableness via Tree Types

In this section, we follow substantially the same path of the previous one: we give a tree type
scheme to the fixed point combinator used in the encoding of TMs into the λ-calculus, and then
analyze its complexity.

The definition is of course very similar to the previous one: again the scheme is parameterized
by n, the number of times the fixed point is unfolded, and by a list of types A. We start by defining
the scheme for n = 0.

FA
0 := TA

0 → A0

TA
0 := [YA

0 ]

YA
0 := [·]→ A0

We can observe that YA
0 has been treefied, and that XA

0 has not been defined. Now, we proceed with
the inductive case.

FA
n+1 := TA

n+1 → An+1

TA
n+1 := [YA

n+1, [TA
n ]]

YA
n+1 := [An]→ An+1
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We now turn to the proof of the typability of fix by FA
n . We need a preliminary lemma.

Lemma 6.2.1. For each n ≥ 0, and for each list of types A such that |A| ≥ n + 1, [TA
n ] ⊢ y : TA

n .

Proof. We proceed by induction on n. If n = 0, we can type y as follows:

y : [[·]→ A0] ⊢ y : [·]→ A0

y : [[[·]→ A0]] ⊢ y : [[·]→ A0]

Case n + 1:

y : [YA
n+1] ⊢ y : YA

n+1

i.h.
y : [TA

n ] ⊢ y : TA
n

y : [[TA
n ]] ⊢ y : [TA

n ]

y : [[YA
n+1, [TA

n ]]] ⊢ y : [YA
n+1, [TA

n ]]

Now, we able to prove the desired result.

Proposition 6.2.2. For each n ≥ 0, and for each list of types A such that |A| ≥ n + 1, ⊢ fix : FA
n .

Proof. Since fix → λy.y(fix y) =: fix 2 and types are preserved by reduction and expansion, we
type fix 2. We proceed by induction on n. If n = 0, we can type fix (2) as follows:

y : [[·]→ A0] ⊢ y : [·]→ A0

y : [[·]→ A0] ⊢ y(fix y) : A0

⊢ fix 2 := λy.y(fix y) : [[·]→ A0]→ A0

Now, we prove that fix can be typed by FA
n+1, knowing that by i.h. it can be typed with FA

n .

y : [YA
n+1] ⊢ y : YA

n+1 := [An]→ An+1

i.h.
⊢ fix : TA

n → An =: FA
n

Lemma 6.2.1
y : [TA

n ] ⊢ y : TA
n

y : [TA
n ] ⊢ fix y : An

y : [[TA
n ]] ⊢ fix y : [An]

y : [YA
n+1, [TA

n ]] ⊢ y(fix y) : An+1

⊢ fix 2 := λy.y(fix y) : [YA
n+1, [TA

n ]]→ An+1 =: FA
n+1

We can now return to our original problem, i.e. estimating the λIAM space consumption when
executing the encoding of a Turing machine M which halts in n steps and writes m cells of the tape.
We have already observed that the number of times the fix-point operator used in the encoding
is unfolded is exactly n. This because the term encoding the transition function has to applied n
times. This way, we have that fix is typed by FA

n for a suitable type list A. The point now is to
observe that the size of FA

n , intended as the nesting level, when it is seen as a tree, is linear in n.
This means that the space consumption of the λIAM is linear in the time n of the encoded TM, and
not in the space m. Of course this fact violates the space invariance thesis, and thus classifies the
λIAM as an unreasonable model for both time and space.

Proposition 6.2.3. For each n ≥ 0, and for each list of types A such that |A| ≥ n + 1,
≥2nX
⊢ fix : FA

n .

Proof. We observe that
∥∥∥TA

n

∥∥∥ ≥ 2X+
∥∥∥TA

n−1

∥∥∥, we have that
∥∥∥FA

n

∥∥∥ ≥ 2nX. Now, it suffices to observe

that
∥∥∥FA

n

∥∥∥ ≥∥∥∥TA
n

∥∥∥ ≥ 2nX.
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A last comment is about the fact that this is not a definitive result. In fact, our result is based
on the fact that the fix-point combinator fix is used to implement a reasonable model, in our case
TMs. While it is difficult to think about a simulation of Turing-complete mechanism without using
a fix-point combinator1, there may exist other exotic2 fix-point combinators that behave better
complexity-wise.

1There exists indeed a very simple trick to implement recursion in the λ-calculus without using a fix-point combinator,
but it has the very same complexity when evaluated by the λIAM. It is actually an inlining of fix inside the function that
one wants to implement in a recursive way.

2We say exotic because the other standard fix-point combinator, due to Curry, behaves the same. An idea, due to a
private communication with Laurent Regnier, could be the use of the fix-point described by Girard (1988) in his second
paper on the geometry of interaction.
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Chapter 7

Towards the KAM: the JAM and the
PAM

In the last chapter of the previous part, we have seen that the λIAM appears to be unreasonable in
both time and space. Moreover, we had already observed that the number of steps the λIAM needs
to evaluate a λ-term t could be exponential in the number of steps t needs to normalize (through
rewriting). This is because the λIAM recomputes many times the same paths inside the syntax
tree of the term. Then, it is natural to ask if there is the possibility to optimize this mechanism as
to not waste so much time. Of course, we have already observed in Chapter 2 that the Krivine
Abstract Machine is a solution to this problem. However, we are interested in mechanisms which
are directly derived from the λIAM1.

7.1 The Jumping Abstract Machine, Revisited

The Jumping Abstract Machine (JAM) is introduced by Danos and Regnier (1999) as an optimiza-
tion of the IAM obtained via a sophisticated analysis of IAM runs. Here we present the λJAM, the
recasting of the JAM in the same syntactic framework of the λIAM. In particular, the λIAM and
the λJAM rest on the same grammars and data structures, they only differ on some transitions.

Jumping Around the Log. The difference between the λIAM and the λJAM is in how they create
logged positions, and consequently on how they backtrack. The λIAM has a local approach to
logs, and backtracks via potentially long sequences of transitions, while the λJAM follows a global
approach to logs, and it backtracks in just one jump. The transition system is presented in Fig. 7.1.
The details of the two variants over the λIAM are:

• Global logged position: logged positions created by rule →var are now global, in that they
record the global position of the variable, and not only the position relative to its binder.
This way, also the log has to be entirely copied. Differently from the λIAM, there is some
duplication of information.

• Backtracking is short-circuited: backtracking is a phase of a λIAM run which is contained
between→bt1 and→bt2 transitions acting on the same logged position. It starts when the
machine has to rebuild the history of a redex/substitution and ends when the substituted
variable occurrence l is found. The optimization at the heart of the λJAM comes from the
observation that the λIAM backtracks to the exact same state that created l. This way, one use
l to jump directly to that state instead of doing the backtracking. Of course, this is possible
only if positions are saved globally in logged positions: note that the λIAM saves in l only
part of the log of the state creating l, while to jump back and avoid backtracking one needs
to save the whole log.

1Actually, the KAM can be derived as an optimization of the λIAM, if one considers a variant of the λIAM based on the
call-by-value translation of the λ-calculus into linear logic (or proof-nets). Interestingly, this “CbV λIAM” still evaluates
terms under the call-by-name strategy. At this point the CbV λIAM could be optimized with jumps as we are doing in the
next section for the λIAM and the resulting machine is the KAM. This was already observed by Danos and Regnier (1999)
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Sub-term Context Log Tape Sub-term Context Log Tape

tu C L T →•1 t C⟨⟨·⟩u⟩ L •·T
λx.t C L •·T →•2 t C⟨λx.⟨·⟩⟩ L T
x C⟨λx.Dn⟩ Ln·L T →var λx.Dn⟨x⟩ C L (x, C⟨λx.Dn⟩, Ln·L)·T

t C⟨⟨·⟩u⟩ L •·T →•3 tu C L T
t C⟨λx.⟨·⟩⟩ L T →•4 λx.t C L •·T
t C⟨⟨·⟩u⟩ L l·T →arg u C⟨t⟨·⟩⟩ l·L T
t C⟨u⟨·⟩⟩ (x, D, L′)·L T →jmp x D L′ T

FIGURE 7.1: Transitions of the λ Jumping Abstract Machine (λJAM).

The absence of the backtracking phase makes the λJAM easier to understand than the λIAM.
In particular, the ↓ and ↑ phases have now a precise meaning: the former being the quest for the
head variable of the current subterm, and the latter being the search of the argument of the only
variable occurrence in the tape. This is the second point of the following lemma.

Lemma 7.1.1 (λJAM basic invariants). Let s = (t, Cn, L, T, d) be a reachable state. Then

1. Position and log: (t, Cn, L) is a logged position, and

2. Tape and direction: if d = ↓, then T does not contain any logged position, otherwise, if d = ↑, then
T contains exactly one logged position.

3. Reversibility: If (t, C, L, T, d)→λIAM (u, D, L′, T′, d′), then (u, D, L′, T′, d′1)→λIAM (t, C, L, T, d1).

Since the λJAM is an optimization of the λIAM, its final states have the same shape, namely
(λx.u, C, L, ϵ). The fact that the log is always long enough to apply transition→var is given by the
position and log invariant above. In the next section we shall prove that the λIAM and the λJAM
are termination equivalent, obtaining as a corollary that the λJAM implements Closed CbN.

An Example. We present the λJAM execution trace of the same term considered for the λIAM. In
particular, the first transitions are identical to the λIAM execution since no→var and→bt1 rules
are involved.

Sub-term Context Log Tape Dir
(λy.λx.xy)II ⟨·⟩ ϵ ϵ ↓

→•1 (λy.λx.xy)I ⟨·⟩I ϵ • ↓
→•1 λy.λx.xy ⟨·⟩II ϵ • · • ↓
→•2 λx.xy (λy.⟨·⟩)II ϵ • ↓
→•2 xy (λy.λx.⟨·⟩)II ϵ ϵ ↓
→•1 x (λy.λx.⟨·⟩y)II ϵ • ↓

Instead, we observe that full context and log are saved at the occurrence of→var transitions. We
set lx := (x, (λy.λx.⟨·⟩y)I(λz.z), ϵ).

Sub-term Context Log Tape Dir
x (λy.λx.⟨·⟩y)I(λz.z) ϵ • ↓

→var λx.xy (λy.⟨·⟩)I(λz.z) ϵ lx·• ↑
→•4 λy.λx.xy ⟨·⟩I(λz.z) ϵ •·lx·• ↑
→•3 (λy.λx.xy)I ⟨·⟩(λz.z) ϵ lx·• ↑
→arg (λz.z) (λy.λx.xy)I⟨·⟩ lx • ↓
→•2 z (λy.λx.xy)I(λz.⟨·⟩) lx ϵ ↓
→var λz.z (λy.λx.xy)I⟨·⟩ lx (z, (λy.λx.xy)I(λz.⟨·⟩), lx) ↑
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Finally, as already explained, backtracking is avoided by jumping: the λJAM restores the previously
encountered state, saved in the logged position lx, when exiting from the right-hand side of an
application. We set lz := (z, (λy.λx.xy)I(λz.⟨·⟩), lx).

Sub-term Context Log Tape Dir
λz.z (λy.λx.xy)I⟨·⟩ lx lz ↑

→jmp x (λy.λx.⟨·⟩y)I(λz.z) ϵ lz ↑
→arg y (λy.λx.x⟨·⟩)II lz ϵ ↓
→var λy.λx.xy ⟨·⟩II ϵ (y, (λy.λx.x⟨·⟩)II, lz) ↑
→arg I (λy.λx.xy)⟨·⟩I (y, (λy.λx.x⟨·⟩)II, lz) ϵ ↓

Cost of λJAM Transitions. The cost of implementing λJAM transitions and runs on RAM is
exactly the same as for the IAM: all transitions are atomic but for→var, whose cost is given by
the level n of the involved context Dn, itself bound by the size of the initial code t. Note that this
means that in→var the duplication of the log L amounts to the duplication of the pointer to the
concrete representation of L, and not of the whole of L (that would make the cost of→var much
higher, namely depending on the length of the whole run that led to the transition).

7.2 Relating the λIAM and the λJAM: Jumping is Exhausting

In this section we prove that the λJAM is a time optimization of the λIAM via an adaptation of
the exhaustible invariant. Our proof is based on the construction of a bisimulation which also
provides, as a corollary, the implementation theorem for the λJAM. The basic idea is that the two
machines are equivalent modulo backtracking. Indeed, the λJAM evaluates terms as the λIAM, but
for the backtracking phase, which is short-circuited and done with just one jump transition. Then
one has to show that the jump is actually simulated by the λIAM.

Log Tests. For simulating jumps we need log tests. We recall some notions from Section 3.5 The
idea is that they focus on a given logged position in the log so that the position and log invariant
(Lemma 7.1.1) is preserved. Roughly, the log test slm focusing on the m-th logged position lm in
the log of a state (t, Cn, ln · · · l2 · l1, T, d) is obtained by removing the prefix ln · · · lm+1 (if any), and
moving the current position up by n−m levels. Moreover, the tape is emptied and the direction is
set to ↑.

In the argument for the simulation of jumps given below, we need only log tests of a very
simple form. Namely, given a state s = (t, C⟨u⟨·⟩⟩, l · L, T) from which the λJAM jumps, we shall
consider the log test sl := (t, C⟨u⟨·⟩⟩, l · L, ϵ), that is, the tape is emptied and (in this case) the
position does not change. The more general form of log tests is the one already given for the λIAM,
in Section 3.5.

I-Exhaustible Invariant. The λIAM exhaustible invariant proves that backtracking phases always
succeed, and it is the key ingredient to relate the λIAM and the λJAM. While the underlying idea
is clear, there is an important detail that has to be addressed: to establish the simulation, we have
to prove that the λIAM can exhaust logged positions of the λJAM, rather than its own.

Since the two machines use logs differently, we have to use a function I(·) that maps the
log-related notions of the λJAM to those of the λIAM (where Γ ranges over both logs and tapes):

LOGGED POSITIONS I(x, C⟨λx.Dn⟩, Ln·L) := (x, λx.Dn, I(Ln))

TAPES AND LOGS I(ϵ) := ϵ I(l·Γ) := I(l)·I(Γ) I(•·T) := •·I(T)
STATES I(t, C, L, T, d) := (t, C, I(L), I(T), d)

Another point is that the state surrounding the exhausted position now is uniquely determined by
the logged position. Given a logged position l = (x, D, L), the state induced by l is l◦ := (x, D, L, ϵ).

Definition 7.2.1 (I-Exhaustible States). EI is the smallest set of λJAM states s such that for any tape or
log test sl of s of focus l, there exists a run ρ : I(sl)→∗λIAM→bt2,I(l) I(l◦) such that l◦ ∈ EI . States in EI
are called I-exhaustible.
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Lemma 7.2.2 (I-exhaustible invariant). Let s be a λJAM reachable state. Then s is I-exhaustible.

The proof, as always, is in the Appendix.

Jumping is Exhausting. From the invariant and the tape lifting property of the λIAM, it follows
easily that jumps can be simulated via backtracking, from which the relationship between the
λIAM and the λJAM immediately follows. We write→jmp,l for a→jmp transition jumping to l.

Lemma 7.2.3 (Jumps simulation via backtracking). Let s be a λJAM reachable state such that s→jmp,l s′.
Then I(s)→bt1,I(l)→∗λIAM→bt2,I(l) I(s′).

Proof. Let l := (x, D, L′) and consider s = (t, C⟨u⟨·⟩⟩, (x, D, L′) · L, T) →jmp,l (x, D, L′, T) = s′.
Since s is reachable then it is I-exhaustible, so its log test sl := (t, C⟨u⟨·⟩⟩, l · L, ϵ) can be exhausted,
that is, there is a λIAM run ρ : I(sl)→∗λIAM→bt2,I(l) I(x, D, L′, ϵ) = s′′. Note that the first transition
of ρ is necessarily →bt1,I(l). Moreover, I(sl) and s′′ are exactly I(s) and I(s′) with empty tape.
We lift ρ to a run ρI(T) : I(sl)

I(T) →bt1,I(l)→∗λIAM→bt2,I(l) s′′I(T) using Lemma 3.3.6. Now, ρI(T) is
exactly the λIAM simulation of the jump, because I(sl)

I(T) = I(s) and s′′I(T) = I(s).

From the lemma it easily follows a bisimulation between the λIAM and the λJAM, showing
that the latter is faster.

Theorem 7.2.4 (λIAM and λJAM relationship).

1. λJAM to λIAM: for every λJAM run ρJ : sλJAM
t →∗λJAM s there exists a λIAM run

I(ρJ) : I(sλJAM
t )→∗λIAM I(s) such that |ρI | ≥ |ρJ | and |ρI |var ≥ |ρJ |var.

2. λIAM to λJAM: for every λIAM run ρI : sλIAM
t →∗λIAM s there exist a λJAM run

ρJ : sλJAM
t →∗λJAM s′ and a λIAM run σI : s→∗λIAM I(s′) such that ρIσI = I(ρJ).

3. Termination and λJAM implementation: λIAM(t)⇓ if and only if λJAM(t)⇓. Therefore, the
λJAM implements Closed CbN.

Proof.

1. We proceed by induction on the length of ρJ . If |ρJ | = 0 there is nothing to prove. Now,
let us consider ρJ : st →∗λJAM s′ →λJAM s. Considering the property true for the reduction
σJ : st →∗λJAM s′, we prove that it is true for ρJ . In particular, there exists a reduction
σI : I(st)→∗λIAM I(s′) such that |σI | ≥ |σJ | and |σI |var ≥ |σJ |var . We proceed considering all
the possible transitions from s′ to s.

• Transitions →•1,→•2,→•3,→•4,→arg. This group of transitions behaves identically,
modulo I(·) in the two machines. Then |ρJ | = 1 + |σJ | ≤i.h. 1 + |σI | = |ρI | and
|ρJ |var = |σJ |var ≤i.h. |σI |var = |ρI |var.

• Transition→var. This transition behaves identically, modulo I(·), in the two machines.
Therefore, |ρJ | = 1 + |σJ | ≤i.h. 1 + |σI | = |ρI |, and exactly the same sequence of
(in)equalites holds with respect to | · |var.

• Transition→jmp. This is the only non trivial case. If s→jmp,l s′ then by the simulation of
jumps via backtracking (Lemma 7.2.3) we have a run πI : I(s)→bt1,I(l)→∗λIAM→bt2,I(l)
I(s′). Then we define ρI as σI followed by πI , so that |ρJ | = 1 + |σJ | ≤i.h. 1 + |σI | <
|πI |+ |σI | = |ρI | and |ρJ |var = |σJ |var ≤i.h. |σI |var ≤ |πI |var + |σI |var = |ρI |var.

2. By induction on the length of ρI . If |ρI |t = 0 there is nothing to prove. Now, let us consider
ρI : st →∗λIAM s1 →λIAM s. Considering the property true for the reduction ρ′I : st →∗λIAM s1,
we prove that it is true for ρI . By i.h., there are runs ρ′J : st →∗λJAM s2 and σ′I : s1 →∗λIAM I(s2)

such that ρ′Iσ
′
I = I(ρ′J). If σ′I is non-empty then by determinism of the λIAM we are done,

because σ′I has to pass through s and the suffix σI of σ′I starting on s proves the statement. If
σ′I is empty then s1 = I(s2). Then consider the cases of transition s1 →λIAM s:
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• Transitions→•1,→•2,→•3,→•4,→arg,→var. The λJAM can do the same step and close
the diagram, as these transitions behaves identically, modulo I(·), in the two machines.

• Transition →bt2. Impossible because then the state s1 = I(s2) would have direction
↓, have a logged position on the tape, and be the projection of a λJAM state—by the
direction and tape invariant of the λJAM such states have no logged positions on the
tape.

• Transition→bt1. Then the λJAM can make a jump and we can close the diagram using
the simulation of jumps via backtracking (Lemma 7.2.3), as in the previous point of the
theorem.

3. The first two points of the theorem provide the proof that I is a bisimulation between the
λIAM and the λJAM. Clearly, I preserves termination.

Corollary 7.2.5 (λIAM and λJAM relationship). There is a complete λJAM run ρJ from t if and only
if there is a complete λIAM run ρI from t. In particular, the λJAM implements Closed CbN. Moreover,
|ρJ | ≤ |ρI | and |ρJ |var ≤ |ρI |var.

Exponential Gap. The time gap between the λIAM and the λJAM can be exponential, as it is
shown by the family of terms tn (t1 := I and tn+1 := tnI) mentioned in the introduction. The results
of this section provide a nice high-level proof. Next section shows that the time of the λJAM
is polynomial in the time of the KAM, that takes time polynomial in the number of β-steps to
evaluate tn, that is, n. The study of multi types in Sect. 4.1 instead shows that the time of the λIAM
depends on the size of the smallest type An of tn, which is easily seen to be exponential in n. In
fact, using the notation of Sect. 4.1, A1 := ⋆, and An+1 := [An]→ An.

7.3 Entangling the λJAM and the KAM: the HAM

Now we turn to the relationship between the λJAM and the KAM. We prove that KAM runs can
be obtained from λJAM ones via hops that short-circuit the search for arguments realized by the
blue transitions. It then follows that the KAM can be seen as a time improvement of the λJAM.

The HAM. To prove that the KAM is a time improvement of the λJAM, we introduce an interme-
diate machine, the Hopping Abstract Machine (HAM) in Fig. 7.2, that merges the two. The HAM
is a technical tool addressing an inherent difficulty: the λJAM and the KAM use different data
structures and it is impossible to turn a KAM state into a λJAM state without having to look at the
whole run that led to that state, as it is instead possible for the λJAM and the λIAM.

The idea behind the HAM is to entangle the data structures of both machines so that their states
get paired by construction, and to allow it to behave non-deterministically either as the λJAM or as
the KAM. The HAM deals with two enriched objects, logged closures ĉ and closed (logged) positions
l̂ (defined in Fig. 7.2, overloading some of the notations of the previous sections), obtained by
adding a log to closures and an environment to logged positions. Of course, environments and
logs have to be redefined as containing these enriched objects. There is also a (closed) tape T, that is,
a data structure obtained by merging the roles of the stack and the tape and containing both logged
closures and closed positions. In fact the closed tape is obtained from the λJAM tape by upgrading
every • entry to a logged closure ĉ, and every logged position l to a closed one l̂. Logged closures
and closed positions contain the same information (a term, a context, a log, and an environment)
but they play different roles.

The non-determinism of the machine amounts to the presence of two transitions→varJ and
→hop/varK for the variable case, that are simply the var transitions of the λJAM and the KAM, lifted
to the new data structures. In particular, transition→hop/varK short-circuits a whole ↑ phase of the
λJAM hopping directly to the argument.

It is evident that by removing environments, turning every logged closure into •, and removing
→hop/varK we obtain the λJAM. Similarly, by removing logs, →varJ, and the ↑ transitions, one
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LOG. CLOS. ĉ ::= (t, Cn+1, E)Ln ENV. E ::= ϵ | [x�ĉ] · E
LOGS L0 ::= ϵ Ln+1 ::= l̂ · Ln CL. POSITIONS l̂ ::= (t, Cn, Ln)E

CL. TAPES T ::= ϵ | ĉ · T | l̂ · T STATES s ::= (t, C, L, E, T, d)

Term Ctx Log Env Cl. Tape Term Ctx Log Env Cl. Tape

tu C L E T →•1/app t C⟨⟨·⟩u⟩ L E ĉ·T
λx.t C L E ĉ·T →•2/abs t C⟨λx.⟨·⟩⟩ L [x�ĉ]·E T

x C⟨λx.Dn⟩ Ln·L E′·[x�ĉ]·E T →varJ λx.Dn⟨x⟩ C L E l̂·T
x C L E T →hop/varK u D l̂·L′ F T

where ĉ := (u, C⟨t⟨·⟩⟩, E)L in→•1/app
l̂ := (x, C⟨λx.D⟩, Ln·L)E′ ·[x�ĉ]·E in→varJ

E = E′·[x�(u, D, F)L′ ]·E′′ and l̂ = (x, C, L)E in→hop/varK.

t C⟨⟨·⟩u⟩ L E ĉ·T →•3 tu C L E T
t C⟨λx.⟨·⟩⟩ L [x�ĉ]·E T →•4 λx.t C L E ĉ·T
t C⟨⟨·⟩u⟩ L E l̂·T →arg u C⟨t⟨·⟩⟩ l̂·L E T

t C⟨u⟨·⟩⟩ l̂·L E T →jmp x D L′ E′ T

where in the last transition l̂ = (x, D, L′)E′ .

FIGURE 7.2: Data structures and transitions of the Hopping Abstract Machine
(HAM).

obtains the KAM. We avoid spelling out these immediate projections. Instead, we see KAM runs
inside the HAM as given by the transition→HAMK

:=→•1/app ∪ →•2/abs ∪ →hop/varK. Similarly,
the λJAM is seen as transition→HAMJ

, defined as the union of all HAM transitions but→hop/varK.
The HAM verifies the same basic properties of the λJAM, simply lifted to the enriched data

structures. Moreover, it verifies a tape lifting property.

Lemma 7.3.1 (HAM tape lift). Let ρ : s = (t, C, L, E, T′, d)→n
HAM (u, D, L′, E′, T′′, d′) = s′ be a run

and T be a tape. Then there is a run ρT : sT = (t, C, L, E, T′·T, d)→n
HAM (u, D, L′, E′, T′′·T, d′) = s′T .

7.4 Hopping is Also Exhausting

Since jumping and hopping amount to a similar idea, the proof technique that we use to relate the
λJAM and the KAM is obtained by another variant on the exhaustible invariant.

Testing Logged Closures. The main difference is that now we exhaust logged closures instead
of logged positions. Via the ↑-exhaustible invariant below we shall show that the HAM can
exhaust a logged closure—that is it can recover the argument in the closure—by using only λJAM
↑ transitions. This capability shall then be used to show that the λJAM can simulate hops.

Since logged closures are both in the environment and in the tape, we have two kinds of test.
They are essential for the proof of the ↑-exhaustible invariant (in the Appendix), but they are not
needed for the argument at work in the simulation, spelled out below.

Environment Tests. Given a HAM state (t, C, L, E, T, d) consider an entry [x�ĉ] in E. The idea is
that one wants to exhaust ĉ to return to the state saved in ĉ. Remember that the λJAM looks for the
argument starting from the binder of x. Then, the test associated to ĉ is obtained by positioning the
machine on the binder λx for x, and modifying the log and the environment accordingly. Moreover,
the tape is emptied.

Definition 7.4.1 (HAM environment tests). Let s = (t, C⟨λx.Dn⟩, Ln·L, E′·[x�ĉ]·E, T, d) be a state.
Then, sĉ := (λx.Dn⟨t⟩, C, L, E, ϵ) is an environment test for s of focus ĉ.
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As in the previous section, we need a notion of state induced by a logged closure ĉ, that is the
state reached by a run exhausting ĉ. The definition may seem wrong, an explanation follows.

Definition 7.4.2 (HAM state induced by a logged closure). Given a logged closure ĉ = (u, D⟨t⟨·⟩⟩, E)L,
the state ĉ◦ induced by ĉ is defined as ĉ◦ := (t, D⟨⟨·⟩u⟩, L, E, ϵ).

The previous definition is counter-intuitive, as one would expect ĉ◦ to rather be the state
s′ := (u, D⟨t⟨·⟩⟩, L, E, ϵ), but for technical reasons this is not possible. In the simulations of hops
below, however, ĉ◦ is tape lifted to a state that makes a→arg transition to (a tape lifting of) s′, as
one would expect. We set→↑:=→•3,•4,arg,jmp.

Definition 7.4.3 (HAM ↑-Exhaustible states). E↑ is the smallest set of those states s such that for any
tape or environment test sĉ of s, there exists a run ρ↑ : sĉ →∗↑ ĉ◦ and ĉ◦ ∈ E↑. States in E↑ are called
↑-exhaustible (pronounced up-exhaustible).

Lemma 7.4.4. Let s be a HAM reachable state. Then s is ↑-exhaustible.

Simulating Hops. From the invariant and the tape lifting property of the HAM, it follows easily
that hops can be simulated via→↑, as the next lemma shows.

Lemma 7.4.5 (Hops simulation via ↑). Let s be a HAM reachable state and s →hop/varK s′. Then
s→varJ→∗↑→arg s′.

Proof. The hypothesis is: s = (x, C, L, E, T) →hop/varK (u, D⟨t⟨·⟩⟩, l̂·L′, F, T) = s′ where E =

E′·[x�ĉ]·E′′ with ĉ = (u, D⟨t⟨·⟩⟩, F)L′ and l̂ := (x, C, L)E. From s the HAM can also do a→varJ
transition: s = (x, C′⟨λx.D′n⟩, Ln·L′′, E′[x�ĉ]E′′, T) →varJ (λx.D′n⟨x⟩, C′, L′′, E′′, l̂·T) =: s′′ where
L = Ln·L′′ and C = C′⟨λx.D′n⟩. Now consider the environment test s′ ĉ = (λx.Dn⟨x⟩, C, L′′, E′′, ϵ).
By ↑-exhaustibility we obtain ρ : s′ ĉ →∗↑ ĉ◦ = (t, D⟨⟨·⟩u⟩, L′, F, ϵ) Then, lifting ĉ◦ with the tape l̂·T,
one has ĉ◦

l̂·T = (t, D⟨⟨·⟩u⟩, L′, F, l̂·T) →arg (u, D⟨t⟨·⟩⟩, l̂·L′, F, T) Thus, s →varJ s′′ →∗↑ ĉ◦
l̂·T →arg

s′.

From the lemma it easily follows a bisimulation between the λJAM and the KAM, showing
that the latter is faster.

Theorem 7.4.6 (λJAM and KAM relationship via the HAM). Let st be a HAM initial state.

1. KAM to λJAM: for every run ρK : st →∗HAMK
s there exists a run J(ρK) : st →∗HAMJ

s such that
|J(ρK)| = |ρK|+ |J(ρK)|↑ and |J(ρK)|varJ = |ρK|hop/varK.

2. λJAM to KAM: for every run ρJ : st →∗HAMJ
s there exist a run ρK : st →∗HAMK

s′ and a run
σJ : s→∗↑ s′ such that ρJσJ = J(ρK).

3. Termination: →HAMK
terminates if and only if→HAMJ

terminates.

Proof.

1. We proceed by induction on the length of ρK. If |ρK| = 0 there is nothing to prove. Now, let
us consider ρK : st →∗HAMK

s′ →HAMK
s. Considering the property true for the reduction

σK : st →∗HAMK
s′, we prove that it is true for ρK. In particular, there exists a reduction

J(σK) : st →∗HAMJ
s′ such that |J(σK)| = |σK|+ |J(σK)|↑ and |J(σK)|varJ = |σK|hop/varK. We

proceed considering all the possible→HAMK
transitions from s′ to s.

• Transitions →•1/app and →•2/abs. These transitions belong also to →HAMJ
, so the

statement trivially holds. In particular, |J(ρK)| = 1 + |J(σK)| =i.h. 1 + |σK|+ |J(σK)|↑ =
|ρK|.
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• Transition→hop/varK. By Lemma 7.4.5, we have a run π : s′ →varJ s′′ →+
↑ s. Then we

define J(ρk) as the concatenation of J(σk) and π, for which

|J(ρk)| = |J(σk)|+ 1 + |π| =i.h. |σK|+ |J(σk)|↑ + 1 + |πJ | = |σK|+ 1 + |J(ρk)|↑ =
= |ρK|+ |J(ρk)|↑

and |J(ρk)|varJ = 1 + |J(σk)|varJ =i.h. 1 + |σK|hop/varK = |ρK|hop/varK.

2. By induction on the length of ρJ . If |ρJ | = 0 there is nothing to prove. Now, let us consider
ρJ : st →∗HAMJ

s1 →HAMJ
s. Considering the property true for the reduction ρ′J : st →∗HAMJ

s1, we prove that it is true for ρJ . By i.h., there are runs ρ′K : st →∗HAMK
s2 and σ′J : s1 →∗↑ s2

such that ρ′Jσ
′
J = J(ρ′K). If σ′J is non-empty then by determinism of the λJAM we are done,

because σ′J has to pass through s and the suffix σJ of σ′J starting on s proves the statement. If
σ′J is empty then s1 = s2 and in particular s2 has direction ↓, because it is reached by→HAMK

.
Then consider the cases of transition s1 →λJAM s:

• Transitions→•1/app and→•2/abs. These transitions belong also to→HAMK
, so→HAMK

can do the same step and close the diagram.

• Transition→varJ. Then we can close the diagram via the reasoning used at the previous
point of the theorem, based on Lemma 7.4.5.

3. Two directions:

• →HAMK
termination implies→HAMJ

termination: an omitted standard invariant ensures
that if terms are closed then, whenever the code is a variable x, the environment is
defined on x. This fact forbids →HAMK

to get stuck on →hop/varK transitions. So
→HAMK

final states have the shape (λx.t, C, L, E, ϵ), which are also→HAMJ
final states.

Then if→HAMK
terminates→HAMJ

terminates.

• →HAMJ
termination implies→HAMK

termination: we prove the contrapositive statement.
Suppose that→HAMK

diverges starting from st. Note that it has to make an infinity of
→hop/varK transitions, because without them—that is considering only→•1/app and
→•2/abs—the size of the code strictly decreases. By the first point of the theorem,
projecting the diverging→HAMK

run we obtain a diverging→HAMJ
run, because the

projection maps the infinity of→hop/varK transitions to an infinity of→varJ transitions.

Corollary 7.4.7 (λJAM and KAM relationship). There is a complete λJAM run ρJ from t if and only if
there is a complete KAM run ρK from t. Moreover, |ρJ | = |ρK|+ |ρJ |↑ and |ρJ |var = |ρK|var.

Proof. It follows immediately from the previous theorem by the two obvious (and omitted) strong
bisimulations between the KAM and the transition subrelation→HAMK

of the HAM, and between
the λJAM and the transition subrelation→HAMJ

of the HAM.

7.5 The λJAM is Slowly Reasonable

In this section we provide bounds for the complexity of the λJAM. First, we show that it is
quadratically slower than the KAM, and then, by using results from the literature about the KAM,
we obtain bounds with respect to the two parameters for complexity analyses of abstract machines,
namely, the size |t| of the evaluated term and the number #β of→wh-steps to evaluate t.

Locating the λJAM. We have proved in the previous two sections that a run ρJ of the λJAM
from t is such that |ρK| ≤ |ρJ | ≤ |ρI |, where ρK and ρI are the runs from t respectively of the KAM
and of the λIAM. However, this tells nothing about the inherent complexity of evaluating a term
with the λJAM. In fact, it is well known that |ρK| is polynomial in #β and |t| (namely quadratic
in #β and linear in |t|), while |ρI | can be exponential in both #β and |t| (the typical example of
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exponential behavior being the family of terms tn defined as t1 := I and tn+1 := tnI). What about
the λJAM? Is it polynomial or exponential? It turns out that the λJAM is polynomial, and precisely
at most quadratically slower than the KAM.

Bounding ↑ Phases. Since the KAM is the λJAM less the (blue) ↑ phases, and the complexity
of the KAM is known, we only have to study the length of ↑ phases. The length of a ↑ phase
extending a run ρ from t is bound by |ρ|var · |t|, and the length of all ↑ phases together is bound by
|ρ|2var · |t|. The proof is in three steps. First, we show that in absence of jumps a ↑ phase cannot be
longer than |t|. An immediate induction on |C| proves the following lemma.

Lemma 7.5.1. Let ρ : (t, C, L, T)→∗•3,•4 s. Then |ρ| ≤ |C| ≤ |C⟨t⟩|.

Second, we need an invariant. To estimate the number of jumps in a ↑ phase, we need to link
the structure of logs with the number of→var transitions encountered so far. We introduce the
notion of depth of a tape/log Γ, defined in the following way:

depth(ϵ) := 0 depth(• · T) := depth(T)
depth(l · Γ) := depth(l) depth((x, C, L)) := 1 + depth(L)

depth(t, C, L, T, ↑) := depth(T) depth(t, C, L, T, ↓) := depth(L)

Proposition 7.5.2 (Depth invariant). Let ρ : st →∗λJAM s be an initial run of the λJAM. Then depth(s) =
|ρ|var. Moreover depth(s) ≥ depth(l) for every logged position l in s.

Proof. We proceed by induction on the length of the run ρ. If |ρ| = 0, then s = st and depth(st) =
depth(t, C, ϵ, ϵ) = depth(ϵ) = 0 = |ρ|var. If |ρ| ≥ 1, let σ be the prefix of ρ such that st →∗λJAM s′,
and let’s consider the various cases of the last transition s′ →λJAM s:

• Transitions →•1 or →•2: the result holds by i.h., since the direction has not changed and
neither the depth of the log.

• Transition→var:

s′ = (x, C⟨λx.Dn⟩, Ln · L, T)→var (λx.Dn⟨x⟩, C, L, (x, C⟨λx.Dn⟩, Ln · L) · T) = s

Then depth(s) = depth(Ln · L) + 1 = depth(s′) + 1 =i.h. |σ|var + 1 = |ρ|var. For the moreover
part, let l := (x, C⟨λx.Dn⟩, Ln · L) and consider a logged position l′ ̸= l in s. By i.h. depth(l′) ≤
depth(s′) < depth(s). For l, instead, by definition of depth(·) we have depth(l) = depth(s).

• Transitions→•3,→•4, and→jmp: the result holds by i.h., since the direction has not changed
and neither has the depth of the tape. For the moreover part, the every logged position of s is
in s′, and so it follows by the i.h.

• Transition→arg: the result follows by i.h., since the depth of the tape of s is the same of the
depth of the log of s′.

s = (u, C⟨⟨·⟩t⟩, L, l · T)→arg (t, C⟨u⟨·⟩⟩, l · L, T) = s′

For the moreover part, the every logged position of s is in s′, and so it follows by the i.h.

Remember that→↑:=→•3,•4,arg,jmp. We also set→↓:=→•1,•2,var.
Third, we bound ↑ phases. The number of jumps in a single phase s →∗↑ s′ of ↑ transitions

is bound by depth(s), and pairing it up with Lemma 7.5.1 we obtain a bound on the phase. By
the depth invariant the bound can be given relatively to |ρ|var, and a standard argument extends
the bound to all ↑ phases in a run, adding a quadratic dependency. Let |ρ|↑ be the number of→↑
transitions in ρ.

Lemma 7.5.3 (Bound on ↑ phases).
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1. One ↑ phase: if s = (t, C, L, T) is a reachable state and ρ : s→∗↑ s′ then |ρ| ≤ depth(s) · |C⟨t⟩|.

2. All ↑ phases: if ρ : st →∗λJAM s then |ρ|↑ ≤ |ρ|2var · |t|.

Proof.

1. We can split ρ in many subruns ρ1 . . . ρn consisting only of→•3,•4 sequences and interleaved
by→jmp transitions, i.e. ρ = ρ1· →jmp ρ2· →jmp · · · ρn. By Lemma 7.5.1, each ρi is such that
|ρi| ≤ |C⟨t⟩|. Moreover, note that the log is untouched by ρi and that the number of→jmp
transitions is bound by the depth of the first logged position in L, itself bound by depth(s) by
Lemma 7.5.2. Then |ρ| ≤ depth(s) · |C⟨t⟩|.

2. The run ρ has shape ρ↓1ρ↑1ρ↓2ρ↑2 . . . ρ↓nρ↑n where ρ↓i is made out of →↓ transitions and ρ↑i is
made out of→↑ transitions. By the previous point, we have |ρ↑i | ≤ depth(s↑i ) · |t| where s↑i
is the source state of ρ↑i . By Lemma 7.5.2, depth(s↑i ) = ∑i

j=1 |ρ
↓
j |var. Now, |ρ|↑ = ∑n

i=1 |ρ
↑
i | ≤

∑n
i=1 depth(s

↑
i ) · |t| = |t| ·∑

n
i=1 ∑i

j=1 |ρ
↓
j |var ≤ |t| ·∑

n
i=1 |ρ|var ≤ |t| · |ρ|2var.

The Complexity of the λJAM. From the complexity of the KAM, the fact that the λJAM and the
KAM do exactly the same number of→var transitions, and that the number of ↑ transition of the
λJAM are bound by |ρ|2var · |t|, we easily obtain the following results.

Theorem 7.5.4 (λJAM complexity). Let t be a closed term such that t→n
wh u, u be→wh normal, and ρJ

and ρK be the complete λJAM and KAM runs from t. Then:

1. The λJAM is quadratically slower than the KAM: |ρK| ≤ |ρJ | = O(|ρK|2 · |t|).

2. The λJAM is (slowly) reasonable: |ρJ | = O(n4 · |t|), and the cost of implementing ρJ on a RAM
is also O(n4 · |t|).

Proof. 1. By Theorem 7.4.6.1, |ρJ | = |ρK| + |ρJ |↑ and |ρK|var = |ρJ |var. By Lemma 7.5.3.2,
|ρJ |↑ = |ρJ |2var · |t| = |ρk|2var · |t| ≤∗ |ρk|2 · |t|, from which the statement follows.

