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Abstract /Résumé/Riassunto

Abstract

In this thesis, we are interested in the study of nonlinear eigenvalue problem
and the controllability of partial differential equations in a smooth bounded
domain with boundary.

The first part is devoted to the analysis of an eigenvalue problem for quasi-
linear elliptic operators involving homogeneous Dirichlet boundary conditions.
We investigate the asymptotic behaviour of the spectrum of the related prob-
lem by showing on the one hand the bifurcation results from trivial solutions
using the Krasnoselski bifurcation theorem and bifurcation from infinity using
the Leray-Schauder degree on the other hand. We also prove the existence of
multiple critical points using variational methods and the Krasnoselski genus.
At last, we show a stabilization result for the damped plate equation with log-
arithmic decay of the associated energy. The proof of this result is achieved
by means of a proper Carleman estimate for the fourth-order elliptic operators
involving the so-called Lopatinskil-Sapiro boundary conditions and a resolvent
estimate for the generator of the damped plate semigroup associated with these
boundary conditions.

Keywords: quasi-linear operators, bifurcation, bifurcation from infinity, mul-
tiple solutions, Carleman estimates; stabilization, Lopatinskii—éapiro, resolvent

estimate.

Résumé

Dans cette thése, on s’intéresse a l'étude des problémes aux valeurs propres
nonlinéaires et a la controlabilité des équations aux dérivées partielles dans un
domaine borné, régulier avec bord.

La premiére partie est consacrée a l’analyse d'un probléme aux valeurs pro-
pres pour des opérateurs elliptiques quasi-linéaires avec des conditions aux lim-
ites homogenes de Dirichlet. Nous étudions le comportement asymptotique du
spectre du probléme correspondant en montrant d’une part les résultats de bi-
furcation & partir de solutions triviales en utilisant le théoréme de bifurcation
de Krasnoselski et d’autre part la bifurcation a 'infini en utilisant le degré de
Leray-Schauder. Nous prouvons également ’existence de points critiques mul-
tiples en utilisant des méthodes variationnelles et le genre de Krasnoselski.
Enfin, nous montrons un résultat de stabilisation pour I’équation des plaques
amorties avec une décroissance logarithmique de I’énergie associée. La preuve de



vi

ce résultat est réalisée au moyen d’une estimation de Carleman pour les opéra-
teurs elliptiques d’ordre quatre avec les conditions au bord dites de Lopatinskii-
éapiro et d'une estimation de la résolvante pour le générateur du semigroupe

de la plaque amortie associé a ces conditions aux limites.

Mots clés: operateurs quasi-linéaires, bifurcation, bifurcation a l'infini, solu-
tions multiples, stabilisation, inégalités de Carleman, inégalité de la reslovente,
Lopatinskit-Sapiro.

Riassunto

In questa tesi, siamo interessati allo studio di un problema non lineare agli au-
tovalori e alla controllabilita delle equazioni differenziali alle derivate parziali in
un dominio liscio e limitato. La prima parte € dedicata all’analisi di un problema
agli autovalori per operatori ellittici quasi lineari che coinvolgono condizioni al
contorno omogenee di Dirichlet. Indaghiamo il comportamento asintotico dello
spettro associato al problema, mostrando da un lato risultati di biforcazione da
soluzioni banali usando il teorema di biforcazione di Krasnoselski, e dall’atro
la biforcazione da infinito usando il grado di Leray-Schauder. Proviamo an-
che l'esistenza di punti critici multipli usando metodi variazionali e il genere di
Krasnoselski. Infine, mostriamo un risultato di stabilizzazione per I'’equazione
della piastra incostrata con decadimento logaritmico dell’energia associata. La
dimostrazione di questo risultato & ottenuta per tramite di una stima di Car-
leman appropriata per operatori ellittici del quarto ordine che coinvolgono le
cosiddette condizioni al contorno di Lopatinskil-Sapiro e una stima del resol-
vente per il generatore del semigruppo della piastra incostrata associato a tali

condizioni al contorno.

Parole chiave: operatori quasi lineari, biforcazione, biforcazione da infinito,
soluzioni multipli, stabilizzazione, stima di Carleman, stima del resolvente,

Lopatinskit-Sapiro.
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1. General introduction

This thesis is done in cotutelle and consists of two parts: Part A and Part B.
The first part is related to the analysis of a nonlinear eigenvalue value problem
for quasi-linear operators and its applications to bifurcation. Those results were
obtained during my stay at the Universita degli Studi di Milano in Italy. The
second part is related to control theory, more especially the stabilization of the
damped plate equation. The latter results were obtained during my stay at the
Université Sorbonne Paris Nord in France.

The goal of Part A is to study the asymptotic behavior of the spectrum and
the existence of multiple solutions of the following eigenvalue problem

—Apu —Au = A in Q,

(1.0.1)
u=>0 on 0f),

where p € (1,00)\{2} is a real number.
The goal of Part B is to answer the following question: How fast does the energy

of the following hyperbolic equation decrease?

02y + A%y +a(z)oy =0 (t,z) e Ry x Q,
Bly|R+xc’)Q = BthReraQ =0,
y‘t:o - y07 8ty|t:0 - yla

where o > 0 and where B; and B, denote two boundary differential operators.






Part A: Nonlinear eigenvalue

problems

Nonlinear eigenvalue problems arise in many areas of computational science and
engineering, including acoustics, control theory, fluid mechanics and structural
engineering. We give the formulation of such a problems.

1.1 Description

Nonlinear eigenvalue problems are in general described by equation of the form

G\u)=0 AeK, uelX, (1.1.1)

where K = R or C, and X is a Banach space that can be the n-space R of C".
In equation (1.1.1), G is a continuous map of K x X into X. It is assumed that
G(A,0) = 0 for all A, that is, u = 0 solves trivially equation (1.1.1) for all scalars
A. Then, one looks for those \'s, i.e, the eigenvalues of (G, such that equation
(1.1.1) has a solution u # 0 (an eigenvector or eigenfunction of G corresponding
to A).

A typical example of nonlinear eigenvalue problem is the so-called p-Laplace
equation

—div(|Vu[P?Vu) = Mu[P"2u in Q

(1.1.2)
u=0 on 09,

where p > 1 and € is a bounded open set in R™. Let X be the Sobolev space
WyP(Q). Let X' = W= (Q) be the dual space of X. A weak solution of the
p-Laplace equation (1.1.2) is a function u € X such that

/ |VulP~2Vu - Vo dr = /\/ lu|P~2uv du,
Q 0

for all v € I/VO1 P(€2). The proof of the existence of countably many eigenval-
ues and eigenfunctions of equation (1.1.2) relies on the Lusternik-Schnirelmann
theory of critical points for an even functional on a symmetric manifold. Pre-
sentations of this theory in both finite and infinite dimensional spaces can be

found among others in [6,55].



1.2 Bifurcation from the eigenvalues of the p-

Laplacian

For instance to study the bifurcation phenomena associated with the p-Laplacian
under Dirichlet boundary conditions, one considers the following problem

—Apu = NulP~?u + h(z,u,\) in Q

(1.2.1)
u=>0 on 0,

where h : Q X R xR — R satisfies a Carathéodory condition in the two variables
(x,t) and
h(z,t,A) = o(|t["™)

near ¢t = 0, uniformly a.e with respect to x and uniformly with respect to A on
bounded sets. We recall that —A,u := —div(|Vul|P~2Vu) for all p > 1. By a
solution of (1.2.1) we understand a couple (A, u) € R x W, 7?(Q) satisfying the
following integral equality in the weak sense,

/ |VulP2Vu - Vv dz = )\/ lulP~?uv dx + / h(x,u, \vdz,
0 Q 0

for all v € W, P (). We say that (A\*,0) is a bifurcation point of (1.2.1) if in any
neighborhood of (A*,0) in R x W, ”(Q) there is a nontrivial solution of (1.2.1).
One speaks of bifurcation from trivial solution.
In |68] Proposition 2.1, it is shown with a compactness argument that a nec-
essary condition for (A*,0) to be a bifurcation point of (1.2.1) is that A\* be an
eigenvalue of

—Apu = MNulP?u in

u=0 on 0f).

Let A\i(p) denote the first eigenvalue of (1.1.2). We note that A;(p) can be

characterized variationally as

Ai(p) = inf {/ |\VulPdz : u € I/VOLJD(Q)7 / luPdx = 1} _
L Q

In [68] Theorem 1.1, it is shown that (A;(p),0) is a bifurcation point of (1.2.1).
This result is well known in the case p = 2 (see, |78]). The key ingredient in the
proof is the index formula which is proved via a suitable homotopic deformation
from a general p > 1 to p = 2.

Introducing the following change of variable w = u/||ul|},, for u € Wy (Q) with



u # 0, into equation (1.2.1), this leads to the equation

—Ayw = NwP~2w + [[w]| 2 h(z,w,A) in Q

(1.2.2)
w=>0 on 0f).

With this transformation, we have that the pair (\*, 00) is a bifurcation point
for the problem (1.2.1) if and only if the pair (A*,0) is a bifurcation point for
the problem (1.2.2). One says that the point (A\*, c0) is a bifurcation point from
infinity for problem (1.2.1).

We write equation (1.1.1) in the form
G\ u) =u—Au— K(\u), (1.2.3)

where L is a compact linear operator and K : R x X — X is compact with
K = o(||lul]|x) at v = 0 uniformly on bounded A intervals. In this context,
Krasnoselski [53] has shown that if p is a real characteristic value of L of odd
multiplicity, then (u,0) is a bifurcation point for G. With a suitable change of
variable, one shows that if L is compact and linear, p is a real characteristic
value of L of odd multiplicity, K = o(]|u||x) at u = oo uniformly on bounded A
intervals and is appropriately compact, then p is a bifurcation point for

u = Au + K(\,u). We will address a problem in the form (1.2.3), which
corresponds to the first results concerning Part A given in Section 3.3.1.

1.3 Main results of Part A

In this section we give the main results concerning the bifurcation from the
trivial solutions and from infinity that are fully presented in Section 3.7. In
addition we state the result about the existence of multiple solutions, also pre-
sented in Section 3.8.

1.3.1 Bifurcation results

We set Sy(u) = u — A=A, — A)u, for u € L*(Q) € W=(Q) and A > 0. We
recall that A2 stands for the k—th Dirichlet eigenvalue of the Laplacian.

Theorem 1.3.1. (bifurcation from zero) Let p > 2. Then every eigenvalue NP
with odd multiplicity is a bifurcation point in R x WyP(Q) of Sa(u) = 0, in
the sense that in any neighborhood of (AD,0) in RY x Wy (Q) there ezists a

nontrivial solution of Sy(u) = 0.



Introducing a suitable change of variable in equation (1.0.1), leads us to set
Sy(u) = u — A(—lull{2Ap — A)u with v =4 —pfor 1 < p <2, A > 0 and
u € B,(0) C L3(Q) c W12(Q).

Theorem 1.3.2. (bifurcation from infinity) The pair (A\P,0) is a bifurcation
point from infinity for the problem (1.0.1).

With the change of variable, Theorem 1.3.2 is equivalent to the following

theorem.

Theorem 1.3.3. The pair (A\P,0) is a bifurcation point in RT x L*(Q) of
Sy(u) =0, for 1 <p<2.

A more general result of Theorem 1.3.3 is the following.
Theorem 1.3.4. The pair (\P,0) (k > 1) is a bifurcation point of Sx(u) = 0

for 1 <p<2if N is of odd multiplicity.

1.3.2 Multiple solutions

We have obtained the following result.

Theorem 1.3.5. Let 1 < p < 2 or2 < p < 00, and suppose that X € (A, A1)
for any k > 1. Then the equation (1.0.1) has at least k pairs of nontrivial

solutions.



Part B: Control theory

Control theory is an important subject in science engineering. Control theory
deals with the behaviour of dynamic systems and how to control such systems.
More precisely it deals with a dynamical system on which one can act by using
suitable controls.

We refer to the book of Jean-Michel Coron [26] for more details on the notions

of control theory.

1.4 Some different notions of control

We consider a system of differential or partial differential equation of the form

Oru = K(u, f) (1.4.1)
u(0) = uyp,

where V¢t > 0, u(t) is the sought solution belonging to a certain state-space H
(a Banach or Hilbert space) K an operator that describes the system, and f
a source term acting on the system. Natural questions are : knowing f and
the initial data wug, is it possible to recover the solution u? Is this continuous
with respect to the data of the problem ? In control theory, problematics are
different. Here, we consider the question of controllability: given the initial
data ug as well as a couple of state-time target (ur,T'), can we find a control f
belonging to some control space X such that the solution u to (1.4.1) satisfies
u(T) = ur? This means, controlling the solution so that it reaches a desired
state at the desired time.

We recall some notions of controllability.

Definition 1.4.1. (exact controllability) Let 7" > 0. We say that the control
system (1.4.1) is exactly controllable in time T, if for every uy € H and for
any target state up € H, there exists a control f € L*((0,7); X) such that the
solution u of the Cauchy problem (1.4.1) satisfies u(T") = ur.

Definition 1.4.2. (approximate controllability) Let 7" > 0. We say that the
control system (1.4.1) is approximately controllable in time 7', if for every wuy €
H and for any target state up € H, and for every ¢ > 0, there exists a control
f € L*((0,T); X) such that the solution u of the Cauchy problem (1.4.1) satisfies
[(T) = urlla <e.

Definition 1.4.3. (null controllability) Let 7" > 0. We say that the control
system (1.4.1) is null controllable in time 7" if for every ug € H, there exists a



control f € L*((0,T); X) such that the solution u of the Cauchy problem (1.4.1)
associated to f satisfies u(7") = 0.

In the case of a system of linear ordinary differential equations in finite

dimension of the form

(1.4.2)
u(0) = uy,

where A and B are matrices of respective sizes n X n and n x m, u(t) € R",
and f(t) € R™, these three notions of controllability are equivalent. This is
not the case in the context of partial differential equations. A necessary and
sufficient exact controllability criterion for the finite-dimensional system (1.4.2)
exists: the so-called Kalman criterion.

Theorem 1.4.4. (Kalman rank condition in finite dimension) The time invari-
ant linear control system (1.4.2) is controllable in time T if and only if

rank (B | AB | ...| A" 'B) =n.

In this theorem, we remark that the criterion does not depend on the chosen

time T > 0, so we can deduce the following: if the system is controllable in some
time T" > 0, then it is controllable for any time 7" > 0. However, this criterion
does not specify how the control depends on the time. In the context of partial
differential equations, some control systems are not exactly controllable in any
time T". Some are exactly controllable if 7" is chosen sufficiently large. Then one
speaks of minimal time of control. This is in articular the case of hyperbolic
equations since the influence of the control is limited by the finite speed of
propagation.
These notions of control have some weakness: they depend strongly on the
initial data, and do not depend on the state of the system when 0 < ¢t < T It is
often important to consider problems with feedback, where the control acts on
the system by responding continuously to the system (which does not undergo
any interruption in time). It is particularly the case when studying stablization
problems. Such systems can be written as

ou = K(u, f(u

u(0) = uo.
Defining an energy depending on the solution u of (1.4.3), we are then interested
in the decay properties of this energy.
When the control function f depends on the solution u and when the system

becomes dissipative (for instance if absorbing boundary conditions or damped



terms are involved), the energy is a positive time-decreasing function. There-
fore, we study the long time asymptotic behavior of the energy. In particular,
the choice of various regularity for the initial data and/or geometrical hypothe-
ses gives different estimates for the decay rate of the energy.

In general the proof of the controllability of a linear system relies on the proof
of an observability criterium.

1.5 From control to observability

Here, we present how the null controllability can be reduced to obtaining a
functional inequality, known as observability, by a duality argument. These in-
equalities play a central role in the study of control and stabilization of partial
differential equations. Indeed, constructing a control is in general a difficult
problem. On the other hand, there are many existing tools that can be used to
show functional inequalities, such as energy inequalities, Carleman inequalities,
Ingham inequalities, or Garding’s inequalities.

We place ourselves in the following case

3tu = Au + Bf,

(1.5.1)
u(0) =ug € H,

where A is an operator acting on a Hilbert space H with domain D(A) C H.
We suppose that A is the generator of a strongly continuous semigroup, denoted
S(t). We assume that the control operator B acts on the control space X (also a
Hilbert space) and in addition we assume that B € L(X, H) for simplicity. Note
that this condition can be relaxed, then we must replace the continuity of the
operator B by the so-called admissibility condition (see [95] for more details).
This is particularly useful if one wishes to control a partial differential equation
from the boundary of the domain. One acts on the system by means of the
operator B, and in general, it restricts the possibilities of action. The definition
of the null controllability of system (1.5.1) is given by Definition 1.4.3.
With the assumptions made on S(¢) and B, we can write the solution of (1.5.1)
with the Duhamel formula

u(t) = S(t)ug + /Ot S(t — s)Bf(s)ds. (1.5.2)

Let B* € L(H, X) be the adjoint of B (the dual spaces H' and A" are identified
to H and X respectively). We introduce here the following dual system on



o =—A*v, on (0,7)

oT) — o e (1.5.3)

where, A* is the adjoint operator of A in H. The generator of the adjoint
semigroup S*(¢) = (e'4)* is A*, and the solution of (1.5.3) can be written v(t) =
eI DA%y, where eT94" = (¢(T=H4)* Note that (1.5.3) is homogeneous.

The question of the observability is the following : Is it possible, by observing
only the quantity B*v(t), to know the energy of the system (1.5.3) at time ¢ = 0,
i.e, ||v(0)||%? The observability notion of system (1.5.3) is given by the following
definition.

Definition 1.5.1. One says that the system (1.5.3) is observable at time 7' > 0
if there exists a constant Cops 7 > 0 such that for every vy € H, the solution of
(1.5.3) satisfies

T 1/2
15" (TYerlln < Conall 80Ol = Comr [ 1B (0]t )
0
(1.5.4)

We note that S*(¢)vr = v(0), where v is the solution of (1.5.3). The constant
Cows,r 1s called the constant of observability. This notion of observability has its
own interest because it appears in many concrete situations when one would like
to know the state of a system on which one can only make partial measurements.
This is the case for instance in meteorology, in imaging or, more generally, in
the field of inverse problems.

Another interest of the observability for system (1.5.3) lies in its link with the
null controllability of the initial system (1.5.1). We then have the following
result, proved by S. Dolecki and D. L. Russell [31], and J.-L. Lions [66].

Theorem 1.5.2. The null controllability at time T > 0 of the system (1.5.3)
is equivalent to the inequality (1.5.4) with a constant Copsr > 0. Moreover if
(1.5.4) holds with constant Cops.r, then one can find a control f € L*((0,T), X)

satisfying || f|l .2¢o,m),2) < Cows,r|| o] -

We also note that the exact controllability of system (1.5.1) is equivalent
to the observability of system (1.5.3). More precisely, in this case the operator
S*(T) is replaced by the identity Id in the left part of inequality (1.5.4).
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1.6 Example of stabilization: case of the wave

equation

We give an example concerning the stabilization of the wave equation. Let 2 be
a smooth open bounded subset of R and w an open subset of 2. We consider

the following wave equation

92u — Au+ a(r)du =0 on [0,00) x Q
Ujmy = U0, Opuy_y = U, (1.6.1)

Ulpq = 0,

where «o(z) is a nonnegative bounded function that satisfies a(z) > C' > 0, for

r € w. Multiplying (1.6.1) by d;u and integrating over €2, we obtain

/ 02u Oyu dx + / V.,uV 0 dx + / a(x)ou Oy dx = 0,
Q Q Q

which implies that

1d

3 10y + 120l = =) 20l oy

Introducing the H'-energy

1
e(u,t) =5 (10wl + 1 Voula)
one finds p
EE(UJ) = —[la(z)20ul| 720y < 0.

One calls a(z)0,u the damping term; it is the responsible for the decay of the
energy. One refers to (1.6.1) as the damped wave equation. One proves that
the energy decays to zero. A natural question is thus the study of the rate of
convergence of this energy, i.e., to obtain an estimate of the type

E(u,t) < h(t)G(ug,uq),

where h is a decreasing function that tends to zero at infinity and G a function.
The weak stabilization consists in showing that for any (ug,u;) in a suitable
space, tEerooS(u’ t) = 0 and the strong stabilization consists to show, under
suitable conditions the existence of C' > 0 and K > 0 such that for any (ug, u;)

in a suitable space, we have a uniform and exponential decay rate

E(u,t) < Ke &(u,0).
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The exponential decay of the energy can be achieved if the so-called geometrical
control condition (GCC) is fulfilled. This result was first proven in dimension
one or on manifolds without boundary by [80, J. Rauch and M. Taylor|. The
geometrical control condition expresses that all bicharacteristics (or rays of ge-
ometrical optics ) reach the damping region in a finite time. The generalization
of this exponential decay result to domains with boundaries in the case of ho-
mogeneous Dirichlet and Neumann conditions was proven [57,58, C. Bardos , G.
Lebeau and J. Rauch]. Bicharacteristics are then replaced by so-called general-
ized bicharacteristics that obey the laws of reflection at a boundary. There are
introduced by R. Melrose and J. Sjostrand |70, 71| to describe the propagation
of singularities. The proof in [57] is based on this description of propagation of
singularities.

Note that exponential decay of the energy is equivalent to having an observabil-
ity estimate for the wave equation (without damping), the observation being
located in the region where the damping acts; we refer to the work of A. Ha-
raux [38]|. For the wave equation, stabilization (and equivalently observability)
can also be expressed by means of the so-called Hautus test for the resolvent;
we refer to the works of D. Russel and G. Weiss [84] and L. Miler [75]. Under
weaker geometrical conditions one can obtain a polynomial decay rate of the

damped wave equation. We shall be interested in such weaker decay rates here.

1.7 Carleman estimates

In 1939, T. Carleman introduced some energy estimates with exponential weights
to prove a uniqueness result for some elliptic partial differential equations (PDE)
with smooth coefficients in dimension two [21]|. This type of estimate, now re-
ferred to as Carleman estimates, were generalized by L. Héormander and others
for a large class of differential operators in arbitrary dimensions (see, [42,43,98]).
Carleman estimates are weighted a priori inequalities for the solutions of a par-

tial partial differential equation of the form
le™ul| L2y < ||€77 Pul|2q), (1.7.1)

where P is a differential operator, u a function, ¢ a function called the weight
function and 7 > 0 a large parameter.

The interest of such inequalities is the presence of the weight function ¢ which
allows to “propagate” information from areas where ¢ is large to the whole
domain, by means of the large parameter 7 > 0, known as large Carleman
parameter. Additional terms on the left-hand side of the inequality can be
obtained, including higher-order derivatives of the function u, depending of
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course of the order of the operator P itself. For a second-order elliptic operator

such as the Laplace operator one has

T2|€7ul| gy + T 2|€7 Dull gy + 772 Y (€7 DPul oy < Clle™ Al oy,
181=2

under the so-called sub-ellipticity condition; see Chapter 3 in [62]. Note that
the power of the large parameter 7 adds to 3/2 with the order of the derivative
in each term on the left-hand side. In fact, in the calculus used to derive such
estimates one power of 7 is equivalent to a derivative of order one. Thus with
this 3/2 compared with the order two of the operator one says that one looses
a half-derivative in the estimate.

In more recent years, the field of applications of Carleman estimates has
gone beyond the original domain; they are also used in the study of :

e Inverse problems, where Carleman estimates are used to obtain stability
estimates for the unknown sought quantity (e.g. coefficient, source term)
with respect to norms on measurements performed on the solution of the
PDEs see e.g. [18,45,54,96]; Carleman estimates are also fundamental in
the construction of complex geometrical optic solutions that lead to the
resolution of inverse problems such as the Calderén problem with partial
data [85,80].

e Control theory for PDEs; through unique continuation properties, Carle-
man estimates are used for the exact controllability of hyperbolic equa-
tions [57]. They also yield the null controllability of linear parabolic equa-
tions [60] and the null controllability of classes of semi-linear parabolic
equations [9,33, 36].

For a function supported near a point at the boundary, in normal geodesic
coordinates where € is locally given by {z; > 0} (see Section 4.5.2 below) the
estimate can take the form

Z 73/2_|ﬂ|||ewDBUI|L2(Q) i Z T?’/Hm\eWDBU\xd:0+|L2(Q) < Cle™ Aul| 12 q-
|8l<2 |Bl<1

This is the type of estimate we seek here for the operator P, = A? — ¢, with

some uniformity with respect to o. The main results concerning Part B are the

following.
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1.8 Main results of Part B

We state the main Carleman estimate for the operator P, in normal geodesic

coordinates as presented in Section 4.5.2.

1.8.1 Carleman estimate

A point 2° € 9 is considered and a weight function ¢ is assumed to be defined
locally and such that

(1) dap > C > 0 locally.

(2) (—A £ 0% p) satisfies the sub-ellipticity condition of Definition 4.9.1 lo-
cally. This is a necessary and sufficient condition for a Carleman estimate
to hold for a second-order operator —A =02 to hold regardless of boundary
conditions |62, Chapters 3 and 4].

(3) (P, By, Ba, ) satisfies the Lopatinskii-Sapiro condition of Definition 4.7.1
at o = (2°,¢,7,0) for all (¢,7,0) € R*! x [0,+00) x [0,400) such
that 7 > koo, for some ko > 0. This means that the Lopatinskii-Sapiro
condition holds after the conjugation of the operator P, and the boundary
operators By and By by the weight function exp(7¢).

Theorem 1.8.1 (Carleman estimate). Let k), > kg > 0. Let 2° € 0Q. Let ¢ be
such that the properties above hold locally. Then, there exists W° a neighborhood
of 2°, C >0, 79 > 0 such that

2
T2l 4 (€0, < O Pl + 1€ Btyot oy, ).
j=1

(1.8.1)

for 7 > 19, koo < T < Kyo, and u € ??(WE)

The volume norm is given by

leully, = 3 7 e Dol
|B|<4

The trace norm is given by

|tr(ewu)\371/2j= Z |8§(6W“)Ird=0+|7/z—ny’

0<n<3

where the norm |.[,_,, . is the L*-norm in R4 after applying the Fourier
multiplier (72 + |¢/|?)7/4—/2,
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Observe that the Carleman estimate of Theorem 1.8.1 exhibits a loss of a
half-derivative. A more precise statement is given in Theorem 4.10.3 in Sec-
tion 4.10.2.

1.8.2 Stabilization result

Let (Pg, D(Py)) be the unbounded operator on L*(Q) given by the domain
D(Pg) = {u € H4(Q)§ Biujpa = Baujpn = 0} (1.8.2)

given by Pou = A?u for u € D(Py). As written above the two boundary
differential operators are such that (Py, D(Py)) is self-adjoint and nonnegative.

Let y(t) be a strong solution of the plate equation (4.5.1). A precise defi-
nition of strong solutions is given in Section 4.12.3. One has y° € D(Py) and
y' € D(PY/?). Tts energy is defined as

(19 () 120 + (Poy (1), y(8)) 22(e)-

N | —

Ey)(t) =

Theorem 1.8.2 (logarithmic stabilization for the damped plate equation).
There exists C' > 0 such that for any such strong solution to the damped plate

equation (4.5.1) one has

I G
(log(2 + 1))

2 1/2 1,2
(IIPoy” + aylnm(g) + ||P0/ yIHL?(Q))'

E(y)(1) <

A more precise and more general statement is given in Theorem 4.13.3 in
Section 4.13.2.
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2. Some elements of functional

analysis

2.1 General facts

We deal with functions u defined almost everywhere (a.e.) on an open bounded
domain 2 C R4 A point z €  is written = (21, - ,74). The boundary of
2 will be denoted by 0). We suppose that 0f is sufficiently smooth, let say at

least of class €2.

2.1.1 Functions space and definitions.
2.1.1.1 Functions spaces

Definition 2.1.1. A normed space X is a called a Banach space if it is complete,

i.e., if every Cauchy sequence is convergent, that is,
{tn}nen is a Cauchy in X = Ju € X such that u, — u as n — oo.

For functions u (measurable) defined a.e. in €, the following spaces will be

considered.

(i) The Lebesgue spaces LP(Q2), 1 < p < oo, where

LP(Q):{UZQ%R;/‘U|pd$<OO},
Q

for 1 < p < oco. We denote by

ull, = (/ lu(zx)|? dx) " the norm on LP(Q).
Q

For p = oo, by L>(Q2) we denote the space of measurable functions u

which are essentially bounded over {2 equipped with the norm
|ulloo = inf{M € R* :|u(z)] < M a.e. in Q}. (2.1.1)

The norms that make L”(Q2) Banach space are respectively ||.||, and ||.| -
The space LP(£?) is reflexive for 1 < p < oo with its dual denoted by
LY(Q) with 1 4 & = 1.

(ii) By €>(2) we denote the set of all functions u defined and infinitely
differentiable on €2 such that their support supp(u) is compact and satisfies
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supp(u) C Q. Recall that supp(u) is the closure of the set {z € Q;u(z) #

0}.

(iii) For a a multi-index, |a| > 1, the function v, is called a weak (or distri-

butional) derivative of u (of order «) if the identity

vo(2)o(z) dr = (=)ol | w(x)D(x) dx
| wa@eta) de = (<11 [ @)D (o) a

Q

holds true for every ¢ € €°(Q2). Then v, is denoted by D%u.

(iv) Sobolev spaces. For k € N and 1 < p < oo we denote by W*?(Q) the
set of all functions u € LP(Q2) for which the weak derivatives D*u with

la| < k exists in the weak sense and belongs to LP(Q2) as well.

The Sobolev space W*P(2) is a Banach space (uniformly convex and hence

reflexive if 1 < p < 00) if equipped with the norm

L A

lullip = | D 1D ullf | (2.1.2)

o<k

Further, the space W () is defined as the closure of €°°(Q) with respect
to the norm ||.||x,. For © bounded the expression

lullip = | > 1Dl

|a|=k

is a norm on W P(Q) equivalent to the one defines in (2.1.2). This is
based on the Poincaré inequality, see below Proposition 2.1.4.

2.1.1.2 Some definitions

Definition 2.1.2. Let X be a Banach space. A sequence {u,},en C X con-
verges weakly to v € X, in which case we write u,, — v in X if f(u,) — f(u)
for all f € X' (the dual space of X). In addition if u,, = w in X, then u, is
bounded in X and

|lul|x < lminf ||u,| x.
n—oo

Definition 2.1.3. One says that the sequence u,, converges strongly to u in X,
in which case we note u,, = v in X, if u,,,u € X and if

lim |lu, —ulx =0.
n—oo
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Definition 2.1.4. Let x be an element of the open subset U C X. The mapping
F : U — Y is Fréchet-differentiable at x € U if there exists a linear operator
Ae Z.(X,Y), such that

F(x+h) — F(z) — Ah = o(||h]]) with F'(z) = A.

We use the notation r(h) = o(||h||x) for the mapping r : X — Y if and only
if h
)y

= ()’
h—0 HhHX

which means that for every € > 0 there exists § > 0 such that if ||h||x < § then
lr(W)lly < elln]lx.

Definition 2.1.5. Let X,Y be a Banach spaces and U C X a sub-open set
of X. Let F': U — Y be a mapping and z € X. We say that F' is Gateaux-
differentiable at z if there exists A € Z.(X,Y), such that

F(z +th) — F(x)

lim
t—0

= Ah, for all h € U.

The mapping A is uniquely determined. It is call Gateaux-derivative of F' at x
and is denoted by F/,(z). If Y =R, F is said to be a functional.

Definition 2.1.6. Let X be a Banach space, U C X an open set and assume
that I : U — R is differentiable. A critical point of I is a point u© € U such that
I'(u) = 0. As I'(u) is an element of the dual space X', this means of course
(I'(u),v) =0 for all v € X.

2.1.1.3 well-known results

Theorem 2.1.7. (Gauss-Green)
Let U C R? be a given open set and Q0 any smooth subregion within U. Then we

/div(F) d:c:/ F-vdS,
Q o9

where F denote the flux density (F € C*(U,RY)) and v the unit outer normal
field.

have

Corollary 2.1.8. (Integration by parts) Let Q2 be a regular open set of class
C'. Let u and v be two C'(Q) functions with bounded support in the closed set
Q. Then they satisfy the integration by parts formula

/Q u<x)§; (z) dz = — /Q v(m)g;i(x) d + /a ule)o(a)ue) ds. (213)
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Proposition 2.1.9. (Hélder inequality) Let Q be an open subset of R and
p,q € [1,00] such that % + % =1. Let f € LP(Q),g € L), then

1glle < A fllpllglly

Proposition 2.1.10. (Poincaré inequality) Let Q be a bounded domain.
There exists a positive constant C,, such that, for every u € Wol’p(Q),

[ull, < Col Vullp. (2.1.4)

Theorem 2.1.11. (Rellich-Kondrachov embedding) Suppose that Q) C R?
is bounded and of class C*. Then we have following compact injections.

i. WhP(Q) cc LY(Q), V q € [1,p*), where ;z% = % — L ifp<d.
i. WHP(Q) cC LY(Q), V¥ q € [p,0), if p=d.
. WP(Q) cc O(Q) if p > d.

We have the following theorem.

Theorem 2.1.12. Suppose that f : U — R has a continuous Gateaux-derivative
on U. Then f is Fréchet-differentiable and f € C'(U,R).

Lemma 2.1.13. (Fatou’s lemma)
Let {f.} be a sequence of functions in L*(€2) that satisfy

i. for all n, f, >0 a.e

ii. supn/fn < 00.
Q

For almost all z € Q we set f(z) = liminf, . f.(z) < co. Then f € L*(Q2) and

/f dr < liminf/ fn dx.
0 n—oo QO

2.1.2 Linear operators in Banach spaces

Here, X and Y will denote Banach spaces with their norms denoted by || - || x,
|| - ||y or simply | - || if no confusion is possible.

An operator A from X to Y is a linear map on its domain. One denotes
by D(A) the domain of A. An operator from X to Y is thus characterized by
its domain and how it acts on this domain. Operators defined this way are
usually referred to as unbounded operators. One writes (A, D(A)) to denote
the operator along with its domain. The set of linear operators from X to Y is
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denoted by Z(X,Y). The set of linear and continuous operator from X to Y
will be denoted by .Z.(X,Y)

If D(A) is dense in X the operator A is said to be densely defined. If D(A) = X
one says that the operator A is on X to Y.

The range of the operator A is denoted by Ran(A), that is

Ran(A) ={Az: x € D(A)} CY

and its kernel, Ker(A), is the set of all € D(A) such that Az = 0.
The graph of A, ¥(A) is given by

G(A)={(z,Az): x€ D(A)} C X xY.

We naturally endow X x Y with the norm [|(x,y)|xxy = ||z||% + ||y||?- which
makes X x Y a Banach space. One says that A is a closed operator if its graph
9(A) is a closed subset of X x Y for this norm. The so-called graph norm on
D(A) is given by

1204 = (@, A2) 5y = lzllx + [ Az]ly-

The operator A is closed if and only if the space D(A) is complete for the graph
norm | - || p(a).-

If a linear operator A from X to Y is injective, one can define the operator A~!
from Y to X such that

D(A™') =Ran(A), Ran(A™')=D(A), A7'A=1dp), AA™" = Idgan(a)-

One says that A is invertible and A" is called the inverse operator.

Definition 2.1.14. An linear operator A from X to Y is said to be continuous
if it is continuous at every x € D(A) or equivalently if it is continuous at = 0.
This is equivalent to having K > 0 such that ||Az|ly < K]|z||x for all z € D(A).
One says that A is a bounded operator.

The positive number

[Az]ly

zeD(A) ||=T||X
x#0

is called the bound of A, and denoted by || Al #(x,y) or simply ||A||. Note that

linear operator from X to Y that fails to be continuous are such that

K:

A
I

zen(4) |17llx
x#0



22

This justifies the name unbounded for general linear operators from X to Y .

Theorem 2.1.15. (closed-graph theorem) Let A be such that D(A) is a closed
linear subspace in X. Then, A is bounded if and only if A is a closed operator.

For a proof we refer to [49].

2.1.3 Spectrum of linear operator in a Banach space

We consider here a linear operator from X to itself. One says that A € C is
in the resolvent set p(A) of an linear operator A from X to X if the operator
Ald — A is injective and the inverse operator (A\Id — A)~! has a dense domain
D((Md — A)~™') = Ran(Ald — A) in X and is bounded. If A € p(A) then we set
Ry(A) = (AMld — A)~!. The spectrum is then simply the complement set of p(A)
in C. We denote by sp(A) the spectrum of A.

The spectrum of a linear operator is othen separated in three disjoints sets

(a) The point spectrum that gathers all A € C such that the operator A\Id — A
is not injective. Such a complex number )\ is called an eigenvalue of A
and the (finite or infinite) dimension of the kernel ker(Ald — A) is the
the geometric multiplicity associated with this eigenvalue. An element of
ker(Ald — A) is called an eigenvector or an eigenfunction in the case the

Banach X is a function space.

(b) The continuous spectrum that gathers all A € C such that the operator
Ald — A is injective, has a dense domain but its inverse R)(A) is not

bounded.

(¢) The residual spectrum that gathers all A € C such that the operator
Ald — A is injective but does not have a dense image.

2.1.4 Monotone mappings

Here X’ denote the dual space of X.

Definition 2.1.16. Let X be a real Banach space. A mapping B : X — X' is
called hemi-continuous at xy in X , if for all y in X, Vs,, | 0 with x¢ + s,y € X,
imply that B(zg + s,y) — Bzg. It is called demi-continuous at zy € X, if for
all , € F, x, — x9 in X implies that Bz, — Buxy, where — is the weak

convergence.

We observe that “continuous”’” = “demi-continuous” = “hemi-continuous” .
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Definition 2.1.17. Let X be a real Banach space. A mapping B : X — X' is

called monotone if
(Bx — By,x —y) >0, forall z,ye€ X.

An important property for monotone mappings reads as follows.