2. The previous point gives |ρJ | = O(|ρK|2 · |t|) where ρK is the corresponding run on the KAM.
As recalled in Sect. 7.5, |ρK| = O(n2), from which we obtain |ρJ | = O(n4 · |t|).
To obtain the cost of implementing on a RAM, we need to consider the cost of implementing
single transitions. They all have constant cost but for→var that costs |t|. Now note that in
the length bound |ρJ | = O(n4 · |t|) the component |t| comes from the ↑ transitions, not→var,
so that the cost on RAM is not O(n4 · |t|2) but simply O(n4 · |t|).

7.6 The Pointer Abstract Machine, Revisited

The Pointer Abstract Machine (PAM), due to Danos et al. (1996), gives an operational account
of the interaction process at work in Hyland and Ong (2000) game semantics. The machine is
always described rather informally via a pseudo-code algorithm. Here we define it according to
our syntactic style, calling it λPAM, and provide its first formal and manageable presentation as
an actual abstract machine.

Our result concerning the λPAM is that it is strongly bisimilar to the λJAM. Roughly, the two
are the same machine, with exactly the same time behavior, they just use different data structures.
In particular, the PAM can be seen as a way of implementing the JAM through pointers, i.e. sharing,
which becomes explicit. The equivalence is mentioned by Danos and Regnier (1999), but it is not
proved.
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POSITIONS p ::= (t, C) TAPES T ::= ϵ | • ·T | p·T
HISTORIES H ::= ϵ | (p, i)·H STATES s ::= (t, C, H, i, T, d) i ∈N

Sub-term Context Hist. Index Tape Sub-term Context Hist. Index Tape

tu C H i T →•1 t C⟨⟨·⟩u⟩ H i •·T
λx.t C H i •·T →•2 t C⟨λx.⟨·⟩⟩ H i T
x C⟨λx.Dn⟩ H i T →var λx.Dn⟨x⟩ C H ϕn

H(i) (x, C⟨λx.Dn⟩)·T

t C⟨⟨·⟩u⟩ H i •·T →•3 tu C H i T
t C⟨λx.⟨·⟩⟩ H i T →•4 λx.t C H i •·T
t C⟨⟨·⟩u⟩ H i p·T →arg u C⟨t⟨·⟩⟩ (p, i)·H |H|+ 1 T

t C⟨u⟨·⟩⟩ H i T →jmp xH
i DH

i H i− 1 T

FIGURE 7.3: Data structures and transitions of the λ Pointer Abstract Machine
(λPAM).

Fragmented vs Monolitic Run Traces. Both machines jump and need to store information about
the run, to jump to the right place. They differ on how they represent this information. The λJAM
uses logged positions, that is, positions coming with the information to be restored after the jump.
The approach can be seen as fragmented, as the trace of the run is distributed among all the logged
positions in the state. The λPAM adopts a monolitic approach, storing all the information in a
unique history H, a new data structure encoding the whole run in a minimalistic and sophisticated
way. Roughly, the history H saves all the variable positions p for which an argument as been
found, each one with a pointer (under the form of an index i) to a previous variable position p′ in
H. The index i intuitively realizes a mechanism to retrieve the log associated to p by the λJAM. We
first define the machine and then explain the relationship between the two approaches.

Data Structures. All the data structures of the PAM are defined in Fig. 7.3. Positions are no longer
logged, and noted with p, p′, etc. An index i is simply a natural number. Indexed positions are pairs
(p, i). A history H is a sequence of indexed variable positions (accumulated from right to left). The
idea is that indices are pointers to entries in the history, that is, if the i-th entry of H is (p, j) then j
points to a previous entry in H, that is, j < i. The tape of the λPAM is a stack containing variable
positions and occurrences of •.

Transitions and Look-Up. Initial states have the form st := (t, ⟨·⟩, ϵ, 0, ϵ), the transitions of the
λPAM are in Fig. 7.3, they are labeled exactly as in the λJAM, and their union is noted→λPAM.
Transitions→var and→jmp need to retrieve information from the history H, for which there are
some dedicated notations. We use iH

k , xH
k , DH

k to denote, respectively, the index, variable, and
context of the k-th indexed position in H.

Transition→var moreover looks up into H in an unusual way. The idea is that it accesses H
n times to retrieve an index. The first time it retrieves the indexed position (p1, j1) of index i, to
then retrieve the position (p2, j2) of index j1, and so on, until it retrieves jn and makes it the new
state index. This is formalized using the look-up function ϕH : N → N defined as ϕH(k) := iH

k ,

and whose powers ϕn
H are defined as ϕn

H(k) := ϕH(ϕ
(n−1)
H (k)), where ϕ0

H(k) := k. Note that
implementing→var on RAM then costs n, that is bound by the size |t| of the initial term, exactly as
for the λJAM, while all other transitions have constant cost.

An Example. As for the other machines we have considered in this thesis, we give the execution
trace of the λPAM on the term (λy.λx.xy)II. The reader can grasp some intuition considering that
the PAM is strongly bisimilar to the λJAM. In particular, the λPAM considers explicit pointers.
Indeed, as we have already pointed out, λJAM logs are not actually copied in the λJAM →var

transition: what is duplicated is just a pointer to them. The λPAM handles this mechanism directly



80 Chapter 7. Towards the KAM: the JAM and the PAM

in its definition, and can thus be considered as a low-level implementation of the λJAM. In the
following we will explain this in more detail.

Sub-term Context Hist. Index Tape Dir
(λy.λx.xy)II ⟨·⟩ ϵ 0 ϵ ↓

→•1 (λy.λx.xy)I ⟨·⟩I ϵ 0 • ↓
→•1 λy.λx.xy ⟨·⟩II ϵ 0 • · • ↓
→•2 λx.xy (λy.⟨·⟩)II ϵ 0 • ↓
→•2 xy (λy.λx.⟨·⟩)II ϵ 0 ϵ ↓
→•1 x (λy.λx.⟨·⟩y)II ϵ 0 • ↓

After having looked for the head variable through the spine of the term, the λPAM, now in ↑mode,
queries the argument of x, namely λz.z, that then explores. The argument of its head variable z is
y, that has to be found via backtracking or jumping. We set px := (x, (λy.λx.⟨·⟩y)I(λz.z)).

Sub-term Context Hist. Index Tape Dir
x (λy.λx.⟨·⟩y)I(λz.z) ϵ 0 • ↓

→var λx.xy (λy.⟨·⟩)I(λz.z) ϵ 0 px·• ↑
→•4 λy.λx.xy ⟨·⟩I(λz.z) ϵ 0 •·px·• ↑
→•3 (λy.λx.xy)I ⟨·⟩(λz.z) ϵ 0 px·• ↑
→arg (λz.z) (λy.λx.xy)I⟨·⟩ (px, 0) 1 • ↓
→•2 z (λy.λx.xy)I(λz.⟨·⟩) (px, 0) 1 ϵ ↓
→var λz.z (λy.λx.xy)I⟨·⟩ (px, 0) 1 (z, (λy.λx.xy)I(λz.⟨·⟩)) ↑

The jump is simulated by the λPAM retrieving the position saved in the history at the cur-
rent index, and then updating the index accordingly, i.e. diminishing it by one. Intuitively,
this corresponds to the ’unpacking’ made by the λJAM in the →jmp transition. We set pz :=
(z, (λy.λx.xy)I(λz.⟨·⟩)) and py = (y, (λy.λx.x⟨·⟩)II).

Sub-term Context Hist. Index Tape Dir
λz.z (λy.λx.xy)I⟨·⟩ (px, 0) 1 pz ↑

→jmp x (λy.λx.⟨·⟩y)I(λz.z) (px, 0) 0 pz ↑
→arg y (λy.λx.x⟨·⟩)II (pz, 0)·(px, 0) 2 ϵ ↓
→var λy.λx.xy ⟨·⟩II (py, 0)·(pz, 0)·(px, 0) 0 py ↑
→arg I (λy.λx.xy)⟨·⟩I (py, 0)·(pz, 0)·(px, 0) 3 ϵ ↓

Final States and Invariants. Final states of the λPAM have, as expected, shape (λx.t, C, H, i, ϵ, ↓).
This follows from the fact that the machine is never stuck on→var steps because ϕn

H(i) is undefined.
Note indeed a subtle point: ϕH(0) is undefined, so, potentially, ϕn

H(i) may be undefined. We then
need an invariant ensuring that—in the source state of→var— ϕn

H(i) is always defined. The next
statement collects also other minor invariants of the λPAM.

We say that H has depth (at least) n ∈N at i if n = 0 or if n > 0 and ϕm
H(i) > 0 for every m < n.

Lemma 7.6.1 (λPAM invariants). Let s = (t, Cn, H, i, T, d) be a reachable PAM state. Then:

1. Depth: H has depth n at i. Moreover, if ((u, Dm), j) is the k-th indexed position of H, with k > 0,
then H has depth m at k− 1.

2. Tape, index, and direction: if d = ↓, then i = |H| and T does not contain any logged position,
otherwise if d = ↑ then T contains exactly one position.

Proof. By induction on the length of the run reaching s, together with an immediate inspection of
the transitions using the i.h..
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History, Indices, and Logs. Let’s now explain the relationship between the λJAM and the λPAM.
The history H essentially stores the sequence of→var queries, consisting of the position of a variable
needing an argument, that the λPAM has completed, that is, for which it has found the argument.
The key point is that it stores them with an index i. Indices are a low-level mechanism to retrieve
logs, that are crumbled and shuffled all over H. Let us explain how a log (p1, L1)· . . . ·(pn, Ln) of a
reachable λJAM state is represented by the index i1 and the history H of the corresponding λPAM
state. There are two ideas:

• The sequence of positions: p1 is in the i1-th entry (p1, i2) of H, p2 is in the i2-th entry (p2, i3),
and so on.

• The log of each position: the log L1 of p1 is represented in H (recursively following the same
principle) starting from index i1 − 1, the log L2 starting from index i2 − 1, and so on.

The Bisimulation. The given explanation underlies the following definition of relations ≃T
,≃LH and ≃ between data structures and states of the λJAM and the λPAM, that induce a strong
bisimulation. The intended meaning of the relation L ≃LH (H, i) is that the log L is represented in
the history H starting from index i.

Definition 7.6.2. The relations ≃T ,≃LH and ≃ are defined as follows.

TAPES ϵ ≃T ϵ

TJ ≃T TP

•·TJ ≃T •·TP

TJ ≃T TP

(x, C, L)·TJ ≃T (x, C)·TP

LOG-HIS. ϵ ≃LH (H, 0)

(x, C) = (xH
i , DH

i ) L ≃LH (H, ϕH(i)) L′ ≃LH (H, i− 1)

(x, C, L′)·L ≃LH (H, i)

STATES

TJ ≃T TP L ≃LH (H, i)

(t, C, L, TJ , d) ≃ (t, C, H, i, TP, d)

Note that in the second rule for ≃LH the index i is ≥ 1, and that ≃ contains all pairs of initial
states. Note also that the (logged) positions case of ≃T (rightmost rule for ≃T) the log L has no
matching construct on the λPAM side. This is why the next theorem is stated together with an
invariant (the moreover part), allowing to retrieve that log from the history. We need a preliminary
lemma.

Lemma 7.6.3 (Logs and histories). Let L ≃LH (H, i).

1. Log splitting: if L = Ln·L′ then L′ ≃LH (H, ϕn
H(i)).

2. History extension: if (p, j) be an indexed position then L ≃LH ((p, j)·H, i).

Proof.

1. By induction on n:

• Base case: if n = 0, then it is trivially satisfied since Ln = ϵ and ϕn
H(i) = i, so that

L′ = Ln·L′ ≃LH (H, i) = (H, ϕn
H(i)), as required.

• Inductive case: if n > 0 first of all note that ϕm
H(i) is defined for all m ≤ n by the

depth invariant (Lemma 7.6.1). Then, L = Ln−1·e·L′ and by i.h. e·L′ ≃LH (H, ϕn−1
H (i)).

By definition of ≃LH this is possible only if L′ ≃LH (H, ϕH(ϕ
n−1
H (i))), i.e. L′ ≃LH

(H, ϕn
H(i)).

2. By induction on L. Cases:

• Empty, i.e. L = ϵ. We have that the hypothesis is ϵ ≃LH (H, 0), because it is the only
derivable relation for empty logs. Then ϵ ≃LH ((p, j)·H, 0).

• Non-empty, i.e. L = (x, C, L′′)·L′. By hypothesis, l·L′ ≃LH (H, i), which implies that

(a) (x, C) = (xH
i , DH

i ),
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(b) L′ ≃LH (H, ϕH(i)), and
(c) L′′ ≃LH (H, i− 1).

By i.h., we obtain L′ ≃LH ((p, j)·H, ϕH(i)) and L′′ ≃LH ((p, j)·H, i − 1), and clearly
(x, C) = (x(p,j)·H

i , D(p,j)·H
i ). Then L = (x, C, L′′)·L′ ≃LH ((p, j)·H, i).

Then, we are able to prove that ≃ is a strong bisimulation.

Theorem 7.6.4 (≃ is a strong bisimulation).

1. for every run ρJ : sλJAM
t →∗λJAM sJ there exists a run ρP : sλPAM

t →∗λPAM sP such that sJ ≃ sP and
|ρJ | = |ρP| and performing exactly the same transitions;

2. for every run ρP : sλPAM
t →∗λPAM sP there exists a run ρJ : sλJAM

t →∗λJAM sJ such that sJ ≃ sP and
|ρJ | = |ρP| and performing exactly the same transitions.

Moreover, if sJ = (t, C, L, TJ , ↑) ≃ (t, C, H, i, TP, ↑) = sP and (x, D, L′) is the unique logged position in
TJ then L′ ≃LH (H, |H|).

Proof. We prove the first point, the second point is symmetrical (simply replacing the use of
Lemma 7.6.1—in the case of transition→var below—with Lemma 7.1.1). By induction on |ρJ |. If ρJ
is empty then simply take ρP as the empty run. Otherwise, by i.h. there exists a λPAM run ρP :
sλPAM

t →∗λPAM sP such that sJ ≃ sP and |ρJ | = |ρP|. Note that sJ ≃ sP implies sJ = (t, E, L, TJ , d)
and sP = (t, E, TP, H, i, d) with TJ ≃T TP and L ≃LH (H, i).

Let’s consider the possible extensions of ρJ with a further transition. Cases:

• Transitions→•1,→•2,→•3,→•4: we show one such case, the other are analogous.

(ur, E, L, TJ) (u, E⟨⟨·⟩r⟩, L, •·TJ)

(ur, E, H, i, TP) (u, E⟨⟨·⟩r⟩, H, i, •·TP)

≃ ≃
→•1

→•1

For→•3 and→•4 the moreover part follows from the i.h.

• Transition→var. We are in the following situation:

sJ = (x, C⟨λx.Dn⟩, Ln·L′, TJ) ≃ (x, C⟨λx.Dn⟩, H, i, TP) = sP

with TJ ≃T TP and L = Ln·L′ ≃LH (H, i). The λPAM can do a→var transition (guaranteed
by the depth invariant of Lemma 7.6.1), but we have to verify that the two target states are
still ≃-related. By Lemma 7.6.3.1, we have L′ ≃LH (H, ϕn

H(i)). Then:

(x, C⟨λx.Dn⟩, Ln·L′, TJ) (λx.Dn⟨x⟩, C, L′, (x, C⟨λx.Dn⟩, Ln·L′)·TJ)

(x, C⟨λx.Dn⟩, H, i, TP) (λx.Dn⟨x⟩, C, H, ϕn
H(i), (x, C⟨λx.Dn⟩)·TP)

→var

→var

≃ ≃

Now, the moreover part. We have to prove that Ln·L′ ≃LH (H, |H|). By hypothesis Ln·L′ ≃LH
(H, i) and by Lemma 7.6.1, we have i = |H|.

• Transition→arg. We are in the following situation:

sJ = (t, C⟨⟨·⟩u⟩, L, l·T′J) ≃ (t, C⟨⟨·⟩u⟩, H, i, p·T′P) = sP

with l·T′J ≃T p·T′P and L ≃LH (H, i). The λPAM can do a→arg transition, but we have to
verify that the two target states are still ≃-related. Namely, we have to show that l·L ≃LH
((p, i)·H, |H|+ 1). Let us set H′ := (p, i)·H and j := |H′| = |H|+ 1. We check that all three
hypothesis of the rule defining ≃LH hold:
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1. Since L ≃LH (H, i), Lemma 7.6.3.2 gives L ≃LH ((p, i)·H, i). Note that ϕH′(j) = i, that
is, L ≃LH (H′, ϕH′(j)).

2. Since l·T′J ≃T p·T′P, if l = (x, D, L′), then p = (x, D) and thus (x, D) = (xH′
j , DH′

j ) =

(x, D).

3. By i.h., the logged position l = (x, D, L′) on the λJAM tape verifies L′ ≃LH (H, |H|). By
Lemma 7.6.3.2, L′ ≃LH ((p, i)·H, |H|), that is, L′ ≃LH (H′, j− 1).

Then the two target states match:

(t, C⟨⟨·⟩u⟩, L, l·T′J) (u, C⟨t⟨·⟩⟩, l·L, T′J)

(t, C⟨⟨·⟩u⟩, H, i, p·T′P) (u, C⟨t⟨·⟩⟩, H′, j, T′P)

→arg

→arg

≃ ≃

• Transition→jmp. We are in the following situation:

sJ = (t, C⟨u⟨·⟩⟩, (x, D, L′)·L′, TJ) ≃ (t, C⟨u⟨·⟩⟩, H, i, TP) = sP

with TJ ≃T TP and (x, D, L′)·L′ ≃LH (H, i). The λPAM can do a→jmp transition, but we have
to verify that the two target states are still ≃-related. Note that, since (x, D, L′)·L′ ≃LH (H, i),
we have (x, D) = (xH

i , DH
i ) and L′ ≃LH (H, i− 1). Therefore:

(t, C⟨u⟨·⟩⟩, (x, D, L′)·L′, TJ) (x, D, L′, TJ)

(t, C⟨u⟨·⟩⟩, H, i, TP) (xH
i , DH

i , H, i− 1, TP)

→jmp

→jmp

≃ ≃

The moreover part follows from the i.h.

Strong bisimulations trivially preserve termination and the length of runs.

Corollary 7.6.5 (Termination and λPAM implementation). λJAMt terminates if and only if λPAMt
terminates, and the two runs use exactly the same transitions. Therefore, the λPAM implements Closed
CbN.

As a concluding remark, looking at how the λPAM is defined, it is obvious that it cannot be
space reasonable. Indeed, its space consumption, in particular the history, is inflationary and
dependent (linear) on the number of→var transitions, which is a reasonable time and not space
measure. Since the λPAM is a low-level implementation of the λJAM, the same considerations
hold also for the λJAM.





Chapter 8

The Space KAM is Reasonable

Bounding the amount of resources needed by algorithms or programs is a fundamental problem
in computer science. Here we are concerned with sub-linear space. In many applications, say,
stream processing or web crawling, linear bounds on computing space are not satisfactory, given
the enormous amount of data processed. Theoretically, complexity classes such as L (logarithmic
space), although apparently small, are already very interesting for complexity theory, and not even
known to be distinct from P.

Dealing with sub-linear space bounds in the λ-calculus, or in functional programming lan-
guages, has always been considered a challenge. A first reason is that the natural notions of time
and space in the λ-calculus have some puzzling properties, as we shall see. But sub-linear space is
special, in that, since the λ-calculus does not distinguish between programs and data, there is also
no distinction between input space and work space, and thus no natural notion of sub-linear space.

The literature about the λ-calculus does offer results about space complexity, but they are all
partial, as they either concern variants of the λ-calculus (Dal Lago and Schöpp (Dal Lago and
Schöpp, 2016; Schöpp, 2007), Mazza (2015) and Ghica (2007)), or they are not valid when the
bounds in spaces are sub-linear (Forster et al. (2020)).

The main contribution of this chapter is the first fully-fledged space reasonability result for
the pure, untyped λ-calculus. Precisely, we represent the input space as λ-terms, and the work
space as the space used by a variant of the well-known Krivine’s abstract machine (KAM). Two
important aspects of our Space KAM are eager garbage collection and the fact that, for the first time,
we distinguish between two forms of sharing usually considered as one: the sharing of sub-terms
provided by environments, and the sharing of environments themselves. The Space KAM adopts the
former but forbids the latter, which is essential to prove that its space cost model is reasonable.
Designing the Space KAM, however, is only half of the story. The other half is the refinement of the
encoding of Turing machines into the λ-calculus: the reference one by Dal Lago and Accattoli (2017)
uses a linear amount of space to simulate the TM tapes, thus forbidding to preserve logarithmic
space. Let us detail all this.

Reasonable Cost Models. We recall that according to the seminal work by Slot and Emde Boas
(1988), the adequacy of space and time cost models is judged in relationship to whether they reflect
the corresponding cost models of Turing machines (shortened to TM), the computational theory
from which computational complexity stems. Namely, a cost model for a computational theory T
is reasonable if there are mutual simulations of T and TMs (or another reasonable theory) working
within:

• for time, a polynomial overhead;

• for space, a linear overhead.

In many cases the two bounds hold simultaneously for the same simulation, but this is not a strict
requirement. The aim is to ensure that the basic hierarchy of complexity classes

L ⊆ P ⊆ PSPACE ⊆ EXP

can be equivalently defined on any reasonable theory, that is, that such classes are robust, or theory-
independent. Note a slight asymmetry: while for time the complexity of the required overhead
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(polynomial) coincides with the smallest robust time class (P), for space the smallest robust class is
logarithmic (L) and not linear space.

Locked Time and Space. On TMs, space cannot be greater than time, because using space
requires time—we shall then say that space and time are locked. If both the time and space cost
models of a computational theory are reasonable, are they also necessarily locked? This seems
natural, but it is not what happens in the λ-calculus, at least with respect to its natural cost models.

Natural Cost Models for the λ-Calculus. The natural time cost model is the number of β-steps
(according to some fixed evaluation strategy), its only notion of computational step. The natural
space cost model is the maximum size of λ-terms during reduction. The puzzling point is that, in
the λ-calculus, natural space can be exponential in natural time (independently of the strategy), a
degeneracy known as size explosion—we shall say that time and space are explosive.

Is the λ-calculus reasonable? This was unclear for a while, because of the intuition that
reasonable cost models have to be locked. Note that there is, in principle, an alternative and
non-explosive approach to time in the λ-calculus: the time to write down the whole evaluation
rather than only the number of evaluation steps. Such low-level time is reasonable, and locked with
natural space, but implies that the various β-steps in an evaluation sequence are given different
costs, which is theoretically not ideal, and also distant from the practice of programming, that
rather adopts and confirms the natural (and uniform) cost model (corresponding to the number of
function calls).

In the study of natural time, what is delicate is the simulation of the λ-calculus into a reasonable
theory, which typically is the one of RAMs rather than TMs. The difficulty stems from the
explosiveness of natural time, and requires a slight paradigm shift. To circumvent the exponential
explosion in space, λ-terms are usually evaluated up to sharing, that is, in abstract machines
with sharing that compute shared representations of the results. These representations can be
exponentially smaller than the results themselves: explosiveness is then encapsulated in the
sharing unfolding process. The number of β steps (according to various evaluation strategies) then
turns out to be a reasonable time cost model (up to sharing), despite explosiveness.

Indeed, we have already seen that it is possible to realize mechanisms to evaluate λ-terms in
reasonable time, e.g. the Krivine Abstract Machine. The number of transitions it takes to evaluate a
λ-term is a reasonable cost model and moreover is compatible with the natural time cost model for
the λ-calculus.

What about space? When trying to prove that a space cost model for the λ-calculus is reasonable,
the difficult direction is the simulation of TMs in the λ-calculus. TMs are space-minimalist, as their
only data structure, the tape, juxtaposes cells rather then linking them—we shall see that this is one
of the key points. Motivated by time-efficiency, all abstract machines for the λ-calculus rely instead
on linked data structures, and the linking pointers add a logarithmic factor to the overhead for the
simulation of TMs that is space unreasonable. Therefore, reasonable space requires to evaluate
without using linked data structures when they are not needed, as it is the case for the encoding of
TMs. It is a recent observation by Forster et al. (2020) that evaluating without any data structure
(via plain rewriting, without sharing) is reasonable for natural space even if unreasonable for
natural time (because of size explosion).

Pairing up Natural Time and Natural Space. Forster et al. also show a surprising fact. Given
two simulations, one that is reasonable for space but not time, and one that is reasonable for time
but not space, there is a smart way of interleaving them as to obtain reasonability for time and
space simultaneously. Their result therefore shows that, surprisingly, a computational theory can be
reasonable for time and space, without being locked.

Work vs Natural Space. Now, another puzzling fact is that sub-linear space cannot be measured
using the natural space cost model, and is then not covered by Forster et al.’s result. The reason is
that if space is the maximum size of terms in an evaluation sequence, the first of which contains
the input, then space simply cannot be sub-linear. How could we account for logarithmic reasonable
space? One needs log-sensitivity, that is, a distinction between an immutable input space, which
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is not counted for space complexity (because otherwise the complexity would be at least linear),
and a (smaller) mutable work space, that is counted. Moreover, logarithmic space usually requires
manipulating pointers to the input (which are of logarithmic size) rather than pieces of the input
(which can be linear).

Log-sensitivity thus seems to clash with the natural approach based on the rewriting of λ-terms,
which does not distinguish between input and work space and that manipulates actual sub-terms
rather than pointers. We shall then model evaluation using λ-terms for the input space and the
state space of an abstract machine (computing over the input without ever modifying it, and
manipulating sub-term pointers) for the work space.

We have seen in the previous chapters that both GoI-based machines such as the λIAM and
the λJAM, and environment machines such as the KAM, do not seem the right tools to achieve
space reasonability. The situation is actually subtler: we concentrate on how environments are
implemented to clarify some points.

Environments. They are data structures used to achieve time reasonability. According to Accattoli
and Barras (2017), there are two main styles of environments, local and global. Global environments
(as in the Milner Abstract Machine, see Accattoli and Barras (2017)) are space-insensitive because
they work over the input space. Local environments (as in the KAM) are log-sensitive. There are
two reasons why they are usually space unreasonable. The first one is that garbage collection is not
usually accounted for, which leads to ever increasing space usage, while reasonable space should
be re-usable. The second and subtler one is the use of pointers for sharing. Local environments
use two types of pointers, handling the two forms of sharing: sub-term pointers, which serve to
avoid copying sub-terms, and environment pointers, which both realize their linked list structure
and share them. Sub-terms pointers, as mentioned above, are a key aspect of logarithmic space
computations, and are thus crucial. Environment pointers, which accordingly to Douence and
Fradet (2007) are the essence of the KAM , are instead what makes environments space unreasonable:
they introduce a logarithmic pointer overhead that, at best, gives simulations of TMs with aO(n log n)
overhead in space, instead of the required O(n) for reasonability. It was then generally concluded
that environments cannot provide reasonable space.

Work Space Without Environment Pointers. The literature on abstract machines assumes that
pointers are used in implementations without however accounting for them in the underlying
specification. Here, we are instead very careful with pointers. We design an abstract machine,
the Space KAM, using local environments with sub-term pointers, but—crucially—without envi-
ronment pointers. Similarly to the tapes of TMs, the environments of the Space KAM then are
not linked structures, but simple unstructured strings. Consequently, the unreasonable pointer
overhead vanishes.

The moral is that the use of pointers is both essential and dangerous for logarithmic space: sub-
term pointers, that is, those to the input, are mandatory for log-sensitivity, while the environment
ones—those to the working tape, essentially—are space unreasonable.

Garbage Collection and Unchaining. The Space KAM crucially relies also on two optimizations.
One is eager garbage collection, to maximize space re-usability. It is implemented in the most naive of
ways, because it cannot rely on any pointers or counters, as they would add an unreasonable space
overhead. In contrast to common practice, the collection happens eagerly, that is, immediately
and not when reaching a threshold. The second optimization is environment unchaining, a folklore
tweak for avoiding space leaks.

Encoding of TMs. Despite the fine tuning of the abstract machine, a reasonable simulation of
TMs preserving logarithmic space is not yet obtained, as the encoding of single tape TMs has
some inherent limitations with respect to logarithmic space. We then analyze its shortcomings,
concerning how tapes are represented and scrolled in the λ-calculus, and modify it accordingly.
The main result of this chapter is that the work space of the Space KAM—to be referred to simply
as the work space—over the new encoding is a reasonable space cost model accommodating sub-
linear space. Our new encoding is carefully designed so as to retain the key indifference property of
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the reference one, that is, the fact that nothing changes if call-by-value rather than call-by-name
evaluation is adopted. We then show that our results smoothly transfer to call-by-value evaluation.

Space KAM and Time. We then study the time behavior of the Space KAM. Disabling linked
environments implies giving up environment sharing, which—we show with an example—makes
the Space KAM unreasonable for natural time. We also prove that the low-level execution time
of the Space KAM (which is less interesting than natural time, that is, the number of β steps) is
reasonable. The situation is then a familiar one: natural time and work space are explosive, while
low-level time and work space are locked. Work space is in this respect a conservative refinement
of natural space.

Sub-Term Property. The techniques for reasonable time and reasonable space seem to be at odds,
as they make essential but opposite uses of linked data structures. Both techniques, however,
crucially rely on the sub-term property of abstract machines, that is, the fact that duplicated terms
are sub-terms of the initial one. For time, it allows one to bound the cost of duplication, while for
space it allows one to see sub-terms as (logarithmic) pointers to the input. The sub-term property
seems to be the unavoidable ingredient for reasonability in the λ-calculus.

Related Work. The space inefficiency of environment machines is also observed by Krishnaswami
et al. (2012), who propose some techniques to alleviate it in the context of functional-reactive
programming and based on linear types. The relevance for space of disabling environment
sharing is also stressed by Paraskevopoulou and Appel (2019) in their cost-aware study of closure
conversion. A characterization of PSPACEin the λ-calculus is given by Gaboardi et al. (2012), but
it relies on alternating time rather than on a notion of space. The already mentioned works by
Schöpp (2007) and Dal Lago and Schöpp (2016), and by Mazza (2015) characterize Lin variants
of the λ-calculus, while Jones characterizes Lusing a programming language but not based on
the λ-calculus Jones, 1999. Blelloch and coauthors study in various papers (Blelloch and Greiner,
1995, 1996; Spoonhower et al., 2010) how to profile (that is, measure) space consumption of
functional programs, also done by Sansom and Jones (1995). They are not interested, however,
in the reasonability of the cost models, that is, being equivalent to the space of TMs, which is
the difficult part of our work. Finally, there is an extensive literature on garbage collection, as
witnessed by Jones et al. (2011). We here need a basic eager form, that need not be time efficient, as
the Space KAM is time unreasonable anyway.

8.1 Reasonable Preliminaries

In the study of reasonable cost models for the λ-calculus, it is customary to show that the λ-
calculus simulates Turing machines reasonably, and conversely that the λ-calculus can be simulated
reasonably by random access machines (RAMs and TMs being both reasonable models) up to
sharing. Since space is more delicate than time, we fix the involved theories and their cost measures
carefully.

The Size of λ-Terms. The (constructor) size of a λ-term is defined as follows:

|x| := 1 |tu| := |t|+ |u|+ 1 |λx.t| := |t|+ 1

The code size∥t∥ of a λ-term t is instead bound by O(|t| · log |t|). The idea is that, when terms
are explicitly represented, variables are some abstract kind of pointer (de Bruijn indices/levels,
names, or actual pointers to the syntax tree), of size logarithmic in the number of constructors |t|
of t. Moreover, the other constructors are also usually represented using pointers to sub-terms,
so that a term with n constructors requires space O(n log n) to be represented. For our study, it
is important to stress the difference between |t| and∥t∥, because given a binary input string i, at
first sight its encoding ti as a λ-term satisfies |ti| = Θ(|i|) and∥ti∥ = O(|i| · log |i|), and so∥ti∥
has an additional (unreasonable) logarithmic factor. In Sect. 8.3, we shall encode strings in the
λ-calculus using the Scott encoding, which has the property that, with respect to some concrete
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representations of terms, the variable pointers have constant size, so that∥ti∥ = |ti| = Θ(|i|), thus
removing the unreasonable pointer overhead due to variables.

Turing Machines. We adopt TMs working on the boolean alphabet B := {0, 1}. For a study of
logarithmic space complexity, one has to distinguish input space and work space, and to not count
the input space for space complexity. On TMs, this amounts to having two tapes, a read-only input
tape on the alphabet BI := {0, 1, L,R}, where L and R are delimiter symbols for the start and the
end of the input binary string, and an ordinary read-and-write work tape on the boolean alphabet
extended with a blank symbol BW := {0, 1,□}. To keep things simple, we use TMs without any
output tape, the machine rather has two final states s0 and s1 encoding a boolean output—there
are no difficulties in extending our results to TMs with an output tape. Let us call these machines
log-sensitive TM.

A log-sensitive TM M computes the function f : B∗ → B by a sequence of transitions ρ :
CM(i)→n C′M( f (i)) where i ∈ B∗, CM(i) is an initial configuration of M with input i and C′M( f (i))
is a final configuration of M on the final state s f (i). We define the time of the run ρ as TTM(ρ) := n
and the space STM(ρ) of ρ as the maximum number of cells of the work tape used during the run ρ.

Random Access Machines. While we shall study in detail the encoding of Turing machines
in the λ-calculus, we are not going to lay out the details of the simulation of the λ-calculus on
RAMs. We shall provide an abstract machine for the λ-calculus and study its complexity using
standard considerations for algorithmic analysis (which are grounded on RAMs), but without
giving the details of the simulation. The RAM model we target has a read-only input register the
space of which is not counted for space complexity, similarly to TMs. For the sake of completeness,
we clarify the RAM cost models of reference: the logarithmic measure for time and Slot and
Emde Boas (1988) sizeb measure for space, counting 0 for unused registers and taking into account
the logarithm of both the content and the index of used registers. Given a RAM R, we use TRAM(ρ)
and SRAM(ρ) for the time and space used by R to reach a final configuration with a sequence of
transitions ρ.

Abstract Machines and Abstract Implementations. Abstract machines do not specify how the
(abstract) data structures of the machine are meant to be realized. In general an abstract machine
can be implemented in various ways, inducing different, possibly incomparable performances.
Therefore, it is not really possible to study the complexity of the machine without some assumptions
about the implementation of its data structures. Now, the study of reasonable space requires to
take into account the use, and especially the size, of pointers, which is instead usually omitted
in the coarser study of reasonable time. In that context, indeed, pointers are assumed to be
manipulable in constant time, which is safe because the omitted logarithmic factors are irrelevant
for the required polynomial overhead. The more constrained study of space instead requires to
clarify them. Switching to such a level of detail, apparently innocent gaps between the specification
of a machine and how it is going to be implemented suddenly become relevant. To account for
these subtleties, we specify for every construct of the abstract machine the space that it requires,
and for every transition the time that it takes, both asymptotically.

Definition 8.1.1 (Abstract implementation). Let M be an abstract machine and ρ : init(t0) →∗ s an
initial run for M. An abstract implementation I for M is the assignment of asymptotic space costs | · |Isp for
every component of s and of asymptotic time costs | · |Itm for every transition from s.

Assigning costs to the state components provides the space cost |s|Isp of each state s, by summing
over all components.

Definition 8.1.2 (Space and time of runs). Let ρ : s0 →k sk be an initial run of an abstract machine M
and I an abstract implementation for M.

1. The I-space cost of ρ is |ρ|Isp := maxs∈ρ |s|Isp.

2. The I-time cost of ρ is |ρ|Itm := ∑k−1
i=0 |si → si+1|Itm.
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Term Env Stack Term Env Stack

tu e π →sea t e (u, e)·π
λx.t e c·π →β t [x�c]·e π

x e π →sub u e′ π if e(x) = (u, e′)

TERMS CLOSURES STATES
|u| := O(log |t0|) |(u, e)| := O(|u|+ |e|) |(u, e, π)| := O(|u|+ |e|+ |π|)

STACKS ENVIRONMENTS TRANSITIONS s→ s′
|ϵ| := O(1)

|c · π| := O(|c|+ |π|)
|ϵ| := O(1)

|[x�c] · e| := O(|x|+ |c|+ |e|) | → |tm := O(poly(|s|))

FIGURE 8.1: Transitions and abstract implementation of the Naive KAM.

Term Env Stack Term Env Stack

tx e π →seav t e|t e(x) · π
tu e π →sea¬v t e|t (u, e|u) · π if u ̸∈ V
λx.t e c · π →βw

t e π if x ̸∈ fv(t)
λx.t e c · π →β¬w t [x�c] · e π if x ∈ fv(t)
x e π →sub u e′ π if e(x) = (u, e′)

where e|t denotes the restriction of e to the free variables of t.

FIGURE 8.2: Transitions of the Space KAM.

8.2 The Naive KAM and the Space KAM

We start considering a variant over the KAM, that we call the Naive KAM. The machine, reported
in Fig. 8.1, appears the same as the traditional KAM. The difference, indeed, is in that it is
implemented with sub-term pointers but without data pointers, which are instead employed in
the implementation of the traditional KAM. This fact is expressed by the abstract implementation,
again in Fig. 8.1. We need to eliminate data pointers since they are space-hostile, because (as
discussed in Chapter 2) the number of environments is bounded only by |ρ|β, that is, time. Data
pointers have thus size O(log |ρ|β), entangling space with time, which is unreasonable for space
and, even more problematic, do not allow an immediate form of garbage collection, because of
aliasing. Indeed, different memory cells can be referenced more than once.

Abstract Implementation of the Naive KAM. Implementing the Naive KAM without data
pointers means that environments cannot be implemented as linked lists, and the same is true for
the stack, of which length also depends on the length of the run. The idea then is that they are
implemented as unstructured strings, in a linear syntax. We abstract from the actual encoding,
what we retain is the abstract implementation in Fig. 8.1, which captures its essence. The time cost
of all→NaKAM transition depends polynomially on the size of the whole source state |s|, because
the lack of data sharing forces to use a new string for the new stack and the new environment. To
be precise, one could develop a finer analysis, thus obtaining slightly better bounds, but this would
require entering in the details of the implementation and would not give a substantial advantage.
As we shall see, indeed, the Naive KAM is unreasonable for time.

Since, we are concerned with space consumption, we define a space optimization of the Naive
KAM. The Space KAM is derived from the Naive KAM implementing two modifications aimed at
space efficiency: namely unchaining and eager garbage collection.
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Unchaining. It is a folklore optimization for abstract machines bringing speed-ups with respect
to both time and space, used e.g. by Sands et al. (2002), Wand (2007), Friedman et al. (2007), and
Sestoft (1997). Its first systematic study is by Accattoli and Coen (2017), with respect to time. The
optimization prevents the creation of chains of renamings in environments, that is, of delayed
substitutions of variables for variables, of which the simplest shape in the KAM is:

[x0�(x1, [x1�(x2, [x2� . . .])])]

where the links of the chain are generated by β-redexes having a variable as argument. On some
families of terms, these chains keep growing and growing, leading to the quadratic dependency of
the number of transitions from |ρ|β.

Eager Garbage Collection. Beside the malicious chains connected to unchaining, the Naive KAM
is not parsimonious with space also because there is no garbage collection (shortened to GC). In
transition→sub, the current environment is discarded, so something is collected, but this is not
enough. It is thus natural to modify the machine as to maximize GC and space re-usage, that is, as
to perform it eagerly.

The Space KAM. The Naive KAM optimized with both eager GC and unchaining (both optimiza-
tions are mandatory for space reasonability) is here called Space KAM and it is defined in Fig. 8.2.
The data structures, namely closures and (local) environments, are defined as before, the changes
concern the machine transitions only. Unchaining is realized by transition →seav , while eager
garbage collection is realized mainly by transition→βw

, which collects the argument if the variable
of the β redex does not occur. Transitions→sea¬v and→seav also contribute to implement the GC,
by restricting the environment to the occurring variables, when the environment is propagated to
sub-terms. As a consequence, we obtain the following invariant.

Lemma 8.2.1 (Environment domain invariant). Let s be a Space KAM reachable state. Then dom(e) =
fv(t) for every closure (t, e) in s.

Because of the invariant, which concerns also the closure given by the active term and the local
environment of the state, the variable transition simplifies as follows:

Term Env Stack Term Env Stack
x [x�(u, e)] π →sub u e π

The abstract implementation of the Space KAM is the same of the Naive KAM, as the GC has a
time cost which however stays within the polynomial (in the size of the states) cost of the transitions.
It is mandatory that it is implemented by naively and repeatedly checking whether variables occur,
and not via pointers or counters, as they would add an unreasonable space overhead. This fact is
implicit in using the same abstract implementation of the Naive KAM, as a less naive GC would
alter the space requirements.

8.3 Encoding and Moving over Strings

We now turn to the analysis of the encoding of TMs, taking as reference the one by Dal Lago and
Accattoli (2017) based over the Scott encoding of strings. The first key step is understanding how
to scroll Scott strings.

Encoding alphabets. Let Σ = {a1, . . . , an} be a finite alphabet. Elements of Σ are encoded in the
λ-calculus in accordance to a fixed (but arbitrary) total order of the elements of Σ as follows:

⌈ai⌉Σ := λx1. . . . .λxn.xi .