Lemma 2.1.18. Let E be a convex subset of a real Banach space X. If B: E C
X — X' is hemi-continuous and monontone, then for any sequence x, € E
with x, — v € E and lim(Bx,, z, — ) < 0, we have

lim(Bz,,z, —y) > (Bx,z —y) Yy € E.

Proof. Since A is monotone, we have (Bx, — Bz, x, —x) > 0 and this implies,

0 = lim(Bz, x,—z) < im(Bx,, z,—x) < lim(Bz,,z,—z) < 0 (by assumption).
We then obtain that
lim(Bzy,, z, —x) = 0. (2.1.5)

Again by monotonicity and (2.1.5), for all z € F we have
lim(Bz,,r — z) = lim(Bx,,x, — z) > lim(Bz,x, — z) = (Bz,z — z). (2.1.6)

For all z € E and s; € (0,1) we set 2z = z;, := (1 — s)x + spy and substituting
this in (2.1.6), it follows that

lim(Bz,,r —y) > (Bzy,z — y). (2.1.7)

Now thanks to the hemi-continuity, the right hand side of (2.1.7) converges to
(Bx,z —y) as sy — 0. Combining (2.1.5)-(2.1.7) together with the last fact, it
follows that

lim(Bzy,, z, —y) > (Bx,x — y).

]

The following notion on pseudo-monotonicity is abstracted from the combi-
nation of the monotonicity and the hemi-continuity.

Definition 2.1.19. Let X be a reflexive Banach space and let £ C X be a
nonempty closed convex subset. An operator B : E — X' is called pseudo-

monotone, if

(a) For all finite-dimensional linear subspace L C X, Blng : LN E — X' is

demi-continuous.
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(b) For all sequence {z,} C E with z,, — = € E, the condition lim(Bz,, 2, —
x) <0 implies im(Bx,, z, —y) > (Bx,x —y), Vy € E.

One sees that a hemi-continuous monotone operator is pseudo-monotone.
Moreover, a completely continuous mapping B : X — X'( that is, for any
x, — z in X, we have Bx,, — Bx in X’) is pseudo-monotone.

Theorem 2.1.20. (F. Browder) Suppose that X is a reflexive Banach space,
(Bz,x)
[zl

and that B : X — X' is pseudo-monotone and coercive, i.e., | |}im
x||—+00

+o0. Then A is surjective.

Proof. We need to show that Vz € X', 9xy € X such that Bxy = z. We define
T :x+ Bx —z. Then, T is hemi-continous and monotone, and so 7" is pseudo-
monotone. In addition T satisfies

(Tx,x) >0 as ||z|]| > Ry,

for some Ry > 0, provided by the coerciveness of B. We apply the Hartman-
Stampacchia theorem [55, Theorem 2.5.7| to conclude the existence of zy € X
satisfying (T'zo, o —y) = (Bxo—z,20—y) < 0 for all y € X. Since y is arbitrary
in the linear space X, it follows that Bxy = 2. O]

Corollary 2.1.21. Suppose that H s a real Hilbert space, and that B is a

continuous strongly operator, i.e., 3C > 0 such that
(Bx — By,z —y) > Cllz —y||* Va,y € H. (2.1.8)

Then B is a homeomorphism.

Proof. We clearly have that B is pseudo-monotone and coercive. As the conse-
quence of Theorem 2.1.20, B is surjective. The injectivity of B as well as the
continuity of B~! follows from the inequality (2.1.8). O

2.1.5 Fredholm operators

We shall denote by Z(X,Y) the set of bounded operators A on X to Y, that is,
such that D(A) = X. Once we speak of a bounded operator A : X — Y without
any mention of its domain, this means that D(A) = X, that is, A is on X to
Y. Let A be a linear closed operator from X to Y. The nullity of A, denoted
nul(A), is defined as the dimension of ker(A) and the deficiency of A, denoted

def(A), is defined as the dimension of Y/Ran(A). Both nul(A) and def(A) take
value in NU {oc0}.

Definition 2.1.22. A linear operator A from X to Y is said to be Fredholm if
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i. it is closed,
ii. Ran(A) is closed,
iii. both nul(A) and def(A) are finite.

One then sets the index of A as ind(A) = nul(A) — def(A).

2.1.6 Characterization of bounded Fredholm operators

We denote by Fr#(X,Y) the space of Fredholm operators that are bounded
on X into Y. The following result states that those operators are the operators

in Z(X,Y) that have an inverse up to remainder operators that are compact.

Theorem 2.1.23. Let A € B(X,Y). It is Fredholm if and only if there exists
S e B(X,Y) such that

SA=TIdy + K?, AS =Idy + K?, (2.1.9)

where KP € B(X,X) and K1 € B(Y,Y) are compact operators. In particular,
S is Fredholm and ind(A) = —ind(95).

For a proof we refer to [62, Theorem 11.7].

2.2 Semigroup theory

Semigroup theory is at the centre of the understanding of many evolution equa-
tions that can be put in the following form

%x(t) + Az(t) = f(t), t>0, z(0)=u, (2.2.1)

with z(t) and z in a proper function space, usually a Banach space, denoted by
X, if not a Hilbert, with A an unbounded operator on X, with dense domain,
and f a function of the time variable ¢ taking values in [0, 00). We will only
review the case of a homogeneous equation, that is f = 0. For general references
on semigroups we refer to [28,40, 76].

2.2.1 Strongly continuous semigroups
Consider the following homogeneous equation associated with the evolution

equation problem (2.2.1),

%x(t)+Ax(t):0, >0, 2(0) = up. (2.2.2)



26

Under proper assumption on A we can write the solution in the form

x(t) = S(t)xo, where S(¢) : X — X is a bounded operator. Since some sort of
differentiation with respect to time is expected in (2.2.2), a minimal assumption
is then that

S(0)x =« and ¢+ S(f)x be continuous for all = € X. (2.2.3)

With ¢ — z(t) solution to (2.2.2), if the evolution problem is well posed, we
expect from uniqueness that solving the following problem, for some ¢y, > 0,

SU0) + Ay(t) =0, 130, ylto) = (to) (2.2.4)

yield a solution that satisfies y(¢) = z(t) for ¢t > to. In particular, this implies
the following property:

S(t +t") =S(t) o S(¢'), fort,t' € [0,+00). (2.2.5)

Properties (2.2.3) and (2.2.5) are precisely the starting point of semigroup the-
ory in Banach spaces.

2.2.2 Definition and basic properties

Let X be a Banach space.

Definition 2.2.1. A family S(¢) of bounded operators on X, with ¢ € [0, +00)
is called a semigroup if:

S(0) =Idx and S(t +1t') = S(¢t) o S(t) for ¢, € [0, +00). (2.2.6)

The semigroup is called strongly continuous if, moreover, for all x € X we have
lim S(¢)x = z. One says that S(¢) is a Cy-semigroup for short.

t—0+

Theorem 2.2.2. Let S(t) be a Cy-semigroup. There exist constants w > 0 and
M > 1 such that

IS(t)|2(x) < Me**,  for 0<t< oo, (2.2.7)

Proof. We first show that ||S(t)||.#(x) is bounded. More precisely, we show that
there is an g > 0 such that

sup_|[S(¢)||.z(x) < oo.
te[0,u]
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Suppose that ||S(t)| #(x) is not bounded, that is, sup ||S(t)||#x) = +o0, for
te(0,u)

all p = % with & € N. Therefore for all £ € N, there exists ¢, € [0, %] such
that sup [|S(tx)|| #(x) = +oc. From the Uniform boundedness theorem 3z € X :
k>1

sup [|S(tk)x|| 2(x) = +00, i.e, [|S(tr)z| #(x) is unbounded. On the other hand,
k>1

for all z € X, R* 2 ¢ +— S(t)x € X is continuous at 0; that is,
Ve >0, AN >0 |t| <N = ||S(t)u—u||g(x) <eE.

In particular, letting e = 1, it follows that ||S(¢)x — #||#x) < 1 and hence we
have the estimates

ISzl 2x) — 2z < |ISE)z]l2x) — 2]l2c0| < 1SE)z — ll2x) < 1.

This implies that [|[S(t)x|| #(x) < 1+ ||| #(x). But we have 0 < #; < + and then
ty — 0 as k — oo, and taking N = ¢,

E”Co eEN: |tk| < N; vk > ]{30 = ||S(tk)l‘||g(x) <1+ ||£E||g(X). (2.2.8)

Therefore sup |[S(tr)x|| #x) < 1+ ||z]|2x). For k€ {1,...,ky — 1} set K =
k>ko

maXHS(tk)x_Hg(X) since we have a finite number of S(¢y)x. Then, for k €
{1,..., ko — 1} we have

sup [|S(t)z|| 2x) < K. (2.2.9)

Combining (2.2.8) and (2.2.9) we get sup ||S(tx)z|| 2(x) < 1+]z]| 2x) + K < oo
>1

and this a contradiction. Hence there is an g > 0 such that

sup [18(0)]Lcx) < oo.
te[0,u)

Let M = sup [S(5)](x), we have M > 1 since [S(0)]2(x) = 1.

te|0,u]
Setw:% > 0. Given t > 0 with ¢ > §, we have t = ku+ 9, where 0 < 9§ <

and therefore by the semigroup property

t—5
IS0 = ISG*SO)l ) < 100 | ISO) |y < MALE = MM,
This implies that

IS lzx) < MM = Me“" i — Me“t.
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Theorem 2.2.3. If (S(t))i>0 is a Cy-semigroup then for all u € X, (t,u) —
S(t)u is continous from [0,00) x X into X.

A Cy-semigroup is said to be bounded if there exists M > 1 such that
IS(t)]| 2xy < M, for t > 0. In the case M = 1, one says that the the Cp-
semigroup is of contraction.

We define the unbounded linear operator A from X to X, with domain

D(A) = {z € X li]gl+ t1(z — S(t)z) exists}, (2.2.10)
t—
and given by
Az = lim t *(z — S(t)z), z € D(A). (2.2.11)
t—0t

The domain D(A) is equiped with the graph norm

[zl peay = llzllx + [l Az x.

Since A is closed one finds that (D(A), || - |[pa)) is complete. This operator
(A, D(A)) is called the generator of the Cy-semigroup .

We have the following theorem whose proof can be found in [76].
Theorem 2.2.4. Let S(t) be a Cy-semigroup and A its generator. Then

a) Forx € X,
t+h

.1
}1115)% il S(s)x ds = S(t)x. (2.2.12)

b) Forxz € X, [S(t)r ds € D(A) and

A ( /O t S(t)x ds) = S(t)z — . (2.2.13)
¢) For x € D(A), S(t)z € D(A) and
%S(t)x — AS(t)z = S(t) Ax. (2.2.14)

d) For x € D(A),

S(t)z — S(s) = / tS(&)Ax o = / t AS(0)z df. (2.2.15)

Corollary 2.2.5. If A is a generator of a Cy-semigroup (S(t))i>o then the
domain D(A) of A, is dense in X and A is closed operator.
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For a proof we refer to [76].

Observe that if S(t) is a Cy-semigroup and z € C then e*'S(t) statisfies (2.2.6).
We have the following proposition.

Proposition 2.2.6. Let S(t) be a Cy-semigroup and z € C. Then e*S(t) is also
a Cy-semigroup and its generator is A — zIdx.

Note that because of the uniqueness of the generator of a Cy-semigroup |76,
Theorem 1.2.6], conversely, if A generates a Cy-semigroup, then A — zIdy is the
generator of a Cp-semigroup, namely e*'S(t).

The Hille-Yosida theorem

The natural question is to wonder if an unbounded operator on X is the gen-
erator of Cy-semigroup. The Hille-Yosida theorem is central in the semigroup
theory, providing a clear answer to this question. We refer to |76, Theorem 1.3.1]
for a proof.

Theorem 2.2.7. Let (A, D(A)) be a linear unbounded operator on a Banach

space X. It generates a Cy-semigroup of contraction if and only if
(a) A is closed and D(A) is dense in X.

(b) The resolvent set p(A) of A contains (—00,0) and we have the following
estimate

IRz <1/, A<0,  Ra(4) = (Mdy — 4)

This result is limited to contraction Cy-semigroups. The following corollary
provides a charcaterization of all generators of Cy-semigroups, we refer to |76,
Theorem 1.5.3| for a proof.

Corollary 2.2.8. Let (A, D(A)) be a linear unbounded operator on a Banach
space X. It generates a Co-semigroup S(t) such that ||S(t)|| ¢x) < Me“*, for
some M > 1 and w € R, if and only if

i. A is closed and D(A) is dense in X.

it. The resolvent set p(A) of A contains (—oo, —w) and we have the following

estimate

IBA(A)" |0y < 1/Jw+ A", A< —w, neN', Ry(A)=(Adx—A)~".

The Hille-Yosida theorem has the following simple consequence.
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Corollary 2.2.9. Let (A, D(A)) be the generator of a bounded Cy-semigroup
S(t), that is, ||S(t)||zx) < M, fort >0, for some M > 0. Then, its spectrum
satisfies sp(A) C {z € C: Rez > 0}.

Proof. Let ¢ € R, the Cy-semigroup e!S(t) is generated by A — icldy. Since
e"“'S(t) satisfies ||e"'S(t)| #x) < M, for t > 0, the conclusion follows from
Corollary 2.2.8 in the case w = 0. O

The Lumer-Phillips theorem

The Lumer-Phillips theorem provides another characterization of generators of

contraction semigroups.

Let X’ be the dual space of X equipped with the strong topology. For x € X

we set
Flo) ={p € X" ¢(a) = (p,2)xx = llelx = ll2l%},
which is not empty by the Hahn-Banach theorem.

Definition 2.2.10. A linear unbounded operator (A, D(A)) on X is said to be
monotone (or accretive) if for all € D(A), x # 0, there exists ¢ € F(x) such
that Re(p, Az)x x > 0.

Definition 2.2.11. A linear unbounded operator (A, D(A)) on X is said to be
maximal monotone if it is monotone and if moreover there exists Ay > 0 such
that the range of \gldx + A, Ran(Aoldx + A) = X.

The Lumer-Phillips theorem reads as follows.

Theorem 2.2.12. Let (A, D(A)) be a linear unbounded operator. It generates

a Cy-semigroup of contraction if and only if
1) A has a dense domain.
2) A is maximal monotone

A proof based on the Hille-Yosida theorem directly follows from the two

lemmata below.

Remark 2.2.13. Observe that there is no need to assume that the operator
A is closed in the converse part of the Lumer-Phillips theorem as in the Hille-
Yosida theorem. In fact, as proven below, a maximal monotone operator is
closed. In the case of a reflexive Banach space, the dense domain assumption
may be dropped in the converse part of the Lumer-Phillips theorem: a maximal
monotone operator has a dense domain, see [76, Theorem 1.4.6] and also |15,
Proposition 7.1] for Hilbert space case.
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This lemma gives a characterization of monotone operators. We refer to |62,
Lemma 12.13] for a proof.

Lemma 2.2.14. An unbounded operator (A, D(A)) on X is monotone if and
only if

|(Mldx + A)x||x > A|z]lx, = € D(A) and X > 0. (2.2.16)

The value of Ay > 0 in Definition 2.2.11 is not of great significance. In fact,
we have the following result.

Lemma 2.2.15. Let A be a maximal monotone operator on X. Then, A is
closed and for all X > 0 the operator \Idx + A is bijective from D(A) onto X.
Moreover, if X > 0, its inverse (AMdx + A)~! is a bounded operator and we have
the following estimation ||(Mdx + A) ™| 2x) < 1/

Proof. Let A > 0, for x € X, we have (AId+ A)z = 0 and ||(AMldx + A)z||x =0
implies that A||z||x = 0 thanks to Lemma 2.2.14. It follows that x = 0 and
AMdy + A is injective. As A is maximal monotone, there exists Ag > 0 such that
Ran(Aldx + A) = X, so \ldx + A is surjective. Its inverse (AgIdyx + A)~! is
thus well defined on X. By Lemma 2.2.14, we have [[(Aoldx + A) 7| 2x) < /\io
By the closed-graph theorem (see, Theorem 2.1.15), the graph of (AgIdx + A)~!
is closed in X x X and so is the graph of A.

We now prove that if ANIdx + A is surjective then so is N'Idx + A for any A’ such
that A > X/2 > 0. By induction, starting with A = Ay we then reach to the
conclusion that AIdx + A is surjective for any A > 0 and then the boundedness
of its inverse follows from Lemma 2.2.14.

Let A, X > 0 be such that Aldy + A is surjective and 2A > X' > 0. Let y € X.
We want to find € X such that (\'Idx +A)z = y. This reads as (Aldx +A)z =
y+ (A — X)z and thus we have x = (Aldx + A)~'(y + (A — X)z), meaning that
we seek fixed point for the bounded map M : x — (Aldx +A) 1 (y+ (A= X)z).
By the computation above, we have [[(Aldx + A)™*||#x) < 3, we then find
|M(z) — M(2')||x < |1 — ’\TI\H:U — 2'||x. Since 0 < |1 — 4| < 1, the Banach

)
contraction fixed point theorem applies. ]
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3. Part A: Nonlinear eigenvalue

problems

3.1 Calculus of variations

The calculus of variations uses variations, which are small changes in functions
and functionals, to find extrema(maxima, minima or other critical values) of
functionals: mappings from a set of functions to the real numbers. Functionals

are often expressed as definite integrals involving functions and their derivatives.

3.1.1 Functionals and critical points

Let X be a Banach space. A functional on X is a continuous real valued map
I : X — R. In general, one could consider functionals defined on open subsets
of X. But we will deal with functionals defined on all of X. In the applications,
critical points turn out to be weak solutions of differential equations.

Definition 3.1.1. We say that v € X is a local minimum, respectively maxi-
mum of the functional I € C'(E,R) if there exists a neighbourhood ¥ of u such
that

I(u) < I(v), respectively I(u)> I(v), Vv e ¥\{u}. (3.1.1)

If the inequalities in (3.1.1) are strict we say that u is a strict local minimum
respectively maximum. If (3.1.1) holds for every v € X, not only on #\{u}, u

is a global minimum respectively maximum.

Next, we state some results dealing with the existence of maxima or minima.
We restrict ourself to classical result dealing with functionals which are coercive

and wealky lower-semi-continuous (shortly : w.l.s.c.).

Let us recall that I € C(X,R) is coercive if

lim I(u) = +oo.
[[ull x —+00
The functional I is w.ls.c. if for every sequence u, € X such that u,, — u one
has that
I(u) < liminf I'(u,).

n—-+o0o
Lemma 3.1.2. Let X be a reflexive Banach space and let I : X — R be
coercive and w.l.s.c. Then [ is bounded from below on X, namely there exists
a € R such that I(u) > a for all u € X.
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Proof. Suppose by contradiction that there exists u, € X such that I(u,) —
—00. Since [ is coercive there exists M > 0 such that ||ul|x < M. Hence (u,)., is
bounded in X. But since X is a reflexive Banach space (u,),, has a subsequence
u, (without relabelling) which converges weakly to some u € X. Since [ is
w.ls.c. we infer that 0 < I(u) < lrilrgigofl(un) = —o0, contradiction, proving

the lemma. O

Remark 3.1.3. The same arguments show that a w.l.s.c. functional is bounded
from below on any ball B, = {u € X : |lu|]|x < p}.

Theorem 3.1.4. Let X be a reflexive Banach space and let [ : X — R be
coercive and w.l.s.c. Then I has a global minimum, namely there exists v € X
such that I(u) = min{/(v) : v € X}. If I is differentiable at u, then I'(u) = 0.

Proof. From Lemma 3.1.2, it follows that m = inf{I(u) : u € X} is finite.
Let u, be a minimizing sequence, namely such that I(u,) — m. Again, the
coercivity of I implies that |lu,|x < M’, and u,, — u for some u € X. Since [

is w.Ls.c. it follows that [(u) < 1im+inf I(u,) = m. Thus I achieves its infimum
n—-+0o0

at u: I(u) =m. O
3.1.2 Bifurcation: definition and necessary conditions
Let X,Y be Banach spaces. We deal with an equation like

S(Au) =0 (3.1.2)
where S : R x X — Y is such that

S(A0)=0 VAeR
The solution v = 0 will be called trivial solution of (3.1.2). The set
Y={(\u) eRxX: u#0, S(A\,u)=0}

will be called the set of nontrivial solutions of (3.1.2). The following phe-
nomenon has been observed: a branch of solutions u(\) depending on A, either
disappeared or split into several branches, as A approaches some critical values.
This kind of phenomenon is called bifurcation. Many problems arising in ap-

plications can be modelled in this way.

For example, the following algebraic equation

w—dlu=0 MeR
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has a solution v = 0 for all A € R. For A < 0, this is the unique solution, but
for A > 0 we have two more branches of solutions u = £v/\.

Bifurcation phenomena occur frequently in nature. Early in 1744, Euler ob-
served the bending of a rod pressed along the direction of its axis. Let 6 be the
angle between the real axis and the tangent of the central line of the rod, and
let A be the pressure. The length of the rod is normalized to be 7. We obtain
the following differential equation with the two free end point conditions

6+ \sinf =0

. . (3.1.3)
0(0) = 0(m) = 0.

Obviously, # = 0 is always a solution of the ordinary differential equation (3.1.3).

Actually the solution is unique, if A is not large. As A increasingly passes through

a certain value )y, it is shown by experiment that there exists a bending solu-

tion 6 # 0.

The same phenomenon occurs in the bending of plates, shells etc. Also, bifur-

cation occurs in the study of thermodynamics, rotation of fluids, solitary waves,

superconductivity and lasers, etc.

Mathematically, we describe the bifurcation by the following:

Definition 3.1.5. (bifurcation from trivial solution)

A bifurcation point for (3.1.2) is a number \* € R such that (A\*,0) belongs to
the closure of X. In other words, A\* is a bifurcation point if there exist sequences
An € R, u, € X\{0} such that

(1) S(An,un) =0,
(i) (An,un) — (A5,0).

The main purpose of the theory of bifurcation is to establish conditions for
finding bifurcation points and in general, to study the structure of . If S €
CH(R x X,Y) a necessary condition for A* to be a bifurcation point can be

immediately deduced from the implicit function theorem.

Definition 3.1.6. (bifurcation from infinity)
We say that A’ is a bifurcation point from infinity for (3.1.2) if there exist
An — AL and u, € X, such that ||u,|x — oo and (A, u,) € X.

We state a remarkable bifurcation result due to M. A. Krasnoselski [53].

Theorem 3.1.7. (Krasnoselski bifurcation theorem)

Let X be a Banach space and let T € C'(X, X) be a compact operator such
that 7(0) = 0 and 7(0) = 0. Moreover, let A € Z(X) also be compact.
Then every characteristic value \* of A with odd (algebraic) multiplicity is a
bifurcation point for u = AAu + T'(u).
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For the proof of Theorem 3.1.7, we refer to [6].

3.1.3 Palais-Smale condition

Definition 3.1.8. Let X be a Banach space and F': X — R be a differentiable
functional. A sequence {u,}, C X such that

{F(uy)}n is bounded (in R) and
F'(u,) = 0 (in X’) as n — oo,
is called a Palais-Smale sequence for F.

Remark 3.1.9. In a Hilbert space E we can identify the differential with the
gradient through the scalar product. Therefore, the second property of a Palais-
Smale sequence reads VF(u,) — 0 in E.

We recall that the convergence takes place in the strong topology of E.

Definition 3.1.10. Let X be a Banach space and let F': X — R be a differen-
tiable functional. We say that F' satisfies the Palais-Smale condition (shortly:
F satisfies (PS)) if every Palais-Smale sequence for F' has a converging subse-
quence (in X).

The following lemma shows that the search for critical points can be split into
two independent parts : the existence of Palais-Smale sequences, which will
follow from topological reasons, and the convergence of these sequences, which
is a compactness problem.

Lemma 3.1.11. Let X be a Banach space and let F : X — R be C* functional.
If there exists a Palais-Smale sequence for F' and F' satisfies (PS), then F has

a critical point.

In the following section we discuss the notion of degree.

3.2 Topological degree

The reader who meets the notion of topological degree (shortly, degree) for
the first time, could maybe start by asking the following question : what is
the topological degree ¢ As a rough answer, the degree is a tool, precisely
a number which gives information about the solution of particular equations.
The degree was introduced by L. Brouwer in finite dimensional spaces and
extended by J. Leray and J. Schauder to infinite dimensional spaces. The
Leray—Schauder degree is an important topological tool in the study of nonlinear
partial differential equations while the Brouwer degree is a powerful tool in
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algebraic topology. The nontriviality of the degree ensures the existence of a
fixed point of the compact mapping in the domain. It enjoys the properties
of homotopy invariance and additivity, which make the topological tool more
convenient in application, and provides more information on fixed points. There
is a very broad literature dealing with degree, among those we cite the following
books [5,6, 16,29, 55].

3.2.1 Brouwer degree and its properties

Let us assume that
(1) Qs an open bounded set in RY, with boundary 952,

(2) h is a continuous function map from Q to R?, the components of h will

be denoted by h;,
(3) pis a point in RY such that p ¢ h(09).

To each triple (h, 2, p) satisfying (1)-(3), one can associate an integer deg(h, €2, p),
called the degree of h (with respect to 2 and p), with the following properties.

(P1) Normalization: if Idgs denotes the identity map in R¢, then

1 if pe
deg(IdeaQap> -
0 if p & L

(P2) Solution property: if deg(h, €2, p) # 0 then there exists y € (2 such that
h(y) = p.

(P4) Decomposition: if Q; N Qy = 0 then

deg(h7 Ql U QQap) = deg<h7 Qlap> + deg<h7 Q2ap)‘

An outline of the procedure usually followed to define the degree, omitting the
consistency of the definition and the verification of (P1)-(P4) is given by the
following.

Consider a C* map h and a regular value p. Let us recall that p is said to be
regular value for h, if the Jacobian J,,(z) # 0 for every z € h™!(p). The Jacobian
is the determinant of the matrix h’(x) with entries

Oh;

61‘]‘ = .
ox;
J
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If p is a regular value then the set h~!(p) is finite and one can define the degree
by setting
deg(h,Q,p) = > sign[J,(z)], (3.2.1)

x€h=1(p)

where, for a € R\{0}, we set

+1 ifa >0,
signla| =
—1 ifa <0.

We see that the degree defined in (3.2.1) verifies the properties of (P1)-(P4) of
the degree defined above.

An important property of the degree defined above is the invariance by homo-
topy. An homotopy is a map H = H(\, z) such that H € C([0,1] x Q,R?).
An homotopy is admissible (with respect to Q an p), if H(\,z) # p for all
(A, z) € [0,1] x 99Q.

(P5) Homotopy invariance : if H is an admissible homotopy, then deg(H (A, -), Q, p)
is constant with respect to A € [0, 1]. In particular, if f(z) = H(0,z) and

g(z) = H(1,z) then deg(f,Q,p) = deg(g, 2, p).

As an immediate consequence of the homotopy invariance, we can deduce the
following

Theorem 3.2.1. (Dependence on the boundary values)
Let f,g € C(Q,RY) be such that f(z) = g(z) for allx € OQ and let p € f(ON) =
9(092). Then deg(f, 2, p) = deg(g, <, p).

Proof. Consider the homotopy defined by
H(\ ) = Ag(a) + (1 = N f(2).

One has g(z) = f(z) for all x € Q2 and thus H(\,z) = g(x) # p. Hence H is
admissible and the homotopy invariance yields :

deg(f, €, p) = deg(H(0,-),$2, p) = deg(H(1,-),$2, p) = deg(g, 2, p).

We list below some further properties of the degree.
(P6) Continuity : if hy — h uniformly in Q, then deg(hy, Q, p) — deg(h, Q,p).

Moreover, deg(h, €2, p) is continuous with respect to p.

(P7) Excision property: let €y C Q be an open set such that f(z) # p, for all
© € Q\Q. Then deg(f, 2, p) = deg(f, %, p).
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3.2.2 The Leray-Schauder degree

The Leray-Schauder degree is defined for mappings of the form Id — C, where C
is a compact mapping from the closure of an open bounded subset of a Banach
space X.

Leray and Schauder extend as follows the Brouwer degree to compact per-
turbations of the identity in a Banach space X. If 2 C X is an open bounded
set, h : Q — X is compact, and p ¢ (Id — h)(9Q), the Leray-Schauder degree
deg;g(Id — h,Q,p) of Id — h in Q over p is constructed from the Brouwer de-
gree by approximating the compact map h over Q by mappings h. with range
in a finite-dimensional subspace X. (containing p) of X, and showing that the
Brouwer degrees degz((Id—h.)| X, 2N X, p) stabilize for sufficiently small pos-
itive € to a common value defining deg; ¢(Id — h, 2, p). This topological degree
"algebraically counts" the number of fixed point of h(-) — p in Q, and for h of
class C!, and Id — h/(a) invertible for each fixed point h(:) — p in 2, Leray and
Schauder show that

degLS(Id— h7Q’p) = Z (_1)0']'((1)7

a€(Id—h)~*(p)

where o;(a) is the sum of the algebraic multiplicities of the eigenvalues h'(a).

The Leray-Schauder degree conserves the basic properties of Brouwer degree.
Theorem 3.2.2. The Leray-Schauder degree has the following properties.

(a) (Additivity) If Q = Q3 U Qo, where 0y and €y are open and disjoint, and
if p ¢ (Id — h)(082;) U (Id — h)(0€22), then

degps(Id — h,Q,p) = degpg(Id — h, 0, p) + degpg(Id — h, Qs, p).

(b) (Existence) If deg; ¢(Id — h,Q, p) # 0, then p € (Id — h)(Q2).

(¢) (Homotopy invariance) Let 2 C X be a bounded open set, and let
F:R x Q — X be compact. If x — F(\, x) # p for all (A\,x) € R x 99,
then deg; o(Id — F'(X, ), 2, p) is independent of A.

3.3 The Krasnoselski genus

The genus was introduced by M. A. Krasnoselski [53]. Let E be a infinite
dimensional Hilbert space. We say that a subset O C FE is symmetric if it is
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symmetric with respect to the origin of £, namely
ue O = —uel.

Let I" be the class of all the symmetric subsets A C E\{0} which are closed in
Definition 3.3.1. Let A € I'. The genus of A is defined as the least integer
number n € N such that there exists ¢ : A — R” continuous, odd and such

that
W(z) #0 forall x € A.

The genus of A is usually denoted by v(A). If such a number does not exists,
we set 7(A) = oo and, if A =, we conventionally set y(A) = 0.

Remark 3.3.2. An equivalent way to define the genus (A) is to take the min-
imal integer d such that there exists an odd map ¢ € C(A, R?\{0}). Actually,
such a 1 can be extended to a map v € C(E,RY). If ¥* is the odd part of 0,

namely

vr(w) = 5 (9) — d(-w).

1™ verifies the properties required in the above definition.

Remark 3.3.3. The definition of the genus does not change if we require
to be function with values in the sphere S"~! instead of R™\{0} since we can

compose with the projection
x
proj(z) == —-
|z
Lemma 3.3.4. Let £ = L?(R%) and let A = Sg be the unit sphere in L?(R%).

Then v(A) = +oo .

Proof. Let n € N be any positive integer, and let 1) : A — R" be continuous
and odd map. The infinite dimensional sphere contains the k-sphere
S* c R*+!: thus by Borsuk-Ulam theorem it follows that, for k > n

0 € (S = 0ecy(A).

Since A contains every finite dimensional sphere, for every n € N we can take
k = n + 1 and obtain that 0 is in the image. This proves that the genus is
+00. O

Remark 3.3.5. In a similar way, one shows that ~(0Q2) = n, where 2 C R™ is

an open bounded symmetric subset such that 0 € 2. In particular,

Y(S"h) =n.
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The following proposition gives some properties of the genus.
Proposition 3.3.6. Let A and B be elements of the class I'.
(i) The set A is empty if and only if the genus y(A) = 0.

(ii) If ¢ : A — B is a continuous odd map, then v(A) < v(B). In particular

AC B =v(A) <~y(B).

(iii) The genus is subadditive, namely, v7(A U B) < v(A) + v(B).

(iv) If Ais compact then v(A) < 400 and there exists a symmetric neighbour-
hood Uy of A such that y(U 4) = v(A).

3.3.1 Existence of multiple critical points of functionals

The genus can be used to prove existence results of critical points of functional
provided that the functional is even and M € I', where M is a the constraint
set. Here, we consider the functional J € C'(E,R). For any positive integer,

we define
I,={AcCcM: AeT,Ais compact and v(A) > m}

and

m = inf J(u).
7n = 82T

We explicitly remark that o, < 400 and o,, < ,,11. Moreover, if .J is bounded
from below on M, then o7 > —oo and hence any o, is finite. If we deal with
problems without constraints, namely if we are looking for stationary points of
J € CY(E,R) on E, we understand I' = {A € E\{0} : A is symmetric}, that

I, ={ACT, Aiscompact and v(A) > m},

and that o, is defined as above.
We state the following general result which holds both in the case of critical
points of J constrained on M and in the case without constraints. We refer

to |6, Proposition 10.8] for a proof.

Proposition 3.3.7. Each finite o, is a critical level for J € C*(E,R) (or
a critical level for J on M) provided (PS),,, holds. Moreover, if 6 = o, =
Omi1l =" = Omin € R for some integer n > 1, then v(Z,) > n + 1, where Z,
denotes the set of critical points of J at the critical level &.
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The following theorem, known as Clark’s theorem asserts the existence of a

sequence of negative critical values tending to 0 for even coercive functionals.

Theorem 3.3.8. (Clark, [24])
Let X be a Banach space and G € C'(X,R) satisfying the Palais-Smale condi-
tion with G(0) =0. Let Ty ={ Ae¥ : v(A) >k twithE={ACX; A=

—A and A closed }. If ¢, = inf sup G(u) € (—00,0), then ¢ is a critical value.
A€l yec A
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Nonlinear eigenvalue problems for
quasi-linear operators and

applications to bifurcation

In this part we present the results obtained in [97].

3.4 Setting of the problem

We consider Q C RY (N > 2) an open bounded domain with smooth boundary
0f). A classical result in the theory of eigenvalue problems guarantees that the

problem

(3.4.1)

—Au = Au in €,
u=20 on 0f?

possesses a nondecreasing sequence of eigenvalues and a sequence of correspond-
ing eigenfunctions which define a Hilbert basis in L*(2) [see, [39]]. Moreover,
it is known that the first eigenvalue of problem (3.4.1) is characterized in the

variational point of view by,

AP = inf {M}

wewl2ony | [ u? do

Suppose that p > 1 is a given real number and consider the nonlinear eigenvalue

problem with Neumann boundary condition
—Apu=Au in Q, (3.4.2)
g—z =0 on 02 o

where Apu = div(|Vu[P~?Vu) stands for the p-Laplace operator and A € R.

This problem was considered in [74], and using a direct method in calculus of

2N
N+2?

that the set of eigenvalues of problem (3.4.2) is exactly the interval [0, c0). In-

variations (if p > 2) or a mountain-pass argument (if p € ( 2)) it was shown
deed, it is sufficient to find one positive eigenvalue, say —A,u = Au. Then a

continuous family of eigenvalues can be found by the reparametrization u = aw,
A

satisfying —A,v = p(a)v, with p(a) = .
We consider the so-called (p, 2)-Laplace operator [see, [37]] with Dirichlet bound-
ary conditions. More precisely, we analyze the following nonlinear eigenvalue

problem,
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{ —Ayu—Au=\u in Q, (3.4.3)

u=0 on 0f

where p € (1,00)\{2} is a real number. We recall that if 1 < p < ¢, then
Li(Q) € LP(Q) and as a consequence, one has W, 9(Q) € W, 7(Q). We will say
that A € R is an eigenvalue of problem (3.4.3) if there exists u € W, ?(Q)\{0}
(if p>2), ueWy*(Q)\{0} (if 1 < p < 2) such that

/ |VulP~2Vu - Vo dr + / Vu-Vou dr = )\/ u v du, (3.4.4)
Q 0 Q

for all v € WyP(Q) (if p > 2), v € W(Q) (if 1 < p < 2). In this case,
such a pair (u, \) is called an eigenpair, and A € R is called an eigenvalue and
u € WP(Q)\{0} is an eigenfunction associated to A\. We say that X is a "first
eigenvalue”, if the corresponding eigenfunction u is positive or negative.

The operator —A, — A appears in quantum field theory [see, [35]], where it
arises in the mathematical description of propagation phenomena of solitary
waves. We recall that a solitary wave is a wave which propagates without any
temporal evolution in shape.

The operator —A, — A is a special case of the so called (p, ¢)-Laplace operator
given by —A, — A, which has been widely studied; for some results related to
our studies, see e.g., [13,14,23,69,89] .

We investigate the nonlinear eigenvalue problem (3.4.3) when p > 2, and
1 < p < 2 respectively. In particular, we show in section 3.5 that the set of the
first eigenvalues is given by the interval (AP, 00), where AP is the first Dirichlet
eigenvalue of the Laplacian. We show that the first eigenvalue of (3.4.3) can
be obtained variationally, using a Nehari set for 1 < p < 2, and a minimiza-
tion for p > 2. Also in the same section, we recall some results of [74], [72]
and |73]. In section 3.6, we prove that the eigenfunctions associated to A belong
to L°°(Q), the first eigenvalue AP of problem (3.4.3) is simple and the corre-
sponding eigenfunctions are positive or negative. In addition, in section 3.6.3
we show a homeomorphism property related to —A, — A.

In section 3.7, we prove that AP is a bifurcation point for a branch of first
eigenvalues from zero if p > 2, and AP is a bifurcation point from infinity if
p < 2. Also the higher Dirichlet eigenvalues A\ are bifurcation points (from 0 if
p > 2, respectively from infinity if 1 < p < 2 ), if the multiplicity of A2 is odd.
Finally in section 3.8, we prove by variational methods that if A € (Af, A2, ;)
then there exist at least k nonlinear eigenvalues using Krasnoselski’s genus.
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3.5 The spectrum of the nonlinear problem

We start with the discussion of the properties of the spectrum of the nonlinear
eigenvalues problem (3.4.3).