Note that the representation of an element ⌈ai⌉Σ requires a number of constructors that is linear
(and not logarithmic) in |Σ| = n. Since the alphabet Σ shall not depend on the input of the TM,
however, the cost in space is actually constant.
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Encoding strings. A string in s ∈ Σ∗ is represented by a term sΣ∗ , defined by induction on s as
follows:

εΣ∗ := λx1. . . . .λxn.λy.y , airΣ∗ := λx1. . . . .λxn.λy.xirΣ∗ .

Note that the representation depends on the cardinality of Σ. As before, however, the alphabet is a
fixed parameter, and so such a dependency is irrelevant.

We now explain how to obtain that
∥∥∥sΣ∗

∥∥∥ = |sΣ∗ |, as announced in Sect. 8.1. Note that in sΣ∗

every variable occurrence is bound inside the list of binders immediately preceding the occurrence.
Therefore, if de Bruijn indices are used to represent λ-terms, one needs only indices—that is,
variable pointers—between 1 and |Σ|, that is, of constant size. Note that, similarly, if variables are
represented with textual names, again having only |Σ| distinct names is enough if one permits
that different sequences of abstractions re-use the same names, that is, if one accepts Barendregt’s
convention to be violated. Remarkably, a notable folklore property of the (Space) KAM is that its
implementation theorem does not need Barendregt’s convention to hold.

Recursion and Fix-Points The encoding of TMs crucially relies on the use of a fix-point operator
to implement recursion. Precisely, fix-points are used to model the transition function, making a
copy of the (sub-term encoding the) transition table at each step. It is the only point of the encoding
where duplication occurs, and it is thus where the expressive power is encapsulated. The rest of
the encoding is affine—note that the representation of strings is affine.

Fix-Points and Toy Scrolling Algorithms. To understand the delicate interplay between the
space of the KAM and fix-points, we analyze it via simple toy algorithms on strings. The first,
simplest one is the consuming scrolling algorithm: going through an input string s doing nothing
and accepting when arriving at the end of the string, without having to preserve the string itself—
the aim is just to see the space used for scrolling a string. The toy algorithm is a very rough
approximations of the moving of TMs over a tape, which is the most delicate aspect of the space
reasonable simulation of TMs in the λ-calculus that we shall develop. It is used to illustrate the key
aspects of the problems that arise and of their solutions, without having to deal with all the details
of the encoding of TMs at once. On TMs, scrolling a string obviously runs in constant space, and
on log-sensitive TMs the consuming aspect cannot be modeled—we shall consider non-consuming
scrolling later in this section.

We encode the algorithm as a λ-term over Scott strings, where a fix-point combinator is used to
iterate over the (term ts encoding) the input string s. Since the input string s is consumed in the
process, the normal form would be the encoding of the accepting state s1 of the TM, which for
simplicity here is simply given by the identity combinator I.

We use Turing’s fix-point combinator and the boolean alphabet B := {0, 1}. Let fix be the term
θθ, where θ := λx.λy.y(xxy). Given a term u, fix u is a fix-point of u.

fix u = (λx.λy.y(xxy))θu
→β (λy.y(θθy))u →β u(θθu) = u(fix u)

Algorithms moving over binary Scott strings always follow the same structure. They are given by
the fix-point iteration of a term that does pattern matching on the leftmost character of the string
and for each of the possible outcomes (in our case, first character is 0, 1, or the string is empty)
does the corresponding action. The general term is fix (λ f .λz.zA0 A1 Aε), where f is the variable
for the recursive call and A0, A1, and Aε represent the three actions, which in our case are simply
given by A0 = A1 = f and Aε = I, using the identity I as encoding of the accepting state.

Proposition 8.3.1. Let s ∈ B∗ and toy := fix (λ f .λz.z f f I).

1. toy sB →Θ(|s|)
wh I.

2. The Naive KAM evaluates toy sB in space Ω(2|s|).

3. The Space KAM evaluates toy sB in space Θ(log |s|).
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Some preliminary definitions and lemmata are required to prove the statement. Let s :=
b1 . . . bn·ε be a string of length n ≥ 0. Then, we can define ei, e′i , e′′i for 0 ≤ i ≤ n as follows:

e0 := [x�(θ, ϵ)]·[y�(toyaux, ϵ)] ei+1 := [x�(x, ei)]·[y�(y, ei)]

e′i := [z�(bi+1..bn·ε, e′′i )]·[ f �(xxy, ei)]

e′′0 := ϵ e′′i+1 := [xε�(I, e′i)]·[x1�( f , e′i)]·[x0�( f , e′i)]·e′′i

One can easy notice that the sizes of ei, e′i , e′′i are exponential in i.

Lemma 8.3.2. (y(xxy), ei, (s, e′′i ))→NaKAM
Ω(|s|)(I, e′i+|s|, ϵ)

Proof. By induction on the structure of s.

Term Env Stack
y(xxy) ei (s, e′′i )
y ei (xxy, ei)·(s, e′′i ) unfold ei
toyaux := λ f .λz.z f f I ϵ (xxy, ei)·(s, e′′i )
z f f I [z�(s, e′′i )]·[ f �(xxy, ei)] =: e′i ϵ
z [z�(s, e′′i )]·[ f �(xxy, ei)] ( f , e′i)·( f , e′i)·(I, e′i)
s e′′i ( f , e′i)·( f , e′i)·(I, e′i)

Case s = ε.

Term Env Stack
s := λx0.λx1.λxε.xε e′′i ( f , e′i)·( f , e′i)·(I, e′i)
xε [xε�(I, e′i)]·[x1�( f , e′i)]·[x0�( f , e′i)]·e′′i ϵ
I e′i ϵ

Case s = b·r.

Term Env Stack

s := λx0.λx1.λxε.xbr e′′i ( f , e′i)·( f , e′i)·(I, e′i)
xbr [xε�(I, e′i)]·[x1�( f , e′i)]·[x0�( f , e′i)]·e

′′
i =: e′′i+1 ϵ

xb [xε�(I, e′i)]·[x1�( f , e′i)]·[x0�( f , e′i)]·e
′′
i (r, e′′i+1)

f [z�(s, e′′i )]·[ f �(xxy, ei)] (r, e′′i+1)
xxy [x�(x, ei−1)]·[y�(y, ei−1)] (r, e′′i+1)
x [x�(x, ei−1)]·[y�(y, ei−1)] (x, ei)·(y, ei)·(r, e′′i+1)

unfolding ei−1

θ := λx.λy.y(xxy) ϵ (x, ei)·(y, ei)·(r, e′′i+1)
y(xxy) [x�(x, ei)]·[y�(y, ei)] =: ei+1 (r, e′′i+1) i.h.
I e′i+|s| ϵ

Lemma 8.3.3. The Space KAM executes the reduction (y(xxy), e0, (s, ϵ))→Θ(|s|)
SpKAM (I, ϵ, ϵ) consuming

O(log(|s|)) space.

Proof. By induction on the structure of s.

Term Env Stack
y(xxy) e0 (s, ϵ)
y [y�(toyaux, ϵ)] (xxy, e0)·(s, ϵ)
toyaux := λ f .λz.z f f I ϵ (xxy, e0)·(s, ϵ)
z f f I [z�(s, ϵ)]·[ f �(xxy, e0)] ϵ
z [z�(s, ϵ)] (xxy, e0)·(xxy, e0)·(I, ϵ)
s ϵ (xxy, e0)·(xxy, e0)·(I, ϵ)
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Case s = ε.
Term Env Stack
s := λx0.λx1.λxε.xε ϵ (xxy, e0)·(xxy, e0)·(I, ϵ)
xε [xε�(I, ϵ)] ϵ
I ϵ ϵ

Case s = b·r.

Term Env Stack
s := λx0.λx1.λxε.xbr ϵ (xxy, e0)·(xxy, e0)·(I, ϵ)
xbr [xb�(xxy, e0)] ϵ
xb [xb�(xxy, e0)] (r, ϵ)
xxy e0 (r, ϵ)
x [x�(θ, ϵ)] (θ, ϵ)·(toyaux, ϵ)·(r, ϵ)
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(toyaux, ϵ)·(r, ϵ)
y(xxy) e0 (r, ϵ) i.h.
I ϵ ϵ

The space bound is proved since there is a static bound (8) on the number of closures during the
execution.

Now we are able to prove the desired result.

Proposition 8.3.4. Let s ∈ B∗ and toy := fix (λ f .λz.z f f I).

1. toy sB →Θ(|s|)
wh I.

2. The Naive KAM evaluates toy sB in space Ω(2|s|).

3. The Space KAM evaluates toy sB in space Θ(log |s|).

Proof.

1. This point follows from the implementation theorem, applied to the sequence of point 3.

2. We prove the statement executing toy s with the Naive KAM. We set toyaux := λ f .λz.z f f I.

Term Env Stack
toy s ϵ ϵ
toy := fix toyaux ϵ (s, ϵ)
fix := θθ ϵ (toyaux, ϵ)·(s, ϵ)
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(toyaux, ϵ)·(s, ϵ)
y(xxy) [x�(θ, ϵ)]·[y�(toyaux, ϵ)] =: e0 (s, ϵ) L. 8.3.2
I e′|s| ϵ

The space bound is proved since e′|s| is exponential in |s|.

3. We prove the statement executing toy s with the Space KAM. We set toyaux := λ f .λz.z f f I.

Term Env Stack
toy s ϵ ϵ
toy := fix toyaux ϵ (s, ϵ)
fix := θθ ϵ (toyaux, ϵ)·(s, ϵ)
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(toyaux, ϵ)·(s, ϵ)
y(xxy) [x�(θ, ϵ)]·[y�(toyaux, ϵ)] =: e0 (s, ϵ) L 8.3.3
I ϵ ϵ

The space bound is proved considering the bound in Lemma 8.3.3.
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We can see that the Naive KAM is desperately inefficient for space, while the Space KAM works
within reasonable bounds. It turns out, however, that the Space KAM is still not enough in order
to obtain a space reasonable simulation of TMs. The problem now concerns the standard encoding
of TMs and its managing of the tapes, rather than the use of space by the abstract machine itself.
The issues can be explained using further toy algorithms.

String-Preserving Scrolling. Consider the same scrolling algorithm as above, except that now
the input string s is not consumed by the moving over s, that is, it has to be given back as output of
the λ-term implementing the algorithm. This variant is a step forward towards approximating
what happens to the tapes of TMs during the computation: the TM moves over the tapes without
consuming them, it is only at the end of the computation that the TM can be seen as throwing them
away. There are two ways of implementing the new algorithm:

1. Local copy: moving over the string s while accumulating in a new string r the characters that
have already been visited, returning r.

2. Global copy: making a copy r of the string s, and then moving over s in a consuming way,
returning r.

Local Copy. The local approach is the one underlying the reference encoding of TMs. In particular,
it is almost affine, as duplication is isolated in the fix-point. The λ-term localCopy uses the same
fix-point schema as before, but with different, more involved action terms A0, A1, and Aε.

Proposition 8.3.5. Let s ∈ B∗.

1. localCopy sB →Θ(|s|)
wh sB.

2. The Space KAM evaluates localCopy sB in space Θ(|s| log |s|).

Proof. The proof can be recovered considering the full encoding of TMs into the λ-calculus. This
proposition is just about a subset of it.

The Θ(|s| log |s|) bound in point 2 is problematic for the space reasonable modeling in the
λ-calculus of both the input and the work tapes, for different reasons.

Work Tape and Separate Address Spaces. For a space-reasonable managing of the work tape,
the local algorithm should rather work in space O(|s|). This improvement can be realized by a
finer complexity analysis. In Prop. 8.3.5.2, the cost comes from the use of O(|s|) sub-term pointers
to the code localCopy sB used by the Space KAM. These pointers have size O(log |s|) because
|localCopy sB| = O(|s|), that is, the size of localCopy is independent of |s| and thus constant. A
close inspection of the Space KAM run in Prop. 8.3.5.2 shows that, of the O(|s|) pointers used,
only O(1) of them actually point to sB, while all the others (that is, an O(|s|) amount) point to
localCopy. Since localCopy is of size independent from |s|, if one admits separate address spaces
for localCopy and sB then the pointers to localCopy have size O(1). Therefore, one obtains that
the space cost is given by

O(|s|) · O(1)︸ ︷︷ ︸
pointers to localCopy

+ O(1) · O(log |s|)︸ ︷︷ ︸
pointers to sB

= O(|s|).

From now on then, the first argument of the code of the Space KAM—that in the encoding of
TMs shall represent the input—has a dedicated address space.

Proposition 8.3.6 (Linear Space Local-Copy Scrolling). Let s ∈ B∗. The Space KAM evaluates
localCopy sB in space O(|s|) if localCopy and sB have separate space addresses.
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Input Tape and Global Copy. For the input tape, a linear space bound for scrolling is unreason-
able, if one aims at preserving logarithmic space complexity. For meeting the required O(log |s|)
bound, we need a more radical solution, which is possible because the tape is read-only.

The first step is the straightforward modification of the consuming scrolling algorithm into
a global-copy string-preserving algorithm: it is enough to capture the input at the beginning
with an extra abstraction λx and to give it back at the end with the action Aε. Namely, let
globalCopy := λx.(fix (λ f .λs′.s′ f f x)x). Clearly, this approach breaks the almost affinity of the
encoding, as copying is no longer encapsulated only in the fix-point. Interestingly, the space cost
stays logarithmic, because the global copy of the input (note that there actually is a copy for every
iteration of the fix-point) is not performed by the Space KAM, which instead copies a pointer to it
and only once.

Proposition 8.3.7. Let s ∈ B∗.

1. globalCopy sB →Θ(|s|)
wh sB.

2. The Space KAM evaluates globalCopy sB in space Θ(log |s|).

Proof. We prove the second point of the statement by directly executing the Space KAM. The
required lemma is reported below. The first point is then obtained as a corollary using the
complexity and correctness properties of the Space KAM. Since B is the only alphabet that we are
using, we remove all the superscripts. Let us define t := λ f .λs′.s′ f f z.

Term Environment Stack
globalCopy s ϵ ϵ →
globalCopy := λz.(fix tz) ϵ (s, ϵ) =: sK →
fix tz [z�sK] ϵ →
fix t [z�sK] sK →
fix := θθ ϵ (t, [z�sK])·sK →
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(t, [z�sK])·sK →Θ(|s|) ( L. 8.3.8)
s ϵ ϵ

Lemma 8.3.8. Let s ∈ B∗ and t := λ f .λs′.s′ f f z. Then (θ, ϵ, (θ, ϵ)·(t, [z�(u, e)])·sK)→Θ(|s|)
SpKAM (u, e, ϵ)

and moreover the space used is O(|e|+ log |s|+ log |u|).

Proof. We proceed by induction on the structure of s. The first steps are common to both the base
case and the induction step. We define fix K := (xxy, [y�(t, [z�(u, e)])]·[x�(θ, ϵ)]).

Term Environment Stack
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(t, [z�(u, e)])·sK → ( L. E.0.4)
t := λ f .λs′.s′ f f z [z�(u, e)] fix K·sK →2

s′ f f z [ f �fix K]·[s′�sK]·[z�(u, e)] ϵ →3

s′ [s′�sK] fix K·fix K·(u, e) →
s ϵ fix K·fix K·(u, e)

Base case: s = ε.

Term Environment Stack
s := λx0.λx1.λxε.xε ϵ fix K·fix K·(u, e) →4

u e ϵ

Inductive case: s : b·r where b ∈ {0, 1}.
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Term Environment Stack
s := λx0.λx1.λxε.xbr ϵ fix K·fix K·(u, e) →3

xbr [xb�fix K] ϵ →
xb [xb�fix K] (r, ϵ) =: rK →
xxy [y�(t, [z�(u, e)])]·[x�(θ, ϵ)] rK →2

x [x�(θ, ϵ)] (θ, ϵ)·(t, [z�(u, e)])·rK →
θ ϵ (θ, ϵ)·(t, [z�(u, e)])·rK →Θ(|r|) i.h.
u e ϵ

About space, it is immediate to see that all computations are constrained in space O(|e| +
log |s|+ log |u|), since at any point during the computation there is a bounded number of closures,
independent from both s and u.

The next step is refining this scheme as to implement a read-only tape. A slight digression is in
order.

Intrinsic and Mathematical Tape Representations. A TM tape is a string plus a distinguished
position, representing the head. There are two tape representations, dubbed intrinsic and mathemat-
ical by Emde Boas (2012). The intrinsic one represents both the string s and the current position
of the head as the triple s = sl · h · sr, where sl and sr are the prefix and suffix of s surrounding
the character h read by the head. This is the representation underlying the local-copy scrolling
algorithm (and the reference encoding of TM). The mathematical representation, instead, is simply
given by the index n ∈ N of the head position, that is, the triple sl · h · sr is replaced by the pair
(s, |sl |+ 1).

Mathematical Input and Global Copy. Given a mathematical read-only tape (s, n), one can use
the global-copy scrolling scheme for a simulation in the λ-calculus in space O(log |s|). The idea is
to represent n as a binary string ⌊n⌋. Since n ≤ |s|, we have |⌊n⌋| ≤ log |s|. Moreover, it is possible
to pass from ⌊n⌋ to ⌊n + 1⌋ or ⌊n− 1⌋—which is needed to move the position of the head—in
O(log |s|) space. Then one shows that in the λ-calculus the following is doable in space O(log |s|):
given (s, n), returning (s, n) plus the n-th character sn of s, by making a global copy of the tape
and scrolling the current copy of n positions, extracting the head sn of the obtained suffix, and
discarding the tail.

Two remarks. First, this approach works because the tape is read-only, so that one can keep
making global copies of the same immutable tape, and only changing the index of the head.
Second, there is a (reasonable) time slowdown, because at each read the simulation has to scroll
sequentially the input tape to get to the n-th character.

8.4 The Space KAM is Reasonable for Space

We are ready for our main result, which is based on a new variant (in Appendix D) over Accattoli
and Dal Lago encoding of TMs into the λ-calculus. The key points are:

• Refined TMs: the notion of TM we work with is log-sensitive TMs with mathematical input
tape and intrinsic work tape (the definition is laid out in Appendix D.).

• CPS and indifference: following Dal Lago and Accattoli (2017), the encoding is in continuation-
passing style, and carefully designed (by adding some η-expansions) as to fall into the de-
terministic λ-calculus Λdet, a particularly simple fragment of the λ-calculus where the right
sub-terms of applications can only be variables or abstractions and where, consequently,
call-by-name and call-by-value collapse on the same evaluation strategy →det. We shall
exploit this indifference property in Sect. 8.6.

• Duplication: duplication is isolated in the unfolding of fix-points and in the managing of the
input tape, all other operations are affine.
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Theorem 8.4.1 (TMs are simulated by the Space KAM in reasonable space). There is an encoding · of
log-sensitive TMs into Λdet such that if the run ρ of the TM M on input i ∈ B∗:

1. Termination: ends in sb with b ∈ B, then there is a complete sequence σ : M i →n
det sb where

n = Θ((TTM(ρ) + 1) · |i| · log |i|).

2. Divergence: diverges, then M i is→det-divergent.

3. Space KAM: the space used by the Space KAM to simulate the evaluation of point 1 is O(STM(ρ) +
log |i|) if M and i have separate address spaces.

The previous theorem provides the subtle and important half of the space reasonability result.
The first two points establish the qualitative part of the simulation in the λ-calculus, together
with the time bound (with respect to the number of β steps). The third point provides the space
result for the Space KAM. They are connected by the fact that the Space KAM implements closed
call-by-name (that coincides with→det in Λdet).

The other half of the result amounts to showing that the Space KAM can be simulated on RAMs
within a constant multiplicative overhead. The idea is that it can clearly be simulated reasonably
by a multi tape TM using one work tape for the active term, one for the environment, and one for
the stack, which in turn can be reasonably simulated by a RAM. We use RAM rather TM in the
statement for uniformity with the works on time (which is relevant for the discussions in Sect. 8.5).

Theorem 8.4.2 (Space KAM is simulated by RAMs in reasonable space). Let t be a closed λ-term.
Every Space KAM run ρ : init(t)→∗SpKAM s can be implemented on RAMs in space O(|ρ|sp).

From Theorems 8.4.1 and 8.4.2 follows the main result of this section.

Theorem 8.4.3 (The Space KAM is reasonable for space). Closed CbN evaluation→wh and the space of
the Space KAM provide a reasonable space cost model for the λ-calculus.

The Space KAM is not Reasonable for Natural Time. We complete our study of the Space KAM
by analyzing its time behavior. For natural time (in our case, the number of Closed CbN β steps),
the Space KAM is unreasonable, because simulating Closed CbN at times requires exponential
overhead. The number of transitions of the Space KAM is reasonable, while it is the cost of
single transitions, thus of the manipulation of data structures, that can explode. The failure stems
from the lack of data sharing, which on the other hand we showed being mandatory for space
reasonability. Essentially, there are size exploding families such that their Space KAM run produces
environments of size exponential in the number of β steps/transitions, which is the key point in
the proof of the next proposition.

Proposition 8.4.4 (Space KAM natural time overhead explosion). There is a family {tn}n∈N of closed
λ-terms such that there is a complete evaluation ρn : tn →n

wh un is simulated by Space KAM runs σn taking
both space and time exponential in n, that is, |σn|sp = |σn|tm = Ω(2n).

Before the main proof we need some preliminaries. We define the following data structures:

e0 := [x0�(I, ϵ)] en+1 := [xn+1�πn]·en

π0 := (x0x0, e0) πn+1 := (x0..xn+1, en+1)

We observe that the size of en is exponential in n, since
en+1 := [xn+1�πn]·en = [xn+1�(x0..xn, en)]·en i.e. |en+1| ≥ 2|en| and thus |en| ≥ 2n.

We define Cn as follows:

C0 := λx0.⟨·⟩(x0x0)
Cn+1 := λxn+1.⟨·⟩(x0 . . . xn+1)

Lemma 8.4.5. If t contains x0, .., xn free, then (C0⟨C1⟨· · ·Cn⟨t⟩ · · · ⟩⟩I, ϵ, ϵ)→Θ(n)
SpKAM (t, en, πn).
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Proof. Case 0.
Term Env Stack
C0⟨t⟩I ϵ ϵ
C0⟨t⟩ := λx0.t(x0x0) ϵ (I, ϵ)
t(x0x0) [x0�(I, ϵ)] ϵ
t [x0�(I, ϵ)] (x0x0, [x0�(I, ϵ)])

Case n + 1.
We observe that C0⟨C1⟨..Cn⟨Cn+1⟨t⟩⟩..⟩⟩I can be rewritten to C0⟨C1⟨..Cn⟨u⟩..⟩⟩I when u :=

Cn+1⟨t⟩. Of course u contains x0, .., xn free. We can thus apply the i.h..

Term Env Stack
C0⟨C1⟨..Cn⟨Cn+1⟨t⟩⟩..⟩⟩I ϵ ϵ i.h.
Cn+1⟨t⟩ := λxn+1.t(x0..xn+1) en πn
t(x0..xn+1) [xn+1�πn]·en =: en+1 ϵ
t en+1 (x0..xn+1, en+1) =: πn+1

Now we are able to prove the desired result.

Proposition 8.4.6 (Space KAM natural time overhead explosion). There is a family {tn}n∈N of closed
λ-terms such that there is a complete evaluation ρn : tn →n

wh un is simulated by Space KAM runs σn taking
both space and time exponential in n, that is, |σn|sp = |σn|tm = Ω(2n).

Proof. We define tn as follows:

tn := C0⟨C1⟨· · ·Cn⟨λy.I⟩ · · · ⟩⟩I

Now, we execute it.

Term Env Stack
tn := C0⟨C1⟨· · ·Cn−1⟨Cn⟨λy.I⟩⟩ · · · ⟩⟩I ϵ ϵ Lemma 8.4.5
Cn⟨λy.I⟩ := λxn.(λy.I)(x0 . . . xn) en−1 πn−1
(λy.I)(x0 . . . xn) en ϵ
λy.I ϵ πn
I ϵ ϵ

The space consumed (and thus also the low-level time) is exponential in n because the size of en is
exponential in n.

8.5 Time vs Space

Here we discuss how to obtain, or approximate, reasonability for both space and time.

Reasonable Low-Level Time. Changing the time cost model from the number of β steps to the
time taken by the Space KAM, which is a low-level notion of time, provides a reasonable time cost
model. The key point is that the explosions of Prop. 8.4.4 never happen on λ-terms encoding TMs.

Theorem 8.5.1 (TMs are simulated by the Space KAM in reasonable low-level time).

1. Every TM run ρ can be simulated by the Space KAM in time O(poly(|ρ|)).

2. Every Space KAM run ρ : init(t)→∗SpKAM s can be implemented on RAMs in time O(|ρ|tm).

3. Closed CbN and the time of the Space KAM provide a reasonable time cost model for the λ-calculus.

Proof. The first point is the only one which is non-trivial. We have already proved that the Space
KAM can simulate TMs runs ρ in a number of transitions which is polynomial in |ρ|. However, this
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does not necessarily means that the (low-level) time is also polynomial in ρ, see Proposition 8.4.4.
About the execution of terms which are the image of the encoding of TMs into the λ-calculus, we
can say however that the overhead stays polynomial. Indeed, the exponential blowup comes from
the fact that environments are duplicated in an uncontrolled way. This does not happen in the
execution of the encoding of TMs, where duplication is restrained to the fix-point operator and to
the input components of the state. In other words, we duplicate only objects of fixed size, thus
confirming the polynomial bound.

There is another, indirect, way of proving the same results. If the (low-level) time were
exponential in |ρ|, then the space should be at least linear in |ρ|1. But we have proved that this
is not the case since space is linearly related with the space consumption of ρ, and not with its
length.

The drawback of this solution is that one gives up the natural cost model for time. Moreover,
the low-level time cost model can be very lax in comparison, as Prop. 8.4.4 shows.

The Interleaving Technique. Forster et al. (2020) show that, given one machine that is reasonable
for time but not for space and one machine that is reasonable for space but not for time, it is
possible to build a third machine that is reasonable for both space and time, by interleaving the
two machines in a smart way. Despite being presented on a specific case, their construction is quite
general (in fact it is not even limited to the λ-calculus), and can be adapted to our case (the two
starting machines being the KAM and the Space KAM). The drawback of this solution is that it
admits space exponential in time, as Prop. 8.4.4 shows.

Trading Time for Space. From a practical rather than theoretical point of view, there is a further
semi solution that we now sketch. Tweaking the KAM with a synchronous reference counting GC
one obtains a Shared Space KAM which is reasonable for time and slightly unreasonable for space.
One could observe that the Shared Space KAM and the Space KAM are indeed strongly bisimilar2

and use the same number of closures. Then, the number of data pointers used by the Shared Space
KAM is no longer entangled with the number of β-steps (as for the KAM), it is instead related
to the space cost—this is the effect of GC plus unchaining of the Space KAM. Therefore, data
pointers add a space overhead that is logarithmic in the space of the Space KAM. Also the GC
mechanism, based on reference counting, adds the same logarithmic factor, while certainly costs
time, though still remaining polynomial. This way, if the Space KAM uses O( f (n)) space, then the
Shared Space KAM operates in O( f (n) log f (n)) space. Such an overhead is not reasonable but
not too unreasonable, and probably the best compromise between reasonability and efficiency for
the practice of implementing functional programs.

8.6 Call-by-Value and Other Strategies

How robust is our space cost model to changes of the evaluation strategy? The short answer is
very robust.

Closed Call-by-Value. We refer to weak call-by-value evaluation with closed terms as to Closed
CbV . Our results smoothly adapt to such a setting, as we now explain.

First, it is easy to adapt the Space KAM to Closed CbV . The LAM (Leroy Abstract Machine) is
a right-to-left3 CbV analogue of the KAM defined by by Accattoli et al. (2014a) and modeled after
the ZINC by Leroy (1990) (whence the name). It uses a further data structure, the dump, storing the
left sub-terms of applications yet to be evaluated. It is upgraded to the Space LAM in Fig. 8.3 by
removing data pointers and adding GC. Unchaining comes for free in CbV, if one considers values
to be only abstractions, see Accattoli and Coen (2017).

1This is because space cannot be less than logarithmic in time.
2Actually, one should add the unchaining optimization to the KAM, which is standard.
3The argument presented here smoothly adapts to the left-to-right order.
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DUMPS CLOSURES ENVIRONMENTS

d ::= ϵ | d · c⋄π c ::= (t, e) e ::= ϵ | [x�c] · e
STACKS STATES

π ::= ϵ | c · π s ::= (d, t, e, π)

Dump Term Env Stack Dump Term Env Stack

d tu e π →sea d·(t, e|t)⋄π u e|u ϵ

d·(u, e′)⋄π λx.t e ϵ →ret d u e′ (λx.t, e)·π
d λx.t e c·π →βw

d t e π if x ̸∈ fv(t)
d λx.t e c·π →β¬w d t [x�c]·e π if x ∈ fv(t)
d x e π →sub d u e′ π if e(x) = (u, e′)

where e|t denotes the restriction of e to the free variables of t.

FIGURE 8.3: The Space LAM.

The next step is realizing that, because of the mentioned indifference property of the deterministic
λ-calculus Λdet (containing the image of the encoding of TMs), the run of the Space LAM on a
term t ∈ Λdet is almost identical (technically, weakly bisimilar) to the one of the Space KAM on t.

Proposition 8.6.1. The SpaceKAM and the SpaceLAM are weakly bisimilar when executed on Λdet-
terms. Moreover, their space consumption is the same.

Proof. The transitions of the Space KAM not dealing with applications are identical to the corre-
sponding ones of the Space LAM (if one ignores the dump, that remains untouched). For the two
transitions of the Space KAM dealing with applications, we show that, when the argument is a
variable or an abstraction (as in Λdet), the Space LAM behaves as the Space KAM. If the active
term is tx, indeed, the→seav transition of the Space KAM is simulated on the Space LAM by (with
e(x) = (λy.u, e′)):

(ϵ, tx, e, π) →SpLAM ((t, e|t)⋄π, x, e|x, ϵ)
→SpLAM ((t, e|t)⋄π, λy.u, e′, ϵ)
→SpLAM (ϵ, t, e|t, (λy.u, e′)·π)
= (ϵ, t, e|t, e(x)·π)

If the active term instead is t(λx.u), the→sea¬v transition of the Space KAM is simulated on the
Space LAM by:

(ϵ, t(λx.u), e, π) →SpLAM ((t, e|t)⋄π, λx.u, e|λx.u, ϵ)
→SpLAM (ϵ, t, e|t, (λx.u, e|λx.u) · π)

In particular, these macro steps show that to evaluate TM there is no need of the dump. Now, by
defining a relationR between states of the Space KAM and the Space LAM as

sKR sL iff sK = (t, e, π) and sL = (ϵ, t, e, π)

the previous reasoning shows thatR is a weak bisimulation preserving time and space complexity
(modulo a constant overhead).

Since the simulation of the Space LAM on RAMs is as smooth as for the Space KAM, we have
the following result.

Theorem 8.6.2 (The Space LAM is reasonable for space). Closed CbV evaluation and the space of the
Space LAM provide a reasonable space cost model for the λ-calculus.
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Natural Time
Reasonable

(cost model = num. of
trans. = poly(|β|))

Low-Level Time
Reasonable

(actual implementation
cost)

Space Reasonable
(low-level by def.)

KAM Yes, Thm. 2.2.2 Yes, Thm. 2.2.2 No, Thm. 2.2.2
Naive KAM No, Prop. 8.4.4 No, Prop. 8.3.1.2 No, Prop. 8.3.1.2
Space KAM No, Prop. 8.4.4 Yes, Thm. 8.5.1 Yes, Thm. 8.4.3
Space LAM No, via Prop. 8.6.1 and

Prop. 8.4.4
Yes, via Prop. 8.6.1 and

Thm. 8.5.1
Yes, Thm 8.6.2

FIGURE 8.4: Summary of the results of this chapter.

Open and Strong Evaluation. Extending CbN/CbV evaluation to deal with open terms or even
under abstractions, which is notoriously very delicate in the study of reasonable time, is instead
straightforward for space. This is because these extensions play no role in the simulation of
TMs, which is the delicate direction for space. Given the absence of difficulties, we refrain from
introducing variants of the Space KAM/LAM for open and strong evaluation.

Call-by-Need. The only major scheme for which our technique breaks is call-by-need (CbNeed)
evaluation. To our knowledge, implementations of CbNeed inevitably rely on a heap and on data
pointers similar to those of the Time KAM, to realize the memoization mechanism at the heart of
CbNeed. Therefore, they are space unreasonable. This is not really surprising: CbNeed, being a
time optimization of CbN, trades space for time, sacrificing space reasonability.

Summary. To help the reader in the understanding of the reasonableness of the several machines
of this chapter, we have reported the main results in Fig. 8.4.



Chapter 9

Closure Types Capture Space KAM
Space

We refine in this section the original multi type system of de Carvalho (2018) for the KAM, so as
to take into account the space consumption of the Space KAM. The intuition is quite simple. We
have already noticed that KAM transitions and typing rules are in a one-to-one correspondence.
We take this correspondence further, observing that each closure in the environment of a KAM
state corresponds to a multiset in the type environment of the correspondent judgment. The same,
although a bit more tricky, can be done for closures in the stack. This way, weighting multisets
adds to the type system all the necessary information to recover the KAM space consumption.
Since of course we are interested in observing a reasonable space measure, we directly consider
the Space KAM, rather that than the KAM.

For simplicity, but without loss of generality, we consider the weights as the number of pointers
inside a closure, and not the actual size of the closure itself. It is easy to recover the actual space
consumption by just multiplying the number of pointers for their size, which is log |t|0, where t0 is
the term under evaluation. This is why we consider the following size functions, which are slightly
different from those of the previous chapter. We consider that the Space KAM is implemented
without sharing of environments and closures. The space needed to represent a state is then equal
to a pointer (here considered of constant size, but the type system could be tweaked in order to
separate the address spaces, as done in the previous chapter) for each piece of code in the state.
This quantity is captured by the following definition1.

ENVIRONMENTS STACKS
|ϵ| := 0

|[x�c] · e| := |c|+ |e|
|ϵ| := 0

|c · π| := |c|+ |π|

CLOSURES STATES
|(t, e)| := 1 + |e| |(t, e, π)| := |e|+ |π|

Finally, the space of a Space KAM run is the maximum space over the states of the run.

Definition 9.0.1 (Run space). Let ρ : s0 →∗SpKAM s be a Space KAM run. Then the space consumption of
the run ρ is defined as follows:

|ρ|sp := max
s′∈ρ
|s′|

9.1 Closure (Intersection) Types

Here we define our variant of multi types, dubbed closure types, that we are going to use to
measure the space consumption of (typable) terms. The definition of types is standard, but for
the fact that multi-sets come labeled with an index k. As in the previous chapters, the idea is that
multi-sets of types are associated to arguments (according to the call-by-name translation of the
λ-calculus into linear logic), and arguments give rise to closures (hence the name closure types):

1In the clause about states, we could have written |(t, e, π)| := |e|+ |π|+ 1, counting also the space for the closure (t, e).
Since the difference is just about a constant, we can remove that “+1” without loss of generality.
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the index represent the size of the closure | · | (i.e. the number of pointers to implement it) that
shall be associated to that argument/multi-set.

LINEAR TYPES A, B ::= ⋆
∣∣∣ Mk → A

CLOSURE TYPES Mk ::= [A1, . . . , An]k k > 0, n ≥ 0

Type judgments, type environments and type derivations are defined exactly as in the traditional
multi type case. Please note that however some subtleties become apparent, regarding how labeled
multi sets are handled. The empty multi-set is noted [·]k and it also comes labeled with k. Note
that k has to be strictly positive. The sum ⊎ of multi-sets requires the two multi-sets to have the
same index, that is, we have that Mk ⊎ Nk := (M ⊎ N)k, where on the right hand side we treat M
and N as ordinary multi-sets, while Mk ⊎ Nh is undefined for h ̸= k.

Space and Weakenings The study of space requires an unusual approach to weakenings. In a
weak evaluation setting, a judgment Γ ⊢ t : A implies only that dom(Γ) ⊆ fv(t) and not necessarily
that dom(Γ) = fv(t), because there can be untyped free variables, that is, free variables occurring
under abstraction that are not evaluated and thus not typed. In the usual approach to multi types
for weak evaluation, given an abstraction λx.t with fv(λx.t) ̸= ∅, one can type it with ⋆, deriving
a judgment ⊢ λx.t : ⋆ with an empty type context. Here this shall not be possible, because in
the machine these variables play a role in the space usage, as they forbid to garbage collect some
closures. Therefore, we modify the type system as to enforce the property dom(Γ) = fv(t), even if
evaluation is weak, and this is done via an unusual use of weakenings. In particular, we distinguish
between a variable x /∈ dom(Γ) and a variable Γ(x) = [·]kx that gets assigned an empty multi-set.
The intuition is that x /∈ dom(Γ) would correspond to x being typed with [·]0, which is however
not a valid type because the index kx must be > 0. Instead, Γ(x) = [·]kx means that x is not going
to be used but it shall nonetheless have an associated closure of size kx.

We shall need a notion of type context assigning the empty multi-set (with a positive index) to
all the variable in its domain.

Definition 9.1.1 (Dry type contexts). A type context Γ is dry if for every x ∈ dom(Γ), there exists kx
such that Γ(x) = [·]kx .

Typing Rules. In order to define the typing rules we need two further notions. First, we need a
notion of size of types and type contexts.

| ⋆ | := 0 |Mk → A| := k + |A| |x : Mk, Γ| := k + |Γ|

Note that for a type context one sums only the indices over the multi-sets, ignoring the size of
linear types inside the multi-sets themselves. Second, because the multi-sets sum is restricted to
those having the same index, we need a predicate over type environments to ensure that they are
summable.

Definition 9.1.2. Two type environments Γ and ∆ are summable, noted Γ#∆, if when Γ(x) = Mk and
∆(x) = Nh then k = h, for all x ∈ dom(Γ) ∩ dom(∆). The notion can be naturally generalized to an
arbitrary number of type environment Γi as #iΓi.

The typing rules are in Fig. 9.1, for now just ignore the weights. As in the case of the multi type
system and of the KAM, we have crafted this system in such a way that given a type derivation
π for a term t, there is a one to one correspondence between the transitions used by the Space
KAM run on t and the occurrences of the typing rules (excluded T-MANY and T-NONE) of π, plus
the fact that T-λ⋆ is used to type final states. Namely,→seav corresponds to T-@2,→sea¬v to T-@1,
→β¬w to T-λ1, →βw

to T-λ2, and→sub to T-VAR. The intuition behind the closure types is that
there is a correspondence between Space KAM data structures and the type theoretic side. The
idea is that every sequence Mk corresponds to a closure c such that |c| = k. In particular, given
a state s = (t, e, π) and a judgment Γ ⊢ t : A, the type environment Γ := x1 : Mk1 . . . xn : Mkn

morally corresponds to the environment e := [x1�c1] . . . [xn�cn] and moreover |ci| = ki for each
1 ≤ i ≤ n. In the same way, one could define a correspondence between the stack and the type A.
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x : [A]k
k+|A|
⊢ x : A

T-VAR
dom(Γ) = fv(λx.t) Γ is dry

Γ
|Γ|
⊢ λx.t : ⋆

T-λ⋆

Γ, x : Mk
w
⊢ t : A

Γ
w
⊢ λx.t : Mk → A

T-λ1

Γ
w
⊢ t : A x /∈ dom(Γ)

Γ
max{w,|Γ|+|A|+k}

⊢ λx.t : [·]k → A

T-λ2

Γi

vi
⊢ t : Ai 1 ≤ i ≤ n #iΓi

⊎n
i=1Γi

maxi{vi}
⊢ t : [A1. .An]

1+|⊎n
i=1Γi |

T-MANY
dom(Γ) = fv(t) Γ is dry

Γ
0
⊢ t : [·]1+|Γ|

T-NONE

Γ
w
⊢ t : Mk → A ∆

v
⊢ u : Mk Γ#∆

Γ ⊎ ∆
max{w,v}
⊢ tu : A

T-@1 Γ
w
⊢ t : Mk → A Γ#x : Mk

Γ ⊎ x : Mk
w
⊢ tx : A

T-@2

FIGURE 9.1: The closure type system.

A := Mk1
1 → · · · → Mkm

m → ⋆ corresponds to the stack π := π1 . . . πm and moreover |πi| = ki for
each 1 ≤ i ≤ m. Essentially, this means that we are able to read from the type derivation of a term
t the sizes of all the states reached by the Space KAM evaluating t.

Rules T-MANY and T-NONE is where multi-sets are introduced on the right. In order to explain
the index on the introduced multi-set, let us first consider T-NONE. The idea is that t shall be
paired by the machine with an environment e as to form a closure c = (t, e). By the invariant of
the machine (Lemma 8.2.1), dom(e) is exactly fv(t), that is, e contains a closure for each variable x
in fv(t). Now, each such closure shall have size kx, where kx is the index given to [·] by the dry
context Γ. Therefore, 1 + |Γ| shall correspond to 1 + |e|, which is exactly the size of c.