Remark 3.5.1. Any A < 0 is not an eigenvalue of problem (3.4.3).

Indeed, suppose by contradiction that A = 0 is an eigenvalue of equation (3.4.3),
then relation (3.4.4) with v = ug gives

/ |Vu|P dx +/ |Vug|* dz = 0.
0 Q

Consequently |Vug| = 0, therefore ug is constant on 2 and uy = 0 on Q. And
this contradicts the fact that ug is a nontrivial eigenfunction. Hence A = 0 is
not an eigenvalue of problem (3.4.3).

Now it remains to show that any A < 0 is not an eigenvalue of (3.4.3). Suppose
by contradiction that A\ < 0 is an eigenvalue of (3.4.3), with uy € W,”(Q)\{0}
the corresponding eigenfunction. The relation (3.4.4) with v = u, implies

0§/|Vu,\]p dx+/|VuA|2 dx:)\/ui dx < 0.
Q Q Q

Which yields a contradiction and thus A < 0 cannot be an eigenvalue of problem

Lemma 3.5.2. Any A € (0, A\P] is not an eigenvalue of (3.4.3).
For the proof see also [74].

Proof. Let A € (0,\P), i.e., \P > X\ Let’s assume by contradiction that there
exists a A € (0, \) which is an eigenvalue of (3.4.3) with uy € W,*(Q)\{0}
the corresponding eigenfunction. Letting v = w, in relation (3.4.4), we have on

/|Vu>\|p dx+/ |Vuy? dx:)\/ui dx
0 e 0

and on the other hand,

the one hand,

A?/uidw§/|VUA\2 dx. (3.5.1)
Q 0

By subtracting both side of (3.5.1) by /\/ u3 dx, we obtain
Q

(A?—A)/ui d:cﬁ/]Vu;f dm—A/ui dz,
Q Q Q
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(Af)—)\)/ui dx§/|Vu)\|2 d:v—)\/u?\ d:E—l—/\Vu;Jp dx = 0.
0 0 0 0

Therefore (AP — \) / u3 dr < 0, which is a contradiction. Hence, we conclude
Q
that A € (0, \P) is not an eigenvalue of problem (3.4.3). In order to complete

the proof of the Lemma 3.5.2 we shall show that A = AP is not an eigenvalue
of (3.4.3).

By contradiction we assume that A = AP is an eigenvalue of (3.4.3). So there
exists uyp € Wy (Q2)\{0} such that relation (3.4.4) holds true. Letting v = Uyp
in relation (3.4.4), it follows that

/Q‘V“A?’p dx—l—/Q\VuA?P dx:)\?/guil,g dz.

But Af/uiP dr < /|VUA1D|2 dz, therefore
Q Q

/ [Vuyo|? dx+/ ]VUA?\Q dx < / |Vu,\{3]2 dx = / |Vuyol? dz < 0.
Q Q 0 e

Using relation (2.1.4), we have uyp = 0, which is a contradiction since uyp €
Wy (Q\{0}. So A = AP is not an eigenvalue of (3.4.3). O

Theorem 3.5.3. Assume p € (1,2). Then the set of first eigenvalues of
problem (3.4.3) is given by

(AP 00), where AP denotes the first eigenvalue of —A on Q.
Proof. Let A € (AP, 00), and define the energy functional
2
Jy:WP(Q) = R by Jy(u) = / |Vul? dv + —/ |Vul|P dx — /\/ u? dx.
Q D Ja Q
One shows that .J, € C'(W,?(Q),R) (see, [37]) with its derivatives given by
(J\(u),v) = 2/ Vu-Vo d:L‘—l—Q/ |VulP?Vu-Vo d:t:—2/\/ wvde , Vv e Wy?(Q).
Q Q Q
Thus we note that A is an eigenvalue of problem (3.4.3) if and only if J) possesses

a nontrivial critical point. Considering J)(pe;), where e; is the L?*normalized

first eigenfunction of the Laplacian, we see that
In(per) < APp* + CpP — \p* — —oc0, as p — +oo.

Hence, we cannot establish the coercivity of Jy on Wy(Q) for p € (1,2), and
consequently we cannot use a direct method in calculus of variations in order
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to determine a critical point of .Jy. To overcome this difficulty, the idea will be
to analyze the functional Jy on the so called Nehari manifold defined by

Ny = {u € W2 (Q)\ {0} : / Vuf? da +/ Vul? do = /\/ 2 dx}.
Q Q Q

Note that all non-trivial solutions of (3.4.3) lie on N,. On N, the functional .J\
takes the form

2
Ja(u) = /|Vu|2 dm+—/ |Vul? dm—/\/u2 dx
Q D Ja Q
2
= (——1)/\Vu|p dx > 0.
p Q

We have seen in Lemma 3.5.2, that any A € (0, \P] is not an eigenvalue of
problem (3.4.3); see also [74]. It remains to prove the :

Claim : Every A € (AP, 00) is a first eigenvalue of problem (3.4.3). Indeed, we
will split the proof of the claim into four steps.

Step 1. Here we will show that N, # () and every minimizing sequence for .J, on
N, is bounded in Wy ?(Q). Since A > AP there exists vy € W,*(€) such

that
/ IVuy|? do < /\/ v} dx.
Q *

Then there exists ¢t > 0 such that tvy, € N,. In fact

/QIV(th)P dr + /Q |V (tvy) [P do = A/Q(tw)Q dr =

t2/ NONE da:+tp/ |Vua|? da::t2)\/v/2\ de =
Q Q Q

- -
t= ( 2fQ| UA| - ) > 0
A fq v} doe— [ |Vu|? d

With such ¢ we have tvy € N, and N, # 0.

Note that for u € B,(vy), r > 0 small, the inequality A [, |u[*dz >
Jo IVu|?dz remains valid, and then t(u)u € Ny for u € B,(vy). Since
t(u) € C' we conclude that N, is a C''-manifold.

Let {ux} C N, be a minimizing sequence of Jy|n,, i.e. Jy(ug) — m =
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wlen/\f& Jy(w). Then

9 -1
)\/uidx—/|Vuk|2dx:/|Vuk\pda:—>(——1) m as k — o00.
Q Q Q p

(3.5.2)
Assume by contradiction that {u} is not bounded in W,*(Q), i.e. / (Vug|? do —
Q

0o as k — oo. It follows that /ui dx — oo as k — 0o, thanks to relation

0
(3.5.2). We set v, = —%—. Since /[Vuk\z dr < )\/uz dx, we deduce that
0 0

lluwll2
/]Vvk|2 drx < X, for each k and |luglli2 < VA Hence {v} € Wy2(Q)
Q

is bounded in Wy*(Q). Therefore there exists vy € Wy*(Q) such that
v — vo in Wy?(Q) € WyP(Q) and v, — v in L2(Q). Dividing relation
(3.5.2) by ||ug|b, we get

A/uz dx — /|Vuk|2 dx
/ |Vl do = —22 £
Q

Iz

— 0 as k — oo,

9 -1
since )\/ui dx — /|Vu;€|2 dx — (— - 1) m < oo and [Jugl|h — oo
Q Q p
as k — oco. On the other hand, since v, — vy in W,7(Q), we have
/|Vv0|p dr < klim inf/|Vvk.|p dr = 0 and consequently vy = 0. It
Q o0 Q

follows that vy — 0 in L?(2), which is a contradiction since ||vg|lz = 1.
Hence, {u;} is bounded in W, ?(Q).

Step 2. m = inf Jy(w) > 0. Indeed, assume by contradiction that m = 0. Then,

weN
for {uy} as in step 1, we have

0< )\/ up do —/ \Vug? do = / |Vug|P de — 0,as k — oo. (3.5.3)
0 0 Q0

By Step 1, we deduce that {u} is bounded in W, ?(Q). Therefore there

exists ug € Wy*(Q) such that u, — up in Wy*(Q) and W, P(Q) and

ug — ug in L2(Q).

Thus /|Vu0]p dx < klim inf/\VukV’ dx = 0. And consequently ug = 0,
Q 0 Q

up — 0 in W,*(Q) and W,*(Q) and u, — 0 in L2(Q). Writing again
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v = ”:‘:”2 we have
)\/ui dx—/ |Vug|* do
0< B — luall ™ [ VP
[k ][5 o
therefore
Vug|?* dz
o | M ul|3 /|
Jivud e = fug | Hde S
Q e[| (e[|

= ugl3? (/\ — /|Vvk|2 dm) —0as k — oo,
Q

since |[ug/ls — 0 and p € (1,2), and {v;} is bounded in W,*(2). Next
since v, — vy in Wy ?(Q) € WyP(R), we deduce that /|Vvolp de <
0

lim inf/]Vvk|p dr = 0 and we have vy = 0. And it follows that vy — 0
Q

k—o0

in L?(Q) which is a contradiction since |Jvg|ls = 1 for each k. Hence, m is

positive.

Step 3. There exists uy € N, such that Jy(ug) = m.

Let {ux} C N, be a minimizing sequence, i.e., Jy(ux) — m as k — oo.
Thanks to Step 1, we have that {uz} is bounded in W,?*(Q). It follows
that there exists uo € Wy*(Q2) such that u, — ug in Wy*(Q) and W, ?(Q)
and strongly in L?(©). The results in the two steps above guarantee that
Ia(ug) < khrrolO inf Jy(uz) = m. Since for each k we have u, € N, we have

>
/ |Vuy|? dx+/ |Vug|P de = )\/ ui dv for all k. (3.5.4)
Q Q Q

Assuming ug = 0 on (2 implies that /ui dex — 0 as £k — oo, and by
Q

relation (3.5.4) we obtain that /\Vuklg dx — 0 as k — oo. Combining
Q
this with the fact that wu converges weakly to 0 in W;*(Q), we deduce

that u; converges strongly to 0 in I/VO1 () and consequently in VVO1 P(Q).
Hence we infer that

)\/ui dz—/|Vuk|2 da::/|Vuk|p dx — 0,as k — oc.
0 0 0

Next, using similar argument as the one used in the proof of Step 2, we
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will reach to a contradiction, which shows that ug # 0. Letting k£ — oo in
relation (3.5.4), we deduce that

Vul? de + | |Vugl? de < X [ 2 dz.
[V 0
Q Q Q

If there is equality in the above relation then ug € Ny and m < Jy(ug).
Assume by contradiction that

/|Vu0|2 dx—i—/ |Vuo|? dx < /\/ ug dz. (3.5.5)
0 0 0

Let t > 0 be such that tug € N,, i.e.,

—
)\/ug dx — /]Vu0|2 dx
Q Q
/|Vu0|p dx
Q

We note that ¢ € (0,1) since 1 < #*=2 (thanks to (3.5.5)). Finally, since
tug € N with t € (0,1) we have

0<m< J(tuy) — (2 - 1) / IV (tuy)|? dx = 17 (2 - 1) / Vol da
p Q p Q

== th)\<uO)
< P lim inf Jy(ug) = tPm < m for t € (0, 1),

k—o0

t =

and this is a contradiction which assures that relation (3.5.5) cannot hold
and consequently we have uy € Ny. Hence m < J)(ug) and m = J)(up).

Step 4. We conclude the proof of the claim. Let u € Ny be such that Jy(u) = m
(thanks to Step 3). Since u € N, we have

U T + U T = u” ax,
/|vy2d /|V|Pd /\/2d
Q Q Q
/|Vu|2 dx<)\/u2 dx.
Q Q

Let v € dB,(0) € W, *(Q) and € > 0 be very small such that u + dv # 0
in Q for all § € (—¢,¢) and

and

/ |V (u+ 6v)|? doe < )\/(u+5v)2 dzx;
0 Q
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this is equivalent to

/\/u2dx—/|Vu|2dm>5<2/Vu-Vvdx—2)\/uvdx)
Q Q Q Q
+ 07 (/ [Vol? d$—)\/02 dx),
Q Q

which holds true for ¢ small enough since the left hand side is positive

/|VU\2 dx—)\/UQ dx
Q 0

dominates the term from the right hand side and h(4) is a continuous

while the function

h(6) := 4] ‘2/ Vu - Vo de — 2/\/uv dz|+4
0 0

function (polynomial in ¢) which vanishes in § = 0. For each § € (—¢,¢),
let t(0) > 0 be given by

A/(u—l—év)Q d:c—/ V(a4 60)|? da
Q Q

t(0) =
/Q]V(u + 6v)|P dz

so that #(d) - (u + dv) € Ny. We have that ¢(§) is of class C'(—¢,¢) since
t(4) is the composition of some functions of class C'. On the other hand,
since u € N, we have ¢(0) = 1.

Define ¢ : (—e,¢) — R by 1(0) = Jx(t(6)(u + év)) which is of class
C'(—¢,¢) and has a minimum at § = 0. We have

U(6) = [t'(6)(u + dv) + vt(0)]Jy(t(d)(u + dv)) =

0 = 2'(0) = JA(#(0)(w)) [t'(0)u + vt (0)] = (Jy(u), v)

since ¢(0) = 1 and #'(0) = 0.
This shows that every A € (AP, 00) is an eigenvalue of problem (3.4.3).

]

In the next theorem we consider the case p > 2. For similar results for the

Neumann case, [see, [72]|.

Theorem 3.5.4. For p > 2, the set of first eigenvalues of problem (3.4.3) is
given by (AP 00).

The proof of Theorem 3.5.4 will follow as a direct consequence of the lemmas

proved below:
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Lemma 3.5.5. Let

1
%/|Vu|p dx + 5/ Vul? d
)\1(]9) = inf Q Q

ueW,y P\ {0} %/uz dr
Q

Then \;(p) = AP, for all p > 2.

Proof. We clearly have A;(p) > AP since a positive term is added. On the other

hand, consider u,, = Le; (where e; is the first eigenfunction of —A), we get

n

= Jo |VeiPde + o5 [ [Ver[Pdo

A (p §W = AP asn = ~.
() #[ﬂ‘el‘gdx 1

Lemma 3.5.6. For each A > 0, we have

1 1
lim <—/ |Vul? d:):+—/ |VulP dx—é/UQ dx) = 0.
lullp=ee \ 2 Jo pJo 2 Ja

Proof. Clearly
1 1 ) 1
— [ |VulPde+ = [ |[Vul*de > = [ |Vul? dz.
D Ja 2 Ja P Ja

On the one hand, using Poincaré’s inequality with p = 2,

we have /u2 dr < OQ(Q)/|VU/|2 dz,Yu € W,P(Q) ¢ W,?(Q) and then
Q Q

applying the Holder inequality to the right hand side term of the previous

estimate, we obtain

2 de < |7 ||u)?
[ 19 do < 1907
SO /u2 dz < Dlul|7,, where D = C’Q(Q)]Q]% Therefore for A > 0,

Q
1 1 A A
: /Q Vaf? de /Q Yl de — §/Qu2 dr > Clullt, ~ 50Nl (35

and the the right-hand side of (3.5.6) tends to oo, as ||ul[1, — oo, since p >
2. [

Lemma 3.5.7. Every \ € (AP, 00) is a first eigenvalue of problem (3.4.3).
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Proof. For each A > AP define Fy : W,*(Q) — R by

1 1 A
FA(U)_i/Q’qu dm—i—}—)/Q|Vu|p dx—i/ﬂ 2dr \Yu € WyP(Q).

Standard arguments shows that F\ € C'(W,7(Q),R) [see, [37]] with its deriva-

tive given by

(F\(u), p) = /(\Vu|p_2 +1)Vu - Vo dr — )\/ up dz,
Q Q
for all u, ¢ € W, ?(Q). Estimate (3.5.6) shows that F) is coercive in W, (£2). On
the other hand, F} is also weakly lower semi-continuous on W, (2) since F} is a
continuous convex functional, (see |8, Proposition 1.5.10 and Theorem 1.5.3]) .
Then we can apply a calculus of variations result, in order to obtain the existence

of a global minimum point of F), denoted by 0,, i.e., F)(#y) = min F). Note
Wy ()

that for any A > AP there exists uy € W,”(Q) such that Fy(uy) < 0 . Indeed,
taking uy = re;, we have

2 D
Fy\(re;) = %()\f —A) —l—%/ |Vei|P de <0 for r >0 small.
Q

But then F)(6y) < Fy(uy) < 0, which means that 6, € W,”(Q)\{0}. On the
other hand, we have (F}(6)),¢) = 0,Yeo € W,P(Q) (6, is a critical point of
Fy) with 6, € Wy P(Q)\{0} € W,?*(Q)\{0}. Consequently each A\ > AP is an
eigenvalue of problem (3.4.3). O

Proposition 3.5.8. The first eigenfunctions u; associated to A € (AP 00) are

positive or negative in €.

Proof. Let u} € WyP(Q2)\{0} be an eigenfunction associated to A € (AP, 00),

then

/ |Vul|P do + / IVul|? do = )\/ |u}|? dz, which means u} achieves the infi-
Q Q Q

mum in the definition of AP. On the other hand we have ||V|u}|||1, = [|[Vut|1,
and ||V|u}|[l12 = ||[Vut||1.2, since |V|up|| = [Vup| almost everywhere. It follows
that |u?| achieves also the infimum in the definition of AP, and therefore by the
Harnack inequality [see, [32]], we have |uj(x)] > 0 Vz € © and consequently u}

is either positive or negative in €. O

A similar result of Theorem 3.6.1 was proved in [56] in the case of the p-

Laplacian.
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3.6 Properties of eigenfunctions and the opera-
tor —A, — A

3.6.1 Boundedness of the eigenfunctions

We shall prove boundedness of eigenfunctions and use this fact to obtain C1®
smoothness of all eigenfunctions of the quasi-linear problem (3.4.3). The latter
result is due to [56, Theorem 4.4], which originates from [12] and [92].

Theorem 3.6.1. Let (u,\) € W, P(Q) x R%. be an eigensolution of the wealk
formulation (3.4.4). Then u € L>*(Q).

Proof. By Morrey’s embedding theorem it suffices to consider the case p < N.
Let us assume first that w > 0. For M > 0 define wy(z) = min{u(x), M}.

Letting
x ifz <M
= - 3.6.1
9(z) {Mifx>M (36.1)

we have g € C'(R) piecewise smooth function with g(0) = 0. Since u € W, *(Q)
and ¢’ € L>(Q), then gou € Wy () and wy, € Wy P(Q)NL®(Q) (see, Theorem
B.3 in [56]). For k > 0, define ¢ = w'?*" then Vo = (kp + 1)Vwyw'? and
© € WP (Q) N L®(Q).

Using ¢ as a test function in (3.4.4), one obtains

(kp+1) { /Q \VulP=2Vu - Vwyw? de + /Q Vu - Vwywh? dm} = A /Q ww?t da.
On the other hand using the fact that w}?™ < u***1 it follows that

(kp+1) [/Q |VulP~ 2V - Vwaﬁﬁ dz + /QVU . Vwa%? d4 < A/Q || *FVP dg,
We have V(w'f1) = (k + 1)Vuywk, = |V P = (k + 1)Pw'? | Vwy|P. Since

the integrals on the left are zero on {z : u(z) > M} we can take u = wy, in the
previous inequality, and it follows that

(kp+1) {/ |Vwa [Pwh? da:—i—/ |V |2wi? dx} < )\/ | D2 g
Q Q Q

Replacing |Vwy, [Pwh? by m|Vwﬁj1|p, we have

kp+1 k+1p /
d kp+1
P 1wl s o) [

IV 2wt do < )\/ || *FVP g,
0
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which implies that

1
kp+ /|V MELP dy < )\/ |u|EHDP g

(k+1)
/Q|vw';4+l|p dxg( o )/| (40 g (3.6.2)

By Sobolev’s embedding theorem, there is a constant ¢; > 0 such that

and then

il < ellwiz - (3.6.3)

where p* is the Sobolev critical exponent. Consequently, we have

R (364
and therefore
ol < (el ) ¥ = AT 369
But by (3.6.2),
ot s = (V) i, 366

and we note that we can find a constant ¢y > 0 such that

1
<)\(Z;;—i)1p> PVERT < o, independently of k and consequently

1

lwarll g 1)p < € ﬁ”““(k—i—l (3.6.7)

Letting M — oo, Fatou’s lemma implies

1 1
lull e < e es™

[l 423 (3.6.8)

1
Choosing ki, such that (k; + 1)p = p*, then ||u @ +1)p < c'“1+1 | e
Next we choose ko such that (ko 4+ 1)p = (ki + 1)p*, then taking ky = k in
inequality (3.6.8), it follows that

1
”u” (k2+1)p* < Ck2+1 r ||U||(k1+1)p*- (3.6.9)

By induction we obtain

11
lll ko < e o™ lull a1y (3.6.10)
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where the sequence {k,} is chosen such that (k, + 1)p = (k,—1 + 1)p*, ko = 0.
One gets k, +1 = (%)”. As £ <1, there is €' > 0 (which depends on ¢; and
¢2) such that for any n =1,2,. ..

[llr, < Cllullp (3.6.11)

with r,, = (k,+1)p* — oo as n — oco. We note that (3.6.11) follows by iterating
the previous inequality (3.6.10). We will indirectly show that v € L*(Q).
Suppose u & L*(2), then there exists € > 0 and a set A of positive measure in
2 such that |u(z)| > C||lul|,» + e = K, for all x € A. We then have,

1/rn
lim inf ||u||,, > lim inf (/ K”") = lim inf K|A|Y™ = K > C||ul|,,
n— oo n—o0 A

n—oo
(3.6.12)
which contradicts (3.6.11). If u changes sign, we consider u = u™ — u~ where

u" = max{u,0} and u~ = max{—u,0}. (3.6.13)

We have u™,u~ € Wy (Q). For each M > 0 define wy; = min{u"(z), M} and
take again ¢ = wﬁ’ﬂ as a test function in (3.4.4). Proceeding the same way as
above we conclude that u™ € L>(€). Similarly we have u~ € L>(2). Therefore

u=u"—u" isin L>(Q). O

3.6.2 Simplicity of the eigenvalues

We prove an auxiliary result which will imply uniqueness of the first eigenfunc-
tion. Let

uP — P u? —?

I(U,U) = <_Apua W> + <_AU'> U >
P _ D 2 .2

+ <_APU7 = - > <_A'U7 a . >>

pp—1 v

for all (u,v) € Dy, where

Dr = {(ug,uz) € Wy P(Q)xW,?(Q) : u; > 0in Qandu; € L¥(Q) fori = 1,2} if p > 2,
and

Dy = {(ug,ug) € W2 (Q)xW,2(Q) : u; >0in Qandu; € L¥(Q) fori=1,2} if 1 <p < 2.

Proposition 3.6.2. For all (u,v) € Dy, we have I(u,v) > 0. Furthermore
I(u,v) = 0 if and only if there exists o € R such that v = aw.



Proof. We first show that I(u,v) > 0. We recall that (if 2 < p < 00)

(—Apu,w) = / |Vu|P2Vu - Vw dz  for all w € WyP(Q)
0

(—Au,w) = / Vu - Vw dz  for all w € Wy (Q).
Q

and (if 1 < p < 2)

(—Ayu,w) = /Q |Vu|P2Vu - Vw dz  for all w € Wy (Q)

(—Au,w) = / Vu-Vw dz for all w € W, *(Q).

27

Let us consider § = “Z’UP n="v"4 ¢= w=v® and ( = Y= as test functions

p—1 vpl?

in (3.4.4) for any p > 1. Straightforward computatlons glve,

P(2E) = 0 (e ()

e

()
vl

Therefore

up_rUP
oy =

p
A 1
— / (—) |Vu|P~*| V| dz
9} u

v\P~1 _9
—p (—) |VulP™*Vu - Vo + (1 +(p —
u

-1
(5)" IV (Vul| Vol = Vu- Vo) +

1)(

2
(1+

p) |Vu|p} dx

w1 (%)) |Vu|p} dr
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By symmetry we have

(—A M> — — (E)p_l|v P2Vu - Vu + <1+( —1) (E p) Vol ¢ d
R =/ - v v-Vu P » v x

u\P-1 U\ P

= p—2 — . - = P

U) IVu[P~2 (V|| V| — Vo - Va) + <1+(p 1) (U) >|Vv| } dz

p—1
> IVo|P~H V| do

(~ v, " >:/Q{Q(%)qwuvuy—w-wH (1+ (%)2> ywﬁ—z(%) |wyyvuy} d.

I(u,v) = /Q{ %)P—l |Vu|l’—2 (|Vul|Vv|] = Vu - Vo) + (1 +(p—1) <%>p> |Vu|”} "
AN (VulP~! Vol dz
(%)’D_1 Vol (IVl|Vul ~ Vo Vu) + (14 (0= 1) (%)”) IWV’} o

p—1
|Vo|P~HVu| dz

+ /Q{ () (Vul[Fo] = Vu- Vo) + <1+ (%)2> Va2 () |Vu||VU|} dx
e [ L) 0vivu - vo v+ (14 (2)) 9ok =2 () 19w} a
” I(U,U)Z/QF(%,W,VU) dx—l—/QG(%,|VU|,|Vu|) da,
where

F(t,8,R) = p{t"|RF*(IR||S| - R-S) +t7[S|"*(IR||S| — R 5)}
+ 2{t(IRI[S| = R-9)} +2{t " (|R]IS| - R- 5)}

and

G(t,s,r) = (1+(p—1DtP)r? + (1 +(p— 1)t_p) sP 4+ (1+ t2)7“2
+ (L+t7Hs* —ptr P~ ls — ptPsP~ly — 2trs — 2t rs,

forallt =2 >0,R=Vu,S=VveRYand r =|Vu|,s = |Vo| € Rt. We
clearly have that F' is non-negative. Now let us show that G is non-negative.
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Indeed, we observe that
Gt,s,0)=(1+ (-1t ?)s"+(1+t7%)s>>0
and G(t,5,0) = 0= s =0. If r # 0, by setting z = ;> we obtain

G(t,s,r) = trP(z" —pz+(p—1)) +rP((p—1)2" —pz" ' +1)
+ t2r2(zz_22+1)+r2(22_22+1),

and G can be written as
G(t,s,r) = rP(tP f(2) + g(2)) + 72 (t*h(2) + k(2)),

with f(2) = 2P—pz+(p—1), g(2) = (p—1)2P—pzP 141, h(z) = k(z) = 2°—2z+1
Vp > 1. We can see that f, g, h and k are non-negative. Hence G is non-negative
and thus I(u,v) > 0 for all (u,v) € D;. In addition since f, g, h and k vanish
if and only if z = 1, then G(t,s,r) = 0 if and only if s = ¢tr. Consequently, if
I(u,v) = 0 then we have

Vu- Vv =|Vu||[Vu| and u|Vv|=v|Vul

almost everywhere in . This is equivalent to (uVv — vVu)2 = 0, which implies
that u = av with o € R%.. O

Theorem 3.6.3. The first eigenvalues A of equation (3.4.3) are simple, i.e. if
u and v are two positive first eigenfunctions associated to A, then u = v.

Proof. By proposition 3.6.2, we have u = awv. Inserting this into the equation
(3.4.3) implies that o = 1. O
3.6.3 Invertibility of the operator —A, — A

To simplify some notations, here we set X = WyP(Q) and its dual X* =
W=7 (Q), where 1—17 + z% =1.
For the proof of the following lemma, we refer to [65].

Lemma 3.6.4. Let p > 2. Then there exist two positive constants c;, co such
that, for all z1, x5 € R™, we have :

(i) (x2 —x1) - (|22P 22y — |21 [P7201) > e1]wg — 2P
(i) |Jz2P~22y — |21 [P7221| < co(|2a| + |21 ])P 72|22 — 24

Proposition 3.6.5. For p > 2, the operator —A, — A is a global homeomor-
phism.
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The proof is based on the previous Lemma 3.6.4.

Proof. Define the nonlinear operator A : X — X* by
(Au,v) = /Vu Vv dx+/|Vu|p *Vu - Vo dz for all u,v € X.

To show that —A, — A is a homeomorphism, it is enough to show that A is a

continuous strongly monotone operator, [see Theorem 2.1.21].
For p > 2, for all u,v € X, by (i), we get

(Au— Av,u —v) = /[V(u—v)|2daz+/ (IVulP~*Vu — |VoP=*Vo) - V(u — v) dz
Q 0

v

/ IV (u —v)|*dr + ¢ / |V (u—v)Pdx
Q Q
> allu—vlf,
Thus A is a strongly monotone operator.
We claim that A is a continuous operator from X to X*. Indeed, assume that

u, — u in X. We have to show that ||Au, — Aul|x+ — 0 as n — oco. Indeed,
using (i¢) and Holder’s inequality and the Sobolev embedding theorem, one has

|(Au, — Au,w)| < / |V, [PV, — [VulP~*Vu| [Vw| do +/ IV (u, —u)||Vw| dx
0 0

IN

02/ (|Vun| 4+ [Vu)P 2|V (uy, — u)|| V| d:B—l—/ |V (u, —u)||Vw| d

p—2/p /p
< (/ (|Vu,| + ]Vu|)pdx> (/ |V (u, —u \pdx) (/ \Vw|pdx>
+ csllun — ull12ffw]li2
< eal(Junllip + ullip)? 2 — ullipllwllip + csllun — ullipllwlp.

Thus ||Au,, — Aul|x+ — 0, as n — 400, and hence A is a homeomorphism. [

3.7 Bifurcation of eigenvalues

In the next subsection we show that for equation (3.4.3) there is a branch of
first eigenvalues bifurcating from (AP, 0) € Rt x W, ().

3.7.1 Bifurcation from zero : the case p > 2

By proposition 3.6.5, equation (3.4.3) is equivalent to

= M=A, —A)lu for uwe WH(Q). (3.7.1)
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We set
Sy(u) =u — A=A, — A)u, (3.7.2)

we L2(Q) c W (Q) and A > 0. By & = {(\u) € Rt x WyP(Q)/ u #
0,Sx(u) = 0}, we denote the set of nontrivial solutions of (4.1). A bifurcation
point for (4.1) is a number A* € R* such that (\*, 0) belongs to the closure of ¥.
This is equivalent to say that, in any neighbourhood of (A\*,0) in R x W, (),
there exists a nontrivial solution of Sy(u) = 0.

Our goal is to apply the Krasnoselski bifurcation Theorem 3.1.7. We state our

bifurcation result.

Theorem 3.7.1. Let p > 2. Then every eigenvalue AP with odd multiplicity
is a bifurcation point in R* x Wy?(Q) of Sy(u) = 0, in the sense that in any
neighbourhood of (AP,0) in R x W, () there exists a nontrivial solution of
SA (U) = 0.

Proof. We write the equation Sy(u) =0 as
u = Mu+ Ty(u),

where Au = (—=A) tu and Ty(u) = [(-A, = A)~! — (=A)~](Mu), where we

consider
(=0, — A1 L2(Q) c WHP(Q) — W P(Q) cc LA(Q)
and (—A)~': L2(Q) € W2(Q) — Wy (Q) cc LA(Q).
For p > 2, the mapping
(=0, = A) = (=A)1 L2(Q) c W(Q) = W P(Q) cC LA(Q)

is compact thanks to Rellich-Kondrachov theorem. We clearly have A € £(L*(Q))
and 7)(0) = 0. Now we have to show that

(1) T\ € ot
(2) T3(0) = 0.
In order to show (1) and (2), it suffices to show that

(a) —A, —A: WyP(Q) — WL (Q) is continuously differentiable in a neigh-
borhood u € W, *(2).

(b) (=A, — A)~! is a continuous inverse operator.
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According to Proposition 3.6.5, —A, — A is a homeomorphism, hence (—A, —
A)~! is continuous and this shows (b). We also recall that in section 3.6.2, we

have shown that AP is simple.

Let us show (a). We claim that —A, : WyP(Q) — W(Q) is Gateaux
differentiable. Indeed, for ¢ € VVO1 P(Q) we have

(—Ap(u+0v),0) = (=Dpu, ) = (|V(u+60)[PV(u+6v), V) — ([Vul*Vu, Vi)
(1Y (u+ 60)2) " V(u+ ov), w>— (| VulP~2Vu, V)
= ((IVul? + 26(Vu, Vo) + 32[VoP) T V(u+ ov), Vi)
(|VuP2Vu, V)
([IVulP~=2 + (p — 2)|Vu[* 5 1)(5<Vu V)
+ O()]V(u + 6v), V) — (|[Vul[P~2Vu, V)
= ([|[VulP™2 + (p — 2)|Vul[P~*6(Vu, Vo) + O(6*)]V (u + 6v), Vi)
— {|VulP~2Vu, Vo)

(p — 2)8|VulP~(Vu, Vo) (Vu, Vo) + 6(|VulP2Vu, V) + O(6?)
= S[(p — 2)|VuP~(Vu, Vo) (Vu, V) + (|[VulP2Vv, V) + O(3)].

Define
(B(u)v, ) = (p — 2)|Vul""(Vu, Vu)(Vu, V) + (|[Vu|P*Vo, Vi)

and let (u,)ns0 € Wy(Q). Assume that u, — u, as n — oo in W,"(Q). We
have

(B(up)v — B(u)v,p) = (p—2) [|[Vn[" Vi, VO)(Vtn, Vi) — [VulP~(Vu, Vo) (Vu, V)]
(|Vu, P2V, V) — {(|VulP 2V, Vo).

Therefore,

[(B(up)v — Bu)v,@)| < (p—2) [|Vua""(Vun, Vo) (Vu,, Vo) — [Vul~H(Vu, Vo) (Vu, V)|
+ |V, |P% = [VulP 72| [(Vo, V).

By assumption, we can assume that, up to subsequences,
() Vu, — Vu in (LP(Q))" as n — oo and
(%) Vu,(z) = Vu(z) almost everywhere as n — oo.

Then |Vu,|P~4{Vu,, Vo) (Vu,, Vo) — |VulP~HVu, Vo)(Vu, V) as n — oo
and consequently (B(u,)v,¢) — (B(u)v,p)as n — oo. Thus, we find that
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—A, — A € C' and thanks to the Inverse function theorem (—A, — A)™!

differentiable in a neighborhood of u € VVO1 P(€1). Therefore according to the
Krasnoselski bifurcation Theorem, we obtain that AP is a bifurcation point at
zero. [l

3.7.2 Bifurcation from infinity : the case 1 <p < 2

We recall the nonlinear eigenvalue problem we are studying,

{ —Ayu—Au=Xu inQ, (3.7.3)

u=20 on 0f).

Under a solution of (3.7.3) (for 1 < p < 2), we understand a pair (\,u) €
R x W,?(Q) satisfying the integral equality,

/ IVulP~?Vu - Vo dr + / Vu -V dr = )\/ wp dz for every ¢ € Wy (Q).
Q Q Q

(3.7.4)
We now state the main theorem concerning the bifurcation from infinity.

Theorem 3.7.2. The pair (AP, c0) is a bifurcation point from infinity for the
problem (3.7.3).

and

_1
For u € Wy*(Q), u # 0, we set v = u/Hu\ﬁzQp. We have [[v][12 = ——
7 flelly 22

1

)& 2P

|Vu|P~2Vo =

VulP~*Vu.

Introducing this change of variable in (3.7.4), we find that,

||u ||(2 22)(—2) /\VUV’_QVUVgo dx—l—/ Vou-Vodr = )\/ v dx for every ¢ € W, 2(Q).
Q Q Q
(3.7.5)

But, on the other hand, we have

1 1

|5 2P

ol 2"

N (1-3p)(p— 0
H 12
Consequently it follows that equation (3.7.5) is equivalent to

||v||4117_2p/ |Vo[P~2Vu-V dx+/ Vu-Veodr = /\/ v dx for every p € Wol’2(Q).
Q Q Q
(3.7.6)
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This leads to the following nonlinear eigenvalue problem (for 1 < p < 2)

(3.7.7)

—||UH1117_2PAPU —Av=)v in Q,
v=20 on Of).

The proof of Theorem 3.7.2 follows immediately from the following remark, and
the proof that (AP 0) is a bifurcation of (3.7.7).

Remark 3.7.3. With this transformation, we have that the pair (AP, o) is
a bifurcation point for the problem (3.7.3) if and only if the pair (AP 0) is a
bifurcation point for the problem (3.7.7).

Let us consider a small ball B,(0) := { w € Wy*(Q)/ |wl2 < r }, and
consider the operator

T:=—|- H;*;mp — AW Q) = WH2(Q).

Proposition 3.7.4. Let 1 < p < 2. There exists » > 0 such that the mapping
T : B,(0) C Wy*(Q2) — W~12(Q) is invertible, with a continuous inverse.

Proof. In order to prove that the operator T is invertible with a continuous
inverse, we again rely on Theorem 2.1.21. We show that there exists 6 > 0 such
that

(T'(u) = T(),u —v) > 0|lu— vHiQ, for u,v € B,(0) C W01’2(Q)

with r» > 0 sufficiently small.
Indeed, using that —A,, is strongly monotone on Wy () on the one hand and
the Holder inequality on the other hand, we have

(T(u) = T(v),u—v) = [Vu=Vol3+ (fulliz"(=2pu) = [vll12"(=Ap0),u — v)
lu =013 5 + ullts” (= Apu) = (=Apv),u —v)

+ (lulli” = lolli2") (A, u —v)

lu = wlff 2 = [l 2" = ol IVl IV (e = o)l

4— 4— —1
lu —ollTo = |lulli2” = lolls"| Cllollf s lu = v]l12(3.7.8)

(AVARRAVS
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Now, we obtain by the Mean Value Theorem that there exists 6 € [0,1] such
that

— _ d 91
Il = o] = | (ot 60 = 01R2) ¥ ool =
1 1—1
= |- 50 G ot i) 200 - w0 - ),
(4= D)l + 80— w5+ 60 — )l — vl
= (4 p) -+ 00 )7~ ol
< (=) (L= )z + O [l — vl
< (4 =p)r®Pllu— vl

Hence, continuing with the estimate of equation (3.7.8), we get
(T(u) = T(v),u—v) > [Ju=v[f,(1 = (4=p)r*POr"™") = [lu —v||T ,(1 - C"7?),

and thus the claim, for » > 0 small enough.
Hence, the operator T is strongly monotone on B,.(0) and it is continuous, and

hence the claim follows. O]

Clearly the mappings
T, = —A—1| 154, : B.(0) C Wy *(Q) = W 2(Q), 0<7<1

are also local homeomorphisms for 1 < p < 2 with v = 4 — p > 0. Consider

now the homotopy maps
H(r,y) o= (=7l - 11285 = A)7'(y), y € T(B:(0)) C W H(Q).