For T-MANY, the reasoning is analogous. Let us explain a point about the quantity | ⊎n
i=1 Γi|

in its conclusion. An invariant shall guarantee that dom(Γ) = fv(t), whenever Γ ⊢ t : A. Then in
T-MANY, the type contexts Γi have all the same domain, and by the summable hypothesis, they all
give the same index k to the (potentially different) multi-sets Γi(x) for a same variable x. Thus the
various |Γj| all coincide (for j ∈ {1, . . . , n}) and also coincide with the quantity | ⊎n

i=1 Γi|.
We highlight the main differences w.r.t. the traditional multi type system.

• Weakening. As we have already observed, the approach to weakenings is slightly more liberal
than in multi types. It is implicitly part of rules T-λ⋆, T-λ2, and T-NONE. In rules T-λ⋆ and
T-NONE, a context Γ can be injected in the conclusion, but only if it is dry, and if its domain
coincides with the free variables of the typed term. The situation at the level of the Space
KAM for the rule T-λ⋆ corresponds to final states such as (λx.y, [y�t], ϵ). A closure is indeed
present, hence the index k > 0, although it will never be used, hence its type being the empty
multi-set. In rule T-λ2, which was not present in the multi type system (as it was not present
the transition→βw

in the KAM), the variable x that does not occur free in t is morally typed
with [·]0 in the premise in the rule. In the conclusion, however, a type [·]0 → A would not be
correct. In fact, the closure corresponding to [·], before being eliminated by rule→βw

of the
Space KAM, has size strictly greater than zero.

Please notice that all this consideration ensure the invariant for which for any judgment
Γ ⊢ t : A or Γ ⊢ t : Mk one has dom(Γ) = fv(t).

• Explicit bang rules. In the traditional multi types rules T-NONE and T-MANY are incorporated
inside rule T-@. This was impossible to do in the closure type system because the rule
T-NONE was necessarily different from the rule T-MANY, and not just the special case when
there are zero premises. This is because of the way we deal with weakenings: weakening is
present just in the rule T-NONE, while there is not in rule T-MANY.
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Rules T-NONE and T-MANY correspond to the creation of closures. This why the index of
the created multi-set is 1 + |Γ|. Morally, this corresponds to the closure (t, e), where t is the
typed term and e corresponds to Γ. Hence, we have |(t, e)| = 1 + |e| = 1 + |Γ|.

• Unchaining. The type rule T-@2 is the type theoretic equivalent of the Space KAM transition
rule→seav . It is just a specialization of the rule T-@1, from which it can be derived (using
also an instance of rule T-VAR).

• Coherence. All the rules which sum type environments have to enforce the coherence relation
#Γi between the type environments Γi in the premises.

The Weight System. The intuition behind the weight system is very simple. The weight of the
type derivation π ending in ⊢ t : ⋆ should correspond to the space consumed by the complete
run ρ of the Space KAM starting from t. We know that can read the size of a Space KAM state s
belonging to ρ corresponding to a type judgment Γ ⊢ u : A belonging to π: it is |s| = |Γ|+ |A|.
Then, the space consumed by ρ is the maximum of the sizes of all the type judgments occurring in
π. This is exactly what the weighting system does.

Example 9.1.3. We provide the closure type derivation of the term (λx.(λy.(λz.x)(xy))x)I.

x : [⋆]1 ⊢1 x : ⋆
T-VAR

x : [⋆]1 ⊢4 λz.x : [·]3 → ⋆
T-λ2

x : [·]1, y : [·]1 ⊢0 xy : [·]3
T-NONE

x : [⋆]1, y : [·]1 ⊢4 (λz.x)(xy) : ⋆
T-@1

x : [⋆]1 ⊢4 λy.(λz.x)(xy) : [·]1 → ⋆
T-λ1

x : [⋆]1 ⊢4 (λy.(λz.x)(xy))x : ⋆
T-@2

⊢4 λx.(λy.(λz.x)(xy))x : [⋆]1 → ⋆
T-λ1

⊢0 I : ⋆
T-λ⋆

⊢0 I : [⋆]1
T-MANY

⊢4 (λx.(λy.(λz.x)(xy))x)I : ⋆
T-@1

Also in this case, we can observe the precise correspondence between this type derivation and the execution
of the Space KAM. Not only rules and transitions are into a one-to-one correspondence, but also stack and
environment entries (with their sizes) can be seen, respectively, in types and in type environments. Of
course, as a consequence, the final weight is 4, as the space consumption of the Space KAM execution.

9.2 Quantitative Soundness

This and the following sections are devoted to the proof of correctness of the weighted closure
type system. The proof is carried out in a rather standard way. First, we prove soundness, that
is the fact that typable terms terminate, and moreover that their evaluation respects the weight.
Second, we prove completeness, that is the fact that all terminating terms are typable.

9.2.1 Preliminary Properties

The first property is qualitative, that is, it does not concern weights or indices2. It is simply the
already mentioned fact that the domain of type contexts is exactly the set of free variables of the
typed term. This is the type analog of the environment domain invariant of the Space KAM.

Lemma 9.2.1 (Type contexts domain invariant).

1. If π ▷ Γ ⊢ t : A then dom(Γ) = fv(t).

2. If π ▷ Γ ⊢ t : M then dom(Γ) = fv(t).

Proof. By induction on π.

2When a definition or a statement does not rest on weights, we do not report them, for the sake of readability.
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wx
⊢ e(x) : Γ(x) ∀x ∈ dom(e)

max{wx |x∈dom(e)}
⊢ e : Γ

T-ENV

w
⊢ e : Γ Γ

v
⊢ t : Mk

max{w,v}
⊢ (t, e) : Mk

T-CL

Γ
w
⊢ t : Mk1

1 → · · · → Mkn
n → ⋆

u
⊢ e : Γ

vi
⊢ ci : Mki

i
maxi{w,vi ,u}
⊢ (t, e, c1 · · · cn) : ⋆

T-ST

FIGURE 9.2: Typing rules for the machine components of the Space KAM.

Then, we have two quantitative properties. Before stating them, we need to introduce the
definition of typed Space KAM states. The idea is very simple, and it is due to de Carvalho (2018).
In order to state quantitative properties that involve abstract machines, we type the execution of
the abstract machine itself. We have already mentioned that type environments correspond to the
Space KAM environments, and that closure types correspond to Space KAM closures. In Fig. 9.2,
the connection is made formal.

The next lemma states that the size of a closure is equal to the size of its type, for every closure,
and similarly for environments.

Lemma 9.2.2 (Types capture the size of closures and environments).

1. If π ▷ ⊢ e : Γ then |e| = |Γ|.

2. If π ▷ ⊢ c : Mk then |c| = k.

The lemma expresses one of the key properties of the type system, which has an almost magical
feeling. At first sight, indeed, the indices on multi types are completely arbitrary, as the typing
rules do not seem to impose strong constraint. Surprisingly, instead, when one builds the type
derivation of a closure, then the indices are uniquely determined, and they capture exactly the size
of the closure.

Proof. By mutual induction on e and c.

1. π has the following form:
⊢ e(x) : Γ(x)
⊢ e : Γ T-ENV

Let Γ(x) = Mkx
x . By i.h. (point 2), |e(x)| = kx. Then |e| = ∑x∈dom(e) |e(x)| =i.h. ∑x∈dom(e) kx =

|Γ|.

2. π has the following form:
⊢ e : Γ Γ ⊢ t : Mk

⊢ (t, e) : Mk T-CL

with c = (t, e). By i.h. (point 1) applied to e, we have |e| = |Γ|. Since the typing of t comes
necessarily from a rule T-NONE or T-MANY, we have k = 1 + |Γ|. Then |c| = 1 + |e| =i.h.
1 + |Γ| = k.

The second easy property is the fact that the size of a state is given by the size of the types in
the judgment for its code, which give the size of the stack and the code, plus one, to account for
the pointer to the code itself.

Lemma 9.2.3. If

Γ ⊢ t : Mk1
1 → · · · → Mkn

n → ⋆ ⊢ ci : Mki
i ⊢ e : Γ

⊢ (t, c1 · · · cn, e) : ⋆
T-ST
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then |Γ|+ ∑n
i=1 ki = |s|.

Proof. We have:
Γ ⊢ t : Mk1

1 → · · · → Mkn
n → ⋆ ⊢ ci : Mki

i ⊢ e : Γ

⊢ (t, c1 · · · cn, e) : ⋆
T-ST

By definition, |s| = |e|+ |c1 · · · cn| = |e|+ ∑n
i=1 |ci| . By Lemma 9.2.2, |e| = |Γ| and |ci| = ki for

1 ≤ i ≤ n. Then |s| = |Γ|+ ∑n
i=1 ki.

9.2.2 The Proof of Soundness

Soundness is the fact that on typed states the Space KAM terminates. Here it is refined with
our space analysis, showing that the weight of the type judgment is exactly the maximum space
used by the run of the Space KAM. The proof technique is mostly standard. It is based on a
subject reduction property plus a space analysis of final states. What is slightly unusual is that
subject reduction is not stated as an independent property, it is instead plugged into the proof of
soundness. This is needed to prove the space bound.

Space Analysis of Final States. We need an auxiliary lemma that allows us to prove that the
weight system correctly measures the size of final states.

Lemma 9.2.4.

1. If π ▷
w
⊢ e : Γ and Γ is dry, then w = 0.

2. If π ▷
w
⊢ c : [·]k, then w = 0.

Proof. By mutual induction on e and c.

1. π has the following form:
wx
⊢ e(x) : Γ(x)

max{wx |x∈dom(e)}
⊢ e : Γ

T-ENV

with w = max
{

wx|x ∈ dom(e)
}

. Two cases:

(a) e is empty, i.e. e = ϵ: then w = 0 and Γ is the empty type environment, for which |Γ| = 0.
Therefore, we have w = 0 = |Γ|, validating the statement.

(b) e is not empty, i.e. e ̸= ϵ: Since Γ is dry, then
wx
⊢ e(x) : [·]kx for some kx. By i.h. (point 2),

wx = 0. Then w = max
{

wx|x ∈ dom(e)
}
= 0.

2. π has the following form:
v
⊢ e : Γ Γ

u
⊢ t : [·]k

max{v,u}
⊢ (t, e) : [·]k

T-CL

with c = (t, e) and w = max {v, u}. Since the typing of t comes necessarily from a rule
T-NONE, Γ is dry, u = 0. Then we can apply the i.h. (point 1) to e, obtaining v = 0. Thus we
have w = 0.

Lemma 9.2.5 (The weight of final states is their space). Let s be a final state and π ▷ ⊢w s : ⋆. Then
w = |s|.
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Proof. Final states have the shape (λx.t, e, ϵ). Then π has the following shape:

dom(Γ) = fv(λx.t) Γ is dry

Γ
|Γ|
⊢ λx.t : ⋆

T-λ⋆
v
⊢ e : Γ

max{v,|Γ|}
⊢ (λx.t, e, ϵ) : ⋆

T-ST

with w = max{v, |Γ|}. By Lemma 9.2.4.1, v = 0. Therefore, w = |Γ| and so w = |e| = |s|.

Soundness. Soundness shall be proved by induction on the size of type derivation, which is
defined ignoring some typing rules, as follows.

Definition 9.2.6 (Type derivations size). The size |π| of a type derivation π is its number of rules without
counting rules T-MANY, T-NONE, T-CL, and T-ENV.

The subject reduction argument shall need the following auxiliary lemma.

Lemma 9.2.7 (Multi-set splitting).

1. Terms: let π ▷ Γ
w
⊢ t : Mk ⊎ Nk with k = 1 + |Γ|. Then there exists two type derivations

πM ▷ ΓM
wM
⊢ t : Mk and πN ▷ ΓN

wN
⊢ t : Nk such that ΓM#ΓN , Γ = ΓM ⊎ ΓN , |π| = |πM|+ |πN |

and w = max {wM, wN}.

2. Closures: let π ▷
w
⊢ c : Mk ⊎ Nk. Then there exists two type derivations πM ▷

wM
⊢ c : Mk and

πN ▷
wN
⊢ c : Nk such that |π| = |πM|+ |πN | and w = max {wM, wN}.

3. Environments: let Γ and ∆ summable and π ▷
w
⊢ e : Γ ⊎ ∆. Then there exists two type

derivations πΓ ▷
wΓ
⊢ e|dom(Γ) : Γ and π∆ ▷

w∆
⊢ e|dom(∆) : ∆ such that |π| = |πΓ| + |π∆| and

w = max {wΓ, w∆}.

Proof.

1. Suppose that Mk = [·]k. Then Mk ⊎ Nk = Nk. Now, let ΓM be defined as the unique dry
type context such that dom(ΓM) = dom(Γ) and it is summable with Γ—note that necessarily
|Γ| = |ΓM|. By Lemma 9.2.1, dom(Γ) = fv(t), and so we obtain the following derivation:

ΓM
0
⊢ t : [·]1+|ΓM |

T-NONE

which is the πM of the statement. We also take πN := π, and the statement holds.

If Nk = [·]k the proof is as in the previous case.

Assume now that both Mk and Nk are non-empty, say Mk = [A1, . . . , Am]k and Nk =
[Am+1, . . . , An]k. Then π has the following shape:

Γi

vi
⊢ t : Ai 1 ≤ i ≤ n #iΓi

⊎n
i=1Γi

maxi{vi}
⊢ t : [A1, . ., An]

1+|⊎n
i=1Γi |

T-MANY

and the two derivations πM and πN are obtained as follows

πM :=

Γi

vi
⊢ t : Ai 1 ≤ i ≤ m #iΓi

⊎m
i=1Γi

maxi{vi}
⊢ t : [A1, . ., Am]

1+|⊎m
i=1Γi |

T-MANY
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and

πN :=

Γi

vi
⊢ t : Ai m + 1 ≤ i ≤ n #iΓi

⊎n
i=m+1Γi

maxi{vi}
⊢ t : [Am+1, . ., An]

1+|⊎n
i=m+1Γi |

T-MANY

which clearly satisfy the statement.

2. If c = (t, e) then π has the following form

w
⊢ e : Γ Γ

v
⊢ t : Mk

max{w,v}
⊢ (t, e) : Mk

T-CL

Then the i.h. (point 1) applied to the right premise gives two derivations for t with respect to
Mk and Nk. In particular it gives two summable type contexts ΓM and ΓN with which one
applies the i.h. (point 3) to the left premise, obtaining two derivations for e with respect to
ΓM and ΓN . Pairing the respective derivations for t and e one obtains the statement.

3. If e is empty then both Γ and ∆ are empty and the statement trivially holds. Otherwise, it
follows from applying the i.h. (point 2) for each variable in dom(Γ) ∩ dom(∆).

Theorem 9.2.8 (Soundness). Let s be a Space KAM reachable state such that there is a derivation
π ▷ ⊢w s : ⋆. Then

1. Termination: there is a run ρ : s→∗SpKAM s f to a final state. Moreover,

2. Space bound: w = |ρ|sp.

Proof. The proof is by induction on |π| and case analysis on whether s is final. If s is final then the
run ρ in the statement is given by the empty run. Therefore, we have |ρ|sp = |s| and the required
space bound becomes w = |s|, which is given by Lemma 9.2.5. If s is not final then s→SpKAM s′.

By examining all the transition rules. We set A := Mk1
1 → · · · → Mkn

n → ⋆ and π := π1 · · ·πn.

• Case→seav , i.e. s = (tx, e, π) and s′ = (t, e|t, e(x) · π). The type derivation π typing s has the
following shape:

Γ
w′

⊢ t : M→ A

Γ ⊎ x : M
w′

⊢ tx : A

T-@2

πe ▷
u
⊢ e : Γ ⊎ x : M

vi
⊢ πi : Mki

i
maxi{w′ ,u,vi}
⊢ (tx, e, π) : ⋆

T-ST

with w = maxi{w′, vi, u}. By Lemma 9.2.7, there are two derivations πΓ ▷
uΓ
⊢ e|dom(Γ) : Γ

and πx:M ▷
ux:M
⊢ e(x) : x : M such that |πe| = |πΓ|+ |πx:M| and u = max {uΓ, ux:M}. By the

environment domain invariant (Lemma 8.2.1), dom(Γ) = fv(t). Moreover, πx:M is necessarily

the conclusion of a unary T-ENV rule of premise πM ▷
uM
⊢ e(x) : M for which |πM| = |πx:M|

and uM = ux:M. Then, s′ can be typed by the following derivation π′:

π′ :=

Γ′
w′

⊢ t : M→ A πΓ ▷
uΓ
⊢ e|t : Γ πM ▷

uM
⊢ e(x) : M

vi
⊢ πi : Mki

i
maxi{w′ ,uΓ ,uM ,vi}

⊢ (t, e|t, e(x) · π) : ⋆

T-ST

Since |πe| = |πΓ|+ |πx:M| = |πΓ|+ |πM|, we have |π| > |π′| (beccause the T-@2 rule is
removed), and so we can apply the i.h., obtaining a run σ : s′ →∗SpKAM s f to a final state such
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that maxi{w′, uΓ, uM, vi} = |σ|sp. Then there is a run ρ : s→∗SpKAM s f , proving the first part
of the statement (termination).

For the space bound, note that, since u = max {uΓ, ux:M} = max {uΓ, uM}, we have w =
maxi{w′, uΓ, uM, vi}. Additionally, |s| ≤ |s′|, because by the environment domain invariant
e|t removes at most e(x) from e, which is however added to the stack. Then |ρ|sp = |σ|sp =
maxi{w′, uΓ, uM, vi} = w, proving the second part of the statement.

• Case→sea¬v , i.e. s = (tu, e, π) and s′ = (t, e|t, (u, e|u) · π).

The type derivation π typing s has the following shape:

Γ
w1
⊢ t : Mk → A ∆

w2
⊢ u : Mk Γ#∆

Γ ⊎ ∆
max{w1,w2}
⊢ tu : A

T-@1
u
⊢ e : Γ ⊎ ∆

vi
⊢ πi : Mki

i
maxi{w1,w2,vi ,u}

⊢ (tu, e, π) : ⋆

T-ST

with w = maxi{w1, w2, vi, u}. By Lemma 9.2.7.3, there are two derivations πΓ ▷
uΓ
⊢ e|dom(Γ) : Γ

and π∆ ▷
u∆
⊢ e|dom(∆) : ∆ such that |πe| = |πΓ| + |π∆| and u = max {uΓ, u∆}. By the

environment domain invarian (Lemma 8.2.1), dom(Γ) = fv(t) and dom(∆) = fv(u). Then, s′

can be typed by the following derivation π′:

π′ :=

Γ
w1
⊢ t : Mk → A

uΓ
⊢ e|t : Γ

∆
w2
⊢ u : Mk

u∆
⊢ e|u : ∆

max{w2,u∆}
⊢ (u, e|u) : Mk

T-CL
vi
⊢ πi : Mki

i
maxi{w1,w2,vi ,uΓ ,u∆}

⊢ (t, e|t, (u, e|u) · π) : ⋆

T-ST

Since |πe| = |πΓ| + |π∆|, we have |π| > |π′| (beccause the T-@2 rule is removed and
rule T-CL does not count for the size), and so we can apply the i.h., obtaining a run σ :
s′ →∗SpKAM s f to a final state such that maxi{w1, w2, vi, uΓ, u∆} = |σ|sp. Then there is a run
ρ : s→∗SpKAM s f , proving the first part of the statement (termination).

For the space bound, note that, since u = max {uΓ, u∆}, we have maxi{w1, w2, vi, uΓ, u∆} =
maxi{w1, w2, vi, u} = w. Additionally, |s| ≤ |s′|, because by the environment domain
invariant all the pointer is e are in e|t or in e|u. Then |ρ|sp = |σ|sp = maxi{w′, uΓ, uM, vi} = w,
proving the second part of the statement.

• Case→βw
, i.e. s = (λx.t, e, c · π) and s′ = (t, e, π). The type derivation π typing s has the

following shape:

Γ
w′

⊢ t : A x /∈ dom(Γ)

Γ
max{w′ ,|Γ|+|A|+k}

⊢ λx.t : [·]k → A

T-λ2
u
⊢ e : Γ

v
⊢ c : [·]k

vi
⊢ πi : Mki

i
maxi{w′ ,|Γ|+|A|+k,u,v,vi}

⊢ (λx.t, e, c · π) : ⋆

T-ST

with w = maxi{w′, |Γ|+ |A|+ k, u, v, vi}. The target state s′ can be typed by the following
derivation π′:

π′ :=

Γ
w′

⊢ t : A x /∈ dom(Γ)
u
⊢ e : Γ

vi
⊢ πi : Mki

i
maxi{w′ ,u,vi}
⊢ (t, e, π) : ⋆

T-ST
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Since the T-λ2 rule is removed, we have |π| > |π′|, and so we can apply the i.h., obtaining
a run σ : s′ →∗SpKAM s f to a final state such that maxi{w′, u, vi} = |σ|sp. Then there is a run
ρ : s→∗SpKAM s f , proving the first part of the statement (termination).

For the space bound, note that:

– |s| = |Γ|+ |A|+ k by Lemma 9.2.3, giving w = maxi{w′, |s|, u, v, vi}.
– v = 0 by Lemma 9.2.4.2, giving w = maxi{w′, |s|, u, vi}.

Now, there are two cases:

– |ρ|sp = |σ|sp: that is, |s| ≤ |σ|sp = maxi{w′, u, vi}. Then |s| ≤ maxi{w′, u, vi}, and so
w = maxi{w′, |s|, u, vi} = maxi{w′, u, vi} =i.h. |σ|sp = |ρ|sp.

– |ρ|sp > |σ|sp: that is, |s| > |σ|sp = maxi{w′, u, vi}. Then |s| > maxi{w′, u, vi}, and so
w = maxi{w′, |s|, u, vi} = |s| = |ρ|sp.

• Case→β¬w , i.e. s = (λx.t, e, c · π) and s′ = (t, [x�c] · e, π). The type derivation π typing s
has the following shape:

Γ, x : Mk
w′

⊢ t : A

Γ
w′

⊢ λx.t : Mk → A

T-λ1
u
⊢ e : Γ

v
⊢ c : Mk

vi
⊢ πi : Mki

i
maxi{w′ ,v,vi ,u}

⊢ (λx.t, e, c · π) : ⋆

T-ST

with w = maxi{w′, v, vi, u}. The target state s′ can be typed by the following derivation π′:

π′ :=

Γ, x : Mk
w′

⊢ t : A

u
⊢ e : Γ

v
⊢ c : Mk

max{u,v}
⊢ [x�c] · e : Γ, x : Mk

T-ENV
vi
⊢ πi : Mki

i
maxi{w′ ,v,vi ,u}

⊢ (t, [x�c] · e, π) : ⋆

T-ST

Since the T-λ1 rule is removed and the T-ENV rule does not count for the size of type
derivations, we have |π| > |π′|, and so we can apply the i.h., obtaining a run σ : s′ →∗SpKAM
s f to a final state such that maxi{w′, v, vi, u} = |σ|sp. Then there is a run ρ : s →∗SpKAM s f ,
proving the first part of the statement (termination).

For the space bound, note that

|s| = |e|+ |c · π| = |e|+ |c|+ |π| = |[x�c] · e|+ |π| = |s′|.

and so the space bound follows from the i.h.

• Case→sub, i.e. s = (x, [x�(u, e)], π) and s′ = (u, e, π). The type derivation π typing s has
the following shape:

x : [A]k
k+|A|
⊢ x : A

T-VAR

Γ
w′

⊢ u : [A]k
u
⊢ e : Γ

max{u,w′}
⊢ (u, e) : [A]k

T-CL

max{u,w′}
⊢ [x�(u, e)] : x : [A]k

T-ENV
vi
⊢ πi : Mki

i
maxi{k+|A|,u,w′ ,vi}

⊢ (x, [x�(u, e)], π) : ⋆

T-ST
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with w = maxi{k + |A|, u, w′, vi}. The target state s′ can be typed by the following derivation
π′:

π′ :=

Γ
w′

⊢ u : A
u
⊢ e : Γ

vi
⊢ πi : Mki

i
maxi{w′ ,u,vi}
⊢ (u, e, π) : ⋆

T-ST

Since the T-VAR rule is removed, we have |π| > |π′|, and so we can apply the i.h., obtaining
a run σ : s′ →∗SpKAM s f to a final state such that 1 + maxi{w′, u, vi} = |σ|sp. Then there is a
run ρ : s→∗SpKAM s f , proving the first part of the statement (termination).

For the space bound, note that |s| = k + |A| by Lemma 9.2.3, giving w = maxi{|s|, u, w′, vi}.
Now, there are two cases:

– |ρ|sp = |σ|sp: that is, |s| ≤ |σ|sp = maxi{w′, u, vi}. Then |s| ≤ maxi{w′, u, vi}, and so
w = maxi{|s|, u, w′, vi} = maxi{w′, u, vi} =i.h. |σ|sp = |ρ|sp.

– |ρ|sp > |σ|sp: that is, |s| > |σ|sp = maxi{w′, u, vi}. Then |s| > maxi{w′, u, vi}, and so
w = maxi{|s|, u, w′, vi} = |s| = |ρ|sp.

As a corollary, we can transfer back the soundness result from typed states to typed terms.

Corollary 9.2.9 (Soundness, on Terms). Let t be a closed λ-term. If there exists π ▷ ⊢w t : ⋆, then there
exists a complete Space KAM run ρ from t such that |ρ|sp = w.

9.3 Completeness

Completeness is the fact that all states on which the Space KAM terminates are typable. Here
the proof technique is standard: we show that final states are typable, that a subject expansion
property holds, and then we infer completeness. We do not perform any space analysis, since it is
already it follows from the soundness part, once we know that a state is typable.

Final States are Typable. We need an auxiliary lemma about closures and environments.

Lemma 9.3.1 (Closures and environments are typable).

1. There exists a dry type context Γ and a derivation π ▷ ⊢ e : Γ for every environment e.

2. There exist k and a derivation π ▷ ⊢ c : [·]k for every closure c.

Proof. By mutual induction on e and c.

1. If e is empty then Γ is the empty type context. Otherwise, by i.h. (point 2), for every closure
e(x) with x ∈ dom(e) there exists kx and a derivation π ▷ ⊢ c : [·]k . Then π is defined as
follows:

⊢ e(x) : Γ(x)
⊢ e : Γ T-ENV

2. Let c = (t, e). By the environments domain invariant (Lemma 8.2.1), dom(e) = fv(t). By i.h.
(point 1), there exists a dry type context Γ and a derivation π ▷ ⊢ e : Γ. Since dom(e) = fv(t),
we can apply rule T-NONE deriving a judgment Γ ⊢ t : [·]1+|Γ|. Then π is defined as follows:

⊢ e : Γ Γ ⊢ t : [·]1+|Γ|

⊢ (t, e) : [·]1+|Γ|
T-CL
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Lemma 9.3.2 (Final states are typable). Let s be a final state. Then there exists a type derivation
π ▷ ⊢ s : ⋆.

Proof. Final states have the shape (λx.t, e, ϵ). By Lemma 9.3.1.1, there is a type derivation ⊢ e : Γ
with Γ dry. By the environments domain invariant (Lemma 8.2.1), dom(e) = fv(λx.t). Then π is
defined as follows:

dom(Γ) = fv(λx.t) Γ is dry
Γ ⊢ λx.t : ⋆

T-λ⋆ ⊢ e : Γ
⊢ (λx.t, e, ϵ) : ⋆

T-ST

Subject Expansion. The proof of subject expansion is standard. There is only one delicate point,
in expanding the application transitions→sea¬v and→seav , where one needs to ensure that the two
type contexts for the premises of the application are summable.

Proposition 9.3.3 (Subject expansion). If s→SpKAM s′ and there exists π′ ▷ ⊢ s′ : ⋆, then there exists
π ▷ ⊢ s : ⋆.

Proof. There are three cases that require something more than simply reading backwards the
subject reduction argument in the proof of the correctness theorem. One is→βw

, where in addition
one needs to type the garbage collected closure, but this is ensured by Lemma 9.3.1.1. The other two
are the application transitions→sea¬v and→seav . We treat→sea¬v , the case of→seav is analogous.
We have s = (tu, e, c1 · · · cn)→sea¬v (t, e|t, (u, e|u) · c1 · · · cn) = s′. The type derivation π′ typing s′

has the following shape:

π′ =

Γ ⊢ t : Mk → A ⊢ e|t : Γ

∆ ⊢ u : Mk ⊢ e|u : ∆

⊢ (u, e|u) : Mk T-CL
⊢ ci : Mki

i

⊢ (t, e|t, (u, e|u) · c1 · · · cn) : ⋆
T-ST

Assuming that Γ#∆, that we shall prove below, the type derivation π for s is given by:

π :=

Γ ⊢ t : Mk → A ∆ ⊢ u : Mk Γ#∆
Γ ⊎ ∆ ⊢ tu : A

T-@1 ⊢ e : Γ ⊎ ∆ ⊢ ci : Mki
i

⊢ (tu, e, c1 · · · cn) : ⋆
T-ST

where the derivation for ⊢ e : Γ ⊎ ∆ is obtained by an omitted and straightforward multi-sets
merging lemma dual to the multi-sets splitting lemma (Lemma 9.2.7) used for correctness.

We now prove Γ#∆, which is the additional bit not present in the proof of subject reduction. Let
x ∈ dom(Γ) ∩ dom(∆). Then et(x) = eu(x) = e(x) = c for some closure c. By Lemma 9.2.2.2, we
have both Γ(x) = N|c|1 and ∆(x) = N|c|2 for some multi types N1 and N2, that is, Γ#∆.

Theorem 9.3.4 (Completeness). Let s a reachable state and ρ : s→∗SpKAM s f be a KAM run to a final
state s f . Then there exist π ▷ ⊢ s : ⋆.

Proof. By induction on the length |ρ| of ρ. If |ρ| = 0 then s = s f , and the existence of a typing
derivation for s is given by Lemma 9.3.2. If |ρ| > 0 then ρ is given by a transition s →SpKAM s′

followed by an execution σ : s′ →∗SpKAM s f . By i.h., we obtain π ▷ ⊢ s′ : ⋆, and by subject expansion
(Prop. 9.3.3) we obtain π ▷ ⊢ s : ⋆.

Again, as a corollary, we can transfer the completeness property from states to terms.

Corollary 9.3.5 (Completeness, on Terms). If t is a closed λ-term such that there exists a complete Space
KAM run from t, then there exists π ▷ ⊢ t : ⋆.

Putting together quantitative soundness and completeness gives the quantitative correctness of
the closure type system.
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Theorem 9.3.6 (Correctness). Let t be a closed λ-term. Then there exists a complete Space KAM run ρ
from t such that |ρ|sp = w if and only if there exists π ▷ ⊢w t : ⋆.





Chapter 10

Conclusions

This dissertation has brought new contributions in several research areas: the complexity of
Girard’s geometry of interaction, its relationship with non-idempotent intersection types, and the
understanding of reasonable space cost models for the λ-calculus. In the following sections we
draw some conclusions, in particular putting our results in context, and proposing some directions
for future investigations.

10.1 Our Results in Perspective

This dissertation is set in the wider effort that many researchers have made to understand the
(space) complexity of higher-order computation. We have made the state-of-the-art advance in a
significant way, as we are going to detail.

Geometry of Interaction. Since the birth of linear logic in the late ’80s, a new notion of proofs
(or programs) as interaction has come to the scene. Concurrent languages such as the π-calculus,
game semantics, and the geometry of interaction were some of the concrete instances of this new
approach. All these tools were very successful, and allowed to solve many open problems, e.g. the
long quest for a fully abstract model of PCF. Some questions, however, remained open until now.
The space complexity of the GoI is one of these. While in the community it was conjectured that
the way the GoI uses to compute could be space efficient, the available results were limited only to
some particular cases. Our study instead reveals that in the general case of the untyped λ-calculus,
the GoI cannot be space efficient. Being based on the solid tool of non-idempotent intersection
types, our proof gives also a high level motivation of this fact: the space (and time) inefficiency
comes from the way in which recursion is handled. This is why we believe that there is no easy
way out, and we thus consider the problem settled, although in a negative way.

Reasonable Space Cost Models. After having found out that the GoI could not be the right
answer, we have had to take one step backward to take two steps forward. We had investigated the GoI
in order to understand how to measure the space complexity of the λ-calculus in a reasonable way.
Typical execution mechanisms, such as environment abstract machines, did not seem to fit the task.
However, a closer look to Krivine’s abstract machine led us to the counterintuitive fact that its
space consumption could be used as a reasonable space measure. The point was that all the sharing
mechanisms used for time efficiency should have been turned off. Actually, in order to prove the
result, many other tweaks have to be considered. Very few degrees of freedom were possible in the
design of the optimized machine. This consideration makes us think that it is very unlikely that
better results could be achieved. This is somehow disappointing, since originally there was the idea
that reasonable cost models for the λ-calculus should be actually defined on the λ-calculus, in the
abstract, and not on machines. Although we do not have a formal statement, we believe that this is
simply impossible for space, if one wants to account for sub-linear complexity. This is because of
the very nature of the λ-calculus, in which there is no distinction between program and data. This
distinction is indeed fundamental when one wants to measure sub-linear space complexity.
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10.2 Future Directions

It is certainly very difficult to the answer to the question “what is to be done?”, i.e. to sketch some
future directions that stem from our work. This is mainly due to the fact that we have mostly
closed paths, rather than opened new directions.

Game Semantics. One of our contributions has been to develop a new formulation for the GoI.
Not only we have defined it directly on the λ-calculus, but we have also recovered it via non-
idempotent intersection types, in a very natural way. It is our opinion that game semantics (GS),
very related to GoI, needs an equivalent restyling. GS is generally presented in a very categorical
way on typed languages, focusing on full abstraction results. We believe that it could be presented
in a more operational way (a proposal can be found in (Jaber, 2015)), in an untyped setting. Non-
idempotent intersection types could help also in this respect, see the work by Tsukada and Ong
(2016). In particular, it is well-known that Abramsky et al. GS is somehow isomorphic to the IAM.
This is why we believe that the connection should be made clearer, also at the syntactic level. All
the computational mechanisms presented in this dissertation, multi types, abstract machines, the
LSC, indeed, compute in the very same way. GS is just another example of this behavior, but the
right formulation has not yet been found.

Call-by-Value. Many of our results hold only in the call-by-name case. It is an interesting
research direction to look at what happens in call-by-value. The GoI, in particular, is CbN almost
by definition, although some effort has been done to port it to CbV (see e.g. (Dal Lago et al., 2015)
and (Fernández and Mackie, 2002)). Would our complexity results still hold in this new scenario?
Moreover, it would be interesting to adapt the type system of Chapter 9 to CbV evaluation, in
order to capture the (reasonable) space measure for CbV defined in Chapter 8.

Formalization. All our results have been proved with pen and paper. Although in the very
simple scenario on the pure untyped λ-calculus, this already requires very long and error-prone
proofs. It is probably the right moment to develop some tools that could allow researchers to deal
with abstract machines and multi types in a semi automatic way. Developing such libraries for
proof assistants seems to be an interesting and very useful task. This would allow the community
to focus less on writing very verbose proofs, and more on developing new ideas.

Concrete Languages and Automation. Typing programs with intersection types is very difficult.
This is mainly due to the fact that it is impossible to type functions in a uniform way. Transferring
our results to more concrete programming languages seems an interesting research direction. The
natural starting point would be considering the language PCF, and a type system based on linear
dependent types (Dal Lago and Gaboardi, 2011). This is essentially a multi type system crafted to
capture the complexity of functions, rather than single λ-terms. At that point, it could be possible
to devise automatic tools that could infer the type and hence the complexity of programs. Of
course, the methodology would be sound but not complete, because of the undecidability of the
underlying problem.



Appendices





Appendix A

Proofs of Exhaustible Invariants

A.1 Proof of the Exhaustible Invariant

Proposition A.1.1 (Exhaustible invariant). Let s be a λIAM reachable state. Then s is exhaustible.

Proof. Let s = (t, ⟨·⟩, ϵ, ϵ)→k
λIAM s′. By induction on k. For k = 0 there is nothing to prove because

the state has no tape nor log tests. Then suppose s→k−1
λIAM s′′ →λIAM s′. By i.h., s′′ = (u, C, L, T, d)

is exhaustible, and with this hypothesis we need to conclude that s′ is exhaustible, too. There are
many cases to take into account, depending on the transition used to move from s′′ to s′. We recall
that we use |T|l for the number of logged position in T, called position length of T in the proof.

First, suppose that d = ↓. Cases of s′′ →λIAM s′:

1. Application, i.e. u = rw and

(rw, C, L, T)→•1 (r, C⟨⟨·⟩w⟩, L, •·T) = s′.

We have to show that the obtained state s′ is exhaustible. For log tests, it follows from
Lemma 3.5.10.3 and the i.h.: s′′ is a head translation of s′, and the lemma states that they have
the same log tests, which are exhaustible because s′′ is exhaustible by i.h.

For tape tests, consider a decomposition T = T′·l·T′′. Two cases, depending on the parity of
|T′|l :

(a) |T′|l is odd. Then the position length of the tape •·T′·l is even (occurrences of • are
ignored) and so the direction of the corresponding tape test s′ l is ↑. Note that s′ l reduces
to a tape test s′′l for s′′ having the same focus l of s′ l :

s′ l = (r, C⟨⟨·⟩w⟩, L, •·T′·l)→•3 (rw, C, L, T′·l) = s′′l

By i.h., s′′ is exhaustible, and so s′′l evolves to an exhaustible state surrounding l, call it
ql . Then s′ l evolves to ql and the test is successful.

(b) |T′|l is even. Then | • ·T′·l|l is odd, and the direction of the corresponding tape test s′ l os
s′ is ↓. Note that the corresponding tape test s′′l of s′′ reduces to s′ l :

s′′l = (rw, C, L, T′·l)→•3 (r, C⟨⟨·⟩w⟩, L, •·T′·l) = s′ l

By i.h., s′′ is exhaustible, then s′′l evolves to an exhaustible state surrounding l, call it ql .
The IAM is deterministic, so s′ l itself reduces to ql .

2. Abstraction 1, i.e. u = λx.r and T = • · T′. Identical to the previous one.

3. Variable bound by an abstraction, i.e. u = x and

s′′ = (x, C⟨λx.Dn⟩, Ln · L, T)
→var (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln) · T) = s′

The proof that s′ is exhaustible is divided in two parts:
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(a) Log testing. By Lemma 3.5.10.4, all log tests of s′ are also log tests of s′′. Since the latter is
exhausible by i.h., then all the log tests of s′ are successful.

(b) Tape testing. We need to consider various cases, corresponding to the various decompo-
sitions of the tape l′·T where l′ = (x, λx.Dn, Ln):

i. The logged position to test is l = l′, i.e. the first one. We are then considering a prefix
of odd length of l′·T, so the direction of the corresponding tape test s′ l is ↓. Observe,
however, that by definition

s′ l = (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln))

→bt2 (x, C⟨λx.Dn⟩, Ln·L, ϵ) = s′′⊥

where s′′⊥ is trivially surrounding l. Moreover, by i.h., s′′ is exhaustible, a property
which is easily transferred to s′′⊥: the log tests are the same by Lemma 3.5.10.1,
while s′′⊥ satisfies tape testing trivially, because the tape is empty.

ii. The prefix T′·l of the tape has even length and the direction of the corresponding tape
test s′ l is ↑. Let T′ = (x, λx.Dn, Ln)·T′′. Note that the corresponding tape test s′′l of
s′′ reduces to s′ l :

s′′l = (x, C⟨λx.Dn⟩, Ln · L, T′′·l)
→var (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln)·T′′·l) = s′ l

By i.h., s′′ is exhaustible, then s′′l evolves to an exhaustible state surrounding l, call
it ql . The IAM is deterministic, so s′ l itself reduces to ql , and the test is successful.

iii. The prefix T′·l of the tape has odd strictly positive length and the direction of the
corresponding log test s′ l is ↓. Let T′ = (x, λx.Dn, Ln)·T′′. Note that s′ l reduces to
the corresponding log test s′′l of s′′:

s′ l = (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln)·T′′·l)
→bt2 (x, C⟨λx.Dn⟩, Ln · L, T′′·l) = s′′l

We can then proceed as usual using the i.h.

4. Abstraction 2, i.e. u = λx.r and

s′′ = (λx.r, C, L, (x, λx.Dn, L′)·T)
→bt2 (x, C⟨λx.Dn⟩, L′·L, T) = s′

(a) Log testing. Let l = (x, C⟨λx.Dn⟩, L′) and note that the tape tests of s′′ of focus l does the
following transition:

s′′l = (λx.r, C, L, (x, λx.Dn, L′))
→bt2 (x, C⟨λx.Dn⟩, L′·L, ϵ) = s′ϵ

Now, s′ϵ surrounds l and thus, by i.h. (tape testing of s′′), s′ϵ is exhaustible. By
Lemma 3.5.10.2, s′ϵ and s′ have the same log tests, so log testing for s′ holds because it
does for s′ϵ.

(b) Tape testing. As usual, we have to consider various cases, corresponding to the possible
decompositions T = T′·l·T′′ of the tape.

i. |T′|l is odd, so that the prefix T′·l of the tape has even length and the direction of
the tape test s′ l corresponding to l is ↑. Note that the tape test s′′l of s′′ reduces to
the corresponding tape test s′ l of s′:

s′′l = (λx.Dn⟨x⟩, C, L, (x, λx.Dn, L′)·T′·l)
→bt2 (x, C⟨λx.Dn⟩, L′ · L, T′·l) = s′ l

We can then proceed as usual, exploiting the determinism of the λIAM and the i.h.
ii. |T′|l ̸= 0 is even, so that the prefix T′·l of the tape has odd length and the direction

of the tape test s′ l corresponding to l is ↓. Note that s′ l reduces to the corresponding
tape test s′′l of s′′:

s′ l = (x, C⟨λx.Dn⟩, L′ · L, T′·l)
→var (λx.Dn⟨x⟩, C, L, (x, λx.Dn, L′)·T′·l) = s′′l
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Again, we can then proceed as usual using the i.h.

5. Explicit Substitution, i.e. u = r[x�w] and

s′′ = (r[x�w], C, L, T)→es (r, C⟨⟨·⟩[x�w]⟩, L, T) = s′

For log testing, it follows from Lemma 3.5.10.3 and the i.h.: s′′ is a head translation of s′,
and the lemma states that they have the same log tests, which are exhaustible because s′′ is
exhaustible by i.h.

For tape testing it goes exactly as the application case. We spell it out anyway. Consider a
decomposition T = T′·l·T′′. Two cases, depending on the parity of |T′|l :

(a) |T′|l is odd. Then the position length of the tape T′·l is even and so the direction of the
corresponding tape test s′ l is ↑. Note that s′ l reduces to a tape test s′′l for s′′:

s′ l = (r, C⟨⟨·⟩[x�w]⟩, L, T′·l)
→es2 (r[x�w], C, L, T′·l) = s′′l

Again, we then proceed as usual using the i.h.

(b) |T′|l is even. Then |T′·l|l is odd, and the direction of the corresponding tape test s′ l os s′

is ↓. Note that the corresponding tape test s′′l of s′′ reduces to s′ l :

s′′l = (r[x�w], C, L, T′·l)
→es (r, C⟨⟨·⟩[x�w]⟩, L, T′·l) = s′ l

Again, we then proceed as usual, exploiting the determinism of the λIAM and the i.h.

6. Variable bound by an explicit substitution, i.e. u = x and

s′′ = (x, C⟨Dn[x�r]⟩, Ln · L, T)
→var2 (r, C⟨Dn⟨x⟩[x�⟨·⟩]⟩, (x, Dn[x�r], Ln) · L, T) = s′

(a) Log testing: let l := (x, Dn[x�r], Ln) and m = |l · L|. The m-log test of s′ is

sl = (r, C⟨Dn⟨x⟩[x�⟨·⟩]⟩, (x, Dn[x�r], Ln) · L, ϵ)

which makes a transition

→var3 (x, C⟨Dn[x�r]⟩, Ln · L, ϵ) = (s′′ϵ )⊥

that is a state surrounding l, as required by log testing. We have to prove that (s′′ϵ )⊥ is
exhaustible. Tape testing is trivial, because the tape is empty. Log testing follows from
the i.h. and the fact that (s′′ϵ )⊥ is s′′ with reversed direction and without the tape, and so
by Lemma 3.5.10.1 and Lemma 3.5.10.2 they have the same log tests.
Note that the i-log tests of s′ for i < m are the i-log tests of s′ (Lemma 3.5.10.4), and so
they satisfy the log testing clause by the i.h.

(b) Tape testing: it goes exactly as in the previous ordinary cases. We spell it out anyway.
Consider a decomposition T = T′·l·T′′. Two cases, depending on the parity of |T′|l :

i. |T′|l is odd. Then the position length of the tape T′·l is even and so the direction of
the corresponding tape test s′ l is ↑. Note that s′ l reduces to a tape test s′′l for s′′:

s′ l = (r, C⟨Dn⟨x⟩[x�⟨·⟩]⟩, (x, Dn[x�r], Ln) · L, T′·l)
→var3 (x, C⟨Dn[x�r]⟩, Ln · L, T′·l) = s′′l

Again, we then proceed as usual using the i.h.
ii. |T′|l is even. Then |T′·l|l is odd, and the direction of the corresponding tape test s′ l

os s′ is ↓. Note that the corresponding tape test s′′l of s′′ reduces to s′ l :
s′′l = (x, C⟨Dn[x�r]⟩, Ln · L, T′·l)
→var2 (r, C⟨Dn⟨x⟩[x�⟨·⟩]⟩, (x, Dn[x�r], Ln) · L, T′·l) = s′ l
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Again, we then proceed as usual, exploiting the determinism of the λIAM and the
i.h.

Now, suppose that d = ↑. Cases of s′′ →λIAM s′:

1. Coming from the left of an application, i.e. C = D⟨⟨·⟩r⟩ and

s′′ = (u, D⟨⟨·⟩r⟩, L, l · T)→arg (r, D⟨u⟨·⟩⟩, l · L, T) = s′.

The proof that s′ is exhaustible is divided in two parts:

(a) Log testing. The log tests of s′ are those of s′′ plus
(r, D⟨u⟨·⟩⟩, l · L, ϵ). The former are fine because of the i.h., while about the latter, observe
that (r, D⟨u⟨·⟩⟩, l · L, ϵ) evolves to (u, D⟨⟨·⟩r⟩, L, l) which is a tape test of s′′. The thesis
easily follows by i.h.

(b) Tape testing. Let T′ be a prefix of T such that T′ = T′′·l′. Two cases:

i. |T′|l is odd, and the direction is ↓. Note that the tape test s′′l of s′′ corresponding to l
reduces to a tape test s′ l of s′:

s′′l = (r, D⟨u⟨·⟩⟩, L, l·T′)
→arg (r, D⟨u⟨·⟩⟩, l · L, T′) = s′ l

We can then proceed as usual, using the i.h. and determinism of the IAM.
ii. |T′|l is even, and the direction is ↑. Note that s′ l reduces to the corresponding tape

test s′′l of s′′:
s′ l = (r, D⟨u⟨·⟩⟩, l · L, T′)
→bt1 (r, D⟨u⟨·⟩⟩, L, l·T′) = s′′l

Again, we can proceed as usual, using the i.h.

2. Coming from the right of an application, i.e. C = D⟨r⟨·⟩⟩ and

s′′ = (u, D⟨r⟨·⟩⟩, l · L, T)→bt1 (r, D⟨⟨·⟩u⟩, L, l · T) = s′.

The proof that s′ is exhaustible is divided in two parts:

(a) Log testing: the log tests of s′ are among the log tests of s′′, so log testing follows from i.h.

(b) Tape testing. Let T′ be a prefix of T. Two cases:

i. T′ = T is empty. So that the tape contains only l, its length is odd, and the direction
is ↓. The state to be proven exhaustible is

s′ l = (r, D⟨⟨·⟩u⟩, L, l)

Now, note that the log test s′′|l·L| of s′′ reduces in one step to s′ l :

s′′|l·L| = (u, D⟨r⟨·⟩⟩, l · L, ϵ)

→bt1 (r, D⟨⟨·⟩u⟩, L, l)
By log testing for s′′, there is a state ql surrounding l such that s′′|l·L| →

∗
λIAM ql . By

determinism of the IAM, s′ l →∗λIAM ql .
ii. T′ ̸= T is non-empty. Then T′ = T′′·l′ Two cases:

A. |T′′·l′|l is even, so that the tape l·T′′·l′ has odd length and the direction is ↓.
Note that the tape test s′′l′ corresponding to l′ of s′′ reduces to the tape test s′ l′
corresponding to l′ of s′:

s′′l′ = (r, D⟨⟨·⟩u⟩, l·L, T′′·l′)
→bt1 (r, D⟨⟨·⟩u⟩, L, l·T′′·l′) = s′ l′

In this case, as usual, we can conclude by determinism of the λIAM.
B. |T′|l is odd, so that the tape l·T′′·l′ has even length and the direction is ↑. Note

that s′ l′ reduces to the corresponding tape test s′′l′ of s′′:
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s′ l′ = (r, D⟨⟨·⟩u⟩, L, l·T′′·l′)
→arg (r, D⟨⟨·⟩u⟩, l·L, T′′·l′) = s′′l′

Again, the usual scheme allows us to conclude that tape testing holds.

3. Explicit Substitution

s′′ = (u, C⟨⟨·⟩[x�r]⟩, L, T)→es2 (u[x�r], C, L, T) = s′

(a) Log testing: by Lemma 3.5.10.3 (head translation), the log tests of s′ are log tests of s′′,
which satisfy log testing by the i.h.

(b) Tape testing: it goes exactly as for the other ordinary cases (i.h., plus determinism in one
of the two sub-cases).

4. Coming from inside an explicit substitution:

s′′ = (u, C⟨D⟨x⟩[x�⟨·⟩]⟩, (x, D[x ← u], L′) · L, T)
→var3 (x, C⟨D[x ← u]⟩, L′ · L, T) = s′

(a) Log testing: by i.h., s′′ is exhaustible, and its |L|+ 1-log test evolves to

s′′|L|+1 = (u, C⟨D⟨x⟩[x�⟨·⟩]⟩, (x, D[x ← u], L′) · L, ϵ)

→var3 (x, C⟨D[x ← u]⟩, L′ · L, ϵ) = s′ϵ

which is exhaustible. By Lemma 3.5.10.2, s′ϵ and s′ have the same log tests, which are
then successful.

(b) Tape testing: since the tape is unaffected by the transition, this case goes exactly as the
other ordinary ones.

A.2 Proof of the S-Exhaustible Invariant

Lemma A.2.1 (S-exhaustible invariant). Let t be a closed term, π ▷ Γ ⊢ t : A a sequence type derivation
for it, and ρ : ⊢ t : ⟨A⟩↑ →k

SIAM s an initial SIAM run. Then s is S-exhaustible.

Proof. By induction on k. For k = 0 there is nothing to prove because the initial state s0 =⊢ t : ⟨A⟩↑
has has no judgment nor type tests. Then suppose ρ′ : s0 →k−1

λIAM s′ and that the run continues
with s′ →SIAM s. By i.h., s′ is S-exhaustible.

Terminology: when a test state satisfies the clause in the definition of S-exhaustible states we say
that it is positive.

Cases of s′ →SIAM s:

• Case→•1.

s′ =
⊢ t : S→ A [⊢]
⊢ tu : A⟨⋆↑⟩(= A) →•1

⊢ t : S→ A⟨⋆↑⟩ [⊢]
⊢ tu : A = s

– judgment tests. Note that s has the same judgment tests of s′, which are positive by the
i.h.

– Type tests. We first consider the type tests of direction ↑. Let us s f be one of them. We
observe that there is a corresponding type test s′ f of s′, that by i.h. it is positive, and
that s′ f →SIAM s f . Since the machine is deterministic also s f is positive. Let us now
consider a type test s f of direction ↓. We observe that there is a corresponding type test
s′ f of s′, that it is positive by i.h., and that s f → s′ f . Then s f is positive.

• Case→•2. Identical to the previous one.
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• Case→var.

s′ =

⊢ x : A⟨⋆↑⟩i(= Ai)
i

....
⊢ λx.C⟨x⟩ : [. . . Ai . . .]→ B →var

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : [. . . A⟨⋆↓⟩i . . .]→ B = s

– judgment tests. judgment tests of s are a subset of judgment tests of s′ and thus positive
by i.h.

– Type tests. Let n be the level of A. Let sj be the type test of s associated to the j-th triple
in DiPref([. . . A . . .]→ B). Three cases, depending on the index j of sj:

1. j = 1: then s1 is ⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .] → B. Note that s1 →bt2 ⊢ x :
A⟨⋆⟩i↓, ⟨·⟩, which has no type tests and has the same judgment tests of s′, which by
i.h. are positive. Hence, s1 is S-exhaustible.

2. j is even: for sj (of direction ↓) there is a corresponding type test s′ j−1 of odd index
of s′, having direction ↑ and such that s′ j−1 →var sj. Thus one can conclude by i.h.
and determinism of the SIAM.

3. j ̸= 1 is odd: for sj (of direction ↑) there is a corresponding type test s′ j−1 of even
index of s′, having direction ↓ and such that sj →bt2 s′ j−1. Thus one can conclude
by i.h.

• Case→bt2.

s′ =

⊢ x : Ai(= A⟨⋆⟩i)
i

....
⊢ λx.C⟨x⟩ : [. . . A⟨⋆↑⟩i . . .]→ B →bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : [. . . Ai . . .]→ B = s

– judgment tests. The first type test of s′ is s′1 :=⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .]→ B. Note
that s′1 →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩ =: s′′ and that s′′ exhausts s′1, and it is the first such state.
Since s′1 is positive, s′′ is S-exhaustible. Note that s′′ has the same judgment tests of s,
which are then positive.

– Type tests. For each odd type test si of s (whose direction is ↑), the corresponding even
type test s′ i+1 of s′ has direction ↓, is positive by i.h., and such that si →var s′ i+1. Then
si is positive. For each even type test si of s (whose direction is ↓), the corresponding
odd type test s′ i+1 of s′ has direction ↑, is positive by i.h., and such that s′ i+1 →bt2 si.
Then si is positive by determinism of the SIAM.

• Cases→•3 and→•4. They are identical to case→•1.

• Case→arg.

s′ =

⊢ t : [. .A⟨⋆↓⟩i. .]→ A ⊢i u : Bi

⊢ tu : A →arg

⊢ t : [. .Bi. .]→ A ⊢i u : A⟨⋆↑⟩i
⊢ tu : A = s

– judgment tests. judgment tests of s are those of s′, which are positive by i.h., plus
su :=⊢ u : A⟨⋆⟩i↓, ⟨·⟩. Please note that su →bt1 ⊢ t : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .] → A =: s′t.
Now, s′t is a type test of s′ and by i.h. is positive. Then su is positive.

– Type tests. For each odd type test si of s (whose direction is ↑), the corresponding even
type test s′ i+1 of s′ has direction ↓, is positive by i.h., and such that s′ i+1 →arg si. Then si

is positive by determinism of the SIAM. For each even type test si of s′ (whose direction
is ↓), the corresponding odd type test s′ i+1 of s′ has direction ↑, is positive by i.h., and
such that si →bt1 s′ i+1. Then si is positive.
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• Case→bt1.

s′ =

⊢ t : [. .Bi. .]→ A ⊢i u : A⟨⋆↓⟩i
⊢ tu : A →bt1

⊢ t : [. .A⟨⋆↑⟩i. .]→ A ⊢i u : Bi

⊢ tu : A = s

– judgment tests. All judgment tests of s are judgment test of s′, which are this way positive
by i.h.

– Type tests. The first type test of s is s1 :=⊢ t : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .] → A. Please note
that s′u :=⊢ u : A⟨⋆⟩i↓, ⟨·⟩ is a judgment test of s′ such that s′u →bt1 s1. By i.h., s′u is
positive. By determinism of the SIAM, s1 is positive.
For each odd type test si of s (whose direction is ↑), the corresponding even type test
s′ i−1 of s′ has direction ↓, is positive by i.h., and such that s′ i−1 →bt1 si. Then si is
positive by determinism of the SIAM. For each even type test si of s′ (whose direction
is ↓), the corresponding odd type test s′ i−1 of s′ has direction ↑, is positive by i.h., and
such that si →arg s′ i−1. Then si is positive.

A.3 Proof of the I-Exhaustible Invariant

Lemma A.3.1 (I-exhaustible invariant). Let t be a closed term and ρ : st →k
λJAM s a λJAM run. Then s

is I-exhaustible.

Proof. By induction on k. For k = 0 there is nothing to prove because the tape has no logged
positions (so it does not decompose) and s has no outer states. Then suppose ρ′ : s0 →k−1

λIAM s′ and
that the run continues with s′ →λJAM s. By i.h., s′ is I-exhaustible.

Terminology: when a test state satisfies the clause in the definition of I-exhaustible states we say
that it is positive.

There are many cases to take into account, depending on the transition used to move from s′ to
s—the cases for • are rather trivial, the other ones instead are subtle, the subtlest one being the
jump, that is, transition→jmp (it is the last case). First, suppose that d = ↓. Cases of s′ →λIAM s:

1. Transition→•1:
s′ = (rw, C, L, T)→•1 (r, C⟨⟨·⟩w⟩, L, •·T) = s.

• Log tests. Positivity of log tests follows from Lemma 3.5.10.3 and the i.h.: s′ is a head
translation of s, and the lemma states that they have the same log tests, which are
positive because s′ is I-exhaustible by i.h.

• Tape tests. The direction is ↓ and by Lemma 7.1.1, the tape of s has no logged positions,
and so there are no tape tests.

2. Transition→•2:
s′ = (λx.r, C, L, • · T)→•2 (r, C⟨λx.⟨·⟩⟩, L, T) = s

Exactly as the previous case.

3. Transition→var:

s′ = (x, C⟨λx.Dn⟩, Ln · L, T)→var (λx.Dn⟨x⟩, C, L, (x, C⟨λx.Dn⟩, Ln · L) · T) = s

• Log tests. By Lemma 3.5.10.4, all log tests of s are also log tests of s′. Since the latter is
I-exhaustible by i.h., then all these tests are positive.

• Tape tests. Let l := (x, C⟨λx.Dn⟩, Ln · L). The only tape state of s is sl := (λx.Dn⟨x⟩, C, L, l)
and the one-step run

σ : I(sl) = (λx.Dn⟨x⟩, C, I(L), I(l))
= (λx.Dn⟨x⟩, C, I(L), (x, λx.Dn, I(Ln)))

→bt2,I(l) (x, C⟨λx.Dn⟩, I(Ln) · I(L), ϵ)
= I(x, C⟨λx.Dn⟩, Ln · L, ϵ) = I(l◦)
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exhausts l as required. Now, we prove that l◦ is I-exhaustible. Note that l◦ is s′ with
empty tape, so they have the same log tests, which are positive because s′ is I-exhaustible
by i.h., and l◦ has no tape tests.

Now, suppose that d = ↑. Cases of s′ →λIAM s:

1. Transition→•3:
s′ = (u, D⟨⟨·⟩r⟩, L, • · T)→•3 (ur, D, L, T) = s.

(a) Log tests. Positivity of log tests follows from Lemma 3.5.10.3 and the i.h.: s′ is a head
translation of s, and the lemma states that they have the same log tests, which are
positive because s′ is I-exhaustible by i.h.

(b) Tape tests. The direction of s is ↑ and by Lemma 7.1.1, the tape of s has exactly one logged
positions l, and so just one tape test sl . Note that s′ also has a tape test s′ l and that by i.h.
it is positive, that is, there is a run σ : I(s′ l)→∗λIAM→bt2,I(l) I(l◦) with l◦ I-exhaustible.
Since the direction of sl and s′ l is ↓, we have a run π : I(sl)→•1 I(s′ l)→∗λIAM→bt2,I(l)
I(l◦) prefixing σ with a step and exhausting sl .

2. Transition→•4
s′ = (u, D⟨λx.⟨·⟩⟩, L, T)→•4 (λx.u, D, L, • · T) = s.

This case is exactly as the previous one.

3. Transition→arg:

s′ = (u, D⟨⟨·⟩r⟩, L, l · T)→arg (r, D⟨u⟨·⟩⟩, l · L, T) = s.

(a) Log tests. The log tests of s are those of s′ plus sl = (r, D⟨u⟨·⟩⟩, l · L, ϵ). The former are
positive because of the i.h., while about the latter, observe that

I(sl) = I(r, D⟨u⟨·⟩⟩, l · L, ϵ)
= (r, D⟨u⟨·⟩⟩, I(l) · I(L), ϵ)

→bt1 (u, D⟨⟨·⟩r⟩, I(L), I(l))
= I(u, D⟨⟨·⟩r⟩, L, l) = s′ l .

(A.1)

Note that s′ l is a tape test of s′. By i.h., there is a run σ : I(s′ l) →∗λIAM→bt2,I(l) I(l◦)
such that l◦ is I-exhaustible. Now, the run for the test of interest is π : I(sl) →λIAM
I(s′ l)→∗λIAM→bt2,I(l) I(l◦), obtained by prefixing σ with the step in A.1.

(b) Tape tests. The direction is ↓ of s and by Lemma 7.1.1, the tape of s has no logged
positions, and so there are not tape tests for of s.

4. Transition→jmp:

s′ = (u, D⟨r⟨·⟩⟩, (x, C, L′) · L, T)→jmp (x, C, L′, T) = s.

Let l := (x, C, L′).

(a) Log tests: By i.h., s′ is I-exhaustible, and since s′ l = (u, D⟨r⟨·⟩⟩, (x, C, L′) · L, ϵ) is a log
test of s′, then it is positive and there exist a run

σ : I(s′ l) →∗λIAM→bt2,I(l) I(l◦)

where l◦ is I-exhaustible. By Lemma 3.5.10.2, s and l◦ have the same log tests, which are
then positive.

(b) Tape tests. Since the direction of s is ↑, by Lemma 7.1.1 |T|l = 1, there is only one possible
decomposition: T = T′ · l · T′′. Then the only tape test of s is

sl = (x, C, L′, T′ · l)
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and the only tape test of s′ is

s′ l = (u, D⟨r⟨·⟩⟩, (x, C, L′) · L, T′ · l)

that by i.h. is positive and so there is a run σ : I(s′ l) →∗λIAM→bt2,I(l) I(l◦) with l◦

I-exhaustible.
Now, we show that I(sl)→+

λIAM I(s′ l), that proves the positivity of the tape tests, using
an argument analogous to the one for the log tests. Let l′ := (x, C, L′) and consider
the state s′ l′ := (u, D⟨r⟨·⟩⟩, l′ · L, ϵ), that it is a log test of s′. By i.h., it is positive,
thus there is a run π : I(s′ l′) →∗λIAM→bt2,I(l′) I(l′◦). By reversibility, we obtain a
run π′ : I(l′◦)⊥ →+

λIAM I(s′ l′)⊥, where ·⊥ is the operation on states that changes the
direction. Explicitly, we have:

σ′ : I(l′◦)⊥ = I(x, C, L′, ϵ)→+
λIAM I(u, D⟨r⟨·⟩⟩, (x, C, L′) · L, ϵ) = I(s′ l′)

⊥

By Lemma 3.3.6, we can lift the run to states extended with the tape T′ · l, obtaining:

π′′ : I(sl) = I(x, C, L′, T′ · l)→+
λIAM I(u, D⟨r⟨·⟩⟩, (x, C, L′) · L, T′ · l) = I(s′ l)

The run I(sl)→+
λIAM I(l◦) obtained by concatenating π′′ and σ exhausts sl .

A.4 Proofs of the ↑-Exhaustible Invariant

Lemma A.4.1 (HAM basic invariants). Let s = (t, Cn, L, E, T, d) be a HAM reachable state. Then

1. Position and log: (t, Cn, L)E is a closed position, and

2. Tape and direction: if d = ↓, then T does not contain any closed positions, otherwise, if d = ↑, then
T contains exactly one closed position.

Proof. By induction on the length of the run reaching s, together with an immediate inspection of
the transitions using the i.h.

Tape Tests. We start by giving the definition of tape tests, that was omitted from the body of
the thesis. By the tape and direction invariant, there is exactly one closed position l̂ on the tape in
direction ↑ and none in direction ↓. Essentially, we test only the logged closures added to the tape
in a ↓ phase, which—in ↑-states—are those on the right of l̂ on the tape. Moreover, in a ↑-state we
test them starting on l̂ (which records a ↓-state), not from the current position.

Definition A.4.2 (HAM Tape tests). Let s = (t, C, L, E, T, d) be a HAM state. Tape tests of s are defined
depending on whether there is a closed position l̂ on T, that is, on whether |T|l̂ is 1 or 0.

• If d = ↓ then sĉ := (t, C, L, E, T′) is a tape test of s of focus ĉ for each decomposition T = T′·ĉ·T′′ of
the tape.

• If d = ↑ then sĉ := (x, D, L′, E′, T1) is a tape test of s of focus ĉ for each decomposition T =

T′·l̂·T1·c·T2 with l̂ = (x, D, L′)E′ of the tape.

Lemma A.4.3 (Invariance properties of HAM environment tests). Let s = (t, Cn, Ln, E, T, d) be a
state. Then:
1. Direction: the dual (t, Cn, Ln, E, T, d1) of s induces the same environment tests;
2. Tape: the state (t, Cn, Ln, E, T′, d) obtained from s replacing T with an arbitrary tape T′ induces the

same environment tests;
3. Weak shift: let weak contexts be defined by W ::= ⟨·⟩

∣∣∣ Wu
∣∣∣ uW. Then



130 Appendix A. Proofs of Exhaustible Invariants

1. if t = W⟨r⟩, then for every L′ and T′ the state (r, Cn⟨W⟩, L′, E, T′, d) induces the same environ-
ment tests of s.

2. if Cn = Dh⟨Ek⟩ with Ek weak context, then for every L′ and T′ the state (Ek⟨t⟩, Ch, L′, E, T′, d)
induces the same environment tests of s.

4. Inclusion: if Cn = Cm⟨λx.Ci⟩, Ln = Li · Lm and E = E′ · [x�ĉ] · E′′ then the environment tests of
(λx.Ci⟨t⟩, Cm, Lm, E′′, T′, d) are environment tests of s.

As in Sect. 7.3, we consider the λJAM and the KAM as special instances of the HAM. In
particular the λJAM always uses the →varJ transition, while the KAM always the transition
→hop/varK. This way, states can be compared without any kind of projection.

Lemma A.4.4 (Logged closures and closed positions were visited). Let ρ : st →∗HAM s.

1. Logged closures: if ĉ = (u, C⟨t⟨·⟩⟩, E)L is a logged closure in s then ρ passes through a state
(t, C⟨⟨·⟩u⟩, L, E, T) for some tape T.

2. Closed positions: if l̂ = (u, C, L)E is a closed position in s then ρ passes through a state (u, C, L, E, T)
for some tape T.

Proof. By induction on the length of ρ, together with an immediate inspection of the transitions
using the i.h.

Lemma A.4.5 (↑-exhaustible invariant). Let s be a HAM reachable state. Then s is ↑-exhaustible.

Proof. By induction on k. For k = 0 there is nothing to prove because s = st has no tests. Then
suppose st →k−1

HAM s′ →HAM s. By i.h. s′ = (u, C, L, E, T, d) is ↑-exhaustible, and with this
hypothesis we need to conclude that s is ↑-exhaustible, too. There are many cases to take into
account, depending on the transition used to move from s′ to s.

Terminology: when a test satisfies the clause for tests in the definition of ↑-exhaustibility, we say
that it is positive.

First, suppose that d = ↓. Cases of s′ →HAM s:

1. Transition→•1/app:

s′ = (tu, C, L, E, T)→•1/app (t, C⟨⟨·⟩u⟩, L, E, (u, C⟨t⟨·⟩⟩, E)L·T) = s

• Environment tests. It follows by the i.h., since the environment tests of s are the same of
those of s′.

• Tape tests. The first tape test of s is trivially positive since sĉ = ĉ◦. All other tape tests
of s are in the form sĉ = (t, C⟨⟨·⟩u⟩, L, E, (u, C⟨t⟨·⟩⟩, E)L·T′), where T′·ĉ is a prefix of T.
Clearly

sĉ = (t, C⟨⟨·⟩u⟩, L, E, (u, C⟨t⟨·⟩⟩, E)L·T′)→•3 (tu, C, L, E, T′) = s′ ĉ

and s′ ĉ is a tape test for s′. By i.h., s′ ĉ is positive. Hence, since

sĉ →↑ s′ ĉ

also sĉ is positive.

2. Transition→•2/abs:

s′ = (λx.t, C, L, E, ĉ·T)→•2/abs (t, C⟨λx.⟨·⟩⟩, L, [x�ĉ]·E, T) = s

• Environment tests. The environment tests of s are those of s′ plus sĉ := (λx.t, C, L, E, ϵ).
Note that sĉ is also a tape test of s′, which by i.h. is positive.
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• Tape tests. Each tape test of s is in the form sĉ′ = (t, C⟨λx.⟨·⟩⟩, L, [x�ĉ]·E, T′), where T′·ĉ′
is a prefix of T. Clearly

sĉ′ = (t, C⟨λx.⟨·⟩⟩, L, [x�ĉ]·E, T′)→•4 (λx.t, C, L, E, ĉ·T′) = s′ ĉ′

and s′ ĉ′ is a tape test for s′. Thus, by i.h. s′ ĉ′ is positive, and so is sc′ .

3. Transition→varJ.

(x, C⟨λx.Dn⟩, Ln·L, E′[x�ĉ]E, T)→varJ (λx.Dn⟨x⟩, C, L, E, l̂·T)

where l̂ := (x, C⟨λx.D⟩, Ln·L)E′ [x�ĉ]E.

• Environment tests. It follows by the i.h., since all the environment tests of s are environ-
ment tests of s′.

• Tape tests. It follows by the i.h., since the tape tests of s are the same of those of s′.

4. Transition→hop/varK.

s′ = (x, C, L, E, T)→hop/varK (u, D⟨t⟨·⟩⟩, (x, C, L)E·L′, F, T) = s

where E = E′·[x�(u, D⟨t⟨·⟩⟩, F)L′ ]·E′′.

• Environment tests. By Lemma A.4.4, we have that the run ρ passed through a state
s′′ := (t, D⟨⟨·⟩u⟩, L′, F, T′) for some T′. Note that s′′ is a weak shift of s as defined
in Lemma 3.5.10.3, and so s′′ and s have the same environment tests, which are then
positive by i.h.

• Tape tests. Note that for each prefix T′·ĉ of T we have

sĉ = (u, D⟨t⟨·⟩⟩, (x, C, L)E·L′, F, T′)→jmp (x, C, L, E, T′) = s′ ĉ

and by i.h. s′ ĉ is positive. Then sĉ is positive.

Then, suppose that d = ↑. Cases of s′ →HAM s:

1. Transition→•3:
(t, C⟨⟨·⟩u⟩, L, E, ĉ·T)→•3 (tu, C, L, E, T)

• Environment tests. It follows by the i.h., because all the environment tests of s are
environment tests of s′ by Lemma 3.5.10.3.

• Tape tests. By i.h. since the tape tests of s are the same of those of s′.

2. Transition→•4:
(t, C⟨λx.⟨·⟩⟩, L, [x�ĉ]·E, T)→•4 (λx.t, C, L, E, ĉ·T)

• Environment tests. It follows by the i.h., because all the environment tests of s are
environment tests of s′.

• Tape tests. By i.h. since the tape tests of s are the same of those of s′ (ĉ appears on the left
of the enriched logged position in the tape, and so needs not to be tested).

3. Transition→arg:

s′ = (t, C⟨⟨·⟩u⟩, L, E, l·T)→arg (u, C⟨t⟨·⟩⟩, l·L, E, T) = s

• Environment tests. By i.h. since the environment tests of s are the same of those of s′ by
Lemma 3.5.10.3.
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• Tape tests. Since the direction of s is ↓, by the tape and direction invariant (Lemma A.4.1)
there are no closed position on T, and the tape tests of s are in the form sĉ := (u, C⟨t⟨·⟩⟩, l̂·L, E, T′),
where T′·ĉ is a prefix of T. If l̂ = (x, D, L′)E′ , then

sĉ = (u, C⟨t⟨·⟩⟩, (x, D, L′)E′ ·L, E, T′)→jmp (x, D, L′, E′, T′).

Those states in the form (x, D, L′, E′, T′) are exactly the tape tests s′ ĉ of s′. Thus, by i.h.
they are positive, and so are the tests sĉ.

4. Jumping.
s′ = (t, C⟨u⟨·⟩⟩, l̂·L, E, T)→jmp (x, D, L′, E′, T) = s

where l̂ = (x, D, L′)E′ .

• Environment tests. By Lemma A.4.4, the run ρ passes through a state s′′ := (x, D, L′, E′, T′)
for some T′. Note that s′′ and s differ only for direction and tape, and so by Lemma A.4.3
they have the same environment tests, which are positive by the i.h.

• Tape tests. It follows by the i.h., since the tape tests of s are the same of those of s′.
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Proofs of Bisimulations

B.1 Proof of the SIAM/λIAM Bisimulation

Proposition B.1.1 (SIAM-λIAM bisimulation). Let t a closed and→wh-normalizable term, and π ▷ ⊢
t : ⋆ a type derivation. Then ≃ext is a strong bisimulation between S-exhaustible SIAM states on π and
λIAM states on t. Moreover, if sπ ≃ext sλ then sπ is SIAM reachable if and only if sλ is λIAM reachable.

Proof. Assuming the bisimulation part of the statement, the moreover part follows from a trivial
induction on the length of the initial run, since initial state are bisimilar and the bisimulation is
exactly the fact that ≃ext is stable by transitions.

For the bisimulation part, we consider each possible transitions. We focus on the half of the
proof showing that SIAM transitions are simulated by the λIAM, the other half is essentially
identical.

• Case→•1.

s′ =
⊢ t : S→ A [⊢]
⊢ tu : A⟨⋆↑⟩(= A) →•1

⊢ t : S→ A⟨⋆↑⟩ [⊢]
⊢ tu : A = s

≃ext

sext(s) = (tu, Cs′ , Lext(s′), Text(s′)) →•1 (t, C⟨⟨·⟩r⟩, Lext(s′), • · Text(s′)) = sλ

Note that Cs = Cs′⟨⟨·⟩r⟩, Lext(s) = Lext(s′), and Text(s′) = • · Text(s). Then, sλ = sext(s),
that is, s ≃ext sλ.

• Case→•2. Identical to the previous one.

• Case→var.

s′ =

⊢ x : A⟨⋆↑⟩i(= Ai)
i

....
⊢ λx.Dn⟨x⟩ : [. . . Ai . . .]→ B →var

⊢ x : Ai
i

....
⊢ λx.Dn⟨x⟩ : [. . . A⟨⋆↓⟩i . . .]→ B = s

≃ext

sext(s) = (x, C⟨λx.Dn⟩︸ ︷︷ ︸
=Cs′

, Ln · L︸ ︷︷ ︸
=Lext(s′)

, Text(s′)) →var (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln) · Text(s′)) = sλ

First of all, Cs has shape C⟨λx.Dn⟩ for some n has the descending path from the focused
judgment to the final judgment passes through the showed T-λ rule. Then Cs′ = C.
About the log, by Lemma 4.3.11 there is a correspondance between the level of term contexts
and the length of the extracted log, so that Lext(s) has at least length n, that is, Lext(s′) = Ln · L,
and Lext(s) = L.
About the tape, note that Text(s) = lext(s1

f )·T
s
ext(A, 1) where s1

f is the first type test of s. To
show that sext(s) = (x, λx.Dn, Ln) · Text(s′) we have to show two things:
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1. lext(s1
f ) = (x, λx.Dn, Ln). Note that s1

f is ⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .]→ B. Note that

s1
f →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩ = s′′, where s′′ focusses on the same judgment of s′, and that

s′′ is the state that S-exhausts s1
f . By definition of extraction, lext(s1

f ) = (x, λx.Dn, Ln).

2. Ts
ext(A, 1) = Text(s′), that is, Ts

ext(A, 1) = Ts′
ext(A, 0). Note that Ts

ext(A, 1) and Ts′
ext(A, 0)

may differ only in the content of logged positions (obtained by extracting from tape
tests), which is the only thing that depends on the direction and the state, the rest being
uniquely determined by the type context A. Here one has to repeat the reasoning done
in the→bt2 case of the proof of the S-exhaustible invariant (Lemma 4.3.8), that shows
that the tape test of index i > 1 for s and the one of index i− 1 of s′ exhaust on the same
state, and thus induce the same logged position. Then Ts

ext(A, 1) = Text(s′).

Then sext(s) = (x, λx.Dn, Ln) · Text(s′), and so sλ = sext(s), that is, s ≃ext sλ.

• Case→bt2.

s′ =

⊢ x : Ai(= A⟨⋆⟩i)
i

....
⊢ λx.C⟨x⟩ : [. . . A⟨⋆↑⟩i . . .]→ B →bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : [. . . Ai . . .]→ B = s

≃ext

sext(s′) = (λx.Dn⟨x⟩, Cs′ , Lext(s′), (x, λx.Dn, Ln)·Ts′
ext(A, 1)︸ ︷︷ ︸

=Text(s′)

) →bt2 (x, Cs′ ⟨λx.Dn⟩, Ln·Lext(s′), Ts′
ext(A, 1)) = s′λ

About the tape of sext(s′), note that Text(s′) = lext(s′
1
f )·Ts′

ext(A, 1) where s1
f is the first type

test of s′. We have to show that s1
f exhausts on x, so that lext(s1

f ) = (x, λx.Dn, Ln) for some Ln.

Note that s1
f is ⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .]→ B. Note that s1

f →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩ = s′′,

where s′′ focusses on the same judgment of s, and that s′′ is the state that S-exhausts s1
f . By

definition of extraction, lext(s1
f ) = (x, λx.Dn, Ln) where Ln is the extraction of the first n

judgment tests of s. Then Cs = Cs′⟨λx.Dn⟩ and Lext(s) = Ln·Lext(s′).

About the tape, for s we have to prove that Ts′
ext(A, 1) = Text(s) = Ts

ext(A, 0). This is done as
for→var, mimicking the reasoning in the proof of the S-exhaustible invariant (Lemma 4.3.8).

Then, sλ = sext(s), that is, s ≃ext sλ.

• Cases→•3 and→•4. They are identical to case→•1.

• Case→arg.

s′ =

⊢ t : [. . . A⟨⋆↓⟩i . . .]→ A ⊢i u : Bi(= A⟨⋆↓⟩i)
⊢ tu : A →arg

⊢ t : [. . . Bi . . .]→ A ⊢i u : A⟨⋆↑⟩i
⊢ tu : A = s

≃ext

sext(s′) = (t, D⟨⟨·⟩u⟩︸ ︷︷ ︸
=Cs′

, Lext(s′), lext(s′
1
f ) · Ts′

ext(A, 1)︸ ︷︷ ︸
=Text(s′)

) →arg (u, D⟨t⟨·⟩⟩, lext(s′
1
f ) · Lext(s′), Ts′

ext(A, 1)) = s′λ

where s′1f is the first type test of s′. Obviously, Cs = D⟨t⟨·⟩⟩. For the log we have to

show that Lext(s) is equal to lext(s′
1
f ) · Lext(s′), which amounts to showing that the first

judgment test s1 of s exhausts on the same state as the first tape test s′1f of s′. This is exactly
the reasoning done in the proof of the S-exhaustible invariant. Similarly, one obtains that
Ts′
ext(A, 1) = Text(s) = Ts

ext(A, 0).
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• Case→bt1.

s′ =
⊢ t : [. . . Bi . . .]→ A ⊢i u : A⟨⋆↓⟩i(= Bi)

⊢ tu : A →bt1

⊢ t : [. . . A⟨⋆↑⟩i . . .]→ A ⊢i u : Bi

⊢ tu : A = s

≃ext

sext(s′) = (u, D⟨t⟨·⟩⟩︸ ︷︷ ︸
=Cs′

, lext(s1
f ) · L︸ ︷︷ ︸

=Lext(s′)

, Text(s′)) →bt1 (t, D⟨⟨·⟩u⟩, L, lext(s1
f ) · Text(s

′)) = s′λ

where s′1f is the first judgment test of s′. Obviously, Cs = D⟨⟨·⟩u⟩. For the log, there is
nothing to prove. For the tape, we have to show that Text(s) is equal to lext(s1

f ) · Text(s
′),

which amounts to showing two things. First, that the first tape test s1 of s exhausts on the
same state as the first judgment test s′1f of s′. Second, that Ts

ext(A, 1) = Text(s′) = Ts′
ext(A, 0).

Both points follow exactly the reasoning done in the proof of the S-exhaustible invariant.

B.2 Proof of the Loop Preserving Bisimulation

Proposition B.2.1. ▶ is a loop-preserving improvement between SIAM states.

Proof. We inspect the 4 cases of the definition of ▶.

• Rule rdx :⊢ (H⟨(λx.t)u⟩, K) : A⟨⋆⟩▶rdx ⊢ (H⟨t{x�u}⟩, K) : A⟨⋆⟩. Cases for ↑ (by cases of
H):

– H = ⟨·⟩. The diagram is closed by rule body:

⊢ ((λx.t)u, K) : A⟨⋆⟩ →SIAM ⊢ (λx.t, K⟨⟨·⟩u⟩) : S→ A⟨⋆⟩ →SIAM ⊢ (t, K⟨(λx.⟨·⟩)u⟩) : A⟨⋆⟩
▶rdx ▶body

⊢ (t{x�u}, K) : A⟨⋆⟩ = ⊢ (t{x�u}, K) : A⟨⋆⟩

– H = Gs. The diagram is closed by rule ▶rdx:

⊢ (G⟨r⟩s, K) : A⟨⋆⟩ →SIAM ⊢ (G⟨r⟩, K⟨⟨·⟩s⟩) : S→ A⟨⋆⟩
▶rdx ▶rdx

⊢ (G⟨w⟩s, K) : A⟨⋆⟩ →SIAM ⊢ (G⟨w⟩, K⟨⟨·⟩s⟩) : S→ A⟨⋆⟩

Cases for ↓ (by cases of K):

– K = ⟨·⟩. Both machines are stuck.