Then we can find a p > 0 such that the ball

() T-(B.(0

0<r<1

and
H(1,-) : B,(0) N L*(Q) = W,*(Q) cC L*(Q)

are compact mappings. Set now
Sa(w) = u = M—[lull] .4, — A)™

Notice that Sy is a compact perturbation of the identity in L?(Q2). We have 0 ¢
H(]0,1] x 0B,(0)). So it makes sense to consider the Leray-Schauder topological
degree of H(r,-) on B,(0). And by the property of the invariance by homotopy,
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one has
deg(H(0,-), B.(0),0) = deg(H(1,-), B.(0),0). (3.7.9)

Theorem 3.7.5. The pair (AP 0) is a bifurcation point in R* x L*(Q) of
Sy(u) =0, for 1 <p < 2.

Proof. Suppose by contradiction that (AP, 0) is not a bifurcation for Sy. Then,
there exist dy > 0 such that for all € (0,dy) and € € (0, dy),

Sx(u) #0 VNP -\ <e VueLXQ), |lulls =r. (3.7.10)

Taking into account that (3.7.10) holds, it follows that it make sense to consider
the Leray-Schauder topological degree deg(Sy, B,(0),0) of Sy on B,(0).

We observe that
(I— (A —e)H(1,")) |op,0) # 0 for 7€ [0,1]. (3.7.11)

Proving (3.7.11) garantee the well posedness of deg(I — (AP +¢e)H (7, -), B.(0),0)
for any 7 € [0,1]. Indeed, by contradiction suppose that there exists v €
dB,.(0) C L*(Q) such that

v— (AP —¢e)H(r,v) =0, for some 7 € [0, 1].

One concludes that then v € W;*(Q2), and then that

—Av — T||v||¥72Apv = (AP — .
However, we get the contradiction,
(AT =)z = IVoll3 + 7ol Vol > [Vl = A7 [lv]3.
By the contradiction assumption, we have
deg(I — (AP +e)H(1,-), B.(0),0) = deg(I — (\P —¢)H(1,-), B,(0),0). (3.7.12)
By homotopy using (3.7.9), we have

deg(] - ()‘1D - €)H(1, ')7 Br(0)7 0) = deg(] - (/\? - 5)H(07 ')7 B’I‘(O)’ O)
— deg(I — (A — £)(—A) "%, B,(0),0) = 1
1

Now, using (3.7.13) and (3.7.12), we find that

deg(I - ()‘1D + E)H(l, ')7 Br(())? 0) = deg(l - (>‘1D - 5)H<Oa ')7 Br<0)’ O) =
(3.7.14)
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Furthermore, since AP is a simple eigenvalue of —A, it is well-known [see [6]]
that

deg(I — (A +€)(=A)7", B,(0),0) = deg(I — (A +€)H(0,), B,(0),0) = 1
(3.7.15)
In order to get contradiction (to relation (3.7.14)), it is enough to show that,

deg(I — (AP +e)H(1,-), B,(0),0) = deg(I — (AP +£)H(0, ), B,(0),0), (3.7.16)
r > 0 sufficiently small. We have to show that
(I— (AP +e)H(T,") |op,0) #0 for 7€ [0,1].

Suppose by contradiction that there is r, — 0, 7, € [0,1] and w, € 0B,,(0)
such that
Uy — (NP + ) H (7, u,) =0

or equivalently
—Tlltn |1 2 Aptin — Auy = (AT + &)y (3.7.17)

Dividing the equation (3.7.17) by |lun|/1 2, we obtain

i, () - a () = e
5 (i Toia) =X e

and by setting v, = ”u:ﬁ, it follows that
—Tn||un]|1’:£p_1Apvn — Av, = (AP +e)w,. (3.7.18)

But since |[v,]l12 = 1, we have v, — v in Wy*(Q) and v, — v in L*(Q).
Furthermore, the first term in the left hand side of equation (3.7.18) tends to
zero in W=7 (Q) as r, — 0 and hence in W~1%(Q). Equation (3.7.17) then
implies that v, — v strongly in Wy?(Q) since —A : Wy*(Q) — W 12(Q) is a
homeomorphism and thus v with ||v|[;2 = 1 solves —Av = (AP + ¢)v, which is
impossible because AP +¢ is not the first eigenvalue of —A on W, () for £ > 0.

Therefore, by homotopy it follows that
deg(I - ()‘1D + €)H<17 ')7 Br(0)> O) = deg([ - ()‘f) + €)H(O7 ')a Br(o)a 0)
Now, thanks to (3.7.15), we find that

deg(l - (/\1D + €)H<17 ')7 Br<0)70) =—1,
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which contradicts equation (3.7.14). O

Theorem 3.7.6. The pair (A\P,0) (k > 1) is a bifurcation point of Sy(u) = 0,
for 1 < p < 2 if AP is of odd multiplicity.

Proof. Suppose by contradiction that (A2, 0) is not a bifurcation for Sy. Then,
there exist dp > 0 such that for all r € (0,d0) and & € (0, dp),

Sx(u) #0 VN2 =)\ <e YueLXQ), |lulls =r (3.7.19)

Taking into account that (3.7.19) holds, it follows that it make sense to consider
the Leray-Schauder topological degree deg(Sy, B,(0),0) of Sy on B,(0).
We show that

(I—(\ —e)H(7,)) o, #0 for 7€ [0,1]. (3.7.20)

Proving (3.7.20) garantee the well posedness of deg(I — (AP +¢)H (7, -), B.(0),0)
for any 7 € [0, 1]. Indeed, consider the projections P~ and P* onto the spaces
span{ey, ..., e, 1} and span{eg, €541, . .. }, respectively, where e; . .., ex, €py1, - -
denote the eigenfunctions associated to the Dirichlet problem (3.4.1).

Suppose by contradiction that relation (3.7.20) does not hold. Then there exists
v € OB,(0) C L*(Q) such that v — (AP —e)H(7,v) = 0, for some 7 € [0, 1]. This
is equivalent of having

—Av— (A, —e)v = 7|v][] 4,0 (3.7.21)

Replacing v by PTv+ P~ v, and multiplying equation (3.7.21) by Ptv— P~ v
in the both sides, we obtain

(A=A —)[(PTv+Pv), Pro—P ) = 7| PT o+ P v|[] , (A, [PTo+P 0], Prv—P )
)

= [IVP7lls = (W = I Polls] + IVPFull3 = (W = )| Poll; = rl[Pfo+ Polli,
X (A [PTv+ P o], PTv— P o).

But

(A [PTo+P 0], Prov—P o) = —/ IV(PTo+P )P 2V(Ptv+P v)-V(PTv—P v) dz,
Q

and using the Hélder inequality, the embedding W,*(Q) C Wy(Q) and the
fact that Ptv and P~v don’t vanish simultaneously, there is some positive con-
stant ¢’ > 0 such that
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|PHo=P vl < C(IPHOIR P70l o) = Ol P =P ol since (P7o, Pv),, =

0, we have

(A, [PTv+ P o], PTv— P o)| < [|[PTo+ P_v||€’;1||P+v — P71,
< C'|Pro+ Pl |PHo — Pol}
<C'||Ptv+ P_vH’fjgl, since ||[PTv — P_v||i2 =||PTv+ P_U”%’Q.

On the other hand, thanks to the Poincaré inequality as well as the variational

characterization of eigenvalues we find
= [IVP~oll = (A =) P7ol3] = 0

and
VP[5 — (A — &) P*oll5 > 0,

we can bound from below these two inequalities together by ||V PTv|2+||V P~ v|[3.

Finally, we have
oIt 2 = VP 0[5 + VP03 < 7C7(|PYo + ool with =4 —p,
)

lolff2 < Cllvl127 &1 < C"r* =0,

for r taken small enough. This shows that (3.7.20) holds.
By the contradiction assumption, we have

deg(I — (\Y +e)H(1,-), B,(0),0) = deg(I — (A\f —&)H(1,-), B,(0),0). (3.7.22)
By homotopy using (3.7.20), we have

deg(I — (AP —e)H(1,-), B,(0),0) = deg(I — (\ —¢)H(0,-),B,(0),0) (3.7.23)
= deg(I = (X = £)(=8)7", B:(0),0) = (=1)%,
where 3 is the sum of algebraic multiplicities of the eigenvalues AP —¢ < \. Sim-

ilarly, if 8’ denotes the sum of the algebraic multiplicities of the characteristic
values of (—A)~! such that A > A\ + ¢, then

deg(I — (\P +e)H(1,-), B,(0),0) = (-1)? (3.7.24)
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But since (AP — g, AP + ¢] contains only the eigenvalue AP it follows that 5’ =
8+ a, where a denotes the algebraic multiplicity of AP. Consequently, we have

deg([ - (/\k:D + €)H<1a ')7 BT(O)’ O) = (_1>/B+a
= (=1)*deg(I — (X +2)H(L,"), B:(0),0)
= _deg(I_ (AkD—i_‘g)H(l?')aBr(O)ﬂO)?

since AP is with odd multiplicity. This contradicts (3.7.22). O

3.8 Multiple solutions

In this section we prove multiciplity results by distinguishing again the two
cases 1 < p < 2 and p > 2. Let I" be the class of all the symmetric subsets
A C X\{0} which are closed in X\{0}.

Theorem 3.8.1. Let 1 < p <2 or2 < p < oo, and suppose that X € (A;, \e,;)
for any k € N*. Then equation (3.4.3) has at least k pairs of nontrivial solutions.

Proof. Case 1: 1 <p < 2.
In this case we will avail of [6, Proposition 10.8]. We consider the energy
functional I : W,*(Q2)\{0} — R associated to the problem (3.4.3) defined by

2
I\ (u) :]—9/ |Vul? dx—l—/ |Vul? da:—)\/u2 dr.
0 Q 0

The functional I, is not bounded from below on W, (), so we consider again
the natural constraint set, the Nehari manifold on which we minimize the func-

tional 1. The Nehari manifold is given by
Ny = {u € W (\{0} = (I3(u),u) = 0},

On N, we have I)(u) = (]% — 1)/|Vu|p dxr > 0. We clearly have that, I is

even and bounded from below on ./{]/' A-

Now, let us show that every (PS) sequence for I, has a converging subsequence
on N,. Let (uy,), be a (PS) sequence, i.e, |I(u,)| < C, for all n, for some C' > 0
and I} (u,) — 0 in W~12(Q) as n — +o0.

We first show that the sequence (u,), is bounded on N,. Suppose by con-

tradiction that this is not true, so [ |Vu,|* dor — 400 as n — +o0. Since

Q
I(uy,) = (% — 1)/Q|Vun|p dx we have /Q\Vun|p dr < c¢. On N,, we have

0< / |Vu, P d:B:)\/ui dx—/ |Vu,|? dr, (3.8.1)
0 Q Q
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llen |2

and hence /ui dr — +o00o. Let v,, = %2~ then /\anIQ dx < )\ and hence v,
Q Q

is bounded in W;*(Q2). Therefore there exists vy € Wy*(R2) such that v, — vy
in W,?(Q) and v, — vy in L*(Q). Dividing (3.8.1) by |lu,|[5, we have

{2 :/|an\p dx — 0,
0

2

since )\/ui dx — / |Vun]2 de = (- — 1)’11,\(un), |I\(u,)] < C and ||u,||5 —
Q Q p
)

+00. Now, since v, — vy in W ?(Q) € W, ?(Q), we infer that

/ |Vug|P dx < liminf/ |Vu,|P de =0,
Q n—+o0o Q

and consequently vy = 0. So v, — 0 in L*(Q) and this is a contradiction since
|lvnll2 = 1. So (uy), is bounded on Nj.

Next, we show that u,, converges strongly to u in VVO1 2(Q)

To do this, we will use the following vectors inequality for 1 < p < 2

(JwolP "2 — |21 [P7221) - (22 — 1) = C'(|w2] + a1 )72 |we — 21,
for all 21, 5 € RY and for some C’ > 0, [see [65]].
We have /ui dr — /u2 dz and since I4(u,) — 0 in W13(Q), u, — u in
Q

Q
Wom(Q), we also have I} (u,)(u, —u) — 0 and I} (u)(u, —u) — 0 as n — +o0.

On the other hand, one has
(I\(uy) — I\ (u),u, —u)y = 2 [/ (IVun P2V, — |VuP2Vu) - V(u, — u) do
Q

+ 2/|V(un—u)|2 dx—?)\/|un—u|2 dx
Q Q

c’/ (V| + [V} |V (1, — )2 da
Q

v

+ 2/|V(un—u)|2 dx—2)\/|un—u|2 dx
Q 0

2/ IV (y, — u)|? da:—?)\/|un—u|2 dx
Q 0

Jan =l = A [ o~ uf? de
Q

Vv

v

Therefore ||u, — ull;2 — 0 as n — 400 and w, converges strongly to w in
Wy (Q).
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Let ¥ ={ACN,: Aclosedand — A=A} and I'; = {A € ¥ : ~(A) > j},
where v(A) denotes the Krasnoselski’s genus. We show that T'; # 0.
Set E; = span{e;, ¢ = 1,...,j}, where e; are the eigenfunctions associated
to the problem (3.4.1). Let A € (AP, AP)), and consider v € S; := {v €
E;: [y |v]? dz = 1}. Then set

Jo IVulP da =5
- A fqv?de — [ |Vv]? dx

p(v)

J
Then A [, v* de— [, |[Vv|* dz > X [, v* de—=>" [, Niles]? de > (A=X;) [, [v]? dz >
=1

0. Hence, p(v)v € N,, and then p(S;) € Y, and v(p(S;)) = v(S;) = j for
1<y <k, for any k € N*.
It is then standard (see [6, Proposition 10.8|) to conclude that

Orj = inf -sup[)\(u), 1<j<k, forany keN*
Y(A)>5 ucA

yields k pairs of nontrivial critical points for I, which gives rise to k nontrivial

solutions of problem (3.4.3).

Case 2: p > 2.
In this case, we will rely on Theorem 3.3.8.

Let us consider the C! energy functional I : W, ?(Q) — R defined as

2
I(u) = ]—9/ |Vul? dx +/ |Vul? do — )\/ lu|? dx.
0 0 0

We want to show that

—o0 <0 = inf sup Iy (u 3.8.2
1= ez S ) (382)
is a critical point for I, where ¥’ = {A C S;}, where S; = {v € E; : [, |v|* dx =

1}.
We clearly have that I)(u) is an even functional for all u € Wy(Q), and also
I(u) is bounded from below on W, 7(Q) since Iy(u) > Cllullf, = C"[|ull? -

We show that I,(u) satisfies the (PS) condition. Let {u,} be a Palais-Smale
sequence, i.e., |Iy(u,)| < M for all n, M > 0 and I}(u,) — 0 in W12 (Q) as
n — co. We first show that {u,} is bounded in W, ”(Q). We have

M > (Cllualf, = C'llunllf,l = (Cllunllty,” =€) lual?,,
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and so {u,} is bounded in Wy (). Therefore, u € Wy*(Q) exists such that,
up to subsequences that we will denote by (u,), we have u, — u in W,"(Q)
and u,, — u in L*(Q).

We will use the following inequality for v;,v, € RY : there exists R > 0 such
that

|’Ul - ’02|p S R (|U1|p_21}1 - |U2|p_2’02) (Ul - UQ),

for p > 2 [see [65]]. Then we obtain
(I3 (un) — I3 (u), uy — u) = 2/ (|Vu, P>V, — [VulP>Vu) - V(u, — u) dz + 2/ |V, — Vul? dz
Q Q

—2)\/ |y, — u|? dz

E/ |Vu, — VulP dx+2/ |V, — Vul? d:p—2)\/ |y, — ul* da

2 P / 2
Up — U — 2\ U, — u|* dx.
RH Hl,p Q‘ ’

Therefore |Ju, — ul|1, — 0 as n — 400, and so u, converges to u in W, (Q).

Next, we show that there exists sets A; of genus j = 1, ..., k such that sup )(u) <
UGA]'
0.

Consider E; = span{e;, i = 1,...,j} and S; = {v € E; : [, [v]* do = 1}.
For any s € (0,1), we define the set A;(s) := s(S; N E;) and so v(A;(s)) = j
for j =1,..., k. We have, for any s € (0,1)

sup Iy(u) = sup I (sv)
u€A; veES;NE;

< sup { /|Vv|pdx—|-—/|Vv| dm——/|v de}
veES;NE;

< swp { /le|pd:v+ O —A)}<0

’UGSjﬁEj

for s > 0 sufficiently small, since / |\VoulP dx < ¢;, where ¢; denotes some
Q
positive constant.

Finally, we conclude that o, ; (j = 1,..., k) are critical values thanks to Clark’s
Theorem. O]
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4. Part B: Control theory

For more details about what we recall in this chapter we refer to [62].

Pseudo-differential operators, oscillatory integrals,

parametrices

4.1 Pseudo-differential operators with large pa-

rameter

We shall use the notations a < b for a < Cb and a 2 b for a > Cb, with a
constant C' > 0 that may change from one line to another. We also write a < b
to denote a < b < a. For functions norms we also use the notation || - || for
functions defined in the interior of the domain and | - | for functions defined on
the boundaries.

To motivate the form of the pseudo-differential operators, which we will present
below, we first formulate differential operators by the means of the Fourier
transformation. Suppose that ¢(z,£, 7) is a polynomial in (£, 7) of order less
than or equal to m, with z,& € RY, and 7 > 1. We write it in the form

a@.6m) = Y aalw)errt,

|a|+k<m

and we set ¢(z,D,T)u = Z ao(2)™"Du. For u in the Schawrtz space
|a|+k<m
< (RY), we denote by @ the Fourier transform, that is

a(g) = /R ) ey (z)dx.

Observing that

1

Du =
T ey

/ et (€) dé for u € (R, we write
R4

q(z, D, m)u

Z /R ) Lan(2)EU(E)dE,  that is
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We also note that
lq(x, &, 7)] S (7 + [§)™ (4.1.1)

and for all o, 8 € N¢,
0202 q(2, €, 7)] < Caglr + [€))™ 1, (4.1.2)

for |B] < m and 8§0§q(m,§,7) = 0 for |3| > m. We wish to generalize such
differential operators Q(x, D,7) that involves a large parameter such as 7, to
the case of more general functions ¢(z,§, 7).

Semi-classical calculus acting on R¢

Here, we recall some notions on semi-classical pseudo-differential operators with
large parameter 7 > 1. We denote by S™ the space of smooth functions a(z, &, 7)
defined on R% x R, with 7 > 1 as a large parameter, that satisfies the following
: for all multi-indices «, 3 € N? and m € R, there exists C, g > 0 such that

050 alw, &, 7)| < CapX 7, where AT =%+ [¢,

for all (z,£,7) € R x R? x [1,00). For a € S™, the define pseudo-differential
operator of order m, denoted by A = Op(a) is

a(z, D, m)u(zr) = Au(zx) := (271r)d /Rd e Sa(z, &, T)0(€)de (4.1.3)

for u € S (R%).

We say that a is the symbol of A. We denote ¥ the set of pseudo-differential
operators of order m. We shall denote by 2" the space of semi-classical differen-
tial operators, i.e, the case when the symbol a(z, &, 7) is a polynomial function
of order m in (§, 7).

We have the following properties for symbols.
Proposition 4.1.1. 4. Ifa € S™, then 85}8?@ e sy IAl,
ii. Ifa € S™ andb e S™ then ab € S™™.
ii. If m < m/, then ST C S™.

Proof. Let o, B,o/, 3 € N%.
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i. We have

020 920 alw,€,7)

oo (a;;afa(x, 3 T)) ‘ —

= [0 07 P alw, € 7)| < Congor (1)

< Currara A1,

Hence 8?(9?@ c Sm-I8l,
ii. For all multi-indices 4,y there exists Cs,, Cs. > 0 such that
020 a(x,&,7)| < Cs AN,
|0000b(x, €, 7)| < C5 AP

In addition, using Leibniz formula, we have

8;‘85 (a(x,f,T)b(x,f,T))‘ < Z <§) 0 (85_7a(a:,§,7')8gb(x,§,7')>‘
v<B

=2(0)=0)

09~ 63’8 Ta(z, &, 7) “E)‘sﬁwbx g, 7')|

<ZZ( >(2‘) NI o 18— “/IC/ )\m =l
v<B é<a
« I_ .
= ZZ ( ><5)05'y a—0,8— 7/\m+m ‘mv smcee |B| < |6_7| + |/7|,
v<B é<a
< o8l

with C = 3" > ( ) (5)C5.,Ca—sp—ry- Thus ab € ST

Y<B é<a

Let m < m/. We have A™ < A™ and A7 < A Qo if a € 5™, it
follows that for all o, 8 € N%, there exists C,, 5 > 0 such that 8§8§a(x, £, 7')‘ <

CogA™ 18 < Oy s A7 Thus a € S, m

Remark 4.1.2. Formally we can define

Au(x) = (2—71r)d /]Rd /]Rd ei(’”_y)'ga(ac,§,T)u(y,xd)dy d§.

Such a double integral may not have a meaning in the classical sense, e.g.
Lebesgue integration. Yet it has a very precise definition and meaning in the

sense of so-called oscillatory integrals.

Remark 4.1.3. The pseudo-differential operators defined above apply to func-
tions defined in the whole R?, through the use of the Fourier transformation.
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Below, we shall introduce tangential pseudo-differential operators that can act

on functions defined on a half-space.

Proposition 4.1.4. Let a € S™. We have Op(a) : #(R?) — 7 (R?) continu-

ously.
Proof. For all 1 </ < d, we have
D,,(Op(a)u)(z) = ! 7 | et (&ale, & 7) + Dyale, &, 7) )a(€)de,
(27T) Rd

~—
esmtt

and by induction we find that for o multi-index,

D(Op(a)u)(w) = g [ e b 7))

ES;n-Ha\

We also have
ri(Opla)u(a) = (2m)* [ (D) ala, & i(e) de
= _(27r)_d /Rd eifﬁ'é (D&a(x> 67 T)ﬁ(f) + CL(:L‘, 5a T)D&a(f)) df»

and by induction,

£*(Op(a)u)(z) = (—1)(2r) / ere Y

B<a

( ) a(z,&,7) D Pa(g) de.

esmI8

Combining the two formulae, for all multi-indices a et 3, we obtain the existence
of semi-norms p; € S™(R? x R?) and g¢;, ¢ in ./(R?) such that

|2 D3 (Op(a)u)()] < Cap(T Zpg @) < Cop( )ij(a)q;(U)

by Proposition 4.1.1 and this shows the continuity result. [

The action of pseudo-differential operators can extended to temperate dis-

tributions.

4.2 Oscillatory integrals

Oscillatory integral are useful for the definition of the Schwartz kernel of pseudo-
differential operators (and many other operators) and also for the understanding
of the pseudo-differential calculus. For a review of Schwartz kernel we refer
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to [62]. We shall give a precise meaning to integrals of the form

1
(2m)4

[ ety dydg, we SR, s ek
R4 xRd

for a € SF°°(R4 x R?) and view the Schwartz kernel of Op(a),

1

K (z,y) = (2m) /Rd e (x, & Tuly) de,

as a distribution. Actually these two integrals are perfectly well defined if

la(z,& 1) S (O™

with m < —d where (-) = (1+]-|?)'/2. This holds in particular if a € S™(R%xR?)
and m < —d. Yet, for m > —d, the meaning of the two integrals may not be
clear according to the classical integration theories. This type of integral is
called oscillatory because of the phase term e*=¥)€,

We shall in fact introduce more general phase functions, to be denoted by ®

here, and give a precise meaning to the following type of integral

/14“%%uasmﬁﬁ,
Rd

in the sense of distributions for a € S™(R? x R?) possibly with p # d.
For a proof of the following theorem we refer to [3].

Theorem 4.2.1. Let p,d € N and let ® : R? x R — C be € and such that
(1) Im ® > 0,
(2) ® is homogeneous of degree 1 in &, for |£] > 1,

(3) for all o, B, there exists Cy g > 0 such that

|§|\B\|5§a§¢>(m,§)| < Coplél, v€RP, £€RY

(4) there exists C' > 0 such that

|d:D* + [¢°|de @ > ClEP, z € RP, £ € R
Then, the functional

To(a,u, ) = / ) o, ¢ 7Yu()deda,
RP xR4
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that is well defined for u € Z(RP) and a € S;45(RP x RY), ¢ > 0, can be
extended in a unique manner by continuity to all a € S™(RP x RY), for all
m € R. Moreover as a distribution in .#'(RP), the map u — Ip(a,u,T), is of
order less or equal k for all k > m + d.

Note that
P:R'xR'x R - R
(z,9,8) = (x—y)- &
satisfies the assumption made on the phase function in Theorem 4.2.1. Thus
for a € S™(R? x R?) the map

w (27r)_d/ @Sz, €, T w(x, y) dédyda
RIxR4x R4

is a distribution in . (R¢ x RY) in the z,y variables of order less or equal k
for all £ > m + d. This allows one to write the Schwartz kernel of the operator

Op(a) as
(2711-)d /Rd "Wz, €, Tu(y) dE,

and with the kernel theorem (see [62, Theorem 8.45]) we have for u,v € .7 (R%),

Kr(z,y) =

(Op(a)u(x), U(Q»Y’(Rd),jﬂ(Rd) = (Kr,u® U>,¢'(R2d),y(R2d)

= (2m)™¢ /Rd o ei(w_y)fa(a:,f,T) v(x)u(y) dédxdy.

We recall that the kernel theorem states that Op(a)u(z) = (Kr(z, ), u(-)) o/ (ra),7(re) €
L' (RY) for u € Z(RY). Actually, in the present case we have Op(a)u(z) €

< (R?) by Proposition 4.1.4. Observe that Theorem 4.2.1 gives a precise mean-

ing to the formula

Op(a)u(z) = (Kr(2,-),u(-)) 7 (re). @)

=@m) [ (€ muly) dE dy,
RexR

for any given value x by considering the phase ®,(y,&) = (x — y) - £ with the

variable x as a parameter.

Remark 4.2.2. Let a € S™(R? x R?) and x € €>°(R) be such that x(0) = 1.
By [62, Proposition 2.58] one has that x(e),) converges to a in S7 (RP x R%)
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for m < m’ and we conclude by Theorem 4.2.1 that we have

To(a,u,7) = / ) g, €, 7Yu(x)dEda
RP xRd

= lim e @Oy (eX)a(x, &, T)u(x)dEdx

e—0 RP xRd

for u € S (RY), i.e

[ e ate g rdg = tim [ ¥y ala, & r)de,
Rd

e—0 R4
in the sense of distributions.
We say that the oscillatory integral is regularized in this limiting process.

Remark 4.2.3. Regularization allows one to generalize to oscillatory integrals
the usual calculus rules for absolutely convergent integrals: integration by parts,
homogeneous change of variables, the Fubini theorem, limits and differentiations

under the sum sign.

Tangential semi-classical calculus

Here, we consider pseudo-differential operators that only act in the tangential
direction 2’ with x4 as a parameter. We shall denote by ST, the set of smooth
functions b(x, &', 7) defined for 7 > 1 as a large parameter, satisfying the fol-
lowing: for all multi-indices o € N¢, 3 € Nt and m € R, there exists C, 5 > 0
such that

0200 b(w, €, 7)| < CapAf;”, where A2 =12+ [¢%, (4.2.1)

for all (z,&',7) € R* x R¥ x [1,00). For b € Sf’., we define a tangential
pseudo-differential operator B = Op,(b) of order m by

bz, D', )u(z) = Bu(z) = (%1)(1 : /R g il e (42.2)

B 1 i(a!—y')-€ / By
a 27T)d /Rd 1/Rd1 b<x£ )<y’xd)dyd€

for u € S (RL). We define U7
operators of order m, and 27", the set of tangential differential operators of

T, as the set of tangential pseudo-differential

order m. We also set

?,T = OpT( ?,T)
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Additional classes of symbols.
. —d
Here, we shall often write o = (,£,7), ¢ = (z,£,7) and X =R? or R,

Definition 4.2.4. Let a(p) € €>°(X x R%), with 7 as a large parameter in
[1,+00), and m € N, r € R. We say that a € S™"(X x R?) if

a(e) =Y a;()&), a; € STTT(X xR,

=0
forz e X, £ €RY, 7 €[1,+00), and & € R.

We also simply write a € S™". If 7 is a conic open set of X x R? x [1, +00)
we say that a € S7" microlocally for o' € % if each a; is in ST’ 7 microlocally
in%,j5=0,...,m.

Note that we have

smr ¢ gmtmirm' o om/ e N, reR.

The principal symbol of a denoted by o(a) is

which is a representative of the class of a in S™" /S™"~1 Note that S™" ¢ S™T.
Indeed, consider a(z,&,7) = A&y for At > 1. We have a € SH' C 529 and
yet a € S2. In fact observe that differentiating with respect to &’ yields

Dga(@,€ 7)) < CAT el

An estimate of the form of (4.2.1) is however not achieved for |a| > 2.

We recall that a ~ 37 ap—; € ST, if ap—; € S7*77 is homogeneous of degree
jeN

m — j with respect to (§,7) for j € N. Additionally we give the definition of

tangential polyhomogeneous symbols that are characterized by an asymptotic

expansion where each term is positively homogeneous with respect to (¢, 7).

Definition 4.2.5. We shall say that a € ST, (X x R*™") or simply ST*_, if
there exists a; € ST, homogeneous of degree m — j in (¢',7) for [(§',7)| > 7o,
with ro > 0, such that

N
a~ Z aj, in the sense that a — Z a; € S%;N_l.

>0 =0
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A representative of the principal symbol is then given by the first term in
the expansion. We denote it by o(a). We have

m m m m
S’r,ph C S’T ) T,7,ph C ST,T'

Thus, for m € N and r € R, we say that a(g) € S (X x R?) or simply S
if

m
a(p) = Z a;(0)&), with a; € S:?p_h”r.
=0

A representative of the principal symbol is given by 3 o(a;)(¢')&} and is ho-
=0
mogeneous of degree m in (&, 7).

We recall that the Poisson bracket of two smooth functions is given by

d
{£.9} = (9, f0u,9 — 0, f0c,9) -
j=1

m—1 _
The canonical inner product in C™ is denoted by (z,2')cm = > 2zx2'g, for
k=0
2= (20", Zm-1) € C™, 2/ = (2,---,2,_1) € C™. The associated norm will
m—1
be denoted |z|&. = > |zk]*
k=0
Sobolev norms with parameter
We introduce the following norms, for m € N and m’ € R,
m .
el =< Y IATE™ 7 DIl
=0
m -
il = lellmar = S IA7 Dl
=0
for u € S (RL), where |- ||+ = || - | 22(e)- We also denote (u,v)4 = (u, ) 2(ra)

and (u‘wd:ﬁ,v‘xd:w)a = (U‘wd:0+,'U|xd:0+)L2(Rd—l). We have

lalle = D 7D,

|a|<m
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and in the case m’ € N we have

[l =S 7 D

ag<m
|a|<m-+m/

with a = (o, ag) € N4

Remark 4.2.6. We have that for some C' > 0,

[ullm,sr < CT™

ue F(RY,

for m € N, s € R and ¢ > 0. This implies that ||u|mnsr < ||t|lmster for 7
sufficiently large.

The following argument will be used on numerous occasions: for m € N,
m/, 0 € R, with £ > 0,

[ellmm 7 < N[ llmmr e

if 7 is chosen sufficiently large.

; : . =d
For a sufficiently smooth function u defined in R we set, for m € N,
tr(u) = (U|zd:0+, Datjg o+, - - -, Dglumi:w)

on {xg = 0} and we define the following norm for m € N and m’ € R,

tr(u Z AR g By € F(RL),

mmT

where | - [ = | - |f2ga-1).

Proposition 4.2.7. (trace inequality)
Let s > 0. There exists C > 0 such that |ujz,—o+|s.» < Cllullss1/2-, u € F(RL).

Corollary 4.2.8. (trace inequality)
Let m € N and s € R. For some C > 0, we have

|tr(u)|m,s,’r S C||u||m+1,871/2,T7 u € ?GRE]{-)

From pseudo-differential symbol calculus we obtain the following inequalities.

Proposition 4.2.9. If a € S, with m € N and r € R, then for m" € N and
r € R there exists C > 0 such that

||Op(a>u||m’,r’,7 < O||u||m+m’,r+r’,77 u € ?GR?;-)

A consequence of this result is the following corollary.
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Corollary 4.2.10. Let m,m’ € N and r € R. There exists C' > 0 such that
el < Nullmsmrmr ey w € ?(Ri)

Proof. Set u = A?/Tv with v = A7™ u. Since we have )\?‘; € S%”/T = S0 C
Sm'0 it follows that

allnr = AT 0 e < Cllollmsmrir = CIUATT Wt v = Clltllmesmt oo e

thanks to Proposition (4.2.9). O

4.2.1 Differential quadratic forms

Quadratic forms in a half space

Definition 4.2.11 (interior differential quadratic form). Let u € .7 (R%). We
say that

Q(u) =Y (Au,B'u);, A" =O0p(a’), B* = Op(t), (4.2.3)

s=1

is an interior differential quadratic form of type (m,r) with smooth coefficients,
if for each s = 1,... N, we have a*(p) € S™" and b*(p) € ST, with ' 4+ 1" =

2r, 0= (x,&,7).
The principal symbol of the quadratic form () is defined as the class of

q(0) = a*(0)b*(0) (4.2.4)

in SQm,Qr/SZm,Qr—ll
A result we shall use is the following microlocal Garding inequality.

Proposition 4.2.12 (microlocal Garding inequality). Let K be a compact set of
@ and let % be a conic open set of@XRd_l xR, contained in K x R xR_.
Let also x € S?J be homogeneous of degree 0, be such that supp(x) C % . Let
Q be an interior differential quadratic form of type (m,r) with homogeneous
principal symbol q € S?™?" satisfying, for some Cy > 0 and ro > 0,

RQQ(Q) > C«O)\im)\zg’ fOT’ T 2 To, 0= (legd)a Q, = (33,5/,7') € 62/7 fd € R.
For 0 < Cy; < Cy and N € N there exist 7., C >0, and Cy > 0 such that

Re Q(Op;(x)u) = C1[|0p; (\)ully, 1., = CLEr(Opr ()W) 3,1 s1y2,r = Onlully, —v.r-
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forue SRL) and 7> 7.

We refer to |11, Proposition 3.5] and [63, Theorem 6.17] for a proof. A local
version of the result is the following one that follows from Proposition 4.2.12.

Proposition 4.2.13 (Garding inequality). Let Uy be a bounded open subset
of RY and let Q be an interior differential quadratic form of type (m,r) with

homogeneous principal symbol q € S2™?" satisfying, for some Cy > 0 andrg > 0,
Req(o) > CoAZ"NY.,  forT >y, 0= (0,&), o = (,¢,7) € UxR"'xR", & € R.
For 0 < C < Cy there exist T,, C > Osuch that

ReQ(u) > Cillully,,., — Cltr(w)}, 1,1

m,r,T

forue S (RL) and 7> 7.

Boundary differential quadratic forms

Definition 4.2.14. Let u € .7 (R%). We say that

N
Qu) =Y (A, B*u)y,  A*=d’(2,D,7), B* =b(x,D,7),  (4.2.5)

s=1

is a boundary differential quadratic form of type (m—1,r) with € coefficients,
if for each s = 1,... N, we have a*(p) € S7 7' (RL x RY), b*(p) € S " (R x
RY) with v + 7" = 2r, o0 = (0, &) with ¢ = (z,&,7). The symbol of the
boundary differential quadratic form @ is defined by

N
B(d, &, 6a) = ) a*(d, &b (2, Ea).
s=1
For z = (20,...,2m-1) € C™ and a(p) € S™ 17, of the form a(¢’,&;) =
Z;'n:_ol aj(Ql)fé with a;(0') € S-??Hffj we set

/-1

e 2) = Y a,(d)z (4.2.6)

j=0
From the boundary differential quadratic form () we introduce the following

bilinear symbol X : C" x C™ — C

N

Yoo, z,2') = ZZGS(Q',Z)ZZ,S(Q’,Z'), z,z € C". (4.2.7)

s=1
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Definition 4.2.15. Let ) be a boundary differential quadratic form of type
(m — 1,7) with homogeneous principal symbol and associated with the bilinear
symbol X4 (¢, z,2"). We say that () is positive definite in % if there exist C' > 0
and R > 0 such that

m—1
ReSg(0",2a = 0",2,2) > C Y A7),
j=0

for o = (2/,¢',7) € W', and z = (20,...,2m-1) € C™.

Proposition 4.2.16. Let Q be a boundary differential quadratic form of type
(m — 1,7), positive definite in # , an open conic set in R4 x R x R, | with
bilinear symbol Xq(¢',z,2'). Let x € S} be homogeneous of degree 0, with
Supp(Xjzy=0+) C # and let N € N. Then there exist 7, > 1, C >0, Cy >0
such that

Re Q(OpT<X)u) 2 C‘ tr(OpT(X)uﬂfn—l,r,T - CN‘ tr(u)ﬁn—l,r—N,T’

forue SRL) and 7 > 7.

Parametrices

Elliptic operators can be inverted up to some regularizing operator.