⊢ (r, ⟨·⟩) : A⟨⋆⟩
▶rdx

⊢ (w, ⟨·⟩) : A⟨⋆⟩

– K = G⟨⟨·⟩s⟩. Two subcases depending on the type context. If the focus is on the right of
the arrow the diagram is closed by rule rdx.

⊢ (r, G⟨⟨·⟩s⟩) : S→ A⟨⋆⟩ →SIAM ⊢ (rs, G) : A⟨⋆⟩
▶rdx ▶rdx

⊢ (w, G⟨⟨·⟩s⟩) : S→ A⟨⋆⟩ →SIAM ⊢ (ws, G) : A⟨⋆⟩



136 Appendix B. Proofs of Bisimulations

If the focus is on the left of the arrow the diagram is closed by rule ext.

⊢ (r, G⟨⟨·⟩s⟩) : [. . . A⟨⋆⟩ . . .]→ A →SIAM ⊢ (s, G⟨r⟨·⟩⟩) : A⟨⋆⟩
▶rdx ▶ext

⊢ (w, G⟨⟨·⟩s⟩) : [. . . A⟨⋆⟩ . . .]→ A →SIAM ⊢ (s, G⟨w⟨·⟩⟩) : A⟨⋆⟩

• Rule body: ⊢ (t, H⟨(λx.D)u⟩) : A⟨⋆⟩▶body ⊢ (t{x�u}, H⟨D{x�u}⟩) : A⟨⋆⟩. Cases of ↑ (by
cases of t):

– t = rw. Trivially closed by rule body.

– t = λy.r. If t : ⋆ both machines are stuck. If t : S→ A, the diagram is trivially closed by
rule body.

– t = x. Diagram closed by rule arg.

⊢ (x, H⟨(λx.D)u⟩ : A⟨⋆⟩ → ⊢ (λx.D⟨x⟩, H⟨⟨·⟩u⟩) : [...A⟨⋆⟩...]→ B → ⊢ (u, H⟨(λx.D⟨x⟩)⟨·⟩⟩) : A⟨⋆⟩
▶body ▶arg

⊢ (u, H⟨D{x�u}⟩) : A⟨⋆⟩ = ⊢ (u, H⟨D{x�u}⟩) : A⟨⋆⟩

Cases of ↓ (by cases of D):

– D = ⟨·⟩. The diagram is closed by rule rdx

⊢ (t, H⟨(λx.⟨·⟩)u⟩) : A⟨⋆⟩ →SIAM ⊢ (λx.t, H⟨⟨·⟩u⟩) : S→ A⟨⋆⟩ →SIAM ⊢ ((λx.t)u, H) : A⟨⋆⟩
▶body ▶rdx

⊢ (t{x�u}, H) : A⟨⋆⟩ = ⊢ (t{x�u}, H) : A⟨⋆⟩

– D = E⟨λy.⟨·⟩⟩, D = E⟨⟨·⟩r⟩ and D = E⟨r⟨·⟩⟩. The diagram is trivially closed by rule
body.

• Rule ▶arg: ⊢ (t, H⟨(λx.D⟨x⟩)E⟩) : A⟨⋆⟩▶arg ⊢ (t, H⟨D{x�E⟨t⟩}⟨E⟩⟩) : A⟨⋆⟩. Cases of ↑
(by cases of t) are all trivial: they are closed by rule ▶arg itself. The only non trivial case for ↓
(by cases of E) is when E = ⟨·⟩.

⊢ (t, H⟨(λx.D⟨x⟩)⟨·⟩⟩) : A⟨⋆⟩ → ⊢ (λx.D⟨x⟩, H⟨⟨·⟩t⟩) : [...A⟨⋆⟩...]→ B → ⊢ (x, H⟨(λx.D)t⟩ : A⟨⋆⟩
▶arg ▶body

⊢ (t, H⟨D{x�t}⟩) : A⟨⋆⟩ = ⊢ (t, H⟨D{x�t}⟩) : A⟨⋆⟩

• Rule ▶ext: ⊢ (t, K⟨H⟨(λx.r)u⟩D⟩) : A⟨⋆⟩▶ext ⊢ (t, K⟨H⟨r{x�u}⟩D⟩) : A⟨⋆⟩. Cases of ↑ (by
cases of t) are all trivial: they are closed by rule ▶ext itself. The only non trivial case for ↓ (by
cases of D) is when D = ⟨·⟩. We put s := H⟨(λx.r)u⟩ and w := H⟨r{x�u}⟩.

⊢ (t, K⟨s⟨·⟩⟩) : A⟨⋆⟩ →SIAM ⊢ (s, K⟨⟨·⟩t⟩) : [. . . A⟨⋆⟩ . . .]→ A

▶ext ▶rdx

⊢ (t, K⟨w⟨·⟩⟩) : A⟨⋆⟩ →SIAM ⊢ (w, K⟨⟨·⟩t⟩) : [. . . A⟨⋆⟩ . . .]→ A

B.3 Proof of the TIAM/λIAM Bisimulation

The aim of this section is to explain the strong bisimulation between the TIAM and the λIAM,
that is essentially the same between the SIAM and the λIAM. This is the reason why we have
chosen to put this chapter in the Appendix. However, for the sake of readability we report all the
explanations, very similar to those of the SIAM.

A striking point of the TIAM is that it does not have the log nor the tape. They are encoded in
the position of the judgment occurrence J and in the type context A of its states, as we shall show.
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Relating Logs and Tapes with Typed Positions. In the λIAM, the log L = l1· . . . ·ln has a logged
position for every argument u1, . . . , un in which the position of the current state is contained. The
argument ui is the answer to the query of an argument for the variable in the logged position li.
The TIAM does not keep a trace of the variables for which it completed a query, but the answers
to those (forgotten) queries are simply given by the sub-derivations for u1, . . . , un in which the
current judgment occurrence J is contained—the way in which lk identifies a copy of uk in the
λIAM corresponds on the type derivation π to the index i of the leaf (in the tree of sub-derivations)
typing uk in which J is located. Note that the λIAM manipulates the log only via transitions→arg

and→bt1, that on the TIAM correspond exactly to entering/exiting derivations for arguments.
The tape, instead, contains logged positions for which the λIAM either has not yet found the
associated argument, or it is backtracking to. Note that the λIAM puts logged positions on the tape
via transitions→var and→bt1, and removes them using→arg and→bt2. By looking at Fig. 5.2, it is
clear that there is a logged position on the λIAM tape for every type sequence of the flattening of
T in which it lies the hole ⟨·⟩ of the current type context A of the TIAM.

Extracting λIAM States. These ideas are used to extract from every TIAM state s a λIAM state
ext(s) in a quite technical way. In particular, the extraction process retrieves a log Lext(s) from the
judgment J of s and a tape Text(s) from the type context A of s, using a sophisticated T-exhaustible
invariant of the TIAM to retrieve the exact shape of the logged positions in Lext(s) and Text(s).

Let us give a high-level description of how extraction works. The invariant is based on the
pairing of every TIAM state s with a set of test states, some coming from the judgment J of s, called
judgment tests, and some coming from the type context A, called type (context) tests. The invariant
guarantees a certain recursive property of each test state. The extraction process uses this property
to extract a logged position ls′ from each test state s′ of s.

Given a TIAM state s = (π, J, A, d), its judgment tests are associated to the T-@ rules having J
in their right sub-derivation. Their extractions give logged positions l1 · . . · ln forming the extracted
log Lext(s), following the correspondence described above.

Type tests are associated to the leaf contexts surrounding the hole of A. The extraction of the
tape Text(s) from A is done according to the following schema:

Text(⟨·⟩) := ϵ
Text(T → A) := • · Text(A)
Text(L⟨A⟩ → B) := lext(sL) · Text(A)

where sL is the state test associated to the leaf context L.
The extraction process induces a relation s ≃ext ext(s) that is easily proved to be a strong

bisimulation between the TIAM and the λIAM.

T-Exhaustible Invariant.

We start by defining the notions of typed tests used to define T-exhaustible states.

Type Positions and Generalized States. To define tests, we have to consider a slightly more
general notion of TIAM state. In Sect. 5.2, a state is a quadruple (π, J, A, d) where J is an occurrence
of a judgment Γ ⊢ u : A in π, d is a direction, and A is a linear type context isolating an occurrence
of ⋆ in A. The generalization simply is to consider linear type contexts A such that A⟨B⟩ = A for
some B, that is, not necessarily isolating ⋆. A pair (B, A) such that A⟨B⟩ = A is called a position
in A.

Note that the TIAM can be naturally adapted to this more general notion of state, that follows
an arbitrary formula B, not necessarily ⋆ —it can be found in Fig. B.1, and it amounts to simply
replace ⋆ with B.

To easily manage TIAM states we also use a concise notations, writing ⊢ t : A, A for a state
s = (π, J, (A, A), d) where J is Γ ⊢ t : A⟨A⟩ for some Γ, potentially specifying the direction via
colors and under/over-lining.
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⊢ t : T → A ⊢
⊢ tu : A⟨B↑⟩(= A) →•1

⊢ t : T → A⟨B↑⟩ ⊢
⊢ tu : A

⊢ t : A(= A⟨B⟩)
⊢ λx.t : T → A⟨B↑⟩ →•2

⊢ t : A⟨B↑⟩
⊢ λx.t : T → A

⊢ t : T → A⟨B↓⟩ ⊢
⊢ tu : A(= A⟨B⟩) →•3

⊢ t : T → A ⊢
⊢ tu : A⟨B↓⟩

⊢ t : A⟨B↓⟩(= A)

⊢ λx.t : T → A →•4
⊢ t : A

⊢ λx.t : T → A⟨B↓⟩

⊢ x : A⟨B↑⟩i(= Ai)
i

....

⊢ λx.C⟨x⟩ : L⟨Ai⟩ → A′′ →var

⊢ x : Ai
i

....

⊢ λx.C⟨x⟩ : L⟨A⟨B↓⟩i⟩ → A′′

⊢ x : Ai(= A⟨B⟩i)
i

....

⊢ λx.C⟨x⟩ : L⟨A⟨B↑⟩i⟩ → A′′ →bt2

⊢ x : A⟨B↓⟩i
i

....

⊢ λx.C⟨x⟩ : L⟨Ai⟩ → A′′

⊢ t : L⟨A⟨B↓⟩i⟩ → A

. . . ⊢ u : A⟨B⟩i . . .

⊢ u : T(= L⟨A⟨B⟩i)⟩
T-MANY

⊢ tu : A →arg

⊢ t : T → A

. . . ⊢ u : A⟨B↑⟩i . . .

⊢ u : L⟨A⟨B⟩i⟩
T-MANY

⊢ tu : A

⊢ t : T → A

. . . ⊢ u : A⟨B↓⟩i . . .

⊢ u : L⟨A⟨B⟩i⟩(= T)
T-MANY

⊢ tu : A →bt1

⊢ t : L⟨A⟨B↑⟩i⟩ → A

. . . ⊢ u : A⟨B⟩i . . .

⊢ u : T
T-MANY

⊢ tu : A

FIGURE B.1: The transitions of the (Generalized) Tree IAM (TIAM).

TIAM Tests. Given a TIAM state s = (π, J, (A, A), d), the underlying idea is that the judgment
occurrence J encodes the log of the λIAM, while the type context A encodes the tape. It is then
natural to define two kinds of test, one for judgments and one for type contexts.

The intuition is that a test focuses on (the occurrence of) a leaf B of a tree T related to s, and
that these leaf elements play the role of logged positions in the λIAM. These leaf elements are of
two kinds:

1. Elements containing J: those in which the focused judgment J itself is contained, corresponding
to the logged positions in the log of the λIAM. Note that the positions on the log are those
for which the λIAM has previously found the corresponding arguments. In the TIAM these
arguments are exactly those in which the focused judgment is contained.

2. Elements appearing in A: those in the right-hand type of s in which the focused type A is
contained, corresponding to the logged positions on the tape of the λIAM. They correspond
to λIAM queries for which the argument has not yet been found, or positions to which the
λIAM is backtracking to.

Each one of these elements is then identified by a judgment occurrence J′ and a position (B, A′) in
the right-hand type of J′.

Definition B.3.1 (Focus). A focus f in a derivation π is a pair f = (J, (A, A)) of a judgment occurrence
J and of a type position (A, A) in the right-hand type A⟨A⟩ of J.

The intuition is that exhausting a test sJ,(A,A) in π shall amount to retrieve the axiom of
π of type A that would be substituted by that sequence element of type A by reducing π via
cut-elimination—the definition of exhaustible tests is given below, after the definition of tests.

Definition B.3.2 (judgment tests). Let s = (π, J, (A, A), d) be a TIAM state. Let ri be i-th T-MANY rule
tree found traversing π by descending from the focused judgment J towards the final judgment of π. Let Ji
be the topmost traversed judgment of ri in such a descent. Let Ji be Γ ⊢ t : B. Then si

f = (π, Ji, (B, ⟨·⟩), ↓)
is the i-th judgment test of s, having as focus f := (Ji, (B, ⟨·⟩)).

We often omit the judgment from the focus, writing simply s(B,⟨·⟩), and even concisely note s f
as ⊢ t : B, ⟨·⟩↓.
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Note that judgment tests always have type context ⟨·⟩. According to the intended correspon-
dence judgment/ log and type context/tape between the TIAM and the λIAM, having type context
⟨·⟩ corresponds to the fact that the log tests of the λIAM have an empty tape.

Type (Context) Tests. While judgment tests depend only on the judgment occurrence J of a state
s = (π, J, (A, A), d), type context tests—dually—fix J and depend only on the type context A of
s, that is, they all focus on sequence elements of the form (J, (B, A′)) where A′⟨B⟩ = A⟨A⟩ and
A = A′⟨A′′⟩ for some type context A′′. Namely, there is one type context test (shortened to type
test) for every flattened tree (i.e. sequence) in which the hole of A is contained. We need some
notions about type contexts, in particular a notion of level analogous to the one for term contexts.

Terminology About Type Contexts. Define type contexts An of level n ∈N as follows:

A0 := ⟨·⟩ | T → A0
An+1 := L⟨An⟩ → A | T → An+1

Clearly, every type context A can be seen as a type context An for a unique n, and viceversa a type
context of level n is also simply a type context—the level is then sometimes omitted. A prefix of a
context A is a context A′ such that A′⟨A′′⟩ = A for some A′′. Given A of level n > 0, there is a
smallest prefix context A|i of level 0 < i ≤ n, and it has the form A′⟨L→ A⟩ for a type context
A′ of level i− 1.

Definition B.3.3 (Type tests). Let s = (π, J, (A, A), d) be a TIAM state and n be the level of A. The
sequence of directed prefixes DiPref(A) of A is the sequence of pairs (A′, d′), where A′ is a prefix of A,
defined as follows:

DiPref(A) := [·] if n = 0
DiPref(A) := [(A|1, ↑0), . . . , (A|n, ↑n−1)] if n > 0

The i-th directed prefix (from left to right) (A′, d′) in DiPref(A) induces the type test si
f := (π, J, (A′′⟨A⟩, A′), d′)

of s and focus f := (J, (A′′⟨B⟩, A′)), where A′′ is the unique type context such that A = A′⟨A′′⟩.

According to the idea that type tests correspond to the tape tests of the λIAM, note that the first
element (on the left) of the sequence DiPref(A) has ↑ direction, and that the direction alternates
along the sequence. This is the analogous to the fact that the tape test associated to the first logged
position on the tape (from left to right) has always direction ↓, and passing to the test of the next
logged position on the tape switches the direction.

Definition B.3.4 (State respecting a focus). Let f = (J, (A, A)) be a focus. A TIAM state s respects f if
it is an axiom ⊢ x : ⟨A⟩↓ for some variable x (the typing context of s, which is omitted by convention, is
x : [A]).

Definition B.3.5 (T-Exhaustible states). The set ET of T-exhaustible states is the smallest set such that if
s ∈ ET , then for each type or judgment test of s f of focus f there exists a run ρ : s f →∗TIAM→bt2 s′ where
s′ respects f and for the shortest such run s′ ∈ ET .

Lemma B.3.6 (T-exhaustible invariant). Let t be a closed term, π ▷ Γ ⊢ t : A a tree type derivation for it,
and σ : ⊢ t : ⟨A⟩↑ →k

TIAM s an initial TIAM run. Then s is T-exhaustible.

Proof. By induction on k. For k = 0 there is nothing to prove because the initial state s0 =⊢ t : ⟨A⟩↑
has no judgment nor type tests. Then suppose σ′ : s0 →k−1

TIAM s′ and that the run continues with
s′ →TIAM s. By i.h., s′ is T-exhaustible.

Terminology: when a test state satisfies the clause in the definition of T-exhaustible states we say
that it is positive.

Cases of s′ →TIAM s:

• Case→•1.

s′ =
⊢ t : T → A ⊢
⊢ tu : A⟨⋆↑⟩(= A) →•1

⊢ t : T → A⟨⋆↑⟩ ⊢
⊢ tu : A = s
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– judgment tests. Note that s has the same judgment tests of s′, which are positive by the
i.h.

– Type tests. We first consider the type tests of direction ↑. Let us s f be one of them. We
observe that there is a corresponding type test s′ f of s′, that by i.h. it is positive, and
that s′ f →TIAM s f . Since the machine is deterministic also s f is positive. Let us now
consider a type test s f of direction ↓. We observe that there is a corresponding type test
s′ f of s′, that it is positive by i.h., and that s f → s′ f . Then s f is positive.

• Case→•2. Identical to the previous one.

• Case→var.

s′ =

⊢ x : A⟨⋆↑⟩i(= Ai)
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B →var

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↓⟩i⟩ → B = s

– judgment tests. judgment tests of s are a subset of judgment tests of s′ and thus positive
by i.h.

– Type tests. Let n be the level of A. Let sj be the type test of s associated to the j-th triple
in DiPref(L⟨Ai⟩ → B). Three cases, depending on the index j of sj:

1. j = 1: then s1 is ⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, L → B. Note that s1 →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩,
which has no type tests and has the same judgment tests of s′, which by i.h. are
positive. Hence, s1 is T-exhaustible.

2. j is even: for sj (of direction ↓) there is a corresponding type test s′ j−1 of odd index
of s′, having direction ↑ and such that s′ j−1 →var sj. Thus one can conclude by i.h.
and determinism of the TIAM.

3. j ̸= 1 is odd: for sj (of direction ↑) there is a corresponding type test s′ j−1 of even
index of s′, having direction ↓ and such that sj →bt2 s′ j−1. Thus one can conclude
by i.h.

• Case→bt2.

s′ =

⊢ x : Ai(= A⟨⋆⟩i)
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↑⟩i⟩ → B →bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B = s

– judgment tests. The first type test of s′ is s′1 :=⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, L → B. Note that
s′1 →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩ =: s′′ and that s′′ exhausts s′1, and it is the first such state.
Since s′1 is positive, s′′ is T-exhaustible. Note that s′′ has the same judgment tests of s,
which are then positive.

– Type tests. For each odd type test si of s (whose direction is ↑), the corresponding even
type test s′ i+1 of s′ has direction ↓, is positive by i.h., and such that si →var s′ i+1. Then
si is positive. For each even type test si of s (whose direction is ↓), the corresponding
odd type test s′ i+1 of s′ has direction ↑, is positive by i.h., and such that s′ i+1 →bt2 si.
Then si is positive by determinism of the TIAM.

• Cases→•3 and→•4. They are identical to case→•1.

• Case→arg.

s′ =

⊢ t : L⟨A⟨⋆↓⟩i⟩ → A

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T T-M

⊢ tu : A →arg

⊢ t : T → A

.. ⊢ u : A⟨⋆↑⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩
T-M

⊢ tu : A = s



B.3. Proof of the TIAM/λIAM Bisimulation 141

– judgment tests. judgment tests of s are those of s′, which are positive by i.h., plus
su :=⊢ u : A⟨⋆⟩i↓, ⟨·⟩. Please note that su →bt1 ⊢ t : A⟨⋆⟩i↑, L→ A =: s′t. Now, s′t is a
type test of s′ and by i.h. is positive. Then su is positive.

– Type tests. For each odd type test si of s (whose direction is ↑), the corresponding even
type test s′ i+1 of s′ has direction ↓, is positive by i.h., and such that s′ i+1 →arg si. Then si

is positive by determinism of the TIAM. For each even type test si of s′ (whose direction
is ↓), the corresponding odd type test s′ i+1 of s′ has direction ↑, is positive by i.h., and
such that si →bt1 s′ i+1. Then si is positive.

• Case→bt1.

s′ =
⊢ t : T → B

.. ⊢ u : A⟨⋆↓⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩
T-M

⊢ tu : B →bt1

⊢ t : L⟨A⟨⋆↑⟩i⟩ → B

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T T-M

⊢ tu : B = s

– judgment tests. All judgment tests of s are judgment test of s′, which are this way positive
by i.h.

– Type tests. The first type test of s is s1 :=⊢ t : A⟨⋆⟩i↑, [. . . ⟨·⟩ . . .] → A. Please note
that s′u :=⊢ u : A⟨⋆⟩i↓, ⟨·⟩ is a judgment test of s′ such that s′u →bt1 s1. By i.h., s′u is
positive. By determinism of the TIAM, s1 is positive.
For each odd type test si of s (whose direction is ↑), the corresponding even type test
s′ i−1 of s′ has direction ↓, is positive by i.h., and such that s′ i−1 →bt1 si. Then si is
positive by determinism of the TIAM. For each even type test si of s′ (whose direction
is ↓), the corresponding odd type test s′ i−1 of s′ has direction ↑, is positive by i.h., and
such that si →arg s′ i−1. Then si is positive.

Extracting λIAM States from TIAM T-Exhaustible States, and the λIAM/TIAM Strong Bisimu-
lation

From T-exhaustible states one is able to extract λIAM states, as the following definition shows.
Please note that the definition is well-founded, precisely because the objects are T-exhaustible
states. Indeed, the induction principle used to define T-exhaustability allows recursive definition
on T-exhaustible states to be well-behaved.

Definition B.3.7 (Extraction of logged positions). Let s be an T-exhaustible TIAM state in a derivation
π, t be the final term in π, and s f be a judgment or type test of s. Since s is T-exhaustible, there is an
exhausting run s f →+

TIAM s′ ∈ ET . Let x be the variable of s′. Then the logged position extracted from s f is

lext(s f ) := (x, λx.Dn, lext(s′
1) · . . . · lext(s′n)), where Dn is the context (of level n) retrieved traversing π

from s′ to the binder of λx of x in t and s′ i is the i-th judgment test of s′.

Definition B.3.8 (Extraction of logs, tapes, and states). Let s = (π, J, (A, A), d) be an T-exhaustible
TIAM state where t is the final term in π, and J is Γ ⊢ u : A⟨A⟩. The λIAM state extracted from s is
sext(s) := (u, Cs, Lext(s), Text(s), d)1 where

• Context: Cs is the only term context such that t = Cs⟨u⟩;

• Log: Lext(s) := l1 · · · li · · · ln where li = lext(si
f ) where si

f is the i-th judgment test of s.

• Tape: Text(s) = Ts
ext(A, 0) where Ts

ext(A, i) is the auxiliary function defined by induction on A as
follows.

Ts
ext(⟨·⟩, i) := ϵ

Ts
ext(T → A, i) := • · Ts

ext(A, i)
Ts
ext(L⟨A⟩ → B, i) := lext(si

f ) · T
s
ext(A, i + 1)

1We leave the color of d unchanged, in the sense that sext(s) is red/blue if s is red/blue, i.e. ↓ becomes ↑ and ↑ becomes
↓.
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where si
f is the i-th type test of s.

We use ≃ext for the extraction relation between T-exhaustible TIAM states and λIAM states defined as
(s, sext(s)) ∈≃ext.

First of all, we show that the extracted state respects the λIAM invariant about the length of the
log.

Lemma B.3.9. Let s be an T-exhaustible TIAM state and sext(s) = (t, Cs, Lext(s), Text(s), d) the λIAM
state extracted from it. Then the level of Cs is exactly the length of Lext(s), that is, (t, Cs, Lext(s)) is a
logged position.

Proof. The length of Lext(s) is the number of judgment tests of s, which is the number of T-MANY
rule trees, and thus of T-@ rules, traversed descending from the focused judgment J of s to the final
judgment of π. The level of Cs is the number of arguments in which the hole of Cs is contained,
which are exactly the number of T-@ rules traversed descending from J to the final judgment of
π.

Proposition B.3.10 (TIAM-λIAM bisimulation). Let t a closed and →wh-normalizable term, and
π ▷ ⊢ t : ⋆ a type derivation. Then ≃ext is a strong bisimulation between T-exhaustible TIAM states on
π and λIAM states on t. Moreover, if sπ ≃ext sλ then sπ is TIAM reachable if and only if sλ is λIAM
reachable.

Proof. Assuming the bisimulation part of the statement, the moreover part follows from a trivial
induction on the length of the initial run, since initial state are bisimilar and the bisimulation is
exactly the fact that ≃ext is stable by transitions.

For the bisimulation part, we consider each possible transitions. We focus on the half of the
proof showing that TIAM transitions are simulated by the λIAM, the other half is essentially
identical.

• Case→•1.

s′ =
⊢ t : T → A ⊢
⊢ tu : A⟨⋆↑⟩(= A) →•1

⊢ t : T → A⟨⋆↑⟩ ⊢
⊢ tu : A = s

≃ext

sext(s′) = (tu, Cs′ , Lext(s′), Text(s′)) →•1 (t, C⟨⟨·⟩r⟩, Lext(s′), • · Text(s′)) = sλ

Note that Cs = Cs′⟨⟨·⟩r⟩, Lext(s) = Lext(s′), and Text(s) = • · Text(s′). Then, sλ = sext(s),
that is, s ≃ext sλ.

• Case→•2. Identical to the previous one.

• Case→var.

s′ =

⊢ x : A⟨⋆↑⟩i(= Ai)
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B →var

⊢ x : Ai
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↓⟩i⟩ → B = s

≃ext

sext(s′) = (x, C⟨λx.Dn⟩︸ ︷︷ ︸
=Cs′

, Ln · L︸ ︷︷ ︸
=Lext(s′)

, Text(s′)) →var (λx.Dn⟨x⟩, C, L, (x, λx.Dn, Ln) · Text(s′)) = sλ

First of all, Cs′ has shape C⟨λx.Dn⟩ for some n, as the descending path from the focused
judgment to the final judgment passes through the showed T-λ rule. Then Cs = C.
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About the log, by Lemma 4.3.11 there is a correspondence between the level of term contexts
and the length of the extracted log, so that Lext(s′) is at least of length n, that is, Lext(s′) =
Ln · L, and Lext(s) = L.

About the tape, note that Text(s) = lext(s1
f )·T

s
ext(A, 1) where s1

f is the first type test of s. To
show that sext(s) = (x, λx.Dn, Ln) · Text(s′) we have to show two things:

1. lext(s1
f ) = (x, λx.Dn, Ln). Note that s1

f is ⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, L → B. Note that

s1
f →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩ = s′′, where s′′ focusses on the same judgment of s′, and that

s′′ is the state that T-exhausts s1
f . By definition of extraction, lext(s1

f ) = (x, λx.Dn, Ln).

2. Ts
ext(A, 1) = Text(s′), that is, Ts

ext(A, 1) = Ts′
ext(A, 0). Note that Ts

ext(A, 1) and Ts′
ext(A, 0)

may differ only in the content of logged positions (obtained by extracting from tape
tests), which is the only thing that depends on the direction and the state, the rest being
uniquely determined by the type context A. Here one has to repeat the reasoning done
in the→bt2 case of the proof of the T-exhaustible invariant (Lemma 4.3.8), that shows
that the tape test of index i > 1 for s and the one of index i− 1 of s′ exhaust on the same
state, and thus induce the same logged position. Then Ts

ext(A, 1) = Text(s′).

Then sext(s) = (x, λx.Dn, Ln) · Text(s′), and so sλ = sext(s), that is, s ≃ext sλ.

• Case→bt2.

s′ =

⊢ x : Ai(= A⟨⋆⟩i)
i

....
⊢ λx.C⟨x⟩ : L⟨A⟨⋆↑⟩i⟩ → B →bt2

⊢ x : A⟨⋆↓⟩i
i

....
⊢ λx.C⟨x⟩ : L⟨Ai⟩ → B = s

≃ext

sext(s′) = (λx.Dn⟨x⟩, Cs′ , Lext(s′), (x, λx.Dn, Ln)·Ts′
ext(A, 1)︸ ︷︷ ︸

=Text(s′)

) →bt2 (x, Cs′ ⟨λx.Dn⟩, Ln·Lext(s′), Ts′
ext(A, 1)) = s′λ

About the tape of sext(s′), note that Text(s′) = lext(s′
1
f )·Ts′

ext(A, 1) where s1
f is the first type

test of s′. We have to show that s1
f exhausts on x, so that lext(s1

f ) = (x, λx.Dn, Ln) for some Ln.

Note that s1
f is ⊢ λx.C⟨x⟩ : A⟨⋆⟩i↑, L→ B. Note that s1

f →bt2 ⊢ x : A⟨⋆⟩i↓, ⟨·⟩ = s′′, where s′′

focusses on the same judgment of s, and that s′′ is the state that S-exhausts s1
f . By definition

of extraction, lext(s1
f ) = (x, λx.Dn, Ln) where Ln is the extraction of the first n judgment tests

of s. Then Cs = Cs′⟨λx.Dn⟩ and Lext(s) = Ln·Lext(s′).

About the tape, for s we have to prove that Ts′
ext(A, 1) = Text(s) = Ts

ext(A, 0). This is done as
for→var, mimicking the reasoning in the proof of the T-exhaustible invariant (Lemma 4.3.8).

Then, sλ = sext(s), that is, s ≃ext sλ.

• Cases→•3 and→•4. They are identical to case→•1.

• Case→arg.

s′ =

⊢ t : L⟨A⟨⋆↓⟩i⟩ → A

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T T-M

⊢ tu : A →arg

⊢ t : T → A

.. ⊢ u : A⟨⋆↑⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩
T-M

⊢ tu : A = s

≃ext

sext(s′) = (t, D⟨⟨·⟩u⟩︸ ︷︷ ︸
=Cs′

, Lext(s′), lext(s′
1
f ) · Ts′

ext(A, 1)︸ ︷︷ ︸
=Text(s′)

) →arg (u, D⟨t⟨·⟩⟩, lext(s′
1
f ) · Lext(s′), Ts′

ext(A, 1)) = s′λ
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where s′1f is the first type test of s′. Obviously, Cs = D⟨t⟨·⟩⟩. For the log we have to show

that Lext(s) is equal to lext(s′
1
f ) · Lext(s′), which amounts to show that the first judgment

test s1 of s exhausts on the same state as the first tape test s′1f of s′. This is exactly the
reasoning done in the proof of the T-exhaustible invariant. Similarly, one obtains that
Ts′
ext(A, 1) = Text(s) = Ts

ext(A, 0).

• Case→bt1.

s′ =
⊢ t : T → A

.. ⊢ u : A⟨⋆↓⟩i ..

⊢ u : L⟨A⟨⋆⟩i⟩(= T)
T-M

⊢ tu : A →bt1

⊢ t : L⟨A⟨⋆↑⟩i⟩ → A

.. ⊢ u : A⟨⋆⟩i ..

⊢ u : T T-M

⊢ tu : A = s

≃ext

sext(s′) = (u, D⟨t⟨·⟩⟩︸ ︷︷ ︸
=Cs′

, lext(s1
f ) · L︸ ︷︷ ︸

=Lext(s′)

, Text(s′)) →bt1 (t, D⟨⟨·⟩u⟩, L, lext(s1
f ) · Text(s

′)) = s′λ

where s′1f is the first judgment test of s′. Obviously, Cs = D⟨⟨·⟩u⟩. For the log, there is
nothing to prove. For the tape, we have to show that Text(s) is equal to lext(s1

f ) · Text(s
′),

which amounts to show two things. First, that the first tape test s1 of s exhausts on the same
state as the first judgment test s′1f of s′. Second, that Ts

ext(A, 1) = Text(s′) = Ts′
ext(A, 0). Both

points follow exactly the reasoning done in the proof of the T-exhaustible invariant.

The moreover part of the above statement hints at a bijection between all the states in π and
reachable λIAM states. However, there still could be the possibility that some of the states in π are
not reachable. This is actually not the case.

B.3.1 The TIAM is acyclic

In order to prove that the TIAM is acyclic, we need to show that if t →wh u, then cycles are
preserved between the tree type derivation π for t and the sequence type derivation π′ for u. One
way to show this fact is building a (non-)termination-preserving bisimulation between states of π
and states of π′.

Explaining the Bisimulation. Let us give an intuitive explanation of the improvement ▶ that we
are going to build next. Given two type derivations π ▷ ⊢ H⟨(λx.r)w⟩ : ⋆ and π′ ▷ ⊢ H⟨r{x�w}⟩ :
⋆, it is possible to define a relation ▶ between states of the former and of the latter. The key points
are:

1. each axiom for x in π is ▶-related with the judgment for the argument w that replaces it in
π′.

2. Both the judgment for r and the one for (λx.r)w are ▶-related to r{x�w}.

3. The judgment for λx.r is not ▶-related to any judgment of π′.

Defining ▶. In order to define ▶ formally, we enrich each type judgment (occurrence) ⊢ t : A⟨⋆⟩
with a context C such that C⟨t⟩ is the term in the final judgment of the derivation π, obtaining
⊢ (t, C) : A⟨⋆⟩.

Definition B.3.11 (Bisimulation ▶). The definition of ▶ for ⊢ (t, C) : A⟨⋆⟩ has 4 clauses:

• rdx: the redex is in t, that is, t = H⟨(λx.u)r⟩, and so C is a head context K:

⊢ (H⟨(λx.u)r⟩, K) : A⟨⋆⟩▶rdx ⊢ (H⟨u{x�r}⟩, K) : A⟨⋆⟩
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• body: the term t is part of the body of the abstraction involved in the redex:

⊢ (t, H⟨(λx.D)u⟩) : A⟨⋆⟩▶body ⊢ (t{x�u}, H⟨D{x�u}⟩) : A⟨⋆⟩

• arg: the term t is part of the argument of the redex:

⊢ (t, H⟨(λx.D⟨x⟩)E⟩) : A⟨⋆⟩▶arg ⊢ (t, H⟨D{x�E⟨t⟩}⟨E⟩⟩) : A⟨⋆⟩

• ext: The term t is disjoint form the redex, that then takes place only in C:

⊢ (t, K⟨H⟨(λx.r)u⟩D⟩) : A⟨⋆⟩▶ext ⊢ (t, K⟨H⟨r{x�u}⟩D⟩) : A⟨⋆⟩

Please note that the only states of π which are not mapped to any state of π′ are those relative
to the judgment ⊢ λx.r : [G′1...G′n]→ A.

Proposition B.3.12. ▶ is an improvement between TIAM states.

Proof. 2 We inspect the 4 cases of the definition of ▶.

• Rule rdx :⊢ (H⟨(λx.t)u⟩, K) : A⟨⋆⟩▶rdx ⊢ (H⟨t{x�u}⟩, K) : A⟨⋆⟩. Cases for ↑ (by cases of
H):

– H = ⟨·⟩. The diagram is closed by rule body:

⊢ ((λx.t)u, K) : A⟨⋆⟩ →TIAM ⊢ (λx.t, K⟨⟨·⟩u⟩) : T → A⟨⋆⟩ →TIAM ⊢ (t, K⟨(λx.⟨·⟩)u⟩) : A⟨⋆⟩
▶rdx ▶body

⊢ (t{x�u}, K) : A⟨⋆⟩ = ⊢ (t{x�u}, K) : A⟨⋆⟩

– H = Gs. The diagram is closed by rule ▶rdx:

⊢ (G⟨r⟩s, K) : A⟨⋆⟩ →TIAM ⊢ (G⟨r⟩, K⟨⟨·⟩s⟩) : T → A⟨⋆⟩
▶rdx ▶rdx

⊢ (G⟨w⟩s, K) : A⟨⋆⟩ →TIAM ⊢ (G⟨w⟩, K⟨⟨·⟩s⟩) : T → A⟨⋆⟩

Cases for ↓ (by cases of K):

– K = ⟨·⟩. Both machines are stuck.

⊢ (r, ⟨·⟩) : A⟨⋆⟩
▶rdx

⊢ (w, ⟨·⟩) : A⟨⋆⟩

– K = G⟨⟨·⟩s⟩. Two subcases depending on the type context. If the focus is on the right of
the arrow the diagram is closed by rule rdx.

⊢ (r, G⟨⟨·⟩s⟩) : T → A⟨⋆⟩ →TIAM ⊢ (rs, G) : A⟨⋆⟩
▶rdx ▶rdx

⊢ (w, G⟨⟨·⟩s⟩) : T → A⟨⋆⟩ →TIAM ⊢ (ws, G) : A⟨⋆⟩

If the focus is on the left of the arrow the diagram is closed by rule ext.

⊢ (r, G⟨⟨·⟩s⟩) : L⟨A⟨⋆⟩⟩ → A →TIAM ⊢ (s, G⟨r⟨·⟩⟩) : A⟨⋆⟩
▶rdx ▶ext

⊢ (w, G⟨⟨·⟩s⟩) : L⟨A⟨⋆⟩⟩ → A →TIAM ⊢ (s, G⟨w⟨·⟩⟩) : A⟨⋆⟩
2Also this proof requires colors.
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• Rule body: ⊢ (t, H⟨(λx.D)u⟩) : A⟨⋆⟩▶body ⊢ (t{x�u}, H⟨D{x�u}⟩) : A⟨⋆⟩. Cases of ↑ (by
cases of t):

– t = rw. Trivially closed by rule body.

– t = λy.r. If t : ⋆ both machines are stuck. If t : T → A, the diagram is trivially closed by
rule body.

– t = x. Diagram closed by rule arg.

⊢ (x, H⟨(λx.D)u⟩ : A⟨⋆⟩ → ⊢ (λx.D⟨x⟩, H⟨⟨·⟩u⟩) : L⟨A⟨⋆⟩⟩ → B → ⊢ (u, H⟨(λx.D⟨x⟩)⟨·⟩⟩) : A⟨⋆⟩
▶body ▶arg

⊢ (u, H⟨D{x�u}⟩) : A⟨⋆⟩ = ⊢ (u, H⟨D{x�u}⟩) : A⟨⋆⟩

Cases of ↓ (by cases of D):

– D = ⟨·⟩. The diagram is closed by rule rdx

⊢ (t, H⟨(λx.⟨·⟩)u⟩) : A⟨⋆⟩ →TIAM ⊢ (λx.t, H⟨⟨·⟩u⟩) : T → A⟨⋆⟩ →TIAM ⊢ ((λx.t)u, H) : A⟨⋆⟩
▶body ▶rdx

⊢ (t{x�u}, H) : A⟨⋆⟩ = ⊢ (t{x�u}, H) : A⟨⋆⟩

– D = E⟨λy.⟨·⟩⟩, D = E⟨⟨·⟩r⟩ and D = E⟨r⟨·⟩⟩. The diagram is trivially closed by rule
body.

• Rule ▶arg: ⊢ (t, H⟨(λx.D⟨x⟩)E⟩) : A⟨⋆⟩▶arg ⊢ (t, H⟨D{x�E⟨t⟩}⟨E⟩⟩) : A⟨⋆⟩. Cases of ↑
(by cases of t) are all trivial: they are closed by rule ▶arg itself. The only non trivial case for ↓
(by cases of E) is when E = ⟨·⟩.

⊢ (t, H⟨(λx.D⟨x⟩)⟨·⟩⟩) : A⟨⋆⟩ → ⊢ (λx.D⟨x⟩, H⟨⟨·⟩t⟩) : L⟨A⟨⋆⟩⟩ → B → ⊢ (x, H⟨(λx.D)t⟩ : A⟨⋆⟩
▶arg ▶body

⊢ (t, H⟨D{x�t}⟩) : A⟨⋆⟩ = ⊢ (t, H⟨D{x�t}⟩) : A⟨⋆⟩

• Rule ▶ext: ⊢ (t, K⟨H⟨(λx.r)u⟩D⟩) : A⟨⋆⟩▶ext ⊢ (t, K⟨H⟨r{x�u}⟩D⟩) : A⟨⋆⟩. Cases of ↑ (by
cases of t) are all trivial: they are closed by rule ▶ext itself. The only non trivial case for ↓ (by
cases of D) is when D = ⟨·⟩. We put s := H⟨(λx.r)u⟩ and w := H⟨r{x�u}⟩.

⊢ (t, K⟨s⟨·⟩⟩) : A⟨⋆⟩ →TIAM ⊢ (s, K⟨⟨·⟩t⟩) : L⟨A⟨⋆⟩⟩ → A

▶ext ▶rdx

⊢ (t, K⟨w⟨·⟩⟩) : A⟨⋆⟩ →TIAM ⊢ (w, K⟨⟨·⟩t⟩) : L⟨A⟨⋆⟩⟩ → A

Corollary B.3.13. If π ▷ ⊢ H⟨(λx.r)w⟩ : ⋆ contains a cycle, the also π′ ▷ ⊢ H⟨r{x�w}⟩ : ⋆ contains a
cycle.

Proof. If the run of the TIAM on π ▷ ⊢ H⟨(λx.r)w⟩ : ⋆ loops then there exists a state sπ such that a
computation starting from sπ diverges. Every state but ⊢ (λx.r, H⟨⟨·⟩w⟩) : A⟨⋆⟩, which however
is not final, is related by ▶ to a state sπ′ of Tπ′ . Since improvements preserve non-termination
(Prop. 3.6.2.1), also sπ′ diverges. Since sπ′ has a finite number of states, there must be a cycle.

Corollary B.3.14. For each type derivation π ▷ ⊢ t : ⋆, Tπ has no cycles.

Proof. Since t is typable, then it has normal form, call it u. Clearly the type derivation for u has no
cycles. By the previous corollary, also π cannot have any of them.

Proposition B.3.15. Let t a closed term and π ▷ ⊢ t : ⋆ a tree type derivation. Then every state of π is
reached exactly once.

Proof. Immediately by Lemma 4.3.13.



Appendix C

Correctness and Completeness of the
Tree Type System

The size |π| of a tree types derivation π is the number of its rules that are not TMANY. It is the
quantity that is used to prove the termination argument for typed terms.

C.1 Correctness

In order to prove that typability implies termination via a simple combinatorial argument, we
need to refine the standard statements of the substitution lemma and of subject reduction with
quantitative information.

The next lemma is used in the substitution lemma (namely, the implication from left to right),
and shall also be used in the anti-substitution lemma (the converse implication).

Lemma C.1.1 (Tree splitting and merging). Let T = T1 ⊎ . .⊎ Tk. Then there exists π ▷ [Γ] ⊢ t : T if and
only if there exist πi ▷ [Γi] ⊢ t : Ti for i ∈ {1, . ., k}. Moreover, [Γ] = [Γ1 ⊎ . .⊎ Γk] and |π| = ∑n

i=1 |πi|.

Proof. We prove the statement by first examining the rule T-MANY, which is the last rule used in π,
as t is typed with a tree type.

Γi ⊢ t : Gi 1 ≤ i ≤ n
[⊎n

i=1Γi] ⊢ t : [G1, . ., Gn] = T1 ⊎ . .⊎ Tk
T-MANY

We can prove the statement considering k derivations, each of them deriving the judgment t : Tj.

Γi ⊢ t : Gi 1 ≤ i ≤ |Tj|

[⊎|Tj |
i=1Γi] ⊢ t : [G1, . ., G|Tj |] = Tj

T-MANY

Lemma C.1.2 (Quantitative substitution). Let πt ▷ Γ, x : T ⊢ t : G and πu ▷ ⊢ u : T. Then there exists
πt{x�u} ▷ Γ ⊢ t{x�u} : G such that |πt{x�u}| = |πt|+ |πu| − |Tℓ|.

Proof. By induction on the derivation πt.

• Rule T-VAR. Two sub-cases:

1. t = x: then t{x�u} = u, G = A, and T = [A] is a singleton. Then the hypothesis
πu ▷ ⊢ u : T is necessarily obtained by applying a unary T-MANY rule to a derivation
of the form π′u ▷ ⊢ u : A. The typing derivation πt{x�u} := π′u satisfies the statement
because |πt{x�u}| = |π′u| = 1 + |π′u| − 1 = |πt|+ |πu| − |Tℓ|.

2. t = y: then t{x�u} = y and T = [·]. Then the hypothesis πu ▷ ⊢ u : T is necessarily
obtained by applying a T-NONE rule, and |πu| = 0. The typing derivation πt{x�u} := πt

satisfies the statement because |πt{x�u}| = |πt| = |πt|+ 0− 0 = |πt|+ |πu| − |Tℓ|.
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• Rule T-λ⋆. Then t = λy.r, G = ⋆, and T = [·]. It goes as for the second variable case
(t = y). Namely, the hypothesis πu ▷ ⊢ u : T is necessarily obtained by applying a
T-NONE rule, and |πu| = 0. The typing derivation πt{x�u} is also a single T-λ⋆ rule, because
t{x�u} = (λy.r){x�u} = λy.r{x�u} is also an abstraction. Note that πt{x�u} satisfies the
statement because |πt{x�u}| = |πt| = |πt|+ 0− 0 = |πt|+ |πu| − |Tℓ|.

• Rule T-λ. Then πt has the following shape:

....
πr ▷ Γ, x : T, y : T′ ⊢ r : B

Γ, x : T ⊢ λy.r : T′ → B
T-λ

with t = λy.r and G = T′ → B. By i.h., there exists a derivation πr{x�u} ▷ Γ, y : T′ ⊢ r{x�u} :
B such that |πr{x�u}| = |πr|+ |πu| − |Tℓ|. Applying back rule T-λ we obtain π(λy.r){x�u}

....
πr{x�u} ▷ Γ, y : T′ ⊢ r{x�u} : B

Γ ⊢ λy.r{x�u} : T′ → B
T-λ

which satisfies |π(λy.r){x�u}| = |πr{x�u}|+ 1 =i.h. |πr|+ |πu| − |Tℓ|+ 1 = |πλy.r|+ |πu| −
|Tℓ|.

• Rule T-@. Then πt has the following shape:

πr ▷

....
x : T1, Γ ⊢ r : T′ → A πw ▷

....
x : T2, ∆ ⊢ w : T′

x : T1 ⊎ T2, Γ ⊎ ∆ ⊢ rw : A T-@

with t = rw, G = A, and T = T1 ⊎ T2. By Lemma C.1.1, the hypothesis πu ▷ ⊢ u : T splits
into two derivations π1

u ▷ ⊢ u : T1 and π2
u ▷ ⊢ u : T2 such that |πu| = |π1

u|+ |π2
u|. By i.h.,

there exist:

1. πr{x�u} ▷ Γ ⊢ r{x�u} : T′ → A such that |πr{x�u}| = |πr|+ |π1
u| − |Tℓ

1 |, and

2. πw{x�u} ▷ ∆ ⊢ w{x�u} : T′ such that |πw{x�u}| = |πw|+ |π2
u| − |Tℓ

2 |.

Note that (rw){x�u} = r{x�u}w{x�u}. Then the derivation π(rw){x�u} is defined as
follows:

πr{x�u} ▷ Γ ⊢ r{x�u} : T′ → A πw{x�u} ▷ ∆ ⊢ w{x�u} : T′

Γ ⊎ ∆ ⊢ r{x�u}w{x�u} : A
T-@

for which

|π(rw){x�u}| = |πr{x�u}|+ |πw{x�u}|+ 1
=i.h. |πr|+ |π1

u| − |Tℓ
1 |+ |πw|+ |π2

u| − |Tℓ
2 |+ 1

= (|πr|+ |πw|+ 1) + (|π1
u|+ |π2

u|)− (|Tℓ
1 |+ |Tℓ

2 |)
= |πrw|+ |πu| − |Tℓ|

• Rule T-NONE. Then G = [·], and T = [·]. It goes as for the second variable case (t = y).
Namely, the hypothesis πu ▷ ⊢ u : T is necessarily obtained by applying another T-NONE
rule, and |πu| = 0. The typing derivation πt{x�u} is also a single T-NONE rule for the term
t{x�u}. Note that πt{x�u} satisfies the statement because |πt{x�u}| = |πt| = |πt|+ 0− 0 =

|πt|+ |πu| − |Tℓ|.
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• Rule T-MANY. Then πt has the following shape:

....
Γi, x : Ti ⊢ t : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi], x : [⊎n

i=1Ti] ⊢ t : [G1, . ., Gn]
T-MANY

By Lemma C.1.1, the hypothesis πu ▷ ⊢ u : T splits into n derivations πi
u ▷ ⊢ u : Ti with

i ∈ {1, . ., n} such that |πu| = ∑n
i=1 |πi

u|. By i.h., there exist n derivations πi
t{x�u} ▷ Γi ⊢

t{x�u} : Gi such that |πt{x�u}|i = |πt|i + |πi
u| − |Tℓ

i |. Then the derivation πt{x�u} is defined
as follows:

πi
t{x�u} ▷

....
Γi ⊢ t{x�u} : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi] ⊢ t{x�u} : [G1, . ., Gn]

T-MANY

for which
|πt{x�u}| = ∑n

i=1 |πt{x�u}|i
=i.h. ∑n

i=1(|πt|i + |πi
u| − |Tℓ

i |)
= ∑n

i=1 |πt|i + ∑n
i=1 |πi

u| −∑n
i=1 |Tℓ

i |
= |πt|+ |πu| − |Tℓ|

Proposition C.1.3 (Quantitative Subject Reduction). If t is closed, π ▷ ⊢ t : A, and t→wh u then there
exists π′ ▷ ⊢ u : A such that |π| > |π′|.

Proof. By induction on t→wh u.

• Base case, step at top level: t = (λx.r)w →wh r{x�w} = u. Note that w is closed because t is
closed by hypothesis. Then π has the following shape.

πr ▷

....
x : T ⊢ r : A

⊢ λx.r : T → A T-λ
πw ▷

....
⊢ w : T

⊢ (λx.r)w : A
T-@

We can apply the quantitative substitution lemma (Lemma C.1.2) to the sub-derivations πr
and πw obtaining a derivation πr{x�w} ▷ ⊢ r{x�u} : A such that |πr{x�w}| = πr + πw −
|Tℓ| < πr + πw + 2 = |π|.

• Inductive case, step on the left of the root application: t = rw→wh r′w = u with r →wh r′. Then π
has the following shape.

πr ▷

....
⊢ r : T → A πw ▷

....
⊢ w : T

⊢ rw : A T-@

Applying the i.h. to the left sub-derivation πr, we obtain π′r′ ▷ ⊢ r′ : T → A such that
|πr| > |π′r′ |. Then π′ is defined as follows.

π′ :=

π′r′ ▷

....
⊢ r′ : T → A πw ▷

....
⊢ w : T

⊢ r′w : A
T-@

for which |π| = |πr|+ 1 + |πw| >i.h. |π′r′ |+ 1 + |πw| = |π′|, as required.
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Theorem C.1.4 (Correctness of tree types for Closed CbN). If π ▷ ⊢ t : A then t is Closed CbN
terminating.

Proof. By induction on |π| and case analysis of whether t→wh-reduces. Cases:

1. t does not reduce. Then it is→wh-normal.

2. t→wh u for some u. By quantitative subject reduction (Prop. C.1.3), there exists π′ ▷ ⊢ u : A
such that |π| > |π′|. Then we can apply the i.h. to π′, obtaining that u is Closed CbN
normalizing. Therefore, so is t.

C.2 Completeness

The completeness of the type system is easier to prove, because there is no need to develop the
quantitative analysis, not having to show termination of a relation.

Lemma C.2.1 (Anti-substitution). Let π ▷ Γ ⊢ t{x�u} : G with u closed. Then there exist

• a tree type T,

• a derivation πt ▷ Γ, x : T ⊢ t : G, and

• a derivation πu ▷ ⊢ u : T.

Proof. By lexycographic induction on (t, G). We first deal with the case in which G is a tree type T.
We look at the last rule of π. Cases:

• Rule T-NONE. Then G = [·]. The statement holds with respect to T := [·], πt := π and πu
being another T-NONE rule of term u.

• Rule T-MANY. Then π has the following shape:

πi ▷

....
Γi ⊢ t{x�u} : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi] ⊢ t{x�u} : [G1, . ., Gn]

T-MANY

By i.h. (2nd component), for 1 ≤ i ≤ n there exist Ti and derivations πi
t ▷ Γi, x : Ti ⊢ t : Gi

and πi
u ▷ ⊢ u : Ti. By Lemma C.1.1, the derivations πi

u merge into a derivation πu ▷ ⊢ u : T
where T := T1 ⊎ . .⊎ Tn. The derivation πt is instead obtained as follows.

....
Γi, x : Ti ⊢ t : Gi 1 ≤ i ≤ n

[⊎n
i=1Γi], x : [⊎n

i=1Ti] ⊢ t : [G1, . ., Gn]
T-MANY

Now, we assume G to be a linear type A, and look at the cases for the last rule of π.

• Variable. Two sub-cases:

1. t = x: then t{x�u} = u. The statements holds by taking

– T := [A]

– πt as an axiom assigning type A to x, and
– πu := π.

2. t = y: then t{x�u} = y. The statements holds by taking

– T := [·]
– πt as an axiom assigning type A to y, and
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– πu as a T-NONE rule of term u.

• Rule T-λ⋆. Then t = λy.r and G = ⋆. The statements holds by taking

– T := [·]
– πt as a T-λ⋆ rule of term λy.r, and

– πu as a T-NONE rule of term u.

• Rule T-λ. Then π has the following shape:

....
πr{x�u} ▷ Γ, y : T′ ⊢ r{x�u} : B

Γ ⊢ λy.r{x�u} : T′ → B
T-λ

with t = λy.r and A = T′ → B. By i.h. (1st component), there exists T and derivations
πr ▷ Γ, x : T, y : T′ ⊢ r : B and πu ▷ ⊢ u : T. Applying back rule T-λ to πr, we obtain πλy.r as
follows. ....

πr ▷ Γ, x : T, y : T′ ⊢ r : B
Γ, x : T ⊢ λy.r : T′ → B

T-λ

• Rule T-@. Then π has the following shape:

πr{x�u} ▷ Γ ⊢ r{x�u} : T′ → A πw{x�u} ▷ ∆ ⊢ w{x�u} : T′

Γ ⊎ ∆ ⊢ r{x�u}w{x�u} : A
T-@

with t = rw and T = T1 ⊎ T2. By i.h. (1st component), there exist:

1. a tree type T1 and derivations πr ▷ Γ, x : T1 ⊢ r : T′ → A and π1
u ▷ ⊢ u : T1;

2. a tree type T2 and derivations πw ▷ ∆, x : T2 ⊢ w : T′ and π2
u ▷ ⊢ u : T2.

By Lemma C.1.1, the derivations π1
u and π2

u merge into a derivation πu ▷ ⊢ u : T with
T := T1 ⊎ T2. The derivation πt is instead obtained as follows.

πr ▷

....
x : T1, Γ ⊢ r : T′ → A πw ▷

....
x : T2, ∆ ⊢ w : T′

x : T1 ⊎ T2︸ ︷︷ ︸
T

, Γ ⊎ ∆ ⊢ rw : A T-@

Proposition C.2.2 (Subject expansion). If t is closed, π ▷ ⊢ u : A, and t →wh u then there exists
π′ ▷ ⊢ t : A.

Proof. By induction on t→wh u.

• Base case, step at top level: t = (λx.r)w →wh r{x�w} = u. Note that w is closed because t is
closed. The derivation in the hypothesis is π ▷ ⊢ r{x�w} : A. Then by the anti-substitution
lemma (Lemma C.2.1) we obtain a tree type T and two derivations πr ▷ x : T ⊢ r : A and
πw ▷ ⊢ w : T. The derivation π′ of the statement is then defined as follows:

πr ▷

....
x : T ⊢ r : A

⊢ λx.r : T → A T-λ
πw ▷

....
⊢ w : T

⊢ (λx.r)w : A
T-@
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• Inductive case, step on the left of the root application: t = rw→wh r′w = u with r →wh r′. Then π
has the following shape.

πr′ ▷

....
⊢ r′ : T → A πw ▷

....
⊢ w : T

⊢ r′w : A
T-@

Applying the i.h. to the left sub-derivation πr′ , we obtain π′r ▷ ⊢ r : T → A. Then π′ is
defined as follows.

π′ :=
π′r ▷

....
⊢ r : T → A πw ▷

....
⊢ w : T

⊢ rw : A T-@

Theorem C.2.3 (Completeness of tree types for Closed CbN). If t is Closed CbN terminating then
there exists a tree type derivation π ▷ ⊢ t : A.

Proof. Let t→n
wh u the reduction of t to weak head normal form. By induction on n. Cases:

1. If n = 0 then t = u is a weak head normal form, that is, an abstraction. Then it is typable
with rule T-λ⋆.

2. If n > 0 then t →wh r →n−1
wh u. By i.h., there exists π′′ ▷ ⊢ r : A. By subject expansion

Prop. C.2.2, there exists π′ ▷ ⊢ t : A.



Appendix D

Encoding Space Sensitive TMs into
the λ-Calculus

D.1 Preliminaries

Deterministic λ-Calculus. The language and the evaluation contexts of the deterministic λ-
calculus Λdet are given by:

Terms t, u, r, w ::= v | tv
Values v, w, v′ ::= λx.t | x

Evaluation Contexts E ::= ⟨·⟩ | Ev

Note that

• Arguments are values: the right subterm of an application has to be a value, in contrast to what
happens in the ordinary λ-calculus.

• Weak evaluation: evaluation contexts are weak, i.e. they do not enter inside abstractions.

Evaluation is then defined by:

RULE AT TOP LEVEL CONTEXTUAL CLOSURE
(λx.t)u 7→β t{x�u} E⟨t⟩ →det E⟨u⟩ if t 7→β u

Convention: to improve readability we omit some parenthesis, giving precedence to application
with respect to abstraction. Therefore λx.tu stands for λx.(tu) and not for (λx.t)u, that instead
requires parenthesis.

The name of this calculus is motivated by the following immediate lemma.

Lemma D.1.1. Let t ∈ Λdet. There is at most one u ∈ Λdet such that t →β u, and in that case t is an
application.

Proof. By induction on t. If t is a value then it does not reduce. Then assume that t is an application
t = uv. Let’s apply the i.h. to u. Two cases:

1. u reduces and it is an application: then t has one redex, the one given by u (because ⟨·⟩v is an
evaluation context), and no other one, because v does not reduce and u is not an abstraction
by the i.h.

2. u does not reduce: if u is not an abstraction then t is normal, otherwise u = λx.r and t = (λx.r)v
has exactly one redex.
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Fixpoint. Let fix be the term θθ, where

θ := λx.λy.y(λz.xxyz).

Now, given a term u let us show that fix u is a fixpoint of u up to η-equivalence.

fix u = (λx.λy.y(λz.xxyz))θu
→det (λy.y(λz.θθyz))u
→det u(λz.θθuz)
= u(λz.fix uz)
=η u(fix u)

Encoding alphabets. Let Σ = {a1, . . . , an} be a finite alphabet. Elements of Σ are encoded as
follows:

⌈ai⌉Σ := λx1. . . . .λxn.xi .

When the alphabet will be clear from the context we will simply write ⌈a⌉i. Note that

1. the representation fixes a total order on Σ such that ai ≤ aj iff i ≤ j;

2. the representation of an element ⌈ai⌉Σ requires space linear (and not logarithmic) in |Σ|. But,
since Σ is fixed, it actually requires constant space.

Encoding strings. A string in s ∈ Σ∗ is represented by a term sΣ∗ , defined by induction on the
structure of s as follows:

εΣ∗ := λx1. . . . .λxn.λy.y ,

airΣ∗ := λx1. . . . .λxn.λy.xirΣ∗ .

Note that the representation depends on the cardinality of Σ. In other words, if s ∈ Σ∗ and Σ ⊂ ∆,
sΣ∗ ̸= s∆∗ . In particular, |sΣ∗ | = Θ(|s| · |Σ|). The size of the alphabet is however considered as a
fixed parameter, and so we rather have |sΣ∗ | = Θ(|s|).

Lemma D.1.2 (Appending a character in constant time). Let Σ be an alphabet and a ∈ Σ one of its
characters. There is a term appenda

Σ such that for every continuation k and every string s ∈ Σ∗,

appenda
Σks→O(1)det k(as).

Proof. Define the term appenda
Σ := λk′.λs′.k′(λx1. . . . .λx|Σ|.λy.xia s′) where ia is the index of a in

the ordering of Σ fixed by its encoding, that appends the character a to the string s′ relatively to
the alphabet Σ. We have:

appenda
Σks = (λk′.λs′.k′(λx1. . . . .λx|Σ|.λy.xia s′))ks

→2
det k(λx1. . . . .λx|Σ|.λy.xia s)
= k(as).

D.2 Binary Arithmetic

In order to navigate the input word, we consider a counter (in binary). Moving the head left
(respectively right) amounts to decrement (respectively increment) the counter by one. The starting
idea is to see a number as its binary string representation and to use the Scott encoding of strings.
Since it is tricky to define the successor and predecessor on such an encoding, we actually define
an ad-hoc encoding.
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The first unusual aspect of our encoding is that the binary string is represented in reverse order,
so that the representation of 2 is 01 and not 10. This is done to ease the definition of the successor
and predecessor functions as λ-terms, which have to process strings from left to right, and that
with the standard representation would have to go to the end of the string and then potentially
back from right to left. With a reversed representation, these functions need to process the string
only once from left to right.

The second unusual aspect is that, in order to avoid problems with strings made out of all 0s
and strings having many 0s on the right (which are not meaningful), we collapse all suffixes made
out of all 0 on to the empty string. A consequence is that the number 0 is then represented with the
empty string. Non-rightmost 0 bits are instead represented with the usual Scott encoding.

If n ∈N we write ⌊n⌋ for the binary string representing n. Then we have:

⌊0⌋ := ε

⌊1⌋ := 1
⌊2⌋ := 01
⌊3⌋ := 11
⌊4⌋ := 001

And so on. Binary strings are then encoded as λ-terms using the Scott encoding, as follows:

ε := λx0.λx1.λy.y
0·s := λx0.λx1.λy.x0s

1·s := λx0.λx1.λy.x1s

Successor Function. The successor function SUCC on the reversed binary representation can be
defined as follows (in Haskell-like syntax):

SUCC ε = 1
SUCC 0·s = 1·s
SUCC 1·s = 0·(SUCC s)

For which we have SUCC(⌊n⌋) = ⌊n + 1⌋.

Lemma D.2.1. There is a λ-term succ such that for every continuation k and every natural number
n ∈N,

succ k⌊n⌋ →O(|⌊n⌋|)det k SUCC ⌊n⌋.

Proof. Define succ := Θsuccaux and succaux := λ f .λk′.λn′.n′N0N1Nε f k′ where:

• N0 := λ f ′.λs′.λk′.append1k′s′

• N1 := λ f ′.λs′.λk′. f ′(λz.append0k′z)s′

• Nε := λ f ′.λk′.k′ 1·ε

The first steps of the evaluation of succ k⌊n⌋ are common to all natural numbers n ∈N:

succ k⌊n⌋ = fix succaux k⌊n⌋
→2

β succaux(λz.succ z)k⌊n⌋
= (λ f .λk′.λn′.n′N0N1Nε f k′)(λz.succ z)k⌊n⌋
→3

β ⌊n⌋N0N1Nε(λz.succ z)k

Cases of n:
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• Zero, that is, n = 0, ⌊n⌋ = ε, and ⌊n⌋ = λx0.λx1.λy.y: then

⌊n⌋N0N1Nε(λz.succ z)k = (λx0.λx1.λy.y)N0N1Nε(λz.succ z)k
→3

β Nε(λz.succ z)k
= (λ f ′.λk′.k′ 1·ε)k
→β k 1·ε
= k SUCC ⌊0⌋

• Not zero. Then there are two sub-cases, depending on the first character of the string ⌊n⌋:

– 0 character, i.e. ⌊n⌋ = 0·s: then

0·rN0N1Nε(λz.succ z)k = (λx0.λx1.λy.x0s)N0N1Nε(λz.succ z)k
→3

β N0s(λz.succ z)k
= (λ f ′.λs′.λk′.append1k′s′)s(λz.succ z)k
→3

β append1ks

(L. D.1.2) →O(1)β k 1·s
= k SUCC ⌊n⌋

– 1 character, i.e. ⌊n⌋ = 1·s: then

1·rN0N1Nε(λz.succ z)k = (λx0.λx1.λy.x1s)N0N1Nε(λz.succ z)k
→3

β N1s(λz.succ z)k
= (λ f ′.λs′.λk′. f ′(λz.append0k′z)s′)s(λz.succ z)k
→3

β (λz.succ z) (λz.append0kz)s
→β succ (λz.append0kz)s

(i.h.) →O(|s|)β (λz.append0kz)SUCC s
→det append0kSUCC s

(L. D.1.2) →O(1)β k 0·(SUCC s)
= k SUCC (1·s)
= k SUCC ⌊n⌋

Predecessor Function. We now define and implement a predecessor function. We define it
assuming that it shall only be applied to the enconding ⌊n⌋ of a natural number n different from
0, as it shall indeed be the case in the following. Such a predecessor function PRED is defined as
follows on the reversed binary representation (in Haskell-like syntax):

PRED 0·s = 1·(PRED s)
PRED 1·ε = ε
PRED 1·b·s = 0·b·s

It is easily seen that PRED(⌊n⌋) = ⌊n − 1⌋ for all 0 < n ∈ N. Note that PRED(⌊n⌋) does not
introduce a rightmost 0 bit when it changes the rightmost bit of ⌊n⌋, that is, PRED 001 = 11 and not
110.

Lemma D.2.2. There is a λ-term pred such that for every continuation k and every natural number
1 ≤ n ∈N,

pred k⌊n⌋ →O(|⌊n⌋|)det k PRED ⌊n⌋.

Proof. Define pred := fix predaux and predaux := λ f .λk′.λn′.n′N0N1Nε f k′ where:

• N0 := λr′.λ f .λk′. f (λz.append1k′z)r′;
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• N1 := λr′.λ f .r′M0M1Mε, where:

– M0 := λv.λk.append0(λz.append1kz)v;

– M1 := λv.λk.append1(λz.append1kz)v;

– Mε := λk′.k′ε;

• Nε is whatever closed term.

The first steps of the evaluation of pred k⌊n⌋ are common to all natural numbers 1 ≤ n ∈N:

pred k⌊n⌋ = fix predaux k⌊n⌋
→2

β predaux(λz.pred z)k⌊n⌋
= (λ f .λk′.λn′.n′N0N1Nε f k′)(λz.pred z)k⌊n⌋
→3

β ⌊n⌋N0N1Nε(λz.pred z)k

By hypothesis, n ≥ 1. Then n is a non-empty string. Cases of its first character:

• 0 character, i.e. ⌊n⌋ = 0·r: then

⌊n⌋N0N1Nε(λz.pred z)k = (λx0.λx1.λy.x0r)N0N1Nε(λz.pred z)k
→3

β N0r(λz.pred z)k
= (λr′.λ f .λk′. f (λz.append1k′z)r′)r(λz.pred z)k
→3

β (λz.pred z)(λz.append1k′z)r
→β pred(λz.append1kz)r

(i.h.) →O(|r|)β (λz.append1kz) PRED r
→β append1k PRED r

(L. D.1.2) →O(1)β k 1·(PRED r)
= k PRED 0·r
= k PRED ⌊n⌋

• 1 character, i.e. ⌊n⌋ = 1·r: then

⌊n⌋N0N1Nε(λz.pred z)k = (λx0.λx1.λy.x1r)N0N1Nε(λz.pred z)k
→3

β N1r(λz.pred z)k
= (λr′.λ f .r′M0M1Mε)r(λz.pred z)k
→β rM0M1Mεk

There are three sub-cases, depending on the string r:

– r is empty, i.e. r = ε. Then:

εM0M1Mεk = (λx0.λx1.λy.y)M0M1Mεk
→3

β Mεk
= (λk′.k′ε)k
→β kε

→β k⌊0⌋
= kPRED ⌊1⌋
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– r start with 0, that is, ⌊n⌋ = 1·r = 1·0·p. Then:

0·p M0M1Mεk = (λx0.λx1.λy.x0 p)M0M1Mεk
→3

β M0 pk
= (λv.λk.append0(λz.append0kz)v)pk
→2

β append0(λz.append0kz)p

(L. D.1.2) →O(1)β (λz.append0kz)0·p
→β append0k 0·p

(L. D.1.2) →O(1)β k 0·0·p
= k 0·r
= k PRED 1·r
= k PRED ⌊n⌋

– r start with 1, that is, ⌊n⌋ = 1·r = 1·1·p. Then:

0·p M0M1Mεk = (λx0.λx1.λy.x1 p)M0M1Mεk
→3

β M1 pk
= (λv.λk.append1(λz.append0kz)v)pk
→2

β append1(λz.append0kz)p

(L. D.1.2) →O(1)β (λz.append0kz)1·p
→β append0k 1·p

(L. D.1.2) →O(1)β k 0·1·p
= k 0·r
= k PRED 1·r
= k PRED ⌊n⌋

Lookup Function. Given a natural number n, we need to be able to extract the n + 1-th character
from a non-empty string s. The partial function LOOKUP can be defined as follows (in Haskell-like
syntax):

LOOKUP ⌊0⌋ (c·s) = c
LOOKUP ⌊n⌋ (c·s) = LOOKUP (PRED ⌊n⌋) s if n > 0

Lemma D.2.3. There is a λ-term lookup such that for every continuation k, every natural number n and
every non-empty string i ∈ B+,

lookup k⌊n⌋i →O(n log n)
det k ⌈LOOKUP ⌊n⌋i⌉.

Proof. We can now code the function lookup := fix lookupaux where:

lookupaux := λ f .λk′.λn′.λi′.n′N0N1Nε f k′i′

where:

• N0 := λp′.λ f .λk′.λi′.i′M0M0Mε p′ f k′, where

– M0 := λr′.λp′.λ f .λk′.append0(λz′′.pred(λz′. f k′z′)z′′)p′r′;

– Mε is whatever closed term.

• N1 := λp′.λ f .λk′.λi′.i′M1M1Mε p′ f k′, where

– M1 := λr′.λp′.λ f .λk′.append1(λz′′.pred(λz′. f k′z′)z′′)p′r′;

– Mε is whatever closed term.
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• Nε := λ f .λk′.λi′.i′O0O1OLOROεk′, where

– Ob := λs′.λk′.k′⌈b⌉;
– Oε is whatever closed term.

The first steps of the evaluation of lookup k⌊n⌋i are common to all strings i ∈ B+ and natural
numbers n ∈N:

lookup k⌊n⌋i = fix lookupaux k⌊n⌋i
→2

β lookupaux(λz.lookup z)k⌊n⌋i
= (λ f .λk′.λn′.λi′.n′N0N1Nε f k′i′)(λz.lookup z)k⌊n⌋i
→4

β ⌊n⌋N0N1Nε(λz.lookup z)ki

Cases of n:

• n = 0, and so ⌊n⌋ = ε: then

εN0N1Nε(λz.lookup z)ki
= (λx0.λx1.λy.y)N0N1Nε(λz.lookup z)ki
→3

β Nε(λz.lookup z)ki
= (λ f .λk′.λi′.i′O0O1OLOROεk′)(λz.lookup z)ki
→3

det iO0O1OLOROεk

Let i start with b ∈ B, that is, i = b·s:

b·s O0O1OLOROεk = (λx0.λx1.λx.εxbs)O0O1OLOROεk
→3

det Obsk
= (λs′.λk′.k′⌈b⌉)sk
→2

β k⌈b⌉
= k⌈LOOKUP ε(b·s)⌉
= k⌈LOOKUP ⌊0⌋i⌉

• Non-empty string starting with 0, that is, n > 0 and ⌊n⌋ = 0·p: then

⌊n⌋N0N1Nε(λz.lookup z)ki
= (λx0.λx1.λy.x0 p)N0N1Nε(λz.lookup z)ki
→3

β N0 p(λz.lookup z)ki
= (λp′.λ f .λk′.λi′.i′M0M0Mε p′ f k′)p(λz.lookup z)ki
→4

β iM0M0Mε p(λz.lookup z)k

Let i start with b ∈ B, that is, i = b·r:
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b·rM0M0Mεk = (λx0.λx1.λxε.xbr)M0M0Mε p(λz.lookup z)k
→|Σ|det M0r p(λz.lookup z)k
= (λr′.λp′.λ f .λk′.append0(λz′′.pred(λz′. f k′z′)z′′)p′r′)r p(λz.lookup z)k
→4

det append0(λz′′.pred(λz′.(λz.lookup z)kz′)z′′)p r
(L. D.1.2 →O(1)det (λz′′.pred(λz′.(λz.lookup z)kz′)z′′)0·p r

→det pred(λz′.(λz.lookup z)kz′)0·p r
= pred(λz′.(λz.lookup z)kz′)⌊n⌋ r

(L. D.2.2) →O(|⌊n⌋|)det (λz′.(λz.lookup z)kz′)PRED ⌊n⌋ r
→2

det lookup k PRED ⌊n⌋ r
= lookup k ⌊n− 1⌋ r

(i.h.) →O((n−1)·log (n−1))
det k(⌈LOOKUP ⌊n− 1⌋r⌉)

= k(⌈LOOKUP ⌊n⌋s⌉)

The number of β steps then is O(|⌊n⌋|) +O((n− 1) · log (n− 1)) + h for a certain constant
h. Since |⌊n⌋| = O(log n), we obtain that the number of steps is bound by O(n · log n), as
required.

• Non-empty string starting with 1, that is, n > 0 and ⌊n⌋ = 1·p: same as the previous one,
simply replacing N0 with N1, and thus M0 with M1. In particular, it takes the same number
of steps.

D.3 Encoding Turing Machines

Turing Machines. Let BI := {0, 1, L,R} and BW := {0, 1,□} where L and R delimit the input
(binary) string, and □ is our notation for the blank symbol. A deterministic binary Turing machine
M with input is a tuple (S, sin, sT, sF, δ) consisting of:

• A finite set Q = {s1, . . . , sm} of states;

• A distinguished state sin ∈ Q, called the initial state;

• Two distinguished states Sfin := {sT, sF} ⊆ S, called the final states;

• A partial transition function δ : BI ×BW × S ⇀ {−1,+1, 0} ×BW × {←,→, ↓} × S such that
δ(b, a, s) is defined only if s /∈ Sfin.

A configuration forM is a tuple

(i, n, wl , a, wr, s) ∈ B∗I ×N×B∗W ×BW ×B∗W × S

where:

• i is the immutable input string and is formed as i = L·s·R, s ∈ B∗;

• n ∈N represents the position of the input head. It is meant to be represented in binary (that
is, as an element of B∗), to take space log n, but for ease of reading we keep referring to it as
a number rather than as a string;

• wl ∈ B∗W is the work tape on the left of the work head;

• a ∈ BW is the element on the cell of the work tape read by the work head;

• wr ∈ B∗W is the work tape on the right of the work head;
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• s ∈ S is the state of the machine.

For readability, we usually write a configuration (i, n, wl , a, wr, s) as (i, n |wl , a, wr | s), separating
the input components, the working components, and the current state.

Given an input string i ∈ B∗I (where i = L·s·R and s ∈ B∗) we define:

• the initial configuration Cin(i) for i is Cin(i) := (i, 0 | ε,□, ε | sin),

• the final configuration Cfin := (s, n |wl , a, wr | s), where s ∈ Sfin.

For readability, a transition, say, δ(in, a, s) = (−1, a′,←, s′), is usually written as (−1 | a′,← | s′) to
stress the three components corresponding to those of configurations (input, work, state).

As in Goldreich, we assume that the machine never scans the input beyond the boundaries of
the input. This does not affects space complexity.

An example of transition: if δ(in, a, s) = (−1 | a′,← | s′), thenM evolves from C = (i, n |wla′′, a, wr | s),
where the nth character of i is in, to D = (i, n− 1 |wl , a′′, a′wr | s′) and if the tape on the left of the
work head is empty, i.e. if C = (i, n | ε, a, wr | s), then the content of the new head cell is a blank
symbol, that is, D := (i, n− 1 | ε,□, a′wr | s′). The same happens if the tape on the right of the work
head is empty. IfM has a transition from C to D we write C →M D. A configuration having as
state a final state s ∈ Sfin is final and cannot evolve.

A Turing machine (S, sin, sT, sF, δ) computes the function f : B∗ → B in time T : N→N and
space S : N→N if for every i ∈ B+, the initial configuration for i evolves to a final configuration
of state s f (i) in T(|i|) steps and using at most S(|i|) cells on the work tape.

Encoding configurations. A configuration (i, n | s, a, r | s) of a machineM = (S, sin, sT, sF, δ) is
represented by the term

(i, n |wl , a, wr | s)
M

:= λx.(xiB
+

⌊n⌋B wR
l

B∗W ⌈a⌉BW wr
B∗W ⌈s⌉S).

where wR
l is the string wl with the elements in reverse order. We shall often rather write

(i, n |wl , a, wr | s) := λx.(x i ⌊n⌋ wR
l ⌈a⌉ wr ⌈s⌉).

letting the superscripts implicit. To ease the reading, we sometimes use the following notation for
tuples ⟨s, q | t, u, r |w⟩ := λx.(xsqturw), so that (i, n |wl , a, wr | s) = ⟨i, ⌊n⌋ |wR

l , ⌈a⌉, wr | ⌈s⌉⟩.

Turning the input string into the initial configuration. The following lemma provides the term
init that builds the initial configuration.

Lemma D.3.1 (Turning the input string into the initial configuration). LetM = (S, sin, sT, sF, δ) be
a Turing machine. There is a term initM, or simply init, such that for every input string i ∈ B∗I (where
i = L·s·R and s ∈ B∗):

init k i →Θ(1)
det k Cin(i)

where Cin(i) is the initial configuration ofM for i.

Proof. Define

init := (λd.λe.λ f .λk′.λi′.k′⟨i′, d | e, ⌈□⌉BW , f | ⌈sin⌉S⟩)⌊0⌋εB∗W εB∗W

Please note that the term is not in normal form. This is for technical reasons that will be clear next.
Then

init k iB
∗
I = (λd.λe.λ f .λk′.λi′.k′⟨i′, d | e, ⌈□⌉BW , f | ⌈sin⌉S⟩)⌊0⌋εB∗W εB∗WkiB

∗
I

→5
det k ⟨iB

∗
I , ⌊0⌋ | εB∗W , ⌈□⌉BW , εB∗W | ⌈sin⌉S⟩

= k (i, 0 | ε,□, ε | sin)

= k Cin(i)
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Extracting the output from the final configuration.

Lemma D.3.2 (Extracting the output from the final configuration). LetM = (S, sin, sT, sF, δ) be a
Turing machine. There is a term finalM, or simply final, such that for every final configuration C of
state s ∈ Sfin

final k C →Θ(|S|)
det

{
k(λx.λy.x) if s = sT

k(λx.λy.y) if s = sF

Proof. Define

final := λk′.λC′.C′(λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k
′)

where:

Ni :=


λk′.k′(λx.λy.x) if qi = sT

λk′.k′(λx.λy.y) if qi = sF

whatever closed term (say, the identity) otherwise

Then:

final k C = (λk′.λC′.C′(λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k′))kC
→2

det C(λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k)
= (i, n |wl , a, wr | s)(λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k)

= (λx.xiB
∗
⌊n⌋ wR

l
B∗W ⌈a⌉BW wr

B∗W ⌈s⌉S)(λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k)

→det (λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k)i
B∗⌊n⌋ wR

l
B∗W ⌈a⌉BW wr

B∗W ⌈s⌉S
→6

det ⌈s⌉
SN1 . . . N|S|k

= (λx1 . . . x|S|.xj)N1 . . . N|S|k

→|S|det Njk

If s = sT, then:
Njk = (λk′.k′(λx.λy.x))k

→det k(λx.λy.x)

If s = sF, then:
Njk = (λk′.k′(λx.λy.y))k

→det k(λx.λy.y)

Simulation of a machine transition. Now we show how to encode the transition function δ of a
Turing machine as a λ-term in such a way to simulate every single transition in constant? time.
This is the heart of the encoding, and the most involved proof.

Lemma D.3.3 (Simulation of a machine transition). LetM = (S, sin, sT, sF, δ) be a Turing machine.
There is a term transM, or simply trans, such that for every configuration C of input string i ∈ B+:

• Final configuration: if C is a final configuration then trans k C →O(|i| log |i|)
det k C;

• Non-final configuration: if C →M D then trans k C →O(|i| log |i|)
det trans k D.

Proof. The transition function δ(b, a, s) is a 3-dimensional table having for coordinates:

• the current bit b on the input tape, which is actually retrieved from the input tape i and the
counter n of the current input position,

• the current character a on the work tape, and

• the current state s,
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The transition function is encoded as a recursive λ-term trans taking as argument the encodings
of i, and n—to retrieve b—and a and s. It works as follows:

• It first retrieves b from n and i by applying the lookup function;

• It has a subterm Ab for the four values of b. The right sub-term is selected by applying the
encoding ⌈b⌉ of b to A0, A1, AL and AR.

• Each Ab in turn has a sub-term Bb,a for every character a ∈ BW, corresponding to the working
tape coordinates. The right sub-term is selected by applying the encoding ⌈a⌉ of the current
character a on the work tape to Bb,0, Bb,1, Bb,□.