Proposition 4.2.17. Let m € R and let p € ST be elliptic, i.e, for some C > 0
and R > 0,

Ip(z,&,7)| > CA™, zeRY £cRY 7€ [r, +0), A >R
For any N € N there exist gy € S;™ and ry,ry € SoV such that
gnop=1+7ry, pogy=1+ry.

Moreover qy is unique in S;™/S=™"N. There exist alsop € S-™ and 1o, 7. €
S=° such that
gop=1+rs, pog=1l+ry,

with ¢ unique in S /S

This proposition is a particular case of the microlocal version |62, Proposition
2.34| whose proof can be found in [62].
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4.3 Standard pseudo-differential operators

We refer to as standard pseudo-differential operators, the operators that do not

depend on a large parameter.

Definition 4.3.1. (standard symbols) Let d € N and let a(x, ) € €>(R?x R?)
with m € R, be such that for all multi-indices «, 8 we have

|a§a§a(x,g>| < Cople)™ Pl 2z e RY € e RY, (4.3.1)

where (£) = (1 4+ [£]%)1/2. We then write a € S™(R? x R?).

We also define S™°(R? x R?) = M,pS"(R? x RY) and ST(R? x RY) =
U,erS™(R? x RY). We shall often simply write S™ (respectively S~ S*°°) when
no confusion is possible. For a € S™ we call principal symbol, o(a) the equiv-
alence class of a in S™/S™~1. With this symbol classes we can define standard

pseudo-differential operators.

Definition 4.3.2. (standard pseudo-differentiel operators) If a € S™(R? x R?),

we set

e'"Ca(z, £)u(€)d¢

a(z, D)u(z) = Op(a)u(x) := d

= 7 / TV (2, €)u(y)dyde
R xRd

—
(\&}
N |
SN—
T

for u € .7 (RY).
We denote by W™ the set of these pseudo-differential operators.

Remark 4.3.3. Note that a(z,£,1) € S™ if a(z, £, 7) € S. So we can recover
standard pseudo-differential operators by setting 7 to be a fix value (e.g 7 = 1)

in the case of the pseudo-differential operators with large parameter 7.
Definition 4.3.4. (Tangential symbols and operators) We say that a(z,&’) €
Sm(RY x RI1) if we have

0505 a(x, &) < Cap(¢)™ ¥, 2 eR?, ¢ e R,

where (¢/) = (1+[¢/[2)1/2.

We denote by U the set of associated operators, that is

ofo. D)u(e) = Opr(apu(e) = s [ e e €ale’ e
- & /R L ety aa)dy

27T>d 1
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4.4 Fredholm properties for fourth order elliptic

operators

It is well-known that elliptic problems are well-posed only if the boundary con-
ditions are chosen appropriately. By well-posedness one usually means that
the solution exists and is unique in some space, and it depends continuously
on data and parameters, or more generally that the associated operator is at
least Fredholm. The property which the boundary conditions should satisfy to
have a well-posed problem in some Sobolev spaces for a elliptic boundary value
problem is called the Lopatinskii—éapiro condition.

In this section we will point out the relation between the operators which are
Fredholm type and that satisfy the Lopatinskﬁ—gapiro condition.

On a smooth compact Riemmannian manifold (M, g), with boundary, we con-
sider P = A;, where A, denotes the Laplace-Beltrami operator. We denote
by p(z,w) its principal symbol for (z,w) € T*M. One defines the following
polynomial in z,

ﬁ(m,w', Z) = p(m,w' - an)?

for x € OM, W' € TXOM, z € R and where n, denotes the outward pointing
conormal vector at z, unitary in the sense of the metric g. We denote by p;(z,w’),

1 < j <4 the complex roots of p. One sets

ot

pr(r,w, 2) = H (z — pj(x,")).

Im pj(z,w’)>0

Given boundary operators Bp, B, in a neighborhood of O M, with principal
symbols b;(z,w), 7 = 1,2 one also sets Bj(x,w’,z) = b;(z,w’ — zn,). We note
that the boundary operators By and B, are of order k; and ks respectively.
Definition 4.4.1. (Lopatinskil-Sapiro condition) Let (z,w') € T*OM with
w' # 0. One says that the Lopatinskil-Sapiro condition condition holds for
(P, By, By) at (z,w’) if for any polynomial function f(z) with complex coef-
ficients, there exists ¢1,¢; € C and a polynomial function g(z) with complex
coefficients such that, for all z € C,

f(z)= Z c;bi(z, W', 2) + g(2)pt (W, 2).

1<5<2
We say that the Lopatinskii-Sapiro condition holds for (P, By, By) at © € OM
if it holds at (z,w’) for all W’ € TFOM with w' # 0.

Observe that the Lopatinskii—éapiro condition is written here without any
use of local coordinates. It is then a geometrical condition.



90

The general boundary operators By and B, are then given by

By(x,D)= Y B (z,D)@0,), (=12,

0<j<min(3,k¢)

with B}/ (z, D') differential operators acting in the tangential variables. We
denote by b (x,w) and by(x,w) the principal symbols of B; and Bj respectively.
For (z,uw") € T*0S), we set

be(z, ', 2) = Z by (x,w') 2, (=1,2.

0<j<min(3,k¢)
For m € N, we study the Fredholm property of the operator

L:H"™(M) - H™(M) @ H™ 2 (OM)

(4.4.1)
u = (Pu, Biulaa, Baulom),

where H(M+7/2(OM) = H™ 2= F(OM) @ H™+7/27k2(9M). We state the fol-
lowing useful theorem. To prove it, one can adapt the proof of Theorem 15.1
in [63].

Theorem 4.4.2. The operator L is Fredholm if and only if (P, By, Bs) fulfills
the Lopatinskii—gapiro condition on OM.

In order to show Theorem 4.4.2 one needs to establish the following result.
We note that by Theorem 2.1.23 this implies that the Lopatinskii—gapiro con-
dition is sufficient for the Fredholm property of L to hold.

Proposition 4.4.3. Let m € N. Assume that (P, By, Bs) fulfills the Lopatinskii-

Svapiro condition on OM. There exists a bounded linear operator
M : H*(M) @ H™2(9M) — H™(M)
such that
ML =Idgm+asnmy + K and LM = Idgmayeumim2eom + K

where both operators

K*: H" (M) — H™ (M)

(4.4.2)
K" - Hm(./\/l) ® H(m+7/2)(8./\/l) N Hm+1(M) @ H(m+9/2)(8/\/l)

are bounded.

By the Rellich- Kondrachov theorem (see [62, Theorem 30.7]) K* is compact
from H™*(M) into itself and K" from H™(M) @& H™+7/2(9M) into itself.
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Proposition 4.4.3 is contained in Theorem 20.1.7 of [44] and its proof is per-
formed based on the analysis of the fourth order operator in a half-space. For
instance the case of the Laplacian we refer to Proposition 15.2 in [63]. Theo-
rem 4.4.2 states in particular that L is not Fredholm if the Lopatinskﬁ—éapiro
condition does not hold.
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Stabilization of the damped plate
equation under general boundary

conditions

Here, we present the results obtained in [83] concerning the Part B.

4.5 Setting of the problem and some notations

Let Q be a bounded connected open subset in R?, or a smooth bounded con-
nected d-dimensional manifold, with smooth boundary 02, where we consider

a damped plate equation

02y + A%y + a(z)dy = 0 (t,z) € Ry x Q,
Biyr, xo0 = Bayr, xo0 =0, (4.5.1)
Yji=0 = y07 3ty\t:0 = yla

where o > 0 and where B; and B, denote two boundary differential operators.
The damping property is provided by +a(x)d; thus referred as the damping
term. As introduced below A? is the bi-Laplace operator, that is, the square
of the Laplace operator. Here, it is associated with a smooth metric g to
be introduced below; it is thus rather the bi-Laplace-Beltrami operator. This
equation appears in models for the description of mechanical vibrations of thin
domains. The two boundary operators are of k;, j = 1,2 respectively, yet at
most of order 3 in the direction normal to the boundary. They are chosen such

that the two following properties are fulfilled:

(1) the Lopatinskil-Sapiro boundary condition holds (this condition is fully

described in what follows);

(2) along with the homogeneous boundary conditions given above the bi-
Laplace operator is self-adjoint and nonnegative. This guarantees the
preservation of the energy of the solution in the case of a damping free
equation, that is, if a = 0.

We are concerned with the decay of the energy of the solution in the case « is
not identically zero. We shall prove that the damping term yields a stabilization
property: the energy decays to zero as time ¢t — oo and we shall prove that the
decay rate is at least logarithmic.

Among the existing results available in the literature for plate type equa-
tions, many of them concern the “hinged” boundary conditions, that is, ujso = 0
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and Aupo = 0. We first mention these result. An important result obtained
in [46] on the controllability of the plate equation on a rectangle domain with an
arbitrarily small control domain. The method relies on the generalization of In-
gham type inequalities in [48]. An exponential stabilization result, in the same
geometry, can be found in [88], using similar techniques. In [88] the localized
damping term involves the time derivative d;y as in (4.5.1). Interior nonlin-
ear feedbacks can be used for exponential stabilization [90]. There, feedbacks
are localized in a neighborhood of part of the boundary that fulfills multiplier-
type conditions. A general analysis of nonlinear damping that includes the
plate equation is provided in [2] under multiplier-type conditions. For “hinged”
boundary conditions also, with a boundary damping term, we cite [94] where, on
a square domain, a necessary and sufficient condition is provided for exponential
stabilization.

Note that under “hinged” boundary conditions the bi-Laplace operator is
precisely the square of the Dirichlet-Laplace operator. This makes its mathe-
matical analysis much easier, in particular where using spectral properties, and
this explains why this type of boundary conditions appears very frequently in
the mathematical literature.

A more challenging type of boundary condition is the so-called “clamped”
boundary conditions, that is, ujsn = 0 and 9,uj9n = 0, for which few results are
available. We cite [1]|, where a general analysis of nonlinearly damped systems
that includes the plate equation under multiplier-type conditions is provided. In
[77], the analysis of discretized general nonlinearly damped system is also carried
out, with the plate equation as an application. In [91], a nonlinear damping
involving the p-Laplacian is used also under multiplier-type conditions. In [30],
an exponential decay is obtained in the case of “clamped” boundary conditions,
yet with a damping term of the Kelvin-Voigt type, that is of the form 9;,Ay, that
acts over the whole domain. In the case of the “clamped” boundary conditions,
the logarithmic-type stabilization result we obtain here was proven in [82]. The
present result thus stands as a generalization of the stabilisation result of [82]
if considering a whole class of boundary condition instead of specializing to
a certain type. It contains in particular also the case of “hinged” boundary

conditions.

4.5.1 Method

Following the works of [59, 60, 82] we obtain a logarithmic decay rate for the
energy of the solution to (4.5.1) which is obtained by means of a resolvent
estimate for the generator of the semigroup associated with the damped plate

equation (4.5.1). This estimate follows from a Carleman inequality derived for
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the operator P, = A? — ¢* where o is a spectral parameter for the generator of

the semigroup.

Our first goal is thus the derivation of the Carleman inequality for the operator

P, near the boundary under the boundary conditions given by B; and B,.
Then, from the Carleman estimate one deduces an observation inequality

for the operator P, in the case of the prescribed boundary conditions. The

resolvent estimate then follows from this observation inequality.

4.5.2 Geometrical setting

On Q we consider a Riemannian metric g, = (g;;(x)), with associated cometric

(g“(x)) = (g»)~*. It stands as a bilinear form that act on vector fields,

ga:(u:ca Uac) = gzy( )Uzl):]w Uy = u;axla Ve = v;;aacz

For x € 0X) we denote by v, the unit outward pointing normal vector at x,

unitary in the sense of the metric g, that is
Ge(Va, V) =1 and g, (v, u,) =1 Vu, € T,00.

We denote by 0, the associated derivative at the boundary, that is, 9, f(z) =
v:(f). We also denote by n, the unit outward pointing conormal vector at x,
that is, n, = 17, that is, (n,); = gi;V/J

Near a boundary point we shall often use normal geodesic coordinates where
2 is locally given by {z; > 0} and the metric g takes the form

g=dz® ® dx® + Z gizda’ @ dx’.

1<4,j<d—1

Then, the vector field v, is locally given by (0,...,0,—1). The same for the one
form n,.
Normal geodesic coordinates allow us to locally formulate boundary prob-

lems in a half-space geometry. We write
]Ri = {zx e RY 24> 0} where z = (2, z4) with 2’ € R 24 € R.

We shall naturally denote its closure by ]RT}lH that is, @ ={z € R% x4 > 0}.
The Laplace-Beltrami operator is given by

(Agf)(@) = (det g,)""* Y 0y, ((det g,) 9" () s, f) (). (4.5.2)

1<i,5<d
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in local coordinates. Its principal part is given by Y ¢”(2)0,,0,, and its
1<ij<d

principal symbol by >~ ¢ (z)&¢;.
1<ij<d

The bi-Laplace operator is P = A2. In what follows we shall write A, A* in
place of Ay, A2

For an open set U of R? we set U, = U NRY and
C.(Uy) = {u= Ve ;U € €>°(R%) and supp(v) C U}. (4.5.3)

We set 7 (RL) = {uURi; u € (R} with .7 (R?) the usual Schwartz space
in R%:

ue. RN & ueE°(RY) and Vo, B € N sup |2 DPu(z)| < oo.
z€ER?
4.5.3 Observations concerning the need for boundary con-
ditions
On (0,+00) we consider the first-order differential operator L = Dy — \p, with

p € C and A > 0. The parameter A is intended to become large.
Let u € .7(R%). One aims to achieve the following estimate

lulley) S 1Lull2e,)- (4.5.4)
First, we assume that Im p < 0 and we compute

Re(Lu,iu) 2w, ) = Re(Dgu, iu) 2@, ) — A1m p||u||%2(R+)
= Re(Dyu, ) r2e, ) + A Tmpl[|u| 72, (4.5.5)

1
= 5O + M Tm plullz2 e, ),

since

(Dsu,iv) 2(m,y = Dgu (iu) ds = —@'/ Dgu v ds = — Osu u ds
Ry Ry Ry

1
=3 Os|ul? ds.

R4

Using the Cauchy-Schwartz inequality and the Young inequality we obtain for
any € > 0

wO) P +Mullze@,) S ILull 2@y lullze. S e) I Lullza@, )+ (M) lull 2, -
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With € > 0 chosen sufficiently small one concludes that
N21u(0)] + Al S I Zulli2e, - (45.6)

In this first case, we obtain (4.5.4) but, better yet, we estimate also the trace
of uat s =0".

Second, assume that Im p > 0. Consider the cut-off y € €>°(R) with x(s) =1
for |s| <1 and x(s) =0 for s > 2. We set u(s) = x(s)e**** and we observe that
Lu(s) = —ix'(s)e*. On the one has

2
lulaqe,) = / (s)e P o
0

1
1
> 72)\Impsd — 1— —2XImp )
_/0 ‘ ° 2)\Imp( ¢ )

On the other hand, one has

2
Ll = / ( ()62 m e ds
0

2
1
< 72)\Impsd _ —2XImp _ _—4XImp
“:K e s = g (¢ e~ him)
— 1 ( . —2)\Imp) 6—2)\Imp'
2AIm p

This ruins any hope of having an estimate of the form (4.5.4). Yet, by comput-

4.5.4)
ing Re(Lu, —iu) 2,y and arguing as above for (4.5.4)-(4.5.6), one obtains the

following estimate
Nl zae.) S ILulliz,) + AV2[u(0)]. (4.5.7)

Consider now the Laplace-Beltrami operator —A, in the normal geodesic co-
ordinates, that is —A, = D3 + R(x, D,), where R(xz, D,/) is a second-order
differential operator. To simplify, we assume that R(x, D,/) is a constant coef-
ficient operator. Then, up to a Fourier transformation in the 2’ variables, one

obtains for the principal part the operator
P =Dj+ R(¢) = Di+ [¢FR(E),
where R(&') = R(€'/|€'[), which we write
P=LYL" L*=Dy+|¢|RE)".

With A = |¢'| > 0 and 24 = s, and the two cases considered above, one finds that

for the factor L~ and estimate as in (4.5.6) can be obtained. For the operator



98

L%, one can only obtain an estimation as in (4.5.7). Combined together one

obtains an estimate either of the form

Nl 2@,y + A2 Dau(0)] < (| Pull e,y + X*/[u(0)],
or the form

Nz, + A2 [u(0)] S [ Pull 2,y + AV Dau(0)].

This simple example shows that if an elliptic operator can be written as a
product of several factors of the form Dy — Ap with Im p < 0 yield an estimate
without requiring any boundary term while factors of the form D; — A\p with
Im p > 0 require a boundary term. The number of factors of the second kind
yield the number of required boundary conditions.

In that framework, if given some boundary operators, the Lopatinskii-Sapiro
condition states their compatibility with the different factors Dy — Ap with
Imp > 0.

4.5.4 Symbols and operators with an additional large pa-

rameter

We shall often use operators with a symbol that depends on an additional large

parameter o, say a(x,&, 7,0). They will satisfy estimate of the form
0208 alz,€,7,0)| < Cap(r? + € + o) m0/2,
We observe that if 7 2> ¢ one has
ST+t S AL

Thus, as far as pseudo-differential calculus is concerned it is as if a € S and
this property will be exploited in what follows.
Similarly if a = a(x, £, 7,0) fulfills a tangential-type estimate of the form

0200 a(x, €, 7,0)| < Capl(r? + |€ + o) =102,

if one has 7 2 o one will be able to apply techniques adapted to symbols in ST,
and associated operators, like for instance the results on differential quadratic

forms listed in Section 4.2.1.
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4.5.5 Outline

In Section 4.6, the Lopatinskﬁ—éapiro boundary condition are properly defined
for an elliptic operator, we give examples focusing on the Laplace and bi-Laplace
operator and we give a formulation in local normal geodesic coordinated that
we shall mostly use throughout the manuscript. For the bi-Laplace operator
we provide a series of examples of boundary operators for which the Lopatin-
skii-Sapiro boundary conditions holds and moreover the resulting operator is
symmetric. We also show that the algebraic conditions that characterize the
Lopatinskil-Sapiro condition are robust under perturbation. This last aspect is
key in the understanding of how the Lopatinskil-Sapiro condition get preserved
under conjugation and the introduction of a spectral parameter. This is done
in Section 4.7, where an analysis of the configuration of the roots of the conju-
gated bi-Laplace operator is performed. In Section 4.7.5 the Lopatinskﬁ—éapiro
condition for the conjugated operator is exploited to obtain a symbol positivity
for a quadratic form to prepare for the derivation of a Carleman estimate.

In Section 4.8 we derive a estimation of the boundary traces. This is precisely
where the Lopatinskii—éapiro condition is used. The result is first obtained
microlocally and we then apply a patching procedure.

To obtain the Carleman estimate for the bi-Laplace operator with spectral
parameter A2 — o4 in Section 4.9 we first derive microlocal estimates for the
operators A &+ 02, Imposing o to be non-zero, in the sense that o > 7, the
previous estimates exhibits losses in different microlocal regions. Thus concate-
nating the two estimates one derives an estimate for A? —o* where losses do not
accumulates. A local Carleman estimate with only a loss of a half-derivative is
obtained. This is done in Section 4.10. With the traces estimation obtained in
Section 4.8 one obtains the local Carleman estimate of Theorem 1.8.1.

For the application to stabilization we have in mind, in Section 4.11 we use
a global weight function and derive a global version of the Carleman estimate
for A2 — o* on the whole 2. This leads to an observability inequality.

In Section 4.12 we recall aspects of strong and weak solutions to the damped
plate equation, in particular through a semigroup formulation. With the observ-
ability inequality obtained in Section 4.11 we derive in Section 4.13 a resolvent
estimate for the generator of the plate semigroup that in turn implies the sta-
bilization result of Theorem 1.8.2.
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4.6 Lopatinskii-Sapiro boundary conditions for

an elliptic operator

Let P be an elliptic differential operator of order 2k on €2, (k > 1), with principal
symbol p(z,w) for (z,w) € T*Q. One defines the following polynomial in z,

Pz, 2) = plz, — zn,),

for x € 0Q, W' € T0N, z € R and where n, denotes the outward unit pointing
conormal vector at = (see Section 4.5.2). Here x and w’ are considered to act
as parameters. We denote by p;(z,w’), 1 < j < 2k the complex roots of p. One
sets
= [ - ples)),
Im p; (z,w')>0

Given boundary operators By, --- , By in a neighborhood of 0f2, with principal
symbols b;(z,w), j =1,--- , k, one also sets Bj(x7w’,z) = b;(z,w — zn,).

Definition 4.6.1 (Lopatinskii-Sapiro boundary condition). Let (z,w’) € T*9<
with w’ # 0. One says that the Lopatinskii-Sapiro condition holds for (P,By,---,By)
at (z,w') if for any polynomial function f(z) with complex coefficients, there
exists c1, -+, ¢, € C and a polynomial function g(z) with complex coefficients
such that, for all z € C,

f(z) = Z c;bi(z, 0, 2) + g(2)pT (W, 2).

1<j<k
We say that the Lopatinskil-Sapiro condition holds for (P,By,---,By) at x €
02 if it holds at (z,w’) for all W' € TFOQ with W' # 0.

4.6.1 Some examples
For instance the Lopatinskii-Sapiro condition holds in the following cases
e P = —A on (), with the Dirichlet boundary condition, Bujpn = ujsq.

e P = A? on (, along with the so-called clamped boundary conditions,
i.e, Biujpo = upo and Byujpg = 0,ujpn, where v is the normal outward
pointing unit vector to 0€2; see Section 4.5.2.

e P = A?on (, along with the so-called hinged boundary conditions, i.e,
Biujpa = ujpn and Baujpgg = Aujpq.
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4.6.2 Case of the bi-Laplace operator

With P = A% on (Q, along with the general boundary operators B; and B,
of orders ky and ko respectively, we give a matrix criterion of the Lopatinskii-
Sapiro condition. The general boundary operators B; and By are then given
by
By(x,D)= Y = B (x,D)(i0,), (=12,
0<j <min(3,k¢)

with Bfﬁj (xz, D') differential operators acting in the tangential variables. We
denote by b (z,w) and by(x,w) the principal symbols of By and Bj respectively.
For (z,w') € T*052, we set

bz, W', z) = Z b (2, )2 (=12

0<j<min(3,k¢)

We recall that the principal symbol of P is given by p(z,w) = \w\g. One thus
has

px,o,2) = pla,o — 2n,) = (2 + |[W'2)°.

Therefore p(z,w’, z) = (z—i|w'|,)*(z+i|w'],)?. According to the above definition
we set pt(z,w’, 2) = (2 — i|w'|;)?. Thus, the Lopatinskii-Sapiro condition holds
at (r,w’) with w’ # 0 if and only if for any function f(z) the complex number
ilw’|, is a root of the polynomial function z = f(2) —c1by(x, W', 2) — caby(z, W', 2)
and its derivative for some c1,cy € C. This leads to the following determinant

condition.

Lemma 4.6.2. Let P = A? on Q, B, and By be two boundary operators. If
r € 00, W € TN, with W' # 0, the Lopatinskii-Sapiro condition holds at
(x,w") if and only if

q [ 1 (2,0, 2 = ilo'],) #0 (4.6.1)
€ ~ ~ T, W,z = 1w . .0.
d.by 0.by !

Remark 4.6.3. With the determinant condition and homogeneity, we note that
if the Lopatinskil-Sapiro condition holds for (P, By, By) at (z,w’) it also holds

in a conic neighborhood of (x,w’) by continuity. If it holds at z € €, it also
holds in a neighborhood of .

4.6.3 Formulation in normal geodesic coordinates

Near a boundary point = € 02, we shall use normal geodesic coordinates. These
coordinates are recalled at the beginning of Section 4.5.2. Then the principal
symbols of A and A? are given by &2 + r(z,¢') and (€3 + r(z,&'))? respectively,
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where r(x,¢’) is the principal symbol of a tangential differential elliptic operator
R(z, D") of order 2, with

r(z, &) = Z g7 ()&, and r(x,&) > ClEP

1<4,j<d—1

Here g is the inverse of the metric g;;. Below, we shall often write |¢'|2 = r(x, £’)
and we shall also write |£|2 = &2 + r(z,¢'), for € = (£,&y).

If by (z,€) and by(x, €) are the principal symbols of the boundary operators By
and Bs in the normal geodesic coordinates then the Lopatinskﬁ—éapiro condition
for (P, By, By) with P = A?% at (z, ') reads

b b
det xZ, /7 =1 I:v 07
(agdbl agdb2)< € 6= ile) #

if |¢'], # 0 according to Lemma 4.6.2. If the Lopatinskil-Sapiro condition holds
at some 2°, because of homogeneity, there exists Cy > 0 such that

b b
det (°,€,il¢'le) = Colg'[ 7, g eRTL (4.6.2)
(o a0

4.6.4 Stability of the Lopatinskii-Sapiro condition under

perturbation

To prepare for the study of how the Lopatinskii—éapiro condition behaves under
conjugation with Carleman exponential weight and the addition of a spectral
parameter, we introduce some perturbations in the formulation of the Lopatin-
skii-Sapiro condition for (P, By, By) as written in (4.6.2).

Lemma 4.6.4. Let VO be a compact set of 00 be such that the Lopatinskii-
Svapiro condition holds for (P, By, By) at every point x of V°. There exist C; > 0
and € > 0 such that

by by
det (2,8 + & =il +6) > Oy ¢/ ht, (4.6.3)
()

forz e VO & eRL (e Cl¥t and § € C, if || + 6] < €|¢'|.. Moreover one

has

det <b1<l’75/ + C/7€d = ZlS/’x + 5) b2(xa S/ + C/a Sd = Z|§,‘x + 5))

, N , I e R
bi(z,§ + ¢ 6a=i|¢]e +0) ba(x, &+ & =il]. + )

(4.6.4)
forz e VO, & eR¥ ¢ eCH and 5,6 € C, if [C'| + 6] + |0] < el€],.
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Proof. From (4.6.2), since V° is compact having the Lopatinskii—gapiro condi-
tion holding at every point x of VY means there exists Cy > 0 such that

b b
det ! 2
O¢,b1 Og,bo
(4.6.5)

The first part is a consequence of the mean value theorem, homogeneity and
(4.6.5) with say C; = Cy/2.
For the second part it is sufficient to assume that § # 4 since the result is

(z,€,i|E|,) > Co|€ Bt ze V0 ¢ eRL

obvious otherwise. For j = 1,2 one writes the Taylor formula

bi(, & + ¢ il€ ] +0) = bj(2, & + L il€ o + 0) + (6 — 8)De,bj(x, & + (,il€], + 0)

1
+ (G- o) /0 (1= )by (€ + ' il€]s + b.) ds,

with 8, = (1 — 5)d + s, yielding

L et (bl<z,e+c,z‘|s'|x+5> b2<a:,f'+<’,i|8lx+6>>
0—36 by(z,& + Cil€ o +0) bo(w, & + (' il¢], + )

:det< b b >(:c,£’+<’,z’|§’!$+6)

1 / ! e / ! ¢!
+(5—5)/(1—s)det b1($’£+c’z|§|x+5) bQ(x’SJFQ’Z'g”CJré) ds
0 O by (2,8 + Cil¢' o + 0s)  OF ba(w, & + (¢ |2 + 0s)

With homogeneity, if |¢'| + 0] 4 |0] < |€'| one finds

S,

o [ @€ ¢l +0) by(z, & + ¢, il¢|o + 0)
2 bu(, & + Cil€]s +8,) O bale, & + Cil€], +6,)

Thus with |6 — 0| < €|¢|,, for € > 0 chosen sufficiently small, using the first
part of the lemma one obtains the second result. [

4.6.5 Examples of boundary operators yielding symmetry

We give some examples of pairs of boundary operators By, By that fulfill (1) the
Lopatinskii-Sapiro condition and (2) yield symmetry for the bi-Lalace operator
P = A?, that is,

(PU,U)LQ(Q) = (U, PU>L2(Q)

for u,v € H*(Q) such that Bjujpo = Bjujga =0, j = 1,2.
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We first recall that following Green formula

(Au, v)r200) = (U, Av) 12(0) + (Ontjan, Vo) r20) — (Uaq, Onvjaa)L2(00), (4.6.6)
which applied twice gives (Pu,v)r2q) = (u, Pv) 20y + T'(u,v) with

T(u,v) = (OnAujan, vioa)r20) — (Aujaq, Onviee) L2(00)

+ (Onwpan, Avian) L2(00) — (Ujaa, OnAvaq) 12(50)- (4.6.7)

Using normal geodesic coordinates in a neighborhood of the whole boundary
09 allows one to write A = 9% + A’ where A’ is the resulting Laplace operator
on the boundary, that is, associated with the trace of the metric on 9€2. Since
A’ is selfadjoint on OS2 this allows one to write formula (4.6.7) in the alternative

forms

T(u,v) = (Bwon, vioa)r200) — (02 + 20" w90, Onvje0) 12(00)
+ (Dpwppn, (02 + 220" )vj00) r200) — (won, O2vjsa) 12(00), (4.6.8)

or

T(u,v) = (82 + 2A'0,)ujp0, vion) r200) — (O2wa0, Onvoa) 12(50)
+ (Onuppn, Do) r200) — (Won, (0, + 28'0,)v00) 1200)-  (4.6.9)

We start our list of examples with the most basics ones.

Example 4.6.5 (Hinged boundary conditions). This type of conditions refers
to Biujpa = upo and Boupg = Aujpg. With (4.6.7) one finds T'(u,v) = 0 in
the case of homogeneous conditions, hence symmetry.

Note that the hinged boundary conditions are equivalent to having Biujsq =
ujp0 and Baujpg = 8,%1”39. With the notation of Section 4.6 this gives by (x,w', 2) =
1 and by(x,w’, z) = (—iz)? = —z2. It follows that

Z~) [; 1 /2
et ! 2 (z,0', 2z = i]u'|,) = det <y = —2i|w'|, # 0,
0:.b1 0.by 0 —2iw],

if W’ # 0 and thus the Lopatinskii-Sapiro condition holds by Lemma 4.6.2.
With the hinged boundary conditions observe that the bi-Laplace operator is
precisely the square of the Dirichlet-Laplace operator. This makes its analysis
quite simple and this explains why this type of boundary condition is often
chosen in the mathematical literature. Observe that symmetry is then obvious

without invoking the above formulae.
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Example 4.6.6 (Clamped boundary conditions). This type of conditions refers
to Biujpa = ujpn and Byujpg = Optjan. With (4.6.8) one finds T'(u,v) = 0 in
the case of homogeneous conditions, hence symmetry. With the notation of
Section 4.6 this gives by (x,w’, z) = 1 and by(z,w’, 2) = —iz. It follows that

by bz / o L fwlg .
et | - - | (z,W 2 = 1]w|y) = det =—i#0.
aZbl 82:62 0 —1

Thus the Lopatinskﬁ—éapiro condition holds by Lemma 4.6.2.

Note that with the clamped boundary conditions the bi-Laplace operator
cannot be seen as the square of the Laplace operator with some well chosen
boundary condition as opposed to the case of the hinged boundary conditions
displayed above.

Examples 4.6.7 (More examples).

i. Take Biujpo = Oyupe and Boujpg = OnAupg. With these boundary
conditions the bi-Laplace operator is precisely the square of the Neumann-
Laplace operator. The symmetry property is immediate and so is the

Lopatinskii—éapiro condition.

ii. Take B1U|ag = (6,% + QAI)U|39 and BgU|aQ = azlqag. With (4.6.8) one

finds T'(u,v) = 0 in the case of homogeneous conditions, hence symmetry.

We have by (z,w',2) = —2% — 2|w'|? and by(z,w', 2) = i2® and

B l~? _w/2 w/3
A NP R i At 0 Q1
0,by  0.by —2i|w'|, —32’|w’\§

if ' # 0 and thus the Lopatinskii-Sapiro condition holds by Lemma 4.6.2.

iii. Take Biujgo = Onujpg and Baugo = (95 + A')ujeq, with A" a symmetric
differential operator of order less than or equal to three on 02, with
homogeneous principal symbol @/(z,w’) such that a'(z,w’) # 2|w'[3 for
W' # 0, that is, ¢'(z,w") # 2 for ||, = 1.

With (4.6.8) one finds

T(u,v) = (—A'ujpq, viga) r200) + (Yoa, A'vea) r200) = 0,

in the case of homogeneous conditions, hence symmetry for P.
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We have by (z,w’,2) = —iz and BQ(x,w’,z) = 123 + d/(x,w') with ' the

principal symbol of A’.

61 62 |w/| |w/|3 +(l/(l’ w/)
et 7 x x,w/,z:iw’ = det g g ' =1 CL/ xﬂﬂl —2 CL),3 07

if W' # 0 since o/ (z, W) # 2|w'[3 by assumption implying that the Lopatin-
skii—gapiro condition holds by Lemma 4.6.2.

iv. Take Biugo = ujpq and Boupgo = (07 + A'0,)ujpe with A a symmetric
differential operator of order less than or equal to one on 0f2, with homo-
geneous principal symbol a'(z,w’) such that a'(z,w") # —2|w'|, for w’ # 0,
that is, a/(z,w') # —2 for |w'|, = 1. This is a refinement of the case of
hinged boundary conditions given in Example 4.6.5 above.

With (4.6.8) one finds
T (u,v) = (A'Opujn0, Onvian) L269) + (Ontjon, —A'Opvja0) r2(00) = 0,

in the case of homogeneous conditions, hence symmetry for P.

We have by(z,w,z) = 1 and by(z,w', 2) = —22 — izd'(x,w’) with @’ the
principal symbol of A’.

lN) B 1 12 +|o!].a’ : /
et [ © 2 (z,w', 2z = i|w'|,) = det Wl + oy (@, ) = —i(d'(z,w)+2lw'],) #0,
0,b; 0,by 0 —2iw'|, —id (z,w)

if W' # 0 since d'(z,w’') # —2|w'|; by assumption implying that the
Lopatinskﬁ—éapiro condition holds by Lemma 4.6.2.

v. Take Biujgg = (92 + A'9,)ujpq and Baujgg = (92 + 20, A" )ujpn, with A a
symmetric differential operator of order less than or equal to one on 0f2,
with homogeneous principal symbol (2, w’) such that 2a/(z, w’) # —3|w/|,
for ' # 0, that is, o/(z,w’) # —3/2 for ||, = 1. With (4.6.9) one finds

T (u,v) = (A'Opujn0, Onvian) L2(59) + (Ontjon, —A'O0pvia0) L2(00) = 0,

in the case of homogeneous conditions, hence symmetry for P.

We have by (z,0', 2) = —2% — izd'(z,w') and by(z,w', 2) = iz + 2iz|w/|?
and

b b PP+ (W) =W
et ' 2 (z,0, z = i|w'|,) = det Wy + flga'( ) g
0.b1 0.by —2i|w'|y —id'(z,w") —i|w'[}

= —i|w'|3(2a'(a:,w’) + 3|w’|g) £ 0,
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if w' # 0 since 2d/(z,w’) + 3|w'|, # 0 by assumption implying that the
Lopatinskii—éapiro condition holds by Lemma 4.6.2.

4.7 Lopatinskii-Sapiro condition for the conju-

gated bi-Laplacian with spectral parameter

Set P, = A% — ¢* with ¢ € [0,+00) and denote by P,, = €™¥P,e” "% the
conjugate operator of P, with 7 > 0 a large parameter and ¢ € €>°(R? R). We
shall refer to ¢ as the weight function. The principal symbol of P, in normal

geodesic coordinates is given by

pg(JT,f) = (53 + T(:L‘,Sl))Q - 04-

Observe that e™D,e™™? = D;+i70;p € 1. So, after conjugation, the principal

symbol becomes

po,ga(xa 57 T) = po<x: 5 + dexSO)
- ((ﬁd 4+ i7040)? + r(z, & + dez/go))Q — ot
= ((&a +110ap)? + (2, & +iTdyp) — 0°) (€4 + 1T0ap)? +1(2,& +iTdyip) + 0°)

We Write pa,cp (.73, 57 7—) = qi,(p (.CE, 57 T)qg,cp (.73, 57 7—) Wlt’h
@ (2,6,7) = (Ea+i1040)* + r(x, & +itdpp) + (-1)0”, j=1,2.

We consider two boundary operators By and By of order ky and ko with
b;(x, &) for principal symbol, j = 1,2. The associated conjugated operators

Bj#P = eﬂije_ﬂp?
have respective principal symbols
bj790(337577—) :bj<x7€+7'7_d§0)7 J: 172

We assume that the Lopatinskii-Sapiro condition holds for (Py, B1, Bs) as in
Definition 4.6.1 for any point (z,w’) € T0Q). We wish to know if the Lopatin-
skil-Sapiro condition can hold for (P,, By, Bs, @), as given by the following def-

inition (in local coordinates for simplicity).

Definition 4.7.1. Let (x,&,7,0) € 9Q x R4 x [0,+00) x [0,400) with
(&', 1,0) # 0. One says that the Lopatinskii-Sapiro condition holds for (P,, By, Bs, )
at (x,¢&, 1, 0) if for any polynomial function f(&;) with complex coefficients there
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exist ¢1, ¢y € C and a polynomial function ¢(§;) with complex coefficients such
that, for all £, € C

f(gd) = Clbl,go(xa 5/7 gda T) + 02b2,g0($a 6/7 gda 7_) + g(ﬁd)pj,cp(xa 5/7 €d7 T)a

with
Pop(@,€, 80, T) = H (&a—pi(€7.0)),
Tm p; (€ ,7,0) >0
where p;(z,¢,7,0), j = 1,---,4, denote the complex roots of p,,(x,& &g, T)
viewed as a polynomial in ;.

In what follows, we shall assume that d;p > 0. Locally, one has 9,0 > C} >
0, for some C; > 0.