• Each Bb,a in turn has a subterm Cb,a,s for every character s in S. The right sub-term is selected
by applying the encoding ⌈s⌉ of the current state s to Cb,a,s1 , . . . , Bb,a,s|S| .

• The subterm Cb,a,s produces the (encoding of the) next configuration according to the tran-
sition function δ. If δ decreases (resp. increases) the counter for the input tape then Cb,a,s
applies pred (resp. succ) to the input counter and then applies a term corresponding to the
required action on the work tape, namely:

– S (for stay) if the head does not move. This case is easy, S simply produces the next
configuration.

– L if it moves left. Let wl = wa′′, a′ the element that the transition has to write and s′ the
new state. Then L has a subterm La′ ,s′

a′′ for each a′′ ∈ BW the task of which is to add a′ to
the right part of the work tape, remove a′′ from the left part of the work tape (which
becomes w), and make a′′ the character in the work head position.

– R if it moves right. Its structure is similar to the one of L.

In order to be as modular as possible we use the definition of S, L, and R for the cases when
the input head moves also for the cases where it does not move, even if this requires a useless
(but harmless) additional update of the counter n.

Define

transaux := λx.λk′.λC′.C′(λi′.λn′.λw′l .λa′.λw′r.λs′.lookupKi′n′)

trans := fix transaux,
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where:

K := λb′.b′ A0 A1 ALARa′s′xk′i′n′w′lw
′
r

Ab := λa′.a′Bb,0Bb,1Bb,□

Bb,a := λs′.s′Cb,a,s1 . . . Cb,a,s|S|

Cb,a,s := λx.λk′.λi′.λn′.λw′l .λw′r.



k′⟨i′, n′ |w′l , ⌈a⌉, w′r | ⌈s⌉⟩ if s ∈ Sfin

Sn′ if δ(b, a, s) = (0 | a′, ↓ | s′)
Ln′ if δ(b, a, s) = (0 | a′,← | s′)
Rn′ if δ(b, a, s) = (0 | a′,→ | s′)
predSn′ if δ(b, a, s) = (−1 | a′, ↓ | s′)
predLn′ if δ(b, a, s) = (−1 | a′,← | s′)
predRn′ if δ(b, a, s) = (−1 | a′,→ | s′)
succSn′ if δ(b, a, s) = (+1 | a′, ↓ | s′)
succLn′ if δ(b, a, s) = (+1 | a′,← | s′)
succRn′ if δ(b, a, s) = (+1 | a′,→ | s′)

S := λn′′.xk′⟨i′, n′′ |w′l , ⌈a
′⌉, w′r | ⌈s′⌉⟩

L := λn′′.w′l L
s′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε xk′i′n′′w′r
R := λn′′.w′rRs′ ,a′

0 Rs′ ,a′
1 Rs′ ,a′

□ Rs′ ,a′
ε xk′i′n′′w′l

Ls′ ,a′
a′′ := λw′l .λx.λk′.λi′.λn′.appenda′(λw′r.xk′⟨i′, n′ |w′l , ⌈a

′′⌉, w′r | ⌈s′⌉⟩)
Ls′ ,a′

ε := λx.λk′.λi′.λn′.appenda′((λd.λw′r.xk′⟨i′, n′ | d, ⌈□⌉, w′r | ⌈s′⌉⟩)ε)
Rs′ ,a′

a′′ := λw′r.λx.λk′.λi′.λn′.appenda′(λw′l .xk′⟨i′, n′ |w′l , ⌈a
′′⌉, w′r | ⌈s′⌉⟩)

Rs′ ,a′
ε := λx.λk′.λi′.λn′.appenda′((λd.λw′l .xk′⟨i′, n′ |w′l , ⌈□⌉, d | ⌈s′⌉⟩)ε)

Let C = (i, n |wl , a, wr | s). We are now going to show the details of how the λ-calculus simulates
the transition function. At the level of the number of steps, the main cost is payed at the beginning,
by the lookup function that looks up the n-th character of the input string i. The cost of one such
call is O(n log n), but since n can vary and n ≤ |i|, such a cost is bound by O(|i| log |i|). The cases
of transition where the position on the input tape does not change have a constant cost. Those
where the input position changes require to change the counter n via pred or succ, which requires
O(log n), itself bound by the cost O(|i| log |i|) of the previous look-up.

Now, if LOOKUP ⌊n⌋i = b then:
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trans k C = fix transauxkC
→2

det transaux(λz.fix transauxz)kC
= transaux(λz.trans z)kC
= (λx.λk′.λC′.C′(λi′.λn′.λw′l .λa′.λw′r.λs′.lookupKi′n′))(λz.trans z)kC
→3

det C(λi′.λn′.λw′l .λa′.λw′r.λs′.lookupK{x�λz.trans z}i′n′)
= (i, n |wl , a, wr | s)(λi′.λn′.λw′l .λa′.λw′r.λs′.lookupK{x�λz.trans z}i′n′)
= (λx.xi⌊n⌋wR

l ⌈a⌉ wr ⌈s⌉)(λi′.λn′.λw′l .λa′.λw′r.λs′.lookupK{x�λz.trans z}i′n′)
= (λi′.λn′.λw′l .λa′.λw′r.λs′.lookupK{x�λz.trans z}i′n′)i⌊n⌋wR

l ⌈a⌉ wr ⌈s⌉
→6

det lookup (λb′.b′ A0 A1 ALAR⌈a⌉ ⌈s⌉(λz.trans z)k′i⌊n⌋wR
l wr)i⌊n⌋

L. D.2.3 →O(|n| log |n|)
det (λb′.b′ A0 A1 ALAR⌈a⌉ ⌈s⌉(λz.trans z)k′i⌊n⌋wR

l wr)⌈b⌉
→det ⌈b⌉ A0 A1 ALAR⌈a⌉ ⌈s⌉(λz.trans z)ki⌊n⌋wR

l wr

→4
det Ab⌈a⌉ ⌈s⌉(λz.trans z)ki⌊n⌋wR

l wr

= (λa′.a′Bb,0Bb,1Bb,□)⌈a⌉ ⌈s⌉(λz.trans z)ki⌊n⌋wR
l wr

→det ⌈a⌉Bb,0Bb,1Bb,□⌈s⌉(λz.trans z)ki⌊n⌋wR
l wr

→3
det Bb,a⌈s⌉(λz.trans z)ki⌊n⌋wR

l wr

= (λs′.s′Cb,a,s1 . . . Cb,a,s|S|)⌈s⌉(λz.trans z)ki⌊n⌋wR
l wr

→det ⌈s⌉Cb,a,s1 . . . Cb,a,s|S|(λz.trans z)ki⌊n⌋wR
l wr

→|S|det Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

Now, consider the following four cases, depending on the value of δ(b, a, s):

1. Final state: if δ(b, a, s) is undefined, then s ∈ Sfin and replacing Cb,a,s with the corresponding
λ-term we obtain:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.k′⟨i′, n′ |w′l , ⌈a⌉, w′r | ⌈s⌉⟩)(λz.trans z)ki⌊n⌋wR
l wr

→6
det k⟨i, ⌊n⌋ |wR

l , ⌈a⌉, wr | ⌈s⌉⟩
= k(i, n |wl , a, wr | s)
= kC

2. The heads do not move: if δ(b, a, s) = (0 | a′, ↓ | s′), then D = (i, n |wl , a′, wr, s′). The simulation
continues as follows:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.Sn′)(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.(λn′′.xk′⟨i′, n′′ |w′l , ⌈a
′⌉, w′r | ⌈s′⌉⟩)n′)(λz.trans z)ki⌊n⌋wR

l wr

→6
det (λn′′.(λz.trans z)k⟨i, n′′ |wR

l , ⌈a′⌉, wr | ⌈s′⌉⟩)⌊n⌋
→2

det trans k⟨i, ⌊n⌋ |wR
l , ⌈a′⌉, wr | ⌈s′⌉⟩

= trans k(i, n |wl , a′, wr | s′)
= trans kD

3. The input head does not move and the work head moves left: if δ(b, a, s) = (0 | a′,← | s′) and
wl = wa′′ then:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

(λx.λk′.λi′.λn′′.λw′l .λw′r.Ln′)(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.(λn′′.w′l L
s′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε xk′i′n′′w′r)n′)(λz.trans z)ki⌊n⌋wR
l wr

→6
det (λn′′.wR

l Ls′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε (λz.trans z)kin′′wr)⌊n⌋
→det wR

l Ls′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε (λz.trans z)ki⌊n⌋wr
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Two sub-cases, depending on whether wl is an empty or a compound string.

(a) wl is the compound string wa′′. Then wR
l = a′′wR and D = (i, n |wl , a′′, a′wr | s′). The

simulation continues as follows:

= a′′wR Ls′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε (λz.trans z)ki⌊n⌋wr

→4
det Ls′ ,a′

a′′ wR(λz.trans z)ki⌊n⌋wr

= (λw′l .λx.λk′.λi′.λn′.appenda′(λw′r.xk′⟨i′, n′ |w′l , ⌈a
′′⌉, w′r | ⌈s′⌉⟩))wR(λz.trans z)ki⌊n⌋wr

→5
det appenda′(λw′r.(λz.trans z)k⟨i, ⌊n⌋ |wR, ⌈a′′⌉, w′r | ⌈s′⌉⟩)wr

L. D.1.2 →O(1)
det (λw′r.(λz.trans z)k⟨i, ⌊n⌋ |wR, ⌈a′′⌉, w′r | ⌈s′⌉⟩)a′wr

→2
det trans k⟨i, ⌊n⌋ |wR, ⌈a′′⌉, a′wr | ⌈s′⌉⟩

= trans k(i, n |w, a′′, a′wr | s′)
= trans kD

(b) wl is the empty string ε. Then D = (i, n | ε,□, a′wr | s′). The simulation continues as
follows:

= εLs′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε (λz.trans z)ki⌊n⌋wr

→4
det Ls′ ,a′

ε (λz.trans z)ki⌊n⌋wr

= (λx.λk′.λi′.λn′.appenda′((λd.λwr.xk′⟨i′, n′ | d, ⌈□⌉, wr | ⌈s′⌉⟩)ε))(λz.trans z)ki⌊n⌋wr

→5
det appenda′((λd.λw′r.(λz.trans z)k⟨i, ⌊n⌋ | d, ⌈□⌉, w′r | ⌈s′⌉⟩)ε)wr

L. D.1.2 →O(1)
det ((λd.λw′r.(λz.trans z)k⟨i, ⌊n⌋ | d, ⌈□⌉, w′r | ⌈s′⌉⟩)ε)a′wr

→3
det trans k⟨i, ⌊n⌋ | ε, ⌈□⌉, a′wr | ⌈s′⌉⟩

= trans k(i, n | ε,□, a′wr | s′)
= trans kD

4. The input head does not move and the work head moves right: if δ(b, a, s) = (0 | a′,→ | s′) and
wr = a′′w then:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.Rn′)(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.(λn′′.w′rRs′ ,a′
0 Rs′ ,a′

1 Rs′ ,a′
□ Rs′ ,a′

ε xk′i′n′′w′l)n
′)(λz.trans z)ki⌊n⌋wR

l wr

→6
det (λn′′.wrRs′ ,a′

0 Rs′ ,a′
1 Rs′ ,a′

□ Rs′ ,a′
ε (λz.trans z)kin′′wR

l )⌊n⌋
→det wrRs′ ,a′

0 Rs′ ,a′
1 Rs′ ,a′

□ Rs′ ,a′
ε (λz.trans z)ki⌊n⌋wR

l

Two sub-cases, depending on whether wl is an empty or a compound string.

(a) wr is the compound string a′′w. Then D = (i, n |wla′, a′′, w | s′). The simulation continues
as follows:

= a′′wRs′ ,a′
0 Rs′ ,a′

1 Rs′ ,a′
□ Rs′ ,a′

ε (λz.trans z)ki⌊n⌋wR
l

→4
det Rs′ ,a′

a′′ w(λz.trans z)ki⌊n⌋wR
l

= (λw′r.λx.λk′.λi′.λn′.appenda′(λw′l .xk′⟨i′, n′ |w′l , ⌈a
′′⌉, w′r | ⌈s′⌉⟩))w(λz.trans z)ki⌊n⌋wR

l
→5

det appenda′(λw′l .(λz.trans z)k⟨i, ⌊n⌋ |w′l , ⌈a
′′⌉, w | ⌈s′⌉⟩)wR

l
L. D.1.2 →O(1)

det (λw′l .(λz.trans z)k⟨i, ⌊n⌋ |w′l , ⌈a
′′⌉, w | ⌈s′⌉⟩)a′wR

l
→2

det trans k⟨i, ⌊n⌋ | a′wR
l , ⌈a′′⌉, w | ⌈s′⌉⟩

= trans k⟨i, ⌊n⌋ | (wla′)R, ⌈a′′⌉, w | ⌈s′⌉⟩
= trans k(i, n |wla′, a′′, w | s′)
= trans kD

(b) wr is the empty string ε. Then D = (i, n |wla′,□, ε | s′). The simulation continues as
follows:
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= εRs′ ,a′
0 Rs′ ,a′

1 Rs′ ,a′
□ Rs′ ,a′

ε (λz.trans z)ki⌊n⌋wR
l

→4
det Rs′ ,a′

ε (λz.trans z)ki⌊n⌋wR
l

= (λx.λk′.λi′.λn′.appenda′((λd.λw′l .xk′⟨i′, n′ |w′l , ⌈□⌉, d | ⌈s′⌉⟩)ε))(λz.trans z)ki⌊n⌋wR
l

→5
det appenda′((λd.λw′l .(λz.trans z)k⟨i, ⌊n⌋ |w′l , ⌈□⌉, d | ⌈s′⌉⟩)ε)wR

l
L. D.1.2 →O(1)

det ((λd.λw′l .(λz.trans z)k⟨i, ⌊n⌋ |w′l , ⌈□⌉, d | ⌈s′⌉⟩)ε)a′wR
l

→3
det trans k⟨i, ⌊n⌋ | a′wR

l , ⌈□⌉, ε | ⌈s′⌉⟩)
= trans k⟨i, ⌊n⌋ | (wla′)R, ⌈□⌉, ε | ⌈s′⌉⟩)
= trans k(i, n |wla′,□, ε | s′)
= trans kD

5. The input head moves left and the work head does not move: if δ(b, a, s) = (−1 | a′, ↓ | s′), then
D = (i, n− 1 |wl , a′, wr, s′). The simulation continues as follows:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.pred S(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.pred (λn′′.xk′⟨i′, n′′ |w′l , ⌈a
′⌉, w′r | ⌈s′⌉⟩)n′)(λz.trans z)ki⌊n⌋wR

l wr

→6
det pred (λn′′.(λz.trans z)k⟨i, n′′ |wR

l , ⌈a′⌉, wr | ⌈s′⌉⟩)⌊n⌋
L. D.2.2 →O(log n)

det (λn′′.(λz.trans z)k⟨i, n′′ |wR
l , ⌈a′⌉, wr | ⌈s′⌉⟩)⌊n− 1⌋

= trans k(i, ⌊n− 1⌋ |wl , a′, wr | s′)
= trans k(i, ⌊n− 1⌋ |wl , a′, wr | s′)
= trans kD

6. The input head moves left and the work head moves left: if δ(b, a, s) = (−1 | a′,← | s′) and
wl = wa′′, then D = (i, n− 1 |w, a′′, a′wr, s′). The simulation continues as follows:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.pred Ln′)(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.pred (λn′′.w′l L
s′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε xk′i′n′′w′r)n′)(λz.trans z)ki⌊n⌋wR
l wr

→6
det pred (λn′′.wR

l Ls′ ,a′
0 Ls′ ,a′

1 Ls′ ,a′
□ Ls′ ,a′

ε (λz.trans z)kin′′wr)⌊n⌋
L. D.2.2 →O(log n)

det (λn′′.wR
l Ls′ ,a′

0 Ls′ ,a′
1 Ls′ ,a′

□ Ls′ ,a′
ε (λz.trans z)kin′′wr)⌊n− 1⌋

→det wR
l Ls′ ,a′

0 Ls′ ,a′
1 Ls′ ,a′

□ Ls′ ,a′
ε (λz.trans z)ki⌊n− 1⌋wr

And then the case continues with the two sub-cases of case 3 (input head does not move and
work head moves left), with the only difference that ⌊n⌋ is replaced by ⌊n− 1⌋.

7. The input head moves left and the work head moves right: if δ(b, a, s) = (−1 | a′,← | s′) and
wl = wa′′, then D = (i, n− 1 |w, a′′, a′wr, s′). The simulation continues as follows:

Cb,a,s(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.pred Rn′)(λz.trans z)ki⌊n⌋wR
l wr

= (λx.λk′.λi′.λn′.λw′l .λw′r.pred(λn′′.w′rRs′ ,a′
0 Rs′ ,a′

1 Rs′ ,a′
□ Rs′ ,a′

ε xk′i′n′′w′l)n
′)(λz.trans z)ki⌊n⌋wR

l wr

→6
det pred(λn′′.wrRs′ ,a′

0 Rs′ ,a′
1 Rs′ ,a′

□ Rs′ ,a′
ε (λz.trans z)kin′′wR

l )⌊n⌋
L. D.2.2 →O(log n)

det (λn′′.wrRs′ ,a′
0 Rs′ ,a′

1 Rs′ ,a′
□ Rs′ ,a′

ε (λz.trans z)kin′′wR
l )⌊n− 1⌋

→det λn′′.wrRs′ ,a′
0 Rs′ ,a′

1 Rs′ ,a′
□ Rs′ ,a′

ε (λz.trans z)ki⌊n− 1⌋wR
l

And then the case continues with the two sub-cases of case 4 (input head does not move and
work head moves right), with the only difference that ⌊n⌋ is replaced by ⌊n− 1⌋.

8. The input head moves right and the work head does not move: exactly as case 5 (input head left,
work head does not move) just replacing pred with succ and using Lemma D.2.1 instead of
Lemma D.2.2.
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9. The input head moves right and the work head moves left: exactly as case 6 (input head left, work
head left) just replacing pred with succ and using Lemma D.2.1 instead of Lemma D.2.2.

10. The input head moves right and the work head moves right: exactly as case 7 (input head right, work
head right) just replacing pred with succ and using Lemma D.2.1 instead of Lemma D.2.2.

Straightforward inductions on the length of executions provide the following corollaries.

Corollary D.3.4 (Executions). LetM be a Turing machine. Then there exist a term trans encodingM
as given by Lemma D.3.3 such that for every configuration C of input string i ∈ B+

1. Finite computation: if D is a final configuration reachable from C in n transition steps then there
exists a derivation ρ such that ρ : trans k⌈C⌉ →O((n+1)|i| log |i|)

det k⌈D⌉;

2. Diverging computation: if there is no final configuration reachable from C then trans k⌈C⌉
diverges.

The simulation theorem. We now have all the ingredients for the final theorem of this note.

Theorem D.3.5 (Simulation). Let f : B∗ → B a function computed by a Turing machineM in time
TM. Then there is an encoding ⌈·⌉ into Λdet of B, strings, and Turing machines over B such that for every
i ∈ B+, there exists ρ such that ρ : ⌈M⌉⌈i⌉ →n

det ⌈ f (i)⌉ where n = Θ((TM(|i|) + 1) · |i| · log |i|).

Proof. Morally, the term is simply

M := init(trans(final(λw.w))

where λw.w plays the role of the initial continuation.
Such a term however does not belong to the deterministic λ-calculus, because the right subterms

of applications are not always values. The solution is simple, it is enough to η-expand the
arguments. Thus, define

M := init(λy.trans(λx.final(λw.w)x)y)

Then

M⌈i⌉ =

init(λy.trans(λx.final(λw.w)x)y)⌈i⌉ →Θ(1)
det (by L. D.3.1)

(λy.trans(λx.final(λw.w)x)y)⌈CMin (s)⌉ →det

trans(λx.final(λw.w)x)⌈CMin (s)⌉ →Θ((TM(|i|)+1)·|i|·log |i|)
det (by Cor. D.3.4)

(λx.final(λw.w)x)⌈Cfin( f (i))⌉ →det

final(λw.w)⌈Cfin( f (i))⌉ →Θ(|S|)
det (by L. D.3.2)

(λw.w)⌈ f (i)⌉ →det
⌈ f (i)⌉



Appendix E

Execution of the Encoding of TMs on
the Space KAM

This appendix is devoted to the proof of the main theorem of Chapter 8, i.e. the space reasonable
simulation of TMs into the λ-calculus (better, the Space KAM). It is a boring proof, where we
simply execute the image of the encoding of TMs into the λ-calculus with the Space KAM.

First, we need to understand how a TM configuration is represented in the Space KAM, i.e.
how it is mapped to environments and closures.

Definition E.0.1. A configuration C of a TM is represented as a KAM closure CK in the following way:

(i, n, s, a, r, s)K := (⟨ f , c, m, ⌈a⌉, d, ⌈s⌉⟩, [ f �(i, ϵ)], [c�nK], [m�sK], [d�rK])

where sK =

{
(⌈ε⌉, ϵ) if s = ε

(λx1. . . . .λx|Σ|.λy.xia z, [z�rK]) if s = air

We observe that this representation preserves the space consumption, i.e. it is reasonable.

Lemma E.0.2. Let C := (i, n, s, a, r, s) be a configuration of a Turing machine and |C| := |s|+ |r| its
space consumption. Then |CK| = Θ(|C|+ log(|i|)).

In this lemma, we have already considered that the size of pointers inside nK, sK, rK is constant
and that n ≤ log |i|.

Now we are able to prove the theorem. A series of intermediate lemmata, about the different
combinators used in the encoding (init, final, trans), are necessary. They are stated and proved
below the main statement . By→∗f , we mean that the space consumption of that series of transitions
is f .

Theorem E.0.3 (TM are simulated by the Space KAM in reasonable space). There is an encoding · of
log-sensitive TM into Λdet such that if the run ρ of the TM M on input i ∈ B∗:

1. Termination: ends in sb with b ∈ B, then there is a complete sequence σ : M i →n
det b where

n = Θ((TTM(ρ) + 1) · |i| · log |i|).

2. Divergence: diverges, then M i is→det-divergent.

3. Space KAM: the space used by the Space KAM to simulate the evaluation of point 1 is O(STM(ρ) +
log |i|) if M and i have separate address spaces.

Proof. The first two points are proved in the section devoted to the encoding of TMs into the
λ-calculus. We concentrate on the third point.

We simply evaluate M i with the Space KAM.

Term Env Stack

M i := init(trans(final(λx.x)))i ϵ ϵ →∗O(log(|i|)) (Lemma E.0.5)
trans(final(λx.x)) ϵ Cin(i)K →∗O(STM(ρ)+log |i|) (Lemma E.0.9)
final(λx.x) ϵ DK →∗O(STM(ρ)+log |i|) (Lemma E.0.6)

b ϵ ϵ
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Fix-Point. In the following we will often use the execution of the fix-point combinator. For this
reason, we encapsulate its execution by the Space KAM in a lemma.

Lemma E.0.4. For each term u, (θ, ϵ, (θ, ϵ)·(u, ϵ)·π)→O(1)SpKAM (u, ϵ, fix K·π) where fix K := (xxy, [y�(u, e)]·[x�(θ, ϵ)])

consuming space O(|e|+ |π|+ log(|u|)).

Proof.
Term Env Stack
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(u, ϵ)·π
λy.y(xxy) [x�(θ, ϵ)] (u, e)·π
y(xxy) [y�(u, e)]·[x�(θ, ϵ)] π

y [y�(u, e)]

fix K︷ ︸︸ ︷
(xxy, [y�(u, e)]·[x�(θ, ϵ)]) ·π

u e fix K·π

Init and Final.

Lemma E.0.5. (init k i, ϵ, ϵ)→O(1)SpKAM (k, ϵ, Cin(i)K) and consumes space Θ(log(|i|)).

Proof.

Term Env Stack

init k i ϵ ϵ
init k ϵ (i, ϵ)

init := (λd.λe.λ f .λk′ .λi′ .k′⟨i′ , d | e, ⌈□⌉, f | ⌈sin⌉⟩)⌊0⌋εε ϵ

kK︷ ︸︸ ︷
(k, ϵ) ·

iK︷︸︸︷
(i, ϵ) →3

λd.λe.λ f .λk′ .λi′ .k′⟨i′ , d | e, ⌈□⌉, f | ⌈sin⌉⟩ ϵ

⌊0⌋K︷ ︸︸ ︷
(⌊0⌋, ϵ) ·

εK︷ ︸︸ ︷
(ε, ϵ) ·(ε, ϵ)·kK ·iK →5

k′⟨i′ , d | e, ⌈□⌉, f | ⌈sin⌉⟩ [k′�kK ]·

Cin(i)
E︷ ︸︸ ︷

[i′�i
K
]·[d�⌊0⌋K

]·[e�εK ]·[ f �εK ] ϵ
k′ [k′�kK ] (⟨i′ , d | e, ⌈□⌉, f | ⌈sin⌉⟩, Cin(i)E)
k ϵ (⟨i′ , d | e, ⌈□⌉, f | ⌈sin⌉⟩, Cin(i)E)︸ ︷︷ ︸

Cin(i)K

The space bound is immediate by inspecting the execution.

Lemma E.0.6. Let C be a final configuration, i.e. C := (i, n, s, a, r, sfin) where sfin ∈ Sfin. Then

(final(λx.x), ϵ, CK)→O(1)SpKAM

{
(λx.λy.x, ϵ, ϵ) if sfin = sT

(λx.λy.y, ϵ, ϵ) if sfin = sF

Moreover, the space consumption is Θ(|CK|).

Proof. We execute the Space KAM. Let us define t := λi′.λn′.λw′l .λa′.λw′r.λs′.s′N1 . . . N|S|k′.

Term Env Stack
final(λx.x) ϵ CK

final := λk′ .λC′ .C′t ϵ (λx.x, ϵ)·CK →2

C′t [C′�CK ]·[k′�(λx.x, ϵ)] ϵ
C′ [C′�CK ] (t, [k′�(λx.x, ϵ)])
CK := λx.x f cm⌈a⌉d⌈sfin⌉ [ f �(i, ϵ)], [c�nK ], [m�sK ], [d�rK ] (t, [k′�(λx.x, ϵ)])
x f cm⌈a⌉d⌈sfin⌉ [x�(t, [k′�(I, ϵ)])]·[ f �(i, ϵ)], [c�nK ], [m�sK ], [d�rK ] ϵ →6

x [x�(t, [k′�(λx.x, ϵ)])] (i, ϵ)·nK ·sK ·(⌈a⌉, ϵ)·rK ·(⌈sfin⌉, ϵ)
t := λi′ .λn′ .λw′l .λa′ .λw′r .λs′ .s′N1 . . . N|S|k′ [k′�(λx.x, ϵ)] (i, ϵ)·nK ·sK ·(⌈a⌉, ϵ)·rK ·(⌈sfin⌉, ϵ) →6

q′N1 . . . N|Q|k′ [s′�(⌈sfin⌉, ϵ)]·[k′�(λx.x, ϵ)] ϵ →1+|S|

s′ [s′�(⌈sfin⌉, ϵ)] (Ni , ϵ)1≤i≤|S| ·(λx.x, ϵ)
⌈sfin⌉ := λx1 . . . λx|S| .xi ϵ (Ni , ϵ)1≤i≤|S| ·(λx.x, ϵ)
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Two cases. If sfin = sT, then:

Term Env Stack

⌈sT⌉ := λx1 . . . λx|S|.xi ϵ (Ni, ϵ)1≤i≤|S|·(λx.x, ϵ) →|S|
xi [xi�(Ni, ϵ)] (λx.x, ϵ)
Ni := λk′.k′(λx.λy.x) ϵ (λx.x, ϵ)
k′(λx.λy.x) [k′�(λx.x, ϵ)] ϵ
k′ [k′�(λx.x, ϵ)] (λx.λy.x, ϵ)
λx.x ϵ (λx.λy.x, ϵ)
x [x�(λx.λy.x, ϵ)] ϵ
λx.λy.x ϵ ϵ

If sfin = sF, then:

Term Env Stack

⌈sF⌉ := λx1 . . . λx|S|.xi ϵ (Ni, ϵ)1≤i≤|S|·(λx.x, ϵ) →|S|
xi [xi�(Ni, ϵ)] (λx.x, ϵ)
Ni := λk′.k′(λx.λy.y) ϵ (λx.x, ϵ)
k′(λx.λy.y) [k′�(λx.x, ϵ)] ϵ
k′ [k′�(λx.x, ϵ)] (λx.λy.y, ϵ)
λx.x ϵ (λx.λy.y, ϵ)
x [x�(λx.λy.y, ϵ)] ϵ
λx.λy.y ϵ ϵ

The space bound is immediate by inspecting the execution.

Transition Function.

Lemma E.0.7. (trans k, ϵ, Cin(i)K)→O(1)SpKAM (θ, ϵ, (θ, ϵ)·(transaux, ϵ)·kK·Cin(i)K) in spaceO(log(|i|)).

Proof.

Term Env Stack
transk ϵ Cin(i)K

trans := fix transaux ϵ kK·Cin(i)K Lemma E.0.4
θ ϵ (θ, ϵ)·(transaux, ϵ)·kK·Cin(i)K

Lemma E.0.8. Let C be a Turing machine configuration. Then:

• if C is a final configuration, then (θ, ϵ, (θ, ϵ)·(transaux, ϵ)·kK·CK) →O(1)SpKAM (k, ϵ, CK) in space
O(|CK|);

• otherwise if C →M D, then (θ, ϵ, (θ, ϵ)·(transaux, ϵ)·kK·CK)→O(1)SpKAM (θ, ϵ, (θ, ϵ)·(transaux, ϵ)·kK·DK)

in space O(|CK|).

Proof. The first part of the proof is common to both points.
Let us define tx := transaux and t := λi′.λn′.λw′l .λa′.λw′r.λs′.lookupKi′n′
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Term Env Stack
θ := λx.λy.y(xxy) ϵ (θ, ϵ)·(tx, ϵ)·kK ·CK →2

y(xxy) [x�(θ, ϵ)]·[y�(tx, ϵ)] kK ·CK

y [y�(tx, ϵ)]

fix K︷ ︸︸ ︷
(xxy, [y�(tx, ϵ)]·[x�(θ, ϵ)]) ·kK ·CK

tx ϵ fix K ·kK ·CK =
λx.λk.λC′ .C′t ϵ fix K ·kK ·CK →2

λC′ .C′t

E︷ ︸︸ ︷
[k′�kK ]·[x�fix K ] CK

C′t [C′�CK ]·E ϵ
C′ [C′�CK ] (t, E)
λx.x f cm⌈aj⌉d⌈sg⌉ [ f �(i, ϵ)], [c�nK ], [m�sK ], [d�rK ] (t, E) →7

x [x�(t, E)]

iK︷︸︸︷
(i, ϵ) ·nK ·sK ·

⌈a⌉K︷ ︸︸ ︷
(⌈aj⌉, ϵ) ·rK ·

⌈s⌉K︷ ︸︸ ︷
(⌈sg⌉, ϵ)

λi′ .λn′ .λw′l .λa′ .λw′r .λs′ .lookupKi′n′ E i
K ·nK ·sK ·⌈a⌉K ·rK ·⌈s⌉K →6

lookupKi′n′

E′︷ ︸︸ ︷
[i′�i

K
]·[n′�nK ]·[wl�sK ]·[a′�⌈a⌉K ]·[wr�rK ]·[s′�⌈q⌉K ]·E ϵ →3

lookup ϵ (K, E′)·iK ·nK →|S|
K := λb′ .b′A0 A1 ALARa′s′xk′ i′n′w′l w

′
r E′ (⌈ai⌉, ϵ)

b′A0 A1 ALARa′s′xk′ i′n′w′l w
′
r [b′�(⌈ai⌉, ϵ)], E′ ϵ →12

b′ [b′�(⌈ai⌉, ϵ)] (Ab , ϵ)b∈BI
·⌈a⌉K ·⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK

⌈ai⌉ := λx0.λx1.λxL.λxR.xi ϵ (Ab , ϵ)b∈BI
·⌈a⌉K ·⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK →5

Ai := λa′ .a′Bi,0Bi,1Bi,□ ϵ ⌈a⌉K ·⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK

a′Bi,0Bi,1Bi,□ [a′�⌈a⌉K ] ⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK →3

a′ [a′�⌈a⌉K ] (Bi,b , ϵ)b∈BW
·⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK

⌈aj⌉ := λx0.λx1.λx□.xj ϵ (Bi,b , ϵ)b∈BW
·⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK →4

Bi,j := λs′ .s′Ci,j,s1 . . . Ci,j,s|S| ϵ ⌈s⌉K ·fix K ·kK ·iK ·nK ·sK ·rK

s′Ci,j,s1 . . . Ci,j,s|S| [s′�⌈s⌉K ] fix K ·kK ·iK ·nK ·sK ·rK →|S|

s′ [s′�⌈s⌉K ] (Ci,j,sg , ϵ)1≤g≤|Σ| ·fix K ·kK ·iK ·nK ·sK ·rK

⌈sg⌉ := λx1 . . . λx|S| .xg ϵ (Ci,j,sg , ϵ)1≤g≤|Σ| ·fix K ·kK ·iK ·nK ·sK ·rK →1+|S|

Ci,j,sg ϵ fix K ·kK ·iK ·nK ·sK ·rK

Cases of the transition to apply:

• No transition, that is, C is a final configuration, which happens when sg ∈ Sfin.
We have Ci,j,sg := λx.λk′.λi′.λn′.λw′l .λw′r.k′⟨i′, n′ |w′l , ⌈aj⌉, w′r | ⌈sg⌉⟩

Term Env Stack

Ci,j,sg ϵ fix K·kK·iK·nK·sK·rK →6

k′⟨i′, n′ |w′l , ⌈aj⌉, w′r | ⌈sg⌉⟩ [k′�kK]·

E2︷ ︸︸ ︷
[w′l�sK]·[w′r�rK]·[i′�iK

]·[n′�nK] ϵ
k′ [k′�kK =: (k, E)] (⟨i′, n′ |w′l , ⌈aj⌉, w′r | ⌈sg⌉⟩, E2)
k E (⟨i′, n′ |w′l , ⌈aj⌉, w′r | ⌈sg⌉⟩, E2) =: CK

• The heads do not move, that is, δ(ai, aj, sg) = (0 | ah, ↓ | sl).

Term Env Stack

Ci,j,sg := λx.λk′ .λi′ .λn′ .λw′l .λw′r .Sn′ ϵ fix K ·kK ·iK ·nK ·sK ·rK →6

Sn′ [x�fix K ]·[k′�kK ]·[w′l�sK ]·[w′r�rK ]·[i′�i
K
]·[n′�nK ] ϵ →

S := λn′′ .xk′⟨i′ , n′′ |w′l , ⌈ah⌉, w′r | ⌈sl⌉⟩ [x�fix K ]·[k′�kK ]·[w′l�sK ]·[w′r�rK ]·[i′�i
K
] nK

xk′⟨i′ , n′′ |w′l , ⌈ah⌉, w′r | ⌈sl⌉⟩ [x�fix K ]·[k′�kK ]·

E2︷ ︸︸ ︷
[w′l�sK ]·[w′r�rK ]·[i′�i

K
]·[n′′�nK ]

x [x�fix K ] kK ·

DK︷ ︸︸ ︷
(⟨i′ , n′′ |w′l , ⌈ah⌉, w′r | ⌈sl⌉⟩, E2)

xxy [y�(tx, ϵ)]·[x�(θ, ϵ)] kK ·DK →2

x [x�(θ, ϵ)] (θ, ϵ)·(tx, ϵ)·kK ·DK

θ ϵ (θ, ϵ)·(tx, ϵ)·kK ·DK

• The heads move right, that is, δ(ai, aj, sg) = (1 | ah,→ | sl).
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Term Env Stack

Ci,j,sg := λx.λk′ .λi′ .λn′ .λw′l .λw′r .succRn′ ϵ fix K ·kK ·iK ·nK ·sK ·rK →6

succRn′

E2︷ ︸︸ ︷
[x�fix K ]·[k′�kK ]·[w′l�sK ]·[w′r�rK ]·[i′�i

K
] ·[n′�nK ] ϵ →2

succ ϵ (R, E2)·nK

R := λn′′ .w′r R
sl ,ah
0 R

sl ,ah
1 R

sl ,ah
□ R

sl ,ah
ε xk′ i′n′′w′l E2 mK := (n + 1)K

w′r R
sl ,ah
0 R

sl ,ah
1 R

sl ,ah
□ R

sl ,ah
ε xk′ i′n′′w′l [x�fix K ]·[k′�kK ]·[w′l�sK ]·[w′r�rK ]·[i′�i

K
]·[n′′�mK ] ϵ

w′r [w′r�rK ] (R
sl ,ah
x , ϵ)x∈{0,1,□,ε} ·fix K ·kK ·iK ·mK ·sK

Two cases.

– r = ε. Define t := (λd.λw′l .xk′⟨i′, n′ |w′l , ⌈□⌉, d | ⌈sl⌉⟩)ε

Term Env Stack

w′r [w′r�rK ] (R
sl ,ah
x , ϵ)x∈{0,1,□,ε} ·fix K ·kK ·iK ·mK ·sK →5

R
sl ,ah
ε := λx.λk′ .λi′ .λn′ .appendah t ϵ fix K ·kK ·iK ·mK ·sK →4

appendah t

E2︷ ︸︸ ︷
[x�fix K ]·[k′�kK ]·[i′�i

K
]·[n′�mK ] sK

appendah ϵ (t, E2)·sK

t := (λd.λw′l .xk′⟨i′ , n′ |w′l , ⌈□⌉, d | ⌈sl⌉⟩)ε E2 sK
h := (ah ·s)K

λd.λw′l .xk′⟨i′ , n′ |w′l , ⌈□⌉, d | ⌈sl⌉⟩ E2 (ε, ϵ)·sK
h →2

xk′⟨i′ , n′ |w′l , ⌈□⌉, d | ⌈sl⌉⟩ [x�fix K ]·[k′�kK ]·

E3︷ ︸︸ ︷
[i′�i

K
]·[n′�mK ]·[d�(ε, ϵ)]·[w′l�sK

h ] ϵ →2

x [x�fix K ] kK ·

DK︷ ︸︸ ︷
(⟨i′ , n′ |w′l , ⌈□⌉, d | ⌈sl⌉⟩, E3)

xxy [y�(tx, ϵ)]·[x�(θ, ϵ)] kK ·DK →2

x [x�(θ, ϵ)] (θ, ϵ)·(tx, ϵ)·kK ·DK

θ ϵ (θ, ϵ)·(tx, ϵ)·kK ·DK

– r = a′′·r′. Define t := λw′l .xk′⟨i′, n′ |w′l , ⌈a
′′⌉, w′r | ⌈sl⌉⟩

Term Env Stack

w′r [w′r�rK ] (R
sl ,ah
x , ϵ)x∈{0,1,□,ε} ·fix K ·kK ·iK ·mK ·sK

λx0.λx1.λx□.λy.xia′′
z [z�r′K ] (R

sl ,ah
x , ϵ)x∈{0,1,□,ε} ·fix K ·kK ·iK ·mK ·sK →6

R
sl ,ah
a′′ := λw′r .λx.λk′ .λi′ .λn′ .appendah t ϵ r′K ·fix K ·kK ·iK ·mK ·sK →5

appendah t

E2︷ ︸︸ ︷
[w′r�r′K ]·[x�fix K ]·[k′�kK ]·[i′�i

K
]·[n′�mK ] sK

appendah ϵ (t, E2)·sK

t := λw′l .xk′⟨i′ , n′ |w′l , ⌈a′′⌉, w′r | ⌈sl⌉⟩ E2 sK
h := (ah ·s)K

xk′⟨i′ , n′ |w′l , ⌈a′′⌉, w′r | ⌈sl⌉⟩ [x�fix K ]·[k′�kK ]·

E3︷ ︸︸ ︷
[i′�i

K
]·[n′�mK ]·[w′r�r′K ]·[w′l�sK

h ] ϵ →2

x [x�fix K ] kK ·

DK︷ ︸︸ ︷
(⟨i′ , n′ |w′l , ⌈a′′⌉, w′r | ⌈sl⌉⟩, E3

xxy [y�(tx, ϵ)]·[x�(θ, ϵ)] kK ·DK →2

x [x�(θ, ϵ)] (θ, ϵ)·(tx, ϵ)·kK ·DK

θ ϵ (θ, ϵ)·(tx, ϵ)·kK ·DK

• All the other cases are almost identical mutatis mutandis.

About the space bound we observe that in the simulations all the pointers except for those related
to the input part of the state are pointers to the machine, and not to the input. Moreover, the space
overhead of the simulation of one step of the TM is constant, i.e. non input dependent.

Lemma E.0.9. If ρ : C →n D and D is final, then (trans k, ϵ, Cin(i)K) →SpKAM (k, ϵ, CK) in space
O(STM(ρ) + log(|i|)).

Proof. By a simple induction on n, using the two lemmata above, and knowing that STM(ρ) =
maxC∈ρ |C| (we have also to consider that |C| = |CK|, by Lemma E.0.2).
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