4.7.1 Discussion on the Lopatinskil-Sapiro condition ac-

cording to the position of the roots

With the assumption that d;p > 0, for any point (x,&’, 7,0) at most two roots
lie in the upper complex closed half-plane (this is explained below). We then
enumerate the following cases.

e Case 1 : No root lying in the upper complex closed half-plane, then
Pa(,€,84,7) = 1 and the Lopatinskil-Sapiro condition of Definition 4.7.1
holds trivially at (z,&',7,0).

e Case 2 : One root lying in the upper complex closed half-plane. Let
us denote by p* that root, then pf (z,¢',&q,7) = £g — pT. With Defi-
nition 4.7.1, for any choice of f, the polynomial function &; — f(&;) —
c1bip(2,& €, T) — Cabo (2, &, €4, 7) admits pt as a root for ¢, c; € C well
chosen. Hence, the Lopatinskil-Sapiro condition holds at (x,&,1,0)if and
only if

bl,@<x7£/7£d - :0+7T) ?é 0 or bQ,LP(xaglafd - p+77-) 7& 0.

Note that it then suflices to have

b1, ba
det 7 , (l’, glvgd - p+7 7-) 7é 0.
<5£db1,so %bw)

e Case 3 : Two different roots lying in the upper complex closed half-plane.
Let denote by pi and p3 theée roots. Ome has p} (7,860, 7) = (&4 —
p1)€4 — py ). The Lopatinskii-Sapiro condition holds at (z,&’,7,0) if and
only if the complex numbers p; and p; are the roots of the polynomial
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function Sd = f(gd) - Clbl,go(ma 6/7 £d7 7_) - Cgbg#,(l', 6/7 gda 7_)7 for C1,C2 well
chosen. This reads

f(pi_) = Clbl,w(xvé.I?gd = pi_u T) + CQbQ,gp(xa gl)gd = pii_u T)7
f(p;_) = Clbl,(p(xa £I7§d - P;; T) + C2b2,go(x7 5/7&1 - p;a T)'

Being able to solve this system in ¢; and ¢y for any f is equivalent to

having

det (bl,gp(xa 5/) gd - pii_u T) b?,tp(xa 5/7 gd - pi—a 7-)
bl,so(xa §/>€d = p;_a 7—) bZ,QO(:Ea g?&d = p;—? T)

)#0 (4.7.1)

e Case 4 : A double root lying in the upper complex closed half-plane. De-
note by p* this root; one has pf (z,&, &, 7) = (£4 — p*)?. The Lopatin-
skii-Sapiro condition holds at (z,&’,7,0) if and only if for any choice of
f, the complex number p* is a double root of the polynomial function
Ea— f(&a) — abip(2, 8,8, 7) — cabyy(x, €, €, ) for some ¢y, ¢y € C. Thus
having the Lopatinskii—gapiro condition is equivalent of having the follow-

ing determinant condition,

. ( bio(, & &a=pt7)  bay(x,8.8a=pt,7)
e
agdbl’@(x, 6/’ gd = p+’ T) a&dbzy¢<x7 5,7 gd - P+> T

) #0. (4.7.2)
)

Observe that case 4 can only occur if ¢ = 0 (then one has (¢, 7) # (0,0)).
If o > 0 then only cases 1, 2, and 3 are possible. This is precisely stated in
Lemma 4.7.7. This will be an important point in what follows.

We now state the following important proposition.

Proposition 4.7.2. Let 2° € 0. Assume that the Lopatinskii-Sapiro condition
holds for (Py, By, Bs) at x° and thus in a compact neighborhood VO of x° (by
Remark 4.6.3). Assume also that Ogp > Cy > 0 in VY. There exist g > 0
and 1 > 0 such that if (x,&,7,0) € VO x R x [0,4+00) x [0, +00) with
(&7 0) #(0,0,0),

|dero(2)| < podasp(x) and o < py7dap(x),
then the Lopatinskii-Sapiro condition holds for (P,, B1, B, @) at (z,&,7,0).

The proof of Proposition 4.7.2 is given below. We first need to analyze
the configuration of the roots of the symbol p,, starting with each factor qg#,,
j=12
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4.7.2 Root configuration for each factor

We consider either factors &4 +— ¢7 ,(2,&, &, 7). We recall that
0o (.6,7) = (& +i7000)" + (2,8 +itdpo) + (=107, j=1,2.

First, we consider the case r(z, & + itdy¢) + (—=1)70% € R™, that is, equal
to —(* with 8 € R . Then, the roots of & — ¢} (,£',&4,7) are given by

—iTOgp + [ and —iTO40 — B.

Both lie in the lower complex open half-plane.
Second, we consider the case 7(z,& + itdy¢) + (—1)70* € C\ R™. There
exists a unique a; € C such that Rea; > 0 and

of =r(x,& +itdyp) + (—1)0”
- ’I“(l’, 5,) - T2T’(ZL', dz’@) + (_1)j02 + 127—7:(1‘7 5,7 dm/QO)2, (47?))

where 7(z, ., .) denotes the symmetric bilinear form associated with the quadratic

form r(z,.). Then, the two roots of £; — qg'w(x, &, &4, T) are given by
i1 = —1T04p —i0; and 79 = —1T04p + i0y;. (4.7.4)

One has Im 7;; < 0 since dgpp > Cy > 0. With Im 7, = —70,0+Re a; one sees
that the sign of Im7;, may change. The following lemma gives an algebraic

characterization of the sign of Im 7, .

Lemma 4.7.3. Assume that 040 > 0. Having Imm;o < 0 is equivalent to

having
(Qap)’r(@, &) + (2, €, doip)* < 7%(0ap)?|dapl; + (=1)" 0* (D).

Proof. From 4.7.4 one has Im7,, < 0 if and only if Rea; < 70,0 = |704¢),
that is, if and only if

4(1040)? Re a? — 4(1040)* + (Im a?)Q <0,

by Lemma 4.7.4 below. With (4.7.3) this gives the result. O

Lemma 4.7.4. Let z € C such that m = z?. For o € R such that xo # 0, we
have

| Re z| § |z = 43 Rem — 4xg + (Imm)? = 0.

VIIA
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Proof. Let z = x + iy € C. On the one hand we have 22 = 22 — % + 2izy = m

and Rem = 22 — 9%, Imm = 2zy. On the other hand we have

4r2a Rem — 4x) + (Imm)? = 4ad(2? — y?) — 4a) + 4a%y?
= 4(zg + ) (2 — xp),

0 the
conclusion follows. i

thus with the same sign as (x? — z2). Since | Re z| § lzo| & 2% — a3

VIIA

With the following two lemmata we now connect the sign of Im 7, » with the
low frequency regime [¢'| < 7.

Lemma 4.7.5. Assume there ezists Ko > 0 such that |dy¢| < Ko|Oqp|. Then,
there ezists C, > 0 such that Imm;o < 0 if Ck,|&'| + 0 < 1040, j =0, 1.

Proof. With Lemma 4.7.3 having Im 7,5 < 0 reads
(Oap)’r(z,&) + F(x, & dup)® < 7(0a0)?|dutpl’ + (1) 0 (Dup)®.  (4.7.5)
On the one hand, since |d, | < Ky|0sp| one has
(Dap)?r(w,€) + (2, dup)® < K(Dap)?|€'?,

for some K > 0 that depends on Ky, using that |£'|, = |£|. On the other hand
one has

7 (0a)?|dupli + (=1)7"10*(Oap)* = 7(0a)* — 0*(Dap)*.
Thus (4.7.5) holds if one has
7*(0ap)"* — o*(0ap)* = K (0up)*I¢']7,

that is, 72(940)% > K|&'|> + o2 O

Lemma 4.7.6. Let W be a bounded open set of R and 2° € W. Assume that
Oap >0 in W and let ko > 0. Then, there exists C > 0 such that

I€'| < Cr if Immja(x,&,7,0) <0 and koo <7, x€W.
Proof. With Lemma 4.7.3 having Im 7,5 < 0 reads

(Bap)?r(x,&') + 7(x,&, dpp)® < 72(0ap)?|dupl2 + (—1)T0* (Dagp).
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In particular, this implies
r(,&) < Tldopl; + (=1)" 0™ < (sup |dospl; + 1/155) 7%
w

The result follows since || < r(z, ). ]
As mentioned in Section 4.7.1, we have the following result.

Lemma 4.7.7. Assume that 0 > 0. Then, m 9 # 7o 2. Moreover, the roots m o
and mo o cannot be both real.

Proof. With the forms of the roots given in (4.7.4) if my 5 = o5 then a; = aq,
thus o = o2 implying 02 = 0.

Assume now that 75 € R and m 5 € R, that is, Imm 5 = Im 7y 5 = 0. This
reads Re a; = 70,49, giving | Re a;| = [04¢|, for j = 1 and 2. With Lemma 4.7.4
one has

A(19ap)? Rea — 4(10qp)" + (Ima3)? = 0, j=1,2.

Observing that Im a7 = Im a3 one thus obtains Re a? = Re a3, and the conclu-

sion follows as for the first part. n

4.7.3 Proof of Proposition 4.7.2

Here, according to the statement of Proposition 4.7.2 we consider
|dero] < ppOap and o < puyTOqp.

First, we choose 0 < pp < 1 and 0 < p; < 1/2. Below both may be chosen
much smaller. According to Lemma 4.7.5, with Ky = 1 therein, for some Cy =
2Ck, > 0 if one has C5|¢'| < 7044 then all four roots of &4 — py(z, &', Ea, ) lie
in the lower complex open half-plane. If so, we face Case 1 as in the discussion
of Section 4.7.1 and the Lopatinskil-Sapiro condition holds. To carry on with
the proof of Proposition 4.7.2 we now only have to consider having

Our proof of Proposition 4.7.2 relies on the following lemma.

Lemma 4.7.8. There exists C5 > 0 such that, for j =1 or 2, for 0 < pug <1,
0 < 1 < 1/2, and for all (x,&',7,0) € VO x R4 x [0, +00) x [0, +00), one has

|dz/(p| S :uoadg% g S HleadQD and Imﬂ'jg Z ) = ’Oé]_|£,|$|+7—|dz/@| S |§,|x03(/,60+/1%)
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Proof. With (4.7.6) one has
T|dwo| < pom0a0 S pi0l€']. (4.7.7)
With the first-order Taylor formula one has
oz?» =r(z,& +itdyp) + (—1)70?
=r(z, &)+ /1 der (2,8 + iT8 dyp) (iTdyp)ds + (—1) 0>
0
With (4.7.7) and homogeneity one has
|der(z,& + its dpo) (iTdwp)| S pol¢'I2.

One also has 0 < p70s¢0 < pal€'le. Since r(x,&') = [£'|2, this yields of =
1€'12(1 + O(po + 1)) and hence oy = [€'],(1 4+ O(po + p3)). This and (4.7.7)
gives the result. O]

Before proceeding, we make the following computation. For 7 = 1,2 and

{=1,2 we write

bﬁ,go(xv 5/7 gd = T2, 7_) = b[(ZE, 5/ + de:E’SDa 5.2 + ZTadQD) = bg(l', 5/ + Z.walgﬁ, ZCY])
= be(z, & + itdwp, il +i(ay — [€]2)). (4.7.8)

We use Lemma 4.6.4 and the value of € > 0 given therein. We choose 0 < pg <1
and 0 < py < 1/2 such that

Cs(po + i) < e, (4.7.9)

with C5 > 0 as given by Lemma 4.7.8.

We now consider the root configurations that remain to consider according
to the discussion in Section 4.7.1.
Case 2.
In this case, one root of p, lies in the upper complex closed half-plane. We
denote this root by p*. According to the discussion in Section 4.7.1 it suffices
to prove that

b1, b2
det ’ ’ (2,8 &= pT,7) #0. (4.7.10)
<6§db17<ﬂ a‘ﬁdb27<p>

In fact, one has p* = 7, with j = 1 or 2. We use the first part of Lemma 4.6.4
with (' = itdyp and 0 = i(a;—[€|,). With (4.7.8) and (4.7.9) with Lemma 4.7.8
and the first part of Lemma 4.6.4 one obtains (4.7.10).
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Case 3.
In this case Imm 2 > 0 and Im7y5 > 0. According to the discussion in Sec-

tion 4.7.1 it suffices to prove that

ot <b1,4p(x,f,a§d =m12,T) bayy(w,§,&= 71’2’7—)) £ 0. (4.7.11)

bl,go<x7 6/7 gd = T2,2, T) b2,gﬂ<x7 6/7 gd = T22, T)

We use the second part of Lemma 4.6.4 with (' = itd.p, 6 = i(a; — [€|.), and
0 = i(ay — |€];). With (4.7.8) and (4.7.9) with Lemma 4.7.8 and the second
part of Lemma 4.6.4 one obtains (4.7.11).

Case 4.

In this case (that only occurs if o = 0) the Lopatinskﬁ—éapiro condition holds
also if one has (4.7.10). The proof is thus the same as for Case 2. This concludes
the proof of Proposition 4.7.2. O]

4.7.4 Local stability of the algebraic conditions associated

with the Lopatinskii-Sapiro condition

In Section 4.6 we saw that the Lopatinskii-Sapiro condition for (P,, By, Bs) in
Definition 4.6.1 exhibits some stability property. This was used in the state-
ment of Proposition 4.7.2 that states how the Lopatinskﬁ—gapiro condition for
(P,, By, B3) can imply the Lopatinskii—éapiro condition of Definition 4.7.1 for
(P,, By, Bs, @), that is, the version of this condition for the conjugated opera-
tors.

A natural question would then be: does the Lopatinskii—éapiro condition for
the conjugated operators enjoy the same stability property? The answer is yes.
Yet, this is not needed in what follows. In fact, below one exploits the algebraic
conditions listed in Section 4.7.1 once the Lopatinskii-Sapiro condition is know
to hold at a point ¢” = (2% 7% ¢°) in tangential phase space. One thus
rather needs to know that these algebraic conditions are stable. Here also the
answer is positive and is the subject of the present section.

As in Definition 4.7.1 for ¢’ = (x,¢’, 7,0) one denotes by p;(¢') the roots of
Do, &, €4, T) viewed as a polynomial in &.
Let 0¥ = (2°,£%,7°,0%) € 9O x R4 x [0, +00) x [0, +00). One sets

Jt={j€e{1,2,3,4}; Imp;(o”) > 0}, J-={j€e{1,2,3,4}; Imp;(c") <0}
and, for o' = (z,¢&,1,0),

(@)= 1] (Ga—ri(0)).  wpld)= 1] (&a—pi(0)).

jeJt jeJ—
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Naturally, one has )y, (0", §4) = pt,(2°, €%, &4, 7°) and k4, (0, €a) = Py, (2%, 6", €, T°).
Moreover, there exists a conic neighborhood %4 of ¢” where both I{Z_O,(Ql ) and
/igo,(g’ ) are smooth with respect to ¢’. One has

— ot o — ket
pO’,Lp - pg,(ppa',g; - KLQOIK/QO/'

Note however that for o = (z,&,7,0) € % it may very well happen that

p;@(xa £/7 £d7 T) # ’iz,r()/(gl7 fd) and p;@(xa 5/7 £d7 T) # KZ’O/(Q/’ fd)
The following proposition can be found in [11, proposition 1.8].

Proposition 4.7.9. Let the Lopatinskii-Sapiro condition hold at 0 = (2°,€Y,7°,¢6°) €
00 x R4t x [0, +00) x [0, +00) for (P,, By, By, ). Then,

i. The polynomial &g — pf ,(2°,€”,€4,7°) is of degree less than or equal to

two.

ii. There exists a conic neighborhood % of 0 such that {b}o(g’, &a), bi(g’, &)}
is complete modulo /{Jgro,(g’, &) at every point o' = (x,&',7,0) € U, namely
for any polynomial function f(&;) with complex coefficients there exist

c1,09 € C and a polynomial function €(&;) with complex coefficients such
that, for all &5 € C

f(gd) = clb1,<p (-Z'a fla gd? T) + 02b2,<p(x7 Sla €d7 T) + ﬁ(gd)/ﬁ?;_o/(d? gd) (4712)

We emphasize again that the second property in Proposition 4.7.9 looks very
much like the statement of Lopatinskil-Sapiro condition for (P,, By, Bs, @) at o
in Definition 4.7.1. Yet, it differs by having p; (z,£’,&a, 7) that only depends
on the root configuration at ¢’ replaced by H;ro,(g’ ,&4) whose structure is based

on the root configuration at o”.

Let m™ be the common degree of piv(go’, &4) and ﬂ;ro,(g’, &) and m~ be the
common degree of p;¢(go’, €4) and H;O,(Q/, &) for o' € 7. Onehasm*™+m~ =4
and thus m~ > 2 for ¢’ € % since m™ < 2.

Invoking the Euclidean division of polynomials, one sees that it is sufficient
to consider polynomials f of degree less than or equal to m™—1 < 1in (4.7.12).
Since the degree of b; (¢, &) can be as high as 3 > m* — 1 it however makes
sense to consider f of degree less than or equal to m = 3. Then, the second
property in Proposition 4.7.9 is equivalent to having

{brg(@.&, &0, 7) bo(2, € 6,0 | {Kf(e &)E0)

0<¢<3—mt

be a complete in the set of polynomials of degree less than or equal to m = 3.
Note that this family is made of m’ =6 —m™ = 2 + m~ polynomials.
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We now express an inequality that follows from Proposition 4.7.9 that will

be key in the boundary estimation given in Proposition 4.8.1 below.

4.7.5 Symbol positivity at the boundary

The symbols b;,, j = 1,2, are polynomial in §; of degree k; < 3 and we may

thus write them in the form
kj
bio(ds€a) =D b5 ,(d)EL,
(=0

with bi(p homogeneous of degree k; — £.
The polynomial &; — m;ro,(g’ ,&q) s of degree m™ < 2 for ¢ € U with %
given by Proposition 4.7.9. Similarly, we write

Q fd Z K 0 gd)

with /{ZO’,Z homogeneous of degree m*™ — £. We introduce

bj:@(gl7€d) 1f.] = 1727

ej,gm(g’,fd) = a 7
k(0,67 i i =3, m/

As explained above, all these polynomials are of degree less than or equal to

three. If we now write
3
6]90/ Q é-d = E 6 QO/ fd,
£=0

for j = 1,2 one has e?@o,(g’) = bg,w(g’), with ¢ = 0,...,k; and €§,go,(gl) =0 for
¢ > kj, and

0 if0<j—3
for j=3,....m, ¢ 0(d)= /{}’,Hz))_j(gl) if0=5—3,....mT+j—3<mt+m —3=3,
0 0> mt -3

In particular e 0,(9’ ) is homogeneous of degree m™ + j — ¢ — 3. We thus have

the following result.

Lemma 4.7.10. Set the m’ x (m + 1) matriz M(o') = (M,;(0'))1<j<m with
0<t<m

M;(o) = eﬁ QD,(Q’). Then, the second point in Proposition /.7.9 states that
M(¢') is of rank m+1 =4 for o € % .
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Recall that m' =m~ +2 > 4.

We now set
3
Eej’gm(g/a Z) = Z e?,go’(g/)zf = Z Mj,f(gl)z& z= (207 SRR 23)- (4713)

in agreement with the notation introduced in (4.2.6) in Section 4.2.1. One has

the following positivity result.

Lemma 4.7.11. Let the Lopatinskii-Sapiro condition hold at ¢* = (20,6% 79 0%) €
00 x R4 x [0, +00) x [0,+00) for (P,, By, Ba, ) and let % be as given by
Proposition /.7.9. Then, if o' € % there exists C' > 0 such that

’m
Z e, O,Q z) ZC’]z\?@, z = (2,...,2) € Ch

Proof. In C* define the bilinear form X 4(z,2’) = Z;n:ll Ye, (0, 2)5c, (0, 7).
With (4.7.13) one has

E@(Zv Z/) = (M(Q/)Zv M(QI)Z/)Cm’ = (tM(Q/)M(QI)Za Z,)C4.

Asrank'M (¢')M(¢') = rank M (¢') = 4 by Lemma 4.7.10 one obtains the result.
U

4.8 Estimate for the boundary norm under Lopatin-
skii-Sapiro condition

Near z° € 02 we consider two boundary operators B; and B,. As in Section 4.7
the associated conjugated operators are denoted by B; ,, 7 = 1,2 with respective
principal symbols b; ,(z,&, 7).

The main result of this section is the following proposition for the fourth-
order conjugated operator P, . It is key in the final result of the present article.
It states that all traces are controlled by norms of By ,vj,,—o+ and By ,v|,,—o+
if the Lopatinskil-Sapiro condition holds for (P, By, By, ¢).

Proposition 4.8.1. Let rg > 0. Let 2% € 99, with Q locally given by {xq > 0}.
Assume that (P,, By, Py, ) satisfies the Lopatmskiz“-gapim condition of Defini-
tion 4.7.1 at o' = (2°,&,7,0) for all (¢',7,0) € R¥™1 x [0, 4+00) x [0, +00) such
that T > Kgo.
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Then, there exist W° a neighborhood of 2°, C > 0, 19 > 0 such that

2
’tr(v)‘3,l/2,7 < C(”P(MOUH.F + Z ‘Bijv\xd:0+|7/2,kjﬂ- + HUH4,—1,T)’
j=1

for ¢ >0, 7 > max(ry, ko) and v € G, (W?).

The notation of the function space ?EO(WE) is introduced in (4.5.3).
For the proof of Proposition 4.8.1 we start with a microlocal version of the
result.

4.8.1 A microlocal estimate

Proposition 4.8.2. Let k; > kg > 0. Let 2° € 90Q, with Q locally given
by {zq > 0} and let W be a bounded open neighborhood of x° in RY. Let
(€Y 79, 0%) € R4 x [0, +00) x [0, +00) nonvanishing with 7° > r10° and such
that (P,, By, Py, ) satisfies the Lopatinski{—gapiro condition of Definition 4.7.1
at o = (2°,&Y 70, 59).

Then, there exists % a conic neighborhood of 0” in W x R4 x [0, +00) x
[0, +00) where T > Koo such that if x € SQ’T, homogeneous of degree 0 in
(&', 1,0) with supp(x) C %, there exist C' > 0 and 19 > 0 such that

2

’tr(OpT(X)U>’3,1/2,T = <Z | B Vzg= 0+‘7/2 kj + ||Pcrsov||+ + HU”4 et [ tr(v)]; —1/2T>>
7j=1

for o >0, 7> max(r, koo) and v € €, (W,).

Proof. We choose a conic neighborhood %4 of ¢” according to Proposition 4.7.9
and such that 2% C W x R4 x [0, +00) x [0,+00) . Assume moreover that
T > Koo In %.
In Section 4.7.5 we introduced the symbols e; o (0',&), j = 1,...,m =
m~+2=6-m". Set Sz = {0 = (z,{,7,0) € U; (&, 7,0)| =1}
Consequence of the Lopatinskii—éapiro condition holding at o for all ¢’ €
S, by Lemma 4.7.11 there exists C' > 0 such that

m
Z e, O/Q z) ZC\z]@, z = (2,...,23) € Ch

Since Sz is compact (recall that W is bounded), there exists Cp > 0 such that

ml

2
Z }26]’,90’(@/’ Z)| Z CO|Z|(2C47 zZ = (ZQ, . 72’3) & (C47 Ql c S%

J=1
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Introducing the map Nyo' = (z,t& tr,to), for o = (z,&,7,0) witht = (¢, 7,0)|7!

one has
o 2
Z e, o (N, 2)|" > Colzlts,  z=(2,...,%) €C, 0 € %, (481)

since N;o' € Sz;. Now, for j = 1,2 one has

6 0/ Q Z § ej @O’ Z@?

with eﬁjgo,(g’ ) homogeneous of degree k; — ¢, and for 3 < j < m’ one has

QOI Q Z Z 6] QO’ Zg?

with € go,( ') homogeneous of degree m*™ + j — ¢ — 3. We define z’ € C* by
2y =122, 0 =0,...,3. One has

Eej 90’(thl7z/) = tkj_7/226j 90/(9,72)7 J=12
and

Ye o, (N, 2) = tm++j_13/226, (¢, 2), j=3,...,m.

3,0% 3,09

Thus from (4.8.1) we deduce

i)\ (7/2— k)lze . (0,7 | +Z)\2(13/2 mt—j) ‘Ee . (0.2) >C Z)\w/z 0) A2,

7j=1

(4.8.2)

for z = (z,...,23) € C*, and ¢ € %, since t < \;} as T 2 0 in %.

We now choose % a conic open neighborhood of ¢%, such that  C %.
Let x € S? be as in the statement and let y € S'?,T be homogeneous of degree
0, with supp(X) C % and ¥ = 1 in a neighborhood of %, and thus in a
neighborhood of supp(y).

For j = 3,...,m’ one has ¢;,0(0,&s) = ,%;_(),(Q/,fd) 178 € gmTHI30 et
E; = Op(xe; o). The introduction of ¥ is made such that xe; o is defined on
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the whole tangential phase-space. Observe that

’

2 m
2 2
‘@(w) = Z |Bj:¢w|$d=0+ ’7/27]{].77 + Z |ij|~’l?ol=0+ |13/27m+7j,7—

j=1 7=3
2 9 m’ 9
o Z 7/2—k; Z 13/2—m™*—j
- IAT’T .7‘7‘/7/LU|‘IEd:0+ |8 + |AT7T E]w‘md:OJr |8
Jj=1 Jj=3

is a boundary quadratic form of type (3,1/2) as in Definition 4.2.14. From
Proposition 4.2.16 and (4.8.2) we have

2 /

m
2 2 2 2
’tr(u)‘3,1/2,7— SJ Z |Bj7¢u\$d=0+ |7/2_1€j77 + Z |Eju|zd:0+|13/2_m+_]‘77— + |tr<v)‘3,—N,7—'
j=1 =3

(4.8.3)
for u = Op;(x)v and T > Koo chosen sufficiently large.
In %, one can write
Doy = Pogloy = K;’/’ig‘)”
with k7, of degree m* and 7, of degree m~. In fact we set
4 4
i) =T (Ga—xpi().  fpld)= ] (&—x0i(d)),
jeJt jeJ-

with the notation of Section 4.7.4, thus making the two symbols defined on the
whole tangential phase-space. In %, one has also

— gtz
pO',cp - K'QOI"{@O/'

The factor Ko 18 associated with roots with negative imaginary part. With
Lemma 6.1.1 given in Appendix 6.1 one has the following microlocal elliptic

estimate

10p+ ()l 7 + 10O ()W) 11727 S 10D (F 0 ) OPr )W, + 1wl s

for w € ?(Ri) and 7 > ko7 chosen sufficiently large. We apply this inequality
to w = Opy(& ) )v. Since

Op+ (K ) O+ (X)Opy (R f) = Opr(x) Prp  mod W2,
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one obtains

[ tr(Op()OPr(Fgo)V) -y S IEopvlly + 0l 7

With [Op,(x), OpT(/%;ro,)] € U1 one then has

[tr(Opr(Fgo)w)l _ )y S I1Pogtlly + llolly oy + 1003 1o s

with u = Op;(x)v as above, using that m™ +m~ = 4. Note that

m~—1
ot - j ot
|tr(OpT(KZ‘QO/)’U/)‘m7_1’1/27,7_ - ZO |DdOpT</q/gO/>u‘xd:0+’mf_]_1/27,7_
j=

m
Z Z |Eju|$d=0+|5/2+mf_j77 - |tr(v)|xd:0+|37_1/2’7—7
=3

using that 52/%;%, = X€j+3,> in a conic neighborhood of supp(x) and using that
m~ =m’ — 2. We thus obtain

m/

D B0t st —gir S IPotlly 4 [0l 1+ [60(0)]5 1o
j=3

since 13/2 — m* =5/2 + m~. With (4.8.3) then one finds

2

|t1“ |31/27- Z| gou\:vd O+|7/2 k; T+ ||P SOUH++ ||U||4—1T+ ’tl"( )|3,—1/2,T'
J=1

In addition, observing that

‘Bijulxd=0+‘7/2_kj,7 5 |Bj,<PU\Id=0+ |7/2—kj,-r + |tr(v)|3,71/2,7—7

the result of Proposition 4.8.2 follows. O

4.8.2 Proof of Proposition 4.8.1

As mentioned above the proof relies on a patching procedure of microlocal
estimates given by Proposition 4.8.2.
Let 0 < K < Kg. We set

I = (€ m0) € R x [0, +00) x [0, +00); T = koo, },
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and
Sﬁlgﬁlo ={(¢,1,0) € Fijﬁlo; (&, 7,0)] =1}

Consider (£¥,7% 6°) € ST} . Since the Lopatinskii-Sapiro condition holds
at 0 = (2%, &Y, 7%, 0%), we can invoke Proposition 4.8.2:

(1) There exists a conic open neighborhood %, of 0% in W x R4~ x [0, +-00) X
[0, +00) where T > K{0;

(2) Forany x,0 € S?_ homogeneous of degree 0 supported in %, the estimate
of Proposition 4.8.2 applies to Op;(x,o)v for 7 > max(7,0, Ko0).

Without any loss of generality we may choose %0 of the form %0 = Oy X T jor,
with @, C W an open neighborhood of 2% and I o a conic open neighborhood
of (£¥,7° 6°) in R x [0, +00) x [0, +00) where 7 > k{0

Since {z°} x S{. is compact we can extract a finite covering of it by open
sets of the form of %,.. We denote by %;, i € I with |I| < oo, such a finite
covering. This is also a finite covering of {z°} x '/} .

Each ?ZZ has the form ?ZL = 0; x I;, with @; an open neighborhood of 2°
and T; a conic open set in R4 x [0, +00) x [0, +00) where 7 > k{0

We set 0 = N1 0 and % = O x Ty, 1 € 1.

Let WY be an open neighborhood of 2° such that W° @ &. The open sets
U; give also an open covering of W0 x Sifnlo and W0 x Fif,{lo. With this second
covering we associate a partition of unity y;, i € I, of W0 x Sif,ilo, where each
X: is chosen smooth and homogeneous of degree one for |(£,7,0)| > 1, that is:

in(g’) =1 for ¢ = (x,&¢,7,0) in a neighborhood of W0 x T%"! “and |(¢/,7,0)| > 1.

+,Kk07
icl
Let u € €, (W'). Since each x; is in S?, and supported in %, Proposi-
tion 4.8.2 applies:

2

3,1/2,r < C%(Z |Bj,sov\zd=0+|7/2,kj77 + HPa,wUHJr + HUH4,71,T + ’tr(v)‘3,71/2,7>7
j=1

| tr(Op:(xi)v)

(4.8.4)

for some C; > 0, for ¢ > 0, 7 > max(7;, koo) for some 7; > 0.
We set Y =1 — > xi- One has y € S72° microlocally in a neighborhood of
i€l
WO x I‘ﬁl;,_ilo. Thus, considering the definition of Fif,io, if one imposes T > kg0,

as we do, then x € ST2° locally in a neighborhood of Wo.



123

For any N € N using that supp(v) C W one has

\tr(v)]&l/% < Z | tr(Opr(xi)v)l3 127 T | tr(Op; (X)v)l5 1/2,7

iel

< Z | tr(OpT(Xi>U)|3,1/2,T + |tr(U)|3,—N,T
iel
< D 1tr(0pr ()0l 1o+ 0y e

iel

Summing estimates (4.8.4) together for i € I we thus obtain

2
| tr(v)l, 1/2,7 ~ Z’ JpVlea= 0+|7/2 kj, T + ||PU¢UH+ + HUH4 17T | tr(v )|3,71/2,77
7j=1

for 7 > max(max; 7;, Koo). Therefore, by choosing 7 > koo sufficiently large
one obtains the result of Proposition 4.8.1. O]

4.9 Microlocal estimate for each second-order fac-

tors composing P, ,

We recall that P, = A? — 0! = (=A — 0%)(—A + ¢%) with ¢ > 0. Set Q? =
—A + (=1)/0? then P, = QLQ?. We also set Q = —A, that is, Q = Q) = Q2.
The principal symbols of @7 and @ are given by

a(2,€) =& + (2, &)+ (=1)/0* and q(z,§) =& +7(2,), (4.9.1)

respectively. The conjugated operator P, , = e¢"?P,e™" reads

Pyp=Q,,Q5,, with Q)  =e¥Qle ™
We set
Qi — a9, +2< Uﬁ") and Qa — a,¢ 2( Uv@) ’
(3

both formally selfadjoint and such that Q7 = @) + Q.. Note that Q, is

independent of o. Their respective principal symbols are

qg(x’€77-7 U) = 53 - (TadQO)Q + 7’(33, fl) + (_1>j02 - 7_274(1,’ dcc’@):
Qa(2,&,7) = 27E40ap + 277 (2, &, durip).
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Note that Q7 and Q, take the forms
QL =Di+T/, Qo = 7(0apDa + Dadap) + T, (4.9.2)

where T7,T, € 2}, are such that (T7)* = T/ and T; = T,. Naturally, the
principal symbol of ng is

@ (2,6,7) = ¢l (x,6,7,0) +iga(z, &, 7).
The principal symbol of QZW = e™PQle ¢ is
@ (2,6,7,0) = (Ca+iT040)* + r(2,&) + (—1) 0% — 721 (2, dwp) + 2iT7(2, £, dyrip).
As in Section 4.7.2 we let o; € C be such that

aj(z,&,7,0)* =r(z,& +irdyp) + (—1)0”
=r(x, &) — TQT(ZE, dprp) + 2077 (2, & dywip) + (—1)j02,

and Re a; > 0. Note that uniqueness in the choice of a; holds except if r(z, ' +
itdy ) + (—1)70* € R™; this lack of uniqueness in that case is however not an

issue in what follows. One has

qzmo(,r, 517 gd? T) = (Sd + Z.Tadcp)Q + Qi (:L‘7 5,7 T, 0)2
= (fd + iT0ap + iay(z, &', T, 0)) (fd +170qp — i (x, &, T, U)).

We recall from (4.7.4) that we write qgw(x, €.6a,7) = (&4 — 1) (&g — mj2) with
mi1 = —i0ap — iay(z,&,7,0) and w0 = —iTO4p + icvj(x, & T, 0).
The roots 7, k = 1,2 are functions of z,{', 7 and o.
We denote by B a boundary operator of order £ that takes the form
B(x,D) = B*(z,D") + B¥'(z, D") Dy,

with B¥(z, D') and B*!(z, D’) tangential differential operators of order k and
k — 1 respectively. The boundary operator B(z, D) has b(z,&) = b¥(x, &) +
Vet(x, €€, for principal symbol. The conjugate boundary operator B, =

e Be™ ¥ is then given by

By(z,D,7) = Bi(x,D',7) + By (¢, D', 7)(Dg + idap)
= 3];(:6, D' 1)+ B:Z*l(a:', D', 7)Dy,
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with BZZ(Q?,D,,T) = Bi(z,D',7) + itBy ! (z, D', 7)04p. The principal symbol
of B,(z,D, ) is

by(z,&,7) = (2, &, 7) + 05 (2, €, 1),

where 0 !(z, &, 7) is homogeneous of degree k — 1 in Ay, and BZ(&:,Q,T) =

bf,(x, &)+ Tb’;_l(x, &', 7)0ayp is homogeneous of degree k in A ;.

4.9.1 Sub-ellipticity

Set

QS(x7§7T) = 53 + T’(ZL’, §/> - (Tad§0)2 - T(x,Td:c'SO) = |§|3§ - |Td§0|§7

where [£]2 = & + r(z,&’). One has ¢ = g5 + (—1)70?. Observe that {¢’,q,} =
{s, 4a}-

Definition 4.9.1 (Sub-ellipticity). Let W be a bounded open subset of R? and
@ € €= (W) such that |d,p| > 0. Let j = 1 or 2. We say that the couple (Q7, ¢)

satisfies the sub-ellipticity condition in W if there exist C' > 0 and 7, > 0 such
that for o > 0

v (:C, 5) E W >< Rd? T Z 7-00-7 Qg7(’p<x7£7 T) = O :> {qg7qa}<x7 £7 T) = {QSuqa}($7€7 T) Z C > 0'

Remark 4.9.2. Note that with homogeneity the sub-ellipticity property also
reads

v (l‘,§> < W X Rda T2 ToO, qg,@(‘r7§77—) =0= {Qg7Qa}(x7€>T> = CA?—

Proposition 4.9.3. Let W be a bounded open subset of R? and ¢ € €>(R?)
such that ¢ > 0 and |d,0| > C > 0 on W. Let 79 > 0. Then, there eists
Yo > 1 such that (Q7, ) satisfies the sub-ellipticity condition on W for 7 > 1o
for o = €Y, with v > 7, for both j =1 and 2.

Proof. We note that |d,¢(x)| # 0.
The proof is slightly different whether one considers the symbol q(;(p or the
symbol ¢7 .

Case 1: proof for q_ ,. Assume that ¢, , = 0. Thus [¢|3 — |7dyp|? —0® =0
implying || ~ 0 + y7¢. On the one hand by Lemma 3.55 in [62], one has

{¢s,4a} (2,6, 7) = 7(v*0) (v9)? ((Hgt(x, B))* + 47%q(, dop(x))?)

+ (790)32%{% gy }(z, B, 7), (4.9.3)
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with 8 = £/(vy), and where H, denotes the Hamiltonian vector field associated
with the symbol ¢ as defined in (4.9.1). Here, g denotes the principal symbol
of e™Qe ¥, that is,

qy(2,6,7) = q(x, & +ird)(x)) = (& + iT0ath(2))* + r(x, & + itdyip(2)).

On the other hand, one has (H,(z,3))* + 47%q(z,dy(x))* 2 72 and since

~

%{@, ¢y }(x, B, 7) is homogeneous of degree 3 in (3, 7), we obtain
{45, 60} = Cr(y79)° = C'(v70 + |Blrp)* = Cy7° = C"(7 + [€])°, with 7 = 7¢.
Yet one has [£| ~ o + 7 implying
{05,4a} = Cy7* = C"(7 + [¢])* = OvF = CO(F + 0)°.
Since ¥ > 0 and v > 1 one has ¢ > 1 implying 70 < 7 < 7 and thus

{qsa Qa}(-ra 57 7_) Z %3(0’}/ - C(S))

It follows that for v chosen sufficiently large one finds {gs, ¢, }(z,&,7) > C > 0.
Case 2: proof for g7 . Assume that ¢, = 0. Then [¢|3 + 0® = |7dpl;

implying || + o ~ T|dgp| ~ 7. The same computation as in Case 1 gives

{gs, @} (2,6, 7) > Cy7* — O (7 + |¢])®

Here |{| + 7 < 7 yielding

{QSa qa}(J?, & T) > (07 - CU)%3'
The remaining part of the proof is the same. O

Lemma 4.9.4. Let j =1 or 2. Let (Q7, ) have the sub-ellipticity property of
Definition 4.9.1 in W. For u > 0 one sets t(o) = u((¢2)* + ¢%)(0) +7{¢, ¢.} (0)
with o = (1,&,7,0) € W xR? x [0,00) x [0,00). Let 79 > 0. Then, for u chosen
sufficiently large and T > 190 one has t(9) > C\} for some C' > 0.

The proof of Lemma 4.9.4 uses the following lemma.

Lemma 4.9.5. Consider two continuous functions, f and g, defined in a com-

pact set £, and assume that f > 0 and moreover
fly)=0=g(y) >0 foral yeZX£.

Setting h, = pf + g, we have h, > C > 0 for p > 0 chosen sufficiently large.
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Proof of Lemma 4.9./. Consider the compact set
L ={(x,&10); €W, [P+ +0* =1, 7> 190}

Applying the result of Lemma 4.9.5 to t(p) on £ with f = (¢/)? + ¢ and
g =T1{¢, q.} we find for t(9) > C on .Z for some C > 0 for i chosen sufficiently

large. Since t(p) is homogeneous of degree 4 in the variables (£, 7, 0) it follows
that t(0) > C(o? + 72 4+ |€[H)* = AL O

4.9.2 Lopatinskii-Sapiro condition for the second-order fac-

tors

Above, in Section 4.7, the Lopatinskﬁ—gapiro condition is addressed for the
fourth-order operator P, ,. Here, we consider the two second-order factors Qf;w.
With the roots 7;; and ;5 defined in (4.7.4) one sets

Qg’,:(x7§/u§d77—) = H (éd - Wj,k(x7§,77—7 0))

Im Wj7k20
k=1,2

Definition 4.9.6. Let j = 1,2. Let z € 092, with Q locally given by {z, > 0}.
Let (&,7,0) € R x [0,+00) x [0,+00) with (¢/,7,0) # 0. One says that
the Lopatinskil-Sapiro condition holds for (QL,B,p) at o = (x,&,7,0) if for

any polynomial function f(&;) with complex coefficients there exist ¢ € C and
a polynomial function ¢(&;) with complex coefficients such that, for all {; € C

f(€a) = cbp(x,&' €0, 7) + UEa) gl b (2, € Ea, 7). (4.9.4)

Remark 4.9.7. With the Euclidean division of polynomials, we see that it
suffices to consider the polynomial function f(&;) to be of degree less than that
of qf;’:;(x, &' &, 7)in (4.9.4). Thus, in any case, the degree of f(&;) can be chosen
less than or equal to one.

Lemma 4.9.8. Let j =1 or 2. Let x € 9Q and (&, 7,0) € R x [0, +00) x
[0, +00) with (§',T,0) # 0. The Lopatinskii-Sapiro condition holds for (Q7, B, p)
at (x, &', 1,0) if and only if

1. either qg:z(x, §.6a,7) =1;
Wi or qg’;g(x’ gl,gd’ 7—) = Sd — 7 and b@(l’,g’,ﬂ'a 7_) 7£ 0.

Proof. If q{,";g(x, €. &q,7) = (&4 —mj1)(&a — mj2), that is, both roots 7,1 and ;9
are in the upper complex half-plane, then condition (4.9.4) cannot hold, since
by Remark 4.9.7 it means that the vector space of polynomials of degree less
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than or equal to one would be generated by the single polynomial b, (z, &', 4, 7).
Suppose that qg;(x,g’,fd, 7) = & — 7 that is one the root 7;; and ;5 has a
nonnegative imaginary part and the other root has a negative imaginary part.
Then, the Lopatinskii-Sapiro condition holds at (x,&,0,7) if for any f(&;), the
polynomial function &; — f(&q) — cby(x, &', &4, 7) admits 7 as a root for some
c € C. A necessary and sufficient condition is then b,(z,£',&; = m,7) # 0.

Finally if qg’7‘;(x,£’,£d, 7) = 1, that is, both roots 7;; and 7, lie in the lower
complex half-plane, then condition (4.9.4) trivially holds. ]

4.9.3 Microlocal estimates for a second-order factor

Here, for j = 1 or 2, we establish estimates for the operator Q7 in a microlocal
neighborhood of point at the boundary where (Q?, B, ¢) satisfies the Lopatin-
skii-Sapiro condition (after conjugaison) of Definition 4.9.6.

The quality of the estimation depends on the position of the roots. We shall
assume that d;p > 0. Thus, from the form of the roots m;; and 7,5 given in
(4.7.4), the root m;; always lies in the lower complex half-plane. The sign of

Im ;5 may however vary. Three cases can thus occur:
i. The root 7; 9 at the considered point lies in the upper complex half-plane.
ii. The root 7;9 at the considered point is real.
iii. The root ;4 at the considered point lies in the lower complex half-plane.

Proposition 4.9.9. Let j = 1 or 2 and k1 > kg > 0. Let 2° € 09, with Q
locally given by {xq > 0} and let W be a bounded open neighborhood of x° in
Re. Let ¢ be such that Oy > C > 0 in W and such that (QL, ) satisfies
the sub-ellipticity condition in W. Let ¢ = (2°,&Y 79 6°) with (¢¥,7°,0°) €
R4 % [0, +00) X [0, +00) nonvanishing with ° > k16° and such that (Q, B, ¢)
satisfies the Lopatmskii—gapiro condition of Definition /.9.6 at o".

i. Assume that Imm;2(0”) > 0. Then, there exists % a conic neighborhood
of 0 in W xR %[0, +00) x [0, +00) where T > koo such that if x € S?_,
homogeneous of degree 0 in (¢, T,0) with supp(x) C %, there exist C > 0
and 79 > 0 such that

HOPT(X)UHQ,T + |tr(OpT<X)v)’1,l/2,T < C(HQi,WUHJF + |B¢U|$d:0+‘3/27k77- + HUHQ,A,T)’
(4.9.5)

for o >0, 7> max(7, koo) and v € €, (W,).

i. Assume that Im7;9(0”) = 0. Then, there exists % a conic neighborhood
of 0 in W xR %[0, +00) x [0, +00) where T > koo such that if x € SY_,
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homogeneous of degree 0 in (', 7,0) with supp(x) C %, there exist C' > 0
and 19 > 0 such that

7__1/2”OpT(X)U”2,T + ‘tr(OpT(X)U)‘l,l/ZT S C(HQi,chH+ + ‘B@U|$d:0+|3/2,k77 + HU”2,71,7')7
(4.9.6)

for o >0, 7 > max(7, koo) and v € €. (W,).

iti. Assume that Imm;2(0”) < 0. Then, there exists % a conic neighborhood
of 0 in W xR x [0, +00) x [0, +00) where T > koo such that if x € ST,
homogeneous of degree 0 in (', 7, 0) with supp(x) C %, there exist C' > 0
and 179 > 0 such that

10D 00V, + [tr(OPr (00112 < CUIQF VI, + IVllo s 7). (4.97)
for o >0, 7> max(ry, keo) and v € €, (W).

The notation of the function space €, (W,) is introduced in (4.5.3).

4.9.3.1 Case (i): one root lying in the upper complex half-plane.

One has Imm;5(0”) > 0 and Im7; 1 (0”) < 0.
Since the Lopatinskii-Sapiro condition holds for (Q2, B, ) at ¢V, by Lemma
4.9.8 one has

by (2,6, & = m;2(0”), 7°) = b(2%,€” + it p(2°), ic; (0”)) # 0.

As the roots 7 and 7; 5 are locally smooth with respect to ¢’ = (x,¢’, 7,0) and
homogeneous of degree one in (¢', 7, 0), there exists % a conic neighborhood of
0" in W x R*! x [0, +00) x [0, +00) and Cy > 0, Cy > 0 such that S;; = {¢’ €
U;|E')? + 7% 4 02 = 1} is compact and

T > koo, Imm;a(0") > Codry, and Immji(0) < —Cihr,,

and
by(x, &' €a = mj2(0), ) # 0, (4.9.8)

if o = (2,8,7,0)€¥.

We let x € 57, and x € S be homogeneous of degree zero in the variable
(¢',7,0) and be such that supp(x) C % and xy = 1 on a neighborhood of
supp(x). From the smoothness and the homogeneity of the roots, one has
X7k € S{T, k=1,2. We set

Ly = Dg — Op;(X7;2) and L = Dy — Op;(X7;1).
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The proof of Estimate (4.9.6) is based on three lemmata that we now list.

Their proofs are given at the end of this section.

The following lemma provides an estimate for L, and boundary traces.

Lemma 4.9.10. There exist C' > 0 and 9 > 0 such that for any N € N, there
exists Cy > 0 such that

| tr (Op; (x)w) |1,1/2,T < C(| ByOp: (X)W =0+ }3/2—/w+‘L2OpT(X)w\9ﬂd=0+‘1/2,T)+CN| tr(w)ly .-

for T > max(ry, koo) and w € F(RL).

The proof of Lemma 4.9.10 relies on the Lopatinskii—éapiro condition.
The following lemma gives an estimate for L;.

Lemma 4.9.11. Let y € S%T, homogeneous of degree 0, be such that supp(x) C
% and s € R. There exist C' >0, 19 > 0 and N € N such that

HOpT(X)w”LSJ + |OpT(X)w|xd:0+‘s+1/2ﬂ- < C(HLlopT(X)wHO,S,T + HwHO,fN,T)’

forw e S (RL) and T > max(r, koo).

The proof of Lemma 4.9.11 is based on a multiplier method and relies on
the fact that the root 7;; that appears in the principal symbol of L; lies in the
lower complex half-plane.

The following lemma gives an estimate for Ls.

Lemma 4.9.12. Let y € SQ’T, homogeneous of degree 0, be such that supp(x) C
% and s € R. There exist C' >0, 19 > 0 and N € N such that

||OpT(X)w||1,s;r < C(“L?OpT(X)wHO,s,T + |OpT(X)w|:Cd:0+|5+1/27T + ||w||0,—N,T>7
forw e S (RL) and T > max(r, koo).
Note that this estimate is weaker than that of Lemma 4.9.11

Observing that

Li0p,(x)La = Opy(x)L1Ly; mod WY
= Op,(x)Q%, mod ¥ °,

and applying Lemma 4.9.11 to w = Lyv with s = 0, one obtains

10p: 00 Lavll - + [0 (X) Lovieg=o |y o, S 1L OPr () Lol + [lv]ly -
SJ ||Q(]7,gov||+ + HUHLT)
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for 7 > koo chosen sufficiently large. We set u = Op,(x)v, and using the trace

inequality
|w|$d10+|5’7 S HwH8+1/2,T’ w e 7(Ri) and s > 0,
we have

[ Loully  + [ Louppu=ot |y jp - S NOP+(X) Lavlly - + 0P () Laviay=ot [y o, + 0111 2 + Vlma=0t ]y o -
5 ||OpT(X)L2U||1,T + |OpT(X)LQU|$d=0+|1/2,7— + ||U||1;r‘

Therefore, we obtain
HLQUHLT + ‘L2u\9€d=0+|1/2’7— S/ HQi,goUH_F + Hv”l,‘r'
With Lemma 4.9.10, one has the estimate
‘ tr(u)|171/277 + ||L2u||1,7- 5 |B¢u|$d:0+|3/2_k77 + ||er,gpv||+ + ||U||2,—1,7-7

for 7 > kpo chosen sufficiently large using the following trace inequality

’tr(w)|m,s,f S Hme+1,871/2,T7 we y(Rle) and m & N7 s € R
With Lemma 4.9.12 for s = 1 one obtains
||u||1,1,7 + ‘ tr(u)|171/277 + ||L2U’||1,T 5 |B<Pu|27d:0+|3/2_k77 + ||er,<pv||+ + ||v||2,—1,7'7
for 7 > kgo chosen sufficiently large. Finally, we write

[ Daully , < [[Lou

1 F 10 (Xmj2)ully - S N Laully - + Nully,
yielding

il + | 6001 S Botmor g o + @0l + Nollyy,
As u = Op,(x)v, with a commutator argument we obtain

|B<Pu|96d=0+ |3/2,k77 S ’B@U|xd=0+ ’3/271@7 + | tr(U)|1,71/2,T

S ’B@v|xd:0+’3/27k,7 + ||U 21,7

yielding (4.9.5) and thus concluding the proof of Proposition 4.9.9 in Case (i).
[

We now provide the proofs the three key lemmata used above.
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Proof of Lemma 4.9.10. Set
2 2 3/2—k 2 1/2 2
T<w) = |B§0w|fﬁd=0+‘3/2_kﬂ— + |L2w|xd:0+|1/277_ = |AT,/T B¢w|xd:0+|a + |AT7/7- ng‘xd:0+’a_

This is a boundary differential quadratic form of type (1,1/2) in the sense of
Definition 4.2.14. The associated bilinear symbol is given by

Yr(d,2,2') = )\2;2’“ (I;Z(x, & )z + bl;_l(x, ¢, 7)) (@(m, & 1)z + bf;__l(x, ¢,7)z)

+ A (21— Xmj2(0)20) (21 — X7j2(0) %),
with z = (29, 21) € C? and 2z’ = (2}, 21) € C?, yielding
Yr(d,2z,2) = )\3;2’“‘1;2(1', & 1)z + b];*l(:r;, ¢, 7')21|2 + )\Tﬁ‘zl - )~(7Tj72(Q/)20’2.
One has ¥7(¢,2,z) > 0. For z # (0,0) if X7(¢/,2,2) = 0 then
21 = >~(7Tj,2(Q/)Zo,
E’;(x, &, 7m)2 + b2, E )2 = 0,
implying that z; # 0 and
by (2,8, &0 = Xmja(0),7) = V(2. &, 7) + 05 (2, €, 7)Xmj0(0)) = 0.

Let 244 C % be a conic open set such that supp(x) C % and ¥ = 1 in a conic
neighborhood of %4. Then, for ¢’ € % one has

bgo (ZL', §/7 gd - )~<7Tj,2(gl)a T) = bcp (CC, 6,7 gd - Wj,Q(Q,)a T) 7& Oa

by (4.9.8). From the homogeneity of bf,‘l(x, ¢ 1) and B’;(:v, ¢, 1) in ¢, it follows
that there exists some C' > 0 such that

Sr(d,2,2) 2 C(N Nzl + Arsl ),

if o' € 2. The result of Lemma 4.9.10 thus follows from Proposition 4.2.16,
having in mind what is exposed in Section 4.5.4 since we have 7 > kg0 here. [

Proof of Lemma 4.9.11. We let u = Op,;(x)w. Performing an integration by

parts, one has

2Re (Lyu, iA2y) | = 2Re ((Dg — Opy(Xmj1))u, iA2
: + 5 , +
= Re (2 (AzfjlopT(iﬂj,l) - OpT(f(ﬂ-j,l)*Ai,r)u7 u)+

2s5+1
+ Re(ATyT Uz g=0+ Ujzy=0+ )a.
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2
Note that Re(AZ5 ujp,—o+, U =0t )0 = \u|xd:0+\s+1/zﬁ.
Next, the operator (A2 Op. (Y1) — Op,(Xm;1)*A25™) has the following
real principal symbol

9(0) = —2Imm;; ()T

and since Im7;,(¢) < —CiAr; < 0 in % one obtains ¥(¢') 2 A% in %.
Since % is neighborhood of supp(y), the microlocal Garding inequality of The-
orem 2.49 in [62] (the proof adapts to the case with parameter o as explained
in Section 4.5.4 since o < 7) yields

. 2 2 2
2Re (Liu, AT ) | > Wyt ],y o, + CIATH U, = Cnllwllg

for 7 > Koo chosen sufficiently large. With the Young inequality one obtains

. 1 2 2
(L A2 ) | S 1AL Laul? + Azl
which yields for € chosen sufficiently small,
g g=0+ | s 410, + [Ullo i1 s S IHaullo s + [[wllg _n - (4.9.9)

Finally, we write
[Datlly,, < I Zstll,, + 100Gl < vl + lullgyr, - (4910

Putting together (4.9.9) and (4.9.10), the result of Lemma 4.9.11 follows. [

Proof of Lemma 4.9.12. We let u = Op;(x)w. Performing an integration by

parts, one has

2Re (Lou, —iA¥ M u), = 2Re ((Da — Opy(xXm;2))u, —iAF M)
= Re (7' (OpT<>Z7Tj,2)*A%,T - AzfjlopT(iﬂja))ua u)+

2541
- RG(AT,T U|gg=0+) “de=0+)8‘

2s+1 _ 2
Note that Re(AT’T U|g =0+ U|xd:0+)a = |U|xd:0+|s+l/277_.

Next, the operator i(Op. (xm;2) A2 — A2 Op, (Y7;2)) has the following
real principal symbol

9(0) = 2Immj(d )T
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and since Imm;5(¢") > CoAr; > 0 in % one obtains J(o') 2 AP in %.
Since % is neighborhood of supp(x), the microlocal Garding inequality of The-
orem 2.49 in [62] (the proof adapts to the case with parameter o as explained
in Section 4.5.4 since o < 7) yields

2

. 2 2
2Re (Low, i) | > ~Jupsyor 2,1, + ClATE I — Ol .

for 7 > koo chosen sufficiently large. The end of the proof is then similar to
that of Lemma 4.9.11. O

4.9.3.2 Case (ii): one real root.

One has Im7;5(¢”) = 0 and Im 7;; (0”) < 0.
Since the Lopatinskit-Sapiro condition holds for (Q%, B, p) at 0V, by Lemma
4.9.8 one has

bw(xo, &Y &= Wj’g(QO/), ) = b(xo, &Y +im%p(2°), z'ocj(QO’)) #£0.

As the roots 7 and 7; 5 are locally smooth with respect to ¢’ = (z,¢’, 7,0) and
homogeneous of degree one in (£, 7, 0), there exists % a conic neighborhood of
o in W x R¥1 x [0, +00) X [0, +00) and C; > 0, Cy > 0 such that Sz = {¢’ €
U; €2 + 7% + 0 = 1} is compact and

T > koo, m1(0) #mia(0), Immia(o) > —Colrr, and Immj (o) < —Cihrr,
and

be(w,€',€a = mj2(d), 7) # 0, (4.9.11)
if o = (x,&,1,0) €.

We let x € S and x € Sy be homogeneous of degree zero in the variable
(&', 7,0) and be such that supp(x) C % and x = 1 on supp(y). From the
smoothness and the homogeneity of the roots, one has x7;; € S{T, k=1,2.
We set

L= Da— Opy(tma) and Ly = D — Opr(tm).

Lemma 4.9.10 and Lemma 4.9.11 also apply in Case (ii) and we shall use
them. In addition to these two lemmata we shall need the following lemma.

Lemma 4.9.13. There exist C > 0, 19 > 0 such that

T 2wy, < C(1QF ,wll, + [t (W)l ),),
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for T > max(ry, koo) and w € €, (W,).

Proving Lemma 4.9.13 is fairly classical, based on writing Q7 , = Ql 4 iQ,
and on an expansion of ||Q{;#,w||i and some integration by parts. We provide
the details in the proof below as the occurence of the parameter ¢ is not that
classical. Lemma 4.9.13 expresses the loss of a half-derivative if one root, here

Tj2, is real.
Observing that

L10p,(x)La = Opy(x)L1 Ly mod W10

— Op,(\)@}, mod V2",

and applying Lemma 4.9.11 to w = Lyv, one obtains

0D+ (00) LaVz,=0+ 1o, S 1L10P+ () Lol + [[0lly v -
S Q5 gvll, + vl -

for 7 > koo chosen sufficiently large. We set uw = Op,(x)v, and using the trace

inequality
Weg=ot |, , SN0l 1y w € F(RY) and s >0,
we have

|L2U\xd:0+ |1/277 5 |OpT(X>L2U|zd:0+|1/277— + |U|Id=0+|1/2,7
5 |OpT(X)L2U|xd=0+|1/2,T + ||U||1,T‘

Therefore, we obtain
‘L2u|xd=0+|1/277— S HQ}Z',QOUH_;'_ + ”UHI,T'
On the one hand, together with Lemma 4.9.10, one has the estimate
@],y e S Bottagmorlyo s + 1@ 00, 40l (40.12)
for 7 > kpo chosen sufficiently large using the following trace inequality
’tr(w)|m,s,7— S Hme+1,871/2,T7 w e ?(Ri> and m € N7 s € R.
On the other hand, with Lemma 4.9.13 one has

T ully, SIQ%ull, + 1ty
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again for 7 > koo chosen sufficiently large and since [Q2 _, Op;(x)] € P10 one

0,0
finds
T2 ully, SINQL0IL + vl + T tr(w)]y s, (4.9.13)
+ /

Now, with € > 0 chosen sufficiently small if one computes (4.9.12) +& x (4.9.13)
one obtains

T71/2HIU/H2,T + ’tr(u)lm/z,r S ”Qi,@UHJF + |B¢u|xd=0+|3/2,kﬁ + HUHZ*LT'

As u = Op,(x)v, with a commutator argument we obtain

|Bs0u|xd=0+|3/2_]€77— 5 |Bﬁﬂv|xd=0+|3/2_k,7— + |tr(v)|1,—1/277

5 |Bapv|xd:0+|3/2_k77— + ||U||2,—1,7"

yielding (4.9.6) and thus concluding the proof of Proposition 4.9.9 in Case (ii).
O

We now provide a proof of Lemma 4.9.13.

Proof of Lemma 4.9.13. We recall that QZ;N, = Q! +1iQ,, yielding
; 2 - .
Q7 sl = 1Qiwly +1|Quwll} +2Re(Qlw, iQqw) (4.9.14)

With the integration by parts formula (f, Dag)+ = (Daf, 9)+—i(fiza=0+ Jjza=0+) o
and the forms of @7 and @, given in (4.9.2) one has

(f,@QL9)+ = (QLf, 9)+ — i( flzg=o+> Dagjzg=0+)o — i(Dafizymo++ Glra=o+ )0,
and
(f;Qag)+ = (Quf'9)+ — 2Ti(ad80f|xd=o+7g\md=0+)a;
yiedling

(Qawa Q?sw)-i- = (QgQawv w)-i— - i(Qaw\xd:0+7 de|acd:0+)8 - i(Danw\:vd:OJﬁ w\;vd:OJr)@

(in? Qaw)+ = (Qan@U, w)+ - QiT(adgpnglard:O*a w|xd:0+)8-
This gives

2Re(Qw, iQqw)+ = i([Q7, Qu)w, w), + TA(w) (4.9.15)
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with
A(w) = 77HQaw, Dgw)o + 7 ((DaQu — 2704w, w),,. (4.9.16)

We have the following lemma adapted from Lemma 3.25 in [62].
Lemma 4.9.14. The operators Q, € T2 and DyQ, — 27030Q% € D3 can be

cast in the following forms
Qo = 27049Dg + 27(x, D', 7dyp) mod 72°,
and

Dan - 2Tad(70Qé = —QTang(R(ZL’, D/) + (_1)j0-2 - (TadQD)Q - T’(ZL’, sz’@))
+ 27 (2, D', 7dp) Dy mod TWLY,

With this lemma we find

A(w) = 2(0apDgw|z =0+, Dawizy=o+)o + 2(7 (2, D', dy @)Wz =0+, Da)z,—0+ )a
+ 2 (7:(‘7}7 Dla dm’@)-demd:O"' ) w|md=0+)a
—2(8ap(R(x, D) + (=1 0% = (1040)* — r(2, Tdwp) ) Wi =0+ , Wiay=0+ )

+ (Op(co)w)g =0+ Dgw)g,—o+)o + ((Op(éo)Dd + Op(cl))w\xd:Oer w\:vd:OJr)@v
(4.9.17)

with Op(co), Op(éo) € 2° and Op(c1) € Z;,. Observe that one has
[Aw)| S [tr(w)[; - (4.9.18)
From (4.9.14) and (4.9.15) one writes

Q7w + ltr(w)li o, 2 1@l + |Quwll} + Re(i[Q7, Qulw, w).
(4.9.19)

We now use the following lemma whose proof is given below.

Lemma 4.9.15. There exists C,C" >0, > 0 and 79 > 0 such that

. 2 . .
p(1Quwlly + 1Qawl}) + 7 Re(i[Q], QuJw, w) s > Cllwlly, — C'|tr(w)[} 15,

for T > max(ry, koo ) and w € €, (W)
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Let g > 0 be as in Lemma 4.9.15 and let 7 > 0 be such that pur=t < 1.
From (4.9.19) one then writes

1@ ol + rltr(w)fi o, 2 77 (1@l + 1Quwl}) +im(1Q4: Qalw, w) ),

which with Lemma 4.9.15 yields the result of Lemma 4.9.13 using that 7| tr(w)|, , . <
| tr(w) |1,1/2,7-' H

Proof of Lemma 4.9.15. One has [Q?,Q,] € TZ?. Writing

7 Re (i[Q7, Qa]w,w)+ = Re (i77'[QL, QuJw, T*w)

+ Y

it can be seen as a interior differential quadratic form of type (2,0) as in Defi-
nition 4.2.11. Therefore

T(w) = p(|Qdw]l’ + |Quw]}) + 7 Re (i[Q), Qulw, w)

is also an interior differential quadratic form of this type with principal symbol

given by
t(o) = ulgb (o) * + 7{¢l, wu}(0), 0= (x,€7,0).
Let 70 > 0. By Lemma 4.9.4, the sub-ellipticity property of (Q7,¢) implies
t(o) = A4, 0 €W xR x [0, +00) x [0, +00), T > 70,

for ;o > 0 chosen sufficiently large. The Garding inequality of proposition 4.2.13
yields

T(w) = Cllwllz,, — 'l tr(w)[T 12,0,
for some C,C" > 0 and for T > koo chosen sufficiently large). O

4.9.3.3 Case (iii): both roots lying in the lower complex half-plane.

The result in the present case is a simple consequence of the general result
given in Lemma 6.1.1 whose proof can be found in [11]. In the second order
case however, the proof does not require the same level of technicality.

One has Imm;1(0”) < 0 and Imm;2(0”) < 0. As the roots ;1 and ;2
depend continuously on the variable o' = (x,&,7,0), there exists % a conic
open neighborhood of ¢ in W x R4~ x [0, +00) x [0, +00) and Cy > 0 such
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that
T > koo, Imm;1(0') < —Colrr, and Imm;s(o) < —Colryr,
if ff = (z,¢,7,0) €U .
Let x € S be as in the statement of Proposition 4.9.9 and set u = Op-(x)v.
We recall that QJ , = Q] +iQ,, yielding

: 2 - 2 ; .
Q2 Jull. = 1 Qull: + [|Qaull? + 2 Re(Qu, iQau) -

We set L(u) = HQJSuHi +[|Qqu|. This is an interior differential quadratic form

in the sense of Definition 4.2.11. Its principal symbol is given by
Uo) = (a)(0)* + al0)®’, o= (x,&T,0).
For € € (0,1) we write
1QL jull” > eL(u) + 2 Re(Qlu, iQqu). (4.9.20)
For concision we write o = (¢, &y) with o' = (z,£',7,0). The set
L ={o=1(0,8);0 €U, &2€R, and [¢]* + 7%+ 0? =1}

is compact recalling that W is bounded. On & one has |¢] ,(0)| > C' > 0. By
homogeneity one has

(0| 2N, e, & eR, ifT >0, (4.9.21)
for some 7y > 0. Therefore
(o) = M\, deu, &.eR, if > 7o (4.9.22)
By the Garding inequality of Proposition 4.2.12 one obtains
ReL(u) > Clluls, — C'[tr(u)[} 1, — Onloll5 .- (4.9.23)

for 7 > koo chosen sufficiently large.

From the proof of Lemma 4.9.13 one has
2 Re(Qu, iQqu)+ = i([Q7, Qalu, u)4 + TA(u) (4.9.24)

with the boundary quadratic form A given in (4.9.16)—(4.9.17).
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On the one hand, one has [Q?, Q,] € TZ2? and therefore
| Re([Q, Qulu, u) 4| S Tlully i, S 7 ull3,- (4.9.25)
On the other hand, we have the following lemma that provides a microlocal

positivity property for the boundary quadratic form A. A proof is given below.

Lemma 4.9.16. There exist C,Cy and 79 > 0 such that
TRe A(u) > C| tr(u)|il/2’7 — Cy| tr(”)‘ifzv,w for uw = Op,(x)v,

for T > max(7, koo).

With (4.9.24)—(4.9.25), and Lemma 4.9.16 one obtains

2Re(Qlu,iQuu)1 > Cltr(u)lf 1, — C'7 ully, — Cnltr(v)[;
2 - 2 2
> C| tr(“)’l,l/Q,T —-C'r l”UHQ,r - CEV””HQ,*N,T’ (4.9.26)

with a trace inequality, for 7 > ko chosen sufficiently large.
With (4.9.20), (4.9.23), and (4.9.26) one obtains

P2 2 2 2
Q5 pull, = eCllully, — C'eltr(u)ly 1), — Cnellvlly v

2 _ 2 2
+C tr(u)|171/277 - C'r 1||U||2,T - C;VHUHZ—N,T'

With e chosen sufficiently small and 7 > ko sufficiently large one obtains for
any N € N

lully,, + [ty g, S NQFull, + 1Vl .-
With a commutator argument, as u = Op,()v one finds ||Q30@u||+ < ||Q{Wv||++

[vlly,_,, yielding estimate (4.9.7) and thus concluding the proof of Proposi-
tion 4.9.9 in Case (iii). O

Proof of Lemma 4.9.16. With (4.9.17) one sees that it suffices to consider the
following boundary quadratic form

A(w) = 2(0ap Dgtjy =0+, Datisy—o+)o + 2(7 (2, D', dur @) Wiz =0+ » Dz =0+ )o
+2 (f([[, Dla dx/QO) de|zd:0+7 w|zd:0+)8
- 2(8d90(R($a Dl) + (_1)j02 - (Tadgp)Q - 7“(33, de/@))w|g;d:0+, w|xd:0+)8:

in place of A. It is of type (1,0) in the sense of Definition 4.2.14. Its principal
symbol is given by ag(¢’, &a, &) = (1,82) A(0') 1(1, &y) with

"N —(8,190) (’l“(a?, 5/) + (_1)j02 - (TadSO)Q - ’I"(il?, de’@)) z.,=0+ f(l‘, 6/7 dm’gp)\deOJr
Ald) = ) 5 |
7(2,&, dp ) |m=0+ 01 P|zy=0+
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with o' = (x,&,7,0). The associated bilinear symbol introduced in (4.2.7) is
given by

Yuld,z,7) =2A(d)'Z, z = (20,21) € C?, 2’ = (2),2)) € C%.
One computes

det A(¢') = — ((3(1@)2(7“(1:7 &)+ (=1)0% = (10ap)? — r(x, 7dwp)) + 7 (z, & dmf¢)2>

|:17d:0+

With Lemma 4.7.3 one sees that Im 7, < 0 is equivalent to having det A(¢’) >
0. We thus have

det A(¢') > C >0, for ¢ = (x,8,7,0) € Sy,

with S = {0’ € %; &4 € R, |€> + 7% + 0% = 1} since Sy is compact. Since
04P|z,=0+ > C" > 0 then one finds that

ReX4(¢,2,2) > C(|2]* + |2]?), o = (x,&,1,0) e, |(€,7,0) =1
By homogeneity one obtains
ReX4(0,z,2) > C()\$7T\zo|2 + 1z, o =(x,& 1,0) e, |(& 1,0)>1

With Proposition 4.2.16, having in mind what is exposed in Section 4.5.4 since

we have 7 > koo here, one obtains
Re A(u) > C| tr(u)|i07T — Cy| tr(v)ﬁﬁN’T, for u = Op;(x)v,

for 7 > koo chosen sufficiently large.
Here, we have Im 7,5 < 0 and thus |¢'| < 7 by Lemma 4.7.6. Thus one has

2 2 2
7| tr(u)|17017 2 |tr(u)|1,1/2,7 - |tr(v)|1,—N,T7

by the microlocal Garding inequality, for instance invoking Proposition 4.2.16

for a boundary quadratic form of type (1,1/2). This concludes the proof. [
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4.10 Local Carleman estimate for the fourth-order

operator

4.10.1 A first estimate

Proposition 4.10.1. Let k{, > K} > K1 > kg > 0. Let 2° € 9, with Q locally
given by {xq > 0} and let W be a bounded open neighborhood of z° in RY. Let
@ be such that dgp > C > 0 in W and such that (Q2, ) satisfies the sub-
ellipticity condition in W for both j = 1 and 2. Let o” = (2°,&Y,7°,6°) with
(€Y 79 6%) € R4 x [0, +00) x [0, +00) nonvanishing with k0% < 7° < K}0°.

Then, there exists % a conic neighborhood of ” in W x R4™1 x [0, +00) x
[0, 4+00) where koo < T < Kjo such that if x € SQ’T, homogeneous of degree 0
in (£, 7,0) with supp(x) C %, there exist C > 0 and 79 > 0 such that

T 210D (v, < C(I1Prgvlly + [t0(0) g0, + 0l ), (4.10.1)

for T > 1, koo <7 < Ko, andv € G, (W,).

An important aspect is that here we have o = 7; this explains that only one
root of p,, can lie on the real axis and thus only one half derivative is lost in
this estimate. The proof of Proposition 4.10.1 is based on the microlocal results
of Proposition 4.9.9.

Proof. We shall concatenate the estimates of Proposition 4.9.9 for @ , and Q7
with the boundary operator B simply given by the Dirichlet trace operator,
Bum:m = U|gyz=0+-

One has b(z,§) = 1 and by(x,& &4, 7) = 1. Since 9z > 0 then Imm;; <
0. Thus, either ¢ (x,&, &4, 7) = 1 or qg;(x,f’,fdﬁ) = & — m2. With
Lemma 4.9.8 one sees that the Lopatinskii-Sapiro holds for ( }W,B,go) and
Q3 B, ) at o".

Proposition 4.9.9 thus applies. Let %; be the conic neighborhood of ¢”
obtained invoking this proposition for f;yw for j = 1 or 2. In %; one has
T > Koo. We set

02/:%1m02/2m{7'§/€60'},

and we consider x € S?_, homogeneous of degree 0 in (&', 7,0) with supp(x) C

U .
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Since in % one has ¢ > 0 then m 5 and mey cannot be both real by
Lemma 4.7.7. Proposition 4.9.9 thus implies that we necessarily have the fol-

lowing two estimates

70D (Wl S 1Q0wll, + [ws im0+l + ]l (4.10.2)

and
72 0pr(wlly, SNQ2 wll, + |wlss , + lwlly (4.10.3)

with either (,6,) = (1/2,0) or (1,6,) = (0,1/2), for w € €. (W) and
T > koo chosen sufficiently large.

Let us assume that (61,62) = (1/2,0). The other case can be treated simi-

larly. Writing P,, = Q2 ,Q} ,, with (4.10.3) one has

10p: (0)Qz vl S I1Povlls + Q0 pVims—o+ |y + 10l 1 -
S IPoevll + 1tr(v)]y 570 + 0lla -1 7

Since [Op.(x), Qs.,] € Y1 one finds

1Q2.,0p: (X)vll, . S I Povll + [tx(0)l5 1/, + [0l -1 - (4.10.4)
For £k = 0,1 or 2, one writes
1QL ,Op, (0 DEAZ Sl 4] tx(Op, () DEAZF0), ) +|Op, ()ODEAZ Foll,
5 ||QU,@OPT(X)U||27T + |tr<v)|3,1/2,7' + ||U||4,—1,T7

since [Q1,,0p,(x), DEAZH] € w1

Let ¥ € S7. be homogeneous of degree zero in the variable (¢, 7,0) and
be such that supp(y) C % and Yy = 1 on a neighborhood of supp(y). With
(4.10.2), from (4.10.4) one thus obtains

720D (X)Op (X) DEAT 0ll, - S 1Popvll + [ tr(0)ly 1o + [0y o -
Since Op,(x)Op;(x)DiAZF = A2 #DEOp.(x) mod ¥2~! one deduces
7_1/2||D§OPT(X)UH2,2—1” N wU||+ + [ tr(v )|3,1/2,T + ||U||4,—1,r'

Using that £ = 0,1 or 2, the result follows. [

Consequence of this microlocal result is the following local result by means

of a patching procedure as for the proof of Proposition 4.8.1 in Section 4.8.2.
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Proposition 4.10.2. Let ), > Ko > 0. Let 2° € 99Q, with Q locally given by
{24 > 0} and let W be a bounded open neighborhood of z° in R:. Let ¢ be
such that Ogp > C' > 0 in W and such that (Q7, ) satisfies the sub-ellipticity
condition in W for both j = 1 and 2.

Then, there exists W° a neighborhood of 2°, C > 0, 19 > 0 such that

720l < C(I1Psgvlly + t0(0)]5,1/0,) (4.10.5)

for > 1y, koo <7 < Kho, and v € €, (Wy).

4.10.2 Final estimate

Combining the local results of Section 4.8 for the estimation of the boundary
norm under the Lopatinskii—éapiro condition and the previous local result with-
out any prescribed boundary condition we obtain the Carleman estimate of
Theorem 1.8.1. For a precise statement we write the following theorem.

Theorem 4.10.3 (local Carleman estimate for P,). Let ky > ko > 0. Let
% € 99, with Q locally given by {xy > 0} and let W be a bounded open
neighborhood of x° in Re. Let o be such that ;0 > C > 0 in W and such that
(Q7, @) satisfies the sub-ellipticity condition in W for both j =1 and 2.

Assume that (P,, By, By, ) satisfies the Lopatinskii-Sapiro condition of Def-
inition 4.7.1 at o = (2°,&,7,0) for all (¢',7,0) € R¥1 x [0, +00) x [0, +00)
such that T > Kkgo.

Then, there exists WO a neighborhood of 2°, C' > 0, 19 > 0 such that

2
7-71/2H€‘“’0U’H4,T + ‘ tr(eﬂpu)‘&l/ZT < C(HeT@PUuHJr + Z |€T¢Bju|xd=0+|7/2_kj’7)7
j=1

(4.10.6)

for 7 > 19, koo < T < Kyo, and u € ?SO(WE)

The notation of the function space €, (W?) is introduced in (4.5.3).

For the application of this theorem, one has to design a weight function
that yields the two important properties: sub-ellipticity and the Lopatinskii-
Sapiro condition. Sub-ellipticity is obtained by means of Proposition 4.9.3; the
Lopatinskﬁ—éapiro condition by means of Proposition 4.7.2.

Proof of Theorem 4.10.3. Let v € €, (W,). The assumption of the theorem al-
lows one to invoke both Propositions 4.8.1 and 4.10.2. With the first proposition
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one has

2

6003120 S 1Prgvlly + D 1Bigamot by g+ I0llicyr (420.7)
j=1

for 0 > 0, 7 > max(7, koo) for some 77 > 0. With the second proposition one
has

T 20l S NPl + 1t0(0)]51 /2.7 (4.10.8)

for 7 > 7] and koo < 7 < Ko for some 77 > 0.

Consider o > 0 and 7 > max(7y, 7{) such that koo < 7 < k{o. Combined
together (4.10.7) and (4.10.8) yield

2

T 0l + [0 0) 5 s S NPl + ) |BjpVlza=0+ |7 g, 101417
j=1

Since [|v||, _;, < 77"?||v||,, for 7 large one obtains

2

7_1/2||U||4,r + |tr(v)|3,1/2,f S Poevll, + Z |Bj7wvlmd:0+|7/2,kj77-‘
j=1

If we set v = ¢™%u then the conclusion follows. ]

4.11 Global Carleman estimate and observability

Using the local Carleman estimate of Theorem 4.10.3 we prove a global version
of this estimate. This allows us to obtain an observability inequality with ob-
servation in some open subset & of (). In turn in Section 4.13 we use this latter
inequality to obtain a resolvent estimate for the plate semigroup generator that
allows one to deduce a stabilization result for the damped plate equation.

4.11.1 A global Carleman estimate

Assume that the Lopatinskil-Sapiro condition of Definition 4.6.1 holds for (P, By, B2)
on 0f2.

Let 0y, 01, 0 be open sets such that 0y € 0, € 0 € Q). With Proposi-
tion 3.31 and Remark 3.32 in [62] there exists ¢ € €°>°(Q) such that

i. v =0and d,¢» < —Cy < 0 on 09

ii. ¥ >01in Q;
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iii. i #£0in Q\ Gp.

Then, by Proposition 4.9.3, for v chosen sufficiently large, one finds that ¢ =
exp(y?) is such that a

i. p=1and d,p < —Cy < 0 on 09
ii. o> 1in §;

iii. (Q7, ) satisfies the sub-ellipticity condition in Q \ &y, for j = 1,2, for
T > 190 for 1y chosen sufficiently large.

Then, with Proposition 4.7.2, for kg > 0 chosen sufficiently large one finds that
the Lopatinskil-Sapiro condition holds for (P,, B1, B2, @) at any (z,&, 1,0) for
any ¥ € 0Q, & € TF0Q) ~ R* ! 7 > 0, and o > 0 such that 7 > kg0, for kg
chosen sufficiently large, using that 0€) is compact.

Thus for any x € 02 the local estimate of Theorem 4.10.3 applies. A similar
result applies in the neighborhood of any point of Q2 \ 0.

With the weight function ¢ constructed above, following the patching pro-
cedure described in the proof of Theorem 3.34 in [62], one obtains the following
global estimate

2
T2 e ully 4 [or(€T )y e S €T Poullpaay + D 1€ Biualz sy, -+ Tl xoully 1
j=1

(4.11.1)

for 7 > 19, koo < 7 < Kk{o, and u € €°(2), and where x, € €°(0) such that
Xo = 1 in a neighborhood of @;. Here, [l and |.[, ., the Sobolev norms with

s,77

the large parameter 7, are understood in {2 and 0f2 respectively.

Remark 4.11.1. Observe that inequality (4.11.1) also holds for third-order
perturbations of P,. Below, we shall use it for a second-order perturbation

P, —ic’a=A? —o* —ic’a.

4.11.2 Observability inequality

By density one finds that inequality 4.11.1 holds for u € H*(2).
Let Cy > supg e — 1. Since 1 < ¢ < supg ¢ one obtains

2

Hu||H4(Q) S eCOT(HPJuHLQ(Q) + Z |Bju\8Q|H7/2*’“j(aQ) + ||“”H4(6’1))' (4.11.2)
j=1

for 7 > 19, koo < 7 < K},0.
0, ™0 0
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With the ellipticity of P, one has

ull racoyy S 1Poull 26y + 1ull 200,

since 01 € €. This can be proven by the introduction of a parametrics for F,.
One thus obtain

||u||H4(ﬁ1) S HPUU||L2(Q) +(1+ ‘74)”““1:2(0)7
and thus with (4.11.2) one obtains the following observability result.

Theorem 4.11.2 (observability inequality). Let P, = A% — 0% and let By and
By be two boundary operators of order ki and ko as given in Section 4.06.2.
Assume that the Lopatinskif—gapiro condition of Definition 4.6.1 holds. Let &
be an open set of Q). There exists C' > 0 such that

2

ol1/2
el sy < O (| Prll gy + S 1Byiosl s oy + Nl ()
j=1

for u e HY(Q).

Remark 4.11.3. With Remark 4.11.1 the result of Theorem 4.11.2 hold for

P, = A? — ¢* replaced by P, —ic’a = A? — ¢* —ic%a.

4.12 Solutions to the damped plate equations

Here, we review some aspects of the solutions of the damped plate equation :

Py + Py + a(x)oy =0 (t,z) € Ry x Q,
Bryr, xo0 = Baur, xo0 =0, (4.12.1)
Yjt=0 = Y, aty\tzo =y,

where P = A% and o > 0, positive on some open subset of 2. The boundary

operators By and Bj of orders k;, j = 1,2, less than or equal to 3 in the normal

direction are chosen so that

(i) the Lopatinskii-Sapiro condition of Definition 4.6.1 is fulfilled for (P, By, B,)
on 0f);

ii) the operator P is symmetric under homogeneous boundary conditions,
p y g y
that is,

(PU,U)LQ(Q) = (u, PU)LQ(Q)7 (4.12.2)
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for u,v € H*(Q2) such that Bjujpg = Bjvjpsn = 00n 09, j = 1,2. Examples

of such conditions are given in Section 4.6.5.

With the assumed Lopatinskii—éapiro condition the operator

L:HYQ) = L*(Q) @ H* " (0Q) @ H*7*(9Q),
u = (Pu, Biupg, Baujaa), (4.12.3)

is Fredholm.
(iii) We shall further assume that the Fredholm index of the operator L is zero.

The previous symmetry property gives (Pu,u)r2q) € R. We further assume
the following nonnegativity property:

(iv) For u € H*(Q) such that Bjujgo = 0 on 99, j = 1,2 one has

This last property is very natural to define a nonnegative energy for the plate
equation given in (4.12.1).

We first review some properties of the unbounded operator associated with
the bi-Laplace operator and the two homogeneous boundary conditions based
on the assumptions made here. Second, the well-posedness of the plate equation
is reviewed by means of the a semigroup formulation. This semigroup formalism

is also central in the stabilization result in Sections 4.13.1-4.13.2.

4.12.1 The unbounded operator associated with the bi-

Laplace operator

Associated with P and the boundary operators B; and B, is the operator
(Po, D(Pg)) on L?(Q), with domain

D(Py) = {u € L*(Q); Pu€ L*(Q), Biupo = Boujga = 0},

and given by Pou = Pu € L*(Q) for u € D(Py). The definition of D(Py) makes
sense since having Pu € L*(Q2) for u € L*(Q2) implies that the traces Ofu gq are
well defined for £k =0,1,2, 3.

Since the Lopatinskii-Sapiro condition holds on 99 one has D(Py) ¢ H(1)
(see for instance Theorem 20.1.7 in [44]) and thus one can also write D(Py) as
in (1.8.2). From the assumed nonnegativity in (4.12.4) above one finds that
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Po + id is injective. Since the operator

L' HY(Q) — L*(Q) @ H*M(0Q) @ H'**2(69)

u > (Pu+ u, Biujgq, Baujaq)

is Fredholm and has the same zero index as L defined in (4.12.3), one finds
that L’ is surjective. Thus Ran(Pgy + Id) = L*(©2). One thus concludes that Py
is maximal monotone. From the assumed symmetry property (4.12.2) and one
finds that Py is selfadjoint, using that a symmetric maximal monotone operator
is selfadjoint (see for instance Proposition 7.6 in [15]).

The resolvent of Py + Id being compact on L*(2), Py has a sequence of
eigenvalues with finite multiplicities. With the assumed nonnegativity (4.12.4)
they take the form of a sequence

0<pip<puy < <pp<---

that grows to +oo. Associated with this sequence is (¢;);en a Hilbert basis of
L2(). Any u € L*(2) reads u = Y. u;jp;, with u; = (u, ¢;)12(0). We define
the Sobolev-like scale
k 200)- (/4 2
Hp () = {u € L*(Q); (" uy); € ££(C)} for k > 0. (4.12.5)
One has D(Py) = H5(Q) and L*(Q) = H%(Q). Each HE(Q), k > 0, is equipped
with the inner product and norm

. 2
(w,0) gy = D (L4 ) Puws. Nl ) = Y (1+ )|,
jeN jeN

yielding a Hilbert space structure. The space H%(Q) is dense in HE(Q) if

k/2 in place

0 < k' < k and the injection is compact. Note that one uses (14 ;)
of ,uf/ ? since ker(Py) may not be trivial. Note that if k = 0 one recovers the
standard L?-inner product and norm.

Using L?(2) as a pivot space, for k > 0 we also define the space H5"(Q) as
the dual space of H&(Q). One finds that any u € H5"(f2) takes the form of the

following limit of L2-functions
‘
o=,
=0
for some (u;); C C such that ((1+uj)_k/4uj)j € (?(C), with the limit occurring

in (H g(Q)), with the natural dual strong topology. Moreover, one has u; =
<U,@>H§k’Hg. Ifu=73" yujp € HZ"(Q) and v = > ienviw; € HE(Q) one
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finds

<u76>H§k,Hg = ZUJ@

jEN

One can then extend (or restrict) the action of Py on any space H%((Q),
k € R. One has Py : HE(Q2) — HE(Q) continuously with

Pou = Z,ujujgoj, with convergence in H *(Q) for u = Z ujp; € HE(Q).

jEN jeN
(4.12.6)
In particular, for u € H(Q2) = D(Py) and v € H3() one has
(Pou, U)LQ(Q) = <POU, ’l_J>H§271L1123 = Z ,ujujv_j (4127)
jEN
and if u,v € H%(Q) one has
(u,v) 2 @) = (u,v)r2() + (Pou, V) =2 2 = Z(l + 1) w05 (4.12.8)
jEN
Note that
<P0u, ’D>H§2,H% = (Pé/zu, P(l)/Q’U)Lz(Q), (4129)

with the operator P(l)/ ? easily defined by means of the Hilbert basis (pj)jen. In
fact, H%(Q) is the domain of Pé/ ? viewed as un unbounded operator on L%().
We make the following observations.

i. If ker(Py) = {0} then
(u,v) = (Pou, u) =2 y2 ,

is also an inner-product on H%(2), that yields an equivalent norm.

ii. If 0 is an eigenvalue, that is, dim ker(Py) = n > 1 then (¢o, ..., pn_1) is
a orthonormal basis of ker(Py) for the L?-inner product. From a classical
unique continuation property, since a(x) > 0 for z in an open subset of
one sees that

(u,v) = (ou, v) 20 (4.12.10)
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is also an inner product on the finite dimensional space ker(Py) C L*(9).
We introduce a second basis (go, ..., ¢n-1) of ker(Pg) orthonormal with

respect to this second inner product.

In what follows, we treat the more difficult case where dim ker(Py) =n > 1.

4.12.2 The plate semigroup generator
Set H = H%(Q) & L*(Q2) with natural inner product and norm

((uo,ul), (Uov Ul))H = (UO’ UO)H%(Q) + (ulavl)Lz(Q)a (41211)
2 2 2
H(UO>U1)HH = HUOHH%(Q) + ”ule(Q)- (4.12.12)

Define the unbounded operator

A= (F?o a};)) : (4.12.13)

on H with domain given by D(A) = D(Py) @& H%(2). This domain is dense in
H and A is a closed operator. One has

N =ker(A4) = {"(uv°,0); u” € ker(Py)}.

The important result of this section is the following proposition.

Proposition 4.12.1. The operator (A, D(A)) generates a bounded semigroup
S(t)=e on H.

The understanding of this generator property relies on the introduction of
a reduced function space associated with ker(Py), following for instance the
analysis of [61]. It will be also important in the derivation of a precise resolvent
estimate in Section 4.13.1. If ker(Py) = {0}, that is, po > 0, this procedure is

not necessary. For v € ker(Py), v # 0, we introduce the linear form

F,:H—C (4.12.14)
(u®,u') = (av, v)zzlm)((auo, v)r2e0) + (U, 0)12(0)),
We set
H= (] kex(F)= [) ker(F,), (4.12.15)
veke;E)PO) Ogjgnfl

with the basis (¢, ..., ¢,—1) of ker(Py) introduced above. If (v,0) € ker(A),
with 0 # v € ker(Py), note that F,(v,0) = 1. We set ©; = (¢;,0), j =



152

0,...,n—1and

n—1
IV =) F,(V)6;, forVeH,

Jj=0

and II;; = idy —IIy. We obtain that Iy and 1L, are continuous projectors
associated with the direct sum

H=H&N and H = ker(ILy). (4.12.16)

Note that H and N are not orthogonal in H. Yet, it is important to note the
following result.

Lemma 4.12.2. We have Ran(A) C H.

Proof. Let U = '(u°,u') = AV with V = *(v°,0v') € D(A). One has v° =

—v' € HE(Q2) and u' = Py + avy € L*(Q). If 0 # ¢ € ker(Pg) one writes
(ap, SO)LQ(Q)Fso(U) = (—Owla SO)LZ(Q) + (POUO + 047117 90>L2(Q)

= (POUO,SO)LZ(Q) = (’007 Po@)m(ﬂ) = 0.

using that v%,p € D(Py), that (Py, D(Py)) is selfadjoint, and that ¢ € ker(Py).
The conclusion follows from the definition of # in (4.12.15). O

The space M inherits the natural inner product and norm of H given in
(4.12.11). Yet one finds that the inner product

(@, ut), (0%, 01)5 = (Pou®, 00 g2 o + (u', 01 120, (4.12.17)
and associated norm
2 — 2
||(u0,u1)l|y - <P0U07UO>H§2,H§ + ||u1||L2(Q)7 (4.12.18)

yields an equivalent norm on H by a Poincaré-like argument.

We introduce the unbounded operator A on H given by the domain D(A) =
D(A) NH and such that AV = AV for V € D(A). We then have A = A o IT,;.
Observe that D(A) = I, (D(A)) since N = ker(A) C D(A). Thus, one has

D(A)=D(A) & N. (4.12.19)

As for the decomposition of H given in (4.12.16) note that D(A) and A are not
orthogonal.
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Lemma 4.12.3. Let z € C be such that Rez < 0. We have

(I, — AUl > |Re2| U]l U € D(A).

The proof of this lemma is quite classical. It is given in Appendix 6.2.
With the previous lemma, with the Hille-Yosida theorem one proves the

following result.

Lemma 4.12.4. The operator (A, D(A)) generates a semigroup of contraction
S(t) =e " on H.

If we set

S(t) = S(t) o I, + Ty, (4.12.20)

we find that S(¢) is a semigroup on H generated by (A, D(A)), thus proving
Proposition 4.12.1. If Y° € D(A), the solution of the semigroup equation
LY (t) + AY (t) = 0 reads

Y(t)=St)Y? = S(t) o ;Y + T\ Y. (4.12.21)
We set Y (t) = T, Y (t) = S(t) o I1,,Y°.

The adjoint of A has domain D(A*) = D(A) and is given by

L [0 1
A= (—Po oz(x)>'

Similarly to Lemma 4.12.3 one has the following result with a similar proof.

Lemma 4.12.5. Let z € C be such that Rez < 0. We have

I(z1dy, — AUl > [Rez| [Ully, U € D(A") = D(A).

4.12.3 Strong and weak solutions to the damped plate

equation

For y(t) a solution to the damped plate equation (4.12.1) one has Y (t) =
t(y(t), Owy(t)) formally solution to 4V (t) + AY (¢) = 0 and conversely.

The semigroup S(t) generated by A as given by Proposition 4.12.1 allows
one to go beyond this formal observation and one obtains the following well-
posedness result for strong solutions of the damped plate equation.
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Proposition 4.12.6 (strong solutions of the damped plate equation). For
(v°,y') € HL(Q) x HE(Q) there exists a unique

y € ¢°([0,+00); H5(Q)) N € ([0, +00); H3(Q2)) N€([0, +00); L*(Q))
such that

Oy + Py +adyy =0 in L([0,+00); L*(Q)), Yjt=0 = y°, OYje=0 = yt

(4.12.22)
Moreover, there exists C' > 0 such that
||y(t)||H;43(Q) + ||aty(t)”H}23(Q) < C(H?JOHH%(Q) + ||y1||H123(Q))7 t=>0.
(4.12.23)

With Y'(¢) as above, for such a solution y(¢) one has

Y@+ AV =0, Y(0) =" =),
that is,
Y(t)=St)Y°? € ¢°([0,400); D(A)) N € ([0, +o00); H(Q) & L*(2)).

A weak solution to the damped plate equation is simply associated with
an initial data (y°,y') € H5(2) x L*(Q) and given by the first coordinate of
Y(t) = S(t)Y°. Then one has

Y(t) € °([0,400); H) N € ([0, +00); L*(Q2) & H*()).
or equivalently
y € €°([0,+00); Hp(Q)) N€" ([0, +00); L*(2)) N € ([0, +00); H5*(2)).
For a strong solution, the natural energy is given by

(10 ()72 + (Poy(), y(t)) 2. (4.12.24)

NO| —

E(y)(t) =

Observe that if y° € ker(Py) then y(t) = 3° is solution to (4.12.1) with y* = 0.
This is consistent with the form of the semigroup S(¢) given in (4.12.20). Such a
solution is independent of the evolution variable ¢, and thus, despite damping,
there is no decay. However, note that such a solution is ‘invisible’ for the
energy defined in (4.12.24). In fact, for a strong solution to (4.12.1) as given by



155

Proposition 4.12.6 one has
1, . 2
E)(t) = SIIY Ol (4.12.25)

with Y'(t) as defined below (4.12.21) and ||.||,; defined in (4.12.18). For a strong

solution, we write

L £)(8) = Re(@(t). u(t)) 20y + - oD T DNz + 5 (Po(D) (1)) 2o

dt
= Re(0y(t), (0] + Po)y(t))r2() = — Re(8y(t), ady(t)) r2i) < 0

since a > 0. Thus, the energy of a strong solution is nonincreasing. To under-
stand the decay of the energy one has to focus on the properties of the semigroup
S(t) and its generator (A, D(A)) on H. This is done in Section 4.13.1.

For a weak solution y(t) € ¢°([0, +00); H3(Q)) N € ([0, +00); L*()) the
energy is defined by

(19ey(t) ||2L2(Q) + (Poy(?), m>H§2,H,23>

N | —

E(y)(t) =

that coincides with (4.12.24) for a strong solution. The stabilization result we
are interested in only concerns strong solutions (see Section 4.13.2). Thus, we

shall not mention weak solutions in what follows.

4.13 Resolvent estimates and applications to sta-
bilization

Here we use the observability inequality of Theorem 4.11.2 to obtain a resolvent
estimate for the plate semigroup generator that allows one to deduce a stabiliza-
tion result for the damped plate equation. This a sequence of argument comes
from the seminal works of Lebeau [59] and Lebeau-Robbiano [61].

4.13.1 Resolvent estimate

We prove a resolvent estimate for the unbounded operator (A, D(A)) that acts
on H. First, we establish that {Re z < 0} lies in the resolvent set of A.

Proposition 4.13.1. The spectrum of (A, D(A)) is contained in {z € C;Re(z) >

0}.

The proof of this proposition is rather classical based on a unique continua-
tion argument and a Fredholm index argument for a compact perturbation. It

is given in Appendix 6.3.
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Theorem 4.13.2. Let O be an open subset of 2 such that « > 6 > 0 on 0.
Then, for o € R the unbounded operator icld — A is invertible on H and for
there exist C' > 0 such that

1/2

|(icld — A)~ 1||£(H) < Cellel oeR. (4.13.1)

Proof. By Proposition 4.13.1 i0Id — A is indeed invertible. Observe that it then
suffices to prove the resolvent estimate (4.13.1) for |o| > o for some g > 0.

Let U = *(u®,u') € D(A) and F = *(f°, f') € H be such that (icIld—A)U =
F. This reads

O =iou’ +ut, 1= —Pou’ + (ioc — a)u'.

which gives
(Py — 0* —ica)u’ = f

with f = (ic — ) f° — f1. Computing the L?-inner product with u° one finds
(Po — o*)u’,u°) p2(q) — io(au’, u®) r2) = (f, u°)r2(0)-

As a > 0, computing the imaginary part one obtains

I/QUOHi?(

olle Q) — —Im(/, UO)L2(Q)-

Since aw > ¢ > 0 in & by assumption and since we consider |o| > oy one has
2
301Ul z2 oy < NNl 2oy 140l 22
Applying Theorem 4.11.2 (with Remark 4.11.3) one has
o|1/2
||U0||H4(Q < el (||f||L2(Q) + ||u0||L2((7’))'
Thus, we obtain
o|1/2 1 2 1/2
1oy S €7 11 gy + 11y N o)
for |o| > 0¢. With Young inequality we write, for ¢ > 0,
o|1/2 1 2 1/2 _ ol1/2
S £l oty 10l oy S €224 1l 2y + €l 2y
Thus, with € chosen sufficiently small one obtains

1/2
1| gragey S €N Nl 2
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Since u! = f0 —iou® and f = (ic — a)f° — f! we finally obtain that

ol1/2
14| rs 0y + e gy S € (17N 2y + 1 1)
<e

Ny
Since u° € H*(Q) one has
| (Pou”, u®) 20y | < 16| gaop 1u”ll o) < HUOHZH(Q)
and thus one finally obtains
101 = (Pou® 1) 2@y + llut 200y < €77 1 Pl

which concludes the proof of the resolvent estimate (4.13.1). [

4.13.2 Stabilization result

As an application of the resolvent estimate of Theorem 4.13.2, we give a loga-
rithmic stabilization result of the damped plate equation (4.5.1).

For the plate generator (A, D(A)) its iterated domains are inductively given
by

D(A™) = {U € D(A"); AU € D(A™)}.

With Proposition 4.12.6, for Y? = (y%, y') € D(A") then the first component
of Y (t) = S(t)Y" is precisely the solution to (4.12.1). One has Y (t) = Y (t) +
T\ YO with Y () = S(¢)I1,, Y with the semigroup S(¢) defined in Section 4.12.2.
Moreover, by (4.12.25) the energy of y(t) is given by the square of the H-norm
of Y (t).

With the resolvent estimate of Theorem 4.13.2, with the result of Theorem
1.5 in [10] one obtains the following bound for the energy of y(¢):

- (4.13.2)
(log(2 + t))

We have thus obtain the following theorem.

E)(t) = Y (D)5, <

Theorem 4.13.3 (logarithmic stabilisation for the damped plate equation).
Assume that conditions (i) to (iv) of Section /.12 hold. Letn € N, n > 1. Then,
there exists C' > 0 such that for any Y° = *(y°,y') € D(A") the associated
solution y(t) of the damped plate equation (4.5.1) has the logarithmic energy
decay given by (4.13.2).
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Note that for n = 1 using the form of A and (4.12.9) one recovers the

statement of Theorem 1.8.2 .
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5. Perspectives

5.1 Fucik spectrum

As an extension of the results of Part A, we are interested of investigating the
Fucik spectrum of the (p, 2)-Lapalcian. The Fuéik spectrum was introduced by
S. Fucik [22] and N. Dancer [27] in the 70’s. For the Laplacian it is defined
as the set ¥ C R x R of the points (a, ) for which there exists a nontrivial
solution of the problem

—Au=ou" —pfu” in

(5.1.1)
Bu=0 on 99

where  is a bounded domain in RY(N > 2), Bu stands for the considered
boundary conditions and u* = max{+wu,0}.
We aim to investigate the set of pairs (a, 8) € R x R such that

—Ayu—Au=aut —pu” in Q

u=0 on 9N

(5.1.2)

has nontrivial solution, with p € (1,00) \ {2}. We clearly see that if « = 5 we
recover the case of equation (3.4.3).

We expect solutions branches of (5.1.2) to bifurcate from the Fucik eigenvalues
of (5.1.1).

Next, our goal is to study the Fucik spectrum of the following problem

—Ayu — Au = am(z)ut — fn(z)u” in Q

u=0 on 0f2

(5.1.3)
where m and n are positive bounded weights for p € (1,00) \ {2}.

5.2 Controllability and stablization

On a bounded regular open set of R? if given a positive fourth-order elliptic
operator P (or on a Riemannian manifold (M,g) with P = A2), one can

consider the following controlled parabolic equation

Owu+ Pu=1,v fort >0, Biujpc) =0, Boyo,ec) = 0, Up—o = up € L*(Q).
(5.2.1)
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Here, w is a nonempty open subset of w, B and B, are boundary operators cho-
sen that satisfies the Lopatinskii—éapiro condition. The function v is the control
and lies in L?((0,00) x ). It only acts on the solution u in w. The question of
null controllability for this controlled parabolic equation is the following:

For a given initial data u € L?(Q2), for a given time T > 0, can one find

v e L2((0,T) x Q) such u(T) = 0.

The answer to this question rely on the derivation of a spectral inequality. If
the boundary operators By and B; are well chosen, the bi-Laplace operator A;
can be selfadjoint on L?*(Q); see Section 4.12.1. Associated with the operator
is then a Hilbert basis (¢;)jen of L*(w). In the case of “clamped” boundary
condition the following spectral inequality was proven in [82].

Theorem 5.2.1. (Spectral inequality for the “clamped” bi-Laplace operator).
Let w be an open subset of ). There exists C' > 0 such that

1/4
ullr2@) < Ce“" ullr2@w), w1 >0, u€ Span{p;; p; < p}.

The proof of this theorem is based on a Carleman inequality for the fourth-
order elliptic operator D? + A;, that is, after the addition of a variable s.
Extending this strategy to the type of boundary conditions treated in Part B
was not successful so far because it is not guaranteed that having the Lopatin-
skii—éapiro condition for Ag,Bl, and By implies that the Lopatinskii—éapiro
condition holds for D + A2 By, and Bj. Yet, the Lopatinskii-Sapiro is at the
heart of the proof of our Carleman estimate. Proving a spectral estimate as in
the above statement for the general boundary conditions considered here is an
open question.

Next, as a follow up of the result in Part B, we aim to address the polyharmonic
case, that is Q = P*, k € N with k£ boundary operators B, ..., B;. This can
lead to applications similar to the results of Theorem 1.8.2.

For the polyharmonic case, the Lopatinskii—éapiro condition can be formulated
as follows.

Let @ = (—A,)* be an elliptic differential operator of order 2k on Q, (k > 1),
with principal symbol ¢(z,w) for (z,w) € T* M. One defines the following poly-
nomial in z,

g('wi/a Z) = Q(xaw/ - an>,

forx € OM, w' € TfOM, z € R and n, denotes the outward pointing conormal
vector at x, unitary in the sense of the metric g. Here x and w’ act as parameters.
We denote by 7;(z,w'), 1 < j < 2k the complex roots of §. One sets

~+

¢ (z,u',2) = H (z —rj(z,w").

Imr;(z,w’)>0
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Given boundary operators By, ..., By in a neighborhood of M, with principal
symbols b;(z,w),j = 1,..., k, one also sets l;j(x, W', z) = bj(z,w'—2n,). Accord-
ing to Definition 4.6.1, along with the general boundary operators By, Bs . .., By
of orders di,ds,...,d, respectively for ¢ = 1,... k, we give a matrix cri-
terion of the Lopatinskii—éapiro condition. The general boundary operators
By, By ..., By is then given by

By(z,D) = > (i) By (z,D'\D}, (=1... k.

0<j<min(2k—1,dy)

We denote by by (z,w), ..., bx(x,w) the principal symbols of By, ..., By respec-
tively. For (z,w') € T*OM, we set

be(z, ', 2) = Z (=)o} (z,)2),  0=1... k.

0<j<min(2k—1,dy)

We recall that the principal symbol of @ is given by ¢(x,w) = |w|§k. We set
Gz, 2) = q(z,w — 2ny) = (| — 2n.|?)" = (22 + |')?)F,

where (n,,w’), = 0. Therefore §(z,u',2) = (2 — i|w'|)*(z + |'])* and we set
Gt (z,w',z) = (2 + |w|)*. Thus the Lopatinskii-Sapiro condition holds at (z,w’)
with w’ # 0 if and only if for any polynomial function f(z) the complex number
ilw'|, is a root of the polynomial function z +— f(2) — c1by(z,w',2) — -+ —
crbe(z, W', z) and its derivative up to order k — 1 for some ¢4, ..., ¢, € C. This

leads to the following determinant condition

b1 bg Ce bk

0:b1 by ... Oy
det _ . ' (z, ',z =i|w'|,) # 0. (5.2.2)

857161 (9571?)2 85*1@;
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6. Appendix

6.1 A perfect elliptic estimate

Here we consider a(¢’, ;) polynomial in the &, variable and such that its root

have negative imaginary parts microlocally.

Lemma 6.1.1. Let ko > 0. Let a(¢', &) € SF0, with o = (x,€',7,0) and with
k > 1, that is, a(¢,&;) = Z?:o a;(0) S_j, and where the coefficients a; are
homogeneous in (§',7,0). Moreover, assume that ag(¢') = 1. Set A = Op(a).
Let % be a conic open subset of W x R4™1x [0, +00) x [0, +00) where T > koo
and such that all the roots of a(¢', &) have a negative imaginary part for o' € % .
Let x(0') € Sy be homogeneous of degree zero and such that supp(x) C %

and N € N. Then there exist C > 0, Cy > 0, and 19 > 0 such that

||OP(X)U||k,T + |tr(OP(X)U>|k—1,1/2,T < C||AOP(X)U||+ + ”U”k,—N,Tv
forw e L (RL) and T > max(7y, koo ).

Proof. Let # be a conic open set of W x R4~ x [0,00) x [0,00) such that
W C % and supp(x) C # . We write

a(¢’, &) = p(0', &) +1q(0', €a),

where p and ¢ are both homogeneous with p € S¥0 and ¢ € S¥10. We set
P = Op(p) and @ = Op(q) and we introduce the following quadratic form of

type (k,0)
S(w) = |[Pw| + [|Qu||%

with principal symbol 5(¢',&) = [p(d &) + la(dl, &) € 570,

The Hermite theorem (see, [11, Proposition 3.13|) implies that a(¢’,&;) and
b(¢',&4) have distinct real roots for all o' € % . Hence, on the compact set

we have s # 0 yielding by homogeneity that

s(¢,€a) = C|(€, 7 0) ™ = C|(&,7)*, since |(€,7,0)* = [¢[*+7°+0” Z [¢[+7°

for 7 2 0. Setting w = Op(x)v, the Garding inequality ( |11, Proposition 3.5|)
gives, for any N € N,

s(w) Z lwller = tr@lle-11/2+ = 0lls-n.7- (6.1.1)
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In addition, by the Generalized Green’s formula (see, [11, Proposition 3.15]),
we have

2Re(Pw, iQu)y = Ipq(w) + Bpq(w) + R(v),

where [, , is an interior quadratic form of type (k, —1/2), %, , is the boundary
quadratic form of type (k —1,1/2) and R(w) is the remainder term which is a
quadratic form that satisfies

|R(w)| < flwllk,-1,--
Therefore,

2Re(Pw,iQuw)y — Bpq(w)| = |I4(w) + R(w)|
[Lpq(w)| + [R(w)]

<
S ||w||k:,—1/2,r,

since |1, ,(w)| < Cllw|l1/2, for w € #(R%) by Lemma 3.3 in [11]. Then we
deduce that
2Re(Pw,iQu)+ 2 Byq(w) — ||w|lk,-1/2.

Again by the Hermite theorem ( [11, Proposition 3.13]), the bilinear form asso-
ciated to %, , denoted Xy, , is positive. Then by homogeneity we find that

T,7,0

k—1
E%a’b(gl7 Z’ 2) Z CZ)\Q(k—l—n+1/2)|Zn|2’ Ql E W’ z = (Z()) “ .. ’Zm—l) 6 Cm’ )\T77—70- — |(€/7 7_’ o_)|
n=0

Then the Garding inequality of Lemma 3.9 in [11] gives, for any N € N,
2Re(Pw, iQu)+ 2 [tr(w)|k-11/2- — [[wlle 172 — [tr(0) k-1, N7 (6.1.2)
But on the other hand, we have
[Awll} = [[Pw +iQul = [[Pw|? + |Qu[l} +2Re(Pw, iQu)y = S(w) + 2 Re(Pw, iQu)-.
So, by (6.1.1) and (6.1.2) we find,
[Awls 2 s — 5011/ — Nl v — @)1 xr  (6.13)

for 7 chosen sufficiently large.
However, observing that S(w) > 0, we also find that

|Aw|ly+ 2 [tr(w) k1,172 — llwllk,—1/2, — [ tr(V)[k-1,- N7 (6.1.4)



165

By adding estimate (6.1.3) and (6.1.4) side by side, and taking 7 to be large

enough, we obtain

[l + Ttr(@)lh-1,1/27 S [[Awlls + [[0llk, v + [tr(0) k1,57,

which ends the proof. O

6.2 Basic resolvent estimation

Here we provide a proof of Lemma 4.12.3
Let U =*(u, u') € D(A). With (4.12.17) We write

i zu + u! u?
Id,;, — A)U,U),; =
((Z H ) ) )’H ((zul . POUO . Oéul> ) <U1>>H

= ZHUHi[ + <P0u1>m>HB?2,H12Ee - (POUO, ul)LQ(Q) - (Oéulaul)Lz(Q)

= 2| U5, + 2i Im(u", Pou®) 120y — (au',u') p2(q).
Computing the real part one obtains
—Re((21dy, — A)U,U) g, = — Re(2)||U||5 + (au',u') 120 (6.2.1)
As a > 0 and Re z < 0, this gives
| Re((21dy, — AU, U)yy| > | Re(2)| U1,

which yields the conclusion of Lemma 4.12.3. O

6.3 Basic estimation for the resolvent set

Here we provide a proof of Proposition 4.13.1.
Let z € C. We consider the two cases.

Case 1: Rez < 0. By Lemma 4.12.3 zId, — A is injective. Moreover, as
its adjoint ZId, — A* is injective and satisfies ||(ZId,;, — A*)UH%{ 2 U]y for
U € D(A) by Lemma 4.12.5 the map zId,; — A is surjective (see for instance |?,
Theorem 2.20]). The estimation of Lemma 4.12.3 then gives the continuity of
the operator (zIdy;, — A)~! on H.
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Case 2: Rez = 0. We start by proving the injectivity of zId,, — A. Let thus
U =*(u’ u') € D(A) be such that zU — AU = 0. This gives

wl +ul =0, —Pou’ + (2 —a)u' =0. (6.3.1)

First, if 2 = 0 one has u! = 0, and then Pqu® = 0. Thus, u° € ker(Py) given
U e N =ker(A). From the definition of H this gives U = 0.
Second, if now z # 0, using (6.2.1) we obtain

0 = Re((zIdy; — AU, V) = —(au',u')12(q).

As a > 0, this implies that u° vanishes a.e on supp(«). Observe that

Pou’ = zut = —2%u°.
The function 1 is thus an eigenfunction for P, that vanishes on an open set.
With the unique continuation property we obtain that u° vanishes in Q and u!

as well.

If we now prove that zId; — A is surjective, the result then follows from the
closed graph theorem as A is a closed operator. We write zIdy — A=T+ Id,,
with 7' = (2 — 1)Id,, — A. By the first part of the proof, T is invertible with
a bounded inverse. The operator T is unbounded on H. We denote by T the
restriction of T' to D(A) equipped with the graph-norm associated with A. The
operator T is bounded. It is also invertible. It is thus a bounded Fredholm
operator of index ind T = 0. Similarly, we denote by ¢ the injection of D(A)
into H and A the restriction of A on D(A) viewed as a bounded operator. We
have 2zt — A = T + 1. Since ¢ is a compact operator, we obtain that z¢ — A is
also a bounded Fredholm operator of index 0. Hence, zt — A is surjective since
2ldy — A s injective as proven above. Consequently, zIdy — A s surjective.
This concludes the proof of Proposition 4.13.1. O]
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